import numpy as np from scipy.optimize import linprog def cargo_load_planning_nonlinear1(weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, cg_impact_4u, max_positions): """ 使用整数线性规划方法计算货物装载方案,最小化重心的变化量。 参数: weights (list): 每个货物的质量列表。 cargo_names (list): 每个货物的名称。 cargo_types_dict (dict): 货物名称和占用的货位数量。 positions (list): 可用的货位编号。 cg_impact (list): 每个位置每kg货物对重心index的影响系数。 cg_impact_2u (list): 两个位置组合的重心影响系数。 cg_impact_4u (list): 四个位置组合的重心影响系数。 max_positions (int): 总货位的数量。 返回: result.x: 最优装载方案矩阵。 """ # 将货物类型映射为对应的占用单位数 cargo_types = [cargo_types_dict[name] for name in cargo_names] num_cargos = len(weights) # 货物数量 num_positions = len(positions) # 可用货位数量 # 决策变量:xij (是否将货物i放置在位置j) c = [] # 目标函数系数列表 for i in range(num_cargos): for j in range(num_positions): if cargo_types[i] == 1: c.append((weights[i] * cg_impact[j])**2) elif cargo_types[i] == 2 and j % 2 == 0 and j < len(cg_impact_2u) * 2: c.append((weights[i] * cg_impact_2u[j // 2])**2) elif cargo_types[i] == 4 and j % 4 == 0 and j < len(cg_impact_4u) * 4: c.append((weights[i] * cg_impact_4u[j // 4])**2) else: c.append(0) # 不适合的索引默认影响为0 # 决策变量约束:xij只能是0或1 (整型约束由 linprog 近似处理) bounds = [(0, 1) for _ in range(num_cargos * num_positions)] # 约束1:每个货物只能装载到一个位置 A_eq = [] b_eq = [] for i in range(num_cargos): constraint = [0] * (num_cargos * num_positions) for j in range(num_positions): constraint[i * num_positions + j] = 1 A_eq.append(constraint) b_eq.append(1) # 约束2:每个位置只能装载一个货物 A_ub = [] b_ub = [] for j in range(num_positions): # 遍历所有位置 constraint = [0] * (num_cargos * num_positions) for i in range(num_cargos): # 遍历所有货物 constraint[i * num_positions + j] = 1 A_ub.append(constraint) b_ub.append(1) # 每个位置最多只能分配一个货物 # 约束3:占用多个位置的货物 for i, cargo_type in enumerate(cargo_types): if cargo_type == 2: # 两个连续位置组合 for j in range(0, num_positions - 1, 2): constraint = [0] * (num_cargos * num_positions) constraint[i * num_positions + j] = 1 constraint[i * num_positions + j + 1] = 1 A_ub.append(constraint) b_ub.append(1) elif cargo_type == 4: # 上两个、下两个组合 for j in range(0, num_positions - 3, 4): constraint = [0] * (num_cargos * num_positions) constraint[i * num_positions + j] = 1 constraint[i * num_positions + j + 1] = 1 constraint[i * num_positions + j + 2] = 1 constraint[i * num_positions + j + 3] = 1 A_ub.append(constraint) b_ub.append(1) # 转换为numpy数组 A_eq = np.array(A_eq) b_eq = np.array(b_eq) A_ub = np.array(A_ub) b_ub = np.array(b_ub) c = np.array(c) # 求解线性规划问题 result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs-ds') if result.success: # print("成功找到最优装载方案!") solution = result.x.reshape((num_cargos, num_positions)) # print("装载方案矩阵:") # print(solution) # 计算最终重心变化 cg_change = 0 for i in range(num_cargos): for j in range(num_positions): if cargo_types[i] == 1: cg_change += solution[i, j] * weights[i] * cg_impact[j] elif cargo_types[i] == 2 and j % 2 == 0 and j < len(cg_impact_2u) * 2: cg_change += solution[i, j] * weights[i] * cg_impact_2u[j // 2] elif cargo_types[i] == 4 and j % 4 == 0 and j < len(cg_impact_4u) * 4: cg_change += solution[i, j] * weights[i] * cg_impact_4u[j // 4] # print(f"重心的变化量: {cg_change:.2f}") return result,cg_change # 输出实际分布 # print("货物实际分布:") # for i in range(num_cargos): # assigned_positions = [] # for j in range(num_positions): # if solution[i, j] > 0.5: # 判断位置是否被分配 # assigned_positions.append(j) # print(f"货物 {cargo_names[i]} (占 {cargo_types[i]} 单位): 放置位置 -> {assigned_positions}") else: result = [] return result,-1000000 # # 示例输入 # def main(): # weights = [500, 800, 1200, 300, 700, 1000, 600, 900] # 每个货物的质量 # cargo_names = ['LD3', 'LD3', 'PLA', 'LD3', 'P6P', 'PLA', 'LD3', 'BULK'] # 货物名称 # cargo_types_dict = {"LD3": 1, "PLA": 2, "P6P": 4, "BULK": 1} # 货物占位关系 # positions = list(range(44)) # 44个货位编号 # cg_impact = [i * 0.1 for i in range(44)] # 每kg货物对重心index的影响系数 (单个位置) # cg_impact_2u = [i * 0.08 for i in range(22)] # 两个位置组合的影响系数 # cg_impact_4u = [i * 0.05 for i in range(11)] # 四个位置组合的影响系数 # max_positions = 44 # 总货位数量 # # result = cargo_load_planning_nonlinear1(weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, # cg_impact_4u, max_positions) # # # if __name__ == "__main__": # main()