import numpy as np import math def compute_box_3d(size, center, rotmat): """Compute corners of a single box from rotation matrix Args: size: list of float [dx, dy, dz] center: np.array [x, y, z] rotmat: np.array (3, 3) Returns: corners: (8, 3) """ l, h, w = [i / 2 for i in size] center = np.reshape(center, (-1, 3)) center = center.reshape(3) x_corners = [l, l, -l, -l, l, l, -l, -l] y_corners = [h, -h, -h, h, h, -h, -h, h] z_corners = [w, w, w, w, -w, -w, -w, -w] corners_3d = np.dot( np.transpose(rotmat), np.vstack([x_corners, y_corners, z_corners]) ) corners_3d[0, :] += center[0] corners_3d[1, :] += center[1] corners_3d[2, :] += center[2] return np.transpose(corners_3d) def rotate_z_axis_by_degrees(pointcloud, theta, clockwise=True): theta = np.deg2rad(theta) cos_t = np.cos(theta) sin_t = np.sin(theta) rot_matrix = np.array([[cos_t, -sin_t, 0], [sin_t, cos_t, 0], [0, 0, 1]], pointcloud.dtype) if not clockwise: rot_matrix = rot_matrix.T return pointcloud.dot(rot_matrix) def eulerAnglesToRotationMatrix(theta): """Euler rotation matrix with clockwise logic. Rotation Args: theta: list of float [theta_x, theta_y, theta_z] Returns: R: np.array (3, 3) rotation matrix of Rz*Ry*Rx """ R_x = np.array( [ [1, 0, 0], [0, math.cos(theta[0]), -math.sin(theta[0])], [0, math.sin(theta[0]), math.cos(theta[0])], ] ) R_y = np.array( [ [math.cos(theta[1]), 0, math.sin(theta[1])], [0, 1, 0], [-math.sin(theta[1]), 0, math.cos(theta[1])], ] ) R_z = np.array( [ [math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1], ] ) R = np.dot(R_z, np.dot(R_y, R_x)) return R def is_axis_aligned(rotated_box, thres=0.05): x_diff = abs(rotated_box[0][0] - rotated_box[1][0]) y_diff = abs(rotated_box[0][1] - rotated_box[3][1]) return x_diff < thres and y_diff < thres def calc_align_matrix(bbox_list): RANGE = [-45, 45] NUM_BIN = 90 angles = np.linspace(RANGE[0], RANGE[1], NUM_BIN) angle_counts = {} for _a in angles: bucket = round(_a, 3) for box in bbox_list: box_r = rotate_z_axis_by_degrees(box, bucket) bottom = box_r[4:] if is_axis_aligned(bottom): angle_counts[bucket] = angle_counts.get(bucket, 0) + 1 if len(angle_counts) == 0: RANGE = [-90, 90] NUM_BIN = 180 angles = np.linspace(RANGE[0], RANGE[1], NUM_BIN) for _a in angles: bucket = round(_a, 3) for box in bbox_list: box_r = rotate_z_axis_by_degrees(box, bucket) bottom = box_r[4:] if is_axis_aligned(bottom, thres=0.15): angle_counts[bucket] = angle_counts.get(bucket, 0) + 1 most_common_angle = max(angle_counts, key=angle_counts.get) return most_common_angle