Datasets:

ArXiv:
DOI:
License:
File size: 128,411 Bytes
0eae2d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba37a6c
0eae2d5
ba37a6c
0eae2d5
ba37a6c
0eae2d5
ba37a6c
0eae2d5
ba37a6c
0eae2d5
ba37a6c
0eae2d5
ba37a6c
0eae2d5
ba37a6c
0eae2d5
ba37a6c
0eae2d5
ba37a6c
 
0eae2d5
ba37a6c
 
0eae2d5
 
 
 
ba37a6c
0eae2d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "iPfsr2ubz_cf"
   },
   "source": [
    "# Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras\n",
    "\n",
    "Time series prediction problems are a difficult type of predictive modeling problem.\n",
    "\n",
    "Unlike regression predictive modeling, time series also adds the complexity of a sequence dependence among the input variables.\n",
    "\n",
    "A powerful type of neural network designed to handle sequence dependence is called a recurrent neural network. The Long Short-Term Memory network or LSTM network is a type of recurrent neural network used in deep learning because very large architectures can be successfully trained.\n",
    "\n",
    "In this post, you will discover how to develop LSTM networks in Python using the Keras deep learning library to address a demonstration time-series prediction problem.\n",
    "\n",
    "After completing this tutorial, you will know how to implement and develop LSTM networks for your own time series prediction problems and other more general sequence problems. You will know:\n",
    "\n",
    "*   About the International Airline Passengers time-series prediction problem\n",
    "*   How to develop LSTM networks for regression, window, and time-step-based framing of time series prediction problems\n",
    "*   How to develop and make predictions using LSTM networks that maintain state (memory) across very long sequences\n",
    "\n",
    "In this tutorial, we will develop a number of LSTMs for a standard time series prediction problem. The problem and the chosen configuration for the LSTM networks are for demonstration purposes only; they are not optimized.\n",
    "\n",
    "These examples will show exactly how you can develop your own differently structured LSTM networks for time series predictive modeling problems."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "OOnkbcFJ0NAZ"
   },
   "source": [
    "\n",
    "# Problem Description\n",
    ">The problem you will look at in this post is the International Airline Passengers prediction problem.\n",
    "\n",
    ">his is a problem where, given a year and a month, the task is to predict the number of international airline passengers in units of 1,000. The data ranges from January 1949 to December 1960, or 12 years, with 144 observations.\n",
    "\n",
    ">[Download the dataset](https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv) (save as “airline-passengers.csv“).\n",
    "Below is a sample of the first few lines of the file.\n",
    "\n",
    "\n",
    "```\n",
    "\"Month\",\"Passengers\"\n",
    "\"1949-01\",112\n",
    "\"1949-02\",118\n",
    "\"1949-03\",132\n",
    "\"1949-04\",129\n",
    "\"1949-05\",121\n",
    "```\n",
    "\n",
    "\n",
    ">You can load this dataset easily using the Pandas library. You are not interested in the date, given that each observation is separated by the same interval of one month. Therefore, when you load the dataset, you can exclude the first column."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 265
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:35.122619Z",
     "iopub.status.busy": "2023-11-01T09:59:35.121995Z",
     "iopub.status.idle": "2023-11-01T09:59:35.314001Z",
     "shell.execute_reply": "2023-11-01T09:59:35.312789Z",
     "shell.execute_reply.started": "2023-11-01T09:59:35.122584Z"
    },
    "id": "2NAKmS3oz88y",
    "outputId": "0fe9164a-f15c-472a-fe64-2290786629b7"
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0OklEQVR4nO3deXxcdbk/8M+ZPdtkbSZJs7TQQvdSWtoGEBUKBQqI9Kpwy6Jy5cptVeCKyP0BCihFvIqiFdSLFC8gyBUQKhRKgVbonrZ0pXubNPs+2WY/vz/OfM/MpJNk9plMPu/XKy+bmZOZc6bY8+T5Ps/zlWRZlkFERESUQjTJPgEiIiKiwRigEBERUcphgEJEREQphwEKERERpRwGKERERJRyGKAQERFRymGAQkRERCmHAQoRERGlHF2yTyASHo8HDQ0NyMnJgSRJyT4dIiIiCoEsy+jp6UFZWRk0muFzJKMyQGloaEBFRUWyT4OIiIgiUFdXh/Ly8mGPGZUBSk5ODgDlAs1mc5LPhoiIiEJhtVpRUVGh3seHMyoDFLGsYzabGaAQERGNMqGUZ7BIloiIiFIOAxQiIiJKOQxQiIiIKOUwQCEiIqKUwwCFiIiIUg4DFCIiIko5DFCIiIgo5TBAISIiopTDAIWIiIhSDgMUIiIiSjkMUIiIiCjlMEAhIiKilMMAhYiIKI3Isoy/bKvFvvruZJ9KVBigEBERpZHddV24/7W9+PYLNZBlOdmnEzEGKERERGmk2WoHAJzuHMDBxp4kn03kGKAQERGlkV67S/3z+webk3gm0WGAQkRElEZ6bE71z+sZoBAREVEq6LX5Miifnu5Gs9WWxLOJHAMUIiKiNOK/xAMA6w+2JOlMosMAhYiIKI1YvRmUHJMOwOitQ2GAQkRElEZEBmXJzFIAwMdH29DvcA33IymJAQoREVEa6fUWyZ5flY+Kggw4XB7880hbks8qfAxQiIiI0kiPd4nHbNJh0VQLgNHZzcMAhYiIKI2IJZ5sox6XewOUDz5rTeYpRSTsAKW+vh4333wzCgsLkZGRgZkzZ2LHjh3q87Is46GHHkJpaSkyMjKwaNEiHDlyJOA1Ojo6sGzZMpjNZuTl5eH2229Hb29v9FdDREQ0xokMSrZJh6mlZgBAW68dLrcnmacVtrAClM7OTlx00UXQ6/V45513cODAAfziF79Afn6+eswTTzyBp556Cs888wy2bt2KrKwsLF68GDabrw972bJl2L9/P9atW4c1a9Zg48aNuOOOO2J3VURERGOUL4OiQ5ZRpz7e53An65Qiohv5EJ+f/exnqKiowHPPPac+NnHiRPXPsizjV7/6FR544AF86UtfAgD8+c9/hsViwRtvvIEbb7wRBw8exNq1a7F9+3bMmzcPAPCb3/wGV199Nf77v/8bZWVlsbguIiKiMUeWZTVAMZt0MOg00GslON0y+uwu5Gbok3yGoQsrg/Lmm29i3rx5+MpXvoLi4mLMmTMHf/zjH9XnT5w4gaamJixatEh9LDc3FwsWLMDmzZsBAJs3b0ZeXp4anADAokWLoNFosHXr1qDva7fbYbVaA76IiIgo0IDTDbdH2cE42zsHRWRR+uyjq9U4rADl+PHjePrppzF58mS8++67uPPOO/Hd734Xzz//PACgqakJAGCxWAJ+zmKxqM81NTWhuLg44HmdToeCggL1mMFWrlyJ3Nxc9auioiKc0yYiIhoTxJh7rUZChl4LAMgyeAOUUbbEE1aA4vF4cP755+Oxxx7DnDlzcMcdd+Bb3/oWnnnmmXidHwDg/vvvR3d3t/pVV1cX1/cjIiIajcQU2WyjDpIkqX8G0jyDUlpaimnTpgU8NnXqVNTW1gIASkpKAADNzYH91s3NzepzJSUlaGkJ3BfA5XKho6NDPWYwo9EIs9kc8EVERESB/AtkhUyjNuC50SKsAOWiiy7CoUOHAh47fPgwqqqqACgFsyUlJVi/fr36vNVqxdatW1FdXQ0AqK6uRldXF2pqatRjPvjgA3g8HixYsCDiCyEiIhrregftwwOM3gxKWF08d999Ny688EI89thj+OpXv4pt27bhD3/4A/7whz8AACRJwl133YWf/OQnmDx5MiZOnIgHH3wQZWVluP766wEoGZcrr7xSXRpyOp1YsWIFbrzxRnbwEBERRaHHO+beP0AZrTUoYQUoF1xwAV5//XXcf//9eOSRRzBx4kT86le/wrJly9RjfvCDH6Cvrw933HEHurq6cPHFF2Pt2rUwmUzqMS+++CJWrFiByy67DBqNBkuXLsVTTz0Vu6siIiIag3qGWeJJ6wwKAFxzzTW45pprhnxekiQ88sgjeOSRR4Y8pqCgAC+99FK4b01ERETD6FWnyPrmnYzWJR7uxUNERJQmghXJ+uagjK4lHgYoREREaULUoJgDalBG5xIPAxQiIqI0MVwGpdfBAIWIiIiSwH8nY0EEKP3MoBAREVEy9KhzUIIVybIGhYiIiJIg6CRZwxiYJEtERESpa9hJsqxBISIiomQQXTxsMyYiIqKUISbJBh11zyUeIiIiSjRZln01KAFdPEoNyoDTDbdHTsq5RYIBChERURroc7ghe+OPHKOviyfLb7mnfxTVoTBAISIiSgOiQFankWDS+27vRp0GWo0EYHTVoTBAISIiSgO9dm+BrEkHSZLUxyVJUsfdj6ZWYwYoREREaUCdIuu3pCOMxh2NGaAQERGlgWBTZIWsUTgLhQEKERFRGhDLNzlBMiiZo3AWCgMUIiKiNNAbZKNAIdvbaswlHiIiIkooa5ApsoI6rI1LPERERGPL32pOY9WHR5P2/r1BpsgKWaOwSPbMqyAiIqKw1HX0497/+xQeGbh2VhkqCzMTfg7DLfGIabK9rEEhIiIaO57fdBJiinzXgCMp56B28QRb4vE+1j+KMigMUIiIiKLQY3Pile116vfJGobmW+IJ0mbMGhQiIqKx5a87Tqu7CAPJa+UV5xC0SNb7GJd4iIiIxgC3R8bqTScAAN7tbpJWiNpr8426H4xtxkRERGPIugNNqOsYQF6mHhdNKgKQvCUe3yTZ9OjiYYBCREQUoWc/VrInyxZUoijbCADoT1Kdh2+SLGtQiIiIxqy2Xju2n+yEJAG3Vk9Ieivv8G3GHHVPREQ0JnT0Ke3EuRl6WMympC6jeDwyeh3DFcmyBoWIiGhMsA4oRalmb1tvtiF5AUqfwwXZO4claA1KEs8tUgxQiIiIIiD2vsnNUAIUXytv4oMA8Z56rQSj7sxbu5rdcbjhERPlUhwDFCIiogh0iwxKhnLzz07iEo/o4Mk26iBJ0hnP+y/7DDhHRx0KAxQiIqIIWAeUoEAs8SSzENXXYnxmBw8AmPSapM9pCRcDFCIiogiIGhTfEo/o4kneEk+wAlkAkCRJrUNJ1pyWcDFAISIiioBvicdbJGtM3qyR4VqMhdHWaswAhYiIKAJDFckmpwZFOZdgOxkLaqvxKBnWxgCFiIgoAmoGxRRYJJuMJZQusdyUGbwGBRh94+4ZoBAREUVALZIdlEGxOT1wuT0JPZfOfmVoXH6mYchjWINCREQ0BoglHvOgIllAmTeSSJ3eqbYFWcMEKN4Aqj/B5xYpBihEREQR6B40Sdao00KvVXp5E72M0tGnnMuwGZRRNu6eAQoREVEEBrcZA8mr8xBLPAVZI9egcImHiIgoTXk8MnrsogbF1zmTrDoPEaDkDZNByeYSDxERUXrrsfs25zP7TW/NTtKskVBqUDINyRskFwkGKERERGESyztGnQYmva84NhnTZN0eWW0zHq4GJZl7BUWCAQoREVGYBk+RFZJRg9I94FSzOXmcg0JERDR2qS3Gg0bLJ2PcfYd3eSfHpINeO/RtnaPuiYiI0pwY0pY7RAYlkUs8Xf0j158AQJaBo+6JiIjSmnWIJZ5k1HmIDMpw9ScA24yJiIjS3uCNAgXfMLTELaN0hphBUduMucRDRESUnqyDpsgKychSiCmywxXIAr42YxbJEhERpSlfF88QRbLJqEEZYYnHv4BXFm0/KYwBChERUZistiGKZJMwSVatQRmpSNYboHhkZcflVMcAhYiIKEyDNwoUkjFrJNQalAy/gXKjoVCWAQoREVGYgm0UCCRnvxtfF8/wNSgajYQc7/mJIt9UFlaA8uMf/xiSJAV8TZkyRX3eZrNh+fLlKCwsRHZ2NpYuXYrm5uaA16itrcWSJUuQmZmJ4uJi3HvvvXC5Uj+SIyKi1LDtRAeeWPsZXO7kLVOog9qG6OJJ7ByUkcfcC+PMRgBAi9Ue13OKBd3IhwSaPn063n//fd8L6Hwvcffdd+Mf//gHXn31VeTm5mLFihW44YYb8MknnwAA3G43lixZgpKSEmzatAmNjY249dZbodfr8dhjj8XgcoiIKJ15PDLuenkXGrptuGBiAb54bnFSziOVlng6QlziAQBLjgnHW/vQbLXF+7SiFnaAotPpUFJScsbj3d3dePbZZ/HSSy/h0ksvBQA899xzmDp1KrZs2YKFCxfivffew4EDB/D+++/DYrHgvPPOw6OPPor77rsPP/7xj2EwjPzhEhHR2LXjVCcaupWba3d/8pYpRpokm6g5KC63Rw2W8kLIoJTkmgBgVAQoYdegHDlyBGVlZTjrrLOwbNky1NbWAgBqamrgdDqxaNEi9dgpU6agsrISmzdvBgBs3rwZM2fOhMViUY9ZvHgxrFYr9u/fH+21EBFRmnvz03r1z8kq9HS4PBhwKgHIGW3G3i4eh9sDhyv+S1ChbhQoFHuXeJpGQYASVgZlwYIFWL16Nc4991w0Njbi4Ycfxuc+9zns27cPTU1NMBgMyMvLC/gZi8WCpqYmAEBTU1NAcCKeF88NxW63w273rZdZrdZwTpuIiNKAy+3B23t994r+JO0p419gmnPGEo+vU6bP7oJBF9+VAdHBYx5ho0DBkqNkUNKuBuWqq65S/zxr1iwsWLAAVVVV+Otf/4qMjIyYn5ywcuVKPPzww3F7fSIiSn2fHGtXO1aA5O3KKzp4cow6aDVSwHM6rQZGnQZ2lwe9dteIs0mi1eld5gql/gTwLfGMhgxKVG3GeXl5OOecc3D06FGUlJTA4XCgq6sr4Jjm5ma1ZqWkpOSMrh7xfbC6FuH+++9Hd3e3+lVXVxfNaRMR0Sj05u4GAIDkjQmSlUHpHmKjQMF/Ymu8iYAtlPoTALB4l3jSsgbFX29vL44dO4bS0lLMnTsXer0e69evV58/dOgQamtrUV1dDQCorq7G3r170dLSoh6zbt06mM1mTJs2bcj3MRqNMJvNAV9ERDR22JxuvLdfWd65eFIRAKA3WRkU7xTZoQKURHbydPaF3sEDABazb4kn1cfdhxWgfP/738eGDRtw8uRJbNq0CV/+8peh1Wpx0003ITc3F7fffjvuuecefPjhh6ipqcE3vvENVFdXY+HChQCAK664AtOmTcMtt9yCTz/9FO+++y4eeOABLF++HEajMS4XSEREo99Hh1rQY3ehNNeEz58zDkASa1DUFuPgVRK+DQPjH0CJFuNQZqAAQLG3BsXh9qjLQ6kqrBqU06dP46abbkJ7ezvGjRuHiy++GFu2bMG4ccp/LE8++SQ0Gg2WLl0Ku92OxYsX43e/+53681qtFmvWrMGdd96J6upqZGVl4bbbbsMjjzwS26siIqK08uanyvLOtbPL/DbkS04GZeQlnsTtGtyl1qCM3MEDAAadBoVZBrT3OdDUbQs585IMYQUoL7/88rDPm0wmrFq1CqtWrRrymKqqKrz99tvhvC0REY1x/zzSBgC4emYpajv6ASR2GJo/0cUzeAaK4MugpF4NCgAUm01o73OguceGaUjdkgnuxUNERCnN5nSjx1v3MbEoC1kGJUORvCUebw2KafTVoABAiSiU7U7tQlkGKERElNLavTdhvVaC2aTzBQAJ3JDPX/cQGwUKYlhbIgKUcGtQAF+hbHOKz0JhgEJERCmtvVe5kRZmGSFJErISGAAE49soMPlFsl1hzkEBfAFKqs9CYYBCREQprc0boBTlKDfhzAQWoQZjHWKjQCGRRbKiBiU/hDH3gq/VmAEKERFRxNp6lZtwYZZSOyG6ePod7qTM8rCOsMSTqBoU/40Cw5lYW5I7OvbjYYBCREQprV0EKNneDIq3SNblkWFPwIZ8g4U6qC3eXTxdA745JnlDnEswYhYKa1CIiIiiIGpQirKV3/wzDb7aj/4kFMqOWCSboFH3Xd4C2dwMPXQhbBQoiCWe9j47nO7EB3ihYoBCREQpTXTxFHkzKFqNBJNeuX0lug5FlmVfDUqSi2Q7+rzLO2HUnwBAYZYBOo0EWQZae1I3i8IAhYiIUlqbXxePkMgN+fwNON1weZS6l6HnoCSmSFYtkA1zGqxGI6E4J/U3DWSAQkREKa1tUA0K4FvmSfS4e7G8o9NIai3MYNkJKpLt9C7xFIQxA0Ww5Io6FAYoREREERlcgwL4CmUTPU1WnSKboYckSUGPSVSRbKQZFACwjIJCWQYoRESUsjweWb0R+wcoicpSDNY9wk7GQOC5xbMNuqFrAED4NSgAUJKb+sPaGKAQEVHKstqcas2H/7TUzCTtaKxOtfULlgYTGRSPDNic8emS6bO71B2eF55VGPbPF5tZg0JERBQxUSBrNulg0PluWcnaMLDVez7jhglQMvW+2pR4LfO8uqMOPTYXzirKwhfPLQ7750vMrEEhIqJRxuX2YO2+Rtz8P1sx40fvYsvx9qSdiyiQLRoUECRyvxt/oi13XM7QAYpGI6kBVDyWoNweGc9tOgkA+MZFE6DRBK+FGc5o2DBw6EU0IiIac9bua8KP3twXcOPadKw9omWEWGgfKkBJVgYlhAAFUAKoPoc7Lm3Q6w8241R7P3Iz9Fg6tzyi11ADlG5mUIiIaBRY9eFRNFvtKMo2YFqpGYBvYmkytPeJmo/ATpVk1aCEGqBkx/H8nv34BADgpvmVAVN1w2Hx1qD02F1J23RxJAxQiIhIVe/tDHn+m/PxlXnKb+eiiyYZgs1AAZLXxdMWpOU5mGxvl0+PzTnsceHaV9+NrSc6oNNIuO3CqohfJ8ekV7NQqVqHwgCFiIgAADanWw1GxudlIN87AKwziRmUYFNkAd8clERPkg01gyI+u1gHdy9sOQUAuHpmKUpzM6J6LbHMk6qtxgxQiIgIANDorUfI0GuRm6FXB4CJPV+SQR3SljO4BkXJUCRys0BZln1dPCMEKCLj0x7jAOVAoxUAsGRWadSvJc6xM4l/v8NhgEJERACAxm5leac0zwRJktQR6kmtQRFFsoOmpSZqWqu/7gEnnG5lJktR9vDTW8USkAiwYqWhSwkix+dFlz0BgNwM5RrE8LlUwwCFiIgAAI3em1+Zd+kgP0uZUNrR54jrRNThiAzE4MFomcbEd/GI5Z3cDD2MuuD78AiF3oBK1NDEgs3pVpe8YhOgKH+/XQPJC0CHwwCFiIgA+GVQvGPQRR2F3eXBgDOx3TJCW0/wLh51iSeBXTyh1p8AvoCqLYYZlCa/Jbi8CMbbDyZegxkUIiJKaQ3eG2Cp97fzTINWnd6ajE4em9ONHu8STlHW4EFtSgYjkUs8oUyRFcQSUHsMMygNg5bgoiUyKN39DFCIiCiFNXpbjMu8GZTAOpTE38REUKTXSjBnBM77SEaRbDgZFLUGpS92GZRY1p8AzKAQEdEoIbp4xE63APw6eRKfQRHZh8Is4xkZA1GD0ueI747B/sJb4vFlUDye2JxfgxpAxiZAUWtQmEEhIqJUpt4A/X5Dz/f+lp2MWShtQ0yRBXwZFFlGwupjwglQxM7LLo8Ma4yGtfl3WcWCusTDDAoREaWqPrsLVptSz1GaIhkUX4HsmQFBhl4LkVRJ1Lj7cGpQjDotzN5psrHq5KkXXVYxWuJhgEJERClP/HaeY9Qhx+TrEClQp8km/iYmWoyDzRzRaCRk6hPbaiwyKIOHxg0l1rNQYr3Ek5fJOShERJTiRAHm4OUDkUHpTEoNyvD73mQmeFhbWxgZFCC202RlWfYVMcd4iafX7oLT7YnJa8YSAxQiIvKbgRL427moQelIQg2Kr0g2+NRWsWFgIjp5XG6PGmiEUoMC+PYPisUsFOuAC33e64zVEo9YglJeP/WyKAxQiIhIzaAM/u28IIkZlLYhpsgK6oaBCcigKNN0AY3k+0xGIjIosahBEbtMF2QZYNIPP8U2VDqtBjneIK+LAQoREaWioTMoyatBEUWyQ+17k8hZKC1+BbtaTWhD0mJZgyL+fmK1vCPkpvAsFAYoRESkzkDx7+ABkptBEUPOhqpBSeQ02XA6eIRYTpONdYGskMrTZBmgEBFR0BkogG/aaEd/YjcMlGXZV4MyRAZFFMn2JyJACWMGihDL/Xhi3WIspPI0WQYoRERjnCzLI2ZQHC5PQsfKWwdccHknsA5V85ElalAScF4RBShZseviidcST16G2Mog9XY0ZoBCRDTGWQdcavAxuAYlQ6+F0bthYCKnyYr3yjJoYdQFLwrN8mZQElEkG0mAIualxCKDMlSGK1pmdVib7zM80tyDNXsacLi5J6bvFS4GKEREY5zYJTcvU48MQ2AwIEmSXx1K4pYBxJKDGCYWTCKLZCOqQfG2GffYXLC7ojtHdU5NjGtQxBJP14Av+HzvQDNWvLQLv99wPKbvFS4GKEREY9xQHTyCCBISOQtFBCjiN/xg1A0DUzSDYs7QQeft+ImmUNbtkdFkje1OxkKwcfciWzM+xstJ4WKAQkQ0xqkzUHKD35AKsrwbBiawk0fM5cjN0A15jBjU1peAUfdtEQQokiQF7GocqZYeG9weGTqNFNb7hyIvSBePCFBKYxwMhYsBChHRGNfUHXzMveCbhZL4DErucBkUg6hBSVyR7FAtz0NRp8n2RV6HIgJIi9kU8gyWUAXLoIiC6VjXu4SLAQoR0RjXMMISTzJmoYjR66LLJBjRxRPvzQJtTjd6vMtI4WYwRKFsNBkU35JL7AOGXLUGxReg1KszV7jEQ0RESdQ4xJh7IZk1KOIGGkyWullgfDMoInti0GkC9q8JRVGWGHcfTQYlPi3GwJkZlB6bEz02JRjjEg8RESXVSEWyBZmiBiVxXTxiLsdwSzxikmy8Myj+HTySFN4Si68GJfIARZ1RE4eAQQSf3f3OgHk4uRl6tcYnWRigEBGNcWKfGYt5iBqUrLFdgxJJB49QmB39Ek99nGagAL7P1+H2wOb0qO81eGBfMjBAISIaw+wutzpHJH+I5RRRg9KRwBqUUAKULENiBrWJJZbiCAIUUVTbFsVnF8+23yyDVm2F7hpwqMt98ah3CRcDFCKiMUy0l2okwGwKHgwko4unqz+EAMW7xDPgdMPtid8+QfvqrQCAqaXmsH821CUeWZbxl2212HS07YzHT7X3AwDK8zPDfv+RSJIUUIcSr4m1kWCAQkQ0hnX6BQKaIVpY8/0mySZqw0BrKBkUvxqJAWf8lnn21ncBAGaV54b9s2Ka7EhFshuPtOH+1/ZixV92BXzG9V0D6LW7oNdKmFiUFfb7h0Lt5Ol3+s1A4RIPERElkShGHW6kfIH3OYc7cRsG+kbdDx2gGHUaiJgqXss8fXYXjrb0AgBmjg8/QPEf1DZccPfillMAlGU0UQcCAIealP1wzh6XDb02PrfsgAxKd/xamsPFAIWIKAnW7GnAwsfWY+Ph1qSeh8igDBcIZBi0MOmV20Ui6lCcbo+6Q/FwGRRJkuK+YeCBRis8MlBiNqF4iCLi4YgAxeWRYR0Ifo6N3QNY/1mL7z0brOqfD3k37DvHkhP2e4fKf5psvPb8iQQDFCKiJFjzaSOarDb88G974t4mO5xu7yZxecMEAkBi61D8p5rmDFEXI8R7w8A9p7sBADMjWN4BAKNOixzv7JShpsm+sr0uoIbmQKNfgOLNoJxbEr8ARQSBnf0OteU8HjNXwsUAhYgoCU53KYWPDd02PLX+aNLOQ2RQ8odZ4vF/PhEZFHWjQJNuxNHuYsPA3jhlUPbVKwHKrAiWdwS1k6fnzADF5fbg5W11AIDzKvIAAAeDBSjxzKB4/26PtfbC6ZahkYZuOU8kBihERElwutNXZ/A//zyOI95UfqKJjMhwE1sBX6txV3/8h7WFMkVWEMPE4pWF2nO6CwAwI8IMCgAUej+79iDB3YeHWtFktaEgy4C7Lz8HgC+D4nR7cLy1D0BiMigHG5X/BotzTHGrdwlH8s+AiGiM6bE51Rv9RZMK4fLIeOCNfQnrkPHXHWoGJYGzULpDaDEWMr378cRiWFuL1YZ39jbC411u6bE5cbxNCRAiKZAVRB1KsE6eF7cqxbFfmVeO88rzAAB1HQPoHnDiZFsfHG4PsgzauBatis9Z1LukwvIOEGWA8vjjj0OSJNx1113qYzabDcuXL0dhYSGys7OxdOlSNDc3B/xcbW0tlixZgszMTBQXF+Pee++Fy5W8NVgiokQSXRr5mXo8fsMsmPQabD3Rgbf2NCb8XEQGZaghbYJ4PpE1KKEEKLEc1vbTtw/izhd34k+fnAAA7G+wQpaVjpZwdzH2V5yj3PBbrIEBSl1HPzZ4i6RvuqASuZl6NRD5rNGqBgyTLTlDtoDHgiiQdrg8AFJjBgoQRYCyfft2/P73v8esWbMCHr/77rvx1ltv4dVXX8WGDRvQ0NCAG264QX3e7XZjyZIlcDgc2LRpE55//nmsXr0aDz30UORXQUQ0ipzuUAKU8vxMVBRk4psXTQQAvLe/KeHnog5ES8EalOF2MhZ8GwZGH6CIgWi/33gcNqcbe0WBbBTZEwAo8Y6NF/vcCNtOdECWgXlV+ZjgnXEihsEdaLSq9SdT4ri8A5wZCI7qAKW3txfLli3DH//4R+Tn56uPd3d349lnn8Uvf/lLXHrppZg7dy6ee+45bNq0CVu2bAEAvPfeezhw4ABeeOEFnHfeebjqqqvw6KOPYtWqVXA4EjelkIgoWU53KjdC8dvyFO9NqSVIEWW8dalLPMNnK8QyRUKLZEPIoBQMU98RLpEdau2x45XtddhTH10Hj1DiLThttgYGKKJjxn8A27Qyb4DS4AtQ4tliDJzZYl6WAvvwABEGKMuXL8eSJUuwaNGigMdramrgdDoDHp8yZQoqKyuxefNmAMDmzZsxc+ZMWCwW9ZjFixfDarVi//79Qd/PbrfDarUGfBERjVaiQLY8XwlQxB4vrckIUNQ24+GzFYVZ0W96F/I5hVGDIrITTYOyE5Ho9AtyntlwDLtqOwFENkHWX6maQRkIeLwhyC7F07zB6sEm3xLPWM2ghL2X8ssvv4ydO3di+/btZzzX1NQEg8GAvLy8gMctFguamprUY/yDE/G8eC6YlStX4uGHHw73VImIUpKoQREBimWI37DjTZblkAa1AX6FnkPM8oilUKbICiI7EW2A4nJ7YLUpy0Rmky5gOWZGWWyWeJoH1aA0in1v/DIW070ZlENNPXB5i3XPiXuAEhicpkqAElYGpa6uDt/73vfw4osvwmRKXAro/vvvR3d3t/pVV1eXsPcmIoo1XwZF2fxNZFD6He64zfMIZsDpVgsjRZfOUAoT2cUTRpGsmkGJMrjr8r6nJAHfuXSy+nhFQcaIn81IxDn22l3osfnatBuDZFDK8zOQY9TB6ZYhy0BRtiGqAt1QpGoGJawApaamBi0tLTj//POh0+mg0+mwYcMGPPXUU9DpdLBYLHA4HOjq6gr4uebmZpSUlAAASkpKzujqEd+LYwYzGo0wm80BX0REo5WoQSkvUG4EWUYdsrztsi0JzKKIpRSdRlLffyiF3ptkV78TTrcnruclptuGEqD4L59E06Yt9iQym/S4eWGVGpDNGp8X8WsKmQYdzN5psv6ZnoYgGRRJkjC1zHePi3f9CQAYdBq1Xduo04xYj5QoYQUol112Gfbu3Yvdu3erX/PmzcOyZcvUP+v1eqxfv179mUOHDqG2thbV1dUAgOrqauzduxctLb59B9atWwez2Yxp06bF6LKIiFJTr92lLqv4z7YQ+7wkslC202+jQEkavo01L0OvbszXGecsSjgZFLE8ZnN6htzrJhQdfcp7FmQZkGHQ4t7F50KSgKtnlkb8mv7E3jYi09Nnd6lLSqWDMhaiDgVITIAC+D7r8XkZI/63kChh1aDk5ORgxowZAY9lZWWhsLBQffz222/HPffcg4KCApjNZnznO99BdXU1Fi5cCAC44oorMG3aNNxyyy144okn0NTUhAceeADLly+H0RjfNBYRUbLVe5d38jL1AfvMjMsx4kRbX0IDlO4Q608AQKORUJBlRFuvHW29jog2zgv5vMIIUEx6LfIz9ejsd6LROhDS9NlgfMGa8vM3zq/EDeeXw6CLzTxTS64Jh5p71GUdUTCbY9Kp03AF/wAl3gWyQm6GHo3dtpRZ3gHiMEn2ySefxDXXXIOlS5fikksuQUlJCV577TX1ea1WizVr1kCr1aK6uho333wzbr31VjzyyCOxPhUiopQzuMVYEHUoiVzi6QyxxVgoyhYtvfENosIJUACgxJudGDxnJBwiK+Q/UTdWwQkAlA4q5hW7BpcF2TV4mv8STwIDFMC3ZJYKwu7iGeyjjz4K+N5kMmHVqlVYtWrVkD9TVVWFt99+O9q3JiIadQa3GAti2mgiW4271FqP0IpARSdPPFuNbU43bE6lxiXUbEiJ2YiDjUBzNAFKiCP/I2UZVMwrMiilQcbKT7ZkozDLAJdHjusmgf5E5iiVMihRByhERBQ6tUDW28EjWMxKBiWRrcahDmkTCsQslDjWoFi92ROtRkKOMbRbVEwyKCGO/I9UaW7wDEppkAyKUafFa/9xITyyb1JuvC2aakHNqS58cUpxQt4vFAxQiIgSaMgMijdASWQNiuhcCbWNVt2VN8imd7GiTpE16UIu1hx884+EusQTZUvxUAYPlBMZlKGmtlYVZgV9PF6+Mq8C/zK3PGUKZAHuZkxElFCDZ6AI6oZyCe3iCa/WoygBSzzh1p8AfsPaosg++TIocQpQzIOXeM6cgZJsqRScAAxQiIgSyrfEk/wi2a4wb8piFko8i2TDGXMvxGLcvQjWCrLiu8TT0eeAzelWZ6CkUlFqqmGAQkSUIH3+M1CGKJK12lywOd0JOZ+uMNqMAd8ST1siMihhZDKG2usmHGKJJy9OGZTcDD1MeuWW22y1+TIoDFCGxACFiChBxB48uRl6mE2BQYE5Q6e2tSaqk2fw7I+RFCagzTiSJR7RIWO1udDviGxYm/gsCuJUgyJJkrrMc7i5F/0OJQgNViRLCgYoREQJMtQMFEC5ganLPD2JWeZRN+ULtc3Y28XTEccMSpcaoITew5Hjt1VAJMs8bo8c1gaFkRJLUTu9uyTnZ+qRMcIWA2MZAxQiogQZqoNH8O1qHP8MiizLvjbjEOsuRAalz+HGgCM+y1DWCDIokiRFVYdiHXDCu3Fw3IpkAV+2ZOepzoDvKTgGKERECTJUB4+QyELZXrsLLu9dOdSbcrbRtwwVr2WecLM6QjS7GovlnRyjDnpt/G6LIgDdc7obAFAWZEgb+TBAISJKkKE6eATfEk/8Mygie2LUaWDSh7bMIEkSirLi22ocSQ0KAJSYIx/WptbixKmDRxAFsQNO1p+EggEKEVGC1Iv9V4aYfZHIHY0jnftREOdCWdH6bA4zQIlmWFun2Mk4jss7gC+DIgQbc08+DFCIiBJETGAdlxN85/ZxScighFsUKgpl49VqHGmx6uC9bsLR0R/fFmNhcEtxsI0CyYcBChFRgohlETGRdbBE1qCE22IsiELZjjjtx9M9oLQJh7vEM3i34HB0xbnFWBgcoHAGyvAYoBARJUC/w6XWHoiJrIMlckdjkakId4mnSEyTjcN+PLIso1vdYTnMGhR1WFsEGZS++LcYA8rfu1bjGyefSjsHpyIGKERECSCyJ0adRp3ZMZjY0bi9zwGHyxPX8+mM8KZcGMci2QGnG0630lkUaYDS3mcP+7NTMyhxXuLRaiRYvFkySTqzJoUCMUAhorTXYrXBIwZdJEmrN+NQlG0cclO2/EwDdN7fsNviuGMwAHQNRFZ3IbI/bXFY4hFZHb1WQmaYA8wKMg0waDWQ5fAH3Ynlqrw4L/EAvkCqKNuotmxTcPx0iCitfXioBfMfW4/ffng0qecxUv0JAGg0UsIKZdUi2TAzFb4MSuzPz7/FONyddTUaCZZc5bMLtw5FfBbxzqAAvgCljPUnI2KAQkRpbfuJDgDAqzV1kOXkZVHEDX2o+hMhUYWykbYZq/vxRLHEU3OqA0ue+id2nOwIePxUuzInJtJiVbHXTbidPB3qZxHfGhTAN6+FM1BGxgCFiNKaGBtf1zGA4219STuPdu8yQuEIN99xOYmZhSKyBrlhd/F49+Ppc0Qc8P1tZz32N1jx6/VHAh5/d38TAODCs4siet0S701/pAzK23sb8cauevV7UYOSn4Alngsm5AMA5nn/l4YW+m5MRESjkH89wkeHWnH2uOyknEdbqBkUc6KWeCLMoHhv4g63Bz121xm7Moei0bur8ydH29DaY8e4HCMcLg/eP9AMALhqRknYrwn42naH6+TpHnDiO3/ZBbdHxtyqfJTnZ6CzP7KOpkhcNbMUux68PCHB0GjHDAoRpbUWv433PjrUkrTzaAuhBgXwLfG0xmhH46GyHF1qm3F4AYZJr0W2UfndNtJlHhFAeGQlmwEAm4+3w2pzoSjbgHkTCiJ6XfHZNQ+zxLP3dDfc3oLpfx5pg9XmUr+Pd5uxwOAkNAxQiCit+WdQth7vQL/DlZTzaPfr4hlOLHc0PtrSg3k/eR+rBhUIuz2yryA1gptyQZSFsv41Im9+2gAAWLtPCVSumF4SMCskHOKzaxnms9td16n++eOjrWomKdOgDXlPIkoMBihElLbsLrdf+l4Ph9uDzcfak3IuIttQGGIGJdxW2WA2Hm5De58Dv3jvEA40WNXHd9d1QZaVWRzh7hoM+K4hknH3Aw63Wv8CADWnOlHb3o/39ke3vAOE9tntrutW//zJ0Xb1GhKxvEPhYYBCRGlLTGQ1aDW4emYpAKUOJRnE5npiL5uhiGmyw2UBwn1Pjww8+Pd98Hhk9Dtc+P6rnwIArptdFtEsDnENkWwY2Nit1J9kGbRYeJaylPPQm/vQ3udAboYeC88qDPs1Bf/sU7ClLVmWsbuuS/2+e8CJfx5R/nvIj/NOxhQ+BihElLZEoem4HCO+eG4xAOCjwy0Jbzd2e2R1GFhRzggZFLPYjM+u1kZEqq3Hl+GoOdWJ/6s5jZVvf4YTbX0oMZvw8HXTI3rdoihajUWHTWleBq6bPR6AL2i8fJoFem3ktyXx2Q043ei1n7mU19htQ1uvHVqNhEvOGQfAt8TEDErqYYBCRGlLzBIpNhtx4aRCGLSapLQbd/Y7IGKNkYaBFWYZIElK1iOSDIU/0Tk0pSQHAPDwW/vxv1tOAQB+/pVZEe/eG82GgaJAtjTXhKtmlKiTc4HolncAINOgUwt4g3VBferNnpxrycHlU5WA9Xir8t8CA5TUwwCFiNKWuEkV5xiRadBhgXdJ4cPPEtvN097rGwSmGyFDoNNq1CWUaJd5xDj6uxZNxrmWHPQ5lM0Kv37hBHxu8riIX1ecXyTj+MUST4nZhPwsg5rJyDbqcPHkyOaf+BNZlGCdPLtPdwEAZlfk4eJB15+IIW0UHgYoRJS2xA1e1CZ83nsz3HikLaHnEeoUWcHXahxlgNLju/6ffHkGdBoJ51iycd+VU6J6XV+RbCQBim+JBwD+dX4lAOD6OWUw6qLvohnusxMZlDkVeZhQmInyfN80V7b+ph4OaiOitCV+ixY3rblVyvTOI809CT0PkckYaQaKYDEbcaBx+HkeI5FlWQ0girKNqCjIxIff/wLyMvXICHMjvsFEIW8krdBNfks8ALBomgUb7v1CzEa/D1Vk7PbI2Hta6eCZXZEHSZLwuclF+Mu2OgBc4klFzKAQUdryLfEoN62qwiwAym/xNqc7YechMhmhZ1CiH3ff53DD7vJ431e5+VYUZCIngsmvg433Zj8augbCLjhu8AYoJX6b5VUVZsVsZ1/LEEs8x1p70edwI9OgxaRiZZrwxZN8yzzMoKQeBihElLaa/YpkAaXOIMekJI7rOvoTdh6i2LUoxJugb9x95BkUERRlGrTINMQ2WW7JNUKSALvLE3ahbJO3BqU0Trv5DhXcifbimeNz1UFwF55dCLFpMmtQUg8DFCJKW62DMiiSJKGqMBMAcLI9gQGKOqQtvBqUaIpk20KcXBsJo06rvm5D19BB1Jo9Dfjle4fUdmmb0zc4L167+Q5VJCvqT86ryFMfy88y4KoZJcgx6TCt1ByX86HIsQaFiNKS0+1RdxAWaX9AWU7YV2/FqfbEtRq3hThFVojFjsah7v0TqbK8DLT22NHQPYCZ5bkBz7ncHvzkHwexetNJAMC8CQW45Jxxav1JpkELsyk+tx8RjA4ukhUZlNl+AQoAPHXjHAAYsbuKEo9/I0SUlsQNSqeRAgogqwqUDMqpRGZQ+sLLZogsQDRdPKHunhyp8XlKINDg3ZlY6O534hurt6vBCaAMiQOABtFinGuCJEW2385Igu0GbXO68VmTUhg9OEDRaTUMTlIU/1aIKC35T5HV+A0Dm+AtlD2VwBoU33JLiDUofnvKRDr1tl3NoMQnQBFLNP4BiizLuPVPW/HPI23I0Gtx5XRl8Noub/ZicAdPPIiW8l67C33eabIHG61we2QUZRtQFsf3pthigEJEaclXIBt4Q6osFBmUxC3xqDUoI+zDI4zzBihOt6zWbIQr3KAoXGWik6fbV+vR0mPHp6e7oZGAv915IVZcOgkAsKu2Ex6P7DdFNj71J4Ay8C3T20YtglSRPZlaao5b5oZijwEKEaUl/ymy/kQGpb5zAE63J+7n0e9wod87wTXUGhSjTqt2lUTayRPPIlkAaibCP4NyrKUXgFLnM63MjCklOTDpNeixuXCstVedIhvPDArgy6KIrQ4+a1R2cp7KQthRhQEKEaWl1kFD2oTiHCOMOg1cHvmM+ol4ENkTo06j7hMTimh3NY73Ek9Z3plLPMdalQDl7HFKEKjTajCrPA8AsKu2S13iKYlzgCIyUM3eIPWgN4Mi9iSi0YEBChGlpeZBY+4FjSaxrcbtfb5AIZzlhWDFnuHwFcnGd4mnpceuZqKOeTfeO3tctnrc+ZXK9N6dtZ0BGwXGk69NW6nhERmUKSXMoIwmDFCIKC2JpZHBGRQAqCxQfsOvTUAdim+KbHiBwric6Ia1tcZ5iacwywCDVgNZ9hW/+jIovgBlTmUegMAMSjxrUAC/JZ4eOxq7bbDaXNBpJJxdnBXX96XYYoBCRGlpqAwKAExIaAbFG6CEOUo9miUeu8uNHpvSwRKvIlmNRkLpoFZjUYNydvGZAcrhlh41m5TIDMpBb/bk7HHZMdmMkBKHAQoRpSX/NuPBqgoTNwulLcJakGh2NBb1J3qthNyM+I1wL/NmQhq7beizu9SOHlGDAiiBVnl+BkS3tEmvies5AYEZFNHBM6WU9SejDQMUIko7LrdHzVwUm4MFKN5ZKAlY4gl3zL0gbrKR7Gis1p9khVf3Ei6RQanvGsBxb/1JUbYBeYN2BhZ1KICyvBPvVl8R3DX7ZVBYfzL6MEAhorTT1uuALANajRR09ojIoNR29MPjiWwQWqh8U2TDXOKJoki2PczR+pHy39VY1J+c5Vd/IpzvXeYB4r+8AwR+dr4ZKMygjDYMUIgo7YjC0qJsg7pzrb/xeRnQaSTYXR40R7FjcCgi7aaJZppsvAtkBdHJ09htC1ogK8zxy6DEu8UY8A3n67G5cNx7XpyBMvowQCGitCMKZEWh6WA6rQbl+crN9WRbfOtQwp0iK4hztzk96PGObA/7PeOcQSn1G9Y2eAaKv6mlZhh1moCfiaccow4mvfJ+HhnIz9QH7eai1MYAhYjSjsigWILUnwiV3jqU2o7o61Bcbg8eeGMvnt90MiDbUXOqE8fblNcPVgsznAyDFjnewW7hdvKIrM24OGdQApZ4WpTrnFR8ZgbFoNNglnfHY5F1iSdJkgK6t6aUcMT9aMQAhYjSjrihjxsigwLEttV4+8lOvLClFj96cz++9/Ju2Jxu7Dndha//aRscLg8+N7kI51rCr4EYZw5tFkpnnwNv721U62niPeZeKPUGG1bvKHsg+BIPANy7eApuvKACV88ojes5Cf4ZE3bwjE6hz10mIholhhvSJlQWeAtlYxCg1HX6XuPNTxtwrLUXpzsH0GN3Yf6EAvz+lrkR/QZfnGPE8da+YVuNZVnGv/15B2pOdeKxL8/Evy6oTNgST7ZRB7NJB6vNBZdHhlGnUbMqg82fWID5Ewviej7+/Jf3prKDZ1RiBoWI0k5TCCPVxaaBJ2PQalzfqQwqO68iD/mZeuxvsKJ7wInzK/Pwp29cgExDZL8LhtJq/O7+ZtSc6gQAvL7rNIDEZVCAwCWbs8ZlQxOkKDkZ/JfUmEEZnRigEFHaaQxhUzr/YW3hdskMVu+dpLpoajH+vvxizJ9YgM+fMw6rvzk/rA0CB/NNRA2eQXG5PXji3c/U77ef7ER910Dc9+Hx5x+gBCuQTRaRQdFIwDkRLK9R8nGJh4jSTpN15AClPF8JUHrtLnT1O5Ef5ih6fyKDMj4/A5WFmfjrv1dH/Fr+1HH3QyzxvFpzGsdb+5CfqUdFQSb2nO7Gm7sb0OEdKR/vIlkAKMvzfcZD1Z8kgyiQnliUBZOeI+5HIwYoRJRWbE43uvqdAIBS89AdIxkGLcblGNHaY0ddZ390AYo3gzI+LzPi1wimeJgi2QGHG0+uOwwAWHHpZBh1Guw53Y0XtpyCmD1XEMU1hSoggxKkgydZLp5chNkVefjK3PJknwpFiEs8RJRWRP2JSa+BOWP438EqvLNQ6joGIn4/j0dGY7cvgxJLvh2Nz8yg/OmTE2jpsaM8PwM3L6zE1TNLodNIarCUn6mHThv/f+LL/HYmnpRCGZTiHBP+vvwi3LywKtmnQhEK67/ep59+GrNmzYLZbIbZbEZ1dTXeeecd9XmbzYbly5ejsLAQ2dnZWLp0KZqbmwNeo7a2FkuWLEFmZiaKi4tx7733wuUKbwgREdFQxPJOKHu+VHg7efy7cMLV0mOH0y1Dq5FgifEwMFEk29R95jTZV3fUAQDuXnQOjDotCrIMuHhykfp8IgpkAV8GRZKU5RSiWAkrQCkvL8fjjz+Ompoa7NixA5deeim+9KUvYf/+/QCAu+++G2+99RZeffVVbNiwAQ0NDbjhhhvUn3e73ViyZAkcDgc2bdqE559/HqtXr8ZDDz0U26siojFLZFBKzCNPLK3w1qHUdUQeoJz2BjclZlPMMxbl+RmQJKDf4Ua7t64EABwuD2q95+wflFw3u0z9c6IClHNLcpCXqcf8CQXIMLDWg2InrP83XXvttbj66qsxefJknHPOOfjpT3+K7OxsbNmyBd3d3Xj22Wfxy1/+Epdeeinmzp2L5557Dps2bcKWLVsAAO+99x4OHDiAF154Aeeddx6uuuoqPProo1i1ahUcDscI705Eqay1x47P//xDPP7OZyMfHEehdPAI6iyUKAIUtf4kxss7AGDUadUlFP+dl+u7BuCRlWUs/1kvV0wvUUfKJ6KDBwByM/TY9MNL8eK/LUjI+9HYEXG473a78fLLL6Ovrw/V1dWoqamB0+nEokWL1GOmTJmCyspKbN68GQCwefNmzJw5ExaLRT1m8eLFsFqtahYmGLvdDqvVGvBFRKnlk6NtONXej2c2HMO++u6knUdzCB08QnmBcvM/3Rl5DYr42fI4jXAXQdQpv4FyIlipKsgKWMbKNupw2dRiAEPvQxQPmQZdQupdaGwJ+7+ovXv3Ijs7G0ajEd/+9rfx+uuvY9q0aWhqaoLBYEBeXl7A8RaLBU1NTQCApqamgOBEPC+eG8rKlSuRm5urflVUVIR72kQUZ/7LJD9bm7wsiihYDWVTOrHEU985oI6JD5fIoJTHIYMCABOKzhzJL4KVysIzu4Z+eOVULD2/HLddyOJQGt3CDlDOPfdc7N69G1u3bsWdd96J2267DQcOHIjHuanuv/9+dHd3q191dXVxfT8iCp9/oek/j7Th4yNtSTkPUYNiCaEGpTTXBK1GgsPtQfMI+90MxX8GSjxUFiiFp/5LPCJAmRAkQKkszMQvvjobVYUsWKXRLewAxWAwYNKkSZg7dy5WrlyJ2bNn49e//jVKSkrgcDjQ1dUVcHxzczNKSkoAACUlJWd09YjvxTHBGI1GtXNIfBFRahFLHWIvlsfXHow4KxENXxfPyAGKTqtRB41F2mocrxkowoTCoZd4KhmEUBqLetHQ4/HAbrdj7ty50Ov1WL9+vfrcoUOHUFtbi+pqZapidXU19u7di5aWFvWYdevWwWw2Y9q0adGeChElkcigPHjNNGQbddhXb8WavY0JPQen26PODAmlBgWIrpNHluW4Z1BEJiQgg9IxdAaFKF2EFaDcf//92LhxI06ePIm9e/fi/vvvx0cffYRly5YhNzcXt99+O+655x58+OGHqKmpwTe+8Q1UV1dj4cKFAIArrrgC06ZNwy233IJPP/0U7777Lh544AEsX74cRmNiWuKIKPZcbg8aupTMxXkVebjjkrMAAL9+/3BCz6O1xw5ZBnQaCUVZof2bEk0nT2e/EwNON4DQMjaREHUmnf1OdA844fHI6rlOYAaF0lhYo+5bWlpw6623orGxEbm5uZg1axbeffddXH755QCAJ598EhqNBkuXLoXdbsfixYvxu9/9Tv15rVaLNWvW4M4770R1dTWysrJw22234ZFHHontVRFRQjV22+D2yDDolLbXW6ur8Mt1h3GstQ+9dldUG+aFQyzvWMymkHfVjWZYm5iBMi7HGLf9XrKNOhRlG9HWa0dtez8Ksw1wuDzQaaS4BUVEqSCsfzWeffbZYZ83mUxYtWoVVq1aNeQxVVVVePvtt8N5WyJKcf6tthqNhLxMAwqyDOjoc+BUex+ml+Um5DyawpiBIojum9MR1KDUD6q7iZeqwky09dpxqqMPPXZln6GKgky29lJa43/dRBQ1kX3wr8MQ9REn2yIfghauxjCmyArRZFDi3WIsVPkVyqotxgWsP6H0xgCFiKJ22lsTUeF30xT1ESf9ijvjLZwhbYIokm2y2mB3ucN6v9NxLpAVqvxajYdrMSZKJwxQiChqdd4btbjZA8AE78ZxJ9sSF6BEkkEpyjYgQ6+FLPuWbIbi8cjYe7pbbZ9WMyhxXuLxH9bGFmMaKxigEFHURIuu/1KHGqAkMIPS5J0iG04GRZIkVHhH3tcNE6DIsoy7XtmNa3/7MX7wtz0A4j+kTVA7jfyWeJhBoXTHAIWIoiaWOgKXeM4c0R5v4Qxp8xfKLJTfbzyONz9tAAD8X81pvLO3Me5D2gSxXNZkteF4Wy8AX10KUbpigEJEUbG73OqY+IogGZTWHjt67a64n4csy2juVoa0hTLm3t9IhbIfHmpR9xeaU5kHAPjha3vRPaB01MQ7g5KXqYfZpDRd2pweSBJQns8AhdIbAxQiikp95wBkGcg0aFGQZVAfN5v0KPR+n4g6lI4+BxxuD4DwA5ThWo2Pt/biu3/ZBVkGbppfgVfuqMb0MrManORm6OM+50WSpIC9dUrNprjNXSFKFQxQiCgqom6jPD8DkhQ4HK0qyD4y8SIKZIuyjTDowvunbbgMyq/XH0GPzYW5Vfl4+LoZMOg0ePJr56nvEe8ZKIL/kg43AqSxgAEKEUVFTFOtCLLkkMhCWd+QtvC3zRhu3P3xVuXcv/35s9Wg5BxLDu6/agoAYHZFYobQBQYoXN6h9JeY+dNElLbELsAVQQaHqbNQErDEIwpkS8zhZzTEuXf1O9FjcyLHpFef8xXCBr7uNy6aiAUTC9UW4Hjzz5owg0JjATMoRKPcJ0fbsHZfU9LeXyyLBJummowMSiT702QbdcjPVIKSOr86lAGHGx19DgDBl3KmlZmRaUjM73lVBcyg0NjCAIVoFDvU1IPb/rQN//FijTpFNdFOqzNQzrxpTvT+pn8iAePuRaYjnBko/oLVoTR456pkGbQwZyQ34SyCPYABCo0NXOIhGqVkWcaDf98Hl3eq6bGW3rC7V2LBNwPlzAxDlXf5o63XHvNdjXtsTryxqx4bDrdhz+kutPQoLcbhTJH1V5GfiT2nuwNmofgPYhtcAJxoxTlGTCjMRK/dhbPHZSf1XIgSgQEK0Sj1+q56bDvRoX5/sr0fF05K7Dn02V1o9y6BBMugiFbj9j4HTrb1Ycb46AtKj7b04E+fnMQbu+rR7/DtnaORgNkVebjknHERva7IoJz2mybb4M3KlCWoU2c4kiTh7e99Di6PzBZjGhMYoBCNQt0DTjz29kEAyhCvrn4nTnUkbqS8IG7mZpMOuRn6oMdUFWaivc+BU+39UQcoNqcbX/rtJ+jzBiaTirPxL3PLMbcqH9OjrAcRGSD/Tp6GIQpkkyVR9S5EqYD/tRONQr947xDaeh04e1wWvnZBBR57+zOcSkCdx2B1QXYxHmxCURZ21nbFpFD2eGsf+hxuZBt1+OOt87DwrIKYLb0EG3d/OoUyKERjDQMUolGm2WrDC1tOAQAe/dIM2F3K9NRTw+wjEy91w8xAEXyFstEHKGIn30nF2ag+uzDq1/Pnv8QjyzIkSUq5DArRWMIuHqJRZtuJDnhkYHqZGRdOKkKlOq21D7IsJ/RcjrUqG9dNHDf0XI4qb/fJqRhkUE54X2NiUezngJTlmSBJwIDTjbZepa6moUvpjIr3XjtEdCYGKESjzI6TSmHsBRMKACjzRzQS0O/w3VgT5UizEqBMLh66qySWrcZi4Fs82myNOq3aAVTX2Q+PR0ZjN5d4iJKFAQrRKLPjVCcAYN6EfADKjbU0V7mBxiJLEQ6RQZk0TIDi32rcY3NG9X4nvXv6xCODAvjNQunoR2uvHU63DK1GgiUn/PH5RBQdBihEo0iv3YWDjVYAwLyqAvVxMW49EZvyCZ19DjVjM9xcDrNJj6Js5QYv9rWJlMigTIjTqHf/Qll18JvZBJ2W/1QSJRr/X0c0iuyq7YRHVoo2/Semir1ZEplBOerNnozPy0DWCAPYxBLQ0ZbeiN+v3+FSh7HFLUDxthrXdQyoQ9rK8hI//I6IGKAQjSo7TirLOxd4l3cEsU/LyQRmUET9yXDLO4I45kgUAcpJbw1LfqYeuZnBZ65ES82gdPan1JA2orGIAQrRKFLjrT+ZO6Eg4HE1g5LAVmORDQklQJlsiT6DIuaoxHMnX//9eNhiTJRcDFCIRgmX24Ndtd4C2apBGRS/VuNEOdLSA2D4Dh5h0jgRoPRE/H4n49hiLFR6A5SGLpsa7DGDQpQcDFCIRonPmnrQ53Ajx6TDOZacgOdEgNLV70R3f3SdMqE6FkYGRRxT29EPm9M9wtHBxbPFWCjOMcKg08DtkbHTm61iBoUoORigEI0SYv7J+ZX50GoCx7tnGnQY522FTcSePL12Fxq6lSFmoQQo43KMMJt08MiRT5SNd4sxAGg0Esq9AYnV5gLAIW1EycIAhWiUUOefDFreESYUJq7VWGRPirKNyMs0jHi8JElqIBNpHUq8W4yF8kH7CpXmsouHKBkYoBCNArIsqx088wYVyAqVBYlrNRbdOKHUnwiTi3MCfjYcffb4txgLFX4ZE7NJhxxTfDqGiGh4DFCIQiTLcsL3uhHquwbQZLVBp5FwXkVe0GMSmUEJp4NHEMceCzFA8Xh8n7e4pni2GAv+OzOPH2YTRCKKLwYoRCH6r9f34fxH16HJW3uRSB8dagUAzBifiwyDNugxvk35EhGgeDt4LGEEKBYxC2XkTp49p7sw9aG1eHztZwAS02IsVPoHKBzSRpQ0DFCIQlDX0Y+Xt9eis9+JTcfaEv7+b37aAAC4embJkMeIYW2JKJJVMyjDjLgfTBx7oq0PLrdn2GP/9PEJ2F0e/HHjcRxt6VELa+NZICtU+GVN2GJMlDwMUIhC8Mr2OojVnZMRdqFEqrF7ANu9HTzXzCob8jhRm9FstaPf4Yrb+dicbtR6Z4RMCiODMj4vAxl6LZxuediBcj02J9bubwIAeGTgZ2sPqXU18WwxFsS4e4AtxkTJxACFaAROtwcvb69Tvz8e4wDF45HR0DUAtyd4fcuaTxshy8D8CQXD/kafm6lHboZSn1Ebx4myJ9r64JGVAtJx2aHv8qvRSDi7WAmihuvkeXtvI2xOD0rMJmgkYN2BZnzwWQuAxGRQcjP0yPHuLcQMClHyMEAhGsG6A81o67Wr30c6x2MoP35rPy58/APM/PG7+Oozm/H4O5+hs8+hPi+Wd649b+jsiSBu4GKfnGjsrO3EG7vqzygMVjt4LDmQJCnYjw5JdPIMF6D8X81pAMBtF07A1y6oAAB11+R4d/AASkv0eZV50EhKzQ8RJcfwW5ASEV7cegoAcNWMEryzrwkn2/ogy3LYN+ehbDneDgDod7ix7WQHtp3swPaTHXjpWwvQ0GXD3vpuaDUSrp4xdP2JMLXUjN11XTjYaMW1s0cOaIbz3b/swmnvjr7XzxmvPn6oyQogvPoTYaRZKCfb+rD9ZCc0EvBl73u+vqseNqdSs5KIAAUA/nDLPLT12gM6eogosZhBIRrGibY+fHK0HZIE/ODKKdBIQJ/DjdYe+8g/HAJZllHvDQL+59Z5eOJfZsFs0qHmVCd+/OZ+vLlbyZ5cNKkIhSEsp0wrMwMADjZaozovp9uDeu9meT/5x0FYbcr4/LqOfjy/SQnY5g4xMG44vl2Ng3fyvLZTyZ58bvI4lOSaUJJrwjcvmgggMS3GQoZBy+CEKMmYQSEaxl+21QIAvnDOOEwsykJ5fiZqO/pxvK0PxeboW1C7B5zocyh701w8uQgmvRbFOUZ8c/V2/GVbHTK9LcXXhZgNmVaqBCgHogxQWnvsalFwW68dv3zvMB68Zhr+89VP0Wt3YW5VPpbOLQ/7dX2zUPrg8cjQ+I3s93hk/G1nPQDgX/xe+84vnI2T7X2YP8SAOiJKT8ygEA3B5nTj1R1KceyyBVUAfDUesapDEUsoRdlGmPRKMPKFc4tx35VTACjLPgadBounW0J6vSklOZAkpZPHv24mXE1WZdaLQaf8E/HnzSdx/2t7sO1EBzINWvzyq7PP2A8oFFUFmdBrJQw43WqGRthyvB31XQPIMelw+TTf9eaY9Pjdsrn4ujeTQkRjAwMUoiGs3deEzn4nynJN+OKUYgC+ACVWrcbiJj14Q7o7LjlLzZpcPs0S8rj1LKMOE711GtEs87R4A5QZZWZcO7sMHhn46w5l+eWha6ZFPDBNp9XgrCIli3K4OXCZ5/2DSqfOkpmlarBGRGMXAxSiIby0VVne+doFlWq2QAQosWo1FvUn5YPaWSVJwn9/ZTZ+c9McPPqlGWG95lSxzNMQeYAipuVazCY8sGQqsr1tt4umFqudNZGaWqp08gwOoA40dgMYeq8hIhpbGKAQBXG4uQfbTnZAq5ECbsjxWuIZnEEBlOWVa2eXoSBr5N2C/YlC2WjqUJq9RcAWswkWswlPfu08LD2/HD9bOivq7qVg5yfLshpQiToaIhrbWCRLFITIniyaWoySXF8xrAhQatv74fbIEdVh+KvvUgaqxXJi6bQYZFCa/TIogLLM5F8XEo1gGZ76rgFYbS7otVJYGxASUfpiBoVokAGHG3/ztruK4lihLC8DBq0GDrcHDYOKPCOh1qDEMkDxZiiOtfbC5nRH9BrNPUqAUpIb+qTYUIkA5VRHP3rtykh+EaxMKs5RC3OJaGzjvwREg7y1pwE9NhcqCzJx8aSigOe0GkndDyYWdSj1wyzxRKo4x4jCLAM88pmFqKFSa1ByYr+bb1G2ERazEbLsG/omlnu4vENEAgMUokFe9C7v3DS/MmBOh6DWobRGN06+3+FCZ78yAC2WAYokSVEXyrZYvTUoubEPUIAzl6HU+pMyBihEpGCAQuSnvmsAn9Z1QaeR8JV5wQeRqa3G7dFtyCeyJzkmHcwhthGHKppC2T67Cz3epRdLDIbRBTP4/JhBIaLBGKAQ+TnRqizbVBVmomiI0fKxajU+HYf6EyGaQtlm7wyUbKNObS+OtWmlyiZ8Bxqs6B5wqt1MDFCISGCAQuTnZLsIUIYeROZrNY5uiUedgZIf+z1f/Pfk8XjkEY4OJKbIFptjXyAriPP7rKkH++uV+Sfj8zISttcOEaU+BihEfmo7lGUbUQgbzMRxSoBS3zkAuyuyLhnANwOlPIb1J8JZRVkw6DToc7jVawqVqD8pidPyDqCMvM80aGF3efCPvY0AWH9CRIEYoBD5ESPsJwyTQRmXbUSWQQuPrOzuG6l4tBgLOq0GU0qUia3h1qGIDEq86k8AQKOR1PN781Nlx2Yu7xCRPwYoRH5EtqFymAyKJElqFuV4a+R1KPWd3iFtccigAMC5FiUACLfVuDkBAQrgy5j02JSC3KkMUIjIDwMUIi9ZltUalOEyKAAwaZwy7XR/FNNa45lBAaBOZD0WZhClthjHsQYF8BXKCtO5xENEfhigEHm19Nhhc3qgkUYOGhaeVQgA+PhoW0Tv5XB50OLd7yZeGZSzvUHUsZbwinnFEk88a1CAwJqTHKMuLrU4RDR6hRWgrFy5EhdccAFycnJQXFyM66+/HocOHQo4xmazYfny5SgsLER2djaWLl2K5ubmgGNqa2uxZMkSZGZmori4GPfeey9cLlf0V0MUhVPtviWXkcatXzxZmTC7u64LVpsz7Pdq7B6ALAMmvQaFYW4GGKqzvRmU4229Q3byeDwyNh5uxal2X5alWe3iiW+Acq4lB2IO3tQyc9SbEBJRegkrQNmwYQOWL1+OLVu2YN26dXA6nbjiiivQ1+f7x+3uu+/GW2+9hVdffRUbNmxAQ0MDbrjhBvV5t9uNJUuWwOFwYNOmTXj++eexevVqPPTQQ7G7KqIIqC3GBcMv7wBKa/DEoiy4PTK2HGsP+71Ei3FZXkbcbswV+RnQayXYnB51Ocnf/oZu3PD0Jtz6p2249U/bIMsyZFn2dfHEaYqskGHQ4ixvlocFskQ0WFhTmNauXRvw/erVq1FcXIyamhpccskl6O7uxrPPPouXXnoJl156KQDgueeew9SpU7FlyxYsXLgQ7733Hg4cOID3338fFosF5513Hh599FHcd999+PGPfwyDIT6/TRKNpLZ95BZjfxdPKsKJtj58fLQNV0wvCeu94jmkTdBpNZhQmIUjLb041tqLigLlujweGSvfOYhnPz4BkVg51d6P/Q1WlOVlwOH2AFC6leLt4klFONrSi89NLhr5YCIaU6KqQenuVgYsFRQUAABqamrgdDqxaNEi9ZgpU6agsrISmzdvBgBs3rwZM2fOhMXi27p98eLFsFqt2L9/f9D3sdvtsFqtAV+UXpxuDz5rsuJAg/IVTftupHxD2kIMULw31Y+PhF+HEs8ZKP7UOhS/Qtm39jTgj/9UgpMls0pR7a2nef9gs7pJYFG2ISG7Cv/wqil453ufw2VTLSMfTERjSsRzrD0eD+666y5cdNFFmDFjBgCgqakJBoMBeXl5AcdaLBY0NTWpx/gHJ+J58VwwK1euxMMPPxzpqdIo8N2/7MI7+wL//p+5eS6unBFeZiIaviFtIy/xAED12YXQaiQcb+tDfddAWNkQdRfjOGZQAG8nz37gmN/GhpuOKktSX79wAn583XT8dUcdNh9vx/sHmzG7Ig8AUByHXYyDMem1bC8moqAi/hVp+fLl2LdvH15++eVYnk9Q999/P7q7u9Wvurq6uL8nJY7D5cEHn7UAAIqyjcgxKXHz/9Uk9u9ZDGkLNYNiNulxnveG/vGR1hGPb+gawLYTHdh2okOdTRKPMff+zi5Wgi3/Tp4dpzoAKMsrAHDplGJIErCv3ordtV0A4t9iTEQ0kogyKCtWrMCaNWuwceNGlJf7dnwtKSmBw+FAV1dXQBalubkZJSUl6jHbtm0LeD3R5SOOGcxoNMJo5D+Y6Wp/QzfsLg/yM/XY/v8uw+HmXiz+1UZsPNKGXrsrbhvW+evqd8DqHRhWWRB60HDxpCLUnOrEP4+04WsXVJ7xvNsj48PPWvDC1lPYcLgV8qBmmni1GAuDl3g6+xzqn+dW5QNQgsI5FXnYWduFv+5QgsJ4F8gSEY0krAyKLMtYsWIFXn/9dXzwwQeYOHFiwPNz586FXq/H+vXr1ccOHTqE2tpaVFdXAwCqq6uxd+9etLS0qMesW7cOZrMZ06ZNi+ZaaJSqOdUJQLlhSpKEcyzZOKsoKyCzEgsutwd7TndBHhwlADjpLZAtzjEi0xB6QCSKOzcdaz+jlbfH5sTlT27Av/15Bz46pAQnEwozcda4LJw1LguXT7Ngdnle5BcUAtEl09ZrR3e/U/2sJxVnI9+vvXnRNGWZtdFbg5KoJR4ioqGE9avp8uXL8dJLL+Hvf/87cnJy1JqR3NxcZGRkIDc3F7fffjvuueceFBQUwGw24zvf+Q6qq6uxcOFCAMAVV1yBadOm4ZZbbsETTzyBpqYmPPDAA1i+fDmzJGPU9pPKksPcKqXYWpIkXDmjBL/76BjW7mvEdbPLYvI+v3r/CH774VH819VTcMclZwc8dyrECbKDza7IQ7ZRh44+Bw40WjFjvG866qZj7Tje2ocsgxbLFlbhX+dXYkJReK8frWyjDiVmE5qsNhxt7cV27/LOPG/2RLh8qgVPrPXNNGIGhYiSLawMytNPP43u7m584QtfQGlpqfr1yiuvqMc8+eSTuOaaa7B06VJccsklKCkpwWuvvaY+r9VqsWbNGmi1WlRXV+Pmm2/GrbfeikceeSR2V0WjhizL6m/18yb4bppXzSgFAHz4WSsGHJHvGCw43R78ZVstAGD1JyfhHpTtEEPahtuDJxi9VqNOld04qA5lZ61yXdedNx7/dfXUhAcnglqH0tqLmpO+bJW/ScXZAbU3rEEhomQLe4kn2NfXv/519RiTyYRVq1aho6MDfX19eO21186oLamqqsLbb7+N/v5+tLa24r//+7+h08W/zoBSz6n2frT1OmDQajDTL/swY7wZ4/MyMOB0Y8PhkQtQR/LRoVa09zkAAA3dNnx0KHDpyLcHT/hFq2KZZ/OggW27vAWncyrzwn7NWBL7Bh1stGJPvTIaYN6EgoBjJEnCIr9W33hvFEhENBLuxUNJtcObPZlZnguTXqs+LpZ5AGDtvsao30d0BImC2xe31gY8X6tmUMLPclSfrWRQtp/sgMOlDDlzeutdAOD8yvyhfjQhxMj7NXsa4XB5UJRtCBqIMUAholTCAIWSasfJ4DURAHCVN0BZf7AFdlfkyzztvXasP6hkTP77K7MAAB8easHpTt8wOFEkG0kGZXJxNoqyDbA5Pdhd1wUAONTUA5vTA7NJh7OStLQjiE6eVu/mhKIYebALJuRj/sQCXHLOuLjtD0REFCoGKJRUO04Fr4kAlMxDcY4RPXYXNkWw343w5qcNcHlkzBhvxpUzSnHRpELIMvDKdiWr0md3oa1XuXmHsg/PYJIkqXUom44pU2VF/cmcynxoNMndBE8EKMK8qoKgx+m0Gvz136vx52/O58Z9RJR0DFAoabr6HTjqHSAWLEDRaCQs9u5x8/6B5jOeD9Xfdp4GAPzL+crMnn+dXwUAeHl7HXrtLrzsDVTyMvXIzdRH9B5imUfUoew8JQKUvIjPO1YsZiOyDL7ls7kTkrvkREQUCgYolDSie+escVkoHGJjugu9N/6d3oLTcB1stGJfvRV6rYTrzhsPALh8mgVF2Ua09tgx7yfr8OiaAwAQUKQbrgvPVgpld9V2weZ0Y5d3qSfZ9SeAkuERdShGnQYzyiK/TiKiRGGAQkmz3dvyGqz+RDjf+9yhJit67a6w3+P/apTsyaVTilHgrasw6DT42gVKNsXm9GB8XgbuXXwufnvT+WG/vjChMBMlZhMcbg/e3d+EU+39kCTgvBTIoAC+Tp7ZFXkJ2QSQiCha7O2lmLO73PjzplO4elbpsJvh1ahDw4LXRABKN8n4vAzUdw1gz+kuNVMRipYeG17ydut87YKKgOdWfHEysow6nGvJwRfOLYY2yjoRSZJw4dmFeG1XPZ7+6BgAJSgwmyJbMoq1z51ThNd21WPJzNJknwoRUUj4qxTF3F+31+Gnbx/ED/+2Z8hjPvysRS2QvWDi0AEK4MtC7ApzmefX7x/BgNONOZV5+OK5xQHPZRi0+I8vTMJlUy1RByfCQu9y1GdNykaAqbC8I1x/3nhs+uGluLW6KtmnQkQUEgYoFHP76q0AlILRrn7HGc8fb+3Fd1/eBVkGbppfiYkjtOGKG/0ub2dMKI639qrFrz+8ckpCulJEvYyQCgWygiRJKMvLYHcOEY0aDFAo5j5rVjIILo+MdYO6b3psTnzrzzvQY3NhXlU+Hr5u+oivJ270O2uDb/QXzM/fPQS3R8ZlU4qx4KzCkX8gBsrzM1FR4FvSOn+Y2hoiIhoeAxSKKY9HxhFvgAIAa/c1qX+WZRl3v7Ibx1r7UJprwtM3zw2pYHN6mRkGrQYdfQ51z5zh7KztxDv7miBJwA+unBLZhUSo2hsM5Rh1amEqERGFj0WyY0yPzYkPPmtRR7IbdBosmmpBljE2/ymc7hxAv8MNSQJkGfjnkTb02JzIMemxdl8T3j/YAoNOg9/fMhfjckLbkM6o02LGeDN21nZhV13nsJvu9TtcePjN/QCApeeX49ySnJhcV6gunWLBX3ecRvXZhUkf0EZENJoxQBljVr7zmdrZIvzrgko89uWZMXn9Q97syZQSM+wuN4639uGDz1pw9cxS/PzdQwCAb3/+bMwqzwvrdedU5mNnbRd2nurCl+eUBz3G5nTj357fgU9PdyPHqMM9l58T1bVEYvF0C/78zfmYXmZO+HsTEaUTLvGMMR8fUUaxz6vKx0WTlOWI13fWw2pzxuT1DzUpBbJTSnLUvXTW7mvCK9vrcLytD4VZBnzrcxPDfl21ULYueKGs3eXGv/9vDTYda0eWQYvV35yPsmFanONFkiRlL5shBs8REVFoGKCMIS1WG2o7lAFif/rGBXjh9gU4x5KNAacbb+yqj8l7HGpWRtefY8nBVTOUmRsfHmrBr94/AgD4zqWTkBPBbBBRKHuwsQf9jjMHtt3zyqfYcLgVGXot/vT1C4KOziciotGDAcoYIuaOnGvJgdmkhyRJ+Nf5lQCAF7fUhtwhMxz/DMr0MjPK8zNgc3rQ1mtHZUEm/nVBZHM4yvIyUGI2we2Rsfd0d8BzdR39+MfeRmg1Ev7ntnkJ69ohIqL4YYAyhuzwjpa/YIJvMNqXzy+HSa/BoeYedW+cSDlcHhxv7QMAnFOSA0mS1GUeAPj+4nOjGrPu327sb+sJZSLt7PJcXDQp9EmzRESUuhigjCHqaHm/3WxzM/S4dlYZAJxRPBuu4229cHlk5Bh1KMs1AQC+PKccOo2EuVX5uCbKMeuiDkVch7DthLKD8PyJzJwQEaULBihjRL/Dhf0NyvLL4PqMZQuVZZc1exvR2Xfm5NdQHfKOeBfZEwCYVmbGh9//Av739vlRt91Weye1bjrWDpvTrT4uMigLRhiZT0REowcDlDFid10XXB4ZpbmmMzbwm12ei+llZjhcHvxt5+mI30MEKINnj1QUZCLTEH1H+/QyM0rMJvQ73Nh8XMmaNHXbcKq9HxoJmDuBhbFEROmCAcoYUeOtP5lblX/GfiySJOEmb7HsP/Y2Rvweh70zUM61xGc4miRJuGyqsunf+oPKCP1tJ5XsybQyc8rsHExERNFjgDJGiA6eeUO034rlk4ONVrjcnojeQ+zie06cAhQAWDTNAgB4/0ALZFn21Z9MYP0JEVE6YYAyBrg9MnZ6dwKeNyF4ncbEwixkGbSwOT043tYX9nv02l043TkA4MwlnliqPqsQmQYtmqw27G+wYutxJYMyn/UnRERphQHKGHC4uQc9NheyDFpMGSJ40GgkTC1VxrPvb+gOesxI7wEA43KMKMgyRH6yIzDptbhk8jgAwF931OFIizIYjgEKEVF6YYAyBojlnTmV+dBph/4rnzE+FwCwr94a9nscbhJ78MR/cz5RhyLaos+xZMc1KCIiosTjZoFx1N3vxIC3HVajAcZlG88oUE2EGm8h6Ujj38UGd/vqw8ugWG1OvLD1FID4Fcj6u3RKMSQJcHmUybfMnhARpR8GKHGydl8j7nxxJ/ynx8dy1+Bw7KrrAjBygCIyKAcarPB45JDmlvTaXfj6n7ZhX70V+Zl63LwwslH24SjMNmJuZb6aGeKANiKi9MMlnjh59uMTkGVAIwE6743+1R11aO2xJ/Q8uvudONXeDwCYXZ437LGTirNh0GnQY3ehrrN/xNfud7jwzdXbsbO2C7kZerzwbwswoSgrFqc9ItHNA3BAGxFROmKAEgcn2/qw/WQnNBKw6YeX4ehjV+O8ijw43TJeralL6Lns9S7XVBVmIjdz+Dkheq1GrSEZqQ7F5nTjW3/egW0nOpBj1OF/b5+P6WW5sTnpEFw1owQmvQazK/JgMZsS9r5ERJQYDFDiQExj/dzkcSjx7kmzbIEyCO2lrbXweKLfNThUe+q7AAAzx4cWPIggY98wnTx2lxv//r81+ORoOzINWqz+5nzMGiE7E2tVhVl4/57P48/fmJ/Q9yUiosRggBJjHo+M13bWAwCWzi1XH79mVhnMJh1Odw5g45HWmL3Xc5+cOGPzPH97TyuBxqzy0AKUGeNFq3HwDIrD5cHyF3dhw+FWmPQaPPf1C0asbYmX8vyRs0JERDQ6MUCJsS3H21HfNYAckw5X+NVJZBi0asAS7a7BwrqDzXj4rQNY9j9bh+y8EUs8M0LMoMzwZlD213dDls/M9Pzozf14/2AzDDoN/ufWC7DgLBaoEhFR7DFAibH/q1GWd66dXQaTXhvwnFjmWf9ZCxq7B6J+r3e8++bYnB78+//WoL03sAC3o8+hTncNNUA5tyQHWo2E9j4Hmqy2gOfcHhlv7FKyQ7+5aQ4unlwU7SUQEREFxQAlhnrtLryzrwkA8C9+yzvCpOIczJ9YALdHxivboyuWtbvcWH+wBQCQn6lHfdcA/uPFnXD67aMjsidnFWWFvJGeSa/F5OJsAGcWyp5s78OA0w2TXoNFUy3BfpyIiCgmGKDE0Nt7GzHgdOOsoizMqcgLeozIory643TQJZRQbTrajh67CxazEa/8ezWyDFpsPdGBn/7joHrM3tNdAICZIdafCKJQdvDI+4ONSsAypcQMbQgzUoiIiCLFACWGXvcrjh1qYuzi6Up7bH3XAA5596+JxDv7GtXXO8eSg1/dOAcAsHrTSXVfnD3eAtlQO3gEUSg7OINywFs4O807cZaIiCheGKCEQJZlrPrwKH753iFYbc6gxzRbbdhyoh0AcN3ssiFfy6TXYqG3sPSjQ5F187jcHqw70AwAuHJGCQDg8mkWXOX9828/OArAt8QTbguwqFfZc7orIMtzwJtBmVbKAIWIiOKLAUoIdtZ24efvHsJTHxzFol9swJo9DWcsz6zZ0whZBs6vzENFQeawr/eFc5TdeD861BLR+Ww90YHOficKsgyYP8E3RXX5Fyd5z6UB2050oLHbBkny7bETqpnjc2HQatDSY8fJdt9EWZFBmcoAhYiI4owBSgje+rQBgDK2vqXHjhUv7cK3/rwDDpevIPVN7zHDZU+EL5yr7Ma742QneobIyAxHLO9cMc0SsDvxjPG5uGxKMTwy8P1XPwUATBqXjSxjeFsumfRazKnMAwBsOtYGAGjtsaOlxw5JSsyOxURENLYxQBmBy+3Bmj1KQPC7ZefjrkWTYdBq8P7BFjz78QkAwKn2Pnxa1wWNBCyZNXKAMqEoCxOLsuDyyPjkaFtY5+PxyHh3f+Dyjr8VlypZlNoOJfMRbv2JcOHZSgvx5mPKspUokJ1YmBV2wENERBQuBigj2HqiA229duRl6nHpFAvuWnQOHl+q7Ej81PojqO8aUDMsF55dhHE5xpBe9/PqMk94dSg1tZ1o7bEjx6RTgwh/cyrz8Tm/+SThdvAI1WcrdTKbj7VDlmW1/mQqC2SJiCgBGKCM4M3dSvBx1YxSGHTKx/XlOeMxf2IBBpxuPPLW/rCWd4QvnOsLUMJpNxZTaK+YVqKez2ArvLUoQOgj7gc7ryIPJr0G7X0OHG7u9XXwsP6EiIgSgAHKMOwut1rvce3sUvVxSZLw6JdmQKeR8O7+Zhxu7oVBq8HiIEsuQ1l4ViGMOg2arLaQ242brTY1W3PbhVVDHrfgrEJ8/cIJWDzdEvEmfgadBhd4C3A3H2vzdfAwg0JERAnAAGUYGw+3wWpzoTjHiAUTA/ecObckB9+8eKL6/efPHYfcjNA3rjPpteoyyoefhbbM8+fNJ+HyyJg/oWDEwOPH103H72+ZB7028r9icX4fHGrF8dZeAMB0ZlCIiCgBGKAMQyzdXDOrLOjk1O9dNhmluSYAyrJPuL7o7eYJpd14wOHGi97lHf/AKJ6qvfNaNh5uhUcGCrMMIdfYEBERRYPtGEPos7vwvncY2nXnBa8tyTLq8OK/LcDuui51SFo4RB1KzalOdA84AzIwBxqseGtPA742rwITirLwt52n0dXvRGVBJi6flph9cGaOz0W2UYdeuwuAsrwz1IRcIiKiWGIGJQhZlvHgG/sw4HRjQmEmZg9TaHrWuGzccP7Qo+2HU1WYhUnF2XB5ZHzwWXPAc//56qd4+qNjuOJXG/HU+iP40ydKS/PXL5yQsH1wdFoN5k/0DYJjgSwRESUKA5Qgnv34BF7bVQ+tRsJjX54Z16yByLy8s7dJfexIc486d8Th8uCX6w7jeGsfcow6fPWCiridSzAXnu2rvWGBLBERJQoDlEH+eaQVj72t7Aj8wJKpuHDSmbNGYkkMW9twuBV93qUUUfty6ZRiPHXTHBRlK3UfyxZWITvBQ9LEvkEAMyhERJQ4rEHxc6q9Dyte2gWPDPzL3HJ8/cIJcX/PaaVmVBZkorajHx8dasXVM0vUVuLrZpfhutll+Pw547CrthMXxzlYGur8LppUCLdHxlnjshP+/kRENDYxQPHz582n0D3gxOyKPPzk+hkJKQiVJAlXzSjB7zcexzv7GlFRkIGT7f0w6TVqMWxuhl7dvyfRNBoJL/7bwqS8NxERjV0MUPz8v6unoiDLgH+ZWw6TXpuw973SG6B8+FkL8jMNAIDLplq45w0REY1ZvAP60WgkLPcbE58os8vzUJprQmO3DS9uPQUgvLH5RERE6YZFsilAo5GweLpSLOuRgRyTTp2RQkRENBaFHaBs3LgR1157LcrKyiBJEt54442A52VZxkMPPYTS0lJkZGRg0aJFOHLkSMAxHR0dWLZsGcxmM/Ly8nD77bejt7c3qgsZ7fwHvV05vQRGXeKWmIiIiFJN2AFKX18fZs+ejVWrVgV9/oknnsBTTz2FZ555Blu3bkVWVhYWL14Mm82mHrNs2TLs378f69atw5o1a7Bx40bccccdkV9FGpg3oQAWs9JOfH0EY/OJiIjSiSTLshzxD0sSXn/9dVx//fUAlOxJWVkZ/vM//xPf//73AQDd3d2wWCxYvXo1brzxRhw8eBDTpk3D9u3bMW/ePADA2rVrcfXVV+P06dMoKxu59sJqtSI3Nxfd3d0wm9NnNse++m6caOvDtaw/ISKiNBTO/TumNSgnTpxAU1MTFi1apD6Wm5uLBQsWYPPmzQCAzZs3Iy8vTw1OAGDRokXQaDTYunVr0Ne12+2wWq0BX+loxvhcBidERESIcYDS1KSMa7dYAjezs1gs6nNNTU0oLg6c6aHT6VBQUKAeM9jKlSuRm5urflVUJHbcOxERESXWqOjiuf/++9Hd3a1+1dXVJfuUiIiIKI5iGqCUlCidKM3NgTvzNjc3q8+VlJSgpaUl4HmXy4WOjg71mMGMRiPMZnPAFxEREaWvmAYoEydORElJCdavX68+ZrVasXXrVlRXVwMAqqur0dXVhZqaGvWYDz74AB6PBwsWLIjl6RAREdEoFfYk2d7eXhw9elT9/sSJE9i9ezcKCgpQWVmJu+66Cz/5yU8wefJkTJw4EQ8++CDKysrUTp+pU6fiyiuvxLe+9S0888wzcDqdWLFiBW688caQOniIiIgo/YUdoOzYsQNf/OIX1e/vueceAMBtt92G1atX4wc/+AH6+vpwxx13oKurCxdffDHWrl0Lk8mk/syLL76IFStW4LLLLoNGo8HSpUvx1FNPxeByiIiIKB1ENQclWdJ1DgoREVE6S9ocFCIiIqJYYIBCREREKYcBChEREaUcBihERESUchigEBERUcphgEJEREQpJ+w5KKlAdEan667GRERE6Ujct0OZcDIqA5Senh4A4K7GREREo1BPTw9yc3OHPWZUDmrzeDxoaGhATk4OJEmK6WtbrVZUVFSgrq5uzA2B47Xz2nntYwevndeejGuXZRk9PT0oKyuDRjN8lcmozKBoNBqUl5fH9T3G8q7JvHZe+1jDa+e1jzXJvPaRMicCi2SJiIgo5TBAISIiopTDAGUQo9GIH/3oRzAajck+lYTjtfPaxxpeO699rBlN1z4qi2SJiIgovTGDQkRERCmHAQoRERGlHAYoRERElHIYoBAREVHKYYDiZ9WqVZgwYQJMJhMWLFiAbdu2JfuUYm7lypW44IILkJOTg+LiYlx//fU4dOhQwDE2mw3Lly9HYWEhsrOzsXTpUjQ3NyfpjOPn8ccfhyRJuOuuu9TH0vna6+vrcfPNN6OwsBAZGRmYOXMmduzYoT4vyzIeeughlJaWIiMjA4sWLcKRI0eSeMax4Xa78eCDD2LixInIyMjA2WefjUcffTRgL5B0ufaNGzfi2muvRVlZGSRJwhtvvBHwfCjX2dHRgWXLlsFsNiMvLw+33347ent7E3gVkRnu2p1OJ+677z7MnDkTWVlZKCsrw6233oqGhoaA10jHax/s29/+NiRJwq9+9auAx1Px2hmgeL3yyiu455578KMf/Qg7d+7E7NmzsXjxYrS0tCT71GJqw4YNWL58ObZs2YJ169bB6XTiiiuuQF9fn3rM3XffjbfeeguvvvoqNmzYgIaGBtxwww1JPOvY2759O37/+99j1qxZAY+n67V3dnbioosugl6vxzvvvIMDBw7gF7/4BfLz89VjnnjiCTz11FN45plnsHXrVmRlZWHx4sWw2WxJPPPo/exnP8PTTz+N3/72tzh48CB+9rOf4YknnsBvfvMb9Zh0ufa+vj7Mnj0bq1atCvp8KNe5bNky7N+/H+vWrcOaNWuwceNG3HHHHYm6hIgNd+39/f3YuXMnHnzwQezcuROvvfYaDh06hOuuuy7guHS8dn+vv/46tmzZgrKysjOeS8lrl0mWZVmeP3++vHz5cvV7t9stl5WVyStXrkziWcVfS0uLDEDesGGDLMuy3NXVJev1evnVV19Vjzl48KAMQN68eXOyTjOmenp65MmTJ8vr1q2TP//5z8vf+973ZFlO72u/77775IsvvnjI5z0ej1xSUiL//Oc/Vx/r6uqSjUaj/Je//CURpxg3S5Yskb/5zW8GPHbDDTfIy5Ytk2U5fa8dgPz666+r34dynQcOHJAByNu3b1ePeeedd2RJkuT6+vqEnXu0Bl97MNu2bZMByKdOnZJlOf2v/fTp0/L48ePlffv2yVVVVfKTTz6pPpeq184MCgCHw4GamhosWrRIfUyj0WDRokXYvHlzEs8s/rq7uwEABQUFAICamho4nc6Az2LKlCmorKxMm89i+fLlWLJkScA1Aul97W+++SbmzZuHr3zlKyguLsacOXPwxz/+UX3+xIkTaGpqCrj23NxcLFiwYNRf+4UXXoj169fj8OHDAIBPP/0UH3/8Ma666ioA6X3t/kK5zs2bNyMvLw/z5s1Tj1m0aBE0Gg22bt2a8HOOp+7ubkiShLy8PADpfe0ejwe33HIL7r33XkyfPv2M51P12kflZoGx1tbWBrfbDYvFEvC4xWLBZ599lqSzij+Px4O77roLF110EWbMmAEAaGpqgsFgUP9PK1gsFjQ1NSXhLGPr5Zdfxs6dO7F9+/Yznkvnaz9+/Diefvpp3HPPPfiv//ovbN++Hd/97ndhMBhw2223qdcX7P8Do/3af/jDH8JqtWLKlCnQarVwu9346U9/imXLlgFAWl+7v1Cus6mpCcXFxQHP63Q6FBQUpNVnYbPZcN999+Gmm25SN8xL52v/2c9+Bp1Oh+9+97tBn0/Va2eAMoYtX74c+/btw8cff5zsU0mIuro6fO9738O6detgMpmSfToJ5fF4MG/ePDz22GMAgDlz5mDfvn145plncNtttyX57OLrr3/9K1588UW89NJLmD59Onbv3o277roLZWVlaX/tdCan04mvfvWrkGUZTz/9dLJPJ+5qamrw61//Gjt37oQkSck+nbBwiQdAUVERtFrtGd0azc3NKCkpSdJZxdeKFSuwZs0afPjhhygvL1cfLykpgcPhQFdXV8Dx6fBZ1NTUoKWlBeeffz50Oh10Oh02bNiAp556CjqdDhaLJW2vvbS0FNOmTQt4bOrUqaitrQUA9frS8f8D9957L374wx/ixhtvxMyZM3HLLbfg7rvvxsqVKwGk97X7C+U6S0pKzmgMcLlc6OjoSIvPQgQnp06dwrp169TsCZC+1/7Pf/4TLS0tqKysVP/dO3XqFP7zP/8TEyZMAJC6184ABYDBYMDcuXOxfv169TGPx4P169ejuro6iWcWe7IsY8WKFXj99dfxwQcfYOLEiQHPz507F3q9PuCzOHToEGpra0f9Z3HZZZdh79692L17t/o1b948LFu2TP1zul77RRdddEY7+eHDh1FVVQUAmDhxIkpKSgKu3Wq1YuvWraP+2vv7+6HRBP5Tp9Vq4fF4AKT3tfsL5Tqrq6vR1dWFmpoa9ZgPPvgAHo8HCxYsSPg5x5IITo4cOYL3338fhYWFAc+n67Xfcsst2LNnT8C/e2VlZbj33nvx7rvvAkjha09aeW6Kefnll2Wj0SivXr1aPnDggHzHHXfIeXl5clNTU7JPLabuvPNOOTc3V/7oo4/kxsZG9au/v1895tvf/rZcWVkpf/DBB/KOHTvk6upqubq6OolnHT/+XTyynL7Xvm3bNlmn08k//elP5SNHjsgvvviinJmZKb/wwgvqMY8//ricl5cn//3vf5f37Nkjf+lLX5InTpwoDwwMJPHMo3fbbbfJ48ePl9esWSOfOHFCfu211+SioiL5Bz/4gXpMulx7T0+PvGvXLnnXrl0yAPmXv/ylvGvXLrVTJZTrvPLKK+U5c+bIW7dulT/++GN58uTJ8k033ZSsSwrZcNfucDjk6667Ti4vL5d3794d8G+f3W5XXyMdrz2YwV08spya184Axc9vfvMbubKyUjYYDPL8+fPlLVu2JPuUYg5A0K/nnntOPWZgYED+j//4Dzk/P1/OzMyUv/zlL8uNjY3JO+k4GhygpPO1v/XWW/KMGTNko9EoT5kyRf7DH/4Q8LzH45EffPBB2WKxyEajUb7sssvkQ4cOJelsY8dqtcrf+9735MrKStlkMslnnXWW/P/+3/8LuDGly7V/+OGHQf//fdttt8myHNp1tre3yzfddJOcnZ0tm81m+Rvf+Ibc09OThKsJz3DXfuLEiSH/7fvwww/V10jHaw8mWICSitcuybLfOEUiIiKiFMAaFCIiIko5DFCIiIgo5TBAISIiopTDAIWIiIhSDgMUIiIiSjkMUIiIiCjlMEAhIiKilMMAhYiIiFIOAxQiIiJKOQxQiIiIKOUwQCEiIqKUwwCFiIiIUs7/BzyApXjiYL8tAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import pandas\n",
    "import matplotlib.pyplot as plt\n",
    "dataset = pandas.read_csv('data/international-airline-passengers.csv', usecols=[1], engine='python')\n",
    "plt.plot(dataset)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "VUyjZEHo2xhL"
   },
   "source": [
    ">You can see an upward trend in the dataset over time. You can also see some periodicity in the dataset that probably corresponds to the Northern Hemisphere vacation period.\n",
    "\n",
    ">You can phrase the problem as a regression problem. That is, given the number of passengers (in units of thousands) this month, what is the number of passengers next month?\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "BCYd6kmI3RM8"
   },
   "source": [
    "# Data Preparation and librairies importing\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "u8XrVDSL4fwe"
   },
   "source": [
    ">Before you start, let’s first import all the functions and classes you will use. This assumes a working SciPy environment with the Keras deep learning library installed."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:35.316457Z",
     "iopub.status.busy": "2023-11-01T09:59:35.316100Z",
     "iopub.status.idle": "2023-11-01T09:59:35.323208Z",
     "shell.execute_reply": "2023-11-01T09:59:35.321365Z",
     "shell.execute_reply.started": "2023-11-01T09:59:35.316427Z"
    },
    "id": "gb2FybxA4cNr"
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import pandas as pd\n",
    "import tensorflow as tf\n",
    "from tensorflow.keras.models import Sequential\n",
    "from tensorflow.keras.layers import Dense, Dropout\n",
    "from tensorflow.keras.layers import LSTM\n",
    "from sklearn.preprocessing import MinMaxScaler\n",
    "from sklearn.metrics import mean_squared_error"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "LVW9qsY24xl3"
   },
   "source": [
    ">LSTMs are sensitive to the scale of the input data, specifically when the sigmoid (default) or tanh activation functions are used. It can be a good practice to rescale the data to the range of 0-to-1, also called normalizing. You can easily normalize the dataset using the MinMaxScaler preprocessing class from the scikit-learn library."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:35.325969Z",
     "iopub.status.busy": "2023-11-01T09:59:35.324998Z",
     "iopub.status.idle": "2023-11-01T09:59:35.345026Z",
     "shell.execute_reply": "2023-11-01T09:59:35.343796Z",
     "shell.execute_reply.started": "2023-11-01T09:59:35.325918Z"
    },
    "id": "IVs0D8Fw49yG"
   },
   "outputs": [],
   "source": [
    "# normalize the dataset\n",
    "scaler = MinMaxScaler(feature_range=(0, 1))\n",
    "dataset = scaler.fit_transform(dataset)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "u9J8Jyjx5G5g"
   },
   "source": [
    ">After you model the data and estimate the skill of your model on the training dataset, you need to get an idea of the skill of the model on new unseen data. For a normal classification or regression problem, you would do this using cross validation.\n",
    "\n",
    ">With time series data, the sequence of values is important. A simple method that you can use is to split the ordered dataset into train and test datasets. The code below calculates the index of the split point and separates the data into the training datasets, with 67% of the observations used to train the model, leaving the remaining 33% for testing the model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:35.348914Z",
     "iopub.status.busy": "2023-11-01T09:59:35.348219Z",
     "iopub.status.idle": "2023-11-01T09:59:35.357977Z",
     "shell.execute_reply": "2023-11-01T09:59:35.357119Z",
     "shell.execute_reply.started": "2023-11-01T09:59:35.348850Z"
    },
    "id": "XSz-Kzkn5JBi",
    "outputId": "d9bc7409-e31c-4eaa-e08b-c6b598df5337"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "97 48\n"
     ]
    }
   ],
   "source": [
    "# split into train and test sets\n",
    "train_size = int(len(dataset) * 0.67)\n",
    "test_size = len(dataset) - train_size\n",
    "train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]\n",
    "print(len(train), len(test))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "7xORoyyN5VDH"
   },
   "source": [
    "> You can write a simple function to convert the single column of data into a two-column dataset: the first column containing this month’s (t) passenger count and the second column containing next month’s (t+1) passenger count to be predicted.\n",
    "\n",
    ">Now, you can define a function to create a new dataset, as described above. The function takes two arguments: the dataset, which is a NumPy array you want to convert into a dataset, and the look_back, which is the number of previous time steps to use as input variables to predict the next time period—in this case, defaulted to 1.\n",
    "\n",
    ">This default will create a dataset where X is the number of passengers at a given time (t), and Y is the number of passengers at the next time (t + 1).\n",
    "\n",
    "It can be configured by constructing a differently shaped dataset in the next section."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:35.359616Z",
     "iopub.status.busy": "2023-11-01T09:59:35.359098Z",
     "iopub.status.idle": "2023-11-01T09:59:35.371088Z",
     "shell.execute_reply": "2023-11-01T09:59:35.369876Z",
     "shell.execute_reply.started": "2023-11-01T09:59:35.359587Z"
    },
    "id": "tRU_Z7wn5SdY"
   },
   "outputs": [],
   "source": [
    "# convert an array of values into a dataset matrix\n",
    "def create_dataset(dataset, look_back=1):\n",
    "\tdataX, dataY = [], []\n",
    "\tfor i in range(len(dataset)-look_back-1):\n",
    "\t\ta = dataset[i:(i+look_back), 0]\n",
    "\t\tdataX.append(a)\n",
    "\t\tdataY.append(dataset[i + look_back, 0])\n",
    "\treturn np.array(dataX), np.array(dataY)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Whxs1blW5zoe"
   },
   "source": [
    "Let’s take a look at the effect of this function on the first rows of the dataset (shown in the unnormalized form for clarity).\n",
    "\n",
    "```\n",
    "X\t\tY\n",
    "112\t\t118\n",
    "118\t\t132\n",
    "132\t\t129\n",
    "129\t\t121\n",
    "121\t\t135\n",
    "```\n",
    "\n",
    "If you compare these first five rows to the original dataset sample listed in the previous section, you can see the X=t and Y=t+1 pattern in the numbers.\n",
    "\n",
    "Let’s use this function to prepare the train and test datasets for modeling."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:35.373320Z",
     "iopub.status.busy": "2023-11-01T09:59:35.372869Z",
     "iopub.status.idle": "2023-11-01T09:59:35.381175Z",
     "shell.execute_reply": "2023-11-01T09:59:35.380173Z",
     "shell.execute_reply.started": "2023-11-01T09:59:35.373280Z"
    },
    "id": "XFnHCApl6CMc"
   },
   "outputs": [],
   "source": [
    "# reshape into X=t and Y=t+1\n",
    "look_back = 1\n",
    "trainX, trainY = create_dataset(train, look_back)\n",
    "testX, testY = create_dataset(test, look_back)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "fFo5NhgW6JNc"
   },
   "source": [
    "The LSTM network expects the input data (X) to be provided with a specific array structure in the form of [samples, time steps, features].\n",
    "\n",
    "Currently, the data is in the form of [samples, features], and you are framing the problem as one time step for each sample. You can transform the prepared train and test input data into the expected structure using numpy.reshape() as follows:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:35.383166Z",
     "iopub.status.busy": "2023-11-01T09:59:35.382730Z",
     "iopub.status.idle": "2023-11-01T09:59:35.395073Z",
     "shell.execute_reply": "2023-11-01T09:59:35.393983Z",
     "shell.execute_reply.started": "2023-11-01T09:59:35.383127Z"
    },
    "id": "XAkPk_Hp6K3k",
    "outputId": "764c5681-a6f7-432f-a5c6-0a0f4f557d18"
   },
   "outputs": [],
   "source": [
    "# reshape input to be [samples, time steps, features]\n",
    "trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))\n",
    "testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))\n",
    "\n",
    "print(trainX.shape)\n",
    "print(testX.shape)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "LHC1cFCL6_mK"
   },
   "source": [
    "# Design and Evaluation of the LSTM network \n",
    ">You are now ready to design and fit your LSTM network for this problem.\n",
    "\n",
    ">The network has a visible layer with 1 input, a hidden layer with 4 LSTM blocks or neurons, and an output layer that makes a single value prediction. The default sigmoid activation function is used for the LSTM blocks. The network is trained for 100 epochs, and a batch size of 1 is used."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:35.398378Z",
     "iopub.status.busy": "2023-11-01T09:59:35.397921Z",
     "iopub.status.idle": "2023-11-01T09:59:54.925208Z",
     "shell.execute_reply": "2023-11-01T09:59:54.924415Z",
     "shell.execute_reply.started": "2023-11-01T09:59:35.398338Z"
    },
    "id": "3PohE8fG7Nz8",
    "outputId": "5bdae2c9-d435-470b-b40d-c62a9d6f1aab"
   },
   "outputs": [],
   "source": [
    "# create and fit the LSTM network\n",
    "model = Sequential()\n",
    "model.add(LSTM(4, input_shape=(1, look_back)))\n",
    "model.add(Dense(1))\n",
    "model.compile(loss='mean_squared_error', optimizer='adam')\n",
    "model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "rwGjfy6z7hzB"
   },
   "source": [
    "Once the model is fit, you can estimate the performance of the model on the train and test datasets. This will give you a point of comparison for new models.\n",
    "\n",
    "Note that you will invert the predictions before calculating error scores to ensure that performance is reported in the same units as the original data (thousands of passengers per month)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:54.926837Z",
     "iopub.status.busy": "2023-11-01T09:59:54.926291Z",
     "iopub.status.idle": "2023-11-01T09:59:55.481285Z",
     "shell.execute_reply": "2023-11-01T09:59:55.479948Z",
     "shell.execute_reply.started": "2023-11-01T09:59:54.926807Z"
    },
    "id": "w52cK3C47ixs",
    "outputId": "1e3cd4ef-bd1a-4b71-d0a7-0b3abe3d8765"
   },
   "outputs": [],
   "source": [
    "# make predictions\n",
    "trainPredict = model.predict(trainX)\n",
    "testPredict = model.predict(testX)\n",
    "# invert predictions\n",
    "trainPredict = scaler.inverse_transform(trainPredict)\n",
    "trainY = scaler.inverse_transform([trainY])\n",
    "testPredict = scaler.inverse_transform(testPredict)\n",
    "testY = scaler.inverse_transform([testY])\n",
    "# calculate root mean squared error\n",
    "trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))\n",
    "print('Train Score: %.2f RMSE' % (trainScore))\n",
    "testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))\n",
    "print('Test Score: %.2f RMSE' % (testScore))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "DX2ba__n7p8w"
   },
   "source": [
    ">You can see that the model has an average error of about 23 passengers (in thousands) on the training dataset and about 49 passengers (in thousands) on the test dataset. Not that bad.\n",
    "\n",
    ">Finally, you can generate predictions using the model for both the train and test dataset to get a visual indication of the skill of the model.\n",
    "\n",
    ">Because of how the dataset was prepared, you must shift the predictions so that they align on the x-axis with the original dataset. Once prepared, the data is plotted, showing the original dataset in blue, the predictions for the training dataset in green, and the predictions on the unseen test dataset in red"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 265
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:55.485696Z",
     "iopub.status.busy": "2023-11-01T09:59:55.485338Z",
     "iopub.status.idle": "2023-11-01T09:59:55.682888Z",
     "shell.execute_reply": "2023-11-01T09:59:55.681610Z",
     "shell.execute_reply.started": "2023-11-01T09:59:55.485667Z"
    },
    "id": "ejZA9Oyu7spv",
    "outputId": "8b3d4335-4c8a-4992-9c65-6522f73f304f"
   },
   "outputs": [],
   "source": [
    "# shift train predictions for plotting\n",
    "trainPredictPlot = np.empty_like(dataset)\n",
    "trainPredictPlot[:, :] = np.nan\n",
    "trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict\n",
    "# shift test predictions for plotting\n",
    "testPredictPlot = np.empty_like(dataset)\n",
    "testPredictPlot[:, :] = np.nan\n",
    "testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict\n",
    "# plot baseline and predictions\n",
    "plt.plot(scaler.inverse_transform(dataset))\n",
    "plt.plot(trainPredictPlot)\n",
    "plt.plot(testPredictPlot)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "E4TYIc5-72ZY"
   },
   "source": [
    ">You can see that the model did an excellent job of fitting both the training and the test datasets."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "AwYc1EDW8U9s"
   },
   "source": [
    "# LSTM for Regression Using the Window Method\n",
    "You can also phrase the problem so that multiple, recent time steps can be used to make the prediction for the next time step.\n",
    "\n",
    "This is called a window, and the size of the window is a parameter that can be tuned for each problem.\n",
    "\n",
    "For example, given the current time (t) to predict the value at the next time in the sequence (t+1), you can use the current time (t), as well as the two prior times (t-1 and t-2) as input variables.\n",
    "\n",
    "When phrased as a regression problem, the input variables are t-2, t-1, and t, and the output variable is t+1.\n",
    "\n",
    "The create_dataset() function created in the previous section allows you to create this formulation of the time series problem by increasing the look_back argument from 1 to 3.\n",
    "\n",
    "A sample of the dataset with this formulation is as follows:\n",
    "\n",
    "\n",
    "```\n",
    "X1\tX2\tX3\tY\n",
    "112\t118\t132\t129\n",
    "118\t132\t129\t121\n",
    "132\t129\t121\t135\n",
    "129\t121\t135\t148\n",
    "121\t135\t148\t148\n",
    "```\n",
    "You can re-run the example in the previous section with the larger window size. The whole code listing with just the window size change is listed below for completeness.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 1000
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T09:59:55.684760Z",
     "iopub.status.busy": "2023-11-01T09:59:55.684433Z",
     "iopub.status.idle": "2023-11-01T10:00:26.562463Z",
     "shell.execute_reply": "2023-11-01T10:00:26.561251Z",
     "shell.execute_reply.started": "2023-11-01T09:59:55.684732Z"
    },
    "id": "aTkqHEf77xRM",
    "outputId": "ce69159c-7a40-4e33-a502-fd6f1b9f4144",
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/10\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
      "  super().__init__(**kwargs)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "84/84 - 2s - 22ms/step - loss: 0.0425\n",
      "Epoch 2/10\n",
      "84/84 - 0s - 2ms/step - loss: 0.0124\n",
      "Epoch 3/10\n",
      "84/84 - 0s - 1ms/step - loss: 0.0088\n",
      "Epoch 4/10\n",
      "84/84 - 0s - 1ms/step - loss: 0.0074\n",
      "Epoch 5/10\n",
      "84/84 - 0s - 1ms/step - loss: 0.0065\n",
      "Epoch 6/10\n",
      "84/84 - 0s - 1ms/step - loss: 0.0053\n",
      "Epoch 7/10\n",
      "84/84 - 0s - 1ms/step - loss: 0.0045\n",
      "Epoch 8/10\n",
      "84/84 - 0s - 1ms/step - loss: 0.0039\n",
      "Epoch 9/10\n",
      "84/84 - 0s - 1ms/step - loss: 0.0036\n",
      "Epoch 10/10\n",
      "84/84 - 0s - 1ms/step - loss: 0.0034\n",
      "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step\n",
      "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
      "Train Score: 28.98 RMSE\n",
      "Test Score: 82.74 RMSE\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNgElEQVR4nO3dd3hb5fXA8a+W5b3jlcTZe5OQxOwRCBCgQAqFhlGg8CskZRVKaYGWUQK0hRaaQgerZVN2CoEQQgJkO3vv2PHee2jc3x9X90qyZVvykGznfJ7HTxzpSvde00bH5z3nvAZFURSEEEIIIXoRY6gvQAghhBCiJQlQhBBCCNHrSIAihBBCiF5HAhQhhBBC9DoSoAghhBCi15EARQghhBC9jgQoQgghhOh1JEARQgghRK9jDvUFdIbT6SQ/P5+YmBgMBkOoL0cIIYQQflAUhZqaGjIyMjAa28+R9MkAJT8/n8GDB4f6MoQQQgjRCbm5uQwaNKjdY/pkgBITEwOoNxgbGxviqxFCCCGEP6qrqxk8eLD+Od6ePhmgaMs6sbGxEqAIIYQQfYw/5RlSJCuEEEKIXkcCFCGEEEL0OhKgCCGEEKLXkQBFCCGEEL2OBChCCCGE6HUkQBFCCCFEryMBihBCCCF6HQlQhBBCCNHrSIAihBBCiF5HAhQhhBBC9DoSoAghhBCi15EARQghhBC9jgQoQgghRD+iKApvbchhZ15VqC+lSyRAEUIIIfqRrbmVPPDBDn72ejaKooT6cjpNAhQhhBCiHymqbgLgeEUDewpqQnw1nScBihBCCNGP1DbZ9e+/2lMUwivpGglQhBBCiH6kptGmf79CAhQhhBBC9Aa1je4MyrbjVRRVN4bwajpPAhQhhBCiH/Fc4gFYsac4RFfSNRKgCCGEEP1ItSuDEhNuBvpuHYoEKEIIIUQ/omVQ5k1KB+C7g6XUN9vbe0mvJAGKEEII0Y/UuopkTxqSwODECJrtTr49UBriqwqcBChCCCFEP1LjWuKJDTczZ1wq0De7eSRAEUIIIfoRbYkn2mrhPFeA8vXeklBeUqcEHKDk5eVx7bXXkpSUREREBJMmTWLTpk3684qi8PDDD5Oenk5ERARz5szhwIEDXu9RXl7OggULiI2NJT4+nptvvpna2tqu340QQghxgtMyKNHhZsalxwJQWtuE3eEM5WUFLKAApaKiglNPPRWLxcLnn3/O7t27+dOf/kRCQoJ+zNNPP81zzz3Hiy++yPr164mKimLu3Lk0Nrr7sBcsWMCuXbtYvnw5S5cuZfXq1dx6663dd1dCCCHECcqdQTETZTXrj9c1O0J1SZ1i7vgQt6eeeorBgwfzyiuv6I8NGzZM/15RFP785z/z4IMP8oMf/ACAf//736SmpvLRRx9x9dVXs2fPHpYtW8bGjRuZMWMGAM8//zwXXXQRf/zjH8nIyOiO+xJCCCFOOIqi6AFKbLiZMLMRi8mAzaFQ12QnLsIS4iv0X0AZlE8++YQZM2Zw5ZVXkpKSwrRp0/jnP/+pP3/kyBEKCwuZM2eO/lhcXByzZs1i7dq1AKxdu5b4+Hg9OAGYM2cORqOR9evX+zxvU1MT1dXVXl9CCCGE8NZgc+BwqjsYR7vmoGhZlLqmvtVqHFCAcvjwYV544QVGjRrFF198wW233cYdd9zBa6+9BkBhYSEAqampXq9LTU3VnyssLCQlJcXrebPZTGJion5MS4sXLyYuLk7/Gjx4cCCXLYQQQpwQtDH3JqOBCIsJgKgwV4DSx5Z4AgpQnE4nJ510Ek888QTTpk3j1ltv5ZZbbuHFF1/sqesD4IEHHqCqqkr/ys3N7dHzCSGEEH2RNkU22mrGYDDo30M/z6Ckp6czfvx4r8fGjRtHTk4OAGlpaQAUFXn3WxcVFenPpaWlUVzsvS+A3W6nvLxcP6Ylq9VKbGys15cQQgghvHkWyGoirSav5/qKgAKUU089lX379nk9tn//foYMGQKoBbNpaWmsWLFCf766upr169eTlZUFQFZWFpWVlWRnZ+vHfP311zidTmbNmtXpGxFCCCFOdLUt9uGBvptBCaiL5+677+aUU07hiSee4KqrrmLDhg384x//4B//+AcABoOBu+66i8cff5xRo0YxbNgwHnroITIyMrjssssANeNywQUX6EtDNpuNRYsWcfXVV0sHjxBCCNEFNa4x954BSl+tQQkoQDn55JP58MMPeeCBB3j00UcZNmwYf/7zn1mwYIF+zC9/+Uvq6uq49dZbqays5LTTTmPZsmWEh4frx7zxxhssWrSIc889F6PRyPz583nuuee6766EEEKIE1BNO0s8/TqDAnDxxRdz8cUXt/m8wWDg0Ucf5dFHH23zmMTERN58881ATy2EEEKIdtTqU2Td80766hKP7MUjhBBC9BO+imTdc1D61hKPBChCCCFEP6HVoMR61aD0zSUeCVCEEEKIfqK9DEptswQoQgghhAgBz52MNVqAUi8ZFCGEEEKEQo0+B8VXkazUoAghhBAiBHxOkg07ASbJCiGEEKL3aneSrNSgCCGEECIUtC4eaTMWQgghRK+hTZL1OepelniEEEIIEWyKorhrULy6eNQalAabA4dTCcm1dYYEKEIIIUQ/UNfsQHHFHzFWdxdPlMdyT30fqkORAEUIIYToB7QCWbPRQLjF/fFuNRsxGQ1A36pDkQBFCCGE6Adqm1wFsuFmDAaD/rjBYNDH3felVmMJUIQQQoh+QJ8i67Gko+mLOxpLgCKEEEL0A76myGqi+uAsFAlQhBBCiH5AW76J8ZFBieyDs1AkQBFCCCH6gVofGwVqol2txrLEI4QQQoigqvYxRVajD2uTJR4hhBDixPJ+9nGWrDwYsvPX+pgiq4nqg0Wyre9CCCGEEAHJLa/nvv9uw6nAJZMzyEyKDPo1tLfEo02TrZUaFCGEEOLE8dqao2hT5CsbmkNyDXoXj68lHtdj9X0ogyIBihBCCNEFNY023tmYq/89VMPQ3Es8PtqMpQZFCCGEOLG8u+m4voswhK6VV7sGn0WyrsdkiUcIIYQ4ATicCq+uOQKAa7ubkBWi1ja6R923JG3GQgghxAlk+e5CcssbiI+0cOrIZCB0SzzuSbL9o4tHAhQhhBCik176Ts2eLJiVSXK0FYD6ENV5uCfJSg2KEEIIccIqrW1i49EKDAa4PmtoyFt5228zllH3QgghxAmhvE5tJ46LsJAaGx7SZRSnU6G2ub0iWalBEUIIIU4I1Q1qUWqsq603Oix0AUpdsx3FNYfFZw1KCK+tsyRAEUIIITpB2/smLkINUNytvMEPArRzWkwGrObWH+16dqfZgVObKNfLSYAihBBCdEKVlkGJUD/8o0O4xKN18ERbzRgMhlbPey77NNj6Rh2KBChCCCFEJ1Q3qEGBtsQTykJUd4tx6w4egHCLMeRzWgIlAYoQQgjRCVoNinuJR+viCd0Sj68CWQCDwaDXoYRqTkugJEARQgghOsG9xOMqkrWGbtZIey3Gmr7WaiwBihBCCNEJbRXJhqYGRb0WXzsZa/RW4z4yrE0CFCGEEKIT9AxKuHeRbCiWUCq15aZI3zUo0PfG3UuAIoQQQnSCXiTbIoPSaHNidziDei0V9erQuITIsDaPkRoUIYQQ4gSgLfHEtiiSBXXeSDBVuKbaJka1E6C4Aqj6IF9bZ0mAIoQQQnRCVYtJslazCYtJ7eUN9jJKeZ16Le1mUPrYuHsJUIQQQohOaNlmDKGr89CWeBKjOq5BkSUeIYQQop9yOhVqmrQaFHfnTKjqPLQAJb6dDEq0LPEIIYQQ/VtNk3tzvliP6a3RIZo14k8NSmRY6AbJdYYEKEIIIUSAtOUdq9lIuMVdHBuKabIOp6K3GbdXgxLKvYI6QwIUIYQQIkAtp8hqQlGDUtVg07M58TIHRQghhDhx6S3GLUbLh2LcfblreScm3IzF1PbHuoy6F0IIIfo5bUhbXBsZlGAu8VTWd1x/AhAVJqPuhRBCiH6tuo0lnlDUeWgZlPbqT0DajIUQQoh+r+VGgRr3MLTgLaNU+JlB0duMZYlHCCGE6J+qW0yR1YQiS6FNkW2vQBbcbcZSJCuEEEL0U+4unjaKZENRg9LBEo9nAa+itf30YhKgCCGEEAGqbmyjSDYEk2T1GpSOimRdAYpTUXdc7u0kQBFCCCEC1HKjQE0oZo34W4MS4TFQri8UykqAIoQQQgTI10aBEJr9btxdPO3XoBiNBmJc16cV+fZmAQUov/vd7zAYDF5fY8eO1Z9vbGxk4cKFJCUlER0dzfz58ykqKvJ6j5ycHObNm0dkZCQpKSncd9992O29P5ITQgjRO2w4Us7Ty/Zid4RumUIf1NZGF09w56B0POZeMyDWCkBxdVOPXlN3MHd8iLcJEybw1Vdfud/A7H6Lu+++m//973+89957xMXFsWjRIq644gq+//57ABwOB/PmzSMtLY01a9ZQUFDA9ddfj8Vi4YknnuiG2xFCCNGfOZ0Kd729hfyqRk4elsjZY1JCch29aYmn3M8lHoDUmHAOl9RRVN3Y05fVZQEHKGazmbS0tFaPV1VV8dJLL/Hmm29yzjnnAPDKK68wbtw41q1bx+zZs/nyyy/ZvXs3X331FampqUydOpXHHnuM+++/n9/97neEhXX8wxVCCHHi2nSsgvwq9cO1qj50yxQdTZIN1hwUu8OpB0vxfmRQ0uLCAfpEgBJwDcqBAwfIyMhg+PDhLFiwgJycHACys7Ox2WzMmTNHP3bs2LFkZmaydu1aANauXcukSZNITU3Vj5k7dy7V1dXs2rWrq/cihBCin/tkW57+fagKPZvtThpsagDSqs3Y1cXT7HDSbO/5JSh/NwrUpLiWeAr7QIASUAZl1qxZvPrqq4wZM4aCggIeeeQRTj/9dHbu3ElhYSFhYWHEx8d7vSY1NZXCwkIACgsLvYIT7XntubY0NTXR1OReL6uurg7ksoUQQvQDdoeTz3a4PyvqQ7SnjGeBaUyrJR53p0xdk50wc8+uDGgdPLEdbBSoSY1RMyj9rgblwgsv1L+fPHkys2bNYsiQIbz77rtERER0+8VpFi9ezCOPPNJj7y+EEKL3+/5Qmd6xAqHblVfr4ImxmjEZDV7PmU1GrGYjTXYntU32DmeTdFWFa5nLn/oTcC/x9IUMSpfajOPj4xk9ejQHDx4kLS2N5uZmKisrvY4pKirSa1bS0tJadfVof/dV16J54IEHqKqq0r9yc3O7ctlCCCH6oE+25gNgcMUEocqgVLWxUaDGc2JrT9MCNn/qTwBSXUs8/bIGxVNtbS2HDh0iPT2d6dOnY7FYWLFihf78vn37yMnJISsrC4CsrCx27NhBcXGxfszy5cuJjY1l/PjxbZ7HarUSGxvr9SWEEOLE0Whz8OUudXnntJHJANSGKoPimiLbVoASzE6eijr/O3gAUmPdSzy9fdx9QAHKvffey6pVqzh69Chr1qzh8ssvx2Qycc011xAXF8fNN9/MPffcw8qVK8nOzubGG28kKyuL2bNnA3D++eczfvx4rrvuOrZt28YXX3zBgw8+yMKFC7FarT1yg0IIIfq+b/YVU9NkJz0unDNHDwBCWIOitxj7rpJwbxjY8wGU1mLszwwUgBRXDUqzw6kvD/VWAdWgHD9+nGuuuYaysjIGDBjAaaedxrp16xgwQP0fy7PPPovRaGT+/Pk0NTUxd+5c/va3v+mvN5lMLF26lNtuu42srCyioqK44YYbePTRR7v3roQQQvQrn2xTl3cumZLhsSFfaDIoHS/xBG/X4Eq9BqXjDh6AMLORpKgwyuqaKaxq9DvzEgoBBShvv/12u8+Hh4ezZMkSlixZ0uYxQ4YM4bPPPgvktEIIIU5w3x4oBeCiSenklNcDwR2G5knr4mk5A0XjzqD0vhoUgJTYcMrqmimqaWQ8vbdkQvbiEUII0as12hzUuOo+hiVHERWmZihCt8TjqkEJ73s1KABpWqFsVe8ulJUARQghRK9W5voQtpgMxIab3QFAEDfk81TVxkaBGm1YWzAClEBrUMBdKFvUy2ehSIAihBCiVyurVT9Ik6KsGAwGooIYAPji3igw9EWylQHOQQF3gNLbZ6FIgCKEEKJXK3UFKMkx6odwZBCLUH2pbmOjQE0wi2S1GpQEP8bca9ytxhKgCCGEEJ1WWqt+CCdFqbUTWhdPfbMjJLM8qjtY4glWDYrnRoGBTKxNi+sb+/FIgCKEEKJXK9MClGhXBsVVJGt3KjQFYUO+lvwd1NbTXTyVDe45JvFtXIsv2iwUqUERQgghukCrQUmOVn/zjwxz137Uh6BQtsMi2SCNuq90FcjGRVgw+7FRoEZb4imra8LmCH6A5y8JUIQQQvRqWhdPsiuDYjIaCLeoH1/BrkNRFMVdgxLiItnyOtfyTgD1JwBJUWGYjQYUBUpqem8WRQIUIYQQvVqpRxePJpgb8nlqsDmwO9W6l7bnoASnSFYvkA1wGqzRaCAlpvdvGigBihBCiF6ttEUNCriXeYI97l5b3jEbDXotTEvRQSqSrXAt8SQGMANFkxqn1aFIgCKEEEJ0SssaFHAXygZ7mqw+RTbCgsFg8HlMsIpkO5tBAUjtA4WyEqAIIYTotZxORf8g9gxQgpWlaKmqg52MwfvaerINOr+yAQi8BgUgLa73D2uTAEUIIUSvVd1o02s+PKelRoZoR2N9qq1HsNSSlkFxKtBo65kumbomu77D8+zhSQG/PiVWalCEEEKITtMKZGPDzYSZ3R9ZodowsMR1PQPaCVAiLe7alJ5a5nlvUy41jXaGJ0dx9piUgF+fFis1KEIIIfoYu8PJsp0FXPuv9Uz87ResO1wWsmvRCmSTWwQEwdzvxpPWljsgpu0AxWg06AFUTyxBOZwKr6w5CsCNpw7FaPRdC9OevrBhYNuLaEIIIU44y3YW8ttPdnp9cK05VNapZYTuUNZWgBKqDIofAQqoAVRds6NH2qBX7CniWFk9cREW5k8f1Kn30AOUKsmgCCGE6AOWrDxIUXUTydFhjE+PBdwTS0OhrE6r+fDuVAlVDYq/AUp0D17fS98dAeCamZleU3UDkeqqQalpsods08WOSIAihBBCl+fqDHntpplcOUP97VzrogkFXzNQIHRdPKU+Wp59iXZ1+dQ02to9LlA786pYf6Qcs9HADacM6fT7xIRb9CxUb61DkQBFCCEEAI02hx6MDIyPIME1AKwihBkUX1NkwT0HJdiTZP3NoGg/u+4O7l5fdwyAiyalkx4X0aX30pZ5emursQQoQgghAChw1SNEWEzERVj0AWDani+hoA9pi2lZg6JmKIK5WaCiKO4ung4CFC3jU9bNAcrugmoA5k1O7/J7addYEcL/vu2RAEUIIQQABVXq8k56fDgGg0EfoR7SGhStSLbFtNRgTWv1VNVgw+ZQZ7IkR7c/vVVbAtICrO6SX6kGkQPju5Y9AYiLUO9BGz7X20iAIoQQAoAC14dfhmvpICFKnVBaXtfcoxNR26NlIFoORou0Br+LR1veiYuwYDX73odHk+QKqLQamu7QaHPoS17dE6Co/30rG0IXgLZHAhQhhBCARwbFNQZdq6NosjtpsAW3W0ZTWuO7i0df4gliF4+/9SfgDqhKuzGDUuixBBffifH2LWnvIRkUIYQQvVq+6wMw3fXbeWSYSZ/eGopOnkabgxrXEk5yVMtBbWoGI5hLPP5MkdVoS0Bl3ZhByW+xBNdVWgalql4CFCGEEL1YgavFOMOVQfGuQwn+h5gWFFlMBmIjvOd9hKJINpAMil6DUtd9GZTurD8ByaAIIYToI7QuHm2nW8Cjkyf4GRQt+5AUZW2VMdBqUOqae3bHYE+BLfG4MyhOZ/dcX74eQHZPgKLXoEgGRQghRG+mfwB6/Iae4PotOxSzUErbmCIL7gyKohC0+phAAhRt52W7U6G6m4a1eXZZdQd9iUcyKEIIIXqruiY71Y1qPUd6L8mguAtkWwcEERYTWlIlWOPuA6lBsZpNxLqmyXZXJ0+e1mXVTUs8EqAIIYTo9bTfzmOsZmLC3R0iifo02eB/iGktxr5mjhiNBiItwW011jIoLYfGtaW7Z6F09xJPfKTMQRFCCNHLaQWYLZcPtAxKRUhqUNrf9yYyyMPaSgPIoED3TpNVFMVdxNzNSzy1TXZsDme3vGd3kgBFCCGExwwU79/OtRqU8hDUoLiLZH1PbdU2DAxGJ4/d4dQDDX9qUMC9f1B3zEKpbrBT57rP7lri0Zag1PfvfVkUCVCEEELoGZSWv50nhjCDUtrGFFmNvmFgEDIo6jRdMBrcP5OOaBmU7qhB0XaZTowKI9zS/hRbf5lNRmJcQV6lBChCCCF6o7YzKKGrQdGKZNva9yaYs1CKPQp2TUb/hqR1Zw2K9t+nu5Z3NHG9eBaKBChCCCH0GSieHTwQ2gyKNuSsrRqUYE6TDaSDR9Od02S7u0BW05unyUqAIoQQwucMFHBPGy2vD+6GgYqiuGtQ2sigaEWy9cEIUAKYgaLpzv14urvFWNObp8lKgCKEECc4RVE6zKA0251BHStf3WDH7prA2lbNR5RWgxKE6+pUgBLVfV08PbXEEx+hbWXQ+3Y0lgBFCCFOcNUNdj34aFmDEmExYXVtGBjMabLauaLCTFjNvotCo1wZlGAUyXYmQNHmpXRHBqWtDFdXxerD2tw/wwNFNSzdns/+oppuPVegJEARQogTnLZLbnykhYgw72DAYDB41KEEbxlAW3LQhon5Eswi2U7VoLjajGsa7TTZu3aN+pyabq5B0ZZ4KhvcweeXu4tY9OYW/r7qcLeeK1ASoAghxAmurQ4ejRYkBHMWihagaL/h+6JvGNhLMyixEWbMro6frhTKOpwKhdXdu5Oxxte4ey1bM7Cbl5MCJQGKEEKc4PQZKHG+P5ASo1wbBgaxk0ebyxEXYW7zGG1QW10QRt2XdiJAMRgMXrsad1ZxTSMOp4LZaAjo/P6I99HFowUo6d0cDAVKAhQhhDjBFVb5HnOvcc9CCX4GJa69DEqYVoMSvCLZtlqe26JPk63rfB2KFkCmxob7PYPFX74yKFrBdHfXuwRKAhQhhDjB5XewxBOKWSja6HWty8QXrYunpzcLbLQ5qHEtIwWawdAKZbuSQXEvuXR/wBCn16C4A5Q8feaKLPEIIYQIoYI2xtxrQlmDon2A+hKlbxbYsxkULXsSZjZ67V/jj+Qobdx9VzIo3dNinF+bz43LbuSSDy9hRc4KFEVplUGpabRR06gGY6Fe4gnsJy2EEKLf6ahINjFSq0EJXhePNpejvSUebZJsT2dQPDt4DIbAlljcNSidD1D0GTVdCBhWH1/NA98+QHVzNQB3rbyL0waexk1j7wbUGhTPeThxERa9xidUJIMihBAnOG2fmdTYNmpQok7sGpTOdPBokqK7vsST18UZKH/b+jcWrlhIdXM1E5MmcuPEG7EYLXyX9x23fbMAo7WAZoeTRptTP1fLgX2hIAGKEEKcwJrsDn2OSEIbyylaDUp5EGtQ/AlQosKCM6hNW2JJ6USAohXVlnbhZ9eVtt9tJdt4YdsLAFwz9hpeu/A17pl+Dx9c+gFTBkyhydFIeOrngDoLRVvu64l6l0BJgCKEECcwrb3UaIDYcN/BQCi6eCrr/QhQXEs8DTYHDmfP7RO0M09dFhmXHhvwa/1d4lEUhbc25LDmYGmrx4+V1QMwKCEy4PO/uedNAC4Zfgm/nvVrwkzq9QyNG8ri0xdjNpoxRe3HFHmQqgZbj02s7QwJUIQQ4gRW4REIGNtoYU3wmCQbrA0Dq/3JoHjUSDTYem6ZZ0deJQCTB8UF/FptmmxHRbKrD5TywAc7WPTWFq+fcV5lA7VNdiwmA8OSowI6d0l9CV8e/RKABeMXtHp+cMxgrhp9FQDWlGVU1DV7zECRJR4hhBAhpBWjtjdSPtH1XLMjeBsGukfdtx2gWM1GtJiqp5Z56prsHCyuBWDSwMADFM9Bbe0Fd2+sOwaoy2haHQjAvkJ1P5wRA6KxmAL7yH5v/3vYFTtTB0xlQtIEn8fcOvlWDIoVU8Rxvs1fobecyxKPEEKcoJZuz2f2EytYvb8kpNehZVDaCwQiwkyEW9SPi2DUodgcTn2H4vYyKAaDocc3DNxdUI1TgbTYcFLaKCJujxag2J0K1Q2+r7GgqoEVe4vd58yv1r/f59qwb3RqTEDntTlsvLvvXQAWjGudPdGvLyKJdGUuAP87/jJ5lXVA9+/50xkSoAghRAgs3VZAYXUjv3p/e4+3ybanyrVJXHw7gQAEtw7Fc6ppTBt1MZqe3jBw+/EqACZ1YnkHwGo2EeOandLWNNl3NuZ61dDsLvAIUFwZlDFpgQUoXxz7grLGMlIiUjh3yLntHjsqfB5OexTlzfmUGL8Auj5zpTtIgCKEECFwvFItfMyvauS5FQdDdh1aBiWhnSUez+eDkUHRNwoMN3c42l3bMLC2hzIoO/PUAGVyJ5Z3NHonT03rAMXucPL2hlwApg6OB2CPrwAlwAyKVhx71ZirsBjbD/KSo+JoKr4QAHPyF5ijDrXZch5MEqAIIUQIHK9w1xn869vDHHCl8oNNy4i0N7EV3K3GlfU9P6zNnymyGm2YWE9lobYfrwRgYiczKABJrp9dmY/gbuW+EgqrG0mMCuPu80YD7gyKzeHkcIm65BJIBmVr8VZ2lO7AYrTww9E/7PD4uAgL9qrpRDXPwmBQiBz4NpVNZX6fr6dIgCKEEEFW02jTP+hPHZmE3anw4Ec7g9Yh46nK3wxKEGehVPnRYqyJdO3H0x3D2oqrG/l8RwFO13JLTaONw6VqgNCZAlmNVofiq5PnjfVqceyVMwYxdVA8ALnlDVQ12DhaWkezw0lUmCmgotV/7fgXAPOGzyMpIqnD49Wfs4HynEtwNKahmGq4d9W92JzBmxzsS5cClCeffBKDwcBdd92lP9bY2MjChQtJSkoiOjqa+fPnU1RU5PW6nJwc5s2bR2RkJCkpKdx3333Y7aFbgxVCiGDSujQSIi08ecVkwi1G1h8p59PtBUG/Fi2D0taQNo32fDBrUPwJULpzWNvvP9vDbW9s5uXvjwCwK78aRVE7WgLdxbiwrpAVOSuwOW2kxKjLJcXV3gFKbnk9q1xF0tecnElcpEUPRPYWVOsFsqNSY9psAW9pX/k+Vh1fhdFg5OaJN/v1Gq1AutlmpuH4tZiIYHPxZp7b/Jxfr+8pnQ5QNm7cyN///ncmT57s9fjdd9/Np59+ynvvvceqVavIz8/niiuu0J93OBzMmzeP5uZm1qxZw2uvvcarr77Kww8/3Pm7EEKIPuR4uRqgDEqIZHBiJDedOgyAL3cVBv1a9IFovbAGpb2djDXuDQO7HqBoA9H+vvowjTYHO7QC2QCzJ6UNpSz4bAF3rbyLqz69Cof1AODeU0ez4Ug5igIzhiQw1DXjRBsGt7ugWq8/GRvA8s4/d/wTgPOHnM/QuKF+vcYzEFRsyWTF3o7RYCTCHBGSrJ6mUwFKbW0tCxYs4J///CcJCQn641VVVbz00ks888wznHPOOUyfPp1XXnmFNWvWsG7dOgC+/PJLdu/ezeuvv87UqVO58MILeeyxx1iyZAnNzcGbUiiEEKFyvEL9INR+Wx7r+lAq9lFE2dMq9SWe9rMV2jJFUItk/cigJLZT3xEoLTtUUtPEOxtz2Z4XeAeP3WnnvlX3UVyvtg0frDzIp8UPE57xJvnVFV7Haps0eg5gG5/hClDy3QGKvy3GR6qO6IPZfjrpp35fc8sW81kpZ/LxDz7m9qm3B7w5YnfqVICycOFC5s2bx5w5c7wez87OxmazeT0+duxYMjMzWbt2LQBr165l0qRJpKam6sfMnTuX6upqdu3a5fN8TU1NVFdXe30JIURfpRXIDkpQAxRtj5eSUAQoeptx+9mKpKiub3rn9zUFUIOS5trUrrBFdqIzKjyCnBdXHWJLjhpQBDJB9tnsZ9lUtIlIcyT/ufA/XD3magwYscRt55D9Ha9j833sUjzeFazuKXQv8fibQXlpx0soKJw16CzGJI7x+5pb/pwz4iP8zr70pID3Un777bfZvHkzGzdubPVcYWEhYWFhxMfHez2emppKYWGhfoxncKI9rz3ny+LFi3nkkUcCvVQhhOiVtBoULUDRWjqLqrv+IRsIRVH8GtQGHoWebczy6E7+TJHVpMV2T4BidzipblSXiWLDzV7LMRMz/AtQlh1Zxr93/xuAx097nKkpU5maMpUxsTN5ZOM91IevIbc6l8GxgwEo0Pa98dg5eIIrg7KvsAa7q1h3tB8BSl5tHv87/D8Abpl8i1/Xq4lrEZz2hn14IMAMSm5uLnfeeSdvvPEG4eHB65F+4IEHqKqq0r9yc3ODdm4hhOhu7gyKuvmblkGpb3b02DwPXxpsDprtTsDdpdOWpGB28QRQJKtnULoY3FW6zmkwwM/PGaU/PjgxosOfDUCTo4nH1z8OwE0Tb+K8Iefpz1008mzstaMxGJz8efPz+uMFPjIogxIiiLGasTkUFAWSo8M6LNB1Kk4eXfsodsXOrPRZTB4wud3jW/KVQekNAgpQsrOzKS4u5qSTTsJsNmM2m1m1ahXPPfccZrOZ1NRUmpubqays9HpdUVERaWlpAKSlpbXq6tH+rh3TktVqJTY21utLCCH6Kq0GZVCi+kEQZTUT5WqXLQ5iFkVbSjEbDfr525Lk+pCsrLdhczh79Lq06bb+BCjprgCloKqhSwWd2p5EseEWrp09RA/IJg+M9+v1q3JXUdVURWpkKj+f9nOv5yLDzJirLgJg+bFl7K/YD+DeOdgjg2IwGBiX4f6M86f+5M09b7Imfw1Wk5Vfz/y1X9frKcxs1Nu1rWZjh/VIwRJQgHLuueeyY8cOtm7dqn/NmDGDBQsW6N9bLBZWrFihv2bfvn3k5OSQlZUFQFZWFjt27KC42L3vwPLly4mNjWX8+PHddFtCCNE71TbZ9WUVz9kW2j4vwSyUrfDYKLCjYsj4CIu+MV9FD2dRAsmgaMtjjTZnm3vd+KO8Tj1nYlQYEWEm7ps7BoMBLpqU7tfrlx5eCqizR8zG1tUTGRGjsFVPQkHh+c3PU9dk15eU0ltkLLQ6FOg4QNlfsZ9ns58F4N4Z9zI8frhf19uS9rMeGB8R0sJYTwHVoMTExDBx4kSvx6KiokhKStIfv/nmm7nnnntITEwkNjaWn//852RlZTF79mwAzj//fMaPH891113H008/TWFhIQ8++CALFy7Eag2sz1wIIfqaPNfyTnykxWufmQExVo6U1gU1QKnys/4EwGg0kBhlpbS2idLa5k5tnOf3dQUQoIRbTCREWqiot1FQ3eDX9Flf3MGa+vqrZ2ZyxUmDCDN3/Ht8ZWMl3+Z9C8Alwy/xeUxqXDj7j55PWOwuvjn+DSuPbgAgJtysT8PVeAYo7RXINjmauH/1/TQ7mzlj0Bn8aMyPOrzWtsRFWCioauw1yzvQA5Nkn332WS6++GLmz5/PGWecQVpaGh988IH+vMlkYunSpZhMJrKysrj22mu5/vrrefTRR7v7UoQQotdp2WKs0epQgrnEU+Fni7EmOVpr6e3ZICqQAAUgzbXzbss5I4HQskKeE3X9CU4Alh1dht1pZ1ziOEYmjPR5THpsOErzAEZHnQPAq3v+DkCGj12Dx3su8bQRoBypOsItX97CwcqDJIYn8ugpj3Yp86H9rNPjQr8HjybgLp6WvvnmG6+/h4eHs2TJEpYsWdLma4YMGcJnn33W1VMLIUSf07LFWKNNGw1mq3GlXuvRcREouDt5erLVuNHmoNGm1rj4mw1Ji7WypwCKuhKg+Dny35dPD38KwMXDL27zmFTXB/8gwyUcMnzDvqrNGCNmkR4/o9Wxo1KjSYoKw+5UGDkgkic3PMnmos2MTxrP1JSpFNcX8/dtf6fZ2UykOZLFpy/2a6R9e7TMUW/KoHQ5QBFCCOE/vUDW1cGjSY1VMyjBbDX2d0ibJlGbhdKDNSjVruyJyWggxtrxR9Sbe95kq/EvmGOuoKBqVIfHt8Xfkf8tHas+xvaS7RgNRi4aflGbx2mZieqaGC4dfSkfHPgAa/IK0uNOb3Ws1Wzig9tPodlh57END7Ls6DIA9pTv4f0D7+vHnTbwNB6e/TDp0f7VybRnzrhUso9VcvbYlC6/V3eRAEUIIYKozQyKK0AJZg2K1rniTxsteOzK62PTu+6iT5ENN3e4ZJFfm8+z2c9ip5HwjHc5UDEJGN2p8+pLPH7+LDRacWxWRhbJEcltHuc5UO6RiT/lwwMfYY7ejzkiF5jU6vj0eAv3rnqAlbkrMRvN3DHtDioaK9hWso0aWw03TriRi4df3G0FrVfOGMwPpw/qNQWyIAGKEEIEVcsZKBp9Q7mgdvEEVuuRHIQlnkDqT/646Y80OhoxYARjMxvqn6Gm+XRiwvzfu0bjzqD4H6AoisLSQ2qA0lZxrEYfKFfdyODYwcQ7Z1FhXMvuhg8Ad+alydHEytyVvL77dbaVbCPMGMazZz/LGYPOCPCOAtebghOQAEUIIYLKvcQT+iLZygA/lLVZKD1ZJOvvmPu1+WtZfmw5JoOJheOe4s/bHqPJUsRvvvsNfz77zxgNgfWAaMFaYpT/Szzf5n3L8drjRFmiOCfznHaP1ZZ4yuuaabQ5MFSdixK/jv0163l///vU2mrZX7GflbkrqWlWR9xHmCN47pznmJ0+O6B76S8kQBFCiCCp85yB0kaRbHWjnUabg3BL+4PTukNlAG3G4F7iKQ1GBqWdoMnmtPHkhicBuHrs1ZyVeQqL/3ctUUNfZGXuSt7a+xYLxi0I6LzaEk98ABmUl3a8BMCVo68kwtx+cWlchIVwi5FGm5Oi6kZKyuNwGidjidvG79b+zuvY1MhULh1xKVeMuoJBMYMCuo/+RAIUIYQIEm0PnrgIC7Hh3kFBbISZMLORZruTkpomBidG+nqLbtVy9kdHkoLQZuzPEs+be97kcNVhEsMTuX3q7eAMx9k4mMaiiwhP+5T/7P4P14y9JqAsivazSPSzBmVz0WY2F2/GYrRw3fjrOjzeYDCQFhvO0bJ69hfVUt/swFByHqMGV2M2mhgeN5zh8cM5KeUkZqbNxGTs+QC1t5MARQghgqStGSigfoClxFg5XtFAcU1jUAIUfVM+f9uMXV085T2YQanUAxTfH08Op4N/71I35Ltj2h3EhsWiKApRYSbqKk8madBK8mrzWF+wnqyMLL/O6XAqAW1QCPDyzpcBuHTEpaRE+tf5khanBiibXbskx1vS+fTyT/x67Ymo2we1CSGE8K2tDh6Ne1fjni+UVRTF3WbsZ92FlkGpa3bQ0Ozokeuq7iCDsq5gHcUNxcRZ47hkhFqYajAY1C4ZJYwZyecC8MGBD3y+vq1zujYO9qseZ3/FflYdX4XRYOTGiTf6fZ5011C2zccqvP4ufJMARQghgqStDh5NMAtla5vs2F2fyv4WyUZbzfp01Z5a5ukoq/PxoY8BuHDohYSZ3MdobbzjotVdhFfkrKCiscKvc2rLOzFWMxZTxx+LWvbkvCHnMSR2iF/nAHcAuv14FQAZ8b1namtvJAGKEEIESVsdPBo9QAlCq7GWPbGajX4X5BoMBpKjerbVuL0alJrmGr7O+RqAH4z8gddzabGun2nzQMYnjcfmtPHJIf+WT/RaHD8ySXm1eSw7og5Ou2niTX69v0br5GmwOVx/lwxKeyRAEUKIIMmrVDMjbY0TD+aOxp2Z+wGQ2MOFslrrc6yPAGX5seU0OZoYHjecCUkTvJ5L9xiENn/UfEBd5lEUpcNzVmg7Gfvxs3hn7zs4FAez02czPml8h8d7Sm2xwWK6ZFDaJQGKEEIEiTaBdUCM753bB4Qgg+JvUahGK5TtqVbj9opVPz6oLu9cMuKSVkPFtL1uCqsbuWjYRUSYIzhcdZitJVs7PGd5vX8txg32Bn3UfKBtzNB6Iz5fGwUKNwlQhBAiSLRlEW0ia0vBrEEJtMVYoxXKlvfQfjxVDXag9RJPbk0um4s3Y8Dgc1O+9Fh3BiU6LJq5Q+cC8N/9/+3wnJV+thgvO7KM6uZqBkYP5PSBrffQ6UjLAKU37RzcG0mAIoQQQVDfbNdrD7SJrC0Fc0djLVMR6BJPsjZNtgf241EUhSp9h2XvAOXTQ+qOwbPTZ5MWldbqtVqRbIFrR+Mfjv4hAF8c/YLKxsp2z1te13E2SVEU3tz7JgA/GvOjTs0pSYq2YjK6Mz+9aefg3kgCFCGECAIte2I1G4kK8/3hpu1oXFbXTLPd2aPXU+HHh7IvST1YJNtgc2BzqDUjngGKU3HqBa+XjrzU52u1AKWsrolmu5PJyZMZlziOJkcTHx78sN3z6hmUdoK1bSXb2Fu+F6vJyuUjL/f/pjyYjAZSXVkyg6F1TYrwJgGKEKLfK65uxOnsuFiyJ5W4Mg7J0dY2N2VLiAzD7PoNu7QHdwwGqGwIfLQ7uLM/pT2wxKNldSwmA5EeQdy6gnXk1eYRbYnm3Mxzfb42MTKMMJMRRYHimkYMBgNXj70agHf2vYPD2fbcFm25Kr6dJZ4396jZk4uGXUR8eHxA9+VJC6SSo616y7bwTX46Qoh+beW+YmY+sYK/rjwY0uvoqP4EwGg0BK1QVi+S9XMnY407g9L91+fZYuwZxGl1JBcPv7jNPW+MRgOpcerPrtC1zHPhsAuJDYslrzaP7/O/b/O82s/CVwbFqTjZVLiJ5ceWA+hBT2dpAUqG1J90SAIUIUS/tvFIOQDvZef61XLaU7QP9LbqTzTBKpTtbJuxvh9PF5Z4so+VM++5b9l0tNzr8WNl6pwYz2LV0oZSVuasBODKMVe2+75pse5OHlB3A9aWY97a+1abryvXfxbuYK2soYw/bfoTc9+fy41f3IhdsTN1wNSAW4tbX6MaYMkMlI5JgCKE6Ne0sfG55Q0cLq0L2XWUuZYRkjroFBkQE5xZKFrWIC7gLh7Xfjx1zZ0O+N7fnMeu/Gr+suKA1+Nf7CoE4JQRyfpjHx38CLtiZ8qAKYxOGN3u+6a5PvS1DAqoBa0GDHyX9x051TkAfLajgI+25OnHaDUoCa7/NvvK93H1/67m1V2vUlhXSKQ5knnD5/GHM//Qqfv1dPLQBABmuP4UbZPNAoUQ/VpxjfvD6pt9JYwYEB2S6yj1N4MSG6wlnk5mUFwf4s0OJzVN9la7MvujwLWr8/cHSympaWJAjJVmu5OvdhcBcOFEtUvHqTj15R2tK6c96S06eQAGxw7m1IGn8l3ed7yz7x1unXgXP39rCw6nwvQhCQxKiKCi3t3RtDJnJfd/ez8N9gaGxg7lrpPu4tSBpxJu7p4lmQsnpbPlofP0YEi0TTIoQoh+rdhj471v9hWH7DpK/ahBAfcST0lN9yzxtJXlqNTbjAMLMMItJqKt6u+2nV3m0QIIp6JmMwDWHi6jutFOcnQYM4Ymqo/lryWvNo8YS4w+16Q92s+uqMXy2DVjrwHg3X3v8r+9G3G4Cqa/PVBKdaNd/bvBxlsH/s6dK++kwd7ArPRZvH7R65w75NxuC040Epz4RwIUIUS/5plBWX+4nPpme0iuo8yji6c93bmj8cHiGmY8/hVLWhQIO5yKuyA1wAAF3DUinS2ULfQIID7Zlg/Asp1qoHL+hDR9VoiWPblkxCVtFsd60n52xS1+dqcNPI1TB55Ko6OR53b9GoO5GoDvDpZQWd+MKWof0SOe5eVd/0JB4arRV/HCnBeIs8Z16v5E95AARQjRbzXZHR7pewvNDidrD5WF5Fq0bEOSnxmU4m7IoKzeX0pZXTN/+nIfu/Or9ce35laiKOosjrZ2DW6Pdg+dGXff0OzQ618Aso9VkFNWz5e7vJd3cmtyWZmrFsf6s7wDbf/sjAYjfzjjDwyLG0ado4yIQf8BQxPf5X/D/d8vIjLzFQyWclIiU/jTmX/iwdkPYjEGHriJ7iUBihCi39ImsoaZjFw0KR1Q61BCQdtcT9vLpi3aNNmWWYCunNOpwEMf78TpVKhvtnPve9sAuHRKRqdmcWj30JkNAwuq1PqTqDATs4erSzkPf7KTsrpm4iIszB6eBMDftv4Nh+IgKz2LUQmj/Hpvz+xTy6WtmLAYnjv7OXBEYorIJXr0Yygpr7KrYhOKYiSm6Vw+uewTzh96fptzakRwSYAihOi3tELTATFWzh6TAsA3+4uD3m7scCr6MLDkmA4yKLHaZnxNeq1EZ5XWuDMc2ccq+G/2cRZ/tpcjpXWkxYbzyKUT2nl125K70Gqsddikx0dw6ZSBgDtoPG98KhaTkX3l+/jf4f8BcOf0O/1+b+1n12BzUNvUeikvTEml/viPURQjBqMdpz2aiPo51B36BSNM1xBliQr4fkTPkQBFCNFvabNEUmKtnDIyiTCTMSTtxhX1zWixRnvj1EHtkjEY1KxHZzIUnrTOobFpMQA88uku/rPuGAB/uHJywFNk9WvswoaBWoFselw4F05M0yfngnt557ktz6GgMHfoXCYk+R9ERYaZ9QJeX11Q23IrcdSPJLX2bi7PeJC6A7+i+NgcFFtSwN1MoudJgCKE6Le0D6mUGCuRYWZmuZYUVu4NbjePlmlIiLRgNrX/z67ZZNSXULq6zKONo79rzijGpMZQ16yOe//JKUM5fdSATr+vdn2dGcdfUNWAMayIivD/8sSm35A6+jUihy4hOv0LRg90kF2UzerjqzEZTCyauijg99eyKC07eQC2Hq8EYGbGdG6cdjGekzYC7WYSPU8CFCFEv6V9wGu1CWeOVj+UVx8oDep1+DtFVuNuNe5igFLjvv/HL5+I2WhgdGo0918wtkvv6y6SDez6mhxNrCz6N5HDn+OYfRnLji6j2rAbU0QuhviVXPrxPO5ddS8AV4y6gqFxQwO+tvZ+dttyKwGYNjieoUmRDEpwdwZJ62/vI4PahBD9lvZbtPahNX2IOr3zQFFNUK9Dy2R0NANFPfggL9bewUZLBhWli4GUTp1TURQ9gEiOtjI4MZKV955FfKSFiDZ2U/aXVsgbSCv0+oL1PLbuMY41H8NggBFRM5g//hzirfGU1jbxTf5SNhdnU9pQitVk5WdTftala2uZfXI4FXYcrwJgyuB4DAYDp49K5q0NuUDgA+tEz5MARQjRb7mXeNQPrSFJahFkQVUjjTYH4ZaufVD7S8tkdJhBcTrgo9vItB0m03SYulWXwYAlMObCgM9Z1+ygye50nVf98B2cGBnw+/gyMF7NPORXNqAoSoddLw6ng8XrF3Os+hhGZxx1+Rdzx/wbOWdsqn7MjVN+yM7SnXx88GNmpc8iJbJzgVlqG0s8h0pqqWt2EBlmYmSKOk34tJED3AGKZFB6HQlQhBD9VpFHkSyodQYx4WZqGu3kltczKjUmKNehFbsmd/QhuP7vcHwDTaYocmzxjLLlwVtXw6l3wnmPBnROLSiKDDMRGda9/9SnxlkxGKDJ7qS8rrnDwMtkNPFw1sN8duQz/rt8EvY6MxnxrQevTUyeyMTkiV26tpQ29jLa6lremTQwTh8Ed8qIJAwGUBSpQemNpAZFCNFvlbTIoBgMBoYkqVmEo66dc4PBPaStnQ/y8sOwQg1Ctoy5h4ubf88XcVepz33/HNQUBnTOUj8n13aG1WzS3ze/su2Bcku35/PMl/twOBVOSj2Je6c/QGWdGiz11G6+bRXJavUnUwfH648lRIVx4cQ0YsLNjE+P7ZHrEZ0nAYoQol+yOZz6DsJa2h/cyzzHyoLXalza0RRZpxM+uQPsDTDsDCrHLaCJMF4I+wkMmgkosOujTp3Tr7qXTtAyIPmuwWue7A4nv/tkF4ve3MJzXx/k+4NqUbI2AyUyzERseM8k8LVgtGWRrJZBmeIRoAA8d/U0tjx0nt8FzCJ4JEARQvRL2geU2WjwKoAc4qrDOBbMDEpdB9mMHe/B0W/BEgmXPk9KnMeH7MT56jE7/xvQOf3dPbmzBsar15hf6R2gVNXbuPHVjby65qj+WPaxCvVYVzCTFhfeY9Nafe0G3WhzsLdQLYxuGaCYTcYOW79FaMh/FSFEv+Q5RdboMQxsqJZBKQ9egOJebmkjm7HpJfXP0+6BhKFee8ooEy4DgxGOb4SKo36fs0zPoPRMgKIt0XgGKIqicP3L6/n2QCkRFhMXTFAHr21xZS8KPYa09RStpby2yU6da5rsnoJqHE6F5OgwMnrw3KJ7SYAihOiX3AWy3h9ImUlaBiV4Szx6DYqvfXhK9kPuejCY4KTrADWoArA5FCqMiTD0NPXYnR/4fc4Og6Iuci/xuGs9imua2Ha8CqMB3r/tFBadMxKALTkVOJ2KxxTZnqk/AYi2mol0tVFrQaqWPRmXHiv77PQhEqAIIfolzymynrQMSl5FAzaHs8evo77ZTr1rgqvPGpStr6t/jjofYtSMg9Vs0rtKimsaPZZ5OhOg9EwGRctEeGZQDhXXAmqdz/iMWMamxRBuMVLTaOdQSa2+UWBPZlDAnUXRtjrYW6Du5DxOCmH7FAlQhBD9UkmLIW2alBgrVrMRu1NpVT/RE7TsidVs1PeJ0TlssPUt9XtX9sR9nR4Dx8ZdCkYzFO2Akn0BnbfHApT41ks8h0rUAGXEADUINJuMTB4UD8CWnEp9iSethwMULQNV5ApS97gyKNqeRKJvkABFCNEvFbUYc68xGoPbalxW5w4UWi0vHFgOdcUQNUDNoHjwKvaMTIQR56pP7Hzfr/O6i2R7domnuKZJz0QdKlGXzUYMiNaPOylTnd67OafCa6PAnqTX8FQ3oiiKnkEZmyYZlL5EAhQhRL9UXOM7gwKQmaj+hp8ThDoU9xRZH4HCFtfyzpSrweQ9KGyAR6Es4F7m2fFfdbJYB0p6eIknKSqMMJMRRXEXv7ozKO4AZVpmPOCdQenJGhTwWOKpaaKgqpHqRjtmo4ERKVE9el7RvSRAEUL0S21lUACGBjWD4gpQWk6RrSmC/cvU76ddR0ut9pQZe5Hahlx+CA5+1e45m+wOahrVDpaeKpI1Gg2kt2g11mpQRqS0DlD2F9fo2aRgZlD2uLInIwZEYzUHZ2sD0T0kQBFC9EuebcYtDUkK3iyU0rZqQba/DYpDHcQ2YEyr17XaldcaAzNuUr9f+US7WRSt/sRiMhAX0XMj3DNcmZCCqkbqmux6R49WgwJqoDUoIUK/3HCLsUevCbwzKFoHz9h0qT/payRAEUL0O3aHU89cpMT6ClCCN022zTH3ez9T/5zyI5+v0z5kvUa2n3onmCMgfzMc+LLNc+r1J1E+6l66kZZByats4LCr/iQ5Ooz4FjsDa3UooC7v9HSrrxbcFXlkUKT+pO+RAEUI0e+U1jajKGAyGnzOHtEyKDnl9TidHddzdIV7iqzHh3ZjlTp4DWDkeT5f52siKtEpMPOn6vffLG4zi1LW0Wj9buK5q7FWfzLco/5Ec5JrmQd6fnkHvH927hkokkHpayRAEUL0O1phaXJ0mL5zraeB8RGYjQaa7E6KahpbPd+dfHbTHF6lLu8kjYSEIT5f5zVN1jMQOfUusERB/hZ3DUsLPV0gq9E6eQqqGn0WyGqmeWRQerrFGNzD+Woa7Rx2XZfMQOl7JEARQvQ7WoGsVmjaktlkZFCC+uF6tLRn61B8TpE99LX6p9Y67IN27Y02JzWuke0ARCXDzFvU79uoRQlWBiXdY1hbyxkonsalx2I1G71e05NirGbCLer5nAokRFp8dnOJ3k0CFCFEv6NlUFJ91J9oMl11KDnlXa9DsTucPPjRDl5bc9Qr25F9rILDper767UwigKHVqjfj2w7QIkIMxHjGuymd/JoTrkDwqKhcDvs/V+r12pZmwE9nEHxWuIpVu9zZErrDEqY2cjkQXGAO+vSkwwGg1f31tg0GXHfF0mAIoTod7QP9AFtZFCge1uNNx6t4PV1Ofz2k13c+fZWGm0Oth+v5Ccvb6DZ7uT0UcmMSXXVQJQdgsocMIW599hpw4DYFrNQNFFJMPt2mLoA0iZSUdfMZzsK9Hqanh5zr0l3BRvVrlH24HuJB+C+uWO5+uTBXDQxvUevSeOZMZEOnr7J3PEhQgjRt7Q3pE2TmegqlO2GACW3wv0en2zL51BJLccrGqhpsjNzaCJ/v266+zd4LXuSORvC2h8clhJj5XBJnbvV2NPZvwaDAUVR+OmLa8k+VsETl0/ix7Myg7bEE201ExtuprrRjt2pYDUb9axKSzOHJTJzWGKPXo8nz+W9cdLB0ydJBkUI0e8U+jFSXds08Gg3tBrnVaiDyqYOjich0sKu/GqqGmyclBnPyzeeTGSYx++Cev3JOR2+r89WY40r4PliVxHZxyoA+HDLcSB4GRTwXrIZPiAao4+i5FDwbC+XDErfJAGKEKLfKfBjUzrPYW2KH6Pj25PnmqQ6Z1wKHy88jZnDEjlz9ABevWmm9waB9mY48q36fTsFshr3RFQfGRTU2penv9ir/33j0QryKht6fB8eT54Biq8C2VDRMihGA4xOlQClL5IlHiFEv1NY3XGAMihBDVBqm+xU1ttIaDmKPgBaBmVgQgSZSZG8+39Zvg/MXQe2OohKgdSJHb6vPu7e1xIP8F72cQ6X1JEQaWFwYiTbj1fxydZ8yl0j5Xu6SBYgI979M26r/iQUtALpYclRhFtkxH1fJAGKEKJfabQ5qKy3AZAe23bHSESYiQExVkpqmsitqO9agOLKoAyMj2z/QM/lHWPHCeyUtopkgYZmB88u3w/AonNGYTUb2X68itfXHUObPZfYhXvyl1cGxUcHT6icNiqZKYPjuXL6oFBfiugkWeIRQvQrWv1JuMVIbET7v4MNds1CyS1v6PT5nE6Fgip3BqXtAx2w6yP1ez/qT8BzR+PWGZSXvz9CcU0TgxIiuHZ2JhdNSsdsNOjBUkKkBbOp5/+Jz/DYmXhkL8qgpMSE8/HCU7l2tu9BeKL3C+h/vS+88AKTJ08mNjaW2NhYsrKy+Pzzz/XnGxsbWbhwIUlJSURHRzN//nyKioq83iMnJ4d58+YRGRlJSkoK9913H3a7veWphBCiU7TlHX/2fDnbuo/phn3kdmEWSnFNEzaHgsloILW9YWD7PoOKIxAeD+Mu9uu9tSLZwqrGVnUy723KBeDuOaOxmk0kRoVx2qhk/flgFMiCO4NiMKjLKUJ0l4AClEGDBvHkk0+SnZ3Npk2bOOecc/jBD37Arl27ALj77rv59NNPee+991i1ahX5+flcccUV+usdDgfz5s2jubmZNWvW8Nprr/Hqq6/y8MMPd+9dCSFOWFoGJS22g4mlB5bz89y7ed/6CHM33uwaPx94sexxV4txWmx4+xmLNc+rf558c4ftxZpBCREYDFDf7KDMVVcC0Gx3klOuntczKLl0Sob+fbAClDFpMcRHWpg5NJGIMKn1EN0noADlkksu4aKLLmLUqFGMHj2a3//+90RHR7Nu3Tqqqqp46aWXeOaZZzjnnHOYPn06r7zyCmvWrGHdunUAfPnll+zevZvXX3+dqVOncuGFF/LYY4+xZMkSmpubOzi7EKI3K6lp4sw/rOTJz/d2fHAP8qeDh4ZK+OTn+l+H1W2Ff18Kb10DjsAyunr9SXvLO7kbIXe9Opxt5q1+v7fVbNKXUDx3Xs6rbMCpqMtYnrNezp+Qpo+UD0YHD0BchIU1vzqHN346KyjnEyeOTi9QOhwO3n77berq6sjKyiI7OxubzcacOXP0Y8aOHUtmZiZr164FYO3atUyaNInU1FT9mLlz51JdXa1nYXxpamqiurra60sI0bt8f7CUY2X1vLjqEDvzqkJ2HUV+dPDwxa+hpoCGmKGc1fQnPrDMU4OH/Z/D3qUBne+4q4NnUHsj3Ne6sieTroKYtIDeXxsod8xjoJwWrAxJjPJaxoq2mjl3XArQ9j5EPSEyzByUehdxYgn4f1E7duwgOjoaq9XKz372Mz788EPGjx9PYWEhYWFhxMfHex2fmppKYWEhAIWFhV7Bifa89lxbFi9eTFxcnP41ePDgQC9bCNHDcsvdH6BPLQtdFkUrWG1zSNv+L2DrG4CB6gue46iSzq/qr0M55Q71+XV/C+h8WgZlUFsZlPIjsOdT9ftTFgX03gBDk1uP5NeClcyk1l1Dv7pgHPNPGsQNp0hxqOjbAg5QxowZw9atW1m/fj233XYbN9xwA7t37+6Ja9M98MADVFVV6V+5ubk9ej4hROA8x71/e6CU7w6UhuQ6tBqUVF81KA2V8IkrEDllEUljT8dkNNDscFI89jowWtSlmOPZfp/PcwaKT2ueB8UJI+dAyrhAbgWAzES1XsVziUcLUIb6CFAykyL501VTGJIkBauibws4QAkLC2PkyJFMnz6dxYsXM2XKFP7yl7+QlpZGc3MzlZWVXscXFRWRlqamNNPS0lp19Wh/147xxWq16p1D2pcQonfRljq0vVieXLZH37wumNxdPD4ClJ3vQ20hJI6As3+D2WTUB40da46FST9Ujwsgi9LmDJTmerXOZdNL6t+zAs+egDsI8bXEkylBiOjHurxo6HQ6aWpqYvr06VgsFlasWKE/t2/fPnJycsjKUqcqZmVlsWPHDoqLi/Vjli9fTmxsLOPHj+/qpQghQkjLoDx08XiirWZ25lWzdEdBUK/B5nDqM0N81qDsc41FmHYtWNRAarBromxueT3Mvk19fvdHUJXX4fkURfGdQSnaDf88Gzb/GzDAWb+G4Wd15pb0TIhXBqW87QyKEP1FQAHKAw88wOrVqzl69Cg7duzggQce4JtvvmHBggXExcVx8803c88997By5Uqys7O58cYbycrKYvbs2QCcf/75jB8/nuuuu45t27bxxRdf8OCDD7Jw4UKs1uC0xAkhup/d4SS/Us1cTB0cz61nDAfgL1/tD+p1lNQ0oShgNhpIjmrxb0pTDRxZpX4/dp7+sL6rcXk9pE+BIaeB0w4b/9nh+SrqbTTYHIBHxiZ3A/xrDpTsheg0uOETOOt+fXO/QGl1JhX1NqoabDidit5iPFQyKKIfCyhAKS4u5vrrr2fMmDGce+65bNy4kS+++ILzzjsPgGeffZaLL76Y+fPnc8YZZ5CWlsYHH3ygv95kMrF06VJMJhNZWVlce+21XH/99Tz66KPde1dCiKAqqGrE4VQIM6ttr9dnqQWah0rqqG0K3iBGbXknNTa89a66h74GRzMkDofk0frDg10Bil5Do2VRNr0Cze0PcNNmoAyIsar7vRRshzd+qO63M/R0+Nl3MOyMLt1TtNWszzTJKaunsLqRZrsTs9HQ7m7NQvR1Ae3F89JLL7X7fHh4OEuWLGHJkiVtHjNkyBA+++yzQE4rhOjlPFttjUYD8ZFhJEaFUV7XzLGyOiZkxAXlOgrbm4Gy1/XvzpiLvLIZWvfNcW3c/ZgLIWEoVByFnR/ASde1eb48z7qbkv3wn8uhsQoGz4Yfv+P3QLaODEmKpLS2iWPlddQ0qfsMDU6MlNZe0a/J/7qFEF2mZR886zC0+oijpfU+X9MTCtqaIuuww4Ev1O/HXOT1VKsMitEE029Uv89+td3zaQWy42Pq4d8/gPpSdZlowbvdFpyAGqCAWiirtxgnSv2J6N8kQBFCdNlxV03EYI8PTa0+4mhZ5/e5CVSbQ9py10FDBUQkwmDviadakWxhdSNNdrWehKk/BqMZ8jZB4c42z3e8ogEDTm4pfRJq8tWlo2s/gPDuzRgN8Wg1bq/FWIj+RAIUIUSX5bqWOrQPe4Chro3jjpYGL0BpM4OiLe+MvgBM3ivbydFhRFhMKIp7yYboFHemZfNr+rFOp8KO41V6+3ReZQM/My1lWPUmsETCj16HqGS6m+ewNmkxFicKCVCEEF2mTZH1nKaqByhBzKAUuqbIemVQFAX2/U/9fsyFrV5jMBgYnKhetxZoATD9J+qf298BWwOKonDXO1u55K/f8cv3twMQXbKFX5jfVY+78CkYMKZb70ejdxp5LPFIBkX0dwEVyQohhC9akaz3Ek/rEe09zeeQtpK9asGryQojzvH5usEJkewvqvUa18/wsyE+EypzYPfH/L3yZD7Zlg/Af7OPc9EQhXtrnsJscFI94lJip7VdTNtV2nJZYXUjlQ3qxqpDJEAR/ZxkUIQQXdJkd1BUowYGg31kUEpqmoLSaqwoCkVV6pA2rzH32nC24WeCNdrna1sVygIYjXDS9QBUfvdPfX+hkwbHcq1pOSd/dgEDKSHHOQDjpX/p9JwTf8RHWogNV3+fbLQ5MRhgUIIEKKJ/kwyKEKJL8ioaUBSIDDORGBWmPx4bbiEpKoyyumaOltYxcWDPthqX1zXT7HACLQKUQ1+rf446v83Xtmo11ky9FmXlYuJLNvEP859ITkpiiqUMo0Xdq2ercwQPG3/OJ3GJ3XcjPhgMBoYkRbHDtUt0emy4OndFiH5MMihCiC7R6jYGJURgaJFFGOJjH5meohXIJkdbCTO7/mlrqoWcder3bSzvQBsZFIDYdLZGnwbAeaZsplV+iTE/G6clisccP+GK5kewJ4zs3htpg+eSjmwEKE4EkkERQnSJNk11sI8lh6HJUWzOqQxKoax7SJvHiPuj34HTBvFD1AmybfAad9/Ck+aFpDRP4rasFMYnmQAF44TLGbTThvPT3UwZHJwhdN4BiizviP5PAhQhRJfklrcukNXos1CC0GqsFcimxXps2nfItXnpyHPbrRHRrr2y3kZNo42YcIv+3IFqI+udp3Db9NMhw72T+o2nwqxhSXoLcE/zzJpIBkWcCGSJR4g+7vuDpSzbWRiy82vLIp4txppgthprGRSvDh6t/mTEue2+NtpqJiFSDUpyPepQGpodlNepXTMD41vf3/iMWCLDgvN73pBEyaCIE4sEKEL0YfsKa7jh5Q3c/ka2PkU12I7rM1Baf2gOc/2mfyQI4+61sfP6DJSKY1B2EAwmGHZ6h6/3VYeS75qrEhVmIjYitAlnLdgDCVDEiUGWeITooxRF4aGPd2J3TTU9VFzr3b0SJO4ZKK0zDENcyx+ltWqrcbS1+/7JqWm08dGWPFbtL2X78UqKa9QWY32KrLa8M3imX6PnBydEsv14ldcsFH0zQB8FwMGWEmNlaFIktU12Rgzw3S4tRH8iAYoQfdSHW/LYcKRc//vRsnpOCU5Dia6uyU6ZawnEVwalJ1qNDxbX8PL3R/loSx71zQ79caMBpgyO54zRA9QH/Fze0WgZlOMe02TzXVmZDB/LO8FmMBj47M7TsTsVaTEWJwQJUITog6oabDzx2R5AHeJVWW/jWHnwRsprtA/z2HAzcREWn8cMSYqkrK6ZY2X1XQ5QGm0OfvDX76lzBSYjU6L54fRBTB+SwATPehCHHQ6vVr9vp73Yk5YB8uzk0QIUX/UnoRCsehchegP5X7sQfdCfvtxHaW0zIwZE8aOTB/PEZ3s5FoQ6j5Zyfexi3NLQ5CiKc/dTnbMdJqd36XyHS+qoa3YQbTXzz+tnMHt4ou+ll7xN0FQFEQmQMdWv99bapD2XeI73ogyKECcaCVCE6GOKqht5fd0xAB77wUSa7Or01GM+Znj0tNx2ZqBoziabJ8LuJ2yTHWJ+A6f/Qh0j3wnaTr4jU6LJGpHU9oH7v1D/HH42GP1bDvFc4lEUBYPB0OsyKEKcSKSLR4g+ZsORcpwKTMiI5ZSRyWTq01rrUBQlqNdyqKQWgGED2pjLsfVN5u25j3CDDSMKrHwc3r0OGqs7db4jrgBlWHI7c0Aaq2DTy+r34y7x+70z4sMxGKDB5qC0Vq2rya9UO6MG+mihFkL0LAlQhOhjNh1VC2NPHqru/zIoIQKjAeqb3R+swXKgSA1QRqX46CpZuwQ+ug2j4uB9x+k8bvwZmMJg71L41xxoqAj4fNrAt3bbbNe9CI2VkDwGxv/A7/e2mk16B1BuRT1Op0JBlSzxCBEqEqAI0cdsOqZ+sM8YmgCoH6zpceoH6LEgDETzpGVQRrYMUEoPwBe/BqBp5u3ca/s//lV/BnULlkJMOpTug43/Cvh8R117+rSZQWmoUAMjgLN+5ffyjkafhVJeT0ltEzaHgsloIDXG2sErhRDdTQIUIfqQ2iY7ewrU5ZEZQ9w76Grj1oOxKZ+moq5Zz9i0msux+2P1z+FnY73wCZKi1QDqoGUMzHlEfW7Dv8AeWMZHy6AMbWvU+9q/qcWxKeNh/GUBvTd4F8rqg99iwzGb5J9KIYJN/l8nRB+yJacCp6IWbaZ5jHTX9mYJZgbloCt7MjA+gqiWA9j2fKr+OeEyMBj0JaCDxbUw4XKIToPaQtj9kd/nq2+268PYfAYo9eWw7gX1+7Me6FQhrtZqnFveoA9py4gP/vA7IYQEKEL0KZuOqss7J7uWdzTaPi1Hg5hB0epPWi3vVOZCwVbAAGPmeR1zoLgWzGEw86fqsWuXgJ+FvUddbdQJkRbiIn3MXPnuGWiugbRJMPbigO8HPDIoFfW9akibECciCVCE6EOyXfUn04cmej2uZ1CC2Gp8sLiNAGXvUtdFnQLR6lTXUanRXq9h+o1gDlcDmZx1fp1P23DQ506+h76GNX9Vvz/7N51uY/bcj0dajIUILQlQhOgj7A4nW3JcBbJDWmRQPFqNg+VAcQ3go4NnjytA8chijBygBSjqa4hKhslXqd+v+5tf5zvaVotx1XF4/6eAAiddD2Mu9P8mWsh0BSj5lY16sCcZFCFCQwIUIfqIvYU11DU7iAk3Mzo1xus5LUCprLdRVW8LyvUc8pVBqS2BnDXq9+M8AhTXMTnl9TTaXPvnzL5d/XPvUqg42uH5fLYY25vh3RugvgzSJsOFf+jczbikxFgJMxtxOBU2u7JVkkERIjQkQBGij9Dmn5yUmYDJ6D3ePTLMzABXK2ww9uSpbbKTX6UOMfMKUPZ9BooT0qdAfKb+8IAYK7HhZpwKHHEFGqSMg+Fnqcdnv9bhOVu1GJcdgg9uUcfah8fBVf8GS9cKWo1GA4NcAUl1ox2QIW1ChIoEKEL0Efr8kxbLO5qhScFrNdayJ8nRVuIjw9xPaPUnLSa4GgwGPZDR61AApv9E/XPb2+B00B4tgzLevgde/yE8f5K7C+jyv0PisE7dS0uDWuwrlB4nXTxChIIEKEL0AYqi6B08M1oUyGpGxhs427gF6+7/QkNlj17PgWIfE2Qbq+HwN+r34y5t9ZpRKTFerwVgzEXqhn41+XBoZZvnq2tSW4wzKGXk5z+Gg8sBA4yaCzcs7VLdSUuDPTImseFmYsJ979IshOhZslmgEH7S9rnxuXtuD8urbKCwuhGz0cDUwfHeT+79DNYu4fGcdZjC7LAP+NPv1THv02+EIVndfj0+O3j2LgVHMySNggFjWr1GO/aQZ4BitsKkq2DD32Hr6zBqjv6U06lgMKg/by0rdFv4lxgcTZBxEsz/FySN6PZ789yZeWA7myAKIXqWZFCE8NOvP9zJSY8tp9BVexFM3+wrAWDiwDgiwjzGt1cchXeuhWPfYVLs5DoHkGvOBHsjbH8HXrkAdr7f7dejdeNo7cMAbP6P+ueUH/l8zchUbRZKjfcT0xaof+79nzpsDdh+vJJxDy/jyWV7AbWDJ4Z65htWqMee/eseCU7A3ckDMFCGtAkRMhKgCOGH3PJ63t6YQ0W9jTWHSoN+/k+25QNw0aQ07ye+fw4UB2Sewp4rV3F685/5oeEZ+OnX7jbfrx8Hh71br0fPoGgj7ksPqN07BiNMXeDzNdqxR0rrsDuc7ifSp0DqJDX7suO/ALz83RGa7E7+ufowB4trOFJax49MK4lUGmDAWBg5x9cpusVgj6yJtBgLEToSoAjhh3c25uoDT7VizWApqGpgo6uD5+LJGe4nagphy+vq9+f8hoxhEwADRTXN1KdMUQtHI5Og/HC3ZlEabQ5yXDNCtKwIW1zZk5HnQWyGz9cNjI8gwmLC5lBaD5Sbdq3659bXqWm0sWxXIQBOBZ5ato/c0ipuMn+uHpO1EHpwmU0bd69dsxAiNCRAEaIDNoeTtzfm6n8/3M0BitOpkF/ZgMPpe+T70m0FKArMHJro/Rv92iXgaILBs2DIqcRFWoiLUAs6c8rrwRoNWYvUY1f/ocMuGX8dKa3DqagFpAOireCwwda31CdPuq7N1xmNBkakqC3CXp08AJOuBKMFCrax9rsVNNqcpMWGYzTA8t1FmPZ8TIahnEZrklqz0oPiIizEuPYWkgyKEKEjAYoQHVi+u4jS2ib970e6OUD53ae7OOXJr5n0uy+46sW1PPn5Xirq3Lv8ass7l0z1yEw0VMCml9XvT/+FnlHQZoRo++Qw8xa1S6bsAOz6MKDr2pxTwUdb8vTiYI3ewZMaoxYMH/gS6oohagCMvqDd99Q6eVoFKFFJeifOOd8t4EXLs/x21BF+Ob6C84ybuNb+AQAVE37S5VknHTEYDEzNjMdoUGt+hBChIV08QnTgjfXHALhwYhqf7yzkaGkdiqJ0WzfPusNlANQ3O9hwtJwNR8vZeLScN2+ZRX5lIzvyqjAZDVw00aP+ZMM/obkWUifCqPP1h8elx7I1t5I9BdVcMiUDrDHqksjXj8Oqp2HCFX7vU3PHW1s47trR97JpA/XH9xVWAx71J5v/rf455Rowtd+S63MWiua8R2gqPYq1ZDsXmDbCro3q464xKw1KGFGn/p9f195V/7huBqW1TV4dPUKI4JIMihDtOFJax/cHyzAY4JcXjMVogLpmByU1TR2/2A+KopDnCgL+df0Mnv7hZGLDzWQfq+B3n+zik61q9uTUkckkRauTYqkvh3UvqN+fdrdXPcb4jFgA9hRUu08y81Z10mrpPvdgsw7YHE7yXJvlPf6/PVQ3quPzc8vreW2NGrBNH5IA1QVqBgVgWtvLOxr3rsY1rZ9MHM6SUf9ibtOTfB7zQ0gYBonDyY+ewNeOqTxivJ3YpFS/rr+rIsJMEpwIEWKSQRGiHW9tyAHgrNEDGJYcxaCESHLK6zlcWkdKbNeXGqoabNQ1q7Uhp41KJtxiIiXGyk2vbuStDblEulqKL53iWt5xOuHD/4OGckgeAxMu93q/8elqgLLbM0AJj4NZt8GqJ9WN+SZe0eF1ldQ06UXBpbVNPPPlfh66eDy/eG8btU12pg9JYP70QfD5veqo+sGzYcDoDt/XPQulDqdTwegxst/pVHh/cx55Sib2OT8A1z3HNNr47/vbmdnGgDohRP8kGRQh2tBoc/DeJrU4dsGsIYC7xqO76lC0JZTkaCvhFjUYOWtMCvdfMBZQl33CzEbmTnBlDtb8Rc1YmMPhhy+B0eT1fmPTYjAYoKi6yatuhpNvVotQj2+E/C0dXldhtTrrJcys/hPx77VHeeCD7Ww4Uk5kmIlnrpqC6egq2Pgv9QVnP+DX/Q5JjMRiMtBgc+gZGs26w2XkVTYQE27mvPHuTElMuIW/LZjOT07tnlH2Qoi+QQIUIdqwbGchFfU2MuLCOXtsCuAOULqr1Vj7kG65Id2tZwzXsybnjU9Vx60fWwsrHlMPuPApSJvU6v2irGaGJanX6LXME53izrZs+FeH11XsClAmZsRyyZQMnAq8u+k4AA9fPJ4hUQ742NUhNONmddM/P5hNRoYnq1mU/UXeyzxf7SkGYN6kdD1YE0KcuCRAEaINb65Xl3d+dHKmvnuwFqB0V6uxVn8yqEU7q8Fg4I9XTuH5a6bx2A8mql07/71JHco26So46YY233OctsyTX+39xMxb1T93vKdPbG2LNi03NTacB+eNI9rVdjtnXAo/OnkwfPkgVOVC/BA471G/71e9PrWTxyuAAnYXVAFt7zUkhDixSIAihA/7i2rYcLQck9GgfiC79NQST8sMCqjLK5dMySAxKkwdyFaTD4kj4OJn2x1UphXK7m4RADBoBqRPVWenaJ03bShyFQGnxoaTGhvOsz+ayk2Twnh2whEM//sFbH5NPfCyv6nzVgLg6/oURdEDKq2ORghxYpMiWSF80LInc8alkBbnLobVApScsnocTkXPrHRWXqU6UbXdiaWK4t7n5tQ7OgwIxreVQTEY1LkoHy+EjS/BKT9vVcOiKfLIoNBcx3k7f8l5Bz6CAx4HzboNhp7W7rX44ivDk1fZQHWjHYvJ4L0BoRDihCUZFCFaaGh28P5mtd5CK47VZMRHEGYy0uxwkt+iyLMz9BqU9gKU3A1qi7AlUp1j0gEtQ3GopJZGW4vpsRPnq4PbqnJg/xdtvkdRjRqgDA2rgJfnqu3JBqO6b87MW+HK12DuEx1eiy9agHKsvJ7aJnWPIC1YGZkSoxfmCiFObPIvgRAtfLo9n5pGO5mJkZw2MtnrOZPRwJAkdT5Gd9Sh5LWzxKPTlmMmXAHhHS9/pMRYSYoKw6m0LkTFEgEnXa9+v+opdUy9D4VVjUw2HOLc1VdD4Q51SuxNX8D/rYaL/gATLvN74FtLydFWUmOtKIp76Ju23CPLO0IIjQQoQrTwhmt555qZmV5zOjR6HUqJj2moAahvtlNRrwYIbQYojdWwSx3z3t4+N54MBkPbhbIAs2+H8Hgo2KpOl/VhaHU2b4U9TlhjCaSMh1u+hsEz/Tq/P1ouQ+n1JxkSoAghVBKgCOEhr7KBbbmVmI0GrpwxyOcxeqtxWb3P5/0+lyt7EhNuJja8jRHxuz4AWz0kj1Y3BfRTm4WyADFpaqEtwLd/VJeQPDTu+oy/sZgoQxP2oWfBzV9CfKbf5+7M9UkGRQjRkgQoQng4UqIu2wxJiiRZGy3fQne1Gh/3p/5EW96Zdl27nTsttVkoq5l4BUz+kToF9oNb1UxN+RHY+BLW96/HarCxQpmB+dp31f18utn49Dj9+qoabHo3kwQoQgiNdPEI4eFomRagRLV5zLDkKC4xruGW41/Bd1fD1GshekDA59JnoCS0sedLwXbIywajWd2ILwCee/K0HCmvu+gPcGwNVByBp4eBUy1YNQCfOLJ4Pu5ezjX7DtK6Sru+vYU17MpT558MjI8gLrL9zQaFECcOyaAI4SGnXF220QphfRlTt5FnLX9jsnMvfPU7eGYcvHcj1BQGdK7jeoDiI4NSdRzeuVb9fuy8gAOg4clRhJmN1DU79HtqJTwOLnsBDCY1ODFZIW0Se8fczl22hQyI67l23yGJkUSGmWiyO/nfjgJA6k+EEN4kgyKEB22E/dC2MiiFO4j79KcYDE6+cUxhdoaR8KItaq1IUzVc+77f52qzxbimEF67FCqPqTv6XvBUwPdhNhkZmxbD9uNV7C6oZmhyG/cz7HRYtBGcDkgcDiYz36w6hHPbXnUGSg8xGg2MTYthc04ln2xTd2yW5R0hhCfJoAjhQcs2ZPrKoFTnwxtXYWiuYbt5ErfYfsHqM96Gm75UsxAHv4Kc9X6fK6/CNaTNM4NSV6oGJ+WHIC4TbvgUYtM7dS9jUtXakVatxi0ljVB3Ijapv68UVXsMaetBWsakplFdWhonAYoQwoMEKEK4KIqi16C0yqAoCrz/U3XcfPIY3hr2BDbM7MqvhsxZMPXH6nErH/f7fK0yKPZmePvH6lC2mAy44ROIH9zOO7RPm8h6qCSwYt7iam3Mfc/Un2i0QlnNBFniEUJ4kABFCJfimiYabU6MBh/LLke/hWPfq3UaP36HKaOGAvDdwVL1+TN/CUYLHFkNR77t8FzNdifFrv1u9AzK57+E3PVgjYPrP4bEYV26nxEDXAFKcWDzWgpdGZS0IGVQAGKsZt+1OEKIE1ZAAcrixYs5+eSTiYmJISUlhcsuu4x9+/Z5HdPY2MjChQtJSkoiOjqa+fPnU1RU5HVMTk4O8+bNIzIykpSUFO677z7sdnvX70aILjhW5l5yaTVuffUf1D9Puh4Sh3HaKHXC7NbcSqobbeqcEG1C68on1IxLOwqqGlAUCLcYSYoKg00vQ/YrgAHm/0tdcumiEa4MyuHSWpxO39fjdCqs3l/CsTJ3lkVb4knp4QBlTGoMWnPRuIxYDAG0UQsh+r+AApRVq1axcOFC1q1bx/Lly7HZbJx//vnU1bn/cbv77rv59NNPee+991i1ahX5+flccYV7/xCHw8G8efNobm5mzZo1vPbaa7z66qs8/PDD3XdXQnSC3mKc2GJ5J2e9mhkxmuHUOwG1NXhYchQOp8K6Q2XqcWfcq2ZYctbA4ZXtnktrMR4d58Cw7S347JfqE+c+DKPP75b7GZwQgcVkoNHm1JeTPO3Kr+KKF9Zw/csbuP7lDSiKgqIo+hKP5yaJPSEizMRwV5ZHCmSFEC0FFKAsW7aMn/zkJ0yYMIEpU6bw6quvkpOTQ3Z2NgBVVVW89NJLPPPMM5xzzjlMnz6dV155hTVr1rBu3ToAvvzyS3bv3s3rr7/O1KlTufDCC3nsscdYsmQJzc3N3X+HQvgpp6yNFuNv/6j+OeUar5oQbZ8efZknNgNm3KR+/+ld7bcd7/6QD8Ie5qPa6+Cj28BpgwmXw2l3d8etAGonj1ZLc8hjLL/TqfD7/+3mkue/Y2tuJaBmj3blV1NRb6PZ4QRgQBuD6rqT9jM8fVRyB0cKIU40XapBqapSBywlJiYCkJ2djc1mY86cOfoxY8eOJTMzk7Vr1wKwdu1aJk2aRGpqqn7M3Llzqa6uZteuXT7P09TURHV1tdeX6F9sDid7C6vZna9+5bY1u6MHuYe0eQQo+VvhwJfqTr4tggdtmee7A6XuB8+4T20NrjwG/7kCGipbn2jPp2Rtvo+TjAcx4oTkMep7/+BvAU2L9Ydeh+JRKPvp9nz++e0RnArMm5xO1vAkAL7aU0Rhlbq8kxwdFpRdhX914Vg+v/N0zh2X2vHBQogTSqfnoDidTu666y5OPfVUJk6cCEBhYSFhYWHEx8d7HZuamkphYaF+jGdwoj2vPefL4sWLeeSRRzp7qaIPuOOtLXy+0/u//4vXTueCiWlBuwb3kDaPJR4tezLxh2o7roesEUmYjAYOl9aRV9mgFtZGJcF1H8LLc6F4F7x1NVz7AYS5gp7j2fD+LRhQeNd+JvWn3MdPLjq9x+5pZEo07PLOoKw5qC5J/eSUofzu0gm8uymXtYfL+GpPEVMGxwOQEtOzyzuacItJ2ouFED51+lekhQsXsnPnTt5+++3uvB6fHnjgAaqqqvSv3NzcHj+nCJ5mu5Ov9xYDkBxtJSZcjZv/mx3c/87akDY9g1KyH/YsVb8//Z5Wx8eGW5jq+kD/7kCJ+4nEYWpQYo2DnLXwj7Pgmycp2/Y5ttevBHsDGy0zeMD+U+LTh/fgHcGIFNcSj0cnz6Zj5YB7eeWcsSkYDLAzr5qtOZVAz7cYCyFERzoVoCxatIilS5eycuVKBg1y7/ialpZGc3MzlZWVXscXFRWRlpamH9Oyq0f7u3ZMS1arldjYWK8v0X/syq+iye4kIdLCxt+cy39/dgoAqw+UUtsUnO6uyvpmql0DwzITXQHK2ucBBcbMg5RxPl+nfch/67nMA5A2EX78DkpYtDrX5JvFJH14NZbGMnY5h3BDze04MHkPaesBLZd4Kuqa9e+nD0kA1KBwmivQeneTGhT2dIGsEEJ0JKAARVEUFi1axIcffsjXX3/NsGHecxqmT5+OxWJhxYoV+mP79u0jJyeHrKwsALKystixYwfFxcX6McuXLyc2Npbx48d35V5EH5V9rAJQPzANBgOjU6MZnhzllVnpDnaHk+3HK1F8tAAfdRXIpsRYiQwzqwWu21zZQVfnji9aceeaQ2WtWnlrUmdwueUF7rPdypeO6TQoYeQZUnkk5rekDUjivPGpTBkU3z031watS6a0tomqepv+sx6ZEk1CVJh+3Jzx6jJrgasGJVhLPEII0ZaAalAWLlzIm2++yccff0xMTIxeMxIXF0dERARxcXHcfPPN3HPPPSQmJhIbG8vPf/5zsrKymD17NgDnn38+48eP57rrruPpp5+msLCQBx98kIULF2K1Slr5RLTxqLrkMH2IWmxtMBi4YGIaf/vmEMt2FnDplIxuOc+fvzrAX1ce5NcXjeXWM7zrSY61nCC77gVwNMPg2eqk2DZMGRxPtNVMeV0zuwuqmTjQPR11zaEytpaZOBB2Lgmzb2L09DSGJkfzril4O/ZGW82kxYZTWN3IwZJaNrqWd2a4siea88al8vQy90wjyaAIIUItoAzKCy+8QFVVFWeddRbp6en61zvvvKMf8+yzz3LxxRczf/58zjjjDNLS0vjggw/0500mE0uXLsVkMpGVlcW1117L9ddfz6OPPtp9dyX6DEVR9N/qZwx1f2heOFHdf2bl3hIamh1dPo/N4eStDTkAvPr9URwtsh3akLbMpEhorFYHp0G72RMAi8nIbFcXzGrPOhRgc456X5dOHcivLxrH0NQECGJwotHrUEpqyT7qzlZ5GpkS7dW9JDUoQohQC3iJx9fXT37yE/2Y8PBwlixZQnl5OXV1dXzwwQetakuGDBnCZ599Rn19PSUlJfzxj3/EbJaNlU9Ex8rqKa1tJsxkZJJH9mHiwFgGxkfQYHOwan9JO+/gn2/2lVBWp87Zya9q5Jt93ktH7j14IiH7VXVn4uTRMPqCDt9bW+ZZqw1sc9niKjidlhnftYvvopGuZZ49BdVsz1NHA8wYmuh1jMFgYI5Hq29PbxQohBAdkb14REhtcmVPJg2KI9xi0h/XlnkAlu0s6PJ5tI6gaKsaCL+xPsfr+eOlNZxk2M95RS/Bd8+qD55yBxg7/r9I1gg1g7LxaDnNdnXImc1V7wJwUmZCWy8NCm3k/dLtBTTbnSRHh6mBWAsSoAghehMJUERIbTrquyYC4OJRkdxtfo8791yD/esnwN7UqXOU1TaxYo+aMfnjlZMBWLmvmOMV9WBrhDV/5cXiH/OB9XeM2fcCNJRD0iiYfJVf7z8qJZrk6DAabU59Muu+whoabU5iw80MT45q/w16mNbJU+LanFArRm7p5KEJzByWyBmjB6j7AwkhRAjJuooIqU3HfNRENNfDuiVMXfM808zqkgSrn4I9H8Olz8PgmQGd45Nt+didChMHxnLBxHTOGhFD7uG97P70OQaV/geqj5MIVCmRRIw9j7Cxc2HsPDD7V4dhMBiYPTyJpdsLWHOolJnDEvX6k2mZCRiNod0ETwtQNDOGJPo8zmwy8u7/ZQXjkoQQokMSoIiQqaxv5qBrgJgeoDgd8PaP4fBKDEBR+DBeqzmZ2yO+JLpkL7x0Ppz3SIfFq57e33wcgDszj8Gfb+eVylwMVgUOq8/XWlN5tPZSVoSdS/Y1F3bqXrJGqAHK2kNl3DUHNh/TApT4Tr1fd0qNtRIVZqLOVWw8fWhol5yEEMIfssQjQkbr3hk+IIokbWO6rx9TdwK2RMIV/2TzRUv5m+Mybor6G0z5MaDA8ofhwHK/zrGnoJqdedVEmeycc/gpqMzBgEItEexwDuVJ53VMr3qKdx1nM36Q78yCP04ZoRbKbsmppNHmYItrqSfU9SegZni0OhSr2cjEjLgOXiGEEKEnGRQRMhtdLa96/cmeT90Fqj/4K0ycz0nV6uCwTcVQe/vzRIdFwsZ/wQe3wP+thvjMds/x32w1e/LbtLWYynIgJh1u/YYXvq9gyTdqCmVgfAQ/npXJtbOGdPpehiZF6vNGvthVyLGyegwGmNoLMiigdvJsP17FlMHxQdkEUAghukr+pRLdrsnu4J+rD5NX2dDucdn60LBEdd+bD29Tn8haBBPnA2o3ycD4CJwKalfM3Ccg4yRoqIB3b2i3cLa4ppE31+cQSx2X17ylPnjWAxCTxqJzRvPLC8bw0g0zWP3Ls1l49kjiIjs/o8RgMHCKq5vnhW8OAWpQEBse/Lknvpw+Ws3wzJuUHuIrEUII/0iAIrrduxtz+f1ne/jV+9vbPGbl3mK9QPbkIbHw35uguQaGng5zvHeu1rIQW3Iq1cLVq16D8HjI3wyf3w8+RtcD/OWrAzTYHPw28UsszZWQPAamLgAgIszE7WeN5NxxqZi6qYh1titA2VtYA/SO5R3NZVMHsuZX53B9VuezREIIEUwSoIhutzOvGlAHl1XWN7d6/nBJLXe8vQVFgWtmZjLs0OtQtAMiEuCHL4PJe+VR+6Df4uqMIT4Trvin+n32K7DqaZ/neHtjLmmUcXnTJ+qDc37X6r27k5ZB0fSGAlmNwWAgIz7CZ3uxEEL0RhKgiG63t0jNINidCst3e+9cXdNo45Z/b6Km0c6MIQk8clYCrHxCfXLOIxCd0ur9tA/6zTkeG/2NPh8ueEr9/psnYP0/vF7z58+3Md/wNe/H/BGjowkys2BM5zp0/DUoIZLBie7diU/yMdtFCCGEf6RIVnQrp1PhgCtAAVi2s5ArZwwG1K0S7n5nK4dK6kiPC+eFa6cT9vmt0FwLg2bCtOt8vueEjFjCTEbK65o5VlbPUG3w2eyfqbUoq56Ez++DqhxwOqgoPMKjR1YTb6kDGxAWAxcshiBkD7KGJ5FbfpwYq1kfMS+EECJwEqCcYGoabXy9t1gfyR5mNjJnXCpR1u75n8Lxigbqmx0YDGppyLcHSqlptBETbmHZzkK+2lNMmNnI36+bzoCib2H3R2AwwsXPtDlW3mo2MXFgLJtzKtmSW+EOUADO+pU6+XXDP2DN8wAkABig1JJB8lm3wbRrIbLzLcSBOGdsKu9uOk7WiKSQD2gTQoi+TAKUE8ziz/fyZot9aH48K5MnLp/ULe+/z5U9GZsWS5PdweGSOr7eW8xFk9L5wxf7APjZmSOYnOiEf9ytvmjWzyCt/fNPy0xgc04lm49Vcvm0Qe4nDAZ1qSciAUfxPj7PNbOpIpLj5iE8evttkBDcMfNzJ6Ty75tmMiEjNqjnFUKI/kZqUE4w3x0oBdTZI6eOVIs6P9ycR3WjrVvef1+hWiA7Ni2GC/XN/gp5Z2Muh0vrSIoK45ZTBsI710JljlrwetYDHb6vXiibW9H6SaORptPv56a6hSwqvYL3TPO47aabyQhycAJqMeoZowe4B88JIYToFAlQTiDF1Y3klKsDxF6+8WRev3kWo1OjabA5+GhLXrecY1+ROrp+dGoMF05UZ26s3FfMn786AMDPzx5BzFe/hGPfq7UhP34XwjvONmiFsnsKaqhvtrd6/p53trFqfwkRFhMv/+Rk7719hBBC9DkSoJxAtLkjY1JjiA23YDAY+PFMdRLrG+ty3B0yAE5np87hmUGZkBHLoIQIGm1OSmubmJRg57qmt2DL62rdyZWvQso4v943Iz6CtNhwHE6FHcervJ7LLa/nfzsKMBkN/OuGGcwantTGuwghhOgrpAblBLLJNVr+5KHugtHLTxrEn5btZEzJF1T/8w/ENRdCXanaHTPiHPjxO2Dybxpqs93J4ZI6AEanxWAwGPjBuBgSN/yDM43bGNmQD9+6Dp67GEbNCej6p2XG8/nOQjbnVHoFIeuPqBNppwyK49SRyQG9pxBCiN5JApQTiD5aXtvNtrmeuPXP8b3178TayyG/xQsOrYAvH4QLn/Lr/Q+X1mJ3KsRYzWTEhUNNIYuO3UmEeZf7oAFj1a6aWf8X8PWflJnA5zsLXfcxQn98w5EyAGYOk8yJEEL0FxKgnCDqm+3syleXX6YPSVB7gD+8FfZ8SixQpMTztvM8bvrxj4lJTIOSPer4+fUvqnvfTPlRh+fY5xrxPjotBkPpAXh9PhFVOTgikrBf8AesI8+CqM4HEVmuSa1rDpXRaHMQbjEB7gzKrGHBaSUWQgjR86QG5QSxNbcSu1MhPU7dfI+1f1V3DzZaUC57kVsTX+FZ2+W8UzoUUserm/Wdeb/64k/vhIK299XRaAHKRVH74OXz1cFpiSMw3fIV1inzuxScgDqwLS02nPpmB2sPq1mTwqpGjpXVYzTA9KFSGCuEEP2FBCgniGxX/cn0IQkYctbC8t+qT1ywGMPUa7hylrpk8r8dBe4XnfkrGHU+2BvgnQVQX97uOQ4UVnG76WNuPHyPWsMycAbc/CUkDu+WezAYDJw7Th2Fv2KPOkJ/w1H1msZnxPaanYOFEEJ0nQQoJwitg+e0NCe8dyMoDph0JZz8U8C9fLKnoBq7w9XBYzTCFf+AhKHqzJL3fwpOh+8TNFZxfc5v+KXlHYw4Yeq18JOlENW9RatzxqcC8NXuYhRFcdefDJX6EyGE6E8kQDkBOJwKm3MqSKeMy3bcBrWFarHqJX/R96cZlhRFVJiJRpuTw6V17hdHJMCP3gBzhFo0u/L3rU9ga8Txxo843bmRJsVC3dxn4LIlYIlofWwXZQ1PIjLMRGF1I7vyq1l/WM2gzJT6EyGE6FckQDkB7C+qYWDTYT6yPkx4xX6ISYcfvQ5h7kmrRqOBcenqwLRd+d5zRkibCJeq+9zw7Z/U2hWN0wkf344pdy3VSgS3mh8nKuvmHruXcIuJM0YNAODdTbkcKFYHw0mAIoQQ/YsEKP2dvZmyta/zXtgjpBoq1MzJzcsheVSrQycOjANgZ1516/eZfCXMvl39/v1bYOndULgDvn4Mdr6P02DmZ7a7cWZM68m7AdDrULQ9hUanRpMYFdbj5xVCCBE80mbcg6rqbTTY1JoNoxEGRFsxGHpwh1unU93Zt64Eaovg4Few9S1Oqy8FA+TGnsTgmz5Ql2180Da425lX5fN5znsUSver77vpZfXL5c+RP2dNw0R+mhrT7bfV0jljUzAYwO5UJ99K9kQIIfofCVB6yLKdBdz2xmY8p8d3567BXuzNsPk1+PYZqGk5bQ1KDIm8YTuL6Rc+xuA2ghNwZ1B251fjdCoYjS2CKZMFFvwXjqyG7FfUpR6nnXcif8xzZSeTEGnh2tlDuvXWfEmKtjI9M0Ev/JUBbUII0f9IgNJDXvruCIoCRgMYDQbsToX3NuVy95zRDIjppp1uHTbY8R58s1jtstFEJELUAEgeRd24HzH7LXBgYtuQ1HbfbmRKNGFmIzVNdnIr6hmS5GM3YIMBhp8Jw8+kvjyfx9/4gjfzBhAXYeH1n85iaHJwdhCeMz5VD1BkQJsQQvQ/EqD0gKOldWw8WoHRAGt+dS5pceFctuR7tuZW8l52LrefNbJrJ7A1qBvurXnOHZhEp8IZ98G068ASrh+65UApDtYzJCmSuMj254RYTEbGpsWw/XgVO/OqfQcoLo02B7d8kMP3eSnEWM385+aZTMiI69p9BeDCiWn8+av9jEmLJTU2vOMXCCGE6FMkQOkB728+DsDpowaQFqd+eC6YlcnW3EreXJ/Dz84Y0Xr5xB+lB2DLf2DLG1Bfqj4WmQyn/Bxm3gphka1esj2vEoBJA/0LHiZkxKkBSn4V8yan+zymye7g//6TzfcHy4gMM/HqTTOZPCg+8PvpgiFJUXx1z5nEWGU4mxBC9EcSoHQzp1Phg815AMyfPkh//OLJGTy2dDfHKxpYfaCEs8ak+P+mOz+ADf+AnLXux+IycZ7yc15vOp0Jg1OZ7iM4AdhxXC14nTzIvwBl4kCt1dhHJw/qjsUL39jCqv0lhFuMvPKTk9W9fUJgUILvexZCCNH3SZtxN1t3uIy8ygZiws2cP95d8xERZtIDFq091m9Hv1WDE4MRRl+gDk67YzPLoy/l4c8Os+Bf69vsvNnhenyinxmUia5lml15VSieFb4uv/1kF1/tKSLMbORf15/MrOFSoCqEEKL7SYDSzf6brS7vXDIlQ99tV7NgViYAK/YWU1DV4P+bzrgZznkI7t4FP34Hxl0MJgufu/bNabQ5+b//ZFNW2+T1svK6Zo5XqOfxN0AZkxaDyWigrK6ZwupGr+ccToWPtqjZoeevmcZpo7p3jL0QQgihkQClG9U22fl8ZyEAP/RY3tGMTIlh5rBEHE6Fdzbm+v/GaRPhjHshNkN/qMnuYMWeYgASIi3kVTZw+xubsWn76ODOngxPjvJ7I71wi4lRKdFA64FtR8vqaLA5CLcYmTOu/Y4gIYQQoiskQOlGn+0ooMHmYHhyFNMGx/s8RsuivLfpuM8lFH+tOVhGTZOd1Fgr7/xfFlFhJtYfKef3/9ujH7PjeCUAk/ysP9Fo3TgtR97vKVADlrFpsZg6U+QrhBBC+EkClG70oUdxbFsTY+dOSCPcYiSvsoF9RTWdPtfnOwv09xudGsOfr1ZHzL+65ij7Xe+73VUg628Hj0YrlG2ZQdntKpwd75o4K4QQQvQUCVD8oCgKS1Ye5Jkv91HdaPN5TFF1I+uOlAFw6ZQMn8eAuoQy21VY+s2+kk5dj93hZPnuIgAumJgGwHnjU7nQ9f1fvz4IuJd4Am0B1upVth+v9Mry7HZlUManS4AihBCiZ0mA4ofNOZX84Yt9PPf1Qeb8aRVLt+e3Wp5Zur0ARYGTMuMZnNh+++tZo9XdeL/ZV9yp61l/pJyKehuJUWHMHOqeorrw7JGua8lnw5FyCqoaMRjce+z4a9LAOMJMRoprmjhaVq8/rmVQxkmAIoQQoodJgOKHT7ep+9sYDVBc08SiN7dwy7830Wx3F6R+4jqmveyJRpuBsuloBTVtZGTaoy3vnD8+FbPJ/Z9w4sA4zh2bglOBe9/bBsDIAdFEWQMbdxNuMTEtMx6ANYfUgXAlNU0U1zRhMMDYtJ7fEFAIIcSJTQKUDtgdTpZuVwOCvy04ibvmjCLMZOSrPcW89N0RAI6V1bEttxKjAeZN7jhAGZocxbDkKOxOhe8PlgZ0PU6nwhe7vJd3PC06R82i5JSrmY9A6080p4xQW4jXHlKXrbQC2WFJUQEHPEIIIUSgJEDpwPoj5ZTWNhEfaeGcsancNWc0T85XdyR+bsUB8iob9AzLKSOS/d4I8Ex9mSewOpTsnApKapqICTfrQYSnaZkJnO4xnyTQDh5N1gi1TmbtoTIURdHrT8ZJgawQQoggkAClA59sVYOPCyemE2ZWf1yXTxvIzGGJNNgcPPrproCWdzRnjXEHKIG0G2tTaM8fn6ZfT0uLznZvRujviPuWpg6OJ9xipKyumf1Fte4OHqk/EUIIEQQSoLSjye7Q6z0umeLeOM9gMPDYDyZiNhr4YlcR+4tqCTMZmetjyaUts4cnYTUbKaxu9LvduKi6Uc/W3HDKkDaPmzU8iZ+cMpS5E1I7vYlfmNnIya4C3LWHSt0dPJJBEUIIEQQSoLRj9f5SqhvtpMRYmTXMe8+ZMWkx3HTaMP3vZ44ZQFyE/zvrhltM+jLKyr3+LfP8e+1R7E6FmUMTOww8fnfpBP5+3Qwsps7/J9au7+t9JRwuqQVggmRQhBBCBIEEKO3Qlm4unpzhc3LqneeOIj0uHFCXfQJ1tqubx59244ZmB2+4lnc8A6OelOWa17J6fwlOBZKiwvyusRFCCCG6Qtox2lDXZOcr1zC0S6f6ri2Jspp546ez2JpbqQ9JC4RWh5J9rIKqBptXBmZ3fjWfbs/nRzMGMzQ5ivc3H6ey3kZmYiTnjQ/OPjiTBsYRbTVT22QH1OWdtibkCiGEEN1JMig+KIrCQx/tpMHmYGhSJFPaKTQdPiCaK05qe7R9e4YkRTEyJRq7U+HrvUVez/3ivW288M0hzv/zap5bcYCXv1dbmn9yytCg7YNjNhmZOcw9CE4KZIUQQgSLBCg+vPTdET7YkofJaOCJyyf1aNZAy7x8vqNQf+xAUY0+d6TZ7uSZ5fs5XFJHjNXMVScP7rFr8eWUEe7aGymQFUIIESwSoLTw7YESnvhM3RH4wXnjOGVk61kj3UkbtrZqfwl1rqUUrfblnLEpPHfNNJKj1bqPBbOHEB3kIWnavkEgGRQhhBDBIzUoHo6V1bHozS04Ffjh9EH85JShPX7O8emxZCZGklNezzf7SrhoUpreSnzplAwunZLBmaMHsCWngtN6OFhq6/pOHZmEw6kwfEB00M8vhBDixCQBiod/rz1GVYONKYPjefyyiUEpCDUYDFw4MY2/rz7M5zsLGJwYwdGyesItRr0YNi7Cou/fE2xGo4E3fjo7JOcWQghx4pIAxcNvLhpHYlQYP5w+iHCLKWjnvcAVoKzcW0xCZBgA545LlT1vhBBCnLDkE9CD0WhgoceY+GCZMiie9LhwCqoaeWP9MSCwsflCCCFEfyNFsr2A0Whg7gS1WNapQEy4WZ+RIoQQQpyIAg5QVq9ezSWXXEJGRgYGg4GPPvrI63lFUXj44YdJT08nIiKCOXPmcODAAa9jysvLWbBgAbGxscTHx3PzzTdTW1vbpRvp6zwHvV0wIQ2rOXhLTEIIIURvE3CAUldXx5QpU1iyZInP559++mmee+45XnzxRdavX09UVBRz586lsbFRP2bBggXs2rWL5cuXs3TpUlavXs2tt97a+bvoB2YMTSQ1Vm0nvqwTY/OFEEKI/sSgKIrS6RcbDHz44YdcdtllgJo9ycjI4Be/+AX33nsvAFVVVaSmpvLqq69y9dVXs2fPHsaPH8/GjRuZMWMGAMuWLeOiiy7i+PHjZGR0XHtRXV1NXFwcVVVVxMb2n9kcO/OqOFJaxyVSfyKEEKIfCuTzu1trUI4cOUJhYSFz5szRH4uLi2PWrFmsXbsWgLVr1xIfH68HJwBz5szBaDSyfv16n+/b1NREdXW111d/NHFgnAQnQgghBN0coBQWquPaU1O9N7NLTU3VnyssLCQlxXumh9lsJjExUT+mpcWLFxMXF6d/DR4c3HHvQgghhAiuPtHF88ADD1BVVaV/5ebmhvqShBBCCNGDujVASUtTO1GKirx35i0qKtKfS0tLo7i42Ot5u91OeXm5fkxLVquV2NhYry8hhBBC9F/dGqAMGzaMtLQ0VqxYoT9WXV3N+vXrycrKAiArK4vKykqys7P1Y77++mucTiezZs3qzssRQgghRB8V8CTZ2tpaDh48qP/9yJEjbN26lcTERDIzM7nrrrt4/PHHGTVqFMOGDeOhhx4iIyND7/QZN24cF1xwAbfccgsvvvgiNpuNRYsWcfXVV/vVwSOEEEKI/i/gAGXTpk2cffbZ+t/vueceAG644QZeffVVfvnLX1JXV8ett95KZWUlp512GsuWLSM8PFx/zRtvvMGiRYs499xzMRqNzJ8/n+eee64bbkcIIYQQ/UGX5qCESn+dgyKEEEL0ZyGbgyKEEEII0R0kQBFCCCFEryMBihBCCCF6HQlQhBBCCNHrSIAihBBCiF5HAhQhhBBC9DoBz0HpDbTO6P66q7EQQgjRH2mf2/5MOOmTAUpNTQ2A7GoshBBC9EE1NTXExcW1e0yfHNTmdDrJz88nJiYGg8HQre9dXV3N4MGDyc3NPeGGwMm9y73LvZ845N7l3kNx74qiUFNTQ0ZGBkZj+1UmfTKDYjQaGTRoUI+e40TeNVnuXe79RCP3Lvd+ognlvXeUOdFIkawQQggheh0JUIQQQgjR60iA0oLVauW3v/0tVqs11JcSdHLvcu8nGrl3ufcTTV+69z5ZJCuEEEKI/k0yKEIIIYTodSRAEUIIIUSvIwGKEEIIIXodCVCEEEII0etIgOJhyZIlDB06lPDwcGbNmsWGDRtCfUndbvHixZx88snExMSQkpLCZZddxr59+7yOaWxsZOHChSQlJREdHc38+fMpKioK0RX3nCeffBKDwcBdd92lP9af7z0vL49rr72WpKQkIiIimDRpEps2bdKfVxSFhx9+mPT0dCIiIpgzZw4HDhwI4RV3D4fDwUMPPcSwYcOIiIhgxIgRPPbYY157gfSXe1+9ejWXXHIJGRkZGAwGPvroI6/n/bnP8vJyFixYQGxsLPHx8dx8883U1tYG8S46p717t9ls3H///UyaNImoqCgyMjK4/vrryc/P93qP/njvLf3sZz/DYDDw5z//2evx3njvEqC4vPPOO9xzzz389re/ZfPmzUyZMoW5c+dSXFwc6kvrVqtWrWLhwoWsW7eO5cuXY7PZOP/886mrq9OPufvuu/n000957733WLVqFfn5+VxxxRUhvOrut3HjRv7+978zefJkr8f7671XVFRw6qmnYrFY+Pzzz9m9ezd/+tOfSEhI0I95+umnee6553jxxRdZv349UVFRzJ07l8bGxhBeedc99dRTvPDCC/z1r39lz549PPXUUzz99NM8//zz+jH95d7r6uqYMmUKS5Ys8fm8P/e5YMECdu3axfLly1m6dCmrV6/m1ltvDdYtdFp7915fX8/mzZt56KGH2Lx5Mx988AH79u3j0ksv9TquP967pw8//JB169aRkZHR6rleee+KUBRFUWbOnKksXLhQ/7vD4VAyMjKUxYsXh/Cqel5xcbECKKtWrVIURVEqKysVi8WivPfee/oxe/bsUQBl7dq1obrMblVTU6OMGjVKWb58uXLmmWcqd955p6Io/fve77//fuW0005r83mn06mkpaUpf/jDH/THKisrFavVqrz11lvBuMQeM2/ePOWmm27yeuyKK65QFixYoChK/713QPnwww/1v/tzn7t371YAZePGjfoxn3/+uWIwGJS8vLygXXtXtbx3XzZs2KAAyrFjxxRF6f/3fvz4cWXgwIHKzp07lSFDhijPPvus/lxvvXfJoADNzc1kZ2czZ84c/TGj0cicOXNYu3ZtCK+s51VVVQGQmJgIQHZ2NjabzetnMXbsWDIzM/vNz2LhwoXMmzfP6x6hf9/7J598wowZM7jyyitJSUlh2rRp/POf/9SfP3LkCIWFhV73HhcXx6xZs/r8vZ9yyimsWLGC/fv3A7Bt2za+++47LrzwQqB/37snf+5z7dq1xMfHM2PGDP2YOXPmYDQaWb9+fdCvuSdVVVVhMBiIj48H+ve9O51OrrvuOu677z4mTJjQ6vneeu99crPA7lZaWorD4SA1NdXr8dTUVPbu3Ruiq+p5TqeTu+66i1NPPZWJEycCUFhYSFhYmP5/Wk1qaiqFhYUhuMru9fbbb7N582Y2btzY6rn+fO+HDx/mhRde4J577uHXv/41Gzdu5I477iAsLIwbbrhBvz9f/x/o6/f+q1/9iurqasaOHYvJZMLhcPD73/+eBQsWAPTre/fkz30WFhaSkpLi9bzZbCYxMbFf/SwaGxu5//77ueaaa/QN8/rzvT/11FOYzWbuuOMOn8/31nuXAOUEtnDhQnbu3Ml3330X6ksJitzcXO68806WL19OeHh4qC8nqJxOJzNmzOCJJ54AYNq0aezcuZMXX3yRG264IcRX17Peffdd3njjDd58800mTJjA1q1bueuuu8jIyOj39y5as9lsXHXVVSiKwgsvvBDqy+lx2dnZ/OUvf2Hz5s0YDIZQX05AZIkHSE5OxmQyterWKCoqIi0tLURX1bMWLVrE0qVLWblyJYMGDdIfT0tLo7m5mcrKSq/j+8PPIjs7m+LiYk466STMZjNms5lVq1bx3HPPYTabSU1N7bf3np6ezvjx470eGzduHDk5OQD6/fXH/w/cd999/OpXv+Lqq69m0qRJXHfdddx9990sXrwY6N/37smf+0xLS2vVGGC32ykvL+8XPwstODl27BjLly/XsyfQf+/922+/pbi4mMzMTP3fvWPHjvGLX/yCoUOHAr333iVAAcLCwpg+fTorVqzQH3M6naxYsYKsrKwQXln3UxSFRYsW8eGHH/L1118zbNgwr+enT5+OxWLx+lns27ePnJycPv+zOPfcc9mxYwdbt27Vv2bMmMGCBQv07/vrvZ966qmt2sn379/PkCFDABg2bBhpaWle915dXc369ev7/L3X19djNHr/U2cymXA6nUD/vndP/txnVlYWlZWVZGdn68d8/fXXOJ1OZs2aFfRr7k5acHLgwAG++uorkpKSvJ7vr/d+3XXXsX37dq9/9zIyMrjvvvv44osvgF587yErz+1l3n77bcVqtSqvvvqqsnv3buXWW29V4uPjlcLCwlBfWre67bbblLi4OOWbb75RCgoK9K/6+nr9mJ/97GdKZmam8vXXXyubNm1SsrKylKysrBBedc/x7OJRlP577xs2bFDMZrPy+9//Xjlw4IDyxhtvKJGRkcrrr7+uH/Pkk08q8fHxyscff6xs375d+cEPfqAMGzZMaWhoCOGVd90NN9ygDBw4UFm6dKly5MgR5YMPPlCSk5OVX/7yl/ox/eXea2pqlC1btihbtmxRAOWZZ55RtmzZoneq+HOfF1xwgTJt2jRl/fr1ynfffaeMGjVKueaaa0J1S35r796bm5uVSy+9VBk0aJCydetWr3/7mpqa9Pfoj/fuS8suHkXpnfcuAYqH559/XsnMzFTCwsKUmTNnKuvWrQv1JXU7wOfXK6+8oh/T0NCg3H777UpCQoISGRmpXH755UpBQUHoLroHtQxQ+vO9f/rpp8rEiRMVq9WqjB07VvnHP/7h9bzT6VQeeughJTU1VbFarcq5556r7Nu3L0RX232qq6uVO++8U8nMzFTCw8OV4cOHK7/5zW+8Ppj6y72vXLnS5/+/b7jhBkVR/LvPsrIy5ZprrlGio6OV2NhY5cYbb1RqampCcDeBae/ejxw50ua/fStXrtTfoz/euy++ApTeeO8GRfEYpyiEEEII0QtIDYoQQggheh0JUIQQQgjR60iAIoQQQoheRwIUIYQQQvQ6EqAIIYQQoteRAEUIIYQQvY4EKEIIIYTodSRAEUIIIUSvIwGKEEIIIXodCVCEEEII0etIgCKEEEKIXkcCFCGEEEL0Ov8PxeX3yqUqsZoAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# reshape into X=t and Y=t+1\n",
    "look_back = 12\n",
    "trainX, trainY = create_dataset(train, look_back)\n",
    "testX, testY = create_dataset(test, look_back)\n",
    "# reshape input to be [samples, time steps, features]\n",
    "trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))\n",
    "testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))\n",
    "\n",
    "# create and fit the LSTM network\n",
    "model = Sequential()\n",
    "model.add(LSTM(4, input_shape=(1, look_back),return_sequences=True))\n",
    "\n",
    "# fix --------- the dense layer should be of last\n",
    "# model.add(Dense(1))\n",
    "model.add(LSTM(4))\n",
    "model.add(Dense(1)) \n",
    "\n",
    "model.compile(loss='mean_squared_error', optimizer='adam')\n",
    "model.fit(trainX, trainY, epochs=10, batch_size=1, verbose=2) # change epochs=10 instead of 100 for fast reproducing\n",
    "\n",
    "# make predictions\n",
    "trainPredict = model.predict(trainX)\n",
    "testPredict = model.predict(testX)\n",
    "# invert predictions\n",
    "trainPredict = scaler.inverse_transform(trainPredict)\n",
    "trainY = scaler.inverse_transform([trainY])\n",
    "testPredict = scaler.inverse_transform(testPredict)\n",
    "testY = scaler.inverse_transform([testY])\n",
    "# calculate root mean squared error\n",
    "trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))\n",
    "print('Train Score: %.2f RMSE' % (trainScore))\n",
    "testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))\n",
    "print('Test Score: %.2f RMSE' % (testScore))\n",
    "# shift train predictions for plotting\n",
    "trainPredictPlot = np.empty_like(dataset)\n",
    "trainPredictPlot[:, :] = np.nan\n",
    "trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict\n",
    "# shift test predictions for plotting\n",
    "testPredictPlot = np.empty_like(dataset)\n",
    "testPredictPlot[:, :] = np.nan\n",
    "testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict\n",
    "# plot baseline and predictions\n",
    "plt.plot(scaler.inverse_transform(dataset))\n",
    "plt.plot(trainPredictPlot)\n",
    "plt.plot(testPredictPlot)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "3NyP3P6Z9Wko"
   },
   "source": [
    "# LSTM for Regression with Time Steps\n",
    ">You may have noticed that the data preparation for the LSTM network includes time steps.\n",
    "\n",
    ">Some sequence problems may have a varied number of time steps per sample. For example, you may have measurements of a physical machine leading up to the point of failure or a point of surge. Each incident would be a sample of observations that lead up to the event, which would be the time steps, and the variables observed would be the features.\n",
    "\n",
    ">Time steps provide another way to phrase your time series problem. Like above in the window example, you can take prior time steps in your time series as inputs to predict the output at the next time step.\n",
    "\n",
    ">Instead of phrasing the past observations as separate input features, you can use them as time steps of the one input feature, which is indeed a more accurate framing of the problem.\n",
    "\n",
    ">You can do this using the same data representation as in the previous window-based example, except when you reshape the data, you set the columns to be the time steps dimension and change the features dimension back to 1. For example:\n",
    "\n",
    "\n",
    "\n",
    "```\n",
    "# reshape input to be [samples, time steps, features]\n",
    "trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n",
    "testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))\n",
    "```\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T10:01:53.148736Z",
     "iopub.status.busy": "2023-11-01T10:01:53.148279Z",
     "iopub.status.idle": "2023-11-01T10:01:53.158509Z",
     "shell.execute_reply": "2023-11-01T10:01:53.157306Z",
     "shell.execute_reply.started": "2023-11-01T10:01:53.148703Z"
    },
    "id": "rwz_a87O9hWt",
    "outputId": "90dba386-27de-430f-883a-06c47663fdbc"
   },
   "outputs": [],
   "source": [
    "# reshape into X=t and Y=t+1\n",
    "look_back = 3\n",
    "trainX, trainY = create_dataset(train, look_back)\n",
    "testX, testY = create_dataset(test, look_back)\n",
    "# reshape input to be [samples, time steps, features]\n",
    "trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n",
    "testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))\n",
    "\n",
    "print(trainX.shape)\n",
    "print(trainY.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 1000
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T10:01:53.161745Z",
     "iopub.status.busy": "2023-11-01T10:01:53.160801Z",
     "iopub.status.idle": "2023-11-01T10:02:19.274959Z",
     "shell.execute_reply": "2023-11-01T10:02:19.273867Z",
     "shell.execute_reply.started": "2023-11-01T10:01:53.161705Z"
    },
    "id": "JEMfK1yUAYHA",
    "outputId": "cacea859-99b0-4db9-f82f-37cb89db7ab8"
   },
   "outputs": [],
   "source": [
    "# create and fit the LSTM network\n",
    "model = Sequential()\n",
    "model.add(LSTM(4, input_shape=(look_back, 1)))\n",
    "model.add(Dense(1))\n",
    "model.compile(loss='mean_squared_error', optimizer='adam')\n",
    "model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)\n",
    "# make predictions\n",
    "trainPredict = model.predict(trainX)\n",
    "testPredict = model.predict(testX)\n",
    "# invert predictions\n",
    "trainPredict = scaler.inverse_transform(trainPredict)\n",
    "trainY = scaler.inverse_transform([trainY])\n",
    "testPredict = scaler.inverse_transform(testPredict)\n",
    "testY = scaler.inverse_transform([testY])\n",
    "# calculate root mean squared error\n",
    "trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))\n",
    "print('Train Score: %.2f RMSE' % (trainScore))\n",
    "testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))\n",
    "print('Test Score: %.2f RMSE' % (testScore))\n",
    "# shift train predictions for plotting\n",
    "trainPredictPlot = np.empty_like(dataset)\n",
    "trainPredictPlot[:, :] = np.nan\n",
    "trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict\n",
    "# shift test predictions for plotting\n",
    "testPredictPlot = np.empty_like(dataset)\n",
    "testPredictPlot[:, :] = np.nan\n",
    "testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict\n",
    "# plot baseline and predictions\n",
    "plt.plot(scaler.inverse_transform(dataset))\n",
    "plt.plot(trainPredictPlot)\n",
    "plt.plot(testPredictPlot)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "bMgOCG4tIH8M"
   },
   "source": [
    "# LSTM with Memory Between Batches\n",
    ">The LSTM network has memory capable of remembering across long sequences.\n",
    "\n",
    ">Normally, the state within the network is reset after each training batch when fitting the model, as well as each call to model.predict() or model.evaluate().\n",
    "\n",
    ">You can gain finer control over when the internal state of the LSTM network is cleared in Keras by making the LSTM layer “stateful.” This means it can build a state over the entire training sequence and even maintain that state if needed to make predictions.\n",
    "\n",
    ">It requires that the training data not be shuffled when fitting the network. It also requires explicit resetting of the network state after each exposure to the training data (epoch) by calls to model.reset_states(). This means that you must create your own outer loop of epochs and within each epoch call model.fit() and model.reset_states(). For example:\n",
    "\n",
    "```\n",
    "for i in range(100):\n",
    "\tmodel.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)\n",
    "\tmodel.reset_states()\n",
    "```\n",
    "\n",
    "Finally, when the LSTM layer is constructed, the stateful parameter must be set to True. Instead of specifying the input dimensions, you must hard code the number of samples in a batch, the number of time steps in a sample, and the number of features in a time step by setting the batch_input_shape parameter. For example:\n",
    "\n",
    "\n",
    "`model.add(LSTM(4, batch_input_shape=(batch_size, time_steps, features), stateful=True))`\n",
    "\n",
    "This same batch size must then be used later when evaluating the model and making predictions. For example:\n",
    "\n",
    "`model.predict(trainX, batch_size=batch_size)`\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 1000
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T10:02:19.277599Z",
     "iopub.status.busy": "2023-11-01T10:02:19.276459Z",
     "iopub.status.idle": "2023-11-01T10:03:13.502072Z",
     "shell.execute_reply": "2023-11-01T10:03:13.500661Z",
     "shell.execute_reply.started": "2023-11-01T10:02:19.277540Z"
    },
    "id": "EgFD6YvZJuvQ",
    "outputId": "b8e9c0db-6e78-4aca-e07c-30d400d57498"
   },
   "outputs": [],
   "source": [
    "# reshape into X=t and Y=t+1\n",
    "look_back = 12\n",
    "trainX, trainY = create_dataset(train, look_back)\n",
    "testX, testY = create_dataset(test, look_back)\n",
    "# reshape input to be [samples, time steps, features]\n",
    "trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n",
    "testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))\n",
    "# create and fit the LSTM network\n",
    "batch_size = 1\n",
    "model = Sequential()\n",
    "model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))\n",
    "model.add(Dense(1))\n",
    "model.compile(loss='mean_squared_error', optimizer='adam')\n",
    "for i in range(100):\n",
    "\tmodel.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)\n",
    "\tmodel.reset_states()\n",
    "# make predictions\n",
    "trainPredict = model.predict(trainX, batch_size=batch_size)\n",
    "model.reset_states()\n",
    "testPredict = model.predict(testX, batch_size=batch_size)\n",
    "model.reset_states()\n",
    "# invert predictions\n",
    "trainPredict = scaler.inverse_transform(trainPredict)\n",
    "trainY = scaler.inverse_transform([trainY])\n",
    "testPredict = scaler.inverse_transform(testPredict)\n",
    "testY = scaler.inverse_transform([testY])\n",
    "# calculate root mean squared error\n",
    "trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))\n",
    "print('Train Score: %.2f RMSE' % (trainScore))\n",
    "testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))\n",
    "print('Test Score: %.2f RMSE' % (testScore))\n",
    "# shift train predictions for plotting\n",
    "trainPredictPlot = np.empty_like(dataset)\n",
    "trainPredictPlot[:, :] = np.nan\n",
    "trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict\n",
    "# shift test predictions for plotting\n",
    "testPredictPlot = np.empty_like(dataset)\n",
    "testPredictPlot[:, :] = np.nan\n",
    "testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict\n",
    "# plot baseline and predictions\n",
    "plt.plot(scaler.inverse_transform(dataset))\n",
    "plt.plot(trainPredictPlot)\n",
    "plt.plot(testPredictPlot)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "tdXIYsqbLhZ1"
   },
   "source": [
    "You do see that results are better than some, worse than others. The model may need more modules and may need to be trained for more epochs to internalize the structure of the problem."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "eexs34jUNPvk"
   },
   "source": [
    "# Stacked LSTMs with Memory Between Batches\n",
    "Finally, let’s take a look at one of the big benefits of LSTMs: the fact that they can be successfully trained when stacked into deep network architectures.\n",
    "\n",
    "LSTM networks can be stacked in Keras in the same way that other layer types can be stacked. One addition to the configuration that is required is that an LSTM layer prior to each subsequent LSTM layer must return the sequence. This can be done by setting the return_sequences parameter on the layer to True.\n",
    "\n",
    "You can extend the stateful LSTM in the previous section to have two layers, as follows:\n",
    "\n",
    "```\n",
    "model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True))\n",
    "model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))\n",
    "\n",
    "```\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 1000
    },
    "execution": {
     "iopub.execute_input": "2023-11-01T10:03:13.504085Z",
     "iopub.status.busy": "2023-11-01T10:03:13.503510Z",
     "iopub.status.idle": "2023-11-01T10:06:41.861866Z",
     "shell.execute_reply": "2023-11-01T10:06:41.860688Z",
     "shell.execute_reply.started": "2023-11-01T10:03:13.504012Z"
    },
    "id": "mRnZZrDzNZNf",
    "outputId": "dc1d3e75-c6a6-41df-fa3b-d04d54126b96",
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "# reshape into X=t and Y=t+1\n",
    "look_back = 12\n",
    "trainX, trainY = create_dataset(train, look_back)\n",
    "testX, testY = create_dataset(test, look_back)\n",
    "# reshape input to be [samples, time steps, features]\n",
    "trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n",
    "testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))\n",
    "# create and fit the LSTM network\n",
    "batch_size = 1\n",
    "model = Sequential()\n",
    "model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True))\n",
    "model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))\n",
    "model.add(Dense(1))\n",
    "model.compile(loss='mean_squared_error', optimizer='adam')\n",
    "for i in range(300):\n",
    "\tmodel.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)\n",
    "\tmodel.reset_states()\n",
    "# make predictions\n",
    "trainPredict = model.predict(trainX, batch_size=batch_size)\n",
    "model.reset_states()\n",
    "testPredict = model.predict(testX, batch_size=batch_size)\n",
    "model.reset_states()\n",
    "# invert predictions\n",
    "trainPredict = scaler.inverse_transform(trainPredict)\n",
    "trainY = scaler.inverse_transform([trainY])\n",
    "testPredict = scaler.inverse_transform(testPredict)\n",
    "testY = scaler.inverse_transform([testY])\n",
    "# calculate root mean squared error\n",
    "trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))\n",
    "print('Train Score: %.2f RMSE' % (trainScore))\n",
    "testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))\n",
    "print('Test Score: %.2f RMSE' % (testScore))\n",
    "# shift train predictions for plotting\n",
    "trainPredictPlot = np.empty_like(dataset)\n",
    "trainPredictPlot[:, :] = np.nan\n",
    "trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict\n",
    "# shift test predictions for plotting\n",
    "testPredictPlot = np.empty_like(dataset)\n",
    "testPredictPlot[:, :] = np.nan\n",
    "testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict\n",
    "# plot baseline and predictions\n",
    "plt.plot(scaler.inverse_transform(dataset))\n",
    "plt.plot(trainPredictPlot)\n",
    "plt.plot(testPredictPlot)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "wLhvc98wO0sT"
   },
   "source": [
    "# Summary\n",
    "In this tutorial, you discovered how to develop LSTM \n",
    "\n",
    "recurrent neural networks for time series prediction in Python with the Keras deep learning network.\n",
    "\n",
    "Specifically, you learned:\n",
    "\n",
    "*   About the international airline passenger time series prediction problem\n",
    "*   How to create an LSTM for a regression and a window formulation of the time series problem\n",
    "*   How to create an LSTM with a time step formulation of the time series problem\n",
    "*   How to create an LSTM with state and stacked LSTMs with state to learn long sequences"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}