import numpy as np import pyswarms as ps def cargo_load_planning_pso_v2(weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, cg_impact_4u, max_positions, options=None, swarmsize=100, maxiter=100): """ 使用二进制粒子群优化方法计算货物装载方案,最小化重心的变化量。 参数: weights (list): 每个货物的质量列表。 cargo_names (list): 每个货物的名称。 cargo_types_dict (dict): 货物名称和占用的货位数量。 positions (list): 可用的货位编号。 cg_impact (list): 每个位置每kg货物对重心index的影响系数。 cg_impact_2u (list): 两个位置组合的重心影响系数。 cg_impact_4u (list): 四个位置组合的重心影响系数。 max_positions (int): 总货位的数量。 options (dict, optional): PSO算法的配置选项。 swarmsize (int, optional): 粒子群大小。 maxiter (int, optional): 最大迭代次数。 返回: best_solution (np.array): 最优装载方案矩阵。 best_cg_change (float): 最优方案的重心变化量。 """ # 将货物类型映射为对应的占用单位数 cargo_types = [cargo_types_dict[name] for name in cargo_names] num_cargos = len(weights) # 货物数量 num_positions = len(positions) # 可用货位数量 dimension = num_cargos * max_positions # 每个粒子的维度:货物数量 × 可用货位数量 # 如果未提供options,使用默认配置 if options is None: options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9} # 定义适应度评估函数 def fitness_function(x): """ 计算每个粒子的适应度值。 参数: x (numpy.ndarray): 粒子的位置数组,形状为 (n_particles, dimension)。 返回: numpy.ndarray: 每个粒子的适应度值。 """ fitness = np.zeros(x.shape[0]) for idx, particle in enumerate(x): # 将连续位置映射为离散起始位置 start_positions = [] penalty = 0 cg_change = 0.0 occupied = np.zeros(num_positions, dtype=int) for i in range(num_cargos): cargo_type = cargo_types[i] pos_continuous = particle[i * max_positions:(i + 1) * max_positions] # 根据粒子位置值选择最佳货位 start_pos = np.argmax(pos_continuous) # 检查边界 if start_pos < 0 or start_pos + cargo_type > num_positions: penalty += 1000 continue # 检查对齐 if cargo_type == 2 and start_pos % 2 != 0: penalty += 1000 if cargo_type == 4 and start_pos % 4 != 0: penalty += 1000 # 检查重叠 if np.any(occupied[start_pos:start_pos + cargo_type]): penalty += 1000 else: occupied[start_pos:start_pos + cargo_type] = 1 start_positions.append(start_pos) # 计算重心变化量 if cargo_type == 1: cg_change += weights[i] * cg_impact[start_pos] elif cargo_type == 2: cg_change += weights[i] * cg_impact_2u[start_pos // 2] elif cargo_type == 4: cg_change += weights[i] * cg_impact_4u[start_pos // 4] fitness[idx] = cg_change + penalty return fitness # 设置PSO的边界 # 对于每个货物,起始位置的范围根据货物类型对齐 lower_bounds = [] upper_bounds = [] for i in range(num_cargos): cargo_type = cargo_types[i] lower_bounds.append([0] * max_positions) upper_bounds.append([1] * max_positions) bounds = (np.array(lower_bounds), np.array(upper_bounds)) # 初始化PSO优化器 optimizer = ps.single.GlobalBestPSO(n_particles=swarmsize, dimensions=dimension, options=options, bounds=bounds) # 运行PSO优化 best_cost, best_pos = optimizer.optimize(fitness_function, iters=maxiter) # 将最佳位置映射为离散装载方案 best_start_positions = [] penalty = 0 cg_change = 0.0 occupied = np.zeros(num_positions, dtype=int) for i in range(num_cargos): cargo_type = cargo_types[i] pos_continuous = best_pos[i * max_positions:(i + 1) * max_positions] # 根据粒子位置值选择最佳货位 start_pos = np.argmax(pos_continuous) # 检查边界 if start_pos < 0 or start_pos + cargo_type > num_positions: penalty += 1000 best_start_positions.append(start_pos) continue # 检查对齐 if cargo_type == 2 and start_pos % 2 != 0: penalty += 1000 if cargo_type == 4 and start_pos % 4 != 0: penalty += 1000 # 检查重叠 if np.any(occupied[start_pos:start_pos + cargo_type]): penalty += 1000 else: occupied[start_pos:start_pos + cargo_type] = 1 best_start_positions.append(start_pos) # 计算重心变化量 if cargo_type == 1: cg_change += abs(weights[i] * cg_impact[start_pos]) elif cargo_type == 2: cg_change += abs(weights[i] * cg_impact_2u[start_pos // 2]) elif cargo_type == 4: cg_change += abs(weights[i] * cg_impact_4u[start_pos // 4]) total_cg_change = cg_change + penalty # 构建装载方案矩阵 best_xij = np.zeros((num_cargos, num_positions), dtype=int) for i, start_pos in enumerate(best_start_positions): cargo_type = cargo_types[i] for k in range(cargo_type): pos = start_pos + k if pos < num_positions: best_xij[i, pos] = 1 # 检查是否有严重惩罚,判断是否找到可行解 if total_cg_change >= -999999: return best_xij, total_cg_change else: return [], -1000000 # 示例调用