Datasets:
ArXiv:
License:
| package exam; | |
| import java.util.Deque; | |
| import java.util.LinkedList; | |
| import java.util.Stack; | |
| import java.util.Queue; | |
| public class Graphs{ | |
| public static class Unigraph{ | |
| private final int V; | |
| private int E; | |
| private LinkedList<Integer>[] adj; | |
| Unigraph(int v){ | |
| V = v; | |
| adj = (LinkedList<Integer>[]) new LinkedList[v]; | |
| for(int i = 0; i< V; i++) adj[i] = new LinkedList<Integer>(); | |
| } | |
| public int V(){return V;} | |
| public int E(){return E;} | |
| public void addEdge(int v, int w){ | |
| adj[v].add(w); | |
| adj[w].add(v); | |
| E++; | |
| } | |
| Iterable<Integer> adj(int v){ | |
| return adj[v]; | |
| } | |
| } | |
| public static class Digraph{ | |
| private final int V; | |
| private int E; | |
| private LinkedList<Integer>[] adj; | |
| Digraph(int v){ | |
| V = v; | |
| adj = (LinkedList<Integer>[]) new LinkedList[v]; | |
| for(int i = 0; i< V; i++) adj[i] = new LinkedList<Integer>(); | |
| } | |
| public int V(){return V;} | |
| public int E(){return E;} | |
| public void addEdge(int v, int w){ | |
| adj[v].add(w); | |
| E++; | |
| } | |
| Iterable<Integer> adj(int v){ | |
| return adj[v]; | |
| } | |
| public Digraph reverse(){ | |
| Digraph r = new Digraph(V); | |
| for (int v = 0; v <V; v++){ | |
| for(int w: adj(v)){ | |
| r.addEdge(w, v); | |
| } | |
| } | |
| return r; | |
| } | |
| } | |
| public static class Edge implements Comparable<Edge>{ | |
| private final int v; | |
| private final int w; | |
| private final double weight; | |
| Edge(int v, int w, double weight){ | |
| this.v = v; | |
| this.w = w; | |
| this.weight = weight; | |
| } | |
| double weight(){return weight;} | |
| int either(){return v;} | |
| int other(int v){ | |
| if (this.v == v){ | |
| return w; | |
| } | |
| else if (this.w == v) { | |
| return this.v; | |
| } | |
| else{ | |
| throw new IllegalArgumentException(); | |
| } | |
| } | |
| public int compareTo(Edge that) { | |
| if (this.weight < that.weight) return -1; | |
| else if (this.weight > that.weight) return 1; | |
| else return 0; | |
| } | |
| } | |
| public static class WeightedUnigraph{ | |
| private final int V; | |
| private int E; | |
| private LinkedList<Edge>[] adj; | |
| WeightedUnigraph(int v){ | |
| V = v; | |
| adj = (LinkedList<Edge>[]) new LinkedList[v]; | |
| for(int i = 0; i< V; i++) adj[i] = new LinkedList<Edge>(); | |
| } | |
| public int V(){return V;} | |
| public int E(){return E;} | |
| public void addEdge(Edge e){ | |
| int v = e.either(); | |
| int w = e.other(v); | |
| adj[v].add(e); | |
| adj[w].add(e); | |
| E++; | |
| } | |
| public Iterable<Edge> adj(int v){ | |
| return adj[v]; | |
| } | |
| public Iterable<Edge> edges(){ | |
| LinkedList<Edge> ll = new LinkedList<Edge>(); | |
| for(int v=0; v<V; v++){ | |
| for(Edge e: adj[v]){ | |
| if(e.other(v)>v){ | |
| ll.add(e); | |
| } | |
| } | |
| } | |
| return ll; | |
| } | |
| } | |
| public static class Diedge{ | |
| private final int v; | |
| private final int w; | |
| private final long weight; | |
| Diedge(int v, int w, long weight){ | |
| this.v = v; | |
| this.w = w; | |
| this.weight = weight; | |
| } | |
| long weight(){return weight;} | |
| int from(){return v;} | |
| int to(){return w;} | |
| } | |
| public static class WeightedDigraph{ | |
| private final int V; | |
| private int E; | |
| private LinkedList<Diedge>[] adj; | |
| WeightedDigraph(int v){ | |
| V = v; | |
| adj = (LinkedList<Diedge>[]) new LinkedList[v]; | |
| for(int i = 0; i< V; i++) adj[i] = new LinkedList<Diedge>(); | |
| } | |
| public int V(){return V;} | |
| public int E(){return E;} | |
| public void addEdge(Diedge e){ | |
| adj[e.from()].add(e); | |
| E++; | |
| } | |
| public Iterable<Diedge> adj(int v){ | |
| return adj[v]; | |
| } | |
| public Iterable<Diedge> edges(){ | |
| LinkedList<Diedge> ll = new LinkedList<Diedge>(); | |
| for(int v=0; v<V; v++){ | |
| for(Diedge e: adj[v]){ | |
| ll.add(e); | |
| } | |
| } | |
| return ll; | |
| } | |
| } | |
| public static class DepthFirstPaths{ | |
| private boolean[] marked; | |
| private int[] edgeTo; | |
| private final int s; | |
| public DepthFirstPaths(Unigraph g, int s){ | |
| marked = new boolean[g.V()]; | |
| edgeTo = new int[g.V()]; | |
| this.s = s; | |
| dfs(g, s); | |
| } | |
| private void dfs(Unigraph g, int v){ | |
| marked[v] = true; | |
| for (int w: g.adj(v)){ | |
| if(!marked[w]){ | |
| edgeTo[w]=v; | |
| dfs(g, w); | |
| } | |
| } | |
| } | |
| public DepthFirstPaths(Digraph g, int s){ | |
| marked = new boolean[g.V()]; | |
| edgeTo = new int[g.V()]; | |
| this.s = s; | |
| dfs(g, s); | |
| } | |
| private void dfs(Digraph g, int v){ | |
| marked[v] = true; | |
| for (int w: g.adj(v)){ | |
| if(!marked[w]){ | |
| edgeTo[w]=v; | |
| dfs(g, w); | |
| } | |
| } | |
| } | |
| public DepthFirstPaths(Digraph g, int s, int t){ | |
| marked = new boolean[g.V()]; | |
| edgeTo = new int[g.V()]; | |
| this.s = s; | |
| dfs(g, s, t); | |
| } | |
| private void dfs(Digraph g, int v, int t){ | |
| marked[v] = true; | |
| for (int w: g.adj(v)){ | |
| if(!marked[w]){ | |
| edgeTo[w]=v; | |
| if ( w!=t ) dfs(g, w); | |
| } | |
| } | |
| } | |
| public boolean hasPathTo(int v){return marked[v];} | |
| public Iterable<Integer> reachable(){ | |
| LinkedList<Integer> r = new LinkedList<>(); | |
| for(int i=0; i<marked.length; i++) if (marked[i]) r.add(i); | |
| return r; | |
| } | |
| public boolean[] marked(){ | |
| return marked; | |
| } | |
| public Iterable<Integer> pathTo(int v){ | |
| if(!hasPathTo(v)) return null; | |
| LinkedList<Integer> path = new LinkedList<>(); | |
| for(int x = v; x != s; x = edgeTo[x]) path.push(x); | |
| path.push(s); | |
| return path; | |
| } | |
| } | |
| public static class ShortestPathDijkstra{ | |
| private Diedge[] edgeTo; | |
| private long[] distTo; | |
| private IndexMinPQ<Long> pq; | |
| public ShortestPathDijkstra(WeightedDigraph g, int s){ | |
| edgeTo = new Diedge[g.V()]; | |
| distTo = new long[g.V()]; | |
| pq = new IndexMinPQ<Long>(g.V()); | |
| for(int v = 0; v < g.V(); v++) distTo[v] = Long.MAX_VALUE; | |
| distTo[s] = 0; | |
| pq.add(s, 0L); | |
| while(!pq.isEmpty()) relax(g, pq.poll()); | |
| } | |
| private void relax( WeightedDigraph g, int v){ | |
| for (Diedge e : g.adj(v)){ | |
| int w = e.to(); | |
| if(distTo[w] > distTo[v] + e.weight()){ | |
| distTo[w] = distTo[v] + e.weight(); | |
| edgeTo[w] = e; | |
| if (pq.contains(w)) pq.changeKey(w, distTo[w]); | |
| else pq.add(w, distTo[w]); | |
| } | |
| } | |
| } | |
| public ShortestPathDijkstra(WeightedDigraph g, int s, int t){ | |
| edgeTo = new Diedge[g.V()]; | |
| distTo = new long[g.V()]; | |
| pq = new IndexMinPQ<Long>(g.V()); | |
| for(int v = 0; v < g.V(); v++) distTo[v] = Long.MAX_VALUE; | |
| distTo[s] = 0; | |
| pq.add(s, 0L); | |
| while(!pq.isEmpty()) relax(g, pq.poll(), t); | |
| } | |
| private void relax( WeightedDigraph g, int v, int t){ | |
| for (Diedge e : g.adj(v)){ | |
| int w = e.to(); | |
| if(distTo[v] + e.weight() > distTo[t]) continue; | |
| if(distTo[w] > distTo[v] + e.weight()){ | |
| distTo[w] = distTo[v] + e.weight(); | |
| edgeTo[w] = e; | |
| if (pq.contains(w)) pq.changeKey(w, distTo[w]); | |
| else if(w != t) pq.add(w, distTo[w]); | |
| } | |
| } | |
| } | |
| public long distTo(int v){ return distTo[v]; } | |
| public boolean hasPathTo(int v){ return distTo(v) < Long.MAX_VALUE; } | |
| } | |
| public static class DepthFirstOrder{ | |
| private boolean[] marked; | |
| Deque<Integer> pre; | |
| Deque<Integer> post; | |
| Deque<Integer> reversePost; | |
| private void initialize(int v){ | |
| pre = new LinkedList<Integer>(); | |
| post = new LinkedList<Integer>(); | |
| reversePost = new LinkedList<Integer>(); | |
| marked = new boolean[v]; | |
| } | |
| public DepthFirstOrder(Digraph g){ | |
| initialize(g.V()); | |
| for (int v = 0; v < g.V(); v++) if (!marked[v]) dfs(g, v); | |
| } | |
| public DepthFirstOrder(Digraph g, Iterable<Integer> s){ | |
| initialize(g.V()); | |
| for (int v: s) if (!marked[v]) dfs(g, v); | |
| } | |
| public DepthFirstOrder(Digraph g, int s){ | |
| initialize(g.V()); | |
| dfs(g, s); | |
| } | |
| public DepthFirstOrder(Digraph g, boolean[] reachable){ | |
| initialize(g.V()); | |
| for (int v = 0; v < g.V(); v++) if (!marked[v] && reachable[v]) dfs(g, v); | |
| } | |
| private void dfs(Digraph g, int v){ | |
| pre.addFirst(v); | |
| marked[v] = true; | |
| for(int w: g.adj(v)) if (!marked[w]) dfs(g, w); | |
| post.addFirst(v); | |
| reversePost.addLast(v); | |
| } | |
| public Iterable<Integer> preorder(){ return pre; } | |
| public Iterable<Integer> postorder(){ return post; } | |
| public Iterable<Integer> reversePostorder(){ return reversePost; } | |
| } | |
| public class DirectedCycle{ | |
| private boolean[] marked; | |
| private int[] edgeTo; | |
| private Stack<Integer> cycle; | |
| private boolean[] onStack; | |
| private void initialize(int v){ | |
| onStack = new boolean[v]; | |
| edgeTo = new int[v]; | |
| marked = new boolean[v]; | |
| } | |
| public DirectedCycle(Digraph g){ | |
| initialize(g.V()); | |
| for(int v = 0; v < g.V(); v++) if (!marked[v]) dfs(g, v); | |
| } | |
| private void dfs(Digraph g, int v){ | |
| onStack[v] = true; | |
| marked[v] = true; | |
| for (int w: g.adj(v)){ | |
| if (this.hasCycle()) return; | |
| else if(!marked[w]){ | |
| edgeTo[w] = v; | |
| dfs(g, w); | |
| } | |
| else if(onStack[w]){ | |
| cycle = new Stack<Integer>(); | |
| for(int x = v; x != w; x = edgeTo[x]) cycle.push(x); | |
| cycle.push(w); | |
| cycle.push(v); | |
| } | |
| } | |
| onStack[v] = false; | |
| } | |
| public boolean hasCycle(){ | |
| return cycle != null; | |
| } | |
| } | |
| public class TopologicalSort{ | |
| private Iterable<Integer> order; | |
| public TopologicalSort(Digraph g){ | |
| DirectedCycle cyclefinder = new DirectedCycle(g); | |
| if(!cyclefinder.hasCycle()){ | |
| DepthFirstOrder dfs = new DepthFirstOrder(g); | |
| order = dfs.reversePostorder(); | |
| } | |
| } | |
| public Iterable<Integer> order(){return order;} | |
| public boolean hasOrder(){return order != null;} | |
| } | |
| } |