import numpy as np import pulp def cargo_load_planning_mip(weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, cg_impact_4u, max_positions): """ 使用混合整数规划方法计算货物装载方案,最小化重心的变化量。 参数: weights (list): 每个货物的质量列表。 cargo_names (list): 每个货物的名称。 cargo_types_dict (dict): 货物名称和占用的货位数量。 positions (list): 可用的货位编号。 cg_impact (list): 每个位置每kg货物对重心index的影响系数。 cg_impact_2u (list): 两个位置组合的重心影响系数。 cg_impact_4u (list): 四个位置组合的重心影响系数。 max_positions (int): 总货位的数量。 返回: result (pulp.LpStatus): 求解状态。 cg_change (float): 最优解的重心变化量。 solution_matrix (np.ndarray): 最优装载方案矩阵。 """ # 将货物类型映射为对应的占用单位数 cargo_types = [cargo_types_dict[name] for name in cargo_names] num_cargos = len(weights) # 货物数量 num_positions = len(positions) # 可用货位数量 # 创建优化问题实例 prob = pulp.LpProblem("Cargo_Load_Planning", pulp.LpMinimize) # 创建决策变量 x_ij (是否将货物i放置在位置j) # 使用字典键 (i,j) 来标识变量 x = pulp.LpVariable.dicts("x", ((i, j) for i in range(num_cargos) for j in range(num_positions)), cat='Binary') # 定义目标函数:最小化重心的变化量 objective_terms = [] for i in range(num_cargos): for j in range(num_positions): if cargo_types[i] == 1: impact = abs(weights[i] * cg_impact[j]) elif cargo_types[i] == 2 and j % 2 == 0 and j < len(cg_impact_2u) * 2: impact = abs(weights[i] * cg_impact_2u[j // 2]) elif cargo_types[i] == 4 and j % 4 == 0 and j < len(cg_impact_4u) * 4: impact = abs(weights[i] * cg_impact_4u[j // 4]) else: impact = 0 objective_terms.append(impact * x[i, j]) prob += pulp.lpSum(objective_terms), "Total_CG_Change" # 约束1:每个货物只能装载到一个位置 for i in range(num_cargos): prob += pulp.lpSum([x[i, j] for j in range(num_positions)]) == 1, f"Cargo_{i}_Single_Position" # 约束2:每个位置只能装载一个货物 for j in range(num_positions): prob += pulp.lpSum([x[i, j] for i in range(num_cargos)]) <= 1, f"Position_{j}_Single_Cargo" # 约束3:占用多个位置的货物 for i, cargo_type in enumerate(cargo_types): if cargo_type == 2: # 两个连续位置组合 for j in range(0, num_positions - 1, 2): prob += x[i, j] + x[i, j + 1] <= 1, f"Cargo_{i}_Type2_Position_{j}_{j+1}" elif cargo_type == 4: # 四个连续位置组合 for j in range(0, num_positions - 3, 4): prob += x[i, j] + x[i, j + 1] + x[i, j + 2] + x[i, j + 3] <= 1, f"Cargo_{i}_Type4_Position_{j}_{j+3}" # 求解问题 solver = pulp.PULP_CBC_CMD(msg=False) # 使用默认的CBC求解器,不显示求解过程 prob.solve(solver) # 检查求解状态 if pulp.LpStatus[prob.status] == 'Optimal': # 构建装载方案矩阵 solution = np.zeros((num_cargos, num_positions)) for i in range(num_cargos): for j in range(num_positions): var_value = pulp.value(x[i, j]) if var_value is not None and var_value > 0.5: solution[i, j] = 1 # 计算最终重心变化 cg_change = 0.0 for i in range(num_cargos): for j in range(num_positions): if solution[i, j] == 1: if cargo_types[i] == 1: cg_change += weights[i] * cg_impact[j] elif cargo_types[i] == 2 and j % 2 == 0 and j < len(cg_impact_2u) * 2: cg_change += weights[i] * cg_impact_2u[j // 2] elif cargo_types[i] == 4 and j % 4 == 0 and j < len(cg_impact_4u) * 4: cg_change += weights[i] * cg_impact_4u[j // 4] return solution, cg_change else: # 若求解失败,则返回空结果和错误标志 return [], -1000000 # 示例输入和调用 # def main(): # weights = [500, 800, 1200, 300, 700, 1000, 600, 900] # 每个货物的质量 # cargo_names = ['LD3', 'LD3', 'PLA', 'LD3', 'P6P', 'PLA', 'LD3', 'BULK'] # 货物名称 # cargo_types_dict = {"LD3": 1, "PLA": 2, "P6P": 4, "BULK": 1} # 货物占位关系 # positions = list(range(44)) # 44个货位编号 # cg_impact = [i * 0.1 for i in range(44)] # 每kg货物对重心index的影响系数 (单个位置) # cg_impact_2u = [i * 0.08 for i in range(22)] # 两个位置组合的影响系数 # cg_impact_4u = [i * 0.05 for i in range(11)] # 四个位置组合的影响系数 # max_positions = 44 # 总货位数量 # # status, cg_change, solution = cargo_load_planning_mip( # weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, cg_impact_4u, max_positions # ) # # if status == 'Optimal': # print("成功找到最优装载方案!") # print("装载方案矩阵:") # print(solution) # # print(f"重心的变化量: {cg_change:.2f}") # # # 输出实际分布 # for i in range(len(weights)): # assigned_positions = [] # for j in range(len(positions)): # if solution[i, j] > 0.5: # 判断位置是否被分配 # assigned_positions.append(j) # print(f"货物 {cargo_names[i]} (占 {cargo_types_dict[cargo_names[i]]} 单位): 放置位置 -> {assigned_positions}") # else: # print("未能找到可行解。") # print(f"求解状态: {status}") # # if __name__ == "__main__": # main()