File size: 8,784 Bytes
d2efaca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import {Point, toPoint} from './Point';
import * as Util from '../core/Util';
import {toLatLng} from '../geo/LatLng';
import {centroid} from './PolyUtil';
import {toLatLngBounds} from '../geo/LatLngBounds';
/*
* @namespace LineUtil
*
* Various utility functions for polyline points processing, used by Leaflet internally to make polylines lightning-fast.
*/
// Simplify polyline with vertex reduction and Douglas-Peucker simplification.
// Improves rendering performance dramatically by lessening the number of points to draw.
// @function simplify(points: Point[], tolerance: Number): Point[]
// Dramatically reduces the number of points in a polyline while retaining
// its shape and returns a new array of simplified points, using the
// [Ramer-Douglas-Peucker algorithm](https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm).
// Used for a huge performance boost when processing/displaying Leaflet polylines for
// each zoom level and also reducing visual noise. tolerance affects the amount of
// simplification (lesser value means higher quality but slower and with more points).
// Also released as a separated micro-library [Simplify.js](https://mourner.github.io/simplify-js/).
export function simplify(points, tolerance) {
if (!tolerance || !points.length) {
return points.slice();
}
var sqTolerance = tolerance * tolerance;
// stage 1: vertex reduction
points = _reducePoints(points, sqTolerance);
// stage 2: Douglas-Peucker simplification
points = _simplifyDP(points, sqTolerance);
return points;
}
// @function pointToSegmentDistance(p: Point, p1: Point, p2: Point): Number
// Returns the distance between point `p` and segment `p1` to `p2`.
export function pointToSegmentDistance(p, p1, p2) {
return Math.sqrt(_sqClosestPointOnSegment(p, p1, p2, true));
}
// @function closestPointOnSegment(p: Point, p1: Point, p2: Point): Number
// Returns the closest point from a point `p` on a segment `p1` to `p2`.
export function closestPointOnSegment(p, p1, p2) {
return _sqClosestPointOnSegment(p, p1, p2);
}
// Ramer-Douglas-Peucker simplification, see https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
function _simplifyDP(points, sqTolerance) {
var len = points.length,
ArrayConstructor = typeof Uint8Array !== undefined + '' ? Uint8Array : Array,
markers = new ArrayConstructor(len);
markers[0] = markers[len - 1] = 1;
_simplifyDPStep(points, markers, sqTolerance, 0, len - 1);
var i,
newPoints = [];
for (i = 0; i < len; i++) {
if (markers[i]) {
newPoints.push(points[i]);
}
}
return newPoints;
}
function _simplifyDPStep(points, markers, sqTolerance, first, last) {
var maxSqDist = 0,
index, i, sqDist;
for (i = first + 1; i <= last - 1; i++) {
sqDist = _sqClosestPointOnSegment(points[i], points[first], points[last], true);
if (sqDist > maxSqDist) {
index = i;
maxSqDist = sqDist;
}
}
if (maxSqDist > sqTolerance) {
markers[index] = 1;
_simplifyDPStep(points, markers, sqTolerance, first, index);
_simplifyDPStep(points, markers, sqTolerance, index, last);
}
}
// reduce points that are too close to each other to a single point
function _reducePoints(points, sqTolerance) {
var reducedPoints = [points[0]];
for (var i = 1, prev = 0, len = points.length; i < len; i++) {
if (_sqDist(points[i], points[prev]) > sqTolerance) {
reducedPoints.push(points[i]);
prev = i;
}
}
if (prev < len - 1) {
reducedPoints.push(points[len - 1]);
}
return reducedPoints;
}
var _lastCode;
// @function clipSegment(a: Point, b: Point, bounds: Bounds, useLastCode?: Boolean, round?: Boolean): Point[]|Boolean
// Clips the segment a to b by rectangular bounds with the
// [Cohen-Sutherland algorithm](https://en.wikipedia.org/wiki/Cohen%E2%80%93Sutherland_algorithm)
// (modifying the segment points directly!). Used by Leaflet to only show polyline
// points that are on the screen or near, increasing performance.
export function clipSegment(a, b, bounds, useLastCode, round) {
var codeA = useLastCode ? _lastCode : _getBitCode(a, bounds),
codeB = _getBitCode(b, bounds),
codeOut, p, newCode;
// save 2nd code to avoid calculating it on the next segment
_lastCode = codeB;
while (true) {
// if a,b is inside the clip window (trivial accept)
if (!(codeA | codeB)) {
return [a, b];
}
// if a,b is outside the clip window (trivial reject)
if (codeA & codeB) {
return false;
}
// other cases
codeOut = codeA || codeB;
p = _getEdgeIntersection(a, b, codeOut, bounds, round);
newCode = _getBitCode(p, bounds);
if (codeOut === codeA) {
a = p;
codeA = newCode;
} else {
b = p;
codeB = newCode;
}
}
}
export function _getEdgeIntersection(a, b, code, bounds, round) {
var dx = b.x - a.x,
dy = b.y - a.y,
min = bounds.min,
max = bounds.max,
x, y;
if (code & 8) { // top
x = a.x + dx * (max.y - a.y) / dy;
y = max.y;
} else if (code & 4) { // bottom
x = a.x + dx * (min.y - a.y) / dy;
y = min.y;
} else if (code & 2) { // right
x = max.x;
y = a.y + dy * (max.x - a.x) / dx;
} else if (code & 1) { // left
x = min.x;
y = a.y + dy * (min.x - a.x) / dx;
}
return new Point(x, y, round);
}
export function _getBitCode(p, bounds) {
var code = 0;
if (p.x < bounds.min.x) { // left
code |= 1;
} else if (p.x > bounds.max.x) { // right
code |= 2;
}
if (p.y < bounds.min.y) { // bottom
code |= 4;
} else if (p.y > bounds.max.y) { // top
code |= 8;
}
return code;
}
// square distance (to avoid unnecessary Math.sqrt calls)
function _sqDist(p1, p2) {
var dx = p2.x - p1.x,
dy = p2.y - p1.y;
return dx * dx + dy * dy;
}
// return closest point on segment or distance to that point
export function _sqClosestPointOnSegment(p, p1, p2, sqDist) {
var x = p1.x,
y = p1.y,
dx = p2.x - x,
dy = p2.y - y,
dot = dx * dx + dy * dy,
t;
if (dot > 0) {
t = ((p.x - x) * dx + (p.y - y) * dy) / dot;
if (t > 1) {
x = p2.x;
y = p2.y;
} else if (t > 0) {
x += dx * t;
y += dy * t;
}
}
dx = p.x - x;
dy = p.y - y;
return sqDist ? dx * dx + dy * dy : new Point(x, y);
}
// @function isFlat(latlngs: LatLng[]): Boolean
// Returns true if `latlngs` is a flat array, false is nested.
export function isFlat(latlngs) {
return !Util.isArray(latlngs[0]) || (typeof latlngs[0][0] !== 'object' && typeof latlngs[0][0] !== 'undefined');
}
export function _flat(latlngs) {
console.warn('Deprecated use of _flat, please use L.LineUtil.isFlat instead.');
return isFlat(latlngs);
}
/* @function polylineCenter(latlngs: LatLng[], crs: CRS): LatLng
* Returns the center ([centroid](http://en.wikipedia.org/wiki/Centroid)) of the passed LatLngs (first ring) from a polyline.
*/
export function polylineCenter(latlngs, crs) {
var i, halfDist, segDist, dist, p1, p2, ratio, center;
if (!latlngs || latlngs.length === 0) {
throw new Error('latlngs not passed');
}
if (!isFlat(latlngs)) {
console.warn('latlngs are not flat! Only the first ring will be used');
latlngs = latlngs[0];
}
var centroidLatLng = toLatLng([0, 0]);
var bounds = toLatLngBounds(latlngs);
var areaBounds = bounds.getNorthWest().distanceTo(bounds.getSouthWest()) * bounds.getNorthEast().distanceTo(bounds.getNorthWest());
// tests showed that below 1700 rounding errors are happening
if (areaBounds < 1700) {
// getting a inexact center, to move the latlngs near to [0, 0] to prevent rounding errors
centroidLatLng = centroid(latlngs);
}
var len = latlngs.length;
var points = [];
for (i = 0; i < len; i++) {
var latlng = toLatLng(latlngs[i]);
points.push(crs.project(toLatLng([latlng.lat - centroidLatLng.lat, latlng.lng - centroidLatLng.lng])));
}
for (i = 0, halfDist = 0; i < len - 1; i++) {
halfDist += points[i].distanceTo(points[i + 1]) / 2;
}
// The line is so small in the current view that all points are on the same pixel.
if (halfDist === 0) {
center = points[0];
} else {
for (i = 0, dist = 0; i < len - 1; i++) {
p1 = points[i];
p2 = points[i + 1];
segDist = p1.distanceTo(p2);
dist += segDist;
if (dist > halfDist) {
ratio = (dist - halfDist) / segDist;
center = [
p2.x - ratio * (p2.x - p1.x),
p2.y - ratio * (p2.y - p1.y)
];
break;
}
}
}
var latlngCenter = crs.unproject(toPoint(center));
return toLatLng([latlngCenter.lat + centroidLatLng.lat, latlngCenter.lng + centroidLatLng.lng]);
}
|