{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.7.12","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"markdown","source":"# What is Music?","metadata":{}},{"cell_type":"markdown","source":"In the first lesson of Popular Music History lecture, a professor came and asked us \"What is Music?\". We all had different answers. Music is a song made by instruments. Music is the expression of feelings. Music is singing. Music is what takes us to other worlds. The answers were all correct. However, the professor said there was a more general definition. Music is a set of sounds that harmonize with each other. It is harmony that distinguishes music from noise.\n\nPopular Music History was one of the elective courses I took during my engineering degree. After many years, I never forgot this answer from the professor. It was very reasonable. Above all, musical notes we hear from different instruments are just sound waves. They have mathematical expressions in both the time and frequency domain. Some waves go well with each other. Some just don't get along and make noise.\n\nRecently, I was searching for datasets about music in Kaggle and came across [Deep Contractor's](https://www.kaggle.com/deepcontractor) dataset \"[Musical Instrument Chord Classification (Audio)](https://www.kaggle.com/deepcontractor/musical-instrument-chord-classification)\". The dataset contains audio files which are chord recordings from either a piano or guitar. Chords are labeled as Major or Minor, so the data is suitable for a classification problem. I thought why not give it a try and started.\n\nIn the first section, I explained the mathematics behind the music as much as I can. There will be a bit of music theory, a bit of math, and a bit of digital signal processing. Using the knowledge from section 1, I created a DataFrame from all the audio files in section 2. In section 3, I explored data and applied some feature engineering to make it ready for machine learning. Finally, I build a model and make predictions in section 4. \n\n**Index**\n\n1. [Understanding Math Behind Music](#1.-Understanding-Math-Behind-Music)\n\n 1.1. [Notes and Chords](#1.1.-Notes-and-Chords)\n \n 1.2. [Time and Frequency Domain Representations](#1.2.-Time-and-Frequency-Domain-Representations)\n \n 1.3. [Spectrogram](#1.3.-Spectrogram)\n \n 1.4. [Detection of Harmonic Frequencies](#1.4.-Detection-of-Harmonic-Frequencies)\n\n2. [Importing Dataset](#2.-Importing-Dataset)\n\n3. [Data Exploration](#3.-Data-Exploration)\n\n 3.1. [Min and Max Harmonics](#3.1.-Min-and-Max-Harmonics)\n \n 3.2. [Number of Harmonics](#3.2.-Number-of-Harmonics)\n \n 3.3. [Feature Engineering on Harmonics](#3.3.-Feature-Engineering-on-Harmonics)\n\n4. [Model Building](#4.-Model-Building)\n\n 4.1. [Preprocessing Data](#4.1.-Preprocessing-Data)\n \n 4.2. [Model Selection](#4.2.-Model-Selection)\n \n 4.3. [Model Training and Prediction](#4.3.-Model-Training-and-Prediction)","metadata":{}},{"cell_type":"markdown","source":"# 1. Understanding Math Behind Music","metadata":{}},{"cell_type":"code","source":"# importing necessary packages for the section\nimport os\nimport IPython\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nimport seaborn as sns\nfrom scipy.io import wavfile\nfrom scipy.fft import fft, fftfreq\nfrom scipy.signal import spectrogram, find_peaks","metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","execution":{"iopub.status.busy":"2023-04-24T19:47:50.438637Z","iopub.execute_input":"2023-04-24T19:47:50.439036Z","iopub.status.idle":"2023-04-24T19:47:51.679073Z","shell.execute_reply.started":"2023-04-24T19:47:50.438964Z","shell.execute_reply":"2023-04-24T19:47:51.678228Z"},"trusted":true},"execution_count":4,"outputs":[]},{"cell_type":"markdown","source":"## 1.1. Notes and Chords","metadata":{}},{"cell_type":"markdown","source":"\n\nNotes are the smallest building blocks of music. In western music, there are 7 natural notes which are represented with letters as A, B, C, D, E, F, G. These natural notes are the white keys of a piano. Except for 2 cases, the interval between two natural notes is a whole step. Since the smallest interval is half step, there are also other notes between natural notes which are black keys of a piano. For example, we can call the note between A and B as A Sharp (A#) or B flat (Bb). The two exception cases are, there are no notes between B&C and E&F. After placing all the notes in between, all the consecutive intervals are half steps and there are 12 notes in total as:\n\nA A# B C C# D D# E F F# G G#\n\nOne of the most important properties of a note is frequency. By knowing the rules, all the note frequencies in western music can be calculated.\n1. You can use reference note as **A** with frequency **440** Hz.\n2. If you **double frequency** of a note, you again obtain the **same note** in one octave higher.\n3. All the intervals between consecutive notes are **equal** in **logarithmic** scale.\n\nLet's make some calculations. Using the first two rules, I know that if 440 Hz is \"A\", 880 Hz is also \"A\". The reverse is also true, 440 is the double of 220, so 220 Hz is \"A\" too. Be careful, 660 Hz is **not** \"A\". What about other notes? The third rule says that intervals are equal on a logarithmic scale. Since there are 12 notes, all I have to do is multiply by 2^(1/12) to go to the next note. For example starting from \"A\", ( 440 \\* 2^(1/12) ) is \"A#\", (440 \\* 2^(1/12) \\* 2^(1/12) ) is \"B\", and goes on. After 12 steps, resulting frequency is ( 440 \\* 2^(12/12) ) = 880 Hz which is again \"A\". Cool, right? Enough calculation for us, let's leave the remaining to Python.","metadata":{},"attachments":{"b6f37314-e253-479a-b37c-9296e4ca19b8.png":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABJoAAAFfCAYAAAAGdKYmAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAACrISURBVHhe7d0JvF3TvQfwFWJWlBqLkqjEUFNFayo1K6+eDoZSLaq84rXhqakorT5DS5DSR7Q8UTWU57VPgtKkMfUh5jZFzDE8YoiYidf/zrrJzc2lyb3rnpNz9/f7+ZxP9lrk5N5z9973rN9Z67/6jBkz5v0EAAAAAN00V/4TAAAAALpF0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFBEnzFjxryfj2GaTTfdNB8BAADQ3t/H0fkI6EjQRKeee+65fNQ4d999dzr11FPTXHM1Z6Jd/Ls//OEP08orr5x7GmPy5Mnp5z//eZoyZUruaazXX389feUrX0lrr7127mmsK664Io0cOTLNN998uaex+vTpU513CyywQO5pDU8++WQaPHhwdXzCCSdUf7aSp59+Op133nnp/feb8yso/t241r/5zW/mnsb57W9/m+69997q3GuG+N532223tNpqq+We1jBx4sR0xhlnpBVXXDF961vfyr2t4bXXXks//elP03vvvZd7Gm+hhRZKhx9+eG41zvDhw9Njjz2W5p577tzTOPF7NX637LPPPmnxxRfPvY3zxBNPpF/+8pe51Xhxrffv3z/ttddeuad1HHvssdWfw4YNS6usskp13EqGDh2a/vjHPzbtvc28885bnXvNeE8dv1fffPPN3Gqst99+O22wwQbpiCOOyD09qxn3NWgVgibmGPFGfPfdd08vvfRS7mms5ZdfPl199dVpvfXWyz2N8eKLL6Z11lmnCg6aJQZAhx56aG411imnnNKUwU+beBM+duzYtMgii+Se1jBkyJBpQdP48eNTv379quNWceedd6aNNtqoelPYLJtssklTPo3cb7/9qsFTs8TA48orr0w77bRT7mkNDz74YBowYEDaeOON00033ZR7W8Pzzz9fXaPxwUKzRED3+OOP51bjRKA5bty43Gq8GOg/8MAD1b2+0W6++ea0+eabp3fffTf3NN52222XRowYkVut4Z577qneF4W4V+67777VcSuJoOPkk0/OrcaL+03cM5sRhKy66qrpoYceyq3GO/jgg9Muu+ySW0CzqNEEc4B55pknHzVHs/996udXv/pVU2d31FnMcmhmsE299O3bNx81R7NmSVNfjzzySLr11ltzq37eeuutfNQcd9xxRz4CmslvX+YozZzd8MYbb+QjoKfFTCJBU3M0a7li3TVzVkuIZdJAY/zpT3/KRzTao48+mo+AZhI0MUeJ5XPNEvU/mqWZAVt46qmn8lHjTZgwIR81R7M/eaN5ok4S1EVdP0yJOk2xdK4ZYulSs+ovtpk0aVI+AoDGETQB6dJLL81Hjffss8/mo+bwJry+mj0ApF7qOpOs2ddZfJjQrKU0UUuv2d+/maMANIOgCQCghzU7aGrWLlDN2MUWAGguQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0ARAww0dOjTNM888uUUjzTXXXGnRRRfNLQBKWnLJJdPgwYNzq36a/bt9p512ykdAMwmamKN85CMfyUeNF28MgMZYcMEF81HzzD333PmofhZZZJF8RF3U+XyHRor3svPOO29u1U98mNFMdX7tYU7SZ8yYMe/nY2iq1157LR100EFp4YUXzj2z55FHHklTpkxJq6yySu6ZPe+++2668MIL03rrrZd7GuPFF19Mq666apo4cWLuaby99tqr+t6bYbfddkvXXHNNmm+++XLP7Inz5s0330xLLLFE7pk977//fnXutNrAe8iQIdM+MR0/fnzq169fddwq7rzzzrTBBhukPn365J5ZFz+zuNbj73b1DW38/XXWWSeNHTs29zTOnnvumX796193eeD/3nvvVa9B3759c8/sib/729/+tuU+9X3wwQfTgAED0sYbb5xuuumm3Nsann/++bTWWmulZ599Nvc0Xgx+J02alFuNs9hii6VXXnkltxov7hFnnnlmOvDAA3NP45x44onpmGOO6dJ9LsS1Go/4+129V8Z5d/fdd+ee1nDPPfdU9+cwbNiwtO+++1bHreTggw9Ol112WZp//vlzz6x7+eWX0+TJk9Pyyy+fe2ZfhC3jxo1rSsAc51y8N+uKeC/+xBNPpKWWWqpL44E33ngjbb/99mnvvffOPUCzCJroNU455ZTqTfSoUaNyT2t466230i9+8YsuDxpvueWWatB66qmnpgUWWCD3zrp33nkn7brrrmnZZZfNPY316quvVm8quur0009PV155Zfr7vSz3zL411lgjH7WOVg+awiWXXJKPZs9TTz2Vvv/971ehw3HHHZd7Z99qq602bTDTSM8991x64IEHcmv2xRvouGYiLIpBfFdsscUW+ah1tHLQFOJe/ac//Sm3Zs/o0aPTyJEj084771wFtF11xBFH5KPG2W+//dJdd93VpaAkfj/ed999aaGFFqqu166IgG3EiBFd/jCju2688cZ8NPsiCD/ssMPSlltumY466qjcO3uWW265NHDgwNxqDb0haIpQOT5I7Ir4/X755Zenm2++Ofd0zeqrr56PGmvChAn5aPY988wzadCgQenss89OX/ziF3Pv7Hv00UfzEdAsgiZ6jVYNmror3oTFG/mXXnqpy4POVnbkkUdWr0HMGKiT3hA0dVWENGuuuWbaZJNNuhUwtqoYPPz1r3+tAqv41LcuWj1o6o6TTz65ConOOeecdMABB+Te3u+hhx6qZvyuv/766fbbb8+99fGHP/whbb311mmPPfZIw4cPz729X28ImrojQsVzzz03vfDCC7mnPuKDpBVWWKH6IKo7M7qA5lOjCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBMCHevvtt9Nzzz2Xbr755jRq1Kh0ww03pOuvv746jsejjz6a3njjjfx/A61s8uTJ6a9//eu063vkyJHVn2PGjElPPfVUdT8AAPgwgiYAZvJ///d/6dxzz03bb799+tjHPpaWWWaZtMkmm6TPf/7zaauttkrbbLNNdRyPfv36pQUXXDCtt9566aijjqoGpR2DpzvuuCPtsMMO6W9/+1vuaayJEyem7bbbLvXp06fIY4kllkhbbLFF2nvvvdP5559ffV/vvvtu/tfmfKVfj1l9RFjZLBdffHGnX1NPPg444IA5PoSdMmVKuv/++9MxxxyTBg4cmD7ykY+k1Vdffdr1HfeA+PNzn/tcWmGFFar7QfTF/SHuE+1FSHX33Xen//iP/6jCqt4ggvTPfvaz1c/z9NNPz72t5Uc/+tEM52V3HxtuuOG0e9+TTz6Z3n///fwvAcBUfcaMGeO3A73CKaeckiZNmlQNcutk2LBhab/99ksvvfRSWmyxxXJvfRx55JHVa/D888/nnnoYMmRIGjx4cHU8fvz4KuzprhgsxKDqxz/+cbriiivSq6++WvUvvvjiaffdd0877rhjWnPNNdMCCyxQ9Ye45mJgefnll6ff//730/7OJz7xifTtb3+7OjeXXHLJ9O///u/p0ksvrR4DBgyo/p+ueuCBB6qvI4KvmGUxK2IAPHz48PTKK6/knpTeeeedarZGx/Bjzz33rJ7/wzzxxBPpvvvuq7739t/zl770pep7jgF7DMh6QoQAMYiPWWZLLbVU7p09pV+PNvFa/OEPf0h//vOfc8+MbrrpprTxxhvn1ux58MEHq3Mn/n48z+y67bbb0ujRo3NrqpihM3To0NyaarXVVku77LLLDOf5h4nz8X/+53/Siy++mHum23///atwYlaf64OcfPLJ6YgjjkjnnHNOFV6VEAHTjTfemE444YRp19GnPvWp6ucdoVL//v3TXHNN/zwygtQ47+L/je83fsYRSsV94aMf/Wg107F9kBzn1x577JFbXfPQQw+lVVddNa2//vrp9ttvz72NFWHKt771rep45513rtrx/TZCXEtbb7119TrG69lV8fOKMLG9aHd8zri2IoCeZ555cs+Mxo0bl2699daZPjDYdttt0+GHH54222yzGc6ZrrrnnnvSOuusUx3H7/d99923Oq6L+MAmgtwXXngh99RH3JMj0L7kkkvS8ssvn3uBViRootcQNAma6qR00PTaa6+l0047LZ166qkzBEwxuN1nn32qGTz/yDPPPJPOOOOMdPbZZ097jggGjjvuuPSXv/ylCpkiwFprrbWq/9ZVXQmaOhMzTeI1jNkX7c3OADmWEcXg65e//GW66KKLpoUNe+21Vzr++OPTSiutVLVLKhE0dabE6xEiwIiw6tBDD50pHGhm0NSZ+DrjPGovBs0x+2lWzvk2cf/96U9/ms4666xp536YU4Omxx57rLou//M//7NqDxo0KJ144onVzKW+fftWfR8mfsa33HJL9XVFwNyZ3hA0xX3xoIMOShdccEHVjmDtqquuSltuuWXV7mmlgqbOxDkeoWJ7s3K+xs9+7Nix1f2t48/+O9/5TjV7Kn53dIegSdAkaILWZ+kcQM09/vjj6etf/3o69thjpw2SYzAfdZgOO+ywWR5wL7vsstXMpRiIrb322lVffPIdg5d40xyDxvaD8N5g3nnnrYKzCP7uvPPOKmAKMYD/9Kc/XQ3a6la/KmY0bLrppunCCy9Mn/nMZ3Jv7xYzXGLgffTRR+eeOVOEBBH2xqyVtpApPqiIGS8RaMxKyBTiZxwBXTxXhE0RwPRGEWpfe+21uTV1xl68VnWuUxU/+wj+fvOb36Tvfve7uXeq+JAhgtAIwQGoN0ETQI1FEBSflkc41CZqKcWn3VFzaXbFcrH4tD+Wl7SFDDE461jLpTeK2UsRqLUNvGN20yGHHFIFbc8++2z+v+ojlqD95Cc/qQLINlEbqreKkCZmv0Rw0ya+3zkllIilbxEExAzFtqVPMQMlwtBY3toV8803X3WOz+kBW1fEUuKYORczNduLmVwTJkzIrfpaaKGFqll28fuivVhGfeaZZ7ZUzToAyhM0AdRUDDZjSUL7mjwRDsXyuag31B0xmycCl+4+T6vpbOAdS+qixkvMHKubmBn3ta99Lbemho69WQy+ozZZ23kf3++cMOCOryECpViS0/YziIAgCoDH19wdEbD9y7/8y7TZfL1FhMMjRozIremiNlXUtiJVm0REcNlRfFAR9esAqC9BE0ANRe2Rn/3sZzOETDEL53vf+141E6WEWFpz4IEH5lZ9dDbwjuU2scykbktKIniLwtrtZzX1dlFQe6eddsqt5ouZOZdddllVO6ctZIpr/V//9V+roKCERRZZpAqte9PPOWpCRY2kzkTR/PaF9OtsjTXWmLZUuk2E6t2pnwdA6xM0AdRMDDyjwOp5552Xe6aKHZW+8IUv5Fb3zT333Okb3/hG+uIXv5h76iMG3hGytR94X3311bVcUtJWwLsuIlxrVLHoWRG7I8ZOku1nk335y18u/jOJ2ZBf/epXcyul9957Lx+1nrfeeqvaRS/svffeM9Uai4C+485rdRVh5Sc/+cncmi5en7rVpwNgOkETQM3EwLPjzmIxwyFm4ERAUlLsihYzWuooPuVvP/AOsStZ3ZbdLLroommjjTbKrXqIn/2c8D3HTqwxczF2KWwvljN2d8lcRxGwRajcVhi8lZeKPvzww9VmCBGgRB2rjj/LqNsUO661cphWSmyI0NmGEbGz4euvv55bANSNoAmgRuKT+thtquPAc6uttupS8e9ZscUWW1TPXzcx8N5xxx1za6qYVRKzyWI7/DrZYIMNpgUQdRABayyha7ZY+tW2u1ybuBbXXHPN3Cor7iG94Vq/7bbbqntkzPqKpcRRz6rj+RsznmIrdjoXS4hjhzoA6slvAIAaiU/qr7nmmtyaLrajjy3ae0Isrdh+++1zq16ifsnmm2+eW1PFrkx//OMfc6seVl555apAfB12HwwLLLBAWnfddatgcfLkybm3sSLMHD58eG5NN2jQoCoI6wmLLbZYVZutlcXrFjXVQoRmMfMrZqh1XGoYu8/deeeduUVHURA/rgMA6knQBFATUZvp2muvnWk2U3xSHzNOekqfPn3SZpttVquC0G0WX3zxtPrqq+fWdNddd12t6pd87GMfq4KXZoUuzbD++uunKVOmpDfffDP3NNbYsWM7LWYdoUnUT+sJca1H0NTK1/pDDz1UzWiKukxtS+ZiadjWW29dHbf3u9/9rtpYoc7efvvtNHHixNyaLma3zT///LkFQN0ImgBq4uWXX0433XRTbk0XM01ixklPin/j6aefrlVR6BADrbXWWiu3pouB7BNPPJFbvV/UcTnttNOq7fTrIs75W2+9tSqG3mhRO2j06NEzFAAPEQCtssoqudUz+vfvX81gjNlNrSZet6i9FDWYImT6+Mc/XvV/UFgewf24ceNyq56iFtc999yTW1NFSBdLpgGoL0ETQE088sgjVcDR0QorrFCr+jmN1q9fv3w0XQzM7FpFT4nlX7E9f0cRKMfssp4Us3/OP//8dPDBB+ee1vHcc89V2/LH/TDqMkVA2mbgwIFp2223za2pIpCKQC9mi9ZRBHOxzDBmgbW3++67p5VWWim3AKgjQRNATcQn7zEw6mj55ZdPCy64YG5RWiyf62wp0QMPPJCPoKyYPTh+/Pjcmi4ClIUXXji36CiC+FGjRlUzL2OJYXtRq6mzQucjRoxIzz77bG7VS8yQ7biD6c4771ztahizwACoL0ETQA3EJ+4dP3VuE4PPnqrZQqoG9p0VX44lJ3Wq00TjxMyczq73mGUiVO5c1FqKmksh6jF1tmV/LKeLZWHtRR2szmaP9XZRCP3www+v7mNtttlmm3TyySenJZdcMvcAUFeCJoAaiILEH/Sp+4orrpiP6Akxo6mzgVdsjd6sQtH0bnXZ3a+kxx57LP35z3+uZh9GPabOZuTEvbKz2kM33HBDeuutt3Krd5s0aVI6/fTTq1ApXq82++yzT7rwwgvTJz/5ydwDQJ0JmgBq4IN2BqLnzTXXXJ3OGHv33XerXcmgtKjH1pkobm3L+Zm135Ez6jBFPabOxHW85ZZbzlTT7vrrr08PP/xwbrWu+++/P/3sZz+rZiV1fPzgBz+olg7GUutDDjkkvfjii9Xf2XTTTasC6meffXZaZpllqj4AEDQB1ECEGh13oGrTt2/ffEQjvfDCC1XR5jndyJEjOx14ftgjCgS3qtgN8Kyzzur0+/qgx5AhQ2pbp6c3aL8j5yabbFLVY/ogsW1/x1pNEVBdd911udW6br755mpnyCOOOGKmx4knnljN3Gr/eyQCt1hiGLMzYxZdXYuiAzAzQRNAzcXSLhovwr/YtWlON3z48E4Hnh/2GDt2bP7brSdCg+OPP77T7+uDHhdccEF65ZVX8jPQauJ8jVpLs7It/2KLLVaFUR3FbnWtEBx/mP333z+9/vrrVWD0QY8ImmLJ3He/+900zzzzpP/6r/9KBxxwQLWs8Mtf/nIV2JmpCYCgCaDm1HNpjpg1Mf/88+fWnCuCps4GnB/2iFkRrSqWTsVss86+rw963H333WnAgAH5GWglEfa2zdSJYt+xvPDDRO2mmNHUsRZRBFWtHLDOqtjcYIMNNqhm8UUR9Nhlrs1VV11VLaU7+uijP3AGLQD1IGgCqIF55523053PaB5bzdNTeuq8ilpvl1xySafLB2fl8Ytf/CJNnjw5P9ucIZZK3njjjdX1uMMOO1T3yn+kf//+aeONN86tqSJYiSWj8RrVRb9+/dI555yTdtppp9wz1UknnZQOPPDA9Pzzz+ceAOpG0ARQA1GHybbmzRHLaWKGTEcxsFUfi57wQaFy1JHqzk6HMftn9OjRnS4fnJVHLLOa03Znu+WWW6qlYLFsbvXVV8+9Hy5mI/7TP/1Tbk0XzzVhwoTcqoell146nXDCCWm11VbLPVNddNFFVbhYl934AJiRoAmgBmKnqQ9aEhKf6NNzYnAe9Zg6WmGFFewARo9YaaWV8tGM4lyMpX5dFedrzErquHRw3Lhxae21187/11TRjv72/18Ulo/i0XOK1157rVryFuLP5ZZbrloaNyuPqEfUUQRWMTuqbtZYY430la98JbemO/fcc6cVWQegXgRNADWx6qqr5qMZxZKPVihK3apiNtM999yTW9NF0DQry3RgdsUsk09/+tO5NV3sDtadGU29zQMPPJCuvfba9IlPfCIdeeSR1ZKv2Xnsueee+ZmmizCtboXh55577rTjjjumZZddNvdMFb9bLr/88vTGG2/kHgDqQtAEUBOxtKFjAdsQg8/YaYieEa9vR7FsLgrqQk+IoKmzZWCxjHPSpEm5VW8xwypm2zzzzDNVjaHjjjsuHX744bP1OPjgg2cKV26++eb0t7/9LbfqI+o1dZzVFu677z4bTgDUkKAJoCbiU/vOBgLjx49PL774Ym5RUgxmY7v8jqIeTAzMoCdEkLnuuuvm1nSPPvpop/XC6ijqVY0YMaI63nLLLdN8881XHc+OCO9jB7r2Irj6/e9/X7tZolG3Kn7HdBRBU7wmANSLoAmgJhZddNGZBkUhBgKdzbop6emnn06f//zn08UXX5x76iF22HrkkUdya7oNN9ywVrsARuD23//939WuXDTG5z73uZlm28SA/+GHH86terv//vurukxxTxw0aFDunT0R6G222Wa5Nd11111Xu9p3888/f1pmmWVyazpLswHqSdAEUCPbbLNNNZumvRgI/O///m9u9Yw77rgjjRo1KrfqIwab8b23F7MgonBu1DWpi5dffjldcMEF6d5778099LSBAwembbfdNremi3phdR/4x05oMesodDf03WKLLWa6p0ZR8Lvuuiu36mHKlCnp7bffzi0A6k7QBFAjK664YlWPpKPYlrunCtjGoO6GG27IrXq57bbbZlo6t/POO8/yNuq9Rczqitcizj8aI5Yy7b333jPNarr99ttrXzPnscceS6NHj65emyhi3Z3QN3aq6xg0hd/97nfVrnZ1ESFTZ0uwoy5gzPwCoF4ETQA1EgOq3XffPW288ca5Z6qeLGAbS/Ouvvrq3KqPKLzccalYDEi/+c1vpr59++aeeohZXeq0NF6cb1/72tdya6qYbfOXv/wlt+opioDHzK64Dw4YMCD3dk3UdoqwqqPYzS52tauL2M2wsyXY/fv3r8I4AOpF0ARQMyuttFI66KCDZviUOUKAyy67rJp9VFI8329+85v0+OOP5576uOaaa9JVV12VW1PruXzve9/rdOe/3ixmdcRsJhovQpD9999/hhk3dd9yPmZujhw5sjrebrvtqtp13bXmmmt2WhQ8Aq2oT1YHTz75ZHrwwQdza7qtt946LbHEErkFQF0ImgBqKGoExdbc7f3617+uZjuUFMtTzj333Nyqj1iac8455+TWVEcffXT1utdNDD5jxhzNEcHmySefPMOOYFGY/dZbb82teomZm3E+Rq20z372s7m3e6IIdmdFwWNXu9jdrreLMC0Kqz/00EO5Z6rY5XSHHXZIffr0yT0A1IWgCaCGYunWoYcemvbbb7/cM/UT+NNOOy0999xzuad7ojbRscceW82gqJOYwXPqqafOEK785Cc/qWYz1W3J3LvvvpuuuOKKmQagNFbsQBfnYNssxrjWzzzzzGLX+uuvv1495nRRBD2KgMf3HzNtVllllfxfuieClNhooWM9rAhf6hDoxU6GMSO2owMPPDCtuuqquQVAnQiaAGpq8cUXTyeeeGL6+te/nntSVUvphBNO6HYR21gqd9hhhxWfITWni2K4gwcPTmeffXbVjoH9WWedVb0WsYypbuLnf/HFF+fW1ICTxosgJGqzxc5/bTObSl7rxxxzTEuEiVEEvS34iRlIJa/JmCHVcflciFmdpZckz0ni/BkyZMhM9/rvfOc7VX0ws5kA6knQBFBjSy65ZPr5z3+ejjjiiNyTqpDk+9//fqc7CP0jsYQiCj/vscceMxXC7s3i+x47dmw1mD/vvPOqvlg2EjWa4lP9OgYsEyZMqGZ2ta/Ptfzyy+cjGi0G/LHjYSyRHTRoUNVXt2s9QqaYZbT55psXWzbXJkLlzpbPXX/99dWMn94oZqv++Mc/nhast4ll2SeddFK18yEA9SRoAqi5GCDFzKZYUtK2A1MMHKJQbgySYvnTrIjlKPE822677bRlY/Hc//Zv/5Yuuuiiqt3bxJbeUfA3dpKLwet1111XzRT70Y9+VL12W265Ze0+0Z8yZUo1u2HXXXet5W6Dc7I4FzfaaKMqGDr88MOr67PUtT6ni+LncX2GTTfdNC299NLVcUmbbLJJFTC3F0uIYwe63lQUPK7xuO/FjKUIlNrEvW/o0KFVwBznFgD11WfMmDH12A6DXu+UU05JkyZNSqNGjco99TBs2LCqzk5spb7YYovl3vo48sgjq9fg+eefzz31EEsVYolWGD9+fOrXr1913F1xDZ1//vnpjDPOmDYT5VOf+lTac889qzovsVX1XHNN/4wilqLcddddVUgVj7Z6TLE8Z999903f+MY30oorrljtOhY1TKJAdsyA6I7YMjx2eYpB3d9/h+XeDzd58uQ0fPjwasepNu+88061+1THgXJ8r/H8H2bcuHHVo/1uavE6ffvb30677LJLWmqppXJveauvvno1eI36Ol39d0q/Hm3iNYlt4+Oc6EwMTmNL+a6IouIRhMbfj+eZXfGzimVM7cV27DEwbi+WQMXPcIEFFsg9M4rXIgocN1IU845Zh3H9HHDAAbm3eyL4uPfee6vnvuSSS6q+OIe/+tWvpi222KKqrdP+Wo+gJmbtRc2tCKpiFlSECVHg/gc/+EH1/8RsqTivouB2BC6XXnrptPC6K2I5Xnwd66+/frr99ttz76yJItyx42XbsrU41+Pri/ta7MS38sorV/0hwre4n8xuKNzxOorgOV6bjsvI4pyNMG+eeeapXrN//ud/nqUt/2P2VdSSintm/DtdFV/T/fffn1tTRbvjc7b/Oj9IXOMxMyx+xm0iYIr3IbFcLu733RX3kHXWWac6jt/v8bukTo466qhqE40XXngh99RH3JNXWGGF6p5kBiy0NkETvYagSdBUJz0VNLWJQWWEODEwi2uq/fKnDxIDypjhEMtzYjv19gP1OD8POeSQqoZJM4KmiRMnVv9uzCwoIYK02M1r3XXXrQZEMUCLN8ftB+Y9pUTQVPr1mFXNDJqiVlSEZt0VdY2iJlEj9UTQ1CYCp7i+o5jzlVdeOUt11WKJWFznX/rSl6rBYPuAJmZFxXNEuLHPPvt0q+B2d4KmCEJiVl2EFv9IBE1xr2u/M9+s6Op1FIXZ43fXP1IqaIoZlrExQylx34vXasMNN6yux7gHllwmJ2gSNAmaoPUJmug1BE2Cpjrp6aCpvVgmEZ/Yx2D05ZdfrvrefPPNNP/881fHsQQl3hguvPDCVbundSVo6k1KBE2tqLtBUyvryaCpowiZH3vssWk70rW/1iNciK38P2i2V2ndCZp6g1JBU6sRNAmaBE3Q+tRoAuBDxSydj370o9Ub/6hDFI9YXtF2HEuNGhUyAT0rQqS4pju71mO5WaNCJgCgdQmaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARfcaMGfN+PoZpJk2alI9ax/HHH5/eeOONdNJJJ+Weerj22mvTmWeemS677LK00EIL5d76uOCCC6rX4JJLLsk99fDggw+mwYMHV8eHHHJI9WddTJw4MV144YXp4x//eNp1111zb33E9/7qq6+mffbZJy244IK5t/d76aWX0q9+9au03HLLpd122y331sPtt9+e/v5+LW211VZprbXWyr29X9vPfOmll0577LFH7q2PJ554Il1xxRVp4MCB6Qtf+ELurYfTTjut+nPYsGGpb9++1XFdxM981KhRaejQobmnPuKaP++889Jmm22WPvOZz+TeOVf//v3zEdCRoIlObbrppvkIAACA9uIDAKBzgiYAAAAAilCjCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAAihA0AQAAAFCEoAkAAACAIgRNAAAAABQhaAIAAACgCEETAAAAAEUImgAAAAAoQtAEAAAAQBGCJgAAAACKEDQBAAAAUISgCQAAAIAiBE0AAAAAFCFoAgAAAKAIQRMAAAAARQiaAAAAAChC0AQAAABAEYImAAAAAIoQNAEAAABQhKAJAAAAgCIETQAAAAAUIWgCAAAAoAhBEwAAAABFCJoAAAAAKELQBAAAAEARgiYAAAAACkjp/wHVrqc7xhYS7wAAAABJRU5ErkJggg=="}}},{"cell_type":"code","source":"# Our hearing range is commonly 20 Hz to 20 kHz\n# Starting with 55 Hz which is \"A\" (I divided 440 by 2 three times)\ncurr_freq = 55\nfreq_list = []\n\n# I want to calculate 8 octaves of notes. Each octave has 12 notes. Looping for 96 steps:\nfor i in range(96): \n freq_list.append(curr_freq)\n curr_freq *= np.power(2, 1/12) # Multiplying by 2^(1/12)\n\n#reshaping and creating dataframe\nfreq_array = np.reshape(np.round(freq_list,1), (8, 12))\ncols = [\"A\", \"A#\", \"B\", \"C\", \"C#\", \"D\", \"D#\", \"E\", \"F\", \"F#\", \"G\", \"G#\"]\ndf_note_freqs = pd.DataFrame(freq_array, columns=cols)\nprint(\"NOTE FREQUENCIES IN WESTERN MUSIC\")\ndf_note_freqs.head(10)","metadata":{"execution":{"iopub.status.busy":"2023-04-24T19:47:51.680796Z","iopub.execute_input":"2023-04-24T19:47:51.681028Z","iopub.status.idle":"2023-04-24T19:47:51.725237Z","shell.execute_reply.started":"2023-04-24T19:47:51.681000Z","shell.execute_reply":"2023-04-24T19:47:51.724264Z"},"trusted":true},"execution_count":5,"outputs":[{"name":"stdout","text":"NOTE FREQUENCIES IN WESTERN MUSIC\n","output_type":"stream"},{"execution_count":5,"output_type":"execute_result","data":{"text/plain":" A A# B C C# D D# E F \\\n0 55.0 58.3 61.7 65.4 69.3 73.4 77.8 82.4 87.3 \n1 110.0 116.5 123.5 130.8 138.6 146.8 155.6 164.8 174.6 \n2 220.0 233.1 246.9 261.6 277.2 293.7 311.1 329.6 349.2 \n3 440.0 466.2 493.9 523.3 554.4 587.3 622.3 659.3 698.5 \n4 880.0 932.3 987.8 1046.5 1108.7 1174.7 1244.5 1318.5 1396.9 \n5 1760.0 1864.7 1975.5 2093.0 2217.5 2349.3 2489.0 2637.0 2793.8 \n6 3520.0 3729.3 3951.1 4186.0 4434.9 4698.6 4978.0 5274.0 5587.7 \n7 7040.0 7458.6 7902.1 8372.0 8869.8 9397.3 9956.1 10548.1 11175.3 \n\n F# G G# \n0 92.5 98.0 103.8 \n1 185.0 196.0 207.7 \n2 370.0 392.0 415.3 \n3 740.0 784.0 830.6 \n4 1480.0 1568.0 1661.2 \n5 2960.0 3136.0 3322.4 \n6 5919.9 6271.9 6644.9 \n7 11839.8 12543.9 13289.8 ","text/html":"
| \n | A | \nA# | \nB | \nC | \nC# | \nD | \nD# | \nE | \nF | \nF# | \nG | \nG# | \n
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n55.0 | \n58.3 | \n61.7 | \n65.4 | \n69.3 | \n73.4 | \n77.8 | \n82.4 | \n87.3 | \n92.5 | \n98.0 | \n103.8 | \n
| 1 | \n110.0 | \n116.5 | \n123.5 | \n130.8 | \n138.6 | \n146.8 | \n155.6 | \n164.8 | \n174.6 | \n185.0 | \n196.0 | \n207.7 | \n
| 2 | \n220.0 | \n233.1 | \n246.9 | \n261.6 | \n277.2 | \n293.7 | \n311.1 | \n329.6 | \n349.2 | \n370.0 | \n392.0 | \n415.3 | \n
| 3 | \n440.0 | \n466.2 | \n493.9 | \n523.3 | \n554.4 | \n587.3 | \n622.3 | \n659.3 | \n698.5 | \n740.0 | \n784.0 | \n830.6 | \n
| 4 | \n880.0 | \n932.3 | \n987.8 | \n1046.5 | \n1108.7 | \n1174.7 | \n1244.5 | \n1318.5 | \n1396.9 | \n1480.0 | \n1568.0 | \n1661.2 | \n
| 5 | \n1760.0 | \n1864.7 | \n1975.5 | \n2093.0 | \n2217.5 | \n2349.3 | \n2489.0 | \n2637.0 | \n2793.8 | \n2960.0 | \n3136.0 | \n3322.4 | \n
| 6 | \n3520.0 | \n3729.3 | \n3951.1 | \n4186.0 | \n4434.9 | \n4698.6 | \n4978.0 | \n5274.0 | \n5587.7 | \n5919.9 | \n6271.9 | \n6644.9 | \n
| 7 | \n7040.0 | \n7458.6 | \n7902.1 | \n8372.0 | \n8869.8 | \n9397.3 | \n9956.1 | \n10548.1 | \n11175.3 | \n11839.8 | \n12543.9 | \n13289.8 | \n
| \n | Chord Type | \nFile Name | \nCentroids 1 | \nCentroids 2 | \nCentroids 3 | \nCentroids 4 | \nCentroids 5 | \nCentroids 6 | \nCentroids 7 | \nCentroids 8 | \n... | \nCentroids 94 | \nCentroids 95 | \nCentroids 96 | \nCentroids 97 | \nCentroids 98 | \nCentroids 99 | \nCentroids 100 | \nCenMean | \nCenMin | \nCenMax | \n
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \nMajor | \nMajor_337.wav | \n875.837719 | \n488.782825 | \n425.884426 | \n418.530858 | \n408.669695 | \n402.815725 | \n417.205433 | \n408.936471 | \n... | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n395.834008 | \n0.000000 | \n1752.311138 | \n
| 1 | \nMajor | \nMajor_19.wav | \n917.859325 | \n582.559719 | \n519.121262 | \n500.955215 | \n508.893261 | \n903.582401 | \n2293.249574 | \n2320.641050 | \n... | \n0.000000 | \n0.000000 | \n651.775598 | \n0.000000 | \n5005.768406 | \nNaN | \nNaN | \nNaN | \nNaN | \nNaN | \n
| 2 | \nMajor | \nMajor_444.wav | \n347.526074 | \n373.435467 | \n529.542709 | \n547.327275 | \n582.125882 | \n595.242820 | \n697.998047 | \n753.016471 | \n... | \n1028.491379 | \n741.474271 | \n681.311208 | \n751.427639 | \n751.631801 | \n730.874442 | \n4957.255822 | \n721.524115 | \n347.526074 | \n4957.255822 | \n
| 3 | \nMajor | \nMajor_380.wav | \n483.024051 | \n490.128035 | \n613.712264 | \n616.285086 | \n602.002164 | \n621.463473 | \n724.975678 | \n764.249056 | \n... | \n1213.835513 | \n932.319499 | \n715.829355 | \n752.889532 | \n710.608423 | \n483.024051 | \n2797.532041 | \nNaN | \nNaN | \nNaN | \n
| 4 | \nMajor | \nMajor_368.wav | \n483.024184 | \n503.563786 | \n625.609012 | \n657.493171 | \n795.018113 | \n820.846958 | \n854.845368 | \n884.775564 | \n... | \n748.193654 | \n784.195716 | \n750.894414 | \n732.466760 | \n712.221692 | \n483.024184 | \n963.726855 | \nNaN | \nNaN | \nNaN | \n
5 rows × 105 columns
\n| \n | Chord Type | \nFile Name | \nCentroids 1 | \nCentroids 2 | \nCentroids 3 | \nCentroids 4 | \nCentroids 5 | \nCentroids 6 | \nCentroids 7 | \nCentroids 8 | \n... | \nCentroids 94 | \nCentroids 95 | \nCentroids 96 | \nCentroids 97 | \nCentroids 98 | \nCentroids 99 | \nCentroids 100 | \nCenMean | \nCenMin | \nCenMax | \n
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \nMajor | \nMajor_337.wav | \n875.837719 | \n488.782825 | \n425.884426 | \n418.530858 | \n408.669695 | \n402.815725 | \n417.205433 | \n408.936471 | \n... | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n395.834008 | \n0.000000 | \n1752.311138 | \n
| 1 | \nMajor | \nMajor_19.wav | \n917.859325 | \n582.559719 | \n519.121262 | \n500.955215 | \n508.893261 | \n903.582401 | \n2293.249574 | \n2320.641050 | \n... | \n0.000000 | \n0.000000 | \n651.775598 | \n0.000000 | \n5005.768406 | \n413.471139 | \n2623.355413 | \n601.461816 | \n198.722770 | \n4606.284564 | \n
| 2 | \nMajor | \nMajor_444.wav | \n347.526074 | \n373.435467 | \n529.542709 | \n547.327275 | \n582.125882 | \n595.242820 | \n697.998047 | \n753.016471 | \n... | \n1028.491379 | \n741.474271 | \n681.311208 | \n751.427639 | \n751.631801 | \n730.874442 | \n4957.255822 | \n721.524115 | \n347.526074 | \n4957.255822 | \n
| 3 | \nMajor | \nMajor_380.wav | \n483.024051 | \n490.128035 | \n613.712264 | \n616.285086 | \n602.002164 | \n621.463473 | \n724.975678 | \n764.249056 | \n... | \n1213.835513 | \n932.319499 | \n715.829355 | \n752.889532 | \n710.608423 | \n483.024051 | \n2797.532041 | \n601.461816 | \n198.722770 | \n4606.284564 | \n
| 4 | \nMajor | \nMajor_368.wav | \n483.024184 | \n503.563786 | \n625.609012 | \n657.493171 | \n795.018113 | \n820.846958 | \n854.845368 | \n884.775564 | \n... | \n748.193654 | \n784.195716 | \n750.894414 | \n732.466760 | \n712.221692 | \n483.024184 | \n963.726855 | \n601.461816 | \n198.722770 | \n4606.284564 | \n
5 rows × 105 columns
\n| \n | Chord Type | \nFile Name | \nCentroids 1 | \nCentroids 2 | \nCentroids 3 | \nCentroids 4 | \nCentroids 5 | \nCentroids 6 | \nCentroids 7 | \nCentroids 8 | \n... | \nCentroids 94 | \nCentroids 95 | \nCentroids 96 | \nCentroids 97 | \nCentroids 98 | \nCentroids 99 | \nCentroids 100 | \nCenMean | \nCenMin | \nCenMax | \n
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \nMajor | \nMajor_337.wav | \n875.837719 | \n488.782825 | \n425.884426 | \n418.530858 | \n408.669695 | \n402.815725 | \n417.205433 | \n408.936471 | \n... | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n0.000000 | \n395.834008 | \n0.000000 | \n1752.311138 | \n
| 1 | \nMajor | \nMajor_19.wav | \n917.859325 | \n582.559719 | \n519.121262 | \n500.955215 | \n508.893261 | \n903.582401 | \n2293.249574 | \n2320.641050 | \n... | \n0.000000 | \n0.000000 | \n651.775598 | \n0.000000 | \n5005.768406 | \n413.471139 | \n2623.355413 | \n601.461816 | \n198.722770 | \n4606.284564 | \n
| 2 | \nMajor | \nMajor_444.wav | \n347.526074 | \n373.435467 | \n529.542709 | \n547.327275 | \n582.125882 | \n595.242820 | \n697.998047 | \n753.016471 | \n... | \n1028.491379 | \n741.474271 | \n681.311208 | \n751.427639 | \n751.631801 | \n730.874442 | \n4957.255822 | \n721.524115 | \n347.526074 | \n4957.255822 | \n
| 3 | \nMajor | \nMajor_380.wav | \n483.024051 | \n490.128035 | \n613.712264 | \n616.285086 | \n602.002164 | \n621.463473 | \n724.975678 | \n764.249056 | \n... | \n1213.835513 | \n932.319499 | \n715.829355 | \n752.889532 | \n710.608423 | \n483.024051 | \n2797.532041 | \n601.461816 | \n198.722770 | \n4606.284564 | \n
| 4 | \nMajor | \nMajor_368.wav | \n483.024184 | \n503.563786 | \n625.609012 | \n657.493171 | \n795.018113 | \n820.846958 | \n854.845368 | \n884.775564 | \n... | \n748.193654 | \n784.195716 | \n750.894414 | \n732.466760 | \n712.221692 | \n483.024184 | \n963.726855 | \n601.461816 | \n198.722770 | \n4606.284564 | \n
5 rows × 105 columns
\n