File size: 5,328 Bytes
857bc90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import numpy as np

import torch
import torch.nn.functional as F
import torch.utils.data as data

from .pytorch_i3d import InceptionI3d
import os

from sklearn.metrics.pairwise import polynomial_kernel

MAX_BATCH = 10
FVD_SAMPLE_SIZE = 2048
TARGET_RESOLUTION = (224, 224)

def preprocess(videos, target_resolution):
    # videos in {0, ..., 255} as np.uint8 array
    b, t, h, w, c = videos.shape
    all_frames = torch.FloatTensor(videos).flatten(end_dim=1) # (b * t, h, w, c)
    all_frames = all_frames.permute(0, 3, 1, 2).contiguous() # (b * t, c, h, w)
    resized_videos = F.interpolate(all_frames, size=target_resolution,
                                   mode='bilinear', align_corners=False)
    resized_videos = resized_videos.view(b, t, c, *target_resolution)
    output_videos = resized_videos.transpose(1, 2).contiguous() # (b, c, t, *)
    scaled_videos = 2. * output_videos / 255. - 1 # [-1, 1]
    return scaled_videos

def get_fvd_logits(videos, i3d, device):
    videos = preprocess(videos, TARGET_RESOLUTION)
    embeddings = get_logits(i3d, videos, device)
    return embeddings

def load_fvd_model(device):
    i3d = InceptionI3d(400, in_channels=3).to(device)
    current_dir = os.path.dirname(os.path.abspath(__file__))
    i3d_path = os.path.join(current_dir, 'weights', 'i3d_pretrained_400.pt')
    i3d.load_state_dict(torch.load(i3d_path, map_location=device))
    i3d.eval()
    return i3d


# https://github.com/tensorflow/gan/blob/de4b8da3853058ea380a6152bd3bd454013bf619/tensorflow_gan/python/eval/classifier_metrics.py#L161
def _symmetric_matrix_square_root(mat, eps=1e-10):
    u, s, v = torch.svd(mat)
    si = torch.where(s < eps, s, torch.sqrt(s))
    return torch.matmul(torch.matmul(u, torch.diag(si)), v.t())

# https://github.com/tensorflow/gan/blob/de4b8da3853058ea380a6152bd3bd454013bf619/tensorflow_gan/python/eval/classifier_metrics.py#L400
def trace_sqrt_product(sigma, sigma_v):
    sqrt_sigma = _symmetric_matrix_square_root(sigma)
    sqrt_a_sigmav_a = torch.matmul(sqrt_sigma, torch.matmul(sigma_v, sqrt_sigma))
    return torch.trace(_symmetric_matrix_square_root(sqrt_a_sigmav_a))

# https://discuss.pytorch.org/t/covariance-and-gradient-support/16217/2
def cov(m, rowvar=False):
    '''Estimate a covariance matrix given data.

    Covariance indicates the level to which two variables vary together.
    If we examine N-dimensional samples, `X = [x_1, x_2, ... x_N]^T`,
    then the covariance matrix element `C_{ij}` is the covariance of
    `x_i` and `x_j`. The element `C_{ii}` is the variance of `x_i`.

    Args:
        m: A 1-D or 2-D array containing multiple variables and observations.
            Each row of `m` represents a variable, and each column a single
            observation of all those variables.
        rowvar: If `rowvar` is True, then each row represents a
            variable, with observations in the columns. Otherwise, the
            relationship is transposed: each column represents a variable,
            while the rows contain observations.

    Returns:
        The covariance matrix of the variables.
    '''
    if m.dim() > 2:
        raise ValueError('m has more than 2 dimensions')
    if m.dim() < 2:
        m = m.view(1, -1)
    if not rowvar and m.size(0) != 1:
        m = m.t()

    fact = 1.0 / (m.size(1) - 1) # unbiased estimate
    m_center = m - torch.mean(m, dim=1, keepdim=True)
    mt = m_center.t()  # if complex: mt = m.t().conj()
    return fact * m_center.matmul(mt).squeeze()


def frechet_distance(x1, x2):
    x1 = x1.flatten(start_dim=1)
    x2 = x2.flatten(start_dim=1)
    m, m_w = x1.mean(dim=0), x2.mean(dim=0)
    sigma, sigma_w = cov(x1, rowvar=False), cov(x2, rowvar=False)

    sqrt_trace_component = trace_sqrt_product(sigma, sigma_w)
    trace = torch.trace(sigma + sigma_w) - 2.0 * sqrt_trace_component

    mean = torch.sum((m - m_w) ** 2)
    fd = trace + mean
    return fd


def polynomial_mmd(X, Y):
    m = X.shape[0]
    n = Y.shape[0]
    # compute kernels
    K_XX = polynomial_kernel(X)
    K_YY = polynomial_kernel(Y)
    K_XY = polynomial_kernel(X, Y)
    # compute mmd distance
    K_XX_sum = (K_XX.sum() - np.diagonal(K_XX).sum()) / (m * (m - 1))
    K_YY_sum = (K_YY.sum() - np.diagonal(K_YY).sum()) / (n * (n - 1))
    K_XY_sum = K_XY.sum() / (m * n)
    mmd = K_XX_sum + K_YY_sum - 2 * K_XY_sum
    return mmd



def get_logits(i3d, videos, device):
    # assert videos.shape[0] % MAX_BATCH == 0
    with torch.no_grad():
        logits = []
        for i in range(0, videos.shape[0], MAX_BATCH):
            batch = videos[i:i + MAX_BATCH].to(device)
            logits.append(i3d(batch))
        logits = torch.cat(logits, dim=0)
        return logits


# def compute_fvd(real, samples, i3d, device=torch.device('cpu')):
def compute_fvd(real, samples, i3d, device=torch.device('cuda')):
    # real, samples are (N, T, H, W, C) numpy arrays in np.uint8
    # real, samples = preprocess(real, (224, 224)), preprocess(samples, (224, 224))
    first_embed = get_logits(i3d, real, device)
    second_embed = get_logits(i3d, samples, device)

    return frechet_distance(first_embed, second_embed)

i3d = load_fvd_model(device=torch.device('cuda'))

def calculate_fvd(real, samples):
    return compute_fvd(real, samples, i3d, device=torch.device('cuda')).cpu().numpy()