Datasets:
ArXiv:
DOI:
License:
File size: 128,411 Bytes
0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "iPfsr2ubz_cf"
},
"source": [
"# Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras\n",
"\n",
"Time series prediction problems are a difficult type of predictive modeling problem.\n",
"\n",
"Unlike regression predictive modeling, time series also adds the complexity of a sequence dependence among the input variables.\n",
"\n",
"A powerful type of neural network designed to handle sequence dependence is called a recurrent neural network. The Long Short-Term Memory network or LSTM network is a type of recurrent neural network used in deep learning because very large architectures can be successfully trained.\n",
"\n",
"In this post, you will discover how to develop LSTM networks in Python using the Keras deep learning library to address a demonstration time-series prediction problem.\n",
"\n",
"After completing this tutorial, you will know how to implement and develop LSTM networks for your own time series prediction problems and other more general sequence problems. You will know:\n",
"\n",
"* About the International Airline Passengers time-series prediction problem\n",
"* How to develop LSTM networks for regression, window, and time-step-based framing of time series prediction problems\n",
"* How to develop and make predictions using LSTM networks that maintain state (memory) across very long sequences\n",
"\n",
"In this tutorial, we will develop a number of LSTMs for a standard time series prediction problem. The problem and the chosen configuration for the LSTM networks are for demonstration purposes only; they are not optimized.\n",
"\n",
"These examples will show exactly how you can develop your own differently structured LSTM networks for time series predictive modeling problems."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OOnkbcFJ0NAZ"
},
"source": [
"\n",
"# Problem Description\n",
">The problem you will look at in this post is the International Airline Passengers prediction problem.\n",
"\n",
">his is a problem where, given a year and a month, the task is to predict the number of international airline passengers in units of 1,000. The data ranges from January 1949 to December 1960, or 12 years, with 144 observations.\n",
"\n",
">[Download the dataset](https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv) (save as “airline-passengers.csv“).\n",
"Below is a sample of the first few lines of the file.\n",
"\n",
"\n",
"```\n",
"\"Month\",\"Passengers\"\n",
"\"1949-01\",112\n",
"\"1949-02\",118\n",
"\"1949-03\",132\n",
"\"1949-04\",129\n",
"\"1949-05\",121\n",
"```\n",
"\n",
"\n",
">You can load this dataset easily using the Pandas library. You are not interested in the date, given that each observation is separated by the same interval of one month. Therefore, when you load the dataset, you can exclude the first column."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 265
},
"execution": {
"iopub.execute_input": "2023-11-01T09:59:35.122619Z",
"iopub.status.busy": "2023-11-01T09:59:35.121995Z",
"iopub.status.idle": "2023-11-01T09:59:35.314001Z",
"shell.execute_reply": "2023-11-01T09:59:35.312789Z",
"shell.execute_reply.started": "2023-11-01T09:59:35.122584Z"
},
"id": "2NAKmS3oz88y",
"outputId": "0fe9164a-f15c-472a-fe64-2290786629b7"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0OklEQVR4nO3deXxcdbk/8M+ZPdtkbSZJs7TQQvdSWtoGEBUKBQqI9Kpwy6Jy5cptVeCKyP0BCihFvIqiFdSLFC8gyBUQKhRKgVbonrZ0pXubNPs+2WY/vz/OfM/MpJNk9plMPu/XKy+bmZOZc6bY8+T5Ps/zlWRZlkFERESUQjTJPgEiIiKiwRigEBERUcphgEJEREQphwEKERERpRwGKERERJRyGKAQERFRymGAQkRERCmHAQoRERGlHF2yTyASHo8HDQ0NyMnJgSRJyT4dIiIiCoEsy+jp6UFZWRk0muFzJKMyQGloaEBFRUWyT4OIiIgiUFdXh/Ly8mGPGZUBSk5ODgDlAs1mc5LPhoiIiEJhtVpRUVGh3seHMyoDFLGsYzabGaAQERGNMqGUZ7BIloiIiFIOAxQiIiJKOQxQiIiIKOUwQCEiIqKUwwCFiIiIUg4DFCIiIko5DFCIiIgo5TBAISIiopTDAIWIiIhSDgMUIiIiSjkMUIiIiCjlMEAhIiKilMMAhYiIKI3Isoy/bKvFvvruZJ9KVBigEBERpZHddV24/7W9+PYLNZBlOdmnEzEGKERERGmk2WoHAJzuHMDBxp4kn03kGKAQERGlkV67S/3z+webk3gm0WGAQkRElEZ6bE71z+sZoBAREVEq6LX5Miifnu5Gs9WWxLOJHAMUIiKiNOK/xAMA6w+2JOlMosMAhYiIKI1YvRmUHJMOwOitQ2GAQkRElEZEBmXJzFIAwMdH29DvcA33IymJAQoREVEa6fUWyZ5flY+Kggw4XB7880hbks8qfAxQiIiI0kiPd4nHbNJh0VQLgNHZzcMAhYiIKI2IJZ5sox6XewOUDz5rTeYpRSTsAKW+vh4333wzCgsLkZGRgZkzZ2LHjh3q87Is46GHHkJpaSkyMjKwaNEiHDlyJOA1Ojo6sGzZMpjNZuTl5eH2229Hb29v9FdDREQ0xokMSrZJh6mlZgBAW68dLrcnmacVtrAClM7OTlx00UXQ6/V45513cODAAfziF79Afn6+eswTTzyBp556Cs888wy2bt2KrKwsLF68GDabrw972bJl2L9/P9atW4c1a9Zg48aNuOOOO2J3VURERGOUL4OiQ5ZRpz7e53An65Qiohv5EJ+f/exnqKiowHPPPac+NnHiRPXPsizjV7/6FR544AF86UtfAgD8+c9/hsViwRtvvIEbb7wRBw8exNq1a7F9+3bMmzcPAPCb3/wGV199Nf77v/8bZWVlsbguIiKiMUeWZTVAMZt0MOg00GslON0y+uwu5Gbok3yGoQsrg/Lmm29i3rx5+MpXvoLi4mLMmTMHf/zjH9XnT5w4gaamJixatEh9LDc3FwsWLMDmzZsBAJs3b0ZeXp4anADAokWLoNFosHXr1qDva7fbYbVaA76IiIgo0IDTDbdH2cE42zsHRWRR+uyjq9U4rADl+PHjePrppzF58mS8++67uPPOO/Hd734Xzz//PACgqakJAGCxWAJ+zmKxqM81NTWhuLg44HmdToeCggL1mMFWrlyJ3Nxc9auioiKc0yYiIhoTxJh7rUZChl4LAMgyeAOUUbbEE1aA4vF4cP755+Oxxx7DnDlzcMcdd+Bb3/oWnnnmmXidHwDg/vvvR3d3t/pVV1cX1/cjIiIajcQU2WyjDpIkqX8G0jyDUlpaimnTpgU8NnXqVNTW1gIASkpKAADNzYH91s3NzepzJSUlaGkJ3BfA5XKho6NDPWYwo9EIs9kc8EVERESB/AtkhUyjNuC50SKsAOWiiy7CoUOHAh47fPgwqqqqACgFsyUlJVi/fr36vNVqxdatW1FdXQ0AqK6uRldXF2pqatRjPvjgA3g8HixYsCDiCyEiIhrregftwwOM3gxKWF08d999Ny688EI89thj+OpXv4pt27bhD3/4A/7whz8AACRJwl133YWf/OQnmDx5MiZOnIgHH3wQZWVluP766wEoGZcrr7xSXRpyOp1YsWIFbrzxRnbwEBERRaHHO+beP0AZrTUoYQUoF1xwAV5//XXcf//9eOSRRzBx4kT86le/wrJly9RjfvCDH6Cvrw933HEHurq6cPHFF2Pt2rUwmUzqMS+++CJWrFiByy67DBqNBkuXLsVTTz0Vu6siIiIag3qGWeJJ6wwKAFxzzTW45pprhnxekiQ88sgjeOSRR4Y8pqCgAC+99FK4b01ERETD6FWnyPrmnYzWJR7uxUNERJQmghXJ+uagjK4lHgYoREREaULUoJgDalBG5xIPAxQiIqI0MVwGpdfBAIWIiIiSwH8nY0EEKP3MoBAREVEy9KhzUIIVybIGhYiIiJIg6CRZwxiYJEtERESpa9hJsqxBISIiomQQXTxsMyYiIqKUISbJBh11zyUeIiIiSjRZln01KAFdPEoNyoDTDbdHTsq5RYIBChERURroc7ghe+OPHKOviyfLb7mnfxTVoTBAISIiSgOiQFankWDS+27vRp0GWo0EYHTVoTBAISIiSgO9dm+BrEkHSZLUxyVJUsfdj6ZWYwYoREREaUCdIuu3pCOMxh2NGaAQERGlgWBTZIWsUTgLhQEKERFRGhDLNzlBMiiZo3AWCgMUIiKiNNAbZKNAIdvbaswlHiIiIkooa5ApsoI6rI1LPERERGPL32pOY9WHR5P2/r1BpsgKWaOwSPbMqyAiIqKw1HX0497/+xQeGbh2VhkqCzMTfg7DLfGIabK9rEEhIiIaO57fdBJiinzXgCMp56B28QRb4vE+1j+KMigMUIiIiKLQY3Pile116vfJGobmW+IJ0mbMGhQiIqKx5a87Tqu7CAPJa+UV5xC0SNb7GJd4iIiIxgC3R8bqTScAAN7tbpJWiNpr8426H4xtxkRERGPIugNNqOsYQF6mHhdNKgKQvCUe3yTZ9OjiYYBCREQUoWc/VrInyxZUoijbCADoT1Kdh2+SLGtQiIiIxqy2Xju2n+yEJAG3Vk9Ieivv8G3GHHVPREQ0JnT0Ke3EuRl6WMympC6jeDwyeh3DFcmyBoWIiGhMsA4oRalmb1tvtiF5AUqfwwXZO4claA1KEs8tUgxQiIiIIiD2vsnNUAIUXytv4oMA8Z56rQSj7sxbu5rdcbjhERPlUhwDFCIiogh0iwxKhnLzz07iEo/o4Mk26iBJ0hnP+y/7DDhHRx0KAxQiIqIIWAeUoEAs8SSzENXXYnxmBw8AmPSapM9pCRcDFCIiogiIGhTfEo/o4kneEk+wAlkAkCRJrUNJ1pyWcDFAISIiioBvicdbJGtM3qyR4VqMhdHWaswAhYiIKAJDFckmpwZFOZdgOxkLaqvxKBnWxgCFiIgoAmoGxRRYJJuMJZQusdyUGbwGBRh94+4ZoBAREUVALZIdlEGxOT1wuT0JPZfOfmVoXH6mYchjWINCREQ0BoglHvOgIllAmTeSSJ3eqbYFWcMEKN4Aqj/B5xYpBihEREQR6B40Sdao00KvVXp5E72M0tGnnMuwGZRRNu6eAQoREVEEBrcZA8mr8xBLPAVZI9egcImHiIgoTXk8MnrsogbF1zmTrDoPEaDkDZNByeYSDxERUXrrsfs25zP7TW/NTtKskVBqUDINyRskFwkGKERERGESyztGnQYmva84NhnTZN0eWW0zHq4GJZl7BUWCAQoREVGYBk+RFZJRg9I94FSzOXmcg0JERDR2qS3Gg0bLJ2PcfYd3eSfHpINeO/RtnaPuiYiI0pwY0pY7RAYlkUs8Xf0j158AQJaBo+6JiIjSmnWIJZ5k1HmIDMpw9ScA24yJiIjS3uCNAgXfMLTELaN0hphBUduMucRDRESUnqyDpsgKychSiCmywxXIAr42YxbJEhERpSlfF88QRbLJqEEZYYnHv4BXFm0/KYwBChERUZistiGKZJMwSVatQRmpSNYboHhkZcflVMcAhYiIKEyDNwoUkjFrJNQalAy/gXKjoVCWAQoREVGYgm0UCCRnvxtfF8/wNSgajYQc7/mJIt9UFlaA8uMf/xiSJAV8TZkyRX3eZrNh+fLlKCwsRHZ2NpYuXYrm5uaA16itrcWSJUuQmZmJ4uJi3HvvvXC5Uj+SIyKi1LDtRAeeWPsZXO7kLVOog9qG6OJJ7ByUkcfcC+PMRgBAi9Ue13OKBd3IhwSaPn063n//fd8L6Hwvcffdd+Mf//gHXn31VeTm5mLFihW44YYb8MknnwAA3G43lixZgpKSEmzatAmNjY249dZbodfr8dhjj8XgcoiIKJ15PDLuenkXGrptuGBiAb54bnFSziOVlng6QlziAQBLjgnHW/vQbLXF+7SiFnaAotPpUFJScsbj3d3dePbZZ/HSSy/h0ksvBQA899xzmDp1KrZs2YKFCxfivffew4EDB/D+++/DYrHgvPPOw6OPPor77rsPP/7xj2EwjPzhEhHR2LXjVCcaupWba3d/8pYpRpokm6g5KC63Rw2W8kLIoJTkmgBgVAQoYdegHDlyBGVlZTjrrLOwbNky1NbWAgBqamrgdDqxaNEi9dgpU6agsrISmzdvBgBs3rwZM2fOhMViUY9ZvHgxrFYr9u/fH+21EBFRmnvz03r1z8kq9HS4PBhwKgHIGW3G3i4eh9sDhyv+S1ChbhQoFHuXeJpGQYASVgZlwYIFWL16Nc4991w0Njbi4Ycfxuc+9zns27cPTU1NMBgMyMvLC/gZi8WCpqYmAEBTU1NAcCKeF88NxW63w273rZdZrdZwTpuIiNKAy+3B23t994r+JO0p419gmnPGEo+vU6bP7oJBF9+VAdHBYx5ho0DBkqNkUNKuBuWqq65S/zxr1iwsWLAAVVVV+Otf/4qMjIyYn5ywcuVKPPzww3F7fSIiSn2fHGtXO1aA5O3KKzp4cow6aDVSwHM6rQZGnQZ2lwe9dteIs0mi1eld5gql/gTwLfGMhgxKVG3GeXl5OOecc3D06FGUlJTA4XCgq6sr4Jjm5ma1ZqWkpOSMrh7xfbC6FuH+++9Hd3e3+lVXVxfNaRMR0Sj05u4GAIDkjQmSlUHpHmKjQMF/Ymu8iYAtlPoTALB4l3jSsgbFX29vL44dO4bS0lLMnTsXer0e69evV58/dOgQamtrUV1dDQCorq7G3r170dLSoh6zbt06mM1mTJs2bcj3MRqNMJvNAV9ERDR22JxuvLdfWd65eFIRAKA3WRkU7xTZoQKURHbydPaF3sEDABazb4kn1cfdhxWgfP/738eGDRtw8uRJbNq0CV/+8peh1Wpx0003ITc3F7fffjvuuecefPjhh6ipqcE3vvENVFdXY+HChQCAK664AtOmTcMtt9yCTz/9FO+++y4eeOABLF++HEajMS4XSEREo99Hh1rQY3ehNNeEz58zDkASa1DUFuPgVRK+DQPjH0CJFuNQZqAAQLG3BsXh9qjLQ6kqrBqU06dP46abbkJ7ezvGjRuHiy++GFu2bMG4ccp/LE8++SQ0Gg2WLl0Ku92OxYsX43e/+53681qtFmvWrMGdd96J6upqZGVl4bbbbsMjjzwS26siIqK08uanyvLOtbPL/DbkS04GZeQlnsTtGtyl1qCM3MEDAAadBoVZBrT3OdDUbQs585IMYQUoL7/88rDPm0wmrFq1CqtWrRrymKqqKrz99tvhvC0REY1x/zzSBgC4emYpajv6ASR2GJo/0cUzeAaK4MugpF4NCgAUm01o73OguceGaUjdkgnuxUNERCnN5nSjx1v3MbEoC1kGJUORvCUebw2KafTVoABAiSiU7U7tQlkGKERElNLavTdhvVaC2aTzBQAJ3JDPX/cQGwUKYlhbIgKUcGtQAF+hbHOKz0JhgEJERCmtvVe5kRZmGSFJErISGAAE49soMPlFsl1hzkEBfAFKqs9CYYBCREQprc0boBTlKDfhzAQWoQZjHWKjQCGRRbKiBiU/hDH3gq/VmAEKERFRxNp6lZtwYZZSOyG6ePod7qTM8rCOsMSTqBoU/40Cw5lYW5I7OvbjYYBCREQprV0EKNneDIq3SNblkWFPwIZ8g4U6qC3eXTxdA745JnlDnEswYhYKa1CIiIiiIGpQirKV3/wzDb7aj/4kFMqOWCSboFH3Xd4C2dwMPXQhbBQoiCWe9j47nO7EB3ihYoBCREQpTXTxFHkzKFqNBJNeuX0lug5FlmVfDUqSi2Q7+rzLO2HUnwBAYZYBOo0EWQZae1I3i8IAhYiIUlqbXxePkMgN+fwNON1weZS6l6HnoCSmSFYtkA1zGqxGI6E4J/U3DWSAQkREKa1tUA0K4FvmSfS4e7G8o9NIai3MYNkJKpLt9C7xFIQxA0Ww5Io6FAYoREREERlcgwL4CmUTPU1WnSKboYckSUGPSVSRbKQZFACwjIJCWQYoRESUsjweWb0R+wcoicpSDNY9wk7GQOC5xbMNuqFrAED4NSgAUJKb+sPaGKAQEVHKstqcas2H/7TUzCTtaKxOtfULlgYTGRSPDNic8emS6bO71B2eF55VGPbPF5tZg0JERBQxUSBrNulg0PluWcnaMLDVez7jhglQMvW+2pR4LfO8uqMOPTYXzirKwhfPLQ7750vMrEEhIqJRxuX2YO2+Rtz8P1sx40fvYsvx9qSdiyiQLRoUECRyvxt/oi13XM7QAYpGI6kBVDyWoNweGc9tOgkA+MZFE6DRBK+FGc5o2DBw6EU0IiIac9bua8KP3twXcOPadKw9omWEWGgfKkBJVgYlhAAFUAKoPoc7Lm3Q6w8241R7P3Iz9Fg6tzyi11ADlG5mUIiIaBRY9eFRNFvtKMo2YFqpGYBvYmkytPeJmo/ATpVk1aCEGqBkx/H8nv34BADgpvmVAVN1w2Hx1qD02F1J23RxJAxQiIhIVe/tDHn+m/PxlXnKb+eiiyYZgs1AAZLXxdMWpOU5mGxvl0+PzTnsceHaV9+NrSc6oNNIuO3CqohfJ8ekV7NQqVqHwgCFiIgAADanWw1GxudlIN87AKwziRmUYFNkAd8clERPkg01gyI+u1gHdy9sOQUAuHpmKUpzM6J6LbHMk6qtxgxQiIgIANDorUfI0GuRm6FXB4CJPV+SQR3SljO4BkXJUCRys0BZln1dPCMEKCLj0x7jAOVAoxUAsGRWadSvJc6xM4l/v8NhgEJERACAxm5leac0zwRJktQR6kmtQRFFsoOmpSZqWqu/7gEnnG5lJktR9vDTW8USkAiwYqWhSwkix+dFlz0BgNwM5RrE8LlUwwCFiIgAAI3em1+Zd+kgP0uZUNrR54jrRNThiAzE4MFomcbEd/GI5Z3cDD2MuuD78AiF3oBK1NDEgs3pVpe8YhOgKH+/XQPJC0CHwwCFiIgA+GVQvGPQRR2F3eXBgDOx3TJCW0/wLh51iSeBXTyh1p8AvoCqLYYZlCa/Jbi8CMbbDyZegxkUIiJKaQ3eG2Cp97fzTINWnd6ajE4em9ONHu8STlHW4EFtSgYjkUs8oUyRFcQSUHsMMygNg5bgoiUyKN39DFCIiCiFNXpbjMu8GZTAOpTE38REUKTXSjBnBM77SEaRbDgZFLUGpS92GZRY1p8AzKAQEdEoIbp4xE63APw6eRKfQRHZh8Is4xkZA1GD0ueI747B/sJb4vFlUDye2JxfgxpAxiZAUWtQmEEhIqJUpt4A/X5Dz/f+lp2MWShtQ0yRBXwZFFlGwupjwglQxM7LLo8Ma4yGtfl3WcWCusTDDAoREaWqPrsLVptSz1GaIhkUX4HsmQFBhl4LkVRJ1Lj7cGpQjDotzN5psrHq5KkXXVYxWuJhgEJERClP/HaeY9Qhx+TrEClQp8km/iYmWoyDzRzRaCRk6hPbaiwyKIOHxg0l1rNQYr3Ek5fJOShERJTiRAHm4OUDkUHpTEoNyvD73mQmeFhbWxgZFCC202RlWfYVMcd4iafX7oLT7YnJa8YSAxQiIvKbgRL427moQelIQg2Kr0g2+NRWsWFgIjp5XG6PGmiEUoMC+PYPisUsFOuAC33e64zVEo9YglJeP/WyKAxQiIhIzaAM/u28IIkZlLYhpsgK6oaBCcigKNN0AY3k+0xGIjIosahBEbtMF2QZYNIPP8U2VDqtBjneIK+LAQoREaWioTMoyatBEUWyQ+17k8hZKC1+BbtaTWhD0mJZgyL+fmK1vCPkpvAsFAYoRESkzkDx7+ABkptBEUPOhqpBSeQ02XA6eIRYTpONdYGskMrTZBmgEBFR0BkogG/aaEd/YjcMlGXZV4MyRAZFFMn2JyJACWMGihDL/Xhi3WIspPI0WQYoRERjnCzLI2ZQHC5PQsfKWwdccHknsA5V85ElalAScF4RBShZseviidcST16G2Mog9XY0ZoBCRDTGWQdcavAxuAYlQ6+F0bthYCKnyYr3yjJoYdQFLwrN8mZQElEkG0mAIualxCKDMlSGK1pmdVib7zM80tyDNXsacLi5J6bvFS4GKEREY5zYJTcvU48MQ2AwIEmSXx1K4pYBxJKDGCYWTCKLZCOqQfG2GffYXLC7ojtHdU5NjGtQxBJP14Av+HzvQDNWvLQLv99wPKbvFS4GKEREY9xQHTyCCBISOQtFBCjiN/xg1A0DUzSDYs7QQeft+ImmUNbtkdFkje1OxkKwcfciWzM+xstJ4WKAQkQ0xqkzUHKD35AKsrwbBiawk0fM5cjN0A15jBjU1peAUfdtEQQokiQF7GocqZYeG9weGTqNFNb7hyIvSBePCFBKYxwMhYsBChHRGNfUHXzMveCbhZL4DErucBkUg6hBSVyR7FAtz0NRp8n2RV6HIgJIi9kU8gyWUAXLoIiC6VjXu4SLAQoR0RjXMMISTzJmoYjR66LLJBjRxRPvzQJtTjd6vMtI4WYwRKFsNBkU35JL7AOGXLUGxReg1KszV7jEQ0RESdQ4xJh7IZk1KOIGGkyWullgfDMoInti0GkC9q8JRVGWGHcfTQYlPi3GwJkZlB6bEz02JRjjEg8RESXVSEWyBZmiBiVxXTxiLsdwSzxikmy8Myj+HTySFN4Si68GJfIARZ1RE4eAQQSf3f3OgHk4uRl6tcYnWRigEBGNcWKfGYt5iBqUrLFdgxJJB49QmB39Ek99nGagAL7P1+H2wOb0qO81eGBfMjBAISIaw+wutzpHJH+I5RRRg9KRwBqUUAKULENiBrWJJZbiCAIUUVTbFsVnF8+23yyDVm2F7hpwqMt98ah3CRcDFCKiMUy0l2okwGwKHgwko4unqz+EAMW7xDPgdMPtid8+QfvqrQCAqaXmsH821CUeWZbxl2212HS07YzHT7X3AwDK8zPDfv+RSJIUUIcSr4m1kWCAQkQ0hnX6BQKaIVpY8/0mySZqw0BrKBkUvxqJAWf8lnn21ncBAGaV54b9s2Ka7EhFshuPtOH+1/ZixV92BXzG9V0D6LW7oNdKmFiUFfb7h0Lt5Ol3+s1A4RIPERElkShGHW6kfIH3OYc7cRsG+kbdDx2gGHUaiJgqXss8fXYXjrb0AgBmjg8/QPEf1DZccPfillMAlGU0UQcCAIealP1wzh6XDb02PrfsgAxKd/xamsPFAIWIKAnW7GnAwsfWY+Ph1qSeh8igDBcIZBi0MOmV20Ui6lCcbo+6Q/FwGRRJkuK+YeCBRis8MlBiNqF4iCLi4YgAxeWRYR0Ifo6N3QNY/1mL7z0brOqfD3k37DvHkhP2e4fKf5psvPb8iQQDFCKiJFjzaSOarDb88G974t4mO5xu7yZxecMEAkBi61D8p5rmDFEXI8R7w8A9p7sBADMjWN4BAKNOixzv7JShpsm+sr0uoIbmQKNfgOLNoJxbEr8ARQSBnf0OteU8HjNXwsUAhYgoCU53KYWPDd02PLX+aNLOQ2RQ8odZ4vF/PhEZFHWjQJNuxNHuYsPA3jhlUPbVKwHKrAiWdwS1k6fnzADF5fbg5W11AIDzKvIAAAeDBSjxzKB4/26PtfbC6ZahkYZuOU8kBihERElwutNXZ/A//zyOI95UfqKJjMhwE1sBX6txV3/8h7WFMkVWEMPE4pWF2nO6CwAwI8IMCgAUej+79iDB3YeHWtFktaEgy4C7Lz8HgC+D4nR7cLy1D0BiMigHG5X/BotzTHGrdwlH8s+AiGiM6bE51Rv9RZMK4fLIeOCNfQnrkPHXHWoGJYGzULpDaDEWMr378cRiWFuL1YZ39jbC411u6bE5cbxNCRAiKZAVRB1KsE6eF7cqxbFfmVeO88rzAAB1HQPoHnDiZFsfHG4PsgzauBatis9Z1LukwvIOEGWA8vjjj0OSJNx1113qYzabDcuXL0dhYSGys7OxdOlSNDc3B/xcbW0tlixZgszMTBQXF+Pee++Fy5W8NVgiokQSXRr5mXo8fsMsmPQabD3Rgbf2NCb8XEQGZaghbYJ4PpE1KKEEKLEc1vbTtw/izhd34k+fnAAA7G+wQpaVjpZwdzH2V5yj3PBbrIEBSl1HPzZ4i6RvuqASuZl6NRD5rNGqBgyTLTlDtoDHgiiQdrg8AFJjBgoQRYCyfft2/P73v8esWbMCHr/77rvx1ltv4dVXX8WGDRvQ0NCAG264QX3e7XZjyZIlcDgc2LRpE55//nmsXr0aDz30UORXQUQ0ipzuUAKU8vxMVBRk4psXTQQAvLe/KeHnog5ES8EalOF2MhZ8GwZGH6CIgWi/33gcNqcbe0WBbBTZEwAo8Y6NF/vcCNtOdECWgXlV+ZjgnXEihsEdaLSq9SdT4ri8A5wZCI7qAKW3txfLli3DH//4R+Tn56uPd3d349lnn8Uvf/lLXHrppZg7dy6ee+45bNq0CVu2bAEAvPfeezhw4ABeeOEFnHfeebjqqqvw6KOPYtWqVXA4EjelkIgoWU53KjdC8dvyFO9NqSVIEWW8dalLPMNnK8QyRUKLZEPIoBQMU98RLpEdau2x45XtddhTH10Hj1DiLThttgYGKKJjxn8A27Qyb4DS4AtQ4tliDJzZYl6WAvvwABEGKMuXL8eSJUuwaNGigMdramrgdDoDHp8yZQoqKyuxefNmAMDmzZsxc+ZMWCwW9ZjFixfDarVi//79Qd/PbrfDarUGfBERjVaiQLY8XwlQxB4vrckIUNQ24+GzFYVZ0W96F/I5hVGDIrITTYOyE5Ho9AtyntlwDLtqOwFENkHWX6maQRkIeLwhyC7F07zB6sEm3xLPWM2ghL2X8ssvv4ydO3di+/btZzzX1NQEg8GAvLy8gMctFguamprUY/yDE/G8eC6YlStX4uGHHw73VImIUpKoQREBimWI37DjTZblkAa1AX6FnkPM8oilUKbICiI7EW2A4nJ7YLUpy0Rmky5gOWZGWWyWeJoH1aA0in1v/DIW070ZlENNPXB5i3XPiXuAEhicpkqAElYGpa6uDt/73vfw4osvwmRKXAro/vvvR3d3t/pVV1eXsPcmIoo1XwZF2fxNZFD6He64zfMIZsDpVgsjRZfOUAoT2cUTRpGsmkGJMrjr8r6nJAHfuXSy+nhFQcaIn81IxDn22l3osfnatBuDZFDK8zOQY9TB6ZYhy0BRtiGqAt1QpGoGJawApaamBi0tLTj//POh0+mg0+mwYcMGPPXUU9DpdLBYLHA4HOjq6gr4uebmZpSUlAAASkpKzujqEd+LYwYzGo0wm80BX0REo5WoQSkvUG4EWUYdsrztsi0JzKKIpRSdRlLffyiF3ptkV78TTrcnruclptuGEqD4L59E06Yt9iQym/S4eWGVGpDNGp8X8WsKmQYdzN5psv6ZnoYgGRRJkjC1zHePi3f9CQAYdBq1Xduo04xYj5QoYQUol112Gfbu3Yvdu3erX/PmzcOyZcvUP+v1eqxfv179mUOHDqG2thbV1dUAgOrqauzduxctLb59B9atWwez2Yxp06bF6LKIiFJTr92lLqv4z7YQ+7wkslC202+jQEkavo01L0OvbszXGecsSjgZFLE8ZnN6htzrJhQdfcp7FmQZkGHQ4t7F50KSgKtnlkb8mv7E3jYi09Nnd6lLSqWDMhaiDgVITIAC+D7r8XkZI/63kChh1aDk5ORgxowZAY9lZWWhsLBQffz222/HPffcg4KCApjNZnznO99BdXU1Fi5cCAC44oorMG3aNNxyyy144okn0NTUhAceeADLly+H0RjfNBYRUbLVe5d38jL1AfvMjMsx4kRbX0IDlO4Q608AQKORUJBlRFuvHW29jog2zgv5vMIIUEx6LfIz9ejsd6LROhDS9NlgfMGa8vM3zq/EDeeXw6CLzTxTS64Jh5p71GUdUTCbY9Kp03AF/wAl3gWyQm6GHo3dtpRZ3gHiMEn2ySefxDXXXIOlS5fikksuQUlJCV577TX1ea1WizVr1kCr1aK6uho333wzbr31VjzyyCOxPhUiopQzuMVYEHUoiVzi6QyxxVgoyhYtvfENosIJUACgxJudGDxnJBwiK+Q/UTdWwQkAlA4q5hW7BpcF2TV4mv8STwIDFMC3ZJYKwu7iGeyjjz4K+N5kMmHVqlVYtWrVkD9TVVWFt99+O9q3JiIadQa3GAti2mgiW4271FqP0IpARSdPPFuNbU43bE6lxiXUbEiJ2YiDjUBzNAFKiCP/I2UZVMwrMiilQcbKT7ZkozDLAJdHjusmgf5E5iiVMihRByhERBQ6tUDW28EjWMxKBiWRrcahDmkTCsQslDjWoFi92ROtRkKOMbRbVEwyKCGO/I9UaW7wDEppkAyKUafFa/9xITyyb1JuvC2aakHNqS58cUpxQt4vFAxQiIgSaMgMijdASWQNiuhcCbWNVt2VN8imd7GiTpE16UIu1hx884+EusQTZUvxUAYPlBMZlKGmtlYVZgV9PF6+Mq8C/zK3PGUKZAHuZkxElFCDZ6AI6oZyCe3iCa/WoygBSzzh1p8AfsPaosg++TIocQpQzIOXeM6cgZJsqRScAAxQiIgSyrfEk/wi2a4wb8piFko8i2TDGXMvxGLcvQjWCrLiu8TT0eeAzelWZ6CkUlFqqmGAQkSUIH3+M1CGKJK12lywOd0JOZ+uMNqMAd8ST1siMihhZDKG2usmHGKJJy9OGZTcDD1MeuWW22y1+TIoDFCGxACFiChBxB48uRl6mE2BQYE5Q6e2tSaqk2fw7I+RFCagzTiSJR7RIWO1udDviGxYm/gsCuJUgyJJkrrMc7i5F/0OJQgNViRLCgYoREQJMtQMFEC5ganLPD2JWeZRN+ULtc3Y28XTEccMSpcaoITew5Hjt1VAJMs8bo8c1gaFkRJLUTu9uyTnZ+qRMcIWA2MZAxQiogQZqoNH8O1qHP8MiizLvjbjEOsuRAalz+HGgCM+y1DWCDIokiRFVYdiHXDCu3Fw3IpkAV+2ZOepzoDvKTgGKERECTJUB4+QyELZXrsLLu9dOdSbcrbRtwwVr2WecLM6QjS7GovlnRyjDnpt/G6LIgDdc7obAFAWZEgb+TBAISJKkKE6eATfEk/8Mygie2LUaWDSh7bMIEkSirLi22ocSQ0KAJSYIx/WptbixKmDRxAFsQNO1p+EggEKEVGC1Iv9V4aYfZHIHY0jnftREOdCWdH6bA4zQIlmWFun2Mk4jss7gC+DIgQbc08+DFCIiBJETGAdlxN85/ZxScighFsUKgpl49VqHGmx6uC9bsLR0R/fFmNhcEtxsI0CyYcBChFRgohlETGRdbBE1qCE22IsiELZjjjtx9M9oLQJh7vEM3i34HB0xbnFWBgcoHAGyvAYoBARJUC/w6XWHoiJrIMlckdjkakId4mnSEyTjcN+PLIso1vdYTnMGhR1WFsEGZS++LcYA8rfu1bjGyefSjsHpyIGKERECSCyJ0adRp3ZMZjY0bi9zwGHyxPX8+mM8KZcGMci2QGnG0630lkUaYDS3mcP+7NTMyhxXuLRaiRYvFkySTqzJoUCMUAhorTXYrXBIwZdJEmrN+NQlG0cclO2/EwDdN7fsNviuGMwAHQNRFZ3IbI/bXFY4hFZHb1WQmaYA8wKMg0waDWQ5fAH3Ynlqrw4L/EAvkCqKNuotmxTcPx0iCitfXioBfMfW4/ffng0qecxUv0JAGg0UsIKZdUi2TAzFb4MSuzPz7/FONyddTUaCZZc5bMLtw5FfBbxzqAAvgCljPUnI2KAQkRpbfuJDgDAqzV1kOXkZVHEDX2o+hMhUYWykbYZq/vxRLHEU3OqA0ue+id2nOwIePxUuzInJtJiVbHXTbidPB3qZxHfGhTAN6+FM1BGxgCFiNKaGBtf1zGA4219STuPdu8yQuEIN99xOYmZhSKyBrlhd/F49+Ppc0Qc8P1tZz32N1jx6/VHAh5/d38TAODCs4siet0S701/pAzK23sb8cauevV7UYOSn4Alngsm5AMA5nn/l4YW+m5MRESjkH89wkeHWnH2uOyknEdbqBkUc6KWeCLMoHhv4g63Bz121xm7Moei0bur8ydH29DaY8e4HCMcLg/eP9AMALhqRknYrwn42naH6+TpHnDiO3/ZBbdHxtyqfJTnZ6CzP7KOpkhcNbMUux68PCHB0GjHDAoRpbUWv433PjrUkrTzaAuhBgXwLfG0xmhH46GyHF1qm3F4AYZJr0W2UfndNtJlHhFAeGQlmwEAm4+3w2pzoSjbgHkTCiJ6XfHZNQ+zxLP3dDfc3oLpfx5pg9XmUr+Pd5uxwOAkNAxQiCit+WdQth7vQL/DlZTzaPfr4hlOLHc0PtrSg3k/eR+rBhUIuz2yryA1gptyQZSFsv41Im9+2gAAWLtPCVSumF4SMCskHOKzaxnms9td16n++eOjrWomKdOgDXlPIkoMBihElLbsLrdf+l4Ph9uDzcfak3IuIttQGGIGJdxW2WA2Hm5De58Dv3jvEA40WNXHd9d1QZaVWRzh7hoM+K4hknH3Aw63Wv8CADWnOlHb3o/39ke3vAOE9tntrutW//zJ0Xb1GhKxvEPhYYBCRGlLTGQ1aDW4emYpAKUOJRnE5npiL5uhiGmyw2UBwn1Pjww8+Pd98Hhk9Dtc+P6rnwIArptdFtEsDnENkWwY2Nit1J9kGbRYeJaylPPQm/vQ3udAboYeC88qDPs1Bf/sU7ClLVmWsbuuS/2+e8CJfx5R/nvIj/NOxhQ+BihElLZEoem4HCO+eG4xAOCjwy0Jbzd2e2R1GFhRzggZFLPYjM+u1kZEqq3Hl+GoOdWJ/6s5jZVvf4YTbX0oMZvw8HXTI3rdoihajUWHTWleBq6bPR6AL2i8fJoFem3ktyXx2Q043ei1n7mU19htQ1uvHVqNhEvOGQfAt8TEDErqYYBCRGlLzBIpNhtx4aRCGLSapLQbd/Y7IGKNkYaBFWYZIElK1iOSDIU/0Tk0pSQHAPDwW/vxv1tOAQB+/pVZEe/eG82GgaJAtjTXhKtmlKiTc4HolncAINOgUwt4g3VBferNnpxrycHlU5WA9Xir8t8CA5TUwwCFiNKWuEkV5xiRadBhgXdJ4cPPEtvN097rGwSmGyFDoNNq1CWUaJd5xDj6uxZNxrmWHPQ5lM0Kv37hBHxu8riIX1ecXyTj+MUST4nZhPwsg5rJyDbqcPHkyOaf+BNZlGCdPLtPdwEAZlfk4eJB15+IIW0UHgYoRJS2xA1e1CZ83nsz3HikLaHnEeoUWcHXahxlgNLju/6ffHkGdBoJ51iycd+VU6J6XV+RbCQBim+JBwD+dX4lAOD6OWUw6qLvohnusxMZlDkVeZhQmInyfN80V7b+ph4OaiOitCV+ixY3rblVyvTOI809CT0PkckYaQaKYDEbcaBx+HkeI5FlWQ0girKNqCjIxIff/wLyMvXICHMjvsFEIW8krdBNfks8ALBomgUb7v1CzEa/D1Vk7PbI2Hta6eCZXZEHSZLwuclF+Mu2OgBc4klFzKAQUdryLfEoN62qwiwAym/xNqc7YechMhmhZ1CiH3ff53DD7vJ431e5+VYUZCIngsmvg433Zj8augbCLjhu8AYoJX6b5VUVZsVsZ1/LEEs8x1p70edwI9OgxaRiZZrwxZN8yzzMoKQeBihElLaa/YpkAaXOIMekJI7rOvoTdh6i2LUoxJugb9x95BkUERRlGrTINMQ2WW7JNUKSALvLE3ahbJO3BqU0Trv5DhXcifbimeNz1UFwF55dCLFpMmtQUg8DFCJKW62DMiiSJKGqMBMAcLI9gQGKOqQtvBqUaIpk20KcXBsJo06rvm5D19BB1Jo9Dfjle4fUdmmb0zc4L167+Q5VJCvqT86ryFMfy88y4KoZJcgx6TCt1ByX86HIsQaFiNKS0+1RdxAWaX9AWU7YV2/FqfbEtRq3hThFVojFjsah7v0TqbK8DLT22NHQPYCZ5bkBz7ncHvzkHwexetNJAMC8CQW45Jxxav1JpkELsyk+tx8RjA4ukhUZlNl+AQoAPHXjHAAYsbuKEo9/I0SUlsQNSqeRAgogqwqUDMqpRGZQ+sLLZogsQDRdPKHunhyp8XlKINDg3ZlY6O534hurt6vBCaAMiQOABtFinGuCJEW2385Igu0GbXO68VmTUhg9OEDRaTUMTlIU/1aIKC35T5HV+A0Dm+AtlD2VwBoU33JLiDUofnvKRDr1tl3NoMQnQBFLNP4BiizLuPVPW/HPI23I0Gtx5XRl8Noub/ZicAdPPIiW8l67C33eabIHG61we2QUZRtQFsf3pthigEJEaclXIBt4Q6osFBmUxC3xqDUoI+zDI4zzBihOt6zWbIQr3KAoXGWik6fbV+vR0mPHp6e7oZGAv915IVZcOgkAsKu2Ex6P7DdFNj71J4Ay8C3T20YtglSRPZlaao5b5oZijwEKEaUl/ymy/kQGpb5zAE63J+7n0e9wod87wTXUGhSjTqt2lUTayRPPIlkAaibCP4NyrKUXgFLnM63MjCklOTDpNeixuXCstVedIhvPDArgy6KIrQ4+a1R2cp7KQthRhQEKEaWl1kFD2oTiHCOMOg1cHvmM+ol4ENkTo06j7hMTimh3NY73Ek9Z3plLPMdalQDl7HFKEKjTajCrPA8AsKu2S13iKYlzgCIyUM3eIPWgN4Mi9iSi0YEBChGlpeZBY+4FjSaxrcbtfb5AIZzlhWDFnuHwFcnGd4mnpceuZqKOeTfeO3tctnrc+ZXK9N6dtZ0BGwXGk69NW6nhERmUKSXMoIwmDFCIKC2JpZHBGRQAqCxQfsOvTUAdim+KbHiBwric6Ia1tcZ5iacwywCDVgNZ9hW/+jIovgBlTmUegMAMSjxrUAC/JZ4eOxq7bbDaXNBpJJxdnBXX96XYYoBCRGlpqAwKAExIaAbFG6CEOUo9miUeu8uNHpvSwRKvIlmNRkLpoFZjUYNydvGZAcrhlh41m5TIDMpBb/bk7HHZMdmMkBKHAQoRpSX/NuPBqgoTNwulLcJakGh2NBb1J3qthNyM+I1wL/NmQhq7beizu9SOHlGDAiiBVnl+BkS3tEmvies5AYEZFNHBM6WU9SejDQMUIko7LrdHzVwUm4MFKN5ZKAlY4gl3zL0gbrKR7Gis1p9khVf3Ei6RQanvGsBxb/1JUbYBeYN2BhZ1KICyvBPvVl8R3DX7ZVBYfzL6MEAhorTT1uuALANajRR09ojIoNR29MPjiWwQWqh8U2TDXOKJoki2PczR+pHy39VY1J+c5Vd/IpzvXeYB4r+8AwR+dr4ZKMygjDYMUIgo7YjC0qJsg7pzrb/xeRnQaSTYXR40R7FjcCgi7aaJZppsvAtkBdHJ09htC1ogK8zxy6DEu8UY8A3n67G5cNx7XpyBMvowQCGitCMKZEWh6WA6rQbl+crN9WRbfOtQwp0iK4hztzk96PGObA/7PeOcQSn1G9Y2eAaKv6mlZhh1moCfiaccow4mvfJ+HhnIz9QH7eai1MYAhYjSjsigWILUnwiV3jqU2o7o61Bcbg8eeGMvnt90MiDbUXOqE8fblNcPVgsznAyDFjnewW7hdvKIrM24OGdQApZ4WpTrnFR8ZgbFoNNglnfHY5F1iSdJkgK6t6aUcMT9aMQAhYjSjrihjxsigwLEttV4+8lOvLClFj96cz++9/Ju2Jxu7Dndha//aRscLg8+N7kI51rCr4EYZw5tFkpnnwNv721U62niPeZeKPUGG1bvKHsg+BIPANy7eApuvKACV88ojes5Cf4ZE3bwjE6hz10mIholhhvSJlQWeAtlYxCg1HX6XuPNTxtwrLUXpzsH0GN3Yf6EAvz+lrkR/QZfnGPE8da+YVuNZVnGv/15B2pOdeKxL8/Evy6oTNgST7ZRB7NJB6vNBZdHhlGnUbMqg82fWID5Ewviej7+/Jf3prKDZ1RiBoWI0k5TCCPVxaaBJ2PQalzfqQwqO68iD/mZeuxvsKJ7wInzK/Pwp29cgExDZL8LhtJq/O7+ZtSc6gQAvL7rNIDEZVCAwCWbs8ZlQxOkKDkZ/JfUmEEZnRigEFHaaQxhUzr/YW3hdskMVu+dpLpoajH+vvxizJ9YgM+fMw6rvzk/rA0CB/NNRA2eQXG5PXji3c/U77ef7ER910Dc9+Hx5x+gBCuQTRaRQdFIwDkRLK9R8nGJh4jSTpN15AClPF8JUHrtLnT1O5Ef5ih6fyKDMj4/A5WFmfjrv1dH/Fr+1HH3QyzxvFpzGsdb+5CfqUdFQSb2nO7Gm7sb0OEdKR/vIlkAKMvzfcZD1Z8kgyiQnliUBZOeI+5HIwYoRJRWbE43uvqdAIBS89AdIxkGLcblGNHaY0ddZ390AYo3gzI+LzPi1wimeJgi2QGHG0+uOwwAWHHpZBh1Guw53Y0XtpyCmD1XEMU1hSoggxKkgydZLp5chNkVefjK3PJknwpFiEs8RJRWRP2JSa+BOWP438EqvLNQ6joGIn4/j0dGY7cvgxJLvh2Nz8yg/OmTE2jpsaM8PwM3L6zE1TNLodNIarCUn6mHThv/f+LL/HYmnpRCGZTiHBP+vvwi3LywKtmnQhEK67/ep59+GrNmzYLZbIbZbEZ1dTXeeecd9XmbzYbly5ejsLAQ2dnZWLp0KZqbmwNeo7a2FkuWLEFmZiaKi4tx7733wuUKbwgREdFQxPJOKHu+VHg7efy7cMLV0mOH0y1Dq5FgifEwMFEk29R95jTZV3fUAQDuXnQOjDotCrIMuHhykfp8IgpkAV8GRZKU5RSiWAkrQCkvL8fjjz+Ompoa7NixA5deeim+9KUvYf/+/QCAu+++G2+99RZeffVVbNiwAQ0NDbjhhhvUn3e73ViyZAkcDgc2bdqE559/HqtXr8ZDDz0U26siojFLZFBKzCNPLK3w1qHUdUQeoJz2BjclZlPMMxbl+RmQJKDf4Ua7t64EABwuD2q95+wflFw3u0z9c6IClHNLcpCXqcf8CQXIMLDWg2InrP83XXvttbj66qsxefJknHPOOfjpT3+K7OxsbNmyBd3d3Xj22Wfxy1/+Epdeeinmzp2L5557Dps2bcKWLVsAAO+99x4OHDiAF154Aeeddx6uuuoqPProo1i1ahUcDscI705Eqay1x47P//xDPP7OZyMfHEehdPAI6iyUKAIUtf4kxss7AGDUadUlFP+dl+u7BuCRlWUs/1kvV0wvUUfKJ6KDBwByM/TY9MNL8eK/LUjI+9HYEXG473a78fLLL6Ovrw/V1dWoqamB0+nEokWL1GOmTJmCyspKbN68GQCwefNmzJw5ExaLRT1m8eLFsFqtahYmGLvdDqvVGvBFRKnlk6NtONXej2c2HMO++u6knUdzCB08QnmBcvM/3Rl5DYr42fI4jXAXQdQpv4FyIlipKsgKWMbKNupw2dRiAEPvQxQPmQZdQupdaGwJ+7+ovXv3Ijs7G0ajEd/+9rfx+uuvY9q0aWhqaoLBYEBeXl7A8RaLBU1NTQCApqamgOBEPC+eG8rKlSuRm5urflVUVIR72kQUZ/7LJD9bm7wsiihYDWVTOrHEU985oI6JD5fIoJTHIYMCABOKzhzJL4KVysIzu4Z+eOVULD2/HLddyOJQGt3CDlDOPfdc7N69G1u3bsWdd96J2267DQcOHIjHuanuv/9+dHd3q191dXVxfT8iCp9/oek/j7Th4yNtSTkPUYNiCaEGpTTXBK1GgsPtQfMI+90MxX8GSjxUFiiFp/5LPCJAmRAkQKkszMQvvjobVYUsWKXRLewAxWAwYNKkSZg7dy5WrlyJ2bNn49e//jVKSkrgcDjQ1dUVcHxzczNKSkoAACUlJWd09YjvxTHBGI1GtXNIfBFRahFLHWIvlsfXHow4KxENXxfPyAGKTqtRB41F2mocrxkowoTCoZd4KhmEUBqLetHQ4/HAbrdj7ty50Ov1WL9+vfrcoUOHUFtbi+pqZapidXU19u7di5aWFvWYdevWwWw2Y9q0adGeChElkcigPHjNNGQbddhXb8WavY0JPQen26PODAmlBgWIrpNHluW4Z1BEJiQgg9IxdAaFKF2EFaDcf//92LhxI06ePIm9e/fi/vvvx0cffYRly5YhNzcXt99+O+655x58+OGHqKmpwTe+8Q1UV1dj4cKFAIArrrgC06ZNwy233IJPP/0U7777Lh544AEsX74cRmNiWuKIKPZcbg8aupTMxXkVebjjkrMAAL9+/3BCz6O1xw5ZBnQaCUVZof2bEk0nT2e/EwNON4DQMjaREHUmnf1OdA844fHI6rlOYAaF0lhYo+5bWlpw6623orGxEbm5uZg1axbeffddXH755QCAJ598EhqNBkuXLoXdbsfixYvxu9/9Tv15rVaLNWvW4M4770R1dTWysrJw22234ZFHHontVRFRQjV22+D2yDDolLbXW6ur8Mt1h3GstQ+9dldUG+aFQyzvWMymkHfVjWZYm5iBMi7HGLf9XrKNOhRlG9HWa0dtez8Ksw1wuDzQaaS4BUVEqSCsfzWeffbZYZ83mUxYtWoVVq1aNeQxVVVVePvtt8N5WyJKcf6tthqNhLxMAwqyDOjoc+BUex+ml+Um5DyawpiBIojum9MR1KDUD6q7iZeqwky09dpxqqMPPXZln6GKgky29lJa43/dRBQ1kX3wr8MQ9REn2yIfghauxjCmyArRZFDi3WIsVPkVyqotxgWsP6H0xgCFiKJ22lsTUeF30xT1ESf9ijvjLZwhbYIokm2y2mB3ucN6v9NxLpAVqvxajYdrMSZKJwxQiChqdd4btbjZA8AE78ZxJ9sSF6BEkkEpyjYgQ6+FLPuWbIbi8cjYe7pbbZ9WMyhxXuLxH9bGFmMaKxigEFHURIuu/1KHGqAkMIPS5J0iG04GRZIkVHhH3tcNE6DIsoy7XtmNa3/7MX7wtz0A4j+kTVA7jfyWeJhBoXTHAIWIoiaWOgKXeM4c0R5v4Qxp8xfKLJTfbzyONz9tAAD8X81pvLO3Me5D2gSxXNZkteF4Wy8AX10KUbpigEJEUbG73OqY+IogGZTWHjt67a64n4csy2juVoa0hTLm3t9IhbIfHmpR9xeaU5kHAPjha3vRPaB01MQ7g5KXqYfZpDRd2pweSBJQns8AhdIbAxQiikp95wBkGcg0aFGQZVAfN5v0KPR+n4g6lI4+BxxuD4DwA5ThWo2Pt/biu3/ZBVkGbppfgVfuqMb0MrManORm6OM+50WSpIC9dUrNprjNXSFKFQxQiCgqom6jPD8DkhQ4HK0qyD4y8SIKZIuyjTDowvunbbgMyq/XH0GPzYW5Vfl4+LoZMOg0ePJr56nvEe8ZKIL/kg43AqSxgAEKEUVFTFOtCLLkkMhCWd+QtvC3zRhu3P3xVuXcv/35s9Wg5BxLDu6/agoAYHZFYobQBQYoXN6h9JeY+dNElLbELsAVQQaHqbNQErDEIwpkS8zhZzTEuXf1O9FjcyLHpFef8xXCBr7uNy6aiAUTC9UW4Hjzz5owg0JjATMoRKPcJ0fbsHZfU9LeXyyLBJummowMSiT702QbdcjPVIKSOr86lAGHGx19DgDBl3KmlZmRaUjM73lVBcyg0NjCAIVoFDvU1IPb/rQN//FijTpFNdFOqzNQzrxpTvT+pn8iAePuRaYjnBko/oLVoTR456pkGbQwZyQ34SyCPYABCo0NXOIhGqVkWcaDf98Hl3eq6bGW3rC7V2LBNwPlzAxDlXf5o63XHvNdjXtsTryxqx4bDrdhz+kutPQoLcbhTJH1V5GfiT2nuwNmofgPYhtcAJxoxTlGTCjMRK/dhbPHZSf1XIgSgQEK0Sj1+q56bDvRoX5/sr0fF05K7Dn02V1o9y6BBMugiFbj9j4HTrb1Ycb46AtKj7b04E+fnMQbu+rR7/DtnaORgNkVebjknHERva7IoJz2mybb4M3KlCWoU2c4kiTh7e99Di6PzBZjGhMYoBCNQt0DTjz29kEAyhCvrn4nTnUkbqS8IG7mZpMOuRn6oMdUFWaivc+BU+39UQcoNqcbX/rtJ+jzBiaTirPxL3PLMbcqH9OjrAcRGSD/Tp6GIQpkkyVR9S5EqYD/tRONQr947xDaeh04e1wWvnZBBR57+zOcSkCdx2B1QXYxHmxCURZ21nbFpFD2eGsf+hxuZBt1+OOt87DwrIKYLb0EG3d/OoUyKERjDQMUolGm2WrDC1tOAQAe/dIM2F3K9NRTw+wjEy91w8xAEXyFstEHKGIn30nF2ag+uzDq1/Pnv8QjyzIkSUq5DArRWMIuHqJRZtuJDnhkYHqZGRdOKkKlOq21D7IsJ/RcjrUqG9dNHDf0XI4qb/fJqRhkUE54X2NiUezngJTlmSBJwIDTjbZepa6moUvpjIr3XjtEdCYGKESjzI6TSmHsBRMKACjzRzQS0O/w3VgT5UizEqBMLh66qySWrcZi4Fs82myNOq3aAVTX2Q+PR0ZjN5d4iJKFAQrRKLPjVCcAYN6EfADKjbU0V7mBxiJLEQ6RQZk0TIDi32rcY3NG9X4nvXv6xCODAvjNQunoR2uvHU63DK1GgiUn/PH5RBQdBihEo0iv3YWDjVYAwLyqAvVxMW49EZvyCZ19DjVjM9xcDrNJj6Js5QYv9rWJlMigTIjTqHf/Qll18JvZBJ2W/1QSJRr/X0c0iuyq7YRHVoo2/Semir1ZEplBOerNnozPy0DWCAPYxBLQ0ZbeiN+v3+FSh7HFLUDxthrXdQyoQ9rK8hI//I6IGKAQjSo7TirLOxd4l3cEsU/LyQRmUET9yXDLO4I45kgUAcpJbw1LfqYeuZnBZ65ES82gdPan1JA2orGIAQrRKFLjrT+ZO6Eg4HE1g5LAVmORDQklQJlsiT6DIuaoxHMnX//9eNhiTJRcDFCIRgmX24Ndtd4C2apBGRS/VuNEOdLSA2D4Dh5h0jgRoPRE/H4n49hiLFR6A5SGLpsa7DGDQpQcDFCIRonPmnrQ53Ajx6TDOZacgOdEgNLV70R3f3SdMqE6FkYGRRxT29EPm9M9wtHBxbPFWCjOMcKg08DtkbHTm61iBoUoORigEI0SYv7J+ZX50GoCx7tnGnQY522FTcSePL12Fxq6lSFmoQQo43KMMJt08MiRT5SNd4sxAGg0Esq9AYnV5gLAIW1EycIAhWiUUOefDFreESYUJq7VWGRPirKNyMs0jHi8JElqIBNpHUq8W4yF8kH7CpXmsouHKBkYoBCNArIsqx088wYVyAqVBYlrNRbdOKHUnwiTi3MCfjYcffb4txgLFX4ZE7NJhxxTfDqGiGh4DFCIQiTLcsL3uhHquwbQZLVBp5FwXkVe0GMSmUEJp4NHEMceCzFA8Xh8n7e4pni2GAv+OzOPH2YTRCKKLwYoRCH6r9f34fxH16HJW3uRSB8dagUAzBifiwyDNugxvk35EhGgeDt4LGEEKBYxC2XkTp49p7sw9aG1eHztZwAS02IsVPoHKBzSRpQ0DFCIQlDX0Y+Xt9eis9+JTcfaEv7+b37aAAC4embJkMeIYW2JKJJVMyjDjLgfTBx7oq0PLrdn2GP/9PEJ2F0e/HHjcRxt6VELa+NZICtU+GVN2GJMlDwMUIhC8Mr2OojVnZMRdqFEqrF7ANu9HTzXzCob8jhRm9FstaPf4Yrb+dicbtR6Z4RMCiODMj4vAxl6LZxuediBcj02J9bubwIAeGTgZ2sPqXU18WwxFsS4e4AtxkTJxACFaAROtwcvb69Tvz8e4wDF45HR0DUAtyd4fcuaTxshy8D8CQXD/kafm6lHboZSn1Ebx4myJ9r64JGVAtJx2aHv8qvRSDi7WAmihuvkeXtvI2xOD0rMJmgkYN2BZnzwWQuAxGRQcjP0yPHuLcQMClHyMEAhGsG6A81o67Wr30c6x2MoP35rPy58/APM/PG7+Oozm/H4O5+hs8+hPi+Wd649b+jsiSBu4GKfnGjsrO3EG7vqzygMVjt4LDmQJCnYjw5JdPIMF6D8X81pAMBtF07A1y6oAAB11+R4d/AASkv0eZV50EhKzQ8RJcfwW5ASEV7cegoAcNWMEryzrwkn2/ogy3LYN+ehbDneDgDod7ix7WQHtp3swPaTHXjpWwvQ0GXD3vpuaDUSrp4xdP2JMLXUjN11XTjYaMW1s0cOaIbz3b/swmnvjr7XzxmvPn6oyQogvPoTYaRZKCfb+rD9ZCc0EvBl73u+vqseNqdSs5KIAAUA/nDLPLT12gM6eogosZhBIRrGibY+fHK0HZIE/ODKKdBIQJ/DjdYe+8g/HAJZllHvDQL+59Z5eOJfZsFs0qHmVCd+/OZ+vLlbyZ5cNKkIhSEsp0wrMwMADjZaozovp9uDeu9meT/5x0FYbcr4/LqOfjy/SQnY5g4xMG44vl2Ng3fyvLZTyZ58bvI4lOSaUJJrwjcvmgggMS3GQoZBy+CEKMmYQSEaxl+21QIAvnDOOEwsykJ5fiZqO/pxvK0PxeboW1C7B5zocyh701w8uQgmvRbFOUZ8c/V2/GVbHTK9LcXXhZgNmVaqBCgHogxQWnvsalFwW68dv3zvMB68Zhr+89VP0Wt3YW5VPpbOLQ/7dX2zUPrg8cjQ+I3s93hk/G1nPQDgX/xe+84vnI2T7X2YP8SAOiJKT8ygEA3B5nTj1R1KceyyBVUAfDUesapDEUsoRdlGmPRKMPKFc4tx35VTACjLPgadBounW0J6vSklOZAkpZPHv24mXE1WZdaLQaf8E/HnzSdx/2t7sO1EBzINWvzyq7PP2A8oFFUFmdBrJQw43WqGRthyvB31XQPIMelw+TTf9eaY9Pjdsrn4ujeTQkRjAwMUoiGs3deEzn4nynJN+OKUYgC+ACVWrcbiJj14Q7o7LjlLzZpcPs0S8rj1LKMOE711GtEs87R4A5QZZWZcO7sMHhn46w5l+eWha6ZFPDBNp9XgrCIli3K4OXCZ5/2DSqfOkpmlarBGRGMXAxSiIby0VVne+doFlWq2QAQosWo1FvUn5YPaWSVJwn9/ZTZ+c9McPPqlGWG95lSxzNMQeYAipuVazCY8sGQqsr1tt4umFqudNZGaWqp08gwOoA40dgMYeq8hIhpbGKAQBXG4uQfbTnZAq5ECbsjxWuIZnEEBlOWVa2eXoSBr5N2C/YlC2WjqUJq9RcAWswkWswlPfu08LD2/HD9bOivq7qVg5yfLshpQiToaIhrbWCRLFITIniyaWoySXF8xrAhQatv74fbIEdVh+KvvUgaqxXJi6bQYZFCa/TIogLLM5F8XEo1gGZ76rgFYbS7otVJYGxASUfpiBoVokAGHG3/ztruK4lihLC8DBq0GDrcHDYOKPCOh1qDEMkDxZiiOtfbC5nRH9BrNPUqAUpIb+qTYUIkA5VRHP3rtykh+EaxMKs5RC3OJaGzjvwREg7y1pwE9NhcqCzJx8aSigOe0GkndDyYWdSj1wyzxRKo4x4jCLAM88pmFqKFSa1ByYr+bb1G2ERazEbLsG/omlnu4vENEAgMUokFe9C7v3DS/MmBOh6DWobRGN06+3+FCZ78yAC2WAYokSVEXyrZYvTUoubEPUIAzl6HU+pMyBihEpGCAQuSnvmsAn9Z1QaeR8JV5wQeRqa3G7dFtyCeyJzkmHcwhthGHKppC2T67Cz3epRdLDIbRBTP4/JhBIaLBGKAQ+TnRqizbVBVmomiI0fKxajU+HYf6EyGaQtlm7wyUbKNObS+OtWmlyiZ8Bxqs6B5wqt1MDFCISGCAQuTnZLsIUIYeROZrNY5uiUedgZIf+z1f/Pfk8XjkEY4OJKbIFptjXyAriPP7rKkH++uV+Sfj8zISttcOEaU+BihEfmo7lGUbUQgbzMRxSoBS3zkAuyuyLhnANwOlPIb1J8JZRVkw6DToc7jVawqVqD8pidPyDqCMvM80aGF3efCPvY0AWH9CRIEYoBD5ESPsJwyTQRmXbUSWQQuPrOzuG6l4tBgLOq0GU0qUia3h1qGIDEq86k8AQKOR1PN781Nlx2Yu7xCRPwYoRH5EtqFymAyKJElqFuV4a+R1KPWd3iFtccigAMC5FiUACLfVuDkBAQrgy5j02JSC3KkMUIjIDwMUIi9ZltUalOEyKAAwaZwy7XR/FNNa45lBAaBOZD0WZhClthjHsQYF8BXKCtO5xENEfhigEHm19Nhhc3qgkUYOGhaeVQgA+PhoW0Tv5XB50OLd7yZeGZSzvUHUsZbwinnFEk88a1CAwJqTHKMuLrU4RDR6hRWgrFy5EhdccAFycnJQXFyM66+/HocOHQo4xmazYfny5SgsLER2djaWLl2K5ubmgGNqa2uxZMkSZGZmori4GPfeey9cLlf0V0MUhVPtviWXkcatXzxZmTC7u64LVpsz7Pdq7B6ALAMmvQaFYW4GGKqzvRmU4229Q3byeDwyNh5uxal2X5alWe3iiW+Acq4lB2IO3tQyc9SbEBJRegkrQNmwYQOWL1+OLVu2YN26dXA6nbjiiivQ1+f7x+3uu+/GW2+9hVdffRUbNmxAQ0MDbrjhBvV5t9uNJUuWwOFwYNOmTXj++eexevVqPPTQQ7G7KqIIqC3GBcMv7wBKa/DEoiy4PTK2HGsP+71Ei3FZXkbcbswV+RnQayXYnB51Ocnf/oZu3PD0Jtz6p2249U/bIMsyZFn2dfHEaYqskGHQ4ixvlocFskQ0WFhTmNauXRvw/erVq1FcXIyamhpccskl6O7uxrPPPouXXnoJl156KQDgueeew9SpU7FlyxYsXLgQ7733Hg4cOID3338fFosF5513Hh599FHcd999+PGPfwyDIT6/TRKNpLZ95BZjfxdPKsKJtj58fLQNV0wvCeu94jmkTdBpNZhQmIUjLb041tqLigLlujweGSvfOYhnPz4BkVg51d6P/Q1WlOVlwOH2AFC6leLt4klFONrSi89NLhr5YCIaU6KqQenuVgYsFRQUAABqamrgdDqxaNEi9ZgpU6agsrISmzdvBgBs3rwZM2fOhMXi27p98eLFsFqt2L9/f9D3sdvtsFqtAV+UXpxuDz5rsuJAg/IVTftupHxD2kIMULw31Y+PhF+HEs8ZKP7UOhS/Qtm39jTgj/9UgpMls0pR7a2nef9gs7pJYFG2ISG7Cv/wqil453ufw2VTLSMfTERjSsRzrD0eD+666y5cdNFFmDFjBgCgqakJBoMBeXl5AcdaLBY0NTWpx/gHJ+J58VwwK1euxMMPPxzpqdIo8N2/7MI7+wL//p+5eS6unBFeZiIaviFtIy/xAED12YXQaiQcb+tDfddAWNkQdRfjOGZQAG8nz37gmN/GhpuOKktSX79wAn583XT8dUcdNh9vx/sHmzG7Ig8AUByHXYyDMem1bC8moqAi/hVp+fLl2LdvH15++eVYnk9Q999/P7q7u9Wvurq6uL8nJY7D5cEHn7UAAIqyjcgxKXHz/9Uk9u9ZDGkLNYNiNulxnveG/vGR1hGPb+gawLYTHdh2okOdTRKPMff+zi5Wgi3/Tp4dpzoAKMsrAHDplGJIErCv3ordtV0A4t9iTEQ0kogyKCtWrMCaNWuwceNGlJf7dnwtKSmBw+FAV1dXQBalubkZJSUl6jHbtm0LeD3R5SOOGcxoNMJo5D+Y6Wp/QzfsLg/yM/XY/v8uw+HmXiz+1UZsPNKGXrsrbhvW+evqd8DqHRhWWRB60HDxpCLUnOrEP4+04WsXVJ7xvNsj48PPWvDC1lPYcLgV8qBmmni1GAuDl3g6+xzqn+dW5QNQgsI5FXnYWduFv+5QgsJ4F8gSEY0krAyKLMtYsWIFXn/9dXzwwQeYOHFiwPNz586FXq/H+vXr1ccOHTqE2tpaVFdXAwCqq6uxd+9etLS0qMesW7cOZrMZ06ZNi+ZaaJSqOdUJQLlhSpKEcyzZOKsoKyCzEgsutwd7TndBHhwlADjpLZAtzjEi0xB6QCSKOzcdaz+jlbfH5sTlT27Av/15Bz46pAQnEwozcda4LJw1LguXT7Ngdnle5BcUAtEl09ZrR3e/U/2sJxVnI9+vvXnRNGWZtdFbg5KoJR4ioqGE9avp8uXL8dJLL+Hvf/87cnJy1JqR3NxcZGRkIDc3F7fffjvuueceFBQUwGw24zvf+Q6qq6uxcOFCAMAVV1yBadOm4ZZbbsETTzyBpqYmPPDAA1i+fDmzJGPU9pPKksPcKqXYWpIkXDmjBL/76BjW7mvEdbPLYvI+v3r/CH774VH819VTcMclZwc8dyrECbKDza7IQ7ZRh44+Bw40WjFjvG866qZj7Tje2ocsgxbLFlbhX+dXYkJReK8frWyjDiVmE5qsNhxt7cV27/LOPG/2RLh8qgVPrPXNNGIGhYiSLawMytNPP43u7m584QtfQGlpqfr1yiuvqMc8+eSTuOaaa7B06VJccsklKCkpwWuvvaY+r9VqsWbNGmi1WlRXV+Pmm2/GrbfeikceeSR2V0WjhizL6m/18yb4bppXzSgFAHz4WSsGHJHvGCw43R78ZVstAGD1JyfhHpTtEEPahtuDJxi9VqNOld04qA5lZ61yXdedNx7/dfXUhAcnglqH0tqLmpO+bJW/ScXZAbU3rEEhomQLe4kn2NfXv/519RiTyYRVq1aho6MDfX19eO21186oLamqqsLbb7+N/v5+tLa24r//+7+h08W/zoBSz6n2frT1OmDQajDTL/swY7wZ4/MyMOB0Y8PhkQtQR/LRoVa09zkAAA3dNnx0KHDpyLcHT/hFq2KZZ/OggW27vAWncyrzwn7NWBL7Bh1stGJPvTIaYN6EgoBjJEnCIr9W33hvFEhENBLuxUNJtcObPZlZnguTXqs+LpZ5AGDtvsao30d0BImC2xe31gY8X6tmUMLPclSfrWRQtp/sgMOlDDlzeutdAOD8yvyhfjQhxMj7NXsa4XB5UJRtCBqIMUAholTCAIWSasfJ4DURAHCVN0BZf7AFdlfkyzztvXasP6hkTP77K7MAAB8easHpTt8wOFEkG0kGZXJxNoqyDbA5Pdhd1wUAONTUA5vTA7NJh7OStLQjiE6eVu/mhKIYebALJuRj/sQCXHLOuLjtD0REFCoGKJRUO04Fr4kAlMxDcY4RPXYXNkWw343w5qcNcHlkzBhvxpUzSnHRpELIMvDKdiWr0md3oa1XuXmHsg/PYJIkqXUom44pU2VF/cmcynxoNMndBE8EKMK8qoKgx+m0Gvz136vx52/O58Z9RJR0DFAoabr6HTjqHSAWLEDRaCQs9u5x8/6B5jOeD9Xfdp4GAPzL+crMnn+dXwUAeHl7HXrtLrzsDVTyMvXIzdRH9B5imUfUoew8JQKUvIjPO1YsZiOyDL7ls7kTkrvkREQUCgYolDSie+escVkoHGJjugu9N/6d3oLTcB1stGJfvRV6rYTrzhsPALh8mgVF2Ua09tgx7yfr8OiaAwAQUKQbrgvPVgpld9V2weZ0Y5d3qSfZ9SeAkuERdShGnQYzyiK/TiKiRGGAQkmz3dvyGqz+RDjf+9yhJit67a6w3+P/apTsyaVTilHgrasw6DT42gVKNsXm9GB8XgbuXXwufnvT+WG/vjChMBMlZhMcbg/e3d+EU+39kCTgvBTIoAC+Tp7ZFXkJ2QSQiCha7O2lmLO73PjzplO4elbpsJvh1ahDw4LXRABKN8n4vAzUdw1gz+kuNVMRipYeG17ydut87YKKgOdWfHEysow6nGvJwRfOLYY2yjoRSZJw4dmFeG1XPZ7+6BgAJSgwmyJbMoq1z51ThNd21WPJzNJknwoRUUj4qxTF3F+31+Gnbx/ED/+2Z8hjPvysRS2QvWDi0AEK4MtC7ApzmefX7x/BgNONOZV5+OK5xQHPZRi0+I8vTMJlUy1RByfCQu9y1GdNykaAqbC8I1x/3nhs+uGluLW6KtmnQkQUEgYoFHP76q0AlILRrn7HGc8fb+3Fd1/eBVkGbppfiYkjtOGKG/0ub2dMKI639qrFrz+8ckpCulJEvYyQCgWygiRJKMvLYHcOEY0aDFAo5j5rVjIILo+MdYO6b3psTnzrzzvQY3NhXlU+Hr5u+oivJ270O2uDb/QXzM/fPQS3R8ZlU4qx4KzCkX8gBsrzM1FR4FvSOn+Y2hoiIhoeAxSKKY9HxhFvgAIAa/c1qX+WZRl3v7Ibx1r7UJprwtM3zw2pYHN6mRkGrQYdfQ51z5zh7KztxDv7miBJwA+unBLZhUSo2hsM5Rh1amEqERGFj0WyY0yPzYkPPmtRR7IbdBosmmpBljE2/ymc7hxAv8MNSQJkGfjnkTb02JzIMemxdl8T3j/YAoNOg9/fMhfjckLbkM6o02LGeDN21nZhV13nsJvu9TtcePjN/QCApeeX49ySnJhcV6gunWLBX3ecRvXZhUkf0EZENJoxQBljVr7zmdrZIvzrgko89uWZMXn9Q97syZQSM+wuN4639uGDz1pw9cxS/PzdQwCAb3/+bMwqzwvrdedU5mNnbRd2nurCl+eUBz3G5nTj357fgU9PdyPHqMM9l58T1bVEYvF0C/78zfmYXmZO+HsTEaUTLvGMMR8fUUaxz6vKx0WTlOWI13fWw2pzxuT1DzUpBbJTSnLUvXTW7mvCK9vrcLytD4VZBnzrcxPDfl21ULYueKGs3eXGv/9vDTYda0eWQYvV35yPsmFanONFkiRlL5shBs8REVFoGKCMIS1WG2o7lAFif/rGBXjh9gU4x5KNAacbb+yqj8l7HGpWRtefY8nBVTOUmRsfHmrBr94/AgD4zqWTkBPBbBBRKHuwsQf9jjMHtt3zyqfYcLgVGXot/vT1C4KOziciotGDAcoYIuaOnGvJgdmkhyRJ+Nf5lQCAF7fUhtwhMxz/DMr0MjPK8zNgc3rQ1mtHZUEm/nVBZHM4yvIyUGI2we2Rsfd0d8BzdR39+MfeRmg1Ev7ntnkJ69ohIqL4YYAyhuzwjpa/YIJvMNqXzy+HSa/BoeYedW+cSDlcHhxv7QMAnFOSA0mS1GUeAPj+4nOjGrPu327sb+sJZSLt7PJcXDQp9EmzRESUuhigjCHqaHm/3WxzM/S4dlYZAJxRPBuu4229cHlk5Bh1KMs1AQC+PKccOo2EuVX5uCbKMeuiDkVch7DthLKD8PyJzJwQEaULBihjRL/Dhf0NyvLL4PqMZQuVZZc1exvR2Xfm5NdQHfKOeBfZEwCYVmbGh9//Av739vlRt91Weye1bjrWDpvTrT4uMigLRhiZT0REowcDlDFid10XXB4ZpbmmMzbwm12ei+llZjhcHvxt5+mI30MEKINnj1QUZCLTEH1H+/QyM0rMJvQ73Nh8XMmaNHXbcKq9HxoJmDuBhbFEROmCAcoYUeOtP5lblX/GfiySJOEmb7HsP/Y2Rvweh70zUM61xGc4miRJuGyqsunf+oPKCP1tJ5XsybQyc8rsHExERNFjgDJGiA6eeUO034rlk4ONVrjcnojeQ+zie06cAhQAWDTNAgB4/0ALZFn21Z9MYP0JEVE6YYAyBrg9MnZ6dwKeNyF4ncbEwixkGbSwOT043tYX9nv02l043TkA4MwlnliqPqsQmQYtmqw27G+wYutxJYMyn/UnRERphQHKGHC4uQc9NheyDFpMGSJ40GgkTC1VxrPvb+gOesxI7wEA43KMKMgyRH6yIzDptbhk8jgAwF931OFIizIYjgEKEVF6YYAyBojlnTmV+dBph/4rnzE+FwCwr94a9nscbhJ78MR/cz5RhyLaos+xZMc1KCIiosTjZoFx1N3vxIC3HVajAcZlG88oUE2EGm8h6Ujj38UGd/vqw8ugWG1OvLD1FID4Fcj6u3RKMSQJcHmUybfMnhARpR8GKHGydl8j7nxxJ/ynx8dy1+Bw7KrrAjBygCIyKAcarPB45JDmlvTaXfj6n7ZhX70V+Zl63LwwslH24SjMNmJuZb6aGeKANiKi9MMlnjh59uMTkGVAIwE6743+1R11aO2xJ/Q8uvudONXeDwCYXZ437LGTirNh0GnQY3ehrrN/xNfud7jwzdXbsbO2C7kZerzwbwswoSgrFqc9ItHNA3BAGxFROmKAEgcn2/qw/WQnNBKw6YeX4ehjV+O8ijw43TJeralL6Lns9S7XVBVmIjdz+Dkheq1GrSEZqQ7F5nTjW3/egW0nOpBj1OF/b5+P6WW5sTnpEFw1owQmvQazK/JgMZsS9r5ERJQYDFDiQExj/dzkcSjx7kmzbIEyCO2lrbXweKLfNThUe+q7AAAzx4cWPIggY98wnTx2lxv//r81+ORoOzINWqz+5nzMGiE7E2tVhVl4/57P48/fmJ/Q9yUiosRggBJjHo+M13bWAwCWzi1XH79mVhnMJh1Odw5g45HWmL3Xc5+cOGPzPH97TyuBxqzy0AKUGeNFq3HwDIrD5cHyF3dhw+FWmPQaPPf1C0asbYmX8vyRs0JERDQ6MUCJsS3H21HfNYAckw5X+NVJZBi0asAS7a7BwrqDzXj4rQNY9j9bh+y8EUs8M0LMoMzwZlD213dDls/M9Pzozf14/2AzDDoN/ufWC7DgLBaoEhFR7DFAibH/q1GWd66dXQaTXhvwnFjmWf9ZCxq7B6J+r3e8++bYnB78+//WoL03sAC3o8+hTncNNUA5tyQHWo2E9j4Hmqy2gOfcHhlv7FKyQ7+5aQ4unlwU7SUQEREFxQAlhnrtLryzrwkA8C9+yzvCpOIczJ9YALdHxivboyuWtbvcWH+wBQCQn6lHfdcA/uPFnXD67aMjsidnFWWFvJGeSa/F5OJsAGcWyp5s78OA0w2TXoNFUy3BfpyIiCgmGKDE0Nt7GzHgdOOsoizMqcgLeozIory643TQJZRQbTrajh67CxazEa/8ezWyDFpsPdGBn/7joHrM3tNdAICZIdafCKJQdvDI+4ONSsAypcQMbQgzUoiIiCLFACWGXvcrjh1qYuzi6Up7bH3XAA5596+JxDv7GtXXO8eSg1/dOAcAsHrTSXVfnD3eAtlQO3gEUSg7OINywFs4O807cZaIiCheGKCEQJZlrPrwKH753iFYbc6gxzRbbdhyoh0AcN3ssiFfy6TXYqG3sPSjQ5F187jcHqw70AwAuHJGCQDg8mkWXOX9828/OArAt8QTbguwqFfZc7orIMtzwJtBmVbKAIWIiOKLAUoIdtZ24efvHsJTHxzFol9swJo9DWcsz6zZ0whZBs6vzENFQeawr/eFc5TdeD861BLR+Ww90YHOficKsgyYP8E3RXX5Fyd5z6UB2050oLHbBkny7bETqpnjc2HQatDSY8fJdt9EWZFBmcoAhYiI4owBSgje+rQBgDK2vqXHjhUv7cK3/rwDDpevIPVN7zHDZU+EL5yr7Ma742QneobIyAxHLO9cMc0SsDvxjPG5uGxKMTwy8P1XPwUATBqXjSxjeFsumfRazKnMAwBsOtYGAGjtsaOlxw5JSsyOxURENLYxQBmBy+3Bmj1KQPC7ZefjrkWTYdBq8P7BFjz78QkAwKn2Pnxa1wWNBCyZNXKAMqEoCxOLsuDyyPjkaFtY5+PxyHh3f+Dyjr8VlypZlNoOJfMRbv2JcOHZSgvx5mPKspUokJ1YmBV2wENERBQuBigj2HqiA229duRl6nHpFAvuWnQOHl+q7Ej81PojqO8aUDMsF55dhHE5xpBe9/PqMk94dSg1tZ1o7bEjx6RTgwh/cyrz8Tm/+SThdvAI1WcrdTKbj7VDlmW1/mQqC2SJiCgBGKCM4M3dSvBx1YxSGHTKx/XlOeMxf2IBBpxuPPLW/rCWd4QvnOsLUMJpNxZTaK+YVqKez2ArvLUoQOgj7gc7ryIPJr0G7X0OHG7u9XXwsP6EiIgSgAHKMOwut1rvce3sUvVxSZLw6JdmQKeR8O7+Zhxu7oVBq8HiIEsuQ1l4ViGMOg2arLaQ242brTY1W3PbhVVDHrfgrEJ8/cIJWDzdEvEmfgadBhd4C3A3H2vzdfAwg0JERAnAAGUYGw+3wWpzoTjHiAUTA/ecObckB9+8eKL6/efPHYfcjNA3rjPpteoyyoefhbbM8+fNJ+HyyJg/oWDEwOPH103H72+ZB7028r9icX4fHGrF8dZeAMB0ZlCIiCgBGKAMQyzdXDOrLOjk1O9dNhmluSYAyrJPuL7o7eYJpd14wOHGi97lHf/AKJ6qvfNaNh5uhUcGCrMMIdfYEBERRYPtGEPos7vwvncY2nXnBa8tyTLq8OK/LcDuui51SFo4RB1KzalOdA84AzIwBxqseGtPA742rwITirLwt52n0dXvRGVBJi6flph9cGaOz0W2UYdeuwuAsrwz1IRcIiKiWGIGJQhZlvHgG/sw4HRjQmEmZg9TaHrWuGzccP7Qo+2HU1WYhUnF2XB5ZHzwWXPAc//56qd4+qNjuOJXG/HU+iP40ydKS/PXL5yQsH1wdFoN5k/0DYJjgSwRESUKA5Qgnv34BF7bVQ+tRsJjX54Z16yByLy8s7dJfexIc486d8Th8uCX6w7jeGsfcow6fPWCiridSzAXnu2rvWGBLBERJQoDlEH+eaQVj72t7Aj8wJKpuHDSmbNGYkkMW9twuBV93qUUUfty6ZRiPHXTHBRlK3UfyxZWITvBQ9LEvkEAMyhERJQ4rEHxc6q9Dyte2gWPDPzL3HJ8/cIJcX/PaaVmVBZkorajHx8dasXVM0vUVuLrZpfhutll+Pw547CrthMXxzlYGur8LppUCLdHxlnjshP+/kRENDYxQPHz582n0D3gxOyKPPzk+hkJKQiVJAlXzSjB7zcexzv7GlFRkIGT7f0w6TVqMWxuhl7dvyfRNBoJL/7bwqS8NxERjV0MUPz8v6unoiDLgH+ZWw6TXpuw973SG6B8+FkL8jMNAIDLplq45w0REY1ZvAP60WgkLPcbE58os8vzUJprQmO3DS9uPQUgvLH5RERE6YZFsilAo5GweLpSLOuRgRyTTp2RQkRENBaFHaBs3LgR1157LcrKyiBJEt54442A52VZxkMPPYTS0lJkZGRg0aJFOHLkSMAxHR0dWLZsGcxmM/Ly8nD77bejt7c3qgsZ7fwHvV05vQRGXeKWmIiIiFJN2AFKX18fZs+ejVWrVgV9/oknnsBTTz2FZ555Blu3bkVWVhYWL14Mm82mHrNs2TLs378f69atw5o1a7Bx40bccccdkV9FGpg3oQAWs9JOfH0EY/OJiIjSiSTLshzxD0sSXn/9dVx//fUAlOxJWVkZ/vM//xPf//73AQDd3d2wWCxYvXo1brzxRhw8eBDTpk3D9u3bMW/ePADA2rVrcfXVV+P06dMoKxu59sJqtSI3Nxfd3d0wm9NnNse++m6caOvDtaw/ISKiNBTO/TumNSgnTpxAU1MTFi1apD6Wm5uLBQsWYPPmzQCAzZs3Iy8vTw1OAGDRokXQaDTYunVr0Ne12+2wWq0BX+loxvhcBidERESIcYDS1KSMa7dYAjezs1gs6nNNTU0oLg6c6aHT6VBQUKAeM9jKlSuRm5urflVUJHbcOxERESXWqOjiuf/++9Hd3a1+1dXVJfuUiIiIKI5iGqCUlCidKM3NgTvzNjc3q8+VlJSgpaUl4HmXy4WOjg71mMGMRiPMZnPAFxEREaWvmAYoEydORElJCdavX68+ZrVasXXrVlRXVwMAqqur0dXVhZqaGvWYDz74AB6PBwsWLIjl6RAREdEoFfYk2d7eXhw9elT9/sSJE9i9ezcKCgpQWVmJu+66Cz/5yU8wefJkTJw4EQ8++CDKysrUTp+pU6fiyiuvxLe+9S0888wzcDqdWLFiBW688caQOniIiIgo/YUdoOzYsQNf/OIX1e/vueceAMBtt92G1atX4wc/+AH6+vpwxx13oKurCxdffDHWrl0Lk8mk/syLL76IFStW4LLLLoNGo8HSpUvx1FNPxeByiIiIKB1ENQclWdJ1DgoREVE6S9ocFCIiIqJYYIBCREREKYcBChEREaUcBihERESUchigEBERUcphgEJEREQpJ+w5KKlAdEan667GRERE6Ujct0OZcDIqA5Senh4A4K7GREREo1BPTw9yc3OHPWZUDmrzeDxoaGhATk4OJEmK6WtbrVZUVFSgrq5uzA2B47Xz2nntYwevndeejGuXZRk9PT0oKyuDRjN8lcmozKBoNBqUl5fH9T3G8q7JvHZe+1jDa+e1jzXJvPaRMicCi2SJiIgo5TBAISIiopTDAGUQo9GIH/3oRzAajck+lYTjtfPaxxpeO699rBlN1z4qi2SJiIgovTGDQkRERCmHAQoRERGlHAYoRERElHIYoBAREVHKYYDiZ9WqVZgwYQJMJhMWLFiAbdu2JfuUYm7lypW44IILkJOTg+LiYlx//fU4dOhQwDE2mw3Lly9HYWEhsrOzsXTpUjQ3NyfpjOPn8ccfhyRJuOuuu9TH0vna6+vrcfPNN6OwsBAZGRmYOXMmduzYoT4vyzIeeughlJaWIiMjA4sWLcKRI0eSeMax4Xa78eCDD2LixInIyMjA2WefjUcffTRgL5B0ufaNGzfi2muvRVlZGSRJwhtvvBHwfCjX2dHRgWXLlsFsNiMvLw+33347ent7E3gVkRnu2p1OJ+677z7MnDkTWVlZKCsrw6233oqGhoaA10jHax/s29/+NiRJwq9+9auAx1Px2hmgeL3yyiu455578KMf/Qg7d+7E7NmzsXjxYrS0tCT71GJqw4YNWL58ObZs2YJ169bB6XTiiiuuQF9fn3rM3XffjbfeeguvvvoqNmzYgIaGBtxwww1JPOvY2759O37/+99j1qxZAY+n67V3dnbioosugl6vxzvvvIMDBw7gF7/4BfLz89VjnnjiCTz11FN45plnsHXrVmRlZWHx4sWw2WxJPPPo/exnP8PTTz+N3/72tzh48CB+9rOf4YknnsBvfvMb9Zh0ufa+vj7Mnj0bq1atCvp8KNe5bNky7N+/H+vWrcOaNWuwceNG3HHHHYm6hIgNd+39/f3YuXMnHnzwQezcuROvvfYaDh06hOuuuy7guHS8dn+vv/46tmzZgrKysjOeS8lrl0mWZVmeP3++vHz5cvV7t9stl5WVyStXrkziWcVfS0uLDEDesGGDLMuy3NXVJev1evnVV19Vjzl48KAMQN68eXOyTjOmenp65MmTJ8vr1q2TP//5z8vf+973ZFlO72u/77775IsvvnjI5z0ej1xSUiL//Oc/Vx/r6uqSjUaj/Je//CURpxg3S5Yskb/5zW8GPHbDDTfIy5Ytk2U5fa8dgPz666+r34dynQcOHJAByNu3b1ePeeedd2RJkuT6+vqEnXu0Bl97MNu2bZMByKdOnZJlOf2v/fTp0/L48ePlffv2yVVVVfKTTz6pPpeq184MCgCHw4GamhosWrRIfUyj0WDRokXYvHlzEs8s/rq7uwEABQUFAICamho4nc6Az2LKlCmorKxMm89i+fLlWLJkScA1Aul97W+++SbmzZuHr3zlKyguLsacOXPwxz/+UX3+xIkTaGpqCrj23NxcLFiwYNRf+4UXXoj169fj8OHDAIBPP/0UH3/8Ma666ioA6X3t/kK5zs2bNyMvLw/z5s1Tj1m0aBE0Gg22bt2a8HOOp+7ubkiShLy8PADpfe0ejwe33HIL7r33XkyfPv2M51P12kflZoGx1tbWBrfbDYvFEvC4xWLBZ599lqSzij+Px4O77roLF110EWbMmAEAaGpqgsFgUP9PK1gsFjQ1NSXhLGPr5Zdfxs6dO7F9+/Yznkvnaz9+/Diefvpp3HPPPfiv//ovbN++Hd/97ndhMBhw2223qdcX7P8Do/3af/jDH8JqtWLKlCnQarVwu9346U9/imXLlgFAWl+7v1Cus6mpCcXFxQHP63Q6FBQUpNVnYbPZcN999+Gmm25SN8xL52v/2c9+Bp1Oh+9+97tBn0/Va2eAMoYtX74c+/btw8cff5zsU0mIuro6fO9738O6detgMpmSfToJ5fF4MG/ePDz22GMAgDlz5mDfvn145plncNtttyX57OLrr3/9K1588UW89NJLmD59Onbv3o277roLZWVlaX/tdCan04mvfvWrkGUZTz/9dLJPJ+5qamrw61//Gjt37oQkSck+nbBwiQdAUVERtFrtGd0azc3NKCkpSdJZxdeKFSuwZs0afPjhhygvL1cfLykpgcPhQFdXV8Dx6fBZ1NTUoKWlBeeffz50Oh10Oh02bNiAp556CjqdDhaLJW2vvbS0FNOmTQt4bOrUqaitrQUA9frS8f8D9957L374wx/ixhtvxMyZM3HLLbfg7rvvxsqVKwGk97X7C+U6S0pKzmgMcLlc6OjoSIvPQgQnp06dwrp169TsCZC+1/7Pf/4TLS0tqKysVP/dO3XqFP7zP/8TEyZMAJC6184ABYDBYMDcuXOxfv169TGPx4P169ejuro6iWcWe7IsY8WKFXj99dfxwQcfYOLEiQHPz507F3q9PuCzOHToEGpra0f9Z3HZZZdh79692L17t/o1b948LFu2TP1zul77RRdddEY7+eHDh1FVVQUAmDhxIkpKSgKu3Wq1YuvWraP+2vv7+6HRBP5Tp9Vq4fF4AKT3tfsL5Tqrq6vR1dWFmpoa9ZgPPvgAHo8HCxYsSPg5x5IITo4cOYL3338fhYWFAc+n67Xfcsst2LNnT8C/e2VlZbj33nvx7rvvAkjha09aeW6Kefnll2Wj0SivXr1aPnDggHzHHXfIeXl5clNTU7JPLabuvPNOOTc3V/7oo4/kxsZG9au/v1895tvf/rZcWVkpf/DBB/KOHTvk6upqubq6OolnHT/+XTyynL7Xvm3bNlmn08k//elP5SNHjsgvvviinJmZKb/wwgvqMY8//ricl5cn//3vf5f37Nkjf+lLX5InTpwoDwwMJPHMo3fbbbfJ48ePl9esWSOfOHFCfu211+SioiL5Bz/4gXpMulx7T0+PvGvXLnnXrl0yAPmXv/ylvGvXLrVTJZTrvPLKK+U5c+bIW7dulT/++GN58uTJ8k033ZSsSwrZcNfucDjk6667Ti4vL5d3794d8G+f3W5XXyMdrz2YwV08spya184Axc9vfvMbubKyUjYYDPL8+fPlLVu2JPuUYg5A0K/nnntOPWZgYED+j//4Dzk/P1/OzMyUv/zlL8uNjY3JO+k4GhygpPO1v/XWW/KMGTNko9EoT5kyRf7DH/4Q8LzH45EffPBB2WKxyEajUb7sssvkQ4cOJelsY8dqtcrf+9735MrKStlkMslnnXWW/P/+3/8LuDGly7V/+OGHQf//fdttt8myHNp1tre3yzfddJOcnZ0tm81m+Rvf+Ibc09OThKsJz3DXfuLEiSH/7fvwww/V10jHaw8mWICSitcuybLfOEUiIiKiFMAaFCIiIko5DFCIiIgo5TBAISIiopTDAIWIiIhSDgMUIiIiSjkMUIiIiCjlMEAhIiKilMMAhYiIiFIOAxQiIiJKOQxQiIiIKOUwQCEiIqKUwwCFiIiIUs7/BzyApXjiYL8tAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import pandas\n",
"import matplotlib.pyplot as plt\n",
"dataset = pandas.read_csv('data/international-airline-passengers.csv', usecols=[1], engine='python')\n",
"plt.plot(dataset)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VUyjZEHo2xhL"
},
"source": [
">You can see an upward trend in the dataset over time. You can also see some periodicity in the dataset that probably corresponds to the Northern Hemisphere vacation period.\n",
"\n",
">You can phrase the problem as a regression problem. That is, given the number of passengers (in units of thousands) this month, what is the number of passengers next month?\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BCYd6kmI3RM8"
},
"source": [
"# Data Preparation and librairies importing\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "u8XrVDSL4fwe"
},
"source": [
">Before you start, let’s first import all the functions and classes you will use. This assumes a working SciPy environment with the Keras deep learning library installed."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-01T09:59:35.316457Z",
"iopub.status.busy": "2023-11-01T09:59:35.316100Z",
"iopub.status.idle": "2023-11-01T09:59:35.323208Z",
"shell.execute_reply": "2023-11-01T09:59:35.321365Z",
"shell.execute_reply.started": "2023-11-01T09:59:35.316427Z"
},
"id": "gb2FybxA4cNr"
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import tensorflow as tf\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Dropout\n",
"from tensorflow.keras.layers import LSTM\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"from sklearn.metrics import mean_squared_error"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LVW9qsY24xl3"
},
"source": [
">LSTMs are sensitive to the scale of the input data, specifically when the sigmoid (default) or tanh activation functions are used. It can be a good practice to rescale the data to the range of 0-to-1, also called normalizing. You can easily normalize the dataset using the MinMaxScaler preprocessing class from the scikit-learn library."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-01T09:59:35.325969Z",
"iopub.status.busy": "2023-11-01T09:59:35.324998Z",
"iopub.status.idle": "2023-11-01T09:59:35.345026Z",
"shell.execute_reply": "2023-11-01T09:59:35.343796Z",
"shell.execute_reply.started": "2023-11-01T09:59:35.325918Z"
},
"id": "IVs0D8Fw49yG"
},
"outputs": [],
"source": [
"# normalize the dataset\n",
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
"dataset = scaler.fit_transform(dataset)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "u9J8Jyjx5G5g"
},
"source": [
">After you model the data and estimate the skill of your model on the training dataset, you need to get an idea of the skill of the model on new unseen data. For a normal classification or regression problem, you would do this using cross validation.\n",
"\n",
">With time series data, the sequence of values is important. A simple method that you can use is to split the ordered dataset into train and test datasets. The code below calculates the index of the split point and separates the data into the training datasets, with 67% of the observations used to train the model, leaving the remaining 33% for testing the model."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"execution": {
"iopub.execute_input": "2023-11-01T09:59:35.348914Z",
"iopub.status.busy": "2023-11-01T09:59:35.348219Z",
"iopub.status.idle": "2023-11-01T09:59:35.357977Z",
"shell.execute_reply": "2023-11-01T09:59:35.357119Z",
"shell.execute_reply.started": "2023-11-01T09:59:35.348850Z"
},
"id": "XSz-Kzkn5JBi",
"outputId": "d9bc7409-e31c-4eaa-e08b-c6b598df5337"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"97 48\n"
]
}
],
"source": [
"# split into train and test sets\n",
"train_size = int(len(dataset) * 0.67)\n",
"test_size = len(dataset) - train_size\n",
"train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]\n",
"print(len(train), len(test))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7xORoyyN5VDH"
},
"source": [
"> You can write a simple function to convert the single column of data into a two-column dataset: the first column containing this month’s (t) passenger count and the second column containing next month’s (t+1) passenger count to be predicted.\n",
"\n",
">Now, you can define a function to create a new dataset, as described above. The function takes two arguments: the dataset, which is a NumPy array you want to convert into a dataset, and the look_back, which is the number of previous time steps to use as input variables to predict the next time period—in this case, defaulted to 1.\n",
"\n",
">This default will create a dataset where X is the number of passengers at a given time (t), and Y is the number of passengers at the next time (t + 1).\n",
"\n",
"It can be configured by constructing a differently shaped dataset in the next section."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-01T09:59:35.359616Z",
"iopub.status.busy": "2023-11-01T09:59:35.359098Z",
"iopub.status.idle": "2023-11-01T09:59:35.371088Z",
"shell.execute_reply": "2023-11-01T09:59:35.369876Z",
"shell.execute_reply.started": "2023-11-01T09:59:35.359587Z"
},
"id": "tRU_Z7wn5SdY"
},
"outputs": [],
"source": [
"# convert an array of values into a dataset matrix\n",
"def create_dataset(dataset, look_back=1):\n",
"\tdataX, dataY = [], []\n",
"\tfor i in range(len(dataset)-look_back-1):\n",
"\t\ta = dataset[i:(i+look_back), 0]\n",
"\t\tdataX.append(a)\n",
"\t\tdataY.append(dataset[i + look_back, 0])\n",
"\treturn np.array(dataX), np.array(dataY)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Whxs1blW5zoe"
},
"source": [
"Let’s take a look at the effect of this function on the first rows of the dataset (shown in the unnormalized form for clarity).\n",
"\n",
"```\n",
"X\t\tY\n",
"112\t\t118\n",
"118\t\t132\n",
"132\t\t129\n",
"129\t\t121\n",
"121\t\t135\n",
"```\n",
"\n",
"If you compare these first five rows to the original dataset sample listed in the previous section, you can see the X=t and Y=t+1 pattern in the numbers.\n",
"\n",
"Let’s use this function to prepare the train and test datasets for modeling."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-01T09:59:35.373320Z",
"iopub.status.busy": "2023-11-01T09:59:35.372869Z",
"iopub.status.idle": "2023-11-01T09:59:35.381175Z",
"shell.execute_reply": "2023-11-01T09:59:35.380173Z",
"shell.execute_reply.started": "2023-11-01T09:59:35.373280Z"
},
"id": "XFnHCApl6CMc"
},
"outputs": [],
"source": [
"# reshape into X=t and Y=t+1\n",
"look_back = 1\n",
"trainX, trainY = create_dataset(train, look_back)\n",
"testX, testY = create_dataset(test, look_back)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fFo5NhgW6JNc"
},
"source": [
"The LSTM network expects the input data (X) to be provided with a specific array structure in the form of [samples, time steps, features].\n",
"\n",
"Currently, the data is in the form of [samples, features], and you are framing the problem as one time step for each sample. You can transform the prepared train and test input data into the expected structure using numpy.reshape() as follows:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"execution": {
"iopub.execute_input": "2023-11-01T09:59:35.383166Z",
"iopub.status.busy": "2023-11-01T09:59:35.382730Z",
"iopub.status.idle": "2023-11-01T09:59:35.395073Z",
"shell.execute_reply": "2023-11-01T09:59:35.393983Z",
"shell.execute_reply.started": "2023-11-01T09:59:35.383127Z"
},
"id": "XAkPk_Hp6K3k",
"outputId": "764c5681-a6f7-432f-a5c6-0a0f4f557d18"
},
"outputs": [],
"source": [
"# reshape input to be [samples, time steps, features]\n",
"trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))\n",
"testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))\n",
"\n",
"print(trainX.shape)\n",
"print(testX.shape)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LHC1cFCL6_mK"
},
"source": [
"# Design and Evaluation of the LSTM network \n",
">You are now ready to design and fit your LSTM network for this problem.\n",
"\n",
">The network has a visible layer with 1 input, a hidden layer with 4 LSTM blocks or neurons, and an output layer that makes a single value prediction. The default sigmoid activation function is used for the LSTM blocks. The network is trained for 100 epochs, and a batch size of 1 is used."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"execution": {
"iopub.execute_input": "2023-11-01T09:59:35.398378Z",
"iopub.status.busy": "2023-11-01T09:59:35.397921Z",
"iopub.status.idle": "2023-11-01T09:59:54.925208Z",
"shell.execute_reply": "2023-11-01T09:59:54.924415Z",
"shell.execute_reply.started": "2023-11-01T09:59:35.398338Z"
},
"id": "3PohE8fG7Nz8",
"outputId": "5bdae2c9-d435-470b-b40d-c62a9d6f1aab"
},
"outputs": [],
"source": [
"# create and fit the LSTM network\n",
"model = Sequential()\n",
"model.add(LSTM(4, input_shape=(1, look_back)))\n",
"model.add(Dense(1))\n",
"model.compile(loss='mean_squared_error', optimizer='adam')\n",
"model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rwGjfy6z7hzB"
},
"source": [
"Once the model is fit, you can estimate the performance of the model on the train and test datasets. This will give you a point of comparison for new models.\n",
"\n",
"Note that you will invert the predictions before calculating error scores to ensure that performance is reported in the same units as the original data (thousands of passengers per month)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"execution": {
"iopub.execute_input": "2023-11-01T09:59:54.926837Z",
"iopub.status.busy": "2023-11-01T09:59:54.926291Z",
"iopub.status.idle": "2023-11-01T09:59:55.481285Z",
"shell.execute_reply": "2023-11-01T09:59:55.479948Z",
"shell.execute_reply.started": "2023-11-01T09:59:54.926807Z"
},
"id": "w52cK3C47ixs",
"outputId": "1e3cd4ef-bd1a-4b71-d0a7-0b3abe3d8765"
},
"outputs": [],
"source": [
"# make predictions\n",
"trainPredict = model.predict(trainX)\n",
"testPredict = model.predict(testX)\n",
"# invert predictions\n",
"trainPredict = scaler.inverse_transform(trainPredict)\n",
"trainY = scaler.inverse_transform([trainY])\n",
"testPredict = scaler.inverse_transform(testPredict)\n",
"testY = scaler.inverse_transform([testY])\n",
"# calculate root mean squared error\n",
"trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))\n",
"print('Train Score: %.2f RMSE' % (trainScore))\n",
"testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))\n",
"print('Test Score: %.2f RMSE' % (testScore))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DX2ba__n7p8w"
},
"source": [
">You can see that the model has an average error of about 23 passengers (in thousands) on the training dataset and about 49 passengers (in thousands) on the test dataset. Not that bad.\n",
"\n",
">Finally, you can generate predictions using the model for both the train and test dataset to get a visual indication of the skill of the model.\n",
"\n",
">Because of how the dataset was prepared, you must shift the predictions so that they align on the x-axis with the original dataset. Once prepared, the data is plotted, showing the original dataset in blue, the predictions for the training dataset in green, and the predictions on the unseen test dataset in red"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 265
},
"execution": {
"iopub.execute_input": "2023-11-01T09:59:55.485696Z",
"iopub.status.busy": "2023-11-01T09:59:55.485338Z",
"iopub.status.idle": "2023-11-01T09:59:55.682888Z",
"shell.execute_reply": "2023-11-01T09:59:55.681610Z",
"shell.execute_reply.started": "2023-11-01T09:59:55.485667Z"
},
"id": "ejZA9Oyu7spv",
"outputId": "8b3d4335-4c8a-4992-9c65-6522f73f304f"
},
"outputs": [],
"source": [
"# shift train predictions for plotting\n",
"trainPredictPlot = np.empty_like(dataset)\n",
"trainPredictPlot[:, :] = np.nan\n",
"trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict\n",
"# shift test predictions for plotting\n",
"testPredictPlot = np.empty_like(dataset)\n",
"testPredictPlot[:, :] = np.nan\n",
"testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict\n",
"# plot baseline and predictions\n",
"plt.plot(scaler.inverse_transform(dataset))\n",
"plt.plot(trainPredictPlot)\n",
"plt.plot(testPredictPlot)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E4TYIc5-72ZY"
},
"source": [
">You can see that the model did an excellent job of fitting both the training and the test datasets."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AwYc1EDW8U9s"
},
"source": [
"# LSTM for Regression Using the Window Method\n",
"You can also phrase the problem so that multiple, recent time steps can be used to make the prediction for the next time step.\n",
"\n",
"This is called a window, and the size of the window is a parameter that can be tuned for each problem.\n",
"\n",
"For example, given the current time (t) to predict the value at the next time in the sequence (t+1), you can use the current time (t), as well as the two prior times (t-1 and t-2) as input variables.\n",
"\n",
"When phrased as a regression problem, the input variables are t-2, t-1, and t, and the output variable is t+1.\n",
"\n",
"The create_dataset() function created in the previous section allows you to create this formulation of the time series problem by increasing the look_back argument from 1 to 3.\n",
"\n",
"A sample of the dataset with this formulation is as follows:\n",
"\n",
"\n",
"```\n",
"X1\tX2\tX3\tY\n",
"112\t118\t132\t129\n",
"118\t132\t129\t121\n",
"132\t129\t121\t135\n",
"129\t121\t135\t148\n",
"121\t135\t148\t148\n",
"```\n",
"You can re-run the example in the previous section with the larger window size. The whole code listing with just the window size change is listed below for completeness.\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"execution": {
"iopub.execute_input": "2023-11-01T09:59:55.684760Z",
"iopub.status.busy": "2023-11-01T09:59:55.684433Z",
"iopub.status.idle": "2023-11-01T10:00:26.562463Z",
"shell.execute_reply": "2023-11-01T10:00:26.561251Z",
"shell.execute_reply.started": "2023-11-01T09:59:55.684732Z"
},
"id": "aTkqHEf77xRM",
"outputId": "ce69159c-7a40-4e33-a502-fd6f1b9f4144",
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/10\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
" super().__init__(**kwargs)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"84/84 - 2s - 22ms/step - loss: 0.0425\n",
"Epoch 2/10\n",
"84/84 - 0s - 2ms/step - loss: 0.0124\n",
"Epoch 3/10\n",
"84/84 - 0s - 1ms/step - loss: 0.0088\n",
"Epoch 4/10\n",
"84/84 - 0s - 1ms/step - loss: 0.0074\n",
"Epoch 5/10\n",
"84/84 - 0s - 1ms/step - loss: 0.0065\n",
"Epoch 6/10\n",
"84/84 - 0s - 1ms/step - loss: 0.0053\n",
"Epoch 7/10\n",
"84/84 - 0s - 1ms/step - loss: 0.0045\n",
"Epoch 8/10\n",
"84/84 - 0s - 1ms/step - loss: 0.0039\n",
"Epoch 9/10\n",
"84/84 - 0s - 1ms/step - loss: 0.0036\n",
"Epoch 10/10\n",
"84/84 - 0s - 1ms/step - loss: 0.0034\n",
"\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Train Score: 28.98 RMSE\n",
"Test Score: 82.74 RMSE\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNgElEQVR4nO3dd3hb5fXA8a+W5b3jlcTZe5OQxOwRCBCgQAqFhlGg8CskZRVKaYGWUQK0hRaaQgerZVN2CoEQQgJkO3vv2PHee2jc3x9X90qyZVvykGznfJ7HTxzpSvde00bH5z3nvAZFURSEEEIIIXoRY6gvQAghhBCiJQlQhBBCCNHrSIAihBBCiF5HAhQhhBBC9DoSoAghhBCi15EARQghhBC9jgQoQgghhOh1JEARQgghRK9jDvUFdIbT6SQ/P5+YmBgMBkOoL0cIIYQQflAUhZqaGjIyMjAa28+R9MkAJT8/n8GDB4f6MoQQQgjRCbm5uQwaNKjdY/pkgBITEwOoNxgbGxviqxFCCCGEP6qrqxk8eLD+Od6ePhmgaMs6sbGxEqAIIYQQfYw/5RlSJCuEEEKIXkcCFCGEEEL0OhKgCCGEEKLXkQBFCCGEEL2OBChCCCGE6HUkQBFCCCFEryMBihBCCCF6HQlQhBBCCNHrSIAihBBCiF5HAhQhhBBC9DoSoAghhBCi15EARQghhBC9jgQoQgghRD+iKApvbchhZ15VqC+lSyRAEUIIIfqRrbmVPPDBDn72ejaKooT6cjpNAhQhhBCiHymqbgLgeEUDewpqQnw1nScBihBCCNGP1DbZ9e+/2lMUwivpGglQhBBCiH6kptGmf79CAhQhhBBC9Aa1je4MyrbjVRRVN4bwajpPAhQhhBCiH/Fc4gFYsac4RFfSNRKgCCGEEP1ItSuDEhNuBvpuHYoEKEIIIUQ/omVQ5k1KB+C7g6XUN9vbe0mvJAGKEEII0Y/UuopkTxqSwODECJrtTr49UBriqwqcBChCCCFEP1LjWuKJDTczZ1wq0De7eSRAEUIIIfoRbYkn2mrhPFeA8vXeklBeUqcEHKDk5eVx7bXXkpSUREREBJMmTWLTpk3684qi8PDDD5Oenk5ERARz5szhwIEDXu9RXl7OggULiI2NJT4+nptvvpna2tqu340QQghxgtMyKNHhZsalxwJQWtuE3eEM5WUFLKAApaKiglNPPRWLxcLnn3/O7t27+dOf/kRCQoJ+zNNPP81zzz3Hiy++yPr164mKimLu3Lk0Nrr7sBcsWMCuXbtYvnw5S5cuZfXq1dx6663dd1dCCCHECcqdQTETZTXrj9c1O0J1SZ1i7vgQt6eeeorBgwfzyiuv6I8NGzZM/15RFP785z/z4IMP8oMf/ACAf//736SmpvLRRx9x9dVXs2fPHpYtW8bGjRuZMWMGAM8//zwXXXQRf/zjH8nIyOiO+xJCCCFOOIqi6AFKbLiZMLMRi8mAzaFQ12QnLsIS4iv0X0AZlE8++YQZM2Zw5ZVXkpKSwrRp0/jnP/+pP3/kyBEKCwuZM2eO/lhcXByzZs1i7dq1AKxdu5b4+Hg9OAGYM2cORqOR9evX+zxvU1MT1dXVXl9CCCGE8NZgc+BwqjsYR7vmoGhZlLqmvtVqHFCAcvjwYV544QVGjRrFF198wW233cYdd9zBa6+9BkBhYSEAqampXq9LTU3VnyssLCQlJcXrebPZTGJion5MS4sXLyYuLk7/Gjx4cCCXLYQQQpwQtDH3JqOBCIsJgKgwV4DSx5Z4AgpQnE4nJ510Ek888QTTpk3j1ltv5ZZbbuHFF1/sqesD4IEHHqCqqkr/ys3N7dHzCSGEEH2RNkU22mrGYDDo30M/z6Ckp6czfvx4r8fGjRtHTk4OAGlpaQAUFXn3WxcVFenPpaWlUVzsvS+A3W6nvLxcP6Ylq9VKbGys15cQQgghvHkWyGoirSav5/qKgAKUU089lX379nk9tn//foYMGQKoBbNpaWmsWLFCf766upr169eTlZUFQFZWFpWVlWRnZ+vHfP311zidTmbNmtXpGxFCCCFOdLUt9uGBvptBCaiL5+677+aUU07hiSee4KqrrmLDhg384x//4B//+AcABoOBu+66i8cff5xRo0YxbNgwHnroITIyMrjssssANeNywQUX6EtDNpuNRYsWcfXVV0sHjxBCCNEFNa4x954BSl+tQQkoQDn55JP58MMPeeCBB3j00UcZNmwYf/7zn1mwYIF+zC9/+Uvq6uq49dZbqays5LTTTmPZsmWEh4frx7zxxhssWrSIc889F6PRyPz583nuuee6766EEEKIE1BNO0s8/TqDAnDxxRdz8cUXt/m8wWDg0Ucf5dFHH23zmMTERN58881ATy2EEEKIdtTqU2Td80766hKP7MUjhBBC9BO+imTdc1D61hKPBChCCCFEP6HVoMR61aD0zSUeCVCEEEKIfqK9DEptswQoQgghhAgBz52MNVqAUi8ZFCGEEEKEQo0+B8VXkazUoAghhBAiBHxOkg07ASbJCiGEEKL3aneSrNSgCCGEECIUtC4eaTMWQgghRK+hTZL1OepelniEEEIIEWyKorhrULy6eNQalAabA4dTCcm1dYYEKEIIIUQ/UNfsQHHFHzFWdxdPlMdyT30fqkORAEUIIYToB7QCWbPRQLjF/fFuNRsxGQ1A36pDkQBFCCGE6Adqm1wFsuFmDAaD/rjBYNDH3felVmMJUIQQQoh+QJ8i67Gko+mLOxpLgCKEEEL0A76myGqi+uAsFAlQhBBCiH5AW76J8ZFBieyDs1AkQBFCCCH6gVofGwVqol2txrLEI4QQQoigqvYxRVajD2uTJR4hhBDixPJ+9nGWrDwYsvPX+pgiq4nqg0Wyre9CCCGEEAHJLa/nvv9uw6nAJZMzyEyKDPo1tLfEo02TrZUaFCGEEOLE8dqao2hT5CsbmkNyDXoXj68lHtdj9X0ogyIBihBCCNEFNY023tmYq/89VMPQ3Es8PtqMpQZFCCGEOLG8u+m4voswhK6VV7sGn0WyrsdkiUcIIYQ4ATicCq+uOQKAa7ubkBWi1ja6R923JG3GQgghxAlk+e5CcssbiI+0cOrIZCB0SzzuSbL9o4tHAhQhhBCik176Ts2eLJiVSXK0FYD6ENV5uCfJSg2KEEIIccIqrW1i49EKDAa4PmtoyFt5228zllH3QgghxAmhvE5tJ46LsJAaGx7SZRSnU6G2ub0iWalBEUIIIU4I1Q1qUWqsq603Oix0AUpdsx3FNYfFZw1KCK+tsyRAEUIIITpB2/smLkINUNytvMEPArRzWkwGrObWH+16dqfZgVObKNfLSYAihBBCdEKVlkGJUD/8o0O4xKN18ERbzRgMhlbPey77NNj6Rh2KBChCCCFEJ1Q3qEGBtsQTykJUd4tx6w4egHCLMeRzWgIlAYoQQgjRCVoNinuJR+viCd0Sj68CWQCDwaDXoYRqTkugJEARQgghOsG9xOMqkrWGbtZIey3Gmr7WaiwBihBCCNEJbRXJhqYGRb0WXzsZa/RW4z4yrE0CFCGEEKIT9AxKuHeRbCiWUCq15aZI3zUo0PfG3UuAIoQQQnSCXiTbIoPSaHNidziDei0V9erQuITIsDaPkRoUIYQQ4gSgLfHEtiiSBXXeSDBVuKbaJka1E6C4Aqj6IF9bZ0mAIoQQQnRCVYtJslazCYtJ7eUN9jJKeZ16Le1mUPrYuHsJUIQQQohOaNlmDKGr89CWeBKjOq5BkSUeIYQQop9yOhVqmrQaFHfnTKjqPLQAJb6dDEq0LPEIIYQQ/VtNk3tzvliP6a3RIZo14k8NSmRY6AbJdYYEKEIIIUSAtOUdq9lIuMVdHBuKabIOp6K3GbdXgxLKvYI6QwIUIYQQIkAtp8hqQlGDUtVg07M58TIHRQghhDhx6S3GLUbLh2LcfblreScm3IzF1PbHuoy6F0IIIfo5bUhbXBsZlGAu8VTWd1x/AhAVJqPuhRBCiH6tuo0lnlDUeWgZlPbqT0DajIUQQoh+r+VGgRr3MLTgLaNU+JlB0duMZYlHCCGE6J+qW0yR1YQiS6FNkW2vQBbcbcZSJCuEEEL0U+4unjaKZENRg9LBEo9nAa+itf30YhKgCCGEEAGqbmyjSDYEk2T1GpSOimRdAYpTUXdc7u0kQBFCCCEC1HKjQE0oZo34W4MS4TFQri8UykqAIoQQQgTI10aBEJr9btxdPO3XoBiNBmJc16cV+fZmAQUov/vd7zAYDF5fY8eO1Z9vbGxk4cKFJCUlER0dzfz58ykqKvJ6j5ycHObNm0dkZCQpKSncd9992O29P5ITQgjRO2w4Us7Ty/Zid4RumUIf1NZGF09w56B0POZeMyDWCkBxdVOPXlN3MHd8iLcJEybw1Vdfud/A7H6Lu+++m//973+89957xMXFsWjRIq644gq+//57ABwOB/PmzSMtLY01a9ZQUFDA9ddfj8Vi4YknnuiG2xFCCNGfOZ0Kd729hfyqRk4elsjZY1JCch29aYmn3M8lHoDUmHAOl9RRVN3Y05fVZQEHKGazmbS0tFaPV1VV8dJLL/Hmm29yzjnnAPDKK68wbtw41q1bx+zZs/nyyy/ZvXs3X331FampqUydOpXHHnuM+++/n9/97neEhXX8wxVCCHHi2nSsgvwq9cO1qj50yxQdTZIN1hwUu8OpB0vxfmRQ0uLCAfpEgBJwDcqBAwfIyMhg+PDhLFiwgJycHACys7Ox2WzMmTNHP3bs2LFkZmaydu1aANauXcukSZNITU3Vj5k7dy7V1dXs2rWrq/cihBCin/tkW57+fagKPZvtThpsagDSqs3Y1cXT7HDSbO/5JSh/NwrUpLiWeAr7QIASUAZl1qxZvPrqq4wZM4aCggIeeeQRTj/9dHbu3ElhYSFhYWHEx8d7vSY1NZXCwkIACgsLvYIT7XntubY0NTXR1OReL6uurg7ksoUQQvQDdoeTz3a4PyvqQ7SnjGeBaUyrJR53p0xdk50wc8+uDGgdPLEdbBSoSY1RMyj9rgblwgsv1L+fPHkys2bNYsiQIbz77rtERER0+8VpFi9ezCOPPNJj7y+EEKL3+/5Qmd6xAqHblVfr4ImxmjEZDV7PmU1GrGYjTXYntU32DmeTdFWFa5nLn/oTcC/x9IUMSpfajOPj4xk9ejQHDx4kLS2N5uZmKisrvY4pKirSa1bS0tJadfVof/dV16J54IEHqKqq0r9yc3O7ctlCCCH6oE+25gNgcMUEocqgVLWxUaDGc2JrT9MCNn/qTwBSXUs8/bIGxVNtbS2HDh0iPT2d6dOnY7FYWLFihf78vn37yMnJISsrC4CsrCx27NhBcXGxfszy5cuJjY1l/PjxbZ7HarUSGxvr9SWEEOLE0Whz8OUudXnntJHJANSGKoPimiLbVoASzE6eijr/O3gAUmPdSzy9fdx9QAHKvffey6pVqzh69Chr1qzh8ssvx2Qycc011xAXF8fNN9/MPffcw8qVK8nOzubGG28kKyuL2bNnA3D++eczfvx4rrvuOrZt28YXX3zBgw8+yMKFC7FarT1yg0IIIfq+b/YVU9NkJz0unDNHDwBCWIOitxj7rpJwbxjY8wGU1mLszwwUgBRXDUqzw6kvD/VWAdWgHD9+nGuuuYaysjIGDBjAaaedxrp16xgwQP0fy7PPPovRaGT+/Pk0NTUxd+5c/va3v+mvN5lMLF26lNtuu42srCyioqK44YYbePTRR7v3roQQQvQrn2xTl3cumZLhsSFfaDIoHS/xBG/X4Eq9BqXjDh6AMLORpKgwyuqaKaxq9DvzEgoBBShvv/12u8+Hh4ezZMkSlixZ0uYxQ4YM4bPPPgvktEIIIU5w3x4oBeCiSenklNcDwR2G5knr4mk5A0XjzqD0vhoUgJTYcMrqmimqaWQ8vbdkQvbiEUII0as12hzUuOo+hiVHERWmZihCt8TjqkEJ73s1KABpWqFsVe8ulJUARQghRK9W5voQtpgMxIab3QFAEDfk81TVxkaBGm1YWzAClEBrUMBdKFvUy2ehSIAihBCiVyurVT9Ik6KsGAwGooIYAPji3igw9EWylQHOQQF3gNLbZ6FIgCKEEKJXK3UFKMkx6odwZBCLUH2pbmOjQE0wi2S1GpQEP8bca9ytxhKgCCGEEJ1WWqt+CCdFqbUTWhdPfbMjJLM8qjtY4glWDYrnRoGBTKxNi+sb+/FIgCKEEKJXK9MClGhXBsVVJGt3KjQFYUO+lvwd1NbTXTyVDe45JvFtXIsv2iwUqUERQgghukCrQUmOVn/zjwxz137Uh6BQtsMi2SCNuq90FcjGRVgw+7FRoEZb4imra8LmCH6A5y8JUIQQQvRqWhdPsiuDYjIaCLeoH1/BrkNRFMVdgxLiItnyOtfyTgD1JwBJUWGYjQYUBUpqem8WRQIUIYQQvVqpRxePJpgb8nlqsDmwO9W6l7bnoASnSFYvkA1wGqzRaCAlpvdvGigBihBCiF6ttEUNCriXeYI97l5b3jEbDXotTEvRQSqSrXAt8SQGMANFkxqn1aFIgCKEEEJ0SssaFHAXygZ7mqw+RTbCgsFg8HlMsIpkO5tBAUjtA4WyEqAIIYTotZxORf8g9gxQgpWlaKmqg52MwfvaerINOr+yAQi8BgUgLa73D2uTAEUIIUSvVd1o02s+PKelRoZoR2N9qq1HsNSSlkFxKtBo65kumbomu77D8+zhSQG/PiVWalCEEEKITtMKZGPDzYSZ3R9ZodowsMR1PQPaCVAiLe7alJ5a5nlvUy41jXaGJ0dx9piUgF+fFis1KEIIIfoYu8PJsp0FXPuv9Uz87ResO1wWsmvRCmSTWwQEwdzvxpPWljsgpu0AxWg06AFUTyxBOZwKr6w5CsCNpw7FaPRdC9OevrBhYNuLaEIIIU44y3YW8ttPdnp9cK05VNapZYTuUNZWgBKqDIofAQqoAVRds6NH2qBX7CniWFk9cREW5k8f1Kn30AOUKsmgCCGE6AOWrDxIUXUTydFhjE+PBdwTS0OhrE6r+fDuVAlVDYq/AUp0D17fS98dAeCamZleU3UDkeqqQalpsods08WOSIAihBBCl+fqDHntpplcOUP97VzrogkFXzNQIHRdPKU+Wp59iXZ1+dQ02to9LlA786pYf6Qcs9HADacM6fT7xIRb9CxUb61DkQBFCCEEAI02hx6MDIyPIME1AKwihBkUX1NkwT0HJdiTZP3NoGg/u+4O7l5fdwyAiyalkx4X0aX30pZ5emursQQoQgghAChw1SNEWEzERVj0AWDani+hoA9pi2lZg6JmKIK5WaCiKO4ung4CFC3jU9bNAcrugmoA5k1O7/J7addYEcL/vu2RAEUIIQQABVXq8k56fDgGg0EfoR7SGhStSLbFtNRgTWv1VNVgw+ZQZ7IkR7c/vVVbAtICrO6SX6kGkQPju5Y9AYiLUO9BGz7X20iAIoQQAoAC14dfhmvpICFKnVBaXtfcoxNR26NlIFoORou0Br+LR1veiYuwYDX73odHk+QKqLQamu7QaHPoS17dE6Co/30rG0IXgLZHAhQhhBCARwbFNQZdq6NosjtpsAW3W0ZTWuO7i0df4gliF4+/9SfgDqhKuzGDUuixBBffifH2LWnvIRkUIYQQvVq+6wMw3fXbeWSYSZ/eGopOnkabgxrXEk5yVMtBbWoGI5hLPP5MkdVoS0Bl3ZhByW+xBNdVWgalql4CFCGEEL1YgavFOMOVQfGuQwn+h5gWFFlMBmIjvOd9hKJINpAMil6DUtd9GZTurD8ByaAIIYToI7QuHm2nW8Cjkyf4GRQt+5AUZW2VMdBqUOqae3bHYE+BLfG4MyhOZ/dcX74eQHZPgKLXoEgGRQghRG+mfwB6/Iae4PotOxSzUErbmCIL7gyKohC0+phAAhRt52W7U6G6m4a1eXZZdQd9iUcyKEIIIXqruiY71Y1qPUd6L8mguAtkWwcEERYTWlIlWOPuA6lBsZpNxLqmyXZXJ0+e1mXVTUs8EqAIIYTo9bTfzmOsZmLC3R0iifo02eB/iGktxr5mjhiNBiItwW011jIoLYfGtaW7Z6F09xJPfKTMQRFCCNHLaQWYLZcPtAxKRUhqUNrf9yYyyMPaSgPIoED3TpNVFMVdxNzNSzy1TXZsDme3vGd3kgBFCCGExwwU79/OtRqU8hDUoLiLZH1PbdU2DAxGJ4/d4dQDDX9qUMC9f1B3zEKpbrBT57rP7lri0Zag1PfvfVkUCVCEEELoGZSWv50nhjCDUtrGFFmNvmFgEDIo6jRdMBrcP5OOaBmU7qhB0XaZTowKI9zS/hRbf5lNRmJcQV6lBChCCCF6o7YzKKGrQdGKZNva9yaYs1CKPQp2TUb/hqR1Zw2K9t+nu5Z3NHG9eBaKBChCCCH0GSieHTwQ2gyKNuSsrRqUYE6TDaSDR9Od02S7u0BW05unyUqAIoQQwucMFHBPGy2vD+6GgYqiuGtQ2sigaEWy9cEIUAKYgaLpzv14urvFWNObp8lKgCKEECc4RVE6zKA0251BHStf3WDH7prA2lbNR5RWgxKE6+pUgBLVfV08PbXEEx+hbWXQ+3Y0lgBFCCFOcNUNdj34aFmDEmExYXVtGBjMabLauaLCTFjNvotCo1wZlGAUyXYmQNHmpXRHBqWtDFdXxerD2tw/wwNFNSzdns/+oppuPVegJEARQogTnLZLbnykhYgw72DAYDB41KEEbxlAW3LQhon5Eswi2U7VoLjajGsa7TTZu3aN+pyabq5B0ZZ4KhvcweeXu4tY9OYW/r7qcLeeK1ASoAghxAmurQ4ejRYkBHMWihagaL/h+6JvGNhLMyixEWbMro6frhTKOpwKhdXdu5Oxxte4ey1bM7Cbl5MCJQGKEEKc4PQZKHG+P5ASo1wbBgaxk0ebyxEXYW7zGG1QW10QRt2XdiJAMRgMXrsad1ZxTSMOp4LZaAjo/P6I99HFowUo6d0cDAVKAhQhhDjBFVb5HnOvcc9CCX4GJa69DEqYVoMSvCLZtlqe26JPk63rfB2KFkCmxob7PYPFX74yKFrBdHfXuwRKAhQhhDjB5XewxBOKWSja6HWty8QXrYunpzcLbLQ5qHEtIwWawdAKZbuSQXEvuXR/wBCn16C4A5Q8feaKLPEIIYQIoYI2xtxrQlmDon2A+hKlbxbYsxkULXsSZjZ67V/jj+Qobdx9VzIo3dNinF+bz43LbuSSDy9hRc4KFEVplUGpabRR06gGY6Fe4gnsJy2EEKLf6ahINjFSq0EJXhePNpejvSUebZJsT2dQPDt4DIbAlljcNSidD1D0GTVdCBhWH1/NA98+QHVzNQB3rbyL0waexk1j7wbUGhTPeThxERa9xidUJIMihBAnOG2fmdTYNmpQok7sGpTOdPBokqK7vsST18UZKH/b+jcWrlhIdXM1E5MmcuPEG7EYLXyX9x23fbMAo7WAZoeTRptTP1fLgX2hIAGKEEKcwJrsDn2OSEIbyylaDUp5EGtQ/AlQosKCM6hNW2JJ6USAohXVlnbhZ9eVtt9tJdt4YdsLAFwz9hpeu/A17pl+Dx9c+gFTBkyhydFIeOrngDoLRVvu64l6l0BJgCKEECcwrb3UaIDYcN/BQCi6eCrr/QhQXEs8DTYHDmfP7RO0M09dFhmXHhvwa/1d4lEUhbc25LDmYGmrx4+V1QMwKCEy4PO/uedNAC4Zfgm/nvVrwkzq9QyNG8ri0xdjNpoxRe3HFHmQqgZbj02s7QwJUIQQ4gRW4REIGNtoYU3wmCQbrA0Dq/3JoHjUSDTYem6ZZ0deJQCTB8UF/FptmmxHRbKrD5TywAc7WPTWFq+fcV5lA7VNdiwmA8OSowI6d0l9CV8e/RKABeMXtHp+cMxgrhp9FQDWlGVU1DV7zECRJR4hhBAhpBWjtjdSPtH1XLMjeBsGukfdtx2gWM1GtJiqp5Z56prsHCyuBWDSwMADFM9Bbe0Fd2+sOwaoy2haHQjAvkJ1P5wRA6KxmAL7yH5v/3vYFTtTB0xlQtIEn8fcOvlWDIoVU8Rxvs1fobecyxKPEEKcoJZuz2f2EytYvb8kpNehZVDaCwQiwkyEW9SPi2DUodgcTn2H4vYyKAaDocc3DNxdUI1TgbTYcFLaKCJujxag2J0K1Q2+r7GgqoEVe4vd58yv1r/f59qwb3RqTEDntTlsvLvvXQAWjGudPdGvLyKJdGUuAP87/jJ5lXVA9+/50xkSoAghRAgs3VZAYXUjv3p/e4+3ybanyrVJXHw7gQAEtw7Fc6ppTBt1MZqe3jBw+/EqACZ1YnkHwGo2EeOandLWNNl3NuZ61dDsLvAIUFwZlDFpgQUoXxz7grLGMlIiUjh3yLntHjsqfB5OexTlzfmUGL8Auj5zpTtIgCKEECFwvFItfMyvauS5FQdDdh1aBiWhnSUez+eDkUHRNwoMN3c42l3bMLC2hzIoO/PUAGVyJ5Z3NHonT03rAMXucPL2hlwApg6OB2CPrwAlwAyKVhx71ZirsBjbD/KSo+JoKr4QAHPyF5ijDrXZch5MEqAIIUQIHK9w1xn869vDHHCl8oNNy4i0N7EV3K3GlfU9P6zNnymyGm2YWE9lobYfrwRgYiczKABJrp9dmY/gbuW+EgqrG0mMCuPu80YD7gyKzeHkcIm65BJIBmVr8VZ2lO7AYrTww9E/7PD4uAgL9qrpRDXPwmBQiBz4NpVNZX6fr6dIgCKEEEFW02jTP+hPHZmE3anw4Ec7g9Yh46nK3wxKEGehVPnRYqyJdO3H0x3D2oqrG/l8RwFO13JLTaONw6VqgNCZAlmNVofiq5PnjfVqceyVMwYxdVA8ALnlDVQ12DhaWkezw0lUmCmgotV/7fgXAPOGzyMpIqnD49Wfs4HynEtwNKahmGq4d9W92JzBmxzsS5cClCeffBKDwcBdd92lP9bY2MjChQtJSkoiOjqa+fPnU1RU5PW6nJwc5s2bR2RkJCkpKdx3333Y7aFbgxVCiGDSujQSIi08ecVkwi1G1h8p59PtBUG/Fi2D0taQNo32fDBrUPwJULpzWNvvP9vDbW9s5uXvjwCwK78aRVE7WgLdxbiwrpAVOSuwOW2kxKjLJcXV3gFKbnk9q1xF0tecnElcpEUPRPYWVOsFsqNSY9psAW9pX/k+Vh1fhdFg5OaJN/v1Gq1AutlmpuH4tZiIYHPxZp7b/Jxfr+8pnQ5QNm7cyN///ncmT57s9fjdd9/Np59+ynvvvceqVavIz8/niiuu0J93OBzMmzeP5uZm1qxZw2uvvcarr77Kww8/3Pm7EEKIPuR4uRqgDEqIZHBiJDedOgyAL3cVBv1a9IFovbAGpb2djDXuDQO7HqBoA9H+vvowjTYHO7QC2QCzJ6UNpSz4bAF3rbyLqz69Cof1AODeU0ez4Ug5igIzhiQw1DXjRBsGt7ugWq8/GRvA8s4/d/wTgPOHnM/QuKF+vcYzEFRsyWTF3o7RYCTCHBGSrJ6mUwFKbW0tCxYs4J///CcJCQn641VVVbz00ks888wznHPOOUyfPp1XXnmFNWvWsG7dOgC+/PJLdu/ezeuvv87UqVO58MILeeyxx1iyZAnNzcGbUiiEEKFyvEL9INR+Wx7r+lAq9lFE2dMq9SWe9rMV2jJFUItk/cigJLZT3xEoLTtUUtPEOxtz2Z4XeAeP3WnnvlX3UVyvtg0frDzIp8UPE57xJvnVFV7Haps0eg5gG5/hClDy3QGKvy3GR6qO6IPZfjrpp35fc8sW81kpZ/LxDz7m9qm3B7w5YnfqVICycOFC5s2bx5w5c7wez87OxmazeT0+duxYMjMzWbt2LQBr165l0qRJpKam6sfMnTuX6upqdu3a5fN8TU1NVFdXe30JIURfpRXIDkpQAxRtj5eSUAQoeptx+9mKpKiub3rn9zUFUIOS5trUrrBFdqIzKjyCnBdXHWJLjhpQBDJB9tnsZ9lUtIlIcyT/ufA/XD3magwYscRt55D9Ha9j833sUjzeFazuKXQv8fibQXlpx0soKJw16CzGJI7x+5pb/pwz4iP8zr70pID3Un777bfZvHkzGzdubPVcYWEhYWFhxMfHez2emppKYWGhfoxncKI9rz3ny+LFi3nkkUcCvVQhhOiVtBoULUDRWjqLqrv+IRsIRVH8GtQGHoWebczy6E7+TJHVpMV2T4BidzipblSXiWLDzV7LMRMz/AtQlh1Zxr93/xuAx097nKkpU5maMpUxsTN5ZOM91IevIbc6l8GxgwEo0Pa98dg5eIIrg7KvsAa7q1h3tB8BSl5tHv87/D8Abpl8i1/Xq4lrEZz2hn14IMAMSm5uLnfeeSdvvPEG4eHB65F+4IEHqKqq0r9yc3ODdm4hhOhu7gyKuvmblkGpb3b02DwPXxpsDprtTsDdpdOWpGB28QRQJKtnULoY3FW6zmkwwM/PGaU/PjgxosOfDUCTo4nH1z8OwE0Tb+K8Iefpz1008mzstaMxGJz8efPz+uMFPjIogxIiiLGasTkUFAWSo8M6LNB1Kk4eXfsodsXOrPRZTB4wud3jW/KVQekNAgpQsrOzKS4u5qSTTsJsNmM2m1m1ahXPPfccZrOZ1NRUmpubqays9HpdUVERaWlpAKSlpbXq6tH+rh3TktVqJTY21utLCCH6Kq0GZVCi+kEQZTUT5WqXLQ5iFkVbSjEbDfr525Lk+pCsrLdhczh79Lq06bb+BCjprgCloKqhSwWd2p5EseEWrp09RA/IJg+M9+v1q3JXUdVURWpkKj+f9nOv5yLDzJirLgJg+bFl7K/YD+DeOdgjg2IwGBiX4f6M86f+5M09b7Imfw1Wk5Vfz/y1X9frKcxs1Nu1rWZjh/VIwRJQgHLuueeyY8cOtm7dqn/NmDGDBQsW6N9bLBZWrFihv2bfvn3k5OSQlZUFQFZWFjt27KC42L3vwPLly4mNjWX8+PHddFtCCNE71TbZ9WUVz9kW2j4vwSyUrfDYKLCjYsj4CIu+MV9FD2dRAsmgaMtjjTZnm3vd+KO8Tj1nYlQYEWEm7ps7BoMBLpqU7tfrlx5eCqizR8zG1tUTGRGjsFVPQkHh+c3PU9dk15eU0ltkLLQ6FOg4QNlfsZ9ns58F4N4Z9zI8frhf19uS9rMeGB8R0sJYTwHVoMTExDBx4kSvx6KiokhKStIfv/nmm7nnnntITEwkNjaWn//852RlZTF79mwAzj//fMaPH891113H008/TWFhIQ8++CALFy7Eag2sz1wIIfqaPNfyTnykxWufmQExVo6U1gU1QKnys/4EwGg0kBhlpbS2idLa5k5tnOf3dQUQoIRbTCREWqiot1FQ3eDX9Flf3MGa+vqrZ2ZyxUmDCDN3/Ht8ZWMl3+Z9C8Alwy/xeUxqXDj7j55PWOwuvjn+DSuPbgAgJtysT8PVeAYo7RXINjmauH/1/TQ7mzlj0Bn8aMyPOrzWtsRFWCioauw1yzvQA5Nkn332WS6++GLmz5/PGWecQVpaGh988IH+vMlkYunSpZhMJrKysrj22mu5/vrrefTRR7v7UoQQotdp2WKs0epQgrnEU+Fni7EmOVpr6e3ZICqQAAUgzbXzbss5I4HQskKeE3X9CU4Alh1dht1pZ1ziOEYmjPR5THpsOErzAEZHnQPAq3v+DkCGj12Dx3su8bQRoBypOsItX97CwcqDJIYn8ugpj3Yp86H9rNPjQr8HjybgLp6WvvnmG6+/h4eHs2TJEpYsWdLma4YMGcJnn33W1VMLIUSf07LFWKNNGw1mq3GlXuvRcREouDt5erLVuNHmoNGm1rj4mw1Ji7WypwCKuhKg+Dny35dPD38KwMXDL27zmFTXB/8gwyUcMnzDvqrNGCNmkR4/o9Wxo1KjSYoKw+5UGDkgkic3PMnmos2MTxrP1JSpFNcX8/dtf6fZ2UykOZLFpy/2a6R9e7TMUW/KoHQ5QBFCCOE/vUDW1cGjSY1VMyjBbDX2d0ibJlGbhdKDNSjVruyJyWggxtrxR9Sbe95kq/EvmGOuoKBqVIfHt8Xfkf8tHas+xvaS7RgNRi4aflGbx2mZieqaGC4dfSkfHPgAa/IK0uNOb3Ws1Wzig9tPodlh57END7Ls6DIA9pTv4f0D7+vHnTbwNB6e/TDp0f7VybRnzrhUso9VcvbYlC6/V3eRAEUIIYKozQyKK0AJZg2K1rniTxsteOzK62PTu+6iT5ENN3e4ZJFfm8+z2c9ip5HwjHc5UDEJGN2p8+pLPH7+LDRacWxWRhbJEcltHuc5UO6RiT/lwwMfYY7ejzkiF5jU6vj0eAv3rnqAlbkrMRvN3DHtDioaK9hWso0aWw03TriRi4df3G0FrVfOGMwPpw/qNQWyIAGKEEIEVcsZKBp9Q7mgdvEEVuuRHIQlnkDqT/646Y80OhoxYARjMxvqn6Gm+XRiwvzfu0bjzqD4H6AoisLSQ2qA0lZxrEYfKFfdyODYwcQ7Z1FhXMvuhg8Ad+alydHEytyVvL77dbaVbCPMGMazZz/LGYPOCPCOAtebghOQAEUIIYLKvcQT+iLZygA/lLVZKD1ZJOvvmPu1+WtZfmw5JoOJheOe4s/bHqPJUsRvvvsNfz77zxgNgfWAaMFaYpT/Szzf5n3L8drjRFmiOCfznHaP1ZZ4yuuaabQ5MFSdixK/jv0163l///vU2mrZX7GflbkrqWlWR9xHmCN47pznmJ0+O6B76S8kQBFCiCCp85yB0kaRbHWjnUabg3BL+4PTukNlAG3G4F7iKQ1GBqWdoMnmtPHkhicBuHrs1ZyVeQqL/3ctUUNfZGXuSt7a+xYLxi0I6LzaEk98ABmUl3a8BMCVo68kwtx+cWlchIVwi5FGm5Oi6kZKyuNwGidjidvG79b+zuvY1MhULh1xKVeMuoJBMYMCuo/+RAIUIYQIEm0PnrgIC7Hh3kFBbISZMLORZruTkpomBidG+nqLbtVy9kdHkoLQZuzPEs+be97kcNVhEsMTuX3q7eAMx9k4mMaiiwhP+5T/7P4P14y9JqAsivazSPSzBmVz0WY2F2/GYrRw3fjrOjzeYDCQFhvO0bJ69hfVUt/swFByHqMGV2M2mhgeN5zh8cM5KeUkZqbNxGTs+QC1t5MARQghgqStGSigfoClxFg5XtFAcU1jUAIUfVM+f9uMXV085T2YQanUAxTfH08Op4N/71I35Ltj2h3EhsWiKApRYSbqKk8madBK8mrzWF+wnqyMLL/O6XAqAW1QCPDyzpcBuHTEpaRE+tf5khanBiibXbskx1vS+fTyT/x67Ymo2we1CSGE8K2tDh6Ne1fjni+UVRTF3WbsZ92FlkGpa3bQ0Ozokeuq7iCDsq5gHcUNxcRZ47hkhFqYajAY1C4ZJYwZyecC8MGBD3y+vq1zujYO9qseZ3/FflYdX4XRYOTGiTf6fZ5011C2zccqvP4ufJMARQghgqStDh5NMAtla5vs2F2fyv4WyUZbzfp01Z5a5ukoq/PxoY8BuHDohYSZ3MdobbzjotVdhFfkrKCiscKvc2rLOzFWMxZTxx+LWvbkvCHnMSR2iF/nAHcAuv14FQAZ8b1namtvJAGKEEIESVsdPBo9QAlCq7GWPbGajX4X5BoMBpKjerbVuL0alJrmGr7O+RqAH4z8gddzabGun2nzQMYnjcfmtPHJIf+WT/RaHD8ySXm1eSw7og5Ou2niTX69v0br5GmwOVx/lwxKeyRAEUKIIMmrVDMjbY0TD+aOxp2Z+wGQ2MOFslrrc6yPAGX5seU0OZoYHjecCUkTvJ5L9xiENn/UfEBd5lEUpcNzVmg7Gfvxs3hn7zs4FAez02czPml8h8d7Sm2xwWK6ZFDaJQGKEEIEiTaBdUCM753bB4Qgg+JvUahGK5TtqVbj9opVPz6oLu9cMuKSVkPFtL1uCqsbuWjYRUSYIzhcdZitJVs7PGd5vX8txg32Bn3UfKBtzNB6Iz5fGwUKNwlQhBAiSLRlEW0ia0vBrEEJtMVYoxXKlvfQfjxVDXag9RJPbk0um4s3Y8Dgc1O+9Fh3BiU6LJq5Q+cC8N/9/+3wnJV+thgvO7KM6uZqBkYP5PSBrffQ6UjLAKU37RzcG0mAIoQQQVDfbNdrD7SJrC0Fc0djLVMR6BJPsjZNtgf241EUhSp9h2XvAOXTQ+qOwbPTZ5MWldbqtVqRbIFrR+Mfjv4hAF8c/YLKxsp2z1te13E2SVEU3tz7JgA/GvOjTs0pSYq2YjK6Mz+9aefg3kgCFCGECAIte2I1G4kK8/3hpu1oXFbXTLPd2aPXU+HHh7IvST1YJNtgc2BzqDUjngGKU3HqBa+XjrzU52u1AKWsrolmu5PJyZMZlziOJkcTHx78sN3z6hmUdoK1bSXb2Fu+F6vJyuUjL/f/pjyYjAZSXVkyg6F1TYrwJgGKEKLfK65uxOnsuFiyJ5W4Mg7J0dY2N2VLiAzD7PoNu7QHdwwGqGwIfLQ7uLM/pT2wxKNldSwmA5EeQdy6gnXk1eYRbYnm3Mxzfb42MTKMMJMRRYHimkYMBgNXj70agHf2vYPD2fbcFm25Kr6dJZ4396jZk4uGXUR8eHxA9+VJC6SSo616y7bwTX46Qoh+beW+YmY+sYK/rjwY0uvoqP4EwGg0BK1QVi+S9XMnY407g9L91+fZYuwZxGl1JBcPv7jNPW+MRgOpcerPrtC1zHPhsAuJDYslrzaP7/O/b/O82s/CVwbFqTjZVLiJ5ceWA+hBT2dpAUqG1J90SAIUIUS/tvFIOQDvZef61XLaU7QP9LbqTzTBKpTtbJuxvh9PF5Z4so+VM++5b9l0tNzr8WNl6pwYz2LV0oZSVuasBODKMVe2+75pse5OHlB3A9aWY97a+1abryvXfxbuYK2soYw/bfoTc9+fy41f3IhdsTN1wNSAW4tbX6MaYMkMlI5JgCKE6Ne0sfG55Q0cLq0L2XWUuZYRkjroFBkQE5xZKFrWIC7gLh7Xfjx1zZ0O+N7fnMeu/Gr+suKA1+Nf7CoE4JQRyfpjHx38CLtiZ8qAKYxOGN3u+6a5PvS1DAqoBa0GDHyX9x051TkAfLajgI+25OnHaDUoCa7/NvvK93H1/67m1V2vUlhXSKQ5knnD5/GHM//Qqfv1dPLQBABmuP4UbZPNAoUQ/VpxjfvD6pt9JYwYEB2S6yj1N4MSG6wlnk5mUFwf4s0OJzVN9la7MvujwLWr8/cHSympaWJAjJVmu5OvdhcBcOFEtUvHqTj15R2tK6c96S06eQAGxw7m1IGn8l3ed7yz7x1unXgXP39rCw6nwvQhCQxKiKCi3t3RtDJnJfd/ez8N9gaGxg7lrpPu4tSBpxJu7p4lmQsnpbPlofP0YEi0TTIoQoh+rdhj471v9hWH7DpK/ahBAfcST0lN9yzxtJXlqNTbjAMLMMItJqKt6u+2nV3m0QIIp6JmMwDWHi6jutFOcnQYM4Ymqo/lryWvNo8YS4w+16Q92s+uqMXy2DVjrwHg3X3v8r+9G3G4Cqa/PVBKdaNd/bvBxlsH/s6dK++kwd7ArPRZvH7R65w75NxuC040Epz4RwIUIUS/5plBWX+4nPpme0iuo8yji6c93bmj8cHiGmY8/hVLWhQIO5yKuyA1wAAF3DUinS2ULfQIID7Zlg/Asp1qoHL+hDR9VoiWPblkxCVtFsd60n52xS1+dqcNPI1TB55Ko6OR53b9GoO5GoDvDpZQWd+MKWof0SOe5eVd/0JB4arRV/HCnBeIs8Z16v5E95AARQjRbzXZHR7pewvNDidrD5WF5Fq0bEOSnxmU4m7IoKzeX0pZXTN/+nIfu/Or9ce35laiKOosjrZ2DW6Pdg+dGXff0OzQ618Aso9VkFNWz5e7vJd3cmtyWZmrFsf6s7wDbf/sjAYjfzjjDwyLG0ado4yIQf8BQxPf5X/D/d8vIjLzFQyWclIiU/jTmX/iwdkPYjEGHriJ7iUBihCi39ImsoaZjFw0KR1Q61BCQdtcT9vLpi3aNNmWWYCunNOpwEMf78TpVKhvtnPve9sAuHRKRqdmcWj30JkNAwuq1PqTqDATs4erSzkPf7KTsrpm4iIszB6eBMDftv4Nh+IgKz2LUQmj/Hpvz+xTy6WtmLAYnjv7OXBEYorIJXr0Yygpr7KrYhOKYiSm6Vw+uewTzh96fptzakRwSYAihOi3tELTATFWzh6TAsA3+4uD3m7scCr6MLDkmA4yKLHaZnxNeq1EZ5XWuDMc2ccq+G/2cRZ/tpcjpXWkxYbzyKUT2nl125K70Gqsddikx0dw6ZSBgDtoPG98KhaTkX3l+/jf4f8BcOf0O/1+b+1n12BzUNvUeikvTEml/viPURQjBqMdpz2aiPo51B36BSNM1xBliQr4fkTPkQBFCNFvabNEUmKtnDIyiTCTMSTtxhX1zWixRnvj1EHtkjEY1KxHZzIUnrTOobFpMQA88uku/rPuGAB/uHJywFNk9WvswoaBWoFselw4F05M0yfngnt557ktz6GgMHfoXCYk+R9ERYaZ9QJeX11Q23IrcdSPJLX2bi7PeJC6A7+i+NgcFFtSwN1MoudJgCKE6Le0D6mUGCuRYWZmuZYUVu4NbjePlmlIiLRgNrX/z67ZZNSXULq6zKONo79rzijGpMZQ16yOe//JKUM5fdSATr+vdn2dGcdfUNWAMayIivD/8sSm35A6+jUihy4hOv0LRg90kF2UzerjqzEZTCyauijg99eyKC07eQC2Hq8EYGbGdG6cdjGekzYC7WYSPU8CFCFEv6V9wGu1CWeOVj+UVx8oDep1+DtFVuNuNe5igFLjvv/HL5+I2WhgdGo0918wtkvv6y6SDez6mhxNrCz6N5HDn+OYfRnLji6j2rAbU0QuhviVXPrxPO5ddS8AV4y6gqFxQwO+tvZ+dttyKwGYNjieoUmRDEpwdwZJ62/vI4PahBD9lvZbtPahNX2IOr3zQFFNUK9Dy2R0NANFPfggL9bewUZLBhWli4GUTp1TURQ9gEiOtjI4MZKV955FfKSFiDZ2U/aXVsgbSCv0+oL1PLbuMY41H8NggBFRM5g//hzirfGU1jbxTf5SNhdnU9pQitVk5WdTftala2uZfXI4FXYcrwJgyuB4DAYDp49K5q0NuUDgA+tEz5MARQjRb7mXeNQPrSFJahFkQVUjjTYH4ZaufVD7S8tkdJhBcTrgo9vItB0m03SYulWXwYAlMObCgM9Z1+ygye50nVf98B2cGBnw+/gyMF7NPORXNqAoSoddLw6ng8XrF3Os+hhGZxx1+Rdzx/wbOWdsqn7MjVN+yM7SnXx88GNmpc8iJbJzgVlqG0s8h0pqqWt2EBlmYmSKOk34tJED3AGKZFB6HQlQhBD9VpFHkSyodQYx4WZqGu3kltczKjUmKNehFbsmd/QhuP7vcHwDTaYocmzxjLLlwVtXw6l3wnmPBnROLSiKDDMRGda9/9SnxlkxGKDJ7qS8rrnDwMtkNPFw1sN8duQz/rt8EvY6MxnxrQevTUyeyMTkiV26tpQ29jLa6lremTQwTh8Ed8qIJAwGUBSpQemNpAZFCNFvlbTIoBgMBoYkqVmEo66dc4PBPaStnQ/y8sOwQg1Ctoy5h4ubf88XcVepz33/HNQUBnTOUj8n13aG1WzS3ze/su2Bcku35/PMl/twOBVOSj2Je6c/QGWdGiz11G6+bRXJavUnUwfH648lRIVx4cQ0YsLNjE+P7ZHrEZ0nAYoQol+yOZz6DsJa2h/cyzzHyoLXalza0RRZpxM+uQPsDTDsDCrHLaCJMF4I+wkMmgkosOujTp3Tr7qXTtAyIPmuwWue7A4nv/tkF4ve3MJzXx/k+4NqUbI2AyUyzERseM8k8LVgtGWRrJZBmeIRoAA8d/U0tjx0nt8FzCJ4JEARQvRL2geU2WjwKoAc4qrDOBbMDEpdB9mMHe/B0W/BEgmXPk9KnMeH7MT56jE7/xvQOf3dPbmzBsar15hf6R2gVNXbuPHVjby65qj+WPaxCvVYVzCTFhfeY9Nafe0G3WhzsLdQLYxuGaCYTcYOW79FaMh/FSFEv+Q5RdboMQxsqJZBKQ9egOJebmkjm7HpJfXP0+6BhKFee8ooEy4DgxGOb4SKo36fs0zPoPRMgKIt0XgGKIqicP3L6/n2QCkRFhMXTFAHr21xZS8KPYa09RStpby2yU6da5rsnoJqHE6F5OgwMnrw3KJ7SYAihOiX3AWy3h9ImUlaBiV4Szx6DYqvfXhK9kPuejCY4KTrADWoArA5FCqMiTD0NPXYnR/4fc4Og6Iuci/xuGs9imua2Ha8CqMB3r/tFBadMxKALTkVOJ2KxxTZnqk/AYi2mol0tVFrQaqWPRmXHiv77PQhEqAIIfolzymynrQMSl5FAzaHs8evo77ZTr1rgqvPGpStr6t/jjofYtSMg9Vs0rtKimsaPZZ5OhOg9EwGRctEeGZQDhXXAmqdz/iMWMamxRBuMVLTaOdQSa2+UWBPZlDAnUXRtjrYW6Du5DxOCmH7FAlQhBD9UkmLIW2alBgrVrMRu1NpVT/RE7TsidVs1PeJ0TlssPUt9XtX9sR9nR4Dx8ZdCkYzFO2Akn0BnbfHApT41ks8h0rUAGXEADUINJuMTB4UD8CWnEp9iSethwMULQNV5ApS97gyKNqeRKJvkABFCNEvFbUYc68xGoPbalxW5w4UWi0vHFgOdcUQNUDNoHjwKvaMTIQR56pP7Hzfr/O6i2R7domnuKZJz0QdKlGXzUYMiNaPOylTnd67OafCa6PAnqTX8FQ3oiiKnkEZmyYZlL5EAhQhRL9UXOM7gwKQmaj+hp8ThDoU9xRZH4HCFtfyzpSrweQ9KGyAR6Es4F7m2fFfdbJYB0p6eIknKSqMMJMRRXEXv7ozKO4AZVpmPOCdQenJGhTwWOKpaaKgqpHqRjtmo4ERKVE9el7RvSRAEUL0S21lUACGBjWD4gpQWk6RrSmC/cvU76ddR0ut9pQZe5Hahlx+CA5+1e45m+wOahrVDpaeKpI1Gg2kt2g11mpQRqS0DlD2F9fo2aRgZlD2uLInIwZEYzUHZ2sD0T0kQBFC9EuebcYtDUkK3iyU0rZqQba/DYpDHcQ2YEyr17XaldcaAzNuUr9f+US7WRSt/sRiMhAX0XMj3DNcmZCCqkbqmux6R49WgwJqoDUoIUK/3HCLsUevCbwzKFoHz9h0qT/payRAEUL0O3aHU89cpMT6ClCCN022zTH3ez9T/5zyI5+v0z5kvUa2n3onmCMgfzMc+LLNc+r1J1E+6l66kZZByats4LCr/iQ5Ooz4FjsDa3UooC7v9HSrrxbcFXlkUKT+pO+RAEUI0e+U1jajKGAyGnzOHtEyKDnl9TidHddzdIV7iqzHh3ZjlTp4DWDkeT5f52siKtEpMPOn6vffLG4zi1LW0Wj9buK5q7FWfzLco/5Ec5JrmQd6fnkHvH927hkokkHpayRAEUL0O1phaXJ0mL5zraeB8RGYjQaa7E6KahpbPd+dfHbTHF6lLu8kjYSEIT5f5zVN1jMQOfUusERB/hZ3DUsLPV0gq9E6eQqqGn0WyGqmeWRQerrFGNzD+Woa7Rx2XZfMQOl7JEARQvQ7WoGsVmjaktlkZFCC+uF6tLRn61B8TpE99LX6p9Y67IN27Y02JzWuke0ARCXDzFvU79uoRQlWBiXdY1hbyxkonsalx2I1G71e05NirGbCLer5nAokRFp8dnOJ3k0CFCFEv6NlUFJ91J9oMl11KDnlXa9DsTucPPjRDl5bc9Qr25F9rILDper767UwigKHVqjfj2w7QIkIMxHjGuymd/JoTrkDwqKhcDvs/V+r12pZmwE9nEHxWuIpVu9zZErrDEqY2cjkQXGAO+vSkwwGg1f31tg0GXHfF0mAIoTod7QP9AFtZFCge1uNNx6t4PV1Ofz2k13c+fZWGm0Oth+v5Ccvb6DZ7uT0UcmMSXXVQJQdgsocMIW599hpw4DYFrNQNFFJMPt2mLoA0iZSUdfMZzsK9Hqanh5zr0l3BRvVrlH24HuJB+C+uWO5+uTBXDQxvUevSeOZMZEOnr7J3PEhQgjRt7Q3pE2TmegqlO2GACW3wv0en2zL51BJLccrGqhpsjNzaCJ/v266+zd4LXuSORvC2h8clhJj5XBJnbvV2NPZvwaDAUVR+OmLa8k+VsETl0/ix7Myg7bEE201ExtuprrRjt2pYDUb9axKSzOHJTJzWGKPXo8nz+W9cdLB0ydJBkUI0e8U+jFSXds08Gg3tBrnVaiDyqYOjich0sKu/GqqGmyclBnPyzeeTGSYx++Cev3JOR2+r89WY40r4PliVxHZxyoA+HDLcSB4GRTwXrIZPiAao4+i5FDwbC+XDErfJAGKEKLfKfBjUzrPYW2KH6Pj25PnmqQ6Z1wKHy88jZnDEjlz9ABevWmm9waB9mY48q36fTsFshr3RFQfGRTU2penv9ir/33j0QryKht6fB8eT54Biq8C2VDRMihGA4xOlQClL5IlHiFEv1NY3XGAMihBDVBqm+xU1ttIaDmKPgBaBmVgQgSZSZG8+39Zvg/MXQe2OohKgdSJHb6vPu7e1xIP8F72cQ6X1JEQaWFwYiTbj1fxydZ8yl0j5Xu6SBYgI979M26r/iQUtALpYclRhFtkxH1fJAGKEKJfabQ5qKy3AZAe23bHSESYiQExVkpqmsitqO9agOLKoAyMj2z/QM/lHWPHCeyUtopkgYZmB88u3w/AonNGYTUb2X68itfXHUObPZfYhXvyl1cGxUcHT6icNiqZKYPjuXL6oFBfiugkWeIRQvQrWv1JuMVIbET7v4MNds1CyS1v6PT5nE6Fgip3BqXtAx2w6yP1ez/qT8BzR+PWGZSXvz9CcU0TgxIiuHZ2JhdNSsdsNOjBUkKkBbOp5/+Jz/DYmXhkL8qgpMSE8/HCU7l2tu9BeKL3C+h/vS+88AKTJ08mNjaW2NhYsrKy+Pzzz/XnGxsbWbhwIUlJSURHRzN//nyKioq83iMnJ4d58+YRGRlJSkoK9913H3a7veWphBCiU7TlHX/2fDnbuo/phn3kdmEWSnFNEzaHgsloILW9YWD7PoOKIxAeD+Mu9uu9tSLZwqrGVnUy723KBeDuOaOxmk0kRoVx2qhk/flgFMiCO4NiMKjLKUJ0l4AClEGDBvHkk0+SnZ3Npk2bOOecc/jBD37Arl27ALj77rv59NNPee+991i1ahX5+flcccUV+usdDgfz5s2jubmZNWvW8Nprr/Hqq6/y8MMPd+9dCSFOWFoGJS22g4mlB5bz89y7ed/6CHM33uwaPx94sexxV4txWmx4+xmLNc+rf558c4ftxZpBCREYDFDf7KDMVVcC0Gx3klOuntczKLl0Sob+fbAClDFpMcRHWpg5NJGIMKn1EN0noADlkksu4aKLLmLUqFGMHj2a3//+90RHR7Nu3Tqqqqp46aWXeOaZZzjnnHOYPn06r7zyCmvWrGHdunUAfPnll+zevZvXX3+dqVOncuGFF/LYY4+xZMkSmpubOzi7EKI3K6lp4sw/rOTJz/d2fHAP8qeDh4ZK+OTn+l+H1W2Ff18Kb10DjsAyunr9SXvLO7kbIXe9Opxt5q1+v7fVbNKXUDx3Xs6rbMCpqMtYnrNezp+Qpo+UD0YHD0BchIU1vzqHN346KyjnEyeOTi9QOhwO3n77berq6sjKyiI7OxubzcacOXP0Y8aOHUtmZiZr164FYO3atUyaNInU1FT9mLlz51JdXa1nYXxpamqiurra60sI0bt8f7CUY2X1vLjqEDvzqkJ2HUV+dPDwxa+hpoCGmKGc1fQnPrDMU4OH/Z/D3qUBne+4q4NnUHsj3Ne6sieTroKYtIDeXxsod8xjoJwWrAxJjPJaxoq2mjl3XArQ9j5EPSEyzByUehdxYgn4f1E7duwgOjoaq9XKz372Mz788EPGjx9PYWEhYWFhxMfHex2fmppKYWEhAIWFhV7Bifa89lxbFi9eTFxcnP41ePDgQC9bCNHDcsvdH6BPLQtdFkUrWG1zSNv+L2DrG4CB6gue46iSzq/qr0M55Q71+XV/C+h8WgZlUFsZlPIjsOdT9ftTFgX03gBDk1uP5NeClcyk1l1Dv7pgHPNPGsQNp0hxqOjbAg5QxowZw9atW1m/fj233XYbN9xwA7t37+6Ja9M98MADVFVV6V+5ubk9ej4hROA8x71/e6CU7w6UhuQ6tBqUVF81KA2V8IkrEDllEUljT8dkNNDscFI89jowWtSlmOPZfp/PcwaKT2ueB8UJI+dAyrhAbgWAzES1XsVziUcLUIb6CFAykyL501VTGJIkBauibws4QAkLC2PkyJFMnz6dxYsXM2XKFP7yl7+QlpZGc3MzlZWVXscXFRWRlqamNNPS0lp19Wh/147xxWq16p1D2pcQonfRljq0vVieXLZH37wumNxdPD4ClJ3vQ20hJI6As3+D2WTUB40da46FST9Ujwsgi9LmDJTmerXOZdNL6t+zAs+egDsI8bXEkylBiOjHurxo6HQ6aWpqYvr06VgsFlasWKE/t2/fPnJycsjKUqcqZmVlsWPHDoqLi/Vjli9fTmxsLOPHj+/qpQghQkjLoDx08XiirWZ25lWzdEdBUK/B5nDqM0N81qDsc41FmHYtWNRAarBromxueT3Mvk19fvdHUJXX4fkURfGdQSnaDf88Gzb/GzDAWb+G4Wd15pb0TIhXBqW87QyKEP1FQAHKAw88wOrVqzl69Cg7duzggQce4JtvvmHBggXExcVx8803c88997By5Uqys7O58cYbycrKYvbs2QCcf/75jB8/nuuuu45t27bxxRdf8OCDD7Jw4UKs1uC0xAkhup/d4SS/Us1cTB0cz61nDAfgL1/tD+p1lNQ0oShgNhpIjmrxb0pTDRxZpX4/dp7+sL6rcXk9pE+BIaeB0w4b/9nh+SrqbTTYHIBHxiZ3A/xrDpTsheg0uOETOOt+fXO/QGl1JhX1NqoabDidit5iPFQyKKIfCyhAKS4u5vrrr2fMmDGce+65bNy4kS+++ILzzjsPgGeffZaLL76Y+fPnc8YZZ5CWlsYHH3ygv95kMrF06VJMJhNZWVlce+21XH/99Tz66KPde1dCiKAqqGrE4VQIM6ttr9dnqQWah0rqqG0K3iBGbXknNTa89a66h74GRzMkDofk0frDg10Bil5Do2VRNr0Cze0PcNNmoAyIsar7vRRshzd+qO63M/R0+Nl3MOyMLt1TtNWszzTJKaunsLqRZrsTs9HQ7m7NQvR1Ae3F89JLL7X7fHh4OEuWLGHJkiVtHjNkyBA+++yzQE4rhOjlPFttjUYD8ZFhJEaFUV7XzLGyOiZkxAXlOgrbm4Gy1/XvzpiLvLIZWvfNcW3c/ZgLIWEoVByFnR/ASde1eb48z7qbkv3wn8uhsQoGz4Yfv+P3QLaODEmKpLS2iWPlddQ0qfsMDU6MlNZe0a/J/7qFEF2mZR886zC0+oijpfU+X9MTCtqaIuuww4Ev1O/HXOT1VKsMitEE029Uv89+td3zaQWy42Pq4d8/gPpSdZlowbvdFpyAGqCAWiirtxgnSv2J6N8kQBFCdNlxV03EYI8PTa0+4mhZ5/e5CVSbQ9py10FDBUQkwmDviadakWxhdSNNdrWehKk/BqMZ8jZB4c42z3e8ogEDTm4pfRJq8tWlo2s/gPDuzRgN8Wg1bq/FWIj+RAIUIUSX5bqWOrQPe4Chro3jjpYGL0BpM4OiLe+MvgBM3ivbydFhRFhMKIp7yYboFHemZfNr+rFOp8KO41V6+3ReZQM/My1lWPUmsETCj16HqGS6m+ewNmkxFicKCVCEEF2mTZH1nKaqByhBzKAUuqbIemVQFAX2/U/9fsyFrV5jMBgYnKhetxZoATD9J+qf298BWwOKonDXO1u55K/f8cv3twMQXbKFX5jfVY+78CkYMKZb70ejdxp5LPFIBkX0dwEVyQohhC9akaz3Ek/rEe09zeeQtpK9asGryQojzvH5usEJkewvqvUa18/wsyE+EypzYPfH/L3yZD7Zlg/Af7OPc9EQhXtrnsJscFI94lJip7VdTNtV2nJZYXUjlQ3qxqpDJEAR/ZxkUIQQXdJkd1BUowYGg31kUEpqmoLSaqwoCkVV6pA2rzH32nC24WeCNdrna1sVygIYjXDS9QBUfvdPfX+hkwbHcq1pOSd/dgEDKSHHOQDjpX/p9JwTf8RHWogNV3+fbLQ5MRhgUIIEKKJ/kwyKEKJL8ioaUBSIDDORGBWmPx4bbiEpKoyyumaOltYxcWDPthqX1zXT7HACLQKUQ1+rf446v83Xtmo11ky9FmXlYuJLNvEP859ITkpiiqUMo0Xdq2ercwQPG3/OJ3GJ3XcjPhgMBoYkRbHDtUt0emy4OndFiH5MMihCiC7R6jYGJURgaJFFGOJjH5meohXIJkdbCTO7/mlrqoWcder3bSzvQBsZFIDYdLZGnwbAeaZsplV+iTE/G6clisccP+GK5kewJ4zs3htpg+eSjmwEKE4EkkERQnSJNk11sI8lh6HJUWzOqQxKoax7SJvHiPuj34HTBvFD1AmybfAad9/Ck+aFpDRP4rasFMYnmQAF44TLGbTThvPT3UwZHJwhdN4BiizviP5PAhQhRJfklrcukNXos1CC0GqsFcimxXps2nfItXnpyHPbrRHRrr2y3kZNo42YcIv+3IFqI+udp3Db9NMhw72T+o2nwqxhSXoLcE/zzJpIBkWcCGSJR4g+7vuDpSzbWRiy82vLIp4txppgthprGRSvDh6t/mTEue2+NtpqJiFSDUpyPepQGpodlNepXTMD41vf3/iMWCLDgvN73pBEyaCIE4sEKEL0YfsKa7jh5Q3c/ka2PkU12I7rM1Baf2gOc/2mfyQI4+61sfP6DJSKY1B2EAwmGHZ6h6/3VYeS75qrEhVmIjYitAlnLdgDCVDEiUGWeITooxRF4aGPd2J3TTU9VFzr3b0SJO4ZKK0zDENcyx+ltWqrcbS1+/7JqWm08dGWPFbtL2X78UqKa9QWY32KrLa8M3imX6PnBydEsv14ldcsFH0zQB8FwMGWEmNlaFIktU12Rgzw3S4tRH8iAYoQfdSHW/LYcKRc//vRsnpOCU5Dia6uyU6ZawnEVwalJ1qNDxbX8PL3R/loSx71zQ79caMBpgyO54zRA9QH/Fze0WgZlOMe02TzXVmZDB/LO8FmMBj47M7TsTsVaTEWJwQJUITog6oabDzx2R5AHeJVWW/jWHnwRsprtA/z2HAzcREWn8cMSYqkrK6ZY2X1XQ5QGm0OfvDX76lzBSYjU6L54fRBTB+SwATPehCHHQ6vVr9vp73Yk5YB8uzk0QIUX/UnoRCsehchegP5X7sQfdCfvtxHaW0zIwZE8aOTB/PEZ3s5FoQ6j5Zyfexi3NLQ5CiKc/dTnbMdJqd36XyHS+qoa3YQbTXzz+tnMHt4ou+ll7xN0FQFEQmQMdWv99bapD2XeI73ogyKECcaCVCE6GOKqht5fd0xAB77wUSa7Or01GM+Znj0tNx2ZqBoziabJ8LuJ2yTHWJ+A6f/Qh0j3wnaTr4jU6LJGpHU9oH7v1D/HH42GP1bDvFc4lEUBYPB0OsyKEKcSKSLR4g+ZsORcpwKTMiI5ZSRyWTq01rrUBQlqNdyqKQWgGED2pjLsfVN5u25j3CDDSMKrHwc3r0OGqs7db4jrgBlWHI7c0Aaq2DTy+r34y7x+70z4sMxGKDB5qC0Vq2rya9UO6MG+mihFkL0LAlQhOhjNh1VC2NPHqru/zIoIQKjAeqb3R+swXKgSA1QRqX46CpZuwQ+ug2j4uB9x+k8bvwZmMJg71L41xxoqAj4fNrAt3bbbNe9CI2VkDwGxv/A7/e2mk16B1BuRT1Op0JBlSzxCBEqEqAI0cdsOqZ+sM8YmgCoH6zpceoH6LEgDETzpGVQRrYMUEoPwBe/BqBp5u3ca/s//lV/BnULlkJMOpTug43/Cvh8R117+rSZQWmoUAMjgLN+5ffyjkafhVJeT0ltEzaHgsloIDXG2sErhRDdTQIUIfqQ2iY7ewrU5ZEZQ9w76Grj1oOxKZ+moq5Zz9i0msux+2P1z+FnY73wCZKi1QDqoGUMzHlEfW7Dv8AeWMZHy6AMbWvU+9q/qcWxKeNh/GUBvTd4F8rqg99iwzGb5J9KIYJN/l8nRB+yJacCp6IWbaZ5jHTX9mYJZgbloCt7MjA+gqiWA9j2fKr+OeEyMBj0JaCDxbUw4XKIToPaQtj9kd/nq2+268PYfAYo9eWw7gX1+7Me6FQhrtZqnFveoA9py4gP/vA7IYQEKEL0KZuOqss7J7uWdzTaPi1Hg5hB0epPWi3vVOZCwVbAAGPmeR1zoLgWzGEw86fqsWuXgJ+FvUddbdQJkRbiIn3MXPnuGWiugbRJMPbigO8HPDIoFfW9akibECciCVCE6EOyXfUn04cmej2uZ1CC2Gp8sLiNAGXvUtdFnQLR6lTXUanRXq9h+o1gDlcDmZx1fp1P23DQ506+h76GNX9Vvz/7N51uY/bcj0dajIUILQlQhOgj7A4nW3JcBbJDWmRQPFqNg+VAcQ3go4NnjytA8chijBygBSjqa4hKhslXqd+v+5tf5zvaVotx1XF4/6eAAiddD2Mu9P8mWsh0BSj5lY16sCcZFCFCQwIUIfqIvYU11DU7iAk3Mzo1xus5LUCprLdRVW8LyvUc8pVBqS2BnDXq9+M8AhTXMTnl9TTaXPvnzL5d/XPvUqg42uH5fLYY25vh3RugvgzSJsOFf+jczbikxFgJMxtxOBU2u7JVkkERIjQkQBGij9Dmn5yUmYDJ6D3ePTLMzABXK2ww9uSpbbKTX6UOMfMKUPZ9BooT0qdAfKb+8IAYK7HhZpwKHHEFGqSMg+Fnqcdnv9bhOVu1GJcdgg9uUcfah8fBVf8GS9cKWo1GA4NcAUl1ox2QIW1ChIoEKEL0Efr8kxbLO5qhScFrNdayJ8nRVuIjw9xPaPUnLSa4GgwGPZDR61AApv9E/XPb2+B00B4tgzLevgde/yE8f5K7C+jyv0PisE7dS0uDWuwrlB4nXTxChIIEKEL0AYqi6B08M1oUyGpGxhs427gF6+7/QkNlj17PgWIfE2Qbq+HwN+r34y5t9ZpRKTFerwVgzEXqhn41+XBoZZvnq2tSW4wzKGXk5z+Gg8sBA4yaCzcs7VLdSUuDPTImseFmYsJ979IshOhZslmgEH7S9rnxuXtuD8urbKCwuhGz0cDUwfHeT+79DNYu4fGcdZjC7LAP+NPv1THv02+EIVndfj0+O3j2LgVHMySNggFjWr1GO/aQZ4BitsKkq2DD32Hr6zBqjv6U06lgMKg/by0rdFv4lxgcTZBxEsz/FySN6PZ789yZeWA7myAKIXqWZFCE8NOvP9zJSY8tp9BVexFM3+wrAWDiwDgiwjzGt1cchXeuhWPfYVLs5DoHkGvOBHsjbH8HXrkAdr7f7dejdeNo7cMAbP6P+ueUH/l8zchUbRZKjfcT0xaof+79nzpsDdh+vJJxDy/jyWV7AbWDJ4Z65htWqMee/eseCU7A3ckDMFCGtAkRMhKgCOGH3PJ63t6YQ0W9jTWHSoN+/k+25QNw0aQ07ye+fw4UB2Sewp4rV3F685/5oeEZ+OnX7jbfrx8Hh71br0fPoGgj7ksPqN07BiNMXeDzNdqxR0rrsDuc7ifSp0DqJDX7suO/ALz83RGa7E7+ufowB4trOFJax49MK4lUGmDAWBg5x9cpusVgj6yJtBgLEToSoAjhh3c25uoDT7VizWApqGpgo6uD5+LJGe4nagphy+vq9+f8hoxhEwADRTXN1KdMUQtHI5Og/HC3ZlEabQ5yXDNCtKwIW1zZk5HnQWyGz9cNjI8gwmLC5lBaD5Sbdq3659bXqWm0sWxXIQBOBZ5ato/c0ipuMn+uHpO1EHpwmU0bd69dsxAiNCRAEaIDNoeTtzfm6n8/3M0BitOpkF/ZgMPpe+T70m0FKArMHJro/Rv92iXgaILBs2DIqcRFWoiLUAs6c8rrwRoNWYvUY1f/ocMuGX8dKa3DqagFpAOireCwwda31CdPuq7N1xmNBkakqC3CXp08AJOuBKMFCrax9rsVNNqcpMWGYzTA8t1FmPZ8TIahnEZrklqz0oPiIizEuPYWkgyKEKEjAYoQHVi+u4jS2ib970e6OUD53ae7OOXJr5n0uy+46sW1PPn5Xirq3Lv8ass7l0z1yEw0VMCml9XvT/+FnlHQZoRo++Qw8xa1S6bsAOz6MKDr2pxTwUdb8vTiYI3ewZMaoxYMH/gS6oohagCMvqDd99Q6eVoFKFFJeifOOd8t4EXLs/x21BF+Ob6C84ybuNb+AQAVE37S5VknHTEYDEzNjMdoUGt+hBChIV08QnTgjfXHALhwYhqf7yzkaGkdiqJ0WzfPusNlANQ3O9hwtJwNR8vZeLScN2+ZRX5lIzvyqjAZDVw00aP+ZMM/obkWUifCqPP1h8elx7I1t5I9BdVcMiUDrDHqksjXj8Oqp2HCFX7vU3PHW1s47trR97JpA/XH9xVWAx71J5v/rf455Rowtd+S63MWiua8R2gqPYq1ZDsXmDbCro3q464xKw1KGFGn/p9f195V/7huBqW1TV4dPUKI4JIMihDtOFJax/cHyzAY4JcXjMVogLpmByU1TR2/2A+KopDnCgL+df0Mnv7hZGLDzWQfq+B3n+zik61q9uTUkckkRauTYqkvh3UvqN+fdrdXPcb4jFgA9hRUu08y81Z10mrpPvdgsw7YHE7yXJvlPf6/PVQ3quPzc8vreW2NGrBNH5IA1QVqBgVgWtvLOxr3rsY1rZ9MHM6SUf9ibtOTfB7zQ0gYBonDyY+ewNeOqTxivJ3YpFS/rr+rIsJMEpwIEWKSQRGiHW9tyAHgrNEDGJYcxaCESHLK6zlcWkdKbNeXGqoabNQ1q7Uhp41KJtxiIiXGyk2vbuStDblEulqKL53iWt5xOuHD/4OGckgeAxMu93q/8elqgLLbM0AJj4NZt8GqJ9WN+SZe0eF1ldQ06UXBpbVNPPPlfh66eDy/eG8btU12pg9JYP70QfD5veqo+sGzYcDoDt/XPQulDqdTwegxst/pVHh/cx55Sib2OT8A1z3HNNr47/vbmdnGgDohRP8kGRQh2tBoc/DeJrU4dsGsIYC7xqO76lC0JZTkaCvhFjUYOWtMCvdfMBZQl33CzEbmTnBlDtb8Rc1YmMPhhy+B0eT1fmPTYjAYoKi6yatuhpNvVotQj2+E/C0dXldhtTrrJcys/hPx77VHeeCD7Ww4Uk5kmIlnrpqC6egq2Pgv9QVnP+DX/Q5JjMRiMtBgc+gZGs26w2XkVTYQE27mvPHuTElMuIW/LZjOT07tnlH2Qoi+QQIUIdqwbGchFfU2MuLCOXtsCuAOULqr1Vj7kG65Id2tZwzXsybnjU9Vx60fWwsrHlMPuPApSJvU6v2irGaGJanX6LXME53izrZs+FeH11XsClAmZsRyyZQMnAq8u+k4AA9fPJ4hUQ742NUhNONmddM/P5hNRoYnq1mU/UXeyzxf7SkGYN6kdD1YE0KcuCRAEaINb65Xl3d+dHKmvnuwFqB0V6uxVn8yqEU7q8Fg4I9XTuH5a6bx2A8mql07/71JHco26So46YY233OctsyTX+39xMxb1T93vKdPbG2LNi03NTacB+eNI9rVdjtnXAo/OnkwfPkgVOVC/BA471G/71e9PrWTxyuAAnYXVAFt7zUkhDixSIAihA/7i2rYcLQck9GgfiC79NQST8sMCqjLK5dMySAxKkwdyFaTD4kj4OJn2x1UphXK7m4RADBoBqRPVWenaJ03bShyFQGnxoaTGhvOsz+ayk2Twnh2whEM//sFbH5NPfCyv6nzVgLg6/oURdEDKq2ORghxYpMiWSF80LInc8alkBbnLobVApScsnocTkXPrHRWXqU6UbXdiaWK4t7n5tQ7OgwIxreVQTEY1LkoHy+EjS/BKT9vVcOiKfLIoNBcx3k7f8l5Bz6CAx4HzboNhp7W7rX44ivDk1fZQHWjHYvJ4L0BoRDihCUZFCFaaGh28P5mtd5CK47VZMRHEGYy0uxwkt+iyLMz9BqU9gKU3A1qi7AlUp1j0gEtQ3GopJZGW4vpsRPnq4PbqnJg/xdtvkdRjRqgDA2rgJfnqu3JBqO6b87MW+HK12DuEx1eiy9agHKsvJ7aJnWPIC1YGZkSoxfmCiFObPIvgRAtfLo9n5pGO5mJkZw2MtnrOZPRwJAkdT5Gd9Sh5LWzxKPTlmMmXAHhHS9/pMRYSYoKw6m0LkTFEgEnXa9+v+opdUy9D4VVjUw2HOLc1VdD4Q51SuxNX8D/rYaL/gATLvN74FtLydFWUmOtKIp76Ju23CPLO0IIjQQoQrTwhmt555qZmV5zOjR6HUqJj2moAahvtlNRrwYIbQYojdWwSx3z3t4+N54MBkPbhbIAs2+H8Hgo2KpOl/VhaHU2b4U9TlhjCaSMh1u+hsEz/Tq/P1ouQ+n1JxkSoAghVBKgCOEhr7KBbbmVmI0GrpwxyOcxeqtxWb3P5/0+lyt7EhNuJja8jRHxuz4AWz0kj1Y3BfRTm4WyADFpaqEtwLd/VJeQPDTu+oy/sZgoQxP2oWfBzV9CfKbf5+7M9UkGRQjRkgQoQng4UqIu2wxJiiRZGy3fQne1Gh/3p/5EW96Zdl27nTsttVkoq5l4BUz+kToF9oNb1UxN+RHY+BLW96/HarCxQpmB+dp31f18utn49Dj9+qoabHo3kwQoQgiNdPEI4eFomRagRLV5zLDkKC4xruGW41/Bd1fD1GshekDA59JnoCS0sedLwXbIywajWd2ILwCee/K0HCmvu+gPcGwNVByBp4eBUy1YNQCfOLJ4Pu5ezjX7DtK6Sru+vYU17MpT558MjI8gLrL9zQaFECcOyaAI4SGnXF220QphfRlTt5FnLX9jsnMvfPU7eGYcvHcj1BQGdK7jeoDiI4NSdRzeuVb9fuy8gAOg4clRhJmN1DU79HtqJTwOLnsBDCY1ODFZIW0Se8fczl22hQyI67l23yGJkUSGmWiyO/nfjgJA6k+EEN4kgyKEB22E/dC2MiiFO4j79KcYDE6+cUxhdoaR8KItaq1IUzVc+77f52qzxbimEF67FCqPqTv6XvBUwPdhNhkZmxbD9uNV7C6oZmhyG/cz7HRYtBGcDkgcDiYz36w6hHPbXnUGSg8xGg2MTYthc04ln2xTd2yW5R0hhCfJoAjhQcs2ZPrKoFTnwxtXYWiuYbt5ErfYfsHqM96Gm75UsxAHv4Kc9X6fK6/CNaTNM4NSV6oGJ+WHIC4TbvgUYtM7dS9jUtXakVatxi0ljVB3Ijapv68UVXsMaetBWsakplFdWhonAYoQwoMEKEK4KIqi16C0yqAoCrz/U3XcfPIY3hr2BDbM7MqvhsxZMPXH6nErH/f7fK0yKPZmePvH6lC2mAy44ROIH9zOO7RPm8h6qCSwYt7iam3Mfc/Un2i0QlnNBFniEUJ4kABFCJfimiYabU6MBh/LLke/hWPfq3UaP36HKaOGAvDdwVL1+TN/CUYLHFkNR77t8FzNdifFrv1u9AzK57+E3PVgjYPrP4bEYV26nxEDXAFKcWDzWgpdGZS0IGVQAGKsZt+1OEKIE1ZAAcrixYs5+eSTiYmJISUlhcsuu4x9+/Z5HdPY2MjChQtJSkoiOjqa+fPnU1RU5HVMTk4O8+bNIzIykpSUFO677z7sdnvX70aILjhW5l5yaTVuffUf1D9Puh4Sh3HaKHXC7NbcSqobbeqcEG1C68on1IxLOwqqGlAUCLcYSYoKg00vQ/YrgAHm/0tdcumiEa4MyuHSWpxO39fjdCqs3l/CsTJ3lkVb4knp4QBlTGoMWnPRuIxYDAG0UQsh+r+AApRVq1axcOFC1q1bx/Lly7HZbJx//vnU1bn/cbv77rv59NNPee+991i1ahX5+flccYV7/xCHw8G8efNobm5mzZo1vPbaa7z66qs8/PDD3XdXQnSC3mKc2GJ5J2e9mhkxmuHUOwG1NXhYchQOp8K6Q2XqcWfcq2ZYctbA4ZXtnktrMR4d58Cw7S347JfqE+c+DKPP75b7GZwQgcVkoNHm1JeTPO3Kr+KKF9Zw/csbuP7lDSiKgqIo+hKP5yaJPSEizMRwV5ZHCmSFEC0FFKAsW7aMn/zkJ0yYMIEpU6bw6quvkpOTQ3Z2NgBVVVW89NJLPPPMM5xzzjlMnz6dV155hTVr1rBu3ToAvvzyS3bv3s3rr7/O1KlTufDCC3nsscdYsmQJzc3N3X+HQvgpp6yNFuNv/6j+OeUar5oQbZ8efZknNgNm3KR+/+ld7bcd7/6QD8Ie5qPa6+Cj28BpgwmXw2l3d8etAGonj1ZLc8hjLL/TqfD7/+3mkue/Y2tuJaBmj3blV1NRb6PZ4QRgQBuD6rqT9jM8fVRyB0cKIU40XapBqapSBywlJiYCkJ2djc1mY86cOfoxY8eOJTMzk7Vr1wKwdu1aJk2aRGpqqn7M3Llzqa6uZteuXT7P09TURHV1tdeX6F9sDid7C6vZna9+5bY1u6MHuYe0eQQo+VvhwJfqTr4tggdtmee7A6XuB8+4T20NrjwG/7kCGipbn2jPp2Rtvo+TjAcx4oTkMep7/+BvAU2L9Ydeh+JRKPvp9nz++e0RnArMm5xO1vAkAL7aU0Rhlbq8kxwdFpRdhX914Vg+v/N0zh2X2vHBQogTSqfnoDidTu666y5OPfVUJk6cCEBhYSFhYWHEx8d7HZuamkphYaF+jGdwoj2vPefL4sWLeeSRRzp7qaIPuOOtLXy+0/u//4vXTueCiWlBuwb3kDaPJR4tezLxh2o7roesEUmYjAYOl9aRV9mgFtZGJcF1H8LLc6F4F7x1NVz7AYS5gp7j2fD+LRhQeNd+JvWn3MdPLjq9x+5pZEo07PLOoKw5qC5J/eSUofzu0gm8uymXtYfL+GpPEVMGxwOQEtOzyzuacItJ2ouFED51+lekhQsXsnPnTt5+++3uvB6fHnjgAaqqqvSv3NzcHj+nCJ5mu5Ov9xYDkBxtJSZcjZv/mx3c/87akDY9g1KyH/YsVb8//Z5Wx8eGW5jq+kD/7kCJ+4nEYWpQYo2DnLXwj7Pgmycp2/Y5ttevBHsDGy0zeMD+U+LTh/fgHcGIFNcSj0cnz6Zj5YB7eeWcsSkYDLAzr5qtOZVAz7cYCyFERzoVoCxatIilS5eycuVKBg1y7/ialpZGc3MzlZWVXscXFRWRlpamH9Oyq0f7u3ZMS1arldjYWK8v0X/syq+iye4kIdLCxt+cy39/dgoAqw+UUtsUnO6uyvpmql0DwzITXQHK2ucBBcbMg5RxPl+nfch/67nMA5A2EX78DkpYtDrX5JvFJH14NZbGMnY5h3BDze04MHkPaesBLZd4Kuqa9e+nD0kA1KBwmivQeneTGhT2dIGsEEJ0JKAARVEUFi1axIcffsjXX3/NsGHecxqmT5+OxWJhxYoV+mP79u0jJyeHrKwsALKystixYwfFxcX6McuXLyc2Npbx48d35V5EH5V9rAJQPzANBgOjU6MZnhzllVnpDnaHk+3HK1F8tAAfdRXIpsRYiQwzqwWu21zZQVfnji9aceeaQ2WtWnlrUmdwueUF7rPdypeO6TQoYeQZUnkk5rekDUjivPGpTBkU3z031watS6a0tomqepv+sx6ZEk1CVJh+3Jzx6jJrgasGJVhLPEII0ZaAalAWLlzIm2++yccff0xMTIxeMxIXF0dERARxcXHcfPPN3HPPPSQmJhIbG8vPf/5zsrKymD17NgDnn38+48eP57rrruPpp5+msLCQBx98kIULF2K1Slr5RLTxqLrkMH2IWmxtMBi4YGIaf/vmEMt2FnDplIxuOc+fvzrAX1ce5NcXjeXWM7zrSY61nCC77gVwNMPg2eqk2DZMGRxPtNVMeV0zuwuqmTjQPR11zaEytpaZOBB2Lgmzb2L09DSGJkfzril4O/ZGW82kxYZTWN3IwZJaNrqWd2a4siea88al8vQy90wjyaAIIUItoAzKCy+8QFVVFWeddRbp6en61zvvvKMf8+yzz3LxxRczf/58zjjjDNLS0vjggw/0500mE0uXLsVkMpGVlcW1117L9ddfz6OPPtp9dyX6DEVR9N/qZwx1f2heOFHdf2bl3hIamh1dPo/N4eStDTkAvPr9URwtsh3akLbMpEhorFYHp0G72RMAi8nIbFcXzGrPOhRgc456X5dOHcivLxrH0NQECGJwotHrUEpqyT7qzlZ5GpkS7dW9JDUoQohQC3iJx9fXT37yE/2Y8PBwlixZQnl5OXV1dXzwwQetakuGDBnCZ599Rn19PSUlJfzxj3/EbJaNlU9Ex8rqKa1tJsxkZJJH9mHiwFgGxkfQYHOwan9JO+/gn2/2lVBWp87Zya9q5Jt93ktH7j14IiH7VXVn4uTRMPqCDt9bW+ZZqw1sc9niKjidlhnftYvvopGuZZ49BdVsz1NHA8wYmuh1jMFgYI5Hq29PbxQohBAdkb14REhtcmVPJg2KI9xi0h/XlnkAlu0s6PJ5tI6gaKsaCL+xPsfr+eOlNZxk2M95RS/Bd8+qD55yBxg7/r9I1gg1g7LxaDnNdnXImc1V7wJwUmZCWy8NCm3k/dLtBTTbnSRHh6mBWAsSoAghehMJUERIbTrquyYC4OJRkdxtfo8791yD/esnwN7UqXOU1TaxYo+aMfnjlZMBWLmvmOMV9WBrhDV/5cXiH/OB9XeM2fcCNJRD0iiYfJVf7z8qJZrk6DAabU59Muu+whoabU5iw80MT45q/w16mNbJU+LanFArRm7p5KEJzByWyBmjB6j7AwkhRAjJuooIqU3HfNRENNfDuiVMXfM808zqkgSrn4I9H8Olz8PgmQGd45Nt+didChMHxnLBxHTOGhFD7uG97P70OQaV/geqj5MIVCmRRIw9j7Cxc2HsPDD7V4dhMBiYPTyJpdsLWHOolJnDEvX6k2mZCRiNod0ETwtQNDOGJPo8zmwy8u7/ZQXjkoQQokMSoIiQqaxv5qBrgJgeoDgd8PaP4fBKDEBR+DBeqzmZ2yO+JLpkL7x0Ppz3SIfFq57e33wcgDszj8Gfb+eVylwMVgUOq8/XWlN5tPZSVoSdS/Y1F3bqXrJGqAHK2kNl3DUHNh/TApT4Tr1fd0qNtRIVZqLOVWw8fWhol5yEEMIfssQjQkbr3hk+IIokbWO6rx9TdwK2RMIV/2TzRUv5m+Mybor6G0z5MaDA8ofhwHK/zrGnoJqdedVEmeycc/gpqMzBgEItEexwDuVJ53VMr3qKdx1nM36Q78yCP04ZoRbKbsmppNHmYItrqSfU9SegZni0OhSr2cjEjLgOXiGEEKEnGRQRMhtdLa96/cmeT90Fqj/4K0ycz0nV6uCwTcVQe/vzRIdFwsZ/wQe3wP+thvjMds/x32w1e/LbtLWYynIgJh1u/YYXvq9gyTdqCmVgfAQ/npXJtbOGdPpehiZF6vNGvthVyLGyegwGmNoLMiigdvJsP17FlMHxQdkEUAghukr+pRLdrsnu4J+rD5NX2dDucdn60LBEdd+bD29Tn8haBBPnA2o3ycD4CJwKalfM3Ccg4yRoqIB3b2i3cLa4ppE31+cQSx2X17ylPnjWAxCTxqJzRvPLC8bw0g0zWP3Ls1l49kjiIjs/o8RgMHCKq5vnhW8OAWpQEBse/Lknvpw+Ws3wzJuUHuIrEUII/0iAIrrduxtz+f1ne/jV+9vbPGbl3mK9QPbkIbHw35uguQaGng5zvHeu1rIQW3Iq1cLVq16D8HjI3wyf3w8+RtcD/OWrAzTYHPw28UsszZWQPAamLgAgIszE7WeN5NxxqZi6qYh1titA2VtYA/SO5R3NZVMHsuZX53B9VuezREIIEUwSoIhutzOvGlAHl1XWN7d6/nBJLXe8vQVFgWtmZjLs0OtQtAMiEuCHL4PJe+VR+6Df4uqMIT4Trvin+n32K7DqaZ/neHtjLmmUcXnTJ+qDc37X6r27k5ZB0fSGAlmNwWAgIz7CZ3uxEEL0RhKgiG63t0jNINidCst3e+9cXdNo45Z/b6Km0c6MIQk8clYCrHxCfXLOIxCd0ur9tA/6zTkeG/2NPh8ueEr9/psnYP0/vF7z58+3Md/wNe/H/BGjowkys2BM5zp0/DUoIZLBie7diU/yMdtFCCGEf6RIVnQrp1PhgCtAAVi2s5ArZwwG1K0S7n5nK4dK6kiPC+eFa6cT9vmt0FwLg2bCtOt8vueEjFjCTEbK65o5VlbPUG3w2eyfqbUoq56Ez++DqhxwOqgoPMKjR1YTb6kDGxAWAxcshiBkD7KGJ5FbfpwYq1kfMS+EECJwEqCcYGoabXy9t1gfyR5mNjJnXCpR1u75n8Lxigbqmx0YDGppyLcHSqlptBETbmHZzkK+2lNMmNnI36+bzoCib2H3R2AwwsXPtDlW3mo2MXFgLJtzKtmSW+EOUADO+pU6+XXDP2DN8wAkABig1JJB8lm3wbRrIbLzLcSBOGdsKu9uOk7WiKSQD2gTQoi+TAKUE8ziz/fyZot9aH48K5MnLp/ULe+/z5U9GZsWS5PdweGSOr7eW8xFk9L5wxf7APjZmSOYnOiEf9ytvmjWzyCt/fNPy0xgc04lm49Vcvm0Qe4nDAZ1qSciAUfxPj7PNbOpIpLj5iE8evttkBDcMfNzJ6Ty75tmMiEjNqjnFUKI/kZqUE4w3x0oBdTZI6eOVIs6P9ycR3WjrVvef1+hWiA7Ni2GC/XN/gp5Z2Muh0vrSIoK45ZTBsI710JljlrwetYDHb6vXiibW9H6SaORptPv56a6hSwqvYL3TPO47aabyQhycAJqMeoZowe4B88JIYToFAlQTiDF1Y3klKsDxF6+8WRev3kWo1OjabA5+GhLXrecY1+ROrp+dGoMF05UZ26s3FfMn786AMDPzx5BzFe/hGPfq7UhP34XwjvONmiFsnsKaqhvtrd6/p53trFqfwkRFhMv/+Rk7719hBBC9DkSoJxAtLkjY1JjiA23YDAY+PFMdRLrG+ty3B0yAE5np87hmUGZkBHLoIQIGm1OSmubmJRg57qmt2DL62rdyZWvQso4v943Iz6CtNhwHE6FHcervJ7LLa/nfzsKMBkN/OuGGcwantTGuwghhOgrpAblBLLJNVr+5KHugtHLTxrEn5btZEzJF1T/8w/ENRdCXanaHTPiHPjxO2Dybxpqs93J4ZI6AEanxWAwGPjBuBgSN/yDM43bGNmQD9+6Dp67GEbNCej6p2XG8/nOQjbnVHoFIeuPqBNppwyK49SRyQG9pxBCiN5JApQTiD5aXtvNtrmeuPXP8b3178TayyG/xQsOrYAvH4QLn/Lr/Q+X1mJ3KsRYzWTEhUNNIYuO3UmEeZf7oAFj1a6aWf8X8PWflJnA5zsLXfcxQn98w5EyAGYOk8yJEEL0FxKgnCDqm+3syleXX6YPSVB7gD+8FfZ8SixQpMTztvM8bvrxj4lJTIOSPer4+fUvqnvfTPlRh+fY5xrxPjotBkPpAXh9PhFVOTgikrBf8AesI8+CqM4HEVmuSa1rDpXRaHMQbjEB7gzKrGHBaSUWQgjR86QG5QSxNbcSu1MhPU7dfI+1f1V3DzZaUC57kVsTX+FZ2+W8UzoUUserm/Wdeb/64k/vhIK299XRaAHKRVH74OXz1cFpiSMw3fIV1inzuxScgDqwLS02nPpmB2sPq1mTwqpGjpXVYzTA9KFSGCuEEP2FBCgniGxX/cn0IQkYctbC8t+qT1ywGMPUa7hylrpk8r8dBe4XnfkrGHU+2BvgnQVQX97uOQ4UVnG76WNuPHyPWsMycAbc/CUkDu+WezAYDJw7Th2Fv2KPOkJ/w1H1msZnxPaanYOFEEJ0nQQoJwitg+e0NCe8dyMoDph0JZz8U8C9fLKnoBq7w9XBYzTCFf+AhKHqzJL3fwpOh+8TNFZxfc5v+KXlHYw4Yeq18JOlENW9RatzxqcC8NXuYhRFcdefDJX6EyGE6E8kQDkBOJwKm3MqSKeMy3bcBrWFarHqJX/R96cZlhRFVJiJRpuTw6V17hdHJMCP3gBzhFo0u/L3rU9ga8Txxo843bmRJsVC3dxn4LIlYIlofWwXZQ1PIjLMRGF1I7vyq1l/WM2gzJT6EyGE6FckQDkB7C+qYWDTYT6yPkx4xX6ISYcfvQ5h7kmrRqOBcenqwLRd+d5zRkibCJeq+9zw7Z/U2hWN0wkf344pdy3VSgS3mh8nKuvmHruXcIuJM0YNAODdTbkcKFYHw0mAIoQQ/YsEKP2dvZmyta/zXtgjpBoq1MzJzcsheVSrQycOjANgZ1516/eZfCXMvl39/v1bYOndULgDvn4Mdr6P02DmZ7a7cWZM68m7AdDrULQ9hUanRpMYFdbj5xVCCBE80mbcg6rqbTTY1JoNoxEGRFsxGHpwh1unU93Zt64Eaovg4Few9S1Oqy8FA+TGnsTgmz5Ql2180Da425lX5fN5znsUSver77vpZfXL5c+RP2dNw0R+mhrT7bfV0jljUzAYwO5UJ99K9kQIIfofCVB6yLKdBdz2xmY8p8d3567BXuzNsPk1+PYZqGk5bQ1KDIm8YTuL6Rc+xuA2ghNwZ1B251fjdCoYjS2CKZMFFvwXjqyG7FfUpR6nnXcif8xzZSeTEGnh2tlDuvXWfEmKtjI9M0Ev/JUBbUII0f9IgNJDXvruCIoCRgMYDQbsToX3NuVy95zRDIjppp1uHTbY8R58s1jtstFEJELUAEgeRd24HzH7LXBgYtuQ1HbfbmRKNGFmIzVNdnIr6hmS5GM3YIMBhp8Jw8+kvjyfx9/4gjfzBhAXYeH1n85iaHJwdhCeMz5VD1BkQJsQQvQ/EqD0gKOldWw8WoHRAGt+dS5pceFctuR7tuZW8l52LrefNbJrJ7A1qBvurXnOHZhEp8IZ98G068ASrh+65UApDtYzJCmSuMj254RYTEbGpsWw/XgVO/OqfQcoLo02B7d8kMP3eSnEWM385+aZTMiI69p9BeDCiWn8+av9jEmLJTU2vOMXCCGE6FMkQOkB728+DsDpowaQFqd+eC6YlcnW3EreXJ/Dz84Y0Xr5xB+lB2DLf2DLG1Bfqj4WmQyn/Bxm3gphka1esj2vEoBJA/0LHiZkxKkBSn4V8yan+zymye7g//6TzfcHy4gMM/HqTTOZPCg+8PvpgiFJUXx1z5nEWGU4mxBC9EcSoHQzp1Phg815AMyfPkh//OLJGTy2dDfHKxpYfaCEs8ak+P+mOz+ADf+AnLXux+IycZ7yc15vOp0Jg1OZ7iM4AdhxXC14nTzIvwBl4kCt1dhHJw/qjsUL39jCqv0lhFuMvPKTk9W9fUJgUILvexZCCNH3SZtxN1t3uIy8ygZiws2cP95d8xERZtIDFq091m9Hv1WDE4MRRl+gDk67YzPLoy/l4c8Os+Bf69vsvNnhenyinxmUia5lml15VSieFb4uv/1kF1/tKSLMbORf15/MrOFSoCqEEKL7SYDSzf6brS7vXDIlQ99tV7NgViYAK/YWU1DV4P+bzrgZznkI7t4FP34Hxl0MJgufu/bNabQ5+b//ZFNW2+T1svK6Zo5XqOfxN0AZkxaDyWigrK6ZwupGr+ccToWPtqjZoeevmcZpo7p3jL0QQgihkQClG9U22fl8ZyEAP/RY3tGMTIlh5rBEHE6Fdzbm+v/GaRPhjHshNkN/qMnuYMWeYgASIi3kVTZw+xubsWn76ODOngxPjvJ7I71wi4lRKdFA64FtR8vqaLA5CLcYmTOu/Y4gIYQQoiskQOlGn+0ooMHmYHhyFNMGx/s8RsuivLfpuM8lFH+tOVhGTZOd1Fgr7/xfFlFhJtYfKef3/9ujH7PjeCUAk/ysP9Fo3TgtR97vKVADlrFpsZg6U+QrhBBC+EkClG70oUdxbFsTY+dOSCPcYiSvsoF9RTWdPtfnOwv09xudGsOfr1ZHzL+65ij7Xe+73VUg628Hj0YrlG2ZQdntKpwd75o4K4QQQvQUCVD8oCgKS1Ye5Jkv91HdaPN5TFF1I+uOlAFw6ZQMn8eAuoQy21VY+s2+kk5dj93hZPnuIgAumJgGwHnjU7nQ9f1fvz4IuJd4Am0B1upVth+v9Mry7HZlUManS4AihBCiZ0mA4ofNOZX84Yt9PPf1Qeb8aRVLt+e3Wp5Zur0ARYGTMuMZnNh+++tZo9XdeL/ZV9yp61l/pJyKehuJUWHMHOqeorrw7JGua8lnw5FyCqoaMRjce+z4a9LAOMJMRoprmjhaVq8/rmVQxkmAIoQQoodJgOKHT7ep+9sYDVBc08SiN7dwy7830Wx3F6R+4jqmveyJRpuBsuloBTVtZGTaoy3vnD8+FbPJ/Z9w4sA4zh2bglOBe9/bBsDIAdFEWQMbdxNuMTEtMx6ANYfUgXAlNU0U1zRhMMDYtJ7fEFAIIcSJTQKUDtgdTpZuVwOCvy04ibvmjCLMZOSrPcW89N0RAI6V1bEttxKjAeZN7jhAGZocxbDkKOxOhe8PlgZ0PU6nwhe7vJd3PC06R82i5JSrmY9A6080p4xQW4jXHlKXrbQC2WFJUQEHPEIIIUSgJEDpwPoj5ZTWNhEfaeGcsancNWc0T85XdyR+bsUB8iob9AzLKSOS/d4I8Ex9mSewOpTsnApKapqICTfrQYSnaZkJnO4xnyTQDh5N1gi1TmbtoTIURdHrT8ZJgawQQoggkAClA59sVYOPCyemE2ZWf1yXTxvIzGGJNNgcPPrproCWdzRnjXEHKIG0G2tTaM8fn6ZfT0uLznZvRujviPuWpg6OJ9xipKyumf1Fte4OHqk/EUIIEQQSoLSjye7Q6z0umeLeOM9gMPDYDyZiNhr4YlcR+4tqCTMZmetjyaUts4cnYTUbKaxu9LvduKi6Uc/W3HDKkDaPmzU8iZ+cMpS5E1I7vYlfmNnIya4C3LWHSt0dPJJBEUIIEQQSoLRj9f5SqhvtpMRYmTXMe8+ZMWkx3HTaMP3vZ44ZQFyE/zvrhltM+jLKyr3+LfP8e+1R7E6FmUMTOww8fnfpBP5+3Qwsps7/J9au7+t9JRwuqQVggmRQhBBCBIEEKO3Qlm4unpzhc3LqneeOIj0uHFCXfQJ1tqubx59244ZmB2+4lnc8A6OelOWa17J6fwlOBZKiwvyusRFCCCG6Qtox2lDXZOcr1zC0S6f6ri2Jspp546ez2JpbqQ9JC4RWh5J9rIKqBptXBmZ3fjWfbs/nRzMGMzQ5ivc3H6ey3kZmYiTnjQ/OPjiTBsYRbTVT22QH1OWdtibkCiGEEN1JMig+KIrCQx/tpMHmYGhSJFPaKTQdPiCaK05qe7R9e4YkRTEyJRq7U+HrvUVez/3ivW288M0hzv/zap5bcYCXv1dbmn9yytCg7YNjNhmZOcw9CE4KZIUQQgSLBCg+vPTdET7YkofJaOCJyyf1aNZAy7x8vqNQf+xAUY0+d6TZ7uSZ5fs5XFJHjNXMVScP7rFr8eWUEe7aGymQFUIIESwSoLTw7YESnvhM3RH4wXnjOGVk61kj3UkbtrZqfwl1rqUUrfblnLEpPHfNNJKj1bqPBbOHEB3kIWnavkEgGRQhhBDBIzUoHo6V1bHozS04Ffjh9EH85JShPX7O8emxZCZGklNezzf7SrhoUpreSnzplAwunZLBmaMHsCWngtN6OFhq6/pOHZmEw6kwfEB00M8vhBDixCQBiod/rz1GVYONKYPjefyyiUEpCDUYDFw4MY2/rz7M5zsLGJwYwdGyesItRr0YNi7Cou/fE2xGo4E3fjo7JOcWQghx4pIAxcNvLhpHYlQYP5w+iHCLKWjnvcAVoKzcW0xCZBgA545LlT1vhBBCnLDkE9CD0WhgoceY+GCZMiie9LhwCqoaeWP9MSCwsflCCCFEfyNFsr2A0Whg7gS1WNapQEy4WZ+RIoQQQpyIAg5QVq9ezSWXXEJGRgYGg4GPPvrI63lFUXj44YdJT08nIiKCOXPmcODAAa9jysvLWbBgAbGxscTHx3PzzTdTW1vbpRvp6zwHvV0wIQ2rOXhLTEIIIURvE3CAUldXx5QpU1iyZInP559++mmee+45XnzxRdavX09UVBRz586lsbFRP2bBggXs2rWL5cuXs3TpUlavXs2tt97a+bvoB2YMTSQ1Vm0nvqwTY/OFEEKI/sSgKIrS6RcbDHz44YdcdtllgJo9ycjI4Be/+AX33nsvAFVVVaSmpvLqq69y9dVXs2fPHsaPH8/GjRuZMWMGAMuWLeOiiy7i+PHjZGR0XHtRXV1NXFwcVVVVxMb2n9kcO/OqOFJaxyVSfyKEEKIfCuTzu1trUI4cOUJhYSFz5szRH4uLi2PWrFmsXbsWgLVr1xIfH68HJwBz5szBaDSyfv16n+/b1NREdXW111d/NHFgnAQnQgghBN0coBQWquPaU1O9N7NLTU3VnyssLCQlxXumh9lsJjExUT+mpcWLFxMXF6d/DR4c3HHvQgghhAiuPtHF88ADD1BVVaV/5ebmhvqShBBCCNGDujVASUtTO1GKirx35i0qKtKfS0tLo7i42Ot5u91OeXm5fkxLVquV2NhYry8hhBBC9F/dGqAMGzaMtLQ0VqxYoT9WXV3N+vXrycrKAiArK4vKykqys7P1Y77++mucTiezZs3qzssRQgghRB8V8CTZ2tpaDh48qP/9yJEjbN26lcTERDIzM7nrrrt4/PHHGTVqFMOGDeOhhx4iIyND7/QZN24cF1xwAbfccgsvvvgiNpuNRYsWcfXVV/vVwSOEEEKI/i/gAGXTpk2cffbZ+t/vueceAG644QZeffVVfvnLX1JXV8ett95KZWUlp512GsuWLSM8PFx/zRtvvMGiRYs499xzMRqNzJ8/n+eee64bbkcIIYQQ/UGX5qCESn+dgyKEEEL0ZyGbgyKEEEII0R0kQBFCCCFEryMBihBCCCF6HQlQhBBCCNHrSIAihBBCiF5HAhQhhBBC9DoBz0HpDbTO6P66q7EQQgjRH2mf2/5MOOmTAUpNTQ2A7GoshBBC9EE1NTXExcW1e0yfHNTmdDrJz88nJiYGg8HQre9dXV3N4MGDyc3NPeGGwMm9y73LvZ845N7l3kNx74qiUFNTQ0ZGBkZj+1UmfTKDYjQaGTRoUI+e40TeNVnuXe79RCP3Lvd+ognlvXeUOdFIkawQQggheh0JUIQQQgjR60iA0oLVauW3v/0tVqs11JcSdHLvcu8nGrl3ufcTTV+69z5ZJCuEEEKI/k0yKEIIIYTodSRAEUIIIUSvIwGKEEIIIXodCVCEEEII0etIgOJhyZIlDB06lPDwcGbNmsWGDRtCfUndbvHixZx88snExMSQkpLCZZddxr59+7yOaWxsZOHChSQlJREdHc38+fMpKioK0RX3nCeffBKDwcBdd92lP9af7z0vL49rr72WpKQkIiIimDRpEps2bdKfVxSFhx9+mPT0dCIiIpgzZw4HDhwI4RV3D4fDwUMPPcSwYcOIiIhgxIgRPPbYY157gfSXe1+9ejWXXHIJGRkZGAwGPvroI6/n/bnP8vJyFixYQGxsLPHx8dx8883U1tYG8S46p717t9ls3H///UyaNImoqCgyMjK4/vrryc/P93qP/njvLf3sZz/DYDDw5z//2evx3njvEqC4vPPOO9xzzz389re/ZfPmzUyZMoW5c+dSXFwc6kvrVqtWrWLhwoWsW7eO5cuXY7PZOP/886mrq9OPufvuu/n000957733WLVqFfn5+VxxxRUhvOrut3HjRv7+978zefJkr8f7671XVFRw6qmnYrFY+Pzzz9m9ezd/+tOfSEhI0I95+umnee6553jxxRdZv349UVFRzJ07l8bGxhBeedc99dRTvPDCC/z1r39lz549PPXUUzz99NM8//zz+jH95d7r6uqYMmUKS5Ys8fm8P/e5YMECdu3axfLly1m6dCmrV6/m1ltvDdYtdFp7915fX8/mzZt56KGH2Lx5Mx988AH79u3j0ksv9TquP967pw8//JB169aRkZHR6rleee+KUBRFUWbOnKksXLhQ/7vD4VAyMjKUxYsXh/Cqel5xcbECKKtWrVIURVEqKysVi8WivPfee/oxe/bsUQBl7dq1obrMblVTU6OMGjVKWb58uXLmmWcqd955p6Io/fve77//fuW0005r83mn06mkpaUpf/jDH/THKisrFavVqrz11lvBuMQeM2/ePOWmm27yeuyKK65QFixYoChK/713QPnwww/1v/tzn7t371YAZePGjfoxn3/+uWIwGJS8vLygXXtXtbx3XzZs2KAAyrFjxxRF6f/3fvz4cWXgwIHKzp07lSFDhijPPvus/lxvvXfJoADNzc1kZ2czZ84c/TGj0cicOXNYu3ZtCK+s51VVVQGQmJgIQHZ2NjabzetnMXbsWDIzM/vNz2LhwoXMmzfP6x6hf9/7J598wowZM7jyyitJSUlh2rRp/POf/9SfP3LkCIWFhV73HhcXx6xZs/r8vZ9yyimsWLGC/fv3A7Bt2za+++47LrzwQqB/37snf+5z7dq1xMfHM2PGDP2YOXPmYDQaWb9+fdCvuSdVVVVhMBiIj48H+ve9O51OrrvuOu677z4mTJjQ6vneeu99crPA7lZaWorD4SA1NdXr8dTUVPbu3Ruiq+p5TqeTu+66i1NPPZWJEycCUFhYSFhYmP5/Wk1qaiqFhYUhuMru9fbbb7N582Y2btzY6rn+fO+HDx/mhRde4J577uHXv/41Gzdu5I477iAsLIwbbrhBvz9f/x/o6/f+q1/9iurqasaOHYvJZMLhcPD73/+eBQsWAPTre/fkz30WFhaSkpLi9bzZbCYxMbFf/SwaGxu5//77ueaaa/QN8/rzvT/11FOYzWbuuOMOn8/31nuXAOUEtnDhQnbu3Ml3330X6ksJitzcXO68806WL19OeHh4qC8nqJxOJzNmzOCJJ54AYNq0aezcuZMXX3yRG264IcRX17Peffdd3njjDd58800mTJjA1q1bueuuu8jIyOj39y5as9lsXHXVVSiKwgsvvBDqy+lx2dnZ/OUvf2Hz5s0YDIZQX05AZIkHSE5OxmQyterWKCoqIi0tLURX1bMWLVrE0qVLWblyJYMGDdIfT0tLo7m5mcrKSq/j+8PPIjs7m+LiYk466STMZjNms5lVq1bx3HPPYTabSU1N7bf3np6ezvjx470eGzduHDk5OQD6/fXH/w/cd999/OpXv+Lqq69m0qRJXHfdddx9990sXrwY6N/37smf+0xLS2vVGGC32ykvL+8XPwstODl27BjLly/XsyfQf+/922+/pbi4mMzMTP3fvWPHjvGLX/yCoUOHAr333iVAAcLCwpg+fTorVqzQH3M6naxYsYKsrKwQXln3UxSFRYsW8eGHH/L1118zbNgwr+enT5+OxWLx+lns27ePnJycPv+zOPfcc9mxYwdbt27Vv2bMmMGCBQv07/vrvZ966qmt2sn379/PkCFDABg2bBhpaWle915dXc369ev7/L3X19djNHr/U2cymXA6nUD/vndP/txnVlYWlZWVZGdn68d8/fXXOJ1OZs2aFfRr7k5acHLgwAG++uorkpKSvJ7vr/d+3XXXsX37dq9/9zIyMrjvvvv44osvgF587yErz+1l3n77bcVqtSqvvvqqsnv3buXWW29V4uPjlcLCwlBfWre67bbblLi4OOWbb75RCgoK9K/6+nr9mJ/97GdKZmam8vXXXyubNm1SsrKylKysrBBedc/x7OJRlP577xs2bFDMZrPy+9//Xjlw4IDyxhtvKJGRkcrrr7+uH/Pkk08q8fHxyscff6xs375d+cEPfqAMGzZMaWhoCOGVd90NN9ygDBw4UFm6dKly5MgR5YMPPlCSk5OVX/7yl/ox/eXea2pqlC1btihbtmxRAOWZZ55RtmzZoneq+HOfF1xwgTJt2jRl/fr1ynfffaeMGjVKueaaa0J1S35r796bm5uVSy+9VBk0aJCydetWr3/7mpqa9Pfoj/fuS8suHkXpnfcuAYqH559/XsnMzFTCwsKUmTNnKuvWrQv1JXU7wOfXK6+8oh/T0NCg3H777UpCQoISGRmpXH755UpBQUHoLroHtQxQ+vO9f/rpp8rEiRMVq9WqjB07VvnHP/7h9bzT6VQeeughJTU1VbFarcq5556r7Nu3L0RX232qq6uVO++8U8nMzFTCw8OV4cOHK7/5zW+8Ppj6y72vXLnS5/+/b7jhBkVR/LvPsrIy5ZprrlGio6OV2NhY5cYbb1RqampCcDeBae/ejxw50ua/fStXrtTfoz/euy++ApTeeO8GRfEYpyiEEEII0QtIDYoQQggheh0JUIQQQgjR60iAIoQQQoheRwIUIYQQQvQ6EqAIIYQQoteRAEUIIYQQvY4EKEIIIYTodSRAEUIIIUSvIwGKEEIIIXodCVCEEEII0etIgCKEEEKIXkcCFCGEEEL0Ov8PxeX3yqUqsZoAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# reshape into X=t and Y=t+1\n",
"look_back = 12\n",
"trainX, trainY = create_dataset(train, look_back)\n",
"testX, testY = create_dataset(test, look_back)\n",
"# reshape input to be [samples, time steps, features]\n",
"trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))\n",
"testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))\n",
"\n",
"# create and fit the LSTM network\n",
"model = Sequential()\n",
"model.add(LSTM(4, input_shape=(1, look_back),return_sequences=True))\n",
"\n",
"# fix --------- the dense layer should be of last\n",
"# model.add(Dense(1))\n",
"model.add(LSTM(4))\n",
"model.add(Dense(1)) \n",
"\n",
"model.compile(loss='mean_squared_error', optimizer='adam')\n",
"model.fit(trainX, trainY, epochs=10, batch_size=1, verbose=2) # change epochs=10 instead of 100 for fast reproducing\n",
"\n",
"# make predictions\n",
"trainPredict = model.predict(trainX)\n",
"testPredict = model.predict(testX)\n",
"# invert predictions\n",
"trainPredict = scaler.inverse_transform(trainPredict)\n",
"trainY = scaler.inverse_transform([trainY])\n",
"testPredict = scaler.inverse_transform(testPredict)\n",
"testY = scaler.inverse_transform([testY])\n",
"# calculate root mean squared error\n",
"trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))\n",
"print('Train Score: %.2f RMSE' % (trainScore))\n",
"testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))\n",
"print('Test Score: %.2f RMSE' % (testScore))\n",
"# shift train predictions for plotting\n",
"trainPredictPlot = np.empty_like(dataset)\n",
"trainPredictPlot[:, :] = np.nan\n",
"trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict\n",
"# shift test predictions for plotting\n",
"testPredictPlot = np.empty_like(dataset)\n",
"testPredictPlot[:, :] = np.nan\n",
"testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict\n",
"# plot baseline and predictions\n",
"plt.plot(scaler.inverse_transform(dataset))\n",
"plt.plot(trainPredictPlot)\n",
"plt.plot(testPredictPlot)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3NyP3P6Z9Wko"
},
"source": [
"# LSTM for Regression with Time Steps\n",
">You may have noticed that the data preparation for the LSTM network includes time steps.\n",
"\n",
">Some sequence problems may have a varied number of time steps per sample. For example, you may have measurements of a physical machine leading up to the point of failure or a point of surge. Each incident would be a sample of observations that lead up to the event, which would be the time steps, and the variables observed would be the features.\n",
"\n",
">Time steps provide another way to phrase your time series problem. Like above in the window example, you can take prior time steps in your time series as inputs to predict the output at the next time step.\n",
"\n",
">Instead of phrasing the past observations as separate input features, you can use them as time steps of the one input feature, which is indeed a more accurate framing of the problem.\n",
"\n",
">You can do this using the same data representation as in the previous window-based example, except when you reshape the data, you set the columns to be the time steps dimension and change the features dimension back to 1. For example:\n",
"\n",
"\n",
"\n",
"```\n",
"# reshape input to be [samples, time steps, features]\n",
"trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n",
"testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))\n",
"```\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"execution": {
"iopub.execute_input": "2023-11-01T10:01:53.148736Z",
"iopub.status.busy": "2023-11-01T10:01:53.148279Z",
"iopub.status.idle": "2023-11-01T10:01:53.158509Z",
"shell.execute_reply": "2023-11-01T10:01:53.157306Z",
"shell.execute_reply.started": "2023-11-01T10:01:53.148703Z"
},
"id": "rwz_a87O9hWt",
"outputId": "90dba386-27de-430f-883a-06c47663fdbc"
},
"outputs": [],
"source": [
"# reshape into X=t and Y=t+1\n",
"look_back = 3\n",
"trainX, trainY = create_dataset(train, look_back)\n",
"testX, testY = create_dataset(test, look_back)\n",
"# reshape input to be [samples, time steps, features]\n",
"trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n",
"testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))\n",
"\n",
"print(trainX.shape)\n",
"print(trainY.shape)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"execution": {
"iopub.execute_input": "2023-11-01T10:01:53.161745Z",
"iopub.status.busy": "2023-11-01T10:01:53.160801Z",
"iopub.status.idle": "2023-11-01T10:02:19.274959Z",
"shell.execute_reply": "2023-11-01T10:02:19.273867Z",
"shell.execute_reply.started": "2023-11-01T10:01:53.161705Z"
},
"id": "JEMfK1yUAYHA",
"outputId": "cacea859-99b0-4db9-f82f-37cb89db7ab8"
},
"outputs": [],
"source": [
"# create and fit the LSTM network\n",
"model = Sequential()\n",
"model.add(LSTM(4, input_shape=(look_back, 1)))\n",
"model.add(Dense(1))\n",
"model.compile(loss='mean_squared_error', optimizer='adam')\n",
"model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)\n",
"# make predictions\n",
"trainPredict = model.predict(trainX)\n",
"testPredict = model.predict(testX)\n",
"# invert predictions\n",
"trainPredict = scaler.inverse_transform(trainPredict)\n",
"trainY = scaler.inverse_transform([trainY])\n",
"testPredict = scaler.inverse_transform(testPredict)\n",
"testY = scaler.inverse_transform([testY])\n",
"# calculate root mean squared error\n",
"trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))\n",
"print('Train Score: %.2f RMSE' % (trainScore))\n",
"testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))\n",
"print('Test Score: %.2f RMSE' % (testScore))\n",
"# shift train predictions for plotting\n",
"trainPredictPlot = np.empty_like(dataset)\n",
"trainPredictPlot[:, :] = np.nan\n",
"trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict\n",
"# shift test predictions for plotting\n",
"testPredictPlot = np.empty_like(dataset)\n",
"testPredictPlot[:, :] = np.nan\n",
"testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict\n",
"# plot baseline and predictions\n",
"plt.plot(scaler.inverse_transform(dataset))\n",
"plt.plot(trainPredictPlot)\n",
"plt.plot(testPredictPlot)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bMgOCG4tIH8M"
},
"source": [
"# LSTM with Memory Between Batches\n",
">The LSTM network has memory capable of remembering across long sequences.\n",
"\n",
">Normally, the state within the network is reset after each training batch when fitting the model, as well as each call to model.predict() or model.evaluate().\n",
"\n",
">You can gain finer control over when the internal state of the LSTM network is cleared in Keras by making the LSTM layer “stateful.” This means it can build a state over the entire training sequence and even maintain that state if needed to make predictions.\n",
"\n",
">It requires that the training data not be shuffled when fitting the network. It also requires explicit resetting of the network state after each exposure to the training data (epoch) by calls to model.reset_states(). This means that you must create your own outer loop of epochs and within each epoch call model.fit() and model.reset_states(). For example:\n",
"\n",
"```\n",
"for i in range(100):\n",
"\tmodel.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)\n",
"\tmodel.reset_states()\n",
"```\n",
"\n",
"Finally, when the LSTM layer is constructed, the stateful parameter must be set to True. Instead of specifying the input dimensions, you must hard code the number of samples in a batch, the number of time steps in a sample, and the number of features in a time step by setting the batch_input_shape parameter. For example:\n",
"\n",
"\n",
"`model.add(LSTM(4, batch_input_shape=(batch_size, time_steps, features), stateful=True))`\n",
"\n",
"This same batch size must then be used later when evaluating the model and making predictions. For example:\n",
"\n",
"`model.predict(trainX, batch_size=batch_size)`\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"execution": {
"iopub.execute_input": "2023-11-01T10:02:19.277599Z",
"iopub.status.busy": "2023-11-01T10:02:19.276459Z",
"iopub.status.idle": "2023-11-01T10:03:13.502072Z",
"shell.execute_reply": "2023-11-01T10:03:13.500661Z",
"shell.execute_reply.started": "2023-11-01T10:02:19.277540Z"
},
"id": "EgFD6YvZJuvQ",
"outputId": "b8e9c0db-6e78-4aca-e07c-30d400d57498"
},
"outputs": [],
"source": [
"# reshape into X=t and Y=t+1\n",
"look_back = 12\n",
"trainX, trainY = create_dataset(train, look_back)\n",
"testX, testY = create_dataset(test, look_back)\n",
"# reshape input to be [samples, time steps, features]\n",
"trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n",
"testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))\n",
"# create and fit the LSTM network\n",
"batch_size = 1\n",
"model = Sequential()\n",
"model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))\n",
"model.add(Dense(1))\n",
"model.compile(loss='mean_squared_error', optimizer='adam')\n",
"for i in range(100):\n",
"\tmodel.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)\n",
"\tmodel.reset_states()\n",
"# make predictions\n",
"trainPredict = model.predict(trainX, batch_size=batch_size)\n",
"model.reset_states()\n",
"testPredict = model.predict(testX, batch_size=batch_size)\n",
"model.reset_states()\n",
"# invert predictions\n",
"trainPredict = scaler.inverse_transform(trainPredict)\n",
"trainY = scaler.inverse_transform([trainY])\n",
"testPredict = scaler.inverse_transform(testPredict)\n",
"testY = scaler.inverse_transform([testY])\n",
"# calculate root mean squared error\n",
"trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))\n",
"print('Train Score: %.2f RMSE' % (trainScore))\n",
"testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))\n",
"print('Test Score: %.2f RMSE' % (testScore))\n",
"# shift train predictions for plotting\n",
"trainPredictPlot = np.empty_like(dataset)\n",
"trainPredictPlot[:, :] = np.nan\n",
"trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict\n",
"# shift test predictions for plotting\n",
"testPredictPlot = np.empty_like(dataset)\n",
"testPredictPlot[:, :] = np.nan\n",
"testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict\n",
"# plot baseline and predictions\n",
"plt.plot(scaler.inverse_transform(dataset))\n",
"plt.plot(trainPredictPlot)\n",
"plt.plot(testPredictPlot)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tdXIYsqbLhZ1"
},
"source": [
"You do see that results are better than some, worse than others. The model may need more modules and may need to be trained for more epochs to internalize the structure of the problem."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eexs34jUNPvk"
},
"source": [
"# Stacked LSTMs with Memory Between Batches\n",
"Finally, let’s take a look at one of the big benefits of LSTMs: the fact that they can be successfully trained when stacked into deep network architectures.\n",
"\n",
"LSTM networks can be stacked in Keras in the same way that other layer types can be stacked. One addition to the configuration that is required is that an LSTM layer prior to each subsequent LSTM layer must return the sequence. This can be done by setting the return_sequences parameter on the layer to True.\n",
"\n",
"You can extend the stateful LSTM in the previous section to have two layers, as follows:\n",
"\n",
"```\n",
"model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True))\n",
"model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))\n",
"\n",
"```\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"execution": {
"iopub.execute_input": "2023-11-01T10:03:13.504085Z",
"iopub.status.busy": "2023-11-01T10:03:13.503510Z",
"iopub.status.idle": "2023-11-01T10:06:41.861866Z",
"shell.execute_reply": "2023-11-01T10:06:41.860688Z",
"shell.execute_reply.started": "2023-11-01T10:03:13.504012Z"
},
"id": "mRnZZrDzNZNf",
"outputId": "dc1d3e75-c6a6-41df-fa3b-d04d54126b96",
"scrolled": true
},
"outputs": [],
"source": [
"# reshape into X=t and Y=t+1\n",
"look_back = 12\n",
"trainX, trainY = create_dataset(train, look_back)\n",
"testX, testY = create_dataset(test, look_back)\n",
"# reshape input to be [samples, time steps, features]\n",
"trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n",
"testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))\n",
"# create and fit the LSTM network\n",
"batch_size = 1\n",
"model = Sequential()\n",
"model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True))\n",
"model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))\n",
"model.add(Dense(1))\n",
"model.compile(loss='mean_squared_error', optimizer='adam')\n",
"for i in range(300):\n",
"\tmodel.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)\n",
"\tmodel.reset_states()\n",
"# make predictions\n",
"trainPredict = model.predict(trainX, batch_size=batch_size)\n",
"model.reset_states()\n",
"testPredict = model.predict(testX, batch_size=batch_size)\n",
"model.reset_states()\n",
"# invert predictions\n",
"trainPredict = scaler.inverse_transform(trainPredict)\n",
"trainY = scaler.inverse_transform([trainY])\n",
"testPredict = scaler.inverse_transform(testPredict)\n",
"testY = scaler.inverse_transform([testY])\n",
"# calculate root mean squared error\n",
"trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))\n",
"print('Train Score: %.2f RMSE' % (trainScore))\n",
"testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))\n",
"print('Test Score: %.2f RMSE' % (testScore))\n",
"# shift train predictions for plotting\n",
"trainPredictPlot = np.empty_like(dataset)\n",
"trainPredictPlot[:, :] = np.nan\n",
"trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict\n",
"# shift test predictions for plotting\n",
"testPredictPlot = np.empty_like(dataset)\n",
"testPredictPlot[:, :] = np.nan\n",
"testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict\n",
"# plot baseline and predictions\n",
"plt.plot(scaler.inverse_transform(dataset))\n",
"plt.plot(trainPredictPlot)\n",
"plt.plot(testPredictPlot)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wLhvc98wO0sT"
},
"source": [
"# Summary\n",
"In this tutorial, you discovered how to develop LSTM \n",
"\n",
"recurrent neural networks for time series prediction in Python with the Keras deep learning network.\n",
"\n",
"Specifically, you learned:\n",
"\n",
"* About the international airline passenger time series prediction problem\n",
"* How to create an LSTM for a regression and a window formulation of the time series problem\n",
"* How to create an LSTM with a time step formulation of the time series problem\n",
"* How to create an LSTM with state and stacked LSTMs with state to learn long sequences"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|