File size: 31,323 Bytes
f86fac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 |
# mypy: allow-untyped-defs
from __future__ import annotations
from collections.abc import Collection
from collections.abc import Mapping
from collections.abc import Sequence
from collections.abc import Sized
from decimal import Decimal
import math
from numbers import Complex
import pprint
import sys
from typing import Any
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from numpy import ndarray
def _compare_approx(
full_object: object,
message_data: Sequence[tuple[str, str, str]],
number_of_elements: int,
different_ids: Sequence[object],
max_abs_diff: float,
max_rel_diff: float,
) -> list[str]:
message_list = list(message_data)
message_list.insert(0, ("Index", "Obtained", "Expected"))
max_sizes = [0, 0, 0]
for index, obtained, expected in message_list:
max_sizes[0] = max(max_sizes[0], len(index))
max_sizes[1] = max(max_sizes[1], len(obtained))
max_sizes[2] = max(max_sizes[2], len(expected))
explanation = [
f"comparison failed. Mismatched elements: {len(different_ids)} / {number_of_elements}:",
f"Max absolute difference: {max_abs_diff}",
f"Max relative difference: {max_rel_diff}",
] + [
f"{indexes:<{max_sizes[0]}} | {obtained:<{max_sizes[1]}} | {expected:<{max_sizes[2]}}"
for indexes, obtained, expected in message_list
]
return explanation
# builtin pytest.approx helper
class ApproxBase:
"""Provide shared utilities for making approximate comparisons between
numbers or sequences of numbers."""
# Tell numpy to use our `__eq__` operator instead of its.
__array_ufunc__ = None
__array_priority__ = 100
def __init__(self, expected, rel=None, abs=None, nan_ok: bool = False) -> None:
__tracebackhide__ = True
self.expected = expected
self.abs = abs
self.rel = rel
self.nan_ok = nan_ok
self._check_type()
def __repr__(self) -> str:
raise NotImplementedError
def _repr_compare(self, other_side: Any) -> list[str]:
return [
"comparison failed",
f"Obtained: {other_side}",
f"Expected: {self}",
]
def __eq__(self, actual) -> bool:
return all(
a == self._approx_scalar(x) for a, x in self._yield_comparisons(actual)
)
def __bool__(self):
__tracebackhide__ = True
raise AssertionError(
"approx() is not supported in a boolean context.\nDid you mean: `assert a == approx(b)`?"
)
# Ignore type because of https://github.com/python/mypy/issues/4266.
__hash__ = None # type: ignore
def __ne__(self, actual) -> bool:
return not (actual == self)
def _approx_scalar(self, x) -> ApproxScalar:
if isinstance(x, Decimal):
return ApproxDecimal(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok)
return ApproxScalar(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok)
def _yield_comparisons(self, actual):
"""Yield all the pairs of numbers to be compared.
This is used to implement the `__eq__` method.
"""
raise NotImplementedError
def _check_type(self) -> None:
"""Raise a TypeError if the expected value is not a valid type."""
# This is only a concern if the expected value is a sequence. In every
# other case, the approx() function ensures that the expected value has
# a numeric type. For this reason, the default is to do nothing. The
# classes that deal with sequences should reimplement this method to
# raise if there are any non-numeric elements in the sequence.
def _recursive_sequence_map(f, x):
"""Recursively map a function over a sequence of arbitrary depth"""
if isinstance(x, (list, tuple)):
seq_type = type(x)
return seq_type(_recursive_sequence_map(f, xi) for xi in x)
elif _is_sequence_like(x):
return [_recursive_sequence_map(f, xi) for xi in x]
else:
return f(x)
class ApproxNumpy(ApproxBase):
"""Perform approximate comparisons where the expected value is numpy array."""
def __repr__(self) -> str:
list_scalars = _recursive_sequence_map(
self._approx_scalar, self.expected.tolist()
)
return f"approx({list_scalars!r})"
def _repr_compare(self, other_side: ndarray | list[Any]) -> list[str]:
import itertools
import math
def get_value_from_nested_list(
nested_list: list[Any], nd_index: tuple[Any, ...]
) -> Any:
"""
Helper function to get the value out of a nested list, given an n-dimensional index.
This mimics numpy's indexing, but for raw nested python lists.
"""
value: Any = nested_list
for i in nd_index:
value = value[i]
return value
np_array_shape = self.expected.shape
approx_side_as_seq = _recursive_sequence_map(
self._approx_scalar, self.expected.tolist()
)
# convert other_side to numpy array to ensure shape attribute is available
other_side_as_array = _as_numpy_array(other_side)
assert other_side_as_array is not None
if np_array_shape != other_side_as_array.shape:
return [
"Impossible to compare arrays with different shapes.",
f"Shapes: {np_array_shape} and {other_side_as_array.shape}",
]
number_of_elements = self.expected.size
max_abs_diff = -math.inf
max_rel_diff = -math.inf
different_ids = []
for index in itertools.product(*(range(i) for i in np_array_shape)):
approx_value = get_value_from_nested_list(approx_side_as_seq, index)
other_value = get_value_from_nested_list(other_side_as_array, index)
if approx_value != other_value:
abs_diff = abs(approx_value.expected - other_value)
max_abs_diff = max(max_abs_diff, abs_diff)
if other_value == 0.0:
max_rel_diff = math.inf
else:
max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value))
different_ids.append(index)
message_data = [
(
str(index),
str(get_value_from_nested_list(other_side_as_array, index)),
str(get_value_from_nested_list(approx_side_as_seq, index)),
)
for index in different_ids
]
return _compare_approx(
self.expected,
message_data,
number_of_elements,
different_ids,
max_abs_diff,
max_rel_diff,
)
def __eq__(self, actual) -> bool:
import numpy as np
# self.expected is supposed to always be an array here.
if not np.isscalar(actual):
try:
actual = np.asarray(actual)
except Exception as e:
raise TypeError(f"cannot compare '{actual}' to numpy.ndarray") from e
if not np.isscalar(actual) and actual.shape != self.expected.shape:
return False
return super().__eq__(actual)
def _yield_comparisons(self, actual):
import numpy as np
# `actual` can either be a numpy array or a scalar, it is treated in
# `__eq__` before being passed to `ApproxBase.__eq__`, which is the
# only method that calls this one.
if np.isscalar(actual):
for i in np.ndindex(self.expected.shape):
yield actual, self.expected[i].item()
else:
for i in np.ndindex(self.expected.shape):
yield actual[i].item(), self.expected[i].item()
class ApproxMapping(ApproxBase):
"""Perform approximate comparisons where the expected value is a mapping
with numeric values (the keys can be anything)."""
def __repr__(self) -> str:
return f"approx({ ({k: self._approx_scalar(v) for k, v in self.expected.items()})!r})"
def _repr_compare(self, other_side: Mapping[object, float]) -> list[str]:
import math
approx_side_as_map = {
k: self._approx_scalar(v) for k, v in self.expected.items()
}
number_of_elements = len(approx_side_as_map)
max_abs_diff = -math.inf
max_rel_diff = -math.inf
different_ids = []
for (approx_key, approx_value), other_value in zip(
approx_side_as_map.items(), other_side.values()
):
if approx_value != other_value:
if approx_value.expected is not None and other_value is not None:
try:
max_abs_diff = max(
max_abs_diff, abs(approx_value.expected - other_value)
)
if approx_value.expected == 0.0:
max_rel_diff = math.inf
else:
max_rel_diff = max(
max_rel_diff,
abs(
(approx_value.expected - other_value)
/ approx_value.expected
),
)
except ZeroDivisionError:
pass
different_ids.append(approx_key)
message_data = [
(str(key), str(other_side[key]), str(approx_side_as_map[key]))
for key in different_ids
]
return _compare_approx(
self.expected,
message_data,
number_of_elements,
different_ids,
max_abs_diff,
max_rel_diff,
)
def __eq__(self, actual) -> bool:
try:
if set(actual.keys()) != set(self.expected.keys()):
return False
except AttributeError:
return False
return super().__eq__(actual)
def _yield_comparisons(self, actual):
for k in self.expected.keys():
yield actual[k], self.expected[k]
def _check_type(self) -> None:
__tracebackhide__ = True
for key, value in self.expected.items():
if isinstance(value, type(self.expected)):
msg = "pytest.approx() does not support nested dictionaries: key={!r} value={!r}\n full mapping={}"
raise TypeError(msg.format(key, value, pprint.pformat(self.expected)))
class ApproxSequenceLike(ApproxBase):
"""Perform approximate comparisons where the expected value is a sequence of numbers."""
def __repr__(self) -> str:
seq_type = type(self.expected)
if seq_type not in (tuple, list):
seq_type = list
return f"approx({seq_type(self._approx_scalar(x) for x in self.expected)!r})"
def _repr_compare(self, other_side: Sequence[float]) -> list[str]:
import math
if len(self.expected) != len(other_side):
return [
"Impossible to compare lists with different sizes.",
f"Lengths: {len(self.expected)} and {len(other_side)}",
]
approx_side_as_map = _recursive_sequence_map(self._approx_scalar, self.expected)
number_of_elements = len(approx_side_as_map)
max_abs_diff = -math.inf
max_rel_diff = -math.inf
different_ids = []
for i, (approx_value, other_value) in enumerate(
zip(approx_side_as_map, other_side)
):
if approx_value != other_value:
try:
abs_diff = abs(approx_value.expected - other_value)
max_abs_diff = max(max_abs_diff, abs_diff)
# Ignore non-numbers for the diff calculations (#13012).
except TypeError:
pass
else:
if other_value == 0.0:
max_rel_diff = math.inf
else:
max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value))
different_ids.append(i)
message_data = [
(str(i), str(other_side[i]), str(approx_side_as_map[i]))
for i in different_ids
]
return _compare_approx(
self.expected,
message_data,
number_of_elements,
different_ids,
max_abs_diff,
max_rel_diff,
)
def __eq__(self, actual) -> bool:
try:
if len(actual) != len(self.expected):
return False
except TypeError:
return False
return super().__eq__(actual)
def _yield_comparisons(self, actual):
return zip(actual, self.expected)
def _check_type(self) -> None:
__tracebackhide__ = True
for index, x in enumerate(self.expected):
if isinstance(x, type(self.expected)):
msg = "pytest.approx() does not support nested data structures: {!r} at index {}\n full sequence: {}"
raise TypeError(msg.format(x, index, pprint.pformat(self.expected)))
class ApproxScalar(ApproxBase):
"""Perform approximate comparisons where the expected value is a single number."""
# Using Real should be better than this Union, but not possible yet:
# https://github.com/python/typeshed/pull/3108
DEFAULT_ABSOLUTE_TOLERANCE: float | Decimal = 1e-12
DEFAULT_RELATIVE_TOLERANCE: float | Decimal = 1e-6
def __repr__(self) -> str:
"""Return a string communicating both the expected value and the
tolerance for the comparison being made.
For example, ``1.0 ± 1e-6``, ``(3+4j) ± 5e-6 ∠ ±180°``.
"""
# Don't show a tolerance for values that aren't compared using
# tolerances, i.e. non-numerics and infinities. Need to call abs to
# handle complex numbers, e.g. (inf + 1j).
if (
isinstance(self.expected, bool)
or (not isinstance(self.expected, (Complex, Decimal)))
or math.isinf(abs(self.expected) or isinstance(self.expected, bool))
):
return str(self.expected)
# If a sensible tolerance can't be calculated, self.tolerance will
# raise a ValueError. In this case, display '???'.
try:
if 1e-3 <= self.tolerance < 1e3:
vetted_tolerance = f"{self.tolerance:n}"
else:
vetted_tolerance = f"{self.tolerance:.1e}"
if (
isinstance(self.expected, Complex)
and self.expected.imag
and not math.isinf(self.tolerance)
):
vetted_tolerance += " ∠ ±180°"
except ValueError:
vetted_tolerance = "???"
return f"{self.expected} ± {vetted_tolerance}"
def __eq__(self, actual) -> bool:
"""Return whether the given value is equal to the expected value
within the pre-specified tolerance."""
def is_bool(val: Any) -> bool:
# Check if `val` is a native bool or numpy bool.
if isinstance(val, bool):
return True
if np := sys.modules.get("numpy"):
return isinstance(val, np.bool_)
return False
asarray = _as_numpy_array(actual)
if asarray is not None:
# Call ``__eq__()`` manually to prevent infinite-recursion with
# numpy<1.13. See #3748.
return all(self.__eq__(a) for a in asarray.flat)
# Short-circuit exact equality, except for bool and np.bool_
if is_bool(self.expected) and not is_bool(actual):
return False
elif actual == self.expected:
return True
# If either type is non-numeric, fall back to strict equality.
# NB: we need Complex, rather than just Number, to ensure that __abs__,
# __sub__, and __float__ are defined. Also, consider bool to be
# non-numeric, even though it has the required arithmetic.
if is_bool(self.expected) or not (
isinstance(self.expected, (Complex, Decimal))
and isinstance(actual, (Complex, Decimal))
):
return False
# Allow the user to control whether NaNs are considered equal to each
# other or not. The abs() calls are for compatibility with complex
# numbers.
if math.isnan(abs(self.expected)):
return self.nan_ok and math.isnan(abs(actual))
# Infinity shouldn't be approximately equal to anything but itself, but
# if there's a relative tolerance, it will be infinite and infinity
# will seem approximately equal to everything. The equal-to-itself
# case would have been short circuited above, so here we can just
# return false if the expected value is infinite. The abs() call is
# for compatibility with complex numbers.
if math.isinf(abs(self.expected)):
return False
# Return true if the two numbers are within the tolerance.
result: bool = abs(self.expected - actual) <= self.tolerance
return result
# Ignore type because of https://github.com/python/mypy/issues/4266.
__hash__ = None # type: ignore
@property
def tolerance(self):
"""Return the tolerance for the comparison.
This could be either an absolute tolerance or a relative tolerance,
depending on what the user specified or which would be larger.
"""
def set_default(x, default):
return x if x is not None else default
# Figure out what the absolute tolerance should be. ``self.abs`` is
# either None or a value specified by the user.
absolute_tolerance = set_default(self.abs, self.DEFAULT_ABSOLUTE_TOLERANCE)
if absolute_tolerance < 0:
raise ValueError(
f"absolute tolerance can't be negative: {absolute_tolerance}"
)
if math.isnan(absolute_tolerance):
raise ValueError("absolute tolerance can't be NaN.")
# If the user specified an absolute tolerance but not a relative one,
# just return the absolute tolerance.
if self.rel is None:
if self.abs is not None:
return absolute_tolerance
# Figure out what the relative tolerance should be. ``self.rel`` is
# either None or a value specified by the user. This is done after
# we've made sure the user didn't ask for an absolute tolerance only,
# because we don't want to raise errors about the relative tolerance if
# we aren't even going to use it.
relative_tolerance = set_default(
self.rel, self.DEFAULT_RELATIVE_TOLERANCE
) * abs(self.expected)
if relative_tolerance < 0:
raise ValueError(
f"relative tolerance can't be negative: {relative_tolerance}"
)
if math.isnan(relative_tolerance):
raise ValueError("relative tolerance can't be NaN.")
# Return the larger of the relative and absolute tolerances.
return max(relative_tolerance, absolute_tolerance)
class ApproxDecimal(ApproxScalar):
"""Perform approximate comparisons where the expected value is a Decimal."""
DEFAULT_ABSOLUTE_TOLERANCE = Decimal("1e-12")
DEFAULT_RELATIVE_TOLERANCE = Decimal("1e-6")
def __repr__(self) -> str:
if isinstance(self.rel, float):
rel = Decimal.from_float(self.rel)
else:
rel = self.rel
if isinstance(self.abs, float):
abs_ = Decimal.from_float(self.abs)
else:
abs_ = self.abs
tol_str = "???"
if rel is not None and Decimal("1e-3") <= rel <= Decimal("1e3"):
tol_str = f"{rel:.1e}"
elif abs_ is not None:
tol_str = f"{abs_:.1e}"
return f"{self.expected} ± {tol_str}"
def approx(expected, rel=None, abs=None, nan_ok: bool = False) -> ApproxBase:
"""Assert that two numbers (or two ordered sequences of numbers) are equal to each other
within some tolerance.
Due to the :doc:`python:tutorial/floatingpoint`, numbers that we
would intuitively expect to be equal are not always so::
>>> 0.1 + 0.2 == 0.3
False
This problem is commonly encountered when writing tests, e.g. when making
sure that floating-point values are what you expect them to be. One way to
deal with this problem is to assert that two floating-point numbers are
equal to within some appropriate tolerance::
>>> abs((0.1 + 0.2) - 0.3) < 1e-6
True
However, comparisons like this are tedious to write and difficult to
understand. Furthermore, absolute comparisons like the one above are
usually discouraged because there's no tolerance that works well for all
situations. ``1e-6`` is good for numbers around ``1``, but too small for
very big numbers and too big for very small ones. It's better to express
the tolerance as a fraction of the expected value, but relative comparisons
like that are even more difficult to write correctly and concisely.
The ``approx`` class performs floating-point comparisons using a syntax
that's as intuitive as possible::
>>> from pytest import approx
>>> 0.1 + 0.2 == approx(0.3)
True
The same syntax also works for ordered sequences of numbers::
>>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
True
``numpy`` arrays::
>>> import numpy as np # doctest: +SKIP
>>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6])) # doctest: +SKIP
True
And for a ``numpy`` array against a scalar::
>>> import numpy as np # doctest: +SKIP
>>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3) # doctest: +SKIP
True
Only ordered sequences are supported, because ``approx`` needs
to infer the relative position of the sequences without ambiguity. This means
``sets`` and other unordered sequences are not supported.
Finally, dictionary *values* can also be compared::
>>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
True
The comparison will be true if both mappings have the same keys and their
respective values match the expected tolerances.
**Tolerances**
By default, ``approx`` considers numbers within a relative tolerance of
``1e-6`` (i.e. one part in a million) of its expected value to be equal.
This treatment would lead to surprising results if the expected value was
``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``.
To handle this case less surprisingly, ``approx`` also considers numbers
within an absolute tolerance of ``1e-12`` of its expected value to be
equal. Infinity and NaN are special cases. Infinity is only considered
equal to itself, regardless of the relative tolerance. NaN is not
considered equal to anything by default, but you can make it be equal to
itself by setting the ``nan_ok`` argument to True. (This is meant to
facilitate comparing arrays that use NaN to mean "no data".)
Both the relative and absolute tolerances can be changed by passing
arguments to the ``approx`` constructor::
>>> 1.0001 == approx(1)
False
>>> 1.0001 == approx(1, rel=1e-3)
True
>>> 1.0001 == approx(1, abs=1e-3)
True
If you specify ``abs`` but not ``rel``, the comparison will not consider
the relative tolerance at all. In other words, two numbers that are within
the default relative tolerance of ``1e-6`` will still be considered unequal
if they exceed the specified absolute tolerance. If you specify both
``abs`` and ``rel``, the numbers will be considered equal if either
tolerance is met::
>>> 1 + 1e-8 == approx(1)
True
>>> 1 + 1e-8 == approx(1, abs=1e-12)
False
>>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
True
**Non-numeric types**
You can also use ``approx`` to compare non-numeric types, or dicts and
sequences containing non-numeric types, in which case it falls back to
strict equality. This can be useful for comparing dicts and sequences that
can contain optional values::
>>> {"required": 1.0000005, "optional": None} == approx({"required": 1, "optional": None})
True
>>> [None, 1.0000005] == approx([None,1])
True
>>> ["foo", 1.0000005] == approx([None,1])
False
If you're thinking about using ``approx``, then you might want to know how
it compares to other good ways of comparing floating-point numbers. All of
these algorithms are based on relative and absolute tolerances and should
agree for the most part, but they do have meaningful differences:
- ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``: True if the relative
tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute
tolerance is met. Because the relative tolerance is calculated w.r.t.
both ``a`` and ``b``, this test is symmetric (i.e. neither ``a`` nor
``b`` is a "reference value"). You have to specify an absolute tolerance
if you want to compare to ``0.0`` because there is no tolerance by
default. More information: :py:func:`math.isclose`.
- ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference
between ``a`` and ``b`` is less that the sum of the relative tolerance
w.r.t. ``b`` and the absolute tolerance. Because the relative tolerance
is only calculated w.r.t. ``b``, this test is asymmetric and you can
think of ``b`` as the reference value. Support for comparing sequences
is provided by :py:func:`numpy.allclose`. More information:
:std:doc:`numpy:reference/generated/numpy.isclose`.
- ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b``
are within an absolute tolerance of ``1e-7``. No relative tolerance is
considered , so this function is not appropriate for very large or very
small numbers. Also, it's only available in subclasses of ``unittest.TestCase``
and it's ugly because it doesn't follow PEP8. More information:
:py:meth:`unittest.TestCase.assertAlmostEqual`.
- ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative
tolerance is met w.r.t. ``b`` or if the absolute tolerance is met.
Because the relative tolerance is only calculated w.r.t. ``b``, this test
is asymmetric and you can think of ``b`` as the reference value. In the
special case that you explicitly specify an absolute tolerance but not a
relative tolerance, only the absolute tolerance is considered.
.. note::
``approx`` can handle numpy arrays, but we recommend the
specialised test helpers in :std:doc:`numpy:reference/routines.testing`
if you need support for comparisons, NaNs, or ULP-based tolerances.
To match strings using regex, you can use
`Matches <https://github.com/asottile/re-assert#re_assertmatchespattern-str-args-kwargs>`_
from the
`re_assert package <https://github.com/asottile/re-assert>`_.
.. note::
Unlike built-in equality, this function considers
booleans unequal to numeric zero or one. For example::
>>> 1 == approx(True)
False
.. warning::
.. versionchanged:: 3.2
In order to avoid inconsistent behavior, :py:exc:`TypeError` is
raised for ``>``, ``>=``, ``<`` and ``<=`` comparisons.
The example below illustrates the problem::
assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10)
assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10)
In the second example one expects ``approx(0.1).__le__(0.1 + 1e-10)``
to be called. But instead, ``approx(0.1).__lt__(0.1 + 1e-10)`` is used to
comparison. This is because the call hierarchy of rich comparisons
follows a fixed behavior. More information: :py:meth:`object.__ge__`
.. versionchanged:: 3.7.1
``approx`` raises ``TypeError`` when it encounters a dict value or
sequence element of non-numeric type.
.. versionchanged:: 6.1.0
``approx`` falls back to strict equality for non-numeric types instead
of raising ``TypeError``.
"""
# Delegate the comparison to a class that knows how to deal with the type
# of the expected value (e.g. int, float, list, dict, numpy.array, etc).
#
# The primary responsibility of these classes is to implement ``__eq__()``
# and ``__repr__()``. The former is used to actually check if some
# "actual" value is equivalent to the given expected value within the
# allowed tolerance. The latter is used to show the user the expected
# value and tolerance, in the case that a test failed.
#
# The actual logic for making approximate comparisons can be found in
# ApproxScalar, which is used to compare individual numbers. All of the
# other Approx classes eventually delegate to this class. The ApproxBase
# class provides some convenient methods and overloads, but isn't really
# essential.
__tracebackhide__ = True
if isinstance(expected, Decimal):
cls: type[ApproxBase] = ApproxDecimal
elif isinstance(expected, Mapping):
cls = ApproxMapping
elif _is_numpy_array(expected):
expected = _as_numpy_array(expected)
cls = ApproxNumpy
elif _is_sequence_like(expected):
cls = ApproxSequenceLike
elif isinstance(expected, Collection) and not isinstance(expected, (str, bytes)):
msg = f"pytest.approx() only supports ordered sequences, but got: {expected!r}"
raise TypeError(msg)
else:
cls = ApproxScalar
return cls(expected, rel, abs, nan_ok)
def _is_sequence_like(expected: object) -> bool:
return (
hasattr(expected, "__getitem__")
and isinstance(expected, Sized)
and not isinstance(expected, (str, bytes))
)
def _is_numpy_array(obj: object) -> bool:
"""
Return true if the given object is implicitly convertible to ndarray,
and numpy is already imported.
"""
return _as_numpy_array(obj) is not None
def _as_numpy_array(obj: object) -> ndarray | None:
"""
Return an ndarray if the given object is implicitly convertible to ndarray,
and numpy is already imported, otherwise None.
"""
np: Any = sys.modules.get("numpy")
if np is not None:
# avoid infinite recursion on numpy scalars, which have __array__
if np.isscalar(obj):
return None
elif isinstance(obj, np.ndarray):
return obj
elif hasattr(obj, "__array__") or hasattr("obj", "__array_interface__"):
return np.asarray(obj)
return None
|