import numpy as np import pandas as pd from sklearn.cluster import AgglomerativeClustering from statsmodels.tsa.stattools import coint import logging logger = logging.getLogger(__name__) def half_life(spread: pd.Series) -> float: """ Estimate the half-life of mean reversion for a spread series S_t by fitting: ΔS_t = a + kappa * S_{t-1} + ε_t. Returns: hl = -ln(2) / kappa. """ spread_lag = spread.shift(1).dropna() spread_ret = (spread - spread_lag).dropna() spread_lag = spread_lag.loc[spread_ret.index] # Add constant X = np.vstack([np.ones(len(spread_lag)), spread_lag.values]).T y = spread_ret.values # OLS regression beta = np.linalg.lstsq(X, y, rcond=None)[0] kappa = beta[1] if kappa >= 0: return np.inf hl = -np.log(2) / kappa return hl def zscore(series: pd.Series) -> pd.Series: """ Compute z-score based on rolling mean/std. Assumes 'series' has no NaN for window-sized segments. """ mean = series.rolling(series.name + "_mean").mean() # placeholder # But we prefer to pass rolling window explicitly, so this may not be used directly. def compute_zscore(spread: pd.Series, window: int) -> pd.Series: """ Compute rolling z-score over 'window' periods. """ m = spread.rolling(window).mean() s = spread.rolling(window).std() return (spread - m) / s def cluster_universe(returns: pd.DataFrame, cluster_size: int) -> dict: """ Perform hierarchical agglomerative clustering on returns to group assets into clusters of approximate size 'cluster_size'. Returns a dict mapping cluster_label -> list of tickers. """ n_assets = returns.shape[1] # Compute pairwise distance as 1 - correlation corr = returns.corr().fillna(0) dist = 1 - corr.abs() # Convert to condensed form for clustering if needed, but sklearn Agglomerative supports precomputed. n_clusters = max(1, n_assets // cluster_size) model = AgglomerativeClustering( n_clusters=n_clusters, linkage="average", metric="precomputed" ) labels = model.fit_predict(dist.values) clusters = {} tickers = returns.columns.tolist() for i, lab in enumerate(labels): clusters.setdefault(lab, []).append(tickers[i]) logger.info(f"Formed {n_clusters} clusters.") return clusters def rolling_cointegration_test( series1: pd.Series, series2: pd.Series, window: int, step: int, pval_threshold: float, min_valid_periods: int ) -> bool: """ Run rolling Engle‐Granger cointegration tests over consecutive windows. Return True if at least 'min_valid_periods' consecutive windows have pval < threshold. """ n = len(series1) valid = 0 for start in range(0, n - window + 1, step): seg1 = series1.iloc[start : start + window] seg2 = series2.iloc[start : start + window] score, pval, _ = coint(seg1, seg2) if pval < pval_threshold: valid += 1 if valid >= min_valid_periods: return True else: valid = 0 return False