| import numpy as np | |
| from scipy.stats import qmc | |
| # 1. Define the number of new samples you want to generate | |
| num_samples = 26 | |
| # 2. Define the parameter space [min, max] for each variable | |
| # [Large Diameter D, Small Diameter d, Fillet Radius r] | |
| param_bounds = [ | |
| [14.0, 16.0], # Range for D | |
| [5.0, 7.5], # Range for d | |
| [1.0, 3.5] # Range for r | |
| ] | |
| # 3. Create the Latin Hypercube Sampler | |
| # The sampler generates points in a normalized space (between 0 and 1) | |
| # We use a seed for reproducibility, so you always get the same "random" set | |
| sampler = qmc.LatinHypercube(d=len(param_bounds), seed=42) | |
| unit_hypercube_samples = sampler.random(n=num_samples) | |
| # 4. Scale the normalized samples to your actual parameter ranges | |
| scaled_samples = qmc.scale(unit_hypercube_samples, | |
| [b[0] for b in param_bounds], | |
| [b[1] for b in param_bounds]) | |
| # 5. Print the results in your desired format | |
| print("--- Generated 26 New Shaft Combinations using LHS ---") | |
| for i, sample in enumerate(scaled_samples): | |
| # Ensure that d is always less than D | |
| # If by chance LHS generates d > D, we can swap them or adjust. | |
| # A simple approach is to ensure d is at least a certain amount smaller than D. | |
| D_val = sample[0] | |
| d_val = sample[1] | |
| # Simple constraint: ensure d is at most 95% of D | |
| if d_val >= D_val: | |
| d_val = D_val * 0.95 | |
| r_val = sample[2] | |
| # Format the output to one decimal place for clarity | |
| print(f"{i+1:2d}: life_D{D_val:.1f}_d{d_val:.1f}_r{r_val:.1f}") | |