Datasets:
ArXiv:
DOI:
License:
File size: 70,012 Bytes
0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 ba37a6c 0eae2d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# What is Music?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the first lesson of Popular Music History lecture, a professor came and asked us \"What is Music?\". We all had different answers. Music is a song made by instruments. Music is the expression of feelings. Music is singing. Music is what takes us to other worlds. The answers were all correct. However, the professor said there was a more general definition. Music is a set of sounds that harmonize with each other. It is harmony that distinguishes music from noise.\n",
"\n",
"Popular Music History was one of the elective courses I took during my engineering degree. After many years, I never forgot this answer from the professor. It was very reasonable. Above all, musical notes we hear from different instruments are just sound waves. They have mathematical expressions in both the time and frequency domain. Some waves go well with each other. Some just don't get along and make noise.\n",
"\n",
"Recently, I was searching for datasets about music in Kaggle and came across [Deep Contractor's](https://www.kaggle.com/deepcontractor) dataset \"[Musical Instrument Chord Classification (Audio)](https://www.kaggle.com/deepcontractor/musical-instrument-chord-classification)\". The dataset contains audio files which are chord recordings from either a piano or guitar. Chords are labeled as Major or Minor, so the data is suitable for a classification problem. I thought why not give it a try and started.\n",
"\n",
"In the first section, I explained the mathematics behind the music as much as I can. There will be a bit of music theory, a bit of math, and a bit of digital signal processing. Using the knowledge from section 1, I created a DataFrame from all the audio files in section 2. In section 3, I explored data and applied some feature engineering to make it ready for machine learning. Finally, I build a model and make predictions in section 4. \n",
"\n",
"**Index**\n",
"\n",
"1. [Understanding Math Behind Music](#1.-Understanding-Math-Behind-Music)\n",
"\n",
" 1.1. [Notes and Chords](#1.1.-Notes-and-Chords)\n",
" \n",
" 1.2. [Time and Frequency Domain Representations](#1.2.-Time-and-Frequency-Domain-Representations)\n",
" \n",
" 1.3. [Spectrogram](#1.3.-Spectrogram)\n",
" \n",
" 1.4. [Detection of Harmonic Frequencies](#1.4.-Detection-of-Harmonic-Frequencies)\n",
"\n",
"2. [Importing Dataset](#2.-Importing-Dataset)\n",
"\n",
"3. [Data Exploration](#3.-Data-Exploration)\n",
"\n",
" 3.1. [Min and Max Harmonics](#3.1.-Min-and-Max-Harmonics)\n",
" \n",
" 3.2. [Number of Harmonics](#3.2.-Number-of-Harmonics)\n",
" \n",
" 3.3. [Feature Engineering on Harmonics](#3.3.-Feature-Engineering-on-Harmonics)\n",
"\n",
"4. [Model Building](#4.-Model-Building)\n",
"\n",
" 4.1. [Preprocessing Data](#4.1.-Preprocessing-Data)\n",
" \n",
" 4.2. [Model Selection](#4.2.-Model-Selection)\n",
" \n",
" 4.3. [Model Training and Prediction](#4.3.-Model-Training-and-Prediction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. Understanding Math Behind Music"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
"execution": {
"iopub.execute_input": "2023-04-24T19:47:50.439036Z",
"iopub.status.busy": "2023-04-24T19:47:50.438637Z",
"iopub.status.idle": "2023-04-24T19:47:51.679073Z",
"shell.execute_reply": "2023-04-24T19:47:51.678228Z",
"shell.execute_reply.started": "2023-04-24T19:47:50.438964Z"
}
},
"outputs": [],
"source": [
"# importing necessary packages for the section\n",
"import os\n",
"import IPython\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy.io import wavfile\n",
"from scipy.fft import fft, fftfreq\n",
"from scipy.signal import spectrogram, find_peaks"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.1. Notes and Chords"
]
},
{
"attachments": {
"b6f37314-e253-479a-b37c-9296e4ca19b8.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAFfCAYAAAAGdKYmAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAACrISURBVHhe7d0JvF3TvQfwFWJWlBqLkqjEUFNFayo1K6+eDoZSLaq84rXhqakorT5DS5DSR7Q8UTWU57VPgtKkMfUh5jZFzDE8YoiYidf/zrrJzc2lyb3rnpNz9/f7+ZxP9lrk5N5z9973rN9Z67/6jBkz5v0EAAAAAN00V/4TAAAAALpF0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFBEnzFjxryfj2GaTTfdNB8BAADQ3t/H0fkI6EjQRKeee+65fNQ4d999dzr11FPTXHM1Z6Jd/Ls//OEP08orr5x7GmPy5Mnp5z//eZoyZUruaazXX389feUrX0lrr7127mmsK664Io0cOTLNN998uaex+vTpU513CyywQO5pDU8++WQaPHhwdXzCCSdUf7aSp59+Op133nnp/feb8yso/t241r/5zW/mnsb57W9/m+69997q3GuG+N532223tNpqq+We1jBx4sR0xhlnpBVXXDF961vfyr2t4bXXXks//elP03vvvZd7Gm+hhRZKhx9+eG41zvDhw9Njjz2W5p577tzTOPF7NX637LPPPmnxxRfPvY3zxBNPpF/+8pe51Xhxrffv3z/ttddeuad1HHvssdWfw4YNS6usskp13EqGDh2a/vjHPzbtvc28885bnXvNeE8dv1fffPPN3Gqst99+O22wwQbpiCOOyD09qxn3NWgVgibmGPFGfPfdd08vvfRS7mms5ZdfPl199dVpvfXWyz2N8eKLL6Z11lmnCg6aJQZAhx56aG411imnnNKUwU+beBM+duzYtMgii+Se1jBkyJBpQdP48eNTv379quNWceedd6aNNtqoelPYLJtssklTPo3cb7/9qsFTs8TA48orr0w77bRT7mkNDz74YBowYEDaeOON00033ZR7W8Pzzz9fXaPxwUKzRED3+OOP51bjRKA5bty43Gq8GOg/8MAD1b2+0W6++ea0+eabp3fffTf3NN52222XRowYkVut4Z577qneF4W4V+67777VcSuJoOPkk0/OrcaL+03cM5sRhKy66qrpoYceyq3GO/jgg9Muu+ySW0CzqNEEc4B55pknHzVHs/996udXv/pVU2d31FnMcmhmsE299O3bNx81R7NmSVNfjzzySLr11ltzq37eeuutfNQcd9xxRz4CmslvX+YozZzd8MYbb+QjoKfFTCJBU3M0a7li3TVzVkuIZdJAY/zpT3/KRzTao48+mo+AZhI0MUeJ5XPNEvU/mqWZAVt46qmn8lHjTZgwIR81R7M/eaN5ok4S1EVdP0yJOk2xdK4ZYulSs+ovtpk0aVI+AoDGETQB6dJLL81Hjffss8/mo+bwJry+mj0ApF7qOpOs2ddZfJjQrKU0UUuv2d+/maMANIOgCQCghzU7aGrWLlDN2MUWAGguQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0ARAww0dOjTNM888uUUjzTXXXGnRRRfNLQBKWnLJJdPgwYNzq36a/bt9p512ykdAMwmamKN85CMfyUeNF28MgMZYcMEF81HzzD333PmofhZZZJF8RF3U+XyHRor3svPOO29u1U98mNFMdX7tYU7SZ8yYMe/nY2iq1157LR100EFp4YUXzj2z55FHHklTpkxJq6yySu6ZPe+++2668MIL03rrrZd7GuPFF19Mq666apo4cWLuaby99tqr+t6bYbfddkvXXHNNmm+++XLP7Inz5s0330xLLLFE7pk977//fnXutNrAe8iQIdM+MR0/fnzq169fddwq7rzzzrTBBhukPn365J5ZFz+zuNbj73b1DW38/XXWWSeNHTs29zTOnnvumX796193eeD/3nvvVa9B3759c8/sib/729/+tuU+9X3wwQfTgAED0sYbb5xuuumm3Nsann/++bTWWmulZ599Nvc0Xgx+J02alFuNs9hii6VXXnkltxov7hFnnnlmOvDAA3NP45x44onpmGOO6dJ9LsS1Go/4+129V8Z5d/fdd+ee1nDPPfdU9+cwbNiwtO+++1bHreTggw9Ol112WZp//vlzz6x7+eWX0+TJk9Pyyy+fe2ZfhC3jxo1rSsAc51y8N+uKeC/+xBNPpKWWWqpL44E33ngjbb/99mnvvffOPUCzCJroNU455ZTqTfSoUaNyT2t466230i9+8YsuDxpvueWWatB66qmnpgUWWCD3zrp33nkn7brrrmnZZZfNPY316quvVm8quur0009PV155Zfr7vSz3zL411lgjH7WOVg+awiWXXJKPZs9TTz2Vvv/971ehw3HHHZd7Z99qq602bTDTSM8991x64IEHcmv2xRvouGYiLIpBfFdsscUW+ah1tHLQFOJe/ac//Sm3Zs/o0aPTyJEj084771wFtF11xBFH5KPG2W+//dJdd93VpaAkfj/ed999aaGFFqqu166IgG3EiBFd/jCju2688cZ8NPsiCD/ssMPSlltumY466qjcO3uWW265NHDgwNxqDb0haIpQOT5I7Ir4/X755Zenm2++Ofd0zeqrr56PGmvChAn5aPY988wzadCgQenss89OX/ziF3Pv7Hv00UfzEdAsgiZ6jVYNmror3oTFG/mXXnqpy4POVnbkkUdWr0HMGKiT3hA0dVWENGuuuWbaZJNNuhUwtqoYPPz1r3+tAqv41LcuWj1o6o6TTz65ConOOeecdMABB+Te3u+hhx6qZvyuv/766fbbb8+99fGHP/whbb311mmPPfZIw4cPz729X28ImrojQsVzzz03vfDCC7mnPuKDpBVWWKH6IKo7M7qA5lOjCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBMCHevvtt9Nzzz2Xbr755jRq1Kh0ww03pOuvv746jsejjz6a3njjjfx/A61s8uTJ6a9//eu063vkyJHVn2PGjElPPfVUdT8AAPgwgiYAZvJ///d/6dxzz03bb799+tjHPpaWWWaZtMkmm6TPf/7zaauttkrbbLNNdRyPfv36pQUXXDCtt9566aijjqoGpR2DpzvuuCPtsMMO6W9/+1vuaayJEyem7bbbLvXp06fIY4kllkhbbLFF2nvvvdP5559ffV/vvvtu/tfmfKVfj1l9RFjZLBdffHGnX1NPPg444IA5PoSdMmVKuv/++9MxxxyTBg4cmD7ykY+k1Vdffdr1HfeA+PNzn/tcWmGFFar7QfTF/SHuE+1FSHX33Xen//iP/6jCqt4ggvTPfvaz1c/z9NNPz72t5Uc/+tEM52V3HxtuuOG0e9+TTz6Z3n///fwvAcBUfcaMGeO3A73CKaeckiZNmlQNcutk2LBhab/99ksvvfRSWmyxxXJvfRx55JHVa/D888/nnnoYMmRIGjx4cHU8fvz4KuzprhgsxKDqxz/+cbriiivSq6++WvUvvvjiaffdd0877rhjWnPNNdMCCyxQ9Ye45mJgefnll6ff//730/7OJz7xifTtb3+7OjeXXHLJ9O///u/p0ksvrR4DBgyo/p+ueuCBB6qvI4KvmGUxK2IAPHz48PTKK6/knpTeeeedarZGx/Bjzz33rJ7/wzzxxBPpvvvuq7739t/zl770pep7jgF7DMh6QoQAMYiPWWZLLbVU7p09pV+PNvFa/OEPf0h//vOfc8+MbrrpprTxxhvn1ux58MEHq3Mn/n48z+y67bbb0ujRo3NrqpihM3To0NyaarXVVku77LLLDOf5h4nz8X/+53/Siy++mHum23///atwYlaf64OcfPLJ6YgjjkjnnHNOFV6VEAHTjTfemE444YRp19GnPvWp6ucdoVL//v3TXHNN/zwygtQ47+L/je83fsYRSsV94aMf/Wg107F9kBzn1x577JFbXfPQQw+lVVddNa2//vrp9ttvz72NFWHKt771rep45513rtrx/TZCXEtbb7119TrG69lV8fOKMLG9aHd8zri2IoCeZ555cs+Mxo0bl2699daZPjDYdttt0+GHH54222yzGc6ZrrrnnnvSOuusUx3H7/d99923Oq6L+MAmgtwXXngh99RH3JMj0L7kkkvS8ssvn3uBViRootcQNAma6qR00PTaa6+l0047LZ166qkzBEwxuN1nn32qGTz/yDPPPJPOOOOMdPbZZ097jggGjjvuuPSXv/ylCpkiwFprrbWq/9ZVXQmaOhMzTeI1jNkX7c3OADmWEcXg65e//GW66KKLpoUNe+21Vzr++OPTSiutVLVLKhE0dabE6xEiwIiw6tBDD50pHGhm0NSZ+DrjPGovBs0x+2lWzvk2cf/96U9/ms4666xp536YU4Omxx57rLou//M//7NqDxo0KJ144onVzKW+fftWfR8mfsa33HJL9XVFwNyZ3hA0xX3xoIMOShdccEHVjmDtqquuSltuuWXV7mmlgqbOxDkeoWJ7s3K+xs9+7Nix1f2t48/+O9/5TjV7Kn53dIegSdAkaILWZ+kcQM09/vjj6etf/3o69thjpw2SYzAfdZgOO+ywWR5wL7vsstXMpRiIrb322lVffPIdg5d40xyDxvaD8N5g3nnnrYKzCP7uvPPOKmAKMYD/9Kc/XQ3a6la/KmY0bLrppunCCy9Mn/nMZ3Jv7xYzXGLgffTRR+eeOVOEBBH2xqyVtpApPqiIGS8RaMxKyBTiZxwBXTxXhE0RwPRGEWpfe+21uTV1xl68VnWuUxU/+wj+fvOb36Tvfve7uXeq+JAhgtAIwQGoN0ETQI1FEBSflkc41CZqKcWn3VFzaXbFcrH4tD+Wl7SFDDE461jLpTeK2UsRqLUNvGN20yGHHFIFbc8++2z+v+ojlqD95Cc/qQLINlEbqreKkCZmv0Rw0ya+3zkllIilbxEExAzFtqVPMQMlwtBY3toV8803X3WOz+kBW1fEUuKYORczNduLmVwTJkzIrfpaaKGFqll28fuivVhGfeaZZ7ZUzToAyhM0AdRUDDZjSUL7mjwRDsXyuag31B0xmycCl+4+T6vpbOAdS+qixkvMHKubmBn3ta99Lbemho69WQy+ozZZ23kf3++cMOCOryECpViS0/YziIAgCoDH19wdEbD9y7/8y7TZfL1FhMMjRozIremiNlXUtiJVm0REcNlRfFAR9esAqC9BE0ANRe2Rn/3sZzOETDEL53vf+141E6WEWFpz4IEH5lZ9dDbwjuU2scykbktKIniLwtrtZzX1dlFQe6eddsqt5ouZOZdddllVO6ctZIpr/V//9V+roKCERRZZpAqte9PPOWpCRY2kzkTR/PaF9OtsjTXWmLZUuk2E6t2pnwdA6xM0AdRMDDyjwOp5552Xe6aKHZW+8IUv5Fb3zT333Okb3/hG+uIXv5h76iMG3hGytR94X3311bVcUtJWwLsuIlxrVLHoWRG7I8ZOku1nk335y18u/jOJ2ZBf/epXcyul9957Lx+1nrfeeqvaRS/svffeM9Uai4C+485rdRVh5Sc/+cncmi5en7rVpwNgOkETQM3EwLPjzmIxwyFm4ERAUlLsihYzWuooPuVvP/AOsStZ3ZbdLLroommjjTbKrXqIn/2c8D3HTqwxczF2KWwvljN2d8lcRxGwRajcVhi8lZeKPvzww9VmCBGgRB2rjj/LqNsUO661cphWSmyI0NmGEbGz4euvv55bANSNoAmgRuKT+thtquPAc6uttupS8e9ZscUWW1TPXzcx8N5xxx1za6qYVRKzyWI7/DrZYIMNpgUQdRABayyha7ZY+tW2u1ybuBbXXHPN3Cor7iG94Vq/7bbbqntkzPqKpcRRz6rj+RsznmIrdjoXS4hjhzoA6slvAIAaiU/qr7nmmtyaLrajjy3ae0Isrdh+++1zq16ifsnmm2+eW1PFrkx//OMfc6seVl555apAfB12HwwLLLBAWnfddatgcfLkybm3sSLMHD58eG5NN2jQoCoI6wmLLbZYVZutlcXrFjXVQoRmMfMrZqh1XGoYu8/deeeduUVHURA/rgMA6knQBFATUZvp2muvnWk2U3xSHzNOekqfPn3SZpttVquC0G0WX3zxtPrqq+fWdNddd12t6pd87GMfq4KXZoUuzbD++uunKVOmpDfffDP3NNbYsWM7LWYdoUnUT+sJca1H0NTK1/pDDz1UzWiKukxtS+ZiadjWW29dHbf3u9/9rtpYoc7efvvtNHHixNyaLma3zT///LkFQN0ImgBq4uWXX0433XRTbk0XM01ixklPin/j6aefrlVR6BADrbXWWiu3pouB7BNPPJFbvV/UcTnttNOq7fTrIs75W2+9tSqG3mhRO2j06NEzFAAPEQCtssoqudUz+vfvX81gjNlNrSZet6i9FDWYImT6+Mc/XvV/UFgewf24ceNyq56iFtc999yTW1NFSBdLpgGoL0ETQE088sgjVcDR0QorrFCr+jmN1q9fv3w0XQzM7FpFT4nlX7E9f0cRKMfssp4Us3/OP//8dPDBB+ee1vHcc89V2/LH/TDqMkVA2mbgwIFp2223za2pIpCKQC9mi9ZRBHOxzDBmgbW3++67p5VWWim3AKgjQRNATcQn7zEw6mj55ZdPCy64YG5RWiyf62wp0QMPPJCPoKyYPTh+/Pjcmi4ClIUXXji36CiC+FGjRlUzL2OJYXtRq6mzQucjRoxIzz77bG7VS8yQ7biD6c4771ztahizwACoL0ETQA3EJ+4dP3VuE4PPnqrZQqoG9p0VX44lJ3Wq00TjxMyczq73mGUiVO5c1FqKmksh6jF1tmV/LKeLZWHtRR2szmaP9XZRCP3www+v7mNtttlmm3TyySenJZdcMvcAUFeCJoAaiILEH/Sp+4orrpiP6Akxo6mzgVdsjd6sQtH0bnXZ3a+kxx57LP35z3+uZh9GPabOZuTEvbKz2kM33HBDeuutt3Krd5s0aVI6/fTTq1ApXq82++yzT7rwwgvTJz/5ydwDQJ0JmgBq4IN2BqLnzTXXXJ3OGHv33XerXcmgtKjH1pkobm3L+Zm135Ez6jBFPabOxHW85ZZbzlTT7vrrr08PP/xwbrWu+++/P/3sZz+rZiV1fPzgBz+olg7GUutDDjkkvfjii9Xf2XTTTasC6meffXZaZpllqj4AEDQB1ECEGh13oGrTt2/ffEQjvfDCC1XR5jndyJEjOx14ftgjCgS3qtgN8Kyzzur0+/qgx5AhQ2pbp6c3aL8j5yabbFLVY/ogsW1/x1pNEVBdd911udW6br755mpnyCOOOGKmx4knnljN3Gr/eyQCt1hiGLMzYxZdXYuiAzAzQRNAzcXSLhovwr/YtWlON3z48E4Hnh/2GDt2bP7brSdCg+OPP77T7+uDHhdccEF65ZVX8jPQauJ8jVpLs7It/2KLLVaFUR3FbnWtEBx/mP333z+9/vrrVWD0QY8ImmLJ3He/+900zzzzpP/6r/9KBxxwQLWs8Mtf/nIV2JmpCYCgCaDm1HNpjpg1Mf/88+fWnCuCps4GnB/2iFkRrSqWTsVss86+rw963H333WnAgAH5GWglEfa2zdSJYt+xvPDDRO2mmNHUsRZRBFWtHLDOqtjcYIMNNqhm8UUR9Nhlrs1VV11VLaU7+uijP3AGLQD1IGgCqIF55523053PaB5bzdNTeuq8ilpvl1xySafLB2fl8Ytf/CJNnjw5P9ucIZZK3njjjdX1uMMOO1T3yn+kf//+aeONN86tqSJYiSWj8RrVRb9+/dI555yTdtppp9wz1UknnZQOPPDA9Pzzz+ceAOpG0ARQA1GHybbmzRHLaWKGTEcxsFUfi57wQaFy1JHqzk6HMftn9OjRnS4fnJVHLLOa03Znu+WWW6qlYLFsbvXVV8+9Hy5mI/7TP/1Tbk0XzzVhwoTcqoell146nXDCCWm11VbLPVNddNFFVbhYl934AJiRoAmgBmKnqQ9aEhKf6NNzYnAe9Zg6WmGFFewARo9YaaWV8tGM4lyMpX5dFedrzErquHRw3Lhxae21187/11TRjv72/18Ulo/i0XOK1157rVryFuLP5ZZbrloaNyuPqEfUUQRWMTuqbtZYY430la98JbemO/fcc6cVWQegXgRNADWx6qqr5qMZxZKPVihK3apiNtM999yTW9NF0DQry3RgdsUsk09/+tO5NV3sDtadGU29zQMPPJCuvfba9IlPfCIdeeSR1ZKv2Xnsueee+ZmmizCtboXh55577rTjjjumZZddNvdMFb9bLr/88vTGG2/kHgDqQtAEUBOxtKFjAdsQg8/YaYieEa9vR7FsLgrqQk+IoKmzZWCxjHPSpEm5VW8xwypm2zzzzDNVjaHjjjsuHX744bP1OPjgg2cKV26++eb0t7/9LbfqI+o1dZzVFu677z4bTgDUkKAJoCbiU/vOBgLjx49PL774Ym5RUgxmY7v8jqIeTAzMoCdEkLnuuuvm1nSPPvpop/XC6ijqVY0YMaI63nLLLdN8881XHc+OCO9jB7r2Irj6/e9/X7tZolG3Kn7HdBRBU7wmANSLoAmgJhZddNGZBkUhBgKdzbop6emnn06f//zn08UXX5x76iF22HrkkUdya7oNN9ywVrsARuD23//939WuXDTG5z73uZlm28SA/+GHH86terv//vurukxxTxw0aFDunT0R6G222Wa5Nd11111Xu9p3888/f1pmmWVyazpLswHqSdAEUCPbbLNNNZumvRgI/O///m9u9Yw77rgjjRo1KrfqIwab8b23F7MgonBu1DWpi5dffjldcMEF6d5778099LSBAwembbfdNremi3phdR/4x05oMesodDf03WKLLWa6p0ZR8Lvuuiu36mHKlCnp7bffzi0A6k7QBFAjK664YlWPpKPYlrunCtjGoO6GG27IrXq57bbbZlo6t/POO8/yNuq9Rczqitcizj8aI5Yy7b333jPNarr99ttrXzPnscceS6NHj65emyhi3Z3QN3aq6xg0hd/97nfVrnZ1ESFTZ0uwoy5gzPwCoF4ETQA1EgOq3XffPW288ca5Z6qeLGAbS/Ouvvrq3KqPKLzccalYDEi/+c1vpr59++aeeohZXeq0NF6cb1/72tdya6qYbfOXv/wlt+opioDHzK64Dw4YMCD3dk3UdoqwqqPYzS52tauL2M2wsyXY/fv3r8I4AOpF0ARQMyuttFI66KCDZviUOUKAyy67rJp9VFI8329+85v0+OOP5576uOaaa9JVV12VW1PruXzve9/rdOe/3ixmdcRsJhovQpD9999/hhk3dd9yPmZujhw5sjrebrvtqtp13bXmmmt2WhQ8Aq2oT1YHTz75ZHrwwQdza7qtt946LbHEErkFQF0ImgBqKGoExdbc7f3617+uZjuUFMtTzj333Nyqj1iac8455+TWVEcffXT1utdNDD5jxhzNEcHmySefPMOOYFGY/dZbb82teomZm3E+Rq20z372s7m3e6IIdmdFwWNXu9jdrreLMC0Kqz/00EO5Z6rY5XSHHXZIffr0yT0A1IWgCaCGYunWoYcemvbbb7/cM/UT+NNOOy0999xzuad7ojbRscceW82gqJOYwXPqqafOEK785Cc/qWYz1W3J3LvvvpuuuOKKmQagNFbsQBfnYNssxrjWzzzzzGLX+uuvv1495nRRBD2KgMf3HzNtVllllfxfuieClNhooWM9rAhf6hDoxU6GMSO2owMPPDCtuuqquQVAnQiaAGpq8cUXTyeeeGL6+te/nntSVUvphBNO6HYR21gqd9hhhxWfITWni2K4gwcPTmeffXbVjoH9WWedVb0WsYypbuLnf/HFF+fW1ICTxosgJGqzxc5/bTObSl7rxxxzTEuEiVEEvS34iRlIJa/JmCHVcflciFmdpZckz0ni/BkyZMhM9/rvfOc7VX0ws5kA6knQBFBjSy65ZPr5z3+ejjjiiNyTqpDk+9//fqc7CP0jsYQiCj/vscceMxXC7s3i+x47dmw1mD/vvPOqvlg2EjWa4lP9OgYsEyZMqGZ2ta/Ptfzyy+cjGi0G/LHjYSyRHTRoUNVXt2s9QqaYZbT55psXWzbXJkLlzpbPXX/99dWMn94oZqv++Mc/nhast4ll2SeddFK18yEA9SRoAqi5GCDFzKZYUtK2A1MMHKJQbgySYvnTrIjlKPE822677bRlY/Hc//Zv/5Yuuuiiqt3bxJbeUfA3dpKLwet1111XzRT70Y9+VL12W265Ze0+0Z8yZUo1u2HXXXet5W6Dc7I4FzfaaKMqGDr88MOr67PUtT6ni+LncX2GTTfdNC299NLVcUmbbLJJFTC3F0uIYwe63lQUPK7xuO/FjKUIlNrEvW/o0KFVwBznFgD11WfMmDH12A6DXu+UU05JkyZNSqNGjco99TBs2LCqzk5spb7YYovl3vo48sgjq9fg+eefzz31EEsVYolWGD9+fOrXr1913F1xDZ1//vnpjDPOmDYT5VOf+lTac889qzovsVX1XHNN/4wilqLcddddVUgVj7Z6TLE8Z999903f+MY30oorrljtOhY1TKJAdsyA6I7YMjx2eYpB3d9/h+XeDzd58uQ0fPjwasepNu+88061+1THgXJ8r/H8H2bcuHHVo/1uavE6ffvb30677LJLWmqppXJveauvvno1eI36Ol39d0q/Hm3iNYlt4+Oc6EwMTmNL+a6IouIRhMbfj+eZXfGzimVM7cV27DEwbi+WQMXPcIEFFsg9M4rXIgocN1IU845Zh3H9HHDAAbm3eyL4uPfee6vnvuSSS6q+OIe/+tWvpi222KKqrdP+Wo+gJmbtRc2tCKpiFlSECVHg/gc/+EH1/8RsqTivouB2BC6XXnrptPC6K2I5Xnwd66+/frr99ttz76yJItyx42XbsrU41+Pri/ta7MS38sorV/0hwre4n8xuKNzxOorgOV6bjsvI4pyNMG+eeeapXrN//ud/nqUt/2P2VdSSintm/DtdFV/T/fffn1tTRbvjc7b/Oj9IXOMxMyx+xm0iYIr3IbFcLu733RX3kHXWWac6jt/v8bukTo466qhqE40XXngh99RH3JNXWGGF6p5kBiy0NkETvYagSdBUJz0VNLWJQWWEODEwi2uq/fKnDxIDypjhEMtzYjv19gP1OD8POeSQqoZJM4KmiRMnVv9uzCwoIYK02M1r3XXXrQZEMUCLN8ftB+Y9pUTQVPr1mFXNDJqiVlSEZt0VdY2iJlEj9UTQ1CYCp7i+o5jzlVdeOUt11WKJWFznX/rSl6rBYPuAJmZFxXNEuLHPPvt0q+B2d4KmCEJiVl2EFv9IBE1xr2u/M9+s6Op1FIXZ43fXP1IqaIoZlrExQylx34vXasMNN6yux7gHllwmJ2gSNAmaoPUJmug1BE2Cpjrp6aCpvVgmEZ/Yx2D05ZdfrvrefPPNNP/881fHsQQl3hguvPDCVbundSVo6k1KBE2tqLtBUyvryaCpowiZH3vssWk70rW/1iNciK38P2i2V2ndCZp6g1JBU6sRNAmaBE3Q+tRoAuBDxSydj370o9Ub/6hDFI9YXtF2HEuNGhUyAT0rQqS4pju71mO5WaNCJgCgdQmaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARfcaMGfN+PoZpJk2alI9ax/HHH5/eeOONdNJJJ+Weerj22mvTmWeemS677LK00EIL5d76uOCCC6rX4JJLLsk99fDggw+mwYMHV8eHHHJI9WddTJw4MV144YXp4x//eNp1111zb33E9/7qq6+mffbZJy244IK5t/d76aWX0q9+9au03HLLpd122y331sPtt9+e/v5+LW211VZprbXWyr29X9vPfOmll0577LFH7q2PJ554Il1xxRVp4MCB6Qtf+ELurYfTTjut+nPYsGGpb9++1XFdxM981KhRaejQobmnPuKaP++889Jmm22WPvOZz+TeOVf//v3zEdCRoIlObbrppvkIAACA9uIDAKBzgiYAAAAAilCjCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAACkjp/wHVrqc7xhYS7wAAAABJRU5ErkJggg=="
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"Notes are the smallest building blocks of music. In western music, there are 7 natural notes which are represented with letters as A, B, C, D, E, F, G. These natural notes are the white keys of a piano. Except for 2 cases, the interval between two natural notes is a whole step. Since the smallest interval is half step, there are also other notes between natural notes which are black keys of a piano. For example, we can call the note between A and B as A Sharp (A#) or B flat (Bb). The two exception cases are, there are no notes between B&C and E&F. After placing all the notes in between, all the consecutive intervals are half steps and there are 12 notes in total as:\n",
"\n",
"A A# B C C# D D# E F F# G G#\n",
"\n",
"One of the most important properties of a note is frequency. By knowing the rules, all the note frequencies in western music can be calculated.\n",
"1. You can use reference note as **A** with frequency **440** Hz.\n",
"2. If you **double frequency** of a note, you again obtain the **same note** in one octave higher.\n",
"3. All the intervals between consecutive notes are **equal** in **logarithmic** scale.\n",
"\n",
"Let's make some calculations. Using the first two rules, I know that if 440 Hz is \"A\", 880 Hz is also \"A\". The reverse is also true, 440 is the double of 220, so 220 Hz is \"A\" too. Be careful, 660 Hz is **not** \"A\". What about other notes? The third rule says that intervals are equal on a logarithmic scale. Since there are 12 notes, all I have to do is multiply by 2^(1/12) to go to the next note. For example starting from \"A\", ( 440 \\* 2^(1/12) ) is \"A#\", (440 \\* 2^(1/12) \\* 2^(1/12) ) is \"B\", and goes on. After 12 steps, resulting frequency is ( 440 \\* 2^(12/12) ) = 880 Hz which is again \"A\". Cool, right? Enough calculation for us, let's leave the remaining to Python."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:51.681028Z",
"iopub.status.busy": "2023-04-24T19:47:51.680796Z",
"iopub.status.idle": "2023-04-24T19:47:51.725237Z",
"shell.execute_reply": "2023-04-24T19:47:51.724264Z",
"shell.execute_reply.started": "2023-04-24T19:47:51.681000Z"
}
},
"outputs": [],
"source": [
"# Our hearing range is commonly 20 Hz to 20 kHz\n",
"# Starting with 55 Hz which is \"A\" (I divided 440 by 2 three times)\n",
"curr_freq = 55\n",
"freq_list = []\n",
"\n",
"# I want to calculate 8 octaves of notes. Each octave has 12 notes. Looping for 96 steps:\n",
"for i in range(96): \n",
" freq_list.append(curr_freq)\n",
" curr_freq *= np.power(2, 1/12) # Multiplying by 2^(1/12)\n",
"\n",
"#reshaping and creating dataframe\n",
"freq_array = np.reshape(np.round(freq_list,1), (8, 12))\n",
"cols = [\"A\", \"A#\", \"B\", \"C\", \"C#\", \"D\", \"D#\", \"E\", \"F\", \"F#\", \"G\", \"G#\"]\n",
"df_note_freqs = pd.DataFrame(freq_array, columns=cols)\n",
"print(\"NOTE FREQUENCIES IN WESTERN MUSIC\")\n",
"df_note_freqs.head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can either play the notes in sequence to create a melody or play several notes at the same time to form a chord. In music, a chord is three or more different notes that sounded simultaneously. The most common types of chords are Major chords and Minor chords which both have three notes. To form a Major chord, we first choose a root note, then move 2 whole steps to find the second note, and finally move 1.5 steps to find the third note. For C Major chord, root note is \"C\", second note is \"E\" and third note is \"G\".\n",
"\n",
"Forming a Minor chord is also similar, the difference is steps. In Minor chord, we first move 1.5 steps and later move 2 whole steps. Example from the same note \"C\", C Minor chord is formed of \"C\", \"Eb\" and \"G\". (Reminder: Eb and D# have same frequencies)\n",
"\n",
"The dataset contains different Major and Minor chord recordings in wav format. Since the project is about distinguishing Major and Minor, the steps between the notes are important for us. We will not be interested in the notes of the chord. Now let's listen to some chord examples. Using the IPython package, audio can be displayed and listened to in the notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:51.726809Z",
"iopub.status.busy": "2023-04-24T19:47:51.726556Z",
"iopub.status.idle": "2023-04-24T19:47:51.765691Z",
"shell.execute_reply": "2023-04-24T19:47:51.764972Z",
"shell.execute_reply.started": "2023-04-24T19:47:51.726777Z"
}
},
"outputs": [],
"source": [
"path_1 = \"data_small/Major/Major_0.wav\"\n",
"path_2 = \"data_small/Minor/Minor_169.wav\"\n",
"path_3 = \"data_small/Major/Major_111.wav\"\n",
"IPython.display.Audio(path_1, rate = 44100)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:51.767471Z",
"iopub.status.busy": "2023-04-24T19:47:51.767246Z",
"iopub.status.idle": "2023-04-24T19:47:51.790127Z",
"shell.execute_reply": "2023-04-24T19:47:51.789295Z",
"shell.execute_reply.started": "2023-04-24T19:47:51.767443Z"
}
},
"outputs": [],
"source": [
"IPython.display.Audio(path_2, rate = 44100)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:51.792128Z",
"iopub.status.busy": "2023-04-24T19:47:51.791643Z",
"iopub.status.idle": "2023-04-24T19:47:51.815896Z",
"shell.execute_reply": "2023-04-24T19:47:51.815239Z",
"shell.execute_reply.started": "2023-04-24T19:47:51.792083Z"
}
},
"outputs": [],
"source": [
"IPython.display.Audio(path_3, rate = 44100)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.2. Time and Frequency Domain Representations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the previous section, we have seen that notes have frequencies that describe themselves. A sound wave with 220 Hz frequency is an \"A\" note. Here comes the fun part. In nature, musical sound waves never vibrate at a single frequency. When we play a note with an instrument, harmonics of the note occur at the integer multiples of the base note. Playing \"A\" note with 220 Hz also creates waves at 440 Hz, 660 Hz, 880 Hz, 1100 Hz and goes on. We know that 220 Hz, 440 Hz and 880 Hz are all \"A\" notes. But if you look at the table we created, 660 Hz is the \"E\" note and 1000 Hz is somewhere between \"C\" and \"C#\". That's the reason why we love music. That's the reason for harmony. That's the reason why playing some notes together forms a chord and sounds beautiful. All notes contain other notes within themselves.\n",
"\n",
"I would like to create a computer-made note to show the concept of harmonics better. To represent a wave at a single frequency, I can define a sine wave as A\\*sin(2\\*pi\\*f\\*t). A is amplitude, f is frequency and t is time. For a sound wave with harmonics, I will first create a sine wave with fundamental frequency and then add its harmonics using a loop. Another important variable in this cell will be the sampling rate. Sound waves are analog signals and to save on a computer, it has to be converted to a digital signal. The sampling rate determines how many numbers we will save in each second. Using 44100 as a sampling rate is very common in practice.\n",
"\n",
"The signal I defined will be in time domain. After creating the signal, I will also apply Fourier Transform to convert it into frequency domain. Scipy fft package can be used for this transform. Fft method gives us both positive and negative frequency terms, I only need positive terms. For detailed information about FFT, [Scipy fft documentation](https://docs.scipy.org/doc/scipy/tutorial/fft.html) can be viewed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:51.817739Z",
"iopub.status.busy": "2023-04-24T19:47:51.817316Z",
"iopub.status.idle": "2023-04-24T19:47:52.154151Z",
"shell.execute_reply": "2023-04-24T19:47:52.153315Z",
"shell.execute_reply.started": "2023-04-24T19:47:51.817696Z"
}
},
"outputs": [],
"source": [
"freq = 220 # note frequency\n",
"fs = 44100 # sampling rate\n",
"duration = 1 # duration of a signal [seconds]\n",
"time = np.linspace(0, duration, fs*duration, endpoint=False) # array for time stamps\n",
"\n",
"# Creating signal in time domain\n",
"np.random.seed(42)\n",
"signal = np.zeros(len(time))\n",
"for i in range(1,12):\n",
" amp = np.random.randint(0,10) # using random numbers for amplitudes\n",
" current_freq = i*freq # current harmonic\n",
" signal += amp*np.sin(2 * np.pi * current_freq * time)\n",
"\n",
"# Fourier Transform\n",
"N = len(signal)\n",
"y_freq = fftfreq(N, 1/fs)[:N//2] # array for frequency stamps\n",
"signal_f = fft(signal) # Signal in frequency domain\n",
"signal_f_onesided = 2.0/N * np.abs(signal_f[0:N//2]) # taking positive terms\n",
"\n",
"# Displaying audio\n",
"IPython.display.display(IPython.display.Audio(data=signal, rate=44100))\n",
"\n",
"# Plotting signal in time and frequency domains\n",
"fig, axes = plt.subplots(1, 2, figsize=(12, 3))\n",
"axes[0].plot(time[:480], signal[:480])\n",
"axes[0].set_title(\"Sound Wave in Time Domain (Zoomed)\")\n",
"axes[0].set(xlabel='Time [sec]')\n",
"axes[1].plot(y_freq[:3000], signal_f_onesided[:3000])\n",
"axes[1].set_title(\"Sound Wave in Frequency Domain (Zoomed)\")\n",
"axes[1].set(xlabel='Frequency [Hz]')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Listening to the audio that I created, it's pretty clear it's a computer-generated sound, not a natural one. Still, it is aa \"A\" note, and the frequency plot gives us really valuable information. We can see at what frequencies our signal has values. We can see the harmonic structure of a musical wave. We can find frequencies and determine which note it is.\n",
"\n",
"It's time to analyze our real recordings. Wav files are Major and Minor chords that contain at least three notes. So, I expect to see a more complicated frequency plot after the Fourier transform. It will be like the three plots are overlapped. Intervals between harmonics will not be equal. This is great because I am planning to build my classification model on the relationship of harmonics."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:52.155717Z",
"iopub.status.busy": "2023-04-24T19:47:52.155468Z",
"iopub.status.idle": "2023-04-24T19:47:52.756749Z",
"shell.execute_reply": "2023-04-24T19:47:52.755868Z",
"shell.execute_reply.started": "2023-04-24T19:47:52.155687Z"
}
},
"outputs": [],
"source": [
"path = \"data_small/Major/Major_0.wav\"\n",
"fs, signal = wavfile.read(path)\n",
"N = len(signal)\n",
"time = np.linspace(0., N/fs, N)\n",
"\n",
"# Fourier Transform\n",
"y_freq = fftfreq(N, 1/fs)[:N//2] # array for frequency stamps\n",
"signal_f = fft(signal) # Signal in frequency domain\n",
"signal_f_onesided = 2.0/N * np.abs(signal_f[0:N//2]) # taking positive terms\n",
"\n",
"# Plotting signal in time and frequency domains\n",
"fig, axes = plt.subplots(2, 2, figsize=(12, 7))\n",
"axes[0,0].plot(time, signal)\n",
"axes[0,0].set_title(\"Sound Wave in Time Domain (No Zoom)\")\n",
"axes[0,0].set(xlabel='Time [sec]')\n",
"axes[0,1].plot(y_freq, signal_f_onesided)\n",
"axes[0,1].set_title(\"Sound Wave in Frequency Domain (No Zoom)\")\n",
"axes[0,1].set(xlabel='Frequency [Hz]')\n",
"axes[1,0].plot(time[(N//2):(N//2+480)], signal[(N//2):(N//2+480)])\n",
"axes[1,0].set_title(\"Sound Wave in Time Domain (Zoomed)\")\n",
"axes[1,0].set(xlabel='Time [sec]')\n",
"axes[1,1].plot(y_freq[:5000], signal_f_onesided[:5000])\n",
"axes[1,1].set_title(\"Sound Wave in Frequency Domain (Zoomed)\")\n",
"axes[1,1].set(xlabel='Frequency [Hz]')\n",
"fig.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.3. Spectrogram"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the previous section, we have seen the time and frequency plots of a sound wave. Now, I also want to plot the spectrogram of the signal. A spectrogram is a powerful way to visualize a signal over time at various frequencies. It is calculated by splitting the signal into small pieces in time and later applying Fourier transform. As a result, a 2D matrix is obtained and can be plotted. Good news: Scipy has a method for spectrogram, so we don't have to do calculations from the scratch. Documentation of the spectrogram method can be found [here](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:52.758210Z",
"iopub.status.busy": "2023-04-24T19:47:52.757936Z",
"iopub.status.idle": "2023-04-24T19:47:53.333378Z",
"shell.execute_reply": "2023-04-24T19:47:53.332551Z",
"shell.execute_reply.started": "2023-04-24T19:47:52.758177Z"
}
},
"outputs": [],
"source": [
"# applying spectrogram\n",
"f, t, Sxx = spectrogram(signal, fs, nperseg=10000, nfft = 50000)\n",
"\n",
"# Plots\n",
"fig, axes = plt.subplots(1, 2, figsize=(12, 5))\n",
"axes[0].pcolormesh(t, f, np.log(Sxx), cmap=\"jet\")\n",
"axes[0].set_title(\"Spectogram (No Zoom)\")\n",
"axes[0].set(xlabel='Time [sec]', ylabel='Frequency [Hz]')\n",
"axes[1].pcolormesh(t, f[:1500], np.log(Sxx)[:1500,:], cmap=\"jet\")\n",
"axes[1].set_title(\"Spectogram (Zoomed)\")\n",
"axes[1].set(xlabel='Time [sec]', ylabel='Frequency [Hz]')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.4. Detection of Harmonic Frequencies"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To summarize what we have done so far, we can read a wav file and save it in an array that is in the time domain. By applying the Fourier transform, we can obtain an array in the frequency domain. Also, Spectrogram is applied to obtain a 2D matrix that has both time and frequency information. The time-domain array is not suitable to use in this project. I will not use the Spectrogram matrix too, because our recordings contain only one chord, so frequency information doesn't change with time. For example, if we had a recording that changes chords every second, we would see in the visualization that harmonics are changing every second.\n",
"\n",
"In this project, I will continue with the frequency array. There are peak values in the frequency plot which are harmonics. I believe that if I can find at which frequencies peaks occur, I can use that data to build a model. To do this, I will use find_peaks method from Scipy which returns the indices of peaks. When I plug these indices into the frequency stamp array, I will obtain harmonic frequencies. \n",
"\n",
"Update: In some files, I have seen a peak at a really small value like 2 Hz. If there is a peak less than 50 Hz, I will ignore that value, because it is most likely noise."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:53.335316Z",
"iopub.status.busy": "2023-04-24T19:47:53.334823Z",
"iopub.status.idle": "2023-04-24T19:47:53.553388Z",
"shell.execute_reply": "2023-04-24T19:47:53.552523Z",
"shell.execute_reply.started": "2023-04-24T19:47:53.335271Z"
}
},
"outputs": [],
"source": [
"# h: height threshold. I defined as %5 of max value\n",
"h = signal_f_onesided.max()*5/100\n",
"peaks, _ = find_peaks(signal_f_onesided, distance=10, height = h)\n",
"\n",
"freq_50_index = np.abs(y_freq - 50).argmin() # finding index for 50 Hz\n",
"peaks = peaks[peaks>freq_50_index] # filtering peaks less than 50 Hz\n",
"harmonics = y_freq[peaks]\n",
"print(\"Harmonics: {}\".format(np.round(harmonics)))\n",
"\n",
"# Plot\n",
"i = peaks.max() + 100\n",
"plt.plot(y_freq[:i], signal_f_onesided[:i])\n",
"plt.plot(y_freq[peaks], signal_f_onesided[peaks], \"x\")\n",
"plt.xlabel('Frequency [Hz]')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:53.556508Z",
"iopub.status.busy": "2023-04-24T19:47:53.556254Z",
"iopub.status.idle": "2023-04-24T19:47:53.565359Z",
"shell.execute_reply": "2023-04-24T19:47:53.564273Z",
"shell.execute_reply.started": "2023-04-24T19:47:53.556471Z"
}
},
"outputs": [],
"source": [
"# I would like to create a method so that I can use in the next section\n",
"# The method will read sound file, apply Fourier, find peak frequencies and return\n",
"# Input: path of the sound file\n",
"# Output: Frequency peaks\n",
"# print_peaks = true to plot peaks\n",
"\n",
"def find_harmonics(path, print_peaks=False):\n",
" fs, X = wavfile.read(path)\n",
" N = len(X)\n",
" X_F = fft(X)\n",
" X_F_onesided = 2.0/N * np.abs(X_F[0:N//2])\n",
" freqs = fftfreq(N, 1/fs)[:N//2]\n",
" freqs_50_index = np.abs(freqs - 50).argmin()\n",
" \n",
" h = X_F_onesided.max()*5/100\n",
" peaks, _ = find_peaks(X_F_onesided, distance=10, height = h)\n",
" peaks = peaks[peaks>freqs_50_index]\n",
" harmonics = np.round(freqs[peaks],2)\n",
" \n",
" if print_peaks:\n",
" i = peaks.max() + 100\n",
" plt.plot(freqs[:i], X_F_onesided[:i])\n",
" plt.plot(freqs[peaks], X_F_onesided[peaks], \"x\")\n",
" plt.xlabel('Frequency [Hz]')\n",
" plt.show()\n",
" return harmonics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:53.567293Z",
"iopub.status.busy": "2023-04-24T19:47:53.566571Z",
"iopub.status.idle": "2023-04-24T19:47:53.781998Z",
"shell.execute_reply": "2023-04-24T19:47:53.781085Z",
"shell.execute_reply.started": "2023-04-24T19:47:53.567231Z"
}
},
"outputs": [],
"source": [
"# Another example to check if method is working correctly\n",
"path = \"data_small/Minor/Minor_169.wav\"\n",
"\n",
"harmonics_2 = find_harmonics(path, print_peaks=True)\n",
"print(\"Harmonics: {}\".format(np.round(harmonics_2)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. Importing Dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this section, I will create a DataFrame so that I can analyze all the sound data together. There are more than 800 wav files. First, I will loop through all the files and find harmonics. I will save chord type, file name and all harmonics for each file. I will also save minimum & maximum harmonics and the number of harmonics for easier analysis. After the loop, I will convert it to a DataFrame."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:53.783599Z",
"iopub.status.busy": "2023-04-24T19:47:53.783316Z",
"iopub.status.idle": "2023-04-24T19:47:55.420646Z",
"shell.execute_reply": "2023-04-24T19:47:55.419466Z",
"shell.execute_reply.started": "2023-04-24T19:47:53.783562Z"
}
},
"outputs": [],
"source": [
"import librosa\n",
"import statistics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:47:55.423308Z",
"iopub.status.busy": "2023-04-24T19:47:55.422905Z",
"iopub.status.idle": "2023-04-24T19:49:35.307759Z",
"shell.execute_reply": "2023-04-24T19:49:35.306802Z",
"shell.execute_reply.started": "2023-04-24T19:47:55.423265Z"
}
},
"outputs": [],
"source": [
"path = \"data\"\n",
"data = []\n",
"max_harm_length = 0 # i will keep track of max harmonic length for naming columns\n",
"\n",
"for dirname, _, filenames in os.walk(path):\n",
" for filename in filenames:\n",
" foldername = os.path.basename(dirname)\n",
" full_path = os.path.join(dirname, filename)\n",
" y, sr = librosa.load(full_path)\n",
" centroids = librosa.feature.spectral_centroid(y = y, sr=sr)\n",
" \n",
" cenmean = [np.mean(np.nan_to_num(centroids))]\n",
" cenmin = [np.min(centroids)]\n",
" cenmax = [np.max(centroids)]\n",
" \n",
" \n",
" max_harm_length = max(max_harm_length, len(centroids))\n",
" \n",
" cur_data = [foldername, filename]\n",
" #cur_data.extend([freq_peaks.min(), freq_peaks.max(), len(freq_peaks)])\n",
" cur_data.extend(centroids[0,:])\n",
" cur_data.extend(cenmean)\n",
" cur_data.extend(cenmin)\n",
" cur_data.extend(cenmax)\n",
" \n",
" data.append(cur_data)"
]
},
{
"cell_type": "markdown",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-20T19:51:51.162210Z",
"iopub.status.busy": "2023-03-20T19:51:51.161544Z",
"iopub.status.idle": "2023-03-20T19:51:57.987658Z",
"shell.execute_reply": "2023-03-20T19:51:57.986892Z",
"shell.execute_reply.started": "2023-03-20T19:51:51.162163Z"
}
},
"source": [
"path = \"/kaggle/input/musical-instrument-chord-classification/Audio_Files\"\n",
"data = []\n",
"max_harm_length = 0 # i will keep track of max harmonic length for naming columns\n",
"\n",
"for dirname, _, filenames in os.walk(path):\n",
" for filename in filenames:\n",
" foldername = os.path.basename(dirname)\n",
" full_path = os.path.join(dirname, filename)\n",
" freq_peaks = find_harmonics(full_path)\n",
" \n",
" max_harm_length = max(max_harm_length, len(freq_peaks))\n",
" \n",
" cur_data = [foldername, filename]\n",
" cur_data.extend([freq_peaks.min(), freq_peaks.max(), len(freq_peaks)])\n",
" cur_data.extend(freq_peaks)\n",
" \n",
" data.append(cur_data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.309798Z",
"iopub.status.busy": "2023-04-24T19:49:35.309383Z",
"iopub.status.idle": "2023-04-24T19:49:35.368852Z",
"shell.execute_reply": "2023-04-24T19:49:35.368236Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.309765Z"
}
},
"outputs": [],
"source": [
"# Column Names for DataFrame:\n",
"cols = [\"Chord Type\", \"File Name\"]\n",
"for i in range(100):\n",
" cols.append(\"Centroids {}\".format(i+1))\n",
" \n",
"cols.append(\"CenMean\")\n",
"cols.append(\"CenMin\")\n",
"cols.append(\"CenMax\")\n",
"\n",
"# Creating DataFrame\n",
"df = pd.DataFrame(data, columns=cols)\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.370585Z",
"iopub.status.busy": "2023-04-24T19:49:35.370212Z",
"iopub.status.idle": "2023-04-24T19:49:35.378619Z",
"shell.execute_reply": "2023-04-24T19:49:35.377618Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.370553Z"
}
},
"outputs": [],
"source": [
"#Se guarda en nandata las columnas donde hay hay algún dato de tipo NaN\n",
"nandata = df.columns[df.isna().any()].tolist()\n",
"\n",
"print(\"Las columnas con datos faltantes son:\",nandata)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.380600Z",
"iopub.status.busy": "2023-04-24T19:49:35.380362Z",
"iopub.status.idle": "2023-04-24T19:49:35.409888Z",
"shell.execute_reply": "2023-04-24T19:49:35.409133Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.380572Z"
}
},
"outputs": [],
"source": [
"#Preprocesamiento\n",
"from sklearn.impute import SimpleImputer #Herramienta para lidiar con datos faltantes\n",
"#Se corrigen datos faltantes con SimpleImputer\n",
"imputer = SimpleImputer(missing_values=np.nan, strategy = \"mean\")\n",
"if nandata != []:\n",
" df[nandata] = imputer.fit_transform(df[nandata])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.412207Z",
"iopub.status.busy": "2023-04-24T19:49:35.411297Z",
"iopub.status.idle": "2023-04-24T19:49:35.422802Z",
"shell.execute_reply": "2023-04-24T19:49:35.421819Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.412135Z"
}
},
"outputs": [],
"source": [
"#Se guarda en nandata las columnas donde hay hay algún dato de tipo NaN\n",
"nandata = df.columns[df.isna().any()].tolist()\n",
"\n",
"print(\"Las columnas con datos faltantes son:\",nandata)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.424399Z",
"iopub.status.busy": "2023-04-24T19:49:35.424095Z",
"iopub.status.idle": "2023-04-24T19:49:35.434862Z",
"shell.execute_reply": "2023-04-24T19:49:35.433920Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.424365Z"
}
},
"outputs": [],
"source": [
"# Se obtienen las columnas con variables categóticas\n",
"cols = df.columns\n",
"num_cols = df._get_numeric_data().columns\n",
"catvar = list(set(cols) - set(num_cols))\n",
"print(\"Las columnas categóricas son:\",catvar)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.436310Z",
"iopub.status.busy": "2023-04-24T19:49:35.436041Z",
"iopub.status.idle": "2023-04-24T19:49:35.471835Z",
"shell.execute_reply": "2023-04-24T19:49:35.470456Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.436278Z"
}
},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.474056Z",
"iopub.status.busy": "2023-04-24T19:49:35.473605Z",
"iopub.status.idle": "2023-04-24T19:49:35.588019Z",
"shell.execute_reply": "2023-04-24T19:49:35.586920Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.473999Z"
}
},
"outputs": [],
"source": [
"y, sr = librosa.load(\"data_small/Major/Major_0.wav\")\n",
"cent = librosa.feature.spectral_centroid(y=y, sr=sr)\n",
"np.mean(cent)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.589458Z",
"iopub.status.busy": "2023-04-24T19:49:35.589224Z",
"iopub.status.idle": "2023-04-24T19:49:35.595258Z",
"shell.execute_reply": "2023-04-24T19:49:35.594655Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.589429Z"
}
},
"outputs": [],
"source": [
"cent.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.596906Z",
"iopub.status.busy": "2023-04-24T19:49:35.596598Z",
"iopub.status.idle": "2023-04-24T19:49:35.623867Z",
"shell.execute_reply": "2023-04-24T19:49:35.622704Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.596873Z"
}
},
"outputs": [],
"source": [
"S, phase = librosa.magphase(librosa.stft(y=y))\n",
"librosa.feature.spectral_centroid(S=S)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.625724Z",
"iopub.status.busy": "2023-04-24T19:49:35.625388Z",
"iopub.status.idle": "2023-04-24T19:49:35.651682Z",
"shell.execute_reply": "2023-04-24T19:49:35.650652Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.625681Z"
}
},
"outputs": [],
"source": [
"freqs, times, D = librosa.reassigned_spectrogram(y, fill_nan=True)\n",
"librosa.feature.spectral_centroid(S=np.abs(D), freq=freqs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:35.653647Z",
"iopub.status.busy": "2023-04-24T19:49:35.653285Z",
"iopub.status.idle": "2023-04-24T19:49:36.069415Z",
"shell.execute_reply": "2023-04-24T19:49:36.068711Z",
"shell.execute_reply.started": "2023-04-24T19:49:35.653600Z"
}
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"from librosa import display\n",
"times = librosa.times_like(cent)\n",
"fig, ax = plt.subplots()\n",
"librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),\n",
" y_axis='log', x_axis='time', ax=ax)\n",
"ax.plot(times, cent.T, label='Spectral centroid', color='w')\n",
"ax.legend(loc='upper right')\n",
"ax.set(title='log Power spectrogram')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 3. Data Exploration"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we have a nice DataFrame to make some exploration. The first column, Chord Type, is the value that we will predict. It is a categorical column consisting of 2 categories: Major and Minor. By printing value counts of Chord Type, it seems that most of the chords are Major. We have 502 Major chords and 357 Minor chords. \n",
"\n",
"The second column is the file name that the row is created from. We will not need this column for model building, I just keep it in case I want to analyze a specific row deeper."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:36.071369Z",
"iopub.status.busy": "2023-04-24T19:49:36.070728Z",
"iopub.status.idle": "2023-04-24T19:49:36.084567Z",
"shell.execute_reply": "2023-04-24T19:49:36.083616Z",
"shell.execute_reply.started": "2023-04-24T19:49:36.071329Z"
}
},
"outputs": [],
"source": [
"df[\"Chord Type\"].value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3.1. Min and Max Harmonics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this part, I have plotted distributions of Min Harmonics and Max Harmonics. By setting hue as Chord Type, I can see if chord type affects distribution. As I expected, the distribution of Min Harmonics for Major and Minor chords is extremely close. This is because the min harmonic determines the note of the chord. For example for 110 Hz, we will have either \"A Major\" or \"A Minor\" chord. We cannot determine what chord it is just by the first note. The difference between Major and Minor chords is in the intervals between harmonics.\n",
"\n",
"By looking at the distribution of Max harmonics, Major and Minor chords have again a similar behavior. There is a slight difference that I will ignore for now. I decided not to use \"Min Harmonic\" and \"Max Harmonic\" columns in my model building."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:36.086371Z",
"iopub.status.busy": "2023-04-24T19:49:36.086050Z",
"iopub.status.idle": "2023-04-24T19:49:36.964775Z",
"shell.execute_reply": "2023-04-24T19:49:36.963833Z",
"shell.execute_reply.started": "2023-04-24T19:49:36.086336Z"
}
},
"outputs": [],
"source": [
"fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n",
"sns.kdeplot(ax=axes[0], data=df, x=\"CenMin\", hue=\"Chord Type\", shade=True)\n",
"sns.kdeplot(ax=axes[1], data=df, x=\"CenMax\", hue=\"Chord Type\", shade=True)\n",
"sns.scatterplot(ax=axes[2], data=df, x=\"CenMin\", y=\"CenMax\",hue=\"Chord Type\")\n",
"axes[0].set_title(\"Distribution of Min Centroids\")\n",
"axes[1].set_title(\"Distribution of Max Centroids\")\n",
"axes[2].set_title(\"Scatter Plot Min vs. Max Centroids\")\n",
"fig.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3.2. Number of Harmonics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the column \"# of Harmonics\", I have information that how many harmonic values are not null in that row. For example if \"# of Harmonics\" is 12, that row will have values from \"Harmonic 1\" to \"Harmonic 12\", but after \"Harmonic 13\" we will see NaN values. This \"# of Harmonics\" column will not be directly related to my classification model but will make it easier to analyze other columns.\n",
"\n",
"Using describe method on \"# of harmonics\", I see that\n",
"* min is 8 --> every row at least 8 harmonics value\n",
"* max is 38 --> last column will be \"Harmonic 38\"\n",
"* starting with column \"Harmonic 9\", there will be NaN values\n",
"* since harmonics are ordered, missing values will increase with each column\n",
"* the mean value for the number of harmonics is 20\n",
"\n",
"Looking at the number of missing values, I know that I will drop most of the columns. Harmonics bigger than 20 are gone. The first 8 harmonics are absolutely important. But I am not sure about the harmonics in between. I have to make more exploration to decide for them."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:36.966442Z",
"iopub.status.busy": "2023-04-24T19:49:36.966141Z",
"iopub.status.idle": "2023-04-24T19:49:36.977673Z",
"shell.execute_reply": "2023-04-24T19:49:36.976727Z",
"shell.execute_reply.started": "2023-04-24T19:49:36.966380Z"
}
},
"outputs": [],
"source": [
"df[\"CenMean\"].describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 4. Model Building"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:36.982438Z",
"iopub.status.busy": "2023-04-24T19:49:36.982143Z",
"iopub.status.idle": "2023-04-24T19:49:37.025135Z",
"shell.execute_reply": "2023-04-24T19:49:37.024304Z",
"shell.execute_reply.started": "2023-04-24T19:49:36.982405Z"
}
},
"outputs": [],
"source": [
"# importing packages\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.metrics import confusion_matrix, accuracy_score\n",
"\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.svm import SVC\n",
"from sklearn.naive_bayes import GaussianNB\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"\n",
"import librosa\n",
"import numpy as np\n",
"\n",
"import sklearn\n",
"import sklearn.cluster\n",
"import sklearn.pipeline\n",
"\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4.1. Preprocessing Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There is just one step left before training the classification model. Since the Chord Type column is categorical and consists of strings, I will replace \"Major\" with 1 and \"Minor\" with 0. Finally, select columns that I will use in training and split the data into training and validation sets. I used test size as %40."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:37.026790Z",
"iopub.status.busy": "2023-04-24T19:49:37.026356Z",
"iopub.status.idle": "2023-04-24T19:49:37.053920Z",
"shell.execute_reply": "2023-04-24T19:49:37.052910Z",
"shell.execute_reply.started": "2023-04-24T19:49:37.026748Z"
}
},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:37.055624Z",
"iopub.status.busy": "2023-04-24T19:49:37.055362Z",
"iopub.status.idle": "2023-04-24T19:49:37.074865Z",
"shell.execute_reply": "2023-04-24T19:49:37.073879Z",
"shell.execute_reply.started": "2023-04-24T19:49:37.055591Z"
}
},
"outputs": [],
"source": [
"dfarray = np.array(df)\n",
"dfarray = dfarray[:,2:].astype('float64')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T19:49:37.076407Z",
"iopub.status.busy": "2023-04-24T19:49:37.076148Z",
"iopub.status.idle": "2023-04-24T19:49:37.090662Z",
"shell.execute_reply": "2023-04-24T19:49:37.089723Z",
"shell.execute_reply.started": "2023-04-24T19:49:37.076378Z"
}
},
"outputs": [],
"source": [
"df[\"Chord Type\"] = df[\"Chord Type\"].replace(\"Major\", 1)\n",
"df[\"Chord Type\"] = df[\"Chord Type\"].replace(\"Minor\", 0)\n",
"\n",
"#columns = [3::]\n",
"#columns.extend([\"Interval 4_1\", \"Interval 5_1\", \"Interval 6_1\"])\n",
"train_X, val_X, train_y, val_y = train_test_split(dfarray, df[\"Chord Type\"], test_size=0.2, random_state=0)\n",
"\n",
"train_X"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4.2. Model Selection"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In order to select a classification model, I will try 6 different models in this section and compare their cross validation score."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T20:58:21.049696Z",
"iopub.status.busy": "2023-04-24T20:58:21.049336Z",
"iopub.status.idle": "2023-04-24T20:58:21.059399Z",
"shell.execute_reply": "2023-04-24T20:58:21.058245Z",
"shell.execute_reply.started": "2023-04-24T20:58:21.049661Z"
}
},
"outputs": [],
"source": [
"path = \"data_small/\"\n",
"def FeatureExtractor(path, n_mels, fmax=20000, fmin=20):\n",
"\n",
" data = []\n",
" max_harm_length = 0 # i will keep track of max harmonic length for naming columns\n",
" \n",
" for dirname, _, filenames in os.walk(path):\n",
" for filename in filenames:\n",
" foldername = os.path.basename(dirname)\n",
" full_path = os.path.join(dirname, filename)\n",
" \n",
" y, sr = librosa.load(full_path)\n",
" mel = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels, fmax=fmax, fmin=fmin)\n",
" logam = librosa.power_to_db(mel) \n",
" data.append(logam)\n",
" \n",
" max_harm_length = max(max_harm_length, logam.shape[1]) # fix First step: Track longest frame length\n",
" \n",
" # fix: Second step: Pad all spectrograms to max_frames\n",
" data = [librosa.util.fix_length(mel, size=max_harm_length, axis=1) for mel in data]\n",
" \n",
" data = np.array(data) \n",
" return data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2023-04-24T20:58:21.745520Z",
"iopub.status.busy": "2023-04-24T20:58:21.745139Z",
"iopub.status.idle": "2023-04-24T21:00:46.199809Z",
"shell.execute_reply": "2023-04-24T21:00:46.197963Z",
"shell.execute_reply.started": "2023-04-24T20:58:21.745487Z"
}
},
"outputs": [],
"source": [
"NX = FeatureExtractor(path, n_mels = 10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.status.busy": "2023-04-24T20:38:49.411615Z",
"iopub.status.idle": "2023-04-24T20:38:49.412493Z",
"shell.execute_reply": "2023-04-24T20:38:49.412093Z",
"shell.execute_reply.started": "2023-04-24T20:38:49.412053Z"
}
},
"outputs": [],
"source": [
"plt.figure(figsize=(25, 10))\n",
"librosa.display.specshow(NX[1], \n",
" x_axis=\"time\",\n",
" y_axis=\"mel\", \n",
" sr=sr)\n",
"plt.colorbar(format=\"%+2.f\")\n",
"\n",
"plt.show() "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.status.busy": "2023-04-24T20:38:49.427002Z",
"iopub.status.idle": "2023-04-24T20:38:49.432746Z",
"shell.execute_reply": "2023-04-24T20:38:49.432226Z",
"shell.execute_reply.started": "2023-04-24T20:38:49.432137Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"21"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(NX)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.status.busy": "2023-04-24T20:38:49.435465Z",
"iopub.status.idle": "2023-04-24T20:38:49.436620Z",
"shell.execute_reply": "2023-04-24T20:38:49.436267Z",
"shell.execute_reply.started": "2023-04-24T20:38:49.436224Z"
}
},
"outputs": [],
"source": [
"NX[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Itera a través de cada archivo de audio en la carpeta\n",
"for filename in os.listdir(path):\n",
" i=0 \n",
" data_min=np.zeros((357,10,80))\n",
"\n",
" if filename.endswith('.wav'): #Solo lea archivos .wav\n",
"\n",
"\n",
" # Cargar archivo de audio\n",
" audio_file = os.path.join(path_audio, filename)\n",
" y, sr = librosa.load(audio_file)\n",
" \n",
" # Calcular espectrograma\n",
" spec = librosa.feature.melspectrogram(y=y, sr=sr, n_mels =10)\n",
" spec_flat = spec.reshape(-1)\n",
" mel = librosa.power_to_db(spec, ref=np.max)\n",
" \n",
" data_min[i]=mel[:,0:80]\n",
" i=i+1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.status.busy": "2023-04-24T20:38:49.448700Z",
"iopub.status.idle": "2023-04-24T20:38:49.450385Z",
"shell.execute_reply": "2023-04-24T20:38:49.449941Z",
"shell.execute_reply.started": "2023-04-24T20:38:49.449892Z"
}
},
"outputs": [],
"source": [
"# Now, build a learning object. We'll use mini-batch k-means with default parameters.\n",
"C = sklearn.cluster.MiniBatchKMeans()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.status.busy": "2023-04-24T20:38:49.452940Z",
"iopub.status.idle": "2023-04-24T20:38:49.454051Z",
"shell.execute_reply": "2023-04-24T20:38:49.453701Z",
"shell.execute_reply.started": "2023-04-24T20:38:49.453659Z"
}
},
"outputs": [],
"source": [
"# Now, chain them all together into a pipeline\n",
"ClusterPipe = sklearn.pipeline.Pipeline([('Cluster', C)])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.status.busy": "2023-04-24T20:38:49.456367Z",
"iopub.status.idle": "2023-04-24T20:38:49.457469Z",
"shell.execute_reply": "2023-04-24T20:38:49.457100Z",
"shell.execute_reply.started": "2023-04-24T20:38:49.457059Z"
}
},
"outputs": [],
"source": [
"# Let's build a model using just the first 20 seconds of the example track\n",
"\n",
"y_train, sr = librosa.load(train_X, duration=20, offset=0.0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.status.busy": "2023-04-24T20:38:49.459994Z",
"iopub.status.idle": "2023-04-24T20:38:49.460508Z",
"shell.execute_reply": "2023-04-24T20:38:49.460333Z",
"shell.execute_reply.started": "2023-04-24T20:38:49.460311Z"
}
},
"outputs": [],
"source": [
"lr = LogisticRegression(random_state=0,solver='liblinear')\n",
"knn = KNeighborsClassifier()\n",
"svc = SVC(random_state=0)\n",
"gnb = GaussianNB()\n",
"dtc = DecisionTreeClassifier(random_state=0)\n",
"rfc = RandomForestClassifier(random_state=0)\n",
"\n",
"score_lr = cross_val_score(lr, train_X, train_y, cv=10).mean()\n",
"score_knn = cross_val_score(knn, train_X, train_y, cv=10).mean()\n",
"score_svc = cross_val_score(svc, train_X, train_y, cv=10).mean()\n",
"score_gnb = cross_val_score(gnb, train_X, train_y, cv=10).mean()\n",
"score_dtc = cross_val_score(dtc, train_X, train_y, cv=10).mean()\n",
"score_rfc = cross_val_score(rfc, train_X, train_y, cv=10).mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.status.busy": "2023-04-24T19:52:01.993036Z",
"iopub.status.idle": "2023-04-24T19:52:01.993385Z",
"shell.execute_reply": "2023-04-24T19:52:01.993229Z",
"shell.execute_reply.started": "2023-04-24T19:52:01.993208Z"
}
},
"outputs": [],
"source": [
"print(\"Cross Val Score for Logistic Regression: {:.2f}\".format(score_lr))\n",
"print(\"Cross Val Score for KNeighbors Classifier: {:.2f}\".format(score_knn))\n",
"print(\"Cross Val Score for SVC: {:.2f}\".format(score_svc))\n",
"print(\"Cross Val Score for Gaussian NB: {:.2f}\".format(score_gnb))\n",
"print(\"Cross Val Score for Decision Tree Classifier: {:.2f}\".format(score_dtc))\n",
"print(\"Cross Val Score for Random Forest Classifier: {:.2f}\".format(score_rfc))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4.3. Model Training and Prediction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the previous section, I tried 6 different models and Random Forest Classifier works really well with my dataset. I obtained 0.92 success rate with this model. After Random Forest Classifier, Decision Tree Classifier obtained %90 and KNeighbors Classifier obtained %83 success rate. \n",
"\n",
"Now, I will continue with Random Forest Classifier. First, I will train my model with the training dataset and then make a prediction on the validation dataset to see the accuracy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.status.busy": "2023-04-24T19:52:01.995535Z",
"iopub.status.idle": "2023-04-24T19:52:01.996087Z",
"shell.execute_reply": "2023-04-24T19:52:01.995900Z",
"shell.execute_reply.started": "2023-04-24T19:52:01.995878Z"
}
},
"outputs": [],
"source": [
"# defining my classifier\n",
"classifier = RandomForestClassifier(random_state=0)\n",
"\n",
"classifier.fit(train_X, train_y) # training classifier\n",
"pred_y = classifier.predict(val_X) # making prediction on validation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.status.busy": "2023-04-24T19:52:01.997139Z",
"iopub.status.idle": "2023-04-24T19:52:01.997695Z",
"shell.execute_reply": "2023-04-24T19:52:01.997531Z",
"shell.execute_reply.started": "2023-04-24T19:52:01.997510Z"
}
},
"outputs": [],
"source": [
"cm = confusion_matrix(val_y, pred_y)\n",
"acc = accuracy_score(val_y, pred_y)\n",
"\n",
"print(\"Confusion Matrix:\")\n",
"print(cm)\n",
"\n",
"print(\"Accuracy Score: {:.2f}\".format(acc))"
]
},
{
"cell_type": "markdown",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-20T20:43:13.066373Z",
"iopub.status.busy": "2023-03-20T20:43:13.065493Z",
"iopub.status.idle": "2023-03-20T20:43:13.072982Z",
"shell.execute_reply": "2023-03-20T20:43:13.071743Z",
"shell.execute_reply.started": "2023-03-20T20:43:13.066294Z"
}
},
"source": [
"For the validation set, I obtained an even better score, %94 success rate.\n",
"\n",
"So, I guess this is the final cell in this notebook. Thank you very much for your interest in this project :)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|