Datasets:
File size: 5,328 Bytes
857bc90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.data as data
from .pytorch_i3d import InceptionI3d
import os
from sklearn.metrics.pairwise import polynomial_kernel
MAX_BATCH = 10
FVD_SAMPLE_SIZE = 2048
TARGET_RESOLUTION = (224, 224)
def preprocess(videos, target_resolution):
# videos in {0, ..., 255} as np.uint8 array
b, t, h, w, c = videos.shape
all_frames = torch.FloatTensor(videos).flatten(end_dim=1) # (b * t, h, w, c)
all_frames = all_frames.permute(0, 3, 1, 2).contiguous() # (b * t, c, h, w)
resized_videos = F.interpolate(all_frames, size=target_resolution,
mode='bilinear', align_corners=False)
resized_videos = resized_videos.view(b, t, c, *target_resolution)
output_videos = resized_videos.transpose(1, 2).contiguous() # (b, c, t, *)
scaled_videos = 2. * output_videos / 255. - 1 # [-1, 1]
return scaled_videos
def get_fvd_logits(videos, i3d, device):
videos = preprocess(videos, TARGET_RESOLUTION)
embeddings = get_logits(i3d, videos, device)
return embeddings
def load_fvd_model(device):
i3d = InceptionI3d(400, in_channels=3).to(device)
current_dir = os.path.dirname(os.path.abspath(__file__))
i3d_path = os.path.join(current_dir, 'weights', 'i3d_pretrained_400.pt')
i3d.load_state_dict(torch.load(i3d_path, map_location=device))
i3d.eval()
return i3d
# https://github.com/tensorflow/gan/blob/de4b8da3853058ea380a6152bd3bd454013bf619/tensorflow_gan/python/eval/classifier_metrics.py#L161
def _symmetric_matrix_square_root(mat, eps=1e-10):
u, s, v = torch.svd(mat)
si = torch.where(s < eps, s, torch.sqrt(s))
return torch.matmul(torch.matmul(u, torch.diag(si)), v.t())
# https://github.com/tensorflow/gan/blob/de4b8da3853058ea380a6152bd3bd454013bf619/tensorflow_gan/python/eval/classifier_metrics.py#L400
def trace_sqrt_product(sigma, sigma_v):
sqrt_sigma = _symmetric_matrix_square_root(sigma)
sqrt_a_sigmav_a = torch.matmul(sqrt_sigma, torch.matmul(sigma_v, sqrt_sigma))
return torch.trace(_symmetric_matrix_square_root(sqrt_a_sigmav_a))
# https://discuss.pytorch.org/t/covariance-and-gradient-support/16217/2
def cov(m, rowvar=False):
'''Estimate a covariance matrix given data.
Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, `X = [x_1, x_2, ... x_N]^T`,
then the covariance matrix element `C_{ij}` is the covariance of
`x_i` and `x_j`. The element `C_{ii}` is the variance of `x_i`.
Args:
m: A 1-D or 2-D array containing multiple variables and observations.
Each row of `m` represents a variable, and each column a single
observation of all those variables.
rowvar: If `rowvar` is True, then each row represents a
variable, with observations in the columns. Otherwise, the
relationship is transposed: each column represents a variable,
while the rows contain observations.
Returns:
The covariance matrix of the variables.
'''
if m.dim() > 2:
raise ValueError('m has more than 2 dimensions')
if m.dim() < 2:
m = m.view(1, -1)
if not rowvar and m.size(0) != 1:
m = m.t()
fact = 1.0 / (m.size(1) - 1) # unbiased estimate
m_center = m - torch.mean(m, dim=1, keepdim=True)
mt = m_center.t() # if complex: mt = m.t().conj()
return fact * m_center.matmul(mt).squeeze()
def frechet_distance(x1, x2):
x1 = x1.flatten(start_dim=1)
x2 = x2.flatten(start_dim=1)
m, m_w = x1.mean(dim=0), x2.mean(dim=0)
sigma, sigma_w = cov(x1, rowvar=False), cov(x2, rowvar=False)
sqrt_trace_component = trace_sqrt_product(sigma, sigma_w)
trace = torch.trace(sigma + sigma_w) - 2.0 * sqrt_trace_component
mean = torch.sum((m - m_w) ** 2)
fd = trace + mean
return fd
def polynomial_mmd(X, Y):
m = X.shape[0]
n = Y.shape[0]
# compute kernels
K_XX = polynomial_kernel(X)
K_YY = polynomial_kernel(Y)
K_XY = polynomial_kernel(X, Y)
# compute mmd distance
K_XX_sum = (K_XX.sum() - np.diagonal(K_XX).sum()) / (m * (m - 1))
K_YY_sum = (K_YY.sum() - np.diagonal(K_YY).sum()) / (n * (n - 1))
K_XY_sum = K_XY.sum() / (m * n)
mmd = K_XX_sum + K_YY_sum - 2 * K_XY_sum
return mmd
def get_logits(i3d, videos, device):
# assert videos.shape[0] % MAX_BATCH == 0
with torch.no_grad():
logits = []
for i in range(0, videos.shape[0], MAX_BATCH):
batch = videos[i:i + MAX_BATCH].to(device)
logits.append(i3d(batch))
logits = torch.cat(logits, dim=0)
return logits
# def compute_fvd(real, samples, i3d, device=torch.device('cpu')):
def compute_fvd(real, samples, i3d, device=torch.device('cuda')):
# real, samples are (N, T, H, W, C) numpy arrays in np.uint8
# real, samples = preprocess(real, (224, 224)), preprocess(samples, (224, 224))
first_embed = get_logits(i3d, real, device)
second_embed = get_logits(i3d, samples, device)
return frechet_distance(first_embed, second_embed)
i3d = load_fvd_model(device=torch.device('cuda'))
def calculate_fvd(real, samples):
return compute_fvd(real, samples, i3d, device=torch.device('cuda')).cpu().numpy() |