diff --git a/MM_Math/MM_Math.json b/MM_Math/MM_Math.json deleted file mode 100644 index 20b48beaeb7bde1d02368924100c25755447a875..0000000000000000000000000000000000000000 --- a/MM_Math/MM_Math.json +++ /dev/null @@ -1,91955 +0,0 @@ -{ -"52950677": { -"question": "As shown in the figure, in the known $\\triangle ABC$, proceed with the following steps: \n(1) With centers at B and C, respectively, draw arcs with radii longer than $\\frac{1}{2}BC$, intersecting at points M and N; \n(2) Draw line MN intersecting AB at D, and connect CD. If $AC = 5$ and $AB = 12$, what is the perimeter of $\\triangle ACD$?", -"image_file_name": "7044986", -"image": [ -"math/52950677_05.png" -], -"solution": "\\textbf{Solution:} From the construction, we have that $MN$ bisects $BC$ perpendicularly,\\\\\n$\\therefore DB=DC$,\\\\\n$\\therefore$ the perimeter of $\\triangle ACD = AC+AD+CD = AC+AD+BD = AC+AB = 5+12 = \\boxed{17}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52950675": { -"question": "As shown in the figure, $AD$ is the median of $ \\triangle ABC$, $CE$ is the median of $ \\triangle ACD$. If the area of $ \\triangle ABC$ is $12\\text{cm}^2$, what is the area of $ \\triangle CDE$?", -"image_file_name": "7044986", -"image": [ -"math/52950675_17.png" -], -"solution": "\\textbf{Solution:} Since $AD$ is the median of side $BC$ of $\\triangle ABC$, and the area of $\\triangle ABD$ is $12\\text{cm}^2$,\\\\\ntherefore, the area of $\\triangle ADC$ is: $\\frac{1}{2}\\times 12=6\\text{cm}^2$,\\\\\nSince $CE$ is the median of side $AD$ of $\\triangle ACD$,\\\\\ntherefore, the area of $\\triangle CDE$ is: $\\frac{1}{2}\\times 6=\\boxed{3}\\text{cm}^2$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52950518": { -"question": "As shown in the figure, $OP$ bisects $\\angle AOB$, where point $E$ is on $OA$ with $OE = 4$, and the distance from point $P$ to $OB$ is $2$. What is the area of $\\triangle POE$?", -"image_file_name": "7044986", -"image": [ -"math/52950518_20.png" -], -"solution": "\\textbf{Solution:} Since OP bisects $\\angle$AOB, and the distance from point P to OB is 2, \\\\\n$\\therefore$ the distance from point P to OA is also 2, \\\\\n$\\therefore$ $ {S}_{\\triangle OEP}=\\frac{1}{2}\\times 4\\times 2=\\boxed{4}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52950404": { -"question": "As shown in the figure, $AB \\parallel DE$, and points $B$, $C$, $D$ are on the same line. If $\\angle BCE = 55^\\circ$ and $\\angle E = 25^\\circ$, then what is the measure of $\\angle B$?", -"image_file_name": "7044986", -"image": [ -"math/52950404_37.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BCE=55^\\circ$ and $\\angle E=25^\\circ$, we have $\\angle BCE=\\angle E+\\angle D$. \\\\\nTherefore, $\\angle D=\\angle BCE-\\angle E=55^\\circ-25^\\circ=30^\\circ$. \\\\\nThus, $AB\\parallel DE$. \\\\\nConsequently, $\\angle B=\\angle D$. \\\\\nHence, $\\angle B=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52950309": { -"question": "As shown in the figure, in $\\triangle ABC$, D is a point on $BC$, $\\angle 1=\\angle 2$, $\\angle 3=\\angle 4$, $\\angle BAC=108^\\circ$. What is the measure of $\\angle DAC$?", -"image_file_name": "7044986", -"image": [ -"math/52950309_44.png" -], -"solution": "\\textbf{Solution:} Let $ \\angle 1=\\angle 2=x$,\n\n$ \\therefore \\angle 3=\\angle 4=\\angle 1+\\angle 2=2x$,\n\n$ \\because \\angle DAC+\\angle 3+\\angle 4=180^\\circ$,\n\n$ \\therefore \\angle DAC=180^\\circ−4x$,\n\n$ \\because \\angle BAC=108^\\circ$,\n\n$ \\therefore x+180^\\circ−4x=108^\\circ$,\n\n$ \\therefore x=24^\\circ$,\n\n$ \\therefore \\angle DAC=180^\\circ−4\\times 24^\\circ=\\boxed{84^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52914190": { -"question": "As illustrated, let $\\triangle ABC$ be an equilateral triangle. Draw a perpendicular from point $D$ on side $AB$ to $BC$ at point $E$. Construct $EF \\perp DE$, intersecting $AC$ at point $F$. Draw $FG \\perp AC$, meeting $BC$ at point $G$, where $FG$ and $DE$ intersect at point $M$. If $DM = ME$ and $GE = 3$, what is the length of $AB$?", -"image_file_name": "7044986", -"image": [ -"math/52914190_518.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw MN $\\perp$ BC at point N, \\\\\n$\\because \\triangle ABC$ is an equilateral triangle, \\\\\n$\\therefore \\angle B=\\angle C=60^\\circ$, \\\\\n$\\because DE\\perp AB$, $EF\\perp DE$, $FG\\perp AC$, \\\\\n$\\therefore \\angle BDE=90^\\circ$, $\\angle DEF=90^\\circ$, $\\angle GFC=90^\\circ$, \\\\\n$\\therefore \\angle DEB=180^\\circ-90^\\circ-60^\\circ=30^\\circ$, $\\angle FGC=180^\\circ-90^\\circ-60^\\circ=30^\\circ$, \\\\\n$\\therefore \\angle FEC=180^\\circ-90^\\circ-30^\\circ=60^\\circ$, $\\angle DEB=\\angle FGC$, \\\\\n$\\therefore GN=EN=\\frac{1}{2}GE=\\frac{3}{2}$, \\\\\nIn $Rt\\triangle MNE$, $\\angle MEN=30^\\circ$, $EN=\\frac{3}{2}$, \\\\\n$\\therefore \\frac{NE}{ME}=\\cos30^\\circ=\\frac{\\sqrt{3}}{2}$, \\\\\n$\\therefore ME=\\frac{\\frac{3}{2}}{\\frac{\\sqrt{3}}{2}}=\\sqrt{3}$, \\\\\n$\\because DM=ME$, \\\\\n$\\therefore DE=2ME=2\\sqrt{3}$, \\\\\nIn $Rt\\triangle BDE$, $\\angle DEB=30^\\circ$, \\\\\n$\\therefore BE=\\frac{DE}{\\frac{\\sqrt{3}}{2}}=\\frac{2\\sqrt{3}}{\\frac{\\sqrt{3}}{2}}=4$, \\\\\n$\\because \\angle C=60^\\circ$, $\\angle FEC=60^\\circ$, \\\\\n$\\therefore \\triangle EFC$ is an equilateral triangle, \\\\\n$\\therefore \\angle EFC=60^\\circ$, $EF=CE$, \\\\\n$\\therefore \\angle GFE=90^\\circ-60^\\circ=30^\\circ=\\angle FGC$, \\\\\n$\\therefore EF=GE=3$, \\\\\n$\\therefore CE=3$, \\\\\n$\\therefore BC=BE+CE=4+3=7$, \\\\\n$\\therefore AB=BC=\\boxed{7}$, \\\\", -"solution_image": [ -"solution_images/52914190_50.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52914191": { -"question": "As shown in the figure, in the isosceles right triangle $ABC$, $\\angle BAC=90^\\circ$, $D$ is the midpoint of $BC$, $E$ is a point on the side $AC$ (not coinciding with the endpoints), a line is drawn through point $E$ such that $EG \\perp BC$ at point $G$, and $EH \\perp AD$ at point $H$, a line is drawn through point $B$ such that $BF \\parallel AC$ intersecting the extension of $EG$ at point $F$. If $AG=3$, what is the area of the shaded region?", -"image_file_name": "7044986", -"image": [ -"math/52914191_618.png" -], -"solution": "\\textbf{Solution:} Let $DG=a$, $CG=b$, then $CD=a+b$, \\\\\nsince $\\triangle ABC$ is an isosceles right triangle, $\\angle BAC=90^\\circ$, \\\\\nthus $\\angle ABC=\\angle ACB=45^\\circ$, $AB=AC$, \\\\\nalso since $D$ is the midpoint of $BC$, \\\\\nthus $BD=AD=CD=a+b$, $BC=2BD=2(a+b)$, \\\\\nsince $EG\\perp BC$, $EH\\perp AD$, \\\\\nthus quadrilateral DGEH is a rectangle, $\\angle GEC=45^\\circ$, \\\\\nthus $DH=EG=CG=b$, \\\\\nsince $BF\\parallel AC$, \\\\\nthus $\\angle FBG=\\angle ACB=45^\\circ$, \\\\\nsince $EF\\perp BC$, \\\\\nthus $\\angle F=45^\\circ$, \\\\\nthus $GF=BG=BD+DG=a+b+a=2a+b$, \\\\\nby the Pythagorean theorem, $AD^2+DG^2=AG^2$, \\\\\nthus $(a+b)^2+a^2=9$, \\\\\nwhich simplifies to $2a^2+2ab+b^2=9$, \\\\\nAccording to the problem, ${S}_{\\text{shaded}}={S}_{\\triangle ABC}+{S}_{\\triangle BGF}-{S}_{\\text{rectangle} DGEH}$\\\\\n$=\\frac{1}{2}BC\\cdot AD+\\frac{1}{2}BG\\cdot GF-DG\\cdot DH$\\\\\n$=BD\\cdot AD+\\frac{1}{2}BG^2-DG\\cdot DH$\\\\\n$=(a+b)^2+\\frac{1}{2}(2a+b)^2-ab$\\\\\n$=a^2+2ab+b^2+2a^2+ab+\\frac{1}{2}b^2-ab$\\\\\n$=\\frac{3}{2}(2a^2+2ab+b^2)$\\\\\n$=\\frac{3}{2}\\times 9$\\\\\n$=\\boxed{13.5}$", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52914187": { -"question": "As shown in the figure, it is known that $\\triangle OCA \\cong \\triangle OBD$ and $\\angle A=30^\\circ$, $\\angle AOC=80^\\circ$. What is the measure of $\\angle B$?", -"image_file_name": "7044986", -"image": [ -"math/52914187_75.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle OCA \\cong \\triangle OBD$, $\\angle A=30^\\circ$, $\\angle AOC=80^\\circ$,\n$\\therefore \\angle B=\\angle C=180^\\circ-\\angle A-\\angle AOC=180^\\circ-30^\\circ-80^\\circ=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52907826": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=60^\\circ$, $BC=16$, point D lies on the extension of BA, $CA=CD$, and $BD=10$. What is the length of $AD$?", -"image_file_name": "7044986", -"image": [ -"math/52907826_80.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw CE $\\perp$ AD at point E,\\\\\n$\\therefore$ $\\angle$BEC = $90^\\circ$,\\\\\n$\\because$ $\\angle$ABC = $60^\\circ$,\\\\\n$\\therefore$ $\\angle$BEC = $30^\\circ$,\\\\\n$\\therefore$ BE = $\\frac{1}{2}$BC = 8,\\\\\n$\\therefore$ DE = BD - BE = 10 - 8 = 2,\\\\\n$\\because$ CA = CD,\\\\\n$\\therefore$ AE = DE = 2,\\\\\n$\\therefore$ AD = \\boxed{4}.", -"solution_image": [ -"solution_images/52907826_80.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52905795": { -"question": "As shown in the figure, the straight line $CD$ is the perpendicular bisector of the line segment $AB$, and $P$ is a point on the line $CD$. Given that the length of segment $PA$ is $3\\,\\text{cm}$, what is the length of segment $PB$?", -"image_file_name": "7044986", -"image": [ -"math/52905795_90.png" -], -"solution": "\\textbf{Solution}: Since line CD is the perpendicular bisector of segment AB, \\\\\nit follows that PA=PB, \\\\\nSince PA=3cm, \\\\\nit follows that PB=\\boxed{3cm}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52905587": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $\\angle A=60^\\circ$. Point $D$ is on side $AC$ with $\\angle DBC=30^\\circ$ and $AC=12\\,\\text{cm}$. What is the perimeter of $\\triangle ABD$?", -"image_file_name": "7044986", -"image": [ -"math/52905587_105.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC\\cong \\triangle ADE$, and $\\angle D=30^\\circ$,\\\\\nit follows that $\\angle B=\\angle D=30^\\circ$,\\\\\nSince $\\angle C=70^\\circ$,\\\\\nthen $\\angle BAC=180^\\circ-\\angle B-\\angle C=180^\\circ-70^\\circ-30^\\circ=80^\\circ$,\\\\\nSince $\\triangle ABC\\cong \\triangle ADE$,\\\\\nit follows that $\\angle EAD=\\angle BAC=80^\\circ$,\\\\\nAlso, given that $\\angle CAD=35^\\circ$,\\\\\nthen $\\angle EAC=\\angle EAD-\\angle DAC=80^\\circ-35^\\circ=45^\\circ$,\\\\\nThus, the answer is: $\\boxed{B}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52905802": { -"question": "As shown in the figure, in $\\triangle ABC$, it is known that points $D$, $E$, and $F$ are respectively the midpoints of $BC$, $AD$, and $EC$, and the area of $\\triangle ABC$, ${S}_{\\triangle ABC}=8$. What is the area $S$ of the shaded part?", -"image_file_name": "7044986", -"image": [ -"math/52905802_113.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince point D is the midpoint of BC,\\\\\ntherefore, the area of $\\triangle ABD$ equals the area of $\\triangle ACD$ equals $\\frac{1}{2}$ the area of $\\triangle ABC$,\\\\\nSince point E is the midpoint of AD,\\\\\ntherefore, the area of $\\triangle BDE$ equals $\\frac{1}{2}$ the area of $\\triangle ABD$ equals $\\frac{1}{4}$ the area of $\\triangle ABC$, and the area of $\\triangle CDE$ equals $\\frac{1}{2}$ the area of $\\triangle ACD$ equals $\\frac{1}{4}$ the area of $\\triangle ABC$,\\\\\ntherefore, the area of $\\triangle BCE$ equals the area of $\\triangle BDE$ plus the area of $\\triangle CDE$, which equals $\\frac{1}{2}$ the area of $\\triangle ABC$,\\\\\nSince point F is the midpoint of EC,\\\\\ntherefore, the area of $\\triangle BEF$ equals $\\frac{1}{2}$ the area of $\\triangle BCE$ equals $\\frac{1}{2} \\times \\frac{1}{2} \\times 8 = \\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52905589": { -"question": "As shown in the figure, in $\\triangle ABC$, it is known that $BA=BC$, $\\angle B=120^\\circ$, and the perpendicular bisector $DE$ of $AB$ intersects $AC$ at point D. If $AC=6\\,cm$, what is the length of $AD$?", -"image_file_name": "7044986", -"image": [ -"math/52905589_128.png" -], -"solution": "\\textbf{Solution:} Connect $BD$,\\\\\nsince the perpendicular bisector $DE$ of $AB$ intersects $AC$ at point D,\\\\\nit follows that $AD=BD$,\\\\\nhence $\\angle A=\\angle ABD$,\\\\\nsince $BA=BC$, $\\angle B=120^\\circ$,\\\\\nit follows $\\angle A=\\angle C=\\frac{1}{2}\\left(180^\\circ-120^\\circ\\right)=30^\\circ$,\\\\\nthus $\\angle ABD=30^\\circ$,\\\\\nhence $\\angle CBD=90^\\circ$,\\\\\nthus $CD=2BD$,\\\\\nhence $CD=2AD$,\\\\\nthus $AC=AD+CD=AD+2AD=3AD$,\\\\\nfurther, since $AC=6\\text{cm}$,\\\\\nit follows $AD=\\boxed{2\\text{cm}}$.", -"solution_image": [ -"solution_images/52905589_121.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52905905": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AD$ bisects $\\angle CAB$, if $AB=10$, $CD=3$, what is the area of $\\triangle ABD$?", -"image_file_name": "7044986", -"image": [ -"math/52905905_137.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $DE \\perp AB$ at point E, \\\\\nsince $\\angle C=90^\\circ$, $AD$ bisects $\\angle BAC$, \\\\\nthus $DE=CD=3$, \\\\\ntherefore, the area of $\\triangle ABD = \\frac{1}{2}AB\\cdot DE=\\frac{1}{2}\\times 10\\times 3=\\boxed{15}$.", -"solution_image": [ -"solution_images/52905905_131.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52905597": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle with side length 2, and the area of $\\triangle ABC$ is $\\sqrt{3}$. $D$ and $E$ are the midpoints of $BC$ and $AC$, respectively; $P$ is a moving point on $AD$. What is the minimum value of $PE+PC$?", -"image_file_name": "7044986", -"image": [ -"math/52905597_147.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $BE$ intersecting $AD$ at point $P'$,\\\\\nsince $\\triangle ABC$ is an equilateral triangle, with $AB=2$, and $AD$ being the altitude on side $BC$, and E being the midpoint of $AC$,\\\\\ntherefore, $AD$ and $BE$ are the perpendicular bisectors of sides $BC$ and $AC$ of the equilateral triangle $ABC$ respectively,\\\\\ntherefore, $P'B=P'C$,\\\\\ntherefore, $P'E+P'C=P'E+P'B=BE$,\\\\\nbased on the principle that the line segment between two points is the shortest,\\\\\nwhen point P is at $P'$, $PE+PC$ has its minimum value, which is exactly the length of $BE$.\\\\\nsince the area of $\\triangle ABC$ is equal to $\\sqrt{3}$, and the side length is 2,\\\\\ntherefore, $\\frac{1}{2}\\times 2\\times BE=\\sqrt{3}$,\\\\\ntherefore, $BE=\\sqrt{3}$,\\\\\nthus, the minimum value of $PE+PC$ is $\\boxed{\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52905597_143.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53107076": { -"question": "As shown in the figure, in $\\triangle ABC$, DE is the perpendicular bisector of the line segment AB. If the perimeter of $\\triangle ABC$ is 18, and the length of the line segment AE is 4, then what is the perimeter of $\\triangle BCD$?", -"image_file_name": "7044986", -"image": [ -"math/53107076_150.png" -], -"solution": "\\textbf{Solution:} Since the perimeter of $\\triangle ABC$ is $18$, \\\\\nit follows that $AC+BC+AB=18$, \\\\\nSince $DE$ is the perpendicular bisector of segment $AB$, and $AE=4$, \\\\\nit follows that $AB=2AE=8$, and $DA=DB$, \\\\\nthus, $AC+BC=10$, \\\\\ntherefore, the perimeter of $\\triangle BCD$ = $BD+CD+BC=AD+CD+BC=AC+BC=\\boxed{10}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53106961": { -"question": "As shown in the figure, fold $\\triangle ABC$ along the segment $DE$ so that point $B$ falls on point $F$; if $AC \\parallel DE$, $\\angle A = 70^\\circ$, $AB = AC$, then what is the degree measure of $\\angle CEF$?", -"image_file_name": "7044986", -"image": [ -"math/53106961_166.png" -], -"solution": "\\textbf{Solution}: We fold triangle $ABC$ along the line segment $DE$, such that point $B$ falls on point $F$,\\\\\nthus, triangle $BDE \\cong FDE$,\\\\\nhence, $\\angle DEB = \\angle DEF$,\\\\\nsince $\\angle A=70^\\circ$, and $AB=AC$,\\\\\nthus, $\\angle B = \\angle C = \\frac{1}{2} \\times (180^\\circ - 70^\\circ) = 55^\\circ$,\\\\\nsince $AC \\parallel DE$,\\\\\nhence, $\\angle DEB = \\angle C = 55^\\circ = \\angle DEF$,\\\\\nthus, $\\angle FEC = 180^\\circ - \\angle DEB - \\angle DEF = \\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53107186": { -"question": "As shown in the figure, if $\\angle A = 31^\\circ$, then what is the value of $\\angle A + \\angle B + \\angle C + \\angle D + \\angle E$?", -"image_file_name": "7044986", -"image": [ -"math/53107186_172.png" -], -"solution": "\\textbf{Solution:} According to the given conditions,\\\\\n\\[ \\because \\angle AFG+\\angle AGF=180^\\circ-\\angle A, \\angle CFG+\\angle AFG=180^\\circ, \\angle EGF+\\angle AGF=180^\\circ\\]\n\\[ \\therefore \\angle CFG+\\angle EGF=360^\\circ-\\left(\\angle AFG+\\angle AGF\\right)=360^\\circ-\\left(180^\\circ-\\angle A\\right)=180^\\circ+\\angle A\\]\nAlso \\[ \\because \\angle CFG=\\angle B+\\angle C, \\angle EGF=\\angle D+\\angle E,\\]\n\\[ \\therefore \\angle A+\\angle B+\\angle C+\\angle D+\\angle E\\]\n\\[ =\\angle A+\\angle CFG+\\angle EGF\\]\n\\[ =180^\\circ+2\\angle A\\]\n\\[ =180^\\circ+2\\times 31^\\circ\\]\n\\[ =\\boxed{242^\\circ}\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52874602": { -"question": "As shown in the figure, in \\( \\triangle ABC\\), \\(DE\\) is the perpendicular bisector of side \\(AC\\). If \\(BC=8\\, \\text{cm}\\) and \\(AB=10\\, \\text{cm}\\), what is the perimeter of \\( \\triangle EBC\\)?", -"image_file_name": "7044986", -"image": [ -"math/52874602_180.png" -], -"solution": "\\textbf{Solution:} Given that $DE$ is the perpendicular bisector of side $AC$ in $\\triangle ABC$,\\\\\nthus $EA=EC$,\\\\\ntherefore $BE+EC=BE+EA=AB$,\\\\\ngiven $BC=8$ cm and $AB=10$ cm,\\\\\nthus the perimeter of $\\triangle EBC$ is $BC+BE+EC=8+10=\\boxed{18}$ cm.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52873807": { -"question": "As shown in the figure, $D$ is a point on $AB$, $DF$ intersects $AC$ at point $E$, $DE=FE$, $FC \\parallel AB$, $AB=5$, $BD=1$. What is the length of $CF$?", -"image_file_name": "7044986", -"image": [ -"math/52873807_190.png" -], -"solution": "\\textbf{Solution:} Given $FC\\parallel AB$,\\\\\nit follows that $\\angle F = \\angle ADE$, $\\angle FCE = \\angle A$,\\\\\nIn $\\triangle CFE$ and $\\triangle ADE$,\\\\\n$\\left\\{ \\begin{array}{l} \\angle F = \\angle ADE \\\\ \\angle FCE = \\angle A \\\\ FE = DE \\end{array} \\right.$,\\\\\nthus $\\triangle CFE \\cong \\triangle ADE$ (AAS),\\\\\nthus $CF = AD$,\\\\\nsince $AB = 5$, $BD = 1$,\\\\\nit follows that $AD = AB - BD = 5 - 1 = 4$,\\\\\nthus $CF = \\boxed{4}$,\\\\\nhence the length of $CF$ is $4$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52873810": { -"question": "As shown in the diagram, given rectangle ABCD, point E is on the side AB, and $BE=2$, $BC=3$. Fold $\\triangle CBE$ along the line CE so that point B falls on point G, and extend EG to intersect CD at point F. What is the length of the segment FG?", -"image_file_name": "7044986", -"image": [ -"math/52873810_200.png" -], -"solution": "\\textbf{Solution:} Given that when $\\triangle CBE$ is folded along line CE such that point B falls on point G, \\\\\nit follows that $\\angle BEC = \\angle GEC$, $GE = BE = 2$, and $CG = BC = 3$, \\\\\nsince quadrilateral ABCD is a rectangle, \\\\\nit implies $CD \\parallel AB$, \\\\\nthus $\\angle BEC = \\angle FCE$, \\\\\nleading to $\\angle GEC = \\angle FCE$, \\\\\ntherefore, $CF = EF$, \\\\\nlet $FG = x$, then $CF = EF = x + 2$, \\\\\nin $\\triangle CFG$, we have $FG^2 + CG^2 = CF^2$, \\\\\nwhich gives $x^2 + 3^2 = (x + 2)^2$, \\\\\nsolving for $x$ yields $x = \\boxed{\\frac{5}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52866931": { -"question": "As shown in the figure, point E is on $AC$, $\\triangle ABC\\cong \\triangle DAE$, $BC=3$, $DE=7$, then what is the length of $CE$?", -"image_file_name": "7044986", -"image": [ -"math/52866931_215.png" -], -"solution": "\\textbf{Solution:} Since it follows from the problem statement that $\\triangle ABC\\cong \\triangle DAE$,\n\nwe have $AE=BC=3$, $AC=DE=7$,\n\nthus $CE=AC-AE=7-3=\\boxed{4}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53102440": { -"question": "As shown in the figure, $AD$ is the median of $\\triangle ABC$. It is known that the perimeter of $\\triangle ABD$ is $25\\,\\text{cm}$, and $AB$ is $7\\,\\text{cm}$ longer than $AC$. What is the perimeter of $\\triangle ACD$?", -"image_file_name": "7044986", -"image": [ -"math/53102440_226.png" -], -"solution": "\\textbf{Solution:} Since $AD$ is the median of $\\triangle ABC$,\\\\\nit follows that $BD=CD$,\\\\\ntherefore, the difference in the perimeters of $\\triangle ABD$ and $\\triangle ACD$ is $(AB+BD+AD)-(AC+CD+AD)=AB-AC$.\\\\\nSince the perimeter of $\\triangle ABD$ is $25\\,cm$ and $AB$ is $7\\,cm$ longer than $AC$,\\\\\nthe perimeter of $\\triangle ACD$ is: $25-7=\\boxed{18}\\,(cm)$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53102443": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ bisects $\\angle BAC$, $AB=4$, $AC=2$. If the area of $\\triangle ACD$ is equal to $3$, what is the area of $\\triangle ABD$?", -"image_file_name": "7044986", -"image": [ -"math/53102443_230.png" -], -"solution": "\\textbf{Solution:} Draw $DE \\perp AB$ at $E$ and $DF \\perp AC$ at $F$, as shown in the figure,\\\\\nsince $AD$ bisects $\\angle BAC$,\\\\\nthus $DE = DF$,\\\\\nsince the area of $\\triangle ACD$ = $\\frac{1}{2} \\cdot DF \\cdot AC = 3$,\\\\\nthus $DF = \\frac{2 \\times 3}{AC} = 3$,\\\\\nthus $DE = 3$.\\\\\nTherefore, the area of $\\triangle ABD$ = $\\frac{1}{2} \\cdot DE \\cdot AB = \\frac{1}{2} \\times 3 \\times 4 = \\boxed{6}$.", -"solution_image": [ -"solution_images/53102443_230.png" -], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52867062": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $AB=3$, and $AC=4$. Now, fold $\\triangle ABC$ along $BD$ such that point A lies exactly on $BC$. What is the length of $CD$?", -"image_file_name": "7044986", -"image": [ -"math/52867062_246.png" -], -"solution": "\\textbf{Solution:} Let $CD=x$, then $AD=A'D=4-x$,\\\\\nIn $\\triangle ABC$ right-angled at $B$,\\\\\n$BC=\\sqrt{AB^{2}+AC^{2}}=\\sqrt{3^{2}+4^{2}}=5$,\\\\\n$\\therefore A'C=BC-A'B=BC-AB=5-3=2$,\\\\\nIn $\\triangle A'DC$ right-angled at $D$,\\\\\n$A'D^{2}+A'C^{2}=CD^{2}$ \\\\\ni.e., ${(4-x)}^{2}+2^{2}=x^{2}$\\\\\nSolving gives: $x=\\boxed{\\frac{5}{2}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52551631": { -"question": "As shown in the figure, there are two slides of equal length. The height \\(AC\\) of the left slide is equal to the horizontal length \\(DF\\) of the right slide. What is the sum of the degrees of the incline angles \\(\\angle ABC\\) and \\(\\angle DFE\\)?", -"image_file_name": "7047158", -"image": [ -"math/52551631_00.png" -], -"solution": "\\textbf{Solution:} Given $\\angle ABC + \\angle DFE = 90^\\circ$, the reasoning is as follows:\\\\\nFrom the problem, we know that both $\\triangle ABC$ and $\\triangle DEF$ are right-angled triangles, with $BC = EF$ and $AC = DF$.\\\\\nIn $\\triangle ABC$ and $\\triangle DEF$,\\\\\n$\\left\\{\\begin{array}{l}\nBC = EF\\\\\nAC = DF\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle ABC \\cong \\triangle DEF$ (by HL criterion),\\\\\n$\\therefore \\angle ABC = \\angle DEF$,\\\\\n$\\because \\angle DEF + \\angle DFE = 90^\\circ$,\\\\\n$\\therefore \\angle ABC + \\angle DFE = \\boxed{90^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52551635": { -"question": "As shown in the diagram, in $\\triangle ABC$, if $\\triangle ABD$ and $\\triangle ACE$ are constructed with $AB$ and $AC$ as their respective sides, and $\\angle DAB = \\angle CAE = \\alpha$, $AD = AB$, $AC = AE$, and $DC$ and $BE$ intersect at point $P$, with $AP$ connected, then what is the measure of $\\angle APC$?", -"image_file_name": "7047158", -"image": [ -"math/52551635_10.png" -], -"solution": "\\textbf{Solution:} As illustrated, construct $AF\\perp CD$ at point F, and $AG\\perp BE$ at point G, then $\\angle AFC=\\angle AGE=90^\\circ$,\\\\\n$\\because \\angle DAB=\\angle CAE=\\alpha$,\\\\\n$\\therefore \\angle DAC=\\angle BAE=\\alpha +\\angle BAC$,\\\\\nIn $\\triangle DAC$ and $\\triangle BAE$,\\\\\n$ \\left\\{\\begin{array}{l}AD=AB\\\\ \\angle DAC=\\angle BAE\\\\ AC=AE\\end{array}\\right.$,\\\\\n$\\therefore \\triangle DAC\\cong \\triangle BAE$ (SAS),\\\\\n$\\therefore \\angle ACF=\\angle AEG$,\\\\\nIn $\\triangle ACF$ and $\\triangle AEG$\\\\\n$ \\left\\{\\begin{array}{l}\\angle AFC=\\angle AGE\\\\ \\angle ACF=\\angle AEG\\\\ AC=AE\\end{array}\\right.$,\\\\\n$\\therefore \\triangle ACF\\cong \\triangle AEG$ (AAS),\\\\\n$\\therefore AF=AG$,\\\\\n$\\therefore$ point A is on the bisector of $\\angle DPE$,\\\\\n$\\therefore \\angle APE=\\angle APD=\\frac{1}{2}\\angle DPE$,\\\\\n$\\because \\angle CPE+\\angle ACF=\\angle CAE+\\angle AEG=\\angle AHP$,\\\\\n$\\therefore \\angle CPE=\\angle CAE=\\alpha$,\\\\\n$\\therefore \\angle APE=\\frac{1}{2}\\angle DPE=\\frac{1}{2}(180^\\circ-\\angle CPE)=90^\\circ-\\frac{1}{2}\\alpha$,\\\\\n$\\therefore \\angle APC=\\angle APE+\\angle CPE=90^\\circ-\\frac{1}{2}\\alpha+\\alpha=90^\\circ+\\frac{1}{2}\\alpha$,\\\\\n$\\therefore$ the measure of $\\angle APC$ is $90^\\circ+\\frac{1}{2}\\alpha$.\\\\\nTherefore, the measure of $\\angle APC$ is $\\boxed{90^\\circ+\\frac{1}{2}\\alpha}$.", -"solution_image": [ -"solution_images/52551635_10.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52550870": { -"question": "As shown in the figure, what is the sum of $\\angle 1 + \\angle 2 + \\angle 3 + \\angle 4 + \\angle 5 + \\angle 6 + \\angle 7$?", -"image_file_name": "7047158", -"image": [ -"math/52550870_21.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\nby the internal angle sum of a quadrilateral, we have $\\angle 2+\\angle 3+\\angle 5+\\angle 8=360^\\circ$, $\\angle 6+\\angle 7+\\angle 9+\\angle 10=360^\\circ$, \\\\\n$\\therefore \\angle 2+\\angle 3+\\angle 5+\\angle 8+\\angle 6+\\angle 7+\\angle 9+\\angle 10=720^\\circ$, \\\\\n$\\because \\angle 8+\\angle 9=180^\\circ$, $\\angle 10=\\angle 1+\\angle 4$, \\\\\n$\\therefore \\angle 1+\\angle 2+\\angle 3+\\angle 5+\\angle 8+\\angle 6+\\angle 7=720^\\circ-180^\\circ=\\boxed{540^\\circ}$.", -"solution_image": [ -"solution_images/52550870_20.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52551715": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=46^\\circ$, $\\angle C=52^\\circ$, $AD$ bisects $\\angle BAC$, intersects $BC$ at point $D$, $DE \\parallel AB$, and intersects $AC$ at point $E$, then what is the measure of $\\angle ADE$?", -"image_file_name": "7047158", -"image": [ -"math/52551715_30.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle B=46^\\circ$ and $\\angle C=52^\\circ$,\\\\\nthus $\\angle BAC=180^\\circ-\\angle B-\\angle C=180^\\circ-46^\\circ-52^\\circ=82^\\circ$,\\\\\nand since AD bisects $\\angle BAC$,\\\\\nthus $\\angle BAD=\\frac{1}{2}\\times82^\\circ=41^\\circ$,\\\\\nsince DE$\\parallel$AB,\\\\\nthus $\\angle ADE=\\boxed{41^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52551286": { -"question": "As shown in the figure, $OP$ bisects $\\angle AOB$, $E$ is a point on $OA$, $OE=4$, and the distance from $P$ to $OB$ is 2. What is the area of $\\triangle OPE$?", -"image_file_name": "7047158", -"image": [ -"math/52551286_48.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw PD$\\perp$OB at point D and PC$\\perp$OA at C, \\\\\nsince $OP$ is the bisector of $\\angle AOB$, and the distance from P to OB is 2, \\\\\ntherefore $PC=PD=2$, \\\\\nsince $OE=4$, \\\\\ntherefore the area of $\\triangle OPE$ is $\\frac{1}{2}OE\\cdot PC=\\frac{1}{2}\\times 4\\times 2=\\boxed{4}$.", -"solution_image": [ -"solution_images/52551286_40.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52513495": { -"question": "As shown in the figure, $AD$ is the median of $\\triangle ABC$, $CE \\parallel AB$ intersects the extension of $AD$ at point $E$, $AB=5$, $AC=7$, then what are the possible values of $AD$?", -"image_file_name": "7047158", -"image": [ -"math/52513495_58.png" -], -"solution": "\\textbf{Solution:} Since $AD$ is the median of $\\triangle ABC$, \\\\\nthus $CD=BD$, \\\\\nsince $CE \\parallel AB$, \\\\\nthus $\\angle DCE=\\angle DBA$, \\\\\nin $\\triangle CDE$ and $\\triangle BDA$, \\\\\n$\\left\\{\\begin{array}{l}\n\\angle CDE=\\angle BDA \\\\\nCD=BD \\\\\n\\angle DCE=\\angle DBA\n\\end{array}\\right.$, \\\\\ntherefore $\\triangle CDE\\cong \\triangle BDA$ (ASA), \\\\\nthus $EC=AB=5$, \\\\\nsince $7-50\\), \\(h_2>0\\), \\(h_3>0\\)). Given \\(h_1=5\\), \\(h_2=2\\), what is the area \\(S\\) of the square \\(ABCD\\)?", -"image_file_name": "7047158", -"image": [ -"math/51419793_360.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw AF $\\perp l_{3}$ through point A, intersecting $l_{2}$, $l_{3}$ at points E, F, respectively, and draw CG $\\perp l_{3}$ through point C, intersecting $l_{3}$, $l_{2}$ at points G, H, respectively,\n\n$\\because$ $l_{1}\\parallel l_{2}\\parallel l_{3}\\parallel l_{4}$,\n\n$\\therefore$ $\\angle AEB = \\angle AFD = \\angle DGC = \\angle BHC = 90^\\circ$,\n\n$\\because$ Quadrilateral ABCD is a square,\n\n$\\therefore$ AB=BC=CD=DA, $\\angle BAD = \\angle ADC = \\angle DCB = \\angle CBA = 90^\\circ$,\n\n$\\therefore$ $\\angle ABE = \\angle DAF = \\angle CDG = \\angle BCH$,\n\n$\\therefore$ $\\Delta ABE \\cong \\Delta DAF \\cong \\Delta CDG \\cong \\Delta BCH$,\n\n$\\therefore$ BE=AF=$h_{1}+h_{2}$,\n\n$\\therefore$ $S_{\\Delta ABE} = S_{\\Delta DAF} = S_{\\Delta CDG} = S_{\\Delta BCH} = \\frac{1}{2}h_{1}(h_{1}+h_{2})$,\n\n$\\therefore$ $S = 4S_{\\Delta ABE} + S_{\\text{square }EFGH} = 4 \\times \\frac{1}{2}h_{1}(h_{1}+h_{2}) + h_{2}^2 = \\boxed{74}$.", -"solution_image": [ -"solution_images/51419793_360.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51419666": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=5$, $BC=12$. Rotating $\\triangle ABC$ $60^\\circ$ clockwise around point $B$ results in $\\triangle BDE$. When $DC$ is connected and intersects $AB$ at point $F$, what is the sum of the perimeters of $\\triangle ACF$ and $\\triangle BDF$?", -"image_file_name": "7047158", -"image": [ -"math/51419666_370.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle BDE$ is obtained by rotating $\\triangle BCA$, \\\\\nthus BD = BC = 12. \\\\\nBecause $\\angle CBD = 60^\\circ$, \\\\\nthus $\\triangle BCD$ is an equilateral triangle, \\\\\ntherefore CD = BC = 12. \\\\\nIn $\\text{Rt}\\triangle ABC$, with $\\angle ACB = 90^\\circ$, AC = 5, and BC = 12, \\\\\nthus AB = $\\sqrt{AC^{2}+BC^{2}}$ = 13, \\\\\ntherefore the perimeter of $\\triangle ACF$ + the perimeter of $\\triangle BDF$ = AC + CF + AF + BF + DF + BD = AC + AB + CD + BD = 5 + 13 + 12 + 12 = \\boxed{42}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51419663": { -"question": "As shown in the figure, $\\triangle ABC \\cong \\triangle ADE$, $\\angle C = 40^\\circ$, then what is the degree measure of $\\angle E$?", -"image_file_name": "7047158", -"image": [ -"math/51419663_380.png" -], -"solution": "\\textbf{Solution:} \nSince $\\triangle ABC \\cong \\triangle ADE$,\\\\\ntherefore $\\angle E = \\angle C = 40^\\circ$.\\\\\nHence, $\\angle E = \\boxed{40^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51546401": { -"question": "As shown in the figure, there is a triangular paper ABC, with point D lying on side BC. Connect AD and fold $\\triangle ABD$ along AD to obtain $\\triangle AED$, where DE intersects AC at point F. If point F is the midpoint of DE, $AD=9$, $EF=2.5$, and the area of $\\triangle AEF$ is 9, then what is the distance from point F to BC?", -"image_file_name": "7047158", -"image": [ -"math/51546401_395.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BE, intersecting AD at point O. Through point E, draw $EH\\perp BC$ at point H, and from point F, draw $FG\\perp BC$ at point G,\\\\\nfrom the folding, it is known that AB=AE, $\\angle BAO=\\angle EAO$, BD=DE,\\\\\nfurthermore $\\because$AO=AO,\\\\\n$\\therefore$ $\\triangle BAO\\cong \\triangle EAO(SAS)$,\\\\\n$\\therefore$BO=EO, $\\angle BOA=\\angle EOA$,\\\\\n$\\therefore$ $AD\\perp BE$.\\\\\n$\\because$ point F is the midpoint of DE, EF=2.5,\\\\\n$\\therefore$DF=EF=2.5, BD=DE=5,\\\\\n$\\therefore$ $\\triangle ADF$ and $\\triangle AEF$ have the same base and height,\\\\\n$\\therefore$ ${S}_{\\triangle ADE}={S}_{\\triangle AEF}+{S}_{\\triangle ADF}=18$.\\\\\n$\\because$ ${S}_{\\triangle ADE}=\\frac{1}{2}AD\\cdot OE$,\\\\\n$\\therefore$ $\\frac{1}{2}\\times 9\\times OE=18$,\\\\\nsolving gives: $EO=4$.\\\\\n$\\therefore$ in $Rt\\triangle ODE$, $OD=\\sqrt{DE^{2}-OE^{2}}=\\sqrt{5^{2}-4^{2}}=3$,\\\\\n$\\because$ $BE=OB+OE=8$.\\\\\n$\\therefore$ ${S}_{\\triangle BDE}=\\frac{1}{2}BE\\cdot OD=\\frac{1}{2}\\times 8\\times 3=12$.\\\\\nMoreover, since ${S}_{\\triangle BDE}=\\frac{1}{2}BD\\cdot EH=\\frac{1}{2}\\times 5\\times EH$,\\\\\n$\\therefore$ $\\frac{1}{2}\\times 5\\times EH=12$,\\\\\nsolving gives: $EH=4.8$.\\\\\n$\\because$ point F is the midpoint of DE, $EH\\perp BC$, $FG\\perp BC$,\\\\\n$\\therefore$FG is the midline of $\\triangle DEH$,\\\\\n$\\therefore$ $FG=\\frac{1}{2}EH=\\boxed{2.4}$.", -"solution_image": [ -"solution_images/51546401_392.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53044131": { -"question": "As shown in the figure, \\(CM\\) is the median of \\(\\triangle ABC\\), and \\(AM=4\\,cm\\), what is the length of \\(BM\\)?", -"image_file_name": "7044920", -"image": [ -"math/53044131_04.png" -], -"solution": "Solution: Since $CM$ is the median of $\\triangle ABC$ and $AM=4\\text{cm}$, \\\\\ntherefore $BM=AM=4\\text{cm}$,\\\\\nso $BM=\\boxed{4\\text{cm}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044345": { -"question": "As shown in the figure, it is known that $AB \\perp AC$, $AB=AC$, $DE$ passes through point $A$, and $CD \\perp DE$, $BE \\perp DE$, with the feet of the perpendiculars being points $D$ and $E$, respectively, $CD=5$, $BE=3$. What is the length of $DE$?", -"image_file_name": "7044920", -"image": [ -"math/53044345_18.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle CAB=90^\\circ$,\\\\\n$\\therefore \\angle DAC+\\angle BAE=90^\\circ$,\\\\\n$\\because CD\\perp DE, BE\\perp DE$,\\\\\n$\\therefore \\angle D=\\angle E=90^\\circ$,\\\\\n$\\therefore \\angle DAC+\\angle DCA=90^\\circ$,\\\\\n$\\therefore \\angle BAE=\\angle DCA$,\\\\\n$\\because AB=AC$,\\\\\n$\\therefore \\triangle ADC\\cong \\triangle BEA(AAS)$,\\\\\n$\\therefore AD=BE, CD=AE$,\\\\\n$\\because CD=5, BE=3$,\\\\\n$\\therefore AD=3, AE=5$,\\\\\n$\\therefore DE=\\boxed{8}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044375": { -"question": "As shown in the figure, it is known that $AB \\perp AC$, $AB = AC$, and $DE$ passes through point A, with $CD \\perp DE$, $BE \\perp DE$, where the feet of the perpendiculars are points D and E, respectively. Given that $CD = 5$ and $BE = 3$, what is the length of $DE$?", -"image_file_name": "7044920", -"image": [ -"math/53044375_28.png" -], -"solution": "\\textbf{Solution:} Since $AB\\perp AC$, $CD\\perp DE$, and $BE\\perp DE$, \\\\\nit follows that $\\angle BAC=\\angle D=\\angle E=90^\\circ$, \\\\\ntherefore, $\\angle CAD+\\angle BAE=90^\\circ$ and $\\angle DCA+\\angle CAD=90^\\circ$, \\\\\nhence, $\\angle DCA=\\angle EAB$, \\\\\nIn $\\triangle ADC$ and $\\triangle BEA$, we have \\\\\n$\\left\\{\\begin{array}{l}\n\\angle D=\\angle E \\\\\n\\angle DCA=\\angle EAB \\\\\nAC=AB\n\\end{array}\\right.$, \\\\\nthus, $\\triangle ADC\\cong \\triangle BEA$ by AAS, \\\\\nwhich implies $DC=AE$, $AD=BE$, \\\\\nsince $DE=AD+AE$, \\\\\nit follows that $DE=DC+BE=5+3=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044048": { -"question": "As shown in the figure, the number represented by point $A$ is $x$, then what is the value of $x$?", -"image_file_name": "7044920", -"image": [ -"math/53044048_33.png" -], -"solution": "\\textbf{Solution:} According to the question, as illustrated,\n\nsince $Rt\\triangle BCD$ is an isosceles right triangle, and $BC=BD=1$,\n\ntherefore, $CD=\\sqrt{BC^2+BD^2}=\\sqrt{1^2+1^2}=\\sqrt{2}$,\n\nalso, since arc $\\overset{\\frown}{AD}$ is part of a circle with $CD$ as its radius,\n\ntherefore, $CA=CD=\\sqrt{2}$,\n\nsince it is at the origin of the coordinate axis,\n\ntherefore, the number represented by point $A$ is $-\\sqrt{2}$, that is, $x=\\boxed{-\\sqrt{2}}$.", -"solution_image": [ -"solution_images/53044048_30.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044021": { -"question": "In the figure, within $\\triangle ABC$, $\\angle C=90^\\circ$. If $BC=20$, $AD$ bisects $\\angle BAC$ and intersects $BC$ at point D, and $BD:CD=3:2$, then what is the length of distance $DE$ from point D to line segment $AB$?", -"image_file_name": "7044920", -"image": [ -"math/53044021_49.png" -], -"solution": "\\textbf{Solution:} Given that $BC=20$ and $BD:CD=3:2$, \\\\\nthus $CD=\\frac{2}{5}CB=8$, \\\\\nsince $AD$ bisects $\\angle BAC$ and $\\angle C=90^\\circ$, with $DE$ being the distance from point D to line segment $AB$, \\\\\nhence $DE=CD=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044174": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $\\angle A=120^\\circ$, $BC=12\\,cm$. The perpendicular bisector of $AB$ intersects $BC$ at point M and intersects $AB$ at point E. The perpendicular bisector of $AC$ intersects $BC$ at point N and intersects $AC$ at point F. What is the length of $MN$?", -"image_file_name": "7044920", -"image": [ -"math/53044174_511.png" -], -"solution": "\\textbf{Solution:} Draw $AM$ and $AN$, \\\\\nsince the perpendicular bisector of $AB$ intersects $BC$ at point $M$, and $AB$ at point $E$, and the perpendicular bisector of $AC$ intersects $BC$ at point $N$, and $AC$ at point $F$, \\\\\nthus $AM=BM$, $AN=CN$, \\\\\ntherefore, $\\angle BAM=\\angle B$, $\\angle CAN=\\angle C$, \\\\\nsince $AB=AC$ and $\\angle A=120^\\circ$, \\\\\ntherefore, $\\angle B=\\angle C=30^\\circ$, \\\\\nthus, $\\angle AMN=\\angle ANM=60^\\circ$, \\\\\ntherefore, $\\triangle AMN$ is an equilateral triangle, \\\\\nthus, $AM=MN=AN$, \\\\\nthus, $BM=MN=BN$, \\\\\nsince $BC=12\\text{cm}$, \\\\\ntherefore, $MN=\\frac{1}{3}BC=\\boxed{4\\text{cm}}$.", -"solution_image": [ -"solution_images/53044174_52.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033966": { -"question": "As shown in the figure, a set of triangular boards are stacked together as depicted. What is the degree measure of $\\angle \\alpha$ in the figure?", -"image_file_name": "7044920", -"image": [ -"math/53033966_60.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$\\because$ $\\angle DBC = 90^\\circ$ and $\\angle C = 45^\\circ$ and $\\angle A = 30^\\circ$,\\\\\n$\\therefore$ $\\angle BDC = 90^\\circ - \\angle C = 45^\\circ$,\\\\\n$\\therefore$ $\\angle ADE = \\angle BDC = 45^\\circ$,\\\\\n$\\therefore$ $\\angle \\alpha = \\angle A + \\angle ADE = 30^\\circ + 45^\\circ = \\boxed{75^\\circ}$.", -"solution_image": [ -"solution_images/53033966_60.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033969": { -"question": "As shown in the figure, $\\triangle ABD$ and $\\triangle CBD$, $\\angle ADB=90^\\circ$, $\\angle ABD=\\angle DBC$, $AD=DC=1$. If $AB=4$, what is the length of $BC$?", -"image_file_name": "7044920", -"image": [ -"math/53033969_70.png" -], -"solution": "\\textbf{Solution:} Draw DE$\\perp$AB at point E, and DF$\\perp$BC, intersecting the extension of BC at point F, \\\\\n$\\therefore$ $\\angle$CFD$=90^\\circ$, \\\\\n$\\because$ $\\angle$ABD$=\\angle$DBC, \\\\\n$\\therefore$ DE=DF; \\\\\nIn right triangles $\\triangle$DEB and $\\triangle$DFB, \\\\\n$\\left\\{\\begin{array}{l}BD=BD\\\\ DE=DF\\end{array}\\right.$\\\\\n$\\therefore$ right $\\triangle$DEB$\\cong$ right $\\triangle$DFB (HL)\\\\\n$\\therefore$ BE=BF; \\\\\nIn right $\\triangle$ABD, \\\\\n$BD=\\sqrt{AB^{2}-AD^{2}}=\\sqrt{4^{2}-1^{2}}=\\sqrt{15}$; \\\\\n$\\because$ $S_{\\triangle ABC}=\\frac{1}{2}AD\\cdot BD=\\frac{1}{2}AB\\cdot DE$ \\\\\n$\\therefore$ DE=DF$=\\frac{1\\times \\sqrt{15}}{4}=\\frac{\\sqrt{15}}{4}$, \\\\\nIn right $\\triangle$BDE, \\\\\n$BE=BF=\\sqrt{BD^{2}-DE^{2}}=\\sqrt{\\left(\\sqrt{15}\\right)^{2}-\\left(\\frac{\\sqrt{15}}{4}\\right)^{2}}=\\frac{15}{4}$, \\\\\n$CF=\\sqrt{DC^{2}-DF^{2}}=\\sqrt{1^{2}-\\left(\\frac{\\sqrt{15}}{4}\\right)^{2}}=\\frac{1}{4}$ \\\\\n$\\therefore$ $BC=BF-CF=\\frac{15}{4}-\\frac{1}{4}=\\boxed{\\frac{7}{2}}$.", -"solution_image": [ -"solution_images/53033969_70.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033279": { -"question": "As shown in the figure, $\\triangle ABC \\cong \\triangle ADE$, the extension of $BC$ intersects $DE$ at point $F$, $\\angle B=30^\\circ$, $\\angle AED=110^\\circ$, $\\angle DAC=10^\\circ$, what is the measure of $\\angle DFB$?", -"image_file_name": "7044920", -"image": [ -"math/53033279_86.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle ADE$,\\\\\nit follows that $\\angle AED = \\angle ACB = 110^\\circ$, and $\\angle D = \\angle B = 30^\\circ$,\\\\\ntherefore $\\angle ACF = 180^\\circ - 110^\\circ = 70^\\circ$,\\\\\nGiven the sum of angles in a triangle is $180^\\circ$, we have: $\\angle DAC + \\angle ACF = \\angle D + \\angle DFC$,\\\\\nthus $\\angle DFC = 70^\\circ + 10^\\circ - 30^\\circ = \\boxed{50^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033284": { -"question": "As shown in the diagram, the perimeter of $\\triangle ABC$ is 19. Points $D$ and $E$ are on side $BC$. The bisector of $\\angle ABC$ is perpendicular to $AE$ at point $N$. The bisector of $\\angle ACB$ is perpendicular to $AD$ at point $M$. If $BC = 7$, what is the length of $DE$?", -"image_file_name": "7044920", -"image": [ -"math/53033284_90.png" -], -"solution": "\\textbf{Solution:} Given that the angle bisector of $\\angle ABC$ is perpendicular to $AE$, with the foot of the perpendicular being point $N$, \\\\\nit follows that $\\angle ABN=\\angle EBN$, and $\\angle BNA=\\angle BNE=90^\\circ$, \\\\\nIn $\\triangle BNA$ and $\\triangle BNE$, \\\\\nsince $\\left\\{\\begin{array}{l}\\angle ABN=\\angle EBN \\\\ BN=BN \\\\ \\angle BNA=\\angle BNE\\end{array}\\right.$, \\\\\nit implies $\\triangle BNA\\cong \\triangle BNE\\left(ASA\\right)$, \\\\\nthus $BA=BE$, \\\\\nSimilarly, it can be proved that $\\triangle CAM\\cong \\triangle CDM\\left(ASA\\right)$, \\\\\nhence, $AC=DC$.\\\\\nGiven that the perimeter of $\\triangle ABC$ is 19, \\\\\nit follows that $AB+AC+BC=19$, \\\\\nSince $BA=BE$ and $AC=DC$, \\\\\nit follows that $BE+DC+BC=19$, \\\\\nthus $BD+DE+DE+EC+BC=19$, \\\\\nGiven $BC=7$, \\\\\nit follows that $BD+DE+DE+EC=19-BC=12$, \\\\\nthus $BD+DE+EC+DE=BC+DE=12$, \\\\\nwhich means $DE=12-BC=12-7=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033276": { -"question": "As shown in the figure, $AB \\parallel CD$, $\\angle 1 = 30^\\circ$, $\\angle 2 = 40^\\circ$, then what is the degree measure of $\\angle 3$?", -"image_file_name": "7044920", -"image": [ -"math/53033276_100.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ AB$\\parallel$CD, $\\angle 1=30^\\circ$,\\\\\n$\\therefore$ $\\angle A=\\angle 1=30^\\circ$,\\\\\nAlso, $\\because$ $\\angle 2=40^\\circ$,\\\\\n$\\therefore$ $\\angle 3=\\angle A+\\angle 2=70^\\circ$,\\\\\nTherefore, $\\angle 3=\\boxed{70^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53033454": { -"question": "As shown in the diagram, in the equilateral $\\triangle ABC$, $D$ is the midpoint of side $BC$. An arc is drawn with $A$ as the center and $AD$ as the radius, intersecting side $AC$ at point $E$. What is the degree measure of $\\angle ADE$?", -"image_file_name": "7044920", -"image": [ -"math/53033454_112.png" -], -"solution": "\\textbf{Solution:} Let's consider in equilateral $\\triangle ABC$, with D being the midpoint of side BC,\\\\\n$\\therefore$ $\\angle DAC=\\frac{1}{2}\\angle BAC=\\frac{1}{2}\\times 60^\\circ=30^\\circ$,\\\\\nAccording to the problem statement, we know $AD=AE$,\\\\\n$\\therefore$ $\\angle ADE=\\angle AED$,\\\\\n$\\therefore$ $\\angle ADE=\\frac{1}{2}\\times (180^\\circ-\\angle DAC)=\\frac{1}{2}\\times (180^\\circ-30^\\circ)=\\boxed{75^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033114": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $BC=4\\text{cm}$. A point $E$ is chosen on $AC$ such that $EC=BC$. A line $EF$ is drawn perpendicular to $AC$, and $CF$ is connected so that $CF=AB$. If $EF=10\\text{cm}$, what is the length of $AE$?", -"image_file_name": "7044920", -"image": [ -"math/53033114_126.png" -], -"solution": "\\textbf{Solution:} Given that $EF\\perp AC$,\\\\\nit follows that $\\angle CEF = \\angle ACB = 90^\\circ$,\\\\\nIn right $\\triangle ACB$ and right $\\triangle FEC$,\\\\\n$\\left\\{\\begin{array}{l}\nAB = FC \\\\\nBC = CE\n\\end{array}\\right.$,\\\\\nhence, right $\\triangle ACB \\cong$ right $\\triangle FEC$,\\\\\nthus, AC = $EF = 10\\text{cm}$, EC = $BC = 4\\text{cm}$,\\\\\nhence, AE = AC - EC = $\\boxed{6\\text{cm}}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033451": { -"question": "As shown in the figure, in $\\triangle ABC$, $CD$ is the median to the hypotenuse $AB$. If $\\angle A=20^\\circ$, what is the measure of $\\angle BDC$?", -"image_file_name": "7044920", -"image": [ -"math/53033451_135.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACB=90^\\circ$ and $CD$ is the median to the hypotenuse $AB$,\\\\\nit follows that $BD=CD=AD$,\\\\\ntherefore, $\\angle A=\\angle DCA=20^\\circ$,\\\\\nthus, $\\angle BDC=\\angle A+\\angle DCA=20^\\circ+20^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53080052": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=85^\\circ$, $\\angle B=30^\\circ$. Arcs are drawn with radii greater than half of the length of $AB$, centered at points A and B, respectively. The arcs intersect at points M and N, intersect $BC$ at point D. When $AD$ is connected, what is the measure of $\\angle CAD$?", -"image_file_name": "7044920", -"image": [ -"math/53080052_141.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle B=30^\\circ$, $\\angle C=85^\\circ$,\\\\\nhence $\\angle BAC=180^\\circ-\\angle B-\\angle C=65^\\circ$,\\\\\nFrom the construction, it is known that $MN$ is the perpendicular bisector of $AB$,\\\\\nhence $DA=DB$,\\\\\nthus $\\angle DAB=\\angle B=30^\\circ$,\\\\\ntherefore, $\\angle CAD=\\angle BAC-\\angle DAB=\\boxed{35^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53009848": { -"question": "As shown in the figure, in $\\triangle ABC$, it is known that points D, E, and F are the midpoints of sides BC, AD, and CE, respectively, and the area of $\\triangle ABC$ is 4. What is the area of $\\triangle BEF$?", -"image_file_name": "7044920", -"image": [ -"math/53009848_150.png" -], -"solution": "\\textbf{Solution:} Given that point D is the midpoint of BC, and the area of $\\triangle ABC$ is 4,\\\\\nit follows that the area of $\\triangle ABD = \\triangle ADC = \\frac{1}{2}\\times$ the area of $\\triangle ABC = \\frac{1}{2}\\times4=2$,\\\\\nGiven that point E is the midpoint of AD,\\\\\nit follows that the area of $\\triangle BDE = \\frac{1}{2}\\times$ the area of $\\triangle ABD = \\frac{1}{2}\\times2=1$, and the area of $\\triangle CDE = \\frac{1}{2}\\times$ the area of $\\triangle ADC = \\frac{1}{2}\\times2=1$,\\\\\ntherefore, the area of $\\triangle BEC = $ the area of $\\triangle BED + \\triangle CDE = 2$,\\\\\nGiven that point F is the midpoint of CE,\\\\\nit follows that the area of $\\triangle BEF = \\frac{1}{2}\\times$the area of $\\triangle BEC = \\frac{1}{2}\\times2 = \\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53009743": { -"question": "Given in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle B=55^\\circ$, then what is the degree measure of $\\angle A$?", -"image_file_name": "7044920", -"image": [], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle B=55^\\circ$, \\\\\nthus $\\angle A=180^\\circ-\\angle B-\\angle C=180^\\circ-55^\\circ-90^\\circ=\\boxed{35^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53009908": { -"question": "As shown in the figure, the angle bisectors of $\\angle ABC$ and $\\angle ACB$ intersect at point $F$. Through point $F$, draw $EG \\parallel BC$ intersecting $AB$ and $AC$ at points $E$ and $G$, respectively. If $BE=6$ and $CG=10$, what is the length of segment $EG$?", -"image_file_name": "7044920", -"image": [ -"math/53009908_1712.png" -], -"solution": "\\textbf{Solution:} Since $EG\\parallel BC$,\n\nit follows that $\\angle EFB=\\angle FBC$,\n\nsince $BF$ bisects $\\angle ABC$,\n\nit follows that $\\angle EBF=\\angle FBC$,\n\ntherefore, $\\angle EBF=\\angle EFB$,\n\nhence $EF=BE$,\n\nsimilarly, $FG=GC$,\n\ntherefore, $EG=EF+FG=BE+GC=\\boxed{16}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53009847": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle with a side length of 4. $AD$ is the median on side $BC$, and $F$ is a moving point on segment $AD$. $E$ is a point on side $AC$. If $AE = 2$, when the sum of $EF+CF$ attains its minimum value, what is the measure of $\\angle ECF$?", -"image_file_name": "7044920", -"image": [ -"math/53009847_180.png" -], -"solution": "\\textbf{Solution:} Draw $EM \\parallel BC$ passing through $E$ and intersecting $AD$ at $N$,\\\\\nsince $AC=4$ and $AE=2$,\\\\\nthus $EC=2=AE$,\\\\\nthus $AM=BM=2$,\\\\\nthus $AM=AE$,\\\\\nsince $AD$ is the median of side $BC$, and $\\triangle ABC$ is an equilateral triangle,\\\\\nthus $AD \\perp BC$,\\\\\nsince $EM \\parallel BC$,\\\\\nthus $AD \\perp EM$,\\\\\nsince $AM=AE$,\\\\\nthus $E$ and $M$ are symmetric with respect to $AD$,\\\\\ndraw $CM$ intersecting $AD$ at $F$, and connect $EF$,\\\\\nat this moment, the sum of $EF+CF$ is minimized,\\\\\nsince $\\triangle ABC$ is an equilateral triangle,\\\\\nthus $\\angle ACB=60^\\circ$, and $AC=BC$,\\\\\nsince $AM=BM$,\\\\\nthus $\\angle ECF=\\frac{1}{2}\\angle ACB=30^\\circ$,\\\\\ntherefore, the answer is: $\\boxed{30^\\circ}$.", -"solution_image": [ -"solution_images/53009847_180.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53009747": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD \\perp BC$ at point $D$. Point $E$ is on $AC$, and $BE$ intersects $AD$ at point $F$. If $BF=AC$ and $DF=DC$, what is the sum of $\\angle 1$ and $\\angle 2$?", -"image_file_name": "7044920", -"image": [ -"math/53009747_1912.png" -], -"solution": "\\textbf{Solution:} Since $AD\\perp BC$ at point $D$,\\\\\nit follows that $\\angle BDF=\\angle ADC=90^\\circ$,\\\\\nIn $Rt\\triangle BDF$ and $Rt\\triangle ADC$,\\\\\n$\\left\\{\\begin{array}{l}BF=AC\\\\ DF=DC\\end{array}\\right.$,\\\\\ntherefore $Rt\\triangle BDF \\cong Rt\\triangle ADC\\left(HL\\right)$,\\\\\nthus $\\angle DBF=\\angle 2$, $BD=AD$,\\\\\nhence $\\angle DBA=\\angle DAB=45^\\circ$,\\\\\nthus $\\angle 1+\\angle 2=\\angle 1+\\angle DBF=\\angle DBA=45^\\circ$,\\\\\ntherefore the sum of $\\angle 1$ and $\\angle 2$ is $\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52991698": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $AD$ is the altitude, $E$ is the midpoint of $AB$. Given that the area of $\\triangle ABC$ is $8$, what is the area of $\\triangle ADE$?", -"image_file_name": "7044920", -"image": [ -"math/52991698_200.jpg" -], -"solution": "\\textbf{Solution:} Given that $AB=AC$ and $AD$ is the altitude, \\\\\nthus $BD=CD$, $AD\\perp BC$, \\\\\nthus $S_{\\triangle ABD}=S_{\\triangle ACD}=\\frac{1}{2} S_{\\triangle ABC}=4$, \\\\\ngiven that $E$ is the midpoint of $AB$, \\\\\nthus $AE=BE$, \\\\\nthus $S_{\\triangle ADE}=S_{\\triangle BDE}=\\frac{1}{2} S_{\\triangle ABD}=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52991476": { -"question": "As shown in the diagram, there is a right-angled triangle paper piece, where $\\angle C=90^\\circ$, $BC=6$, and $AC=8$. Now, fold $\\triangle ABC$ as shown in the diagram, making points A and B coincide. The folding line is DE. What is the length of $CE$?", -"image_file_name": "7044920", -"image": [ -"math/52991476_210.png" -], -"solution": "\\textbf{Solution:} In the right-angled triangle $ACB$, we have $AC=8$ and $BC=6$,\n\\[\n\\therefore AB= \\sqrt{AC^{2}+BC^{2}}=\\sqrt{6^{2}+8^{2}}=10.\n\\]\nAccording to the principle of folding invariance, $\\triangle EDA\\cong \\triangle EDB$,\n\\[\n\\therefore EA=EB.\n\\]\nTherefore, in the right-angled triangle $BCE$, let $CE=x$, then $BE=AE=8-x$,\n\\[\n\\therefore BE^{2}=BC^{2}+CE^{2},\n\\]\n\\[\n\\therefore (8-x)^{2}=6^{2}+x^{2},\n\\]\nsolving this, we get $x=\\boxed{\\frac{7}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52991477": { -"question": "As shown in the figure, E is the midpoint of the hypotenuse AB of $\\triangle ABC$ and $\\triangle ABD$, with $AC = BC$ and $\\angle DBA = 25^\\circ$. What is the measure of $\\angle DCE$?", -"image_file_name": "7044920", -"image": [ -"math/52991477_226.png" -], -"solution": "\\textbf{Solution:} Given that point $E$ is the midpoint of the hypotenuse $AB$ of the right triangle $ABD$,\\\\\nhence, $ED=EB=\\frac{1}{2}AB$,\\\\\ntherefore, $\\angle EDB=\\angle DBA=25^\\circ$,\\\\\nthus, $\\angle DEA=\\angle EDB+\\angle DBA=50^\\circ$,\\\\\nsince point $E$ is also the midpoint of the hypotenuse $AB$ of the right triangle $ABC$, and $AC=BC$,\\\\\nhence, $EC=\\frac{1}{2}AB$, and $CE\\perp AB$,\\\\\nthus, $\\angle AEC=90^\\circ$,\\\\\ntherefore, $\\angle DEC=\\angle DEA+\\angle AEC=140^\\circ$, and since $ED=EC$,\\\\\nhence, $\\angle DCE=\\frac{1}{2}\\times \\left(180^\\circ-140^\\circ\\right)=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52991670": { -"question": "As shown in the figure, in quadrilateral ABCD, connect AC and BD. If $\\triangle ABC$ is an equilateral triangle, with $AB=BD$ and $\\angle ABD=20^\\circ$, then what is the measure of $\\angle BDC$?", -"image_file_name": "7044920", -"image": [ -"math/52991670_230.jpg" -], -"solution": "\\textbf{Solution:} Given an equilateral $\\triangle ABC$ where $AB=BC$, $\\angle ABC=60^\\circ$, \\\\\nsince $AB=BD$, $\\angle ABD=20^\\circ$, \\\\\nit follows that $BD=BC$, $\\angle CBD=60^\\circ-20^\\circ=40^\\circ$, \\\\\nthus, $\\angle BDC=(180^\\circ-40^\\circ)\\div 2=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52991885": { -"question": "As shown in the figure, all the shaded quadrilaterals are squares, and all triangles are right-angled triangles. If the areas of squares $A$, $B$, and $C$ are $4$, $8$, and $6$ respectively, what is the area of square $D$?", -"image_file_name": "7044920", -"image": [ -"math/52991885_240.png" -], -"solution": "Solution: As shown in the diagram,\\\\\nsince all the shaded quadrilaterals are squares and all the triangles are right-angled triangles, the areas of squares A, B, C are 4, 8, 6, respectively,\\\\\ntherefore, EF$^{2}$ = 4 + 8 = 12, GH$^{2}$ = area of square D - 6, with EF$^{2}$ = GH$^{2}$,\\\\\ntherefore, GH$^{2}$ = area of square D - 6 = 12\\\\\nUpon solving: the area of square D = $\\boxed{18}$.", -"solution_image": [ -"solution_images/52991885_240.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52991699": { -"question": "As illustrated, in triangle $ABC$, $\\angle ACB=90^\\circ$, $\\angle A=20^\\circ$, $\\triangle ABC \\cong \\triangle A'B'C'$. If $A'B'$ precisely passes through point B, and $A'C'$ intersects $AB$ at $D$, what is the measure of $\\angle BDC$?", -"image_file_name": "7044920", -"image": [ -"math/52991699_250.jpg" -], -"solution": "\\textbf{Solution:} Given $\\triangle ABC \\cong \\triangle A'B'C'$,\n\nit follows that $\\angle A = \\angle A' = 20^\\circ$, $\\angle ACB = \\angle A'CB' = 90^\\circ$, CB = CB',\n\nsince $\\angle B' = \\angle CBA = 70^\\circ$,\n\nand because CB = CB',\n\nit follows that $\\angle B' = \\angle B'BC = 70^\\circ$,\n\nthus $\\angle BCB' = 180^\\circ - 70^\\circ - 70^\\circ = 40^\\circ$,\n\nhence $\\angle BCD = 90^\\circ - 40^\\circ = 50^\\circ$,\n\nconsequently $\\angle BDC = 180^\\circ - \\angle CBD - \\angle BCD = 180^\\circ - 50^\\circ - 70^\\circ = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52991672": { -"question": "As shown in the figure, a large square ABCD is formed by four congruent right-angled triangles and a small square. A perpendicular line DF is drawn from point D to intersect the extension of the diagonal EF of the small square at point G. Connect BG. If the area of the large square is 5 times the area of the small square, what is the value of $ \\frac{BG}{BE}$?", -"image_file_name": "7044920", -"image": [ -"math/52991672_261.jpg" -], -"solution": "Solution:Let the extension lines of $BE$ and $GD$ intersect at point $M$, and $BM$ intersect $CF$ at point $N$, as shown in the diagram.\\\\\nSuppose the side length of the small square is $x$, then the side length of the large square is $\\sqrt{5}x$,\\\\\nLet $CN = t$, then $BE = t$,\\\\\nIn $\\triangle BCN$, since $CN = t$, $BN = t + x$, $BC = \\sqrt{5}x$,\\\\\nTherefore, $x^2 + (t + x)^2 = (\\sqrt{5}x)^2$,\\\\\nSolving gives $t = x$,\\\\\nTherefore, $BE = CN = x$,\\\\\nSince $ED$ is the diagonal of the small square,\\\\\nTherefore, $\\angle FEN = \\angle EFN = 45^\\circ$,\\\\\nTherefore, $\\angle GFD = 45^\\circ$,\\\\\nSince $GD \\perp DF$,\\\\\nTherefore, $\\triangle GDF$ is an isosceles right triangle,\\\\\nTherefore, $\\angle FGD = 45^\\circ$, $DG = DF = x$,\\\\\nSince $\\angle GEM = \\angle EGM = 45^\\circ$,\\\\\nTherefore, $\\triangle MGE$ is an isosceles right triangle,\\\\\nTherefore, $ME = MG = 2x$,\\\\\nIn $\\triangle BMG$, since $BM = 3x, GM = 2x$,\\\\\nTherefore, $BG= \\sqrt{(3x)^2 + (2x)^2} = \\sqrt{13}x$,\\\\\nTherefore, $\\frac{BG}{BE} = \\frac{\\sqrt{13}x}{x} = \\boxed{\\sqrt{13}}$.", -"solution_image": [ -"solution_images/52991672_260.jpg" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52991478": { -"question": "As shown in the figure, point $D$ is inside $\\triangle ABC$, where $CD$ bisects $\\angle ACB$, $BD\\perp CD$, and $\\angle A = \\angle ABD$. If $AC = 7$ and $BC = 4$, what is the length of $BD$?", -"image_file_name": "7044920", -"image": [ -"math/52991478_278.png" -], -"solution": "\\textbf{Solution:} Extend BD to meet AC at point E,\\\\\n$\\because$ $\\angle A = \\angle ABD$,\\\\\n$\\therefore$ BE = AE,\\\\\n$\\because$ BD $\\perp$ CD,\\\\\n$\\therefore$ BE $\\perp$ CD,\\\\\n$\\because$ CD bisects $\\angle ACB$,\\\\\n$\\therefore$ $\\angle BCD = \\angle ECD$,\\\\\n$\\therefore$ $\\angle EBC = \\angle BEC$,\\\\\n$\\therefore$ $\\triangle BEC$ is an isosceles triangle,\\\\\n$\\therefore$ BC = CE,\\\\\n$\\because$ BE $\\perp$ CD,\\\\\n$\\therefore$ 2BD = BE,\\\\\n$\\because$ AC = 7, BC = 4,\\\\\n$\\therefore$ CE = 4,\\\\\n$\\therefore$ AE = AC - EC = 7 - 4 = 3,\\\\\n$\\therefore$ BE = 3,\\\\\n$\\therefore$ BD = $\\boxed{\\frac{3}{2}}$.", -"solution_image": [ -"solution_images/52991478_270.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52991669": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $AC = BC$, $BE \\perp CE$ at point $E$, and $AD \\perp CE$ at point $D$. Given $DE = 5$ and $AD = 9$, what is the length of $BE$?", -"image_file_name": "7044920", -"image": [ -"math/52991669_280.jpg" -], -"solution": "\\textbf{Solution}: We have $\\angle ACB = 90^\\circ$ and $BE \\perp CE$,\\\\\ntherefore, $\\angle BCE + \\angle ACD = 90^\\circ$ and $\\angle BCE + \\angle CBE = 90^\\circ$,\\\\\nthus, $\\angle ACD = \\angle CBE$,\\\\\nin $\\triangle BEC$ and $\\triangle CDA$,\\\\\n\\[\n\\left\\{ \\begin{array}{l}\n\\angle BEC = \\angle CDA \\\\\n\\angle CBE = \\angle ACD \\\\\nBC = AC\n\\end{array} \\right.,\n\\]\ntherefore, $\\triangle ACD \\cong \\triangle CBE$ (by AAS),\\\\\nthus, EC = AD = 9, and BE = DC,\\\\\nsince DE = 5,\\\\\nthus, CD = EC - DE = 4,\\\\\ntherefore, BE = \\boxed{4}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52977098": { -"question": "As shown in the diagram, given that the area of the square $ABCD$ is 64 square centimeters and $DE = 10$ cm, what is the length of $CE$?", -"image_file_name": "7044920", -"image": [ -"math/52977098_291.png" -], -"solution": "\\textbf{Solution:} Since the area of square ABCD is 64 square centimeters, $\\therefore$ $\\angle ADC=90^\\circ$ and $DC=8$ cm. Since $DE=10$ cm, $\\therefore$ $CE=\\sqrt{DE^{2}+DC^{2}}=\\sqrt{8^{2}+10^{2}}=\\boxed{2\\sqrt{41}}$ (cm).", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52978596": { -"question": "As shown in the figure, $ \\angle ACD=90^\\circ$, $ \\angle D=15^\\circ$, point B is on the perpendicular bisector of $ AD$, if $ AC=4$, then what is the length of $ AB$?", -"image_file_name": "7044920", -"image": [ -"math/52978596_305.png" -], -"solution": "\\textbf{Solution:} Since point B is on the perpendicular bisector of $AD$,\\\\\nit follows that $AB=BD$,\\\\\nthus, $\\angle BAD=\\angle D=15^\\circ$,\\\\\ntherefore, $\\angle ABC=\\angle BAD+\\angle D=30^\\circ$,\\\\\nsince $\\angle ACD=90^\\circ$ and $AC=4$,\\\\\nit follows that $AB=2AC=\\boxed{8}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978549": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle B=\\angle C$, $AB=3$, what is the length of $AC$?", -"image_file_name": "7044920", -"image": [ -"math/52978549_314.png" -], -"solution": "\\textbf{Solution:} Since $\\angle B = \\angle C$ and AB=3, \\\\\nit follows that AB=AC=\\boxed{3}.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978712": { -"question": "As shown in the diagram, $AB \\perp BC$ at point $B$, $AE \\perp DE$ at point $E$, $AB = AE$, $\\angle ACB = \\angle ADE$, $\\angle ACD = 65^\\circ$, $\\angle BAD = 75^\\circ$. What is the measure of $\\angle BAE$?", -"image_file_name": "7044920", -"image": [ -"math/52978712_327.png" -], -"solution": "\\textbf{Solution:} Given that $AB\\perp BC$ and $AE\\perp DE$,\\\\\nthus $\\angle B=\\angle E=90^\\circ$,\\\\\nin $\\triangle ABC$ and $\\triangle AED$,\\\\\n\\[\n\\left\\{\\begin{array}{l}\n\\angle B=\\angle E\\\\\n\\angle ACB=\\angle ADE\\\\\nAB=AE\n\\end{array}\\right.,\n\\]\ntherefore, $\\triangle ABC \\cong \\triangle AED$ (by AAS),\\\\\nhence $\\angle BAC=\\angle EAD$, $AC=AD$\\\\\nGiven $\\angle ACD=65^\\circ$,\\\\\nit follows that $\\angle ACD=\\angle ADC=65^\\circ$\\\\\nHence, $\\angle CAD=180^\\circ-\\angle ACD-\\angle ADC=50^\\circ$\\\\\nGiven $\\angle BAD=75^\\circ$,\\\\\nit implies that $\\angle BAC=\\angle EAD=\\angle BAD-\\angle CAD=75^\\circ-50^\\circ=25^\\circ$,\\\\\nTherefore, $\\angle BAE=\\angle BAD+\\angle DAE=\\angle BAD+\\angle BAC=75^\\circ+25^\\circ=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978392": { -"question": "As shown in the figure, $ \\angle A=15^\\circ$, $ AB=BC=CD=DE=EF$, what is the value of $ \\angle DEF$?", -"image_file_name": "7044920", -"image": [ -"math/52978392_333.png" -], -"solution": "\\textbf{Solution:} Given that $AB=BC=CD=DE=EF$, \\\\\n$\\therefore \\angle BCA=\\angle A=15^\\circ$, \\\\\n$\\therefore \\angle CBD=\\angle BDC=\\angle BCA+\\angle A=15^\\circ+15^\\circ=30^\\circ$, \\\\\n$\\therefore \\angle ECD=\\angle CED=\\angle A+\\angle CDB=45^\\circ$, \\\\\n$\\therefore \\angle EDF=\\angle EFD=\\angle A+\\angle CED=60^\\circ$, \\\\\n$\\therefore \\angle DEF=180^\\circ-60^\\circ-60^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51407073": { -"question": "As shown in the figure, $\\triangle ABC$ is similar to $\\triangle DEF$ with point O as the center of similarity. If $OD=3OA$ and the area of $\\triangle ABC$ is $4$, what is the area of $\\triangle DEF$?", -"image_file_name": "7056435", -"image": [ -"math/51407073_115.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\triangle ABC$ and $\\triangle DEF$ are similar,\\\\\nthus $AC\\parallel DF$,\\\\\nthus $\\triangle OAC\\sim \\triangle ODF$,\\\\\nthus $\\frac{AC}{DF}=\\frac{OA}{OD}=\\frac{1}{3}$,\\\\\nthus $\\frac{{S}_{\\triangle ABC}}{{S}_{\\triangle DEF}}={(\\frac{AC}{DF})}^{2}=\\frac{1}{9}$,\\\\\nsince ${S}_{\\triangle ABC}=4$,\\\\\ntherefore ${S}_{\\triangle DEF}=\\boxed{36}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51406931": { -"question": "As shown in the diagram, in the Cartesian coordinate system, $\\triangle OAB$ is scaled up with the origin $O$ as the center of similarity to obtain $\\triangle OCD$. If $B(0, 1)$ and $D(0, 3)$, what is the ratio of the areas of $\\triangle OAB$ to $\\triangle OCD$?", -"image_file_name": "7056435", -"image": [ -"math/51406931_124.png" -], -"solution": "\\textbf{Solution:} Let $\\triangle OAB$ be enlarged from the origin $O$ to form $\\triangle OCD$, where B(0,1), D(0,3),\\\\\n$\\therefore OB\\colon OD=1\\colon 3$\\\\\n$\\therefore$ The ratio of the areas of $\\triangle OAB$ and $\\triangle OCD$ is $\\boxed{1\\colon 9}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402904": { -"question": "As shown in the figure, $a\\parallel b\\parallel c$, $\\frac{AC}{CE}=\\frac{1}{2}$, and $DF=12$, what is the length of $BD$?", -"image_file_name": "7056435", -"image": [ -"math/51402904_132.png" -], -"solution": "\\textbf{Solution:} Since $a\\parallel b\\parallel c$,\\\\\nit follows that $\\frac{AC}{CE}=\\frac{BD}{DF}=\\frac{1}{2}$,\\\\\nsince $DF=12$,\\\\\nit follows that $\\frac{BD}{12}=\\frac{1}{2}$,\\\\\ntherefore, $BD=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403120": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ DE\\parallel BC$. If $ \\frac{AD}{DB}=\\frac{2}{3}$, then what is the value of $ \\frac{DE}{BC}$?", -"image_file_name": "7056435", -"image": [ -"math/51403120_144.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\frac{AD}{DB}=\\frac{2}{3}$,\\\\\n$\\therefore \\frac{AD}{AB}=\\frac{2}{5}$,\\\\\nsince $DE\\parallel BC$,\\\\\n$\\therefore \\frac{DE}{BC}=\\frac{AD}{AB}=\\boxed{\\frac{2}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402947": { -"question": "As shown in the figure, $\\triangle ABC$ is translated downward along the line containing the median $AD$ from side $BC$ to the position of $\\triangle ABC$. It is known that the area of $\\triangle ABC$ is $9$, and the area of the shaded triangle is $4$. If $AA'=1$, then what is the length of $A'D$?", -"image_file_name": "7056435", -"image": [ -"math/51402947_155.png" -], -"solution": "\\textbf{Solution:} Let $AB$, $AC$ intersect with $BE$ at points $E$, $F$, \\\\\nsince $\\triangle ABC$ is translated downwards along the line containing the median $AD$ from the side $BC$ to the position of $\\triangle ABC$, \\\\\ntherefore $\\triangle ABC \\sim \\triangle AEF$, \\\\\ntherefore $\\frac{S_{\\triangle ABC}}{S_{\\triangle AEF}}=\\left(\\frac{AD}{AD}\\right)^2$, \\\\\nsince the area of $\\triangle ABC$ is $9$, and the area of the shaded part of the triangle is $4$, $AA=1$, \\\\\ntherefore $\\frac{9}{4}=\\left(\\frac{AD+1}{AD}\\right)^2$, \\\\\nsolving this gives $AD=\\boxed{2}$.", -"solution_image": [ -"solution_images/51402947_159.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403188": { -"question": "As shown in the diagram, the straight lines $l_{1} \\parallel l_{2} \\parallel l_{3}$ intersect the straight lines $m$ and $n$ at points A, B, C, D, E, F respectively. Given that $AB=4$, $BC=6$, $DE=2$, what is the length of $EF$?", -"image_file_name": "7056435", -"image": [ -"math/51403188_162.png" -], -"solution": "\\textbf{Solution:} Since $l_1\\parallel l_2\\parallel l_3$,\\\\\nit follows that $\\frac{AB}{BC}=\\frac{DE}{EF}$,\\\\\ngiven $AB=4, BC=6, DE=2$,\\\\\nthus $\\frac{4}{6}=\\frac{2}{EF}$,\\\\\nsolving gives $EF=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402152": { -"question": "As shown in the figure, it is known that $AD$ is the angle bisector of $\\triangle ABC$, and $DE \\parallel AB$ intersects $AC$ at $E$. If $\\frac{AE}{EC}=\\frac{3}{5}$, then what is the value of $\\frac{AC}{AB}$?", -"image_file_name": "7056435", -"image": [ -"math/51402152_178.png" -], -"solution": "\\textbf{Solution:} Since $DE\\parallel AB$,\\\\\n$\\therefore$ $\\angle ADE=\\angle BAD$,\\\\\nSince $AD$ is the bisector of $\\angle A$ in $\\triangle ABC$,\\\\\n$\\therefore$ $\\angle BAD=\\angle EAD$,\\\\\n$\\therefore$ $\\angle EAD=\\angle ADE$,\\\\\n$\\therefore$ $AE=DE$,\\\\\nSince $\\frac{AE}{EC}=\\frac{3}{5}$,\\\\\n$\\therefore$ $\\frac{EC}{DE}=\\frac{5}{3}$,\\\\\nSince $DE\\parallel AB$,\\\\\n$\\therefore$ $\\triangle CDE\\sim \\triangle CBA$,\\\\\n$\\therefore$ $\\frac{DE}{AB}=\\frac{EC}{AC}$,\\\\\n$\\therefore$ $\\frac{AC}{AB}=\\frac{EC}{DE}=\\boxed{\\frac{5}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403191": { -"question": "As shown in the figure, the line of symmetry of rectangle ABCD intersects AB at point E and CD at point F respectively. If rectangle AEFD is similar to rectangle ABCD, what is the value of AB$\\colon$ BC?", -"image_file_name": "7056435", -"image": [ -"math/51403191_180.png" -], -"solution": "\\textbf{Solution:} Since $ABCD$ is a rectangle,\\\\\nit follows that $AD=BC$,\\\\\nsince the axes of symmetry of rectangle $ABCD$ intersect $AB$ at point $E$, and $CD$ at point $F$,\\\\\nit follows that $AE=\\frac{1}{2}AB$,\\\\\nsince rectangle $AEFD$ is similar to rectangle $ABCD$,\\\\\nit follows that $\\frac{AB}{BC}=\\frac{AD}{AE}$,\\\\\nthus $\\frac{AB}{BC}=\\frac{BC}{\\frac{1}{2}AB}$,\\\\\nhence $\\frac{1}{2}AB^2=BC^2$,\\\\\ntherefore $AB^2=2BC^2$,\\\\\nthus $AB=\\sqrt{2}BC$,\\\\\nhence $AB\\colon BC=\\boxed{\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52719959": { -"question": "According to legend, the ancient Greek mathematician and astronomer Thales once used the principle of similar triangles by erecting a wooden pole at the top of the shadow of a pyramid. With the help of sunlight, he constructed two similar triangles to measure the height of the pyramid. Given that the wooden pole $EF$ is $2m$ long and its shadow $FD$ is $3m$ long, and $OA$ is measured to be $201m$, what is the height of the pyramid $BO$?", -"image_file_name": "7056435", -"image": [ -"math/52719959_197.png" -], -"solution": "\\textbf{Solution:} Let the height of the pyramid be $x$ meters, \\\\\nAccording to the problem, we have: $\\frac{OB}{OA}=\\frac{EF}{FD}$, \\\\\n$\\frac{x}{201}=\\frac{2}{3}$, \\\\\nSolving this equation, we get: $x=\\boxed{134}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52719807": { -"question": "As shown in the diagram, a point A is selected on the opposite side of the river. Then, on this side of the river, points B and C are chosen such that $AB \\perp BC$. Another point E is selected such that $EC \\perp BC$, and the line of sight determines that BC and AE intersect at point D. At this moment, it is measured that $BD=120\\,m$, $DC=60\\,m$, and $EC=50\\,m$. What is the distance between the two sides of the river, that is, the length of AB?", -"image_file_name": "7056435", -"image": [ -"math/52719807_205.png", -"math/52719807_206.png" -], -"solution": "\\textbf{Solution:} Given that $AB\\perp BC$, $EC\\perp BC$,\\\\\n$\\therefore AB\\parallel CE$\\\\\n$\\therefore \\triangle ABD\\sim \\triangle ECD$\\\\\n$\\therefore \\frac{BD}{DC}=\\frac{AB}{EC}$\\\\\nGiven $BD=120m$, $DC=60m$, $EC=50m$,\\\\\n$\\therefore AB=\\frac{BD\\cdot EC}{DC}=\\frac{120\\times 50}{60}=\\boxed{100}m$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52719891": { -"question": "As shown in the figure, $AD \\parallel BE \\parallel CF$, $AB=3$, $AC=9$, $DE=2$, then what is the value of $EF$?", -"image_file_name": "7056435", -"image": [ -"math/52719891_210.png" -], -"solution": "\\textbf{Solution:} Given that $AD\\parallel BE\\parallel CF$,\\\\\nit follows that $\\frac{AB}{BC}=\\frac{DE}{EF}$,\\\\\nGiven that $AB=3$, $AC=9$, $DE=2$,\\\\\nwe have $BC=6$,\\\\\nthus, $\\frac{3}{6}=\\frac{2}{EF}$,\\\\\ntherefore, $EF=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52602101": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $E$ is the midpoint of $AB$, and $EC$ intersects $BD$ at point $F$. What is the ratio of the area of $\\triangle BEF$ to the area of $\\triangle BCF$?", -"image_file_name": "7056435", -"image": [ -"math/52602101_220.png" -], -"solution": "\\textbf{Solution:} Given that $ABCD$ is a parallelogram,\\\\\nit follows that $BE\\parallel CD$, \\\\\nthus $\\angle BEC=\\angle DCF$, $\\angle EBF=\\angle CDF$, \\\\\nwhich means $\\triangle EBF \\sim \\triangle CDF$,\\\\\nhence $\\frac{EF}{CF}=\\frac{BE}{CD}=\\frac{1}{2}$,\\\\\nFor triangles $BEF$ and $BCF$ taking $EF$ and $CF$ as the base respectively, the heights are the same, \\\\\ntherefore $S_{\\triangle BEF} : S_{\\triangle BCF} = EF : CF = 1:2$, \\\\\nThus, the answer is: $\\boxed{1:2}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52602351": { -"question": "As shown in the figure, $\\triangle ABC\\sim \\triangle EDC$, given that $\\angle ABC=90^\\circ$, $\\frac{AB}{BC}=\\frac{1}{2}$, what is the value of $\\frac{AE}{BD}$?", -"image_file_name": "7056435", -"image": [ -"math/52602351_234.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC \\sim \\triangle EDC$,\\\\\nit follows that $\\frac{AC}{EC}=\\frac{BC}{DC}$ and $\\angle ACB=\\angle ECD$,\\\\\nhence $\\frac{AC}{EC}=\\frac{BC}{DC}$ and $\\angle ACE=\\angle BCD$,\\\\\nimplying $\\triangle AEC \\sim \\triangle BDC$,\\\\\nwhich leads to $\\frac{AE}{BD}=\\frac{AC}{BC}$,\\\\\nsince $\\angle ABC=90^\\circ$ and $\\frac{AB}{BC}=\\frac{1}{2}$,\\\\\nit results in $\\frac{AB^2}{BC^2}=\\frac{1}{4}$,\\\\\nthus $\\frac{AB^2+BC^2}{BC^2}=\\frac{5}{4}$, which means $\\frac{AC^2}{BC^2}=\\frac{5}{4}$,\\\\\ntherefore $\\frac{AC}{BC}=\\frac{\\sqrt{5}}{2}$,\\\\\nconcluding that $\\frac{AE}{BD}=\\boxed{\\frac{\\sqrt{5}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52602477": { -"question": "As shown in the figure, in parallelogram $ABCD$, $DE: EC = 4: 1$, and $AE$ intersects $BD$ at point $F$, then what is the ratio of $S_{\\triangle DEF}$ to $S_{\\triangle BAF}$?", -"image_file_name": "7056435", -"image": [ -"math/52602477_240.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore$DC$\\parallel$AB, DC=AB, \\\\\nSince DE: EC=4: 1, \\\\\n$\\therefore$ $\\frac{DE}{DC}=\\frac{4}{5}$, \\\\\n$\\therefore$ $\\frac{DE}{AB}=\\frac{4}{5}$, \\\\\nSince DE$\\parallel$AB, \\\\\n$\\therefore$ $\\triangle DEF\\sim \\triangle BAF$, \\\\\n$\\therefore$ $\\frac{S_{\\triangle DEF}}{S_{\\triangle BAF}}=\\left(\\frac{DE}{AB}\\right)^2=\\boxed{\\frac{16}{25}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52601759": { -"question": "As shown in the figure, in $\\triangle ABC$, points $D$ and $E$ are on sides $AB$ and $AC$, respectively, with $DE \\parallel BC$ and $BC = 6$. Given that the area of quadrilateral $BCED$ is $8$ times the area of $\\triangle ADE$, what is the length of $DE$?", -"image_file_name": "7056435", -"image": [ -"math/52601759_252.png" -], -"solution": "\\textbf{Solution:} Since ${S}_{\\text{quadrilateral} BCED}=8{S}_{\\triangle ADE}$,\nit follows that ${S}_{\\triangle ABC}={S}_{\\triangle ADE}+{S}_{\\text{quadrilateral} BCED}={S}_{\\triangle ADE}+8{S}_{\\triangle ADE}=9{S}_{\\triangle ADE}$,\nthus $\\frac{{S}_{\\triangle ADE}}{{S}_{\\triangle ABC}}=\\frac{1}{9}$,\nSince DE$\\parallel$BC, it follows that $\\angle$ADE=$\\angle$B, $\\angle$AED=$\\angle$C,\nwhich implies $\\triangle ADE\\sim \\triangle ABC$,\ntherefore $\\frac{{S}_{\\triangle ADE}}{{S}_{\\triangle ABC}}=\\left(\\frac{DE}{BC}\\right)^{2}=\\frac{1}{9}$,\nhence $\\frac{DE}{BC}=\\frac{1}{3}$,\nSince BC=6, it follows that $DE=\\frac{1}{3}BC=\\frac{1}{3}\\times 6=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52601760": { -"question": "As shown in the figure, Master Zhao uses a piece of triangular tinplate to cut out a piece of square tinplate for reserve. In $\\triangle ABC$, $BC=120$, the height $AD=80$, the square $EFGH$ has its side $GH$ on side $BC$, and $E, F$ are respectively on sides $AB, AC$. Then, what is the length of the side of the square $EFGH$?", -"image_file_name": "7056435", -"image": [ -"math/52601760_260.png" -], -"solution": "\\textbf{Solution:} Set the side length of the square part as $x$.\\\\\nIn square $EFGH$, $EF\\parallel BC$, $EH\\parallel AD$\\\\\n$\\therefore \\angle AEF=\\angle ABC$, $\\angle EAF=\\angle BAC$; $\\angle BHE=\\angle BDA$, $\\angle B=\\angle B$\\\\\n$\\therefore \\triangle AEF\\sim \\triangle ABC$, $\\triangle BEH\\sim \\triangle BAD$\\\\\n$\\therefore \\frac{EF}{BC}=\\frac{AE}{AB}$, $\\frac{EH}{AD}=\\frac{BE}{BA}$\\\\\n$\\therefore \\frac{EF}{BC}+\\frac{EH}{AD}=\\frac{AE}{AB}+\\frac{BE}{BA}=1$\\\\\n$\\therefore \\frac{x}{120}+\\frac{x}{80}=1$ \\\\\nSolving for $x$ gives: $x=\\boxed{48}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52211052": { -"question": "As shown in the figure, in $ \\square ABCD $, with $ AD=6 $, E is a moving point on AD, and M, N are the midpoints of BE and CE, respectively. What is the length of MN?", -"image_file_name": "7054431", -"image": [ -"math/52211052_392.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, in parallelogram $ABCD$, we have $BC=AD=6$.\\\\\nSince $M$, $N$ are the midpoints of $BE$, $CE$, respectively,\\\\\ntherefore $MN$ is the midline of $\\triangle EBC$,\\\\\ntherefore $MN=\\frac{1}{2}BC=\\boxed{3}$.", -"solution_image": [ -"solution_images/52211052_392.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52211191": { -"question": "As shown in the figure, fold $\\triangle ABC$ along its median $DE$, with point $A$ landing on point $F$. If $\\angle C = 120^\\circ$ and $\\angle A = 20^\\circ$, what is the degree measure of $\\angle FEB$?", -"image_file_name": "7054431", -"image": [ -"math/52211191_400.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle C=120^\\circ$ and $\\angle A=20^\\circ$,\\\\\nit follows that $\\angle B=40^\\circ$,\\\\\nsince DE is the median line of $\\triangle ABC$,\\\\\nit implies that DE$\\parallel$BC,\\\\\nthus, $\\angle B+\\angle DEB=180^\\circ$, and $\\angle B=\\angle AED=\\angle DEF=40^\\circ$\\\\\nwhich leads to $\\angle DEB=140^\\circ$,\\\\\nhence, $\\angle FEB=\\angle DEB-\\angle DEF=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52211187": { -"question": "As shown in the figure, in rhombus $ABCD$, the lengths of the two diagonals are $AC=6$ and $BD=8$. What is the area of this rhombus?", -"image_file_name": "7054431", -"image": [ -"math/52211187_410.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\nthe area of the rhombus = $\\frac{1}{2}$AC$\\cdot$BD = $\\frac{1}{2} \\times 6 \\times 8 = \\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52211277": { -"question": "As shown in the figure, in the rhombus $ABCD$, $P$ is a point on the diagonal $AC$. If $AB = 4$, $PA = 5$, and $PC = 2$, what is the length of $PB$?", -"image_file_name": "7054431", -"image": [ -"math/52211277_424.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect BD, intersecting AC at point O,\\\\\nit is easy to obtain that BD perpendicularly bisects AC\\\\\n$\\because AC=7$\\\\\n$\\therefore AO=\\frac{7}{2}$, $PO=\\frac{3}{2}$,\\\\\nin $\\triangle ABO$ with a right angle at B, $BO=\\sqrt{4^2-\\left(\\frac{7}{2}\\right)^2}=\\frac{\\sqrt{15}}{2}$\\\\\n$\\therefore$ in $\\triangle PBO$ with a right angle at B, $PB=\\sqrt{BO^2+PO^2}=\\boxed{\\sqrt{6}}$", -"solution_image": [ -"solution_images/52211277_420.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354910": { -"question": "As shown in the diagram, rectangle $ABCD$ is folded along the diagonal $BD$, with point $C$ falling on point $E$. $BE$ intersects $AD$ at point $F$. Given that $\\angle BDC=62^\\circ$, what is the measure of $\\angle DFE$?", -"image_file_name": "7054409", -"image": [ -"math/52354910_00.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle, \\\\\n$\\therefore$ $AD\\parallel BC$ and $\\angle ADC=90^\\circ$, \\\\\nGiven $\\angle BDC=62^\\circ$, \\\\\n$\\therefore$ $\\angle FDB=90^\\circ-\\angle BDC=90^\\circ-62^\\circ=28^\\circ$, \\\\\nSince $AD\\parallel BC$, \\\\\n$\\therefore$ $\\angle CBD=\\angle FDB=28^\\circ$, \\\\\nSince rectangle ABCD is folded along the diagonal BD, \\\\\n$\\therefore$ $\\angle FBD=\\angle CBD=28^\\circ$, \\\\\n$\\therefore$ $\\angle DFE=\\angle FBD+\\angle FDB=28^\\circ+28^\\circ=\\boxed{56^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52355149": { -"question": "As shown in the figure, in rectangle $ABCD$, where $AB=24$ and $BC=25$, an arc is drawn with point $B$ as the center and the length of $BC$ as the radius, intersecting side $AD$ at point $E$. What is the length of $AE$?", -"image_file_name": "7054409", -"image": [ -"math/52355149_15.png" -], -"solution": "\\textbf{Solution:}\nConnect BE as shown in the figure,\\\\\nas given, BE=BC=25,\\\\\nsince quadrilateral ABCD is a rectangle,\\\\\ntherefore, $\\angle A=\\angle D=90^\\circ$, AB=DC=24, AD=BC=25,\\\\\nin $\\triangle ABE$,\\\\\n$AE=\\sqrt{BE^{2}-AB^{2}}=\\sqrt{25^{2}-24^{2}}=\\boxed{7}$.", -"solution_image": [ -"solution_images/52355149_10.png" -], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354153": { -"question": "As shown in the figure, the distance from the midpoint \\(M\\) of one side of the rhombus \\(ABCD\\) to the intersection point \\(O\\) of the diagonals is \\(5 \\, \\text{cm}\\). What is the perimeter of the rhombus \\(ABCD\\)?", -"image_file_name": "7054409", -"image": [ -"math/52354153_20.png" -], -"solution": "Solution: Since quadrilateral ABCD is a rhombus,\\\\\nit follows that $\\angle AOB=90^\\circ$,\\\\\nsince M is the midpoint of side AB,\\\\\nit follows that AB=2OM=10,\\\\\ntherefore, the perimeter of rhombus ABCD is $10\\times 4=\\boxed{40}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354640": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=2$, point $E$ is on side $AD$, $EB$ bisects $\\angle AEC$, and $\\angle DEC=30^\\circ$. What is the length of $AE$?", -"image_file_name": "7054409", -"image": [ -"math/52354640_31.png" -], -"solution": "\\textbf{Solution:} In rectangle ABCD, we have AD=BC, CD=AB=2, AD$\\parallel$BC,\\\\\n$\\because$ $\\angle$DEC=$30^\\circ$,\\\\\n$\\therefore$ $\\angle$BCE=$\\angle$DEC=$30^\\circ$, $\\angle$AEC=$150^\\circ$, CE=2CD=4,\\\\\n$\\therefore$ $DE=\\sqrt{CE^{2}−CD^{2}}=2\\sqrt{3}$,\\\\\n$\\because$ EB bisects $\\angle$AEC,\\\\\n$\\therefore$ $\\angle BEC=\\frac{1}{2}\\angle AEC=75^\\circ$,\\\\\n$\\therefore$ $\\angle$CBE=$75^\\circ$,\\\\\n$\\therefore$ $\\angle$CBE=$\\angle$BEC,\\\\\n$\\therefore$ CE=BC=AD=4,\\\\\n$\\therefore$ $AE=AD−DE=4−2\\sqrt{3}$.\\\\\nThus, the answer is: $AE=\\boxed{4−2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354486": { -"question": "As shown in the figure, in parallelogram \\(ABCD\\), diagonal \\(AC \\perp BC\\), \\(M\\) is on the bisector of \\(\\angle CAD\\), and \\(AM \\perp DM\\), point \\(N\\) is the midpoint of \\(CD\\), connect \\(MN\\), if \\(AD = 12\\), \\(MN = 2\\). What is the length of \\(AB\\)?", -"image_file_name": "7054409", -"image": [ -"math/52354486_40.png" -], -"solution": "\\textbf{Solution:} Extend $DM$ to intersect $AC$ at $E$, \\\\ \n$\\because AM$ bisects $\\angle CAD$ and $AM \\perp DM$, \\\\\n$\\angle DAM = \\angle EAM$, $\\angle AMD = \\angle AME = 90^\\circ$, \\\\\nIn $\\triangle ADM$ and $\\triangle AEM$, \\\\\n$\\left\\{\\begin{array}{l} \\angle DAM = \\angle EAM \\hfill \\\\ AM = AM \\hfill \\\\ \\angle AMD = \\angle AME \\hfill \\end{array}\\right.$, \\\\\n$\\therefore \\triangle ADM \\cong \\triangle AEM$ (ASA),\\\\\n$\\therefore DM = EM$, $AE = AD = 12$,\\\\\n$\\therefore$ Point $M$ is the midpoint of $DE$,\\\\\n$\\because N$ is the midpoint of $CD$,\\\\\n$\\therefore MN$ is the midline of $\\triangle CDE$,\\\\\n$\\because MN = 2$,\\\\\n$\\therefore CE = 2MN = 4$,\\\\\n$\\therefore AC = AE + CE = 12 + 4 = 16$,\\\\\nIn the parallelogram $ABCD$, $AB = CD$, $AD \\parallel BC$, $AC \\perp BC$,\\\\\n$\\therefore AC \\perp AD$,\\\\\n$\\therefore \\angle CAD = 90^\\circ$,\\\\\n$\\therefore AB = CD = \\sqrt{AD^2 + AC^2} = \\sqrt{12^2 + 16^2} = \\boxed{20}$.", -"solution_image": [ -"solution_images/52354486_40.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354868": { -"question": "In the figure, in $\\triangle ABC$, $AB=CB=6$, $BD\\perp AC$ at point D, $F$ is on $BC$ and $BF=2$. Connect AF, with E being the midpoint of AF. Connect DE. What is the length of DE?", -"image_file_name": "7054409", -"image": [ -"math/52354868_54.png" -], -"solution": "\\textbf{Solution:} Given that $CB=6, BF=2$, \\\\\nthus $CF=CB-BF=4$, \\\\\nsince $AB=CB=6, BD\\perp AC$, \\\\\nit follows that $AD=CD$ (the three sides of an isosceles triangle are equal), meaning point $D$ is the midpoint of $AC$,\\\\\nsince $E$ is the midpoint of $AF$,\\\\\nthus $DE$ is the midsegment of $\\triangle ACF$,\\\\\ntherefore $DE=\\frac{1}{2}CF=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354875": { -"question": "As shown in the figure, in the square $ABCD$ with side length 8, $E$ and $F$ are moving points on sides $AB$ and $BC$, respectively, and $EF=6$. Let $M$ be the midpoint of $EF$, and $P$ be a moving point on side $AD$. What is the minimum value of $CP+PM$?", -"image_file_name": "7054409", -"image": [ -"math/52354875_611.png" -], -"solution": "\\textbf{Solution:} Extend CD to $C'$, making $C'D = CD$,\\\\\n$CP + PM = C'P + PM$,\\\\\nWhen $C'$, P, and M are collinear, the value of $C'P + PM$ is minimized,\\\\\nAccording to the problem, the trajectory of point M is on the circular arc with B as the center and radius 3,\\\\\nThe minimum distance from a point outside a circle $C'$ to a point M on the circle, $C'M = C'B - 3$,\\\\\nsince $BC = CD = 8$,\\\\\nthus $CC' = 16$,\\\\\nthus $C'B = \\sqrt{CC'^2 + BC^2} = \\sqrt{16^2 + 8^2} = 8\\sqrt{5}$,\\\\\ntherefore, the minimum value of $CP + PM$ is $8\\sqrt{5} - 3 = \\boxed{8\\sqrt{5} - 3}$.", -"solution_image": [ -"solution_images/52354875_60.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52355086": { -"question": "As shown in the figure, the diagonals AC and BD of the rhombus ABCD intersect at point O, and point E is the midpoint of side AB. If $OE = 6$, what is the length of BC?", -"image_file_name": "7054409", -"image": [ -"math/52355086_71.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\nit follows that $OA=OC$, \\\\\nsince point E is the midpoint of side AB, \\\\\nit follows that $OE$ is the median of $\\triangle ABC$, \\\\\nhence $BC=2OE=2\\times 6=\\boxed{12}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354873": { -"question": "As shown in the figure, in rectangle $ABCD$, where $AB=2$ and $AD=1$, point $M$ is on the side $CD$. If $AM$ bisects $\\angle DMB$, what is the length of $DM$?", -"image_file_name": "7054409", -"image": [ -"math/52354873_80.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle,\\\\\nhence $CD=AB=2$, and $AB\\parallel CD$, $BC=AD=1$, $\\angle C=90^\\circ$,\\\\\nthus $\\angle BAM=\\angle AMD$,\\\\\nsince $AM$ bisects $\\angle DMB$,\\\\\nthus $\\angle AMD=\\angle AMB$,\\\\\nhence $\\angle BAM=\\angle AMB$,\\\\\nthus $BM=AB=2$,\\\\\nhence $CM= \\sqrt{MB^{2}-BC^{2}}=\\sqrt{2^{2}-1^{2}}=\\sqrt{3}$,\\\\\nthus $DM=CD−CM=2−\\sqrt{3}=\\boxed{2-\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53706814": { -"question": "As shown in the figure, within square $ABCD$, point $P$ is on side $AB$, $AE\\perp DP$ at point $E$, and $CF\\perp DP$ at point $F$. If $AE=4$ and $CF=7$, what is the length of $EF$?", -"image_file_name": "7054409", -"image": [ -"math/53706814_97.png" -], -"solution": "\\textbf{Solution:} Since $ABCD$ is a square,\\\\\ntherefore, $\\angle ADC=90^\\circ$, and $CD=DA$,\\\\\ntherefore, $\\angle CDF+\\angle ADE=90^\\circ$,\\\\\nsince $AE\\perp DP$, and $CF\\perp DP$,\\\\\ntherefore, $\\angle AED=\\angle DFC=90^\\circ$,\\\\\ntherefore, $\\angle DAE+\\angle ADE=90^\\circ$,\\\\\ntherefore, $\\angle CDF=\\angle DAE$,\\\\\nin $\\triangle CDF$ and $\\triangle DAE$,\\\\\nsince $\\angle DFC=\\angle AED=90^\\circ$, $\\angle CDF=\\angle DAE$, $CD=DA$,\\\\\ntherefore, $\\triangle CDF \\cong \\triangle DAE$ (AAS),\\\\\ntherefore, $CF=DE=7$, $DF=AE=4$,\\\\\ntherefore, $EF=DE-DF=7-4=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53707023": { -"question": "As shown in the figure, in rectangle $ABCD$, we have $AD=1$, $AB>1$, and $AG$ bisects $\\angle BAD$. Perpendiculars are drawn from points B and C to $AG$ at points E and F, respectively. What is the value of $\\left(AE-GF\\right)$?", -"image_file_name": "7054409", -"image": [ -"math/53707023_108.png" -], -"solution": "\\textbf{Solution:} Let AE = x,\n\nsince quadrilateral ABCD is a rectangle,\n\ntherefore, $\\angle BAD = \\angle D = 90^\\circ$, CD = AB,\n\nsince AG bisects $\\angle BAD$,\n\ntherefore, $\\angle DAG = 45^\\circ$,\n\ntherefore, $\\triangle ADG$ is an isosceles right triangle,\n\ntherefore, DG = AD = 1,\n\ntherefore, AG = $\\sqrt{2}$AD = $\\sqrt{2}$,\n\nSimilarly: BE = AE = x, CD = AB = $\\sqrt{2}x$,\n\ntherefore, CG = CD - DG = $\\sqrt{2}x - 1$,\n\nSimilarly: CG = $\\sqrt{2}$FG,\n\ntherefore, FG = $\\frac{\\sqrt{2}}{2}$CG = x - $\\frac{\\sqrt{2}}{2}$,\n\ntherefore, AE - GF = x - (x - $\\frac{\\sqrt{2}}{2}$) = $\\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53706951": { -"question": "As shown in the diagram, within quadrilateral $ABCD$, $AC$ and $BD$ intersect at point $O$. Point $E$ is the midpoint of side $BC$. If $AB = 4$, what is the length of $OE$?", -"image_file_name": "7054409", -"image": [ -"math/53706951_110.png" -], -"solution": "\\textbf{Solution:} In quadrilateral $ABCD$, $AC$ and $BD$ intersect at point $O$,\\\\\n$\\therefore$ $BO=DO$,\\\\\n$\\because$ point $E$ is the midpoint of side $BC$,\\\\\n$\\therefore$ $OE$ is the median of $\\triangle ABC$,\\\\\n$\\therefore$ $OE = \\frac{1}{2}AB = \\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53151168": { -"question": "As shown in the figure, a rectangular sheet of paper is folded along EF, with points D and C corresponding to positions D' and C', respectively. If $\\angle EFC'=115^\\circ$, what is the measure of $\\angle AED'$?", -"image_file_name": "7058811", -"image": [ -"math/53151168_20.png" -], -"solution": "\\textbf{Solution:} Given $AD \\parallel BC$ and $\\angle EFC' = 115^\\circ$,\\\\\n$\\therefore \\angle DEF = 180^\\circ - 115^\\circ = 65^\\circ$.\\\\\nSince $\\angle D'EF$ is formed by folding $\\angle DEF$,\\\\\n$\\therefore \\angle DED' = 2\\angle DEF = 130^\\circ$,\\\\\n$\\therefore \\angle AED' = 180^\\circ - 130^\\circ = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51918244": { -"question": "As shown in the figure, $\\triangle ABC$ and $\\triangle A^{\\prime}B^{\\prime}C^{\\prime}$ are similar, with the center of similarity at point O, and $\\frac{A^{\\prime}C^{\\prime}}{AC}=\\frac{2}{3}$. If the area of $\\triangle ABC$ is 9, what is the area of $\\triangle A^{\\prime}B^{\\prime}C^{\\prime}$?", -"image_file_name": "7058811", -"image": [ -"math/51918244_31.png" -], -"solution": "\\textbf{Solution}: Since $\\triangle ABC$ and $\\triangle A^{\\prime}B^{\\prime}C^{\\prime}$ are similar, with the center of similarity being point O, and $\\frac{A'C'}{AC}=\\frac{2}{3}$,\\\\\nit follows that $\\frac{S_{\\triangle A^{\\prime}B^{\\prime}C^{\\prime}}}{S_{\\triangle ABC}}=\\left(\\frac{A^{\\prime}C^{\\prime}}{AC}\\right)^2=\\left(\\frac{2}{3}\\right)^2=\\frac{4}{9}$,\\\\\nSince the area of $\\triangle ABC$ is 9,\\\\\ntherefore, the area of $\\triangle A^{\\prime}B^{\\prime}C^{\\prime}$ is $\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51910248": { -"question": "As shown in the figure, the line MN is an axis of symmetry of the rectangle ABCD, with point E located on side AD. When $\\triangle BAE$ is folded along BE, the corresponding point of A, denoted as F, falls on the line MN. If $AB=4$, what is the length of BE?", -"image_file_name": "7058811", -"image": [ -"math/51910248_42.png" -], -"solution": "\\textbf{Solution:} Given that MN is an axis of symmetry of rectangle ABCD, \\\\\nit follows that $AM=BM=\\frac{1}{2}AB=2$, and $MN\\parallel AD$, \\\\\nhence, $\\angle AEF+\\angle MFE=180^\\circ$, $\\angle BMF=\\angle BAE=90^\\circ$, \\\\\nby the properties of folding, we have $BF=AB=4$, $\\angle AEB=\\angle FEB$, $\\angle BFE=\\angle A=90^\\circ$, \\\\\ntherefore, $\\sin\\angle BFM=\\frac{AB}{BF}=\\frac{1}{2}$, \\\\\nhence, $\\angle BFM=30^\\circ$, \\\\\nthus, $\\angle MFE=60^\\circ$, \\\\\nand so, $\\angle AEF=120^\\circ$, \\\\\ntherefore, $\\angle AEB=60^\\circ$, \\\\\nthus, $BE=\\frac{AB}{\\sin\\angle AEB}=\\boxed{\\frac{8\\sqrt{3}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51910249": { -"question": "In the figure, within $\\triangle ABC$ and $\\triangle ADE$, we have $\\angle BAC=\\angle DAE=90^\\circ$, $AC=AD=3$, and $AB=AE=5$. Connect $BD$ and $CE$, and rotate $\\triangle ADE$ around point $A$ for one complete circle. During the rotation, when $\\angle DBA$ is at its maximum, what is the area of $\\triangle ACE$?", -"image_file_name": "7058811", -"image": [ -"math/51910249_56.png" -], -"solution": "\\textbf{Solution:} From the given information, we know that the trajectory of point D is a circle with center at point A and radius equal to AD. \\\\\nWhen the line BD is tangent to the trajectory circle of point D, $\\angle DBA$ reaches its maximum value, at which point $\\angle BDA=90^\\circ$, as shown in the figure. \\\\\nDraw line CF $\\perp$ AE at F. \\\\\nSince $\\angle DAE=90^\\circ$ and $\\angle BAC=90^\\circ$, \\\\\nit follows that $\\angle CAF=\\angle BAD$. \\\\\nIn $\\triangle ABD$, by the Pythagorean theorem, BD=$\\sqrt{5^2-3^2}=4$. \\\\\nTherefore, from $\\sin \\angle CAF=\\sin \\angle BAD$, we get: \\\\\n$\\frac{CF}{AC}=\\frac{BD}{AB}$, \\\\\nthat is, $\\frac{CF}{3}=\\frac{4}{5}$, \\\\\nsolving this yields: CF=$\\frac{12}{5}$, \\\\\nthus, the area of triangle ACE = $\\frac{1}{2}\\times \\frac{12}{5}\\times 5=\\boxed{6}$.", -"solution_image": [ -"solution_images/51910249_50.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53308051": { -"question": "As shown in the figure, the four corners of the rectangular paper $ABCD$ are folded inward to precisely form a quadrilateral $EFGH$ with no gaps and no overlaps. If $EH=3$ and $EF=4$, what is the length of side $BC$?", -"image_file_name": "7058811", -"image": [ -"math/53308051_64.png" -], -"solution": "\\textbf{Solution:} We have $\\because \\angle HEM=\\angle AEH$ and $\\angle BEF=\\angle FEM$, \\\\\n$\\therefore \\angle HEF=\\angle HEM+\\angle FEM=\\frac{1}{2}\\times 180^\\circ=90^\\circ$, \\\\\nSimilarly, we find: $\\angle EHG=\\angle HGF=\\angle EFG=90^\\circ$, \\\\\n$\\therefore$ Quadrilateral $EFGH$ is a rectangle, \\\\\n$\\therefore GH=EF$ and $GH\\parallel EF$, \\\\\n$\\therefore \\angle GHN=\\angle EFM$, \\\\\nIn $\\triangle GHN$ and $\\triangle EFM$ we have\\\\\n$\\left\\lbrace\\begin{array}{l}\n\\angle GNH=\\angle EMF\\\\\n\\angle NHG=\\angle MFE\\\\\nHG=EF\n\\end{array}\\right.$, \\\\\n$\\therefore \\triangle GHN\\cong \\triangle EFM(AAS)$, \\\\\n$\\therefore HN=MF=HD$, \\\\\n$\\therefore AD=AH+HD=HM+MF=HF$, \\\\\n$HF=\\sqrt{EH^2+EF^2}=\\sqrt{3^2+4^2}=5$, \\\\\n$\\therefore BC=AD=\\boxed{5}$.", -"solution_image": [ -"solution_images/53308051_62.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51737328": { -"question": "As shown in the diagram, in square $ABCD$, side $BC$ is rotated counterclockwise around point $B$ to $BC'$, and lines $CC'$ and $DC'$ are drawn. If $\\angle CC'D = 90^\\circ$ and $BC' = 2\\sqrt{5}$, what is the length of segment $C'D$?", -"image_file_name": "7058811", -"image": [ -"math/51737328_71.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $BE\\perp CC'$ at point E,\\\\\nsince quadrilateral ABCD is a square,\\\\\ntherefore $BC=CD$, $\\angle BCD=90^\\circ$,\\\\\ntherefore $\\angle BCE + \\angle C'CD = 90^\\circ$,\\\\\nsince $\\angle BCE + \\angle CBE = 90^\\circ$,\\\\\ntherefore $\\angle C'CD = \\angle CBE$,\\\\\nalso since $\\angle BEC = \\angle CC'D = 90^\\circ$,\\\\\ntherefore $\\triangle BCE \\cong \\triangle CDC'$ (AAS),\\\\\ntherefore $CE=C'D$, $BE=CC'$,\\\\\nsince side BC is rotated counterclockwise around point B to BC',\\\\\ntherefore $BC=BC'$,\\\\\nalso since $BE\\perp CC'$,\\\\\ntherefore $CE=C'E=C'D= \\frac{1}{2}CC'= \\frac{1}{2}BE$,\\\\\nsince $BC'= 2\\sqrt{5}$,\\\\\ntherefore $CE^2+BE^2=CE^2+(2CE)^2=BC^2=(2\\sqrt{5})^2$,\\\\\nsolving for: CE=2,\\\\\ntherefore, the length of segment C'D is $\\boxed{2}$.", -"solution_image": [ -"solution_images/51737328_70.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51684405": { -"question": "As shown, in $\\triangle ABC$, $AB=6$. After rotating $\\triangle ABC$ $40^\\circ$ counterclockwise around point $A$, we get $\\triangle ADE$. The path traced by point $B$ is $\\overset{\\frown}{BD}$. What is the area of the shaded region in the figure?", -"image_file_name": "7058811", -"image": [ -"math/51684405_81.png" -], -"solution": "\\textbf{Solution:} From the property of rotation, we know that $S_{\\triangle ADE} = S_{\\triangle ABC}$,\\\\\nthus, the area of the shaded part $= S_{\\triangle ADE} + S_{\\text{sector} DAB} - S_{\\triangle ABC}$\\\\\n$= S_{\\text{sector} DAB}$\\\\\n$= \\frac{40\\pi \\times 6^2}{360}$\\\\\n$= \\boxed{4\\pi}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53273961": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $\\angle BAD=110^\\circ$, $\\angle B=\\angle D=90^\\circ$. Find points $M$ and $N$ on $BC$ and $CD$ respectively, such that the perimeter of $\\triangle AMN$ is minimal. What is the measure of $\\angle AMN + \\angle ANM$?", -"image_file_name": "7058811", -"image": [ -"math/53273961_95.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct the symmetric point of point A about line $BC$ as $A^{\\prime}$, and the symmetric point about line $CD$ as $A^{\\prime \\prime}$,\\\\\njoin $A^{\\prime}A^{\\prime \\prime}$, and let the intersection points with $BC$ and $CD$ be the required points M and N, respectively,\\\\\n$\\because \\angle BAD=110^\\circ$, $\\angle B=\\angle D=90^\\circ$,\\\\\n$\\therefore \\angle A^{\\prime} +\\angle A^{\\prime \\prime} =180^\\circ-110^\\circ=70^\\circ$,\\\\\nfrom the property of axial symmetry, we get: $\\angle A^{\\prime} =\\angle A^{\\prime}AM$, $\\angle A^{\\prime \\prime} =\\angle A^{\\prime \\prime}AN$,\\\\\n$\\therefore \\angle AMN+\\angle ANM=2(\\angle A^{\\prime} +\\angle A^{\\prime \\prime})=2\\times 70^\\circ=\\boxed{140^\\circ}$.", -"solution_image": [ -"solution_images/53273961_97.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51809615": { -"question": "As shown in the figure, $\\triangle ABC$ is similar to $\\triangle DEF$, with point O being the center of similitude. Given that $OA=1$ and $OD=3$, if the perimeter of $\\triangle ABC$ is 3, what is the perimeter of $\\triangle DEF$?", -"image_file_name": "7058811", -"image": [ -"math/51809615_106.png" -], -"solution": "\\textbf{Solution}: Since $\\triangle ABC$ is similar to $\\triangle DEF$ and $OA=1$, $OD=3$, \\\\\nthus $OA: OD=1: 3$ and $AC\\parallel DF$, \\\\\ntherefore $\\triangle OAC\\sim \\triangle ODF$, \\\\\nhence $OA: OD=AC: DF=1: 3$, \\\\\nsince $\\triangle ABC$ is similar to $\\triangle DEF$, \\\\\ntherefore $\\triangle ABC\\sim \\triangle DEF$, \\\\\nthus the perimeter ratio of $\\triangle ABC$ to $\\triangle DEF$ is $1: 3$, \\\\\ntherefore the perimeter of $\\triangle DEF$ is $3\\times 3=\\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51807170": { -"question": "As shown in the figure, in square ABCD, the side BC is rotated counterclockwise around point B to $BC'$, and $CC'$, $DC'$ are connected. If $\\angle CC'D=90^\\circ$ and $C'D=2$, what is the length of the line segment BC?", -"image_file_name": "7058811", -"image": [ -"math/51807170_115.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, take point O as the midpoint of segment CC$^{\\prime}$ and connect BO. \\\\\nAccording to the condition, BC = BC$^{\\prime}$ \\\\\n$\\therefore$BO$\\perp$CC$^{\\prime}$ \\\\\n$\\therefore$$\\angle$BOC = $90^\\circ$ \\\\\nIn square ABCD, \\\\\nBC = CD, $\\angle$BCD = $90^\\circ$ \\\\\n$\\therefore$$\\angle$OCB + $\\angle$C$^{\\prime}$CD = $90^\\circ$ \\\\\nAlso, since $\\angle$CC$^{\\prime}$D = $90^\\circ$ \\\\\n$\\therefore$$\\angle$C$^{\\prime}$DC + $\\angle$C$^{\\prime}$CD = $90^\\circ$ \\\\\n$\\therefore$$\\angle$OCB = $\\angle$C$^{\\prime}$DC \\\\\nIn Rt$\\triangle$OBC and Rt$\\triangle$C$^{\\prime}$CD, \\\\\n$\\left\\{\\begin{array}{l}\\angle OCB = \\angle C^{\\prime}DC \\\\ \\angle BOC = \\angle CC^{\\prime}D \\\\ BC = CD \\end{array}\\right.$ \\\\\n$\\therefore$Rt$\\triangle$OBC$\\cong$ Rt$\\triangle$C$^{\\prime}$CD (AAS) \\\\\n$\\therefore$OC = C$^{\\prime}$D = 2 \\\\\n$\\therefore$CC$^{\\prime}$ = 2 OC = $2 \\times 2$ = 4 \\\\\n$\\therefore$BO = CC$^{\\prime}$ = 4 \\\\\nIn Rt$\\triangle$BOC, \\\\\nBC = $\\sqrt{BO^{2} + OC^{2}}$ = $\\sqrt{4^{2} + 2^{2}}$ = $\\boxed{2\\sqrt{5}}$", -"solution_image": [ -"solution_images/51807170_110.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51807221": { -"question": "As shown in the figure, equilateral $\\triangle ABC$ has a side length of $4\\sqrt{3}$. The angle bisectors of $\\angle ABC$ and $\\angle ACB$ intersect at point O. $\\triangle OBC$ is rotated $30^\\circ$ counterclockwise around point O to obtain $\\triangle OB_{1}C_{1}$. $B_{1}C_{1}$ intersects BC at point D, and $B_{1}C_{1}$ intersects AC at point E. What is the length of DE?", -"image_file_name": "7058811", -"image": [ -"math/51807221_129.png" -], -"solution": "\\textbf{Solution:} Draw OH$\\perp$BC at H and OB$_{1}$ intersecting BC at M. Through M, draw MF$\\perp$BO at F, as shown in the diagram below:\\\\\nSince $\\triangle ABC$ is an equilateral triangle, and OB, OC are the angle bisectors of $\\angle ABC$, $\\angle ACB$ respectively,\\\\\ntherefore, $\\angle 1= \\frac{1}{2}\\angle ABC=30^\\circ$, $\\angle 3= \\frac{1}{2}\\angle ACB=30^\\circ$,\\\\\nthus, $\\triangle OBC$ is an isosceles triangle, and by \"the three lines coincide\", \\\\\nBH=CH=$ \\frac{1}{2}$BC=$ 2\\sqrt{3}$,\\\\\ntherefore, BO=$ \\frac{2\\sqrt{3}}{3}$BH=4,\\\\\nsince $\\triangle OBC$ is rotated $30^\\circ$ counterclockwise around point O to get $\\triangle OB_{1}C_{1}$,\\\\\ntherefore, $\\angle 2=30^\\circ=\\angle 1$,\\\\\nthus, $\\triangle OBM$ is an isosceles triangle, and by \"the three lines coincide\", \\\\\nBF=$ \\frac{1}{2}$BO=2,\\\\\nthus, MO=BM=$ \\frac{2\\sqrt{3}}{3}$BF=$ \\frac{4\\sqrt{3}}{3}$,\\\\\nthus, MB$_{1}$=OB$_{1}$−OM=OB−OM=$ 4−\\frac{4\\sqrt{3}}{3}$,\\\\\nmoreover, by the rotation $\\angle B=\\angle B_{1}=30^\\circ$, and the vertically opposite angle $\\angle BMO=\\angle DMB_{1}=120^\\circ$,\\\\\ntherefore, $\\angle MDB_{1}=180^\\circ-\\angle B_{1}-\\angle DMB_{1}=180^\\circ-30^\\circ-120^\\circ=30^\\circ$,\\\\\ntherefore, $\\triangle MB_{1}D$ is an isosceles triangle,\\\\\ntherefore, MD=MB$_{1}=$ $4-\\frac{4\\sqrt{3}}{3}$,\\\\\ntherefore, CD=BC−MD−BM=$ 4\\sqrt{3}-(4-\\frac{4\\sqrt{3}}{3})-\\frac{4\\sqrt{3}}{3}=4\\sqrt{3}-4$,\\\\\nsince the vertically opposite angle $\\angle EDC=\\angle MDB_{1}=30^\\circ$, and $\\angle ACB=60^\\circ$,\\\\\ntherefore, $\\angle DEC=180^\\circ-\\angle EDC-\\angle ACB=90^\\circ$,\\\\\ntherefore, $\\triangle CDE$ is a right-angled triangle with angles $30^\\circ$, $60^\\circ$, $90^\\circ$,\\\\\ntherefore, DE=$ \\frac{\\sqrt{3}}{2}$CD=$ \\frac{\\sqrt{3}}{2}(4\\sqrt{3}-4)=\\boxed{6-2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51807221_120.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51807213": { -"question": "As shown, $\\triangle ABC$ and $\\triangle A'B'C'$ are similar figures with point O as the center of similitude. If $OA: AA'=2:5$, then what is the ratio of the perimeters of $\\triangle ABC$ and $\\triangle A'B'C'$?", -"image_file_name": "7058811", -"image": [ -"math/51807213_135.png" -], -"solution": "\\textbf{Solution:} Since $OA:AA'=2:5$, \\\\\ntherefore, $OA:OA'=2:3$, \\\\\nthus, the ratio of similarity between $\\triangle ABC$ and $\\triangle A'B'C'$ is $2:3$, \\\\\nhence, the ratio of the perimeters of $\\triangle ABC$ and $\\triangle A'B'C'$ is $\\boxed{2:3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51806898": { -"question": "As shown in the figure: $\\triangle AOB$ and $\\triangle A_1OB_1$ are similar figures with the origin as the center of similarity, and the scale factor of similarity is $1\\colon 3$. If the coordinates of point B are ($-1$, $2$), what are the coordinates of point $B_1$?", -"image_file_name": "7058811", -"image": [ -"math/51806898_140.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle AOB$ and $\\triangle A_1OB_1$ are homothetic figures with the origin as the center of homothety, and the ratio of homothety is $1\\colon 3$, the coordinates of point $B$ are ($-1$, $2$),\\\\\ntherefore, the coordinates of point $B_1$ are ($-1\\times(-3)$, $2\\times(-3)$), which is $\\boxed{(3,-6)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51806942": { -"question": "As shown in the figure, in the right-angled triangle $ABC$, where $\\angle ABC=90^\\circ$ and the side $AB$ is on the x-axis, taking $O$ as the center of dilation, the triangle $A_1B_1C_1$ is similar to the triangle $ABC$. If the corresponding point of $C(4,6)$ is $C_1(2,3)$, what are the coordinates of $B_1$?", -"image_file_name": "7058811", -"image": [ -"math/51806942_150.png" -], -"solution": "\\textbf{Solution:} Given that in the right triangle $ABC$, $\\angle ABC=90^\\circ$, and $C(4,6)$,\\\\\nthus $B(4,0)$,\\\\\ntherefore, taking $O$ as the center of similarity, construct $\\triangle A_1B_1C_1$ similar to $\\triangle ABC$, with the corresponding point of $C(4,6)$ being $C_1(2,3)$,\\\\\nthus, the coordinates of ${B}_1$ are: $(4\\times \\frac{1}{2},0)$, that is $\\boxed{(2,0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51638142": { -"question": "As shown in the figure, within the rectangular paper $ABCD$, where $AD=9$, $E$ is a point on $CD$. Connect $AE$, and after folding $\\triangle ADE$ along the straight line $AE$, point $D$ falls on point $F$. Draw $FG\\perp AD$ at $G$. If $AG=2GD$, what is the value of $DE$?", -"image_file_name": "7058811", -"image": [ -"math/51638142_160.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw line EH $\\perp$ FG at point H, then $\\angle$EHG = 90$^\\circ$. It is easy to deduce from the folding property that $\\triangle AED \\cong \\triangle AEF$, thus $AF = AD = 9$, $DE = EF$. Since $AG = 2GD$, it follows that $GD = 3$, $AG = 6$. Given $FG \\perp AD$, it follows that $\\angle FGD = \\angle AGF = 90^\\circ$. Therefore, in $\\triangle AGF$, $FG = \\sqrt{AF^2 - AG^2} = \\sqrt{9^2 - 6^2} = 3\\sqrt{5}$. Since ABCD is a rectangle, it follows that $\\angle D = 90^\\circ$, hence quadrilateral GHED is a rectangle. Therefore, $GH = DE$, $HE = GD = 3$. Let $DE = x$, then $GH = EF = x$, $HF = 3\\sqrt{5} - x$. Therefore, in $\\triangle HEF$, $HF^2 + HE^2 = EF^2$, which gives $(3\\sqrt{5} - x)^2 + 3^2 = x^2$. Solving for $x$ gives $x = \\frac{9\\sqrt{5}}{5}$. Therefore, $DE = \\boxed{\\frac{9\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/51638142_160.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53151323": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB = 5$, $BC = 6$, point $E$ is on side $BC$, and $BE = 2$. $F$ is a moving point on side $AB$. Connect $EF$, and construct an equilateral $\\triangle EFG$ with $EF$ as a side, and point $G$ is inside rectangle $ABCD$. Connect $CG$. What is the minimum value of $CG$?", -"image_file_name": "7058811", -"image": [ -"math/53151323_170.png" -], -"solution": "\\textbf{Solution:} Given the problem, we know that point F is the driving point, and point G is the driven point. Point F moves on a line segment, and point G also definitely moves on a linear trajectory.\\\\\nRotate $\\triangle EFB$ about point E by $60^\\circ$, making EF coincide with EG, and thus obtaining $\\triangle EFB \\cong \\triangle EGH$,\\\\\ntherefore, it can be inferred that $\\triangle EBH$ is an equilateral triangle, and point G is on the line HN, which is perpendicular to HE,\\\\\nDraw CM$\\perp$HN, then CM is the minimum value of CG,\\\\\nDraw EP$\\perp$CM, it can be known that quadrilateral HEPM is a rectangle,\\\\\nthen $CM=MP+CP=HE+ \\frac{1}{2}EC=2+2=\\boxed{4}$.", -"solution_image": [ -"solution_images/53151323_170.png", -"solution_images/53151323_171.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51445039": { -"question": "As illustrated in the Cartesian coordinate system, the vertices of $\\triangle ABC$ are respectively at $A(2, 2)$, $B(4, 2)$, and $C(4, 4)$. By taking the origin as the center of similitude, and drawing $\\triangle DEF$ on the opposite side of the origin such that $\\triangle DEF$ is similar to $\\triangle ABC$ with a similarity ratio of $1:2$, what is the length of the line segment DF?", -"image_file_name": "7058811", -"image": [ -"math/51445039_188.png" -], -"solution": "\\textbf{Solution:}\n\nGiven points A(2,2), B(4,2), and C(4,4),\\\\\nhence, AB = 2, and BC = 2,\\\\\nby the Pythagorean theorem, we find that AC = $\\sqrt{AB^{2} + BC^{2}} = 2\\sqrt{2}$,\\\\\nsince a triangle DEF is drawn on the opposite side of the origin with the origin as the center of dilation, such that triangle DEF and triangle ABC are similar with a scale factor of 1:2,\\\\\ntherefore, the length of segment DF is $\\frac{1}{2}AC = \\boxed{\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51444993": { -"question": "As shown in the figure, $\\triangle ABC$ and $\\triangle A'B'C'$ are similar figures with the point $O$ as the center of similitude. If $OA:OA'=2:3$, what is the ratio of the areas of $\\triangle ABC$ and $\\triangle A'B'C'$?", -"image_file_name": "7058811", -"image": [ -"math/51444993_196.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC$ and $\\triangle A'B'C'$ are similar figures with point O as the center of similitude,\\\\\nit follows that $\\triangle ABC \\sim \\triangle A'B'C'$, $AC \\parallel A'C'$,\\\\\ntherefore $\\angle ACO = \\angle A'C'O$, $\\angle CAO = \\angle C'A'O$,\\\\\nhence $\\triangle AOC \\sim \\triangle A'OC'$,\\\\\nthus $AC : A'C' = OA : OA' = 2 : 3$,\\\\\ntherefore $\\frac{S_{\\triangle ABC}}{S_{\\triangle A'B'C'}} = \\left(\\frac{AC}{A'C'}\\right)^2 = \\boxed{\\frac{4}{9}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51654675": { -"question": "As shown in the figure, $\\triangle ABC$ is rotated $40^\\circ$ clockwise around point C to obtain $\\triangle A'CB'$. If $AC \\perp A'B'$, and $AA'$ is connected, what is the measure of $\\angle AA'B'$?", -"image_file_name": "7058811", -"image": [ -"math/51654675_206.png" -], -"solution": "\\textbf{Solution:} Let the intersection point of $AC$ and ${A}^{\\prime}{B}^{\\prime}$ be O, \\\\\nfrom the property of rotation it follows that $AC={A}^{\\prime}C$, $\\angle {A}^{\\prime}CA=\\angle BC{B}^{\\prime}=40^\\circ$, \\\\\n$\\therefore$ $\\angle CA{A}^{\\prime}=\\angle C{A}^{\\prime}A=\\frac{180^\\circ-\\angle {A}^{\\prime}CA}{2}=70^\\circ$, \\\\\n$\\because$ $AC\\perp {A}^{\\prime}{B}^{\\prime}$, \\\\\n$\\therefore$ $\\angle {A}^{\\prime}OC=90^\\circ$, \\\\\n$\\therefore$ $\\angle C{A}^{\\prime}O=180^\\circ-\\angle {A}^{\\prime}CO-\\angle {A}^{\\prime}OC=50^\\circ$, \\\\\n$\\therefore$ $\\angle A{A}^{\\prime}{B}^{\\prime}=\\angle C{A}^{\\prime}A-\\angle C{A}^{\\prime}O=\\boxed{20^\\circ}$.", -"solution_image": [ -"solution_images/51654675_209.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51654847": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle ABC=30^\\circ$, $AC=\\sqrt{5}$. By rotating $\\triangle ABC$ counterclockwise around point A, we get $\\triangle AB'C'$, making point C fall on the side AB. Connect $BB'$. What is the length of $BB'$?", -"image_file_name": "7058811", -"image": [ -"math/51654847_211.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle C=90^\\circ$,\\\\\n$\\angle ABC=30^\\circ$,\\\\\n$AC=\\sqrt{5}$,\\\\\ntherefore $AB=2\\sqrt{5}$,\\\\\n$BC=\\sqrt{15}$,\\\\\nsince right triangle $ABC$ is rotated counterclockwise around point $A$ to get $\\triangle AB'C'$,\\\\\nthus $AC'=AC=\\sqrt{5}$,\\\\\n$B'C'=BC=\\sqrt{15}$,\\\\\ntherefore $BC'=\\sqrt{5}$,\\\\\nsince $\\angle BC'B'=90^\\circ$,\\\\\nthus $BB'=\\sqrt{B'C'^2+BC'^2}=\\sqrt{(\\sqrt{15})^2+(\\sqrt{5})^2}=\\boxed{2\\sqrt{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51654777": { -"question": "As shown in the figure, in rectangle $ABCD$, $AD=2\\sqrt{3}$ and $AB=5$. Let $M$ be a point on $CD$. $\\triangle ADM$ is folded along the straight line $AM$ to obtain $\\triangle ANM$. If $AN$ bisects $\\angle MAB$, what is the length of $CN$?", -"image_file_name": "7058811", -"image": [ -"math/51654777_225.png" -], -"solution": "\\textbf{Solution}: As shown in the diagram, draw a perpendicular line from point N to CD, intersecting $CD$ at point E. \\\\\nFrom the fold, we know: $DM=MN$, \\\\\n$DA=AN=2\\sqrt{3}$, \\\\\n$\\angle DAM=\\angle NAM$ \\\\\nBecause AN bisects $\\angle MAB$, \\\\\nTherefore, $\\angle NAM=\\angle BAN$ \\\\\nTherefore, $\\angle DAM=\\angle NAM=\\angle BAN$ \\\\\nBecause $\\angle DAB=90^\\circ$, \\\\\nTherefore, $\\angle DAM=30^\\circ$, \\\\\n$\\angle DAN=60^\\circ$ \\\\\nTherefore, $DM=AD\\cdot\\tan30^\\circ=2\\sqrt{3}\\times \\frac{\\sqrt{3}}{3}=2$ \\\\\nTherefore, $MN=DM=2$ \\\\\nBecause $\\angle DAN+\\angle DMN=180^\\circ$, \\\\\n$\\angle CMN+\\angle DMN=180^\\circ$ \\\\\nTherefore, $\\angle CMN=\\angle DAN=60^\\circ$ \\\\\nTherefore, $NE=MN\\cdot\\sin60^\\circ=2\\times \\frac{\\sqrt{3}}{2}=\\sqrt{3}$, \\\\\n$ME=1$ \\\\\nTherefore, $CE=5-2-1=2$ \\\\\nTherefore, in right triangle $\\triangle ECN$, by the Pythagorean theorem, we get: \\\\\n$CN=\\sqrt{{(\\sqrt{3})}^{2}+{2}^{2}}=\\sqrt{3+4}=\\boxed{\\sqrt{7}}$", -"solution_image": [ -"solution_images/51654777_221.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51654883": { -"question": "As shown in the diagram, $\\triangle ABC$ is rotated clockwise by $50^\\circ$ around point $C$ to obtain $\\triangle A'B'C'$. If $\\angle A=40^\\circ$ and $\\angle B=110^\\circ$, what is the degree measure of $\\angle BCA'$?", -"image_file_name": "7058811", -"image": [ -"math/51654883_230.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle A=40^\\circ$ and $\\angle B=110^\\circ$, \\\\\nit follows that $\\angle ACB=30^\\circ$, \\\\\nsince $\\triangle ABC$ is rotated $50^\\circ$ clockwise around point C to obtain $\\triangle A'B'C$, \\\\\nthus $\\angle ACA'=50^\\circ$, \\\\\ntherefore, $\\angle BCA'=\\angle BCA+\\angle ACA'=30^\\circ+50^\\circ=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51569291": { -"question": "As shown in the figure, within the right-angled triangle $ABC$ with a $30^\\circ$ angle, point $M$ is the midpoint on the hypotenuse $AB$. After rotating the triangle clockwise by $90^\\circ$ around the right-angle vertex $C$, we obtain $\\triangle A^\\prime B^\\prime C$. If $AC=6$, what is the length of the path traveled by point $M$?", -"image_file_name": "7058811", -"image": [ -"math/51569291_240.jpg" -], -"solution": "\\textbf{Solution:} As illustrated, connect CM and CM',\\\\\nsince in the $30^\\circ$ right-angled triangle ABC, point M is the midpoint on the hypotenuse AB,\\\\\ntherefore CM = $\\frac{1}{2}AB$,\\\\\nsince $\\angle B = 30^\\circ$,\\\\\ntherefore AB = 2AC = 12,\\\\\ntherefore CM = 6,\\\\\nAccording to the problem, the path of point M is an arc with CM as the radius and point C as the center,\\\\\nsince the triangle is rotated $90^\\circ$ clockwise around the right-angle vertex C to form $\\triangle A^{\\prime}B^{\\prime}C$,\\\\\ntherefore $\\angle MCM' = 90^\\circ$,\\\\\nthus, the length of the path traveled by point M is\\\\\n$ \\frac{90^\\circ\\pi \\times 6}{180} = \\boxed{3\\pi} $.", -"solution_image": [ -"solution_images/51569291_240.jpg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51554733": { -"question": "As shown in the figure, the pentagon ABCDE is obtained through a similarity transformation from the pentagon FGHMN, with point O as the center of similarity. Points F, G, H, M, and N are the midpoints of OA, OB, OC, OD, and OE, respectively. What is the ratio of the areas of the pentagons ABCDE and FGHMN?", -"image_file_name": "7058811", -"image": [ -"math/51554733_250.jpg" -], -"solution": "\\textbf{Solution:} Since $F$ is the midpoint of $AO$,\\\\\nit follows that $OF:OA=1:2$,\\\\\nsince pentagon $ABCDE$ is obtained from pentagon $FGHMN$ through a similarity transformation,\\\\\nit follows that $FN \\parallel AE$,\\\\\nthus $\\triangle OFN \\sim \\triangle OAE$,\\\\\nhence $OF:OA=FN:AE=1:2$,\\\\\ntherefore, the ratio of the areas of pentagons $ABCDE$ and $FGHMN$ is: $4:1$,\\\\\nso, the ratio of the areas of pentagons $ABCDE$ and $FGHMN$ is $\\boxed{4:1}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53136801": { -"question": "As shown in the figure, it is known that $\\triangle ABC$ and $\\triangle EDC$ are similar figures with point $C$ as the center of similarity, and the similarity ratio between $\\triangle ABC$ and $\\triangle EDC$ is $1\\colon 2$. If the area of $\\triangle ABC$ is $2$, what is the area of $\\triangle EDC$?", -"image_file_name": "7058811", -"image": [ -"math/53136801_267.png" -], -"solution": "\\textbf{Solution:} Since triangles $\\triangle ABC$ and $\\triangle EDC$ are homothetic,\\\\\nit follows that $\\triangle ABC \\sim \\triangle EDC$,\\\\\nand since the homothety ratio is $1\\colon 2$,\\\\\nthe similarity ratio is $1\\colon 2$,\\\\\nthus, the area ratio of $\\triangle ABC$ to $\\triangle EDC$ is: $1\\colon 4$,\\\\\nsince the area of $\\triangle ABC$ is $2$,\\\\\nthe area of $\\triangle EDC$ is: $2 \\times 4 = \\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51496823": { -"question": "As shown in the figure, in the Cartesian coordinate system, $A\\left(1, 0\\right)$, $B\\left(0, 2\\right)$, and $\\triangle ABC$ is an isosceles right triangle. By using A as the center of dilation and enlarging $\\triangle ABC$ by a similarity ratio of $1:2$, the enlarged figure is denoted as $\\triangle AB'C'$. What are the coordinates of $C'$?", -"image_file_name": "7058811", -"image": [ -"math/51496823_274.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $A$ is the center of similitude, if we enlarge $\\triangle ABC$ by the similarity ratio $1\\colon 2$, the resulting figure is denoted as $\\triangle AB'C'$,\\\\\ntherefore $AB=\\frac{1}{2}AB'$,\\\\\nthus point $B$ is the midpoint of segment $AB'$,\\\\\nsince $A(1,0)$ and $B(0,2)$,\\\\\nby the Pythagorean theorem, $AB=\\sqrt{4+1}=\\sqrt{5}$,\\\\\nthus $AB' =2AB=2\\sqrt{5}$,\\\\\nbased on similarity, $\\triangle AB'C'$ is an isosceles right triangle,\\\\\n$AC'=\\sqrt{AB'^{2}+B'C'^{2}}=2\\sqrt{10}$,\\\\\nA, when $C'(-6,-2)$, by the Pythagorean theorem, $AC'=\\sqrt{(1+6)^{2}+(0+2)^{2}}=\\sqrt{53}\\ne 2\\sqrt{10}$, the option is incorrect and does not match the condition;\\\\\nB, when $C'(-5,2)$, by the Pythagorean theorem, $AC'=\\sqrt{(1+5)^{2}+(0-2)^{2}}=\\sqrt{40}=2\\sqrt{10}$, the option is correct and matches the condition;\\\\\nC, when $C'(-4,-2)$, by the Pythagorean theorem, $AC'=\\sqrt{(1+4)^{2}+(0+2)^{2}}=\\sqrt{29}\\ne 2\\sqrt{10}$, the option is incorrect and does not match the condition;\\\\\nD, when $C'(-4,2)$, by the Pythagorean theorem, $AC'=\\sqrt{(1+4)^{2}+(0-2)^{2}}=\\sqrt{29}\\ne 2\\sqrt{10}$, the option is incorrect and does not match the condition;\\\\\nTherefore, the answer is $C'(-5,2)$, that is, the coordinates of $C'$ are $\\boxed{(-5,2)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51496703": { -"question": "As shown in the figure, $ \\triangle ABC$ and $\\triangle A'B'C'$ are similar figures with the coordinate origin $O$ as the center of similarity. If point $A$ is the midpoint of $OA'$, and the area of $\\triangle ABC$ is $6$, what is the area of $\\triangle A'B'C'$?", -"image_file_name": "7058811", -"image": [ -"math/51496703_285.jpg" -], -"solution": "\\textbf{Solution:} Given the problem, we know the similarity ratio between triangles $ \\triangle ABC$ and $ \\triangle A'B'C'$ is $ \\frac{1}{2}$.\\\\\n$\\therefore$ $ \\frac{{S}_{\\triangle ABC}}{{S}_{\\triangle A'B'C'}}={\\left(\\frac{1}{2}\\right)}^{2}$\\\\\n$\\because$ $ {S}_{\\triangle ABC}=6$\\\\\n$\\therefore$ $ {S}_{\\triangle A'B'C'}=\\boxed{24}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51491918": { -"question": "As shown in the Cartesian coordinate system, the vertices of $\\triangle OAB$ are $O(0,0)$, $A(4,3)$, and $B(3,0)$. Taking point $O$ as the center of similitude, a similar figure $\\triangle OCD$ is constructed in the third quadrant, with a similitude ratio of $\\frac{1}{3}$ to $\\triangle OAB$. What are the coordinates of point $C$?", -"image_file_name": "7058811", -"image": [ -"math/51491918_291.png" -], -"solution": "Solution: Since $\\triangle OAB$ and $\\triangle OCD$ have the origin $O$ as the center of similitude, with a similitude ratio of $\\frac{1}{3}$, and point $C$ is located in the third quadrant, with the coordinates of point $A$ being $(4,3)$, and given that point $A$ corresponds to point $C$, it follows that the coordinates of point $C$ are $\\left(-4\\times\\frac{1}{3}, -3\\times\\frac{1}{3}\\right)$, which simplifies to $\\left(-\\frac{4}{3}, -1\\right)$. Therefore, the answer is: $C=\\boxed{\\left(-\\frac{4}{3}, -1\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51445130": { -"question": "In rectangle $ABCD$, $AB = 12$, and $BC = 8$. The rectangle is folded along $MN$ so that point $C$ precisely falls on the midpoint $F$ of side $AD$. If the circle with center $O$, which is the center of symmetry of the rectangle, is tangent to $FN$ at point $G$, what is the radius of circle $\\odot O$?", -"image_file_name": "7058811", -"image": [ -"math/51445130_300.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OF, OG, ON, and draw OH$\\perp$DC at point H through O,\\\\\n$\\because$ point O is the center of symmetry for the rectangle, and AB=12, BC=8, F is the midpoint of AD,\\\\\n$\\therefore$ OF=DH=HC=$\\frac{1}{2}$DC=6, OH=FD=$\\frac{1}{2}$AD=4,\\\\\n$\\because$ circle O is tangent to FN at point G,\\\\\n$\\therefore$ OG$\\perp$FN,\\\\\nBy the property of folding, we get: FN=NC, let FN=NC=a, then DN=12−a\\\\\nIn the right-angled triangle FDN, FN$^{2}$=FD$^{2}$+DN$^{2}$, which gives a$^{2}$=4$^{2}$+(12−a)$^{2}$, solving for a, we get a=$\\frac{20}{3}$,\\\\\n$\\therefore$ DN=$\\frac{16}{3}$,\\\\\n$\\therefore$ NH=DH−DN=6−$\\frac{16}{3}$=$\\frac{2}{3}$,\\\\\nIn the right-angled triangle OHN, by Pythagoras' theorem, ON$^{2}$=NH$^{2}$+OH$^{2}$=$\\frac{4}{9}$+16,\\\\\nLet FG=b, then GN=$\\frac{20}{3}$−b,\\\\\nIn the right-angled triangles OGF and OGN, by Pythagoras' theorem, OF$^{2}$−FG$^{2}$=OG$^{2}$=ON$^{2}$−GN$^{2}$,\\\\\n$\\therefore$ 6$^{2}$−b$^{2}$=$\\frac{4}{9}$+16−($\\frac{20}{3}$−b)$^{2}$,\\\\\nSolving for b, we get b=$\\frac{24}{5}$,\\\\\n$\\therefore$ OG$^{2}$=36−($\\frac{24}{5}$)$^{2}$,\\\\\nSolving for OG, we obtain OG=\\boxed{3.6}, which means the radius is 3.6.", -"solution_image": [ -"solution_images/51445130_300.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"50322915": { -"question": "As shown in the diagram, square ABCD and square EFOG are similar figures, where point A corresponds to point E. The coordinate of point A is $(-4, 2)$, and the coordinate of point E is $(-1, 1)$. What are the coordinates of the center of similitude of these two squares?", -"image_file_name": "7058811", -"image": [ -"math/50322915_310.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, extend lines AE and DG until they intersect the x-axis at point N. \\\\\nAssume the equation of line $AE$ is $y=kx+b$. Substituting points $A(-4,2)$ and $E(-1,1)$ into the equation, we get $\\left\\{\\begin{array}{l}-4k+b=2 \\\\ -k+b=1\\end{array}\\right.$. \\\\\nSolving these equations gives $\\left\\{\\begin{array}{l}k=-\\frac{1}{3} \\\\ b=\\frac{2}{3}\\end{array}\\right.$. \\\\\nThus, $y=-\\frac{1}{3}x+\\frac{2}{3}$. \\\\\nSetting $y=0$ yields $x=2$, \\\\\n$\\therefore$ the coordinates of N are $(2,0)$; \\\\\nHence, the answer is: the coordinates of $N$ are $\\boxed{(2,0)}$.", -"solution_image": [ -"solution_images/50322915_310.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51578581": { -"question": "As shown in the figure, in square $ABCD$, $AB = 4$, point $M$ is on side $CD$, and $DM = 1$. Triangles $AEM$ and $ADM$ are symmetric about the line containing $AM$. Rotating $\\triangle ADM$ $90^\\circ$ clockwise around point $A$ results in $\\triangle ABF$. When connecting $EF$, what is the length of segment $EF$?", -"image_file_name": "7058811", -"image": [ -"math/51578581_320.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $\\triangle AEM$ and $\\triangle ADM$ are symmetrical about the line containing AM,\\\\\ntherefore $\\triangle AEM \\cong \\triangle ADM$\\\\\nthus $AE=AD=AB=4$\\\\\nConnect BM, as shown in the figure,\\\\\nsince $\\triangle ADM$ is rotated clockwise by $90^\\circ$ around point A to get $\\triangle ABF$,\\\\\ntherefore $\\triangle ABF \\cong \\triangle ADM$\\\\\nthus $AF=AM$, $\\angle FAB=\\angle MAD$\\\\\nthus $\\angle FAB=\\angle MAE$\\\\\ntherefore $\\angle FAB+\\angle BAE=\\angle MAE + \\angle BAE$\\\\\ntherefore $\\angle FAE=\\angle MAB$\\\\\nthus $\\triangle FAE\\cong \\triangle MAB$ (SAS)\\\\\nthus $EF=BM$\\\\\nIn the square ABCD,\\\\\ntherefore $BC=CD=AB=4$\\\\\nsince $DM=1$\\\\\ntherefore $CM=3$\\\\\nIn $\\triangle BCM$,\\\\\n$BM=\\sqrt{3^2+4^2}=5$\\\\\ntherefore $EF=\\boxed{5}$", -"solution_image": [ -"solution_images/51578581_324.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51540105": { -"question": "In rectangle $ABCD$, $AB = 3$, $BC = 2\\sqrt{10}$. Point $E$ is on side $BC$. Connect $DE$. Fold $\\triangle DEC$ along $DE$ to get $\\triangle DEC'$. $C'E$ intersects $AD$ at point $F$. Connect $AC'$. If point $F$ is the midpoint of $AD$, what is the length of $AC'$?", -"image_file_name": "7058811", -"image": [ -"math/51540105_331.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $C'H \\perp AD$ at point H,\n\nsince point F is the midpoint of AD, and AD = BC = $2\\sqrt{10}$,\n\nthus AF = DF = $\\sqrt{10}$,\n\nsince $\\triangle DEC$ is folded along DE,\n\nthus CD = C'D = 3, $\\angle C = \\angle EC'D = 90^\\circ$,\n\nin $\\triangle DC'F$, C'F = $\\sqrt{DF^{2} - C'D^{2}} = \\boxed{1}$,\n\nsince $S_{\\triangle C'F} = \\frac{1}{2} \\times DF \\times C'H = \\frac{1}{2} \\times C'F \\times C'D$,\n\nthus $\\sqrt{10} \\times C'H = 1 \\times 3$,\n\nthus C'H = $\\frac{3\\sqrt{10}}{10}$,\n\nthus FH = $\\sqrt{C'F^{2} - C'H^{2}} = \\frac{\\sqrt{10}}{10}$,\n\nthus AH = AF + FH = $\\frac{11\\sqrt{10}}{10}$,\n\nin $\\triangle AC'H$, AC'$ = \\sqrt{AH^{2} + C'H^{2}} = \\boxed{\\sqrt{13}}$.", -"solution_image": [ -"solution_images/51540105_330.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"50584300": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=6$, $BC=9$, and point D is the midpoint of side $BC$. The $\\triangle ACD$ is folded along $AD$ so that point C falls on point $C'$ in the same plane. Connect $BC'$. What is the length of $BC'$?", -"image_file_name": "7058811", -"image": [ -"math/50584300_340.jpg" -], -"solution": "\\textbf{Solution:} Suppose the intersection point of CC' and AD is E, as shown in the figure: \\\\\nSince point D is the midpoint on side BC, and BC = 9, \\\\\nThus, CD = BD = 4.5, \\\\\nSince $\\triangle ACD$ is folded along AD, making point C coincide with point C' in the same plane, \\\\\nThus, CD = C'D, $CC'\\perp AD$, CE = C'E, \\\\\nThus, CD = BD = C'D, \\\\\nThus, $\\angle DCC'=\\angle DC'C$, $\\angle DBC'=\\angle DC'B$, \\\\\nSince $\\angle DCC'+\\angle DC'C+\\angle DBC'+\\angle DC'B=180^\\circ$, \\\\\nThus, $\\angle CC'B=\\angle CC'D+\\angle DC'B= \\frac{1}{2} (\\angle DCC'+\\angle DC'C+\\angle DBC'+\\angle DC'B)=90^\\circ$, \\\\\nSince $\\angle C=90^\\circ$ and AC = 6, \\\\\nThus, AD = $\\sqrt{AC^{2}+CD^{2}}$ = 7.5, \\\\\nSince $S_{\\triangle ACD}$ = $\\frac{1}{2}$ AC$\\cdot$CD = $\\frac{1}{2}$ AD$\\cdot$CE, \\\\\nThus, CE = $\\frac{AC\\cdot CD}{AD}$ = 3.6, \\\\\nThus, CC' = 7.2, \\\\\nIn Rt$\\triangle BC'C$, BC' = $\\sqrt{BC^{2}-CC'^{2}}= \\boxed{\\frac{27}{5}}$.", -"solution_image": [ -"solution_images/50584300_340.jpg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"50584152": { -"question": "As shown in the figure, the four vertices of rectangle $EFGH$ are respectively on the four sides of rhombus $ABCD$, with $BE=BF$. $\\triangle AEH$ and $\\triangle CFG$ are folded along edges $EH$ and $FG$ respectively. When the overlapping section forms a rhombus whose area is $\\frac{1}{16}$ of the area of rhombus $ABCD$, then what is the value of $\\frac{AE}{EB}$?", -"image_file_name": "7058811", -"image": [ -"math/50584152_352.jpg" -], -"solution": "\\textbf{Solution:} Let the overlapping rhombus have a side length of $x$, and $BE=BF=y$,\\\\\ndue to the symmetry of the rectangle and the rhombus as well as the property of folding, the quadrilateral $AHME$ and the quadrilateral $BENF$ are rhombuses,\\\\\n$\\therefore AE=EM$, $EN=BE=y$, $EM=x+y$,\\\\\n$\\because$ when the overlapping part is a rhombus and its area is $\\frac{1}{16}$ of the area of the rhombus $ABCD$, and the two rhombuses are similar,\\\\\n$\\therefore AB=4MN=4x$,\\\\\n$\\therefore AE=AB-BE=4x-y$,\\\\\n$\\therefore 4x-y=x+y$,\\\\\nSolving gives: $x=\\frac{2}{3}y$,\\\\\n$\\therefore AE=\\frac{5}{3}y$,\\\\\n$\\therefore \\frac{AE}{EB}=\\frac{\\frac{5}{3}y}{y}=\\boxed{\\frac{5}{3}}$;", -"solution_image": [ -"solution_images/50584152_350.jpg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53080709": { -"question": "As shown in the figure, $A$ is a point on the graph of the inverse proportion function $y = \\frac{k}{x}$, and $AB$ is perpendicular to the $x$-axis at $B$. If the area of $\\triangle AOB = 2$, what is the value of $k$?", -"image_file_name": "7056499", -"image": [ -"math/53080709_02.png" -], -"solution": "\\textbf{Solution:} Since ${S}_{\\triangle AOB}=2$,\\\\\ntherefore $\\frac{k}{2}=2$,\\\\\nthus $k=\\boxed{4}$;", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53080744": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+c\\,(a\\ne 0)$ passes through the points $(-1, 0)$ and $(0, -3)$, and its vertex is in the fourth quadrant. Let $P=a+b+c$. What is the range of values for $P$?", -"image_file_name": "7056499", -"image": [ -"math/53080744_15.png" -], -"solution": "\\textbf{Solution:} Given the parabola $y=ax^2+bx+c$ (where $a\\neq 0$) passes through the points $(-1, 0)$ and $(0, -3)$,\\\\\nthus $\\because$ $0=a(-1)^2-b+c$ and $-3=c$,\\\\\nit leads to $\\therefore$ $b=a-3$,\\\\\nConsidering $\\because$ when $x=1$, $y=ax^2+bx+c=a+b+c$,\\\\\nwe find that $\\therefore$ $P=a+b+c=a+a-3-3=2a-6$,\\\\\nGiven that the vertex is in the fourth quadrant, it implies that $a>0$,\\\\\ntherefore $\\therefore$ $b=a-3<0$,\\\\\nwhich implies $\\therefore$ $a<3$,\\\\\nHence $\\therefore$ $0mx+n$?", -"image_file_name": "7056499", -"image": [ -"math/53078759_20.png" -], -"solution": "\\textbf{Solution}: From the graph, we know that the quadratic function $y_{2}=ax^{2}+bx+c$ ($a\\neq 0$) and the linear function $y_{1}=mx+n$ ($m\\neq 0$) intersect at the x-coordinates $-4$ and $3$, \\\\\n$\\because$ the inequality $ax^{2}+bx+c>mx+n$ implies that the graph of the quadratic function is above that of the linear function, \\\\\n$\\therefore$ the solution set of the inequality $ax^{2}+bx+c>mx+n$ is $-4 4$, \\\\\ntherefore $x < -1$ or $x > 4$, \\\\\nhence, the answer is:$\\boxed{ x<-1 or x>4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53009781": { -"question": "As shown in the figure, the parabola $y=\\frac{1}{4}x^{2}-4$ intersects the x-axis at points A and B. Let P be a moving point on the circle with center C(0,3) and radius 2, and let Q be the midpoint of line segment PA. Connect OQ. What is the maximum value of line segment OQ?", -"image_file_name": "7056499", -"image": [ -"math/53009781_71.jpeg" -], -"solution": "\\textbf{Solution:} Let us connect BP as shown in the diagram.\\\\\nWhen $y=0$, we have $\\frac{1}{4}x^{2}-4=0$. Solving this, we find $x_{1}=4$ and $x_{2}=-4$, thus $A(-4,0)$ and $B(4,0)$.\\\\\nSince Q is the midpoint of segment PA,\\\\\nit follows that OQ is the median of $\\triangle ABP$,\\\\\ntherefore OQ$=\\frac{1}{2}BP$.\\\\\nWhen BP is at its maximum, OQ is also at its maximum.\\\\\nMoreover, when BP passes through the circle's center C, PB is maximized. As shown in the diagram, when point P moves to position P', BP is maximized.\\\\\nSince BC$=\\sqrt{3^{2}+4^{2}}=5$,\\\\\nit follows that BP'$=5+2=7$.\\\\\nTherefore, the maximum value of segment OQ is $\\boxed{\\frac{7}{2}}$.", -"solution_image": [ -"solution_images/53009781_70.jpeg" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52976992": { -"question": "As shown in the figure, the graph of the linear function $y_1=mx+n$ ($m\\neq 0$) and the graph of the quadratic function $y_2=ax^2+bx+c$ ($a\\neq 0$) are illustrated. What is the solution set of the inequality $ax^2+bx+c>mx+n$?", -"image_file_name": "7056499", -"image": [ -"math/52976992_80.png" -], -"solution": "\\textbf{Solution:} Given the linear function $y_1=mx+n$ ($m\\neq 0$) and the quadratic function $y_2=ax^2+bx+c$ ($a\\neq 0$), by examining their graphs, it is known that:\\\\\nThe solution set of the inequality $ax^2+bx+c>mx+n$ is: $-43$, \\\\\nhence, the solution is: $\\boxed{x\\in(-\\infty,-1)\\cup(3,\\infty)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51179012": { -"question": "As shown in the figure, in quadrilateral $ABCD$, a circle $\\odot O$ with diameter $AB$ exactly passes through point $C$, and $AC$ and $DO$ intersect at point $E$. It is known that $AC$ bisects $\\angle BAD$, $\\angle ADC=90^\\circ$, and $CD:BC=2:\\sqrt{5}$. What is the value of $CE:AE$?", -"image_file_name": "7055883", -"image": [ -"math/51179012_012.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OC\\\\\n$\\because$ AB is the diameter of the circle,\\\\\n$\\therefore$ $\\angle$ACB=$\\angle$ADC=90$^\\circ$,\\\\\n$\\because$ AC bisects $\\angle$BAD,\\\\\n$\\therefore$ $\\angle$DAC=$\\angle$CAB, $\\angle$DAB=2$\\angle$CAB,\\\\\n$\\therefore$ $\\triangle ADC\\sim \\triangle ACB$,\\\\\n$\\therefore$ $\\frac{CD}{BC}=\\frac{AC}{AB}=\\frac{2}{\\sqrt{5}}=\\frac{AD}{AC}$,\\\\\n$\\therefore$ $AC=\\frac{2\\sqrt{5}}{5}AB$,\\\\\n$\\therefore$ $BC=\\sqrt{AB^{2}-AC^{2}}=\\frac{\\sqrt{5}}{5}AB$, $AD=\\frac{2}{\\sqrt{5}}AC=\\frac{4}{5}AB$\\\\\n$\\therefore$ $CD=\\frac{2}{\\sqrt{5}}BC=\\frac{2}{5}AB$,\\\\\nAlso $\\because$ $\\angle$BOC=2$\\angle$CAB,\\\\\n$\\therefore$ $\\angle$BOC=$\\angle$DAB,\\\\\n$\\therefore$ AD$\\parallel$OC,\\\\\n$\\therefore$ $\\triangle OCE\\sim \\triangle DAE$,\\\\\n$\\therefore$ $\\frac{CE}{AE}=\\frac{OC}{DA}=\\frac{\\frac{1}{2}AB}{\\frac{4}{5}AB}=\\boxed{\\frac{5}{8}}$,\\\\", -"solution_image": [ -"solution_images/51179012_00.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55497782": { -"question": "As shown in the figure, in $\\triangle ABC$, points $D$ and $E$ are located on sides $AB$ and $AC$ respectively. If $\\frac{AD}{AC}=\\frac{AE}{AB}=\\frac{2}{3}$ and $BC=2$, what is the length of $DE$?", -"image_file_name": "7055883", -"image": [ -"math/55497782_15.png" -], -"solution": "\\textbf{Solution:} Since $\\angle DAE = \\angle CAB$,\\\\\nit follows that $\\triangle DAE \\sim \\triangle CAB$,\\\\\nhence $\\frac{DE}{BC} = \\frac{AE}{AB} = \\frac{2}{3}$,\\\\\ntherefore $DE = \\frac{2}{3} \\times BC = \\frac{2}{3} \\times 2 = \\boxed{\\frac{4}{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55497749": { -"question": "As shown in the figure, in $\\triangle ABC$, $DE \\parallel BC$, $\\frac{AD}{AB} = \\frac{1}{3}$. If the area of $\\triangle ABC$ is $9$, then what is the area of quadrilateral $BCED$?", -"image_file_name": "7055883", -"image": [ -"math/55497749_25.png" -], -"solution": "\\textbf{Solution:} Given that DE$\\parallel$ BC, it follows that $\\triangle ADE \\sim \\triangle ABC$. Therefore, $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}} = \\left(\\frac{AD}{AB}\\right)^2 = \\left(\\frac{1}{3}\\right)^2 = \\frac{1}{9}$.\\\\\nSince $S_{\\triangle ABC} = 9$, it implies that $S_{\\triangle ADE} = 1$. Consequently, the area of quadrilateral BCDE equals $9 - 1 = \\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55604084": { -"question": "As shown, triangles $ABC$ and $DEF$ are similar, with a similarity ratio of $1:2$. Given that the area of $\\triangle ABC$ is $3$, what is the area of $\\triangle DEF$?", -"image_file_name": "7055883", -"image": [], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ and $\\triangle DEF$ are similar triangles, and the similarity ratio between $\\triangle ABC$ and $\\triangle DEF$ is $1\\colon 2$, given that the area of $\\triangle ABC$ is $3$,\\\\\ntherefore, the area of $\\triangle DEF$ is $\\boxed{12}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52774652": { -"question": "As shown in the figure, in $\\triangle ABC$, points $D, E, F$ are on the sides $AB$, $AC$, and $BC$ respectively, with $DE \\parallel BC$, $EF \\parallel AB$, and $AD: DB = 3:5$, what is the ratio of $BF: CF$?", -"image_file_name": "7055883", -"image": [ -"math/52774652_46.png" -], -"solution": "\\textbf{Solution:} Given that DE$\\parallel$BC,\\\\\nit follows that $\\frac{AD}{BD}=\\frac{AE}{CE}=\\frac{3}{5}$;\\\\\nsince EF$\\parallel$AB,\\\\\nit also follows that $\\frac{AE}{CE}=\\frac{BF}{CF}=\\boxed{\\frac{3}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55604325": { -"question": "As shown in the figure, $AD \\parallel BE \\parallel CF$, where points $B, E$ are on $AC, DF$ respectively, $\\frac{AB}{BC} = \\frac{2}{3}, EF = 6$. What is the length of $DE$?", -"image_file_name": "7055883", -"image": [ -"math/55604325_54.png" -], -"solution": "\\textbf{Solution:} Since $AD\\parallel BE\\parallel CF$, \\\\\nit follows that $\\frac{AB}{BC}=\\frac{DE}{FE}$, \\\\\nthus $DE=\\boxed{4}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53297427": { -"question": "According to the figure, it is a schematic diagram of the pinhole imaging principle in physics. Given that the object $AB=30$, based on the dimensions in the figure $(AB\\parallel CD)$, what should be the length of $CD$?", -"image_file_name": "7055883", -"image": [ -"math/53297427_63.png" -], -"solution": "Solution: According to the problem, $\\triangle ODC \\sim \\triangle OAB$\\\\\n$\\therefore \\frac{AB}{CD} = \\frac{36}{12}$\\\\\n$\\because AB = 30$\\\\\n$\\therefore CD = \\frac{1}{3} \\times 30 = \\boxed{10}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55497823": { -"question": "As shown in the figure, within a $2\\times 4$ square grid, line segments $AB$ and $CD$ intersect at point $E$. If the side length of each small square is 1, what is the length of $DE$?", -"image_file_name": "7055883", -"image": [ -"math/55497823_75.png" -], -"solution": "\\textbf{Solution:} From the figure, we know: $BC \\parallel AD$, $\\therefore \\triangle CBE \\sim \\triangle DAE$, $\\therefore \\frac{CB}{AD} = \\frac{CE}{DE}$, $\\because CB = \\sqrt{2^2 + 2^2} = 2\\sqrt{2}$, $AD = \\sqrt{1^2 + 1^2} = \\sqrt{2}$, $\\therefore \\frac{CE}{DE} = \\frac{2}{1}$, $\\because CD = \\sqrt{1^2 + 2^2} = \\sqrt{5}$, $\\therefore DE = \\boxed{\\frac{\\sqrt{5}}{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53124716": { -"question": "As shown in the figure, it is known that $AB\\parallel CD\\parallel EF$, $AD:DF=2:3$, $BE=15$, what is the length of $BC$?", -"image_file_name": "7055883", -"image": [ -"math/53124716_80.png" -], -"solution": "\\textbf{Solution:} Since $AB \\parallel CD \\parallel EF$, \\\\\nit follows that $\\frac{BC}{BE} = \\frac{AD}{AF}$, \\\\\nwhich means $\\frac{BC}{15} = \\frac{2}{2+3}$, \\\\\nhence, BC$=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53081475": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the isosceles right triangle $ABC$ and the isosceles right triangle $DEF$ are similar figures, with their hypotenuses perpendicular to the x-axis. Let $O$ be the center of similarity, $\\angle ABC = \\angle DEF = 90^\\circ$, and the points $O$, $B$, $C$, $E$, $F$ are collinear. If the area ratio ${S}_{\\triangle DEF} \\colon {S}_{\\triangle ABC} = 1 \\colon 2$, and the coordinates of point $D$ are $(-1, 0)$, what are the coordinates of point $B$?", -"image_file_name": "7055883", -"image": [ -"math/53081475_915.png" -], -"solution": "\\textbf{Solution:} Since isosceles right triangle $ABC$ and isosceles right triangle $DEF$ are homothetic figures, it follows that $\\triangle ABC\\sim \\triangle DEF$, $\\frac{OD}{OA}=\\frac{DE}{AB}$. Given that the area ratio $S_{\\triangle DEF} : S_{\\triangle ABC}=1 : 2$, then $\\frac{S_{\\triangle DEF}}{S_{\\triangle ABC}}=\\frac{1}{2}=\\left(\\frac{DE}{AB}\\right)^2$. Hence, $\\frac{OD}{OA}=\\frac{DE}{AB}=\\frac{1}{\\sqrt{2}}$. Since point $D$ is at $(-1,0)$, OD equals 1, thus OA equals $\\sqrt{2}$. Given $\\triangle ABC$ is an isosceles right triangle, we have $\\angle C=\\angle CAB=45^\\circ$, $\\angle ABC=\\angle OBA=90^\\circ$. Therefore, AC is perpendicular to the x-axis, leading to $\\angle CAB+\\angle BAO=90^\\circ$, which means $\\angle BAO=\\angle OBA=45^\\circ$. Consequently, OB=AB. Draw BG perpendicular to OA, thus BG=OG=$\\frac{1}{2}$OA=$\\frac{\\sqrt{2}}{2}$. Therefore, the coordinates of point B are $\\boxed{\\left(\\frac{\\sqrt{2}}{2}, \\frac{\\sqrt{2}}{2}\\right)}$.", -"solution_image": [ -"solution_images/53081475_96.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080525": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the graph of the inverse proportion function $y=\\frac{k}{x}$ ($x>0$) intersects with side $AB$ of rectangle $OABC$ at point $M(1,3)$, and intersects with side $BC$ at point $N$. If the symmetric point $B'$ of point $B$ with respect to line $MN$ lies exactly on the $x$-axis, what is the length of $OC$?", -"image_file_name": "7055883", -"image": [ -"math/53080525_108.png" -], -"solution": "Solution:It is known from the problem that the point $M(1,3)$ lies on the graph of the inverse proportion function $y=\\frac{3}{x}(x>0)$,\n\n$\\therefore$ $3=\\frac{k}{1}$, solving for $k$, we get $k=3$,\n\n$\\therefore$ the equation of this inverse proportion function is $y=\\frac{3}{x}(x>0)$.\n\nLet $N(a,\\frac{3}{a})$, then $B(a,3)$, $C(a,0)$,\n\n$\\therefore$ $CN=\\frac{3}{a}$\n\n$\\therefore$ $BN=BC-CN=3-\\frac{3}{a}$, $BM=AB-AM=a-1$.\n\nAs shown in the figure, connect $MB',NB'$, and draw $MD\\perp x$ axis at point D through point M.\n\n$\\therefore$ $DM=3$, $OD=1$.\n\nSince the symmetric point $B'$ of point B about line $MN$ exactly lies on the x-axis,\n\n$\\therefore$ $B'N=BN=3-\\frac{3}{a}$, $B'M=BM=a-1$.\n\nSince $\\angle DMB'+\\angle DB'M=\\angle CB'N+\\angle DB'M=90^\\circ$,\n\n$\\therefore$ $\\angle DMB'=\\angle CB'N$.\n\nAlso, since $\\angle MDB'=\\angle B'CN=90^\\circ$,\n\n$\\therefore$ $\\triangle DMB'\\sim \\triangle CB'N$,\n\n$\\therefore$ $\\frac{B'M}{B'N}=\\frac{DM}{B'C}=\\frac{B'D}{CN}$, that is, $\\frac{a-1}{3-\\frac{3}{a}}=\\frac{3}{B'C}=\\frac{B'D}{\\frac{3}{a}}$,\n\nSolving this, we find $B'C=\\frac{9}{a}$, $B'D=1$.\n\nSince $B'M^2=MD^2+B'D^2$, i.e., $(a-1)^2=3^2+1^2$,\n\n$\\therefore$ $a_1=1+\\sqrt{10}$, $a_2=1-\\sqrt{10}$ (discard),\n\n$\\therefore$ $OC=1+\\sqrt{10}$.\n\nTherefore, the answer is: $OC=\\boxed{1+\\sqrt{10}}$.", -"solution_image": [ -"solution_images/53080525_1013.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53080811": { -"question": "As shown in the figure, point F is on the side AD of $ \\square ABCD$, and the extensions of BA and CF intersect at point E. If $AE:AB = 1:2$, what is the ratio of the area of the quadrilateral $ABCF$ to the area of $\\triangle CDF$?", -"image_file_name": "7055883", -"image": [ -"math/53080811_113.png" -], -"solution": "Solution: Since $AE: AB = 1: 2$,\\\\\ntherefore $AE: BE=1: 3$, $AE: DC=1: 2$.\\\\\nIn parallelogram $ABCD$ where $AB \\parallel CD$, $AD \\parallel BC$,\\\\\nhence $\\triangle AEF \\sim \\triangle DCF$, $\\triangle AEF \\sim \\triangle BEC$,\\\\\nthus ${S}_{\\triangle AEF}:{S}_{\\triangle DCF}=1:4$, ${S}_{\\triangle AEF}:{S}_{\\triangle BEC}=1:9$,\\\\\ntherefore ${S}_{\\triangle AEF}:{S}_{\\text{quadrilateral }ABCF}=1:8$.\\\\\nHence ${S}_{\\text{quadrilateral }ABCF}:{S}_{\\triangle CDF}=8:4=2:1$.\\\\\nThus the answer is: $\\boxed{2:1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080813": { -"question": "As shown in the figure, $E$, $F$, $G$, $H$ are points on the sides of the square $ABCD$, and $AG=BE=CH=DF$, $EF$ and $GH$ cut the square into four pieces which are then reassembled into the quadrilateral $MQPN$. If the ratio of the area of the square $ABCD$ to that of the quadrilateral $MQPN$ is $9\\colon 10$, then what is the ratio $AG\\colon GD$?", -"image_file_name": "7055883", -"image": [ -"math/53080813_1213.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect $EH, FG, GE, HF$,\n\\[\n\\because \\text{quadrilateral ABCD is a square},\n\\]\n\\[\n\\therefore \\angle A=\\angle B=\\angle C=\\angle D=90^\\circ, AB=BC=CD=DA.,\n\\]\n\\[\n\\because AG=BE=CH=DF,\n\\]\n\\[\n\\therefore DG=AE=BH=CF,\n\\]\n\\[\n\\therefore \\triangle AEG\\cong \\triangle BHE\\cong \\triangle CFH\\cong \\triangle DGF,\n\\]\n\\[\n\\therefore EG=FG=EH=HF,\n\\]\n\\[\n\\therefore \\text{quadrilateral EHFG is a rhombus},\n\\]\n\\[\n\\because \\triangle DGF\\cong \\triangle AEG,\n\\]\n\\[\n\\therefore \\angle DGF=\\angle AEG,\n\\]\n\\[\n\\because \\angle AEG+\\angle AGE=90^\\circ,\n\\]\n\\[\n\\therefore \\angle DGF+\\angle AGE=90^\\circ,\n\\]\n\\[\n\\therefore \\angle EGF=90^\\circ,\n\\]\n\\[\n\\therefore \\text{quadrilateral EHFG is a square},\n\\]\n\\[\n\\therefore GH\\perp EF,\n\\]\nCombining the above, it is known that both the quadrilateral MQPN and the quadrilateral A'B'C'D' are squares, $AG={A}^{\\prime}{G}^{\\prime}$, $DG={D}^{\\prime}{G}^{\\prime}$,\n\\[\n\\therefore {A}^{\\prime}{D}^{\\prime}={A}^{\\prime}{G}^{\\prime}-{G}^{\\prime}{D}^{\\prime}=AG-GD.\n\\]\n\\[\n\\because \\text{The ratio of the area of square ABCD to the area of quadrilateral MQPN is } 9\\colon 10,\n\\]\n\\[\n\\therefore \\text{The ratio of the area of square ABCD to the area of quadrilateral A'B'C'D' is } 9\\colon 1,\n\\]\n\\[\n\\therefore {\\left(AG+GD\\right)}^{2}\\colon {\\left({A}^{\\prime}{G}^{\\prime}-{G}^{\\prime}{D}^{\\prime}\\right)}^{2}=9\\colon 1,\n\\]\n\\[\n\\therefore \\left(AG+GD\\right)\\colon \\left(AG-GD\\right)=3\\colon 1,\n\\]\n\\[\n\\therefore AG=2GD,\n\\]\n\\[\n\\therefore AG\\colon GD=\\boxed{2}.\n\\]", -"solution_image": [ -"solution_images/53080813_121.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53080285": { -"question": "As shown in the diagram, $P$ is a point inside rectangle $ABCD$. Lines are drawn connecting $P$ to each vertex of rectangle $ABCD$. The vertices of rectangle $EFGH$ lie respectively on $AP$, $BP$, $CP$, and $DP$. It is known that $AE = 2EP$ and $EF \\parallel AB$. The sum of the areas of the two shaded regions in the diagram is $S$. What is the area of rectangle $ABCD$?", -"image_file_name": "7055883", -"image": [ -"math/53080285_137.png" -], -"solution": "\\textbf{Solution:} Given that $AE=2EP$,\\\\\nit follows that $\\frac{PE}{PA}=\\frac{1}{3}$,\\\\\nsince quadrilaterals $ABCD$ and $EFGH$ are rectangles,\\\\\nwe have $\\angle DAB=\\angle HEF=90^\\circ$,\\\\\nsince $EF\\parallel AB$,\\\\\nit results in $\\angle PEF=\\angle PAB$,\\\\\nwhich leads to $\\angle PEH=\\angle PAD$,\\\\\nhence $EH\\parallel AD$,\\\\\nsimilarly, $FG\\parallel BC$,\\\\\nbecause $EH\\parallel AD$,\\\\\nit implies $\\triangle PEH\\sim \\triangle PAD$ with a similarity ratio of $\\frac{PE}{PA}=\\frac{1}{3}$,\\\\\nthus $\\frac{S_{\\triangle PEH}}{S_{\\triangle PAD}}=\\left(\\frac{PE}{PA}\\right)^2=\\frac{1}{9}$,\\\\\nsimilarly, $\\frac{S_{\\triangle PFG}}{S_{\\triangle PBC}}=\\frac{1}{9}$,\\\\\nsince $S_{\\triangle PAD}+S_{\\triangle PBC}=\\frac{1}{2}S_{\\text{rectangle}ABCD}$,\\\\\nit follows that $S=\\frac{1}{9}\\left(S_{\\triangle PAD}+S_{\\triangle PBC}\\right)=\\frac{1}{9}\\times \\frac{1}{2}S_{\\text{rectangle}ABCD}$,\\\\\ntherefore, the area of rectangle $ABCD$ is $\\boxed{18S}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080323": { -"question": "In an isosceles triangle with a vertex angle of $36^\\circ$, we refer to such a triangle as a \"golden triangle\", where the ratio of the base to the leg is the golden ratio. As shown in the figure, in $\\triangle ABC$, $\\angle A=36^\\circ$, $AB=AC$, $BD$ bisects $\\angle ABC$ and intersects $AC$ at point $D$. If $CD=1$, what is the length of $AC$?", -"image_file_name": "7055883", -"image": [ -"math/53080323_140.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle A=36^\\circ$ and AB=AC, with BD bisecting $\\angle ABC$ and intersecting AC at point D,\\\\\nit follows that $\\angle ABC=\\angle ACB=72^\\circ$, $\\angle A=\\angle DBC=36^\\circ$, and $\\angle BCD=\\angle BDC=72^\\circ$,\\\\\nimplying that $\\angle ACB=\\angle BCD$,\\\\\nwhich means $\\triangle BCD\\sim \\triangle ABC$,\\\\\nleading to the ratio BC$\\colon$ AB=DC$\\colon$ BC,\\\\\nand given BC$\\colon$ AB=$\\frac{\\sqrt{5}-1}{2}$ and DC=1,\\\\\nwe find BC=$\\frac{\\sqrt{5}+1}{2}$,\\\\\nthus $\\frac{\\sqrt{5}+1}{2}\\colon$ AB=$\\frac{\\sqrt{5}-1}{2}$,\\\\\nresulting in AB=$\\frac{\\sqrt{5}+3}{2}$,\\\\\nso AC=$\\boxed{\\frac{\\sqrt{5}+3}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53078877": { -"question": "As shown in the figure, in parallelogram $ABCD$, $E$ is a point on $CD$. $DE:CE=2:3$. Connect $AE$ and $BD$ which intersect at point $F$. What is the value of $\\frac{S_{\\triangle DEF}}{S_{\\triangle ABF}}$?", -"image_file_name": "7055883", -"image": [ -"math/53078877_155.png" -], -"solution": "\\textbf{Solution:} In parallelogram $ABCD$, we have $DC=AB$ and $DC\\parallel AB$,\\\\\n$\\therefore$ $\\triangle DEF\\sim \\triangle BAF$,\\\\\n$\\because$ $DE\\colon CE=2\\colon 3$,\\\\\n$\\therefore$ $DE\\colon DC=2\\colon 5$,\\\\\n$\\therefore$ $\\frac{DE}{AB}=\\frac{2}{5}$,\\\\\n$\\therefore$ $\\frac{S_{\\triangle DEF}}{S_{\\triangle ABF}}=\\left(\\frac{2}{5}\\right)^2=\\boxed{\\frac{4}{25}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55452474": { -"question": "As shown in the figure, the edge OA of $\\triangle OABC$ is on the positive half of the x-axis, point D is on edge AB, and the extension of segment CD intersects the x-axis at point E. Lines OB and OD are connected. The inverse proportion function $y= \\frac{k}{x}$ ($k>0$) passes through points B and D. If the area of $\\triangle OBC$ is 4 and the area of $\\triangle BDE$ is 2, what is the value of $k$?", -"image_file_name": "7055883", -"image": [ -"math/55452474_162.png" -], -"solution": "\\textbf{Solution:} In parallelogram $ABCD$, $CB \\parallel OA$, therefore $S_{\\triangle OBC} = S_{\\triangle EBC} = 4$, because $S_{\\triangle BDE} = 2$, therefore $S_{\\triangle BDC} = S_{\\triangle BDE} = 2$ therefore $CD = DE$. Because $\\triangle CBD \\sim \\triangle EAD$, therefore $\\frac{CD}{DE} = \\frac{BD}{DA}$ therefore $BD = DA$, $D$ is the midpoint of $AB$. Draw $BM \\perp OA$, $DN \\perp OA$ then $MN = AN$, $DN = \\frac{1}{2}BM$ because the inverse proportion function $y = \\frac{k}{x}$ (k>0) passes through points $B$, $D$ therefore $S_{\\triangle BOM} = S_{\\triangle DON}$ therefore $OM \\cdot BM = ON \\cdot DN$ therefore $\\frac{OM}{ON} = \\frac{DN}{BM} = \\frac{1}{2}$. Let $OM = t$, then $ON = 2t$, $MN = t = AN$, $OA = 3t$ therefore $OM = \\frac{1}{3}OA$ therefore $S_{\\triangle BOM} = \\frac{1}{3}S_{\\triangle BOA} = \\frac{1}{3}S_{\\triangle BOC} = \\frac{4}{3}$. Because the inverse proportion function $y = \\frac{k}{x}$ (k>0) passes through point $D$ therefore $S_{\\triangle DON} = \\frac{1}{2}k = \\frac{4}{3}$ therefore $k = \\boxed{\\frac{8}{3}}$.", -"solution_image": [ -"solution_images/55452474_161.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53065525": { -"question": "As shown in the diagram, within $\\triangle ABC$, $AB=6$, $AC=5$, $BC=3$. Point $M$ is on $AB$ with $AM=2$. A line $MN$ intersects $\\triangle ABC$ at point $M$, and it satisfies $\\angle AMN = \\angle C$. What is the length of $MN$?", -"image_file_name": "7055883", -"image": [ -"math/53065525_178.png" -], -"solution": "\\textit{Solution}: In triangles $\\triangle AMN$ and $\\triangle ACB$,\\\\\n$\\because$ $\\left\\{\\begin{array}{l}\n\\angle AMN=\\angle C \\\\\n\\angle MAN=\\angle CAB\n\\end{array}\\right.$ \\\\\n$\\therefore$ $\\triangle AMN\\sim \\triangle ACB$ \\\\\n$\\therefore$ $\\frac{MN}{BC}=\\frac{AM}{AC}$ \\\\\n$\\therefore$ $\\frac{MN}{3}=\\frac{2}{5}$ \\\\\n$\\therefore$ $MN=\\boxed{\\frac{6}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53065844": { -"question": "As shown in the figure, the graphs of the inverse proportion functions $y_{1}=-\\frac{1}{x}$ and $y_{2}=-\\frac{4}{x}$ are depicted. Points A and C are located on the x-axis and y-axis, respectively. Quadrilateral $OABC$ is a square. The sides $AB$ and $BC$ intersect the graphs of the inverse proportion functions $y_{2}$ and $y_{1}$ at points F, H and points E, G, respectively. If $OA=3$, what is the value of $\\frac{EF}{GH}$?", -"image_file_name": "7055883", -"image": [ -"math/53065844_189.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $OABC$ is a square, and $OA=3$,\\\\\nthus $A(-3,0)$, $B(-3,3)$, $C(0,3)$,\\\\\nsubstituting $x=-3$ into ${y}_{1}=-\\frac{1}{x}$ and ${y}_{2}=-\\frac{4}{x}$ yields, ${y}_{1}=-\\frac{1}{-3}=\\frac{1}{3}$, ${y}_{2}=-\\frac{4}{-3}=\\frac{4}{3}$,\\\\\nthus $H(-3,\\frac{1}{3})$, $F(-3,\\frac{4}{3})$,\\\\\ntherefore $BF=3-\\frac{4}{3}=\\frac{5}{3}$, $BH=3-\\frac{1}{3}=\\frac{8}{3}$,\\\\\nsubstituting $y=3$ into ${y}_{1}=-\\frac{1}{x}$ and ${y}_{2}=-\\frac{4}{x}$ yields, ${x}_{1}=-\\frac{1}{3}$, ${x}_{2}=-\\frac{4}{3}$,\\\\\nthus $E(-\\frac{4}{3},3)$, $G(-\\frac{1}{3},3)$,\\\\\ntherefore $BG=-\\frac{1}{3}-(-3)=\\frac{8}{3}$, $BE=-\\frac{4}{3}-(-3)=\\frac{5}{3}$,\\\\\ntherefore $\\frac{BF}{BH}=\\frac{BE}{BG}=\\frac{\\frac{5}{3}}{\\frac{8}{3}}=\\frac{5}{8}$,\\\\\ntherefore $EF\\parallel GH$,\\\\\nthus $\\triangle BEF\\sim \\triangle BGH$,\\\\\ntherefore $\\frac{EF}{GH}=\\frac{BE}{BG}=\\boxed{\\frac{5}{8}}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53065559": { -"question": "As shown in the figure, D is a point on side AB of the equilateral $\\triangle ABC$, and $AD: DB = 2: 3$. Now, fold $\\triangle ABC$ such that point C coincides with D, with the fold line being EF, where points E and F lie on AC and BC, respectively. What is the ratio $CE: CF$?", -"image_file_name": "7055883", -"image": [ -"math/53065559_198.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an equilateral triangle,\\\\\nit follows that $\\angle A = \\angle B = \\angle C = 60^\\circ$.\\\\\nFrom the properties of folding, we know that $\\angle EDF = \\angle A = 60^\\circ$, $DE = CE$, and $DF = CF$,\\\\\nhence, $\\angle ADE + \\angle BDF = 180^\\circ - \\angle EDF = 120^\\circ$, and $CE:CF = DE:DF$.\\\\\nSince $\\angle AED + \\angle ADE = 180^\\circ - \\angle A = 120^\\circ$,\\\\\nit follows that $\\angle AED = \\angle BDF$,\\\\\nhence, $\\triangle AED \\sim \\triangle BDF$,\\\\\nthus, $\\frac{DE}{DF} = \\frac{7x}{8x} = \\frac{7}{8}$,\\\\\ntherefore, $CE:CF = \\boxed{\\frac{7}{8}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53066091": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is a parallelogram, point $E$ is on side $CD$, with $DE=2CE$, connect $AE$ and intersect $BD$ at point $F$. What is the ratio of $DF:BD$?", -"image_file_name": "7055883", -"image": [ -"math/53066091_206.png" -], -"solution": "\\textbf{Solution}: Since $DE=2CE$,\\\\\nit follows that $\\frac{DE}{DC}=\\frac{2}{3}$,\\\\\nsince quadrilateral $ABCD$ is a parallelogram,\\\\\nit follows that $AB=CD$, $AB\\parallel CD$,\\\\\ntherefore, $\\triangle DFE\\sim \\triangle BFA$,\\\\\nthus, $\\frac{DF}{BF}=\\frac{DE}{AB}=\\frac{DE}{CD}=\\frac{2}{3}$,\\\\\nhence, $DF\\colon BD=\\boxed{2\\colon 5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53058709": { -"question": "As shown in the figure, in $\\triangle ABC$, points $D$, $E$, $F$ are the midpoints of $AB$, $BC$, $AC$, respectively. If the area of $\\triangle ABC$ is $1$, what is the area of $\\triangle DEF$?", -"image_file_name": "7055883", -"image": [ -"math/53058709_2110.png" -], -"solution": "\\textbf{Solution:} Given points $D$, $E$, $F$ are the midpoints of $AB$, $BC$, $AC$ respectively,\\\\\nthus $EF=\\frac{1}{2}BA$, $DF=\\frac{1}{2}BC$, $DE=\\frac{1}{2}AC$,\\\\\nthus $\\frac{EF}{BA}=\\frac{DF}{BC}=\\frac{DE}{AC}=\\frac{1}{2}$,\\\\\nthus $\\triangle ABC\\sim \\triangle EDF$,\\\\\nthus $\\frac{{S}_{\\triangle EDF}}{{S}_{\\triangle ABC}}={\\left(\\frac{1}{2}\\right)}^{2}=\\frac{1}{4}$,\\\\\ngiven ${S}_{\\triangle ABC}=1$,\\\\\nthus ${S}_{\\triangle EDF}=\\boxed{\\frac{1}{4}}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53110834": { -"question": "As shown in the figure, the lines, $l_{1} \\parallel l_{2} \\parallel l_{3}$ and lines $AC$ and $DF$ are intersected by $l_{1}$, $l_{2}$, $l_{3}$. Given $AB = 4$, $BC = 6$, $EF = 9$, what is the length of $DE$?", -"image_file_name": "7055883", -"image": [ -"math/53110834_2210.png" -], -"solution": "\\textbf{Solution:} Since the lines, $l_1\\parallel l_2\\parallel l_3$\\\\\nTherefore, $\\frac{AB}{BC}=\\frac{DE}{EF}$\\\\\nGiven $AB=4$, $BC=6$, $EF=9$\\\\\nThus $DE=\\frac{AB\\cdot EF}{BC}=\\frac{4\\times 9}{6}=\\boxed{6}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53110836": { -"question": "As shown in the figure, within square $ABCD$, point $E$ is on side $BC$, and $AB = 3BE$. Draw $BF\\perp AE$ through point $B$, intersecting with side $CD$ at point $F$. With $C$ as the center and $CF$ as the radius, draw a circle intersecting side $BC$ at point $G$. Connect $DG$, intersecting $BF$ at point $H$. What is the ratio of $DH$ to $HG$?", -"image_file_name": "7055883", -"image": [ -"math/53110836_233.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect AH and CH. Let AE and BF intersect at M,\\\\\n$\\because BF \\perp AE$,\\\\\n$\\therefore \\angle AMB = 90^\\circ$,\\\\\n$\\therefore \\angle BAM + \\angle ABM = 90^\\circ$,\\\\\n$\\because$ Quadrilateral ABCD is a square,\\\\\n$\\therefore AB = BC = CD = AD$, $\\angle ABE = \\angle BCF = 90^\\circ$,\\\\\n$\\therefore \\angle ABM + \\angle CBF = 90^\\circ$,\\\\\n$\\therefore \\angle BAE = \\angle CBF$,\\\\\n$\\therefore \\triangle ABE \\cong \\triangle BCF$ (ASA),\\\\\n$\\therefore BE = CF$,\\\\\n$\\therefore BF = DF$,\\\\\n$\\because CG = CF$, $\\angle DCG = \\angle BCF$, DC = BC,\\\\\n$\\therefore \\triangle BCF \\cong \\triangle DCG$ (SAS),\\\\\n$\\therefore \\angle CBF = \\angle CDG$,\\\\\nAlso, $\\because \\angle BHG = \\angle DHF$,\\\\\n$\\therefore \\triangle BHG \\cong \\triangle DHF$ (AAS),\\\\\n$\\therefore HG = HF$,\\\\\nAlso, $\\because HC = HC$, CG = CF,\\\\\n$\\therefore \\triangle HCG \\cong \\triangle HCF$ (SSS),\\\\\n$\\therefore \\angle HCG = \\angle HCF = 45^\\circ$,\\\\\n$\\therefore$ Points A, H, and C are collinear,\\\\\n$\\because AD \\parallel CG$,\\\\\n$\\therefore \\triangle ADH \\sim \\triangle CGH$,\\\\\n$\\therefore \\frac{DH}{HG} = \\frac{AD}{CG} = \\frac{AD}{BE} = \\frac{AB}{BE} = \\boxed{3\\colon 1}$,\\\\", -"solution_image": [ -"solution_images/53110836_230.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53110752": { -"question": "As shown in the figure, in rhombus $ABCD$, point $E$ is on side $AD$, and ray $CE$ intersects the extension of $BA$ at point $F$. If $\\frac{AE}{ED}=\\frac{1}{2}$ and $AB=3$, then what is the length of $AF$?", -"image_file_name": "7055883", -"image": [ -"math/53110752_246.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rhombus, \\\\\n$\\therefore$ $AE\\parallel BC$, $AD=AB=BC=3$, \\\\\n$\\therefore$ $\\triangle FAE\\sim \\triangle FBC$, \\\\\n$\\therefore$ $\\frac{AF}{BF}=\\frac{AE}{BC}$, \\\\\nSince $\\frac{AE}{ED}=\\frac{1}{2}$, \\\\\n$\\therefore$ $\\frac{AE}{BC}=\\frac{AE}{AD}=\\frac{1}{3}$, \\\\\n$\\therefore$ $\\frac{AF}{BF}=\\frac{AE}{BC}=\\frac{1}{3}$, that is: $\\frac{AF}{AF+AB}=\\frac{AF}{AF+3}=\\frac{1}{3}$, \\\\\nSolving gives: $AF=\\boxed{\\frac{3}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53110858": { -"question": "As shown in the figure, it is known that line $l_{1} \\parallel l_{2} \\parallel l_{3}$. Line AC intersects lines $l_{1}$, $l_{2}$, and $l_{3}$ at points A, B, and C, respectively. Line DF intersects lines $l_{1}$, $l_{2}$, and $l_{3}$ at points D, E, and F, respectively. Lines AC and DF intersect at point O. If BC = 2AO = 2OB and OD = 1, then what is the length of OF?", -"image_file_name": "7055883", -"image": [ -"math/53110858_252.png" -], -"solution": "\nSolution: $\\because BC = 2AO = 2OB$,\\\\\n$\\therefore OC = 3AO$,\\\\\n$\\because$ line $l_1 \\parallel l_2 \\parallel l_3$,\\\\\n$\\therefore \\frac{AO}{OC} = \\frac{OD}{OF}$,\\\\\n$\\therefore \\frac{AO}{OC} = \\frac{OD}{OF} = \\frac{1}{3}$,\\\\\n$\\because OD = 1$,\\\\\n$\\therefore OF = \\boxed{3}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53110864": { -"question": "As shown in the diagram, in the rhombus $ABCD$, the heights $CE$ and $CF$ are drawn from point $C$ onto sides $AB$ and $AD$ respectively. Line $BF$ is drawn and intersects $CE$ at point $G$. If point $E$ is the midpoint of $AB$, what is the value of $\\frac{EG}{CG}$?", -"image_file_name": "7055883", -"image": [ -"math/53110864_2610.png" -], -"solution": "\\textbf{Solution:} As the diagram shows, construct $FH \\perp CE$ intersecting $CE$ at $H$,\\\\\n$\\because \\angle D = \\angle EBC, \\angle DFC = \\angle BEC = 90^\\circ, CD = BC$,\\\\\n$\\therefore \\triangle DFC \\cong \\triangle BEC \\left( AAS \\right)$,\\\\\n$\\therefore BE = DF, CF = CE, \\angle DCF = \\angle BCE$,\\\\\n$\\because AD \\parallel BC, CF \\perp AD$,\\\\\n$\\therefore \\angle FCB = 90^\\circ$,\\\\\nSimilarly, $\\angle DCE = 90^\\circ$,\\\\\n$\\because \\angle FCE + \\angle DCF = 90^\\circ, \\angle D + \\angle DCF = 90^\\circ$,\\\\\n$\\therefore \\angle D = \\angle FCE$,\\\\\n$\\because FH \\perp CE$,\\\\\n$\\therefore \\triangle DFC \\sim \\triangle CHF$,\\\\\n$\\therefore \\frac{CD}{CF} = \\frac{CF}{FH}$,\\\\\nLet $BE = x$, then $DF = BE = x, CD = AB = BC = 2x, CF = CE = \\sqrt{3}x$,\\\\\n$\\therefore \\frac{2x}{\\sqrt{3}x} = \\frac{\\sqrt{3}x}{FH}$,\\\\\n$\\therefore FH = \\frac{3}{2}x$,\\\\\n$\\therefore CH = \\frac{\\sqrt{3}}{2}x$,\\\\\n$\\because FH \\perp CE, CE \\perp AB$,\\\\\n$\\therefore \\triangle FHG \\sim \\triangle BEG$,\\\\\n$\\therefore \\frac{FH}{BE} = \\frac{HG}{EG} = \\frac{\\frac{3}{2}x}{x}$,\\\\\n$\\because HE = CE - CH = \\frac{\\sqrt{3}}{2}x$,\\\\\n$\\therefore HG = \\frac{3\\sqrt{3}}{10}x, GE = \\frac{\\sqrt{3}}{5}x$,\\\\\n$\\therefore \\frac{EG}{CG} = \\frac{\\frac{\\sqrt{3}}{5}x}{\\frac{8\\sqrt{3}}{10}x} = \\boxed{\\frac{1}{4}}$,", -"solution_image": [ -"solution_images/53110864_263.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53043250": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $\\angle A=60^\\circ$, and D is a point on side $AC$ such that $\\angle DBC=30^\\circ$, $AC=12\\text{cm}$. What is the perimeter of $\\triangle ABD$?", -"image_file_name": "7055883", -"image": [ -"math/53043250_277.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a parallelogram,\\\\\nit follows that $DC\\parallel AB$, $AD\\parallel BC$, $DC=AB$, $AD=BC$,\\\\\ntherefore, $\\triangle CDF\\sim \\triangle BEF$,\\\\\nthus, $BE\\colon DC=BF\\colon CF$,\\\\\nsince $BE\\colon AB=3\\colon 2$, $DC=AB$,\\\\\nit follows that $BE\\colon DC=BF\\colon CF=3\\colon 2$,\\\\\ntherefore, $CF\\colon BF=2\\colon 3$,\\\\\nthus, $CF\\colon BC=2\\colon 5$,\\\\\nsince $AD=BC=10$,\\\\\nit follows that $CF\\colon 10=2\\colon 5$,\\\\\ntherefore, $CF=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53043135": { -"question": "As shown in the figure, the lines $l_1 \\parallel l_2 \\parallel l_3$, and the lines AC and DF are intersected by $l_1$, $l_2$, $l_3$. Given that AB = 8, BC = 12, and EF = 9, what is the length of DE?", -"image_file_name": "7055883", -"image": [ -"math/53043135_284.png" -], -"solution": "\\textbf{Solution:} Since $l_1\\parallel l_2\\parallel l_3$,\\\\\nit follows that $\\frac{AB}{BC}=\\frac{DE}{EF}$,\\\\\ngiven $AB=8, BC=12, EF=9$,\\\\\nthus $\\frac{8}{12}=\\frac{DE}{9}$, solving gives $DE=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53043599": { -"question": "As shown in the figure, it is known that quadrilateral $ABFE \\sim$ quadrilateral $EFCD$, $AB=2$, and $EF=3$. What is the length of $DC$?", -"image_file_name": "7055883", -"image": [ -"math/53043599_295.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABFE\\sim$ quadrilateral $EFCD$,\\\\\nwe have $\\frac{AB}{EF}=\\frac{EF}{CD}$,\\\\\nConsidering $AB=2$ and $EF=3$,\\\\\nwe obtain $CD=\\frac{EF^2}{AB}=\\boxed{\\frac{9}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51385609": { -"question": "As shown in the figure, in quadrilateral $ABCD$, point $E$ is on side $BC$. Connect $DE$ and extend it to intersect the extension of side $AB$ at point $F$. If $\\frac{CE}{BE}=\\frac{4}{3}$, what is the ratio of the perimeter of $\\triangle BEF$ to the perimeter of $\\triangle ADF$?", -"image_file_name": "7056453", -"image": [ -"math/51385609_06.png" -], -"solution": "\\textbf{Solution:} Given that parallelogram ABCD,\\\\\nthus AD=DC, BC$\\parallel$AD,\\\\\ngiven $\\frac{CE}{BE}=\\frac{4}{3}$,\\\\\nthus $\\frac{BE}{BC}=\\frac{3}{7}$,\\\\\ntherefore, BE:AD=3:7,\\\\\ngiven BE$\\parallel$AD,\\\\\nthus $\\triangle ADF \\sim \\triangle BEF$,\\\\\ntherefore, the perimeter ratio of $\\triangle BEF$ to $\\triangle ADF$ is equal to the similarity ratio $3:7$.\\\\\nHence, the answer is: $\\boxed{3:7}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51385606": { -"question": "As shown in the figure, \\(l_1, l_2, l_3\\) are a set of parallel lines, and the lines AC, DF intersect this set of parallel lines successively at points A, B, C, and D, E, F, respectively. If \\(\\frac{AB}{BC}=\\frac{2}{3}\\), then what is the value of \\(\\frac{EF}{DF}\\)?", -"image_file_name": "7056453", -"image": [ -"math/51385606_13.png" -], -"solution": "\\textbf{Solution:} Since $l_1 \\parallel l_2 \\parallel l_3$, we have $\\frac{EF}{DF}=\\frac{BC}{AC}$. Furthermore, since $\\frac{AB}{BC}=\\frac{2}{3}$, it follows that $\\frac{BC}{AC}=\\frac{3}{5}$. Hence, $\\frac{EF}{DF}=\\boxed{\\frac{3}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53010266": { -"question": "As shown in the diagram, in square $ABCD$, $E$ is a point on side $BC$. If $BE: EC=2:3$ and $AE$ intersects $BD$ at $F$, what is the ratio of $BF: FD$?", -"image_file_name": "7056453", -"image": [ -"math/53010266_26.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore$ AD $\\parallel$ BC and AD $=$ BC, \\\\\nSince BE: EC $=$ 2: 3, \\\\\n$\\therefore$ BE: AD $=$ 2: 5, \\\\\nSince AD $\\parallel$ BC, \\\\\n$\\therefore$ $\\triangle$ADF $\\sim$ $\\triangle$EBF, \\\\\n$\\therefore$ BF: FD $=$ BE: AD $=$ 2: 5, \\\\\nHence, the answer is: \\boxed{2:5}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379110": { -"question": "As shown in the figure, the grid is a square grid, and A, B, C, D, E, F are the intersections of the grid lines. What is the ratio of the area of $\\triangle ABC$ to the area of $\\triangle DEF$?", -"image_file_name": "7056453", -"image": [ -"math/51379110_30.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, let the side length of the small squares in the square grid be 1,\\\\\nthen we have $AB=1$, $BC=\\sqrt{1^2+2^2}=\\sqrt{5}$, $AC=\\sqrt{1^2+1^2}=\\sqrt{2}$, $DE=2$, $EF=\\sqrt{2^2+2^2}=2\\sqrt{2}$, $DF=\\sqrt{2^2+4^2}=2\\sqrt{5}$,\\\\\n$\\therefore \\frac{AB}{DE}=\\frac{BC}{DF}=\\frac{AC}{EF}=\\frac{1}{2}$,\\\\\n$\\therefore \\triangle ABC\\sim \\triangle DEF$,\\\\\n$\\therefore S_{\\triangle ABC} : S_{\\triangle DEF}=\\left(\\frac{1}{2}\\right)^2=\\boxed{\\frac{1}{4}}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379205": { -"question": "As shown in the figure, the right triangle has its right-angled vertex at the coordinate origin, $\\angle OAB=30^\\circ$. If point A lies on the graph of the inverse proportional function $y=\\frac{6}{x}$ $(x>0)$, what is the value of $k$ in the inverse proportional function $y=\\frac{k}{x}$ passing through point B?", -"image_file_name": "7056453", -"image": [ -"math/51379205_42.png" -], -"solution": "\\textbf{Solution:} Draw $BC\\perp x$ axis at point $C$ through point $B$, and draw $AD\\perp x$ axis at point $D$ through point $A$, as shown in the figure.\\\\\n$\\because \\angle BOA=90^\\circ$,\\\\\n$\\therefore \\angle BOC+\\angle AOD=90^\\circ$,\\\\\n$\\because \\angle AOD+\\angle OAD=90^\\circ$,\\\\\n$\\therefore \\angle BOC=\\angle OAD$,\\\\\nAlso, $\\because \\angle BCO=\\angle ADO=90^\\circ$,\\\\\n$\\therefore \\triangle BCO\\sim \\triangle ODA$,\\\\\n$\\therefore \\frac{OB}{OA}=\\tan30^\\circ=\\frac{\\sqrt{3}}{3}$,\\\\\n$\\therefore \\frac{{S}_{\\triangle BCO}}{{S}_{\\triangle ODA}}=\\frac{1}{3}$,\\\\\n$\\because \\frac{1}{2}\\times AD\\times DO=\\frac{1}{2}xy=3$,\\\\\n$\\therefore {S}_{\\triangle BCO}=\\frac{1}{2}\\times BC\\times CO=\\frac{1}{3}{S}_{\\triangle ODA}=1$,\\\\\n$\\because$ The graph of the inverse proportion function that passes through point $B$ is in the second quadrant,\\\\\ntherefore, the equation of the inverse proportion function is: $y=-\\frac{2}{x}$,\\\\\n$\\therefore k=\\boxed{-2}$.", -"solution_image": [ -"solution_images/51379205_46.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51379357": { -"question": "In $\\triangle ABC$, points E, D, and F are on sides AB, BC, and AC respectively. Connecting DE and DF, if $DE \\parallel AC$ and $DF \\parallel AB$, with $AE:EB = 3:2$, then what is the value of $AF:FC$?", -"image_file_name": "7056453", -"image": [], -"solution": "\\textbf{Solution:}\\\\\nSince DE$\\parallel$AC and AE: EB=3: 2, \\\\\nit follows that $ \\frac{AE}{EB}=\\frac{CD}{BD}=\\frac{3}{2}$\\\\\nThus, $ \\frac{BD}{CD}=\\frac{2}{3}$\\\\\nSince DF$\\parallel$ AB,\\\\\nit follows that $ \\frac{AF}{FC}=\\frac{BD}{CD}=\\boxed{\\frac{2}{3}}$", -"solution_image": [ -"solution_images/51379357_50.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379466": { -"question": "As shown in the figure, it is known that $AB \\parallel CD \\parallel EF$, and they intersect lines $l_1$ and $l_2$ at points A, C, E and B, D, F respectively. If $AC: CE = 2:3$ and $BD = 4$, then what is the value of $BF$?", -"image_file_name": "7056453", -"image": [ -"math/51379466_64.png" -], -"solution": "\\[\n\\textbf{Solution:} \\quad \\text{Given,} \\quad AB \\parallel CD \\parallel EF,\\\\\n\\text{it follows that} \\quad AC:CE = BD:DF,\\\\\n\\text{Given} \\quad AC:CE = 2:3, \\quad \\text{and} \\quad BD=4,\\\\\n\\text{then} \\quad 2:3=4:DF,\\\\\n\\text{thus,} \\quad DF=6,\\\\\n\\text{therefore,} \\quad BF=BD+DF=4+6=\\boxed{10}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379316": { -"question": "As shown in the figure, the lines $l_1 \\parallel l_2 \\parallel l_3$, and the lines $a$ and $b$ intersect with these three lines at points $A$, $B$, $C$ and $E$, $F$, $F$, respectively. If $AB:BC = 5:3$, then what is the ratio of $EF:DF$?", -"image_file_name": "7056453", -"image": [ -"math/51379316_711.png" -], -"solution": "\\textbf{Solution:} Since ${l}_{1}\\parallel {l}_{2}\\parallel {l}_{3}$\\\\\n$\\therefore \\frac{AB}{BC}=\\frac{DE}{EF}=\\frac{5}{3}$\\\\\n$\\therefore \\frac{EF}{DE}=\\frac{3}{5}$\\\\\n$\\therefore \\frac{EF}{DF}=\\boxed{\\frac{3}{8}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379199": { -"question": "As shown in the figure, in $\\square ABCD$, $EF\\parallel AB$, $DE:EA=2:3$, and $EF=4$, what is the length of $CD$?", -"image_file_name": "7056453", -"image": [ -"math/51379199_83.png" -], -"solution": "\\textbf{Solution:} Given $EF \\parallel AB$,\\\\\nit follows that $\\angle DEF = \\angle A$, $\\angle DFE = \\angle DBA$,\\\\\nwhich means $\\triangle DEF \\sim \\triangle DAB$.\\\\\nGiven $DE : EA = 2 : 3$,\\\\\nit implies $EF : AB = DE : DA = 2 : 5$,\\\\\nand since $EF = 4$,\\\\\nwe find that $AB = 10$.\\\\\nTherefore, in quadrilateral $ABCD$, $CD = AB = \\boxed{10}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55483155": { -"question": "What is the surface area of the lateral faces of a triangular prism?", -"image_file_name": "7038193", -"image": [], -"solution": "\\textbf{Solution:} The net of the lateral surface of the triangular prism consists of \\boxed{3} rectangles.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55393326": { -"question": "As shown in the figure, $A$, $B$, $C$, and $D$ are four points in sequence on a straight line, $M$ and $N$ are the midpoints of $AB$ and $CD$ respectively, and $MN=6\\,\\text{cm}$, $BC=3\\,\\text{cm}$. What is the length of $AD$?", -"image_file_name": "7038193", -"image": [ -"math/55393326_75.png" -], -"solution": "\\textbf{Solution:} Let $M$ and $N$ be the midpoints of $AB$ and $CD$ respectively.\\\\\nTherefore, $AB = 2MB$ and $CD = 2CN$.\\\\\nSince $MN = 6$ and $BC = 3$,\\\\\nit follows that $MB + CN = MN - BC = 6 - 3 = 3$,\\\\\nand therefore $AB + CD = 2MB + 2CN = 2(MB + CN) = 2 \\times 3 = 6$,\\\\\nhence $AD = AB + CD + BC = 6 + 3 = \\boxed{9}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55377877": { -"question": "As shown in the figure, $\\triangle ABC$ is rotated clockwise around point C to obtain $\\triangle EDC$. If point A is exactly on the extension of line ED and $\\angle ABC=110^\\circ$, then what is the degree measure of $\\angle ADC$?", -"image_file_name": "7038193", -"image": [ -"math/55377877_84.png" -], -"solution": "Solution: It is known from the rotation that $\\triangle ABC \\cong \\triangle EDC$,\\\\\n$\\therefore \\angle EDC = \\angle ABC = 110^\\circ$,\\\\\n$\\because$ Points A, D, E are collinear,\\\\\n$\\therefore \\angle EDC + \\angle ADC = 180^\\circ$,\\\\\n$\\therefore \\angle ADC = 180^\\circ - \\angle EDC = 180^\\circ - 110^\\circ = \\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55426603": { -"question": "As shown in the figure, given that $\\angle A=n^\\circ$, if point $P_{1}$ is the intersection of the angle bisector of $\\angle ABC$ and the external angle bisector of $\\angle ACE$, point $P_{2}$ is the intersection of the angle bisector of $\\angle P_{1}BC$ and the external angle bisector of $\\angle P_{1}CE$, point $P_{3}$ is the intersection of the angle bisector of $\\angle P_{2}BC$ and the external angle bisector of $\\angle P_{2}CE$, and so on, then what is the degree measure of $\\angle P_{2023}$?", -"image_file_name": "7038193", -"image": [ -"math/55426603_90.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACE = \\angle ABC + \\angle A$, $\\angle P_{1}CE = \\angle P_{1}BC + \\angle P_{1}$, and point $P_{1}$ is the intersection of the angle bisector of $\\angle ABC$ and the exterior angle $\\angle ACE$,\\\\\n$\\therefore \\angle ACE = 2\\angle P_{1}CE$, $\\angle ABC = 2\\angle P_{1}BC$,\\\\\n$\\therefore \\angle ABC + \\angle A = 2(\\angle P_{1}BC + \\angle P_{1})$,\\\\\n$\\therefore \\angle P_{1} = \\frac{1}{2}\\angle A = \\frac{1}{2}n^\\circ$; By the same reasoning: $\\angle P_{2} = \\frac{1}{2}\\angle P_{1} = \\frac{1}{2} \\times \\frac{1}{2}n^\\circ = \\frac{n^\\circ}{{2}^{2}}$, ..., $\\angle P_{m} = \\frac{n^\\circ}{{2}^{m}}$;\\\\\n$\\therefore \\angle P_{2023} = \\frac{n^\\circ}{{2}^{2023}}$.\\\\\nHence, the answer is: $\\boxed{\\frac{n^\\circ}{{2}^{2023}}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55426353": { -"question": "As shown in the figure, it is known that straight lines AB and CD intersect at point O. OA bisects $\\angle EOC$, and $\\angle EOC = 70^\\circ$. What is the degree measure of $\\angle BOD$?", -"image_file_name": "7038193", -"image": [ -"math/55426353_100.png" -], -"solution": "\\textbf{Solution:} Since OA bisects $\\angle EOC$ and $\\angle EOC=70^\\circ$,\n\\[\n\\therefore \\angle AOC=\\frac{1}{2}\\angle EOC=\\frac{1}{2}\\times 70^\\circ=35^\\circ,\n\\]\n\\[\n\\therefore \\angle BOD=\\angle AOC=\\boxed{35^\\circ}\n\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55426225": { -"question": "As shown in the figure, $O$ is a point on the straight line $AB$. An arbitrary ray $OM$ passes through $O$, $OC$ bisects $\\angle AOM$, and $OD$ bisects $\\angle BOM$. What is the measure of $\\angle COD$?", -"image_file_name": "7038193", -"image": [ -"math/55426225_117.png" -], -"solution": "\\textbf{Solution:} Since $OC$ bisects $\\angle AOM$ and $OD$ bisects $\\angle BOM$, \\\\\nthus $\\angle MOC= \\frac{1}{2}\\angle AOM$ and $\\angle MOD= \\frac{1}{2}\\angle BOM$, \\\\\nhence $\\angle COD=\\angle MOC+\\angle MOD= \\frac{1}{2}\\angle AOM+\\frac{1}{2}\\angle BOM=\\frac{1}{2}(\\angle AOM+\\angle BOM)=\\frac{1}{2}\\times 180^\\circ=\\boxed{90^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55300127": { -"question": "The figure on the right is the unfolded shape of a certain solid. What is this solid?", -"image_file_name": "7038193", -"image": [ -"math/55300127_120.png" -], -"solution": "\\textbf{Solution:} According to the net of the solid, we can conclude that the solid is a \\boxed{\\text{pentagonal prism}}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55301095": { -"question": "As shown in the figure, $AB=9$, and $C$ is the midpoint of $AB$. Point $D$ is on the line segment $AC$, and $AD\\colon CB=1\\colon 3$. What is the length of $DC$?", -"image_file_name": "7038193", -"image": [ -"math/55301095_132.png" -], -"solution": "\\textbf{Solution:} Since $C$ is the midpoint of $AB$ and $AB = 9$, \\\\\nthen $AC = BC = \\frac{1}{2} AB = 4.5$, \\\\\nand since the ratio $AD : CB = 1 : 3$, \\\\\nit follows that $AD : AC = 1 : 3$, \\\\\nhence $AD = \\frac{1}{3} AC = 1.5$, \\\\\nthus $DC = AC - AD = 4.5 - 1.5 = \\boxed{3}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55218712": { -"question": "As shown in the figure, the shapes of a certain geometric body viewed from three different directions are as shown. What is this geometric body?", -"image_file_name": "7038193", -"image": [ -"math/55218712_140.png" -], -"solution": "\\textbf{Solution:} From the top view, it can be concluded that the solid is a prism. Since both the front view and the left view are triangles, the solid is identified as a \\boxed{triangular prism}.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55190294": { -"question": "As shown in the figure, point O is on line DB. Given that $\\angle 1=15^\\circ$ and $\\angle AOC=90^\\circ$, what is the measure of $\\angle 2$ in degrees?", -"image_file_name": "7038193", -"image": [ -"math/55190294_150.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle 1=15^\\circ$ and $\\angle AOC=90^\\circ$, \\\\\nit follows that $\\angle BOC=75^\\circ$, \\\\\ntherefore, $\\angle 2=180^\\circ-75^\\circ=\\boxed{105^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55192327": { -"question": "As shown in the figure, it is known that $AB=24$, $C$ is the midpoint of $AB$, point $D$ is on line segment $AC$, and $AD:CB=1:3$, then what is the length of $DB$?", -"image_file_name": "7038193", -"image": [ -"math/55192327_160.png" -], -"solution": "\\textbf{Solution:} Since $C$ is the midpoint of $AB$ and $AB=24$,\\\\\n$\\therefore$AC=CB=12,\\\\\nSince $AD\\colon CB=1\\colon 3$,\\\\\n$\\therefore$AD=$\\frac{1}{3}$BC=4,\\\\\n$\\therefore$DB=AB−AD=24−4=\\boxed{20}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55192328": { -"question": "As shown in the figure, $C$ is a point on the line segment $AB$, $M$ is the midpoint of $AC$, and $N$ is the midpoint of $BC$. If $MC$ is $2\\,\\text{cm}$ longer than $NC$, how much longer is $AC$ than $BC$?", -"image_file_name": "7038193", -"image": [ -"math/55192328_170.png" -], -"solution": "\\textbf{Solution:} Given that $M$ is the midpoint of $AC$, and $N$ is the midpoint of $BC$,\n\\\\\nhence $MC=\\frac{1}{2}AC$, $CN=\\frac{1}{2}BC$,\n\\\\\nsince $MC-NC=2cm$,\n\\\\\nit follows that $\\frac{1}{2}AC-\\frac{1}{2}BC=2cm$,\n\\\\\ntherefore $AC-BC=\\boxed{4cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55138467": { -"question": "As shown in the figure, what will be the shape after the planar figure is pulled into a three-dimensional form?", -"image_file_name": "7038193", -"image": [ -"math/55138467_180.png" -], -"solution": "\\textbf{Solution:} From the development diagram, we know: the two bases are regular pentagons, $\\therefore$ after the plane figure is extruded into a three-dimensional shape, it will form a \\boxed{\\text{pentagonal prism}}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55025245": { -"question": "As shown in the diagram, what is the solid represented by its net?", -"image_file_name": "7038193", -"image": [ -"math/55025245_190.png" -], -"solution": "\\textbf{Solution:} According to the unfolded figure, there are a total of 5 faces, with two triangles serving as the base and three rectangles as the lateral faces,\\\\\n$\\therefore$ this solid is a \\boxed{triangular prism}.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54962528": { -"question": "As shown in the figure, lines AB and CD intersect at point E, with EF$\\perp$AB at point E. If $\\angle FEC - \\angle AEC = 20^\\circ$, what is the measure of $\\angle AED$?", -"image_file_name": "7038193", -"image": [ -"math/54962528_200.png" -], -"solution": "\\textbf{Solution:} Let $\\angle AEC$ be $x$, then $\\angle FEC=x+20^\\circ$. \\\\\nSince EF$\\perp$AB, \\\\\nit follows that $\\angle AEF=90^\\circ$, \\\\\nwhich means $\\angle AEC+\\angle FEC= 90^\\circ$, \\\\\nhence $x+x+20^\\circ=90^\\circ$, \\\\\nSolving this gives: $x=35^\\circ$, \\\\\nthat is $\\angle AEC=35^\\circ$, \\\\\nTherefore, $\\angle AED=180^\\circ−35^\\circ=\\boxed{145^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927610": { -"question": "As shown in the figure, lines \\(m\\), \\(n\\), and \\(l\\) intersect, and \\(m \\perp n\\), \\(\\angle 1 = 48^\\circ\\). What is the degree measure of \\(\\angle 3\\)?", -"image_file_name": "7038193", -"image": [ -"math/54927610_210.png" -], -"solution": "\\textbf{Solution:} Since line m intersects with line n,\\\\\nTherefore $\\angle 1 = \\angle 2 = 48^\\circ$,\\\\\nSince m $\\perp$ n,\\\\\nTherefore $\\angle 2 + \\angle 3 = 90^\\circ$,\\\\\nTherefore $\\angle 3 = 90^\\circ - 48^\\circ = \\boxed{42^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51458031": { -"question": "As shown in the diagram, it is known that lines $a \\parallel b \\parallel c$, and lines $m$, $n$ intersect $a$, $b$, $c$ at points $A$, $C$, $E$, $B$, $D$, $F$, respectively. If $AC=8$, $CE=12$, and $BD=6$, what is the value of $DF$?", -"image_file_name": "7056453", -"image": [ -"math/51458031_252.png" -], -"solution": "\\textbf{Solution:} Since line $a \\parallel b \\parallel c$,\\\\\nthus, $\\frac{AC}{CE}=\\frac{BD}{DF}$,\\\\\nthus, $\\frac{8}{12}=\\frac{6}{DF}$,\\\\\nwe get $DF=\\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51457856": { -"question": "As shown in the figure, it is known that lines $a\\parallel b\\parallel c$, and lines $m, n$ intersect with $a, b, c$ at points $A, C, E, B, D, F$, respectively. If $AC=8$, $CE=12$, and $BD=6$, what is the value of $DF$?", -"image_file_name": "7056453", -"image": [ -"math/51457856_265.png" -], -"solution": "\\textbf{Solution:} Since $a\\parallel b\\parallel c$,\\\\\nit follows that $\\frac{AC}{CE}=\\frac{BD}{DF}$,\\\\\nGiven $AC=8$, $CE=12$, and $BD=6$,\\\\\nwe have $\\frac{8}{12}=\\frac{6}{DF}$. Solving this yields: $DF=\\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51457863": { -"question": "As shown in the figure, it is known that point $E$ is a moving point on the diagonal $AC$ of rectangle $ABCD$, and the vertices $G$ and $H$ of square $EFGH$ are both on side $BC$. If $AB = 3$ and $BC = 4$, then what is the value of $\\tan \\angle CFE$?", -"image_file_name": "7056453", -"image": [ -"math/51457863_270.png" -], -"solution": "Solution: In the square EFGH, we have EF$\\parallel$GH and EH$\\perp$BC,\\\\\nwhich means EF$\\parallel$BC,\\\\\n$\\therefore \\angle CFE=\\angle BCF$,\\\\\nIn the rectangle ABCD, AB$\\perp$BC,\\\\\n$\\therefore$EH$\\parallel$AB,\\\\\n$\\triangle ABC\\sim \\triangle EHC$,\\\\\n$\\therefore \\frac{EH}{AB}=\\frac{CH}{BC}$, i.e., $\\frac{AB}{BC}=\\frac{EH}{CH}=\\frac{3}{4}$,\\\\\nLet $EH=3a$, $CH=4a$, then $FG=3a$, $GH=3a$,\\\\\n$\\therefore CG=7a$,\\\\\n$\\therefore \\tan\\angle CFE=\\tan\\angle BCF=\\frac{FG}{CG}=\\frac{3a}{7a}=\\boxed{\\frac{3}{7}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51353232": { -"question": "As shown in the figure, in quadrilateral $ABCD$, point $E$ is a point on side $BC$, and $BE: EC=2:1$, $AE$ intersects $BD$ at point $F$. What is the ratio of the area of $\\triangle BEF$ to the area of $\\triangle ABD$?", -"image_file_name": "7056453", -"image": [ -"math/51353232_287.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a parallelogram,\\\\\n$\\therefore$ $AD\\parallel BC$ and $AD=BC$,\\\\\n$\\therefore$ $\\angle ADB=\\angle CBD$,\\\\\nGiven $\\angle AFD=\\angle BFE$,\\\\\n$\\therefore$ $\\triangle AFD\\sim \\triangle EFB$,\\\\\nGiven $BE:EC=2:1$,\\\\\n$\\therefore$ $\\frac{BE}{AD}=\\frac{2}{3}$,\\\\\n$\\therefore$ $\\frac{{h}_{\\triangle BEF}}{{h}_{\\triangle DAF}}=\\frac{2}{3}$,\\\\\n$\\therefore$ $\\frac{{h}_{\\triangle BEF}}{{h}_{\\triangle ABD}}=\\frac{2}{5}$,\\\\\nLet $BE=2x$, then $AD=3x$,\\\\\nLet ${h}_{\\triangle BEF}=2a$, then ${h}_{\\triangle ABD}=5a$,\\\\\n$\\therefore$ $\\frac{{S}_{\\triangle BEF}}{{S}_{\\triangle ABD}}=\\frac{2x\\cdot 2a}{3x\\cdot 5a}=\\boxed{\\frac{4}{15}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51351726": { -"question": "As shown in the figure, $ \\triangle ABO \\sim \\triangle CDO$, if $ BO=8$, $ DO=4$, and $ CD=3$, then what is the length of $ AB$?", -"image_file_name": "7056453", -"image": [ -"math/51351726_290.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABO \\sim \\triangle CDO$, $BO=8$, $DO=4$, $CD=3$,\n\\[\n\\therefore \\frac{BO}{DO}=\\frac{AB}{CD}, \\text{ which means } \\frac{8}{4}=\\frac{AB}{3},\n\\]\n\\[\n\\therefore AB=\\boxed{6}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51351895": { -"question": "As shown in the figure, D and E are the midpoints of sides AB and AC of $\\triangle ABC$, respectively. CD and BE intersect at point O. What is the value of $\\frac{S_{\\triangle COE}}{S_{\\triangle BOC}}$?", -"image_file_name": "7056453", -"image": [ -"math/51351895_302.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of sides $AB$ and $AC$ of $\\triangle ABC$ respectively,\\\\\nit follows that $DE \\parallel BC$ and $DE = \\frac{1}{2}BC$,\\\\\nthereby $\\triangle DOE \\sim \\triangle COB$,\\\\\nwhich implies $\\frac{DE}{BC}=\\frac{OE}{OB}=\\frac{1}{2}$,\\\\\nresulting in ${S}_{\\triangle COE}:{S}_{\\triangle BOC}=\\frac{OE}{OB}=\\boxed{\\frac{1}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51352002": { -"question": "As shown in the figure, in parallelogram $ABCD$, point $M$ is the midpoint of $CD$, and $AM$ intersects $BD$ at point $N$. If it is known that the area of $\\triangle DMN$ is 3, then what is the area of $\\triangle ADN$?", -"image_file_name": "7056453", -"image": [ -"math/51352002_316.png" -], -"solution": "\\textbf{Solution:} Since point $M$ is the midpoint of $CD$, \\\\\n$\\therefore$ DM=$\\frac{1}{2}CD$, \\\\\nIn parallelogram $ABCD$ where AB$\\parallel$CD, AB=CD, \\\\\n$\\therefore$ $\\angle$ABN=$\\angle$MDN, $\\angle$BAN=$\\angle$DMN, \\\\\n$\\therefore$ $\\triangle ABN\\sim \\triangle MDN$, \\\\\n$\\therefore$ $\\frac{AB}{MD}=\\frac{AN}{MN}=\\frac{CD}{DM}=2$, \\\\\n$\\therefore$ AN=2MN, \\\\\n$\\therefore$ $\\frac{{S}_{\\triangle ADN}}{{S}_{\\triangle DMN}}=AN:MN=2:1$, \\\\\nSince ${S}_{\\triangle DMN}=3$, \\\\\n$\\therefore$ ${S}_{\\triangle ADN}=2{S}_{\\triangle DMN}=2\\times 3=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52422247": { -"question": "As shown in the figure, in $\\triangle ABC$, D and E are the midpoints of AB and AC, respectively. If $DE=4$, what is the length of $BC$?", -"image_file_name": "7054392", -"image": [ -"math/52422247_00.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of sides $AB$ and $AC$ respectively,\\\\\nit follows that $DE$ is the midsegment of $\\triangle ABC$.\\\\\nSince $DE = 4$,\\\\\nit follows that $BC = 2DE = 2 \\times 4 = \\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52422701": { -"question": "As shown in the figure, in rectangle $ABCD$, $\\angle BOC = 120^\\circ$, $BD = 12$, where $P$ is a moving point on side $AD$. What is the minimum value of $OP$?", -"image_file_name": "7054392", -"image": [ -"math/52422701_10.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, if we draw OP$\\perp$AD from point O, then the length of OP is the smallest at this time.\\\\\nSince quadrilateral ABCD is a rectangle,\\\\\nit follows that AC=BD,\\\\\nSince $AO=\\frac{1}{2}AC$ and $DO=\\frac{1}{2}DB$,\\\\\nit follows that AO=DO=$\\frac{1}{2}DB=6$,\\\\\nSince $\\angle$AOD=$\\angle$BOC=120$^\\circ$,\\\\\nit follows that $\\angle$OAD=30$^\\circ$,\\\\\nSince $\\angle$OPA=90$^\\circ$,\\\\\nit follows that OP=$\\frac{1}{2}AO=\\boxed{3}$", -"solution_image": [ -"solution_images/52422701_10.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52423423": { -"question": "As shown in the figure, $O$ is the midpoint of the diagonal $AC$ of rectangle $ABCD$, and $E$ is the midpoint of $AD$. If $AB=6$ and $BC=8$, then what is the perimeter of $\\triangle BOE$?", -"image_file_name": "7054392", -"image": [ -"math/52423423_28.png" -], -"solution": "\\textbf{Solution:} Since point $O$ is the midpoint of the diagonal $AC$ of rectangle $ABCD$, and point $E$ is the midpoint of $AD$, \\\\\n$\\therefore AB=CD=6$, $AD=BC=8$, $OE=\\frac{1}{2}CD=3$, $AE=\\frac{1}{2}AD=4$, \\\\\nIn $Rt\\triangle ABE$, $BE=\\sqrt{AB^{2}+AE^{2}}=\\sqrt{6^{2}+4^{2}}=2\\sqrt{13}$, \\\\\nIn $Rt\\triangle ABC$, $AC=\\sqrt{AB^{2}+BC^{2}}=\\sqrt{6^{2}+8^{2}}=10$, \\\\\n$\\therefore BO=\\frac{1}{2}AC=5$, \\\\\nThus, the perimeter of $\\triangle BOE$ is: $5+3+2\\sqrt{13}=8+2\\sqrt{13}$, \\\\\nTherefore, the answer is: $\\boxed{8+2\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52422706": { -"question": "As shown in Figure 1, there is a right-angled triangle with one of its legs measuring 1 unit and the hypotenuse measuring 3 units. By arranging them as illustrated in Figure 2 to form a square, and ensuring that the pieces do not overlap or leave gaps at the joints, what is the area of the quadrilateral ABCD, which is the blank space in the middle of Figure 2?", -"image_file_name": "7054392", -"image": [ -"math/52422706_30.png" -], -"solution": "\\textbf{Solution:} From Figure 2, we have $AB=BC=CD=DA$ and $\\angle BAD=90^\\circ$, \\\\\n$\\therefore$ quadrilateral ABCD is a square, \\\\\n$\\because$ one of the legs of the right-angled triangle paper is 1 and the hypotenuse is 3, \\\\\naccording to the Pythagorean theorem, we can find that the other leg of the right-angled triangle is $\\sqrt{3^2-1^2}=2\\sqrt{2}$, \\\\\n$\\therefore$ the area of square ABCD is $(2\\sqrt{2}-1)^2=9-4\\sqrt{2}$, \\\\\nthus, the answer is: $\\boxed{9-4\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52422315": { -"question": "As shown in the diagram, in the Cartesian coordinate system, if the vertices $A$ and $B$ of the rhombus $ABCD$ are at $(-3, 0)$ and $(2, 0)$ respectively, and point $D$ is on the y-axis, what are the coordinates of point $C$?", -"image_file_name": "7054392", -"image": [ -"math/52422315_42.png" -], -"solution": "Solution: Since the coordinates of points A and B are respectively $(-3,0)$ and $(2,0)$, \\\\\nit follows that $AB=5$ \\\\\nSince quadrilateral $ABCD$ is a rhombus, \\\\\nit follows that $AB=AD=BC=5$, and $DC\\parallel AB$ \\\\\nSince $AO=3$, \\\\\nit follows that $DO=\\sqrt{AB^{2}-AO^{2}}=\\sqrt{5^{2}-3^{2}}=4$ \\\\\nTherefore, $C(5,4)$ \\\\\nHence, the coordinates of point C are $\\boxed{(5,4)}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423378": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=8$. The rectangle is folded along the line $AC$, with point $B$ falling onto point $E$, and $AE$ intersects $CD$ at point $F$. If $AF=\\frac{25}{4}$, what is the length of $AD$?", -"image_file_name": "7054392", -"image": [ -"math/52423378_510.png" -], -"solution": "\\textbf{Solution:} Given $DC\\parallel AB$,\\\\\n$\\therefore \\angle FCA=\\angle CAB$, also $\\angle FAC=\\angle CAB$,\\\\\n$\\therefore \\angle FAC=\\angle FCA$,\\\\\n$\\therefore FA=FC=\\frac{25}{4}$,\\\\\n$\\therefore FD=FE$,\\\\\nGiven $DC=AB=8$, $AF=\\frac{25}{4}$,\\\\\n$\\therefore FD=FE=8-\\frac{25}{4}=\\frac{7}{4}$,\\\\\n$\\therefore AD=BC=EC=\\sqrt{FC^{2}-FE^{2}}=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52422876": { -"question": "As shown in the figure, in the Cartesian coordinate system, the quadrilateral $ABCD$ is a square. The coordinate of point $A$ is $(0,2)$, and the coordinate of point $B$ is $(4,0)$. What is the coordinate of point $C$?", -"image_file_name": "7054392", -"image": [ -"math/52422876_64.png" -], -"solution": "\\textbf{Solution:} As illustrated, draw CE$\\perp$x-axis at point C, with E being the foot of the perpendicular.\\\\\nSince quadrilateral ABCD is a square, and points A(0, 2), B(4, 0),\\\\\nthen AB=BC, $\\angle$ABC=90$^\\circ$, AO=2, OB=4,\\\\\nthus $\\angle$AOB=$\\angle$BEC= 90$^\\circ$, $\\angle$ABO=$\\angle$BCE=90$^\\circ$−$\\angle$CBE,\\\\\ntherefore $\\triangle$AOB$\\cong$$\\triangle$BEC,\\\\\nthus BE=AO=2, EC=OB=4,\\\\\ntherefore OE=OB+BE=2+4=6,\\\\\nhence, the coordinates of point C are $\\boxed{(6, 4)}$.", -"solution_image": [ -"solution_images/52422876_60.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423571": { -"question": "As shown in the diagram, the diagonals $AC$ and $BD$ of the rhombus $ABCD$ intersect at point $O$, with $BD = 6$ and $AC = 8$. If $E$ is the midpoint of $CD$, then what is the length of $OE$?", -"image_file_name": "7054392", -"image": [ -"math/52423571_70.png" -], -"solution": "Solution: Since quadrilateral ABCD is a rhombus,\\\\\nit follows that OC=OA=$\\frac{1}{2}AC=4$, OB=OD=$\\frac{1}{2}BD=3$, and $\\angle$DOC=$90^\\circ$,\\\\\nthus CD=$\\sqrt{OC^2+OA^2}=5$,\\\\\ngiven that E is the midpoint of AB, and O is the midpoint of AC,\\\\\nthus OE is the median to the hypotenuse of $\\triangle COD$,\\\\\ntherefore OE=$\\frac{1}{2}CD=\\boxed{2.5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52422309": { -"question": "In rectangle $ABCD$, where $AB=6, BC=8$, the diagonals intersect at point $O$. What is the length of $BO$?", -"image_file_name": "7054392", -"image": [ -"math/52422309_83.png" -], -"solution": "\\textbf{Solution:} \nSince quadrilateral ABCD is a rectangle, and $AB=6$, $BC=8$, \\\\\nit follows that $\\angle ABC=90^\\circ$, \\\\\ntherefore $BD=AC=\\sqrt{AB^{2}+BC^{2}}=10$, \\\\\nsince $OB=\\frac{1}{2}BD$, \\\\\nit follows that $OB=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52422738": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=10$, $AC=7$, $BC=9$, and points $D$, $E$, and $F$ are the midpoints of $AB$, $AC$, and $BC$, respectively. What is the perimeter of the quadrilateral $DBFE$?", -"image_file_name": "7054392", -"image": [ -"math/52422738_91.png" -], -"solution": "\\textbf{Solution:} Since points $D$, $E$, and $F$ are the midpoints of $AB$, $AC$, and $BC$, respectively,\\\\\n$\\therefore DE$ is a midline of $\\triangle ABC$, $EF$ is also a midline of $\\triangle ABC$,\\\\\n$\\therefore DE=BF=\\frac{1}{2}BC=\\frac{1}{2}\\times 9=\\frac{9}{2}$, $EF=BD=\\frac{1}{2}AB=\\frac{1}{2}\\times 10=5$,\\\\\n$\\therefore$ the perimeter of the quadrilateral $DBFE$ is $DE+BF+EF+BD=9+10=\\boxed{19}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423083": { -"question": "As shown in the figure, three squares with the same side length overlap each other. $O_1$ and $O_2$ are the centers of two of the squares. If the sum of the areas of the shaded parts is 4, what is the side length of the squares?", -"image_file_name": "7054392", -"image": [ -"math/52423083_102.png" -], -"solution": "\\textbf{Solution:} Connect $O_1B$ and $O_1C$, as shown in the figure: \\\\\n$\\because \\angle BO_1F + \\angle FO_1C = 90^\\circ$ and $\\angle FO_1C + \\angle CO_1G = 90^\\circ$, \\\\\n$\\therefore \\angle BO_1F = \\angle CO_1G$, \\\\\n$\\because$ quadrilateral $ABCD$ is a square, \\\\\n$\\therefore \\angle O_1BF = \\angle O_1CG = 45^\\circ$, \\\\\nIn $\\triangle O_1BF$ and $\\triangle O_1CG$, \\\\\n$\\left\\{\\begin{array}{l}\n\\angle FO_1B = \\angle CO_1G \\\\\nBO_1 = CO_1 \\\\\n\\angle FBO_1 = \\angle GCO_1\n\\end{array}\\right.$, \\\\\n$\\therefore \\triangle O_1BF \\cong \\triangle O_1CG$ (by ASA), \\\\\n$\\therefore S_{\\triangle O_1BF} = S_{\\triangle O_1CG}$, \\\\\n$\\therefore$ The area of the shaded parts in squares $O_1$ and $O_2$ is $\\frac{1}{4}S_{\\text{square}} ABCD$, \\\\\nSimilarly, the area of the shaded parts in the other two squares is also $\\frac{1}{4}S_{\\text{square}} ABCD$, \\\\\n$\\therefore$ The total area of the shaded parts $= 4 = \\frac{1}{2}S_{\\text{square}} ABCD$, \\\\\n$\\therefore S_{\\text{square}} ABCD = 8 = AD^2$, \\\\\n$\\therefore AD = \\boxed{2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52423083_100.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52416277": { -"question": "As shown in the diagram, in rhombus $ABCD$ with a perimeter of 24, $\\angle BAD=120^\\circ$, points E and F are moving points on sides $AB, AD$ respectively, and point P is a moving point on diagonal $BD$. What is the minimum value of the segment $PE+PF$?", -"image_file_name": "7054392", -"image": [ -"math/52416277_115.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $AC$, intersecting $BD$ at point $O$. Draw a perpendicular line from $AE'$ to $BC$ at foot $E'$, intersecting $BD$ at point $P$.\\\\\nWhen point $F$ coincides with point $A$, draw a perpendicular line from $E'$ to $BD$, extending it to intersect $AB$ at point $E$. The sum of $PE+PF$ achieves its minimum value, which is $AE'$.\\\\\nSince the perimeter of the rhombus $ABCD$ is 24 and $\\angle BAD=120^\\circ$\\\\\nTherefore, $AB=BC=6$ and $\\angle BAC=\\frac{1}{2}\\angle BAD=60^\\circ$,\\\\\nThus, $\\triangle ABC$ is an equilateral triangle,\\\\\nTherefore, $AB=AC$,\\\\\nSince $AE'\\perp BC$ at foot $E'$,\\\\\nTherefore, $BE'=CE'=\\frac{1}{2}BC=3$,\\\\\nIn $\\triangle ABC$, by Pythagoras' theorem,\\\\\n$AE'=\\sqrt{AB^2-BE'^2}=\\sqrt{6^2-3^2}=3\\sqrt{3}$.\\\\\nHence, the minimum value of $PE+PF$ is $\\boxed{3\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52416277_117.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52416424": { -"question": "As shown in the figure, in quadrilateral $ABCD$, point $P$ is the midpoint of diagonal $BD$, points $E$ and $F$ are the midpoints of $AB$ and $CD$, respectively, $AD=BC$, $\\angle CBD=30^\\circ$, and $\\angle ADB=100^\\circ$, then what is the measure of $\\angle PFE$?", -"image_file_name": "7054392", -"image": [ -"math/52416424_120.png" -], -"solution": "\\textbf{Solution:} Since point P is the midpoint of BD, and point E is the midpoint of AB,\\\\\nit follows that PE is the midline of $\\triangle ABD$,\\\\\ntherefore PE=$\\frac{1}{2}$AD, PE$\\parallel$AD,\\\\\nthus $\\angle$EPD=$180^\\circ-\\angle$ADB=$80^\\circ$,\\\\\nSimilarly, PF=$\\frac{1}{2}$BC, PF$\\parallel$BC,\\\\\nthus $\\angle$FPD=$\\angle$CBD=$30^\\circ$,\\\\\nsince AD=BC,\\\\\nit follows that PE=PF,\\\\\nthus $\\angle$PFE=$\\frac{1}{2}\\times(180^\\circ-110^\\circ)=\\boxed{35^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52416276": { -"question": "As shown in the figure, the large square $ABCD$ is composed of four congruent right-angled triangles and one small square. If $\\angle ADE = \\angle AED$ and $AD = 4\\sqrt{5}$, what is the area of $\\triangle ADE$?", -"image_file_name": "7054392", -"image": [ -"math/52416276_134.png" -], -"solution": "\\textbf{Solution:} As shown in the figure:\\\\\n$\\because \\angle ADE = \\angle AED$,\\\\\n$\\therefore AD = AE = AB$,\\\\\n$\\therefore \\angle AEF = \\angle ABF$,\\\\\n$\\because AF \\perp BE$,\\\\\n$\\therefore EF = BF = \\frac{1}{2}BE$,\\\\\n$\\therefore GE = AH$,\\\\\n$\\because \\angle GEM = \\angle HAM, \\angle MGE = \\angle MHA$,\\\\\n$\\therefore \\triangle GEM \\cong \\triangle HAM$ (ASA),\\\\\n$\\therefore S_{\\triangle HAM} = S_{\\triangle GEM}$,\\\\\n$\\therefore S_{\\triangle ADE} = S_{\\triangle ADH} + S_{\\triangle DGE}$,\\\\\n$\\because AD = 4\\sqrt{5}$, DH = 2AH, $AD^2 = DH^2 + AH^2$,\\\\\n$\\therefore AH = 4, DH = 8$,\\\\\n$\\therefore DG = GE = 4$,\\\\\n$\\therefore S_{\\triangle ADE} = \\frac{1}{2} \\times 4 \\times 8 + \\frac{1}{2} \\times 4 \\times 4 = \\boxed{24}$.", -"solution_image": [ -"solution_images/52416276_130.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52416363": { -"question": "As shown in the figure, the distance from point $M$, the midpoint of one side of rhombus $ABCD$, to point $O$, the intersection of the diagonals, is $5\\text{cm}$. What is the perimeter of rhombus $ABCD$?", -"image_file_name": "7054392", -"image": [ -"math/52416363_140.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus,\\\\\nit follows that $\\angle$AOB=$90^\\circ$,\\\\\nsince M is the midpoint of side AB,\\\\\nit follows that AB=2OM=10,\\\\\nthus, the perimeter of the rhombus ABCD is $10\\times 4=\\boxed{40}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395428": { -"question": "As shown in the figure, in $\\triangle ABC$, $AM$ is the bisector of $\\angle CAB$, and $CN$ is the bisector of the exterior angle $\\angle GCB$. $BE \\perp AM$ at point E, and $BD \\perp CN$ at point D, with $DE$ connected. If $AB=4$, $BC=5$, and $AC=6$, what is the length of $DE$?", -"image_file_name": "7054392", -"image": [ -"math/52395428_1512.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\nextend $BE$ to meet $AC$ at point $F$, and extend $AC$ and $BD$ to meet at point $G$,\\\\\nsince $AM$ bisects $\\angle CAB$ and $BE\\perp AM$,\\\\\nit follows that $\\angle CAM=\\angle BAM$, $\\angle AEF=\\angle AEB=90^\\circ$,\\\\\nthus $\\angle AFE=90^\\circ-\\angle CAM$, $\\angle ABE=90^\\circ-\\angle BAM$,\\\\\nhence $\\angle AFE=\\angle ABE$,\\\\\nwhich implies $AF=AB$,\\\\\ngiven that $AB=4$, $AC=6$, and $BC=5$,\\\\\nit follows that $FC=AC-AF=AC-AB=6-4=2$,\\\\\nsince $CN$ bisects $\\angle GCB$ and $BD\\perp CN$,\\\\\nit follows that $\\angle GCN=\\angle BCN$, $\\angle CDB=\\angle CDG=90^\\circ$,\\\\\nthus $\\angle CGD=90^\\circ-\\angle GCN$, $\\angle CBD=90^\\circ-\\angle BCN$,\\\\\nhence $\\angle CGD=\\angle CBD$,\\\\\nwhich implies $CG=CB=5$,\\\\\ntherefore $FG=FC+CG=2+5=7$,\\\\\nsince $AF=AB$ and $BE\\perp AM$,\\\\\nit follows that $AE$ is the median to side $BF$, that is, point $E$ is the midpoint of $BF$,\\\\\nsince $CG=CB$ and $BD\\perp CN$,\\\\\nit follows that $CD$ is the median to side $BG$, that is, point $D$ is the midpoint of $BG$,\\\\\nthus $DE$ is the midsegment of $\\triangle BFG$,\\\\\ntherefore $DE=\\frac{1}{2}FG=\\boxed{\\frac{7}{2}}$.", -"solution_image": [ -"solution_images/52395428_154.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395005": { -"question": "As shown in the figure, in diamond ABCD, M and N are on AB and CD, respectively, and $AM = CN$, MN intersects AC at point O, connect $BO$, if $\\angle DAC = 31^\\circ$, what is the degree measure of $\\angle OBC$?", -"image_file_name": "7054392", -"image": [ -"math/52395005_164.png" -], -"solution": "\\textbf{Solution}: Since quadrilateral ABCD is a rhombus,\\\\\nit follows that $AB\\parallel CD$ and $AB=BC$,\\\\\ntherefore $\\angle MAO=\\angle NCO$ and $\\angle AMO=\\angle CNO$,\\\\\nin $\\triangle AMO$ and $\\triangle CNO$,\\\\\nsince $\\left\\{\\begin{array}{l}\\angle MAO=\\angle NCO\\hfill \\\\ AM=CN\\hfill \\\\ \\angle AMO=\\angle CNO\\hfill \\end{array}\\right.$,\\\\\nit follows that $\\triangle AMO \\cong \\triangle CNO\\left(ASA\\right)$,\\\\\ntherefore $AO=CO$,\\\\\nsince $AB=BC$,\\\\\nit follows that $BO\\perp AC$,\\\\\ntherefore $\\angle BOC=90^\\circ$,\\\\\nsince $\\angle DAC=31^\\circ$,\\\\\nit follows that $\\angle BCA=\\angle DAC=31^\\circ$,\\\\\ntherefore $\\angle OBC=90^\\circ-31^\\circ=\\boxed{59^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395347": { -"question": "As shown in the figure, it is known that the diagonals \\(AC\\) and \\(BD\\) of rhombus \\(ABCD\\) intersect at point \\(O\\). \\(E\\) is the midpoint of \\(CD\\). If \\(OE = 6\\), what is the perimeter of the rhombus?", -"image_file_name": "7054392", -"image": [ -"math/52395347_172.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\n$\\therefore$ AC $\\perp$ BD, AB = BC = CD = DA, \\\\\n$\\therefore$ $\\triangle$COD is a right-angled triangle, \\\\\nSince OE = 6, and point E is the midpoint of the segment CD, \\\\\n$\\therefore$ CD = 2OE = 12, \\\\\n$\\therefore$ the perimeter of the rhombus ABCD = 4CD = $4\\times12 = \\boxed{48}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395201": { -"question": "As shown in the figure, AC is the diagonal of rectangle ABCD. Fold side AB along AE so that point B falls on point M on AC, and fold side CD along CF so that point D falls on point N on AC. It is easy to prove that quadrilateral AECF is a parallelogram. When $\\angle BAE$ is how many degrees, the quadrilateral AECF becomes a rhombus.", -"image_file_name": "7054392", -"image": [ -"math/52395201_180.png" -], -"solution": "\\textbf{Solution}: When $\\angle BAE = 30^\\circ$, the quadrilateral AECF is a rhombus,\\\\\nReason: It is known from folding that $\\angle BAE = \\angle CAE = 30^\\circ$,\\\\\n$\\because \\angle B = 90^\\circ$,\\\\\n$\\therefore \\angle ACE = 90^\\circ - 30^\\circ - 30^\\circ = 30^\\circ$,\\\\\nwhich means $\\angle CAE = \\angle ACE$,\\\\\n$\\therefore EA = EC$,\\\\\n$\\because$ the quadrilateral AECF is a parallelogram,\\\\\n$\\therefore$ the quadrilateral AECF is a rhombus,\\\\\nTherefore, the answer is: $\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386223": { -"question": "As shown in the figure, in parallelogram $ABCD$, $O$ is the midpoint of the diagonal $AC$, $AC\\perp AB$, point $E$ is the midpoint of $AD$, and $OF\\perp BC$, $\\angle D=53^\\circ$, then what is the degree measure of $\\angle FOE$?", -"image_file_name": "7054392", -"image": [ -"math/52386223_196.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore$ AB $\\parallel$ CD, AD $\\parallel$ BC, \\\\\nSince AC $\\perp$ AB, \\\\\n$\\therefore$ $\\angle$BAC = $\\angle$DCA = 90$^\\circ$, \\\\\nSince point O is the midpoint of AC, and point E is the midpoint of AD, \\\\\n$\\therefore$ OE $\\parallel$ CD, \\\\\n$\\therefore$ $\\angle$COE + $\\angle$ACD = 180$^\\circ$, \\\\\n$\\therefore$ $\\angle$COE = 90$^\\circ$ \\\\\nSince $\\angle$D = $\\angle$B = 53$^\\circ$, and OF $\\perp$ BC, \\\\\n$\\therefore$ $\\angle$FOC = $\\angle$B = 53$^\\circ$, \\\\\n$\\therefore$ $\\angle$EOF = $\\angle$EOC + $\\angle$FOC = 90$^\\circ$ + 53$^\\circ$ = \\boxed{143^\\circ}, \\\\", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386464": { -"question": "As shown in the figure, the side length of square $ABCD$ is 8, and point $E$ is on $AB$ with $BE=2$. Point $F$ is a moving point on the diagonal $AC$. What is the minimum perimeter of $\\triangle BFE$?", -"image_file_name": "7054392", -"image": [ -"math/52386464_205.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $DB$, $DE$, $DF$, \\\\\nsince the quadrilateral $ABCD$ is a square with side length equal to 8, \\\\\ntherefore $AB=AD=8, \\angle BAD=90^\\circ$, and $AC$ is the perpendicular bisector of $BD$, \\\\\nthus $BF=DF$, \\\\\nsince $BE=2$, \\\\\ntherefore $AE=AB-BE=6$, the perimeter of $\\triangle BFE$ is $BE+BF+EF=2+DF+EF$, \\\\\naccording to the principle that the length of the segment between two points is shortest, when points $D$, $F$, $E$ are collinear, the sum of $DF+EF$ is minimal, with the minimum being the length of $DE$, \\\\\nin $\\triangle ADE$, $DE=\\sqrt{AD^2+AE^2}=10$, \\\\\nthus, the minimum value of the perimeter of $\\triangle BFE$ is $2+DE=2+10=\\boxed{12}$.", -"solution_image": [ -"solution_images/52386464_201.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52386539": { -"question": "As shown in the figure, in rhombus ABCD, the diagonals AC and BD intersect at point O, BE $\\perp$ AD at point E, and $OA = 4$, $OB = 3$. What is the length of BE?", -"image_file_name": "7054392", -"image": [ -"math/52386539_212.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\n$\\therefore$ $AC\\perp BD$, AC=2OA, BD=2OB, \\\\\nSince $OA=4$, $OB=3$, \\\\\n$\\therefore$ AD=$AB=\\sqrt{OA^2+OB^2}=5$, AC=8, BD=6, \\\\\n$\\therefore$ $S_{\\text{rhombus} ABCD}=\\frac{1}{2}AC\\cdot BD=AD\\cdot BE$, \\\\\nHence $24=5BE$, \\\\\n$\\therefore$ $BE=\\boxed{4.8}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387091": { -"question": "As shown in the figure, the side length of rhombus ABCD is 6, and $\\angle D = 120^\\circ$. Point E is the midpoint of AB, and point P is a moving point on diagonal AC. What is the minimum value of $BP+EP$?", -"image_file_name": "7054392", -"image": [ -"math/52387091_222.png" -], -"solution": "\\textbf{Solution:} Connect $DP$, $BD$, \\\\\nsince quadrilateral $ABCD$ is a rhombus, \\\\\nthus point $B$ and point $D$ are symmetric with respect to $AC$, \\\\\nthus $DP=PB$, \\\\\nthus $PB+PE=DP+PE \\geq DE$, \\\\\nwhen $DE \\perp AB$, the value of $PB+PE$ is minimal, \\\\\nsince $\\angle D=120^\\circ$, \\\\\nthus $\\angle DAB=60^\\circ$, \\\\\nsince $AD=AB$, \\\\\nthus $\\triangle ABD$ is an equilateral triangle, \\\\\nsince $E$ is the midpoint of $AB$, \\\\\nthus $DE \\perp AB$, \\\\\nsince $AB=6$, \\\\\nthus $DE=3\\sqrt{3}$, \\\\\nthus the minimum value of $PB+PE$ is $\\boxed{3\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52387091_222.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52387015": { -"question": "In rhombus $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. $E$ is the midpoint of $AB$, $AC=8\\,\\text{cm}$, and $BD=6\\,\\text{cm}$. What is the length of $OE$?", -"image_file_name": "7054392", -"image": [ -"math/52387015_237.png" -], -"solution": "\\textbf{Solution:} Given that in the rhombus ABCD, AC = 6cm, BD = 8cm,\\\\\nhence AC $\\perp$ BD, OB = $\\frac{1}{2}$BD = 4cm, OC = $\\frac{1}{2}$AC = 3cm,\\\\\ntherefore BC = $\\sqrt{OC^{2}+OB^{2}}$ = 5cm,\\\\\nsince E is the midpoint of BC,\\\\\nthus OE = $\\frac{1}{2}$BC = $\\boxed{2.5}$cm.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387151": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point $D$ is the midpoint of the hypotenuse $AB$, and $DE$ bisects $\\angle ADC$, $BC=4$. What is the length of $DE$?", -"image_file_name": "7054392", -"image": [ -"math/52387151_240.png" -], -"solution": "Solution: Since $\\triangle ABC$ is a right-angled triangle and point D is the midpoint of the hypotenuse AB, \\\\\n$\\therefore CD=AD$, meaning $\\triangle ACD$ is an isosceles triangle, \\\\\nSince $DE$ bisects $\\angle ADC$ and $\\triangle ACD$ is an isosceles triangle, \\\\\n$\\therefore$ point E is the midpoint of AC, \\\\\nSince $BC=4$, \\\\\n$\\therefore DE=\\frac{1}{2}BC=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387190": { -"question": "As shown in the figure, a point $E$ is taken outside the square $ABCD$, and lines $AE$, $BE$, $DE$ are drawn. A perpendicular line is drawn from point $A$ to line $AE$, intersecting $DE$ at point $P$. If $AE=AP=1$ and $PB= \\sqrt{10}$, what is the distance from point $B$ to line $AE$?", -"image_file_name": "7054392", -"image": [ -"math/52387190_251.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle EAP=\\angle BAD=90^\\circ$, \\\\\nit follows that $\\angle EAB+\\angle BAP=90^\\circ$, and $\\angle PAD+\\angle BAP=90^\\circ$, \\\\\nthus, $\\angle EAB=\\angle PAD$, \\\\\nmoreover, since AE=AP and AB=AD, \\\\\nin triangles $\\triangle APD$ and $\\triangle AEB$, we have \\\\\n$\\begin{cases}\nAE=AP \\\\\n\\angle EAB=\\angle PAD \\\\\nAB=AD\n\\end{cases}$, \\\\\ntherefore, $\\triangle APD \\cong \\triangle AEB$ (SAS), \\\\\nextend a line from B to F such that BF$\\perp$AE and BF intersects the extended line of AE at F, \\\\\ngiven AE=AP and $\\angle EAP=90^\\circ$, \\\\\nit implies that $\\angle AEP=\\angle APE=45^\\circ$, \\\\\nthus, $\\angle AEB=\\angle APD=180^\\circ-45^\\circ=135^\\circ$, \\\\\ntherefore, $\\angle BEP=135^\\circ-45^\\circ=90^\\circ$, \\\\\nwhich implies EB$\\perp$ED, \\\\\nsince BF$\\perp$AF, \\\\\nit follows that $\\angle FEB=\\angle FBE=45^\\circ$, \\\\\ngiven PE=$\\sqrt{1^2+1^2}=\\sqrt{2}$, \\\\\nthus, BE=$\\sqrt{BP^2-PE^2}=2\\sqrt{2}$, \\\\\nhence, BF=EF=$\\frac{2\\sqrt{2}}{\\sqrt{2}}=\\boxed{2}$, \\\\\ntherefore, the distance from point B to line AE is $\\boxed{2}$.", -"solution_image": [ -"solution_images/52387190_251.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387446": { -"question": "As shown in the figure, diagonals AC and BD of rhombus ABCD intersect at point O. A perpendicular line is drawn from point C to the extended line of AB, intersecting it at point E. Line OE is then drawn. If AB = $2\\sqrt{5}$ and BD = 4, what is the length of OE?", -"image_file_name": "7054392", -"image": [ -"math/52387446_261.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rhombus,\\\\\nit follows that $OA=OC$, $BD\\perp AC$,\\\\\nSince $CE\\perp AB$,\\\\\nit follows that $OE=OA=OC$,\\\\\nSince $BD=4$,\\\\\nit follows that $OB=\\frac{1}{2}BD=2$,\\\\\nIn $\\triangle AOB$, $AB=2\\sqrt{5}$, $OB=2$,\\\\\nit follows that $OA=\\sqrt{AB^{2}-OB^{2}}=4$,\\\\\ntherefore, $OE=OA=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387414": { -"question": "As shown in the figure, extend the side $BA$ of the square $ABCD$ to point $E$ such that $AE=BD$, then what is the measure of $\\angle E$?", -"image_file_name": "7054392", -"image": [ -"math/52387414_274.png" -], -"solution": "\\textbf{Solution:} Draw line AC, \\\\\n$\\because$ Quadrilateral ABCD is a square, \\\\\n$\\therefore$ AC=BD, and $\\angle$CAB=$45^\\circ$, \\\\\nFurthermore, $\\because$BD=AE, \\\\\n$\\therefore$ AE=CA, \\\\\n$\\therefore$ $\\angle$E=$\\angle$ACE, \\\\\n$\\because$ $\\angle$CAB=$\\angle$ACE+$\\angle$E=2$\\angle$E=$45^\\circ$, \\\\\n$\\therefore$ $\\angle$E=$\\boxed{22.5^\\circ}$.", -"solution_image": [ -"solution_images/52387414_270.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386497": { -"question": "As shown in the figure, an equilateral triangle $ADE$ is constructed on the exterior side of square $ABCD$. What is the measure of $\\angle AEB$?", -"image_file_name": "7054392", -"image": [ -"math/52386497_282.png" -], -"solution": "\\textbf{Solution}: Let an equilateral triangle $\\triangle ADE$ be constructed on the exterior of square ABCD.\\\\\nTherefore, $AB=AD$, $AD=AE$, $\\angle BAD=90^\\circ$, $\\angle DAE=60^\\circ$,\\\\\nThus, $AB=AE$, $\\angle BAE=150^\\circ$,\\\\\nHence, $\\angle ABE=\\angle AEB=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386504": { -"question": "As shown in the figure, quadrilateral ABCD is a square, with diagonals AC and BD intersecting at point O. Point E is any point on AD other than the endpoints. A line is drawn from point O such that $OF \\perp OE$ and intersects CD at point F. If $AB=6$, what is the area of quadrilateral EOFD?", -"image_file_name": "7054392", -"image": [ -"math/52386504_292.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a square, \\\\\nit follows that OA=OB=OC=OD, AC$\\perp$BD, $\\angle$ODA=$\\angle$OCD=45$^\\circ$,\\\\\nSince OE$\\perp$OF,\\\\\nit follows that $\\angle$EOF=$\\angle$COD=90$^\\circ$,\\\\\ntherefore $\\angle$EOD=$\\angle$FOC,\\\\\nthus $\\triangle$EOD$\\cong$$\\triangle$FOC,\\\\\ntherefore the area of $\\triangle$EOD = the area of $\\triangle$FOC,\\\\\nSince OA=OB and $\\angle$AOB=90$^\\circ$,\\\\\nit follows that 2OA$^{2}$=AB$^{2}$=6$^{2}$,\\\\\nSolving for OA$^{2}$ gives 18,\\\\\nSince the area of quadrilateral EOFD = area of $\\triangle$EOD + area of $\\triangle$FOD = area of $\\triangle$FOC + area of $\\triangle$FOD = area of $\\triangle$COD,\\\\\nTherefore, the area of quadrilateral EOFD = $\\frac{1}{2}OD^{2}=\\frac{1}{2}OA^{2}=\\boxed{9}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386771": { -"question": "As shown in the figure, the perimeter of $\\triangle ABC$ is 18. D and E are the midpoints of sides AB and BC, respectively. What is the perimeter of $\\triangle BDE$?", -"image_file_name": "7054392", -"image": [ -"math/52386771_302.png" -], -"solution": "\\textbf{Solution:} Since the perimeter of $\\triangle ABC$ is 18,\\\\\nwe have AB+AC+BC=18,\\\\\nSince points D and E are the midpoints of sides AB and BC respectively,\\\\\nthen DE is the midsegment of $\\triangle ABC$, BD=$\\frac{1}{2}$AB, BE=$\\frac{1}{2}$BC,\\\\\nthus, DE=$\\frac{1}{2}$AC,\\\\\ntherefore, the perimeter of $\\triangle DBE$=BD+BE+DE=$\\frac{1}{2}$(AB+AC+BC)=$\\boxed{9}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386538": { -"question": "As shown in the diagram, rectangle ABCD is folded along the straight line DE, with vertex A landing on side BC at point F. Given that $BE=3$ and $CD=8$, what is the length of BF?", -"image_file_name": "7054392", -"image": [ -"math/52386538_312.png" -], -"solution": "\\textbf{Solution:} From the property of the fold, we know that $AE=EF$, $AE=AB-BE=8-3=5$, \\\\\nin $\\triangle BEF$, $EF=AE=5$, $BE=3$, \\\\\nby the Pythagorean theorem, we have $BF=\\sqrt{EF^2-BE^2}=\\sqrt{5^2-3^2}=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52387322": { -"question": "As shown in the figure, the diagonals of rhombus ABCD intersect at point O, E is the midpoint of CD, and OE = 3. What is the perimeter of the rhombus?", -"image_file_name": "7054392", -"image": [ -"math/52387322_320.png" -], -"solution": "\\textbf{Solution:} Since the diagonals of the rhombus ABCD intersect at point O,\\\\\nit follows that OB=OD,\\\\\ngiven that point E is the midpoint of CD,\\\\\nit then follows that DE=CE,\\\\\nthus, OE is the median of $\\triangle BCD$,\\\\\nhence, BC=2OE=6,\\\\\ntherefore, the perimeter of the rhombus is: $4BC=4\\times 6=\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386625": { -"question": "As shown in the diagram, in quadrilateral \\(ABCD\\), \\(\\angle ABC=90^\\circ\\), points \\(E\\) and \\(F\\) are the midpoints of \\(AC\\) and \\(AD\\) respectively, and \\(BE=EF\\). If \\(AB=8\\) and \\(BC=4\\), what is the length of \\(CD\\)?", -"image_file_name": "7054392", -"image": [ -"math/52386625_334.png" -], -"solution": "\\textbf{Solution:} Let $\\angle ABC=90^\\circ$ and $AB=8$, $BC=4$,\\\\\ntherefore $AC=\\sqrt{AB^2+BC^2}=\\sqrt{8^2+4^2}=4\\sqrt{5}$.\\\\\nSince point E is the midpoint of AC,\\\\\ntherefore $BE=\\frac{1}{2}AC=2\\sqrt{5}$,\\\\\nand since $BE=EF$,\\\\\nthus $EF=2\\sqrt{5}$.\\\\\nSince points E and F are respectively the midpoints of AC and AD,\\\\\ntherefore $EF=\\frac{1}{2}DC$.\\\\\nThus $DC=2EF=4\\sqrt{5}$.\\\\\nHence, the length of $DC$ is $\\boxed{4\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386627": { -"question": "As shown in the figure, within the rectangular paper ABCD, where E is a point on AD, fold $ \\triangle CDE$ along CE to overlap with $ \\triangle CFE$. If point F exactly falls on AB, and $ AF=4$, $ BC=10$, then what is the length of $ DE$?", -"image_file_name": "7054392", -"image": [ -"math/52386627_345.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle,\\\\\nit follows that AD = BC = 10,\\\\\nlet AE = x, then DE = AD - AE = 10 - x,\\\\\nsince $\\triangle CDE$ is folded along CE to $\\triangle CFE$,\\\\\nit follows that EF = DE = 10 - x,\\\\\nin $\\triangle AEF$, $AF^{2}$ + $AE^{2}$ = $EF^{2}$,\\\\\nthus $4^{2}$ + $x^{2}$ = $(10 - x)^{2}$,\\\\\nsolving for x, we get x = 4.2,\\\\\nthus AE = 4.2,\\\\\nhence DE = AD - AE = \\boxed{5.8},", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52387647": { -"question": "As shown in the figure, in rectangle ABCD, $AB=\\sqrt{3}$, $\\angle BAC=60^\\circ$, point E is on the extension of AB, and $BE=AC$. If DE is connected, what is the length of DE?", -"image_file_name": "7054392", -"image": [ -"math/52387647_353.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle,\\\\\nit follows that AD=BC, $\\angle$DAB=$\\angle$ABC=$90^\\circ$,\\\\\nsince $\\angle BAC=60^\\circ$,\\\\\nit follows that $\\angle$ACB=$30^\\circ$,\\\\\nsince AB=$\\sqrt{3}$,\\\\\nit follows that AC=2AB=$2\\sqrt{3}$,\\\\\nin $\\triangle ABC$, $BC=\\sqrt{AC^2-AB^2}=3$,\\\\\nthus AD=BC=3,\\\\\nsince AC=BE=$2\\sqrt{3}$ and AB=$\\sqrt{3}$,\\\\\nthus AE=AB+BE=$3\\sqrt{3}$,\\\\\nin $\\triangle DAE$, DE=$\\sqrt{AD^2+AE^2}=\\sqrt{3^2+(3\\sqrt{3})^2}=\\boxed{6}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386169": { -"question": "As shown in the diagram, in parallelogram $ABCD$, $AB = 3.5\\,cm$, $BC = 5\\,cm$, $AE$ bisects $\\angle BAD$, $CF\\parallel AE$, what is the length of $AF$?", -"image_file_name": "7054392", -"image": [ -"math/52386169_360.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore$ AD $\\parallel$ BC, \\\\\n$\\therefore$ $\\angle$DAE = $\\angle$AEB, \\\\\nSince AE $\\parallel$ CF, \\\\\n$\\therefore$ quadrilateral AECF is a parallelogram, \\\\\n$\\therefore$ AF = CE, \\\\\nSince AE bisects $\\angle$BAD, \\\\\n$\\therefore$ $\\angle$BAE = $\\angle$EAD, \\\\\n$\\therefore$ $\\angle$BAE = $\\angle$AEB, \\\\\n$\\therefore$ AB = BE = 3.5\\text{cm}, \\\\\n$\\therefore$ EC = BC - BE = 5 - 3.5 = 1.5\\text{cm}, \\\\\n$\\therefore$ AF = \\boxed{1.5}\\text{cm}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386463": { -"question": "As shown in the figure, point $O$ is the midpoint of the diagonal $AC$ of the rectangle $ABCD$, and point $E$ is the midpoint of $AD$. If $AB=6, \\angle ACB=30^\\circ$, then what is the perimeter of $\\triangle BOE$?", -"image_file_name": "7054392", -"image": [ -"math/52386463_375.png" -], -"solution": "\\textbf{Solution:} Given in rectangle $ABCD$, $AB=6$,\n\nthus $CD=AB=6$, $AD=BC$, $\\angle ABC=\\angle BAD=90^\\circ$,\n\nsince $\\angle ACB=30^\\circ$,\n\nthus $AC=2AB=12$, $AD=BC=\\sqrt{AC^{2}-AB^{2}}=6\\sqrt{3}$,\n\nsince point $O$ is the midpoint of the diagonal $AC$ of rectangle $ABCD$,\n\nthus $OB=\\frac{1}{2}AC=6$,\n\nsince point $E$ is the midpoint of $AD$,\n\nthus $OE=\\frac{1}{2}CD=3$, $AE=\\frac{1}{2}AD=3\\sqrt{3}$,\n\nthus $BE=\\sqrt{AB^{2}+AE^{2}}=3\\sqrt{7}$,\n\nthen the perimeter of $\\triangle BOE$ is $OB+OE+BE=6+3+3\\sqrt{7}=\\boxed{9+3\\sqrt{7}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386683": { -"question": "As shown in the figure, the diagonals $AC$ and $BD$ of rhombus $ABCD$ intersect at point $O$, and $E$ is the midpoint of $DC$. If the perimeter of the rhombus is 16, what is the length of $OE$?", -"image_file_name": "7054392", -"image": [ -"math/52386683_380.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\nit follows that AB=BC=CD=AD, and BO=DO.\\\\\nSince the perimeter of rhombus ABCD is 16, \\\\\nit follows that BC=4.\\\\\nSince point E is the midpoint of CD, \\\\\nit follows that OE is the midsegment of $\\triangle BCD$, \\\\\nhence OE=$\\frac{1}{2}$BC= \\boxed{2}.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386862": { -"question": "As shown, \\(O\\) is the intersection point of the diagonals of rhombus \\(ABCD\\), \\(DE \\parallel AC\\), \\(CE \\parallel BD\\). If \\(AC = 6\\), \\(BD = 8\\), then what is the length of line segment \\(OE\\)?", -"image_file_name": "7054392", -"image": [ -"math/52386862_390.png" -], -"solution": "\\textbf{Solution:} Given $\\because$DE$\\parallel$AC, CE$\\parallel$BD,\\\\\n$\\therefore$ quadrilateral OCED is a parallelogram,\\\\\n$\\because$ quadrilateral ABCD is a rhombus,\\\\\n$\\therefore$ $\\angle$COD$=90^\\circ$,\\\\\n$\\therefore$ quadrilateral OCED is a rectangle,\\\\\nFurther $\\because$AC$=6$, BD$=8$,\\\\\n$\\therefore$OC$=3$, OD$=4$,\\\\\n$\\therefore$CD$=\\sqrt{OC^{2}+OD^{2}}=\\sqrt{3^{2}+4^{2}}=\\boxed{5}$,\\\\\nIn rectangle OCED, OE$=CD=5$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387288": { -"question": "As shown in the figure, in $\\triangle ABCD$, point E is the midpoint of side BC, and the diagonals AC and BD intersect at point O. The perimeter of $\\triangle ABC$ is 16. If we connect OE, what is the perimeter of $\\triangle OEC$?", -"image_file_name": "7054392", -"image": [ -"math/52387288_400.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a parallelogram, \\\\\nthus $OA=OC=\\frac{1}{2}AC$, \\\\\nsince point $E$ is the midpoint of side $BC$, \\\\\nthus $BE=CE=\\frac{1}{2}BC$, and $OE$ is the median of $\\triangle ABC$, \\\\\nthus $OE=\\frac{1}{2}AB$, \\\\\nsince the perimeter of $\\triangle ABC$ is 16, \\\\\nthus $AB+BC+AC=16$, \\\\\nthus the perimeter of $\\triangle OEC$ is $OE+CE+OC=\\frac{1}{2}AB+\\frac{1}{2}BC+\\frac{1}{2}AC=\\frac{1}{2}\\times 16=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52381887": { -"question": "As shown in the diagram, in the rhombus $ABCD$, $AB=8$, $\\angle ADC=120^\\circ$. What is the length of $AC$?", -"image_file_name": "7054392", -"image": [ -"math/52381887_414.png" -], -"solution": "\\textbf{Solution:} Connect AC and BD, where AC intersects BD at point O. \\\\\nSince quadrilateral ABCD is a rhombus, \\\\\nit follows that AB $\\parallel$ CD, AB = AD, AC$\\perp$BD, and AO = OC = $\\frac{1}{2}$AC, \\\\\nSince $\\angle$ADC = $120^\\circ$, \\\\\nit follows that $\\angle$DAB = $180^\\circ - 120^\\circ = 60^\\circ$, \\\\\nSince AB = AD, \\\\\nit follows that $\\triangle$ABD is an equilateral triangle, \\\\\nSince AC$\\perp$BD, \\\\\nit follows that $\\angle$OAB = $\\frac{1}{2}$$\\angle$BAD = $30^\\circ$, $\\angle$AOB = $90^\\circ$, \\\\\nthus OB = $\\frac{1}{2}$AB = 4, \\\\\nthus AO = $\\sqrt{AB^{2} - OB^{2}} = \\sqrt{8^{2} - 4^{2}} = 4\\sqrt{3}$, \\\\\nthus AC = 2AO = $\\boxed{8\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52381887_410.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52380808": { -"question": "As shown in the figure, the side length of square $ABCD$ is 10. Points $E$ and $F$ are inside the square where $AE=CF=8$, and $BE=DF=6$. What is the length of line segment $EF$?", -"image_file_name": "7054392", -"image": [ -"math/52380808_420.png" -], -"solution": "\\textbf{Solution:} Extend DF to intersect AE at G, as shown in the figure,\\\\\n$\\because$ AB=10, AE=6, BE=8,\\\\\n$\\therefore$ AB$^{2}$=AE$^{2}$+BE$^{2}$,\\\\\n$\\therefore$ $\\triangle$ABE is a right-angled triangle,\\\\\nSimilarly, $\\triangle$DFC is a right-angled triangle,\\\\\n$\\because$ Quadrilateral ABCD is a square,\\\\\n$\\therefore$ $\\angle$BAD=$\\angle$ABC=$\\angle$BCD=$\\angle$ADC=$90^\\circ$, AB= BC=CD=AD,\\\\\n$\\therefore$ $\\angle$BAE+$\\angle$DAG=$90^\\circ$,\\\\\n$\\because$ In $\\triangle$ABE and $\\triangle$CDF,\\\\\n$\\begin{cases} AB=CD \\\\ AE=CF \\\\ BE=DF \\end{cases}$,\\\\\n$\\therefore$ $\\triangle$ABE$\\cong$ $\\triangle$CDF,\\\\\n$\\therefore$ $\\angle$BAE=$\\angle$DCF,\\\\\n$\\because$ $\\angle$DCF+$\\angle$CDF=$\\angle$ADF+$\\angle$CDF=$90^\\circ$,\\\\\n$\\therefore$ $\\angle$DCF=$\\angle$ADG,\\\\\n$\\therefore$ $\\angle$BAE=$\\angle$ADG,\\\\\n$\\because$ $\\angle$BAE+$\\angle$DAG=$90^\\circ$,\\\\\n$\\therefore$ $\\angle$ADG+$\\angle$DAG=$90^\\circ$,\\\\\n$\\therefore$ $\\angle$DGA=$90^\\circ$, i.e., $\\triangle$AGD is a right-angled triangle,\\\\\n$\\because$ In $\\triangle$AGD and $\\triangle$BAE,\\\\\n$\\begin{cases} \\angle AGD=\\angle BEA \\\\ \\angle ADG=\\angle BAE \\\\ AD=BA \\end{cases}$,\\\\\n$\\therefore$ $\\triangle$AGD$\\cong$$\\triangle$BAE,\\\\\n$\\therefore$ AG=BE=6, DG=AE=8,\\\\\n$\\therefore$ EG=8−6=2, GF=8−6=2,\\\\\n$\\because$ $\\angle$DGA=$90^\\circ$,\\\\\n$\\therefore$ $\\angle$EGF=$180^\\circ−90^\\circ=90^\\circ$,\\\\\n$\\therefore$ In $\\triangle$EFG, $EF=\\sqrt{2^2+2^2}=\\boxed{2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52380808_420.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52653758": { -"question": "As shown in the figure, point $P$ is a point on the angle bisector $AD$ of $\\angle BAC$, where $AC=9$, $AB=5$, and $PB=3$. What could be the possible length of $PC$?", -"image_file_name": "7048953", -"image": [ -"math/52653758_00.png" -], -"solution": "\\textbf{Solution:} Let's intercept AE=AB=5 on line AC, and connect PE. \\\\\nSince AC=9, \\\\\nthus CE=AC-AE=9-5=4, \\\\\nSince point P is on the angle bisector AD of $\\angle$BAC, \\\\\nthus $\\angle$CAD=$\\angle$BAD, \\\\\nIn $\\triangle APE$ and $\\triangle APB$, $\\left\\{\\begin{aligned} AE&=AB \\\\ \\angle CAP&=\\angle BAD \\\\ AP&=AP \\end{aligned}\\right.$, \\\\\nthus $\\triangle APE\\cong \\triangle APB$ (SAS), \\\\\nthus PE=PB=3, \\\\\nSince 4-3<PC<4+3, \\\\\nWe find that $1<PC<7$, \\\\\nUpon examining the four options, the length of PC can be $\\boxed{6}$, \\\\", -"solution_image": [ -"solution_images/52653758_00.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836211": { -"question": "As shown in the diagram, it is known that the equilateral triangle $\\triangle ABC$ has a side length of $12$, $D$ is a moving point on $AB$, a line is drawn through $D$ such that $DE \\perp BC$ at point $E$, a line is drawn through $E$ such that $EF \\perp AC$ at point $F$, and a line is drawn through $F$ such that $FG \\perp AB$ at point $G$. When $G$ coincides with $D$, what is the length of $AD$?", -"image_file_name": "7048953", -"image": [ -"math/52836211_10.png" -], -"solution": "\\textbf{Solution:} Let AD=x, \\\\\nsince $\\triangle ABC$ is an equilateral triangle, \\\\\ntherefore $\\angle A = \\angle B = \\angle C = 60^\\circ$, \\\\\nsince DE$\\perp$BC at point E, EF$\\perp$AC at point F, FG$\\perp$AB at point G, \\\\\ntherefore $\\angle BDF = \\angle DEB = \\angle EFC = 90^\\circ$, \\\\\ntherefore AF=2x, \\\\\ntherefore CF=12-2x, \\\\\ntherefore CE=2CF=24-4x, \\\\\ntherefore BE=12-CE=4x-12, \\\\\ntherefore BD=2BE=8x-24, \\\\\nsince AD+BD=AB, \\\\\ntherefore 8x-24+x=12, \\\\\ntherefore x=\\boxed{4}, \\\\\ntherefore AD=4.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836352": { -"question": "As shown in the diagram, place the isosceles $\\triangle ABC$ as in Figure 1, so that the base $BC$ coincides with the $x$-axis, at this moment the coordinates of point $A$ are $\\left(2, \\sqrt{5}\\right)$. If this triangle is placed as in Figure 2, such that the side length $AB$ coincides with the $x$-axis, what are the coordinates of point $C$ then?", -"image_file_name": "7048953", -"image": [ -"math/52836352_21.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, draw $AD\\perp OC$ through point A intersecting the x-axis at D,\\\\\nsince the coordinates of point A are $(2,\\sqrt{5})$,\\\\\nthus $BD=2$, $AD=\\sqrt{5}$,\\\\\naccording to the Pythagorean theorem, $BA=\\sqrt{BD^{2}+AD^{2}}=\\sqrt{2^{2}+(\\sqrt{5})^{2}}=3$,\\\\\nsince $\\triangle ABC$ is an isosceles triangle,\\\\\nthus $AB=AC=3$, $BC=2BD=4$,\\\\\nAs shown in Figure 2, draw $CE\\perp AB$ through point C intersecting the x-axis at E,\\\\\nlet $BE=x$, then $AE=3-x$,\\\\\nin $\\triangle CBE$, $CE^{2}=BC^{2}-BE^{2}=16-x^{2}$,\\\\\nin $\\triangle CEA$, according to the Pythagorean theorem,\\\\\n$CE^{2}+AE^{2}=CA^{2}$,\\\\\n$16-x^{2}+(3-x)^{2}=3^{2}$,\\\\\n$16+9-6x=0$,\\\\\n$x=\\frac{8}{3}$,\\\\\nthus $CE=\\sqrt{BC^{2}-BE^{2}}=\\sqrt{4^{2}-\\left(\\frac{8}{3}\\right)^{2}}=\\frac{4\\sqrt{5}}{3}$,\\\\\nthus the coordinates of point C are $\\left(\\frac{8}{3},\\frac{4\\sqrt{5}}{3}\\right)=\\boxed{\\left(\\frac{8}{3},\\frac{4\\sqrt{5}}{3}\\right)}$.", -"solution_image": [ -"solution_images/52836352_21.png", -"solution_images/52836352_210.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836392": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=3$, $BC=4$. Points $E$ and $F$ are on the hypotenuse $AB$. The side $AC$ is folded along $CE$ making point $A$ fall on point $D$ on $AB$. Then, side $BC$ is folded along $CF$ making point $B$ fall on point $B'$ on the extension line of $CD$. What is the length of the segment $B'F$?", -"image_file_name": "7048953", -"image": [ -"math/52836392_32.png" -], -"solution": "\\textbf{Solution:}\n\nSince $\\angle ACB=90^\\circ, AC=3, BC=4$,\n\nHence, $AB=\\sqrt{AC^2+BC^2}=5$,\n\nBy the property of folding, we have $B'F=BF, \\angle AEC=\\angle DEC=90^\\circ, \\angle ACE=\\angle DCE, \\angle B'CF=\\angle BCF$,\n\nTherefore, $S_{\\triangle ABC}=\\frac{1}{2}AB\\cdot CE=\\frac{1}{2}AC\\cdot BC$, that is, $\\frac{1}{2}\\times 5CE=\\frac{1}{2}\\times 3\\times 4$,\n\nSolving this, we find $CE=\\frac{12}{5}$,\n\nTherefore, $AE=\\sqrt{AC^2-CE^2}=\\frac{9}{5}$,\n\nAlso, since $\\angle ACE=\\angle DCE, \\angle B'CF=\\angle BCF, \\angle ACB=90^\\circ$,\n\nTherefore, $\\angle DCE+\\angle B'CF=\\frac{1}{2}\\angle ACB=45^\\circ$, which means $\\angle ECF=45^\\circ$,\n\nTherefore, right-angled $\\triangle CEF$ is an isosceles right triangle, $EF=CE=\\frac{12}{5}$,\n\nTherefore, $BF=AB-AE-EF=\\frac{4}{5}$,\n\nTherefore, $B'F=BF=\\boxed{\\frac{4}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52836684": { -"question": "As shown in the figure, a regular triangle, a square, and a regular pentagon are placed side by side with $AB$ as their common edge. What is the measure of $\\angle CDE$?", -"image_file_name": "7048953", -"image": [ -"math/52836684_42.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that the sum of internal angles of a pentagon is $(5-2) \\times 180^\\circ = 540^\\circ$,\n\nit follows that $\\angle BAC = \\frac{1}{5} \\times 540^\\circ = 108^\\circ$,\n\nsince the internal angle of a triangle ABE ($\\angle BAE$) is $60^\\circ$ and the internal angle of a square ($\\angle BAD$) is $90^\\circ$,\n\nthus $\\angle DAC = \\angle BAC - \\angle BAD = 108^\\circ - 90^\\circ = 18^\\circ$, and $\\angle DAE = \\angle BAD - \\angle BAE = 90^\\circ - 60^\\circ = 30^\\circ$,\n\ngiven AD = AC,\n\nit implies $\\angle ADC = \\angle ACD = \\frac{180^\\circ - \\angle DAC}{2} = \\frac{180^\\circ - 18^\\circ}{2} = 81^\\circ$,\n\nalso, given EA = AD,\n\nit implies $\\angle ADE = \\angle AED = \\frac{180^\\circ - \\angle DAE}{2} = \\frac{180^\\circ - 30^\\circ}{2} = 75^\\circ$,\n\nthus $\\angle CDE = \\angle ADC + \\angle ADE = 81^\\circ + 75^\\circ = \\boxed{156^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52836682": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle B=30^\\circ$, and $AD$ bisects $\\angle BAC$. If $BC=9$, what is the distance from point D to line $AB$?", -"image_file_name": "7048953", -"image": [ -"math/52836682_57.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $DE \\perp AB$ at point E\\\\\n$\\therefore \\angle DEB=90^\\circ$\\\\\n$\\because \\angle C=90^\\circ$, $\\angle B=30^\\circ$\\\\\n$\\therefore \\angle BAC=60^\\circ$, $BD=2ED$, $CD\\perp AC$\\\\\n$\\because AD$ bisects $\\angle BAC$\\\\\n$\\therefore CD=DE$, $\\angle DAE=\\frac{1}{2}\\angle BAC=30^\\circ$\\\\\n$\\therefore \\angle DAB=\\angle B$\\\\\n$\\therefore BD=AD=2CD$\\\\\n$\\because BC=9=CD+BD=3ED$\\\\\n$\\therefore DE=\\boxed{3}$", -"solution_image": [ -"solution_images/52836682_51.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836686": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC = \\angle ABC = 42^\\circ$. Through point C, draw $CD \\perp AB$ at point D. Let point E be a point on $CD$. If $\\triangle ACE$ is folded along $AE$ to obtain $\\triangle AFE$ and points E, F, B are exactly on the same line, connect $CF$. What is the measure of $\\angle CFA$?", -"image_file_name": "7048953", -"image": [ -"math/52836686_69.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $CD \\perp AB$\\\\\n$\\therefore \\angle ADC = 90^\\circ$ \\\\\nSince $\\angle BAC = \\angle ABC = 42^\\circ$\\\\\n$\\therefore \\angle ACD = 90^\\circ - \\angle BAC = 48^\\circ$, $AC = BC$\\\\\nSince $CD \\perp AB$\\\\\n$\\therefore \\angle BCD = \\angle ACD = 48^\\circ$ \\\\\nIn $\\triangle ACE$ and $\\triangle BCE$\\\\\n$\\left\\{\\begin{array}{l}\nAC = BC\\\\\n\\angle ACD = \\angle BCD\\\\\nCE = CE\n\\end{array}\\right.$ \\\\\n$\\therefore \\triangle ACE \\cong \\triangle BCE$\\\\\n$\\therefore \\angle CAE = \\angle CBE$ \\\\\nSince folding $\\triangle ACE$ along $AE$ yields $\\triangle AFE$,\\\\\n$\\therefore \\angle AFE = \\angle ACD = 48^\\circ$, $\\angle CAE = \\angle FAE$, $AC=AF$\\\\\n$\\therefore \\angle CAE = \\angle FAE = \\angle CBE$\\\\\nLet $\\angle CAE = \\angle FAE = \\angle CBE = x$\\\\\n$\\therefore \\angle BAF = \\angle BAC - \\angle CAE - \\angle FAE = 42^\\circ - 2x$, $\\angle ABF = \\angle ABC - \\angle CBE = 42^\\circ - x$ \\\\\nSince $\\angle AFE = \\angle BAF + \\angle ABF = 42^\\circ - 2x + (42^\\circ - x) = 84^\\circ - 3x$ \\\\\n$\\therefore 48^\\circ = 84^\\circ - 3x$\\\\\n$\\therefore x = 12^\\circ$ \\\\\n$\\therefore \\angle CAF = \\angle CAE + \\angle FAE = 24^\\circ$ \\\\\nSince $AC=AF$\\\\\n$\\therefore \\angle CFA = \\angle FCA = \\frac{180^\\circ - \\angle CAF}{2} = \\boxed{78^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52836781": { -"question": "As shown in the figure, point C is on the line segment BG. With BC and CG as sides, squares are constructed on both sides, with areas denoted by $S_{1}$ and $S_{2}$ respectively. The sum of the areas of the two squares is $S_{1}+S_{2}=40$. Given that BG=8, what is the area of the shaded part in the figure?", -"image_file_name": "7048953", -"image": [ -"math/52836781_70.jpeg" -], -"solution": "\\textbf{Solution:} Let $BC = a$ and $CG = b$. Then, $S_{1} = a^{2}$ and $S_{2} = b^{2}$, with $a + b = BG = 8$.\\\\\nHence, $a^{2} + b^{2} = 40$.\\\\\nSince $(a + b)^{2} = a^{2} + b^{2} + 2ab = 64$,\\\\\nit follows that $2ab = 64 - 40 = 24$,\\\\\nand thus, $ab = 12$.\\\\\nTherefore, the area of the shaded part is equal to $\\frac{1}{2} ab = \\frac{1}{2} \\times 12 = \\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52655046": { -"question": "Given: In $\\triangle ABC$, $AB=AC$, the perpendicular bisector of $AB$, $DE$, intersects $AB$ and $AC$ at $D$ and $E$ respectively. If $AD=3$ and $BC=5$, then what is the perimeter of $\\triangle BEC$?", -"image_file_name": "7048953", -"image": [ -"math/52655046_80.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$, and $DE$ is the perpendicular bisector of segment $AB$,\\\\\nit follows that $AD=BD$, and $AE=BE$,\\\\\nsince $AD=3$,\\\\\nthen $AB=AC=2AD=6$,\\\\\nsince $BC=5$,\\\\\nthus the perimeter of $\\triangle BEC$ is $BC+BE+EC=BC+AE+EC=5+6=\\boxed{11}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52655011": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle B=30^\\circ$, $CD$ is the height on the hypotenuse $AB$, $AD=3$, then what is the length of $BD$?", -"image_file_name": "7048953", -"image": [ -"math/52655011_97.png" -], -"solution": "\\textbf{Solution:} Since CD$\\perp$AB and $\\angle$ACB=$90^\\circ$,\\\\\nit follows that $\\angle$ADC=$90^\\circ=\\angle$ACB,\\\\\nsince $\\angle$B=$30^\\circ$,\\\\\nit follows that $\\angle$A$=90^\\circ-\\angle$B$=60^\\circ$,\\\\\nthus $\\angle$ACD$=90^\\circ-\\angle$A$=30^\\circ$,\\\\\nsince AD$=3$,\\\\\nit follows that AC$=2$AD$=6$,\\\\\nthus AB$=2$AC$=12$,\\\\\nhence BD$=AB-AD$=$12-3$=$\\boxed{9}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52655234": { -"question": "As shown in the figure, $D$, $E$, and $F$ are the midpoints of $BC$, $AD$, and $BE$ respectively. If the area of $\\triangle BFD$ is 6, what is the area of $\\triangle ABC$?", -"image_file_name": "7048953", -"image": [ -"math/52655234_100.png" -], -"solution": "\\textbf{Solution:} Since D, E, and F are the midpoints of BC, AD, and BE, respectively,\n\n$\\therefore {S}_{\\triangle ABC}=2{S}_{\\triangle ABD}$, ${S}_{\\triangle ABD}=2{S}_{\\triangle BDE}$, and ${S}_{\\triangle BDE}=2{S}_{\\triangle BFD}$,\n\n$\\therefore {S}_{\\triangle ABC}=8{S}_{\\triangle BFD}=\\boxed{48}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653732": { -"question": "As shown in the figure, in the isosceles right-angled $\\triangle ABC$, where $AC=BC$ and $\\angle ACB=90^\\circ$, point D is a moving point on side $AC$ (not coinciding with A or C). A line is drawn from point A perpendicular to $BD$ at point E, and $AE$ is extended to intersect the extension of $BC$ at point F. $CE$ is connected. Then, what is the measure of $\\angle BEC$?", -"image_file_name": "7048953", -"image": [ -"math/52653732_111.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $CH \\perp AF$ at $H$, and $CG \\perp BE$ at $G$,\\\\\n$\\therefore \\angle AHC=\\angle BGC=90^\\circ$,\\\\\n$\\because \\angle ACB=90^\\circ$, and $AF\\perp BE$,\\\\\n$\\therefore \\angle AEB=\\angle BCD=\\angle BEF=90^\\circ$,\\\\\nAlso, since $\\angle ADE=\\angle BDC$,\\\\\n$\\therefore \\angle CAH=\\angle CBG$,\\\\\nAlso, since $AC=BC$,\\\\\n$\\therefore \\triangle AHC\\cong \\triangle BCG$ (AAS),\\\\\n$\\therefore CH=CG$,\\\\\nSince $CH\\perp EF$, and $CG\\perp BE$,\\\\\n$\\therefore CE$ bisects $\\angle BEF$,\\\\\n$\\therefore \\angle BEC= \\frac{1}{2}\\angle BEF=\\boxed{45^\\circ}$.", -"solution_image": [ -"solution_images/52653732_110.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653754": { -"question": "As shown in the figure, $AD$ is the perpendicular bisector of $BC$ with the foot of the perpendicular as $D$, $\\angle BAC=45^\\circ$, $CE\\perp AB$ at $E$, intersecting $AD$ at $F$, and $BD=2$. What is the length of $AF$?", -"image_file_name": "7048953", -"image": [ -"math/52653754_120.png" -], -"solution": "\\textbf{Solution:} Since $AD$ is the perpendicular bisector of $BC$, and $BD=2$, \\\\\nthus, $BC=2BD=4$, \\\\\nSince $CE\\perp AB$, \\\\\nthus, $\\angle AEC=90^\\circ$, \\\\\nSince $\\angle BAC=45^\\circ$, \\\\\nthus, $\\angle ACE=90^\\circ-45^\\circ=45^\\circ$, \\\\\nthus, $\\angle EAC=\\angle ACE$, \\\\\nthus, $AE=CE$, \\\\\nSince $AB=AC$, and point $D$ is the midpoint of $BC$, \\\\\nthus, $AD\\perp BC$, \\\\\nthus, $\\angle ADB=90^\\circ$, \\\\\nthus, $\\angle B+\\angle BAD=90^\\circ$, \\\\\nSince $\\angle B+\\angle BCE=90^\\circ$, \\\\\nthus, $\\angle BAD=\\angle BCE$, \\\\\nIn $\\triangle AEF$ and $\\triangle CEB$, \\\\\n$\\left\\{\\begin{array}{l} \\angle AEF=\\angle CEB \\\\ AE=CE \\\\ \\angle EAF=\\angle BCE \\end{array}\\right.$, \\\\\nthus, $\\triangle AEF\\cong \\triangle CEB$ (ASA), \\\\\nthus, $AF=BC=\\boxed{4}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653333": { -"question": "As shown in the figure, in $\\triangle ABC$, $DE$ is the perpendicular bisector of $AC$. If $AE=3$ and the perimeter of $\\triangle ABD$ is $13$, what is the perimeter of $\\triangle ABC$?", -"image_file_name": "7048953", -"image": [ -"math/52653333_130.png" -], -"solution": "\\textbf{Solution:} Given that $DE$ is the perpendicular bisector of $AC$ and $AE=3$,\n\n$\\therefore DA=DC$, $AC=2AE=6$,\n\nSince the perimeter of $\\triangle ABD$ is $13$,\n\n$\\therefore AB+BD+AD=AB+BD+DC=AB+BC=13$,\n\n$\\therefore$ the perimeter of $\\triangle ABC$ $=AB+BC+AC=13+6=\\boxed{19}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836818": { -"question": "As shown in the figure, $\\triangle ABC \\cong \\triangle DEF$, where point A corresponds to point D, and point B corresponds to point E. If $\\angle A=70^\\circ$ and $\\angle B=50^\\circ$, what is the measure of $\\angle 1$?", -"image_file_name": "7048953", -"image": [ -"math/52836818_140.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, $\\angle A=70^\\circ$, $\\angle B=50^\\circ$,\\\\\nthus $\\angle C=180^\\circ-\\angle A-\\angle B=180^\\circ-70^\\circ-50^\\circ=60^\\circ$,\\\\\nsince $\\triangle ABC \\cong \\triangle DEF$,\\\\\nit follows that $\\angle 1=\\angle C=\\boxed{60^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836849": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=90^\\circ$, the perpendicular bisector $l$ of $AC$ intersects $BC$ at point $D$, and $AD$ is connected. If $AB=3$, $BC=9$, what is the length of $BD$?", -"image_file_name": "7048953", -"image": [ -"math/52836849_150.png" -], -"solution": "\\textbf{Solution:} Let BD $= x$, thus CD $= 9 - x$, \\\\\n$\\because$ line $l$ is the perpendicular bisector of AC, \\\\\n$\\therefore$ AD = DC = $9-x$, \\\\\nIn $\\triangle ABD$, $AB^{2} + BD^{2} = AD^{2}$, that is, $3^{2} + x^{2} = (9-x)^{2}$, \\\\\nSolving gives: $x = \\boxed{4}$, which means the length of BD is 4.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836463": { -"question": " As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, squares are constructed externally on sides $AB$, $CA$, $BC$. The area of square $ABIH$ is $25$, and the area of square $BDEC$ is $169$. What is the area of square $ACFG$?", -"image_file_name": "7048953", -"image": [ -"math/52836463_160.png" -], -"solution": "\\textbf{Solution:} In the right triangle $ABC$, $\\angle BAC=90^\\circ$, \\\\\n$\\therefore AB^2+AC^2=BC^2$, \\\\\n$\\because$ the area of the square $ABIH$ is $25$, and the area of the square $BDEC$ is $169$, \\\\\n$\\therefore AB^2=25, BC^2=169$, \\\\\n$\\therefore AC^2=BC^2-AB^2=169-25=144$, \\\\\n$\\therefore$ the area of the square $ACFG$ is $AC^2=\\boxed{144}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52836462": { -"question": "As shown in the figure, it is known that $ \\triangle ABC \\cong \\triangle DEF $, with B, E, C, F lying on the same straight line. If $ BF = 8\\text{cm} $ and $ BE = 2\\text{cm} $, then what is the length of $ CE $ in $\\text{cm}$?", -"image_file_name": "7048953", -"image": [ -"math/52836462_170.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle DEF$,\\\\\nit follows that $BC = EF$,\\\\\ntherefore $BC - CE = EF - CE$,\\\\\nhence $BE = CF$,\\\\\ngiven that $BE = 2\\text{cm}$,\\\\\nit implies $CF = BE = 2\\text{cm}$,\\\\\nsince $BF = 8\\text{cm}$,\\\\\nthus $CE = BF - BE - CF = 8 - 2 - 2 = \\boxed{4}\\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836308": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=\\angle C$, $D$ is a point on side $BC$, and $E$ is a point on side $AC$, with $\\angle ADE=\\angle AED$. If $\\angle BAD=28^\\circ$, what is the measure of $\\angle CDE$?", -"image_file_name": "7048953", -"image": [ -"math/52836308_180.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ADC$ is an exterior angle of $\\triangle ABD$, \\\\\nit follows that $\\angle ADC = \\angle B + \\angle BAD = \\angle B + 28^\\circ$, \\\\\nand since $\\angle AED$ is an exterior angle of $\\triangle CDE$, \\\\\nwe have $\\angle AED = \\angle C + \\angle EDC$, \\\\\nconsidering $\\angle B = \\angle C$ and $\\angle ADE = \\angle AED$, \\\\\nthus $\\angle C + \\angle EDC = \\angle ADC - \\angle EDC = \\angle B + 28^\\circ - \\angle EDC$, \\\\\nleading to the solution $\\angle EDC = \\boxed{14^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51366350": { -"question": "As shown in the diagram, within $\\triangle ABC$, $\\triangle BDE$ and $\\triangle FGH$ are two congruent equilateral triangles, and $BC=5$. What is the perimeter of the pentagon $DECHF$?", -"image_file_name": "7048953", -"image": [ -"math/51366350_190.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle GFH$ is an equilateral triangle,\\\\\nthus $FH=GH$, $\\angle FHG=60^\\circ$,\\\\\ntherefore, $\\angle AHF+\\angle GHC=120^\\circ$,\\\\\ngiven that $\\triangle ABC$ is an equilateral triangle,\\\\\nthus $AB=BC=AC=5$, $\\angle ACB=\\angle A=60^\\circ$,\\\\\ngiven that $\\angle AHF=180^\\circ-\\angle FHG-\\angle GHC =120^\\circ-\\angle GHC$,\\\\\n$\\angle HGC=180^\\circ-\\angle C-\\angle GHC =120^\\circ-\\angle GHC$,\\\\\ntherefore, $\\angle AHF=\\angle HGC$,\\\\\nin $\\triangle AFH$ and $\\triangle CHG$ we have\\\\\n$\\left\\{\\begin{array}{l}\n\\angle A=\\angle C \\\\\n\\angle AHF=\\angle HGC \\\\\nFH=GH\n\\end{array}\\right.$,\\\\\ntherefore, $\\triangle AFH\\cong \\triangle CHG$ by AAS,\\\\\nthus, AF=CH.\\\\\nGiven that $\\triangle BDE$ and $\\triangle FGH$ are two congruent equilateral triangles,\\\\\nthus, BE=FH,\\\\\ntherefore, the perimeter of pentagon DECHF=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,\\\\\n=(BD+DF+AF)+(CE+BE),\\\\\n=AB+BC=\\boxed{10}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385932": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$ and $\\angle A=36^\\circ$. An arc is drawn with $B$ as the center and the length of $BC$ as the radius, intersecting $AC$ at point $D$. When connecting $BD$, what is the measure of $\\angle ABD$?", -"image_file_name": "7048953", -"image": [ -"math/51385932_200.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ AB=AC, $\\angle A=36^\\circ$,\\\\\n$\\therefore \\angle C= \\frac{180^\\circ-\\angle A}{2}=72^\\circ$,\\\\\n$\\because$ BC=BD,\\\\\n$\\therefore \\angle BDC=\\angle C=72^\\circ$,\\\\\n$\\therefore \\angle ABD=\\angle BDC-\\angle A=\\boxed{36^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385683": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point D is the midpoint of $AB$, and $CD$ is connected. If $AC=4$ and $BC=3$, then what is the length of $CD$?", -"image_file_name": "7048953", -"image": [ -"math/51385683_210.png" -], -"solution": "\\textbf{Solution:} Since in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=4$, and $BC=3$, by the Pythagorean theorem we have: $AB= \\sqrt{AC^{2}+BC^{2}}=\\sqrt{4^{2}+3^{2}}=5$. Since point D is the midpoint of AB, it follows that $CD= \\frac{1}{2}AB= \\frac{1}{2}\\times 5=\\boxed{2.5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385685": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $AD$ is the height from $A$ to side $BC$, point $E$ is on $AD$, and $AE=\\frac{1}{3}AD$. If the area of $\\triangle ABC$ is $s$, what is the area of $\\triangle ABE$?", -"image_file_name": "7048953", -"image": [ -"math/51385685_224.png" -], -"solution": "Given that in $\\triangle ABC$, $\\angle ACB=90^\\circ$ and AB=AC, with AD being the altitude on the side BC,\\\\\nit follows that AD is also the median on side BC, that is BD=DC,\\\\\nFurthermore, given that the area of $\\triangle ABC$ equals S,\\\\\nthus, the area of $\\triangle ABD$ equals $\\frac{S}{2}$,\\\\\nSince AE=$\\frac{1}{3}AD$,\\\\\nconsequently, the area of $\\triangle ABE$ equals $\\boxed{\\frac{S}{6}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53010135": { -"question": "As shown in the figure, it is known that $\\triangle ABC$ is an equilateral triangle with a side length of 10. $D$ is the midpoint of $AC$, $\\angle EDF=120^\\circ$, $DE$ intersects line segment $AB$ at $E$, and $DF$ intersects the extension of $BC$ at $F$. If $AE=4BE$, then what is the length of $CF$?", -"image_file_name": "7048953", -"image": [ -"math/53010135_2312.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct $DM\\parallel BC$ intersecting $AB$ at $M$, \\\\\n$\\because$ $AE=4BE$, \\\\\n$\\therefore$ $BE=\\frac{1}{5}AB=2$, \\\\\n$\\because$ $D$ is the midpoint of $AC$, and $\\triangle ABC$ is an equilateral triangle, \\\\\n$\\therefore$ $MD$ is the median of $\\triangle ABC$, \\\\\n$\\therefore$ $MD=DC=BM=\\frac{1}{2}BC=5$, $\\angle DME=120^\\circ=\\angle DCF$, $\\angle ADM=60^\\circ$, \\\\\n$\\therefore$ $ME=BM-BE=3$, $\\angle MDC=120^\\circ$, \\\\\n$\\because$ $\\angle EDF=120^\\circ$, $\\angle MDC-\\angle EDC=\\angle EDF-\\angle EDC$, \\\\\n$\\therefore$ $\\angle MDE=\\angle CDF$, \\\\\nIn $\\triangle DEM$ and $\\triangle DFC$, \\\\\n$\\because$ $\\left\\{\\begin{array}{l}\\angle MDE=\\angle CDF \\\\ \\angle DME=\\angle DCF \\\\ DM=DC \\end{array}\\right.$, \\\\\n$\\therefore$ $\\triangle DEM\\cong \\triangle DFC\\left(AAS\\right)$, \\\\\n$\\therefore$ $CF=ME=\\boxed{3}$.", -"solution_image": [ -"solution_images/53010135_230.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53010111": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=4$, and $\\angle B=\\angle C=15^\\circ$. What is the area of $\\triangle ABC$?", -"image_file_name": "7048953", -"image": [ -"math/53010111_241.png" -], -"solution": "\\textbf{Solution:} Draw $CD \\perp AB$ through point $C$ intersecting the extended line of $BA$ at $D$,\\\\\n$\\because$ $\\angle B = \\angle ACB = 15^\\circ$,\\\\\n$\\therefore$ $\\angle CAD = \\angle B + \\angle ACB = 15^\\circ + 15^\\circ = 30^\\circ$,\\\\\n$\\because$ $AC = 4$ and $CD$ is the height from the base $AB$,\\\\\n$\\therefore$ $CD = \\frac{1}{2} AC = \\frac{1}{2} \\times 4 = 2$,\\\\\n$\\therefore$ the area of $\\triangle ABC = \\frac{1}{2} \\times 4 \\times 2 = \\boxed{4}$", -"solution_image": [ -"solution_images/53010111_240.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53010081": { -"question": "As shown in the figure, it is known that $\\triangle ABC$ is an equilateral triangle with a side length of 4, and $\\triangle DBC$ is an isosceles triangle with a vertex angle of $120^\\circ$. The moving points $E$ and $F$ are on the sides $AB$ and $AC$, respectively, and $\\angle EDF=60^\\circ$. What is the perimeter of $\\triangle AEF$?", -"image_file_name": "7048953", -"image": [ -"math/53010081_258.png" -], -"solution": "\\textbf{Solution:} Extend $EB$ to $G$, such that $BG=FC$, and connect $DG$,\\\\\nsince $\\triangle ABC$ is an equilateral triangle,\\\\\nthus $\\angle ABC = \\angle ACB = 60^\\circ$,\\\\\nfurthermore, since $BD=CD$,\\\\\nthus $\\angle DCB = \\angle DBC = \\frac{180^\\circ - \\angle BDC}{2} = 30^\\circ$,\\\\\ntherefore $\\angle DCF = \\angle DBE = 90^\\circ$,\\\\\nin right-angled $\\triangle DCF$ and $\\triangle DBG$,\\\\\n$\\left\\{\\begin{array}{l}DC=DB \\\\ \\angle DCF=\\angle DBG \\\\ CF=BG \\end{array}\\right.$,\\\\\ntherefore $\\triangle DCF \\cong \\triangle DBG$,\\\\\nthus $DG=DF$, $\\angle FDC = \\angle GDB$,\\\\\ntherefore $\\angle GDF = \\angle BDC = 120^\\circ$,\\\\\nfurthermore, since $\\angle EDF = 60^\\circ$,\\\\\nthus $\\angle EDG = 60^\\circ$,\\\\\nin $\\triangle EDG$ and $\\triangle EDF$,\\\\\n$\\left\\{\\begin{array}{l}DG=DF \\\\ \\angle EDG=\\angle EDF \\\\ DE=DE \\end{array}\\right.$,\\\\\nthus $\\triangle EDG \\cong \\triangle EDF$,\\\\\nthus $EF=EG=EB+GB=EB+FC$,\\\\\ntherefore, the perimeter of $\\triangle AEF$ is: $AE+AF+EF=AE+AF+BE+FC=AB+AC=\\boxed{8}$,\\\\", -"solution_image": [ -"solution_images/53010081_250.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51378731": { -"question": "In the figure, within $\\triangle ABE$, the perpendicular bisector MN of AE intersects BE at point C, and AC is connected. If $AB=AC$, $CE=5$, and $BC=6$, then what is the perimeter of $\\triangle ABC$?", -"image_file_name": "7048953", -"image": [ -"math/51378731_265.png" -], -"solution": "\\textbf{Solution:} Since $MN$ is the perpendicular bisector of $AE$ and $CE=5$,\\\\\nit follows that $AC=CE=5$,\\\\\nSince $AB=AC$,\\\\\nand given that $AB=5$,\\\\\nand $BC=6$,\\\\\nthus, the perimeter of $\\triangle ABC$ is $AB+AC+BC=5+5+6=\\boxed{16}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51378976": { -"question": "As shown in the figure, a set of triangles is stacked together. What is the value of $\\angle \\alpha$ in the figure?", -"image_file_name": "7048953", -"image": [ -"math/51378976_271.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, $\\angle C=90^\\circ$, $\\angle DAE=45^\\circ$, $\\angle BAC=60^\\circ$,\\\\\n$\\therefore \\angle CAO=\\angle BAC−\\angle DAE=60^\\circ−45^\\circ=15^\\circ$,\\\\\n$\\therefore \\angle \\alpha =\\angle C+\\angle CAO=90^\\circ+15^\\circ=\\boxed{105^\\circ}$.", -"solution_image": [ -"solution_images/51378976_271.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51378936": { -"question": "As shown in the figure, in the rectangle $OABC$, point $A$ is on the y-axis, and point $C$ is on the x-axis. We have $OA=BC=4$, and $AB=OC=8$. Point $D$ is on side $AB$, and point $E$ is on side $OC$. The rectangle is folded along the straight line $DE$ so that point $B$ coincides with point $O$. What are the coordinates of point $D$?", -"image_file_name": "7048953", -"image": [ -"math/51378936_282.png" -], -"solution": "\\textbf{Solution:} Let AD = x. By the property of folding, we know that OD = BD = 8 - x,\\\\\nIn right triangle $\\triangle OAD$,\\\\\n$\\because$ OA$^{2}$ + AD$^{2}$ = OD$^{2}$,\\\\\n$\\therefore$ $4^{2}$ + x$^{2}$ = (8 − x)$^{2}$,\\\\\n$\\therefore$ x = 3,\\\\\n$\\therefore$ D$(3,4)$,\\\\\nTherefore, the answer is: D$\\boxed{\\left(3,4\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52096886": { -"question": "As shown in the figure, fold the triangular paper $ABC$ along $DE$. When point $A$ falls outside of the quadrilateral $BCED$, the measurements show that $\\angle 1 = 70^\\circ$ and $\\angle 2 = 152^\\circ$. What is the measure of $\\angle A$?", -"image_file_name": "7048953", -"image": [ -"math/52096886_296.png" -], -"solution": "\\[\n\\text{Solution:} \\\\\n\\text{Based on the fold, we know } \\angle A'=\\angle A, \\\\\n\\because \\angle 1=70^\\circ, \\\\\n\\therefore \\angle A'DA=180^\\circ-\\angle 1=110^\\circ, \\\\\n\\therefore \\text{according to the external angle of a triangle } \\angle A'=\\angle 2-\\angle A'DA=152^\\circ-110^\\circ=42^\\circ, \\\\\n\\therefore \\angle A=\\boxed{42^\\circ}.\n\\]", -"solution_image": [ -"solution_images/52096886_290.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52096296": { -"question": "As shown in the figure, points D and E are located on line segments BC and AC, respectively, and lines AD and BE are connected. If $\\angle A=35^\\circ$, $\\angle B=30^\\circ$, and $\\angle C=45^\\circ$, what is the measure of $\\angle AFB$?", -"image_file_name": "7048953", -"image": [ -"math/52096296_300.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle A=35^\\circ$, $\\angle B=30^\\circ$, $\\angle C=45^\\circ$\\\\\n$\\therefore$ $\\angle ADC=180^\\circ-\\angle A-\\angle C=180^\\circ-35^\\circ-45^\\circ=100^\\circ$,\\\\\n$\\angle BEC=180^\\circ-\\angle B-\\angle C=180^\\circ-30^\\circ-45^\\circ=105^\\circ$,\\\\\nIn quadrilateral CDFE, $\\angle DFE=360^\\circ-\\angle FEC-\\angle FDC-\\angle C=360^\\circ-105^\\circ-100^\\circ-45^\\circ=110^\\circ$,\\\\\n$\\therefore$ $\\angle AFB=\\angle DFE=\\boxed{110^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52856180": { -"question": "As shown in the figure, in an equilateral $\\triangle ABC$, $D$ and $E$ are points on $BC$ and $AC$ respectively, and $BD = CE$, $AD$ intersects $B$ at point $P$. What is the measure of $\\angle APE$ in degrees?", -"image_file_name": "7048953", -"image": [ -"math/52856180_316.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an equilateral triangle,\\\\\nwe have $AB=BC$ and $\\angle ABC=\\angle C=60^\\circ$,\\\\\nGiven $BD=CE$,\\\\\nit follows that $\\triangle ABD\\cong \\triangle BCE$ (SAS),\\\\\nhence $\\angle BAD=\\angle CBE$,\\\\\nSince $\\angle ABP+\\angle CBE=\\angle ABC=60^\\circ$,\\\\\nwe get $\\angle ABP+\\angle BAD=60^\\circ$,\\\\\nthus $\\angle APE = \\angle ABP+\\angle BAD=60^\\circ$;\\\\\nTherefore, the answer is: $\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52891246": { -"question": "As shown in the diagram, in $\\triangle ABC$, $AB=AC$, $\\angle ABC=45^\\circ$, $AD\\perp BC$ at point D. If $BC=8$, what is the length of $AD$?", -"image_file_name": "7048953", -"image": [ -"math/52891246_325.png" -], -"solution": "\\textbf{Solution:} Given that $AB=AC$ and $AD\\perp BC$,\\\\\nit follows that $BD=DC=4$,\\\\\nsince $\\angle ABC=45^\\circ$ and $AD\\perp BC$,\\\\\nit results in $\\angle ABD=\\angle BAD=45^\\circ$,\\\\\nthus $AD=BD=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52891113": { -"question": "As shown in the figure, $D$ is a point on side $BC$ of $\\triangle ABC$, $\\angle B = \\angle 1$, $\\angle 3 = 80^\\circ$, $\\angle BAC = 70^\\circ$. What is the measure of $\\angle 2$?", -"image_file_name": "7048953", -"image": [ -"math/52891113_336.png" -], -"solution": "\\textbf{Solution:} Given $\\angle 3$ is an exterior angle of $\\triangle ABD$,\\\\\nthus $\\angle 3 = \\angle B + \\angle 1$,\\\\\nsince $\\angle 3 = 80^\\circ$ and $\\angle B = \\angle 1$,\\\\\nit follows that $\\angle 1 = \\frac{1}{2} \\angle 3 = \\frac{1}{2} \\times 80^\\circ = 40^\\circ$,\\\\\ngiven $\\angle BAC = 70^\\circ$,\\\\\nthus $\\angle 2 = \\angle BAC - \\angle 1 = 70^\\circ - 40^\\circ = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52304570": { -"question": "As shown in the figure, $\\angle ABD = \\angle CBE = 90^\\circ$, $AB = BD$, $\\angle CAB = \\angle E$. If $BE = 10$, $AD = 4\\sqrt{2}$ , what is the value of $\\frac{AC}{DE}$?", -"image_file_name": "7056453", -"image": [ -"math/52304570_92.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $\\angle ABD=90^\\circ$ and $AB=BD$, $AD=4\\sqrt{2}$, \\\\\ntherefore $2AB^{2}=2BD^{2}=AD^{2}$, \\\\\nhence $2AB^{2}=32$, solving this yields: $AB=BD=4$ (taking the positive value); \\\\\nSince $\\angle ABD=\\angle CBE=90^\\circ$, \\\\\nit follows that $\\angle ABD-\\angle CBD=\\angle CBE-\\angle CBD$, \\\\\ntherefore $\\angle ABC=\\angle DBE$, \\\\\nand since $\\angle CAB=\\angle E$, \\\\\nit can be concluded that $\\triangle ABC \\sim \\triangle EBD$, \\\\\ntherefore $\\frac{AC}{DE}=\\frac{AB}{BE}=\\frac{4}{10}=\\boxed{\\frac{2}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52304567": { -"question": "As shown in the figure of a newly launched shoe rack from a Taobao store, it can be abstracted into a diagram where $l_1\\parallel l_2\\parallel l_3$. Lines $AC$ and $DF$ are intersected by $l_1$, $l_2$, $l_3$. If $AB=30\\,\\text{cm}$, $BC=50\\,\\text{cm}$, and $EF=40\\,\\text{cm}$, what is the length of $DE$?", -"image_file_name": "7056453", -"image": [ -"math/52304567_1010.png" -], -"solution": "Solution: Since $l_1 \\parallel l_2 \\parallel l_3$,\\\\\ntherefore $\\frac{AB}{BC}=\\frac{DE}{EF}$\\\\\nTherefore $\\frac{30}{50}=\\frac{DE}{40}$\\\\\nSolving, we find that $DE=\\boxed{24}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52623765": { -"question": "As shown in the figure, in $\\triangle ABC$, points D, E, and F are located on sides AB, AC, and BC respectively, with $DE \\parallel BC$ and $EF \\parallel AB$, and $AD = 2BD$. What is the value of $\\frac{CF}{CB}$?", -"image_file_name": "7056453", -"image": [ -"math/52623765_111.png" -], -"solution": "\\textbf{Solution:} Since $AD=2BD$, \\\\\nit follows that $BD: AB=1: 3$, \\\\\nSince $DE\\parallel BC$, \\\\\nit follows that $CE: AC=BD: AB=1: 3$, \\\\\nSince $EF\\parallel AB$, \\\\\nit follows that $CF: CB=CE: AC=1: 3$. \\\\\nTherefore, $\\frac{CF}{CB} = \\boxed{\\frac{1}{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52623484": { -"question": "As shown, $\\triangle ABO \\sim \\triangle CDO$, if $BO = 10$, $DO = 5$, and $AC = 9$, then what is the length of $OC$?", -"image_file_name": "7056453", -"image": [ -"math/52623484_124.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABO\\sim \\triangle CDO$,\\\\\nit follows that $\\frac{OB}{OD}=\\frac{OA}{OC}$,\\\\\ntherefore $\\frac{10}{5}=\\frac{9-OC}{OC}$,\\\\\nsolving this yields $OC=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52623528": { -"question": "As shown in the diagram, in $ \\triangle ABC$, $ \\angle ACB=90^\\circ$, $ \\angle ABC=60^\\circ$, and $BC=2\\,cm$. Point D is the midpoint of BC. If a moving point E starts from point A and moves in the direction of A→B→A at a speed of $1\\,cm/s$, let the movement time of point E be $t\\,s$ ($0 \\leq t < 6$). Connect DE. When $ \\triangle BDE$ is similar to $ \\triangle ABC$, what is the value of t?", -"image_file_name": "7056453", -"image": [ -"math/52623528_133.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle ABC=60^\\circ$, and $BC=2cm$,\\\\\n$\\therefore$AB=2BC=4(cm),\\\\\nSince $BC=2cm$, and $D$ is the midpoint of $BC$, and a moving point $E$ starts from $A$ at a speed of 1cm/s,\\\\\n$\\therefore$BD=$\\frac{1}{2}$BC=1(cm), BE=AB−AE=4−t(cm),\\\\\nWhen $\\triangle BDE$ is similar to $\\triangle ABC$, $\\triangle BDE$ is a right triangle,\\\\\nIf $\\angle BED=90^\\circ$,\\\\\nAs A moves towards B, since $\\angle ABC=60^\\circ$,\\\\\n$\\therefore$$\\angle BDE=30^\\circ$,\\\\\n$\\therefore$BE=$\\frac{1}{2}$BD=$\\frac{1}{2}$(cm),\\\\\n$\\therefore$t=3.5,\\\\\nAs B moves towards A, t=4+0.5=4.5.\\\\\nIf $\\angle BDE=90^\\circ$,\\\\\nAs A moves towards B, since $\\angle ABC=60^\\circ$,\\\\\n$\\therefore$$\\angle BED=30^\\circ$,\\\\\n$\\therefore$BE=2BD=2(cm),\\\\\n$\\therefore$t=4−2=$2$,\\\\\nAs B moves towards A, t=4+2=6 (discard).\\\\\nIn summary, the value of $t$ is either \\boxed{2, 3.5, or 4.5}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52623826": { -"question": "As shown in the diagram, in $\\triangle ABC$, $D$ and $E$ are points on $AB$ and $AC$ respectively, and $DE \\parallel BC$. If $AE:EC = 1:4$, then what is the value of $\\frac{S_{\\triangle ADE}}{S_{\\triangle BEC}}$?", -"image_file_name": "7056453", -"image": [ -"math/52623826_141.png" -], -"solution": "\\textbf{Solution:} Since $\\frac{AE}{EC}=\\frac{1}{4}$,\\\\\nthus $\\frac{{S}_{\\triangle ABE}}{{S}_{\\triangle EBC}}=\\frac{1}{4}$,\\\\\nthus ${S}_{\\triangle ABE}=\\frac{1}{4}{S}_{\\triangle EBC}$,\\\\\nSince DE$\\parallel$BC,\\\\\nthus $\\frac{AD}{DB}=\\frac{AE}{EC}=\\frac{1}{4}$,\\\\\nthus $\\frac{{S}_{\\triangle ADE}}{{S}_{\\triangle BDE}}=\\frac{1}{4}$,\\\\\nthus ${S}_{\\triangle BDE}=4{S}_{\\triangle ADE}$,\\\\\nAlso, since ${S}_{\\triangle BDE}={S}_{\\triangle ABE}-{S}_{\\triangle ADE}$,\\\\\nthus $4{S}_{\\triangle ADE}=\\frac{1}{4}{S}_{\\triangle EBC}-{S}_{\\triangle ADE}$,\\\\\nthus $\\frac{{S}_{\\triangle ADE}}{{S}_{\\triangle EBC}}=\\boxed{\\frac{1}{20}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52623724": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $AB=6$, $AC=8$. Point $P$ is any point on $BC$, connect $PA$, with $PA$ and $PC$ as adjacent sides, construct $\\square PAQC$, connect $PQ$, then what is the minimum value of $PQ$?", -"image_file_name": "7056453", -"image": [ -"math/52623724_154.png" -], -"solution": "\\textbf{Solution:} Let $PQ$ intersect $AC$ at point $O$, and draw $O{P}^{\\prime} \\perp BC$ at ${P}^{\\prime}$.\\\\\nIn $\\triangle ABC$, $BC=\\sqrt{AC^{2}+AB^{2}}=\\sqrt{6^{2}+8^{2}}=10$,\\\\\n$\\because \\angle OC{P}^{\\prime} = \\angle ACB$, $\\angle O{P}^{\\prime}C = \\angle CAB$,\\\\\n$\\therefore \\triangle CO{P}^{\\prime} \\sim \\triangle CBA$,\\\\\n$\\therefore \\frac{CO}{CB}=\\frac{O{P}^{\\prime}}{AB}$,\\\\\n$\\therefore \\frac{4}{10}=\\frac{O{P}^{\\prime}}{6}$,\\\\\n$\\therefore O{P}^{\\prime}=\\frac{12}{5}$,\\\\\nWhen $P$ coincides with ${P}^{\\prime}$, the value of $PQ$ is minimized, and the minimum value of $PQ=2O{P}^{\\prime}=\\boxed{\\frac{24}{5}}$.", -"solution_image": [ -"solution_images/52623724_152.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52623482": { -"question": "As shown in the figure, in rectangle $ABCD$, point $E$ is the midpoint of side $AB$. Lines $AC$ and $DE$ intersect at point $F$. If the area of $\\triangle CDF$ is 4, what is the area of $\\triangle AED$?", -"image_file_name": "7056453", -"image": [ -"math/52623482_162.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle,\\\\\nit follows that AB $\\parallel$ CD and AB = CD,\\\\\nwhich means that $\\triangle AEF \\sim \\triangle CDF$,\\\\\ngiven that point E is the midpoint of AB,\\\\\nhence CD = AB = 2AE,\\\\\nthus $\\frac{EF}{DF} = \\frac{AE}{CD} = \\frac{1}{2}$,\\\\\ngiven that the area of $\\triangle CDF$ is 4,\\\\\nit follows that the area of $\\triangle AEF$ is 1,\\\\\nhence the area of $\\triangle ADF$ is 2,\\\\\ntherefore, the area of $\\triangle AED$ is $\\boxed{3}$,", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52622068": { -"question": "As shown in the figure, in parallelogram $ABCD$, $E$ is the midpoint of side $AD$. Line segments $AC$ and $BE$ intersect at point $F$. If the area of $\\triangle AEF$ is 2, then what is the area of $\\triangle ABC$?", -"image_file_name": "7056453", -"image": [ -"math/52622068_170.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ parallelogram ABCD\\\\\n$\\therefore$ $AD\\parallel BC$ and $AD=BC$\\\\\n$\\because$ E is the midpoint of side AD\\\\\n$\\therefore$ BC=2AE\\\\\n$\\because$ $AE\\parallel BC$\\\\\n$\\therefore$ $\\angle EAC=\\angle BCA$\\\\\nAlso, $\\because$ $\\angle EFA=\\angle BFC$\\\\\n$\\therefore$ $\\triangle AEF\\sim \\triangle CBF$\\\\\nAs illustrated, draw $FH\\perp AD$ at point H and $FG\\perp BC$ at point G,\\\\\nthen $\\frac{EF}{BF}=\\frac{AF}{CF}=\\frac{AE}{BC}=\\frac{HF}{FG}=\\frac{1}{2}$,\\\\\n$\\therefore$ $\\frac{S_{\\triangle AEF}}{S_{\\triangle ABC}}=\\frac{\\frac{1}{2}\\cdot AE\\cdot FH}{\\frac{1}{2}\\cdot BC\\cdot HG}=\\frac{\\frac{1}{2}BC\\cdot FH}{BC\\cdot 3FH}=\\frac{1}{6}$,\\\\\n$\\because$ the area of $\\triangle AEF$ is 2\\\\\n$\\therefore$ $S_{\\triangle ABC}=6S_{\\triangle AEF}=6\\times 2=\\boxed{12}$", -"solution_image": [ -"solution_images/52622068_172.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322317": { -"question": "As shown in the figure, in parallelogram $ABCD$, point $E$ is on side $AD$ and $AE=2ED$. $EC$ intersects the diagonal $BD$ at point $F$ and the area of $\\triangle DEF$ is $2$. What is the area of $\\triangle BCF$?", -"image_file_name": "7056453", -"image": [ -"math/51322317_182.png" -], -"solution": "\\textbf{Solution:} Since $AE=2ED$, and $AD=AE+DE=3DE$,\\\\\nthus $\\frac{ED}{AD}=\\frac{1}{3}$,\\\\\nSince quadrilateral ABCD is a parallelogram,\\\\\nthus $AD\\parallel BC$, and $BC=AD$,\\\\\nthus $\\triangle EDF\\sim \\triangle CBF$,\\\\\nthus $\\frac{ED}{BC}=\\frac{EF}{CF}=\\frac{ED}{AD}=\\frac{1}{3}$,\\\\\nthus $\\frac{{S}_{\\triangle EDF}}{{S}_{\\triangle BCF}}=\\frac{ED^{2}}{BC^{2}}=\\left(\\frac{1}{3}\\right)^{2}=\\frac{1}{9}$,\\\\\nSince ${S}_{\\triangle EDF}=2$,\\\\\nthus ${S}_{\\triangle BCF}=9\\times 2=\\boxed{18}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52948354": { -"question": "As shown in the figure, $AB \\parallel CD$, and $AC$ and $BD$ intersect at point $O$. If $AB = 6$, $CD = 3$, and $DO = 4$, what is the length of $BO$?", -"image_file_name": "7056453", -"image": [ -"math/52948354_190.png" -], -"solution": "\\textbf{Solution:} Since $AB\\parallel CD$, \\\\\nit follows that $\\triangle ABO\\sim \\triangle CDO$, \\\\\nwhich implies $\\frac{OB}{OD}=\\frac{AB}{CD}$, \\\\\nthus $\\frac{OB}{4}=\\frac{6}{3}$, \\\\\nsolving yields: $OB=\\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51458349": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, point C is a point on the semicircle above AB, point D is the midpoint of the semicircle below AB. The segments AC, BC, and AD are connected, and through point D, DE is drawn parallel to AB and intersects the extension of CB at point E. If AD equals $5 \\sqrt{2}$, what is the maximum value of the product of AC and CE?", -"image_file_name": "7056453", -"image": [ -"math/51458349_201.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect CD and BD, \\\\\n$\\because$ DE$\\parallel$AB, \\\\\n$\\therefore$ $\\angle$ABC=$\\angle$E, \\\\\n$\\because$ $\\angle$ABC=$\\angle$CDA, \\\\\n$\\therefore$ $\\angle$E =$\\angle$CDA, \\\\\n$\\because$ point D is the midpoint of the semicircle below AB, \\\\\n$\\therefore$ $\\angle$ACD=$\\angle$DCE, \\\\\n$\\therefore$ $\\triangle ACD\\sim \\triangle DCE$, \\\\\n$\\therefore$ $\\frac{CD}{CE}=\\frac{AC}{CD}$, \\\\\n$\\therefore$ $CD^{2}=AC\\cdot CE$, \\\\\n$\\because$ point D is the midpoint of the semicircle below AB, \\\\\n$\\therefore$ $\\angle$ADB=$90^\\circ$, BD=AD=$5\\sqrt{2}$, \\\\\n$\\therefore$ $AB=\\sqrt{AD^{2}+BD^{2}}=10$, \\\\\n$\\because$ $CD\\le AB=10$, \\\\\n$\\therefore$ $AC\\cdot CE\\le 10^{2}=\\boxed{100}$.", -"solution_image": [ -"solution_images/51458349_200.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51458273": { -"question": "As shown in the figure, $AB$ and $CD$ are two chords of the circle $\\odot O$, and they intersect at point $P$. Connect $AD$ and $BD$. Given that $AD=BD=4$ and $PC=6$, what is the length of $CD$?", -"image_file_name": "7056453", -"image": [ -"math/51458273_218.png" -], -"solution": "\\textbf{Solution:} Connect AC, \\\\\naccording to the inscribed angle theorem, we have $\\angle C = \\angle B$, \\\\\nsince AD = BD, \\\\\nit follows that $\\angle B = \\angle DAB$, \\\\\nthus, $\\angle DAP = \\angle C$, \\\\\ntherefore $\\triangle DAP \\sim \\triangle DCA$, \\\\\nhence, AD : CD = DP : AD, \\\\\nwe obtain $AD^{2} = DP \\cdot CD = CD \\cdot (CD - PC)$, \\\\\nsubstituting AD = 4, PC = 6 into the equation, we get, \\\\\n$CD^{2} - 6CD - 16 = 0$, \\\\\nsolving this, we find CD = \\boxed{8} or CD = -2 (discard the latter).", -"solution_image": [ -"solution_images/51458273_210.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51458235": { -"question": "As shown in the figure, quadrilateral $ABCD$ and quadrilateral $AEFG$ are similar figures with point A as the center of similarity, and $AC: AF = 2:3$, then what is the ratio of the area of quadrilateral $ABCD$ to the area of quadrilateral $AEFG$?", -"image_file_name": "7056453", -"image": [ -"math/51458235_225.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ and quadrilateral $AEFG$ are similar figures with point $A$ as the center of similitude and the ratio of $AC \\colon AF = 2 \\colon 3$, \\\\\ntherefore, the similarity ratio between quadrilateral $ABCD$ and quadrilateral $AEFG$ is $2 \\colon 3$, \\\\\ntherefore, the ratio of the areas of quadrilateral $ABCD$ to quadrilateral $AEFG$ is $\\boxed{4 \\colon 9}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51458167": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ DE\\parallel BC$, $ AD=9$, $ DB=3$, $ CE=2$, what is the length of $ AC$?", -"image_file_name": "7056453", -"image": [ -"math/51458167_233.png" -], -"solution": "\\textbf{Solution:} Since DE $\\parallel$ BC, with AD = 9, DB = 3, CE = 2,\\\\\nit follows that $\\frac{AD}{DB} = \\frac{AE}{EC}$, i.e., $\\frac{9}{3} = \\frac{AE}{2}$,\\\\\nSolving this, we find AE = 6,\\\\\nTherefore, AC = AE + EC = \\boxed{8}", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51458070": { -"question": "As shown in the figure, D and E are points on sides AB and AC of $\\triangle ABC$ respectively, with DE $\\parallel$ BC, and the area ratio $S_{\\triangle ADE} : S_{\\triangle ABC} = 1 : 9$. What is the value of the ratio AD : BD?", -"image_file_name": "7056453", -"image": [ -"math/51458070_240.png" -], -"solution": "\\textbf{Solution:} Since $DE\\parallel BC$,\\\\\nit follows that $\\triangle ADE\\sim \\triangle ABC$,\\\\\nwhich implies $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}}=\\frac{AD^2}{AB^2}=\\frac{1}{9}$\\\\\nTherefore, $\\frac{AD}{AB}=\\frac{1}{3}$\\\\\nConsequently, $\\frac{AD}{BD}=\\boxed{\\frac{1}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52601761": { -"question": "As shown in the figure, two right-angled triangles $\\triangle ABC$ and $\\triangle BCD$ are placed as shown in the figure, with $\\angle BCA=45^\\circ$, $\\angle D=30^\\circ$, and the two hypotenuses intersecting at point O. What is the ratio of the areas of $\\triangle AOB$ to $\\triangle COD$?", -"image_file_name": "7056435", -"image": [ -"math/52601761_270.png" -], -"solution": "\\textbf{Solution:} Let $BC=x$,\\\\\nIn right triangle $\\triangle ABC$,\\\\\n$\\because$ $\\angle BCA=45^\\circ$,\\\\\n$\\therefore \\tan \\angle BCA = \\frac{AB}{BC}$,\\\\\n$\\therefore AB=BC=x$,\\\\\nIn right triangle $\\triangle BCD$, $\\angle D=30^\\circ$,\\\\\n$\\therefore \\tan D = \\frac{BC}{DC}=\\frac{\\sqrt{3}}{3}$,\\\\\n$\\therefore DC= \\sqrt{3}BC=\\sqrt{3}x$,\\\\\nFurthermore, $\\because AB\\parallel CD$,\\\\\n$\\therefore \\triangle AOB \\sim \\triangle COD$,\\\\\n$\\therefore \\frac{S_{\\triangle AOB}}{S_{\\triangle COD}}=\\left(\\frac{AB}{CD}\\right)^2=\\left(\\frac{x}{\\sqrt{3}x}\\right)^2=\\boxed{\\frac{1}{3}}$,\\\\", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52601930": { -"question": "In the figure, in $\\triangle OAB$, $\\angle OAB=90^\\circ$, point A is on the x-axis, the graph of the inverse proportion function $y=\\frac{k}{x}$ ($x>0$) passes through the midpoint D of hypotenuse OB and intersects AB at point C. If the area of $\\triangle OBC$ is 3, what is the value of $k$?", -"image_file_name": "7056435", -"image": [ -"math/52601930_281.png" -], -"solution": "\\textbf{Solution:} Draw $DE \\perp OA$ at point $E$, then $S_{\\triangle ODE}=S_{\\triangle OAC}=\\frac{1}{2}|k|$,\n\n$\\because$ D is the midpoint of OB,\n\n$\\therefore$ OD=BD=$\\frac{1}{2}$OB,\n\n$\\because$ DE$\\perp$OA and $\\angle$OAB$=90^\\circ$,\n\n$\\therefore$ DE$\\parallel$AB,\n\n$\\therefore$ $\\triangle ODE \\sim \\triangle OBA$,\n\n$\\therefore$ $\\frac{S_{\\triangle ODE}}{S_{\\triangle OBA}}=\\left(\\frac{OD}{OB}\\right)^2=\\frac{1}{4}$,\n\n$\\therefore$ $S_{\\triangle OAB}=4S_{\\triangle ODE}=2|k|$,\n\n$\\therefore$ $S_{\\triangle OBC}=3=S_{\\triangle OAB}-S_{\\triangle OAC}=\\frac{3}{2}|k|$,\n\nAgain, $\\because k>0$,\n\n$\\therefore k=\\boxed{2}$,", -"solution_image": [ -"solution_images/52601930_281.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51545324": { -"question": "In the figure, within $\\triangle ABC$, point D is a point on side $AB$. If $\\angle ACD = \\angle B$, $AD = 1$, $AC = 2$, and the area of $\\triangle ADC$ is $1$, what is the area of $\\triangle BCD$?", -"image_file_name": "7056435", -"image": [ -"math/51545324_290.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACD = \\angle B$, \\\\\nand $\\angle A = \\angle A$, \\\\\nthus $\\triangle ACD \\sim \\triangle ABC$, \\\\\nhence $\\frac{S_{\\triangle ACD}}{S_{\\triangle ABC}}=\\left(\\frac{AD}{AC}\\right)^2=\\frac{1}{4}$, \\\\\nsince $S_{\\triangle ACD} = 1$, \\\\\nit follows that $S_{\\triangle ABC} = 4$, \\\\\ntherefore, the area of $\\triangle BCD = S_{\\triangle ABC} - S_{\\triangle ACD} = \\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51545190": { -"question": "As shown in the figure, AB and CD are two chords of $\\odot O$ that intersect at point P. AD and BD are connected, and it is known that AD = BD = 4 and PC = 6. What is the length of CD?", -"image_file_name": "7056435", -"image": [ -"math/51545190_300.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AC,\\\\\naccording to the inscribed angle theorem, we know that $\\angle C = \\angle B$,\\\\\nsince $AD=BD$,\\\\\ntherefore $\\angle B = \\angle DAB$,\\\\\nthus $\\angle DAP = \\angle C$,\\\\\nhence $\\triangle DAP \\sim \\triangle ACA$,\\\\\ntherefore $AD \\colon CD = DP \\colon AD$,\\\\\nit follows that $AD^2 = DP \\cdot CD = CD(CD - PC)$,\\\\\nsubstituting $AD = 4$, $PC = 6$ into the equation yields,\\\\\n$CD = \\boxed{8}$.", -"solution_image": [ -"solution_images/51545190_300.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52765807": { -"question": "As shown in the figure, in $\\triangle ABC$, BD and CE are two medians. Then, what is the ratio of the area of $\\triangle ADE$ to the area of $\\triangle DEF$?", -"image_file_name": "7056435", -"image": [ -"math/52765807_310.png" -], -"solution": "\\textbf{Solution}:\nGiven that in $\\triangle ABC$, the two medians $BD$ and $CE$ intersect at point $F$,\\\\\nthen $DE$ is the midline, and the area of $\\triangle CDE$ equals the area of $\\triangle ADE$,\\\\\nthus $DE \\parallel BC$ and $DE = \\frac{1}{2}BC$,\\\\\nwhich implies $\\triangle DEF \\sim \\triangle BCF$,\\\\\ntherefore $\\frac{EF}{CF}=\\frac{DE}{BC}=\\frac{1}{2}$,\\\\\nsince $CF = 2EF$,\\\\\nthus the area of $\\triangle DEF$ is $\\frac{1}{2}$ the area of $\\triangle DCF$,\\\\\nhence the area of $\\triangle DEF$ is $\\frac{1}{3}$ the area of $\\triangle CDE$,\\\\\nand therefore, the area of $\\triangle DEF$ is $\\frac{1}{3}$ the area of $\\triangle ADE$,\\\\\nthus the ratio of the areas $\\triangle ADE$ to $\\triangle DEF$ is $\\boxed{3:1}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52601722": { -"question": "As shown in the figure, $AD \\parallel EF \\parallel BC$, point $G$ is the midpoint of $EF$, $\\frac{EF}{BC} = \\frac{3}{5}$. If $EF = 6$, what is the length of $AD$?", -"image_file_name": "7056435", -"image": [ -"math/52601722_321.png" -], -"solution": "\\textbf{Solution:} Given: $EF\\parallel BC$\\\\\n$\\therefore$ $\\triangle AEF\\sim \\triangle ABC$\\\\\n$\\therefore$ $\\frac{AE}{AB}=\\frac{EF}{BC}=\\frac{3}{5}$\\\\\n$\\therefore$ $\\frac{BE}{BA}=\\frac{2}{5}$\\\\\nGiven: $EF\\parallel AD$\\\\\n$\\therefore$ $\\triangle BEG\\sim \\triangle BAD$\\\\\n$\\therefore$ $\\frac{EG}{AD}=\\frac{BE}{BA}=\\frac{2}{5}$\\\\\nGiven: Point G is the midpoint of EF, and EF=6\\\\\n$\\therefore$ EG=3\\\\\n$\\therefore$ $AD=\\frac{5}{2}EG=\\boxed{\\frac{15}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51103840": { -"question": "As shown in the figure, in the Cartesian coordinate system, if point A has the coordinates $(3,1)$, what is the value of $\\sin\\alpha$?", -"image_file_name": "7058769", -"image": [ -"math/51103840_00.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram: draw AB $\\perp$ x-axis at point B,\\\\\n$\\because$ the coordinates of point A are (3, 1),\\\\\n$\\therefore$ OB = 3, and AB = 1,\\\\\nIn right triangle ABO, according to the Pythagorean theorem, AO = $\\sqrt{OB^{2}+AB^{2}}=\\sqrt{3^{2}+1^{2}}=\\sqrt{10}$,\\\\\n$\\therefore \\sin\\alpha = \\frac{AB}{OA}=\\frac{1}{\\sqrt{10}}=\\frac{\\sqrt{10}}{10}$,\\\\\nTherefore, $\\sin\\alpha = \\boxed{\\frac{\\sqrt{10}}{10}}$", -"solution_image": [ -"solution_images/51103840_00.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51103664": { -"question": "In the Cartesian coordinate system, the ray OA in the first quadrant forms an angle $\\alpha$ with the positive x-axis. If $\\sin\\alpha =\\frac{3}{5}$, what could be the coordinates of point P located on ray OA?", -"image_file_name": "7058769", -"image": [ -"math/51103664_11.png" -], -"solution": "\\textbf{Solution:} Draw PB $\\perp$ OB at point B through point P.\\\\\nA, $\\because$ point P (3, 5), $\\therefore$ OB = 3, PB = 5,\\\\\n$\\therefore$ OP = $\\sqrt{34}$ (by the Pythagorean theorem),\\\\\n$\\therefore \\sin\\alpha = \\frac{PB}{OP} = \\frac{5}{\\sqrt{34}} = \\frac{5\\sqrt{34}}{34} \\ne \\frac{3}{5}$, thus this option does not meet the criteria;\\\\\nB, $\\because$ point P (5, 3), $\\therefore$ OB = 5, PB = 3,\\\\\n$\\therefore$ OP = $\\sqrt{34}$ (by the Pythagorean theorem),\\\\\n$\\therefore \\sin\\alpha = \\frac{PB}{OP} = \\frac{3}{\\sqrt{34}} = \\frac{3\\sqrt{34}}{34} \\ne \\frac{3}{5}$, thus this option does not meet the criteria;\\\\\nC, $\\because$ point P (4, 3), $\\therefore$ OB = 4, PB = 3,\\\\\n$\\therefore$ OP = $5$ (by the Pythagorean theorem),\\\\\n$\\therefore \\sin\\alpha = \\frac{PB}{OP} = \\frac{3}{5}$, thus this option meets the criteria;\\\\\nD, $\\because$ point P (3, 4), $\\therefore$ OB = 3, PB = 4,\\\\\n$\\therefore$ OP = $5$ (by the Pythagorean theorem),\\\\\n$\\therefore \\sin\\alpha = \\frac{PB}{OP} = \\frac{4}{5} \\ne \\frac{3}{5}$, thus this option does not meet the criteria;\\\\\nTherefore, the answer is: \\boxed{C}.", -"solution_image": [ -"solution_images/51103664_10.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51103634": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$. Point D is on the extension line of AB, and CD is connected. If $AB = 2BD$ and $\\tan\\angle BCD = \\frac{2}{3}$, what is the value of $\\frac{AC}{BC}$?", -"image_file_name": "7058769", -"image": [ -"math/51103634_22.png" -], -"solution": "\\textbf{Solution:} Draw $DM\\perp BC$ from point D, intersecting the extension of BC at point M,\\\\\n$\\because$ $\\angle ACB=\\angle DMB=90^\\circ$, $\\angle ABC=\\angle DBM$,\\\\\n$\\therefore$ $\\triangle ABC\\sim \\triangle DBM$,\\\\\n$\\therefore$ $\\frac{BD}{AB}=\\frac{BM}{BC}=\\frac{DM}{AC}$,\\\\\n$\\because$ AB=2BD,\\\\\n$\\therefore$ $\\frac{BD}{AB}=\\frac{BM}{BC}=\\frac{DM}{AC}=\\frac{1}{2}$,\\\\\nIn $\\triangle CDM$,\\\\\nsince $\\tan\\angle MCD=\\frac{2}{3}=\\frac{DM}{CM}$, let DM=2k, then CM=3k,\\\\\nalso $\\because$ $\\frac{BM}{BC}=\\frac{1}{2}=\\frac{DM}{AC}$,\\\\\n$\\therefore$ BC=2k, AC=4k,\\\\\n$\\therefore$ $\\frac{AC}{BC}=\\frac{4k}{2k}=\\boxed{2}$.", -"solution_image": [ -"solution_images/51103634_21.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52746228": { -"question": "As shown in the figure, two tangents $PA$ and $PB$ are drawn from a point $P$ outside the circle $O$, and the points of tangency are $A$ and $B$, respectively. If $\\angle APB=60^\\circ$ and $PA=8$, then what is the radius of circle $O$?", -"image_file_name": "7058769", -"image": [ -"math/52746228_310.png" -], -"solution": "\\textbf{Solution:} Draw OA, OP.\\\\\nSince PA, PB are tangents to the circle $O$ and $\\angle APB=60^\\circ$,\\\\\nit follows that $\\angle OPA= \\frac{1}{2}\\angle APB=30^\\circ$ and OA$\\perp$OP,\\\\\nthus OA=AP$\\cdot \\tan \\angle OPA=8\\times \\frac{\\sqrt{3}}{3}=\\frac{8\\sqrt{3}}{3}$,\\\\\nTherefore, the radius of circle $O$ is $\\boxed{\\frac{8\\sqrt{3}}{3}}$.", -"solution_image": [ -"solution_images/52746228_30.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51083564": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, and $AD$ is drawn perpendicular to $BC$ at point $D$. If $\\frac{BD}{CD} = \\frac{4}{3}$, what is the value of $\\tan C$?", -"image_file_name": "7058769", -"image": [ -"math/51083564_42.png" -], -"solution": "\\textbf{Solution:}\n\nGiven $\\frac{BD}{CD} = \\frac{4}{3}$,\\\\\nlet $BD=4x$, and $CD=3x$.\\\\\nSince $AD \\perp BC$,\\\\\nwe have $\\angle ADB = \\angle ADC = \\angle BAC = 90^\\circ$,\\\\\nwhich implies $\\angle BAD + \\angle CAD = \\angle C + \\angle CAD = 90^\\circ$,\\\\\nhence $\\angle C = \\angle BAD$,\\\\\nleading to $\\triangle BAD \\sim \\triangle ACD$,\\\\\nthus $\\frac{AD}{BD} = \\frac{CD}{AD}$, i.e., $AD^2 = BD \\cdot CD = 3x \\cdot 4x = 12x^2$,\\\\\ntherefore, $AD = 2\\sqrt{3}x$,\\\\\nfrom which it follows $\\tan C = \\frac{AD}{CD} = \\frac{2\\sqrt{3}x}{3x} = \\boxed{\\frac{2\\sqrt{3}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51083566": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are all on the vertices of small squares with equal side lengths. What is the value of $\\cos\\angle BAC$?", -"image_file_name": "7058769", -"image": [ -"math/51083566_52.png" -], -"solution": "\\[ \\textbf{Solution:} \\text{As shown in the figure, construct } CD\\perp AB \\text{ at point } D, \\]\n\\[ \\text{Given that, } S_{\\triangle ABC}=\\frac{1}{2}\\times 2\\times 2=2, \\quad AB=\\sqrt{2^{2}+4^{2}}=2\\sqrt{5}, \\quad AC=2\\sqrt{2}, \\]\n\\[ \\therefore S_{\\triangle ABC}=\\frac{1}{2}AB\\cdot CD=2, \\quad CD=\\frac{2S_{\\triangle ABC}}{AB}=\\frac{4}{2\\sqrt{5}}=\\frac{2\\sqrt{5}}{5}, \\]\n\\[ \\text{In } \\triangle ADC, \\quad AD=\\sqrt{AC^{2}-CD^{2}}=\\frac{6\\sqrt{5}}{5}, \\]\n\\[ \\therefore \\cos\\angle BAC=\\frac{AD}{AC}=\\frac{\\frac{6\\sqrt{5}}{5}}{2\\sqrt{2}}=\\boxed{\\frac{3\\sqrt{10}}{10}}. \\]", -"solution_image": [ -"solution_images/51083566_50.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51083013": { -"question": "As shown in the figure, $\\triangle AOB$ in the Cartesian coordinate system is rotated $90^\\circ$ clockwise around point $O$ to get $\\triangle A^\\prime OB^\\prime$. Given that $\\angle AOB=60^\\circ$, $\\angle B=90^\\circ$, and $AB= \\sqrt{3}$, what are the coordinates of point $B^\\prime$?", -"image_file_name": "7058769", -"image": [ -"math/51083013_61.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw line $B^{\\prime}C \\perp x$-axis at point C, \\\\\nsince $\\triangle AOB$ rotates $90^\\circ$ clockwise around point O to become $\\triangle A^{\\prime}OB^{\\prime}$,\\\\\ntherefore, $OB^{\\prime} = OB$, and $\\angle BOB^{\\prime} = 90^\\circ$,\\\\\nsince $\\angle AOB = 60^\\circ$, and $AB= \\sqrt{3}$,\\\\\ntherefore, $OB = 1$,\\\\\ntherefore, $OB^{\\prime} = 1$,\\\\\n$\\angle B^{\\prime}OC = 180^\\circ - \\angle AOB - \\angle BOB^{\\prime} = 180^\\circ - 60^\\circ - 90^\\circ = 30^\\circ$,\\\\\ntherefore, $OC = OB^{\\prime}\\cos30^\\circ = 1 \\times \\frac{\\sqrt{3}}{2} = \\frac{\\sqrt{3}}{2}$,\\\\\n$B^{\\prime}C = OB^{\\prime}\\sin30^\\circ = 1 \\times \\frac{1}{2} = \\frac{1}{2}$,\\\\\ntherefore, the coordinates of $B^{\\prime}$ are $\\boxed{\\left(\\frac{\\sqrt{3}}{2}, \\frac{1}{2}\\right)}$.", -"solution_image": [ -"solution_images/51083013_60.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51082675": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=4$, and $BC=8$, then what is the value of $\\tan B$?", -"image_file_name": "7058769", -"image": [ -"math/51082675_73.png" -], -"solution": "\\textbf{Solution:} Since $\\angle C=90^\\circ$, $AC=4$, and $BC=8$, \\\\\ntherefore $\\tan B=\\frac{AC}{BC}=\\boxed{\\frac{1}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52550162": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are lattice points of a square grid. What is the value of $\\sin B$?", -"image_file_name": "7058769", -"image": [ -"math/52550162_80.png" -], -"solution": "\\textbf{Solution:} By the Pythagorean theorem, we have: $AB=\\sqrt{3^2+3^2}=3\\sqrt{2}$\\\\\n$\\therefore \\sin B=\\frac{3}{3\\sqrt{2}}=\\frac{\\sqrt{2}}{2}$\\\\\nTherefore, $\\sin B=\\boxed{\\frac{\\sqrt{2}}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51174881": { -"question": "As shown in the figure, the angle of elevation to the top of the flagpole A at point C is measured to be $30^\\circ$. Moving forward 10 meters to point D, the angle of elevation to point A is measured to be $60^\\circ$. What is the height of the flagpole? Meters.", -"image_file_name": "7058769", -"image": [ -"math/51174881_90.png" -], -"solution": "\\textbf{Solution:} Given from the problem, $\\angle C=30^\\circ$ and $\\angle ADB=60^\\circ$,\\\\\n$\\therefore \\angle DAC=\\angle ADB-\\angle C=30^\\circ$,\\\\\n$\\therefore \\angle DAC=\\angle C$,\\\\\n$\\therefore AD=DC=10$ meters,\\\\\nIn $\\triangle ADB$, $\\sin \\angle ADB= \\frac{AB}{AD}$,\\\\\nThen $AB=AD \\cdot \\sin \\angle ADB=10 \\times \\frac{\\sqrt{3}}{2} = 5\\sqrt{3}$ (meters),\\\\\nTherefore, the height of the flagpole is $AB=\\boxed{5\\sqrt{3}}$ (meters).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51174880": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the rhombus OABC has side OA on the x-axis, with point $A(10, 0)$, and $\\sin\\angle COA=\\frac{4}{5}$. If the inverse proportion function $y=\\frac{k}{x}$ ($k>0, x>0$) passes through point C, what is the value of $k$?", -"image_file_name": "7058769", -"image": [ -"math/51174880_103.png" -], -"solution": "\\[ \\text{{\\bfseries Solution:}} \\text{ As shown in the figure, draw } CE \\perp OA \\text{ at point E,} \\]\n\\[ \\because \\text{ the side OA of the rhombus OABC lies on the x-axis, with point } A(10,0), \\]\n\\[ \\therefore OC = OA = 10, \\]\n\\[ \\because \\sin\\angle COA = \\frac{4}{5} = \\frac{CE}{OC}, \\]\n\\[ \\therefore CE = 8, \\]\n\\[ \\therefore OE = \\sqrt{CO^2 - CE^2} = 6, \\]\n\\[ \\therefore \\text{ the coordinates of point C are }(6, 8), \\]\n\\[ \\because \\text{ if the inverse ratio function } y = \\frac{k}{x} (k>0, x>0) \\text{ passes through point C,} \\]\n\\[ \\therefore k = 6 \\times 8 = \\boxed{48} \\]", -"solution_image": [ -"solution_images/51174880_101.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51174755": { -"question": "As shown in the figure, to facilitate pedestrians crossing a certain footbridge, the municipal government constructed ramps at both ends of the 10-meter-high footbridge. The design of the slope satisfies $\\sin A = \\frac{1}{3}$. What is the length of the ramp AC?", -"image_file_name": "7058769", -"image": [ -"math/51174755_111.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, where $\\angle ABC = 90^\\circ$ and $BC = 10$ meters, with $\\sin A = \\frac{1}{3}$,\\\\\nthen $\\frac{BC}{AC} = \\frac{1}{3}$, that is, $\\frac{10}{AC} = \\frac{1}{3}$,\\\\\nSolving this, we get: $AC = \\boxed{30}$ (meters).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51174756": { -"question": "As shown in the diagram, the sunlight strikes the ground at an angle of $80^\\circ$. Given that window $AB$ is 2 meters high, to install a horizontal sunshade $DC$ at point $D$, which is 0.2 meters above the window, such that the sunlight cannot directly enter the room, what is the minimum length of sunshade $DC$?", -"image_file_name": "7058769", -"image": [ -"math/51174756_120.png" -], -"solution": "\\textbf{Solution}: Given that $DA=0.2$ meters, $AB=2$ meters,\\\\\nthus $DB=DA+AB=2.2$ meters,\\\\\nsince the angle between the ray and the ground is $80^\\circ$, thus $\\angle BCD=80^\\circ$.\\\\\nAlso, since $\\tan \\angle BCD= \\frac{DB}{DC}$,\\\\\nthus $DC= \\frac{DB}{\\tan \\angle BCD}=\\frac{2.2}{\\tan 80^\\circ}=\\boxed{\\frac{2.2}{\\tan 80^\\circ}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51174753": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=3$, $BC=4$, then what is the value of $\\cos A$?", -"image_file_name": "7058769", -"image": [ -"math/51174753_130.png" -], -"solution": "\\textbf{Solution:} In the right triangle $\\triangle ABC$, with $\\angle C=90^\\circ$, $AC=3$, and $BC=4$,\\\\\nby the Pythagorean theorem, we obtain\\\\\n$AB= \\sqrt{AC^{2}+BC^{2}}= 5$.\\\\\n$\\cos A= \\frac{AC}{AB} = \\boxed{\\frac{3}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52511894": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $CD \\perp AB$ at D. If $AC=2\\sqrt{3}$ and $AB=3\\sqrt{2}$, then what is the value of $\\tan\\angle BCD$?", -"image_file_name": "7058769", -"image": [ -"math/52511894_142.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACB=90^\\circ$, $AC=2\\sqrt{3}$, $AB=3\\sqrt{2}$, \\\\\nhence $BC=\\sqrt{(3\\sqrt{2})^{2}-(2\\sqrt{3})^{2}}=\\sqrt{6}$, and $\\angle B+\\angle A=90^\\circ$, \\\\\nsince $CD\\perp AB$ at $D$, \\\\\nthus $\\angle B+\\angle BCD =90^\\circ$, \\\\\ntherefore $\\angle BCD=\\angle A$, \\\\\nthus $\\tan\\angle BCD=\\tan\\angle A=\\frac{BC}{AC}=\\frac{\\sqrt{6}}{2\\sqrt{3}}=\\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51034127": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=13$ and $BC=10$, what is the value of $\\sin B$?", -"image_file_name": "7058769", -"image": [ -"math/51034127_150.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw AD $\\perp$ BC at point D,\\\\\n$\\therefore$ $\\angle$ADB$=90^\\circ$,\\\\\n$\\because$ AB=AC=13, BC=10,\\\\\n$\\therefore$ BD=5,\\\\\n$\\therefore$ AD=$\\sqrt{13^2-5^2}=12$,\\\\\n$\\therefore$ $\\sin B=\\frac{AD}{AB}=\\boxed{\\frac{12}{13}}$.", -"solution_image": [ -"solution_images/51034127_150.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51029388": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=2\\sqrt{5}$, $\\angle BAC=\\alpha^\\circ$, $\\tan\\angle ABC=\\frac{1}{2}$, $G$ is the midpoint of $BC$, and $D$ is a moving point in the plane with $DG=\\frac{\\sqrt{5}}{5}$. If line segment $BD$ rotates counterclockwise by $\\alpha^\\circ$ around point $D$ to obtain $DB'$, what is the maximum area of quadrilateral $BACB'$?", -"image_file_name": "7058769", -"image": [ -"math/51029388_163.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AD, AG, and draw GH perpendicular to AB at point H through point G,\\\\\nsince $AB=AC=2\\sqrt{5}$ and $BG=GC$,\\\\\nthus, $AG\\perp BC$,\\\\\nsince $\\tan\\angle ABC=\\frac{AG}{BG}=\\frac{1}{2}$,\\\\\nthus, $AG=2$ and $BG=4$,\\\\\nsince $\\sin\\angle ABG=\\sin\\angle GBH$,\\\\\nthus, $\\frac{GH}{BC}=\\frac{AG}{AB}$,\\\\\nthus, $\\frac{GH}{4}=\\frac{2}{2\\sqrt{5}}$,\\\\\nthus, $GH=\\frac{4\\sqrt{5}}{5}$,\\\\\nsince $AB=AC$, $DB=DB'$, $\\angle BAC=\\angle BDB'$,\\\\\nthus, $\\angle ABC=\\angle DBB'$, $\\frac{AB}{BC}=\\frac{BD}{BB'}$,\\\\\nthus, $\\angle ABD=\\angle CBB'$,\\\\\nthus, $\\triangle ABD\\sim \\triangle CBB'$,\\\\\nthus, $\\frac{S_{\\triangle ABD}}{S_{\\triangle CBB'}}=\\left(\\frac{AB}{BC}\\right)^2=\\left(\\frac{2\\sqrt{5}}{4}\\right)^2=\\frac{5}{16}$,\\\\\nsince $DG=\\frac{\\sqrt{5}}{5}$,\\\\\nthus, the motion trajectory of point G is a circle with G as the center and $\\frac{\\sqrt{5}}{5}$ as the radius. When point D is on the extension line of HG, the area of $\\triangle ABD$ is maximized, with the maximum value $=\\frac{1}{2}\\times 2\\sqrt{5}\\times \\left(\\frac{4\\sqrt{5}}{5}+\\frac{\\sqrt{5}}{5}\\right)=5$,\\\\\nthus, the maximum area of $\\triangle BCB'$ is $16$,\\\\\nthus, the maximum area of quadrilateral $BACB'$ is $\\frac{1}{2}\\times 8\\times 2+16=\\boxed{24}$.", -"solution_image": [ -"solution_images/51029388_160.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51029385": { -"question": "As shown in the figure, the slope of the waterside slope AB of the river embankment cross section is 1:2, and the slope length AB = $6\\sqrt{5}$. What is the height of the embankment?", -"image_file_name": "7058769", -"image": [ -"math/51029385_171.png" -], -"solution": "Solution: Since the slope of the upstream slope AB is 1:2, it means that $\\tan A = \\frac{BC}{AC} = \\frac{1}{2}$,\\\\\ntherefore $AC = 2BC$. Also, in the right triangle $\\triangle ABC$, $BC^{2}+AC^{2}=AB^{2}$, $AB=6\\sqrt{5}$,\\\\\nthus $BC^{2}+(2BC)^{2}=(6\\sqrt{5})^{2}$. Solving this yields: $BC=\\boxed{6}$ (taking the positive value).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51010334": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\cos B = \\frac{\\sqrt{2}}{2}$, $\\sin C = \\frac{3}{5}$, and $AC=5$, what is the area of $\\triangle ABC$?", -"image_file_name": "7058769", -"image": [ -"math/51010334_182.png" -], -"solution": "\\textbf{Solution:} Let $AH\\perp BC$,\\\\\nthen $AH=AC\\sin C=5\\times\\frac{3}{5}=3$,\\\\\n$\\therefore$ $CH=\\sqrt{AC^{2}-AH^{2}}=4$,\\\\\n$\\because$ $\\cos B=\\frac{\\sqrt{2}}{2}$,\\\\\n$\\therefore$ $\\angle B=45^\\circ$,\\\\\n$\\therefore$ $BH=AH=3$,\\\\\n$\\therefore$ $BC=BH+CH=3+4=7$,\\\\\n$\\therefore$ $S_{\\triangle ABC}=\\frac{1}{2}\\times BC\\times AH=\\frac{1}{2}\\times7\\times3=\\boxed{\\frac{21}{2}}$.", -"solution_image": [ -"solution_images/51010334_180.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52532703": { -"question": "As shown in the figure, circle $ \\odot A$ passes through the points O, D, C, and B. Line segments CO and CD are drawn. Given that $\\angle DCO = 30^\\circ$ and $B(4, 0)$, what are the coordinates of point D?", -"image_file_name": "7058769", -"image": [ -"math/52532703_193.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect DB,\\\\\nsince $\\angle DCO=30^\\circ$ and $\\angle DOB=90^\\circ$,\\\\\ntherefore, $\\angle OBD=30^\\circ$, DB is the diameter,\\\\\nsince B(4,0),\\\\\ntherefore, $OB=4$,\\\\\nin $\\triangle DOB$, $\\tan\\angle OBD= \\frac{OD}{OB}$,\\\\\nthus $\\frac{OD}{4}=\\frac{\\sqrt{3}}{3}$,\\\\\ntherefore, $OD=\\frac{4\\sqrt{3}}{3}$,\\\\\ntherefore, the coordinates of point D are $\\boxed{(0, \\frac{4\\sqrt{3}}{3})}$.", -"solution_image": [ -"solution_images/52532703_190.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50987121": { -"question": "As shown in the figure, in square $ABCD$ with a side length of $4$, point $E$ is a point on side $CD$, and point $F$ is symmetric to point $D$ with respect to line $AE$. Connect $AF$ and $BF$. If $\\tan\\angle ABF=2$, what is the length of $DE$?", -"image_file_name": "7058769", -"image": [ -"math/50987121_200.png" -], -"solution": "\\textbf{Solution:} Construct FN$\\perp$AB at point N, and extend NF to intersect CD at point M,\\\\\nsince AB$\\parallel$CD,\\\\\ntherefore MN$\\perp$CD,\\\\\ntherefore $\\angle$FME=$90^\\circ$,\\\\\nsince $\\tan\\angle$ABF=2,\\\\\ntherefore $\\frac{FN}{BN} = 2$,\\\\\nLet BN=x, then FN=2x,\\\\\ntherefore AN=4−x,\\\\\nsince point F is the symmetric point of point D with respect to line AE,\\\\\ntherefore DE=EF, DA=AF=4,\\\\\nsince AE=AE,\\\\\ntherefore $\\triangle$ADE$\\cong\\triangle$AFE (SSS),\\\\\ntherefore $\\angle$D=$\\angle$AFE=$90^\\circ$,\\\\\nsince AN$^{2}$+NF$^{2}$=AF$^{2}$,\\\\\ntherefore $(4−x)^{2}+(2x)^{2}=4^{2}$,\\\\\ntherefore $x_{1}=0$ (discard), $x_{2}=\\frac{8}{5}$,\\\\\ntherefore AN=4−x=4−$\\frac{8}{5}$=$\\frac{12}{5}$, MF=4−2x=4−$\\frac{16}{5}$=$\\frac{4}{5}$,\\\\\nsince $\\angle$EFM+$\\angle$AFN=$\\angle$AFN+$\\angle$FAN=$90^\\circ$,\\\\\ntherefore $\\angle$EFM=$\\angle$FAN,\\\\\ntherefore $\\cos\\angle$EFM=$\\cos\\angle$FAN,\\\\\ntherefore $\\frac{FM}{EF} = \\frac{AN}{AF}$, that is $\\frac{\\frac{4}{5}}{EF}=\\frac{\\frac{12}{5}}{4}$,\\\\\ntherefore EF=$\\boxed{\\frac{4}{3}}$,\\\\\ntherefore DE=EF=$\\frac{4}{3}$.", -"solution_image": [ -"solution_images/50987121_200.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51131123": { -"question": "In the coordinate system shown, let $O(0,0)$, $A(3,3\\sqrt{3})$, and $B(6,0)$. If $\\triangle OAB$ is folded along line $CD$ such that point $A$ precisely falls on point $E$ on segment $OB$ and given that $OE=\\frac{6}{5}$, what is the value of $AC: AD$?", -"image_file_name": "7058769", -"image": [ -"math/51131123_212.jpg" -], -"solution": "\\textbf{Solution:} Draw AF$\\perp$OB at F, as shown in the figure: \\\\\nSince A(3, 3$\\sqrt{3}$), B(6, 0),\\\\\ntherefore AF $=$ 3$\\sqrt{3}$, OF $=$ 3, OB $=$ 6,\\\\\ntherefore BF $=$ 3,\\\\\ntherefore OF $=$ BF,\\\\\ntherefore AO $=$ AB,\\\\\nsince $\\tan\\angle AOB = \\frac{AF}{OF} = \\sqrt{3}$,\\\\\ntherefore $\\angle AOB = 60^\\circ$,\\\\\ntherefore $\\triangle AOB$ is an equilateral triangle,\\\\\ntherefore $\\angle AOB = \\angle ABO = 60^\\circ$,\\\\\nsince folding $\\triangle OAB$ along the line CD such that point A precisely falls on the point E on segment OB,\\\\\ntherefore $\\angle CED = \\angle OAB = 60^\\circ$,\\\\\ntherefore $\\angle OCE = \\angle DEB$,\\\\\ntherefore $\\triangle CEO \\sim \\triangle EDB$,\\\\\ntherefore $\\frac{OE}{BD} = \\frac{CE}{ED} = \\frac{CO}{BE}$,\\\\\nsince OE $= \\frac{6}{5}$,\\\\\ntherefore BE $=$ OB - OE $= 6 - \\frac{6}{5} = \\frac{24}{5}$,\\\\\nLet CE $= a$, then CA $= a$, CO $= 6-a$, ED $= b$, then AD $= b$, DB $= 6-b$,\\\\\nthen $\\frac{\\frac{6}{5}}{6-b} = \\frac{a}{b}$, $\\frac{6-a}{\\frac{24}{5}} = \\frac{a}{b}$,\\\\\ntherefore $6b = 30a - 5ab$ (1), $24a = 30b - 5ab$ (2),\\\\\n(2) - (1) gives: $24a - 6b = 30b - 30a$,\\\\\ntherefore $\\frac{a}{b} = \\frac{2}{3}$,\\\\\nthat is AC$\\colon$AD $=$ $\\boxed{\\frac{2}{3}}$.", -"solution_image": [ -"solution_images/51131123_210.jpg" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51130891": { -"question": "As shown in the figure, $\\odot O$ is a circle centered at the origin $O$ with a radius of $4\\sqrt{2}$. The coordinates of point $P$ are $(2, 2)$. If the chord $AB$ passes through point $P$, what is the minimum area of the shaded region in the figure?", -"image_file_name": "7058769", -"image": [ -"math/51130891_221.png" -], -"solution": "\\textbf{Solution:} Given that when OP$\\perp$A'B', the area of the shaded region is minimized,\\\\\n$\\because$P(2,2),\\\\\n$\\therefore$OP = 2 $\\sqrt{2}$,\\\\\n$\\because$OA' = OB' = 4 $\\sqrt{2}$,\\\\\n$\\therefore \\cos \\angle$A'OP = $\\cos \\angle$B'OP = $\\frac{1}{2}$,\\\\\n$\\therefore$$\\angle$A'OP = $\\angle$B'OP = 60$^\\circ$,\\\\\n$\\therefore$$\\angle$A'OB' = 120$^\\circ$, A'$\\text{P}$ = 4 $\\sqrt{2}$ $\\times$ $\\frac{\\sqrt{3}}{2}$ = 2 $\\sqrt{6}$,\\\\\n$\\therefore$A'$\\text{B}'$ = 4 $\\sqrt{6}$,\\\\\n$\\therefore$S$_{\\text{shaded}}$ = S$_{\\text{sector}}$$_{OA'B'}$ - S$_{\\triangle}$$_{A'OB'}$ = $\\frac{120\\pi \\times {(4\\sqrt{2})}^2}{360}$ - $\\frac{1}{2} \\times 4\\sqrt{6} \\times 2\\sqrt{2}$ = $\\boxed{\\frac{32\\pi}{3} - 8\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51130891_220.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50982861": { -"question": "As shown in the figure, points A, B, and C are all located at the vertices of the small square, and the side length of each small square is 1. What is the value of $\\cos\\angle BAC$?", -"image_file_name": "7058769", -"image": [ -"math/50982861_230.png" -], -"solution": "Solution: Connect BC. Since the side length of each small square is 1, we have AB=$\\sqrt{5}$, BC=$\\sqrt{5}$, AC=$\\sqrt{10}$. Since $(\\sqrt{5})^{2}+(\\sqrt{5})^{2}=(\\sqrt{10})^{2}$, triangle ABC is a right-angled triangle. Therefore, $\\cos\\angle BAC=\\frac{AB}{AC}=\\frac{\\sqrt{5}}{\\sqrt{10}}=\\frac{\\sqrt{2}}{2}$.\n\nHence, $\\cos\\angle BAC = \\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/50982861_230.jpg" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51106894": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ BD \\perp AB$, with BD and AC intersecting at point D, $ AD = \\frac{4}{7}AC$, $ AB = 4$, and $ \\angle ABC = 150^\\circ$. What is the area of $ \\triangle DBC$?", -"image_file_name": "7058769", -"image": [ -"math/51106894_246.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw a perpendicular from point C to BD, intersecting the extension of BD at point E, \\\\\nthen $ \\angle E=90^\\circ$, \\\\\nsince $BD\\perp AB$ and $CE\\perp BD$, \\\\\nit follows that $AB\\parallel CE$, $\\angle ABD=90^\\circ$, \\\\\nhence $\\triangle ABD\\sim \\triangle CED$, \\\\\ntherefore $\\frac{AD}{CD}=\\frac{AB}{CE}=\\frac{BD}{DE}$, \\\\\nsince $AD=\\frac{4}{7}AC$, \\\\\nit follows that $\\frac{AD}{CD}=\\frac{4}{3}$, \\\\\nfurthermore, since $AB=4$, \\\\\nit follows that $\\frac{4}{CE}=\\frac{4}{3}=\\frac{BD}{DE}$, \\\\\ntherefore $CE=3$, $BD=\\frac{4}{7}BE$, \\\\\nsince $\\angle ABC=150^\\circ$, $\\angle ABD=90^\\circ$, \\\\\nit follows that $\\angle CBE=60^\\circ$, \\\\\ntherefore, in $Rt\\triangle BCE$, $\\tan\\angle CBE=\\frac{CE}{BE}=\\sqrt{3}$, \\\\\nhence $BE=\\frac{\\sqrt{3}}{3}CE=\\sqrt{3}$, \\\\\nthus $BD=\\frac{4}{7}BE=\\frac{4\\sqrt{3}}{7}$, \\\\\ntherefore, the area of $\\triangle BCD=\\frac{1}{2}\\cdot BD\\cdot CE=\\frac{1}{2}\\times 3\\times \\frac{4\\sqrt{3}}{7}=\\boxed{\\frac{6\\sqrt{3}}{7}}$.", -"solution_image": [ -"solution_images/51106894_240.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"50951659": { -"question": "As shown in the figure, it is known that $O$ is the circumcircle of $\\triangle ABC$, and $AD$ is the diameter of $O$ with $CD$ connected. If $AD=3$ and $AC=2$, what is the value of $\\cos B$?", -"image_file_name": "7058769", -"image": [ -"math/50951659_250.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ is the diameter of circle $O$,\\\\\nit follows that $\\angle ACD=90^\\circ$,\\\\\nand therefore $DC=\\sqrt{AD^{2}-CD^{2}}=\\sqrt{3^{2}-2^{2}}=\\sqrt{5}$,\\\\\nGiven that arc $AC$ equals arc $AC$,\\\\\nit implies that $\\angle B = \\angle D$,\\\\\nthus $\\cos B = \\cos D = \\frac{DC}{AD} = \\frac{\\sqrt{5}}{3}$.\\\\\nHence, $\\cos B = \\boxed{\\frac{\\sqrt{5}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50934151": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $E$ and $F$ are the midpoints of $AB$ and $AD$ respectively. If $EF=2$, $BC=5$, and $CD=3$, then what is the value of $\\sin C$?", -"image_file_name": "7058769", -"image": [ -"math/50934151_265.png" -], -"solution": "\\textbf{Solution:} Draw line $BD$, \\\\\nsince points E and F are the midpoints of $AB$ and $AD$ respectively, \\\\\ntherefore, $EF=\\frac{1}{2}BD$, \\\\\nsince $EF=2$, \\\\\ntherefore, $BD=2EF=4$, \\\\\nalso, since $BC=5$ and $CD=3$, \\\\\ntherefore, $BD^{2}+CD^{2}=BC^{2}$, \\\\\nthus, $\\triangle BCD$ is a right-angled triangle with $\\angle BDC=90^\\circ$, \\\\\ntherefore, $\\sin C=\\frac{BD}{BC}=\\boxed{\\frac{4}{5}}$.", -"solution_image": [ -"solution_images/50934151_261.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50934145": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are all on the grid points of the graph paper. What is the value of $\\sin A$?", -"image_file_name": "7058769", -"image": [ -"math/50934145_270.png" -], -"solution": "\\textbf{Solution:} Given the diagram, we have $AC=\\sqrt{1^2+3^2}=\\sqrt{10}$, \\\\\n$\\therefore \\sin A=\\frac{1}{AC}=\\frac{1}{\\sqrt{10}}=\\boxed{\\frac{\\sqrt{10}}{10}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50934146": { -"question": "As shown in the diagram, the slope ratio of the cross-section of the river embankment $BC: AC$ is $1: \\sqrt{3}$, with $AC = 6\\,m$. What is the length of the slope surface $AB$?", -"image_file_name": "7058769", -"image": [ -"math/50934146_281.png" -], -"solution": "\\textbf{Solution:} Given the slope ratio $BC:AC$ is $1:\\sqrt{3}$, and $AC=6$m, \\\\\nit follows that $\\frac{BC}{6} = \\frac{1}{\\sqrt{3}}$, \\\\\nsolving this gives $BC=2\\sqrt{3}$ (m), \\\\\nby the Pythagorean theorem, $AB=\\sqrt{AC^{2}+BC^{2}} =\\boxed{4\\sqrt{3}}$ (m).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50934083": { -"question": "As shown in the figure, in the given grid, the side length of the small square is 1, and the points $A$, $B$, and $O$ are all on the lattice points. Then, what is the value of $\\cos \\angle A$?", -"image_file_name": "7058769", -"image": [ -"math/50934083_294.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, according to the problem we have: $OC=2$, $AC=4$, \\\\\nBased on the Pythagorean theorem, we get $AO=\\sqrt{AC^2+OC^2}=\\sqrt{4^2+2^2}=2\\sqrt{5}$, \\\\\n$\\therefore$ $\\cos \\angle A=\\frac{AC}{AO}=\\frac{4}{2\\sqrt{5}}=\\boxed{\\frac{2\\sqrt{5}}{5}}$", -"solution_image": [ -"solution_images/50934083_292.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51213060": { -"question": "As shown in the figure, $\\triangle ABC$ is an inscribed triangle of $\\odot O$ with $AB=BC$, $\\angle BAC=30^\\circ$, and $AD$ is the diameter with $AD=8$. What is the length of $AC$?", -"image_file_name": "7058769", -"image": [ -"math/51213060_306.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OB, \\\\\nsince $\\triangle ABC$ is an inscribed triangle of $\\odot O$, \\\\\ntherefore OB perpendicularly bisects AC, \\\\\ntherefore $AM=CM=\\frac{1}{2}AC$, $OM\\perp AM$, \\\\\nfurthermore, since $AB=BC$, $\\angle BAC=30^\\circ$, \\\\\ntherefore, $\\angle BCA=30^\\circ$, \\\\\ntherefore, $\\angle BOA=60^\\circ$, \\\\\nfurthermore, since AD=8, \\\\\ntherefore, AO=4, \\\\\ntherefore, $\\sin 60^\\circ =\\frac{AM}{AO}=\\frac{AM}{4}=\\frac{\\sqrt{3}}{2}$, \\\\\nsolving gives: $AM=2\\sqrt{3}$, \\\\\ntherefore, $AC=2AM=4\\sqrt{3}$. \\\\\nThus, the answer is: $AC=\\boxed{4\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51213060_300.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51213099": { -"question": "As shown in the figure, the side length of the square $ABCD$ is $1$. Extend $BA$ to $E$ so that $AE=1$. Connect $EC$ and $ED$. Then, what is the value of $\\sin\\angle CED$?", -"image_file_name": "7058769", -"image": [ -"math/51213099_310.png" -], -"solution": "\\textbf{Solution:} Connect AC, draw EF $\\perp$ CA, meeting the extension of CA at point F.\\\\ \n$\\because$ Quadrilateral ABCD is a square, $\\therefore$ $\\angle$BAC = 45$^\\circ$, $\\angle$DAE = $\\angle$DAB = 90$^\\circ$.\\\\\n$\\because$ AD = AE = 1, $\\therefore$ $\\angle$AED = $\\angle$ADE = 45$^\\circ$, that is $\\angle$DEA = $\\angle$CAB = 45$^\\circ$, $\\therefore$ AC $\\parallel$ ED, $\\therefore$ $\\angle$CED = $\\angle$ECA.\\\\\n$\\because$ AE = 1, $\\therefore$ by the Pythagorean theorem: EF = AF = $\\frac{\\sqrt{2}}{2}$.\\\\\n$\\because$ in $\\triangle$EBC, by the Pythagorean theorem: CE$^{2}$ = $1^{2} + 2^{2} = 5$, $\\therefore$ CE = $\\sqrt{5}$, $\\therefore$ $\\sin\\angle$CED = $\\sin\\angle$ECF = $\\frac{EF}{CE} = \\frac{\\frac{\\sqrt{2}}{2}}{\\sqrt{5}} = \\boxed{\\frac{\\sqrt{10}}{10}}$.", -"solution_image": [ -"solution_images/51213099_310.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212924": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$, point D is on $AC$, and $\\angle DBC = \\angle A$. If $AC=4$ and $\\cos A = \\frac{4}{5}$, what is the length of $BD$?", -"image_file_name": "7058769", -"image": [ -"math/51212924_326.png" -], -"solution": "\\textbf{Solution:} Since $\\angle C=90^\\circ$,\\\\\nhence $\\cos A=\\frac{AC}{AB}$,\\\\\nsince $AC=4$, $\\cos A=\\frac{4}{5}$,\\\\\nthus $AB=5$,\\\\\nby the Pythagorean theorem, we get $BC= \\sqrt{AB^{2}-AC^{2}}=3$,\\\\\nsince $\\angle DBC=\\angle A$,\\\\\nthus $\\cos \\angle DBC=\\cos A= \\frac{4}{5}$,\\\\\ntherefore $\\cos \\angle DBC= \\frac{BC}{BD}=\\frac{4}{5}$, which means $\\frac{3}{BD}=\\frac{4}{5}$\\\\\nhence $BD=\\boxed{\\frac{15}{4}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50913440": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A = 90^\\circ$, $AD \\perp BC$ at point D. If $BD = 3$ and $CD = 2$, then what is the value of $\\tan B$?", -"image_file_name": "7058769", -"image": [ -"math/50913440_335.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle BAC=90^\\circ$, $AD\\perp BC$,\\\\\n$\\therefore$ $\\angle BAC=\\angle ADC=\\angle ADB=90^\\circ$,\\\\\n$\\therefore$ $\\angle B+\\angle BAD=\\angle BAD+\\angle CAD=90^\\circ$,\\\\\n$\\therefore$ $\\angle B=\\angle CAD$,\\\\\n$\\therefore$ $\\triangle ADB\\sim \\triangle CAD$,\\\\\n$\\therefore$ $\\frac{AD}{CD}=\\frac{BD}{AD}$,\\\\\n$\\therefore$ $AD^2=BD\\cdot CD$,\\\\\n$\\because$ $BD=3$, $CD=2$,\\\\\n$\\therefore$ $AD=\\sqrt{6}$,\\\\\n$\\therefore$ $\\tan B=\\frac{AD}{BD}=\\boxed{\\frac{\\sqrt{6}}{3}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"50890998": { -"question": "As shown in the diagram, in rhombus ABCD, DE $\\perp$ AB, $\\cos A = \\frac{3}{5}$, and BE = 2, then what is the value of $\\tan \\angle DBE$?", -"image_file_name": "7058769", -"image": [ -"math/50890998_341.png" -], -"solution": "\\textbf{Solution:} Let the side length of rhombus $ABCD$ be $t$.\\\\\n$\\because BE = 2$,\\\\\n$\\therefore AE = t - 2$.\\\\\n$\\therefore \\cos A = \\frac{3}{5} = \\frac{AE}{AD} = \\frac{AB - BE}{AD}$,\\\\\n$\\therefore \\frac{3}{5} = \\frac{t - 2}{t}$,\\\\\n$\\therefore t = 5$.\\\\\n$\\therefore AE = 5 - 2 = 3$.\\\\\n$\\therefore DE = \\sqrt{AD^2 - AE^2} = \\sqrt{5^2 - 3^2} = 4$.\\\\\n$\\therefore \\tan \\angle DBE = \\frac{DE}{BE} = \\frac{4}{2} = \\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50890999": { -"question": "As shown in the figure, in rectangle $ABCD$, $DE\\perp AC$ at $E$, let $\\angle ADE=\\alpha$ and $\\cos\\alpha =\\frac{3}{5}$, with $AB=5$. What is the length of $AD$?", -"image_file_name": "7058769", -"image": [ -"math/50890999_356.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle, it follows that $\\angle B=\\angle BAC=90^\\circ$, BC=AD. Therefore, $\\angle BAC+\\angle DAE=90^\\circ$.\\\\\nSince $DE\\perp AC$, it follows that $\\angle ADE+\\angle DAE=90^\\circ$, and therefore, $\\angle BAC= \\angle ADE=\\alpha$.\\\\\nIn right triangle $\\triangle ABC$, since $\\cos\\alpha =\\frac{3}{5}$ and $AB=5$, it follows that $AC=\\frac{AB}{\\cos\\alpha}=\\frac{25}{3}$.\\\\\nTherefore, AD=BC= $\\sqrt{AC^{2}-AB^{2}}=\\sqrt{\\left(\\frac{25}{3}\\right)^{2}-5^{2}}=\\boxed{\\frac{20}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52536782": { -"question": "As shown in the Cartesian coordinate system, a circular arc passes through the lattice points A, B, and C. What are the coordinates of the center of the circle?", -"image_file_name": "7058793", -"image": [ -"math/52536782_00.png" -], -"solution": "\\textbf{Solution:} Based on the corollary of the Perpendicular Diameter Theorem: the perpendicular bisector of a chord always passes through the center of the circle,\\\\\none can construct the perpendicular bisectors of chords AB and BC, and their intersection point will be the center of the circle.\\\\\nAs shown in the figure, thus the center of the circle is $\\boxed{(2,0)}$.", -"solution_image": [ -"solution_images/52536782_00.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52536701": { -"question": "As shown in the figure, points A, B, and C are all on circle $O$. When $\\angle OAC = 40^\\circ$, what is the measure of $\\angle B$?", -"image_file_name": "7058793", -"image": [ -"math/52536701_13.png" -], -"solution": "\\textbf{Solution:} Let's select any point D on the major arc AB, and connect AD and CD.\\\\\nSince OA=OC, $\\angle$OAC=40$^\\circ$,\\\\\nit follows that $\\angle$OAC=$\\angle$OCA=40$^\\circ$,\\\\\nwhich implies $\\angle$AOC=180$^\\circ$-40$^\\circ$-40$^\\circ$=100$^\\circ$,\\\\\nthus $\\angle$D=$\\frac{1}{2}$$\\angle$AOC=50$^\\circ$,\\\\\nSince quadrilateral ABCD is circumscribed around $\\odot$O,\\\\\nit follows that $\\angle$D+$\\angle$B=180$^\\circ$,\\\\\ntherefore $\\angle$B=180$^\\circ$-50$^\\circ$=\\boxed{130^\\circ},", -"solution_image": [ -"solution_images/52536701_10.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52536668": { -"question": "As shown in the figure, the diameter $CD$ of $O$ is perpendicular to the chord $AB$ at point $E$, and $CE=2$, $OB=4$. What is the length of $AB$?", -"image_file_name": "7058793", -"image": [ -"math/52536668_20.png" -], -"solution": "\\textbf{Solution:} Because the diameter CD of the circle $\\odot$O is perpendicular to the chord AB at point E, therefore $AB=2BE$. Because $CE=2$, and $OB=4$, therefore $OE=4-2=2$, hence $BE= \\sqrt{OB^{2}-OE^{2}}=\\sqrt{4^{2}-2^{2}}=2\\sqrt{3}$, therefore $AB=\\boxed{4\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52536735": { -"question": "As shown in the figure, points $A$, $B$, $C$ are on the circle $\\odot O$, $\\angle ACB=105^\\circ$, then what is the value of $\\angle \\alpha$?", -"image_file_name": "7058793", -"image": [ -"math/52536735_36.png" -], -"solution": "\\textbf{Solution:} Let's take any point $D$ on the major arc $AB$ and connect $AD$ and $BD$,\\\\\nsince quadrilateral $ACBD$ is inscribed in circle $O$, and $\\angle ACB=105^\\circ$,\\\\\nit follows that $\\angle ADB=180^\\circ-\\angle C=180^\\circ-105^\\circ=75^\\circ$,\\\\\nhence $\\angle AOB=2\\angle ADB=2\\times 75^\\circ=150^\\circ$.\\\\\nTherefore, the answer is: $\\boxed{150^\\circ}$.", -"solution_image": [ -"solution_images/52536735_30.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52513737": { -"question": "Given: As shown in the figure, $OA$ and $OB$ are two radii of $\\odot O$, and $OA \\perp OB$. Point $C$ is on $\\odot O$. What is the measure of $\\angle ACB$?", -"image_file_name": "7058793", -"image": [ -"math/52513737_47.png" -], -"solution": "\\textbf{Solution:} Since $OA \\perp OB$,\\\\\nit follows that $\\angle AOB = 90^\\circ$,\\\\\nwhich means $\\angle ACB = \\frac{1}{2} \\angle AOB = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52512549": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $DE$ being the diameter of $\\odot O$. Connect $BD$. If $\\angle BCD = 2\\angle BAD$, then what is the measure of $\\angle BDE$?", -"image_file_name": "7058793", -"image": [ -"math/52512549_50.png" -], -"solution": "\\textbf{Solution:} Connect BE, \\\\\n$\\because$ Quadrilateral ABCD is inscribed in circle $O$, \\\\\n$\\therefore \\angle BCD + \\angle BAD = 180^\\circ$, \\\\\n$\\because \\angle BCD = 2\\angle BAD$, \\\\\n$\\therefore \\angle BAD = 60^\\circ$, \\\\\nBy the inscribed angle theorem, we have: $\\angle BED = \\angle BAD = 60^\\circ$, \\\\\n$\\because DE$ is the diameter of circle $O$, \\\\\n$\\therefore \\angle EBD = 90^\\circ$, \\\\\n$\\therefore \\angle BDE = 90^\\circ - 60^\\circ = \\boxed{30^\\circ}$.", -"solution_image": [ -"solution_images/52512549_50.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52457422": { -"question": "As shown in the figure, point $I$ is the incenter of $\\triangle ABC$. Line segment $AI$ is extended to intersect the circumcircle of $\\triangle ABC$ at point $D$. Point $E$ is the midpoint of chord $AC$. Lines $CD$, $EI$, and $IC$ are connected. When $AI=2CD$, $IC=6$, and $ID=5$, what is the length of $IE$?", -"image_file_name": "7058793", -"image": [ -"math/52457422_614.png" -], -"solution": "\\textbf{Solution:} Extend $ID$ to $M$, such that $DM=ID$, and connect $CM$.\\\\\nSince $I$ is the incenter of $\\triangle ABC$,\\\\\nit follows that $\\angle IAC=\\angle IAB$, $\\angle ICA=\\angle ICB$,\\\\\nSince $\\angle DIC=\\angle IAC+\\angle ICA$, $\\angle DCI=\\angle BCD+\\angle ICB$,\\\\\nit follows that $\\angle DIC=\\angle DCI$,\\\\\nthus $DI=DC=DM$,\\\\\ntherefore $\\angle ICM=90^\\circ$,\\\\\nhence $CM=\\sqrt{IM^{2}-IC^{2}}=8$,\\\\\nSince $AI=2CD=10$,\\\\\nit follows that $AI=IM$,\\\\\nSince $AE=EC$,\\\\\nit follows that $IE$ is the midline of $\\triangle ACM$,\\\\\nthus $IE=\\frac{1}{2}CM=\\boxed{4}$", -"solution_image": [ -"solution_images/52457422_60.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52457089": { -"question": "As shown in the figure, points $A$, $B$, and $C$ are all on the circle $\\odot O$. If $\\angle ACB = 36^\\circ$, what is the measure of $\\angle OAB$?", -"image_file_name": "7058793", -"image": [ -"math/52457089_76.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\angle ACB=\\frac{1}{2}\\angle AOB$ and $\\angle ACB=36^\\circ$, \\\\\n$\\therefore \\angle AOB=2\\times \\angle ACB=72^\\circ$. \\\\\n$\\because OA=OB$, \\\\\n$\\therefore \\triangle OAB$ is an isosceles triangle, \\\\\n$\\because \\angle AOB+\\angle OAB+\\angle OBA=180^\\circ$, \\\\\n$\\therefore \\angle OAB=\\frac{1}{2}\\left(180^\\circ−\\angle AOB\\right)=54^\\circ$, \\\\\nThus, the answer is: $\\boxed{54^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51369879": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, $CD$ is a chord, and $\\angle CAB=50^\\circ$, then what is the degree measure of $\\angle D$?", -"image_file_name": "7058793", -"image": [ -"math/51369879_85.jpg" -], -"solution": "\\textbf{Solution:} Since AB is a diameter,\\\\\nit follows that $\\angle ACN=90^\\circ$,\\\\\ntherefore, $\\angle B=90^\\circ-\\angle CAB=90^\\circ-50^\\circ=40^\\circ$;\\\\\nSince arc AC equals arc AC,\\\\\nit follows that $\\angle B=\\angle D=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51323908": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in $\\odot O$. If $\\angle A=50^\\circ$ and $\\angle B=70^\\circ$, what is the length of $AB$?", -"image_file_name": "7058793", -"image": [ -"math/51323908_96.png" -], -"solution": "\\textbf{Solution:}\n\nAs shown in the figure, connect OA and OB, and draw $OD\\perp AB$,\n\n$\\because$ $\\angle A=50^\\circ$, $\\angle B=70^\\circ$,\n\n$\\therefore$ $\\angle C=180^\\circ-50^\\circ-70^\\circ=60^\\circ$,\n\n$\\therefore$ $\\angle AOB=2\\angle C=120^\\circ$,\n\n$\\because$ $OA=OB$,\n\n$\\therefore$ $\\triangle AOB$ is an isosceles triangle,\n\n$\\therefore$ $\\angle AOD=\\frac{1}{2}\\angle AOB=60^\\circ$, $AD=BD=\\frac{1}{2}AB$,\n\n$\\therefore$ $\\angle DAO=30^\\circ$,\n\n$\\therefore$ $OD=\\frac{1}{2}$, $AD=\\sqrt{OA^2-OD^2}=\\sqrt{1^2-\\left(\\frac{1}{2}\\right)^2}=\\frac{\\sqrt{3}}{2}$,\n\n$\\therefore$ $AB=2AD=\\boxed{\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51323908_90.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51433703": { -"question": "As shown in the figure, $AB$ and $CD$ are chords of the circle $\\odot O$, and $AB \\parallel CD$. If $\\angle AOC = 80^\\circ$, what is the measure of $\\angle BAD$?", -"image_file_name": "7058793", -"image": [ -"math/51433703_103.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC = 80^\\circ$,\\\\\nit follows that $\\angle ADC = \\frac{1}{2} \\angle AOC = 40^\\circ$,\\\\\nSince $AB \\parallel CD$,\\\\\nit follows that $\\angle BAD = \\angle ADC = \\boxed{40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51433567": { -"question": "As shown in the figure, in the Cartesian coordinate system \\(xOy\\), given points \\(A(1,0)\\), \\(B(3,0)\\), and \\(C\\) as a moving point in the plane satisfying \\(\\angle ACB=90^\\circ\\), and \\(D\\) as a moving point on the line \\(y=x\\), what is the minimum length of the segment \\(CD\\)?", -"image_file_name": "7058793", -"image": [ -"math/51433567_110.png" -], -"solution": "\\textbf{Solution:} Let E be the midpoint of AB. Draw a perpendicular line from point E to the line y=x, and let D be the foot of the perpendicular. \\\\\n$\\because$ Point A is (1,0), and point B is (3,0), \\\\\n$\\therefore$ OA=1, OB=3, \\\\\n$\\therefore$ OE=2, \\\\\n$\\therefore$ ED=2$\\times\\frac{\\sqrt{2}}{2}=\\sqrt{2}$, \\\\\n$\\because$ $\\angle$ACB$=90^\\circ$, \\\\\n$\\therefore$ point C lies on the circle with diameter AB, \\\\\n$\\therefore$ the minimum length of segment CD is $\\boxed{\\sqrt{2}-1}$.", -"solution_image": [ -"solution_images/51433567_110.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51445736": { -"question": "As shown in the figure, the circumcircle of $\\triangle ABC$ has its center at $O$, and $\\angle BOC=110^\\circ$. What is the measure of $\\angle A$?", -"image_file_name": "7058793", -"image": [ -"math/51445736_120.png" -], -"solution": "\\textbf{Solution:} Since $\\odot O$ is the circumcircle of $\\triangle ABC$ and $\\angle BOC=110^\\circ$,\n\\[ \\therefore \\angle A=\\frac{1}{2}\\angle BOC=\\frac{1}{2}\\times 110^\\circ=\\boxed{55^\\circ}. \\]", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446258": { -"question": "As shown in the diagram, $\\triangle ABC$ is inscribed in circle $\\odot O$, $CD$ is the diameter of $\\odot O$, $\\angle BCD=56^\\circ$, what is the degree measure of $\\angle A$?", -"image_file_name": "7058793", -"image": [ -"math/51446258_136.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $BD$, \\\\\nsince $CD$ is the diameter of $\\odot O$, \\\\\nthus $\\angle DBC=90^\\circ$, \\\\\nsince $\\angle BCD=56^\\circ$, \\\\\ntherefore $\\angle BDC=90^\\circ-56^\\circ=34^\\circ$, \\\\\nsince $\\overset{\\frown}{BC}=\\overset{\\frown}{BC}$, \\\\\nthus $\\angle A=\\boxed{34^\\circ}$.", -"solution_image": [ -"solution_images/51446258_131.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446532": { -"question": "In the figure, points A, B, and C are all on the circle $\\odot O$, and point C is on the major arc corresponding to chord AB. If $\\angle AOB=72^\\circ$, what is the degree measure of $\\angle ACB$?", -"image_file_name": "7058793", -"image": [ -"math/51446532_140.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince the central angle $\\angle AOB$ and the inscribed angle $\\angle ACB$ both subtend the arc $\\overset{\\frown}{AB}$, \\\\\ntherefore $\\angle ACB = \\frac{1}{2}\\angle AOB = \\frac{1}{2} \\times 72^\\circ = \\boxed{36^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51445882": { -"question": "As shown in the figure, the radius of the circumcircle of $\\triangle ABC$ is $8$, and $\\angle ACB=60^\\circ$, then what is the length of $AB$?", -"image_file_name": "7058793", -"image": [ -"math/51445882_150.png" -], -"solution": "\\textbf{Solution:} Connect OA and OB, and draw OH $\\perp$ AB at H, \\\\\n$\\because$ $\\angle$ACB=$60^\\circ$, \\\\\n$\\therefore$ $\\angle$AOB=$2\\angle$ACB=$120^\\circ$, \\\\\n$\\because$ OB=OA=8, \\\\\n$\\therefore$ $\\angle$AOH=$\\angle$BOH=$60^\\circ$, \\\\\n$\\therefore$ $\\angle$OAB=$30^\\circ$, \\\\\n$\\therefore$ OH=$\\frac{1}{2}$OA=4, \\\\\n$\\therefore$ AH=$\\sqrt{OA^{2}-OH^{2}}=\\sqrt{8^{2}-4^{2}}=4\\sqrt{3}$, \\\\\n$\\therefore$ AB=2AH=$\\boxed{8\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51445882_150.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872329": { -"question": "As shown in the figure, $AB$ is the diameter of the semicircle $O$, and $C,D$ are two points on the semicircle, satisfying $\\angle ADC=120^\\circ$ and $BC=1$. What is the length of $BC$?", -"image_file_name": "7058793", -"image": [ -"math/52872329_165.png" -], -"solution": "\\[\n\\textbf{Solution:} \\text{As shown in the figure, connect OC}\\\\\n\\because \\angle ADC=120^\\circ, \\\\\n\\therefore \\angle ABC=60^\\circ, \\\\\n\\because \\text{OB}=\\text{OC}, \\\\\n\\therefore \\angle OCB=\\angle OBC=\\angle B=60^\\circ, \\\\\n\\text{OB}=\\text{OC}=\\text{BC}=1, \\\\\n\\therefore \\text{the length of } \\overset{\\frown}{BC} \\text{ is } \\frac{60^\\circ \\pi \\times 1}{180}=\\boxed{\\frac{1}{3}\\pi}\n\\]", -"solution_image": [ -"solution_images/52872329_160.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872102": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $AE$ being the diameter of $\\odot O$. If the radius of $\\odot O$ is $6$, and $\\angle ADC - \\angle ABC = 40^\\circ$, what is the length of $\\overset{\\frown}{CE}$?", -"image_file_name": "7058793", -"image": [ -"math/52872102_177.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $OC$.\n\nSince quadrilateral $ABCD$ is inscribed in $\\odot O$,\n\nit follows that $\\angle ADC+\\angle ABC=180^\\circ$,\n\nand since $\\angle ADC-\\angle ABC=40^\\circ$,\n\nwe have $\\angle ADC=110^\\circ$, $\\angle ABC=70^\\circ$.\n\nTherefore, $\\angle AOC=2\\angle ABC=140^\\circ$,\n\nwhich leads to $\\angle COE=180^\\circ-\\angle AOC=40^\\circ$,\n\nSince the radius of $\\odot O$ is 6,\n\nthe length of the arc $\\overset{\\frown}{CE}$ is $\\frac{40\\pi \\times 6}{180}=\\boxed{\\frac{4\\pi }{3}}$.", -"solution_image": [ -"solution_images/52872102_171.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51446085": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, $AP$ is a tangent to $\\odot O$, and $PB$ intersects $\\odot O$ at point $C$. If point $D$ is on $\\odot O$ and $\\angle ADC=40^\\circ$, what is the degree measure of $\\angle P$?", -"image_file_name": "7058793", -"image": [ -"math/51446085_180.png" -], -"solution": "\\textbf{Solution:} Given $\\angle ADC=40^\\circ$,\\\\\nit follows that $\\angle ABC=40^\\circ$,\\\\\nsince $AB$ is the tangent of $\\odot O$ and point $A$ is the point of tangency,\\\\\nit follows that $\\angle OAB=90^\\circ$,\\\\\nthus, $\\angle P=90^\\circ-\\angle ABC=90^\\circ-40^\\circ=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446225": { -"question": "As shown in the figure, it is known that CD is the diameter of the circle $\\odot O$, and the chord DE passing through point D is parallel to the radius OA. If the degree of arc CE is $92^\\circ$, what is the degree of $\\angle C$?", -"image_file_name": "7058793", -"image": [ -"math/51446225_190.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OE, \\\\\n$\\because$ the degree of arc CE is $92^\\circ$, \\\\\n$\\therefore$ $\\angle COE = 92^\\circ$, \\\\\n$\\therefore$ $\\angle CDE = \\frac{1}{2}\\angle COE = 46^\\circ$, \\\\\n$\\because$ OA $\\parallel$ DE, \\\\\n$\\therefore$ $\\angle AOD = \\angle CDE = 46^\\circ$, \\\\\n$\\therefore$ $\\angle C = \\frac{1}{2}\\angle AOD = \\boxed{23^\\circ}$.", -"solution_image": [ -"solution_images/51446225_190.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446341": { -"question": "As shown in the figure, $AB$ is the diameter of a semicircle, and $C$, $D$ are two points on the semicircle. Given that $ \\angle ADC=105^\\circ$, what is the measure of $ \\angle ABC$?", -"image_file_name": "7058793", -"image": [ -"math/51446341_205.png" -], -"solution": "\\textbf{Solution:} Since $A,B,C,D$ are points on the circle $\\odot O$ and $\\angle ADC=105^\\circ$,\n\nit follows that $\\angle ABC=180^\\circ-105^\\circ=\\boxed{75^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446648": { -"question": "As shown in the figure, $ABCD$ is a quadrilateral inscribed in circle $O$, and $\\angle ABC = 125^\\circ$. What is the measure of $\\angle AOC$?", -"image_file_name": "7058793", -"image": [ -"math/51446648_213.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is inscribed in circle $O$,\\\\\nit follows that $\\angle D+\\angle ABC=180^\\circ$ \\\\\nSince $\\angle ABC=125^\\circ$,\\\\\nwe have $\\angle D=180^\\circ−\\angle A=180^\\circ−125^\\circ=55^\\circ$,\\\\\nBy the Inscribed Angle Theorem, $\\angle AOC=2\\angle D= \\boxed{110^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446299": { -"question": "As shown in the figure, points A, B, and C are on the circle $\\odot O$. If $\\angle CAB=70^\\circ$, then what is the measure of $\\angle BOC$?", -"image_file_name": "7058793", -"image": [ -"math/51446299_220.png" -], -"solution": "\\textbf{Solution:} Since $\\angle CAB=70^\\circ$,\\\\\nit follows that $\\angle BOC=2\\angle CAB=\\boxed{140^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872369": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=12$, and $BC=5$, what is the distance between the centroid $P$ and the circumcenter $Q$ of $\\triangle ABC$?", -"image_file_name": "7058793", -"image": [ -"math/52872369_233.png" -], -"solution": "\\textbf{Solution:} Given the centroid $P$ and circumcenter $Q$ of the right-angled triangle $ABC$, it's known that points $C$, $P$, and $Q$ are collinear.\\\\\nIn right-angled triangle $ABC$, $\\angle C=90^\\circ$, $AC=12$, $BC=5$,\\\\\n$\\therefore AB= \\sqrt{AC^{2}+BC^{2}}=\\sqrt{5^{2}+12^{2}}=13$\\\\\nSince the circumcenter of right-angled triangle $ABC$ is $Q$,\\\\\n$\\therefore Q$ is the midpoint of hypotenuse $AB$,\\\\\n$\\therefore CQ= \\frac{1}{2}AB= \\frac{13}{2}$,\\\\\nSince the centroid of right-angled triangle $ABC$ is $P$,\\\\\n$\\therefore PQ= \\frac{1}{3}CQ= \\boxed{\\frac{13}{6}}$.", -"solution_image": [ -"solution_images/52872369_230.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51445770": { -"question": "As shown in the figure, within the circle $\\odot O$, $CD$ is the diameter of $\\odot O$, and $AB \\perp CD$ at point $E$. If $AB=8$ and $CE=2$, what is the radius of $\\odot O$?", -"image_file_name": "7058793", -"image": [ -"math/51445770_240.png" -], -"solution": "\\textbf{Solution:} Let the radius of $\\odot O$ be $r$, \\\\\nsince CD is the diameter of $\\odot O$ and AB $\\perp$ CD, with AB=8, \\\\\ntherefore AE=$\\frac{1}{2}$AB=4, \\\\\nin $\\triangle OAE$, by the Pythagorean theorem we have: $AE^{2}+OE^{2}=OA^{2}$, \\\\\nthat is $4^{2}+(r-2)^{2}=r^{2}$, \\\\\nsolving this gives: $r=\\boxed{5}$, \\\\\nthus, the radius of $\\odot O$ is 5.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872165": { -"question": "As shown in the figure, AB is the diameter of the circle $O$, and point C is on the circle. If $\\angle ABC = 70^\\circ$, what is the degree measure of $\\angle BAC$?", -"image_file_name": "7058793", -"image": [ -"math/52872165_252.png" -], -"solution": "\\textbf{Solution:} Given that $AB$ is the diameter of circle $O$,\\\\\nit follows that $\\angle C=90^\\circ$,\\\\\nsince $\\angle ABC=70^\\circ$,\\\\\nit follows that $\\angle BAC=90^\\circ-70^\\circ=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872096": { -"question": "As shown in the figure, points $A,B,C$ are on circle $\\odot O$. If $\\angle BAC=40^\\circ$, what is the measure of $\\angle BOC$?", -"image_file_name": "7058793", -"image": [ -"math/52872096_264.png" -], -"solution": "\\textbf{Solution:} Given that $ \\because \\angle BOC=2\\angle BAC$ and $\\angle BAC=40^\\circ$,\\\\\n$\\therefore \\angle BOC=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872370": { -"question": "As shown in the figure, point $P$ is outside circle $\\odot O$, line $PA$ intersects circle $\\odot O$ at point $C$, line $PB$ intersects circle $\\odot O$ at point $D$, if $\\overset{\\frown}{AB}=80^\\circ$, $\\angle P=28^\\circ$, then what is the degree measure of $\\angle CAD$?", -"image_file_name": "7058793", -"image": [ -"math/52872370_273.png" -], -"solution": "\\textbf{Solution:} Connect OA and OB, as shown in the figure,\\\\\n$\\because$ The degree of $\\overset{\\frown}{AB}$ is $80^\\circ$,\\\\\n$\\therefore$ $\\angle AOB=80^\\circ$,\\\\\n$\\therefore$ $\\angle ADB= \\frac{1}{2}\\angle AOB=40^\\circ$,\\\\\n$\\because$ $\\angle ADB=\\angle PAD+\\angle P$,\\\\\n$\\therefore$ $\\angle PAD=40^\\circ-28^\\circ=12^\\circ$,\\\\\nthat is, the degree of $\\angle CAD$ is $\\boxed{12^\\circ}$.", -"solution_image": [ -"solution_images/52872370_270.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51445849": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, $AC$ is the tangent of $\\odot O$ with $A$ being the point of tangency, and $BC$ intersects $\\odot O$ at point $D$. Connect $OD$. If $\\angle C=50^\\circ$, what is the degree measure of $\\angle AOD$?", -"image_file_name": "7058793", -"image": [ -"math/51445849_284.png" -], -"solution": "\\textbf{Solution:} Since $AC$ is the tangent to the circle $\\odot O$,\\\\\n$\\therefore \\angle CAB=90^\\circ$,\\\\\nAnd since $\\angle C=50^\\circ$,\\\\\n$\\therefore \\angle ABC=90^\\circ-50^\\circ=40^\\circ$,\\\\\nAnd since $OD=OB$,\\\\\n$\\therefore \\angle BDO=\\angle ABC=40^\\circ$,\\\\\nAnd since $\\angle AOD=\\angle OBD+\\angle OBD$,\\\\\n$\\therefore \\angle AOD=40^\\circ+40^\\circ=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402310": { -"question": "As shown in the figure, within circle $\\odot O$, $OC \\perp AB$. If $\\angle BOC=40^\\circ$, what is the value of $\\angle OAB$?", -"image_file_name": "7058793", -"image": [ -"math/51402310_290.png" -], -"solution": "\\textbf{Solution:} In circle $\\odot O$, $OA=OB$, \\\\\n$\\therefore \\triangle AOB$ is an isosceles triangle,\\\\\n$\\because OC\\perp AB$,\\\\\n$\\therefore \\angle AOC=\\angle BOC=40^\\circ$,\\\\\n$\\therefore \\angle AOB=80^\\circ$,\\\\\n$\\therefore \\angle OAB=(180^\\circ-\\angle AOB)\\div 2=50^\\circ$.\\\\\nThus, $\\angle OAB=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402794": { -"question": "As shown in the figure, AE is the diameter of the circumscribed circle $\\odot O$ of the quadrilateral ABCD, $AD=CD$, $\\angle B=50^\\circ$, then what is the degree measure of $\\angle DAE$?", -"image_file_name": "7058793", -"image": [ -"math/51402794_304.png" -], -"solution": "\\textbf{Solution:} Draw OC and OD, \\\\\n$\\because$ $\\angle B=50^\\circ$, \\\\\n$\\therefore$ $\\angle AOC=2\\angle B=100^\\circ$, \\\\\n$\\because$ AD=CD, \\\\\n$\\therefore$ $\\overset{\\frown}{AD}=\\overset{\\frown}{CD}$, \\\\\n$\\therefore$ $\\angle AOD=\\angle COD= \\frac{1}{2}\\angle AOC=50^\\circ$, \\\\\n$\\because$ OA=OD, \\\\\n$\\therefore$ $\\angle OAD=\\angle ODA$, \\\\\n$\\therefore$ $\\angle DAE=(180^\\circ-50^\\circ)\\div2=\\boxed{65^\\circ}$.", -"solution_image": [ -"solution_images/51402794_300.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402723": { -"question": "As shown in the figure, AD is the diameter of the circle $O$, with $AD=8$ and $\\angle DAC = \\angle ABC$. What is the length of AC?", -"image_file_name": "7058793", -"image": [ -"math/51402723_313.png" -], -"solution": "\\textbf{Solution:} Let's connect CD\\\\\n$\\because \\angle DAC=\\angle ABC$\\\\\n$\\therefore AC=DC$\\\\\nAlso, $\\because AD$ is the diameter of the circle $O$\\\\\n$\\therefore \\angle ACD=90^\\circ$\\\\\n$\\therefore AC^{2}+DC^{2}=AD^{2}$\\\\\n$\\therefore 2AC^{2}=AD^{2}$\\\\\n$\\therefore AC=\\frac{\\sqrt{2}}{2}AD=\\frac{\\sqrt{2}}{2}\\times 8=4\\sqrt{2}$\\\\\nTherefore, the answer is: $AC=\\boxed{4\\sqrt{2}}$", -"solution_image": [ -"solution_images/51402723_310.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51403360": { -"question": "As shown in the figure, the radius $OD$ of circle $O$ is perpendicular to chord $AB$ at point $C$. Extend $AO$ to meet circle $O$ at point $E$, and connect $EC$. If $AB=8$ and $OC=3$, what is the length of $EC$?", -"image_file_name": "7058793", -"image": [ -"math/51403360_320.png" -], -"solution": "\\textbf{Solution:} Connect BE, \\\\\n$\\because$AE is the diameter of $\\odot$O, \\\\\n$\\therefore$$\\angle$ABE$=90^\\circ$, \\\\\n$\\because$OD$\\perp$AB and OD passes through O, \\\\\n$\\therefore$AC$=$BC$=\\frac{1}{2}$AB$=\\frac{1}{2}\\times 8=4$, \\\\\n$\\because$AO$=$OE, \\\\\n$\\therefore$BE$=2$OC, \\\\\n$\\because$OC$=3$, \\\\\n$\\therefore$BE$=6$, \\\\\nIn the right triangle $\\triangle$CBE, EC$=\\sqrt{BE^{2}+CB^{2}}=\\sqrt{4^{2}+6^{2}}=\\boxed{2\\sqrt{13}}$.", -"solution_image": [ -"solution_images/51403360_320.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402150": { -"question": "The protractor with center $O$ and the right-angled triangle $ABC$ are placed as shown in the figure, with the 0-degree line of the protractor coinciding with the hypotenuse $AB$. Point $D$ is a point on the hypotenuse $AB$. A ray $CD$ is drawn intersecting the arc $AB$ at point $E$. If the reading corresponding to point $E$ is $50^\\circ$, what is the measure of $\\angle BDE$?", -"image_file_name": "7058793", -"image": [ -"math/51402150_3311.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $OE$,\\\\\nthe reading corresponding to point $E$ is $50^\\circ$,\\\\\n$\\therefore \\angle AOE=50^\\circ$,\\\\\n$\\because AB$ is the diameter, $\\angle ACB=90^\\circ$,\\\\\n$\\therefore$ point $C$ lies on $\\odot O$,\\\\\n$\\therefore \\angle ACE=\\frac{1}{2}\\angle AOE=\\frac{1}{2}\\times 50^\\circ=25^\\circ$,\\\\\n$\\therefore \\angle BCE=90^\\circ-25^\\circ=65^\\circ$,\\\\\n$\\because \\angle BDE$ is the exterior angle of $\\triangle BDC$,\\\\\n$\\therefore \\angle BDE=\\angle BCE+\\angle DBC=65^\\circ+45^\\circ=\\boxed{110^\\circ}$.", -"solution_image": [ -"solution_images/51402150_331.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402603": { -"question": "As shown in the figure, \\(AB\\) is the diameter of the circle \\(\\odot O\\), and \\(CD\\) is a chord. If \\(\\angle BCD=34^\\circ\\), then what is the measure of \\(\\angle ABD\\)?", -"image_file_name": "7058793", -"image": [ -"math/51402603_340.png" -], -"solution": "\\textbf{Solution:} Given that AB is the diameter of circle O, \\\\\nthus, $\\angle ADB=90^\\circ$, \\\\\ntherefore, $\\angle DAB + \\angle ABD = 90^\\circ$, \\\\\nsince $\\angle DAB = \\angle BCD = 34^\\circ$, \\\\\nthus, $\\angle ABD = 90^\\circ - 34^\\circ = \\boxed{56^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720184": { -"question": "As shown in the figure, inside the circle $ \\odot O$, $ \\overset{\\frown}{AB}=\\overset{\\frown}{AC}$, and $ \\angle C=75^\\circ$, what is the degree measure of $ \\angle A$?", -"image_file_name": "7058793", -"image": [ -"math/52720184_354.png" -], -"solution": "\\textbf{Solution:} In $\\odot O$, $\\overset{\\frown}{AB}=\\overset{\\frown}{AC}$, \\\\\n$\\therefore \\angle B=\\angle C=75^\\circ$, \\\\\n$\\because \\angle A+\\angle B+\\angle C=180^\\circ$, \\\\\n$\\therefore \\angle A=180^\\circ-\\angle B-\\angle C=\\boxed{30^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52719996": { -"question": "Steel balls are commonly used in engineering to measure the width of small circular holes in parts. Suppose the diameter of the steel ball is 10mm, and the distance from the top of the steel ball to the surface of the part is measured to be 8mm, as shown in the figure. What is the length of the width $AB$ of this small circular hole?", -"image_file_name": "7058793", -"image": [ -"math/52719996_361.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, point O is the center of the circle, and through point O, draw OC$\\perp$AB,\\\\\nAccording to the perpendicular diameter theorem, it follows that: AC=BC,\\\\\n$\\because$The diameter is 10mm,\\\\\n$\\therefore$OA=5mm, OC=8−5=3mm,\\\\\nIn $\\triangle AOC$, $\\angle OCA=90^\\circ$,\\\\\n$\\therefore$ $AC=\\sqrt{OA^{2}-OC^{2}}=\\sqrt{5^{2}-3^{2}}=4$,\\\\\n$\\therefore$AB=2AC=8mm,\\\\\nThus, the answer is: $AB=\\boxed{8}$mm.", -"solution_image": [ -"solution_images/52719996_360.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720283": { -"question": "As shown in the figure, the circumcircle of $\\triangle ABC$, with point D on the arc $\\overset{\\frown}{BC}$, connect AD and CD. If $\\angle CAD=25^\\circ$, then what is the measure of $\\angle ACD$?", -"image_file_name": "7058793", -"image": [ -"math/52720283_371.png" -], -"solution": "\\textbf{Solution:} Given $\\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore$ $\\angle ACB = \\angle ABC = \\angle BAC = 60^\\circ$,\\\\\nGiven $\\angle CAD = 25^\\circ$,\\\\\n$\\therefore$ $\\angle BAD = \\angle BAC - \\angle CAD = 35^\\circ$,\\\\\nSince arc $\\overset{\\frown}{BD} = \\overset{\\frown}{BD}$,\\\\\n$\\therefore$ $\\angle BCD = \\angle BAD = 35^\\circ$,\\\\\n$\\therefore$ $\\angle ACD = \\angle ACB + \\angle BCD = \\boxed{95^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52766573": { -"question": "As shown in the figure, points A, B, and C are on the circle $\\odot O$. If $\\angle AOB=130^\\circ$, what is the measure of $\\angle ACB$?", -"image_file_name": "7058793", -"image": [ -"math/52766573_380.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, take a point \\(D\\) on the major arc \\(AB\\), and connect \\(AD\\), \\(DB\\).\\\\\nSince \\(\\angle ADB = \\frac{1}{2} \\angle AOB\\), \\(\\angle AOB = 130^\\circ\\),\\\\\nTherefore, \\(\\angle ADB = 65^\\circ\\),\\\\\nSince \\(\\angle ACB + \\angle ADB = 180^\\circ\\),\\\\\nTherefore, \\(\\angle ACB = \\boxed{115^\\circ}\\).", -"solution_image": [ -"solution_images/52766573_380.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52766462": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, point C is on the extension of AB, and CD is tangent to $\\odot O$ at point D. If $\\angle CDA=118^\\circ$, what is the degree measure of $\\angle C$?", -"image_file_name": "7058793", -"image": [ -"math/52766462_390.png" -], -"solution": "Solution:As shown in the diagram, connect OD, \\\\\n$\\because$CD is tangent to $\\odot$O at point D,\\\\\n$\\therefore \\angle$ODC$=90^\\circ$,\\\\\n$\\because \\angle$CDA$=118^\\circ$,\\\\\n$\\therefore \\angle$ODA$=\\angle$CDA$-\\angle$ODC$=118^\\circ-90^\\circ=28^\\circ$,\\\\\n$\\because$OD$=$OA,\\\\\n$\\therefore \\angle$OAD$=\\angle$ODA$=28^\\circ$,\\\\\n$\\therefore \\angle$DOC$=2\\angle$ODA$=56^\\circ$,\\\\\n$\\therefore \\angle$C$=90^\\circ-\\angle$DOC$=\\boxed{34^\\circ}$.", -"solution_image": [ -"solution_images/52766462_390.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52765424": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, CD is a chord of $\\odot O$, $\\angle CAB=55^\\circ$, then what is the degree measure of $\\angle D$?", -"image_file_name": "7058793", -"image": [ -"math/52765424_400.png" -], -"solution": "\\textbf{Solution:} Given that $AB$ is the diameter of $\\odot O$,\\\\\nit follows that $\\angle ACB=90^\\circ$,\\\\\ngiven $\\angle CAB=55^\\circ$,\\\\\nthus $\\angle B=90^\\circ-\\angle CAB=35^\\circ$,\\\\\ntherefore, $\\angle D=\\angle B=\\boxed{35^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720284": { -"question": "As shown in the figure, OA is the radius of the circle $\\odot O$, with chord BC $\\perp$ OA at point D. AC is connected. If BC = $4\\sqrt{2}$ and AC = 3, then what is the length of the radius of $\\odot O$?", -"image_file_name": "7058793", -"image": [ -"math/52720284_411.png" -], -"solution": "\\textbf{Solution:} As illustrated in the diagram, connect OC.\\\\\nSince BC$\\perp$OA,\\\\\nit follows that $\\angle ADC=\\angle ODC=90^\\circ$, $CD=BD=\\frac{1}{2}BC=2\\sqrt{2}$,\\\\\ntherefore $AD=\\sqrt{AC^{2}-CD^{2}}=1$.\\\\\nLet $OA=OC=r$, then $OD=OA-AD=r-1$,\\\\\nsince $OD^{2}+CD^{2}=OC^{2}$,\\\\\nit can be derived that $(r-1)^{2}+\\left(2\\sqrt{2}\\right)^{2}=r^{2}$,\\\\\nsolving this gives $r=\\boxed{\\frac{9}{2}}$.", -"solution_image": [ -"solution_images/52720284_410.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51317346": { -"question": "As shown in the figure, it is known that $AD$, $BE$, $CF$ are the three altitudes of $\\triangle ABC$ (with $D$, $E$, $F$ being the feet of the perpendiculars), $\\angle ABC=45^\\circ$, $\\angle C=60^\\circ$, then what is the value of $\\frac{DE}{DF}$?", -"image_file_name": "7056495", -"image": [ -"math/51317346_91.jpg" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle ABC=45^\\circ$,\\\\\n$\\therefore \\angle BAD=45^\\circ$, $\\angle BCF=45^\\circ$,\\\\\n$\\therefore \\triangle ABD$ and $\\triangle BCF$ are both isosceles right triangles,\\\\\n$\\because \\frac{BF}{BC}=\\frac{BD}{AB}=\\frac{\\sqrt{2}}{2}$, $\\angle ABC=\\angle ABC$,\\\\\n$\\therefore \\triangle BFD\\sim \\triangle BCA$,\\\\\n$\\therefore \\frac{DF}{AC}=\\frac{\\sqrt{2}}{2}$,\\\\\nSimilarly, it can be derived that $\\triangle CDE\\sim \\triangle CBA$,\\\\\n$\\therefore \\frac{DE}{AB}=\\frac{CD}{AC}=\\frac{1}{2}$,\\\\\nHence, $DF= \\frac{\\sqrt{2}}{2} AC$, $DE= \\frac{1}{2} AB$,\\\\\n$\\therefore \\frac{DE}{DF}=\\frac{\\frac{1}{2}AB}{\\frac{\\sqrt{2}}{2}AC}=\\frac{\\sqrt{2}AB}{2AC}$,\\\\\nLet $AD=a$, then $AB= \\sqrt{2} a$, $AC= \\frac{2a}{\\sqrt{3}}$,\\\\\n$\\therefore \\frac{DE}{DF}=\\frac{\\sqrt{2}AB}{2AC}=\\frac{\\sqrt{2}\\times \\sqrt{2}a}{2\\times \\frac{2a}{\\sqrt{3}}}=\\boxed{\\frac{\\sqrt{3}}{2}}.$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51179561": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the squares $ABCD$ and $BEFG$ are similar figures with the origin $O$ as the center of similarity, and the ratio of similarity is $\\frac{1}{3}$. The points $A$, $B$, and $E$ are located on the $x$-axis. If the side length of square $BEFG$ is 6, what are the coordinates of point $C$?", -"image_file_name": "7056495", -"image": [ -"math/51179561_1010.png" -], -"solution": "\\textbf{Solution:} Given that square ABCD and square BEFG are similar figures with center at the origin O, and the ratio of similarity is $\\frac{1}{3}$,\\\\\n$\\therefore$ $\\frac{BC}{EF}=\\frac{1}{3}$,\\\\\nGiven that EF = 6,\\\\\n$\\therefore$ BC=2,\\\\\nGiven that $\\triangle OBC\\sim \\triangle OEF$,\\\\\n$\\therefore$ $\\frac{OB}{OE}=\\frac{BC}{EF}$,\\\\\n$\\therefore$ $\\frac{OB}{OB+6}=\\frac{1}{3}$,\\\\\n$\\therefore$ OB=3,\\\\\n$\\therefore$ the coordinates of point C are $\\boxed{(3, 2)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51179480": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are on the sides AB and AC respectively, and $\\frac{AE}{AB} = \\frac{AD}{AC} = \\frac{1}{2}$, then what is the ratio of the perimeter of $\\triangle ADE$ to the perimeter of $\\triangle ABC$?", -"image_file_name": "7056495", -"image": [ -"math/51179480_113.png" -], -"solution": "\\textbf{Solution:} Since $\\frac{AE}{AB} = \\frac{AD}{AC}$, and $\\angle DAE = \\angle CAB$,\\\\\ntherefore $\\triangle ADE \\sim \\triangle ACB$,\\\\\nthus, the ratio of the perimeter of $\\triangle ADE$ to that of $\\triangle ABC$ is $\\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299753": { -"question": "As shown in the figure, $\\triangle ABC$ is similar to $\\triangle DEF$ with the center of similarity at point O. If $OC:OF=1:3$, then what is the ratio of the perimeters of $\\triangle ABC$ to $\\triangle DEF$?", -"image_file_name": "7056495", -"image": [ -"math/51299753_120.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is similar to $\\triangle DEF$ with OC:OF=1:3,\\\\\nit follows that $\\triangle ABC\\sim \\triangle DEF$, and AB:DE=1:3,\\\\\nthus, the ratio of the perimeters of $\\triangle ABC$ to $\\triangle DEF$ is: $1:3$,\\\\\nTherefore, the ratio of the perimeters is $\\boxed{1:3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299716": { -"question": "As shown in the figure, points $D$ and $E$ are on $AB$ and $AC$ respectively, with $DE \\parallel BC$. Given that $AD = 6$, $AE = 4$, and $CE = 2$, what is the length of $BD$?", -"image_file_name": "7056495", -"image": [ -"math/51299716_130.png" -], -"solution": "\\textbf{Solution:} Since DE$\\parallel$BC, \\\\\nit follows that $\\frac{AD}{BD}=\\frac{AE}{CE}$, \\\\\ngiven AD=6, AE=4, CE=2, \\\\\nthus $\\frac{6}{BD}=\\frac{4}{2}$, \\\\\nsolving gives $BD=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51298868": { -"question": "As shown in the figure, an isosceles triangle with a vertex angle of $36^\\circ$ and the ratio of its base to its legs equal to $k$ is known as a golden triangle. Given that the leg $AB=1$ in the $\\triangle ABC$ which is the first golden triangle, $\\triangle BCD$ is the second golden triangle, and $\\triangle CDE$ is the third golden triangle, and so on, what is the perimeter of the third golden triangle?", -"image_file_name": "7056495", -"image": [ -"math/51298868_144.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ and $\\triangle BCD$ are both isosceles triangles with a vertex angle of $36^\\circ$,\n\\[\n\\therefore \\triangle ABC \\sim \\triangle BCD,\n\\]\n\\[\n\\therefore \\text{the perimeter of } \\triangle BCD : \\text{the perimeter of } \\triangle ABC = BC: AB,\n\\]\nGiven that $AB=AC=1$, and $\\frac{BC}{AB}=k$,\n\\[\n\\therefore BC=k,\n\\]\n\\[\n\\therefore \\text{the perimeter of } \\triangle ABC = AB+AC+BC=2+k,\n\\]\n\\[\n\\therefore \\text{the perimeter of } \\triangle BCD : \\text{the perimeter of } \\triangle ABC = k,\n\\]\n\\[\n\\therefore \\text{the perimeter of } \\triangle BCD = k(2+k),\n\\]\nBy the same reasoning, \\text{the perimeter of } $\\triangle CDE$ : \\text{the perimeter of } $\\triangle BCD = k$,\n\\[\n\\therefore \\text{the perimeter of } \\triangle CDE = k^2(2+k) = \\boxed{k^2(2+k)}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51155485": { -"question": "As shown in the figure, D and E are the midpoints of AB and AC, respectively. What is the value of $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}}$?", -"image_file_name": "7056495", -"image": [ -"math/51155485_150.png" -], -"solution": "\\textbf{Solution:} Since D and E are the midpoints of AB and AC respectively,\\\\\nit follows that DE is the midline of the triangle,\\\\\ntherefore, the ratio DE: BC = 1: 2,\\\\\ntherefore, the area ratio $S_{\\triangle ADE} : S_{\\triangle ABC}$ = 1: 4.\\\\\nHence, the answer is: $S_{\\triangle ADE} : S_{\\triangle ABC} = \\boxed{\\frac{1}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51155345": { -"question": "As shown in the figure, $\\triangle ABC$ and $\\triangle ADE$ are both equilateral triangles, with point D on side BC, and DE intersecting AC at point F. If AB=6, AD=5, and CD=4, what is the length of EF?", -"image_file_name": "7056495", -"image": [ -"math/51155345_162.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ and $\\triangle ADE$ are both equilateral triangles,\\\\\nit follows that $\\angle B=\\angle C=\\angle ADE=60^\\circ$, and $DE=AD=5$,\\\\\nSince $\\angle ADC=\\angle ADE+\\angle CDE=\\angle B+\\angle BAD$,\\\\\nit follows that $\\angle CDE=\\angle BAD$,\\\\\ntherefore, $\\triangle ABD\\sim \\triangle DCF$,\\\\\nthus, $\\frac{AB}{DC}=\\frac{AD}{DF}$,\\\\\nwhich means $\\frac{6}{4}=\\frac{5}{DF}$,\\\\\ntherefore, $DF=\\frac{10}{3}$,\\\\\ntherefore, $EF=DE-DF=\\boxed{\\frac{5}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51155343": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $\\angle A=36^\\circ$, $BD$ bisects $\\angle ABC$ and intersects $AC$ at point $D$, $CE$ bisects $\\angle ACB$ and intersects $BD$ at point $E$. If $AD= 5\\sqrt{5}-5$, what is the length of $BE$?", -"image_file_name": "7056495", -"image": [ -"math/51155343_172.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle A=36^\\circ$ and $AB=AC$,\\\\\n$\\therefore$ $\\angle ABC=\\angle ACB=72^\\circ$,\\\\\n$\\because$ BD bisects $\\angle ABC$ and CE bisects $\\angle ACB$,\\\\\n$\\therefore$ $\\angle ABD=\\angle DBC=36^\\circ$ and $\\angle ACE=\\angle BCE=36^\\circ$,\\\\\n$\\therefore$ $BD=AD=5\\sqrt{5}-5$ and $BE=CE=CD$,\\\\\n$\\because$ $\\angle BDC=\\angle CDE$\\\\\nand $\\angle DBC=\\angle DCE$,\\\\\n$\\therefore$ $\\triangle BDC \\sim \\triangle CDE$,\\\\\n$\\therefore$ $\\frac{DE}{CD}=\\frac{CD}{BD}$,\\\\\n$\\therefore$ $\\frac{BD-BE}{BE}=\\frac{BE}{BD}$,\\\\\nSolving this gives: $BE^2+(5\\sqrt{5}-5)BE-(5\\sqrt{5}-5)^2=0$,\\\\\nSolutions are: $BE=15-5\\sqrt{5}$ or $BE=-10$ (discard the negative value),\\\\\n$\\therefore$ $BE=\\boxed{15-5\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51155347": { -"question": "As shown in the figure, in right triangle $ \\triangle ABC$, $\\angle ABC=90^\\circ$, $AB=BC=2$, $AE$ is the median on the side $BC$, and $BD$ is drawn perpendicular to $AE$ at point $H$ and intersects $AC$ at point $D$. What is the length of $AD$?", -"image_file_name": "7056495", -"image": [ -"math/51155347_181.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $DF\\perp BC$ at point $F$ through point $D$,\\\\\n$\\because$ $AE$ is the median of $BC$, $BC=2$,\\\\\n$\\therefore BE=\\frac{1}{2}BC=1$,\\\\\n$\\because$ in $Rt\\triangle ABC$, $\\angle ABC=90^\\circ$, $AB=BC=2$,\\\\\n$\\therefore AC=\\sqrt{AB^{2}+BC^{2}}=2\\sqrt{2}$, $\\angle C=45^\\circ$,\\\\\n$\\therefore Rt\\triangle CDF$ is an isosceles right triangle,\\\\\n$\\therefore CF=DF$, $CD=\\sqrt{CF^{2}+DF^{2}}=\\sqrt{2}CF$,\\\\\nLet $CF=DF=x(x>0)$, then $BF=2-x$, $CD=\\sqrt{2}x$,\\\\\n$\\because \\angle ABC=90^\\circ$, $BD\\perp AE$,\\\\\n$\\therefore \\angle ABD+\\angle DBF=\\angle ABD+\\angle EAB=90^\\circ$,\\\\\n$\\therefore \\angle DBF=\\angle EAB$,\\\\\nIn $\\triangle BDF$ and $\\triangle AEB$, $\\left\\{\\begin{array}{l}\\angle DBF=\\angle EAB \\\\ \\angle BFD=\\angle ABE=90^\\circ \\end{array}\\right.$,\\\\\n$\\therefore \\triangle BDF\\sim \\triangle AEB$,\\\\\n$\\therefore \\frac{BF}{AB}=\\frac{DF}{BE}$, i.e., $\\frac{2-x}{2}=\\frac{x}{1}$,\\\\\nSolving gives $x=\\frac{2}{3}$,\\\\\n$\\therefore CD=\\sqrt{2}x=\\frac{2}{3}\\sqrt{2}$,\\\\\n$\\therefore AD=AC-CD=2\\sqrt{2}-\\frac{2}{3}\\sqrt{2}=\\boxed{\\frac{4}{3}\\sqrt{2}}$,", -"solution_image": [ -"solution_images/51155347_183.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51155308": { -"question": "In the figure, within $\\triangle ABC$ and $\\triangle ADE$, $\\angle ACB=\\angle AED=90^\\circ$, $\\angle ABC=\\angle ADE$. Connecting BD and CE, if $AC:BC=3:4$, what is $BD:CE$?", -"image_file_name": "7056495", -"image": [ -"math/51155308_190.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACB=90^\\circ$ and $AC\\colon BC=3\\colon 4$, we have $\\frac{AB}{AC}=\\frac{5}{3}$.\\\\\nSince $\\angle ACB=\\angle AED=90^\\circ$ and $\\angle ABC=\\angle ADE$, we conclude that $\\triangle ABC \\sim \\triangle ADE$, leading to $\\frac{AB}{AD}=\\frac{AC}{AE}$ and $\\angle DAE=\\angle BAC$. Therefore, $\\angle DAB=\\angle EAC$, implying that $\\triangle DAB\\sim \\triangle EAC$, and thus $\\frac{BD}{CE}=\\frac{AB}{AC}=\\boxed{\\frac{5}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51155310": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle A=30^\\circ$, and $BC=2$. Let $D$ be any point on $AC$, and let $F$ be the midpoint of $AB$. Draw line $BD$. Let $E$ be a point on $BD$ such that $CD^{2}=DE\\cdot BD$. Draw line $EF$. What is the minimum value of $EF$?", -"image_file_name": "7056495", -"image": [ -"math/51155310_200.png" -], -"solution": "\\textbf{Solution:} In $\\triangle CED$ and $\\triangle BDC$,\\\\\n$\\because CD^2=DE\\cdot BD$,\\\\\n$\\therefore \\frac{CD}{DB}=\\frac{DE}{DC}$,\\\\\n$\\because \\angle EDC=\\angle CDB$,\\\\\n$\\therefore \\triangle CDE\\sim \\triangle BDC$,\\\\\n$\\therefore \\angle DEC=\\angle DCB=90^\\circ$,\\\\\n$\\therefore \\angle BEC=180^\\circ-\\angle DEC=90^\\circ$,\\\\\nAs shown in the diagram, let Q be the midpoint of BC, then EQ= $\\frac{1}{2}$ BC=1,\\\\\n$\\because \\angle ACB=90^\\circ$ and $\\angle A=30^\\circ$, BC=2,\\\\\n$\\therefore AB=2BC=4$,\\\\\n$\\therefore AC= \\sqrt{AB^2-BC^2}=\\sqrt{4^2-2^2}=2\\sqrt{3}$,\\\\\n$\\because F$ is the midpoint of AB, and Q is the midpoint of BC,\\\\\n$\\therefore FQ= \\frac{1}{2} AC= \\sqrt{3}$,\\\\\n$\\because EF\\geq FQ-EQ$, when and only when points E, F, and Q are collinear, EF can reach $\\sqrt{3}-1$,\\\\\n$\\therefore The minimum value of EF is \\boxed{\\sqrt{3}-1}$.", -"solution_image": [ -"solution_images/51155310_202.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51285006": { -"question": "As shown in the figure, in $\\triangle ABC$, $EG \\parallel BC$, if $\\frac{EG}{BC} = \\frac{1}{3}$, then what is the value of $\\frac{AF}{AD}$?", -"image_file_name": "7056495", -"image": [ -"math/51285006_212.png" -], -"solution": "\\textbf{Solution:} Given $EG \\parallel BC$,\\\\\nthus $\\triangle AEG \\sim \\triangle ABC$,\\\\\nso $\\frac{AE}{AB}=\\frac{EG}{BC}=\\frac{1}{3}$,\\\\\nGiven $EG \\parallel BC$,\\\\\nthus $\\triangle AEF \\sim \\triangle ABD$,\\\\\nso $\\frac{AF}{AD}=\\frac{AE}{AB}=\\boxed{\\frac{1}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51284349": { -"question": "As shown in the figure, in $\\triangle ABC$, $DE\\parallel BC$, $S_{\\triangle ADE} = S_{\\text{trapezoid } DBCE}$, then what is the ratio $DE: BC$?", -"image_file_name": "7056495", -"image": [ -"math/51284349_220.png" -], -"solution": "\\textbf{Solution:} Given that, $S_{\\triangle ADE}=S_{\\text{trapezoid} DBCE}$,\\\\\nthen $S_{\\triangle ADE} : S_{\\triangle ABC} = 1 : 2$,\\\\\nsince $DE \\parallel BC$,\\\\\nit follows that $\\triangle ADE \\sim \\triangle ABC$,\\\\\nlet the similarity ratio be $k$,\\\\\nthen the ratio of the areas is $k^2 = \\frac{1}{2}$,\\\\\nthus the similarity ratio is $\\frac{\\sqrt{2}}{2}$,\\\\\ntherefore $DE : BC = \\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51284381": { -"question": "As shown in the figure, it is known that $AB \\parallel CD \\parallel EF$ and $BD: DF = 2: 5$. What is the value of $\\frac{AC}{AE}$?", -"image_file_name": "7056495", -"image": [ -"math/51284381_233.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ AB$\\parallel$CD$\\parallel$EF,\\\\\n$\\therefore$ AC:CE=BD:DF,\\\\\n$\\because$ BD:DF$=2:5$,\\\\\n$\\therefore$ AC:CE= BD:DF$=2:5$, i.e., CE$=\\frac{5}{2}$AC,\\\\\n$\\therefore$ AE$=\\frac{7}{2}$AC,\\\\\n$\\therefore$ AC:AE$=2:7=\\boxed{\\frac{2}{7}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51284459": { -"question": "As shown in the figure, it is known that quadrilateral $ABCD$ is a rectangle, point $E$ is on the extension line of $BA$, and $AE=AD$, $EC$ intersects $AD$, $BD$ at points $F$, $G$ respectively. If $AF=AB$, what is the value of $AD\\colon AB$?", -"image_file_name": "7056495", -"image": [ -"math/51284459_243.png" -], -"solution": "\\textbf{Solution:} Let quadrilateral ABCD be a rectangle.\\\\\nTherefore, DC $\\parallel$ AB,\\\\\nthus $\\angle$DCE = $\\angle$AEC, $\\angle$CDA = $\\angle$EAD\\\\\ntherefore, $\\triangle EAF \\sim \\triangle CDF$\\\\\nhence, $\\frac{AE}{AF} = \\frac{CD}{DF}$\\\\\nLet AB = AF = CD = x, AE = AD = y,\\\\\nthen we have $x^2 - y^2 + xy = 0$\\\\\nDivide both sides of the equation by $x^2$, we have $1 - \\left(\\frac{y}{x}\\right)^2 + \\frac{y}{x} = 0$\\\\\nLet $\\frac{y}{x}$ be t, then we have $t^2 - t - 1 = 0$\\\\\nSolving this, we get $t_1 = \\frac{1 + \\sqrt{5}}{2}$, $t_2 = \\frac{1 - \\sqrt{5}}{2}$ (discard this root)\\\\\nthus, $t = \\frac{y}{x} = \\frac{1 + \\sqrt{5}}{2}$\\\\\nTherefore, $\\frac{AD}{AB} = \\boxed{\\frac{1 + \\sqrt{5}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"54927575": { -"question": "As shown in the figure, straight lines AB and CD intersect at point O. If $\\angle 1 + \\angle 2 = 100^\\circ$, what is the measure of $\\angle BOC$?", -"image_file_name": "7038193", -"image": [ -"math/54927575_220.png" -], -"solution": "\\textbf{Solution:} Since $\\angle 1+\\angle 2=100^\\circ$ and $\\angle 1=\\angle 2$, \\\\\nit follows that $\\angle 1=\\angle 2=50^\\circ$. \\\\\nSince $\\angle 1+\\angle BOC=180^\\circ$, \\\\\nit follows that $\\angle BOC=\\boxed{130^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53414108": { -"question": "As shown in the figure, the lines $AB$ and $CD$ intersect at point $O$, with $OE\\perp CD$. If $\\angle AOE=50^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7038193", -"image": [ -"math/53414108_234.png" -], -"solution": "\\textbf{Solution:} Since $OE \\perp CD$,\\\\\nit follows that $\\angle EOC=90^\\circ$,\\\\\nwhich means $\\angle EOA+\\angle AOC=90^\\circ$,\\\\\nSince $\\angle AOE=50^\\circ$,\\\\\nit follows that $\\angle AOC=90^\\circ-50^\\circ=40^\\circ$,\\\\\nTherefore, $\\angle BOD=\\angle AOC=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404466": { -"question": "As shown in the diagram, lines AB and CD intersect at point O, and OA bisects $\\angle EOC$ where $\\angle EOC=110^\\circ$. What is the measure of $\\angle BOC$?", -"image_file_name": "7038193", -"image": [ -"math/53404466_240.png" -], -"solution": "\\textbf{Solution:} Since OA bisects $\\angle EOC$ and $\\angle EOC=110^\\circ$,\\\\\nit follows that $\\angle AOC= \\frac{1}{2}\\angle COE=55^\\circ$\\\\\nGiven $\\angle AOC+\\angle BOC$ form a straight angle,\\\\\nit implies $\\angle BOC=180^\\circ-55^\\circ=\\boxed{125^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404318": { -"question": "As shown in the figure, point $O$ is on the line $AB$, $OD$ bisects $\\angle COB$, and $\\angle AOC=118^\\circ$. What is the degree measure of $\\angle COD$?", -"image_file_name": "7038193", -"image": [ -"math/53404318_255.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC$ and $\\angle BOC$ are adjacent supplementary angles,\\\\\nwe have $\\angle AOC+\\angle BOC=180^\\circ$,\\\\\nGiven that $\\angle AOC=118^\\circ$,\\\\\nthus $\\angle BOC=180^\\circ-118^\\circ=62^\\circ$,\\\\\nSince $OD$ bisects $\\angle BOC$,\\\\\ntherefore $\\angle COD=\\frac{1}{2}\\angle BOC=\\boxed{31^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404526": { -"question": "As shown in the figure, it is known that the length of line segment $AB=20\\,\\text{cm}$, point C is on line $AB$, and $AC=4\\,\\text{cm}$. M and N are the midpoints of $AC$ and $BC$, respectively. What is the length of $MN$? in cm.", -"image_file_name": "7038193", -"image": [ -"math/53404526_266.png" -], -"solution": "\\textbf{Solution:} Given that $AB=20\\,cm$ and $AC=4\\,cm$,\\\\\nthus, $BC=AB-AC=20-4=16\\,cm$,\\\\\nsince M and N are the midpoints of $AC$ and $BC$, respectively,\\\\\nit follows that $MC=\\frac{1}{2}AC$ and $CN=\\frac{1}{2}BC$,\\\\\nthus, $MN=\\frac{1}{2}(AC+BC)=\\frac{1}{2}(4+16)=\\boxed{10}\\,cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53498146": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=3$, $AC=7$, and $D$, $E$ are the midpoints of $AB$, $AC$, respectively. What could be the length of $DE$?", -"image_file_name": "7054442", -"image": [ -"math/53498146_08.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of $AB$ and $AC$ respectively, \\\\\nit follows that $DE$ is the midsegment of $\\triangle ABC$, \\\\\nhence $DE=\\frac{1}{2}BC$. \\\\\nIn $\\triangle ABC$, with $AB=3$ and $AC=7$, the triangle inequality theorem implies that $7-3BM$, \\\\\nwhen point N and E coincide, $NB+NM=BM$, \\\\\n$\\therefore NB+NM\\geq BM$, hence the minimum value of $DN+MN$ is $BM$, \\\\\nsince ABCD is a square, we have $BC=CD=8$, $\\angle BCD=90^\\circ$, \\\\\n$\\therefore CM=CD-DM=8-2=6$, \\\\\n$\\therefore BM= \\sqrt{BC^{2}+CM^{2}}=\\boxed{10}$, \\\\\nthus, the minimum value of $DN+MN$ is $10$.", -"solution_image": [ -"solution_images/53183057_220.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53182548": { -"question": "As shown in the diagram, two square pieces of paper with areas of 8 and 16 are placed without overlapping inside the rectangle $ABCD$. What is the area of the blank part in the diagram?", -"image_file_name": "7054442", -"image": [ -"math/53182548_230.png" -], -"solution": "Solution: Given the information, we find that:\nthe length of rectangle ABCD is $\\sqrt{16}+\\sqrt{8}=4+2\\sqrt{2}$, and its width is 4, \n$\\therefore$ the area of rectangle ABCD is $4\\left(4+2\\sqrt{2}\\right)=16+8\\sqrt{2}$,\n$\\therefore$ the area of the blank part is: $16+8\\sqrt{2}-16-8=\\boxed{8\\sqrt{2}-8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344902": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, BF is the median to the side AC, and DE is the median of $\\triangle ABC$. If DE$=10$, then what is the length of BF?", -"image_file_name": "7054442", -"image": [ -"math/52344902_240.png" -], -"solution": "\\textbf{Solution:} Since DE is the median of $\\triangle ABC$, if DE=10,\\\\\nthen AC=2DE=20,\\\\\nIn the right triangle $\\triangle ABC$, where $\\angle ABC=90^\\circ$, BF is the median to side AC,\\\\\nthus BF=$\\frac{1}{2}$AC=\\boxed{10}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344788": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle A=30^\\circ$. Points D and E are the midpoints of sides AB and AC, respectively. Extend BC to point F so that CF = $\\frac{1}{2}$BC. If EF = 4, what is the length of DE?", -"image_file_name": "7054442", -"image": [ -"math/52344788_251.png" -], -"solution": "\\textbf{Solution:} \nDraw $DC$,\\\\\nsince points D and E are respectively the midpoints of sides AB and AC,\\\\\nit follows that $DE\\parallel BC$ and $DE=\\frac{1}{2}BC$\\\\\nExtending BC to point F such that $CF=\\frac{1}{2}BC$,\\\\\nit follows that $CF=DE$ and $CF\\parallel DE$\\\\\nTherefore, quadrilateral $CDEF$ is a parallelogram\\\\\nThus $CD=EF=4$\\\\\nTherefore $AB=2CD=8$\\\\\nSince $\\angle ACB=90^\\circ$ and $\\angle A=30^\\circ$,\\\\\nit follows that $BC=\\frac{1}{2}AB=4$\\\\\nTherefore $DE=\\frac{1}{2}BC=\\boxed{2}$", -"solution_image": [ -"solution_images/52344788_251.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344787": { -"question": "As shown in the figure, in rhombus $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, and $OE \\perp AB$ at point $E$. If $\\angle ADC = 130^\\circ$, what is the measure of $\\angle AOE$?", -"image_file_name": "7054442", -"image": [ -"math/52344787_260.png" -], -"solution": "\\textbf{Solution:} In rhombus $ABCD$, $\\angle ADC=130^\\circ$, \\\\\n$\\therefore \\angle BAD=180^\\circ-130^\\circ=50^\\circ$, \\\\\n$\\therefore \\angle BAO= \\frac{1}{2}\\angle BAD= \\frac{1}{2}\\times50^\\circ=25^\\circ$, \\\\\n$\\because OE\\perp AB$, \\\\\n$\\therefore \\angle AOE=90^\\circ-\\angle BAO=90^\\circ-25^\\circ=\\boxed{65^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344789": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $AB=3$, and $AC=4$. Squares $ABED$, $ACHI$, and $BCGF$ are constructed externally on sides $AB$, $AC$, and $BC$ of $\\triangle ABC$, respectively. Lines $ED$ and $HI$ intersect at point $J$. Line $KF$ is drawn through point $F$ parallel to $HI$ and intersects $DE$ at point $K$. Line $GM$ is drawn through point $G$ parallel to $DE$ and intersects $HI$ and $KF$ at points $M$ and $L$, respectively. What is the area of quadrilateral $KLMJ$?", -"image_file_name": "7054442", -"image": [ -"math/52344789_270.png" -], -"solution": "\\textbf{Solution:} In the right triangle $ABC$, $\\angle BAC=90^\\circ$, $AB=3$, $AC=4$. By the Pythagorean theorem, we have $BC=5$.\\\\\nSince quadrilaterals $ABED$, $ACHI$, $BCGF$ are all squares,\\\\\nit follows that each quadrilateral has four $90^\\circ$ angles, with four sides being parallel and equal.\\\\\nSince $KF\\parallel HI$ and $GM\\parallel DE$,\\\\\nit follows that $\\angle JKL=\\angle KJM=90^\\circ$.\\\\\nTherefore, quadrilaterals $KLMJ$ and $DGIA$ are rectangles.\\\\\nHence, $ED=DA=AB=3$, $AI=AC=IH=4$, $BC=BF=CG=5$.\\\\\nIt follows that $DJ=AI=4$, $JI=DA=3$.\\\\\nExtending $AC$ to $O$ gives $CO\\perp ML$.\\\\\nSince $\\angle ACB+\\angle GCO=90^\\circ=\\angle ACB+\\angle ABC$,\\\\\nit follows that $\\angle ABC=\\angle GCO$.\\\\\nSince $\\angle BAC=\\angle COG$ and $BC=CG$,\\\\\nit follows that $\\triangle ABC\\cong \\triangle OCG$ (AAS).\\\\\nHence, $AB=OC=3$.\\\\\nThus, $\\angle COG=90^\\circ$.\\\\\nSince $\\angle JML=90^\\circ$,\\\\\nit follows that quadrilateral $COMH$ is a rectangle.\\\\\nTherefore, $CO=HM=3$. Similarly, it can be shown that quadrilateral $EKQB$ is a rectangle.\\\\\nIt follows that $KE=QB=4$.\\\\\nHence, the area of quadrilateral $KLMJ$ is $HJ\\cdot JM=(KE+ED+DJ)\\cdot (JI+IH+HM)=(4+3+4)\\times (3+4+3)=\\boxed{110}$.", -"solution_image": [ -"solution_images/52344789_270.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344746": { -"question": "As shown in the figure, E is a point on the diagonal BD of a square ABCD with a side length of 1, and $BE=BC$. Let P be any point on CE, and let PQ be perpendicular to BC at point Q, and PR be perpendicular to BE at point R. What is the value of $PQ+PR$?", -"image_file_name": "7054442", -"image": [ -"math/52344746_280.png" -], -"solution": "\\textbf{Solution:} Draw BP and construct CM $\\perp$ BD through C, \\\\ \n$\\because$BC=BE, \\\\ \n$\\therefore$Area of $\\triangle BCE$ = Area of $\\triangle BPE$ + Area of $\\triangle BPC$ \\\\ \n= BC $\\times$ PQ $\\times \\frac{1}{2}$ + BE $\\times$ PR $\\times \\frac{1}{2}$ \\\\ \n= BE $\\times$ (PQ+PR) $\\times \\frac{1}{2}$ \\\\ \n= BE $\\times$ CM $\\times \\frac{1}{2}$, \\\\ \n$\\therefore$ PQ+PR=CM, \\\\ \n$\\because$ BE=BC=1, and BD is the diagonal of the square ABCD, \\\\ \n$\\therefore$ BD=$\\sqrt{2}$BC=$\\sqrt{2}$, \\\\ \n$\\because$ BC=CD, and CM$\\perp$ BD, \\\\ \n$\\therefore$ M is the midpoint of BD, \\\\ \n$\\because$ $\\triangle$BDC is a right triangle, \\\\ \n$\\therefore$ CM=$\\frac{1}{2}$BD=$\\frac{\\sqrt{2}}{2}$, \\\\ \nthus, the value of PQ+PR is $\\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/52344746_280.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53639827": { -"question": "As shown in the figure, in parallelogram $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, and point $E$ is the midpoint of $BC$. If $OE = 6\\,cm$, what is the length of $AB$?", -"image_file_name": "7054442", -"image": [ -"math/53639827_296.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\nit follows that $AO = CO$, \\\\\nsince point E is the midpoint of CB, \\\\\nthus OE is the median of $\\triangle ABC$, \\\\\ntherefore $AB = 2OE$, \\\\\nsince $OE = 6\\,cm$, \\\\\nit follows that $AB = \\boxed{12cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344345": { -"question": "As shown in the figure, the diagonals \\(AC\\) and \\(BD\\) of the rhombus \\(ABCD\\) intersect at point \\(O\\), where \\(AC=8\\) and \\(BD=6\\). If point \\(E\\) is the midpoint of \\(BC\\), what is the length of \\(OE\\)?", -"image_file_name": "7054442", -"image": [ -"math/52344345_302.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus,\\\\\nthen OC=OA=$\\frac{1}{2}AC=4$ and OB=OD=$\\frac{1}{2}BD=3$, $\\angle$BOC=$90^\\circ$.\\\\\nThus, AB=$\\sqrt{OA^{2}+OB^{2}}=5$.\\\\\nSince point E is the midpoint of AB, and O is the midpoint of AC,\\\\\nthen OE is the median of $\\triangle ABC$,\\\\\nthus OE=$\\frac{1}{2}AB=\\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53728510": { -"question": "As shown in the figure, in the Cartesian coordinate system, the point $A(3, 3)$ forms a rhombus $AOBC$ with $OA$ as one of its sides. What are the coordinates of point $C$?", -"image_file_name": "7052940", -"image": [ -"math/53728510_01.png" -], -"solution": "\\textbf{Solution:} Let's draw AE$\\perp$x-axis at E, and CF$\\perp$x-axis at F,\\\\\nthen quadrilateral AEFC is a rectangle,\\\\\n$\\therefore$AE=CF, and AC=EF,\\\\\n$\\because$ point A is (3, 3),\\\\\n$\\therefore$AE=OE=3,\\\\\n$\\therefore$OA=$3\\sqrt{2}$,\\\\\n$\\because$ quadrilateral AOBC is a rhombus,\\\\\n$\\therefore$AC=OA=$3\\sqrt{2}$,\\\\\n$\\therefore$CF=AE=3, and OF=3+$3\\sqrt{2}$,\\\\\n$\\therefore$ the coordinates of point C are (3+$3\\sqrt{2}$, 3),\\\\\nso, the answer is: The coordinates of point C are $\\boxed{(3+3\\sqrt{2}, 3)}$.", -"solution_image": [ -"solution_images/53728510_00.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52690851": { -"question": "As shown in the figure, the graph of a linear function intersects the y-axis at the point $\\left(0, 2\\right)$ and the x-axis at the point $\\left(-1, 0\\right)$. What is the range of the independent variable $x$ when $y \\le 0$?", -"image_file_name": "7052940", -"image": [ -"math/52690851_13.png" -], -"solution": "\\textbf{Solution:} From the graph, it is observed that when $y\\le 0$, the graph of the linear function that meets the condition is below the x-axis,\\\\\nas shown by the bold part in the figure,\\\\\n$\\because$ this part of the graph is to the left of the line $x=-1$,\\\\\n$\\therefore$ when $y\\le 0$, the range of the independent variable x is $x\\le -1$.\\\\\nHence, the answer is: \\boxed{x\\le -1}.", -"solution_image": [ -"solution_images/52690851_11.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52284879": { -"question": "As shown in the figure, the graphs of the linear function $y_{1}=mx\\ (m\\ne 0)$ and $y_{2}=x+3$ intersect at point $A(-1, 2)$. What is the solution set of the inequality $mx>x+3$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/52284879_26.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $mx > x + 3$, \\\\\nit follows that $y_1 > y_2$, \\\\\nthus $x < -1$. \\\\\nHence, the answer is $\\boxed{x < -1}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52252064": { -"question": "As shown in the figure, the line $y=-\\frac{3}{4}x+3$ intersects the x-axis and y-axis at points A and B, respectively. Point C is on the line segment OA, and the line segment OB is folded along BC, with point O falling on point D on the side AB. What is the equation of line BC?", -"image_file_name": "7052940", -"image": [ -"math/52252064_31.png" -], -"solution": "\\textbf{Solution:} Since the line $y=-\\frac{3}{4}x+3$ intersects the $x$ and $y$ axes at points $A$ and $B$ respectively,\n\nlet $x=0$, then $y=3$, let $y=0$, then $x=4$,\n\ntherefore, point $A(4,0)$, point $B(0,3)$,\n\ntherefore, OA=4, OB=3,\n\ntherefore, AB= $\\sqrt{OB^{2}+OA^{2}}=5$,\n\nsince segment $OB$ is folded along $BC$, point $O$ falls on the point $D$ on side $AB$,\n\ntherefore, OB=BD=3, OC=CD, $\\angle BOC=\\angle BDC=90^\\circ$,\n\ntherefore, AD=AB−BD=2,\n\nsince $AC^{2}=AD^{2}+CD^{2}$,\n\ntherefore, $(4−OC)^{2}=2^{2}+OC^{2}$,\n\ntherefore, OC=1.5,\n\ntherefore, point $C(1.5,0)$,\n\nAssume the equation of line $BC$ is: $y=kx+3$,\n\ntherefore, $0=1.5k+3$,\n\ntherefore, $k=−2$,\n\ntherefore, the equation of line $BC$ is: $y=-2x+3$.\n\nHence, the answer is: $y=-2x+3=\\boxed{-2x+3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52251808": { -"question": "The graph of the line $y_1=k_1x+b$ and the line $y_2=k_2x$ in the same Cartesian coordinate system is shown in the figure. What is the solution set of the inequality $k_1x+b\\le k_2x$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/52251808_43.png" -], -"solution": "\\textbf{Solution:} Given that ${k}_{1}x+b\\le {k}_{2}x$ graphically represents that the line ${y}_{1}={k}_{1}x+b$ is below the line ${y}_{2}={k}_{2}x$. From the graph, it is known that the solution set is $\\boxed{x\\le -3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52250870": { -"question": "As shown in the figure, it is known that the line $y_1=x+a$ and $y_2=kx+b$ intersect at point $P(-1,2)$. What is the correct solution set of the inequality $x+a>kx+b$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/52250870_50.png" -], -"solution": "\\textbf{Solution:} Given the lines $y_1=x+a$ and $y_2=kx+b$ intersect at point P ($-1$, $2$), \\\\\nfor the inequality $x+a>kx+b$ to hold, it is necessary that $y_1=x+a$ is above $y_2=kx+b$,\\\\\nAccording to the graph, when $x>-1$, $y_1=x+a$ is above $y_2=kx+b$,\\\\\nTherefore, the solution set for the inequality $x+a>kx+b$ is $x>-1$,\\\\\nThus, the answer is: $\\boxed{x>-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52226187": { -"question": "As shown in the figure, the line $y=kx+3$ passes through the point $(2,0)$. What is the solution set of the inequality $kx+3>0$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/52226187_60.png" -], -"solution": "\\textbf{Solution:} Since the line $y=kx+3$ passes through the point $(2,0)$,\\\\\nit follows that the solution set of the inequality $kx+3>0$ with respect to $x$ is $\\boxed{x<2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52212386": { -"question": "As shown in the figure, the equation of line $l_1$ is $y_1=k_1x+b_1$, and the equation of line $l_2$ is $y_2=k_2x+b_2$. What is the solution set of the inequality $k_1x+b_1 -2$,\\\\\nmeaning the solution set for the inequality $k_1x + b_1 < k_2x + b_2$ is $x > -2$,\\\\\nthus the answer is: $\\boxed{x > -2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52212222": { -"question": "As shown in the figure, the lines $y=-x+b$ and $y=kx$ are represented in the same Cartesian coordinate system. What is the solution set of the inequality $-x+b-1$, $-x+b-1}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52212539": { -"question": "As shown in the figure, the straight line $y=x+b$ intersects with the coordinate axes at two points. What is the range of $x$ when $y>0$?", -"image_file_name": "7052940", -"image": [ -"math/52212539_92.png" -], -"solution": "\\textbf{Solution:} From the graph, it is known that the intersection point of the line with the x-axis is ($-2, 0$),\\\\\nwhen $y>0$, the graph is above the x-axis, on the right side of the intersection point with the x-axis,\\\\\ntherefore, when $x>-2$, $y>0$\\\\\nHence, the answer is: $\\boxed{x>-2}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52211441": { -"question": "As shown in the figure, a linear function, $y=-x-2$, intersects with the graph of $y=kx+b$ at point $P\\left(2, n\\right)$. What then is the solution set of the inequality $kx+b<-x-2$ in terms of $x$?", -"image_file_name": "7052940", -"image": [ -"math/52211441_103.png" -], -"solution": "\\textbf{Solution:} From the graph, it is known that when $x<2$, the graph of the line $y=kx+b$ is below the graph of the line $y=-x-2$. Therefore, the solution set of the inequality $kx+b<-x-2$ with respect to $x$ is $\\boxed{x<2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52204756": { -"question": "As shown in the figure, in the Cartesian coordinate system, the two diagonals $AC$ and $BD$ of the quadrilateral $\\square ABCD$ intersect at the origin $O$ of the Cartesian coordinate system. The coordinates of point $D$ are $\\left(2, 1\\right)$. What are the coordinates of point $B$?", -"image_file_name": "7052940", -"image": [ -"math/52204756_117.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a parallelogram, and $O$ is the intersection point of diagonals $AC$ and $BD$,\\\\\nit follows that points $B$ and $D$ are symmetrical with respect to the origin $O$,\\\\\nsince the coordinates of point $D$ are $\\left(2, 1\\right)$,\\\\\nthus, the coordinates of point $B$ are $\\boxed{\\left(-2, -1\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52095290": { -"question": "As shown in the graph, in the Cartesian coordinate system, the squares $A_1B_1C_1D_1$, $D_1E_1E_2B_2$, $A_2B_2C_2D_2$, $D_2E_3E_4B_3$, $A_3B_3C_3E_3$, etc., are placed as illustrated. Here, the point $B_1$ is on the y-axis, and points $C_1$, $E_1$, $E_2$, $C_2$, $E_3$, $E_4$, $C_3$, etc., are on the x-axis. It is known that the side length of square $A_1B_1C_1D_1$ is 2, $\\angle B_1C_1O=60^\\circ$, and $B_1C_1\\parallel B_2C_2\\parallel B_3C_3$, etc. What is the y-coordinate of point $A_{2022}$?", -"image_file_name": "7052940", -"image": [ -"math/52095290_120.png" -], -"solution": "\\textbf{Solution:} Since OB$_{1}$+OC$_{1}$=$\\sqrt{3}$+1, \\\\\nthe y-coordinate of A$_{1}$ is: $\\sqrt{3}$+1, \\\\\nSince B$_{2}$E$_{2}$+E$_{2}$C$_{2}$=1+$\\frac{\\sqrt{3}}{3}$, \\\\\nthe y-coordinate of A$_{2}$ is: 1+$\\frac{\\sqrt{3}}{3}$, \\\\\nSince B$_{3}$E$_{4}$+E$_{4}$C$_{3}$=$\\frac{\\sqrt{3}}{3}$+$\\frac{1}{3}$, \\\\\nthe y-coordinate of A$_{3}$ is: $\\frac{\\sqrt{3}}{3}$+$\\frac{1}{3}$, \\\\\n... \\\\\nTherefore, the y-coordinate of A$_{n}$ is: $\\left(\\frac{\\sqrt{3}}{3}\\right)^{n−2}+\\left(\\frac{\\sqrt{3}}{3}\\right)^{n−1}$, \\\\\nTherefore, the y-coordinate of A$_{2022}$ is $\\boxed{\\left(\\frac{\\sqrt{3}}{3}\\right)^{2020}+\\left(\\frac{\\sqrt{3}}{3}\\right)^{2021}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium" -}, -"52050253": { -"question": "Given the figure, the graph of the linear function $y_{1}=x+b$ intersects with the graph of the linear function $y_{2}=kx+4$ at point $P(1, 3)$. What is the solution set of the inequality $x+b\\le kx+4$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/52050253_134.png" -], -"solution": "\\textbf{Solution:} From the graph, we have, when $x \\leq 1$, $x + b \\leq kx + 4$,\n\nwhich means the solution set of the inequality $x + b \\leq kx + 4$ with respect to $x$ is $\\boxed{x \\leq 1}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51919592": { -"question": "As shown in the figure, the line $y=kx+b$ intersects the line $y=mx+n$ at point $C(1, 5)$. What is the solution set for the inequality $mx+n1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53498209": { -"question": "As shown in the figure, the vertices of rectangle $OABC$ are $O(0, 0)$ and $B(-2, 2\\sqrt{3})$. If the rectangle rotates counterclockwise about point $O$ at a rate of $60^\\circ$ per second, what are the coordinates of the diagonal intersection point $D$ at the 2021st second?", -"image_file_name": "7052940", -"image": [ -"math/53498209_155.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, according to the problem, we know that $D(-1,\\sqrt{3})$, and the trajectory of point $D$ is a circle centered at $O$ with $OD$ as the radius. Construct $DM\\perp x$-axis, where $M$ is the foot of the perpendicular.\\\\\n$\\therefore$ $\\tan\\angle DOM=\\frac{DM}{OM}=\\sqrt{3}$\\\\\n$\\therefore$ $\\angle DOM=60^\\circ$\\\\\n$\\because$ $2021\\times 60^\\circ=336\\times 360^\\circ+300^\\circ$\\\\\n$\\therefore$ it is known that at the 2021st second, the intersection point of the diagonals of the rectangle, $D$, is at point $E$, with $\\angle DOE=60^\\circ$\\\\\n$\\therefore$ $D$ and $E$ are symmetric with respect to the $y$-axis\\\\\n$\\therefore$ $E(1,\\sqrt{3})$\\\\\nTherefore, the answer is: $E(1,\\sqrt{3})$, which means the coordinates of $D$ are $\\boxed{E(1,\\sqrt{3})}$", -"solution_image": [ -"solution_images/53498209_156.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53359921": { -"question": "Given the figure, the graphs of the linear functions $y_{1}=kx+4$ and $y_{2}=x+m$ intersect at point $P\\left(1, 3\\right)$. What is the solution set of the inequality $kx+41$, the graph of the function $y_1=kx+4$ lies entirely below the graph of the function $y_2=x+m$, \\\\\n$\\therefore$ the solution set of the inequality $kx+41$, \\\\\nthus, the answer is: $\\boxed{x>1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53182636": { -"question": "If the graph of the linear function \\(y=kx+b(k\\ne 0)\\) is shown as in the figure, what is the solution set of the inequality \\(kx+b<0\\)?", -"image_file_name": "7052940", -"image": [ -"math/53182636_172.png" -], -"solution": "\\textbf{Solution}: Given $y=kx+b\\ (k \\neq 0)$ intersects the $x$-axis at $(4,0)$,\\\\\n$\\therefore kx+b<0$ has the solution set: $x>4$,\\\\\nthus, the answer is: $\\boxed{x>4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53182974": { -"question": "As shown in the figure, the intersection point of the lines $y_1=k_1x+a$ and $y_2=k_2x+b$ is $(4, 8)$. What is the range of values of $x$ for which $y_10$?", -"image_file_name": "7052940", -"image": [ -"math/53333599_194.png" -], -"solution": "\\textbf{Solution:} When $y>0$, which means the part above the x-axis,\\\\\n$\\therefore$ the range of the independent variable $x$ is divided into two parts: $\\boxed{x<-1$ and $10$) intersects at point A. A perpendicular line from point B to the x-axis intersects the hyperbola $y=\\frac{k}{x}$ at point C, and $AB=AC$. What is the value of $k$?", -"image_file_name": "7057900", -"image": [ -"math/51446264_173.png" -], -"solution": "\\textbf{Solution:} The line $y=\\frac{1}{2}x-1$ intersects the x-axis at point B, thus: B(2,0),\\\\\nSince AB=AC and BC is perpendicular to the x-axis, point A lies on the perpendicular bisector of BC, hence: C(2, $\\frac{k}{2}$), A(4, $\\frac{k}{4}$),\\\\\nSubstituting point A into the line equation $y=x-1$ yields: $k=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445765": { -"question": "As shown in the figure, the axis of symmetry of the parabola is the line $x=1$, and it intersects the $x$-axis at the point $A(-1,0)$. What are the coordinates of the other intersection point?", -"image_file_name": "7057900", -"image": [ -"math/51445765_180.png" -], -"solution": "\\textbf{Solution:} The axis of symmetry of the parabola is the line $x=1$. Given that the coordinates of point $A$ are $(-1,0)$,\\\\\nthe symmetry of the parabola allows us to find the coordinates of the other intersection point with the $x$-axis as $\\boxed{(3,0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51636053": { -"question": "As shown in the figure, in pentagon $ABCDE$, $AB \\parallel CD$, and $\\angle 1$, $\\angle 2$, $\\angle 3$ are the exterior angles of $\\angle BAE$, $\\angle AED$, and $\\angle EDC$ respectively. If $\\angle 1=32^\\circ$ and $\\angle 3=60^\\circ$, what is the value of $\\angle 2$?", -"image_file_name": "7055653", -"image": [ -"math/51636053_00.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\nsince AB $\\parallel$ CD,\\\\\ntherefore, $\\angle$4 + $\\angle$5 = 180$^\\circ$,\\\\\nalso, since $\\angle$1 + $\\angle$3 = 92$^\\circ$,\\\\\naccording to the exterior angle sum theorem of polygons, $\\angle$1 + $\\angle$2 + $\\angle$3 + $\\angle$4 + $\\angle$5 = 360$^\\circ$,\\\\\nthus, $\\angle$2 = 360$^\\circ$ - 180$^\\circ$ - 92$^\\circ$ = \\boxed{88^\\circ}.", -"solution_image": [ -"solution_images/51636053_00.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51615105": { -"question": "As shown in the figure, the side AB of rectangle ABCD is parallel to the $y$-axis, and the coordinates of vertex $A$ are $(1, 2)$. Points $B$ and $D$ lie on the graph of the inverse proportion function $y=\\frac{6}{x} \\, (x>0)$. What is the area of rectangle ABCD?", -"image_file_name": "7055653", -"image": [ -"math/51615105_16.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle, with vertex A's coordinates being (1, 2),\\\\\nwe assume the coordinates of points B and D to be (1, y) and (x, 2) respectively,\\\\\nsince points B and D lie on the graph of the inverse proportion function $y=\\frac{6}{x}$ (x>0),\\\\\nwe get y=6, x=3,\\\\\nthus, point B is (1, 6), and point D is (3, 2),\\\\\nhence, AB=6-2=4, AD=3-1=2,\\\\\ntherefore, the area of rectangle ABCD is AB$\\cdot$AD=4$\\times$2=$\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51614697": { -"question": "As shown in the figure, the rhombus $ABCD$ has a side length of $10$, and $\\angle A=60^\\circ$. By successively connecting the midpoints of each side of the rhombus $ABCD$, quadrilateral ${A}_{1}{B}_{1}{C}_{1}{D}_{1}$ is obtained; by successively connecting the midpoints of each side of quadrilateral ${A}_{1}{B}_{1}{C}_{1}{D}_{1}$, quadrilateral ${A}_{2}{B}_{2}{C}_{2}{D}_{2}$ is obtained; by successively connecting the midpoints of each side of quadrilateral ${A}_{2}{B}_{2}{C}_{2}{D}_{2}$, quadrilateral ${A}_{3}{B}_{3}{C}_{3}{D}_{3}$ is obtained; and so on. Following this pattern, what is the perimeter of the quadrilateral ${A}_{2n}{B}_{2n}{C}_{2n}{D}_{2n}$?", -"image_file_name": "7055653", -"image": [ -"math/51614697_27.png" -], -"solution": "\\textbf{Solution:} By utilizing the properties of mid-quadrilaterals, we know quadrilaterals $A_{1}B_{1}C_{1}D_{1}$ and $A_{3}B_{3}C_{3}D_{3}$ are rectangles, while $A_{2}B_{2}C_{2}D_{2}$ and $A_{4}B_{4}C_{4}D_{4}$ are rhombuses.\\\\\nSince the side length of rhombus ABCD is 10, and $\\angle A=60^\\circ$,\\\\\ntherefore, $\\triangle ADB$ and $\\triangle AA_{1}D_{1}$ are equilateral triangles, and the perimeter of rhombus ABCD is $10\\times 4=40$;\\\\\ntherefore, the perimeter of rhombus $A_{2}B_{2}C_{2}D_{2}$ is $\\frac{1}{2}\\times 40=20$;\\\\\nThe perimeter of rhombus $A_{4}B_{4}C_{4}D_{4}$ is $\\frac{1}{{2}^{2}}\\times 40$;\\\\\n$ \\dots $\\\\\ntherefore, the perimeter of quadrilateral ${A}_{2n}{B}_{2n}{C}_{2n}{D}_{2n}$ is $40\\times \\frac{1}{{2}^{n}}=5\\times 8\\times \\frac{1}{{2}^{n}}=\\boxed{\\frac{5}{{2}^{n-3}}}$.\n", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614709": { -"question": "As shown in the figure, fold a rectangular paper ABCD in the method illustrated twice, to form an isosceles right-angled triangle BEF. If \\(BC = 1\\), what is the length of \\(AB\\)?", -"image_file_name": "7055653", -"image": [ -"math/51614709_30.png" -], -"solution": "\\textbf{Solution:} As illustrated,\\\\\nsince quadrilateral ABCD is a rectangle,\\\\\nthus $\\angle A = \\angle ADC = \\angle C = \\angle B = 90^\\circ$,\\\\\nthus $BC = AD = 1$, $CD = AB$\\\\\nAfter the first fold,\\\\\n$\\angle A = \\angle DA^{\\prime}E = 90^\\circ$,\\\\\nquadrilateral DAEA$^{\\prime}$ is a square,\\\\\nthus $\\angle ADE = 45^\\circ = \\angle AED$\\\\\nthus $AE = AD = 1$,\\\\\nthus $DE = \\sqrt{{1}^{2}+{1}^{2}} = \\sqrt{2}$;\\\\\nAfter the second fold,\\\\\n$CD = DE = \\sqrt{2}$\\\\\nthus $AB = \\boxed{\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51614709_30.png", -"solution_images/51614709_31.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51614616": { -"question": "As shown in the figure, in square $ABCD$, $E$ is a point on side $CD$, and $F$ is a point on the extension of side $BC$, with $CE=CF$. If $\\angle BEC=80^\\circ$, what is the degree measure of $\\angle EFD$?", -"image_file_name": "7055653", -"image": [ -"math/51614616_40.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a square,\\\\\nit follows that BC=CD, and $\\angle$BCE=$\\angle$DCF=90$^\\circ$,\\\\\nsince CE=CF,\\\\\nit follows that $\\triangle$BCE$\\cong$$\\triangle$DCF, $\\angle$CFE=$\\angle$CEF=45$^\\circ$,\\\\\ntherefore $\\angle$CFD=$\\angle$BEC=80$^\\circ$,\\\\\ntherefore $\\angle$EFD=$\\angle$CFD−$\\angle$CFE=80$^\\circ$−45$^\\circ=\\boxed{35^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614615": { -"question": "As shown in the figure, the side length of the square $ABCD$ is $2\\, \\text{cm}$. What is the area of the shaded region?", -"image_file_name": "7055653", -"image": [ -"math/51614615_50.png" -], -"solution": "\\textbf{Solution:} It is known from symmetry that $S_{\\text{shaded area}} = \\frac{1}{2}S_{\\text{square} ABCD} = \\frac{1}{2} \\times 2 \\times 2 = \\boxed{2}\\text{cm}^2$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614618": { -"question": "As shown in the figure, the diagonals of square $ABCD$ intersect at point $O$. $E$ is any point on $BC$, $EG \\perp BD$ at point $G$, and $EF \\perp AC$ at point $F$. If $AC=10$, what is the value of $EG+EF$?", -"image_file_name": "7055653", -"image": [ -"math/51614618_60.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a square,\\\\\n$\\therefore \\angle OBC = \\angle OCB = 45^\\circ$, AC$\\perp$BD, and OC=$\\frac{1}{2}$AC=5,\\\\\n$\\because EG \\perp$BD and EF$\\perp$AC,\\\\\n$\\therefore quadrilateral EFOG is a rectangle, and \\triangle BEG$, $\\triangle CEF$ are isosceles right triangles,\\\\\n$\\therefore EG=FO, CF=EF,\\\\\n\\therefore EG+EF=FO+CF=CO=\\boxed{5}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614617": { -"question": "As shown in the figure, the side length of the square cardboard ABCD is 4, with E and F being the midpoints of AB and BC, respectively. If it is cut along the dashed line as shown in the lower left figure and assembled into a \"small villa\" as shown below, what is the area of the shaded part?", -"image_file_name": "7055653", -"image": [ -"math/51614617_70.png" -], -"solution": "\\textbf{Solution:} According to the diagram, the top of the \"small villa\" is an isosceles triangle, whose area is half of the square ABCD's area, and the area of the \"small villa's\" bottom is half of the square ABCD's area as well, and the bottom consists of two equal rectangles.\\\\\nTherefore, the area of the shaded part in the diagram is $\\frac{1}{4}$ of the square ABCD's area,\\\\\ni.e., the area of the shaded part = $\\frac{1}{4}S_{\\text{square ABCD}}=\\frac{1}{4}\\times 4^{2}=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614470": { -"question": "As shown in the figure, in rhombus $ABCD$, we have $AE=1$, and $AF=BE=2$. If $P$ is a moving point on diagonal $BD$, what is the minimum value of $EP+FP$?", -"image_file_name": "7055653", -"image": [ -"math/51614470_80.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $EE'\\perp BC$, intersecting $BD$ at $E'$, then draw line $E'F$ intersecting $BD$ at $P'$, and connect $EP'$,\\\\\nsince quadrilateral $ABCD$ is a rhombus,\\\\\ntherefore $\\angle ABD = \\angle CBD$,\\\\\ntherefore $BD$ is the perpendicular bisector of $EE'$,\\\\\ntherefore $P'E = P'E'$,\\\\\ntherefore $PE + PF > P'E' + P'F' = E'F$,\\\\\ntherefore the minimum value of $EP + FP$ is $E'F$,\\\\\nsince $B'E = BE = AF$, $BE \\parallel AF$,\\\\\ntherefore quadrilateral $ABE'F$ is a parallelogram,\\\\\ntherefore $E'F = AB = AE + BE = \\boxed{3}$.", -"solution_image": [ -"solution_images/51614470_80.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51614394": { -"question": "As shown in the figure, EF passes through the intersection point O of the diagonals of rectangle ABCD, and intersects AD and BC at points E and F, respectively. Given that AB = 3 and BC = 4, what is the area of the shaded region in the figure?", -"image_file_name": "7055653", -"image": [ -"math/51614394_90.png" -], -"solution": "\\textbf{Solution:} Given rectangle ABCD, \\\\\nit follows that BO=DO=AO=CO, and AD$\\parallel$BC, \\\\\nhence, $\\angle$EDO=$\\angle$FBO, \\\\\nsince also $\\angle$EOD=$\\angle$FOB, \\\\\nit follows that $\\triangle$EDO$\\cong$$\\triangle$FBO (by ASA), \\\\\nthus, the area of $\\triangle$FBO = the area of $\\triangle$EDO, \\\\\nhence, the area of the shaded region = S$_{\\triangle BOC}$= $\\frac{1}{4}$S$_{\\text{rectangle }ABCD}$= $\\frac{1}{4}\\times4\\times3=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53339388": { -"question": "As shown in Figure 1, in rectangle $ABCD$, point $P$ starts from point $C$ and moves in the direction of $C \\rightarrow D \\rightarrow A \\rightarrow B$ and stops at point $B$. Let the distance traveled by point $P$ be $x$, and the area of $\\triangle PBC$ be $y$. Given the functional relationship between $y$ and $x$ as shown in Figure 2, what is the area of rectangle $ABCD$?", -"image_file_name": "7055653", -"image": [ -"math/53339388_101.png" -], -"solution": "Solution: From the problem statement, we know that: when point P is on side CD, \\(y\\) increases as \\(x\\) increases;\\\\\nwhen point P is on side AD, \\(y\\) does not change as \\(x\\) changes;\\\\\nwhen point P is on side AB, \\(y\\) decreases as \\(x\\) increases.\\\\\nConsidering the graph of a linear function, we find that CD=5, AD=6,\\\\\n\\(\\therefore\\) the area of rectangle ABCD is: AD\\(\\times\\)CD=5\\(\\times\\)6=\\boxed{30}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53320141": { -"question": "As shown in the figure, in quadrilateral $ABCD$, the diagonals $AC \\perp BD$ intersect at point $O$, and points $E$, $F$, $G$, $H$ are the midpoints of sides $AD$, $AB$, $BC$, $CD$, respectively. If $AC=8$ and $BD=6$, what is the area of quadrilateral $EFGH$?", -"image_file_name": "7055653", -"image": [ -"math/53320141_1114.png" -], -"solution": "\\textbf{Solution}: Since points $E$, $F$ are the midpoints of the sides $AD$, $AB$ of the quadrilateral $ABCD$, respectively,\\\\\nit follows that $EF \\parallel BD$ and $EF = \\frac{1}{2}BD = 3.$\\\\\nSimilarly, it is found that $EH \\parallel AC \\parallel GF$, and $EH = GF = \\frac{1}{2}AC = 4$,\\\\\nMoreover, since $AC \\perp BD$,\\\\\nit follows that $EF \\parallel GH$, $FG \\parallel HE$ and $EF \\perp FG$.\\\\\nThe quadrilateral $EFGH$ is a rectangle.\\\\\nTherefore, the area of quadrilateral $EFGH$ is $EF \\cdot EH = 3 \\times 4 = \\boxed{12}$, which means the area of quadrilateral $EFGH$ is 12.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51534410": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD \\parallel BC$, $\\angle ABC + \\angle DCB = 90^\\circ$, and $BC = 2AD$. Squares are constructed externally on the sides $AB$, $BC$, and $DC$, with areas denoted as $S_{1}$, $S_{2}$, and $S_{3}$ respectively. Given that $S_{1} = 4$ and $S_{3} = 12$, what is the value of $S_{2}$?", -"image_file_name": "7055653", -"image": [ -"math/51534410_120.png" -], -"solution": "\\textbf{Solution:} Given $S_{1}=4$ and $S_{3}=12$, \\\\\nit follows that $AB=2$ and $CD=2\\sqrt{3}$. \\\\\nDraw AE $\\parallel$ CD intersecting BC at E, \\\\\nhence $\\angle AEB=\\angle DCB$, \\\\\nsince $AD\\parallel BC$, \\\\\nthe quadrilateral AECD is a parallelogram, \\\\\nthus $CE=AD$ and $AE=CD=2\\sqrt{3}$, \\\\\ngiven $\\angle ABC+\\angle DCB=90^\\circ$, \\\\\nit implies $\\angle AEB+\\angle ABC=90^\\circ$, \\\\\nthus $\\angle BAE=90^\\circ$, \\\\\ntherefore $BE=\\sqrt{AB^{2}+AE^{2}}=\\sqrt{2^{2}+12}=4$, \\\\\nsince $BC=2AD$, \\\\\nit follows that $BC=2BE=8$, \\\\\ntherefore $S_{2}=(8)^{2}=\\boxed{64}$.", -"solution_image": [ -"solution_images/51534410_121.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510388": { -"question": "As shown in the diagram, in rectangle \\(ABCD\\), \\(AB=6\\), \\(BC=8\\), \\(M\\) is any point on \\(AD\\), and \\(ME \\perp AC\\) at point \\(E\\), \\(MF \\perp BD\\) at point \\(F\\), then what is the value of \\(ME+MF\\)?", -"image_file_name": "7055653", -"image": [ -"math/51510388_130.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, take point O as the intersection of AC and BD, and connect OM,\\\\\n$S_{\\triangle AOD}=S_{\\triangle AOM}+S_{\\triangle MOD}= \\frac{1}{2}$OA$\\cdot$ME+ $\\frac{1}{2}$OD$\\cdot$MF= $\\frac{1}{2}+$OA(ME+MF),\\\\\n$\\because$ Quadrilateral ABCD is a rectangle,\\\\\n$\\therefore$ $\\angle$ABC$=90^\\circ$,\\\\\n$\\therefore$ AC= $\\sqrt{AB^{2}+BC^{2}}=10$,\\\\\n$\\therefore$ OA= $\\frac{1}{2}$AC=5,\\\\\n$S_{\\triangle AOD}= \\frac{1}{4}S_{\\text{rectangle}ABCD}=12$,\\\\\n$\\therefore$ ME+MF=12÷ $\\frac{1}{2}$OA= $\\boxed{\\frac{24}{5}}$.", -"solution_image": [ -"solution_images/51510388_130.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510349": { -"question": "As shown in the figure, the side length of square $ABCD$ is 4. Point $E$ is a moving point on line segment $BC$. Connect $AE$, and rotate $AE$ clockwise by $90^\\circ$ around point $E$ to $EF$. Connect $BF$, and take the midpoint $M$ of $BF$. If point $E$ moves from point $B$ to point $C$, what is the length of the path traveled by point $M$?", -"image_file_name": "7055653", -"image": [ -"math/51510349_147.png" -], -"solution": "\\textbf{Solution:} Because rotating line AE clockwise by $90^\\circ$ around point E brings it to line EF,\\\\\ntherefore EF$\\perp$AE.\\\\\nWhen point E is located at point B, point M is at the midpoint G of BC,\\\\\nwhen point E is at point C, point M is at the midpoint H of CD, the path traveled by point M is the length of GH\\\\\nBecause the side length of square ABCD is 4,\\\\\ntherefore $GH=2\\sqrt{2}$,\\\\\nthus, the length of the path traveled by point M is $\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51510273": { -"question": "As shown in the figure, by changing the interior angles of the square $ABCD$, the square is transformed into a rhombus $AB{C}^{\\prime }{D}^{\\prime }$. If $\\angle {D}^{\\prime }AB=30^\\circ$, what is the ratio of the area of the rhombus $AB{C}^{\\prime }{D}^{\\prime }$ to the area of the square $ABCD$?", -"image_file_name": "7055653", -"image": [ -"math/51510273_153.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $D'M\\perp AB$ at point M through point $D'$,\\\\\n$\\because \\angle D'AB=30^\\circ$,\\\\\n$\\therefore D'M=\\frac{1}{2}AD'$,\\\\\n$\\because$ Quadrilateral $ABC'D'$ is a rhombus,\\\\\n$\\therefore AD'=AB$,\\\\\n$\\therefore$ The area of rhombus $ABC'D'$ is $AB\\times D'M= AB\\times \\frac{1}{2}AD'=AB\\times \\frac{1}{2}AB=\\frac{1}{2}AB^2$,\\\\\n$\\because$ The area of square $ABCD=AB^2$,\\\\\n$\\therefore$ The ratio of the area of rhombus $ABC'D'$ to the area of square $ABCD$ is $\\boxed{\\frac{1}{2}}$.", -"solution_image": [ -"solution_images/51510273_150.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510274": { -"question": "As shown in the figure, in diamond $ABCD$, $\\angle BAD=80^\\circ$, the perpendicular bisector of $AB$ intersects diagonal $AC$ at point $F$ and $AB$ at point $E$. Connecting $DF$, what is the value of $\\angle CDF$?", -"image_file_name": "7055653", -"image": [ -"math/51510274_164.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BF, \\\\\n$\\because$ quadrilateral ABCD is a rhombus, \\\\\n$\\therefore$ $\\angle BAC=\\frac{1}{2}\\angle BAD=\\frac{1}{2}\\times 80^\\circ=40^\\circ$, \\\\\n$BC=CD$, $\\angle DCF=\\angle BCF$, AD$\\parallel$BC, \\\\\n$\\therefore$ $\\angle ABC=180^\\circ-\\angle BAD=100^\\circ$, \\\\\n$\\because$EF is the perpendicular bisector of AB, \\\\\n$\\therefore$AF=BF, \\\\\n$\\therefore$ $\\angle ABF=\\angle BAC=40^\\circ$, \\\\\n$\\therefore$ $\\angle CBF=\\angle ABC-\\angle ABF=60^\\circ$, \\\\\nIn $\\triangle DCF$ and $\\triangle BCF$, \\\\\n$\\left\\{\\begin{array}{c}DC=BC\\\\ \\angle DCF=\\angle BCF\\\\ CF=CF\\end{array}\\right.$, \\\\\n$\\therefore$ $\\triangle DCF\\cong \\triangle BCF$ (SAS), \\\\\n$\\therefore$ $\\angle CDF=\\angle CBF= \\boxed{60^\\circ}$", -"solution_image": [ -"solution_images/51510274_160.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53232740": { -"question": "As shown in the figure, the areas of the two smaller squares are 9 and 16, respectively. What is the area of the square represented by the letter A?", -"image_file_name": "7055653", -"image": [ -"math/53232740_170.png" -], -"solution": "\\textbf{Solution:} The area of the square represented by the letter A is: $16+9= \\boxed{25}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53232634": { -"question": "As shown in the figure, $D$ is a point inside $\\triangle ABC$ with $BD \\perp CD$, $AD=6$, $BD=4$, $CD=3$, and $E$, $F$, $G$, $H$ are the midpoints of $AB$, $AC$, $CD$, and $BD$, respectively. What is the perimeter of the quadrilateral $EFGH$?", -"image_file_name": "7055653", -"image": [ -"math/53232634_1815.png" -], -"solution": "\\textbf{Solution:} Given $BD\\perp DC$, with $BD=4$ and $CD=3$, by the Pythagorean theorem, we have $BC=\\sqrt{BD^2+CD^2}=5$.\\\\\nSince $E$, $F$, $G$, $H$ are the midpoints of $AB$, $AC$, $CD$, and $BD$, respectively,\\\\\nit follows that $HG=\\frac{1}{2}BC=EF$ and $EH=FG=\\frac{1}{2}AD$.\\\\\nGiven $AD=6$,\\\\\ntherefore $EF=HG=2.5$ and $EH=GF=3$,\\\\\nhence the perimeter of quadrilateral $EFGH$ is $EF+FG+HG+EH=2\\times(2.5+3)=\\boxed{11}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53232715": { -"question": "As shown in the figure, in $ \\square ABCD$, $AD=8$, points $E$ and $F$ are the midpoints of $BD$ and $CD$ respectively, what is the length of $EF$?", -"image_file_name": "7055653", -"image": [ -"math/53232715_191.png" -], -"solution": "\\textbf{Solution}: Since quadrilateral ABCD is a parallelogram, and $AD=8$, \\\\\nthen $BC=AD=8$.\\\\\nSince points E and F are midpoints of BD and CD, respectively, \\\\\nthen $EF=\\frac{1}{2}BC=\\frac{1}{2}\\times 8=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51435972": { -"question": "As shown in the figure, the graph of the inverse proportion function $y=\\frac{2}{x}$ passes through the midpoint $D$ of side AB of the rectangle OABC. What is the area of the rectangle OABC?", -"image_file_name": "7055653", -"image": [ -"math/51435972_202.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $DE \\perp OC$ at point $E$,\\\\\nsince the graph of the inverse proportion function $y=\\frac{2}{x}$ passes through the midpoint $D$ of side $AB$ of rectangle $OABC$,\\\\\ntherefore, $S_{\\text{rectangle }OABC}=2S_{\\text{rectangle }OADE}$,\\\\\nalso, since $k=2$,\\\\\ntherefore, $S_{\\text{rectangle }OADE}=2$,\\\\\ntherefore, $S_{\\text{rectangle }OABC}=\\boxed{4}$.", -"solution_image": [ -"solution_images/51435972_200.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51435943": { -"question": "As shown in the figure, the diagonals AC and BD of the square ABCD intersect at point O, and OA = 3. What is the area of this square?", -"image_file_name": "7055653", -"image": [ -"math/51435943_210.png" -], -"solution": "\\textbf{Solution:} Given the square ABCD, with OA=3,\\\\\nit follows that AC=BD=6, and AO$\\perp$BO,\\\\\nhence the area of the square is: $\\frac{1}{2}$AC$\\times$BD=$\\boxed{18}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51435947": { -"question": "As shown in the figure, in $ABCD$, $E$ is a point on side $BC$. Taking $AE$ as a side, square $AEFG$ is constructed. If $\\angle BAE = 40^\\circ$ and $\\angle CEF = 15^\\circ$, then what is the measure of $\\angle D$?", -"image_file_name": "7055653", -"image": [ -"math/51435947_221.png" -], -"solution": "\\textbf{Solution:} Given that square $AEFG$,\\\\\nit follows that $\\angle AEF=90^\\circ$,\\\\\ngiven $\\angle BAE=40^\\circ$, $\\angle CEF=15^\\circ$,\\\\\nthus, $\\angle AEC=\\angle AEF+\\angle CEF=\\angle BAE+\\angle B$, which means $90^\\circ+15^\\circ=40^\\circ+\\angle B$,\\\\\nso, $\\angle B=65^\\circ$,\\\\\ngiven parallelogram $ABCD$,\\\\\nit follows that $\\angle D=\\angle B=\\boxed{65^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51435945": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is a square, $BE \\perp EF$, $DF \\perp EF$, with $BE = 2.5 \\, \\text{dm}$, and $DF = 4 \\, \\text{dm}$. What is the length of $EF$?", -"image_file_name": "7055653", -"image": [ -"math/51435945_230.png" -], -"solution": "\\textbf{Solution:} Since ABCD is a square,\\\\\nit follows that BC=CD, and BC$\\perp$CD,\\\\\ntherefore, $\\angle$BCE+$\\angle$FCD=$90^\\circ$,\\\\\nalso, since BE$\\perp$EF and DF$\\perp$EF,\\\\\nit follows that $\\angle$BEC=$\\angle$CFD=$90^\\circ$,\\\\\ntherefore, $\\angle$BCE+$\\angle$EBC=$90^\\circ$,\\\\\nthus, $\\angle$EBC=$\\angle$FCD,\\\\\nhence, $\\triangle$BEC$\\cong$$\\triangle$CFD,\\\\\ntherefore, BE=CF=2.5dm, and DF=EC=4dm,\\\\\nthus, EF=EC+CF=$\\boxed{6.5}$dm.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51435944": { -"question": "As shown in the figure, in diamond $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, and $E$ is the midpoint of $BC$. If we connect $OE$, what must the length of $OE$ be?", -"image_file_name": "7055653", -"image": [ -"math/51435944_240.png" -], -"solution": "\\textbf{Solution}: Since ABCD is a rhombus, \\\\\ntherefore, AC $\\perp$ BD, i.e., $\\angle$BOC = $90^\\circ$, \\\\\nAlso, since E is the midpoint of BC, \\\\\ntherefore OE = BE = EC = $\\frac{1}{2}$BC. \\\\\nHence, $OE = \\boxed{\\frac{1}{2}BC}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51435948": { -"question": "As shown in the figure, in diamond ABCD, AB=4, $\\angle B=60^\\circ$, AE$\\perp$BC, and AF$\\perp$CD, with the perpendicular feet being points E and F respectively. If we connect EF, what is the area of $\\triangle AEF$?", -"image_file_name": "7055653", -"image": [ -"math/51435948_950.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw line AH $\\perp$ EF at point H,\\\\\n$\\because$ rhombus ABCD,\\\\\n$\\therefore$ BC=CD, $\\angle$B=$\\angle$D=$60^\\circ$,\\\\\n$\\therefore$ $\\angle$BAD=$180^\\circ-60^\\circ=120^\\circ$,\\\\\n$\\because$ AE$\\perp$BC, AF$\\perp$CD,\\\\\n$\\therefore$ $\\angle$AEB=$\\angle$AFD=$90^\\circ$,\\\\\n$\\therefore$ $\\angle$BAE=$\\angle$DAF=$30^\\circ$,\\\\\n$\\therefore$ $\\angle$EAF=$\\angle$BAD-$\\angle$BAE-$\\angle$DAF=$120^\\circ-30^\\circ-30^\\circ=60^\\circ$,\\\\\nAlso, $\\because$ BC$\\cdot$AE=CD$\\cdot$AF,\\\\\n$\\therefore$ AE=AF,\\\\\n$\\therefore$ $\\triangle$AEF is an equilateral triangle,\\\\\n$\\therefore$ AE=EF=AF, EH=HF=$\\frac{1}{2}$EF, AH=$\\sqrt{3}$EH, $\\because$ AB=4,\\\\\n$\\therefore$ in $\\triangle$RtAEB, BE=$\\frac{1}{2}$AB=2,\\\\\n$\\therefore$ EF=AF=AE=$\\sqrt{3}$BE=2$\\sqrt{3}$,\\\\\n$\\therefore$ AH=$\\sqrt{3}$EH=3,\\\\\n$\\therefore$ Area of $\\triangle$AEF=$\\frac{1}{2}$EF$\\cdot$AH=$\\frac{1}{2} \\times 2\\sqrt{3} \\times 3 = \\boxed{3\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51435948_950.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51635741": { -"question": "As shown in the figure, in $\\triangle ABC$, $BC=20$, $D$ and $E$ are the midpoints of $AB$ and $AC$ respectively, $F$ is a point on $DE$, $DF=4$, connecting $AF$ and $CF$. If $\\angle AFC=90^\\circ$, then what is the length of $AC$?", -"image_file_name": "7055653", -"image": [ -"math/51635741_960.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of $AB$ and $AC$ respectively,\n\nit follows that $DE$ is the midline of $\\triangle ABC$,\n\ntherefore $DE= \\frac{1}{2}BC=10$,\n\nthus $EF=DE−DF=10−4=6$,\n\nin the right triangle $\\triangle AFC$, $AE=EC$,\n\ntherefore $AC=2EF=\\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614426": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle A=30^\\circ$. The perpendicular bisector of AC intersects AC and AB at points D and F, respectively. A perpendicular line is drawn from point B to DF, and the foot of the perpendicular is E. If BC=2, what is the area of the quadrilateral BCDE?", -"image_file_name": "7055653", -"image": [ -"math/51614426_980.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle C=90^\\circ$ and $\\angle A=30^\\circ$, $BC=2$,\\\\\nhence $AC= \\sqrt{3}BC=2\\sqrt{3}$,\\\\\nsince DE is perpendicular bisector of AC, with $\\angle CDE=90^\\circ$,\\\\\nthen $AD=DC= \\frac{1}{2}AC=\\sqrt{3}$,\\\\\nsince BE$\\perp$ED,\\\\\nthus $\\angle C=\\angle CDE=\\angle E=90^\\circ$,\\\\\ntherefore, quadrilateral BCDE is a rectangle,\\\\\nthus the area of quadrilateral BCDE=BC$\\cdot$DC=$2\\times\\sqrt{3}=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614461": { -"question": "As shown in the figure, the diagonals AC and BD of rhombus ABCD intersect at point O. If $\\angle BAC = 52^\\circ$, then what is the measure of $\\angle CDO$?", -"image_file_name": "7055653", -"image": [ -"math/51614461_990.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\nit follows that AD=CD, and $\\angle CAD=\\angle BAC=52^\\circ$,\\\\\ntherefore, $\\angle ADC=180^\\circ - \\angle CAD - \\angle ACD=180^\\circ - 52^\\circ - 52^\\circ=76^\\circ$,\\\\\nhence, $\\angle CDO= \\frac{1}{2}\\angle ADC=\\boxed{38^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53253509": { -"question": "As shown in the figure, the line $AB$ intersects with the line $MN$ at point $O$, $OC \\perp AB$, $OA$ bisects $\\angle MOD$, if $\\angle BON = 20^\\circ$, what is the measure of $\\angle COD$?", -"image_file_name": "7038985", -"image": [ -"math/53253509_08.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BON=20^\\circ$\\\\\nThus, $\\angle AOM=\\angle BON=20^\\circ$\\\\\nSince $OA$ bisects $\\angle MOD$,\\\\\nThus, $\\angle AOD=\\angle AOM=20^\\circ$\\\\\nSince $OC\\perp AB$\\\\\nThus, $\\angle COD=90^\\circ-\\angle AOD=90^\\circ-20^\\circ=\\boxed{70^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53253227": { -"question": "As shown in the figure, point C is the midpoint of segment $AB$, and point D is on segment $CB$. If $AB=10$ and $DB=2$, then what is the length of segment $CD$?", -"image_file_name": "7038985", -"image": [ -"math/53253227_15.png" -], -"solution": "\\textbf{Solution:} Since point $C$ is the midpoint of line segment $AB$ and $AB=10$, \\\\ \nit follows that $BC=\\frac{1}{2}AB=5$, \\\\\nFurthermore, since $DB=2$, \\\\\nit follows that $CD=BC-DB=\\boxed{3}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404553": { -"question": "As shown in the figure, there are three points $D$, $B$, and $E$ sequentially on the line segment $AC$, among which point $B$ is the midpoint of line segment $AC$, $AD=BE$, if $AC=8$, then what is the length of $DE$?", -"image_file_name": "7038985", -"image": [ -"math/53404553_25.png" -], -"solution": "\\textbf{Solution:} \nGiven that points D, B, and E lie sequentially on segment $AC$,\n\nit follows that $DE = DB + BE$,\n\nsince $AD = BE$,\n\nthus $DE = DB + AD = AB$,\n\ngiven $AC = 8$, and B is the midpoint of segment $AC$,\n\nit follows that $AB = \\frac{1}{2}AC = \\frac{1}{2} \\times 8 = 4$,\n\ntherefore, $DE = AB = \\boxed{4}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404554": { -"question": "As shown in the figure, the lines $AB$ and $CD$ intersect at point $O$, with $\\angle AOE=2\\angle AOC$. If $\\angle 1=38^\\circ$, what is the measure of $\\angle DOE$?", -"image_file_name": "7038985", -"image": [ -"math/53404554_285.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle 1=38^\\circ$\\\\\nHence $\\angle AOC=\\angle 1=38^\\circ$\\\\\nTherefore $\\angle AOE=2\\angle AOC=76^\\circ$\\\\\nThus $\\angle DOE=180^\\circ-\\angle AOE-\\angle AOC=180^\\circ-38^\\circ-76^\\circ=\\boxed{66^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404527": { -"question": "As shown in the figure, it is known that lines $AB$ and $CD$ intersect at point O, $OE$ bisects $\\angle COB$, if $\\angle AOD=130^\\circ$, what is the degree measure of $\\angle EOB$?", -"image_file_name": "7038985", -"image": [ -"math/53404527_276.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOD=130^\\circ$, \\\\\nit follows that $\\angle BOC=130^\\circ$, \\\\\nbecause $OE$ bisects $\\angle COB$, \\\\\nthus, $\\angle BOE=\\frac{1}{2}\\angle COB=65^\\circ$, \\\\\nhence, $\\angle EOB = \\boxed{65^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206750": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $\\angle A=60^\\circ$, D is a point on side $AC$, $\\angle DBC=30^\\circ$, $AC=12\\,cm$, then what is the perimeter of $\\triangle ABD$?", -"image_file_name": "7038985", -"image": [ -"math/53206750_50.png" -], -"solution": "\\textbf{Solution:} The net of this solid consists entirely of triangles,\\\\\n$\\therefore$ this solid is a triangular pyramid.\\\\\nHence, the answer is: \\boxed{A}", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206218": { -"question": "As shown in the figure, a right-angled triangle is placed with point C located on the extension of $FD$, $AB \\parallel CF$, $\\angle F = \\angle ACB = 90^\\circ$, $\\angle E = 30^\\circ$, and $\\angle A = 45^\\circ$. What is the measure of $\\angle CBD$?", -"image_file_name": "7038985", -"image": [ -"math/53206218_66.png" -], -"solution": "\\textbf{Solution:} Given: $\\because$ $\\angle A=45^\\circ$,\\\\\n$\\therefore$ $\\angle ABC=45^\\circ$,\\\\\n$\\because$ $AB\\parallel CF$,\\\\\n$\\therefore$ $\\angle BCD=45^\\circ$,\\\\\n$\\because$ $\\angle E=30^\\circ$,\\\\\n$\\therefore$ $\\angle EDF=60^\\circ$,\\\\\n$\\therefore$ $\\angle BDC=180^\\circ-\\angle EDF=120^\\circ$\\\\\nIn $\\triangle BCD$, $\\angle BCD=45^\\circ$, $\\angle BDC=120^\\circ$,\\\\\n$\\therefore$ $\\angle CBD=180^\\circ-\\angle BDC-\\angle BCD=15^\\circ$,\\\\\nTherefore, the answer is: $\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53210764": { -"question": "As shown in the figure, segment $AB=16\\, \\text{cm}$. A point $C$ is taken on $AB$, where $M$ is the midpoint of $AB$ and $N$ is the midpoint of $AC$. If $MN=3\\, \\text{cm}$, what is the length of segment $AC$?", -"image_file_name": "7038985", -"image": [ -"math/53210764_70.png" -], -"solution": "\\textbf{Solution:} Let $CM = a$, and $CN = CM + MN = a + 3$, \\\\\nSince $M$ is the midpoint of $AB$, and $N$ is the midpoint of $AC$, \\\\\nTherefore, $AM = \\frac{1}{2}AB = \\frac{1}{2} \\times 16 = 8$, and $AN = CN = a + 3$, \\\\\nSince $AM = AN + MN = 8$, this implies $a + 3 + 3 = 8$, \\\\\nTherefore, $a = 2$, \\\\\nTherefore, $AC = AM + CM = 8 + 2 = \\boxed{10}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53211002": { -"question": "As shown in the diagram, it is known that $ON$ and $OM$ respectively bisect $\\angle AOC$ and $\\angle BON$. If $\\angle MON=20^\\circ$ and $\\angle AOM=35^\\circ$, what is the measure of $\\angle AOB$?", -"image_file_name": "7038985", -"image": [ -"math/53211002_87.png" -], -"solution": "\\textbf{Solution:} Since $ON$ bisects $\\angle AOC$ and $OM$ bisects $\\angle BON$,\\\\\nit follows that $\\angle AON=\\angle NOC=\\frac{1}{2}\\angle AOC$ and $\\angle BOM=\\angle NOM=\\frac{1}{2}\\angle BON$.\\\\\nGiven that $\\angle MON=20^\\circ$ and $\\angle AOM=35^\\circ$,\\\\\nwe have $\\angle AON=\\angle AOM-\\angle MON=35^\\circ-20^\\circ=15^\\circ$.\\\\\nTherefore, $\\angle AOC=2\\times 15^\\circ=30^\\circ$ and $\\angle BOM=\\angle NOM=20^\\circ$.\\\\\nHence, $\\angle AOB=\\angle BOM+\\angle MON+\\angle AON=20^\\circ+20^\\circ+15^\\circ=\\boxed{55^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53211321": { -"question": "As shown in the figure, $AB=24\\,cm$, $C$ is the midpoint of $AB$, point $D$ is on line segment $AC$, and $AD:CB=1:3$, what is the length of $CD$?", -"image_file_name": "7038985", -"image": [ -"math/53211321_97.png" -], -"solution": "\\textbf{Solution:} Given $AB=24cm$ and $C$ is the midpoint of $AB$,\\\\\nit follows that $AC=BC=\\frac{1}{2}AB=12cm$,\\\\\ngiven $AD\\colon CB=1\\colon 3$,\\\\\nit follows that $AD=\\frac{1}{3}CB=4cm$,\\\\\ntherefore, $CD=AC-AD=12-4=\\boxed{8cm}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53124986": { -"question": "As shown in the figure, line segment $AB=24\\,cm$, C is a point on $AB$, and $AC=15\\,cm$, O is the midpoint of $AB$. What is the length of line segment $OC$?", -"image_file_name": "7038985", -"image": [ -"math/53124986_105.png" -], -"solution": "\\textbf{Solution:} Since AB=24cm, and point O is the midpoint of AB,\\\\\nthen OB=$\\frac{1}{2}$AB=$\\frac{1}{2}\\times 24=12cm$,\\\\\nSince BC=AB−AC,\\\\\nthen BC=24−15=9;\\\\\nSince OC=OB−BC,\\\\\nthen OC=12−9=$\\boxed{3}$cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53119447": { -"question": "As shown in the figure, $AB \\parallel CD$, $\\angle FGB = 155^\\circ$, $FG$ bisects $\\angle EFD$, what is the size of $\\angle BEF$?", -"image_file_name": "7038985", -"image": [ -"math/53119447_115.png" -], -"solution": "\\textbf{Solution:} Since $AB\\parallel CD$ and $\\angle FGB=155^\\circ$,\\\\\nit follows that $\\angle BEF+\\angle EFD=180^\\circ$,\\\\\nhence $\\angle GFD=180^\\circ-\\angle FGB=180^\\circ-155^\\circ=25^\\circ$,\\\\\nGiven that $FG$ bisects $\\angle EFD$,\\\\\nit implies $\\angle EFD=2\\angle GFD=2\\times 25^\\circ=50^\\circ$,\\\\\nthus $\\angle BEF=180^\\circ-\\angle EFD=180^\\circ-50^\\circ=\\boxed{130^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53119446": { -"question": "As shown in the figure, points $C$ and $D$ are two points on line segment $AB$, with $AC:CD:BD=3:6:4$. If $AB=13$, what is the length of $CD$?", -"image_file_name": "7038985", -"image": [ -"math/53119446_124.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $AC: CD: BD = 3: 6: 4$, and $AB = 13$,\n\n$\\therefore$ $CD = \\frac{6}{3+6+4}AB = \\boxed{6}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53078554": { -"question": "As shown in the diagram, point $O$ is on line $AB$, and ray $OD$ is the bisector of $\\angle AOC$. If $\\angle COB = 40^\\circ$, what is the degree measure of $\\angle DOC$?", -"image_file_name": "7038985", -"image": [ -"math/53078554_135.png" -], -"solution": "\\textbf{Solution:} Since $\\angle COB=40^\\circ$, \\\\\nit follows that $\\angle AOC=180^\\circ-\\angle COB=140^\\circ$, \\\\\nbecause OD is the angle bisector of $\\angle AOC$, \\\\\ntherefore $\\angle DOC= \\frac{1}{2}\\angle AOC= \\frac{1}{2}\\times140^\\circ=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53042516": { -"question": "As shown in the diagram, in $ \\triangle ABC$, $AD$ bisects $ \\angle BAC$ and $AE$ is the altitude. If $ \\angle B=40^\\circ$ and $ \\angle C=60^\\circ$, what is the measure of $ \\angle EAD$?", -"image_file_name": "7038985", -"image": [ -"math/53042516_147.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle B=40^\\circ$ and $\\angle C=60^\\circ$, \\\\\ntherefore $\\angle BAC=180^\\circ-\\angle B-\\angle C=180^\\circ-40^\\circ-60^\\circ=80^\\circ$ \\\\\nSince $AD$ bisects $\\angle BAC$, \\\\\nthus $\\angle BAD=\\angle CAD=40^\\circ$ \\\\\nAlso, since $AE$ is the altitude, \\\\\nthus $\\angle BAE=90^\\circ-\\angle B=90^\\circ-40^\\circ=50^\\circ$ \\\\\nTherefore, $\\angle EAD=\\angle BAE-\\angle BAD=50^\\circ-40^\\circ=\\boxed{10^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53042295": { -"question": "As shown in the figure, point C is on segment $AB$, and point D is the midpoint of $BC$, with $AB=30\\,cm$ and $AC=4CD$. What is the length of $AC$ in $cm$?", -"image_file_name": "7038985", -"image": [ -"math/53042295_156.png" -], -"solution": "\\textbf{Solution:} Given that point $D$ is the midpoint of $BC$, we have \\\\\n$BC = 2CD = 2BD$, \\\\\nBy the segment addition and subtraction property, we have \\\\\n$AB = AC + BC$, which means $4CD + 2CD = 30$, \\\\\nSolving for $CD$ gives $CD = 5$, \\\\\nTherefore, $AC = 4CD = 4 \\times 5 = \\boxed{20}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53106927": { -"question": "As shown in the figure, point $C$ is on the line segment $AB$, and point $D$ is the midpoint of the line segment $BC$. Given that $AB=10$ and $AC=6$, what is the length of the line segment $BD$?", -"image_file_name": "7038985", -"image": [ -"math/53106927_165.png" -], -"solution": "\\textbf{Solution.} Since point D is the midpoint of line segment $BC$, and $AB=10$, $AC=6$,\n\\[\\therefore BD = \\frac{1}{2}BC =\\frac{1}{2}\\left(AB-AC\\right) =\\frac{1}{2}\\left(10-6\\right)=\\boxed{2}.\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52826614": { -"question": "As shown in the figure, the straight line AO is perpendicular to OB with the foot of the perpendicular at O. The length of segment AO is 3, and the length of BO is 4. Taking point A as the center and the length of AB as the radius, an arc is drawn to intersect the straight line AO at point C. What is the length of OC?", -"image_file_name": "7038985", -"image": [ -"math/52826614_170.png" -], -"solution": "\\textbf{Solution:} Since $AO \\perp OB$, and the length of segment AO = 3, BO = 4,\\\\\ntherefore, in $\\triangle AOB$, we have $AB = \\sqrt{AO^{2} + OB^{2}} = 5$,\\\\\naccording to the problem, we know: AC = AB = 5,\\\\\ntherefore, $OC = AC - AO = \\boxed{2}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51495484": { -"question": "As shown in the figure, it is known that points B and C divide the line segment AD from left to right into three parts in the ratio $2:4:3$. If M is the midpoint of AD and BM $= 5\\,\\text{cm}$, then what is the length of the line segment MC?", -"image_file_name": "7038985", -"image": [ -"math/51495484_180.png" -], -"solution": "\\textbf{Solution:} Given, let $AB=2x$, $BC=4x$, $CD=3x$\\\\\nSince M is the midpoint of AD,\\\\\nit follows that $AM=MD=\\frac{1}{2}AD=\\frac{1}{2}(2x+4x+3x)=\\frac{9}{2}x$\\\\\nSince $BM=5cm$,\\\\\nit follows that $AD-AB-MC-CD=5$\\\\\nThus, $9x-2x-MC-3x=5$\\\\\nTherefore, $MC=4x-5$\\\\\nSince $MC=MD-CD=\\frac{9}{2}x-3x=\\frac{3}{2}x$,\\\\\nit follows that $4x-5=\\frac{3}{2}x$\\\\\nThus, $\\frac{3}{2}x=4x-5$\\\\\nThus, $x=2$\\\\\nTherefore, $MC=\\frac{3}{2}\\times 2=\\boxed{3}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51495482": { -"question": "As shown in the figure, $\\angle AOE = 100^\\circ$, $\\angle BOF = 80^\\circ$, OE bisects $\\angle BOC$, and OF bisects $\\angle AOC$. What is the measure of $\\angle EOF$?", -"image_file_name": "7038985", -"image": [ -"math/51495482_190.png" -], -"solution": "\\textbf{Solution:} \n\nSince $OE$ bisects $\\angle BOC$, and $OF$ bisects $\\angle AOC$\\\\\nTherefore, $\\angle AOB=2\\angle EOF$\\\\\nAlso, since $\\angle AOB=\\angle BOF+\\angle AOE-\\angle EOF=80^\\circ+100^\\circ-\\angle EOF=180^\\circ-\\angle EOF$\\\\\nTherefore, $2\\angle EOF=180^\\circ-\\angle EOF$\\\\\nSolving this gives $\\angle EOF=\\boxed{60^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51495019": { -"question": "As shown in the figure, the line segment $AD=21\\,cm$, point $B$ is on line segment $AD$, $C$ is the midpoint of $BD$, and $AB=\\frac{1}{3}CD$, what is the length of $BC$?", -"image_file_name": "7038985", -"image": [ -"math/51495019_207.png" -], -"solution": "\\textbf{Solution:} Let $AB=x$, then $CD=3x$,\\\\\nsince C is the midpoint of BD,\\\\\nthus $BC=CD=3x$,\\\\\ntherefore $3x+3x+x=21$,\\\\\nsolving this equation yields $x=3$,\\\\\n$BC=3\\times 3=\\boxed{9}$ cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51323803": { -"question": "As shown in the figure, $ \\angle AOB : \\angle BOC : \\angle COD = 2 : 3 : 4$, the rays $OM$ and $ON$ bisect $ \\angle AOB$ and $ \\angle COD$ respectively. If $ \\angle MON$ is a right angle, what is the measure of $ \\angle COD$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/51323803_215.png" -], -"solution": "\\textbf{Solution:} Let $\\angle AOB=2x^\\circ$, then $\\angle BOC=3x^\\circ$, $\\angle COD=4x^\\circ$,\\\\\nsince ray OM and ON bisect $\\angle AOB$ and $\\angle COD$ respectively,\\\\\ntherefore $\\angle BOM= \\frac{1}{2} \\angle AOB=x^\\circ$\\\\\n$\\angle CON= \\frac{1}{2} \\angle COD=2x^\\circ$\\\\\nsince $\\angle MON=90^\\circ$\\\\\ntherefore $\\angle CON+\\angle BOC+\\angle BOM=90^\\circ$\\\\\ntherefore $2x+3x+x=90$\\\\\nSolving for x, we get: $x=15$\\\\\ntherefore $\\angle COD=4x =15^\\circ \\times 4=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438558": { -"question": "As shown in the figure, point \\(C\\) divides the line segment \\(AB\\) into two parts in the left-to-right order, in the ratio \\(2:3\\). Point \\(D\\) is the midpoint of \\(AB\\). If \\(CD=2\\), what is the length of the line segment \\(AB\\)?", -"image_file_name": "7038985", -"image": [ -"math/51438558_220.png" -], -"solution": "\\textbf{Solution}: Let $AC = 2x$, then $BC = 3x$, \\\\\n$\\therefore AB = AC + BC = 5x$, \\\\\n$\\because$ point D is the midpoint of AB, \\\\\n$\\therefore AD = \\frac{1}{2}AB = 2.5x$, \\\\\n$\\therefore CD = AD - AC = 2.5x - 2x = 0.5x$, \\\\\n$\\because CD = 2$, \\\\\n$\\therefore 0.5x = 2$, \\\\\n$\\therefore x = 4$, \\\\\n$\\therefore AB = 5x = \\boxed{20}$,", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51438171": { -"question": "As shown in the figure, it is known that point D is the midpoint of segment AB, and C is the midpoint of segment AD. If $CD = 1$, what is the length of $AB$?", -"image_file_name": "7038985", -"image": [], -"solution": "\\textbf{Solution:} As shown in the diagram:\\\\\n$\\because C$ is the midpoint of segment $AD$ and $CD=1$,\\\\\n$\\therefore AD=2CD=2$,\\\\\n$\\because$ point $D$ is the midpoint of segment $AB$,\\\\\n$\\therefore AB=2AD=\\boxed{4}$.", -"solution_image": [ -"solution_images/51438171_230.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51379153": { -"question": "As shown in the figure, $AB$ is tangent to $\\odot O$ at point $B$, extending $AO$ intersects $\\odot O$ at point $C$, connecting $BC$. If $\\angle A=40^\\circ$, what is the value of $\\angle C$?", -"image_file_name": "7058804", -"image": [ -"math/51379153_00.png" -], -"solution": "\\textbf{Solution:} Given that AB is a tangent to circle O at point B,\\\\\nit follows that OB$\\perp$AB, meaning $\\angle$ABO=$90^\\circ$,\\\\\nhence $\\angle$AOB=$50^\\circ$ (the two acute angles of a right triangle are complementary),\\\\\nAlso, given that point C is on the extension of AO and lies on circle O,\\\\\nthus $\\angle$C=$\\frac{1}{2}\\angle$AOB=$\\boxed{25^\\circ}$ (the angle subtended by an arc at the circumference is half that at the center).", -"solution_image": [ -"solution_images/51379153_00.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51379599": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, C and D are two points on $\\odot O$, $\\angle CDB=30^\\circ$, and BC=4.5, then what is the length of AB?", -"image_file_name": "7058804", -"image": [ -"math/51379599_10.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $AC$.\\\\\nSince $AB$ is the diameter of circle $O$,\\\\\nit follows that $\\angle ACB=90^\\circ$,\\\\\nSince $\\angle CAB=\\angle CDB=30^\\circ$, and $BC=4.5$,\\\\\nit follows that $AB=2BC=\\boxed{9}$.", -"solution_image": [ -"solution_images/51379599_11.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51379109": { -"question": "As shown in the figure, in circle $\\odot O$, C and D are two points on circle $\\odot O$, and AB is the diameter of $\\odot O$. Given that $\\angle AOC = 130^\\circ$, what is the measure of $\\angle BDC$?", -"image_file_name": "7058804", -"image": [ -"math/51379109_20.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC=130^\\circ$ and AB is the diameter of $\\odot O$,\\\\\nit follows that $\\angle BOC=180^\\circ-\\angle AOC=50^\\circ$,\\\\\nthus $\\angle BDC= \\frac{1}{2}\\angle BOC=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623055": { -"question": "As shown in the figure, A, B, and C are three points on the circle $\\odot O$. Given that $\\angle ABC=20^\\circ$, what is the measure of $\\angle AOC$?", -"image_file_name": "7058804", -"image": [ -"math/52623055_30.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ABC=20^\\circ$, \\\\\nthen $\\angle AOC= 2\\angle ABC = \\boxed{40^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623527": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $\\angle A=60^\\circ$, D is a point on side $AC$, $\\angle DBC=30^\\circ$, $AC=12\\,cm$, then what is the perimeter of $\\triangle ABD$?", -"image_file_name": "7058804", -"image": [ -"math/52623527_49.png" -], -"solution": "\\textbf{Solution:} Connect $CO$, $AO$, passing through point $O$, construct $OM\\perp AB$ at $M$, $ON\\perp CD$ at $N$,\\\\\nthen quadrilateral $OMEN$ is a rectangle,\\\\\nsince $OM\\perp AB$, $ON\\perp CD$,\\\\\nand $AB=CD$,\\\\\nit follows that $CN=\\frac{1}{2}CD$, $AM=\\frac{1}{2}AB$,\\\\\nsince $CO=AO$,\\\\\nit follows that right triangle $CNO\\cong$ right triangle $AMO$ (HL),\\\\\nthus $NO=MO$,\\\\\nhence $NO=MO=EM$,\\\\\nseeing that $OM\\perp AB$,\\\\\nit follows that $AM=MB=\\frac{1}{2}AB=\\frac{1}{2}(AE+BE)=5$,\\\\\ntherefore, $EM=AM-AE=5-3=2$,\\\\\nthus $ON=EM=\\boxed{2}$.", -"solution_image": [ -"solution_images/52623527_46.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623549": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, $C$ and $D$ are points on $\\odot O$, $\\angle CDB=25^\\circ$. A tangent to $\\odot O$ passing through point $C$ intersects the extension of $AB$ at point $E$. What is the measure of $\\angle E$?", -"image_file_name": "7058804", -"image": [ -"math/52623549_50.png" -], -"solution": "\\textbf{Solution:} Draw line OC,\\\\\n$\\because$ CE is the tangent to $\\odot$O,\\\\\n$\\therefore$ OC$\\perp$CE,\\\\\nwhich means $\\angle$OCE$=90^\\circ$,\\\\\n$\\because$ $\\angle$COB$=2\\angle$CDB$=50^\\circ$,\\\\\n$\\therefore$ $\\angle$E$=90^\\circ-\\angle$COB$=\\boxed{40^\\circ}$.", -"solution_image": [ -"solution_images/52623549_50.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52622404": { -"question": "As shown in the figure, the incircle $\\odot O$ of $\\triangle ABC$ is tangent to $AB$, $BC$, $CA$ at points $D$, $E$, and $F$, respectively. If $\\angle DEF = 52^\\circ$, then what is the degree measure of $\\angle A$?", -"image_file_name": "7058804", -"image": [ -"math/52622404_60.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OD, and OF, \\\\\n$\\because$ The incircle $\\odot O$ of $\\triangle ABC$ is tangent to the sides AB, BC, CA at points D, E, F, respectively,\\\\\n$\\therefore$ $\\angle ADO=\\angle AFO=90^\\circ$;\\\\\n$\\therefore$ $\\angle A+\\angle DOF=180^\\circ$,\\\\\n$\\because$ $\\angle DEF=52^\\circ$, and $\\angle DOF$ and $\\angle DEF$ are the central angle and the inscribed angle subtended by the same arc $\\overset{\\frown}{DF}$, respectively,\\\\\n$\\therefore$ $\\angle DOF=2\\angle DEF=104^\\circ$;\\\\\n$\\therefore$ $\\angle A=180^\\circ-\\angle DOF=\\boxed{76^\\circ}$.", -"solution_image": [ -"solution_images/52622404_60.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623034": { -"question": "As shown in the figure, $E$ is a moving point on the side $CD$ of square $ABCD$, with $AB=2$. Connect $BE$, and draw $AF \\perp BE$, which intersects $BC$ at $F$ and $BE$ at $G$. Connect $CG$. When $CG$ is at its minimum value, what is the length of $CF$?", -"image_file_name": "7058804", -"image": [ -"math/52623034_70.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, take the midpoint O of AB, and connect OG and OC.\\\\\n$\\because$ Quadrilateral ABCD is a square,\\\\\n$\\therefore \\angle ABC=90^\\circ$,\\\\\n$\\because$AB=2,\\\\\n$\\therefore$OB=OA=1,\\\\\n$\\therefore$OC=$\\sqrt{1^2+2^2}=\\sqrt{5}$,\\\\\n$\\because$AF$\\perp$BE,\\\\\n$\\therefore \\angle AGB=90^\\circ$,\\\\\n$\\therefore$ point G lies on the circle $\\odot$O with AB as the diameter,\\\\\n$\\because$AO=OB,\\\\\n$\\therefore$OG=$\\frac{1}{2}$AB=1,\\\\\n$\\therefore$ when O, G, and C are collinear, the value of CG is minimum, and the minimum value=$\\sqrt{5}-1$ (as shown in Figure 2),\\\\\n$\\because$OB=OG=1,\\\\\n$\\therefore \\angle OBG=\\angle OGB$,\\\\\n$\\because$AB$\\parallel$CD,\\\\\n$\\therefore \\angle OBG=\\angle CEG$,\\\\\n$\\because \\angle OGB=\\angle CGE$,\\\\\n$\\therefore \\angle CGE=\\angle CEG$,\\\\\n$\\therefore$CE=CG=$\\sqrt{5}-1$,\\\\\n$\\because \\angle ABF=\\angle BCE=\\angle AGB=90^\\circ$,\\\\\n$\\therefore \\angle BAF+\\angle ABG=90^\\circ$, $\\angle ABG+\\angle CBE=90^\\circ$,\\\\\n$\\therefore \\angle BAF=\\angle CBE$,\\\\\n$\\because$AB=BC,\\\\\n$\\therefore \\triangle ABF \\cong \\triangle BCE$ (ASA),\\\\\n$\\therefore$BF=CE=$\\sqrt{5}-1$,\\\\\n$\\therefore$CF=BC−BF=2−($\\sqrt{5}-1$)=3−$\\sqrt{5}$,\\\\\nTherefore, $CF = \\boxed{3-\\sqrt{5}}$", -"solution_image": [ -"solution_images/52623034_70.png", -"solution_images/52623034_74.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623298": { -"question": "As shown in the figure, the diameter $AB$ of $\\odot O$ is perpendicular to the chord $CD$, with the foot of the perpendicular being $E$. If $\\angle B = 60^\\circ$ and $AC = 6$, what is the length of $CD$?", -"image_file_name": "7058804", -"image": [ -"math/52623298_80.png" -], -"solution": "\\textbf{Solution:} Draw $AD$,\\\\\nsince the diameter $AB$ of the circle $O$ is perpendicular to the chord $CD$ at the foot $E$,\\\\\nit follows that $AE=AE$, $CE=DE$, $\\angle AED=\\angle AEC=90^\\circ$,\\\\\nthus $\\triangle AED\\cong \\triangle AEC$ (by SAS),\\\\\nhence $AD=AC$,\\\\\nsince $\\angle B=60^\\circ$, $AC=6$,\\\\\nit follows that $\\angle BCE=30^\\circ$,\\\\\nsince $\\angle ACB=90^\\circ$,\\\\\nit follows that $\\angle ACE=\\angle ACB-\\angle BCE=60^\\circ$,\\\\\nsimilarly, it can be found that: $\\angle ADE=60^\\circ$,\\\\\nhence $\\triangle ACD$ is an equilateral triangle,\\\\\ntherefore $CD=AC=\\boxed{6}$.", -"solution_image": [ -"solution_images/52623298_81.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623225": { -"question": "As shown in the figure, $\\angle A$ is the inscribed angle of $\\odot O$ and $\\angle A = 40^\\circ$, then what is the measure of $\\angle BOC$?", -"image_file_name": "7058804", -"image": [ -"math/52623225_90.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle A$ is the peripheral angle of $\\odot O$, $\\angle A=40^\\circ$,\\\\\nhence, $\\angle BOC=2\\angle A=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52622477": { -"question": "As shown in the figure, it is known that the central angle $\\angle AOB$ is $100^\\circ$. What is the measure of the inscribed angle $\\angle ACB$?", -"image_file_name": "7058804", -"image": [ -"math/52622477_103.png" -], -"solution": "\\textbf{Solution:} Let point E be a point on the major arc AB, and connect EA and EB. \\\\\n$\\because$ $\\angle$AOB=100$^\\circ$, \\\\\n$\\therefore$ $\\angle$E= $ \\frac{1}{2}\\angle$AOB=50$^\\circ$, \\\\\n$\\therefore$ $\\angle$ACB=180$^\\circ$−$\\angle$E=\\boxed{130^\\circ}.", -"solution_image": [ -"solution_images/52622477_100.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52622479": { -"question": "As shown in the figure, the radius of the drainage pipe's cross-section is 5 decimeters, and the width of the water surface $AB=8$ decimeters, with $OC\\perp AB$. What is the maximum depth $CD$ of the water?", -"image_file_name": "7058804", -"image": [ -"math/52622479_112.png" -], -"solution": "Solution: Since the diameter of circle O is 10 dm,\\\\\nit follows that OA=5 (dm),\\\\\nand since OD$\\perp$AB, and AB=8 (dm),\\\\\nit follows that AD=BD=4,\\\\\nhence, OD$=\\sqrt{OA^{2}-AD^{2}}=3$,\\\\\ntherefore, the maximum depth of the water CD=OC-OD=5-3=\\boxed{2} (dm).", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623584": { -"question": "As shown in the figure, AB is a chord of $\\odot O$ (AB is not a diameter). Taking point A as the center and the length of AB as the radius, an arc is drawn to intersect $\\odot O$ at point C. Connect AC, BC, OB, and OC. If $\\angle ABC=65^\\circ$, what is the degree measure of $\\angle BOC$?", -"image_file_name": "7058804", -"image": [ -"math/52623584_120.jpeg" -], -"solution": "\\textbf{Solution:} From the given, we can derive: AB=AC, \\\\\n$\\because$ $\\angle$ABC=65°, \\\\\n$\\therefore$ $\\angle$ACB=65°, \\\\\n$\\therefore$ $\\angle$A=50°, \\\\\n$\\therefore$ $\\angle$BOC=\\boxed{100^\\circ}", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623522": { -"question": "As shown in the diagram, in circle $O$, $\\angle BAC=25^\\circ$, $\\angle CED=30^\\circ$, then what is the degree measure of $\\angle BOD$?", -"image_file_name": "7058804", -"image": [ -"math/52623522_134.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OC,\\\\\nGiven that $\\angle BAC=25^\\circ$ and $\\angle CED=30^\\circ$,\\\\\nby the Inscribed Angle Theorem, we have $\\angle BOC=50^\\circ$ and $\\angle DOC=60^\\circ$,\\\\\ntherefore, $\\angle BOD=\\angle BOC+\\angle DOC=50^\\circ+60^\\circ=\\boxed{110^\\circ}$.", -"solution_image": [ -"solution_images/52623522_130.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623419": { -"question": "As shown in the figure, it is known that the diameter $CD=8$ of the circle $\\odot O$, $AB$ is a chord of $\\odot O$, and $AB \\perp CD$ at the foot point $M$, $OM=2$. What is the length of $AB$?", -"image_file_name": "7058804", -"image": [ -"math/52623419_146.png" -], -"solution": "\\textbf{Solution:} Connect OB, \\\\\n$\\because$ the diameter $CD=8$, and $AB\\perp CD$, $OM=2$\\\\\n$\\therefore$ BM=$\\sqrt{OB^{2}-OM^{2}}$\\\\\n=$\\sqrt{4^{2}-2^{2}}$\\\\\n=$2\\sqrt{3}$,\\\\\nAccording to the Perpendicular Diameter Theorem, we obtain\\\\\nAB=2BM=$\\boxed{4\\sqrt{3}}$", -"solution_image": [ -"solution_images/52623419_140.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52622671": { -"question": "As shown in the figure, AB is the diameter of $\\odot$O. If AC=4 and $\\angle D=60^\\circ$, what is the length of BC?", -"image_file_name": "7058804", -"image": [ -"math/52622671_150.png" -], -"solution": "\\textbf{Solution:} Since AB is the diameter of the circle $O$,\\\\\nit follows that $\\angle ACB=90^\\circ$,\\\\\nsince $\\angle A=\\angle D=60^\\circ$,\\\\\nthus, $\\angle ABC=90^\\circ-\\angle A=30^\\circ$,\\\\\nsince AC=4,\\\\\nit follows that AB=2AC=8.\\\\\nTherefore, $BC= \\sqrt{AB^{2}-AC^{2}}=\\sqrt{8^{2}-4^{2}}=\\boxed{4\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623030": { -"question": "As shown in the figure, points A, B, C, and D are on the circle $\\odot O$, with $\\angle AOC=140^\\circ$. Point B is the midpoint of the arc $\\overset{\\frown}{AC}$. What is the degree measure of $\\angle D$?", -"image_file_name": "7058804", -"image": [ -"math/52623030_161.png" -], -"solution": "\\textbf{Solution:} Draw line OB as shown in the figure,\\\\\nsince point B is the midpoint of $\\widehat{AC}$, and $\\angle$AOC=$140^\\circ$,\\\\\ntherefore, $\\angle$AOB=$\\frac{1}{2}\\angle$AOC=$70^\\circ$,\\\\\nby the Inscribed Angle Theorem, we have $\\angle$D=$\\frac{1}{2}\\angle$AOB=$\\boxed{35^\\circ}$.", -"solution_image": [ -"solution_images/52623030_160.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52950180": { -"question": "As shown in the figure, the radius of $\\odot O$ is $\\sqrt{5}$. AB and CD are two parallel chords of $\\odot O$, with $\\angle CDE=30^\\circ$ and $AD=2$. What is the length of chord BE?", -"image_file_name": "7058804", -"image": [ -"math/52950180_175.png" -], -"solution": "\\textbf{Solution:} Connect OC, OE, BC, CE, and draw CH$\\perp$BE intersecting BE at point H,\\\\\n$\\because$AB$\\parallel$CD,\\\\\n$\\therefore$BC = AD = 2,\\\\\n$\\because$$\\angle$CDE = $30^\\circ$,\\\\\n$\\therefore$$\\angle$COE= $60^\\circ$, $\\angle$CBE = $\\angle$CDE = $30^\\circ$,\\\\\n$\\therefore$$\\triangle$OCE is an equilateral triangle,\\\\\n$\\therefore$CE= $\\sqrt{5}$, in $Rt\\triangle BCH$,\\\\\n$CH=\\frac{1}{2}BC=1$\\\\\n$\\therefore$BH= $\\sqrt{2^2-1^2}=\\sqrt{3}$, in $Rt\\triangle$CEH\\\\\nHE= $\\sqrt{(\\sqrt{5})^2-1^2}=2$\\\\\n$\\therefore$BE=2+ $\\sqrt{3}$.\\\\\nTherefore, the answer is: BE=\\boxed{2+\\sqrt{3}}.", -"solution_image": [ -"solution_images/52950180_170.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52950176": { -"question": "As shown in the figure, $PA$ and $PB$ are tangents to the circle $O$, with $A$ and $B$ being the points of tangency. Point $C$ is on the minor arc $\\overset{\\frown}{AB}$. If $\\angle ACB = 110^\\circ$, what is the measure of $\\angle P$?", -"image_file_name": "7058804", -"image": [ -"math/52950176_184.png" -], -"solution": "\\textbf{Solution:} \\textit{Draw OA, OB,\\\\\nsince PA, PB are tangents to the circle $\\odot O$,\\\\\nit follows that $\\angle OAP = \\angle OBP = 90^\\circ$,\\\\\nsince $\\angle ACB = 110^\\circ$,\\\\\nthe central angle corresponding to the major arc AB is $220^\\circ$,\\\\\nhence, $\\angle AOB = 360^\\circ - 220^\\circ = 140^\\circ$,\\\\\ntherefore, $\\angle P = 180^\\circ - \\angle AOB = \\boxed{40^\\circ}$,}", -"solution_image": [ -"solution_images/52950176_180.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52949314": { -"question": "As shown in the figure, the diameter $AB$ of circle $\\odot O$ is perpendicular to chord $CD$ at point $E$, and $BD$ is connected. If $CD=8$ and $OE=3$, what is the length of $BD$?", -"image_file_name": "7058804", -"image": [ -"math/52949314_198.png" -], -"solution": "\\textbf{Solution:} Draw line $OD$, \\\\\nsince $AB \\perp CD$, $AB$ passes through the center $O$, $CD=8$, \\\\\ntherefore $CE=DE=4$, $\\angle OED=\\angle DEB=90^\\circ$, \\\\\nsince $OE=3$, \\\\\ntherefore $OD=\\sqrt{OE^2+DE^2}=\\sqrt{3^2+4^2}=5$, \\\\\ntherefore $OB=OD=5$, \\\\\ntherefore $BE=OB-OE=5-3=2$, \\\\\nby the Pythagorean theorem, we get \\\\\ntherefore $BD=\\sqrt{BE^2+DE^2}=\\sqrt{2^2+4^2}=\\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52949314_190.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52949310": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $\\angle BCD = 105^\\circ$. What is the measure of $\\angle BOD$?", -"image_file_name": "7058804", -"image": [ -"math/52949310_204.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is inscribed in circle O,\\\\\nit follows that $\\angle A + \\angle BCD = 180^\\circ$,\\\\\ntherefore $\\angle A = 180^\\circ - \\angle BCD = 180^\\circ - 105^\\circ = 75^\\circ$,\\\\\nhence $\\angle BOD = 2\\angle A = 2 \\times 75^\\circ = \\boxed{150^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51458348": { -"question": "As shown in the figure, points A, B, and C are on the circle with center O. If $\\angle C=20^\\circ$ and $\\angle B=30^\\circ$, what is the measure of $\\angle A$?", -"image_file_name": "7058804", -"image": [ -"math/51458348_210.png" -], -"solution": "\\textbf{Solution:} Let $\\because$ $\\angle C=20^\\circ$,\\\\\n$\\therefore$ $\\angle O=2\\angle C=40^\\circ$,\\\\\n$\\because$ $\\angle O+\\angle A=\\angle B+\\angle C$,\\\\\n$\\therefore$ $\\angle A=30^\\circ+20^\\circ-40^\\circ=\\boxed{10^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51458271": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$. If $\\angle AOC=130^\\circ$, what is the measure of $\\angle D$ in degrees?", -"image_file_name": "7058804", -"image": [ -"math/51458271_224.png" -], -"solution": "\\textbf{Solution:} Draw AD, \\\\\nsince AB is the diameter of circle O, and $\\angle$AOC $= 130^\\circ$, \\\\\ntherefore, $\\angle$BDA $= 90^\\circ$, and $\\angle$CDA $= 65^\\circ$, \\\\\nhence, $\\angle$BDC $=\\boxed{25^\\circ}$.", -"solution_image": [ -"solution_images/51458271_220.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51458132": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$. A tangent to $\\odot O$ is drawn through the point C on $\\odot O$, intersecting the extension of AB at point D. If $\\angle D=40^\\circ$, what is the magnitude of $\\angle A$?", -"image_file_name": "7058804", -"image": [ -"math/51458132_230.png" -], -"solution": "\\textbf{Solution:} Let:\\\\\nSince $CD$ is the tangent to $\\odot O$,\\\\\n$\\therefore$ $\\angle OCD = 90^\\circ$,\\\\\nSince $\\angle D = 40^\\circ$,\\\\\n$\\therefore$ $\\angle COD = 50^\\circ$,\\\\\nSince $AB$ is the diameter of $\\odot O$,\\\\\n$\\therefore$ $\\angle A$ and $\\angle COD$ are respectively the inscribed angle and the central angle that subtend the same arc $\\overset{\\frown}{BC}$,\\\\\n$\\therefore$ $\\angle A = \\frac{1}{2} \\angle COD = \\boxed{25^\\circ}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51350809": { -"question": "As shown in the figure, after pouring some water into a cylindrical container with a diameter of 78 cm, the cross-section is as shown in the figure. If the width of the water surface $AB = 72cm$, what is the maximum depth of the water?", -"image_file_name": "7058804", -"image": [ -"math/51350809_241.png" -], -"solution": "\\textbf{Solution:} Connect $OB$, and through point O draw $OC\\perp AB$ at point D, intersecting $\\odot O$ at point C, as shown in the diagram:\\\\\nThen $BD=\\frac{1}{2}AB=36\\,\\text{cm}$,\\\\\nSince the diameter of $\\odot O$ is $78\\,\\text{cm}$,\\\\\nTherefore $OB=OC=39\\,\\text{cm}$,\\\\\nIn $\\triangle OBD$ right-angled at D, $OD=\\sqrt{OB^{2}-BD^{2}}=\\sqrt{39^{2}-36^{2}}=15\\,\\text{cm}$,\\\\\nTherefore, $CD=OC-OD=39-15=\\boxed{24}\\,\\text{cm}$,\\\\\nwhich means the maximum depth of water is $24\\,\\text{cm}$.", -"solution_image": [ -"solution_images/51350809_243.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351172": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in circle $\\odot O$. If the quadrilateral $ABCO$ is a rhombus, then what is the measure of $\\angle D$ in degrees?", -"image_file_name": "7058804", -"image": [ -"math/51351172_252.png" -], -"solution": "\\textbf{Solution:} Let $\\angle ADC=\\alpha$ and $\\angle ABC=\\beta$;\\\\\nSince quadrilateral ABCO is a rhombus,\\\\\nit follows that $\\angle ABC=\\angle AOC=\\beta$;\\\\\nTherefore $\\angle ADC=\\frac{1}{2}\\beta$;\\\\\nSince quadrilateral $ABCD$ is circumscribed within a circle,\\\\\nit follows that $\\alpha +\\beta =180^\\circ$,\\\\\ntherefore $\\left\\{\\begin{array}{l}\n\\alpha +\\beta =180^\\circ\\\\\n\\alpha =\\frac{1}{2}\\beta\n\\end{array}\\right.$,\\\\\nFrom which we find: $\\beta =120^\\circ$, $\\alpha =60^\\circ$, thus $\\angle ADC=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51352039": { -"question": "As shown in the figure, $AB$ is the diameter of the semicircle $O$, and $C$ is a point on the semicircle $O$. Connect $AC$ and $CB$, where $D$ is a point on the arc $\\widehat{BC}$, and connect $CD$ and $BD$. If $\\angle ABC=40^\\circ$, what is the degree measure of $\\angle D$?", -"image_file_name": "7058804", -"image": [ -"math/51352039_266.png" -], -"solution": "\\textbf{Solution:} Given that $AB$ is the diameter of semicircle O,\\\\\nit follows that $\\angle ACB=90^\\circ$,\\\\\nsince $\\angle ABC=40^\\circ$,\\\\\nit follows that $\\angle CAB=50^\\circ$,\\\\\nsince the quadrilateral ABCD is inscribed in semicircle O,\\\\\nit follows that $\\angle D=180^\\circ-50^\\circ=\\boxed{130^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51350810": { -"question": "As shown in the figure, $AB$ is a diameter of the circle $O$ with $AB=4$ and $CD=2\\sqrt{2}$. The length of the minor arc $BC$ is twice that of the minor arc $BD$. What is the length of $AC$?", -"image_file_name": "7058804", -"image": [ -"math/51350810_273.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $OC$, $OD$, and $BC$,\n\n$\\because AB=4$\n\n$\\therefore OC=OD=2$\n\n$\\because OC^2+OD^2=8$, $CD^2=8$\n\n$\\therefore OC^2+OD^2=CD^2$\n\n$\\therefore \\triangle OCD$ is a right-angled triangle, and $\\angle COD=90^\\circ$\n\n$\\therefore \\overset{\\frown}{CB}=2\\overset{\\frown}{DB}$\n\n$\\therefore \\overset{\\frown}{BC}=\\frac{2}{3}\\overset{\\frown}{CD}$\n\n$\\therefore \\angle BOC=\\frac{2}{3}\\times \\angle COD=60^\\circ$\n\n$\\because OC=OB$\n\n$\\therefore \\triangle OBC$ is an equilateral triangle\n\n$\\therefore BC=OC=2$\n\n$\\because AB$ is the diameter, $AB=4$\n\n$\\therefore \\angle ACB=90^\\circ$\n\n$\\therefore AC=\\sqrt{3}BC=2\\sqrt{3}$\n\nThus, the answer is: $AC=\\boxed{2\\sqrt{3}}$", -"solution_image": [ -"solution_images/51350810_271.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351832": { -"question": "As shown in the figure, in the $xy$-plane coordinate system, point $A(0, 3)$, point $B(2, 1)$, and point $C(2, -3)$. Through drawing operations, it can be known: what are the coordinates of the center of the circumscribed circle of $\\triangle ABC$?", -"image_file_name": "7058804", -"image": [ -"math/51351832_280.png" -], -"solution": "\\textbf{Solution:} Since the circumcenter of $\\triangle ABC$ is the intersection point of the perpendicular bisectors of the triangle's sides, as shown in the figure: the intersection point $O^{\\prime}$ of EF and MN is the desired circumcenter of $\\triangle ABC$, therefore, the coordinates of the circumcenter of $\\triangle ABC$ are $\\boxed{(-2,-1)}$.", -"solution_image": [ -"solution_images/51351832_280.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351375": { -"question": "As shown in the figure, points A, B, and C are on the circle $\\odot O$. If $\\triangle OAB$ is an equilateral triangle, then what is the measure of $\\angle ACB$?", -"image_file_name": "7058804", -"image": [ -"math/51351375_293.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle OAB$ is an equilateral triangle,\\\\\nit follows that $\\angle AOB=60^\\circ$,\\\\\ntherefore, $\\angle ACB = \\frac{1}{2} \\angle AOB = \\frac{1}{2} \\times 60^\\circ = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351118": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, with chord CDAB. The foot of the perpendicular from C to AB is point E. If the radius of $\\odot O$ is 5, and CD equals 8, what is the length of AE?", -"image_file_name": "7058804", -"image": [ -"math/51351118_300.png" -], -"solution": "\\textbf{Solution:} Connect OC, as shown in the diagram\\\\\nSince AB is the diameter of $\\odot$O, and CDAB is perpendicular at point E, with CD=8,\\\\\nit follows that $CE=\\frac{1}{2}CD=\\frac{1}{2}\\times 8=4$,\\\\\nSince $AO=CO=5$,\\\\\nit follows that $OE=\\sqrt{CO^{2}-CE^{2}}=\\sqrt{5^{2}-4^{2}}=3$,\\\\\ntherefore, $AE=5-3=\\boxed{2}$;", -"solution_image": [ -"solution_images/51351118_300.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351223": { -"question": "As shown in the figure, points A, B, and C are all on the circle $\\odot O$. Connect OA, OB, AC, and BC. If OA $\\perp$ OB, what is the degree measure of $\\angle C$?", -"image_file_name": "7058804", -"image": [ -"math/51351223_310.png" -], -"solution": "\\textbf{Solution:} Since $OA\\perp OB$, \\\\\n$\\therefore$ $\\angle AOB=90^\\circ$, \\\\\n$\\therefore$ $\\angle C=\\frac{1}{2}\\angle AOB=45^\\circ$, \\\\\nThus, the answer is: $\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51318709": { -"question": "As shown in the figure, in the cyclic pentagon $ABCDE$, if $\\angle C + \\angle CDE + \\angle E + \\angle EAB = 425^\\circ$, what is the measure of $\\angle CDA$?", -"image_file_name": "7058804", -"image": [ -"math/51318709_323.png" -], -"solution": "\\textbf{Solution:} Since the sum of the interior angles of pentagon $ABCDE$ is $(5-2)\\times 180^\\circ=540^\\circ$, \\\\\nthus $\\angle EAB+\\angle B+\\angle C+\\angle CDE+\\angle E=540^\\circ$, \\\\\nbecause $\\angle EAB+\\angle C+\\angle CDE+\\angle E=425^\\circ$, \\\\\ntherefore $\\angle B=540^\\circ-425^\\circ=115^\\circ$, \\\\\nsince quadrilateral $ABCD$ is inscribed in circle $O$, \\\\\ntherefore $\\angle B+\\angle CDA=180^\\circ$, \\\\\nthus $\\angle CDA=180^\\circ-115^\\circ=\\boxed{65^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51319015": { -"question": "As shown in the figure, two congruent circles $\\odot O_1$ and $\\odot O_2$ intersect at points A and B, and $\\odot O_1$ passes through the center of $\\odot O_2$. What is the measure of $\\angle O_1AB$?", -"image_file_name": "7058804", -"image": [ -"math/51319015_330.png" -], -"solution": "\\textbf{Solution:} Connect $O_1O_2$, $AO_2$, and $O_1B$, \\\\\nbecause $O_1B= O_1A$ \\\\\nthus, $\\angle O_1AB=\\angle O_1BA=\\frac{1}{2}\\angle AO_2O_1$ \\\\\nbecause $\\odot O_1$ and $\\odot O_2$ are congruent circles, \\\\\nthus, $AO_1=O_1O_2=AO_2$, \\\\\ntherefore, $\\triangle AO_2O_1$ is an equilateral triangle, \\\\\nthus, $\\angle AO_2O_1=60^\\circ$, \\\\\ntherefore, $\\angle O_1AB= \\frac{1}{2}\\angle AO_2O_1 =\\frac{1}{2}\\times 60^\\circ =\\boxed{30^\\circ}$.", -"solution_image": [ -"solution_images/51319015_330.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51320363": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $\\angle A=60^\\circ$, point D is on side $AC$, $\\angle DBC=30^\\circ$, and $AC=12\\,cm$. What is the perimeter of $\\triangle ABD$?", -"image_file_name": "7058804", -"image": [ -"math/51320363_343.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ABC$ and $\\angle AOC$ are the inscribed angle and central angle subtended by the same arc AC, and $\\angle AOC=90^\\circ$,\n\n$\\therefore$ $\\angle ABC=\\frac{1}{2}\\angle AOC=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51318298": { -"question": "As shown in the figure, the diameter $AB=6$ of circle $\\odot O$, with chord $CD$ of $\\odot O$ perpendicular to $AB$ at point $P$, and $BP:AP=1:5$, what is the length of $CD$?", -"image_file_name": "7058804", -"image": [ -"math/51318298_355.png" -], -"solution": "\\textbf{Solution:} Given that the diameter $AB$ of the circle $\\odot O$ equals 6,\\\\\nit follows that $OB=\\frac{1}{2}AB=3$,\\\\\nsince the ratio $BP:AP=1:5$,\\\\\nwe have $BP=\\frac{1}{6}AB=\\frac{1}{6} \\times 6=1$,\\\\\nthus $OP=OB-BP=3-1=2$,\\\\\nby joining $OC$,\\\\\nand since $CD\\perp AB$,\\\\\nit implies $CD=2PC$, and $\\angle OPC=90^\\circ$,\\\\\ntherefore, $PC=\\sqrt{OC^{2}-OP^{2}}=\\sqrt{3^{2}-2^{2}}=\\sqrt{5}$,\\\\\nresulting in $CD=2PC=2\\sqrt{5}$.\\\\\nHence, the length of $CD$ is $\\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/51318298_353.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51318907": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, the chord $CD \\perp AB$ at point $E$, and $AD$ is connected. If $AB=10$ and $CD=8$, what is the length of $AD$?", -"image_file_name": "7058804", -"image": [ -"math/51318907_360.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect OD.\n\n\\[\n\\because AB \\perp CD,\n\\]\n\\[\n\\therefore CE = ED = 4,\n\\]\n\\[\n\\because \\angle OED = 90^\\circ, \\text{ and } OD = 5,\n\\]\n\\[\n\\therefore OE = \\sqrt{CD^{2} - ED^{2}} = \\sqrt{5^{2} - 4^{2}} = 3,\n\\]\n\\[\n\\therefore AE = OA + OE = 8,\n\\]\n\\[\n\\therefore AD = \\sqrt{AE^{2} + DE^{2}} = \\sqrt{8^{2} + 4^{2}} = \\boxed{4\\sqrt{5}}.\n\\]", -"solution_image": [ -"solution_images/51318907_360.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51262453": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in $\\odot O$, with $AB$ being the diameter of $\\odot O$, and $BC=CD$. If $\\angle DAB=40^\\circ$, then what is the measure of $\\angle ADC$?", -"image_file_name": "7058804", -"image": [ -"math/51262453_377.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $AC$,\\\\\nSince $BC=CD$,\\\\\nTherefore, $\\angle CAB=\\frac{1}{2}\\angle DAB=20^\\circ$.\\\\\nTherefore, $AB$ is the diameter of $\\odot O$,\\\\\nTherefore, $\\angle ACB=90^\\circ$.\\\\\nSince $\\angle DAB=40^\\circ$,\\\\\nTherefore, $\\angle DCB=140^\\circ$.\\\\\nTherefore, $\\angle DCA=140^\\circ-90^\\circ=50^\\circ$.\\\\\nTherefore, $\\angle ADC=180^\\circ-20^\\circ-50^\\circ=\\boxed{110^\\circ}$.", -"solution_image": [ -"solution_images/51262453_371.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51262495": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$. If $\\angle ADC = 140^\\circ$, what is the degree measure of $\\angle AOC$?", -"image_file_name": "7058804", -"image": [ -"math/51262495_380.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is inscribed in circle $O$, and $\\angle ADC=140^\\circ$\\\\\nTherefore, $\\angle ABC=40^\\circ$,\\\\\nTherefore, $\\angle AOC=2\\angle ABC=80^\\circ$,\\\\\nHence, $\\angle AOC=\\boxed{80^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51261962": { -"question": "As shown in the figure, it is known that $\\odot O$ is the circumcircle of $\\triangle ABD$, where AB is the diameter of $\\odot O$, and CD is a chord of $\\odot O$. If $\\angle ABD = 58^\\circ$, then what is the measure of $\\angle BCD$?", -"image_file_name": "7058804", -"image": [ -"math/51261962_390.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ABD=58^\\circ$, we can then find that $\\angle A=90^\\circ-\\angle ABD=32^\\circ$. Furthermore, in the same or congruent circles, angles subtended by the same or congruent arcs are equal, $\\therefore \\angle BCD=\\angle A=\\boxed{32^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51261921": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A = 50^\\circ$, what is the degree measure of $\\angle OCB$?", -"image_file_name": "7058804", -"image": [ -"math/51261921_400.png" -], -"solution": "\\textbf{Solution:} Since $\\overset{\\frown}{CB}=\\overset{\\frown}{CB}$ and $\\angle A=50^\\circ$,\\\\\nit follows that $\\angle BOC=2\\angle A=100^\\circ$\\\\\nBecause $OB=OC$,\\\\\nit is concluded that $\\angle OCB=\\angle OBC=\\frac{1}{2}(180^\\circ-\\angle BOC)=\\boxed{40^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51261850": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and C, D are two points on $\\odot O$. If $\\angle AOC=130^\\circ$, then what is the value of $\\angle D$?", -"image_file_name": "7058804", -"image": [ -"math/51261850_415.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC=130^\\circ$,\\\\\nit follows that $\\angle BOC=180^\\circ-130^\\circ=50^\\circ$,\\\\\nhence $\\angle D=\\frac{1}{2}\\angle BOC=25^\\circ$.\\\\\nTherefore, the answer is $\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51262127": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, and points C and D are on $\\odot O$. If $\\angle D=120^\\circ$, what is the measure of $\\angle CAB$?", -"image_file_name": "7058804", -"image": [ -"math/51262127_420.png" -], -"solution": "\\textbf{Solution}: Since $\\angle D + \\angle B = 180^\\circ$ and $\\angle D = 120^\\circ$,\n\n$\\therefore \\angle B = 60^\\circ$,\n\nSince $AB$ is the diameter,\n\n$\\therefore \\angle ACB = 90^\\circ$,\n\nHence, $\\angle CAB = 90^\\circ - \\angle B = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51262084": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$. If $\\angle B=108^\\circ$, what is the measure of $\\angle D$?", -"image_file_name": "7058804", -"image": [ -"math/51262084_434.png" -], -"solution": "\\textbf{Solution:} Given that the quadrilateral $ABCD$ is inscribed in the circle $\\odot O$, and $\\angle B=108^\\circ$,\\\\\n$\\therefore \\angle D=180^\\circ-\\angle B=180^\\circ-108^\\circ=\\boxed{72^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51261683": { -"question": "As shown in the figure, $PA$ and $PB$ are tangent to the circle $\\odot O$ at points $A$ and $B$ respectively. Point $C$ lies on circle $\\odot O$, and lines $AC$ and $BC$ are connected. If $\\angle ACB=60^\\circ$, what is the degree measure of $\\angle P$?", -"image_file_name": "7058804", -"image": [ -"math/51261683_441.png" -], -"solution": "\\textbf{Solution:} Connect OA, OB,\\\\\nsince $\\angle ACB=60^\\circ$,\\\\\nthus $\\angle AOB=2\\angle ACB =120^\\circ$,\\\\\nalso since PA and PB are tangent to the circle O at points A and B respectively,\\\\\nthus $\\angle PAO=\\angle PBO=90^\\circ$,\\\\\ntherefore $\\angle P=360^\\circ-\\angle PAO-\\angle PBO-\\angle AOB=\\boxed{60^\\circ}$.", -"solution_image": [ -"solution_images/51261683_440.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"50475012": { -"question": "As shown in the figure, in rhombus $ABCD$, $AB=13$ and $AC=10$, what is the length of $BD$?", -"image_file_name": "7055712", -"image": [ -"math/50475012_240.jpg" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rhombus,\\\\\nhence BD = 2OB, AC = 2OA, and AC $\\perp$ BD,\\\\\ntherefore OA = 5, and $\\angle$AOB = 90$^\\circ$\\\\\nIn right $\\triangle$AOB, $BO = \\sqrt{AB^{2}-OA^{2}} = \\sqrt{13^{2}-5^{2}} = 12$\\\\\ntherefore BD = $2 \\times 12 = \\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52019328": { -"question": "As shown in the figure, in the parallelogram $ABCD$, $BD$ is the diagonal, and point $O$ is the midpoint of $BD$. It is also given that $AD\\parallel EO$ and $OF\\parallel AB$. The perimeter of quadrilateral $BEOF$ is 10. What is the perimeter of the parallelogram $ABCD$?", -"image_file_name": "7055712", -"image": [ -"math/52019328_258.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a parallelogram,\\\\\nit follows that $AD \\parallel BC$,\\\\\nand since point $O$ is the midpoint of $BD$, and $AD \\parallel EO$, $OF \\parallel AB$,\\\\\nit follows that $OE$, $OF$ are respectively the midsegments of triangle $ABD$, triangle $BCD$, with $BC \\parallel EO$,\\\\\nthus, quadrilateral $OEBF$ is a parallelogram, with $AD=2OE$, $CD=2OF$, $OE=BF$, $OF=BE$,\\\\\nand since the perimeter of the quadrilateral $OEBF$ is $10$,\\\\\nwe have $OE+BE+BF+OF=10$,\\\\\ntherefore, $OE+OF=5$,\\\\\nand since quadrilateral $ABCD$ is a parallelogram,\\\\\nit follows that $AB=CD$, $AD=BC$,\\\\\ntherefore, the perimeter of the quadrilateral $ABCD$ is $AB+BC+AD+CD=2(AD+CD)=4(OE+OF)=\\boxed{20}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52019441": { -"question": "The great ancient Chinese mathematician Liu Hui divided the right-angled triangle (referred to as the Gougu shape by ancients) into one square and two pairs of congruent right-angled triangles. As shown in the figure, if $AF = 5$ and $CE = 12$, then what is the area of this triangle?", -"image_file_name": "7055712", -"image": [ -"math/52019441_260.png" -], -"solution": "Solution: Let the side length of the small square be $x$,\\\\\n$\\because$AF=5, CE=12,\\\\\n$\\therefore$AB=5+x, BC=12+x,\\\\\n$\\because$$\\triangle$AFM$\\cong$$\\triangle$ADM, $\\triangle$CDM$\\cong$$\\triangle$CEM,\\\\\n$\\therefore$AD=AF=5, CD=CE=12,\\\\\n$\\therefore$AC=AD+CD=5+12=17,\\\\\nIn $\\triangle$ABC, $AC^{2}=AB^{2}+BC^{2}$,\\\\\n$\\therefore$17$^{2}=(5+x)^{2}+(12+x)^{2}$,\\\\\nSolving, we get $x=3$ (negative values are discarded),\\\\\n$\\therefore$AB=8, BC=15,\\\\\n$\\therefore$The area of $\\triangle$ABC is: $\\frac{1}{2}\\times 8\\times 15=\\boxed{60}$,", -"solution_image": [ -"solution_images/52019441_260.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52019443": { -"question": "As shown in the figure, point $P$ lies on the extension line of the diagonal $BD$ of square $ABCD$, point $M$ is on side $AD$. Lines $CP$, $BM$, and $MP$ are connected. Given that $AB=4$, $AM=1$, and $BM=PM$, what is the length of $CP$?", -"image_file_name": "7055712", -"image": [ -"math/52019443_270.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw ME$\\perp$BP at E through point M and draw PF$\\perp$BC intersecting the extended line of BC at F, \\\\\n$\\because$ Quadrilateral ABCD is a square, \\\\\n$\\therefore$ AD=AB=4, $\\angle$MDE=45$^\\circ$, $\\angle$A=90$^\\circ$ \\\\\n$\\therefore$ MD=AD−AM=3, $\\angle$DME=$\\angle$DBC=45$^\\circ$, \\\\\n$\\therefore$ ME=DE, \\\\\n$\\because$ $M{D}^{2}=M{E}^{2}+D{E}^{2}$, \\\\\n$\\therefore$ ${3}^{2}=2M{E}^{2}$, \\\\\n$\\therefore$ ME=DE=$\\frac{3\\sqrt{2}}{2}$, \\\\\n$\\because$ $B{D}^{2}=A{B}^{2}+A{D}^{2}$, \\\\\n$\\therefore$ BD=$\\sqrt{A{B}^{2}+A{D}^{2}}=4\\sqrt{2}$, \\\\\n$\\therefore$ BE=BD−DE=$\\frac{5\\sqrt{2}}{2}$, \\\\\n$\\because$BM=PM, \\\\\n$\\therefore$ BP=2BE=$5\\sqrt{2}$, \\\\\n$\\because$$\\angle$PBC=45$^\\circ$, $\\angle$PFB=90$^\\circ$, \\\\\n$\\therefore$$\\angle$BPF=45$^\\circ$, \\\\\n$\\therefore$BF=PF, $ B{P}^{2}=P{F}^{2}+B{F}^{2}$, \\\\\n$\\therefore$ ${\\left(5\\sqrt{2}\\right)}^{2}=2P{F}^{2}$, \\\\\n$\\therefore$PF=BF=5, \\\\\n$\\therefore$CF=BF−BC=1, \\\\\n$\\therefore$ $PC=\\sqrt{P{F}^{2}+C{F}^{2}}=\\boxed{\\sqrt{26}}$,", -"solution_image": [ -"solution_images/52019443_270.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52019362": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle ABC=90^\\circ$, $ \\angle A=60^\\circ$. Point D is on side $AC$, $ \\angle DBC=30^\\circ$, $ AC=12\\, \\text{cm}$. What is the perimeter of $ \\triangle ABD$?", -"image_file_name": "7055712", -"image": [ -"math/52019362_288.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore$OB=OD, AB=CD,\\\\\nSince E is the midpoint of BC,\\\\\n$\\therefore$OE is the median of $\\triangle BCD$,\\\\\n$\\therefore$CD=2EO,\\\\\nSince EO=8,\\\\\n$\\therefore$CD=2EO=16,\\\\\n$\\therefore$AB=CD=\\boxed{16}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53081474": { -"question": "As shown in the figure, a regular hexagon $ABCDEF$ is inscribed in circle $\\odot O$. If the distance from the center to a side $OH=\\sqrt{3}$, then what is the radius of circle $\\odot O$?", -"image_file_name": "7058807", -"image": [ -"math/53081474_04.png" -], -"solution": "\\textbf{Solution:} Let's connect OD. Since ABCDEF is a regular hexagon and OH is the apothem, it follows that $\\angle DOH = \\frac{360^\\circ}{12} = 30^\\circ$ and $\\angle OHD = 90^\\circ$. Therefore, OD equals twice DH. In the right triangle $ODH$, we have $OH^{2}$ + $DH^{2}$ = $OD^{2}$. Hence, $3 + DH^{2} = 4DH^{2}$. Solving this gives: DH=1 (considering positive value). Therefore, DH=\\boxed{2}.", -"solution_image": [ -"solution_images/53081474_00.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080524": { -"question": "As shown in the figure, a regular hexagon (the shaded area in the figure) is drawn on a regular triangular dartboard. Assuming that the probability of the dart hitting any point on the board is equal (if the dart hits the boundary or misses the board, then rethrow once), what is the probability that a dart thrown at random hits the shaded area?", -"image_file_name": "7058807", -"image": [ -"math/53080524_10.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AN\\perp BC$ passing through point $A$ and intersect $DI$ at point $M$. Let the side length of the regular hexagon be $a$,\n\nsince hexagon $DEFGHI$ is a regular hexagon,\n\ntherefore $DE=EF=FG=GH=HI=DI=a$,\n\nthe degree of each external angle is: $360^\\circ\\div6=60^\\circ$,\n\ntherefore $\\angle ADI=\\angle AID=\\angle BEF=\\angle BFE=\\angle CGH=\\angle CHG=60^\\circ$,\n\ntherefore $\\triangle ADI$, $\\triangle BFE$, and $\\triangle CHG$ are all equilateral triangles, and their side lengths are all equal to $a$,\n\nsince $\\triangle ABC$ is an equilateral triangle,\n\ntherefore $BC=CA=AB=AD+DE+BE=a+a+a=3a$,\n\n$\\angle BAC=\\angle B=60^\\circ$\n\nIn $\\triangle ADI$, $\\triangle BFE$, and $\\triangle CHG$\n\n$\\begin{cases}\n\\angle ADI=\\angle BFE=\\angle CHG\\\\\nDI=FE=HG\\\\\n\\angle AID=\\angle BEF=\\angle CGH\n\\end{cases}$\n\ntherefore $\\triangle ADI\\cong \\triangle BFE\\cong \\triangle CHG\\left(ASA\\right)$,\n\ntherefore ${S}_{\\triangle ADI}={S}_{\\triangle BFE}={S}_{\\triangle CHG}$,\n\nsince $\\angle ADI=\\angle B=60^\\circ$,\n\ntherefore $DI\\parallel BC$,\n\nsince $AN\\perp BC$,\n\ntherefore $\\angle ANB=90^\\circ$,\n\ntherefore $\\angle AMD=\\angle ANB=90^\\circ$,\n\nsince $\\triangle ADI$ and $\\triangle ABC$ are both equilateral triangles and their side lengths are $a$ and $3a$ respectively,\n\ntherefore $DM=\\frac{1}{2}a$, $BN=\\frac{3}{2}a$,\n\ntherefore $AM=\\sqrt{AD^{2}-DM^{2}}=\\sqrt{a^{2}-\\left(\\frac{1}{2}a\\right)^{2}}=\\frac{\\sqrt{3}}{2}a$,\n\n$AN=\\sqrt{AB^{2}-BN^{2}}=\\sqrt{\\left(3a\\right)^{2}-\\left(\\frac{3}{2}a\\right)^{2}}=\\frac{3\\sqrt{3}}{2}a$,\n\ntherefore ${S}_{\\triangle ADI}=\\frac{1}{2}DI\\cdot AM=\\frac{1}{2}a\\times \\frac{\\sqrt{3}}{2}a=\\frac{\\sqrt{3}}{4}a^{2}$,\n\n${S}_{\\triangle ABC}=\\frac{1}{2}BC\\cdot AN=\\frac{1}{2}\\times 3a\\times \\frac{3\\sqrt{3}}{2}a=\\frac{9\\sqrt{3}}{4}a^{2}$,\n\ntherefore ${S}_{\\triangle BFE}={S}_{\\triangle CHG}={S}_{\\triangle ADI}=\\frac{\\sqrt{3}}{4}a^{2}$,\n\ntherefore ${S}_{\\text{regular hexagon }DEFGHI}={S}_{\\triangle ABC}-3{S}_{\\triangle ADI}=\\frac{9\\sqrt{3}}{4}a^{2}-3\\times \\frac{\\sqrt{3}}{4}a^{2}=\\frac{3\\sqrt{3}}{2}a^{2}$,\n\ntherefore the probability of the dart hitting the shaded area is $\\frac{{S}_{\\text{regular hexagon }DEFGHI}}{{S}_{\\triangle ABC}}=\\frac{\\frac{3\\sqrt{3}}{2}a^{2}}{\\frac{9\\sqrt{3}}{4}a^{2}}=\\boxed{\\frac{2}{3}}$.", -"solution_image": [ -"solution_images/53080524_15.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53147460": { -"question": "As shown in the figure, it is known that the side length of the regular hexagon inscribed in a circle is 6. What is the radius of the circle?", -"image_file_name": "7058807", -"image": [ -"math/53147460_20.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB$ is the central angle of a regular hexagon,\\\\\nit follows that $\\angle AOB=\\frac{1}{6}\\times 360^\\circ=60^\\circ$,\\\\\nand since $OA=OB$,\\\\\nit follows that $\\triangle AOB$ is an equilateral triangle,\\\\\nhence $OA=AB=\\boxed{6}$,\\\\\nwhich means the radius of this regular hexagon is 6.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53147973": { -"question": "As shown in the figure, circle $\\odot O$ is inscribed in square $ABCD$ with $O$ as its center. Let $\\angle MON=90^\\circ$ with its two sides intersecting $BC$ and $CD$ at points $M$ and $N$ respectively, and intersecting $\\odot O$ at points $E$ and $F$. If $CM+CN=6$, what is the length of arc $EF$?", -"image_file_name": "7058807", -"image": [ -"math/53147973_37.png" -], -"solution": "\\textbf{Solution:} Let circle $O$ be tangent to side $CD$ of square $ABCD$ at point $G$ and to $BC$ at point $H$, as shown in the solution diagram. Connect $OG$ and $OH$. Then, quadrilateral $OHCG$ is a square. \\\\\nSince $\\angle GON+\\angle NOH=90^\\circ$ \\\\\nand $\\angle HOM+\\angle NOH=90^\\circ$, \\\\\nthus $\\angle GON=\\angle HOM$, \\\\\nAlso, since $\\angle OGN=\\angle OHM=90^\\circ$, \\\\\nand $OG=OH$, \\\\\nthus $\\triangle OGN \\cong \\triangle OHM$ (ASA), \\\\\ntherefore $GN=HM$ \\\\\nHence, the radius of circle $O$ is $= \\frac{1}{2}(CM+CN)=3$ \\\\\nTherefore, $\\overset{\\frown}{EF}=\\frac{90}{180}\\times 3\\pi =\\boxed{1.5\\pi}$.", -"solution_image": [ -"solution_images/53147973_30.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53102103": { -"question": "As shown in the figure, the pentagon $ABCDE$ is a regular pentagon. If $l_{1} \\parallel l_{2}$, then what is the value of $\\angle \\alpha - \\angle \\beta$?", -"image_file_name": "7058807", -"image": [ -"math/53102103_43.png" -], -"solution": "\\textbf{Solution} Let line $BF$ pass through point $B$ and be parallel to $l_{1}$, as shown in the figure:\\\\\nSince $l_{1}\\parallel l_{2}$,\\\\\nit follows that $BF\\parallel l_{1}\\parallel l_{2}$,\\\\\nthus, $\\angle \\beta =\\angle CBF$ and $\\angle ABF+\\angle \\alpha =180^\\circ$,\\\\\ntherefore, $\\angle \\alpha =180^\\circ-\\angle ABF$,\\\\\nalso, since pentagon $ABCDE$ is a regular pentagon,\\\\\nit follows that $\\angle ABC=\\frac{180^\\circ\\times (5-2)}{5}=108^\\circ$,\\\\\nalso, since $\\angle ABC=\\angle ABF+\\angle CBF$,\\\\\nit follows that $108^\\circ=\\angle \\beta +180^\\circ-\\angle \\alpha$\\\\\ntherefore, $\\angle \\alpha -\\angle \\beta =\\boxed{72^\\circ}$.", -"solution_image": [ -"solution_images/53102103_42.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53019902": { -"question": "As shown in the figure, $BD$ is the diameter of the circle $\\odot O$. A tangent to $\\odot O$ at point A intersects the extension of line $BD$ at point C. Lines $AB$ and $AD$ are drawn. If $\\angle ABC=30^\\circ$, what is the measure of $\\angle C$?", -"image_file_name": "7058807", -"image": [ -"math/53019902_59.png" -], -"solution": "\\textbf{Solution:} Connect $OA$,\n\nsince $OA=OB$,\n\nit follows that $\\angle OAB=\\angle OBA=30^\\circ$,\n\ntherefore $\\angle AOC=\\angle OAB+\\angle OBA=60^\\circ$,\n\nsince $OA$ is the tangent to the circle $O$,\n\nit follows that $\\angle OAC=90^\\circ$,\n\ntherefore $\\angle C=180^\\circ-\\angle OAC-\\angle AOC=180^\\circ-90^\\circ-60^\\circ=\\boxed{30^\\circ}$.", -"solution_image": [ -"solution_images/53019902_51.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991321": { -"question": "If a dart is thrown randomly onto the dartboard shown in the figure, where each point on the board has an equal chance of being hit, what is the probability that the dart will land in the white region?", -"image_file_name": "7058807", -"image": [ -"math/52991321_60.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, let the area of each small triangle be $a$,\\\\\nthen the area of the shaded region is $6a$, the area of the hexagon is $18a$, and the area of the white region is $12a$,\\\\\n$\\therefore$ throwing a dart at the dartboard randomly, the probability of it landing in the white area is $\\frac{12a}{18a}=\\boxed{\\frac{2}{3}}$.", -"solution_image": [ -"solution_images/52991321_60.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991505": { -"question": "As shown in the diagram, within a regular pentagon, $BE$ is a diagonal, $AF \\perp BE$ intersects $CD$ at point $F$, then what is the degree measure of $\\angle BAF$?", -"image_file_name": "7058807", -"image": [ -"math/52991505_75.png" -], -"solution": "\\textbf{Solution:} Given that the polygon ABCDE is a regular pentagon,\\\\\n$\\therefore \\angle BAE=\\frac{1}{5}\\times \\left(5-2\\right)\\times 180^\\circ=108^\\circ$,\\\\\n$\\because AF\\perp BE$,\\\\\n$\\therefore \\angle BAF=\\frac{1}{2}\\angle BAE=\\frac{1}{2}\\times 108^\\circ=54^\\circ$.\\\\\nHence, the answer is: $\\boxed{54^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52977065": { -"question": "As shown in the figure, points $A$, $B$, $C$, $D$ are all on the circle $\\odot O$, $\\angle BAC=15^\\circ$, $\\angle BOD=70^\\circ$, and $DE$ is tangent to $\\odot O$ at $D$. What is the measure of $\\angle CDE$?", -"image_file_name": "7058807", -"image": [ -"math/52977065_811.png" -], -"solution": "\\textbf{Solution:} Draw line $OC$, \\\\\nsince $\\angle BAC=15^\\circ$, \\\\\nthus $\\angle BOC=2\\angle BAC=30^\\circ$, \\\\\nsince $\\angle BOD=70^\\circ$, \\\\\nthus $\\angle COD=70^\\circ-30^\\circ=40^\\circ$, \\\\\nsince $OC=OD$, \\\\\nthus $\\angle ODC=\\angle OCD=\\frac{1}{2}\\left(180^\\circ-40^\\circ\\right)=70^\\circ$, \\\\\nsince $DE$ is tangent to circle $O$ at $D$, \\\\\nthus $OD\\perp DE$, \\\\\nthus $\\angle CDE=90^\\circ-70^\\circ=\\boxed{20^\\circ}$", -"solution_image": [ -"solution_images/52977065_81.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52936145": { -"question": "As shown in Figure 1, select a fixed point O in the plane and draw a directed ray $Ox$. By choosing a unit length, the position of any point M on the plane can be determined by the degree $\\theta$ of $\\angle MOx$ and the length m of $OM$, forming an ordered pair $\\left(\\theta, m\\right)$, which is referred to as the \"polar coordinates\" of point M. The coordinate system established in this manner is called the \"polar coordinate system\".\n\nApplication: Given a polar coordinate system as in Figure 2, if a regular hexagon has a side length of 2 and one side OA lies on the ray $Ox$, what would be the polar coordinates of the vertex C of the hexagon?", -"image_file_name": "7058807", -"image": [ -"math/52936145_96.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw CB$\\perp$OA at point B,\\\\\n$\\therefore$ $\\angle$OBC=$90^\\circ$,\\\\\n$\\because$ the side length of the regular hexagon is 2,\\\\\n$\\therefore$ OA=CA=2, $\\angle$OAC=$120^\\circ$,\\\\\n$\\therefore$ $\\angle$COA=$\\angle$OCA=$\\angle$ACB=$30^\\circ$,\\\\\n$\\therefore$ AB=$\\frac{1}{2}$AC=1, BC=$\\sqrt{3}$,\\\\\n$\\therefore$ OC=2BC=2$\\sqrt{3}$,\\\\\n$\\therefore$ the polar coordinates of vertex C of the regular hexagon should be $\\boxed{(30^\\circ, 2\\sqrt{3})}$.", -"solution_image": [ -"solution_images/52936145_90.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52933561": { -"question": "As shown in the diagram, it is known that points $A$, $B$, $C$ are on the circle $\\odot O$, with $\\angle ABC = 30^\\circ$. The minor arc $\\overset{\\frown}{BC}$ is folded along the straight line $CB$ to intersect chord $AB$ at point $D$. If $DB = 7$ and $AD = 4$, what is the length of $BC$?", -"image_file_name": "7058807", -"image": [ -"math/52933561_108.png" -], -"solution": "\\textbf{Solution:} Let point D be on the circle $\\odot O$ and its corresponding point be E. Connect CE, BE, CD, AC, and draw CF $\\perp$ AD at point F, as shown in the figure,\\\\\n$\\because$ quadrilateral ABEC is inscribed in $\\odot O$,\\\\\n$\\therefore$ $\\angle A+\\angle E=180^\\circ$,\\\\\n$\\because$ the corresponding point of D on $\\odot O$ is E,\\\\\n$\\therefore$ according to the property of folding: $\\angle BEC=\\angle BDC$,\\\\\n$\\because$ $\\angle BDC+\\angle CDA=180^\\circ$,\\\\\n$\\therefore$ $\\angle E+\\angle CDA=180^\\circ$,\\\\\n$\\because$ $\\angle A+\\angle E=180^\\circ$,\\\\\n$\\therefore$ $\\angle A=\\angle ADC$,\\\\\n$\\therefore$ $\\triangle ACD$ is an isosceles triangle,\\\\\n$\\because$ $CF\\perp AD$, $AD=4$,\\\\\n$\\therefore$ $AF=FD=\\frac{1}{2}AD=2$,\\\\\n$\\because$ $BD=7$,\\\\\n$\\therefore$ $BF=BD+DF=9$,\\\\\n$\\because$ $CF\\perp AD$,\\\\\n$\\therefore$ $\\triangle CFB$ is a right triangle,\\\\\n$\\because$ $\\angle ABC=30^\\circ$,\\\\\n$\\therefore$ in $Rt\\triangle CFB$, $CF=\\frac{1}{2}BC$,\\\\\n$\\because$ in $Rt\\triangle CFB$, $CF^2+BF^2=BC^2$,\\\\\n$\\therefore$ $\\left(\\frac{1}{2}BC\\right)^2+9^2=BC^2$,\\\\\n$\\therefore$ $BC=\\boxed{6\\sqrt{3}}$, (negative values are discarded).", -"solution_image": [ -"solution_images/52933561_101.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"50590397": { -"question": "As shown in the figure, if the graph of the function $y=ax+b$ is as depicted, then what is the solution set of the inequality $ax+b<2$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/50590397_113.png" -], -"solution": "\\textbf{Solution:} From the graph, it is known that the coordinates of the intersection point of the function $y=ax+b$ with the $y$-axis are $(0,2)$,\\\\\nhence, the solution set of the inequality $ax+b<2$ is $x>0$,\\\\\ntherefore, the answer is $\\boxed{x>0}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50589349": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=kx+b$ is as illustrated. What is the range of $y$ when $x \\leq 0$?", -"image_file_name": "7053789", -"image": [ -"math/50589349_120.png" -], -"solution": "\\textbf{Solution:} From the graph, we know that when $x=0$, $y=-2$. The graph of the function $y$ decreases as $x$ increases, \\\\\n$\\therefore$ when $x\\leq 0$, $y\\geq -2$; \\\\\nTherefore, the answer is: $\\boxed{y\\geq -2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51698708": { -"question": "As shown in the figure, the line $ l_{1}: y = x + 1 $ intersects with the line $ l_{2}: y = mx + n $ at the point $ P(a, 2) $. What is the solution set of the inequality $ x + 1 \\ge mx + n $ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/51698708_136.png" -], -"solution": "\\textbf{Solution:} Since the line $l_{1}\\colon y=x+1$ intersects with the line $l_{2}\\colon y=mx+n$ at point P$(1,2)$,\\\\\n$\\therefore a+1=2$,\\\\\nSolving this gives: $a=1$,\\\\\nObserving the graph, we know that the solution set of the inequality $x+1\\geq mx+n$ with respect to $x$ is $\\boxed{x\\geq 1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51699530": { -"question": "As shown in the figure, the line $y=kx+b$ intersects the coordinate axes at points $A(2, 0)$ and $B(0, -3)$, respectively. What is the solution set of the inequality $kx+b+3>0$?", -"image_file_name": "7053789", -"image": [ -"math/51699530_145.png" -], -"solution": "Solution: Since the line $y=kx+b$ intersects the axes at two points, $A(2,0)$ and $B(0,-3)$, we have:\n\\[\n\\begin{cases}\n2k + b = 0 \\\\\nb = -3\n\\end{cases}\n\\]\nThus,\n\\[\n\\begin{cases}\nk=\\frac{3}{2} \\\\\nb=-3\n\\end{cases}\n\\]\nTherefore, $\\frac{3}{2}x+(-3)+3=\\frac{3}{2}x>0$,\\\\\nImplying $x>0$.\\\\\nHence, the answer is $\\boxed{x>0}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51699535": { -"question": "As shown in the figure, it is known that the line $l_1\\colon y = 3x+1$ and the line $l_2\\colon y = mx+n$ intersect at point $P(a, -8)$. What is the solution set of the inequality $3x+1 < mx+n$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/51699535_159.png" -], -"solution": "\\[\n\\textbf{Solution:} \\text{Let} \\because \\text{line } l_1\\colon y = 3x+1 \\text{ and line } l_2\\colon y = mx+n \\text{ intersect at point } P(a, -8)\\\\\n\\therefore 3a+1=-8 \\\\\n\\therefore a=-3 \\\\\n\\therefore P(-3, -8)\\\\\n\\text{According to the problem, when } x<-3, 3x+1ax-3$?", -"image_file_name": "7053789", -"image": [ -"math/51983467_160.png" -], -"solution": "\\textbf{Solution:} Since the graphs of the functions $y=3x+b$ and $y=ax-3$ intersect at point $P(-2,-5)$,\\\\\nit follows from the graphical representation that the solution set of the inequality $3x+b>ax-3$ is $x>-2$,\\\\\ntherefore, the answer is: $\\boxed{x>-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51983394": { -"question": "As shown in the figure, if the graph of the linear function $y_{1}=x+a$ intersects with the graph of the linear function $y_{2}=kx+b$ at point P(1,3), what is the solution set of the inequality $x+a\\le kx+b$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/51983394_174.png" -], -"solution": "\\textbf{Solution:} According to the graph, when $x\\leq 1$, $x+a\\leq kx+b$,\\\\\nthat is, the solution set of the inequality $x+a\\leq kx+b$ with respect to $x$ is $\\boxed{x\\leq 1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51662303": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the coordinates of vertex $A$ of the rhombus $OABC$ are $(0, 2)$. The vertices $B$ and $C$ are in the first quadrant, and the ordinate of point $C$ is $1$. What are the coordinates of point $B$?", -"image_file_name": "7053789", -"image": [ -"math/51662303_180.png" -], -"solution": "\\textbf{Solution:} Extend BC to intersect the x-axis at D,\\\\\n$\\because$ the coordinates of point A are (0, 2),\\\\\n$\\therefore$ OA = 2,\\\\\n$\\because$ quadrilateral OABC is a rhombus,\\\\\n$\\therefore$ AO = OC = BC = 2,\\\\\n$\\because$ BC $\\parallel$ y-axis,\\\\\n$\\therefore$ BD $\\perp$ x-axis,\\\\\nIn $\\triangle$OCD,\\\\\n$\\because$ the ordinate of point C is 1,\\\\\n$\\therefore$ CD = 1,\\\\\n$\\therefore$ OD = $\\sqrt{OC^{2}-CD^{2}} = \\sqrt{2^{2}-1^{2}} = \\sqrt{3}$,\\\\\n$\\because$ BD = BC + CD = 2 + 1 = 3,\\\\\n$\\therefore$ the coordinates of point B are $\\boxed{(\\sqrt{3}, 3)}$.", -"solution_image": [ -"solution_images/51662303_180.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51662552": { -"question": "As shown in the figure, the line $y=\\frac{1}{2}x-2$ intersects the x-axis at point A. An isosceles right triangle $OAB$ is constructed above the x-axis with $OA$ as its hypotenuse. When the line is translated to the left along the x-axis until point B lies on the translated line, what is the distance by which the line has been translated?", -"image_file_name": "7053789", -"image": [ -"math/51662552_193.png" -], -"solution": "\\textbf{Solution:} As shown in the figure below,\n\nDraw a perpendicular line from B to the x-axis, with the foot at D, let the intersection of the translated line with the x-axis be C,\n\nFor the line $y=\\frac{1}{2}x-2$, let y=0, solving for x gives x=4, $\\therefore$ the coordinates of point A are $(4,0)$\n\n$\\therefore$ OA=4\n\n$\\because$ $\\triangle$OAB is an isosceles right triangle, BD$\\perp$x-axis\n\n$\\therefore$ it is easy to find that OD=2, BD=2\n\n$\\therefore$ B$(2,2)$;\n\nLet the equation of the translated line be: $y=\\frac{1}{2}x+b$, substituting B$(2,2)$ into it gives $2=1+b$, solving for b gives $b=1$,\n\nTherefore, the equation of the translated line is $y=\\frac{1}{2}x+1$, setting its y=0 gives\n\n$0=\\frac{1}{2}x+1$\n\nSolving it gives x=$-2$\n\n$\\therefore$ C$(0,-2)$,\n\n$\\therefore$ OC=2\n\n$\\therefore$ The distance of translation is OA+OC=4+2=\\boxed{6}.", -"solution_image": [ -"solution_images/51662552_190.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663047": { -"question": "As shown in the figure, it is known that the graphs of the functions $y=ax+b$ and $y=kx$ intersect at point $P$. According to the graph, what is the solution set of the linear inequality in one variable $ax+b>kx$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/51663047_200.png" -], -"solution": "\\textbf{Solution:} Since the graph of the function indicates that when $x>-3$, the linear function $y=ax+b$ is above the graph of the linear function $y=kx$, \\\\\ntherefore, the solution to the inequality in $x$, $ax+b>kx$, is $\\boxed{x>-3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663244": { -"question": "As shown in the figure, the straight line $y=kx+b$ ($k\\neq 0$) passes through points $(2,0)$ and $(0,-3)$. What is the range of values of $x$ when $y>0$?", -"image_file_name": "7053789", -"image": [ -"math/51663244_210.png" -], -"solution": "\\textbf{Solution:} Let the equation of the line be $y=kx+b$. This line intersects the x-axis at the point $(2,0)$, and it passes through the first, third, and fourth quadrants. From the graph, it is evident that\\\\\nwhen $x>2$, the value of $y$ is greater than $0$,\\\\\ntherefore, the range of $x$ is $\\boxed{x>2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52914126": { -"question": "As shown in the figure, fold the equilateral triangle $\\triangle ABC$ such that point $C$ falls on point $D$ on side $AB$, where $EF$ is the crease. If $\\angle ADE = 90^\\circ$ and $AD = 1$, what is the length of $AC$?", -"image_file_name": "7045627", -"image": [ -"math/52914126_00.jpeg" -], -"solution": "\\textbf{Solution:} Given an equilateral $\\triangle ABC$ is folded such that point C falls on the point D on side AB,\\\\\ntherefore $DE = CE$, and $\\angle A = 60^\\circ$,\\\\\nsince $\\angle ADE = 90^\\circ$,\\\\\nit follows that $\\angle AED = 30^\\circ$,\\\\\nalso, given $AD = 1$,\\\\\nthus $AE = 2AD = 2$,\\\\\ntherefore $DE = \\sqrt{AE^2 - AD^2} = \\sqrt{3}$,\\\\\nhence $AC = AE + CE = AE + DE = 2 + \\sqrt{3}$,\\\\\nthus, the answer is: $AC = \\boxed{2 + \\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52914188": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=5$, $AC x+b > 0$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/50482062_20.png" -], -"solution": "\\textbf{Solution:} Let us assume that the intersection point of the line $y = -x + a$ and the line $y = x + b$ has an abscissa of $-2$. The abscissas where the two lines intersect the x-axis are $-1$ and $-3$, respectively.\\\\\nTherefore, the solution set of the inequality in $x$, $-x + a > x + b > 0$, corresponds to the range of $x$ values for which the line $y = -x + a$ is above the line $y = x + b$, i.e., $-3 < x < -2$.\\\\\nHence, the solution set is $x \\in \\boxed{(-3, -2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50481996": { -"question": "As shown in the graph, the line $y=-2x-4$ intersects the x-axis and y-axis at points A and B, respectively. Points C and D are the midpoints of line segment $AB$ and $OB$, respectively. Point M is a moving point on $OA$. What are the coordinates of point M when the value of $MC+MD$ is minimized?", -"image_file_name": "7053789", -"image": [ -"math/50481996_35.png" -], -"solution": "Solution:Given the problem, we know $A(-2,0)$, $B(0,-4)$,\\\\\nthen $C(-1,-2)$, $D(0,-2)$,\\\\\nConstruct the symmetric point of D with respect to the x-axis, $E(0,2)$, as shown below:\\\\\nFrom this, we know: $MD=ME$,\\\\\n$MC+MD=MC+ME$,\\\\\n$\\therefore$When points $C$, $M$, and $E$ are collinear, $MC+MD$ is minimized,\\\\\nLet the line through $CE$ be $y=kx+b$, substituting $C(-1,-2)$, $E(0,2)$ into the equation, we get\\\\\n$\\left\\{\\begin{array}{l}\nb=2 \\\\\n-k+b=-2\n\\end{array}\\right.$, solving this yields $\\left\\{\\begin{array}{l}\nb=2 \\\\\nk=4\n\\end{array}\\right.$,\\\\\n$y=4x+2$,\\\\\nSetting $y=0$, we solve to get $x=-\\frac{1}{2}$, hence $M\\left(-\\frac{1}{2},0\\right)$,\\\\\nTherefore, the answer is $M\\left(-\\frac{1}{2},0\\right)=\\boxed{\\left(-\\frac{1}{2},0\\right)}$", -"solution_image": [ -"solution_images/50481996_35.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50481639": { -"question": "As shown in the figure, the graph of the direct proportion function $y=kx$ ($k \\neq 0$) intersects with the graph of the linear function $y=ax+b$ ($a \\neq 0$) at point A(1, 1). What is the solution set of the inequality $kx \\ge ax+b$?", -"image_file_name": "7053789", -"image": [ -"math/50481639_45.png" -], -"solution": "\\textbf{Solution:} When $x\\ge 1$, the graph of $y=kx$ is above the graph of $y=ax+b$,\\\\\n$\\therefore kx\\ge ax+b$,\\\\\nwhich means the solution set for $kx\\ge ax+b$ is: $x\\ge \\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50481319": { -"question": "As shown in the figure, the intersection of the line $y=-x+m$ and $y=nx+4n\\ (n\\neq 0)$ has an abscissa of $-2$. What are the integer solutions of the inequality $-x+m>nx+4n>0$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/50481319_54.png" -], -"solution": "\\textbf{Solution:} From the given condition, for $y=nx+4n\\ (n\\neq 0)$, then $x=-4$. Thus, the solution set for $nx+4n>0$ is $x>-4$.\\\\\nSince the $x$-coordinate of the intersection point between $y=-x+m$ and $y=nx+4n\\ (n\\neq 0)$ is $-2$, by observing the graph, the solution set for $-x+m>nx+4n$ is $x<-2$.\\\\\nTherefore, the solution set for $-x+m>nx+4n>0$ is $-4 nx + 4n$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/52386400_60.png" -], -"solution": "\\textbf{Solution}: When $x<-3$, we have $-x+m>nx+4n$, \\\\\n$\\therefore$ the solution set for the inequality $-x+m>nx+4n$ with respect to $x$ is $\\boxed{x<-3}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386401": { -"question": "In the Cartesian coordinate system, the position of the rhombus OABC is shown as in the figure, with $B(16, 8)$. What are the coordinates of point C?", -"image_file_name": "7053789", -"image": [ -"math/52386401_70.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $BD\\perp x$ axis at point $D$ through point $B$,\n\n$\\because B(16,8)$,\n\n$\\therefore D(16,0)$,\n\ni.e., $OD=16$, $BD=8$,\n\n$\\because$ for diamond $OABC$, let $OA=x$, then $AB=OA=x$, $AD=16-x$,\n\nIn $\\triangle ABD$ right, $AB^{2}=AD^{2}+BD^{2}$,\n\n$x^{2}=(16-x)^{2}+8^{2}$,\n\nSolving for $x$ yields $x=10$,\n\n$\\therefore BC=10$,\n\n$\\therefore C(6,8)$.\n\nThus, the answer is: $C(6,8)=\\boxed{(6,8)}$.", -"solution_image": [ -"solution_images/52386401_74.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50613655": { -"question": "As shown in the figure, the intersection point of the lines $y=-x+a$ and $y=x+b$ has an abscissa of $-2$, and the abscissas of the points where the two lines intersect with the $x$ axis are $-1$ and $-3$, respectively. What is the solution set of the inequality $-x+a>x+b>0$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/50613655_80.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ the intersection point of the line $y = -x + a$ and $y = x + b$ has an x-coordinate of $-2$, and the x-intercepts of the two lines are $-1$ and $-3$ respectively, \\\\\n$\\therefore$ the solution set for the inequality in $x$, $-x + a > x + b > 0$, is the range of $x$ values for which the line $y = -x + a$ is above the line $y = x + b$, that is, $-3 < x < -2$.\\\\\nThus, the answer is: $\\boxed{-3 < x < -2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52342410": { -"question": "As shown in the figure, the graph of the linear function $y=-\\frac{1}{2}x+3$ intersects the x-axis at point A and the y-axis at point B, and intersects the graph of the direct proportionality function $y=x$ at point C. What is the ratio of the areas of $\\triangle BOC$ to $\\triangle AOC$?", -"image_file_name": "7053789", -"image": [ -"math/52342410_94.png" -], -"solution": "\\textbf{Solution:} Given that the graph of the linear function $y=-\\frac{1}{2}x+3$ intersects the x-axis at point A and the y-axis at point B, \\\\\nthus $A\\left(6,0\\right)$, and $B\\left(0,3\\right)$, \\\\\nGiven that the linear function $y=-\\frac{1}{2}x+3$ intersects the graph of the direct proportionality function $y=x$ at point C, \\\\\nthus solving $\\left\\{\\begin{array}{l}y=-\\frac{1}{2}x+3 \\\\ y=x\\end{array}\\right.$ gives $C\\left(2,2\\right)$, \\\\\nthus, the area of $\\triangle BOC$ is $\\frac{1}{2}\\times 3\\times 2=3$, and the area of $\\triangle AOC$ is $\\frac{1}{2}\\times 6\\times 2=6$, \\\\\nthus, the ratio of the areas of $\\triangle BOC$ and $\\triangle AOC$ is $\\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50591538": { -"question": "As shown in Figure (1), within rectangle $ABCD$, a moving point $P$ starts from point $B$, travels along $BC$, $CD$, and $DA$ to stop at point $A$. Let the distance traveled by point $P$ be $x$, and the area of $\\triangle ABP$ be $y$. If the graph of $y$ as a function of $x$ is as shown in Figure (2), what is the area of $\\triangle ABC$?", -"image_file_name": "7053789", -"image": [ -"math/50591538_1014.png" -], -"solution": "\\textbf{Solution:} According to the analysis of the function graph, when $00)$ passes through point A, what is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/52623483_51.png" -], -"solution": "\\textbf{Solution:} Since diamond OABC is axially symmetrical, \\\\\n$\\therefore$ A and C are symmetrical with respect to the y-axis, \\\\\nthen A(3, 2), \\\\\n$\\because$ A lies on the graph of y=$\\frac{k}{x}$, \\\\\n$\\therefore k=3\\times 2=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51322318": { -"question": "As shown in the figure, in the Cartesian coordinate system $xoy$, the line $y=k_1x+4$ intersects the $y$-axis at point C and intersects the graph of the inverse proportion function $y=\\frac{k_2}{x}$ at point B in the first quadrant. Connect BO. If the area of $\\triangle OBC$ is $2$ and $\\tan\\angle BOC=\\frac{1}{5}$, what is the value of $k_2$?", -"image_file_name": "7058047", -"image": [ -"math/51322318_67.png" -], -"solution": "\\textbf{Solution:} Given that the line $y=k_1x+4$ intersects with the x-axis at point A, and with the y-axis at point C,\\\\\nthus, the coordinates of point C are (0, 4),\\\\\nhence, OC=4,\\\\\ndraw BD $\\perp$ y-axis at D,\\\\\ngiven that $S_{\\triangle OBC}=2$,\\\\\nthus, $\\frac{1}{2}OC\\cdot BD=\\frac{1}{2}\\times 4\\cdot BD=2$,\\\\\nhence, BD=1,\\\\\ngiven that $\\tan \\angle BOC=\\frac{1}{5}$,\\\\\nthus, $\\frac{BD}{OD}=\\frac{1}{5}$,\\\\\nhence, OD=5,\\\\\nthus, the coordinates of point B are (1, 5),\\\\\ngiven that the graph of the inverse proportion function $y=\\frac{k_2}{x}$ intersects at point B within the first quadrant,\\\\\nthus, $k_{2}=1\\times 5=\\boxed{5}$.", -"solution_image": [ -"solution_images/51322318_60.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51351897": { -"question": "As shown in the figure, there are points A and B on the graphs of the inverse proportion functions $y=-\\frac{a}{x}$ and $y=\\frac{6}{x}$, respectively, and $AB\\parallel x$-axis, $AD\\perp x$-axis at D, $BC\\perp x$-axis at C. If the area of rectangle ABCD is 8, what is the value of $a$?", -"image_file_name": "7058047", -"image": [ -"math/51351897_76.png" -], -"solution": "\\textbf{Solution:} According to the problem, the area of rectangle ABCD is $a+6=8$,\n\\[\\therefore a=\\boxed{2}.\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"55468485": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $\\angle A=60^\\circ$, and $D$ is a point on side $AC$, with $\\angle DBC=30^\\circ$, $AC=12\\, \\text{cm}$. What is the perimeter of $\\triangle ABD$?", -"image_file_name": "7038193", -"image": [ -"math/55468485_00.png" -], -"solution": "\\textbf{Solution:} The information provided by the \\LaTeX\\ code of this problem is insufficient to address the core issue, thus preventing the provision of specific solution steps and results.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55470821": { -"question": "How many of the following plane figures, when rotated around the dashed line for one complete turn, can form a geometric solid in the shape of a vase as shown in the figure?", -"image_file_name": "7038193", -"image": [ -"math/55470821_10.png" -], -"solution": "\\textbf{Solution:}\\\\\nA. The shape after rotation does not match the required 3D figure, thus it is not applicable;\\\\\nB. The shape after rotation is a cylinder, which is not the required 3D figure, thus it is not applicable;\\\\\nC. The shape after rotation matches the required 3D figure, thus it is applicable;\\\\\nD. The shape after rotation does not match the required 3D figure, thus it is not applicable;\\\\\nHence, the answer is: \\boxed{C}", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53124523": { -"question": "Intersecting a cylinder as shown in the figure with a plane, it is impossible for the cross-section to be what?", -"image_file_name": "7038193", -"image": [ -"math/53124523_20.png" -], -"solution": "\\textbf{Solution:} In this problem, using a plane to cut through a cylinder, a horizontal cut results in a circle, a vertical cut results in a rectangle, and an oblique cut results in an \\boxed{ellipse}. The only impossibility is a trapezoid.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55574626": { -"question": "As shown in the figure is the scene of drumming at the moment of a festive gathering and the three-dimensional shape of the drum. What is the shape of the drum when viewed from the front?", -"image_file_name": "7038193", -"image": [ -"math/55574626_30.png" -], -"solution": "\\textbf{Solution:} From the front view, the shape of the \\boxed{drum} looks like:", -"solution_image": [ -"solution_images/55574626_30.png" -], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53042405": { -"question": "As shown in the figure, a cut is made on a cubic box, with the intersections of the cut surface and the edges being points $A$, $B$, and $C$ respectively. After cutting off the corner and unfolding the box into a plane, what are the impossible configurations for the unfolded figure?", -"image_file_name": "7038193", -"image": [ -"math/53042405_43.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, the square's net is as follows:\n\n\\begin{itemize}\n \\item \"141\" type:\n \\item \"132\" type:\n \\item \"222\" type:\n \\item \"33\" type:\n\\end{itemize}\n\nConsidering the characteristics of the square's net, after cutting off corners and unfolding the box into a plane, we know that the faces with corners cut off are three adjacent faces; it cannot be that the faces with corners cut off are opposite faces.\n\nHence, the answer is: \\boxed{B}.", -"solution_image": [ -"solution_images/53042405_40.png", -"solution_images/53042405_41.png", -"solution_images/53042405_42.png", -"solution_images/53042405_43.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55483153": { -"question": "As shown in the figure, the solid shape is composed of a rectangular prism and a cylinder. What shape is obtained when viewing this figure from above?", -"image_file_name": "7038193", -"image": [ -"math/55483153_50.png" -], -"solution": "\\textbf{Solution:} From the given problem, we can deduce that the top view is a rectangle with a circle in the middle. Thus, the answer is \\boxed{C}.", -"solution_image": [ -"solution_images/55483153_50.png" -], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52601690": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are on the grid points of a square grid. What is the value of $\\cos\\angle ACB$?", -"image_file_name": "7058470", -"image": [ -"math/52601690_282.png" -], -"solution": "\\textbf{Solution:} Draw line $AD \\perp BC$ at $D$,\\\\\n$\\therefore$ $DC = 1$, $AD = 3$,\\\\\n$\\therefore$ $AC =\\sqrt{AD^{2}+DC^{2}}=\\sqrt{10}$,\\\\\n$\\therefore$ $\\cos\\angle ACB =\\frac{DC}{AC}=\\frac{1}{\\sqrt{10}}=\\frac{\\sqrt{10}}{10}=\\boxed{\\frac{\\sqrt{10}}{10}}$", -"solution_image": [ -"solution_images/52601690_280.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51545252": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are all located on the grid points of a square grid. Then, what is the value of $\\sin\\angle ABC$?", -"image_file_name": "7058470", -"image": [ -"math/51545252_292.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect CD\\\\\n$\\because$ $BC=\\sqrt{1+3^2}=\\sqrt{10}$, $CD=\\sqrt{1+1}=\\sqrt{2}$, $BD=\\sqrt{2^2+2^2}=2\\sqrt{2}$\\\\\n$\\therefore$ $BC^2=CD^2+BD^2$\\\\\n$\\therefore$ $\\angle BDC=90^\\circ$\\\\\n$\\therefore$ $\\sin\\angle ABC=\\frac{CD}{BC}=\\frac{\\sqrt{2}}{\\sqrt{10}}=\\boxed{\\frac{\\sqrt{5}}{5}}$", -"solution_image": [ -"solution_images/51545252_290.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51545288": { -"question": "As shown in the figure, in a grid composed of small squares with side length of 1, points A, B, and C are all on the grid points. If a circle with AB as its diameter passes through points C and D, then what is the value of $\\tan\\angle ADC$?", -"image_file_name": "7058470", -"image": [ -"math/51545288_300.png" -], -"solution": "\\textbf{Solution:} Since $AB$ is the diameter,\\\\\n$\\therefore\\angle ACB=90^\\circ$,\\\\\nIn $\\triangle ABC$, $\\tan\\angle ABC= \\frac{AC}{BC}=\\frac{3}{2}$,\\\\\nSince $\\angle ADC=\\angle ABC$,\\\\\n$\\therefore\\tan\\angle ADC= \\frac{3}{2}$,\\\\\nTherefore $\\tan\\angle ADC = \\boxed{\\frac{3}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52601836": { -"question": "As shown in the figure, in a square grid with a side length of 1, points A, O, and B are all on the grid points. What is the value of $\\tan\\angle AOB$?", -"image_file_name": "7058470", -"image": [ -"math/52601836_310.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AB.\\\\\nIn the right-angled $\\triangle AOB$, since $\\angle OBA=90^\\circ$, AB=2, OB=4,\\\\\ntherefore $\\tan\\angle AOB= \\frac{AO}{BO}=\\frac{2}{4}=\\boxed{\\frac{1}{2}}$.", -"solution_image": [ -"solution_images/52601836_310.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52601954": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$, if $\\sin B = \\frac{4}{5}$, what is the value of $\\sin A$?", -"image_file_name": "7058470", -"image": [ -"math/52601954_321.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, where $\\angle C=90^\\circ$ and $\\sin B=\\frac{AC}{AB}=\\frac{4}{5}$,\\\\\nlet $AC=4a$ and $AB=5a$,\\\\\nthus $BC=\\sqrt{AB^{2}-AC^{2}}=3a$,\\\\\ntherefore $\\sin A=\\frac{BC}{AB}=\\frac{3a}{5a}=\\boxed{\\frac{3}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52601757": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=4$, and $BC=3$, with $CD$ being the altitude of $\\triangle ABC$. What is the value of $\\tan\\angle BCD$?", -"image_file_name": "7058470", -"image": [ -"math/52601757_330.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$ and $\\triangle BCD$, $\\angle A + \\angle B = 90^\\circ$, $\\angle BCD + \\angle B = 90^\\circ$.\\\\\n$\\therefore \\angle A = \\angle BCD$.\\\\\n$\\therefore \\tan \\angle BCD = \\tan A = \\frac{BC}{AC} = \\boxed{\\frac{3}{4}}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52765236": { -"question": "As shown in the figure, points A, B, and C are all on the lattice points of a $4 \\times 4$ square grid. What is the value of $\\tan\\angle BAC$?", -"image_file_name": "7058470", -"image": [ -"math/52765236_340.png" -], -"solution": "Solution: As shown in the figure, take lattice point D and connect BD.\\\\\nFrom the lattice graph, it can be inferred that $BD\\perp AC$,\\\\\nUsing the properties of lattice triangles, we find: $AD=\\sqrt{3^2+3^2}=3\\sqrt{2}$, $BD=\\sqrt{1^2+1^2}=\\sqrt{2}$,\\\\\n$\\therefore$ $\\tan\\angle BAC=\\frac{BD}{AD}=\\frac{\\sqrt{2}}{3\\sqrt{2}}=\\boxed{\\frac{1}{3}}$", -"solution_image": [ -"solution_images/52765236_340.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52719763": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=5$, $AD=3$, point $E$ is on $AB$, and point $F$ is on $BC$. If $AE=2$, $CF=1$, what is the value of $\\sin(\\angle 1+\\angle 2)$?", -"image_file_name": "7058470", -"image": [ -"math/52719763_355.png" -], -"solution": "\\textbf{Solution:} Connect EF, \\\\\n$\\because$ Quadrilateral ABCD is a rectangle, \\\\\n$\\therefore$ $\\angle A=\\angle B=\\angle C=\\angle ADC=90^\\circ$, BC=AD=3, CD=AB=5, \\\\\nIn $\\triangle ADE$, AD=3, AE=2, \\\\\n$\\therefore$ $DE^2=AD^2+AE^2=3^2+2^2=13$, \\\\\n$\\because$ AB=5, \\\\\n$\\therefore$ BE=AB−AE=3, \\\\\n$\\because$ CF=1, \\\\\n$\\therefore$ BF=BC−CF=2, \\\\\nIn $\\triangle EBF$, \\\\\n$\\therefore$ $EF^2=BE^2+BF^2=3^2+2^2=13$, \\\\\n$\\therefore$ EF=DE \\\\\nIn $\\triangle CDF$, \\\\\n$\\therefore$ $DF^2=DC^2+CF^2=5^2+1^2=26$, \\\\\n$\\because$ 26=13+13, i.e., $DF^2=DE^2+EF^2$, \\\\\n$\\therefore$ $\\angle DEF=90^\\circ$, \\\\\n$\\therefore$ $\\angle EDF=\\angle DFE=45^\\circ$, \\\\\n$\\therefore$ $\\angle 1+\\angle 2=\\angle ADC-\\angle EDF=45^\\circ$, \\\\\n$\\therefore$ $\\sin(\\angle 1+\\angle 2)=\\sin45^\\circ=\\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/52719763_350.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52719806": { -"question": "As shown in the diagram, within a $5\\times 4$ grid of small squares, points A, B, and C all lie on the lattice points (lattice points refer to the vertices of the small squares). What is the value of $\\tan\\angle ABC$?", -"image_file_name": "7058470", -"image": [ -"math/52719806_362.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, take lattice point D, connect AD and BD, then $\\angle BDA=90^\\circ$, BD=5, AD=4,\\\\\n$\\therefore$ $\\tan\\angle ABC=\\tan\\angle ABD=\\frac{AD}{BD}=\\frac{4}{5}=\\boxed{\\frac{4}{5}}$", -"solution_image": [ -"solution_images/52719806_360.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52602230": { -"question": "As shown in the figure, $AB$ is the slope of the water-facing side of the river embankment, with a height of $AC=1$ and a horizontal distance $BC=\\sqrt{3}$. What is the slope of the slope $AB$?", -"image_file_name": "7058470", -"image": [ -"math/52602230_374.png" -], -"solution": "\\textbf{Solution}: Let $\\because$ the height of the slope $AC=1$, the horizontal distance $BC=\\sqrt{3}$,\\\\\n$\\therefore$ the gradient of the slope $AB$ is $\\tan B=\\frac{AC}{BC}=\\frac{1}{\\sqrt{3}}=\\boxed{\\frac{\\sqrt{3}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52601718": { -"question": "As shown in the figure, in $\\triangle ABC$, if $\\tan A = \\frac{1}{2}$ and $AB = 10$, then what is the area of $\\triangle ABC$?", -"image_file_name": "7058470", -"image": [ -"math/52601718_381.png" -], -"solution": "\\textbf{Solution:} We have $\\because \\tan A=\\frac{1}{2}=\\frac{BC}{AC}$\\\\\n$\\therefore AC=2BC$\\\\\nBy the Pythagorean theorem, we have $AB^{2}=AC^{2}+BC^{2}$, which gives $100=(2BC)^{2}+BC^{2}$\\\\\nSolving this, we find $BC^{2}=20$\\\\\n$\\therefore {S}_{\\triangle ABC}=\\frac{1}{2}AC\\times BC=BC^{2}=\\boxed{20}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52602893": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=4$, $BC=3$, then what is the value of $\\sin B$?", -"image_file_name": "7058470", -"image": [ -"math/52602893_390.png" -], -"solution": "\\textbf{Solution:} Since $\\angle C=90^\\circ$, AC=4, BC=3, \\\\\ntherefore AB=5, \\\\\ntherefore $\\sin B= \\frac{AC}{AB}=\\boxed{\\frac{4}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52601657": { -"question": "As shown in the figure, composed of small squares with a side length of 1, points A, B, and C are all located at the intersections of the grid lines. Circle $O$ with AB as its diameter passes through point C. If point D is on circle $O$, then what is the value of $\\tan \\angle ADC$?", -"image_file_name": "7058470", -"image": [ -"math/52601657_400.png" -], -"solution": "\\textbf{Solution:} Construct $AC$ and $BC$, \\\\\nsince $AB$ is the diameter of the circle $O$, \\\\\nit follows that $\\angle ACB = 90^\\circ$, \\\\\nsince $\\angle ABC = \\angle ADC$, \\\\\nit follows that $\\tan\\angle ADC = \\tan\\angle ABC = \\frac{AC}{BC} = \\boxed{\\frac{4}{3}}$", -"solution_image": [ -"solution_images/52601657_400.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52766425": { -"question": "As shown in the figure, a protractor is combined with a triangular plate with an angle of $30^\\circ$ ($\\angle CAB=30^\\circ$). The hypotenuse AB of the triangular plate coincides with the diameter MN of the circle on which the protractor lies. Now, point P is exactly the midpoint of the semicircular arc of the protractor, and we connect CP. If BC = 4, what is the length of CP?", -"image_file_name": "7058470", -"image": [ -"math/52766425_411.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, let the intersection of CP and AB be H, construct $HI\\perp BC$ at I, and $HJ\\perp AP$ at J,\\\\\n$\\because$ AB is the diameter of the semicircle, $\\angle ACB=90^\\circ$,\\\\\n$\\therefore$ C lies on the semicircle Q where the protractor is located, and P is the midpoint of $\\overset{\\frown}{APB}$,\\\\\n$\\therefore \\angle BCP=\\angle ACP=45^\\circ$,\\\\\n$\\therefore$ $CI=HI$,\\\\\n$\\because$ $\\angle CAB=30^\\circ$, $\\angle ACB=90^\\circ$,\\\\\n$\\therefore$ $\\angle IBH=60^\\circ$, $\\angle IHB=30^\\circ$,\\\\\nLet $BI=x$, then $BH=2x$, $HI=\\sqrt{3}x$, $CI=4−x$,\\\\\n$\\therefore$ $4−x=\\sqrt{3}x$,\\\\\nSolving yields: $x=2\\sqrt{3}−2$,\\\\\n$\\therefore$ $BH=2(2\\sqrt{3}-2)=4\\sqrt{3}-4$, $CH=\\sqrt{2} \\times \\sqrt{3}(2\\sqrt{3}-2)=6\\sqrt{2}-2\\sqrt{6}$,\\\\\nSimilarly, it can be obtained that: $AB=2BC=8$,\\\\\n$\\therefore$ $AH=8−BH=12-4\\sqrt{3}$,\\\\\nSimilarly, it can be obtained that: $\\angle JAH=45^\\circ$, $HJ=AJ=\\frac{\\sqrt{2}}{2}AH=6\\sqrt{2}-2\\sqrt{6}$,\\\\\nAnd $\\angle HPJ=\\angle ABC=60^\\circ$,\\\\\n$\\therefore$ $HP=\\frac{HJ}{\\sin 60^\\circ}=4\\sqrt{6}-4\\sqrt{2}$,\\\\\n$\\therefore$ $CP=4\\sqrt{6}-4\\sqrt{2}+6\\sqrt{2}-2\\sqrt{6}=\\boxed{2\\sqrt{2}+2\\sqrt{6}}$.", -"solution_image": [ -"solution_images/52766425_412.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50126432": { -"question": "As shown in Figure 1, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $\\angle CAB= 30^\\circ$, and $\\triangle ABD$ is an equilateral triangle. As shown in Figure 2, when quadrilateral $ACBD$ is folded to make $D$ coincide with $C$, and $EF$ is the crease, what is the sine value of $\\angle ACE$?", -"image_file_name": "7058811", -"image": [ -"math/50126432_00.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle BAC=30^\\circ$, let AB=2a,\\\\\nthen it follows AC= $\\sqrt{3}a$, BC=a;\\\\\nGiven that $\\triangle ABD$ is an equilateral triangle,\\\\\nthus AD=AB=2a;\\\\\nLet DE=EC=x, then AE=2a−x;\\\\\nIn $\\triangle AEC$, by the Pythagorean theorem, we get: $(2a−x)^{2}+3a^{2}=x^{2}$,\\\\\nsolving for x yields $x= \\frac{7}{4}a$;\\\\\nthus AE= $\\frac{1}{4}a$, EC= $\\frac{7}{4}a$,\\\\\nthus $\\sin\\angle ACE= \\frac{AE}{CE}=\\boxed{\\frac{1}{7}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"54328574": { -"question": "As shown in the figure, in the Cartesian coordinate system, the coordinates of point A are (3,4). Point D is a point inside $\\triangle ABC$. After translating $\\triangle ABC$ to get $\\triangle A'B'C'$, the point D and its corresponding point $D'$ are symmetrical with respect to the x-axis. If the coordinates of point D are (a, b), what are the coordinates of the corresponding point $A'$ of A?", -"image_file_name": "7058811", -"image": [ -"math/54328574_12.png" -], -"solution": "\\textbf{Solution:} Given that $D(a,b)$ is symmetric to $D'$ about the $x$-axis,\\\\\n$\\therefore D'(a,-b)$,\\\\\n$\\therefore \\triangle ABC$ is translated downwards by $2b$ units,\\\\\nSince $A(3,4)$,\\\\\n$\\therefore A'\\left(3,4-2b\\right)=\\boxed{\\left(3,4-2b\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium" -}, -"53706920": { -"question": "As shown in the figure, point E is on the side BC of the square ABCD. If $CE=1$ and $DE=2$, what is the length of AD?", -"image_file_name": "7054409", -"image": [ -"math/53706920_122.png" -], -"solution": "\\textbf{Solution}: Since quadrilateral $ABCD$ is a square,\\\\\nit follows that $AD=CD$ and $\\angle C=90^\\circ$,\\\\\nsince $CD=\\sqrt{DE^{2}-CE^{2}}=\\sqrt{4-1}=\\sqrt{3}$,\\\\\ntherefore $AD=CD=\\boxed{\\sqrt{3}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53706851": { -"question": "In the figure, within $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=4$, $BC=3$. Let point P be a moving point on the hypotenuse $AB$. Draw $PE\\perp AC$ at point E and $PF\\perp BC$ at point F. Connect $EF$. Then, the minimum value of the line segment $EF$ is", -"image_file_name": "7054409", -"image": [ -"math/53706851_137.png" -], -"solution": "\\textbf{Solution:} Draw $PC$,\\\\\nsince $PE\\perp AC$ and $PF\\perp BC$,\\\\\ntherefore $\\angle PEC = \\angle PFC = 90^\\circ$,\\\\\nthus quadrilateral $ECFP$ is a rectangle,\\\\\nhence $EF=PC$,\\\\\nthus, when $PC$ is at its minimum, $EF$ is also at its minimum,\\\\\nwhich is when $CP\\perp AB$, $PC$ is at its minimum,\\\\\nsince $AC=4$ and $BC=3$,\\\\\ntherefore $AB=5$,\\\\\nthus, the minimum value of $PC$ is: $ \\frac{AC\\cdot BC}{AB}=\\frac{4\\times 3}{5}=\\boxed{2.4}$\\\\\ntherefore, the minimum length of segment $EF$ is 2.4.", -"solution_image": [ -"solution_images/53706851_130.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53706435": { -"question": "As shown in the figure, on two sides of $\\triangle MON$, segments $OA$ and $OB$ are intercepted such that $OA = OB$; arcs are drawn with points A and B as centers and the length of $OA$ as the radius, intersecting at point C; segments $AC$, $BC$, $AB$, and $OC$ are connected. If $AB = 2\\,\\text{cm}$, and the area of quadrilateral $OACB$ is $4\\,\\text{cm}^{2}$, what is the length of $OC$?", -"image_file_name": "7054409", -"image": [ -"math/53706435_149.png" -], -"solution": "Solution: According to the drawing method, we have $AC=BC=OA$,\\\\\n$\\because$ $OA=OB$,\\\\\n$\\therefore$ $OA=OB=BC=AC$,\\\\\n$\\therefore$ Quadrilateral $OACB$ is a rhombus.\\\\\n$\\because$ $AB=2\\text{cm}$, and the area of quadrilateral $OACB$ is $4\\text{cm}^2$,\\\\\n$\\therefore$ $\\frac{1}{2}AB\\times OC=\\frac{1}{2}\\times 2\\times OC=4$,\\\\\nSolving yields $OC=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53706850": { -"question": "As shown in the diagram, the quadrilateral $ABCD$ is a rhombus. The coordinates of vertices $A$ and $C$ are $(0, 2)$ and $(8, 2)$ respectively. Given that point $D$ is on the x-axis, what are the coordinates of vertex $B$?", -"image_file_name": "7054409", -"image": [ -"math/53706850_153.png" -], -"solution": "\\textbf{Solution:} Connect AC and BD, where AC and BD intersect at point N, as shown in the figure,\\\\\n$\\because$A(0,2), C(8,2),\\\\\n$\\therefore$Points A and C lie on the line $y=2$, and AC=8, OA=2,\\\\\n$\\therefore$AC$\\perp$y-axis,\\\\\n$\\because$In the rhombus ABCD, AC$\\perp$BD, and AC, BD bisect each other,\\\\\n$\\therefore$BD$\\parallel$y-axis, BN=ND=$\\frac{1}{2}BD$, AN=NC=$\\frac{1}{2}AC=4$,\\\\\n$\\therefore$BD$\\perp$x-axis,\\\\\n$\\because$BD$\\perp$x-axis, AC$\\perp$y-axis,\\\\\n$\\therefore$$\\angle$AOD=$\\angle$AND=$\\angle$NAO=$\\angle$ODN=$90^\\circ$,\\\\\n$\\therefore$Quadrilateral ANDO is a rectangle,\\\\\n$\\therefore$OA=DN=2, OD=AN=4,\\\\\n$\\therefore$BD=2DN=4,\\\\\n$\\therefore$The coordinates of point B are $\\boxed{(4,4)}$.", -"solution_image": [ -"solution_images/53706850_150.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52345515": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $\\angle A=60^\\circ$. Point D lies on side $AC$, $\\angle DBC=30^\\circ$, $AC=12\\text{cm}$. What is the perimeter of $\\triangle ABD$?", -"image_file_name": "7054409", -"image": [ -"math/52345515_167.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\nit follows that OA=OC, \\\\\nand since E is the midpoint of AB, \\\\\nit follows that OE is the median of $\\triangle ABC$, \\\\\nthus OE$=\\frac{1}{2}$BC=5.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52345439": { -"question": "As shown in the diagram, in rhombus $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. Given $AB=5$ and $AC=8$, what is the area of rhombus $ABCD$?", -"image_file_name": "7054409", -"image": [ -"math/52345439_174.png" -], -"solution": "\\textbf{Solution:} Given that rhombus $ABCD$,\\\\\ntherefore $AC\\perp BD$, $AC=2OA$, $BD=2BO$,\\\\\nthus $OA=4$, $\\angle AOB=90^\\circ$,\\\\\ntherefore $BO=\\sqrt{AB^{2}-OA^{2}}=\\sqrt{5^{2}-4^{2}}=3$,\\\\\nthus $BD=2\\times 3=6$,\\\\\ntherefore the area of the rhombus $ABCD$ is $\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}\\times 8\\times 6=\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52345207": { -"question": "As shown in Figure 1, point $P$ is a moving point on the edge of rectangle $ABCD$. Point $P$ starts from $A$ and moves along the four edges of the rectangle, finally returning to $A$. Suppose the distance traveled by point $P$ is $x$, and the area of $\\triangle ABP$ is $y$. Figure 2 is the graph of function $y$ as $x$ varies. Then, what is the length of the diagonal $BD$ of rectangle $ABCD$?", -"image_file_name": "7054409", -"image": [ -"math/52345207_1813.png" -], -"solution": "\\textbf{Solution:} According to Figure 2, it is known that $AB=5$,\\\\\nwhen $P$ moves to point $C$,\\\\\n$y=\\frac{1}{2}AB\\cdot BC=10$,\\\\\n$\\therefore \\frac{1}{2}\\times 5\\cdot BC=10$,\\\\\n$\\therefore BC=4$,\\\\\n$\\because$ the diagonals of a rectangle are equal,\\\\\n$\\therefore BD=AC=\\sqrt{5^{2}+4^{2}}=\\sqrt{41}$.\\\\\nHence, the answer is: $BD=\\boxed{\\sqrt{41}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52344112": { -"question": "As shown in the figure, in rectangle $ABCD$, where $AB = 3$ and $BC = 4$, connect $BD$ and draw the bisector of $\\angle CBD$ intersecting $CD$ at point $E$. What is the length of $CE$?", -"image_file_name": "7054409", -"image": [ -"math/52344112_190.png" -], -"solution": "\\textbf{Solution:} Construct EH$\\perp$BD at H, as shown in the figure,\\\\\nsince quadrilateral ABCD is a rectangle,\\\\\ntherefore AB=CD=3, BC=AD=4, $\\angle$C=$90^\\circ$,\\\\\ntherefore BD=$\\sqrt{BC^{2}+CD^{2}}$=5,\\\\\nsince BE bisects $\\angle$CBD,\\\\\ntherefore $\\angle$EBC=$\\angle$EBH,\\\\\nIn $\\triangle$EBH and $\\triangle$EBC,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle EHB=\\angle C=90^\\circ\\\\\n\\angle EBH=\\angle EBC\\\\\nBE=BE\n\\end{array}\\right.$,\\\\\ntherefore $\\triangle$EBH$\\cong$$\\triangle$EBC,\\\\\ntherefore BC=BH=4, EC=EH, let EC=EH=x,\\\\\nIn $\\triangle$DEH,\\\\\nsince DE$^{2}$=DH$^{2}$+EH$^{2}$,\\\\\ntherefore $(3−x)^{2}$=$1^{2}$+$x^{2}$,\\\\\ntherefore x=$\\boxed{\\frac{4}{3}}$,\\\\\ntherefore CE=$\\frac{4}{3}$.", -"solution_image": [ -"solution_images/52344112_190.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52424790": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ bisects $\\angle BAC$, $E$ is the midpoint of $BC$, $AD \\perp BD$, $AC = 7$, $AB = 3$, what is the value of $DE$?", -"image_file_name": "7054409", -"image": [ -"math/52424790_206.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, extend $BD$ to intersect $AC$ at point $F$, \\\\\n$\\because AD$ bisects $\\angle BAC$, \\\\\nit follows that $\\angle BAD=\\angle FAD$, \\\\\n$\\because AD \\perp BC$, \\\\\nit follows that $\\angle ADB=\\angle ADF=90^\\circ$, \\\\\nIn $\\triangle ABD$ and $\\triangle AFD$, \\\\\n$\\therefore \\left\\{ \\begin{array}{l} \\angle BAD=\\angle FAD \\\\ AD=AD \\\\ \\angle ADB=\\angle ADF \\end{array} \\right.$, \\\\\n$\\therefore \\triangle ABD \\cong \\triangle AFD \\text{ (ASA) }$, \\\\\n$\\therefore AF=AB=3$, $BD=DF$, \\\\\n$\\therefore FC=AC-AF=7-3=4$, \\\\\n$\\because BD=DF$, $BE=EC$, \\\\\n$\\therefore DE$ is the median of $\\triangle BFC$, \\\\\n$\\therefore DE=\\frac{1}{2}FC=\\boxed{2}$.", -"solution_image": [ -"solution_images/52424790_200.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52425264": { -"question": "As shown in the figure, quadrilateral $ABCD$ is a kite, with diagonals $AC$ and $BD$ intersecting at point $O$, and $DH \\perp AB$ at point $H$. Connect $OH$, and $\\angle CAD=25^\\circ$. What is the measure of $\\angle DHO$?", -"image_file_name": "7054409", -"image": [ -"math/52425264_210.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\nit follows that AD=AB, BO=OD, $\\angle$DAO=$\\angle$BAO=25$^\\circ$, AC$\\perp$BD, \\\\\ntherefore $\\angle$ABD=65$^\\circ$, \\\\\nsince DH$\\perp$AB, BO=DO, \\\\\nit follows that HO=DO, \\\\\nthus $\\angle$DHO=$\\angle$BDH=90$^\\circ$-$\\angle$ABD=\\boxed{25^\\circ}.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423898": { -"question": "As shown in the figure, point O is the midpoint of the diagonal $AC$ of rectangle $ABCD$, and point M is the midpoint of $AD$. If $AB=3$ and $BC=4$, what is the perimeter of quadrilateral $ABOM$?", -"image_file_name": "7054409", -"image": [ -"math/52423898_225.png" -], -"solution": "\\textbf{Solution:} Since $AB=3$ and $BC=4$,\\\\\nit follows that $AC=\\sqrt{3^2+4^2}=5$. Since point O is the midpoint of AC, then $BO=\\frac{1}{2}AC=2.5$.\\\\\nAlso, M is the midpoint of AD, thus MO is the midline of $\\triangle ACD$, hence $OM=\\frac{1}{2}CD=1.5$.\\\\\nTherefore, the perimeter of the quadrilateral ABOM is $AB+BO+MO+AM=3+2.5+2+1.5=\\boxed{9}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423824": { -"question": "As shown in the figure, in square $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. Let $M$ be a point on side $AD$, and draw $OM$. Construct $ON \\perp OM$ intersecting $CD$ at point $N$. If the area of quadrilateral $MOND$ is $1$, what is the length of $AB$?", -"image_file_name": "7054409", -"image": [ -"math/52423824_230.png" -], -"solution": "\\textbf{Solution:} In square ABCD, diagonal BD $\\perp$ AC, \\\\\n$\\therefore \\angle AOD=90^\\circ$ \\\\\n$\\because ON\\perp OM$ \\\\\n$\\therefore \\angle MON=90^\\circ$ \\\\\n$\\therefore \\angle AOM=\\angle DON$ \\\\\nAlso, $\\because \\angle MAO=\\angle NDO=45^\\circ$, $AO=DO$ \\\\\n$\\therefore \\triangle MAO \\cong \\triangle NDO$ (ASA) \\\\\n$\\therefore S_{\\triangle MAO}=S_{\\triangle NDO}$ \\\\\n$\\because$ the area of quadrilateral MOND is 1, \\\\\n$\\therefore S_{\\triangle DAO}=1$ \\\\\n$\\therefore$ the area of square ABCD is 4, \\\\\n$\\therefore AB^2=4$ \\\\\n$\\therefore AB=\\boxed{2}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52425085": { -"question": "As shown in the figure, in rectangle $ABCD$, $AC$ and $BD$ intersect at point $O$, and $E$ and $F$ are the midpoints of $AO$ and $AD$ respectively. If $EF=4$ and $AB=8$, what is the measure of $\\angle ACB$ in degrees?", -"image_file_name": "7054409", -"image": [ -"math/52425085_246.png" -], -"solution": "\\textbf{Solution:} Given that E and F are the midpoints of AO and AD respectively,\\\\\nit follows that EF is the midline of $\\triangle AOD$,\\\\\nhence OD = 2EF = $2\\times 4$ = 8,\\\\\nsince quadrilateral ABCD is a rectangle,\\\\\nit implies OB = OD = OA = OC = 8,\\\\\nwhich means AC = 16,\\\\\ngiven AB = 8,\\\\\nit follows AC = 2AB,\\\\\nsince $\\angle$ABC = 90$^\\circ$,\\\\\nit results in $\\angle$ACB = \\boxed{30^\\circ}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52424722": { -"question": "As shown in the figure, in rhombus $ABCD$, $AC=6$, $DB=8$, $AH \\perp BC$. What is the length of $AH$?", -"image_file_name": "7054409", -"image": [ -"math/52424722_250.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, the diagonals $AC$ and $BD$ intersect at point O,\\\\\n$\\because$ Quadrilateral $ABCD$ is a rhombus, $AC=6$, $BD=8$\\\\\n$\\therefore AC\\perp BD$, $OA=OC=3$, $OB=OD=4$,\\\\\n$\\therefore BC=\\sqrt{OB^{2}+OC^{2}}=\\sqrt{4^{2}+3^{2}}=5$,\\\\\n$\\because AH\\perp BC$,\\\\\n$\\therefore$ The area of rhombus $ABCD$ $=\\frac{1}{2}AC\\cdot BD=BC\\cdot AH$,\\\\\nthat is, $\\frac{1}{2}\\times 6\\times 8=5AH$,\\\\\n$\\therefore AH=\\boxed{\\frac{24}{5}}$", -"solution_image": [ -"solution_images/52424722_252.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52425012": { -"question": "As shown in the figure, the diagonals AC and BD of the rhombus ABCD intersect at point O. Through point D, draw DH $\\perp$ AB at point H, and connect OH. If OA = 6 and OH = 4, what is the area of the rhombus ABCD?", -"image_file_name": "7054409", -"image": [ -"math/52425012_260.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus,\\\\\nit follows that OA=OC=6, OB=OD, and AC$\\perp$BD,\\\\\nthus AC=12,\\\\\nsince DH$\\perp$AB,\\\\\nit follows that $\\angle$BHD=90$^\\circ$,\\\\\nthus BD=2OH=$2\\times$ 4=8,\\\\\ntherefore, the area of rhombus ABCD = $\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}\\times 12\\times 8=\\boxed{48}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52304469": { -"question": "As shown in the figure, points A and B are located at the two ends of a pond. Xiao Cong wants to measure the distance between A and B with a rope, but the rope is not long enough. A classmate helps him come up with an idea: first, find a point C on the ground that can be directly reached from both A and B, locate the midpoints D and E of AC and BC, respectively, and measure the length of DE as $10m$. What is the distance between A and B?", -"image_file_name": "7054409", -"image": [ -"math/52304469_270.png" -], -"solution": "\\textbf{Solution:} Since D and E are respectively the midpoints of AC and BC, \\\\\ntherefore DE is the midline of $\\triangle ABC$, \\\\\ntherefore AB=2DE, \\\\\nsince DE=10m, \\\\\ntherefore AB=\\boxed{20m}", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52304101": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $M$, $N$ are the midpoints of $AB$, $AC$ respectively, and $D$, $E$ are points on $BC$, connecting $DN$, $EM$. If $AB=13$ cm, $BC=10$ cm, and $DE=5$ cm, what is the area of the shaded region in the figure?", -"image_file_name": "7054409", -"image": [ -"math/52304101_2814.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, \\\\\nconnect MN, then MN is the median of $\\triangle ABC$, \\\\\n$\\therefore$ MN=$\\frac{1}{2}$BC=5cm, \\\\\nDraw AF$\\perp$BC at point F through point A, \\\\\n$\\because$ AB=AC, \\\\\n$\\therefore$ BF=$\\frac{1}{2}$BC=5cm, \\\\\n$\\therefore$ AF=$\\sqrt{AB^{2}-BF^{2}}=\\sqrt{13^{2}-5^{2}}=12cm$, \\\\\n$\\because$ the shaded part of the diagram consists of three triangles each with a base of 5cm and the sum of their heights is 12cm, \\\\\n$\\therefore$ $S_{\\text{shaded}}=\\frac{1}{2}\\times 5\\times 12=\\boxed{30cm^{2}}$.", -"solution_image": [ -"solution_images/52304101_280.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52303916": { -"question": "As shown in the figure, quadrilateral ABCD is a rhombus with diagonal AC = 8 and DB = 6. If DH $\\perp$ AB at point H, what is the length of DH?", -"image_file_name": "7054409", -"image": [ -"math/52303916_290.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus,\\\\\nit follows that AC$\\perp$BD, and OA=OC= $\\frac{1}{2}$ AC=4, OB=OD=3,\\\\\nthus $AB=\\sqrt{OA^{2}+OB^{2}}=\\sqrt{3^{2}+4^{2}}=5$,\\\\\nthus $S_{\\text{rhombus} ABCD}$= $\\frac{1}{2}$ AC$\\cdot$BD=AB$\\cdot$DH,\\\\\nthus DH= $\\frac{AC\\cdot BD}{2AB}$ =$\\boxed{4.8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52303921": { -"question": "As shown in the figure, the vertices B and E of squares ABCO and CDEF, respectively, lie on the hyperbola $y= \\frac{4}{x}$ ($x>0$). When OB, OE, and BE are connected, what is the value of $S_{\\triangle OBE}$?", -"image_file_name": "7054409", -"image": [ -"math/52303921_301.png" -], -"solution": "\\textbf{Solution:} Connect CE. \\\\\nSince quadrilateral ABCO and quadrilateral DEFC are both squares, \\\\\nthus, $\\angle$ECF=$\\angle$BOC=$45^\\circ$, \\\\\nhence, CE$\\parallel$OB, \\\\\ntherefore, $S_{\\triangle OBE}$=$S_{\\triangle OBC}$, \\\\\nsince $S_{\\triangle OBC}$=$\\frac{1}{2} \\times 4=2$, \\\\\nthus, $S_{\\triangle OBE}$= $\\frac{1}{2} \\times 2 \\times 2=\\boxed{2}$,", -"solution_image": [ -"solution_images/52303921_300.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52303920": { -"question": "As shown in the figure, in rectangle $ABCD$, $AD = 3$, $AB = 4$. Let $M$ be a moving point on line segment $BD$. Let $MP \\perp CD$ at point $P$, and $MQ \\perp BC$ at point $Q$. What is the minimum value of $PQ$?", -"image_file_name": "7054409", -"image": [ -"math/52303920_310.png" -], -"solution": "\\textbf{Solution:} Connect CM as shown in the diagram:\n\\[\n\\because \\text{MP} \\perp \\text{CD at point P, MQ} \\perp \\text{BC at point Q,}\n\\]\n\\[\n\\therefore \\angle \\text{CPM} = \\angle \\text{CQM} = 90^\\circ,\n\\]\n\\[\n\\because \\text{Quadrilateral ABCD is a rectangle,}\n\\]\n\\[\n\\therefore \\text{BC} = \\text{AD} = 3, \\text{CD} = \\text{AB} = 4, \\angle \\text{BCD} = 90^\\circ,\n\\]\n\\[\n\\therefore \\angle \\text{CPM} = \\angle \\text{CQM} = \\angle \\text{BCD} = 90^\\circ,\n\\]\n\\[\n\\therefore \\text{Quadrilateral PCQM is a rectangle,}\n\\]\n\\[\n\\therefore \\text{PQ} = \\text{CM},\n\\]\n\\[\n\\therefore \\text{When CM is at its minimum, PQ is also at its minimum,}\n\\]\n\\[\n\\because \\text{Point M moves along BD,}\n\\]\n\\[\n\\therefore \\text{When CM} \\perp \\text{BD, CM is at its minimum, then PQ is at its minimum,}\n\\]\nUsing the Pythagorean theorem, we get:\n\\[\n\\text{BD} = \\sqrt{\\text{DC}^2 + \\text{BC}^2} = \\sqrt{4^2 + 3^2} = 5,\n\\]\n\\[\n\\because {S}_{\\triangle \\text{BCD}} = \\frac{1}{2} \\text{BC} \\times \\text{CD} = \\frac{1}{2} \\text{BD} \\times \\text{CM},\n\\]\n\\[\n\\therefore \\text{At this moment, CM} = \\frac{\\text{BC} \\times \\text{CD}}{\\text{BD}} = \\frac{3 \\times 4}{5} = \\boxed{\\frac{12}{5}},\n\\]\n\\[\n\\therefore \\text{The minimum value of PQ is} \\frac{12}{5}.\n\\]", -"solution_image": [ -"solution_images/52303920_310.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52303773": { -"question": "As shown in the figure, the diagonals AC and BD of the rhombus $ABCD$ intersect at point $O$, and $E$ is the midpoint of $AB$. Line $OE$ is drawn. If $OE = 4$, what is the perimeter of the rhombus $ABCD$?", -"image_file_name": "7054409", -"image": [ -"math/52303773_320.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus,\\\\\nit follows that OA=OC, and AB=BC=CD=AD,\\\\\nSince point E is the midpoint of AB,\\\\\nit follows that OE is the median of $\\triangle ABC$,\\\\\nhence BC=2OE=8,\\\\\nTherefore, the perimeter of the rhombus ABCD is $8\\times 4=\\boxed{32}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52303693": { -"question": "As illustrated in the diagram, within rectangle ABCD, point E is the midpoint of BC. Line AE intersects BD at point F. If $BF = 2$, what is the length of BD?", -"image_file_name": "7054409", -"image": [ -"math/52303693_331.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle,\\\\\nit follows that $AD \\parallel BC$,\\\\\nwhich implies $\\triangle ADF \\sim \\triangle EBF$,\\\\\ntherefore, $\\frac{BF}{DF} = \\frac{BE}{DA}$,\\\\\nsince $BF = 2$ and point E is the midpoint of BC,\\\\\nit leads to $\\frac{2}{DF} = \\frac{1}{2}$,\\\\\nthus, $DF = 4$,\\\\\nhence, $BD = BF + DF = 2 + 4 = \\boxed{6}$,\\\\", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52302532": { -"question": "As shown in the figure, in $\\triangle ABC$, $AC=3$, $AB=4$, and $BC=5$. $P$ is a moving point on $BC$, $PG\\perp AC$ at point $G$, $PH\\perp AB$ at point $H$, and $M$ is the midpoint of $GH$. What is the minimum value of $PM$ during the motion of $P$?", -"image_file_name": "7054409", -"image": [ -"math/52302532_340.png" -], -"solution": "\\textbf{Solution}: Given that $AC=3$, $AB=4$, and $BC=5$,\\\\\nthus we have $AC^{2}=9$, $AB^{2}=16$, $BC^{2}=25$,\\\\\nwhich leads us to $AC^{2}+AB^{2}=BC^{2}$,\\\\\ntherefore $\\angle A=90^\\circ$.\\\\\nSince $PG\\perp AC$ and $PH\\perp AB$,\\\\\nwe get $\\angle AGP=\\angle AHP=90^\\circ$,\\\\\nhence quadrilateral AGPH is a rectangle.\\\\\nBy connecting AP,\\\\\nthus $GH=AP$\\\\\nGiven that when $AP\\perp BC$, AP is at its minimum,\\\\\nthus $3 \\times 4 = 5AP$,\\\\\ntherefore $AP= \\frac{12}{5}$, \\\\\nthus the minimum value of PM is $\\boxed{1.2}$.", -"solution_image": [ -"solution_images/52302532_340.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52302569": { -"question": "As shown in the figure, in the rectangle $AOBD$, the coordinate of point $D$ is $(1,3)$. What is the length of $AB$?", -"image_file_name": "7054409", -"image": [ -"math/52302569_350.png" -], -"solution": "\\textbf{Solution:} Since the quadrilateral AOBD is a rectangle,\\\\\nit follows that AB=OD,\\\\\nand since the coordinates of point D are $(1,3)$,\\\\\nit then follows that $OD=\\sqrt{1^2+3^2}=\\sqrt{10}$,\\\\\ntherefore, $AB=OD=\\boxed{\\sqrt{10}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52302533": { -"question": "As shown in the figure, in squares $ABCD$ and $CEFG$, where point $D$ is on $CG$, given that $BC=1$ and $CE=7$, and point $H$ is the midpoint of $AF$, what is the length of $CH$?", -"image_file_name": "7054409", -"image": [ -"math/52302533_369.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, extend $AD$ to meet $EF$ at $M$, and draw lines $AC$, $CF$.\n\nSince in squares $ABCD$ and $CEFG$, point $D$ lies on $CG$, given that $BC=1$, $CE=7$,\n\nHence, $AB=AD=CD=BC=1$, $EF=CE=7$,\n\n$\\angle GCE=\\angle E=90^\\circ$, $\\angle ADC=90^\\circ$,\n\nTherefore, $\\angle CDM=180^\\circ-\\angle ADC=90^\\circ$,\n\nTherefore, quadrilateral $DCEM$ is a rectangle,\n\nTherefore, $DM=CE=7$, $ME=CD=1$, $\\angle DME=90^\\circ$,\n\nTherefore, $AM=AD+DM=1+7=8$, $FM=EF-ME=7-1=6$,\n\n$\\angle AMF=180^\\circ-\\angle DME=180^\\circ-90^\\circ=90^\\circ$,\n\nTherefore, in $\\triangle AMF$ right-angled at $M$, $AF=\\sqrt{AM^2+FM^2}=\\sqrt{8^2+6^2}=10$,\n\nSince squares $ABCD$ and $CEFG$ are squares,\n\nTherefore, $\\angle ACD=\\angle GCF=45^\\circ$,\n\nTherefore, $\\angle ACF=90^\\circ$,\n\nSince point $H$ is the midpoint of $AF$,\n\nTherefore, $CH=\\frac{1}{2}AF=\\boxed{5}$.", -"solution_image": [ -"solution_images/52302533_365.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52211273": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAD = \\angle CAD$, $BE = CE$, $AD \\perp BD$, $DE = \\frac{3}{2}$, $AB = 4$, what is the value of $AC$?", -"image_file_name": "7054436", -"image": [ -"math/52211273_03.png" -], -"solution": "\\textbf{Solution:} Extend $BD$ to intersect $AC$ at $F$, as shown in the diagram:\\\\\n$\\because$ $\\angle BAD=\\angle CAD$ and $AD \\perp BD$,\\\\\n$\\therefore$ $AF=AB=4$, point $D$ is the midpoint of segment $BF$,\\\\\nFurther, $\\because$ $BE=CE$,\\\\\n$\\therefore$ point $E$ is the midpoint of segment $BC$,\\\\\n$\\therefore$ $DE$ is the midline of $\\triangle BCF$,\\\\\n$\\therefore$ $FC=2DE=3$,\\\\\n$\\therefore$ $AC=AF+FC=4+3=\\boxed{7}$.", -"solution_image": [ -"solution_images/52211273_00.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52212478": { -"question": "As shown in the figure, quadrilateral ABCD is a rhombus with $AC=8\\,\\text{cm}$ and $DB=6\\,\\text{cm}$. If $DH \\perp AB$ at H, then what is the length of DH?", -"image_file_name": "7054436", -"image": [ -"math/52212478_10.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, let AC and BD intersect at point O, \\\\\n$\\because$ Quadrilateral ABCD is a rhombus, AC$=8\\text{cm}$, DB$=6\\text{cm}$,\\\\\n$\\therefore$AC$\\perp$BD, OA$=$OC$=4\\text{cm}$, OB$=$OD$=3\\text{cm}$,\\\\\n$\\therefore$ $AB=\\sqrt{OA^{2}+OB^{2}}=\\sqrt{4^{2}+3^{2}}=5\\text{cm}$,\\\\\n$\\because$DH$\\perp$AB,\\\\\n$\\therefore$the area of the rhombus $=AB\\cdot DH=\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}\\times 8\\times 6=24\\text{cm}^{2}$,\\\\\n$\\therefore$ $DH=\\boxed{4.8}\\text{cm}$.", -"solution_image": [ -"solution_images/52212478_10.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52211279": { -"question": "As shown in the figure, within a square $ABCD$ with a side length of $4\\text{cm}$, point $P$ starts moving from point $A$, travels uniformly along the path $AB \\rightarrow BC$, and stops at point $C$. Through point $P$, line $PQ$ is drawn parallel to $BD$, where $PQ$ intersects with side $AD$ (or side $CD$) at point $Q$. The length of $PQ$, $y$ (in centimeters), varies as point $P$ moves, as illustrated in the figure. What is the length of $PQ$ when point $P$ has moved for $2.5s$?", -"image_file_name": "7054436", -"image": [ -"math/52211279_20.png" -], -"solution": "\\textbf{Solution:} Given from (2), when point P moves for 2s, PQ overlaps with BD, and the side length of quadrilateral ABCD is 4cm.\\\\\n$\\therefore$ The speed of point P is 2cm/s.\\\\\n$\\therefore$ When P moves for 2.5s, the distance covered by point P is 5cm, and at this moment, P is on side BC.\\\\\n$\\therefore$ CP$_{1}$=3cm.\\\\\nAlso, since PQ$\\parallel$BD,\\\\\n$\\therefore$CQ$_{1}$=3cm.\\\\\n$\\therefore$${P}_{1}{Q}_{1}=\\sqrt{{3}^{2}+{3}^{2}}=\\boxed{3\\sqrt{2}}$cm.", -"solution_image": [ -"solution_images/52211279_20.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52210860": { -"question": "As shown in Figure 1, respectively along the diagonals AC of the rectangular paper piece ABCD and EG of the square paper piece EFGH, if cut and assembled as shown in Figure 2 into $\\square KLMN$, and if the quadrilateral OPQR in the middle is precisely a square, and the area of $\\square KLMN$ is 50, then what is the area of the square EFGH?", -"image_file_name": "7054436", -"image": [ -"math/52210860_30.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, let $PM = PL = NR = KR = a$, and the side length of square $ORQP$ be $b$.\\\\\nAccording to the problem: $a^{2} + b^{2} + (a + b)(a - b) = 50$,\\\\\n$\\therefore a^{2} = 25$,\\\\\n$\\therefore$ the area of square $EFGH$ = $a^{2} = \\boxed{25}$.", -"solution_image": [ -"solution_images/52210860_30.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52210861": { -"question": "As shown in the figure, the side length of rhombus $ABCD$ is $2$, $\\angle A=60^\\circ$, point $G$ is the midpoint of $AB$, a rhombus $BEFG$ is constructed with $BG$ as its side, where point $E$ is on the extension line of $CB$, and point $P$ is the midpoint of $FD$. What is the length of $PB$?", -"image_file_name": "7054436", -"image": [ -"math/52210861_40.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BF and BD, \\\\\n$\\because$ the side length of the rhombus ABCD is 2,\\\\\n$\\therefore$ AB = BC = CD = 2,\\\\\n$\\because$ $\\angle$A = $60^\\circ$,\\\\\n$\\therefore$ $\\triangle$BCD is an equilateral triangle,\\\\\n$\\therefore$ BD = BC = 2, $\\angle$DBC = $60^\\circ$,\\\\\n$\\therefore$ $\\angle$DBA = $60^\\circ$,\\\\\n$\\because$ point G is the midpoint of AB,\\\\\n$\\therefore$ the side length of rhombus BEFG is 1,\\\\\nthat is, BE = EF = BG = 1,\\\\\n$\\because$ point E is on the extension line of CB, $\\angle$GBE = $60^\\circ$,\\\\\n$\\therefore$ $\\angle$FBG = $30^\\circ$,\\\\\nconnect EG,\\\\\n$\\therefore$ EG $\\perp$ FB at point O,\\\\\n$\\therefore$ OB = $\\frac{\\sqrt{3}}{2}$,\\\\\n$\\therefore$ FB = $\\sqrt{3}$,\\\\\n$\\because$ $\\angle$DBF = $\\angle$DBA + $\\angle$FBG = $90^\\circ$,\\\\\naccording to the Pythagorean theorem, we get\\\\\nDF = $\\sqrt{DB^2 + BF^2} = \\sqrt{7}$,\\\\\n$\\because$ point P is the midpoint of FD,\\\\\n$\\therefore$ PB = $\\frac{1}{2}$DF = $\\boxed{\\frac{\\sqrt{7}}{2}}$.", -"solution_image": [ -"solution_images/52210861_40.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52211683": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$, $E$, and $F$ are the midpoints of sides $BC$, $CA$, and $AB$, respectively. What is the perimeter of the quadrilateral $AFDE$?", -"image_file_name": "7054436", -"image": [ -"math/52211683_55.png" -], -"solution": "Solution: Since D, E, and F are the midpoints of sides $BC$, $CA$, and $AB$ respectively, \\\\\nit follows that $DF \\parallel AC$, $DE \\parallel AB$, and $DF = \\frac{1}{2} AC$, $DE = \\frac{1}{2} AB$, \\\\\ntherefore, quadrilateral AFDE is a parallelogram, \\\\\nhence, $DF = AE = \\frac{1}{2} AC$, $DE = AF = \\frac{1}{2} AB$, \\\\\ntherefore, the perimeter of parallelogram AFDE is equal to $\\boxed{AB + AC}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52205054": { -"question": "As shown in the figure, in rhombus $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, with $BD=8$ and $BC=5$. If $AE \\perp BC$ at point $E$, what is the length of $AE$?", -"image_file_name": "7054436", -"image": [ -"math/52205054_60.png" -], -"solution": "\\textbf{Solution:} Given that $ABCD$ is a rhombus, with $BC=5$ and $BD=8$, \\\\\nthen $OC=\\sqrt{5^2-4^2}=3$, \\\\\nhence $AC=2OC=6$, \\\\\nsince $AE \\perp BC$, \\\\\nthen $BC \\cdot AE = \\frac{1}{2} AC \\cdot BD$, \\\\\nthus $5AE = \\frac{1}{2} \\times 6 \\times 8$, \\\\\ntherefore $AE = \\boxed{\\frac{24}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52205057": { -"question": "As shown in the figure, point A is an arbitrary point on the graph of the inverse proportion function $y= \\frac{2}{x}$ ($x>0$). Line segment $AB$ is parallel to the $x$-axis and intersects the graph of the inverse proportion function $y= -\\frac{3}{x}$ at point B. A square $\\square ABCD$ is formed with $AB$ as a side, where points $C$ and $D$ lie on the $x$-axis. What is the area $S_{\\square ABCD}$?", -"image_file_name": "7054436", -"image": [ -"math/52205057_72.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AF \\perp x$-axis at point $F$ and $BE \\perp x$-axis at point $E$ from points $A$ and $B$, respectively.\n\nSince $\\square ABCD$, \n\nit follows that $AB \\parallel x$-axis,\n\nhence quadrilateral $ABEF$ is a rectangle,\n\nthus $S_{\\square ABCD} = S_{\\text{rectangle } ABEF}$,\n\nsince $A$ and $B$ are located on the graphs of inverse proportion functions $y=\\frac{2}{x}$ and $y=-\\frac{3}{x}$, respectively,\n\nit follows that $S_{\\text{rectangle } ABEF} = 2 + 3 = 5$,\n\ntherefore, $S_{\\square ABCD} = \\boxed{5}$.", -"solution_image": [ -"solution_images/52205057_70.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52204763": { -"question": "As shown in the figure, point $E$ is on the side $CD$ of rectangle $ABCD$. The rectangle $ABCD$ is folded along $AE$ so that point $D$ falls on point $F$ on side $BC$. If $AB=6$ and $AD=10$, what is the length of $DE$?", -"image_file_name": "7054436", -"image": [ -"math/52204763_811.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a rectangle, \\\\\n$\\therefore AD=BC=10$, $AB=CD=6$,\\\\\nFolding rectangle $ABCD$ along line $AE$, vertex $D$ precisely falls on point $F$ on side $BC$,\\\\\n$\\therefore AF=AD=10$, $EF=DE$,\\\\\nIn $\\triangle ABF$, $BF=\\sqrt{AF^{2}-AB^{2}}=\\sqrt{10^{2}-6^{2}}=8$,\\\\\n$\\therefore CF=BC-BF=10-8=2$,\\\\\nLet $CE=x$, then $DE=EF=6-x$,\\\\\nIn $\\triangle ECF$, $CE^{2}+FC^{2}=EF^{2}$,\\\\\n$\\therefore x^{2}+2^{2}=(6-x)^{2}$,\\\\\nSolving for $x$ gives $x=\\frac{8}{3}$,\\\\\n$\\therefore DE=6-x=\\boxed{\\frac{10}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52204217": { -"question": "As shown in the figure, in $\\triangle ABC$, $BC=20$, and $D$, $E$ are the midpoints of $AB$, $AC$, respectively. What is the length of $DE$?", -"image_file_name": "7054436", -"image": [ -"math/52204217_97.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of $AB$ and $AC$ respectively,\\\\\ntherefore, $DE$ is the mid-segment of $\\triangle ABC$,\\\\\ntherefore, $DE = \\frac{1}{2}BC$,\\\\\nsince $BC = 20$,\\\\\ntherefore, $DE = \\frac{1}{2} \\times 20 = \\boxed{10}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52204022": { -"question": "In the rhombus $ABCD$ shown in the figure, we have $AB=4$ and $\\angle ABC=60^\\circ$. Points $P$ and $M$ are moving points on $BD$ and $BC$, respectively, with $M$ being distinct from points $B$ and $C$. What is the minimum value of $PM+PC$?", -"image_file_name": "7054436", -"image": [ -"math/52204022_103.png" -], -"solution": "Solution: As shown in Figure 1, connect PA,\n\n$\\because$ rhombus ABCD,\n\n$\\therefore$ AD=DC, $\\angle ADB=\\angle BDC$,\n\nIn $\\triangle ADP$ and $\\triangle CDP$,\n\n$\\because$ $\\left\\{\\begin{array}{l}AD=DC\\\\ \\angle ADP=\\angle PDC\\\\ PD=PD\\end{array}\\right.$,\n\n$\\therefore$ $\\triangle ADP\\cong \\triangle CDP\\left(SAS\\right)$,\n\n$\\therefore$ $PA=PC$, that is $PM+PC=PM+PA\\ge AM$.\n\n$\\because$ M is a moving point on BC,\n\n$\\therefore$ when AM$\\perp$BC, AM has the smallest value.\n\nAs shown in Figure 2, draw AM$\\perp$BC at point M through A,\n\n$\\because$ $\\angle ABC=60^\\circ$, $\\angle AMB=90^\\circ$, $AB=4$,\n\n$\\therefore$ $AM=2\\sqrt{3}$,\n\nSo the minimum value of $PM+PC$ is $\\boxed{2\\sqrt{3}}$,", -"solution_image": [ -"solution_images/52204022_100.png", -"solution_images/52204022_106.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52188263": { -"question": "As shown in the figure, the diagonals AC and BD of the rhombus ABCD intersect at point O, and E is the midpoint of AB. Connect OE. If the perimeter of the rhombus ABCD is 32, what is the length of OE?", -"image_file_name": "7054436", -"image": [ -"math/52188263_110.png" -], -"solution": "\\textbf{Solution:} Given that the perimeter of rhombus ABCD is 32,\\\\\nit follows that BA=8, and AC$\\perp$BD,\\\\\nwhich implies $\\angle$AOB=90$^\\circ$,\\\\\nsince point E is the midpoint of AB,\\\\\nit follows that OE=$ \\frac{1}{2}$AB=$\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52188268": { -"question": "As shown in the figure, in rectangle $ABCD$, diagonals $AC$ and $BD$ intersect at point $E$. $BF \\parallel AC$ and $CF \\parallel BD$. If the area of quadrilateral $BECF$ is 2, what is the area of the rectangle $ABCD$?", -"image_file_name": "7054436", -"image": [ -"math/52188268_120.png" -], -"solution": "\\textbf{Solution:} Given that $BF\\parallel AC$ and $CF\\parallel BD$, \\\\\nit follows that quadrilateral BECF is a parallelogram, \\\\\nsince rectangle ABCD, \\\\\nwe have BE=CE, \\\\\nthus, quadrilateral BECF is a rhombus; \\\\\nhence, the area of rhombus BECF, $S_{\\text{rhombus} BECF}=2S_{\\triangle BEC}=2$, \\\\\nthus, the area of $\\triangle BEC=1$; \\\\\nsince rectangle ABCD, \\\\\nit follows that the area of rectangle ABCD, $S_{\\text{rectangle} ABCD}=4S_{\\triangle BEC}=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52188832": { -"question": "Four congruent right-angled triangles are assembled as shown in the figure to form two differently sized squares, $ABCD$ and $EFGH$, where the ratio of the lengths of the two perpendicular sides of each right-angled triangle is $1:2$. If the area of square $EFGH$ is $5$, what is the area of square $ABCD$?", -"image_file_name": "7054436", -"image": [ -"math/52188832_130.png" -], -"solution": "\\textbf{Solution:} From the given problem, we have $Rt\\triangle AEH \\cong Rt\\triangle BFE$,\\\\\ntherefore $AH=BE$,\\\\\nsuppose $AH0$, what is the range of $x$?", -"image_file_name": "7057900", -"image": [ -"math/52793773_13.png" -], -"solution": "\\textbf{Solution:} From the figure, we know that the axis of symmetry of the parabola is the line $x=-1$, and one intersection point with the $x$-axis has an abscissa of $-3$,\\\\\n$\\therefore$ the abscissa of the other intersection point of the parabola with the $x$-axis is $1$,\\\\\n$\\because y>0$,\\\\\n$\\therefore -30$), there are points $P_1$, $P_2$, $P_3$, $P_4$ whose abscissae are 1, 2, 3, 4, respectively. Perpendiculars are drawn from these points to the $x$-axis and the $y$-axis. The areas of the shaded regions formed in the diagram from left to right are $S_1$, $S_2$, and $S_3$, respectively. What is the value of $S_1+S_2+S_3$?", -"image_file_name": "7057900", -"image": [ -"math/52694241_61.png" -], -"solution": "\\textbf{Solution:} After translation, as shown in the figure, \\\\\nwhen $x=4$, $y=\\frac{1}{2}$, \\\\\n$\\therefore$ the area of rectangle AOCB is $1\\times\\frac{1}{2}=\\frac{1}{2}$; \\\\\nwhen $x=1$, $y=2$, \\\\\n$\\therefore S_{1}+S_{2}+S_{3}+\\text{Area of rectangle AOCB}=2$ \\\\\n$\\therefore S_{1}+S_{2}+S_{3}=2-\\frac{1}{2}=\\boxed{\\frac{3}{2}}$.", -"solution_image": [ -"solution_images/52694241_60.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52620595": { -"question": "The diagram shows a schematic of an arched bridge, with the points where the arch intersects the deck being O and B, respectively. Taking point O as the origin and the horizontal line OB as the x-axis, we establish a Cartesian coordinate system. The arch of the bridge can be approximated by the parabola $y=-0.01(x-20)^2+4$. The point C, where the arch intersects the pier AC, is precisely at the water's surface, and $AC \\perp x$-axis. If OA is 5 meters, what is the height of the deck above the water surface AC?", -"image_file_name": "7057900", -"image": [ -"math/52620595_70.png" -], -"solution": "\\textbf{Solution:} Since $OA=5$ and $CA\\perp x$-axis, \\\\\nit follows that the coordinates of point A are $(-5, 0)$, \\\\\nwhen $x=-5$, $y=-0.01(-5-20)^{2}+4=-2.25$, \\\\\nthus point C has coordinates $(-5, -2.25)$, \\\\\nhence $AC=|-2.25|=\\boxed{2.25}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52605419": { -"question": "As shown in the figure, the parabola \\(y_{1}=ax^{2}+bx+c\\) intersects the line \\(y_{2}=mx+n\\) at points \\((3,0)\\) and \\((0,3)\\). If \\(ax^{2}+bx+c>mx+n\\), what is the range of values for \\(x\\)?", -"image_file_name": "7057900", -"image": [ -"math/52605419_80.jpg" -], -"solution": "\\textbf{Solution:} According to the graph of the functions, \\\\\nwhen $x<0$ or $x>3$, $y_1>y_2$, \\\\\nthus the solution set for $ax^2+bx+c>mx+n$ is $x<0$ or $x>3$. \\\\\nTherefore, the answer is: $\\boxed{x<0$ or $x>3}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52551555": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertex $A$ of $\\square OABC$ lies on the inverse proportional function $y=\\frac{1}{x}$, the vertex $B$ lies on the inverse proportional function $y=\\frac{5}{x}$, and point $C$ is located on the positive half of the $x$-axis. What is the area of $\\square OABC$?", -"image_file_name": "7057900", -"image": [ -"math/52551555_98.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw perpendiculars from points A and B to the x-axis, with the feet of the perpendiculars being M and N, respectively, and connect OB. \\\\\nSince quadrilateral ABCO is a parallelogram, \\\\\nit follows that $OA=BC$ and $AB\\parallel OC$, \\\\\nwhich means $AM=BN$, \\\\\nIn $\\triangle AMO$ and $\\triangle BNC$ right-angled triangles, \\\\\nsince $OA=CB$ and $AM=BN$, \\\\\nit leads to $\\triangle AMO \\cong \\triangle BNC$ (HL criterion), \\\\\nAlso, since point A lies on the inverse proportion function $y=\\frac{1}{x}$, \\\\\nit implies $Area_{\\triangle AOM}=\\frac{1}{2}\\times 1=\\frac{1}{2}=Area_{\\triangle BNC}$, \\\\\nSince point B lies on the inverse proportion function $y=\\frac{5}{x}$, \\\\\nit implies $Area_{\\triangle BON}=\\frac{1}{2}\\times 5=\\frac{5}{2}$, \\\\\nTherefore, $Area_{\\triangle OBC}=Area_{\\triangle BON}-Area_{\\triangle BNC}=\\frac{5}{2}-\\frac{1}{2}=2=\\frac{1}{2}Area_{\\square ABCO}$, \\\\\nThus, $Area_{\\square ABCO}=\\boxed{4}$.", -"solution_image": [ -"solution_images/52551555_91.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52536743": { -"question": "After shifting the parabola \\(y=x^{2}-4x+1\\) to the left so that its vertex falls on the y-axis, as shown in the figure, what is the area \\(S\\) of the shape formed by the two parabolas, the line \\(y=-3\\), and the x-axis (the shaded area in the figure)?", -"image_file_name": "7057900", -"image": [ -"math/52536743_100.png" -], -"solution": "\\textbf{Solution:} The parabola $y=x^{2}-4x+1=(x-2)^{2}-3$ has its vertex at $C(2,-3)$. Shifting it leftwards to have the vertex lie on the y-axis, we get the vertex $B(0,-3)$. Point $A$ is one of the intersections of the parabola with the $x$-axis. Connecting $OC$, $AB$,\\\\\nas shown in the figure,\\\\\nthe shaded area equals the area of $\\triangle ABCO$, with $S=2\\times 3=\\boxed{6}$.", -"solution_image": [ -"solution_images/52536743_100.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52513824": { -"question": "As illustrated in the figure, the line $y=-\\frac{1}{2}x+m$ ($m>0$) intersects the $x$-axis at point $C$ and the $y$-axis at point $D$. A rectangle ABCD is constructed with $CD$ as one side, where point $A$ is on the $x$-axis. The hyperbola $y=-\\frac{6}{x}$ passes through point $B$ and intersects the line $CD$ at point $E$. What are the coordinates of point $E$?", -"image_file_name": "7057900", -"image": [ -"math/52513824_1113.png" -], -"solution": "\\textbf{Solution:} According to the given conditions, the line $y=-\\frac{1}{2}x+m$ intersects the x-axis at C and the y-axis at D, \\\\\nby setting $x=0$, $y=0$, \\\\\nwe get $y=m$, $x=2m$, \\\\\nthus $D(0,m)$ and $C(2m,0)$, \\\\\nsince AD is perpendicular to CD and passes through D, \\\\\nthe equation of line AD is: $y=2x+m$, \\\\\nsetting $y=0$, we find $x=-\\frac{1}{2}m$, \\\\\nthus $A\\left(-\\frac{1}{2}m,0\\right)$, \\\\\ndraw BH perpendicular to AC at H, \\\\\nsince quadrilateral ABCD is a rectangle, \\\\\ntherefore $AD=BC$ and $\\angle DAO=\\angle BCH$, \\\\\nin $\\triangle AOD$ and $\\triangle CHB$ we have \\\\\n$\\left\\{\\begin{array}{l}\n\\angle DAO=\\angle BCH\\\\\n\\angle AOD=\\angle CHB=90^\\circ\\\\\nAD=BC\n\\end{array}\\right.$, \\\\\nthus $\\triangle AOD \\cong \\triangle CHB$ (AAS), \\\\\nhence $BH=OD=m$ and $CH=OA=\\frac{1}{2}m$, \\\\\nthus $OH=\\frac{3}{2}m$, \\\\\ntherefore, the coordinates of point B are $B\\left(\\frac{3}{2}m,-m\\right)$, \\\\\nsince B lies on the hyperbola $y=-\\frac{6}{x}$, \\\\\nthus $\\frac{3}{2}m\\cdot (-m)=-6$, \\\\\nsolving for $m$ gives $m=\\pm 2$, \\\\\nsince $m>0$, \\\\\nthus $m=2$, \\\\\nhence, the equation of line CD is $y=-\\frac{1}{2}x+2$, \\\\\nsolving $\\left\\{\\begin{array}{l}\ny=-\\frac{6}{x}\\\\\ny=-\\frac{1}{2}x+2\n\\end{array}\\right.$, \\\\\ngives $\\left\\{\\begin{array}{l}\nx=6\\\\\ny=-1\n\\end{array}\\right.$ and $\\left\\{\\begin{array}{l}\nx=-2\\\\\ny=3\n\\end{array}\\right.$, \\\\\ntherefore, the coordinates of point $E$ are $\\boxed{\\left(6,-1\\right)}$.", -"solution_image": [ -"solution_images/52513824_111.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52514040": { -"question": "As shown in the figure, point A is on the graph of the inverse proportion function $y = \\frac{k}{x}$ (where $k > 0$), and AB is perpendicular to the x-axis at point B. If the area of $\\triangle AOB$ is 3, what is the value of $k$?", -"image_file_name": "7057900", -"image": [ -"math/52514040_121.png" -], -"solution": "\\textbf{Solution:} Since point $A$ lies on the graph of the inverse proportion function $y=\\frac{k}{x}$, we have $S_{\\triangle AOB}=\\frac{1}{2}|k|=3$;\\\\\nSince $k>0$, it follows that $k=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52514129": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertex \\(A\\) of \\(\\square OABC\\) is on the inverse proportion function \\(y=\\frac{1}{x}\\), the vertex \\(B\\) is on the inverse proportion function \\(y=\\frac{5}{x}\\), and the point \\(C\\) is on the positive half of the x-axis. What is the area of \\(\\square OABC\\)?", -"image_file_name": "7057900", -"image": [ -"math/52514129_132.png" -], -"solution": "\\textbf{Solution:} Construct line AF $\\perp$ x-axis at point F through point A, and construct line BE $\\perp$ x-axis at point E through point B. Extend BA to intersect the y-axis at point G. Thus, both quadrilaterals OFAG and OEBG are rectangles. \\\\\n$\\because$ Point A lies on the inverse proportional function $y=\\frac{1}{x}$, and vertex B lies on the inverse proportional function $y=\\frac{5}{x}$, \\\\\n$\\therefore$ Area of rectangle OFAG = 1, Area of rectangle OEBG = 5, \\\\\n$\\therefore$Area of $\\square OABC$ = Area of rectangle ABEF = Area of rectangle OEBG - Area of rectangle OFAG = \\boxed{4}.", -"solution_image": [ -"solution_images/52514129_130.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52514047": { -"question": "As shown in the figure, a rectangular window frame in the shape of the character \"目\" is made from 48 meters of wood (the crossbars EF and GH are also made of wood). Where AB $\\parallel$ EF $\\parallel$ GH $\\parallel$ CD, to maximize the area of the window frame ABCD, what should be the length of AB?", -"image_file_name": "7057900", -"image": [ -"math/52514047_140.png" -], -"solution": "\\textbf{Solution:} Let the length of AB be $x$ meters, then the length of AD is $\\frac{48-4x}{2}$ meters.\\\\\nUsing the formula for the area of a rectangle, we get: $S_{\\text{rectangle}} = \\text{AD} \\cdot \\text{AB} = x \\cdot \\frac{48-4x}{2} = -2x^2 + 24x = -2(x-6)^2 + 72$,\\\\\n$\\because 48-4x > 0$,\\\\\n$\\therefore x < 12$,\\\\\n$\\therefore 0 < x < 12$,\\\\\n$\\because -2 < 0$,\\\\\n$\\therefore$ when $x = \\boxed{6}$, the area of the rectangle has its maximum value.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51433085": { -"question": "As shown in the figure, the line $y=x+2$ and the hyperbolic function $y=\\frac{k}{x}$ intersect at point P in the first quadrant. If $OP=\\sqrt{20}$, what is the value of $k$?", -"image_file_name": "7057900", -"image": [ -"math/51433085_152.png" -], -"solution": "\\textbf{Solution:} Let $P(x, x+2)$,\\\\\nsince $OP=\\sqrt{20}$,\\\\\nit follows that $x^{2}+(x+2)^{2}=(\\sqrt{20})^{2}$,\\\\\nsimplifying, we get:\\\\\n$x^{2}+2x-8=0$,\\\\\nthus, $(x+4)(x-2)=0$,\\\\\nhence, $x_{1}=-4, x_{2}=2$,\\\\\nsince $P$ is in the first quadrant, then\\\\\n$P(2, 4)$,\\\\\ntherefore, $k=xy=2\\times 4=\\boxed{8}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445482": { -"question": "As shown in the figure, $AB \\perp x$-axis, with $B$ being the foot of the perpendicular. The hyperbola $y = \\frac{k}{x}$ (where $x > 0$) intersects the two sides $OA$ and $AB$ of $\\triangle AOB$ at points $C$ and $D$, respectively, with $OC = CA$. If the area of $\\triangle ACD$ is $3$, what is the value of $k$?", -"image_file_name": "7057900", -"image": [ -"math/51445482_161.png" -], -"solution": "\\textbf{Solution:} Draw OD, and construct CE $\\perp$ x-axis through point C,\\\\\n$\\because$ OC = CA,\\\\\n$\\therefore$ OE : OB = 1 : 2;\\\\\nAssume the area of $\\triangle OBD$ as x, according to the meaning of the inverse ratio function k, the area of triangle OCE is x,\\\\\n$\\because$ $\\triangle COE \\sim \\triangle AOB$,\\\\\n$\\therefore$ the ratio of the areas of triangle COE to triangle BOA is 1 : 4,\\\\\n$\\because$ the area of $\\triangle ACD$ is 3,\\\\\n$\\therefore$ the area of $\\triangle OCD$ is 3,\\\\\n$\\therefore$ the area of triangle BOA is 6 + x,\\\\\nThat is, the area of triangle BOA is 6 + x = 4x,\\\\\nSolving this gives x = 2,\\\\\n$\\therefore$ $\\frac{1}{2}|k|=2$,\\\\\n$\\because$ k > 0,\\\\\n$\\therefore$ k = \\boxed{4}.", -"solution_image": [ -"solution_images/51445482_160.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52913781": { -"question": "As shown in the figure, the regular hexagon ABCDEF is inscribed in $\\odot O$, where the radius of $\\odot O$ is 1. What is the length of the apothem $OM$?", -"image_file_name": "7058807", -"image": [ -"math/52913781_110.jpeg" -], -"solution": "\\textbf{Solution:} Connect OB, \\\\\n$\\because$ hexagon ABCDEF is a regular hexagon inscribed in $\\odot$ O, \\\\\n$\\therefore \\angle$BOM = $\\frac{360^\\circ}{6\\times 2}$ = $30^\\circ$, \\\\\n$\\therefore$ OM = OB $\\cdot \\cos \\angle$BOM = 1 $\\times \\frac{\\sqrt{3}}{2}$ = $\\boxed{\\frac{\\sqrt{3}}{2}}$;", -"solution_image": [ -"solution_images/52913781_110.jpeg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52917439": { -"question": "As shown in the figure, it is known that isosceles $\\triangle ABC$, with $AB=BC$, and the circle with diameter $AB$ intersects $AC$ at point D. The tangent of $\\odot O$ through point D intersects $BC$ at point E. If $CD=4\\sqrt{5}, CE=8$, then what is the radius of $\\odot O$?", -"image_file_name": "7058807", -"image": [ -"math/52917439_128.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect OD and BD,\\\\\n$\\because$ DE is a tangent,\\\\\n$\\therefore$ OD $\\perp$ DE,\\\\\n$\\because$ AB is a diameter,\\\\\n$\\therefore$ $\\angle ADB = 90^\\circ$, and AB=BC,\\\\\n$\\therefore$ AD=CD=$4\\sqrt{5}$, and AO=OB,\\\\\n$\\therefore$ DO $\\parallel$ BC, and DE $\\perp$ OD,\\\\\n$\\therefore$ DE $\\perp$ EC,\\\\\n$\\therefore$ DE$=\\sqrt{CD^{2}-CE^{2}}=\\sqrt{80-64}=4$,\\\\\n$\\because$ $\\tan C = \\frac{BD}{CD} = \\frac{DE}{EC} = \\frac{4}{8} = \\frac{1}{2}$,\\\\\n$\\therefore$ BD=$2\\sqrt{5}$,\\\\\n$\\therefore$ AB$=\\sqrt{AD^{2}+DB^{2}}=10$,\\\\\n$\\therefore$ OA=$\\boxed{5}$.", -"solution_image": [ -"solution_images/52917439_120.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52917397": { -"question": "As shown in the figure, there is a paper circle $\\odot O$ with a radius of 6cm. $\\triangle ABC$ is an inscribed triangle in $\\odot O$. The paper circle $\\odot O$ is folded along the straight lines $AB$ and $AC$, and both arcs $\\overset{\\frown}{AB}$ and $\\overset{\\frown}{AC}$ pass through the center $O$. What is the area of the shaded region in the figure?", -"image_file_name": "7058807", -"image": [ -"math/52917397_138.png" -], -"solution": "\\textbf{Solution:} Draw lines $AO, BO, CO$, and extend $AO$ to intersect $BC$ at point D, as shown in the diagram:\\\\\nSince $\\triangle ABC$ is an inscribed triangle of circle $O$ with a radius of $6\\,\\text{cm}$,\\\\\ntherefore, $AD\\perp BC$ and $AO=6\\,\\text{cm}$,\\\\\ntherefore, $OD=3\\,\\text{cm}$,\\\\\ntherefore, $CD=\\sqrt{OC^{2}-OD^{2}}=3\\sqrt{3}$,\\\\\ntherefore, $BC=2CD=6\\sqrt{3}\\,\\text{cm}$,\\\\\nFrom the diagram, it can be seen that the area of the shaded part is the same as the area of $\\triangle OBC$,\\\\\ntherefore, $S_{\\text{shaded}}=S_{\\triangle COB}=\\frac{1}{2}\\times BC\\times OD=\\frac{1}{2}\\times 6\\sqrt{3}\\times 3=\\boxed{9\\sqrt{3}\\,\\text{cm}^2}$.", -"solution_image": [ -"solution_images/52917397_133.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874671": { -"question": "As shown in the figure, a regular octagon is assembled with four quadrilaterals as depicted in Figure 1 and four diamonds as illustrated in Figure 2 (as in Figure 3). What is the ratio of the area of the shaded part to the area of the blank part in Figure 3?", -"image_file_name": "7058807", -"image": [ -"math/52874671_140.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $BE\\perp AD$ at E through the vertex B of the rhombus; Let the center of the regular octagon be point O, with one side being MN. Connect OM and ON, and draw $MP\\perp ON$ at P through point M. Suppose the side length of the regular octagon is $a$, then we have $AB=AD=MN=a$,\\\\\n$\\therefore \\angle ABC=180^\\circ-360^\\circ\\div 8=135^\\circ$, $\\angle MON=360^\\circ\\div 8=45^\\circ$,\\\\\n$\\because AD\\parallel BC$,\\\\\n$\\therefore \\angle BAE=180^\\circ-\\angle ABC=45^\\circ$,\\\\\n$\\therefore BE=\\frac{\\sqrt{2}}{2}AB=\\frac{\\sqrt{2}}{2}a$,\\\\\n$\\therefore S_{\\text{rhombus}ABCD}=AD\\cdot BE=\\frac{\\sqrt{2}}{2}a^{2}$,\\\\\n$\\therefore$ the area of the blank part $=4\\times \\frac{\\sqrt{2}}{2}a^{2}=2\\sqrt{2}a^{2}$,\\\\\n$\\because \\angle MON=45^\\circ$,\\\\\n$\\therefore OP=PM$, let $OP=PM=b$, then $OM=ON=\\sqrt{2}b$,\\\\\n$\\therefore PN=(\\sqrt{2}-1)b$,\\\\\nIn $\\triangle MPN$, $PM^{2}+PN^{2}=MN^{2}$,\\\\\n$\\therefore b^{2}+(\\sqrt{2}-1)^{2}b^{2}=a^{2}$,\\\\\nUpon rearranging: $b^{2}=\\frac{2+\\sqrt{2}}{4}a^{2}$,\\\\\n$\\therefore S_{\\triangle OMN}=\\frac{1}{2}ON\\cdot PM=\\frac{1}{2}\\times \\sqrt{2}b\\cdot b=\\frac{\\sqrt{2}}{2}b^{2}=\\frac{1+\\sqrt{2}}{4}a^{2}$,\\\\\n$\\therefore$ the area of the regular octagon is: $8\\times \\frac{1+\\sqrt{2}}{4}a^{2}=2(1+\\sqrt{2})a^{2}$,\\\\\n$\\therefore$ the area of the shaded part is: $2(1+\\sqrt{2})a^{2}-2\\sqrt{2}a^{2}=2a^{2}$,\\\\\n$\\therefore$ the ratio of the area of the shaded part to the area of the blank part $=\\frac{2a^{2}}{2\\sqrt{2}a^{2}}=\\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/52874671_140.jpg" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52755173": { -"question": "As shown in the figure, the regular hexagon $ABCDEF$ is inscribed in the circle $\\odot O$. Draw $OM \\perp BC$ at point $M$. If the radius of $\\odot O$ is 4, what is the length of the apothem $OM$?", -"image_file_name": "7058807", -"image": [ -"math/52755173_150.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OB and OC.\\\\\nSince hexagon ABCDEF is a regular hexagon,\\\\\nit follows that $\\angle BOC=60^\\circ$, and OB=OC=4,\\\\\ntherefore $\\triangle OBC$ is an equilateral triangle,\\\\\nhence BC=OB=OC=4,\\\\\nsince OM$\\perp$BC,\\\\\nit follows that BM=CM=2,\\\\\nin $\\triangle OBM$, OM=$\\sqrt{OB^{2}-BM^{2}}=\\sqrt{4^{2}-2^{2}}=\\boxed{2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52755173_150.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52634229": { -"question": "As shown in the diagram, in the Cartesian coordinate system, a regular hexagon $ABCDEF$ with side length 2 has its center coinciding with the origin $O$, and $AB$ is parallel to the x-axis, intersecting the y-axis at point $P$. If $\\triangle OAP$ is rotated clockwise around point $O$, rotating $90^\\circ$ each time, what are the coordinates of point $A$ after the 2022nd rotation?", -"image_file_name": "7058807", -"image": [ -"math/52634229_169.png" -], -"solution": "\\textbf{Solution:} Given a regular hexagon ABCDEF with side length 2, and its center coincides with the origin O,\\\\\n\\[ \\because OA=AB=2, \\angle BAO=60^\\circ, \\]\n\\[ \\because AB\\parallel x \\text{ axis}, \\]\n\\[ \\therefore \\angle APO=90^\\circ, \\]\n\\[ \\therefore \\angle AOP=30^\\circ, \\]\n\\[ \\therefore AP=1, OP=\\sqrt{3}, \\]\n\\[ \\therefore A(1,\\sqrt{3}), \\]\n\\[ \\because \\text{rotating } \\triangle OAP \\text { clockwise around point O by } 90^\\circ\\text{ each time, it is known that point A}_2 \\text{ coincides with } D, \\]\n\\[ \\text{Since } 360^\\circ \\div 90^\\circ=4, \\]\n\\[ \\text{indicating each cycle consists of 4 rotations,} \\]\n\\[ \\therefore 2022 \\div 4=505\\ldots 2, \\]\n\\[ \\therefore \\text{point A}_{2022} \\text{ coincides with point A}_2, \\]\n\\[ \\because \\text{point A}_2 \\text{ is symmetric to point A concerning the origin } O, \\]\n\\[ \\therefore A_2(-1,-\\sqrt{3}), \\]\n\\[ \\therefore \\text{after the 2022nd rotation, the coordinates of point A are} \\boxed{(-1,-\\sqrt{3})}\\].", -"solution_image": [ -"solution_images/52634229_1610.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52551436": { -"question": "As shown in the figure, it is known that the circle $\\odot O$ is the incircle of $\\triangle ABC$, and $\\angle ABC=50^\\circ$, $\\angle ACB=80^\\circ$. What is the measure of $\\angle BOC$?", -"image_file_name": "7058807", -"image": [ -"math/52551436_175.png" -], -"solution": "\\textbf{Solution:} Since $\\odot O$ is the inscribed circle of $\\triangle ABC$,\\\\\nit follows that $OB$ and $OC$ are the angle bisectors of $\\triangle ABC$,\\\\\ntherefore $\\angle OBC=\\frac{1}{2}\\angle ABC=25^\\circ$, $\\angle OCB=\\frac{1}{2}\\angle ACB=40^\\circ$,\\\\\nhence $\\angle BOC=180^\\circ-\\angle OBC-\\angle OCB=\\boxed{115^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52536919": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $BC=5$, and circle $O$ is tangent to the three sides of $\\triangle ABC$ at points D, E, and F. If the radius of circle $O$ is 2, what is the perimeter of $\\triangle ABC$?", -"image_file_name": "7058807", -"image": [ -"math/52536919_180.png" -], -"solution": "\\textbf{Solution:} Let us draw lines OE and OF, and suppose AD $= x$. By the Tangent-Secant Theorem, we have AE $= x$. \\\\\n$\\because$ Circle O and right triangle $\\triangle ABC$ intersect at points D, E, and F, \\\\\n$\\therefore$ OE $\\perp$ AC, OF $\\perp$ BC, \\\\\n$\\therefore$ Quadrilateral OECF is a square, \\\\\n$\\because$ the radius of circle O is 2, and BC $= 5$, \\\\\n$\\therefore$ CE $=$ CF $= 2$, BD $=$ BF $= 3$, \\\\\n$\\therefore$ in right triangle $\\triangle ABC$, \\\\\n$\\because$ $AC^{2} + BC^{2} = AB^{2}$, i.e., $(x + 2)^{2} + 5^{2} = (x + 3)^{2}$, \\\\\nsolving this, we get $x = 10$, \\\\\n$\\therefore$ the perimeter of $\\triangle ABC$ is $12 + 5 + 13 = \\boxed{30}$.", -"solution_image": [ -"solution_images/52536919_180.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51433564": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$. Point D is on the extension line of AB, and DC is tangent to $\\odot O$ at point C. If $\\angle A = 20^\\circ$, what is the measure of $\\angle D$?", -"image_file_name": "7058807", -"image": [ -"math/51433564_190.png" -], -"solution": "\\textbf{Solution:} Draw line OC, \\\\\n$\\because$ DC is tangent to $\\odot$O at point C, \\\\\n$\\therefore$ $\\angle$OCD=$90^\\circ$, \\\\\n$\\because$ $\\angle$A=$20^\\circ$, \\\\\n$\\therefore$ $\\angle$OCA=$20^\\circ$, \\\\\n$\\therefore$ $\\angle$DOC=$40^\\circ$, \\\\\n$\\therefore$ $\\angle$D=$90^\\circ-40^\\circ=\\boxed{50^\\circ}$.", -"solution_image": [ -"solution_images/51433564_190.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446300": { -"question": "As shown in the figure, $AB$ is the tangent to the circle $\\odot O$ with $A$ being the point of tangency. The line segments $OA$ and $OB$ are connected. If $\\angle B = 35^\\circ$, what is the measure of $\\angle AOB$?", -"image_file_name": "7058807", -"image": [ -"math/51446300_200.png" -], -"solution": "\\textbf{Solution:} Since AB is the tangent line of the circle O, \\\\\nit follows that $\\angle$OAB=$90^\\circ$, \\\\\nSince $\\angle$B=$35^\\circ$, \\\\\nit follows that $\\angle$AOB=$90^\\circ-\\angle$B=\\boxed{55^\\circ}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51445522": { -"question": "As shown in the figure, the regular pentagon ABCDE has a side length of 6. A circle is drawn with A as the center and AB as the radius. What is the area of the shaded portion in the figure?", -"image_file_name": "7058807", -"image": [ -"math/51445522_210.png" -], -"solution": "\\textbf{Solution:} Given that pentagon ABCDE is a regular pentagon with side length 6,\\\\\nit follows that $AB=AE=6$ and $\\angle BAE=\\frac{180^\\circ \\times (5−2)}{5}=108^\\circ$,\\\\\nthus, the area of the shaded region in the diagram is $\\frac{108\\pi \\times {6}^{2}}{360}=\\boxed{\\frac{54}{5}\\pi}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51299784": { -"question": "As shown in the figure, the regular pentagon ABCDE is inscribed in $\\odot O$. Connecting AC, what is the degree measure of $\\angle ACD$?", -"image_file_name": "7058807", -"image": [ -"math/51299784_220.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OA, OE, OD, \\\\\nsince a regular pentagon ABCDE is inscribed in the circle $O$, \\\\\ntherefore, $\\angle AOE = \\angle DOE = \\frac{360^\\circ}{5} = 72^\\circ$, \\\\\nhence, $\\angle ACD = \\frac{1}{2} \\angle AOD = \\boxed{72^\\circ}$.", -"solution_image": [ -"solution_images/51299784_220.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402793": { -"question": "As shown in the figure, the radius $OA=2$ of the regular hexagon ABCDEF. What are the coordinates of point B?", -"image_file_name": "7058807", -"image": [ -"math/51402793_231.png" -], -"solution": "\\textbf{Solution:} Draw OB, let BC intersect the x-axis at M, \\\\\n$\\because$ the radius of the regular hexagon ABCDEF, $OA=2$, \\\\\n$\\therefore$ OB=OA=AB=2, $\\angle$AOB=$\\angle$ABO=$\\angle$OBC=$60^\\circ$, \\\\\n$\\therefore$ $\\angle$BOM=$30^\\circ$, $\\angle$BMO=$90^\\circ$, \\\\\n$\\therefore$ BM=$\\frac{1}{2}$OB=1, \\\\\n$\\therefore$ OM=$\\sqrt{OB^{2}-BM^{2}}=\\sqrt{2^{2}-1^{2}}=\\sqrt{3}$, \\\\\n$\\therefore$ the coordinates of point B are ($-\\sqrt{3}$, 1), \\\\\nHence the answer is: $\\boxed{(-\\sqrt{3}, 1)}$.", -"solution_image": [ -"solution_images/51402793_230.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402984": { -"question": "As shown in the figure, the perimeter of $\\triangle ABC$ is $20\\text{cm}$, $BC=6\\text{cm}$. Circle $O$ is the inscribed circle of $\\triangle ABC$. The tangent line $MN$ of circle $O$ intersects $AB$ and $CA$ at points $M$ and $N$, respectively. What is the perimeter of $\\triangle AMN$?", -"image_file_name": "7058807", -"image": [ -"math/51402984_240.png" -], -"solution": "\\textbf{Solution:} Given that circle O is the inscribed circle of $\\triangle ABC$, and the tangent of circle O, MN, intersects AB and AC at points M and N, respectively,\n\n$\\therefore$BF=BE, CF=CD, DN=NG, EM=GM, AD=AE,\n\n$\\because$ the perimeter of $\\triangle ABC$ is 20cm, and BC=6cm,\n\n$\\therefore$AE=AD=$\\frac{AB+AC-BC}{2}$=$\\frac{20-BC-BC}{2}$=$\\frac{20-12}{2}$=4(cm),\n\n$\\therefore$ the perimeter of $\\triangle AMN$ is AM+MG+NG+AN=AM+ME+AN+ND=AE+AD=4+4=\\boxed{8}(cm).", -"solution_image": [ -"solution_images/51402984_240.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720227": { -"question": "In isosceles triangle $ABC$, where $AC = BC = 2$, and $D$ is a point on side $AB$. A circle with diameter $AD$, denoted as $\\odot O$, is tangent to $BC$ at point $C$. What is the length of $BD$?", -"image_file_name": "7058807", -"image": [ -"math/52720227_250.png" -], -"solution": "\\textbf{Solution:} Connect OC,\n\n$\\because$ AC = BC,\n\n$\\therefore$ $\\angle$A = $\\angle$B,\n\n$\\because$ OA = OC,\n\n$\\therefore$ $\\angle$A = $\\angle$ACO,\n\n$\\because$ $\\angle$COB = $\\angle$A + $\\angle$ACO = 2$\\angle$A,\n\n$\\therefore$ $\\angle$COB = 2$\\angle$B,\n\n$\\because$ circle O is tangent to BC at point C,\n\n$\\therefore$ $\\angle$OCB = 90$^\\circ$,\n\n$\\therefore$ $\\angle$COB + $\\angle$B = 2$\\angle$B + $\\angle$B = 90$^\\circ$,\n\n$\\therefore$ $\\angle$B = 30$^\\circ$,\n\n$\\therefore$ OC = $\\frac{\\sqrt{3}}{3}$BC = $\\frac{2\\sqrt{3}}{3}$,\n\n$\\therefore$ OB = 2OC = $\\frac{4\\sqrt{3}}{3}$,\n\n$\\therefore$ BD = OB - OD = $\\boxed{\\frac{2\\sqrt{3}}{3}}$,", -"solution_image": [ -"solution_images/52720227_250.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52601659": { -"question": "As shown in the figure, points A, B, C are on circle $O$, and $\\angle ABC=28^\\circ$. A tangent line to circle $O$ at point C intersects the extension of OA at point D. What is the measure of $\\angle D$?", -"image_file_name": "7058807", -"image": [ -"math/52601659_260.png" -], -"solution": "\\textbf{Solution:} Given that line CD is tangent to circle O,\\\\\nthus OC $\\perp$ CD,\\\\\ntherefore $\\angle$OCD = $90^\\circ$,\\\\\nBy the Inscribed Angle Theorem, we know that $\\angle$COD = $2\\angle$CBA = $56^\\circ$,\\\\\ntherefore $\\angle$D = $90^\\circ$ - $\\angle$OCD = $90^\\circ$ - $56^\\circ$ = $\\boxed{34^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52601694": { -"question": "As shown in the figure, within the circle $\\odot O$ where the radius is 1, the chord $AB = \\sqrt{2}$. Construct an equilateral triangle $\\triangle ABC$ inside $\\odot O$ with $AB$ as one side. Rotate $\\triangle ABC$ counterclockwise around point A. When side $AC$ first touches $\\odot O$ tangentially, what is the angle of rotation?", -"image_file_name": "7058807", -"image": [ -"math/52601694_278.png" -], -"solution": "\\textbf{Solution:} When $AC$ is tangent to $\\odot O$, connect $CO$ and extend it to meet $AB$ at point $M$, connect $AO$,\\\\\nsince $\\triangle ABC$ is an equilateral triangle,\\\\\nthus, $CM\\perp AB$,\\\\\nsince $AB = \\sqrt{2}$,\\\\\nthus, $AM = \\frac{\\sqrt{2}}{2}$,\\\\\nsince $OA = 1$,\\\\\nthus, $OM = \\frac{\\sqrt{2}}{2}$,\\\\\ntherefore, $\\angle OAM = 45^\\circ$,\\\\\nsince $\\angle OAC'=90^\\circ$,\\\\\nthus, $\\angle BAC'=135^\\circ$,\\\\\nsince $\\angle C'AB'=60^\\circ$,\\\\\nthus, $\\angle BAB'=75^\\circ$,\\\\\ntherefore, when $AC$ is tangent to $\\odot O$ for the first time, the angle of rotation is $\\boxed{75^\\circ}$;", -"solution_image": [ -"solution_images/52601694_270.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51545212": { -"question": "As shown in the figure, the radius of the circle is 4. What is the perimeter of the shaded area in the figure? ", -"image_file_name": "7058807", -"image": [ -"math/51545212_280.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect OA and OB, and draw OC $\\perp$ AB at point C\\\\\n$\\angle OCB=90^\\circ$, $\\angle OBA=30^\\circ$, with the radius of the circle being 4,\\\\\n$\\therefore$OC=2,\\\\\n$\\therefore$BC=$2\\sqrt{3}$,\\\\\n$\\therefore$AB=2BC=$4\\sqrt{3}$,\\\\\n$\\therefore$the perimeter of the shaded area is: $6\\times 4\\sqrt{3}=\\boxed{24\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51545212_280.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52765344": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A=70^\\circ$, and $\\odot O$ is the inscribed circle of $\\triangle ABC$. What is the value of $\\angle BOC$?", -"image_file_name": "7058807", -"image": [ -"math/52765344_290.png" -], -"solution": "\\textbf{Solution:} Since $\\odot O$ is the inscribed circle of $\\triangle ABC$,\n\nit follows that OB bisects $\\angle ABC$, and OC bisects $\\angle ACB$,\n\ntherefore, $\\angle OBC = \\frac{1}{2}\\angle ABC$, and $\\angle OCB = \\frac{1}{2}\\angle ACB$,\n\nhence, $\\angle OBC + \\angle OCB = \\frac{1}{2}(\\angle ABC + \\angle ACB) = \\frac{1}{2}(180^\\circ - \\angle A)$,\n\nthus, $\\angle BOC = 180^\\circ - (\\angle OBC + \\angle OCB) = 180^\\circ - \\frac{1}{2}(180^\\circ - \\angle A) = 90^\\circ + \\frac{1}{2}\\angle A = 90^\\circ + \\frac{1}{2} \\times 70^\\circ = \\boxed{125^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720285": { -"question": "As shown in the figure, given points A, B, and C are three points on circle $\\odot O$, with radius $OC=2$, $\\angle ABC=30^\\circ$, the tangent line $AP$ intersects the extension line of $OC$ at point $P$, then how long is $AP$?", -"image_file_name": "7058807", -"image": [ -"math/52720285_300.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect OA.\\\\\n$\\because$ $\\angle ABC=30^\\circ$,\\\\\n$\\therefore$ $\\angle AOC=2\\angle ABC=60^\\circ$.\\\\\n$\\because$ PA is the tangent of circle $O$,\\\\\n$\\therefore$ $\\angle OAP=90^\\circ$,\\\\\n$\\therefore$ $\\angle OPA=30^\\circ$.\\\\\n$\\because$ OA=OC=2,\\\\\n$\\therefore$ OP=2OA=4.\\\\\n$\\therefore$ $AP=\\sqrt{OP^{2}-OA^{2}}=2\\sqrt{3}$,\\\\\nThus, $AP=\\boxed{2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52720285_300.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720287": { -"question": "As shown in the figure, in $\\triangle ABC$, if $\\angle AOC = 110^\\circ$, what is the measure of $\\angle B$?", -"image_file_name": "7058807", -"image": [ -"math/52720287_310.png" -], -"solution": "\\textbf{Solution}: Since circle $O$ is inscribed in $\\triangle ABC$ and $\\angle AOC=110^\\circ$,\\\\\nit follows that $\\angle OAC+\\angle OCA=180^\\circ-\\angle AOC=70^\\circ$,\\\\\nand $\\angle OAC+\\angle OCA=\\frac{1}{2}(\\angle BAC+\\angle ACB)$,\\\\\ntherefore $\\angle BAC+\\angle ACB=140^\\circ$,\\\\\nthus $\\angle B=180^\\circ-(\\angle BAC+\\angle ACB)=180^\\circ-140^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52603847": { -"question": "As shown in the figure, in $\\triangle ABC$, $BC=8$, the perpendicular bisector of $AB$ intersects $BC$ at $D$, and the perpendicular bisector of $AC$ intersects $BC$ at $E$. Then, what is the perimeter of $\\triangle ADE$?", -"image_file_name": "7047897", -"image": [ -"math/52603847_17.png" -], -"solution": "\\textbf{Solution:} Given that the perpendicular bisector of line segment AB intersects BC at point D,\\\\\n$ \\therefore DB=DA$\\\\\nGiven that the perpendicular bisector of line segment AC intersects BC at point F,\\\\\n$ \\therefore EA=EC$,\\\\\n$ \\therefore $ the perimeter of $\\triangle ADE = AD+DE+EA = DB+DE+EC = BC = \\boxed{8}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51545407": { -"question": "As shown in the isosceles $\\triangle ABC$, where $AB=AC$ and $\\angle BAC=50^\\circ$, the angle bisector of $\\angle BAC$ intersects the perpendicular bisector of $AB$ at point $E$. By folding along $FG$ such that point $C$ coincides with point $E$, what is the measure of $\\angle CFG$?", -"image_file_name": "7047897", -"image": [ -"math/51545407_25.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BE,\n\n$\\because$ $\\angle BAC=50^\\circ$ and AE is the bisector of $\\angle BAC$,\n\n$\\therefore$ $\\angle BAE = \\frac{1}{2} \\times 50^\\circ = 25^\\circ$.\n\nMoreover, $\\because$ AB=AC,\n\n$\\therefore$ $\\angle ABC=\\angle ACB=65^\\circ$.\n\n$\\because$ DE is the perpendicular bisector of AB,\n\n$\\therefore$ EA=EB,\n\n$\\therefore$ $\\angle ABE=\\angle BAE=25^\\circ$,\n\n$\\therefore$ $\\angle EBC=\\angle ABC-\\angle ABE=65^\\circ-25^\\circ=40^\\circ$.\n\n$\\because$ AE is the bisector of $\\angle BAC$ and AB=AC,\n\n$\\therefore$ The line AE bisects BC perpendicularly,\n\n$\\therefore$ EB=EC,\n\n$\\therefore$ $\\angle ECB=\\angle EBC=40^\\circ$,\n\n$\\because$ $\\angle ACB$ is folded along FG,\n\n$\\therefore$ EF=CF,\n\n$\\therefore$ $\\angle CEF=\\angle ECF=40^\\circ$;\n\nIn $\\triangle ECF$, $\\angle EFC=180^\\circ-\\angle CEF-\\angle ECF=180^\\circ-40^\\circ-40^\\circ=100^\\circ$,\n\n$\\therefore$ $\\angle CFG = \\frac{1}{2} \\times \\angle CFE = \\boxed{50^\\circ}$.", -"solution_image": [ -"solution_images/51545407_20.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51545511": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, and D is the midpoint of BC. If $\\angle BAC=50^\\circ$, what is the measure of $\\angle BAD$?", -"image_file_name": "7047897", -"image": [ -"math/51545511_32.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$, and point $D$ is the midpoint of $BC$, $\\angle BAC=50^\\circ$,\n\n$\\therefore AD$ is the angle bisector of $\\angle BAC$,\n\n$\\therefore \\angle BAD=\\angle CAD=\\frac{1}{2}\\angle BAC=\\boxed{25^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52720610": { -"question": "As shown in the figure, in the equilateral $\\triangle ABC$, $AD$ is the height from $A$ to side $BC$, points $M$ and $N$ are respectively on $AD$ and $AC$, and $AM=CN$. Connect $BM$ and $BN$. When $BM+BN$ is at its minimum, what is the measure of $\\angle MBN$?", -"image_file_name": "7047897", -"image": [ -"math/52720610_40.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, construct $CH\\perp BC$ such that $CH=BC$, and connect $NH$, $BH$.\\\\\nSince $\\triangle ABC$ is an equilateral triangle, $AD\\perp BC$, $CH\\perp BC$,\\\\\nit follows that $\\angle DAC=\\angle DAB=30^\\circ$, $AD\\parallel CH$,\\\\\nthus $\\angle HCN=\\angle CAD=\\angle BAM=30^\\circ$,\\\\\nsince $AM=CN$, $AB=BC=CH$,\\\\\nit follows that $\\triangle ABM\\cong \\triangle CHN$ (SAS),\\\\\nhence, $BM=HN$,\\\\\nsince $BN+HN\\geq BH$,\\\\\nit follows that when $B$, $N$, and $H$ are collinear, the value of $BM+BN=NH+BN$ is minimized,\\\\\nAs shown in Figure 2, when $B$, $N$, and $H$ are collinear,\\\\\nsince $\\triangle ABM\\cong \\triangle CHN$,\\\\\nit follows that $\\angle ABM=\\angle CHB=\\angle CBH=45^\\circ$,\\\\\nsince $\\angle ABD=60^\\circ$,\\\\\nit follows that $\\angle DBM=15^\\circ$,\\\\\nhence, $\\angle MBN=45^\\circ-15^\\circ=\\boxed{30^\\circ}$,\\\\\nthus, when the value of $BM+BN$ is minimized, $\\angle MBN=30^\\circ$.", -"solution_image": [ -"solution_images/52720610_40.png", -"solution_images/52720610_41.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52603365": { -"question": "As shown in the figure, in $\\triangle ABC$, with $\\angle ACB=90^\\circ$, fold $\\triangle CBD$ along CD, so that point B precisely lands on point E on side AC. If $\\angle A=22^\\circ$, then what is the measure of $\\angle EDA$?", -"image_file_name": "7047897", -"image": [ -"math/52603365_53.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle A=22^\\circ$,\\\\\nthus $\\angle B=90^\\circ-\\angle A=68^\\circ$,\\\\\nBy the property of folding, we have: $\\angle CED=\\angle B=68^\\circ$,\\\\\ntherefore $\\angle EDA=\\angle CED-\\angle A=\\boxed{46^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52603529": { -"question": "As shown in the figure, $\\triangle ABC \\cong \\triangle ADE$, where D is on side $BC$, $\\angle E = 35^\\circ$, $\\angle DAC = 30^\\circ$. What is the measure of $\\angle BDA$?", -"image_file_name": "7047897", -"image": [ -"math/52603529_65.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC\\cong \\triangle ADE$\\\\\n$\\therefore \\angle E=\\angle C=35^\\circ$\\\\\nSince in $\\triangle ADC$, $\\angle DAC=30^\\circ$, $\\angle C=35^\\circ$\\\\\n$\\therefore \\angle BDA=30^\\circ+35^\\circ=\\boxed{65^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52604137": { -"question": "When a set of triangles is arranged as shown in the figure, what is the value of $ \\angle \\alpha $?", -"image_file_name": "7047897", -"image": [ -"math/52604137_71.png" -], -"solution": "\\textbf{Solution:} By the exterior angle property of triangles, we have $ \\angle \\alpha =45^\\circ+30^\\circ=75^\\circ$\\\\\nTherefore, the answer is: $\\boxed{75^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52604265": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, squares are constructed externally on the sides AB, BC, and AC, with areas of 225, 400, and $S$ respectively. What is the value of $S$?", -"image_file_name": "7047897", -"image": [ -"math/52604265_82.png" -], -"solution": "\\textbf{Solution:} By the Pythagorean theorem, we have $AB^{2}+BC^{2}=AC^{2}$,\\\\\nthus $S=AC^{2}=225+400=625$,\\\\\ntherefore, $S=\\boxed{625}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603530": { -"question": "As illustrated, $E$ is a point within $\\triangle ABC$, $BE$ bisects $\\angle ABC$, $AD \\perp BE$ at point $E$, intersecting $BC$ at point $D$, where point $D$ is precisely on the perpendicular bisector of side $AC$, $BC=10$, and $AB=6$. What is the length of $AE$?", -"image_file_name": "7047897", -"image": [ -"math/52603530_99.png" -], -"solution": "\\textbf{Solution:} Given that BE bisects $\\angle$ABC, and AD$\\perp$BE,\\\\\nit follows that $\\triangle ABD$ is an isosceles triangle,\\\\\nhence, AB=BD=6, and AE=ED,\\\\\ngiven that BC=10,\\\\\nthus, DC=BC-BD=10-6=4,\\\\\nsince point D lies exactly on the perpendicular bisector of side AC,\\\\\nthus, DA=DC=4,\\\\\ntherefore, AE=\\boxed{2},", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52720421": { -"question": "As shown in the figure, it is known that $\\triangle ABC \\cong \\triangle ADE$. If $\\angle E = 70^\\circ$ and $\\angle D = 30^\\circ$, what is the degree measure of $\\angle BAC$?", -"image_file_name": "7047897", -"image": [ -"math/52720421_104.png" -], -"solution": "\\textbf{Solution:} Since $\\angle E=70^\\circ$ and $\\angle D=30^\\circ$,\\\\\nit follows that $\\angle EAD=180^\\circ-\\angle E-\\angle D=180^\\circ-70^\\circ-30^\\circ=80^\\circ$,\\\\\nSince $\\triangle ABC \\cong \\triangle ADE$,\\\\\nit follows that $\\angle BAC=\\angle EAD=\\boxed{80^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603090": { -"question": "As shown in the figure, $\\triangle ABC \\cong \\triangle AED$, with point D on side BC. If $\\angle EAB = 50^\\circ$, what is the degree measure of $\\angle ADE$?", -"image_file_name": "7047897", -"image": [ -"math/52603090_111.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC \\cong \\triangle AED$,\\\\\n$\\therefore \\angle BAC = \\angle EAD$,\\\\\n$\\therefore \\angle EAB + \\angle BAD = \\angle DAC + \\angle BAD$,\\\\\n$\\therefore \\angle DAC = \\angle EAB = 50^\\circ$,\\\\\n$\\because AD = AC$,\\\\\n$\\therefore \\angle ADC = \\angle C = \\angle ADE = \\frac{1}{2}(180^\\circ - \\angle DAC) = \\boxed{65^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603188": { -"question": "As shown in the figure, AD is the angle bisector of $\\triangle ABC$, $\\angle C=28^\\circ$, and AB+BD=AC. When $\\triangle ABD$ is folded along the line containing AD, the point where B lands on side AC is marked as point E. What is the measure of $\\angle AED$?", -"image_file_name": "7047897", -"image": [ -"math/52603188_120.png" -], -"solution": "\\textbf{Solution:} According to the property of folding, we have \\(BD=DE\\), \\(AB=AE\\).\n\n\\(\\because AB+BD=AC\\), \\(AC=AE+EC\\),\n\n\\(\\therefore AB+BD=AE+EC\\),\n\n\\(\\therefore DE=EC\\),\n\n\\(\\therefore \\angle EDC=\\angle C=28^\\circ\\),\n\n\\(\\therefore \\angle AED=\\angle EDC+\\angle C=28^\\circ+28^\\circ=\\boxed{56^\\circ}\\).", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52720458": { -"question": "As shown in the figure, quadrilateral $OABC$ is a rectangle, where point $A$ is on the $x$-axis, and point $C$ is on the $y$-axis, with the coordinates of point $B$ being $(8, 6)$. If $\\triangle OAB$ is folded along $OB$, with the corresponding point of $A$ being $E$, and $OE$ intersects $BC$ at point $D$, what are the coordinates of point $D$?", -"image_file_name": "7047897", -"image": [ -"math/52720458_131.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral OABC is a rectangle, with point A on the x-axis and point C on the y-axis, and the coordinates of point B are $(8,6)$\n\n$\\therefore$ OC=AB=6, and BC=OA=8, with $\\angle OCB=90^\\circ$, and BC$\\parallel$OA\n\n$\\therefore$$\\angle AOB = \\angle OBC$\n\nSince triangle $\\triangle OAB$ is folded along OB, the corresponding point for A is E\n\n$\\therefore$$\\angle EOB=\\angle AOB$\n\n$\\therefore$$\\angle OBC=\\angle EOB$\n\n$\\therefore$OD=BD\n\nLet CD=x, then\n\n$OD=DB=BC-CD=8-x$\n\nIn $\\triangle OCD$, a right triangle,\n\n$OC^{2}+CD^{2}=OD^{2}$\n\n$\\therefore x^{2}+6^{2}=(8-x)^{2}$\n\nSolving gives: $x=\\frac{7}{4}$\n\n$\\therefore$ The coordinates of point D are $\\boxed{(\\frac{7}{4},6)}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51545480": { -"question": "As shown in the figure, the perpendicular bisectors of line segments $AB$ and $BC$, denoted as $ {l}_{1}$ and $ {l}_{2}$, intersect at point $O$. If $\\angle 1=40^\\circ$, what is the measure of $\\angle AOC$?", -"image_file_name": "7047897", -"image": [ -"math/51545480_144.png" -], -"solution": "\\textbf{Solution:} Draw line BO and extend BO to point P, \\\\\n$\\because$ the perpendicular bisectors $l_{1}$ and $l_{2}$ of line segments AB and BC intersect at point O, and $l_{1}$, $l_{2}$ intersect AB, BC at points D, E respectively, \\\\\n$\\therefore$ AO=OB=OC, $\\angle$BDO=$\\angle$BEO=$90^\\circ$, \\\\\n$\\therefore$ $\\angle$DOE + $\\angle$ABC=$180^\\circ$, \\\\\n$\\because$ $\\angle$DOE + $\\angle$1=$180^\\circ$, \\\\\n$\\therefore$ $\\angle$ABC=$\\angle$1=$40^\\circ$, \\\\\n$\\because$ OA=OB=OC, \\\\\n$\\therefore$ $\\angle$A=$\\angle$ABO, $\\angle$OBC=$\\angle$C, \\\\\n$\\because$ $\\angle$AOP=$\\angle$A+$\\angle$ABO, $\\angle$COP=$\\angle$C+$\\angle$OBC, \\\\\n$\\therefore$ $\\angle$AOC=$\\angle$AOP+$\\angle$COP=$\\angle$A+$\\angle$ABC+$\\angle$C=2$\\angle$ABC=2$\\times$40$^\\circ$=$\\boxed{80^\\circ}$;", -"solution_image": [ -"solution_images/51545480_140.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52603089": { -"question": "As shown in the figure, $AB\\parallel CD$, $\\angle A=45^\\circ$, $\\angle C=\\angle E$, what is the measure of $\\angle C$?", -"image_file_name": "7047897", -"image": [ -"math/52603089_151.png" -], -"solution": "\\textbf{Solution:} Since $AB\\parallel CD$ and $\\angle A=45^\\circ$,\\\\\nit follows that $\\angle DOE=\\angle A=45^\\circ$\\\\\nGiven that $\\angle C=\\angle E$ and $\\angle C+\\angle E=\\angle DOE$,\\\\\nwe have $\\angle C=\\frac{1}{2}\\angle DOE=\\frac{1}{2}\\times 45^\\circ=\\boxed{22.5^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52838009": { -"question": "As shown in the figure, it is known that $AB=AD$, $AE=AC=BC$, $\\angle 1=\\angle 2$, $\\angle C=40^\\circ$. What is the measure of $\\angle ADE$ in degrees?", -"image_file_name": "7047897", -"image": [ -"math/52838009_162.png" -], -"solution": "\\textbf{Solution:} Since $\\angle 1=\\angle 2$,\\\\\nit follows that $\\angle 1+\\angle DAC=\\angle 2+\\angle DAC$,\\\\\nwhich means $\\angle BAC=\\angle DAE$,\\\\\nIn $\\triangle ABC$ and $\\triangle ADE$,\\\\\nsince $\\left\\{\\begin{array}{l}AB=AD\\\\ \\angle BAC=\\angle DAE\\\\ AC=AE\\end{array}\\right.$,\\\\\nit follows that $\\triangle ABC\\cong \\triangle ADE$ (SAS),\\\\\nhence $\\angle C=\\angle E=40^\\circ$, $AE=BC=DE$,\\\\\ntherefore $\\angle ADE=\\angle EAD=\\frac{1}{2}\\left(180^\\circ-\\angle E\\right)=\\frac{1}{2}\\left(180^\\circ-40^\\circ\\right)=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837827": { -"question": "As shown in the figure, BD bisects $\\angle ABC$ and intersects AC at point D. If $\\angle C - \\angle A = 20^\\circ$, then what is the value of $\\angle ADB$?", -"image_file_name": "7047897", -"image": [ -"math/52837827_171.png" -], -"solution": "\\textbf{Solution:} Given $BD$ bisects $\\angle ABC$ at point D,\\\\\nit follows that $\\angle ABD=\\angle DBC$,\\\\\ngiven $\\angle C-\\angle A=20^\\circ$ hence $\\angle C=\\angle A+20^\\circ$,\\\\\nalso, since $\\angle ADB=\\angle C+\\angle DBC$,\\\\\nit follows that $\\angle ADB=\\angle A+20^\\circ+\\angle DBC$,\\\\\nsince $\\angle A+\\angle ABD+\\angle ADB=180^\\circ$\\\\\nwhich means $\\angle A+\\angle ABD=180^\\circ-\\angle ADB$,\\\\\nit follows that $\\angle ADB=180^\\circ-\\angle ADB+20^\\circ$,\\\\\nthus, $2\\angle ADB=200^\\circ$,\\\\\ntherefore, $\\angle ADB=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837759": { -"question": "As shown in the figure, fold the triangular paper ABC along AD so that point C falls on point E on side BD. If $\\angle C = 45^\\circ$, $\\angle B = 30^\\circ$, and AD = 2, what is the value of $AB^2 - AC^2$?", -"image_file_name": "7047897", -"image": [ -"math/52837759_180.png" -], -"solution": "\\textbf{Solution:} Given that the triangle paper ABC is folded along AD, making point C fall on point E on side BD,\\\\\nthus, $\\angle ADC=\\angle ADE=90^\\circ$,\\\\\nsince $\\angle C=45^\\circ$, AD=2,\\\\\nthus, AC= $\\sqrt{2}$ AD= $2\\sqrt{2}$,\\\\\nsince $\\angle B=30^\\circ$,\\\\\nthus, AB=2AD=$2\\times2$=4,\\\\\ntherefore, AB$^{2}$−AC$^{2}$=4$^{2}$−($2\\sqrt{2}$)$^{2}$=\\boxed{8},", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52837588": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=90^\\circ$, arcs are drawn with centers at $A$ and $C$ and radii greater than the length of $AC$, intersecting at points $M$ and $N$. Line $MN$ is drawn, intersecting $AC$ and $BC$ at $D$ and $E$ respectively. Connect $AE$. If $AB=6$ and $AC=10$, what is the perimeter of $\\triangle ABE$?", -"image_file_name": "7047897", -"image": [ -"math/52837588_190.png" -], -"solution": "\\textbf{Solution:} From the construction, we have $ED$ perpendicular bisector of $AC$,\\\\\n$\\therefore EA=EC$,\\\\\nIn $\\triangle ABC$, $BC= \\sqrt{AC^{2}-AB^{2}}=\\sqrt{10^{2}-6^{2}}=8$,\\\\\n$\\therefore$ The perimeter of $\\triangle ABE$ $=AB+BE+AE=AB+BE+CE=AB+BC=6+8=\\boxed{14}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653753": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, the perpendicular bisector of $AC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively. Connect $CD$. If $\\angle B=70^\\circ$, what is the measure of $\\angle DCB$?", -"image_file_name": "7047897", -"image": [ -"math/52653753_200.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle B=70^\\circ$ and AB=AC,\\\\\nit follows that $\\angle A=180^\\circ-2\\times70^\\circ=40^\\circ$,\\\\\nfurthermore, since DE is perpendicular bisector of AC,\\\\\nit implies that DA=DC,\\\\\nthus, $\\angle ACD=\\angle A=40^\\circ$,\\\\\ntherefore, $\\angle BCD=\\angle ACB-\\angle ACD=70^\\circ-40^\\circ=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653511": { -"question": "As shown in the figure, a ruler is placed together with a set square that includes a $30^\\circ$ angle. If $\\angle 1 = 24^\\circ$, what is the measure of $\\angle 2$?", -"image_file_name": "7047897", -"image": [ -"math/52653511_212.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\nsince $\\angle$BEF is an exterior angle of $\\triangle AEF$, $\\angle 1=24^\\circ$, $\\angle F=30^\\circ$, \\\\\ntherefore $\\angle$BEF=$\\angle 1+\\angle F=54^\\circ$, \\\\\nsince AB$\\parallel$CD, \\\\\ntherefore $\\angle 2=\\angle$BEF=$\\boxed{54^\\circ}$.", -"solution_image": [ -"solution_images/52653511_210.png" -], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52655146": { -"question": "As shown in the figure, it is known that points $D$ and $E$ are the midpoints of sides $BC$ and $AB$ in an equilateral triangle $ABC$, respectively, with $AD=6$. Point $F$ is a moving point on segment $AD$. What is the minimum value of $BF+EF$?", -"image_file_name": "7047897", -"image": [ -"math/52655146_229.png" -], -"solution": "\\textbf{Solution:} Draw line CE intersecting AD at point F, and connect BF. \\\\\n$\\because$ $\\triangle ABC$ is an equilateral triangle and D is the midpoint of BC, \\\\\n$\\therefore$ BF = CF, \\\\\n$\\therefore$ BF + EF = CF + EF = CE, \\\\\nAt this point, the value of BF + EF is minimal, and the minimum value is CE, \\\\\n$\\because$ D and E are respectively the midpoints of sides BC and AB of the equilateral $\\triangle ABC$, \\\\\n$\\therefore$ AD = CE, \\\\\n$\\because$ AD = 6, \\\\\n$\\therefore$ CE = 6, \\\\\n$\\therefore$ The minimum value of BF + EF is \\boxed{6},", -"solution_image": [ -"solution_images/52655146_220.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52655235": { -"question": "As shown in the figure, $ \\angle AOB=30^\\circ$, P is a point on the bisector of $\\angle AOB$, $PM \\perp OB$ at point M, $PN \\parallel OB$ intersects OA at point N, if PM=1, what is the length of PN?", -"image_file_name": "7047897", -"image": [ -"math/52655235_230.png" -], -"solution": "\\textbf{Solution:} Draw $PD\\perp AO$ at point D, \\\\\nsince P lies on the angle bisector of $\\angle AOB$ and $PM\\perp OB$ at point M, \\\\\ntherefore $\\angle AOP=\\angle BOP=15^\\circ$, and $PD=PM=1$, \\\\\nsince $PN\\parallel OB$, \\\\\ntherefore $\\angle NPO=\\angle BOP=15^\\circ$, \\\\\nthus $\\angle DNP=30^\\circ$, \\\\\nhence $PN=2PD=\\boxed{2}$.", -"solution_image": [ -"solution_images/52655235_231.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653482": { -"question": "As shown in the figure, $ \\triangle ACB \\cong \\triangle ACB^{\\prime }$, $ \\angle BCB^{\\prime } = 30^{\\circ}$, what is the measure of $ \\angle ACA^{\\prime }$?", -"image_file_name": "7047897", -"image": [ -"math/52653482_243.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ACB\\cong \\triangle A'C'B'$,\\\\\nit follows that $\\angle ACB=\\angle A'C'B'$, which means $\\angle ACA'+\\angle A'CB=\\angle B'CB+\\angle A'CB$,\\\\\ntherefore, $\\angle ACA'=\\angle B'CB$,\\\\\nand given that $\\angle B'CB=30^\\circ$,\\\\\nit follows that $\\angle ACA'=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653430": { -"question": "As shown in the diagram, in $\\triangle ABC$, DE is the perpendicular bisector of AB. If $AE=4$ and $EC=2$, what is the length of BC?", -"image_file_name": "7047897", -"image": [ -"math/52653430_253.png" -], -"solution": "\\textbf{Solution:} Since DE is the perpendicular bisector of AB, we have AE=4,\\\\\ntherefore, BE=AE=4,\\\\\nsince EC=2,\\\\\ntherefore, BC=BE+EC=\\boxed{6}", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836886": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, and through point $A$, $DA\\perp AC$ intersects $BC$ at point $D$. If $\\angle B=2\\angle BAD$, what is the degree measure of $\\angle BAD$?", -"image_file_name": "7047897", -"image": [ -"math/52836886_260.png" -], -"solution": "\\textbf{Solution:} Since AB = AC, \\\\\nit follows that $\\angle B = \\angle C = 2\\angle BAD$, \\\\\nhence $\\angle ADC = \\angle BAD + \\angle B$, \\\\\nsince $\\angle B = 2\\angle BAD$, \\\\\nit implies $\\angle ADC = 3\\angle BAD$, \\\\\ngiven DA $\\perp$ AC, \\\\\nthus $\\angle DAC = 90^\\circ$, \\\\\ntherefore $\\angle ADC + \\angle C = 90^\\circ$, \\\\\nit follows that $3\\angle BAD + 2\\angle BAD = 90^\\circ$, \\\\\nhence $\\angle BAD = \\boxed{18^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653260": { -"question": "As shown in the diagram, within $\\triangle ABC$, $\\angle C = 90^\\circ$, $BE$ bisects $\\angle ABC$, $ED$ perpendicularly bisects $AB$ at foot $D$. If $AC=12$, what is the length of $AE$?", -"image_file_name": "7047897", -"image": [ -"math/52653260_270.png" -], -"solution": "\\textbf{Solution:} Given that $BE$ bisects $\\angle ABC$,\\\\\nhence, $\\angle CBE = \\angle ABE$,\\\\\nand since $ED$ perpendicularly bisects $AB$ at $D$,\\\\\nit follows that $EA=EB$,\\\\\nthus $\\angle A = \\angle ABE$,\\\\\ntherefore $\\angle CBE = \\angle A = \\angle ABE = \\frac{1}{3}\\left(180^\\circ-\\angle C\\right)= \\frac{1}{3}\\left(180^\\circ-90^\\circ\\right)=30^\\circ$,\\\\\nhence, $BE=2EC$, that is, $AE=2EC$,\\\\\nand given $AE+EC=AC=12$,\\\\\nit follows that $AE=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653459": { -"question": "As shown in the figure, $\\angle AOB = 30^\\circ$, point $P$ is a fixed point inside $\\angle AOB$ and $OP=3$. If points $M$ and $N$ are moving points on rays $OA$ and $OB$ different from point $O$, respectively, what is the minimum perimeter of $\\triangle PMN$?", -"image_file_name": "7047897", -"image": [ -"math/52653459_286.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, let $E$ and $D$ be the symmetric points of point $P$ with respect to $OA$ and $OB$, respectively. Draw lines $DN$, $EM$, $DE$, $OD$, and $OE$,\\\\\nthen $OA$ perpendicularly bisects $PE$, and $OB$ perpendicularly bisects $PD$,\\\\\n$\\therefore EM=PM$, $DN=PN$, $OD=OP=OE=3$,\\\\\n$\\therefore$ the perimeter of $\\triangle PMN$ is $PM+MN+PN=EM+MN+DN$,\\\\\nAs the shortest distance between two points is a straight line, when points $E$, $M$, $N$, $D$ are collinear, the value of $EM+MN+DN$ is minimized, and the minimum value is the length of $DE$,\\\\\n$\\because OE=OP$ and $OA\\perp PE$,\\\\\n$\\therefore \\angle AOE=\\angle AOP$ (angle-side-angle congruence in isosceles triangle),\\\\\nSimilarly, it can be obtained: $\\angle BOD=\\angle BOP$,\\\\\n$\\because \\angle AOB=30^\\circ$,\\\\\n$\\therefore \\angle BOP+\\angle AOP=30^\\circ$,\\\\\n$\\therefore \\angle DOE=\\angle BOD+\\angle BOP+\\angle AOP+\\angle AOE=2\\left(\\angle BOP+\\angle AOP\\right)=60^\\circ$,\\\\\nAnd since $OD=OE=3$,\\\\\n$\\therefore \\triangle DOE$ is an equilateral triangle,\\\\\n$\\therefore DE=OD=3$,\\\\\n$\\therefore$ the minimum value of $EM+MN+DN$ is 3,\\\\\n$\\therefore$ the minimum perimeter of $\\triangle PMN$ is $\\boxed{3}$,", -"solution_image": [ -"solution_images/52653459_286.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52655062": { -"question": "As shown in the figure, $\\angle ACD$ is the exterior angle of $\\triangle ABC$, and $CE$ bisects $\\angle ACD$. If $\\angle A=70^\\circ$ and $\\angle B=40^\\circ$, what is the measure of $\\angle ECD$?", -"image_file_name": "7047897", -"image": [ -"math/52655062_297.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\angle A=70^\\circ$ and $\\angle B=40^\\circ$,\\\\\nit follows that $\\angle ACD=\\angle A+\\angle B=110^\\circ$,\\\\\nand since CE bisects $\\angle ACD$,\\\\\nwe have $\\angle ECD= \\frac{1}{2}\\angle ACD=\\boxed{55^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52655333": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=128^\\circ$, $P_{1}$ is the intersection point of the bisector of the interior angle $\\angle ABC$ of $\\triangle ABC$, which is $BP_{1}$, and the bisector of the exterior angle $\\angle ACE$, which is $CP_{1}$. $P_{2}$ is the intersection point of the bisector of the interior angle $\\angle P_{1}BC$ of $\\triangle BP_{1}C$, which is $BP_{2}$, and the bisector of the exterior angle $\\angle P_{1}CE$, which is $CP_{2}$. $P_{3}$ is the intersection point of the bisector of the interior angle $\\angle P_{2}BC$ of $\\triangle BP_{2}C$, which is $BP_{3}$, and the bisector of the exterior angle $\\angle P_{2}CE$, which is $CP_{3}$. Continuing in this manner, what is the measure of $\\angle P_{6}$?", -"image_file_name": "7047897", -"image": [ -"math/52655333_3021.png" -], -"solution": "\\textbf{Solution:} Given that the internal angle bisector BP and the external angle bisector CP1 of $\\triangle ABC$ intersect at $P_{1}$,\\\\\nhence, $\\angle P_{1}BC = \\frac{1}{2}\\angle ABC$, $\\angle P_{1}CE = \\frac{1}{2}\\angle ACE$,\\\\\nsince $\\angle ACE = \\angle A + \\angle ABC$, $\\angle P_{1}CE = \\angle P_{1}BC + \\angle P_{1}$,\\\\\nthus, $\\frac{1}{2}(\\angle A + \\angle ABC) = \\angle P_{1}BC + \\angle P_{1} = \\frac{1}{2}\\angle ABC + \\angle P_{1}$,\\\\\ntherefore, $\\angle P_{1} = \\frac{1}{2}\\angle A = \\frac{1}{2} \\times 128^\\circ = 64^\\circ$,\\\\\nsimilarly, $\\angle P_{2} = \\frac{1}{2}\\angle P_{1} = 32^\\circ$,\\\\\nhence, $\\angle P_{6} = \\boxed{2^\\circ}$,", -"solution_image": [ -"solution_images/52655333_300.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52861522": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle C=90^\\circ$, and $ AD$ bisects $ \\angle BAC$. Given $ AB=10$ and $ CD=3$, what is the area of $ \\triangle ABD$?", -"image_file_name": "7046945", -"image": [ -"math/52861522_07.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, draw DE$\\perp$AB at point E through point D,\\\\\nsince $\\angle C=90^\\circ$ and AD bisects $\\angle$BAC,\\\\\nit follows that $DE=CD=3$,\\\\\nthus, the area of $\\triangle ABD$ $=\\frac{1}{2}AB\\cdot DE=\\frac{1}{2}\\times 10\\times 3=\\boxed{15}$.", -"solution_image": [ -"solution_images/52861522_00.png" -], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52845720": { -"question": "As shown in the figure, in the isosceles triangle $ABC$, where $AB=AC$ and $BD\\perp AC$, with $\\angle ABC=70^\\circ$, what is the value of $\\angle DBC$?", -"image_file_name": "7046945", -"image": [ -"math/52845720_10.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince AB = AC, \\\\\nthus $\\angle$ACB = $\\angle$ABC = 70°, \\\\\nSince BD $\\perp$ AC, \\\\\nthus $\\angle$BDC = 90°, \\\\\nhence $\\angle$DBC = 90° - $\\angle$ACB = \\boxed{20°}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837424": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B = \\angle C$, and M, N, P are points on sides AB, AC, BC, respectively, with $BM=CP$ and $CN=BP$. If $\\angle MPN = 44^\\circ$, what is the measure of $\\angle A$?", -"image_file_name": "7046945", -"image": [ -"math/52837424_26.png" -], -"solution": "\\textbf{Solution:}\n\nIn $\\triangle MBP$ and $\\triangle PCN$, we have\n\\[\n\\left\\{\\begin{array}{l}\nBM=PC\\\\\n\\angle B=\\angle C\\\\\nBP=NC\n\\end{array}\\right.,\n\\]\nhence, $\\triangle MBP\\cong \\triangle PCN$ (SAS),\n\ntherefore, $\\angle BMP=\\angle NPC$,\n\nsince $\\angle MPN=44^\\circ$,\n\ntherefore, $\\angle BPM+\\angle CPN=180^\\circ-\\angle MPN=136^\\circ$,\n\ntherefore, $\\angle BPM+\\angle BMP=136^\\circ$,\n\nthus, $\\angle B=180^\\circ-136^\\circ=44^\\circ$,\n\nsince $\\angle A+\\angle B+\\angle C=180^\\circ$,\n\ntherefore, $\\angle A=\\boxed{92^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52827840": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle ACB=90^\\circ$, $AC=3$, and $BC=4$. Fold side $AC$ along $CE$, making point $A$ fall onto point $D$ on $AB$; then fold side $BC$ along $CF$, making point $B$ fall onto point $B'$ on the extension line of $CD$. The two creases intersect hypotenuse $AB$ at points $E$ and $F$, respectively. What is the length of segment $B'F$?", -"image_file_name": "7046945", -"image": [ -"math/52827840_36.png" -], -"solution": "\\textbf{Solution:} Let's consider right-angled triangle $\\triangle ABC$ where $\\angle ACB=90^\\circ$, $AC=3$, and $BC=4$,\\\\\nhence $AB=5$,\\\\\nbased on the properties of folding, we know $AC=CD$, $\\angle A=\\angle CDE$, $CE\\perp AB$,\\\\\nthus $B'D=BC-CD=4-3=1$, $\\angle DCE+\\angle B'CF=\\angle ACE+\\angle BCF$,\\\\\nsince $\\angle ACB=90^\\circ$,\\\\\nthus $\\angle ECF=45^\\circ$,\\\\\nhence $\\triangle ECF$ is an isosceles right triangle,\\\\\nthus $EF=CE$, $\\angle EFC=45^\\circ$,\\\\\nthus $\\angle BFC=\\angle B'FC=135^\\circ$,\\\\\nthus $\\angle B'FD=90^\\circ$,\\\\\nsince $S_{\\triangle ABC}=\\frac{1}{2}AC\\cdot BC=\\frac{1}{2}AB\\cdot CE$,\\\\\nthus $AC\\cdot BC=AB\\cdot CE$,\\\\\nthus $CE=\\frac{12}{5}$,\\\\\nthus $EF=\\frac{12}{5}$, $ED=AE=\\sqrt{AC^2-CE^2}=\\frac{9}{5}$,\\\\\nthus $DF=EF-ED=\\frac{3}{5}$,\\\\\nthus $B'F=\\sqrt{B'^2D^2-DF^2}=\\boxed{\\frac{4}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52827761": { -"question": "As shown in the Cartesian coordinate system, the coordinate of point A is $(-3, 0)$, and the coordinate of point B is $(0, 4)$. Point C is a point on OB. If $\\triangle ABC$ is folded along AC, so that point B lands exactly on the x-axis at point $B'$, what is the coordinate of point C?", -"image_file_name": "7046945", -"image": [ -"math/52827761_44.png" -], -"solution": "\\textbf{Solution:} By the problem statement, we have $A{B}^{\\prime }=AB$ and $C{B}^{\\prime }=CB$,\\\\\nSince the coordinates of point A are $(-3,0)$ and the coordinates of point B are $(0,4)$,\\\\\nTherefore, OA=3 and OB=4,\\\\\nTherefore, $AB=\\sqrt{OA^{2}+OB^{2}}=5$,\\\\\nTherefore, $A{B}^{\\prime }=5$,\\\\\nTherefore, $O{B}^{\\prime }=2$,\\\\\nIn $\\triangle {B}^{\\prime }OC$ right-angled at $B'$, $O{C}^{2}+O{{B}^{\\prime }}^{2}={B}^{\\prime }{C}^{2}$,\\\\\nTherefore, $O{C}^{2}+2^{2}={(4-OC)}^{2}$,\\\\\nSolving, we get: $OC=\\frac{3}{2}$,\\\\\nTherefore, the point $C\\left(0,\\frac{3}{2}\\right)$.\\\\\nHence, the answer is: The coordinates of point C are $\\boxed{\\left(0,\\frac{3}{2}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52828219": { -"question": "As shown in the figure, in $\\triangle AED$, $\\angle AED=90^\\circ, AB=AC=AD, EC=3, BE=11$, then what is the value of $ED$?", -"image_file_name": "7046945", -"image": [ -"math/52828219_53.png" -], -"solution": "\\textbf{Solution:} As the figure shows: draw $AF\\perp BC$ with foot F \\\\\n$\\because$ $EC=3$, $BE=11$ \\\\\n$\\therefore$ $BC=BE+EC=11+3=14$ \\\\\n$\\because$ $AB=AC$ \\\\\n$\\therefore$ $BF=CF=\\frac{1}{2}BC=7$ \\\\\n$\\therefore$ $EF=FC-EC=7-3=4$ \\\\\nIn $\\triangle ADE$, by Pythagoras' theorem, $DE^2=AD^2-AE^2$ \\\\\nIn $\\triangle AEF$, by Pythagoras' theorem, $AE^2=AF^2+EF^2$ \\\\\nAnd $\\because$ $AB=AD$ \\\\\n$\\therefore$ $DE^2=AB^2-(AF^2+EF^2)$ \\\\\nIn $\\triangle ABF$, by Pythagoras' theorem, $AB^2=AF^2+BF^2$ \\\\\n$\\therefore$ $DE^2=AF^2+BF^2-(AF^2+EF^2)=BF^2-EF^2=7^2-4^2=33$ \\\\\n$\\therefore$ $DE=\\sqrt{33}$ \\\\\nThus, the answer is: $DE=\\boxed{\\sqrt{33}}$", -"solution_image": [ -"solution_images/52828219_51.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52826729": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $\\angle A=60^\\circ$, D is a point on side $AC$, $\\angle DBC=30^\\circ$, $AC=12\\, \\text{cm}$, what is the perimeter of $\\triangle ABD$?", -"image_file_name": "7046945", -"image": [ -"math/52826729_63.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC\\cong \\triangle ADE$,\\\\\nit follows that $\\angle E=\\angle C$,\\\\\nIn $\\triangle ABC$, $\\angle BAC=80^\\circ$, $\\angle B=40^\\circ$,\\\\\ntherefore, $\\angle E=\\angle C=180^\\circ-80^\\circ-40^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52826835": { -"question": "As shown in the figure, in $\\triangle ABC$, arcs are drawn with points A and C as the centers and with radii longer than $AC$, intersecting at points M and N; line $MN$ intersects $BC$ and $AC$ at points D and E, respectively. If $AE=6\\,\\text{cm}$ and the perimeter of $\\triangle ABD$ is $26\\,\\text{cm}$, what is the perimeter of $\\triangle ABC$?", -"image_file_name": "7046945", -"image": [ -"math/52826835_77.png" -], -"solution": "\\textbf{Solution:} Given that: $MN$ is the perpendicular bisector of $AC$,\\\\\n$\\therefore$ $AD=CD$, $AC=2AE=12cm$,\\\\\n$\\because$ the perimeter of $\\triangle ABD$ is 26cm,\\\\\nwhich means $AB+AD+BD=26cm$,\\\\\n$\\therefore$ $AB+CD+BD=AB+BC=26cm$,\\\\\n$\\therefore$ the perimeter of $\\triangle ABC$ is $AB+BC+AC=26+12=\\boxed{38cm}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52793322": { -"question": "As shown in the figure, $ \\angle B=35^\\circ$, and $CD$ is the perpendicular bisector of $AB$, then what is the value of $ \\angle ACE$?", -"image_file_name": "7046945", -"image": [ -"math/52793322_82.png" -], -"solution": "\\textbf{Solution:} Since CD is the perpendicular bisector of AB,\\\\\nit follows that $BC=AC$,\\\\\nhence $\\angle A=\\angle B=35^\\circ$,\\\\\ntherefore, $\\angle ACE=\\angle A+\\angle B=2\\times 35^\\circ=70^\\circ$,\\\\\nthus, $\\angle ACE = \\boxed{70^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52793324": { -"question": "As shown in the figure, point E is on the bisector of $\\angle BAC$ on the line AP, with AB = 4, and the area of $\\triangle ABE$ is 12. What is the distance from point E to the line AC?", -"image_file_name": "7046945", -"image": [ -"math/52793324_90.png" -], -"solution": "\\textbf{Solution:}\nGiven that $AB = 4$ and the area of $\\triangle ABE$ is $12$,\\\\\nit follows that the distance from point E to line AB $= \\frac{2 \\times 12}{4} = 6$,\\\\\nsince E is a point on the bisector of $\\angle BAC$,\\\\\ntherefore, the distance from point E to line AC $=$ \\boxed{6}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52774835": { -"question": "As shown in the figure, in the right-angled triangle $ABC$, $\\angle ACB=90^\\circ$, $\\angle ABC=30^\\circ$. Three squares are constructed externally on the sides AC, BC, and AB of $\\triangle ABC$, and the areas of these three squares are denoted as $S_1$, $S_2$, and $S_3$, respectively. Given that $S_1=9$, what is the value of $S_3$?", -"image_file_name": "7046945", -"image": [ -"math/52774835_105.png" -], -"solution": "\\textbf{Solution:} Since $S_{1}=AC^{2}=9$, it results that $AC=3$. In $\\triangle ABC$, $\\angle ACB=90^\\circ$ and $\\angle ABC=30^\\circ$, hence $AB=2AC=6$. Therefore, $S_{3}=AB^{2}=\\boxed{36}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52774836": { -"question": "As shown in the figure, in the right-angled triangle $ABC$, where $\\angle C = 90^\\circ$, $AD$ bisects $\\angle BAC$ and intersects $BC$ at point $D$. Line $DE \\parallel AB$ intersects $AC$ at point $E$. Given that $CE = 3$ and $CD = 4$, what is the length of $AD$?", -"image_file_name": "7046945", -"image": [ -"math/52774836_110.png" -], -"solution": "\\textbf{Solution:} In right $\\triangle ABC$, $\\angle C=90^\\circ$, $CE=3$, $CD=4$, \\\\\n$\\therefore DE^{2}=CD^{2}+CE^{2}=9+16=25$, \\\\\n$\\therefore DE=5$, \\\\\n$\\because DE\\parallel AB$, \\\\\n$\\therefore \\angle BAD=\\angle ADE$, \\\\\n$\\because AD$ bisects $\\angle BAC$, \\\\\n$\\therefore \\angle BAD=\\angle CAD$, \\\\\n$\\therefore \\angle CAD=\\angle ADE$, \\\\\n$\\therefore AE=DE=5$, \\\\\n$\\therefore AC=AE+EC=5+3=8$, \\\\\n$\\therefore$ in right $\\triangle ACD$, \\\\\n$\\therefore AD^{2}=AC^{2}+CD^{2}=64+16=80$, \\\\\n$\\therefore AD=\\boxed{4\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52756081": { -"question": "As shown in the figure, $DE$ is the perpendicular bisector of side $BC$ of $\\triangle ABC$, intersecting sides $AB$ and $BC$ at points $D$ and $E$, respectively, and $AB=9$, $AC=6$. What is the perimeter of $\\triangle ACD$?", -"image_file_name": "7046945", -"image": [ -"math/52756081_120.png" -], -"solution": "\\textbf{Solution:} Since DE is the perpendicular bisector of side BC in $\\triangle ABC$, \\\\\nit follows that BD = CD, \\\\\nand since the perimeter of $\\triangle ACD$ is AD + CD + AC = AD + BD + AC = AB + AC = 9 + 6 = \\boxed{15}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52755383": { -"question": "In a right-angled triangle $ABC$, with $\\angle ABC=90^\\circ$, $AC=13$, and $AB=12$, what is the sum of the perimeters of the five small right-angled triangles in the figure?", -"image_file_name": "7046945", -"image": [ -"math/52755383_130.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, $\\angle ABC=90^\\circ$, $AC=13$, and $AB=12$. By the Pythagorean theorem, $BC= \\sqrt{AC^2-AB^2}=\\sqrt{13^2-12^2}=5$. Based on the properties of translation, we know that the sum of the two legs of the five small right-angled triangles in the figure equals $AB+BC=12+5=17$,\n\n$\\therefore$ The perimeter of the five small right-angled triangles in the figure is $5 \\times (AB+BC) = 5 \\times 17 = \\boxed{85}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52754259": { -"question": "As shown in the figure, in $\\triangle ABC$, D is a point on the extension of BC, $\\angle B=50^\\circ$, $\\angle ACD=120^\\circ$. What is the value of $\\angle A$?", -"image_file_name": "7046945", -"image": [ -"math/52754259_140.png" -], -"solution": "\\textbf{Solution:} It is known from the properties of the exterior angles of a triangle that,\n\\[\n\\angle A = \\angle ACD - \\angle B = 70^\\circ,\n\\]\nthus, \\(\\angle A = \\boxed{70^\\circ}\\).", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52754262": { -"question": "As shown in the figure, in the right triangle $ABC$, where $\\angle C=90^\\circ$, the bisector of $\\angle ABC$, $BD$, intersects $AC$ at $D$. If $CD = 4\\, \\text{cm}$, what is the distance from point $D$ to $AB$, denoted as $DE$?", -"image_file_name": "7046945", -"image": [ -"math/52754262_150.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle C=90^\\circ$ and BD bisects $\\angle ABC$, with $DE \\perp AB$,\\\\\nit follows that $DE=CD$,\\\\\nSince $CD=4\\text{cm}$,\\\\\nthe distance from point D to AB, DE, is $\\boxed{4\\text{cm}}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52733477": { -"question": "As shown in the figure, in $\\triangle ABC$, it is known that $S_{\\triangle ABD} : S_{\\triangle ACD} = 2 : 1$, point E is the midpoint of AB, and the area of $\\triangle ABC$ is $9\\,\\text{cm}^2$. What is the area of $\\triangle AED$?", -"image_file_name": "7046945", -"image": [ -"math/52733477_160.png" -], -"solution": "\\textbf{Solution:} Given that $S_{\\triangle ABD} : S_{\\triangle ACD} = 2 : 1$,\\\\\nit follows that $S_{\\triangle ACD} = \\frac{1}{2}S_{\\triangle ABD}$,\\\\\nsince point E is the midpoint of AB,\\\\\nthus $S_{\\triangle ADE} = S_{\\triangle BDE} = \\frac{1}{2}S_{\\triangle ABD}$,\\\\\nhence $S_{\\triangle ADE} = \\frac{1}{3}S_{\\triangle ABC} = \\frac{1}{3} \\times 9 = \\boxed{3\\text{cm}^2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52755868": { -"question": "As shown in the figure, a triangular paper piece with a $60^\\circ$ angle is cut to remove this $60^\\circ$ angle, resulting in a quadrilateral. What is the degree measurement of $\\angle 1+\\angle 2$?", -"image_file_name": "7046945", -"image": [ -"math/52755868_171.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, \\\\\nsince $\\angle C=60^\\circ$, \\\\\ntherefore $\\angle A+\\angle B=180^\\circ-\\angle C=180^\\circ-60^\\circ=120^\\circ$, \\\\\ntherefore $\\angle 1+\\angle 2=360^\\circ-(\\angle A+\\angle B)=360^\\circ-120^\\circ=\\boxed{240^\\circ}$.", -"solution_image": [ -"solution_images/52755868_170.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52755869": { -"question": "As shown in the figure, in $\\triangle ABC$, it is known that points $D$, $E$, and $F$ are the midpoints of $BC$, $AD$, and $CE$, respectively. If the area of $\\triangle ABC$ is $60\\, \\text{cm}^2$, what is the area of the shaded region?", -"image_file_name": "7046945", -"image": [ -"math/52755869_184.png" -], -"solution": "\\textbf{Solution:} Point D is the midpoint of BC,\\\\\n$\\therefore S_{\\triangle ABD}=S_{\\triangle ADC}=\\frac{1}{2}S_{\\triangle ABC}=30$,\\\\\n$\\because$ point E is the midpoint of AD,\\\\\n$\\therefore S_{\\triangle BDE}=S_{\\triangle CDE}=\\frac{1}{2}S_{\\triangle ADC}=15$;\\\\\n$\\therefore S_{\\triangle BEC}=2S_{\\triangle CDE}=30$,\\\\\n$\\because$ point F is the midpoint of EC,\\\\\n$\\therefore S_{\\triangle BEF}=\\frac{1}{2}S_{\\triangle BEC}=15$;\\\\\nTherefore, the answer is: $\\boxed{15}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52815571": { -"question": "As shown in the figure, in $\\triangle ABC$, $BD = \\frac{1}{5}BC$, $AE = \\frac{1}{4}AD$, and $CF = \\frac{1}{2}CE$. Given that the area of $\\triangle ABC = 30$, what is the area of $\\triangle DEF$?", -"image_file_name": "7046945", -"image": [ -"math/52815571_193.png" -], -"solution": "\\textbf{Solution:}\\\\\n$\\because BD= \\frac{1}{5} BC$,\\\\\n$\\therefore CD= \\frac{4}{5} BC$,\\\\\n$\\therefore S_{\\triangle ACD}= \\frac{4}{5} S_{\\triangle ABC}= \\frac{4}{5} \\times 30 = 24$,\\\\\n$\\because AE= \\frac{1}{4} AD$,\\\\\n$\\therefore DE= \\frac{3}{4} AD$,\\\\\n$\\therefore S_{\\triangle CDE}= \\frac{3}{4} S_{\\triangle ACD}= \\frac{3}{4} \\times 24 = 18$,\\\\\n$\\because CF= \\frac{1}{2} CE$,\\\\\n$\\therefore EF= \\frac{1}{2} CE$,\\\\\n$\\therefore S_{\\triangle DEF}= \\frac{1}{2} S_{\\triangle CDE}= \\frac{1}{2} \\times 18 = \\boxed{9}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52699614": { -"question": "As shown in the figure, rectangle $ABCD$ is folded along the diagonal $AC$, making point $D$ fall on point $M$, with $AM$ intersecting $BC$ at point $E$, and $AB=4$, $AD=8$. What is the length of $BE$?", -"image_file_name": "7046945", -"image": [ -"math/52699614_200.png" -], -"solution": "\\textbf{Solution:} Given the properties of the rectangle and the fold, we have: $AB=CD=MC=4$, $AD=BC=AM=8$, $\\angle AMC=90^\\circ$,\\\\\nIn $\\triangle ABE$ and $\\triangle CME$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle ABC=\\angle CME\\\\\n\\angle AEB=\\angle CEM\\\\\nAB=CM\n\\end{array}\\right.$\\\\\n$\\therefore \\triangle ABE\\cong \\triangle CME$ (AAS),\\\\\n$\\therefore BE=ME$,\\\\\nLet $BE=x$, then $ME=x$, $AE=8-x$,\\\\\nIn $\\triangle ABE$, by the Pythagorean theorem: $AB^2+BE^2=AE^2$, i.e., $4^2+x^2=(8-x)^2$,\\\\\nSolving this, we get: $x=\\boxed{3}$, hence $BE=3$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52699329": { -"question": "As shown in the figure, the area of square $ABCD$ is $100 \\text{cm}^2$. Triangle $\\triangle ABP$ is a right-angled triangle with $\\angle P = 90^\\circ$, and $PB = 6\\text{cm}$. What is the length of $AP$?", -"image_file_name": "7046945", -"image": [ -"math/52699329_210.png" -], -"solution": "\\textbf{Solution:} Given that the area of square ABCD is $100\\,\\text{cm}^{2}$,\\\\\nit follows that AB=10cm,\\\\\nsince \\(\\triangle\\)ABP is a right triangle with \\(\\angle P=90^\\circ\\) and PB=6cm,\\\\\ntherefore AP=$\\sqrt{AB^{2}-BP^{2}}=\\sqrt{10^{2}-6^{2}}=\\boxed{8}\\,\\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52699554": { -"question": "As shown in the figure, in the rectangle ABCD, AB = 4 cm, and BC = 8 cm. Now it is folded along EF, making point C coincide with point A. What is the length of AF?", -"image_file_name": "7046945", -"image": [ -"math/52699554_220.png" -], -"solution": "\\textbf{Solution:} Let $AF=x$ cm, then $DF=(8-x)$ cm, \\\\\nsince in the rectangle ABCD, $AB=4$ cm, $BC=8$ cm, and it is folded along EF such that point C coincides with point A, \\\\\ntherefore $DF=D^\\prime F$, $AD^\\prime=CD=AB=4$, \\\\\nin $\\triangle AD^\\prime F$, since $AF^2=A{D^\\prime}^2+D^\\prime F^2$, \\\\\ntherefore $x^2=4^2+(8-x)^2$, \\\\\nSolving yields: $x=\\boxed{5}$ (cm).", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52699750": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point D is on side $AC$ and $AD=BD$, $M$ is the midpoint of $BD$. If $AC=8$ and $BC=4$, what is the length of $CM$?", -"image_file_name": "7046945", -"image": [ -"math/52699750_230.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ACB=90^\\circ$ and M is the midpoint of BD,\\\\\n$\\therefore CM=\\frac{1}{2}BD$,\\\\\nLet $CM=x$, then $BD=AD=2x$,\\\\\nSince $AC=8$,\\\\\n$\\therefore CD=AC-AD=8-2x$,\\\\\nIn $\\triangle BCD$, according to the Pythagorean theorem,\\\\\n$BC^2+CD^2=BD^2$,\\\\\ni.e., $4^2+(8-2x)^2=(2x)^2$,\\\\\nSolving for $x$, we get $x=\\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52693972": { -"question": "As shown in the figure, it is known that the area of $\\triangle ABC$ is 48, with $AB=AC=8$. Point D is on side $BC$, and lines $DE \\perp AB$ at E, and $DF \\perp AC$ at F are drawn. If $DF=2DE$, then what is the length of $DF$?", -"image_file_name": "7046945", -"image": [ -"math/52693972_240.png" -], -"solution": "\\textbf{Solution:} Construct line segment AD, \\\\\nsince $S_{\\triangle ABD} + S_{\\triangle ACD} = S_{\\triangle ABC}$, AB = AC = 8, \\\\\ntherefore $\\frac{1}{2} \\times 8 \\cdot DF + \\frac{1}{2} \\times 8 \\cdot DE = 48$, \\\\\ntherefore DE + DF = 12, \\\\\nsince DF = 2DE, \\\\\ntherefore DF = \\boxed{8}.", -"solution_image": [ -"solution_images/52693972_240.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52661286": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, D is a point on $BC$, $DE\\perp AB$ at point E, $AE=AC$, connect $AD$, if $BC=8$, what is the value of $BD+DE$?", -"image_file_name": "7046945", -"image": [ -"math/52661286_257.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $DE \\perp AB$,\\\\\nit follows that $\\angle AED = \\angle C = 90^\\circ$,\\\\\nSince $AE = AC$, $AD = AD$,\\\\\nit follows that $\\triangle ADE \\cong \\triangle ADC\\ (HL)$,\\\\\ntherefore $DE = DC$,\\\\\nthus $BD + DE = BC + DC = BC = \\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52661181": { -"question": "In the given figure, within $\\triangle ABC$, $AD \\perp BC$, $AE$ is the angle bisector of $\\angle BAC$. If $\\angle B = 72^\\circ$ and $\\angle C = 38^\\circ$, what is the measure of $\\angle DAE$?", -"image_file_name": "7046945", -"image": [ -"math/52661181_260.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle B=72^\\circ$ and $\\angle C=38^\\circ$,\\\\\nthus $\\angle BAC=180^\\circ-\\angle B-\\angle C=180^\\circ-72^\\circ-38^\\circ=70^\\circ$,\\\\\nsince $AD\\perp BC$,\\\\\nthus $\\angle ADC=90^\\circ$,\\\\\nhence $\\angle DAC=90^\\circ-\\angle C=90^\\circ-38^\\circ=52^\\circ$;\\\\\nsince $AE$ bisects $\\angle BAC$,\\\\\nthus $\\angle EAC= \\frac{1}{2}\\angle BAC=35^\\circ$;\\\\\ntherefore $\\angle DAE=\\angle DAC-\\angle EAC=52^\\circ-35^\\circ=\\boxed{17^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52661185": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=40^\\circ$, $\\angle C=30^\\circ$, and point D is a point on side BC. After folding $\\triangle ADC$ along line AD, point C falls onto point E. If $DE\\parallel AB$, then what is the measure of $\\angle ADE$?", -"image_file_name": "7046945", -"image": [ -"math/52661185_270.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, $\\angle B=40^\\circ$, $\\angle C=30^\\circ$,\\\\\nthus $\\angle BAC=180^\\circ-\\angle B-\\angle C=180^\\circ-40^\\circ-30^\\circ=110^\\circ$;\\\\\nBecause after folding $\\triangle ADC$ along the line AD, point C falls on point E,\\\\\nthus $\\angle C=\\angle E=30^\\circ$, $\\angle EAD=\\angle CAD$, $\\angle ADE=\\angle ADC$,\\\\\nBecause DE$\\parallel$AB,\\\\\nthus $\\angle BAE=\\angle E=30^\\circ$,\\\\\nthus $\\angle EAD=\\angle CAD= \\frac{1}{2}(\\angle BAC-\\angle BAE)= \\frac{1}{2}(110^\\circ-30^\\circ)=40^\\circ$;\\\\\nthus $\\angle ADE=\\angle ADC=180^\\circ-\\angle C-\\angle CAD=180^\\circ-30^\\circ-40^\\circ=\\boxed{110^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"55452494": { -"question": "A ruler and a right-angled triangle ruler containing a $30^\\circ$ angle are placed as shown in the figure. If $\\angle 1 = 22^\\circ$, what is the degree measure of $\\angle 2$?", -"image_file_name": "7058812", -"image": [ -"math/55452494_00.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw line CE through point C such that CE$\\parallel$AB, \\\\\n$\\because$AB$\\parallel$GH, $\\therefore$AB$\\parallel$GH$\\parallel$CE, $\\therefore$$\\angle$1=$\\angle$DCE=$22^\\circ$, $\\angle$2=$\\angle$ECF, $\\therefore$$\\angle$2=$\\angle$ECF=$\\angle$DCF−$\\angle$DCE=$60^\\circ−22^\\circ=\\boxed{38^\\circ}$.", -"solution_image": [ -"solution_images/55452494_00.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51213413": { -"question": "As shown in the figure, $AB$, $AC$, $BD$ are the tangents to circle $\\odot O$ with the points of tangency at $P$, $C$, and $D$, respectively. If $AB=5$ and $AC=3$, what is the length of $BD$?", -"image_file_name": "7058812", -"image": [ -"math/51213413_17.png" -], -"solution": "\\textbf{Solution:} Since $AB$, $AC$, and $BD$ are tangents to the circle $\\odot O$,\\\\\nit follows that AP=AC and BP=BD,\\\\\nand since $AB=5$ and $AC=3$,\\\\\nit follows that AP=3,\\\\\nthus, BD=BP=AB-AP=\\boxed{2}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51213412": { -"question": "As shown in the figure, when a circular card with a radius of \\(2 \\, \\text{cm}\\) is folded such that the arc exactly passes through the center of the circle, what is the length of the crease?", -"image_file_name": "7058812", -"image": [ -"math/51213412_20.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OA, and connect point O with the symmetrical point E with respect to AB, intersecting AB at point D,\\\\\nBy folding, we get $OD=DE=\\frac{1}{2}OE=1\\text{ cm}$, $OD\\perp AB$,\\\\\n$\\therefore AD=BD=\\frac{1}{2}AB$,\\\\\nIn $\\triangle AOD$, $OD^2+AD^2=OA^2$,\\\\\n$\\therefore AD=\\sqrt{OA^2-OD^2}=\\sqrt{2^2-1^2}=\\sqrt{3}\\text{ cm}$,\\\\\n$\\therefore AB=2AD=2\\sqrt{3}\\text{ cm}$,\\\\\nHence, the length of the crease is $AB=\\boxed{2\\sqrt{3}\\text{ cm}}$.", -"solution_image": [ -"solution_images/51213412_20.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51213349": { -"question": "As shown in the Cartesian coordinate system, point $P$ is in the first quadrant. Circle $\\odot P$ is tangent to both the x-axis and y-axis, and it passes through the vertex $C$ of rectangle $AOBC$, intersecting with $BC$ at point $D$. Given that the radius of $\\odot P$ is 5 and the coordinates of point $A$ are $(0, 8)$, what are the coordinates of point $D$?", -"image_file_name": "7058812", -"image": [ -"math/51213349_32.png" -], -"solution": "\\textbf{Solution:}\\\\\nLet the points of tangency be $G$, $E$, respectively. Connect $PG$, $PE$, $PC$, $PD$, and extend $EP$ to intersect $BC$ at $F$. Then $PG=PE=PC=5$, and quadrilateral $OBFE$ is a rectangle.\\\\\n$\\because$OA=8,\\\\\n$\\therefore$CF=8-5=3,\\\\\n$\\therefore$PF=4,\\\\\n$\\therefore$OB=EF=5+4=9.\\\\\n$\\because$PF passes through the circle's center,\\\\\n$\\therefore$DF=CF=3,\\\\\n$\\therefore$BD=8-3-3=2,\\\\\n$\\therefore$The coordinates of $D$ are $\\boxed{(9, 2)}$.", -"solution_image": [ -"solution_images/51213349_30.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51213310": { -"question": "As shown in the figure, PA and PB are tangent lines to the circle $O$, with A and B being the points of tangency. AC is a diameter of the circle $O$. Given that $\\angle P = 50^\\circ$, what is the measure of $\\angle ACB$?", -"image_file_name": "7058812", -"image": [ -"math/51213310_40.png" -], -"solution": "\\textbf{Solution:} Connect OB, as shown in the diagram,\\\\\nsince PA and PB are tangents to the circle centered at O,\\\\\nit follows that OA $\\perp$ PA, and OB $\\perp$ PB,\\\\\nthus, $\\angle$OAP=$\\angle$OBP=90$^\\circ$,\\\\\nhence, $\\angle$AOB=360$^\\circ$-90$^\\circ$-90$^\\circ$-50$^\\circ$=130$^\\circ$,\\\\\nsince OB=OC,\\\\\nit follows that $\\angle$OCB=$\\angle$OBC,\\\\\nand since $\\angle$AOB=$\\angle$OCB+$\\angle$OBC,\\\\\nthus, $\\angle$OCB= $\\frac{1}{2} \\times 130^\\circ=65^\\circ$,\\\\\nthat is, $\\angle$ACB=$\\boxed{65^\\circ}$.", -"solution_image": [ -"solution_images/51213310_40.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51213210": { -"question": "As shown in the diagram, a right-angled triangle ruler containing a $30^\\circ$ angle is positioned as shown together with a straight ruler. If $\\angle 1 = 62^\\circ$, what is the degree measure of $\\angle 2$?", -"image_file_name": "7058812", -"image": [ -"math/51213210_53.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram:\\\\\n$\\because \\angle 1=62^\\circ$,\\\\\n$\\therefore$ by the property that parallel lines have equal alternate interior angles, we have $\\angle 3=62^\\circ$,\\\\\n$\\therefore$ by the exterior angle theorem of a triangle, we have $\\angle 4=\\angle 3-30^\\circ=32^\\circ$,\\\\\n$\\therefore \\angle 2=\\angle 4=\\boxed{32^\\circ}$.", -"solution_image": [ -"solution_images/51213210_50.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51213212": { -"question": "As shown in the figure, fold the rectangular paper ABCD upwards along AE, so that point B falls at point F on side DC. If $\\angle FEC = 28^\\circ$, what is the value of $\\angle EAB$ in degrees?", -"image_file_name": "7058812", -"image": [ -"math/51213212_60.png" -], -"solution": "\\textbf{Solution:} By folding, we obtain $\\angle BEA = \\angle FEA$,\\\\\n$\\because \\angle FEC = 28^\\circ$,\\\\\n$\\therefore \\angle AEB = (180^\\circ - 28^\\circ) \\div 2 = 76^\\circ$,\\\\\n$\\therefore \\angle EAB = 90^\\circ - \\angle AEB = \\boxed{14^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51212848": { -"question": "As shown in the figure, in rhombus $ABCD$, $E$ and $F$ are the midpoints of $AB$ and $AC$, respectively. If $EF=2$, what is the perimeter of rhombus $ABCD$?", -"image_file_name": "7058812", -"image": [ -"math/51212848_70.png" -], -"solution": "\\textbf{Solution:} Given that in rhombus $ABCD$, $E$ and $F$ are the midpoints of $AB$ and $AC$ respectively, and $EF=2$,\\\\\nit follows that $BC=2EF=2\\times 2=4$. Therefore, $AB=BC=CD=AD=4$.\\\\\nHence, the perimeter of the rhombus is $4BC=4\\times 4=\\boxed{16}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51212158": { -"question": "As shown in the diagram, a rectangular sheet of paper $ABCD$ is folded along $EF$, such that vertices $C$ and $D$ respectively fall on points $C'$ and $D'$. The line $CE$ intersects $AF$ at point $G$, and $\\angle CEF = 70^\\circ$. What is the value of $\\angle GFD'$?", -"image_file_name": "7058812", -"image": [ -"math/51212158_811.png" -], -"solution": "\\textbf{Solution:} Since $AD \\parallel BC$,\\\\\nit follows that $\\angle DFE + \\angle CEF = 180^\\circ$, $\\angle AFE = \\angle CEF$,\\\\\ngiven that $\\angle CEF = 70^\\circ$,\\\\\nthus $\\angle DFE = 180^\\circ - \\angle CEF = 180^\\circ - 70^\\circ = 110^\\circ$, $\\angle AFE = 70^\\circ$,\\\\\nFrom the fold, it is known that: $\\angle D'FE = \\angle DFE = 110^\\circ$, therefore $\\angle GFD' = \\angle D'FE - \\angle AFE = 110^\\circ - 70^\\circ = \\boxed{40^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51212036": { -"question": "As shown in the figure, in rectangle $ABCD$, $AD = 9$, $AB = 3$. The paper is folded to make point $D$ coincide with point $B$, and the crease is $EF$. What is the length of the crease $EF$?", -"image_file_name": "7058812", -"image": [ -"math/51212036_90.png" -], -"solution": "\\textbf{Solution:} Construct $FH \\perp AD$ meeting AD at point H.\\\\\nSince quadrilateral $EFCB$ is obtained by folding quadrilateral $EFCD$ along EF,\\\\\ntherefore ED=BE, CF=$CF$, $BC'=CD=3$\\\\\nSince ED=BE, DE=AD−AE=9−AE\\\\\ntherefore $BE=9−AE$\\\\\nSince in $\\triangle ABE$, AB=3, BE=9−AE\\\\\nthus $(9−AE)^{2}=3^{2}+AE^{2}$\\\\\ntherefore $AE=4$\\\\\ntherefore $DE=5$\\\\\ntherefore $CF=BC−BF=9−BF$\\\\\nSince in $\\triangle BCF$, BC=3, CF=9−BF\\\\\nthus $(9−BF)^{2}+3^{2}=BF^{2}$\\\\\ntherefore $BF=5$, EH=1\\\\\nSince in $\\triangle EFH$, HF=3, EH=1\\\\\ntherefore $EF=\\sqrt{EH^{2}+HF^{2}}=\\sqrt{3^{2}+1^{2}}=\\boxed{\\sqrt{10}}$", -"solution_image": [ -"solution_images/51212036_91.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51212132": { -"question": "As shown in the figure, rotating $\\triangle ABC$ about point $C(0, -1)$ by $180^\\circ$ results in $\\triangle A'B'C'$. If the coordinates of point $A$ are $(-4, -3)$, what are the coordinates of point $A'$?", -"image_file_name": "7058812", -"image": [ -"math/51212132_100.png" -], -"solution": "\\textbf{Solution:} Let $A'$E$\\perp$y-axis at point E, and AD$\\perp$y-axis at point D, then $\\angle A'$EC=$\\angle$ADC, \\\\\n$\\because$ $\\angle A'$CE=$\\angle$ACD, AC=$A'$C, \\\\\n$\\therefore$ $\\triangle A'$EC$\\cong \\triangle$ADC (AAS), \\\\\n$\\therefore$ AD=$A'$E, CE=CD, \\\\\n$\\because$ the coordinates of point A are (-4, -3), OC=1, \\\\\n$\\therefore$ AD=4, OD=3, \\\\\n$\\therefore$ AD=$A'$E=4, CD=2, \\\\\n$\\therefore$ CE=2, \\\\\n$\\therefore$ OE=1, \\\\\n$\\therefore$ the coordinates of point $A'$ are $\\boxed{(4, 1)}$.", -"solution_image": [ -"solution_images/51212132_100.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212130": { -"question": "As shown in the figure, $\\triangle DEF$ is obtained by rotating $\\triangle ABC$ around a certain point. What are the coordinates of this point?", -"image_file_name": "7058812", -"image": [ -"math/51212130_110.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\ \nwe connect AD, BE and construct the perpendicular bisectors of line segments AD, BE, \\\\\nthe intersection of these lines is the center of rotation $O^{\\prime}$. Its coordinates are $\\boxed{(0,1)}$.", -"solution_image": [ -"solution_images/51212130_110.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212156": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $BD$ is the bisector of $\\angle ABC$, $DE \\perp AB$, and the foot of the perpendicular is E. If $AC=5$ and $DE=2$, what is the length of $AD$?", -"image_file_name": "7058812", -"image": [ -"math/51212156_128.png" -], -"solution": "\\textbf{Solution:} Since BD is the bisector of $\\angle ABC$, $DE \\perp AB$, and $\\angle C = 90^{\\circ}$,\\\\\nit follows that $DE = CD = 2$,\\\\\nSince $AC = 5$,\\\\\nit follows that $AD = AC - CD = 5 - 2 = \\boxed{3}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51212846": { -"question": "As shown in the figure, the small tree AB casts a shadow BC under the illumination of the street light O. If the height of the tree AB is 2m, the length of the shadow BC is 3m, and the horizontal distance between the tree and the street light BP is 4.5m, what is the height of the street light OP?", -"image_file_name": "7058812", -"image": [ -"math/51212846_130.png" -], -"solution": "Solution: Under the same lighting conditions, the ratio of the height of any object to its shadow remains constant:\\\\\nSince the height of the tree, AB = 2m, and the shadow of the tree, BC = 3m, and BP = 4.5m\\\\\nTherefore, $\\frac{OP}{PC}=\\frac{AB}{BC}$, substituting the values gives: $\\frac{OP}{7.5}=\\frac{2}{3}$\\\\\nTherefore, $OP=\\boxed{5}$m", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212770": { -"question": "As shown in the figure, in the circle $\\odot O$, the chord $AC\\parallel$ to the radius $OB$, $\\angle BOC=48^\\circ$, what is the degree measure of $\\angle OAB$?", -"image_file_name": "7058812", -"image": [ -"math/51212770_140.png" -], -"solution": "\\textbf{Solution:} Given that $AC \\parallel OB$,\\\\\nit follows that $\\angle BOC = \\angle ACO = 48^\\circ$,\\\\\nsince $OA = OC$,\\\\\nthen $\\angle OAC = \\angle ACO = 48^\\circ$,\\\\\nsince $\\angle CAB = \\frac{1}{2} \\angle BOC = 24^\\circ$,\\\\\nhence $\\angle BAO = \\angle OAC - \\angle CAB = \\boxed{24^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51212842": { -"question": "As shown in the figure, the lines $a$, $b$, and $c$ are intersected by lines $l_1$ and $l_2$, with the intersection points being A, C, E and B, D, F, respectively. It is known that $a \\parallel b \\parallel c$, and $AC = 3$, $CE = 4$. What is the value of $\\frac{BD}{BF}$?", -"image_file_name": "7058812", -"image": [ -"math/51212842_156.png" -], -"solution": "\\textbf{Solution:} Since $a\\parallel b\\parallel c$,\\\\\nit follows that $\\frac{AC}{CE}=\\frac{BD}{DF}=\\frac{3}{4}$,\\\\\ntherefore, $\\frac{BD}{BF}=\\frac{3}{3+4}=\\boxed{\\frac{3}{7}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212179": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle A=60^\\circ$, and $AC=6$. The triangle $\\triangle ABC$ is rotated counterclockwise around point C to obtain $\\triangle A'B'C'$, where point A' happens to be on side AB. What is the distance between point B' and point B?", -"image_file_name": "7058812", -"image": [ -"math/51212179_160.png" -], -"solution": "\\textbf{Solution:} Draw line $B'B$.\\\\\n$\\because$ Triangle $ABC$ is rotated counterclockwise around point $C$ to obtain $\\triangle A'B'C$,\\\\\n$\\therefore$ $AC=A'C$, $AB=A'B$, $\\angle A=\\angle CA'B'=60^\\circ$,\\\\\n$\\therefore$ $\\triangle AA'C$ is an equilateral triangle,\\\\\n$\\therefore$ $\\angle AA'C=60^\\circ$,\\\\\n$\\therefore$ $\\angle B'A'B=180^\\circ-60^\\circ-60^\\circ=60^\\circ$,\\\\\n$\\because$ Triangle $ABC$ is rotated counterclockwise around point $C$ to obtain $\\triangle A'B'C$,\\\\\n$\\therefore$ $\\angle ACA'=\\angle BAB'=60^\\circ$, $BC=B'C$, $\\angle CB'A'=\\angle CBA=90^\\circ-60^\\circ=30^\\circ$,\\\\\n$\\therefore$ $\\triangle BCB'$ is an equilateral triangle,\\\\\n$\\therefore$ $\\angle CB'B=60^\\circ$,\\\\\n$\\because$ $\\angle CB'A'=30^\\circ$,\\\\\n$\\therefore$ $\\angle A'B'B=30^\\circ$,\\\\\n$\\therefore$ $\\angle B'BA'=180^\\circ-60^\\circ-30^\\circ=90^\\circ$,\\\\\n$\\because$ $\\angle ACB=90^\\circ$, $\\angle A=60^\\circ$, $AC=6$,\\\\\n$\\therefore$ $AB=12$,\\\\\n$\\therefore$ $A'B=AB−AA'=AB−AC=6$,\\\\\n$\\therefore$ $B'B=6\\sqrt{3}$,\\\\\nTherefore, the answer is: \\boxed{6\\sqrt{3}}.", -"solution_image": [ -"solution_images/51212179_160.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212520": { -"question": "As shown in the figure, it is known that the points A, B, C, D, and E are on the same straight line, with point D being the midpoint of segment AB, and point E being the midpoint of segment BC. If the length of segment AC is 12, what is the length of segment DE?", -"image_file_name": "7058812", -"image": [ -"math/51212520_170.png" -], -"solution": "\\textbf{Solution:} Given that $D$ is the midpoint of the line segment $AB$, it follows that $AD=BD$,\\\\\nSince $E$ is the midpoint of the line segment $BC$, it follows that $BE=CE$,\\\\\nGiven that $AC=12$, it follows that $AD+CD=12$, hence $BD+CD=12$,\\\\\nAdditionally, since $BD=2CE+CD$, it follows that $2CE+CD+CD=12$,\\\\\nwhich simplifies to $2(CE+CD)=12$, hence $CE+CD=6$,\\\\\nmeaning the length of the segment $DE$ equals $\\boxed{6}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51212652": { -"question": "As shown in the figure, Xiaofang and her father are taking a walk. Her father is 1.8m tall and his shadow on the ground is 2.1m long. If Xiaofang is only 1.2m tall, how long is her shadow?", -"image_file_name": "7058812", -"image": [ -"math/51212652_180.png" -], -"solution": "\\textbf{Solution:} Let the shadow length of Xiaofang be $x$ meters.\\\\\nAccording to the proportionality of height to shadow length at the same moment, we get: $\\frac{1.8}{2.1}=\\frac{1.2}{x}$,\\\\\nSolving this, we obtain: $x=\\boxed{1.4}$.\\\\\nUpon verification, this is consistent with the problem statement.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212034": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=46^\\circ$, $\\angle C=54^\\circ$, $AD$ bisects $\\angle BAC$, intersects $BC$ at $D$, and $DE\\parallel AB$, intersecting $AC$ at $E$. What is the measure of $\\angle ADE$?", -"image_file_name": "7058812", -"image": [ -"math/51212034_190.png" -], -"solution": "\\textbf{Solution:} Since $\\angle B=46^\\circ$ and $\\angle C=54^\\circ$, \\\\\nit follows that $\\angle BAC=180^\\circ-\\angle B-\\angle C=180^\\circ-46^\\circ-54^\\circ=80^\\circ$, \\\\\nSince AD bisects $\\angle BAC$, \\\\\nit follows that $\\angle BAD=\\frac{1}{2}\\angle BAC=40^\\circ$, \\\\\nSince DE $\\parallel$ AB, \\\\\nit follows that $\\angle ADE=\\angle BAD=\\boxed{40^\\circ}$.", -"solution_image": [ -"solution_images/51212034_190.png", -"solution_images/51212034_191.png", -"solution_images/51212034_192.png", -"solution_images/51212034_193.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51212564": { -"question": "As shown in the figure, in $\\triangle ABC$, $CM$ bisects $\\angle ACB$ and intersects $AB$ at point $M$. A line through point $M$ is drawn such that $MN \\parallel BC$ and intersects $AC$ at point $N$, and $MN$ bisects $\\angle AMC$. If $AN=1$, what is the length of $BC$?", -"image_file_name": "7058812", -"image": [ -"math/51212564_200.png" -], -"solution": "Solution:In a right-angled triangle $ABC$, let $CM$ bisect $\\angle ACB$ and intersect $AB$ at point $M$. Construct $MN \\parallel BC$ through point $M$ to intersect $AC$ at point $N$, and let $MN$ bisect $\\angle AMC$,\\\\\n$\\therefore \\angle AMN = \\angle NMC = \\angle B$, $\\angle NCM = \\angle BCM = \\angle NMC$,\\\\\n$\\therefore \\angle ACB = 2\\angle B$, $NM = NC$,\\\\\n$\\therefore \\angle B = 30^\\circ$,\\\\\nSince $AN = 1$,\\\\\n$\\therefore MN = 2$,\\\\\n$\\therefore AC = AN + NC = 3$,\\\\\n$\\therefore BC = \\boxed{6}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51320365": { -"question": "As shown in the figure, to measure the height of a building, at point A, which is 30 meters away from the base of the building at point O, the angle of elevation to the top of the building at point B is measured to be $\\angle OAB = 65^\\circ$. What is the height of this building?", -"image_file_name": "7058593", -"image": [ -"math/51320365_101.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, in the right-angled triangle $\\triangle$ABO,\\\\\nsince $\\angle$AOB$=90^\\circ$ and $\\angle$A$=65^\\circ$ with AO$=30$m,\\\\\nthen $\\tan 65^\\circ = \\frac{OB}{AO}$,\\\\\nthus, OB$=30\\cdot\\tan 65^\\circ$ meters.\\\\\nTherefore, the answer is: $BO=\\boxed{30\\cdot\\tan 65^\\circ}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51285474": { -"question": "In a square grid, the position of $\\triangle ABC$ is shown as in the figure, where points A, B, and C are all on the grid points. What is the value of $\\cos B$?", -"image_file_name": "7058593", -"image": [ -"math/51285474_111.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw AD $\\perp$ BC and extend BC to meet point D,\\\\\n$\\because$ AD=BD=4, $\\angle$ADB=90$^\\circ$,\\\\\n$\\therefore$ $\\triangle$ABD is an isosceles right triangle,\\\\\n$\\therefore$ $\\angle$B=45$^\\circ$\\\\\n$\\therefore$ $\\cos B=\\frac{\\sqrt{2}}{2}$\\\\\nHence, the answer is: $\\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/51285474_110.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51285366": { -"question": "As shown in the figure, quadrilateral ABCD is a rhombus, with $AC=8$ and $\\tan \\angle DAC= \\frac{3}{4}$. If $DH \\perp AB$ at H, what is the distance from point D to side AB?", -"image_file_name": "7058593", -"image": [ -"math/51285366_121.png" -], -"solution": "\\textbf{Solution:} Let the intersection of AC and BD be O,\\\\\n$\\because$ Quadrilateral ABCD is a rhombus,\\\\\n$\\therefore$ AC$\\perp$BD, $AO=\\frac{1}{2}AC=4$, $BD=2OD$, AB=AD,\\\\\n$\\therefore$ $\\tan\\angle DAC=\\frac{OD}{OA}=\\frac{3}{4}$,\\\\\n$\\therefore$ $OD=3$,\\\\\n$\\therefore$ $AD=\\sqrt{AO^{2}+DO^{2}}=5$, $BD=6$,\\\\\n$\\therefore$ $AB=AD=5$,\\\\\n$\\because$ $S_{\\text{rhombus}ABCD}=\\frac{1}{2}AC\\cdot BD=AB\\cdot DH$,\\\\\n$\\therefore$ $DH=\\frac{AC\\cdot BD}{2AB}=\\boxed{\\frac{24}{5}}$.", -"solution_image": [ -"solution_images/51285366_120.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51262418": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=3$, and $BC=4$, what is the value of $\\sin A$?", -"image_file_name": "7058593", -"image": [ -"math/51262418_130.png" -], -"solution": "\\textbf{Solution:} In $Rt\\triangle ABC$, where $\\angle C=90^\\circ$, $AC=3$, and $BC=4$,\\\\\nby the Pythagorean theorem, we have $AB=\\sqrt{AC^2+BC^2}=5$,\\\\\ntherefore $\\sin A=\\frac{BC}{AB}=\\boxed{\\frac{4}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51262164": { -"question": "Given a right-angled $\\triangle ABC$, with $\\angle C=90^\\circ$, $\\angle A=50^\\circ$, and $AB=2$, what is the value of $AC$?", -"image_file_name": "7058593", -"image": [ -"math/51262164_140.png" -], -"solution": "\\textbf{Solution}: We have $\\angle B=90^\\circ-\\angle A=90^\\circ-50^\\circ=40^\\circ$,\\\\\nFurthermore, since $\\sin B= \\frac{AC}{AB}$,\\\\\nit follows that $AC=AB \\cdot \\sin 40^\\circ = \\boxed{2\\sin 40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53148883": { -"question": "As shown in the cross-section of a certain dam, the slope ratio $i$ of the slope AB is $1\\colon 2$, and the slope ratio $i$ of the water-facing slope CD is $1\\colon 1$. If the length of AB is $6\\sqrt{5}$ meters, what is the length of the slope CD?", -"image_file_name": "7058593", -"image": [ -"math/53148883_151.png" -], -"solution": "\\textbf{Solution:} \n\nLet lines BE and CF be perpendicular to AD, passing through B and C respectively,\n\n$\\therefore$ Quadrilateral BEFC is a rectangle,\n\nThe slope ratio of ramp AB is $i=1\\colon 2$, that is $\\frac{BE}{AE}=\\frac{1}{2}$. Assuming $BE=x$, then $AE=2x$,\n\nIn $\\triangle ABE$, according to the Pythagorean theorem, we have: $BE^2+AE^2=AB^2$,\n\n$x^2+(2x)^2=(6\\sqrt{5})^2$, solving this gives $x=6$ or $x=-6$ (which is inconsistent with the problem, thus discarded),\n\nMoreover, since the slope ratio of the uphill slope CD is $i=1\\colon 1$,\n\n$\\therefore$ $CF=DF=6$,\n\n$\\therefore$ In $\\triangle CFD$, according to the Pythagorean theorem, we have:\n\n$CD=\\sqrt{CF^2+DF^2}=\\sqrt{6^2+6^2}=\\boxed{6\\sqrt{2}}$", -"solution_image": [ -"solution_images/53148883_150.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53149424": { -"question": " In the figure, the quadrilateral $ABCD$ is inscribed in circle $\\odot O$, $\\angle ADC=60^\\circ$, and the radius of $\\odot O$ is $3\\,cm$. What is the length of the chord $AC$?", -"image_file_name": "7058593", -"image": [ -"math/53149424_165.png" -], -"solution": "\\textbf{Solution:} Draw $OA$ and $OC$, and construct $OE \\perp AC$ at $E$,\\\\\nsince $\\angle ADC=60^\\circ$,\\\\\nthus $\\angle AOC=2\\angle ADC=120^\\circ$,\\\\\nsince $OA=OC$,\\\\\nthus $\\angle AOE=\\angle COE=60^\\circ$, $AC=2AE$,\\\\\nthus $\\sin\\angle AOE=\\frac{AE}{AO}$,\\\\\nthus $AE=AO\\cdot \\sin\\angle AOE$,\\\\\nthus $AE=3\\sin60^\\circ=\\frac{3\\sqrt{3}}{2}$,\\\\\nthus $AC=2AE=\\boxed{3\\sqrt{3}}$,", -"solution_image": [ -"solution_images/53149424_160.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51231562": { -"question": "Place a right triangular plate as shown in the figure, with point $C$ on the extension of $FD$, $AB\\parallel CF$, $\\angle F = \\angle ACB = 90^\\circ$, $\\angle E = 30^\\circ$, $\\angle A = 45^\\circ$, $AC = 6\\sqrt{2}$. What is the length of $CD$?", -"image_file_name": "7058593", -"image": [ -"math/51231562_178.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, construct BM$\\perp$FD at M,\\\\\nIn $\\triangle ACB$, $\\angle ACB=90^\\circ$, $\\angle A=45^\\circ$, $AC=6\\sqrt{2}$,\\\\\n$\\therefore BC=AC=6\\sqrt{2}$,\\\\\n$\\because AB\\parallel CF$,\\\\\n$\\therefore BM=BC\\times\\sin45^\\circ=6\\sqrt{2}\\times \\frac{\\sqrt{2}}{2}=6$,\\\\\n$\\therefore CM=BM=6$,\\\\\nIn $\\triangle EFD$, $\\angle F=90^\\circ$, $\\angle E=30^\\circ$,\\\\\n$\\therefore \\angle EDF=60^\\circ$,\\\\\n$\\therefore MD=\\frac{BM}{\\tan60^\\circ}=\\frac{6}{\\sqrt{3}}=2\\sqrt{3}$,\\\\\n$\\therefore CD=CM-MD=6-2\\sqrt{3}$.\\\\\nThus, the answer is: $CD=\\boxed{6-2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51231562_170.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212656": { -"question": "As shown in the figure, in the square $ABCD$ with a side length of $4$, where point $E$ is a point on side $CD$, and point $F$ is the reflection of point $D$ across line $AE$. Connecting $AF$ and $BF$, if $\\tan \\angle ABF = 2$, what is the length of $DE$?", -"image_file_name": "7058593", -"image": [ -"math/51212656_180.png" -], -"solution": "\\textbf{Solution:} Draw a line FN $\\perp$ AB at point N, and extend NF to intersect CD at point M,\\\\\nsince AB$\\parallel$CD,\\\\\nthus MN$\\perp$CD,\\\\\nthus $\\angle$FME $= 90^\\circ$,\\\\\nsince $\\tan\\angle$ABF $= 2$,\\\\\nthus $\\frac{FN}{BN} = 2$,\\\\\nlet BN $= x$, then FN $= 2x$,\\\\\nthus AN $= 4 - x$,\\\\\nsince point F is symmetric to point D with respect to line AE,\\\\\nthus DE $= EF$, DA $= AF = 4$,\\\\\nsince AE $= AE$,\\\\\nthus $\\triangle$ADE $\\cong$ $\\triangle$AFE (SSS),\\\\\nthus $\\angle$D $= \\angle$AFE $= 90^\\circ$,\\\\\nsince AN$^2$ + NF$^2$ = AF$^2$,\\\\\nthus $(4 - x)^2 + (2x)^2 = 4^2$,\\\\\nthus $x_1 = 0$ (discard), $x_2 = \\frac{8}{5}$,\\\\\nthus AN $= 4 - x = 4 - \\frac{8}{5} = \\frac{12}{5}$, MF $= 4 - 2x = 4 - \\frac{16}{5} = \\frac{4}{5}$,\\\\\nsince $\\angle$EFM + $\\angle$AFN $= \\angle$AFN + $\\angle$FAN $= 90^\\circ$,\\\\\nthus $\\angle$EFM $= \\angle$FAN,\\\\\nthus $\\cos\\angle$EFM $= \\cos\\angle$FAN,\\\\\nthus $\\frac{FM}{EF} = \\frac{AN}{AF}$, thus $\\frac{\\frac{4}{5}}{EF} = \\frac{\\frac{12}{5}}{4}$,\\\\\nthus EF $= \\frac{4}{3}$,\\\\\nthus DE $= EF = \\boxed{\\frac{4}{3}}$.", -"solution_image": [ -"solution_images/51212656_180.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51212805": { -"question": "As shown in the figure, PA and PB respectively tangent to circle $O$ at points A and B, $\\angle APB=60^\\circ$, and the radius of circle $O$ is 2. What is the length of PB?", -"image_file_name": "7058593", -"image": [ -"math/51212805_190.png" -], -"solution": "\\textbf{Solution:} Draw OB and OP, \\\\\n$\\because$ PA and PB are tangents to circle $O$, and $\\angle APB = 60^\\circ$,\\\\\n$\\therefore$ $\\angle OBP = 90^\\circ$, $\\angle BPO = \\frac{1}{2}\\angle APB = 30^\\circ$,\\\\\n$\\because$ the radius of circle $O$ is 2, i.e., $OB=2$,\\\\\n$\\therefore$ $\\tan\\angle BPO = \\frac{OB}{PB} = \\frac{2}{PB} = \\tan30^\\circ = \\frac{\\sqrt{3}}{3}$,\\\\\n$\\therefore$ $PB = \\boxed{2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51212805_190.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51367511": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are all grid points in a square grid. What is the value of $\\sin\\angle BAC$?", -"image_file_name": "7058593", -"image": [ -"math/51367511_200.png" -], -"solution": "\\textbf{Solution:} Construct $CD\\perp AB$ at D,\\\\\nFrom the figure, it is known that $BC=2$,\\\\\nBy the Pythagorean theorem, $AC=\\sqrt{3^2+1^2}=\\sqrt{10}$, $AB=\\sqrt{3^2+3^2}=3\\sqrt{2}$,\\\\\nBy the formula for the area of a triangle, $\\frac{1}{2}\\times 2\\times 3=\\frac{1}{2}\\times 3\\sqrt{2}\\times CD$,\\\\\nSolving, we find $CD=\\sqrt{2}$,\\\\\n$\\therefore \\sin\\angle BAC=\\frac{CD}{AC}=\\frac{\\sqrt{2}}{\\sqrt{10}}=\\frac{\\sqrt{5}}{5}$,\\\\\nTherefore, the answer is: $\\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/51367511_200.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51367507": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=10$, and $AC=8$. What is the value of $\\tan B$?", -"image_file_name": "7058593", -"image": [ -"math/51367507_213.png" -], -"solution": "\\textbf{Solution:} In the right-angled $\\triangle ABC$, by the Pythagorean theorem, we have $BC=\\sqrt{AB^{2}-AC^{2}}=\\sqrt{10^{2}-8^{2}}=6$, \\\\\n$\\therefore \\tan B=\\frac{AC}{BC}=\\frac{8}{6}=\\boxed{\\frac{4}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322890": { -"question": "As shown in the figure, fold the rectangular paper ABCD in the manner shown, so that vertex C falls at the position of $C^{\\prime}$. If $AB = 4$ and $DE = 8$, what is the value of $\\sin\\angle C^{\\prime}ED$?", -"image_file_name": "7058593", -"image": [ -"math/51322890_220.png" -], -"solution": "\\textbf{Solution:} Given that ABCD is a rectangle,\\\\\nthus CD=AB=4, and $\\angle$C$=90^\\circ$,\\\\\nby the properties of paper folding, we have C$^{\\prime }$D=CD=4, $\\angle$C$^{\\prime }$=$\\angle$C$=90^\\circ$,\\\\\ntherefore, $\\sin\\angle {C}^{\\prime }ED=\\frac{{C}^{\\prime }D}{ED}=\\frac{4}{8}=\\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51322892": { -"question": "As shown in the figure, a village plans to plant trees on a hillside with a slope angle of $ \\alpha $. It is required that the horizontal distance between two adjacent trees be $m$ (m). What is the distance AB between these two trees on the slope?", -"image_file_name": "7058593", -"image": [ -"math/51322892_232.png" -], -"solution": "\\textbf{Solution:} From the given information, we have $\\cos\\alpha =\\frac{m}{AB}$,\\\\\nthus $AB=\\frac{m}{\\cos\\alpha}=\\boxed{\\frac{m}{\\cos\\alpha}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322352": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle ABC=30^\\circ$, and D is the midpoint of AC, then what is the value of $\\tan \\angle DBC$?", -"image_file_name": "7058593", -"image": [ -"math/51322352_241.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, $\\angle C=90^\\circ$, and $\\angle ABC=30^\\circ$,\\\\\nhence $\\tan\\angle ABC=\\frac{AC}{BC}=\\tan30^\\circ=\\frac{\\sqrt{3}}{3}$. If we let $AC=\\sqrt{3}a$, then $BC=3a$,\\\\\nsince D is the midpoint of AC,\\\\\nthus $DC=\\frac{1}{2}AC=\\frac{\\sqrt{3}}{2}a$,\\\\\ntherefore $\\tan\\angle DBC=\\frac{DC}{BC}=\\frac{\\frac{\\sqrt{3}}{2}a}{3a}=\\boxed{\\frac{\\sqrt{3}}{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322348": { -"question": "As shown in the figure, in $\\triangle ABC$ where $\\angle C=90^\\circ$, $BC=5$, and $AC=12$, what is the value of $\\tan B$?", -"image_file_name": "7058593", -"image": [ -"math/51322348_250.png" -], -"solution": "Solution: In the right triangle $\\triangle ABC$, $\\angle C=90^\\circ$, $BC=5$, and $AC=12$, \\\\\nthus $\\tan B=\\frac{AC}{BC}=\\boxed{\\frac{12}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322489": { -"question": "In the $8\\times 8$ grid shown in the figure, where the side length of each small square is $1$, and points $A$, $B$, $C$, and $D$ are all on the grid points. If $AB$ and $CD$ intersect at point $E$, what is the value of the tangent of $\\angle AED$?", -"image_file_name": "7058593", -"image": [ -"math/51322489_267.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, select the lattice point K, and draw lines AK and BK.\\\\\nObserving the figure, it is clear that $AK \\perp BK$, $BK=2AK$, and $BK \\parallel CD$,\\\\\n$\\therefore \\angle AED=\\angle ABK$,\\\\\n$\\therefore \\tan \\angle AED=\\tan \\angle ABK= \\frac{AK}{BK}=\\boxed{\\frac{1}{2}}$", -"solution_image": [ -"solution_images/51322489_260.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322768": { -"question": "As shown in the diagram, in the sector $AOB$, $\\angle AOB=90^\\circ$, taking point A as the center, and the length of OA as the radius, let $\\overset{\\frown}{OC}$ intersect $\\overset{\\frown}{AB}$ at point C. If $OA=2$, what is the area of the shaded region?", -"image_file_name": "7058593", -"image": [ -"math/51322768_272.png" -], -"solution": "\\textbf{Solution:} Connect OC, AC, and construct CD $\\perp$ OA at D,\\\\\n$\\because$OA = OC = AC,\\\\\n$\\therefore$ $\\triangle$AOC is an equilateral triangle,\\\\\n$\\therefore$ $\\angle$OAC = $60^\\circ$,\\\\\n$\\because$ CD $\\perp$ OA, $\\angle$CDO = $90^\\circ$, OD = AD = $\\frac{1}{2}OA = 1$,\\\\\n$\\therefore$ CD = OD$\\times\\tan60^\\circ = 1 \\times \\sqrt{3} = \\sqrt{3}$,\\\\\n$S\\triangle$OAC = $\\frac{1}{2}OA \\cdot CD = \\frac{1}{2} \\times 2 \\times \\sqrt{3} = \\sqrt{3}$,\\\\\n$\\therefore$ $\\angle$BOC = $30^\\circ$,\\\\\n$S_{\\text{sector } OBC} = \\frac{30\\pi \\times 2^2}{360} = \\frac{1}{3}\\pi$,\\\\\n$S_{\\text{sector } OAC} = \\frac{60\\pi \\times 2^2}{360} = \\frac{2}{3}\\pi$,\\\\\nthus, the area of the shaded part equals $\\frac{1}{3}\\pi - (\\frac{2}{3}\\pi - \\sqrt{3}) = \\boxed{\\sqrt{3} - \\frac{1}{3}\\pi}$.", -"solution_image": [ -"solution_images/51322768_270.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322798": { -"question": "As shown in the figure, both $\\triangle ABC$ and $\\triangle PQR$ are equilateral triangles, and $AD=BE=CF=\\frac{1}{4}AB$. When $\\angle AFR=\\angle BDP=\\angle CEQ=30^\\circ$, the area of $\\triangle PQR$ is $\\sqrt{3}$. What is the side length of $\\triangle ABC$?", -"image_file_name": "7058593", -"image": [ -"math/51322798_287.png" -], -"solution": "\\textbf{Solution:} As illustrated in the figure, extend FP to intersect AB at point O,\\\\\nsince $\\triangle PQR$ is an equilateral triangle,\\\\\nit follows that $\\angle QPR=60^\\circ$\\\\\nsince $\\angle BDP=30^\\circ$\\\\\nit follows that $\\angle DOP=90^\\circ$\\\\\nLet $AD=BE=CF=a(a>0)$\\\\\ntherefore, $AB=4a$, $AF=3a$\\\\\nsince $\\angle AFP=30^\\circ$\\\\\nit follows that $AO=\\frac{1}{2}AF=\\frac{3}{2}a$, $OF=\\sqrt{AF^{2}-AO^{2}}=\\frac{3\\sqrt{3}}{2}a$,\\\\\nthus $DO=AO-AD=\\frac{3}{2}a-a=\\frac{1}{2}a$\\\\\nsince $\\angle BDP=30^\\circ$\\\\\nit follows that $DP=\\frac{OD}{\\cos 30^\\circ}=\\frac{\\frac{1}{2}a}{\\frac{\\sqrt{3}}{2}}=\\frac{\\sqrt{3}}{3}a$\\\\\ntherefore $OP=\\frac{1}{2}DP=\\frac{1}{2}\\times \\frac{\\sqrt{3}}{3}a=\\frac{\\sqrt{3}}{6}a$\\\\\ntherefore $PR=OF-OP-FR=\\frac{3\\sqrt{3}}{2}a-\\frac{\\sqrt{3}}{6}a-\\frac{\\sqrt{3}}{3}a=\\sqrt{3}a$\\\\\nsince the area of the equilateral triangle $\\triangle PQR$ is $\\sqrt{3}$,\\\\\nit follows that $\\frac{1}{2}\\times PR\\times \\frac{\\sqrt{3}}{2}PR=\\frac{1}{2}\\times \\sqrt{3}a\\times \\frac{\\sqrt{3}}{2}\\times \\sqrt{3}a=\\frac{3\\sqrt{3}}{4}a^{2}=\\sqrt{3}$\\\\\nthus $a^{2}=\\frac{4}{3}$\\\\\ntherefore $a=\\frac{2\\sqrt{3}}{3}$\\\\\ntherefore $AB=4a=4\\times \\frac{2\\sqrt{3}}{3}=\\boxed{\\frac{8\\sqrt{3}}{3}}$", -"solution_image": [ -"solution_images/51322798_280.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51179563": { -"question": "As shown in the figure, $\\odot O$ is a circle centered at the coordinate origin $O$ with a radius of $4\\sqrt{2}$. The coordinate of point $P$ is $(2, 2)$, and the chord $AB$ passes through point $P$. What is the minimum area of the shaded region in the figure?", -"image_file_name": "7058593", -"image": [ -"math/51179563_297.png" -], -"solution": "\\textbf{Solution:} From the given conditions, when OP$\\perp$AB, the area of the shaded region is minimized. \\\\\nSince P(2,2), \\\\\nthus OP=2$\\sqrt{2}$, \\\\\nSince OA=OB=4$\\sqrt{2}$, \\\\\nthus PA=PB=2$\\sqrt{6}$, \\\\\nthus $\\tan\\angle POB=\\frac{PB}{PO}=\\sqrt{3}$, \\\\\nthus $\\angle AOP=\\angle BOP=60^\\circ$, \\\\\nthus $\\angle AOB=120^\\circ$, \\\\\nthus the area of the shaded region $S_{\\text{shaded}}=S_{\\text{sector} AOB}-S_{\\triangle AOB}=\\frac{120\\times \\pi \\times {\\left(4\\sqrt{2}\\right)}^{2}}{360}-\\frac{1}{2}\\times 4\\sqrt{6}\\times 2\\sqrt{2}=\\boxed{\\frac{32\\pi }{3}-8\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51299748": { -"question": "In right triangle $ABC$, where $\\angle C=90^\\circ$, if $AC=6$ and $BC=8$, then what is the value of $\\cos A$?", -"image_file_name": "7058593", -"image": [ -"math/51299748_304.png" -], -"solution": "\\textbf{Solution: }Since $\\angle C=90^\\circ$,\\\\\nit follows that AB=$ \\sqrt{AC^{2}+BC^{2}}=10$,\\\\\ntherefore, $\\cos A= \\frac{AC}{AB}=\\frac{6}{10}=\\boxed{\\frac{3}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51298723": { -"question": "As shown in the figure, $A$, $B$, $C$ are the vertices of small squares, and the side length of each small square is $1$. What is the value of $\\sin\\angle ABC$?", -"image_file_name": "7058593", -"image": [ -"math/51298723_310.png" -], -"solution": "\\textbf{Solution:} Connect AC, \\\\\nAC $= \\sqrt{5}$, BC $= \\sqrt{5}$, AB $= \\sqrt{10}$, \\\\\n$\\therefore \\triangle ABC$ is a right-angled triangle, \\\\\n$\\therefore \\sin\\angle ABC = \\frac{AC}{AB} = \\frac{\\sqrt{5}}{\\sqrt{10}} = \\boxed{\\frac{\\sqrt{2}}{2}}$;", -"solution_image": [ -"solution_images/51298723_310.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51284005": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=4$, and $\\tan A=\\frac{3}{4}$. A circle with point $C$ as the center and the length of $CB$ as the radius intersects $AB$ at point $D$. What is the length of $AD$?", -"image_file_name": "7058593", -"image": [ -"math/51284005_324.png" -], -"solution": "\\textbf{Solution:} Connect CD, and through point C draw $CE \\perp AB$ at point E,\\\\\nWithin $\\triangle ABC$, $\\tan \\angle A = \\frac{BC}{AC} = \\frac{3}{4}$, solve it to get: $BC=3$,\\\\\n$\\therefore AB = \\sqrt{AC^2 + BC^2} = \\sqrt{3^2 + 4^2} = 5$,\\\\\n$\\because S_{\\triangle ABC} = \\frac{1}{2}AC \\cdot BC = \\frac{1}{2}AB \\cdot CE$,\\\\\n$\\therefore 3 \\times 4 = 5CE$, solve it to get: $CE = \\frac{12}{5}$,\\\\\n$\\therefore BE = \\sqrt{BC^2 - CE^2} = \\sqrt{3^2 - \\left(\\frac{12}{5}\\right)^2} = \\frac{9}{5}$,\\\\\n$\\therefore BD = 2BE = \\frac{18}{5}$,\\\\\n$\\therefore AD = AB - BD = 5 - \\frac{18}{5} = \\boxed{\\frac{7}{5}}$.", -"solution_image": [ -"solution_images/51284005_320.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51265245": { -"question": "As shown in the figure, it is known that $\\odot O$ is the circumcircle of $\\triangle ABC$, $AD$ is the diameter of $\\odot O$, and $CD$ is connected. If $AD=3$, $AC=2$, then what is the value of $\\cos B$?", -"image_file_name": "7058593", -"image": [ -"math/51265245_338.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ is the diameter of the circle $\\odot O$,\\\\\nthus $\\angle ACD=90^\\circ$,\\\\\ntherefore, by the Pythagorean theorem, $CD=\\sqrt{AD^{2}-AC^{2}}=\\sqrt{3^{2}-2^{2}}=\\sqrt{5}$,\\\\\nsince $\\angle B=\\angle D$,\\\\\nthus, $\\cos B=\\cos D=\\frac{CD}{AD}=\\frac{\\sqrt{5}}{3}=\\boxed{\\frac{\\sqrt{5}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043322": { -"question": "As shown in the figure, $ABCD$ is a square with side length $1$, and $\\triangle BPC$ is an equilateral triangle. Then,what is the area of $\\triangle BPD$.", -"image_file_name": "7058344", -"image": [ -"math/53043322_04.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, \\\\\ndraw PE $\\perp$ CD and PF $\\perp$ BC, \\\\\nsince the side length of square ABCD is 1, and $\\triangle BPC$ is an equilateral triangle, \\\\\ntherefore $\\angle PBC=\\angle PCB=60^\\circ$, PB=PC=BC=CD=1, \\\\\ntherefore $\\angle PCE=30^\\circ$, \\\\\nthus PF=PB$\\cdot \\sin60^\\circ=1\\times \\frac{\\sqrt{3}}{2}=\\frac{\\sqrt{3}}{2}$, PE=FC=$\\frac{1}{2}$, \\\\\n$S_{\\triangle BPD}=S_{\\text{quadrilateral} PBCD}-S_{\\triangle BCD}=S_{\\triangle PBC}+S_{\\triangle PDC}-S_{\\triangle BCD}$ \\\\\n=$\\frac{1}{2}\\times\\frac{\\sqrt{3}}{2}\\times1+\\frac{1}{2}\\times\\frac{1}{2}\\times1-\\frac{1}{2}\\times1\\times1=\\boxed{\\frac{\\sqrt{3}-1}{4}}$;", -"solution_image": [ -"solution_images/53043322_00.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53110857": { -"question": "As shown in the figure, in $\\triangle ABC$, it is known that $\\angle C = 90^\\circ$, $AC = 1$, and $BC = 2$, then what is the value of $\\sin B$?", -"image_file_name": "7058344", -"image": [ -"math/53110857_15.png" -], -"solution": "\\textbf{Solution:} Since $AB=\\sqrt{AC^{2}+BC^{2}}=\\sqrt{5}$,\\\\\ntherefore $\\sin B=\\frac{AC}{AB}=\\frac{1}{\\sqrt{5}}=\\frac{\\sqrt{5}}{5}=\\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043249": { -"question": "As shown in the figure, within a grid composed of small squares with a side length of 1, points A, B, and C are located on the grid points, and point D is on the circumcircle of $ \\triangle ABC$. What is the value of $\\sin\\angle ADC$?", -"image_file_name": "7058344", -"image": [ -"math/53043249_22.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\overset{\\frown}{AC}=\\overset{\\frown}{AC}$,\\\\\n$\\therefore \\angle ABC=\\angle ADC$,\\\\\n$\\because AB^{2}=3^{2}+1^{2}=10, AC^{2}=3^{2}+1^{2}=10, BC^{2}=2^{2}+4^{2}=20$,\\\\\n$\\therefore AB^{2}+AC^{2}=BC^{2}$, which means $\\triangle ABC$ is an isosceles right triangle,\\\\\n$\\therefore \\angle ABC=\\angle ACB=\\angle ADC=45^\\circ$,\\\\\n$\\therefore \\sin\\angle ADC=\\sin45^\\circ=\\boxed{\\frac{\\sqrt{2}}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53058713": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the line $y=-2x+3$ intersects the $y$-axis at point $A$ and the $x$-axis at point $B$. Point $P$ is a moving point on segment $AB$. Perpendicular lines are drawn from $P$ to the $x$-axis and the $y$-axis, and the feet of the perpendiculars are denoted as $C$ and $D$, respectively. Connect $CD$. When $CD$ is minimized, what is the value of $PA\\cdot PB$?", -"image_file_name": "7058344", -"image": [ -"math/53058713_316.png" -], -"solution": "\\textbf{Solution:} Since $PC\\perp OB$, $PD\\perp OA$, and $\\angle DOB=90^\\circ$, \\\\\nit follows that quadrilateral $OCPD$ is a rectangle. \\\\\nBy connecting $OP$, we have $CD=OP$. \\\\\nTherefore, when $OP\\perp AB$, $OP$ is at its shortest, meaning $CD$ is also at its shortest. \\\\\nSince $y=-2x+3$, \\\\\nwhen $x=0$, $y=3$, and when $y=0$, $x=\\frac{3}{2}$. \\\\\nThus, $A(0,3)$ and $B\\left(\\frac{3}{2},0\\right)$, \\\\\nwhich means $OA=3$ and $OB=\\frac{3}{2}$, \\\\\nand so $AB=\\sqrt{OA^2+OB^2}=\\sqrt{3^2+\\left(\\frac{3}{2}\\right)^2}=\\frac{3}{2}\\sqrt{5}$. \\\\\n$\\tan\\angle OBA=\\frac{OP}{PB}=\\frac{OA}{OB}=2$, \\\\\nLetting $PB=x$, then $PO=2x$. \\\\\nTherefore, $x^2+4x^2=\\left(\\frac{3}{2}\\right)^2$, \\\\\nSolving this, we find $x=\\frac{3}{10}\\sqrt{5}$, \\\\\nHence, $PB=\\frac{3}{10}\\sqrt{5}$ and $PA=AB-PB=\\frac{3\\sqrt{5}}{2}-\\frac{3\\sqrt{5}}{10}=\\frac{6}{5}\\sqrt{5}$, \\\\\nTherefore, $PA\\cdot PB=\\frac{3\\sqrt{5}}{10}\\times \\frac{6\\sqrt{5}}{5}=\\boxed{\\frac{9}{5}}$;", -"solution_image": [ -"solution_images/53058713_35.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043745": { -"question": "As shown in the figure, the roof of the workshop is an isosceles triangular (in the shape of a chevron) steel frame with the central column $AD$ (where $D$ is the midpoint of the base) measuring 10 meters in length, and $\\angle B = 36^\\circ$. What is the length of the span $BC$?", -"image_file_name": "7058344", -"image": [ -"math/53043745_43.png" -], -"solution": "\\textbf{Solution:} Given that: $AB=AC$, $BD=CD$, $AD=10$ meters, \\\\\n$\\therefore$ $AD\\perp BC$, \\\\\n$\\because$ $\\angle B=36^\\circ$, \\\\\n$\\therefore$ $BD=\\frac{AD}{\\tan B}=\\frac{10}{\\tan 36^\\circ}$ meters, \\\\\n$\\therefore$ $BC=2BD=\\frac{20}{\\tan 36^\\circ}$ meters. \\\\\nHence, the answer is: $BC=\\boxed{\\frac{20}{\\tan 36^\\circ}}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043749": { -"question": "As shown in the figure, it is known that the three vertices of $\\triangle ABC$ are all on the grid points of a square. What is the value of $\\cos A$?", -"image_file_name": "7058344", -"image": [ -"math/53043749_52.png" -], -"solution": "\\textbf{Solution:} As shown in the figure: Draw $BD\\perp AC$ at D,\\\\\nBy the Pythagorean theorem,\\\\\n$AB=\\sqrt{3^2+3^2}=3\\sqrt{2}$, $AC=\\sqrt{3^2+1^2}=\\sqrt{10}$,\\\\\n$\\because$ ${S}_{\\triangle ABC}=\\frac{1}{2}AB\\cdot CD=\\frac{1}{2}BC\\times 3$, thus $CD=\\frac{3\\times 2}{3\\sqrt{2}}=\\sqrt{2}$,\\\\\nIn triangle $\\triangle ABD$, $\\angle ADC=90^\\circ$, $AC=\\sqrt{10}$, $CD=\\sqrt{2}$,\\\\\n$AD=\\sqrt{AC^2-CD^2}=\\sqrt{(\\sqrt{10})^2-(\\sqrt{2})^2}=2\\sqrt{2}$,\\\\\n$\\therefore$ $\\cos A=\\frac{AD}{AC}=\\frac{2\\sqrt{2}}{\\sqrt{10}}=\\boxed{\\frac{2\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/53043749_51.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53110835": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, CD is the altitude from C to the hypotenuse AB, $BC=\\sqrt{7}$, and $AC=3$. What is the value of $\\sin\\angle ACD$?", -"image_file_name": "7058344", -"image": [ -"math/53110835_61.png" -], -"solution": "\\textbf{Solution:} Given $\\triangle ABC$, where $\\angle ACB = 90^\\circ$,\\\\\n$\\therefore AB = \\sqrt{3^2 + (\\sqrt{7})^2} = 4$,\\\\\n$\\angle ACD + \\angle BCD = 90^\\circ$,\\\\\n$\\because CD$ is the height from the hypotenuse $AB$,\\\\\n$\\therefore CD \\perp AB$,\\\\\n$\\therefore \\angle B + \\angle BCD = 90^\\circ$,\\\\\n$\\therefore \\angle ACD = \\angle B$,\\\\\n$\\therefore \\sin \\angle ACD = \\sin \\angle B = \\frac{AC}{AB} = \\boxed{\\frac{3}{4}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53042711": { -"question": "As shown in the figure, AB represents a ski jump track. The angle of elevation of point B from point A is measured to be $35^\\circ$. The distance between the bottom point C and the top point B is 50 meters. What is the length of the track AB? Meters.", -"image_file_name": "7058344", -"image": [ -"math/53042711_70.png" -], -"solution": "\\textbf{Solution:} In the right triangle $ABC$,\\\\\nsince $\\angle A=35^\\circ$ and $BC=50$ meters,\\\\\nit follows that $\\sin 35^\\circ = \\frac{BC}{AB}$,\\\\\ntherefore, $AB = \\frac{50}{\\sin 35^\\circ}$ (meters).\\\\\nThus, $AB = \\boxed{\\frac{50}{\\sin 35^\\circ}}$ (meters).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50849413": { -"question": "Figure 1 shows a rectangular material $ABCD$, which is divided into three pieces, $\\angle AEB=30^\\circ$, and $GF\\perp AD$. These three pieces are seamlessly and non-overlappingly assembled into the shape of Figure 2, which is exactly an axisymmetric figure. Therefore, $\\frac{AB}{BC}=($ $)$", -"image_file_name": "7058344", -"image": [ -"math/50849413_115.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, $\\because$ Figure 2 is an axisymmetric figure,\\\\\n$\\therefore BM=BE$, $MN=TE$,\\\\\nLet $AB=m$, then $BE=\\sqrt{3}m$, $AM=FG=DF=(\\sqrt{3}-1)m$,\\\\\n$\\because AF=\\sqrt{3}FG$,\\\\\n$\\therefore AF=(3-\\sqrt{3})m$,\\\\\n$\\therefore AD=BC=DF+AF=2m$,\\\\\n$\\therefore \\frac{AB}{BC}=\\frac{m}{2m}=\\boxed{\\frac{1}{2}}$,", -"solution_image": [ -"solution_images/50849413_111.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53065816": { -"question": "In right triangle $ABC$, $\\angle C = 90^\\circ$, and $AB = 10$. If a circle centered at point $C$ with radius $CB$ exactly passes through the midpoint $D$ of $AB$, what is the length of $AC$?", -"image_file_name": "7058344", -"image": [ -"math/53065816_120.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect CD,\\\\\n$\\because$ $\\angle C=90^\\circ$ and D is the midpoint of AB,\\\\\n$\\therefore$ CD=DA=DB.\\\\\nAnd CD=CB,\\\\\n$\\therefore$ CD=CB=DB, thus $\\triangle CDB$ is an equilateral triangle.\\\\\n$\\therefore$ $\\angle B=60^\\circ$.\\\\\n$\\because$ AB=10,\\\\\n$\\therefore$ $AC=AB\\cdot \\sin\\angle B=10\\times \\frac{\\sqrt{3}}{2}=\\boxed{5\\sqrt{3}}$.", -"solution_image": [ -"solution_images/53065816_120.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55497824": { -"question": "The ancient Chinese mathematician Zhao Shuang, while annotating the \"Zhou Bi Suan Jing\", assembled 4 congruent right-angled triangles into a square (as illustrated), and utilized it to prove the Pythagorean theorem. This illustration is referred to as the \"Gougu Diagram\". If the area of the small square within the \"Gougu Diagram\" is 1, and the area of each right-angled triangle is $6$, and $\\alpha$ is one of the acute angles in the right-angled triangle, then what is the value of $\\tan \\alpha$?", -"image_file_name": "7058344", -"image": [ -"math/55497824_132.png" -], -"solution": "\\textbf{Solution:} Let the length of the shorter leg in the right-angled triangle be $x$, then the longer leg is $x+1$. $\\because$ The area of each right-angled triangle is 6. $\\therefore$ $\\frac{1}{2}x(x+1)=6$\\\\\nSolving gives $x_{1}=3$, $x_{2}=-4$ (discard). $\\therefore$ The shorter leg is 3, the longer leg is 4. $\\therefore$ $\\tan\\alpha = \\frac{4}{3}$\\\\\nThus, the answer is: $\\tan\\alpha = \\boxed{\\frac{4}{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53080562": { -"question": "As shown in the figure, in a square grid, it is known that the three vertices of $\\triangle ABC$ are all on the grid points. What is the value of the tangent of $\\angle ACB$?", -"image_file_name": "7058344", -"image": [ -"math/53080562_142.png" -], -"solution": "\\textbf{Solution:} Extend CB to intersect the grid at D and connect AD as shown in the figure:\\\\\nThen $\\angle ADC = 45^\\circ + 45^\\circ = 90^\\circ$,\\\\\n$\\because AD = \\sqrt{1^2 + 1^2} = \\sqrt{2}$, $CD = \\sqrt{2^2 + 2^2} = 2\\sqrt{2}$,\\\\\n$\\therefore$ the tangent of $\\angle ACB = \\frac{AD}{CD} = \\frac{\\sqrt{2}}{2\\sqrt{2}} = \\boxed{\\frac{1}{2}}$;", -"solution_image": [ -"solution_images/53080562_140.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53065838": { -"question": "As shown in the figure, in $\\triangle ABC$, $AC=4$, $BC=3$, and $\\angle C=90^\\circ$, then what is the value of $\\sin A$?", -"image_file_name": "7058344", -"image": [ -"math/53065838_154.png" -], -"solution": "\\textbf{Solution:} Since $AC=4$, $BC=3$, and $\\angle C=90^\\circ$, \\\\\ntherefore $AB=\\sqrt{AC^{2}+BC^{2}}=\\sqrt{3^{2}+4^{2}}=5$, \\\\\nhence $\\sin A=\\frac{BC}{AB}=\\boxed{\\frac{3}{5}}$;", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55574667": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=c$, $AC=b$, $BC=a$, what is the value of $\\tan A$?", -"image_file_name": "7058344", -"image": [ -"math/55574667_166.png" -], -"solution": "\\textbf{Solution:} Since in the right triangle $ABC$, $\\angle C=90^\\circ$, $AC=b$, $BC=a$, \\\\\ntherefore $\\tan A = \\frac{a}{b}$, thus $\\tan A = \\boxed{\\frac{a}{b}}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53066051": { -"question": "As shown in the figure, a ladder $AB$ rests against a wall that is perpendicular to the ground level. The distance $AC$, which is the gap between the base of the ladder $A$ and the wall, is 6 meters. If the angle between the ladder and the ground is $\\alpha$, what is the length of the ladder $AB$?", -"image_file_name": "7058344", -"image": [ -"math/53066051_173.png" -], -"solution": "\\textbf{Solution:} Given the problem, we have $\\cos\\alpha =\\frac{AC}{AB}$, where $AC=6$ meters.\\\\\nTherefore, $AB=\\frac{6}{\\cos\\alpha}$ meters,\\\\\nSo, the answer is: $AB=\\boxed{\\frac{6}{\\cos\\alpha}}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53019659": { -"question": "As shown in the figure, with point O as the center, draw an arc with any length as the radius, which intersects the ray $OA$ at point B. Then, with point B as the center and the length of $BO$ as the radius, draw another arc. If the two arcs intersect at point C, draw ray $OC$. What is the value of $\\tan\\angle AOC$?", -"image_file_name": "7058344", -"image": [ -"math/53019659_314.png" -], -"solution": "\\textbf{Solution:} \nConnect $BC$, \\\\\ngiven the problem, we have: $OB=OC=BC$, \\\\\nthus, $\\triangle OBC$ is an equilateral triangle, \\\\\nhence, $\\tan\\angle AOC=\\tan60^\\circ=\\boxed{\\sqrt{3}}$.", -"solution_image": [ -"solution_images/53019659_311.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53019943": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $D$ is the midpoint of $BC$. If $AB=8$ and $AD=5$, what is the value of $\\sin B$?", -"image_file_name": "7058344", -"image": [ -"math/53019943_326.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle BAC=90^\\circ$, and D is the midpoint of $BC$,\\\\\nit follows that $AD$ is the median to the hypotenuse $BC$ of the right-angled triangle $ABC$,\\\\\nhence, $BC=2AD=2\\times 5=10$,\\\\\ngiven $AB=8$,\\\\\nthen, $AC=\\sqrt{BC^{2}-AB^{2}}=\\sqrt{10^{2}-8^{2}}=6$,\\\\\nthus, $\\sin B=\\frac{AC}{BC}=\\frac{6}{10}=\\boxed{\\frac{3}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55594993": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$. Extend $AB$ to point $D$ such that $BD=AB$. Connect $CD$. If $\\tan\\angle BCD=\\frac{1}{3}$, what is the value of $\\frac{BC}{AC}$?", -"image_file_name": "7058344", -"image": [ -"math/55594993_338.png" -], -"solution": "\\textbf{Solution:} Draw $BE\\parallel AC$ through point B, intersecting $CD$ at E, as shown in the diagram:\\\\\n$\\therefore$ $\\angle ACB=\\angle CBE=90^\\circ$,\\\\\n$\\because$ $\\tan\\angle BCD=\\frac{1}{3}$,\\\\\n$\\therefore$ in $\\triangle BCE$, $\\frac{BE}{BC}=\\frac{1}{3}$,\\\\\n$\\therefore$ $BC=3BE$,\\\\\n$\\because$ $BE\\parallel AC$,\\\\\n$\\therefore$ $\\triangle DBE\\sim \\triangle DAC$,\\\\\n$\\therefore$ $\\frac{BE}{AC}=\\frac{BD}{AD}$,\\\\\n$\\because$ $BD=AB$,\\\\\n$\\therefore$ $\\frac{BE}{AC}=\\frac{BD}{AD}=\\frac{1}{2}$,\\\\\n$\\therefore$ $AC=2BE$,\\\\\n$\\therefore$ $\\frac{BC}{AC}=\\frac{3BE}{2BE}=\\boxed{\\frac{3}{2}}$,", -"solution_image": [ -"solution_images/55594993_332.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55574671": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are all lattice points in a square grid. What is the value of $\\cos\\angle ABC$?", -"image_file_name": "7058344", -"image": [ -"math/55574671_342.png" -], -"solution": "\\textbf{Solution:} Let $\\triangle ABE$ be a right-angled triangle, where $CE=2, BE=4$, \\\\\n$\\therefore$ $BC= \\sqrt{CE^2+BE^2} = \\sqrt{2^2+4^2} = 2\\sqrt{5}$, \\\\\n$\\therefore$ $\\cos\\angle ABC = \\frac{BE}{BC} = \\frac{4}{2\\sqrt{5}} = \\boxed{\\frac{2\\sqrt{5}}{5}}$", -"solution_image": [ -"solution_images/55574671_341.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52977394": { -"question": "In the diagram, it is known that in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\tan A= \\frac{1}{2}$, D is a point on AC, and $\\angle CBD=\\angle A$. Then, what is the value of $\\cos \\angle CDB$?", -"image_file_name": "7058344", -"image": [ -"math/52977394_351.png" -], -"solution": "\\[\n\\text{Solution:} \\quad \\because \\angle CBD=\\angle A,\n\\]\n\\[\n\\therefore \\tan\\angle CBD=\\tan A=\\frac{1}{2},\n\\]\n\\[\n\\text{Let } CD=a,\n\\]\n\\[\n\\therefore \\tan\\angle CBD=\\frac{CD}{BC}=\\frac{1}{2},\n\\]\n\\[\n\\therefore BC=2a,\n\\]\n\\[\n\\text{In } \\triangle CBD,\n\\]\n\\[\nBD=\\sqrt{CD^2+BC^2}=\\sqrt{a^2+(2a)^2}=\\sqrt{5}a,\n\\]\n\\[\n\\therefore \\cos\\angle CDB=\\frac{CD}{BD}=\\frac{a}{\\sqrt{5}a}=\\boxed{\\frac{\\sqrt{5}}{5}}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043774": { -"question": "As shown in the figure, within a $4\\times4$ square grid, points A, B, and C are grid intersections, with $AD\\perp BC$ and the foot of the perpendicular being D. What is the value of $\\sin\\angle BAD$?", -"image_file_name": "7058344", -"image": [ -"math/53043774_460.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AC. \\\\\nIn $\\triangle BEC$, $BC=\\sqrt{BE^{2} + CE^{2}} = \\sqrt{4^{2} + 3^{2}} = 5$, \\\\\nsince $AD \\perp BC$, \\\\\nthus $\\frac{1}{2} \\times BC \\times AD = 8$, \\\\\nwhich means $\\frac{1}{2} \\times 5 \\times AD = 8$, \\\\\nsolving this we get $AD = \\frac{16}{5}$, \\\\\nin $\\triangle ADB$, $BD = \\sqrt{AB^{2} - AD^{2}} = \\frac{12}{5}$, \\\\\ntherefore $\\sin\\angle BAD = \\frac{BD}{AB} = \\frac{\\frac{12}{5}}{4} = \\boxed{\\frac{3}{5}}$", -"solution_image": [ -"solution_images/53043774_460.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53066224": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $AB=3$, $AC=4$. Point $D$ is the midpoint of $BC$. $\\triangle ABD$ is folded along $AD$ to obtain $\\triangle AED$. Connect $CE$. What is the distance from point $E$ to $BC$?", -"image_file_name": "7058344", -"image": [ -"math/53066224_4712.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw line $EB$, and construct $EH\\perp BC$ at point $H$, \\\\\nsince $\\angle BAC=90^\\circ$, $AB=3$, $AC=4$,\\\\\nthen $BC=\\sqrt{AB^2+AC^2}=\\sqrt{9+16}=5$,\\\\\nsince point $D$ is the midpoint of $BC$,\\\\\nthus $AD=BD=CD=2.5$,\\\\\nsince by folding $\\triangle ABD$ along $AD$ we get $\\triangle AED$,\\\\\nthus $AE=AB=3$, $BD=DE=CD$,\\\\\nthus $\\angle CEB=90^\\circ$, $AD$ perpendicularly bisects $BE$,\\\\\nthus $EO=BO$,\\\\\nsince $S_{\\triangle ADB}=\\frac{1}{2}S_{\\triangle ABC}=\\frac{1}{2}\\times \\frac{1}{2}\\times 3\\times 4=3$,\\\\\nthus $\\frac{1}{2}\\times \\frac{5}{2}\\times BO=3$,\\\\\nthus $BO=\\frac{12}{5}$,\\\\\nthus $BE=\\frac{24}{5}$,\\\\\nthus $DO=\\sqrt{BD^2-BO^2}=\\sqrt{\\frac{25}{4}-\\frac{144}{25}}=\\frac{7}{10}$,\\\\\nsince $\\sin\\angle DBO=\\frac{DO}{DB}=\\frac{EH}{BE}=\\frac{\\frac{7}{10}}{\\frac{5}{2}}=\\frac{EH}{\\frac{24}{5}}$,\\\\\nthus $EH=\\boxed{\\frac{168}{125}}$.", -"solution_image": [ -"solution_images/53066224_474.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53043776": { -"question": "As shown in the diagram, the angle between the two legs $OA$ and $OB$ of the compass is $ \\angle AOB = \\alpha$, with $OA = OB = 10$. What is the distance $AB$ between the two legs?", -"image_file_name": "7058344", -"image": [ -"math/53043776_484.png" -], -"solution": "\\textbf{Solution:} Let $OC \\perp AB$ with the foot of the perpendicular at C, \\\\\n$\\because OA=OB=10$, $OC \\perp AB$, \\\\\n$\\therefore \\angle AOC=\\frac{1}{2}\\angle AOB=\\frac{\\alpha}{2}$, $AC=\\frac{1}{2}AB$, \\\\\nIn $\\triangle AOC$, $AC=AO\\cdot \\sin\\frac{\\alpha}{2}=10\\sin\\frac{\\alpha}{2}$, \\\\\n$\\therefore AB=2AC=20\\sin\\frac{\\alpha}{2}$, \\\\\nThus, $AB=\\boxed{20\\sin\\frac{\\alpha}{2}}$", -"solution_image": [ -"solution_images/53043776_481.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043139": { -"question": "As shown in the figure, $O$ is the midpoint of the seesaw $AB$. The support column $OC$ is perpendicular to the ground $MN$, with the foot of the perpendicular being point $C$. When one end $B$ of the seesaw touches the ground, the angle between seesaw $AB$ and the ground $MN$ is $20^\\circ$. Given that $AB=1.6m$, what is the length of $OC$?", -"image_file_name": "7058344", -"image": [ -"math/53043139_490.png" -], -"solution": "\\textbf{Solution:} Since O is the midpoint of AB, and AB=1.6,\\\\\nit follows that OB=$\\frac{1}{2}$AB=0.8,\\\\\nIn $\\triangle OCB$, $\\sin\\angle OBC=\\frac{OC}{OB}$,\\\\\nTherefore, OC=OB$\\cdot\\sin\\angle OBC=0.8\\sin20^\\circ=\\boxed{0.8\\sin20^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53101881": { -"question": "Fold the rectangular paper ABCD as shown in the figure, and you get the rhombus AECF exactly. If \\(AD = \\sqrt{3}\\), what is the area of the rhombus AECF?", -"image_file_name": "7058344", -"image": [ -"math/53101881_551.png" -], -"solution": "\\textbf{Solution:} We know from the properties of folding that $\\angle DAF = \\angle OAF$ and $OA = AD = \\sqrt{3}$,\\\\\nIn rhombus AECF, $\\angle OAF = \\angle OAE$,\\\\\n$\\therefore \\angle OAE = \\frac{1}{3} \\times 90^\\circ = 30^\\circ$,\\\\\n$\\therefore AE = \\frac{AO}{\\cos 30^\\circ} = \\frac{\\sqrt{3}}{\\frac{\\sqrt{3}}{2}} = 2$,\\\\\n$\\therefore$ the area of rhombus AECF $= AE \\cdot AD = 2\\sqrt{3}$.\\\\\nThus, the answer is: \\boxed{2\\sqrt{3}}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52976996": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $BC=\\sqrt{5}$, and point D is on segment $AC$, with $BD$ connected. If $\\tan A=\\frac{1}{2}$ and $\\tan \\angle ABD=\\frac{1}{3}$, what is the length of $CD$?", -"image_file_name": "7058344", -"image": [ -"math/52976996_563.png" -], -"solution": "\\textbf{Solution:} Draw $DE \\perp AB$ at $E$ from point $D$, \\\\\n$\\because \\tan A = \\frac{1}{2}, \\tan \\angle ABD = \\frac{1}{3}$, \\\\\n$\\therefore \\frac{DE}{AE} = \\frac{1}{2}, \\frac{DE}{BE} = \\frac{1}{3}$, \\\\\n$\\therefore AE = 2DE, BE = 3DE$, \\\\\n$\\therefore AE + BE = 2DE + 3DE = 5DE = AB$, \\\\\n$\\because$ In $\\triangle ABC$, $\\angle C = 90^\\circ$, $BC = \\sqrt{5}$, $\\tan A = \\frac{1}{2}$, \\\\\n$\\therefore \\frac{BC}{AC} = \\frac{\\sqrt{5}}{AC} = \\frac{1}{2}$, \\\\\n$\\therefore AC = 2\\sqrt{5}$, \\\\\n$\\therefore AB = \\sqrt{AC^2 + BC^2} = 5$, \\\\\n$\\therefore DE = 1$, \\\\\n$\\therefore AE = 2$, \\\\\n$\\therefore AD = \\sqrt{AE^2 + DE^2} = \\sqrt{5}$, \\\\\n$\\therefore CD = AC - AD = \\boxed{\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52976996_560.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52977728": { -"question": "As shown in the figure, the archaeological team measured the angle of elevation of the top $C$ of the ancient tower $BC$ at point $A$ to be $60^\\circ$. The length of the slope $AD$ is 5 meters, with a gradient of $i=3\\colon 4$, and the length of $BD$ is 6 meters. What is the height of the ancient tower $BC$?", -"image_file_name": "7058344", -"image": [ -"math/52977728_578.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $AE\\perp BC$ with $E$ as the foot of the perpendicular, and draw $AF\\perp BD$ with $F$ as the foot of the perpendicular, then quadrilateral $AEBF$ forms a rectangle, hence $AE=FB$,\\\\\nsince the slope of the ramp $AD$ has a gradient of $i=3\\colon 4$, let $AF=3x$, $DF=4x$,\\\\\ntherefore $AD=5x$,\\\\\nsince $AD=5$, then $x=1$,\\\\\nthus, $AF=3$, $DF=4$,\\\\\nsince the length of $BD$ is $6$,\\\\\ntherefore, $AE=FB=DF+BD=4+6=10$,\\\\\nsince $\\angle CAE=60^\\circ$,\\\\\ntherefore, $CE=AE\\times \\tan\\angle CAE=10\\sqrt{3}$,\\\\\nthus, $BC=BE+CE=10\\sqrt{3}+3$,\\\\\nwhich means the height of the ancient tower $BC$ is $\\boxed{3+10\\sqrt{3}}$ meters.", -"solution_image": [ -"solution_images/52977728_574.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55589668": { -"question": "As shown in the figure, $\\triangle ABC$ and $\\triangle CDE$, with the right-angled vertices coinciding at point $C$, point $D$ on $AB$, $\\angle BAC=\\angle DEC$ and $\\sin\\angle BAC=\\frac{1}{3}$, connect $AE$. If $BD=2$, $AD=7$, then what is the length of $AE$?", -"image_file_name": "7058344", -"image": [ -"math/55589668_6611.png" -], -"solution": "\\textbf{Solution:} Given that $BD=2$, $AD=7$,\n\ntherefore $AB=AD+BD=7+2=9$, in $\\triangle ABC$, $\\sin\\angle BAC=\\frac{BC}{AB}=\\frac{1}{3}$,\n\nhence $BC=\\frac{1}{3}AB=3$,\n\nthus $AC=\\sqrt{9^2-3^2}=6\\sqrt{2}$, and in $\\triangle BCA$ and $\\triangle DCE$, $\\angle BAC=\\angle DEC$,\n\nthus $\\tan\\angle BAC=\\tan\\angle DEC$,\n\ntherefore $\\frac{BC}{AC}=\\frac{DC}{EC}$,\n\ngiven $\\angle BCA=\\angle DCE=90^\\circ$,\n\nhence $\\angle BCA-\\angle DCA=\\angle DCE-\\angle DCA$, that is, $\\angle BCD=\\angle ACE$,\n\ntherefore $\\triangle BCD \\sim \\triangle ACE$,\n\nthus $\\angle CAE=\\angle B$, $\\frac{BC}{AC}=\\frac{BD}{AE}$,\n\nhence $\\angle DAE=\\angle DAC+\\angle CAE=90^\\circ$,\n\nthus $\\frac{3}{6\\sqrt{2}}=\\frac{2}{AE}$, solving gives: $AE=\\boxed{4\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53043705": { -"question": "As shown in the figure, Alpha and Beta are two buildings, with a horizontal distance $BC = 30m$ between them. The elevation angle $\\angle EAD$ measured from point A to point D is $45^\\circ$, and the elevation angle $\\angle CBD$ measured from point B to point D is $60^\\circ$. What is the height of building Beta?", -"image_file_name": "7058344", -"image": [ -"math/53043705_676.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AF\\perp CD$ at point F. In $Rt\\triangle BCD$,\\\\\n$\\angle DBC=60^\\circ$, $BC=30m$, $\\tan\\angle DBC=\\frac{CD}{BC}$\\\\\n$\\therefore CD=BC\\cdot \\tan60^\\circ=30\\sqrt{3}m$,\\\\\nIn $Rt\\triangle ADF$, $\\angle DAF=45^\\circ$,\\\\\n$\\therefore DF=AF=BC=30m$,\\\\\n$\\therefore AB=CF=CD-DF=(30\\sqrt{3}-30)m$,\\\\\nthis means the height of building B is $\\boxed{(30\\sqrt{3}-30)m}$.", -"solution_image": [ -"solution_images/53043705_672.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043702": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are lattice points of a square grid. What is the value of $\\sin B$?", -"image_file_name": "7058344", -"image": [ -"math/53043702_682.png" -], -"solution": "\\textbf{Solution:} By the Pythagorean theorem, we have $AB=\\sqrt{3^2+3^2}=3\\sqrt{2}$,\\\\\ntherefore, $\\sin B=\\frac{3}{3\\sqrt{2}}=\\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53124720": { -"question": "As shown in the figure, $AB$ is the diameter of the circle $\\odot O$ with $AB=26$, and point $C$ is a point on the semicircle of $\\odot O$. $CE \\perp AB$ at point $E$, the angle bisector of $\\angle OCE$ intersects $\\odot O$ at point $D$, and the chord $AC=10$. What is the area of the triangle $\\triangle ACD$?", -"image_file_name": "7058344", -"image": [ -"math/53124720_690.png" -], -"solution": "\\textbf{Solution:} Connect OD and draw AF $\\perp$ CD with the foot at F, \\\\\n$\\because$ AB is the diameter of $\\odot$O, \\\\\n$\\therefore \\angle ACB=90^\\circ$, \\\\\n$\\therefore \\angle ACE+\\angle ECB=90^\\circ$, \\\\\n$\\because CE\\perp AB$, \\\\\n$\\therefore \\angle CEB=90^\\circ$, \\\\\n$\\therefore \\angle CBE+\\angle ECB=90^\\circ$, \\\\\n$\\therefore \\angle ACE=\\angle CBE$, \\\\\n$\\because OB=OC$, \\\\\n$\\therefore \\angle CBE=\\angle OCB$, \\\\\n$\\therefore \\angle ACE=\\angle OCB$, \\\\\n$\\because CD$ bisects $\\angle OCE$, \\\\\n$\\therefore \\angle OCD=\\angle ECD$, \\\\\n$\\therefore \\angle ACE+\\angle DCE=\\angle OCB+\\angle OCD= \\frac{1}{2} \\angle ACB=45^\\circ$, \\\\\n$\\therefore \\angle ACD=45^\\circ$, \\\\\n$\\therefore \\angle AOD=2\\angle ACD=90^\\circ$, \\\\\nIn $\\triangle ACF$, AC=10, \\\\\n$\\therefore AF=AC\\cdot\\sin45^\\circ=10\\times \\frac{\\sqrt{2}}{2} =5\\sqrt{2}$, \\\\\n$CF=AC\\cdot\\cos45^\\circ=10\\times \\frac{\\sqrt{2}}{2} =5\\sqrt{2}$, \\\\\nIn $\\triangle AOD$, AO=OD=$\\frac{1}{2}$AB=13, \\\\\n$\\therefore AD=\\sqrt{2}AO=13\\sqrt{2}$, \\\\\n$\\therefore DF=\\sqrt{AD^2-AF^2}=\\sqrt{(13\\sqrt{2})^2-(5\\sqrt{2})^2}=12\\sqrt{2}$, \\\\\n$\\therefore CD=CF+DF=17\\sqrt{2}$, \\\\\n$\\therefore$ the area of $\\triangle ACD$= $\\frac{1}{2}$CD$\\cdot$AF\\\\\n= $\\frac{1}{2}\\times17\\sqrt{2}\\times5\\sqrt{2}$\\\\\n= $\\boxed{85}$.", -"solution_image": [ -"solution_images/53124720_690.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53081476": { -"question": "As shown in Figure 1, fold the square paper $ABCD$ so that $AB$ coincides with $CD$, with the crease being $EF$. As shown in Figure 2, unfold it and then fold it once more, making point C coincide with point E, with the crease being $GH$. The corresponding point of point B is point M, and $EM$ intersects $AB$ at N. What is the ratio of $AE$ to $AN$?", -"image_file_name": "7058344", -"image": [ -"math/53081476_708.png" -], -"solution": "\\textbf{Solution:} Let the side length of the square be $2a$ and $DH=b$. Therefore, $CH=2a−b$. Because when the square paper $ABCD$ is folded to make $AB$ coincide with $CD$, the crease is $EF$. As shown in Figure 2, after unfolding and then folding again to make point C coincide with point E, the crease is $GH$, and the corresponding point to point B is point M. Therefore, $EH=CH=2a−b$, $DE=AE=\\frac{1}{2}\\times2a=a$, $\\angle BEH=\\angle C=90^\\circ$. In $\\triangle DEH$, $DE^{2}+DH^{2}=EH^{2}$, i.e., $a^{2}+b^{2}=(2a−b)^{2}$. Solving gives $b=\\frac{3}{4}a$. Because $\\angle DEH+\\angle AEN=90^\\circ$ and $\\angle AEN+\\angle DEH=90^\\circ$, therefore $\\angle ANE=\\angle DEH$. Therefore, $\\tan\\angle ANE=\\tan\\angle DEH=\\frac{AE}{AN}=\\frac{DH}{DE}=\\frac{b}{a}=\\frac{\\frac{3}{4}a}{a}=\\boxed{\\frac{3}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52977760": { -"question": "As shown in the figure, in rectangle $ABCD$, where $AB=3$ and $AD=5$, point $E$ is on $DC$. When rectangle $ABCD$ is folded along $AE$, point $D$ falls exactly on point $F$ on side $BC$. What is the value of $\\cos\\angle EFC$?", -"image_file_name": "7058344", -"image": [ -"math/52977760_710.png" -], -"solution": "\\textbf{Solution:} Given the properties of reflection transformations, we know that $\\angle AFE = \\angle D = 90^\\circ$, and AF = AD = 5,\\\\\n$\\therefore \\angle EFC + \\angle AFB = 90^\\circ$,\\\\\n$\\because \\angle B = 90^\\circ$,\\\\\n$\\therefore \\angle BAF + \\angle AFB = 90^\\circ$,\\\\\n$\\therefore \\angle EFC = \\angle BAF$,\\\\\n$\\cos \\angle BAF = \\frac{BA}{BF} = \\frac{3}{5}$,\\\\\n$\\therefore \\cos \\angle EFC = \\boxed{\\frac{3}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53019660": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are on the grid points. What is the value of $\\cos B$?", -"image_file_name": "7058344", -"image": [ -"math/53019660_722.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, we select lattice point $D$ such that $\\angle ADB=90^\\circ$, and connect $AD$ and $BD$.\\\\\nSince $AD=3$ and $BD=3$\\\\\nTherefore, $AB=\\sqrt{AD^{2}+BD^{2}}=\\sqrt{3^{2}+3^{2}}=3\\sqrt{2}$\\\\\nTherefore, $\\cos B=\\frac{BD}{AB}=\\frac{3}{3\\sqrt{2}}=\\boxed{\\frac{\\sqrt{2}}{2}}$", -"solution_image": [ -"solution_images/53019660_722.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53102359": { -"question": "As shown in the diagram, within a grid formed by small squares, the vertices of $\\triangle ABC$ are all lattice points (intersections of the grid lines). What is the value of $\\tan\\angle ABC$?", -"image_file_name": "7058344", -"image": [ -"math/53102359_732.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, draw AD$\\perp$BC at D. \\\\\nIn $\\triangle ABD$, $\\tan\\angle ABC=\\frac{AD}{BD}=\\frac{1}{2}$, \\\\\nthus, $\\tan\\angle ABC=\\boxed{\\frac{1}{2}}$.", -"solution_image": [ -"solution_images/53102359_730.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55604085": { -"question": "As shown in the cross-section of the dam, the height of the dam $BC$ is $6$ meters, and the slope of the inclined surface is $1\\colon 2$. What is the length of the slope $AB$?", -"image_file_name": "7058344", -"image": [ -"math/55604085_745.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACB = 90^\\circ$,\\\\\nsince the slope of the inclined plane is $1:2$,\\\\\nit follows that $\\frac{BC}{AC} = \\frac{1}{2}$,\\\\\nthus $AC = 2BC = 12$ meters,\\\\\nhence $AB = \\sqrt{AC^2 + BC^2} = \\boxed{6\\sqrt{5}}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51032231": { -"question": "As shown in the figure, it is known in $\\triangle ABC$ that $\\angle C=90^\\circ$, $AC=8$, and $BC=15$. Then, the value of $\\tan A$ is (\\quad)", -"image_file_name": "7058344", -"image": [ -"math/51032231_980.png" -], -"solution": "\\textbf{Solution:} Given that in the right triangle $\\text{Rt}\\triangle ABC$, $\\angle C=90^\\circ$, $AC=6$, $BC=15$, \\\\\nthus $\\tan A= \\frac{BC}{AC}=\\boxed{\\frac{15}{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55498457": { -"question": "As shown in the figure, AB is a generatrix of the cone, and BC is the diameter of the base. Given that BC = 6 cm and the lateral surface area of the cone is $15\\pi$, what is the value of $\\cos\\angle ABO$?", -"image_file_name": "7058344", -"image": [ -"math/55498457_992.png" -], -"solution": "\\textbf{Solution:} From the given information, we have $\\frac{1}{2}\\pi \\times 6\\times AB=15\\pi$, from which we find $AB=5\\,\\text{cm}$. Since $BO=\\frac{1}{2}$BC$=3\\,\\text{cm}$, it follows that $\\cos\\angle ABO=\\frac{BO}{AB}=\\boxed{\\frac{3}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50561376": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ (where $k\\neq 0$) is shown. Then, what is the solution set of the inequality $kx+b>3$?", -"image_file_name": "7054110", -"image": [ -"math/50561376_00.png" -], -"solution": "\\textbf{Solution:} As can be seen from the graph, the solution set of the inequality $kx+b>3$ is $\\boxed{x>2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50561251": { -"question": "As shown in the figure, the line $y=x+b$ intersects with the line $y=kx+6$ at the point $P(1,3)$. What is the solution set for the inequality $x+b>kx+6$ with respect to $x$?", -"image_file_name": "7054110", -"image": [ -"math/50561251_10.png" -], -"solution": "\\textbf{Solution:} When $x>1$, we have $x+b>kx+6$,\\\\\nwhich means the solution set of the inequality $x+b>kx+6$ is $x>1$,\\\\\ntherefore, the answer is $x>1$.\\\\\nHence, the answer is: $\\boxed{x>1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50561168": { -"question": "As shown in the figure, the graphs of the functions $y=2x$ and $y=nx+6$ intersect at point $A(m, 4)$. Then, how many integer solutions does the system of inequalities $0nx+4n>0$ with respect to $x$?", -"image_file_name": "7054110", -"image": [ -"math/50560202_45.png" -], -"solution": "\\textbf{Solution}: When $y=0$, for $y=nx+4n\\ (n\\ne 0)$, then $x=-4$. Therefore, the solution set for $nx+4n>0$ is $x>-4$. Since the $x$-coordinate of the intersection point between $y=-x+m$ and $y=nx+4n\\ (n\\ne 0)$ is $-2$, observing the graph shows that the solution set for $-x+m>nx+4n$ is $x<-2$. Hence, the solution set for $-x+m>nx+4n>0$ is $-4ax+b$?", -"image_file_name": "7054110", -"image": [ -"math/50555839_64.png" -], -"solution": "\\textbf{Solution:} From the given information, we can determine that the line $y=x+8$ intersects with the line $y=ax+b$ at point P(20, 25).\\\\\nBy examining the graphical representation of the functions, it is evident that for $x>20$,\\\\\nthe graph of the line $y=x+8$ is located above the graph of the line $y=ax+b$,\\\\\nmeaning the solution set for the inequality $x+8>ax+b$ regarding $x$ is: $x>20$,\\\\\ntherefore, the answer is: $\\boxed{x>20}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50554003": { -"question": "As shown in the figure, the line $y_{1}=x+b$ intersects with the line $y_{2}=kx-1$ at point $P$, where the $x$-coordinate of point $P$ is $-1$. What is the solution set of the inequality $x+bax+3$ with respect to $x$?", -"image_file_name": "7054110", -"image": [ -"math/50545751_85.png" -], -"solution": "\\textbf{Solution:} From the graph, it is known that when $x<-1$, $-2x>ax+3$. \\\\\nTherefore, the answer is $\\boxed{x<-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50545589": { -"question": "As shown in the figure, let $A$ be a point on the negative half-axis of the x-axis. A line $AB$ perpendicular to the x-axis is drawn through point $A$ and intersects the line $y=x$ at point $B$. The triangle $\\triangle ABO$ is translated upwards along the line $y=x$ by $5\\sqrt{2}$ units to obtain $\\triangle A'B'O'$. If the coordinates of point $A$ are $(-3, 0)$, what are the coordinates of point $B'$?", -"image_file_name": "7054110", -"image": [ -"math/50545589_913.png" -], -"solution": "\\textbf{Solution:} Because the coordinates of point A are $(-3, 0)$, and AB is perpendicular to the x-axis and intersects the line $y = x$ at point B,\n$\\therefore$ the coordinates of B are $(-3, -3)$,\nMoving $\\triangle ABO$ along the line $y = x$ upwards by $5\\sqrt{2}$ units essentially translates $\\triangle ABO$ 5 units to the right and 5 units upwards,\n$\\therefore$ the coordinates of $B'$ are $(-3+5, -3+5)$, that is $B'(2,2)$,\nThus, the answer is: the coordinates of $B'$ are $\\boxed{(2,2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50682699": { -"question": "As shown in the figure, it is known that the functional relationship between $y$ and $x$ is as illustrated. Specifically, when $x \\geq 0$, $y = x$; when $x < 0$, $y = -2x + 1$. Then, what is the range of $x$ when the function value $y > 3$?", -"image_file_name": "7054110", -"image": [ -"math/50682699_100.png" -], -"solution": "\\textbf{Solution:} Substitute $y=3$ into $y=x$, then $x=3$.\\\\\nSubstitute $y=3$ into $y=-2x+1$ to get, $3=-2x+1$, solving this gives $x=-1$.\\\\\nTherefore, the points of intersection between the line $y=3$ and the graph of the function are $(3,3)$ and $(-1,3)$.\\\\\nObserving the graph, when the function value $y>3$, the range of $x$ is $x<-1$ or $x>3$,\\\\\nthus, the answer is: $\\boxed{x \\in (-\\infty, -1) \\cup (3, +\\infty)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677495": { -"question": "As shown in the figure, for rectangle $ABOC$ with side $BO$ and $CO$ on the x-axis and y-axis respectively, the coordinate of point $A$ is $(-12, 8)$. Points $D$ and $E$ are the midpoints of $AC$ and $OC$ respectively. Point $P$ is a moving point on $OB$. What are the coordinates of point $P$ when $PD+PE$ is at its minimum?", -"image_file_name": "7054110", -"image": [ -"math/50677495_110.png" -], -"solution": "\\textbf{Solution:} Consider point E's symmetric point with respect to the x-axis, denoted as E', and connect DE' to intersect OB at point P. \\\\\n$\\because$ The sides BO and CO of rectangle ABOC are respectively on the x-axis and y-axis, and the coordinates of point A are (-12, 8),\\\\\n$\\therefore$ AC = 12, OC= 8,\\\\\n$\\because$ Points D and E are the midpoints of AC and OC, respectively,\\\\\n$\\therefore$ D (-6, 8), E (0, 4),\\\\\n$\\therefore$ E' (0, -4),\\\\\nLet the equation of line DE' be $y= kx + b$,\\\\\nFrom the problem statement, we have:\\\\\n$\\left\\{\\begin{array}{l}\n-6k+b=8\\\\\nb=4\n\\end{array}\\right.$,\\\\\n$\\therefore$ $\\left\\{\\begin{array}{l}\nk=-2\\\\\nb=-4\n\\end{array}\\right.$,\\\\\n$\\therefore$ The equation of line DE' is $y= -2x - 4$\\\\\nWhen y=0, $-2x - 4=0$,\\\\\n$\\therefore$ x = -2,\\\\\n$\\therefore$ The coordinates of P are $\\boxed{(-2, 0)}$.", -"solution_image": [ -"solution_images/50677495_110.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677214": { -"question": "The graph of the linear functions $y_1=4x+5$ and $y_2=3x+10$ is shown in the figure. What is the solution set of $4x+5>3x+10$?", -"image_file_name": "7054110", -"image": [ -"math/50677214_123.png" -], -"solution": "\\textbf{Solution:} Solve: The graphs of the linear functions $y_1=4x+5$ and $y_2=3x+10$ intersect at point P(5, 25).\\\\\nTherefore, the solution set for $4x+5>3x+10$ is: $\\boxed{x>5}$.", -"solution_image": [ -"solution_images/50677214_120.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50676552": { -"question": "As shown in the figure, the graph of line $l_{1}: y=k_{1}x+b$ and the graph of line $l_{2}: y=k_{2}x$ are shown in the same Cartesian coordinate system. The line $l_{1}: y=k_{1}x+b$ intersects the x-axis at point $(-3,0)$. What is the solution set of the inequality $k_{2}x3$, the graph of the linear function $y_{1}=kx+b$ is below the graph of the linear function $y_{2}=x+a$, the solution set of the inequality $kx+b3$. \\\\\nTherefore, the solution set is $\\boxed{x>3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50519342": { -"question": "As shown in the diagram, the graphs of the functions $y=3x$ and $y=kx+4$ intersect at the point $P(m, 3)$. What is the solution set of the inequality $3x>kx+4$ with respect to $x$?", -"image_file_name": "7054110", -"image": [ -"math/50519342_154.png" -], -"solution": "\\textbf{Solution:} Substituting $P(m, 3)$ into $y=3x$, we have $3m=3$, from which we solve $m=1$. Thus, the coordinates of point P are $(1, 3)$, \\\\ \nhence for $x>1$, we have $3x>kx+4$, \\\\ \nmeaning the solution set for the inequality $3x>kx+4$ is $\\boxed{x>1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52055750": { -"question": "As illustrated, the lines $l_{1}$ and $l_{2}$ are the graphs of the functions $y=k_{1}x+b_{1}$ and $y=k_{2}x+b_{2}$, respectively. Based on the graph, what is the solution set of the inequality $k_{1}x+b_{1}>k_{2}x+b_{2}$ with respect to $x$?", -"image_file_name": "7054110", -"image": [ -"math/52055750_160.png" -], -"solution": "\\textbf{Solution:} When $x<-2$, $k_{1}x+b_{1}>k_{2}x+b_{2}$,\\\\\nthus the solution set of the inequality $k_{1}x+b_{1}>k_{2}x+b_{2}$ is $x<-2$.\\\\\nTherefore, the answer is: $x=\\boxed{-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056392": { -"question": "As shown in the figure, the graphs of the functions $y=ax$ and $y=bx+5$ intersect at point A. What is the solution set of the inequality $ax\\geq bx+5$?", -"image_file_name": "7054110", -"image": [ -"math/52056392_173.png" -], -"solution": "\\textbf{Solution:} According to the graph of the function, when $x \\geq 2$, $ax \\geq bx + 5$.\\\\\nTherefore, the answer is: $\\boxed{x \\geq 2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50493369": { -"question": "As shown in the figure, the line $AB$: $y=kx+b$ intersects with the linear function $y=2x$ at point $B$. What is the value of $k+b$?", -"image_file_name": "7054110", -"image": [ -"math/50493369_185.png" -], -"solution": "\\textbf{Solution:} Substitute $x=1$ into $y=2x$, to get $y=2\\times1=2$,\\\\\n$\\therefore B(1,2)$,\\\\\nSubstitute $x=1$, $y=2$ into $y=kx+b$, we get: $k+b=\\boxed{2}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53124717": { -"question": "As shown in the figure, AB is the diameter of the semicircle O, and point D is the midpoint of the arc AC. If $\\angle BAC = 44^\\circ$, then what is the value of $\\angle DAC$?", -"image_file_name": "7058773", -"image": [ -"math/53124717_00.png" -], -"solution": "\\textbf{Solution:} Given that $AB$ is the diameter of the semicircle $O$,\\\\\nit follows that $\\angle ACB = 90^\\circ$,\\\\\nsince $\\angle BAC = 44^\\circ$,\\\\\nthen $\\angle B = 90^\\circ - \\angle BAC = 46^\\circ$,\\\\\nas quadrilateral $ABCD$ is inscribed in semicircle $O$,\\\\\nthen $\\angle D = 180^\\circ - \\angle B = 134^\\circ$,\\\\\ngiven that point $D$ is the midpoint of arc $AC$,\\\\\nit follows that $ \\overset{\\frown}{AD} = \\overset{\\frown}{DC}$,\\\\\nthus $AD = DC$,\\\\\ntherefore $\\angle DAC = \\angle DCA = \\frac{1}{2} (180^\\circ - \\angle D) = \\boxed{23^\\circ}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53081440": { -"question": "As shown in the figure, within the circle $ \\odot O$, $AB = AC$. If $\\angle ABC = 65^\\circ$, what is the degree measure of $\\angle BOC$?", -"image_file_name": "7058773", -"image": [ -"math/53081440_14.png" -], -"solution": "\\textbf{Solution:} Given that $AB=AC$, \\\\\nhence $\\angle ABC=\\angle ACB=65^\\circ$, \\\\\ntherefore $\\angle A=180^\\circ-2\\angle ABC=180^\\circ-2\\times65^\\circ=50^\\circ$, \\\\\nsince $\\overset{\\frown}{BC}=\\overset{\\frown}{BC}$, \\\\\nthus $\\angle BOC=2\\angle A=2\\times50^\\circ=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53081442": { -"question": "As shown in the figure, the diameter $AB=20$ of the semicircle $O$, and the chord $AC=12$. The chord $AD$ bisects $\\angle BAC$. What is the length of $AD$?", -"image_file_name": "7058773", -"image": [ -"math/53081442_25.png" -], -"solution": "\\textbf{Solution:} Connect BD, BC, OD, intersecting BC at point F,\\\\\n$\\because$ AB is the diameter,\\\\\n$\\therefore \\angle ACB = \\angle ADB = 90^\\circ$,\\\\\n$\\therefore BC = \\sqrt{AB^2 - AC^2} = \\sqrt{20^2 - 12^2} = 16$,\\\\\n$\\because$ AD bisects $\\angle BAC$,\\\\\n$\\therefore \\angle CAD = \\angle DAB$,\\\\\n$\\therefore \\overset{\\frown}{CD} = \\overset{\\frown}{BD}$,\\\\\n$\\therefore$ OD$\\perp$CB,\\\\\n$\\therefore$ BF = $\\frac{1}{2}BC = 8$, $\\angle BFO = 90^\\circ$,\\\\\n$\\therefore OF = \\sqrt{OB^2 - BF^2} = \\sqrt{10^2 - 8^2} = 6$,\\\\\n$\\therefore DF = OD - OF = 10 - 6 = 4$,\\\\\nIn the right $\\triangle DFB$,\\\\\n$BD = \\sqrt{DF^2 + BF^2} = \\sqrt{4^2 + 8^2} = 4\\sqrt{5}$,\\\\\nIn the right $\\triangle ABD$,\\\\\n$AD = \\sqrt{AB^2 - BD^2} = \\sqrt{20^2 - (4\\sqrt{5})^2} = \\boxed{8\\sqrt{5}}$.", -"solution_image": [ -"solution_images/53081442_20.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52949122": { -"question": "As shown in the figure, place the right-angle vertex of a triangular ruler, which includes a $30^\\circ$ angle, against one side of a straightedge. If $\\angle 1 = 37^\\circ$, then what is the degree measure of $\\angle 2$?", -"image_file_name": "7043711", -"image": [ -"math/52949122_160.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\angle 1=37^\\circ$, the triangle is a right-angled triangle.\\\\\nTherefore, $\\angle 3=90^\\circ-\\angle 1=53^\\circ$.\\\\\nSince the two lines on the ruler are parallel,\\\\\nTherefore, $\\angle 4=\\angle 3=53^\\circ$.\\\\\nTherefore, $\\angle 2=180^\\circ-\\angle 4=\\boxed{127^\\circ}$.", -"solution_image": [ -"solution_images/52949122_160.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52948978": { -"question": "As shown in the figure, $OB$ is the bisector of $\\angle AOC$, and $OD$ is the bisector of $\\angle COE$. If $\\angle AOB=30^\\circ$ and $\\angle COE=60^\\circ$, then what is the measure of $\\angle BOD$?", -"image_file_name": "7043711", -"image": [ -"math/52948978_177.png" -], -"solution": "\\textbf{Solution:} Since OB is the bisector of $\\angle AOC$, and OD is the bisector of $\\angle COE$, \\\\\n$\\therefore \\angle COD= \\frac{1}{2} \\angle COE$ and $\\angle BOC=\\angle AOB$, \\\\\nAlso, since $\\angle AOB=30^\\circ$ and $\\angle COE=60^\\circ$, \\\\\n$\\therefore \\angle BOC=30^\\circ$ and $\\angle COD=30^\\circ$, \\\\\n$\\therefore \\angle BOD=\\angle BOC+\\angle COD=30^\\circ+30^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51482445": { -"question": "As shown in the diagram, the straight line $DE$ intersects with $BC$ at point $O$, $\\angle COE$ and $\\angle AOE$ are complementary, and $\\angle BOD=35^\\circ$. What is the measure of $\\angle AOE$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/51482445_186.png" -], -"solution": "Solution: Since $\\angle COE = \\angle BOD$,\\\\\n$\\angle BOD = 35^\\circ$,\\\\\ntherefore $\\angle COE = 35^\\circ$,\\\\\nsince $\\angle COE$ and $\\angle AOE$ are complementary,\\\\\nthus $\\angle COE + \\angle AOE = 90^\\circ$,\\\\\ntherefore $\\angle AOE = 90^\\circ - \\angle COE = \\boxed{55^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51482123": { -"question": "As shown in the figure, one corner of a rectangular piece of paper is folded so that the vertex \\(A\\) falls on \\(A'\\), with \\(EF\\) as the crease. If \\(EA'\\) exactly bisects \\(\\angle FEB\\), what is the degree measure of \\(\\angle FEB\\)?", -"image_file_name": "7043711", -"image": [ -"math/51482123_192.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $EA'$ exactly bisects $\\angle FEB$,\\\\\nit follows that $\\angle FEA'=\\angle A'EB$,\\\\\nFrom the folding, we get: $\\angle FEA=\\angle FEA'$,\\\\\nthus $\\angle FEA'=\\angle A'EB=\\angle FEA$,\\\\\nSince $\\angle FEA'+\\angle A'EB+\\angle FEA=180^\\circ$,\\\\\nit follows that $\\angle FEA'=\\angle A'EB=\\angle FEA=60^\\circ$,\\\\\nTherefore, $\\angle FEB=\\angle FEA'+\\angle A'EB=\\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52580147": { -"question": "As shown in the figure, points C and D are on line segment AB, where D is the midpoint of line segment AB, $AC = \\frac{1}{3}AD$, and $CD = 4\\, \\text{cm}$. What is the length of line segment AB?", -"image_file_name": "7043711", -"image": [ -"math/52580147_201.png" -], -"solution": "\\textbf{Solution:} Since $AC = \\frac{1}{3}AD$ and $CD = 4cm$,\\\\\nit follows that $CD = AD - AC = AD - \\frac{1}{3}AD = \\frac{2}{3}AD = 4$,\\\\\nhence $AD = 6$,\\\\\ngiven that $D$ is the midpoint of segment $AB$,\\\\\nit follows that $AB = 2AD = 12$,\\\\\nthus $AB = \\boxed{12}$cm.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52580110": { -"question": "Place a set of set squares as shown in the figure, what is the degree measure of $\\angle AOB$?", -"image_file_name": "7043711", -"image": [ -"math/52580110_211.png" -], -"solution": "\\textbf{Solution:} As shown in the figure below: \\\\\nFrom the diagram, we can see that $\\angle 1=30^\\circ$, $\\angle 2=45^\\circ$, \\\\\n$\\therefore$ $\\angle 3=\\angle 1+\\angle 2=75^\\circ$, \\\\\n$\\therefore$ $\\angle AOB=180^\\circ-\\angle 3=\\boxed{105^\\circ}$,", -"solution_image": [ -"solution_images/52580110_210.png" -], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52580651": { -"question": "As shown in the figure, $AB \\parallel CD$, $\\angle FGB = 155^\\circ$, $FG$ bisects $\\angle EFD$, what is the measure of $\\angle AEF$?", -"image_file_name": "7043711", -"image": [ -"math/52580651_220.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle FGB=155^\\circ$, \\\\\n$\\therefore$ $\\angle EGF=25^\\circ$, \\\\\n$\\because$ $AB\\parallel CD$, \\\\\n$\\therefore$ $\\angle EGF=\\angle GFD=25^\\circ$, \\\\\n$\\because$ FG bisects $\\angle EFD$, \\\\\n$\\therefore$ $\\angle EFD=2\\angle GFD=50^\\circ$, \\\\\n$\\therefore$ $\\angle AEF=\\angle EFD=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51213309": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are located on sides $AB$ and $AC$ respectively, with $DE\\parallel BC$. If $DE:BC = 2:3$, then what is the ratio of ${S}_{\\triangle ADE}$ to ${S}_{\\triangle ABC}$?", -"image_file_name": "7056495", -"image": [ -"math/51213309_06.png" -], -"solution": "\\textbf{Solution:} Since $DE\\parallel BC$,\\\\\nit follows that $\\triangle ADE\\sim \\triangle ABC$,\\\\\ntherefore $\\frac{{S}_{\\triangle ADE}}{{S}_{\\triangle ABC}}=\\left(\\frac{DE}{BC}\\right)^{2}=\\left(\\frac{2}{3}\\right)^{2}=\\boxed{\\frac{4}{9}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51209210": { -"question": "In $\\triangle ABC$, points D and E are located on sides AB and AC respectively, such that $DE\\parallel BC$ and $AD: BD = 3: 2$. What is the ratio of the area of $\\triangle ADE$ to that of quadrilateral $BCED$?", -"image_file_name": "7056495", -"image": [ -"math/51209210_10.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\frac{AD}{BD}=\\frac{3}{2}$,\\\\\n$\\therefore \\frac{AD}{AB}=\\frac{3}{5}$,\\\\\n$\\because DE \\parallel BC$,\\\\\n$\\therefore \\triangle ADE \\sim \\triangle ABC$,\\\\\n$\\therefore \\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}}=\\left(\\frac{AD}{AB}\\right)^2=\\left(\\frac{3}{5}\\right)^2=\\frac{9}{25}$,\\\\\n$\\therefore \\frac{S_{\\triangle ADE}}{S_{\\text{quadrilateral} BCED}}=\\boxed{\\frac{9}{16}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368325": { -"question": "As shown in the figure, the line $y=kx+b$ (where $k$ and $b$ are constants) intersects the $x$ axis and $y$ axis at points $A(-4,0)$ and $B(0,3)$, respectively. The parabola $y=-x^2+2x+1$ intersects the $y$ axis at point $C$. Point $E$ moves on the axis of symmetry of the parabola $y=-x^2+2x+1$, and point $F$ moves on the line $AB$. What is the minimum value of $CE+EF$?", -"image_file_name": "7056495", -"image": [ -"math/51368325_20.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, let the point $C^{\\prime}$ be the symmetric point of C with respect to the axis of symmetry of the parabola, by the property of symmetry we have $CE = C^{\\prime}E$, \\\\\n$\\therefore CE + EF = C^{\\prime}E + EF$, \\\\\n$\\therefore$ when points F, E, $C^{\\prime}$ are collinear and $C^{\\prime}F$ is perpendicular to AB, $CE + EF$ is minimized, \\\\\nAccording to the problem we have $\\left\\{\\begin{array}{l}-4k+b=0\\\\ b=3\\end{array}\\right.$, solving this gives $\\left\\{\\begin{array}{l}k=\\frac{3}{4}\\\\ b=3\\end{array}\\right.$, \\\\\n$\\therefore$ the equation of the line is $y= \\frac{3}{4}x+3$; \\\\\n$\\because C(0,1)$, $\\therefore C^{\\prime}(2,1)$, \\\\\n$\\therefore$ the equation of line $C^{\\prime}F$ is $y=-\\frac{3}{4}x+\\frac{11}{3}$, \\\\\nFrom $\\left\\{\\begin{array}{l}y=\\frac{3}{4}x+3\\\\ y=−\\frac{3}{4}x+\\frac{11}{3}\\end{array}\\right.$ we solve $\\left\\{\\begin{array}{l}x=\\frac{8}{25}\\\\ y=\\frac{81}{25}\\end{array}\\right.$, \\\\\n$\\therefore F\\left(\\frac{8}{25}, \\frac{81}{25}\\right)$, \\\\\n$\\therefore CF = \\sqrt{{\\left(\\frac{8}{25}−2\\right)}^{2}+{\\left(\\frac{81}{25}−1\\right)}^{2}} = \\frac{14}{5} = 2.8$, \\\\\nhence, the minimum of $CE+EF$ is $\\boxed{2.8}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51367380": { -"question": "As shown in the figure, AC intersects BD at point E, with AD $\\parallel$ BC. If $AE : AC = 1 : 3$, what is the ratio ${S}_{\\triangle AED} : {S}_{\\triangle CEB}$?", -"image_file_name": "7056495", -"image": [ -"math/51367380_32.png" -], -"solution": "\\textbf{Solution:} Given $\\because AE: AC = 1: 3$,\\\\\n$\\therefore AE: EC = 1: 2$,\\\\\n$\\because AD \\parallel BC$,\\\\\n$\\therefore \\triangle ADE \\sim \\triangle CBE$,\\\\\n$\\therefore \\frac{S_{\\triangle ADE}}{S_{\\triangle CBE}} = \\left(\\frac{AE}{EC}\\right)^2 = \\left(\\frac{1}{2}\\right)^2 = \\boxed{\\frac{1}{4}}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322733": { -"question": "As shown in the figure, $O$ is the centroid of $\\triangle ABC$. A straight line passing through $O$ intersects $AB$ and $AC$ at $G$ and $H$ (neither coinciding with the vertices of $\\triangle ABC$) respectively. Let ${S}_{\\mathrm{quadrilateral\\ BCHG}}$ and ${S}_{\\triangle AGH}$ represent the areas of the quadrilateral $BCHG$ and the triangle $AGH$, respectively. What is the maximum value of $\\frac{{S}_{\\mathrm{quadrilateral\\ BCHG}}}{{S}_{\\triangle AGH}}$?", -"image_file_name": "7056495", -"image": [ -"math/51322733_49.png" -], -"solution": "\\textbf{Solution}: Draw MN$\\parallel$BC through O intersecting AB at N and AC at M. Draw ME$\\parallel$AB through M intersecting GH at E. \\\\\nSince O is the centroid of $\\triangle ABC$, \\\\\ntherefore $\\frac{AO}{OD}=2$, where D is the midpoint of BC \\\\\nthus, BD=CD, $\\frac{AO}{AD}=\\frac{2}{3}$ \\\\\nSince MN$\\parallel$BC \\\\\ntherefore $\\triangle AMN\\sim \\triangle ACB$ \\\\\ntherefore $\\frac{NO}{BD}=\\frac{MO}{CD}=\\frac{AO}{AD}=\\frac{2}{3}$, $\\frac{{S}_{\\triangle AMN}}{{S}_{\\triangle ABC}}=\\left(\\frac{AO}{AD}\\right)^{2}=\\frac{4}{9}$ \\\\\nthus, MO=NO \\\\\nSince ME$\\parallel$AB \\\\\ntherefore $\\angle MOH=\\angle NOG$ \\\\\ntherefore $\\triangle MOE\\cong \\triangle NOG$ (AAS) \\\\\ntherefore ${S}_{\\triangle MOE}={S}_{\\triangle NOG}$ \\\\\nLet ${S}_{\\triangle MEH}=x$, ${S}_{\\triangle ABC}=9y$ \\\\\ntherefore ${S}_{\\triangle AMN}=4y$, ${S}_{\\text{quadrangle}BCMN}=5y$, \\\\\ntherefore ${S}_{\\text{quadrangle}BCHG}={S}_{\\text{quadrangle}BCMN}-{S}_{\\triangle HOM}+{S}_{\\triangle NOG}$ \\\\\n$={S}_{\\text{quadrangle}BCMN}-({S}_{\\triangle MOE}+{S}_{\\triangle MEH})+{S}_{\\triangle NOG}$ \\\\\n$=5y-x$ \\\\\n${S}_{\\triangle AHG}={S}_{\\triangle AMN}-{S}_{\\triangle NOG}+{S}_{\\triangle HOM}$ \\\\\n$={S}_{\\triangle AMN}-{S}_{\\triangle NOG}+({S}_{\\triangle MOE}+{S}_{\\triangle MEH})$ \\\\\n$=4y+x$ \\\\\ntherefore $\\frac{{S}_{\\text{quadrangle}BCHG}}{{S}_{\\triangle AGH}}=\\frac{5y-x}{4y+x}$ \\\\\nSince $x$ is a constant \\\\\ntherefore, as $y$ becomes smaller, the value of $\\frac{{S}_{\\text{quadrangle}BCHG}}{{S}_{\\triangle AGH}}=\\frac{5y-x}{4y+x}$ becomes larger \\\\\ntherefore, when $y=0$, $\\frac{{S}_{\\text{quadrangle}BCHG}}{{S}_{\\triangle AGH}}=\\boxed{\\frac{5}{4}}$ is maximized, at this point GH$\\parallel$BC", -"solution_image": [ -"solution_images/51322733_40.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322485": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are the midpoints of AB and AC, respectively. If the area of $\\triangle ADE$ is 1, what is the area of quadrilateral BDEC?", -"image_file_name": "7056495", -"image": [ -"math/51322485_50.png" -], -"solution": "Solution: Since points D and E are the midpoints of AB and AC respectively,\n\nit follows that DE is the midline of $\\triangle ABC$,\n\ntherefore DE$\\parallel$BC, and DE$=\\frac{1}{2}$BC,\n\nthus, $\\triangle ADE$ is similar to $\\triangle ABC$,\n\nwhich implies $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}}=\\left(\\frac{DE}{BC}\\right)^{2}=\\frac{1}{4}$,\n\ngiven that the area of $\\triangle ADE$ is 1,\n\nit follows that $S_{\\triangle ABC}=4$,\n\nhence, the area of the quadrilateral BCED equals $S_{\\triangle ABC}-S_{\\triangle ADE}=3$,\n\nTherefore, the answer is: $S_{\\text{quadrilateral } BCED}=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322568": { -"question": "As shown in the figure, it is known that $ \\triangle ADE \\sim \\triangle ACB$. If $AD=6$, $DE=4$, and $BC=8$, then what is the length of AC?", -"image_file_name": "7056495", -"image": [ -"math/51322568_64.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ADE \\sim \\triangle ACB$,\\\\\nwe have $\\frac{AD}{AC}=\\frac{DE}{CB}$,\\\\\nthus $AC=\\frac{AD \\cdot CB}{DE}=\\boxed{12}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322970": { -"question": "As shown in the figure, in right-angled triangle $ABC$, with $\\angle ACB = 90^\\circ$, squares $ADEB$, $CBFG$, and $ACHI$ are constructed externally on sides $AB$, $BC$, and $AC$ of $\\triangle ABC$, respectively. The square $ABED$ is folded along the line $AB$ to obtain square $ABE'D'$, where $AD'$ intersects $CH$ at point $N$, point $E'$ lies on side $FG$, and $D'E'$ intersects $CG$ at point $M$. Let the area of $\\triangle ANC$ be $S_1$ and the area of quadrilateral $BCME'$ be $S_2$. Given that $CN = 2NH$ and $S_1 + S_2 = 14$, what is the area of square $ABED$?", -"image_file_name": "7056495", -"image": [ -"math/51322970_71.png" -], -"solution": "\\textbf{Solution:} Let $NH=x$, then $CN=2x$,\\\\\nAccording to the problem, we have $CA=CH=3x$,\\\\\nIn $\\triangle ACN$ and $\\triangle BCA$ right triangles,\\\\\n$\\angle ACN=\\angle BCA=90^\\circ$,\\\\\nSince $\\angle CAN+\\angle CNA=\\angle CAN+\\angle CAB=90^\\circ$,\\\\\nTherefore, $\\angle CNA=\\angle CAB$,\\\\\nThus, $\\triangle ACN \\sim \\triangle BCA$ right triangles,\\\\\nHence, $\\frac{CN}{AC}=\\frac{AC}{BC}=\\frac{2x}{3x}=\\frac{2}{3}$,\\\\\nSo, $BC=\\frac{9}{2}x$,\\\\\nIn the $\\triangle ABC$ right triangle, by the Pythagorean theorem, we find:\\\\\n$AB^{2}=AC^{2}+BC^{2}=9x^{2}+\\frac{81}{4}x^{2}=\\frac{117}{4}x^{2}$,\\\\\nSince $S_{ABED}=AB^{2}$,\\\\\nTherefore, $S_{ABED}=\\frac{117}{4}x^{2}$,\\\\\nIn $\\triangle ABN$ and $\\triangle D'AM$ right triangles, $\\angle ABN=\\angle D'AM$, AB=AD', $\\angle BAN=\\angle D'$,\\\\\nTherefore, $\\triangle ABN \\cong \\triangle D'AM$ (ASA),\\\\\nHence, $S_{CND'M}=S_{\\triangle ABC}$,\\\\\nSo, $S_{1}+S_{2}=S_{ABE'D'}-2S_{\\triangle ABC}=14$,\\\\\nThus, $\\frac{117}{4}x^{2}-2\\times \\frac{1}{2}\\cdot 3x\\cdot \\frac{9}{2}x=14$,\\\\\nSolving yields: $x^{2}=\\frac{56}{63}$,\\\\\nTherefore, $S_{ABED}=\\frac{117}{4}x^{2}=\\frac{117}{4}\\times \\frac{56}{63}=\\boxed{26}$,\\\\", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51322831": { -"question": "As shown in the figure, it is known that point $M$ is the centroid of $\\triangle ABC$, and $AB=18$. If $MN\\parallel AB$, what is the value of $MN$?", -"image_file_name": "7056495", -"image": [ -"math/51322831_80.png" -], -"solution": "\\textbf{Solution:} Given that point $M$ is the centroid of $\\triangle ABC$ and $AB=18$,\\\\\nit follows that $AD=DB=\\frac{1}{2}AB=9$, and $\\frac{CM}{CD}=\\frac{2}{3}$.\\\\\nSince $MN\\parallel AB$,\\\\\nit implies that $\\triangle CMN\\sim \\triangle CDB$,\\\\\ntherefore, $\\frac{MN}{BD}=\\frac{CM}{CD}=\\frac{2}{3}$, which means $\\frac{MN}{9}=\\frac{2}{3}$,\\\\\nSolving this gives: $MN=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52978426": { -"question": "In the figure, in right-angled $\\triangle ABC$, $AB=9$, $BC=6$, $\\angle B=90^\\circ$. Fold $\\triangle ABC$ such that point $A$ coincides with the midpoint $D$ of $BC$. If the fold line is $MN$, then the length of segment $AN$ is ( )", -"image_file_name": "7044920", -"image": [ -"math/52978426_342.png" -], -"solution": "\\textbf{Solution:} Let $AN=x$. By the property of folding, we know $DN=AN=x$, so $BN=9-x$.\\\\\nSince $D$ is the midpoint of $BC$,\\\\\nit follows that $BD=\\frac{1}{2}\\times 6=3$.\\\\\nIn the right triangle $\\triangle BDN$, by the Pythagorean theorem, we have: $ND^{2}=NB^{2}+BD^{2}$, that is $x^{2}=(9-x)^{2}+3^{2}$,\\\\\nSolving for $x$ yields: $x=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52978711": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle ABC = 90^\\circ$, $ \\angle A = 60^\\circ$, and $D$ is a point on side $AC$, with $ \\angle DBC = 30^\\circ$ and $ AC = 12\\,cm$. What is the perimeter of $ \\triangle ABD$?", -"image_file_name": "7044920", -"image": [ -"math/52978711_357.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $\\angle A=60^\\circ$,\\\\\nthus $\\angle C=30^\\circ$,\\\\\nand since $\\angle DBC=30^\\circ$,\\\\\nit follows that $\\angle ABD=\\angle ABC-\\angle DBC=60^\\circ$, and $BD=DC$,\\\\\nthus $\\angle ABD=\\angle A=60^\\circ$,\\\\\ntherefore $\\triangle ABD$ is an equilateral triangle,\\\\\nthus $BD=AD=AB$,\\\\\nsince $BD=DC$ and $AC=12\\text{cm}$,\\\\\nit follows that $AD=DC=\\frac{1}{2}AC=6\\text{cm}$,\\\\\nthus $BD=AD=AB=6\\text{cm}$,\\\\\ntherefore, the perimeter of $\\triangle ABD$ is: $BD+AD+AB=6\\times 3=\\boxed{18\\text{cm}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978950": { -"question": "As shown in the figure, it is known that $P$ is the centroid of $\\triangle ABC$. Connect $AP$ and extend it to intersect $BC$ at point $D$. If the area of $\\triangle ABC$ is $20$, what is the area of $\\triangle ADC$?", -"image_file_name": "7044920", -"image": [ -"math/52978950_365.png" -], -"solution": "\\textbf{Solution:} Since $P$ is the centroid of $\\triangle ABC$,\n\nit follows that $AD$ is the median of $\\triangle ABC$,\n\nhence, the area of $\\triangle ADC$ is equal to half the area of $\\triangle ABC$,\n\nand since the area of $\\triangle ABC$ is 20,\n\nthus, the area of $\\triangle ADC$ is $\\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978387": { -"question": "As shown in the figure, it is known that $ \\triangle ABC \\cong \\triangle DEF$. If $ DF = 6$, $ AB = 3$, $ EF = 5$, and $ DC = 4$, what is the length of $ AD$?", -"image_file_name": "7044920", -"image": [ -"math/52978387_376.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle DEF$,\\\\\ntherefore $AC = DF = 6$,\\\\\nthus $AD = AC - DC = 6 - 4 = \\boxed{2}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978975": { -"question": "As shown in the diagram, in $\\triangle ABC$, it is known that $\\angle C=90^\\circ$, $AC=BC=1$, $AB=\\sqrt{2}$, the bisector of $\\angle BAC$ intersects side $BC$ at point $D$, and $DE\\perp AB$ at point $E$. What is the perimeter of $\\triangle DBE$?", -"image_file_name": "7044920", -"image": [ -"math/52978975_388.png" -], -"solution": "\\textbf{Solution:} Because $DE\\perp AB$ and $\\angle C=90^\\circ$, and $AD$ bisects $\\angle BAC$,\\\\\nhence $DC=DE$,\\\\\nthus $DE+BD=DC+BD=BC=1$,\\\\\nin right triangles $\\triangle ADC$ and $\\triangle ADE$,\\\\\n$\\left\\{\\begin{array}{l}\nAD=AD\\\\\nDC=DE\n\\end{array}\\right.$,\\\\\ntherefore, by HL (Hypotenuse-Leg), $\\triangle ADC \\cong \\triangle ADE$,\\\\\nso, $AE=AC=1$,\\\\\ntherefore $BE=AB-AE=\\sqrt{2}-1$,\\\\\nhence the perimeter of $\\triangle DBE$ is $BE+DE+BD=\\sqrt{2}-1+1=\\boxed{\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52977136": { -"question": "As shown in the figure, in $\\triangle ABC$, points $D$, $E$, and $F$ are located on the three sides respectively, $E$ is the midpoint of $AC$, $AD$, $BE$, $CF$ intersect at point $G$, $BD=2DC$, ${S}_{\\triangle GEC}=3$, ${S}_{\\triangle GDC}=4$, then what is the area of $\\triangle ABC$?", -"image_file_name": "7044920", -"image": [ -"math/52977136_3914.png" -], -"solution": "\\textbf{Solution:} $BD=2DC$,\\\\\n$\\therefore {S}_{\\triangle ABD}=2{S}_{\\triangle ACD}$,\\\\\n$\\therefore {S}_{\\triangle ABC}=3{S}_{\\triangle ACD}$,\\\\\n$\\because E$ is the midpoint of $AC$,\\\\\n$\\therefore {S}_{\\triangle AGE}={S}_{\\triangle CGE}$,\\\\\nAlso, $\\because {S}_{\\triangle GEC}=3$, ${S}_{\\triangle GDC}=4$,\\\\\n$\\therefore {S}_{\\triangle ACD}={S}_{\\triangle AGE}+{S}_{\\triangle CGE}+{S}_{\\triangle CGD}=3+3+4=10$,\\\\\n$\\therefore {S}_{\\triangle ABC}=3{S}_{\\triangle ACD}=3\\times 10=\\boxed{30}$.", -"solution_image": [ -"solution_images/52977136_391.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978709": { -"question": "As shown in the figure, $P$ is the midpoint of side $AC$ of the equilateral triangle $\\triangle ABC$, $E$ is a point on the extension line of side $BC$, and $PE = PB$, what is the degree measure of $\\angle CPE$?", -"image_file_name": "7044920", -"image": [ -"math/52978709_404.png" -], -"solution": "\\textbf{Solution:} Since $P$ is the midpoint of side $AC$ of the equilateral triangle $\\triangle ABC$,\\\\\nit follows that $BP$ bisects $\\angle ABC$, and $\\angle ABC=60^\\circ=\\angle ACB$,\\\\\nthus, $\\angle PBC=30^\\circ$,\\\\\nsince $PE=PB$,\\\\\nit follows that $\\angle PBC=\\angle E=30^\\circ$,\\\\\nhence, $\\angle CPE=\\angle ACB-\\angle E=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52694081": { -"question": "As shown in the figure, it is known that lines AB $\\parallel$ CD $\\parallel$ EF, BD $= 2$, and DF $= 4$. What is the value of $ \\frac{AC}{AE}$?", -"image_file_name": "7056275", -"image": [ -"math/52694081_01.png" -], -"solution": "\\textbf{Solution:} Given that $BD=2$ and $DF=4$,\\\\\nthus $BF=BD+DF=2+4=6$;\\\\\nsince $AB\\parallel CD\\parallel EF$,\\\\\nit follows that $\\frac{AC}{AE}=\\frac{BD}{BF}$,\\\\\nhence $\\frac{AC}{CE}=\\frac{2}{6}=\\boxed{\\frac{1}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52694085": { -"question": "In the given figure, in $\\triangle ABC$, $AH \\perp BC$ at $H$, with $BC=12$ and $AH=8$. Points $D$ and $E$ are located on $AB$ and $AC$ respectively, while points $G$ and $F$ are on $BC$. The quadrilateral $DEFG$ is a square. What is the length of the side $DE$ of the square?", -"image_file_name": "7056275", -"image": [ -"math/52694085_10.png" -], -"solution": "Solution:As shown in the figure,\n\n$\\because$ square DEFG,\n\n$\\therefore$ DE=DG, $\\angle$NDG=$\\angle$DGH=90$^\\circ$, DE$\\parallel$BC,\n\n$\\because$ AH$\\perp$BC,\n\n$\\therefore$ AH$\\perp$DE,\n\n$\\therefore$ $\\angle$DNH=90$^\\circ$,\n\n$\\therefore$ quadrilateral DNHG is a rectangle,\n\n$\\therefore$ DG=NH=DE=x,\n\n$\\therefore$ AN=AH−NH=8−x,\n\n$\\because$ DE$\\parallel$BC,\n\n$\\therefore$ $\\triangle$ADE$\\sim$$\\triangle$ABC,\n\n$\\therefore$ $\\frac{DE}{BC}=\\frac{AN}{AH}$, that is, $\\frac{x}{12}=\\frac{8−x}{8}$\n\nSolve it: x=4.8,\n\nUpon verification, x=4.8 is a solution of the equation,\n\n$\\therefore$ DE=\\boxed{4.8}.", -"solution_image": [ -"solution_images/52694085_10.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52694087": { -"question": "As shown in the figure, in $\\triangle ABC$, point D is on side AB, and $\\angle A = \\angle BCD$, the area ratio $S_{\\triangle ADC} : S_{\\triangle BDC} = 5 : 4$, $CD = 4$, what is the length of AC?", -"image_file_name": "7056275", -"image": [ -"math/52694087_20.png" -], -"solution": "\\textbf{Solution}: Given that $S_{\\triangle ADC} : S_{\\triangle BDC} = 5 : 4$,\\\\\n$\\therefore S_{\\triangle BDC} : S_{\\triangle ABC} = 4 : 9$,\\\\\n$\\because \\angle A = \\angle BCD, \\angle B = \\angle B$,\\\\\n$\\therefore \\triangle BCD \\sim \\triangle BAC$,\\\\\n$\\therefore \\frac{S_{\\triangle BAC}}{S_{\\triangle BCD}} = \\left(\\frac{AC}{CD}\\right)^2$,\\\\\n$\\therefore \\left(\\frac{AC}{4}\\right)^2 = \\frac{9}{4}$,\\\\\nSolving for it, we have: $AC = \\boxed{6}$ (taking the positive value).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52694089": { -"question": "The large square ABCD is composed of four congruent right-angled triangles and one small square, as shown in the diagram. Draw a perpendicular line from point D to F, intersecting the extension of the diagonal EF of the small square at point G. Connect CG and extend BE to intersect CG at point H. If $AE=2BE$, what is the value of $\\frac{CG}{BH}$?", -"image_file_name": "7056275", -"image": [ -"math/52694089_31.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw a line GM$\\perp$DG at point G, intersecting the extended line of CF at point M,\\\\\n$\\because$DF$\\perp$DG,\\\\\n$\\therefore$$\\angle$GDF=$\\angle$DFM=$\\angle$MGD=$90^\\circ$,\\\\\n$\\therefore$Quadrilateral DFMG is a rectangle,\\\\\n$\\therefore$DF=MG;\\\\\n$\\because$The large square ABCD is composed of four congruent right-angled triangles and a small square,\\\\\n$\\therefore$let BE=AT=CN=x,\\\\\n$\\because$AE=2BE,\\\\\n$\\therefore$BH=CF=2x, TF=DF=x,\\\\\n$\\because$Square ETFH,\\\\\n$\\therefore$$\\angle$TFE=$\\angle$DFG=$45^\\circ$,\\\\\nIn $\\triangle$DFG, $\\angle$GDF=$90^\\circ$,\\\\\n$\\therefore$$\\triangle$DFG is an isosceles right-angled triangle,\\\\\n$\\therefore$DF=DG,\\\\\n$\\therefore$Quadrilateral DFMG is a square,\\\\\n$\\therefore$MF=DF=x,\\\\\n$\\therefore$CM=2x+x=3x\\\\\nIn Rt$\\triangle$CMG,\\\\\n$CG=\\sqrt{M{G}^{2}+C{M}^{2}}=\\sqrt{{x}^{2}+{\\left(3x\\right)}^{2}}=\\sqrt{10}x$;\\\\\n$\\because$NH$\\parallel$MG,\\\\\n$\\therefore$$\\triangle$CHN$\\sim$$\\triangle$CMG\\\\\n$\\therefore$$\\frac{NH}{MG}=\\frac{CN}{CM}$, thus $\\frac{NH}{x}=\\frac{x}{3x}$\\\\\n$\\therefore$$NH=\\frac{1}{3}x$,\\\\\n$\\therefore$$BH=BN+NH=2x+\\frac{1}{3}x=\\frac{7}{3}x$\\\\\n$\\therefore$$\\frac{CG}{BH}=\\frac{\\sqrt{10}x}{\\frac{7}{3}x}=\\boxed{\\frac{3\\sqrt{10}}{7}}$.", -"solution_image": [ -"solution_images/52694089_30.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52661212": { -"question": "As shown in the figure, the lines $l_{1} \\parallel l_{2} \\parallel l_{3}$, and the lines $a$ and $b$ intersect $l_{1}$, $l_{2}$, and $l_{3}$ at points A, B, C and D, E, F, respectively. If $AB: BC=1: 2$ and $DE=2$, then what is the length of $EF$?", -"image_file_name": "7056275", -"image": [ -"math/52661212_40.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ lines $l_{1}\\parallel l_{2}\\parallel l_{3}$,\\\\\n$\\therefore$ $\\frac{AB}{BC}=\\frac{DE}{EF}=\\frac{1}{2}$,\\\\\n$\\therefore$ EF=2DE=2$\\times$2=$\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52661216": { -"question": "As shown in the figure, the large square ABCD is composed of four congruent right-angled triangles and a small square. A perpendicular line from point $G$ to $D$ intersects $AB$ at point $I$. If $GI = \\frac{4}{3}GD$, what is the value of $\\frac{EH}{AD}$?", -"image_file_name": "7056275", -"image": [ -"math/52661216_54.png" -], -"solution": "Solution: Draw $IM \\perp BG$ at point $M$,\\\\\nsince the large square $ABCD$ is composed of four congruent right-angled triangles and a small square,\\\\\ntherefore, let $AF=BG=CH=DE=a$, $BF=CG=DH=AE=b$,\\\\\nthus, $EH=HG=DE-DH=a-b$,\\\\\nsince $DG \\perp IG$,\\\\\nthus, $\\angle HGD+\\angle HGI=90^\\circ$,\\\\\nsince $\\angle HGI+\\angle IGM=90^\\circ$,\\\\\nthus, $\\angle IGM=\\angle HGD$,\\\\\nsince $\\angle IMG=\\angle DHG=90^\\circ$,\\\\\nthus, $\\triangle IMG \\sim \\triangle DHG$,\\\\\nthus, $\\frac{IG}{DG}=\\frac{IM}{DH}=\\frac{GM}{GH}$\\\\\nsince $GI=\\frac{4}{3}GD$\\\\\nthus, $IM=\\frac{4}{3}DH=\\frac{4}{3}b$, $GM=\\frac{4}{3}GH=\\frac{4}{3}(a-b)$,\\\\\nthus, $BM=BG-MG=a-\\frac{4}{3}(a-b)=\\frac{4}{3}b-\\frac{1}{3}a$,\\\\\nsince $IM \\parallel AF$,\\\\\nthus, $\\triangle BMI \\sim \\triangle BFA$,\\\\\nthus, $\\frac{IM}{AF}=\\frac{BM}{BF}$, solving this gives $a=2b$;\\\\\nthus, $AB^{2}=AD^{2}=AF^{2}+BF^{2}=a^{2}+b^{2}=4b^{2}+b^{2}=5b^{2}$,\\\\\nthus, $AD=\\sqrt{5}b$,\\\\\n$EH=a-b=2b-b=b$\\\\\nthus, $\\frac{EH}{AD}=\\frac{b}{\\sqrt{5}b}=\\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/52661216_50.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52550292": { -"question": "As shown in the figure, within $\\triangle ABC$, $D$ and $E$ are the midpoints of sides $AB$ and $AC$, respectively. If the area of $\\triangle ADE$ is $\\frac{1}{2}$, what is the area of quadrilateral $DBCE$?", -"image_file_name": "7056275", -"image": [ -"math/52550292_61.png" -], -"solution": "\\textbf{Solution:} Since D and E are the midpoints of AB and AC, respectively,\\\\\nit follows that DE$\\parallel$BC, and AE = CE = $\\frac{1}{2}$AB,\\\\\ntherefore, $\\frac{AE}{AC}$ = $\\frac{1}{2}$, and $\\triangle$ADE$\\sim$$\\triangle$ABC,\\\\\nthus, $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}}$ = $\\left(\\frac{AE}{AC}\\right)^2$ = $\\left(\\frac{1}{2}\\right)^2$ = $\\frac{1}{4}$,\\\\\nhence, S$_{\\triangle ABC}$ = 4S$_{\\triangle ADE}$ = 4$\\times$$\\frac{1}{2}$ = 2,\\\\\ntherefore, S$_{\\text{quadrilateral DBCE}}$ = S$_{\\triangle ABC}$ - S$_{\\triangle ADE}$ = 2 - $\\frac{1}{2}$ = $\\boxed{\\frac{3}{2}}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52537043": { -"question": "In the Cartesian coordinate system, the position of the square $ABCD$ is shown in the diagram, with the coordinates of point $A$ being $\\left(1, 0\\right)$ and the coordinates of point $D$ being $\\left(0, 2\\right)$. Extend $CB$ to meet the $x$-axis at point ${A}_{1}$, and construct the square ${A}_{1}{B}_{1}{C}_{1}C$; extend ${C}_{1}{B}_{1}$ to meet the $x$-axis at point ${A}_{2}$, and construct the square ${A}_{2}{B}_{2}{C}_{2}{C}_{1}$, and so on according to this pattern, what is the area of the 2021st square?", -"image_file_name": "7056275", -"image": [ -"math/52537043_712.png" -], -"solution": "\\textbf{Solution:} \\\\\nLet point A be (1,0), and point D be (0,2),\\\\\ntherefore, OA=1, OD=2, BC=AB=AD=$\\sqrt{5}$,\\\\\nconsidering squares ABCD and A$_{1}$B$_{1}$C$_{1}$C,\\\\\ntherefore, $\\angle$OAD+$\\angle$A$_{1}$AB=$90^\\circ$, $\\angle$ADO+$\\angle$OAD=$90^\\circ$,\\\\\nthus, $\\angle$A$_{1}$AB=$\\angle$ADO,\\\\\nsince $\\angle$AOD=$\\angle$A$_{1}$BA=$90^\\circ$,\\\\\nit follows that $\\triangle$AOD $\\sim$ $\\triangle$A$_{1}$BA,\\\\\nthus, $\\frac{AO}{{A}_{1}B}=\\frac{OD}{AB}$,\\\\\nthus, $\\frac{1}{{A}_{1}B}=\\frac{2}{\\sqrt{5}}$,\\\\\ntherefore, ${A}_{1}B=\\frac{\\sqrt{5}}{2}$,\\\\\nhence, ${A}_{1}{B}_{1}={A}_{1}C={A}_{1}B+BC=\\frac{3}{2}\\sqrt{5}$,\\\\\nSimilarly, it can be derived that, ${A}_{2}{B}_{2}=\\frac{9}{4}\\sqrt{5}=\\left(\\frac{3}{2}\\right)^{2}\\sqrt{5}$,\\\\\nSimilarly, it can be derived that, ${A}_{3}{B}_{3}=\\left(\\frac{3}{2}\\right)^{3}\\sqrt{5}$,\\\\\nSimilarly, it can be derived that, ${A}_{2020}{B}_{2020}=\\left(\\frac{3}{2}\\right)^{2020}\\sqrt{5}$,\\\\\nTherefore, the area of the 2021st square is $\\left[\\left(\\frac{3}{2}\\right)^{2021−1}\\times\\sqrt{5}\\right]^{2}=5\\times\\left(\\frac{3}{2}\\right)^{4040}$.\\\\\nHence, the answer is: $\\boxed{5\\times\\left(\\frac{3}{2}\\right)^{4040}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52536480": { -"question": "As shown in the figure, line AB $ \\parallel $ CD $ \\parallel $ EF. If AC = 3 and CE = 4, what is the value of $\\frac{BD}{BF}$?", -"image_file_name": "7056275", -"image": [ -"math/52536480_83.png" -], -"solution": "\\textbf{Solution:} Given that $\\because$ AB $\\parallel$ CD $\\parallel$ EF\\\\\n$\\therefore$ $\\frac{BD}{BF}=\\frac{AC}{AE}$\\\\\n$\\because$ AC=3, CE=4\\\\\n$\\therefore$ $\\frac{BD}{BF}=\\boxed{\\frac{3}{7}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52536566": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=6$, $BC=5$, points $D$ and $E$ are on $BC$ and $AC$ respectively, $CD=2BD$, $CE=2AE$, $BE$ intersects $AD$ at point $F$, what is the maximum area of $\\triangle AFE$?", -"image_file_name": "7056275", -"image": [ -"math/52536566_913.png" -], -"solution": "\\textbf{Solution:} Connect DE, and draw DH $\\perp$ AB at H, as shown in the figure:\\\\\n$\\because$ CD = 2BD, CE = 2AE,\\\\\n$\\therefore \\frac{CD}{BD}=\\frac{CE}{AE}=2$,\\\\\n$\\therefore$ DE $\\parallel$ AB,\\\\\n$\\therefore \\triangle CDE \\sim \\triangle CBA, \\triangle DEF \\sim \\triangle ABF$,\\\\\n$\\therefore \\frac{DE}{BA}=\\frac{CD}{CB}=\\frac{2}{3}$, $\\frac{DF}{AF}=\\frac{DE}{AB}$,\\\\\n$\\therefore \\frac{DF}{AF}=\\frac{DE}{AB}=\\frac{2}{3}$,\\\\\n$\\because$ DE $\\parallel$ AB,\\\\\n$\\therefore S_{\\triangle ABE}=S_{\\triangle ABD}$,\\\\\n$\\therefore S_{\\triangle ABE} - S_{\\triangle ABF}=S_{\\triangle ABD} - S_{\\triangle ABF}$,\\\\\n$\\therefore S_{\\triangle AEF}=S_{\\triangle BDF}$,\\\\\n$\\therefore S_{\\triangle AEF}=\\frac{2}{5}S_{\\triangle ABD}$,\\\\\n$\\because BD = \\frac{1}{3}BC = \\frac{5}{3}$, and $AB = 6$,\\\\\n$\\therefore$ when DH is maximal, the area of $\\triangle ABD$ is maximal,\\\\\n$\\because$ DH $\\leq$ BD,\\\\\n$\\therefore$ when DH = BD = $\\frac{5}{3}$, the area of $\\triangle ABD$ is maximal, and the maximum value is $\\frac{1}{2} \\times \\frac{5}{3} \\times 6 = 5$,\\\\\n$\\therefore$ the maximum area of $\\triangle AFE$ is $\\frac{2}{5} \\times 5 = \\boxed{2}$,", -"solution_image": [ -"solution_images/52536566_90.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52536784": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle C=90^\\circ$, O is a point on side AB, circle $O$ is tangent to both AC and BC. If $ BC=3$ and $ AC=4$, what is the radius of circle $O$?", -"image_file_name": "7056275", -"image": [ -"math/52536784_106.png" -], -"solution": "\\textbf{Solution:} Construct OD$\\perp$AC at D, OE$\\perp$BC at E, as shown in the figure, let the radius of $\\odot O$ be $r$,\\\\\nsince $\\odot O$ is tangent to both AC and BC,\\\\\nthus OD=OE=r,\\\\\nand $\\angle C=90^\\circ$,\\\\\nthus quadrilateral ODCE is a square,\\\\\nthus CD=OD=r,\\\\\nsince OD$\\parallel$BC,\\\\\nthus $\\triangle ADO\\sim \\triangle ACB$,\\\\\nthus $\\frac{AF}{AC}=\\frac{OF}{BC}$ \\\\\nsince AF=AC−r, BC=3, AC=4,\\\\\nsubstituting in, we get $\\frac{4−r}{4}=\\frac{r}{3}$\\\\\nthus $r=\\boxed{\\frac{12}{7}}$.", -"solution_image": [ -"solution_images/52536784_100.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52536707": { -"question": "As shown in the diagram, in parallelogram $ABCD$, $AC$ and $BD$ intersect at point $O$. $E$ is the midpoint of $OD$. When $AE$ is extended to intersect $DC$ at point $F$, what is the ratio of the area of $\\triangle DEF$ to the area of $\\triangle OAB$?", -"image_file_name": "7056275", -"image": [ -"math/52536707_111.png" -], -"solution": "\\textbf{Solution:} Let $O$ be the intersection point of the diagonals of the parallelogram $ABCD$,\n\n$\\therefore$ $DO=BO$, $AB\\parallel DC$,\n\nAlso, since $E$ is the midpoint of $OD$,\n\n$\\therefore$ $DE=\\frac{1}{2}OD=\\frac{1}{4}DB$,\n\n$\\therefore$ $DE:EB=1:3$,\n\nAlso, since $AB\\parallel DC$,\n\n$\\therefore$ $\\triangle DEF\\sim \\triangle BAE$,\n\n$\\therefore$ $\\frac{S_{\\triangle DEF}}{S_{\\triangle BEA}}=\\left(\\frac{1}{3}\\right)^2=\\frac{1}{9}$,\n\n$\\therefore$ $S_{\\triangle DEF}=\\frac{1}{9}S_{\\triangle BEA}$,\n\nSince $\\frac{S_{\\triangle AOB}}{S_{\\triangle BEA}}=\\frac{OB}{EB}=\\frac{2}{3}$,\n\n$\\therefore$ $S_{\\triangle AOB}=\\frac{2}{3}S_{\\triangle BEA}$,\n\n$\\therefore$ $S_{\\triangle DEF}:S_{\\triangle OAB}=\\frac{\\frac{1}{9}S_{\\triangle BEA}}{\\frac{2}{3}S_{\\triangle BEA}}=\\boxed{1:6}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52536529": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, a point light source is located at $P(2, 2)$. The coordinates of the ends of the rod $AB$ are respectively $(0, 1)$ and $(3, 1)$. What is the length of the shadow $CD$ of the rod $AB$ on the $x$-axis?", -"image_file_name": "7056275", -"image": [ -"math/52536529_120.png" -], -"solution": "\\textbf{Solution:} Construct PE$\\perp$x-axis at E, intersecting AB at M, as shown in the figure,\\\\\nsince P(2, 2), A(0, 1), B(3, 1).\\\\\nTherefore, PM = 1, PE = 2, AB = 3,\\\\\nsince AB$\\parallel$CD\\\\\nTherefore $\\frac{AB}{CD}=\\frac{PM}{PE}$ \\\\\nTherefore $\\frac{3}{CD}=\\frac{1}{2}$ \\\\\nTherefore CD= \\boxed{6},", -"solution_image": [ -"solution_images/52536529_120.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52536877": { -"question": "As shown in the figure, $l_{1}\\parallel l_{2}\\parallel l_{3}$, and lines a, b intersect $l_{1}$, $l_{2}$, $l_{3}$ at points A, B, C, and D, E, F, respectively. If $\\frac{AB}{BC}=\\frac{2}{3}$ and $DE=4$, what is the length of $DF$?", -"image_file_name": "7056275", -"image": [ -"math/52536877_131.png" -], -"solution": "\\textbf{Solution:} Since $l_1 \\parallel l_2 \\parallel l_3$,\\\\\nit follows that $\\frac{DE}{EF} = \\frac{AB}{BC} = \\frac{2}{3}$. Given that $DE=4$,\\\\\nit implies that $EF=6$,\\\\\nhence $DF=DE+EF=\\boxed{10}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52514043": { -"question": "As shown in the figure, on a billiard table, a ball is at point A and is to be shot from point A, reflected off the side cushion CD to hit ball B. Draw AC$\\perp$ CD at point C, and BD$\\perp$ CD at point D. Given that $\\angle AEC=\\angle BED$, with AC = 10cm, BD = 15cm, CD = 20cm, if the player is able to hit ball B, what is the length of DE?", -"image_file_name": "7056275", -"image": [ -"math/52514043_140.png" -], -"solution": "\\textbf{Solution}: Since $AC\\perp CD$ and $BD\\perp CD$,\\\\\nit follows that $\\angle ACE=\\angle BDE=90^\\circ$,\\\\\nSince $\\angle AEC=\\angle BED$,\\\\\nit implies that $\\triangle AEC\\sim\\triangle BED$,\\\\\nTherefore, $\\frac{AC}{BD}=\\frac{CE}{DE}$,\\\\\nGiven that $AC=10\\text{cm}$, $BD=15\\text{cm}$,\\\\\nit leads to $\\frac{10}{15}=\\frac{20-DE}{DE}$,\\\\\nwhich results in $DE=\\boxed{12}\\text{cm}$,\\\\\nHence, the length of $DE$ is $12\\text{cm}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52513827": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=a$, $BC=b$ ($a>b$). Within $\\triangle ABC$, construct $\\angle CBD=\\angle A$, $\\angle DCE=\\angle CBD$, $\\angle EDF=\\angle DCE$, then what is the length of $EF$?", -"image_file_name": "7056275", -"image": [ -"math/52513827_158.png" -], -"solution": "\\textbf{Solution:} \\\\\n\\[\n\\because \\angle CBD = \\angle A, \\angle BCD = \\angle ACB,\n\\]\n\\[\n\\therefore \\triangle BCD \\sim \\triangle ABC,\n\\]\n\\[\n\\therefore \\frac{BC}{CD} = \\frac{AB}{BC},\n\\]\n\\[\n\\therefore \\frac{b}{CD} = \\frac{a}{b},\n\\]\n\\[\n\\therefore CD = \\frac{b^2}{a},\n\\]\n\\[\n\\because \\triangle BCD \\sim \\triangle ABC,\n\\]\n\\[\n\\therefore \\frac{AB}{AC} = \\frac{BC}{BD},\n\\]\n\\[\n\\because AB = AC,\n\\]\n\\[\n\\therefore BC = BD = b,\n\\]\n\\[\n\\because \\angle DCE = \\angle CBD, \\angle CDE = \\angle BDC,\n\\]\n\\[\n\\therefore \\triangle CDE \\sim \\triangle BDC,\n\\]\n\\[\n\\therefore \\frac{DE}{CD} = \\frac{CD}{BC},\n\\]\n\\[\n\\therefore DE = \\frac{CD^2}{BC} = \\frac{b^4}{a^2}{b} = \\frac{b^3}{a^2},\n\\]\n\\[\n\\because \\triangle CDE \\sim \\triangle BDC,\n\\]\n\\[\n\\therefore \\frac{BD}{BC} = \\frac{CD}{CE},\n\\]\n\\[\n\\because BD = BC,\n\\]\n\\[\n\\therefore CD = CE = \\frac{b^2}{a},\n\\]\n\\[\n\\because \\angle DEC = \\angle CED, \\angle EDF = \\angle DCE,\n\\]\n\\[\n\\therefore \\triangle DEF \\sim \\triangle CDE,\n\\]\n\\[\n\\therefore \\frac{DE}{EF} = \\frac{CD}{DE},\n\\]\n\\[\n\\therefore EF = \\frac{DE^2}{CD} = \\frac{\\left(\\frac{b^6}{a^4}\\right)}{\\left(\\frac{b^2}{a}\\right)} = \\boxed{\\frac{b^4}{a^3}}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52456882": { -"question": "As shown in the figure, it is known that $AB \\parallel CD \\parallel EF$. If $AC = 6$, $CE = 3$, and $DF = 2$, then what is the length of $BD$?", -"image_file_name": "7056275", -"image": [ -"math/52456882_165.png" -], -"solution": "\\textbf{Solution:} Given that $AB\\parallel CD\\parallel EF$,\\\\\nit follows that $\\frac{AC}{EC}=\\frac{BD}{FD}$,\\\\\nsince $AC=6$, $CE=3$, $DF=2$,\\\\\nwe have $\\frac{6}{3}=\\frac{BD}{2}$,\\\\\nthus, $BD=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52457419": { -"question": "As shown in the diagram, in parallelogram $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. $M$ is the midpoint of $AD$, and line $CM$ intersects $BD$ at point $N$. What is the value of $\\frac{S_{\\triangle MDN}}{S_{\\triangle BCD}}$?", -"image_file_name": "7056275", -"image": [ -"math/52457419_1711.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore AD\\parallel BC$ and $AD=BC$, \\\\\nGiven that point M is the midpoint of AD, \\\\\n$\\therefore MD = \\frac{1}{2}AD = \\frac{1}{2}BC$, \\\\\nSince $AD\\parallel BC$, \\\\\n$\\therefore \\triangle MDN \\sim \\triangle CBN$, \\\\\n$\\therefore \\frac{MD}{BC} = \\frac{DN}{BN} = \\frac{MN}{NC} = \\frac{1}{2}$, \\\\\n$\\therefore BN = 2DN$, $CN = 2MN$, \\\\\n$\\therefore S_{\\triangle CDN} = 2S_{\\triangle MDN}$, $S_{\\triangle BNC} = 2S_{\\triangle CDN}$, \\\\\n$\\therefore S_{\\triangle BCD} = 6S_{\\triangle MDN}$, \\\\\n$\\therefore \\frac{S_{\\triangle MDN}}{S_{\\triangle BCD}} = \\boxed{\\frac{1}{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51722326": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=2BC$, point $M$ is the midpoint of side $CD$, points $E$ and $F$ are on sides $AB$ and $BC$ respectively, and $AF \\perp ME$, with $G$ being the foot of the perpendicular. If $EB=2$ and $BF=1$, what is the area of quadrilateral $BFGE$?", -"image_file_name": "7056275", -"image": [ -"math/51722326_180.png" -], -"solution": "\\textbf{Solution:} Set $BC=a$, then $AB=2a$, $DM=MC=a$.\\\\\nConstruct $MH\\perp AB$ at $H$,\\\\\nthen $\\angle EMH=90^\\circ-\\angle MEA=\\angle FAB$.\\\\\nHence $Rt\\triangle EMH\\backsim Rt\\triangle FAB$.\\\\\nTherefore, $\\frac{MH}{HE}=\\frac{AB}{BF}$,\\\\\nthat is, $\\frac{a}{a-2}=\\frac{2a}{1}$,\\\\\nsolving this gives $a=\\frac{5}{2}$.\\\\\nThus, $BC=\\frac{5}{2}$, $AB=5$.\\\\\nTherefore, $AF=\\sqrt{AB^2+BF^2}=\\sqrt{5^2+1^2}=\\sqrt{26}$,\\\\\n$S_{\\triangle ABF}=\\frac{1}{2}AB\\times BF=\\frac{1}{2}\\times 5\\times 1=\\frac{5}{2}$.\\\\\nAlso, $Rt\\triangle AEG\\backsim Rt\\triangle AFB$,\\\\\nTherefore, $\\frac{S_{\\triangle AEG}}{S_{\\triangle AFB}}=\\left(\\frac{AE}{AF}\\right)^2=\\left(\\frac{5-2}{\\sqrt{26}}\\right)^2=\\frac{9}{26}$.\\\\\nThus, $S_{\\triangle AEG}=\\frac{9}{26}S_{\\triangle AFB}=\\frac{9}{26}\\times \\frac{5}{2}=\\frac{45}{52}$.\\\\\nThus, $S_{\\text{quadrilateral} BFGE}=S_{\\triangle AFB}-S_{\\triangle AEC}=\\frac{5}{2}-\\frac{45}{52}=\\boxed{\\frac{85}{52}}$.", -"solution_image": [ -"solution_images/51722326_186.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51369883": { -"question": "As shown in the figure, five congruent isosceles triangles are pieced together to form two regular pentagons of different sizes, inside and outside. If the side length of the smaller regular pentagon is 1, what is the side length of the larger regular pentagon?", -"image_file_name": "7056275", -"image": [ -"math/51369883_190.jpg" -], -"solution": "\\textbf{Solution:} Extend CF to intersect BA at point H, \\\\\nsince assembling 5 congruent isosceles triangles forms two differently sized regular pentagon patterns, \\\\\ntherefore $\\angle$BAE=$\\angle$CBA=108$^\\circ$, \\\\\ntherefore $\\angle$ABG+$\\angle$BAG=108$^\\circ$, \\\\\n$\\angle$ABG+$\\angle$BAG+$\\angle$AGB=180$^\\circ$, \\\\\ntherefore $\\angle$AGB=$\\angle$BAG=180$^\\circ$−108$^\\circ$=72$^\\circ$, \\\\\ntherefore $\\angle$ABG=180$^\\circ$−72$^\\circ \\times 2$=$36^\\circ$, \\\\\nsince AB=BC, \\\\\ntherefore $\\angle$BHC=(180$^\\circ$−108$^\\circ$)÷2=$36^\\circ$, \\\\\ntherefore $\\angle$CBF=$\\angle$CFB=108$^\\circ$−36$^\\circ$=72$^\\circ$=$\\angle$AFG, \\\\\ntherefore $\\angle$FHG=180$^\\circ$−72$^\\circ \\times 2$=36$^\\circ$=$\\angle$ABG, \\\\\ntherefore points A and H coincide, \\\\\ntherefore $\\angle$FAG=72$^\\circ$−36$^\\circ$=36$^\\circ$=$\\angle$ABG, \\\\\ntherefore $\\triangle$BAG$\\sim$$\\triangle$FGA, \\\\\ntherefore $\\frac{BA}{AG}=\\frac{AG}{FG}$ \\\\\nLet BF=AF=AG=x, then BG=AB=x+1, \\\\\ntherefore $\\frac{1+x}{x}=\\frac{x}{1}$ \\\\\nSolving it: $x_{1}=\\frac{1+\\sqrt{5}}{2}$, $x_{2}=\\frac{1−\\sqrt{5}}{2}$ (discard since it does not meet the conditions), \\\\\ntherefore AB=1+$\\frac{1+\\sqrt{5}}{2}$=\\boxed{\\frac{3+\\sqrt{5}}{2}}.", -"solution_image": [ -"solution_images/51369883_190.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51369881": { -"question": "As shown in the figure, $A$ and $B$ are located on the horizontal lines of the circular grid. Points $C$ and $D$ are the intersections of the diameter $AB$ with the grid lines. What is the ratio of $BC:CD:DA$?", -"image_file_name": "7056275", -"image": [ -"math/51369881_204.jpg" -], -"solution": "\\textbf{Solution:} Given the figure, draw CE$\\perp$BE at point E, BF$\\perp$CF at point F, and AG$\\perp$DG at point G,\\\\\nthus $\\angle$BEC=$\\angle$CFD=$\\angle$AGD=$90^\\circ$,\\\\\nthus BE$\\parallel$CF$\\parallel$DG,\\\\\nthus $\\angle$B=$\\angle$FCD=$\\angle$ADG,\\\\\nthus $\\triangle$BEC$\\sim$ $\\triangle$CFD$\\sim$ $\\triangle$DGA,\\\\\nthus BC$\\colon$ CD$\\colon$ AD=EC$\\colon$ FD$\\colon$ GA=1$\\colon$ 3$\\colon$ 2.\\\\\nTherefore, the answer is: BC$\\colon$ CD$\\colon$ AD=\\boxed{1\\colon 3\\colon 2}.", -"solution_image": [ -"solution_images/51369881_200.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51369877": { -"question": "As shown in the figure, in $ \\triangle ABC$, $E$ and $F$ are located on sides $AB$ and $AC$ respectively, with $EF\\parallel BC$. Given that $AB=3$, $AE=2$, and $EF=4$, what is the length of $BC$?", -"image_file_name": "7056275", -"image": [ -"math/51369877_215.png" -], -"solution": "\\textbf{Solution:} Since $EF\\parallel BC$,\\\\\nthus $\\frac{EF}{BC} = \\frac{AE}{AB}$, so $\\frac{4}{BC} = \\frac{2}{3}$\\\\\nSolving this yields: $BC=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51323834": { -"question": "As shown in the figure, $l_1\\parallel l_2\\parallel l_3$, the lines $a, b$ intersect $l_1, l_2, l_3$ at points $A, B, C$ and $D, E, F$ respectively. If $AB:BC=2:3$ and $EF=6$, what is the length of $DE$?", -"image_file_name": "7056275", -"image": [ -"math/51323834_222.png" -], -"solution": "\\textbf{Solution:} From the theorem that parallel lines divide segments proportionally, we have: $\\frac{DE}{EF} = \\frac{AB}{BC}$, that is, $\\frac{DE}{6} = \\frac{2}{3}$, \\\\\nThus, we find $DE = \\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51321575": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are respectively the midpoints of AB and AC. If the area of $\\triangle ABC$ is 16, what is the area of quadrilateral BCED?", -"image_file_name": "7056275", -"image": [ -"math/51321575_230.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, points D and E are the midpoints of AB and AC, respectively,\\\\\nthen $DE \\parallel BC$ and $DE= \\frac{1}{2}BC$,\\\\\nthus $\\triangle ADE \\sim \\triangle ABC$,\\\\\nsince $\\frac{DE}{BC}=\\frac{1}{2}$,\\\\\nit follows that $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}}=\\frac{1}{4}$,\\\\\ngiven that $S_{\\triangle ABC}=16$,\\\\\nthen $S_{\\triangle ADE}=\\frac{1}{4}S_{\\triangle ABC}=\\frac{1}{4}\\times 16=4$,\\\\\ntherefore the area of quadrilateral $BCED= S_{\\triangle ABC}-S_{\\triangle ADE}=16-4=\\boxed{12}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433924": { -"question": "As shown in the figure, in $ \\triangle ABC$, $DE$ is the median line of $ \\triangle ABC$. $DC$ and $BE$ intersect at point $F$. If $ {S}_{\\triangle DEF} = 1$, then what is $ {S}_{\\triangle ADE}$?", -"image_file_name": "7056275", -"image": [ -"math/51433924_248.png" -], -"solution": "\\textbf{Solution:} Since $DE$ is the median of $\\triangle ABC$, \\\\\nit follows that $DE \\parallel BC$ and $BC = 2DE$, \\\\\nhence $\\triangle DEF \\sim \\triangle CBF$, \\\\\nthus $\\frac{{S}_{\\triangle CBF}}{{S}_{\\triangle DEF}} = \\left(\\frac{BC}{DE}\\right)^2 = 2^2$, \\\\\ntherefore ${S}_{\\triangle CBF} = 4{S}_{\\triangle DEF}$, \\\\\nsince ${S}_{\\triangle DEF} = 1$, \\\\\nthen ${S}_{\\triangle CBF} = 4$, \\\\\nsince $BE$ is the median, \\\\\nit follows that ${S}_{\\triangle ABE} = {S}_{\\triangle CBE}$, \\\\\nsince $DE$ is the median of $\\triangle ABC$, \\\\\nit follows that $DE \\parallel BC$, \\\\\nthus ${S}_{\\triangle BDE} = {S}_{\\triangle CDE}$, \\\\\nhence ${S}_{\\triangle BDF} = {S}_{\\triangle CFE}$, \\\\\ntherefore ${S}_{\\triangle BDF} + {S}_{\\triangle ADE} + {S}_{\\triangle DEF} = {S}_{\\triangle CFE} + {S}_{\\triangle CBF}$, \\\\\nthus ${S}_{\\triangle ADE} + {S}_{\\triangle DEF} = {S}_{\\triangle CBF}$, \\\\\ntherefore ${S}_{\\triangle ADE} = \\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433787": { -"question": "As shown in the figure, rhombus $ABCD$ has a side length of $4$, and points $E$ and $F$ are located on $AB$ and $AD$, respectively. $AC$ intersects $EF$ at point $G$. If $BE = AF = 1$ and $\\angle BAD = 120^\\circ$, what is the length of $FG$?", -"image_file_name": "7056275", -"image": [ -"math/51433787_252.png" -], -"solution": "\\textbf{Solution:} Construct $EM \\parallel BC$ intersecting $AC$ at $M$, and $EN \\perp BC$ at $N$, as shown in the diagram:\\\\\nSince the side length of rhombus $ABCD$ is 4, and $\\angle BAD = 120^\\circ$,\\\\\ntherefore, $AB = BC = 4$, $\\angle BAC = \\angle FAC = \\frac{1}{2}\\angle BAD = 60^\\circ$, $AD \\parallel BC$,\\\\\ntherefore, $\\triangle ABC$ is an equilateral triangle,\\\\\ntherefore, $\\angle B = \\angle ACB = 60^\\circ$, $BC = AC$,\\\\\nsince $EM \\parallel BC$,\\\\\ntherefore, $EM \\parallel AD$, $\\angle AEM = \\angle B = 60^\\circ = \\angle BAC$,\\\\\ntherefore, $\\triangle AEM$ is an equilateral triangle,\\\\\ntherefore, $AM = AE = AB - BE = 4 - 1 = 3$,\\\\\nsince $EM \\parallel AD$,\\\\\ntherefore, $\\triangle AGF \\sim \\triangle MGE$,\\\\\ntherefore, $\\frac{FG}{EG} = \\frac{AF}{EM} = \\frac{1}{3}$,\\\\\ntherefore, $FG = \\frac{1}{4}EF$,\\\\\nIn $\\triangle BCE$ and $\\triangle ACF$,\\\\\n$\\begin{cases} BC = AC \\\\ \\angle B = \\angle FAC \\\\ BE = AF \\end{cases}$,\\\\\ntherefore, $\\triangle BCE \\cong \\triangle ACF$ (SAS),\\\\\ntherefore, $CE = CF$, $\\angle BCE = \\angle ACF$,\\\\\ntherefore, $\\angle ACF + \\angle ACE = \\angle ACF + \\angle ACE = \\angle ACB = 60^\\circ$,\\\\\ntherefore, $\\triangle CEF$ is an equilateral triangle,\\\\\ntherefore, $EF = CE$,\\\\\nsince $EN \\perp BC$, $\\angle B = 60^\\circ$,\\\\\ntherefore, $\\angle BEN = 30^\\circ$,\\\\\ntherefore, $BN = \\frac{1}{2}BE = \\frac{1}{2}$,\\\\\ntherefore, $EN = \\sqrt{3}BN = \\frac{\\sqrt{3}}{2}$, $CN = BC - BN = 4 - \\frac{1}{2} = \\frac{7}{2}$,\\\\\ntherefore, $EF = CE = \\sqrt{EN^2 + CN^2} = \\sqrt{\\left(\\frac{\\sqrt{3}}{2}\\right)^2 + \\left(\\frac{7}{2}\\right)^2} = \\sqrt{13}$,\\\\\ntherefore, $FG = \\frac{1}{4}EF = \\boxed{\\frac{\\sqrt{13}}{4}}$.", -"solution_image": [ -"solution_images/51433787_250.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433786": { -"question": "As shown in the diagram, in rectangle $ABCD$, with $AB=2$ and $CB=4$, connect $AC$. Form rectangle $ACC_1B_1$ with diagonal $AC$ as a side, rotating in a counterclockwise direction, such that rectangle $ACC_1B_1\\sim$ rectangle $ADCB$. Then, connect $AC_1$ and form rectangle $AC_1C_2B_2$ with diagonal $AC_1$ as a side, rotating in a counterclockwise direction, so that rectangle $AC_1C_2B_2\\sim$ rectangle $ACC_1B_1$, and so on, following this pattern. Let the area of rectangle $ABCD$ be denoted as $S_1$, the area of rectangle $ACC_1B_1$ as $S_2$, the area of rectangle $AC_1C_2B_2$ as $S_3$, ..., then what is the value of $S_{2021}$?", -"image_file_name": "7056275", -"image": [ -"math/51433786_2620.png" -], -"solution": "\\textbf{Solution:}\\\\\n$\\because$ Quadrilateral $ABCD$ is a rectangle,\\\\\n$\\therefore AB\\perp BC$,\\\\\n$\\therefore AC=\\sqrt{AB^{2}+CB^{2}}=\\sqrt{2^{2}+4^{2}}=2\\sqrt{5}$,\\\\\n$\\because$ Constructing a similar rectangle $AB_{1}C_{1}C$ to rectangle $ABCD$ in a counterclockwise direction,\\\\\n$\\therefore$ The ratio of the side lengths of rectangle $AB_{1}C_{1}C$ to rectangle $ABCD$ is $\\sqrt{5}:2$,\\\\\n$\\therefore$ The ratio of the area of rectangle $AB_{1}C_{1}C$ to the area of rectangle $ABCD$ is $5:4$,\\\\\n$\\because S_{1}=2\\times 4=8$,\\\\\n$S_{2}=8\\times \\frac{5}{4}$,\\\\\n$S_{3}=8\\times \\left(\\frac{5}{4}\\right)^{2}$, $\\dots$\\\\\n$\\therefore S_{2020}=8\\times \\left(\\frac{5}{4}\\right)^{2019}$,\\\\\n$S_{2021}=8\\times \\left(\\frac{5}{4}\\right)^{2020}=\\boxed{8\\times \\left(\\frac{5}{4}\\right)^{2020}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433270": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$, $F$, and $G$ are on $AB$, $BC$, and $CD$ respectively, $DE \\perp EF$, $EF \\perp FG$, $BE=3$, $BF=2$, and $FC=6$. What is the length of $DG$?", -"image_file_name": "7056275", -"image": [ -"math/51433270_270.png" -], -"solution": "\\textbf{Solution:} Let us consider right-angled triangle $BEF$, where $BF=2$ and $BE=3$\\\\\nThus, $EF= \\sqrt{BE^{2}+BF^{2}}=\\sqrt{3^{2}+2^{2}}=\\sqrt{13}$\\\\\nDraw a line from $G$ such that $GH \\perp DE$, with $H$ as the foot of the perpendicular,\\\\\nSince $DE \\perp EF$ and $EF \\perp FG$\\\\\nHence, quadrilateral $EFGH$ is a rectangle\\\\\nTherefore, $HG=EF= \\sqrt{13}$\\\\\nGiven rectangle $ABCD$\\\\\nTherefore, $\\angle A=\\angle B=90^\\circ$\\\\\nThus, $\\angle AED+\\angle ADE=90^\\circ$\\\\\nSince $DE \\perp EF$\\\\\nTherefore, $\\angle AED+\\angle BEF=90^\\circ$\\\\\nThus, $\\angle BEF=\\angle ADE$\\\\\nAgain, since $\\angle A=\\angle B=90^\\circ$\\\\\nTherefore, $\\triangle EBF\\sim \\triangle DAE$\\\\\nSimilarly, $\\triangle DAE\\sim \\triangle GHD$\\\\\nThus, $\\triangle EBF\\sim \\triangle GHD$\\\\\nTherefore, $\\frac{DG}{EF}=\\frac{HG}{BE}$, that is $\\frac{DG}{\\sqrt{13}}=\\frac{\\sqrt{13}}{3}$, solving this gives $DG= \\boxed{\\frac{13}{3}}$.", -"solution_image": [ -"solution_images/51433270_271.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52872371": { -"question": "As shown in the figure, lines $l_1 \\parallel l_2 \\parallel l_3$, and lines AC, DF intersect $l_1$, $l_2$, $l_3$ at points A, B, C and D, E, F, respectively. Connect AF. Let $BG \\parallel AF$. If $\\frac{DE}{EF} = \\frac{2}{3}$ and $BG = 6$, then what is the length of AF?", -"image_file_name": "7056275", -"image": [ -"math/52872371_2812.png" -], -"solution": "\\textbf{Solution:} Since $l_1 \\parallel l_2 \\parallel l_3$, $\\frac{DE}{EF}=\\frac{2}{3}$\\\\\nTherefore, $\\frac{AB}{BC}=\\frac{DE}{EF}=\\frac{2}{3}$\\\\\nTherefore, $\\frac{BC}{AC}=\\frac{3}{5}$\\\\\nSince $BG \\parallel AF$,\\\\\nTherefore, $\\triangle CBG \\sim \\triangle CAF$,\\\\\nTherefore, $\\frac{CB}{AC}=\\frac{BG}{AF}$\\\\\nTherefore, $\\frac{3}{5}=\\frac{6}{AF}$\\\\\nTherefore, $AF=\\boxed{10}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51445952": { -"question": "As shown in the figure, the medians $AD$ and $BE$ of $\\triangle ABC$ intersect each other at point $F$. Through point $E$, draw $EG\\parallel AD$ where it intersects $BC$ at point $G$. What is the value of the ratio $EG\\colon AF$?", -"image_file_name": "7056275", -"image": [ -"math/51445952_290.png" -], -"solution": "\\textbf{Solution:} Connect DE.\\\\\nAD, BE are the medians of the triangle\\\\\n$\\therefore$DE$\\parallel$AB, DE=$\\frac{1}{2}$AB\\\\\n$\\therefore$$\\triangle$DEF$\\sim$$\\triangle$ABF\\\\\n$\\therefore$$\\frac{DF}{AF}=\\frac{DE}{AB}=\\frac{1}{2}$\\\\\n$\\therefore$AF=$\\frac{2}{3}AD$\\\\\n$\\because$ED$\\parallel$AD\\\\\n$\\therefore$$\\triangle$EGC$\\sim$$\\triangle$ADC\\\\\n$\\therefore$$\\frac{EG}{AD}=\\frac{CE}{AC}=\\frac{1}{2}$\\\\\n$\\therefore$EG=$\\frac{1}{2}AD$\\\\\n$\\therefore$EG$\\colon$AF=$\\boxed{\\frac{3}{4}}$", -"solution_image": [ -"solution_images/51445952_290.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51446262": { -"question": "In parallelogram ABCD shown in the figure, F is the midpoint of BC. Extend AD to E such that $AD: AE = 3: 4$. Connect EF and intersect DC at point G. What is the ratio ${S}_{\\triangle DEG} : {S}_{\\triangle CFG}$?", -"image_file_name": "7056275", -"image": [ -"math/51446262_302.png" -], -"solution": "\\textbf{Solution:} Given that $AD: AE = 3:4$,\\\\\nlet $AD=3x$ and $AE=4x$,\\\\\nhence $DE=AE-AD=4x-3x=x$,\\\\\nsince quadrilateral ABCD is a parallelogram,\\\\\nit follows that $AD\\parallel BC$ and $BC=AD=3x$,\\\\\ngiven that point F is the midpoint of BC,\\\\\nthus $CF=\\frac{1}{2}BC=\\frac{3}{2}x$,\\\\\nsince $AD\\parallel BC$,\\\\\nit results in $\\angle DEG=\\angle CFG$ and $\\angle EDG=\\angle FCG$,\\\\\nhence $\\triangle DEG\\sim \\triangle CFG$,\\\\\nthus $\\frac{{S}_{\\triangle DEG}}{{S}_{\\triangle CFG}}=\\left(\\frac{DE}{CF}\\right)^{2}=\\left(\\frac{x}{\\frac{3}{2}x}\\right)^{2}=\\boxed{\\frac{4}{9}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51446259": { -"question": "As shown in the figure, $AD\\parallel BE\\parallel CF$, the lines $l_1, l_2$ intersect these three parallel lines at points A, B, C, and points D, E, F, respectively. If $AB=9, BC=6, EF=4$, what is the length of DE?", -"image_file_name": "7056275", -"image": [ -"math/51446259_313.png" -], -"solution": "\\textbf{Solution:} From the property that parallel lines divide line segments proportionally, we know that $\\frac{AB}{BC}=\\frac{DE}{EF}$\\\\\n$\\therefore$ $\\frac{9}{6}=\\frac{DE}{4}$\\\\\nSolving this, we find $DE=\\boxed{6}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52905957": { -"question": "As shown in the figure, the diameter \\(CD=30\\) of the circle \\(\\odot O\\), and \\(AB\\) is a chord of \\(\\odot O\\) such that \\(AB \\perp CD\\) with the foot of the perpendicular being \\(M\\), and \\(OM:OC=3:5\\). What is the length of \\(AB\\)?", -"image_file_name": "7058778", -"image": [ -"math/52905957_06.png" -], -"solution": "\\textbf{Solution:} Since the diameter $CD$ of the circle $\\odot O$ is 30, and $AB\\perp CD$, with $OM\\colon OC=3\\colon 5$,\\\\\nit follows that $AO=OC=15$ and $OM=\\frac{3}{5}OC=\\frac{3}{5}\\times 15=9$. Given that $AM=MB$,\\\\\nthen $AM=\\sqrt{AO^{2}-MO^{2}}=\\sqrt{15^{2}-9^{2}}=12$,\\\\\nthus, $AB=2AM=\\boxed{24}$.", -"solution_image": [ -"solution_images/52905957_02.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52905954": { -"question": "As shown in the figure, it is known that A, B, and C are three points on the circle $\\odot$O. If $\\angle AOB=70^\\circ$, what is the degree measure of $\\angle ACB$?", -"image_file_name": "7058778", -"image": [ -"math/52905954_12.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB=70^\\circ$,\\\\\nthen $\\angle ACB=\\frac{1}{2}\\angle AOB=35^\\circ$,\\\\\ntherefore, the answer is: $\\boxed{35^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991253": { -"question": "In the figure, within circle $O$, $AB$ is the diameter of circle $O$, and chord $CD$ is perpendicular to $AB$ at point H. If $AH=5$ and $HB=1$, then what is the length of $CD$?", -"image_file_name": "7058778", -"image": [ -"math/52991253_27.png" -], -"solution": "\\textbf{Solution:} Link $OD$, \\\\\n$\\because$ $AB$ is the diameter of the circle $\\odot O$, and the chord $CD\\perp AB$, \\\\\n$\\therefore$ $CD=2HD$, \\\\\n$\\because$ $AH=5$, $HB=1$, \\\\\n$\\therefore$ $AB=AH+HB=6$, \\\\\n$\\therefore$ $OD=OA=3$, \\\\\n$\\therefore$ $OH=AH−OA=2$, \\\\\nIn $\\triangle ODH$, $DH=\\sqrt{OD^{2}−OH^{2}}=\\sqrt{5}$, \\\\\n$\\therefore$ $CD=2DH=2\\sqrt{5}$, \\\\\nThus, the answer is: $CD=\\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52991253_20.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52905989": { -"question": "As shown in the figure, points A, B, and C are on the circle $\\odot O$, with $OA\\perp OB$. What is the degree measure of $\\angle ACB$?", -"image_file_name": "7058778", -"image": [ -"math/52905989_32.png" -], -"solution": "\\textbf{Solution:} Since $OA \\perp OB$, \\\\\n$\\therefore$ $\\angle AOB=90^\\circ$,\\\\\n$\\therefore$ $\\angle ACB=\\frac{1}{2}\\angle AOB=45^\\circ$,\\\\\nThus, the answer is: $\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52917391": { -"question": "As shown in the diagram, $AB$ is the diameter of $\\odot O$, $AC$ is a chord, and $\\angle BAC=25^\\circ$. A point D is arbitrarily chosen on $\\odot O$, and point D and point C are located on opposite sides of diameter $AB$. Connecting $AD$ and $DC$, what is the measure of $\\angle D$?", -"image_file_name": "7058778", -"image": [ -"math/52917391_49.png" -], -"solution": "\\textbf{Solution:} Draw line $BC$, as shown in the diagram,\\\\\nsince $AB$ is the diameter of $\\odot O$,\\\\\nthus $\\angle ACB=90^\\circ$,\\\\\nsince $\\angle BAC=25^\\circ$,\\\\\nthus $\\angle B=65^\\circ$,\\\\\nsince $\\overset{\\frown}{AC}=\\overset{\\frown}{AC}$,\\\\\ntherefore $\\angle D=\\angle B=\\boxed{65^\\circ}$;", -"solution_image": [ -"solution_images/52917391_41.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53106899": { -"question": "As shown in the figure, $BD$ is the diameter of $\\odot O$, with $A$ and $C$ on the circle. If $\\angle A=50^\\circ$, what is the measure of $\\angle DBC$?", -"image_file_name": "7058778", -"image": [ -"math/53106899_53.png" -], -"solution": "\\textbf{Solution:} Given that BD is the diameter of circle $O$,\\\\\nit follows that $\\angle BCD = 90^\\circ$,\\\\\nwhich implies $\\angle D = \\angle A = 50^\\circ$,\\\\\nthus, $\\angle DBC = 90^\\circ - \\angle D = \\boxed{40^\\circ}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53106831": { -"question": "As shown in the figure, $AB$ is the diameter of the circle $\\odot O$, with chord $CD \\perp AB$. Connecting $OD$ and $BC$, if $\\angle CBA = 70^\\circ$, what is the measure of $\\angle BOD$?", -"image_file_name": "7058778", -"image": [ -"math/53106831_67.png" -], -"solution": "\\textbf{Solution:} Since $CD\\perp AB$ and $\\angle CBA=70^\\circ$, \\\\\n$\\therefore \\angle BCD=20^\\circ$, \\\\\n$\\therefore \\angle BOD=2\\angle BCD=40^\\circ$, \\\\\nHence, the answer is: $\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874699": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and chord $CD$ is perpendicular to $AB$ at point $E$, $OC=5\\,cm$, $CD=8\\,cm$. What is the length of $OE$?", -"image_file_name": "7058778", -"image": [ -"math/52874699_77.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram:\\\\\nSince $AB$ is the diameter of the circle, and $CD \\perp AB$,\\\\\nTherefore, $\\angle OEC = 90^\\circ$, $CE = \\frac{1}{2}CD = 4\\,\\text{cm}$,\\\\\nIn $\\triangle OCE$ right-angled at $E$, $OE = \\sqrt{OC^{2} - CE^{2}} = \\sqrt{5^{2} - 4^{2}} = \\boxed{3}\\,\\text{cm}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874668": { -"question": "As shown in the diagram, the quadrilateral ABCD is inscribed in circle $\\odot O$, with point C being the midpoint of arc $\\overset{\\frown}{BD}$. If $\\angle A=50^\\circ$, what is the measure of $\\angle CBD$?", -"image_file_name": "7058778", -"image": [ -"math/52874668_81.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is inscribed in circle O, $\\angle A=50^\\circ$, \\\\\n$\\therefore \\angle C=180^\\circ-\\angle A=180^\\circ-50^\\circ=130^\\circ$, \\\\\nsince point C is the midpoint of arc BD, \\\\\n$\\therefore CD=CB$, \\\\\n$\\therefore \\angle CBD=\\angle CDB$, \\\\\n$\\therefore \\angle CBD=\\frac{1}{2}\\times(180^\\circ-130^\\circ)=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874635": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $O$. Point $I$ is the intersection point of the angle bisectors of $\\triangle ABC$, and $\\angle AIC = 124^\\circ$. Point $E$ is on the extension line of side $AD$. What is the measure of $\\angle CDE$?", -"image_file_name": "7058778", -"image": [ -"math/52874635_90.png" -], -"solution": "\\textbf{Solution:} Given that point I is the intersection of the angle bisectors of $\\triangle ABC$, \\\\\n$\\therefore \\angle BAC = 2\\angle IAC$, $\\angle ACB = 2\\angle ICA$, \\\\\nGiven $\\angle AIC = 124^\\circ$, \\\\\n$\\therefore \\angle IAC + \\angle ICA = 180^\\circ - \\angle AIC = 56^\\circ$, \\\\\n$\\therefore \\angle B = 180^\\circ - (\\angle BAC + \\angle ACB) = 180^\\circ - 2(\\angle IAC + \\angle ICA) = 180^\\circ - 2 \\times 56^\\circ = 68^\\circ$, \\\\\nFurthermore, since quadrilateral ABCD is inscribed in circle O, \\\\\n$\\therefore \\angle CDE = \\angle B = \\boxed{68^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874631": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of the circumcircle of $\\triangle ABC$, and $\\angle A=25^\\circ$, then what is the degree measure of $\\angle B$?", -"image_file_name": "7058778", -"image": [ -"math/52874631_100.png" -], -"solution": "\\textbf{Solution:} Since $AB$ is the diameter of the circumcircle of $\\triangle ABC$, \\\\\nthen $\\angle ACB = 90^\\circ$, \\\\\nthus $\\angle A + \\angle B = 90^\\circ$, \\\\\nmoreover, since $\\angle A = 25^\\circ$, \\\\\ntherefore $\\angle B = 90^\\circ - \\angle A = 90^\\circ - 25^\\circ = \\boxed{65^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874564": { -"question": "As shown in the figure, AB is a chord of circle $O$, radius OC is perpendicular to AB at point D, and AB = 6, OD = 4. What is the length of DC?", -"image_file_name": "7058778", -"image": [ -"math/52874564_110.png" -], -"solution": "\\textbf{Solution:} Extend line OB. \\\\\nSince AB is a chord of circle O, and radius OC is perpendicular to AB at point D, and AB=6, \\\\\ntherefore BD=3, let CD=x, then OC=OB=x+4, \\\\\nin $\\triangle BDO$, $OD^{2}+BD^{2}=OB^{2}$, \\\\\nthus $4^{2}+3^{2}=(x+4)^{2}$, \\\\\nsolving this, we find $x=\\boxed{1}$, \\\\\ntherefore, CD=1.", -"solution_image": [ -"solution_images/52874564_110.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874515": { -"question": "As shown in the figure, in the circle $\\odot O$, the diameter $CD$ is perpendicular to the chord $AB$ at point $E$, and $OB$ and $BC$ are connected. Given that the radius of $\\odot O$ is $2$ and $AB=2$, what is the measure of $\\angle BCD$?", -"image_file_name": "7058778", -"image": [ -"math/52874515_120.png" -], -"solution": "\\textbf{Solution:} Given that diameter $CD$ is perpendicular to chord $AB$ at point $E$, and $AB=2$,\\\\\nit follows that $\\angle OEB=90^\\circ$, and $BE=1$,\\\\\nsince $OB=2$,\\\\\nthus $\\angle BOE=30^\\circ$,\\\\\ntherefore $\\angle BCD=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52871844": { -"question": "As shown in the figure, for the square $ABCD$ with a side length of 4, and a semicircle $O$ with diameter $BC$ intersecting the diagonal $AC$ at point $E$, what is the area of the shaded region?", -"image_file_name": "7058778", -"image": [ -"math/52871844_133.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$\\because$ $BC$ is the diameter of the circle.\\\\\n$\\therefore$ $BE\\perp AC$\\\\\nAlso, $\\because$ $BC=AB$\\\\\n$\\therefore$ $BE=EA=EC$,\\\\\n$\\because$ $O$ is the midpoint of $BC$\\\\\n$\\therefore$ $EO$ is the median of $\\triangle ABC$,\\\\\n$\\therefore$ $EO\\parallel AB$,\\\\\n$\\therefore$ $\\angle BOE=90^\\circ$,\\\\\n$\\therefore$ the area of the shaded part $=S_{\\triangle ABC}-S_{\\text{sector} BOE}$\\\\\n$=\\frac{1}{2}AB\\times BC-\\frac{90^\\circ\\times \\pi \\times OB^{2}}{360}$\\\\\n$=\\frac{1}{2}\\times 4\\times 4-\\frac{90^\\circ\\times \\pi \\times 2^{2}}{360}$\\\\\n$=8-\\pi$.\\\\\nTherefore, the answer is: \\boxed{8-\\pi}.", -"solution_image": [ -"solution_images/52871844_130.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52871726": { -"question": "As shown in the figure, the cross-section of a horizontally placed cylindrical drainage pipe is $\\odot O$, with the height of the water-containing segment being 2, and the chord $AB=4\\sqrt{3}$. What is the radius of the cross-section?", -"image_file_name": "7058778", -"image": [ -"math/52871726_142.png" -], -"solution": "\\textbf{Solution:} Draw OD$\\perp$AB through point O, with the foot at point C, intersecting $\\odot O$ at point D,\\\\\nsince $AB=4\\sqrt{3}$ and $OD\\perp AB$,\\\\\ntherefore $AC=\\frac{1}{2}AB=2\\sqrt{3}$,\\\\\nLet the radius be $r$,\\\\\nsince $CD=2$,\\\\\ntherefore $OC=r-2$,\\\\\nIn $\\triangle OAC$, by the Pythagorean theorem, we obtain:\\\\\n$OC^2+AC^2=OA^2$, which means ${(r-2)}^2+{(2\\sqrt{3})}^2=r^2$,\\\\\nSolving yields: $r=\\boxed{4}$.", -"solution_image": [ -"solution_images/52871726_141.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52871878": { -"question": "As shown in the figure, $C$ is a point on the semicircle $O$ with $AB$ as its diameter. Connect $AC$ and $BC$. Construct squares $ACDE$ and $BCFG$ externally on sides $AC$ and $BC$, respectively. Let $M$, $N$, $P$, and $Q$ be the midpoints of $DE$, $FG$, arc $AC$, and arc $BC$, respectively. If $MP + NQ = 14$ and $AC + BC = 18$, what is the length of $AB$?", -"image_file_name": "7058778", -"image": [ -"math/52871878_150.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OP and OQ which intersect AC and BC at points I and H respectively,\\\\\n$\\because$ The midpoints of DE, FG, $\\overset{\\frown}{AC}$, and $\\overset{\\frown}{BC}$ are M, N, P, and Q respectively,\\\\\n$\\therefore$ OP $\\perp$ AC, OQ $\\perp$ BC,\\\\\n$\\therefore$ H and I are the midpoints of AC and BD,\\\\\n$\\therefore$ OH+OI=$\\frac{1}{2}$(AC+BC)=9,\\\\\n$\\therefore$ MH+NI=AC+BC=18, MP+NQ=14,\\\\\n$\\therefore$ PH+QI=18−14=4,\\\\\n$\\therefore$ AB=OP+OQ=OH+OI+PH+QI=9+4=\\boxed{13},", -"solution_image": [ -"solution_images/52871878_150.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52871840": { -"question": "As shown in the figure, quadrilateral $ABCD$ is an inscribed quadrilateral of circle $\\odot O$, the radius of $\\odot O$ is 2, and $\\angle B=135^\\circ$. What is the measure of $\\angle ADC$?", -"image_file_name": "7058778", -"image": [ -"math/52871840_165.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is inscribed in circle $O$, and $\\angle B=135^\\circ$,\n\n$\\therefore$ $\\angle ADC=180^\\circ-\\angle B=45^\\circ$,\n\nthus $\\angle ADC=\\boxed{45^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52871899": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$. Points $D$ and $C$ are on $\\odot O$. Connect $AD$, $DC$, $AC$. If $\\angle C=65^\\circ$, then what is the degree measure of $\\angle BAD$?", -"image_file_name": "7058778", -"image": [ -"math/52871899_178.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BD.\\\\\nSince $AB$ is the diameter of $\\odot O$,\\\\\n$\\therefore$ $\\angle ADB=90^\\circ$.\\\\\nSince $\\angle C=65^\\circ$,\\\\\n$\\therefore$ $\\angle ABD=65^\\circ$,\\\\\n$\\therefore$ $\\angle BAD=90^\\circ-65^\\circ=\\boxed{25^\\circ}$.", -"solution_image": [ -"solution_images/52871899_170.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52871876": { -"question": "As shown in the figure, within circle $O$, there is a broken line $OABC$, where $OA=8$, $AB=12$, and $\\angle A=\\angle B=60^\\circ$. What is the length of $BC$?", -"image_file_name": "7058778", -"image": [ -"math/52871876_185.png" -], -"solution": "\\textbf{Solution:} Extend $AO$ to meet $BC$ at point $D$, and draw $OE\\perp BC$ at point $E$.\\\\\n$\\because \\angle A=\\angle B=60^\\circ$,\\\\\n$\\therefore \\angle ADB=60^\\circ$,\\\\\n$\\therefore \\triangle ADB$ is an equilateral triangle,\\\\\n$\\therefore BD=AD=AB=12$,\\\\\n$\\therefore OD=4$,\\\\\nFurthermore, $\\because \\angle ADB=60^\\circ$,\\\\\n$\\therefore DE=OD\\cdot \\cos 60^\\circ=\\frac{1}{2}OD=2$,\\\\\n$\\therefore BE=10$,\\\\\n$\\because OE\\perp BC$,\\\\\n$\\therefore BC=2BE=\\boxed{20}$.", -"solution_image": [ -"solution_images/52871876_180.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52861883": { -"question": "As shown in the figure, the cross-section of a drainpipe is a circle with a radius of $5$. If the width of the water surface $AB = 8$, then what is the depth of the water $CD$?", -"image_file_name": "7058778", -"image": [ -"math/52861883_190.png" -], -"solution": "\\textbf{Solution:} Connect OB. \\\\\nAccording to the problem, OD $\\perp$ AB, intersecting AB at point C, \\\\\nsince AB = 8, \\\\\nthus BC = $\\frac{1}{2}$ AB = $\\frac{1}{2} \\times 8$ = 4, \\\\\nIn $\\triangle OBC$, \\\\\nsince OB = 5, BC = 4, \\\\\nthus OC = $\\sqrt{OB^{2} - BC^{2}} = \\sqrt{5^{2} - 4^{2}}$ = 3, \\\\\ntherefore CD = OD - OC = 5 - 3 = \\boxed{2}.", -"solution_image": [ -"solution_images/52861883_190.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52861180": { -"question": "As shown in the figure, point D is on the circumcircle of the equilateral triangle $\\triangle ABC$, and $\\angle DAC = 20^\\circ$. What is the measure of $\\angle ACD$?", -"image_file_name": "7058778", -"image": [ -"math/52861180_200.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an equilateral triangle,\\\\\nit follows that $\\angle BAC = \\angle ACB = 60^\\circ$,\\\\\nthus $\\angle BAD = \\angle BAC + \\angle DAC = 60^\\circ + 20^\\circ = 80^\\circ$,\\\\\nsince quadrilateral ABCD is a cyclic quadrilateral,\\\\\nit follows that $\\angle BCD = 180^\\circ - \\angle BAD = 180^\\circ - 80^\\circ = 100^\\circ$,\\\\\ntherefore $\\angle ACD = \\angle BCD - \\angle ACB = 100^\\circ - 60^\\circ = \\boxed{40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52861149": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle BAC=60^\\circ$. If the radius $ OC$ of circle $ O$ is 2, what is the length of chord $ BC$?", -"image_file_name": "7058778", -"image": [ -"math/52861149_210.png" -], -"solution": "\\textbf{Solution:} Construct line OD $\\perp$ BC at point D, \\\\\n$\\therefore \\angle$ODC$=90^\\circ$, BC$=2$CD,\\\\\n$\\because$ arc BC$=$ arc BC,\\\\\n$\\therefore \\angle$BOC$=2\\angle$BAC$=2\\times 60^\\circ=120^\\circ$,\\\\\n$\\therefore \\angle C= \\frac{1}{2}(180^\\circ-120^\\circ)=30^\\circ$,\\\\\n$\\therefore$OD$=\\frac{1}{2}$CO$=1$ in $\\triangle$COD,\\\\\n$CD=\\sqrt{OC^{2}-OD^{2}}=\\sqrt{2^{2}-1^{2}}=\\sqrt{3}$,\\\\\n$\\therefore$BC$=2\\sqrt{3}$. Hence, the answer is: \\boxed{2\\sqrt{3}}", -"solution_image": [ -"solution_images/52861149_210.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52861148": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is an inscribed quadrilateral of the circle, with $AB$ as the diameter. It is given that $\\overset{\\frown}{DC} = \\overset{\\frown}{CB}$, and if $\\angle DCB = 110^\\circ$, what is the degree measure of $\\angle ABC$?", -"image_file_name": "7058778", -"image": [ -"math/52861148_223.png" -], -"solution": "\\textbf{Solution:} Connect AC, \\\\\n$\\because$ Quadrilateral ABCD is inscribed in circle O, \\\\\n$\\therefore$ $\\angle$DAB + $\\angle$DCB = 180$^\\circ$, \\\\\n$\\therefore$ $\\angle$DAB = 180$^\\circ$ − 110$^\\circ$ = 70$^\\circ$, \\\\\n$\\because$ $ \\overset{\\frown}{DC} = \\overset{\\frown}{CB}$, \\\\\n$\\therefore$ $\\angle$DAC = $\\angle$CAB = $\\frac{1}{2}$ $\\angle$DAB = $\\frac{1}{2}$ × 70$^\\circ$ = 35$^\\circ$; \\\\\n$\\because$ AB is the diameter, \\\\\n$\\therefore$ $\\angle$ACB = 90$^\\circ$, \\\\\n$\\therefore$ $\\angle$ABC = 90$^\\circ$ − $\\angle$CAB = 90$^\\circ$ − 35$^\\circ$ = \\boxed{55^\\circ}.", -"solution_image": [ -"solution_images/52861148_220.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52837271": { -"question": "In the figure, A, B, and C are three points on the circle $\\odot O$, with $\\angle AOB = 72^\\circ$. What is the measure of $\\angle ACB$?", -"image_file_name": "7058778", -"image": [ -"math/52837271_230.png" -], -"solution": "\\textbf{Solution:} We have $\\angle ACB=\\frac{1}{2}\\angle AOC=\\frac{1}{2}\\times 72^\\circ=\\boxed{36^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52828738": { -"question": "As shown in the diagram, quadrilateral ABCD is inscribed in circle $O$. If $\\angle C = 100^\\circ$, what is the measure of $\\angle BOD$?", -"image_file_name": "7058778", -"image": [ -"math/52828738_240.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is inscribed in circle $O$, and $\\angle BCD=100^\\circ$, \\\\\nit follows that $\\angle A=180^\\circ-\\angle BCD=80^\\circ$, \\\\\nBy the inscribed angle theorem, we have $\\angle BOD=2\\angle A= \\boxed{160^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52815675": { -"question": "As shown in the figure, it is known that points A, B, and C are sequentially on the circle $\\odot o$. Given that $\\angle B - \\angle A = 40^\\circ$, what is the degree measure of $\\angle AOB$?", -"image_file_name": "7058778", -"image": [ -"math/52815675_250.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, $AC$ intersects $OB$ at point $D$,\\\\\n$\\because$ $\\angle A + \\angle O + \\angle ADO = 180^\\circ$, $\\angle B + \\angle C + \\angle CDB = 180^\\circ$, $\\angle ADO = \\angle CDB$,\\\\\n$\\therefore$ $\\angle A + \\angle O = \\angle B + \\angle C$,\\\\\n$\\therefore$ $\\angle B - \\angle A = \\angle O - \\angle C = 40^\\circ$,\\\\\n$\\because$ $\\overset{\\frown}{AB} = \\overset{\\frown}{AB}$,\\\\\n$\\therefore$ $\\angle O = 2\\angle C$,\\\\\n$\\therefore$ $2\\angle C - \\angle C = 40^\\circ$,\\\\\nSolving this: $\\angle C = 40^\\circ$,\\\\\n$\\therefore$ $\\angle AOB = 2 \\times 40^\\circ = \\boxed{80^\\circ}$.", -"solution_image": [ -"solution_images/52815675_250.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52814896": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, $\\angle BAD=70^\\circ$, then what is the degree measure of $\\angle BCD$?", -"image_file_name": "7058778", -"image": [ -"math/52814896_260.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is inscribed in circle O, $\\angle$BAD=$70^\\circ$,\\\\\ntherefore, $\\angle$BAD+$\\angle$BCD=$180^\\circ$,\\\\\ntherefore, $\\angle$BCD=$\\boxed{110^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52814897": { -"question": "As shown in the figure, OA and OB are two radii of the circle $O$, and point C is on the circle $O$. If $\\angle AOB = 80^\\circ$, what is the measure of $\\angle ACB$?", -"image_file_name": "7058778", -"image": [ -"math/52814897_270.png" -], -"solution": "\\textbf{Solution:} Since OA and OB are two radii of the circle O, with point C on the circle O, and $\\angle$AOB=80°, \\\\\nit follows that $\\angle$ACB=$\\frac{1}{2}\\angle$AOB=$\\boxed{40^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52814831": { -"question": "As shown in the figure, there is a broken line OABC inside circle O, where OA = 8, AB = 12, and $\\angle A = \\angle B = 60^\\circ$. What is the length of BC?", -"image_file_name": "7058778", -"image": [ -"math/52814831_280.png" -], -"solution": "\\textbf{Solution:} Extend AO and intersect BC at D, and draw OE$\\perp$BC at E.\\\\\nSince $\\angle A = \\angle B = 60^\\circ$,\\\\\nthen $\\angle ADB = 60^\\circ$,\\\\\nthus $\\triangle ADB$ is an equilateral triangle,\\\\\nthus BD = AD = AB = 12,\\\\\nthus OD = 4,\\\\\nAdditionally, since $\\angle ADB = 60^\\circ$,\\\\\nthen DE = OD $\\cdot \\cos 60^\\circ = \\frac{1}{2}$ OD = 2,\\\\\nthus BE = 10,\\\\\nSince OE $\\perp$ BC,\\\\\nthus BC = 2BE = \\boxed{20}.", -"solution_image": [ -"solution_images/52814831_280.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52814833": { -"question": "As shown in the figure, C is a point on the semicircle O with AB as the diameter. Lines AC and BC are connected, and squares ACDE and BCFG are constructed externally on sides AC and BC, respectively. The midpoints of DE, FG, $\\overset{\\frown}{AC}$, and $\\overset{\\frown}{BC}$ are M, N, P, Q, respectively. If $MP+NQ=14$ and $AC+BC=18$, what is the length of AB?", -"image_file_name": "7058778", -"image": [ -"math/52814833_292.png" -], -"solution": "\\textbf{Solution:} \\\\\nLet's connect OP and OQ, \\\\\nsince the midpoints of DE, FG, $\\overset{\\frown}{AC}$, and $\\overset{\\frown}{BC}$ are respectively M, N, P, and Q, \\\\\ntherefore OP $\\perp$ AC, and OQ $\\perp$ BC, \\\\\nthus H and I are the midpoints of AC and BC, respectively, \\\\\nhence OH + OI = $\\frac{1}{2}$(AC + BC) = 9, \\\\\nsince MH + NI = AC + BC = 18, and MP + NQ = 14, \\\\\ntherefore PH + QI = 18 - 14 = 4, \\\\\nthus AB = OP + OQ = OH + OI + PH + QI = 9 + 4 = \\boxed{13},", -"solution_image": [ -"solution_images/52814833_290.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52808095": { -"question": "As shown in the figure, in $\\triangle ABC$, the perpendicular bisectors of sides $AB$ and $AC$ intersect at point $P$. Connect $BP$ and $CP$. If $\\angle A = 50^\\circ$, what is the measure of $\\angle BPC$?", -"image_file_name": "7058778", -"image": [ -"math/52808095_300.png" -], -"solution": "\\textbf{Solution:} As the diagram shows, connect AP and extend BP to intersect AC at D,\\\\\n$\\because$ the perpendicular bisectors of AB and AC intersect at point P,\\\\\n$\\therefore$ point P is the circumcenter of $\\triangle ABC$,\\\\\n$\\therefore$ $\\angle BPC = 2\\angle BAC$\\\\\n$\\because$ $\\angle BAC = 50^\\circ$,\\\\\n$\\therefore$ $\\angle BPC = \\boxed{100^\\circ}$.", -"solution_image": [ -"solution_images/52808095_300.jpg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52807528": { -"question": "As shown in the figure, in circle $\\odot O$, the diameter $CD$ is perpendicular to chord $AB$ at point $E$, and $OB$ and $CB$ are connected. Given that the radius of $\\odot O$ is $2$ and $AB=2\\sqrt{3}$, what is the measure of $\\angle BCD$?", -"image_file_name": "7058778", -"image": [ -"math/52807528_311.png" -], -"solution": "\\textbf{Solution:} Given that diameter CD is perpendicular to chord AB at point E, and AB = 2$\\sqrt{3}$, \\\\\nhence, EB = $\\frac{1}{2}$AB = $\\sqrt{3}$, \\\\\nsince the radius of circle O is 2, \\\\\ntherefore, $\\sin\\angle EOB = \\frac{EB}{OB} = \\frac{\\sqrt{3}}{2}$, \\\\\nthus, $\\angle EOB = 60^\\circ$, \\\\\ntherefore, $\\angle BCD = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52793776": { -"question": "As shown in the figure, within circle $O$, $AB$ is a diameter, and point $C$ is a point on the circle. The minor arc $AC$ is folded along the chord $AC$ to intersect $AB$ at point $D$, and $CD$ is connected. If point $D$ does not coincide with the center $O$ and $\\angle BAC=24^\\circ$, what is the degree measure of $\\angle DCA$?", -"image_file_name": "7058778", -"image": [ -"math/52793776_3212.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BC,\\\\\n$\\because$ AB is the diameter of $ \\odot O$\\\\\n$\\therefore$ $\\angle ACB=90^\\circ$\\\\\n$\\therefore$ $\\angle B=180^\\circ-\\angle BAC-\\angle B=180^\\circ-90^\\circ-24^\\circ=66^\\circ$\\\\\nAccording to the reflection property, $\\angle B$ is the inscribed angle corresponding to arc $\\overset{\\frown}{AC}$, $\\angle ADC$ is the inscribed angle corresponding to arc $\\overset{\\frown}{ABC}$\\\\\n$\\therefore$ $\\angle B+\\angle ADC=180^\\circ$\\\\\n$\\therefore$ $\\angle ADC=114^\\circ$\\\\\n$\\therefore$ $\\angle DCA=180^\\circ-\\angle ADC-\\angle BAC=180^\\circ-114^\\circ-24^\\circ=\\boxed{42^\\circ}$", -"solution_image": [ -"solution_images/52793776_320.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52796833": { -"question": "As shown in the figure, AB is the diameter of the circle $O$, and point C is a point on circle $O$, $\\angle ABC=70^\\circ$. What is the measure of $\\angle BAC$?", -"image_file_name": "7058778", -"image": [ -"math/52796833_330.png" -], -"solution": "\\textbf{Solution:} Since AB is the diameter of circle O, and point C is a point on circle O,\\\\\nit follows that $\\angle ACB=90^\\circ$,\\\\\nSince $\\angle ABC=70^\\circ$,\\\\\nit follows that $\\angle BAC=180^\\circ-\\left(\\angle ACB+\\angle ABC\\right)=180^\\circ-90^\\circ-70^\\circ=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52774651": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, with points $C, D$ on $\\odot O$, and $\\angle ACD=35^\\circ$, then what is the degree measure of $\\angle BOD$?", -"image_file_name": "7058778", -"image": [ -"math/52774651_346.png" -], -"solution": "\\textbf{Solution:} Since $\\overset{\\frown}{AD}=\\overset{\\frown}{AD}$,\\\\\n$\\therefore \\angle AOD=2\\angle ACD=2\\times 35^\\circ=70^\\circ$,\\\\\n$\\therefore \\angle BOD=180^\\circ-\\angle AOD=180^\\circ-70^\\circ=\\boxed{110^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52774538": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in circle $\\odot O$, with $\\angle C=46^\\circ$. Connecting $OA$, what is the measure of $\\angle OAB$?", -"image_file_name": "7058778", -"image": [ -"math/52774538_351.png" -], -"solution": "\\textbf{Solution:} As shown in the figure:\\\\\nConnect OB,\\\\\n$\\because \\angle C=46^\\circ$,\\\\\n$\\therefore \\angle AOB=92^\\circ$,\\\\\nAlso, $\\because OA=OB$,\\\\\n$\\therefore \\angle OAB=\\angle OBA=(180-92^\\circ)÷2=\\boxed{44^\\circ}$.", -"solution_image": [ -"solution_images/52774538_350.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52755170": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in $\\odot O$, with $CA=CB$. If $\\angle C=40^\\circ$, what is the degree measure of $\\overset{\\frown}{BC}$?", -"image_file_name": "7058778", -"image": [ -"math/52755170_361.png" -], -"solution": "\\textbf{Solution:} Given $\\because$CA=CB, $\\angle$C=$40^\\circ$,\\\\\n$\\therefore$$\\angle$A=$\\angle$B=$\\frac{1}{2}\\times(180^\\circ-40^\\circ)=70^\\circ$,\\\\\n$\\therefore$ the degree of arc $\\overset{\\frown}{BC}$ is $\\boxed{140^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52755172": { -"question": "As shown in the figure, in the circle $\\odot O$, $AB$ is the diameter of $\\odot O$, and the chord $CD\\perp AB$ at point $H$. If $AH=5$ and $HB=1$, then what is the length of $CD$?", -"image_file_name": "7058778", -"image": [ -"math/52755172_370.png" -], -"solution": "\\textbf{Solution:} Connect OD, \\\\\n$\\because$ AB is the diameter of $\\odot$O, and chord CD $\\perp$ AB,\\\\\n$\\therefore$ CD = 2DH,\\\\\n$\\because$ AH = 5, HB = 1,\\\\ \n$\\therefore$ AB = AH + HB = 6,\\\\\n$\\therefore$ OD = OA = 3,\\\\\n$\\therefore$ OH = AH - OA = 2,\\\\\nIn $\\triangle ODH$, DH = $\\sqrt{OD^{2}-OH^{2}} = \\sqrt{3^{2}-2^{2}} = \\sqrt{5}$,\\\\\n$\\therefore$ CD = 2DH = $2\\sqrt{5}$,\\\\\nTherefore, $CD=\\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52755172_370.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52755175": { -"question": "As shown in the figure, with $O$ in the center, point $C$ is on the arc $\\overset{\\frown}{AB}$, and $\\angle ADC$, $\\angle BEC$ are the angles subtended by arcs $\\overset{\\frown}{AC}$, $\\overset{\\frown}{BC}$ on the circumference, respectively. If $\\angle AOB=110^\\circ$ and $\\angle ADC=20^\\circ$, what is the measure of $\\angle BEC$?", -"image_file_name": "7058778", -"image": [ -"math/52755175_382.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB=110^\\circ$,\\\\\ntherefore $\\angle ADC+\\angle BEC= \\frac{1}{2} \\angle AOB=55^\\circ$,\\\\\nsince $\\angle ADC=20^\\circ$,\\\\\ntherefore $\\angle BEC=\\boxed{35^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52754802": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, point $D$ is the midpoint of the arc $AC$, draw $DE \\perp AB$ at point $E$, extend $DE$ to intersect $\\odot O$ at point $F$. If $AC = 12$ and $AE = 3$, what is the length of the diameter of $\\odot O$?", -"image_file_name": "7058778", -"image": [ -"math/52754802_390.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OF.\\\\\nSince DE$\\perp$AB, it follows that DE=EF, $\\overset{\\frown}{AD} = \\overset{\\frown}{AF}$. Since point D is the midpoint of arc AC, it follows $\\overset{\\frown}{AD} = \\overset{\\frown}{CD}$, hence $\\overset{\\frown}{AC} = \\overset{\\frown}{DF}$, therefore AC=DF=12, thus EF=$\\frac{1}{2}$DF=6. Let OA=OF=x, in the right triangle $\\triangle$OEF, we have $x^{2}=6^{2}+(x-3)^{2}$. Solving this, we get $x=\\frac{15}{2}$, thus AB=2x=\\boxed{15}.", -"solution_image": [ -"solution_images/52754802_390.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52733109": { -"question": "As shown in the figure, with point A of square ABCD as the center and AB as the radius, draw the arc $\\overset{\\frown}{BD}$. Choose a point F on arc $\\overset{\\frown}{BD}$ such that $DF=DC$, and let point E be another point on arc $\\overset{\\frown}{BD}$ (not coinciding with points D or F). What is the value of $\\angle DEF$?", -"image_file_name": "7058778", -"image": [ -"math/52733109_403.png" -], -"solution": "\\textbf{Solution:} Draw AE and AF.\\\\\n$\\because$ With A as the center of the circle and AB as the radius, construct arc $\\overset{\\frown}{BD}$, and choose a point F on arc $\\overset{\\frown}{BD}$ such that DF=DC.\\\\\n$\\therefore$AD=AE=AF=DF,\\\\\n$\\therefore$$\\triangle$ADF is an equilateral triangle,\\\\\n$\\therefore$$\\angle$DAF=$60^\\circ$, $\\angle$ADE=$\\angle$DEA, $\\angle$AEF=$\\angle$AFE,\\\\\n$\\because$$\\angle$DAE+$\\angle$ADE+$\\angle$DEA=$180^\\circ$, then 2$\\angle$ADE=$180^\\circ$−$\\angle$DAE,\\\\\n$\\angle$EAF+$\\angle$AEF+$\\angle$AFE=$180^\\circ$, then 2$\\angle$AEF=$180^\\circ$−$\\angle$EAF,\\\\\n$\\therefore$2$\\angle$ADE+2$\\angle$AEF=$360^\\circ$−($\\angle$DAE+$\\angle$EAF)=$360^\\circ$−$\\angle$DAF=$300^\\circ$,\\\\\n$\\therefore$$\\angle$ADE+$\\angle$AEF=$150^\\circ$, thus $\\angle$DEF=\\boxed{150^\\circ}.", -"solution_image": [ -"solution_images/52733109_400.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52731636": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=BC=6$. Points D and E are located on AC and BC, respectively, $CD=2$. If the circle $\\odot O$ with diameter DE intersects the midpoint F of AB, then what is the diameter of $\\odot O$?", -"image_file_name": "7058778", -"image": [ -"math/52731636_413.png" -], -"solution": "\\textbf{Solution:} Construct $FG\\perp AC$ and $FH\\perp CB$, with the feet of the perpendiculars being G and H, respectively, as shown in the figure. \\\\\nThen, quadrilateral BCGF is a rectangle, with $AC\\parallel FH$ and $CB\\parallel FG$, \\\\\nsince $AC=BC=6$ and point F is the midpoint of AB, \\\\\nthus, $CG=CH=GF=HF=\\frac{1}{2} \\times 6=3$, \\\\\ntherefore, quadrilateral BCGF is a square, \\\\\ntherefore, $\\angle GFH=90^\\circ$, \\\\\nsince DE is a diameter, then $\\angle DFE=90^\\circ$, \\\\\ntherefore, $\\angle DFG+\\angle DFH=\\angle DFH+\\angle EFH=90^\\circ$, \\\\\ntherefore, $\\angle DFG=\\angle EFH$, \\\\\nsince $\\angle DGF=\\angle EHF=90^\\circ$ and $GF=HF=3$, \\\\\ntherefore, $\\triangle DFG \\cong \\triangle EFH$, \\\\\ntherefore, DF=EF, \\\\\nsince, in the right-angled $\\triangle DFG$, $DG=3-2=1$ and $GF=3$, \\\\\ntherefore, $DF=\\sqrt{1^2+3^2}=\\sqrt{10}=EF$, \\\\\nIn the right-angled $\\triangle DEF$, \\\\\n$DE=\\sqrt{(\\sqrt{10})^2+(\\sqrt{10})^2}=2\\sqrt{5}$; \\\\\nThus, the answer is: $\\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52731636_410.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52807129": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is a rectangle with $AB=3$ and $BC=4$. Point $P$ is a moving point on line segment $BC$, and point $M$ is a point on line segment $AP$ such that $\\angle ADM=\\angle BAP$. What is the minimum value of $BM$?", -"image_file_name": "7058778", -"image": [ -"math/52807129_420.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, let O be the midpoint of AD and connect OB and OM.\\\\\n$\\because$ Quadrilateral ABCD is a rectangle,\\\\\n$\\therefore\\angle$BAD$=90^\\circ$, AD$=$BC$=4$,\\\\\n$\\therefore\\angle$BAP$+\\angle$DAM$=90^\\circ$,\\\\\n$\\because\\angle$ADM$=\\angle$BAP,\\\\\n$\\therefore\\angle$ADM$+\\angle$DAM$=90^\\circ$,\\\\\n$\\therefore\\angle$AMD$=90^\\circ$,\\\\\n$\\because$AO$=$OD$=2$,\\\\\n$\\therefore$OM$= \\frac{1}{2}$AD$=2$,\\\\\n$\\therefore$ the trajectory of point M is a circle $\\odot$O with O as the center and 2 as the radius.\\\\\n$\\because$OB$= \\sqrt{AB^{2}+AO^{2}} = \\sqrt{3^{2}+2^{2}} = \\sqrt{13}$,\\\\\n$\\therefore$BM$\\geq$OB$-$OM$=\\sqrt{13}-2$,\\\\\n$\\therefore$ the minimum value of BM is $\\boxed{\\sqrt{13}-2}$.", -"solution_image": [ -"solution_images/52807129_420.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52807127": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in $\\odot O$, and $AD$ is the diameter of $\\odot O$. If $\\angle B = 20^\\circ$, then what is the degree measure of $\\angle CAD$?", -"image_file_name": "7058778", -"image": [ -"math/52807127_430.png" -], -"solution": "\\textbf{Solution:} Draw line BD. Since AD is the diameter of circle O, it follows that $\\angle ABD = 90^\\circ$. Since $\\angle ABC = 20^\\circ$, it follows that $\\angle CBD = \\angle ABD - \\angle ABC = 70^\\circ$. Therefore, $\\angle CAD = \\angle CBD = \\boxed{70^\\circ}$.", -"solution_image": [ -"solution_images/52807127_430.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52807530": { -"question": "As shown in the figure, the parabola $y_{1} = -x^{2} + 4x$ and the line $y_{2} = 2x$. What is the range of $x$ when $y_{1} < y_{2}$?", -"image_file_name": "7057900", -"image": [ -"math/52807530_00.png" -], -"solution": "\\textbf{Solution:} Given $-x^{2}+4x=2x$, we find $x_{1}=0$ and $x_{2}=2$. Thus, the $x$-coordinates of the intersection points of the parabola and the linear function are 0 and 2. Hence, when $x<0$ or $x>2$, $y_{1}2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52095901": { -"question": "As shown in the figure, place the right-angle vertex of the triangular cardboard on one side of the ruler. If $\\angle 1=20^\\circ$ and $\\angle 3=30^\\circ$, what is the value of $\\angle 2$?", -"image_file_name": "7048953", -"image": [ -"math/52095901_340.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\n\\(\\because\\) \\(\\angle 1=20^\\circ\\), \\(\\angle 3=30^\\circ\\), \\\\\n\\(\\therefore\\) \\(\\angle 4=\\angle 1+\\angle 3=20^\\circ+30^\\circ=50^\\circ\\), \\\\\n\\(\\because\\) The two sides of the straightedge are parallel to each other, \\\\\n\\(\\therefore\\) \\(\\angle 2=\\angle 4= \\boxed{50^\\circ}\\).", -"solution_image": [ -"solution_images/52095901_340.png" -], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52856088": { -"question": "As shown in the figure, with vertex B of $\\triangle ABC$ as the center and the length of BA as the radius, an arc is drawn intersecting side BC at point D, and AD is connected. If $\\angle B=50^\\circ$ and $\\angle C=36^\\circ$, what is the degree measure of $\\angle DAC$?", -"image_file_name": "7048953", -"image": [ -"math/52856088_354.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle B=50^\\circ$ and $\\angle C=36^\\circ$,\\\\\nhence $\\angle BAC=180^\\circ-(\\angle B+\\angle C)=180^\\circ-(50^\\circ+36^\\circ)=94^\\circ$,\\\\\nsince BA=BD,\\\\\nthus $\\angle BAD=\\angle BDA$,\\\\\ntherefore $\\angle BAD=\\frac{1}{2}(180^\\circ-\\angle B)=\\frac{1}{2}(180^\\circ-50^\\circ)=65^\\circ$,\\\\\nthus $\\angle DAC=\\angle BAC-\\angle BAD=94^\\circ-65^\\circ=\\boxed{29^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52856058": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ and $CE$ are medians. If the area of the quadrilateral $BDFE$ is $6$, what is the area of $\\triangle ABC$?", -"image_file_name": "7048953", -"image": [ -"math/52856058_360.png" -], -"solution": "\\textbf{Solution:} Connect BF,\\\\\nsince AD and CE are the medians of $\\triangle ABC$,\\\\\ntherefore AE=BE, BD=CD,\\\\\ntherefore $S_{\\triangle CBE}=\\frac{1}{2}S_{\\triangle ABC}$, $S_{\\triangle ACD}=\\frac{1}{2}S_{\\triangle ABC}$,\\\\\ntherefore $S_{\\triangle CBE}=S_{\\triangle ACD}$,\\\\\ntherefore $S_{\\triangle ACF}=S_{\\text{quadrilateral } BDFE}=6$,\\\\\nsince AE=BE, BD=CD,\\\\\ntherefore $S_{\\triangle AEF}=S_{\\triangle BEF}$, $S_{\\triangle CDF}=S_{\\triangle BDF}$,\\\\\ntherefore $S_{\\triangle AEF}+S_{\\triangle CDF}=S_{\\text{quadrilateral } BDFE}=6$,\\\\\ntherefore $S_{\\triangle ABC}=3S_{\\text{quadrilateral } BDFE}=\\boxed{18}$", -"solution_image": [ -"solution_images/52856058_360.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52096771": { -"question": "As shown in the figure, in $\\triangle ABC$, $DM$ and $EN$ are the perpendicular bisectors of $AB$ and $AC$, respectively, with footpoints $M$ and $N$. They intersect $BC$ at points $D$ and $E$, respectively. If $\\angle DAE=20^\\circ$, what is the measure of $\\angle BAC$?", -"image_file_name": "7048953", -"image": [ -"math/52096771_370.png" -], -"solution": "\\textbf{Solution:} Since $\\angle$DAE=$20^\\circ$,\\\\\nthen $\\angle$ADE+$\\angle$DEA=$160^\\circ$.\\\\\nSince DM and EN are the perpendicular bisectors of AB and AC respectively,\\\\\nthen AD=BD, AE=EC,\\\\\nthen $\\angle$B=$\\angle$BAD, $\\angle$C=$\\angle$CAE,\\\\\nMoreover, since $\\angle$ADE, $\\angle$DEA are the external angles of $\\triangle$ABD and $\\triangle$AEC respectively,\\\\\nthen $\\angle$ADE=$\\angle$B+$\\angle$BAD=$2\\angle$B, $\\angle$DEA=$\\angle$C+$\\angle$CAE=$2\\angle$C,\\\\\nthen $\\angle$B+$\\angle$C=$80^\\circ$,\\\\\nthen $\\angle$BAC=$180^\\circ$−($\\angle$B+$\\angle$C)=$\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52096450": { -"question": "As shown in the figure, in $\\triangle ABC$ and $\\triangle ADC$, $\\angle B=\\angle D=90^\\circ$, $CB=CD$, $\\angle 1=30^\\circ$, what is the value of $\\angle 2$?", -"image_file_name": "7048953", -"image": [ -"math/52096450_386.png" -], -"solution": "\\textbf{Solution}: Since $\\angle B=\\angle D=90^\\circ$\\\\\nTherefore, both $\\triangle ABC$ and $\\triangle ADC$ are right-angled triangles. \\\\\nIn $\\triangle ABC$ and $\\triangle ADC$: \\\\\nSince $\\left\\{\\begin{array}{l}CB=CD\\\\ AC=AC\\end{array}\\right.$\\\\\nTherefore, $\\triangle ABC\\cong \\triangle ADC$ (HL criterion)\\\\\nTherefore, $\\angle 1 = \\angle CAD$\\\\\nSince $\\angle 2 + \\angle CAD + \\angle D = 180^\\circ$\\\\\nTherefore, $\\angle 2 = 180^\\circ - 90^\\circ - 30^\\circ = \\boxed{60^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52855863": { -"question": "As shown in the figure, $BD$ bisects $\\angle ABC$, and $CD$ bisects $\\angle ACD$. If $\\angle A = 80^\\circ$, what is the degree measure of $\\angle D$?", -"image_file_name": "7048953", -"image": [ -"math/52855863_390.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that $\\angle A=80^\\circ$,\\\\\nit follows that $\\angle ABC + \\angle ACB = 180^\\circ - \\angle A = 100^\\circ$,\\\\\nSince BD bisects $\\angle ABC$ and CD bisects $\\angle ACB$,\\\\\nwe have $\\angle CBD = \\frac{1}{2} \\angle ABC$ and $\\angle BCD = \\frac{1}{2} \\angle ACB$,\\\\\nIn $\\triangle BCD$,\\\\\n$\\angle D = 180^\\circ - (\\angle CBD + \\angle BCD)$\\\\\n$= 180^\\circ - (\\frac{1}{2} \\angle ABC + \\frac{1}{2} \\angle ACB)$\\\\\n$= 180^\\circ - \\frac{1}{2} (\\angle ABC + \\angle ACB)$\\\\\n$= 180^\\circ - \\frac{1}{2} \\times 100^\\circ$\\\\\n$= 180^\\circ - 50^\\circ$\\\\\n$= \\boxed{130^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51458068": { -"question": "\"The cross section of a dam in a reservoir is a trapezoid, and the slope of a ramp inside the dam is $i=1\\colon \\sqrt{3}$. What is the angle of this slope?", -"image_file_name": "7058593", -"image": [ -"math/51458068_01.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\nsince the slope is $i=1\\colon \\sqrt{3}$, \\\\\ntherefore $\\tan A= \\frac{1}{\\sqrt{3}}=\\frac{\\sqrt{3}}{3}$, \\\\\nsince $\\tan 30^\\circ= \\frac{\\sqrt{3}}{3}$, \\\\\ntherefore, the angle of the slope is $30^\\circ$, \\\\\nhence, the answer is: $A=\\boxed{30^\\circ}$.", -"solution_image": [ -"solution_images/51458068_00.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51457944": { -"question": "As shown in the figure, in rhombus $ABCD$, $DE \\perp AB$, $\\cos A = \\frac{3}{5}$, and $AE = 6$, then what is the length of $AB$?", -"image_file_name": "7058593", -"image": [ -"math/51457944_13.png" -], -"solution": "\\textbf{Solution:} Since $DE\\perp AB$,\\\\\nit follows that $\\triangle ADE$ is a right-angled triangle,\\\\\nhence $DA=\\frac{AE}{\\cos A}=6\\times \\frac{5}{3}=10$,\\\\\nsince quadrilateral ABCD is a rhombus,\\\\\nit follows that AB=AD=10,\\\\\nthus, the answer is: AB=\\boxed{10}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51457858": { -"question": "As shown in the figure, in the Cartesian coordinate system, point A has coordinates $ \\left(3, 4\\right)$. What is the value of $ \\cos\\alpha $?", -"image_file_name": "7058593", -"image": [ -"math/51457858_22.png" -], -"solution": "\\textbf{Solution:} Construct $AB \\perp x$-axis at $B$, as shown in the figure,\\\\\nsince the coordinates of point A are (3,4),\\\\\nhence $OB = 3$, $AB = 4$,\\\\\ntherefore $OA = \\sqrt{3^2 + 4^2} = 5$,\\\\\nin $\\triangle AOB$ right, $\\cos\\alpha = \\frac{OB}{OA} = \\frac{3}{5}$ .\\\\\nThus $\\cos\\alpha = \\boxed{\\frac{3}{5}}$.", -"solution_image": [ -"solution_images/51457858_20.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51351896": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD\\parallel BC$, $\\angle ABC=90^\\circ$, $O$ is the midpoint of the diagonal $BD$, $OA=2$, $BC=5$, and $CD=3$. What is the value of $\\tan\\angle DCB$?", -"image_file_name": "7058593", -"image": [ -"math/51351896_36.png" -], -"solution": "\\textbf{Solution:} Since AD $\\parallel$ BC and $\\angle$ABC$=90^\\circ$, \\\\\nit follows that $\\angle$BAD$=90^\\circ$, \\\\\nGiven that O is the midpoint of the diagonal BD and OA=2, \\\\\nit follows that BD=2OA=4, \\\\\nGiven BC=5 and CD=3, \\\\\nit follows that BD$^{2}$+CD$^{2}$=BC$^{2}$, \\\\\nthus $\\angle$BDC$=90^\\circ$, \\\\\nhence $\\tan$($\\angle$DCB) = $\\frac{BD}{CD}$ = $\\boxed{\\frac{4}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51351226": { -"question": "As shown in the figure, the barrier at the entrance of a parking lot rotates from the horizontal position $AB$ around point $O$ to the position of $AB$. Given that $AO=4$ meters and the rotation angle $\\angle AOA=47^\\circ$, what is the vertical distance $AH$ that the endpoint $A$ rises?", -"image_file_name": "7058593", -"image": [ -"math/51351226_45.png" -], -"solution": "\\textbf{Solution:} Refer to the diagram, draw $A^{\\prime}H\\perp AB$ at $H$ through point $A^{\\prime}$,\\\\\naccording to the problem, we get $OA^{\\prime}=OA=4$ meters,\\\\\nin $\\triangle OA^{\\prime}H$, $\\angle A^{\\prime}OH=47^\\circ$, $\\sin\\angle AOH=\\frac{AH}{OA}$,\\\\\n$\\therefore$ the vertical distance the railing's endpoint $A$ rises is $AH=\\sin\\angle AOH\\cdot OA=4\\sin47^\\circ$ meters,\\\\\nthus, $AH=\\boxed{4\\sin47^\\circ}$ meters.", -"solution_image": [ -"solution_images/51351226_40.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51351168": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$. If $AC = 4$ and $BC = 3$, what is the value of $\\sin A$?", -"image_file_name": "7058593", -"image": [ -"math/51351168_55.png" -], -"solution": "\\textbf{Solution:} In right triangle $ABC$, $\\angle C=90^\\circ$, AC=4, BC=3,\\\\\nthen AB$=\\sqrt{AC^{2}+BC^{2}}=\\sqrt{4^{2}+3^{2}}=5$,\\\\\n$\\therefore \\sin A=\\frac{BC}{AB}=\\boxed{\\frac{3}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51358246": { -"question": "As shown in the figure, in a $6\\times6$ square grid, where each small square has a side length of $1$, points $A$, $B$, and $C$ are all located on the grid intersections, and $\\odot O$ is the circumcircle of $\\triangle ABC$, what is the sine value of $\\angle BAC$?", -"image_file_name": "7058593", -"image": [ -"math/51358246_60.png" -], -"solution": "\\textbf{Solution:} Let $E$ be the midpoint of $BC$, and connect $BO$, $CO$, and $OE$. \\\\\n$\\because$ $\\angle BAC = \\frac{1}{2}\\angle BOC$\\\\\n$\\therefore$ $\\angle BAC = \\angle BOE$\\\\\n$\\because$ $BE=1$, $EO=2$\\\\\n$\\therefore$ $BO=\\sqrt{BE^2+EO^2}=\\sqrt{5}$\\\\\n$\\therefore$ $\\sin\\angle BAC=\\sin\\angle BOE=\\frac{BE}{BO}=\\frac{1}{\\sqrt{5}}=\\boxed{\\frac{\\sqrt{5}}{5}}$", -"solution_image": [ -"solution_images/51358246_60.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51318944": { -"question": "As shown in the figure, in a $3\\times 3$ grid, A and B are both lattice points. With point A as the center and the length of AB as the radius, an arc is drawn. Point C in the figure is the intersection point of the arc and the grid lines. Then, what is the value of $\\tan\\angle BAC$?", -"image_file_name": "7058593", -"image": [ -"math/51318944_72.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, since $CD\\parallel AB$,\\\\\nit follows that $\\angle BAC = \\angle DCA$.\\\\\nSince the radii of the same circle are equal, it follows that $AC = AB = 3$, and $AD = 2$,\\\\\ntherefore, $CD = \\sqrt{AC^2 - AD^2} = \\sqrt{5}$,\\\\\nin $\\triangle ACD$, $\\tan \\angle ACD = \\frac{AD}{CD} = \\frac{2}{\\sqrt{5}} = \\frac{2\\sqrt{5}}{5}$.\\\\\nThus, $\\tan \\angle BAC = \\tan \\angle ACD = \\boxed{\\frac{2\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/51318944_71.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51318127": { -"question": "In the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point D is the midpoint of side AB, and CD is connected. If $BC=4$ and $CD=3$, what is the value of $\\sin\\angle DCB$?", -"image_file_name": "7058593", -"image": [ -"math/51318127_85.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle ACB=90^\\circ$, and point D is the midpoint of side AB,\\\\\n$\\therefore$AD=BD=CD=$\\frac{1}{2}$AB,\\\\\n$\\therefore$ $\\angle DCB=\\angle B$,\\\\\nAlso, since CD=3,\\\\\n$\\therefore$AB=6,\\\\\n$AC=\\sqrt{AB^{2}-BC^{2}}=\\sqrt{6^{2}-4^{2}}=2\\sqrt{5}$,\\\\\n$\\therefore$ $\\sin\\angle DCB=\\sin B=\\frac{AC}{AB}=\\frac{2\\sqrt{5}}{6}=\\boxed{\\frac{\\sqrt{5}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51318708": { -"question": "Figure 1 is the emblem of the 7th International Congress on Mathematical Education (ICME), featuring two adjacent right-angled triangles in its main pattern, which together form the quadrilateral $OABC$ as shown in Figure 2. In the figure, if $AB=BC=1$ and $\\angle AOB=\\alpha$, then what is the value of $\\tan\\angle BOC$?", -"image_file_name": "7058593", -"image": [ -"math/51318708_94.png" -], -"solution": "\\textbf{Solution}: Since $AB=BC=1$,\\\\\nin the right triangle $OAB$, $\\sin\\alpha =\\frac{AB}{OB}$,\\\\\ntherefore $OB=\\frac{1}{\\sin\\alpha}$,\\\\\nin the right triangle $OBC$, $\\tan\\angle BOC=\\frac{BC}{OB}=\\frac{1}{\\frac{1}{\\sin\\alpha}}=\\sin\\alpha$.\\\\\nHence, the answer is: $\\boxed{\\sin\\alpha}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212563": { -"question": "As shown in the figure, in $\\triangle ABC$, AD is the altitude from A to side BC, AE bisects $\\angle BAC$, $\\angle C=46^\\circ$, $\\angle DAE=10^\\circ$, what is the measure of $\\angle B$?", -"image_file_name": "7058812", -"image": [ -"math/51212563_211.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ is the perpendicular from $A$ to the side $BC$,\\\\\nit follows that $\\angle ADC=90^\\circ$,\\\\\nsince $\\angle C=46^\\circ$,\\\\\nwe have $\\angle CAD=90^\\circ-\\angle C=44^\\circ$,\\\\\ngiven $\\angle DAE=10^\\circ$,\\\\\nit follows that $\\angle CAE=\\angle CAD-\\angle DAE=34^\\circ$,\\\\\nsince $AE$ bisects $\\angle BAC$,\\\\\nwe have $\\angle BAC=2\\angle CAE=68^\\circ$,\\\\\nconsequently, $\\angle B=180^\\circ-\\angle BAC-\\angle C=180^\\circ-68^\\circ-46^\\circ=\\boxed{66^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51212803": { -"question": "As shown in the figure, $\\triangle ABC$ is rotated about point $A$ to $\\triangle ADE$. What is the angle of rotation?", -"image_file_name": "7058812", -"image": [ -"math/51212803_220.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is rotated about point A to $\\triangle ADE$,\\\\\nthe angle of rotation is either $\\angle BAD$ or $\\angle CAE$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212133": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle CAB=65^\\circ$. When $\\triangle ABC$ is rotated counterclockwise about point A in the plane to the position of $\\triangle AB'C'$, such that $CC'\\parallel AB$, what is the degree measure of the rotation angle?", -"image_file_name": "7058812", -"image": [ -"math/51212133_230.png" -], -"solution": "\\textbf{Solution:} Since $CC^{\\prime} \\parallel AB$,\\\\\nit follows that $\\angle ACC^{\\prime} = \\angle CAB = 65^\\circ$,\\\\\nSince $\\triangle ABC$ is rotated about point A to obtain $\\triangle AB^{\\prime}C^{\\prime}$,\\\\\nit follows that AC = AC$^{\\prime}$,\\\\\nTherefore, $\\angle CAC^{\\prime} = 180^\\circ - 2 \\times 65^\\circ = 50^\\circ$,\\\\\nHence, $\\angle CAC^{\\prime} = \\angle BAB^{\\prime} = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212587": { -"question": "As shown in the figure, $BC = \\frac{1}{2}AB$, D is the midpoint of $AC$, and $DC = 3\\,cm$. What is the length of $AB$?", -"image_file_name": "7058812", -"image": [ -"math/51212587_244.png" -], -"solution": "\\textbf{Solution:} Since $D$ is the midpoint of $AC$ and $DC=3\\,cm$,\\\\\n$\\therefore AC=6\\,cm$,\\\\\nand since $BC=\\frac{1}{2}AB$,\\\\\n$\\therefore BC=\\frac{1}{3}AC=\\frac{1}{3}\\times 6=2\\,cm$,\\\\\n$\\therefore AB=AC-BC=6-2=\\boxed{4\\,cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51212771": { -"question": "As shown in the figure, $\\triangle COD$ is the shape obtained by rotating $\\triangle AOB$ clockwise around point $O$ by $30^\\circ$, and point $C$ is exactly on $AB$. What is the degree measure of $\\angle A$?", -"image_file_name": "7058812", -"image": [ -"math/51212771_255.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle COD$ is the shape obtained by rotating $\\triangle AOB$ $30^\\circ$ clockwise around point O,\\\\\nthus $\\angle AOC=30^\\circ$, $OA=OC$,\\\\\ntherefore $\\angle A=\\frac{180^\\circ-\\angle AOC}{2}=75^\\circ$,\\\\\nhence, the answer is: $\\boxed{75^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51209211": { -"question": "As shown, it is known that points O and C are on the same side of line $m$. Draw $\\odot O$ intersecting $m$ at points A and B. Connect AC, BC, OA, and OB. If point C is outside of $\\odot O$ and $\\angle AOB=110^\\circ$, then what could be the possible degree of $\\angle C$?", -"image_file_name": "7058812", -"image": [ -"math/51209211_260.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, let $AC$ intersect $\\odot O$ at point $D$, and connect $BD$,\n\n$\\because$ $\\angle AOB=110^\\circ$,\n\n$\\therefore$ $\\angle ADB=55^\\circ$,\n\n$\\because$ $\\angle ADB=\\angle C+\\angle CBD$,\n\n$\\therefore$ $\\angle C<55^\\circ$,\n\n$\\therefore$ $A$ meets the requirements, $BCD$ does not.\n\nThus, the answer is: $\\boxed{\\angle C<55^\\circ}$.", -"solution_image": [ -"solution_images/51209211_261.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51368365": { -"question": "As shown in the figure, it is known that in circle $\\odot O$, CD is the diameter of $\\odot O$, and points A and B are on $\\odot O$ with $AC=AB$. If $\\angle BCD=26^\\circ$, what is the degree measure of $\\angle ABC$?", -"image_file_name": "7058812", -"image": [ -"math/51368365_270.png" -], -"solution": "\\textbf{Solution:} Since CD is the diameter,\\\\\n$\\therefore\\angle CAD=90^\\circ$,\\\\\n$\\therefore\\angle ACD+\\angle ADC=90^\\circ$,\\\\\nSince AC$=$AB,\\\\\n$\\therefore\\angle ACB=\\angle B$,\\\\\nSince $\\angle D=\\angle B$,\\\\\n$\\therefore\\angle ACB=\\angle D$,\\\\\n$\\therefore\\angle ACB+26^\\circ+\\angle D=90^\\circ$,\\\\\n$\\therefore\\angle ACB=32^\\circ$,\\\\\n$\\therefore\\angle ABC=\\angle ACB=\\boxed{32^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51368322": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $\\angle BAC=70^\\circ$, $\\odot O$ is the circumcircle of $\\triangle ABC$, point D is on the minor arc $\\overset{\\frown}{AC}$. What is the degree measure of $\\angle D$?", -"image_file_name": "7058812", -"image": [ -"math/51368322_281.png" -], -"solution": "\\textbf{Solution:} Given that AB=AC, and $\\angle$BAC=$70^\\circ$, \\\\\nthus $\\angle$B=$\\angle$ACB=$55^\\circ$, \\\\\nsince quadrilateral ABCD is inscribed in circle O, \\\\\ntherefore $\\angle$D=$180^\\circ$−$\\angle$B=$\\boxed{125^\\circ}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51368175": { -"question": "As shown in the figure, the diameter of $O$ is $20$, the length of chord $AB$ is $16$, $ON\\perp AB$ with the foot of the perpendicular being $N$. What is the length of $ON$?", -"image_file_name": "7058812", -"image": [ -"math/51368175_290.png" -], -"solution": "\\textbf{Solution:} From the given information, we have \\\\\nOA=10, $\\angle$ONA=$90^\\circ$, AB=16, \\\\\n$\\therefore$AN=8, \\\\\n$\\therefore$ON= $ \\sqrt{OA^{2}-AN^{2}}=\\sqrt{10^{2}-8^{2}}=\\boxed{6}$,", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51368176": { -"question": "As shown in the figure, in circle $\\odot O$, CD is a tangent with the point of tangency at D, and line CO intersects $\\odot O$ at B and A, where $\\angle A = 35^\\circ$. What is the degree measure of $\\angle C$?", -"image_file_name": "7058812", -"image": [ -"math/51368176_300.png" -], -"solution": "Solution: Connect OD, \\\\\n$\\because$ CD is the tangent line of $\\odot$O, \\\\\n$\\therefore$ $\\angle$ODC = $90^\\circ$, \\\\\nAlso $\\because$ $\\angle$COD = 2$\\angle$A = $70^\\circ$, \\\\\n$\\therefore$ $\\angle$C = $90^\\circ - 70^\\circ = \\boxed{20^\\circ}$", -"solution_image": [ -"solution_images/51368176_300.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51368137": { -"question": "In the figure, within $\\triangle ABC$, $\\angle A=60^\\circ$, $BD\\perp AC$ at $D$, $CE\\perp AB$ at $E$, $BD$ and $CE$ intersect at point $H$. If $CE=4$ and $BD=5$, what is the value of $\\frac{DH}{HB}$?", -"image_file_name": "7058812", -"image": [ -"math/51368137_311.png" -], -"solution": "\\textbf{Solution:} Given $BD \\perp AC$, $CE \\perp AB$,\\\\\nthus $\\angle ADB = \\angle AEC = 90^\\circ$,\\\\\nIn $\\triangle BDA$ with $\\angle A = 60^\\circ$, and $BD = 5$,\\\\\nthus $\\angle ABD = 30^\\circ$,\\\\\nthus $AB = 2AD$,\\\\\nGiven $AB^{2} = AD^{2} + BD^{2}$, that is $4AD^{2} = AD^{2} + 25$,\\\\\nthus $AD = \\frac{5\\sqrt{3}}{3}$,\\\\\nIn $\\triangle ACE$ with $\\angle A = 60^\\circ$, and $CE = 4$,\\\\\nthus $\\angle ACE = 30^\\circ$,\\\\\nthus $AC = 2AE$,\\\\\nGiven $AC^{2} = AE^{2} + CE^{2}$, that is $4AE^{2} = AE^{2} + 16$,\\\\\nthus $AE = \\frac{4\\sqrt{3}}{3}$, and $AC = \\frac{8\\sqrt{3}}{3}$,\\\\\nthus $CD = AC - AD = \\frac{8\\sqrt{3}}{3} - \\frac{5\\sqrt{3}}{3} = \\sqrt{3}$,\\\\\nIn $\\triangle CDH$ with $\\angle DCH = 30^\\circ$, and $CD = \\sqrt{3}$,\\\\\nthus $CH = 2DH$,\\\\\nGiven $CH^{2} = DH^{2} + CD^{2}$, that is $4DH^{2} = DH^{2} + 3$,\\\\\nthus $DH = 1$,\\\\\nthus $BH = BD - DH = 5 - 1 = 4$,\\\\\nthus $\\frac{DH}{HB} = \\boxed{\\frac{1}{4}}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51367859": { -"question": "As shown in the figure, in $\\triangle ABC$, taking points A and B as the centers respectively, arcs are drawn with radii greater than $\\frac{1}{2}AB$ and intersecting at points M and N. Line $MN$ is drawn, intersecting $BC$ at point D. $AD$ is connected. If the perimeter of $\\triangle ABC$ is $17$ and $AB=7$, what is the perimeter of $\\triangle ADC$?", -"image_file_name": "7058812", -"image": [ -"math/51367859_329.png" -], -"solution": "Solution: From the method, we know: MN is the perpendicular bisector of AB,\\\\\n$\\therefore$AD=BD,\\\\\n$\\because$ The perimeter of $\\triangle ABC$ is 17 and AB=7,\\\\\n$\\therefore$AC+BC=10,\\\\\n$\\therefore$ The perimeter of $\\triangle ADC$ is:\\\\\nAC+CD+AD=AC+CD+BD=AC+BC=\\boxed{10}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51367686": { -"question": "As shown in the figure, point B is the midpoint of segment AD, C is on segment BD and satisfies BD = 3CD. If the sum of the lengths of all segments in the figure is 30, what is the length of segment BC?", -"image_file_name": "7058812", -"image": [ -"math/51367686_330.png" -], -"solution": "\\textbf{Solution:} Let $CD=x$, then $BC=2x$, $AB=BD=3x$,\\\\\nthe sum of all line segments is $AB+AC+AD+BC+BD+CD$\\\\\n$=AB+(AB+BC)+(AB+BD)+BC+BD+CD$\\\\\n$=3x+5x+6x+2x+3x+x$\\\\\n$=20x$,\\\\\nAccording to the problem, $20x=30$,\\\\\nsolving this gives $x=1.5$,\\\\\nthus, $BC=2 \\times 1.5=\\boxed{3}$,\\\\\nmeaning the length of segment BC is 3.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51367684": { -"question": "As shown in the figure, $\\angle AOB = 120^\\circ$, $\\angle AOC = \\frac{1}{3}\\angle BOC$, $OM$ bisects $\\angle BOC$. What is the degree measure of $\\angle AOM$?", -"image_file_name": "7058812", -"image": [ -"math/51367684_345.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB=120^\\circ$, and $\\angle AOC= \\frac{1}{3} \\angle BOC$,\\\\\nthus $\\angle AOC= \\frac{1}{4} \\angle AOB=30^\\circ$, and $\\angle BOC= \\frac{3}{4} \\angle AOB=90^\\circ$,\\\\\ngiven that OM bisects $\\angle BOC$,\\\\\nthus $\\angle BOM=\\angle COM= \\frac{1}{2} \\angle BOC=45^\\circ$,\\\\\ntherefore $\\angle AOM=\\angle AOC+\\angle COM=\\boxed{75^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51367153": { -"question": "As shown in the figure, in the equilateral triangle $\\triangle ABC$, the point $E$ is the midpoint of side $AC$, and point $P$ is a moving point on the median $AD$ of $\\triangle ABC$. If $AD = 6$, what is the minimum value of $EP+CP$?", -"image_file_name": "7058812", -"image": [ -"math/51367153_352.png" -], -"solution": "\\textbf{Solution:} Construct point F as the symmetric point of E with respect to AD, and connect CF, which intersects AD at point P,\\\\\nsince $\\triangle ABC$ is an equilateral triangle, and AD is the median to side BC,\\\\\ntherefore $AD\\perp BC$,\\\\\nthus AD is the perpendicular bisector of BC,\\\\\nsince the corresponding point of E with respect to AD is point F,\\\\\ntherefore CF is the minimum value of EP+CP.\\\\\nSince $\\triangle ABC$ is an equilateral triangle, and E is the midpoint of side AC,\\\\\nthus F is the midpoint of AB,\\\\\ntherefore CF is the median of $\\triangle ABC$,\\\\\nthus $CF=AD=\\boxed{6}$,\\\\\nwhich means the minimum value of EP+CP is 6.", -"solution_image": [ -"solution_images/51367153_350.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51367416": { -"question": "As shown in the figure, a right-angled triangle ruler with an angle of $45^\\circ$ is placed on two parallel lines $m$ and $n$. If $\\angle \\alpha = 118^\\circ$, then what is the degree measure of $\\angle \\beta$?", -"image_file_name": "7058812", -"image": [ -"math/51367416_365.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, \\\\\n$\\because m\\parallel n$, \\\\\n$\\therefore \\angle 1=\\angle 2$, \\\\\n$\\because \\angle \\alpha =\\angle 2+\\angle A$, \\\\\nand $\\angle A=45^\\circ$, $\\angle \\alpha =118^\\circ$, \\\\\n$\\therefore \\angle 2=118^\\circ-45^\\circ=73^\\circ$, \\\\\n$\\therefore \\angle 1=73^\\circ$, \\\\\n$\\therefore \\angle \\beta =\\boxed{73^\\circ}$.", -"solution_image": [ -"solution_images/51367416_360.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51367505": { -"question": "As shown in the figure, $\\triangle A'B'C'$ is obtained from $\\triangle ABC$ through a similarity transformation centered at point O. If $OA':AA = 1:2$, what is the ratio of the perimeter of $\\triangle A'B'C'$ to that of $\\triangle ABC$?", -"image_file_name": "7058812", -"image": [ -"math/51367505_375.png" -], -"solution": "\\textbf{Solution:} Given that $OA'\\colon AA=1\\colon 2$,\\\\\nit follows that $OA'\\colon OA=1\\colon 3$,\\\\\nsince $\\triangle A'B'C'$ is obtained from $\\triangle ABC$ through a similarity transformation centered at point O,\\\\\nit implies $A'B' \\parallel AB$ and $\\triangle A'B'C' \\sim \\triangle ABC$,\\\\\nthus $\\frac{A'B'}{AB}=\\frac{OA'}{OA}=\\frac{1}{3}$,\\\\\ntherefore, the ratio of the perimeter of $\\triangle A'B'C'$ to the perimeter of $\\triangle ABC$ is $\\boxed{1\\colon 3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51367508": { -"question": "As shown in the figure, in circle $O$, $\\overset{\\frown}{AB} = \\overset{\\frown}{AC}$. If $\\angle B = 70^\\circ$, then what is the measure of $\\angle A$?", -"image_file_name": "7058812", -"image": [ -"math/51367508_382.png" -], -"solution": "\\textbf{Solution:} Given that in circle $\\odot O$, $\\widehat{AB}=\\widehat{AC}$ and $\\angle B=70^\\circ$,\\\\\nit follows that $\\angle C=\\angle B=70^\\circ$,\\\\\nthus $\\angle A=180^\\circ-\\angle B-\\angle C=180^\\circ-70^\\circ-70^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51367320": { -"question": "In $\\triangle ABC$, $AD$ is the angle bisector, and points $E$ and $F$ are the midpoints of line segments $AC$ and $CD$, respectively. If the areas of $\\triangle ABD$ and $\\triangle EFC$ are 21 and 7, respectively, what is the value of $\\frac{AB}{AC}$?", -"image_file_name": "7058812", -"image": [ -"math/51367320_391.png" -], -"solution": "\\textbf{Solution:} Construct $DM \\perp AB$ at $M$, and $DN \\perp AC$ at $N$.\\\\\nSince the point F is the midpoint of DC,\\\\\nit follows that $S_{\\triangle DEF} = S_{\\triangle FCE} = 7$,\\\\\nSince E is the midpoint of AC,\\\\\nit follows that $S_{\\triangle ADE} = S_{\\triangle CDE} = 14 + 7 = 21$,\\\\\nTherefore, $S_{\\triangle ADC} = 28$,\\\\\nSince AD is the angle bisector, $DM \\perp AB$, and $DN \\perp AC$,\\\\\nit follows that $DM = DN$,\\\\\nSince $S_{\\triangle ABD} : S_{\\triangle ADC} = \\frac{1}{2} AB \\cdot DM : (\\frac{1}{2} \\cdot AC \\cdot DN) = 21:28$\\\\\nTherefore, $\\frac{AB}{AC} = \\boxed{\\frac{3}{4}}$.", -"solution_image": [ -"solution_images/51367320_390.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51367108": { -"question": "As shown in the figure, in a $4\\times4$ square grid, each small square has a side length of $1$. Points $A$, $B$, and $C$ are all on the grid points, and $AD\\perp BC$ at point $D$. What is the length of $AD$?", -"image_file_name": "7058812", -"image": [ -"math/51367108_400.png" -], -"solution": "\\textbf{Solution:} From the Pythagorean theorem, we have: $AB =\\sqrt{2^{2}+4^{2}}=2\\sqrt{5}$, $AC =\\sqrt{1^{2}+2^{2}}=\\sqrt{5}$, and $BC =\\sqrt{3^{2}+4^{2}}=5$,\\\\\n$\\because AB^{2}+AC^{2}=25$ and $BC^{2}=25$,\\\\\n$\\therefore AB^{2}+AC^{2}=BC^{2}$,\\\\\n$\\therefore \\angle BAC=90^\\circ$,\\\\\n$\\therefore S_{\\triangle ABC} =\\frac{1}{2}AC\\cdot AB=\\frac{1}{2}BC\\cdot AD$,\\\\\n$\\therefore \\sqrt{5}\\times 2\\sqrt{5}=5\\times AD$,\\\\\n$\\therefore AD=\\boxed{2}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51367477": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle BAC=70^\\circ$. The triangle $\\triangle ABC$ is rotated $70^\\circ$ clockwise around point A, with the corresponding points of B and C after rotation being B' and C', respectively. Connecting BB', what is the degree measure of $\\angle BB'C'$?", -"image_file_name": "7058812", -"image": [ -"math/51367477_410.png" -], -"solution": "\\textbf{Solution:}\n\nGiven the properties of rotation, we know that: $AB=AB'$, $\\angle BAB'=70^\\circ$, and $\\angle ACB=\\angle AC'B'=90^\\circ$ \\\\\n$\\therefore \\angle ABB'=\\angle AB'B=\\frac{1}{2}\\times (180^\\circ-70^\\circ)=55^\\circ$ \\\\\nIn $\\triangle AB'C'$, $\\angle AB'C'=90^\\circ-\\angle B'AB=20^\\circ$ \\\\\n$\\because \\angle BB'C+\\angle AB'C'=\\angle AB'B$ \\\\\n$\\therefore \\angle BB'C'=\\angle AB'B-\\angle AB'C'=55^\\circ-20^\\circ=\\boxed{35^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52082439": { -"question": "As shown in the figure, in the same plane, if one side of a regular hexagon and a square, both with equal side lengths, coincide, then what is the measure of $\\angle 1$?", -"image_file_name": "7054440", -"image": [ -"math/52082439_00.png" -], -"solution": "\\textbf{Solution:} To find: $\\angle 1=\\frac{(6-2)\\times 180^\\circ}{6}-\\frac{(4-2)\\times 180^\\circ}{4}$\\\\\n$=120^\\circ-90^\\circ$\\\\\n$=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52082364": { -"question": "As shown in the figure, line AC intersects the graph of the inverse proportion function $y=\\frac{k}{x}$ ($x>0$) at points A and C (with point A to the left of point C), and intersects the x-axis at point B. A rectangle ADMN is drawn downwards with point A as the vertex, and its diagonals intersect at point O, with AD bisecting $\\angle OAB$. Given that AC=CB and line CD is drawn, if the area of $\\triangle ACD$ is 6, what is the value of $k$?", -"image_file_name": "7054440", -"image": [ -"math/52082364_11.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw AN $\\perp$ x-axis at point N through point A, and draw CM $\\perp$ x-axis at point M through point C, connect CO, \\\\\n$\\because$ it's a rectangle ADMN, \\\\\n$\\therefore$ OA=OD, \\\\\n$\\therefore$ $\\angle$OAD=$\\angle$ODA, \\\\\nAlso, $\\because$ AD bisects $\\angle$OAB, \\\\\n$\\therefore$ $\\angle$OAD=$\\angle$DAB, \\\\\n$\\therefore$ $\\angle$ODA=$\\angle$DAB, \\\\\n$\\therefore$ OD$\\parallel$AB, \\\\\n$\\because$ the area of $\\triangle$ACD is 6, and AC=CB, \\\\\n$\\therefore$ $S_{\\triangle AOC}$=$S_{\\triangle OCB}$=6, CM is the median line of $\\triangle$ANB, \\\\\n$\\therefore$ AN=2CM, NM=MB, \\\\\nLet point A be (x, $\\frac{k}{x}$), then ON=x, AN=$\\frac{k}{x}$, \\\\\n$\\therefore$ CM=$\\frac{k}{2x}$, \\\\\n$\\therefore$ C(2x, $\\frac{k}{2x}$), \\\\\n$\\therefore$ MB=x, OB=3x, \\\\\n$\\therefore$ $S_{\\triangle OCB}$=6=$\\frac{1}{2}$OB·CM=$\\frac{1}{2}$×3x·$\\frac{k}{2x}$=$\\frac{3k}{4}$, \\\\\n$\\therefore$ k=\\boxed{8}.", -"solution_image": [ -"solution_images/52082364_10.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52076985": { -"question": "As shown in the diagram, in rhombus ABCD with an area of 24, and $AC+BD=14$, what is the length of AB?", -"image_file_name": "7054440", -"image": [ -"math/52076985_21.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, AC intersects BD at point O, \\\\\n$\\because$ ABCD is a rhombus with an area of 24, \\\\\n$\\therefore$ AC $\\perp$ BD, and AC$\\cdot$BD = 48, \\\\\nAlso, since AC + BD = 14, \\\\\nLet AC = a, then BD = 14 − a, \\\\\n$\\therefore$ a(14−a) = 48, \\\\\nUpon rearrangement and solving, we get: a = 8 or a = 6 (which does not fit the diagram, hence discarded), \\\\\n$\\therefore$ AC = 8, BD = 6, \\\\\n$\\therefore$ AO = 4, BO = 3, \\\\\n$\\therefore$ AB = $\\sqrt{AO^{2}+BO^{2}}$ = $\\sqrt{4^{2}+3^{2}}$ = \\boxed{5}.", -"solution_image": [ -"solution_images/52076985_20.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076824": { -"question": "In the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point $D$ is the midpoint of the hypotenuse $AB$, $DE$ bisects $\\angle ADC$, and $BC=4$, what is the length of $DE$?", -"image_file_name": "7054440", -"image": [ -"math/52076824_38.png" -], -"solution": "\\textbf{Solution:} Let point $D$ be the midpoint of the hypotenuse $AB$, and $\\angle ACB=90^\\circ$, \\\\\n$\\therefore$AD=CD=BD,\\\\\n$\\because$ $DE$ bisects $\\angle ADC$,\\\\\n$\\therefore$DE$\\perp$AC, and AE=CE,\\\\\n$\\therefore$DE is the midline of $\\triangle ABC$,\\\\\n$\\therefore$DE= $\\frac{1}{2}BC=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076831": { -"question": "As shown in the figure, in the Cartesian coordinate system, rectangle ABCD is located in the first quadrant, and AB is parallel to the y-axis. The line M: $y=-x$ is translated in the positive direction of the x-axis, and the segment EF intercepted by rectangle ABCD has its length $l$ as a function of the translation distance $a$ as shown in the figure. What is the area of rectangle ABCD?", -"image_file_name": "7054440", -"image": [ -"math/52076831_40.png" -], -"solution": "\\textbf{Solution}: From the graph, it is known that when $a=1$, the line $M$ passes through point $A$.\\\\\nWhen $a=4$, line $M$ goes through point $B$.\\\\\nWhen $a=6$, line $M$ goes through point $D$.\\\\\nWhen $a=9$, line $M$ goes through point $C$.\\\\\nTherefore, when $F$ moves on segment $BC$, $4\\leq a \\leq 9$, and $BC=9-4=5$,\\\\\nWhen $F$ moves on segment $AB$, $1\\leq a \\leq 4$,\\\\\nAlso, at this time $AF=AE$,\\\\\n$\\therefore AB=4-1=3$.\\\\\nHence, the area of rectangle $ABCD$ is $5\\times 3=\\boxed{15}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52076714": { -"question": "As shown in the figure, D and E are the midpoints on the sides AB and AC of $\\triangle ABC$, respectively, and F is a point on the segment DE. If $AB=10$, $BC=12$, and $\\angle AFB=90^\\circ$, then what is the length of segment EF?", -"image_file_name": "7054440", -"image": [ -"math/52076714_54.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AFB=90^\\circ$ and D is the midpoint of AB,\\\\\nit follows that DF=$\\frac{1}{2}$AB=5,\\\\\nSince D and E are the midpoints of AB and AC respectively,\\\\\nDE is the midline of $\\triangle ABC$,\\\\\nthus DE=$\\frac{1}{2}$BC=6,\\\\\ntherefore EF=DE−DF=6−5=\\boxed{1}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076214": { -"question": "As shown in the figure, D, E, and F are the midpoints of the sides of $\\triangle ABC$. If the perimeter of $\\triangle ABC$ is 12, what is the perimeter of $\\triangle DEF$?", -"image_file_name": "7054440", -"image": [ -"math/52076214_60.png" -], -"solution": "\\textbf{Solution:} Since D, E, F are the midpoints of the sides of $\\triangle ABC$ respectively,\\\\\nit follows that DE, DF, and EF are the midlines of $\\triangle ABC$,\\\\\ntherefore, BC = 2DF, AC = 2DE, AB = 2EF,\\\\\nthus, the perimeter of $\\triangle ABC$ = AB + BC + AC = 2(DF + EF + DE) = 12,\\\\\nhence, DF + EF + DE = $12 \\times \\frac{1}{2} = \\boxed{6}$, which means the perimeter of $\\triangle DEF$ is 6.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076087": { -"question": "As shown in the figure, rectangle $ABCD$ is folded along the diagonal $BD$ such that point $C$ falls on point $F$, and $BF$ intersects $AD$ at point $E$. If $\\angle BDC = 62^\\circ$, what is the measure of $\\angle DBF$?", -"image_file_name": "7054440", -"image": [ -"math/52076087_79.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rectangle,\\\\\nit follows that $AD\\parallel BC$, and $\\angle ADC=90^\\circ$,\\\\\nAlso, since $\\angle BDC=62^\\circ$,\\\\\nit then follows that $\\angle BDE=90^\\circ-\\angle BDC=90^\\circ-62^\\circ=28^\\circ$,\\\\\nthus, $\\angle CBD=\\angle BDE=28^\\circ$,\\\\\nSince the rectangle $ABCD$ is folded along the diagonal $BD$,\\\\\nit then follows that $\\angle FBD=\\angle CBD=\\boxed{28^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52065343": { -"question": "As shown in the figure, $AC$ is the diagonal of rhombus $ABCD$. If $\\angle ABC = 60^\\circ$, what is the degree measure of $\\angle CAD$?", -"image_file_name": "7054440", -"image": [ -"math/52065343_84.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus,\\\\\n$AB=BC=CD=AD$, and $AD\\parallel BC$,\\\\\nsince $\\angle ABC=60^\\circ$,\\\\\nthen $\\triangle ABC$ is an equilateral triangle, i.e., $\\angle ACB = \\angle CAB = 60^\\circ$,\\\\\nsince $AD\\parallel BC$,\\\\\nthen $\\angle CAD=\\angle ACB=60^\\circ$.\\\\\nTherefore, the answer is: $\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52065420": { -"question": "As shown in the figure, in $ \\triangle ABC$, D, E, and F are the midpoints of the three sides respectively. Given $ AB=6$ and $AC=4$, what is the perimeter of the quadrilateral AEDF?", -"image_file_name": "7054440", -"image": [ -"math/52065420_92.png" -], -"solution": "\\textbf{Solution:}\nGiven that in $\\triangle ABC$, E, D, and F are the midpoints of AB, BC, and CA, respectively,\n$\\therefore$ DE=AF=$\\frac{1}{2}$AC=2, DF=AE=$\\frac{1}{2}$AB=3,\n$\\therefore$ the perimeter of quadrilateral AEDF is $(2+3)\\times 2=\\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52050219": { -"question": "As shown in the figure, the diagonals of the rhombus $ABCD$ are $AC=6$ and $BD=8$. What is the perimeter of the rhombus $ABCD$?", -"image_file_name": "7054440", -"image": [ -"math/52050219_100.png" -], -"solution": "\\textbf{Solution:} As shown in the figure:\\\\\nLet the intersection point of AC and BD be O,\\\\\nsince in rhombus ABCD, AC=6, BD=8,\\\\\nthus OA= $\\frac{1}{2}$ AC=3, OB= $\\frac{1}{2}$ BD=4, and AC$\\perp$BD,\\\\\ntherefore, $AB=\\sqrt{OA^{2}+OB^{2}}=5$,\\\\\nthus, the perimeter of rhombus ABCD=4$\\times$5=\\boxed{20},", -"solution_image": [ -"solution_images/52050219_100.png" -], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52050157": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=14$, $BC=8$, D and E are the midpoints of side AC and BC, respectively, point F is on DE, and $\\angle BFC=90^\\circ$, then what is the length of DF?", -"image_file_name": "7054440", -"image": [ -"math/52050157_113.png" -], -"solution": "\\textbf{Solution:} Since points D and E are the midpoints of sides AB and AC, respectively,\\\\\nthus, DE is the midline of $\\triangle ABC$,\\\\\nsince AB=14,\\\\\nthus, DE= $\\frac{1}{2}AB = 7$,\\\\\nsince $\\angle$BFC=$90^\\circ$ and BC=8,\\\\\nthus, EF= $\\frac{1}{2}BC = 4$,\\\\\ntherefore, DF=DE−EF=7−4=\\boxed{3}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52049885": { -"question": "As shown in the figure, in the square $ABCD$, $AB=4$. Let $E$ be a point on side $AB$, and let $F$ be a point on side $BC$ such that $BF=1$. Rotate point $E$ clockwise around point $F$ by $90^\\circ$ to obtain point $G$. Connect $DG$. What is the minimum length of $DG$?", -"image_file_name": "7054440", -"image": [ -"math/52049885_122.png" -], -"solution": "\\textbf{Solution:} Draw line $GP\\perp BC$ at point P, extend PG to intersect AD at point H,\\\\\nthen $\\angle GPF=90^\\circ$,\\\\\nsince quadrilateral ABCD is a square,\\\\\n$\\therefore \\angle ADC=\\angle C=\\angle B=90^\\circ$,\\\\\n$\\therefore$ quadrilateral CDHP is a rectangle,\\\\\n$\\therefore CD=PH=AB=4$, $PC=DH$,\\\\\nsince $\\angle EFG=90^\\circ$,\\\\\n$\\therefore \\angle BFE+\\angle PFG=90^\\circ$,\\\\\nalso, $\\angle BFE+\\angle BEF=90^\\circ$,\\\\\n$\\therefore \\angle PFG=\\angle BEF$,\\\\\nsince $FE=FG$, $\\angle B=\\angle GPF=90^\\circ$,\\\\\n$\\therefore \\triangle BEF\\cong \\triangle PFG\\left(AAS\\right)$,\\\\\n$\\therefore BE=PF$, $PG=BF=1$,\\\\\n$\\therefore GH=PH-PG=4-1=3$,\\\\\nlet $BE=PF=x$, then $PC=DH=4-1-x=3-x$,\\\\\nin $\\triangle DGH$, by the Pythagorean theorem,\\\\\n$DG^2=DH^2+GH^2=(3-x)^2+3^2=(3-x)^2+9$,\\\\\nwhen $x=3$, $DG^2$ has its minimum value of $9$,\\\\\n$\\therefore$ the minimum value of $DG$ is $\\boxed{3}$.", -"solution_image": [ -"solution_images/52049885_120.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51968606": { -"question": "As shown in the figure, point $O$ is the midpoint of the diagonal $BD$ of rectangle $ABCD$, point $E$ is on $CD$, and $OE \\parallel AD$. If $AB = 8$ and $OE = 3$, what is the length of $OC$?", -"image_file_name": "7054440", -"image": [ -"math/51968606_133.png" -], -"solution": "\\textbf{Solution:} Given that point O is the midpoint of the diagonal BD of rectangle ABCD, and OE $\\parallel$ AD,\\\\\nit follows that OE $\\parallel$ CB, and OE is the midline of $\\triangle$BCD;\\\\\nGiven that OE = 3,\\\\\nit follows that AD = BC = 2OE = 6,\\\\\nGiven that AB = 8, and $\\angle$BAD = 90$^\\circ$,\\\\\nit follows that BD = 10,\\\\\nIn $\\triangle$BCD, OC = $\\frac{1}{2}$BD = \\boxed{5};", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51968607": { -"question": "As shown in the figure, in the rhombus $ABCD$, $AC$ and $BD$ intersect at point $O$, $E$ is the midpoint of $AB$, and $DE \\perp AB$. If $BD = 2\\sqrt{3}$, what is the length of $DE$?", -"image_file_name": "7054440", -"image": [ -"math/51968607_142.png" -], -"solution": "\\textbf{Solution:} Let $E$ be the midpoint of $AB$ and $DE\\perp AB$,\\\\\nhence $AD=DB$,\\\\\nsince quadrilateral $ABCD$ is a rhombus,\\\\\nthus $AB=AD$ and $AC\\perp BD$,\\\\\nhence $AD=DB=AB$ and $BO=\\frac{1}{2}BD=\\sqrt{3}$,\\\\\nthus $\\triangle ABD$ is an equilateral triangle,\\\\\nhence $\\angle DAB=60^\\circ$,\\\\\nthus $\\angle OAB=30^\\circ$,\\\\\nhence $AB=2OB=2\\sqrt{3}$,\\\\\nthus $AO=\\sqrt{AB^{2}-OB^{2}}=3$,\\\\\nsince $AO$ and $DE$ are both heights of the equilateral $\\triangle ABD$,\\\\\nhence $DE=AO=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51968496": { -"question": "As shown in the figure, in rectangle $ABCD$, the perpendicular bisector of the diagonal $AC$, $EF$, intersects $BC$ and $AD$ at points $E$ and $F$ respectively. If $BE=3$ and $AF=5$, what is the perimeter of rectangle $ABCD$?", -"image_file_name": "7054440", -"image": [ -"math/51968496_150.png" -], -"solution": "\\textbf{Solution:} Connect AE, \\\\\n$\\because$ EF is the perpendicular bisector of AC, \\\\\n$\\therefore$ $\\angle$AOF = $\\angle$COE = 90$^\\circ$, AO = CO, AE = CE, \\\\\n$\\because$ Quadrilateral ABCD is a rectangle, \\\\\n$\\therefore$ AD$\\parallel$BC, $\\angle$B = 90$^\\circ$, AD = BC, \\\\\n$\\therefore$ $\\angle$FAO = $\\angle$ECO, \\\\\nIn $\\triangle$AOF and $\\triangle$COE, \\\\\n$\\left\\{\\begin{array}{l} \\angle FAO = \\angle ECO\\hfill \\\\ AO = CO\\hfill \\\\ \\angle AOF = \\angle COE\\hfill \\end{array}\\right.$ , \\\\\n$\\therefore$ $\\triangle$AOF $\\cong$ $\\triangle$COE (ASA), \\\\\n$\\therefore$ AF = CE, \\\\\n$\\therefore$ AE = CE, \\\\\n$\\because$ BE = 3, AF = 5, \\\\\n$\\therefore$ CE = 5, \\\\\n$\\therefore$ AE = 5, BC = BE + CE = 8, \\\\\n$\\therefore$ AB = $ \\sqrt{AE^{2}-BE^{2}}$ = 4, \\\\\n$\\therefore$ The perimeter of rectangle ABCD is 2(4 + 8) = $\\boxed{24}$.", -"solution_image": [ -"solution_images/51968496_150.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51942329": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $\\angle B=90^\\circ$, $AB=8$, $BC=6$. Point $M$ is the midpoint of diagonal $AC$, and point $N$ is the midpoint of side $AD$. Connecting $BM$, $MN$, if $BM = 3MN$, then what is the length of the line segment $CD$?", -"image_file_name": "7054440", -"image": [ -"math/51942329_160.jpg" -], -"solution": "\\textbf{Solution:} Given $\\angle B=90^\\circ$ and lengths AB=8, BC=6, \\\\\n$\\therefore$ the length of AC is given by $\\sqrt{8^2+6^2}=10$, \\\\\nSince M is the midpoint of AC, \\\\\n$\\therefore$ BM= $\\frac{1}{2}$AC=5, \\\\\nGiven that BM is three times MN, \\\\\n$\\therefore$ MN=$\\frac{5}{3}$, \\\\\nAlso, since N is the midpoint of AD, \\\\\n$\\therefore$ MN is the midsegment of $\\triangle ACD$, \\\\\n$\\therefore$ CD is twice MN, which is $2 \\times \\frac{5}{3} = \\boxed{\\frac{10}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51942331": { -"question": "As shown in the figure, rhombus \\(ABCD\\) has a side length of 10, \\(E\\) is the midpoint of \\(AD\\), \\(O\\) is the intersection point of the diagonals, and rectangular \\(OEFG\\) has one side on \\(AB\\), with \\(EF = 4\\). What is the length of \\(BG\\)?", -"image_file_name": "7054440", -"image": [ -"math/51942331_170.jpg" -], -"solution": "\\textbf{Solution:} Since $ABCD$ is a rhombus, and $E$ is the midpoint of side $AD$,\\\\\ntherefore $AD=AB=10$, $AE=\\frac{1}{2}AD=5$, $AC\\perp BD$,\\\\\nthus $EO=\\frac{1}{2}AD=5$. Since $OEFG$ is a rectangle,\\\\\ntherefore $FG=EO=5$, $\\angle EFA=90^\\circ$,\\\\\nin $\\triangle EFA$, where $AE=5$, $EF=4$,\\\\\nthus $AF=\\sqrt{5^2-4^2}=3$,\\\\\ntherefore $BG=AB-AF-FG=10-3-5=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51942332": { -"question": "As shown in the figure, there are two congruent rectangles AEFG and ABCD placed as shown. The line containing CD intersects AE and GF respectively at points H and M. If AB = 3, BC = $ \\sqrt{3} $, and CH = MH, what is the length of the segment MH?", -"image_file_name": "7054440", -"image": [ -"math/51942332_181.jpg" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $HQ \\perp GF$, \\\\\n$\\therefore \\angle HQM = 90^\\circ$, \\\\\n$\\because$ Rectangle $AEFG$ and rectangle $ABCD$ are congruent, \\\\\n$\\therefore AD = EF = HQ$, $\\angle ADH = \\angle MQH = \\angle QHA = 90^\\circ$, \\\\\n$\\therefore \\angle QHM + \\angle AHD = \\angle QHM + \\angle QMH$, \\\\\n$\\therefore \\angle AHD = \\angle QHM$, \\\\\n$\\therefore \\triangle ADH \\cong \\triangle MQH$ (AAS), \\\\\n$\\therefore AH = MH$, \\\\\n$\\because AB = 3$, \\\\\n$\\therefore$ Let $DH = x$, then $CH = MH = AH = 3 - x$, \\\\\n$\\because BC = \\sqrt{3}$, \\\\\n$\\therefore AD = \\sqrt{3}$, \\\\\nIn $\\triangle ADH$, $AD^2 + DH^2 = AH^2$, \\\\\n$\\therefore 3 + x^2 = (3 - x)^2$, \\\\\nUpon simplification, we find: $x = 1$, \\\\\n$\\therefore MH = 3 - 1 = \\boxed{2}$.", -"solution_image": [ -"solution_images/51942332_180.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51920355": { -"question": "As shown in the figure, point $O$ is the midpoint of the diagonal $AC$ of rectangle $ABCD$, $E$ is the midpoint of side $BC$, $AD=8$, $OE=3$. What is the length of the line segment $OD$?", -"image_file_name": "7054440", -"image": [ -"math/51920355_198.png" -], -"solution": "\\textbf{Solution:} Given that in the rectangle ABCD, $AD=8$ and $OE=3$, where O is the midpoint of the diagonal AC, and E is the midpoint of the side BC, \\\\\nit follows that $BC=AD=8$ and $AB=2OE=6$, with $\\angle B=90^\\circ$, \\\\\nhence $AC=\\sqrt{AB^{2}+BC^{2}}=\\sqrt{6^{2}+8^{2}}=10$, \\\\\nsince the point O is the midpoint of AC and $\\angle ADC=90^\\circ$, \\\\\nit follows that $OD=\\frac{1}{2}AC=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51919593": { -"question": "As shown in the figure, in rectangle ABCD, point E is the midpoint of CD, point F is a point on BC, and FC = 2BF. Connect AE, EF, and AF. If AB = 2 and AD = 3, what is the measure of $\\angle AEF$?", -"image_file_name": "7054440", -"image": [ -"math/51919593_200.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle, and AD = 3, AB = 2, \\\\\nthus $\\angle B = \\angle C = 90^\\circ$, CD = AB = 2, BC = AD = 3.\\\\\nSince point E is the midpoint of CD, and FC = 2BF, \\\\\nthus CE = DE = 1, BF = 1, CF = 2.\\\\\nThus AB = CF = 2, CE = BF = 1.\\\\\nIn $\\triangle ABF$ and $\\triangle FCE$,\\\\\n$\\begin{cases} AB=CF\\\\ \\angle B = \\angle C\\\\ BF=CE \\end{cases}$, \\\\\nthus $\\triangle ABF \\cong \\triangle FCE$ (by SAS).\\\\\nThus AF = EF, $\\angle BAF = \\angle CFE$.\\\\\nSince $\\angle B = 90^\\circ$, \\\\\nthus $\\angle BAF + \\angle AFB = 90^\\circ$.\\\\\nThus $\\angle CFE + \\angle AFB = 90^\\circ$.\\\\\nThus $\\angle AFE = 180^\\circ - (\\angle CFE + \\angle AFB) = 180^\\circ - 90^\\circ = 90^\\circ$.\\\\\nThus $\\triangle AFE$ is an isosceles right triangle.\\\\\nThus $\\angle AEF = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51918836": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB = 8$, and $BC = 4$. The rectangle is folded along $AC$, and point $D$ falls on point $D'$. What is the area of the overlapping part, $\\triangle AFC$?", -"image_file_name": "7054440", -"image": [ -"math/51918836_211.png" -], -"solution": "\\textbf{Solution:} Given that rectangle $ABCD$ is folded,\\\\\nit follows that $AD=BC=AD^{\\prime}, \\angle D=\\angle B=90^\\circ=\\angle D^{\\prime},$ \\\\\nsince $\\angle AFD^{\\prime}=\\angle CFB,$ \\\\\nit can be concluded that $\\triangle AFD^{\\prime} \\cong \\triangle CFB,$ \\\\\nhence, $D^{\\prime}F=BF,$ \\\\\nlet $D^{\\prime}F=x$, then $AF=8-x$,\\\\\nin $\\triangle AFD^{\\prime}$, $(8-x)^{2}=x^{2}+4^{2}$,\\\\\nsolving this yields: $x=3$,\\\\\nthus, $AF=AB-FB=8-3=5$,\\\\\ntherefore, the area of $\\triangle AFC$ is $\\frac{1}{2} \\cdot AF \\cdot BC = \\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51770518": { -"question": "As shown in the figure, the diagonals of square $ABCD$ intersect at point $O$, and point $O$ is also a vertex of square $A_1B_1C_1O$, with both squares having equal side lengths. No matter how square $A_1B_1C_1O$ is rotated around point $O$, the area of the overlapping part of the two squares is always equal to what fraction of the area of a square?", -"image_file_name": "7054440", -"image": [ -"math/51770518_220.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, construct OG$\\perp$AB at G, and OH$\\perp$BC at H. Assume AB intersects A$_{1}$O at point M.\\\\\nSince quadrilateral ABCD is a square,\\\\\n$\\therefore \\angle$OBH=$\\angle$OBG=$45^\\circ$,\\\\\n$\\therefore$ quadrilateral OGBH is a square,\\\\\n$\\therefore$OG=OH,\\\\\nSince $\\angle$GOM+$\\angle$FOG=$\\angle$FOH+$\\angle$FOG=$90^\\circ$,\\\\\n$\\therefore \\angle$GOM=$\\angle$FOH,\\\\\n$\\therefore \\triangle FOH \\cong \\triangle MOG$ (ASA),\\\\\n$\\therefore$Area of quadrilateral OFBM=Area of quadrilateral OGBH=$\\boxed{\\frac{1}{4}}$ Area of square ABCD.", -"solution_image": [ -"solution_images/51770518_220.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53538182": { -"question": "As shown in the figure, point $P$ is a point inside $\\triangle ABC$, with $AP \\perp BP$, $BP=12$, and $CP=15$. Points $D$, $E$, $F$, and $G$ are the midpoints of $AP$, $BP$, $BC$, and $AC$, respectively. If the perimeter of quadrilateral $DEFG$ is 28, what is the length of $AP$?", -"image_file_name": "7054440", -"image": [ -"math/53538182_235.png" -], -"solution": "\\textbf{Solution:} By the problem, $DE$, $EF$, $FG$, and $GD$ are the medians of $\\triangle PAB$, $\\triangle BPC$, $\\triangle CAB$, and $\\triangle ACP$, respectively, \\\\\n$\\therefore$DE=GF=$\\frac{1}{2}$AB, EF=GD=$\\frac{1}{2}$PC, \\\\\n$\\because$ The perimeter of the quadrilateral $DEFG$ is 28, \\\\\n$\\therefore$AB+PC=28, \\\\\n$\\because$PC=15, \\\\\n$\\therefore$AB=13, \\\\\nIn $\\triangle PAB$, $\\angle APB=90^\\circ$, BP=12, \\\\\n$\\therefore$AP=$\\sqrt{AB^{2}-BP^{2}}=\\sqrt{169-144}=\\boxed{5}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53538336": { -"question": "As shown in the figure, the four vertices of the square paper $ABCD$ lie on four parallel lines $a$, $b$, $c$, $d$, respectively. The distances between two adjacent lines among these four lines are ${h}_{1}$, ${h}_{2}$, ${h}_{3}$ (${h}_{1}>0$, ${h}_{2}>0$, ${h}_{3}>0$) respectively. If ${h}_{1}=6$ and ${h}_{2}=3$, what is the area $S$ of the square $ABCD$?", -"image_file_name": "7054440", -"image": [ -"math/53538336_2412.png" -], -"solution": "\\textbf{Solution}: Draw $BM \\perp a$ at point M through point B, and draw $CN \\perp a$ at point N through point C, as shown in the figure:\n\nThus, we have $\\angle BMA=\\angle ANC=90^\\circ$,\n\n$\\therefore \\angle MBA+\\angle MAB=90^\\circ$,\n\nIn square $ABCD$, $AB=AC$, $\\angle BAC=90^\\circ$,\n\n$\\therefore \\angle MAB+\\angle CAN=90^\\circ$,\n\n$\\therefore \\angle CAN=\\angle MBA$,\n\n$\\therefore \\triangle MAB \\cong \\triangle NCA\\left(AAS\\right)$,\n\n$\\therefore AN=MB$,\n\nSince $h_{1}=6$, $h_{2}=3$,\n\n$\\therefore AN=MB=6$, $NC=6+3=9$,\n\nBy the Pythagorean theorem, we get $AC=\\sqrt{6^2+9^2}=\\sqrt{117}$,\n\n$\\therefore$ the area $S$ of square $ABCD$ is $\\boxed{117}$.", -"solution_image": [ -"solution_images/53538336_242.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51770639": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AB \\parallel CD$, $AB = 5$, $DC = 11$, and the sum of $AD$ and $BC$ is $12$. Points $E$, $F$, and $G$ are the midpoints of $BD$, $AC$, and $DC$ respectively. What is the perimeter of $\\triangle EFG$?", -"image_file_name": "7054440", -"image": [ -"math/51770639_990.png" -], -"solution": "\\textbf{Solution:}\n\nAs shown in the figure, extend AE and continue it to intersect CD at point K,\\\\\nsince AB$\\parallel$CD,\\\\\nit follows that $\\angle$BAE$=\\angle$DKE and $\\angle$ABD$=\\angle$EDK,\\\\\nsince points E, F, G are the midpoints of BD, AC, DC respectively.\\\\\nIt follows that BE$=$DE,\\\\\nso, triangle AEB is congruent to triangle KED (AAS),\\\\\nthus, DK$=$AB, AE$=$EK,\\\\\ntherefore, EF is the midline of triangle ACK,\\\\\ntherefore, EF$=\\frac{1}{2}$CK$=\\frac{1}{2}$(DC$-$AB),\\\\\nsince EG is the midline of triangle BCD,\\\\\nit follows that EG$=$BC,\\\\\nalso, since FG is the midline of triangle ACD,\\\\\nit follows that FG$=$AD,\\\\\nhence, EG+GF$=\\frac{1}{2}$(AD+BC),\\\\\nsince AD+BC$=12$, AB$=5$, DC$=11$,\\\\\nthus, EG+GF$=6$, FE$=3$,\\\\\ntherefore, the perimeter of triangle EFG is $6+3=\\boxed{9}$.", -"solution_image": [ -"solution_images/51770639_990.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54409220": { -"question": "As shown in the figure, the line $y_1=x+3$ intersects with the $x$-axis and the $y$-axis at points $A$ and $C$ respectively, and the line $y_2=-x+3$ intersects with the $x$-axis and the $y$-axis at points $B$ and $C$ respectively. If point $P(m, 2)$ is a point inside (including on the edges of) $\\triangle ABC$, then what is the difference between the maximum and minimum values of $m$?", -"image_file_name": "7051872", -"image": [ -"math/54409220_013.png" -], -"solution": "\\textbf{Solution:} Let point P$(m,2)$ be a point inside (including on the edge of) $\\triangle ABC$, \\\\\n$\\therefore$ point P lies on the line $y=2$, as shown in the figure, \\\\\nWhen P is the intersection of line $y=2$ and line $y_{2}$, $m$ takes its maximum value, \\\\\nWhen P is the intersection of line $y=2$ and line $y_{1}$, $m$ takes its minimum value, \\\\\n$\\because$ in $y_{1}=-x+3$, letting $y=2$, we get $x=1$, \\\\\nin $y_{2}=x+3$, letting $y=2$, we get $x=-1$, \\\\\n$\\therefore$ the maximum value of $m$ is $1$, and the minimum value of $m$ is $-1$. \\\\\nThus, the difference between the maximum and minimum values of $m$ is: $1-(-1)=\\boxed{2}$", -"solution_image": [ -"solution_images/54409220_00.png" -], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"5056405": { -"question": "As shown in the figure, the graphs of the functions $y=2x$ and $y=ax+4$ intersect at point $A(m, 3)$. What is the solution set of the inequality $2x < ax+4$?", -"image_file_name": "7051872", -"image": [ -"math/5056405_10.png" -], -"solution": "\\textbf{Solution:} Since the graphs of the functions $y=2x$ and $y=ax+4$ intersect at point A$(m,3)$,\\\\\nit follows that $3=2m$,\\\\\nyielding $m= \\frac{3}{2}$,\\\\\nthus, the coordinates of point A are $\\left( \\frac{3}{2}, 3\\right)$,\\\\\ntherefore, the solution set for the inequality $2x < ax+4$ is $\\boxed{x < \\frac{3}{2}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52422698": { -"question": "As shown in the figure, a Cartesian coordinate system is established with the center of the square $ABCD$ as the origin. The coordinates of point $A$ are $(2,2)$, what are the coordinates of point $D$?", -"image_file_name": "7051872", -"image": [ -"math/52422698_20.png" -], -"solution": "\\textbf{Solution:} As shown in the figure:\n\nSince the coordinate system is established with the center O of the square ABCD as the origin, and the coordinates of point A are (2, 2), and point D is symmetrical to point A with respect to the y-axis,\n\nTherefore, the coordinates of point D are: $\\boxed{(-2, 2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395496": { -"question": "As shown in the figure, the line ${l}_{1}: y={k}_{1}x+b$ and the line ${l}_{2}: y={k}_{2}x$, with their graphs depicted in the same Cartesian coordinate system as illustrated. What is the solution set for the inequality regarding $x$, ${k}_{1}x+b>{k}_{2}x>0$?", -"image_file_name": "7051872", -"image": [ -"math/52395496_33.png" -], -"solution": "\\textbf{Solution:} Given the graph, when $-1k_2x>0$,\\\\\nhence the solution set for $k_1x+b>k_2x>0$ is $-10)$ at point A, and the y-coordinate of point A is 2. Then, what is the solution set for the inequality $kx>-2x+4$?", -"image_file_name": "7051872", -"image": [ -"math/52395426_43.png" -], -"solution": "\\textbf{Solution:} Since the graph of the linear function $y=-2x+4$ intersects with the graph of the directly proportional function $y=kx\\ (k>0)$ at point $A$, and the ordinate of point $A$ is 2,\\\\\nwe substitute ${y}_{A}=2$ into $y=-2x+4$ to get: ${x}_{A}=1$,\\\\\nSince $kx>-2x+4$,\\\\\nit follows that $x>1$,\\\\\nTherefore, the answer is: $\\boxed{x>1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386623": { -"question": "In the Cartesian coordinate system xOy, the graph of the line $l_1: y_1 = k_1x + 5$ and the graph of the line $l_2: y_2 = k_2x$ are shown as in the figure. What is the solution set of the inequality $k_2x < k_1x + 5$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52386623_55.png" -], -"solution": "\\textbf{Solution:} According to the graph, the coordinates of the intersection point of the two lines are $(-2, 3)$,\n\n$\\therefore$ the solution set of the inequality ${k}_{2}x<{k}_{1}x+5$ is $\\boxed{x>-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386065": { -"question": "As shown, the moving point P starts from vertex A of the rectangle ABCD, and moves uniformly along the direction A→B→C on the sides AB, BC at a speed of $1\\, \\text{cm/s}$ to point C. The area $S$ ($\\text{cm}^{2}$) of $\\triangle APC$ as a function of the movement time $t$ (s) is illustrated in the figure. What is the length of AB?", -"image_file_name": "7051872", -"image": [ -"math/52386065_61.png" -], -"solution": "\\textbf{Solution:} Given that point P moves from point A to B, the distance S increases with time t. When point P moves from point B to C, S decreases as t increases.\\\\\nTherefore, based on Graph 2, the duration of point P's movement from B to C is 4s,\\\\\nSince the speed of point P is 1cm/s,\\\\\nThus, $BC=1\\times4=4$ (cm),\\\\\nGiven that when point P moves along the line AB reaching point B, the area of $\\triangle APC$ is at its maximum,\\\\\nHence, from Graph 2: the area of $\\triangle APC$ is $6\\text{cm}^{2}$,\\\\\nTherefore, the area of $\\triangle ABC$, ${S}_{\\triangle ABC}=\\frac{1}{2}AB\\cdot BC=6$,\\\\\nThus, $AB=\\boxed{3}$cm.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52387150": { -"question": "As shown in the figure, the line $y=kx+b(k\\ne 0)$ passes through point $A(-3, 2)$. What is the solution set of the inequality $kx+b<2$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52387150_73.png" -], -"solution": "\\textbf{Solution:} From the diagram, it can be observed that when $x<-3$, $kx+b<2$, \\\\\nthus, the solution set is $\\boxed{x<-3}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386773": { -"question": "The graph of the linear function $y=kx+b$ is shown in the figure. What is the solution to the inequality $kx+b\\leq 0$?", -"image_file_name": "7051872", -"image": [ -"math/52386773_80.png" -], -"solution": "\\textbf{Solution:} From the graph, we can see that\\\\\nthe graph of the linear function $y=kx+b$ intersects the $x$-axis at the point $(-2,0)$,\\\\\nthe line rises from left to right, meaning $y$ increases as $x$ increases,\\\\\n$\\therefore$ the solution set of the inequality $kx+b\\leq 0$ is $x\\leq -2$,\\\\\nhence, the answer is: $\\boxed{x\\leq -2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386831": { -"question": "As shown in the figure, the line $y=x+2$ intersects with the line $y=ax+4$ at point $P(m, 3)$. What is the solution set of the inequality $x+2kx+5$ in terms of $x$?", -"image_file_name": "7051872", -"image": [ -"math/52386462_104.png" -], -"solution": "\\textbf{Solution:} From the graph, we can see that $P(1,4)$, \\\\\nhence when $x>1$, $x+b>kx+5$, \\\\\ntherefore, the solution set is $\\boxed{x>1}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386221": { -"question": "As shown in the figure, the line $y_1=kx+b$ passes through points A and B, and the line $y_2=2x$ passes through point A. What is the solution set of the inequality $2x0$?", -"image_file_name": "7051872", -"image": [ -"math/52387412_122.png" -], -"solution": "\\textbf{Solution:} According to the function graph, it is known that when $x > -3$, $y > 0$, \\\\\ntherefore, the solution set of the inequality $ax+b>0$ is $x > -3$. \\\\\nHence, the answer is: $\\boxed{x > -3}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381528": { -"question": "As shown in the figure is the graph of the function $y_{1}=|x|$. It is known that the graph of the function $y_{2}=\\frac{1}{3}x+\\frac{4}{3}$ intersects with the graph of $y_{1}=|x|$ at points A and B, and $A(-1, 1)$, then what is the range of values of $x$ for which $y_{2}>y_{1}$?", -"image_file_name": "7051872", -"image": [ -"math/52381528_135.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\nby solving the system of equations $\\begin{cases}y=x \\\\ y=\\frac{1}{3}x+\\frac{4}{3}\\end{cases}$, we get: $\\begin{cases}x=2 \\\\ y=2\\end{cases}$,\\\\\n$\\therefore$ Point B is (2, 2),\\\\\nFrom the graph, it is found that when $y_{2}>y_{1}$, $-10$?", -"image_file_name": "7051872", -"image": [ -"math/52381269_163.png" -], -"solution": "\\textbf{Solution:} From the graphic, we have: when $x>-2$, $kx+b>0$, \\\\\nTherefore, the answer is: $\\boxed{x>-2}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52355189": { -"question": "As shown in the figure, the line $y=kx+b\\ (k<0)$ intersects the y-axis at point A and intersects the x-axis at point B, and $(AB+OA)(AB-OA)=\\frac{9}{4}$. What is the solution set of the inequality $kx+b>0$?", -"image_file_name": "7051872", -"image": [ -"math/52355189_173.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $(AB+OA)(AB−OA)=\\frac{9}{4}$,\\\\\nit follows that $AB^{2}−OA^{2}=\\frac{9}{4}$,\\\\\ntherefore $OB^{2}=\\frac{9}{4}$,\\\\\nhence $OB=\\frac{3}{2}$,\\\\\ntherefore, the solution set of the inequality $kx+b>0$ is $\\boxed{x<\\frac{3}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354235": { -"question": "As shown in the figure, points B and C are on $y=2x$ and $y=kx-2a$, respectively. Points A and D are two points on the x-axis, and the y-coordinate of point B is $a$. If quadrilateral ABCD is a rectangle and $AB=\\frac{1}{2}AD$, then what is the value of $k$?", -"image_file_name": "7051872", -"image": [ -"math/52354235_181.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that point B is on the line $y = 2x$ and the y-coordinate of point B is $a$, \n\nit follows that $2x = a$ and $AB = a$,\n\nfrom which we find $x = \\frac{a}{2}$,\n\nand since $AB = \\frac{1}{2}AD$,\n\nit follows that $AD = 2a$,\n\nthus $OD = OA + AD = \\frac{a}{2} + 2a = \\frac{5a}{2}$,\n\ntherefore $C\\left(\\frac{5a}{2}, a\\right)$,\n\nhence $\\frac{5a}{2}k - 2a = a$,\n\nsolving this gives $k = \\boxed{\\frac{6}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354786": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ is presented. What is the range of $x$ when $kx+b>3$?", -"image_file_name": "7051872", -"image": [ -"math/52354786_190.png" -], -"solution": "\\textbf{Solution:} Given that $\\because kx + b > 3$ and $y = kx + b$,\\\\\n$\\therefore y > 3$,\\\\\n$\\because$ when $y > 3$, by analyzing the graph, it is determined that the graph meeting the requirements intersects the y-axis above the given point,\\\\\n$\\therefore x < 0$, thus, the answer is: $\\boxed{x < 0}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354905": { -"question": "As shown in the figure, line $l_1\\colon y=2x-1$ intersects with line $l_2\\colon y=kx+b\\ (k\\neq 0)$ at point $P(2, 3)$. What is the solution set of the inequality $2x-1>kx+b$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52354905_207.png" -], -"solution": "\\textbf{Solution:} According to the graph, the solution set for the inequality $2x-1>kx+b$ is: $\\boxed{x>2}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52424459": { -"question": "As shown in the figure, the line $y=2x$ intersects the line $y=kx+b$ at point $P(m, 2)$. What is the solution of the equation $kx+b=2$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52424459_214.png" -], -"solution": "\\textbf{Solution:} Since the line $y=2x$ intersects with $y=kx+b$ at point $P(1,2)$, \\\\\ntherefore, when $x=1$, $y=kx+b=2$, \\\\\nthus, the solution to the equation in terms of $x$, $kx+b=2$, is $x=\\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52424160": { -"question": "As shown in the figure, the line $y=-x$ intersects with the line $y=x+b$ at point A. If the ordinate of point A is 1, what is the solution set of the inequality $x+b<-x$?", -"image_file_name": "7051872", -"image": [ -"math/52424160_223.png" -], -"solution": "\\textbf{Solution:} Given that the line $y=-x$ intersects with the line $y=x+b$ at point A, and the ordinate of point A is 1,\\\\\n$\\therefore$ $-x=1$,\\\\\nSolving this, we get $x=-1$,\\\\\nwhich means the abscissa of point A is $-1$,\\\\\n$\\therefore$ the solution set of the inequality $x+b<-x$ is $\\boxed{x<-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52425091": { -"question": "As shown in the diagram, within the Cartesian coordinate system, the coordinates of point $B$ are $(0, 5)$. After $\\triangle OAB$ is translated to the right along the $x$-axis, it becomes $\\triangle O^{\\prime}A^{\\prime}B^{\\prime}$. The corresponding point of $B$, point $B^{\\prime}$, is on the line $y=\\frac{5}{6}x$. What is the distance between point $A$ and its corresponding point $A^{\\prime}$?", -"image_file_name": "7051872", -"image": [ -"math/52425091_238.png" -], -"solution": "\\textbf{Solution:} Given that point B has coordinates (0,5), and triangle $OAB$ is translated to the right along the x-axis to form triangle $O'A'B'$, where the corresponding point of B, denoted as B', lies on the line $y=\\frac{5}{6}x$,\\\\\n$\\therefore$ the y-coordinate of point B' is: 5,\\\\\nSo, we have $5=\\frac{5}{6}x$,\\\\\nSolving this gives: $x=6$,\\\\\nimplying the distance from B to B' is 6,\\\\\nthus, the distance between point A and its corresponding point A' is $\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52425090": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ (where $k$ and $b$ are constants) is depicted as illustrated. What is the solution set of the inequality $kx+b<1$?", -"image_file_name": "7051872", -"image": [ -"math/52425090_240.png" -], -"solution": "\\textbf{Solution:} From the graph, we know that the linear function $y=kx+b$ ($k,b$ are constants, $k\\neq 0$) passes through the point $(0,1)$, and the value of $y$ increases as $x$ increases. Therefore, the solution set of the inequality $kx+b<1$ is $\\boxed{x<0}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52304470": { -"question": "As shown in the figure, the graphs of the function $y=2x$ and $y=ax+4$ intersect at point $A(m, 3)$. What is the solution set of the inequality $2x 0$, \\\\\n$\\therefore$ the parabola opens upwards, \\\\\n$\\therefore$ when $m = 2$, $OQ^{\\prime}{}^{2}$ has its minimum value, which is 5, \\\\\n$\\therefore$ the minimum value of $OQ^{\\prime}$ is $\\boxed{\\sqrt{5}}$.", -"solution_image": [ -"solution_images/51369705_550.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51368989": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AD$ bisects $\\angle CAB$, $BD=2CD$, and the distance from point D to $AB$ is 5.6. What is the length of $BC$ in $cm$?", -"image_file_name": "7047158", -"image": [ -"math/51368989_568.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct DE $\\perp$ AB at E, \\\\\n$\\because$ $\\angle C=90^\\circ$, \\\\\n$\\therefore$ CD $\\perp$ AC, \\\\\n$\\because$ AD bisects $\\angle$BAC, \\\\\n$\\therefore$ CD = DE, \\\\\n$\\because$ the distance from D to AB is equal to 5.6 cm, \\\\\n$\\therefore$ CD = DE = 5.6 cm, \\\\\nFurthermore, $\\because$ BD = 2CD, \\\\\n$\\therefore$ BD = 11.2 cm, \\\\\n$\\therefore$ BC = 5.6 + 11.2 = $\\boxed{16.8}$ cm,", -"solution_image": [ -"solution_images/51368989_560.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51368926": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $AD$ is the angle bisector of $\\triangle ABC$, and $E$ is the midpoint of $AC$. Connect $DE$. If $DE = 3$, then what is the value of $AB$?", -"image_file_name": "7047158", -"image": [ -"math/51368926_578.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$ and $AD$ bisects $\\angle BAC$, \\\\\nit follows that $D$ is the midpoint of $BC$, \\\\\nand since $E$ is the midpoint of $AC$, \\\\\nit follows that $AB=2DE=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51368830": { -"question": "In the Cartesian coordinate system, \\( \\triangle AOB\\) is an equilateral triangle, and the coordinates of point \\( B\\) are \\((2,0)\\). If \\( \\triangle AOB\\) is rotated \\(90^\\circ\\) counterclockwise around the origin, what are the coordinates of point \\( A'\\)?", -"image_file_name": "7047158", -"image": [ -"math/51368830_585.png" -], -"solution": "\\textbf{Solution:}\n\nGiven by rotation, $\\triangle A'B'O \\cong \\triangle ABO$,\\\\\nThrough point $A'$ draw $A'D \\perp$ y-axis at $D$,\\\\\nSince $\\triangle ABC$ is an equilateral triangle,\\\\\nTherefore, $OD=DB'= \\frac{1}{2}OB' =1$,\\\\\nHence, $A'{D}=\\sqrt{A'{O}^{2}-OD^{2}}=\\sqrt{2^{2}-1^{2}}=\\sqrt{3}$,\\\\\nTherefore, the coordinates of point $A'$ are $(-\\sqrt{3}, 1)$,\\\\\nSo, the answer is $\\boxed{(-\\sqrt{3}, 1)}$.", -"solution_image": [ -"solution_images/51368830_580.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51368829": { -"question": "As shown in the figure, within $\\triangle ABC$, we have $AB=AC$ and $\\angle A=36^\\circ$. Point $D$ is located on $AC$, and $BD=BC$. What is the measure of $\\angle BDC$?", -"image_file_name": "7047158", -"image": [ -"math/51368829_591.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$ and $\\angle A=36^\\circ$,\n\nit follows that $ \\angle ABC=\\angle ACB=\\frac{1}{2}(180^\\circ−\\angle A)=72^\\circ$.\n\nSince $BD=BC$,\n\nit follows that $\\angle BDC=\\angle ACB=\\boxed{72^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51368725": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=90^\\circ$, $\\angle C=30^\\circ$, $DE$ is perpendicular to and bisects $AC$, intersecting $BC$ at point $E$, with $CE=2$, then how much is $BC$?", -"image_file_name": "7047158", -"image": [ -"math/51368725_605.png" -], -"solution": "\\textbf{Solution:} Since DE is the perpendicular bisector of AC, and CE=2,\\\\\nit follows that AE=CE,\\\\\nwhich means $\\angle C=\\angle$EAC$=30^\\circ$,\\\\\ntherefore $\\angle$BAE$=30^\\circ$,\\\\\nhence $EB=\\frac{1}{2}EA=1$,\\\\\nthus BC=BE+EC$=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51368723": { -"question": "As shown in the figure, the angle bisectors of $ \\angle ABC$ and $\\angle ACB$ intersect at point F. A line through F is drawn parallel to $BC$, intersecting $AB$ at point D and $AC$ at point E. Given that $BD = 3\\,cm$ and $EC = 2\\,cm$, what is the length of $DE$ in centimeters?", -"image_file_name": "7047158", -"image": [ -"math/51368723_619.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $BF$ is the bisector of $\\angle ABC$,\\\\\nit follows that $\\angle DBF=\\angle CBF$,\\\\\nSince $DE \\parallel BC$,\\\\\nit then implies $\\angle DFB=\\angle CBF$,\\\\\nThus, $\\angle DBF=\\angle DFB$,\\\\\nHence, $DF=BD=3\\, cm$,\\\\\nSimilarly, it can be concluded that $EF=EC=2\\, cm$,\\\\\nTherefore, $DE=DF+EF=\\boxed{5\\, cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51368488": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$, $\\angle B = 35^\\circ$. The perpendicular bisector MN of segment AB intersects AB at point E and intersects BC at point D. If AD is connected, what is the measure of $\\angle DAC$ in degrees?", -"image_file_name": "7047158", -"image": [ -"math/51368488_624.png" -], -"solution": "\\textbf{Solution:} Since $\\angle B=35^\\circ$ and $\\angle C=90^\\circ$, \\\\\nit follows that $\\angle CAB=55^\\circ$, \\\\\nSince MN is the perpendicular bisector of line segment AB, \\\\\nit follows that AD=BD, \\\\\nThus, $\\angle B=\\angle BAD=35^\\circ$, \\\\\nHence, $\\angle DAC=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51367765": { -"question": "As shown in the figure, it is known that $CB\\perp AD$, $AE\\perp CD$, with the feet of the perpendiculars being B and E respectively, $AE$ and $BC$ intersect at point F. If $AB=BC=8$ and $CF=2$, by connecting DF, what is the area of the shaded region in the diagram?", -"image_file_name": "7047158", -"image": [ -"math/51367765_630.png" -], -"solution": "\\textbf{Solution:} Given that $CB \\perp AD$ and $AE \\perp CD$, \\\\\nit follows that $\\angle ABF = \\angle CEF = 90^\\circ$, \\\\\nand since $\\angle AFB = \\angle CFE$, \\\\\nwe have $\\angle A = \\angle C$. \\\\\nIn $\\triangle ABF$ and $\\triangle CBD$, we have \\\\\n$\\left\\{\\begin{array}{l}\n\\angle A = \\angle C \\\\\nAB = BC \\\\\n\\angle ABF = \\angle CBD = 90^\\circ\n\\end{array}\\right.$, \\\\\nhence $\\triangle ABF \\cong \\triangle CBD$ (ASA), \\\\\ntherefore $BD = BF$, \\\\\ngiven $AB = BC = 8$, $CF = 2$, \\\\\nit results that $BD = BF = 8 - 2 = 6$, \\\\\nthus, the area of the shaded region ${S}_{\\text{shaded}} = {S}_{\\triangle CBD} - {S}_{\\triangle FBD} = \\frac{1}{2} \\times 6 \\times 8 - \\frac{1}{2} \\times 6 \\times 6 = \\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51435241": { -"question": "As shown in the figure, $ \\angle MON=35^\\circ$, point P is on the side $ ON$ of $ \\angle MON$. With point P as the center and $ PO$ as the radius, an arc is drawn, intersecting $ OM$ at point A. When $ AP$ is connected, what is the degree measure of $ \\angle APN$?", -"image_file_name": "7047158", -"image": [ -"math/51435241_648.png" -], -"solution": "\\textbf{Solution:} From the diagram, we know that $PO=PA$,\\\\\n$\\therefore \\angle PAO = \\angle O = 35^\\circ$,\\\\\n$\\therefore \\angle APN = \\angle O + \\angle PAO = \\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51435245": { -"question": "As shown in the figure, in the triangular paper $ABC$, $\\angle C=90^\\circ$, $\\angle A=30^\\circ$, and $AC=9$. Fold the paper so that point $C$ falls on point $D$ on side $AB$, and the fold line $BE$ intersects $AC$ at point $E$. What is the length of the fold line $BE$?", -"image_file_name": "7047158", -"image": [ -"math/51435245_656.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle C=90^\\circ$ and $\\angle A=30^\\circ$,\\\\\nit follows that $\\angle ABC=60^\\circ$.\\\\\nSince the paper is folded such that point C lies on point D on side AB,\\\\\nit follows that $\\angle CBE=\\angle ABE=30^\\circ$, CE=DE, and $\\angle ADE=90^\\circ$,\\\\\nwhich implies that $\\angle A=\\angle ABE$ and AE=2CE\\\\\nTherefore, AE=BE=\\boxed{6}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51435242": { -"question": "As shown in the figure, $BD$ bisects $\\angle ABC$, and $DE\\parallel BC$ intersects $BA$ at point $E$. If $DE=\\frac{5}{2}$, then what is the value of $EB$?", -"image_file_name": "7047158", -"image": [ -"math/51435242_665.png" -], -"solution": "\\textbf{Solution:} Since BD bisects $\\angle$ABC,\\\\\nit follows that $\\angle$CBD=$\\angle$ABD,\\\\\nSince DE$\\parallel$BC,\\\\\nit follows that $\\angle$BDE=$\\angle$CBD,\\\\\nthus $\\angle$BDE=$\\angle$DBE,\\\\\nwhich means BE=DE,\\\\\nSince DE= $\\frac{5}{2}$,\\\\\nit follows that EB= $\\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51435165": { -"question": "As shown in the figure, $\\triangle ABC \\cong \\triangle DEF$, $BE=5$, $BF=1$, what is the length of $CF$?", -"image_file_name": "7047158", -"image": [ -"math/51435165_670.png" -], -"solution": "\\textbf{Solution:} Since $BE=5$, and $BF=1$,\\\\\nit follows that $EF=BE-BF=4$,\\\\\nSince $\\triangle ABC \\cong \\triangle DEF$,\\\\\nit follows that $BC=EF=4$,\\\\\nTherefore, $CF=BC-BF=4-1=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51435091": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, and $\\angle A=30^\\circ$, it then follows that $AB=2BC$. Based on this conclusion, further consider: if $AC=2$ and point $D$ is a moving point on side $AB$, what is the minimum value of $CD+ \\frac{1}{2} AD$?", -"image_file_name": "7047158", -"image": [ -"math/51435091_681.png" -], -"solution": "\\textbf{Solution:} Construct ray AG such that $\\angle BAG=30^\\circ$,\\\\\nDraw $DE \\perp AG$ at E from D, and draw $CF \\perp AG$ at F from C,\\\\\n$\\therefore DE= \\frac{1}{2} AD$,\\\\\n$\\therefore CD+ \\frac{1}{2} AD=CD+DE \\geq CF$,\\\\\n$\\because \\angle CAG=\\angle CAB+\\angle BAG=60^\\circ$, $AC=2$,\\\\\n$\\therefore \\angle ACF=30^\\circ$,\\\\\n$\\therefore AF=1$,\\\\\n$\\therefore CF= \\sqrt{AC^2-AF^2}=\\sqrt{3}$,\\\\\n$\\therefore$ The minimum value of $CD+ \\frac{1}{2} AD$ is $\\boxed{\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51435091_680.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51435002": { -"question": "As shown in the figure, it is known that the perimeter of $\\triangle ABC$ is 22, $PB$ and $PC$ bisect $\\angle ABC$ and $\\angle ACB$ respectively, $PD \\perp BC$ at D, and $PD = 3$, what is the area of $\\triangle ABC$?", -"image_file_name": "7047158", -"image": [ -"math/51435002_696.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect AP, and through point P, draw PE$\\perp$AB at point E, and PF$\\perp$AC at point F,\\\\\n$\\because$ PB and PC bisect $\\angle ABC$ and $\\angle ACB$ respectively,\\\\\n$PD\\perp BC$ at D,\\\\\n$\\therefore$ PD=PE, PD=PF,\\\\\n$\\therefore$ PD=PE=PF=3,\\\\\n$\\because$ the perimeter of $\\triangle ABC$ is 22,\\\\\n$\\therefore$ the area of $\\triangle ABC$ is\\\\\n$\\frac{1}{2}AB\\times PE+\\frac{1}{2}BC\\times PD+\\frac{1}{2}AC\\times PF=\\frac{1}{2}\\times PD\\times (AB+BC+AC)=\\frac{1}{2}\\times 3\\times 22=\\boxed{33}$.", -"solution_image": [ -"solution_images/51435002_690.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51434967": { -"question": "As shown in the figure, in $\\triangle ABC$, $BE$ bisects $\\angle ABC$, and $AE\\perp BE$ at point $E$. The area of $\\triangle BCE$ is $2$. What is the area of $\\triangle ABC$?", -"image_file_name": "7047158", -"image": [ -"math/51434967_700.png" -], -"solution": "\\textbf{Solution}: Extend AE to intersect BC at D, \\\\\n$\\because$ BE bisects $\\angle ABC$, \\\\\n$\\therefore$ $\\angle ABE=\\angle DBE$, \\\\\n$\\because$ $AE\\perp BE$, \\\\\n$\\therefore$ $\\angle AEB=\\angle DEB=90^\\circ$, \\\\\nIn $\\triangle ABE$ and $\\triangle DBE$, \\\\\n$\\begin{array}{c}\n\\angle ABE=\\angle DBE\\\\\nEB=EB\\\\\n\\angle AEB=\\angle DEB\n\\end{array}$, \\\\\n$\\therefore$ $\\triangle ABE\\cong \\triangle DBE$, \\\\\n$\\therefore$ $AE=ED$, \\\\\n$\\therefore$ ${S}_{\\triangle ABE}={S}_{\\triangle DBE}$, \\\\\n${S}_{\\triangle ACE}={S}_{\\triangle DCE}$, \\\\\n$\\therefore$ ${S}_{\\triangle ABC}=2+{S}_{\\triangle CBE}=\\boxed{4}$", -"solution_image": [ -"solution_images/51434967_700.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51434965": { -"question": "In the figure, in the equilateral triangle $ABC$, the bisector of $\\angle ABC$ intersects with the bisector of $\\angle ACB$ at point $D$. Through point $D$, line segment $EF$ is drawn parallel to $BC$, intersecting $AB$ at $E$ and $AC$ at $F$, with $EF=4$. What is the length of $BC$?", -"image_file_name": "7047158", -"image": [ -"math/51434965_714.png" -], -"solution": "\\textbf{Solution:} Given that in equilateral triangle ABC, EF$\\parallel$BC,\\\\\nthus $\\angle$AEF=$\\angle$ABC=$\\angle$AFE=$\\angle$ACB=$60^\\circ$, and AB=AC=BC,\\\\\nwhich implies that $\\triangle$AEF is also an equilateral triangle,\\\\\ntherefore AE=EF=FA=4,\\\\\nresulting in EB=FC,\\\\\nsince the bisector of $\\angle$ABC intersects with the bisector of $\\angle$ACB at point D, and EF$\\parallel$BC,\\\\\nit follows that $\\angle$EBD=$\\angle$DBC=$\\angle$EDB=$\\angle$FCD=$\\angle$FDC=$\\angle$DCB=$30^\\circ$,\\\\\nhence EB=ED=DF=FC,\\\\\ngiven EF=4,\\\\\nit leads to EB=ED=DF=FC=2,\\\\\ntherefore AB=AC=BC=AE+EB=\\boxed{6},", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51434867": { -"question": "As shown in the figure, in the Cartesian coordinate system, the edges $OB$ and $OA$ of the rectangle $AOBC$ are on the $x$-axis and $y$-axis, respectively, and point $D$ is on edge $BC$. When the rectangle is folded along $AD$, point $C$ falls exactly on point $E$ on edge $OB$. If point $A$ is at $(0, 8)$ and point $B$ is at $(10, 0)$, what are the coordinates of point $D$?", -"image_file_name": "7047158", -"image": [ -"math/51434867_722.png" -], -"solution": "\\textbf{Solution:} Given $A(0,8)$ and point $B(10,0)$, $\\therefore$ $OA=BC=8$, $OB=AC=10$. Let $BD=a$, then $CD=8-a$. According to the problem, $CD=DE=8-a$. Knowing from folding, $AE=AC=10$, $\\therefore$ $OE=\\sqrt{AE^{2}-AO^{2}}=\\sqrt{10^{2}-8^{2}}=6$, $\\therefore$ $BE=OB-OE=10-6=4$. Since $\\angle DBE=90^\\circ$, $\\therefore$ $a^{2}+4^{2}=(8-a)^{2}$. Solving this, we find $a=3$. Therefore, the coordinates of point D are $(10,3)$. Hence, the answer is: $\\boxed{(10,3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51434865": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\angle C=60^\\circ$, BD bisects $\\angle ABC$, and AD bisects the external angle $\\angle CAE$. What is the degree measure of $\\angle D$?", -"image_file_name": "7047158", -"image": [ -"math/51434865_735.png" -], -"solution": "\\textbf{Solution:} Since BD bisects $\\angle ABC$ and AD bisects the exterior angle $\\angle CAE$,\\\\\nit follows that $\\angle DBA= \\frac{1}{2}\\angle ABC$ and $\\angle DAE= \\frac{1}{2}\\angle CAE$,\\\\\nGiven that $\\angle CAE=\\angle ABC+\\angle C$,\\\\\nand $\\angle DAE=\\angle ABD+\\angle D$,\\\\\nit can be derived that $\\angle D= \\frac{1}{2}\\angle CAE- \\frac{1}{2} \\angle ABD= \\frac{1}{2} (\\angle CAE-\\angle ABD)= \\frac{1}{2} \\angle C=\\frac{1}{2}\\times 60^\\circ=\\boxed{30^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51434804": { -"question": "As shown in the figure, it is known that $\\triangle ABC$ is an equilateral triangle, $BD$ is the median of $\\triangle ABC$. Extend $BC$ to $E$ so that $CE=CD$, and connect $DE$. What is the measure of $\\angle BDE$?", -"image_file_name": "7047158", -"image": [ -"math/51434804_740.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC$ is an equilateral triangle and BD is the median,\\\\\ntherefore, $\\angle BDC=90^\\circ$, $\\angle ACB=60^\\circ$\\\\\nthus, $\\angle ACE=180^\\circ-\\angle ACB=180^\\circ-60^\\circ=120^\\circ$,\\\\\nsince CE=CD,\\\\\ntherefore, $\\angle CDE=\\angle CED=30^\\circ$,\\\\\nthus, $\\angle BDE=\\angle BDC+\\angle CDE=90^\\circ+30^\\circ=\\boxed{120^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51419899": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC = \\angle ACB$, D is the midpoint of BC, AD is connected, E is a point on AB, P is a point on AD, EP and BP are connected, $AC=10$, $BC=12$, what is the minimum value of $EP+BP$?", -"image_file_name": "7047158", -"image": [ -"math/51419899_750.png" -], -"solution": "\\textbf{Solution:} Connect PC,\n\n$\\because$ $\\angle ABC = \\angle ACB$,\n\n$\\therefore$ AB = AC,\n\n$\\because$ D is the midpoint of BC,\n\n$\\therefore$ AD is the perpendicular bisector of BC, BD = $\\frac{1}{2}$BC = 6\n\n$\\therefore$ BP = CP,\n\n$AD = \\sqrt{AB^{2} - BD^{2}} = \\sqrt{10^{2} - 6^{2}} = 8$\n\n$\\therefore$ EP + BP = EP + CP\n\nTo minimize the value of EP + BP, utilizing the fact that the shortest distance between two points is a straight line and the shortest segment is the perpendicular, it is known that when points E, P, C are collinear and CE$\\perp$AB, the value of EP + BP is minimized, with the minimum value being the length of EC;\n\n$\\because$ $S_{\\triangle ABC} = \\frac{1}{2}AB \\cdot CE = \\frac{1}{2}CB \\cdot AD$,\n\n$\\therefore$ 10CE = 12 $\\times$ 8\n\nSolving for it: CE = \\boxed{9.6}.", -"solution_image": [ -"solution_images/51419899_750.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51419801": { -"question": "As shown in the graph, in the Cartesian coordinate system, $\\triangle OAB$ is translated rightward along the x-axis to obtain $\\triangle O'A'B'$. The coordinates of point A are $(0, 4)$, and the corresponding point A' lies on the line $y =\\frac{5}{4}x-1$. Point B is on the angle bisector of $\\angle A'AO$. If the area of quadrilateral $AA'B'B$ is 4, what are the coordinates of point B?", -"image_file_name": "7047158", -"image": [ -"math/51419801_761.png" -], -"solution": "\\textbf{Solution:} According to the properties of translation, we have: $AA'=BB'$, $AA'\\parallel BB'$, and the ordinate of $A'$ is 4,\\\\\n$\\because$ point $A'$ lies on the line $y=\\frac{5}{4}x-1$,\\\\\n$\\therefore$ 4=$\\frac{5}{4}x-1$,\\\\\n$\\therefore$ x=4,\\\\\n$\\therefore$ AA'=BB'=4,\\\\\n$\\because$ the area of the quadrilateral $AA'B'B$ is 4,\\\\\n$\\therefore$ the distance from point B to $AA'$ is 1,\\\\\n$\\because$ point B is on the angle bisector of $\\angle A'AO$,\\\\\n$\\therefore$ the distance from point B to OA is 1,\\\\\n$\\therefore$ the coordinates of point B' are $\\boxed{(5,3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51419802": { -"question": "As shown in the figure, in the Cartesian coordinate system, the equation of line $MN$ is $y=-x+3$. Point $A$ is located on line segment $MN$ and satisfies $AN=2AM$. Point $B$ is on the $x$-axis. When $\\triangle AOB$ is an isosceles triangle with $OA$ as one of its equal sides, what are the coordinates of point $B$?", -"image_file_name": "7047158", -"image": [ -"math/51419802_770.png" -], -"solution": "\\textbf{Solution:} As illustrated in the diagram, draw AC $\\perp$ OM and AD $\\perp$ ON,\\\\\nlet x=0, then y=3,\\\\\nlet y=0, then x=3,\\\\\n$\\therefore$ M(0, 3), N(3, 0),\\\\\n$\\therefore$ OM=ON=3,\\\\\n$\\therefore$ MN=$3\\sqrt{2}$, $\\angle M=45^\\circ$,\\\\\n$\\because$ AN = 2AM,\\\\\n$\\therefore$ AM=$\\sqrt{2}$,\\\\\n$\\therefore$ AC=CM=1,\\\\\n$\\therefore$ OC=2,\\\\\n$\\therefore$ OA=$\\sqrt{1^2+2^2}=\\sqrt{5}$,\\\\\nWhen point B is on the positive x-axis, OB=OA=$\\sqrt{5}$, hence point B$_1$ ($\\sqrt{5}$, 0),\\\\\nWhen point B is on the negative x-axis, OB=OA=$\\sqrt{5}$, hence point B$_2$ ($-\\sqrt{5}$, 0),\\\\\nWhen AB = OA, OD=$\\sqrt{(\\sqrt{5})^2-2^2}=1$,\\\\\n$\\therefore$ OB=2OD=2,\\\\\n$\\therefore$ point B$_3$ (2, 0),\\\\\n$\\therefore$ the coordinates of point B are $\\boxed{(2,0)}$ or ($\\sqrt{5}$, 0) or ($-\\sqrt{5}$, 0).", -"solution_image": [ -"solution_images/51419802_770.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51419668": { -"question": "As shown in the diagram, in the right-angled triangle $ABC$ with $\\angle A=90^\\circ$, $AB=3$, and $AC=4$, triangle $ABC$ is folded along $BD$ such that point $A$ precisely falls on $BC$. What is the length of $CD$?", -"image_file_name": "7047158", -"image": [ -"math/51419668_780.png" -], -"solution": "\\textbf{Solution:} Let $CD=x$, then $AD=A^{\\prime}D=4-x$. In the right-angled triangle $ABC$, $BC= \\sqrt{AB^{2}+AC^{2}} =5$. Hence $A^{\\prime}C=BC-AB=BC-A^{\\prime}B=5-3=2$. In the right-angled triangle $A^{\\prime}DC$: $AD^{2}+AC^{2}=CD^{2}$. That is, $(4-x)^{2}+2^{2}=x^{2}$. Solving this, we find: $x=\\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51419578": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=13$, and $BC=24$. Point $D$ is on $BC$ ($BD > CD$). $\\triangle AED$ and $\\triangle ACD$ are symmetric about line $AD$, with point $C$ being symmetric to point $E$. $AE$ intersects $BC$ at point $F$. $BE$ and $CE$ are connected. When $DE \\perp BC$, what is the degree measure of $\\angle ADE$? What is the length of $CE$?", -"image_file_name": "7047158", -"image": [ -"math/51419578_790.png" -], -"solution": "\\textbf{Solution:} Construct $AH \\perp BC$ at $H$, \\\\\nsince $AB=AC=13$, $BC=24$, \\\\\nthus $BH=CH=12$, \\\\\nthus $AH= \\sqrt{AB^{2}-BH^{2}} =5$, \\\\\nsince $\\triangle AED$ and $\\triangle ACD$ are symmetrical about the line $AD$, \\\\\nthus $\\angle ADC=\\angle ADE$, $CD=DE$, \\\\\nsince $DE\\perp BC$, \\\\\nthus $\\angle BDE=90^\\circ$, \\\\\nthus $\\angle ADE=90^\\circ+\\angle ADB=\\angle ADC$, \\\\\nthus $90^\\circ+\\angle ADB=180^\\circ-\\angle ADB$, \\\\\nthus $\\angle ADB=45^\\circ$, \\\\\nsince $\\angle AHC=90^\\circ$, \\\\\nthus $\\angle ADB=\\angle HAD=45^\\circ$, \\\\\nthus $AH=HD=5$, $\\angle ADE=\\angle ADB+\\angle BDE=\\boxed{135^\\circ}$, \\\\\nthus $BD=12+5=17$, \\\\\nthus $CD=DE=24-17=7$, \\\\\nthus $CE= \\sqrt{CD^{2}+DE^{2}} =7\\sqrt{2}$, \\\\\nHence, the answer is: $\\boxed{135^\\circ}$, $\\boxed{7\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51419578_790.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51419577": { -"question": "As shown in the figure, the line $l_{1}\\colon y=x+1$ intersects the x-axis at point A and intersects the line $l_{2}\\colon y=\\frac{1}{2}x+2$ at point B. Point C is a point on the x-axis. If $\\triangle ABC$ is a right triangle, what is the x-coordinate of point C?", -"image_file_name": "7047158", -"image": [ -"math/51419577_801.png" -], -"solution": "\\textbf{Solution:} Given the line $l_{1}\\colon y=x+1$ intersects the x-axis at point A,\\\\\nthus, A is at (-1, 0),\\\\\nFrom $\\left\\{\\begin{array}{l}y=x+1 \\\\ y=\\frac{1}{2}x+2\\end{array}\\right.$, we get $\\left\\{\\begin{array}{l}x=2 \\\\ y=3\\end{array}\\right.$,\\\\\ntherefore, B is at (2, 3),\\\\\nWhen $\\angle ACB=90^\\circ$, the x-coordinate of point C is the same as that of B,\\\\\nthus, C is at (2, 0);\\\\\nWhen $\\angle ABC=90^\\circ$, then $AC^{2}=AB^{2}+BC^{2}$,\\\\\nLet C be at (x, 0), then $AC^{2}=(x+1)^{2}$, $AB^{2}=(2+1)^{2}+3^{2}$, $BC^{2}=(2-x)^{2}+3^{2}$,\\\\\nthus, $(x+1)^{2}=(2+1)^{2}+3^{2}+(2-x)^{2}+3^{2}$,\\\\\nSolving it, we get $x=\\boxed{5}$,\\\\\ntherefore, C is \\boxed{(5, 0)},\\\\\nIn summary, the coordinates of point C are either (2, 0) or (5, 0).", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51419574": { -"question": "In $\\triangle ABC$, if $\\angle A=35^\\circ$ and $\\angle B=65^\\circ$, then what is the degree measure of $\\angle C$?", -"image_file_name": "7047158", -"image": [], -"solution": "\\textbf{Solution:} Since in $\\triangle ABC$, $\\angle A=35^\\circ$, $\\angle B=65^\\circ$, \\\\\ntherefore $\\angle C=180^\\circ-35^\\circ-65^\\circ=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51546410": { -"question": "As shown in the diagram, $AB\\parallel CD$, $AC$ bisects $\\angle BAD$, $BD$ bisects $\\angle ADC$, $AC$ and $BD$ intersect at point $E$, and $F$, $G$ are moving points on the line segments $AB$ and $AC$, respectively, with $AF=CG$. If $DE=1$ and $AB=2$, what is the minimum value of $DF+DG$?", -"image_file_name": "7047158", -"image": [ -"math/51546410_820.png" -], -"solution": "\\textbf{Solution:} Connect BC.\\\\\nSince AC bisects $\\angle$BAD and BD bisects $\\angle$ADC, and AB$\\parallel$CD,\\\\\n$\\therefore$$\\angle$DAC=$\\angle$BAC, $\\angle$ADB=$\\angle$CDB, $\\angle$AED=$180^\\circ-180^\\circ\\div2=90^\\circ$,\\\\\nSince AB$\\parallel$CD,\\\\\n$\\therefore$$\\angle$DCA=$\\angle$BAC,\\\\\n$\\therefore$$\\angle$DCA=$\\angle$DAC,\\\\\n$\\therefore$DA=DC,\\\\\nSimilarly: DA=BA,\\\\\n$\\therefore$DC=AB,\\\\\nSince AB$\\parallel$CD,\\\\\n$\\therefore$Quadrilateral ABCD is a parallelogram,\\\\\nSince DA=DC,\\\\\n$\\therefore$Quadrilateral ABCD is a rhombus.\\\\\nAs shown in the figure. Take point B' on AC, such that AB'=AB, connect FB', construct the symmetric point D' of D about AB, connect D'F, DD'.\\\\\nConstruct B'H$\\perp$CD at point H, construct B'M$\\perp$DD' at point M.\\\\\n$\\therefore$DF=D'F,\\\\\nSince AF=CG, $\\angle$B'AF=$\\angle$DCG, AB'=AB=CD,\\\\\n$\\therefore$$\\triangle$B'AF$\\cong$DCG (SAS),\\\\\n$\\therefore$B'F=DG,\\\\\n$\\therefore$DF+DG=D'F+B'F,\\\\\n$\\therefore$When points B', F, D' are on the same line, DF+DG=D'F+B'F takes the minimum value of B'D'.\\\\\nSince DE=1, AD=AB=2,\\\\\n$\\therefore$$\\angle$DAE=$30^\\circ$, $\\angle$ADE=$60^\\circ$,\\\\\n$\\therefore$AC= $\\sqrt{3}$ AD=2$\\sqrt{3}$, CB'=2$\\sqrt{3}$−2,\\\\\n$\\therefore$B'H= $\\frac{1}{2}$ B'C=$\\sqrt{3}$−1, CH=$\\sqrt{3}$ B'H=3−$\\sqrt{3}$,\\\\\n$\\therefore$DH=DC−CH=2−(3−$\\sqrt{3}$)=$\\sqrt{3}$−1,\\\\\nSince Quadrilateral DHB$^{\\prime}$M is a rectangle\\\\\n$\\therefore$DM=B'H=$\\sqrt{3}$−1, MB$^{\\prime}$=DH=$\\sqrt{3}−1$,\\\\\n$\\therefore$D'M=DD'−DM=$\\sqrt{3}$ AD−DM=2$\\sqrt{3}$−($\\sqrt{3}$−1)=$\\sqrt{3}$+1,\\\\\n$\\therefore$D'B'= $\\sqrt{M{{B}^{\\prime}}^{2}+M{{D}^{\\prime}}^{2}}=\\sqrt{{(\\sqrt{3}−1)}^{2}+{(\\sqrt{3}+1)}^{2}}=2\\sqrt{2}$.\\\\\nTherefore, the minimum value of DF+DG is $\\boxed{2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51546410_820.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51546408": { -"question": "As shown in the figure, in an equilateral triangle $ABC$ with side length of 4, $D$ and $E$ are the midpoints of sides $BC$ and $AC$ respectively. $DF \\perp AB$ at point $F$. Connect $EF$. What is the length of $EF$?", -"image_file_name": "7047158", -"image": [ -"math/51546408_831.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of sides $BC$ and $AC$ respectively, and the equilateral triangle $ABC$ has a side length of $4$,\\\\\n$\\therefore AB=BC=AC=4$, $\\angle B=60^\\circ=\\angle C$, $AE=CE=2$, $BD=CD=2$,\\\\\n$\\therefore \\triangle DEC$ is an equilateral triangle,\\\\\n$\\therefore DE=2$, $\\angle EDC=60^\\circ$,\\\\\nSince $DF\\perp AB$, then $\\angle BDF=30^\\circ$,\\\\\n$\\therefore BF=\\frac{1}{2}BD$, $BF\\colon DF\\colon BD=1\\colon \\sqrt{3}\\colon 2$,\\\\\n$\\therefore DF=\\sqrt{3}$,\\\\\nSince $\\angle BDF=30^\\circ$, $\\angle EDC=60^\\circ$,\\\\\n$\\therefore \\angle FDE=180^\\circ-30^\\circ-60^\\circ=90^\\circ$,\\\\\n$EF=\\sqrt{{\\left(\\sqrt{3}\\right)}^{2}+{2}^{2}}=\\sqrt{7}.$\\\\\nTherefore, the answer is $EF=\\boxed{\\sqrt{7}}.$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51546405": { -"question": "As shown in the figure, a right-angle triangle plate is stacked in the manner shown. Where $ \\angle A=45^\\circ$ and $ \\angle D=30^\\circ$. If $ DF\\parallel BC$, then what is the degree measure of $ \\angle AGE$?", -"image_file_name": "7047158", -"image": [ -"math/51546405_844.jpg" -], -"solution": "\\textbf{Solution}: Since $\\triangle ABC$ and $\\triangle DFE$ are both right-angled triangles, with $\\angle A=45^\\circ$ and $\\angle D=30^\\circ$,\\\\\nthus $\\angle B=45^\\circ$ and $\\angle DFE=90^\\circ-30^\\circ=60^\\circ$,\\\\\nsince $DF\\parallel BC$ and $\\angle D=30^\\circ$,\\\\\nthus $\\angle FEC=\\angle DFE=60^\\circ$,\\\\\nthus $\\angle GEB=90^\\circ-\\angle DFE=90^\\circ-60^\\circ=30^\\circ$,\\\\\nthus $\\angle AGE=\\angle GEB+\\angle B=30^\\circ+45^\\circ=\\boxed{75^\\circ}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52720328": { -"question": "As shown in the figure, it is known that $\\triangle ABC$ is an equilateral triangle with the height $AH=8\\,\\text{cm}$. $P$ is a moving point on $AH$, and $D$ is the midpoint of $AB$. What is the minimum value of $PD+PB$ in $\\,\\text{cm}$?", -"image_file_name": "7047158", -"image": [ -"math/52720328_850.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an equilateral triangle and $AH$ is the height,\\\\\n$\\therefore$ point $H$ is the midpoint of $BC$,\\\\\npoint $B$ is symmetric to point $C$ with respect to $AH$, connecting $DC$ intersects $AH$ at a point $P$, at this moment there is a minimum value, the minimum value is the length of $DC$,\\\\\nsince $D$ is the midpoint of $AB$,\\\\\n$\\therefore DC$ is the height from $AB$,\\\\\n$\\therefore DC=AH=8$,\\\\\n$\\therefore PD+PB=PD+PC=DC=\\boxed{8\\,\\text{cm}}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53044180": { -"question": "As shown in the figure, point $D$ is inside $\\triangle ABC$, with $CD$ bisecting $\\angle ACB$, $BE \\perp CD$ at point $D$, and intersecting $AC$ at point $E$, with $\\angle A = \\angle ABE$. If $AC = 7$ and $BC = 4$, what is the length of $BD$?", -"image_file_name": "7044920", -"image": [ -"math/53044180_419.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, since $CD$ bisects $\\angle ACB$ and $BE\\perp CD$,\\\\\nit follows that $\\angle BCD=\\angle ECD$ and $\\angle BDC=\\angle EDC=90^\\circ$,\\\\\nsince $CD=CD$,\\\\\nit follows that $\\triangle BCD\\cong \\triangle ECD\\ (ASA)$,\\\\\nhence $BC=CE=4$, $BD=DE=\\frac{1}{2}BE$,\\\\\nsince $\\angle A=\\angle ABE$,\\\\\nit follows that $\\triangle ABE$ is an isosceles triangle,\\\\\nthus $AE=BE=AC−EC=AC−BC=3$,\\\\\ntherefore $BD=DE=\\frac{1}{2}BE=\\boxed{1.5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044213": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is an axisymmetric figure with line $AC$ as its axis of symmetry. If $\\angle BAC = 65^\\circ$ and $\\angle B = 50^\\circ$, what is the measure of $\\angle BCD$? ", -"image_file_name": "7044920", -"image": [ -"math/53044213_422.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle BAC=65^\\circ$ and $\\angle B=50^\\circ$,\\\\\nthus $\\angle BCA=180^\\circ-\\angle B-\\angle BAC=180^\\circ-50^\\circ-65^\\circ=65^\\circ$,\\\\\nsince quadrilateral ABCD is an axisymmetric figure,\\\\\ntherefore $\\angle BCA=\\angle DCA=65^\\circ$,\\\\\nhence $\\angle BCD=\\angle BCA+\\angle DCA=\\boxed{130^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53044234": { -"question": "As shown in the diagram, $D$ is a point inside $\\triangle ABC$, where $CD$ bisects $\\angle ACB$, and $BE\\perp CD$ with the foot of the perpendicular being $D$, intersecting $AC$ at point $E$. It is given that $\\angle A = \\angle ABE$. If $AC=7$ and $BC=4$, what is the length of $BD$?", -"image_file_name": "7044920", -"image": [ -"math/53044234_439.png" -], -"solution": "\\textbf{Solution:} Given that $CD$ bisects $\\angle ACB$,\\\\\nthus $\\angle BCD=\\angle ECD$,\\\\\nsince $BE\\perp CD$,\\\\\nthus $\\angle BDC=\\angle EDC=90^\\circ$,\\\\\nsince $CD=CD$,\\\\\nthus $\\triangle BDC\\cong \\triangle EDC$ (by ASA),\\\\\ntherefore $BC=CE=4$, $BD=DE$,\\\\\nalso since $\\angle A=\\angle ABE$,\\\\\nthus $AE=BE$,\\\\\nsince $AC=7$, $BC=4$,\\\\\nthus $AE=AC-CE=3$,\\\\\ntherefore $BE=AE=3$,\\\\\ntherefore $BD=\\frac{1}{2}BE=\\boxed{\\frac{3}{2}}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033974": { -"question": "As shown in the figure, in $\\triangle ABC$, with $AB=AC=7$, the perpendicular bisector $DE$ of $AB$ intersects $BC$ and $AB$ at points $D$ and $E$, respectively. Line $AD$ is drawn. If $BC=10$, then what is the perimeter of $\\triangle ACD$?", -"image_file_name": "7044920", -"image": [ -"math/53033974_440.png" -], -"solution": "\\textbf{Solution:} Given $DE$ is the perpendicular bisector of $AB$,\\\\\n$\\therefore$ $AD=DB$,\\\\\n$\\therefore$ the perimeter of $\\triangle ADC$ is $AD+DC+AC=DB+DC+AC=BC+AC=10+7=\\boxed{17}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033975": { -"question": " As shown in the figure, in $\\triangle ABC$, $\\angle A=90^\\circ$, $\\angle B=30^\\circ$, $CD$ bisects $\\angle ACB$ and intersects $AB$ at point $D$, $DE\\parallel BC$, and intersects $AC$ at point $E$. If $BC=9$, what is the length of $AE$?", -"image_file_name": "7044920", -"image": [ -"math/53033975_450.png" -], -"solution": "\\textbf{Solution:} In the right-angled triangle $ABC$, $\\angle B=30^\\circ$, \\\\\n$\\therefore AC= \\frac{1}{2}BC= \\frac{9}{2}$, \\\\\n$\\angle ACB=90^\\circ-\\angle B=60^\\circ$, \\\\\n$\\because CD$ bisects $\\angle ACB$, \\\\\n$\\therefore \\angle ACD= \\frac{1}{2}\\angle ACB=30^\\circ$, \\\\\n$\\because DE\\parallel BC$, \\\\\n$\\therefore \\angle EDC=\\angle DCB=\\angle ACD=30^\\circ$, \\\\\n$\\therefore CE=DE$, \\\\\n$\\therefore \\angle ADC=60^\\circ$, \\\\\n$\\therefore \\angle ADE=\\angle ADC-\\angle EDC=30^\\circ$, \\\\\n$\\therefore AE=\\frac{1}{2}DE=\\frac{1}{2}EC$, \\\\\n$\\therefore AE= \\frac{1}{3}AC= \\frac{1}{3}\\times \\frac{9}{2}=\\boxed{\\frac{3}{2}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53033151": { -"question": "As shown in the figure, $AB \\perp CD$, and $AB = CD$, $CE \\perp AD$ at $E$, $BF \\perp AD$ at $F$. Given $CE = 6$, $BF = 3$, $EF = 2$, what is the length of $AD$?", -"image_file_name": "7044920", -"image": [ -"math/53033151_468.png" -], -"solution": "\\textbf{Solution:} Since $AB\\perp CD$, $CE\\perp AD$, and $BF\\perp AD$,\\\\\nit follows that $\\angle A+\\angle D=90^\\circ$, $\\angle C+\\angle D=90^\\circ$, and $\\angle CED=\\angle AFB=90^\\circ$,\\\\\nthus, $\\angle A=\\angle C$,\\\\\nin $\\triangle ABF$ and $\\triangle CDE$,\\\\\n$\\begin{cases}\n\\angle A=\\angle C \\\\\n\\angle AFB=\\angle CED \\\\\nAB=CD\n\\end{cases}$,\\\\\ntherefore, $\\triangle ABF\\cong \\triangle CDE$ (AAS),\\\\\nhence, $AF=CE=6$, $BF=DE=3$,\\\\\ntherefore, $AD=AF-EF+DE=6-2+3=\\boxed{7}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033290": { -"question": "As shown in the figure, points D and E are the trisection points of $BC$, and $\\triangle ADE$ is an equilateral triangle. What is the measure of $\\angle BAC$?", -"image_file_name": "7044920", -"image": [ -"math/53033290_473.png" -], -"solution": "Solution: Since $E$ is the trisecting point of $BC$, and $\\triangle ADE$ is an equilateral triangle,\\\\\n$\\therefore BD=DE=EC=AD=AE$, $\\angle ADE=\\angle AED=60^\\circ$,\\\\\n$\\therefore \\angle B=\\angle BAD=\\angle C=\\angle EAC=30^\\circ$,\\\\\n$\\therefore \\angle BAC=180^\\circ-\\angle B-\\angle C=\\boxed{120^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033285": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$, $\\angle A = 20^\\circ$, $BD$ is the bisector of $\\angle ABC$, then what is the measure of $\\angle BDC$ in degrees?", -"image_file_name": "7044920", -"image": [ -"math/53033285_486.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle A=20^\\circ$,\\\\\nthus $\\angle ABC=180^\\circ-\\angle C-\\angle A=70^\\circ$,\\\\\nsince $BD$ is the bisector of $\\angle ABC$,\\\\\nthus $\\angle DBC=\\frac{1}{2}\\angle ABC=35^\\circ$,\\\\\nin $\\triangle DBC$,\\\\\nsince $\\angle C=90^\\circ$, $\\angle DBC=35^\\circ$,\\\\\nthus $\\angle BDC=180^\\circ-\\angle C-\\angle DBC=\\boxed{55^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033152": { -"question": "As shown in the figure, in $\\triangle ABC$ and $\\triangle DEC$, we have $AB=DE$, $AC=DC$, $CE=CB$. Point $E$ is on $AB$. If $\\angle ACE=2\\angle ECB=50^\\circ$, then what is the degree measure of $\\angle A$?", -"image_file_name": "7044920", -"image": [ -"math/53033152_498.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ACE = 2\\angle ECB = 50^\\circ$,\\\\\nit follows that $\\angle ECB = 25^\\circ$,\\\\\nthus $\\angle ACB = \\angle ACE + \\angle ECB = 50^\\circ + 25^\\circ = 75^\\circ$,\\\\\nsince $CE = CB$, $\\angle ECB = 25^\\circ$,\\\\\nit follows that $\\angle B = \\angle CEB = \\frac{1}{2}(180^\\circ - \\angle ECB) = \\frac{1}{2}(180^\\circ - 25^\\circ) = 77.5^\\circ$,\\\\\ntherefore $\\angle A = 180^\\circ - \\angle B - \\angle ACB = 180^\\circ - 77.5^\\circ - 75^\\circ = \\boxed{27.5^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033463": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point D is the midpoint of the hypotenuse $AB$, $CD=5$, $BC=6$. Connect $CD$, fold $\\triangle BCD$ along $CD$ so that point B falls on point E, point F is a point on the right-angle side $AC$, connect $DF$, fold $\\triangle ADF$ along $DF$ so that point A coincides with point E. What is the area of $\\triangle EFC$?", -"image_file_name": "7044920", -"image": [ -"math/53033463_5011.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACB=90^\\circ$ and point D is the midpoint of hypotenuse $AB$ with $CD=5$ and $BC=6$,\\\\\n$\\therefore$ $AB=10$,\\\\\n$\\therefore$ $AC=\\sqrt{AB^2-BC^2}=8$,\\\\\nFrom folding, we know that $\\angle B=\\angle DEC$, $\\angle A=\\angle DEF$, $CE=BC=6$, and $AF=EF$,\\\\\n$\\because$ $\\angle A+\\angle B=90^\\circ$,\\\\\n$\\therefore$ $\\angle DEF+\\angle DEC=90^\\circ$, which means $\\angle FEC=90^\\circ$,\\\\\n$\\therefore$ $EF^2+CE^2=CF^2$,\\\\\nLet $AF=EF=x$, then $CF=AC-AF=8-x$,\\\\\n$\\therefore$ $x^2+6^2=(8-x)^2$,\\\\\nSolving for $x$ yields $x=\\frac{7}{4}$,\\\\\n$\\therefore$ $EF=\\frac{7}{4}$,\\\\\n$\\therefore$ The area of $\\triangle EFC$ is $\\frac{1}{2}CE\\times EF=\\frac{1}{2}\\times 6\\times \\frac{7}{4}=\\boxed{\\frac{21}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53033459": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=9\\text{cm}$, $DE$ is the perpendicular bisector of $AB$, intersecting $AB$ and $AC$ at points $D$ and $E$, respectively. If $BC=5\\text{cm}$, what is the perimeter of $\\triangle BCE$ in $\\text{cm}$?", -"image_file_name": "7044920", -"image": [ -"math/53033459_518.png" -], -"solution": "\\textbf{Solution:} Given that $DE$ is the perpendicular bisector of $AB$,\\\\\nit follows that $AE=BE$,\\\\\ngiven $AC=9\\text{cm}$, $BC=5\\text{cm}$, and $AE=BE$,\\\\\nthus, the perimeter of $\\triangle BCE$ is $BC+BE+CE=BC+AE+CE=BC+AC=9\\text{cm}+5\\text{cm}=\\boxed{14\\text{cm}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033289": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AD$ bisects $\\angle BAC$ and intersects $BC$ at point $D$, $DE\\perp AB$ with the foot at $E$. If $BC=4$ and $DE=1.6$, what is the length of $BD$?", -"image_file_name": "7044920", -"image": [ -"math/53033289_529.png" -], -"solution": "\\textbf{Solution:} Since $AD$ bisects $\\angle BAC$, $DE\\perp AB$, and $\\angle C=90^\\circ$,\\\\\nit follows that $CD=DE$,\\\\\nSince $DE=1.6$,\\\\\nit follows that $CD=1.6$,\\\\\ntherefore $BD=BC-CD=4-1.6=\\boxed{2.4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033458": { -"question": "As shown in the figure, three squares form a right-angled triangle, with $64$ and $400$ as the areas of the respective squares. What is the area of the square represented by the letter $M$ in the figure?", -"image_file_name": "7044920", -"image": [ -"math/53033458_530.png" -], -"solution": "\\textbf{Solution:} According to the relationship between the area and the side length of a square,\\\\\nthe square of the short leg of the right-angled triangle in the figure is 64, and the square of the hypotenuse is 400,\\\\\nbased on the Pythagorean theorem, the square of the long leg of the right-angled triangle is $400-64=336$,\\\\\nthus the area of the square represented by the letter $M$ is $\\boxed{336}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53019700": { -"question": "As shown in the diagram, $ \\triangle ABC \\cong \\triangle ADE$, and $\\angle EAB = 120^\\circ$, $\\angle B = 30^\\circ$, $\\angle CAD = 10^\\circ$, what is the degree measure of $\\angle CFD$?", -"image_file_name": "7044920", -"image": [ -"math/53019700_541.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle ADE$, \\\\\nit follows that $\\angle EAD = \\angle CAB$, \\\\\nand since $\\angle EAB = 120^\\circ$ and $\\angle CAD = 10^\\circ$, \\\\\nit follows that $\\angle EAD = \\angle CAB = 55^\\circ$, \\\\\ntherefore, $\\angle CFD = \\angle FAB + \\angle B = 10^\\circ + 55^\\circ + 30^\\circ = \\boxed{95^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53009851": { -"question": "As shown in the figure, in $\\triangle ABC$, the perpendicular bisector of AB intersects AC at point D. Given that $BC=10$ and the perimeter of $\\triangle BDC$ is $25$, what is the length of AC?", -"image_file_name": "7044920", -"image": [ -"math/53009851_550.png" -], -"solution": "\\textbf{Solution:} Since $DE$ is the perpendicular bisector of $AB$,\\\\\nit follows that $DB=DA$,\\\\\nSince the perimeter of $\\triangle BDC$ is 25,\\\\\nit follows that $BC+BD+CD=25$,\\\\\nhence $BC+CD+DA=25$,\\\\\nthus $BC+CA=25$,\\\\\nsince $BC=10$,\\\\\nit follows that $AC=25-10=\\boxed{15}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51379443": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ DE \\parallel BC$, $ DF \\parallel AC$, $ AD=3$, $ BD=2$, what is the value of $ BF: DE$?", -"image_file_name": "7056453", -"image": [ -"math/51379443_3410.png" -], -"solution": "\\textbf{Solution:} Since $DE \\parallel BC$ and $DF \\parallel AC$, \\\\\nit follows that $\\angle ADE=\\angle B$ and $\\angle BDF=\\angle BAC$, \\\\\nwhich means $\\triangle DBF \\sim \\triangle ADE$, \\\\\nthus $\\frac{BD}{DA}=\\frac{BF}{DE}=\\frac{2}{3}$, \\\\\nhence $\\frac{BF}{DE}=\\boxed{\\frac{2}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379481": { -"question": "As shown in the figure, within rectangle $ABCD$, the bisector of $\\angle BCD$ intersects side $AD$ at point $E$, the bisector of $\\angle AEC$ intersects the extended line of side $CB$ at point $G$ and intersects side $AB$ at point $F$. If $AB = 3\\sqrt{2}$ and $AF = 2BF$, then what is the length of $GB$?", -"image_file_name": "7056453", -"image": [ -"math/51379481_351.png" -], -"solution": "\\textbf{Solution:} From rectangle $ABCD$, the angle bisector of $\\angle BCD$, CE, intersects AD at E; \\\\\n$\\therefore CD=AB=3\\sqrt{2}$, $\\angle DCE=\\angle BCE=45^\\circ$, \\\\\n$\\therefore CD=DE=3\\sqrt{2}$, \\\\\nFrom right triangle CDE, \\\\\n$\\therefore CE=\\sqrt{CD^2+DE^2}=6$, \\\\\nAlso, the angle bisector of $\\angle AEC$, EG, intersects AB at point F, \\\\\n$\\therefore \\angle AEG=\\angle CEG$, \\\\\nSince AD$\\parallel$BC, \\\\\n$\\therefore \\angle G=\\angle AEG$, \\\\\n$\\therefore \\angle CEG=\\angle G$, \\\\\n$\\therefore CG=CE=6$, \\\\\nSince $\\angle G=\\angle AEF$, $\\angle AFE=\\angle BFG$, \\\\\n$\\therefore \\triangle AEF\\sim \\triangle BGF$, \\\\\n$\\therefore \\frac{GB}{AE}=\\frac{FG}{EF}=\\frac{FB}{AF}=\\frac{BF}{2BF}=\\frac{1}{2}$, \\\\\nLet $BG=x$, then $AE=2x$, thus $BC=AD=3\\sqrt{2}+2x$, \\\\\nBecause $CG=BC+BG$, \\\\\n$\\therefore 6=3\\sqrt{2}+2x+x$, solving for $x$ gives $x=\\boxed{2-\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379554": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\angle C=90^\\circ$, and $\\tan A=\\frac{5}{12}$. After rotating $\\triangle ABC$ $90^\\circ$ counterclockwise around point $A$, we obtain $\\triangle ADE$, where point $B$ falls on point $D$, and point $C$ falls on point $E$. By connecting $BE$ and $CD$, and drawing the bisector $AN$ of $\\angle CAD$, which intersects line segment $BE$ at point $M$ and line segment $CD$ at point $N$, what is the value of $\\frac{AM}{AN}$?", -"image_file_name": "7056453", -"image": [ -"math/51379554_3618.png" -], -"solution": "\\textbf{Solution:} Let's establish a Cartesian coordinate system with point C as the origin. Through point N, draw $NF\\perp AC$ extending to intersect BP at point P, and $NH\\perp AD$ intersecting at point H, and $NG\\perp x$-axis intersecting at point G. Through point D, draw $DQ\\perp x$-axis intersecting at point Q,\\\\\n$\\because$ $\\angle C=90^\\circ$, $\\tan A=\\frac{5}{12}$,\\\\\n$\\therefore$ let $BC=5k$, $AC=12k$, $AB=13k$,\\\\\nBy rotation, we can obtain: $AE=AC=12k$, $DE=BC=5k$, $AB=AD=13k$,\\\\\n$\\therefore$ $CQ=12k$, $DQ=7k$,\\\\\n$\\therefore$ $B(-5k,0)$, $E(12k,12k)$, $D(12k,7k)$,\\\\\n$\\because$ AN is the bisector of $\\angle CAD$,\\\\\n$\\therefore$ $NF=NH$,\\\\\n$\\therefore$ $\\frac{S_{\\triangle ANC}}{S_{\\triangle AND}}=\\frac{AC}{AD}=\\frac{12k}{13k}=\\frac{12}{13}$, hence $\\frac{CN}{DN}=\\frac{12}{13}$,\\\\\n$\\therefore$ $N(\\frac{144k}{25},\\frac{84k}{25})$,\\\\\nLet the equation of line BE be $y=mx+n$,\\\\\nSubstitute $B(-5k,0)$, $E(12k,12k)$ into it: $\\left\\{\\begin{array}{l}-5km+n=0 \\\\ 12km+n=12k\\end{array}\\right.$,\\\\\nSolving them, we get: $\\left\\{\\begin{array}{l}m=\\frac{12}{17} \\\\ n=\\frac{60k}{17}\\end{array}\\right.$,\\\\\n$\\therefore$ $y=\\frac{12}{17}x+\\frac{60k}{17}$,\\\\\nWhen $y=\\frac{84k}{25}$, $\\frac{12}{17}x+\\frac{60k}{17}=\\frac{84k}{25}$,\\\\\nSolving for $x$: $x=-\\frac{6k}{25}$,\\\\\n$\\therefore$ $P(-\\frac{6k}{25},\\frac{84k}{25})$,\\\\\n$\\therefore$ $NP=\\frac{144k}{25}-(-\\frac{6k}{25})=6k$,\\\\\n$\\because$ $NF\\perp AC$, $\\angle CAE=90^\\circ$,\\\\\n$\\therefore$ $\\angle CFN=\\angle CAE=90^\\circ$,\\\\\n$\\therefore$ $AE\\parallel PN$,\\\\\n$\\therefore$ $\\triangle MAE\\sim \\triangle MNP$,\\\\\n$\\therefore$ $\\frac{AM}{NM}=\\frac{AE}{NP}=\\frac{12k}{6k}=2$,\\\\\n$\\therefore$ $\\frac{AM}{AN}=\\boxed{\\frac{2}{3}}$.", -"solution_image": [ -"solution_images/51379554_365.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379211": { -"question": "As shown in the diagram, in parallelogram $ABCD$, $AB=8$, $DE\\perp AB$ with the foot of the perpendicular at E, $BE=6$. Let $CE$ be connected. If $\\angle CEB=\\angle ADE$, then what is the length of $DE$?", -"image_file_name": "7056453", -"image": [ -"math/51379211_377.png" -], -"solution": "\\textbf{Solution:}\n\nGiven: In quadrilateral $ABCD$, $AB=8$, $BE=6$,\\\\\nthus $AB\\parallel CD$, $CD=AB=8$, $AE=2$,\\\\\nthus $\\angle CDE=\\angle AED, \\angle DCE=\\angle CEB$,\\\\\ngiven that $\\angle CEB=\\angle ADE$,\\\\\nthus $\\angle DCE=\\angle ADE$,\\\\\ntherefore, $\\triangle ADE \\sim \\triangle ECD$,\\\\\nthus $\\frac{AE}{DE}=\\frac{DE}{CD}$,\\\\\nthus $\\frac{2}{DE}=\\frac{DE}{8}$,\\\\\nthus $DE^2=16$,\\\\\nthus $DE=\\pm 4$,\\\\\nUpon verification: $DE=4$ is consistent with the problem, $DE=-4$ is not consistent and is discarded,\\\\\ntherefore, $DE=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379325": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=14$, $AC=10$, point $D$ is on $BC$, and point $M$ is on the extension of $BA$. Given that $\\tan\\angle CAM=\\frac{4}{3}$ and $\\angle DAB=45^\\circ$, what is the length of $AD$?", -"image_file_name": "7056453", -"image": [ -"math/51379325_3810.png" -], -"solution": "\\textbf{Solution:} Draw $CE\\parallel AD$ through $C$ intersecting ray $AM$ at point $E$, and draw $CF\\perp AM$ with the foot at $F$, \\\\\nsince $AC=10$ and $\\tan\\angle CAM=\\frac{4}{3}$, $CF\\perp AM$, \\\\\ntherefore, $\\tan\\angle CAM=\\frac{CF}{AF}=\\frac{4}{3}$, \\\\\nlet $CF=4m$ and $AF=3m$, \\\\\naccording to the Pythagorean theorem: $CF^2+AF^2=AC^2$, that is $16m^2+9m^2=100$, \\\\\nwe find: $m=2$ (discard $m=-2$), \\\\\nthus, $CF=8$ and $AF=6$, \\\\\nsince $CE\\parallel AD$ and $\\angle DAB=45^\\circ$, \\\\\nthus, $\\angle CEF=\\angle DAB=45^\\circ$, \\\\\nthus, $EF=CF=8$, $CE=8\\sqrt{2}$, \\\\\nsince $\\angle CEF=\\angle DAB=45^\\circ$ and $\\angle B=\\angle B$, \\\\\nthus, $\\triangle DBA\\sim \\triangle CBE$, \\\\\nthus, $\\frac{AB}{BE}=\\frac{AD}{CE}$, that is $\\frac{14}{AF+EF+AB}=\\frac{14}{28}=\\frac{AD}{8\\sqrt{2}}$, \\\\\ntherefore, $AD=\\boxed{4\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51379325_382.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379367": { -"question": "As shown in the diagram, through the centroid \\(G\\) of \\(\\triangle ABC\\), construct \\(ED\\parallel AB\\) meeting sides \\(AC\\) and \\(BC\\) at points \\(E\\) and \\(D\\) respectively. Connect \\(AD\\). If \\(AD\\) bisects \\(\\angle BAC\\) and \\(AB=6\\), what is the length of \\(EC\\)?", -"image_file_name": "7056453", -"image": [ -"math/51379367_395.png" -], -"solution": "\\textbf{Solution}:\nDraw and extend CG to meet AB at H,\\\\\nsince G is the centroid of $\\triangle ABC$\\\\\ntherefore $\\frac{CG}{GH}=2$\\\\\ntherefore $\\frac{CG}{CH}=\\frac{2}{3}$\\\\\nsince $ED\\parallel AB$\\\\\ntherefore $\\frac{CG}{CH}=\\frac{2}{3}=\\frac{EC}{AC}$, $\\angle ADE=\\angle BAD$, $\\triangle ECD\\sim \\triangle ACB$\\\\\ntherefore $\\frac{EC}{AC}=\\frac{DE}{AB}=\\frac{2}{3}$\\\\\ntherefore $DE=\\frac{2}{3}AB=4$\\\\\nsince AD bisects $\\angle BAC$\\\\\ntherefore $\\angle EAD=\\angle BAD$\\\\\ntherefore $\\angle EAD=\\angle ADE$\\\\\ntherefore $DE=AE=4$\\\\\ntherefore $\\frac{2}{3}=\\frac{EC}{AC}=\\frac{EC}{EC+AE}$,\\\\\ntherefore $EC=\\boxed{8}$", -"solution_image": [ -"solution_images/51379367_390.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379404": { -"question": "As shown in the figure, in $\\triangle ABC$, the medians $AD$ and $BE$ intersect at point $O$. If the area of $\\triangle AOE$ is 4, what is the area of the quadrilateral $OECD$?", -"image_file_name": "7056453", -"image": [ -"math/51379404_405.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect DE,\\\\\n$\\because$ AD, BE are medians on sides BC, AC respectively,\\\\\n$\\therefore$ D, E are the midpoints of BC, AC respectively,\\\\\n$\\therefore$ DE is the midline of $\\triangle ABC$,\\\\\n$\\therefore$ DE $=\\frac{1}{2}AB$, DE $\\parallel$ AB,\\\\\n$\\therefore$ $\\triangle ABO\\sim \\triangle DEO$, $\\triangle CDE\\sim \\triangle CBA$,\\\\\n$\\therefore$ $\\frac{OE}{OB}=\\frac{DE}{AB}=\\frac{1}{2}$,\\\\\n$\\therefore$ $\\frac{S_{\\triangle ABO}}{S_{\\triangle AOE}}=\\frac{BO}{EO}=2$,\\\\\n$\\therefore$ $S_{\\triangle ABO}=8$,\\\\\n$\\therefore$ $S_{\\triangle ABE}=S_{\\triangle ABO}+S_{\\triangle AOE}=12$,\\\\\n$\\therefore$ $S_{\\triangle ABC}=2S_{\\triangle ABE}=24$,\\\\\n$\\because$ $\\frac{S_{\\triangle DEO}}{S_{\\triangle ABO}}=\\left(\\frac{DE}{AB}\\right)^2=\\frac{1}{4}$,\\\\\n$\\therefore$ $S_{\\triangle DEO}=2$,\\\\\n$\\because$ $\\frac{S_{\\triangle CDE}}{S_{\\triangle ABC}}=\\left(\\frac{DE}{AB}\\right)^2=\\frac{1}{4}$,\\\\\n$\\therefore$ $S_{\\triangle CDE}=6$,\\\\\n$\\therefore$ $S_{\\text{quadrilateral} OECD}=S_{\\triangle DEO}+S_{\\triangle CDE}=\\boxed{8}$,", -"solution_image": [ -"solution_images/51379404_400.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379323": { -"question": "We call a rectangle whose width to length ratio is the golden ratio $\\left(\\frac{\\sqrt{5}-1}{2}\\right)$ a golden rectangle. As shown in the figure, in the golden rectangle $ABCD$, where $ABCD$, $AB=6$. Fixing $ \\triangle ABC$ and rotating $ \\triangle CDE$ around point C by any angle, we connect AD and BE. Let the lines containing AD and BE intersect at point O. During the rotation process, it is always true that $AD=BE$, and the magnitude of $\\angle AOB$ remains constant. What is the maximum distance from point O to line AB in this scenario? ", -"image_file_name": "7058793", -"image": [ -"math/51445529_678.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that both $\\triangle ABC$ and $\\triangle CDE$ are equilateral triangles,\n\nthus, $AC = BC$, $CD = CE$, $\\angle BAC = \\angle ABC = \\angle ACB = \\angle DCE=60^\\circ$,\n\ntherefore, $\\angle ACE + \\angle DCE = \\angle ACE + \\angle ACB$,\n\nwhich means $\\angle ACD = \\angle BCE$,\n\nthus, $\\triangle ACD \\cong \\triangle BCE$ (SAS),\n\nhence, $\\angle CAD = \\angle CBE$,\n\nso, $\\angle AOB = \\angle ACB=60^\\circ$,\n\nConstruct the circumcircle of $\\triangle ABC$, denoted as $\\odot M$, as shown in the diagram:\n\nPoint O is on $\\odot M$,\n\nConstruct $OF \\perp AB$ at point F,\n\nthus, when point O coincides with point C, the distance from point O to line AB is maximized, and the maximum distance is the length of segment CF,\n\nIn $\\triangle ACF$, $\\angle ACF=30^\\circ$\n\n$AF = BF = \\frac{1}{2}AB=3$,\n\n$CF = \\sqrt{3}AF = 3\\sqrt{3}$,\n\nhence, the maximum distance from point O to line AB is $\\boxed{3\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51445529_670.png", -"solution_images/51445529_671.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872065": { -"question": "As shown in the figure, in circle $O$, if $\\angle BAC=24^\\circ$ and $\\angle ACB=42^\\circ$, then what is the degree measure of $\\angle ACO$?", -"image_file_name": "7058793", -"image": [ -"math/52872065_682.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle BAC = 24^\\circ$ and $\\angle ACB = 42^\\circ$,\\\\\nit follows that $\\angle BOC = 2\\angle BAC = 48^\\circ$ and $\\angle AOB = 2\\angle ACB = 84^\\circ$,\\\\\nhence $\\angle AOC = \\angle BOC + \\angle AOB = 132^\\circ$.\\\\\nSince OA = OC,\\\\\nit implies that $\\angle ACO = \\angle OAC = \\frac{1}{2}(180^\\circ - 132^\\circ) = \\boxed{24^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872109": { -"question": "As shown in the figure, there is a flask with a spherical bottom, where the radius of the sphere is $5\\,cm$. Originally, the maximum depth of the liquid inside the flask, denoted as $CD$, is $4\\,cm$. After some of the liquid evaporated, the maximum depth of the liquid inside the flask decreased to $2\\,cm$. How much does the length of the chord $AB$ in the cross-sectional circle decrease by (keep the result in square root form)?", -"image_file_name": "7058793", -"image": [ -"math/52872109_695.png", -"math/52872109_696.png" -], -"solution": "\\textbf{Solution:} Let $A^{\\prime}B^{\\prime}$ intersect $OD$ at $E$, \\\\\nAccording to the problem: $OA=O{A}^{\\prime}=OD=5\\text{cm}$, $OD\\perp AB$, $OD\\perp A^{\\prime}B^{\\prime}$, \\\\\n$\\therefore AC=BC$, $A^{\\prime}E=B^{\\prime}E$, \\\\\n$\\because CD=4\\text{cm}$, \\\\\n$\\therefore OC=OD-CD=1\\text{cm}$, \\\\\n$\\therefore AC=\\sqrt{OA^{2}-OC^{2}}=\\sqrt{5^{2}-1^{2}}=2\\sqrt{6}\\text{cm}$, \\\\\n$\\therefore AB=2AC=4\\sqrt{6}\\text{cm}$, \\\\\n$\\because DE=2\\text{cm}$, \\\\\n$\\therefore OE=OD-DE=3\\text{cm}$, \\\\\n$\\therefore A^{\\prime}D=\\sqrt{O{A^{\\prime}}^{2}-OE^{2}}=\\sqrt{5^{2}-3^{2}}=4\\text{cm}$, \\\\\n$\\therefore A^{\\prime}B^{\\prime}=2A^{\\prime}D=8\\text{cm}$, \\\\\n$\\therefore AB-A^{\\prime}B^{\\prime}=(4\\sqrt{6}-8)\\text{cm}$, \\\\\nThus, the length of the chord $AB$ in the circular section decreased by $\\boxed{4\\sqrt{6}-8}\\text{cm}$.", -"solution_image": [ -"solution_images/52872109_693.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402230": { -"question": "In the mathematics activity class, Xiao Dong wants to measure the radius of a circular gear's inner circle. As shown in the figure, Xiao Dong first selects points $A$ and $B$ on the inner circle, then constructs the perpendicular bisector of chord $AB$ with the foot of the perpendicular being $C$ and intersecting $\\overset{\\frown}{AB}$ at point $D$, and connects $CD$. After measuring, $AB=8\\text{cm}$ and $CD=2\\text{cm}$. So, what is the radius of this gear's inner circle in centimeters?", -"image_file_name": "7058793", -"image": [ -"math/51402230_703.png" -], -"solution": "\\textbf{Solution:} Let the center of the circle be O, and connect OB.\\\\\nIn $\\triangle OBC$, $BC = \\frac{1}{2}AB = 4\\text{cm}$,\\\\\nAccording to the Pythagorean theorem, $OC^2 + BC^2 = OB^2$, which is: $(OB - 2)^2 + 4^2 = OB^2$,\\\\\nSolving this, we get: $OB = \\boxed{5}$;\\\\\nTherefore, the radius of the wheel is $5\\text{cm}$.", -"solution_image": [ -"solution_images/51402230_700.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402725": { -"question": "As shown in the figure, within circle $\\odot O$, $OC \\perp AB$, and $\\angle ADC=32^\\circ$, what is the degree measure of $\\angle OBA$?", -"image_file_name": "7058793", -"image": [ -"math/51402725_710.png" -], -"solution": "\\textbf{Solution:} Since in circle $O$, $OC\\perp AB$,\\\\\nit follows that $\\overset{\\frown}{AC}=\\overset{\\frown}{BC}$, and $\\angle BOC+\\angle OBA=90^\\circ$,\\\\\nthus $\\angle BOC=2\\angle ADC=64^\\circ$,\\\\\nhence $\\angle OBA=90^\\circ-\\angle BOC=90^\\circ-64^\\circ=\\boxed{26^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402444": { -"question": "As shown in the figure, points $A$, $B$, $P$ are three points on the circle $\\odot O$. If $\\angle AOB = 50^\\circ$, what is the degree measure of $\\angle APB$?", -"image_file_name": "7058793", -"image": [ -"math/51402444_720.png" -], -"solution": "Given that points A, B, and P lie on the circle centered at O, and $\\angle AOB = 50^\\circ$, \\\\\nit follows that $\\angle APB = \\frac{1}{2} \\angle AOB = \\boxed{25^\\circ}.$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402196": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in $\\odot O$, with $AD\\parallel BC$. $BD$ bisects $\\angle ABC$, and $\\angle A=126^\\circ$. What is the degree measure of $\\angle BDC$? ", -"image_file_name": "7058793", -"image": [ -"math/51402196_730.png" -], -"solution": "\\textbf{Solution:} Since $AD \\parallel BC$ and $\\angle A=126^\\circ$,\\\\\nit follows that $\\angle ABC=180^\\circ-\\angle A=180^\\circ-126^\\circ=54^\\circ$,\\\\\nGiven that $BD$ bisects $\\angle ABC$,\\\\\nwe have $\\angle DBC=54^\\circ\\div 2=27^\\circ$,\\\\\nSince $AD \\parallel BC$,\\\\\nit follows that $\\angle ADB=\\angle DBC=27^\\circ$,\\\\\nGiven that quadrilateral $ABCD$ is circumscribed around circle $O$,\\\\\nit follows that $\\angle ADC=180^\\circ-54^\\circ=126^\\circ$,\\\\\nTherefore, $\\angle BDC=\\angle ADC-\\angle ADB=126^\\circ-27^\\circ=\\boxed{99^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51403023": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in a circle, with extensions of two pairs of opposite sides intersecting at points $E$ and $F$, respectively, and $\\angle E=40^\\circ$, $\\angle F=60^\\circ$. What is the measure of $\\angle A$ in degrees?", -"image_file_name": "7058793", -"image": [ -"math/51403023_740.png" -], -"solution": "\\textbf{Solution:} Connect EF, as shown in the figure, \\\\\n$\\because$ Quadrilateral ABCD is inscribed in a circle, $\\therefore \\angle$ECD$=\\angle A$, \\\\\n$\\because \\angle$ECD$=\\angle 1+\\angle 2$, $\\therefore \\angle A=\\angle 1+\\angle 2$, \\\\\n$\\because \\angle A+\\angle 1+\\angle 2+\\angle E+\\angle F=180^\\circ$, \\\\\n$\\therefore 2\\angle A+40^\\circ+60^\\circ=180^\\circ$, \\\\\n$\\therefore \\angle A=\\boxed{40^\\circ}$.", -"solution_image": [ -"solution_images/51403023_740.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402228": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $E$ being a point on the extension line of diameter $AB$, and $AB \\parallel DC$. If $\\angle A=70^\\circ$, what is the degree measure of $\\angle CBE$? ", -"image_file_name": "7058793", -"image": [ -"math/51402228_754.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is inscribed in circle $O$,\\\\\nit follows that $\\angle A+\\angle C=180^\\circ$,\\\\\nSince $\\angle A=70^\\circ$,\\\\\nit follows that $\\angle C=110^\\circ$,\\\\\nSince $AB\\parallel DC$,\\\\\nit follows that $\\angle CBE=\\angle C=110^\\circ$;\\\\\nTherefore, the answer is: $\\boxed{110^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52602647": { -"question": "As shown in the figure, points A, B, C, and D are all on the circle \\( \\odot O\\), with \\( OA\\perp BC\\), and \\( \\angle CDA=25^\\circ\\). What is the degree measure of \\( \\angle AOB\\)?", -"image_file_name": "7058793", -"image": [ -"math/52602647_764.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $ AO\\perp BC$\\\\\nIt follows that $\\overset{\\frown}{AC}=\\overset{\\frown}{AB}$\\\\\nSince $\\angle CDA=25^\\circ$\\\\\nThus, $\\angle AOB=2\\angle CDA=50^\\circ$\\\\\nTherefore, the answer is: $\\boxed{50^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52602899": { -"question": "As shown in the diagram, the quadrilateral $ABCD$ is an inscribed quadrilateral of the circle $\\odot O$, and $\\angle BCD=120^\\circ$. What is the measure of $\\angle BOD$?", -"image_file_name": "7058793", -"image": [ -"math/52602899_770.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BCD = 120^\\circ$,\\\\\nit follows that $\\angle A = 180^\\circ - \\angle BCD = 60^\\circ$,\\\\\ntherefore $\\angle BOD = 2\\angle A = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51545215": { -"question": "As shown in the figure, points A, B, and C are three points on the circle $\\odot O$, with $\\angle C = 50^\\circ$, what is the degree measure of $\\angle AOB$?", -"image_file_name": "7058793", -"image": [ -"math/51545215_781.png" -], -"solution": "\\textbf{Solution:} Since arc AB = arc AB,\\\\\nit follows that $\\angle AOB = 2\\angle C = 2\\times50^\\circ = \\boxed{100^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"50496203": { -"question": "As shown in the figure, it is known that the line $l_1\\colon y=kx+b$ intersects with the line $l_2\\colon y=mx+n$ at point $P(-3, -2)$, what is the solution set of the inequality $mx+n>kx+b$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/50496203_225.png" -], -"solution": "\\textbf{Solution:} Given that line $l_1\\colon y=kx+b$ intersects with line $l_2\\colon y=mx+n$ at point $P(-3, -2)$.\\\\\nTherefore, the solution set for $mx+n>kx+b$ is $\\boxed{x<-3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50482454": { -"question": "As shown in the figure, the line $I_1 \\colon y=x+1$ intersects with the line $I_2 \\colon y=mx+n$ at point $P(a, 2)$. What is the solution set of the inequality $x+1\\ge mx+n$ in terms of $x$?", -"image_file_name": "7053789", -"image": [ -"math/50482454_236.png" -], -"solution": "\\textbf{Solution:} Since $y=x+1$ intersects with the line $I_2 \\colon y=mx+n$ at point $P(1, 2)$,\\\\\nsubstituting $y=2$ into $y=x+1$ gives $x=1$,\\\\\ntherefore, the coordinates of point $P$ are $(1, 2)$;\\\\\nFrom the graph, it is known that when $x \\geq 1$, $x+1 \\geq mx+n$.\\\\\nThus, the answer is: $\\boxed{x \\geq 1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50482308": { -"question": "As shown in the figure, the line $y=kx+b$ passes through point $A(-1, -3)$ and point $B(-2, 0)$, and the line $y=3x$ passes through point $A$. What is the solution set of the inequality $3x0)$ and the $x$-axis, respectively. Given that point $B_{1}$ is at $(1, 1)$ and $B_{2}$ is at $(3, 2)$, what are the coordinates of point $B_{2021}$?", -"image_file_name": "7053789", -"image": [ -"math/50482068_250.png" -], -"solution": "\\textbf{Solution:} Since the coordinates of point B$_1$ are (1,1), and the coordinates of point B$_2$ are (3,2),\\\\\ntherefore, the side length of square A$_1$B$_1$C$_1$O$_1$ is 1, and the side length of square A$_2$B$_2$C$_2$C$_1$ is 2,\\\\\nthus, the coordinates of A$_1$ are (0,1), and the coordinates of A$_2$ are: (1,2),\\\\\nsubstituting into y=kx+b yields: $\\left\\{\\begin{array}{l}b=1 \\\\ k+b=2\\end{array}\\right.$,\\\\\nsolving gives: $\\left\\{\\begin{array}{l}k=1 \\\\ b=1\\end{array}\\right.$,\\\\\nhence, the equation of the line is: y=x+1.\\\\\nSince A$_1$B$_1$=1, and the coordinates of point B$_2$ are (3,2),\\\\\nthus, the coordinates of point A$_3$ are (3,4),\\\\\ntherefore, A$_3$C$_2$=A$_3$B$_3$=B$_3$C$_3$=4,\\\\\ntherefore, the coordinates of point B$_3$ are (7,4),\\\\\nthus, the y-coordinate of B$_1$ is: 1=$2^0$, the x-coordinate of B$_1$ is: 1=$2^1$−1,\\\\\nthus, the y-coordinate of B$_2$ is: 2=$2^1$, the x-coordinate of B$_2$ is: 3=$2^2$−1,\\\\\nthus, the y-coordinate of B$_3$ is: 4=$2^2$, the x-coordinate of B$_3$ is: 7=$2^3$−1,\\\\\nthus, the y-coordinate of B$_n$ is: $2^{n-1}$, the x-coordinate is: $2^{n}$−1,\\\\\ntherefore, the coordinates of B$_n$ are: ($2^{n}$−1,$2^{n-1}$).\\\\\ntherefore, the coordinates of B$_{2021}$ are: $\\boxed{(2^{2021}-1,2^{2020})}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50482001": { -"question": "\\textit{As shown in the figure, the intersection point of the lines $y=mx-3m$ and $y=-\\frac{1}{2}x+n$ has a coordinate of 5. What is the solution set for the system of inequalities in terms of $x$ $\\begin{cases} -\\frac{1}{2}x+n>mx-3m \\\\ mx-3m>0 \\end{cases}$?}", -"image_file_name": "7053789", -"image": [ -"math/50482001_263.png" -], -"solution": "\\textbf{Solution:} Given that the intersection point of the lines $y=mx-3m$ and $y=-\\frac{1}{2}x+n$ has a coordinate of 5,\\\\\nit follows from the graph that when $-\\frac{1}{2}x+n>mx-3m$, it is solved that $x<5$;\\\\\nSince the graph shows that $y=mx-3m$ increases as $x$ increases,\\\\\nhence $m>0$\\\\\nTherefore, when $mx-3m>0$, it is solved that $x>3$;\\\\\nThus, $3 -\\frac{5}{2}x-2$?", -"image_file_name": "7053789", -"image": [ -"math/52019512_274.png" -], -"solution": "\\textbf{Solution:} Given that the line $l_{1}\\colon y= \\frac{3}{2}x+6$ intersects with the line $l_{2}\\colon y= -\\frac{5}{2}x-2$ at the point (-2, 3), and when $x>-2$, the line $l_{1}$ is above line $l_{2}$,\\\\\nthe solution set for the inequality $\\frac{3}{2}x+6 > -\\frac{5}{2}x-2$ is $x>-2$.\\\\\nThus, the answer is: $\\boxed{x>-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52019291": { -"question": "As shown in the figure, the line passing through the point $(3,0)$: $y=-x+b$ intersects with the line: $y=ax$ at point $P(n,2)$. What is the solution set of the system of inequalities $0kx+b$?", -"image_file_name": "7053789", -"image": [ -"math/50612891_295.png" -], -"solution": "\\textbf{Solution}: Since the line $y=2x$ passes through point A, \\\\\nhence $-2=2m$, solving yields: $m=-1$. \\\\\nAs known from the graph, the solution set of $2x>kx+b$ is to the right side of point A, that is, $\\boxed{x>-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52342889": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $y=x+2$ and the line $y=ax+b$ ($a \\neq 0$) intersect at point $P$. According to the graph, what is the value of $x$ that solves the equation $x+2=ax+b$?", -"image_file_name": "7053789", -"image": [ -"math/52342889_300.png" -], -"solution": "\\textbf{Solution:} Substituting $y=7$ into $y=x+2$ yields $7=x+2$, \\\\\nSolving this gives $x=5$, \\\\\n$\\therefore$ The x-coordinate of point P is 5, \\\\\n$\\because$ The line $y=x+2$ intersects with the line $y=ax+b$ ($a\\neq 0$) at point P, \\\\\n$\\therefore$ The solution to the equation $x+2=ax+b$ is $\\boxed{x=5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52342684": { -"question": "As shown in the figure, the vertices A and C of the square $OABC$ are located on the positive semiaxes of the coordinate axes, respectively, and point B is a point in the first quadrant on the line $y=\\frac{1}{2}x+3$. What are the coordinates of point B?", -"image_file_name": "7053789", -"image": [ -"math/52342684_312.png" -], -"solution": "\\textbf{Solution:} From the problem, we know that point B lies on the line $y=\\frac{1}{2}x+3$ and point B is a vertex of the square ABCD,\\\\\nLet $B\\left(x, \\frac{1}{2}x+3\\right)$,\\\\\n$\\therefore x=\\frac{1}{2}x+3$,\\\\\nSolving yields: $x=6$,\\\\\n$\\therefore \\frac{1}{2}x+3=6$,\\\\\n$\\therefore B\\left(6, 6\\right)$;\\\\\nThus, the answer is $B\\boxed{\\left(6, 6\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52342563": { -"question": "As shown in the figure, the line $y=kx+b$ ($k<0$) passes through the point $P(2,0)$. What is the range of $x$ when $kx+b>0$?", -"image_file_name": "7053789", -"image": [ -"math/52342563_320.png" -], -"solution": "\\textbf{Solution:} The line $y=kx+b$ ($k<0$) passes through the point $P(2,0)$.\\\\\nWhen $kx+b>0$, the range of $x$ is $x<2$,\\\\\nTherefore, the answer is: $\\boxed{x<2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52342520": { -"question": "The graph of the function $y=kx$ and $y=6-x$ is shown in the figure below. What is the value of $k$?", -"image_file_name": "7053789", -"image": [ -"math/52342520_330.png" -], -"solution": "\\textbf{Solution:} Since the abscissa of the point of intersection between the linear function $y=6-x$ and $y=kx$ is 2,\\\\\n$\\therefore y=6-2=4$,\\\\\n$\\therefore$ the coordinates of the intersection point are $(2,4)$,\\\\\nSubstituting $(2,4)$ into $y=kx$, we get $2k=4$, which gives: $k=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52342160": { -"question": "As shown in the figure, the line $l_1: y=kx+4$ intersects with the line $l_2: y=ax+b$ at point $P(4, m)$. What is the solution set of the inequality $kx+4 \\ge ax+b$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/52342160_344.png" -], -"solution": "\\textbf{Solution:} To solve: for the line $l_{1}: y=kx+4$ and the line $l_{2}: y=ax+b$ intersect at point $P(4, m)$,\\\\\nto satisfy the inequality $kx+4\\ge ax+b$,\\\\\nthe graph of $l_{1}: y=kx+4$ must be above that of $l_{2}: y=ax+b$,\\\\\nfrom the graph, it is known to intersect at point $P(4, m)$,\\\\\nwith the x-coordinate being 4,\\\\\nhence, the solution set for the inequality $kx+4\\ge ax+b$ is: $\\boxed{x\\ge 4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50595458": { -"question": "As shown in the figure, in the Cartesian coordinate system, points $A_1$, $A_2$, $A_3$ lie on the line $y=\\frac{1}{6}x+b$, and points $B_1$, $B_2$, $B_3$ lie on the x-axis; $\\triangle O A_1 B_1$, $\\triangle B_1 A_2 B_2$, $\\triangle B_2 A_3 B_3$ are all isosceles right triangles. Given that point $A_1(1,1)$, what is the y-coordinate of point $A_3$?", -"image_file_name": "7053789", -"image": [ -"math/50595458_359.png" -], -"solution": "\\textbf{Solution:} Let's set the ordinate of points $A_{2}$ and $A_{3}$ to be $m$ and $n$ respectively, \\\\\nsince $A_{1}(1,1)$ lies on the line $y= \\frac{1}{6}x+b$, \\\\\nwe have $b= \\frac{5}{6}$, \\\\\nthus $y= \\frac{1}{6}x+ \\frac{5}{6}$. \\\\\nLet $A_{2}(m+2, m)$, substituting into $y=\\frac{1}{6}x+\\frac{5}{6}$, we get: $m=\\frac{1}{6}(m+2)+\\frac{5}{6}$, solving for $m$ gives: $m=\\frac{7}{5}$; \\\\\nLet $A_{3}\\left(2+2\\times \\frac{7}{5}+n, n\\right)$, substituting into $y=\\frac{1}{6}x+\\frac{5}{6}$, we get: $n=\\frac{1}{6}\\left(\\frac{24}{5}+n\\right)+\\frac{5}{6}$, solving for $n$ gives: $n=\\boxed{\\frac{49}{25}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50594939": { -"question": "As shown in the figure, the rectangle $ABCD$ has its side $BC$ on the $x$-axis, point $E$ is the midpoint of diagonal $BD$, and the graph of the function $y=\\frac{2}{x}$ passes through points $A$ and $E$. If $\\angle ABD=45^\\circ$, what is the function expression corresponding to line $BD$?", -"image_file_name": "7053789", -"image": [ -"math/50594939_369.png" -], -"solution": "\\textbf{Solution:} Solve: When $ \\angle ABD=45^\\circ$, then $AB=AD$, \\\\\n$\\therefore$ the rectangle $ABCD$ is a square, \\\\\nLet the coordinates of point $A$ be $(a, \\frac{2}{a})$, then $B(a, 0)$, $D\\left(a+\\frac{2}{a}, \\frac{2}{a}\\right)$, \\\\\n$\\because$ $E$ is the midpoint of the diagonal $BD$, \\\\\n$\\therefore$ point $E\\left(a+\\frac{1}{a}, \\frac{1}{a}\\right)$, \\\\\n$\\because$ the graph of the function $y=\\frac{2}{x}$ passes through points $A$ and $E$, \\\\\n$\\therefore \\left(a+\\frac{1}{a}\\right)\\cdot \\frac{1}{a}=2$, \\\\\nSolving, we get $a=1$ (negatives are discarded), \\\\\n$\\therefore B(1, 0)$, $D(3, 2)$, \\\\\nLet the equation of line $BD$ be $y=kx+b$, \\\\\n$\\therefore$ $\\begin{cases}k+b=0\\\\ 3k+b=2\\end{cases}$, solving we get $\\begin{cases}k=1\\\\ b=-1\\end{cases}$, \\\\\n$\\therefore$ the expression for line $BD$ is $y=x-1$, \\\\\nHence, the answer is $\\boxed{y=x-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50594473": { -"question": "As shown in the figure, the graph of the directly proportional function $y=-x$ intersects with the graph of the linear function $y=kx+ \\frac{5}{2}$ (where $k\\neq 0$) at point $P$. What is the solution to the equation $-x=kx+ \\frac{5}{2}$ in terms of $x$?", -"image_file_name": "7053789", -"image": [ -"math/50594473_372.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point P be $(x, 1)$,\\\\\nSubstituting $(x, 1)$ into $y=-x$,\\\\\n$\\therefore$ $-x=1$,\\\\\n$\\therefore$ $x=-1$,\\\\\nThus, the coordinates of point P are $(-1, 1)$,\\\\\n$\\therefore$ the solution to the equation concerning $x$, $-x=kx+ \\frac{5}{2}$, is $x=\\boxed{-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50591574": { -"question": "Given the graph of the linear function $y=kx+b$ ($k\\ne 0$) as shown, what is the solution set of the inequality $kx+b>0$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/50591574_384.png" -], -"solution": "\\textbf{Solution:} The graph of the function $y=kx+b$ passes through the point $(4,0)$, and the function value $y$ decreases as $x$ increases,\\\\\ntherefore, when $x<4$, the function value is greater than $0$, meaning the solution set for the inequality $kx+b>0$ with respect to $x$ is $\\boxed{x<4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50590993": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ intersects the x-axis and y-axis at points $A(3, 0)$ and $B(0, 5)$, respectively. What is the solution set of the inequality $kx+b\\le 0$?", -"image_file_name": "7053789", -"image": [ -"math/50590993_394.png" -], -"solution": "\\textbf{Solution:} From the graph, we can observe that when $y \\leq 0$, then $x \\geq 3$,\\\\\nwhich means the solution set of the inequality $kx+b \\leq 0$ is $\\boxed{x \\geq 3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50590774": { -"question": "In the Cartesian coordinate system $xOy$, the graphs of linear functions $y=kx$ and $y=-x+3$ are shown as in the figure. Then, what is the solution to the system of linear equations $\\begin{cases}y=kx\\\\ y=-x+3\\end{cases}$?", -"image_file_name": "7053789", -"image": [ -"math/50590774_403.png" -], -"solution": "\\textbf{Solution}: Since the graph of the linear function $y=kx$ intersects with the graph of $y=-x+3$ at point $(1, 2)$,\ntherefore the solution to the system of linear equations $\\begin{cases}y=kx\\\\ y=-x+3\\end{cases}$ is $\\boxed{\\begin{cases}x=1\\\\ y=2\\end{cases}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50590144": { -"question": "As shown in the figure, the intersection's x-coordinate of the lines $y = -x + m$ and $y = nx + 4n$ ($n \\neq 0$) is $-2$. What is the solution set of the inequality $-x + m > nx + 4n$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/50590144_410.png" -], -"solution": "\\textbf{Solution:} From the graph, it can be seen that when $x < -2$, the graph of the line $y = -x + m$ is above the graph of the line $y = nx + 4n$ (where $n \\neq 0$).\\\\\nTherefore, the solution set for the inequality $-x + m > nx + 4n$ with respect to $x$ is $x < -2$.\\\\\nThus, the answer is: $\\boxed{x < -2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50589675": { -"question": "As shown in the figure, given that the graph of function $y=k_{1}x+b_{1}$ intersects with the graph of function $y=k_{2}x+b_{2}$ at point $A(-2,1)$, what is the solution set of the inequality $k_{1}x+b_{1}>k_{2}x+b_{2}$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/50589675_420.png" -], -"solution": "\\textbf{Solution:} Since from the graph of the function, it is known that when $x<-2$, the line $y=k_{1}x+b_{1}$ is above the line $y=k_{2}x+b_{2}$,\\\\\ntherefore, the solution set for the inequality $k_{1}x+b_{1}>k_{2}x+b_{2}$ with respect to $x$ is $x<-2$.\\\\\nThus, the answer is: $\\boxed{x<-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50589022": { -"question": "As shown in the figure, the line $y=\\frac{4}{3}x+4$ intersects the $x$-axis and $y$-axis at points $A$ and $B$, respectively. When $\\triangle AOB$ is folded along a line through point $A$, such that point $B$ falls on point $C$ on the positive half of the $x$-axis, and the fold intersects the $y$-axis at point $D$, what is the equation of the line where the fold lies?", -"image_file_name": "7053789", -"image": [ -"math/50589022_4311.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, then $\\frac{4}{3}x+4=0$, solving this we get $x=-3$,\\\\\n$\\therefore$ $A(-3, 0)$, $OA=3$,\\\\\nLet $x=0$, then $y=\\frac{4}{3}\\times 0+4=4$,\\\\\n$\\therefore$ $B(0, 4)$, $OB=4$,\\\\\nIn $\\triangle AOB$, $AB=\\sqrt{OA^2+OB^2}=\\sqrt{3^2+4^2}=5$,\\\\\nBy folding, we get: $AC=AB=5$ and $CD=DB$,\\\\\n$\\therefore$ $OC=AC-OA=5-3=2$, $CD=BD=OB-OD=4-OD$,\\\\\nIn $\\triangle COD$, $OD^2+OC^2=CD^2$, that is $OD^2+2^2=(4-OD)^2$,\\\\\nSolving this gives $OD=\\frac{3}{2}$,\\\\\n$\\therefore$ $D\\left(0,\\frac{3}{2}\\right)$,\\\\\nLet the equation of the line containing the crease $AD$ be $y=kx+b$,\\\\\n$\\because$ $A(-3, 0)$, $D\\left(0,\\frac{3}{2}\\right)$,\\\\\n$\\therefore$ $\\begin{cases}-3k+b=0\\\\ b=\\frac{3}{2}\\end{cases}$,\\\\\nSolving gives: $\\begin{cases}k=\\frac{1}{2}\\\\ b=\\frac{3}{2}\\end{cases}$,\\\\\n$\\therefore$ $y=\\frac{1}{2}x+\\frac{3}{2}$\\\\\nHence, the answer is $\\boxed{y=\\frac{1}{2}x+\\frac{3}{2}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51699660": { -"question": "As shown in the figure, the line $y_1=x+b$ intersects with $y_2=kx-1$ at point P. What is the solution set of the inequality $x+b>kx-1$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/51699660_443.png" -], -"solution": "\\textbf{Solution:} From the graph, we know that the coordinates of the intersection point of the two lines are $\\left(-1, \\frac{1}{2}\\right)$. Additionally, when $x > -1$, the graph of the function $y = x + b$ is above the graph of the function $y = kx - 1$,\\\\\n$\\therefore$ the solution set for the inequality in terms of $x$, $x + b > kx - 1$, is $x > -1$.\\\\\nTherefore, the answer is: $\\boxed{x > -1}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51698893": { -"question": "As shown in the graph of the linear function $y=kx+b$, what is the solution set of the linear inequality $kx+b>0$?", -"image_file_name": "7053789", -"image": [ -"math/51698893_452.png" -], -"solution": "\\textbf{Solution:} From the graph, it is known that $y$ decreases as $x$ increases, and when $x<2$, the line is above the x-axis,\\\\\ntherefore, the solution set for $kx+b>0$ is: $\\boxed{x<2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51699602": { -"question": "As shown in the figure, the graph of the linear function $y_1=x+b$ intersects with the graph of the linear function $y_2=kx-1$ at point P. Then, what is the solution set of the inequality concerning $x$, $x+b-kx+1>0$?", -"image_file_name": "7053789", -"image": [ -"math/51699602_463.png" -], -"solution": "\\textbf{Solution:} Given the graph of the function, when the graph of $y_1=x+b$ is above the graph of $y_2=kx-1$, we have $x+b>kx-1$, which leads to $x>-1$; \\\\\nHence, the answer is: $\\boxed{x>-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51983511": { -"question": "As shown in the figure, the line $y=kx+b$ ($k<0$) passes through the point $(2, 1)$. When $kx+b<\\frac{1}{2}x$, what is the range of values for $x$?", -"image_file_name": "7053789", -"image": [ -"math/51983511_474.png" -], -"solution": "\\textbf{Solution:} Let's solve it: when $x=2$, $y=1$, \\\\\n$\\therefore$ the line $y=\\frac{1}{2}x$ goes through the point $(2,1)$,\\\\\nAs can be seen from the graph, \\\\\nwhen $kx+b<\\frac{1}{2}x$, $x>2$\\\\\nTherefore, the answer is: $\\boxed{x>2}$.", -"solution_image": [ -"solution_images/51983511_475.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50431224": { -"question": "As shown in the figure, in the Cartesian coordinate system, $O$ is the origin. The coordinate of point $A$ is $(0, 8)$, and the coordinate of point $B$ is $(-4, 0)$. Point $P$ is a moving point on the line $l: x+y=4$. If $\\angle PAB = \\angle ABO$, what are the coordinates of point $P$?", -"image_file_name": "7053789", -"image": [ -"math/50431224_480.jpg" -], -"solution": "\\textbf{Solution:} As illustrated:\\\\\n(1) When point P is on the left side of the y-axis, connect AP, $\\because$ $\\angle PAB = \\angle ABO$, $\\therefore$ AP$\\parallel$OB, $\\therefore$ the y-coordinate of point P is 8. When y=8, x+8=4, solving this gives x=−4, $\\therefore$ P(−4, 8);\\\\\n(2) When point P is on the right side of the y-axis, connect AP intersecting the x-axis at point C, $\\because$ $\\angle PAB = \\angle ABO$, $\\therefore$ AC=BC, let OC=a, then BC=AC=4+a. In $\\triangle AOC$, by Pythagoras' theorem, we get $(4+a)^{2}=a^{2}+8^{2}$, solving for a gives a=6, $\\therefore$ C(6,0). Let the linear equation of line AC be y=kx+b. Substituting A(0,8) and C(6,0) into y=kx+b gives $\\left\\{\\begin{array}{l}b=8\\\\ 6k+b=0\\end{array}\\right.$, solving this system gives $\\left\\{\\begin{array}{l}k=-\\frac{4}{3}\\\\ b=8\\end{array}\\right.$, $\\therefore$ $y=-\\frac{4}{3}x+8$. $\\because$ Point P is the intersection of line l and line AC, $\\therefore$ $\\left\\{\\begin{array}{l}y=-\\frac{4}{3}x+8\\\\ x+y=4\\end{array}\\right.$, solving this system gives $\\left\\{\\begin{array}{l}x=12\\\\ y=-8\\end{array}\\right.$, $\\therefore$ P(12,−8), hence the answer is: $\\boxed{(12,−8) \\text { or } (−4, 8)}$.", -"solution_image": [ -"solution_images/50431224_480.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50431063": { -"question": "Given the graph, the functions $y=bx$ and $y=ax+4$ intersect at point $A(1,3)$. What is the solution set of the inequality $bxax+3$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/51661989_505.png" -], -"solution": "\\textbf{Solution:} By observing the graph, we can see that when $x<-1$, the line $y_1=kx$ is above the line $y_2=ax+3$. \\\\\nTherefore, the solution set for the inequality $kx>ax+3$ with respect to $x$ is $x<-1$.\\\\\nHence, the answer is: $\\boxed{x<-1}$.", -"solution_image": [ -"solution_images/51661989_502.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663250": { -"question": "In the Cartesian coordinate system, the vertices of rectangle OABC are as follows: vertex O is the origin of coordinates, vertices A and C are on the x-axis and y-axis respectively, with $OA=4$ and $OC=3$. D is the midpoint of side AB, and E is a moving point on side OA. When the perimeter of $\\triangle CDE$ is minimized, what are the coordinates of point E?", -"image_file_name": "7053789", -"image": [ -"math/51663250_510.png" -], -"solution": "\\textbf{Solution:} Construct point F symmetrical to point D with respect to the x-axis, as shown in the figure,\\\\\n$\\because$ Quadrilateral OABC is a rectangle,\\\\\n$\\therefore$OC=BD=3, the coordinates of point C are $\\left(0,3\\right)$,\\\\\n$\\because$D is the midpoint of side AB,\\\\\n$\\therefore$AD=$\\frac{3}{2}$,\\\\\n$\\because$OA=4,\\\\\n$\\therefore$The coordinates of point D are $\\left(4,\\frac{3}{2}\\right)$, then the coordinates of point F are $\\left(4,-\\frac{3}{2}\\right)$,\\\\\nAccording to the property of axial symmetry: EF=ED,\\\\\n$\\therefore$P$_{\\triangle CDE}$=CD+CE+DE=CD+CE+EF, where CD is a constant,\\\\\nWhen the sum of CE+EF is minimized, the perimeter of $\\triangle CDE$ is minimal, at this time points C, E, F are collinear,\\\\\nLet the equation of line CF be: $y=kx+b\\left(k\\ne 0\\right)$,\\\\\nSubstituting $\\left(0,3\\right)$ and $\\left(4,-\\frac{3}{2}\\right)$ into the equation yields:\\\\\n$\\begin{cases}b=3\\\\ 4k+b=-\\frac{3}{2}\\end{cases}$, solving gives: $\\begin{cases}k=-\\frac{9}{8}\\\\ b=3\\end{cases}$,\\\\\n$\\therefore$The equation of line CF is: $y=-\\frac{9}{8}x+3$,\\\\\nSetting $y=0$, we get: $-\\frac{9}{8}x+3=0$,\\\\\nSolving for $x$ gives: $x=\\frac{8}{3}$,\\\\\n$\\therefore$The coordinates of point E are $\\boxed{\\left(\\frac{8}{3},0\\right)}$.", -"solution_image": [ -"solution_images/51663250_510.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51662198": { -"question": "As shown in the graph, the intersection point of the line $y = -x + 2$ and $y = kx + b$ ($k \\neq 0$ and $k$, $b$ are constants) is at the coordinates $(3, -1)$. What is the solution set of the inequality $kx + b \\geq -x + 2$ with respect to $x$?", -"image_file_name": "7053789", -"image": [ -"math/51662198_520.png" -], -"solution": "\\textbf{Solution:} From the graph, we obtain that when $x \\ge 3$, the graph corresponding to the points of $y = -x + 2$ lies below the graph of the function $y = kx + b$ (where $k \\ne 0$ and $k$, $b$ are constants).\\\\\nTherefore, the solution set of the inequality $kx + b \\ge -x + 2$ is $\\boxed{x \\ge 3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51662879": { -"question": "Given the lines $y_{1}=x$, $y_{2}=\\frac{1}{3}x+1$, $y_{3}=-\\frac{4}{5}x+5$ as shown in the figure, if for any value of $x$, $y$ always takes the minimum value among $y_{1}$, $y_{2}$, and $y_{3}$, what is the maximum value of $y$?", -"image_file_name": "7053789", -"image": [ -"math/51662879_531.png" -], -"solution": "\\textbf{Solution:}\n\nAs shown in the figure, we find the coordinates of the intersection points of $y_{1}$, $y_{2}$, and $y_{3}$ as $A\\left(\\frac{3}{2},\\frac{3}{2}\\right)$; $B\\left(\\frac{25}{9},\\frac{25}{9}\\right)$; $C\\left(\\frac{60}{17},\\frac{37}{17}\\right)$\n\nWhen $x<\\frac{3}{2}$, $y=y_{1}$\n\nWhen $\\frac{3}{2}\\le x<\\frac{25}{9}$, $y=y_{2}$\n\nWhen $\\frac{25}{9}\\le x<\\frac{60}{17}$, $y=y_{2}$\n\nWhen $x\\ge \\frac{60}{17}$, $y=y_{3}$\n\nSince $y$ always takes the minimum value among $y_{1}$, $y_{2}$, and $y_{3}$,\n\nTherefore, the maximum value of $y$ is $\\boxed{\\frac{37}{17}}$", -"solution_image": [ -"solution_images/51662879_530.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52933867": { -"question": "As shown in the figure, it is known that point $E$ is a point on side $AD$ of rectangle $ABCD$. Quadrilateral $BCDE$ is folded along the line $BE$. After folding, the corresponding point of point $C$ is $C'$, and the corresponding point of point $D$ is $D'$. If point $A$ is on $C'D'$, and $AB=10$, $BC=8$, what is the length of $AE$?", -"image_file_name": "7045627", -"image": [ -"math/52933867_3814.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\n$\\therefore$ $\\angle D=\\angle C=\\angle DAB=90^\\circ$, AB=DC=10, AD=BC=8,\\\\\nAccording to the properties of folding, we get: $\\angle D'=\\angle D=90^\\circ$, $\\angle C'=\\angle C=90^\\circ$, BC'=BC=8, D'C'=DC=10,\\\\\n$\\therefore$ $AC'=\\sqrt{AB^{2}-BC'^{2}}=6$,\\\\\n$\\therefore$ AD'=D'C'-AC'=10-6=4,\\\\\nLet DE=D'E=x, then AE=8-x,\\\\\n$\\therefore$ $(8-x)^{2}=4^{2}+x^{2}$;\\\\\n$\\therefore$ x=3,\\\\\n$\\therefore$ AE=$\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52914198": { -"question": "\\[\nIn an isosceles \\triangle ABC with a right angle at C, a point D is on the side AC. Connect BD and fold \\triangle ABC along BD so that point A falls on side BC. Connect AE. Then, what is the value of \\frac{{S}_{\\triangle BDE}}{{S}_{\\triangle ACE}}?\n\\]", -"image_file_name": "7045627", -"image": [ -"math/52914198_3910.png" -], -"solution": "Solution:Let's fold $\\triangle ABC$ along BD so that point A falls on side BC,\\\\\nhence, $BE=AB=AC$, $\\angle BED=\\angle BAC=90^\\circ$, and $AD=DE$,\\\\\nthus, $\\angle CED=90^\\circ$,\\\\\nsince $\\angle C=45^\\circ$,\\\\\nit follows that $\\triangle DEC$ is an isosceles right triangle,\\\\\nthus, $DE=CE$,\\\\\nlet $AD=DE=CE=x$,\\\\\nhence, $CD=\\sqrt{2}x$,\\\\\nthus, $BE=AC=x+\\sqrt{2}x$,\\\\\ndraw EH $\\perp$ CD at H from point E,\\\\\nhence, $EH=CH=\\frac{\\sqrt{2}}{2}CE=\\frac{\\sqrt{2}}{2}x$,\\\\\nsince $S_{\\triangle BDE}=\\frac{1}{2}BE\\cdot DE=\\frac{1}{2}x(x+\\sqrt{2}x)=\\frac{1+\\sqrt{2}}{2}x^2$, and $S_{\\triangle ACE}=\\frac{1}{2}AC\\cdot EH=\\frac{1}{2}\\times \\frac{\\sqrt{2}}{2}x(x+\\sqrt{2}x)=\\frac{\\sqrt{2}+2}{4}x^2$,\\\\\ntherefore, $\\frac{S_{\\triangle BDE}}{S_{\\triangle ACE}}=\\frac{\\frac{1+\\sqrt{2}}{2}x^2}{\\frac{\\sqrt{2}+2}{4}x^2}=\\boxed{\\sqrt{2}}$,", -"solution_image": [ -"solution_images/52914198_3911.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52906068": { -"question": "As shown in the figure, in the isosceles $\\triangle ABC$ with $AB=AC$, $\\angle BAC=56^\\circ$. The bisector of $\\angle BAC$ intersects the perpendicular bisector of $AB$ at point $O$. If point $C$ is folded along $EF$ to coincide with point $O$, what is the measure of $\\angle CEF$?", -"image_file_name": "7045627", -"image": [ -"math/52906068_407.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BO,\\\\\n$\\because$ in the isosceles $\\triangle ABC$, $AB=AC$, $\\angle BAC=56^\\circ$,\\\\\n$\\therefore \\angle ABC=\\angle ACB=(180^\\circ-56^\\circ)÷2=62^\\circ$,\\\\\n$\\because AO$ is the bisector of $\\angle BAC$,\\\\\n$\\therefore \\angle BAO=28^\\circ$,\\\\\nAlso $\\because OD$ is the perpendicular bisector of AB,\\\\\n$\\therefore$ OA=OB,\\\\\n$\\therefore \\angle OBA=\\angle OAB=28^\\circ$,\\\\\n$\\therefore \\angle OBC=\\angle OCB=62^\\circ-28^\\circ=34^\\circ$,\\\\\n$\\because EF$ is the perpendicular bisector of the segment OC,\\\\\n$\\therefore \\angle CEF=90^\\circ-34^\\circ=\\boxed{56^\\circ}$.", -"solution_image": [ -"solution_images/52906068_400.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52874444": { -"question": "As shown in the figure, point $A$ is inside $\\angle MON=45^\\circ$ with $OA=6\\text{cm}$. Points $B$ and $C$ are moving points on sides $OM$ and $ON$, respectively. What is the minimum perimeter of $\\triangle ABC$ in $\\text{cm}$?", -"image_file_name": "7045627", -"image": [ -"math/52874444_410.png" -], -"solution": "\\textbf{Solution:} Let $A'$ be the symmetric point of A with respect to $OM$, and let $A''$ be the symmetric point of A with respect to $ON$. Draw line $A'A''$, intersecting $OM$ at point B and $ON$ at point C. Draw lines $OA'$ and $OA''$. At this moment, the perimeter of $\\triangle ABC$ is minimal. \\\\ \n$\\because$ $AB = A'B$, $AC = A''C$, $OA = OA' = OA'' = 6$, $\\angle BOA' = \\angle BOA$, $\\angle COA'' = \\angle COA$, \\\\ \n$\\because$ $\\angle MON = 45^\\circ$, \\\\\n$\\therefore$ $\\angle A''OA' = 90^\\circ$, \\\\\n$\\therefore$ $A''A' = 6\\sqrt{2}$, \\\\\n$\\therefore$ The perimeter of $\\triangle ABC = AB + BC + AC = A'B + BC + A''C = A''A' = 6\\sqrt{2}$, \\\\\n$\\therefore$ The minimum perimeter of $\\triangle ABC$ is $\\boxed{6\\sqrt{2}}$ cm.", -"solution_image": [ -"solution_images/52874444_410.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51043532": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ is the angle bisector of $\\triangle ABC$, $DE \\perp AB$ with the foot of the perpendicular at $E$, $DF \\perp AC$ with the foot of the perpendicular at $F$, if $AB=5$, $AC=3$, and $DF=2$, what is the area of $\\triangle ABC$?", -"image_file_name": "7044652", -"image": [ -"math/51043532_380.png" -], -"solution": "\\textbf{Solution:} Since AD is the angle bisector of $\\triangle ABC$, and DE$\\perp$AB, DF$\\perp$AC,\\\\\nthus DE=DF=2,\\\\\ntherefore, the area of $\\triangle ABC$ = $\\frac{1}{2} \\times 5 \\times 2 + \\frac{1}{2} \\times 3 \\times 2 = \\boxed{8}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51177766": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A=80^\\circ$. After cutting off $\\angle A$, we obtain the quadrilateral $BCDE$. Then, what is the sum of $\\angle 1 + \\angle 2$?", -"image_file_name": "7044652", -"image": [ -"math/51177766_390.png" -], -"solution": "\\textbf{Solution:} Given: $\\because$ $\\angle 1$ and $\\angle 2$ are exterior angles of $\\triangle ADE$,\\\\\n$\\therefore$ $\\angle 1 = \\angle ADE + \\angle A$, $\\angle 2 = \\angle AED + \\angle A$,\\\\\n$\\therefore$ $\\angle 1 + \\angle 2 = \\angle ADE + \\angle A + \\angle AED + \\angle A$,\\\\\nMoreover, $\\because$ $\\angle ADE + \\angle A + \\angle AED = 180^\\circ$,\\\\\n$\\therefore$ $\\angle 1 + \\angle 2 = 180^\\circ + \\angle A = \\boxed{260^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50982437": { -"question": "As shown in the figure, $AB \\parallel EF$, $\\angle ABC = 75^\\circ$, $\\angle CDF = 135^\\circ$. What is the measure of $\\angle BCD$ in degrees?", -"image_file_name": "7044652", -"image": [ -"math/50982437_402.png" -], -"solution": "\\textbf{Solution:} Let point $G$ be the intersection of $BC$ and $EF$, as shown in the diagram below: \\\\\n$\\because$ $AB\\parallel EF$, $\\angle ABC=75^\\circ$, $\\angle CDF=135^\\circ$,\\\\\n$\\therefore$ $\\angle EGC=\\angle ABC=75^\\circ$, $\\angle EDC=180^\\circ-\\angle CDF=180^\\circ-135^\\circ=45^\\circ$,\\\\\nFurthermore, $\\because$ $\\angle EGC=\\angle BCD+\\angle EDC$,\\\\\n$\\therefore$ $\\angle BCD=75^\\circ-45^\\circ=\\boxed{30^\\circ}$.", -"solution_image": [ -"solution_images/50982437_400.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55502385": { -"question": "As shown in the figure, an isosceles right-angled triangle object $ABC$ is leaning against a corner of the wall ($\\angle O = 90^\\circ$). If $OA = 50cm$ and $OB = 28cm$, what is the distance in $cm$ of point $C$ from the ground?", -"image_file_name": "7044652", -"image": [ -"math/55502385_415.png" -], -"solution": "\\textbf{Solution:} Draw $CD \\perp OB$ at point D, as shown in the diagram:\\\\\n$\\therefore$ $\\angle CDB=\\angle AOB=90^\\circ$\\\\\n$\\because$ $\\triangle ABC$ is an isosceles right triangle\\\\\n$\\therefore$ AB=CB, $\\angle ABC=90^\\circ$\\\\\n$\\therefore$ $\\angle ABO+\\angle CBD=90^\\circ$\\\\\n$\\therefore$ $\\angle ABO=\\angle BCD$,\\\\\n$\\therefore$ $\\triangle ABO\\cong \\triangle BCD(AAS)$\\\\\n$\\therefore$ CD=BO=\\boxed{28\\text{cm}}", -"solution_image": [ -"solution_images/55502385_410.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53080470": { -"question": "Rectangle $OABC$ is in the Cartesian coordinate system, with $OA = \\sqrt{3}$ and $AB = 1$. Folding it along $OB$, point $A$ falls at point ${A}^{\\prime}$. What are the coordinates of ${A}^{\\prime}$?", -"image_file_name": "7044652", -"image": [ -"math/53080470_436.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct ${A}^{\\prime}D \\perp OA$ at D,\\\\\nsince in rectangle $OABC$, $OA=\\sqrt{3}$, $AB=1$,\\\\\nthen $OB=\\sqrt{OA^{2}+AB^{2}}=2$, that is $AB=\\frac{1}{2}OB$,\\\\\ntherefore $\\angle AOB=30^\\circ$,\\\\\nfrom the folding, $\\angle {A}^{\\prime}OB=\\angle AOB=30^\\circ$, $O{A}^{\\prime}=OA=\\sqrt{3}$,\\\\\ntherefore $\\angle {A}^{\\prime}OD=60^\\circ$,\\\\\ntherefore $\\angle O{A}^{\\prime}D=30^\\circ$,\\\\\ntherefore $OD=\\frac{1}{2}O{A}^{\\prime}=\\frac{\\sqrt{3}}{2}$,\\\\\ntherefore ${A}^{\\prime}D=\\sqrt{O{{A}^{\\prime}}^{2}−OD^{2}}=\\sqrt{{\\left(\\sqrt{3}\\right)}^{2}−{\\left(\\frac{\\sqrt{3}}{2}\\right)}^{2}}=\\frac{3}{2}$,\\\\\ntherefore, the coordinates of ${A}^{\\prime}$ are $\\boxed{\\left(-\\frac{\\sqrt{3}}{2},\\frac{3}{2}\\right)}$.", -"solution_image": [ -"solution_images/53080470_431.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53080965": { -"question": "In the figure, within $\\triangle ABC$, we have $AB=AC$, and $D$ is a point on $BC$ such that $CD=AD$ and $AB=BD$. What is the measure of $\\angle B$?", -"image_file_name": "7044652", -"image": [ -"math/53080965_440.png" -], -"solution": "\\textbf{Solution:} We have AB=AC,\\\\\nthus $\\angle B=\\angle C$,\\\\\nand since CD=DA,\\\\\nit follows that $\\angle C=\\angle DAC$,\\\\\nalso given BA=BD,\\\\\nit implies $\\angle BDA=\\angle BAD=2\\angle C=2\\angle B$,\\\\\nfurthermore, since $\\angle B+\\angle BAD+\\angle BDA=180^\\circ$,\\\\\nwe conclude $5\\angle B=180^\\circ$,\\\\\nhence $\\angle B=\\boxed{36^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53080967": { -"question": "As shown in the figure, in $\\triangle ABC$, the perpendicular bisector of BC intersects with the angle bisector of $\\angle BAC$ at point D, with the foot of the perpendicular being point P. If $\\angle BAC=84^\\circ$, then what is the degree measure of $\\angle BDC$?", -"image_file_name": "7044652", -"image": [ -"math/53080967_450.png" -], -"solution": "\\textbf{Solution:} Construct DE $\\perp$ AB at point E, extending through AB, and DF $\\perp$ AC at F,\\\\\nsince AD is the bisector of $\\angle$BAC,\\\\\ntherefore DE = DF,\\\\\nsince DP is the perpendicular bisector of BC,\\\\\ntherefore BD = CD,\\\\\nIn right triangles $\\triangle$DEB and $\\triangle$DFC,\\\\\n$\\left\\{\\begin{array}{l}DB=DC\\\\ DE=DF\\end{array}\\right.$,\\\\\ntherefore right $\\triangle$DEB $\\cong$ right $\\triangle$DFC (HL).\\\\\ntherefore $\\angle$BDE = $\\angle$CDF,\\\\\ntherefore $\\angle$BDC = $\\angle$EDF,\\\\\nsince $\\angle$DEB = $\\angle$DFC = $90^\\circ$,\\\\\ntherefore $\\angle$EAF + $\\angle$EDF = $180^\\circ$,\\\\\nsince $\\angle$BAC = $84^\\circ$,\\\\\ntherefore $\\angle$BDC = $\\angle$EDF = \\boxed{96^\\circ},", -"solution_image": [ -"solution_images/53080967_450.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53078697": { -"question": "As shown in the figure, triangle $ABC$ is rotated $22^\\circ$ clockwise around point B to obtain triangle $DBE$. If $\\angle C = 28^\\circ$ and side $DE$ intersects side $BC$ at point F, then what is the measure of $\\angle CFE$ in degrees?", -"image_file_name": "7044652", -"image": [ -"math/53078697_467.png" -], -"solution": "\\textbf{Solution:} Rotate $\\triangle ABC$ clockwise around point B by $22^\\circ$ to get $\\triangle DBE$,\\\\\n$\\therefore$ $\\angle CBE=22^\\circ$.\\\\\n$\\because$ $\\angle C=28^\\circ$,\\\\\n$\\therefore$ $\\angle E=\\angle C=28^\\circ$.\\\\\n$\\because$ $\\angle CFE$ is the external angle of $\\triangle BEF$,\\\\\n$\\therefore$ $\\angle CFE=\\angle CBE+\\angle E=22^\\circ+28^\\circ=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53078478": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point D is on side AB. $\\triangle CBD$ is folded along CD such that point B falls exactly on point E on side AC. If $\\angle A=26^\\circ$, what is the degree measure of $\\angle ADE$?", -"image_file_name": "7044652", -"image": [ -"math/53078478_475.png" -], -"solution": "\\textbf{Solution:} From the folding, it can be seen that $\\angle ACD=\\angle BCD$, $\\angle BDC=\\angle CDE$,\\\\\n$\\because$ $\\angle ACB=90^\\circ$,\\\\\n$\\therefore$ $\\angle ACD=45^\\circ$,\\\\\n$\\because$ $\\angle A=26^\\circ$,\\\\\n$\\therefore$ $\\angle BDC=\\angle ACD+\\angle A=71^\\circ$,\\\\\n$\\therefore$ $\\angle CDE=71^\\circ$,\\\\\n$\\therefore$ $\\angle ADE=180^\\circ-71^\\circ-71^\\circ=\\boxed{38^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53078593": { -"question": "As shown in the figure, point $B$ is on ray $AN$, an equilateral triangle $\\triangle ABC$ is constructed with $AB$ as a side, $M$ is the midpoint of $AN$, and $AN=4$. $P$ is the midpoint of $BC$. When $PM+PN$ is minimized, what is the length of $AB$?", -"image_file_name": "7044652", -"image": [ -"math/53078593_487.png" -], -"solution": "\\textbf{Solution:} Draw $AP$ and construct the point $D$ as the symmetric point of $M$ with respect to $AP$, and connect $DP$,\\\\\n$\\therefore PD=PM$, $AD=AM$,\\\\\n$\\therefore PM+PN=PD+PN\\ge DN$,\\\\\nthus, when $D$, $P$, $N$ are collinear and $DN\\perp AC$, $PM+PN$ is minimized;\\\\\n$\\because M$ is the midpoint of $AN$, and $AN=4$,\\\\\n$\\therefore AD=AM=\\frac{1}{2}AN=2$;\\\\\n$\\because P$ is the midpoint of $BC$, and $\\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore AP\\perp BC$, $\\angle CAP=30^\\circ$, $\\angle C=60^\\circ$,\\\\\nin $Rt\\triangle ADP$, $AP=2PD$, by the Pythagorean theorem $DP^{2}+2^{2}=(2DP)^{2}$,\\\\\n$\\therefore DP=\\frac{2\\sqrt{3}}{3}$;\\\\\n$\\because \\angle C=60^\\circ$, $DN\\perp AC$,\\\\\n$\\therefore \\angle DPC=30^\\circ$,\\\\\n$\\therefore PC=2DC$\\\\\nin $Rt\\triangle PDC$, by the Pythagorean theorem $DC^{2}+DP^{2}=(2DC)^{2}$,\\\\\nthat is $DC^{2}+\\left(\\frac{2\\sqrt{3}}{3}\\right)^{2}=(2DC)^{2}$, solving gives: $DC=\\frac{2}{3}$,\\\\\n$\\therefore AC=AD+DC=2+\\frac{2}{3}=\\frac{8}{3}$,\\\\\n$\\therefore AB=AC=\\boxed{\\frac{8}{3}}$.", -"solution_image": [ -"solution_images/53078593_483.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53078475": { -"question": "In the paper $\\triangle ABC$, $\\angle A=65^\\circ$, $\\angle B=75^\\circ$, fold one corner of the paper so that point C falls inside $\\triangle ABC$ (as shown in the figure). If $\\angle 1=20^\\circ$, what is the degree measure of $\\angle 2$?", -"image_file_name": "7044652", -"image": [ -"math/53078475_490.png" -], -"solution": "\\textbf{Solution:} Given in $\\triangle ABC$, $\\angle A=65^\\circ$, $\\angle B=75^\\circ$,\\\\\n$\\therefore$ $\\angle C=180^\\circ-\\angle A-\\angle B=180^\\circ-65^\\circ-75^\\circ=40^\\circ$,\\\\\nsince $\\angle 1=20^\\circ$,\\\\\n$\\therefore$ $\\angle CED=\\frac{180^\\circ-\\angle 1}{2}=80^\\circ$,\\\\\nin $\\triangle CDE$, $\\angle CDE=180^\\circ-\\angle C-\\angle CED=180^\\circ-40^\\circ-80^\\circ=60^\\circ$,\\\\\n$\\therefore$ $\\angle 2=180^\\circ-2\\angle CDE=180^\\circ-2\\times60^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [ -"solution_images/53078475_491.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53078592": { -"question": "As shown, $\\triangle ABE\\cong \\triangle ADC\\cong \\triangle ABC$, if $\\angle 1=150^\\circ$, what is the measure of $\\angle \\alpha$?", -"image_file_name": "7044652", -"image": [ -"math/53078592_503.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABE \\cong \\triangle ADC \\cong \\triangle ABC$,\\\\\nit follows that $\\angle E = \\angle DCA$, and $\\angle BAE = \\angle 1 = 150^\\circ$,\\\\\nsince $\\angle EFD = \\angle CFA$, and $\\angle \\alpha + \\angle E + \\angle EFD = \\angle EAC + \\angle DCA + \\angle CFA$\\\\\nit implies that $\\angle EAC = \\angle \\alpha$;\\\\\nGiven that $\\angle EAC = 360^\\circ - \\angle BAE - \\angle 1 = 360^\\circ - 150^\\circ - 150^\\circ = 60^\\circ$,\\\\\nthus, $\\angle \\alpha = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53078524": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, squares $AGFB$, $BCDE$, and $ACMN$ are constructed upwards on sides $AB$, $BC$, and $AC$ respectively, with point $E$ on $FG$. If $AC=2$ and $BC=\\sqrt{13}$, what is the area of the shaded region in the diagram?", -"image_file_name": "7044652", -"image": [ -"math/53078524_519.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, we connect $DM$, and draw $DQ\\perp CG$ through point $D$,\n\\[\\therefore \\angle DQC=90^\\circ,\\]\n\\[\\because\\] Quadrilateral $BCDE$ is a square,\n\\[\\therefore BC=CD,\\; \\angle ACB+\\angle QCD=90^\\circ,\\]\nAlso \\[\\because \\angle BAC=90^\\circ,\\]\n\\[\\therefore \\angle ACB+\\angle ABC=90^\\circ\\]\n\\[\\therefore \\angle ABC=\\angle QCD\\]\nIn $\\triangle ABC$ and $\\triangle QCD$: \\[\\left\\{\\begin{array}{l}\\angle BAC=\\angle DQC \\\\ \\angle ABC=\\angle QCD \\\\ BC=CD \\end{array}\\right.\\]\n\\[\\therefore \\triangle ABC \\cong \\triangle QCD \\text{ (AAS)}\\]\n\\[\\therefore DQ=AC\\]\nAlso, \\[\\because ACMN\\] is a square,\n\\[\\therefore CM=AC,\\; \\angle QCM=90^\\circ,\\; MN\\parallel AC\\]\n\\[\\therefore QD\\parallel CM,\\; DQ=CM\\]\n\\[\\therefore CMDQ\\] is a parallelogram,\n\\[\\therefore MD\\parallel AC\\]\n\\[\\therefore\\] Points $D$, $N$, and $M$ lie on a straight line,\nTherefore, $\\triangle DCM$ is also a right triangle and $\\triangle ABC \\cong \\triangle DCM$, given that the quadrilateral $BCDE$ is a square, $AGFB$ is a Square, $ACMN$ is a square, $\\triangle DCM$, $\\triangle ABC$ are congruent triangles, analogously to Zhao Shuang's chord diagram it is known $\\triangle ABC \\cong \\triangle DCM \\cong \\triangle FBE$, thus proving $\\triangle DNK \\cong \\triangle EGP$ (the proof is omitted here)\\\\\nThen: $S_{\\text{shaded}}=S_{\\triangle FBE}+S_{\\triangle EGP}+S_{CMNK}=S_{\\triangle FBE}+S_{\\triangle DNK}+S_{CMNK}=S_{\\triangle FBE}+S_{\\triangle DCM}=2S_{\\triangle ABC}$\\\\\n\\[\\because AC=2,\\; BC=\\sqrt{13}\\]\n\\[\\therefore AB=\\sqrt{BC^2-AC^2}=\\sqrt{(\\sqrt{13})^2-2^2}=3\\]\n\\[\\therefore S_{\\text{shaded}}=2S_{\\triangle ABC}=2\\times \\frac{1}{2}AB\\cdot AC=2\\times \\frac{1}{2}\\times 2\\times 3=\\boxed{6}\\]", -"solution_image": [ -"solution_images/53078524_513.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53147702": { -"question": "As shown in the figure, in $ \\triangle ABC$, $AD$ is the altitude from $A$ to side $BC$, and $BE$ is the altitude from $B$ to side $AC$, with $AD$ and $BE$ intersecting at point $F$. If $BF=AC$, $CD=3$, and $BD=8$, what is the length of line segment $AF$?", -"image_file_name": "7044652", -"image": [ -"math/53147702_529.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ is the altitude from $A$ on side $BC$ and $BE$ is the altitude from $B$ on side $AC$,\\\\\ntherefore $\\angle ADC=\\angle BDF=\\angle AEB=90^\\circ$,\\\\\nthus, $\\angle DAC+\\angle C=90^\\circ$, $\\angle C+\\angle DBF=90^\\circ$,\\\\\nwhich means $\\angle DAC=\\angle DBF$,\\\\\nin $\\triangle ADC$ and $\\triangle BDF$,\\\\\ngiven that $\\left\\{\\begin{array}{l}\\angle ADC=\\angle BDF \\\\ \\angle DAC=\\angle DBF \\\\ AC=BF \\end{array}\\right.$,\\\\\nwe can conclude that $\\triangle ADC\\cong \\triangle BDF$ (AAS),\\\\\nhence, $CD=FD=3$, $AD=BD=8$,\\\\\nthus, $AF=AD-FD=8-3=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53147939": { -"question": "As shown in the figure, points $B$ and $D$ are on ray $AM$, and points $C$ and $E$ are on ray $AN$, with $AB=BC=CD=DE$. Given that $\\angle EDM=84^\\circ$, what is the degree measure of $\\angle A$?", -"image_file_name": "7044652", -"image": [ -"math/53147939_539.png" -], -"solution": "\\textbf{Solution:} Given that $AB = BC = CD = DE$,\\\\\nit follows that $\\angle A = \\angle BCA$, $\\angle CBD = \\angle BDC$, and $\\angle ECD = \\angle CED$,\\\\\nBased on the exterior angle property of triangles, $\\angle A + \\angle BCA = \\angle CBD$, $\\angle A + \\angle CDB = \\angle ECD$, and $\\angle A + \\angle CED = \\angle EDM$,\\\\\nAlso, since $\\angle EDM = 84^\\circ$,\\\\\nit follows that $\\angle A + 3\\angle A = 84^\\circ$,\\\\\nSolving for $\\angle A$, we find that $\\angle A = \\boxed{21^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53147641": { -"question": "As shown in the figure, $ \\angle 1 : \\angle 2 : \\angle 3 = 1 : 3 : 6$, what is the value of $ \\angle 4$?", -"image_file_name": "7044652", -"image": [ -"math/53147641_542.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle 2\\colon \\angle 3=3\\colon 6$ and $\\angle 2+\\angle 3=180^\\circ$,\\\\\ntherefore, $\\angle 2=\\frac{3}{9}\\times 180^\\circ=60^\\circ$,\\\\\nhence, $\\angle 1=60^\\circ\\times \\frac{1}{3}=20^\\circ$,\\\\\nthus, $\\angle 4=180^\\circ-20^\\circ-80^\\circ=\\boxed{80^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53686577": { -"question": "As shown in the figure, two triangular plates of the same size containing $45^\\circ$, triangular plate ACF and triangular plate CFB are placed as shown. Point D is on side AC, and point E is on side BC, with $\\angle CFE=13^\\circ$ and $\\angle CFD=32^\\circ$. What is the measure of $\\angle DEC$ in degrees?", -"image_file_name": "7044652", -"image": [ -"math/53686577_550.png" -], -"solution": "\\textbf{Solution:}\n\nConstruct $FH \\perp FE$, intersecting $AC$ at point $H$.\\\\\n$\\because$ $\\angle AFC=\\angle EFH=90^\\circ$\\\\\nAlso, $\\because$ $\\angle AFC=\\angle AFH+\\angle CFH$ and $\\angle HFE=\\angle CFE+\\angle CFH$\\\\\n$\\therefore$ $\\angle AFH=\\angle CFE=13^\\circ$\\\\\n$\\because$ $\\angle A=\\angle FCE=45^\\circ$ and $FA=CF$\\\\\n$\\therefore$ $\\triangle FAH\\cong \\triangle FCE$ (ASA)\\\\\n$\\therefore$ $FH=FE$\\\\\n$\\because$ $\\angle DFE=\\angle DFC+\\angle EFC=32^\\circ+13^\\circ=45^\\circ$\\\\\n$\\because$ $\\angle DFH=\\angle HFE-\\angle DFE=90^\\circ-45^\\circ=45^\\circ$\\\\\n$\\therefore$ $\\angle DFE=\\angle DFH$\\\\\nAlso, $\\because$ $DF=DF$\\\\\n$\\therefore$ $\\triangle HDF\\cong \\triangle EDF$ (SAS)\\\\\n$\\therefore$ $\\angle DHF=\\angle DEF$\\\\\n$\\because$ $\\angle DHF=\\angle A+\\angle HFA=45^\\circ+13^\\circ=58^\\circ$\\\\\n$\\therefore$ $\\angle DEF=58^\\circ$\\\\\n$\\because$ $\\angle CFE+\\angle CEF+\\angle FCE=180^\\circ$\\\\\n$\\therefore$ $\\angle CEF=180^\\circ-\\angle CFE-\\angle FCE=180^\\circ-13^\\circ-45^\\circ=122^\\circ$\\\\\n$\\therefore$ $\\angle DEC=\\angle CEF-\\angle DEF=122^\\circ-58^\\circ=\\boxed{64^\\circ}$", -"solution_image": [ -"solution_images/53686577_550.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53686575": { -"question": "As shown in the diagram, $\\triangle ABC$ is folded along $EF$ such that point $A$ falls on point ${A}^{\\prime}$. $BP$ and $CP$ are respectively the angle bisectors of $\\angle ABD$ and $\\angle ACD$. If $\\angle P=30^\\circ$ and $\\angle {A}^{\\prime}EB=20^\\circ$, what is the degree measure of $\\angle {A}^{\\prime}FC$?", -"image_file_name": "7044652", -"image": [ -"math/53686575_5612.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\nsince $BP$ and $CP$ are the angle bisectors of $\\angle ABD$ and $\\angle ACD$ respectively,\\\\\nit follows that $\\angle PBD=\\frac{1}{2}\\angle ABD$ and $\\angle BCP=\\frac{1}{2}\\angle BCA$.\\\\\nAlso, since $\\angle PBD=\\angle P+\\angle PCB$,\\\\\nwe have $\\angle P=\\angle PBD−\\angle PCB=\\frac{1}{2}\\angle ABD−\\frac{1}{2}\\angle BCA=\\frac{1}{2}(\\angle ABD−\\angle ACB)$,\\\\\nand since $\\angle ABD=\\angle A+\\angle ACB$,\\\\\nit follows that $\\angle ABD−\\angle ACB=\\angle A$,\\\\\nthus $\\angle P=\\frac{1}{2}\\angle A$,\\\\\nand hence $\\angle A=2\\angle P=2\\times 30^\\circ=60^\\circ$,\\\\\nGiven that: $\\angle A\\prime =\\angle A=60^\\circ$,\\\\\nit follows that $\\angle 1=\\angle A\\prime +\\angle A\\prime EB=60^\\circ+20^\\circ=80^\\circ$,\\\\\nthus $\\angle A\\prime FC=\\angle A+\\angle 1=60^\\circ+80^\\circ=\\boxed{140^\\circ}$,\\\\", -"solution_image": [ -"solution_images/53686575_560.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53148185": { -"question": "As shown in the figure, $\\angle ACD=90^\\circ$, $\\angle D=15^\\circ$, and point $B$ is on the perpendicular bisector of $AD$. If $AC=4$, what is the length of $AB$?", -"image_file_name": "7044652", -"image": [ -"math/53148185_576.png" -], -"solution": "\\textbf{Solution:} Since point B is on the perpendicular bisector of AD,\\\\\nit follows that $BA=BD$,\\\\\nwhich means $\\angle D=\\angle BAD=15^\\circ$\\\\\nThus, $\\angle ABC=\\angle D+\\angle BAD=30^\\circ$\\\\\nSince $\\angle ACD=90^\\circ$ and $AC=4$,\\\\\nit follows that $AB=2AC=\\boxed{8}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066466": { -"question": "As shown in the figure, in $\\triangle ABC$, the perpendicular bisector $MN$ of $AB$ intersects $AC$ at point $D$, and $BD$ is drawn. If $AC=9$ and $BC=5$, what is the perimeter of $\\triangle BDC$?", -"image_file_name": "7044652", -"image": [ -"math/53066466_598.png" -], -"solution": "\\textbf{Solution:} Since the perpendicular bisector $MN$ of $AB$ intersects $AC$ at point D,\\\\\nit follows that $AD=BD$,\\\\\nSince $AC=9$ and $BC=5$,\\\\\nthe perimeter of $\\triangle BDC$ is $BD+CD+BC=AD+CD+BC=AC+BC=9+5=\\boxed{14}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066575": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, the perpendicular bisector of $AB$ intersects side $AB$ at point $D$ and side $AC$ at point $E$. If the perimeters of $\\triangle ABC$ and $\\triangle EBC$ are 15 and 9, respectively, what is the length of $BC$?", -"image_file_name": "7044652", -"image": [ -"math/53066575_6010.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$, the perimeter of $\\triangle ABC$ is 15. \\\\\nTherefore, $2AC+BC=15$. \\\\\nSince $E$ is on the perpendicular bisector of $AB$, \\\\\nwe have $AE=BE$. \\\\\nSince the perimeter of $\\triangle BCE$ is $BC+CE+BE=BC+CE+AE=BC+AC=9$, \\\\\nwe find $AC=15-9=6$, \\\\\nthus $BC=9-6=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066576": { -"question": "As shown in the figure, there is an observation tower $EF$ at the top $E$ of a mountain. It is known that the angle $\\angle EAB$ between the mountain slope and the horizontal plane is $30^\\circ$, the height of the mountain $EB$ is 120 meters, point $C$ is 180 meters away from the base of the mountain $A$, $CD\\parallel AB$, and intersects $EB$ at point $D$. The elevation angle $\\angle FCD$ of the top end $F$ of the observation tower measured at point $C$ is $60^\\circ$. What is the height of the observation tower $EF$ in meters?", -"image_file_name": "7044652", -"image": [ -"math/53066576_6115.png" -], -"solution": "\\textbf{Solution:} According to the question, we have: $\\angle ABE=90^\\circ$, \\\\\n$\\because$ $\\angle EAB=30^\\circ$, \\\\\n$\\therefore$ $\\angle AEB=60^\\circ$, $AE=2EB$, \\\\\n$\\because$ $EB=120$, \\\\\n$\\therefore$ $AE=2EB=240$, \\\\\n$\\because$ $AC=180$, \\\\\n$\\therefore$ $CE=AE-AC=60$, \\\\\n$\\because$ $CD\\parallel AB$, \\\\\n$\\therefore$ $\\angle CDE=\\angle ABE=90^\\circ$, $\\angle ECD=\\angle EAB=30^\\circ$, \\\\\n$\\because$ $\\angle FCD=60^\\circ$, $\\angle FCE=\\angle FCD-\\angle ECD=30^\\circ$, \\\\\n$\\therefore$ $\\angle FCE=\\angle CFE=30^\\circ$, \\\\\n$\\therefore$ $EF=CE=60$, \\\\\nthus, the height of the tower is \\boxed{60} meters.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066383": { -"question": "As shown in the figure, $DE$ is the perpendicular bisector of side $AC$ of $\\triangle ABC$, with the foot of the perpendicular at point $E$, intersecting $AB$ at point $D$. Connect $CD$, $\\angle B=30^\\circ$, $CD\\perp BC$, $CD=3$, then what is the length of $AB$?", -"image_file_name": "7044652", -"image": [ -"math/53066383_629.png" -], -"solution": "\\textbf{Solution:} Since $DE$ is the perpendicular bisector of side $AC$ of $\\triangle ABC$, and $CD=3$, \\\\\nit follows that $AD=CD=3$, \\\\\nBecause $\\angle B=30^\\circ$ and $CD\\perp BC$, \\\\\nit follows that $BD=2CD=6$, \\\\\nHence, $AB=AD+BD=\\boxed{9}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066350": { -"question": "As shown in the figure, in an acute-angled $\\triangle ABC$, where $\\angle A=75^\\circ$, $DE$ and $DF$ are the perpendicular bisectors of sides $AB$ and $AC$, respectively. What is the degree measure of $\\angle DBC$?", -"image_file_name": "7044652", -"image": [ -"math/53066350_630.png" -], -"solution": "\\textbf{Solution:} Draw DA, DC, \\\\\nsince $\\angle BAC=75^\\circ$, \\\\\nthus $\\angle ABC + \\angle ACB = 180^\\circ - 75^\\circ = 105^\\circ$, \\\\\nsince DE and DF are the perpendicular bisectors of AB and AC respectively, \\\\\nthus DA=DB, DA=DC, \\\\\nthus DB=DC, $\\angle DBA=\\angle DAB$, $\\angle DAC=\\angle DCA$, \\\\\nthus $\\angle DBA+\\angle DCA=\\angle DAB+\\angle DAC=75^\\circ$, \\\\\nthus $\\angle DBC=\\angle DBC= \\frac{1}{2} \\times (105^\\circ - 75^\\circ) = \\boxed{15^\\circ}$, \\\\", -"solution_image": [ -"solution_images/53066350_630.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53058551": { -"question": "As shown in the figure, $\\angle AOB = 30^\\circ$, point $P$ is located inside $\\angle AOB$ with $OP = 3$. Points $M$ and $N$ are moving points on the rays $OA$ and $OB$, respectively. What is the minimum perimeter of $\\triangle PMN$ when its perimeter is at its minimum?", -"image_file_name": "7044652", -"image": [ -"math/53058551_640.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct the symmetric points $E$ and $D$ of point $P$ with respect to $OA$ and $OB$, respectively, and connect $DN$, $EM$, $DE$, $OD$, $OE$,\\\\\nthen $OA$ perpendicularly bisects $PE$ and $OB$ perpendicularly bisects $PD$,\\\\\n$\\therefore EM=PM$, $DN=PN$, $OD=OP=OE=3$,\\\\\n$\\therefore$ the perimeter of $\\triangle PMN$ is $PM+MN+PN=EM+MN+DN$,\\\\\nKnowing that the length of the segment between two points is the shortest, when points $E$, $M$, $N$, $D$ are collinear, the value of $EM+MN+DN$ is minimal, and the minimum value is equal to the length of $DE$,\\\\\n$\\because OE=OP$, $OA\\perp PE$,\\\\\n$\\therefore \\angle AOE=\\angle AOP$ (the three lines of an isosceles triangle coincide),\\\\\nSimilarly, it can be derived: $\\angle BOD=\\angle BOP$,\\\\\n$\\because \\angle AOB=30^\\circ$,\\\\\n$\\therefore \\angle BOP+\\angle AOP=30^\\circ$,\\\\\n$\\therefore \\angle DOE=\\angle BOD+\\angle BOP+\\angle AOP+\\angle AOE=2\\left(\\angle BOP+\\angle AOP\\right)=60^\\circ$,\\\\\nAlso, $\\because OD=OE=3$,\\\\\n$\\therefore \\triangle DOE$ is an equilateral triangle,\\\\\n$\\therefore DE=OD=3$,\\\\\n$\\therefore$ the minimum value of $EM+MN+DN$ is 3,\\\\\n$\\therefore$ the minimum perimeter of $\\triangle PMN$ is $\\boxed{3}$,\\\\", -"solution_image": [ -"solution_images/53058551_646.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53059019": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point D is on side AB, and $\\triangle CBD$ is folded along CD such that point B coincides exactly with point E on side AC. If $\\angle A=25^\\circ$, then what is the measure of $\\angle CDE$?", -"image_file_name": "7044652", -"image": [ -"math/53059019_650.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle ACB=90^\\circ$ and $\\angle A=25^\\circ$,\\\\\n$\\therefore \\angle B=65^\\circ$,\\\\\nFrom the folding, we have: $\\angle BCD=\\angle ACD= \\frac{1}{2}\\angle ACB=45^\\circ$ and $\\angle CED=\\angle B=65^\\circ$,\\\\\n$\\therefore \\angle CDE=180^\\circ-\\angle CED-\\angle ACD=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53059213": { -"question": "As shown in the figure, in the isosceles triangle $ABC$, where $AB=AC$, $DE$ is the perpendicular bisector of $AB$, intersecting $AB$ at point $E$ and $AC$ at point $D$. If $\\angle ADE=40^\\circ$, what is the measure of $\\angle CBD$?", -"image_file_name": "7044652", -"image": [ -"math/53059213_6611.png" -], -"solution": "\\textbf{Solution:} Given $DE$ bisects $AB$ perpendicularly,\\\\\nhence $AD=BD$, $\\angle AED=90^\\circ$,\\\\\ngiven $\\angle ADE=40^\\circ$,\\\\\nthus $\\angle ABD=\\angle A=50^\\circ$,\\\\\ntherefore, $\\angle ABC=\\angle C=\\frac{1}{2}\\times(180^\\circ-50^\\circ)=65^\\circ$,\\\\\nthus, $\\angle CBD=65^\\circ-50^\\circ=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53059212": { -"question": "As shown in the figure, in $ \\triangle ABC$, the bisectors of $ \\angle ABC$ and $ \\angle ACB$ intersect at point $D$. Through point $D$, a line $EF\\parallel BC$ is drawn, intersecting $AB$ at point $E$ and $AC$ at point $F$. If $AB=10$, $BC=7$, and $AC=8$, what is the perimeter of $ \\triangle AEF$?", -"image_file_name": "7044652", -"image": [ -"math/53059212_6714.png" -], -"solution": "\\textbf{Solution:} Since $EF\\parallel BC$,\\\\\nit follows that $\\angle EDB = \\angle DBC$,\\\\\nSince $BD$ bisects $\\angle ABC$,\\\\\nit implies $\\angle ABD = \\angle DBC$,\\\\\nTherefore, $\\angle EBD = \\angle EDB$,\\\\\nwhich means $ED = EB$,\\\\\nSimilarly, it can be proven that $DF = FC$,\\\\\nTherefore, $AE + AF + EF = AE + EB + AF + FC = AB + AC = 10 + 8 = 18$,\\\\\nHence, the perimeter of $\\triangle AEF$ is $\\boxed{18}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53043939": { -"question": "As shown in the figure, the side length of each small square is 1. What is the degree measure of $\\angle ABC$?", -"image_file_name": "7044652", -"image": [ -"math/53043939_680.png" -], -"solution": "\\textbf{Solution:} Connect AC,\\\\\nby the Pythagorean theorem, we have $AC^{2}=2^{2}+1^{2}=5$,\\\\\n$BC^{2}=2^{2}+1^{2}=5$,\\\\\n$AB^{2}=1^{2}+3^{2}=10$,\\\\\n$\\therefore AC^{2}+BC^{2}=5+5=10=AB^{2}$,\\\\\n$\\therefore \\triangle ABC$ is an isosceles right triangle, $\\angle ACB=90^\\circ$,\\\\\n$\\therefore \\angle ABC=\\boxed{45^\\circ}$.", -"solution_image": [ -"solution_images/53043939_680.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044024": { -"question": "As shown in the figure, if $\\triangle ABC \\cong \\triangle DEF$, $AC = 4$, $AB = 3$, $EF = 5$, then what is the perimeter of $\\triangle ABC$?", -"image_file_name": "7044652", -"image": [ -"math/53044024_695.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle DEF$, \\\\\n\\[\n\\therefore AB = DE = 3, \\quad AC = DF = 4, \\quad BC = EF = 5,\n\\]\n\\[\n\\therefore \\text{the perimeter of} \\ \\triangle ABC = AB + AC + BC = 3 + 4 + 5 = \\boxed{12}\n\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044181": { -"question": "As shown in the figure, in $\\triangle ACB$, $\\angle ACB = 90^\\circ$, $AC = BC$, the coordinates of point $C$ are $(-2, 0)$, and the coordinates of point $A$ are $(-8, 3)$. What are the coordinates of point $B$?", -"image_file_name": "7044652", -"image": [ -"math/53044181_700.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, extend $AD \\perp OC$ at $D$, and $BE \\perp OC$ at $E$, such that $\\angle 1=\\angle 2=\\angle 3=90^\\circ$,\\\\\n$\\therefore$ $\\angle$DAC+$\\angle$ACD=$\\angle$ACD+$\\angle$ECB=$90^\\circ$,\\\\\n$\\therefore$ $\\angle DAC=\\angle ECB$,\\\\\n$\\therefore$ $\\angle ACD=\\angle CBE$,\\\\\nIn $\\triangle ACD$ and $\\triangle CEB$,\\\\\n$\\because$ $\\left\\{\\begin{array}{l}\\angle DAC=\\angle ECB\\hfill \\\\ AC=CB\\hfill \\\\ \\angle ACD=\\angle CBE\\hfill \\end{array}\\right.$,\\\\\n$\\therefore$ $\\triangle ADC\\cong \\triangle CEB$ (ASA),\\\\\n$\\therefore$ $DC=BE$, $AD=CE$,\\\\\n$\\because$ the coordinates of point $C$ are $(-2,0)$, and the coordinates of point $A$ are $(-8,3)$,\\\\\n$\\therefore$ $OC=2$, $AD=CE=3$, $OD=8$,\\\\\n$\\therefore$ $CD=OD-OC=6$, $OE=CE-OC=1$,\\\\\n$\\therefore$ $BE=6$,\\\\\n$\\therefore$ the coordinates of point $B$ are $\\boxed{(1,6)}$.", -"solution_image": [ -"solution_images/53044181_706.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044357": { -"question": "As shown in the figure, point $P$ is a point inside $\\angle AOB$. Construct the symmetrical points $P_{1}$ and $P_{2}$ of point $P$ with respect to $OB$ and $OA$ respectively. Connect $P_{1}P_{2}$, let it intersect $OB$ at $M$, and intersect $OA$ at $N$. If $\\angle AOB=40^\\circ$, what is the measure of $\\angle MPN$?", -"image_file_name": "7044652", -"image": [ -"math/53044357_7110.png" -], -"solution": "\\textbf{Solution:} Since the symmetric point of $P$ about $OB$ is ${P}_{1}$ and the symmetric point of $P$ about $OA$ is ${P}_{2}$, \\\\\ntherefore, $PM={P}_{1}M$, $PN={P}_{2}N$, $\\angle {P}_{2}=\\angle {P}_{2}PN$, $\\angle {P}_{1}=\\angle {P}_{1}PM$, $PP_{1}\\perp OB$, $PP_{2}\\perp OA$, \\\\\nsince $\\angle AOB=40^\\circ$, \\\\\ntherefore, $\\angle {P}_{1}PP_{2}=140^\\circ$, \\\\\ntherefore, $\\angle {P}_{1}+\\angle {P}_{2}=180^\\circ-\\angle {P}_{1}PP_{2}=40^\\circ$, \\\\\nsince $\\angle PMN=\\angle {P}_{1}+\\angle MP{P}_{1}=2\\angle {P}_{1}$, $\\angle PNM=\\angle {P}_{2}+\\angle NP{P}_{2}=2\\angle {P}_{2}$, \\\\\ntherefore, $\\angle PMN+\\angle PNM=2(\\angle {P}_{1}+\\angle {P}_{2})=2\\times 40^\\circ=80^\\circ$, \\\\\ntherefore, $\\angle MPN=180^\\circ-(\\angle PMN+\\angle PNM)=180^\\circ-80^\\circ=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53454092": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $BC=18$, $E$ and $F$ are the trisection points of $BC$, $AE=10$, $AF=8$, $G$ and $H$ are the midpoints of $AC$ and $AB$ respectively. What is the perimeter of the quadrilateral $EFGH$?", -"image_file_name": "7055317", -"image": [ -"math/53454092_348.png" -], -"solution": "\\textbf{Solution:} Since $E$ and $F$ are the trisection points of $BC$,\\\\\nwe have $EF=\\frac{1}{3}BC=6$, and $BE=EF=FC$.\\\\\nSince $G$ and $H$ are the midpoints of $AC$ and $AB$ respectively,\\\\\n$GH$ is the midline of $\\triangle ABC$, and $GH=\\frac{1}{2}BC=9$.\\\\\n$HE$ is the midline of $\\triangle ABF$, and $HE=\\frac{1}{2}AF=4$.\\\\\n$GF$ is the midline of $\\triangle ACE$, and $GF=\\frac{1}{2}AE=5$.\\\\\nTherefore, the perimeter of the quadrilateral $EFGH=6+9+4+5=\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51827844": { -"question": "As shown in the figure, it is known that $AB=3$, $AC=1$, and $\\angle D=90^\\circ$. If $\\triangle DEC$ is centrally symmetric to $\\triangle ABC$ with respect to point $C$, what is the length of $AE$?", -"image_file_name": "7055317", -"image": [ -"math/51827844_350.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle DEC$ and $\\triangle ABC$ are centrally symmetric with respect to point C,\\\\\ntherefore $\\triangle DEC \\cong \\triangle ABC$,\\\\\nsince $AB=3$ and $AC=1$,\\\\\nthen $DE=3$ and $CD=1$,\\\\\nthus $AD=2$,\\\\\nalso, since $\\angle D=90^\\circ$,\\\\\nit follows that $AE= \\sqrt{DE^2+AD^2}=\\sqrt{3^2+2^2}=\\boxed{\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51825221": { -"question": "As shown in the figure, vertex $C$ of $ABCD$ is on the side $BF$ of the equilateral triangle $\\triangle BEF$, with point $E$ on the extension of $AB$, and $G$ as the midpoint of $DE$. Connecting $CG$. If $AD=5$, $AB=CF=3$, then what is the length of $CG$?", -"image_file_name": "7055317", -"image": [ -"math/51825221_361.png" -], -"solution": "Solution: As shown in the figure, extend DC to meet EF at point H, \\\\\n$\\because$ $\\square ABCD$, AD=5, AB=CF=3, \\\\\n$\\therefore$ AD$\\parallel$BC, BC=5, CD=CF=3, \\\\\n$\\therefore$ BF=BC+CF=5+3=8, $\\angle$FCH=$\\angle$EBF, \\\\\n$\\because$ equilateral $\\triangle BEF$, \\\\\n$\\therefore$ $\\angle F=\\angle BEF=\\angle EBF=\\angle FCH=60^\\circ$, EF=BF=8, \\\\\n$\\therefore$ $\\triangle FCH$ is an equilateral triangle, \\\\\n$\\therefore$ CH=CF=FH=3, \\\\\n$\\therefore$ HE=EF−HF=8−3=5, \\\\\nalso $\\because$ G is the midpoint of DE, \\\\\n$\\therefore$ CG is the midline of $\\triangle DHE$, \\\\\n$\\therefore$ CG=$\\frac{1}{2}$HE=$\\frac{1}{2} \\times 5=\\boxed{\\frac{5}{2}}$.", -"solution_image": [ -"solution_images/51825221_360.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51825223": { -"question": "As shown in the figure, a set of triangular plates is placed as in Figure 1, with $AB=CD= \\sqrt{6}$, and vertex $E$ coinciding. When $\\triangle DEC$ is rotated around its vertex $E$, as in Figure 2, during the rotation, when $\\angle AED=75^\\circ$, and $AD$ and $BC$ are connected, what is the area of $\\triangle ADE$?", -"image_file_name": "7055317", -"image": [ -"math/51825223_371.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 2, draw $EG \\parallel CD$ through point E, extend CE to meet AB at point H, \\\\\n$\\therefore \\angle EDC=\\angle DEG$, \\\\\nGiven that, we know: $\\angle EDC=30^\\circ$, $\\angle DEC=60^\\circ$, $\\angle ECD=\\angle AEB=90^\\circ$, $\\angle ABE=\\angle BAE=45^\\circ$, \\\\\n$\\because \\angle AED=75^\\circ$, \\\\\n$\\therefore \\angle AEG=\\angle AED-\\angle DEG=75^\\circ-30^\\circ=45^\\circ$, \\\\\n$\\therefore EG\\parallel AB\\parallel CD$, \\\\\n$\\therefore HC\\perp AB$, \\\\\n$\\therefore HE=BH=AH=\\frac{1}{2}AB$, \\\\\nAnd since $AB=CD$, \\\\\n$\\therefore$ Quadrilateral ABCD is a parallelogram, \\\\\n$\\because AB=CD=\\sqrt{6}$, \\\\\n$\\therefore HE=BH=AH=\\frac{\\sqrt{6}}{2}$, EC=$\\frac{CD}{\\sqrt{3}}=\\frac{\\sqrt{6}}{\\sqrt{3}}=\\sqrt{2}$, \\\\\nHC=HE+EC=$\\frac{\\sqrt{6}}{2}+\\sqrt{2}=\\frac{\\sqrt{6}+2\\sqrt{2}}{2}$, \\\\\n$\\therefore S_{\\triangle ABE}=\\frac{1}{2} \\times \\sqrt{6} \\times \\frac{\\sqrt{6}}{2}=\\frac{3}{2}$, $S_{\\triangle DEC}=\\frac{1}{2} \\times \\sqrt{6} \\times \\sqrt{2}=\\sqrt{3}$, $S_{\\triangle CEB}=\\frac{1}{2} \\times \\sqrt{2} \\times \\frac{\\sqrt{6}}{2}=\\frac{\\sqrt{3}}{2}$, \\\\\n$S_{\\square ABCD}=\\sqrt{6} \\times \\frac{\\sqrt{6}+2\\sqrt{2}}{2}=3+2\\sqrt{3}$, \\\\\n$\\therefore S_{\\triangle ADE}=S_{\\square ABCD}-S_{\\triangle ABE}-S_{\\triangle DEC}-S_{\\triangle CEB}=3+2\\sqrt{3}-\\frac{3}{2}-\\sqrt{3}-\\frac{\\sqrt{3}}{2}=\\boxed{\\frac{3+\\sqrt{3}}{2}}$.", -"solution_image": [ -"solution_images/51825223_370.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51825012": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $\\angle BAD=120^\\circ$. Points E and F are on the extensions of CD and BC, respectively, with AE $\\parallel$ BD and EF $\\perp$ BC. Given that EF $= 5\\sqrt{3}$, what is the length of AB?", -"image_file_name": "7055317", -"image": [ -"math/51825012_382.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, and $\\angle BAD=120^\\circ$, it follows that AB$\\parallel$DC and AB=CD, and $\\angle BAD=\\angle BCD=120^\\circ$. Hence, $\\angle FCE=180^\\circ-120^\\circ=60^\\circ$. As AE$\\parallel$BD, quadrilateral ABDE is also a parallelogram. Therefore, AB=DE, and hence AB=DE=CD, making D the midpoint of CE. Given that EF$\\perp$BC, we have $\\angle EFC=90^\\circ$. In $\\triangle CEF$, $\\angle CEF=30^\\circ$. Let CF=x, and CE=2x, thus EF$^{2}$+CF$^{2}$=CE$^{2}$ leads to ($5\\sqrt{3}$)$^{2}$+x$^{2}$=4x$^{2}$. Solving this, we find x=5 (taking the positive value). Therefore, CE=5×2=10, which makes CD=AB=$\\frac{1}{2}$CE=5. Thus, the answer is: $\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53333412": { -"question": "As shown in the figure, in rhombus $ABCD$, $AB=10$, diagonals $AC$ and $BD$ intersect at point $O$. If $E$ is the midpoint of side $AD$ and $\\angle AEO = 32^\\circ$, what is the length of $OE$? What is the degree measure of $\\angle ADO$?", -"image_file_name": "7055317", -"image": [ -"math/53333412_392.png" -], -"solution": "\\textbf{Solution:} Given: In diamond ABCD, AC and BD intersect at point O,\\\\\nit follows that OA=OC, $\\angle$ADB=$\\angle$CDB, and CD=AB=10,\\\\\nsince E is the midpoint of side AD,\\\\\nit follows AE=DE,\\\\\nthus OE is the median line of $\\triangle$ADC,\\\\\nhence OE $\\parallel$ CD, and OE=$\\frac{1}{2}$CD=$\\frac{1}{2} \\times 10=\\boxed{5}$,\\\\\ntherefore $\\angle$ADC=$\\angle$AEO=32$^\\circ$,\\\\\nhence $\\angle$ADO=$\\frac{1}{2}\\angle$ADC=$\\frac{1}{2} \\times 32^\\circ=\\boxed{16^\\circ}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53333928": { -"question": "As shown in the figure, fold side AD of the rectangle so that point D falls on point F on side BC. If $ AB=8\\,cm$ and $BC=10\\,cm$, what is the length of EC in cm?", -"image_file_name": "7055317", -"image": [ -"math/53333928_403.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\nhence AB=CD=8cm, AD=BC=10cm, $\\angle$B=$\\angle$C=$90^\\circ$,\\\\\nBy the property of folding: AF=AD=10cm, DE=EF,\\\\\nIn $\\triangle$ABF, BF=$\\sqrt{AF^{2}-AB^{2}}=6cm$,\\\\\nthus CF=BC-BF=4cm,\\\\\nLet EC=x, then DE=EF=8-x,\\\\\nIn $\\triangle$EFC, since EF$^{2}$=EC$^{2}$+CF$^{2}$,\\\\\nthus (8-x)$^{2}$=x$^{2}$+4$^{2}$,\\\\\nthus x=\\boxed{3}cm,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53333671": { -"question": "As shown in the figure, in rectangle $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. If $\\angle ADB=30^\\circ$, what is the measure of $\\angle AOB$?", -"image_file_name": "7055317", -"image": [ -"math/53333671_415.png" -], -"solution": "\\textbf{Solution:} Since ABCD is a rectangle,\\\\\nit follows that $\\angle$DAB = 90$^\\circ$.\\\\\nSince $\\angle$ADB = 30$^\\circ$,\\\\\nit follows that $\\angle$ABD = 90$^\\circ - \\angle$ADB = 60$^\\circ$.\\\\\nSince OA = OB,\\\\\nit follows that $\\triangle$ABO is an equilateral triangle,\\\\\ntherefore, $\\angle$AOB = \\boxed{60^\\circ}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51817954": { -"question": "As shown in the figure, in $ \\square ABCD$, the diagonals AC, BD intersect at point O, with OA=OB. If AD=4 and $\\angle AOD=60^\\circ$, what is the length of AB?", -"image_file_name": "7055317", -"image": [ -"math/51817954_421.png" -], -"solution": "\\textbf{Solution:} Since $ABCD$ is a square and $OA=OB$,\\\\\nit follows that $AO=BO=DO=OC$,\\\\\nwhich implies $AC=BD$,\\\\\ntherefore, quadrilateral ABCD is a rectangle,\\\\\nhence $\\angle DAB=90^\\circ$,\\\\\nsince $\\angle AOD=60^\\circ$,\\\\\nit means $\\triangle ADO$ is an equilateral triangle,\\\\\nthus $DO=AD=4$,\\\\\ntherefore $BD=OD+OB=8$,\\\\\nin $\\triangle ABD$, $AB=\\sqrt{BD^{2}-AD^{2}}=\\sqrt{64-16}=4\\sqrt{3}$.\\\\\nHence, the answer is: $AB=\\boxed{4\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53599304": { -"question": "As shown in the figure, in parallelogram $ABCD$, $\\angle B=60^\\circ$, $AB=4$, point $H$ and point $G$ are moving points on side $DC$ and $BC$, respectively, where point $H$ does not coincide with point $C$. Connect $AH$ and $HG$. Point $E$ is the midpoint of $AH$ and point $F$ is the midpoint of $GH$. Connect $EF$. What is the minimum value of $EF$?", -"image_file_name": "7055317", -"image": [ -"math/53599304_432.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AG,\\\\\nbecause point E is the midpoint of AH, and point F is the midpoint of GH,\\\\\ntherefore EF=$\\frac{1}{2}AG$, thus the minimum value of EF,\\\\\ncan only be achieved when AG is at its minimum value, which is the vertical segment AG,\\\\\ndraw AM$\\perp$BC through point A, with the foot at M,\\\\\nbecause $\\angle B=60^\\circ$, $AB=4$,\\\\\ntherefore BM=2,\\\\\nAM=$\\sqrt{4^2-2^2}=2\\sqrt{3}$,\\\\\ntherefore the minimum value of EF is $\\frac{1}{2}AG=\\boxed{\\sqrt{3}}$.", -"solution_image": [ -"solution_images/53599304_430.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53313404": { -"question": "As shown in the diagram, in rhombus $ABCD$, $O$ is the intersection point of the two diagonals. Three lines passing through point $O$ divide the rhombus into shaded and unshaded areas. When the side length of the rhombus is $5$ and one of the diagonals is $8$, what is the area of the shaded region?", -"image_file_name": "7055317", -"image": [ -"math/53313404_440.png" -], -"solution": "\\textbf{Solution:} Draw lines AC and BD as shown in the figure: \\\\\n$\\because$ Quadrilateral ABCD is a rhombus, \\\\\n$\\therefore$ AB=5, OA=OC=$\\frac{1}{2}$AC=4, OB=OD, and AC$\\perp$BD, \\\\\n$\\therefore$ OB=$\\sqrt{AB^{2}-OA^{2}}=\\sqrt{5^{2}-4^{2}}=3$, \\\\\n$\\therefore$ BD=2OB=6, \\\\\n$\\therefore$ The area of rhombus ABCD= $\\frac{1}{2}$AC$\\times$BD= $\\frac{1}{2}\\times6\\times8=24$, \\\\\n$\\because$ O is the intersection point of the diagonals of the rhombus, and a rhombus is a centrally symmetric figure, \\\\\n$\\therefore$ The area of the shaded part=$\\frac{1}{2}\\times24=\\boxed{12}$;", -"solution_image": [ -"solution_images/53313404_440.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53313461": { -"question": "As shown in the figure, in parallelogram $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, with $OA=3$. To make parallelogram $ABCD$ a rectangle, what should the length of $BD$ be?", -"image_file_name": "7055317", -"image": [ -"math/53313461_455.png" -], -"solution": "\\textbf{Solution:} Suppose parallelogram \\(ABCD\\) is a rectangle, \\\\\n\\(\\therefore\\) \\(OA=OC=OB=OD\\), \\\\\n\\(\\because\\) \\(OA=3\\), \\\\\n\\(\\therefore\\) \\(BD=2OB=\\boxed{6}\\).", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53436917": { -"question": "In rectangle $ABCD$, where $AB = 6$ and $AD = 8$, $P$ is a point on segment $AC$. If $\\triangle PCD$ is an isosceles triangle, then what is the length of $AP$?", -"image_file_name": "7055317", -"image": [ -"math/53436917_460.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle,\\\\\n$\\therefore$ $\\angle$ADC=$90^\\circ$, DC=AB=6, AD=8,\\\\\n$\\therefore$ AC=$\\sqrt{AD^{2}+DC^{2}}=\\sqrt{8^{2}+6^{2}}=10$,\\\\\nConsider three cases:\\\\\n(1) When CP=CD=6, AP=AC−CP=10−6=4;\\\\\n(2) When PD=PC, $\\angle$PDC=$\\angle$PCD,\\\\\n$\\because$ $\\angle$PCD+$\\angle$PAD=$\\angle$PDC+$\\angle$PDA=$90^\\circ$,\\\\\n$\\therefore$ $\\angle$PAD=$\\angle$PDA,\\\\\n$\\therefore$ PD=PA,\\\\\n$\\therefore$ PA=PC,\\\\\n$\\therefore$ AP=$\\frac{1}{2}$AC=5;\\\\\n(3) When DP=DC, as illustrated, draw DQ$\\perp$AC at Q,\\\\\nthen PQ=CQ,\\\\\n$\\because$ Area$_{\\triangle ADC}$=$\\frac{1}{2}$AD$\\cdot$DC=$\\frac{1}{2}$AC$\\cdot$DQ,\\\\\n$\\therefore$ DQ=$\\frac{AD\\cdot DC}{AC}=\\frac{8\\times 6}{10}=\\frac{24}{5}$,\\\\\n$\\therefore$ CQ=$\\sqrt{DC^{2}-DQ^{2}}=\\sqrt{6^{2}-\\left(\\frac{24}{5}\\right)^{2}}=\\frac{18}{5}$,\\\\\n$\\therefore$ PC=2CQ=$\\frac{36}{5}$,\\\\\n$\\therefore$ AP=AC−PC=10−$\\frac{36}{5}=\\boxed{\\frac{14}{5}}$;\\\\\nIn summary, if $\\triangle$PCD is an isosceles triangle, the length of AP could be 4, 5, or $\\frac{14}{5}$.", -"solution_image": [ -"solution_images/53436917_462.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53436916": { -"question": "As shown in the figure, in rhombus ABCD, the diagonals AC and BD intersect at point O, DE $\\perp$ AB at point E, and OE is connected. If DE $= \\sqrt{3}$, and BE $= 1$, what is the degree measure of $\\angle ABD$?", -"image_file_name": "7055317", -"image": [ -"math/53436916_471.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\n$\\therefore$ AC $\\perp$ BD, DO=BO, \\\\\nSince DE $\\perp$ AB, DE=$\\sqrt{3}$, BE=1, \\\\\n$\\therefore$ BD=$\\sqrt{DE^2+BE^2}=2$, \\\\\n$\\therefore$ DO=BO=1, \\\\\nBecause DE $\\perp$ BA, DO=BO, \\\\\n$\\therefore$ EO=DO=BO=1, \\\\\n$\\therefore$ BE=BO=EO=1, \\\\\n$\\therefore$ $\\triangle$BEO is an equilateral triangle, \\\\\n$\\therefore$ $\\angle$ABD=$\\boxed{60^\\circ}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53599255": { -"question": "As shown in the figure, in rectangle $ABCD$, it is known that $AB=6$, $BC=8$. The perpendicular bisector of $BD$ intersects $AD$ at point $E$ and intersects $BC$ at point $F$. What is the length of $BF$?", -"image_file_name": "7055317", -"image": [ -"math/53599255_480.png" -], -"solution": "\\textbf{Solution:}\nGiven that quadrilateral ABCD is a rectangle,\\\\\n$\\therefore \\angle A=90^\\circ$, AB=6, AD=BC=8,\\\\\n$\\therefore$BD=$\\sqrt{AB^{2}+AD^{2}}=10$,\\\\\nAdditionally, since EF is the perpendicular bisector of BD,\\\\\n$\\therefore$OB=OD=5, $\\angle$BOF=$90^\\circ$,\\\\\nAlso, $\\because \\angle C=90^\\circ$,\\\\\n$\\therefore \\triangle BOF\\sim \\triangle BCD$,\\\\\n$\\therefore \\frac{BO}{BC}=\\frac{BF}{BD}$, that is: $\\frac{5}{8}=\\frac{BF}{10}$, solving this yields: $BF=\\boxed{\\frac{25}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53599256": { -"question": "As shown in the figure, the quadrilateral ABCD is a rhombus, with diagonals AC and BD intersecting at point O. We have $AC=4\\sqrt{3}$ and $BD=4$. Point P is a moving point on AC, and point E is the midpoint of AB. What is the minimum value of $PD+PE$?", -"image_file_name": "7055317", -"image": [ -"math/53599256_491.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect DE,\\\\\nsince quadrilateral ABCD is a rhombus, with diagonals AC and BD intersecting at point O, and AC = $4\\sqrt{3}$, BD = 4,\\\\\nthus AO = $\\frac{1}{2}$AC = $2\\sqrt{3}$, BO = $\\frac{1}{2}$BD = 2, and AC $\\perp$ BD,\\\\\nthus AB = $\\sqrt{AO^{2}+BO^{2}} = \\sqrt{(2\\sqrt{3})^{2}+2^{2}} = 4$,\\\\\nthus AB = AD = BD, meaning $\\triangle ABD$ is an equilateral triangle,\\\\\nsince point E is the midpoint of AB,\\\\\nthus DE $\\perp$ AB,\\\\\nthus DE = $\\sqrt{AD^{2}-AE^{2}} = \\sqrt{4^{2}-2^{2}} = 2\\sqrt{3}$,\\\\\nsince DP+PE $\\geq$ DE,\\\\\nthus the minimum value of PD+PE is the length of DE,\\\\\ni.e., the minimum value of PD+PE is $2\\sqrt{3}$,\\\\\nhence, the answer is: the minimum value of $PD+PE$ is $\\boxed{2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/53599256_490.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51798866": { -"question": "As shown in the figure, in rectangle $ABCD$, with $AB=6$ and $AD=8$, points $E$ and $F$ are located on $BC$ and $AD$ respectively. Connect $EF$. Quadrilateral $CDFE$ is folded along the line on which $EF$ lies, so that point $C$ coincides exactly with point $A$, and point $D$ falls at the position labeled $D'$. What is the length of $AE$?", -"image_file_name": "7055317", -"image": [ -"math/51798866_503.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\nit follows that BC=AD=8. Since quadrilateral CDFE is folded along the line containing EF, making point C coincide exactly with point A,\\\\\nit follows that AE=CE. Let AE=CE=x, then BE=8-x,\\\\\nin $\\triangle ABE$, $AB^2+BE^2=AE^2$,\\\\\nthus, $6^2+(8-x)^2=x^2$,\\\\\nsolving for x, we get $x=\\boxed{\\frac{25}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51798867": { -"question": "As shown in the figure, parallelogram $ABCD$ has its diagonal $BD$ bisecting $\\angle ABC$. Given $BC = 6$, $\\angle ABC = 45^\\circ$, and a moving point $P$ on diagonal $BD$ and another moving point $Q$ on side $BC$ such that $PQ + PC$ reaches its minimum, what is this minimum value?", -"image_file_name": "7055317", -"image": [ -"math/51798867_510.png" -], -"solution": "\\textbf{Solution:} Let's start. Since quadrilateral ABCD is a parallelogram, \\\\\nit follows that AD $\\parallel$ BC, \\\\\nthus $\\angle ADB = \\angle CBD$, \\\\\nsince BD bisects $\\angle ABC$, \\\\\nit follows that $\\angle ABD = \\angle CBD$, \\\\\ntherefore, $\\angle ABD = \\angle ADB$, \\\\\nthus AB=AD, \\\\\nhence, parallelogram ABCD is a rhombus, \\\\\ntherefore, points A and C are symmetric with respect to BD, \\\\\nDraw AQ $\\perp$ BC at Q, intersecting BD at P, \\\\\nthen the minimum value of PQ+PC is AQ, \\\\\nsince $\\angle ABC = 45^\\circ$, \\\\\nit follows that $\\triangle ABQ$ is an isosceles right triangle, \\\\\nsince AB=BC=6, \\\\\nit follows that AQ=$\\frac{\\sqrt{2}}{2}$AB=$3\\sqrt{2}$, \\\\\nthus, this minimal value is $\\boxed{3\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51798867_510.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53232779": { -"question": "As shown in the figure, in rectangle $ABCD$, $BC=6$, $AB=3$, $R$ is on side $CD$, and $CR=2$. Let $P$ be a moving point on $BC$, and $E$, $F$ be the midpoints of $AP$, $RP$, respectively. As $P$ moves from $B$ to $C$, what is the length of segment $EF$?", -"image_file_name": "7055317", -"image": [ -"math/53232779_5216.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, connect AR.\\\\\n$\\because$ Quadrilateral ABCD is a rectangle,\\\\\n$\\therefore \\angle D=90^\\circ$,\\\\\n$\\because BC=6, AB=3, CR=2$,\\\\\n$\\therefore AD=6, DR=1$,\\\\\n$\\therefore AR=\\sqrt{6^2+1^2}=\\sqrt{37}$,\\\\\n$\\because$E and F are the midpoints of AP and RP respectively,\\\\\n$\\therefore EF=\\frac{1}{2}AR=\\frac{1}{2}\\times \\sqrt{37}=\\boxed{\\frac{\\sqrt{37}}{2}}$.", -"solution_image": [ -"solution_images/53232779_520.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53572646": { -"question": "As shown in the figure, in $\\triangle ABC$, with $BC=4$, D and E are respectively the midpoints of $AB$ and $AC$, G and H are respectively the midpoints of $AD$ and $AE$, then what is the length of $GH$?", -"image_file_name": "7055317", -"image": [ -"math/53572646_537.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of $AB$ and $AC$ respectively,\\\\\nhence $DE$ is the median of $\\triangle ABC$,\\\\\nthus $DE=\\frac{1}{2}BC=\\frac{1}{2}\\times 4=2$,\\\\\nsince $G$ and $H$ are the midpoints of $AD$ and $AE$ respectively,\\\\\nhence $GH$ is the median of $\\triangle ADE$,\\\\\nthus $GH=\\frac{1}{2}DE=\\frac{1}{2}\\times 2=\\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53572616": { -"question": "As shown in the diagram, in rectangle $ABCD$, points $E$ and $F$ are located on sides $BC$ and $AD$ respectively. The rectangle is folded along $EF$ such that point $B$ falls exactly on point $H$ on side $AD$. Given that the area of rectangle $ABCD$ is $16\\sqrt{3}$ and $FH = 2HD$, what is the length of the crease $EF$?", -"image_file_name": "7055317", -"image": [ -"math/53572616_541.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram,\\\\\nsince folding the rectangle along EF makes point B precisely overlap with point H on edge AD, \\\\\nthus, $AF=FG$, $\\angle EHG=\\angle B=\\angle A=\\angle G=90^\\circ$, $HG=AB$, $\\angle BEF=\\angle FEH$,\\\\\nsince $\\angle BEF+\\angle FEH+\\angle HEC=180^\\circ$, $\\angle HEC=60^\\circ$,\\\\\nthus, $\\angle BEF=\\angle FEH=60^\\circ$,\\\\\nsince $AD\\parallel BC$,\\\\\nthus, $\\angle FHE=\\angle HEC=60^\\circ$,\\\\\nthus, $\\triangle EFH$ is an equilateral triangle,\\\\\nthus, $\\angle FHE=60^\\circ$,\\\\\nthus, $\\angle GHF=30^\\circ$,\\\\\nthus, $FG=\\frac{1}{2}FH$,\\\\\nsince $FH=2HD$,\\\\\nthus, $DH=FG=AF$,\\\\\nlet $DH=FG=AF=x$,\\\\\nthus, $AB=HG=\\sqrt{3}x$, $AD=4x$,\\\\\nsince the area of rectangle ABCD is $16\\sqrt{3}$,\\\\\nthus, $\\sqrt{3}x \\cdot 4x = 16\\sqrt{3}$,\\\\\nthus, $x=2$ (negative value is discarded),\\\\\nthus, $AB=2\\sqrt{3}$,\\\\\nDraw $FM\\perp BC$ at $M$ through F,\\\\\nthen, $FM=AB=2\\sqrt{3}$,\\\\\nthus, $EF=\\frac{2\\sqrt{3}}{3}FM=\\boxed{4}$,\\\\", -"solution_image": [ -"solution_images/53572616_540.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53572100": { -"question": "As shown in the diagram, in square $ABCD$, $AB=2$. Extend $AD$ to point $E$ so that $DE=1$, $EF \\perp AE$, and $EF=AE$. Connect $AF$ and $CF$ respectively. Let $M$ be the midpoint of $CF$. What is the length of $AM$?", -"image_file_name": "7055317", -"image": [ -"math/53572100_5512.png" -], -"solution": "\\textbf{Solution:} Extend FE and BC to meet at H, and connect $AC$,\\\\\nIn square ABCD: $\\angle ADC=\\angle BCD=90^\\circ$, $\\angle DAC=45^\\circ$, $AB=CD=AD=2$,\\\\\n$\\therefore \\angle EDC=\\angle HCD=90^\\circ$,\\\\\n$\\because EF\\perp AE$,\\\\\n$\\therefore \\angle AEF=\\angle AEH=90^\\circ$,\\\\\n$\\therefore \\angle EDC=\\angle HCD=\\angle AEH=90^\\circ$,\\\\\n$\\therefore$ quadrilateral $DCHE$ is a rectangle,\\\\\n$\\therefore CD=EH=2$, $DE=CH=1$,\\\\\n$\\because EF=AE$, $\\angle AEF=90^\\circ$,\\\\\n$\\therefore \\angle FAE=45^\\circ$,\\\\\n$\\because DE=1$, $AD=2$,\\\\\n$\\therefore AE=EF=3$,\\\\\n$\\therefore FH=5$,\\\\\nAccording to the Pythagorean theorem: $CF=\\sqrt{CH^2+FH^2}=\\sqrt{1^2+5^2}=\\sqrt{26}$,\\\\\n$\\because \\angle CFA=\\angle FAE+\\angle EAF=90^\\circ$,\\\\\n$\\therefore \\triangle CAF$ is a right triangle,\\\\\n$\\because M$ is the midpoint of $CF$,\\\\\nAccording to the fact that the median to the hypotenuse of a right triangle is half the length of the hypotenuse: $AM=\\frac{1}{2}CF=\\boxed{\\frac{\\sqrt{26}}{2}}$.", -"solution_image": [ -"solution_images/53572100_551.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51737151": { -"question": "As shown in the figure, it is known that the side length of rhombus ABCD is $6\\sqrt{3}$, and point M is a moving point on diagonal AC, with $\\angle ABC=120^\\circ$. What is the degree measure of $\\angle DAC$? What is the minimum value of $MA+MB+MD$?", -"image_file_name": "7055317", -"image": [ -"math/51737151_564.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $ME\\perp AB$ at point E and connect BD.\\\\\nSince in rhombus ABCD, $\\angle ABC=120^\\circ$,\\\\\nit follows that $\\angle DAB=60^\\circ$, $AD=AB=DC=BC$, AC perpendicularly bisects BD,\\\\\nthus $\\triangle ADB$ is an equilateral triangle, DM=BM,\\\\\nhence $\\angle DAC=\\angle BAC=30^\\circ$,\\\\\nthus AM=2ME,\\\\\nsince MD=MB,\\\\\nit follows that MA+MB+MD=2ME+2DM,\\\\\nthus when points D, M, E are collinear, ME+DM is minimized, i.e., $MA+MB+MD$ is minimized,\\\\\nsince the side length of rhombus ABCD is $6\\sqrt{3}$, $\\angle DAE=60^\\circ$, $\\angle AED=90^\\circ$,\\\\\nit follows that AE=$\\frac{1}{2}AD=3\\sqrt{3}$,\\\\\nthus DE=$\\sqrt{AD^2-AE^2}=\\sqrt{(6\\sqrt{3})^2-(3\\sqrt{3})^2}=9$,\\\\\nhence $2DE=18$.\\\\\nTherefore, the minimum value of $MA+MB+MD$ is $\\boxed{18}$.\\\\\nTherefore, the answer is: $\\angle DAC=\\boxed{30^\\circ}$, the minimum value of $MA+MB+MD$ is $\\boxed{18}$.", -"solution_image": [ -"solution_images/51737151_560.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51721905": { -"question": "As shown in the figure, $E$ and $F$ are two movable points on the side $AD$ of the square $ABCD$, satisfying $AE=DF$. Connect $CF$ and intersect $BD$ at point $G$, connect $BE$ and intersect $AG$ at point $H$. If the side length of the square is $2$, what is the minimum value of the length of segment $DH$?", -"image_file_name": "7055317", -"image": [ -"math/51721905_570.png" -], -"solution": "\\textbf{Solution:} Take the midpoint O of AB, and connect OH and OD,\\\\\nsince it is a square ABCD,\\\\\ntherefore AB=AD=CD, $\\angle BAD=\\angle CDA$, $\\angle ADG=\\angle CDG$,\\\\\nin $\\triangle ABE$ and $\\triangle DCF$,\\\\\n\\[\n\\left\\{\n\\begin{array}{l}\nAB=CD\\\\\n\\angle BAD=\\angle CDA\\\\\nAE=DF\n\\end{array}\n\\right.\n\\]\\\\\ntherefore $\\triangle ABE \\cong \\triangle DCF$ (SAS),\\\\\ntherefore $\\angle 1=\\angle 2$,\\\\\nin $\\triangle ADG$ and $\\triangle CDG$,\\\\\n\\[\n\\left\\{\n\\begin{array}{l}\nAD=CD\\\\\n\\angle ADG=\\angle CDG\\\\\nDG=DG\n\\end{array}\n\\right.\n\\]\\\\\ntherefore $\\triangle ADG \\cong \\triangle CDG$ (SAS),\\\\\ntherefore $\\angle 2=\\angle 3=\\angle 1$,\\\\\nsince $\\angle BAH+\\angle 3=\\angle BAD=90^\\circ$,\\\\\ntherefore $\\angle 1+\\angle BAH=90^\\circ$,\\\\\ntherefore $\\angle AHB=180^\\circ−90^\\circ=90^\\circ$,\\\\\nsince OH is the median of Rt$\\triangle ABH$,\\\\\ntherefore OH=AO=$\\frac{1}{2}$AB=1,\\\\\nin Rt$\\triangle AOD$,\\\\\n$OD=\\sqrt{AO^{2}+AD^{2}}=\\sqrt{1^{2}+2^{2}}=\\sqrt{5}$\\\\\nsince OH+DH>OD,\\\\\ntherefore when points O, D, and H are collinear, the length of DH is minimal,\\\\\nThe minimum value of DH = OD−OH = $\\boxed{\\sqrt{5}−1}$.", -"solution_image": [ -"solution_images/51721905_570.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51721939": { -"question": "As shown in the figure, it is known that the side length of the square $ABCD$ is 1. Point $E$ is a moving point on side $AB$. Connect $ED$, and rotate $ED$ clockwise $90^\\circ$ around point $E$ to $EF$. Connect $DF$ and $CF$. What is the minimum value of $DF+CF$?", -"image_file_name": "7055317", -"image": [ -"math/51721939_589.png" -], -"solution": "\\textbf{Solution:} Connect BF, through point F draw $FG\\perp AB$ intersecting the extension of AB at point G, as shown in the figure,\\\\\n$\\because$ Rotating $ED$ $90^\\circ$ clockwise around point $E$ to EF,\\\\\n$\\therefore EF\\perp DE$, $EF=DE$,\\\\\n$\\therefore \\angle EDA=\\angle FEG$,\\\\\nIn $\\triangle AED$ and $\\triangle GFE$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle A=\\angle FGE\\\\\n\\angle EDA=\\angle FEG\\\\\nDE=EF\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle AED\\cong \\triangle GFE (AAS)$,\\\\\n$\\therefore FG=AE$,\\\\\n$\\therefore$ Point F moves along the ray BF,\\\\\nConstruct the symmetric point ${C}^{\\prime }$ of point C with respect to BF,\\\\\n$\\because EG=DA$, $FG=AE$,\\\\\n$\\therefore AE=BG$,\\\\\n$\\therefore BG=FG$,\\\\\n$\\therefore \\angle FBG=45^\\circ$,\\\\\n$\\therefore \\angle CBF=45^\\circ$,\\\\\n$\\therefore BF$ is the angle bisector of $\\angle CBC^{\\prime}$, hence point $F$ moves on the angle bisector of $\\angle CBC^{\\prime}$,\\\\\n$\\therefore$ Point ${C}^{\\prime }$ is on the extension line of AB,\\\\\nWhen points D, F, ${C}^{\\prime }$ are collinear, DF + CF= D${C}^{\\prime }$ is minimal,\\\\\nIn right $\\triangle$AD${C}^{\\prime }$, where AD= 1, A${C}^{\\prime }$= 2,\\\\\n$\\therefore D{C}^{\\prime }=\\sqrt{AD^{2}+AC^{2}}=\\sqrt{1^{2}+2^{2}}=\\boxed{\\sqrt{5}}$.", -"solution_image": [ -"solution_images/51721939_584.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51737253": { -"question": "As shown in the diagram, in parallelogram $ABCD$, $\\angle ABC=60^\\circ$. Points $E$ and $F$ lie on the extensions of $CD$ and $BC$, respectively. $AE \\parallel BD$, $EF \\perp BC$, and $CF=2$. What is the length of $AB$?", -"image_file_name": "7055317", -"image": [ -"math/51737253_590.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a parallelogram,\\\\\nit follows that $AB \\parallel DC$ and $AB = CD$.\\\\\nGiven that $AE \\parallel BD$,\\\\\nit follows that quadrilateral $ABDE$ is a parallelogram.\\\\\nTherefore, $AB = DE = CD$,\\\\\nthus $D$ is the midpoint of $CE$.\\\\\nGiven that $EF \\perp BC$,\\\\\nit follows that $\\angle EFC = 90^\\circ$.\\\\\nGiven that $AB \\parallel CD$,\\\\\nit follows that $\\angle DCF = \\angle ABC = 60^\\circ$.\\\\\nTherefore, $\\angle CEF = 30^\\circ$.\\\\\nTherefore, $CF = \\frac{1}{2}CE$,\\\\\nGiven that $CF = 2$,\\\\\nit follows that $CE = 4$\\\\\nTherefore, $AB = CD = \\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51721868": { -"question": "As shown in the figure, within the rectangle $ABCD$, $E$ is the midpoint of $AD$. After folding $\\triangle ABE$ along $BE$, we obtain $\\triangle GBE$. Extending $BG$ intersects $CD$ at point $F$. If $CF=2$ and $FD=4$, what is the length of $BC$?", -"image_file_name": "7055317", -"image": [ -"math/51721868_600.png" -], -"solution": "\\textbf{Solution:} Connect EF, \\\\\n$\\because$ $CF=2$, $FD=4$, \\\\\n$\\therefore$ $CD=CF+FD=2+4=6$, \\\\\n$\\because$ the quadrilateral ABCD is a rectangle, \\\\\n$\\therefore$ $AB=CD=6$, \\\\\nAs known from the folding, $EG=EA$, \\\\\nAlso, $\\because$ E is the midpoint of AD, \\\\\n$\\therefore$ $ED=EA$, \\\\\n$\\therefore$ $ED=EG$, \\\\\n$\\because$ $EF=EF$, \\\\\n$\\therefore$ $\\triangle EGF \\cong \\triangle EDF$ (HL), \\\\\n$\\therefore$ $GF=DF=4$, \\\\\nBy the property of folding: $BG=AB=6$, \\\\\n$\\therefore$ $BF=BG+GF=6+4=10$, \\\\\n$\\therefore$ $BC=\\sqrt{BF^{2}-CF^{2}}=\\sqrt{10^{2}-2^{2}}=\\boxed{4\\sqrt{6}}$.", -"solution_image": [ -"solution_images/51721868_600.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51737108": { -"question": "As shown in the diagram, if $A$ represents the area of the square, what is the value of $A$?", -"image_file_name": "7055317", -"image": [ -"math/51737108_610.png" -], -"solution": "\\textbf{Solution:} Let the side length of the square represented by A be $x$,\\\\\nby the Pythagorean theorem we have $x^{2}+3^{2}=5^{2}$,\\\\\n$\\therefore x^{2}=16,$ which means the area of the square represented by A is $\\boxed{16}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51722347": { -"question": "Given the diagram, $P$ is a point inside the right-angled triangle $ABC$ where $\\angle BAC=90^\\circ$, and $PA=3$, $PB=7$, $PC=9$. What is the maximum value of $BC$?", -"image_file_name": "7055317", -"image": [ -"math/51722347_620.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw PD$\\perp$AB at D, PF$\\perp$AC at F, then draw BG$\\perp$PF at G through B, and CE$\\perp$PD at E through C, intersecting BG at H, connect AH, PH\\\\\n$\\because$ $\\angle$BAC$=90^\\circ$,\\\\\n$\\therefore$ the quadrilaterals ADPF, ADEC, ABGF, PGHE, and ABHC are all rectangles\\\\\n$\\therefore$ PD=BG, PF=AD=EC, PG=HE, BC=AH\\\\\n$\\therefore$ $PA^{2}=AD^{2}+PD^{2}=PF^{2}+PD^{2}$\\\\\n$PC^{2}=EC^{2}+PE^{2}=PF^{2}+PE^{2}$\\\\\n$PH^{2}=PE^{2}+HE^{2}=PE^{2}+PG^{2}$\\\\\n$PB^{2}=PG^{2}+BG^{2}=PG^{2}+PD^{2}$\\\\\n$\\therefore$ $PB^{2}+PC^{2}=PA^{2}+PH^{2}=PF^{2}+PE^{2}+PG^{2}+PD^{2}$\\\\\n$\\because$PA=3, PB=7, PC=9\\\\\n$\\therefore$ $7^{2}+9^{2}=3^{2}+PH^{2}$,\\\\\nSolving gives $PH=11$\\\\\n$\\because$ in $\\triangle PAH$, PA=3, $PH=11$\\\\\n$\\therefore$ $80$, $x>0$) passes through point $B$, what is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/51402513_101.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $BE\\perp OC$ at $E$, \\\\\nsince the coordinates of A and C are respectively $(0, 2)$ and $(2, 0)$, \\\\\ntherefore, $OA=2$, $OC=2$, \\\\\ntherefore, $\\angle OAC=\\angle ACO=45^\\circ$, and $AC=2\\sqrt{2}$, \\\\\nsince $AC=2BC$ and $\\angle ACB=90^\\circ$, \\\\\ntherefore, $BC=\\sqrt{2}$, and $\\angle BCE=45^\\circ$, \\\\\ntherefore, $\\angle BCE=\\angle CBE=45^\\circ$, and $BE=CE=1$, \\\\\ntherefore, $B(3,1)$, \\\\\ntherefore, $k=xy=3\\times 1=\\boxed{3}$.", -"solution_image": [ -"solution_images/51402513_103.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51403201": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the vertices $A$ and $C$ of rectangle $ABCD$ are located on the negative half of the $x$-axis and the positive half of the $y$-axis, respectively. The $y$-axis bisects side $AB$, and the coordinate of point $A$ is $(-2,0)$, with $AB=5$. What is the expression of the inverse ratio function that passes through point $B$?", -"image_file_name": "7058047", -"image": [ -"math/51403201_110.png" -], -"solution": "\\textbf{Solution:} Construct BF $\\perp$ x-axis through point B, with F being the foot of the perpendicular. Assume AB intersects with the y-axis at point E,\\\\\n$\\because$ The coordinates of point A are $(-2, 0)$,\\\\\n$\\therefore$ OA = 2,\\\\\n$\\because$ The y-axis bisects side AB, and AB = 5,\\\\\n$\\therefore$ AE = BE = $\\frac{1}{2}$AB = $\\frac{5}{2}$,\\\\\n$\\because$ BF $\\parallel$ y-axis,\\\\\n$\\therefore$ $\\angle$AOE = $\\angle$AFB, $\\angle$AEO = $\\angle$ABF,\\\\\n$\\therefore$ $\\triangle$AOE $\\sim$ $\\triangle$AFB,\\\\\n$\\therefore$ $\\frac{AO}{AF} = \\frac{AE}{AB} = \\frac{1}{2}$,\\\\\n$\\therefore$ AF = 2AO = 4,\\\\\n$\\therefore$ OF = AF - OA = 4 - 2 = 2,\\\\\n$\\therefore$ BF = $\\sqrt{AB^{2} - AF^{2}} = \\sqrt{5^{2} - 4^{2}} = 3$,\\\\\n$\\therefore$ B(2, 3),\\\\\nAssume the expression for the inverse proportion function passing through point B is $y = \\frac{k}{x}$,\\\\\nSubstituting B(2, 3) into $y = \\frac{k}{x}$ yields:\\\\\n3 = $\\frac{k}{2}$,\\\\\n$\\therefore$ k = 6,\\\\\n$\\therefore$ The expression for the inverse proportion function passing through point B is: $\\boxed{y=\\frac{6}{x}}$.", -"solution_image": [ -"solution_images/51403201_110.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52765812": { -"question": "As shown in the figure, points A and B are on the graphs of the inverse proportion functions $y=\\frac{2}{x}$ ($x>0$) and $y=\\frac{4}{x}$ ($x>0$) respectively, and AB is parallel to the x-axis. If C is any point on the x-axis, then what is the area of $\\triangle ABC$?", -"image_file_name": "7058047", -"image": [ -"math/52765812_123.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, extend BA to intersect the y-axis at point M, and connect OA, OB,\\\\\nsince line AB is parallel to the x-axis,\\\\\nsince $S_{\\triangle AOM}=1$, $S_{\\triangle BOM}=2$,\\\\\ntherefore $S_{\\triangle ABC}=S_{\\triangle ABO}=S_{\\triangle BOM}-S_{\\triangle AOM}=2-1=\\boxed{1}$", -"solution_image": [ -"solution_images/52765812_120.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52766018": { -"question": "As shown in the figure, point A is any point on the graph of the inverse proportion function $y=\\frac{7}{x}\\left(x>0\\right)$. Line segment $AB$ is parallel to the x-axis and intersects the graph of the inverse proportion function $y=-\\frac{9}{x}$ at point B. Taking $AB$ as a side, a quadrilateral $\\square ABCD$ is formed with points C and D on the x-axis. What is the area of $\\square ABCD$?", -"image_file_name": "7058047", -"image": [ -"math/52766018_136.png" -], -"solution": "\\textbf{Solution:} Draw lines OA, OB, and extend AB to meet the y-axis at E, as shown in the diagram,\\\\\n$\\because$ AB$\\parallel$x-axis,\\\\\n$\\therefore$ AB$\\perp$y-axis,\\\\\n$\\therefore$ Area$_{\\triangle OEA}=\\frac{1}{2}\\times7=\\frac{7}{2}$, Area$_{\\triangle OBE}=\\frac{1}{2}\\times9=\\frac{9}{2}$,\\\\\n$\\therefore$ Area$_{\\triangle OAB}=\\frac{7}{2}+\\frac{9}{2}=8$,\\\\\n$\\because$ The quadrilateral ABCD is a parallelogram,\\\\\n$\\therefore$ Area$_{\\text{parallelogram ABCD}}=2\\times$Area$_{\\triangle OAB}=\\boxed{16}$.", -"solution_image": [ -"solution_images/52766018_130.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602480": { -"question": "As shown in the figure, the graph of the inverse proportion function $y=\\frac{k}{x}$ passes through the vertex $P$ of the rectangle $AOBP$, and the two sides $AO$, $BO$ of the rectangle are respectively on the x-axis and y-axis. If the area of the rectangle is $7$, what is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/52602480_144.png" -], -"solution": "\\textbf{Solution}: Since the area of rectangle $OAPB$ is 7\\\\\nit follows that $\\left|k\\right|=7$\\\\\nGiven that the graph is in the second quadrant, it implies $ k=-7$\\\\\nTherefore, the answer is: $k=\\boxed{-7}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602900": { -"question": "As shown in the figure, it is known that point A lies on the graph of the inverse proportion function $y=\\frac{k}{x}$ ($x<0$). A line is drawn through point A perpendicular to the y-axis, and the foot of the perpendicular is B. If the area of $\\triangle OAB$ is 1, what is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/52602900_151.png" -], -"solution": "\\textbf{Solution:} Since $AB \\perp$ y-axis, \\\\\ntherefore, we have $S_{\\triangle OAB} = \\frac{1}{2}|k| = 1$, \\\\\nand given $k < 0$, \\\\\ntherefore, we find $k = \\boxed{-2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602837": { -"question": "In the Cartesian coordinate system, a part of the graph of the inverse proportion function $y=\\frac{k}{x}$ is shown in the figure. $AB\\perp y$-axis at point B, and point P is on the x-axis. If the area of $\\triangle ABP$ is 2, what is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/52602837_163.png" -], -"solution": "\\textbf{Solution:} Let the equation of the inverse proportion function be: $y=\\frac{k}{x}$. Assume the coordinates of point A are (m, n).\\\\\nTherefore, AB = -m, OB = n, and mn = k.\\\\\nSince the area of $\\triangle$ABP is 2,\\\\\nit follows that $\\frac{1}{2}$AB$\\cdot$OB=2, i.e., -$\\frac{1}{2}$mn=2\\\\\nThus, mn=-4,\\\\\nresulting in $k=mn=\\boxed{-4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52601845": { -"question": "Given point $A$ is on the graph of $y= \\frac{k}{x}$ ($x>0$), and point $B$ is on the negative half of the x-axis. Connect $AB$, intersecting the y-axis at point $C$. If $AC=BC$ and $S_{\\triangle BOC}=1$, what is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/52601845_171.png" -], -"solution": "\\textbf{Solution:}\\\\\nConstruct AD $\\perp$ y-axis through point A, with D being the foot of the perpendicular,\\\\\n$\\therefore \\angle ADC=\\angle BOC=90^\\circ$,\\\\\nAlso, $\\because \\angle ACD=\\angle BCO$ and AC=BC,\\\\\n$\\therefore \\triangle BOC \\cong \\triangle ADC$,\\\\\n$\\therefore S_{\\triangle BOC}=S_{\\triangle ADC}$\\\\\nConnect OA, then $S_{\\triangle ACO}= S_{\\triangle BOC}=1$,\\\\\n$\\therefore S_{\\triangle ADO}=2$,\\\\\n$\\therefore k=2\\times 2=\\boxed{4}$", -"solution_image": [ -"solution_images/52601845_170.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52765623": { -"question": "As shown, it is known that the radius of $\\odot P$ is 1, and the center P moves on the parabola $y=\\frac{1}{2}x^{2}-x-\\frac{1}{2}$. When $\\odot P$ is tangent to the x-axis, what are the coordinates of the center P?", -"image_file_name": "7058047", -"image": [ -"math/52765623_181.png" -], -"solution": "\\textbf{Solution:} Let point P$(x, y)$, where $y=\\frac{1}{2}x^{2}-x-\\frac{1}{2}$,\\\\\nsince $\\odot P$ is tangent to the x-axis,\\\\\nthus $|y|=1$,\\\\\ntherefore $y=\\pm 1$.\\\\\n(1) When $y=1$, $1=\\frac{1}{2}x^{2}-x-\\frac{1}{2}$,\\\\\nwe get: $x_{1}=3$, $x_{2}=-1$\\\\\nthus, points P$(3,1)$, $(-1,1)$\\\\\n(2) When $y=-1$, $-1=\\frac{1}{2}x^{2}-x-\\frac{1}{2}$,\\\\\nwe get: $x=1$\\\\\nthus, point P$(1,-1)$\\\\\nTherefore, the answers are $\\boxed{(3,1)}$ or $\\boxed{(-1,1)}$ or $\\boxed{(1,-1)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51285790": { -"question": "As shown in the right triangle $ABC$, with $\\angle ACB=90^\\circ$, $AC=BC=2$, point $P$ is a moving point on segment $AB$. Connect $CP$, and rotate segment $CP$ $90^\\circ$ clockwise around point $C$ to obtain segment $CQ$. Connect $PQ$ and $AQ$. What is the maximum area of $\\triangle PAQ$?", -"image_file_name": "7058047", -"image": [ -"math/51285790_190.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, rotate the line segment CP clockwise around point C to obtain line segment CQ, \\\\\n$\\therefore \\angle PCQ=90^\\circ$, CP=CQ,\\\\\n$\\therefore \\angle ACP+\\angle ACQ=90^\\circ$,\\\\\nAlso, $\\because \\angle ACB=90^\\circ$,\\\\\n$\\therefore \\angle BCP+\\angle ACP=90^\\circ$,\\\\\n$\\therefore \\angle BCP=\\angle ACP$,\\\\\n$\\because AC=BC$,\\\\\n$\\therefore \\triangle BPC\\cong \\triangle AQC$ (SAS),\\\\\n$\\therefore \\angle B=\\angle CAQ$, BP=AQ,\\\\\n$\\because BC=AC=2$,\\\\\n$\\therefore \\angle B=\\angle CAQ=\\angle BAC=45^\\circ$,\\\\\n$\\therefore \\angle PAQ=\\angle BAC+\\angle CAQ=90^\\circ$,\\\\\nIn $\\text{Rt}\\triangle ABC$, by the Pythagorean theorem AB= $\\sqrt{BC^2+AC^2}=\\sqrt{2^2+2^2}=2\\sqrt{2}$,\\\\\nLet BP=AQ=x, then $AP=2\\sqrt{2}-x$,\\\\\n$\\therefore S_{\\triangle PAQ}=\\frac{1}{2}x(2\\sqrt{2}-x)=-\\frac{1}{2}(x^2-2\\sqrt{2}x)=-\\frac{1}{2}(x-\\sqrt{2})^2+1$,\\\\\n$\\because a=-\\frac{1}{2}<0$, the function opens downward, and the function has a maximum value,\\\\\nWhen $x=\\sqrt{2}$, $S_{\\triangle PAQ_{\\max}}=\\boxed{1}$.", -"solution_image": [ -"solution_images/51285790_190.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51379286": { -"question": "As shown in the figure, point A is on the curve $y_1=\\frac{2}{x}$ ($x>0$), and point B is on the hyperbola $y_2=\\frac{k}{x}$ ($x<0$), with AB parallel to the x-axis. Point C is a point on the x-axis, and lines AC and BC are connected. If the area of $\\triangle ABC$ is 6, what is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/51379286_206.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point $A$ be $\\left(a,\\frac{2}{a}\\right)$, then the coordinates of point $B$ are $\\left(\\frac{ak}{2},\\frac{2}{a}\\right)$\\\\\nThus, ${S}_{\\triangle ABC}=\\frac{1}{2}\\times \\left|a-\\frac{ak}{2}\\right|\\times \\frac{2}{a}=6$\\\\\nWe find $k=-10$, $k=14$ (discard)\\\\\nTherefore, the answer is: $k=\\boxed{-10}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622743": { -"question": "As shown in the Cartesian coordinate system, point O is the origin, and the vertices of the parallelogram OABC, with vertex A lying on the reciprocal function $y = \\frac{1}{x}$ and vertex B on the reciprocal function $y = \\frac{4}{x}$, and point C on the positive half of the x-axis, what is the area of the parallelogram OABC?", -"image_file_name": "7058047", -"image": [ -"math/52622743_212.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram,\\\\\ndraw AF $\\perp$ x-axis at point F passing through point A, draw BE $\\perp$ x-axis at point E passing through point B, extend BA to intersect the y-axis at point G, then\\\\\nquadrilateral OFAG and quadrilateral OEBG are rectangles,\\\\\n$\\because$ point A is on the inverse proportion function $y = \\frac{1}{x}$, point B is on the inverse proportion function $y = \\frac{4}{x}$,\\\\\n$\\therefore$ area of rectangle OFAG = 1, area of rectangle OEBG = 4,\\\\\n$\\therefore$ area of quadrilateral OABC = area of rectangle ABEF = area of rectangle OEBG - area of rectangle OFAG = 4 - 1 = \\boxed{3}.", -"solution_image": [ -"solution_images/52622743_210.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52623347": { -"question": "As shown in the figure, the side length of the square $ABCD$ is $3$, with the side $AD$ on the negative x-axis. The graph of the inverse proportional function $y = \\frac{k}{x}$ (where $x < 0$) passes through point $B$ and the midpoint $E$ of side $CD$. What is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/52623347_221.png" -], -"solution": "Let $B(m, 3)$, then $C(m-3, 3)$, \\\\\n$\\because$ Point E is the midpoint of CD, \\\\\n$\\therefore$ The coordinates of E are $\\left(m-3, \\frac{3}{2}\\right)$. \\\\\n$\\because$ B and E both lie on the graph of $y=\\frac{k}{x}$, \\\\\n$\\therefore$ $(m-3)\\cdot\\frac{3}{2}=m\\cdot3$, \\\\\nSolving for m gives $m=\\boxed{-3}$, \\\\ \n$\\therefore$ $B(-3, 3)$, \\\\\n$\\therefore$ $k=-3\\times3=\\boxed{-9}$. ", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52623629": { -"question": "As shown in the figure, rhombus OABC is in the first quadrant, with $\\angle AOC = 60^\\circ$, and the graph of the inverse proportion function $y = \\frac{k}{x}$ ($k > 0$) passes through point A and intersects side BC at point D. If the area of $\\triangle AOD$ is $\\sqrt{3}$, what is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/52623629_232.png" -], -"solution": "\\textbf{Solution:} Join AC, through point A draw AE$\\perp$OC at E, \\\\\n$\\because$ Quadrilateral ABCO is a rhombus, \\\\\n$\\therefore$AO$\\parallel$CB, OA=OC, and $\\angle$AOC$=60^\\circ$, \\\\\n$\\therefore$$\\triangle$AOC is an equilateral triangle, and AE$\\perp$OC, \\\\\n$\\therefore$S$_{\\triangle AOE}=\\frac{1}{2}$S$_{\\triangle AOC}$, \\\\\n$\\because$OA$\\parallel$BC, \\\\\n$\\therefore$S$_{\\triangle OAD}$=S$_{\\triangle OAC}=\\sqrt{3}$, \\\\\n$\\therefore$S$_{\\triangle AOE}=\\frac{1}{2}$S$_{\\triangle AOC}=\\frac{\\sqrt{3}}{2}=\\frac{k}{2}$, \\\\\n$\\therefore$k=$\\boxed{\\sqrt{3}}$,", -"solution_image": [ -"solution_images/52623629_230.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52623491": { -"question": "If the point $P(12, a)$ lies on the graph of the inverse proportion function $y=\\frac{60}{x}$, then what is the value of $\\cos\\angle POH$?", -"image_file_name": "7058047", -"image": [ -"math/52623491_243.png" -], -"solution": "\\textbf{Solution:} Given that point P lies on the graph of the inverse proportion function $y=\\frac{60}{x}$,\\\\\nthus $a=\\frac{60}{12}=5$,\\\\\nhence, the coordinates of point P are (12, 5),\\\\\ntherefore, $OH=12$ and $PH=5$,\\\\\nin $\\triangle OHP$, by the Pythagorean theorem, $OP=\\sqrt{OH^2+PH^2}$,\\\\\nthus, $OP=\\sqrt{12^2+5^2}=13$,\\\\\ntherefore, $\\cos\\angle POH=\\frac{OH}{OP}=\\boxed{\\frac{12}{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52949319": { -"question": "The cross-section of the arch of Zhaozhou Bridge is approximately parabolic, as illustrated in the figure, with the equation given by $y=-\\frac{1}{25}x^{2}$. When the height $DO$ from the water surface to the top of the arch is $4m$, what is the width $AB$ of the water surface in meters?", -"image_file_name": "7058047", -"image": [ -"math/52949319_251.png" -], -"solution": "\\textbf{Solution:} According to the problem, we have $-4 = -\\frac{1}{25}x^{2}$. Solving this yields $x = \\pm 10$. Therefore, the coordinates of point A are $(-10, -4)$ and the coordinates of point B are $(10, -4)$. At this moment, the width of the water surface $AB$ is $\\boxed{20}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51458242": { -"question": "As shown in the figure, point \\(A\\) is on the graph of the inverse proportion function \\(y=\\frac{1}{x}\\left(x>0\\right)\\), point \\(B\\) is on the graph of the inverse proportion function \\(y=\\frac{3}{x}\\left(x>0\\right)\\), and \\(AB\\) is parallel to the \\(x\\) axis. Points \\(C\\) and \\(D\\) are on the \\(x\\) axis. If the quadrilateral \\(ABCD\\) is a rectangle, what is its area?", -"image_file_name": "7058047", -"image": [ -"math/51458242_264.png" -], -"solution": "\\textbf{Solution:} Extend BA to intersect the y-axis at point E, \\\\\n$\\because$ Quadrilateral ABCD is a rectangle, and AB$\\parallel$x-axis, with points C, D on the x-axis, \\\\\n$\\therefore$ AE$\\perp$y-axis, \\\\\n$\\therefore$ Quadrilaterals ADOE and BCOE are rectangles, \\\\\n$\\because$ point A is on the graph of the inverse proportion function y=$\\frac{1}{x}$, and point B is on the graph of the inverse proportion function y=$\\frac{3}{x}$, \\\\\n$\\therefore$ S$_{\\text{rectangle}}$ADOE=1, S$_{\\text{rectangle}}$BCOE=3, \\\\\n$\\therefore$ S$_{\\text{rectangle}}$ABCD=S$_{\\text{rectangle}}$BCOE−S$_{\\text{rectangle}}$ADOE=3−1=\\boxed{2}.", -"solution_image": [ -"solution_images/51458242_260.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51457867": { -"question": "As shown in the figure, in the Cartesian coordinate system, there are points A and B on the graph of the inverse proportion function $y=\\frac{k}{x} (k>0, x>0)$. Their $x$-coordinates are 2 and 4, respectively. If the area of $\\triangle ABO$ is 6, what is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/51457867_272.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AC \\perp x$-axis at point $C$, and draw $BD \\perp x$-axis at point $D$,\\\\\nsince the $x$-coordinates of points $A$ and $B$ are 2 and 4, respectively,\\\\\ntherefore $A\\left(2, \\frac{k}{2}\\right)$, $B\\left(4, \\frac{k}{4}\\right)$, and the area of $\\triangle AOC$ and $\\triangle BOD$ are both $\\frac{1}{2}|k|$,\\\\\nsince the area of $\\triangle AOB$ equals the area of $\\triangle AOC$ plus the area of trapezoid $ACDB$ minus the area of $\\triangle BOD$,\\\\\nthus the area of $\\triangle AOB$ equals the area of trapezoid $ACDB$ which is 6,\\\\\nthus $\\frac{1}{2}\\left(\\frac{k}{2}+\\frac{k}{4}\\right)\\times (4-2)=6$,\\\\\nsolving for $k$ gives $k=\\boxed{8}$.", -"solution_image": [ -"solution_images/51457867_270.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51352010": { -"question": "As shown in the figure, the graph of the inverse proportion function $y=\\frac{k}{x}$ ($k \\neq 0$) passes through the intersection point P of the diagonals of rectangle $ABCD$. It is known that points A, C, and D are on the coordinate axes, $BD \\perp DC$, and the area of rectangle $ABCD$ is 8. What is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/51352010_285.png" -], -"solution": "\\textbf{Solution:} Draw $PE\\perp y$-axis at point E.\\\\\nSince quadrilateral ABCD is a parallelogram,\\\\\nit follows that AB=CD.\\\\\nAlso, since BD$\\perp x$-axis,\\\\\nquadrilateral ABDO is a rectangle.\\\\\nHence, AB=DO.\\\\\nTherefore, the area of rectangle ABDO, which is also the area of parallelogram ABCD, is 8.\\\\\nSince P is the intersection point of the diagonals and $PE\\perp y$-axis,\\\\\nquadrilateral PDOE is a rectangle with area 4.\\\\\nThat is, $DO\\cdot EO=4$.\\\\\nLet the coordinates of point P be $(x,y)$.\\\\\nThen $k=x\\boxed{y=-4}$.", -"solution_image": [ -"solution_images/51352010_280.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"55503421": { -"question": "Place a set of triangle rulers as shown in the diagram. If $\\angle 1 = 27^\\circ 40'$, what is the measure of $\\angle 2$?", -"image_file_name": "7038193", -"image": [ -"math/55503421_292.png" -], -"solution": "\\textbf{Solution:} Given, $\\because$ $\\angle 1=27^\\circ40'$ and $\\angle$BAC=$60^\\circ$, \\\\\n$\\therefore$ $\\angle$EAC=$\\angle$BAC−$\\angle 1 = 60^\\circ−27^\\circ40'=32^\\circ20'$, \\\\\n$\\because$ $\\angle$DAE=$90^\\circ$, \\\\\n$\\therefore$ $\\angle 2=\\angle$DAE−$\\angle$EAC=$90^\\circ−32^\\circ20'=\\boxed{57^\\circ40'}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"40552727": { -"question": "As shown in the figure, $BC= \\frac{1}{2} AB$, and $D$ is the midpoint of $AC$. If $DB=1$, what is the length of $AB$?", -"image_file_name": "7038193", -"image": [ -"math/40552727_301.png" -], -"solution": "\\textbf{Solution:} Given $\\because BC= \\frac{1}{2} AB$,\\\\\n$\\therefore AC=AB+BC= \\frac{3}{2}AB$,\\\\\n$\\because D$ is the midpoint of $AC$,\\\\\n$\\therefore CD= \\frac{1}{2}AC=\\frac{1}{2}\\times \\frac{3}{2}AB=\\frac{3}{4}AB$,\\\\\n$\\therefore DB=CD-BC= \\frac{3}{4}AB-\\frac{1}{2}AB=\\frac{1}{4}AB$,\\\\\nwhich means $\\frac{1}{4}AB=1$,\\\\\n$\\therefore AB=\\boxed{4}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55377885": { -"question": "As shown in the figure, point C is a point on the line segment $AB$, point M is the midpoint of line segment $AC$, and point N is the midpoint of line segment $BC$. Given that $AB=20$, what is the length of $MN$?", -"image_file_name": "7038193", -"image": [ -"math/55377885_315.jpeg" -], -"solution": "\\textbf{Solution:} Let $M$ be the midpoint of segment $AC$, and $N$ be the midpoint of segment $BC$,\\\\\n$\\therefore$ $MC=\\frac{1}{2}AC$, $NC=\\frac{1}{2}BC$,\\\\\n$\\therefore$ $MN=MC+NC=\\frac{1}{2}\\left(AC+BC\\right)=\\frac{1}{2}AB$,\\\\\nGiven that $AB=20$,\\\\\n$\\therefore$ $MN=\\frac{1}{2}\\times 20=\\boxed{10}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55308242": { -"question": "As shown in the figure, it is known that the line segment $AB=4\\,m$. The line segment $AB$ is extended to point $C$, such that $BC=2AB$. If point $D$ is the midpoint of line segment $AC$, how many $cm$ is the line segment $BD$?", -"image_file_name": "7038193", -"image": [ -"math/55308242_320.png" -], -"solution": "\\textbf{Solution:} Given $\\because$AB=4, BC=2AB, \\\\\n$\\therefore$BC=$2\\times 4$=8, \\\\\n$\\therefore$AC=AB+BC=4+8=12, \\\\\n$\\because$ point D is the midpoint of segment AC, \\\\\n$\\therefore$AD=$\\frac{1}{2}$AC=6, \\\\\n$\\therefore$BD=AD−AB=6−4=\\boxed{2}", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55219238": { -"question": "As shown in the figure, on a foldable number line, points $A$ and $B$ represent the numbers $-8$ and $3$, respectively. If point $C$ is used as the folding point and the number line is folded to the right, such that point $A$ falls to the right of point $B$ and the distance between points $A$ and $B$ is $1$ unit, what is the number represented by point $C$?", -"image_file_name": "7038193", -"image": [ -"math/55219238_332.png" -], -"solution": "\\textbf{Solution:} Given that points A and B represent the numbers -8 and 3, respectively, \\\\\n$\\therefore$ $AB=3-\\left(-8\\right)=11$, \\\\\nGiven that the number line is folded to the right at point C, if point A falls on the right side of point B, and points A and B are 1 unit length apart, \\\\\n$\\therefore$ $BC=\\frac{11-1}{2}=5$, \\\\\n$\\therefore$ the number represented by point C is: $3-5=\\boxed{-2}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55204863": { -"question": "As shown in the figure, $BC=4\\,\\text{cm}$, $BD=7\\,\\text{cm}$, and point $D$ is the midpoint of $AC$. What is the length of $AC$ in centimeters?", -"image_file_name": "7038193", -"image": [ -"math/55204863_340.png" -], -"solution": "\\textbf{Solution:} Given that $CD = BD - BC = 7 - 4 = 3\\,(\\text{cm})$\\\\\nSince point D is the midpoint of AC, it follows that $AC = 2CD = \\boxed{6}\\,(\\text{cm})$", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55191143": { -"question": "As shown in the figure, line AD intersects with BE at point O, angles $\\angle DOE$ and $\\angle COE$ are complementary. If $\\angle COE=72^\\circ$, what is the measure of $\\angle AOB$?", -"image_file_name": "7038193", -"image": [ -"math/55191143_350.png" -], -"solution": "Solution: Since $\\angle DOE$ and $\\angle COE$ are complementary,\\\\\ntherefore $\\angle DOE + \\angle COE = 90^\\circ$,\\\\\nsince $\\angle COE = 72^\\circ$,\\\\\ntherefore $\\angle DOE = 18^\\circ$,\\\\\nthus $\\angle AOB = \\angle DOE = \\boxed{18^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55190265": { -"question": "As shown in the figure, lines AB and CD intersect at point O, with OE bisecting $\\angle AOC$. If $\\angle BOD=60^\\circ$, what is the measure of $\\angle AOE$?", -"image_file_name": "7038193", -"image": [ -"math/55190265_370.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BOD=60^\\circ$,\\\\\nit follows that $\\angle AOC=\\angle BOD=60^\\circ$,\\\\\nsince OE bisects $\\angle AOC$,\\\\\nthus $\\angle AOE= \\frac{1}{2}\\angle AOC=30^\\circ$,\\\\\ntherefore, the answer is: $\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55192440": { -"question": "As shown in the figure, within $\\angle AOB$ there are 3 rays $OC$, $OD$, $OE$. If $\\angle AOC= 51^\\circ$, $\\angle BOE = \\frac{1}{3}\\angle BOC$, $\\angle BOD=\\frac{1}{3}\\angle AOB$, then what is the degree measure of $\\angle DOE$?", -"image_file_name": "7038193", -"image": [ -"math/55192440_382.png" -], -"solution": "\\textbf{Solution:} Let $\\angle BOE = x$,\\\\\nsince $\\angle BOE= \\frac{1}{3}\\angle BOC$,\\\\\nthus, $\\angle BOC=3\\angle BOE=3x$,\\\\\nconsequently, $\\angle AOB=\\angle AOC+\\angle BOC=51^\\circ+3x$.\\\\\nSince $\\angle BOD= \\frac{1}{3}\\angle AOB$,\\\\\nthus, $\\angle BOD= \\frac{1}{3}\\times(51^\\circ+3x)=17^\\circ+x$,\\\\\ntherefore, $\\angle DOE=\\angle BOD-\\angle BOE=17^\\circ+x-x=\\boxed{17^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55192331": { -"question": "As shown in the figure, it is known that the length of segment AB is $a$. Extend segment AB to point C so that $BC = \\frac{1}{2}AB$. Take point D as the midpoint of segment AC. If $DB=2$, what is the value of $a$?", -"image_file_name": "7038193", -"image": [ -"math/55192331_391.png" -], -"solution": "Solution: Since AB=a, \\\\\ntherefore BC= $\\frac{1}{2}$a, \\\\\ntherefore AC=AB+BC=$\\frac{3}{2}a$, \\\\\nsince point D is the midpoint of AC, \\\\\ntherefore CD=$\\frac{1}{2}$AC=$\\frac{3}{4}$a, \\\\\ntherefore DB=CD−BC=$\\frac{3}{4}$a−$\\frac{1}{2}$a=2, \\\\\ntherefore a=\\boxed{8}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54962529": { -"question": "As shown in the figure, the straight lines $AB$ and $CD$ intersect at the point $O$, $OE \\perp CD$ with the foot of the perpendicular at point $O$. If $\\angle BOE = 40^\\circ 6'$, what is the degree measure of $\\angle AOC$?", -"image_file_name": "7038193", -"image": [ -"math/54962529_400.png" -], -"solution": "Solution: Since $OE \\perp CD$, \\\\\ntherefore $\\angle EOC = 90^\\circ$.\\\\\nSince $\\angle BOE = 40^\\circ6'$, \\\\\ntherefore $\\angle AOC = 180^\\circ - 90^\\circ - 40^\\circ6' = \\boxed{49^\\circ54'}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54792296": { -"question": "As shown in the figure, lines AB and CD intersect at O, OA bisects $\\angle COE$, and $\\angle COE \\colon \\angle BOE = 2 \\colon 5$, then what is the degree measure of $\\angle EOD$?", -"image_file_name": "7038193", -"image": [ -"math/54792296_410.png" -], -"solution": "\\textbf{Solution:} Since $\\angle COE : \\angle BOE = 2 : 5$,\\\\\nlet $\\angle COE = 2x$, then $\\angle BOE = 5x$,\\\\\nSince OA bisects $\\angle COE$,\\\\\nthus $\\angle AOE = \\angle COA = \\angle BOD = x$,\\\\\nthus $\\angle DOE = 4x$,\\\\\nSince $\\angle COE + \\angle DOE = 180^\\circ$,\\\\\nthus $2x + 4x = 180^\\circ$,\\\\\nthus $x = 30^\\circ$,\\\\\nthus $\\angle DOE = 4x = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"6776773": { -"question": "As shown in the figure, the lines AB and CD intersect at point O. If $\\angle BOD = 40^\\circ$ and OA bisects $\\angle COE$, what is the measure of $\\angle AOE$?", -"image_file_name": "7038193", -"image": [ -"math/6776773_420.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BOD = 40^\\circ$,\\\\\ntherefore $\\angle AOC = \\angle BOD = 40^\\circ$,\\\\\nsince OA bisects $\\angle COE$,\\\\\ntherefore $\\angle AOE = \\angle AOC = \\boxed{40^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54769534": { -"question": "As shown in the diagram, it is known that $AB \\parallel CD$, $\\angle 1 = \\angle 2$, $\\angle E = 50^\\circ$. What is the measure of $\\angle F$?", -"image_file_name": "7038193", -"image": [ -"math/54769534_434.png" -], -"solution": "\\textbf{Solution:} Draw line BC, \\\\\n$\\because$AB$\\parallel$CD, \\\\\n$\\therefore$$\\angle$ABC=$\\angle$BCD, \\\\\n$\\because$$\\angle$1=$\\angle$2, \\\\\n$\\therefore$$\\angle$EBC=$\\angle$BCF, \\\\\n$\\therefore$EB$\\parallel$CF, \\\\\n$\\therefore$$\\angle$F=$\\angle$E=$50^\\circ$. \\\\\nTherefore, the answer is: $\\boxed{50^\\circ}$.", -"solution_image": [ -"solution_images/54769534_430.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404559": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $\\angle DAC=\\angle ACB$, $\\angle D=86^\\circ$, what is the measure of $\\angle BCD$ in degrees?", -"image_file_name": "7038193", -"image": [ -"math/53404559_444.png" -], -"solution": "\\textbf{Solution:} Since $\\angle DAC = \\angle ACB$, \\\\\nit follows that $AD \\parallel BC$, \\\\\nhence $\\angle D + \\angle BCD = 180^\\circ$, \\\\\nsince $\\angle D = 86^\\circ$, \\\\\nit follows that $\\angle BCD = 180^\\circ - \\angle D = 180^\\circ - 86^\\circ = \\boxed{94^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404004": { -"question": "As shown in the figure, line segment $BD = \\frac{1}{3}AB = \\frac{1}{4}CD$, points $M$ and $N$ are the midpoints of line segments $AB$ and $CD$, respectively, and $MN = 20\\,cm$, then what is the length of $AC$ in $cm$?", -"image_file_name": "7038193", -"image": [ -"math/53404004_452.png" -], -"solution": "\\textbf{Solution:} Since BD $= \\frac{1}{3}$AB $= \\frac{1}{4}$CD, we have AB=3BD and CD=4BD.\\\\\nBecause points M and N are the midpoints of segments AB and CD, respectively,\\\\\nit follows that AM=BM $= \\frac{1}{2}AB = \\frac{3}{2}$BD and DN=CN $= \\frac{1}{2}CD = 2$BD.\\\\\nUsing the property of segment addition and subtraction, we find BN=DN−BD=2BD−BD=BD and BC=CD−BD=4BD−BD=3BD,\\\\\ntherefore, MN=MB+BN $= \\frac{3}{2}$BD+BD=20.\\\\\nSolving gives BD=8cm.\\\\\nThus, AC=AB+BC=3BD+3BD=6BD=6×8=$\\boxed{48}$,", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52096691": { -"question": "As shown in the figure, it is known that $\\angle BAC=130^\\circ$, $AB=AC$, and the perpendicular bisector of $AC$ intersects $BC$ at point $D$. What is the degree measure of $\\angle BAD$?", -"image_file_name": "7048953", -"image": [ -"math/52096691_770.png" -], -"solution": "\\textbf{Solution:} Given that DE is the perpendicular bisector of AC,\\\\\nit follows that AD=CD,\\\\\nthus, $\\angle C=\\angle CAD$,\\\\\nsince AB=AC,\\\\\nit also follows that $\\angle B=\\angle C$,\\\\\nin $\\triangle ABC$, $\\angle ABC+\\angle B+\\angle C=180^\\circ$,\\\\\ntherefore, $130^\\circ+2\\angle C=180^\\circ$,\\\\\nsolving this, we find $\\angle C=25^\\circ$,\\\\\nthus, $\\angle ADB=\\angle CAD+\\angle C=25^\\circ+25^\\circ=50^\\circ$.\\\\\nTherefore, $\\angle BAD=180^\\circ-\\angle B-\\angle ADB=\\boxed{105^\\circ}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52891125": { -"question": "As shown in the figure, $P$ is a point inside the equilateral triangle $ABC$. When $\\triangle ABP$ is rotated $60^\\circ$ clockwise around point $B$, it becomes $\\triangle CBP'$. If $PB = 3$, what is the length of $PP'$?", -"image_file_name": "7048953", -"image": [ -"math/52891125_786.png" -], -"solution": "\\textbf{Solution:} We have, since rotating $\\triangle ABP$ $60^\\circ$ clockwise about point B yields $\\triangle CBP'$,\\\\\nthus $\\angle PBP'=60^\\circ$ and $BP=BP'$,\\\\\ntherefore, $\\triangle BPP'$ is an equilateral triangle,\\\\\nhence $PP'=BP=\\boxed{3}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52096361": { -"question": "As shown in the diagram, a rectangular paper ABCD is folded along MN such that point A lands on point A' on side BC, and the corresponding point for D is D'. Connect A'D' and intersect side CD at point E. Connect CD'. If AB = 9, AD = 6, and point A' is the midpoint of BC, then what is the length of segment ED'?", -"image_file_name": "7048953", -"image": [ -"math/52096361_790.png" -], -"solution": "\\textbf{Solution:} Fold the rectangle $ABCD$ along $MN$, so that point $A$ falls on the side $BC$ at point $A'$,\\\\\n$\\therefore AM=A'M$, $\\angle MA'D'=\\angle A=90^\\circ$,\\\\\nLet $AM=A'M=x$, then $BM=9-x$,\\\\\n$\\because A'$ is the midpoint of $BC$,\\\\\n$\\therefore A'B=A'C=\\frac{1}{2}BC=\\frac{1}{2}AD=3$,\\\\\nIn $\\triangle A'BM$,\\\\\n$A'B^2+BM^2=A'M^2$,\\\\\nthat is $3^2+(9-x)^2=x^2$,\\\\\nSolving for $x$ gives: $x=5$,\\\\\n$\\therefore A'M=5$, $MB=4$,\\\\\n$\\because \\angle MA'B+\\angle EA'C=90^\\circ$, $\\angle A'EC+\\angle EA'C=90^\\circ$,\\\\\n$\\therefore \\angle MA'B=\\angle A'EC$,\\\\\n$\\because \\angle B=\\angle A'CE=90^\\circ$,\\\\\n$\\therefore \\triangle A'BM\\sim \\triangle ECA'$,\\\\\n$\\therefore \\frac{A'E}{A'M}=\\frac{A'C}{BM}$, that is $\\frac{A'E}{5}=\\frac{3}{4}$,\\\\\n$\\therefore A'E=\\frac{15}{4}$,\\\\\n$\\therefore ED'=A'D'-A'E=AD-A'E=6-\\frac{15}{4}=\\boxed{\\frac{9}{4}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52096487": { -"question": "As shown in the figure, $OP$ bisects $\\angle AOB$, $\\angle AOP=15^\\circ$, $PC\\parallel OA$, $PC=4$, $PD\\perp OA$, with the foot of the perpendicular being $D$. What is the length of $PD$?", -"image_file_name": "7048953", -"image": [ -"math/52096487_806.png" -], -"solution": "\\textbf{Solution:} Let PE$\\perp$OB at E,\\\\\nsince $\\angle$BOP=$\\angle$AOP, PD$\\perp$OA, PE$\\perp$OB,\\\\\ntherefore PE=PD (The distances from a point on the angle bisector to the two sides of the angle are equal),\\\\\nsince $\\angle$BOP=$\\angle$AOP=15$^\\circ$,\\\\\ntherefore $\\angle$AOB=30$^\\circ$,\\\\\nsince PC$\\parallel$OA,\\\\\ntherefore $\\angle$BCP=$\\angle$AOB=30$^\\circ$,\\\\\ntherefore, in Rt$\\triangle$PCE, PE=$\\frac{1}{2}$PC=$\\frac{1}{2}\\times 4=2 $(In a right triangle, the leg opposite the 30$^\\circ$ angle is half the length of the hypotenuse),\\\\\ntherefore, PD=PE=\\boxed{2},", -"solution_image": [ -"solution_images/52096487_800.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52949253": { -"question": "As shown in the figure, in the sector $AOB$, $\\angle AOB=90^\\circ$, with radius $OA=6$. When the sector $AOB$ is folded along the line passing through point $B$, point $O$ falls exactly on point $D$ on the arc $AB$. What is the area of the entire shaded region? (Express in terms of $\\pi$)", -"image_file_name": "7058593", -"image": [ -"math/52949253_340.png" -], -"solution": "\\textbf{Solution:} Draw $OD$. According to the properties of folding, $CD=CO$, $BD=BO$, $\\angle DBC=\\angle OBC$,\\\\\n$\\therefore OB=OD=BD$, i.e., $\\triangle OBD$ is an equilateral triangle,\\\\\n$\\therefore \\angle DBO=60^\\circ$, $\\therefore \\angle CBO= \\frac{1}{2} \\angle DBO=30^\\circ$,\\\\\n$\\because \\angle AOB=90^\\circ$, $\\therefore OC=OB \\cdot \\tan \\angle CBO=6 \\times \\frac{\\sqrt{3}}{3} =2\\sqrt{3}$,\\\\\n$\\therefore S_{\\triangle BDC}=S_{\\triangle OBC}= \\frac{1}{2} \\times OB \\times OC= \\frac{1}{2} \\times 6 \\times 2\\sqrt{3} =6\\sqrt{3}$,\\\\\n$S_{\\text{sector} AOB}= \\frac{90}{360} \\pi \\times 6^2=9\\pi$,\\\\\n$\\therefore$ the area of the entire shaded region is: $S_{\\text{sector} AOB}-S_{\\triangle BDC}-S_{\\triangle OBC}=9\\pi-6\\sqrt{3}-6\\sqrt{3} =9\\pi-12\\sqrt{3}$.\\\\\nTherefore, the answer is: $9\\pi-12\\sqrt{3}=\\boxed{9\\pi-12\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52949253_340.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51458140": { -"question": "As shown in the figure, a square ABCD with a side length of 2 rolls clockwise on the outside of a regular hexagon with equal sides. It stops when it returns to the starting position after rolling around once. What is the maximum distance from point A to the starting point during the rolling process?", -"image_file_name": "7058593", -"image": [ -"math/51458140_350.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, the trajectory of point A is the arc in the diagram. Extend AE to intersect the arc at H, the length of segment AH, which is the maximum distance from point A to the starting point during the rolling process.\\\\\n$\\because$ EH=EA$_{2}$=$\\sqrt{2^2+2^2}=2\\sqrt{2}$,\\\\\nIn $\\triangle$AEF, $\\because$AF=EF=2, $\\angle$AFE=$120^\\circ$,\\\\\n$\\therefore$AE=$2\\times AF\\times \\cos30^\\circ=2\\sqrt{3}$,\\\\\n$\\therefore$AH=AE+EH=$2\\sqrt{3}+2\\sqrt{2}$,\\\\\n$\\therefore$The maximum distance from point A to the starting point during the rolling process is $\\boxed{2\\sqrt{3}+2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51458140_350.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51353198": { -"question": "As shown in the figure, point $O$ is a point on side $AB$ of $\\triangle ABC$, where $\\angle ACB = 90^\\circ$. A circle $\\odot O$ with radius OB is drawn and tangent to AC at point D. If $BC = 4$ and $\\sin A = \\frac{4}{5}$, what is the length of the radius of $\\odot O$?", -"image_file_name": "7058593", -"image": [ -"math/51353198_366.png" -], -"solution": "\\textbf{Solution:} Solve: In $\\triangle ABC$ with a right angle at $B$, we have $BC=4$, and $\\sin A=\\frac{4}{5}$,\\\\\n\\(\\therefore \\frac{BC}{AB}=\\frac{4}{5}\\), that is, \\(\\frac{4}{AB}=\\frac{4}{5}\\),\\\\\n\\(\\therefore AB=5\\),\\\\\nConnect $OD$,\\\\\n\\(\\because AC\\) is a tangent to circle $O$,\\\\\n\\(\\therefore OD \\perp AC\\),\\\\\nLet the radius of circle $O$ be $r$, then $OD = OB = r$,\\\\\n\\(\\therefore AO=5-r\\),\\\\\nIn $\\triangle AOD$ with a right angle at $O$, and \\(\\sin A = \\frac{4}{5}\\),\\\\\n\\(\\therefore \\frac{OD}{AO} = \\frac{4}{5}\\), that is, \\(\\frac{r}{5-r} = \\frac{4}{5}\\),\\\\\n\\(\\therefore r=\\boxed{\\frac{20}{9}}\\).", -"solution_image": [ -"solution_images/51353198_365.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51318991": { -"question": "In the figure, in $ \\triangle ABC$, $ \\angle C=90^\\circ$, $AC=BC=3$. Points $D$ and $E$ are on sides $AC$ and $AB$ respectively. Folding $ \\triangle ADE$ along the line $DE$ makes point $A$ land on side $BC$, denoted as point $F$. If $CF=1$, what is the value of $BE$?", -"image_file_name": "7058593", -"image": [ -"math/51318991_3710.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $FG\\perp AB$ at point G through point F,\n\n$\\because$ in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=BC=3$,\n\n$\\therefore AB=\\sqrt{AC^2+BC^2}=3\\sqrt{2}$, $\\tan B=\\frac{AC}{BC}=1$,\n\n$\\therefore \\angle A=\\angle B=45^\\circ$,\n\n$\\therefore \\triangle FGB$ is an isosceles right triangle,\n\n$\\therefore BG=FG=FB\\cdot \\sin B=\\sqrt{2}$,\n\nLet $BE=x$, then $AE=3\\sqrt{2}-x$, $EG=BE-BG=x-\\sqrt{2}$,\n\n$\\because$ folding triangle $ADE$ along line $DE$, point A lands on the side $BC$, denoted as point F,\n\n$\\therefore EA=EF=3\\sqrt{2}-x$,\n\nIn $\\triangle EFG$, $EF^2=EG^2+FG^2$,\n\ni.e., $\\left(3\\sqrt{2}-x\\right)^2=\\left(x-\\sqrt{2}\\right)^2+\\left(\\sqrt{2}\\right)^2$,\n\nsolving for $x$, we get $x=\\boxed{\\frac{7}{4}\\sqrt{2}}$", -"solution_image": [ -"solution_images/51318991_371.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51318167": { -"question": "As shown in the figure, the cross section of the dam is a trapezoid with the top width of the dam $DC = 10m$, the height of the dam $15m$, the slope of the incline $AD$ having a gradient ${l}_{1} = 1 : 2$, and the slope of the incline $BC$ having a gradient ${l}_{2} = 3 : 4$. What is the width $AB$ at the bottom of the slope in meters?", -"image_file_name": "7058593", -"image": [ -"math/51318167_388.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $DE \\perp AB$ at point E through point D, and draw $CF \\perp AB$ at point F through point C,\\\\\nthen $DE = CF = 15\\,m$, and quadrilateral $DEFC$ is a rectangle,\\\\\n$\\therefore EF = DC = 10\\,m$,\\\\\n$\\because$ the slope of ramp $AD$ has a gradient $l_{1} = 1\\colon 2$, and the slope of ramp $BC$ has a gradient $l_{2} = 3\\colon 4$,\\\\\n$\\therefore \\frac{DE}{AE} = \\frac{1}{2}$, $\\frac{CF}{BF} = \\frac{3}{4}$, that is, $\\frac{15}{AE} = \\frac{1}{2}$, $\\frac{15}{BF} = \\frac{3}{4}$,\\\\\nsolving these, we get $AE = 30\\,m$, $BF = 20\\,m$,\\\\\ntherefore, the width at the bottom of the slope $AB = AE + EF + BF = 30 + 10 + 20 = \\boxed{60}\\,m$.", -"solution_image": [ -"solution_images/51318167_383.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51320294": { -"question": "As shown in the figure, it is known that diamond $ABCD$ has a side length of 2, and $\\angle BAD=60^\\circ$. If $DE\\perp AB$ with the foot of the perpendicular at point $E$, then what is the length of $DE$?", -"image_file_name": "7058593", -"image": [ -"math/51320294_400.png" -], -"solution": "\\textbf{Solution:} Since $DE \\perp AB$,\\\\\nhence $\\angle AED = 90^\\circ$,\\\\\nin $\\triangle ADE$, given $\\angle BAD = 60^\\circ$, and $AD = 2$,\\\\\nhence $\\sin60^\\circ = \\frac{DE}{AD}$,\\\\\nthus $DE = AD \\cdot \\sin60^\\circ = 2 \\times \\frac{\\sqrt{3}}{2} = \\boxed{\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51320411": { -"question": "To calculate $\\tan 15^\\circ$, as shown in the figure, in $\\text{Rt}\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle ABC=30^\\circ$. Extend $CB$ to $D$, so that $BD=AB$, and connect $AD$, then $\\angle D=15^\\circ$. Thus, $\\tan 15^\\circ =\\frac{AC}{CD}=\\frac{1}{2+\\sqrt{3}}=\\frac{2-\\sqrt{3}}{(2+\\sqrt{3})(2-\\sqrt{3})}=2-\\sqrt{3}$. Following this method, what is the value of $\\tan 22.5^\\circ$?", -"image_file_name": "7058593", -"image": [ -"math/51320411_412.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, in the isosceles right-angled $\\triangle ABC$, $\\angle C=90^\\circ$. Extend $CB$ to point $D$ such that $AB=BD$, then $\\angle BAD=\\angle D$.\\\\\n$\\because \\angle ABC=45^\\circ$,\\\\\n$\\therefore 45^\\circ=\\angle BAD+\\angle D=2\\angle D$,\\\\\n$\\therefore \\angle D=22.5^\\circ$,\\\\\nLet $AC=1$, then $BC=1$, $AB=\\sqrt{2}AC=\\sqrt{2}$,\\\\\n$\\therefore CD=CB+BD=CB+AB=1+\\sqrt{2}$,\\\\\n$\\therefore \\tan 22.5^\\circ=\\tan D=\\frac{AC}{CD}=\\frac{1}{1+\\sqrt{2}}=\\frac{1-\\sqrt{2}}{(1+\\sqrt{2})(1-\\sqrt{2})}=\\boxed{\\sqrt{2}-1}$.", -"solution_image": [ -"solution_images/51320411_410.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51319026": { -"question": "As shown in the figure, isosceles right triangle $ABC$ has $\\angle C=90^\\circ$, with $AC=BC=4$. $M$ is the midpoint of $AB$, and $\\angle PMQ=45^\\circ$, where the two sides of $\\angle PMQ$ intersect $BC$ at point $P$ and $AC$ at point $Q$ respectively. If $BP=3$, what is the length of $AQ$?", -"image_file_name": "7058593", -"image": [ -"math/51319026_420.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect CM, draw $PF\\perp CM$ at point F through point P, and draw $MD\\perp AC$ at point D through point M.\n\nIn $\\triangle ABC$, $AB=\\sqrt{AC^2+BC^2}=\\sqrt{4^2+4^2}=4\\sqrt{2}$,\n\nSince M is the midpoint of AB,\n\nThen $BM=AM=\\frac{1}{2}AB=2\\sqrt{2}$,\n\nSince $AC=BC$,\n\nThen $CM\\perp AB$, $\\angle 1=\\angle 2=\\frac{1}{2}\\angle ACB=45^\\circ$,\n\nSince in $\\triangle BMC$, $\\tan\\angle 1=\\frac{BM}{CM}=1$,\n\nThen $CM=BM=2\\sqrt{2}$,\n\nSince $BP=3$,\n\nThen $PC=BC-BP=4-3=1$,\n\nIn $\\triangle PFC$, $\\sin\\angle 1=\\frac{PF}{PC}=\\frac{\\sqrt{2}}{2}$, $\\cos\\angle 1=\\frac{CF}{PC}=\\frac{\\sqrt{2}}{2}$,\n\nTherefore, $PF=\\frac{\\sqrt{2}}{2}$, $CF=\\frac{\\sqrt{2}}{2}$,\n\nTherefore, $FM=\\frac{3\\sqrt{2}}{2}$,\n\nIn $\\triangle CMD$, $\\sin\\angle 2=\\frac{DM}{CM}=\\frac{\\sqrt{2}}{2}$, $\\cos\\angle 2=\\frac{CD}{CM}=\\frac{\\sqrt{2}}{2}$,\n\nTherefore, $DM=2$, $CD=2$,\n\nTherefore, $AD=AC-CD=4-2=2$,\n\nSince $\\angle PMQ=45^\\circ$,\n\nThen $\\angle 3+\\angle 4=45^\\circ$,\n\nSince $\\angle CMD=90^\\circ-\\angle 2=45^\\circ$,\n\nThen $\\angle 4+\\angle 5=45^\\circ$,\n\nTherefore, $\\angle 3=\\angle 5$,\n\nSince in $\\triangle MPF$, $\\tan\\angle 3=\\frac{PF}{FM}=\\frac{\\frac{\\sqrt{2}}{2}}{\\frac{3\\sqrt{2}}{2}}=\\frac{1}{3}$,\n\nThen in $\\triangle MDQ$, $\\tan\\angle 5=\\frac{DQ}{MD}=\\frac{1}{3}$,\n\nTherefore, $DQ=\\frac{1}{3}\\times MD=\\frac{1}{3}\\times 2=\\frac{2}{3}$,\n\nTherefore, $AQ=AD+DQ=2+\\frac{2}{3}=\\boxed{2\\frac{2}{3}}$.", -"solution_image": [ -"solution_images/51319026_422.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51318308": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle ACB=90^\\circ$, $AC=BC$, points D and E are on AB and AC respectively. CD and ED are connected, $ED=CD$, $\\tan\\angle ADE=\\frac{1}{3}$, $BD=\\sqrt{2}$. What is the length of $AB$?", -"image_file_name": "7058593", -"image": [ -"math/51318308_437.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $EH \\perp AB$ at H, and draw $DM \\perp AC$ at M, and draw $DG \\perp BC$ at G, \\\\\n$\\because \\angle ACB=90^\\circ$ and $AC=BC$, \\\\\n$\\therefore$ quadrilateral $CGDM$ is a rectangle, $\\angle A=\\angle B=45^\\circ$, \\\\\n$\\therefore DG=CM$, \\\\\n$\\because BD=\\sqrt{2}$, \\\\\n$\\therefore DG=BG=BD\\cdot \\sin 45^\\circ=\\sqrt{2}\\times \\frac{\\sqrt{2}}{2}=1$, \\\\\n$\\therefore CM=1$, \\\\\n$\\because DE=DC$ and $DM\\perp AC$, \\\\\n$\\therefore EM=CM=1$, \\\\\n$\\because$ $\\tan \\angle ADE=\\frac{1}{3}=\\frac{EH}{DH}$, \\\\\nLet $EH=x$, then $DH=3x$, \\\\\n$\\because \\angle A=45^\\circ$ and $EH\\perp AH$, \\\\\n$\\therefore AH=EH=x$, \\\\\nFrom $\\sin A=\\sin 45^\\circ=\\frac{AH}{AE}=\\frac{\\sqrt{2}}{2}$, \\\\\n$\\therefore AE=\\sqrt{2}x$, \\\\\nSimilarly: $\\cos A=\\cos 45^\\circ=\\frac{AC}{AB}=\\frac{\\sqrt{2}}{2}$, \\\\\n$\\therefore AB=\\sqrt{2}AC$, \\\\\n$\\therefore x+3x+\\sqrt{2}=\\sqrt{2}\\left(\\sqrt{2}x+2\\right)$, \\\\\nSolving gives: $x=\\frac{\\sqrt{2}}{2}$, \\\\\n$\\therefore AB=4x+\\sqrt{2}=4\\times \\frac{\\sqrt{2}}{2}+\\sqrt{2}=\\boxed{3\\sqrt{2}}$", -"solution_image": [ -"solution_images/51318308_433.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51285481": { -"question": "As shown in the figure, in the right triangle $\\triangle ABC$, the height $AD=4$ on the hypotenuse $BC$, and $\\cos B =\\frac{4}{5}$, what is the length of $AC$?", -"image_file_name": "7058593", -"image": [ -"math/51285481_442.png" -], -"solution": "\\textbf{Solution:} Given in right triangle $ABC$, $AD \\perp BC$,\\\\\n$\\therefore \\angle BAD + \\angle B = \\angle BAD + \\angle DAC = 90^\\circ$,\\\\\n$\\therefore \\angle B = \\angle DAC$,\\\\\nSince $\\cos B = \\frac{4}{5}$,\\\\\n$\\therefore \\cos \\angle DAC = \\frac{AD}{AC} = \\frac{4}{5}$,\\\\\nGiven that $AD = 4$,\\\\\n$\\therefore AC = \\boxed{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51262289": { -"question": "As shown in the diagram, in rectangle $ABCD$, we have $AB=4$ and $AE=\\frac{1}{3}AD$. After folding $\\triangle ABE$ along $BE$, $\\triangle GBE$ is obtained. Extending $BG$ to intersect $CD$ at point $F$, if $F$ is the midpoint of $CD$, what is the length of $BC$?", -"image_file_name": "7058593", -"image": [ -"math/51262289_451.png" -], -"solution": "\\textbf{Solution:} Extend BF to meet the extension of AD at point H, \\\\\n$\\because$ Quadrilateral ABCD is a rectangle, \\\\\n$\\therefore$ AD=BC, AD$\\parallel$BC, $\\angle$A=$\\angle$BCF=90$^\\circ$, \\\\\n$\\therefore$ $\\angle$H=$\\angle$CBF, \\\\\nIn $\\triangle BCF$ and $\\triangle HDF$, \\\\\n$ \\left\\{\\begin{array}{l}\\angle CBF=\\angle H \\\\ \\angle BCF=\\angle DFH \\\\ CF=DF \\end{array}\\right.$ , \\\\\n$\\therefore$ $\\triangle BCF \\cong \\triangle HDF$ (AAS), \\\\\n$\\therefore$ BC=DH, \\\\\n$\\because$ Folding $\\triangle ABE$ along BE yields $\\triangle GBE$, \\\\\n$\\therefore$ $\\angle$A=$\\angle$BGE=90$^\\circ$, AE=EG, \\\\\n$\\therefore$ $\\angle$EGH=90$^\\circ$, \\\\\n$\\because$ AE=$ \\frac{1}{3}$AD, \\\\\n$\\therefore$ Let AE=EG=x, then AD=BC=DH=3x, \\\\\n$\\therefore$ ED=2x, \\\\\n$\\therefore$ EH=ED+DH=5x, \\\\\nIn right $\\triangle EGH$, $\\sin\\angle H=\\frac{EG}{EH}=\\frac{x}{5x}=\\frac{1}{5}$ , \\\\\n$\\therefore$ $\\sin\\angle$CBF=$ \\frac{CF}{BF}=\\frac{1}{5}$ , \\\\\n$\\because$ AB=CD=4, and F is the midpoint of CD, \\\\\n$\\therefore$ CF=2, \\\\\n$\\therefore$ $\\frac{2}{BF}=\\frac{1}{5}$ , \\\\\n$\\therefore$ BF=10, upon verification, this is consistent with the problem statement, \\\\\n$\\therefore$ BC=$ \\sqrt{BF^{2}-CF^{2}}=\\sqrt{10^{2}-{2}^{2}}=\\boxed{4\\sqrt{6}}$,", -"solution_image": [ -"solution_images/51262289_450.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51262133": { -"question": "In figure, in $\\triangle ABC$, $AD$ is the height from $A$ to side $BC$, $\\cos C = \\frac{1}{2}$, $AB=10$, and $AC=6$, then what is the length of $BC$?", -"image_file_name": "7058593", -"image": [ -"math/51262133_467.png" -], -"solution": "\\textbf{Solution:} In right triangle $\\triangle ADC$, we have $CD = \\cos C \\times AC = \\frac{1}{2}AC = \\frac{1}{2} \\times 6 = 3$,\\\\\ntherefore $AD = \\sqrt{AC^{2} - CD^{2}} = \\sqrt{6^{2} - 3^{2}} = 3\\sqrt{3}$,\\\\\nIn right triangle $\\triangle ADB$, $BD = \\sqrt{AB^{2} - AD^{2}} = \\sqrt{10^{2} - (3\\sqrt{3})^{2}} = \\sqrt{73}$,\\\\\ntherefore $BC = CD + BD = 3 + \\sqrt{73}$,\\\\\nThus, the answer is: $BC = \\boxed{3 + \\sqrt{73}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51261932": { -"question": " As shown in the figure, AB is the diameter of semicircle O, and point C is a point on the semicircle. CD$\\perp$AB at point D. If AB=10 and CD=4, what is the value of $\\sin\\angle BCD$?", -"image_file_name": "7058593", -"image": [ -"math/51261932_470.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OC, \\\\\nsince AB is the diameter of the semicircle O with AB=10, \\\\\nthus OC=OB=5, \\\\\nsince CD$\\perp$AB at point D, and CD=4, \\\\\nthus OD=$\\sqrt{OC^{2}-CD^{2}}=\\sqrt{5^{2}-4^{2}}=3$, \\\\\nthus BD=OB−OD=5−3=2, \\\\\nthus BC=$\\sqrt{CD^{2}+BD^{2}}=\\sqrt{4^{2}+2^{2}}=2\\sqrt{5}$, \\\\\nthus $\\sin\\angle BCD=\\frac{BD}{BC}=\\frac{2}{2\\sqrt{5}}=\\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/51261932_470.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53148597": { -"question": "As shown in the diagram, it is known that the radius of $\\odot O$ is 2, points A and B are on $\\odot O$, $\\angle BAC=90^\\circ$, and $\\tan\\angle ACB=2$. What is the maximum value of line segment OC?", -"image_file_name": "7058593", -"image": [ -"math/53148597_482.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OA, OB, and draw AD$\\perp$AO such that $\\angle ADO=\\angle ABC$,\\\\\n$\\because$ in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $\\tan \\angle ACB=2$,\\\\\n$\\therefore$ $\\frac{AB}{AC}=2$, i.e., $AB=2AC$,\\\\\n$\\because$ $\\angle ADO=\\angle ABC$, $\\angle OAD=\\angle CAB=90^\\circ$,\\\\\n$\\therefore$ $\\triangle ADO\\sim \\triangle ABC$,\\\\\n$\\therefore$ $\\frac{AO}{AC}=\\frac{AD}{AB}$, $\\angle AOD=\\angle ACB$,\\\\\n$\\because$ $\\angle DAO=\\angle BAC$,\\\\\n$\\therefore$ $\\angle DAB=\\angle OAC$,\\\\\n$\\therefore$ $\\triangle DAB\\sim \\triangle OAC$,\\\\\n$\\therefore$ $\\frac{BD}{OC}=\\frac{AB}{AC}=2$,\\\\\n$\\therefore$ $OC=\\frac{1}{2}BD$,\\\\\nIn $\\triangle AOD$, $\\tan \\angle AOD=\\tan \\angle ACB=\\frac{AD}{OA}=2$,\\\\\n$\\therefore$ $AD=2AO=4$,\\\\\n$\\therefore$ $OD=\\sqrt{OA^2+AD^2}=2\\sqrt{5}$,\\\\\n$\\because$ $BD\\le OD+OB=2+2\\sqrt{5}$,\\\\\n$\\therefore$ the maximum value of BD is $2+2\\sqrt{5}$,\\\\\n$\\therefore$ the maximum value of OC is $\\boxed{1+\\sqrt{5}}$.", -"solution_image": [ -"solution_images/53148597_480.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53148889": { -"question": "As shown in the figure, there are two squares with side length of 1 forming a $2\\times 1$ lattice graph. Points $A$, $B$, $C$, $D$ are all on the lattice points. Lines $AB$ and $CD$ intersect at point $P$. What is the value of $\\tan\\angle BPD$?", -"image_file_name": "7058593", -"image": [ -"math/53148889_492.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $DH \\perp BP$ at point $H$,\\\\\nsince the side length of the square is 1,\\\\\ntherefore $AD=2$,\\\\\nin $\\triangle BCD$, $CD=\\sqrt{1^2+1^2}=\\sqrt{2}$,\\\\\nin $\\triangle ABD$, $AB=\\sqrt{2^2+1^2}=\\sqrt{5}$,\\\\\nsince $\\frac{1}{2}AB\\cdot DH=\\frac{1}{2}AD\\cdot BD$,\\\\\ntherefore $DH=\\frac{2\\sqrt{5}}{5}$,\\\\\nsince BC$\\parallel$AD,\\\\\ntherefore $\\angle DAB=\\angle CBP$, $\\angle ADP=\\angle BCP$,\\\\\ntherefore, $\\triangle APD\\sim \\triangle BPC$,\\\\\ntherefore $\\frac{DP}{CP}=\\frac{AD}{BC}=\\frac{2}{1}$,\\\\\ntherefore DP=2PC,\\\\\ntherefore $PD=\\frac{2}{3}CD=\\frac{2\\sqrt{2}}{3}$,\\\\\nin $\\triangle PHD$,\\\\\n$PH=\\sqrt{PD^2-DH^2}=\\frac{2\\sqrt{5}}{15}$,\\\\\ntherefore $\\tan\\angle BPD=\\frac{DH}{PH}=\\boxed{3}$.", -"solution_image": [ -"solution_images/53148889_490.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53149296": { -"question": "As shown in the figure, the regular hexagon $ABCDEF$ is inscribed in circle $\\odot O$ with a radius of 2 cm. How many centimeters is $CD$? $G$ is the midpoint of $CD$. Connect $AG$. How many centimeters is $AG$?", -"image_file_name": "7058593", -"image": [ -"math/53149296_506.png" -], -"solution": "\\textbf{Solution:} Let us connect $AD$, $AC$, $OC$, as depicted:\\\\\nSince the regular hexagon $ABCDEF$ is inscribed in $\\odot O$,\\\\\nit follows that $AD$ is the diameter of $\\odot O$, and $\\angle COD=60^\\circ$,\\\\\nwhich implies $\\angle ACD=90^\\circ$,\\\\\nGiven that $OC=OD=2\\text{cm}$,\\\\\nit follows that $\\triangle COD$ is an equilateral triangle,\\\\\nthus, $CD=OC=2\\text{cm}$, and $\\angle ADC=60^\\circ$,\\\\\ntherefore, $AC=CD\\cdot \\tan\\angle ADC=2\\sqrt{3}\\text{cm}$,\\\\\nSince $G$ is the midpoint of $CD$,\\\\\nwe have $CG=\\frac{1}{2}CD=1\\text{cm}$,\\\\\ntherefore, $AG=\\sqrt{AC^2+CG^2}=\\boxed{\\sqrt{13}}\\text{cm}$;", -"solution_image": [ -"solution_images/53149296_500.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51213313": { -"question": "As illustrated, points A, B, C are located at the intersections of the grid lines of a square. If $\\triangle ABC$ is rotated counterclockwise around point A to obtain $\\triangle AC'B'$, then what is the value of $\\tan B''$?", -"image_file_name": "7058593", -"image": [ -"math/51213313_513.jpg" -], -"solution": "\\textbf{Solution:} To solve, rotate $\\triangle ABC$ counter-clockwise about point A to get $\\triangle AC'B'$. Based on the characteristic of rotation, $\\angle B=\\angle B'$. In $\\triangle ABC$, points A, B, and C are at the intersections of the square grid lines, thus $\\tan B' = \\tan B= \\boxed{\\frac{1}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51213317": { -"question": "As shown in the figure, rectangle $ABCD$ is folded along $CE$ such that point B falls exactly on point F on $AD$. If $AB\\colon BC=2\\colon 3$, then what is the value of $\\cos\\angle DCF$?", -"image_file_name": "7058593", -"image": [ -"math/51213317_525.png" -], -"solution": "\\textbf{Solution:} Since rectangle $ABCD$ has $AB:BC=2:3$,\\\\\nlet $AB=2m$, then $BC=3m$,\\\\\nthus $AB=CD=2m$, and $AD=BC=CF=3m$, $\\angle D=90^\\circ$,\\\\\ntherefore $\\cos\\angle DCF=\\frac{DC}{FC}=\\frac{2m}{3m}=\\boxed{\\frac{2}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51212618": { -"question": "As shown in the figure, within a grid composed of small squares with side length 1, there is a circle $\\odot O$ with radius 1 centered on a grid point. What is the value of the tangent of $\\angle AED$?", -"image_file_name": "7058593", -"image": [ -"math/51212618_530.png" -], -"solution": "\\textbf{Solution:} According to the inscribed angle theorem, we have $\\angle AED = \\angle ABC$, thus $\\tan\\angle AED = \\tan\\angle ABC = \\frac{AC}{AB} = \\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212854": { -"question": "As shown in the figure, within a $5\\times4$ square grid, where each small square has a side length of $1$, the vertices of $\\triangle ABC$ are all located at the vertices of these small squares. What is the value of $\\tan\\angle ABC$?", -"image_file_name": "7058593", -"image": [ -"math/51212854_542.png" -], -"solution": "\\textbf{Solution:} Let point $D$ be chosen on the grid, such that $\\angle BDC = 90^\\circ$,\\\\\nsince $CD = 4$, and $BD = 1$\\\\\ntherefore, $\\tan\\angle ABC = \\frac{CD}{BD} = \\frac{4}{1} = \\boxed{4}$.", -"solution_image": [ -"solution_images/51212854_542.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51367390": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are all on the grid points of the graph paper. What is the value of $\\sin C$?", -"image_file_name": "7058593", -"image": [ -"math/51367390_550.png" -], -"solution": "Solution: Let the length of each small square in the grid be 1,\\\\\nthus CD=3, and AD=4,\\\\\n$\\therefore$ in $\\mathrm{Rt}\\triangle ACD$, we have $AC=\\sqrt{AD^{2}+CD^{2}}=\\sqrt{4^{2}+3^{2}}=5$\\\\\nIn $\\mathrm{Rt}\\triangle BCD$, $CB=\\sqrt{BD^{2}+CD^{2}}=\\sqrt{1^{2}+3^{2}}=\\sqrt{10}$\\\\\nAs shown in the figure below, draw a perpendicular from point C to AB, and let it intersect the extension of AB at point D. Let AF=4, connect BF, which intersects AC at E,\\\\\nIn $\\triangle FAB$ and $\\triangle ADC$,\\\\\n$\\because$ AF=DA=4, $\\angle FAB=\\angle ADC=90^\\circ$, AB=DC=3,\\\\\n$\\therefore \\triangle FAB \\cong \\triangle ADC$ (SAS),\\\\\n$\\therefore \\angle F=\\angle CAD$, FB=AC=5\\\\\n$\\because \\angle FBA=\\angle ABE$,\\\\\n$\\therefore \\triangle ABE \\sim \\triangle FBA$,\\\\\n$\\therefore \\angle AEB=\\angle FAB=90^\\circ$,\\\\\n$\\therefore \\frac{AB}{EB}=\\frac{FB}{AB}$, that is $\\frac{3}{EB}=\\frac{5}{3}$\\\\\n$\\therefore EB=\\frac{9}{5}$\\\\\n$\\therefore \\sin C= \\frac{BE}{BC}=\\frac{\\frac{9}{5}}{\\sqrt{10}}=\\boxed{\\frac{9\\sqrt{10}}{50}}$", -"solution_image": [ -"solution_images/51367390_552.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51367519": { -"question": "As shown in the figure, in the Cartesian coordinate system, there is a right-angled triangle $Rt\\triangle AOB$, with $\\angle ABO=90^\\circ$ and $\\angle AOB=30^\\circ$. The right-angle side $OB$ is on the positive half of the $y$-axis, point $A$ is in the first quadrant, and $OA=1$. Rotate the $Rt\\triangle AOB$ counter-clockwise around the origin by $30^\\circ$, and at the same time, double the lengths of its sides (i.e., $OA_{1}=2OA$). This results in $Rt\\triangle OA_{1}B_{1}$. Similarly, rotate $Rt\\triangle OA_{1}B_{1}$ around the origin $O$ counter-clockwise by $30^\\circ$, and at the same time, double the lengths of its sides, resulting in $Rt\\triangle OA_{2}B_{2}$, ..., Following this rule, we obtain $Rt\\triangle OA_{2021}B_{2021}$. What is the length of $OB_{2021}$?", -"image_file_name": "7058593", -"image": [ -"math/51367519_567.png" -], -"solution": "\\textbf{Solution:} In right triangle $\\triangle AOB$, we have $\\angle AOB=30^\\circ$ and $OA = 1$, \\\\\ntherefore, $OB = OA \\cdot \\cos{\\angle AOB} = \\frac{\\sqrt{3}}{2}$, \\\\\naccording to the problem, $OB_1 = 2OB = \\frac{\\sqrt{3}}{2} \\times 2$, \\\\\n$OB_2 = 2OB_1 = \\frac{\\sqrt{3}}{2} \\times 2^2$, \\ldots \\\\\n$OB_n = \\frac{\\sqrt{3}}{2} \\times 2^n = \\sqrt{3} \\times 2^{n-1}$, \\\\\ntherefore, the length of $OB_{2021}$ is: $\\sqrt{3} \\times 2^{2020} = \\boxed{\\sqrt{3} \\times 2^{2020}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322900": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $\\angle A = 30^\\circ$, $AC = 15\\, \\mathrm{cm}$, point $O$ is on the median $CD$, when a circle with radius $3\\, \\mathrm{cm}$ centered at $O$ is tangent to the sides of $\\triangle ABC$, what is the length of $OC$?", -"image_file_name": "7058593", -"image": [ -"math/51322900_570.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle A=30^\\circ$,\\\\\n$\\therefore \\angle B=60^\\circ$,\\\\\n$\\because AC = 15\\, \\text{cm}$,\\\\\n$\\therefore \\cos A=\\frac{AC}{AB}$,\\\\\n$\\therefore AB=\\frac{AC}{\\cos A}=\\frac{15}{\\frac{\\sqrt{3}}{2}}=10\\sqrt{3}$,\\\\\n$\\because CD$ is the median to side $AB$,\\\\\n$\\therefore CD=AD=BD=\\frac{1}{2}AB=5\\sqrt{3}$,\\\\\n$\\therefore \\angle BDC=\\angle BCD=\\angle B=60^\\circ$, $\\angle ACD=\\angle A=30^\\circ$,\\\\\n(1) When circle $O$ is tangent to $AB$, draw $OE\\perp AB$ at $E$,\\\\\nIn $\\triangle ODE$, $\\angle BDC=60^\\circ$, $OE=3$,\\\\\n$\\therefore \\sin\\angle BDC=\\frac{OE}{OD}$,\\\\\n$\\therefore OD=\\frac{OE}{\\sin\\angle BDC}=\\frac{3}{\\frac{\\sqrt{3}}{2}}=2\\sqrt{3}$;\\\\\n$\\therefore OC=CD-OD=5\\sqrt{3}-2\\sqrt{3}=3\\sqrt{3}$;\\\\\n(2) When circle $O$ is tangent to $BC$, draw $OE\\perp BC$,\\\\\nIn $\\triangle OCE$, $\\angle BCD=60^\\circ$, $OE=3$,\\\\\n$\\therefore \\sin\\angle BCD=\\frac{OE}{OC}$,\\\\\n$\\therefore OC=\\frac{OE}{\\sin\\angle BCD}=\\frac{3}{\\frac{\\sqrt{3}}{2}}=2\\sqrt{3}$;\\\\\n(3) When circle $O$ is tangent to $AC$, draw $OE\\perp AC$ at $E$,\\\\\nIn $\\triangle OCE$, $\\angle ACD=30^\\circ$, $OE=3$,\\\\\n$\\therefore \\sin\\angle ACD=\\frac{OE}{OC}$,\\\\\n$\\therefore OC=\\frac{OE}{\\sin\\angle ACD}=\\frac{3}{\\frac{1}{2}}=\\boxed{6}$.", -"solution_image": [ -"solution_images/51322900_573.png", -"solution_images/51322900_577.png", -"solution_images/51322900_5710.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322497": { -"question": "As shown in the figure, in $\\triangle ABC$, $I$ is the incenter of $\\triangle ABC$, $O$ is a point on side $AB$, and $\\odot O$ passes through point $B$ and is tangent to $AI$ at point $I$. If $\\tan\\angle BAC = \\frac{24}{7}$, then what is the value of $\\sin\\angle ACB$?", -"image_file_name": "7058593", -"image": [ -"math/51322497_581.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, extend line OI to intersect AC at D and connect BI.\\\\\n$\\because$ AI is tangent to the circle with center O,\\\\\n$\\therefore$ AI $\\perp$ OD,\\\\\n$\\therefore$ $\\angle$AIO = $\\angle$AID = $90^\\circ$,\\\\\n$\\because$ I is the incenter of $\\triangle ABC$,\\\\\n$\\therefore$ $\\angle$OAI = $\\angle$DAI, $\\angle$ABI = $\\angle$CBI,\\\\\n$\\because$ AI = AI,\\\\\n$\\therefore$ $\\triangle AOI \\cong \\triangle ADI$ (ASA),\\\\\n$\\therefore$ AO = AD,\\\\\n$\\because$ OB = OI,\\\\\n$\\therefore$ $\\angle$OBI = $\\angle$OIB,\\\\\n$\\therefore$ $\\angle$OIB = $\\angle$CBI,\\\\\n$\\therefore$ OD $\\parallel$ BC,\\\\\n$\\therefore$ $\\angle$ADO = $\\angle$C,\\\\\nConstruct OE $\\perp$ AC at E,\\\\\n$\\because$ $\\tan\\angle$BAC = $\\frac{OE}{AE}$ = $\\frac{24}{7}$,\\\\\n$\\therefore$ assume OE = 24k, AE = 7k without loss of generality,\\\\\n$\\therefore$ OA = AD = 25k,\\\\\n$\\therefore$ DE = AD - AE = 18k,\\\\\n$\\therefore$ OD = $\\sqrt{OE^2 + DE^2}$ = 30k,\\\\\n$\\therefore$ $\\sin\\angle$ACB = $\\frac{OE}{OD}$ = $\\frac{24k}{30k}$ = $\\boxed{\\frac{4}{5}}$.", -"solution_image": [ -"solution_images/51322497_580.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51179569": { -"question": "As shown in the diagram, in diamond $ABCD$, $AE \\perp BC$ with $E$ being the foot of the perpendicular. If $\\cos B = \\frac{4}{5}$ and $EC = 2$, and $P$ is a moving point on side $AB$, then what is the minimum length of segment $PE$?", -"image_file_name": "7058593", -"image": [ -"math/51179569_598.png" -], -"solution": "\\textbf{Solution:} Let the side length of the rhombus be $a$, \\\\\n$\\therefore BE = a - 2$, \\\\\n$\\because AE \\perp BC$, \\\\\n$\\therefore \\angle AEB = 90^\\circ$, \\\\\n$\\because \\cos B = \\frac{4}{5}$ $\\therefore \\sin B = \\frac{3}{5}$, \\\\\n$\\cos B = \\frac{BE}{AB} = \\frac{a - 2}{a} = \\frac{4}{5}$, \\\\\n$\\therefore a = 10$, \\\\\n$\\therefore BE = 8$, \\\\\n$\\because$ when $EP$ is perpendicular to $AB$, the length is at its minimum, \\\\\n$\\therefore$ in $\\triangle BPE$, $\\sin B = \\frac{PE}{BE} = \\frac{3}{5}$, \\\\\n$\\therefore PE = \\frac{3}{5} \\times 8 = \\boxed{4.8}$, \\\\\n$\\therefore$ the minimum length of segment $PE$ is $4.8$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51179568": { -"question": "As shown in the figure, circle $ \\odot O$ intersects with side $ OA$ and $ OE$ of the regular hexagon $OABCDE$ at points $F$ and $G$, respectively. Point $M$ is the midpoint of the minor arc $FG$. If $FM=4\\sqrt{2}$, what is the distance from point $O$ to line $FM$?", -"image_file_name": "7058593", -"image": [ -"math/51179568_6011.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OM, and draw OH$\\perp$FM through point O,\\\\\n$\\because$ hexagon ABCDEO is a regular hexagon,\\\\\n$\\therefore$ $\\angle$AOE=120$^\\circ$,\\\\\n$\\because$ point M is the midpoint of the minor arc FG,\\\\\n$\\therefore$ $\\angle$AOM=60$^\\circ$,\\\\\n$\\because$ OM=OF,\\\\\n$\\therefore$ $\\triangle$OMF is an equilateral triangle,\\\\\n$\\therefore$ MH=FH=$\\frac{1}{2}$MF=2$\\sqrt{2}$, $\\angle$OFH=60$^\\circ$,\\\\\n$\\therefore$ OH=$\\tan60^\\circ\\cdot$ HF=$\\sqrt{3}\\times 2\\sqrt{2}=\\boxed{2\\sqrt{6}}$.", -"solution_image": [ -"solution_images/51179568_600.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51299761": { -"question": "As shown in the figure, in right triangle \\( \\triangle ABC \\), where \\( \\angle ACB=90^\\circ \\), \\( CD \\) is the median to the hypotenuse \\( AB \\), and it is given that \\( CD=2 \\) and \\( AC=3 \\), what is the value of \\( \\cos A \\)?", -"image_file_name": "7058593", -"image": [ -"math/51299761_614.png" -], -"solution": "\\textbf{Solution:} Since $D$ is the midpoint of $AB$, and $CD=2$, \\\\\n$\\therefore$ $AC=2CD=4$, \\\\\n$\\cos A= \\frac{AC}{AB}=\\boxed{\\frac{3}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51299763": { -"question": "As shown in the figure, the detector on the hot air balloon indicates that the angle of depression from the bottom of the hot air balloon at point $A$ to the top of a building is $30^\\circ$, and the angle of depression to the bottom of the building is $60^\\circ$. The distance from point $A$ on the hot air balloon to the ground is $150m$. What is the height of the building in meters?", -"image_file_name": "7058593", -"image": [ -"math/51299763_620.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $AH\\perp BC$, extending through point $CB$ to $H$,\\\\\nIn right $\\triangle ACD$,\\\\\n$\\because \\angle CAD=30^\\circ$, $AD=150m$\\\\\n$\\therefore CD=AD\\cdot \\tan 30^\\circ=150\\times \\frac{\\sqrt{3}}{3}=50\\sqrt{3}(m)$,\\\\\n$\\therefore AH=CD=50\\sqrt{3}m$\\\\\nIn right $\\triangle ABH$,\\\\\n$\\because \\angle BAH=30^\\circ$, $AE=50\\sqrt{3}m$\\\\\n$\\therefore BH=AH\\cdot \\tan 30^\\circ=50\\sqrt{3}\\times \\frac{\\sqrt{3}}{3}=50(m)$,\\\\\n$\\therefore BC=AD−BH=150−50=\\boxed{100}(m)$", -"solution_image": [ -"solution_images/51299763_623.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51299079": { -"question": "As shown in the figure, point C is any point on the semicircle with AB as the diameter, where $AB=8$. After connecting AC, the line segment AC is rotated $120^\\circ$ counterclockwise around point A to obtain the line segment $AC'$. What is the maximum value of $BC'$?", -"image_file_name": "7058593", -"image": [ -"math/51299079_633.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, find the midpoint $O$ of the line segment $AB$, connect $OC$, and rotating the line segment $AC$ around point $A$ by $120^\\circ$ can be considered as rotating $\\triangle AOC$ around point $A$ by $120^\\circ$ to obtain $\\triangle AO'C'$,\\\\\n$\\therefore \\triangle AOC \\cong \\triangle AO'C'$,\\\\\n$\\therefore OC=O'C'=4$,\\\\\nTaking point $O'$ as the center and $O'C'$ as the radius to draw a circle, when points $O'$, $C'$, and $B$ are collinear, $BC'$ takes the maximum value,\\\\\nAs shown in the figure: $\\angle DAO' =60^\\circ$, $O'A=4$, $AB=8$,\\\\\n$AD=O'A\\cdot \\cos 60^\\circ=2$, $O'D=2\\sqrt{3}$,\\\\\n$\\therefore BO'=\\sqrt{DB^2+O'B^2}=\\sqrt{10^2+(2\\sqrt{3})^2}=4\\sqrt{7}$,\\\\\n$\\therefore BC' =BO'+C'O' =4\\sqrt{7}+4$.\\\\\nTherefore, the answer is: $BC'=\\boxed{4\\sqrt{7}+4}$.", -"solution_image": [ -"solution_images/51299079_630.png", -"solution_images/51299079_632.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51299005": { -"question": "As shown in the diagram, by connecting two non-adjacent vertices within a regular hexagon with side length $a$, a shape with a hexagonal interior is formed, as illustrated. What is the perimeter of the shaded area?", -"image_file_name": "7058593", -"image": [ -"math/51299005_640.png" -], -"solution": "\\textbf{Solution:} Let $PH \\perp AB$ at H,\\\\\nsince the outer hexagon is a regular hexagon with side length $a$,\\\\\ntherefore, the perimeter of the outer hexagon is $6a$,\\\\\nsince the hexagon is regular,\\\\\ntherefore $\\angle CAB=\\frac{(6-2)\\times 180^\\circ}{6}=120^\\circ$, CA=BA,\\\\\ntherefore $\\angle ABP=30^\\circ$,\\\\\nalso, since PA=PB,\\\\\ntherefore $\\angle PAB=30^\\circ$,\\\\\ntherefore $PA=\\frac{AH}{\\cos\\angle PAH}=\\frac{\\sqrt{3}}{3}a$,\\\\\nas the problem states, the shaded area is a regular hexagon,\\\\\ntherefore, the perimeter of the shaded area is $\\frac{\\sqrt{3}}{3}a\\times 6=2\\sqrt{3}a$.\\\\\nHence, the answer is: $2\\sqrt{3}a=\\boxed{2\\sqrt{3}a}$.", -"solution_image": [ -"solution_images/51299005_641.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51298870": { -"question": "As shown in the figure, if the vertices of $\\triangle ABC$ are lattice points on a square grid, what is the value of $\\cos\\angle C$?", -"image_file_name": "7058593", -"image": [ -"math/51298870_650.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BE in the diagram, \\\\\nby the Pythagorean theorem, we find: $CE=\\sqrt{4^2+2^2}=2\\sqrt{5}$, $BE=\\sqrt{1^2+2^2}=\\sqrt{5}$, $BC=\\sqrt{3^2+4^2}=5$, \\\\\n$\\therefore CE^2+BE^2=(2\\sqrt{5})^2+(\\sqrt{5})^2=25=BC^2$, \\\\\n$\\therefore \\triangle CEB$ is a right triangle, $\\angle CEB=90^\\circ$, \\\\\n$\\therefore \\cos C=\\frac{CE}{CB}=\\frac{2\\sqrt{5}}{5}=\\boxed{\\frac{2\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/51298870_650.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51284464": { -"question": "As shown in Figure 1, a moving point $P$ starts from vertex $A$ of the rhombus $ABCD$, moves along the path $A \\to C \\to D$ at a speed of $1cm/s$, and stops at point $D$. Let the movement time of point $P$ be $x(s)$, and the area of $\\triangle PAB$ be $y(cm^2)$. The graph showing the functional relationship between $y$ and $x$ is shown in Figure 2. What is the value of $a$?", -"image_file_name": "7058593", -"image": [ -"math/51284464_6610.png" -], -"solution": "\\textbf{Solution:} Given the graph of the function, we can conclude that:\\\\\nWhen $x=4s$, points P and C coincide, and area $S\\triangle ABP=a$, which is the maximum area,\\\\\n$\\therefore AC=1\\times 4=4$,\\\\\nWhen $x=a+4$, points P and D coincide,\\\\\n$\\therefore AB=CD=1\\times (a+4)-4=a$,\\\\\nAs shown in the diagram, draw CK$\\perp$AB at K through C,\\\\\n$\\therefore \\frac{1}{2}a\\cdot CK=a$,\\\\\n$\\therefore CK=2$,\\\\\n$\\therefore \\sin\\angle CAK=\\frac{CK}{CA}=\\frac{1}{2}$,\\\\\n$\\therefore \\angle CAK=30^\\circ$,\\\\\n$\\therefore \\angle ACK=60^\\circ$,\\\\\nGiven that rhombus ABCD,\\\\\n$\\therefore AB=BC=a$, $\\angle BCA=\\angle BAC=30^\\circ$,\\\\\n$\\therefore \\angle BCK=60^\\circ-30^\\circ=30^\\circ$,\\\\\nSince $\\cos\\angle BCK=\\frac{CK}{BC}$,\\\\\n$\\therefore \\frac{2}{a}=\\cos30^\\circ=\\frac{\\sqrt{3}}{2}$,\\\\\n$\\therefore \\sqrt{3}a=4$,\\\\\n$\\therefore a=\\boxed{\\frac{4\\sqrt{3}}{3}}$.", -"solution_image": [ -"solution_images/51284464_664.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51384545": { -"question": "In the figure, in the equilateral triangle $ABC$ with a side length of $2\\sqrt{3}$, the moving points $D$ and $E$ are on the sides $BC$ and $AC$, respectively, maintaining $AE=CD$. Lines $BE$ and $AD$ are drawn and intersect at point $P$. What is the minimum value of $CP$?", -"image_file_name": "7058593", -"image": [ -"math/51384545_671.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram:\n\n$\\because$ CD = AE, BC = AC,\n\n$\\therefore$ BD = CE,\n\nIn $\\triangle ABD$ and $\\triangle BCE$,\n\n$\\left\\{\\begin{array}{l}\nAB=BC\\\\\n\\angle ABD=\\angle BCE\\\\\nBD=CE\n\\end{array}\\right.$,\n\n$\\therefore \\triangle ABD \\cong \\triangle BCE$ (SAS),\n\n$\\therefore \\angle BAD=\\angle CBE$,\n\n$\\because \\angle APE=\\angle ABE+\\angle BAD$, $\\angle APE=\\angle BPD$, $\\angle ABE+\\angle CBE=60^\\circ$,\n\n$\\therefore \\angle BPD=\\angle APE=\\angle ABC=60^\\circ$,\n\n$\\therefore \\angle APB=120^\\circ$,\n\n$\\therefore$ the path of point P is $\\overset{\\frown}{AB}$, with $\\angle AOB=120^\\circ$, connect CO,\n\n$\\because$ OA = OB, CA = CB, OC = OC,\n\n$\\therefore \\triangle AOC \\cong \\triangle BOC$ (SSS),\n\n$\\therefore \\angle OAC=\\angle OBC$, $\\angle ACO=\\angle BCO=30^\\circ$,\n\n$\\because \\angle AOB+\\angle ACB=180^\\circ$,\n\n$\\therefore \\angle OAC+\\angle OBC=180^\\circ$,\n\n$\\therefore \\angle OAC=\\angle OBC=90^\\circ$,\n\n$\\therefore OC=AC \\div \\cos 30^\\circ=4$, OA= $\\frac{1}{2}$ OC=2,\n\n$\\therefore OP=2$,\n\n$\\because PC \\geq OC-OP$,\n\n$\\therefore PC \\geq 2$,\n\n$\\therefore$ The minimum value of PC is $\\boxed{2}$.", -"solution_image": [ -"solution_images/51384545_670.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51384325": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=10$, $BC=6$, E is a point on side $AC$, $AE=5$, $ED\\perp AB$, and the foot of the perpendicular is point D. Then, what is the value of $DE$?", -"image_file_name": "7058593", -"image": [ -"math/51384325_688.png" -], -"solution": "\\textbf{Solution:} Since $\\angle C=90^\\circ$ and $AB=10$, $BC=6$, we have $\\sin A=\\frac{BC}{AB}=\\frac{6}{10}=\\frac{3}{5}$. Given that $ED \\perp AB$, it follows that $\\sin A=\\frac{DE}{AE}=\\frac{3}{5}$. Hence, $AE=5$ and so $DE=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51265327": { -"question": "As shown in the figure, within rectangle $ABCD$, point $E$ is on side $AB$, and triangles $\\triangle BEC$ and $\\triangle FEC$ are symmetrical about line $EC$. The symmetric point of point $B$, point $F$, is on side $AD$, with $G$ being the midpoint of $CD$. Connecting $BG$ intersects $CE$ and $CF$ at points $M$ and $N$ respectively. If $BM=BE$ and $MG=2$, what is the length of $BN$? What is the value of $\\sin\\angle AFE$?", -"image_file_name": "7058593", -"image": [ -"math/51265327_690.png" -], -"solution": "\\textbf{Solution:} Given that $BM = BE$, it follows that $\\angle BEM = \\angle BME$. Since $AB \\parallel CD$, we have $\\angle BEM = \\angle GCM$. Moreover, given $\\angle BME = \\angle GMC$, it leads to $\\angle GCM = \\angle GMC$, thus $MG = GC = 2$. Given $G$ is the midpoint of $CD$, it follows that $CD = AB = 4$. Connecting $BF$ and $FM$, by folding, we obtain $\\angle FEM = \\angle BEM$ and $BE = EF$, thus $BM = EF$. Since $\\angle BEM = \\angle BME$, it follows $\\angle FEM = \\angle BME$, thus $EF \\parallel BM$. Consequently, quadrilateral $BEFM$ is a parallelogram. Given $BM = BE$, quadrilateral $BEFM$ is a rhombus. Since $\\angle EBC = \\angle EFC = 90^\\circ$ and $EF \\parallel BG$, it follows $\\angle BNF = 90^\\circ$. Given $BF$ bisects $\\angle ABN$, it follows $FA = FN$. Hence, right triangle $ABF$ is congruent to right triangle $NBF$ (HL), leading to $BN = AB = \\boxed{4}$. Since $FE = FM$, $FA = FN$, and $\\angle A = \\angle BNF = 90^\\circ$, right triangle $AEF$ is congruent to right triangle $NMF$ (HL), leading to $AE = NM$. Let $AE = NM = x$, then $BE = FM = 4 - x$, and $NG = MG - NM = 2 - x$. Since $FM \\parallel GC$, triangles $FMN$ and $CGN$ are similar, leading to $\\frac{CG}{FM} = \\frac{GN}{NM}$, i.e., $\\frac{2}{4-x} = \\frac{2-x}{x}$. Solving this equation gives $x = 4 + 2\\sqrt{2}$ (discard) or $x = 4 - 2\\sqrt{2}$, thus $EF = BE = 4 - x = 2\\sqrt{2}$. Hence, $\\sin\\angle AFE = \\frac{AE}{EF} = \\frac{4 - 2\\sqrt{2}}{2\\sqrt{2}} = \\boxed{\\sqrt{2} - 1}$.", -"solution_image": [ -"solution_images/51265327_690.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51265251": { -"question": "As shown in the figure, there is a grid composed of small squares with equal side lengths. Points $A$, $B$, $P$, and $Q$ are all located on the vertices of the square grid. The line segments $AB$ and $PQ$ intersect at point $E$. What is the value of $\\tan\\angle AEP$?", -"image_file_name": "7058593", -"image": [ -"math/51265251_700.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, let the side length of the small square be 1,\\\\\naccording to the grid characteristics, $\\angle PQF=\\angle CBF=45^\\circ$,\\\\\n$\\therefore PQ\\parallel BC$,\\\\\n$\\therefore \\angle QEB=\\angle ABC$,\\\\\n$\\because \\angle AEP=\\angle QEB$,\\\\\n$\\therefore \\angle AEP=\\angle ABC$,\\\\\n$\\because AB=\\sqrt{1^2+3^2}=\\sqrt{10}$, $AC=\\sqrt{1^2+1^2}=\\sqrt{2}$, $BC=\\sqrt{2^2+2^2}=\\sqrt{8}=2\\sqrt{2}$,\\\\\n$\\therefore AC^2+BC^2=AB^2$,\\\\\n$\\therefore \\triangle ABC$ is a right triangle, and $\\angle ACB=90^\\circ$,\\\\\n$\\therefore \\tan\\angle ABC= \\frac{AC}{BC}=\\frac{\\sqrt{2}}{2\\sqrt{2}}=\\frac{1}{2}$,\\\\\n$\\therefore \\tan\\angle AEP=\\tan\\angle ABC= \\boxed{\\frac{1}{2}}$.", -"solution_image": [ -"solution_images/51265251_700.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51265193": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, C is a point on $\\odot O$, and a tangent to $\\odot O$ through point C intersects the extension of AB at point E. If $\\angle A=30^\\circ$, what is the value of $\\sin E$?", -"image_file_name": "7058593", -"image": [ -"math/51265193_710.png" -], -"solution": "\\textbf{Solution:} Connect OC, \\\\\n$\\because$ CE is a tangent of $\\odot$O, \\\\\n$\\therefore$ OC$\\perp$CE, \\\\\n$\\because$ $\\angle$A=30$^\\circ$, and OC=OA, \\\\\n$\\therefore$ $\\angle$BOC=2$\\angle$A=60$^\\circ$, \\\\\n$\\therefore$ $\\angle$E=90$^\\circ$−$\\angle$BOC=30$^\\circ$, \\\\\n$\\therefore$ $\\sin\\angle$E=$\\sin30^\\circ$= \\boxed{\\frac{1}{2}}.", -"solution_image": [ -"solution_images/51265193_710.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51265085": { -"question": "As shown in the figure, it is known that the radius of sector $OAB$ is $6$, $C$ is any point on arc $AB$ (not coinciding with $A$ or $B$), $CM\\perp OA$ with the foot of the perpendicular being $M$, $CN\\perp OB$ with the foot of the perpendicular being $N$, connecting $MN$. If $\\angle AOB=45^\\circ$, what is the length of $MN$?", -"image_file_name": "7058593", -"image": [ -"math/51265085_720.png" -], -"solution": "\\textbf{Solution:} Connect OC, extend OA and NC to intersect at D, then OC = 6, \\\\\n$\\because$ CM $\\perp$ OA, CN $\\perp$ OB, \\\\\n$\\therefore$ $\\angle$DMC = $\\angle$DNO = $90^\\circ$, \\\\\n$\\because$ $\\angle$D = $\\angle$D, \\\\\n$\\therefore$ $\\triangle$DMC $\\sim$ $\\triangle$DNO, \\\\\n$\\therefore$ $\\frac{DM}{DN}=\\frac{DC}{DO}$, which implies $\\frac{DM}{DC}=\\frac{DN}{DO}$, \\\\\n$\\because$ $\\angle$D = $\\angle$D, \\\\\n$\\therefore$ $\\triangle$DMN $\\sim$ $\\triangle$DCO, \\\\\n$\\therefore$ $\\frac{MN}{CO}=\\frac{DN}{DO}$, \\\\\n$\\because$ CN $\\perp$ OB, $\\angle$AOB = $45^\\circ$, \\\\\n$\\therefore$ sin$\\angle$AOB = $\\frac{DN}{OD}=\\frac{\\sqrt{2}}{2}$, \\\\\n$\\therefore$ $\\frac{MN}{OC}=\\frac{\\sqrt{2}}{2}$, \\\\\n$\\because$ OC = 6, \\\\\n$\\therefore$ $\\frac{MN}{6}=\\frac{\\sqrt{2}}{2}$, \\\\\n$\\therefore$ MN = $\\boxed{3\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51265085_720.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977737": { -"question": "As shown in the figure, in the isosceles triangle $ABC$, $\\angle C=90^\\circ$, $AC=BC=6$, and point $D$ is a point on $AC$, $\\tan\\angle DBA=\\frac{1}{\\sqrt{5}}$. What is the length of $AD$?", -"image_file_name": "7058344", -"image": [ -"math/52977737_105.png" -], -"solution": "\\textbf{Solution:} Draw line $DE \\perp AB$ at point E, as shown in the diagram,\\\\\n$\\therefore$ $\\angle AED=\\angle DEB=90^\\circ$,\\\\\n$\\because$ $\\angle C=90^\\circ$, $AC=BC=6$,\\\\\n$\\therefore$ $AB=\\sqrt{AC^2+BC^2}=\\sqrt{2}AC=6\\sqrt{2}$, $\\angle A=45^\\circ$,\\\\\n$\\therefore$ $\\triangle ADE$ is an isosceles right triangle,\\\\\n$\\therefore$ $AE=DE$,\\\\\nIn $\\triangle ADE$, let $AE=x$, then $DE=x$,\\\\\n$\\therefore$ $AD=\\sqrt{AE^2+DE^2}=\\sqrt{2}AE=\\sqrt{2}x$\\\\\nIn $\\triangle BED$, $\\tan\\angle DBE=\\frac{DE}{BE}=\\frac{1}{5}$,\\\\\n$\\therefore$ $BE=5x$,\\\\\n$\\therefore$ $AB=AE+BE=x+5x=6\\sqrt{2}$,\\\\\n$\\therefore$ $x=\\sqrt{2}$\\\\\n$\\therefore$ $AD=\\sqrt{2}x=\\boxed{2}$", -"solution_image": [ -"solution_images/52977737_101.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53079125": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AB\\parallel CD$, $DE$ bisects $\\angle ADC$ and intersects $BC$ at point $E$, $AE\\perp DE$, $AB=4$, $AE=3$, and $\\sin\\angle CDE=\\frac{3}{5}$. Then, what is the length of $CD$?", -"image_file_name": "7058344", -"image": [ -"math/53079125_188.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, extend $AE,DC$ to intersect at point $F$,\\\\\nsince $DE$ bisects $\\angle ADC$ and $DE\\perp AE$,\\\\\ntherefore $\\angle ADE=\\angle FDE$, $AE=EF$,\\\\\nlet $\\angle ADE=\\angle FDE=\\alpha$\\\\\nsince $DE\\perp AE$, $\\sin\\angle CDE=\\frac{3}{5}$, $AB=4$, $AE=3$\\\\\ntherefore $\\frac{AE}{AD}=\\sin\\alpha =\\frac{3}{5}$\\\\\ntherefore $AD=5$\\\\\ntherefore $DE=\\sqrt{AD^{2}-AE^{2}}=4$\\\\\nsince $AB\\parallel CD$\\\\\ntherefore $\\angle F=\\angle BAE=90^\\circ-\\alpha$\\\\\nsince $DE\\perp AE$\\\\\ntherefore $\\angle DAE=90^\\circ-\\alpha$,\\\\\ntherefore $\\angle F=\\angle DAE=\\angle EAB$\\\\\ntherefore $DF=AD=5$\\\\\nIn $\\triangle ABE$ and $\\triangle FCE$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle BAE=\\angle F\\\\\n\\angle AEB=\\angle FEC\\\\\nAE=FE\n\\end{array}\\right.$,\\\\\ntherefore $\\triangle ABE\\cong \\triangle FCE$,\\\\\ntherefore $CF=AB=4$,\\\\\ntherefore $DC=DF-CF=5-4=\\boxed{1}$,", -"solution_image": [ -"solution_images/53079125_182.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53080529": { -"question": "As shown in the figure, it is known that in the circle $\\odot O$ with diameter $AB=8\\sqrt{3}$, radius $OC\\perp AB$, point D is the trisection point of the semicircle $\\overset{\\frown}{AB}$, and point P is a moving point on radius $OC$. When the value of $PB+PD$ is minimized, what is the length of $PO$?", -"image_file_name": "7058344", -"image": [ -"math/53080529_197.png" -], -"solution": "\\textbf{Solution:} Draw $DO$, $DA$ intersects $OC$ at point P,\\\\\nsince $OC\\perp AB$ and point O is the midpoint of $AB$,\\\\\ntherefore, the point symmetrical to B with respect to $OC$ is point A,\\\\\ntherefore, the intersection point P of $DA$ and $OC$ makes the value of $PB+PD$ the smallest,\\\\\nsince point D is the trisection point of the semicircle $\\overset{\\frown}{AB}$,\\\\\ntherefore, $\\angle DOB=60^\\circ$,\\\\\ntherefore, $\\angle DAB=30^\\circ$,\\\\\nsince $\\angle AOP=90^\\circ$, $OA=\\frac{1}{2}AB$, $AB=8\\sqrt{3}$, $\\angle PAO=30^\\circ$,\\\\\ntherefore, $OA=4\\sqrt{3}$,\\\\\ntherefore, $OP=OA\\cdot\\tan30^\\circ=4\\sqrt{3}\\times \\frac{\\sqrt{3}}{3}=\\boxed{4}$.", -"solution_image": [ -"solution_images/53080529_192.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53019950": { -"question": "As shown in the figure, a drone interest group is carrying out activities on the playground. At that moment, the drone is at point D, $20\\sqrt{3}$ meters above the ground. The drone measures the depression angle from the controller at point A to be $30^\\circ$, and the depression angle from the top of the teaching building at point C to be $45^\\circ$. Additionally, through manual measurement, the horizontal distance between the controller A and the teaching building along $BC$ is found to be 80 meters. What is the height of the teaching building $BC$? (Note: Points A, B, C, and D are all in the same plane, reference data $\\sqrt{3} \\approx 1.7$)", -"image_file_name": "7058344", -"image": [ -"math/53019950_256.png" -], -"solution": "\\textbf{Solution:} Construct $DE\\perp AB$ at point E, and $CF\\perp DE$ at point F, \\\\\naccording to the problem, $DE=20\\sqrt{3}$, $\\angle A=30^\\circ$, $\\angle DCF=45^\\circ$, \\\\\nin $Rt\\triangle ADE$, $\\angle AED=90^\\circ$, \\\\\ntherefore, $\\tan30^\\circ=\\frac{DE}{AE}=\\frac{\\sqrt{3}}{3}$, \\\\\ntherefore, $AE=\\sqrt{3}DE=60$ (meters), \\\\\nsince $AB=80$ meters, \\\\\ntherefore, $BE=80-60=20$ (meters), \\\\\nsince $\\angle FEB=\\angle CBE=\\angle CFE=90^\\circ$, \\\\\nsince quadrilateral $BCFE$ is a rectangle, \\\\\ntherefore, $CF=BE=20$ meters, \\\\\nin $Rt\\triangle DCF$, $\\angle DFC=90^\\circ$, \\\\\ntherefore, $\\angle CDF=\\angle DCF=45^\\circ$, \\\\\ntherefore, $CF=DF=20$, \\\\\ntherefore, $BC=EF=DE-DF=20\\sqrt{3}-20\\approx 20\\times 1.7-20=\\boxed{14}$ (meters).", -"solution_image": [ -"solution_images/53019950_252.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043823": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, where $O$ is the origin, point $B$ is on the positive half-axis of the x-axis, and quadrilateral $OBCA$ is a parallelogram. It is given that $\\sin\\angle AOB=\\frac{4}{5}$. The inverse proportion function $y=\\frac{m}{x}$ ($m>0$) passes through point $A$ in the first quadrant and intersects $BC$ at point $F$. If point $F$ is the midpoint of $BC$, and the area of $\\triangle AOF$ is 12, then what is the value of $m$?", -"image_file_name": "7058344", -"image": [ -"math/53043823_264.png" -], -"solution": "\\textbf{Solution:} Draw $AM\\perp OB$ at $M$, and $FN\\perp OB$ at $N$, where $OA=5k$,\\\\\nsince $\\sin\\angle AOB=\\frac{4}{5}$,\\\\\ntherefore $AM=4k$, $OM=3k$, $m=12k^{2}$,\\\\\nsince quadrilateral OACB is a parallelogram and F is the midpoint of $BC$,\\\\\ntherefore $FN=2k$, $ON=6k$,\\\\\nsince ${S}_{\\triangle AOM}={S}_{\\triangle OFN}$,\\\\\n${S}_{\\text{trapezium} OAFN}={S}_{\\text{trapezium} AMNF}+{S}_{\\triangle AOM}={S}_{\\triangle AOF}+{S}_{\\triangle OFN}$,\\\\\ntherefore ${S}_{\\text{trapezium} AMNF}={S}_{\\triangle AOF}=12$,\\\\\ntherefore $\\frac{1}{2}(4k+2k)\\cdot 3k=12$,\\\\\ntherefore $k^{2}=\\frac{4}{3}$,\\\\\ntherefore $m=12k^{2}=\\boxed{16}$.", -"solution_image": [ -"solution_images/53043823_263.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53065536": { -"question": "As shown in the diagram, in the right-angled $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=8$, $BC=6$. The point $M$ starts from point $C$ and moves along the segment $CA$ towards point $A$, connecting $BM$, and $MN \\perp BM$ intersects side $AB$ at point $N$. If $CM=2$, what is the length of segment $AN$?", -"image_file_name": "7058344", -"image": [ -"math/53065536_2713.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $NH \\perp AC$ at point $H$ through point $N$, \\\\\n$\\because \\angle C=90^\\circ$, $AC=8$, $BC=6$, \\\\\n$\\therefore AB=\\sqrt{AC^2+BC^2}=10$, \\\\\n$\\because \\sin A=\\frac{NH}{AN}=\\frac{BC}{AB}=\\frac{3}{5}$, $\\tan A=\\frac{NH}{AH}=\\frac{BC}{AC}=\\frac{3}{4}$, \\\\\n$\\therefore AN=\\frac{5}{3}NH$, $AH=\\frac{4}{3}NH$, \\\\\n$\\because \\angle C=\\angle BMN=\\angle MNH=90^\\circ$, \\\\\n$\\therefore \\angle BMC+\\angle NMH=90^\\circ$, \\\\\n$\\therefore \\angle CBM=90^\\circ-\\angle BMC=\\angle NMH$, \\\\\n$\\therefore \\tan\\angle CBM=\\frac{CM}{BC}=\\tan\\angle NHM=\\frac{NH}{MH}$, \\\\\nthus, $\\frac{2}{6}=\\frac{NH}{8-2-\\frac{4}{3}NH}$, \\\\\nSolving gives: $NH=\\frac{18}{13}$, \\\\\n$\\therefore AN=\\frac{5}{3}NH=\\frac{5}{3} \\times \\frac{18}{13}=\\boxed{\\frac{30}{13}}$.", -"solution_image": [ -"solution_images/53065536_273.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53019951": { -"question": "In a rectangular piece of paper $ABCD$, where $AD=10$ and $AB=4\\sqrt{3}$, $M$ and $N$ are the midpoints of $AB$ and $CD$, respectively. Now, fold the paper as shown in the figure so that point $B$ falls on point $F$ on $MN$. What is the length of $EF$?", -"image_file_name": "7058344", -"image": [ -"math/53019951_287.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $FH\\perp BC$ at point H, obtaining rectangle $BMFH$.\\\\\nSince M is the midpoint of $AB$,\\\\\nit follows that $AM=2\\sqrt{3}$, $\\angle AMF=90^\\circ$,\\\\\ntherefore, $\\angle AFM=30^\\circ$,\\\\\nthus, $MF=AF\\cdot \\cos 30^\\circ=6$.\\\\\nSince quadrilateral $BMFH$ is a rectangle,\\\\\nit follows that $BH=MF=6$.\\\\\nLet $EF=x$, then $EH=6-x$, $FH=2\\sqrt{3}$.\\\\\nIn $\\triangle EFH$, $EF^2=EH^2+FH^2$,\\\\\nwhich gives $x^2=(6-x)^2+(2\\sqrt{3})^2$,\\\\\nsolving this yields $x=\\boxed{4}$.", -"solution_image": [ -"solution_images/53019951_282.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55497829": { -"question": "As shown in the figure, there is a semicircle $O$ with the diameter $AB$ of $\\triangle ABC$, and point $C$ is exactly on the semicircle. Draw $CD\\perp AB$ at $D$. Given that $\\cos\\angle ACD=\\frac{3}{5}$ and $BC=2$, what is the length of $AC$?", -"image_file_name": "7058344", -"image": [ -"math/55497829_369.png" -], -"solution": "\\textbf{Solution:} Given that point C is on the semicircle, and AB is the diameter\\\\\n\\(\\therefore\\angle ACB=90^\\circ\\)\\\\\nSince \\(CD\\perp AB\\), and \\(\\cos\\angle ACD= \\frac{3}{5}\\)\\\\\n\\(\\therefore\\sin\\angle CAB=\\cos\\angle ACD= \\frac{3}{5}\\)\\\\\n\\(\\therefore\\cos\\angle CAB= \\sqrt{1-\\sin^2\\angle CAB}=\\sqrt{1-\\left(\\frac{3}{5}\\right)^2}=\\frac{4}{5}\\)\\\\\n\\(\\therefore\\tan\\angle CAB= \\frac{\\sin\\angle CAB}{\\cos\\angle CAB}=\\frac{3}{4}\\)\\\\\n\\(\\therefore \\frac{BC}{AC}=\\frac{3}{4}\\)\\\\\n\\(\\therefore AC= \\frac{4}{3}BC= \\frac{4}{3}\\times 2=\\boxed{\\frac{8}{3}}\\)", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53009650": { -"question": "As shown in the figure, points $A$, $P$, and $T$ lie on the circle $\\odot O$, $OT\\perp TB$, the arc $\\overset{\\frown}{AT}$ measures $60^\\circ$, the radius of $\\odot O$ is 2, $TB=2$, point $B$ and point $A$ are on opposite sides of line $OT$, $PB$ intersects $\\odot O$ at point $C$. When $\\angle APB=60^\\circ$, what is the value of $\\angle PBT$? What is the length of $BC$?", -"image_file_name": "7058344", -"image": [ -"math/53009650_3718.png" -], -"solution": "\\textbf{Solution}: Connect $OA$, $OC$, $TC$, and draw $CD\\perp TB$ at point $C$ with foot $D$,\\\\\n$\\because \\angle APB=60^\\circ$,\\\\\n$\\therefore \\angle AOC=2\\angle APC=120^\\circ$,\\\\\n$\\because$ the degree of $\\overset{\\frown}{AT}$ is $60^\\circ$,\\\\\n$\\therefore \\angle AOT=60^\\circ$,\\\\\n$\\therefore \\angle TOC=\\angle AOC-\\angle AOT=60^\\circ$,\\\\\n$\\because OT=OC$,\\\\\n$\\therefore \\triangle OTC$ is an equilateral triangle,\\\\\n$\\therefore TC=OT=OC=2$, and $\\angle OTC=60^\\circ$,\\\\\n$\\because OT\\perp TB$,\\\\\n$\\therefore \\angle OTB=90^\\circ$,\\\\\n$\\therefore \\angle CTB=\\angle OTB-\\angle OTC=30^\\circ$,\\\\\n$\\because TC=TB=2$,\\\\\n$\\therefore \\angle PBT=\\angle TCB=\\frac{1}{2}\\left(180^\\circ-\\angle CTB\\right)=75^\\circ$,\\\\\nIn $\\triangle TCD$ right-angled at $D$, $\\angle CTB=30^\\circ$, $TC=2$,\\\\\n$\\therefore CD=\\frac{1}{2}TC=1$, $TD=\\sqrt{3}CD=\\sqrt{3}$,\\\\\n$\\therefore BD=TB-TD=2-\\sqrt{3}$,\\\\\n$\\therefore CB=\\sqrt{CD^{2}+DB^{2}}=\\sqrt{1^{2}+(2-\\sqrt{3})^{2}}=\\sqrt{8-4\\sqrt{3}}=\\sqrt{8-2\\sqrt{12}}=\\sqrt{(\\sqrt{6}-\\sqrt{2})^{2}}=\\boxed{\\sqrt{6}-\\sqrt{2}}$,\\\\", -"solution_image": [ -"solution_images/53009650_376.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043407": { -"question": "As shown in the figure, a square frame with a side length of 10 cm (ignoring the thickness of the frame) is pulled into a quadrilateral $ABCD$. If $\\angle BAD=60^\\circ$, what is the length of $AC$ in cm?", -"image_file_name": "7058344", -"image": [ -"math/53043407_400.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct $DE\\perp AB$ intersecting $AB$ at point E, and $CF\\perp AB$ at its extension at point F, and connect $AC$,\\\\\nsince $AB=BC=CD=AD=10$cm, and $\\angle BAD=60^\\circ$,\\\\\nthus $DE=CF=AD\\times \\sin 60^\\circ=10\\times \\frac{\\sqrt{3}}{2}=5\\sqrt{3}$,\\\\\n$BF=BC\\times \\cos 60^\\circ=10\\times \\frac{1}{2}=5$,\\\\\nin right triangle $AFC$, $AC=\\sqrt{AF^{2}+CF^{2}}$,\\\\\nthus $AC=\\sqrt{15^{2}+{(5\\sqrt{3})}^{2}}=\\boxed{10\\sqrt{3}}$.", -"solution_image": [ -"solution_images/53043407_404.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55487875": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle B=30^\\circ$, and $BC=4\\sqrt{3}$. Point P is a movable point on the right-angled side BC (P does not coincide with B or C). Connect AP and rotate line segment AP clockwise by $60^\\circ$ around point A to obtain line segment AD. Connect CD. What is the minimum value of line segment CD?", -"image_file_name": "7058344", -"image": [ -"math/55487875_411.png" -], -"solution": "\\textbf{Solution:} Rotate the line segment AC clockwise by $60^\\circ$ around point A to get the line segment AE, and connect DE. Then, as point D moves on DE, when CD$\\perp$DE, the value of the line segment CD is minimized. Draw CF$\\perp$AE at point F through point C. By the property of rotation: $\\triangle AED\\cong \\triangle ACP$, $\\therefore \\angle AED=\\angle ACP=90^\\circ$. Since CD$\\perp$DE and CF$\\perp$AE, $\\therefore$ quadrilateral EDCF is a rectangle, $\\therefore$ CD=EF. In $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle B=30^\\circ$, BC=$4\\sqrt{3}$, $\\therefore$ AC=$BC\\tan30^\\circ=4\\sqrt{3}\\times\\frac{\\sqrt{3}}{3}=4$, $\\therefore$ AE=AC=4. In $\\triangle ACF$, $\\angle AFC=90^\\circ$, $\\angle FAC=60^\\circ$, $\\therefore$ AF=$AC\\times\\cos60^\\circ=4\\times\\frac{1}{2}=2$, $\\therefore$ EF=AE−AF=4−2=2, $\\therefore$ CD=\\boxed{2}.", -"solution_image": [ -"solution_images/55487875_415.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55533861": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $D$ is the midpoint of $AB$, $DE\\perp AB$, intersecting $AC$ at $E$. If $\\frac{AE}{EC}=\\frac{5}{3}$, then what is the value of $\\tan\\angle A$?", -"image_file_name": "7058344", -"image": [ -"math/55533861_429.jpeg" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BE. Since $D$ is the midpoint of $AB$ and $DE \\perp AB$, it follows that AE = BE. Since $\\frac{AE}{EC} = \\frac{5}{3}$, we can set AE = BE = 5k and CE = 3k. By the Pythagorean theorem, we get BC = 4k. Therefore, AC = AE + CE = 8k. Therefore, $\\tan A = \\frac{BC}{AC} = \\frac{4k}{8k} = \\boxed{\\frac{1}{2}}$.", -"solution_image": [ -"solution_images/55533861_420.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53079120": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, $BD\\perp AC$ at point $D$, $AC=10$, $\\cos C=\\frac{3}{5}$, then how long is $CD$?", -"image_file_name": "7058344", -"image": [ -"math/53079120_446.png" -], -"solution": "Solution: Since $BD\\perp AC$ and $\\angle ABC=90^\\circ$, \\\\\nit follows that $\\cos C=\\frac{CD}{BC}=\\frac{BC}{AC}=\\frac{3}{5}$, \\\\\ngiven that $AC=10$, \\\\\nit follows that $BC=6$, \\\\\nhence, $CD=\\frac{3}{5}BC=\\boxed{\\frac{18}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53110760": { -"question": "As shown in the figure, in the isosceles right $\\triangle ABC$, where $\\angle C=90^\\circ$, point D lies on AC. If $CD=6$ and $\\sin\\angle CBD=\\frac{3}{5}$, then what is the length of AB?", -"image_file_name": "7058344", -"image": [ -"math/53110760_454.png" -], -"solution": "\\textbf{Solution:} Given: $\\because$ $\\angle C=90^\\circ$,\\\\\n$\\therefore$ $\\sin\\angle CBD=\\frac{CD}{BD}=\\frac{3}{5}$,\\\\\n$\\because$ $CD=6$,\\\\\n$\\therefore$ $\\frac{6}{BD}=\\frac{3}{5}$, solving this we get: $BD=10$,\\\\\n$\\therefore$ $BC=\\sqrt{BD^{2}-CD^{2}}=\\sqrt{10^{2}-6^{2}}=8$,\\\\\n$\\because$ isosceles right $\\triangle ABC$,\\\\\n$\\therefore$ $AC=BC=8$,\\\\\n$\\therefore$ $AB=\\sqrt{AC^{2}+BC^{2}}=\\sqrt{8^{2}+8^{2}}=\\boxed{8\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53019842": { -"question": "As shown in the figure, $PA$ is the tangent line to $\\odot O$ at point $A$, and $PO$ intersects $\\odot O$ at point $B$. Given $\\tan P = \\frac{3}{4}$ and $OB = 6$, what is the length of $PB$?", -"image_file_name": "7058344", -"image": [ -"math/53019842_508.png" -], -"solution": "\\textbf{Solution:} Given that $PA$ is the tangent of circle $O$ with A as the point of tangency,\\\\\nthus $OA\\perp AP$,\\\\\nhence $\\angle OAP=90^\\circ$\\\\\nIn $\\triangle OAP$,\\\\\nsince $\\tan P=\\frac{OA}{AP}=\\frac{3}{4}$ and $OA=OB=6$,\\\\\nwe have $\\frac{6}{AP}=\\frac{3}{4}$,\\\\\ntherefore $AP=8$,\\\\\nthus $OP=\\sqrt{OA^{2}+AP^{2}}=10$,\\\\\nhence $PB=OP-OB=10-6=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53080924": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are at the vertices of a square grid. What is the value of $\\sin A$?", -"image_file_name": "7058344", -"image": [ -"math/53080924_540.png" -], -"solution": "\\textbf{Solution:} Draw line segment DC, \\\\\nfrom the grid we know that $CD\\perp AB$, \\\\\nthus $DC = \\sqrt{2}$, $AC = \\sqrt{10}$, \\\\\nhence $\\sin A = \\frac{DC}{AC} = \\frac{\\sqrt{2}}{\\sqrt{10}} = \\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/53080924_540.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043061": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are all on the grid points of the square grid paper. What is the value of $\\sin C$?", -"image_file_name": "7058344", -"image": [ -"math/53043061_752.png" -], -"solution": "\\textbf{Solution:} As the figure shows, connect AD.\nAccording to the problem:\n\\[AC^{2}=1^{2}+7^{2}=50,\\]\n\\[CD^{2}=1^{2}+2^{2}=5,\\]\n\\[AD^{2}=6^{2}+3^{2}=45,\\]\n\\[\\therefore AD^{2}+CD^{2}=AC^{2},\\]\n\\[\\therefore \\triangle ACD \\text{ is a right-angled triangle},\\]\n\\[\\therefore \\angle ADC=90^\\circ,\\]\nIn $Rt\\triangle ACD$, $AD=3\\sqrt{5}$, $AC=5\\sqrt{2}$,\n\\[\\therefore \\sin C=\\frac{AD}{AC}=\\frac{3\\sqrt{5}}{5\\sqrt{2}}=\\boxed{\\frac{3\\sqrt{10}}{10}}.\\]", -"solution_image": [ -"solution_images/53043061_750.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53102110": { -"question": "As shown in the figure, the grid is a square grid, and points A, B, C are the intersections of the grid lines. Let $\\angle BAC = \\alpha$, then what is $\\tan\\alpha$?", -"image_file_name": "7058344", -"image": [ -"math/53102110_762.png" -], -"solution": "\\textbf{Solution:} Let the side length of the small square be: 1,\\\\\nthen, from the figure we know: $AB=\\sqrt{1^2+3^2}=\\sqrt{10}$, $BC=\\sqrt{1^2+2^2}=\\sqrt{5}$, $AC=\\sqrt{4^2+3^2}=5$,\\\\\n$S_{\\triangle ABC}=3\\times 4-1-\\frac{1}{2}\\times 1\\times 2-\\frac{1}{2}\\times 1\\times 3-\\frac{1}{2}\\times 4\\times 3=\\frac{5}{2}$,\\\\\nDraw $BD\\perp AC$ passing through point $B$, intersecting $AC$ at point $D$,\\\\\nthen: $S_{\\triangle ABC}=\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}\\times 5\\cdot BD=\\frac{5}{2}$,\\\\\n$\\therefore$ $BD=1$,\\\\\n$\\therefore$ $AD=\\sqrt{AB^2-BD^2}=\\sqrt{10-1}=3$,\\\\\n$\\therefore$ $\\tan\\alpha =\\frac{BD}{AD}=\\boxed{\\frac{1}{3}}$.", -"solution_image": [ -"solution_images/53102110_767.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53032948": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are located on the grid points of a square grid. What is the value of $\\tan A$?", -"image_file_name": "7058344", -"image": [ -"math/53032948_771.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $BD$,\\\\\ndue to the characteristics of the grid, we have $BD \\perp AC$,\\\\\n$AD = \\sqrt{2^2 + 2^2} = 2\\sqrt{2}$, $BD = \\sqrt{1^2 + 1^2} = \\sqrt{2}$,\\\\\n$\\therefore \\tan A = \\frac{BD}{AD} = \\frac{\\sqrt{2}}{2\\sqrt{2}} = \\boxed{\\frac{1}{2}}$", -"solution_image": [ -"solution_images/53032948_771.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53102155": { -"question": "As shown in the figure, with C as the common vertex, in $\\triangle ABC$ and $\\triangle CED$, $\\angle ACB=\\angle CDE=90^\\circ$ and $\\angle A=\\angle DCE=30^\\circ$, and with point D on line segment $AB$, what is $\\angle ABE$? If $AC=10$ and $CD=9$, what is the length of $BE$?", -"image_file_name": "7058344", -"image": [ -"math/53102155_788.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that $\\angle ACB=\\angle CDE=90^\\circ$ and $\\angle A=\\angle DCE=30^\\circ$,\\\\\nit follows that $\\angle DBC=\\angle DEC=60^\\circ$,\\\\\nhence, points B, C, D, and E are concyclic,\\\\\ntherefore $\\angle DBE=\\angle DCE=30^\\circ$,\\\\\nwhich leads us to conclude that $\\angle ABE=\\boxed{30^\\circ}$,\\\\\nconsidering that in right triangle $ABC$, $\\tan\\angle BAC=\\frac{BC}{AC}$,\\\\\nthus $BC=AC\\cdot\\tan30^\\circ=10\\times \\frac{\\sqrt{3}}{3}=\\frac{10\\sqrt{3}}{3}$,\\\\\nsimilarly, in right triangle $CED$, $\\cos\\angle DCE=\\frac{CD}{CE}$,\\\\\ntherefore $CE=\\frac{CD}{\\cos30^\\circ}=\\frac{9}{\\frac{\\sqrt{3}}{2}}=6\\sqrt{3}$,\\\\\ngiven $\\angle ABC=60^\\circ$ and $\\angle ABE=30^\\circ$,\\\\\nit follows that $\\angle CBE=\\angle ABC+\\angle ABE=90^\\circ$,\\\\\nconsequently, $BE=\\sqrt{CE^2-BC^2}=\\sqrt{108-\\frac{300}{9}}=\\boxed{\\frac{4\\sqrt{42}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043752": { -"question": "In the figure, within $\\triangle ABC$, $\\angle C=90^\\circ$, point $D$ is on $BC$, $AD=BC=5$, and $\\cos\\angle ADC=\\frac{3}{5}$. What is the value of $\\tan B$?", -"image_file_name": "7058344", -"image": [ -"math/53043752_797.png" -], -"solution": "\\textbf{Solution:} Given: $AD=BC=5$, \\\\\n$\\cos\\angle ADC=\\frac{3}{5}$, \\\\\nHence, $\\frac{CD}{AD}=\\frac{3}{5}$, \\\\\nTherefore, $CD=3$, \\\\\nBy the Pythagorean theorem, we have: $AC=\\sqrt{AD^{2}-CD^{2}}=\\sqrt{5^{2}-3^{2}}=4$, \\\\\nHence, $\\tan B=\\frac{AC}{BC}=\\boxed{\\frac{4}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52977934": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle B=30^\\circ$. Point $D$ is on side $AB$, and point $E$ is on side $BC$. After folding $\\triangle BDE$ along line $DE$, point $B$ falls exactly on point $P$, which is on the extension of line segment $AC$. If $\\angle APE=2\\angle B$, what is the value of $\\frac{BD}{AD}$?", -"image_file_name": "7058344", -"image": [ -"math/52977934_8013.png" -], -"solution": "\\textbf{Solution:} Let's consider $Rt\\triangle ABC$ where $\\angle C=90^\\circ$,\\\\\n$\\because \\angle B=30^\\circ$,\\\\\n$\\therefore \\angle A=60^\\circ$,\\\\\n$\\therefore \\angle APE=2\\angle B=60^\\circ$,\\\\\nBy folding, it is known that: $PD=BD\\text{, }\\angle DPE=\\angle B=30^\\circ$,\\\\\n$\\therefore \\angle APD=\\angle APE−\\angle DPE=30^\\circ$,\\\\\n$\\therefore \\angle ADP=60^\\circ+30^\\circ=90^\\circ$,\\\\\n$\\therefore \\frac{PD}{AD}=\\sqrt{3}$,\\\\\n$\\therefore \\frac{BD}{AD}=\\boxed{\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53080565": { -"question": "As shown in the figure, $AB$ is the diameter of the semicircle $O$, and points $E$, $C$, $D$ are three points on the semicircular arc, with $AC \\parallel OD$ and $AB \\parallel CD$. Given that $AB=12$ and $\\angle EAC = 15^\\circ$, and connecting $OE$ that intersects $AC$ at point $F$, what is the length of $EF$?", -"image_file_name": "7058344", -"image": [ -"math/53080565_8513.png" -], -"solution": "\\textbf{Solution:} Let's connect OC. \\\\\nSince $AC\\parallel OD$, $AB\\parallel CD$, and $OA=OD$, \\\\\nit follows that quadrilateral AODC is a rhombus. \\\\\nThus, $AC=OD$. \\\\\nGiven $AB=12$, \\\\\nit follows that $OE=OC=AC=OA=\\frac{1}{2}AB=6$. \\\\\nHence, $\\triangle AOC$ is an equilateral triangle. \\\\\nThus, $\\angle AOC=60^\\circ$. \\\\\nSince $\\angle EAC=15^\\circ$, \\\\\nit follows that $\\angle EOC=2\\angle EAC=30^\\circ$. \\\\\nThus, $OE$ bisects $\\angle AOC$. \\\\\nTherefore, $OE\\perp AC$. \\\\\nIn $\\triangle OFC$, $\\cos\\angle EOC=\\frac{OF}{OC}=\\frac{\\sqrt{3}}{2}$. \\\\\nThus, $OF=\\frac{\\sqrt{3}}{2}OC=3\\sqrt{3}$. \\\\\nTherefore, $EF=OE-OF=6-3\\sqrt{3}$. \\\\\nHence, the answer is: $EF=\\boxed{6-3\\sqrt{3}}$.", -"solution_image": [ -"solution_images/53080565_850.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55551954": { -"question": "As shown in the figure, within a square grid with side length 1, points A, B, and C are on grid points, and lines AB and CD intersect at point D. What is the value of $\\sin \\angle ADC$?", -"image_file_name": "7058344", -"image": [ -"math/55551954_870.png" -], -"solution": "\\textbf{Solution:} Extend CD to meet another vertex of the square at $E$, and connect BE, as shown in the diagram:\\\\\nFrom the problem statement, it is known that: $\\angle BED=90^\\circ$, $\\angle ADC=\\angle BDE$,\\\\\nBased on the side length of the small square grid and the Pythagorean theorem, it can be derived that: $BE=2\\sqrt{2}$, $BD=\\sqrt{10}$,\\\\\n$\\therefore$ In $\\triangle BDE$, $\\sin\\angle BDE=\\frac{BE}{BD}=\\frac{2\\sqrt{5}}{5}$,\\\\\n$\\therefore \\sin\\angle ADC=\\sin\\angle BDE=\\boxed{\\frac{2\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/55551954_871.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53207822": { -"question": "As shown in the diagram, $AB=AC=4$ and $\\angle BAC=90^\\circ$. Let point $M$ be a movable point on line segment $AC$, and connect $BM$. Fold line segment $BA$ along line $BM$ so that point $A$ falls on point $N$. Connect $CN$, and construct an isosceles right-angled triangle $CND$ on the left side (or below) of line $CN$, using $CN$ as the hypotenuse. During the process when point $M$ moves from $A$ to $C$, what is the minimum value of the line segment $CD$? What is the total path length traversed by point $D$ when $M$ moves from point $A$ to $C$?", -"image_file_name": "7058344", -"image": [ -"math/53207822_8823.png" -], -"solution": "\\textbf{Solution:} Connect $AC$ and $AD$, with point $N$ moving on a $\\frac{1}{4}$ circle centered at $B$ with radius $4$ (from $A$ to $N'$), resulting in $BN=AB=4$. In $\\triangle ABC$, we have $AB=AC$ and $\\angle BAC=90^\\circ$, thus $\\angle BCA=45^\\circ$ leading to $BC=\\sqrt{2}AC=4\\sqrt{2}$. When $C$, $N$, and $B$ are collinear, $CN$ is minimized, hence the minimum value of $CN$ is $BC-4=4\\sqrt{2}-4$. In the isosceles right triangle $\\triangle CDN$, the minimum $CD$ is $\\frac{\\sqrt{2}}{2}CN=\\frac{\\sqrt{2}}{2}(4\\sqrt{2}-4)=4-2\\sqrt{2}$. Since $AB=AC$ and $\\angle BCA=90^\\circ$, we have $\\angle ACB=\\angle ABC=45^\\circ$. Similarly, $\\angle DCN=45^\\circ$, hence $\\angle ACB=\\angle DCN$, leading to $\\angle ACB-\\angle ACN=\\angle DCN-\\angle ACN$, which means $\\angle BCN=\\angle ACD$. Given $\\frac{BC}{AC}=\\frac{CN}{CD}=\\sqrt{2}$, we conclude that $\\triangle BCN\\sim \\triangle ACD$. Therefore, $\\frac{AD}{BN}=\\frac{AC}{BC}=\\frac{\\sqrt{2}}{2}$, yielding $AD=\\frac{\\sqrt{2}}{2}BN=\\frac{\\sqrt{2}}{2}\\times 4=2\\sqrt{2}$. Thus, point $D$ moves on a $\\frac{1}{4}$ circle centered at $A$ with radius $2\\sqrt{2}$. Therefore, as point $M$ moves from $A$ to $C$, point $D$ moves on quarter circle $A$, and since $\\frac{1}{4}\\times 2\\pi \\cdot 2\\sqrt{2}=\\sqrt{2}\\pi$, the path length of point $D$ is $\\sqrt{2}\\pi$. Consequently, the minimum value of $CD$ is $\\boxed{4-2\\sqrt{2}}$, and the total path length of point $D$ is $\\boxed{\\sqrt{2}\\pi}$.", -"solution_image": [ -"solution_images/53207822_881.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53066096": { -"question": "As shown in the figure, $ \\triangle ABC$ is inscribed in a circle $\\odot O$ with a radius of 6. Given $\\sin\\angle A=\\frac{2}{3}$, what is the length of $BC$?", -"image_file_name": "7058344", -"image": [ -"math/53066096_894.png" -], -"solution": "\\textbf{Solution:} Construct the diameter $CD$ of $\\odot O$, and connect $BD$, hence $CD=2\\times 6=12$.\\\\\n$\\therefore$ $\\angle CBD=90^\\circ$, $\\angle D=\\angle A$,\\\\\n$\\therefore$ $BC=CD\\cdot \\sin D=CD\\cdot \\sin A=12\\times \\frac{2}{3}=\\boxed{8}$.", -"solution_image": [ -"solution_images/53066096_894.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55533862": { -"question": "As shown in the figure, rectangle $ABCD$ is folded such that point $D$ falls on the trisection point $G$ of side $AB$, with $BG0$?", -"image_file_name": "7054110", -"image": [ -"math/50560884_194.png" -], -"solution": "\\textbf{Solution:} From $(k-m)x-n>0$, we obtain: $kx>mx+n$,\\\\\nAccording to the graph, the intersection point of the two functions is $(1, 2)$,\\\\\nTherefore, the solution set of the linear inequality in $x$, $kx>mx+n$, is $x>1$, that is, the solution set of the linear inequality in $x$, $(k-m)x-n>0$, is $\\boxed{x>1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50560886": { -"question": "The graph of the function $y=|2x+1|-2$ is shown in the figure. What is the range of the function values $y$ when $-2ax+4$?", -"image_file_name": "7054110", -"image": [ -"math/50560169_244.png" -], -"solution": "\\textbf{Solution:} Since the intersection point of the graphs of the function $y=x+b$ and $y=ax+4$ has an x-coordinate of $1$, \\\\\nit follows that the solution set for the inequality $x+b>ax+4$ is $\\boxed{x>1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50555959": { -"question": "As shown in the figure, the line $y=kx+b$ passes through points $A(2,1)$ and $B(-1,-2)$. What is the solution set for the inequality $-2-2\\end{cases}$, solving this gives $-1ax-3$?", -"image_file_name": "7054110", -"image": [ -"math/50555655_264.png" -], -"solution": "\\textbf{Solution:} Since the graphs of the functions $y=3x+b$ and $y=ax-3$ intersect at point $P(-2,-5)$,\\\\\nit follows that the solution set of the inequality $3x+b>ax-3$ is $x>-2$,\\\\\ntherefore, the answer is: $\\boxed{x>-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50555372": { -"question": "The graph of the linear function $y=ax+b$ and the direct proportion function $y=kx$ are shown in the same Cartesian coordinate system as in the figure. What is the solution set of the inequality $ax+b\\geq kx$ with respect to $x$?", -"image_file_name": "7054110", -"image": [ -"math/50555372_270.png" -], -"solution": "\\textbf{Solution:} The intersection point of the two lines is $(-1, 2)$. Given that for $x \\geq -1$, the line $y=kx$ lies below the line $y=ax+b$, therefore, the solution set of the inequality $ax+b \\geq kx$ is $x \\geq -1$.\\\\\nHence, the solution set is $\\boxed{x \\geq -1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50553935": { -"question": "As shown in the figure, the graph of the linear function $y=-x+1$ intersects with the graph of $y=2x+m$ at point $P\\left(n, 2\\right)$. What is the solution set of the inequality $-x+1>2x+m>0$ with respect to $x$?", -"image_file_name": "7054110", -"image": [ -"math/50553935_284.png" -], -"solution": "Solution: Since the graph of the linear function $y=-x+1$ passes through point $P(-1,2)$,\nwe have $2=-(-1)+1$, solving this gives $n=-1$,\ntherefore $P(-1,2)$,\nsubstituting $P(-1,2)$ into $y=2x+m$, we get $2=-2+m$,\nsolving this gives $m=4$,\nthus $y=2x+4$,\nwhen $y=0$, $2x+4=0$, solving this gives $x=-2$,\ntherefore, the intersection of $y=2x+4$ and the x-axis is $(-2,0)$,\nthus, the solution set of the inequality in $x$, $-x+1>2x+m>0$, is $-2mx+n$ in terms of $x$?", -"image_file_name": "7054110", -"image": [ -"math/50545552_325.png" -], -"solution": "\\textbf{Solution:} From the graph, it's known that the intersection point of the two functions is $(1,2)$,\\\\\nthus the solution set of the linear inequality in $x$, $kx - n > mx$, is $x > 1$,\\\\\ntherefore, the answer is: $\\boxed{x > 1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50682792": { -"question": "As shown in the figure, in the Cartesian coordinate system, the rectangle $OABC$ has two adjacent sides on the coordinate axes, with vertex $B(6, 4)$. A line passing through point $P(4, m)$ on side $BC$ bisects the area of the rectangle. What is the equation of this line?", -"image_file_name": "7054110", -"image": [ -"math/50682792_330.png" -], -"solution": "\\textbf{Solution:} \n\nSince the adjacent sides of rectangle OABC are on the coordinate axes, and the vertex B is at (6, 4),\\\\\ntherefore, the intersection point of the diagonal lines of the rectangle is at (3, 2),\\\\\nsince point P(4, m) is a point on side BC,\\\\\ntherefore, P(4, 4),\\\\\nsince a line passing through the intersection point of the diagonal lines bisects the rectangle,\\\\\ntherefore, let the line passing through P(4, m) and bisecting the rectangle be $y=kx+b$,\\\\\nsubstituting points (4, 4) and (3, 2) yields $\\begin{cases}4k+b=4\\\\ 3k+b=2\\end{cases}$,\\\\\nsolving, we get $\\begin{cases}k=2\\\\ b=-4\\end{cases}$,\\\\\ntherefore, the equation of this line is $y=2x-4$.\\\\\nHence, the answer is: $\\boxed{y=2x-4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50682791": { -"question": "As shown in the figure, the point $P(-4, 3)$ is on the graph of the linear function $y = kx + b$ (where $k \\neq 0$). Then, what is the solution set of the inequality $kx + b < 3$ with respect to $x$?", -"image_file_name": "7054110", -"image": [ -"math/50682791_340.png" -], -"solution": "\\textbf{Solution:} When $x > -4$, $y < 3$, i.e., $kx + b < 3$,\\\\\nthus the solution set of the inequality $kx + b < 3$ with respect to $x$ is $x > -4$.\\\\\nTherefore, the answer is: $\\boxed{x > -4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677500": { -"question": "As shown in the figure, the line $y=x+2$ intersects with the line $y=kx+6$ at point $P(3, n)$. Then, the system of equations is", -"image_file_name": "7054110", -"image": [ -"math/50677500_351.png" -], -"solution": "\\textbf{Solution:} Let $\\because$ the line $y=x+2$ passes through the point $P(3, n)$,\\\\\n$\\therefore n=3+2=5$,\\\\\n$\\therefore P(3, 5)$,\\\\\n$\\because$ the line $y=x+2$ intersects with the line $y=kx+6$ at point $P$,\\\\\n$\\therefore$ the solution to the system of equations $\\begin{cases}y=x+2\\\\ y=kx+6\\end{cases}$ is $\\boxed{\\begin{cases}x=3\\\\ y=5\\end{cases}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50520424": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ intersects the $x$ axis at point $A(3, 0)$ and intersects the $y$ axis at point $B(0, 4)$. It intersects the graph of the direct proportion function $y=ax$ at point $C$, and the $x$-coordinate of point $C$ is 2. What is the solution set of the inequality $00 \\\\ mx+n>0 \\end{cases}$?", -"image_file_name": "7054110", -"image": [ -"math/50493304_394.png" -], -"solution": "Solution: From the graph, we know\n\n$\\because$ $kx+b>0$\n\n$\\therefore$ $x>-4$\n\n$\\because$ $mx+n>0$\n\n$\\therefore$ $x<2$\n\n$\\therefore$ the solution set of the system of inequalities $\\begin{cases}kx+b>0\\\\ mx+n>0\\end{cases}$ is $-42$?", -"image_file_name": "7054110", -"image": [ -"math/50468935_410.png" -], -"solution": "\\textbf{Solution:} From the graph, it can be inferred that when $x>1$, $kx+b>2$,\\\\\nthus, the solution set of the inequality $kx+b>2$ is $x>1$,\\\\\ntherefore, the answer is $\\boxed{x>1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50447097": { -"question": "The graph of the linear function $y=kx+b$ (where $k$ and $b$ are constants) is shown in the figure. What is the solution set of the linear inequality in one variable $kx+b\\ge 0$ with respect to $x$?", -"image_file_name": "7054110", -"image": [ -"math/50447097_425.png" -], -"solution": "\\textbf{Solution:} When $x\\leq 3$, $y\\geq 0$, \\\\\nhence the solution set of the linear inequality in one variable $kx+b\\geq 0$ with respect to $x$ is $\\boxed{x\\leq 3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50447025": { -"question": " It is known that the graph of the linear function $y=kx+b$ is as shown in the figure. What is the range of $y$ when $x<1$?", -"image_file_name": "7054110", -"image": [ -"math/50447025_430.png" -], -"solution": "\\textbf{Solution:} \\\\\nConsider the linear function $y=kx+b$. Its graph intersects the $y$-axis at $(0, -4)$, \\\\\n$\\therefore b=-4$, and intersects the $x$-axis at $(2, 0)$, \\\\\n$\\therefore 0=2k-4$, \\\\\n$\\therefore k=2$, \\\\\n$\\therefore y=kx+b=2x-4$, \\\\\n$\\therefore x=(y+4)/2<1$, \\\\\n$\\therefore \\boxed{y<-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50446779": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the line $y=2x-1$ intersects the x-axis and y-axis at point A and B, respectively. Given that $\\angle ABC=45^\\circ$, what is the equation of line BC?", -"image_file_name": "7054110", -"image": [ -"math/50446779_442.png" -], -"solution": "\\textbf{Solution:} Since the graph of the linear function $y=2x-1$ intersects the $x$ and $y$ axes at points $A$ and $B$, respectively, \\\\\nlet $x=0$, we get $y=-1$, and let $y=0$, we get $x=\\frac{1}{2}$, \\\\\nthus, point $A\\left(\\frac{1}{2},0\\right)$, point $B\\left(0,-1\\right)$, \\\\\nhence, OA$=\\frac{1}{2}$, OB$=1$, \\\\\nAs shown in the figure, draw $AF\\perp AB$ meeting $BC$ at $F$, and draw $FE\\perp x$ axis at $E$, \\\\\nsince $\\angle ABC=45^\\circ$, \\\\\nthus, $\\triangle ABF$ is an isosceles right triangle, \\\\\ntherefore, AB$=$AF, \\\\\nsince $\\angle OAB+\\angle ABO=\\angle OAB+\\angle EAF=90^\\circ$, \\\\\nthus, $\\angle ABO=\\angle EAF$, \\\\\ntherefore, $\\triangle ABO\\cong\\triangle FAE$ (AAS), \\\\\ntherefore, AE$=$OB$=1$, EF$=$OA$=\\frac{1}{2}$, \\\\\nthus, point $F\\left(\\frac{3}{2},-\\frac{1}{2}\\right)$, \\\\\nLet the equation of the line $BC$ be: $y=kx+b$, \\\\\n$\\left\\{\\begin{array}{l} \\frac{3}{2}k+b=-\\frac{1}{2}\\\\ b=-1\\end{array}\\right.$, solving, we get: $\\left\\{\\begin{array}{l}k=\\frac{1}{3}\\\\ b=-1\\end{array}\\right.$, \\\\\ntherefore, the equation of the line $BC$ is: $\\boxed{y=\\frac{1}{3}x-1}$.", -"solution_image": [ -"solution_images/50446779_443.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50446738": { -"question": "As shown in the figure, given the linear function $y=kx+b(k\\ne 0)$ whose graph is illustrated, what is the solution set of the inequality $kx+b>0$?", -"image_file_name": "7054110", -"image": [ -"math/50446738_452.png" -], -"solution": "\\textbf{Solution:} When $x<1$, we have $y>0$,\\\\\nthus the solution set for the inequality $kx+b>0$ is $x<1$.\\\\\nTherefore, the answer is $\\boxed{x<1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53081444": { -"question": "As shown in the figure, $AB$ is a chord of the circle $\\odot O$, $C$ is the midpoint of $AB$, and $OC$ intersects the arc $\\overset{\\frown}{AB}$ at point $D$. If $AB=8$ cm and $CD=2$ cm, what is the radius of the circle $\\odot O$ in centimeters?", -"image_file_name": "7058773", -"image": [ -"math/53081444_388.png" -], -"solution": "\\textbf{Solution:} Draw line OB. Since point C is the midpoint of arc $\\overset{\\frown}{AB}$, it follows that OC$\\perp$AB and BD=$\\frac{1}{2}$AB=4. Let the radius of the circle be r, then OD=r−2. In $\\triangle$OBD, $OD^{2}$+$BD^{2}$=$OB^{2}$. Therefore, $(r−2)^{2}$+$4^{2}$=$r^{2}$. Solving this equation, we find $r=\\boxed{5}$.", -"solution_image": [ -"solution_images/53081444_380.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53081373": { -"question": "As shown in the diagram, within circle $O$, $OC \\perp AB$ at point $C$. If the radius of circle $O$ is $10$ and $AB=16$, then what is the length of $OC$?", -"image_file_name": "7058773", -"image": [ -"math/53081373_390.png" -], -"solution": "\\textbf{Solution:} Connect OB, \\\\\n$\\because$OC$\\perp$AB, \\\\\n$\\therefore \\angle$OCB$=90^\\circ$, BC$= \\frac{1}{2}$AB$= \\frac{1}{2} \\times 16=8$, \\\\\n$\\therefore OC=\\sqrt{OB^{2}-BC^{2}}=\\sqrt{10^{2}-8^{2}}=\\boxed{6}$.", -"solution_image": [ -"solution_images/53081373_390.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080394": { -"question": "As shown in the figure, in circle $O$, $\\angle ACB=30^\\circ$, what is the measure of $\\angle AOB$ in degrees?", -"image_file_name": "7058773", -"image": [ -"math/53080394_404.png" -], -"solution": "\\textbf{Solution:} Given that in circle $\\odot O$, $\\angle ACB=30^\\circ$,\\\\\ntherefore, $\\angle AOB=2\\angle ACB=60^\\circ$,\\\\\nhence, the answer is: $\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080746": { -"question": "As shown in the figure, given that the circumference of $\\odot O$ is $4\\pi$ and the length of $\\overset{\\frown}{AB}$ is $\\pi$, what is the area of the shaded region in the figure?", -"image_file_name": "7058773", -"image": [ -"math/53080746_411.png" -], -"solution": "\\textbf{Solution:} Since the circumference of circle O is $4\\pi$,\\\\\ntherefore, the diameter of circle O is 4,\\\\\nthus, the radius of circle O is 2,\\\\\nsince the length of arc AB is $\\pi$,\\\\\ntherefore, the length of arc AB is $\\frac{1}{4}$ of the circumference of circle O,\\\\\nhence, $\\angle AOB=90^\\circ$,\\\\\ntherefore, the area of the shaded region $= \\frac{90^\\circ \\cdot \\pi \\times 2^2}{360} - \\frac{1}{2} \\times 2 \\times 2 = \\boxed{\\pi-2}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53102153": { -"question": "As shown in the figure, $AB$ is the diameter of circle $O$, points $C$ and $D$ are on circle $O$, $\\angle D=60^\\circ$, and $AB=10$. What is the length of $AC$?", -"image_file_name": "7058773", -"image": [ -"math/53102153_586.png" -], -"solution": "\\textbf{Solution:} Connect $BC$, as shown in the figure,\\\\\n$\\because$ $AB$ is the diameter of $\\odot O$, and $AB=10$,\\\\\n$\\therefore$ $\\angle ACB=90^\\circ$,\\\\\n$\\because$ $\\angle D=60^\\circ$,\\\\\n$\\therefore$ $\\angle ABC=60^\\circ$,\\\\\n$\\therefore$ $\\angle CAB=180^\\circ-\\angle ABC-\\angle ACB=30^\\circ$,\\\\\n$\\therefore$ in $\\triangle ABC$, we have: $BC=\\frac{1}{2}AB=5$,\\\\\n$\\therefore$ $AC=\\sqrt{AB^{2}-BC^{2}}=\\sqrt{10^{2}-5^{2}}=\\boxed{5\\sqrt{3}}$", -"solution_image": [ -"solution_images/53102153_581.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53101887": { -"question": "As shown in the figure, a turning point of a road is a section of a circular arc (the arc $ \\overset{\\frown}{AB}$ in the figure), where point O is the center of this arc, $ \\angle AOB=80^\\circ$. Point C is on segment AB, and OC is perpendicular to AB at D. Given that $AB=300m$ and $CD=50m$, what is the length of the curved road AB in meters?", -"image_file_name": "7058773", -"image": [ -"math/53101887_594.png" -], -"solution": "\\textbf{Solution:} Let the radius be $r$,\\\\\nthen $OD=r-CD=(r-50)m$,\\\\\n$\\because$ $OC\\perp AB$,\\\\\n$\\therefore$ $AD=BD=\\frac{1}{2}AB=\\frac{1}{2}\\times 300=150m$,\\\\\nIn $\\triangle AOD$, $AO^2=AD^2+OD^2$,\\\\\ni.e., $r^2=150^2+(r-50)^2$,\\\\\nsolving this yields $r=250m$,\\\\\nthe radius of this curved segment is $250m$.\\\\\n$\\because$ $\\angle AOB=80^\\circ$,\\\\\n$\\therefore$ $\\overset{\\frown}{AB}=\\frac{80\\pi \\times 250}{180}=\\frac{1000\\pi}{9}m$.\\\\\nThus, the length of this curved segment AB is $\\boxed{\\frac{1000\\pi}{9}m}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53102366": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=12$, and $BC=5$, what is the distance between the centroid $P$ and the circumcentre $Q$ of $\\triangle ABC$?", -"image_file_name": "7058773", -"image": [ -"math/53102366_617.png" -], -"solution": "Solution: According to the given information, points C, P, and Q are collinear.\n\nIn $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=12$, $BC=5$,\n\n$\\therefore AB=\\sqrt{AC^2+BC^2}=\\sqrt{12^2+5^2}=13$,\n\n$\\because$ the circumcenter of $\\triangle ABC$ is $Q$,\n\n$\\therefore Q$ is the midpoint of the hypotenuse $AB$,\n\n$\\therefore CQ=\\frac{1}{2}AB=\\frac{13}{2}$,\n\n$\\because$ the centroid of $\\triangle ABC$ is $P$,\n\n$\\therefore PQ=\\frac{1}{3}CQ=\\boxed{\\frac{13}{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53102217": { -"question": "As shown in the figure, $AB$ is a chord of the circle $\\odot O$, C is the midpoint of the arc $AB$, and $OC$ intersects $AB$ at point D. If $AB=8$ cm and $CD=2$ cm, what is the radius of $\\odot O$ in cm?", -"image_file_name": "7058773", -"image": [ -"math/53102217_627.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram below, connect OA,\n\n$\\because$ C is the midpoint of arc $AB$,\n\n$\\therefore$ $CD\\perp AB$, and $CD$ bisects $AB$,\n\nLet the radius of $\\odot O$ be $r$,\n\n$\\because$ $AB=8$cm, $CD=2$cm,\n\n$\\therefore$ $OD=r-2$, $AD=4$,\n\n$\\because$ $AO^{2}=AD^{2}+OD^{2}$,\n\n$\\therefore$ $r^{2}=4^{2}+(r-2)^{2}$,\n\n$\\therefore$ $r^{2}=16+r^{2}-4r+4$,\n\n$\\therefore$ $r=\\boxed{5}$cm.", -"solution_image": [ -"solution_images/53102217_620.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53033424": { -"question": "As shown in the figure, $AB$ is the tangent to the circle $\\odot O$ with point A as the point of tangency. The line $OB$ intersects the circle $\\odot O$ at point C. Point D is on the circle $\\odot O$. The lines $AD$, $CD$, and $OA$ are connected. If $\\angle ABO = 20^\\circ$, what is the degree measure of $\\angle ADC$?", -"image_file_name": "7058773", -"image": [ -"math/53033424_6310.png" -], -"solution": "\\textbf{Solution:} Given that $AB$ is the tangent to the circle $O$,\\\\\nTherefore, $OA \\perp AB$,\\\\\nTherefore, $\\angle OAB = 90^\\circ$,\\\\\nGiven that $\\angle B = 20^\\circ$,\\\\\nTherefore, $\\angle O = 90^\\circ - 20^\\circ = 70^\\circ$,\\\\\nTherefore, $\\angle ADC = \\frac{1}{2}\\angle O = \\frac{1}{2} \\times 70^\\circ = \\boxed{35^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53019730": { -"question": "As shown in the figure, in the Cartesian coordinate system, with $M(2, 3)$ as the center of the circle and $AB$ as its diameter, the circle is tangent to the x-axis and intersects the y-axis at points A and C. What is the length of $AC$?", -"image_file_name": "7058773", -"image": [ -"math/53019730_643.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $BC$, and assume the circle is tangent to the x-axis at point $D$, connect $MD$ and it intersects $BC$ at point $E$, so $MD\\perp x$ axis,\\\\\n$\\because AB$ is the diameter,\\\\\n$\\therefore \\angle ACB=\\angle AOD=90^\\circ$,\\\\\n$\\therefore BC\\parallel x$ axis,\\\\\n$\\therefore BC\\perp MD$,\\\\\n$\\because M\\left(2,3\\right)$,\\\\\n$\\therefore MB=MD=3$, $CE=EB=2$,\\\\\n$\\therefore CB=4$, $AB=2BM=6$,\\\\\n$\\therefore AC=\\sqrt{AB^{2}-BC^{2}}=\\sqrt{6^{2}-4^{2}}=\\boxed{2\\sqrt{5}}$,", -"solution_image": [ -"solution_images/53019730_646.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53009646": { -"question": "As shown in the figure, points $A, B, C$ lie on circle $\\odot O$, and $\\angle ACB = 40^\\circ$. What is the degree measure of arc $AB$?", -"image_file_name": "7058773", -"image": [ -"math/53009646_654.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB$ and $\\angle ACB$ both subtend $\\overset{\\frown}{AB}$,\\\\\nit follows that $\\angle AOB=2\\angle ACB=2\\times 40^\\circ=80^\\circ$,\\\\\nthus, the measure of arc $AB$ is $\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53009648": { -"question": "As shown in the figure, it is known that the radius of $\\odot O$ is 5, $AB\\perp CD$, with the foot of the perpendicular as $P$, and $AB=CD=8$, then what is the length of $OP$?", -"image_file_name": "7058773", -"image": [ -"math/53009648_664.png" -], -"solution": "\\textbf{Solution:} Connect $OB$, draw $OE\\perp AB$ at $E$, and $OF\\perp CD$ at $F$,\\\\\nthen $BE=\\frac{1}{2}AB=4$, the quadrilateral $PEOF$ is a rectangle,\\\\\nsince $AB=CD$, $OE\\perp AB$, $OF\\perp CD$,\\\\\nthus $OE=OF$,\\\\\ntherefore, the rectangle $PEOF$ is a square,\\\\\nthus $OE=PE$,\\\\\nin $\\triangle OEB$, $OE=\\sqrt{OB^{2}-BE^{2}}=3$,\\\\\nthus $OP=\\sqrt{OE^{2}+PE^{2}}=\\boxed{3\\sqrt{2}}$.", -"solution_image": [ -"solution_images/53009648_665.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53009949": { -"question": "As shown in the figure, points C and D lie on a circle with diameter AB, where AB = 2, and $\\angle ACD = 30^\\circ$. What is the length of AD?", -"image_file_name": "7058773", -"image": [ -"math/53009949_670.jpeg" -], -"solution": "\\textbf{Solution:} Since AB is the diameter,\\\\\nit follows that $\\angle ADB = 90^\\circ$,\\\\\nand since $\\angle B = \\angle ACD = 30^\\circ$,\\\\\nit implies that AD = $\\frac{1}{2}$AB = $\\frac{1}{2} \\times 2 =$ \\boxed{1}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991639": { -"question": "As shown in the figure, a circle with center at the origin $O$ passes through point $A(4, 0)$. Inside the circle, there is a fixed point $B(-1, 2)$. A line through point $B$ intersects the circle at points $M$ and $N$. What is the minimum value of $MN$?", -"image_file_name": "7058773", -"image": [ -"math/52991639_687.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect $OB$ and $OM$. It is known that when $MN\\perp OB$, $MN$ is minimized,\\\\\n$\\because B(-1,2)$,\\\\\n$\\therefore OB^2=1^2+2^2=5$,\\\\\n$\\because OM=OA=4$,\\\\\n$\\therefore BM=\\sqrt{OM^2-OB^2}=\\sqrt{16-5}=\\sqrt{11}$,\\\\\n$\\because MN\\perp OB$,\\\\\n$\\therefore MN=2BM=2\\sqrt{11}$,\\\\\n$\\therefore$ The minimum value of $MN$ is $\\boxed{2\\sqrt{11}}$.", -"solution_image": [ -"solution_images/52991639_684.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991440": { -"question": "As shown in the figure, in $\\triangle ABC$, $AC=BC$, circle O is the circumcircle of $\\triangle ABC$, and the extension of $BO$ intersects side $AC$ at point D. When $\\triangle ABD$ is an isosceles triangle, what is the measure of $\\angle A$?", -"image_file_name": "7058773", -"image": [ -"math/52991440_697.png" -], -"solution": "\\textbf{Solution:} Connect OC, \\\\\n$\\because$ $CA=CB$, \\\\\n$\\therefore$ $\\overset{\\frown}{CA}=\\overset{\\frown}{CB}$, $\\angle CAB=\\angle CBA$, \\\\\n$\\therefore$ $OC\\perp AB$, \\\\\n$\\therefore$ $\\angle DCO=\\angle BCO$, \\\\\n$\\because$ $OC=OB$, \\\\\n$\\therefore$ $\\angle OBC=\\angle BCO$, \\\\\n$\\therefore$ $\\angle ADB=3\\angle OBC$, \\\\\nWhen $BA=BD$, $\\angle A=\\angle BDA=3\\angle OBC$, \\\\\nThen $8\\angle OBC=180^\\circ$, \\\\\nSolving for: $\\angle OBC=22.5^\\circ$, \\\\\n$\\therefore$ $\\angle A=67.5^\\circ$; \\\\\nWhen $AB=AD$, $\\angle ABD=\\angle BDA=3\\angle OBC$, \\\\\nThen $10\\angle OBC=180^\\circ$, \\\\\nSolving for: $\\angle OBC=18^\\circ$, \\\\\n$\\therefore$ $\\angle A=\\angle ABD+\\angle OBC=4\\angle OBC=72^\\circ$, \\\\\nThe case for DA=DB does not exist, \\\\\nIn summary, when $\\triangle ABD$ is an isosceles triangle, the degree of $\\angle A$ is $67.5^\\circ$ or $72^\\circ$, \\\\\nHence the answer is: $\\boxed{67.5^\\circ}$ or $\\boxed{72^\\circ}$.", -"solution_image": [ -"solution_images/52991440_690.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991560": { -"question": "As shown in the figure, $ \\triangle ABC$ is inscribed in $ \\odot O$, $ \\angle BAC=60^\\circ$, D is the midpoint of $ BC$, and $ \\angle AOD=166^\\circ$, $ AE$ and $ CF$ are the altitudes on sides $ BC$ and $ AB$, respectively. What is the measure of $ \\angle BCF$ in degrees?", -"image_file_name": "7058773", -"image": [ -"math/52991560_709.png" -], -"solution": "\\textbf{Solution:} Connect $OB, OC$,\\\\\nsince $OB=OC$ and $D$ is the midpoint of $BC$,\\\\\nthus $\\angle BOD=\\frac{1}{2}\\angle BOC=\\angle BAC=60^\\circ$\\\\\n$\\angle AOB=\\angle AOD-\\angle BOD=166^\\circ-60^\\circ=106^\\circ$\\\\\nsince $OA=OB$\\\\\nthus $\\angle ABO=\\frac{180^\\circ-106^\\circ}{2}=37^\\circ$\\\\\n$\\angle OBC=90^\\circ-60^\\circ=30^\\circ$\\\\\nthus $\\angle ABC=\\angle ABO+\\angle OBC=37^\\circ+30^\\circ=67^\\circ$\\\\\nsince $CF \\perp AB$\\\\\nthus $\\angle BCF=90^\\circ-\\angle ABC=90^\\circ-67^\\circ=\\boxed{23^\\circ}$", -"solution_image": [ -"solution_images/52991560_701.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991558": { -"question": "As shown in the figure, $CD$ is the diameter of the circle $\\odot O$, $AB$ is a chord of $\\odot O$, $AB=10$, $AB\\perp CD$ at the foot M, and $CM=2$. What is the length of the radius?", -"image_file_name": "7058773", -"image": [ -"math/52991558_717.png" -], -"solution": "\\textbf{Solution:} Connect OA, let the radius be $r$, as shown in the following figure:\\\\\nThen, we have $OA=r$, $OM=r-2$\\\\\nAccording to the perpendicular bisector theorem, we obtain $AM=\\frac{1}{2}AB=5$,\\\\\nBy the Pythagorean theorem, we find: $OM^2+AM^2=OA^2$, that is, $(r-2)^2+5^2=r^2$\\\\\nSolving this, we find $r=\\boxed{\\frac{29}{4}}$", -"solution_image": [ -"solution_images/52991558_710.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991516": { -"question": "As shown in the figure, the isosceles $\\triangle ABC$ is inscribed in $\\odot O$, with $AB=AC$, and $\\angle BAC=120^\\circ$. Point $D$ is on the arc $AC$, and line $BD$ is drawn. Point $E$ is on line $BD$, satisfying $\\angle ABE=\\angle ECB$. If $CD=2$, what is the area of $\\triangle AEC$?", -"image_file_name": "7058773", -"image": [ -"math/52991516_7210.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $AD$,\\\\\nsince $AB=AC$ and $\\angle BAC=120^\\circ$,\\\\\nthus $\\angle ABC=\\angle ACB=\\frac{1}{2}\\left(180^\\circ-\\angle BAC\\right)=30^\\circ$,\\\\\ntherefore $\\angle ADB=\\angle ACB=30^\\circ$,\\\\\nsince $\\angle ABE=\\angle ECB$,\\\\\nthus $\\angle DEC=\\angle DBC+\\angle ECB=\\angle DBC+\\angle ABE=\\angle ABC=30^\\circ$,\\\\\ntherefore $\\angle ADB=\\angle DEC=30^\\circ$,\\\\\nhence $AD\\parallel EC$,\\\\\nthus the distance between $AD$ and $EC$ is equal everywhere,\\\\\ntherefore $\\text{Area of }\\triangle AEC=\\text{Area of }\\triangle DEC$,\\\\\nsince point D is a point on the arc $\\overset{\\frown}{AC}$,\\\\\nthus $\\angle EDC=\\angle BAC=120^\\circ$,\\\\\nconstruct $DH\\perp EC$ at point H,\\\\\nsince $\\angle ABD=\\angle ECB$ and $\\angle ACD=\\angle ABD$,\\\\\nthus $\\angle ACD=\\angle ECB$,\\\\\nsince $\\angle ACB=30^\\circ$,\\\\\nthus $\\angle ACE+\\angle ECB=30^\\circ$,\\\\\nthus $\\angle ACE+\\angle ACD=30^\\circ$,\\\\\nthat is, $\\angle DCE=30^\\circ=\\angle DEC$,\\\\\nthus $\\triangle DEC$ is an isosceles triangle,\\\\\nsince $CD=2$,\\\\\nthus $DH=\\frac{1}{2}CD=1$,\\\\\nthus $CH=\\sqrt{CD^{2}-DH^{2}}=\\sqrt{3}$,\\\\\nthus $EC=2\\sqrt{3}$,\\\\\nthus $\\text{Area of }\\triangle DEC=\\frac{1}{2}EC\\cdot DH=\\frac{1}{2}\\times 2\\sqrt{3}\\times 1=\\boxed{\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52991516_721.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53032950": { -"question": "As shown in the figure, in $ \\triangle ABC$ and $\\triangle ADE$, $\\angle ACB=\\angle AED=90^\\circ$, $\\angle ABC=\\angle ADE$. Connect BD and CE. If $AC:BC=3:4$, then what is the ratio of $BD:CE$?", -"image_file_name": "7056088", -"image": [ -"math/53032950_266.png" -], -"solution": "\\textbf{Solution:} Given that $\\because$ $\\angle ACB=\\angle AED=90^\\circ$ and $\\angle ABC=\\angle ADE$,\\\\\n$\\therefore$ $\\triangle ABC\\sim \\triangle ADE$,\\\\\n$\\therefore$ $\\angle BAC=\\angle DAE$ and $\\frac{AC}{AB}=\\frac{AE}{AD}$,\\\\\n$\\because$ $\\angle BAC+\\angle BAE=\\angle DAE+\\angle BAE$,\\\\\n$\\therefore$ $\\angle CAE=\\angle BAD$,\\\\\n$\\because$ $\\frac{AC}{AB}=\\frac{AE}{AD}$,\\\\\n$\\therefore$ $\\triangle ACE\\sim \\triangle ABD$,\\\\\n$\\therefore$ $\\frac{BD}{CE}=\\frac{AB}{AC}$,\\\\\n$\\because$ $AC\\colon BC=3\\colon 4$ and $\\angle ACB=\\angle AED=90^\\circ$,\\\\\nlet $AC=3x$, $BC=4x$,\\\\\nIn $Rt\\triangle ABC$, $AB^2=AC^2+BC^2$,\\\\\n$\\therefore$ $AB=\\sqrt{AC^2+BC^2}=\\sqrt{(3x)^2+(4x)^2}=5x$,\\\\\n$\\therefore$ $AC\\colon BC\\colon AB=3\\colon 4\\colon 5$,\\\\\n$\\therefore$ $BD\\colon CE=\\boxed{5\\colon 3}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53019770": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are on sides $AB$ and $AC$ respectively, with $DE\\parallel BC$. Given that $AE=2$ and $\\frac{AD}{AB}=\\frac{1}{3}$, what is the length of $EC$?", -"image_file_name": "7056088", -"image": [ -"math/53019770_277.png" -], -"solution": "\\textbf{Solution:} Given $DE\\parallel BC$, \\\\\nhence $\\angle ADE=\\angle ABC$, $\\angle AED=\\angle ACB$, \\\\\ntherefore $\\triangle ADE\\sim \\triangle ABC$, \\\\\nthus $\\frac{AE}{AC}=\\frac{AD}{AB}$, \\\\\ngiven $\\frac{AD}{AB}=\\frac{1}{3}$, $AE=2$, \\\\\nthus $AC=6$, \\\\\nhence $EC=AC-AE=6-2=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53009947": { -"question": "As shown in the figure, it is known that $AB\\perp BD$, $ED\\perp BD$, $C$ is the midpoint of line segment $BD$, and $AC\\perp CE$, with $ED=1$, $BD=4$. What is the length of $AB$?", -"image_file_name": "7056088", -"image": [ -"math/53009947_280.jpeg" -], -"solution": "\\textbf{Solution:} Since $AB\\perp BD$ and $ED\\perp BD$,\\\\\nit follows that $\\angle B=\\angle D=90^\\circ$,\\\\\nwhich means $\\angle A+\\angle ACB=90^\\circ$,\\\\\nSince $AC\\perp CE$,\\\\\nwe have $\\angle ACE=90^\\circ$,\\\\\ntherefore $\\angle ECD+\\angle ACB=90^\\circ$,\\\\\nthus $\\angle A=\\angle ECD$,\\\\\nwhich implies $\\triangle ABC\\sim \\triangle CDE$,\\\\\nhence $\\frac{AB}{CD}=\\frac{BC}{DE}$\\\\\nGiven $C$ is the midpoint of segment $BD$, $ED=1$, and $BD=4$,\\\\\nwe find $BC=CD=2$,\\\\\ntherefore $\\frac{AB}{2}=\\frac{2}{1}$\\\\\nleading to $AB=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991441": { -"question": "As shown in the figure, within square $ABCD$, point $E$ is on side $AD$. Triangle $ABE$ is folded along line $BE$ to obtain triangle $FBE$. Connect $CF$ and extend it to intersect the extension of $BE$ at point $P$. If $AB=5$ and $AE=1$, what is the measure of $\\angle P$? What is the length of $PC$?", -"image_file_name": "7056088", -"image": [ -"math/52991441_290.png" -], -"solution": "\\textbf{Solution:} Let a perpendicular be drawn from B to CP at foot N, and from C to BP at foot M, thus CM$\\perp$BP.\\\\\n$\\because$ $\\triangle ABE$ is folded along line BE to obtain $\\triangle FBE$,\\\\\n$\\therefore$ $Rt\\triangle ABE\\cong Rt\\triangle FEB$,\\\\\n$\\therefore$ $BF=AB=5$, $\\angle ABE=\\angle PBF$,\\\\\n$\\because$ Quadrilateral ABCD is a square,\\\\\n$\\therefore$ $BC=5$,\\\\\n$\\therefore$ $BC=BF$,\\\\\n$\\therefore$ $\\triangle BFC$ is an isosceles triangle,\\\\\nAlso, $\\because$ $BN\\perp FC$,\\\\\n$\\therefore$ $BN$ bisects $\\angle FBC$,\\\\\n$\\therefore$ $\\angle PBN=\\angle PBF+\\angle FBN=\\frac{1}{2}\\left(\\angle ABF+\\angle FBC\\right)=45^\\circ$,\\\\\nIn $Rt\\triangle BPN$, $\\angle PBN=45^\\circ$, $\\angle BNP=90^\\circ$,\\\\\n$\\therefore$ $\\angle P=45^\\circ$,\\\\\n$\\therefore$ $\\triangle CMP$ is an isosceles right triangle,\\\\\n$\\therefore$ $CM=MP$,\\\\\n$\\because$ $\\angle ABP+\\angle PBC=90^\\circ$, $\\angle PBC+\\angle MCB=90^\\circ$, $\\therefore$ $\\angle ABP=\\angle MCB$,\\\\\n$\\therefore$ $\\triangle EAB\\sim \\triangle BMC$,\\\\\n$\\therefore$ $\\frac{CM}{AB}=\\frac{CB}{BE}$,\\\\\nIn $Rt\\triangle ABE$, $BE=\\sqrt{AB^2+AE^2}=\\sqrt{26}$,\\\\\n$\\therefore$ $\\frac{CM}{5}=\\frac{5}{\\sqrt{26}}$, $CM=\\frac{25}{\\sqrt{26}}$,\\\\\n$\\therefore$ In $Rt\\triangle CMP$, $PM=CM=\\frac{25}{\\sqrt{26}}$,\\\\\n$\\therefore$ $CP=\\sqrt{CM^2+PM^2}=\\boxed{\\frac{25\\sqrt{13}}{13}}$.", -"solution_image": [ -"solution_images/52991441_290.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52991850": { -"question": "The shapes conforming to the golden ratio \\( \\left(\\frac{\\sqrt{5}-1}{2}\\right) \\) are often visually pleasing. In the pentagram shown, where \\( AD=BC=\\frac{\\sqrt{5}+1}{2} \\), and both points C and D are the golden sections of \\( AB \\), what is the length of \\( CD \\)?", -"image_file_name": "7056088", -"image": [ -"math/52991850_304.png" -], -"solution": "\\textbf{Solution:} Given that points C and D are both golden section points of AB,\\\\\nhence $AC=\\frac{\\sqrt{5}-1}{2}AB$, $BD=\\frac{\\sqrt{5}-1}{2}AB$,\\\\\nthus $AC+BD=AB+CD$,\\\\\nwhich means $AC+BD=\\frac{\\sqrt{5}-1}{2}AB+\\frac{\\sqrt{5}-1}{2}AB=(\\sqrt{5}-1)AB=AB+CD$,\\\\\n$AB=\\frac{CD}{\\sqrt{5}-2}=(\\sqrt{5}+2)CD$,\\\\\nsince $AB=AD+BD+CD=\\frac{\\sqrt{5}+1}{2}AB+\\frac{\\sqrt{5}+1}{2}AB+CD=\\sqrt{5}+1+CD$,\\\\\nthus $(\\sqrt{5}+2)CD=\\sqrt{5}+1+CD$,\\\\\ntherefore $(\\sqrt{5}+1)CD=\\sqrt{5}+1$,\\\\\nsolving this gives $CD=\\boxed{1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991847": { -"question": "As shown in the figure, within a square grid with a side length of 1, where points A, B, C, and D are all located at the grid points, and line segments $AB$ and $CD$ intersect at point E, what is the value of $\\frac{AE}{BE}$?", -"image_file_name": "7056088", -"image": [ -"math/52991847_313.png" -], -"solution": "\\textbf{Solution:} We have $AD=\\sqrt{1+4}=\\sqrt{5}$, $BC=\\sqrt{16+4}=2\\sqrt{5}$,\\\\\nsince it is known from the lattice points that $AD \\parallel BC$,\\\\\nit follows that $\\triangle ADE \\sim \\triangle BCE$,\\\\\ntherefore $\\frac{AE}{BE}=\\frac{AD}{BC}=\\frac{\\sqrt{5}}{2\\sqrt{5}}=\\boxed{\\frac{1}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52992231": { -"question": "As shown in the figure, $l_{1} \\parallel l_{2}$, $l_{2} \\parallel l_{3}$, line $a$ and $b$ intersect $l_{1}$, $l_{2}$, $l_{3}$ at points A, B, C and points D, E, F respectively. If $AB = 3$, $DE = 2$, $BC = 6$, what is the value of $EF$?", -"image_file_name": "7056088", -"image": [ -"math/52992231_323.png" -], -"solution": "\\textbf{Solution}: Since $l_{1} \\parallel l_{2} \\parallel l_{3}$,\\\\\nit follows that $\\frac{AB}{BC}=\\frac{DE}{EF}$,\\\\\nthus $\\frac{3}{6}=\\frac{2}{EF}$\\\\\nSolving yields: EF=\\boxed{4}", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991515": { -"question": "As shown in the figure, in parallelogram $ABCD$, point $E$ is a point on side $BC$, and $AE$ and $BD$ intersect at point $F$. If $\\angle DAF = \\angle ABD$, $\\frac{AF}{FE} = \\frac{3}{2}$, and $BE = \\sqrt{15}$, what is the length of $DF$?", -"image_file_name": "7056088", -"image": [ -"math/52991515_337.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a parallelogram, and $AD\\parallel BC$, with $\\frac{AF}{FE}=\\frac{3}{2}$,\\\\\nit follows that $\\triangle ADF\\sim \\triangle EBF$,\\\\\nthus $\\frac{AF}{EF}=\\frac{AD}{EB}=\\frac{DF}{BF}=\\frac{3}{2}$,\\\\\nalso, since $BE=\\sqrt{15}$,\\\\\nthen $AD=\\frac{3}{2}BE=\\frac{3\\sqrt{15}}{2}$, and $BF=\\frac{2}{3}DF$\\\\\nGiven $\\angle DAF=\\angle ABD=\\angle BEA$,\\\\\nit implies that $\\triangle ABD\\sim \\triangle FEB$,\\\\\nthus $\\frac{AD}{BF}=\\frac{BD}{BE}$,\\\\\nwhich means $\\frac{AD}{\\frac{2}{3}DF}=\\frac{BF+DF}{BE}=\\frac{\\frac{2}{3}DF+DF}{BE}$,\\\\\nhence $\\frac{\\frac{3\\sqrt{15}}{2}}{\\frac{2}{3}DF}=\\frac{\\frac{5}{3}DF}{\\sqrt{15}}$,\\\\\nsolving gives $DF=\\boxed{\\frac{9}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991371": { -"question": "As shown in the figure, in the circle $\\odot O$ with a radius of $6\\, \\text{cm}$, $C$ and $D$ are the trisection points of diameter $AB$, with points $E$ and $F$ located on the semicircles on either side of $AB$, respectively, where $\\angle BCE = \\angle BDF = 60^\\circ$. By connecting $AE$ and $BF$, what is the area of the two shaded regions in the figure in cm$^{2}$?", -"image_file_name": "7056088", -"image": [ -"math/52991371_340.png" -], -"solution": "\\textbf{Solution:} Construct the axial symmetric figure of $\\triangle DBF$ as $\\triangle CAG$, and draw $AM \\perp CG$, $ON \\perp CE$, \\\\\nSince $\\triangle DBF$ and its axial symmetric figure $\\triangle CAG$, \\\\\nBecause points C and D are trisection points of the diameter AB, then point H coincides with point C \\\\\n$\\therefore \\triangle ACG \\cong \\triangle BDF$, \\\\\n$\\therefore \\angle ACG = \\angle BDF = 60^\\circ$, \\\\\nSince $\\angle ECB = 60^\\circ$, \\\\\n$\\therefore$ Points G, C, and E are collinear, \\\\\nSince $AM \\perp CG$ and $ON \\perp CE$, \\\\\n$\\therefore AM \\parallel ON$, \\\\\n$\\therefore \\frac{AM}{ON} = \\frac{AC}{OC}$, \\\\\nIn $\\triangle ONC$, $\\angle OCN = 60^\\circ$, \\\\\n$\\therefore ON = \\sin \\angle OCN \\cdot OC = \\frac{\\sqrt{3}}{2} \\cdot OC$, \\\\\nSince $OC = OA - AC = 6 - 12 \\div 3 = 2$, \\\\\n$\\therefore ON = \\frac{\\sqrt{3}}{2} \\times 2 = \\sqrt{3}$, \\\\\nSimilarly: $AM = 2\\sqrt{3}$, \\\\\nSince $ON \\perp GE$, \\\\\n$\\therefore NE = GN = \\frac{1}{2}GE$, \\\\\nConnect OE, \\\\\nIn $\\triangle ONE$, $NE = \\sqrt{OE^2 - ON^2} = \\sqrt{6^2 - (\\sqrt{3})^2} = \\sqrt{33}$, \\\\\n$\\therefore GE = 2NE = 2\\sqrt{33}$, \\\\\n$\\therefore S_{\\triangle AGE} = \\frac{1}{2}GE \\cdot AM = \\frac{1}{2} \\times 2\\sqrt{3} \\times 2\\sqrt{33} = 6\\sqrt{11}$, \\\\\n$\\therefore$ The total area of the two shaded parts in the figure is $\\boxed{6\\sqrt{11}}$.", -"solution_image": [ -"solution_images/52991371_340.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52977898": { -"question": "As shown in the figure, the edge $DE$ of the rectangle $DEFG$ lies on the edge $BC$ of $\\triangle ABC$, with vertices $G$ and $F$ located on edges $AB$ and $AC$, respectively. Given that $BC=6\\,cm$, $DE=3\\,cm$, and $EF=2\\,cm$, what is the area of $\\triangle ABC$ in $cm^{2}$?", -"image_file_name": "7056088", -"image": [ -"math/52977898_3513.png" -], -"solution": "\\textbf{Solution:} Let $AH \\perp BC$ at $H$, and intersect $GF$ at $M$, as shown in the figure,\\\\\nthen $MH=EF=2\\,cm$,\\\\\nsince quadrilateral $DEFG$ is a rectangle,\\\\\nthus $GF\\parallel BC$, $DG=EF=2\\,cm$, $GF=DE=3\\,cm$,\\\\\nsince $GF\\parallel BC$,\\\\\nthus $\\triangle AGF\\sim \\triangle ABC$,\\\\\ntherefore $\\frac{AM}{AH}=\\frac{GF}{BC}$,\\\\\nthat is $\\frac{AM}{AM+2}=\\frac{3}{6}$,\\\\\nsolving this, we get: $AM=2\\,cm$,\\\\\nthus $AH=AM+MH=4\\,cm$,\\\\\ntherefore, the area of $\\triangle ABC$ $=\\frac{1}{2}BC \\cdot AH=\\frac{1}{2} \\times 6 \\times 4 = \\boxed{12}\\,\\left(cm^{2}\\right)$.", -"solution_image": [ -"solution_images/52977898_352.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977308": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, the net of a cube with edge length of 1 has two edges respectively on $AC$, $BC$, and two vertices on the hypotenuse $AB$. What is the area of $\\triangle ABC$? ", -"image_file_name": "7056088", -"image": [ -"math/52977308_366.png" -], -"solution": "\\textbf{Solution:}\\\\\nFrom the given information, we have: $DE \\parallel MF$,\\\\\n$\\therefore \\triangle BDE \\sim \\triangle BMF$,\\\\\n$\\therefore \\frac{BD}{BM} = \\frac{DE}{MF}$, which gives $\\frac{BD}{BD+1} = \\frac{2}{4}$,\\\\\nSolving gives $BD=1$,\\\\\nSimilarly, we find that $AN=6$;\\\\\nFurthermore, since quadrilateral $DENC$ is a rectangle,\\\\\n$\\therefore DE=CN=2$, $DC=EN=3$,\\\\\n$\\therefore BC=BD+DC=4$, $AC=CN+AN=8$,\\\\\n$\\therefore$ The area of $\\triangle ABC$ $= BC \\times AC \\div 2 = 4 \\times 8 \\div 2 = \\boxed{16}$.", -"solution_image": [ -"solution_images/52977308_360.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977733": { -"question": "As shown in the figure, $AD \\parallel EB \\parallel FC$, $AB = 2BC$, $DF = 6$. What is the length of $DE$?", -"image_file_name": "7056088", -"image": [ -"math/52977733_373.png" -], -"solution": "\\textbf{Solution}: Since $AD\\parallel EB\\parallel FC$ and $AB=2BC$,\\\\\nit follows that $\\frac{DE}{EF}=\\frac{AB}{BC}$. Therefore, $\\frac{DE}{EF}=\\frac{2BC}{BC}=2$,\\\\\nGiven $DF=DE+EF=6$,\\\\\nit results in $DE=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977734": { -"question": "As shown in the figure, $BC$ bisects $\\angle ABD$, $\\angle A = \\angle BCD$. If $AB = 4$ and $BD = 6$, what is the length of $BC$?", -"image_file_name": "7056088", -"image": [ -"math/52977734_386.png" -], -"solution": "\\textbf{Solution:} Since $BC$ bisects $\\angle ABD$, \\\\\nit follows that $\\angle ABC = \\angle CBD$, \\\\\nMoreover, since $\\angle A = \\angle BCD$, \\\\\nit follows that $\\triangle ABC \\sim \\triangle CBD$,\\\\\nthus, $\\frac{AB}{BC} = \\frac{BC}{BD}$, \\\\\nGiven $AB = 4$ and $BD = 6$, \\\\\nit follows that $BC^{2} = AB \\times BD = 4 \\times 6 = 24$, \\\\\nhence, $BC = \\boxed{2\\sqrt{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977968": { -"question": "As illustrated in the figure, within $ \\triangle ABC$, D is the midpoint of AB. A line passing through D intersects AC at E and intersects the extension of BC at F. When $ BF=9$ and $ CF=4$, what is the value of $ \\frac{AE}{EC}$?", -"image_file_name": "7056088", -"image": [ -"math/52977968_394.png" -], -"solution": "\\textbf{Solution:} Construct $CM\\parallel AB$ through $C$, intersecting $DF$ at point $M$,\\\\\n$\\therefore$ $\\triangle CME\\sim \\triangle ADE$, $\\triangle FMC\\sim \\triangle FDB$,\\\\\n$\\therefore$ $\\frac{AE}{EC}=\\frac{AD}{CM}$, $\\frac{BD}{CM}=\\frac{BF}{CF}$,\\\\\nMoreover, $\\because$ $AD=BD$,\\\\\n$\\therefore$ $\\frac{AE}{EC}=\\frac{BF}{CF}$,\\\\\n$\\because$ $BF=9$, $CF=4$,\\\\\n$\\therefore$ $\\frac{AE}{EC}=\\boxed{\\frac{9}{4}}$.", -"solution_image": [ -"solution_images/52977968_392.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977964": { -"question": "As shown in the figure, points $D$ and $E$ are the midpoints of $AB$ and $AC$, respectively. What is the ratio of the area of $\\triangle ADE$ to the area of the quadrilateral $BCED$?", -"image_file_name": "7056088", -"image": [ -"math/52977964_405.png" -], -"solution": "Solution: Since points $D$ and $E$ are the midpoints of $AB$ and $AC$ respectively, \\\\\n$\\therefore$ $DE=\\frac{1}{2}BC$, i.e., $DE$ is the midline of $\\triangle ABC$, \\\\\nand $\\triangle ADE \\sim \\triangle ABC$, \\\\\n$\\therefore$ $\\frac{AD}{AB}=\\frac{1}{2}$, \\\\\nbased on the fact that the area ratio of similar triangles equals the square of the similarity ratio, \\\\\n$\\therefore$ $S_{\\triangle ADE} : S_{\\triangle ABC} = 1 : 4$, thus $S_{\\text{quadrilateral} BCED} = S_{\\triangle ABC} - S_{\\triangle ADE}$, \\\\\n$\\therefore$ $S_{\\triangle ADE} : S_{\\text{quadrilateral} BCED} = 1 : (4-1) = 1 : 3 = \\boxed{\\frac{1}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977800": { -"question": "As shown in the figure, it is known that in the right $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=6$, $BC=4$. Rotating $\\triangle ABC$ clockwise by $90^\\circ$ around the right angle vertex $C$ yields $\\triangle DEC$. If the point $F$ is the midpoint of $DE$, and $AF$ is connected, what is the length of $AF$?", -"image_file_name": "7056088", -"image": [ -"math/52977800_410.jpeg" -], -"solution": "\\textbf{Solution:} Let FG$\\perp$AC, \\\\\naccording to the properties of rotation, EC=BC=4, DC=AC=6, $\\angle$ACD=$\\angle$ACB=$90^\\circ$, \\\\\nsince point F is the midpoint of DE, \\\\\ntherefore FG$\\parallel$CD \\\\\ntherefore $\\triangle EFG\\sim \\triangle EDC$ \\\\\ntherefore $\\frac{GF}{CD}=\\frac{EF}{ED}=\\frac{EG}{EC}=\\frac{1}{2}$ \\\\\ntherefore GF=$\\frac{1}{2}$CD=$\\frac{1}{2}$AC=3 \\\\\nEG=$\\frac{1}{2}$EC=$\\frac{1}{2}$BC=2 \\\\\nsince AC=6, EC=BC=4 \\\\\ntherefore AE=2 \\\\\ntherefore AG=4 \\\\\nAccording to the Pythagorean theorem, $AF=\\sqrt{AG^{2}+GF^{2}}=\\sqrt{4^{2}+3^{2}}=\\boxed{5}$", -"solution_image": [ -"solution_images/52977800_410.jpeg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977929": { -"question": "Given that $\\triangle ABC \\sim \\triangle A'B'C'$, with corresponding vertices $A$, $B$, $C$ and $A'$, $B'$, $C'$, $AD$ and $A'D'$ are respectively the medians to sides $BC$ and $B'C'$. If $BC=3$, $AD=6$, and $B'C'=2$, what is the length of $A'D'$?", -"image_file_name": "7056088", -"image": [], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\sim \\triangle A'B'C'$, with $AD$ and $A'D'$ being their corresponding medians, and given $BC=3$, $AD=6$, $B'C'=2$,\\\\\n$\\therefore BC : B'C' = AD : A'D'$,\\\\\n$\\therefore 6 : A'D' = 3 : 2$,\\\\\ntherefore, the length of $A'D'$ is $\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977738": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=6$, $BC=2$. Point $B$ is on line $l$, and the distance from point $A$ to line $l$, denoted as $AE=4$. What is the distance from point $C$ to line $l$, denoted as $CF$?", -"image_file_name": "7056088", -"image": [ -"math/52977738_435.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rectangle,\\\\\nit follows that $\\angle ABC=90^\\circ$,\\\\\nhence $\\angle ABE+\\angle FBC=90^\\circ$,\\\\\nsince $\\angle EAB+\\angle ABE=90^\\circ$,\\\\\nit follows that $\\angle EAB=\\angle FBC$,\\\\\nalso, since $\\angle AEB=\\angle BFC$,\\\\\nit follows that $\\triangle AEB\\sim \\triangle BFC$,\\\\\ntherefore $\\frac{AB}{BC}=\\frac{AE}{BF}$, that is, $\\frac{6}{2}=\\frac{4}{BF}$,\\\\\nhence $BF=\\frac{4}{3}$,\\\\\nthus $CF=\\sqrt{BC^{2}-BF^{2}}=\\boxed{\\frac{2\\sqrt{5}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977770": { -"question": "As shown in the figure, on the graph of the inverse proportion function $y=\\frac{2}{3x}$, there is a moving point A. Connect AO and extend it to intersect another branch of the graph at point B. In the fourth quadrant, there is a point C, satisfying $AC=BC$. As point A moves, point C always moves on the graph of the function $y=\\frac{k}{x}$. If $\\tan\\angle CAB=3$, what is the value of $k$?", -"image_file_name": "7056088", -"image": [ -"math/52977770_453.png" -], -"solution": "\\textbf{Solution:} Connect OC, and draw AE $\\perp$ y-axis at point E, and draw CF $\\perp$ x-axis at point F, as shown in the diagram.\\\\\nDue to the symmetry of line AB and the inverse function $y=\\frac{2}{3x}$, points A and B are symmetrical about point O,\\\\\n$\\therefore$ AO = BO,\\\\\nAlso, since AC = BC,\\\\\n$\\therefore$ CO $\\perp$ AB.\\\\\nSince $\\angle$AOE + $\\angle$AOF = $90^\\circ$, and $\\angle$AOF + $\\angle$COF = $90^\\circ$,\\\\\n$\\therefore$ $\\angle$AOE = $\\angle$COF,\\\\\nAlso, since $\\angle$AEO = $\\angle$CFO = $90^\\circ$,\\\\\n$\\therefore$ $\\triangle AOE \\sim \\triangle COF$,\\\\\n$\\therefore$ $\\frac{AE}{CF} = \\frac{OE}{OF} = \\frac{OA}{OC}$,\\\\\nSince $\\tan \\angle$CAB = $\\frac{OC}{OA}$ = 3,\\\\\n$\\therefore$ CF = 3AE, OF = 3OE,\\\\\nAlso, since AE$\\cdot$OE = $\\left|\\frac{2}{3}\\right|$ = $\\frac{2}{3}$, CF$\\cdot$OF = $|k|$,\\\\\n$\\therefore$ |k| = 6,\\\\\n$\\therefore$ k = $\\pm$6,\\\\\nSince point C is in the fourth quadrant,\\\\\n$\\therefore$ k = \\boxed{-6}.", -"solution_image": [ -"solution_images/52977770_450.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52977896": { -"question": "Given $ \\triangle ABC\\sim \\triangle A_1B_1C_1$, with vertices $A$, $B$, $C$ corresponding to $A_1$, $B_1$, $C_1$ respectively, and $AB: A_1B_1=3:5$. Let $E$ and $E_1$ be the midpoints of side $AC$ and $A_1C_1$ respectively. If $BE=1$, what is the length of $B_1E_1$?", -"image_file_name": "7056088", -"image": [], -"solution": "\\textbf{Solution:}\n\nSince $\\triangle ABC\\sim \\triangle A_1B_1C_1$, with $AB\\colon A_1B_1=3\\colon 5$,\n\nit follows that the ratio between corresponding medians $BE$ and $B_1E_1$ is $3\\colon 5$,\n\nthus $1\\colon B_1E_1=3\\colon 5$,\n\nresulting in $B_1E_1=\\boxed{\\frac{5}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977901": { -"question": "As shown in the figure, in rectangle $ABCD$, $M$ and $N$ are points on sides $AB$ and $BC$, respectively. After folding the rectangle $ABCD$ along line $MN$, point $B$ falls on point $E$ on side $AD$. If $AB=4$, $AD=6$, and $AE=2\\sqrt{2}AM$, then what is the length of $CN$?", -"image_file_name": "7056088", -"image": [ -"math/52977901_4714.png" -], -"solution": "\\textbf{Solution:} Given the property of folding, we know that $BM=EM$.\\\\\nLet $AM=x$, then $AE=2\\sqrt{2}x$, $BM=EM=AB-AM=4-x$,\\\\\nsince in $\\triangle AEM$, $AM^2+AE^2=EM^2$,\\\\\ntherefore $x^2+(2\\sqrt{2}x)^2=(4-x)^2$,\\\\\nsolving this, we get $x_1=1$, $x_2=-2$ (discard),\\\\\nhence $AM=1$, $AE=2\\sqrt{2}$.\\\\\nAs illustrated, draw $NF\\perp AD$ at point F through point N.\\\\\nTherefore, $\\angle MAE=\\angle EFN=90^\\circ$, $NF=AB=4$, $BN=AF$,\\\\\ntherefore, $\\angle FEN+\\angle FNE=90^\\circ$.\\\\\nSince $\\angle FEN+\\angle AEM=90^\\circ$,\\\\\ntherefore, $\\angle AEM=\\angle FNE$,\\\\\ntherefore, $\\triangle MAE\\sim \\triangle EFN$,\\\\\ntherefore, $\\frac{AM}{EF}=\\frac{AE}{NF}$, that is $\\frac{1}{EF}=\\frac{2\\sqrt{2}}{4}$,\\\\\ntherefore, $EF=\\sqrt{2}$,\\\\\ntherefore, $BN=AF=AE+EF=2\\sqrt{2}+\\sqrt{2}=3\\sqrt{2}$,\\\\\ntherefore, $CN=BC-BN=6-3\\sqrt{2}$.\\\\\nThus, the answer is: $CN=\\boxed{6-3\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52977901_4711.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52977928": { -"question": "As shown in the figure, $D, E$ are two points on sides $AB, AC$ of $\\triangle ABC$, respectively, and $DE \\parallel BC$, $DE:BC = 1:3$. What is the ratio of $AD:AB$?", -"image_file_name": "7056088", -"image": [ -"math/52977928_486.png" -], -"solution": "\\textbf{Solution:} Since $DE \\parallel BC$, \\\\\nthen $\\triangle ADE \\sim \\triangle ABC$, \\\\\ntherefore $\\frac{AD}{AB} = \\frac{DE}{BC} = \\boxed{\\frac{1}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52966970": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are the midpoints of AB and AC, respectively. What is the ratio of the area of $\\triangle ADE$ to the area of the quadrilateral DBCE?", -"image_file_name": "7056088", -"image": [ -"math/52966970_492.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, points $D$ and $E$ are the midpoints of $AB$ and $AC$ respectively,\\\\\nthus $\\frac{AD}{AB}=\\frac{1}{2}$,\\\\\ntherefore $\\frac{{S}_{\\triangle ADE}}{{S}_{\\triangle ABC}}={\\left(\\frac{AD}{AB}\\right)}^{2}=\\frac{1}{4}$,\\\\\nthus $\\frac{{S}_{\\triangle ADE}}{{S}_{\\text{quadrilateral }DBCE}}=\\frac{1}{3}$,\\\\\nmeaning the ratio of the area of $\\triangle ADE$ to that of quadrilateral DBCE is $\\boxed{1\\colon 3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52963742": { -"question": "As shown in the diagram, points D and E are the midpoints of AB and AC, respectively. What is the ratio of $S_{\\triangle ADE}$ to $S_{\\text{quadrilateral} BCED}$?", -"image_file_name": "7056088", -"image": [ -"math/52963742_500.png" -], -"solution": "\\textbf{Solution:} Since points D and E are the midpoints of AB and AC respectively,\\\\\nit follows that DE$\\parallel$BC,\\\\\nwhich implies $\\triangle ADE \\sim \\triangle ABC$,\\\\\nthus, DE$\\colon$ BC=1$\\colon$ 2,\\\\\nleading to $S_{\\triangle ADE}\\colon S_{\\triangle ABC}=1\\colon 4$,\\\\\nhence, $S_{\\triangle ADE}\\colon S_{\\text{quadrilateral} BCED}=1\\colon 3$.\\\\\nTherefore, the answer is: $S_{\\triangle ADE} \\colon S_{\\text{quadrilateral} BCED}=\\boxed{1\\colon 3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52963745": { -"question": "As shown in the figure, in rectangle $ABCD$ and rectangle $AEGH$, the ratios $AD:AB=AH:AE=1:2$. What are the ratios of $DH:CG:BE$?", -"image_file_name": "7056088", -"image": [ -"math/52963745_510.png" -], -"solution": "\\textbf{Solution:} Connect AC, AG,\\\\\n$\\because$ in rectangles ABCD and AEGH,\\\\\n$\\therefore$ $\\angle$DAH+$\\angle$HAB=90$^\\circ$, $\\angle$BAE+$\\angle$HAB=90$^\\circ$, HG=AE,\\\\\n$\\therefore$ $\\angle$DAH=$\\angle$BAE,\\\\\n$\\because$ AD$\\colon$AB=AH$\\colon$AE=1$\\colon$2,\\\\\n$\\therefore$ $\\triangle$ADH$\\sim$ $\\triangle$ABE,\\\\\n$\\therefore$ DH$\\colon$BE=AD$\\colon$AB=1$\\colon$2,\\\\\nIn right $\\triangle$AHG, HG=2AH,\\\\\n$\\therefore$ AG=$\\sqrt{AH^2+HG^2}=\\sqrt{5}AH$,\\\\\n$\\therefore$ AH$\\colon$AG$\\colon$AE=1$\\colon\\sqrt{5}\\colon$2,\\\\\nWhen AH overlaps with DA, rotate rectangle AHGE around point A to rectangle AHGE,\\\\\n$\\therefore$ $\\triangle$ACG$\\sim$ $\\triangle$ABE$\\sim$ $\\triangle$ADH,\\\\\n$\\therefore$ $\\frac{HD}{CG}=\\frac{AH}{AG}=\\frac{1}{\\sqrt{5}}$, $\\frac{CG}{BE}=\\frac{AG}{AE}=\\frac{\\sqrt{5}}{2}$\\\\\n$\\therefore$ DH$\\colon$CG$\\colon$BE=1$\\colon\\sqrt{5}\\colon$2.\\\\\nThus, the answer is: DH$\\colon$CG$\\colon$BE=$\\boxed{1\\colon\\sqrt{5}\\colon2}$.", -"solution_image": [ -"solution_images/52963745_510.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52942171": { -"question": "As shown in the figure, it is known that in quadrilateral $ABCD$, $BD$ bisects $\\angle ABC$, $AB=4$, and $BC=9$. If $\\triangle ABD$ is similar to $\\triangle DBC$, what is the length of $BD$?", -"image_file_name": "7056088", -"image": [ -"math/52942171_528.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABD \\sim \\triangle DBC$,\\\\\nit follows that $\\frac{BD}{BC}=\\frac{AB}{BD}$,\\\\\nwhich implies $BD^{2}=AB \\cdot BC=4 \\times 9=36$,\\\\\ntherefore, $BD=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52942173": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $CD$ is the median to the hypotenuse $AB$. A line through point A perpendicular to $CD$ intersects $CD$ and $CB$ at points E and F, respectively. If $\\tan B = \\frac{2}{3}$, what is the value of $\\frac{AE}{EF}$?", -"image_file_name": "7056088", -"image": [ -"math/52942173_5310.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle ACB=90^\\circ$ and CD is the median to the hypotenuse AB,\\\\\n$\\therefore$ CD=BD, $\\angle ACD+\\angle BCD=90^\\circ$,\\\\\n$\\therefore$ $\\angle BCD=\\angle B$,\\\\\n$\\therefore$ $\\tan\\angle B=\\tan\\angle BCD=\\frac{EF}{CE}=\\frac{2}{3}$,\\\\\n$\\therefore$ let EF=2x, CE=3x,\\\\\n$\\because$ AE$\\perp$CD,\\\\\n$\\therefore$ $\\angle AEC=\\angle CEF=90^\\circ$,\\\\\n$\\therefore$ $\\angle CAF+\\angle ACD=90^\\circ$,\\\\\n$\\therefore$ $\\angle CAF=\\angle BCD$,\\\\\n$\\therefore$ $\\triangle AEC\\sim \\triangle CEF$,\\\\\n$\\therefore$ $\\frac{AE}{CE}=\\frac{CE}{EF}$,\\\\\n$\\therefore$ AE=$\\frac{CE^2}{EF}=\\frac{9}{2}x$,\\\\\n$\\therefore$ $\\frac{AE}{EF}=\\frac{\\frac{9}{2}x}{2x}=\\boxed{\\frac{9}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52942169": { -"question": "As shown in the figure, it is known that trapezoid $ABCD$ satisfies $AD \\parallel BC$. The diagonal $AC$ intersects the midline $EF$ at point $G$. If $AD = 3$ and $EF = 5$, what is the length of $EG$?", -"image_file_name": "7056088", -"image": [ -"math/52942169_547.png" -], -"solution": "\\textbf{Solution:} Since $EF$ is the midline of trapezoid $ABCD$,\\\\\nit follows that $CF=DF$,\\\\\nand since $AD\\parallel BC$,\\\\\nit also follows that $\\triangle CFG\\sim \\triangle CDA$,\\\\\nthus $\\frac{GF}{AD}=\\frac{CF}{CD}=\\frac{1}{2}$,\\\\\ntherefore $GF=\\frac{1}{2}AD=\\frac{3}{2}$,\\\\\nhence $EG=EF-GF=5-\\frac{3}{2}=\\boxed{\\frac{7}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52936222": { -"question": "As shown in the figure, D is a point on the extension of side BC of $\\triangle ABC$, and $CD=BC$, with line DE intersecting AB and AC at points E and F, respectively. If $EA = EB$, then $\\frac{AF}{AC}=?$.", -"image_file_name": "7056088", -"image": [ -"math/52936222_551.png" -], -"solution": "\\textbf{Solution:} Construct line $EG \\parallel BD$ through point $E$, intersecting $AC$ at point $G$,\\\\\nsince $AE=BE$ and $BC=CD$,\\\\\ntherefore $AB=2AE$,\\\\\ntherefore $\\triangle AEG \\sim \\triangle ABC$,\\\\\ntherefore $\\frac{AE}{AB}=\\frac{AG}{AC}=\\frac{EG}{BC}=\\frac{EG}{CD}=\\frac{1}{2}$,\\\\\nsince $EG\\parallel BD$,\\\\\ntherefore $\\triangle EFG \\sim \\triangle DFC$,\\\\\ntherefore $\\frac{EG}{CD}=\\frac{GF}{CF}=\\frac{1}{2}$,\\\\\ntherefore $CF=2GF$,\\\\\ntherefore $AG=CG=3GF$,\\\\\ntherefore $AF=AG+CF=4GF$,\\\\\ntherefore $AC=2CG=6GF$,\\\\\ntherefore $\\frac{AF}{AC}=\\frac{4GF}{6GF}=\\boxed{\\frac{2}{3}}$.", -"solution_image": [ -"solution_images/52936222_550.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52933996": { -"question": "As shown in the diagram, it demonstrates the principle of pinhole imaging, where $OA=30\\,cm$, $OC=10\\,cm$, and $AB\\parallel CD$. If the height of the object $AB$ is $15\\,cm$, what is the height of the image $CD$ in $cm$?", -"image_file_name": "7056088", -"image": [ -"math/52933996_567.png" -], -"solution": "\\textbf{Solution:} Since AB $\\parallel$ CD,\\\\\ntherefore $\\frac{OA}{OC}=\\frac{AB}{CD}$,\\\\\nthus $\\frac{30}{10}=\\frac{15}{CD}$,\\\\\ntherefore CD = \\boxed{5} cm.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53729180": { -"question": "As shown in the figure, the sides of square $ABCD$ and square $DEFG$ are respectively $3$ and $2$, with points $E$ and $G$ located on sides $AD$ and $CD$, respectively. Point $H$ is the midpoint of $BF$. Connect $HG$. What is the length of $HG$?", -"image_file_name": "7054431", -"image": [ -"math/53729180_436.png" -], -"solution": "\\textbf{Solution:} Extend $GF$ to intersect $AB$ at $M$, and draw $HN \\perp GM$ at $N$,\\\\\nsince squares $ABCD$ and $DEFG$,\\\\\nthus $GM \\perp AB$, $FM=3-2=1$, $BM=3-2=1$,\\\\\nthus $FM=BM$, $NH\\parallel BM$,\\\\\nsince $H$ is the midpoint of $BF$,\\\\\nthus $NH=FN=\\frac{1}{2}BM=\\frac{1}{2}$,\\\\\nthus $GN=GF+FN=\\frac{5}{2}$,\\\\\nthus $GH=\\sqrt{GN^{2}+NH^{2}}=\\sqrt{\\left(\\frac{5}{2}\\right)^{2}+\\left(\\frac{1}{2}\\right)^{2}}=\\boxed{\\frac{\\sqrt{26}}{2}}$.", -"solution_image": [ -"solution_images/53729180_430.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53728747": { -"question": "As shown in the figure, in the hexagon $ABCDEF$, if $\\angle 1 + \\angle 2 + \\angle 3 = 140^\\circ$, then $\\angle 4 + \\angle 5 + \\angle 6 = ?$ degrees.", -"image_file_name": "7054431", -"image": [ -"math/53728747_440.png" -], -"solution": "\\textbf{Solution:} Given that the sum of the exterior angles of any polygon equals $360^\\circ$, we have $\\angle 1+\\angle 2+\\angle 3+\\angle 4+\\angle 5+\\angle 6=360^\\circ$,\\\\\nsince $\\angle 1+\\angle 2+\\angle 3=140^\\circ$,\\\\\ntherefore $\\angle 4+\\angle 5+\\angle 6=360^\\circ-140^\\circ=\\boxed{220^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53728940": { -"question": "As shown in the figure, in the rectangle $ABCD$, $AB = 8$, $AD = 10$. Point $E$ is on the side $DC$. The triangle $ADE$ is folded along the straight line $AE$, and point $E$ precisely falls on point $F$ on the side $BC$. What is the length of $CE$?", -"image_file_name": "7054431", -"image": [ -"math/53728940_450.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\nit follows that CD = AB = 8, BC = AD = 10, and $\\angle B = \\angle D = \\angle C = 90^\\circ$\\\\\nSince $\\triangle ADE$ is folded along the straight line AE, with point D exactly landing on point F on side BC,\\\\\nit follows that AF = AD = 10, and EF = DE\\\\\nIn $\\triangle ABF$, BF = $\\sqrt{AF^2 - AB^2} = \\sqrt{10^2 - 8^2} = 6$\\\\\nTherefore, CF = BC - BF = 10 - 6 = 4,\\\\\nLet CE = x, then DE = EF = 8 - x\\\\\nIn $\\triangle CEF$,\\\\\nsince $CF^2 + CE^2 = EF^2$,\\\\\nit follows that $4^2 + x^2 = (8 - x)^2$, solving for x gives $x = \\boxed{3}$,\\\\\nTherefore, the length of CE is 3.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53729080": { -"question": "As shown in the figure, the diagonals $AC$ and $BD$ of rectangle $ABCD$ intersect at point $O$. $AE$ bisects $\\angle BAD$ and intersects $BC$ at point $E$. Connect $OE$. If $OE \\perp BC$ and $OE = 1$, what is the length of $AC$?", -"image_file_name": "7054431", -"image": [ -"math/53729080_4610.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rectangle, \\\\\n$\\therefore \\angle ABC=\\angle BAD=90^\\circ$, $OA=OC$, $OB=OD$, $AC=BD$, \\\\\n$\\therefore OB=OC$, \\\\\nSince $OE\\perp BC$, \\\\\n$\\therefore BE=CE$, \\\\\n$\\therefore OE$ is the median of $\\triangle ABC$, \\\\\n$\\therefore AB=2OE=2$, \\\\\nSince $AE$ bisects $\\angle BAD$, \\\\\n$\\therefore \\angle BAE=45^\\circ$, \\\\\n$\\therefore \\triangle ABE$ is an isosceles right triangle, \\\\\n$\\therefore BE=AB=2$, \\\\\n$\\therefore BC=2BE=4$, \\\\\n$\\therefore AC=\\sqrt{AB^{2}+BC^{2}}=\\sqrt{2^{2}+4^{2}}=\\boxed{2\\sqrt{5}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53729246": { -"question": "In the rhombus $ABCD$, the diagonals are $AC=6$ and $BD=8$. Point $E$ is the midpoint of side $AB$, and points $F$ and $P$ are moving points on $BC$ and $AC$, respectively. What is the minimum value of $PE+PF$?", -"image_file_name": "7054431", -"image": [ -"math/53729246_473.png" -], -"solution": "\\textbf{Solution:} Let AC and BD intersect at point H. Construct the symmetric point $E'$ of E with respect to AC. Draw a perpendicular from $E'$ to AD, intersecting BC at point $F'$. Connect $E'F'$ and $E'P$ as shown in the figure.\\\\\nBy the property of symmetry, we know that $E'P=PE$, thus PE+PF=$E'P+PF$.\\\\\nThen, when $E'$, P, and F are collinear and $E'P\\perp BC$, $E'P+PF$ is minimized,\\\\\nTherefore, the length of $E'F'$ is the minimum value of PE+PF,\\\\\n$\\because$ Quadrilateral ABCD is a rhombus with diagonals AC=6 and BD=8,\\\\\n$\\therefore$ AC$\\perp$BD, AH=HC=3, BH=HD=4,\\\\\n$\\therefore AD=\\sqrt{AH^2+DH^2}=\\sqrt{3^2+4^2}=5$,\\\\\n$\\because$ The area of the rhombus $S_{\\text{rhombus }ABCD}=\\frac{1}{2}\\times AC\\times BD=AD\\times E'F'$,\\\\\n$\\therefore E'F'=\\frac{AC\\times BD}{2AD}=\\frac{6\\times 8}{2\\times 5}=\\frac{24}{5}$,\\\\\nTherefore, the answer is: $\\boxed{\\frac{24}{5}}$.", -"solution_image": [ -"solution_images/53729246_475.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53729285": { -"question": "As shown in the figure, in square $ABCD$, $G$ is a point on diagonal $BD$, $GE \\perp CD$, $GF \\perp BC$, with $E$ and $F$ being the respective foot of the perpendiculars. Connect $EF$. Let $M$ and $N$ be the midpoints of $AB$ and $BG$ respectively. If $EF=5$, what is the length of $MN$?", -"image_file_name": "7054431", -"image": [ -"math/53729285_480.png" -], -"solution": "\\textbf{Solution:} Connect AG and CG, \\\\\n$\\because$ In the square ABCD, $\\angle$BCD$=90^\\circ$, \\\\\n$\\because$ GE$\\perp$CD, GF$\\perp$BC, \\\\\n$\\therefore$ Quadrilateral CFGE is a rectangle, \\\\\n$\\therefore$ CG$=EF=5$, \\\\\n$\\because$ AB$=BC$, $\\angle$ABD$=\\angle$CBD$=45^\\circ$, \\\\\n$\\because$ BG$=BG$, \\\\\n$\\therefore$ $\\triangle ABG\\cong \\triangle CBG$ (SAS), \\\\\n$\\therefore$ AG$=CG=5$, \\\\\n$\\because$ M and N are respectively the midpoints of AB and BG, \\\\\n$\\therefore$ MN$=\\frac{1}{2}AG=\\boxed{2.5}$, \\\\", -"solution_image": [ -"solution_images/53729285_480.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52690432": { -"question": "As shown in the figure, fold the square paper $ABCD$ along the line that passes through the midpoint of the opposite sides and then unfold it; the crease is marked as $MN$. Fold the paper again through point $B$ making point $A$ land on point $F$ on $MN$, with the crease marked as $BE$. If $FN=3$, what is the side length of the square paper?", -"image_file_name": "7054431", -"image": [ -"math/52690432_490.png" -], -"solution": "\\textbf{Solution:} Let the side length of the square be $a$. From the folding, it is known that $BN=\\frac{1}{2}a$ and $BF=AB=a$. \\\\\nIn $\\triangle BFN$, according to the Pythagorean theorem, we have $BF^2=FN^2+BN^2$, \\\\\nwhich implies: $a^2=3^2+\\left(\\frac{a}{2}\\right)^2$, \\\\\nSolving this gives: $a=2\\sqrt{3}$ or $a=-2\\sqrt{3}$ (discard this solution). \\\\\nTherefore, the answer is: $a=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52690697": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are the midpoints of AB and BC, respectively. If AC=6, what is the length of DE?", -"image_file_name": "7054431", -"image": [ -"math/52690697_501.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of $AB$ and $BC$, respectively,\\\\\ntherefore $DE$ is the midline of $\\triangle ABC$,\\\\\nand since $AC=6$,\\\\\ntherefore $DE=\\frac{1}{2}BC=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52691062": { -"question": "As shown in the figure, it is known that the area of the rhombus $ABCD$ is 24 and the area of the square $AECF$ is 18. What is the side length of the rhombus?", -"image_file_name": "7054431", -"image": [ -"math/52691062_512.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect AC and BD, intersecting at point O, \\\\\n$\\because$ the area of square AECF is 18, \\\\\n$\\therefore$ AC $= \\sqrt{18} \\times \\sqrt{2} = 6$, \\\\\n$\\therefore$ AO $= 3$, \\\\\n$\\because$ the area of diamond ABCD is 24, \\\\\n$\\therefore$ BD $= \\frac{24 \\times 2}{6} = 8$, \\\\\n$\\therefore$ BO $= 4$, \\\\\n$\\therefore$ in $\\triangle$AOB, $AB = \\sqrt{AO^{2} + BO^{2}} = \\sqrt{3^{2} + 4^{2}} = \\boxed{5}$.", -"solution_image": [ -"solution_images/52691062_510.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53729102": { -"question": "As shown in the figure, the distance from the midpoint \\(M\\) of one side of the rhombus \\(ABCD\\) to the intersection point \\(O\\) of the diagonals is \\(1.5\\, \\text{cm}\\). What is the perimeter of the rhombus \\(ABCD\\) in centimeters?", -"image_file_name": "7054431", -"image": [ -"math/53729102_523.png" -], -"solution": "\\textbf{Solution:} Let point $M$ be the midpoint of side $AB$ of rhombus $ABCD$, and let point $O$ be the midpoint of diagonal $BD$, with $OM=1.5\\,cm$, \\\\\n$\\therefore$ in $\\triangle ABD$, we have $OM=\\frac{1}{2}AD=1.5$, \\\\\n$\\therefore$ $AB=BC=CD=DA=2OM=3$, \\\\\nthus, the perimeter of the rhombus $ABCD$ is $\\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53728981": { -"question": "As shown in the figure, in square $ABCD$, point $E$ is on $AD$, and point $F$ is on $AC$, with $\\angle BFE=90^\\circ$. Line $BE$ intersects $AC$ at point $G$. If $AG=24$ and $CG=32$, what is the length of $GF$?", -"image_file_name": "7054431", -"image": [ -"math/53728981_538.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $DF$, and rotate $\\triangle BCF$ $90^\\circ$ counterclockwise about point $B$ to get $\\triangle BAM$, connect $MG$,\n\n$\\because$ Quadrilateral $ABCD$ is a square,\n\n$\\therefore \\angle BAC = \\angle DAC = \\angle ACB = 45^\\circ$, $AB=AD$, $\\angle BAD = 90^\\circ$,\n\nIn $\\triangle ABF$ and $\\triangle ADF$,\n\n$\\begin{cases}\nAB=AD\\\\\n\\angle BAC=\\angle DAC\\\\\nAF=AF\n\\end{cases}$,\n\n$\\therefore \\triangle ABF \\cong \\triangle ADF$ (SAS),\n\n$\\therefore BF=DF$, $\\angle ABF = \\angle ADF$;\n\n$\\because \\angle BFE = 90^\\circ$,\n\n$\\therefore \\angle BFE = \\angle BAD = 90^\\circ$,\n\n$\\because \\angle ABF + \\angle AEF + \\angle BFE + \\angle BAD = 360^\\circ$,\n\n$\\therefore \\angle ABF + \\angle AEF = 180^\\circ$,\n\nAlso, $\\because \\angle DEF + \\angle AEF = 180^\\circ$,\n\n$\\therefore \\angle DEF = \\angle ABF$,\n\n$\\therefore \\angle DEF = \\angle ADF$,\n\n$\\therefore EF = DF$,\n\n$\\therefore EF = BF$,\n\n$\\because \\angle BFE = 90^\\circ$,\n\n$\\therefore \\angle EBF = \\angle BEF = 45^\\circ$;\n\nFrom the rotation, we know: $\\angle BAM = \\angle BCF = 45^\\circ$, $AM=CF$, $BM=BF$, $\\angle MBF = \\angle ABC = 90^\\circ$,\n\n$\\therefore \\angle MAG = \\angle BAM + \\angle BAC = 45^\\circ + 45^\\circ = 90^\\circ$,\n\nIn $\\triangle AMG$, according to the Pythagorean theorem: $AM^2 + AG^2 = MG^2$;\n\n$\\because AM = CF = CG - GF = 32 - GF$, $AG=24$,\n\n$\\therefore (32 - GF)^2 + 24^2 = MG^2$;\n\n$\\because \\angle MBF = 90^\\circ$, $\\angle EBF = 45^\\circ$,\n\n$\\therefore \\angle MBG = 90^\\circ - \\angle EBF = 45^\\circ$,\n\n$\\therefore \\angle MBG = \\angle FBG = 45^\\circ$,\n\nIn $\\triangle MBG$ and $\\triangle FBG$,\n\n$\\begin{cases}\nBM=BF\\\\\n\\angle MBG=\\angle FBG\\\\\nBG=BG\n\\end{cases}$,\n\n$\\therefore \\triangle MBG \\cong \\triangle FBG$,\n\n$\\therefore MG = FG$,\n\n$\\therefore (32 - GF)^2 + 24^2 = GF^2$,\n\nRearranging gives: $64GF = 1600$,\n\nSolving gives $GF = \\boxed{25}$.", -"solution_image": [ -"solution_images/53728981_530.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53728977": { -"question": "As shown in the figure, in parallelogram $ABCD$, $AE \\perp BC$, $AF \\perp CD$ with perpendicular feet at $E$ and $F$ respectively, $\\angle EAF = 60^\\circ$, and $DF = 3\\,\\text{cm}$. What is the length of $AD$ in cm?", -"image_file_name": "7054431", -"image": [ -"math/53728977_545.png" -], -"solution": "\\textbf{Solution:} Since $AE \\perp BC$ and $AF \\perp CD$, and $\\angle EAF = 60^\\circ$, \\\\\nit follows that $\\angle AEC = \\angle AFC = \\angle AFD = 90^\\circ$,\\\\\nMoreover, since the sum of interior angles of quadrilateral AECF is $360^\\circ$, we get\\\\\n$\\angle C + \\angle AEC + \\angle AFC + \\angle EAF = 360^\\circ$,\\\\\nthus $\\angle C + 90^\\circ + 90^\\circ + 60^\\circ = 360^\\circ$,\\\\\ntherefore $\\angle C = 120^\\circ$,\\\\\nSince quadrilateral ABCD is a parallelogram,\\\\\nit follows that $AD \\parallel BC$,\\\\\nthus $\\angle D = 180^\\circ - \\angle C = 60^\\circ$,\\\\\ntherefore $\\angle DAF = 180^\\circ - \\angle D - \\angle AFD = 30^\\circ$.\\\\\nthus $AD = 2DF = \\boxed{6} \\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53728938": { -"question": "As shown in the figure, to measure the distance between points $A$ and $B$ on the side of a pond, Xiao Jun selects a point $P$ on one side of the pond. The midpoints of $PA$ and $PB$ are $D$ and $E$ respectively, and the length of $DE$ is $16$ meters. What is the distance between points $A$ and $B$ in meters?", -"image_file_name": "7054431", -"image": [ -"math/53728938_550.png" -], -"solution": "\\textbf{Solution:} Since D and E are the midpoints of PA and PB, respectively, \\\\\nit follows that DE is the midline of $\\triangle PAB$, \\\\\ntherefore, AB $=$ 2DE, \\\\\nsince DE $=$ 16 meters, \\\\\nit follows that AB $=$ \\boxed{32} meters.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52284940": { -"question": "As shown in the figure, in square $ABCD$, points $E$ and $F$ are the midpoints of $AD$ and $DC$, respectively. Through point $C$, construct $CM\\perp AB$ to meet the extension of $AB$ at $M$. Connect $EF$. If $CD=4, BM=2, CM=6$, then what is the length of $EF$?", -"image_file_name": "7054431", -"image": [ -"math/52284940_5610.png" -], -"solution": "\\textbf{Solution:} As illustrated in the diagram, connect AC,\n\n$\\because$ Quadrilateral ABCD is a parallelogram,\n\n$\\therefore$ AB=CD=4,\n\n$\\therefore$ AM=AB+BM=4+2=6,\n\n$\\because$ CM$\\perp$AB, CM=6,\n\n$\\therefore$ AC=$\\sqrt{AM^{2}+CM^{2}}=\\sqrt{6^{2}+6^{2}}=6\\sqrt{2}$,\n\n$\\because$ Points E and F are the midpoints of AD and CD, respectively,\n\n$\\therefore$ EF is the midline of $\\triangle ADC$,\n\n$\\therefore$ EF=$\\frac{1}{2}$AC=$\\boxed{3\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52284940_560.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52284136": { -"question": "As shown in the figure, in rhombus $ABCD$, $\\angle ABC=60^\\circ$. Quadrilateral $EFGH$ is a rectangle. If $FA=FB=2\\sqrt{2}$, what is the area of rectangle $EFGH$?", -"image_file_name": "7054431", -"image": [ -"math/52284136_576.png" -], -"solution": "\\textbf{Solution:} Draw $AM\\perp BC$ at M and $GN\\perp BC$ at N through point A and G respectively, and connect GM,\\\\\n$\\because$ Quadrilateral EFGH is a rectangle,\\\\\n$\\therefore \\angle AFB=\\angle AED=\\angle BGC=\\angle CHD=90^\\circ$,\\\\\n$\\because FA=FB=2\\sqrt{2}$,\\\\\n$\\therefore AB=\\sqrt{AF^{2}+BF^{2}}=4$, $\\angle ABF=\\angle BAF=45^\\circ$,\\\\\n$\\because$ Quadrilateral ABCD is a rhombus, $\\angle ABC=60^\\circ$,\\\\\n$\\therefore AB=BC=CD=AD$, $\\angle ABC=\\angle ADC=60^\\circ$, $\\angle BAD=\\angle BCD=120^\\circ$,\\\\\n$\\therefore \\angle CBG=15^\\circ$, $\\angle DAF=75^\\circ$,\\\\\n$\\therefore \\angle CDH=\\angle DCH=45^\\circ$, $\\angle ADE=15^\\circ$, $\\angle BCG=75^\\circ$,\\\\\n$\\therefore \\angle BAF=\\angle DCH=\\angle ABF=\\angle CDH$, $\\angle ADE=\\angle CBG$, $\\angle DAE=\\angle BCG$,\\\\\nIn $\\triangle ABF$ and $\\triangle CDH$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle BAF=\\angle DCH\\\\\nAB=CD\\\\\n\\angle ABF=\\angle CDH\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle ABF \\cong \\triangle CDH(ASA)$,\\\\\nSimilarly, $\\triangle BCG \\cong \\triangle DAE(ASA)$,\\\\\n$\\because AM\\perp BC$, $\\angle ABC=60^\\circ$,\\\\\n$\\therefore \\angle BAM=30^\\circ$,\\\\\n$\\therefore BM=\\frac{1}{2}AB=2$,\\\\\n$\\therefore AM=\\sqrt{3}BM=2\\sqrt{3}$, $BC=2BM$,\\\\\n$\\because \\angle BGC=90^\\circ$,\\\\\n$\\therefore BM=CM=GM=2$,\\\\\n$\\therefore \\angle CMG=2\\angle CBG=30^\\circ$,\\\\\n$\\because GN\\perp BC$,\\\\\n$\\therefore GN=\\frac{1}{2}GM=1$,\\\\\n$\\therefore S_{\\text{rhombus}ABCD}=BC\\cdot AM=4\\times 2\\sqrt{3}=8\\sqrt{3}$,\\\\\n$S_{\\triangle ABF}=\\frac{1}{2}AF\\cdot BF=\\frac{1}{2}\\times 2\\sqrt{2}\\times 2\\sqrt{2}=4$,\\\\\n$S_{\\triangle BCG}=\\frac{1}{2}BC\\cdot GN=\\frac{1}{2}\\times 4\\times 1=2$,\\\\\n$\\therefore S_{\\text{rectangle}EFGH}=S_{\\text{rhombus}ABCD}-2S_{\\triangle ABF}-2S_{\\triangle BCG}=8\\sqrt{3}-12$.\\\\\nTherefore, the answer is: $S_{\\text{rectangle}EFGH}=\\boxed{8\\sqrt{3}-12}$.", -"solution_image": [ -"solution_images/52284136_572.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52284176": { -"question": "As shown in the diagram, in rectangle $ABCD$, $AC$ intersects $BD$ at point $O$. If $\\angle COB=120^\\circ$ and $AB=6$, what is the length of the diagonal $BD$?", -"image_file_name": "7054431", -"image": [ -"math/52284176_587.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\n$ \\therefore BD = 2OB$, $AC = 2OA$, $AC = BD$,\\\\\n$ \\therefore OA = OB$,\\\\\nSince $\\angle BOC = 120^\\circ$,\\\\\n$ \\therefore \\angle AOB = 60^\\circ$,\\\\\n$ \\therefore \\triangle AOB$ is an equilateral triangle,\\\\\n$ \\therefore OB = AB = 6$,\\\\\n$ \\therefore BD = 2OB = \\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52252071": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AB \\parallel CD$, $AB \\perp BD$, $AB = 5$, $BD = 4$, $CD = 3$. If point $E$ is the midpoint of $AC$, what is the length of $BE$?", -"image_file_name": "7054431", -"image": [ -"math/52252071_590.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $AB \\parallel CD$ and $AB \\perp BD$,\\\\\nit follows that $CD \\perp BD$,\\\\\nthus $\\angle ABD = \\angle CDB = 90^\\circ$.\\\\\nExtend $CD$ to $F$, and construct $AF \\perp CF$ at point $F$.\\\\\nThen, $\\angle BDF= 90^\\circ$, $\\angle F= 90^\\circ$.\\\\\nTherefore, quadrilateral $ABDF$ is a rectangle.\\\\\nTherefore, $AF=BD=4$, and $DF=AB=5$.\\\\\nSince $CD=3$,\\\\\nthus $CF=5+3=8$.\\\\\nSince $AC= \\sqrt{8^2+4^2}=\\sqrt{80}=4\\sqrt{5}$,\\\\\nin right triangle $BCD$ where $CD=3$ and $BD=4$,\\\\\nhence $BC=5$,\\\\\nthus $AB=BC$.\\\\\nSince $\\triangle ABC$ is an isosceles triangle,\\\\\nand point $E$ is the midpoint of $AC$,\\\\\nhence $AE=\\frac{1}{2}AC=2\\sqrt{5}$, and $BE \\perp AC$.\\\\\nSince $BE^2=AB^2−AE^2 = 5^2−(2\\sqrt{5})^2 =25-20=5$,\\\\\nthus $BE=\\sqrt{5}$.\\\\\nTherefore, the answer is: $BE=\\boxed{\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52252071_590.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52252067": { -"question": "As shown in the figure, an equilateral triangle $\\triangle DCE$ is constructed on the exterior of the rhombus $ABCD$. The segments $AE$ and $DE$ are connected. If the diagonal $AC$ is equal to the side $AB$, then what is the measure of $\\angle DEA$ in degrees?", -"image_file_name": "7054431", -"image": [ -"math/52252067_600.png" -], -"solution": "\\textbf{Solution:} Draw AC, \\\\\nsince quadrilateral ABCD is a rhombus, AC=AB,\\\\\ntherefore, AD=CD=AB=AC,\\\\\nsince $\\triangle DCE$ is an equilateral triangle,\\\\\nthus DE=CD=CE, $\\angle$CED=60$^\\circ$,\\\\\ntherefore, AD=AC=CE=DE,\\\\\nthus quadrilateral ACED is a rhombus,\\\\\nhence $\\angle$DEA= $\\frac{1}{2}$ $\\angle$CED=30$^\\circ$.\\\\\nTherefore, the answer is: $\\boxed{30^\\circ}$.", -"solution_image": [ -"solution_images/52252067_600.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52251984": { -"question": "As shown in the figure, the side length of rhombus ABCD is 6, with diagonals AC and BD intersecting at point O, and $ \\angle ABC = 120^\\circ$. Point P is a moving point on AC, and point E is the midpoint of AB. What is the minimum value of $PB + PE$?", -"image_file_name": "7054431", -"image": [ -"math/52251984_612.png" -], -"solution": "\\textbf{Solution:} Construct the line segment DE, intersecting AC at point P, and draw BP as shown in the figure: \\\\\nThen $PB+PE=DE$, at this point $PB+PE$ has its minimum value;\\\\\nSince in the rhombus ABCD, $\\angle ABC=120^\\circ$,\\\\\nHence, AD=BD, $\\angle DAB=60^\\circ$,\\\\\nThus, $\\triangle ABD$ is an equilateral triangle,\\\\\nSince point E is the midpoint of AB,\\\\\nHence, DE $\\perp$ AB,\\\\\nSince $AB=BD=6$, $BE=\\frac{1}{2}AB=3$, \\\\\nHence, $DE=\\sqrt{6^2-3^2}=\\boxed{3\\sqrt{3}}$;", -"solution_image": [ -"solution_images/52251984_610.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52251811": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, two squares are constructed externally on the sides AC and AB of $\\triangle ABC$, denoted as $S_1$ and $S_2$ representing the areas of these two squares respectively. If $S_1=8$ and $S_2=17$, what is the length of BC?", -"image_file_name": "7054431", -"image": [ -"math/52251811_627.png" -], -"solution": "\\textbf{Solution:} We have $BC = \\sqrt{S_2 - S_1} = \\sqrt{17 - 8} = \\boxed{3}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52251668": { -"question": "As shown in the figure, in rectangle $ABCD$, $M$ is a point on side $BC$. Connect $AM$ and draw $DE \\perp AM$ with $E$ as the foot of the perpendicular. If $DE=DC=1$ and $AE=2EM$, what is the length of $BM$?", -"image_file_name": "7054431", -"image": [ -"math/52251668_630.png" -], -"solution": "\\textbf{Solution}: Since rectangle ABCD, with DE$\\perp$AM, \\\\\nit follows that $\\angle$C=$\\angle$AED=$\\angle$B=$90^\\circ$, with AB=DE=CD=1, and AD$\\parallel$BC,\\\\\nhence, $\\angle$DAE=$\\angle$AEM. In $\\triangle$ADE and $\\triangle$MAB\n\\[ \\left\\{\\begin{array}{l}\n\\angle B=\\angle AED\\\\\n\\angle DAE=\\angle AMB\\\\\nDE=AB\n\\end{array}\\right. \\]\nit follows that $\\triangle$ADE$\\cong$$\\triangle$MAB (by AAS),\\\\\nthus, AE=BM=2EM;\\\\\nIn the right triangle ABM, AB$^{2}$+BM$^{2}$=AM$^{2}$, that is, 1$^{2}$+($2EM$)$^{2}$=($3EM$)$^{2}$,\\\\\nSolving for this yields: $EM=\\frac{\\sqrt{5}}{5}$,\\\\\ntherefore, BM=\\boxed{\\frac{2\\sqrt{5}}{5}}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52250704": { -"question": "In the rhombus $ABCD$, diagonal $AC=8$, $BD=10$, then what is the area of $\\triangle ADO$?", -"image_file_name": "7054431", -"image": [ -"math/52250704_644.png" -], -"solution": "\\textbf{Solution:} In diamond $ABCD$, the diagonals have lengths $AC=8$ and $BD=10$,\\\\\n$\\therefore$OA=4, OD=5, and $AC\\perp BD$,\\\\\n$\\therefore$the area of $\\triangle ADO$ is $\\frac{1}{2}OA\\cdot OD=\\frac{1}{2}\\times 4\\times 5=\\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52250424": { -"question": "As shown in the figure, in rectangle $ABCD$, it is given that $AB=8$, $BC=12$. Points $O$ and $P$ are the midpoints of sides $AB$ and $AD$, respectively. Point $H$ is a moving point on side $CD$. Connect $OH$. Quadrilateral $OBCH$ is folded along $OH$ to obtain quadrilateral $OFEH$. Connect $PE$. What is the minimum value of the length of $PE$?", -"image_file_name": "7054431", -"image": [ -"math/52250424_6515.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect EO, PO, OC, \\\\\n$\\because$ Quadrilateral ABCD is a rectangle, \\\\\n$\\therefore \\angle B=\\angle OAP=90^\\circ$, \\\\\n$\\because$ Points O, P are the midpoints of sides AB, AD respectively, \\\\\n$\\therefore$ OB=AO=4, AP=DP=6, \\\\\nIn $\\triangle OBC$, BC=12, OB=4, \\\\\n$\\therefore$ OC=$\\sqrt{OB^2+BC^2}=\\sqrt{4^2+12^2}=4\\sqrt{10}$, \\\\\nIn $\\triangle AOP$, OA=4, PA=6, \\\\\n$\\therefore$ OP=$\\sqrt{OA^2+PA^2}=\\sqrt{4^2+6^2}=2\\sqrt{13}$, \\\\\nDue to folding, OE=OC=$4\\sqrt{10}$, \\\\\n$\\because$ PE$\\geq$ OE−OP, \\\\\n$\\therefore$ The minimum value of PE=OE−OP=$4\\sqrt{10}-2\\sqrt{13}$, \\\\\nThus, the answer is: $PE_{\\min} = \\boxed{4\\sqrt{10}-2\\sqrt{13}}$.", -"solution_image": [ -"solution_images/52250424_650.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52250669": { -"question": "As shown in the figure, the side length of the square $ABCD$ is $8$. On each side, we sequentially take $AE=BF=CG=DH=5$. What is the area of the quadrilateral $EFGH$?", -"image_file_name": "7054431", -"image": [ -"math/52250669_660.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince quadrilateral ABCD is a square,\\\\\n$\\therefore$ $\\angle A=\\angle B=\\angle C=\\angle D=90^\\circ$, AB=BC=CD=DA,\\\\\nSince AE=BF=CG=DH,\\\\\n$\\therefore$ AH=BE=CF=DG.\\\\\nIn $\\triangle AEH$, $\\triangle BFE$, $\\triangle CGF$, and $\\triangle DHG$,\\\\\n$\\left\\{\\begin{array}{l}\nAE=BF=CG=DH \\\\\n\\angle A=\\angle B=\\angle C=\\angle D \\\\\nAH=BE=CF=DG\n\\end{array}\\right.$\\\\\n$\\therefore$ $\\triangle AEH \\cong \\triangle BFE \\cong \\triangle CGF \\cong \\triangle DHG$ (SAS),\\\\\n$\\therefore$ EH=FE=GF=GH, $\\angle AEH=\\angle BFE$,\\\\\n$\\therefore$ Quadrilateral EFGH is a rhombus,\\\\\nSince $\\angle BEF+\\angle BFE=90^\\circ$,\\\\\n$\\therefore$ $\\angle BEF+\\angle AEH=90^\\circ$,\\\\\n$\\therefore$ $\\angle HEF=90^\\circ$,\\\\\n$\\therefore$ Quadrilateral EFGH is a square,\\\\\nSince AB=BC=CD=DA=8, AE=BF=CG=DH=5,\\\\\n$\\therefore$ EH=FE=GF=GH=$\\sqrt{5^2+3^2}=\\sqrt{34}$\\\\\nThus, the area of the square EFGH is $\\boxed{\\sqrt{34}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52250632": { -"question": "As shown in the diagram, the squares $A_1B_1C_1O$, $A_2B_2C_2C_1$, $A_3B_3C_3C_2\\ldots$ are placed as illustrated. Points $A_1$, $A_2$, $A_3\\ldots$ and points $C_1$, $C_2$, $C_3\\ldots$ are respectively on the line $y=kx+b$ (where $k>0$) and the x-axis, given that points $B_1(1, 1)$, $B_2(3, 2)$, then what are the coordinates of $B_{12}$?", -"image_file_name": "7054431", -"image": [ -"math/52250632_679.png" -], -"solution": "\\textbf{Solution:} \\\\\nLet $B_{1}$ have coordinates (1, 1), and point $B_{2}$ have coordinates (3, 2), \\\\\ntherefore, the side length of square $A_{1}B_{1}C_{1}O_{1}$ = 1, and the side length of square $A_{2}B_{2}C_{2}C_{1}$ = 2, \\\\\nhence, the coordinates of $A_{1}$ are (0, 1), and the coordinates of $A_{2}$ are: (1, 2), \\\\\nplugging into $y=kx+b$, we get: $\\left\\{\\begin{array}{l}b=1 \\\\ k+b=2\\end{array}\\right.$, solving gives: $\\left\\{\\begin{array}{l}k=1 \\\\ b=1\\end{array}\\right.$, \\\\\ntherefore, the equation of the line is: $y=x+1$.\\\\\nSince $A_{1}B_{1}=1$, and the coordinates of point $B_{2}$ are (3, 2), \\\\\nthus, the coordinates of point $A_{3}$ are (3,4), \\\\\nhence, $A_{3}C_{2}=A_{3}B_{3}=B_{3}C_{3}=4$, \\\\\nthus, the coordinates of point $B_{3}$ are (7, 4), \\\\\ntherefore, the vertical coordinate of $B_{1}$ is: 1 = $2^{0}$, and the horizontal coordinate of $B_{1}$ is: 1 = $2^{1}$ - 1, \\\\\ntherefore, the vertical coordinate of $B_{2}$ is: 2 = $2^{1}$, and the horizontal coordinate of $B_{2}$ is: 3 = $2^{2}$ - 1, \\\\\ntherefore, the vertical coordinate of $B_{3}$ is: 4 = $2^{2}$, and the horizontal coordinate of $B_{3}$ is: 7 = $2^{3}$ - 1, \\\\\ntherefore, the vertical coordinate of $B_{n}$ is: $2^{n-1}$, and the horizontal coordinate is: $2^{n}$ - 1, \\\\\nthus $B_{n}(2^{n}-1, 2^{n-1})$. \\\\\nTherefore, the coordinates of $B_{12}$ are: $\\boxed{(2^{12}-1, 2^{11})}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52251043": { -"question": "As shown in the figure, fold the rectangular paper ABCD, first creating a crease through BD, then fold it again so that AD falls on the diagonal BD, with A corresponding to A$^{\\prime}$, creating the fold crease DG. If AB = 2 and BC = 1, what is the length of AG?", -"image_file_name": "7054431", -"image": [ -"math/52251043_680.png" -], -"solution": "\\textbf{Solution:} Given the conditions, we find that $AB=2$ and $AD=BC=1$.\\\\\nIn $\\triangle ABD$, according to the Pythagorean theorem, $BD=\\sqrt{AB^2+AD^2}=\\sqrt{5}$.\\\\\nBy the property of folding, $AG=A'G$, $DA=DA'=1$. Let $AG=x$, $A'G=AG=x$, $BG=2-x$, $BA'=\\sqrt{5}-1$,\\\\\nIn $\\triangle BGA'$, by the Pythagorean theorem,\\\\\n$BG^2=BA'^2+A'G^2$,\\\\\n$(2-x)^2=(\\sqrt{5}-1)^2+x^2$,\\\\\nSolving, we find $x=\\frac{\\sqrt{5}-1}{2}$,\\\\\nHence, the length of $AG$ is: $\\boxed{\\frac{\\sqrt{5}-1}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52251027": { -"question": "As shown in the figure, DE is the median line of $\\triangle ABC$, the bisector of $\\angle ABC$ intersects DE at point F. If $\\angle DFB=32^\\circ$ and $\\angle A=75^\\circ$, then what is the measure of $\\angle AED$ in degrees?", -"image_file_name": "7054431", -"image": [ -"math/52251027_694.png" -], -"solution": "\\textbf{Solution}: Since $DE$ is the median line of $\\triangle ABC$,\\\\\nthus $DE\\parallel BC$,\\\\\ntherefore $\\angle ADE=\\angle ABC$, $\\angle DFB=\\angle FBC$.\\\\\nSince $\\angle DFB=32^\\circ$,\\\\\nthus $\\angle DFB=\\angle FBC=32^\\circ$.\\\\\nSince the bisector of $\\angle ABC$ intersects $DE$ at point F,\\\\\nthus $\\angle DBF=\\angle FBC=\\frac{1}{2}\\angle ABC=32^\\circ$,\\\\\ntherefore $\\angle ADE=\\angle ABC=2\\times 32^\\circ=64^\\circ$.\\\\\nSince $\\angle A=75^\\circ$,\\\\\nthus $\\angle AED=180^\\circ−\\angle A−\\angle ADE=180^\\circ−75^\\circ−64^\\circ=\\boxed{41^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52251026": { -"question": "As shown in the diagram, in parallelogram $ABCD$, $AC$ and $BD$ intersect at point $O$, and $E$ is the midpoint of $AB$. If $OE = 6$, what is the length of $AD$?", -"image_file_name": "7054431", -"image": [ -"math/52251026_700.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\nit follows that $BO=DO$, \\\\\nsince point E is the midpoint of AB, \\\\\nit follows that $OE$ is the median line of $\\triangle ABD$, \\\\\nhence $AD=2OE$, \\\\\nsince $OE=6$, \\\\\nit follows that $AD=\\boxed{12}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52251415": { -"question": "As illustrated, in square $ABCD$ with side length $AB=2$, point $P$ is located on side $AB$ (not coinciding with $A$ or $B$). A square $PBEF$ is constructed inside square $ABCD$ with $PB$ as a side, intersecting side $BC$ at point $E$. Lines $DF$ and $CF$ are drawn. When $\\triangle CDF$ is an isosceles triangle with $D$ as the apex, what is the length of $PB$?", -"image_file_name": "7054431", -"image": [ -"math/52251415_7116.png" -], -"solution": "\\textbf{Solution:} Connect BF,\\\\\nQuadrilaterals ABCD, PBEF are squares, AB=2,\\\\\n$\\therefore$ Points B, F, D are collinear, CD=AB=2, $\\angle A=90^\\circ$\\\\\n$\\therefore$ $BD=\\sqrt{AD^{2}+AB^{2}}=\\sqrt{2^{2}+2^{2}}=2\\sqrt{2}$\\\\\n$\\because$ $\\triangle CDF$ is an isosceles triangle with D as the vertex,\\\\\n$\\therefore$FD=CD=2, BF=BD-FC=$2\\sqrt{2}-2$,\\\\\n$\\because$2PB$^{2}$=BF$^{2}$\\\\\n$\\therefore$ $PB=\\frac{\\sqrt{2}}{2}BF=\\frac{\\sqrt{2}}{2}\\left(2\\sqrt{2}-2\\right)=\\boxed{2-\\sqrt{2}}$;", -"solution_image": [ -"solution_images/52251415_710.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52225703": { -"question": "As shown in the figure, if quadrilateral $ABCD$ is a rhombus with $AC=24$ and $BD=10$, what is the side length of the rhombus $ABCD$?", -"image_file_name": "7054431", -"image": [ -"math/52225703_720.png" -], -"solution": "\\textbf{Solution:} Let AC and BD intersect at point O, \\\\\nsince quadrilateral ABCD is a rhombus, \\\\\ntherefore AC$\\perp$BD, $OC=\\frac{1}{2}AC=12$, $OD=\\frac{1}{2}BD=5$, \\\\\ntherefore $\\angle$COD$=90^\\circ$, \\\\\ntherefore $CD=\\sqrt{OC^{2}+OD^{2}}=\\boxed{13}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52225773": { -"question": "As shown in the figure, square $ABCD$ has a side length of $3$, and points $E$ and $F$ are two moving points on the diagonal $AC$ (with point $E$ to the left of point $F$), and $EF=1$. What is the minimum value of $DE+BF$?", -"image_file_name": "7054431", -"image": [ -"math/52225773_730.png" -], -"solution": "\\textbf{Solution:} Let us solve for when $DE=BF$. The minimum value of $DE+BF$ is obtained when $DE=BF$. Connect $BD$ and $AC$, intersecting at point $O$, and connect $BE$,\\\\\n$\\because$ $ABCD$ is a square,\\\\\n$\\therefore$ $AD=AB$, $\\angle DAE=\\angle BAE=45^\\circ$, $AC\\perp BD$, $BD=\\sqrt{3^2+3^2}=3\\sqrt{2}$,\\\\\nIn $\\triangle ADE$ and $\\triangle ABE$ we have\\\\\n$\\left\\{\\begin{array}{l}\nAD=AB \\\\\n\\angle DAE=\\angle BAE=45^\\circ \\\\\nAE=AE,\n\\end{array}\\right.$\\\\\n$\\therefore$ $\\triangle ADE \\cong \\triangle ABE$,\\\\\n$\\therefore$ $DE=BE=BF$,\\\\\n$BO\\perp EF$,\\\\\n$OE=OF=\\frac{1}{2}EF=\\frac{1}{2}$,\\\\\n$OB=\\frac{1}{2}BD=\\frac{3\\sqrt{2}}{2}$,\\\\\n$\\therefore DE=BE=BF=\\sqrt{\\left(\\frac{3\\sqrt{2}}{2}\\right)^2+\\left(\\frac{1}{2}\\right)^2}=\\frac{\\sqrt{19}}{2}.$\\\\\n$DE+BF =\\frac{\\sqrt{19}}{2}+\\frac{\\sqrt{19}}{2}=\\boxed{\\sqrt{19}}.$", -"solution_image": [ -"solution_images/52225773_730.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52225662": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, and $D$, $E$, and $F$ are the midpoints of $AB$, $BC$, and $CA$ respectively. If $CD = 4$, what is the length of $EF$?", -"image_file_name": "7054431", -"image": [ -"math/52225662_740.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is a right-angled triangle, and $CD$ is the median to the hypotenuse,\\\\\ntherefore $CD=\\frac{1}{2}AB$,\\\\\nthus $AB=2CD=8$,\\\\\nsince $EF$ is the median of $\\triangle ABC$,\\\\\ntherefore $EF=\\frac{1}{2}AB= \\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52225526": { -"question": "It is known that the side length of square $ABCD$ is 4. Square $OMNE$ (with $OM > \\frac{1}{2}AC$) rotates around the center of symmetry $O$ of square $ABCD$. What is the area of the overlapping region of the two squares?", -"image_file_name": "7054431", -"image": [ -"math/52225526_751.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, connect AC and BD. Let OE intersect CD at point Q, and OM intersect BC at point P,\n\n$\\because$ Point O is the center of the square ABCD,\n\n$\\therefore$ The diagonals of square ABCD intersect at point O,\n\n$\\therefore \\angle$ODQ=$\\angle$OCP=$45^\\circ$, OD=OC, $\\angle$COD=$90^\\circ$,\n\n$\\because$ Quadrilateral OMNE is a square,\n\n$\\therefore \\angle$EOM=$90^\\circ$,\n\n$\\because \\angle$DOC=$\\angle$DOQ+$\\angle$COQ=$90^\\circ$, $\\angle$EOM=$\\angle$COQ+$\\angle$COP=$90^\\circ$,\n\n$\\therefore \\angle$DOQ=$\\angle$COP,\n\nIn $\\triangle DOE$ and $\\triangle AOF$,\n\n$\\left\\{ \\begin{array}{l} \\angle DOQ=\\angle COP \\\\ OD=OC \\\\ \\angle ODQ=\\angle OCP \\end{array} \\right.$,\n\n$\\therefore \\triangle DOQ \\cong \\triangle COP$ (ASA),\n\n$\\therefore S_{\\triangle DOQ}=S_{\\triangle COP}$,\n\n$\\therefore$ The area of quadrilateral OPCQ=$S_{\\triangle OCP}+S_{\\triangle QOC}=S_{\\triangle ODQ}+S_{\\triangle QOC}=S_{\\triangle COD}$,\n\n$\\because S_{\\triangle COD}=\\frac{1}{4}S_{\\text{square ABCD}}=\\frac{1}{4}\\times 4\\times 4=4$,\n\n$\\therefore$ The area of the overlapping part of the two squares is $\\boxed{4}$.", -"solution_image": [ -"solution_images/52225526_750.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52225663": { -"question": "As shown, for the square $ABCD$ with side length $2$, where point $E$ is the midpoint of side $BC$, and point $P$ moves along the diagonal $AC$, what is the minimum value of $PE+PB$?", -"image_file_name": "7054431", -"image": [ -"math/52225663_760.png" -], -"solution": "\\textbf{Solution:} Draw line DE, intersecting AC at point P, and draw BD. \\\\\n$\\because$ Point B and point D are symmetric about AC, \\\\\n$\\therefore$ DP=PB, \\\\\n$\\therefore$ PB+PE=PD+PE=DE \\\\\n$\\therefore$ The length of DE is the minimum value of PE+PB, \\\\\n$\\because$ In the square ABCD, AB=2, and E is the midpoint of BC, \\\\\n$\\therefore$ CE=1, \\\\\nIn $\\triangle CDE$, \\\\\nDE=$\\sqrt{CD^{2}+CE^{2}}$ \\\\\n=$\\sqrt{2^{2}+1^{2}}$ \\\\\n=$\\sqrt{5}$ \\\\\nHence, the answer is: $\\boxed{\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52225663_760.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52225958": { -"question": "Given a rectangle $ABCD$ with a point $P$ satisfying $PA=1$, $PB=2$, $PC=3$, what is the value of $PD$?", -"image_file_name": "7054431", -"image": [ -"math/52225958_770.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw GH$\\parallel$BC through point P intersecting AB and CD at G and H, respectively; draw EF$\\parallel$AB through point P intersecting AD and BC at E and F, respectively. Let AG=DH=x, GB=HC=y, AE=BF=m, and ED=FC=n.\\\\\nTherefore, AP$^{2}$=x$^{2}$+m$^{2}$, CP$^{2}$=y$^{2}$+n$^{2}$, BP$^{2}$=y$^{2}$+m$^{2}$, DP$^{2}$=n$^{2}$+x$^{2}$,\\\\\nThus, AP$^{2}$+CP$^{2}$=BP$^{2}$+DP$^{2}$=x$^{2}$+y$^{2}$+m$^{2}$+n$^{2}$,\\\\\nGiven that, PA=1, PB=2, PC=3,\\\\\nThis implies $1+9=4+DP^{2}$,\\\\\nSolving yields: $DP=\\boxed{\\sqrt{6}}$ or $-\\sqrt{6}$ (discard the latter).", -"solution_image": [ -"solution_images/52225958_770.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52210865": { -"question": "As shown in the figure, in $\\triangle ABC$, $DE\\parallel BC$, intersecting $AB$ and $AC$ at $D$ and $E$ respectively, and $CD\\perp BE$, with $CD=3$ and $BE=5$. Calculate the value of $BC+DE$.", -"image_file_name": "7054431", -"image": [ -"math/52210865_780.png" -], -"solution": "\\textbf{Solution:} Construct EF$\\parallel$DC intersecting the extension of BC at F,\\\\\nsince DE$\\parallel$BC, EF$\\parallel$DC,\\\\\nthus quadrilateral DCFE is a parallelogram,\\\\\nthus EF=CD=3, CF=DE,\\\\\nsince CD$\\perp$BE,\\\\\nthus EF$\\perp$BE,\\\\\nthus BC+DE=BC+CF=BF=$\\sqrt{BE^{2}+EF^{2}}$=$\\sqrt{5^{2}+3^{2}}$=$\\boxed{\\sqrt{34}}$.", -"solution_image": [ -"solution_images/52210865_780.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52211561": { -"question": "Given a square $ABCD$ with side length 1, let $E$ and $F$ be two movable points on sides $BC$ and $CD$, respectively, satisfying $BE=CF$. Connect $AE$ and $AF$. What is the minimum value of $AE+AF$?", -"image_file_name": "7054431", -"image": [ -"math/52211561_802.png" -], -"solution": "\\textbf{Solution:} Draw line DE, \\\\\nsince $BE=CF$ and the quadrilateral ABCD is a square, \\\\\nthus $CD-CF=BC-BE$, i.e., $DF=CE$, in $\\triangle ADF$ and $\\triangle DCE$, \\\\\n\\[\\begin{cases}\nAD=DC, \\\\\n\\angle ADF=\\angle DCE, \\\\\nDF=CE,\n\\end{cases}\\]\nthus $\\triangle ADF \\cong \\triangle DCE$, \\\\\ntherefore, $AF=DE$; $AE+AF=AE+DE$, \\\\\nby taking BC as the axis of symmetry, construct the symmetrical point $A'$ of point A with respect to BC and connect $DA'$, intersecting BC at point E, \\\\\nsince point A and point $A'$ are symmetric with respect to BC, \\\\\nthus AE=$A'E$, \\\\\n$AE+DE=A'E+DE=A'D$, \\\\\nby the Pythagorean theorem, we have: $A'D=\\sqrt{AD^{2}+AA'^{2}}=\\sqrt{2^{2}+1^{2}}=\\sqrt{5}$, \\\\\ntherefore, the minimum value of $AE+AF$ is $\\boxed{\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52211561_800.png", -"solution_images/52211561_807.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52354642": { -"question": "As shown in the figure, points $D$, $E$, and $F$ are respectively the midpoints of the sides of $\\triangle ABC$. If the perimeter of $\\triangle ABC$ is $12$, what is the perimeter of $\\triangle DEF$?", -"image_file_name": "7054409", -"image": [ -"math/52354642_370.png" -], -"solution": "\\textbf{Solution:} Given that D, E, F are the midpoints of the sides of $\\triangle ABC$ respectively,\\\\\nthus DE, DF, EF are the midsegments of $\\triangle ABC$,\\\\\ntherefore, $BC=2DF, AC=2DE, AB=2EF,$\\\\\nhence, the perimeter of $\\triangle ABC$ is $AB+BC+AC=2(DF+FE+DE)=12,$\\\\\nwhich implies $DF+FE+DE=12\\times\\frac{1}{2}=6.$\\\\\nTherefore, the perimeter of $\\triangle DEF$ is $\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354541": { -"question": "As shown in the diagram, in rhombus $ABCD$, the midpoint of side $AB$ is $M$, and the diagonals intersect at point $O$. If $OM = 3\\,\\text{cm}$, what is the perimeter of the rhombus $ABCD$ in centimeters?", -"image_file_name": "7054409", -"image": [ -"math/52354541_384.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rhombus, \\\\\nit follows that AO=CO, and AB=BC=CD=AD, \\\\\nsince point M is the midpoint of side $AB$ and $OM=3$, \\\\\nit follows that AD=2OM=6, \\\\\ntherefore, the perimeter of rhombus $ABCD$ is $4AD=\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354879": { -"question": "Sorry, it seems like you didn't provide any specific text to translate. Could you please share the text you'd like to be translated?", -"image_file_name": "7054409", -"image": [ -"math/52354879_3911.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rectangle,\\\\\nit follows that $\\angle BAD=90^\\circ$, $OD= \\frac{1}{2}BD$, and $AD=BC=8$,\\\\\nthus $BD=\\sqrt{AB^{2}+AD^{2}}=\\sqrt{6^{2}+8^{2}}=10\\text{cm}$,\\\\\nwhich means $OD=5\\text{cm}$,\\\\\nsince points $E$ and $F$ are the midpoints of $AO$ and $AD$ respectively,\\\\\nit follows that $EF$ is the midline of $\\triangle AOD$,\\\\\ntherefore $EF= \\frac{1}{2}OD=\\boxed{2.5}\\text{cm}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354792": { -"question": "As shown in the figure, in rectangle $ABCD$, points $E$ and $F$ are the midpoints of sides $AB$ and $BC$, respectively. Lines $EC$ and $FD$ are connected, and points $G$ and $H$ are the midpoints of $EC$ and $FD$, respectively. Line $GH$ is then connected. If $AB=6$ and $BC=10$, what is the length of $GH$?", -"image_file_name": "7054409", -"image": [ -"math/52354792_400.png" -], -"solution": "\\textbf{Solution:} Draw line CH and extend it to intersect AD at P, and connect PE, as shown in the figure: \\\\\n$\\because$ Quadrilateral ABCD is a rectangle, \\\\\n$\\therefore$ $\\angle$A=$90^\\circ$, $ AD\\parallel BC$, $ AD=BC=10$, \\\\\n$\\because$ E, F are the midpoints of side AB, BC respectively, AB=6, BC=10, \\\\\n$\\therefore$ AE=$ \\frac{1}{2}$AB=$ \\frac{1}{2}\\times $6=3, CF=$ \\frac{1}{2}$BC=$ \\frac{1}{2}\\times $10=5, \\\\\n$\\because$ $ AD\\parallel BC$, \\\\\n$\\therefore$ $\\angle$DPH=$\\angle$FCH, \\\\\n$\\because$ H is the midpoint of DF, \\\\\n$\\therefore$ DH=FH \\\\\n$\\because$ In $\\triangle $PDH and $\\triangle $CFH $\\left\\{\\begin{array}{l}\\angle DPH=\\angle FCH\\hfill \\\\ \\angle DHP=\\angle FHC\\hfill \\\\ DH=FH\\hfill \\end{array} \\right.$, \\\\\n$\\therefore$ $\\triangle $PDH$\\cong $$\\triangle $CFH (AAS), \\\\\n$\\therefore$ PD=CF=5, CH=PH, \\\\\n$\\therefore$ AP=AD−PD=5, \\\\\n$\\therefore$ PE=$ \\sqrt{AP^{2}+AE^{2}}$=$ \\sqrt{5^{2}+3^{2}}$=$ \\sqrt{34}$, \\\\\n$\\because$ Point G is the midpoint of EC, CH=PH, \\\\\n$\\therefore$ GH is the midline of $\\triangle $CEP, \\\\\n$\\therefore$ GH=$ \\frac{1}{2}$EP=$ \\frac{\\sqrt{34}}{2}$, \\\\\nHence, the answer is: $GH = \\boxed{\\frac{\\sqrt{34}}{2}}$.", -"solution_image": [ -"solution_images/52354792_400.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354816": { -"question": "As shown in the diagram, in rectangle $ABCD$, $AC$ and $BD$ intersect at point $O$, with $M$ and $N$ being the midpoints of $BC$ and $OC$, respectively. If $MN = 4$, what is the length of $AC$? If the area of $\\triangle BOC$ is 5, what is the area of rectangle $ABCD$?", -"image_file_name": "7054409", -"image": [ -"math/52354816_410.png" -], -"solution": "\\textbf{Solution:} Since M and N are the midpoints of BC and OC, respectively,\n\nit follows that $BO = 2MN = 8$.\n\nSince quadrilateral ABCD is a rectangle,\n\nit follows that $AC = BD = 2BO = \\boxed{16}$.\n\nSince the area of $\\triangle BOC$ is 5,\n\nthe area of rectangle ABCD is $5 \\times 4 = \\boxed{20}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354643": { -"question": "As shown in the figure, the side length of the square $ABCD$ is $4$, and the point $P$ is on the diagonal $AC$ (not including endpoints). With $PA$ and $PB$ as adjacent sides, a square $PAQB$ is formed. What is the minimum value of the diagonal length $PQ$?", -"image_file_name": "7054409", -"image": [ -"math/52354643_421.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, let AB and PQ intersect at point O, and draw $OE\\perp AC$ through point $O$, \\\\\nsince quadrilateral $AQBP$ is a parallelogram, \\\\\ntherefore $AO=OB=\\frac{1}{2}AB=2$, \\\\\nsince quadrilateral $ABCD$ is a square, \\\\\ntherefore $\\angle AOE=\\angle OAE=45^\\circ$, \\\\\nthus, OE=AE, \\\\\ntherefore $OE^{2}+AE^{2}=AO^{2}$, \\\\\nthus, OE=$\\frac{\\sqrt{2}}{2}AO$, \\\\\naccording to the problem, $P$ is a moving point on $AC$, when point P coincides with point E, PO reaches its minimum value. \\\\\nAt this time, $PQ=2OE=2\\times \\frac{\\sqrt{2}}{2}AO=\\boxed{2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52354643_422.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354580": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=20$, $AC=9$. The point $M$ is the midpoint of $BC$. The line $AD$ bisects the exterior angle $\\angle CAE$ of $\\triangle ABC$, intersecting the extended line of $BC$ at point $D$. Through point $M$, draw $MN \\parallel to AD$, intersecting $AB$ at point $N$. What is the length of $AN$?", -"image_file_name": "7054409", -"image": [ -"math/52354580_430.png" -], -"solution": "\\textbf{Solution:} Let NA intersect NF at BN, and connect CF, as shown in the diagram.\\\\\n$\\because$BM=MC, NF=BN,\\\\\n$\\therefore$MN$\\parallel$CF,\\\\\n$\\because$MN$\\parallel$AD,\\\\\n$\\therefore$CF$\\parallel$AD,\\\\\nThus, $\\angle$AFC=$\\angle$EAD, $\\angle$ACF=$\\angle$DAC,\\\\\n$\\because$AD bisects $\\angle$CAE,\\\\\n$\\therefore \\angle$DAC=$\\angle$EAD,\\\\\n$\\therefore \\angle$ACF=$\\angle$AFC,\\\\\n$\\therefore$AF=AC=9,\\\\\n$\\therefore$BF=AB−AF=11,\\\\\n$\\because$MN is the midline of $\\triangle$BCF,\\\\\n$\\therefore$BN=NF=$\\frac{11}{2}$,\\\\\n$\\therefore$AN=NF+AF=$\\boxed{\\frac{29}{2}}$.", -"solution_image": [ -"solution_images/52354580_430.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53706883": { -"question": "As shown in the figure, the two diagonals of rectangle ABCD intersect at point O. If $\\angle AOD = 60^\\circ$ and AD = 2, then what is the length of CD?", -"image_file_name": "7054409", -"image": [ -"math/53706883_440.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\nit follows that OA=OC, OB=OD, and AC=BD,\\\\\nwhich means OA=OB=OD,\\\\\nSince $\\angle AOD = 60^\\circ$,\\\\\nit follows that $\\triangle AOD$ is an equilateral triangle,\\\\\nthus, OD=AD=2,\\\\\nwhich implies BD=2OD=4,\\\\\ntherefore, $DC = \\sqrt{AC^{2} - AD^{2}} = \\sqrt{16 - 4} = 2\\sqrt{3}$,\\\\\nHence, the answer is: $DC = \\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53706958": { -"question": "As shown in the figure, in quadrilateral ABCD, $\\angle A=90^\\circ$, AB = 4, and AD = 3. Points M and N are moving points on line segments BC and AB, respectively (point M does not coincide with point B). Points E and F are the midpoints of DM and MN, respectively. What is the maximum length of EF?", -"image_file_name": "7054409", -"image": [ -"math/53706958_450.png" -], -"solution": "\\textbf{Solution:} Connect DN and DB as shown in the diagram: \\\\\nIn $\\triangle DAB$, where $\\angle A=90^\\circ$, $AB=4$, and $AD=3$, \\\\\n$\\therefore BD=\\sqrt{AD^2+AB^2}=\\sqrt{3^2+4^2}=5$, \\\\\n$\\because$ Points E and F are the midpoints of DM and MN respectively, \\\\\n$\\therefore EF=\\frac{1}{2}DN$, \\\\\nAccording to the problem, when point N coincides with point B, DN is at its maximum, which is 5, \\\\\n$\\therefore$ The maximum length of $EF$ is $\\boxed{2.5}$.", -"solution_image": [ -"solution_images/53706958_450.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53706994": { -"question": "As shown in the figure, the quadrilateral $OABC$ is a rhombus with $AC=6$ and $OB=8$. What are the coordinates of vertex $C$?", -"image_file_name": "7054409", -"image": [ -"math/53706994_460.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, let $AC$ and $OB$ intersect at point D,\\\\\nsince quadrilateral $OABC$ is a rhombus, with $AC=6$, and $OB=8$,\\\\\ntherefore $OD=\\frac{1}{2}OB=4$, $CD=\\frac{1}{2}AC=3$, and $AC\\perp OB$,\\\\\nthus $OC=\\sqrt{OD^{2}+CD^{2}}=5$,\\\\\nhence $C(5,0)$,\\\\\nso the answer is: $C=\\boxed{(5,0)}$.", -"solution_image": [ -"solution_images/53706994_462.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53706819": { -"question": "If point $E$ is the midpoint of $BC$, and $CD=4$, by folding the square $ABCD$ along $FH$ such that point $D$ precisely falls on the midpoint $E$ of side $BC$, and the corresponding point of point $A$ is point $P$, then what is the length of the crease $HF$?", -"image_file_name": "7054409", -"image": [ -"math/53706819_476.png" -], -"solution": "\\textbf{Solution:}\n\nDraw $HG \\perp CD$ at point G, and connect $DE$, as shown in the diagram:\\\\\nThen, $\\angle DGH=\\angle FGH=90^\\circ$,\\\\\nIn the square $ABCD$, $\\angle A=\\angle D=\\angle C=90^\\circ$, $AD=CD=BC=4$,\\\\\n$\\therefore$ Quadrilateral $ADGH$ is a rectangle,\\\\\n$\\therefore GH=AD=CD$,\\\\\nAccording to the folding, $FH$ is a perpendicular bisector of $DE$,\\\\\n$\\therefore \\angle FDE+\\angle DFH=90^\\circ$,\\\\\n$\\because \\angle FDE+\\angle DEC=90^\\circ$,\\\\\n$\\therefore \\angle DFH=\\angle DEC$,\\\\\nIn $\\triangle HGF$ and $\\triangle DCE$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle DFH=\\angle DEC\\\\\n\\angle FGH=\\angle ECD\\\\\nHG=CD\n\\end{array}\\right.$\\\\\n$\\therefore \\triangle HGF \\cong \\triangle DCE \\left(AAS\\right)$,\\\\\n$\\therefore FH=DE$,\\\\\n$\\because E$ is the midpoint of $BC$,\\\\\n$\\therefore EC=2$,\\\\\nIn $Rt\\triangle CDE$, according to the Pythagorean theorem, $DE=\\sqrt{4^2+2^2}=2\\sqrt{5}$,\\\\\n$\\therefore FH=\\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/53706819_472.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53706925": { -"question": "In the rhombus $ABCD$, as shown in the figure, $\\angle ADC = 120^\\circ$. Point $E$ is on the diagonal $AC$, and $AE = AB$. When connecting $DE$, if $CE = 4$, what is the length of $DE$?", -"image_file_name": "7054409", -"image": [ -"math/53706925_483.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $EF \\perp CD$ at F,\\\\\nthen $\\angle EFC = \\angle EFD = 90^\\circ$,\\\\\nsince quadrilateral ABCD is a rhombus,\\\\\ntherefore $AB = AD = CD$,\\\\\ntherefore $\\angle DCA = \\angle DAC$,\\\\\nsince $\\angle ADC = 120^\\circ$,\\\\\ntherefore $\\angle DCA = \\angle DAC = 30^\\circ$,\\\\\ntherefore $EF = \\frac{1}{2}CE = 2$,\\\\\nsince $AE = AB$,\\\\\ntherefore $AE = AE$,\\\\\ntherefore $\\angle ADE = \\angle AED = \\frac{1}{2}(180^\\circ - \\angle DAC) = 75^\\circ$,\\\\\ntherefore $\\angle EDF = \\angle ADC - \\angle ADE = 120^\\circ - 75^\\circ = 45^\\circ$,\\\\\ntherefore $\\triangle DEF$ is an isosceles right-angled triangle,\\\\\ntherefore $DE = \\sqrt{2}EF = 2\\sqrt{2}$,\\\\\nthus the answer is: $DE = \\boxed{2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/53706925_480.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52345523": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=90^\\circ$, $AB=4$, $BC>AB$, and point $D$ is on side $BC$. Among all the parallelograms $ADCE$ with $AC$ as the diagonal, what is the minimum value of $DE$?", -"image_file_name": "7054409", -"image": [ -"math/52345523_497.png" -], -"solution": "Solution: The intersection point of the diagonals of parallelogram ADCE is the midpoint O of AC. When $OD \\perp BC$, OD is minimal, which means DE is minimal.\\\\\nSince $AB \\perp BC$,\\\\\nTherefore, $OD \\parallel AB$,\\\\\nTherefore, at this time, OD is the median of $\\triangle ABC$,\\\\\nTherefore, $OD = \\frac{1}{2}AB = 2$,\\\\\nSince parallelogram ADCE is a parallelogram,\\\\\nTherefore, $DE = 2OD = \\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52345519": { -"question": "As shown in the figure, a hexagon $ABCDEF$ has equal interior angles, and $AD\\parallel BC$. What is the measure of $\\angle DAB$ in degrees?", -"image_file_name": "7054409", -"image": [ -"math/52345519_503.png" -], -"solution": "\\textbf{Solution}: Since the internal angles of the hexagon ABCDEF are all equal,\\\\\neach internal angle is: $(6-2) \\times 180^\\circ \\div 6 = 120^\\circ$,\\\\\nthat is, $\\angle ABC = 120^\\circ$,\\\\\nsince BC$\\parallel$AD,\\\\\nthus $\\angle DAB = 180^\\circ - \\angle ABC = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52345445": { -"question": "As shown in the figure, point $P$ is a moving point on the hypotenuse $AC$ (not coinciding with $A$ or $C$) of $\\triangle ABC$. Draw $PM\\perp AB$ intersecting $AB$ at point $M$, and draw $PN\\perp BC$ intersecting $BC$ at point $N$. Connect $MN$. If $AB=6$ and $BC=8$, then what is the minimum value of $MN$ when point $P$ moves along $AC$?", -"image_file_name": "7054409", -"image": [ -"math/52345445_5115.png" -], -"solution": "\\textbf{Solution:} Draw a line PB, \\\\\n$\\because$ $\\angle ABC=90^\\circ$, AB = 6, BC = 8, \\\\\n$\\therefore$ $AC=\\sqrt{AB^2+BC^2}=\\sqrt{6^2+8^2}=10$, \\\\\n$\\because$ PM $\\perp$ AB, PN $\\perp$ BC, $\\angle C=90^\\circ$, \\\\\n$\\therefore$ $\\angle PMB=\\angle PNB=\\angle B=90^\\circ$, \\\\\n$\\therefore$ Quadrilateral BNPM is a rectangle, \\\\\n$\\therefore$ MN = BP, \\\\\n$\\because$ The perpendicular segment is the shortest, \\\\\n$\\therefore$ When BP $\\perp$ AC, the length of MN is minimized, \\\\\n$\\therefore$ ${S}_{\\triangle ABC}=\\frac{1}{2}BC\\cdot AB=\\frac{1}{2}AC\\cdot BP$, \\\\\n$\\therefore$ $\\frac{1}{2}\\times 8\\times 6=\\frac{1}{2}\\times 10\\cdot BP$, \\\\\nSolve for it: BP = 4.8. \\\\\n$\\therefore$ The minimum value of MN is $\\boxed{4.8}$.", -"solution_image": [ -"solution_images/52345445_510.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52345212": { -"question": "As shown in the figure, in rhombus $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. $BE \\parallel AC$ and $AE \\parallel BD$, where $OE$ intersects $AB$ at point $F$. If $OE = 5$ and $AC = 8$, what is the height of rhombus $ABCD$?", -"image_file_name": "7054409", -"image": [ -"math/52345212_5212.png" -], -"solution": "\\textbf{Solution:} Given that $BE\\parallel AC$ and $AE\\parallel BD$,\\\\\nit follows that quadrilateral AEBO is a parallelogram,\\\\\nand since the diagonals of rhombus ABCD intersect at point O,\\\\\nthen $OA=\\frac{1}{2}AC=4$, $OB=OD$, and $AC\\perp BD$,\\\\\nwhich means $\\angle AOB=90^\\circ$.\\\\\nThus, parallelogram AOBE is a rectangle,\\\\\nand so $AB=OE=5$,\\\\\nwhich leads to $OB=\\sqrt{AB^{2}-OA^{2}}=\\sqrt{5^{2}-4^{2}}=3$,\\\\\nand therefore $BD=2OB=6$.\\\\\nLet the height of rhombus ABCD be $h$,\\\\\nthen the area $S_{\\text{rhombus }ABCD}=\\frac{1}{2}AC\\cdot BD=AB\\cdot h$,\\\\\nyielding $h=\\frac{\\frac{1}{2}\\times 8\\times 6}{5}=\\boxed{\\frac{24}{5}}$,\\\\\nmeaning the height of rhombus ABCD is $\\frac{24}{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344189": { -"question": "As shown in the figure, within the rhombus $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$, and their lengths are $6\\text{cm}$ and $8\\text{cm}$, respectively. A line passing through point $O$ intersects $AD$ and $BC$ at points $E$ and $F$, respectively. What is the sum of the areas of the shaded regions in $\\text{cm}^2$?", -"image_file_name": "7054409", -"image": [ -"math/52344189_530.png" -], -"solution": "\\textbf{Solution:} Since $AC$ and $BD$ are the diagonals of the rhombus $ABCD$,\\\\\nit follows that $AC \\perp BD$, and $OA=OC$, $AD\\parallel BC$,\\\\\ntherefore, $\\angle OAE=\\angle OCF$, $\\angle AEO=\\angle CFO$,\\\\\nthus, $\\triangle AOE\\cong \\triangle COF$,\\\\\nhence, the areas are $S_{\\triangle AOE}=S_{\\triangle COF}$,\\\\\ntherefore, $S_{\\text{shaded}}=S_{\\triangle BCD}=\\frac{1}{2}S_{\\text{rhombus} ABCD}$,\\\\\nGiven the lengths of the diagonals of the rhombus are 6cm and 8cm,\\\\\nwhich means: $S_{\\text{shaded}}=S_{\\triangle BCD}=\\frac{1}{2}S_{\\text{rhombus} ABCD}=\\frac{1}{2}\\times (\\frac{1}{2}\\times 6\\times 8)=\\boxed{12}\\text{cm}^2$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52344118": { -"question": "As shown in the figure, the diagonals of square $ABCD$ intersect at point $O$. An arbitrary line passing through point $O$ intersects $AD$ and $BC$ at points $E$ and $F$, respectively. If the length of the diagonal of the square is $\\sqrt{2}$, what is the area of the shaded region in the figure?", -"image_file_name": "7054409", -"image": [ -"math/52344118_541.png" -], -"solution": "\\textbf{Solution:} In the square $ABCD$,\n\n$AO=CO=DO$, $\\angle OAE=\\angle OCF=45^\\circ$, $\\angle AOD=90^\\circ$,\n\nAlso, since $\\angle AOE=\\angle COF$,\n\n$\\therefore$ $\\triangle AOE \\cong \\triangle COF$,\n\n$\\therefore$ $S_{\\triangle COF}=S_{\\triangle AOE}$,\n\n$\\therefore$ the area of the shaded region is equal to $S_{\\triangle COF}+S_{\\triangle DOE}=S_{\\triangle AOE}+S_{\\triangle DOE}=S_{\\triangle AOD}$,\n\nSince the diagonal of a square is $\\sqrt{2}$,\n\n$\\therefore$ $AO=DO=\\frac{\\sqrt{2}}{2}$,\n\n$S_{\\triangle AOD}=\\frac{1}{2}AO\\cdot DO=\\frac{1}{2}\\times \\frac{\\sqrt{2}}{2}\\times \\frac{\\sqrt{2}}{2}=\\frac{1}{4}$,\n\n$\\therefore$ the area of the shaded region is equal to $\\boxed{\\frac{1}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344116": { -"question": "As shown in the figure, point E is on the diagonal BD of the rhombus ABCD, and DE = DA. Line AE is drawn. If $\\angle CAE = 15^\\circ$, what is the degree measure of $\\angle ABC$?", -"image_file_name": "7054409", -"image": [ -"math/52344116_550.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\nit follows that AC $\\perp$ BD, \\\\\nsince $\\angle$CAE = 15$^\\circ$, \\\\\nthus, $\\angle$AED = 90$^\\circ$ - $\\angle$EAC = 90$^\\circ$ - 15$^\\circ$ = 75$^\\circ$, \\\\\nsince DE = DA, \\\\\nit follows that $\\angle$EAD = $\\angle$AED = 75$^\\circ$, \\\\\ntherefore, $\\angle$ADB = $\\angle$ABD = 30$^\\circ$, \\\\\ntherefore, $\\angle$ABC = 2$\\angle$ADB = $2 \\times 30^\\circ$ = \\boxed{60^\\circ},", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344117": { -"question": "As shown in the figure, within $ \\square ABCD$, points E and F are both on side AD. BE bisects $\\angle ABC$ and CF bisects $\\angle BCD$. If $BE=8$, $CF=6$, and $EF=2$, what is the perimeter of $\\square ABCD$?", -"image_file_name": "7054409", -"image": [ -"math/52344117_562.png" -], -"solution": "\\textbf{Solution:} Extend BC to point P such that CP = EF = 2,\\\\\nsince $\\square ABCD$,\\\\\nthus EF $\\parallel$ CP, $\\angle ABC + \\angle DCB = 180^\\circ$,\\\\\nthus quadrilateral EFCP is a parallelogram,\\\\\nthus EP = CF = 6, EP $\\parallel$ CF,\\\\\nsince BE bisects $\\angle ABC$, CF bisects $\\angle BCD$,\\\\\nthus $\\angle EBC + \\angle FCB = \\frac{1}{2}\\angle ABC + \\frac{1}{2}\\angle DCB = 90^\\circ$,\\\\\nthus CF $\\perp$ BE,\\\\\nthus PE $\\perp$ BE,\\\\\nthus BP = $\\sqrt{BE^2 + PE^2}$ = 10,\\\\\nthus BC = 8,\\\\\nsince $\\angle ABE = \\angle EBC$, $\\angle EBC = \\angle AEB$,\\\\\nthus $\\angle ABE = \\angle AEB$,\\\\\nthus AB = AE,\\\\\nSimilarly, it is derived that: CD = DF,\\\\\nthus AE = DF,\\\\\nsince AD + EF = AE + DF,\\\\\nthus AE = DF = 5,\\\\\nthus AB = CD = 5,\\\\\nthus the perimeter of $\\square ABCD$ is equal to 2 $\\times$ (5 + 8) = \\boxed{26}.", -"solution_image": [ -"solution_images/52344117_560.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344186": { -"question": "As illustrated in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $AC = 5$, $BC = 12$. Let $D$ be a moving point on $AB$. Construct $DE \\perp AC$ at point $E$ and $DF \\perp BC$ at point $F$. Connect $EF$. What is the minimum value of the line segment $EF$?", -"image_file_name": "7054409", -"image": [ -"math/52344186_570.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect CD.\\\\\n$\\because$ $\\angle ACB = 90^\\circ$, AC = 5, BC = 12,\\\\\n$\\therefore$ AB = $\\sqrt{AC^2 + BC^2}$ = $\\sqrt{5^2 + 12^2}$ = 13,\\\\\n$\\because$ DE $\\perp$ AC, DF $\\perp$ BC, $\\angle C = 90^\\circ$,\\\\\n$\\therefore$ Quadrilateral CFDE is a rectangle,\\\\\n$\\therefore$ EF = CD,\\\\\nBy the principle that the perpendicular segment is the shortest, when CD $\\perp$ AB, the value of segment EF is the smallest,\\\\\nAt this moment, $S_{\\triangle ABC} = \\frac{1}{2} \\text{BC} \\cdot \\text{AC} = \\frac{1}{2} \\text{AB} \\cdot \\text{CD}$,\\\\\nwhich means $\\frac{1}{2} \\times 12 \\times 5 = \\frac{1}{2} \\times 13 \\cdot \\text{CD}$,\\\\\nSolving yields: CD = $\\frac{60}{13}$,\\\\\n$\\therefore$ EF = $\\boxed{\\frac{60}{13}}$.", -"solution_image": [ -"solution_images/52344186_570.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52424415": { -"question": "As shown in the figure, within rectangle $ABCD$, $EF$ is the perpendicular bisector of the diagonal $BD$, intersecting $AD$ and $BC$ at points $E$ and $F$, respectively. Connect $AO$. If $ AO=4$ and $EF=6$, then what is the length of $AB$?", -"image_file_name": "7054409", -"image": [ -"math/52424415_583.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BE, \\\\\nsince EF is the perpendicular bisector of diagonal BD of rectangle ABCD, and AO = 4, \\\\\nthus BD = 2DO = 2AO = 8, BE = DE, $\\angle$DOE = $90^\\circ$, \\\\\ntherefore, DO = 4, \\\\\nsince quadrilateral ABCD is a rectangle, \\\\\nthus AD $\\parallel$ BC, \\\\\nthus $\\angle$EDO = $\\angle$FBO, \\\\\nsince OB = OD, $\\angle$EOD = $\\angle$FOB, \\\\\ntherefore, $\\triangle EOD \\cong \\triangle FOB$ (ASA), \\\\\nthus EO = OF, \\\\\nsince EF = 6, \\\\\nthus EO = 3, \\\\\nlet AE = x, \\\\\nin $Rt\\triangle OBE$, $BE = DE = \\sqrt{3^2 + 4^2} = 5$, \\\\\nin $Rt\\triangle ABD$ and $Rt\\triangle ABE$, $AB^2 = BD^2 - AD^2 = BE^2 - AE^2$, \\\\\nthus $8^2 - (5 + x)^2 = 5^2 - x^2$, \\\\\nsolving this, we get: $x = \\frac{7}{5}$, \\\\\ntherefore, $AB = \\sqrt{5^2 - \\left(\\frac{7}{5}\\right)^2} = \\boxed{4.8}$.", -"solution_image": [ -"solution_images/52424415_580.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52424336": { -"question": "In parallelogram $ABCD$, an arc is drawn with A as the center and the length of $AB$ as the radius, intersecting $AD$ at F. Then, with B and F as centers, arcs longer than $\\frac{1}{2}BF$ are drawn, intersecting at point G. If $BF=6$ and $AB=5$, what is the length of $AE$?", -"image_file_name": "7054409", -"image": [ -"math/52424336_597.png" -], -"solution": "\\textbf{Solution:} Connect $EF$, as shown in the diagram:\\\\\nBased on the problem statement, we have: $AE$ bisects $\\angle DAB$, $AF=AB=5$,\\\\\n$\\therefore \\angle AOF=90^\\circ$, $OB=OF=3$, $\\angle BAE=\\angle FAE$,\\\\\n$\\therefore OA=\\sqrt{AF^{2}-OF^{2}}=4$,\\\\\n$\\because$ Quadrilateral $ABCD$ is a parallelogram,\\\\\n$\\therefore AD\\parallel BC$,\\\\\n$\\therefore \\angle FAE=\\angle AEB$,\\\\\n$\\therefore \\angle BAE=\\angle AEB$,\\\\\n$\\therefore BE=AB=AF$,\\\\\n$\\therefore$ Quadrilateral $ABEF$ is a parallelogram,\\\\\n$\\therefore OA=OE=\\frac{1}{2}AE$,\\\\\n$\\therefore AE=2OA=\\boxed{8}$;", -"solution_image": [ -"solution_images/52424336_591.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52424728": { -"question": "As shown in the diagram, in rectangle $ABCD$, with $AB=4$ and $AD=3$, point $E$ is the midpoint of side $BC$. Line $AE$ is drawn, and $\\triangle ABE$ is folded along $AE$ to obtain $\\triangle AFE$. When $AF$ is extended to intersect $CD$ at point $G$, what is the length of $DG$?", -"image_file_name": "7054409", -"image": [ -"math/52424728_600.png" -], -"solution": "\\textbf{Solution:} Based on the properties of folding, we know that: $EB=EF$, $AB=AF$, and $\\angle EBA=\\angle EFA=90^\\circ$,\\\\\nsince point $E$ is the midpoint of side $BC$,\\\\\nthus $CE=BE$,\\\\\ntherefore $CE=BE=EF$,\\\\\nAs shown in the figure: connect $EG$,\\\\\nsince $DC\\perp CE$, $EF\\perp AC$,\\\\\ntherefore $\\angle ECG=\\angle EFG=90^\\circ$,\\\\\nIn $\\triangle ECG$ and $\\triangle EFG$,\\\\\n$\\left\\{\\begin{array}{l}EC=EF\\\\ EG=EG\\end{array}\\right.$\\\\\ntherefore $\\triangle ECG\\cong \\triangle EFG\\left(\\text{HL}\\right)$,\\\\\nthus $GC=GF$,\\\\\nLet $GC=GF=x$, then $DG=4-x$, $AG=4+x$,\\\\\nIn $\\triangle DAG$, $AD^{2}+DG^{2}=AG^{2}$,\\\\\nwhich means $3^{2}+(4-x)^{2}=(4+x)^{2}$,\\\\\nSolving this, we get: $x=\\frac{9}{16}$,\\\\\nThus, the answer is: $DG=4-x=\\boxed{\\frac{55}{16}}$.", -"solution_image": [ -"solution_images/52424728_601.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423904": { -"question": "As shown in the figure, fold a rectangular piece of paper \\textit{ABCD} with sides of lengths 8 and 16 respectively, such that point \\textit{C} coincides with point \\textit{A}. What is the length of the crease \\textit{EF}?", -"image_file_name": "7054409", -"image": [ -"math/52423904_610.png" -], -"solution": "\\textbf{Solution:} Given the properties of folding, we know that $EC=AE$, and $\\angle AEF=\\angle CEF$, \\\\\nsince $AD\\parallel BC$, \\\\\nit follows that $\\angle AFE=\\angle CEF$, \\\\\nthus, $\\angle AEF=\\angle AFE$, \\\\\nwhich means $AE=AF=CE$, \\\\\nusing the Pythagorean theorem, we find $AB^2+BE^2=AE^2$ that is $8^2+(16-AE)^2=AE^2$, \\\\\nsolving this gives us $AE=AF=10$, and $BE=6$, \\\\\nlet $EG\\perp AF$ at point G, \\\\\nthen the quadrilateral $AGEB$ is a rectangle, with $AG=6$, $GF=4$, $GE=AB=8$, and by the Pythagorean theorem, $EF=\\boxed{4\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52423904_610.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52423830": { -"question": "As shown in the figure, in rectangle $ABCD$, it is known that: $AB=3$, $AD=5$, and point $P$ is a point on $BC$, and $\\triangle PAD$ is an isosceles triangle. What is the length of $BP$?", -"image_file_name": "7054409", -"image": [ -"math/52423830_620.png" -], -"solution": "\\textbf{Solution:}\n(1) When $DP=AD$,\\\\\nsince rectangle $ABCD$,\\\\\nthus $DC=AB=3$, $AD=BC=5$,\\\\\nsince $\\triangle PAD$ is an isosceles triangle,\\\\\nthus $DP=AD=5$,\\\\\nin right $\\triangle PCD$,\\\\\n$PC=\\sqrt{PD^2-DC^2}=4$,\\\\\nthus $BP=BC-CP=5-4=1$.\\\\\n(2) When $AD=AP$,\\\\\nthus $AP=AD=5$,\\\\\nin right $\\triangle ABP$,\\\\\nby the Pythagorean theorem,\\\\\n$BP=\\sqrt{PA^2-AB^2}=4$,\\\\\n(3) When $AP=DP$,\\\\\ndraw $PE\\perp AD$ at point $E$,\\\\\nthus $AE=\\frac{1}{2}AD=2.5$,\\\\\nsince $\\angle B=\\angle BAE=\\angle AEP=90^\\circ$,\\\\\nthus quadrilateral $ABPE$ is a rectangle,\\\\\nthus $BP=AE=2.5$.\\\\\nIn summary, $BP=1$ or $4$ or $2.5$.\\\\\nTherefore, the answer is: \\boxed{1 \\text{ or } 4 \\text{ or } 2.5}.", -"solution_image": [ -"solution_images/52423830_622.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52424166": { -"question": "As shown in the figure, diagonals AC and BD of square $ABCD$ intersect at point O, and point E is the midpoint of AD. Line OE is connected. If $OA = 1$ and the perimeter of $\\triangle AOE$ is 5, then what is the perimeter of square $ABCD$?", -"image_file_name": "7054409", -"image": [ -"math/52424166_634.png" -], -"solution": "\\textbf{Solution:} Given that $OA=1$ and the perimeter of $\\triangle AOE$ is 5,\\\\\nit follows that $OE+AE=5-1=4$,\\\\\nSince point E is the midpoint of AD,\\\\\nthen $AD=2AE$, and OE is the median of $\\triangle ACD$,\\\\\nhence $CD=2OE$,\\\\\ntherefore, $AD+CD=2AE+2OE=2(AE+OE)=8$,\\\\\nthus, the perimeter of $\\square ABCD$ is: $2(AD+CD)=2 \\times 8=\\boxed{16}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52425015": { -"question": "As shown in the figure, in rectangle $ABCD$, the two diagonals $AC$ and $BD$ intersect at point $O$. If $AB = OB = 6$, what is the area of the rectangle?", -"image_file_name": "7054409", -"image": [ -"math/52425015_643.png" -], -"solution": "\\textbf{Solution:} Because quadrilateral ABCD is a rectangle, \\\\\n$\\therefore$ $\\angle ABC = 90^\\circ$, OA = $\\frac{1}{2}$AC, OB = $\\frac{1}{2}$BD, AC = BD, \\\\\n$\\therefore$ OA = OB, \\\\\nAlso because AB = OB = 6, \\\\\n$\\therefore$ OA = OB = AB = 6, \\\\\n$\\therefore$ AC = 2OA = 12, \\\\\n$\\therefore$ BC = $\\sqrt{AC^2 - AB^2}$ = $6\\sqrt{3}$, \\\\\n$\\therefore$ the area of rectangle ABCD = BC $\\cdot$ AB = $6\\sqrt{3} \\times 6 = \\boxed{36\\sqrt{3}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52331837": { -"question": "As shown in the figure, in rectangle $ABCD$, $BC=10$, and $\\angle BAC=30^\\circ$. If points $M$ and $N$ are chosen on $AC$ and $AB$, respectively, such that the value of $BM+MN$ is minimized, what is this minimum value?", -"image_file_name": "7054409", -"image": [ -"math/52331837_650.png" -], -"solution": "\\textbf{Solution:} Construct the symmetric point $B^{\\prime}$ of point $B$ with respect to $AC$. Draw $B^{\\prime}N \\perp AB$, intersecting $AC$ at point $M$.\n\nSince rectangle $ABCD$,\n\nTherefore, $\\angle ABC = 90^\\circ$,\n\nSince in $\\triangle ABC$, $\\angle BAC = 30^\\circ$,\n\nTherefore, $\\angle ACB = 90^\\circ - 30^\\circ = 60^\\circ$,\n\nTherefore, $AB = BC \\tan \\angle ACB = 10 \\tan 60^\\circ = 10\\sqrt{3}$;\n\nSince points $B$ and $B^{\\prime}$ are symmetric about $AC$,\n\nTherefore, $AB = AB^{\\prime}$, $\\angle BAC = \\angle B^{\\prime}AC = 30^\\circ$,\n\nTherefore, $\\angle BAB^{\\prime} = 60^\\circ$,\n\nTherefore, $\\triangle BAB^{\\prime}$ is an equilateral triangle;\n\nSince $B^{\\prime}N \\perp AB$,\n\nTherefore, $B^{\\prime}N = BB^{\\prime} \\sin \\angle B^{\\prime}BN = 10\\sqrt{3} \\sin 60^\\circ = 10\\sqrt{3} \\times \\frac{\\sqrt{3}}{2} = 15$\n\nSince points $B$ and $B^{\\prime}$ are symmetric about $AC$,\n\nTherefore, $BM = B^{\\prime}M$,\n\nTherefore, $BM + MN = B^{\\prime}M + MN = B^{\\prime}N = \\boxed{15}$", -"solution_image": [ -"solution_images/52331837_650.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52304107": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$ ($AB > AC$), $\\angle BAC = 60^\\circ$, $AC = 4$, $D$ is the midpoint of side $BC$, and the line $DF$ passing through point $D$ bisects the perimeter of $\\triangle ABC$ and intersects $AB$ at point $F$. What is the length of $DF$?", -"image_file_name": "7054409", -"image": [ -"math/52304107_660.png" -], -"solution": "\\textbf{Solution:} Solution as shown in the figure:\\\\\nExtend BA to E, such that AE=AC=4, take the midpoint F of BE, join DF, join CE, and draw a line AG$\\perp$CE at point G,\\\\\n$\\because$D is the midpoint of side BC,\\\\\n$\\therefore$BD=CD,\\\\\n$\\because$EF=BF,\\\\\n$\\therefore$BD+BF=CD+AE+FA=CD+EF,\\\\\n$\\therefore$The line DF bisects the perimeter of $\\triangle ABC$,\\\\\n$\\because$AE=AC=4, $\\angle BAC=60^\\circ$,\\\\\n$\\therefore$$\\angle ACE=\\angle E=30^\\circ$,\\\\\n$\\therefore$AG=$\\frac{1}{2}$AE=2,\\\\\n$\\therefore$EG=$\\sqrt{AE^2-AG^2}=\\sqrt{4^2-2^2}=2\\sqrt{3}$,\\\\\n$\\because$AE=AC, AG$\\perp$CE,\\\\\n$\\therefore$GE=$\\frac{1}{2}$CE,\\\\\n$\\because$D is the midpoint of BC, F is the midpoint of BE,\\\\\n$\\therefore$FD is the mid-segment of $\\triangle BCE$,\\\\\n$\\therefore$DF=$\\frac{1}{2}$CE=EG=$\\boxed{2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52304107_660.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52303855": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $M$ is on side $AD$, $E$ and $F$ are the midpoints of $BM$ and $CM$ respectively. If $AM = 2DM$, then what is the value of $\\frac{EF}{DM}$?", -"image_file_name": "7054409", -"image": [ -"math/52303855_679.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\nwe have BC=AD, \\\\\nand since AM=2DM, \\\\\nit follows that AD=3DM, that is BC=3DM, \\\\\nsince E and F are the midpoints of BM and CM respectively, \\\\\nthen EF is the midsegment of $\\triangle$BCM, \\\\\ntherefore EF=$\\frac{1}{2}$BC=$\\frac{3}{2}$DM, \\\\\nthus $\\frac{EF}{DM}=\\boxed{\\frac{3}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52303782": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC$ is an obtuse angle, and $AF$, $CE$ are the altitudes of this triangle, with $P$ being the midpoint of $AC$. If $\\angle B=35^\\circ$, what is the degree measure of $\\angle EPF$?", -"image_file_name": "7054409", -"image": [ -"math/52303782_680.png" -], -"solution": "\\textbf{Solution:} Given that $AF \\perp BC$,\\\\\nit follows that $\\angle AFB = \\angle AFC = 90^\\circ$,\\\\\nsince $\\angle B = 35^\\circ$,\\\\\nthus $\\angle EAF = \\angle B + \\angle AFB = 125^\\circ$,\\\\\ngiven $CE \\perp BE$,\\\\\nit follows that $\\angle AEC = \\angle AFC = 90^\\circ$,\\\\\nhence $PE = AP = PC = PF$,\\\\\nthus $\\angle AEP = \\angle EAP$, $\\angle AFP = \\angle FAP$,\\\\\ntherefore $\\angle AEP + \\angle EAF + \\angle AFP = 250^\\circ$,\\\\\nhence $\\angle EPF = 360^\\circ - 250^\\circ = \\boxed{110^\\circ}$,\\\\", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52303783": { -"question": "As shown in the figure, in the rhombus ABCD, $AC=8$, $BD=6$. Let $E$ be a moving point on side $CD$. Draw $EF\\perp OC$ at point $F$ and $EG\\perp OD$ at point $G$, and connect $FG$. What is the minimum value of $FG$?", -"image_file_name": "7054409", -"image": [ -"math/52303783_690.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince quadrilateral ABCD is a rhombus,\\\\\nit follows that AC$\\perp$BD and AD=CD,\\\\\nGiven that EF$\\perp$OC at point F, and EG$\\perp$OD at point G,\\\\\nit follows that quadrilateral OGEF is a rectangle,\\\\\nBy connecting OE, then OE=GF,\\\\\nWhen OE$\\perp$DC, the value of GF is minimal,\\\\\nSince BD=6 and AC=8,\\\\\nit follows that OD=3 and OC=4,\\\\\nTherefore, CD= $\\sqrt{OC^{2}+OD^{2}}=5$,\\\\\nSince the area of $\\triangle$COD is $\\frac{1}{2}OC\\cdot OD=\\frac{1}{2}CD\\cdot OE$,\\\\\nit follows that $OE=\\frac{OC\\cdot OD}{CD}=\\frac{4\\times 3}{5}=\\frac{12}{5}$,\\\\\nTherefore, the minimum value of FG is $\\boxed{\\frac{12}{5}}$.", -"solution_image": [ -"solution_images/52303783_690.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52303724": { -"question": "As shown in the figure, points $A$ and $B$ are located at the ends of a pond. Xiaocong wants to measure the distance between $A$ and $B$ with a rope, but the rope is not long enough. A classmate helped him with an idea: firstly, select a point $C$ on the ground that can be directly reached from both $A$ and $B$. Find the midpoints $D$ and $E$ of $AC$ and $BC$, respectively, and measure the length of $DE$ to be $13\\,m$. Then, what is the distance between $A$ and $B$ in meters?", -"image_file_name": "7054409", -"image": [ -"math/52303724_700.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of $AC$ and $BC$, respectively, \\\\\ntherefore, $AB=2DE=\\boxed{26}m$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52303698": { -"question": "In the rhombus $ABCD$, we have $AB=6$ and $\\angle CAB=30^\\circ$. If we extend $AB$ and $CD$ to form the rectangle $AECF$, what is the length of the side $CE$ of the rectangle?", -"image_file_name": "7054409", -"image": [ -"math/52303698_712.png" -], -"solution": "Solution: Since in rhombus ABCD, AB=6, and quadrilateral AECF is a rectangle, it follows that $CB=AB=6$, $\\angle E=90^\\circ$. Since $\\angle CAB=30^\\circ$, it follows that $\\angle ACB=\\angle CAB=30^\\circ$, $\\angle ACE=60^\\circ$, hence $\\angle BCE=30^\\circ$. Therefore, $BE=\\frac{1}{2}CB=3$. In right triangle $BCE$, $CE=\\sqrt{BC^{2}-BE^{2}}=\\sqrt{6^{2}-3^{2}}=\\boxed{3\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52303699": { -"question": "As shown in the figure, in $\\triangle ABC$, $AC=BC$, a square DEFG is constructed within this triangle, where the side GF is part of side AB, with points D and E respectively on sides AC and BC. When $AC=\\frac{3}{2}\\sqrt{2}$, what is the length of the side of square DEFG?", -"image_file_name": "7054409", -"image": [ -"math/52303699_723.png" -], -"solution": "\\textbf{Solution:} Given that in right triangle $ABC$, $AC=BC$ and $AC=\\frac{3}{2}\\sqrt{2}$, it follows that $AB=\\sqrt{2}AC=3$ and $\\angle A=\\angle B=45^\\circ$. Since quadrilateral $DEFG$ is a square, it implies $\\angle AGD=\\angle BFE=90^\\circ$ and $GF=GD=EF$. Therefore, triangles $AGD$ and $BFE$ are isosceles right triangles, which means $AG=DG$ and $BF=EF$. Consequently, $AG=FG=FB=1$. Therefore, the side length of square $DEFG$ is $\\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52302711": { -"question": "As shown in the figure, the diagonals $AC$ and $BD$ of rectangle $ABCD$ intersect at point $O$, with $\\angle BOC=120^\\circ$ and $AC=6$. What is the length of $AB$?", -"image_file_name": "7054409", -"image": [ -"math/52302711_730.png" -], -"solution": "\\textbf{Solution:} Given: Quadrilateral ABCD is a rectangle,\\\\\ntherefore $OA=OC=\\frac{1}{2}AC=3$, $OB=OD=\\frac{1}{2}BD$, $AC=BD$,\\\\\ntherefore $OA=OB=3$,\\\\\nsince $\\angle BOC=120^\\circ$,\\\\\ntherefore $\\angle AOB=60^\\circ$,\\\\\nthus, triangle AOB is an equilateral triangle,\\\\\ntherefore $AB=OA=OB=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52302500": { -"question": "As shown in the figure, in the rhombus $ABCD$, $\\angle A=108^\\circ$, the perpendicular bisector of $AD$ intersects diagonal $BD$ at point $P$, with the foot of the perpendicular being $N$. Connecting $CP$, what is the measure of $\\angle BPC$ in degrees?", -"image_file_name": "7054409", -"image": [ -"math/52302500_741.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect AP, \\\\\nin the rhombus ABCD, where $\\angle ADC=72^\\circ$, \\\\\n$\\therefore \\angle ADP = \\frac{1}{2} \\angle ADC = \\frac{1}{2} \\times 72^\\circ = 36^\\circ$, \\\\\n$\\because$ NP is the perpendicular bisector of AB, \\\\\n$\\therefore AP = CP$, \\\\\n$\\therefore \\angle ADP = \\angle DAP = 36^\\circ$, \\\\\n$\\therefore \\angle APB = \\angle ADP + \\angle DAP = 36^\\circ + 36^\\circ = 72^\\circ$, \\\\\nDue to the symmetry of the rhombus, $\\angle CPB = \\angle APB = 72^\\circ$. \\\\\nTherefore, the answer is: $\\boxed{72^\\circ}$.", -"solution_image": [ -"solution_images/52302500_740.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52302538": { -"question": "As shown in the figure, two strips of paper, each with a width of 2, are overlapped at an angle of $30^\\circ$. What is the area of the quadrilateral $ABCD$ formed by the overlapping part?", -"image_file_name": "7054409", -"image": [ -"math/52302538_752.png" -], -"solution": "\\textbf{Solution:} Since $AB \\parallel CD$, \\\\\nit follows that $\\angle ABC = 30^\\circ$, \\\\\nAlso, since the widths of both strips are 2, \\\\\nit follows that $AB = 4$, \\\\\nSimilarly, it can be concluded that $AD = 4$, \\\\\nAgain, because $AB \\parallel CD$ and $AD \\parallel BC$, \\\\\nit follows that quadrilateral $ABCD$ is a parallelogram, \\\\\nAlso, since $AB = AD = 4$, \\\\\nit follows that quadrilateral $ABCD$ is a rhombus, \\\\\nTherefore, $S_{\\text{rhombus}}ABCD = 4 \\times 2 = \\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52302577": { -"question": "As shown in the figure, points E and F are inside the square ABCD, and AE $\\perp$ EF, CF $\\perp$ EF. Given AE = 9, EF = 5, FC = 3, what is the side length of the square ABCD?", -"image_file_name": "7054409", -"image": [ -"math/52302577_760.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AC, and draw CG $\\perp$ AE extended to intersect at point G. \\\\\nSince AE $\\perp$ EF and CF $\\perp$ EF, \\\\\nthen the quadrilateral EFCG is a rectangle. \\\\\nIn $\\triangle ACG$, $AG=9+3=12$, $CG=EF=5$, \\\\\nthus, $AC=\\sqrt{AG^{2}+GC^{2}}=13$, \\\\\ntherefore, $AD=\\frac{13\\sqrt{2}}{2}$. \\\\\nHence, the answer is: $AD=\\boxed{\\frac{13\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/52302577_760.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52302717": { -"question": "In rhombus $ABCD$, $AB=AC=10$, diagonals $AC$ and $BD$ intersect at point $O$. Point $M$ is on line segment $AC$, and $AM=3$. Point $P$ is a moving point on line segment $BD$. What is the minimum value of $MP+\\frac{1}{2}PB$?", -"image_file_name": "7054409", -"image": [ -"math/52302717_771.png" -], -"solution": "\\textbf{Solution:} Solve: Draw $PE\\perp BC$ at E through P, and draw $MF\\perp BC$ at F through M, \\\\\nsince quadrilateral ABCD is a rhombus, \\\\\ntherefore AB=BC, \\\\\nsince AB=AC=10, \\\\\ntherefore AB=BC=AB=AD=CD=10, \\\\\ntherefore $\\triangle ABC$ and $\\triangle ACD$ are both equilateral triangles, \\\\\ntherefore $\\angle ABC=\\angle ACB=\\angle ADC=60^\\circ$, \\\\\nsince BD is the diagonal of the rhombus ABCD, \\\\\ntherefore BD bisects $\\angle ABC$, \\\\\ntherefore $\\angle CBO= \\frac{1}{2}\\angle ABC=30^\\circ$, \\\\\ntherefore PE=$ \\frac{1}{2}$BP, \\\\\ntherefore PM+$ \\frac{1}{2}$BP=PM+PE$\\leq$ MF, \\\\\nsince point P is on BD, \\\\\ntherefore the shortest distance is when points M, P, E are collinear, $MP+\\frac{1}{2}PB_{\\text{min}}=MF$, \\\\\nsince AM=3, \\\\\ntherefore CM=AC−AM=10−3=7, \\\\\nin $\\triangle MFC$, $\\angle MCF=60^\\circ$, \\\\\ntherefore $\\sin\\angle MCF= \\frac{MF}{MC}$, \\\\\ntherefore MF=$MC\\sin60^\\circ= 7\\times \\frac{\\sqrt{3}}{2}=\\boxed{\\frac{7\\sqrt{3}}{2}}$.", -"solution_image": [ -"solution_images/52302717_770.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52302787": { -"question": "As shown in the figure, in the rectangle $ABCD$, where $AB=6$, $BC=8$, and $AE\\perp BD$ at point $E$, what is the length of $AE$?", -"image_file_name": "7054409", -"image": [ -"math/52302787_780.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince quadrilateral ABCD is a rectangle,\\\\\nthus AO$=\\frac{1}{2}$AC.\\\\\nTherefore, S$\\triangle$AOB$=\\frac{1}{2}$S$\\triangle$ABC.\\\\\nSince in right-angled triangle ABC, AB=6, BC=8.\\\\\nTherefore, S$\\triangle$ABC$=\\frac{1}{2}$AB$\\cdot$BC=24\\\\\nTherefore, S$\\triangle$AOB=12.\\\\\nSince in right-angled triangle ABC,\\\\\nAC$=\\sqrt{AB^{2}+BC^{2}}=\\sqrt{6^{2}+8^{2}}=10$. \\\\\nTherefore, BO$=\\frac{1}{2}$AC=5.\\\\\nSince AE$\\perp$BD.\\\\\nTherefore, S$\\triangle$AOB$=\\frac{1}{2}$OB$\\cdot$AE=12\\\\\nTherefore, AE$=\\frac{24}{OB}=\\frac{24}{5}=\\boxed{4.8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52302537": { -"question": "In the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AD$ is the median, $E$ is the midpoint of $AD$, and $F$ is the midpoint of $BE$. Connect $DF$. If $AC=4\\sqrt{3}$ and $DF\\perp BE$, then what is the length of $DF$?", -"image_file_name": "7054409", -"image": [ -"math/52302537_791.png" -], -"solution": "\\textbf{Solution:} Connect CE. \\\\\nSince $AD$ is the median of side $BC$, and $F$ is the midpoint of $BE$, \\\\\ntherefore $DF$ is the median of $\\triangle BCE$, \\\\\nthus $CE = 2DF$, and $DF \\parallel CE$, \\\\\ntherefore $\\angle BDF = \\angle DCE$, $\\angle EDF = \\angle DEC$, \\\\\nalso since $DF \\perp BE$, \\\\\ntherefore $\\angle EDF = \\angle BDF$, \\\\\ntherefore $\\angle DEC = \\angle DCE$, \\\\\ntherefore $CD = ED$, \\\\\nsince $E$ is the midpoint of $AD$, and $\\angle ACB = 90^\\circ$, \\\\\ntherefore $CE = ED = CD = \\frac{1}{2}AD$, \\\\\ntherefore $AD = 4DF$, \\\\\nsince $AC = 4\\sqrt{3}$, \\\\\ntherefore $AD^{2} - CD^{2} = AD^{2} - (\\frac{1}{2}AD)^{2} = AC^{2} = 48$, \\\\\ntherefore $AD = 8$, \\\\\ntherefore $DF = \\boxed{2}$.", -"solution_image": [ -"solution_images/52302537_790.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52211841": { -"question": "As shown in the diagram, the quadrilateral $ABCD$ is a rhombus, $\\angle DAB=120^\\circ$, $M$ is a moving point on side $BC$, and $AM$ intersects side $BD$ at point $N$. When the length of segment $AM$ is minimal, $NM=1$. At this point, what is the distance from point $N$ to line $CD$?", -"image_file_name": "7054436", -"image": [ -"math/52211841_3511.png" -], -"solution": "\\textbf{Solution}: Since quadrilateral ABCD is a rhombus and $\\angle DAB=120^\\circ$,\nit follows that $AD\\parallel BC$, and BD bisects $\\angle ADC$ and $\\angle ABC$.\nTherefore, $\\angle ABC=60^\\circ$,\nwhich means $\\angle DBC=30^\\circ$.\nWhen AM$\\perp BC$ and AM is shortest, then $\\angle BAM=30^\\circ$.\nGiven $NM=1$,\nwe find $BN=2$ and $BM=\\sqrt{2^2-1^2}=\\sqrt{3}$.\nThus, $AB=2\\sqrt{3}$ and $AM=\\sqrt{AB^2-BM^2}=3$,\nleading to $AN=AM-NM=3-1=2$.\nSince $AD\\parallel BC$ and AM$\\perp BC$,\nit follows that AM$\\perp AD$.\nBecause BD bisects $\\angle ADC$,\nthe distance from point N to line CD is equal to its distance to line AD, with NA=2.\nTherefore, at this point, the distance from point N to the line CD is $\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52211484": { -"question": "As shown in the figure, extend the side BC of rectangle ABCD to point E so that $CE=BD$. Connect AE, intersecting the diagonal BD at point F, and intersecting side CD at point G. If $\\angle ADB = 38^\\circ$, what is the measure of $\\angle E$?", -"image_file_name": "7054436", -"image": [ -"math/52211484_363.png" -], -"solution": "\\textbf{Solution:} As shown in the figure: Connect AC. Let the intersection point of AC and BD be O. \\\\\nSince ABCD is a rectangle, \\\\\nit follows that AC=BD, \\\\\nwhich means OA=OC=OB=OD, \\\\\nSince $\\angle ADB=38^\\circ$, \\\\\nit implies $\\angle BCA=\\angle DBC=38^\\circ$, \\\\\nSince CE=BD, \\\\\nit leads to AC=CE, \\\\\nTherefore, $\\angle E=\\boxed{19^\\circ}$.", -"solution_image": [ -"solution_images/52211484_360.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52212059": { -"question": "As shown in the diagram, in rectangle $ABCD$, $AB=2$, $AD=4$, and $E$ is the midpoint of $AD$, $F$ is a moving point on the line segment $EC$, $P$ is the midpoint of $BF$. When the line segment $PD$ is drawn, what is the range of possible values for $PD$?", -"image_file_name": "7054436", -"image": [ -"math/52212059_370.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram:\\\\\nWhen point F coincides with point C, point P is at ${P}_{1}$, where $C{P}_{1}=B{P}_{1}$,\\\\\nWhen point F coincides with point E, point P is at ${P}_{2}$, where $E{P}_{2}=B{P}_{2}$,\\\\\n$\\therefore$ ${P}_{1}{P}_{2}\\parallel EC$ and ${P}_{1}{P}_{2}=\\frac{1}{2}CE$,\\\\\nWhen point F lies on EC excluding points C and E, we have BP=FP,\\\\\nBy the Midline Theorem, it is known that: ${P}_{1}P\\parallel CF$ and ${P}_{1}P=\\frac{1}{2}CF$,\\\\\n$\\therefore$ The trajectory of point P is the line segment ${P}_{1}{P}_{2}$,\\\\\n$\\because$ In rectangle ABCD, AB=2, AD=4, E is the midpoint of AD,\\\\\n$\\therefore$ $\\triangle ABE$, $\\triangle BEC$, $\\triangle DCP_{1}$ are isosceles right triangles,\\\\\n$\\therefore$ $\\angle ECB=45^\\circ$, $\\angle DP_{1}C=45^\\circ$,\\\\\n$\\because$ ${P}_{1}{P}_{2}\\parallel EC$,\\\\\n$\\therefore$ $\\angle P_{2}P_{1}B=\\angle ECB=45^\\circ$,\\\\\n$\\therefore$ $\\angle P_{2}P_{1}D=90^\\circ$,\\\\\n$\\therefore$ The length of DP is smallest at $D{P}_{1}$ and largest at $D{P}_{2}$,\\\\\n$\\because$ $CD=C{P}_{1}=DE=2$,\\\\\n$\\therefore$ $D{P}_{1}=2\\sqrt{2}$, $CE=2\\sqrt{2}$,\\\\\n$\\therefore$ ${P}_{1}{P}_{2}=\\sqrt{2}$,\\\\\n$\\therefore$ $D{P}_{2}=\\sqrt{(2\\sqrt{2})^2+(\\sqrt{2})^2}=\\sqrt{10}$,\\\\\nTherefore, the answer is: $\\boxed{2\\sqrt{2}\\le PD\\le \\sqrt{10}}$.", -"solution_image": [ -"solution_images/52212059_370.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52212584": { -"question": "As shown in the figure, for the rhombus $ABCD$, if $DB = 10$ and $AB = 13$, then what is the area of the rhombus $ABCD$?", -"image_file_name": "7054436", -"image": [ -"math/52212584_382.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $AC$, intersecting $DB$ at point O, \\\\\nsince quadrilateral $ABCD$ is a rhombus and $DB=10$,\\\\\ntherefore $AC=2OA$, $OB=\\frac{1}{2}DB=5$, $AC\\perp BD$,\\\\\nsince $AB=13$,\\\\\ntherefore $OA=\\sqrt{AB^{2}-OB^{2}}=12$,\\\\\nthus $AC=24$,\\\\\nthen the area of the rhombus $ABCD$ is $\\frac{1}{2}AC\\cdot DB=\\frac{1}{2}\\times 24\\times 10=\\boxed{120}$.", -"solution_image": [ -"solution_images/52212584_382.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52205277": { -"question": "As shown in the figure, the diagonals AC and BD of the rhombus ABCD intersect at point O. Point E is a point on side AD, and $OD = OE$. If $AC = 8$ and $BD = 6$, then what is the length of AE?", -"image_file_name": "7054436", -"image": [ -"math/52205277_393.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw ON $\\perp$ AD at point N,\\\\\n$\\because$ Quadrilateral ABCD is a rhombus,\\\\\n$\\therefore$ OD=$\\frac{1}{2}$BD=3, OA=$\\frac{1}{2}$AC=4, AC$\\perp$BD,\\\\\n$\\therefore$ AD=$\\sqrt{OA^{2}+OD^{2}}$=5,\\\\\n$\\because$ OD=OE, ON$\\perp$AD at point N,\\\\\n$\\therefore$ $\\angle$OND=90$^\\circ$, DN=EN,\\\\\n$\\therefore$ S$_{\\triangle AOD}$=$\\frac{1}{2}$AD·ON=$\\frac{1}{2}$OD·OA,\\\\\n$\\therefore$ 5ON=12,\\\\\n$\\therefore$ ON=$\\frac{12}{5}$,\\\\\n$\\therefore$ DN=$\\sqrt{OD^{2}-ON^{2}}=\\sqrt{3^{2}-\\left(\\frac{12}{5}\\right)^{2}}=\\frac{9}{5}$,\\\\\n$\\therefore$ DE=2DN=$\\frac{18}{5}$,\\\\\n$\\therefore$ AE=AD-DE=5-$\\frac{18}{5}=\\boxed{\\frac{7}{5}}$.", -"solution_image": [ -"solution_images/52205277_390.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52205279": { -"question": "As shown in the figure, within a square $ABCD$ with a side length of 2, points $E$ and $F$ are located on sides $BC$ and $AD$, respectively. By connecting $EF$ and folding quadrilateral $ABEF$ along $EF$, the corresponding point of $B$ precisely falls on side $CD$, and the corresponding point of $A$ is $H$. After connecting $BH$, what is the minimum value of $BH+EF$?", -"image_file_name": "7054436", -"image": [ -"math/52205279_401.png" -], -"solution": "\\textbf{Solution:} Construct $FK \\perp BC$ at point $K$, extend $BC$ to point $M$ such that $CM = BC$, connect $AM$ and intersect $CD$ at point $N$, connect $MG$, $GA$, $BG$,\n\n$\\because$ Quadrilateral $ABCD$ is a square, \n\n$\\therefore$ $\\angle BAD = \\angle ABC = \\angle BCD = 90^\\circ$, $AB = BC$,\n\n$\\therefore$ $CD \\perp BM$,\n\n$\\therefore$ $CD$ is the perpendicular bisector of $BM$,\n\n$\\therefore$ $MG = BG$,\n\n$\\because$ Folding quadrilateral $ABEF$ along $EF$, the corresponding point of $B$ on side $CD$ is exactly $G$, the corresponding point of $A$ is $H$,\n\n$\\therefore$ $AB = HG$, $BE = EG$, $\\angle ABE = \\angle HGE$, $EF \\perp BG$,\n\n$\\therefore$ $\\angle GBE = \\angle BGE$,\n\n$\\therefore$ $\\angle ABG = \\angle HGB$,\n\nIn $\\triangle ABG$ and $\\triangle HGB$\n\n$\\left\\{\\begin{array}{l} BG = GB\\\\ \\angle ABG = \\angle HGB\\\\ AB = HG \\end{array}\\right.$\n\n$\\therefore$ $\\triangle ABG \\cong \\triangle HGB$ (SAS),\n\n$\\therefore$ $GA = BH$,\n\n$\\because$ $EF \\perp BG$,\n\n$\\because$ $FK \\perp BC$,\n\n$\\therefore$ $\\angle FKE = \\angle BCG = 90^\\circ$,\n\n$\\therefore$ $\\angle EFK + \\angle FEK = \\angle GBC + \\angle FEK = 90^\\circ$,\n\n$\\therefore$ $\\angle EFK = \\angle GBC$,\n\n$\\because$ $\\angle BAD = \\angle ABC = \\angle BKF = 90^\\circ$,\n\n$\\therefore$ Quadrilateral $ABKF$ is a rectangle,\n\n$\\therefore$ $AB = FK$,\n\n$\\therefore$ $FK = BC$,\n\nIn $\\triangle FEK$ and $\\triangle BGC$\n\n$\\left\\{\\begin{array}{l} \\angle FKE = \\angle BCG\\\\ FK = BC\\\\ \\angle EFK = \\angle GBC \\end{array}\\right.$\n\n$\\therefore$ $\\triangle FEK \\cong \\triangle BGC$ (ASA),\n\n$\\therefore$ $EF = BG$,\n\n$\\therefore$ $EF = MG$,\n\n$\\therefore$ $BH + EF = AG + MG$,\n\n$\\because$ $AG + MG \\geq AM$,\n\n$\\therefore$ $BH + EF \\geq AM$,\n\n$\\therefore$ When point $G$ coincides with point $N$, $AG + MA = AM$, at this time $AG + MA$ has the minimum value,\n\n$\\therefore$ The value of $BH + EF = AM$ is also the minimum,\n\n$\\because$ $\\angle ABM = 90^\\circ$, $AB = 2$, $BM = 2BC = 4$,\n\n$\\therefore$ $AM = \\sqrt{AB^{2} + BM^{2}} = \\sqrt{2^{2} + 4^{2}} = \\boxed{2\\sqrt{5}}$,\n\n$\\therefore$ The minimum value of $BH + EF$ is $\\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52205279_400.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52205218": { -"question": "As shown in the figure, rectangle $ABCD$ is folded along $EF$, such that point $B$ exactly coincides with point ${B}^{\\prime}$ on side $AD$. If $AE=5$ and $\\angle EFB=60^\\circ$, then what is the length of $EF$?", -"image_file_name": "7054436", -"image": [ -"math/52205218_417.png" -], -"solution": "\\textbf{Solution:} Since it is folded,\\\\\n$\\therefore \\angle EFB = \\angle EFB' = 60^\\circ$,\\\\\n$\\therefore \\angle CFB' = 180^\\circ - \\angle EFB - \\angle EFB' = 60^\\circ$,\\\\\nSince quadrilateral ABCD is a rectangle,\\\\\n$\\therefore AD \\parallel BC$,\\\\\n$\\therefore \\angle EB'F = \\angle CFB' = 60^\\circ$,\\\\\n$\\therefore \\triangle EFB'$ is an equilateral triangle,\\\\\n$\\therefore EB' = EF$,\\\\\nSince $\\angle A'B'E = 90^\\circ - \\angle EB'F = 90^\\circ - 60^\\circ = 30^\\circ$,\\\\\nAnd $\\angle EA'B' = 90^\\circ$,\\\\\n$\\therefore EB' = 2EA' = 10$,\\\\\n$\\therefore EF = EB' = \\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52205064": { -"question": "Given the figure, in the Cartesian coordinate system, the midpoint of diagonal $AC$ of rectangle $ABCD$ coincides with the origin. Point $E$ is a point on the $x$-axis, and $AE$ is connected. If $AD$ bisects $\\angle OAE$, the graph of the inverse proportion function $y=\\frac{k}{x}$ ($k>0$, $x>0$) passes through two points $A$ and $F$ on $AE$, and $AF=EF$, the area of $\\triangle ABE$ is $18$, then what is the value of $k$?", -"image_file_name": "7054436", -"image": [ -"math/52205064_421.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BD and AC at point O. Draw AG $\\perp$ x-axis at point G from point A, and draw FH $\\perp$ x-axis at point H from point F. Connect OF, \\\\\n$\\therefore$ FH $\\parallel$ AG, \\\\\n$\\because$ AE=EF, \\\\\n$\\therefore$ FH is the median line of $\\triangle$ AGE, \\\\\n$\\therefore$ GH=HE, AG=2FH \\\\\n$\\because$ points A and F are on the graph of the inverse proportion function y=$\\frac{k}{x}$ (k>0, x>0), \\\\\n$\\therefore$ S$_{\\triangle AOG}$=S$_{\\triangle FOH}$=$\\frac{k}{2}$, \\\\\n$\\therefore$ OG·AG=OH·FH, \\\\\n$\\therefore$ OH=2OG, \\\\\n$\\therefore$ OG=GH=HE, \\\\\n$\\because$ of the rectangle ABCD, \\\\\n$\\therefore$ OA=OD, \\\\\n$\\therefore$ $\\angle$OAD=$\\angle$ODA, \\\\\nAdditionally, $\\because$ AD bisects $\\angle$OAE, \\\\\n$\\therefore$ $\\angle$OAD=$\\angle$EAD, \\\\\n$\\therefore$ $\\angle$ODA=$\\angle$EAD, \\\\\n$\\therefore$ AE $\\parallel$ BD, \\\\\n$\\therefore$ S$_{\\triangle AOE}$=S$_{\\triangle ABE}$=18, \\\\\n$\\therefore$ S$_{\\triangle AOG}$=$\\frac{1}{3}$S$_{\\triangle AOE}$=6, \\\\\n$\\therefore$ $\\frac{k}{2}$=6, \\\\\n$\\therefore$ k=\\boxed{12}.", -"solution_image": [ -"solution_images/52205064_420.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52205063": { -"question": "As shown in the diagram, in the rhombus $ABCD$, $\\angle ABC=30^\\circ$. Connect $AC$. Follow the steps below to draw: Take $C$ and $B$ as centers, and with the length of $BC$ as the radius, draw arcs. The arcs intersect at point $P$. Connect $BP$ and $CP$. What is the measure of $\\angle ACP$?", -"image_file_name": "7054436", -"image": [ -"math/52205063_430.png" -], -"solution": "\\textbf{Solution:} According to the steps given in the question, the diagram is completed as follows:\\\\\nSince rhombus ABCD, $\\angle$ABC=30$^\\circ$,\\\\\ntherefore, $\\angle$BCD=150$^\\circ$,\\\\\nthus, $\\angle$ACB=75$^\\circ$,\\\\\n(1) When point P is above BC,\\\\\nsince BP=PC=BC,\\\\\nthus, $\\triangle BPC$ is an equilateral triangle,\\\\\ntherefore, $\\angle$PCB=60$^\\circ$,\\\\\nhence, $\\angle$ACP=$\\angle$ACB−$\\angle$PCB=75$^\\circ$−60$^\\circ$=\\boxed{15^\\circ};\\\\\n(2) When point P' is below BC,\\\\\nsince BP'=P'C=BC,\\\\\nthus, $\\triangle BP'C$ is an equilateral triangle,\\\\\ntherefore, $\\angle$P'CB=60$^\\circ$,\\\\\nhence, $\\angle$ACP'=$\\angle$ACB+$\\angle$P'CB=75$^\\circ$+60$^\\circ$=135$^\\circ$,\\\\\nIn conclusion, the degree of $\\angle$ACP is either $\\boxed{15^\\circ}$ or 135$^\\circ$.", -"solution_image": [ -"solution_images/52205063_430.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52204870": { -"question": "As shown in the figure, given a rectangle $ABCD$ with two sides $AB=6$ and $AD=8$, point $E$ is the intersection of diagonals $AC$ and $BD$, point $P$ is a moving point on side $AD$. Construct point $D'$, which is the symmetric point of $D$ with respect to line $PE$. When $ED'$ is perpendicular to a side of the rectangle, what is the length of $PD$?", -"image_file_name": "7054436", -"image": [ -"math/52204870_440.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, when $ED^{\\prime} \\perp AD$,\n\n$\\because$ rectangle ABCD,\n\n$\\therefore$ AE=CE, CD$\\perp$AD, AB=CD=6,\n\n$\\therefore$ EF$\\parallel$CD,\n\n$\\therefore$ EF is the median of $\\triangle ACD$,\n\n$\\therefore$ EF=$\\frac{1}{2}CD=\\frac{1}{2}\\times 6=3$, DF=$\\frac{1}{2}AD=4$, AC=BD=2DE, in $\\triangle ADC$\n\n$AC=\\sqrt{AD^{2}+CD^{2}}=\\sqrt{8^{2}+6^{2}}=10$,\n\n$\\therefore$ DE=5\n\n$\\because$ point D is symmetrical to point D$^{\\prime}$ regarding line PE,\n\n$\\therefore$ DE=ED$^{\\prime}=5$, DP=D$^{\\prime}P$,\n\n$\\therefore$ FD$^{\\prime}=5-3=2$, let DP=D$^{\\prime}P=x$, then PF=4-x, in $\\triangle PFD^{\\prime}$\n\n$D^{\\prime}F^{2}+PF^{2}=D^{\\prime}P^{2}$, which implies $x^{2}=(4-x)^{2}+4$\n\nSolving this: $x=\\boxed{\\frac{5}{2}}$;\n\nWhen $D^{\\prime}E\\perp AB$\n\n$\\because$ DA$\\perp$AB,\n\n$\\therefore$ AD$\\parallel D^{\\prime}E$,\n\n$\\therefore \\angle DPE=\\angle PED^{\\prime}$,\n\n$\\because$ point D is symmetrical to point D$^{\\prime}$ regarding line PE,\n\n$\\therefore \\triangle DPE$ and $\\triangle D^{\\prime}PE$ are symmetrical regarding line PE,\n\n$\\therefore \\angle DPE=\\angle D^{\\prime}PE$,\n\n$\\therefore \\angle PED^{\\prime}=\\angle D^{\\prime}PE$,\n\n$\\therefore DP^{\\prime}=DP=D^{\\prime}E=5$.\n\nHence, the length of PD is $\\boxed{\\frac{5}{2}}$ or 5.", -"solution_image": [ -"solution_images/52204870_440.png", -"solution_images/52204870_446.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52204871": { -"question": "As shown in the diagram, it is known that in the Cartesian coordinate system $xOy$, an isosceles right-angled triangle $ABC$ has its hypotenuse $AB \\perp x$-axis at point $A$. The graph of the inverse proportion function $y = \\frac{k}{x}$ ($k>0$, $x>0$) passing through point $B$ intersects side $AC$ at point $D$. Connect $OB$ and $OC$. If point $D$ is the midpoint of $AC$ and the area of $\\triangle OBC$ is $1$, then what is the value of $k$?", -"image_file_name": "7054436", -"image": [ -"math/52204871_451.png" -], -"solution": "\\textbf{Solution:}\n\nDraw line $EF \\perp y$-axis at point F through point B. Draw line $CE \\perp EF$ at point E through point C. Draw line $CM \\perp AB$ at point M through point C.\\\\\nTherefore, $\\angle ABE = \\angle E = \\angle BMC = 90^\\circ$,\\\\\nThus, quadrilateral $BMCE$ is a rectangle,\\\\\nSince isosceles right triangle $\\triangle ABC$ has hypotenuse $AB \\perp x$-axis at point A,\\\\\nTherefore, $\\angle ABC = 45^\\circ$,\\\\\nTherefore, $\\angle EBC = 45^\\circ$,\\\\\nTherefore, $\\triangle EBC$ is an isosceles right triangle,\\\\\nTherefore, $BE = CE$,\\\\\nTherefore, quadrilateral $BMCE$ is a square,\\\\\nTherefore, $BE = CE = CM = \\frac{1}{2}AB$,\\\\\nSince the graph of the inverse proportion function $y = \\frac{k}{x}$ ($k>0$, $x>0$) passing through point B intersects side $AC$ at point D,\\\\\nLet point A be $(x,0)$, then $B\\left(x, \\frac{k}{x}\\right)$\\\\\nTherefore, $BE = CE = CM = \\frac{k}{2x}$, $AB = \\frac{k}{x}$,\\\\\nTherefore, point $C\\left(x+\\frac{k}{2x}, \\frac{k}{2x}\\right)$\\\\\nSince point D is the midpoint of $AC$,\\\\\nTherefore, $D\\left(x+\\frac{k}{4x}, \\frac{k}{4x}\\right)$,\\\\\nSince $S_{\\triangle OBC} = S_{\\text{trapezoid} EFOC} - S_{\\triangle BFO} - S_{\\triangle BEC} = 1$\\\\\nTherefore, $\\frac{\\left(\\frac{k}{2x}+\\frac{k}{x}\\right)\\left(x+\\frac{k}{2x}\\right)}{2}-\\frac{1}{2}x\\cdot\\frac{k}{x}-\\frac{1}{2}\\cdot\\frac{k}{2x}\\cdot\\frac{k}{2x}=1$\\\\\nRearranging gives $k^2 = (4-k)x^2$;\\\\\nSince points B and D are on the graph of the inverse proportion function,\\\\\nTherefore, $k = \\left(x+\\frac{k}{4x}\\right)\\cdot\\frac{k}{4x}$\\\\\nRearranging gives $x^2 = \\frac{k}{12}$\\\\\nSubstituting the above equation yields $k^2 = (4-k) \\times \\frac{k}{12}$\\\\\nSince $k \\neq 0$\\\\\nSolving yields: $k = \\boxed{\\frac{4}{13}}$.", -"solution_image": [ -"solution_images/52204871_450.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52204767": { -"question": "As shown in the figure, in the rhombus $ABCD$, the perpendicular bisector of $AD$ intersects $AD$ at point $E$, and intersects $AC$ at point $F$, $\\angle ABC=4\\angle DFC$, what is the measure of $\\angle BAD$?", -"image_file_name": "7054436", -"image": [ -"math/52204767_468.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram,\\\\\n$\\because EF$ perpendicularly bisects $AD$.\\\\\n$\\therefore AF=DF$.\\\\\n$\\therefore \\angle FAD=\\angle FDA$.\\\\\n$\\because \\angle DFC=\\angle FAD+\\angle FDA$.\\\\\n$\\therefore \\angle FDC=2\\angle FAD$.\\\\\nIn rhombus $ABCD$, $AC$ is the diagonal,\\\\\n$\\therefore \\angle BAD=2\\angle FAD$.\\\\\n$\\therefore \\angle BAD=\\angle DFC$.\\\\\n$\\because \\angle ABC=4\\angle DFC$.\\\\\n$\\therefore \\angle ABC=4\\angle BAD$.\\\\\n$\\because \\angle BAD+\\angle ABC=180^\\circ$.\\\\\n$\\therefore \\angle BAD+4\\angle BAD=180^\\circ$.\\\\\n$\\therefore \\angle BAD=\\boxed{36^\\circ}$", -"solution_image": [ -"solution_images/52204767_460.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52204555": { -"question": "As shown in the figure, points $E$, $F$, $G$, and $H$ are the midpoints of the sides of square $ABCD$, and lines $BE$, $DG$, $CF$, $AH$ are connected. If $AB=10$, what is the area of quadrilateral $MNPQ$?", -"image_file_name": "7054436", -"image": [ -"math/52204555_4711.png" -], -"solution": "\\textbf{Solution:} Given that points $E$, $F$, $G$, $H$ are midpoints of the sides of the square $ABCD$,\\\\\n$\\therefore DE=BG=DH=CG=\\frac{1}{2}AB$, and $DE\\parallel BG$,\\\\\n$\\therefore$ quadrilateral $DEBG$ is a parallelogram,\\\\\n$\\therefore BE\\parallel DG$,\\\\\n$\\therefore AM=QM$,\\\\\nSimilarly, $DQ=PQ$ can be deduced,\\\\\nIn $\\triangle ADH$ and $\\triangle DCG$,\\\\\n$\\left\\{\\begin{array}{l}AD=DC\\\\ \\angle ADH=\\angle DCG\\\\ DH=CG\\end{array}\\right.$,\\\\\n$\\therefore \\triangle ADH \\cong \\triangle DCG\\ (SAS)$,\\\\\n$\\therefore \\angle DAH=\\angle CDG$,\\\\\n$\\because \\angle CDG+\\angle ADQ=90^\\circ$,\\\\\n$\\therefore \\angle DAH+\\angle ADQ=90^\\circ$,\\\\\n$\\therefore \\angle AQD=90^\\circ$,\\\\\nSimilarly, it can be deduced that $\\angle BMA=\\angle CNB=\\angle DPC=90^\\circ$,\\\\\n$\\therefore$ quadrilateral $MNPQ$ is a rectangle,\\\\\nIn $\\triangle ADQ$ and $\\triangle DCP$,\\\\\n$\\left\\{\\begin{array}{l}\\angle AQD=\\angle DPC\\\\ \\angle DAQ=\\angle CDP\\\\ AD=DC\\end{array}\\right.$,\\\\\n$\\therefore \\triangle ADQ \\cong \\triangle DCP\\ (AAS)$,\\\\\n$\\therefore AQ=DP$,\\\\\n$\\therefore AM=MQ=DQ=PQ$,\\\\\n$\\therefore$ quadrilateral $MNPQ$ is a square,\\\\\nLet $MQ=x$, then $AQ=2x$, $DQ=x$,\\\\\nIn right triangle $\\triangle ADQ$, $x^2+(2x)^2=100$,\\\\\n$\\therefore x^2=20$,\\\\\n$\\therefore$ the area of quadrilateral $MNPQ$ is $\\boxed{20}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52204223": { -"question": "As shown in the figure, points $E$ and $F$ are located on sides $AD$ and $CD$ of the square $ABCD$, respectively, and $OE \\perp OF$. Given that $AD = 6$, what is the area of the shaded region in the figure?", -"image_file_name": "7054436", -"image": [ -"math/52204223_485.png" -], -"solution": "\\textbf{Solution:} \n\nSince quadrilateral ABCD is a square, \\\\\n$\\therefore \\angle EDO = \\angle FCO$, AC $\\perp$ BD, OD = $ \\frac{1}{2}$ BD, OC = $ \\frac{1}{2}$ AC, and AC = BD, \\\\\n$\\therefore \\angle DOC = 90^\\circ$, and OD = OC, \\\\\nSince OE $\\perp$ OF, \\\\\n$\\therefore \\angle EOF = 90^\\circ$, \\\\\n$\\therefore \\angle DOE = \\angle COF$, \\\\\nThus, $\\triangle ODE \\cong \\triangle OCF$ (ASA), \\\\\nTherefore, the area of the shaded part in the figure = Area of $\\triangle AOD$ = $ \\frac{1}{4}$ Area of square ABCD, \\\\\nSince AD = 6, \\\\\nTherefore, the area of the shaded part in the figure = $ \\frac{1}{4} \\times 6^{2}$ = $\\boxed{9}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52204025": { -"question": "As shown in the figure, in rectangle $ABCD$, if $AB=7$ and $\\angle DBC=30^\\circ$, what is the length of $AC$?", -"image_file_name": "7054436", -"image": [ -"math/52204025_494.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a rectangle, and $AB=7$,\n\nhence $CD=AB=7$, $AC=BD$, and $\\angle BCD=90^\\circ$,\n\nsince in $\\triangle BCD$, $\\angle DBC=30^\\circ$,\n\nit follows that $BD=2CD=14$,\n\ntherefore $AC=BD=\\boxed{14}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52204028": { -"question": "As shown in the figure, the side length of square $ABCD$ is $4$, $E$ is the midpoint of side $AD$, connect $BE$, fold $\\triangle ABE$ along line $BE$ to $\\triangle FBE$, extend $EF$ to intersect $CD$ at point $G$, what is the length of $CG$?", -"image_file_name": "7054436", -"image": [ -"math/52204028_5012.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, construct line $BG$. Because quadrilateral $ABCD$ is a square, therefore $AB=BC=4$, $\\angle A=\\angle ABC=\\angle C=90^\\circ$. From folding, $AB=BF=BC=4$, $AE=EF=\\frac{1}{2}AD=2=DE$, $\\angle A=\\angle BFE=90^\\circ=\\angle C$. Because $\\angle BFE+\\angle BFG=180^\\circ$, therefore $\\angle C=\\angle BFG=90^\\circ$. In $\\triangle BFG$ and $\\triangle BCG$, we have $\\left\\{\\begin{array}{c}BF=BC\\\\ BG=BG\\end{array}\\right.$, therefore $\\triangle BFG\\cong \\triangle BCG$ (HL), therefore $FG=CG$. Let $CG=x$, then $DG=4-x$, $EG=2+x$. In $\\triangle DEG$, by the Pythagorean theorem, $EG^{2}=DE^{2}+DG^{2}$, solving $(2+x)^{2}=2^{2}+(4-x)^{2}$ yields $x=\\boxed{\\frac{4}{3}}$, which means the length of $CG$ is $\\frac{4}{3}$.", -"solution_image": [ -"solution_images/52204028_500.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52188275": { -"question": "As shown in the figure, the side length of square $ABCD$ and square $EFCG$ are respectively 3 and 1, with points $F$ and $G$ respectively on sides $BC$ and $CD$. Let $P$ be the midpoint of $AE$. When connecting $PG$, what is the length of $PG$?", -"image_file_name": "7054436", -"image": [ -"math/52188275_510.png" -], -"solution": "\\textbf{Solution:} Extend $GE$ to meet $AB$ at point $O$, and draw $PH \\perp OE$ at point $H$,\\\\\nsince square $ABCD$, and square $EFCG$,\\\\\ntherefore, $EF=1$, $AB=3$, quadrilateral $EFBO$, $ODG$ are rectangles,\\\\\ntherefore, $EF=OB=1$ therefore $AO=BF=AB-OB=3-1=2$;\\\\\nsince $PH\\parallel AB$, and since $P$ is the midpoint of $AE$,\\\\\ntherefore, $PH$ is the midline of $\\triangle AOE$,\\\\\ntherefore, $PH=\\frac{1}{2}OA=\\frac{1}{2}\\times 2=1$,\\\\\nsince in $\\triangle AOE$, $\\angle OAE=45^\\circ$,\\\\\ntherefore, $\\triangle AOE$ is an isosceles right triangle,\\\\\ntherefore, $OA=OE=2$, similarly, it is known that $HE=PH=1$.\\\\\ntherefore, $HG=HE+EG=1+1=2$.\\\\\nIn $\\triangle PHG$,\\\\\n$PG=\\sqrt{PH^{2}+HG^{2}}=\\sqrt{1^{2}+2^{2}}=\\boxed{\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52188275_510.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52188838": { -"question": "As shown in the figure, in rectangle ABCD, AB = 2, $\\angle DAC=30^\\circ$, the point M is the midpoint of side BC, point P is a moving point on the diagonal AC ($00$, $x>0$) passes through the right-angle vertex $C$. If $OA=7$ and $OB=3$, what is the value of $k$?", -"image_file_name": "7055712", -"image": [ -"math/50497050_311.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct $CE\\perp y$-axis, $CD\\perp x$-axis. Since $\\angle O=90^\\circ$, it follows that quadrilateral $ODCE$ is a rectangle. Therefore, $\\angle ECD=90^\\circ$. Since $\\angle BCA=90^\\circ$, it follows that $\\angle ECB=\\angle DCA$. Therefore, in $\\triangle CEB$ and $\\triangle CDA$, we have $\\left\\{\\begin{array}{l} \\angle CEB=\\angle CDA \\\\ \\angle ECB=\\angle DCA \\\\ CB=CA \\end{array}\\right.$ Therefore, $\\triangle CEB\\cong \\triangle CDA\\left(AAS\\right)$, which implies $CE=CD$, $EB=DA$. Consequently, quadrilateral $ODCE$ is a square. Let $EB=DA=x$, so $OD=OA-DA=7-x$, $OE=OB+BE=3+x$. Since $OE=OD$, we get $7-x=3+x$, which is solved to find $x=2$. Therefore, $OD=7-2=5$, $OE=3+2=5$. Hence, the coordinates of point C are $(5,5)$. Substituting $C(5,5)$ into $y=\\frac{k}{x}$ gives $5=\\frac{k}{5}$. Solving this yields $k=\\boxed{25}$.", -"solution_image": [ -"solution_images/50497050_310.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50497001": { -"question": "As shown in the diagram, in rectangle $ABCD$, $AB=12$, and point $E$ is on side $BC$. Connect $DE$ and $AE$, $\\angle DEC=30^\\circ$, and $AE\\perp DE$. Fold $\\triangle CDE$ along $DE$ to obtain $\\triangle DEF$. Connect $AF$. What is the distance from $E$ to $AF$?", -"image_file_name": "7055712", -"image": [ -"math/50497001_3214.png" -], -"solution": "\\textbf{Solution}: Since quadrilateral ABCD is a rectangle, we have $\\angle ABC=\\angle BAC=\\angle ADC=\\angle BCD=90^\\circ$, and CD=AB=12. Draw FM$\\perp$BC at M, intersecting AD at N. Draw AH$\\perp$EF at H through point A, and draw EG$\\perp$AF at G through point E. Then, quadrilaterals ABMN and CDNM are rectangles, thus $AB=MN=CD=12$, AN=BM, and by the folding property, CE=EF. Also, $\\angle CED=\\angle DEF=30^\\circ$, thus DE=2CD=24, and $\\angle CEF=60^\\circ$. By the Pythagorean theorem, CE=EF=$\\sqrt{DE^2-CD^2}=\\sqrt{24^2-12^2}=12\\sqrt{3}$, which makes $\\triangle CEF$ an equilateral triangle. Thus, ME=CM=$\\frac{1}{2}$CE=$6\\sqrt{3}$. By the Pythagorean theorem again, FM=$\\sqrt{EF^2-ME^2}=\\sqrt{(12\\sqrt{3})^2-(6\\sqrt{3})^2}=18$. Since AE$\\perp$DE and $\\angle CDE=\\angle DEF=30^\\circ$, it follows that $\\angle AEH=\\angle AEB=60^\\circ$, and $\\angle ABE=\\angle AHE=90^\\circ$, making AH=AB=12 and $\\angle HAE=\\angle BAE=30^\\circ$. Hence, AE=2BE. By applying the Pythagorean theorem: $AB^2+BE^2=AE^2$ gives $12^2+BE^2=4BE^2$, from which we get BE=$4\\sqrt{3}$. Consequently, AN=BE+ME=$4\\sqrt{3}+6\\sqrt{3}=10\\sqrt{3}$, and FN=FM−MN=18−12=6. Therefore, AF=$\\sqrt{AN^2+FN^2}=\\sqrt{(10\\sqrt{3})^2+6^2}=4\\sqrt{21}$. From $S_{\\triangle AEF}=\\frac{1}{2}AF\\cdot EG=\\frac{1}{2}EF\\cdot AH$, we derive $\\frac{1}{2}\\times 4\\sqrt{21}\\cdot EG=\\frac{1}{2}\\times 12\\sqrt{3}\\times 12$, solving for EG yields $\\boxed{\\frac{36\\sqrt{7}}{7}}$.", -"solution_image": [ -"solution_images/50497001_320.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50496915": { -"question": "As shown in the figure, the side length of the square paper $ABCD$ is 4, and point $F$ is on side $AD$. Connect $BF$, fold the paper along the line $BF$, and the corresponding point of point $A$ is point $G$. Extend line $AG$ to intersect $CD$ at point $E$. If $DE=3$, what is the length of $GE$?", -"image_file_name": "7055712", -"image": [ -"math/50496915_3312.png" -], -"solution": "\\textbf{Solution:} \nSince quadrilateral $ABCD$ is a square, \n$\\therefore \\angle D=\\angle DAB=90^\\circ$, $AD=BA$, \nSince it is folded, \n$\\therefore AH\\perp BF$, \n$\\therefore \\angle AHB=90^\\circ$, \n$\\therefore \\angle ABF+\\angle BAH=90^\\circ$, \nSince $\\angle BAH+\\angle DAE=90^\\circ$, \n$\\therefore \\angle DAE=\\angle ABF$, \n$\\therefore \\triangle DAE\\cong \\triangle ABF$ (ASA), \n$\\therefore AE=BF$, $AF=DE$, \nSince $AB=4$, $DE=4$, \n$\\therefore$ $AF=3$, $BF=\\sqrt{AB^2+AF^2}=\\sqrt{3^2+4^2}=5$, \n$\\therefore$ $AH=\\frac{AF\\cdot AB}{BF}=\\frac{3\\times 4}{5}=\\frac{12}{5}$, \n$\\therefore AG=2AH=\\frac{24}{5}$, \n$\\therefore$ $GE=AE-AG=5-\\frac{24}{5}=\\boxed{\\frac{1}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"50496865": { -"question": "As shown in the figure, point $E$ is a point outside the square $ABCD$, and $ED=CD$, connect $AE$ and intersect $BD$ at point $F$. If $\\angle CDE=30^\\circ$, then what is the measure of $\\angle DFC$?", -"image_file_name": "7055712", -"image": [ -"math/50496865_348.png" -], -"solution": "\\textbf{Solution}: \nSince quadrilateral $ABCD$ is a square,\\\\ \nthus $AD=DC, \\angle ADC=90^\\circ$,\\\\ \ntherefore $\\angle ADB=\\angle BDC=45^\\circ$,\\\\ \nsince $DC=DE$,\\\\ \nthus $AD=DE$,\\\\ \ntherefore $\\angle DAE=\\angle DEA$,\\\\ \nsince $\\angle ADE=90^\\circ+30^\\circ=120^\\circ$,\\\\ \nthus $\\angle DAE=\\frac{180^\\circ−120^\\circ}{2}=30^\\circ$,\\\\ \ntherefore $\\angle AFD=180^\\circ−30^\\circ−45^\\circ=105^\\circ$,\\\\ \nIn $\\triangle ADF$ and $\\triangle CDF$,\\\\ \nsince $\\left\\{\\begin{array}{c}AD=DC\\\\ \\angle ADB=\\angle BDC\\\\ DF=DF\\end{array}\\right.$,\\\\ \nthus $\\triangle ADF\\cong \\triangle CDF$,\\\\ \ntherefore $\\angle DFC=\\angle AFD=\\boxed{105^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50496734": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ and $F$ are the midpoints of $AB$ and $AD$ respectively. If $AC = 4$, what is the length of $EF$?", -"image_file_name": "7055712", -"image": [ -"math/50496734_350.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BD,\\\\\nsince quadrilateral ABCD is a rectangle,\\\\\ntherefore AC=BD=4,\\\\\nsince E, F are the midpoints of AD, AB respectively,\\\\\ntherefore EF= $\\frac{1}{2}$ BD= \\boxed{2}", -"solution_image": [ -"solution_images/50496734_350.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50496662": { -"question": "As shown in the figure, the four corners of the rectangular paper ABCD are folded inward to perfectly form a quadrilateral EFGH with no gaps and no overlaps. If $BC=8$ and $GH=7$, then what is the length of $EH$?", -"image_file_name": "7055712", -"image": [ -"math/50496662_360.png" -], -"solution": "\\textbf{Solution:} Given that folding the four corners of the rectangle ABCD inward perfectly forms a quadrilateral EFGH without any gaps or overlaps,\\\\\nit follows that $\\angle CFE = \\angle EFH = \\frac{1}{2} \\angle CFH$, $\\angle BFG = \\angle HFG = \\frac{1}{2} \\angle BFH$, FM = CF, FN = BF, $\\angle GNH = \\angle EMH = 90^\\circ$,\\\\\nhence $\\angle EFH + \\angle HFG = \\frac{1}{2} (\\angle CFH + \\angle BFH) = 90^\\circ$, meaning $\\angle EFG = 90^\\circ$,\\\\\nSimilarly, it can be derived that $\\angle FEH = \\angle GHE = 90^\\circ$,\\\\\nthus quadrilateral EFGH is a rectangle,\\\\\nhence $\\angle GHF = \\angle EFH$, EF = GH = 7,\\\\\nIn $\\triangle GHN$ and $\\triangle EFM$, $\\left\\{\\begin{array}{l} \\angle GNH = \\angle EMF\\hfill \\\\ \\angle GHN = \\angle EFM\\hfill \\\\ GH = EF\\hfill \\end{array} \\right.$,\\\\\nthus $\\triangle GHN \\cong \\triangle EFM$,\\\\\nhence HN = FM,\\\\\nthus CF = HN,\\\\\nhence FH = NH + FN = CF + BF = BC = 8,\\\\\nthus EH = $\\sqrt{FH^2 - EF^2}$ = $\\sqrt{FH^2 - GH^2}$ = $\\sqrt{8^2 - 7^2}$ = $\\boxed{\\sqrt{15}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"50496611": { -"question": "As shown in the diagram, square $ABCD$ has a side length of 1, and point $E$ is on the extension line of $BC$. If $BE=BD$, then what is the length of $CE$?", -"image_file_name": "7055712", -"image": [ -"math/50496611_370.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a square, \\\\\nit follows that BC=CD=1, \\\\\nBy the Pythagorean theorem, we have $BD=\\sqrt{BC^{2}+CD^{2}}=\\sqrt{2}$, \\\\\ntherefore, $CE=BE-BC=BD-BC= \\boxed{\\sqrt{2}-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50496612": { -"question": "As illustrated, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AB=10\\,\\text{cm}$, $BC=8\\,\\text{cm}$. Point $D$ is on side $AB$ with $AD=AC$, $AE\\perp CD$ at foot $E$. Point $F$ is the midpoint of $BC$. Then, what is the length of $EF$ in $\\text{cm}$?", -"image_file_name": "7055712", -"image": [ -"math/50496612_380.png" -], -"solution": "\\textbf{Solution}: In $\\triangle ABC$, where $\\angle ACB=90^\\circ$, $AB=10\\text{cm}$, $BC=8\\text{cm}$,\\\\\nwe have $AC=\\sqrt{AB^{2}-BC^{2}}=\\sqrt{10^{2}-8^{2}}=6\\text{cm}$.\\\\\nThus, $AD=AC=6\\text{cm}$,\\\\\nand $BD=AB-AD=10-6=4\\text{cm}$.\\\\\nSince $AD=AC$ and $AE\\perp CD$,\\\\\nit follows that $CE=DE$, meaning point $E$ is the midpoint of $CD$,\\\\\nand given that point $F$ is the midpoint of $BC$,\\\\\n$EF$ serves as the midsegment of $\\triangle CBD$,\\\\\nthus $EF=\\frac{1}{2}BD=\\boxed{2}\\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50496574": { -"question": "As shown in the figure, in the Cartesian coordinate system, the square ABCD with a side length of 2 has its side AB on the x-axis, and the midpoint of AB is the origin O. Fix points A and B, and push the square in the direction of the arrow until point D falls on the positive half-axis of the y-axis at point $D'$. Point E is a moving point on the x-axis. When $ED'+EC'$ takes the minimum value, what are the coordinates of point E?", -"image_file_name": "7055712", -"image": [ -"math/50496574_392.png" -], -"solution": "\\textbf{Solution:} Construct point $F$ as the reflection of point $D'$ across the $x$ axis, and connect $C'F$. The intersection of $C'F$ and the $x$ axis is the desired point $E$.\\\\\nSince the $x$ axis bisects $D'F$ perpendicularly,\\\\\nit follows that $ED'=EF$\\\\\nTherefore, $ED'+EC'=EF+EC'=FC'$\\\\\nThis implies that at point $E$, the sum $ED'+EC'$ is minimized.\\\\\nSince $AD'=2$, $AO=1$, and $\\angle AOD'=90^\\circ$,\\\\\nit follows that $OD'=\\sqrt{AD{'}^{2}-AO^{2}}=\\sqrt{2^{2}-1^{2}}=\\sqrt{3}$,\\\\\nTherefore, $F(0,-\\sqrt{3})$, $C'(2,\\sqrt{3})$,\\\\\nThus, the equation of line $FC'$ is: $y=\\sqrt{3}x-\\sqrt{3}$,\\\\\nHence, the coordinates of point $E$ are $\\boxed{(1,0)}$.", -"solution_image": [ -"solution_images/50496574_396.jpg" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"50496567": { -"question": "As the diagram shows, points $A$ and $B$ are separated by a pond and their distance cannot be measured directly. Therefore, Xiao Ming selects a point $C$ on the shore, connects $CA$ and $CB$, and extends them to points $M$ and $N$ respectively, such that $AM=AC$ and $BN=BC$. Given that the length of $MN$ is measured to be $20m$, what is the distance between points $A$ and $B$ in meters?", -"image_file_name": "7055712", -"image": [ -"math/50496567_400.png" -], -"solution": "\\textbf{Solution:} Since $AM=AC$, and $BN=BC$\\\\\ntherefore, A and B are respectively the midpoints of CM and CN,\\\\\ntherefore, AB is the mid-segment of $\\triangle CMN$,\\\\\ntherefore, $MN=2AB$,\\\\\ntherefore, AB= $\\frac{1}{2}MN=\\boxed{10}$ m", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50496534": { -"question": " In the parallelogram $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$, $AC=AB$, $E$ is the midpoint of side $AB$, $G$ and $F$ are points on side $BC$, and $OG$ and $EF$ are connected. If $AB=25$, $BC=14$, and $GF=7$, what is the area of the shaded region in the figure?", -"image_file_name": "7055712", -"image": [ -"math/50496534_4115.png" -], -"solution": "\\textbf{Solution}: Connect OE, let OG intersect EF at point H, and draw AP$\\perp$BC at point P, intersecting OE at point Q, as shown in the figure.\\\\\n$\\because$AB=AC, AP$\\perp$BC,\\\\\n$\\therefore$ $BP=\\frac{1}{2}BC=7.$\\\\\n$\\therefore$ $AP=\\sqrt{AB^{2}-BP^{2}}=\\sqrt{25^{2}-7^{2}}=24.$\\\\\n$\\because$Quadrilateral ABCD is a parallelogram,\\\\\n$\\therefore$OA=OC.\\\\\n$\\because$EA=EB,\\\\\n$\\therefore$OE is the median line of $\\triangle ABC$.\\\\\n$\\therefore$OE$\\parallel$BC and $OE=\\frac{1}{2}BC=7.$\\\\\n$\\therefore \\angle AEO=\\angle ABC,$ $\\angle AOE=\\angle ACB.$\\\\\n$\\because AB=AC,$\\\\\n$\\therefore \\angle ABC=\\angle ACB.$\\\\\n$\\therefore \\angle AEO=\\angle AOE.$\\\\\n$\\therefore AO=AE.$ That is, $\\triangle AEO$ is an isosceles triangle.\\\\\n$\\because$OE$\\parallel$BC,\\\\\n$\\therefore$$\\angle$AQE=$\\angle$APB=90$^\\circ$.\\\\\n$\\therefore$AP$\\perp$OE at point Q.\\\\\n$\\therefore EQ=OQ=\\frac{1}{2}OE=\\frac{7}{2}.$\\\\\n$\\therefore$ $AQ=\\sqrt{AE^{2}-EQ^{2}}=\\sqrt{\\left(\\frac{25}{2}\\right)^{2}-\\left(\\frac{7}{2}\\right)^{2}}=12.$\\\\\n$\\therefore$ ${S}_{\\triangle AEO}=\\frac{1}{2}OE\\cdot AQ=\\frac{1}{2}\\times 7\\times 12=42.$\\\\\nConnect EG, OF,\\\\\n$\\because$OE$\\parallel$GF, OE=GF=7,\\\\\n$\\therefore$Quadrilateral OEGF is a parallelogram.\\\\\n$\\therefore$HE=HF, HO=HG.\\\\\n$\\because$PQ=AP−AQ=24−12=12,\\\\\n$\\therefore$ ${S}_{\\text{parallelogram} OEGF}=GF\\cdot PQ=7\\times 12=84.$\\\\\n$\\therefore$ ${S}_{\\triangle OEH}={S}_{\\triangle GFH}=\\frac{1}{4}{S}_{\\text{parallelogram} OEGF}=\\frac{1}{4}\\times 84=21.$\\\\\n$\\therefore$ ${S}_{\\text{shaded}}={S}_{\\triangle AEO}+{S}_{\\triangle OEH}+{S}_{\\triangle GFH}=42+21+21=\\boxed{84}.$", -"solution_image": [ -"solution_images/50496534_410.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50496469": { -"question": "As illustrated in the diagram, the sides of the rhombus $ABCD$ are of length $\\sqrt{3}$, with $\\angle ABC=60^\\circ$. Let $M$ be any point on line segment $CD$ (which can coincide with points $C$ or $D$). Perpendicular lines to ray $BM$ are drawn from points $A$, $C$, and $D$, meeting $BM$ at points $E$, $F$, and $G$, respectively. Let $AE+CF+DG=m$. What is the range of possible values for $m$?", -"image_file_name": "7055712", -"image": [ -"math/50496469_4216.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect AC and BD, which intersect at point O, and also connect AM,\\\\\nsince quadrilateral ABCD is a rhombus and $\\angle ABC=60^\\circ$,\\\\\ntherefore, AC$\\perp$BD, AO=CO, BO=DO, AB=BC=$\\sqrt{3}$, $\\angle ABO=30^\\circ$,\\\\\ntherefore, AO=$\\frac{1}{2}$AB=$\\frac{\\sqrt{3}}{2}$,\\\\\nthus, AC=$\\sqrt{3}$,\\\\\nsince BO=$\\sqrt{AB^2-AO^2}=\\sqrt{3-\\frac{3}{4}}=\\frac{3}{2}$,\\\\\nthus, BD=3,\\\\\nthus, the area of rhombus ABCD =$\\frac{AC\\times BD}{2}=\\frac{3\\sqrt{3}}{2}$,\\\\\nsince $S_{\\triangle ABM}=\\frac{1}{2}\\times$BM$\\times$AE, $S_{\\triangle BCM}=\\frac{1}{2}\\times$BM$\\times$CF, $S_{\\triangle BMD}=\\frac{1}{2}\\times$BM$\\times$DG,\\\\\nthus, $S_{\\triangle ABM}$+$S_{\\triangle BCM}$+$S_{\\triangle BMD}=\\frac{1}{2}S_{\\text{rhombus ABCD}}+\\frac{1}{2}S_{\\text{rhombus ABCD}}=\\frac{1}{2}\\times$BM$\\times$(AE+CF+DG),\\\\\nthus, $\\frac{3\\sqrt{3}}{2}=\\frac{1}{2}\\times$BM$\\times$m,\\\\\nsince $\\sqrt{3}\\leq$BM$\\leq$3,\\\\\nthus, $\\sqrt{3}\\leq$m$\\leq$3,\\\\\ntherefore, the answer is: $\\boxed{\\sqrt{3}\\leq m\\leq 3}$.", -"solution_image": [ -"solution_images/50496469_420.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50496425": { -"question": "As shown in the diagram, rhombus $ABCD$ has a side length of $2\\sqrt{3}$, and $\\angle ABC=60^\\circ$. The diagonals $AC$ and $BD$ intersect at point $O$. Point $E$ is a moving point on line $AD$, and $CE$ is connected. After rotating the line segment $EC$ clockwise around point $C$ by the angle of $\\angle BCD$, we get the corresponding line segment $CF$ (i.e., $\\angle ECF=\\angle BCD$). What is the minimum length of $DF$?", -"image_file_name": "7055712", -"image": [ -"math/50496425_431.png" -], -"solution": "\\textbf{Solution:} Let's connect BE and construct BH $\\perp$ AD, intersecting the extension line of DA at H. In diamond ABCD, $\\angle ABC=60^\\circ$, thus $\\angle BCD=120^\\circ$. Since $\\angle ECF=120^\\circ$, it follows that $\\angle BCD=\\angle ECF$, and thus $\\angle BCE=\\angle DCF$. By rotation, we get: EC=FC. In $\\triangle BEC$ and $\\triangle DFC$, we have:\n\\[\n\\left\\{\n\\begin{array}{l}\nBC=DC \\\\\n\\angle BCE=\\angle DCF \\\\\nEC=FC\n\\end{array}\n\\right.\n\\]\nTherefore, $\\triangle DCF \\cong \\triangle BCE$ (SAS), hence $DF=BE$. Thus, finding the minimum value of DF is equivalent to finding the minimum value of BE. Since in $\\triangle AHB$, $\\angle BAH=60^\\circ$ and AB= $2\\sqrt{3}$, it follows that BH= $3$. When E coincides with H, the minimum value of BE is 3. Therefore, the minimum value of DF is $\\boxed{3}$.", -"solution_image": [ -"solution_images/50496425_430.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50496379": { -"question": "In $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=3$, $BC=4$. Point $N$ is on side $BC$, and point $M$ is a moving point on side $AB$. Points $D$ and $E$ are the midpoints of $CN$ and $MN$, respectively. What is the minimum value of $DE$?", -"image_file_name": "7055712", -"image": [ -"math/50496379_4413.png" -], -"solution": "\\textbf{Solution:} Let's join CM,\\\\\nsince points D and E are the midpoints of CN and MN respectively,\\\\\ntherefore DE = $\\frac{1}{2}$ CM,\\\\\nwhen CM $\\perp$ AB, the value of CM is minimal, and at this point, the value of DE is also minimal.\\\\\nAccording to the Pythagorean theorem: $AB = \\sqrt{AC^{2} + BC^{2}} = \\sqrt{3^{2} + 4^{2}} = 5$,\\\\\nsince $S_{\\triangle ABC} = \\frac{1}{2} \\times AB \\times CM = \\frac{1}{2} \\times AC \\times BC$,\\\\\ntherefore $CM = \\frac{12}{5}$,\\\\\ntherefore $DE = \\frac{1}{2}CM = \\boxed{\\frac{6}{5}}$.", -"solution_image": [ -"solution_images/50496379_440.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50496337": { -"question": "As shown in the figure, the side length of the square $ABCD$ is $8$, $E$ is a point on side $BC$, and $BE=2.5$. $F$ is a moving point on side $AB$ connected with $EF$. An equilateral triangle $\\triangle EFG$ is constructed to the right side with $EF$ as one of its sides. Connect $CG$. What is the minimum value of $CG$?", -"image_file_name": "7055712", -"image": [ -"math/50496337_4512.png" -], -"solution": "\\textbf{Solution:} It is known from the problem that point $F$ is the driving point, and point $G$ is the driven point. Point $F$ moves on a line segment, thus point $G$ must also move on a straight line trajectory.\\\\\nRotate $\\triangle EFB$ about point $E$ by $60^\\circ$ so that $EF$ coincides with $EG$, obtaining $\\triangle EFB\\cong \\triangle EHG$,\\\\\nTherefore, it can be inferred that $\\triangle EBH$ is an equilateral triangle, and point $G$ is on line $HN$, which is perpendicular to $HE$,\\\\\nDraw $CM\\perp HN$ through point $C$, then $CM$ is the minimum value of $CG$,\\\\\nDraw $EP\\perp CM$ through point $E$, it can be seen that quadrilateral $HEPM$ forms a rectangle,\\\\\nThus $CM=MP+CP=HE+\\frac{1}{2}EC=2.5+\\frac{11}{4}=\\boxed{\\frac{21}{4}}$,", -"solution_image": [ -"solution_images/50496337_454.png", -"solution_images/50496337_4523.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50496336": { -"question": "As shown in the figure, it is known that point $E$ is located on the side $AB$ of the square $ABCD$. A square $BEFG$ is constructed outside square $ABCD$ with $E$ as one of its sides. Line segments $DF$ and $MN$ are drawn, where $M$ and $N$ are the midpoints of $DC$ and $DF$, respectively. If $AB=7$ and $BE=5$, what is the length of $MN$?", -"image_file_name": "7055712", -"image": [ -"math/50496336_4615.png" -], -"solution": "\\textbf{Solution:} Draw line CF, \\\\\n$\\because$ In square ABCD and square BEFG, we have AB=7, BE=5, \\\\\n$\\therefore$ GF=GB=5, BC=7, \\\\\n$\\therefore$ GC=GB+BC=5+7=12, \\\\\n$\\therefore$ CF= $\\sqrt{GF^{2}+GC^{2}}=\\sqrt{5^{2}+12^{2}}=13$, \\\\\n$\\because$ M and N are the midpoints of DC and DF respectively, \\\\\n$\\therefore$ MN= $\\frac{1}{2}$ CF= $\\boxed{\\frac{13}{2}}$;", -"solution_image": [ -"solution_images/50496336_460.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50482846": { -"question": "As shown in the diagram, in rhombus $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, with $AC=16$ and $BD=12$. Let $E$ be a point on side $AD$, and line $OE$ intersects $BC$ at point $F$. Fold the rhombus along line $EF$, making the corresponding point of $B$ as $B'$ and the corresponding point of $A$ as $A'$. If $AE=4$, what is the length of $B'F$?", -"image_file_name": "7055712", -"image": [ -"math/50482846_471.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a rhombus, $AC=16$, and $BD=12$,\\\\\nit follows that $OA=OC=\\frac{1}{2}AC=8$, $OB=\\frac{1}{2}BD=6$, $AC\\perp BD$, $AD\\parallel BC$,\\\\\nhence $BC=\\sqrt{OB^2+OC^2}=10$, $\\angle OCF=\\angle OAE$, $\\angle OFC=\\angle OEA$,\\\\\nin $\\triangle COF$ and $\\triangle AOE$, we have $\\left\\{\\begin{array}{l}\\angle OFC=\\angle OEA \\\\ \\angle OCF=\\angle OAE \\\\ OC=OA\\end{array}\\right.$,\\\\\ntherefore, $\\triangle COF\\cong \\triangle AOE$ (AAS),\\\\\nthus, $CF=AE=4$,\\\\\nhence $BF=BC-CF=10-4=6$,\\\\\nby the property of folding, we get: ${B'}^F=BF=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50482766": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is a rhombus with a perimeter of 24, and the coordinates of point $A$ are $\\left(4, 0\\right)$. What are the coordinates of point $D$?", -"image_file_name": "7055712", -"image": [ -"math/50482766_484.png" -], -"solution": "\\textbf{Solution}: Since quadrilateral $ABCD$ is a rhombus with a perimeter of 24,\\\\\nit follows that AB$=24\\div4=6$,\\\\\nsince the coordinates of point A are $\\left(4, 0\\right)$,\\\\\nit follows that OA$=4$,\\\\\nsince the diagonals of a rhombus are perpendicular bisectors of each other,\\\\\nit follows that in right-angled triangle AOB, by Pythagoras' theorem, OB$=\\sqrt{6^2-4^2}=2\\sqrt{6}$,\\\\\nhence OD=OB$=2\\sqrt{6}$,\\\\\ntherefore, the coordinates of D are $\\boxed{\\left(0, -2\\sqrt{6}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50482456": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $CD$ bisects the angle between the extensions of sides $AC$ and $BC$, $AD \\perp DC$, and point $E$ is the midpoint of $AB$. If $AC=4$ and $BC=6$, what is the length of segment $DE$?", -"image_file_name": "7055712", -"image": [ -"math/50482456_4910.png" -], -"solution": "\\textbf{Solution:} Extend $BC$ and $AD$ respectively to meet at point $G$, \\\\\n$\\because$ $CD$ bisects the angle between the extended lines of $AC$ and $BC$\\\\\n$\\therefore \\angle 1=\\angle 2$\\\\\n$\\because$ $AD\\perp DC$\\\\\n$\\therefore \\angle CDA=\\angle CDG=90^\\circ$\\\\\n$\\because CD=CD$\\\\\n$\\therefore \\triangle CDG\\cong \\triangle CDA$ (ASA)\\\\\n$\\therefore CG=AC$, $AD=GD$\\\\\n$\\because$ $AC=4$, $BC=6$\\\\\n$\\therefore BG=BC+CG=6+4=10$\\\\\nAlso, $\\because$ point $E$ is the midpoint of $AB$\\\\\n$\\therefore DE=\\frac{1}{2}BG=\\boxed{5}$.", -"solution_image": [ -"solution_images/50482456_492.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50482309": { -"question": "As shown in the figure, in rectangle $ABCD$, where $AB=4$ and $AD=2$, $E$ is the midpoint of $AB$, $F$ is a moving point on $EC$, and $P$ is the midpoint of $DF$. Connect $PB$. What is the minimum value of $PB$?", -"image_file_name": "7055712", -"image": [ -"math/50482309_5011.png" -], -"solution": "\\textbf{Solution:} As shown in the figure:\n\nWhen point $F$ coincides with point $C$, point $P$ is at ${P}_{1}$, and $C{P}_{1}=D{P}_{1}$,\n\nWhen point $F$ coincides with point $E$, point $P$ is at ${P}_{2}$, and $E{P}_{2}=D{P}_{2}$,\n\n$\\therefore {P}_{1}{P}_{2}\\parallel CE$ and ${P}_{1}{P}_{2}=\\frac{1}{2}CE$.\n\nWhen point $F$ is on segment $EC$ except at points $C$ and $E$, $DP=FP$.\n\nAccording to the Midline Theorem: ${P}_{1}P\\parallel CE$ and ${P}_{1}P=\\frac{1}{2}CF$.\n\n$\\therefore$ The trajectory of point $P$ is the line segment ${P}_{1}{P}_{2}$,\n\n$\\therefore$ When $BP\\perp {P}_{1}{P}_{2}$, $PB$ reaches its minimum value.\n\n$\\because$ In rectangle $ABCD$, $AB=4$, $AD=2$, $E$ is the midpoint of $AB$,\n\n$\\therefore \\triangle CBE$, $\\triangle ADE$, $\\triangle BC{P}_{1}$ are isosceles right triangles, and $C{P}_{1}=2$.\n\n$\\therefore \\angle ADE=\\angle CDE=\\angle C{P}_{1}B=45^\\circ$, $\\angle DEC=90^\\circ$.\n\n$\\therefore \\angle D{P}_{2}{P}_{1}=90^\\circ$.\n\n$\\therefore \\angle D{P}_{1}{P}_{2}=45^\\circ$.\n\n$\\therefore \\angle {P}_{2}{P}_{1}B=90^\\circ$, i.e., $B{P}_{1}\\perp {P}_{1}{P}_{2}$,\n\n$\\therefore$ The minimum value of $BP$ is the length of $B{P}_{1}$.\n\nIn the isosceles right triangle $BC{P}_{1}$, $C{P}_{1}=BC=2$,\n\n$\\therefore B{P}_{1}=2\\sqrt{2}$\n\n$\\therefore$ The minimum value of $PB$ is $\\boxed{2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/50482309_500.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50482002": { -"question": "As shown in the figure, given point $E$ is on the edge $AB$ of the rectangular sheet $ABCD$. The sheet is folded along $DE$ such that the corresponding point of $A$, denoted as $A'$, falls exactly on the line segment $CE$. If $AD=3$ and $AE=1$, then what is the length of $CD$?", -"image_file_name": "7055712", -"image": [ -"math/50482002_518.png" -], -"solution": "\\textbf{Solution:} Given that the quadrilateral ABCD is a rectangle,\\\\\nhence, $AB\\parallel CD$ ,\\\\\ntherefore, $\\angle CDE=\\angle AED$,\\\\\nbased on the property of folding, it is known that,\\\\\n$A'D=AD=3$, $AE=A'E=1$, $\\angle AED=\\angle A'ED$\\\\\ntherefore, $\\angle CDE=\\angle CED$\\\\\nthus, $CD=CE$, $CA'=BE$,\\\\\nsince $A'$ lies on $CE$,\\\\\ntherefore, $\\angle DA'C=\\angle B=90^\\circ$\\\\\nLet $CD=x$, then $AB=x$,\\\\\nthus $BE=x-1$,\\\\\ntherefore $x^2=3^2+(x-1)^2$,\\\\\nSolving for $x$ gives: $x=5$\\\\\ni.e., $CD=\\boxed{5}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"50481644": { -"question": "As shown in the figure, in rhombus $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. If $AB=3$ and $BD=4$, what is the area of rhombus $ABCD$?", -"image_file_name": "7055712", -"image": [ -"math/50481644_520.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince quadrilateral $ABCD$ is a rhombus and $BD=4$,\\\\\nit follows that $OB=2$,\\\\\nSince $AB=3$,\\\\\nwe have $OA=\\sqrt{AB^{2}-OB^{2}}=\\sqrt{3^{2}-2^{2}}=\\sqrt{5}$,\\\\\nTherefore, $AC=2OA=2\\sqrt{5}$,\\\\\nSo, the area of rhombus $ABCD$ is $S_{\\text{rhombus}ABCD}=\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}\\times 2\\sqrt{5}\\times 4=4\\sqrt{5}$,\\\\\nHence, the answer is: $S_{\\text{rhombus}ABCD}=\\boxed{4\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50481647": { -"question": "In square $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. Point $E$ is on $DO$ with $DE = 2EO$. Connect $AE$ and fold $\\triangle ADE$ along $AD$ to get $\\triangle ADE'$. Point $F$ is the midpoint of $AE$, and connect $E'F$. If $DE = 2\\sqrt{2}$, what is the area of $\\triangle AFE'$?", -"image_file_name": "7055712", -"image": [ -"math/50481647_532.png" -], -"solution": "\\textbf{Solution:} Connect $EE'$,\\\\\nsince quadrilateral $ABCD$ is a square,\\\\\nit follows that $OA=OD$, $\\angle ADO=45^\\circ$, $\\angle AOD=90^\\circ$\\\\\nGiven $DE=2\\sqrt{2}$, $DE=2EO$\\\\\nit follows that $OD=OA=3\\sqrt{2}$\\\\\nthus, ${S}_{\\triangle ADE}=\\frac{1}{2}DE\\times OA=6$\\\\\nAccording to the problem, $\\angle ADE'=\\angle ADO=45^\\circ$, $DE=DE'=2\\sqrt{2}$\\\\\nthus, ${S}_{\\triangle DEE'}=\\frac{1}{2}DE\\times DE=4$, ${S}_{\\text{quadrilateral} AED{E}'}=2{S}_{\\triangle ADE}=12$\\\\\ntherefore, ${S}_{\\triangle AEE'}={S}_{\\text{quadrilateral}AED{E}'}-{S}_{\\triangle DEE'}=8$\\\\\nAlso, since $F$ is the midpoint of $AE$\\\\\nit follows that ${S}_{\\triangle AEE'F}=\\frac{1}{2}{S}_{\\triangle AEE'}=\\boxed{4}$", -"solution_image": [ -"solution_images/50481647_531.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50481557": { -"question": "Given: As shown in the figure, in rectangle $ABCD$, $AB=3$, $AD=4$. Point $P$ is a point inside rectangle $ABCD$, and satisfies ${S}_{\\triangle PBC}=\\frac{1}{3}{S}_{\\text{rectangle} ABCD}$, what is the minimum perimeter of $\\triangle ADP$?", -"image_file_name": "7055712", -"image": [ -"math/50481557_546.png" -], -"solution": "\\textbf{Solution:} Draw $MN\\perp AD$ through point $P$, intersecting $AD$ at point $M$ and $BC$ at point $N$, \\\\\nsince $S_{\\triangle PBC}=\\frac{1}{3}S_{\\text{rectangle }ABCD}$, \\\\\ntherefore $\\frac{1}{2}\\times BC\\times PN=\\frac{1}{3}\\times BC\\times MN$, \\\\\nhence $PN=\\frac{2}{3}MN$, \\\\\nsince $AB=3$, \\\\\nthus $MP=1$, \\\\\nDraw $GH\\parallel AD$ through point $P$, intersecting $AB$ at point $G$ and $CD$ at point $H$, construct the symmetric point $A'$ of point $A$ about $GH$, and the intersection of $A'D$ with $GH$ will be the desired point $P$, \\\\\nsince $AP=A'P$, \\\\\nthus $AP+PD=A'D$, \\\\\nsince $AG=1$, \\\\\nthus $AA'=2$, \\\\\nIn $\\triangle AA'D$, with $AD=4$ and $AA'=2$, \\\\\nthus $A'D=2\\sqrt{5}$, \\\\\ntherefore, the minimum perimeter of $\\triangle ADP$ is $2\\sqrt{5}+4$, \\\\\nhence the answer is $\\boxed{4+2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/50481557_546.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50481483": { -"question": "In the rhombus $ABCD$, $E$ and $F$ are respectively on $BC$ and $DC$, with $BE=DF$ and $AE=AB$. If $\\angle EAF=30^\\circ$, what is the degree measure of $\\angle D$?", -"image_file_name": "7055712", -"image": [ -"math/50481483_557.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rhombus,\\\\\nit follows that $AB=AD$, $\\angle B=\\angle D$,\\\\\nGiven that $BE=DF$,\\\\\nit follows that $\\triangle ABE\\cong \\triangle ADF$ (SAS),\\\\\ntherefore, $\\angle BAE=\\angle DAF$,\\\\\nLet $\\angle BAE=\\angle DAF=x$,\\\\\nSince $\\angle EAF=30^\\circ$,\\\\\nit follows that $\\angle BAD=2x+30^\\circ$,\\\\\nGiven that $AE=AB$,\\\\\nit follows that $\\angle B=\\angle AEB=\\frac{180^\\circ-x}{2}$,\\\\\nSince $\\angle B+\\angle BAD=180^\\circ$,\\\\\nit follows that $\\frac{180^\\circ-x}{2}+30^\\circ+2x=180^\\circ$,\\\\\nSolving gives: $x=40^\\circ$,\\\\\ntherefore, $\\angle D=\\angle B=\\frac{180^\\circ-40^\\circ}{2}=\\boxed{70^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50481447": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are the midpoints of $AB$ and $AC$ respectively. Connect $BE$. If $AE=6$, $DE=5$, and $\\angle BEC=90^\\circ$, what is the length of $BE$?", -"image_file_name": "7055712", -"image": [ -"math/50481447_567.png" -], -"solution": "Given that points D and E are the midpoints of AB and AC respectively, with AE=6 and DE=5,\n\nit follows that EC=AE=6 and BC=$2\\cdot DE$=10,\n\nin the right triangle $\\triangle BEC$, we have $BE= \\sqrt{BC^{2}-EC^{2}} = \\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50475274": { -"question": "As shown in the figure, rectangle $ABCD$ is folded along diagonal $AC$, making point $B$ coincide with point $E$, and $CE$ intersects $AD$ at point $F$. If $AF=5$ and $DF=4$, then what is the length of $AC$?", -"image_file_name": "7055712", -"image": [ -"math/50475274_570.jpg" -], -"solution": "\\textbf{Solution:} From the property of folding, we have $\\angle ACF = \\angle ACB$. Since $AD \\parallel BC$, it follows that $\\angle ACB = \\angle FAC$, which implies $\\angle FAC = \\angle ACF$, hence $AF = CF = 5$. Given that $CF = 5$, $DF = 4$, and $\\angle D = 90^\\circ$, it follows $CD = \\sqrt{CF^2 - DF^2} = 3$. Since $AD = AD + DF = 5 + 4 = 9$, it follows that $AC = \\sqrt{AD^2 + CD^2} = \\sqrt{9^2 + 3^2} = \\boxed{3\\sqrt{10}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"50475276": { -"question": "As shown in the figure, in $\\triangle CDE$, $CD=1$ and $\\angle CDE=45^\\circ$, respectively construct squares $ABCD$ and $CEFG$ externally on sides $CD$ and $CE$. If $AE=BD$, what is the value of $EF^2$?", -"image_file_name": "7055712", -"image": [ -"math/50475276_580.jpg" -], -"solution": "\\textbf{Solution:} Draw $EN \\perp AD$ and $EM \\perp CD$ at $E$,\\\\\nsince $\\angle CDN=45^\\circ$,\\\\\nthus, quadrilateral $DMEN$ is a square,\\\\\nlet $DN=x$, thus $EN=DM=EM=x$,\\\\\nsince $AE=BD=\\sqrt{2}CD=\\sqrt{2}$,\\\\\nin $\\triangle AEN$, since $AN^{2}+EN^{2}=AE^{2}$,\\\\\ni.e., $(1+x)^{2}+x^{2}=2$,\\\\\nwe get $x=\\frac{\\sqrt{3}-1}{2}$ or $x=\\frac{-\\sqrt{3}-1}{2}$ (discard),\\\\\nsince in $\\triangle CME$, since $CM^{2}+EM^{2}=CE^{2}$,\\\\\ni.e., $CE^{2}=\\left(\\frac{\\sqrt{3}-1}{2}+1\\right)^{2}+\\left(\\frac{\\sqrt{3}-1}{2}\\right)^{2}=4-2\\sqrt{3}$,\\\\\nsince quadrilateral $CEFG$ is a square,\\\\\nthus $EF^{2}=\\boxed{4-2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/50475276_580.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50475214": { -"question": "As shown in the diagram, in rhombus ABCD, E and F are on BC and DC, respectively, with BE=DF and AE=AB. If $\\angle EAF=30^\\circ$, what is the degree measure of $\\angle D$?", -"image_file_name": "7055712", -"image": [ -"math/50475214_590.jpg" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rhombus, \\\\\n$\\therefore$AB=AD, $\\angle B=\\angle D$, \\\\\n$\\because$BE=FD, \\\\\n$\\therefore \\triangle ABE \\cong \\triangle ADF$ (SAS), \\\\\n$\\therefore$AE=AF, $\\angle BAE=\\angle DAF$, \\\\\nLet $\\angle B=x$, $\\angle BAE=y$, \\\\\n$\\because \\angle BAE+\\angle B+\\angle AEB=2x+y=180^\\circ$, $\\angle BAD+\\angle B=2y+x+30^\\circ=180^\\circ$, \\\\\n$\\therefore 4x+2y-2y-x-30^\\circ=180^\\circ$, \\\\\nSimplifying, we get $3x=210^\\circ$, \\\\\n$\\therefore x=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50475086": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, and D, E, and F are the midpoints of sides AB, AC, and BC, respectively. If the length of CD is 3, what is the length of EF?", -"image_file_name": "7055712", -"image": [ -"math/50475086_600.jpg" -], -"solution": "Solution: Since $\\angle ACB=90^\\circ$ and point D is the midpoint of side AB, with CD=3, it follows that AB=2CD=6.\nSince E and F are the midpoints of sides AC and BC, respectively, it follows that EF is the median of $\\triangle ABC$,\nwhich implies EF=$\\frac{1}{2}$AB=$\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50475020": { -"question": "As shown in the figure, $O$ is any point inside the equilateral triangle $ABC$. Lines $OD$, $OE$, and $OF$ are drawn through point $O$ parallel to $AB$, $AC$, and $BC$, respectively, intersecting $AC$, $BC$, and $AB$ at points $G$, $H$, and $I$. Given that the perimeter of the equilateral triangle $ABC$ is 18, what is the sum of $OD + OE + OF$?", -"image_file_name": "7055712", -"image": [ -"math/50475020_610.jpg" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an equilateral triangle with a perimeter of 18, \\\\\n$\\therefore$ $\\angle B=\\angle C=\\angle A=60^\\circ$, AC=6\\\\\nSince OD$\\parallel$AB, OE$\\parallel$AC, and OF$\\parallel$BC, \\\\\n$\\therefore$ Quadrilateral OHCF is a parallelogram, Quadrilateral AEOG is a parallelogram, $\\angle C=\\angle OHD=\\angle GFO=60^\\circ$, $\\angle ODH=\\angle B=60^\\circ$, $\\angle OGF=\\angle A=60^\\circ$\\\\\n$\\therefore$ $\\triangle ODH$ and $\\triangle OGF$ are equilateral triangles, OH=CF\\\\\n$\\therefore$ OD=OH, OF=FG, OE=AG\\\\\n$\\therefore$ OD=CF,\\\\\nSince AC=AG+GF+CF\\\\\n$\\therefore$ AC=OE+OF+OE=6.\\\\\nThus, the answer is: $\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50475019": { -"question": "As shown in the figure, it is known that point $P$ is a point on diagonal $BD$ of square $ABCD$, and $AP=3$, $PF \\perp CD$ at point $F$, $PE \\perp BC$ at point $E$. When connecting $EF$, what is the length of $EF$?", -"image_file_name": "7055712", -"image": [ -"math/50475019_620.jpg" -], -"solution": "\\textbf{Solution}: Let's connect CP.\\\\\nSince square ABCD,\\\\\nthus $\\angle C=90^\\circ$, AB=BC, and $\\angle ABP=\\angle CBP=45^\\circ$. Let's connect CP again,\\\\\nIn $\\triangle ABP$ and $\\triangle CBP$\\\\\n\\[\\left\\{\\begin{array}{l}\nAB=BC\\\\\n\\angle ABP=\\angle CBP\\\\\nBP=BP\n\\end{array}\\right.\\]\\\\\nthus $\\triangle ABP\\cong \\triangle CBP$ (SAS)\\\\\nthus AP=CP=3\\\\\nSince PF$\\perp$CD, and PE$\\perp$BC,\\\\\nthus $\\angle PFC=\\angle PEC=90^\\circ$,\\\\\nthus quadrilateral CEPF is a rectangle,\\\\\nthus EF=PC=\\boxed{3}.", -"solution_image": [ -"solution_images/50475019_620.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50475017": { -"question": "As shown in the pentagon $ABCDE$, $\\angle D=120^\\circ$, the exterior angle adjacent to $\\angle EAB$ is $80^\\circ$, and the exterior angles adjacent to $\\angle DEA$ and $\\angle ABC$ are both $60^\\circ$. What is the measure of $\\angle C$ in degrees?", -"image_file_name": "7055712", -"image": [ -"math/50475017_630.jpg" -], -"solution": "\\textbf{Solution:} Since the external angle adjacent to $\\angle$EAB is $80^\\circ$, and the external angles adjacent to both $\\angle$DEA and $\\angle$ABC are $60^\\circ$,\\\\\nit follows that $\\angle$DEA=$180^\\circ-60^\\circ=120^\\circ$, $\\angle$ABC=$180^\\circ-60^\\circ=120^\\circ$, $\\angle$EAB=$180^\\circ-80^\\circ=100^\\circ$;\\\\\nThe sum of the interior angles of a pentagon is $(5-2)\\times180^\\circ=540^\\circ$;\\\\\nTherefore, $\\angle$C=$540^\\circ-120^\\circ-120^\\circ-120^\\circ-100^\\circ=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50474806": { -"question": "As shown in the diagram, in square $ABCD$, $AB=6$, $E$ is a point on the diagonal $AC$, and line $BE$ is drawn. Through point $E$, line $EF\\perp BE$ intersects $AD$ at point $F$. The areas of $\\triangle BCE$ and $\\triangle AEF$ are ${S}_{1}$ and ${S}_{2}$, respectively. If $2{S}_{1}=3{S}_{2}$, then what is the length of $CE$?", -"image_file_name": "7055712", -"image": [ -"math/50474806_6415.png" -], -"solution": "\\textbf{Solution:} Connect ED, and through E draw $MN \\perp BC$ at N intersecting AD at M,\\\\\nsince quadrilateral ABCD is a square,\\\\\ntherefore $AB=BC=CD=AD=6$, $\\angle ABC=\\angle BCD=\\angle ADC=\\angle DAB=90^\\circ$,\\\\\ntherefore $\\angle 1=\\angle 2=45^\\circ$,\\\\\nsince $MN \\perp BC$,\\\\\ntherefore $\\angle ENC=\\angle ENB=90^\\circ$,\\\\\ntherefore quadrilateral MNCD is a rectangle,\\\\\ntherefore $MN=CD=6$, $DM=CN$, $\\angle DME=90^\\circ$,\\\\\nin $\\triangle CDE$ and $\\triangle CBE$,\\\\\n$\\left\\{ \\begin{array}{l} CD=CB \\\\ \\angle 2=\\angle 1 \\\\ CE=CE \\end{array} \\right.$,\\\\\ntherefore $\\triangle CDE \\cong \\triangle CBE$ (SAS),\\\\\ntherefore $ED=EB$, $\\angle EDC=\\angle EBC$,\\\\\nsince $\\angle CDA=\\angle CBA=90^\\circ$,\\\\\ntherefore $\\angle CDA-\\angle EDC=\\angle CBA-\\angle EBC$,\\\\\nthat is $\\angle ADE=\\angle ABE$,\\\\\nsince $EF \\perp BE$,\\\\\ntherefore $\\angle FEB=90^\\circ$,\\\\\nsince $\\angle FEB+\\angle DAB+\\angle AFE+\\angle ABE=360^\\circ$,\\\\\ntherefore $\\angle AFE+\\angle ABE=360^\\circ-\\angle FEB-\\angle DAB=180^\\circ$,\\\\\nsince $\\angle AFE+\\angle EFD=180^\\circ$,\\\\\ntherefore $\\angle ABE=\\angle EFD$,\\\\\ntherefore $\\angle ADE=\\angle EFD$,\\\\\ntherefore $ED=EF$,\\\\\nsince $\\angle DME=90^\\circ$,\\\\\ntherefore $EM \\perp DF$,\\\\\ntherefore $DM=MF$,\\\\\nin $\\triangle NEC$, $\\angle 1=45^\\circ$,\\\\\ntherefore $\\triangle NEC$ is an isosceles right triangle,\\\\\nlet $NE=NC=x$,\\\\\nthen $CE= \\sqrt{2}x$, $DM=MF=CN=x$,\\\\\ntherefore $AF=AD-DM-MF=6-2x$,\\\\\n$ME=MN-EN=6-x$,\\\\\ntherefore $S_{1}=\\frac{1}{2}BC\\cdot EN=\\frac{1}{2}\\times 6\\times x=3x$, $S_{2}=\\frac{1}{2}(6-2x)(6-x)=x^{2}-9x+18$,\\\\\nsince $2S_{1}=3S_{2}$,\\\\\ntherefore $2\\cdot 3x=3(x^{2}-9x+18)$,\\\\\nsolving, we find: $x_{1}=2$, $x_{2}=9$ (discard),\\\\\ntherefore $CE= \\sqrt{2}x=2\\sqrt{2}$,\\\\\nhence the answer is: $CE = \\boxed{2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/50474806_640.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50474756": { -"question": "As shown in the figure, the diagonals of rectangle $ABCD$ intersect at point $O$. If $\\angle ACB = 30^\\circ$ and $BO = 2$, then what is the length of $BC$?", -"image_file_name": "7055712", -"image": [ -"math/50474756_652.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\n$\\therefore \\angle ABC=90^\\circ$, AC=BD, AO=CO, BO=DO,\\\\\n$\\therefore$ AO=OC=OB=OD,\\\\\nSince BO=2,\\\\\n$\\therefore$ AO=OC=BO=2,\\\\\n$\\therefore$ AC=2+2=4,\\\\\nSince $\\angle BCA=30^\\circ$,\\\\\n$\\therefore$ AB= $\\frac{1}{2}$ AC=2,\\\\\n$\\therefore$ BC= $\\sqrt{AC^2-AB^2}=2\\sqrt{3}$,\\\\\nTherefore, the answer is: $BC=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52019336": { -"question": "As shown in the figure, points $D$ and $E$ are on the sides of $\\triangle ABC$. The angle bisector of $\\angle ABC$ is perpendicular to $AE$ with the foot of the perpendicular being $Q$, and the angle bisector of $\\angle ACB$ is perpendicular to $AD$ with the foot of the perpendicular being $P$. If $BC=12$ and $PQ=3$, what is the perimeter of $\\triangle ABC$?", -"image_file_name": "7055712", -"image": [ -"math/52019336_668.png" -], -"solution": "Solution: Since line BQ bisects $\\angle ABC$ and BQ $\\perp$ AE,\n\nit follows that $\\angle ABQ = \\angle EBQ$,\n\nSince $\\angle ABQ + \\angle BAQ = 90^\\circ$ and $\\angle EBQ + \\angle BEQ = 90^\\circ$,\n\nit follows that $\\angle BAQ = \\angle BEQ$,\n\nTherefore, $AB = BE$, similarly, $CA = CD$,\n\nThus, point Q is the midpoint of AE, and point P is the midpoint of AD (triangle median theorem),\n\nTherefore, PQ is the midline of $\\triangle ADE$,\n\nSince $PQ = 3$,\n\nit follows that $DE = 2 \\times PQ = 6$,\n\nThe perimeter of $\\triangle ABC$ is: $AB + AC + BC = BE + CD + BC = DE + BC + BC = 6 + 12 + 12 = \\boxed{30}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52019249": { -"question": "As shown in the rectangle $ABCD$, where $BC=4$, the diagonals $AC$ and $BD$ intersect at point $O$, $AN \\perp BD$ with the foot being $N$, $BN = 3DN$, what is the length of $AN$?", -"image_file_name": "7055712", -"image": [ -"math/52019249_673.png" -], -"solution": "\\textbf{Solution:} Since $BN=3DN$,\\\\\nit follows that $BD=4DN$,\\\\\nSince quadrilateral $ABCD$ is a rectangle and $BC=4$,\\\\\nit follows that $AD=BC=4$ and $BO=DO$,\\\\\nthus $DO=\\frac{1}{2}BD=2DN$,\\\\\nhence $DN=ON$,\\\\\nSince $AN\\perp BD$,\\\\\nit follows that $\\angle ANO=\\angle AND=90^\\circ$,\\\\\ntherefore, $\\triangle ANO$ and $\\triangle AND$ are right-angled triangles,\\\\\nIn $\\triangle ANO$ and $\\triangle AND$,\\\\\n$\\left\\{\\begin{array}{l}\nAN=AN\\\\\n\\angle ANO=\\angle AND\\\\\nNO=ND\n\\end{array}\\right.$\\\\\nhence $\\triangle ANO\\cong \\triangle AND$ (SAS),\\\\\nthus $AO=AD$, $\\angle NAO=\\angle NAD$,\\\\\ntherefore, $AO=AD=OD$,\\\\\nhence $\\triangle AOD$ is an equilateral triangle,\\\\\nthus $\\angle OAD=60^\\circ$,\\\\\ntherefore, $\\angle NAD=\\frac{1}{2}\\angle OAD=\\frac{1}{2}\\times 60^\\circ=30^\\circ$,\\\\\nthus $ND=\\frac{1}{2}AD=\\frac{1}{2}\\times 4=2$,\\\\\nthus $AN=\\sqrt{AD^2-ND^2}=\\sqrt{4^2-2^2}=\\boxed{2\\sqrt{3}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52828915": { -"question": "As shown in the figure, in $ \\triangle ABC$, we have $AB=AC$ and $AD$ is the median to side $BC$. Point $E$ is on side $AB$, and $DE \\parallel AC$. If $DE=3$, what is the value of $AB$?", -"image_file_name": "7045627", -"image": [ -"math/52828915_588.png" -], -"solution": "\\textbf{Solution:} Given that $AB=AC$, and $AD$ is the median to side $BC$,\\\\\nhence $\\angle EAD=\\angle CAD$, $\\angle B=\\angle C$,\\\\\nGiven $DE\\parallel AC$,\\\\\nhence $\\angle EDA=\\angle CAD$, $\\angle EDB=\\angle C$,\\\\\nthus $\\angle EAD=\\angle EDA$, $\\angle EDB=\\angle B$,\\\\\nhence $DE=AE$, $DE=BE$,\\\\\nthus $AB=2DE=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52826839": { -"question": "As shown in the figure, in the equilateral $\\triangle ABC$, D is the midpoint of $AB$, $DE \\perp AC$ at point E, and $EF \\perp BC$ at point F. Given $AB=8$, what is the length of $BF$?", -"image_file_name": "7045627", -"image": [ -"math/52826839_596.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC$ is an equilateral triangle and $D$ is the midpoint of $AB$,\\\\\nthus $\\angle A=\\angle C=60^\\circ$, and $AC=AB=BC=8$, with $AD=\\frac{1}{2}AB=4$,\\\\\nsince $DE\\perp AC$ and $EF\\perp BC$,\\\\\nthus $\\angle AED=\\angle CFE=90^\\circ$,\\\\\ntherefore $\\angle EDA=\\angle FEC=30^\\circ$,\\\\\nhence $AE=\\frac{1}{2}AD=2$,\\\\\ntherefore $CE=AC-AE=8-2=6$, and $CF=\\frac{1}{2}CE=3$,\\\\\nthus $BF=BC-CF=8-3=\\boxed{5}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52826806": { -"question": "As shown in the figure, $CE$ is the bisector of the exterior angle $\\angle ACD$ of $\\triangle ABC$. If $\\angle B = 45^\\circ$ and $\\angle ACE = 65^\\circ$, then what is the measure of $\\angle A$?", -"image_file_name": "7045627", -"image": [ -"math/52826806_606.png" -], -"solution": "\\textbf{Solution:} Since $CE$ is the bisector of $\\angle ACD$ and $\\angle ACE=65^\\circ$,\\\\\nit follows that $\\angle ACD=130^\\circ$.\\\\\nSince $\\angle ACD$ is an exterior angle of $\\triangle ABC$,\\\\\nwe have $\\angle ACD=\\angle A + \\angle B$.\\\\\nGiven that $\\angle B=45^\\circ$,\\\\\nit follows that $\\angle A=\\boxed{85^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52827130": { -"question": "As shown in the diagram, in $\\triangle ABC$, $AB=AC$, $\\angle B=25^\\circ$, and point D is on side $BC$. Fold $\\triangle ACD$ along $AD$ to get $\\triangle ADE$. If $AD=DE$, then what is the measure of $\\angle AFB$?", -"image_file_name": "7045627", -"image": [ -"math/52827130_619.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $AB=AC$, and $\\angle B=25^\\circ$, \\\\\nthus, $\\angle C=\\angle B=25^\\circ$, \\\\\nby folding, we know $\\angle E=\\angle C=25^\\circ$, \\\\\nsince $AD=DE$, \\\\\nhence, $\\angle DAE=\\angle E=25^\\circ$, \\\\\nsince $\\angle DAE=\\angle DAC=25^\\circ$, \\\\\nthus, $\\angle CAF=50^\\circ$, \\\\\ntherefore, $\\angle AFB=\\angle C+\\angle CAF=\\boxed{75^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52827540": { -"question": "As shown in the figure, $AB=AC$, point D is a point inside $\\triangle ABC$, $\\angle D=110^\\circ$, $\\angle 1=\\angle 2$, then what is the measure of $\\angle A$ in degrees?", -"image_file_name": "7045627", -"image": [ -"math/52827540_625.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\angle D=110^\\circ$ and $\\angle 1=\\angle 2$,\\\\\nit follows that $\\angle D=180^\\circ-\\angle 1-\\angle DCB=110^\\circ$,\\\\\nhence $\\angle 1+\\angle DCB=70^\\circ$,\\\\\nSince $AB=AC$,\\\\\nit follows that $\\angle ABC=\\angle ACB$,\\\\\nthus $\\angle ABD=\\angle BCD$,\\\\\nSince $\\angle 1+\\angle DCB=70^\\circ$ and $\\angle 1=\\angle 2$,\\\\\nit follows that $\\angle ACB=\\angle 2+\\angle DCB=70^\\circ$,\\\\\nhence $\\angle ABC+\\angle ACB=140^\\circ$,\\\\\nthus $\\angle A=180^\\circ-140^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52826952": { -"question": "As shown in the figure, quadrilateral $OABC$ is a rectangle with $OA=1$. What is the value represented by point $P$?", -"image_file_name": "7045627", -"image": [ -"math/52826952_630.png" -], -"solution": "\\textbf{Solution:} Given that $\\because$OA=1, OC=3,\\\\\n$\\therefore$OB=$\\sqrt{3^2+1^2}$=$\\sqrt{10}$,\\\\\nthus, the number represented by point P is $\\boxed{\\sqrt{10}}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52827074": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=8\\,\\text{cm}$, $BC=10\\,\\text{cm}$. A point $E$ is taken on side $CD$, and $\\triangle ADE$ is folded such that point $D$ aligns exactly with point $F$ on side $BC$. What is the length of $CE$ in $\\text{cm}$?", -"image_file_name": "7045627", -"image": [ -"math/52827074_640.png" -], -"solution": "\\textbf{Solution:} \nGiven: rectangle ABCD, \\\\\nhence AD=BC=10cm, and CD=AB=8cm, \\\\\nBy the problem statement: Rt$\\triangle$ADE$\\cong$Rt$\\triangle$AFE,\\\\\nthus $\\angle$AFE=90$^\\circ$, AF=10cm, and EF=DE,\\\\\nLet CE=xcm, then DE=EF=CD−CE=$(8−x)$cm,\\\\\nIn Rt$\\triangle$ABF, by the Pythagorean theorem: AB$^{2}$+BF$^{2}$=AF$^{2}$,\\\\\nthat is $8^{2}$+BF$^{2}$=$10^{2}$,\\\\\nthus BF=6cm,\\\\\nthus CF=BC−BF=10−6=4(cm),\\\\\nIn Rt$\\triangle$ECF, by the Pythagorean theorem: EF$^{2}$=CE$^{2}$+CF$^{2}$,\\\\\nthat is $(8−x)^{2}$=x$^{2}$+4$^{2}$,\\\\\nthus 64−16x+x$^{2}$=x$^{2}$+16,\\\\\nthus x=\\boxed{3},\\\\\nwhich means CE=3cm.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52826908": { -"question": "As shown in the figure, in rectangle $ABCD$, $AD=3$, $AB=5$, point $E$ is a moving point on the ray $CD$ (not coincident with $D$). $\\triangle ADE$ is folded along $AE$ to obtain $\\triangle D'AE$. Connect $D'B$. If $\\triangle ABD'$ is a right triangle, then what is the length of $AE$?", -"image_file_name": "7045627", -"image": [ -"math/52826908_659.png" -], -"solution": "\\textbf{Solution:} According to the problem, quadrilateral ABCD is a rectangle, with $AD=3$ and $AB=5$. By folding $\\triangle ADE$ along AE, we obtain $\\triangle D^{\\prime}AE$, then $\\angle D=\\angle ED^{\\prime}A=90^\\circ$, $AD=BC=AD^{\\prime}=3$, $AB=CD=5$,\\\\\n(1) As shown in Figure 1, when point E is on segment CD,\\\\\nsince $\\angle ED^{\\prime}A=\\angle D=\\angle AD^{\\prime}B=90^\\circ$,\\\\\nthen points $B$, $D^{\\prime}$, and $E$ are collinear,\\\\\nsince $S_{\\triangle ABE}=\\frac{1}{2}AB\\cdot AD=\\frac{1}{2}BE\\cdot AD^{\\prime}$,\\\\\nthus $BE=AB=5$,\\\\\nsince $BD^{\\prime}=\\sqrt{AB^{2}-AD^{\\prime 2}}=\\sqrt{5^{2}-3^{2}}=4$,\\\\\nthus $DE=D^{\\prime}E=BE-BD^{\\prime}=5-4=1$;\\\\\ntherefore, in $Rt\\triangle ADE$, $AE=\\sqrt{AD^{2}+DE^{2}}=\\sqrt{3^{2}+1^{2}}=\\sqrt{10}$;\\\\\n(2) As shown in Figure 2, when point E is on the ray extending from CD,\\\\\nsince $\\angle AD^{\\prime}B=\\angle BCE=90^\\circ$, $AD=BC=AD^{\\prime}=3$, $AB=CD=5$,\\\\\nthus $BD^{\\prime}=\\sqrt{AB^{2}-AD^{\\prime 2}}=4$,\\\\\nlet $CE=x$, then $D^{\\prime}E=DE=x+5$,\\\\\nthus $BE=D^{\\prime}E-BD^{\\prime}=x+1$,\\\\\nsince $CE^{2}+BC^{2}=BE^{2}$, that is, $x^{2}+3^{2}=(x+1)^{2}$,\\\\\nsolving for $x$ yields $x=4$,\\\\\nthus $DE=CD+CE=5+4=9$,\\\\\ntherefore, in $Rt\\triangle ADE$, $AE=\\sqrt{AD^{2}+DE^{2}}=\\sqrt{3^{2}+9^{2}}=3\\sqrt{10}$.\\\\\nIn summary, the value of AE is either $\\boxed{\\sqrt{10}}$ or $\\boxed{3\\sqrt{10}}$.", -"solution_image": [ -"solution_images/52826908_657.png", -"solution_images/52826908_6516.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52827132": { -"question": "As shown in the figure, it is known that the angle bisectors of the three interior angles of \\( \\triangle ABC \\) intersect at point D, and the perpendicular bisectors of the three sides intersect at point E. If \\( \\angle BDC = 130^\\circ \\), what is the measure of \\( \\angle BEC \\) in degrees?", -"image_file_name": "7045627", -"image": [ -"math/52827132_663.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, connect $AD$,\\\\\nsince in $\\triangle BDC$, $\\angle BDC=130^\\circ$,\\\\\ntherefore, $\\angle DBC+\\angle DCB=180^\\circ-\\angle BDC=50^\\circ$.\\\\\nSince the angle bisectors of the interior angles of $\\triangle ABC$ meet at point D,\\\\\ntherefore, $AD$ bisects $\\angle BAC$,\\\\\nthus, $\\angle BAD=\\angle DAC$,\\\\\nSimilarly, it can be concluded that $\\angle ABD=\\angle CBD$, $\\angle BCD=\\angle ACD$,\\\\\nSince in $\\triangle ABC$,\\\\\n$\\angle BAD+\\angle DAC+\\angle ABD+\\angle CBD+\\angle BCD+\\angle ACD=180^\\circ$,\\\\\nand since $\\angle BAD=\\angle DAC$, $\\angle ABD=\\angle CBD$, $\\angle BCD=\\angle ACD$,\\\\\ntherefore, $\\angle DBC+\\angle DCB+\\angle DAC=90^\\circ$,\\\\\nsince $\\angle DBC+\\angle DCB=50^\\circ$,\\\\\nthus, $\\angle DAC=90^\\circ-\\left(\\angle DBC+\\angle DCB\\right)=40^\\circ$.\\\\\nAs shown in Figure 2, connect $AE$,\\\\\nsince the perpendicular bisectors of the sides of $\\triangle ABC$ meet at point E,\\\\\nthus, $EA=EB=EC$,\\\\\ntherefore, $\\angle EAB=\\angle EBA$, $\\angle EBC=\\angle ECB$, $\\angle EAC=\\angle ECA$,\\\\\nsince $\\angle DAC=40^\\circ$, $\\angle DAC=\\angle DAB$,\\\\\ntherefore, $\\angle BAC=\\angle DAC+\\angle DAB=80^\\circ$,\\\\\nsince $\\angle BAC=\\angle BAE+\\angle CAE$,\\\\\nthus, $\\angle BAE+\\angle CAE=80^\\circ$,\\\\\nsince $\\angle EAB=\\angle EBA$, $\\angle EAC=\\angle ECA$,\\\\\ntherefore, $\\angle ABE+\\angle ACE=80^\\circ$,\\\\\nthat is, $\\angle ABD+\\angle DBE+\\angle ACD+\\angle DCE=80^\\circ$,\\\\\nsince $\\angle ABD=\\angle CBD$, $\\angle BCD=\\angle ACD$,\\\\\ntherefore, $\\angle CBD+\\angle DBE+\\angle BCD+\\angle DCE=80^\\circ$,\\\\\nsince $\\angle DBC+\\angle DCB=50^\\circ$,\\\\\nthus, $\\angle DBE+\\angle DCE=80^\\circ-50^\\circ=30^\\circ$,\\\\\nsince $\\angle DBC+\\angle DCB=50^\\circ$\\\\\ntherefore, $\\angle DBE+\\angle EBC+\\angle ECB+\\angle DCE=50^\\circ$,\\\\\nsince $\\angle EBC=\\angle ECB$, $\\angle DBE+\\angle DCE=30^\\circ$,\\\\\ntherefore, $2\\angle ECB=50^\\circ-\\left(\\angle DBE+\\angle DCE\\right)=20^\\circ$,\\\\\nthus, $\\angle ECB=\\angle EBC=10^\\circ$,\\\\\ntherefore, in $\\triangle BEC$,\\\\\n$\\angle BEC=180^\\circ-\\angle ECB-\\angle EBC=\\boxed{160^\\circ}$.", -"solution_image": [ -"solution_images/52827132_661.png", -"solution_images/52827132_6620.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52827539": { -"question": "As shown in the figure, in right-angled triangle $ABC$, where $\\angle C=90^\\circ$, $AC=3$, and $BC=4$, the line $AD$ bisects $\\angle CAB$ and intersects $BC$ at $D$, what is the length of $BD$?", -"image_file_name": "7045627", -"image": [ -"math/52827539_678.png" -], -"solution": "\\textbf{Solution:} Construct $DE \\perp AB$ at $E$, \\\\\nsince $AD$ is the bisector of $\\angle CAB$, $\\angle C=90^\\circ$, and $DE \\perp AB$ at $E$, \\\\\nit follows that $CD=DE$, \\\\\nIn the right triangles $\\triangle ACD$ and $\\triangle AED$, \\\\\n$\\left\\{\\begin{array}{l} AD=AD\\\\ DC=DE \\end{array}\\right.$, \\\\\nhence, right $\\triangle ACD \\cong$ right $\\triangle AED$ (HL), \\\\\nthus $AC=AE=3$, \\\\\nby the Pythagorean theorem, $AB=\\sqrt{AC^2+BC^2}=\\sqrt{3^2+4^2}=5$, \\\\\nthus $BE=AB-AE=5-3=2$, \\\\\nLet $BD=x$, then $CD=DE=4-x$ \\\\\nIn the right $\\triangle BDE$, $DE^2+BE^2=BD^2$ \\\\\nthus $(4-x)^2+2^2=x^2$ \\\\\nSolving gives $x=\\frac{5}{2}$ \\\\\nThat is, $BD=\\boxed{\\frac{5}{2}}$", -"solution_image": [ -"solution_images/52827539_671.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52826807": { -"question": "As shown in the figure, $OA$ bisects $\\angle BOD$, $AC \\perp OB$ at point $C$, and $AC=3$. Given that the distance from point $A$ to the $y$-axis is 4, what are the coordinates of point $A$?", -"image_file_name": "7045627", -"image": [ -"math/52826807_684.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct $AE\\perp OD$ at point E, \\\\\nsince $OA$ bisects $\\angle BOD$, $AE\\perp OD$, and $AC\\perp OB$, \\\\\nthus, $AE=AC=3$. \\\\\nSince the distance from point A to the y-axis is 4, \\\\\nthus, $OE=4$. \\\\\nSince point A is in the second quadrant, \\\\\nthus, the coordinates of point A are $\\boxed{(-4,3)}$.", -"solution_image": [ -"solution_images/52826807_681.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52826953": { -"question": "As can be seen from the diagram, in the Cartesian coordinate system, an isosceles right-angled triangle board is placed as shown. If $A(3, 0), B(0, 2)$, then what are the coordinates of point $C$?", -"image_file_name": "7045627", -"image": [ -"math/52826953_692.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $CH\\perp x$-axis at point H.\\\\\nSince $\\angle AHC=\\angle CAB=\\angle AOB=90^\\circ$,\\\\\nit follows that $\\angle BAO+\\angle CAH=90^\\circ$, $\\angle CAH+\\angle ACH=90^\\circ$,\\\\\nthus, $\\angle ACH=\\angle BAO$,\\\\\nin $\\triangle AHC$ and $\\triangle BOA$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle AHC=\\angle AOB \\\\\n\\angle ACH=\\angle OAB \\\\\nAC=AB\n\\end{array}\\right.$,\\\\\ntherefore, $\\triangle AHC\\cong \\triangle BOA\\left(AAS\\right)$,\\\\\nhence, $AH=OB$, $CH=OA$,\\\\\nsince $A(3,0)$, $B(0,2)$,\\\\\nit follows that $OA=CH=3$, $OB=AH=2$,\\\\\ntherefore, $OH=OA+AH=5$,\\\\\nthus, $C\\left(5,3\\right)$.\\\\\nTherefore, the answer is $C=\\boxed{\\left(5,3\\right)}$.", -"solution_image": [ -"solution_images/52826953_691.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52826905": { -"question": "As shown in the figure, $AD$ is the median of $\\triangle ABC$. If $AB=AC=13$ and $BC=10$, then what is the length of $AD$?", -"image_file_name": "7045627", -"image": [ -"math/52826905_704.png" -], -"solution": "\\textbf{Solution:} Since $AD$ is the median of $\\triangle ABC$, if $AB=AC=13$, $BC=10$, \\\\\nthen $AD\\perp BC$, $BD=\\frac{1}{2}BC=5$, \\\\\nIn $Rt\\triangle ABD$, by the Pythagorean theorem, we have: $AD=\\sqrt{AB^{2}-BD^{2}}=\\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52815748": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A=90^\\circ$, $\\angle B=38^\\circ$, points E and F are located on sides BC and AC respectively. Fold $\\triangle CEF$ along the line containing EF, so that the corresponding point $C'$ of C falls on AB, and $CE=BC$, what is the measurement of $\\angle AFC'$?", -"image_file_name": "7045627", -"image": [ -"math/52815748_710.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle A=90^\\circ$,\\\\\n$\\therefore$ $\\angle B+\\angle C=90^\\circ$,\\\\\n$\\therefore$ $\\angle C=90^\\circ-38^\\circ=52^\\circ$,\\\\\n$\\because$ folding $\\triangle CEF$ along the line containing $EF$, such that the corresponding point of $C$, denoted $C'$, falls on $AB$,\\\\\n$\\therefore$ $C'E=CE=BC'$\\\\\n$\\therefore$ $\\angle CEF=\\angle C'EF=\\frac{1}{2}(180^\\circ-38^\\circ)=71^\\circ$, $\\angle CFE=\\angle C'FE$,\\\\\n$\\therefore$ $\\angle CFE=\\angle C'FE=180^\\circ-\\angle C-\\angle CEF=180^\\circ-52^\\circ-71^\\circ=57^\\circ$,\\\\\n$\\therefore$ $\\angle AFC' = 180^\\circ-\\angle CFE-\\angle C'FE=180^\\circ-57^\\circ-57^\\circ=\\boxed{66^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52815746": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=4$, $BC=5$, $CA=6$, and the three angle bisectors intersect at point $O$. The area of $\\triangle CAO$ equals $9$. What is the area of $\\triangle ABO$?", -"image_file_name": "7045627", -"image": [ -"math/52815746_720.png" -], -"solution": "\\textbf{Solution:} Draw $OM\\perp AB$ at point M, and $OD\\perp AC$ at point D, \\\\\nsince the three angle bisectors intersect at point O, \\\\\nhence $OM=OD$, \\\\\nsince the area of $\\triangle CAO$ is 9, \\\\\nthus ${S}_{\\triangle CAO}=\\frac{1}{2}AC\\cdot OD=\\frac{1}{2}\\times 6\\cdot OD=9$, \\\\\nSolving this, we get $OD=3$, \\\\\nthus $OM=3$, \\\\\ntherefore ${S}_{\\triangle ABO}=\\frac{1}{2}AB\\cdot OM=\\frac{1}{2}\\times 4\\times 3=\\boxed{6}$.", -"solution_image": [ -"solution_images/52815746_720.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52815640": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=5$, and $D$ is the midpoint of $AB$. $BE\\perp CD$ intersects the extension of $CD$ at $E$. If $BE=4$, what is the length of $AB$?", -"image_file_name": "7045627", -"image": [ -"math/52815640_730.png" -], -"solution": "\\textbf{Solution:} Construct $CF \\perp AB$ at point $F$,\\\\\nSince $BE \\perp CD$,\\\\\n$\\therefore \\angle E=\\angle DFC=90^\\circ$,\\\\\nSince point $D$ is the midpoint of $AB$,\\\\\n$\\therefore CD$ is the median of right triangle $ABC$,\\\\\n$\\therefore CD=AD=BD$,\\\\\nIn $\\triangle CDF$ and $\\triangle BDE$, $\\left\\{\\begin{array}{l}\\angle CFD=\\angle E\\\\ \\angle CDF=\\angle BDE\\\\ CD=BD\\end{array}\\right.$\\\\\n$\\therefore \\triangle CDF \\cong \\triangle BDE$ (AAS)\\\\\n$\\therefore CF=BE=4$,\\\\\nIn right triangle $ACF$, $AF=\\sqrt{AC^{2}-CF^{2}}=\\sqrt{5^{2}-4^{2}}=3$;\\\\\nLet $AB=x$, then $BF=x-3$,\\\\\nIn right triangle $ABC$, $BC^{2}=x^{2}-9$,\\\\\nIn right triangle $BCF$, $BC^{2}=16+(x-3)^{2}$\\\\\n$\\therefore 16+(x-3)^{2}=x^{2}-9$,\\\\\nSolving for $x$: $x=\\frac{25}{3}$.\\\\\n$\\therefore AB=\\boxed{\\frac{25}{3}}$.", -"solution_image": [ -"solution_images/52815640_730.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52814874": { -"question": "As shown in the figure, $AB \\perp BC$ at point $B$, $AB \\perp AD$ at point $A$, and point $E$ is the midpoint of $CD$. Given that $BC=5$, $AD=12$, and $BE=12.5$, what is the length of $AB$?", -"image_file_name": "7045627", -"image": [ -"math/52814874_740.png" -], -"solution": "\\textbf{Solution:} Extend BE to meet AD at point G, as shown in the diagram: \\\\\n$\\because$ AB$\\perp$BC at point B, AB$\\perp$AD at point A,\\\\\n$\\therefore$ BC$\\parallel$AD, $\\angle$A=90$^\\circ$,\\\\\n$\\therefore$ $\\angle$C=$\\angle$D, $\\angle$CBE=$\\angle$DGE\\\\\n$\\because$ point E is the midpoint of CD,\\\\\n$\\therefore$ CE=DE,\\\\\nIn $\\triangle$BCE and $\\triangle$GDE,\\\\\n$ \\left\\{\\begin{array}{l}\\begin{array}{c}\\angle C=\\angle D\\\\ \\angle CBE=\\angle DGE\\\\ CE=DE\\end{array}\\\\ \\end{array}\\right.$\\\\\n$\\therefore$ $\\triangle$BCD$\\cong$ $\\triangle$GDE (AAS),\\\\\n$\\therefore$ BE=GE=12.5, BC=DG=5,\\\\\n$\\therefore$ BG=BE+GE=25,\\\\\n$\\because$ AD=12,\\\\\n$\\therefore$ AG=AD−DG=7,\\\\\n$\\therefore$ $AB=\\sqrt{BG^{2}−AG^{2}}=\\sqrt{25^{2}−7^{2}}=\\boxed{24}$.", -"solution_image": [ -"solution_images/52814874_740.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52808244": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$ and $AD\\perp BC$ at point $D$. If $AB=6$ and $CD=4$, what is the perimeter of $\\triangle ABC$?", -"image_file_name": "7045627", -"image": [ -"math/52808244_750.png" -], -"solution": "\\textbf{Solution:} \n\nIn triangle $\\triangle ABC$, we have $AB=AC$, and $AD \\perp BC$ at point D, \n\n$\\therefore BC=2CD=8$,\n\n$\\therefore$ the perimeter of $\\triangle ABC$ is: $AB+AC+BC=6+6+8=\\boxed{20}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52807802": { -"question": "As shown in the figure, in $\\triangle ABC$, we have $AB=AC$, and $AD$ is the altitude on $BC$. $E$ is a point on side $AB$, and $EF\\perp BC$ at point $F$, intersecting the extension of $CA$ at point $G$. It is given that $EF=2$ and $EG=3$. What is the length of $AD$?", -"image_file_name": "7045627", -"image": [ -"math/52807802_760.png" -], -"solution": "\\textbf{Solution:} Draw $AH \\perp FG$ at point H,\\\\\nsince AB=AC, and AD is an altitude, \\\\\ntherefore, $\\angle DAC = \\angle DAB$,\\\\\nsince $EF \\perp BC$,\\\\\ntherefore, $\\angle ADC = \\angle GFC = 90^\\circ$,\\\\\ntherefore, $AD \\parallel GF$,\\\\\ntherefore, $\\angle G = \\angle DAC$, $\\angle AEG = \\angle BAD$,\\\\\ntherefore, $\\angle G = \\angle GEA$,\\\\\ntherefore, $AG = AE$,\\\\\nsince $AH \\perp EG$,\\\\\ntherefore, $EH= \\frac{1}{2}EG=1.5$;\\\\\nsince $\\angle AHF = \\angle ADF = \\angle HFD = 90^\\circ$,\\\\\ntherefore, quadrilateral ADFH is a rectangle,\\\\\ntherefore, $AD = HF = HE + EF = 1.5 + 2 = \\boxed{3.5}$.", -"solution_image": [ -"solution_images/52807802_760.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52807799": { -"question": "As shown in the figure, in $\\triangle ABC$, the bisectors of $\\angle ABC$ and $\\angle ACB$ intersect at point $P$. If $\\angle A=70^\\circ$, what is the measure of $\\angle BPC$?", -"image_file_name": "7045627", -"image": [], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$\\because$ $\\angle ABC + \\angle ACB = 180^\\circ - \\angle A$,\\\\\n$\\therefore$ $\\angle ABC + \\angle ACB = 180^\\circ - 70^\\circ = 110^\\circ$,\\\\\n$\\because$ The bisectors of $\\angle ABC$ and $\\angle ACB$ intersect at point P,\\\\\n$\\therefore$ $\\angle ABC = 2\\angle PBC$, $\\angle ACB = 2\\angle PCB$,\\\\\n$\\therefore$ $2\\angle PBC + 2\\angle PCB = 110^\\circ$,\\\\\n$\\therefore$ $\\angle PBC + \\angle PCB = 55^\\circ$,\\\\\n$\\therefore$ $\\angle BPC = 180^\\circ - (\\angle PBC + \\angle PCB) = 180^\\circ - 55^\\circ = \\boxed{125^\\circ}$.", -"solution_image": [ -"solution_images/52807799_770.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52807551": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, CE is the angle bisector of $\\triangle ABC$, and $\\angle AEC = 105^\\circ$. What is the measure of $\\angle B$?", -"image_file_name": "7045627", -"image": [ -"math/52807551_780.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACB=90^\\circ$ and CE is the angle bisector of $\\triangle ABC$, \\\\\nit follows that $\\angle ACE=\\angle BCE=45^\\circ$,\\\\\nFurthermore, since $\\angle AEC=105^\\circ$,\\\\\nit results in $\\angle B=\\angle AEC-\\angle BCE=105^\\circ-45^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52807552": { -"question": "As shown in the figure, $\\angle C=90^\\circ$, $AD$ bisects $\\angle BAC$ and intersects $BC$ at $D$. If $BC=7\\text{cm}$ and $BD=4\\text{cm}$, what is the distance from point $D$ to $AB$ in $\\text{cm}$?", -"image_file_name": "7045627", -"image": [ -"math/52807552_790.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw DH $\\perp$ AB at point H, \\\\\n$\\because$ BC = 7cm, BD = 4cm, \\\\\n$\\therefore$ CD = 7 - 4 = 3cm, \\\\\nAlso, $\\because$ AD is the bisector of $\\angle BAC$, $\\angle C=90^\\circ$, and DH $\\perp$ AB, \\\\\n$\\therefore$ DH = CD = 3cm, \\\\\n$\\therefore$ the distance from point D to AB is \\boxed{3} cm.", -"solution_image": [ -"solution_images/52807552_790.jpg" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52807500": { -"question": "As shown in the figure, in $\\triangle ABC$, where $AB=AC=10$ and $BC=8$, the line $AD$ bisects $\\angle BAC$ and intersects $BC$ at point $D$. Point $E$ is the midpoint of $AC$. After connecting $DE$, what is the perimeter of $\\triangle CDE$?", -"image_file_name": "7045627", -"image": [ -"math/52807500_800.png" -], -"solution": "\\textbf{Solution:} Given that $AB=AC$ and $AD$ bisects $\\angle BAC$, with $BC=8$, \\\\\nit follows that $AD\\perp BC$, and $CD=BD= \\frac{1}{2} BC=4$, \\\\\nsince point E is the midpoint of AC, \\\\\nthen $DE=CE= \\frac{1}{2} AC=5$, \\\\\nhence, the perimeter of $\\triangle CDE$ is $CD+DE+CE=4+5+5=\\boxed{14}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52807502": { -"question": "In right triangle $ABC$, where $AC=8$, $BC=6$, and $\\angle C=90^\\circ$, the triangle $ABC$ is folded such that point $A$ coincides with point $B$, with $DE$ being the crease. What is the length of $DE$?", -"image_file_name": "7045627", -"image": [ -"math/52807502_810.png" -], -"solution": "\\textbf{Solution:} Since $\\angle C=90^\\circ$, AC=8, and BC=6,\\\\\nthen AB=$\\sqrt{AC^{2}+BC^{2}}$=10,\\\\\nSince folding $\\triangle ABC$ as shown in the figure, making point A coincide with point B, where the crease is DE,\\\\\nthen BE=AE, AD=BD=5, DE$\\perp$AB,\\\\\nIn $\\triangle BEC$, BE$^{2}$=BC$^{2}$+CE$^{2}$,\\\\\nthen BE$^{2}$=36+(8-BE)$^{2}$,\\\\\nthus BE=$\\frac{25}{4}$,\\\\\nIn $\\triangle BDE$, DE=$\\sqrt{BE^{2}-BD^{2}}$=$\\boxed{\\frac{15}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52793335": { -"question": "As shown in the figure, $D$ is a point inside $\\angle MAN$, $DE\\perp AM$ at $E$, $DF\\perp AN$ at $F$, and $DE=DF$. Point $B$ is on ray $AM$ with $AB=6$, $BE=2$. A point $C$ is taken on ray $AN$ such that $DC=DB$. What is the length of $AC$?", -"image_file_name": "7045627", -"image": [ -"math/52793335_8210.png" -], -"solution": "Solution:\n(1) As shown in Figure 1, when point C is on line segment $AF$, connect $AD$, \\\\\n$\\because$ $DE\\perp AM$ at E, $DF\\perp AN$ at F, \\\\\n$\\therefore$ $\\angle DEB=\\angle DFC=90^\\circ$, \\\\\nIn $Rt\\triangle DEB$ and $Rt\\triangle DFC$, $\\left\\{\\begin{array}{l}DC=DB\\\\ DF=DE\\end{array}\\right.$, \\\\\n$\\therefore$ $Rt\\triangle DEB\\cong Rt\\triangle DFC\\left(HL\\right)$, \\\\\n$\\therefore$ $CF=BE=2$, \\\\\nAlso, $\\because$ in $Rt\\triangle DEA$ and $Rt\\triangle DFA$, $\\left\\{\\begin{array}{l}DA=DA\\\\ DF=DE\\end{array}\\right.$, \\\\\n$\\therefore$ $Rt\\triangle DEA\\cong Rt\\triangle DFA\\left(HL\\right)$, \\\\\n$\\therefore$ $AF=AE=AB+BE=6+2=8$, \\\\\n$\\therefore$ $AC=AF−CF=8−2=\\boxed{6}$; \\\\\n(2) As shown in Figure 2, when point C is on the extension of line segment $AF$, \\\\\nSimilarly, it is obtained that $AF=AE=8$, $CF=BE=2$, \\\\\n$\\therefore$ $AC=AF+CF=8+2=10$.", -"solution_image": [ -"solution_images/52793335_822.png", -"solution_images/52793335_8218.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52917597": { -"question": "As shown in the figure, in trapezoid $ABCD$, where $AD \\parallel BC$, and the diagonals $AC$ and $BD$ intersect at point $O$, the area of $\\triangle AOD$ is 9, and the area of $\\triangle BOC$ is 16. What is the area of $\\triangle AOB$?", -"image_file_name": "7056237", -"image": [ -"math/52917597_01.png" -], -"solution": "\\textbf{Solution:} Since $AD \\parallel BC$,\n\nit follows that $\\triangle AOD \\sim \\triangle COB$,\n\nand given $S_{\\triangle AOD} = 9$, $S_{\\triangle BOC} = 16$,\n\nthen $\\frac{AO}{OC} = \\sqrt{\\frac{S_{\\triangle AOD}}{S_{\\triangle BOC}}} = \\frac{3}{4}$.\n\nSince $\\triangle AOB$ and $\\triangle BOC$ have the same height,\n\nit follows that $S_{\\triangle AOB} = \\boxed{12}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917522": { -"question": "As shown in the figure, it is known that point $D$ is the midpoint of side $AC$ of $\\triangle ABC$, $AE \\parallel BC$, line $ED$ intersects $AB$ at point $G$ and extends to intersect $BC$ at point $F$. If $\\frac{BG}{GA} = 3$ and $BC = 8$, what is the length of $AE$?", -"image_file_name": "7056237", -"image": [ -"math/52917522_19.png" -], -"solution": "\\textbf{Solution:} Since $AE \\parallel BC$, \\\\\nit follows that $\\triangle AEG \\sim \\triangle BFG$, and $\\triangle AED \\sim \\triangle CFD$, \\\\\nthus, $\\frac{AE}{BF}=\\frac{AG}{BG}=\\frac{1}{3}$, and $\\frac{AE}{CF}=\\frac{AD}{CD}=1$, \\\\\nwhich means $AE=CF$, \\\\\nAlso, given $BC=8$, \\\\\ntherefore $\\frac{AE}{8+AE}=\\frac{1}{3}$\\\\\n$AE=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917632": { -"question": "As shown in the figure, square $EFGH$ is inscribed in right-angled triangle $ABC$, with $\\angle A=90^\\circ$ and $BC=12$. If the area of $\\triangle ABC$ is 36, what is the length of $EH$?", -"image_file_name": "7056237", -"image": [ -"math/52917632_25.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AD\\perp BC$ at $D$, intersecting $EH$ at $M$, \\\\\n$\\because$ The area of $\\triangle ABC$ is $36$, $BC=12$, \\\\\n$\\therefore$ $\\frac{1}{2}BC\\times AD=36$, \\\\\n$\\therefore$ $\\frac{1}{2}\\times 12\\times AD=36$, \\\\\n$\\therefore$ $AD=6$, \\\\\n$\\because$ Square $EFGH$ is inscribed in $\\angle ABC$, \\\\\n$\\therefore$ $EH\\parallel FG$, let $EH=EF=FG=HG=x$, \\\\\n$\\therefore$ $\\angle AEH=\\angle B$, $\\angle AHE=\\angle C$, \\\\\n$\\therefore$ $\\triangle AEH\\sim \\triangle ABC$, \\\\\n$\\therefore$ $\\frac{AE}{AB}=\\frac{EH}{BC}$, \\\\\n$\\because$ $AD\\perp BC$, \\\\\n$\\therefore$ $\\angle ADG=90^\\circ$, \\\\\n$\\because$ $EH\\parallel FG$, \\\\\n$\\therefore$ $\\angle ADG=\\angle AMH=90^\\circ$, \\\\\n$\\therefore$ $AM\\perp EH$, \\\\\nAgain, $\\because$ $EH\\parallel FG$, $AD\\perp BC$, \\\\\n$\\therefore$ $DM=EF=EH=x$, $\\frac{AE}{AB}=\\frac{AM}{AD}$, \\\\\n$\\therefore$ $AM=6-x$, \\\\\n$\\because$ $\\frac{AE}{AB}=\\frac{EH}{BC}$, \\\\\n$\\therefore$ $\\frac{EH}{BC}=\\frac{AM}{AD}$, \\\\\n$\\therefore$ $\\frac{x}{12}=\\frac{6-x}{6}$, \\\\\n$\\therefore$ $x=\\boxed{4}$, \\\\\n$\\therefore$ $EH=4$.", -"solution_image": [ -"solution_images/52917632_22.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917519": { -"question": "As shown in the diagram, in the parallelogram $ABCD$, $AB=10$, $AD=15$, and the bisector of $\\angle BAD$ intersects $BC$ at point $E$ and the extension of $DC$ at point $F$. $BG\\perp AE$ at point $G$. If $BG=8$, then what is the perimeter of $\\triangle CEF$?", -"image_file_name": "7056237", -"image": [ -"math/52917519_36.png" -], -"solution": "\\textbf{Solution:} Let us consider quadrilateral $ABCD$, where $CD=AB=10$, $BC=AD=15$. The bisector of $\\angle BAD$ meets $BC$ at point $E$,\\\\\ntherefore, $AB\\parallel DC$, $\\angle BAF=\\angle DAF$,\\\\\nthus, $\\angle BAF=\\angle F$,\\\\\nand hence, $\\angle DAF=\\angle F$,\\\\\nleading to $DF=AD=15$, similarly $BE=AB=10$,\\\\\nhence, $CF=DF-CD=15-10=5$;\\\\\nsince $BG\\perp AE$,\\\\\nit follows that $AE=2AG$,\\\\\nwithin $\\triangle ABG$, where $BG\\perp AE$, and $AB=10$, $BG=8$,\\\\\nin right triangle $\\triangle ABG$, $AG=\\sqrt{AB^{2}-BG^{2}}=\\sqrt{100-64}=6$,\\\\\nthus, $AE=2AG=12$,\\\\\nhence, the perimeter of $\\triangle ABE$ equals $10+10+12=32$,\\\\\nsince quadrilateral ABCD is a parallelogram,\\\\\nit follows that $AB\\parallel CF$,\\\\\nhence, $\\triangle CEF\\sim \\triangle BEA$,\\\\\nthus, $\\frac{CF}{AB}=\\frac{5}{10}=\\frac{1}{2}$, i.e., the ratio of similarity is $1\\colon 2$,\\\\\nhence, the perimeter of $\\triangle CEF$ is $\\boxed{16}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917594": { -"question": "As shown in the figure, it is known that $AD$ is the angle bisector of $\\triangle ABC$, and $DE \\parallel AB$. If $\\frac{AE}{EC} = \\frac{3}{4}$, then what is the value of $\\frac{AE}{AB}$?", -"image_file_name": "7056237", -"image": [ -"math/52917594_43.png" -], -"solution": "\\textbf{Solution:} Since $DE \\parallel AB$, \\\\\nit follows that $\\triangle CDE \\sim \\triangle CBA$, \\\\\nhence $\\frac{DE}{AB}=\\frac{CE}{AC}$, \\\\\nGiven $\\frac{AE}{EC} = \\frac{3}{4}$, \\\\\nit then follows $\\frac{DE}{AB}=\\frac{CE}{AC} = \\frac{4}{7}$, \\\\\nSince $AD$ is the angle bisector of $\\triangle ABC$ and $DE \\parallel AB$, \\\\\nit follows that $\\angle ADE = \\angle BAD = \\angle DAE$, \\\\\nconsequently, $AE = DE$, \\\\\nthus, $\\frac{AE}{AB}=\\frac{DE}{AB}=\\frac{CE}{AC} = \\boxed{\\frac{4}{7}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917634": { -"question": "As shown in the figure, in the equilateral triangle $\\triangle CDE$ with the vertex $D$ sliding along the side $AB$ of the equilateral triangle $\\triangle ABC$, $DE$ intersects $BC$ at point $F$. When $AD:DB=3:4$, what is the value of $\\frac{BF}{CF}$?", -"image_file_name": "7056237", -"image": [ -"math/52917634_57.png" -], -"solution": "\\textbf{Solution:} Given that $AD:DB=3:4$,\\\\\nwe can assume $AD=3k$, $BD=4k$, hence $AB=AC=BC=7k$,\\\\\nsince $\\triangle ABC$ and $\\triangle CDE$ are equilateral,\\\\\n$\\angle A=\\angle B=\\angle CDE=60^\\circ$,\\\\\nand since $\\angle A+\\angle ACD=\\angle CDF+\\angle BDF$,\\\\\nit follows that $\\angle ACD=\\angle BDF$,\\\\\nthus $\\triangle ACD \\sim \\triangle BDF$,\\\\\nimplying that $\\frac{AC}{BD}=\\frac{AD}{BF}$,\\\\\nthus $\\frac{7k}{4k}=\\frac{3k}{BF}$,\\\\\nhence $BF=\\frac{12}{7}k$,\\\\\ntherefore $CF=BC−BF=7k−\\frac{12}{7}k=\\frac{37}{7}k$,\\\\\nhence $\\frac{BF}{CF}=\\frac{\\frac{12}{7}k}{\\frac{37}{7}k}=\\boxed{\\frac{12}{37}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52916837": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $CD$ is the altitude on the hypotenuse $AB$. If $AD=3$ and $BD=2$, what is the length of $CD$?", -"image_file_name": "7056237", -"image": [ -"math/52916837_65.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ACB=90^\\circ$,\\\\\nit follows that $\\angle ACD+\\angle BCD=90^\\circ$.\\\\\nSince $CD$ is the altitude from the hypotenuse $AB$,\\\\\nit follows that $\\angle ADC=\\angle CDB=90^\\circ$, $\\angle ACD+\\angle CAD=90^\\circ$,\\\\\ntherefore $\\angle CAD=\\angle BCD$,\\\\\ntherefore $\\triangle CAD\\sim \\triangle BCD$,\\\\\ntherefore $\\frac{AD}{CD}=\\frac{CD}{BD}$,\\\\\ntherefore $CD^2=3\\times 2=6$,\\\\\ntherefore $CD=\\sqrt{6}$ (negative values discarded)\\\\\nThus, the answer is: $CD=\\boxed{\\sqrt{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917564": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=90^\\circ$, $AC=13$, and $\\tan A=\\frac{5}{12}$. $CD$ is the median to side $AB$. $\\triangle ABC$ is rotated about point D, and points A, B, C correspond to points $A'$, $B'$, $C'$, respectively. $C'D$ intersects side $AC$ at point E. During the rotation, if $\\frac{AD}{AB}=\\frac{DE}{BC}$, then what is the value of $\\frac{AE}{AC}$?", -"image_file_name": "7056237", -"image": [ -"math/52917564_711.png" -], -"solution": "\\textbf{Solution:} Since $\\angle B=90^\\circ$,\\\\\nit follows that $\\tan A=\\frac{BC}{AB}=\\frac{5}{12}$.\\\\\nLet $BC=5x$, then $AB=12x$,\\\\\nsince $AC^2=AB^2+BC^2$,\\\\\nwe find that $13^2=(12x)^2+(5x)^2$,\\\\\nresulting in: $x=1$ (negative values discarded),\\\\\nthus $BC=5$, and therefore $AB=12$.\\\\\nSince $CD$ is the midline on side $AB$,\\\\\nit follows that $AD=BD=\\frac{1}{2}AB=6$,\\\\\nthus $\\frac{AD}{AB}=\\frac{6}{12}=\\frac{1}{2}=\\frac{DE}{BC}$,\\\\\nonly when $\\triangle ADE\\sim \\triangle ABC$ does it satisfy $\\frac{AD}{AB}=\\frac{DE}{BC}=\\frac{1}{2}$, as shown in the figure,\\\\\nthus $\\frac{AE}{AC}=\\boxed{\\frac{1}{2}}$.", -"solution_image": [ -"solution_images/52917564_715.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917331": { -"question": "As shown in the figure, $ \\triangle ABC$ is an isosceles right triangle, with $ \\angle C=90^\\circ$. Point D is on side $BC$, and segment $AD$ is drawn. Through point B, draw $ BE\\perp AD$, intersecting the extension of $AD$ at point E. If $ \\frac{CD}{BD}=\\frac{1}{2}$, what is the value of $ \\frac{BE}{AD}$?", -"image_file_name": "7056237", -"image": [ -"math/52917331_88.png" -], -"solution": "\\textbf{Solution:} Since $\\frac{CD}{BD}=\\frac{1}{2}$,\n\nwe can assume $CD=k$, $BD=2k$, hence $CB=CA=3k$,\n\nsince $\\angle C=90^\\circ$,\n\nthen $AD=\\sqrt{AC^2+CD^2}=\\sqrt{(3k)^2+k^2}=\\sqrt{10}k$,\n\nsince $BE\\perp AD$,\n\nthen $\\angle E=\\angle C=90^\\circ$,\n\nsince $\\angle CDA=\\angle BDE$,\n\nthen $\\triangle ACD\\sim \\triangle BED$,\n\nhence $\\frac{AC}{BE}=\\frac{AD}{BD}$,\n\nthus $\\frac{3k}{BE}=\\frac{\\sqrt{10}k}{2k}$,\n\ntherefore $BE=\\frac{3\\sqrt{10}}{5}k$,\n\nfinally, $\\frac{BE}{AD}=\\frac{\\frac{3\\sqrt{10}}{5}k}{\\sqrt{10}k}=\\boxed{\\frac{3}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917633": { -"question": "As shown in the figure, $DE$ is the median of $\\triangle ABC$, $M$ is the midpoint of $DE$, and the extension line of $CM$ intersects $AB$ at point $N$. What is the value of $\\frac{{S}_{\\triangle DMN}}{{S}_{\\text{quadrilateral}DBCM}}$?", -"image_file_name": "7056237", -"image": [ -"math/52917633_96.png" -], -"solution": "\\textbf{Solution:} Given that $DE$ is the midline of $\\triangle ABC$,\\\\\nthus $\\frac{DE}{BC}=\\frac{1}{2}$, $DE\\parallel BC$\\\\\nFurthermore, since M is the midpoint of $DE$,\\\\\nthus $\\frac{DM}{DE}=\\frac{1}{2}$,\\\\\ntherefore $\\frac{DM}{BC}=\\frac{1}{4}$,\\\\\nsince $DE\\parallel BC$,\\\\\nthus $\\triangle DMN\\sim \\triangle BCN$,\\\\\ntherefore $\\frac{{S}_{\\triangle DMN}}{{S}_{\\triangle BCN}}=\\left(\\frac{DM}{BC}\\right)^2=\\frac{1}{16}$,\\\\\ntherefore ${S}_{\\triangle DMN}\\colon {S}_{\\text{quadrilateral} DBCM}=1\\colon 15$.\\\\\nHence the answer is: $\\boxed{1\\colon 15}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917636": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $DE\\parallel BC$ intersects sides $AB$ and $AC$ at points D and E, respectively, and $DE$ divides $\\triangle ABC$ into two parts of equal area. Fold $\\triangle ADE$ along line $DE$ so that point A falls onto point F, $DF$ intersects $BC$ at point G, connect $CF$. If $CF\\parallel AB$, what is the value of the ratio $CF\\colon AB$?", -"image_file_name": "7056237", -"image": [ -"math/52917636_1013.png" -], -"solution": "\\textbf{Solution:} Draw line $AF$, intersecting $DE$ at $M$, and $BC$ at $N$,\\\\\n$\\because$ folding triangle $ADE$ along the line $DE$, point $A$ lands on point $F$,\\\\\n$\\therefore$ $AF\\perp BC$, $AM=FM$,\\\\\n$\\because$ $DE\\parallel BC$,\\\\\n$\\therefore$ $\\triangle ADE\\sim \\triangle ABC$,\\\\\n$\\because$ $DE$ divides $\\triangle ABC$ into two parts of equal area,\\\\\n$\\therefore$ $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}}=\\frac{1}{2}$,\\\\\n$\\therefore$ $\\frac{AM}{AN}=\\frac{1}{\\sqrt{2}}$,\\\\\n$\\therefore$ $\\frac{AM}{MN}=\\frac{1}{\\sqrt{2}-1}=\\sqrt{2}+1$,\\\\\n$\\therefore$ $AM=(\\sqrt{2}+1)MN$,\\\\\n$\\therefore$ $MF=AM=(\\sqrt{2}+1)MN$, $AN=AM+MN=(\\sqrt{2}+1)MN+MN=(\\sqrt{2}+2)MN$,\\\\\n$\\therefore$ $NF=MF-MN=(\\sqrt{2}+1)MN-MN=\\sqrt{2}MN$,\\\\\n$\\because$ $CF\\parallel AB$,\\\\\n$\\therefore$ $\\frac{CF}{AB}=\\frac{NF}{AN}=\\frac{\\sqrt{2}MN}{(\\sqrt{2}+2)MN}=\\boxed{\\sqrt{2}-1}$,", -"solution_image": [ -"solution_images/52917636_103.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52917671": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, with side $BC=6$ and height $AD=3$, the vertices $E$ and $F$ of the square $EFGH$ lie on side $BC$, while vertices $H$ and $G$ lie on sides $AB$ and $AC$, respectively. What is the length of the side of this square?", -"image_file_name": "7056237", -"image": [ -"math/52917671_117.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram:\\\\\n$ \\because $ Quadrilateral $EFMN$ is a square,\\\\\n$ \\therefore HG\\parallel BC$, $HG=EF$,\\\\\n$ \\therefore \\angle AHG=\\angle B$,\\\\\n$ \\because \\angle BAC=\\angle BAC$,\\\\\n$ \\therefore \\triangle AHG\\sim \\triangle ABC$,\\\\\n$ \\therefore \\frac{AH}{AB}=\\frac{HG}{BC}$,\\\\\nAlso $ \\because AD\\perp BC$,\\\\\n$ \\therefore AD\\perp HG$, $HG=EF=MD$,\\\\\n$ \\because HG\\parallel BC$,\\\\\n$ \\therefore \\frac{AM}{AD}=\\frac{AH}{AB}$, that is $\\frac{AM}{AD}=\\frac{HG}{BC}$,\\\\\nLet $HG=x$, then $AM=AD-MD=3-x$,\\\\\n$ \\therefore \\frac{3-x}{3}=\\frac{x}{6}$, solving this gives: $x=\\boxed{2}$,\\\\\n$ \\therefore $ The side length of this square is $2$.", -"solution_image": [ -"solution_images/52917671_110.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917672": { -"question": "As shown in the figure, it is known that $AD \\parallel BC$, $S_{\\triangle AOD} = 4$, $S_{\\triangle BOC} = 9$, then what is the area of $\\triangle ABO$?", -"image_file_name": "7056237", -"image": [ -"math/52917672_124.png" -], -"solution": "\\textbf{Solution:} Since $AD\\parallel BC$,\\\\\nit follows that $\\triangle AOD\\sim \\triangle COB$,\\\\\nhence $\\frac{{S}_{\\triangle AOD}}{{S}_{\\triangle COB}}=\\left(\\frac{OA}{OC}\\right)^{2}$, that is, $\\left(\\frac{OA}{OC}\\right)^{2}=\\frac{4}{9}$,\\\\\nfrom which we find $\\frac{OA}{OC}=\\frac{2}{3}$,\\\\\nthus $\\frac{{S}_{\\triangle AOB}}{{S}_{\\triangle BOC}}=\\frac{OA}{OC}=\\frac{2}{3}$, that is, $\\frac{{S}_{\\triangle ABO}}{9}=\\frac{2}{3}$,\\\\\nsolving this, we get ${S}_{\\triangle ABO}=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917673": { -"question": "As shown in the figure, quadrilaterals $ABCD$, $CDEF$, and $EFGH$ are all squares. What is the sum of $\\angle ACB+\\angle AFB+\\angle AGB$ in degrees?", -"image_file_name": "7056237", -"image": [ -"math/52917673_132.png" -], -"solution": "\\textbf{Solution:} Let the side length of the square be $a$, \\\\\n$AC=\\sqrt{a^2+a^2}=\\sqrt{2}a$, \\\\\n$\\because \\frac{CA}{CF}=\\frac{\\sqrt{2}a}{a}=\\sqrt{2}$, $\\frac{CG}{AC}=\\frac{2a}{\\sqrt{2}a}=\\sqrt{2}$, \\\\\n$\\therefore \\frac{AC}{CF}=\\frac{CG}{AC}$, \\\\\n$\\because \\angle ACF=\\angle ACF$, \\\\\n$\\therefore \\triangle ACF\\sim \\triangle GCA$; \\\\\n$\\therefore \\angle AGB=\\angle CAF$, \\\\\n$\\because \\angle AGB+\\angle AFB=\\angle CAF+\\angle AFB=\\angle ACB=45^\\circ$, \\\\\n$\\therefore \\angle ACB + \\angle AFB + \\angle AGB = 45^\\circ + 45^\\circ = \\boxed{90^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53106779": { -"question": "As shown in the diagram, in parallelogram $ABCD$, we have $CE:BE=1:3$, and the area of triangle $EFC$ is denoted as $S_{\\triangle EFC}=1$. What is the area of triangle $ABC$, denoted as $S_{\\triangle ABC}$?", -"image_file_name": "7056237", -"image": [ -"math/53106779_144.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram,\\\\\ntherefore $AD=BC$, $AD\\parallel BC$, ${S}_{\\triangle ACD}={S}_{\\triangle ABC}=\\frac{1}{2}{S}_{\\text{parallelogram} ABCD}$,\\\\\ntherefore $\\triangle ADF\\sim \\triangle CEF$,\\\\\ntherefore $\\frac{CE}{AD}=\\frac{EF}{DF}$,\\\\\nsince $CE\\colon BE=1\\colon 3$,\\\\\ntherefore $CE\\colon CB=1\\colon 4$,\\\\\ntherefore $CE\\colon AD=1\\colon 4$,\\\\\ntherefore $\\frac{CE}{AD}=\\frac{EF}{DF}=\\frac{1}{4}$,\\\\\ntherefore ${S}_{\\triangle CDF}=4{S}_{\\triangle EFC}=4$, $\\frac{{S}_{\\triangle ADF}}{{S}_{\\triangle EFC}}={\\left(\\frac{AD}{CE}\\right)}^{2}=16$,\\\\\ntherefore ${S}_{\\triangle ADC}={S}_{\\triangle ADF}+{S}_{\\triangle CDF}=20$,\\\\\ntherefore ${S}_{\\triangle ABC}={S}_{\\triangle ACD}=\\boxed{20}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53106512": { -"question": "As shown in the figure, it is known that the similarity ratio between $\\triangle ADE$ and $\\triangle ABC$ is $1:2$, and the area of $\\triangle ADE$ is 3. What is the area of the quadrilateral $DBCE$?", -"image_file_name": "7056237", -"image": [ -"math/53106512_155.png" -], -"solution": "Since the similarity ratio between $\\triangle ADE$ and $\\triangle ABC$ is $1\\colon 2$,\\\\\nthe ratio of their areas is $1\\colon 4$.\\\\\nTherefore, the area ratio between $\\triangle ADE$ and quadrilateral $DBCE$ is $1\\colon 3$.\\\\\nSince the area of $\\triangle ADE$ is 3,\\\\\nthe area of quadrilateral $DBCE$ is $\\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917562": { -"question": "As shown in the figure, in trapezoid $ABCD$, where $AD \\parallel BC$ and $BD^2 = AD \\cdot BC$, if $AB : CD = 1 : 2$, what is the ratio of $AD : BC$?", -"image_file_name": "7056237", -"image": [ -"math/52917562_165.png" -], -"solution": "\\textbf{Solution:} Since $AD\\parallel BC$,\n\nit follows that $\\angle ADB=\\angle DBC$.\n\nSince $BD^{2}=AD\\cdot BC$,\n\nit follows that $\\frac{BD}{BC}=\\frac{AD}{BD}$,\n\ntherefore $\\triangle ADB\\sim \\triangle DBC$,\n\nhence $\\frac{BD}{BC}=\\frac{AD}{BD}=\\frac{AB}{CD}=\\frac{1}{2}$,\n\nthus $BD=2AD$, $BC=2BD$,\n\nhence $BC=4AD$,\n\nthus $AD:BC=\\boxed{1:4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917561": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD\\parallel BC\\parallel EF$. If $AE=3$, $AB=8$, $CD=10$, then what is the length of $CF$?", -"image_file_name": "7056237", -"image": [ -"math/52917561_173.png" -], -"solution": "\\[\n\\textbf{Solution:} \\quad \\text{Since } AD\\parallel BC\\parallel EF, \n\\]\n\\[\n\\therefore \\frac{AE}{AB}=\\frac{DF}{CD},\n\\]\n\\[\n\\text{Since } AE=3, AB=8, CD=10,\n\\]\n\\[\n\\therefore \\frac{3}{8}=\\frac{DF}{10},\n\\]\n\\[\n\\text{Solving for } DF, \\text{ we get } DF=\\frac{15}{4},\n\\]\n\\[\n\\therefore CF=CD-DF=10-\\frac{15}{4}=\\boxed{\\frac{25}{4}}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52874674": { -"question": "As shown in the figure, given $\\triangle ABC\\sim \\triangle ADE$, $AD=6$, $BD=3$, $DE=4$, what is the length of $BC$?", -"image_file_name": "7056237", -"image": [ -"math/52874674_180.png" -], -"solution": "\\textbf{Solution}: Since $AD=6$ and $BD=3$,\\\\\nthen $AB=9$,\\\\\nSince $\\triangle ABC\\sim \\triangle ADE$ and $DE=4$,\\\\\nthen $AD: AB = DE: BC$,\\\\\nthus $BC=\\frac{AB\\cdot DE}{AD}$,\\\\\nSince $DE=4$,\\\\\nthus $BC=\\frac{9\\times 4}{6}=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52874571": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle with $AB=3$. Point $D$ is a moving point on side $BC$, $\\angle ADE=60^\\circ$, and $DE$ intersects $AC$ at point $E$. What is the maximum value of the length of segment $CE$?", -"image_file_name": "7056237", -"image": [ -"math/52874571_199.png" -], -"solution": "\\textbf{Solution:}\n\nSince $\\triangle ABC$ is an equilateral triangle, \\\\\ntherefore, AB=BC=3, $\\angle B=\\angle C=60^\\circ$, \\\\\nsince $\\angle ADC=\\angle ADE+\\angle EDC=\\angle B+\\angle BAD$, $\\angle ADE=60^\\circ$, \\\\\ntherefore, $\\angle BAD=\\angle CDE$, \\\\\nthus, $\\triangle ABD\\sim \\triangle DCE$, \\\\\nso, AB$\\colon$CD=BD$\\colon$CE, \\\\\nlet BD=x, thus CD=3−x, \\\\\nso, 3$\\colon$(3−x)=x$\\colon$CE, \\\\\nthus, CE$=-\\frac{1}{3}x^2+x=-\\frac{1}{3}\\left(x-\\frac{3}{2}\\right)^2+\\frac{3}{4}$ \\\\\nSince $a=-\\frac{1}{3}<0$, the graph opens downward, \\\\\nthus, the maximum value of CE is $\\boxed{\\frac{3}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52871905": { -"question": "As shown in the figure, in $ \\triangle ABC$, D and F are the trisection points on side $AB$, and E and G are the trisection points on side $AC$. If $DE=2$, then how much is $BC$?", -"image_file_name": "7056237", -"image": [ -"math/52871905_205.png" -], -"solution": "\\textbf{Solution:} Since $D,F$ are the trisection points on side $AB$, and $E,G$ are the trisection points on side $AC$,\\\\\nit follows that $DE\\parallel FG\\parallel BC$,\\\\\nwhich means $\\triangle ADE\\sim \\triangle ABC$,\\\\\nthus, $\\frac{AD}{AB}=\\frac{DE}{BC}$,\\\\\nleading to $\\frac{1}{3}=\\frac{DE}{BC}$,\\\\\nsince $DE=2$,\\\\\nit follows that $BC=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52871849": { -"question": "As shown in the diagram, $DE \\parallel BC$, and $AD:DB = 2:1$, what is the ratio of similarity between $\\triangle ADE$ and $\\triangle ABC$?", -"image_file_name": "7056237", -"image": [ -"math/52871849_213.png" -], -"solution": "\\textbf{Solution:} Given that $DE\\parallel BC$ and $AD:DB=2:1$, \\\\\nit follows that $\\triangle ADE\\sim \\triangle ABC$ and $AD:AB=2:3$, \\\\\nhence, the ratio of similarity between $\\triangle ADE$ and $\\triangle ABC$ is $\\boxed{2:3}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52872012": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $BC=4$, $CA=6$. Circle $C$ has a radius of 2, and $P$ is a moving point on the circle. $AP$ and $BP$ are connected. What is the minimum value of $AP+\\frac{1}{2}BP$?", -"image_file_name": "7056237", -"image": [ -"math/52872012_228.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\ntake a point $D$ on $CB$, such that $CD=1$, then we have $\\frac{CD}{CP}=\\frac{CP}{CB}=\\frac{1}{2}$,\\\\\nand since $\\angle PCD=\\angle BCP$,\\\\\ntherefore, $\\triangle PCD\\sim \\triangle BCP$,\\\\\nthus, $\\frac{PD}{BP}=\\frac{1}{2}$,\\\\\nhence, $PD=\\frac{1}{2}BP$,\\\\\ntherefore, $AP+\\frac{1}{2}BP=AP+PD$.\\\\\nTo minimize $AP+\\frac{1}{2}BP$, $AP+PD$ must be minimized,\\\\\nwhen points $A$, $P$, $D$ are on the same line, $AP+PD$ is minimized,\\\\\nthat is, the minimum value of $AP+\\frac{1}{2}BP$ is $AD$,\\\\\nin $\\triangle ACD$, where $CD=1$, $AC=6$,\\\\\ntherefore, $AD=\\sqrt{AC^2+CD^2}=\\boxed{\\sqrt{37}}$,\\\\\nthe minimum value of $AP+\\frac{1}{2}BP$ is $\\sqrt{37}$.", -"solution_image": [ -"solution_images/52872012_220.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52866013": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=12$, $BC=5$. A square $CDEF$ is cut out from the triangle. What is the length of the side of square $CDEF$?", -"image_file_name": "7056237", -"image": [ -"math/52866013_230.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral CDEF is a square, \\\\\nit follows that EF $\\parallel$ CD, and EF = FC = CD = DE. Let EF = x, then AF = 12 - x, \\\\\ntherefore, $\\triangle$ AFE $\\sim$ $\\triangle$ ACB, \\\\\nthus, $\\frac{EF}{BC} = \\frac{AF}{AC}$, \\\\\nwhich leads to $\\frac{x}{5} = \\frac{12 - x}{12}$, \\\\\nsolving this gives x = $\\boxed{\\frac{60}{17}}$, \\\\\nmeaning the side length of square CDEF is $\\frac{60}{17}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52866265": { -"question": "As shown in the figure, point E is the midpoint on side CD of square $ABCD$. The diagonals intersect at point O. If BE intersects AC at point F, what is the ratio of $CF:OF$?", -"image_file_name": "7056237", -"image": [ -"math/52866265_246.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a square,\\\\\nit follows that $AB=CD$ and $AB\\parallel CD$,\\\\\nsince $E$ is the midpoint of $CD$,\\\\\nit follows that $CE=\\frac{1}{2}CD=\\frac{1}{2}AB$,\\\\\nsince the diagonals of square $ABCD$ intersect at $O$,\\\\\nit follows that $AO=CO=OF+CF$,\\\\\nsince $AB\\parallel CD$,\\\\\nit follows that $\\triangle ABF\\sim \\triangle CEF$,\\\\\nhence, $\\frac{CE}{AB}=\\frac{CF}{AF}=\\frac{1}{2}$,\\\\\nsince $AF=AO+OF$ and $AO=OF+CF$,\\\\\nit follows that $\\frac{CF}{AF}=\\frac{CF}{AO+OF}=\\frac{CF}{CF+2OF}=\\frac{1}{2}$,\\\\\nthus, $2CF=CF+2OF$,\\\\\ntherefore, $CF=2OF$,\\\\\nhence, $\\frac{CF}{OF}=\\boxed{\\frac{2}{1}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52866267": { -"question": "As shown in the diagram, P is a moving point on side AD of a square $ABCD$ with side length 6 (P does not coincide with A or D). Connect $CP$, and draw $BH\\perp CP$ from point B. Fold $\\triangle DPC$ along the straight line containing $CP$ to obtain $\\triangle CPD^{\\prime}$. Extend $PD^{\\prime}$ to meet the extension of $CB$ at point G. When $BH = \\frac{18\\sqrt{13}}{13}$, what is the length of $PG$?", -"image_file_name": "7056237", -"image": [ -"math/52866267_2510.png" -], -"solution": "\\textbf{Solution:}\n\nIn right triangle $BCH$, $\\angle BHC=90^\\circ$, $BH=\\frac{18\\sqrt{13}}{13}$, $BC=6$,\n\naccording to the Pythagorean theorem, $CH=\\sqrt{BC^2-BH^2}=\\sqrt{6^2-\\left(\\frac{18\\sqrt{13}}{13}\\right)^2}=\\frac{12\\sqrt{13}}{13}$,\n\nsince square $ABCD$, $DC=6$,\n\nthus $AD\\parallel BC$,\n\ntherefore $\\angle DPC=\\angle PCB$,\n\ntherefore $\\triangle PDC\\sim \\triangle CHB$,\n\ntherefore $\\frac{PD}{CH}=\\frac{DC}{HB}$,\n\ntherefore $\\frac{PD}{\\frac{12\\sqrt{13}}{13}}=\\frac{6}{\\frac{18\\sqrt{13}}{13}}$,\n\nsolving yields $PD=4$,\n\nsince $\\triangle DPC$ is reflected along line $CP$ to get $\\triangle CPD'$,\n\ntherefore $PD'=PD=4$, $D'C=DC=6$, $\\angle D'PC=\\angle DPC=\\angle PCB$,\n\nthus $GP=GC$,\n\nlet $GP=GC=x$, then $GD'=GP-PD'=x-4$,\n\nin right triangle $CD'G$, $\\angle CD'G=90^\\circ$,\n\naccording to the Pythagorean theorem, $GC^2=GD'^2+CD'^2$,\n\nthus $x^2=(x-4)^2+6^2$,\n\nwhich gives $8x=52$,\n\nsolving yields $x=\\boxed{\\frac{13}{2}}$,\n\nthus, $PG=\\frac{13}{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52866404": { -"question": "As shown in the figure, it is known that $AB\\parallel CD\\parallel EF$, if $AC=6, CE=3, DF=2$, then what is the length of $BD$?", -"image_file_name": "7056237", -"image": [ -"math/52866404_263.png" -], -"solution": "\\textbf{Solution:} Given $\\because AB\\parallel CD\\parallel EF$,\\\\\n$\\therefore \\frac{AC}{CE}=\\frac{BD}{DF}$,\\\\\n$\\because AC=6, CE=3, DF=2$,\\\\\n$\\therefore \\frac{6}{3}=\\frac{BD}{2}$,\\\\\nSolving this, we get: $BD=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52866129": { -"question": "As shown in the figure, in triangle $ABC$, $DE \\parallel BC$, $AD = 2$, $AB = 6$, $AE = 3$, then what is the length of $AC$?", -"image_file_name": "7056237", -"image": [ -"math/52866129_273.png" -], -"solution": "\\textbf{Solution:} \\\\\n\\[\n\\because DE\\parallel BC, \\\\\n\\therefore \\triangle ADE\\sim \\triangle ABC, \\\\\n\\therefore \\frac{AD}{AB}=\\frac{AE}{AC}, \\\\\n\\therefore \\frac{2}{6}=\\frac{3}{AC}, \\\\\n\\therefore AC=\\boxed{9}\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52866230": { -"question": "As shown in the figure, in rectangle $ABCD$, $AD=2$, $AB=4$, and $EF\\perp AC$, intersecting $AB$ and $CD$ at $E$ and $F$ respectively, what is the minimum value of $AF+CE$?", -"image_file_name": "7056237", -"image": [ -"math/52866230_284.png" -], -"solution": "\\textbf{Solution:} Let $DF=x$, then $FC=4-x$,\\\\\nDraw $CG\\parallel EF$ through point C, and let $CG=EF$, connect $FG$,\\\\\nWhen points A, F, G are collinear, find the minimum value of $AF+FG$;\\\\\n$\\because$ $CG\\parallel EF$, and $CG=EF$,\\\\\n$\\therefore$ quadrilateral $CEFG$ is a parallelogram;\\\\\n$\\therefore$ $EC\\parallel FG$, $EC=FG$,\\\\\nFurthermore, since points A, F, G are collinear,\\\\\n$\\therefore$ $AF\\parallel EC$,\\\\\nAlso, since quadrilateral $ABCD$ is a rectangle,\\\\\n$\\therefore$ $AE\\parallel DC$, $\\angle D=90^\\circ$,\\\\\n$\\therefore$ quadrilateral $AECF$ is a parallelogram,\\\\\n$\\therefore$ $OA=OC$, $OE=OF$,\\\\\nMoreover, since $EF\\perp AC$,\\\\\n$AF=CF=4-x$,\\\\\nIn $\\triangle ADF$, by the Pythagorean theorem, we have:\\\\\n$AD^2+DF^2=AF^2$,\\\\\nAlso, since $AD=2$, $DF=x$, then $FC=4-x$,\\\\\n$\\therefore$ $2^2+x^2=(4-x)^2$,\\\\\nSolving this, we get: $x=\\frac{3}{2}$,\\\\\n$\\therefore$ $AF=\\frac{5}{2}$,\\\\\nIn $\\triangle ADC$, by the Pythagorean theorem, we have:\\\\\n$AD^2+DC^2=AC^2$,\\\\\n$\\therefore$ $AC=2\\sqrt{5}$,\\\\\n$\\therefore$ $AO=\\frac{1}{2}AC=\\sqrt{5}$,\\\\\nMoreover, since $OF\\parallel CG$,\\\\\n$\\therefore$ $\\triangle AOF\\sim \\triangle ACG$,\\\\\n$\\therefore$ $\\frac{AO}{AC}=\\frac{AF}{AG}$,\\\\\n$\\therefore$ $AG=5$,\\\\\nFurthermore, since $AG=AF+FG$, $FG=EC$,\\\\\n$\\therefore$ $AF+EC=\\boxed{5}$.", -"solution_image": [ -"solution_images/52866230_280.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52861191": { -"question": "As shown in the figure, the length of segment $BC$ is $8$. With $B$ as the center and $4$ as the radius, a circle $\\odot B$ is drawn. Point $A$ is a moving point on $\\odot B$. Segment $AC$ is connected, and then segment $AC$ is rotated $90^\\circ$ counterclockwise about point $A$ to obtain segment $AD$. Connect $DB$. What is the minimum value of $DB$?", -"image_file_name": "7056237", -"image": [ -"math/52861191_290.png" -], -"solution": "\\textbf{Solution:} Connect DC, AB, and rotate segment BC clockwise around point B by $90^\\circ$ to get segment BF. Connect CF, DF,\\\\\n$\\therefore$ $\\triangle BCF$ is an isosceles right triangle,\\\\\n$\\therefore$ $CF=\\sqrt{BC^2+BF^2}=\\sqrt{8^2+8^2}=8\\sqrt{2}$;\\\\\n$\\because$ rotating segment AC around point A clockwise by $90^\\circ$ gets segment AD,\\\\\n$\\therefore$ $\\triangle ADC$ is an isosceles right triangle,\\\\\n$\\therefore$ $\\triangle ADC \\sim \\triangle CBF$,\\\\\n$\\therefore$ $\\frac{DC}{AC}=\\frac{CF}{AB}$,\\\\\n$\\because$ $\\angle BCF=\\angle ACD$,\\\\\n$\\therefore$ $\\angle DCF=\\angle ACB$,\\\\\n$\\therefore$ $\\triangle DCF \\sim \\triangle ACB$,\\\\\n$\\therefore$ $\\frac{AB}{DF}=\\frac{BC}{CF}$ thus $\\frac{4}{DF}=\\frac{8}{8\\sqrt{2}}$,\\\\\nSolving this, $DF=4\\sqrt{2}$;\\\\\nAs shown in the diagram, point D moves on circle F. If circle F intersects BF at point E, when point D moves to point E, the length of BD is the smallest,\\\\\n$\\therefore$ The minimal value is $BE=BF−EF=BF−DF=8−4\\sqrt{2}$,\\\\\n$\\therefore$ The minimal value of $DB$ is $\\boxed{8−4\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52861191_290.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52861188": { -"question": "As shown in the figure, a rectangle is divided into three congruent smaller rectangles. For each smaller rectangle to be similar to the original rectangle, what should the ratio $AD\\colon CD$ be?", -"image_file_name": "7056237", -"image": [ -"math/52861188_301.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$\\because$ a rectangle is divided into three congruent smaller rectangles,\\\\\n$\\therefore$ AB=3AE,\\\\\nLet AD=y, AE=x, then AB=CD=3x,\\\\\n$\\because$ each smaller rectangle is similar to the original rectangle,\\\\\n$\\therefore$ rectangle ABCD$\\sim$rectangle ADFE,\\\\\n$\\therefore$ $\\frac{AD}{AE}=\\frac{CD}{AD}$ i.e., $\\frac{y}{x}=\\frac{3x}{y}$,\\\\\nSolving this gives: $y=\\sqrt{3}x$\\\\\n$\\therefore$ $\\frac{AD}{CD}=\\frac{y}{3x}=\\frac{\\sqrt{3}x}{3x}=\\frac{1}{\\sqrt{3}}$, i.e., AD:CD=$\\boxed{1:\\sqrt{3}}$", -"solution_image": [ -"solution_images/52861188_300.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52861189": { -"question": "As shown in the figure, there is a right-angled triangular scrap ABC, where $\\angle BAC=90^\\circ$. Now, a rectangular strip DEFG is cut from it, where E and F are on BC, G is on AB, and D is on AC. If $BF=4.5\\text{cm}$, and $CE=2\\text{cm}$, then what is the length of the strip GF in centimeters?", -"image_file_name": "7056237", -"image": [ -"math/52861189_310.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle BAC=90^\\circ$,\\\\\n$\\therefore$ $\\angle AGD+\\angle ADG=90^\\circ$,\\\\\n$\\because$ rectangle GFED,\\\\\n$\\therefore$ $\\angle BFG=\\angle DEC=\\angle GFE=\\angle DEF=\\angle GDE=90^\\circ$, DG$\\parallel$BC, FG=DE,\\\\\n$\\therefore$ $\\angle ADG+\\angle CDE=90^\\circ$, $\\angle AGD=\\angle B$,\\\\\n$\\therefore$ $\\angle AGD=\\angle CDE$,\\\\\n$\\therefore$ $\\angle B=\\angle CDE$,\\\\\n$\\therefore$ $\\triangle BFG\\sim \\triangle DEC$,\\\\\n$\\therefore$ $\\frac{FG}{CE}=\\frac{BF}{DE}$\\\\\n$\\therefore$ FG$^{2}=BF\\cdot CE=4.5\\times 2=9$\\\\\nSolving for FG yields $\\boxed{3}$ (taking the positive value)", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52861190": { -"question": "As shown in the figure, in the circle $\\odot O$, the chord $AC=\\sqrt{15}$. When the minor arc $\\stackrel{\\frown}{AC}$ is folded along $AC$, it intersects the diameter $AB$ at $D$, where $DB=\\frac{1}{2}$. What is the length of the diameter $AB$?", -"image_file_name": "7056237", -"image": [ -"math/52861190_323.png" -], -"solution": "\\textbf{Solution:} Draw $CE\\perp AB$ at point $E$, and connect $CB$, $CD$,\n\\[\n\\because \\overset{\\frown}{AC}=\\overset{\\frown}{ADC},\n\\]\n\\[\n\\therefore \\angle B=\\angle A+\\angle ACD=\\angle CDB,\n\\]\n\\[\n\\therefore CD=CB,\n\\]\n\\[\n\\therefore DE=BE=\\frac{1}{2}BD=\\frac{1}{4};\n\\]\n\\[\n\\because AB \\text{ is the diameter},\n\\]\n\\[\n\\therefore \\angle ACB=\\angle BEC=90^\\circ,\n\\]\n\\[\n\\because \\angle B=\\angle B,\n\\]\n\\[\n\\therefore \\triangle ACE\\sim \\triangle CBE,\n\\]\n\\[\n\\therefore \\frac{CE}{AE}=\\frac{BE}{CE},\n\\]\n\\[\n\\therefore CE^2=AE\\cdot BE=\\frac{1}{4}AE;\n\\]\n\\[\n\\because AE^2=AC^2−AE^2=15−\\frac{1}{4}AE\n\\]\nSolving this, we find $AE=\\frac{15}{4},$\n\\[\n\\therefore AB=AE+BE=\\frac{15}{4}+\\frac{1}{4}=\\boxed{4}.\n\\]", -"solution_image": [ -"solution_images/52861190_320.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52808104": { -"question": "As shown in the figure, point $C$ is the midpoint of the semicircle, $AB$ is the diameter, and point $D$ is a point on the semicircle. $AC$ and $BD$ intersect at point $E$. If $AD=2$ and $BD=6$, what is the length of $AC$? What is the length of $CD$?", -"image_file_name": "7056237", -"image": [ -"math/52808104_330.png" -], -"solution": "\\textbf{Solution:} Since $AB$ is the diameter, it follows that $\\angle ADB = \\angle ACB = 90^\\circ$. Within $\\triangle ADB$, given AD = 2 and BD = 6, it follows $AB = \\sqrt{2^2 + 6^2} = 2\\sqrt{10}$. Since point $C$ is the midpoint of the semicircle, it follows that $\\angle CAB = 45^\\circ$. Therefore, $AB = \\sqrt{2}AC = \\sqrt{2}BC$, implying $AC = BC = 2\\sqrt{5}$. Also, since $\\angle DEA = \\angle CEB$ and $\\angle DAE = \\angle CBE$, it follows that $\\triangle BEC \\sim \\triangle AED$. Hence, $CE:DE = BE:AE = BC:AD = 2\\sqrt{5}:2$, which leads to $CE = \\sqrt{5}DE$ and $BE = \\sqrt{5}AE$. Since $BE = BD - DE$ and $AE = AC - CE$, we have $6 - DE = \\sqrt{5}(2\\sqrt{5} - CE) = \\sqrt{5}(2\\sqrt{5} - \\sqrt{5}DE)$. Solving this, we find $DE = 1$, thus $CE = \\sqrt{5}$ and $AE = 2\\sqrt{5} - \\sqrt{5} = \\sqrt{5}$. Since $\\angle DCA = \\angle DBA$ and $\\angle CED = \\angle BEA$, it follows that $\\triangle DEC \\sim \\triangle AEB$. Consequently, $DE:EA = CD:AB$, leading to $CD = \\frac{DE \\cdot AB}{EA} = \\frac{1 \\times 2\\sqrt{10}}{\\sqrt{5}} = 2\\sqrt{2}$. Therefore, the solutions are: $AC = \\boxed{2\\sqrt{5}}$ and $CD = \\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52808003": { -"question": "As shown in the figure, it is known that there are three squares arranged side by side with side lengths of $2$, $3$, and $5$ respectively. What is the area of the shaded region in the figure?", -"image_file_name": "7056237", -"image": [ -"math/52808003_340.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\n$\\because$AC=2, BC=3,\\\\\n$\\therefore$AB=AC+BC=2+3=5,\\\\\n$\\therefore$AB=EF,\\\\\nIn $\\triangle ABG$ and $\\triangle EFG$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle F=\\angle ABG\\\\\n\\angle FGE=\\angle AGB\\\\\nEF=AB\n\\end{array}\\right.$\\\\\n$\\therefore$$\\triangle ABG\\cong \\triangle EFG$(AAS),\\\\\n$\\therefore$FG=BG=$\\frac{1}{2}$BF=2.5;\\\\\n$\\because$CH$\\parallel$BG,\\\\\n$\\therefore$$\\triangle ACH\\sim \\triangle ABG$,\\\\\n$\\frac{AC}{AB}=\\frac{CH}{BG}$, that is $\\frac{2}{5}=\\frac{CH}{2.5}$\\\\\nSolving this: CH=1,\\\\\n$\\therefore$Area of trapezoid CBGH$=\\frac{(CH+BG)\\cdot BC}{2}=\\frac{3\\times (1+2.5)}{2}=\\frac{21}{4}$,\\\\\n$\\therefore$Area of the shaded region$=3^{2}-\\frac{21}{4}=\\boxed{\\frac{15}{4}}$.", -"solution_image": [ -"solution_images/52808003_340.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52796878": { -"question": " In $\\triangle ABC$, points D and E are on AB and AC respectively, and $DE \\parallel BC$. If $AD=2$, $AB=3$, and $DE=4$, what is the length of $BC$?", -"image_file_name": "7056237", -"image": [ -"math/52796878_360.png" -], -"solution": "\\textbf{Solution:} Since $DE \\parallel BC$, \\\\\nit follows that $\\angle ADE = \\angle ABC$, $\\angle AED = \\angle ACB$, \\\\\ntherefore, $\\triangle ADE \\sim \\triangle ABC$, \\\\\nthus, $\\frac{BC}{DE} = \\frac{AB}{AD}$, that is $\\frac{BC}{4} = \\frac{3}{2}$, \\\\\nhence, $BC = \\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52797163": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, $AB=2\\sqrt{10}$. Connect $AB$ and extend it to $C$, also connect $OC$. If it satisfies $OC^2=BC\\cdot AC$ and $\\tan\\alpha =3$, what are the coordinates of point $C$?", -"image_file_name": "7056237", -"image": [ -"math/52797163_376.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that\n\\[ OC^2 = BC \\cdot AC, \\]\nit follows that\n\\[ \\frac{OC}{BC} = \\frac{AC}{OC}, \\]\nand given that\n\\[ \\angle C = \\angle C, \\]\nit implies\n\\[ \\triangle OBC \\sim \\triangle AOC, \\]\ntherefore\n\\[ \\angle A = \\angle COB, \\]\nGiven that\n\\[ \\alpha + \\angle COB = 90^\\circ, \\quad \\angle A + \\angle ABO = 90^\\circ, \\]\nit follows that\n\\[ \\angle ABO = \\alpha, \\]\nGiven that\n\\[ \\tan \\alpha = 3, \\]\nit follows that\n\\[ \\tan \\angle ABO = \\frac{OA}{OB} = 3, \\]\ntherefore\n\\[ OA = 3OB, \\]\nGiven that\n\\[ AB = 2\\sqrt{10}, \\]\nby the Pythagorean theorem, we have\n\\[ OA^2 + OB^2 = AB^2, \\]\nwhich implies\n\\[ (3OB)^2 + OB^2 = (2\\sqrt{10})^2, \\]\nSolving this, we get\n\\[ OB = 2, \\]\ntherefore\n\\[ OA = 6, \\]\ntherefore\n\\[ \\tan \\angle A = \\frac{OB}{OA} = \\frac{1}{3}, \\]\nAs shown in the figure, draw $CD \\perp x$-axis at point $D$.\n\nGiven that\n\\[ \\tan \\alpha = 3, \\]\nlet $C(-m, 3m)$, with $m > 0$.\n\nTherefore\n\\[ AD = 6 + m, \\]\nGiven that\n\\[ \\tan \\angle A = \\frac{1}{3}, \\]\nit follows that\n\\[ \\frac{CD}{AD} = \\frac{1}{3}, \\]\nleading to\n\\[ \\frac{3m}{6+m} = \\frac{1}{3}, \\]\nSolving this, we get\n\\[ m = \\frac{3}{4}, \\]\nUpon checking, $m = \\frac{3}{4}$ is a solution of the original equation.\n\nTherefore\n\\[ -m = -\\frac{3}{4}, \\quad 3m = \\frac{9}{4}, \\]\nThus, the coordinates of point $C$ are\n\\[ \\boxed{\\left(-\\frac{3}{4}, \\frac{9}{4}\\right)}. \\]", -"solution_image": [ -"solution_images/52797163_3720.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52793595": { -"question": "As shown in the diagram, it is known that line $l_1 \\parallel l_2 \\parallel l_3$, and lines $m$ and $n$ intersect lines $l_1$, $l_2$, and $l_3$ at points A, B, C, D, E, and F, respectively. If $DE = 3$ and $DF = 8$, what is the value of $\\frac{BC}{AC}$?", -"image_file_name": "7056237", -"image": [ -"math/52793595_387.png" -], -"solution": "\\textbf{Solution:} Since $l_1 \\parallel l_2 \\parallel l_3$,\\\\\nit follows that $\\frac{EF}{DF} = \\frac{BC}{AC}$,\\\\\ngiven that $DE=3$ and $DF=8$,\\\\\nthus $\\frac{BC}{AC} = \\frac{8-3}{8} = \\boxed{\\frac{5}{8}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52797042": { -"question": "As shown in the figure, to measure the height of a flagpole, a comprehensive practice group designed the following plan: Use a 2.5m long bamboo pole as a measuring tool, move the bamboo pole to keep it parallel to the flagpole, so that the top ends of the bamboo pole and the flagpole cast shadows that exactly meet at the same point on the ground. At this moment, if the distance from the bamboo pole to this point is 5m, and the distance from the bamboo pole to the flagpole is 20m, what is the height of the flagpole in meters?", -"image_file_name": "7056237", -"image": [ -"math/52797042_390.png" -], -"solution": "\\textbf{Solution:} From the figure, we can see that,\\\\\nlet the height of the flagpole be $x$ meters,\\\\\n$\\because DE\\parallel BC$\\\\\n$\\therefore \\triangle ADE\\sim \\triangle ABC$\\\\\n$\\therefore \\frac{2.5}{5}=\\frac{x}{5+20}$\\\\\n$\\therefore x=\\boxed{12.5}$", -"solution_image": [ -"solution_images/52797042_390.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51434732": { -"question": "As shown in the figure, $AB \\parallel CE$, $\\angle ABC = 30^\\circ$, $\\angle BDE = 45^\\circ$, what is the measure of $\\angle DBC$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/51434732_234.png" -], -"solution": "\\textbf{Solution:} Since $AB\\parallel CE$, and $\\angle ABC=30^\\circ$,\\\\\nit follows that $\\angle ABC=\\angle BCE=30^\\circ$,\\\\\nsince $\\angle BDE=45^\\circ$,\\\\\nit implies that $\\angle DBC=\\angle BDE-\\angle BCE=45^\\circ-30^\\circ=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51434340": { -"question": "As shown in the figure, it is known that the line $l_{1} \\parallel l_{2}$, $\\angle A=125^\\circ$, $\\angle B=85^\\circ$, and $\\angle 1$ is $4^\\circ$ larger than $\\angle 2$. What is the degree measure of $\\angle 1$?", -"image_file_name": "7043711", -"image": [ -"math/51434340_240.png" -], -"solution": "\\textbf{Solution:} Extend AB to intersect the two parallel lines at C and D, \\\\\nsince $l_1 \\parallel l_2$ and $\\angle A=125^\\circ$, $\\angle B=85^\\circ$, \\\\\nit follows that $\\angle 4+\\angle 2=85^\\circ$ and $\\angle 1+\\angle 3=125^\\circ$, with $\\angle 3+\\angle 4=180^\\circ$, \\\\\nthus, $85^\\circ-\\angle 2+125^\\circ-\\angle 1=180^\\circ$, \\\\\ntherefore $\\angle 1+\\angle 2=30^\\circ$, \\\\\nsince $\\angle 1$ is $4^\\circ$ larger than $\\angle 2$, \\\\\nit follows that $\\angle 2=\\angle 1-4^\\circ$, \\\\\nhence, $2\\angle 1=34^\\circ$, \\\\\nthus, $\\angle 1=\\boxed{17^\\circ}$;", -"solution_image": [ -"solution_images/51434340_240.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51407576": { -"question": "As shown in the figure, $OC$ bisects $\\angle AOB$, and $\\angle BOC=22^\\circ$. What is the measure of $\\angle AOB$?", -"image_file_name": "7043711", -"image": [ -"math/51407576_254.png" -], -"solution": "\\textbf{Solution:} Since OC bisects $\\angle AOB$ and $\\angle BOC=22^\\circ$,\\\\\nit follows that $\\angle AOB =2\\angle BOC=44^\\circ$.\\\\\nTherefore, $\\angle AOB = \\boxed{44^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52732433": { -"question": "As shown in the figure, $\\angle AOB = 120^\\circ$, and $OC$ bisects $\\angle AOB$. If $\\angle COD = 20^\\circ$, what is the measure of $\\angle BOD$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/52732433_260.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOB=120^\\circ$ and OC bisects $\\angle AOB$.\\\\\nTherefore, $\\angle BOC= \\frac{1}{2}\\angle AOB=60^\\circ$.\\\\\nGiven that $\\angle COD=20^\\circ$,\\\\\nTherefore, $\\angle BOD=\\angle BOC -\\angle COD$ \\\\\n$=60^\\circ-20^\\circ$ \\\\\n$=\\boxed{40^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52916301": { -"question": "As shown in the figure, $AD = \\frac{1}{2}DB$, and $E$ is the midpoint of $BC$, with $BE = \\frac{1}{5}AC = 2\\, \\text{cm}$. How long is segment $DE$ in centimeters?", -"image_file_name": "7043711", -"image": [ -"math/52916301_272.png" -], -"solution": "\\textbf{Solution:} By the problem statement, we know $DB=\\frac{2}{3}AB$, $BE=EC=2\\text{cm}$, and $AC=10\\text{cm}$. \\\\\n$\\therefore$ $AB=AC-BC=6\\text{cm}$. \\\\\n$\\therefore$ $DB=\\frac{2}{3}AB=4\\text{cm}$. \\\\\n$\\therefore$ $DE=DB+BE=\\boxed{6}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52837558": { -"question": "As shown in the diagram, $P$ is a point on line segment $MN$, and $Q$ is the midpoint of line segment $PN$. If $MN = 10$ and $MP = 6$, what is the length of $MQ$?", -"image_file_name": "7043711", -"image": [ -"math/52837558_280.png" -], -"solution": "\\textbf{Solution:} Since $MN = 10$ and $MP = 6$, \\\\\nit follows that $NP = MN - MP = 4$, \\\\\nbecause point Q is the midpoint of NP, \\\\\nit follows that $PQ = QN = \\frac{1}{2} NP = 2$, \\\\\nthus $MQ = MP + PQ = 6 + 2 = \\boxed{8}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52795759": { -"question": "As shown in the figure, point O is on line AB, and ray OC bisects $\\angle AOD$. If $\\angle AOC = 35^\\circ$, then what is the measure of $\\angle BOD$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/52795759_290.png" -], -"solution": "\\textbf{Solution:} Since line OC bisects $\\angle$DOA, \\\\\n$\\therefore$ $\\angle$AOD = 2$\\angle$AOC, \\\\\nSince $\\angle$COA = $35^\\circ$, \\\\\n$\\therefore$ $\\angle$DOA = $70^\\circ$, \\\\\n$\\therefore$ $\\angle$BOD = $180^\\circ - 70^\\circ = \\boxed{110^\\circ}$,", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52794245": { -"question": "As shown in the figure, $O$ is a point on $AB$, $OD$ bisects $\\angle BOC$, $\\angle 1=20^\\circ$. What is the degree measure of $\\angle 2$? ", -"image_file_name": "7043711", -"image": [ -"math/52794245_300.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\angle 1=20^\\circ$,\\\\\n$\\therefore \\angle BOC=180^\\circ-\\angle 1=180^\\circ-20^\\circ=160^\\circ$,\\\\\n$\\because$ OD bisects $\\angle BOC$,\\\\\n$\\therefore \\angle 2=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52795983": { -"question": "As shown in the figure, point C is on line segment AB, point D is the midpoint of line segment AC, and point C is the one-fourth division point of line segment BD. If $CB = 2$, what is the length of line segment AB?", -"image_file_name": "7043711", -"image": [ -"math/52795983_311.png" -], -"solution": "\\textbf{Solution:} Since point D is the midpoint of segment AC, and point C is the one-fourth point of segment BD\\\\\n$\\therefore AD=BD=\\frac{1}{2}AB$, $BC=\\frac{1}{4}BD$,\\\\\n$\\therefore BC=\\frac{1}{8}AB$,\\\\\nSince $CB=2$,\\\\\n$\\therefore AB=\\boxed{16}$", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51284661": { -"question": "As shown in the figure, within $\\angle AOB$, $OD$ is the bisector of $\\angle BOC$, and $OE$ is the bisector of $\\angle AOC$. If $\\angle AOB=140^\\circ$, then what is the measure of $\\angle EOD$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/51284661_320.png" -], -"solution": "\\textbf{Solution:} Since OD is the bisector of $\\angle$BOC, and OE is the bisector of $\\angle$AOC, \\\\\ntherefore, $\\angle$DOC=$\\frac{1}{2}$$\\angle$BOC, $\\angle$EOC=$\\frac{1}{2}$$\\angle$AOC, \\\\\nthus, $\\angle$DOE=$\\angle$DOC+$\\angle$EOC=$\\frac{1}{2}$$\\angle$AOB, \\\\\nsince $\\angle$AOB=$140^\\circ$, \\\\\ntherefore, $\\angle$EOD=\\boxed{70^\\circ}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51284715": { -"question": "As shown in the figure, it is known that $OD$ bisects $\\angle AOC$, and $OE$ bisects $\\angle COB$. If $\\angle AOD = 20^\\circ$ and $\\angle EOB = 40^\\circ$, what is the measure of $\\angle AOB$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/51284715_330.png" -], -"solution": "\\textbf{Solution:} Since OD bisects $\\angle AOC$ and OE bisects $\\angle COB$, \\\\\n$\\therefore \\angle AOC = 2\\angle AOD$ and $\\angle COB = 2\\angle EOB$, \\\\\nSince $\\angle AOD = 20^\\circ$ and $\\angle EOB = 40^\\circ$. \\\\\n$\\therefore \\angle AOC = 2 \\times 20^\\circ = 40^\\circ$ and $\\angle BOC = 2 \\times 40^\\circ = 80^\\circ$, \\\\\n$\\therefore \\angle AOB = \\angle AOC + \\angle BOC = 40^\\circ + 80^\\circ = \\boxed{120^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53010644": { -"question": "As shown in the figure, $O$ is a point on the line $AB$, $\\angle COD$ is a right angle, $OE$ bisects $\\angle BOC$, $\\angle AOC=40^\\circ$, then what is the degree measure of $\\angle DOE$?", -"image_file_name": "7043711", -"image": [ -"math/53010644_340.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle AOC = 40^\\circ$,\\\\\n$\\therefore$ $\\angle BOC = 180^\\circ - \\angle AOC = 140^\\circ$,\\\\\n$\\because$ OE bisects $\\angle BOC$,\\\\\n$\\therefore$ $\\angle COE = \\angle BOE = 70^\\circ$,\\\\\n$\\because$ $\\angle COD$ is a right angle, that is $\\angle COD = 90^\\circ$,\\\\\n$\\therefore$ $\\angle DOE = \\angle COD - \\angle COE = \\boxed{20^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51379682": { -"question": "As shown in the figure, extend the line segment AB to C such that $BC = \\frac{1}{2}AB$. Let D be the midpoint of the line segment AC. If $DC = 3$, then what is the length of AB?", -"image_file_name": "7043711", -"image": [ -"math/51379682_351.png" -], -"solution": "\\textbf{Solution:}\n\nSince $D$ is the midpoint of $AC$, we have\n\n\\[AC = 2DC\\]\n\\[= 2 \\times 3\\]\n\\[= 6\\]\n\nAlso, since $BC = \\frac{1}{2}AB$ and $AC = AB + BC$, \n\n\\[\\therefore BC = \\frac{1}{3}AC\\]\n\\[= \\frac{1}{3} \\times 6\\]\n\\[= 2\\]\n\nFrom the relationship between the sums and differences of line segments, we have\n\n\\[AB = AC - BC\\]\n\\[= 6 - 2\\]\n\\[= AB = \\boxed{4}\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51508815": { -"question": "As shown in the figure, it is known that $\\angle AOB$ is a right angle, $OC$ is the bisector of $\\angle AOB$, and $\\angle AOD = 2\\angle BOD$. What is the measure of $\\angle COD$?", -"image_file_name": "7043711", -"image": [ -"math/51508815_360.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB$ is a right angle, and OC bisects $\\angle AOB$,\n\n$\\therefore$ $\\angle AOB=90^\\circ$, $\\angle AOC=\\angle BOC=45^\\circ$,\n\nSince $\\angle AOD=2\\angle BOD$, and $\\angle AOD+\\angle BOD=90^\\circ$,\n\n$\\therefore$ $\\angle DOB=30^\\circ$,\n\n$\\therefore$ $\\angle COD=\\angle BOC−\\angle DOB=45^\\circ−30^\\circ=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52793014": { -"question": "As shown in the diagram, a pair of set squares is overlaid. Given that $\\angle OAB=\\angle OCD=90^\\circ$, $\\angle AOB=45^\\circ$, and $\\angle COD=60^\\circ$, with $OB$ bisecting $\\angle COD$, what is the measurement of $\\angle AOC$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/52793014_370.png" -], -"solution": "\\textbf{Solution:} Given that OB bisects $\\angle$COD and $\\angle$COD = 60°,\\\\\nit follows that $\\angle$BOC = 30°,\\\\\nand since $\\angle$AOB = 45°,\\\\\nit implies $\\angle$AOC = $\\angle$AOB - $\\angle$BOC = 45° - 30° = \\boxed{15^\\circ}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52948987": { -"question": "As shown in the figure, points $B$ and $C$ divide the line segment $AD$ into three parts in the ratio $2:5:3$, with $M$ being the midpoint of $AD$. Given that $BM=6\\,\\text{cm}$, what is the length of $CM$ in centimeters?", -"image_file_name": "7043711", -"image": [ -"math/52948987_388.png" -], -"solution": "Solution: Let AB=2x cm, BC=5x cm, CD=3x cm,\\\\\n$\\therefore$AD=AB+BC+CD=10x cm,\\\\\n$\\because$ M is the midpoint of AD,\\\\\n$\\therefore$AM=MD= $\\frac{1}{2}$ AD=5x cm,\\\\\n$\\therefore$BM=AM−AB=5x−2x=3x cm,\\\\\n$\\because$BM=6 cm,\\\\\n$\\therefore$x=2 cm,\\\\\nhence CM=BC−BM=5×2−6=\\boxed{4}cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52579991": { -"question": "As shown in the figure, $a\\parallel b$, $\\angle 1=\\angle 2$, $\\angle 3=40^\\circ$, then what is the degree measure of $\\angle 4$?", -"image_file_name": "7043711", -"image": [ -"math/52579991_394.png" -], -"solution": "\\textbf{Solution:} Given that $a \\parallel b$,\\\\\nit follows that $\\angle 1 + \\angle 2 + \\angle 3 = 180^\\circ$,\\\\\nsince $\\angle 3 = 40^\\circ$,\\\\\nthen $\\angle 1 + \\angle 2 = 180^\\circ - 40^\\circ = 140^\\circ$,\\\\\ngiven that $\\angle 1 = \\angle 2$,\\\\\nthus $\\angle 2 = 70^\\circ$,\\\\\nsince $a \\parallel b$,\\\\\nit concludes that $\\angle 4 = \\angle 2 = \\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55452505": { -"question": "As shown in the figure, there is a triangular piece $ABC$, folded along the median $AD$ on the side $BC$, such that point $C$ falls on point $E$, and $AE$ intersects $BC$ at point $F$. If $AD$ is perpendicular to $AB$, and $AB=2$, $AD=3$, what is the length of $AF$?", -"image_file_name": "7056495", -"image": [ -"math/55452505_250.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $CG \\perp AD$ at point $G$, and draw $DM \\perp AD$, $DN \\perp AD$ with the perpendicular foot at $D$. Since $AD$ is the median of $\\triangle ABC$, it is easy to prove $\\triangle ABD \\cong \\triangle GCD$. Therefore, $CG=AB=2$, $GD=AD=3$, hence $AC=\\sqrt{AG^{2}+CG^{2}}=\\sqrt{6^{2}+2^{2}}=2\\sqrt{10}$. Since $CG \\perp AD$ and $DM \\perp AD$, it follows that $DM \\parallel CG$, therefore $\\triangle AMD \\sim \\triangle ACG$. Since $GD=AD$, it follows that $AM=MC=\\frac{1}{2}AC=\\sqrt{10}$, $DM=\\frac{1}{2}CG=1$. Folding makes it easy to prove $\\triangle AMD \\cong \\triangle AND$, therefore $AN=AM=\\sqrt{10}$, $DN=DM=1$. Since $AD \\perp AB$, $DN \\perp AD$, it follows that $AB \\parallel DN$, therefore $\\frac{AF}{FN}=\\frac{AB}{DN}=\\frac{2}{1}$, hence $AF=\\frac{2}{3}AN=\\frac{2\\sqrt{10}}{3}$. Therefore, the answer is: $\\boxed{\\frac{2\\sqrt{10}}{3}}$.", -"solution_image": [ -"solution_images/55452505_250.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51213318": { -"question": "As shown in the figure, in $\\triangle ABC$, point D is on side $AB$, and $\\angle ACD = \\angle ABC$. If $AC = \\sqrt{3}$ and $AD = 1$, what is the length of $DB$?", -"image_file_name": "7056495", -"image": [ -"math/51213318_266.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACD = \\angle ABC$ and $\\angle A = \\angle A$,\\\\\nit follows that $\\triangle ABC \\sim \\triangle ACD$,\\\\\nhence, $\\frac{AD}{AC} = \\frac{AC}{AB}$,\\\\\ngiven that AC = $\\sqrt{3}$ and AD = 1,\\\\\nit implies that $\\frac{1}{\\sqrt{3}} = \\frac{\\sqrt{3}}{AB}$,\\\\\ntherefore, AB = 3,\\\\\nthus, BD = AB - AD = 3 - 1 = \\boxed{2}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212855": { -"question": "As shown in the figure, in rectangle $ABCD$, $BD$ is the diagonal. The rectangle $ABCD$ is folded along the lines containing $BE$ and $BF$, making point $A$ coincide with point $M$ on $BD$, and point $C$ with point $N$ on $BD$, then $EF$ is drawn. Given that $AB=3$ and $BC=4$, what is the length of $EF$?", -"image_file_name": "7056495", -"image": [ -"math/51212855_282.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle, \\\\\n$\\therefore$AB=CD=3, AD=BC=4, $\\angle$A=$\\angle$C=$\\angle$EDF=90$^\\circ$,\\\\\n$\\therefore$BD=$\\sqrt{AB^2+AD^2}=\\sqrt{3^2+4^2}=5$,\\\\\nSince rectangle ABCD is folded along the straight line containing BE, making point A fall on point M on BD,\\\\\n$\\therefore$AE=EM, $\\angle$A=$\\angle$BME=90$^\\circ$,\\\\\n$\\therefore$$\\angle$EMD=90$^\\circ$,\\\\\nSince $\\angle$EDM=$\\angle$ADB,\\\\\n$\\therefore$$\\triangle EDM\\sim \\triangle BDA$,\\\\\n$\\therefore$$\\frac{ED}{BD}=\\frac{EM}{AB}$,\\\\\nLet DE=x, then AE=EM=4−x,\\\\\n$\\therefore$$\\frac{x}{5}=\\frac{4−x}{3}$,\\\\\nSolving for x, we get x=$\\frac{5}{2}$,\\\\\n$\\therefore$DE=$\\frac{5}{2}$,\\\\\nSimilarly, $\\triangle DNF\\sim \\triangle DCB$,\\\\\n$\\therefore$$\\frac{DF}{BD}=\\frac{NF}{BC}$,\\\\\nLet DF=y, then CF=NF=3−y,\\\\\n$\\therefore$$\\frac{y}{5}=\\frac{3−y}{4}$,\\\\\nSolving for y, we get y=$\\frac{5}{3}$,\\\\\n$\\therefore$DF=$\\frac{5}{3}$,\\\\\n$\\therefore$EF=$\\sqrt{DE^2+DF^2}=\\sqrt{(\\frac{5}{2})^2+(\\frac{5}{3})^2}=\\boxed{\\frac{5\\sqrt{13}}{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51368327": { -"question": "In parallelogram $ABCD$, $E$ is the trisection point of $AD$ close to $D$. Connect $BE$ and intersect $AC$ at point $F$. Given $AC = 12$, what is the length of $AF$?", -"image_file_name": "7056495", -"image": [ -"math/51368327_290.png" -], -"solution": "\\textbf{Solution:} Given in $\\square ABCD$, where AD = BC and AD$\\parallel$BC,\\\\\nsince E is the trisection point of AD,\\\\\nit follows that AE = $\\frac{2}{3}$ AD = $\\frac{2}{3}$ BC,\\\\\nsince AD$\\parallel$BC,\\\\\nit implies $\\triangle AEF\\sim \\triangle CBF$,\\\\\ntherefore, $\\frac{AF}{FC}=\\frac{AE}{BC}=\\frac{2}{3}$,\\\\\ngiven AC = 12,\\\\\nthus, AF = $\\frac{2}{5}\\times 12=\\boxed{\\frac{24}{5}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368292": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ and $F$ are the midpoints of the sides $CD$ and $AD$ respectively, $CF$ intersects $EA$ and $EB$ at points $M$ and $N$ respectively. Given $AB=8$ and $BC=12$, what is the length of $MN$?", -"image_file_name": "7056495", -"image": [ -"math/51368292_300.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, extend BE and AD to meet at point Q. Since quadrilateral ABCD is a rectangle, $BC=12$, thus $\\angle BAD=90^\\circ$, $AD=BC=12$, $AD\\parallel BC$. Since F is the midpoint of AD, it follows that $AF=DF=6$. In $\\triangle DCF$, by the Pythagorean theorem, we get: $CF=\\sqrt{DF^2+DC^2}=\\sqrt{6^2+8^2}=10$. Since $AD\\parallel BC$, it follows that $\\angle Q=\\angle EBC$. Since E is the midpoint of CD and $CD=8$, it follows that $CE=DE=4$. In $\\triangle DQE$ and $\\triangle CBE$, we have $\\begin{cases}\n\\angle DEQ=\\angle BEC\\\\ \n\\angle Q=\\angle EBC\\\\ \nDE=CE\n\\end{cases}$, thus $\\triangle DQE\\cong \\triangle CBE$ (AAS), hence $DQ=BC=12$, that is $QF=12+6=18$. Since $AD\\parallel BC$, it follows that $\\triangle QNF\\sim \\triangle BNC$, hence $\\frac{FN}{CN}=\\frac{QF}{BC}=\\frac{18}{12}=\\frac{3}{2}$. Since $CF=10$, we get $CN=4$, $FN=6$. As illustrated, extend CF and BA to meet at W. Since $WB\\parallel CD$, it follows that $\\angle W=\\angle DCF$. In $\\triangle WAF$ and $\\triangle CDF$, we have $\\begin{cases}\n\\angle W=\\angle DCF\\\\ \nAF=DF\\\\ \n\\angle AFW=\\angle CFD\n\\end{cases}$, thus $\\triangle WAF\\cong \\triangle CDF$ (AAS), hence $CD=AW=8$, $BW=16$, $CF=FW=10$. Because $AB\\parallel CD$, it follows that $\\triangle CME\\sim \\triangle WMA$, hence $\\frac{CM}{MW}=\\frac{CE}{AW}$, solving this we get: $CM=\\frac{20}{3}$, hence $MN=CM-CN=\\frac{20}{3}-4=\\boxed{\\frac{8}{3}}$.", -"solution_image": [ -"solution_images/51368292_300.png", -"solution_images/51368292_3021.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368294": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AB \\parallel CD$, $\\angle B = 90^\\circ$, $AB = 1$, $CD = 2$, $BC = m$. Point $P$ is a moving point on side $BC$. If $\\triangle PAB$ is similar to $\\triangle PCD$, and there are exactly two points $P$ that satisfy this condition, what is the value of $m$?", -"image_file_name": "7056495", -"image": [ -"math/51368294_310.png" -], -"solution": "\\textbf{Solution}: When $\\angle BAP = \\angle CPD$, then $\\triangle PAB \\sim \\triangle PDC$,\\\\\n$\\therefore \\frac{AB}{DC} = \\frac{BP}{PC}$, that is, $\\frac{1}{2} = \\frac{x}{m-x}$,\\\\\n$\\therefore x = \\frac{m}{3}$;\\\\\nWhen $\\angle BAP = \\angle CPD$, then $\\triangle PAB \\sim \\triangle DPC$,\\\\\n$\\therefore \\frac{AB}{CP} = \\frac{BP}{CD}$, that is, $\\frac{1}{m-x} = \\frac{x}{2}$,\\\\\n$\\therefore x^2 - mx + 2 = 0$,\\\\\n$\\because$ there are exactly two points P that satisfy the condition,\\\\\n$\\therefore$ the value of $x$ from (1) is a solution in (2), $\\left(\\frac{m}{3}\\right)^2 - m \\times \\frac{m}{3} + 2 = 0$, yielding $m = 3$ or $-3$ (discard);\\\\\nEquation in (2) has two equal real roots,\\\\\n$\\therefore \\Delta = m^2 - 4 \\times 2 = 0$, yielding $m = 2\\sqrt{2}$ or $-2\\sqrt{2}$ (discard).\\\\\nHence, the answer is: $m = \\boxed{3}$ or $\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368290": { -"question": "As shown in the figure, in parallelogram $ABCD$, point $E$ is on side $BC$, and $AE$ intersects diagonal $BD$ at point $F$. If $BE:BC=2:3$, then what is the value of $\\frac{EF}{AE}$?", -"image_file_name": "7056495", -"image": [ -"math/51368290_321.png" -], -"solution": "\\textbf{Solution}: Since quadrilateral ABCD is a parallelogram, \\\\\ntherefore BC$\\parallel$AD and BC=AD, \\\\\ntherefore $\\frac{BE}{BC} = \\frac{BE}{AD}$, $\\triangle BEF\\sim \\triangle DAF$, \\\\\ntherefore $\\frac{BE}{AD}=\\frac{BF}{FD}=\\frac{EF}{AF}=\\frac{2}{3}$, \\\\\ntherefore $AF=\\frac{3}{2}EF$, \\\\\ntherefore $AE=AF+EF=\\frac{5}{2}EF$, \\\\\ntherefore $\\frac{EF}{AE}=\\boxed{\\frac{2}{5}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368291": { -"question": "As shown in the figure, $A$, $B$, $C$, and $D$ are four points on the circle $\\odot O$. $AB=AC$, $AD$ intersects $BC$ at point $E$, $AE=4$, and $ED=6$. What is the length of $AC$?", -"image_file_name": "7056495", -"image": [ -"math/51368291_330.png" -], -"solution": "\\[ \\textbf{Solution:} \\text{Since } AB=AC, \\]\n\\[ \\therefore \\angle ABE=\\angle ACE, \\]\n\\[ \\text{Since } \\angle ACE=\\angle ADB, \\]\n\\[ \\therefore \\angle ABE=\\angle ADB, \\]\n\\[ \\text{Since } \\angle BAE=\\angle DAB, \\]\n\\[ \\therefore \\triangle ABE\\sim \\triangle ADB, \\]\n\\[ \\therefore \\frac{AB}{AD}=\\frac{AE}{AB}, \\]\n\\[ \\text{Thus, } AB^2=AD\\cdot AE, \\]\n\\[ \\text{Since } AE=4, ED=6, \\]\n\\[ \\therefore AD=10, \\]\n\\[ \\therefore AB=\\sqrt{AD\\cdot AE}=\\sqrt{10\\times 4}=2\\sqrt{10}, \\]\n\\[ \\therefore AC=AB=2\\sqrt{10}, \\]\n\\[ \\text{Hence, the answer is: } AC=\\boxed{2\\sqrt{10}}. \\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368178": { -"question": "As shown in the figure, two lines are intersected by three parallel lines, with $DE = 4$, $EF = 6$, and $AB = 2$. What is the value of $AC$?", -"image_file_name": "7056495", -"image": [ -"math/51368178_340.png" -], -"solution": "\\textbf{Solution:} Given: $l_1 \\parallel l_2$,\\\\\nTherefore, $\\frac{DE}{EF}=\\frac{AB}{BC}$,\\\\\nTherefore, $\\frac{4}{6}=\\frac{2}{BC}$,\\\\\nTherefore, $BC=3$,\\\\\nTherefore, $AC=AB+BC=2+3=\\boxed{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51367426": { -"question": "As shown in the figure, the side length of square $ABCD$ is $12$, and the radius of $\\odot B$ is $6$. Point $P$ is a moving point on $\\odot B$. What is the minimum value of $PD + \\frac{1}{2}PC$?", -"image_file_name": "7056495", -"image": [ -"math/51367426_351.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, take $BE=3$ on $BC$ and connect $BP$, $PE$,\n\n$\\because$ the side length of square $ABCD$ is 12 and the radius of $\\odot B$ is 6,\n\n$\\therefore$ $BC=12=CD$, $BP=6$, $EC=9$,\n\n$\\because$ $\\frac{BP}{BC}=\\frac{1}{2}=\\frac{BE}{BP}$, and $\\angle PBE=\\angle PBC$,\n\n$\\therefore$ $\\triangle PBE \\sim \\triangle CBP$,\n\n$\\therefore$ $\\frac{BE}{BP}=\\frac{PE}{PC}=\\frac{1}{2}$,\n\n$\\therefore$ $PE=\\frac{1}{2}PC$,\n\n$\\therefore$ $PD+\\frac{1}{2}PC=PD+PE$,\n\n$\\therefore$ when points $D$, $P$, and $E$ are collinear, $PD+PE$ has the minimum value, that is, $PD+\\frac{1}{2}PC$ has the minimum value,\n\n$\\therefore$ the minimum value of $PD+\\frac{1}{2}PC$ is $DE=\\sqrt{DC^2+CE^2}=\\boxed{15}$,", -"solution_image": [ -"solution_images/51367426_350.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51367394": { -"question": "As shown in the figure, point $P$ is a point on the bisector $OC$ of $\\angle MON$, with $P$ as the vertex, the sides of $\\angle APB$ intersect rays $OM$ and $ON$ at points $A$ and $B$, respectively. If $\\angle APB$ always satisfies $OA \\cdot OB = OP^2$ while rotating around point $P$, we call $\\angle APB$ the associated angle of $\\angle MON$. If $\\angle MON = 50^\\circ$ and $\\angle APB$ is the associated angle of $\\angle MON$, what is the degree measure of $\\angle APB$?", -"image_file_name": "7056495", -"image": [ -"math/51367394_3618.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $OA \\cdot OB = OP^{2}$, \\\\\nit follows that $\\frac{OB}{OP} = \\frac{OP}{OA}$, \\\\\nSince $OP$ bisects $\\angle MON$, \\\\\nit follows that $\\angle AOP = \\angle BOP$, \\\\\nthus, $\\triangle AOP \\sim \\triangle POB$, \\\\\ntherefore, $\\angle OPA = \\angle OBP$, \\\\\nIn $\\triangle OBP$, $\\angle BOP = \\frac{1}{2}\\angle MON = 25^\\circ$, \\\\\nthus, $\\angle OBP + \\angle OPB = 180^\\circ - 25^\\circ = 155^\\circ$, \\\\\nhence, $\\angle OPA + \\angle OPB = 155^\\circ$, \\\\\nwhich means $\\angle APB = \\boxed{155^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51367392": { -"question": "As the figure shows, $AD$ is the median of $\\triangle ABC$, and $E$ is a point on $AD$ with $DE=2AE$. The extension of $CE$ intersects $AB$ at point $F$. If $AF=1.6\\text{cm}$, then what is the length of $AB$ in $\\text{cm}$?", -"image_file_name": "7056495", -"image": [ -"math/51367392_379.png" -], -"solution": "\\textbf{Solution:} Let DM be drawn parallel to CF and intersect AB at M,\\\\\nsince $DM\\parallel CF$,\\\\\nthen $\\frac{BD}{DC}=\\frac{BM}{MF}$,\\\\\nsince AD is the median of $\\triangle ABC$,\\\\\nthen D is the midpoint of BC,\\\\\nthus BD=DC,\\\\\nthus $\\frac{BD}{DC}=\\frac{BM}{MF}=1$,\\\\\nthus BM=MF,\\\\\nsince EF$\\parallel$MD,\\\\\nthen $\\triangle AFE\\sim \\triangle AMD$,\\\\\nalso since DE=2AE,\\\\\nthen $\\frac{AF}{AM}=\\frac{AE}{AD}=\\frac{AE}{DE+AE}=\\frac{AE}{2AE+AE}=\\frac{1}{3}$,\\\\\nthus AM=3AF,\\\\\nsince AM=AF+MF=3AF,\\\\\nthen MF=2AF,\\\\\nsince BM=MF,\\\\\nthen BM=MF=2AF,\\\\\nthus AB=AF+MF+BF=5AF,\\\\\nsince AF=1.6,\\\\\nthus AB=$5\\times 1.6$=\\boxed{8},", -"solution_image": [ -"solution_images/51367392_370.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51367391": { -"question": "As shown in the figure, the line $DE$ parallel to $BC$ divides $\\triangle ABC$ into two parts with an area ratio of 1$\\colon$4. What is the value of $\\frac{AD}{AB}$?", -"image_file_name": "7056495", -"image": [ -"math/51367391_384.png" -], -"solution": "\\textbf{Solution:} Given that line DE divides $\\triangle ABC$ into two parts with an area ratio of 1:4,\\\\\nit follows that $S_{\\triangle ADE} = \\frac{1}{5}S_{\\triangle ABC}$,\\\\\nSince DE$\\parallel$BC,\\\\\nit implies that $\\triangle ADE \\sim \\triangle ABC$,\\\\\nthus $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}}=\\left(\\frac{AD}{AB}\\right)^2=\\frac{1}{5}$,\\\\\ntherefore $\\frac{AD}{AB}=\\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322496": { -"question": "As shown in the figure, in $\\triangle ABC$, D and E are points on sides BC and AC, respectively, and AD intersects BE at point F. If E is the midpoint of AC, and the ratio of BD to DC is 2:3, what is the value of AF: FD?", -"image_file_name": "7056495", -"image": [ -"math/51322496_390.png" -], -"solution": "\\textbf{Solution:} Let line DH be drawn through point D such that DH $\\parallel$ AC, intersecting BE at H.\\\\\n$\\therefore \\triangle DHF\\sim \\triangle AEF$, $\\triangle BDH\\sim \\triangle BCE$,\\\\\n$\\therefore \\frac{DH}{AE}=\\frac{DF}{AF}$, $\\frac{DH}{CE}=\\frac{BD}{BC}$,\\\\\n$\\because$ If E is the midpoint of AC,\\\\\n$\\therefore$ CE=AE,\\\\\n$\\therefore \\frac{DF}{AF}=\\frac{BD}{BC}$,\\\\\n$\\because$ The ratio BD: DC=2: 3,\\\\\n$\\therefore$ The ratio BD: BC=2: 5,\\\\\n$\\therefore$ The ratio DF: AF=2: 5,\\\\\n$\\therefore$ The ratio AF: FD=$\\boxed{\\frac{5}{2}}$.", -"solution_image": [ -"solution_images/51322496_390.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322975": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=10$ and $AD\\perp BC$ at point $D$, $AD=8$. If point $E$ is the centroid of $\\triangle ABC$, and point $F$ is the centroid of $\\triangle ACD$, then what is the area of $\\triangle AEF$?", -"image_file_name": "7056495", -"image": [ -"math/51322975_400.png" -], -"solution": "Solution:As shown in the figure, extend AF to meet BC at point M, \\\\\n$\\because AB=AC=10, AD\\perp BC, AD=8$, \\\\\n$\\therefore CD=BD=\\sqrt{AB^2-AD^2}=6$, \\\\\n$\\because$ point E is the centroid of $\\triangle ABC$, point F is the centroid of $\\triangle ACD$, \\\\\n$\\therefore \\frac{AE}{DE}=2, \\frac{AF}{FM}=2, DM=\\frac{1}{2}CD=3$, \\\\\n$\\therefore \\frac{AE}{AD}=\\frac{AF}{AM}=\\frac{2}{3}, AE=\\frac{2}{3}AD=\\frac{16}{3}$, \\\\\nFurthermore, $\\because \\angle EAF=\\angle DAM$, \\\\\n$\\therefore \\triangle AEF\\sim \\triangle ADM$, \\\\\n$\\therefore \\frac{EF}{DM}=\\frac{AE}{AD}=\\frac{2}{3}, \\angle AEF=\\angle ADM=90^\\circ$, \\\\\n$\\therefore \\frac{EF}{3}=\\frac{2}{3}$, \\\\\nSolving gives $EF=2$, \\\\\nHence, the area of $\\triangle AEF$ is $\\frac{1}{2}AE\\cdot EF=\\frac{1}{2}\\times \\frac{16}{3}\\times 2=\\boxed{\\frac{16}{3}}$.", -"solution_image": [ -"solution_images/51322975_400.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322498": { -"question": "As shown in the figure, the sidelength of square $ABCD$ is $4$. Let the point $E$ be a moving point on side $AD$, and the point $F$ be on side $CD$ with the constraint that the length of segment $EF$ is $4$. Let the point $G$ be the midpoint of segment $EF$. Connecting $BG$ and $CG$, what is the minimum value of $BG+\\frac{1}{2}CG$?", -"image_file_name": "7056495", -"image": [ -"math/51322498_411.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, \\\\\nin right triangle $\\triangle DEF$, where $G$ is the midpoint of $EF$, \\\\\n$\\therefore DG = \\frac{1}{2}EF = 2$, \\\\\n$\\therefore$ point $G$ moves on a circle with $D$ as the center and 2 as the radius, \\\\\nCut $DI = 1$ on $CD$, and connect $GI$, \\\\\n$\\therefore \\frac{DI}{DG} = \\frac{DG}{CD} = \\frac{1}{2}$, \\\\\n$\\therefore \\angle GDI = \\angle CDG$, \\\\\n$\\therefore \\triangle GDI \\sim \\triangle CDG$, \\\\\n$\\therefore \\frac{IG}{CG} = \\frac{DI}{DG} = \\frac{1}{2}$, \\\\\n$\\therefore IG = \\frac{1}{2}CG$, \\\\\n$\\therefore BG + \\frac{1}{2}CG = BG + IG \\geq BI$, \\\\\n$\\therefore$ when $B$, $G$, and $I$ are collinear, $BG + \\frac{1}{2}CG$ is minimized $=$ $BI$, \\\\\nIn right $\\triangle BCI$, where $CI = 3$ and $BC = 4$, \\\\\n$\\therefore BI = \\boxed{5}$.", -"solution_image": [ -"solution_images/51322498_410.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322836": { -"question": "Arrange 2020 squares with side length 1 as shown in the figure. The points A, $A_{1}$, $A_{2}$, $A_{3}$, \\ldots, $A_{2020}$ and points M, $M_{1}$, $M_{2}$, \\ldots, $M_{2019}$ are the vertices of the squares. The lines connecting AM$_{1}$, AM$_{2}$, AM$_{3}$, \\ldots, AM$_{2019}$ intersect the sides of the squares $A_{1}M$, $A_{2}M_{1}$, $A_{3}M_{2}$, \\ldots, $A_{2019}M_{2018}$ at the points $N_{1}$, $N_{2}$, $N_{3}$, \\ldots, $N_{2019}$, respectively. The area of the quadrilateral $M_{1}N_{1}A_{1}A_{2}$ is denoted as $S_{1}$, the area of the quadrilateral $M_{2}N_{2}A_{2}A_{3}$ is denoted as $S_{2}$, \\ldots, then what is the area of $S_{2019}$?", -"image_file_name": "7056495", -"image": [ -"math/51322836_420.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, assume the upper left vertex of the leftmost square is denoted as O.\\\\\n$\\because$ The 2019 squares, each with a side length of 1, are arranged as illustrated.\\\\\n$\\therefore$ OA$\\parallel$MA$_{1}$$\\parallel$M$_{1}$A$_{2}$$\\parallel$M$_{2}$A$_{3}$$\\parallel$…$\\parallel$M$_{2018}$A$_{2019}$.\\\\\n$\\therefore$ $\\triangle$M$_{1}$MN$_{1}$$\\sim$$\\triangle$M$_{1}$OA.\\\\\n$\\therefore$ $\\frac{MM_{1}}{OM_{1}}=\\frac{MN_{1}}{OA}=\\frac{1}{2}$.\\\\\n$\\therefore$MN$_{1}$=$\\frac{1}{2}$,\\\\\n$\\therefore$The area of quadrilateral M$_{1}$N$_{1}$A$_{1}$A$_{2}$, S$_{1}$=$1-\\frac{1}{2}\\times1\\times\\frac{1}{2}=\\frac{3}{4}$;\\\\\nSimilarly, it follows that: $ \\frac{M_{1}M_{2}}{OM_{2}}=\\frac{M_{1}N_{2}}{OA}=\\frac{1}{3}$.\\\\\n$\\therefore$The area of quadrilateral M$_{2}$N$_{2}$A$_{2}$A$_{3}$, S$_{2}$=$1-\\frac{1}{2}\\times1\\times\\frac{1}{3}=\\frac{5}{6}$;\\\\\n…\\\\\n$\\therefore$The area of quadrilateral MnNnAnAn$_{+1}$, Sn=$1-\\frac{1}{2(n+1)}=\\frac{2n+1}{2n+2}$.\\\\\n$\\therefore$S$_{2019}$=$\\boxed{\\frac{4039}{4040}}$;", -"solution_image": [ -"solution_images/51322836_420.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322868": { -"question": "As shown in the figure, in $\\triangle ABC$, $BC=120$, the height $AD=60$, and square $EFGH$ has one side on $BC$, with points $E$, $F$ respectively on $AB$, $AC$, and $AD$ intersects $EF$ at point $N$. What is the length of $AN$?", -"image_file_name": "7056495", -"image": [ -"math/51322868_430.png" -], -"solution": "\\textbf{Solution:} Let the side length EF=EH=x of the square EFGH, \\\\\n$\\because$ EFGH is a square, \\\\\n$\\therefore$ $\\angle$HEF=$\\angle$EHG=90$^\\circ$, EF$\\parallel$BC, \\\\\n$\\therefore$ $\\triangle$AEF$\\sim$ $\\triangle$ABC, \\\\\n$\\because$ AD is the altitude of $\\triangle$ABC, \\\\\n$\\therefore$ $\\angle$HDN=90$^\\circ$, \\\\\n$\\therefore$ the quadrilateral EHDN is a rectangle, \\\\\n$\\therefore$ DN=EH=x, \\\\\n$\\because$ $\\triangle$AEF$\\sim$ $\\triangle$ABC, \\\\\n$\\therefore$ $\\frac{AN}{AD}=\\frac{EF}{BC}$, \\\\\n$\\because$ BC=120, AD=60, \\\\\n$\\therefore$ AN=60−x, \\\\\n$\\therefore$ $\\frac{60−x}{60}=\\frac{x}{120}$, \\\\\nSolving for x, we get: x=40, \\\\\n$\\therefore$ AN=60−x=60−40=\\boxed{20}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322658": { -"question": "As shown in the figure, the right triangle $\\triangle ABC$ has $\\angle ACB=90^\\circ$, with $AC=BC=3$. A square $CDEF$ with $C$ as the vertex (the four vertices $C$, $D$, $E$, and $F$ are arranged counterclockwise) can freely rotate around point $C$, and $CD=2$. Connect $AF$ and $BD$. During the rotation of square $CDEF$, what is the minimum value of $BD+\\frac{2}{3}AD$?", -"image_file_name": "7056495", -"image": [ -"math/51322658_441.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, take a point \\(M\\) on \\(AC\\) such that \\(CM=\\frac{4}{3}\\). Connect \\(DM\\) and \\(AD\\).\\\\\n\\(\\because\\) \\(CD=2\\), \\(CM=\\frac{4}{3}\\), \\(CA=3\\),\\\\\n\\(\\therefore\\) \\(CD^{2}=CM\\cdot CA\\),\\\\\n\\(\\therefore\\) \\(\\frac{CD}{CA}=\\frac{CM}{CD}\\),\\\\\n\\(\\because\\) \\(\\angle DCM=\\angle ACD\\),\\\\\n\\(\\therefore\\) \\(\\triangle DCM \\sim \\triangle ACD\\),\\\\\n\\(\\therefore\\) \\(\\frac{DM}{AD}=\\frac{CD}{AC}=\\frac{2}{3}\\),\\\\\n\\(\\therefore\\) \\(DM=\\frac{2}{3}AD\\),\\\\\n\\(\\therefore\\) \\(BD+\\frac{2}{3}AD=BD+DM\\),\\\\\n\\(\\therefore\\) when \\(B\\), \\(D\\), \\(M\\) are collinear, the value of \\(BD+\\frac{2}{3}AD\\) is minimized,\\\\\n\\(\\therefore\\) The minimum value = \\(\\sqrt{CB^{2}+CM^{2}}=\\sqrt{3^{2}+(\\frac{4}{3})^{2}}=\\boxed{\\frac{\\sqrt{97}}{3}}\\).", -"solution_image": [ -"solution_images/51322658_441.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52019294": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle with a side length of $1$. By folding $\\triangle ABC$ along the line $AC$, we obtain $\\triangle AB^{\\prime}C$. Then, by translating $\\triangle AB^{\\prime}C$ along the line $AC$, we obtain $\\triangle A^{\\prime}B^{\\prime\\prime}C^{\\prime}$. What is the minimum perimeter of $\\triangle BB^{\\prime\\prime}C^{\\prime}$?", -"image_file_name": "7055712", -"image": [ -"math/52019294_680.png" -], -"solution": "\\textbf{Solution:} Let $E$ be the symmetric point of $B'$ with respect to point $B$, and let the extension of $B'B$ intersect $AC$ at point $O$. Connect $EC$,\\\\\n$\\because$ translating $\\triangle ABC'$ along line $AC$, we obtain $\\triangle AB''C'$,\\\\\n$\\therefore$ we can keep $\\triangle ABC'$ stationary and translate point $B$ parallel to line $AC$,\\\\\n$\\therefore$ the problem of finding the minimum perimeter of $\\triangle BB''C'$ is transformed into finding the minimum perimeter of $\\triangle BB'C$,\\\\\n$\\therefore$ when points $E$, $B$, and $C$ are collinear, the sum of $BB'+BC$ is minimized, being equal to the length of $CE$,\\\\\n$\\because$ both $\\triangle ABC$ and $\\triangle AB'C$ are equilateral triangles,\\\\\n$\\therefore$ $AB=BC=CB'=AB'$,\\\\\n$\\therefore$ the quadrilateral $ABCB'$ is a rhombus,\\\\\n$\\therefore$ $BB'\\perp AC$, and $OC=\\frac{1}{2}AC=\\frac{1}{2}$,\\\\\n$\\therefore$ $BO=B'O=\\frac{\\sqrt{3}}{2}$,\\\\\n$\\therefore$ $OE=BE+OB=\\sqrt{3} +\\frac{\\sqrt{3}}{2}=\\frac{3\\sqrt{3}}{2}$,\\\\\nIn $\\triangle CEO$, by the Pythagorean theorem:\\\\\n$CE=\\sqrt{OE^2+OC^2}=\\sqrt{\\left(\\frac{3\\sqrt{3}}{2}\\right)^2+\\left(\\frac{1}{2}\\right)^2}=\\sqrt{7}$,\\\\\n$\\therefore$ the minimum perimeter of $\\triangle BB'C$ is: $\\sqrt{7}+1$,\\\\\nwhich means the minimum perimeter of $\\triangle BB''C'$ is: $\\boxed{\\sqrt{7}+1}$.", -"solution_image": [ -"solution_images/52019294_680.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52019513": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD \\parallel BC$, $\\angle B = 70^\\circ$, $\\angle C = 40^\\circ$, $DE \\parallel AB$ intersects $BC$ at point $E$. If $AD = 5\\,cm$, $BC = 17\\,cm$, then how many $cm$ is $CD$?", -"image_file_name": "7055712", -"image": [ -"math/52019513_698.png" -], -"solution": "\\textbf{Solution:} Given that $AD\\parallel BC$, $DE\\parallel AB$,\\\\\ntherefore, quadrilateral ABED is a parallelogram,\\\\\nthus, BE=AD=5,\\\\\ntherefore, EC=BC-BE=17cm-5cm=12cm,\\\\\nsince $DE\\parallel AB$,\\\\\nwe have $\\angle DEC=\\angle B=70^\\circ$,\\\\\ngiven that $\\angle C=40^\\circ$,\\\\\nthus, $\\angle EDC=180^\\circ-\\angle DEC-\\angle C=70^\\circ$,\\\\\ntherefore, $\\angle EDC=\\angle DEC$,\\\\\nthus, CD=CE=\\boxed{12cm}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52019411": { -"question": "Given: As shown in the figure, in rhombus $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, $OE\\parallel DC$ intersects $BC$ at point $E$, $AC=6$, and $BD=8$. What is the length of $OE$?", -"image_file_name": "7055712", -"image": [ -"math/52019411_700.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, with AC=6, and BD=8,\\\\\nit follows that OA=OC=$\\frac{1}{2}$AC=3, and OB=$\\frac{1}{2}$BD=4, also AC$\\perp$BD,\\\\\ntherefore AB=$\\sqrt{OA^{2}+OB^{2}}$=5,\\\\\nsince OE$\\parallel$DC$\\parallel$AB,\\\\\nit follows that OE is the midline of $\\triangle ABC$,\\\\\nthus OE=$\\frac{1}{2}$AB=\\boxed{2.5}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52019253": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $BC=3\\sqrt{2}$, and $AC=4\\sqrt{2}$. The bisectors of $\\angle CAB$ and $\\angle CBA$ intersect at point $P$. Points $D$ and $E$ are located on sides $AC$ and $BC$, respectively (neither coincides with point $C$), and it is given that $\\angle DPE=45^\\circ$. What is the distance from point $P$ to side $AB$? What is the perimeter of $\\triangle CDE$?", -"image_file_name": "7055712", -"image": [ -"math/52019253_712.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $PG \\perp AB$ at $G$, $PH \\perp AC$ at $H$, and $PM \\perp BC$ at $M$. Take a point $M'$ on $AH$ such that $M'H=EM$, and connect $PM'$,\\\\\n$\\because$ the angle bisectors of $\\angle CAB$ and $\\angle CBA$ intersect at point $P$,\\\\\n$\\therefore$ $PG=PM=PH$,\\\\\n$\\because$ $\\angle PMC=\\angle C=\\angle PHC=90^\\circ$,\\\\\n$\\therefore$ quadrilateral $PMCH$ is a square,\\\\\n$\\therefore$ $CM=CH=PH=PM$, $\\angle MPH=90^\\circ$,\\\\\n$\\because$ $\\angle DPE=45^\\circ$,\\\\\n$\\therefore$ $\\angle MPE+\\angle DPH=45^\\circ$,\\\\\nIn $\\triangle PME$ and $\\triangle PHM'$,\\\\\n$\\begin{cases} PM=PH \\\\ \\angle PME=\\angle PHM'=90^\\circ \\\\ ME=HM' \\end{cases}$,\\\\\n$\\therefore$ $\\triangle PME \\cong \\triangle PHM'$ (SAS),\\\\\n$\\therefore$ $PE=PM'$, $\\angle MPE=\\angle HPM'$,\\\\\n$\\therefore$ $\\angle HPM'+\\angle DPH=\\angle DPH+\\angle EPM=45^\\circ=\\angle DPE$,\\\\\nIn $\\triangle DPM'$ and $\\triangle DPE$,\\\\\n$\\begin{cases} PD=PD \\\\ \\angle DPM'=\\angle DPE \\\\ PE=PM' \\end{cases}$,\\\\\n$\\therefore$ $\\triangle DPM' \\cong \\triangle DPE$ (SAS),\\\\\n$\\therefore$ $DE=DM'=DH+HM'=DH+ME$,\\\\\n$\\therefore$ the perimeter of $\\triangle CDE=CD+CE+DE=CD+CE+DH+EM=CH+CM$,\\\\\n$\\because$ $\\angle PGB=\\angle PMB=90^\\circ$, $\\angle PBG=\\angle PBM$,\\\\\n$\\therefore$ $\\angle BPG=\\angle BPM$,\\\\\n$\\therefore$ $BG=BM$,\\\\\nSimilarly, we get: $AG=AH$,\\\\\nIn $\\triangle ACB$, $\\angle C=90^\\circ$, $AC=4\\sqrt{2}$, $BC=3\\sqrt{2}$,\\\\\nBy Pythagorean theorem: $AB=\\sqrt{(4\\sqrt{2})^2+(3\\sqrt{2})^2}=5\\sqrt{2}$,\\\\\n$\\therefore$ $AG+BG=AH+BM=5\\sqrt{2}$,\\\\\n$\\because$ $AC+BC=3\\sqrt{2}+4\\sqrt{2}=7\\sqrt{2}$,\\\\\n$\\therefore$ $CH+CM=AC+BC−AH−BM=7\\sqrt{2}−5\\sqrt{2}=2\\sqrt{2}$,\\\\\n$\\therefore$ the distance from point $P$ to side $AB$ is $PG=\\boxed{\\sqrt{2}}$, the perimeter of $\\triangle CDE$ is $\\boxed{2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52019253_710.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"47362683": { -"question": "As shown in the figure, $\\angle 1$ and $\\angle 2$ are vertically opposite angles, $\\angle 1 = 180^\\circ - a$, $\\angle 2 = 35^\\circ$, then $a=$?", -"image_file_name": "7028389", -"image": [ -"math/47362683_05.png" -], -"solution": "\\textbf{Solution:} Since $\\angle 1$ and $\\angle 2$ are vertical angles,\\\\\nit follows that $\\angle 1 = \\angle 2$,\\\\\nSince $\\angle 1=180^\\circ-a$ and $\\angle 2=35^\\circ$,\\\\\nit follows that $180^\\circ-a=35^\\circ$,\\\\\nhence, $a=\\boxed{145^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"42461641": { -"question": "As illustrated in the diagram, Island C is located at $50^\\circ$ east of north from Island A, and Island C is at $40^\\circ$ west of north from Island B. What is the angle $\\angle ACB$ between Islands A and B as seen from Island C?", -"image_file_name": "7028389", -"image": [ -"math/42461641_10.png" -], -"solution": "\\textbf{Solution:} Draw line CD through point C such that CD$\\parallel$AE, \\\\\nsince AE$\\parallel$BF, \\\\\ntherefore CD$\\parallel$AE$\\parallel$BF, \\\\\ntherefore $\\angle$ACD=$\\angle$EAC=50°, $\\angle$BCD=$\\angle$CBF=40°, \\\\\ntherefore $\\angle$ACB=$\\angle$ACD+$\\angle$BCD=$50^\\circ+40^\\circ$=\\boxed{90^\\circ}.", -"solution_image": [ -"solution_images/42461641_10.jpg" -], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53080530": { -"question": "In the regular hexagon $ABCDEF$, the diagonals $AC$, $BD$ intersect at point $M$. What is the value of $\\frac{AM}{CM}$?", -"image_file_name": "7058807", -"image": [ -"math/53080530_321.png" -], -"solution": "\\textbf{Solution:} Since hexagon ABCDEF is a regular hexagon, \\\\\n$\\therefore \\angle BCD=\\angle ABC=120^\\circ$, AB=BC=CD, \\\\\n$\\therefore \\angle BAC=\\angle ACB=\\angle CBD=\\angle CDB=30^\\circ$, \\\\\n$\\therefore CM=BM$, $\\angle ABM=90^\\circ$, \\\\\nLet $BM=a$, then $CM=a$, \\\\\n$\\therefore AM=2BM=2a$, \\\\\n$\\therefore \\frac{AM}{CM}=\\frac{2a}{a}=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53078987": { -"question": "As shown, the regular pentagon $ABCDE$ is inscribed in circle $\\odot O$. What is the measure of $\\angle DAE$ in degrees?", -"image_file_name": "7058807", -"image": [ -"math/53078987_333.png" -], -"solution": "\\textbf{Solution:} Since the regular pentagon $ABCDE$ is inscribed in circle $\\odot O$, \\\\\ntherefore, $\\angle AED=\\frac{(5-2)\\times 180^\\circ}{5}=108^\\circ$, and $AE=DE$,\\\\\nhence, $\\angle DAE=\\angle ADE=\\frac{1}{2}\\times (180^\\circ-108^\\circ)=\\boxed{36^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53078950": { -"question": "As shown in the figure, it is known that the radius of $\\odot O$ is 1, and the point $P$ is a point outside $\\odot O$, with $OP=2$. If $PT$ is a tangent to $\\odot O$ with $T$ as the point of tangency, and $OT$ is connected, then what is the length of $PT$?", -"image_file_name": "7058807", -"image": [ -"math/53078950_349.png" -], -"solution": "\\textbf{Solution:} Since $PT$ is a tangent to the circle $\\odot O$ with $T$ as the point of tangency, \\\\\nit follows that $\\angle OTP=90^\\circ$. \\\\\nThus, $PT=\\sqrt{OP^{2}-OT^{2}}$. \\\\\nGiven that the radius of $\\odot O$ is 1, \\\\\nit follows that $OT=1$. \\\\\nTherefore, $PT=\\sqrt{OP^{2}-OT^{2}}=\\sqrt{2^{2}-1}=\\boxed{\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53066236": { -"question": "As shown in the figure, $AB$ and $AC$ are the sides of an inscribed square and an inscribed equilateral triangle in the circle $\\odot O$, respectively, and $BC$ is one side of an inscribed regular $n$-sided polygon in the circle. What is the value of $n$?", -"image_file_name": "7058807", -"image": [ -"math/53066236_353.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw lines AO, BO, and CO.\\\\\nSince AB and AC are respectively one side of a square and an equilateral triangle inscribed in $\\odot$O,\\\\\nit follows that $ \\angle AOB=\\frac{360^\\circ}{4}=90^\\circ$ and $ \\angle AOC=\\frac{360^\\circ}{3}=120^\\circ$,\\\\\ntherefore $ \\angle BOC=30^\\circ$,\\\\\nhence $ n=\\frac{360^\\circ}{30^\\circ}=\\boxed{12}$.", -"solution_image": [ -"solution_images/53066236_350.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53110761": { -"question": "As shown in the figure, the vertices A and B of the square $ABCD$ both lie on the circle $\\odot O$, and side $CD$ is tangent to the circle $\\odot O$ at point E. If the radius of the circle $\\odot O$ is 1, what is the side length of the square $ABCD$?", -"image_file_name": "7058807", -"image": [ -"math/53110761_366.png" -], -"solution": "\\textbf{Solution:} Let's extend line $EO$ and have it intersect $AB$ at point $F$, and also connect $OA$,\\\\\n$\\because$ side $CD$ of square $ABCD$ is tangent to circle $O$ at point E,\\\\\n$\\therefore$ $OE\\perp CD$, $AB\\parallel CD$, $\\angle BAD=\\angle ADC=90^\\circ$,\\\\\n$\\therefore$ $OF\\perp AB$,\\\\\n$\\therefore$ quadrilateral $EFAD$ forms a rectangle,\\\\\n$\\therefore$ $EF=AD$,\\\\\n$\\because$ vertices A and B of square $ABCD$ are located on circle $O$,\\\\\n$\\therefore$ $AF=\\frac{1}{2}AB$,\\\\\n$\\because$ the radius of circle $O$ is 1,\\\\\n$\\therefore$ $OE=OA=1$,\\\\\nLet the side length of the square be $a$, then: $OF=EF-OE=a-1$, $AF=\\frac{a}{2}$,\\\\\nIn right triangle $\\triangle OFA$: $OA^{2}=OF^{2}+AF^{2}$,\\\\\nwhich gives: $1^{2}=(a-1)^{2}+\\left(\\frac{a}{2}\\right)^{2}$,\\\\\nSolving this equation results in: $a=0$ (discard) or $a=\\frac{8}{5}$;\\\\\n$\\therefore$ the side length of the square is: $\\boxed{\\frac{8}{5}}$.", -"solution_image": [ -"solution_images/53110761_364.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53009784": { -"question": "As shown in the figure, $A$, $B$, $C$, and $D$ are four consecutive vertices of a regular polygon, and $O$ is the center of the regular polygon. If $\\angle ADB = 12^\\circ$, how many sides does this regular polygon have?", -"image_file_name": "7058807", -"image": [ -"math/53009784_370.jpeg" -], -"solution": "Solution: As shown in the figure, let the circumcircle of the polygon be $\\odot O$, and connect OA and OB,\\\\\n$\\because$ $\\angle ADB = 12^\\circ$,\\\\\n$\\therefore$ $\\angle AOB = 2\\angle ADB = 24^\\circ$,\\\\\nand $360^\\circ \\div 24^\\circ = 15$,\\\\\n$\\therefore$ the polygon is a regular pentadecagon,\\\\\nthus, the answer is: $\\boxed{15}$.", -"solution_image": [ -"solution_images/53009784_370.jpeg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52978026": { -"question": "As shown in the figure, line segment AB passes through the center O and intersects the circle $\\odot O$ at points A and C, $\\angle B=30^\\circ$. The line BD is tangent to the circle $\\odot O$ at point D. What is the degree measure of $\\angle ADB$?", -"image_file_name": "7058807", -"image": [ -"math/52978026_380.png" -], -"solution": "\\textbf{Solution:} Connect OD, as shown in the diagram,\\\\\nBD is tangent to $\\odot$O at D,\\\\\n$\\therefore$ $\\angle$ODB$=90^\\circ$,\\\\\n$\\because$ $\\angle$B$=30^\\circ$\\\\\n$\\therefore$ $\\angle$DOB$=60^\\circ$\\\\\n$\\therefore$ $\\angle$A$=30^\\circ$\\\\\n$\\therefore$ $\\angle$ADB$=180^\\circ-\\angle$B$-\\angle$A=$180^\\circ-30^\\circ-30^\\circ$=\\boxed{120^\\circ}", -"solution_image": [ -"solution_images/52978026_380.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52977736": { -"question": "As shown in the figure, the incircle $\\odot O$ of $\\triangle ABC$ is tangent to side $BC$ at point $D$, $\\angle A=70^\\circ$, $\\angle C=80^\\circ$. Connect $OB$ and $OD$. What is the degree measure of $\\angle BOD$?", -"image_file_name": "7058807", -"image": [ -"math/52977736_398.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle A=70^\\circ$ and $\\angle C=80^\\circ$, \\\\\n$\\therefore$ $\\angle ABC=180^\\circ-70^\\circ-80^\\circ=30^\\circ$, \\\\\n$\\because$ the incircle $\\odot$O of $\\triangle ABC$ touches side $BC$ at point D, \\\\\n$\\therefore$ $OB$ bisects $\\angle ABC$, and $OD\\perp BC$, \\\\\n$\\therefore$ $\\angle OBD=\\frac{1}{2}\\angle ABC=\\frac{1}{2}\\times 30^\\circ=15^\\circ$, \\\\\n$\\therefore$ $\\angle BOD=90^\\circ-\\angle OBD=\\boxed{75^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52966971": { -"question": "As shown in the figure, PA and PB are tangents to the circle $\\odot O$ with points A and B as the points of tangency. AC is a diameter of $\\odot O$. If $\\angle BAC=25^\\circ$, what is the degree measure of $\\angle P$?", -"image_file_name": "7058807", -"image": [ -"math/52966971_403.png" -], -"solution": "\\textbf{Solution:} Connect OB, \\\\\n$\\because$ PA, PB are the tangents to circle $O$ with A and B as the points of tangency, \\\\\n$\\therefore$ $\\angle OAP = \\angle OBP = 90^\\circ$, \\\\\n$\\because$ $\\angle BAC = 25^\\circ$, \\\\\n$\\therefore$ $\\angle BOC = 50^\\circ$, \\\\\n$\\therefore$ $\\angle AOB = 180^\\circ - 50^\\circ = 130^\\circ$, \\\\\n$\\therefore$ $\\angle P = 360^\\circ - 90^\\circ - 90^\\circ - 130^\\circ = \\boxed{50^\\circ}$.", -"solution_image": [ -"solution_images/52966971_400.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52916624": { -"question": "As shown in the figure, if $AB$ and $AC$ are respectively one side of an inscribed equilateral triangle and one side of an inscribed square of circle $O$, and if $BC$ is one side of an inscribed regular $n$-sided polygon of circle $O$, then what is the value of $n$?", -"image_file_name": "7058807", -"image": [ -"math/52916624_410.png" -], -"solution": "\\textbf{Solution:} Draw lines OA, OC, and OB. \\\\\nSince AB and AC are respectively one side of a regular triangle and a regular square inscribed in circle O, \\\\\ntherefore, $\\angle$AOC = $360^\\circ \\div 4 = 90^\\circ$, $\\angle$AOB = $360^\\circ \\div 3 = 120^\\circ$, \\\\\ntherefore, $\\angle$BOC = $\\angle$AOB - $\\angle$AOC = $120^\\circ - 90^\\circ = 30^\\circ$, \\\\\ntherefore, n = $360^\\circ \\div 30^\\circ = \\boxed{12}$, \\\\\ntherefore, BC is definitely one side of a regular dodecagon inscribed in circle O.", -"solution_image": [ -"solution_images/52916624_410.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"55138394": { -"question": "As shown in the figure, the vertices A, B, C of the rhombus OABC are on the circle $\\odot O$. A tangent to $\\odot O$ passing through point B intersects the extension of OA at point D. If the radius of $\\odot O$ is 1, what is the length of BD?", -"image_file_name": "7058807", -"image": [ -"math/55138394_420.png" -], -"solution": "\\textbf{Solution:} Draw line OB, then OB=OA=1, since BD is the tangent of circle O, thus $\\angle$OBD=90$^\\circ$, since quadrilateral OABC is a rhombus, thus OA=OB, therefore $\\triangle$OAB is an equilateral triangle, hence $\\angle$AOB=60$^\\circ$, therefore $\\angle$ADB=30$^\\circ$, hence OD=2OB=2, therefore BD=$ \\sqrt{OA^{2}-OB^{2}}$=$ \\boxed{\\sqrt{3}}$.", -"solution_image": [ -"solution_images/55138394_420.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52807541": { -"question": "As shown in the figure, the radius $OA$ of $\\odot O$ is 2, and $B$ is a moving point on $\\odot O$ (not coinciding with point $A$). A tangent line $BC$ to $\\odot O$ passing through point $B$ is drawn, where $BC=OA$. The lines $OC$ and $AC$ are connected. When $\\triangle OAC$ is a right triangle, what is the length of its hypotenuse?", -"image_file_name": "7058807", -"image": [ -"math/52807541_430.png" -], -"solution": "\\textbf{Solution:} Since BC is the tangent of $\\odot$O, \\\\\n$\\therefore \\angle$OBC$=90^\\circ$, \\\\\nSince BC=OA, \\\\\n$\\therefore$ OB=BC=2, \\\\\n$\\therefore \\triangle$OBC is an isosceles right triangle, \\\\\n$\\therefore \\angle$BCO=$45^\\circ$, \\\\\n$\\therefore \\angle$ACO$\\leq 45^\\circ$, \\\\\nSince when $\\triangle$OAC is a right triangle, (1) $\\angle$AOC=$90^\\circ$, connect OB, \\\\\n$\\therefore$ OC=$ \\sqrt{2}$ OB=$2 \\sqrt{2}$, \\\\\n$\\therefore$ AC=$ \\sqrt{OA^{2}+OC^{2}}=\\sqrt{2^{2}+(2\\sqrt{2})^{2}}$=$2 \\sqrt{3}$; \\\\\n(2) When $\\triangle$OAC is a right triangle, $\\angle$OAC=$90^\\circ$, connect OB, \\\\\nSince BC is the tangent of $\\odot$O, \\\\\n$\\therefore \\angle$CBO=$\\angle$OAC=$90^\\circ$, \\\\\nSince BC=OA=OB, \\\\\n$\\therefore \\triangle$OBC is an isosceles right triangle, \\\\\n$\\therefore OC=2\\sqrt{2}$, \\\\\nHence, the answer is: $AC=\\boxed{2 \\sqrt{3}}$ or $2 \\sqrt{2}$.", -"solution_image": [ -"solution_images/52807541_430.png", -"solution_images/52807541_435.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52551789": { -"question": "As shown in the figure, the ratio of the radii of two concentric circles is $3\\colon 5$. $AB$ is the diameter of the larger circle, and the chord $BC$ of the larger circle is tangent to the smaller circle. If $AC=12$, what is the length of $BC$?", -"image_file_name": "7058807", -"image": [ -"math/52551789_440.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, let chord BC be tangent to the smaller circle at point D, and connect OD,\\\\\n$\\therefore$OD$\\perp$BC,\\\\\n$\\therefore$BD=CD,\\\\\n$\\because$O is the midpoint of AB,\\\\\n$\\therefore$OD is the median of $\\triangle ABC$,\\\\\n$\\therefore$OD=$\\frac{1}{2}$AC=$\\frac{1}{2}\\times 12=6$,\\\\\n$\\because$the ratio of the radii of the two concentric circles is 3:5,\\\\\n$\\therefore$the radius of the larger circle is 10,\\\\\n$\\therefore$AB=20,\\\\\n$\\because$AB is the diameter of the larger circle,\\\\\n$\\therefore$$\\angle$ACB=$90^\\circ$,\\\\\n$\\therefore$BC=$\\sqrt{AB^{2}-AC^{2}}=\\sqrt{20^{2}-12^{2}}=\\boxed{16}$.", -"solution_image": [ -"solution_images/52551789_440.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52536676": { -"question": "As shown in the figure, P is a point outside the circle $\\odot O$. The tangents PA and PB are drawn from P to $\\odot O$. If $\\angle APB=50^\\circ$, what is the degree measure of $\\overset{\\frown}{AB}$?", -"image_file_name": "7058807", -"image": [ -"math/52536676_451.png" -], -"solution": "\\textbf{Solution:} Since PA and PB are tangents to the circle O,\\\\\nit follows that $\\angle PAO=\\angle PBO=90^\\circ$,\\\\\nand since $\\angle APB=50^\\circ$,\\\\\nthen $\\angle AOB=360^\\circ-\\angle APB-\\angle PAO-\\angle PBO=130^\\circ$,\\\\\nthus, the degree measure of $\\overset{\\frown}{AB}$ is $\\boxed{130^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51323915": { -"question": "As shown in the figure, it is known that the radius of $ \\odot P$ is 1, and the center P moves along the parabola $ y=-\\frac{1}{2}x^{2}+1$. When $ \\odot P$ is tangent to the x-axis, what is the x-coordinate of the center P?", -"image_file_name": "7058807", -"image": [ -"math/51323915_463.png" -], -"solution": "\\textbf{Solution:} When $y=1$, we have $1=-\\frac{1}{2}x^2+1$, giving $x=0$.\\\\\nWhen $y=-1$, we have $-1=-\\frac{1}{2}x^2+1$, giving $x= \\pm 2$.\\\\\nTherefore, the answer is: $x=\\boxed{2}$ or $x=\\boxed{-2}$ or $x=\\boxed{0}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51433712": { -"question": "As shown in the figure, from a point $P$ outside the circle $\\odot O$, rays $PA$ and $PB$ are drawn to tangentially touch the circle $\\odot O$ at points $A$ and $B$, respectively, with $\\angle P = 50^\\circ$. Point $C$ is on the minor arc $AB$. A tangent to circle $\\odot O$ at point $C$ intersects $PA$ and $PB$ at points $D$ and $E$, respectively. What is the measure of $\\angle DOE$ in degrees?", -"image_file_name": "7058807", -"image": [ -"math/51433712_472.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect OA, OC, OB,\n\nsince PA, PB, DE are tangential to the circle at points A, B, and E, respectively,\n\ntherefore, $OA \\perp PA$,\n\n$OB \\perp PB$,\n\n$OC \\perp DE$,\n\nsince $\\angle P = 50^\\circ$,\n\ntherefore, $\\angle AOB = 180^\\circ - \\angle P = 130^\\circ$,\n\nsince $OA = OB = OC$,\n\ntherefore, DO bisects $\\angle ADC$, EO bisects $\\angle BEC$,\n\ntherefore, $\\angle ADO = \\angle CDO$,\n\n$\\angle CEO = \\angle BEO$,\n\ntherefore, $\\angle AOD = \\angle COD$,\n\n$\\angle COE = \\angle BOE$,\n\ntherefore, $\\angle DOE = \\angle COD + \\angle COE = \\frac{1}{2}\\angle AOC + \\frac{1}{2}\\angle BOC = \\frac{1}{2}\\angle AOB = \\boxed{65^\\circ}$,", -"solution_image": [ -"solution_images/51433712_470.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51433278": { -"question": "As shown in the figure, within circle $O$, $AB$ is a side of the inscribed regular hexagon in circle $O$, and $BC$ is a side of the inscribed regular decagon in circle $O$. What is the measure of $\\angle ABC$ in degrees?", -"image_file_name": "7058807", -"image": [ -"math/51433278_480.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect AO, BO, CO,\n\n$\\because$ AB is a side of the inscribed hexagon in $\\odot O$,\n\n$\\therefore$ $\\angle AOB = \\frac{360^\\circ}{6} = 60^\\circ$,\n\n$AO = BO$,\n\n$\\therefore$ $\\angle ABO = \\frac{1}{2}(180^\\circ-60^\\circ) = 60^\\circ$,\n\n$\\because$ BC is a side of the inscribed decagon in $\\odot O$,\n\n$\\therefore$ $\\angle BOC = \\frac{360^\\circ}{10} = 36^\\circ$, BO=CO,\n\n$\\therefore$ $\\angle CBO = \\frac{1}{2}(180^\\circ-36^\\circ) = 72^\\circ$,\n\n$\\therefore$ $\\angle ABC = \\angle ABO + \\angle CBO = 60^\\circ + 72^\\circ = \\boxed{132^\\circ}$.", -"solution_image": [ -"solution_images/51433278_480.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446421": { -"question": "As shown in the figure, for a regular hexagon $ABCDEF$ inscribed in a circle, with the radius $OA=4$, what is the length of the side of the hexagon?", -"image_file_name": "7058807", -"image": [ -"math/51446421_490.png" -], -"solution": "\\textbf{Solution:} Draw line OB, as shown in the diagram,\\\\\n$\\because$ Hexagon ABCDEF is inscribed in circle $O$,\\\\\n$\\therefore \\angle$AOB=$ \\frac{360^\\circ}{6}=60^\\circ$, OA=OB,\\\\\n$\\therefore \\triangle$OAB is an equilateral triangle,\\\\\n$\\therefore$AB=OA= \\boxed{4},\\\\\ni.e., the side length of this regular hexagon is 4.", -"solution_image": [ -"solution_images/51446421_490.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51445528": { -"question": "As shown in the figure, \\(PA\\) and \\(PB\\) are tangents to circle \\(\\odot O\\) at points \\(A\\) and \\(B\\), respectively, and \\(\\angle P=70^\\circ\\). If point \\(C\\) is on circle \\(\\odot O\\) and does not coincide with \\(A\\) or \\(B\\), what is the measure of \\(\\angle ACB\\)?", -"image_file_name": "7058807", -"image": [ -"math/51445528_504.png" -], -"solution": "\\textbf{Solution:} Draw OA, OB, \\\\\n$ \\because $ PA, PB are tangents to circle $O$ at points A, B, and $ \\angle P=70^\\circ$, \\\\\n$ \\therefore \\angle AOB=360^\\circ-90^\\circ-90^\\circ-\\angle P=110^\\circ$\\\\\nWhen C is on the major arc $ \\overset{\\frown}{ACB}$,\\\\\n$ \\angle ACB=\\frac{1}{2}\\angle AOB=55^\\circ$\\\\\nWhen point C is on the minor arc $ \\overset{\\frown}{AB}$, quadrilateral ACBC$_{1}$ is a circumscribed quadrilateral\\\\\nThen $ \\angle A{C}_{1}B+\\angle C=180^\\circ$\\\\\n$ \\therefore \\angle A{C}_{1}B=125^\\circ$\\\\\nHence, the answer is: $\\boxed{55^\\circ}$ or $\\boxed{125^\\circ}$.", -"solution_image": [ -"solution_images/51445528_500.png", -"solution_images/51445528_506.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51407041": { -"question": "As shown in the figure, AB is a chord of the semicircle O, DE is the diameter. The tangent BC passing through point B is tangent to $\\odot$O at point B, and intersects the extension line of DE at point C. Connect BD. If the quadrilateral OABC is a parallelogram, then what is the degree measure of $\\angle BDC$?", -"image_file_name": "7058807", -"image": [ -"math/51407041_510.png" -], -"solution": "Solution: Since $BC$ is the tangent of circle $O$,\\\\\ntherefore $\\angle OBC=90^\\circ$,\\\\\nSince quadrilateral $ABCO$ is a parallelogram,\\\\\ntherefore $AO=BC$,\\\\\nAlso since $AO=BO$,\\\\\ntherefore $BO=BC$,\\\\\ntherefore $\\angle BOC=\\angle BCO=45^\\circ$,\\\\\ntherefore $\\angle BDC=\\boxed{22.5^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402227": { -"question": "As shown in the figure, divide the circle $ \\odot O$ into six equal arcs and connect the division points sequentially to obtain the regular hexagon ABCDEF. If the circumference of $ \\odot O$ is $ 12\\pi $, what is the side length of this regular hexagon?", -"image_file_name": "7058807", -"image": [ -"math/51402227_523.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OA, OB, OC, OD, OE, OF. \\\\\n$\\because$ the hexagon ABCDEF is regular, \\\\\n$\\therefore$ AB = BC = CD = DE = EF = FA, $\\angle$AOB = $\\angle$BOC = $\\angle$COD = $\\angle$DOE = $\\angle$EOF = $\\angle$FOA = $60^\\circ$, \\\\\n$\\therefore$ $\\triangle$AOB, $\\triangle$BOC, $\\triangle$DOC, $\\triangle$EOD, $\\triangle$EOF, $\\triangle$AOF are all equilateral triangles, \\\\\n$\\because$ the circumference of $\\odot O$ is $12\\pi$, \\\\\n$\\therefore$ the radius of $\\odot O$ is $\\frac{12\\pi}{2\\pi}=6$, \\\\\nthus, the side length of the regular hexagon is $\\boxed{6}$.", -"solution_image": [ -"solution_images/51402227_520.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52765389": { -"question": "As shown in the figure, regular pentagon ABCDE is inscribed in circle $O$, and point P is on the minor arc $\\overset{\\frown}{BC}$ (point P does not coincide with point C). What is the measure of $\\angle CPD$?", -"image_file_name": "7058807", -"image": [ -"math/52765389_531.png" -], -"solution": "\\textbf{Solution:} Draw lines OC and OD,\\\\\n$ \\because $ the regular pentagon ABCDE is inscribed in $\\odot$O,\\\\\n$ \\therefore \\angle COD=\\frac{360^\\circ}{5}=72^\\circ$,\\\\\n$ \\therefore \\angle CPD=\\frac{1}{2}\\angle COD=\\boxed{36^\\circ}$.", -"solution_image": [ -"solution_images/52765389_530.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52766211": { -"question": "As shown in the figure, $AB$ is a tangent to the circle $\\odot O$ with $A$ as the point of tangency. The line $OB$ intersects $\\odot O$ at point $C$. Point $D$ is on the circle $\\odot O$. Connect $AD$, $CD$, and $OA$. If $\\angle ADC=25^\\circ$, what is the degree measure of $\\angle ABO$?", -"image_file_name": "7058807", -"image": [ -"math/52766211_5410.png" -], -"solution": "\\textbf{Solution:} Given that $AB$ is the tangent of circle $O$,\n\nit follows that $AB \\perp OA$,\n\nwhich implies $\\angle OAB = 90^\\circ$.\n\nGiven that $\\angle ADC = 25^\\circ$,\n\nit follows that $\\angle AOB = 2\\angle ADC = 50^\\circ$,\n\ntherefore, $\\angle ABO = 90^\\circ - 50^\\circ = \\boxed{40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52766428": { -"question": "As shown in the figure, the radius of the circle $ \\odot O$ is 2 cm, and a regular hexagon is inscribed in $ \\odot O$. What is the area of the shaded region in the figure?", -"image_file_name": "7058807", -"image": [ -"math/52766428_552.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect BO, CO, and OA.\\\\\nFrom the given information, both $\\triangle OBC$ and $\\triangle AOB$ are equilateral triangles,\\\\\n$\\therefore \\angle AOB = \\angle OBC = 60^\\circ$,\\\\\n$\\therefore OA \\parallel BC$,\\\\\n$\\therefore$ The area of $\\triangle OBC$ is equal to the area of $\\triangle ABC$,\\\\\n$\\therefore$ The area of the shaded region is equal to the area of the sector OBC $= \\frac{60^\\circ \\pi \\times 2^2}{360^\\circ} = \\boxed{\\frac{2\\pi}{3}}$.", -"solution_image": [ -"solution_images/52766428_550.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52602674": { -"question": "As shown in the figure, the famous scenic spot Sheng'an Pavilion in the Western Hills of Kunming is founded on a regular hexagon with a radius of 3m. What is the perimeter of the regular hexagon in meters?", -"image_file_name": "7058807", -"image": [ -"math/52602674_560.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $OA$ and $OB$,\\\\\nsince the radius of the regular hexagon is $3m$,\\\\\ntherefore $OA=OB=3m$,\\\\\nsince the figure is a regular hexagon,\\\\\ntherefore $\\angle AOB=60^\\circ$,\\\\\ntherefore $\\triangle AOB$ is an equilateral triangle,\\\\\ntherefore $AB=3m$,\\\\\ntherefore the perimeter of the regular hexagon is: $3\\times 6=\\boxed{18m}$.", -"solution_image": [ -"solution_images/52602674_562.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720293": { -"question": "As shown in the figure, hexagon ABCDEF is a regular hexagon inscribed in a circle with a radius of 6. What is the length of $\\overset{\\frown}{CD}$?", -"image_file_name": "7058807", -"image": [ -"math/52720293_571.png" -], -"solution": "\\textbf{Solution:} Connect OC and OD, \\\\\n$\\because$ hexagon ABCDEF is a regular hexagon, \\\\\n$\\therefore$ $\\angle$COD $=$ 360$^\\circ$ $\\times$ $\\frac{1}{6}$ $=$ 60$^\\circ$, \\\\\n$\\because$ OD $=$ 2, \\\\\n$\\therefore$ the length of arc $\\overset{\\frown}{CD}$ is $ \\frac{60\\pi \\times 2}{180}=\\boxed{2\\pi} $.", -"solution_image": [ -"solution_images/52720293_570.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52603194": { -"question": "As shown in the diagram, $\\angle MON=30^\\circ$, points $A_1, A_2, A_3, \\ldots$ are on ray ON, points $B_1, B_2, B_3, \\ldots$ are on ray OM, $\\triangle A_1B_1A_2$, $\\triangle A_2B_2A_3$, $\\triangle A_3B_3A_4,\\ldots$ are all equilateral triangles. The side length of the first equilateral triangle from the left is denoted as $a_1$, the side length of the second equilateral triangle is denoted as $a_2$, and so on. If $OA_1=1$, then what is the value of $a_{2021}$?", -"image_file_name": "7047897", -"image": [ -"math/52603194_09.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\nsince $\\triangle A_1B_1A_2$ is an equilateral triangle,\\\\\nthus $A_1B_1=A_2B_1$, $\\angle 3=\\angle 4=\\angle 12=60^\\circ$,\\\\\ntherefore $\\angle 2=120^\\circ$,\\\\\nsince $\\angle MON=30^\\circ$,\\\\\nthus $\\angle 1=180^\\circ-120^\\circ-30^\\circ=30^\\circ$,\\\\\nalso since $\\angle 3=60^\\circ$,\\\\\nthus $\\angle 5=180^\\circ-60^\\circ-30^\\circ=90^\\circ$,\\\\\nsince $\\angle MON=\\angle 1=30^\\circ$,\\\\\nthus $OA_1=A_1B_1=1$, that is, the side length of $\\triangle A_1B_1A_2$ is $a_1=1=2^0$;\\\\\ntherefore $A_2B_1=1$,\\\\\nsince $\\triangle A_2B_2A_3$, $\\triangle A_3B_3A_4$ are equilateral triangles,\\\\\nthus $\\angle 11=\\angle 10=60^\\circ$, $\\angle 13=60^\\circ$,\\\\\nsince $\\angle 4=\\angle 10=\\angle 11=60^\\circ$, $\\angle 12=\\angle 13=60^\\circ$,\\\\\nthus $A_1B_1\\parallel A_2B_2\\parallel A_3B_3$, $B_1A_2\\parallel B_2A_3$,\\\\\nthus $\\angle 1=\\angle 6=\\angle 7=30^\\circ$, $\\angle 5=\\angle 8=90^\\circ$,\\\\\nthus $A_2B_2=2B_1A_2=2=2^1$, that is, the side length of $\\triangle A_2B_2A_3$ is $a_2=2^1$\\\\\nSimilarly, $B_3A_3=2B_2A_3=4=2^2$, that is, the side length of $\\triangle A_3B_3A_4$ is $a_3=2^2$,\\\\\n... ,\\\\\nthus, the side length of $\\triangle A_nB_nA_{n+1}$ is $a_n=2^{n-1}$,\\\\\nthus, the side length of $\\triangle A_{2021}B_{2021}A_{2022}$ is $a_{2021}=\\boxed{2^{2020}}$.", -"solution_image": [ -"solution_images/52603194_00.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52720359": { -"question": "As shown in the figure, in $ \\triangle ABC$, $AD$ is the median to side $BC$, $E$ is a point on side $AB$, and a line through point $C$ is drawn parallel to $AB$ intersecting the extension of $ED$ at point $F$. When $AD \\perp BC$, $AE=1$, and $CF=2$, what is the length of $AC$?", -"image_file_name": "7047897", -"image": [ -"math/52720359_3110.png" -], -"solution": "\\textbf{Solution:}\n\nSince $AD$ is the median to side $BC$ and $AD\\perp BC$,\n\nit follows that $AB=AC$.\n\nSince $CF\\parallel AB$,\n\nit follows that $\\angle B=\\angle DCF$.\n\nIn $\\triangle BED$ and $\\triangle CFD$,\n\n\\[\n\\left\\{\\begin{array}{l}\n\\angle B=\\angle DCF \\\\\nBD=CD \\\\\n\\angle BDE=\\angle CDF\n\\end{array}\\right.\n\\]\n\nTherefore, $\\triangle BED \\cong \\triangle CFD$,\n\nwhich implies that $CF=BE$.\n\nGiven $AE=1$ and $CF=2$,\n\nthus $AB=AE+BE=AE+CF=1+2=3$,\n\nwhich leads to $AC=AB=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52720674": { -"question": "As shown in the figure, in a triangular piece of paper $ABC$, $\\angle B = 90^\\circ$, $AB = 3$. Point $D$ is on side $BC$. When $\\triangle ABD$ is folded along the straight line $AD$, point $B$ exactly falls on point $E$ on the side $AC$. If $AD = CD$, what is the length of $AC$?", -"image_file_name": "7047897", -"image": [ -"math/52720674_324.png" -], -"solution": "\\textbf{Solution:} It follows from the property of folding that $AE=AB=3$,\\\\\n$\\angle AED=90^\\circ$ \\\\\n$\\because AD=CD$ \\\\\n$\\therefore \\triangle ADC$ is an isosceles triangle \\\\\n$\\because DE\\perp AC$ \\\\\n$\\therefore EC=AE$ \\\\\n$\\therefore AC=\\boxed{6}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52603481": { -"question": "As shown in the figure, it is known that $AE=BE$, $DE$ is the perpendicular bisector of $AB$, and $F$ is a point on $DE$. If $BF=11\\text{cm}$ and $CF=3\\text{cm}$, what is the length of $AC$ in cm?", -"image_file_name": "7047897", -"image": [ -"math/52603481_330.png" -], -"solution": "\\textbf{Solution:} Since $AE=BE$, and $DE$ is the perpendicular bisector of $AB$,\\\\\nhence, $DE$ is the median of $AB$,\\\\\ntherefore, $DE$ is the perpendicular bisector of $AB$,\\\\\nsince $F$ is a point on $DE$,\\\\\ntherefore, $AF=BF$,\\\\\nthus, $AC = AF + CF = BF + CF$,\\\\\nsince $BF=11\\,cm$, and $CF=3\\,cm$,\\\\\ntherefore, $AC = \\boxed{14}\\,cm$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603850": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A=90^\\circ$, $AB=AC$, $BD$ bisects $\\angle ABC$, $CE \\perp BD$ at $E$. If $BD=8$, what is the length of $CE$?", -"image_file_name": "7047897", -"image": [ -"math/52603850_348.png" -], -"solution": "\\textbf{Solution:} Extend BA and CE to intersect at point F, \\\\\nsince $\\angle BAC = 90^\\circ$ and $CE \\perp BD$, \\\\\ntherefore, $\\angle BAC = \\angle BEC = \\angle FAC$, \\\\\nsince $\\angle ABD + \\angle ADB = 90^\\circ$ and $\\angle CDE + \\angle ACF = 90^\\circ$, \\\\\nsince $\\angle ADB = \\angle CDE$, \\\\\ntherefore, $\\angle ABD = \\angle ACF$, \\\\\nin $\\triangle ABD$ and $\\triangle ACF$, \\\\\n$\\left\\{\\begin{array}{l}\n\\angle BAD = \\angle CAF \\\\\nAB = AC \\\\\n\\angle ABD = \\angle ACF\n\\end{array}\\right.$ \\\\\ntherefore, $\\triangle ABD \\cong \\triangle ACF$, \\\\\ntherefore, BD = CF = 8, \\\\\nsince BD bisects $\\angle ABC$, \\\\\ntherefore, $\\angle ABE = \\angle CBE$, \\\\\nsince CE$\\perp$BD, \\\\\ntherefore, $\\angle BEF = \\angle BEC = 90^\\circ$ \\\\\nin $\\triangle BEF$ and $\\triangle BEC$, \\\\\n$\\left\\{\\begin{array}{l}\n\\angle FBE = \\angle CBE \\\\\nBE = BE \\\\\n\\angle BEF = \\angle BEC\n\\end{array}\\right.$ \\\\\ntherefore, $\\triangle BEF \\cong \\triangle BEC$, \\\\\ntherefore, EF = EC, \\\\\ntherefore, EC = $\\frac{1}{2}$CF = \\boxed{4}.", -"solution_image": [ -"solution_images/52603850_340.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51545363": { -"question": "As shown in the figure, fold the rectangular paper ABCD along AE so that point D falls on point F on side BC. If $\\angle AEF = 75^\\circ$, what is the degree measure of $\\angle BAF$?", -"image_file_name": "7047897", -"image": [ -"math/51545363_350.png" -], -"solution": "\\textbf{Solution:} Given the problem, we have: $\\angle AFE = \\angle D = 90^\\circ$, $\\angle EAF = \\angle DAE$, $\\angle BAD = 90^\\circ$,\\\\\n$\\because \\angle AEF = 75^\\circ$,\\\\\n$\\therefore \\angle EAF = 90^\\circ - \\angle AEF = 15^\\circ$,\\\\\n$\\therefore \\angle DAE = 15^\\circ$,\\\\\n$\\therefore \\angle DAF = \\angle DAE + \\angle EAF = 30^\\circ$,\\\\\n$\\therefore \\angle BAF = \\angle BAD - \\angle DAF = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51545519": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle ACB=90^\\circ$, CD is the median to side AB, and $ CD+AB=12$, what is the length of AB?", -"image_file_name": "7047897", -"image": [ -"math/51545519_363.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ACB=90^\\circ$ and D is the midpoint of side AB, \\\\\nit follows that $CD=\\frac{1}{2}AB$, \\\\\nand since $CD+AB=12$, \\\\\nwe have $AB=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52720427": { -"question": "An equilateral triangle, a right-angled triangle, and an isosceles triangle are placed as shown in the figure. The base angle of the isosceles triangle $\\angle 3=80^\\circ$, then what is the sum of $\\angle 1 + \\angle 2$?", -"image_file_name": "7047897", -"image": [ -"math/52720427_370.png" -], -"solution": "\\textbf{Solution}: As shown in the figure,\\\\\nfrom the equilateral triangle and the right triangle we can obtain $\\angle 1+\\alpha =120^\\circ$, $\\angle 2+\\beta =90^\\circ$,\\\\\n$\\therefore \\angle 1+\\angle 2+\\alpha +\\beta =90^\\circ+120^\\circ=210^\\circ$,\\\\\nand $\\angle 3=\\alpha +\\beta$,\\\\\n$\\therefore \\alpha +\\beta =80^\\circ$,\\\\\n$\\therefore \\angle 1+\\angle 2=210^\\circ-80^\\circ=\\boxed{130^\\circ}$.", -"solution_image": [ -"solution_images/52720427_370.png" -], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603721": { -"question": "As shown in the figure, fold the equilateral triangle $\\triangle ABC$ such that point $B$ falls exactly on point $D$ on side $AC$. The crease is $EF$, and $O$ is a moving point on crease $EF$. If $AD=1$ and $AC=3$, then what is the minimum perimeter of $\\triangle OCD$?", -"image_file_name": "7047897", -"image": [ -"math/52603721_380.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BD, OB, \\\\\n$\\because$ by folding the equilateral $\\triangle ABC$ so that point B falls exactly on point D on side AC, \\\\\n$\\therefore$ EF is the axis of symmetry of BD, \\\\\n$\\therefore$ OB=OD, \\\\\n$\\because$ AD=1, AC=3, \\\\\n$\\therefore$ CD=2, \\\\\n$\\because$ the perimeter of $\\triangle OCD$ = CD+OD+OC = 2+BO+OC, \\\\\n$\\therefore$ when points B, O, and C are collinear, the minimum perimeter of $\\triangle OCD$ = 2+BC = \\boxed{5},", -"solution_image": [ -"solution_images/52603721_380.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52603218": { -"question": "As shown, it is known that $ \\triangle ABD \\cong \\triangle ACE$, $ \\angle A=53^\\circ$, $ \\angle B=22^\\circ$. Then, how many degrees is $ \\angle AEC$?", -"image_file_name": "7047897", -"image": [ -"math/52603218_394.png" -], -"solution": "\\textbf{Solution}: Since $\\triangle ABD \\cong \\triangle ACE$,\\\\\nit follows that $\\angle C = \\angle B = 22^\\circ$,\\\\\ntherefore, in $\\triangle AEC$, $\\angle AEC = 180^\\circ - \\angle A - \\angle C = 180^\\circ - 53^\\circ - 22^\\circ = \\boxed{105^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603249": { -"question": "As shown in the figure, $D$ is a point on side $AC$ of $\\triangle ABC$. An arc is drawn with $A$ as the center and $AD$ as the radius, intersecting the extension line of $BA$ at point $E$, and $ED$ is connected. If $\\angle B=60^\\circ$ and $\\angle C=70^\\circ$, what is the degree measure of $\\angle ADE$?", -"image_file_name": "7047897", -"image": [ -"math/52603249_400.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle B=60^\\circ$ and $\\angle C=70^\\circ$,\\\\\nit follows that $\\angle CAB=180^\\circ-\\angle B-\\angle C=50^\\circ$,\\\\\nsince an arc is drawn with A as the center and AD as the radius, intersecting the extension of BA at point E,\\\\\nit implies AE=AD,\\\\\nthus $\\angle AED=\\angle ADE$,\\\\\nsince $\\angle AED+\\angle ADE=\\angle CAB$,\\\\\ntherefore $\\angle ADE+\\angle ADE=50^\\circ$,\\\\\nwhich gives $\\angle ADE=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52604042": { -"question": "As shown in the figure, if $\\triangle ABC \\cong \\triangle ADF$ and $\\angle B=60^\\circ$, $\\angle C=20^\\circ$, with point D on side BC, then what is the degree measure of $\\angle DAC$?", -"image_file_name": "7047897", -"image": [ -"math/52604042_410.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle ADF$,\\\\\nit follows that $AB = AD$,\\\\\ntherefore, $\\angle ADB = \\angle B = 60^\\circ$,\\\\\nthus, $\\angle DAC = \\angle ADB - \\angle C = \\boxed{40^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52604233": { -"question": "As shown in the figure, in $\\triangle ABC$, $BD$ bisects $\\angle ABC$. If $AB=8$, $BC=12$, and the area of $\\triangle ABD$ is $16$, then what is the area of $\\triangle CBD$?", -"image_file_name": "7047897", -"image": [ -"math/52604233_428.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $DE\\perp AB$ at E, and $DF\\perp BC$ at F, \\\\\n$\\because BD$ bisects $\\angle ABC$, $DE\\perp AB$, $DF\\perp BC$, \\\\\n$\\therefore DE=DF$, \\\\\n$\\because {S}_{\\triangle ABD}=\\frac{1}{2}AB\\times DE=16$, \\\\\n$\\therefore DE=4$, \\\\\n$\\therefore DF=4$, \\\\\n$\\because BC=12$, \\\\\n$\\therefore {S}_{\\triangle BCD}=\\frac{1}{2}\\times BC\\times DF=\\frac{1}{2}\\times 12\\times 4=\\boxed{24}$.", -"solution_image": [ -"solution_images/52604233_422.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52604387": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, point $D$ is the midpoint of $BC$, $\\angle BAD=24^\\circ$, $AD=AE$, what is the measure of $\\angle EDC$ in degrees?", -"image_file_name": "7047897", -"image": [ -"math/52604387_430.png" -], -"solution": "\\textbf{Solution:} Given $AB=AC$ and point $D$ is the midpoint of $BC$, with $\\angle BAD=24^\\circ$, \\\\\nit follows that $\\angle CAD=\\angle BAD=24^\\circ$, and $AD\\perp BC$,\\\\\nGiven $AD=AE$,\\\\\nit implies $\\angle ADE=\\angle AED=\\frac{1}{2}\\times (180^\\circ-24^\\circ)=78^\\circ$,\\\\\nthus $\\angle EDC=90^\\circ-\\angle ADE=\\boxed{12^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603284": { -"question": "As shown in the figure, \\(ABCD\\) is a rectangular ground, with length \\(AB = 20m\\) and width \\(AD = 10m\\). In the middle, there stands a brick wall with height \\(MN = 2m\\). A grasshopper needs to crawl from point \\(A\\) to point \\(C\\), and it must climb over the wall in the middle. What is the minimum distance it has to travel?", -"image_file_name": "7047897", -"image": [ -"math/52603284_440.png" -], -"solution": "Solution: As shown in the figure, unfolding the figure increases the length by 2MN,\\\\\nif the original length increases by 4 meters, then AB=20+4=24(m),\\\\\nconnect AC,\\\\\n$\\because$ quadrilateral ABCD is a rectangle, with AB=24m and width AD=10m,\\\\\n$\\therefore$AC=$\\sqrt{AB^{2}+BC^{2}}=\\sqrt{24^{2}+10^{2}}=\\boxed{26}$(m),\\\\\n$\\therefore$, for the grasshopper to crawl from point A to point C, it needs to travel at least 26m.", -"solution_image": [ -"solution_images/52603284_440.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52604074": { -"question": "As shown in the figure, D, E, and F are the midpoints of BC, AD, and CE, respectively. If $S_{\\triangle ABC}=8\\text{cm}^2$, what is $S_{\\triangle DEF}$?", -"image_file_name": "7047897", -"image": [ -"math/52604074_450.png" -], -"solution": "\\textbf{Solution:} Given that $S_{\\triangle ABC}=8\\,\\text{cm}^2$ and D is the midpoint of BC,\\\\\nit follows that $S_{\\triangle ABD}=S_{\\triangle ADC}=\\frac{1}{2}S_{\\triangle ABC}=\\frac{1}{2}\\times 8=4\\,\\text{cm}^2$,\\\\\nsince E is the midpoint of AD,\\\\\nthen $S_{\\triangle DEC}=\\frac{1}{2}S_{\\triangle ADC}=\\frac{1}{2}\\times 4=2\\,\\text{cm}^2$,\\\\\nsince F is the midpoint of EC,\\\\\nthen $S_{\\triangle DEF}=\\frac{1}{2}S_{\\triangle DEC}=\\frac{1}{2}\\times 2=\\boxed{1}\\,\\text{cm}^2$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52604077": { -"question": "As shown in the figure, $ABC$ is an equilateral triangle with side length $4$, $AD$ is the median of side $BC$, and $F$ is a moving point on side $AD$, with $E$ being the midpoint of side $AC$. What is the measure of $\\angle EFC$ when the perimeter of $\\triangle ECF$ is minimized?", -"image_file_name": "7047897", -"image": [ -"math/52604077_460.png" -], -"solution": "\\textbf{Solution:} Draw $EM\\parallel BC$ through $E$, intersecting $AD$ at $N$,\\\\\n$\\therefore \\angle AMN=\\angle ABC$,\\\\\n$\\because$ the sides of equilateral triangle $ABC$ are of length 4, and $E$ is the midpoint of side $AC$.\\\\\n$\\therefore AC=AB=BC=4$, AE=2, $\\angle ABC=60^\\circ=\\angle AMN$, $\\angle AEM=\\angle ACB=60^\\circ$,\\\\\n$\\therefore EC=2=AE$, $\\triangle AME$ is an equilateral triangle,\\\\\n$\\therefore AM=BM=2$,\\\\\n$\\therefore AM=AE$,\\\\\n$\\because AD$ is the median to side $BC$, and $\\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore AD\\perp BC$,\\\\\n$\\because EM\\parallel BC$,\\\\\n$\\therefore AD\\perp EM$,\\\\\n$\\because AM=AE$,\\\\\n$\\therefore $E and M are symmetrical about $AD$,\\\\\nConnect $CM$ intersecting $AD$ at $F$, then connect $EF$,\\\\\nunder these conditions, the sum of $EF+CF$ is minimized, and the perimeter of $\\triangle CEF$ is minimized,\\\\\n$\\because \\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore \\angle ACB=60^\\circ$, AC=BC=AB,\\\\\n$\\because AM=BM$, $CM\\perp AB$,\\\\\n$\\therefore \\angle ECF= \\frac{1}{2}\\angle ACB=30^\\circ$, $\\angle AMC=90^\\circ$,\\\\\n$\\therefore \\angle CME=90^\\circ-60^\\circ=30^\\circ$,\\\\\nBy the property of axial symmetry, we have: $\\angle MEF=\\angle FME=30^\\circ$,\\\\\n$\\therefore \\angle CFE=30^\\circ+30^\\circ=60^\\circ$.\\\\\nThus, the answer is: $\\boxed{60^\\circ}$", -"solution_image": [ -"solution_images/52604077_462.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52604340": { -"question": "As shown, student Xiao Zhang holds the teacher's isosceles right-angled triangle ruler, placing it between two stacks of rectangular solid teaching aids, with $\\angle ACB=90^\\circ$ and $AC=BC$. If the height of each rectangular solid teaching aid is $6\\text{cm}$, what is the length of the distance $DE$ in $\\text{cm}$ between the two stacks of rectangular solid teaching aids?", -"image_file_name": "7047897", -"image": [ -"math/52604340_470.png" -], -"solution": "\\textbf{Solution:} From the given, we have: $AC=BC$, $\\angle ACB=90^\\circ$, $AD\\perp DE$, $BE\\perp DE$,\\\\\n$\\therefore \\angle ADC=\\angle CEB=90^\\circ$\\\\\n$\\therefore \\angle ACD+\\angle BCE=90^\\circ$, $\\angle ACD+\\angle DAC=90^\\circ$,\\\\\n$\\therefore \\angle BCE=\\angle DAC$,\\\\\nIn $\\triangle ADC$ and $\\triangle CEB$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle ADC=\\angle CEB \\\\\n\\angle DAC=\\angle BCE \\\\\nAC=BC\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle ADC\\cong \\triangle CEB$ (AAS),\\\\\n$\\therefore CD=BE$, $AD=CE$,\\\\\n$\\because DE=CD+CE$,\\\\\n$\\therefore DE=BE+AD$,\\\\\n$\\because$ the thickness of a rectangular solid teaching aid is $6\\text{cm}$,\\\\\n$\\therefore AD=24\\text{cm}$, $BE=18\\text{cm}$,\\\\\n$\\therefore$ the distance $DE$ between the two stacks of rectangular solid teaching aids is $24+18=\\boxed{42}\\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51545444": { -"question": "As shown in the figure, in $\\triangle ABC$, $CD$ is the altitude on side $AB$, $BE$ bisects $\\angle ABC$ and intersects $CD$ at point $E$, $BC=5$. If the area of $\\triangle BCE$ is $5$, what is the length of $ED$?", -"image_file_name": "7047897", -"image": [ -"math/51545444_480.png" -], -"solution": "\\textbf{Solution:} Draw EF $\\perp$ BC at F through E, \\\\\nsince CD is the altitude from AB, and BE bisects $\\angle ABC$, intersecting CD at point E, \\\\\nthus DE=EF, \\\\\nsince the area of $\\triangle BCE= \\frac{1}{2}\\times$BC$\\times$EF=5, \\\\\nthus $\\frac{1}{2}\\times$5$\\times$EF=5, \\\\\ntherefore, EF=DE=\\boxed{2}", -"solution_image": [ -"solution_images/51545444_480.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603482": { -"question": "As shown in the figure, in an isosceles $\\triangle ABC$ with $AB=AC=13$ and $BC=10$, $D$ is the midpoint of side $BC$, and $M$, $N$ are moving points on $AD$ and $AB$, respectively. What is the minimum value of $BM+MN$?", -"image_file_name": "7047897", -"image": [ -"math/52603482_490.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $BH\\perp AC$ at H, intersecting AD at point $M'$, and draw $M'N'\\perp AB$ at $N'$, then $BM'+M'N'$ is the minimum value sought.\\\\\nSince $AB=AC$, and D is the midpoint on side BC,\\\\\nthus AD is the bisector of $\\angle BAC$,\\\\\ntherefore $M'H=M'N'$,\\\\\nthus BH is the shortest distance from point B to line AC (perpendicular segment is the shortest),\\\\\nsince $AB=AC=13$, $BC=10$, and D is the midpoint on side BC,\\\\\nthus $AD\\perp BC$,\\\\\ntherefore $AD=12$,\\\\\nsince the area of $\\triangle ABC=\\frac{1}{2}AC\\times BH=\\frac{1}{2}BC\\times AD$,\\\\\nthus $13\\times BH=10\\times 12$,\\\\\nsolving yields: $BH=\\boxed{\\frac{120}{13}}$.", -"solution_image": [ -"solution_images/52603482_490.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52603508": { -"question": "As shown in the figure, point $A$ is on the line segment $DE$, $AB\\perp AC$ with the foot of the perpendicular at $A$, and $AB = AC$, $BD\\perp DE$, $CE\\perp DE$ with the perpendicular feet at $D$ and $E$ respectively. If $ED = 12$ and $BD = 8$, what is the length of $CE$?", -"image_file_name": "7047897", -"image": [ -"math/52603508_500.png" -], -"solution": "\\textbf{Solution:} Given that $BD\\perp DE$ and $CE\\perp DE$,\\\\\nit follows that $\\angle D=\\angle E=90^\\circ$ and $\\angle ABD+\\angle BAD=90^\\circ$,\\\\\nsince $AB\\perp AC$,\\\\\nit also follows that $\\angle BAD+\\angle EAC=90^\\circ$,\\\\\ntherefore, $\\angle ABD=\\angle EAC$,\\\\\nin $\\triangle ABD$ and $\\triangle CAE$, we have $\\left\\{\\begin{array}{l}\n\\angle D=\\angle E \\\\\nAB=CA \\\\\n\\angle ABD=\\angle EAC\n\\end{array}\\right.$,\\\\\nthus, $\\triangle ABD \\cong \\triangle CAE$ by ASA,\\\\\nresulting in $BD=AE=8$, and $AD=CE$,\\\\\ntherefore, $AD=ED-AE=12-8=4$,\\\\\nhence, $CE=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603600": { -"question": "As shown in the figure, $BD$ is the bisector of $\\angle ABC$, $DE \\perp AB$ at point $E$, $DF \\perp BC$ at point $F$, $AB=12$, $BC=15$, and the area of $\\triangle ABC$ is $36$. What is the length of $DE$?", -"image_file_name": "7047897", -"image": [ -"math/52603600_510.png" -], -"solution": "\\textbf{Solution:} Given that $BD$ is the angle bisector of $\\angle ABC$, and that $DE\\perp AB$, $DF\\perp BC$\\\\\nTherefore, $DE=DF$\\\\\nSince the area of $\\triangle ABC = S_{\\triangle ABD} + S_{\\triangle BCD} = \\frac{1}{2}BC\\cdot DF + \\frac{1}{2}AB\\cdot DE = 36$, and $AB=12$, $BC=15$\\\\\nTherefore, $\\frac{1}{2} \\times 12 \\cdot DE + \\frac{1}{2} \\times 15 \\cdot DF = 36$\\\\\nTherefore, $6DE + \\frac{15}{2}DF = 36$\\\\\nFurthermore, since $DE=DF$\\\\\nTherefore, $6DE + \\frac{15}{2}DE = 36$\\\\\nTherefore, $DE = \\boxed{\\frac{8}{3}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603281": { -"question": "As shown in the figure, place a right-angled triangle plate as indicated, keeping \\(AB \\parallel DE\\). What is the degree measure of \\(\\angle ACD\\)? ", -"image_file_name": "7047897", -"image": [ -"math/52603281_520.png" -], -"solution": "\\textbf{Solution:} From the given, we have: $\\angle A= 30^\\circ$, $\\angle D= 45^\\circ$,\\\\\nAs shown in the figure, let AB intersect CD at point F,\\\\\nSince AB$\\parallel$DE,\\\\\nTherefore, $\\angle AFD=\\angle D= 45^\\circ$,\\\\\nSince $\\angle AFD$ is an exterior angle of $\\triangle ACF$,\\\\\nTherefore, $\\angle ACD=\\angle AFD-\\angle A = \\boxed{15^\\circ}$.", -"solution_image": [ -"solution_images/52603281_520.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52720357": { -"question": "As shown in the figure, in $ \\triangle ABC$, the perpendicular bisector of side $AB$ intersects $AB$ at point D and intersects $AC$ at point E. Line $BE$ is drawn. If $AC=5$ and $BC=3$, what is the perimeter of $ \\triangle BCE$?", -"image_file_name": "7047897", -"image": [ -"math/52720357_537.png" -], -"solution": "\\textbf{Solution:} Given $DE$ is the perpendicular bisector of $AB$,\\\\\nit follows that $AE=BE$,\\\\\nGiven $AC=5$,\\\\\nit then follows that $BE+CE=AE+CE=AC=5$,\\\\\nGiven $BC=3$,\\\\\nthe perimeter of $\\triangle BCE$ is $BE+CE+BC=5+3=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52720394": { -"question": "As shown in the figure, the edges AO and CO of the rectangle ABCO lie exactly on the coordinate axes, with AB = 4 and OA = 2. Point D is a point on line segment OC, and point E is a point on line segment AB. When folded along DE, such that point B coincides with point O and point C moves to point $C'$, what are the coordinates of point D at that moment?", -"image_file_name": "7047897", -"image": [ -"math/52720394_540.png" -], -"solution": "\\textbf{Solution:} Since AB$\\parallel$OC,\\\\\nit follows that $\\angle$BED=$\\angle$EDO,\\\\\nby the property of folding we get BE=OE and $\\angle$BED=$\\angle$OED,\\\\\nthus $\\angle$EDO=$\\angle$OED,\\\\\nwhich implies OE=OD,\\\\\nLet BE=OE=x, then AE=4-x,\\\\\nhence in the Rt$\\triangle$AEO, by Pythagorean theorem, we have $2^2+(4-x)^2=x^2$,\\\\\nsolving for $x$ gives $x=2.5$,\\\\\ntherefore, OE=OD=2.5,\\\\\nthus the coordinates of point D are $\\boxed{(2.5, 0)}$;", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52604175": { -"question": "As shown in the figure, it is known that $\\triangle ABC$ is an equilateral triangle, and points $B$, $C$, $D$, $E$ are on the same line, with $CG=CD$, $DF=DE$. What is the measure of $\\angle E$ in degrees?", -"image_file_name": "7047897", -"image": [ -"math/52604175_550.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an equilateral triangle,\\\\\ntherefore, $\\angle ACB=60^\\circ$,\\\\\nsince CG=CD,\\\\\ntherefore, $\\angle CDG=\\angle CGD=30^\\circ$,\\\\\nsince DF=DE,\\\\\ntherefore, $\\angle E=\\angle DFE=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51545384": { -"question": "As shown in the diagram, paper triangle $ABC$ is folded along $DE$ such that point $A$ falls on point $A'$, and $A'B$ bisects $\\angle ABC$, $A'C$ bisects $\\angle ACB$. If $\\angle BA'C=120^\\circ$, what is the degree measure of $\\angle 1+\\angle 2$?", -"image_file_name": "7047897", -"image": [ -"math/51545384_5610.png" -], -"solution": "\\textbf{Solution:} Let's connect $AA'$,\\\\\nsince $A'B$ bisects $\\angle ABC$, $A'C$ bisects $\\angle ACB$,\\\\\nthus $\\angle A'BC = \\frac{1}{2}\\angle ABC$, $\\angle A'CB = \\frac{1}{2}\\angle ACB$,\\\\\nsince $\\angle BA'C = 120^\\circ$,\\\\\nthus $\\angle A'BC + \\angle A'CB = 180^\\circ - 120^\\circ = 60^\\circ$,\\\\\nthus $\\angle ABC + \\angle ACB = 120^\\circ$,\\\\\nthus $\\angle BAC = 180^\\circ - 120^\\circ = 60^\\circ$,\\\\\nsince it's folded along DE,\\\\\nthus $\\angle DAA' = \\angle DA'A$, $\\angle EAA' = \\angle EA'A$,\\\\\nsince $\\angle 1 = \\angle DAA' + \\angle DA'A = 2\\angle DAA'$, $\\angle 2 = \\angle EAA' + \\angle EA'A = 2\\angle EAA'$,\\\\\nthus $\\angle 1 + \\angle 2 = 2\\angle DAA' + 2\\angle EAA' = 2\\angle BAC = 2\\times 60^\\circ = \\boxed{120^\\circ}$.", -"solution_image": [ -"solution_images/51545384_560.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52603599": { -"question": "As shown in the figure, in $\\triangle ABC$, the perpendicular bisector of AC intersects AC at E and BC at D. The perimeter of $\\triangle ABD$ is $13\\text{cm}$, and $AE=4.5\\text{cm}$. What is the perimeter of $\\triangle ABC$?", -"image_file_name": "7047897", -"image": [ -"math/52603599_570.png" -], -"solution": "\\textbf{Solution:} Since DE is the perpendicular bisector of AC,\\\\\nit follows that AD = CD,\\\\\ntherefore, the perimeter of $\\triangle ABD$ equals to AB + BD + AD = AB + BD + CD = AB + BC,\\\\\nalso, since AE = 4.5cm,\\\\\nit follows that AC = 2AE = 2×4.5 = 9cm,\\\\\ntherefore, the perimeter of $\\triangle ABC$ = 13 + 9 = \\boxed{22}cm.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603574": { -"question": "As shown in the figure, the perpendicular bisectors $m$ and $n$ of sides $AB$ and $AC$ of $\\triangle ABC$ intersect at point $D$. Connect $CD$. If $\\angle 1=39^\\circ$, then what is the measure of $\\angle BCD$ in degrees?", -"image_file_name": "7047897", -"image": [ -"math/52603574_580.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AD, BD,\\\\\nsince the perpendicular bisectors m and n of sides AB and AC of $\\triangle ABC$ intersect at point D,\\\\\ntherefore, AD=BD=CD,\\\\\nsince $\\angle 1=39^\\circ$,\\\\\ntherefore, $\\angle EDF=180^\\circ-\\angle 1=141^\\circ$,\\\\\nthus, $\\angle EDA+\\angle ADF=141^\\circ$,\\\\\nsince DA=DC, and DE$\\perp$AC,\\\\\ntherefore, $\\angle ADE=\\angle CDE$,\\\\\nsimilarly, it can be derived that $\\angle ADF=\\angle BDF$,\\\\\ntherefore, $\\angle CDE+\\angle BDF=141^\\circ$,\\\\\ntherefore, $\\angle CDB=360^\\circ-\\angle EDA-\\angle ADF-\\angle CDE-\\angle BDF=78^\\circ$,\\\\\nsince DC=DB,\\\\\ntherefore, $\\angle DCB=\\frac{180^\\circ-\\angle CDB}{2}=\\boxed{51^\\circ}$", -"solution_image": [ -"solution_images/52603574_580.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603537": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $\\angle BAC=120^\\circ$, $AD\\perp BC$ at $D$, $DE\\perp AC$ at $E$. If $AE=3$, what is the length of $CE$?", -"image_file_name": "7047897", -"image": [ -"math/52603537_597.png" -], -"solution": "\\textbf{Solution:} Given: In $\\triangle ABC$, $AB=AC$ and $\\angle BAC=120^\\circ$, \\\\\n$\\therefore$ $\\angle B=\\angle C=30^\\circ$, \\\\\nSince $AD\\perp BC$ at $D$, \\\\\n$\\therefore$ $\\angle ADC=90^\\circ$, \\\\\n$\\therefore$ $\\angle DAC=60^\\circ$, \\\\\nSince $DE\\perp AC$, \\\\\n$\\therefore$ $\\angle AED=90^\\circ$, \\\\\n$\\therefore$ $\\angle ADE=30^\\circ$, \\\\\nGiven $AE=3$, \\\\\n$\\therefore$ $AD=2AE=6$, \\\\\n$\\therefore$ $AC=2AD=12$, \\\\\n$\\therefore$ $CE=AC-AE=\\boxed{9}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52720676": { -"question": "As shown in the figure, both $\\triangle ABC$ and $\\triangle CDE$ are equilateral triangles, with point E inside $\\triangle ABC$. Line segments AE, BE, and BD are connected. If $\\angle EBD=50^\\circ$, what is the measure of $\\angle AEB$?", -"image_file_name": "7047897", -"image": [ -"math/52720676_605.png" -], -"solution": "\\textbf{Solution:}\n\nSince $\\triangle ABC$ is an equilateral triangle,\n\nit follows that AC = BC, $\\angle ACB=\\angle ABC=\\angle BAC=60^\\circ$,\n\nSince $\\triangle CDE$ is an equilateral triangle,\n\nit follows that CD = CE, $\\angle DCE=60^\\circ$\n\nTherefore, $\\angle ACB=\\angle DCE$,\n\nTherefore, $\\angle ACB-\\angle BCE=\\angle DCE-\\angle BCE$,\n\nthat is $\\angle BCD=\\angle ACE$,\n\nIn $\\triangle ACE$ and $\\triangle BCD$,\n\n$\\left\\{\\begin{array}{l}AC=BC\\\\ \\angle ACE=\\angle BCD\\\\ EC=CD\\end{array}\\right.$,\n\nTherefore, $\\triangle ACE \\cong \\triangle BCD$ (SAS),\n\nTherefore, $\\angle CAE=\\angle CBD$,\n\nSince $\\angle EBD=\\angle EBC+\\angle CBD=50^\\circ$,\n\nTherefore, $\\angle CAE+\\angle EBC=50^\\circ$,\n\nSince $\\angle CAB+\\angle ABC=60^\\circ+60^\\circ=120^\\circ$,\n\nTherefore, $\\angle ABE+\\angle BAE=120^\\circ-(\\angle CAE+\\angle EBC)=120^\\circ-50^\\circ=70^\\circ$,\n\nTherefore, $\\angle AEB=180^\\circ-(\\angle ABE+\\angle BAE)=180^\\circ-70^\\circ=\\boxed{110^\\circ}$.", -"solution_image": [ -"solution_images/52720676_600.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603854": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=10$, $BC=12$, and $AD=8$, where $AD$ is the angle bisector of $\\angle BAC$. If $P$ and $Q$ are moving points on $AD$ and $AC$ respectively, what is the minimum value of $PC+PQ$?", -"image_file_name": "7047897", -"image": [ -"math/52603854_619.png" -], -"solution": "\\textbf{Solution:}\n\nSince $AB=AC=10$ and $AD$ is the angle bisector of $\\angle BAC$,\\\\\nit follows that $AD\\perp BC$ (as the three lines of an isosceles triangle coincide),\\\\\nLet the point symmetrical to $Q$ with respect to line $AD$ be $Q'$, and connect $PQ'$,\\\\\nSince $AD$ is the angle bisector of $\\angle BAC$,\\\\\nit follows that point $Q'$ lies on $AB$ (based on the properties of axial symmetry and angle bisectors),\\\\\ntherefore $PC+PQ=PC+PQ'$,\\\\\ntherefore, when $CQ'\\perp AB$ and points C, P, and $Q'$ are collinear,\\\\\n$PC+PQ$ has its minimum value, i.e., $PC+PQ=CQ'$,\\\\\nSince $\\frac{1}{2}\\times BC\\times AD=\\frac{1}{2}\\times AB\\times CQ'$,\\\\\nwith $AB=10$, $BC=12$, $AD=8$,\\\\\nit follows that $\\frac{1}{2}\\times 12\\times 8=\\frac{1}{2}\\times 10\\times CQ'$,\\\\\nSolving this, $CQ'=9.6$,\\\\\ntherefore, the minimum value of $PC+PQ$ is $\\boxed{9.6}$.", -"solution_image": [ -"solution_images/52603854_616.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52838015": { -"question": "As shown in the figure, in $\\triangle ABC$, the line $DE$ is the perpendicular bisector of the side $AC$, and $AE$ is connected. If $AB=3$ and $BC=5$, what is the perimeter of $\\triangle ABE$?", -"image_file_name": "7047897", -"image": [ -"math/52838015_626.png" -], -"solution": "\\textbf{Solution:} Since $DE$ is the perpendicular bisector of side $AC$,\\\\\n$\\therefore AE=EC$,\\\\\n$\\therefore AB+BE+AE=AB+BE+EC=AB+BC=2+5=\\boxed{7}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52838018": { -"question": "As shown in the figure, $\\triangle ABC$ is an isosceles right triangle with $\\angle ABC=90^\\circ$. $\\triangle ABC$ is folded along a straight line such that the corresponding point of vertex $A$, denoted as ${A}^{\\prime}$, lands exactly on side $BC$. This crease intersects $AB$ and $AC$ at points $D$ and $E$, respectively. The bisector of $\\angle ABC$ intersects ${A}^{\\prime}D$ at point $F$. Line $EF$ is drawn. If $CE={A}^{\\prime}B$, what is the degree measure of $\\angle {A}^{\\prime}EF$?", -"image_file_name": "7047897", -"image": [ -"math/52838018_6313.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an isosceles right-angled triangle, we fold $\\triangle ABC$ along a straight line such that vertex $A'$ falls exactly on side $BC$, where this fold line crosses $AB$ and $AC$ at points D and E, respectively,\\\\\n$\\therefore$ $\\angle A = \\angle C = \\angle DA'E = 45^\\circ$,\\\\\n$\\angle FA'B + \\angle EA'C = 180^\\circ - 45^\\circ = 135^\\circ$,\\\\\nSince BF bisects $\\angle ABC$,\\\\\n$\\therefore$ $\\angle A'BF = \\frac{1}{2} \\angle ABC = 45^\\circ$,\\\\\n$\\therefore$ $\\angle BFA' + \\angle BA'F = 180^\\circ - 45^\\circ = 135^\\circ$,\\\\\n$\\therefore$ $\\angle BFA' = \\angle EA'C$,\\\\\nIn $\\triangle A'FB$ and $\\triangle EA'C$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle BFA' = \\angle EA'C\\\\\n\\angle A'BF = \\angle C\\\\\nA'B = CE\n\\end{array}\\right.$\\\\\n$\\therefore$ $\\triangle A'FB \\cong \\triangle EA'C$ (AAS),\\\\\n$\\therefore$ $A'F = A'E$,\\\\\n$\\therefore$ $\\angle A'EF = \\angle A'FE = \\frac{1}{2}(180^\\circ - \\angle DA'E) = \\frac{1}{2}(180^\\circ - 45^\\circ) = \\boxed{67.5^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52838016": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$ is a point on $BC$, $CA=CD$, $CE$ bisects $\\angle ACB$, intersects $AB$ at point $E$, and $DE$ is connected. If $\\angle A=100^\\circ$ and $\\angle B=45^\\circ$, what is the measure of $\\angle BED$ in degrees?", -"image_file_name": "7047897", -"image": [ -"math/52838016_6411.png" -], -"solution": "\\textbf{Solution:} Given that $CE$ bisects $\\angle ACB$, \\\\\nthus $\\angle ACE = \\angle DCE$, \\\\\nin $\\triangle ACE$ and $\\triangle DCE$, \\\\\n\\[\n\\left\\{\n\\begin{array}{l}\nCA = CD \\\\\n\\angle ACE = \\angle DCE \\\\\nCE = CE\n\\end{array}\n\\right.,\n\\]\ntherefore $\\triangle ACE \\cong \\triangle DCE$ (SAS), \\\\\nthus $\\angle CDE = \\angle A = 100^\\circ$, \\\\\nsince $\\angle B = 45^\\circ$, \\\\\ntherefore $\\angle BED = \\angle CDE - \\angle B = 100^\\circ - 45^\\circ = \\boxed{55^\\circ}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837902": { -"question": "As shown in the figure, in the right triangle $ABC$, $\\angle ACB=90^\\circ$, $\\angle A>\\angle B$. $CD$ is the altitude on the hypotenuse, and $CE$ is the angle bisector of $\\triangle ABC$. $FG$ is the perpendicular bisector of side $AB$, and $FG$ intersects sides $BC$ and $AB$ at points $F$ and $G$, respectively. If $\\angle DCE=\\angle B$, what is the value of $\\frac{BF}{FC}$?", -"image_file_name": "7047897", -"image": [ -"math/52837902_651.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $AF$,\n\n$\\because$ $CD$ is the altitude on the hypotenuse of right $\\triangle ABC$,\n\n$\\therefore$ $\\angle ACD + \\angle CAB = 90^\\circ$.\n\n$\\because$ $\\angle ACB = 90^\\circ$,\n\n$\\therefore$ $\\angle CAB + \\angle B = 90^\\circ$,\n\n$\\therefore$ $\\angle ACD = \\angle B$,\n\n$\\therefore$ $\\angle ACD = \\angle DCE = \\angle B$.\n\n$\\because$ $CE$ is the bisector of $\\angle ACB$,\n\n$\\therefore$ $\\angle ACE = \\frac{1}{2}\\angle ACB = 45^\\circ$,\n\n$\\therefore$ $\\angle ACD + \\angle DCE = 45^\\circ$,\n\n$\\therefore$ $\\angle B = \\angle ACD = \\angle DCE = \\frac{1}{2} \\times 45^\\circ = 22.5^\\circ$.\n\n$\\because$ $FG$ is the perpendicular bisector of side $AB$,\n\n$\\therefore$ $AF = BF$,\n\n$\\therefore$ $\\angle FAB = \\angle B = 22.5^\\circ$,\n\n$\\therefore$ $\\angle AFC = \\angle B + \\angle FAB = 45^\\circ$,\n\n$\\therefore$ $\\triangle ACF$ is an isosceles right triangle,\n\n$\\therefore$ $\\frac{AF}{FC} = \\sqrt{2}$, that is, $\\frac{BF}{FC} = \\boxed{\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52837902_650.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837762": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACD=125^\\circ$, $\\angle B=40^\\circ$, then what is the measure of $\\angle A$?", -"image_file_name": "7047897", -"image": [ -"math/52837762_670.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ACD$ is the exterior angle of $\\triangle ABC$, and $\\angle ACD=125^\\circ$, $\\angle B=40^\\circ$,\n\\[\n\\therefore \\angle A=\\angle ACD-\\angle B=\\boxed{85^\\circ}\n\\]", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837657": { -"question": "As shown in the figure, in $\\triangle ABC$, $CD$ is the altitude from $C$ to side $AB$, $BE$ bisects $\\angle ABC$ and intersects $CD$ at point $E$, $BC=5$. If the area of $\\triangle BCE$ is 5, what is the length of $ED$?", -"image_file_name": "7047897", -"image": [ -"math/52837657_689.png" -], -"solution": "\\textbf{Solution:} Construct EF $\\perp$ BC at F, \\\\\nsince CD is the altitude on side AB, and BE bisects $\\angle$ABC, intersecting CD at point E, \\\\\nthus $DE=EF$, \\\\\nsince $S_{\\triangle BCE}=\\frac{1}{2}\\times BC\\times EF=5$, \\\\\nit follows that $\\frac{1}{2}\\times 5\\times EF=5$, \\\\\nhence, $EF=DE=\\boxed{2}$.", -"solution_image": [ -"solution_images/52837657_680.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837520": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, CE is the angle bisector of $\\triangle ABC$, and $\\angle AEC=105^\\circ$. What is the measure of $\\angle B$ in degrees?", -"image_file_name": "7047897", -"image": [ -"math/52837520_690.png" -], -"solution": "\\textbf{Solution:} Since CE bisects $\\angle ACB$ and $\\angle ACB=90^\\circ$, \\\\\nit follows that $\\angle BCE=\\frac{1}{2}\\angle ACB=45^\\circ$, \\\\\nGiven that $\\angle AEC=105^\\circ$, \\\\\nit implies that $\\angle B=\\angle AEC-\\angle BCE=\\boxed{60^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653195": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A=90^\\circ$, $\\angle C=30^\\circ$, and $AD \\perp BC$ at $D$. $BE$ is the bisector of $\\angle ABC$, and it intersects $AD$ at point $P$. If $AP=3$, what is the length of $AC$?", -"image_file_name": "7047897", -"image": [ -"math/52653195_700.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle A=90^\\circ$, $\\angle C=30^\\circ$, \\\\\n$\\therefore \\angle ABC=60^\\circ$, \\\\\n$\\because BE$ is the bisector of $\\angle ABC$, \\\\\n$\\therefore \\angle ABP=\\angle DBP=30^\\circ$, \\\\\n$\\because AD\\perp BC$, \\\\\n$\\therefore \\angle BAD=30^\\circ$, \\\\\n$\\therefore \\angle PAB=\\angle PBA$, \\\\\n$\\therefore BP=AP=3$, \\\\\nIn $Rt\\triangle PBD$, $PD=\\frac{1}{2}PB=\\frac{3}{2}$, \\\\\n$\\therefore AD=AP+PD=\\frac{9}{2}$, \\\\\nIn $Rt\\triangle ADC$, $AC=2AD=\\boxed{9}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52655364": { -"question": "As shown in the figure, in $ \\triangle ABC$, it is known that $ \\angle A=58^\\circ, \\angle B=60^\\circ$. What is the degree measure of $ \\angle ADC$?", -"image_file_name": "7047897", -"image": [ -"math/52655364_713.png" -], -"solution": "\\textbf{Solution:} Given: $\\because$ $\\angle 1=58^\\circ$, $\\angle B=60^\\circ$\\\\\n$\\therefore$ $\\angle ADC=\\angle 1+\\angle B=58^\\circ+60^\\circ=\\boxed{118^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653337": { -"question": "Given: As shown in the diagram, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, and $BC = BD$, $AC = AE$, then what is the degree measure of $\\angle DCE$?", -"image_file_name": "7047897", -"image": [ -"math/52653337_720.png" -], -"solution": "\\textbf{Solution:} Given that AC=AE and BC=BD,\\\\\nlet $\\angle$AEC=$\\angle$ACE=x and $\\angle$BDC=$\\angle$BCD=y,\\\\\nthen $\\angle$A=180$^\\circ$-2x and $\\angle$B=180$^\\circ$-2y,\\\\\nsince $\\angle$ACB+$\\angle$A+$\\angle$B=$180^\\circ$,\\\\\nthus 90$^\\circ$+(180$^\\circ$-2x)+(180$^\\circ$-2y)=180$^\\circ$,\\\\\nhence x+y=135$^\\circ$,\\\\\ntherefore, $\\angle$DCE=180$^\\circ$-($\\angle$AEC+$\\angle$BDC)=180$^\\circ$-(x+y)=\\boxed{45^\\circ}.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52655206": { -"question": "As shown in the diagram, point $D$ is on side $AB$ of $\\triangle ABC$, and point $E$ is the midpoint of $CD$. Connect $AE$ and $BE$. If the area of $\\triangle ABC$ is 8, what is the area of the shaded region?", -"image_file_name": "7047897", -"image": [ -"math/52655206_732.png" -], -"solution": "\\textbf{Solution:} Since point E is the midpoint of CD, \\\\\nit follows that the area of $\\triangle ACE$ equals the area of $\\triangle ADE$, and the area of $\\triangle BCE$ equals the area of $\\triangle BDE$, \\\\\nhence, the area of the shaded region equals $\\frac{1}{2}$ the area of $\\triangle ABC$ = $\\frac{1}{2} \\times 8 = \\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653366": { -"question": "As shown in the figure, the two medians $AD$ and $BE$ of $\\triangle ABC$ intersect at point $F$. Connecting $CF$, if the area of $\\triangle ABF$ is $8$, what is the area of $\\triangle ABC$?", -"image_file_name": "7047897", -"image": [ -"math/52653366_740.png" -], -"solution": "\\textbf{Solution:} Given that the two medians $AD$ and $BE$ of $\\triangle ABC$ intersect at point $F$,\\\\\n$\\therefore 2EF=BF$,\\\\\n$\\because$ the area of $\\triangle ABF$ is $8$,\\\\\n$\\therefore$ the area of $\\triangle AEF$ is $4$,\\\\\n$\\therefore$ the area of $\\triangle ABE$ is $12$.\\\\\n$\\because AE$ is the median of $\\triangle ABC$,\\\\\n$\\therefore$ the area of $\\triangle ABC$ is $2$ times the area of $\\triangle ABE$ which equals $\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836530": { -"question": "As shown in the figure, $ \\angle AOB=30^\\circ$, point P lies on the bisector of $ \\angle AOB$, the perpendicular bisector of $ OP$ intersects $ OA$ and $ OB$ at points M and N, respectively. Point E is a point on $ OA$ different from point M, and $ PE=ON=2$. What is the area of $ \\triangle POE$?", -"image_file_name": "7047897", -"image": [ -"math/52836530_758.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect PM, draw PC $\\perp$ OA at point C through point P, suppose MN intersects OP at point D,\\\\\n$\\because \\angle AOB=30^\\circ$, OP is the angle bisector of $\\angle AOB$,\\\\\n$\\therefore \\angle MOP=15^\\circ$\\\\\n$\\because$ MN is the perpendicular bisector of OP\\\\\n$\\therefore MN\\perp OD$, $MP=MO$\\\\\n$\\therefore \\angle ODM=\\angle ODN=90^\\circ$, $\\angle MOP=\\angle MPO=15^\\circ$\\\\\nAlso, $\\because OD=OD$\\\\\n$\\therefore \\triangle OMD\\cong \\triangle OND$\\\\\n$\\therefore OM=ON$\\\\\n$\\because PE=ON=2$\\\\\n$\\therefore PE=OM$\\\\\n$\\because MP=MO$\\\\\n$\\therefore MP=PE=2$\\\\\n$\\because \\angle PMA=\\angle MOP+\\angle MPO=30^\\circ$\\\\\n$\\therefore \\angle PEC=\\angle PME=30^\\circ$\\\\\n$\\because PC\\perp ME$\\\\\n$\\therefore CE=CM$, $PC=\\frac{1}{2}PE=1$\\\\\nIn $\\triangle CPE$, $CE=\\sqrt{3}$\\\\\n$\\therefore OE=OM+ME=OM+2CE=2+2\\sqrt{3}$\\\\\n$\\therefore {S}_{\\triangle POE}=\\frac{1}{2}\\cdot OE\\cdot PC = \\boxed{1+\\sqrt{3}}$", -"solution_image": [ -"solution_images/52836530_750.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836657": { -"question": "As shown in the figure, two bamboo poles $AB$ and $DB$ are leaning against the wall $CE$ at angles such that $\\angle CAB = 33^\\circ$ and $\\angle CDB = 21^\\circ$. What is the measure of $\\angle ABD$?", -"image_file_name": "7047897", -"image": [ -"math/52836657_760.png" -], -"solution": "\\textbf{Solution:} Since $\\angle CAB$ is an exterior angle of $\\triangle ABD$ and $\\angle CAB=33^\\circ$, $\\angle CDB=21^\\circ$,\\\\\nthen $\\angle CAB=\\angle ABD+\\angle CDB$,\\\\\nthus, $\\angle ABD=\\angle CAB-\\angle CDB=12^\\circ$,\\\\\ntherefore, the answer is: $\\boxed{12^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836358": { -"question": "As shown in the diagram, in the right triangle $\\triangle ABC$ the two perpendicular sides satisfy $BC=6$ and $AC=8$. Three squares are constructed on the three sides of right triangle $\\triangle ABC$. If the areas of the four shaded regions are denoted as $S_{1}$, $S_{2}$, $S_{3}$, and $S_{4}$ respectively, what is the value of $S_{4}$? What is the value of $S_{2}+S_{3}-S_{1}$?", -"image_file_name": "7047897", -"image": [ -"math/52836358_770.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ACFE and quadrilateral ABGD are squares, and the right-angle sides of $\\triangle ACB$ are BC and AC,\n\n$\\therefore$AE=AC, $\\angle EAD+\\angle DAC=\\angle CAB+\\angle DAC=90^\\circ$, $\\angle E=\\angle ACB=90^\\circ$, AD=AB, AB=BG, $\\angle ABK=\\angle BGH=90^\\circ$, $\\angle KAB+\\angle ABC=\\angle HBG+\\angle ABC=90^\\circ$,\n\n$\\therefore$$\\angle EAD=\\angle CAB$, $\\angle KAB=\\angle HBG$,\n\nGiven that in $\\triangle EAD$ and $\\triangle CAB$,\n\n$\\left\\{\\begin{array}{l}\n\\angle E=\\angle ACB \\\\\n\\angle EAD=\\angle CAB \\\\\nAE=AC\n\\end{array}\\right.$\n\n$\\therefore$$\\triangle EAD\\cong \\triangle CAB$,\n\nGiven BC=6, AC=8,\n\n$\\therefore$S$_{4}$=S$_{\\triangle ABC}=\\frac{1}{2}AC\\cdot BC=\\frac{1}{2}\\times 6\\times 8=\\boxed{24}$,\n\nGiven that in $\\triangle ABK$ and $\\triangle BGH$,\n\n$\\left\\{\\begin{array}{l}\n\\angle ABK=\\angle BGH \\\\\nAB=BG \\\\\n\\angle KAB=\\angle HBG\n\\end{array}\\right.$\n\n$\\therefore$$\\triangle ABK\\cong \\triangle BGH$,\n\n$\\therefore$S$_{\\triangle ABC}=S_{1}$,\n\nLet the area of quadrilateral ADHC be $m$, and the area of $\\triangle BCK$ be $n$,\n\nGiven quadrilateral ACFE, quadrilateral ABGD, and quadrilateral BJIC are all squares, and the right-angle sides of $\\triangle ACB$ are BC and AC,\n\n$\\therefore$${S}_{3}+{S}_{4}+m=AC^{2}$, ${S}_{2}+n=BC^{2}$, ${S}_{1}+m+n+{S}_{\\triangle ABC}=AB^{2}$, $AC^{2}+BC^{2}=AB^{2}$\n\n$\\therefore$S$_{2}$+S$_{3}$−S$_{1}$\n\n=$\\left({S}_{3}+{S}_{4}+m\\right)+\\left({S}_{2}+n\\right)−\\left({S}_{\\triangle ABC}+m+n+{S}_{1}\\right)$\n\n=$AC^{2}+BC^{2}−AB^{2}$\n\n=$\\boxed{0}$", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52653585": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are located on sides AC and BC respectively, and $AD=DE$, $AB=BE$, $\\angle A=70^\\circ$, what is the measure of $\\angle CED$ in degrees?", -"image_file_name": "7047897", -"image": [ -"math/52653585_780.png" -], -"solution": "\\textbf{Solution:} Since $AD=DE$, and $AB=BE$\\\\\nAlso $BD= BD$\\\\\nTherefore, $\\triangle ABD \\cong \\triangle EBD$ (SSS)\\\\\nThus, $\\angle BED = \\angle A = 70^\\circ$\\\\\nTherefore, $\\angle CED = 180^\\circ - \\angle BED = 180^\\circ - 70^\\circ = \\boxed{110^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52653587": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle B=15^\\circ$. Point D is the midpoint of AB, and $DE \\perp AB$ intersects BC at point E. Given $BE=8\\text{cm}$, what is the length of $AC$ in cm?", -"image_file_name": "7047897", -"image": [ -"math/52653587_791.png" -], -"solution": "\\textbf{Solution:} Since point D is the midpoint of AB, and DE is perpendicular to AB, intersecting BC at point E, \\\\\ntherefore DE bisects AB perpendicularly, \\\\\nthus AE=BE=8, \\\\\ntherefore $\\angle B=\\angle BAE=15^\\circ$, \\\\\nsince $\\angle AEC=\\angle B+\\angle BAE$, \\\\\ntherefore $\\angle AEC=30^\\circ$, \\\\\nsince $\\angle ACB=90^\\circ$, and AE=8, \\\\\ntherefore AC=\\boxed{4}.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653234": { -"question": "As shown in the figure, point D is a point on side AC of $\\triangle ABC$. Points B and C are symmetric with respect to DE. If $AC=6$ and $AD=2$, what is the length of segment BD?", -"image_file_name": "7047897", -"image": [ -"math/52653234_803.png" -], -"solution": "\\textbf{Solution:} \\quad Since $AC=6$ and $AD=2$, \\\\\n$\\therefore CD=AC-AD=6-2=4$, \\\\\nSince $B$ and $C$ are symmetrical about $DE$, \\\\\n$\\therefore DB=DC=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52836660": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD \\perp BC$ at point $D$, $AD$ and $BE$ intersect at point $F$, and $AC=BF$, $DF=DC$. If $\\angle ABE=15^\\circ$, what is the degree measure of $\\angle DBF$?", -"image_file_name": "7047897", -"image": [ -"math/52836660_810.png" -], -"solution": "\\textbf{Solution:} Since $AD \\perp BC$, \\\\\ntherefore $\\angle BDF = \\angle ADC = 90^\\circ$, \\\\\nIn right triangles $\\triangle BDF$ and $\\triangle ADC$, \\\\\n$\\left\\{\\begin{array}{l}AC=BF\\\\ DC=DF\\end{array}\\right.$, \\\\\ntherefore right $\\triangle BDF \\cong \\triangle ADC$ (HL), \\\\\ntherefore $AD = BD$, \\\\\ntherefore $\\angle ABD = \\angle DAB = 45^\\circ$, \\\\\nsince $\\angle ABE = 15^\\circ$, \\\\\ntherefore $\\angle DBF = \\angle ABD - \\angle ABE = 45^\\circ - 15^\\circ = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836935": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ is the altitude from $A$ to side $BC$, and $BE$ is the altitude from $B$ to side $AC$, with $AD$ and $BE$ intersecting at point $F$. If $BF=AC$, $BD=8$, and $CD=3$, what is the length of segment $AF$?", -"image_file_name": "7047897", -"image": [ -"math/52836935_8210.png" -], -"solution": "\\textbf{Solution:}\n\nSince AD is the height from vertex A to side BC, and BE is the height from vertex B to side AC,\n\n$\\therefore \\angle ADC=\\angle FDB=90^\\circ$, $\\angle AEB=90^\\circ$,\n\n$\\therefore \\angle 1+\\angle C=90^\\circ$, $\\angle 1+\\angle 2=90^\\circ$,\n\n$\\therefore \\angle 2=\\angle C$,\n\nSince $\\angle 2=\\angle 3$,\n\n$\\therefore \\angle 3=\\angle C$,\n\nIn $\\triangle ADC$ and $\\triangle BDF$,\n\n$\\left\\{\\begin{array}{l}\n\\angle 3=\\angle C \\\\\n\\angle FDB=\\angle CDA \\\\\nBF=AC\n\\end{array}\\right.$,\n\n$\\therefore \\triangle BDF \\cong \\triangle ADC$ (AAS),\n\n$\\therefore FD=CD$, $AD=BD$,\n\nSince CD=3, BD=8,\n\n$\\therefore AD=8$, $DF=3$,\n\n$\\therefore AF=8-3=\\boxed{5}$.", -"solution_image": [ -"solution_images/52836935_820.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52836690": { -"question": "\\textit{As shown in the figure, in an equilateral $\\triangle ABC$, $BD$ is the bisector of $\\angle ABC$, point $E$ is the midpoint of $BC$, and point $P$ is a movable point on $BD$. Lines $PE$ and $PC$ are drawn. When the value of $PE + PC$ is at its minimum, what is the degree measure of $\\angle EPC$?}", -"image_file_name": "7047897", -"image": [ -"math/52836690_839.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an equilateral triangle, and BD is the bisector of $\\angle ABC$, \\\\\ntherefore, point D is the midpoint of AC, and BD$\\perp$AC, \\\\\nthus, points A and C are symmetric with respect to BD, \\\\\nas shown in the figure, draw AE, intersecting BD at P, the length of line segment AE is the minimum value of PE+PC, \\\\\nsince point E is the midpoint of side BC, \\\\\nthus AE$\\perp$BC, \\\\\nsince $\\angle ABC=60^\\circ$, and BD is the bisector of $\\angle ABC$, \\\\\nthus $\\angle PBE=30^\\circ$, \\\\\ntherefore, $\\angle BPE=60^\\circ$, \\\\\nsince in $\\triangle BPE$ and $\\triangle CPE$, \\\\\n$ \\left\\{\\begin{array}{l}PE=PE \\\\ \\angle PEB=\\angle PEC=90^\\circ \\\\ BE=CE \\end{array}\\right.$, \\\\\ntherefore, $\\triangle BPE\\cong \\triangle CPE$ (SAS), \\\\\ntherefore, $\\angle EPC=\\angle BPE=60^\\circ$. \\\\\nHence, the answer is: $\\boxed{60^\\circ}$.", -"solution_image": [ -"solution_images/52836690_830.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52654988": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle C=90^\\circ$, AD bisects $ \\angle BAC$, $ DE\\perp AB$ with foot E, $ AB=12$, $ AC=8$, what is the length of BE?", -"image_file_name": "7047897", -"image": [ -"math/52654988_846.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ AD bisects $\\angle$BAC,\\\\\n$\\therefore$$\\angle$DAE=$\\angle$DAC\\\\\n$\\because$$\\angle$C=90$^\\circ$, DE$\\perp$AB,\\\\\n$\\therefore$$\\angle$AED=$\\angle$ACD=90$^\\circ$,\\\\\nAlso, AD=AD,\\\\\n$\\therefore$ $\\triangle$ADE$\\cong$ $\\triangle$ADC,\\\\\n$\\therefore$AE=AC,\\\\\n$\\because$AB=12, AC=8,\\\\\n$\\therefore$BE=AB−AE=AB−AC=12−8=\\boxed{4}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52655068": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle B=15^\\circ$, the perpendicular bisector of AB intersects AB at E and intersects BC at D. Given that BD=8, what is the length of AC?", -"image_file_name": "7047897", -"image": [ -"math/52655068_860.png" -], -"solution": "\\textbf{Solution:} As shown in the figure: \\\\\nSince in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle B=15^\\circ$, \\\\\ntherefore $\\angle BAC=180^\\circ-\\angle C-\\angle B=180^\\circ-90^\\circ-15^\\circ=75^\\circ$. \\\\\nDraw AD. \\\\\nSince ED is the perpendicular bisector of AB, therefore AD=BD=8, $\\angle B=\\angle 1=15^\\circ$, \\\\\ntherefore $\\angle 2=\\angle BAC-\\angle 1=75^\\circ-15^\\circ=60^\\circ$. \\\\\nIn $\\triangle ACD$, $\\angle 2=60^\\circ$, $\\angle C=90^\\circ$, \\\\\ntherefore $\\angle 3=180^\\circ-\\angle C-\\angle 2=180^\\circ-90^\\circ-60^\\circ=30^\\circ$. \\\\\nTherefore, $AC=\\frac{1}{2}AD=\\frac{1}{2}BD=\\frac{1}{2}\\times 8=\\boxed{4}$.", -"solution_image": [ -"solution_images/52655068_860.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52655307": { -"question": "In the diagram, within $\\triangle ABC$, where $AB=10$, $AC=8$, the angle bisectors of $\\angle ABC$ and $\\angle ACB$ intersect at point D. A line through D, $EF\\parallel BC$, intersects $AB$ at point E, and intersects $AC$ at point F. What is the perimeter of $\\triangle AEF$?", -"image_file_name": "7047897", -"image": [ -"math/52655307_879.png" -], -"solution": "\\textbf{Solution:} Since $EF\\parallel BC$\\\\\n$\\therefore \\angle BDE=\\angle DBC$\\\\\nSince $BD$ bisects $\\angle ABC$\\\\\n$\\therefore \\angle DBC=\\angle DBE$\\\\\n$\\therefore \\angle BDE=\\angle DBE$\\\\\n$\\therefore BE=DE$\\\\\nSimilarly, it can be proved that $CF=DF$\\\\\nSince $AB=10$, $AC=8$\\\\\n$\\therefore$ the perimeter of $\\triangle AEF = AE+AF+DE+DF=AE+AF+BE+CF=AB+AC=\\boxed{18}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55403712": { -"question": "As shown in the figure, in $\\triangle ABC$, it is known that $\\angle ABC=90^\\circ$. With $AC$ as the right angle side, $\\triangle ACD$ is constructed outside ($\\angle CAD=90^\\circ$). Semicircles are drawn outside with diameters $AB$, $BC$, $CD$, $DA$ respectively, and their areas are denoted as $S_1$, $S_2$, $S_3$, and $S_4$. It is known that $S_1=3$, $S_2=1$, and $S_3=7$. What is the value of $S_4$?", -"image_file_name": "7046945", -"image": [ -"math/55403712_2816.png" -], -"solution": "\\textbf{Solution:} From the given problem, we have\n\\begin{align*}\nS_1 &= \\frac{1}{8}AB^2\\pi = 3, \\\\\nS_2 &= \\frac{1}{8}BC^2\\pi = 1, \\\\\nS_3 &= \\frac{1}{8}CD^2\\pi = 7, \\\\\nS_4 &= \\frac{1}{8}AD^2\\pi,\n\\end{align*}\nUsing the Pythagorean theorem, we can derive:\n\\begin{align*}\nAC^2 &= BC^2 + AB^2, \\\\\nAD^2 &= CD^2 - AC^2,\n\\end{align*}\nHence,\n\\begin{align*}\nAD^2 &= CD^2 - BC^2 - AB^2, \\\\\n\\end{align*}\nFrom the above equations, we reach:\n\\begin{align*}\nAB^2 &= \\frac{24}{\\pi}, \\\\\nBC^2 &= \\frac{8}{\\pi}, \\\\\nCD^2 &= \\frac{56}{\\pi},\n\\end{align*}\nTherefore,\n\\begin{align*}\nAD^2 &= CD^2 - BC^2 - AB^2 = \\frac{24}{\\pi},\n\\end{align*}\nThus,\n\\begin{align*}\nS_4 &= \\frac{1}{8}AD^2\\pi = \\frac{1}{8} \\times \\frac{24}{\\pi} \\times \\pi = \\boxed{3}.\n\\end{align*}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52867065": { -"question": "As shown in the diagram, in $\\triangle ABC$, $DE$ is the perpendicular bisector of $AC$, $AB=4$, and $BC=7$. What is the perimeter of $\\triangle ABD$?", -"image_file_name": "7046945", -"image": [ -"math/52867065_295.png" -], -"solution": "\\textbf{Solution:} Given that $DE$ is the perpendicular bisector of $AC$,\\\\\n$\\therefore AD=CD$,\\\\\n$\\therefore BC=BD+CD=BD+AD$,\\\\\n$\\therefore$ the perimeter of $\\triangle ABD$ $=AB+BD+AD=AB+BC=4+7=\\boxed{11}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52861956": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, D is the midpoint of AB, $AC=5$, and $BC=12$. What is the length of $CD$?", -"image_file_name": "7046945", -"image": [ -"math/52861956_300.png" -], -"solution": "\\textbf{Solution:} In right triangle $\\triangle ACB$, $\\angle ACB=90^\\circ$, $AC=5$, $BC=12$,\\\\\n$\\therefore AB= \\sqrt{AC^{2}+BC^{2}}=\\sqrt{5^{2}+12^{2}}=13$,\\\\\n$\\because D$ is the midpoint of $AB$,\\\\\n$\\therefore AD=BD$,\\\\\n$\\therefore CD= \\frac{1}{2} AB=\\boxed{6.5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52861347": { -"question": "As shown in the figure, in the isosceles right triangle $\\triangle ABC$ with leg length of $4$, $D$ and $E$ are two moving points on sides $AB$ and $AC$ respectively, and $AE=BD$. What is the minimum value of $CD+BE$?", -"image_file_name": "7046945", -"image": [ -"math/52861347_310.png" -], -"solution": "\\textbf{Solution:} Construct CF $\\perp$ AC such that CF=AC=4. Connect EF and BF, intersecting AC at point O.\n\n$\\because$ AB=AC, AE=BD,\n\n$\\therefore$ AD=CE,\n\nIn $\\triangle ACD$ and $\\triangle CEF$,\n\n$\\left\\{\\begin{array}{l}\nAD=CE\\\\\n\\angle DAC=\\angle ECF\\\\\nAC=CF\n\\end{array}\\right.$\n\n$\\therefore$ $\\triangle ACD \\cong \\triangle CEF$ (SAS),\n\n$\\therefore$ CD=FE,\n\n$\\therefore$ BE+CD=BE+EF$\\geq$BF,\n\nWhen points B, E, and F are collinear, the value of BE+CD=BF is minimal,\n\n$\\because$ $\\angle$BAC=$\\angle$ACF=90$^\\circ$, AB=AC, AC=CF,\n\n$\\therefore$ AB$\\parallel$CF,\n\n$\\therefore$ quadrilateral ABCF is a parallelogram,\n\n$\\therefore$ BF=2OB, AO=OC=2,\n\nIn Rt $\\triangle ABO$, $BO=\\sqrt{AB^{2}+AO^{2}}=\\sqrt{4^{2}+2^{2}}=2\\sqrt{5}$\n\n$\\therefore$ BF=$\\boxed{4\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52861347_310.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52828224": { -"question": "As shown in the figure, given a rectangular paper $ABCD$, where point $E$ is on side $AB$ and $BE=2, BC=3$, if $\\triangle CBE$ is folded along the line $CE$ such that point $B$ falls on point $G$, and extending $EG$ intersects $CD$ at point $F$, then what is the length of segment $FG$?", -"image_file_name": "7046945", -"image": [ -"math/52828224_329.png" -], -"solution": "\\textbf{Solution:} Given that by folding the triangle $\\triangle CBE$ along the line $CE$, with $BE=2$ and $BC=3$, \\\\\nit follows that $\\angle BEC=\\angle FEC$ and $\\angle CGE=\\angle B=90^\\circ$. Hence, $BE=GE=2$ and $BC=CG=3$. \\\\\nSince we are dealing with the rectangle $ABCD$, \\\\\nit implies that $AB\\parallel CD$, \\\\\nwhich leads to the conclusion that $\\angle BEC=\\angle FCE$, \\\\\ntherefore, $\\angle FEC=\\angle FCE$, \\\\\nindicating that $FE=FC$. \\\\\nLet $FG=x$, then $FC=x+2$, \\\\\nthus, in the right triangle $\\triangle FGC$, we have $(x+2)^2=x^2+3^2$, \\\\\nsolving this, we get $x=\\frac{5}{4}$, which means $FG=\\boxed{\\frac{5}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52828913": { -"question": "As shown in the figure, two right-angled triangles with angles $45^\\circ$ and $30^\\circ$ are placed on the same plane. If $AB=2\\sqrt{2}$, what is the length of $BD$?", -"image_file_name": "7046945", -"image": [ -"math/52828913_334.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC$ is a right-angled triangle with a $45^\\circ$ angle, and $AB=2\\sqrt{2}$, \\\\\ntherefore $AC^2+BC^2=AB^2$, \\\\\nthus $AC=BC=2$, \\\\\nsince $\\triangle DBC$ is a right-angled triangle with a $30^\\circ$ angle, and $\\angle D=30^\\circ$, $BC=2$, \\\\\ntherefore $BD=2BC=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52828917": { -"question": "As shown in the figure, fold a rectangular strip of paper successively along the line segments $EF$ and $HI$, with $EF\\parallel HI$, to form a \"Z\" shaped pattern. Given that $\\angle DFE = 60^\\circ$ and $AE = 2\\text{cm}$, in order for point $H$ and point $K$ to be on the extensions of $AD$ and $EF$ respectively (not coincident with $D$ or $F$), what is the length of $AB$ in centimeters?", -"image_file_name": "7046945", -"image": [ -"math/52828917_3411.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $DH$ and $FK$, where points H and K are on the extensions of $AD$ and $EF$ (not coinciding with D and F), respectively, and point M is a point on the extension of $EH$.\\\\\nIn the rectangle strip $ABCD$, $\\angle A=\\angle ADC=90^\\circ$, $AB\\parallel CD$,\\\\\n$\\therefore$ $\\angle DFE=\\angle BEF=60^\\circ$, $EH\\parallel FI$,\\\\\nFrom the folding, it is known that: $\\angle GEF=\\angle BEF=60^\\circ$,\\\\\n$\\therefore$ $\\angle AEG=60^\\circ$,\\\\\n$\\therefore$ $\\angle AHE=30^\\circ$,\\\\\n$\\therefore$ $AE=\\frac{1}{2}EH$,\\\\\n$\\because$ $EH\\parallel FI$,\\\\\n$\\therefore$ $\\angle EHI+\\angle GEF=180^\\circ$,\\\\\n$\\therefore$ $\\angle EHI=120^\\circ$,\\\\\n$\\therefore$ $\\angle MHI=60^\\circ$,\\\\\nFrom the folding, it is known that: $\\angle JHI=\\angle MHI=60^\\circ$,\\\\\n$\\therefore$ $\\angle EHK=60^\\circ$,\\\\\n$\\because$ $\\angle GEF=60^\\circ$,\\\\\n$\\therefore$ $\\angle EKH=60^\\circ$,\\\\\n$\\therefore$ $\\triangle EHK$ is an equilateral triangle,\\\\\n$\\therefore$ $EH=HK=EK$,\\\\\n$\\because$ $AE=\\frac{1}{2}EH$, $AE=2\\text{cm}$\\\\\n$\\therefore$ $EH=HK=EK=4\\text{cm}$,\\\\\nFrom the folding, it is known: $AE+EH+HK=AB$,\\\\\n$\\therefore$ $AB=2+4+4=\\boxed{10}\\text{cm}$.", -"solution_image": [ -"solution_images/52828917_345.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52826808": { -"question": "As shown in the figure, in triangle $ABC$, $AD \\perp BC$, $CE \\perp AB$, with the perpendicular feet being D and E respectively. $AD$ and $CE$ intersect at point H. Given that $EH = EB = 5$ and $CH = 2$, then what is the length of $AE$?", -"image_file_name": "7046945", -"image": [ -"math/52826808_358.png" -], -"solution": "\\textbf{Solution:} Given: $EH=EB=5$, $CH=2$,\\\\\nTherefore $EC=EH+CH=7$,\\\\\nSince $AD\\perp BC$, $CE\\perp AB$,\\\\\nThus $\\angle ADB=\\angle AEH=90^\\circ$,\\\\\nSince $\\angle AHE=\\angle CHD$,\\\\\nThus $\\angle BAD=\\angle BCE$,\\\\\nIn $\\triangle HEA$ and $\\triangle BEC$, $\\left\\{\\begin{array}{l}\\angle EAH=\\angle BCE \\\\ \\angle AEH=\\angle BEC=90^\\circ \\\\ EH=EB\\end{array}\\right.$,\\\\\nTherefore $\\triangle HEA\\cong \\triangle BEC\\left(AAS\\right)$,\\\\\nHence $AE=EC=\\boxed{7}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52827542": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, point D is on the right angle side $BC$, $AD$ bisects $\\angle BAC$, $DE$ is the perpendicular bisector of $AB$, $CD=8\\,cm$, then what is the length of $BD$ in $cm$?", -"image_file_name": "7046945", -"image": [ -"math/52827542_3610.png" -], -"solution": "Solution: Since $DE$ is the perpendicular bisector of side $AB$ of $\\triangle ABC$,\\\\\nit follows that $AD=BD$,\\\\\ntherefore, $\\angle B=\\angle DAB$,\\\\\nsince $AD$ bisects $\\angle BAC$ and $\\angle C=90^\\circ$,\\\\\nit follows that $\\angle DAB=\\angle DAC$ and $DC=DE=8$,\\\\\ntherefore, $\\angle B=\\angle DAB=\\angle DAC$,\\\\\nhence, $\\angle B=30^\\circ$,\\\\\nin right triangle $Rt\\triangle BDE$ with $\\angle B=30^\\circ$ and $DE=8$,\\\\\nit follows that $DB=\\boxed{16}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52793334": { -"question": "As shown in the figure, $AD$ perpendicularly bisects $BC$ at $D$, $\\angle BAC=45^\\circ$, $CE \\perp AB$ at $E$, intersecting $AD$ at $F$, and $BD=2$. What is the length of $AF$?", -"image_file_name": "7046945", -"image": [ -"math/52793334_377.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ vertically bisects $BC$, and $BD=2$, \\\\\nit follows that $BC=2BD=4$, \\\\\nsince $CE\\perp AB$, \\\\\nit follows that $\\angle CEB=90^\\circ$, \\\\\nthus, $\\angle AEC=90^\\circ$, \\\\\ngiven that $\\angle BAC=45^\\circ$, \\\\\nit follows that $\\angle ACE=90^\\circ-45^\\circ=45^\\circ$, \\\\\nhence, $\\angle EAC=\\angle ACE$, \\\\\nthus, $AE=CE$, \\\\\nsince $AD$ vertically bisects $BC$, \\\\\nit follows that $\\angle ADB=90^\\circ$, \\\\\nthus, $\\angle B+\\angle BAD=90^\\circ$, \\\\\ngiven that $\\angle B+\\angle BCE=90^\\circ$, \\\\\nit follows that $\\angle BAD=\\angle BCE$, \\\\\nin $\\triangle AEF$ and $\\triangle CEB$, we have $\\left\\{\\begin{array}{l}\\angle AEF=\\angle CEB \\\\ AE=CE \\\\ \\angle EAF=\\angle BCE\\end{array}\\right.$, \\\\\ntherefore, $\\triangle AEF\\cong \\triangle CEB\\left(ASA\\right)$, \\\\\nhence, $AF=BC= \\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52793522": { -"question": "As shown in the figure, points B and D are on the ray AM, points C and E are on the ray AN, and AB=BC=CD=DE. Given that $\\angle EDM=84^\\circ$, what is the measure of $\\angle A$ in degrees?", -"image_file_name": "7046945", -"image": [ -"math/52793522_380.png" -], -"solution": "Solution: Since $AB=BC=CD=DE$, \\\\\nit follows that $\\angle A=\\angle BCA$, $\\angle CBD=\\angle BDC$, $\\angle ECD=\\angle CED$,\\\\\naccording to the exterior angle theorem, $\\angle A+\\angle BCA=\\angle CBD$, $\\angle A+\\angle CDB=\\angle ECD$, $\\angle A+\\angle CED=\\angle EDM$,\\\\\nadditionally, since $\\angle EDM=84^\\circ$,\\\\\nthus, $\\angle A+3\\angle A=84^\\circ$,\\\\\nsolving this gives $\\angle A=\\boxed{21^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52774844": { -"question": "As shown in the figure, $AB\\perp BC$, $CD\\perp BC$, with the perpendicular feet being $B$, $C$ respectively. Let $P$ be a point on the line segment $BC$. Connect $PA$ and $PD$. Given that $AB=5$, $DC=4$, and $BC=12$, what is the minimum value of $AP+DP$?", -"image_file_name": "7046945", -"image": [ -"math/52774844_390.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, let's construct point $A'$ symmetrical to point $A$ with respect to $BC$. Draw $A'D$ intersecting $BC$ at point $P$. Through point $A'$, draw $A'M \\perp DC$ intersecting at point $M$,\n\\[\n\\therefore AP = A'P,\n\\]\n\\[\n\\therefore AP + PD = A'P + PD,\n\\]\nWhen points $A'$, $P$, and $D$ are collinear, $A'P + PD = A'D$. At this moment, the value of $A'P + PD$ is minimized,\n\\[\n\\because AB = 5, \\; DC = 4, \\; BC = 12,\n\\]\n\\[\n\\therefore AM = 12, \\; DM = 5 + 4 = 9,\n\\]\nIn $\\triangle A'DM$, $A'D = \\sqrt{A'M^{2} + DM^{2}} = \\sqrt{12^{2} + 9^{2}} = 15$,\n\\[\n\\therefore \\text{The minimum value of } AP + PD \\text{ is } \\boxed{15}.\n\\]", -"solution_image": [ -"solution_images/52774844_390.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51322771": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$. Point $D$ is on $AC$, and $\\angle DBC=\\angle A$. If $AC=4$ and $AB=5$, what is the length of $BD$?", -"image_file_name": "7056495", -"image": [ -"math/51322771_450.png" -], -"solution": "\\textbf{Solution:} In the right triangle $ABC$, by the Pythagorean theorem, we have $BC=\\sqrt{AB^{2}-AC^{2}}=3$,\\\\\nsince $\\angle DBC = \\angle A$, and $\\angle C = \\angle C$,\\\\\nthus $\\triangle ABC \\sim \\triangle BDC$,\\\\\ntherefore $\\frac{AC}{BC}=\\frac{AB}{BD}$, that is, $\\frac{4}{3}=\\frac{5}{BD}$,\\\\\nhence $BD=\\boxed{\\frac{15}{4}}$.", -"solution_image": [ -"solution_images/51322771_451.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322738": { -"question": "As shown in the figure, it is known that quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with radius $AO=6$. The diagonals $AC$ and $BD$ intersect at point $E$, and $AB=BD$, $EC=2$. Then what is the length of $AD$?", -"image_file_name": "7056495", -"image": [ -"math/51322738_466.png" -], -"solution": "\\textbf{Solution:} Connect BO and extend it to meet AD at point F, draw OD, and CD, \\\\\n$\\because$BA=BD, OA=OD, \\\\\n$\\therefore$BF is the perpendicular bisector of line segment AD, \\\\\n$\\therefore$BF$\\perp$AD, \\\\\n$\\because$AC is the diameter of $\\odot$O, \\\\\n$\\therefore$$\\angle$ADC$=90^\\circ$, \\\\\nthat is, AD$\\perp$DC, \\\\\n$\\therefore$BF$\\parallel$CD, \\\\\n$\\therefore$$\\triangle $BOE$\\sim $$\\triangle $DCE, \\\\\n$\\therefore$$\\frac{OB}{CD}=\\frac{EO}{EC}$, \\\\\n$\\because$AO=6, EC=2, \\\\\n$\\therefore$OB=6, OC=6, \\\\\n$\\therefore$OE=4, \\\\\n$\\therefore$$\\frac{6}{CD}=\\frac{4}{2}$, \\\\\nSolving, we get CD=3, \\\\\nIn the right triangle ADC, $\\angle$ADC$=90^\\circ$, AC=12, CD=3, \\\\\n$\\therefore$AD=$\\sqrt{AC^2−CD^2}=\\sqrt{12^2−3^2}=\\boxed{3\\sqrt{15}}$, \\\\", -"solution_image": [ -"solution_images/51322738_460.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322578": { -"question": "As shown in the figure, the line $y=-\\frac{1}{2}x$ intersects the x-axis and y-axis at points B and A, respectively. Point C is a moving point on the x-axis. A circle $\\odot C$ with center C and radius $\\sqrt{5}$ is drawn. When $\\odot C$ is tangent to line AB, what are the coordinates of point C?", -"image_file_name": "7056495", -"image": [ -"math/51322578_474.png" -], -"solution": "\\textbf{Solution:}\n(1) When point C is on the negative half of the x-axis, let C be $(t,0)$. Construct CM $\\perp$ AB at M, as shown,\\\\\nFor\\\\\n$y=-\\frac{1}{2}x+1$, when $x=0$, $y=1$; when $y=0$, $x=2$\\\\\n$\\therefore$ A$(0,1)$, B$(2,0)$\\\\\n$\\therefore$ OA$=1$, OB$=2$,\\\\\n$\\therefore$ BC$=2-t$\\\\\nBy the Pythagorean theorem,\\\\\n$AB=\\sqrt{OA^2+OB^2}=\\sqrt{1^2+2^2}=\\sqrt{5}$\\\\\nSince line AB is tangent to circle C,\\\\\n$\\therefore$ $\\angle$CMB$=90^\\circ$\\\\\nAlso $\\angle$ABO$=\\angle$CBM,\\\\\n$\\triangle$BMC$\\sim$$\\triangle$BOA,\\\\\n$\\therefore$ $\\frac{AB}{BC}=\\frac{AO}{CM}$, i.e.,\\\\\n$\\frac{\\sqrt{5}}{2-t}=\\frac{1}{\\sqrt{5}}$\\\\\nSolving this,\\\\\n$t=-3$\\\\\n$\\therefore$ The coordinates of point C are ($-3$,0)\\\\\n(2) When point C is on the positive half of the x-axis, let C be $(t,0)$. Construct CN $\\perp$ AB at N, as shown,\\\\\n$\\therefore$ BC$=t-2$\\\\\nSince $\\angle$ABO$=\\angle$CBN,\\\\\n$\\angle$CNB$=\\angle$AOB\\\\\n$\\therefore$ $\\triangle$BNC$\\sim$$\\triangle$BOA,\\\\\n$\\therefore$ $\\frac{AB}{BC}=\\frac{AO}{CN}$, i.e.,\\\\\n$\\frac{\\sqrt{5}}{t-2}=\\frac{1}{\\sqrt{5}}$\\\\\nSolving this,\\\\\n$t=7$\\\\\n$\\therefore$ The coordinates of point C are $(7,0)$\\\\\nIn summary, the coordinates of point C are $(-3,0)$ or $(7,0)$\\\\\nTherefore, the answer is: $\\boxed{(-3,0) \\text{ or } (7,0)}$.", -"solution_image": [ -"solution_images/51322578_470.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51317425": { -"question": "As shown in the figure, AB is the diameter of the semicircle O, D is a point on the semicircle O, C is the midpoint of the arc $\\overset{\\frown}{BD}$, connecting AC intersects BD at point E, connecting AD, if $BE = 4DE$ and $CE = 6$, what is the length of AB?", -"image_file_name": "7056495", -"image": [ -"math/51317425_481.jpg" -], -"solution": "\\textbf{Solution:} As shown in the figure, extend OC to intersect BD at K, and connect BC.\\\\\nSince $\\overset{\\frown}{CD} = \\overset{\\frown}{BC}$,\\\\\nit follows that OC$\\perp$BD.\\\\\nGiven BE=4DE,\\\\\nwe can assume DE=k, BE=4k, then DK=BK=2.5k, EK=1.5k.\\\\\nSince AB is the diameter,\\\\\nit implies $\\angle$ADK=$\\angle$DKC=$\\angle$ACB=$90^\\circ$,\\\\\nthus AD$\\parallel$CK,\\\\\nwhich leads to AE: EC=DE: EK,\\\\\ntherefore, AE: 6=k: 1.5k,\\\\\nhence, AE=4.\\\\\nSince $\\triangle$ECK$\\sim$$\\triangle$EBC,\\\\\nit follows that EC$^{2}$=EK$\\cdot$EB,\\\\\nthus, 36=1.5k$\\cdot$4k.\\\\\nGiven k>0,\\\\\nwe find k=$\\sqrt{6}$,\\\\\ntherefore, BC=$\\sqrt{{BE}^{2}-{EC}^{2}}=\\sqrt{96-36}=2\\sqrt{15}$,\\\\\nhence, AB=$\\sqrt{{AC}^{2}+{BC}^{2}}=\\sqrt{{10}^{2}+{(2\\sqrt{15})}^{2}}=\\boxed{4\\sqrt{10}}$.", -"solution_image": [ -"solution_images/51317425_480.jpg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51317421": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $E$ is a point on $CD$. Connect $BE$ and extend it to meet the extended line of $AD$ at point $F$. If $DE:EC=2:3$, then what is the value of $\\frac{S_{\\triangle DEF}}{S_{\\triangle ABF}}$?", -"image_file_name": "7056495", -"image": [ -"math/51317421_490.jpg" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram,\\\\\nit follows that AB$\\parallel$CD and AB=CD,\\\\\nthus $\\triangle DEF\\sim \\triangle ABF$,\\\\\nhence $\\frac{S_{\\triangle DEF}}{S_{\\triangle ABF}} = \\left(\\frac{DE}{AB}\\right)^2$,\\\\\nsince DE:EC=2:3,\\\\\nit follows that DE:CD=DE:AB=2:5,\\\\\ntherefore, S$_{\\triangle DEF}$:S$_{\\triangle ABF}$=4:25.\\\\\nThus the answer is: $\\boxed{4:25}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51317388": { -"question": "As shown in the figure, in $\\triangle ABC$, $BC=120$, the height $AD=60$, and the square $EFGH$ with one side on $BC$, points $E$, $F$ respectively on $AB$, $AC$, $AD$ intersects $EF$ at point $N$, what is the length of $AN$?", -"image_file_name": "7056495", -"image": [ -"math/51317388_500.jpg" -], -"solution": "\\textbf{Solution:} Let the side lengths of square EFGH be EF = EH = x,\\\\\nsince EFGH is a square,\\\\\nthus $\\angle$HEF = $\\angle$EHG = $90^\\circ$, and EF$\\parallel$BC,\\\\\nthus $\\triangle$AEF $\\sim$ $\\triangle$ABC,\\\\\nsince AD is the altitude of $\\triangle$ABC,\\\\\nthus $\\angle$HDN = $90^\\circ$,\\\\\nthus quadrilateral EHDN is a rectangle,\\\\\nthus DN = EH = x,\\\\\nsince $\\triangle$AEF $\\sim$ $\\triangle$ABC,\\\\\nthus $\\frac{AN}{AD}=\\frac{EF}{BC}$ (the ratio of altitudes is equal to the scale factor),\\\\\nsince BC = 120, AD = 60,\\\\\nthus AN = 60−x,\\\\\nthus $\\frac{60−x}{60}$ = $\\frac{x}{120}$,\\\\\nsolving for x gives: x = 40,\\\\\nthus AN=60−x=60−40=\\boxed{20}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299759": { -"question": "As shown in the figure, $\\triangle A'B'C'$ and $\\triangle ABC$ are similar figures with $O$ as the center of similarity. If $OA'=A'A$, then what is the ratio of the areas of $\\triangle A'B'C'$ to $\\triangle ABC$?", -"image_file_name": "7056495", -"image": [ -"math/51299759_516.png" -], -"solution": "\\textbf{Solution:} Given that, $\\triangle ABC$ and $\\triangle A'B'C'$ are similar figures,\\\\\n$\\therefore \\triangle ABC \\sim \\triangle A'B'C'$, and the ratio AB$\\colon$ A'B'=OA$\\colon$ AA'=1$\\colon$ 2,\\\\\n$\\therefore$ the ratio of the areas of $\\triangle A'B'C'$ to $\\triangle ABC$ is: $1\\colon 4$.\\\\\nTherefore, the ratio of the areas is $\\boxed{1\\colon 4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299758": { -"question": "As shown in the figure, in right-angled triangle $\\triangle ABC$, with $\\angle ACB=90^\\circ$, and $CD\\perp AB$ at $D$, if $AD=4$ and $BD=9$, what is the length of $CD$?", -"image_file_name": "7056495", -"image": [ -"math/51299758_525.png" -], -"solution": "\\textbf{Solution:} Given: $\\because$ $\\angle ACD + \\angle BCD = \\angle BCD + \\angle B$,\\\\\n$\\therefore$ $\\angle ACD = \\angle B$,\\\\\nAlso, $\\angle ADC = \\angle BDC = 90^\\circ$,\\\\\n$\\therefore$ $\\triangle ADC \\sim \\triangle BDC$,\\\\\n$\\therefore$ $\\frac{AD}{CD} = \\frac{CD}{BD}$,\\\\\n$\\therefore$ $CD^2 = AD \\cdot BD = 36$,\\\\\n$\\therefore$ $CD = \\boxed{6}$ or $-6$ (discard).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51298872": { -"question": "As shown in the figure, D and E are points on sides AB and BC of $\\triangle ABC$, respectively, and $DE\\parallel AC$. AE and CD intersect at point O. If $\\frac{S_{\\triangle DOE}}{S_{\\triangle COA}}=\\frac{1}{25}$, what is the value of $\\frac{S_{\\triangle BDE}}{S_{\\triangle CDE}}$?", -"image_file_name": "7056495", -"image": [ -"math/51298872_534.png" -], -"solution": "\\textbf{Solution:} Given that $DE\\parallel AC$,\\\\\n$\\therefore \\triangle DEO\\sim \\triangle CAO$,\\\\\n$\\therefore \\frac{{S}_{\\triangle DEO}}{{S}_{\\triangle CAO}}=\\left(\\frac{DE}{AC}\\right)^{2}=\\frac{1}{25}$,\\\\\n$\\therefore \\frac{DE}{AC}=\\frac{BE}{BC}=\\frac{1}{5}$,\\\\\n$\\therefore \\frac{BE}{EC}=\\frac{1}{4}$,\\\\\n$\\therefore \\frac{{S}_{\\triangle BED}}{{S}_{\\triangle DEC}}=\\boxed{\\frac{1}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51155352": { -"question": "As shown in the figure, $ \\triangle ABC$ is an equilateral triangle with a side length of 6. $CE$ bisects the exterior angle $\\angle ACF$. Point $D$ is on $AC$, line $BD$ is extended to intersect $CE$ at point $E$. If $CD= \\frac{1}{2} AD$, then what is the value of $ \\frac{CE}{BC}$? What is the value of $BE$?", -"image_file_name": "7056495", -"image": [ -"math/51155352_543.png" -], -"solution": "\\textbf{Solution:} Given that $ \\triangle ABC$ is an equilateral triangle with a side length of 6,\\\\\n$ \\therefore AB=BC=6$, $\\angle A=\\angle ACB=60^\\circ$,\\\\\nsince $CE$ bisects the exterior angle $\\angle ACF$,\\\\\n$ \\therefore \\angle FCE=\\angle DCE=\\frac{1}{2}\\angle ACF=\\frac{1}{2}(180^\\circ-\\angle ACB)=60^\\circ$,\\\\\nin $\\triangle ABD$ and $\\triangle CED$, $\\left\\{\\begin{array}{l}\\angle ADB=\\angle CDE \\\\ \\angle A=\\angle DCE=60^\\circ \\end{array}\\right.$,\\\\\n$ \\therefore \\triangle ABD\\sim \\triangle CED$,\\\\\n$ \\therefore \\frac{CE}{AB}=\\frac{CD}{AD}=\\frac{1}{2}$, that is $\\frac{CE}{6}=\\frac{1}{2}$,\\\\\nsolving this gives $CE=3$,\\\\\n$ \\therefore \\frac{CE}{BC}=\\frac{3}{6}=\\boxed{\\frac{1}{2}}$,\\\\\nas shown, draw $EG\\perp BF$ at point $G$,\\\\\nin $Rt\\triangle CEG$, $\\angle CEG=90^\\circ-\\angle FCE=30^\\circ$,\\\\\n$ \\therefore CG=\\frac{1}{2}CE=\\frac{3}{2}$, $EG=\\sqrt{CE^2-CG^2}=\\frac{3}{2}\\sqrt{3}$,\\\\\n$ \\therefore BG=BC+CG=\\frac{15}{2}$,\\\\\nin $Rt\\triangle BEG$, $BE=\\sqrt{BG^2+EG^2}=\\sqrt{\\left(\\frac{15}{2}\\right)^2+\\left(\\frac{3}{2}\\sqrt{3}\\right)^2}=\\boxed{3\\sqrt{7}}$.", -"solution_image": [ -"solution_images/51155352_5416.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51155313": { -"question": "As shown in the trapezoid ABCD, AD $\\parallel$ BC, $\\angle BAD = 90^\\circ$, and the diagonal BD $\\perp$ DC. If AD = 4 and BC = 9, what is the length of BD?", -"image_file_name": "7056495", -"image": [ -"math/51155313_550.png" -], -"solution": "\\textbf{Solution:} Given: $\\because$ AD$\\parallel$BC $\\therefore$ $\\angle$ADB=$\\angle$CBD (When two lines are parallel, the corresponding alternate interior angles are equal)\\\\\n$\\because$ $\\angle$BAD=$90^\\circ$, BD$\\perp$DC, $\\therefore$ $\\angle$BAD=$\\angle$BDC=$90^\\circ$,\\\\\n$\\because$ $\\angle$ADB=$\\angle$CBD, $\\angle$BAD=$\\angle$BDC, $\\therefore$ $\\triangle$ABD$\\sim$$\\triangle$DCB (Two triangles are similar if two angles are equal respectively)\\\\\n$\\therefore$ $\\frac{BD}{BC}=\\frac{AD}{BD}$ (Corresponding sides of similar triangles are proportional)\\\\\n$\\therefore$ $BD^2=AD\\times BC$, $\\because$AD=4, BC=9\\\\\n$\\therefore$BD=\\boxed{6}", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51285012": { -"question": "As shown in the figure, $AB \\parallel CD \\parallel EF$, $AF$ intersects $BE$ at point $G$, and $AG=2$, $GD=1$, $DF=5$. What is the value of $\\frac{BC}{CE}$?", -"image_file_name": "7056495", -"image": [ -"math/51285012_561.png" -], -"solution": "\\textbf{Solution}: We have $AD=AG+GD=3$, \\\\\nsince $AB\\parallel CD\\parallel EF$, \\\\\nthus $\\frac{BC}{CE}=\\frac{AD}{DF}=\\boxed{\\frac{3}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51284390": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD \\perp BC$ with the foot of the perpendicular being D, $AD=5$, $BC=10$. Quadrilaterals $EFGH$ and $HGNM$ are both squares, and points E, F, G, N, M are all on the sides of $\\triangle ABC$. What is the ratio of the area of $\\triangle AEM$ to the area of quadrilateral $BCME$?", -"image_file_name": "7056495", -"image": [ -"math/51284390_570.png" -], -"solution": "\\textbf{Solution:} Let quadrilaterals EFGH and HGNM both be squares, and $AD\\perp BC$, \\\\\ntherefore quadrilateral EFDP is a rectangle, and $AP\\perp EM$,\\\\ \nlet us set $PD=EF=EH=HM=x$,\\\\\ntherefore $EM=2x$, $AP=5-x$,\\\\\nsince $EM\\parallel BC$,\\\\\ntherefore $\\angle AEM=\\angle B$, $\\angle AME=\\angle C$,\\\\\ntherefore $\\triangle AEM\\sim \\triangle ABC$,\\\\\nsince AP and AD are altitudes of $\\triangle AEM$ and $\\triangle ABC$ respectively,\\\\\ntherefore $\\frac{AP}{AD}=\\frac{EM}{BC}$, substituting we get: $\\frac{5-x}{5}=\\frac{2x}{10}$,\\\\\nsolving yields: $x=\\frac{5}{2}$, which means $PD=\\frac{5}{2}$,\\\\\ntherefore $AP=5-\\frac{5}{2}=\\frac{5}{2}$,\\\\\ntherefore $\\frac{AP}{AD}=\\frac{\\frac{5}{2}}{5}=\\frac{1}{2}$,\\\\\ntherefore $\\frac{S_{\\triangle AEM}}{S_{\\triangle ABC}}=\\left(\\frac{AP}{AD}\\right)^2=\\left(\\frac{1}{2}\\right)^2=\\frac{1}{4}$,\\\\\nsince $S_{\\triangle ABC}=S_{\\triangle AEM}+S_{\\text{quadrilateral} BCME}$,\\\\\ntherefore $S_{\\triangle AEM} \\colon S_{\\text{quadrilateral} BCME}=1\\colon 3$.\\\\\nHence, the answer is: $\\boxed{1\\colon 3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51284463": { -"question": "As shown in the figure, in square $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. $E$ is the midpoint of $OB$. Connect $AE$ and extend it to intersect $BC$ at point $F$. If the area of $\\triangle BEF$ is $1$, what is the area of square $ABCD$?", -"image_file_name": "7056495", -"image": [ -"math/51284463_584.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a square,\\\\\nit follows that OB=OD and AD$\\parallel$BC,\\\\\nthus, $\\triangle BEF\\sim \\triangle DEA$,\\\\\nwhich means $\\frac{BE}{ED}=\\frac{EF}{AE}$,\\\\\nsince E is the midpoint of OB,\\\\\nit implies $\\frac{BE}{ED}=\\frac{EF}{AE}=\\frac{1}{3}$,\\\\\nhence, the area ratio $S_{\\triangle BEF}: S_{\\triangle AEB}=EF:AE=\\frac{1}{3}$,\\\\\ngiven that the area of $\\triangle BEF$ is 1,\\\\\nthus, the area of $\\triangle AEB$ is 3,\\\\\nconsidering $\\frac{BE}{ED}=\\frac{1}{3}$,\\\\\nthe area ratio $S_{\\triangle AEB}: S_{\\triangle AED}=\\frac{1}{3}$,\\\\\nas a result, the area of $\\triangle AED$ is 9,\\\\\nthus, the area of $\\triangle ABD$=9+3=12,\\\\\ntherefore, the area of square ABCD=$12\\times2=\\boxed{24}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51284430": { -"question": "As shown in the figure, in the Cartesian coordinate system, the coordinates of points $P$ and $A$ are (1, 0) and (2, 4), respectively. Point $B$ is a moving point on the $y$-axis. A line passing through point $A$ is perpendicular to $AB$ and intersects the $x$-axis at point $C$. Point $M$ is the midpoint of segment $BC$. What is the minimum value of $PM$?", -"image_file_name": "7056495", -"image": [ -"math/51284430_590.png" -], -"solution": "\\textbf{Solution:} Draw $AF\\perp y$-axis at point $F$, connect $AM$, $OM$\\\\\nSince $\\angle BAC=\\angle BOC=90^\\circ$, and $M$ is the midpoint of $BC$,\\\\\nthus $AM=OM$\\\\\nTherefore, point $M$ is on the perpendicular bisector of segment $AO$\\\\\nConstruct the perpendicular bisector of segment $AO$ to intersect the $y$-axis and $x$-axis at points $D$, $E$. When $PM\\perp DE$, $PM$ is minimized\\\\\nConnect $AD$, then $AD=OD$\\\\\nGiven $A(2,4)$\\\\\nTherefore $AF=2$, $OF=4$\\\\\nLet $OD=AD=t$, then $FD=4-t$,\\\\\nSince $FD^2+AF^2=AD^2$\\\\\nThus $(4-t)^2+2^2=t^2$\\\\\nTherefore $t=\\frac{5}{2}$\\\\\nTherefore $OD=\\frac{5}{2}$\\\\\nSince $\\angle FOA+\\angle AOE=90^\\circ$, $\\angle AOE+\\angle OED=90^\\circ$\\\\\nTherefore $\\angle FOA=\\angle OED$\\\\\nSince $\\angle AFO=\\angle DOE=90^\\circ$\\\\\nTherefore $\\triangle FAO\\sim \\triangle ODE$\\\\\nTherefore $\\frac{AF}{OD}=\\frac{OF}{OE}$, i.e., $AF\\cdot OE=OD\\cdot OF$,\\\\\nTherefore $OE=5$\\\\\nGiven $P(1,0)$\\\\\nTherefore $PE=4$\\\\\nSince in $\\triangle AFO$, $OA=\\sqrt{OF^2+AF^2}=\\sqrt{4^2+2^2}=2\\sqrt{5}$\\\\\nWhen $PM\\perp DE$, $PM$ is minimized\\\\\nTherefore $\\angle PME=\\angle AFO=90^\\circ$\\\\\n$\\triangle PME\\sim \\triangle AFO$\\\\\nTherefore $\\frac{PM}{AF}=\\frac{PE}{OA}$\\\\\nTherefore $\\frac{PM}{2}=\\frac{4}{2\\sqrt{5}}$\\\\\nTherefore $PM=\\boxed{\\frac{4}{5}\\sqrt{5}}$", -"solution_image": [ -"solution_images/51284430_594.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51284428": { -"question": "As shown, it is known that $\\triangle ABC$ and $\\triangle A'B'C'$ are similar figures with point $C$ as the center of similitude, and the ratio of the perimeters of $\\triangle ABC$ and $\\triangle A'B'C'$ is $1\\colon 2$. The coordinate of point $C$ is $(-1,0)$. If the x-coordinate of the corresponding point $B'$ of point $B$ is $5$, then what is the x-coordinate of point $B$?", -"image_file_name": "7056495", -"image": [ -"math/51284428_600.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $\\overline{BD} \\perp$ x-axis at point D, and draw $\\overline{B^{\\prime}H} \\perp$ x-axis at point H, then $\\overline{BD} \\parallel \\overline{B^{\\prime}H}$,\\\\\n$\\therefore \\angle DBC = \\angle HB^{\\prime}C$, $\\angle BDC = \\angle B^{\\prime}HC$,\\\\\n$\\therefore \\triangle BCD \\sim \\triangle B^{\\prime}CH$,\\\\\n$\\therefore \\frac{CD}{CH} = \\frac{BC}{B^{\\prime}C}$,\\\\\n$\\because$ the perimeter ratio of $\\triangle ABC$ to $\\triangle A^{\\prime}B^{\\prime}C$ is $1:2$,\\\\\n$\\therefore \\frac{BC}{B^{\\prime}C} = \\frac{1}{2}$,\\\\\n$\\therefore \\frac{CD}{CH} = \\frac{1}{2}$,\\\\\n$\\because$ the coordinates of point C are ($-1$, $0$), and the x-coordinate of the corresponding point $B^{\\prime}$ of point B is 5,\\\\\n$\\therefore$ OC = 1, OH = 5,\\\\\n$\\therefore$ CH = 6,\\\\\n$\\therefore CD = \\frac{1}{2}CH$ = 3,\\\\\n$\\therefore$ OD = OC + CD = 1 + 3 = 4,\\\\\n$\\therefore$ the x-coordinate of point B is $\\boxed{-4}$.", -"solution_image": [ -"solution_images/51284428_600.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51458355": { -"question": "As shown in the figure, a rectangle I, a small square, and an L-shaped figure composed of four squares of the same size are placed inside rectangle ABCD. One vertex of rectangle I is located at the vertex E of a square within the L-shaped figure, with its other vertices on the sides of rectangle ABCD. The squares within the L-shape have three vertices precisely on the sides of rectangle ABCD, with another vertex coinciding with a vertex of the small square. If rectangle I is similar to rectangle ABCD, what is the value of \\(AB:BC\\)?", -"image_file_name": "7056453", -"image": [ -"math/51458355_500.png" -], -"solution": "\\textbf{Solution:} Let the side length of the four identical squares be $a$, and $DF=x$, that is, $GH=IJ=KJ=a$, $IH=EG=2a$,\n\nIn $\\triangle IJH$, we have $JH= \\sqrt{IJ^2+IH^2}=\\sqrt{5}a$,\n\nSince quadrilateral ABCD and quadrilateral MEFD are rectangles, and quadrilateral NBLK is a rectangle,\n\nThe 4 identical small square templates are placed as shown in the figure,\n\nTherefore, $\\angle B=\\angle C=\\angle KLJ=\\angle EFG=\\angle JIH=90^\\circ$,\n\nTherefore, $\\angle LKJ+\\angle LJK=\\angle IJH+\\angle IHJ=\\angle GHC+\\angle HGC=\\angle EGF+\\angle GEF=90^\\circ$,\n\n$\\angle KJL+\\angle IJH=\\angle IHJ+\\angle GHC=\\angle EGF+\\angle HGC=90^\\circ$,\n\nTherefore, $\\angle KJL=\\angle IHJ=\\angle HGC=\\angle GEF$,\n\nTherefore, $\\triangle KJL\\cong \\triangle HGC$, $\\triangle JHI\\sim \\triangle HGC\\sim \\triangle GEF$,\n\nTherefore, $BL=KL=HC$, $LJ=GC$,\n\n$\\frac{IJ}{FG}=\\frac{IH}{EF}=\\frac{JH}{EG}$,\n\n$\\frac{IJ}{HC}=\\frac{IH}{GC}=\\frac{JH}{GH}$, that is,\n\n$\\frac{a}{FG}=\\frac{2a}{EF}=\\frac{\\sqrt{5}a}{2a}$,\n\n$\\frac{a}{HC}=\\frac{2a}{GC}=\\frac{\\sqrt{5}a}{a}$,\n\nTherefore, $FG= \\frac{2\\sqrt{5}a}{5}$, $EF= \\frac{4\\sqrt{5}a}{5}$, $BL=KL=HC= \\frac{\\sqrt{5}a}{5}$, $LJ=GC= \\frac{2\\sqrt{5}a}{5}$,\n\nTherefore, $CD=DF+FG+GC=x+ \\frac{2\\sqrt{5}a}{5}+\\frac{2\\sqrt{5}a}{5} = \\frac{4\\sqrt{5}a}{5}+x$,\n\n$BC=BL+LJ+JH+HC= \\frac{\\sqrt{5}a}{5} + \\frac{2\\sqrt{5}a}{5}+\\sqrt{5}a+\\frac{\\sqrt{5}a}{5} = \\frac{9\\sqrt{5}a}{5}$,\n\nWhen rectangle MEFD $\\sim$ rectangle ABCD,\n\n$\\frac{CD}{DF}=\\frac{BC}{EF}$, that is,\n\n$\\frac{\\frac{4\\sqrt{5}a}{5}+x}{x}=\\frac{\\frac{9\\sqrt{5}a}{5}}{\\frac{4\\sqrt{5}a}{5}}$,\n\nSolving gives: $x= \\frac{16\\sqrt{5}a}{25}$,\n\nThe ratio of AB:BC is\n\n$\\frac{\\frac{16\\sqrt{5}a}{25}+\\frac{4\\sqrt{5}a}{5}}{\\frac{9\\sqrt{5}a}{5}}=\\boxed{\\frac{4}{5}}$;\n\nWhen rectangle MDFE $\\sim$ rectangle ABCD,\n\n$\\frac{CD}{EF}=\\frac{BC}{DF}$, that is,\n\n$\\frac{\\frac{4\\sqrt{5}a}{5}+x}{\\frac{4\\sqrt{5}a}{5}}=\\frac{\\frac{9\\sqrt{5}a}{5}}{x}$,\n\nSolving gives: $x= \\frac{10\\sqrt{2}-2\\sqrt{5}}{5}a$ (negative values discarded),\n\nThe ratio of AB:BC is\n\n$\\frac{\\frac{10\\sqrt{2}-2\\sqrt{5}}{5}a+\\frac{4\\sqrt{5}a}{5}}{\\frac{9\\sqrt{5}a}{5}}$;", -"solution_image": [ -"solution_images/51458355_501.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51458317": { -"question": "As shown in the figure, point A is a moving point on the parabola \\(y=\\frac{1}{8}x^{2}\\) that does not coincide with the origin O. \\(AB\\perp x\\) axis at point B, draw a perpendicular line from point B to \\(OA\\) and extend it to intersect the y-axis at point C. Connect \\(AC\\), then what is the length of segment \\(OC\\)? What is the minimum value of \\(AC\\)?", -"image_file_name": "7056453", -"image": [ -"math/51458317_515.png" -], -"solution": "\\textbf{Solution}: Let point A be $(a, \\frac{1}{8}a^{2})$, then the coordinates of point B are $(a, 0)$,\n\n$\\therefore$ OB = $|a|$, AB = $\\frac{1}{8}a^{2}$,\n\n$\\because$ $\\angle$ABO = $\\angle$BOC = $90^\\circ$,\n\n$\\therefore$ $\\angle$AOB + $\\angle$OBC = $90^\\circ$, $\\angle$OBC + $\\angle$BCO = $90^\\circ$,\n\n$\\therefore$ $\\angle$AOB = $\\angle$BCO,\n\n$\\therefore$ $\\triangle$AOB $\\sim$ $\\triangle$BCO,\n\n$\\therefore$ $\\frac{OB}{CO}=\\frac{AB}{BO}$,\n\n$\\therefore$ OB$^{2}$ = CO$\\cdot$AB, i.e., a$^{2}$ = $\\frac{1}{8}a^{2}\\cdot$CO,\n\nSolving for CO gives CO = 8,\n\n$\\therefore$ C(0, 8),\n\n$\\because$ AC$^{2}$ = (xC - xA)$^{2}$ + (yC - yA)$^{2}$ = a$^{2}$ + $\\frac{1}{64}a^{4}$ - 2a$^{2}$ + 64 = $\\frac{1}{64}(a^{4} - 64a^{2}) + 64 = \\frac{1}{64}(a^{2} - 32)^{2} + 48$,\n\n$\\therefore$ when a$^{2}$ = 32, AC$^{2}$ = 48 is the minimum value, hence AC = $4\\sqrt{3}$.\n\nThus, the answer is: CO = \\boxed{8}, and the minimum value of AC is \\boxed{4\\sqrt{3}}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51458314": { -"question": "As shown in the figure, the rectangle $ABCD$ is divided into 5 congruent rectangles. If all these 5 rectangles are similar to rectangle $ABCD$, what is the value of $AD\\colon AB$?", -"image_file_name": "7056453", -"image": [ -"math/51458314_523.png" -], -"solution": "\\textbf{Solution:} Let AE = a, \\\\\n$\\because$ the five small rectangles are congruent, \\\\\n$\\therefore$ AD = 5AE = 5a, \\\\\n$\\because$ each small rectangle is similar to rectangle ABCD, \\\\\n$\\therefore$ $\\frac{AD}{AB}$ = $\\frac{AB}{AE}$, \\\\\n$\\therefore$AB$^{2}$=AD$\\cdot$AE=5AE$^{2}$=5a$^{2}$, \\\\\nAB = $\\sqrt{5}$ a, \\\\\n$\\therefore$AD : AB = 5a : $\\sqrt{5}$ a = $\\boxed{\\sqrt{5}}$.", -"solution_image": [ -"solution_images/51458314_520.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51458243": { -"question": "As shown in the figure, in $ \\square ABCD$, E is the midpoint of $AB$, F is on $AD$, and $AF:AD=1:3$, $EF$ intersects $AC$ at G. If $AC=40$, then what is the value of $AG$?", -"image_file_name": "7056453", -"image": [ -"math/51458243_548.png" -], -"solution": "\\textbf{Solution:} Let the midpoint of AC be O, and connect EO, \\\\\nsince E is the midpoint of AB, \\\\\n$\\therefore$EO$\\parallel$BC and EO= $\\frac{1}{2}$ BC, \\\\\nalso AD$\\parallel$BC, \\\\\n$\\therefore$AF$\\parallel$EO, \\\\\n$\\therefore$$\\triangle$AFG$\\sim$$\\triangle$OEG, \\\\\n$\\therefore$ $\\frac{AG}{GO}=\\frac{AF}{OE}$.\\\\\nSince AC=40 and O is the midpoint, \\\\\n$\\therefore$OA=20, then GO=20−AG\\\\\nSince AF$\\colon$ AD=1$\\colon$ 3 and AD=BC, \\\\\n$\\therefore$ $\\frac{AG}{GO}=\\frac{AF}{EO}=\\frac{2}{3}$, \\\\\n$\\therefore$ $\\frac{AG}{OG}=\\frac{AG}{AO−AG}=\\frac{2}{3}$.\\\\\n$\\therefore$ $\\frac{AG}{20−AG}=\\frac{2}{3}$, \\\\\nSolving gives $AG=\\boxed{8}$.", -"solution_image": [ -"solution_images/51458243_540.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51457948": { -"question": "As shown in the figure, the quadrilateral ADEF is a rhombus, and $AB=6$, $AC=4$. Then, what is the value of $DE$?", -"image_file_name": "7056453", -"image": [ -"math/51457948_553.png" -], -"solution": "\\[ \\textbf{Solution:} \\]\n\\[ \\because \\text{ Quadrilateral ADEF is a rhombus,} \\]\n\\[ \\therefore AD=DE, DE\\parallel AC, \\]\n\\[ \\therefore \\triangle BDE \\sim \\triangle BAC, \\]\n\\[ \\therefore \\frac{DE}{AC}=\\frac{BD}{AB}, \\]\n\\[ \\therefore \\frac{DE}{4}=\\frac{AB-AD}{AB}, \\]\n\\[ \\therefore \\frac{DE}{4}=\\frac{6-DE}{6}, \\]\n\\[ \\text{Solving gives } DE=\\boxed{2.4}. \\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51457951": { -"question": "As shown in the figure, three squares with side lengths of 2, 3, and 5, respectively, are arranged as shown in the figure. What is the area of the shaded region in the figure?", -"image_file_name": "7056453", -"image": [ -"math/51457951_560.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, \\\\\n$\\because$VB$\\parallel$ED, and the side lengths of the three squares are 2, 3, and 5 respectively, \\\\\n$\\therefore$VB$\\colon$ DE=AB$\\colon$ AD, that is, VB$\\colon$ 5=2$\\colon$ (2+3+5)=1$\\colon$ 5, \\\\\n$\\therefore$VB=1, \\\\\n$\\because$CF$\\parallel$ED, \\\\\n$\\therefore$CF$\\colon$ DE=AC$\\colon$ AD, that is, CF$\\colon$ 5=5$\\colon$ 10, \\\\\n$\\therefore$CF=2.5, \\\\\n$\\because$Area of trapezoid $VBFC$= $\\frac{1}{2}$(BV+CF)$\\cdot$BC= $\\frac{21}{4}$, \\\\\n$\\therefore$ the area of the shaded part=Area of square $BCQW$−Area of trapezoid $VBCF$= $\\boxed{\\frac{15}{4}}$.", -"solution_image": [ -"solution_images/51457951_560.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51353482": { -"question": "As shown in the figure, $E$ is a point on the extension of side $BA$ of $\\square ABCD$, $CE$ intersects $AD$ at point $F$, $AE=1$, $AB=2$, $BC=3$. What is the value of $AF$?", -"image_file_name": "7056453", -"image": [ -"math/51353482_575.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\nthen AD $\\parallel$ BC, \\\\\nthus $\\triangle EAF \\sim \\triangle EBC$, \\\\\nhence $\\frac{AE}{BE} = \\frac{AF}{BC}$, \\\\\nsince $AE=1$, $AB=2$, $BC=3$, \\\\\nthus $BE=3$, \\\\\nhence $\\frac{1}{3} = \\frac{AF}{3}$, \\\\\ntherefore $AF = \\boxed{1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51351735": { -"question": "As shown in the figure, it is known that $\\triangle ABC \\sim \\triangle AMN$, where point M is the midpoint of AC, $AB=6$, and $AC=8$. What is the length of $AN$?", -"image_file_name": "7056453", -"image": [ -"math/51351735_582.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\sim \\triangle AMN$, \\\\\nthen $\\frac{AB}{AM} = \\frac{AC}{AN}$, \\\\\nSince M is the midpoint of AC, and AB$=6$, AC$=8$, \\\\\nthen AM$=$MC$=4$, \\\\\nthus $\\frac{6}{4} = \\frac{8}{AN}$, \\\\\nsolving gives AN$=\\boxed{\\frac{16}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51353485": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, the side $DE$ of rectangle $DEFG$ is on side $AB$, and the vertices $F$ and $G$ are on sides $BC$ and $AC$, respectively. If the areas of $\\triangle BEF$, $\\triangle ADG$, and $\\triangle CFG$ are respectively 1, 2, and 3, then what is the area of rectangle $DEFG$?", -"image_file_name": "7056453", -"image": [ -"math/51353485_595.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $CH\\perp AB$, intersecting AB and GF at points H and M, respectively.\\\\\nSince $CH\\perp AB$,\\\\\nit follows that $CM\\perp GF$,\\\\\nSince quadrilateral DEFG is a rectangle,\\\\\nit follows that $GF\\parallel AB$,\\\\\nhence $\\triangle CGF\\sim \\triangle CAB$,\\\\\ntherefore $\\frac{GF}{AB}=\\frac{CM}{CH}$,\\\\\nGiven that the areas of $\\triangle BEF$ and $\\triangle ADG$ are 1 and 2, respectively, with equal heights,\\\\\nit follows that $\\frac{BE}{AD}=\\frac{1}{2}$,\\\\ \nLet $DE=x$, $EF=y$, $BE=a$, then $AD=2a$, the height of $\\triangle CGF$ is $CM=\\frac{6}{x}$, $CH=y+\\frac{6}{x}$,\\\\\n$\\frac{x}{x+3a}=\\frac{\\frac{6}{x}}{y+\\frac{6}{x}}$,\\\\\nwhich simplifies to: $18a=x^2y$ (1),\\\\\nSince $\\frac{1}{2}ay=1$,\\\\\nit follows that $ay=2$ (2),\\\\\nSubstituting (2) into (1) yields: $x^2y^2=36$,\\\\\ntherefore $xy=6$ (disregarding $xy=-6$),\\\\\nthus, the area of the rectangle is $\\boxed{6}$.", -"solution_image": [ -"solution_images/51353485_591.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51351125": { -"question": "As shown in the figure, Xiaoming placed a plane mirror on the ground and selected a suitable position, just to see the top of the flagpole in the plane mirror. At this time, the horizontal distance between Xiaoming and the plane mirror is $2\\,m$, and the horizontal distance between the bottom of the flagpole and the plane mirror is $12\\,m$. If the distance between Xiaoming's eyes and the ground is $1.5\\,m$, what is the height of the flagpole in meters?", -"image_file_name": "7056453", -"image": [ -"math/51351125_600.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$BC=2m$, $CE=16m$, $AB=1.5m$,\\\\\nBy the given information, $\\angle ACB=\\angle DCE$,\\\\\nSince $\\angle ABC=\\angle DEC$,\\\\\nTherefore, $\\triangle ACB\\sim \\triangle DCE$,\\\\\nThus, $\\frac{AB}{DE}=\\frac{BC}{CE}$, i.e., $\\frac{1.5}{DE}=\\frac{2}{16}$,\\\\\nTherefore, $DE=\\boxed{9}$m.", -"solution_image": [ -"solution_images/51351125_600.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52422259": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $AC=6\\,cm$, and points D and E are the midpoints of AC and BC, respectively. DE is connected, and there is a point F on DE such that $EF=1\\,cm$. AF and CF are connected. If $AF \\perp CF$, then what is the length of $AB$ in $cm$?", -"image_file_name": "7054392", -"image": [ -"math/52422259_434.png" -], -"solution": "Solution: Since $AF\\perp CF$ and point D is the midpoint of AC,\\\\\n$\\therefore DF=\\frac{1}{2}AC$\\\\\nGiven that $AC=6cm$\\\\\n$\\therefore DF=3cm$\\\\\nSince points D and E are the midpoints of AC and BC, respectively,\\\\\n$\\therefore DE=\\frac{1}{2}AB$\\\\\nGiven that $EF=1cm$\\\\\n$\\therefore DE=EF+FD=4cm$\\\\\n$\\therefore AB=2DE=\\boxed{8cm}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423384": { -"question": "As shown in the figure, in the parallelogram $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. Point $E$ is taken on the extension line of $DC$ such that $CE=\\frac{1}{2}CD$. Line $OE$ intersects $BC$ at point $F$. If $BC=12$, what is the length of $CF$?", -"image_file_name": "7054392", -"image": [ -"math/52423384_449.png" -], -"solution": "\\textbf{Solution:} Construct $OM\\parallel BC$ intersecting $CD$ at $M$,\\\\\nsince in parallelogram $ABCD$, $BC=12$,\\\\\ntherefore, $BO=DO$,\\\\\ntherefore, $CM=DM=\\frac{1}{2}CD$, $OM=\\frac{1}{2}BC=6$\\\\\nsince $CE=\\frac{1}{2}CD$,\\\\\ntherefore, $CE=CM$,\\\\\nsince $OM\\parallel BC$,\\\\\ntherefore, $CF$ is the midline of $\\triangle EMO$, that is $CF=\\frac{1}{2}OM=\\boxed{3}$;", -"solution_image": [ -"solution_images/52423384_440.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52422318": { -"question": "As shown in the diagram, in rhombus $ABCD$, $\\angle B=60^\\circ$, and the diagonal $AC=10$. What is the perimeter and the area of the rhombus?", -"image_file_name": "7054392", -"image": [ -"math/52422318_453.png" -], -"solution": "\\textbf{Solution:} Draw line BD intersecting AC at O, as shown in the figure:\\\\\n$\\because$ Quadrilateral $ABCD$ is a rhombus,\\\\\n$\\therefore$ AB=AC, $AC\\perp BD$,\\\\\n$\\because$ $\\angle ABC=60^\\circ$,\\\\\n$\\therefore$ $\\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore$ AC=AB=10, AO=5,\\\\\nBy Pythagoras' theorem, BO=$5\\sqrt{3}$,\\\\\n$\\therefore$ The perimeter of the rhombus is $4\\times 10=\\boxed{40}$, the area of the rhombus is $2AO\\times BO=10\\times 5\\sqrt{3}=\\boxed{50\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52422318_450.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423430": { -"question": "As shown in the figure, in the rhombus $ABCD$, $E$ is a point on $CD$. The line $AE$ intersects the diagonal $BD$ at point $F$, and $CF$ is connected. If $\\angle AED = 40^\\circ$, what is the degree measure of $\\angle BCF$?", -"image_file_name": "7054392", -"image": [ -"math/52423430_469.png" -], -"solution": "\\textbf{Solution:} Given: Quadrilateral ABCD is a rhombus,\\\\\n$\\therefore$ AB = CB, AB $\\parallel$ DC, $\\angle$ABF = $\\angle$CBF,\\\\\nSince AB = CB, $\\angle$ABF = $\\angle$CBF, BF = BF,\\\\\n$\\therefore$ $\\triangle$ABF $\\cong$ $\\triangle$CBF (by SAS),\\\\\n$\\therefore$ $\\angle$BAF = $\\angle$BCF,\\\\\nSince $\\angle$AED = $40^\\circ$, AD $\\parallel$ BC,\\\\\n$\\therefore$ $\\angle$AED = $\\angle$BAF,\\\\\n$\\therefore$ $\\angle$BCF = \\boxed{40^\\circ},", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423433": { -"question": "As shown in the diagram, in rhombus $ABCD$, the diagonals $AC=6$ and $BD=8$, $M$ and $N$ are respectively the midpoints of $BC$ and $CD$, $P$ is a moving point on line segment $BD$. What is the minimum value of $PM+PN$?", -"image_file_name": "7054392", -"image": [ -"math/52423433_4710.png" -], -"solution": "\\textbf{Solution:}\n\nLet point $Q$ be the symmetric point of $M$ with respect to $BD$. Connect $NQ$ which intersects $BD$ at $P$, and connect $MP$. At this time, the value of $MP+NP$ is minimized. Connect $AC$,\\\\\n$\\because$ Quadrilateral $ABCD$ is a rhombus,\\\\\n$\\therefore$ $AC \\perp BD$, $\\angle QBP = \\angle MBP$,\\\\\nwhich means $Q$ is on $AB$,\\\\\n$\\because$ $MQ \\perp BD$,\\\\\n$\\therefore$ $AC \\parallel MQ$,\\\\\n$\\because$ $M$ is the midpoint of $BC$,\\\\\n$\\therefore$ $Q$ is the midpoint of $AB$,\\\\\n$\\because$ $N$ is the midpoint of $CD$ and quadrilateral $ABCD$ is a rhombus,\\\\\n$\\therefore$ $BQ \\parallel CD$, $BQ = CN$,\\\\\n$\\therefore$ Quadrilateral $BQNC$ is a parallelogram,\\\\\n$\\therefore$ $NQ = BC$,\\\\\n$\\because$ $AQ = CN$, $\\angle QAP = \\angle PCN$, $\\angle APQ = \\angle CPN$,\\\\\n$\\therefore$ $\\triangle APQ \\cong \\triangle CPN$ (AAS),\\\\\n$\\therefore$ $AP = PC$,\\\\\n$\\because$ Quadrilateral $ABCD$ is a rhombus,\\\\\n$\\therefore$ $CP = \\frac{1}{2}AC = 3$, $BP = \\frac{1}{2}BD = 4$,\\\\\nIn $\\triangle BPC$, by the Pythagorean theorem: $BC=5$,\\\\\nthat is, $NQ=5$,\\\\\n$\\therefore$ $MP+NP=QP+NP=QN=\\boxed{5}$,", -"solution_image": [ -"solution_images/52423433_470.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423387": { -"question": "Given: As shown in the figure, segment $AB=6\\text{cm}$, point $P$ is a moving point on segment $AB$, with sides $AP$, $BP$ to construct equilateral $\\triangle APC$ and equilateral $\\triangle BPD$ respectively on $AB$, connect $CD$, point $M$ is the midpoint of $CD$. When point $P$ moves from point $A$ to point $B$, what is the length of the path traced by point $M$ in centimeters?", -"image_file_name": "7054392", -"image": [ -"math/52423387_482.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, extend AC and BD to meet at H. Through point M, draw GN $\\parallel$ AB intersecting AH at G and BH at N,\\\\\n$\\because$ $\\triangle APC$ and $\\triangle BPD$ are both equilateral triangles,\\\\\n$\\therefore$ $\\angle A=\\angle B=\\angle DPB=\\angle CPA=60^\\circ$,\\\\\n$\\therefore$ AH $\\parallel$ PD and BH $\\parallel$ CP,\\\\\n$\\therefore$ quadrilateral CPDH is a parallelogram,\\\\\n$\\therefore$ CD and HP bisect each other,\\\\\n$\\therefore$ M is the midpoint of PH,\\\\\nThus, as P moves, M always remains at the midpoint of HP, so the trajectory of M is indeed the median of $\\triangle HAB$, that is, the segment GN,\\\\\n$\\therefore$ $GN=\\frac{1}{2}AB=\\boxed{3}$ cm.", -"solution_image": [ -"solution_images/52423387_480.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423088": { -"question": "As shown in the figure, points $E$ and $F$ are the midpoints of sides $AB$ and $AC$ of $\\triangle ABC$, respectively. $BD$ bisects $\\angle ABC$ and intersects $EF$ at point $D$. Connect $AD$. Given $AB=6$ and $BC=8$, what is the length of $DF$? What is the measure of $\\angle ADB$ in degrees?", -"image_file_name": "7054392", -"image": [ -"math/52423088_4914.png" -], -"solution": "\\textbf{Solution:} Given that points $E$ and $F$ are the midpoints of sides $AB$ and $AC$ of $\\triangle ABC$ respectively, and $BC=8$, $AB=6$, \\\\\nit follows that $EF\\parallel BC$ and $EF=\\frac{1}{2}BC=4$, and $AE=BE=3$, \\\\\ntherefore, $\\angle EDB=\\angle DBC$, \\\\\nsince $BD$ bisects $\\angle ABC$, \\\\\nit follows that $\\angle EBD=\\angle DBC$, \\\\\nhence, $\\angle EBD=\\angle EDB$, \\\\\nthus, $DE=BE=3$, \\\\\ntherefore, $DF=EF-DE=1$, \\\\\nsince $AE=DE=BE=3$, \\\\\nit follows that $\\angle EAD=\\angle EDA$, and since $\\angle EBD=\\angle EDB$, \\\\\ntherefore, $\\angle BAD+\\angle ABD+\\angle ADB=2(\\angle ADE+\\angle BDE)=180^\\circ$, \\\\\nthus, $\\angle ADE+\\angle BDE=90^\\circ=\\angle ADB.$\\\\\nConsequently, the answer is: $DF=\\boxed{1}$, $\\angle ADB=\\boxed{90^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52416335": { -"question": "As shown in the figure, the diagonals AC and BD of rectangle ABCD intersect at point O. A line is drawn through point O such that $OE \\perp AC$, intersecting AD at point E. Another line is drawn through point E such that $EF \\perp BD$, with the foot of the perpendicular at F, where $EF=1$, $OE=2$, and $BD=4\\sqrt{3}$. What is the area of rectangle ABCD?", -"image_file_name": "7054392", -"image": [ -"math/52416335_505.png" -], -"solution": "\\textbf{Solution}: Since quadrilateral ABCD is a rectangle,\\\\\nit follows that $OD = OB = OA = OC = \\frac{1}{2}BD = 2\\sqrt{3}$,\\\\\nsince $EF \\perp BD$, and $OE \\perp AC$,\\\\\nthus, the area of $\\triangle AOE = \\frac{1}{2}AO \\times OE = \\frac{1}{2} \\times 2\\sqrt{3} \\times 2 = 2\\sqrt{3}$,\\\\\nthe area of $\\triangle DOE = \\frac{1}{2}OD \\times EF = \\frac{1}{2} \\times 2\\sqrt{3} \\times 1 = \\sqrt{3}$,\\\\\nhence, the area of $\\triangle AOD = {S}_{\\triangle AOE} + {S}_{\\triangle DOE} = 2\\sqrt{3} + \\sqrt{3} = 3\\sqrt{3}$,\\\\\nsince quadrilateral ABCD is a rectangle,\\\\\ntherefore, the area of rectangle ABCD = $4 \\times {S}_{\\triangle AOD} = 4 \\times 3\\sqrt{3} = \\boxed{12\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52416366": { -"question": "As shown in the figure, point A is on the line segment BG. The quadrilateral ABCD and the quadrilateral DEFG are both squares with areas of 10 and 19 respectively. What is the area of $\\triangle CDE$?", -"image_file_name": "7054392", -"image": [ -"math/52416366_510.png" -], -"solution": "\\textbf{Solution:} Draw EH$\\perp$CD at point H.\\\\\n$\\because \\angle$ADG+$\\angle$GDH=$\\angle$EDH+$\\angle$GDH,\\\\\n$\\therefore \\angle$ADG=$\\angle$EDH.\\\\\nAlso, $\\because$DG=DE, $\\angle$DAG=$\\angle$DHE.\\\\\n$\\therefore \\triangle ADG\\cong \\triangle HDE$.\\\\\n$\\therefore$HE=AG.\\\\\n$\\because$Both quadrilaterals ABCD and DEFG are squares, with areas 5 and 9, respectively. That is, AD$^{2}$=5, DG$^{2}$=9.\\\\\n$\\therefore$In the right-angled $\\triangle ADG$,\\\\\nAG=$\\sqrt{DG^{2}-AD^{2}}=\\sqrt{9-5}=2$,\\\\\n$\\therefore$EH=AG=2.\\\\\n$\\therefore$The area of $\\triangle CDE$ is $\\frac{1}{2}$CD$\\cdot$EH=$\\frac{1}{2}\\times\\sqrt{10}\\times2=\\boxed{\\frac{\\sqrt{10}}{2}}$.", -"solution_image": [ -"solution_images/52416366_510.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395011": { -"question": "Consider placing the squares $A_1B_1C_1O$, $A_2B_2C_2C_1$, $A_3B_3C_3C_2$ as shown in the figure, where the points $A_1$, $A_2$, $A_3,\\dots$ and the points $C_1$, $C_2$, $C_3,\\dots$ lie on the line $y=x+1$ and the x-axis, respectively. What are the coordinates of point $B_3$? What are the coordinates of point $B_{2022}$?", -"image_file_name": "7054392", -"image": [ -"math/52395011_5213.png" -], -"solution": "\\textbf{Solution:} When $x=0$, $y=x+1=1$, \\\\\n$\\therefore$ the coordinates of point $A_1$ are $(0,1)$, \\\\\n$\\therefore$ $OA_1=1$. \\\\\n$\\because$ Quadrilateral $A_1B_1C_1O$ is a square, \\\\\n$\\therefore$ $OC_1=B_1C_1=OA_1=1$, \\\\\n$\\therefore$ the coordinates of point $B_1$ are $(1,1)$, and the coordinates of point $C_1$ are $(1,0)$. \\\\\nWhen $x=1$, $y=x+1=2$, \\\\\n$\\therefore$ the coordinates of point $A_2$ are $(1,2)$, \\\\\n$\\therefore$ $A_2C_1=2$. \\\\\n$\\because$ $A_2B_2C_2C_1$ is a square, \\\\\n$\\therefore$ $C_1C_2=B_2C_2=A_2C_1=2$, \\\\\n$\\therefore$ the coordinates of point $B_2$ are $(3,2)$, and the coordinates of point $C_2$ are $(3,0)$. \\\\\nSimilarly, we can obtain that the coordinates of point $B_3$ are $\\boxed{(7,4)}$, \\\\\n$\\therefore$ the coordinates of point $B_n$ are $\\left(2^n-1,2^{n-1}\\right)$. \\\\\n$\\therefore$ the coordinates of point $B_{2022}$ are $\\boxed{\\left(2^{2022}-1,2^{2021}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395148": { -"question": "As shown in the figure, in rhombus $ABCD$, $AC$ and $BD$ intersect at point $O$. If $AC=8$ and $BD=6$, then what is the area of the rhombus $ABCD$?", -"image_file_name": "7054392", -"image": [ -"math/52395148_535.png" -], -"solution": "\\textbf{Solution:} Since the quadrilateral $ABCD$ is a rhombus, \\\\\n$\\therefore AC\\perp BD$, \\\\\nSince $AC=8, BD=6$, \\\\\n$\\therefore$ the area of the rhombus $ABCD$ is $\\frac{1}{2}AC\\times BD=\\frac{1}{2}\\times 8\\times 6=\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395010": { -"question": "As shown in the figure, point $E$ is on the side $BC$ of the rhombus $ABCD$, and $\\angle DAE=\\angle B=70^\\circ$, then what is the degree measure of $\\angle CDE$?", -"image_file_name": "7054392", -"image": [ -"math/52395010_544.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rhombus,\\\\\nit follows that $AD\\parallel BC$,\\\\\nthus $\\angle AEB=\\angle DAE=\\angle B=70^\\circ$,\\\\\nwhich means $AE=AB=AD$,\\\\\nIn $\\triangle AED$, $AE=AD$, and $\\angle DAE=70^\\circ$,\\\\\nthus $\\angle ADE=55^\\circ$,\\\\\nAlso, since $\\angle B=70^\\circ$,\\\\\nit follows that $\\angle ADC=70^\\circ$,\\\\\nthus $\\angle CDE=\\angle ADC-\\angle ADE=15^\\circ$.\\\\\nTherefore, the answer is: $\\boxed{15^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395430": { -"question": "As shown in the figure, $AC$ and $BD$ are the diagonals of the quadrilateral $ABCD$, points $E$ and $F$ are the midpoints of $AD$ and $BC$ respectively, and points $M$ and $N$ are the midpoints of $AC$ and $BD$ respectively. Connecting $EM$, $MF$, $FN$, $NE$ in sequence, if $AB=CD=2$, then what is the perimeter of the quadrilateral $ENFM$?", -"image_file_name": "7054392", -"image": [ -"math/52395430_5513.png" -], -"solution": "\\textbf{Solution:} Given that points E and F are the midpoints of $AD$ and $BC$ respectively, and points M and N are the midpoints of $AC$ and $BD$ respectively, \\\\\n$\\therefore EN$, $MF$, $NF$, $ME$ are the medians of $\\triangle ABD$, $\\triangle ABC$, $\\triangle BCD$, $\\triangle ADC$ respectively, \\\\\n$\\because AD=CD=2$, \\\\\n$\\therefore EN=MF=\\frac{1}{2}AB=1$, $NF=ME=\\frac{1}{2}CD=1$, \\\\\nThe perimeter of quadrilateral $ENFM$ equals $EN+MF+NF+ME=1+1+1+1=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395607": { -"question": "As shown in the figure, in $\\triangle ABC$, $BD$ bisects $\\angle ABC$, $CD \\perp BD$ with the foot of the perpendicular being D, and E is the midpoint of $AC$. If $AB=30$, $BC=18$, what is the length of $DE$?", -"image_file_name": "7054392", -"image": [ -"math/52395607_568.png" -], -"solution": "\\textbf{Solution:} As shown in the figure:\\\\\nExtend CD to intersect AB at F.\\\\\nIn $\\triangle BDC$ and $\\triangle BDF$, we have\\\\\n$\\left\\{\\begin{array}{l}\n\\angle DBC=\\angle DBF\\\\\nBD=BD\\\\\n\\angle BDC=\\angle BDF=90^\\circ\n\\end{array}\\right.$\\\\\n$\\therefore \\triangle BDC \\cong \\triangle BDF$ (ASA)\\\\\n$\\therefore BF=BC=18$, CD=DF\\\\\n$\\therefore AF=AB-BF=12$,\\\\\n$\\because E$ is the midpoint of AC,\\\\\n$\\therefore CE=EA$\\\\\n$\\because CD=DF$,\\\\\n$\\therefore DE=\\frac{1}{2}AF=\\boxed{6}.$", -"solution_image": [ -"solution_images/52395607_560.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395463": { -"question": "As shown in the figure, square $ABCD$ has a side length of $4$, point $M$ is on $AB$ with $AM=1$, and $N$ is a moving point on $BD$. What is the minimum value of $AN+MN$?", -"image_file_name": "7054392", -"image": [ -"math/52395463_572.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, we connect MC and CN,\n\nsince the quadrilateral ABCD is a square,\n\nhence A and C are symmetric about BD,\n\ntherefore AN = CN,\n\ntherefore AN + MN = CN + NM $\\geq$ CM,\n\nin triangle BMC,\n\nsince $\\angle$BCM $= 90^\\circ$, BC = 4, BM = AB - AM = 4 - 1 = 3,\n\ntherefore CM = $\\sqrt{MB^{2}+BC^{2}}$ = 5.\n\ntherefore AN + MN $\\geq$ 5,\n\nthus, the minimum value of $AN+MN$ is $\\boxed{5}$.", -"solution_image": [ -"solution_images/52395463_570.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52386544": { -"question": "As shown in the figure, the diagonals AC and BD of the quadrilateral $ABCD$ intersect at point O. P is the midpoint of side AB, and $OP=2$. What is the length of BC?", -"image_file_name": "7054392", -"image": [ -"math/52386544_582.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $ABCD$ is a square, \\\\\nit follows that $OA = OC$, \\\\\nhence, $O$ is the midpoint of $AC$, \\\\\nSince $P$ is the midpoint on side $AB$, \\\\\nit follows that $OP$ is the median of $\\triangle ABC$, \\\\\nhence, $BC = 2OP = 2\\times2 = \\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386890": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $AB=5$, $AC=12$. $P$ is a moving point on side $BC$, $PE\\perp AB$ at $E$, $PF\\perp AC$ at $F$, and $M$ is the midpoint of $EF$. What is the range of values for $AM$?", -"image_file_name": "7054392", -"image": [ -"math/52386890_599.png" -], -"solution": "\\textbf{Solution:} Let's consider that PE$\\perp$AB and PF$\\perp$AC, and $\\angle$BAC$=90^\\circ$, \\\\\ntherefore, quadrilateral AEPF is a rectangle, \\\\\nsince M is the midpoint of EF, \\\\\nthus AM$= \\frac{1}{2}$AP, and when AP$\\perp$BC, the value of AP is minimized, and when point P coincides with point C, the value of AC is maximized, \\\\\nthus AP$= \\frac{AB\\times AC}{BC}=\\frac{60}{13}$, and the maximum value of AP is 12, \\\\\ntherefore, $ \\frac{30}{13}\\le AM<6$. \\\\\nHence, the answer is: $ \\boxed{\\frac{30}{13}\\le AM<6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52386573": { -"question": "As shown in the figure, a hobby group intends to determine the distance between two points, $A$ and $B$, which are separated by a pond. They select a point $C$ outside the line $AB$, connect $AC$ and $BC$, and identify their midpoints $D$ and $E$, respectively, then connect $DE$. Now, it's measured that $AC=30m$, $BC=40m$, and $DE=24m$. What is the distance between points $A$ and $B$ in meters?", -"image_file_name": "7054392", -"image": [ -"math/52386573_603.png" -], -"solution": "\\textbf{Solution:} It is given that since $D$ and $E$ are the midpoints of $AC$ and $BC$ respectively,\\\\\ntherefore $DE$ is the midline of $\\triangle ABC$,\\\\\ntherefore $AB=2DE$\\\\\nsince $DE=24m$\\\\\ntherefore $AB=\\boxed{48m}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386808": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=8$, $BC=6$. Points D and E are respectively the midpoints of $AC$ and $AB$. When connecting $DE$, what is the length of $DE$?", -"image_file_name": "7054392", -"image": [ -"math/52386808_615.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of $AC$ and $AB$ respectively, \\\\\nit follows that $DE$ is the midline of $\\triangle ABC$, \\\\\ntherefore $DE = \\frac{1}{2}BC = \\frac{1}{2} \\times 6 = \\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387296": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle BAC=60^\\circ$, $ \\angle ABC=45^\\circ$. AD bisects $ \\angle BAC$ and intersects BC at point D. P is a moving point on line AB. Connect DP and construct the parallelogram DPQB with DP and DB as adjacent sides. Connect CQ. If $ AC=6$, what is the minimum value of CQ?", -"image_file_name": "7054392", -"image": [ -"math/52387296_625.png" -], -"solution": "Solution:As shown in Figure 1, draw $CO \\perp AB$ at O and $DH \\perp AB$ at H.\n\nIn $\\triangle ACO$, $\\angle CAB=60^\\circ$,\n\n$\\therefore \\angle ACO=30^\\circ$,\n\n$\\therefore AO=\\frac{1}{2}AC=3$,\n\n$\\therefore OC=\\sqrt{AC^2-AO^2}=3\\sqrt{3}$,\n\nIn $\\triangle BCO$, $\\angle CBA=45^\\circ$,\n\n$\\therefore OB=CO=3\\sqrt{3}$,\n\n$\\therefore AB=AO+OB=3\\sqrt{3}+3$,\n\nSince $AD$ bisects $\\angle CAB$,\n\n$\\therefore \\angle DAB=\\frac{1}{2}\\angle CAB=30^\\circ$,\n\nIn $\\triangle DHB$, $\\angle CBA=45^\\circ$,\n\nLet $DH=HB=a$,\n\n$\\therefore AD=2DH=2a$,\n\n$\\therefore AH=\\sqrt{AD^2-DH^2}=\\sqrt{3}a$,\n\n$\\therefore AB=AH+BH=\\sqrt{3}a+a$,\n\n$\\therefore \\sqrt{3}a+a=3\\sqrt{3}+3$,\n\n$\\therefore a=3$,\n\n$\\therefore DH=3$,\n\nAs shown in Figure 2, draw $QG \\perp AB$ at G and connect DQ intersecting AB at M,\n\nSince quadrilateral DPQB is a parallelogram,\n\n$\\therefore DM=QM$,\n\nIn $\\triangle QGM$ and $\\triangle DHM$,\n\n$\\left\\{\\begin{array}{l}\n\\angle QGM=\\angle DHM=90^\\circ \\\\\n\\angle QMG=\\angle DMH \\\\\nQM=DM\n\\end{array}\\right.$,\n\n$\\therefore \\triangle QGM \\cong \\triangle DHM$ (AAS),\n\n$\\therefore QG=DH=3$,\n\nHence, the distance from Q to line AB is always 3,\n\nTherefore, point Q moves on a line parallel to AB, and the distance between the two lines is 3,\n\nBased on the shortest distance along the perpendicular,\n\nWhen points C, O, and Q are on the same line, at that moment, CQ is minimal, as shown in Figure 3,\n\nThe minimum value is: $CO+3=3\\sqrt{3}+3$,\n\nTherefore, the answer is: $\\boxed{3\\sqrt{3}+3}$.", -"solution_image": [ -"solution_images/52387296_620.png", -"solution_images/52387296_6212.png", -"solution_images/52387296_6214.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387523": { -"question": "As shown in the quadrilateral ABCD, $\\angle A=90^\\circ$, AB = 12, and AD = 5. Points M and N are the moving points (including endpoints, but point M does not coincide with point B) on the line segments BC and AB, respectively. Points E and F are the midpoints of DM and MN, respectively. What is the maximum length of EF?", -"image_file_name": "7054392", -"image": [ -"math/52387523_630.png" -], -"solution": "\\textbf{Solution:} Connect DN and DB\\\\\n$\\because$ Points E and F are the midpoints of DM and MN respectively,\\\\\n$\\therefore$ EF is the midline of $\\triangle MDN$\\\\\n$\\therefore$ EF$=\\frac{1}{2}DN$\\\\\nAccording to the problem, when N coincides with point B, DN is at its maximum, at this time, the value of EF is maximal\\\\\nBy the Pythagorean theorem, DB$= \\sqrt{AD^{2}+AB^{2}}=13$\\\\\n$\\therefore$ The maximum value of EF is $\\boxed{6.5}$", -"solution_image": [ -"solution_images/52387523_630.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386332": { -"question": "A rectangular paper $MNPQ$ is folded in the manner shown such that vertex $Q$ coincides with $N$, with the fold line being $AB$, $MN=3$, and $MQ=9$. What is the length of the fold line $AB$?", -"image_file_name": "7054392", -"image": [ -"math/52386332_640.png" -], -"solution": "\\textbf{Solution:} Connect NQ as shown in the diagram:\\\\\nSince quadrilateral MNPQ is a rectangle,\\\\\nthus, $\\angle M=90^\\circ$, $PN\\parallel MQ$,\\\\\nthus, $NQ=\\sqrt{MN^2+MQ^2}=\\sqrt{3^2+9^2}=3\\sqrt{10}$,\\\\\nAccording to the folding, AB is perpendicular bisector of NQ,\\\\\nthus, $\\angle QOA=\\angle M=90^\\circ$,\\\\\n$OQ=ON=\\frac{1}{2}NQ=\\frac{3\\sqrt{10}}{2}$,\\\\\nSince $\\angle AQO=\\angle NOM$,\\\\\nthus, $\\triangle AQO\\sim \\triangle NQM$,\\\\\nthus, $\\frac{AO}{MN}=\\frac{OQ}{MQ}$,\\\\\nwhich means $\\frac{AO}{3}=\\frac{\\frac{3\\sqrt{10}}{2}}{9}$,\\\\\nthus, $AO=\\frac{\\sqrt{10}}{2}$,\\\\\nSince $PN\\parallel MQ$,\\\\\nthus, $\\angle AQO=\\angle BNO$,\\\\\nSince in $\\triangle AQO$ and $\\triangle BNO$\n$\\left\\{\\begin{array}{l}\n\\angle AQO=\\angle BNO \\\\\nOQ=ON \\\\\n\\angle AOQ=\\angle BON\n\\end{array}\\right.$,\\\\\nthus, $\\triangle AQO\\cong \\triangle BNO$,\\\\\nthus, AO=BO,\\\\\nthus, $AB=2AO=2\\times \\frac{\\sqrt{10}}{2}=\\boxed{\\sqrt{10}}$.", -"solution_image": [ -"solution_images/52386332_640.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52386290": { -"question": "As shown in the figure, in rectangle $ABCD$, $AD=8$, $AB=4$, and $E$, $F$ are points on sides $AD$ and $BC$, respectively (points $E$, $F$ do not coincide with the vertices). If the rectangle is folded along line $EF$, such that point $B$ coincides with point $D$, and the corresponding point of point $A$ is point $G$, then what is the length of line segment $EF$?", -"image_file_name": "7054392", -"image": [ -"math/52386290_6515.png" -], -"solution": "\\textbf{Solution:} Construct line EM $\\perp$ BC at point M,\\\\\nsince quadrilateral ABCD is a rectangle,\\\\\ntherefore $\\angle$A=$\\angle$B=$\\angle$C=$\\angle$ADC=$90^\\circ$, CD=AB=4, AD$\\parallel$BC, BC=AD=8,\\\\\nsince EM$\\perp$BC,\\\\\ntherefore $\\angle$BME=$\\angle$A=$\\angle$B=$\\angle$C=$\\angle$ADC=$90^\\circ$,\\\\\ntherefore quadrilaterals ABME and CDEM are both rectangles,\\\\\ntherefore EM=CD=4, CM=DE,\\\\\nsince the rectangle is folded along line $EF$, point $B$ coincides exactly with point $D$, and the corresponding point of $A$ is point $G$,\\\\\ntherefore DF=BF, $\\angle$BFE=$\\angle$DFE,\\\\\ntherefore CF=BC−BF=8−BF=8−DF,\\\\\nIn right triangle $\\triangle$CDF, $CF^{2}+CD^{2}=DF^{2}$,\\\\\ntherefore $(8−DF)^{2}$+$4^{2}$=$DF^{2}$, solving gives: DF=5,\\\\\ntherefore CF=3,\\\\\nsince AD$\\parallel$BC,\\\\\ntherefore $\\angle$DEF=$\\angle$BFE,\\\\\ntherefore $\\angle$DEF=$\\angle$DFE,\\\\\ntherefore DE=DF=5,\\\\\ntherefore CM=DE=5,\\\\\ntherefore MF=CM−CF=5−3=2,\\\\\nIn right triangle $\\triangle$EFM, by the Pythagorean theorem,\\\\\n$EF=\\sqrt{EM^{2}+MF^{2}}=\\sqrt{4^{2}+2^{2}}=\\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52386290_650.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52386508": { -"question": "As shown in the figure, $O$ is the midpoint of the diagonal $AC$ of rectangle $ABCD$, and $E$ is a point on $AB$. After folding $\\triangle BCE$ along $CE$, point $B$ coincides exactly with point $O$. If $BC = 3$, what is the length of the crease $CE$?", -"image_file_name": "7054392", -"image": [ -"math/52386508_662.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, we connect $OB$, \\\\\nsince quadrilateral $ABCD$ is a rectangle, and O is the midpoint of the diagonal AC of rectangle ABCD, \\\\\nit follows that $BO=CO$, and $\\angle ABC=90^\\circ$, \\\\\nsince folding $\\triangle BCE$ along CE exactly overlaps point B with point O, \\\\\nit follows that $BC=OC$, and $\\angle BCE=\\angle OCE$, \\\\\nthus, $OB=OC=BC$, \\\\\nwhich means $\\triangle OBC$ is an equilateral triangle, \\\\\ntherefore, $\\angle OCB=60^\\circ$, \\\\\ntherefore, $\\angle BCE=\\angle OCE=30^\\circ$, \\\\\nIn the right triangle $\\triangle BCE$, $CE=2EB$, and $CB=3$, \\\\\n$CE^2=BC^2+EB^2$, \\\\\nwhich implies $CE^2=\\left(\\frac{1}{2}CE\\right)^2+3^2$, \\\\\nsolving this gives us $CE=\\boxed{2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52386508_661.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52387027": { -"question": "As shown in the figure, in rectangle $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, $\\angle ABD = 60^\\circ$, $BD = 4$. What is the area of rectangle $ABCD$?", -"image_file_name": "7054392", -"image": [ -"math/52387027_676.png" -], -"solution": "\\textbf{Solution:} In rectangle $ABCD$, $\\angle BAD=90^\\circ$ and $AC=BD=4$,\\\\\n$OA=\\frac{1}{2}AC$, $OB=\\frac{1}{2}BD=2$,\\\\\nthus $OA=OB$,\\\\\nand since $\\angle ABD=60^\\circ$,\\\\\ntherefore $\\triangle AOB$ is an equilateral triangle,\\\\\nthus $AB=OB=2$,\\\\\nsince in $\\triangle ABD$ with $BD=4$,\\\\\ntherefore $AD=\\sqrt{4^2-2^2}=2\\sqrt{3}$,\\\\\nhence, the area of rectangle $ABCD$ is $2\\times 2\\sqrt{3}=\\boxed{4\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387026": { -"question": "\n\nAs shown in the rectangle $ABCD$, where $AB=2$ and $AD=4$, point $P$ is distinct from points $A$ and $D$. Perpendiculars to $AC$ and $BD$ are drawn from point $P$, meeting them at points $E$ and $F$, respectively. What is the value of $PE+PF$?", -"image_file_name": "7054392", -"image": [ -"math/52387026_686.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect OP, \\\\\n$\\because$ AB = 2, AD = 4, \\\\\nby the Pythagorean theorem, we have BD = $\\sqrt{2^2+4^2}=2\\sqrt{5}$, \\\\\n$S_{\\triangle ABD}=\\frac{1}{2}\\times AB \\times AD=\\frac{1}{2}\\times 2\\times 4=4$, \\\\\nin rectangle ABCD, OA = OD = OB = $\\frac{1}{2}$BD = $\\sqrt{5}$, \\\\\n$\\because S_{\\triangle AOD}=S_{\\triangle AOP}+S_{\\triangle DOP}=\\frac{1}{2}S_{\\triangle ABD}$, \\\\\n$\\therefore \\frac{\\sqrt{5}}{2}PE+\\frac{\\sqrt{5}}{2}PF=2$, \\\\\n$\\therefore PE+PF=\\boxed{\\frac{4\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/52387026_680.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387487": { -"question": "As shown in the figure, in rectangle $OABC$, where $OA=4$ and $AB=3$, point $D$ is on side $BC$, and $CD=3DB$. Point $E$ is a point on side $OA$, and $DE$ is connected. When quadrilateral $ABDE$ is folded along $DE$, and the symmetric point $A'$ of point $A$ exactly falls on side $OC$, then what is the length of $OE$?", -"image_file_name": "7054392", -"image": [ -"math/52387487_691.png" -], -"solution": "\\textbf{Solution:} Connect $A^{\\prime}D$, $AD$,\\\\\nsince quadrilateral $OABC$ is a rectangle,\\\\\nthus BC=OA=4, OC=AB=3, $\\angle C=\\angle B=\\angle O=90^\\circ$,\\\\\nsince $CD=3DB$,\\\\\nthus $CD=3$, $BD=1$,\\\\\nthus $CD=AB$,\\\\\nsince quadrilateral $ABDE$ is folded along $DE$, if the symmetric point of $A^{\\prime}$ exactly falls on side $OC$,\\\\\nthus $A^{\\prime}D=AD$, $A^{\\prime}E=AE$,\\\\\nin $\\triangle A^{\\prime}CD$ and $\\triangle DBA$, $\\left\\{\\begin{array}{l}CD=AB \\\\ A^{\\prime}D=AD\\end{array}\\right.$,\\\\\nthus $\\triangle A^{\\prime}CD\\cong \\triangle DBA$ (HL),\\\\\nthus $A^{\\prime}C=BD=1$,\\\\\nthus $A^{\\prime}O=2$,\\\\\nsince $A^{\\prime}O^{2}+OE^{2}=A^{\\prime}E^{2}$,\\\\\nthus $2^{2}+OE^{2}=(4-OE)^{2}$,\\\\\nthus $OE=\\boxed{\\frac{3}{2}}$.", -"solution_image": [ -"solution_images/52387487_690.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52387157": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=4$, $BC=8$. The rectangle $ABCD$ is folded along $EF$ so that point $C$ coincides with point $A$. What is the length of the crease $EF$?", -"image_file_name": "7054392", -"image": [ -"math/52387157_700.png" -], -"solution": "\\textbf{Solution:}\\\\\nLet $BE = x$, then $CE = BC - BE = 8 - x$, \\\\\n$\\because$ After folding along $EF$, point $C$ coincides with point $A$, \\\\\n$\\therefore$ $AE = CE = 8 - x$, \\\\\nIn $\\triangle ABE$, $AB^{2} + BE^{2} = AE^{2}$, that is $4^{2} + x^{2} = (8 - x)^{2}$, \\\\\nSolving it, we get: $x = 3$, \\\\\n$\\therefore$ $AE = 8 - 3 = 5$, \\\\\nDue to the property of folding, $\\angle AEF = \\angle CEF$, \\\\\n$\\because$ $AD \\parallel BC$, \\\\\n$\\therefore$ $\\angle AFE = \\angle CEF$, \\\\\n$\\therefore$ $\\angle AEF = \\angle AFE$, \\\\\n$\\therefore$ $AE = AF = 5$, \\\\\nDraw a line from point $E$ to $H$ perpendicular to $AD$ at $H$, then quadrilateral $ABEH$ is a rectangle, \\\\\n$\\therefore$ $EH = AB = 4$, $AH = BE = 3$, \\\\\n$\\therefore$ $FH = AF - AH = 5 - 3 = 2$, \\\\\nIn $\\triangle EFH$, $EF = \\sqrt{4^{2} + 2^{2}} = \\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52387157_700.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52386889": { -"question": "As shown in the figure, line $L$ passes through vertex $A$ of the square $ABCD$. Lines are drawn from points $B$ and $D$ such that $DE \\perp l$ at point $E$ and $BF \\perp l$ at point $F$. If $DE=4$ and $BF=5$, what is the length of $EF$?", -"image_file_name": "7054392", -"image": [ -"math/52386889_716.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a square,\\\\\nit follows that $AD=AB$ and $\\angle DAB=90^\\circ$,\\\\\ntherefore $\\angle BAF+\\angle DAE=90^\\circ$\\\\\nGiven that $DE\\perp l$,\\\\\nit follows that $\\angle DAE+\\angle ADE=90^\\circ$\\\\\ntherefore, $\\angle BAF=\\angle ADE$\\\\\nGiven that $DE\\perp l$ and $BF\\perp l$,\\\\\nit follows that $\\angle AFB=\\angle AED=90^\\circ$\\\\\nIn triangles $DAE$ and $ABF$,\\\\\ngiven that $\\left\\{\\begin{array}{l}\\angle AED=\\angle AFB \\\\ \\angle BAF=\\angle ADE \\\\ AD=AB \\end{array}\\right.$,\\\\\nit follows that $\\triangle DAE\\cong \\triangle ABF$\\\\\ntherefore, $AF=DE=4$, $AE=BF=5$\\\\\ntherefore, $EF=AF+AE=4+5=\\boxed{9}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387024": { -"question": "As shown in the figure, within square $ABCD$, an equilateral triangle $\\triangle ADE$ is constructed. By connecting $BE$ and $CE$, what is the measure of $\\angle CBE$ in degrees?", -"image_file_name": "7054392", -"image": [ -"math/52387024_726.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ADE$ is an equilateral triangle,\\\\\nit follows that $AE=DE=AD$, and $\\angle ADE=\\angle EAD=\\angle AED=60^\\circ$,\\\\\nSince quadrilateral ABCD is a square,\\\\\nit follows that $AB=AD=DC$, and $\\angle BAD=\\angle ADC=90^\\circ$,\\\\\nthus $\\angle BAE=\\angle CDE=90^\\circ-60^\\circ=30^\\circ$, and $AB=AE=DE=CD$,\\\\\nhence $\\angle ABE=\\frac{1}{2}\\left(180^\\circ-30^\\circ\\right)=75^\\circ=\\angle DCE$,\\\\\nthus $\\angle CBE=90^\\circ-75^\\circ=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386838": { -"question": "As shown in the diagram, within the rhombus $ABCD$, the diagonals $AC=6$ and $BD=8$. A line is drawn from point A such that $AE\\perp BC$. What is the length of $AE$?", -"image_file_name": "7054392", -"image": [ -"math/52386838_735.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rhombus,\\\\\n$\\therefore$ $CO=\\frac{1}{2}AC=3$, $BO=\\frac{1}{2}BD=4$, and $AO\\perp BO$,\\\\\n$\\therefore$ $BC=\\sqrt{CO^{2}+BO^{2}}=\\sqrt{9+16}=5$,\\\\\nSince the area of rhombus $ABCD$, $S_{\\text{rhombus} ABCD}=\\frac{1}{2}AC\\cdot BD=BC\\cdot AE$,\\\\\n$\\therefore$ $AE=\\frac{\\frac{1}{2}AC\\cdot BD}{BC}=\\boxed{\\frac{24}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386935": { -"question": "As shown in the figure, the diagonals of rhombus $ABCD$ intersect at point $O$, with $AC=12$ and $BD=16$. Point $P$ lies on side $BC$ and does not coincide with points $B$ or $C$. Through $P$, construct $PE \\perp AC$ at $E$ and $PF \\perp BD$ at $F$, and connect $EF$. What is the minimum value of $EF$?", -"image_file_name": "7054392", -"image": [ -"math/52386935_740.png" -], -"solution": "\\textbf{Solution:} Connect $OP$,\\\\\n\\textit{Since} quadrilateral $ABCD$ is a rhombus, $AC=12$, $BD=16$\\\\\n\\textit{Therefore} $AC\\perp BD$,\\\\\n$BO=\\frac{1}{2}BD=8$, $OC=\\frac{1}{2}AC=6$\\\\\n\\textit{Therefore} $BC=\\sqrt{OB^2+OC^2}=\\sqrt{64+36}=10$\\\\\n\\textit{Since} $PE\\perp AC$, $PF\\perp BD$, $AC\\perp BD$\\\\\n\\textit{Therefore} quadrilateral $OEPF$ is a rectangle,\\\\\n\\textit{Therefore} $FE=OP$\\\\\nWhen $OP\\perp BC$, $OP$ is at its minimum,\\\\\nThen $S_{\\triangle OBC}=\\frac{1}{2}OB\\cdot OC=\\frac{1}{2}BC\\cdot OP$\\\\\n\\textit{Therefore} $OP=\\frac{6\\times 8}{10}=4.8$\\\\\n\\textit{Therefore} the minimum value of $EF$ is $\\boxed{4.8}$", -"solution_image": [ -"solution_images/52386935_741.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52386366": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $D$ and $E$ are the midpoints of $AB$ and $AC$, respectively. Connect $DE$ and extend it to $F$ such that $EF=DE$. Connect $CF$. If $\\angle B=45^\\circ$, what is the measure of $\\angle F$?", -"image_file_name": "7054392", -"image": [ -"math/52386366_751.png" -], -"solution": "\\textbf{Solution:} Since point E is the midpoint of AC, and point D is the midpoint of AB, \\\\\ntherefore $DE \\parallel BC$ and $BC=2DE$. \\\\\nSince EF=DE, \\\\\ntherefore $DF=2DE$, \\\\\ntherefore $DF=BC$, \\\\\ntherefore quadrilateral BCFD is a parallelogram, \\\\\ntherefore $\\angle F=\\angle B=45^\\circ$. \\\\\nHence, the answer is: $\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52381893": { -"question": "As shown in the figure, in rhombus $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. Point $E$ is the midpoint of side $AB$. If $OE=4$, what is the length of $BC$?", -"image_file_name": "7054392", -"image": [ -"math/52381893_766.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus,\\\\\nit follows that AB = BC = CD = AD, and BD$\\perp$AC,\\\\\nFurthermore, since point E is the midpoint of side AB,\\\\\nit follows that OE = AE = EB $ =\\frac{1}{2}$ AB,\\\\\nTherefore, BC = AB = 2OE = $4\\times 2$ = \\boxed{8}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52381894": { -"question": "As shown in the figure, $\\triangle ABH$, $\\triangle CBG$, $\\triangle CDF$, and $\\triangle DAE$ are four congruent right-angled triangles. If $BH=8$ and $EG=2\\sqrt{2}$, then what is the length of $AB$?", -"image_file_name": "7054392", -"image": [ -"math/52381894_777.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABH$, $\\triangle CBG$, $\\triangle CDF$, and $\\triangle DAE$ are four congruent right-angled triangles, with $BH=8$,\\\\\nit follows that $BH=AE=8$, $BG=AH$, and $\\angle AHB=90^\\circ$,\\\\\ntherefore $BH-BG=AE-AH$, which means $HG=HE$, and $\\angle EHG=90^\\circ$,\\\\\nin right-angled triangle $HEG$, by Pythagoras' theorem, we have $HG^2+HE^2=GE^2$,\\\\\nsince $EG=2\\sqrt{2}$,\\\\\nit follows that $HG=2=HE$,\\\\\ntherefore $AH=8-2=6$,\\\\\nin right-angled triangle $ABH$, by Pythagoras' theorem, we get $AB=\\sqrt{AH^2+BH^2}=\\sqrt{6^2+8^2}=\\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52380887": { -"question": "As shown in the figure, in rhombus $ABCD$, $\\angle A=60^\\circ$, $E$ is the midpoint of $AD$, and $F$ is the midpoint of $AB$. If $EF=\\sqrt{5}$, what is the perimeter of rhombus $ABCD$?", -"image_file_name": "7054392", -"image": [ -"math/52380887_781.png" -], -"solution": "\\textbf{Solution:} Since $E$ and $F$ are the midpoints of $AD$ and $AB$ respectively, \\\\\n$\\therefore EF=\\frac{1}{2}BD$, \\\\\nAlso, since $EF=\\sqrt{5}$, \\\\\n$\\therefore BD=2\\sqrt{5}$, \\\\\nSince quadrilateral $ABCD$ is a rhombus with $\\angle A=60^\\circ$, \\\\\n$\\therefore \\triangle ABD$ and $\\triangle BDC$ are both equilateral triangles, \\\\\n$\\therefore AB=2\\sqrt{5}$, \\\\\n$\\therefore$ the side length of the rhombus $ABCD$ is $2\\sqrt{5}\\times 4=\\boxed{8\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52380847": { -"question": "As shown in the figure, $O$ is the midpoint of the diagonal $AC$ of rectangle $ABCD$, and $M$ is the midpoint of $AD$. If $AB=5$ and $AD=12$, what is the perimeter of quadrilateral $ABOM$?", -"image_file_name": "7054392", -"image": [ -"math/52380847_790.png" -], -"solution": "\\textbf{Solution:} Since $O$ is the midpoint of the diagonal $AC$ of rectangle $ABCD$, and $M$ is the midpoint of $AD$,\\\\\ntherefore $OM = \\frac{1}{2}CD = \\frac{1}{2}AB = 2.5$,\\\\\nand since $AB=5$, $AD=12$,\\\\\ntherefore $AC = \\sqrt{5^{2}+12^{2}}=13$,\\\\\nSince $O$ is the midpoint of the diagonal $AC$ of rectangle $ABCD$,\\\\\ntherefore $BO = \\frac{1}{2}AC = 6.5$,\\\\\ntherefore, the perimeter of quadrilateral $ABOM$ is $AB+AM+BO+OM = 5+6+6.5+2.5 = \\boxed{20}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52836896": { -"question": "In $\\triangle ACB$, $\\angle ABC=90^\\circ$, $AB=4$, and $BC=3$. Squares are constructed externally on each of the three sides. Connecting the vertices of these squares forms a hexagon DEFGHI. What is the area of hexagon DEFGHI?", -"image_file_name": "7048953", -"image": [ -"math/52836896_404.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\nin $\\triangle ABC$, since $AB=4$ and $BC=3$, \\\\\ntherefore $AC=\\sqrt{AB^{2}+BC^{2}}=\\sqrt{4^{2}+3^{2}}=5$. \\\\\nSince quadrilaterals ABDE, BCGF, and ACHM are all squares, \\\\\ntherefore $\\angle ABD=\\angle CBF=\\angle BAE=\\angle CAM=\\angle ACH=\\angle GCH=90^\\circ$, BD=BA, AM=AC, CBN=CG, $S_{\\text{square ABDE}}=4^{2}=16$, $S_{\\text{square ACHM}}=5^{2}=25$, $S_{\\text{square BCGF}}=3^{2}=9$, \\\\\ntherefore, $\\angle DBF+\\angle ABC=180^\\circ$, $\\angle MAE+\\angle BAC=180^\\circ$, $\\angle ACB+\\angle HCG=180^\\circ$, \\\\\ndraw IM$\\perp$DA to intersect the extension line of DA at M, \\\\\ntherefore $\\angle M=\\angle ABC=90^\\circ$, \\\\\nsince $\\angle DAI+\\angle MAI=\\angle DAI+\\angle BAC=180^\\circ$, \\\\\ntherefore $\\angle IAM=\\angle BAC$, \\\\\nin $\\triangle AMI$ and $\\triangle BAC$, \\\\\n$\\left\\{\\begin{array}{l}\\angle M=\\angle ABC \\\\ \\angle BAC=\\angle MAI \\\\ AC=AI \\end{array}\\right.$ \\\\\ntherefore $\\triangle AMI \\cong \\triangle ABC$, \\\\\nhence AB=AM, \\\\\nthus AD=AM, \\\\\nthus $S_{\\triangle AMI}=S_{\\triangle ABC}=S_{\\triangle ADI}$, \\\\\nSimilarly, $S_{\\triangle BEF}=S_{\\triangle ABC}$, $S_{\\triangle CHG}=S_{\\triangle ABC}$, \\\\\nthus $S_{\\triangle DBF}=S_{\\triangle MAE}=S_{\\triangle HCG}=S_{\\triangle ABC}=\\frac{1}{2}\\times 3\\times 4=6$, \\\\\ntherefore the area of the hexagon DEMHGF=$25+16+9+4\\times6=\\boxed{74}$.", -"solution_image": [ -"solution_images/52836896_400.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52836829": { -"question": "As shown in the figure, in $\\triangle ABC$, $AE$ is the median to side $BC$. A line is drawn through point $C$ such that $CD \\perp AE$, and it intersects the extension line of $AE$ at point $D$. Line $BD$ is drawn. If $AB = BD$ and the area of $\\triangle BCD$ is 10, what is the area of $\\triangle ABC$?", -"image_file_name": "7048953", -"image": [ -"math/52836829_415.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct $BF\\perp AE$ at point $F$,\n\nsince $CD\\perp AE$,\n\n$\\therefore \\angle BFE=\\angle CDE=90^\\circ$,\n\nsince $AE$ is the median to side $BC$,\n\n$\\therefore BE=CE$,\n\nIn $\\triangle BEF$ and $\\triangle CED$,\n\n$\\left\\{\\begin{array}{l}\n\\angle BFE=\\angle CDE \\\\\n\\angle BEF=\\angle CED \\\\\nBE=CE\n\\end{array}\\right.$\n\n$\\therefore \\triangle BEF \\cong \\triangle CED$ (AAS),\n\n$\\therefore FE=DE$, $BF=CD$,\n\nsince $AB = BD$,\n\n$\\therefore BF= DF$,\n\nLet $FE=DE=m$, $BF=CD=n$, then $AF= DF= 2FE= 2m$,\n\n$\\therefore AE=AF+FE= 3m$,\n\nsince $S_{\\triangle BCD}=S_{\\triangle BDE}+S_{\\triangle CDE}=\\frac{1}{2}DE\\cdot BF+\\frac{1}{2}DE\\cdot CD=\\frac{1}{2}mn+\\frac{1}{2}mn=mn$\n\nand $S_{\\triangle BCD}=10$,\n\n$\\therefore mn=10$,\n\n$\\therefore S_{\\triangle ABC}=S_{\\triangle ABE}+S_{\\triangle ACE}=\\frac{1}{2}AE\\cdot BF+\\frac{1}{2}AE\\cdot CD=\\frac{1}{2}\\times 3mn+\\frac{1}{2}\\times 3mn=3mn=\\boxed{30}$", -"solution_image": [ -"solution_images/52836829_410.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653621": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD \\perp BC$, $CE \\perp AB$, with the feet of the perpendiculars being $D$ and $E$ respectively, $AD$ and $CE$ intersect at point $H$. Given that $AE=CE=5$ and $CH=2$, what is the length of $BE$?", -"image_file_name": "7048953", -"image": [ -"math/52653621_4211.png" -], -"solution": "\\textbf{Solution:} Since $AD \\perp BC$, $CE \\perp AB$,\\\\\ntherefore $\\angle AEH = \\angle BEC = \\angle HDC = 90^\\circ$,\\\\\nthus $\\angle EAH + \\angle EHA = \\angle ECB + \\angle DHC = 90^\\circ$\\\\\nSince $\\angle EHA = \\angle DHC$,\\\\\nthus $\\angle EAH = \\angle ECB$,\\\\\nIn $\\triangle AEH$ and $\\triangle CEB$,\\\\\n$\\left\\{ \\begin{array}{l} \\angle EAH = \\angle ECB \\\\ CE = AE \\\\ \\angle AEH = \\angle BEC \\end{array} \\right.$,\\\\\ntherefore, $\\triangle AEH \\cong \\triangle CEB$ (ASA),\\\\\nthus $BE = EH = CE - CH = 5 - 2 = \\boxed{3}$,\\\\", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836749": { -"question": "As shown in the figure, in $\\triangle ABC$, point $P$ is the intersection of the perpendicular bisectors of $AB$ and $BC$, and point $Q$ is symmetric to point $P$ with respect to $AC$. Connect $PC$, $PQ$, and $CQ$. If in $\\triangle PCQ$ there is an angle of $50^\\circ$, then what is the measure of $\\angle B$?", -"image_file_name": "7048953", -"image": [ -"math/52836749_439.png" -], -"solution": "\\textbf{Solution:} Connect AP and BP as shown in the diagram: \\\\\n$\\because$ Point P is the intersection of the perpendicular bisectors of AB and BC,\\\\\n$\\therefore$ PA = PB = PC,\\\\\n$\\therefore$ $\\angle$PAB = $\\angle$PBA, $\\angle$PBC = $\\angle$PCB, $\\angle$PAC = $\\angle$PCA,\\\\\n$\\because$ Point Q is symmetric to point P with respect to AC,\\\\\n$\\therefore$ PC = QC, $\\angle$PCA = $\\angle$QCA,\\\\\n$\\therefore$ $\\angle$CPQ = $\\angle$CQP,\\\\\n(1) When $\\angle$CPQ = $\\angle$CQP = 50$^\\circ$, $\\angle$PCQ = 80$^\\circ$,\\\\\n$\\therefore$ $\\angle$PCA = 40$^\\circ$,\\\\\n$\\therefore$ $\\angle$PAC = 40$^\\circ$,\\\\\n$\\therefore$ $\\angle$PAB + $\\angle$PBA + $\\angle$PBC + $\\angle$PCB = 180$^\\circ$ - $\\angle$PAC - $\\angle$PCA = 100$^\\circ$,\\\\\n$\\therefore$ 2$\\angle$ABP + 2$\\angle$PBC = 100$^\\circ$,\\\\\n$\\therefore$ $\\angle$ABP + $\\angle$PBC = 50$^\\circ$, i.e., $\\angle$ABC = 50$^\\circ$,\\\\\n(2) When $\\angle$PCQ = 50$^\\circ$, $\\angle$PCA = 25$^\\circ$,\\\\\n$\\therefore$ $\\angle$PAC = 25$^\\circ$,\\\\\n$\\therefore$ $\\angle$PAB + $\\angle$PBA + $\\angle$PBC + $\\angle$PCB = 180$^\\circ$ - $\\angle$PAC - $\\angle$PCA = 130$^\\circ$,\\\\\n$\\therefore$ 2$\\angle$ABP + 2$\\angle$PBC = 130$^\\circ$,\\\\\n$\\therefore$ $\\angle$ABP + $\\angle$PBC = 65$^\\circ$, i.e., $\\angle$ABC = 65$^\\circ$,\\\\\nIn conclusion, $\\angle$ABC is \\boxed{50^\\circ} or \\boxed{65^\\circ}.", -"solution_image": [ -"solution_images/52836749_430.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52836214": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle ABC=\\angle ACB$, D is the midpoint of BC, AD is connected, E is a point on AB, P is a point on AD, EP and BP are connected, $ AC=10$, $ BC=12$, what is the minimum value of $ EP+BP$?", -"image_file_name": "7048953", -"image": [ -"math/52836214_445.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\triangle ABC$ is an isosceles triangle, and AD is the median to side BC,\\\\\n$\\therefore$ AD bisects BC at a right angle,\\\\\n$\\therefore$ points B and C are symmetric about AD,\\\\\n$\\therefore$ BP=CP,\\\\\nA perpendicular from point C to AB is drawn, and the perpendicular foot is point E, with CE intersecting AD at point P, (the perpendicular distance is the shortest distance between a point and a line),\\\\\nAs shown in the figure, at this time, the sum of $BP+EP$ is minimal, and it is equal to the length of CE,\\\\\n$\\because$ D is the midpoint of BC, and BC=12,\\\\\n$\\therefore$ CD=$\\frac{1}{2} \\times 12=6$,\\\\\n$\\therefore$ AD=$\\sqrt{AC^{2}-CD^{2}}=8$,\\\\\n$\\because$ $\\angle ABC=\\angle ACB$,\\\\\n$\\therefore$ AB=AC=10,\\\\\n$\\because$ $S_{\\triangle ABC}=\\frac{1}{2}BC \\cdot AD=\\frac{1}{2}AB \\cdot CE$,\\\\\n$\\therefore$ CE=$\\frac{BC \\cdot AD}{AB}=\\frac{12 \\times 8}{10}=\\frac{48}{5}$,\\\\\n$\\therefore$ the minimum value of $BP+EP$ is $\\boxed{\\frac{48}{5}}$.", -"solution_image": [ -"solution_images/52836214_441.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52655468": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 60^\\circ$, $DE$ is the perpendicular bisector of the hypotenuse $AC$, intersecting $AB$ and $AC$ at points $D$ and $E$, respectively. If $BD = 2$, what is the length of $AD$?", -"image_file_name": "7048953", -"image": [ -"math/52655468_450.png" -], -"solution": "\\textbf{Solution:} Given $\\triangle ABC$, $\\angle ACB=60^\\circ$, \\\\\n$\\therefore \\angle A=30^\\circ$. \\\\\nSince DE is the perpendicular bisector of AC, \\\\\n$\\therefore$ DA=DC, \\\\\nhence $\\angle DCA=\\angle A=30^\\circ$, \\\\\n$\\therefore \\angle DCB=\\angle ACB-\\angle DCA$, \\\\\n$=60^\\circ-30^\\circ$ \\\\\n$=30^\\circ$ \\\\\nIn $\\triangle BCD$, $\\angle DCB=30^\\circ$, \\\\\n$\\therefore BD= \\frac{1}{2}CD$, \\\\\n$\\therefore CD=2BD=4$, \\\\\n$\\therefore AD=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653549": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle A=30^\\circ$, and the perpendicular bisector of $AB$ intersects $AB$ at $D$ and $AC$ at $E$. If $AC=9$ cm, what is the length of $AE$ in centimeters?", -"image_file_name": "7048953", -"image": [ -"math/52653549_4610.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $BE$,\\\\\n$\\because$ $\\angle C=90^\\circ$ and $\\angle A=30^\\circ$, the perpendicular bisector of $AB$ intersects $AB$ at $D$,\\\\\n$\\therefore \\angle ABC=60^\\circ$, $BE=AE$, $\\angle A=\\angle EBA=30^\\circ$,\\\\\n$\\therefore \\angle CBE=30^\\circ$,\\\\\n$\\therefore BE=2CE=AE$,\\\\\n$\\therefore AC=CE+AE=9$,\\\\\n$\\therefore 3CE=9$, hence $CE=3$,\\\\\n$\\therefore AE=\\boxed{6}$.", -"solution_image": [ -"solution_images/52653549_461.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52836748": { -"question": "As shown in the figure, in $\\triangle ABC$, $CD$ is the bisector of $\\angle ACB$. Extend $CD$ to point $E$ such that $DE = \\frac{1}{2}CD$. Connect $BE$. If $AC = 2BC$ and the area of $\\triangle BDE$ is $1$, what is the area of $\\triangle ABC$?", -"image_file_name": "7048953", -"image": [ -"math/52836748_479.png" -], -"solution": "\\[\n\\textbf{Solution:} \\text{As shown in the figure, draw } DG \\perp AC \\text{ at } G, \\text{ and } DH \\perp CB \\text{ at } H, \\\\\n\\because DE = \\frac{1}{2}CD, \\text{ and the area of } \\triangle BDE \\text{ is 1,} \\\\\n\\therefore S\\triangle BCD = 2S\\triangle BDE = 2, \\\\\n\\because CD \\text{ is the angle bisector of } \\angle ACB, DH \\perp CB, \\text{ and } DG \\perp AC, \\\\\n\\therefore DG = DH, \\\\\n\\because AC = 2BC, S_{\\triangle ACD} = \\frac{1}{2}AC \\cdot GD, S_{\\triangle BCD} = \\frac{1}{2}BC \\cdot DH, \\\\\n\\therefore S\\triangle ACD = 2S\\triangle BCD, \\\\\n\\therefore S\\triangle ACD = 4, \\\\\n\\therefore S\\triangle ABC = S\\triangle ACD + S\\triangle BCD = 4 + 2 = \\boxed{6}.\n\\]", -"solution_image": [ -"solution_images/52836748_470.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51366535": { -"question": "As shown in the figure, $OA_1=A_1A_2=A_2A_3=A_3A_4=A_4A_5=1$, $\\angle OA_1A_2=\\angle OA_2A_3=\\angle OA_3A_4=\\angle OA_4A_5=90^\\circ$, what is the length of $OA_5$?", -"image_file_name": "7048953", -"image": [ -"math/51366535_483.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle O{A}_{1}{A}_{2}=\\angle O{A}_{2}{A}_{3}=\\angle O{A}_{3}{A}_{4}=\\angle O{A}_{4}{A}_{5}=90^\\circ$ and $O{A}_{1}={A}_{1}{A}_{2}={A}_{2}{A}_{3}={A}_{3}{A}_{4}={A}_{4}{A}_{5}=1$, \\\\\n$\\therefore OA{}_{2}=\\sqrt{O{{A}_{1}}^{2}+{A}_{1}{{A}_{2}}^{2}}=\\sqrt{{1}^{2}+{1}^{2}}=\\sqrt{2}$, \\\\\n$OA{}_{3}=\\sqrt{O{{A}_{2}}^{2}+{A}_{2}{{A}_{3}}^{2}}=\\sqrt{{\\left(\\sqrt{2}\\right)}^{2}+{1}^{2}}=\\sqrt{3}$, \\\\\n$OA{}_{4}=\\sqrt{O{{A}_{3}}^{2}+{A}_{3}{{A}_{4}}^{2}}=\\sqrt{{\\left(\\sqrt{3}\\right)}^{2}+{1}^{2}}=2$, \\\\\n$OA{}_{5}=\\sqrt{O{{A}_{4}}^{2}+{A}_{4}{{A}_{5}}^{2}}=\\sqrt{{2}^{2}+{1}^{2}}=\\boxed{\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51366593": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, the perpendicular bisector of AB intersects AB and AC at points D and E, respectively. If $AC=8$ and $BD=5$, what is the area of $\\triangle ADE$?", -"image_file_name": "7048953", -"image": [ -"math/51366593_495.png" -], -"solution": "\\textbf{Solution:} Connect BE,\\\\\nsince DE is the perpendicular bisector of AB,\\\\\nit follows that EA=EB, AD=DB=5,\\\\\nsince $\\angle C=90^\\circ$, AC=8, BD=5,\\\\\nit follows that AB=2BD=10,\\\\\nby the Pythagorean theorem, we have BC=$\\sqrt{AB^{2}-AC^{2}}=\\sqrt{10^{2}-8^{2}}=6$,\\\\\nthus CE=8−AE=8−EB,\\\\\nin $\\triangle CBE$, we have $BE^{2}=CE^{2}+BC^{2}$, that is $BE^{2}=(8-BE)^{2}+36$,\\\\\nsolving this, we get $BE=\\frac{25}{4}$, therefore, AE=$\\frac{25}{4}$,\\\\\nthus the area of $\\triangle ABE$ is $\\frac{1}{2}AE\\times BC=\\frac{1}{2}\\times\\frac{25}{4}\\times6=\\frac{75}{4}$,\\\\\nthus the area of $\\triangle ADE$ is $\\frac{1}{2}$ area of $\\triangle ABE$=$\\boxed{\\frac{75}{8}}$.", -"solution_image": [ -"solution_images/51366593_490.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51366532": { -"question": "In right triangle $ABC$, $\\angle ACB=90^\\circ$, $BC=2\\,\\text{cm}$, $CD\\perp AB$. Point $E$ is taken on $AC$ such that $EC=2\\,\\text{cm}$. A line through point $E$ and perpendicular to $AC$ intersects the extension of $CD$ at point $F$. If $AE=3\\,\\text{cm}$, what is the length of $EF$ in centimeters?", -"image_file_name": "7048953", -"image": [ -"math/51366532_500.png" -], -"solution": "\\textbf{Solution:}\\\\\n$\\because \\angle ACB=90^\\circ$\\\\\n$\\therefore \\angle ECF+\\angle BCD=90^\\circ$\\\\\n$\\because CD\\perp AB$\\\\\n$\\therefore \\angle BCD+\\angle B=90^\\circ$\\\\\n$\\therefore \\angle ECF=\\angle B$\\\\\nIn $\\triangle ABC$ and $\\triangle FEC$\\\\\n$\\because \\angle ECF=\\angle B$, $EC=BC$, $\\angle ACB=\\angle FEC=90^\\circ$\\\\\n$\\therefore \\triangle ABC \\cong \\triangle FCE$ (ASA)\\\\\n$\\therefore AC=EF$\\\\\n$\\because AC=AE+CE=3+2=5\\text{cm}$,\\\\\n$\\therefore EF=\\boxed{5\\text{cm}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51366537": { -"question": "As shown in the figure, in rectangle $ABCD$, we have $AB=3$ and $BC=4$. Point $E$ is a point on side $BC$. Connect $AE$. Fold $\\angle B$ along $AE$, making point $B$ fall on point $B^{\\prime}$. When $\\triangle CEB^{\\prime}$ is a right-angled triangle, what is the length of $BE$?", -"image_file_name": "7048953", -"image": [ -"math/51366537_515.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, when A, B', and C are collinear, $\\angle EB'C=90^\\circ$.\n\nQuadrilateral ABCD is a rectangle,\n\n$\\therefore \\angle B=90^\\circ$,\n\n$\\therefore AC=\\sqrt{AB^{2}+CB^{2}}=\\sqrt{3^{2}+4^{2}}=5$,\n\n$\\because AB=AB' =3$,\n\n$\\therefore CB' =5-3=2$, let $BE=EB' =x$, then $EC=4-x$,\n\nIn $\\triangle CEB'$, $CE^{2}=B'E^{2}+B'C^{2}$,\n\n$\\therefore (4-x)^{2}=2^{2}+x^{2}$,\n\n$\\therefore x=\\boxed{\\frac{3}{2}}$,\n\nAs shown in Figure 2, when point B' lies on AD, $\\angle CEB' =90^\\circ$,\n\nAt this time, quadrilateral ABEB' is a square,\n\n$\\therefore BE=AB=3$,\n\nIn conclusion, the values of $BE$ that meet the conditions are $\\frac{3}{2}$ or 3.", -"solution_image": [ -"solution_images/51366537_510.png", -"solution_images/51366537_5112.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51366536": { -"question": "As shown in the figure, in the Cartesian coordinate system, points B and C are on the y-axis, and $\\triangle ABC$ is an equilateral triangle with $AB=4$. The intersection point D of $AC$ and the x-axis has coordinates $(\\sqrt{3}, 0)$. What are the coordinates of point A?", -"image_file_name": "7048953", -"image": [ -"math/51366536_521.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw AE$\\perp$BC through point A, thus AE$\\parallel$OD, \\\\\nbecause $\\triangle ABC$ is an equilateral triangle, \\\\\ntherefore $BC=AB=4$, $BE=CE=\\frac{1}{2}BC=2$, \\\\\ntherefore $AE=\\sqrt{AB^{2}-BE^{2}}=\\sqrt{4^{2}-2^{2}}=2\\sqrt{3}$, \\\\\nbecause $D(\\sqrt{3},0)$, \\\\\ntherefore $OD=\\sqrt{3}$, \\\\\ntherefore point O is the midpoint of CE, \\\\\ntherefore $OE=\\frac{1}{2}CE=1$, \\\\\ntherefore the coordinates of point A are $\\boxed{(2\\sqrt{3},1)}$.", -"solution_image": [ -"solution_images/51366536_520.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51385938": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle. Points $P$ and $Q$ are taken on sides $AC$ and $BC$, respectively, such that $AP=CQ$, and $\\angle ABP=20^\\circ$. Lines $AQ$ and $BP$ intersect at point $O$. What is the measure of $\\angle AQB$?", -"image_file_name": "7048953", -"image": [ -"math/51385938_530.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an equilateral triangle,\\\\\nit follows that AB=AC, $\\angle BAP=\\angle ACQ=60^\\circ$,\\\\\nIn $\\triangle BAP$ and $\\triangle ACQ$,\\\\\n$\\left\\{\\begin{array}{l}\nAB=AC\\\\\n\\angle BAP=\\angle ACQ\\\\\nAP=CQ\n\\end{array}\\right.$,\\\\\nthus $\\triangle BAP \\cong \\triangle ACQ$ (SAS),\\\\\ntherefore $\\angle CAQ=\\angle ABP=20^\\circ$,\\\\\nthus $\\angle AQB=\\angle C+\\angle CAQ=60^\\circ+20^\\circ=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385796": { -"question": "As shown in the figure, $ \\triangle ABC \\cong \\triangle DEF$. If $ \\angle A = 65^\\circ$, what is the measure of $ \\angle EDC$?", -"image_file_name": "7048953", -"image": [ -"math/51385796_540.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle DEF$, \\\\\nit follows that $\\angle EDC = \\angle A = 65^\\circ$, \\\\\ntherefore, $\\angle EDC = \\boxed{65^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385696": { -"question": "As shown in the figure, in the equilateral triangle $ABC$, $BD$ is the median to the side $AC$, and through point $D$, $DE \\perp BC$ at point $E$. If $AB=2$, then what is the length of $CE$?", -"image_file_name": "7048953", -"image": [ -"math/51385696_550.png" -], -"solution": "\\textbf{Solution:} Given: $\\because$ $\\triangle ABC$ is an equilateral triangle, $AB=2$,\\\\\n$\\therefore$ $\\angle ABC = \\angle C = 60^\\circ$, $AB = BC = AC = 2$,\\\\\nAlso $\\because$ $BD$ is the median to side $AC$,\\\\\n$\\therefore$ $\\angle DBC = 30^\\circ$, $\\angle BDC = 90^\\circ$, $DC = 1$,\\\\\nAlso $\\because$ $DE \\perp BC$,\\\\\n$\\therefore$ $\\angle EDC = 30^\\circ$,\\\\\n$\\therefore$ $EC = \\frac{1}{2} DC = \\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53010087": { -"question": "As shown in the figure, in $\\triangle ABC$, point $D$ is on side $BC$, $DB=AB=\\frac{3}{5}BC$, $BE \\perp AD$ at point $E$. If the area of $\\triangle ABE$ is 6, what is the area of $\\triangle EBC$?", -"image_file_name": "7048953", -"image": [ -"math/53010087_568.png" -], -"solution": "\\textbf{Solution:} Since $DB=AB$ and $BE \\perp AD$, \\\\\nit follows that $AE=DE$, \\\\\ntherefore $S_{\\triangle BDE}=S_{\\triangle ABE}=6$, \\\\\nsince $DB=\\frac{3}{5}BC$, \\\\\nit therefore follows that $S_{\\triangle BDE} : S_{\\triangle EDC}=3:2$, \\\\\nhence $S_{\\triangle EDC}=4$, \\\\\nthus $S_{\\triangle BCE}=S_{\\triangle BDE}+S_{\\triangle EDC}=\\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53010085": { -"question": "As shown in the figure, in $\\triangle ABC$, point $D$ is on side $AB$, $E$ is the midpoint of side $AC$, $CF\\parallel AB$, and the extension lines of $CF$ and $DE$ intersect at point $F$. If $AB=4$ and $CF=3$, what is the length of $BD$?", -"image_file_name": "7048953", -"image": [ -"math/53010085_5713.png" -], -"solution": "\\textbf{Solution:} Since $CF\\parallel AB$,\\\\\nit follows that $\\angle ADF=\\angle CFD$ and $\\angle DAC=\\angle ACF$,\\\\\nsince $E$ is the midpoint of side $AC$,\\\\\nit follows that $AE=EC$,\\\\\nin $\\triangle ADE$ and $\\triangle CFE$,\\\\\nwe have $\\left\\{\\begin{array}{l}\n\\angle ADF=\\angle CFD \\\\\n\\angle DAC=\\angle ACF \\\\\nAE=EC\n\\end{array}\\right.$,\\\\\ntherefore, $\\triangle ADE\\cong \\triangle CFE$,\\\\\ntherefore, $AD=CF=3$,\\\\\ntherefore, $BD=AB−AD= \\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53010115": { -"question": "As shown in the diagram, in $\\triangle ABC$, $AB=AC$ and $\\angle B=40^\\circ$. Point D moves along the line segment $BC$ (D does not coincide with B or C). Connect $AD$ and construct $\\angle ADE=40^\\circ$, with $DE$ intersecting line segment $AC$ at $E$. As point D moves, the shape of $\\triangle ADE$ also changes. When $\\triangle ADE$ is an isosceles triangle, what is the degree measure of $\\angle BDA$?", -"image_file_name": "7048953", -"image": [ -"math/53010115_580.png" -], -"solution": "\\textbf{Solution:} Since AB = AC,\\\\\nit follows that $\\angle B = \\angle C = 40^\\circ$,\\\\\n(1) When AD = AE, $\\angle ADE = \\angle AED = 40^\\circ$,\\\\\nsince $\\angle AED > \\angle C$,\\\\\nthis case does not hold;\\\\\n(2) When DA = DE, that is $\\angle DAE = \\angle DEA = \\frac{1}{2}(180^\\circ - 40^\\circ) = 70^\\circ$,\\\\\nsince $\\angle BAC = 180^\\circ - 40^\\circ - 40^\\circ = 100^\\circ$,\\\\\nit follows that $\\angle BAD = 100^\\circ - 70^\\circ = 30^\\circ$;\\\\\ntherefore $\\angle BDA = 180^\\circ - 30^\\circ - 40^\\circ = \\boxed{110^\\circ}$;\\\\\n(3) When EA = ED, $\\angle ADE = \\angle DAE = 40^\\circ$,\\\\\nit follows that $\\angle BAD = 100^\\circ - 40^\\circ = 60^\\circ$,\\\\\ntherefore $\\angle BDA = 180^\\circ - 60^\\circ - 40^\\circ = 80^\\circ$;\\\\\ntherefore, when $\\triangle ADE$ is an isosceles triangle, the degree of $\\angle BDA$ is $110^\\circ$ or $80^\\circ$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53010086": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, and the points $D$, $E$, $F$ are on the sides $BC$, $AB$, $AC$, respectively, with $CD=BE$ and $BD=CF$. If $\\angle EDF = 42^\\circ$, what is the measure of $\\angle BAC$?", -"image_file_name": "7048953", -"image": [ -"math/53010086_5912.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$, \\\\\nit follows that $\\angle B=\\angle C$, \\\\\nIn $\\triangle BDE$ and $\\triangle CFD$, \\\\\n$\\begin{cases}\nBD=CF\\\\\n\\angle B=\\angle C\\\\\nBE=CD\n\\end{cases}$, \\\\\nhence, $\\triangle BDE \\cong \\triangle CFD$, \\\\\ntherefore, $\\angle EDB=\\angle DFC$, $\\angle FDC=\\angle BED$, \\\\\nsince $\\angle EDF+\\angle BDE+\\angle FDC=180^\\circ$, $\\angle B+\\angle BED+\\angle EDB=180^\\circ$, \\\\\nit follows that $\\angle B=\\angle EDF=42^\\circ$, \\\\\nthus, $\\angle BAC=180^\\circ-\\angle B-\\angle C=\\boxed{96^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51378985": { -"question": "As shown in the figure, $BD$ is the angle bisector of $\\triangle ABC$, with $AB=15$, $BC=9$, and $AC=12$. What is the length of $BD$?", -"image_file_name": "7048953", -"image": [ -"math/51378985_606.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $DE\\perp AB$ at point $E$,\\\\\nbecause $AB=15$, $BC=9$, and $AC=12$,\\\\\ntherefore, $AB^{2}=225$, and $BC^{2}+AC^{2}=9^{2}+12^{2}=225$\\\\\ntherefore, $AB^{2}=BC^{2}+AC^{2}$\\\\\ntherefore, $\\triangle ABC$ is a right-angled triangle\\\\\ntherefore, $\\angle C=90^\\circ$\\\\\ntherefore, $DC\\perp BC$\\\\\nbecause $BD$ is the angle bisector of $\\triangle ABC$,\\\\\ntherefore, $DE=DC$\\\\\nIn $Rt\\triangle DEB$ and $Rt\\triangle DCB$\\\\\n$\\left\\{\\begin{array}{l}DB=DB\\\\ DC=DE\\end{array}\\right.$\\\\\ntherefore, $Rt\\triangle DEB \\cong Rt\\triangle DCB$\\\\\ntherefore, $BE=BC=9$\\\\\ntherefore, $AE=AB-BE=15-9=6$\\\\\nLet $DC=DE =x$, then $AD=AC-DC=12-x$\\\\\nIn $Rt\\triangle ADE$, $AD^{2}=AE^{2}+DE^{2}$\\\\\nthat is $\\left(12-x\\right)^{2}=x^{2}+6^{2}$\\\\\nSolving for $x$ yields $x=\\frac{9}{2}$\\\\\nIn $Rt\\triangle BDC$\\\\\n$BD=\\sqrt{DC^{2}+BC^{2}}=\\sqrt{\\left(\\frac{9}{2}\\right)^{2}+9^{2}}=\\boxed{\\frac{9}{2}\\sqrt{5}}$", -"solution_image": [ -"solution_images/51378985_603.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51378776": { -"question": "In the figure, in equilateral triangle $ABC$, we have $AB=2$. Let $BD$ be the altitude to side $AC$. Extend $BC$ to point $E$ such that $CE=CD$. What is the length of $BE$?", -"image_file_name": "7048953", -"image": [ -"math/51378776_618.png" -], -"solution": "\\textbf{Solution:} Since triangle $ABC$ is an equilateral triangle,\\\\\nwe have $BC=AC=2$,\\\\\nand since $BD$ is the altitude of side $AC$,\\\\\nwe have $DC=\\frac{1}{2}AC=\\frac{1}{2}\\times 2=1$,\\\\\nthus $CE=CD=1$,\\\\\ntherefore $BE=BC+CE=2+1=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51378814": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point D is on line AB. When $\\triangle ABC$ is folded along CD, point A falls on side BC at point A. If $\\angle B=35^\\circ$, what is the measure of $\\angle BDA$?", -"image_file_name": "7048953", -"image": [ -"math/51378814_622.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $\\angle ACB=90^\\circ$ and $\\angle B=35^\\circ$, \\\\\nit follows that $\\angle A=180^\\circ-\\angle ACB-\\angle B=180^\\circ-90^\\circ-35^\\circ=55^\\circ$, \\\\\nSince $\\triangle CDA$ is obtained by folding $\\triangle CDA$, \\\\\nthus $\\angle CAD=\\angle A=55^\\circ$, \\\\\nSince $\\angle CAD=\\angle B+\\angle BDA=\\angle B+20^\\circ$, \\\\\nit follows that $\\angle BDA=\\angle CAD-\\angle B=55^\\circ-35^\\circ=\\boxed{20^\\circ}$.", -"solution_image": [ -"solution_images/51378814_621.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51378984": { -"question": "As shown in the figure, $\\angle BAC=33^\\circ$, points $D$ and $E$ are on sides $AB$ and $AC$ respectively, connect $DE$. When $\\angle A$ is folded along $DE$, the corresponding point of point $A$ is $A'$. If $\\angle 1 + \\angle 2 = 170^\\circ$, what is the measure of $\\angle 2$?", -"image_file_name": "7048953", -"image": [ -"math/51378984_6312.png" -], -"solution": "\\textbf{Solution:} Let point O be the intersection of AB and $AE$,\\\\\nfrom the property of folding, we have: $\\angle A = \\angle BAC = 33^\\circ$,\\\\\nsince $\\angle 2 = \\angle BAC + \\angle AOE$, and $\\angle AOE = \\angle 1 + \\angle A$,\\\\\nthus $\\angle 2 = \\angle BAC + \\angle 1 + \\angle A = \\angle 1 + 66^\\circ$, that is $\\angle 1 = \\angle 2 - 66^\\circ$,\\\\\nsince $\\angle 1 + \\angle 2 = 170^\\circ$,\\\\\ntherefore $\\angle 2 = \\boxed{118^\\circ}$.", -"solution_image": [ -"solution_images/51378984_631.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51378679": { -"question": "As shown in the figure, the perpendicular bisectors $l_{1}$ and $l_{2}$ of line segments AB and BC intersect at point O. If $\\angle 1=37^\\circ$, what is the degree measure of $\\angle AOC$?", -"image_file_name": "7048953", -"image": [ -"math/51378679_640.png" -], -"solution": "\\textbf{Solution}: Draw and extend line BO to P,\\\\\nsince the perpendicular bisectors $l_{1}$ and $l_{2}$ of line segments AB and BC intersect at point O,\\\\\ntherefore, AO = OB = OC, $\\angle$BDO = $\\angle$BEO = $90^\\circ$,\\\\\ntherefore, $\\angle$DOE + $\\angle$ABC = $180^\\circ$,\\\\\nsince $\\angle$DOE + $\\angle 1$ = $180^\\circ$,\\\\\ntherefore, $\\angle$ABC = $\\angle 1$ = $38^\\circ$,\\\\\nsince OA = OB = OC,\\\\\ntherefore, $\\angle A$ = $\\angle$ABO, $\\angle$OBC = $\\angle C$,\\\\\nsince $\\angle$AOP = $\\angle A$ + $\\angle$ABO, $\\angle$COP = $\\angle C$ + $\\angle$OBC,\\\\\ntherefore, $\\angle$AOC = $\\angle$AOP + $\\angle$COP = $\\angle A$ + $\\angle$ABC + $\\angle C$ = $2\\times38^\\circ$ = $\\boxed{76^\\circ}$;", -"solution_image": [ -"solution_images/51378679_640.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51378737": { -"question": "As shown in the figure, $BD$ and $CE$ are the medians of the equilateral triangle $ABC$, and $BD$ and $CE$ intersect at point $F$. What is the measure of $\\angle BFC$ in degrees?", -"image_file_name": "7048953", -"image": [ -"math/51378737_651.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC$ is an equilateral triangle\\\\\nHence, $\\angle ABC=\\angle ACB=60^\\circ$\\\\\nSince BD, CE are medians of the equilateral triangle ABC\\\\\nTherefore, $\\angle DBC=\\frac{1}{2}\\angle ABC=30^\\circ$, $\\angle ECB=\\frac{1}{2}\\angle ACB=30^\\circ$\\\\\nAdditionally, $\\angle BFC=180^\\circ-\\angle DBC-\\angle ECB$\\\\\nTherefore, $\\angle BFC=180^\\circ-30^\\circ-30^\\circ=\\boxed{120^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51379083": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=37^\\circ$, the perpendicular bisector of side $BC$ intersects $AC$ and $BC$ at points $D$ and $E$, respectively, and $AB=CD$, then what is the degree measure of $\\angle A$?", -"image_file_name": "7048953", -"image": [ -"math/51379083_660.png" -], -"solution": "\\textbf{Solution:} Draw BD as shown in the diagram: \\\\\n$\\because$ DE is the perpendicular bisector of BC, and AB=CD, \\\\\n$\\therefore$ BD=CD=AB, \\\\\n$\\because$ $\\angle$C=37$^\\circ$, \\\\\n$\\therefore$ $\\angle$DBC=$\\angle$C=37$^\\circ$, \\\\\n$\\therefore$ $\\angle$ADB=2$\\angle$C=74$^\\circ$, \\\\\n$\\because$ AB=BD, \\\\\n$\\therefore$ $\\angle$A=$\\angle$ADB=\\boxed{74^\\circ},", -"solution_image": [ -"solution_images/51379083_660.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51379084": { -"question": "As shown in the figure, $\\angle AOE = \\angle BOE = 15^\\circ$, $EF \\parallel OB$, $EC \\perp OB$. If $EC = 2$, what is the length of $EF$?", -"image_file_name": "7048953", -"image": [ -"math/51379084_670.png" -], -"solution": "\\textbf{Solution:} Construct $EG \\perp OA$ at $G$, as shown in the figure:\\\\\nSince $EF \\parallel OB$, $\\angle AOE = \\angle BOE = 15^\\circ$, and $EC \\perp OB$,\\\\\nit follows that $\\angle OEF = \\angle COE = 15^\\circ$ and $EG = CE = 2$,\\\\\nSince $\\angle AOE = 15^\\circ$,\\\\\nit follows that $\\angle EFG = 15^\\circ + 15^\\circ = 30^\\circ$,\\\\\nTherefore, $EF = 2EG = \\boxed{4}$.", -"solution_image": [ -"solution_images/51379084_670.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52856093": { -"question": "As shown in the figure, $ABC$ is an acute-angled triangle with $AB=4$, $\\angle BAC=60^\\circ$. The bisector of $\\angle BAC$ intersects $BC$ at point $D$. $M$ and $N$ are points on $AD$ and $AB$, respectively. When $BM+MN$ reaches its minimum value, what is the length of $AN$?", -"image_file_name": "7048953", -"image": [ -"math/52856093_684.png" -], -"solution": "\\textbf{Solution:} Let $E$ be the point symmetrical to $B$ with respect to $AD$. Draw $EN \\perp AB$ intersecting $AB$ at point $N$ and $AD$ at the extension of $CM$ at point $M$. Connect $BM$.\n\nSince $\\angle BAC=60^\\circ$ and $AD$ bisects $\\angle BAC$,\n\nit follows that point $E$ lies on $AC$,\n\nSince $BM + MN = EM + MN = EN$, the value of $BM + MN$ is minimized at this moment,\n\nBy symmetry, $AE = AB$,\n\nSince $AB=4$,\n\nTherefore, $AE=4$,\n\nIn $\\triangle ABE$, $\\angle EAN=60^\\circ$,\n\nTherefore, $\\angle AEN=30^\\circ$,\n\nTherefore, $AN=\\frac{1}{2}AE=\\boxed{2}$", -"solution_image": [ -"solution_images/52856093_680.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52096657": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\angle C=90^\\circ$, $BC=3$, and $AC=5$. The triangle is folded along $DE$ such that point $A$ coincides with point $B$. What is the length of $AE$?", -"image_file_name": "7048953", -"image": [ -"math/52096657_690.png" -], -"solution": "\\textbf{Solution:} By the properties of the folding, we have: $BE=AE$,\\\\\nLet $BE=AE=x$,\\\\\nIn the right triangle $\\triangle BEC$, by the Pythagorean theorem, we have: $BE^2=BC^2+EC^2$,\\\\\nthus $x^2=3^2+(5-x)^2$,\\\\\nthus $x=\\boxed{3.4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52096232": { -"question": "As shown in the figure, $\\angle A=70^\\circ$, $\\angle ABD=\\angle BCE=30^\\circ$, and $CE$ bisects $\\angle ACB$. What is the measure of $\\angle BEC$ in degrees?", -"image_file_name": "7048953", -"image": [ -"math/52096232_700.png" -], -"solution": "\\textbf{Solution:} Given $CE$ bisects $\\angle ACB$,\\\\\nhence $\\angle ACE = \\angle BCE = 30^\\circ$,\\\\\nsince $\\angle A = 70^\\circ$,\\\\\nthus $\\angle ABC + \\angle ACB = 110^\\circ$,\\\\\ngiven $\\angle ABE = \\angle ACE = 30^\\circ$,\\\\\nthus $\\angle EBC + \\angle ECB = 110^\\circ - 60^\\circ = 50^\\circ$,\\\\\ntherefore $\\angle BEC = 180^\\circ - 50^\\circ = \\boxed{130^\\circ}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52096265": { -"question": " As shown in the figure, the line $y=-2x+2$ intersects the $x$-axis and the $y$-axis at points $A$ and $B$, respectively, and the ray $AP\\perp AB$ at point $A$. If point $C$ is a moving point on ray $AP$, and point $D$ is a moving point on the $x$-axis, and the triangle with vertices $C$, $D$, $A$ is congruent to $\\triangle AOB$, then what is the length of $OD$?", -"image_file_name": "7048953", -"image": [ -"math/52096265_710.png" -], -"solution": "\\textbf{Solution:} In $y = -2x + 2$, \\\\\nwhen $x = 0$, then $y = 2$; when $y = 0$, then $x = 1$,\\\\\n$\\therefore$ $OA = 1$, $OB = 2$, by the Pythagorean theorem we get $AB = \\sqrt{OA^2 + OB^2} = \\sqrt{5}$,\\\\\n(1) When $\\angle ACD = 90^\\circ$, as in figure 1,\\\\\n$\\because \\triangle AOB \\cong \\triangle DCA$,\\\\\n$\\therefore AD = AB = \\sqrt{5}$,\\\\\n$\\therefore OD = 1 + \\sqrt{5}$;\\\\\n(2) When $\\angle ADC = 90^\\circ$, as in figure 2,\\\\\n$\\because AP \\perp AB$,\\\\\n$\\therefore \\angle BAP = \\angle AOB = 90^\\circ$,\\\\\n$\\therefore \\angle ABO + \\angle BAO = \\angle CAD + \\angle BAO = 90^\\circ$,\\\\\n$\\therefore \\angle ABO = \\angle CAD$,\\\\\n$\\because \\triangle AOB \\cong \\triangle CDA$,\\\\\n$\\therefore AD = OB = 2$,\\\\\n$\\therefore OA + AD = 3$,\\\\\nIn conclusion: the length of $OD$ is $1 + \\sqrt{5}$ or $\\boxed{3}$.", -"solution_image": [ -"solution_images/52096265_711.png", -"solution_images/52096265_714.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52855867": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ bisects $\\angle BAC$, $DE \\perp AB$ at point $E$. If $AB=8$, $AC=6$, and $DE=4$, what is the area of $\\triangle ABC$?", -"image_file_name": "7048953", -"image": [ -"math/52855867_720.png" -], -"solution": "\\textbf{Solution:} Draw $DF \\perp AC$ at $F$, as shown in the figure.\\\\\nSince $AD$ is the angle bisector of $\\angle BAC$ in $\\triangle ABC$, $DE \\perp AB$, $DF \\perp AC$,\\\\\ntherefore $DE=DF=4$,\\\\\nSince $AB=8$, $AC=6$,\\\\\ntherefore the area of $\\triangle ABC$ = area of $\\triangle ADB$ + area of $\\triangle ADC$\\\\\n= $\\frac{1}{2}$AB$\\cdot$DE + $\\frac{1}{2}$AC$\\cdot$DF\\\\\n= $\\frac{1}{2}\\times 8 \\times 4 + \\frac{1}{2}\\times 6 \\times 4\\\\\n= \\boxed{28}$,", -"solution_image": [ -"solution_images/52855867_720.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52890844": { -"question": "In $\\triangle ABC$, $AC=8$, $BC=6$, and $\\angle C=90^\\circ$. Now, $\\triangle ABC$ is folded as shown in the figure, making point A coincident with point B. The fold line is $DE$. What is the length of $DE$?", -"image_file_name": "7048953", -"image": [ -"math/52890844_735.png" -], -"solution": "\\textbf{Solution:} Given that $AC=8$, $BC=6$, and $\\angle C=90^\\circ$,\\\\\nthus $AB=\\sqrt{AC^2+BC^2}=10$,\\\\\nGiven folding $\\triangle ABC$ such that point A coincides with point B, with the fold line being $DE$,\\\\\nthus $BE=AE$, $AD=BD=5$, and $DE\\perp AB$,\\\\\nIn right triangle $BEC$, $BE^2=BC^2+CE^2$,\\\\\nthus $BE^2=36+(8-BE)^2$,\\\\\nthus $BE=\\frac{25}{4}$,\\\\\nIn right triangle $BDE$, $DE=\\sqrt{BE^2-BD^2}=\\boxed{\\frac{15}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52891079": { -"question": "As shown in the figure, the quadrilateral $OABC$ is a square piece of paper placed in the Cartesian coordinate system, where point $O$ coincides with the origin, point $A$ is on the x-axis, and point $C$ is on the y-axis, with $OC=5$. Point $E$ is on side $BC$, and the coordinates of point $N$ are $\\left(3,0\\right)$. A line through point $N$ and parallel to the y-axis, $MN$, intersects $EB$ at point $M$. Now, the paper is folded so that vertex $C$ lands on point $G$ on $MN$, with the fold line being $OE$. On the positive x-axis, there exists a point $P$ such that the triangle formed by $P$, $O$, and $G$ is an isosceles triangle. What are the coordinates of point $P$?", -"image_file_name": "7048953", -"image": [ -"math/52891079_748.png" -], -"solution": "\\textbf{Solution:} Given that the coordinates of point N are $(3,0)$, \\\\\nhence $ON=3$, \\\\\nfrom the folding, we have $OG=OC=5$, \\\\\nsince $\\angle ONG=90^\\circ$, \\\\\nthus $NG=\\sqrt{OG^{2}-ON^{2}}=\\sqrt{5^{2}-3^{2}}=4$, \\\\\ntherefore, $G(3,4)$, \\\\\nas shown in Figure 1, when $OP=OG=5$, \\\\\nwe get $P(5,0)$; \\\\\nas shown in Figure 2, when $PG=OG$, \\\\\nsince $GN\\perp PO$, \\\\\nthus $PN=ON=3$, \\\\\ntherefore $OP=6$, \\\\\nhence, $P(6,0)$; \\\\\nas shown in Figure 3, when $PO=PG$, let $P(x,0)$, \\\\\nfrom $PO=PG$ we have $PO^{2}=PG^{2}$, \\\\\nthus $x^{2}=(x-3)^{2}+(0-4)^{2}$, \\\\\nsolving this gives $x=\\frac{25}{6}$, \\\\\ntherefore, $P\\left(\\frac{25}{6},0\\right)$; \\\\\nIn summary, the coordinates of point P are $(5,0)$ or $(6,0)$ or $\\left(\\frac{25}{6},0\\right)$, \\\\\nthus, the answer is: $\\boxed{(5,0)}$ or $\\boxed{(6,0)}$ or $\\boxed{\\left(\\frac{25}{6},0\\right)}$.", -"solution_image": [ -"solution_images/52891079_7413.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52095948": { -"question": "As shown in the figure, in the right-angled triangle $ABC$ where $\\angle C=90^\\circ$, $D$ is the midpoint of $BC$, and $\\angle CAD=30^\\circ$, with $BC=6$, what is the length of $AD+DB$?", -"image_file_name": "7048953", -"image": [ -"math/52095948_751.png" -], -"solution": "\\textbf{Solution:} Since $\\angle C=90^\\circ$ and D is the midpoint of BC, with $\\angle CAD=30^\\circ$ and BC=6,\\\\\nit follows that $AD=2CD$, BD=CD=$\\frac{1}{2}$BC=3,\\\\\ntherefore $AD+BD=3CD=\\boxed{9}.$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52095985": { -"question": "As shown in the figure, within $\\triangle ABC$, AD and AE are the median and altitude from vertex A to side BC, respectively, with AE$=6$ and the area of $\\triangle ABD=S_{\\triangle ABD}=15$. What is the length of CD?", -"image_file_name": "7048953", -"image": [ -"math/52095985_760.png" -], -"solution": "\\textbf{Solution:} Since $S_{\\triangle ABC}=15$ and AE is the altitude on side BC, we have\n\\[\n\\frac{1}{2} \\times BD \\times AE=15,\n\\]\nwhich gives\n\\[\n\\frac{1}{2} \\times 6 \\times BD=15,\n\\]\nsolving this yields $BD=5$. Since AD is the median to side BC, it follows that $CD=BD=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52049813": { -"question": "As shown in the figure, in parallelogram $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. $E$ is the midpoint of side $CD$, and the length of $OE$ is $3$ cm. What is the length of $BC$ in centimeters?", -"image_file_name": "7054440", -"image": [ -"math/52049813_480.png" -], -"solution": "\\textbf{Solution:} Since ABCD is a parallelogram, \\\\\ntherefore $OB=OD$, \\\\\nand since point E is the midpoint of side CD, \\\\\ntherefore $BC=2OE=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52050077": { -"question": "As shown in the figure, in square $ABCD$ with $AB=4$, $BE=CE$, and $F$ being a moving point on side $AB$, connect $EF$. Fold $\\triangle BEF$ over to $\\triangle GEF$ such that point $B$ falls on point $G$, and connect $DG$. When the perimeter of quadrilateral $AFGD$ reaches its minimum value, what is the length of $BF$?", -"image_file_name": "7054440", -"image": [ -"math/52050077_490.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect ED, FG, DF,\\\\\nsince square ABCD, with AB=4,\\\\\ntherefore $\\angle ABC = \\angle DCB = 90^\\circ$, and DC=AD=BC=4,\\\\\nsince the triangle BEF is folded onto triangle GEF, we have BE=EC,\\\\\ntherefore BE=EG=EC=2,\\\\\ntherefore point G moves on a circle with E as its center and a radius of 2,\\\\\ntherefore, when points E, G, and D are collinear, the length of GD is the shortest, thus the length of FG=BF is the maximum,\\\\\ntherefore, the length of AF is the shortest,\\\\\ntherefore, the perimeter of quadrilateral AFGD is the minimum,\\\\\nin $\\triangle DCE$, ED=$\\sqrt{2^2+4^2}=2\\sqrt{5}$,\\\\\ntherefore GD=$2\\sqrt{5}-2$,\\\\\nlet FG=BF=x, AF=4-x,\\\\\nin triangles $\\triangle FAD$ and $\\triangle FGD$, we have DF$^2$=AF$^2$+AD$^2$=FG$^2$+GD$^2$,\\\\\ntherefore $(4-x)^2+16=x^2+(2\\sqrt{5}-2)^2$,\\\\\nsolving this, we get $x=\\sqrt{5}+1$,\\\\\ntherefore BF=$\\boxed{\\sqrt{5}+1}$.", -"solution_image": [ -"solution_images/52050077_490.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52049891": { -"question": "As shown in the figure, the diagonals AC and BD of the parallelogram ABCD intersect at point O, and E and F are the midpoints of AO and BO, respectively. If $AC+BD=24$ cm, and the perimeter of $\\triangle OAB$ is 18 cm, then how long is $EF$ in cm?", -"image_file_name": "7054440", -"image": [ -"math/52049891_503.png" -], -"solution": "Solution: Since $ABCD$ is a parallelogram, \\\\\nit follows that $OB=OD$ and $OA=OC$, \\\\\nsince $AC+BD=24cm$, it follows that $OA+OB=12cm$, \\\\\nsince the perimeter of $\\triangle OAB$ is $18cm$, it follows that $AB=18-12=6cm$, \\\\\nsince $E$ and $F$ are the midpoints of $AO$ and $BO$ respectively, it follows that $EF$ is the midline of $\\triangle OAB$, \\\\\ntherefore $EF=\\frac{1}{2}AB=3cm$, \\\\\nthus the answer is: $\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52049854": { -"question": "In square $ABCD$, $AB=4$, point $P$ is on line $AC$, draw $PM\\perp AB$ at point $M$, and $PN\\perp BC$ at point $N$. What is the minimum value of $MN$?", -"image_file_name": "7054440", -"image": [ -"math/52049854_510.png" -], -"solution": "\\textbf{Solution:} Connect PB, and through point B draw $BP' \\perp AC$ at $P'$, as shown in the figure: \\\\\n$\\because$ Quadrilateral ABCD is a square,\\\\\n$\\therefore \\angle DCB=\\angle ABC=90^\\circ$, and $DC=BC=AD=AB=4$,\\\\\n$\\therefore AC=\\sqrt{AD^2+DC^2}=4\\sqrt{2}$,\\\\\n$\\because PM\\perp AB$ and $PN\\perp BC$,\\\\\n$\\therefore$ Quadrilateral BNPM is a rectangle,\\\\\n$\\therefore PB=MN$,\\\\\nWhen $BP\\perp AC$, BP is minimal, that is, as shown in the figure, the length of $BP'$,\\\\\n$\\because$ The area of $\\triangle ABC = \\frac{1}{2}AB\\times CB = \\frac{1}{2}AC\\times BP'$,\\\\\n$\\therefore BP'=\\frac{AB\\cdot BC}{AC}=\\frac{4\\times 4}{4\\sqrt{2}}=2\\sqrt{2}$,\\\\\n$\\therefore$ The minimum value of MN is $\\boxed{2\\sqrt{2}}$;", -"solution_image": [ -"solution_images/52049854_510.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51998807": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $\\angle A=90^\\circ$, $AB=AD$, and $E$, $F$ are the midpoints of $AB$, $AD$, respectively. If $EF=\\sqrt{2}$, $BC=\\sqrt{11}$, and $CD=\\sqrt{3}$, then what is the area of quadrilateral $ABCD$?", -"image_file_name": "7054440", -"image": [ -"math/51998807_523.png" -], -"solution": "\\textbf{Solution:} Connect BD, \\\\\n$\\because$ E and F are the midpoints of AB and AD respectively, \\\\\n$\\therefore$ BD=2EF=2$\\sqrt{2}$, \\\\\n$\\because$ $\\angle$A=90$^\\circ$ and AB=AD, \\\\\n$\\therefore$ 2AB$^{2}$=BD$^{2}$=8, \\\\\n$\\therefore$ AB=AD=2, \\\\\n$\\therefore$ Area of $\\triangle ABD$=$\\frac{1}{2}$×2×2=2, \\\\\n$\\because$ BC=$\\sqrt{11}$, CD=$\\sqrt{3}$, and BD=2$\\sqrt{2}$, \\\\\n$\\therefore$ BC$^{2}$=CD$^{2}$+BD$^{2}$, \\\\\n$\\therefore$ $\\angle$BDC=90$^\\circ$, \\\\\n$\\therefore$ Area of $\\triangle ABD$=$\\frac{1}{2}$×$\\sqrt{3}$×2$\\sqrt{2}$=$\\sqrt{6}$, \\\\\n$\\therefore$ Area of the quadrilateral ABCD = Area of $\\triangle ABD$ + Area of $\\triangle ABD$ = 2 + $\\sqrt{6}$. \\\\\nTherefore, the answer is: $S_{\\text{quadrilateral} ABCD} = \\boxed{2+\\sqrt{6}}$.", -"solution_image": [ -"solution_images/51998807_520.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51998806": { -"question": "As shown in the figure, within square $ABCD$, point $E$ is on diagonal $AC$, $EF \\perp AB$ at point $F$, $EG \\perp BC$ at point $G$. Connect $FG$. If $AB = 8$, what is the minimum value of $FG$?", -"image_file_name": "7054440", -"image": [ -"math/51998806_530.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect BE, \\\\\n$\\because$ Quadrilateral ABCD is a square, \\\\\n$\\therefore \\angle B=90^\\circ$, AB=BC=8, \\\\\n$\\therefore$AC=8$\\sqrt{2}$, \\\\\n$\\because$EF$\\perp$AB, EG$\\perp$BC, \\\\\n$\\therefore \\angle$BFE=$\\angle$FEG=$\\angle$B=$90^\\circ$, \\\\\n$\\therefore$ Quadrilateral BFEG is a rectangle, \\\\\n$\\therefore$FG=BE, \\\\\n$\\therefore$ When BE is the shortest, FG is also the shortest, \\\\\n$\\therefore$ When BE$\\perp$AC, BE is the shortest, \\\\\n$\\therefore$AE=CE, \\\\\n$\\therefore$BE=$\\frac{1}{2}$AC=4$\\sqrt{2}$, \\\\\n$\\therefore$ The minimum value of FG is $\\boxed{4\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51998806_530.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51968677": { -"question": "As shown in the figure, a point E is taken outside the square ABCD, and AE, BE, and DE are connected respectively. A perpendicular line to AE is drawn from point A and intersects DE at point P. If AE = AP = 1, and PB = $ \\sqrt{5}$. What is the area of the square ABCD, $S_{\\text{square ABCD}}$=?", -"image_file_name": "7054440", -"image": [ -"math/51968677_541.png" -], -"solution": "\\textbf{Solution:}\n\nSince quadrilateral ABCD is a square,\n\\begin{align*}\n&\\therefore AB=AD, \\angle BAD=90^\\circ,\\\\\n&\\because AE\\perp AP, AE=AP=1,\\\\\n&\\therefore \\angle AEP=\\angle APE=45^\\circ, \\angle EAP=\\angle BAD=90^\\circ,\\\\\n&\\therefore \\angle EAB=\\angle PAD,\\\\\n&\\text{In } \\triangle EAB \\text{ and } \\triangle PAD,\\\\\n&\\because AB=AD, \\angle EAB=\\angle PAD, AE=AP,\\\\\n&\\therefore \\triangle EAB \\cong \\triangle PAD \\text{ (SAS)},\\\\\n&\\therefore \\angle EBA=\\angle ADP, BE=DP, \\angle APD=\\angle AEB=180^\\circ-45^\\circ=135^\\circ,\\\\\n&\\therefore \\angle PEB=135^\\circ-45^\\circ=90^\\circ, \\text{ i.e., } \\triangle BEP\\text{ is a right-angled triangle},\\\\\n&\\because AE=AP=1,\\\\\n&\\therefore EP=\\sqrt{1^2+1^2}=\\sqrt{2},\\\\\n&\\therefore BE=DP=\\sqrt{BP^2-EP^2}=\\sqrt{3},\\\\\n&\\text{Draw line BF }\\perp\\text{ AE extended to meet at point F, connect BD, then }\\angle FEB=180^\\circ-135^\\circ=45^\\circ,\\\\\n&\\therefore \\angle EBF=45^\\circ=\\angle FEB,\\\\\n&\\therefore EF=BF,\\\\\n&\\because BE=\\sqrt{3},\\\\\n&\\therefore BF=EF=\\frac{\\sqrt{6}}{2},\\\\\n&\\therefore {S}_{\\triangle APB}+{S}_{\\triangle APD}={S}_{\\triangle APB}+{S}_{\\triangle AEB}={S}_{\\text{quadrilateral }AEBP}={S}_{\\triangle AEP}+{S}_{\\triangle PEB}\\\\\n&=\\frac{1}{2}\\times 1\\times 1+\\frac{1}{2}\\times \\sqrt{2}\\times \\sqrt{3}\\\\\n&=\\frac{1}{2}+\\frac{1}{2}\\sqrt{6},\\\\\n&\\because {S}_{\\triangle DPB}=\\frac{1}{2}\\times DP\\times BE=\\frac{1}{2}\\times \\sqrt{3}\\times \\sqrt{3}=\\frac{3}{2},\\\\\n&\\therefore {S}_{\\text{square }ABCD}=2{S}_{\\triangle ABD}=2({S}_{\\triangle BPD}+{S}_{\\triangle APD}+{S}_{\\triangle APB})=2\\times (\\frac{1}{2}+\\frac{1}{2}\\sqrt{6}+\\frac{3}{2})=\\boxed{4+\\sqrt{6}}.\n\\end{align*}", -"solution_image": [ -"solution_images/51968677_542.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51968610": { -"question": "As shown in the figure, all quadrilaterals in the figure are squares, and the triangle is a right-angled triangle. The areas of the two smaller squares are respectively 1 and 2. What is the area of the largest square?", -"image_file_name": "7054440", -"image": [ -"math/51968610_550.png" -], -"solution": "\\textbf{Solution}: Since the areas of the two small squares are respectively 1 and 2,\\\\\nit follows that they are the squares of the two legs of a right triangle,\\\\\nthus, according to the Pythagorean theorem, we have: $S_{\\text{large square}}=S_{\\text{area of the small square is 1}}+S_{\\text{area of the small square is 2}}=\\boxed{3}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51968646": { -"question": "As shown in the figure, in rhombus $ABCD$, the diagonals $AC=6$ and $BD=10$. What is the area of rhombus $ABCD$?", -"image_file_name": "7054440", -"image": [ -"math/51968646_560.png" -], -"solution": "\\textbf{Solution:} Given that in the rhombus $ABCD$, the diagonals $AC=6$ and $BD=10$, \\\\\ntherefore, the area of rhombus $ABCD$ is $= \\frac{1}{2}AC \\cdot BD = \\boxed{30}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51968676": { -"question": "As shown in the figure, in $\\text{Rt}\\triangle ABC$, $\\angle ACB=90^\\circ$, points $D$ and $E$ are the midpoints of sides $AB$ and $AC$, respectively. Extend $BC$ to point $F$ such that $CF=\\frac{1}{2}BC$. If $AB=10$, what is the length of $EF$?", -"image_file_name": "7054440", -"image": [ -"math/51968676_571.png" -], -"solution": "\\textbf{Solution:} Given that points D and E are the midpoints of AB and AC, respectively,\n\n$\\therefore$ $AD=BD=\\frac{1}{2}AB=5$, DE is the midline of $\\triangle ACB$, AE=CE\n\n$\\therefore$ $DE\\parallel BC$, $DE=\\frac{1}{2}BC$,\n\n$\\because$ $\\angle ACB=90^\\circ$, $CF=\\frac{1}{2}BC$,\n\n$\\therefore$ $\\angle DEA=\\angle FCE=90^\\circ$, CF=ED,\n\n$\\therefore$ $\\triangle AED\\cong \\triangle ECF$ (SAS),\n\n$\\therefore$ EF=AD=\\boxed{5}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51968648": { -"question": "As shown in the figure, in the square $ABCD$, point $F$ is on the side $CD$, and $BF$ intersects $AC$ at point $E$. If $\\angle CBF=20^\\circ$, then what is the measure of $\\angle AED$ in degrees?", -"image_file_name": "7054440", -"image": [ -"math/51968648_580.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ quadrilateral ABCD is a square\\\\\n$\\therefore \\angle ACB = \\angle ACD = \\angle BAC = \\angle CAD = 45^\\circ$, $\\angle ABC = 90^\\circ$, AB = AD\\\\\n$\\because \\angle FBC = 20^\\circ$\\\\\n$\\therefore \\angle ABF = 70^\\circ$\\\\\n$\\therefore$ in $\\triangle ABE$, $\\angle AEB = 65^\\circ$\\\\\nIn $\\triangle ABE$ and $\\triangle ADE$\\\\\n$ \\left\\{\\begin{array}{l}\nAB = AD \\\\\n\\angle BAE = \\angle EAD = 45^\\circ \\\\\nAE = AE\n\\end{array}\\right.$ \\\\\n$\\therefore \\triangle ABE \\cong \\triangle ADE$\\\\\n$\\therefore \\angle AED = \\angle AEB = \\boxed{65^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51968614": { -"question": "As shown in the figure, within the square $ABCD$, points $M$ and $N$ are the midpoints of $AD$ and $BC$ respectively, point $P$ is on $CD$. After folding $\\triangle BCP$ along $BP$, the corresponding point of $C$, point $Q$, falls on $MN$. If $AB=6$, what is the length of $PD$?", -"image_file_name": "7054440", -"image": [ -"math/51968614_592.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect CQ, \\\\\n$\\because$ Quadrilateral ABCD is a square, \\\\\n$\\therefore$ AD=BC=AB, $AD\\parallel BC$, $\\angle D=90^\\circ$, \\\\\n$\\because$ M and N are the midpoints of AD and BC respectively, \\\\\n$\\therefore$ DM=$\\frac{1}{2}AD=CN=\\frac{1}{2}BC=BN$, \\\\\n$\\therefore$ Quadrilateral CNMD is a rectangle, \\\\\n$\\therefore$ $\\angle QNB=\\angle QNC=90^\\circ$, \\\\\nIn $\\triangle QNB$ and $\\triangle QNC$, \\\\\n$\\left\\{\\begin{array}{l}BN=CN\\\\ \\angle QNB=\\angle QNC\\\\ QN=QN\\end{array}\\right.$, \\\\\n$\\therefore$ $\\triangle QNB\\cong \\triangle QNC$ (SAS), \\\\\n$\\therefore$ QB=QC, \\\\\nBy the property of folding, it is known that BC=BQ, $\\angle QBP=\\angle CBP$, \\\\\n$\\therefore$ BC=BQ=CQ, \\\\\n$\\therefore$ $\\triangle QBC$ is an equilateral triangle, \\\\\n$\\therefore$ $\\angle QBC=60^\\circ$, \\\\\n$\\therefore$ $\\angle PBC=30^\\circ$, \\\\\n$\\therefore$ PB=2PC, \\\\\n$\\because$ $BC^2+PC^2=BP^2$, \\\\\n$\\therefore$ $4PC^2=PC^2+6^2$, \\\\\n$\\therefore$ $PC=2\\sqrt{3}$, \\\\\n$\\therefore$ $PD=CD-PC=6-2\\sqrt{3}$, \\\\\nHence, the answer is: $PD=\\boxed{6-2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51968614_590.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51942337": { -"question": "As illustrated in the diagram, two strips with a width of 2 and parallel opposite edges are placed crosswise on top of each other. By rotating one of the strips, we obtain a quadrilateral ABCD, where $\\angle ABC=60^\\circ$. What is the area of the quadrilateral ABCD?", -"image_file_name": "7054440", -"image": [ -"math/51942337_600.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw CF$\\perp$AB at point F, and draw AE$\\perp$BC at point E through point A.\\\\\nAccording to the problem, we know: AE=CF=2,\\\\\n$\\because$ $\\angle$ABC=60$^\\circ$,\\\\\n$\\therefore$ $\\angle$FCB=30$^\\circ$,\\\\\n$\\therefore$ let BF=x, then BC=2x,\\\\\n$\\therefore$ $4x^{2}-x^{2}=4$,\\\\\n$\\therefore$ x=$\\frac{2\\sqrt{3}}{3}$,\\\\\n$\\therefore$ BC=$\\frac{4\\sqrt{3}}{3}$,\\\\\n$\\because$ AB$\\parallel$CD, AD$\\parallel$BC,\\\\\n$\\therefore$ Quadrilateral ABCD is a parallelogram,\\\\\n$\\therefore$ $S_{\\square ABCD}$=BC·AE=$\\frac{4\\sqrt{3}}{3} \\times 2=\\boxed{\\frac{8\\sqrt{3}}{3}}$.", -"solution_image": [ -"solution_images/51942337_600.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51920362": { -"question": "As shown in the figure, in $\\square ABCD$, $AC$ is the diagonal, $\\angle ACD=90^\\circ$, point $E$ is the midpoint of $BC$, $AF$ bisects $\\angle BAC$, $CF\\perp AF$ at point $F$, and $EF$ is connected. Given $AB=5$ and $BC=13$, what is the length of $EF$?", -"image_file_name": "7054440", -"image": [ -"math/51920362_6113.png" -], -"solution": "\\textbf{Solution}: Extend $AB$ and $CF$ to meet at point $H$, \\\\\n$\\because$ Quadrilateral $ABCD$ is a parallelogram, \\\\\n$\\therefore AB\\parallel CD$, \\\\\n$\\therefore \\angle ACD=\\angle BAC=90^\\circ$, \\\\\n$\\therefore AC=\\sqrt{BC^{2}-AB^{2}}=\\sqrt{169-25}=12$, \\\\\n$\\because AF$ bisects $\\angle BAC$, \\\\\n$\\therefore \\angle BAF=\\angle CAF=45^\\circ$, \\\\\nIn $\\triangle AFH$ and $\\triangle AFC$, \\\\\n$\\left\\{\\begin{array}{l}\n\\angle HAF=\\angle CAF \\\\\nAF=AF \\\\\n\\angle AFH=\\angle AFC=90^\\circ\n\\end{array}\\right.$, \\\\\n$\\therefore \\triangle AFH \\cong \\triangle AFC\\left(ASA\\right)$, \\\\\n$\\therefore AC=AH=12$, $HF=CF$, \\\\\n$\\therefore BH=AH-AB=7$, \\\\\n$\\because$ Point $E$ is the midpoint of $BC$, $HF=CF$, \\\\\n$\\therefore EF=\\frac{1}{2}BH=\\boxed{\\frac{7}{2}}$,", -"solution_image": [ -"solution_images/51920362_610.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51920359": { -"question": "As shown in the figure, it is a centrally symmetric figure with $A$ as the center of symmetry. If $\\angle C=90^\\circ$, $\\angle B=30^\\circ$, and $AC=3$, what is the length of $BB'$?", -"image_file_name": "7054440", -"image": [ -"math/51920359_624.png" -], -"solution": "\\textbf{Solution:} In the right triangle $ABC$, $\\angle B=30^\\circ$, $AC=3$,\\\\ \n$\\therefore AB=2AC=6$,\\\\\n$\\because$ B and B' are centrally symmetric about A,\\\\\n$\\therefore BB'=2AB=\\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51918841": { -"question": "As shown in the figure, the diagonals $AC$ and $BD$ of the rhombus $ABCD$ intersect at point $O$, and $E$ is the midpoint of $AD$. If $OE=3$, then what is the perimeter of the rhombus $ABCD$?", -"image_file_name": "7054440", -"image": [ -"math/51918841_630.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a rhombus,\\\\\nit follows that $AC \\perp BD$ and $AB = BC = CD = DA$,\\\\\nwhich means $\\triangle AOD$ is a right-angled triangle.\\\\\nGiven that $OE = 3$, and point $E$ is the midpoint of segment $AD$,\\\\\nit follows that $AD = 2OE = 6$.\\\\\nTherefore, the perimeter of the rhombus is: $6 \\times 4 = \\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51770527": { -"question": "As shown in the figure, on the exterior of the square $ABCD$, an equilateral triangle $ADE$ is constructed. What is the measure of $\\angle AEB$?", -"image_file_name": "7054440", -"image": [ -"math/51770527_640.jpg" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a square,\\\\\nit follows that $\\angle$BAD=90$^\\circ$, and AB=AD.\\\\\nSince $\\triangle$ABD is an equilateral triangle,\\\\\nit follows that $\\angle$DAE=60$^\\circ$, and AD=AE.\\\\\nTherefore, $\\angle$BAE=$\\angle$DAE+$\\angle$BAD=90$^\\circ$+60$^\\circ$=150$^\\circ$, and AB=AE.\\\\\nHence, $\\triangle$BAE is an isosceles triangle,\\\\\nwhich means $\\angle AEB=\\frac{180^\\circ−\\angle BAE}{2}=\\frac{180^\\circ−150^\\circ}{2}=15^\\circ$.\\\\\nThus, the answer is: $\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51770528": { -"question": "As shown in the figure, the quadrilateral ABCD is a rhombus with $AC=16$ and $DB=12$. If $DH \\perp AB$ at point H, what is the length of $DH$?", -"image_file_name": "7054440", -"image": [ -"math/51770528_650.jpg" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rhombus,\\\\\nthus $\\angle AOB = 90^\\circ$, OA = OC = 8, OB = OD = 6,\\\\\nthus AB = $\\sqrt{OA^{2} + OB^{2}}$ = $\\sqrt{8^{2} + 6^{2}}$ = 10,\\\\\nthus, since the area of rhombus $ABCD = AB \\cdot DH = \\frac{1}{2}AC \\times BD$,\\\\\nthus DH = $\\frac{AC \\cdot BD}{2AB}$ = $\\frac{16 \\times 12}{2 \\times 10}$ = $\\boxed{\\frac{48}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51770529": { -"question": "As shown in the diagram, in $\\triangle ABC$, BD bisects $\\angle ABC$, and $AD \\perp BD$. Let E be the midpoint of AC, with $AD=6\\,\\text{cm}$, $BD=8\\,\\text{cm}$, and $BC=16\\,\\text{cm}$. What is the length of $DE$ in $\\,\\text{cm}$?", -"image_file_name": "7054440", -"image": [ -"math/51770529_660.jpg" -], -"solution": "\\textbf{Solution:} As shown in the figure, extend AD to meet BC at point F,\\\\\n$\\because$AD$\\perp$BD,\\\\\n$\\therefore$AB=$\\sqrt{AD^{2}+BD^{2}}$=$\\sqrt{6^{2}+8^{2}}=10$,\\\\\n$\\because$BD bisects $\\angle$BC, and AD$\\perp$BD, BD=BD,\\\\\n$\\therefore$$\\triangle$ABD$\\cong$$\\triangle$FBD (ASA),\\\\\n$\\therefore$AD=DF, BF=AB=10,\\\\\nAlso $\\because$AE=EC, FC=BC−BF=16−10=6,\\\\\n$\\therefore$DE is the median of $\\triangle$ACF,\\\\\n$\\therefore$DE=$\\frac{1}{2}$FC=\\boxed{3}.", -"solution_image": [ -"solution_images/51770529_660.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51770458": { -"question": "As shown in the figure, in quadrilateral $ABCD$, points $E$ and $F$ are the midpoints of $AD$ and $DC$, respectively, $BF\\perp CD$. Given that $BF=8$ and $EF=5$, what is the perimeter of quadrilateral $ABCD$?", -"image_file_name": "7054440", -"image": [ -"math/51770458_670.png" -], -"solution": "\\textbf{Solution:}\n\nAs shown in the figure, connect BE, extend BE to intersect the extension line of CD at point H, and draw EG $\\perp$ BF.\n\nSince parallelogram ABCD,\n\n$\\therefore$ AB $\\parallel$ DC, AB = CD,\n\n$\\therefore$ $\\angle$EAB = $\\angle$EDH, $\\angle$EBA = $\\angle$EHD,\n\nAlso, since E is the midpoint of AD,\n\n$\\therefore$ AE = ED,\n\n$\\therefore$ $\\triangle$AEB $\\cong$ $\\triangle$DEH,\n\n$\\therefore$ AB = DH, BE = EH,\n\nSince BF $\\perp$ CD, EG $\\perp$ BF,\n\n$\\therefore$ EG $\\parallel$ HF\n\n$\\therefore$ EG is the midline of $\\triangle$BHF,\n\n$\\therefore$ GF = $\\frac{1}{2}$BF = $\\frac{1}{2} \\times 8 = 4$,\n\n$\\therefore$ EG = $\\sqrt{EF^2 - GF^2} = \\sqrt{5^2 - 4^2} = 3$,\n\n$\\therefore$ HF = 6,\n\nSince F is the midpoint of CD,\n\n$\\therefore$ AB = DH = DC = 2DF = 2FC,\n\nLet FC = x, then HF = DH + DF = 2x + x = 3x = 6,\n\n$\\therefore$ x = 2,\n\n$\\therefore$ AB = 4, BC = $\\sqrt{BF^2 + FC^2} = \\sqrt{8^2 + 2^2} = 2\\sqrt{17}$,\n\n$\\therefore$ The perimeter of parallelogram ABCD = 2(AB + BC) = 2(4 + 2$\\sqrt{17}$) = $\\boxed{8 + 4\\sqrt{17}}$.", -"solution_image": [ -"solution_images/51770458_670.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53538187": { -"question": "As shown in the figure, the lines $AB, IL, JK, DC$ are parallel to each other, and the lines $AD, IJ, LK, BC$ are also parallel to each other. The area of the quadrilateral $ABCD$ is 60, and the area of quadrilateral $EFGH$ is 35. What is the area of quadrilateral $IJKL$?", -"image_file_name": "7054440", -"image": [ -"math/53538187_685.png" -], -"solution": "\\textbf{Solution:} Since lines $AB$, $IL$, $JK$, $DC$ are parallel to each other, and lines $AD$, $IJ$, $LK$, $BC$ are parallel to each other, \\\\\ntherefore, quadrilaterals AFJE, DGKF, CHLG, BEIH are parallelograms, \\\\\ntherefore, $S_{\\triangle AEF}=S_{\\triangle EFJ}$, $S_{\\triangle BEH}=S_{\\triangle EHI}$, $S_{\\triangle CHG}=S_{\\triangle HGL}$, $S_{\\triangle DGF}=S_{\\triangle GFK}$, \\\\\nsince the area of quadrilateral $ABCD$ is 60, and the area of quadrilateral $EFGH$ is 35, \\\\\ntherefore, $S_{\\triangle AEF}+S_{\\triangle BEH}+S_{\\triangle CHG}+S_{\\triangle DGF}=25$, \\\\\ntherefore, $S_{\\triangle EFJ}+S_{\\triangle EHI}+S_{\\triangle HGL}+S_{\\triangle GFK}=25$, \\\\\ntherefore, $S_{\\text{quadrilateral }IJKL}=S_{\\text{quadrilateral }EFGH}-(S_{\\triangle EFJ}+S_{\\triangle EHI}+S_{\\triangle HGL}+S_{\\triangle GFK})=35-25=\\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53538188": { -"question": "As shown in the figure, for the rhombus $ABCD$ with side length $AB=2\\sqrt{3}+2$ and $\\angle ABC=60^\\circ$, two points $E$ and $H$ are taken on the diagonal $BD$ such that $BE=DH$ and $AE\\parallel FH$. When $\\angle AED=75^\\circ$, what is the sum $AE+FH$?", -"image_file_name": "7054440", -"image": [ -"math/53538188_696.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, construct FM$\\perp$BD at M, EN$\\perp$AB at N. \\\\\nBecause quadrilateral ABCD is a rhombus and $\\angle$ABC=$60^\\circ$, \\\\\nit follows that $\\angle$ABD=$\\angle$ADB=$30^\\circ$, \\\\\nSince $\\angle$AED=$75^\\circ$=$\\angle$ABE+$\\angle$BAE, \\\\\nit results in $\\angle$BAE=$45^\\circ$, \\\\\nGiven $\\angle$ENA=$90^\\circ$, \\\\\nit leads to $\\angle$NAE=$\\angle$NEA=$45^\\circ$, \\\\\nhence NA=NE, \\\\\nLet NA=NE=x, then BE=2x, and BN=$ \\sqrt{3}$x, \\\\\nSince AB=2$ \\sqrt{3}$+2, \\\\\nit implies that $ \\sqrt{3}$x+x=2$ \\sqrt{3}$+2, \\\\\nthus x=2, \\\\\nTherefore, BE=4, AE=2$ \\sqrt{2}$, \\\\\nSince $\\angle$HFD=$180^\\circ$−$\\angle$FHD−$\\angle$FDH=$75^\\circ$ and $\\angle$FHD=$75^\\circ$, \\\\\nit concludes that $\\angle$DFH=$\\angle$DHF, \\\\\nTherefore, DF=DH=BE=2, \\\\\nIn the right triangle $\\triangle$FMD, \\\\\nsince $\\angle$FMD=$90^\\circ$ and $\\angle$FDM=$30^\\circ$ with DF=4, \\\\\nit follows that FM=2, DM=2$ \\sqrt{3}$, and HM=4−2$ \\sqrt{3}$, \\\\\ntherefore, FH=$ \\sqrt{FM^{2}+HM^{2}}$ \\\\\n=$ \\sqrt{2^{2}+(4−2\\sqrt{3})^{2}}$ \\\\\n=2$ \\sqrt{6}$−2$ \\sqrt{2}$, \\\\\nThus, AE+FH=2$ \\sqrt{6}$−2$ \\sqrt{2}+2$ $\\sqrt{2}$ \\\\\n=$\\boxed{2 \\sqrt{6}}$.", -"solution_image": [ -"solution_images/53538188_690.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53538277": { -"question": "As shown in the diagram, in quadrilateral $ABCD$, with $AB=10$, $BC=18$, the angle bisectors of $\\angle ABC$ and $\\angle BCD$ intersect $AD$ at points E and F, respectively. If $BE=12$, then what is the length of $CF$?", -"image_file_name": "7054440", -"image": [ -"math/53538277_706.png" -], -"solution": "\\textbf{Solution:} In parallelogram $ABCD$, $BE$ bisects $\\angle ABC$, and $CF$ bisects $\\angle BCD$,\n\n$\\therefore$ $\\angle ABE=\\angle CBE$, $\\angle BCF=\\angle DCF$,\n\n$\\because$ $AB\\parallel CD$,\n\n$\\therefore$ $\\angle ABC+\\angle DCB=180^\\circ$, $\\angle CBE=\\angle AEB$, $\\angle BCF=\\angle DFC$,\n\n$\\therefore$ $\\angle CBE+\\angle BCF=90^\\circ$, $\\angle ABE=\\angle AEB$, $\\angle DCF=\\angle DFC$,\n\n$\\therefore$ $AE=AB=10$, $DF=DC=10$,\n\n$\\because$ $AD=BC=18$,\n\n$\\therefore$ $AF=AD-DF=8$,\n\n$\\therefore$ $EF=AE-AF=2$,\n\nExtend $CG$ such that $CG=EF$,\n\n$\\therefore$ $EFCG$ is a parallelogram,\n\n$\\therefore$ $CG=EF=2$, $BG=20$, $EG=CF$,\n\n$\\therefore$ $\\angle BCF=\\angle G$,\n\n$\\therefore$ $\\angle BEG=90^\\circ$,\n\n$\\because$ $BE=12$, $BG=20$,\n\n$\\therefore$ $EG=\\sqrt{BG^2-BE^2}=\\sqrt{20^2-12^2}=16$,\n\n$\\therefore$ $CF=EG=\\boxed{16}$.", -"solution_image": [ -"solution_images/53538277_7016.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53538155": { -"question": "As shown in the figure, seven squares are arranged such that each pair of adjacent squares shares a common vertex, and the area of each square is represented by numeric or alphabetic characters. What is the value of $S_{1} + S_{2} + S_{3} + S_{4}$?", -"image_file_name": "7054440", -"image": [ -"math/53538155_711.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, \\\\\nsince AB=BE, $\\angle$ACB=$\\angle$BDE=$90^\\circ$, \\\\\ntherefore, $\\angle$ABC+$\\angle$BAC=$90^\\circ$, $\\angle$ABC+$\\angle$EBD=$90^\\circ$, \\\\\nthus, $\\angle$BAC=$\\angle$EBD, \\\\\nhence, $\\triangle ABC\\cong \\triangle BDE$ (AAS), \\\\\ntherefore, BC=ED, \\\\\nsince $ AB^{2}=AC^{2}+BC^{2}$, \\\\\nthus $ AB^{2}=AC^{2}+ED^{2}=S_{1}+S_{2}$, \\\\\nnamely $ S_{1}+S_{2}=1$, \\\\\nsimilarly, $ S_{3}+S_{4}=3$.\\\\\nThen $ S_{1}+S_{2}+S_{3}+S_{4}=1+3=\\boxed{4}$.", -"solution_image": [ -"solution_images/53538155_710.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53538212": { -"question": "As shown in the figure, rectangle $ABCD$ ($AD > AB$), equilateral triangles are constructed inwards using $AD$ and $BC$ as sides respectively (Figure 1); similarly, equilateral triangles are constructed inwards using $AB$ and $CD$ as sides respectively (Figure 2). The overlapping areas of the two equilateral triangles are shown as the shaded areas. Let the area of the shaded portion in Figure 1 be $S_{1}$, and the area of the shaded portion in Figure 2 be $S_{2}$. If $\\frac{S_{1}}{S_{2}}=8$, then what is the value of $\\frac{AD}{AB}$?", -"image_file_name": "7054440", -"image": [ -"math/53538212_722.png" -], -"solution": "\\textbf{Solution:} Let us set $AD=BC=a$, $AB=CD=b$,\\\\\nAccording to the problem: $\\angle ADN=\\angle BCH=60^\\circ$,\\\\\n$\\therefore \\angle NDC=\\angle HCD=30^\\circ$,\\\\\n$\\therefore FD=FC$,\\\\\n$\\because$ quadrilateral $ABCD$ is a rectangle,\\\\\n$\\therefore AD\\parallel BC$,\\\\\n$\\therefore \\angle FNC=\\angle ADN=60^\\circ$,\\\\\n$\\therefore \\triangle FNC$ is an equilateral triangle,\\\\\n$\\therefore FN=FC$,\\\\\n$\\therefore FN=FD$,\\\\\n$\\therefore S\\triangle FNC=S\\triangle FDC=\\frac{1}{2}S\\triangle DCN$,\\\\\nIn $\\triangle DNC$, $DN=2CN$,\\\\\nBy the Pythagorean theorem, we get $NC=\\frac{\\sqrt{3}}{3}b$,\\\\\n$\\therefore S\\triangle FNC=S\\triangle FDC=\\frac{1}{2}S\\triangle DCN=\\frac{1}{2}\\times\\frac{1}{2}NC\\cdot CD=\\frac{\\sqrt{3}}{12}b^2$,\\\\\nSimilarly: $S\\triangle DHF=S\\triangle AGE=S\\triangle ABE=S\\triangle BEM=\\frac{\\sqrt{3}}{12}b^2$,\\\\\n$\\therefore S_1=S_{\\text{rectangle}}ABCD-S\\triangle NFC-S\\triangle DFC-S\\triangle DHF-S\\triangle MBE-S\\triangle ABE-S\\triangle AGE=ab-\\frac{\\sqrt{3}}{2}b^2$,\\\\\nDraw $HM\\perp AD$ at $M$ through point $H$, and $GN\\perp AB$ at point $N$ through point $G$,\\\\\nAccording to the problem: $\\angle HEF=\\angle HGF=\\angle GAB=\\angle EDC=60^\\circ$,\\\\\n$GA=AB=CD=ED=EC=GB$,\\\\\n$\\therefore \\angle HAD=\\angle HDA=30^\\circ$,\\\\\n$\\therefore HA=HD$,\\\\\n$\\because HM\\perp AD$,\\\\\n$\\therefore AM=\\frac{1}{2}AD=\\frac{1}{2}a$,\\\\\nBy the Pythagorean theorem, we get $MH=\\frac{\\sqrt{3}}{6}a$,\\\\\n$\\therefore S\\triangle HAD=\\frac{1}{2}\\cdot AD\\cdot MH=\\frac{\\sqrt{3}}{12}a^2$,\\\\\nSimilarly: $S\\triangle FBC=\\frac{\\sqrt{3}}{12}a^2$,\\\\\n$\\because \\triangle GAB$ is an equilateral triangle, $GN\\perp AB$,\\\\\n$\\therefore AN=\\frac{1}{2}AB=\\frac{1}{2}b$,\\\\\n$\\because AG=AB=b$,\\\\\n$\\therefore GN=\\sqrt{AG^2-AN^2}=\\frac{\\sqrt{3}}{2}b$,\\\\\n$\\therefore S\\triangle ABG=\\frac{1}{2}AB\\cdot NG=\\frac{1}{2}b\\cdot\\frac{\\sqrt{3}}{2}b=\\frac{\\sqrt{3}}{4}b^2$,\\\\\nSimilarly: $S\\triangle CDE=\\frac{\\sqrt{3}}{4}b^2$,\\\\\n$\\therefore S_2=S\\triangle ABG+S\\triangle CDE+S\\triangle ADH+S\\triangle BFC-S_{\\text{rectangle}}ABCD=\\frac{\\sqrt{3}}{6}a^2+\\frac{\\sqrt{3}}{2}b^2-ab$,\\\\\n$\\because \\frac{S_1}{S_2}=8$,\\\\\n$\\therefore \\frac{ab-\\frac{\\sqrt{3}}{2}b^2}{\\frac{\\sqrt{3}}{6}a^2+\\frac{\\sqrt{3}}{2}b^2-ab}=\\frac{8}{1}$,\\\\\nSolving, we get: $a=\\frac{3\\sqrt{3}}{2}b$ or $a=\\frac{3\\sqrt{3}}{4}b$,\\\\\nAccording to the problem, we know: $a<\\sqrt{3}$", -"solution_image": [ -"solution_images/53538212_720.png", -"solution_images/53538212_729.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53538185": { -"question": "As shown in the figure, it is known that in rectangle $ABCD$, point $E$ is on the extension line of side $BC$, and $CE=BD$. Connect $AE$ and intersect $BD$ at $F$. If $\\angle E=20^\\circ$, what is the degree measure of $\\angle AFB$?", -"image_file_name": "7054440", -"image": [ -"math/53538185_737.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect AC, intersecting BD at point O,\\\\\nsince ABCD is a rectangle, then BD=AC,\\\\\nCE=BD, then CE=AC,\\\\\n$\\angle E=20^\\circ$, thus $\\angle CAE=20^\\circ$,\\\\\n$\\therefore \\angle ACB=\\angle CAE+\\angle E=40^\\circ$,\\\\\n$\\because$ OB=$\\frac{1}{2}$BD, OC=$\\frac{1}{2}$AC,\\\\\n$\\therefore$ OB=OC, $\\angle OBC=\\angle OCB=40^\\circ$,\\\\\n$\\therefore \\angle BOC=180^\\circ-\\angle OBC-\\angle OCB=100^\\circ$,\\\\\n$\\therefore \\angle AOF=\\angle BOC=100^\\circ$,\\\\\n$\\because \\angle OAF=20^\\circ$,\\\\\n$\\therefore \\angle AFO=180^\\circ-\\angle OAF-\\angle AOF=60^\\circ$,\\\\\n$\\therefore \\angle AFB=\\boxed{60^\\circ}$,", -"solution_image": [ -"solution_images/53538185_730.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53538278": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=3$ and $AD=4$. Let $E$ be a moving point on line segment $BC$, and construct point $F$ which is the reflection of point B across line $AE$. Connect $EF$ and $DF$. Let $G$ be the midpoint of $DF$. When points $D$, $F$, and $E$ are collinear, what is the length of $CE$? During the entire motion of $E$, what is the minimum distance between points $C$ and $G$?", -"image_file_name": "7054440", -"image": [ -"math/53538278_749.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect AF, take the midpoint H of AD, and connect GH, GC, HC,\\\\\nQuadrilateral ABCD is a rectangle, thus AB=CD=3, AD=BC=4, $\\angle$B=90$^\\circ$,\\\\\nBy the property of folding, it can be obtained that AF=AB=3, BE=EF, $\\angle$AFE=$\\angle$B=90$^\\circ$,\\\\\nLet CE=x, then BE=EF=4−x,\\\\\nWhen points E, F, and D are collinear, AF$\\perp$DE,\\\\\nIn $\\triangle AFD$, DF=$\\sqrt{AD^{2}-AF^{2}}=\\sqrt{7}$,\\\\\nIn $\\triangle DCE$, DE$^{2}$=DC$^{2}$+CE$^{2}$,\\\\\n$\\therefore$ ($\\sqrt{7}$+4−x)$^{2}$=x$^{2}$+9,\\\\\nSolving yields: x=$\\boxed{\\sqrt{7}}$;\\\\\n$\\because$H is the midpoint of AD, G is the midpoint of DF,\\\\\n$\\therefore$HG is the midline in $\\triangle DAF$,\\\\\n$\\therefore$HG=$\\frac{1}{2}$AF=$\\frac{3}{2}$,\\\\\nIn $\\triangle DHC$, HC=$\\sqrt{DH^{2}+DC^{2}}=\\sqrt{13}$,\\\\\nWhen point G is not on line HC,\\\\\nIn $\\triangle GHC$, GC>HC−HG,\\\\\nWhen point G is on line HC, GC=HC−HG,\\\\\n$\\therefore$The minimum value of CG is $\\boxed{\\sqrt{13}-\\frac{3}{2}}$;", -"solution_image": [ -"solution_images/53538278_740.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53538341": { -"question": "As shown in the figure, in the rhombus $ABCD$, $AB=5$ and $AC+BD=14$. What is the area of the rhombus $ABCD$?", -"image_file_name": "7054440", -"image": [ -"math/53538341_754.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a rhombus,\\\\\n$\\therefore OA=\\frac{1}{2}AC$, $OB=\\frac{1}{2}BD$, and $AC\\perp BD$,\\\\\n$\\therefore \\angle AOB=90^\\circ$,\\\\\n$\\therefore OA^{2}+OB^{2}=AB^{2}=25$,\\\\\n$\\because AC+BD=14$,\\\\\n$\\therefore OA+OB=7$,\\\\\n$\\therefore (OA+OB)^{2}=7^{2}=49$,\\\\\nwhich means $OA^{2}+2AO\\cdot OB+OB^{2}=49$,\\\\\n$\\therefore 2OA\\cdot OB=49-25=24$,\\\\\n$\\therefore S_{\\text{rhombus} ABCD}=\\frac{1}{2}AC\\cdot BD=2OA\\cdot OB=\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53538342": { -"question": "As shown in the figure, it is known that $\\triangle ABC$ is an equilateral triangle with a side length of 6, and point D is on side $BC$ with $BD=2$. Construct an equilateral triangle $ADE$ with $AD$ as its side. Through point E, draw $EF\\parallel BC$ intersecting $AC$ at point F. Connect $BF$. What is the area $S_{\\text{quadrilateral }BDEF}$?", -"image_file_name": "7054440", -"image": [ -"math/53538342_769.png" -], -"solution": "\\textbf{Solution:} Draw $EC$, and construct $CH\\perp EF$ at $H$,\\\\\nsince $\\triangle ABC$ and $\\triangle ADE$ are both equilateral triangles,\\\\\ntherefore $AB=AC$, $AD=AE$, $\\angle BAC=\\angle DAE=\\angle ABC=\\angle ACB=60^\\circ$,\\\\\nthus $\\angle BAD=\\angle CAE$,\\\\\nin $\\triangle BAD$ and $\\triangle CAE$,\\\\\n$\\left\\{\\begin{array}{l}\nAB=AC\\\\\n\\angle BAD=\\angle CAE\\\\\nAD=AE\n\\end{array}\\right.$,\\\\\nthus $\\triangle BAD \\cong \\triangle CAE(SAS)$,\\\\\nthus $BD=EC=2$, $\\angle ACE=\\angle ABD=60^\\circ$,\\\\\nsince $EF\\parallel BC$,\\\\\nthus $\\angle EFC=\\angle ACB=60^\\circ$,\\\\\nthus $\\triangle EFC$ is an equilateral triangle,\\\\\ntherefore $CH=\\sqrt{3}$, $EF=EC=BD=2$,\\\\\nsince $EF\\parallel BD$,\\\\\nthus quadrilateral $BDEF$ is a parallelogram,\\\\\nthus the area of quadrilateral $BDEF=BD\\cdot CH=2\\sqrt{3}$.\\\\\nHence, the answer is: $S_{\\text{quadrilateral}BDEF}=\\boxed{2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/53538342_762.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423578": { -"question": "As shown in the graph, the function \n\n\\[\ny = \n\\begin{cases} \n3-x & (0 \\le x \\le 2)\\\\ \nx-1 & (2 \\le x \\le 4)\n\\end{cases}\n\\]\n\nis illustrated. What is the minimum value of this function?", -"image_file_name": "7051872", -"image": [ -"math/52423578_261.png" -], -"solution": "\\textbf{Solution:} Since the minimum value of the function is $(2,1)$, \\\\\ntherefore, the minimum value of the function is $\\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52423346": { -"question": "As shown in the figure, it is known that the line $y=kx$ intersects the line $y=ax+4$ at the point $A(2,1)$. What is the solution set of the inequality $ax+4>kx$?", -"image_file_name": "7051872", -"image": [ -"math/52423346_280.png" -], -"solution": "\\textbf{Solution:} From the graph, we can see that the coordinates of $A$ are $(2,1)$,\\\\\nwhen $x<2$, the line $y=ax+4$ is above the line $y=kx$,\\\\\nmeaning the solution set for the inequality $ax+4>kx$ with respect to $x$ is: $x<2$,\\\\\nhence, the answer is: $\\boxed{x<2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52395569": { -"question": "As the figure shows, the line $y=kx-\\frac{3}{2}$ intersects with $y=mx-5$ at point $A\\left(1, -3\\right)$. What is the solution set of the inequality $kx-\\frac{3}{2}>mx-5$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52395569_305.png" -], -"solution": "\\textbf{Solution:} By observing the graph, we know that when $x=1$, $kx-\\frac{3}{2}=mx-5$.\\\\\nTherefore, when $x<1$, $kx-\\frac{3}{2}>mx-5$.\\\\\nThus, the answer is $\\boxed{x<1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386068": { -"question": "As shown in the diagram, the graph $l_1$ of the linear function $y=k_1x+b_1$ intersects with the graph $l_2$ of $y=k_2x+b_2$ at point P. What is the solution set for the inequality in terms of $x$, $\\left(k_1-k_2\\right)x+\\left(b_1-b_2\\right)>0$?", -"image_file_name": "7051872", -"image": [ -"math/52386068_315.png" -], -"solution": "\\textbf{Solution:} Given that $y_1-y_2=(k_1x+b_1)-(k_2x+b_2)=(k_1-k_2)x+(b_1-b_2)$,\\\\\nas can be seen from the graph: to the left of their intersection point, $y_1>y_2$,\\\\\nmeaning that when $x<-2$, $y_1-y_2>0$,\\\\\ntherefore, the solution set of $(k_1-k_2)x+(b_1-b_2)>0$ is $\\boxed{x<-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386546": { -"question": "As shown in the figure, the line $y=kx-3$ intersects the x-axis and y-axis at points B and A, respectively, with $OB=\\frac{1}{3}OA$. Point C is a point on line AB, located in the second quadrant. When the area of $\\triangle OBC$ is 3, what are the coordinates of point C?", -"image_file_name": "7051872", -"image": [ -"math/52386546_322.png" -], -"solution": "\\textbf{Solution:} Draw $CH\\perp x$ axis at point H, as shown in the figure:\\\\\nSince the line $y=kx-3$ intersects the x-axis and y-axis at points B and A respectively,\\\\\nthus, by setting $x=0$, we get $y=-3$, i.e., $OA=3$,\\\\\nsince $OB=\\frac{1}{3}OA$,\\\\\nthus, $OB=1$, i.e., $B(-1,0)$, substituting into the line equation yields: $0=-k-3$, solving for $k$ yields: $k=-3$;\\\\\nthus, the equation of line AB is $y=-3x-3$,\\\\\nsince the area of $\\triangle OBC$ is 3,\\\\\nthus, $\\frac{1}{2}OB\\cdot CH=3$,\\\\\ntherefore, $CH=6$, i.e., the y-coordinate of point C is 6,\\\\\ntherefore, $-3x-3=6$, solving for: $x=-3$,\\\\\ntherefore, $C\\left(-3,6\\right)$;\\\\\nThus, the answer is $\\boxed{\\left(-3,6\\right)}$.", -"solution_image": [ -"solution_images/52386546_320.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386067": { -"question": "In the figure, point $A(-1, m)$ lies on the line $y=2x+3$. When connecting $OA$ and $\\angle AOB=90^\\circ$, point $B$ is on the line $y=-x+b$ and $OA=OB$. What is the value of $b$?", -"image_file_name": "7051872", -"image": [ -"math/52386067_330.png" -], -"solution": "\\textbf{Solution:} Substituting point A ($-1$, $m$) into the line equation $y=2x+3$, we get: $m=-2+3=1$,\\\\\nsince $\\angle AOB=90^\\circ$ and $OA=OB$,\\\\\ntherefore, rotating line segment $OA$ around point $O$ clockwise by $90^\\circ$, we obtain line segment $OB$. Hence, the coordinates of point $B$ are ($1$, $1$),\\\\\nsubstituting point $B$ into the line $y=-x+b$, we get: $1=-1+b$,\\\\\ntherefore $b=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386507": { -"question": "As shown in the figure, the line $l_{1}: y=kx-1$ intersects with the line $l_{2}: y=-x+5$ at point $P(2, m)$. What is the solution set of the inequality $kx-1 \\ge -x+5$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52386507_346.png" -], -"solution": "\\textbf{Solution:} Since the graph of the function shows that when $x \\geq 2$, the line $l_1\\colon y=kx-1$ is not below the line $l_2\\colon y=-x+5$, \\\\\ntherefore, the solution set for the inequality in terms of $x$, $kx-1 \\geq -x+5$, is $\\boxed{x \\geq 2}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386687": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ intersects the x-axis at point $A(-3,0)$. What is the solution set of the inequality $kx+b>0$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52386687_353.png" -], -"solution": "\\textbf{Solution:} Since the solution set of the inequality $kx+b>0$ represents the range of the independent variable $x$ when $y>0$, \\\\\ntherefore, from the graph in the question, it indicates the range of the coordinate $x$ where the graph of the linear function is above the x-axis, \\\\\ntherefore, according to the graph in the question, when $x<-3$, the graph of the linear function is above the x-axis, \\\\\ntherefore, when $x<-3$, we have $kx+b>0$, \\\\\nHence, the answer is: $\\boxed{x<-3}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52380922": { -"question": "The graph of the function $y=kx+b$ is shown in the figure. What is the solution set of the inequality $kx+b<0$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52380922_362.png" -], -"solution": "\\textbf{Solution:} From the graph, we know that the function $y=kx+b$ intersects the x-axis at the point $(2,0)$. Therefore, the intersection point of the function $y=kx+b$ and the x-axis is $(2,0)$. Moreover, $y$ decreases as $x$ increases. \\\\\n$\\therefore$ When $x>2$, we have $kx+b<0$, \\\\\n$\\therefore$ The solution set of the inequality $kx+b<0$ with respect to $x$ is $x>2$. \\\\\nThus, the answer is: $\\boxed{x>2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52380814": { -"question": "As shown in the figure, line $l_{1}: y=kx (k\\neq 0)$ and line $l_{2}: y=ax-2 (a\\neq 0)$ intersect at point B. Line $l_{2}$ intersects the x-axis at point A ($-4$, $0$). If the x-coordinate of point B is $-2$, what is the value of $k$?", -"image_file_name": "7051872", -"image": [ -"math/52380814_375.png" -], -"solution": "\\textbf{Solution:} Since line $l_{2}\\colon y=ax-2\\left(a\\ne 0\\right)$ intersects the x-axis at point A ($-4$, $0$),\\\\\n$\\therefore -4a-2=0$,\\\\\nSolving for $a$, we get: $a=-\\frac{1}{2}$,\\\\\n$\\therefore$ the equation for line $l_{2}$ is $y=-\\frac{1}{2}x-2$,\\\\\nSince line $l_{1}$ intersects line $l_{2}$ at point B, and the x-coordinate of point B is $-2$,\\\\\n$\\therefore$ for line $l_{2}\\colon y=-\\frac{1}{2}x-2$,\\\\\nwhen $x=-2$, $y=1-2=-1$,\\\\\n$\\therefore$ the coordinates of point B are ($-2$, $-1$),\\\\\nSubstituting point ($-2$, $-1$) into $y=kx$,\\\\\nwe get: $-2k=-1$,\\\\\nSolving for $k$, we find: $k=\\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381567": { -"question": "Given the function $y=2x+b$ and the function $y=kx-3$ intersect at point $P(4, -6)$, what is the solution set of the inequality $kx-3>2x+b$?", -"image_file_name": "7051872", -"image": [ -"math/52381567_384.png" -], -"solution": "\\[ \\text{{\\bf Solution:}} \\, \\text{Given that the function} \\, y=2x+b \\, \\text{and the function} \\, y=kx-3 \\, \\text{intersect at point} \\, P(4,-6), \\]\n\\[ \\text{therefore, the solution set of the inequality} \\, kx-3>2x+b \\, \\text{is} \\, \\boxed{x<4}. \\]", -"solution_image": [ -"solution_images/52381567_380.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381419": { -"question": "As shown in the figure, given that the graphs of the functions $y=x+b$ and $y=ax+3$ intersect at point $P$, what is the solution set of the inequality $x+bnx+4n>0$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52381492_405.png" -], -"solution": "\\textbf{Solution:} Given that the line $y=-x+m$ intersects with $y=nx+4n (n\\ne 0)$ at a point where the x-coordinate is $-2$,\\\\\nit follows that the solution set of the inequality $-x+m>nx+4n$ with respect to $x$ is $x<-2$,\\\\\nthus, when $y=nx+4n=0$, we have $x=-4$,\\\\\ntherefore, the solution set for the inequality $-x+m>nx+4n>0$ is $-4-x+b$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52380621_416.png" -], -"solution": "\\textbf{Solution:} Since the graph of linear functions $y_{1}=kx$ and $y_{2}=-x+b$ intersects at point $A(1,2)$,\\\\\nit follows from the graph that the solution set of the inequality $kx>-x+b$ with respect to $x$ is $x>1$.\\\\\nTherefore, the answer is: $\\boxed{x>1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52380774": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ is depicted. What is the range of $x$ when $y<0$?", -"image_file_name": "7051872", -"image": [ -"math/52380774_420.png" -], -"solution": "\\textbf{Solution:} From the graph, we can conclude: when $y<0$, the range of $x$ is $x>2$. \\\\\nTherefore, the answer is $\\boxed{x>2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381306": { -"question": "As shown in the figure, in $\\triangle ABC$, $AC = BC = 13$. Place $\\triangle ABC$ in the Cartesian coordinate system, with the coordinates of points A and B being $(2, 0)$ and $(12, 0)$, respectively. Translate $\\triangle ABC$ along the x-axis to the left such that point C lies on the line $y = -x + 8$. What is the distance of this translation of $\\triangle ABC$?", -"image_file_name": "7051872", -"image": [ -"math/52381306_438.png" -], -"solution": "\\textbf{Solution:} Construct CD $\\perp$ x-axis at point D, as shown in the figure.\\\\\nSince the coordinates of points A and B are respectively (2, 0) and (12, 0), and AC=BC=13,\\\\\nit follows that AD=BD=$\\frac{1}{2}$AB=5,\\\\\nhence CD=$\\sqrt{AC^{2}-AD^{2}}=12$.\\\\\nTherefore, the coordinates of point C are (7, 12).\\\\\nWhen y=12, we have 12=$-x+8$,\\\\\nsolving this gives: x=$-4$,\\\\\nthus, the coordinates of point C after translation are ($-4$, 12).\\\\\nTherefore, $\\triangle ABC$ is translated 7-(-4)=\\boxed{11} units length to the left along the x-axis.", -"solution_image": [ -"solution_images/52381306_430.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381338": { -"question": "If the graph of the function $y=kx+b$ is shown in the figure, what is the solution set of the inequality $kx+b>0$?", -"image_file_name": "7051872", -"image": [ -"math/52381338_442.png" -], -"solution": "\\textbf{Solution:} From the graph, we can determine that the function $y=kx+b$ intersects the x-axis at $(2,0)$. Since $y$ decreases as $x$ increases, \\\\\n$\\therefore$ the solution set of the inequality $kx+b>0$ is $\\boxed{x<2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381181": { -"question": "As shown in the figure, the graph of the function $y=kx+b$ ($k\\neq 0$) passes through point $B(2,0)$ and intersects with the graph of the function $y=2x$ at point $A$. Then, what is the solution set of the inequality $01$, $2x>kx+b$, \\\\\n$\\because$ the graph of the function $y=kx+b$ ($k \\ne 0$) passes through point B (2, 0), \\\\\n$\\therefore$ for $x<2$, $kx+b>0$, \\\\\n$\\therefore$ the solution set for the inequality $0-x+b$?", -"image_file_name": "7051872", -"image": [ -"math/53706737_480.png" -], -"solution": "\\textbf{Solution:} Solve: When $x>2$, we have $kx+3>-x+b$,\\\\\nwhich means the solution set of the inequality $kx+3>-x+b$ is $x>2$.\\\\\nTherefore, the answer is: $\\boxed{x>2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52424042": { -"question": "As shown in the figure, the abscissa of the intersection point of the linear functions $y_1=kx+b$ and $y_2=x+a$ is $-2$. What is the solution set of $kx+b-2$, \\\\\nthus the answer is $\\boxed{x>-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52424464": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertices \\(A\\), \\(B\\), and \\(C\\) of the rhombus \\(ABCD\\) are on the coordinate axes. If the coordinates of point \\(B\\) are \\((-1, 0)\\) and \\(\\angle BCD = 120^\\circ\\), what are the coordinates of point \\(D\\)?", -"image_file_name": "7051872", -"image": [ -"math/52424464_503.png" -], -"solution": "\\textbf{Solution:} Given that point B has the coordinates $(-1,0)$,\\\\\nthus OB=1,\\\\\nin diamond $ABCD$, $\\angle BCD=120^\\circ$, $\\angle ABC+\\angle BCD=180^\\circ$,\\\\\nthus $\\angle ABC=60^\\circ$, $\\angle BAD=120^\\circ$,\\\\\nthus $\\angle BAC=30^\\circ$, $\\angle DAO=90^\\circ$,\\\\\nthus AB=2OB=2,\\\\\nthus OA$=\\sqrt{AB^{2}-OB^{2}}=\\sqrt{2^{2}-1^{2}}=\\sqrt{3}$,\\\\\nsince AD=AB=2,\\\\\nthus the coordinates of point D are $\\boxed{(2,\\sqrt{3})}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52303856": { -"question": "As shown in the diagram, the line $y=-\\frac{1}{2}x+2$ intersects the $x$ axis at point $A$ and the $y$ axis at point $B$. Point $P$ lies on the line $y=\\frac{1}{3}x+b$ that passes through point $B$. What are the coordinates of point $P$ when $\\triangle PAB$ is an isosceles right triangle?", -"image_file_name": "7051872", -"image": [ -"math/52303856_5110.png" -], -"solution": "\\textbf{Solution:} Solve: For $y=-\\frac{1}{2}x+2$, let $x=0$, then $y=2$,\\\\\nlet $y=0$, then $-\\frac{1}{2}x+2=0$, solve to get: $x=4$,\\\\\n$\\therefore$ point A $(4,0)$, B $(0,2)$,\\\\\n$\\therefore$ $OB=2$, $OA=4$,\\\\\nSubstituting point B $(0,2)$ into $y=\\frac{1}{3}x+b$, we get: $b=2$,\\\\\n$\\therefore$ the equation of line PB is $y=\\frac{1}{3}x+2$,\\\\\nAccording to the question, $\\angle PBA \\neq 90^\\circ$,\\\\\n(1) When $\\angle BAP'=90^\\circ$ and $AB=AP'$, draw $AP'\\perp AB$ at A, draw $P'H'\\perp$ axis through $P'$,\\\\\n$\\therefore$ $\\angle AOB=\\angle P'H'A=90^\\circ$, $\\angle OAB+\\angle P'AH'=90^\\circ$,\\\\\n$\\because$ $\\angle OAB+\\angle OBA=90^\\circ$,\\\\\n$\\therefore$ $\\angle OBA=\\angle P'AH'$,\\\\\nAnd $AB=AP'$,\\\\\n$\\therefore$ $\\triangle AOB \\cong \\triangle P'AH'$ (AAS),\\\\\n$\\therefore$ $AH'=OB=2$, $P'H'=OA=4$,\\\\\n$\\therefore$ $OH'=OA+AH'=6$,\\\\\n$\\therefore$ $P'(6,4)$,\\\\\nSubstitute $x=6$ into $y=\\frac{1}{3}x+2$, get $y=4$,\\\\\n$\\therefore$ point $P'$ is on the line $y=\\frac{1}{3}x+2$, which is consistent with the question.\\\\\n(2) When $\\angle BPA=90^\\circ$ and $BP=AP$, draw $AP\\perp BP$ at point $P$, draw $PH\\perp y$ axis through $P$, and draw $PQ\\perp x$ axis through $P$,\\\\\n$\\therefore$ $\\angle PHO=\\angle PQO=\\angle HOQ=90^\\circ$,\\\\\n$\\therefore$ quadrilateral $OHPQ$ is a rectangle,\\\\\n$\\therefore$ $PH=OQ$, $PQ=OH$, $\\angle HPB+\\angle BPQ=90^\\circ$,\\\\\n$\\because$ $\\angle APQ+\\angle BPQ=90^\\circ$,\\\\\n$\\therefore$ $\\angle HPB=\\angle APQ$,\\\\\nAnd $\\because$ $BP=AP$,\\\\\n$\\therefore$ $\\triangle HBP \\cong \\triangle QAP$ (AAS),\\\\\n$\\therefore$ $HP=PQ$, $HB=QA$,\\\\\n$\\therefore$ quadrilateral $OHPQ$ is a square,\\\\\n$\\because$ $OH+OQ=(OB+HB)+OQ=OB+AQ+OQ=OB+(AQ+OQ)=OB+OA=4+2=6$,\\\\\n$\\therefore$ $PH=PQ=3$,\\\\\n$\\therefore$ $P(3,3)$,\\\\\nSubstitute $x=3$ into $y=\\frac{1}{3}x+2$ to get: $y=3$,\\\\\n$\\therefore$ point $P$ is on the line $y=\\frac{1}{3}x+2$, which is consistent with the question.\\\\\nIn summary, the coordinates of point $P$ are $(6,4)$ or $(3,3)$.\\\\\nTherefore, the answer is: $\\boxed{(6,4) \\text{ or } (3,3)}$.", -"solution_image": [ -"solution_images/52303856_514.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52872176": { -"question": "As shown in the figure, rectangle $ABCD \\sim $ rectangle $BCEF$. If $AB=8$ and $BC=6$, what is the value of $CE$?", -"image_file_name": "7056435", -"image": [ -"math/52872176_330.png" -], -"solution": "\\textbf{Solution:} Since rectangle $ABCD \\sim$ rectangle $BCEF$, \\\\\ntherefore $\\frac{AB}{BC} = \\frac{BC}{CE}$, \\\\\nthus $CE = \\frac{BC^2}{AB} = \\frac{6^2}{8} = \\boxed{\\frac{9}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51445486": { -"question": "As shown in the figure, in the parallelogram $ABCD$, $AC$ and $BD$ intersect at point $O$, $E$ is the midpoint of $OA$. Connect $BE$ and extend it to intersect $AD$ at point $F$. What is the ratio of $FD:AF$?", -"image_file_name": "7056435", -"image": [ -"math/51445486_340.png" -], -"solution": "\\textbf{Solution:} Given quadrilateral ABCD,\\\\\nit follows that $AD=BC$, $AD\\parallel BC$, and OA=OC,\\\\\nfurthermore, since point E is the midpoint of OA,\\\\\nit follows that $AE=OE=\\frac{1}{2}OA=\\frac{1}{4}AC$, and $CE=\\frac{3}{4}AC$\\\\\nSince $AD\\parallel BC$\\\\\nit follows that $\\triangle AEF\\sim \\triangle CEB$\\\\\nTherefore, $\\frac{AF}{BC}=\\frac{AE}{CE}=\\frac{\\frac{1}{4}AC}{\\frac{3}{4}AC}=\\frac{1}{3}$\\\\\nThus, $AF=\\frac{1}{3}BC$\\\\\nSince $AF+FD=AD=BC$\\\\\nit follows $FD=\\frac{2}{3}BC$\\\\\nTherefore, $FD\\colon AF=2\\colon 1$\\\\\nHence, the answer is: $FD\\colon AF=\\boxed{2\\colon 1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299525": { -"question": "As shown in the figure, it is known that the ratio of similarity between $\\triangle ADE$ and $\\triangle ABC$ is $1:2$, and the area of $\\triangle ADE$ is $1$. What is the area of the quadrilateral $DBCE$?", -"image_file_name": "7056435", -"image": [ -"math/51299525_370.png" -], -"solution": "\\textbf{Solution:} Since the similarity ratio between $\\triangle ADE$ and $\\triangle ABC$ is $1\\colon 2$,\\\\\nit follows that $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}}=\\left(\\frac{1}{2}\\right)^2=\\frac{1}{4}$,\\\\\nthus $S_{\\triangle ABC}=4S_{\\triangle ADE}=4$,\\\\\ntherefore, the area of the quadrilateral $DBCE=4-1=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51407086": { -"question": "As shown in the figure, the line $y=-\\frac{1}{2}x+5$ intersects with the coordinate axes at points A and B, and intersects with the graph of the inverse proportion function $y=\\frac{k}{x}\\ (x>0)$ at points C and D, with $CD=3AC$. Point E is a point on the line AB. Connect OE and construct a right triangle OEF to the right of OE, where $\\angle OEF=90^\\circ$, $\\angle OFE=\\angle ABO$. If side OF intersects the graph of the inverse proportion function at point G, and $OG=GF$, what is the value of k? What are the coordinates of point E?", -"image_file_name": "7056435", -"image": [ -"math/51407086_386.png" -], -"solution": "\\textbf{Solution:} Let the line $y=-\\frac{1}{2}x+5$ intersect the coordinate axes at points A and B,\\\\\n$\\therefore A(0, 5), B(10, 0)$. Let the coordinates of point C be $(a, b)$. Draw CM$\\perp y$-axis at point M, and through point D draw DN$\\perp y$-axis at point N. Then $b=-\\frac{1}{2}a+5$, CM=a, AM=5−b,\\\\\n$\\triangle AMC\\sim \\triangle AND$\\\\\n$\\therefore \\frac{AM}{AN}=\\frac{AC}{AD}$. Since $CD=3AC$, AD=AC+CD\\\\\n$\\therefore \\frac{5−b}{AN}=\\frac{1}{4}$\\\\\n$\\therefore AN=4(5−b)$,\\\\\n$\\therefore ON=OA−AN=5−4(5−b)=4b−15$,\\\\\n$\\therefore$ the coordinates of point D are $(4a, 4b−15)$,\\\\\nSince points C, D lie on the graph of the inverse proportion $y=\\frac{k}{x}(x>0)$,\\\\\n$\\therefore k=ab=4a(4b−15)$. Solving for b, we get $b=4$, substituting $b=4$ into,\\\\\n$b=-\\frac{1}{2}a+5$ gives $a=2$. Solving for $k$, we get $k=\\boxed{8}$. Draw BF. Since $\\angle OFE=\\angle ABO$, the points O, B, F, E lie on the same circle. Since $\\angle OEF=90^\\circ$ and OG=GF, point G is the center of the circle, and OF is the diameter, hence $\\angle OBF=90^\\circ$. Since B(10, 0), the x-coordinate of point G is 5. When x=5, \\\\\n$y=\\frac{8}{x}=\\frac{8}{5}$, hence the coordinates of point G are\\\\\n$(5, \\frac{8}{5})$. Since OG=GF, the coordinates of point F are\\\\\n$(10, \\frac{16}{5})$. Let the coordinates of point E be\\\\\n$(x, -\\frac{1}{2}x+5)$. By the Pythagorean theorem, OE$^2$+EF$^2$=OF$^2$, so\\\\\n$x^2+(-\\frac{1}{2}x+5)^2+(10-x)^2+(-\\frac{1}{2}x+5-\\frac{16}{5})^2=10^2+(\\frac{16}{5})^2$ Solving for x,\\\\\n$x=\\frac{18}{25}$ or $10$ (discard), hence the coordinates of point E are\\\\\n$(\\frac{18}{25}, \\frac{116}{25})$, therefore the answer is:\\\\\nThe coordinates of point E are $\\boxed{(\\frac{18}{25}, \\frac{116}{25})}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51402990": { -"question": "As shown in the figure, in $\\triangle ABC$, with $D$ being a point on side $AC$ and $\\angle ABC = \\angle ADB = 45^\\circ$, if $AD=2$ and $CD=3$, then what is the length of $AB$?", -"image_file_name": "7056435", -"image": [ -"math/51402990_397.png" -], -"solution": "\\textbf{Solution:} Given that, $\\angle ABC = \\angle ADB = 45^\\circ$, $\\angle BAD = \\angle CAB$,\\\\\n$\\therefore \\triangle ABD \\sim \\triangle ACB$,\\\\\n$\\therefore \\frac{AD}{AB} = \\frac{AB}{AC}$,\\\\\n$\\therefore AB^2 = AD \\cdot AC$,\\\\\n$\\because AD = 2$, CD = 3,\\\\\n$\\therefore AC = 5$,\\\\\n$\\therefore AB^2 = 2 \\times 5 = 10$, that is: $AB = \\boxed{\\sqrt{10}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402956": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB = 6$, and $E$ is the midpoint of $BC$. $AE$ and $BD$ intersect at point $F$. Connect $CF$. If $AE \\perp BD$, what is the length of $CF$?", -"image_file_name": "7056435", -"image": [ -"math/51402956_400.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $FM\\perp BC$ through point F, with FM intersecting BC at point M\\\\\n$\\because$ rectangle ABCD\\\\\n$\\therefore$ $\\angle ABE=\\angle BAD=\\angle ACD=90^\\circ$, $BC=AD$\\\\\n$\\because$AE$\\perp$BD\\\\\n$\\therefore$ $\\angle BAF+\\angle ABF=\\angle ADB+\\angle ABF=90^\\circ$\\\\\n$\\therefore$ $\\angle BAF=\\angle ADB$\\\\\n$\\therefore$ $\\triangle BAD\\sim \\triangle EBA$\\\\\n$\\therefore$ $\\frac{AD}{AB}=\\frac{AB}{BE}$\\\\\n$\\because$E is the midpoint of BC\\\\\n$\\therefore$ $AD=BC=2BE$\\\\\n$\\therefore$ $\\frac{2BE}{6}=\\frac{6}{BE}$\\\\\n$\\therefore$ $2BE^2=36$\\\\\n$\\therefore$ $BE=\\sqrt{18}=3\\sqrt{2}$\\\\\nUpon verification, $BE\\ne 0$, it is a solution to the original equation $\\frac{2BE}{6}=\\frac{6}{BE}$\\\\\n$\\therefore$ $AD=BC=2BE=6\\sqrt{2}$\\\\\n$\\therefore$ $BD=\\sqrt{AB^2+AD^2}=6\\sqrt{3}$, $AE=\\sqrt{AB^2+BE^2}=3\\sqrt{6}$\\\\\n$\\therefore$ $BF=\\frac{AB\\times BE}{AE}=\\frac{6\\times 3\\sqrt{2}}{3\\sqrt{6}}=2\\sqrt{3}$\\\\\n$\\because$ $\\angle FBE=\\angle CBD$, $\\angle BFE=\\angle ACD=90^\\circ$\\\\\n$\\therefore$ $\\triangle BFE\\sim \\triangle BCD$\\\\\n$\\therefore$ $\\frac{FM}{CD}=\\frac{BF}{BD}$\\\\\n$\\therefore$ $FM=\\frac{CD\\times BF}{BD}=\\frac{6\\times 2\\sqrt{3}}{6\\sqrt{3}}=2$\\\\\n$\\therefore$ $BM=\\sqrt{BF^2−FM^2}=\\sqrt{12−4}=2\\sqrt{2}$\\\\\n$\\therefore$ $CM=BC−BM=6\\sqrt{2}−2\\sqrt{2}=4\\sqrt{2}$\\\\\n$\\therefore$ $FC=\\sqrt{FM^2+CM^2}=\\sqrt{4+32}=\\boxed{6}$", -"solution_image": [ -"solution_images/51402956_401.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402614": { -"question": "As shown in the figure, point $E$ is on the side $BC$ of the square $ABCD$, where $BE=2CE$, and point $G$ is the foot of the perpendicular. If $FG=2$, what is the value of $DG$?", -"image_file_name": "7056435", -"image": [ -"math/51402614_410.png" -], -"solution": "In the square $ABCD$, we have: $AD=AB=BC=CD$\\\\\n$\\angle DAB=\\angle B=\\angle C=\\angle ADC=90^\\circ$\\\\\n$\\therefore \\angle 1+\\angle 3=90^\\circ$\\\\\n$\\because DF\\perp AE$\\\\\n$\\therefore \\angle DGE=\\angle DAF=90^\\circ$\\\\\n$\\therefore \\angle 2+\\angle 3=90^\\circ$\\\\\nAlso, $\\angle 1+\\angle 3=90^\\circ$\\\\\n$\\therefore \\angle 2=\\angle 1$\\\\\nIn $\\triangle ADF$ and $\\triangle BAE$, we have\\\\\n$\\left\\{\\begin{array}{l}\n\\angle 2=\\angle 1\\\\\nAD=AB\\\\\n\\angle DAB=\\angle B=90^\\circ\n\\end{array}\\right.$\\\\\n$\\therefore \\triangle ADF\\cong \\triangle BAE$ (ASA)\\\\\n$\\therefore AF=BE$\\\\\n$\\because BE=2CE$\\\\\nLet $CE=x$, then $BE=2x$, $BC=3x$, $AF=2x$, $BF=x$\\\\\n$\\because \\angle 1=\\angle 2$, $\\angle AGF=\\angle B=90^\\circ$\\\\\n$\\therefore \\triangle AGF\\sim \\triangle ABE$\\\\\n$\\therefore \\frac{FG}{BE}=\\frac{AF}{AE}$\\\\\n$\\therefore \\frac{2}{2x}=\\frac{2x}{AE}$\\\\\n$\\therefore AE=2x^2$\\\\\nIn $\\triangle ABE$, we have $AB^2+BE^2=AE^2$\\\\\n$\\therefore (3x)^2+(2x)^2=(2x^2)^2$\\\\\n$\\therefore 9x^2+4x^2=4x^4$\\\\\n$\\therefore 13x^2=4x^4$\\\\\n$\\because x\\neq 0$\\\\\n$\\therefore 13=4x^2$\\\\\n$\\therefore x=\\pm \\frac{\\sqrt{13}}{2}$ (discard the negative solution)\\\\\n$\\therefore x=\\frac{\\sqrt{13}}{2}$\\\\\n$\\therefore AE=\\frac{13}{2}$\\\\\n$AF=\\sqrt{13}$\\\\\nIn $\\triangle AGF\\sim \\triangle ABE$,\\\\\n$\\frac{AF}{AE}=\\frac{FG}{BE}$\\\\\n$\\therefore \\frac{\\sqrt{13}}{\\frac{13}{2}}=\\frac{FG}{\\sqrt{13}}$\\\\\n$\\therefore FG=2$\\\\\n$\\therefore DG=DF-GF=\\boxed{\\frac{9}{2}}$", -"solution_image": [ -"solution_images/51402614_410.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402774": { -"question": "As shown in the diagram, this is a schematic of a rifle being aimed. The distance from the eye to the sight, OE, is 80 cm, the width of the sight on the rifle, AB, is 0.2 cm, and the frontal width of the target, CD, is 50 cm. What is the distance from the eye to the target, OF, in meters?", -"image_file_name": "7056435", -"image": [ -"math/51402774_420.png" -], -"solution": "\\textbf{Solution:} Because $AB \\parallel CD$, \\\\\ntherefore $\\triangle OAB \\sim \\triangle OCD$, \\\\\ntherefore $\\frac{AB}{CD} = \\frac{OE}{OF}$, that is $\\frac{0.2}{50} = \\frac{80}{OF}$, \\\\\ntherefore $OF = \\frac{80 \\times 50}{0.2} = 20000\\,cm = 200\\,m$. \\\\\nHence, the answer is: $OF = \\boxed{200m}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403270": { -"question": "As shown in the figure, line $AD\\parallel BE\\parallel CF$, if $\\frac{AB}{BC}=\\frac{1}{3}$, $AD=2$, and $CF=6$, then what is the length of the line segment $BE$?", -"image_file_name": "7056435", -"image": [ -"math/51403270_434.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw DG $\\parallel$ AC through point D, intersecting CF at point G, and BE at point H, \\\\\n$\\because$ $AD\\parallel BE\\parallel CF$, \\\\\n$\\therefore$ $\\frac{DE}{EF}=\\frac{AB}{BC}=\\frac{1}{3}$, quadrilaterals ABHD and ACGD are parallelograms, \\\\\n$\\therefore$ BH=AD=CG=2, $\\frac{DE}{DF}=\\frac{1}{4}$, \\\\\n$\\because$ $CF=6$, \\\\\n$\\therefore$ FG=4, \\\\\n$\\because$ BE$\\parallel$CF, \\\\\n$\\therefore$ $\\triangle DEH\\sim \\triangle DFG$, \\\\\n$\\therefore$ $\\frac{HE}{FG}=\\frac{DE}{DF}=\\frac{1}{4}$, \\\\\n$\\therefore$ HE=1, \\\\\n$\\therefore$ BE=BH+HE=$\\boxed{3}$.", -"solution_image": [ -"solution_images/51403270_430.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403331": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=6$, $BC=4$, point $D$ is on side $AC$, $BD=BC$, then what is the length of $AD$?", -"image_file_name": "7056435", -"image": [ -"math/51403331_441.png" -], -"solution": "\\textbf{Solution}: Given that $AB=AC$, and $BD=BC$,\\\\\nit follows that $\\angle ABC = \\angle C$, and $\\angle C = \\angle BDC$,\\\\\ntherefore $\\triangle ABC \\sim \\triangle BDC$,\\\\\nwhich implies $ \\frac{AB}{BD}=\\frac{BC}{CD}$, \\\\\ngiven $AB=AC=6$, $BC=4$, and $BD=BC$,\\\\\nit follows $ \\frac{6}{4}=\\frac{4}{CD}$, \\\\\nthus $ CD=\\frac{8}{3}$, \\\\\ntherefore $AD=AC-CD=6- \\frac{8}{3}=\\boxed{\\frac{10}{3}}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402841": { -"question": "As shown in the figure, it is known that $l_{1}\\parallel l_{2}\\parallel l_{3}$. The line AB intersects $l_{1}$, $l_{2}$, and $l_{3}$ at A, M, and B, respectively. Similarly, the line CD intersects $l_{1}$, $l_{2}$, and $l_{3}$ at C, N, and D, respectively. Given that AM = 4, MB = 6, and CD = 9, what is the length of ND?", -"image_file_name": "7056435", -"image": [ -"math/51402841_450.png" -], -"solution": "\\textbf{Solution:} Since $l_1 \\parallel l_2 \\parallel l_3$,\\\\\nit follows that $\\frac{AM}{AB} = \\frac{CN}{CD}$,\\\\\nthus $\\frac{4}{4+6} = \\frac{CN}{9}$,\\\\\nsolving this gives $CN = 3.6$,\\\\\nhence $ND = CD - CN = 9 - 3.6 = \\boxed{5.4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403069": { -"question": "As shown in the figure, for square $ABCD$ with a side length of 1, $O$ is the midpoint of diagonal $BD$. Point $M$ is on side $AB$, and $BM=2AM$. Point $N$ is on side $BC$, and $BN=AM$. Lines $AN$ and $MD$ intersect at point $P$. Connect $OP$. What is the length of $OP$?", -"image_file_name": "7056435", -"image": [ -"math/51403069_460.png" -], -"solution": "\\textbf{Solution:} Let AN and BD intersect at point Q,\\\\\nsince the side length of square ABCD is 1,\\\\\ntherefore $BD=\\sqrt{AB^2+AD^2}=\\sqrt{2}$,\\\\\nsince $BM=2AM$,\\\\\ntherefore $BM+AM=AB=1$,\\\\\ntherefore $AM=BN=\\frac{1}{3}$, $BM=\\frac{2}{3}$,\\\\\nsince $AD\\parallel BN$,\\\\\ntherefore $\\triangle NQB\\sim \\triangle AQD$,\\\\\ntherefore $\\frac{BN}{AD}=\\frac{BQ}{QD}=\\frac{NQ}{AQ}=\\frac{1}{3}$,\\\\\ntherefore $DQ=3BQ$,\\\\\ntherefore $DQ=\\frac{3\\sqrt{2}}{4}$, $BQ=\\frac{\\sqrt{2}}{4}$,\\\\\nsince O is the midpoint of BD,\\\\\ntherefore $OD=\\frac{\\sqrt{2}}{2}$,\\\\\ntherefore $OQ=DQ-OD=\\frac{\\sqrt{2}}{4}$,\\\\\nIn $\\triangle ADM$ and $\\triangle BAN$,\\\\\n$\\begin{cases}AD=AB\\\\ \\angle DAM=\\angle ABN\\\\ AM=BN\\end{cases}$,\\\\\ntherefore $\\triangle ADM\\cong \\triangle BAN$ (SAS),\\\\\ntherefore $\\angle ADM=\\angle BAN$,\\\\\nsince $\\angle PAD+\\angle BAN=90^\\circ$,\\\\\ntherefore $\\angle PAD+\\angle ADM=90^\\circ$,\\\\\ntherefore $\\angle APD=90^\\circ$,\\\\\nsince $\\angle DAM=90^\\circ$, $AM=\\frac{1}{3}$, $AD=1$,\\\\\ntherefore $DM= \\sqrt{AM^2+AD^2}=\\frac{\\sqrt{10}}{3}$,\\\\\nsince $S_{\\triangle ADM}=\\frac{1}{2}\\times AD\\cdot AM=\\frac{1}{2}\\times DM\\cdot AP$,\\\\\ntherefore $AP=\\frac{1\\times \\frac{1}{3}}{\\frac{\\sqrt{10}}{3}}=\\frac{\\sqrt{10}}{10}$,\\\\\ntherefore $PM=\\sqrt{AM^2-AP^2}=\\frac{\\sqrt{10}}{30}$,\\\\\ntherefore $PD=DM-PM=\\frac{3\\sqrt{10}}{10}$,\\\\\nsince $\\triangle ADM\\cong \\triangle BAN$,\\\\\ntherefore $AN=DM= \\frac{\\sqrt{10}}{3}$,\\\\\nsince $\\frac{NQ}{AQ}=\\frac{1}{3}$,\\\\\ntherefore $NQ=\\frac{\\sqrt{10}}{12}$, $AQ=\\frac{\\sqrt{10}}{4}$,\\\\\ntherefore $PQ=AQ-AP=\\frac{\\sqrt{10}}{4}-\\frac{\\sqrt{10}}{10}=\\frac{3\\sqrt{10}}{20}$,\\\\\nAs shown in the diagram, draw OG$\\perp$DM at point G through point O,\\\\\nsince $OG\\parallel PQ$,\\\\\ntherefore $\\triangle OGD\\sim \\triangle QPD$,\\\\\ntherefore $\\frac{DO}{DQ}=\\frac{DG}{DP}=\\frac{OG}{QP}=\\frac{2}{3}$,\\\\\ntherefore $DG=\\frac{2}{3}DP=\\frac{2}{3}\\times \\frac{3\\sqrt{10}}{10}=\\frac{\\sqrt{10}}{5}$, $OG=\\frac{2}{3}QP=\\frac{2}{3}\\times \\frac{3\\sqrt{10}}{20}=\\frac{\\sqrt{10}}{10}$,\\\\\ntherefore $PG=DP-DG=\\frac{3\\sqrt{10}}{10}-\\frac{\\sqrt{10}}{5}=\\frac{\\sqrt{10}}{10}$,\\\\\ntherefore $OP=\\sqrt{OG^2+PG^2}=\\sqrt{\\frac{1}{10}+\\frac{1}{10}}=\\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/51403069_4621.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402480": { -"question": "As shown, it is known that $\\triangle ABC$ and $\\triangle ADE$ are both isosceles right-angled triangles, with $\\angle BAC=\\angle ADE=90^\\circ$, and $AB=AC=1$, $AD=DE=\\sqrt{5}$. Point D lies on line BC, and the extension of line segment $EA$ intersects line BC at point F. What is the length of $FB$?", -"image_file_name": "7056435", -"image": [ -"math/51402480_471.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw AH $\\perp$ BC at point H,\\\\\n$\\because$ $\\angle$BAC=$90^\\circ$, AB=AC=1,\\\\\n$\\therefore$ BC=$\\sqrt{2}$,\\\\\n$\\because$ AH$\\perp$BC,\\\\\n$\\therefore$ BH=CH=$\\frac{\\sqrt{2}}{2}$,\\\\\n$\\therefore$ AH=$\\frac{\\sqrt{2}}{2}$,\\\\\n$\\because$ AD=DE=$\\sqrt{5}$,\\\\\n$\\therefore$ DH=$\\sqrt{AD^{2}-AH^{2}}=\\sqrt{5-\\frac{1}{2}}=\\frac{3\\sqrt{2}}{2}$,\\\\\n$\\therefore$ CD=DH−CH=$\\sqrt{2}$,\\\\\n$\\because$ $\\angle$ABC=$\\angle$ACB=$45^\\circ$,\\\\\n$\\therefore$ $\\angle$ABF=$\\angle$ACD=$135^\\circ$,\\\\\n$\\because$ $\\angle$DAE=$45^\\circ$,\\\\\n$\\therefore$ $\\angle$DAF=$135^\\circ$,\\\\\n$\\because$ $\\angle$BAC=$90^\\circ$,\\\\\n$\\therefore$ $\\angle$BAF+$\\angle$DAC=$45^\\circ$,\\\\\n$\\because$ $\\angle$BAF+$\\angle$F=$45^\\circ$,\\\\\n$\\therefore$ $\\angle$F=$\\angle$DAC,\\\\\n$\\therefore$ $\\triangle$ABF$\\sim$ $\\triangle$DCA,\\\\\n$\\therefore$ $\\frac{AB}{CD}=\\frac{BF}{AC}$,\\\\\n$\\therefore$ $\\frac{1}{\\sqrt{2}}=\\frac{BF}{1}$,\\\\\n$\\therefore$ BF=$\\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/51402480_470.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403154": { -"question": "As shown in the figure, the side length of square $ABCD$ is $4$. Diagonal $AC$, points $E$, $F$ are respectively on the extensions of $BC$, $CD$, with $CE=2$, $DF=1$. Point $G$ is the midpoint of $EF$. Connect $OE$ and intersect $CD$ at point $H$. What is the length of $GH$?", -"image_file_name": "7056435", -"image": [ -"math/51403154_480.png" -], -"solution": "\\textbf{Solution:} Draw OM$\\perp$BC at M through point O, and draw GN$\\perp$CF at N through point G,\\\\\nsince square ABCD,\\\\\nthus CO=OA, and $\\angle$ABC$=90^\\circ$,\\\\\nthus OM$\\parallel$AB,\\\\\n$\\triangle$COM$\\sim$$\\triangle$CAB,\\\\\nthus $\\frac{CO}{AC}=\\frac{OM}{AB}=\\frac{CM}{BC}$ that is $\\frac{CO}{2OC}=\\frac{OM}{4}=\\frac{CM}{BC}=\\frac{1}{2}$,\\\\\nwe find OM=2 and CM=$\\frac{1}{2}BC=\\frac{1}{2}\\times 4=2$,\\\\\nsince CE=2,\\\\\nthus MC=CE=2, ME=MC+CE=4,\\\\\nsince CH$\\parallel$AB,\\\\\nthus CH$\\parallel$OM,\\\\\nthus $\\frac{CH}{OM}=\\frac{CE}{ME}$ that means $\\frac{CH}{2}=\\frac{2}{4}=\\frac{1}{2}$,\\\\\nthus CH=1,\\\\\nsince GN$\\perp$CF, and $\\angle$FCE$=90^\\circ$,\\\\\nthus GN$\\parallel$CE and point G is the midpoint of EF,\\\\\nthus $\\triangle$FGN$\\sim$$\\triangle$FEC,\\\\\nthus $\\frac{FN}{FC}=\\frac{NG}{CE}=\\frac{FG}{FE}$ that means $\\frac{FN}{FC}=\\frac{NG}{CE}=\\frac{FG}{2FG}=\\frac{1}{2}$,\\\\\nsince DF=1,\\\\\nthus CF=CD+DF=4+1=5,\\\\\nthus $\\frac{FN}{5}=\\frac{NG}{2}=\\frac{1}{2}$,\\\\\nwe find FN=2.5, NG=1,\\\\\nthus NH=CF−FN−CH=5−2.5−1=1.5,\\\\\nIn right $\\triangle$NHG, GH=$\\sqrt{NG^{2}+NH^{2}}=\\sqrt{1^{2}+1.5^{2}}=\\boxed{\\frac{1}{2}\\sqrt{13}}$.", -"solution_image": [ -"solution_images/51403154_480.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52719814": { -"question": "As shown in the figure, in $\\square ABCD$, $AB=8$, $BC=12$. $\\square ABCD$ is rotated counterclockwise about point A to obtain $\\square AB'C'D'$. Point $B'$ is on side BC, $BB'=4$, and $B'C'$ intersects side CD at point E. Side $C'D'$ passes through point D. What is the length of $CE$?", -"image_file_name": "7056435", -"image": [ -"math/52719814_497.png" -], -"solution": "\\textbf{Solution:} Given the properties of a parallelogram and rotation, it is known that $C'D'=CD=AB'=AB=8$, $AD'=AD=BC'=BC=12$, $\\angle BAD=\\angle B'AD'$, and $\\angle B'CE=\\angle DC'E$. \\\\\n$\\therefore \\angle B=\\angle AB'B=\\angle ADD'=\\angle D'$, hence $\\angle BAD-\\angle B'AD=\\angle B'AD'-\\angle B'AD$. \\\\\n$\\therefore \\angle BAB'=\\angle DAD'$. \\\\\n$\\therefore \\triangle BAB' \\sim \\triangle DAD'$, \\\\\nwhich yields $\\frac{AB}{AD}=\\frac{BB'}{DD'}$, i.e., $\\frac{8}{12}=\\frac{4}{DD'}$. \\\\\nSolving for $DD'=6$. \\\\\n$\\therefore DC'=D'C'-DD'=2$. \\\\\nSince $\\angle B'CE=\\angle DC'E$ and $\\angle B'EC=\\angle DEC'$, \\\\\n$\\therefore \\triangle B'EC \\sim \\triangle DEC'$, \\\\\nthus, $\\frac{B'E}{DE}=\\frac{CE}{C'E}=\\frac{BC}{DC'}=\\frac{12-4}{2}$. \\\\\n$\\therefore B'E=4DE$, and $CE=4C'E$. \\\\\nGiven $B'E=12-C'E=12-\\frac{1}{4}CE$, and $DE=8-CE$. \\\\\n$\\therefore 12-\\frac{1}{4}CE=4\\times (8-CE)$. \\\\\nSolving yields $CE=\\boxed{\\frac{16}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52720073": { -"question": "In the equilateral triangle $\\triangle ABC$, $P$ is a point on $BC$, and $D$ is a point on $AC$, with $\\angle APD=60^\\circ$, $BP=4$, and $CD=2$. What is the side length of $\\triangle ABC$?", -"image_file_name": "7056435", -"image": [ -"math/52720073_500.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC$ is an equilateral triangle,\\\\\nit follows that AB = BC = AC, and $\\angle B = \\angle C = 60^\\circ$,\\\\\nthus $\\angle BAP + \\angle APB = 180^\\circ - 60^\\circ = 120^\\circ$,\\\\\nsince $\\angle APD = 60^\\circ$,\\\\\nit follows that $\\angle APB + \\angle DPC = 180^\\circ - 60^\\circ = 120^\\circ$,\\\\\ntherefore, $\\angle BAP = \\angle DPC$,\\\\\nwhich means $\\angle B = \\angle C$ and $\\angle BAP = \\angle DPC$,\\\\\nhence $\\triangle ABP \\sim \\triangle PCD$;\\\\\nthus $\\frac{AB}{PC} = \\frac{BP}{CD}$,\\\\\ngiven BP = 4 and CD = 2,\\\\\nit follows that $\\frac{AB}{AB - 4} = \\frac{4}{2}$, solving gives AB = \\boxed{8},\\\\\ntherefore, the side length of $\\triangle ABC$ is 8.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52765245": { -"question": "As shown, it is known that the line $y=-\\frac{1}{2}x+2$ intersects the x-axis at point B and the y-axis at point A. Point P is a moving point on line AB (not coinciding with A or B). Line $PQ\\perp x$ axis at point Q. If the triangle with vertices P, O, Q is similar to $\\triangle AOB$, then what are the coordinates of point P?", -"image_file_name": "7056435", -"image": [ -"math/52765245_511.png" -], -"solution": "\\textbf{Solution:}\n\nSince point $P$ lies on the line $AB$ defined by $y=-\\frac{1}{2}x+2$,\n\nlet $P\\left(m, -\\frac{1}{2}m+2\\right)$. Therefore, $PQ=\\left|-\\frac{1}{2}m+2\\right|$ and $OQ=\\left|m\\right|$\n\nGiven $\\angle PQO=90^\\circ$ and $\\angle AOB=90^\\circ$,\n\nif the triangle formed by points $P$, $O$, and $Q$ is similar to $\\triangle AOB$,\n\nthen $\\triangle POQ\\sim \\triangle AOB$ or $\\triangle PQO\\sim \\triangle BOA$\n\nThus, $\\frac{OQ}{OB}=\\frac{QP}{OA}$ or $\\frac{OQ}{OA}=\\frac{QP}{OB}$\n\nGiven $y=-\\frac{1}{2}x+2$,\n\nby setting $x=0$, we get $y=2$, and by setting $y=0$, we get $x=4$\n\nHence, $OA=2$ and $BO=4$\n\nTherefore, $\\frac{\\left|m\\right|}{4}=\\frac{\\left|-\\frac{1}{2}m+2\\right|}{2}$ or $\\frac{\\left|m\\right|}{2}=\\frac{\\left|-\\frac{1}{2}m+2\\right|}{4}$\n\nSolving gives $m=2$, or $m=\\frac{4}{5}$, or $m=-\\frac{4}{3}$\n\nThus, the coordinates of $P$ are $\\boxed{(2,1)}$, $\\left(\\frac{4}{5}, \\frac{8}{5}\\right)$, or $\\left(-\\frac{4}{3}, \\frac{8}{3}\\right)$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52602898": { -"question": "As shown in the figure, line segments AB and CD intersect at point E, with AC $\\parallel$ BD. If AC = 3, BD = 1.5, and BE = 2, what is the length of AE?", -"image_file_name": "7056435", -"image": [ -"math/52602898_520.png" -], -"solution": "\\textbf{Solution:} Given that $AC \\parallel BD$,\\\\\nit follows that $\\angle A = \\angle B$ and $\\angle C = \\angle D$,\\\\\ntherefore $\\triangle AEC \\sim \\triangle BED$,\\\\\nwhich leads to $\\frac{AC}{BD} = \\frac{AE}{BE}$,\\\\\ngiven that $AC = 3$, $BD = 1.5$, and $BE = 2$,\\\\\nit follows that $\\frac{3}{1.5} = \\frac{AE}{2}$,\\\\\nsolving this, we find $AE = \\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52602484": { -"question": "As shown in the figure, there is a square $ABCD$ with side length $6\\sqrt{2}$. $E$ is the midpoint of side $CD$. There is a moving point $F$ on the diagonal $BD$. When $\\triangle ABF$ is similar to $\\triangle DEF$, what is the value of $BF$?", -"image_file_name": "7056435", -"image": [ -"math/52602484_537.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a square, \\\\\nit follows that BC=CD=$6\\sqrt{2}$, and $\\angle C=90^\\circ$.\\\\\nSince E is the midpoint of side CD, \\\\\nit follows that DE=CE=$\\frac{1}{2}$CD=$3\\sqrt{2}$.\\\\\nIn $\\triangle BCD$, by the Pythagorean theorem, we have \\\\\nBD=$\\sqrt{BC^{2}+CD^{2}}=\\sqrt{(6\\sqrt{2})^{2}+(6\\sqrt{2})^{2}}=12$.\\\\\nLet BF=x, then DF=12-x.\\\\\n(1) When $\\triangle ABF\\sim \\triangle FDE$,\\\\\nfrom $\\frac{DF}{BA}=\\frac{DE}{BF}$, we get $\\frac{12-x}{6\\sqrt{2}}=\\frac{3\\sqrt{2}}{x}$,\\\\\nwhich gives $x=\\boxed{6}$.\\\\\n(2) When $\\triangle ABF\\sim \\triangle EDF$,\\\\\nfrom $\\frac{DF}{BF}=\\frac{DE}{BA}$, we get $\\frac{12-x}{x}=\\frac{3\\sqrt{2}}{6\\sqrt{2}}$,\\\\\nwhich gives $x=8$.\\\\\nIn conclusion, the value of BF can be either 6 or 8.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52602144": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $O$ is the midpoint of $AB$, $OD$ bisects $\\angle AOC$ and intersects $AC$ at point $G$, $OD = OA$, $BD$ intersects $AC$ and $OC$ at points $E$ and $F$ respectively, connect $AD$ and $CD$. What is the value of $OG\\colon BC$? If $CE = CF$, what is the value of $CF\\colon OF$?", -"image_file_name": "7056435", -"image": [ -"math/52602144_540.png" -], -"solution": "\\textbf{Solution:}\n\n(1) Since $O$ is the midpoint of $AB$ and $\\angle ACB=90^\\circ$, \\\\\n$\\therefore$ $OB=OA=OC$, \\\\\nSince $OD$ bisects $\\angle AOC$ and intersects $AC$ at point $G$, \\\\\n$\\therefore$ point $G$ is the midpoint of $AC$, \\\\\n$\\therefore$ $OG$ is the median of $\\triangle ABC$, \\\\\n$\\therefore$ $OG\\parallel BC$ and $OG=\\frac{1}{2}BC$, that is, $\\frac{OG}{BC}=\\boxed{\\frac{1}{2}}$; \n\n(2) \\\\\nSince $OD=OA$, \\\\\n$\\therefore$ $OD=OB$, \\\\\n$\\therefore$ $\\angle ODB=\\angle OBD$, \\\\\nSince $OG\\perp AC$, \\\\\n$\\therefore$ $\\angle DGE=90^\\circ$, \\\\\n$\\therefore$ $\\angle GDE+\\angle DEG=90^\\circ$, \\\\\nSince $CE=CF$, \\\\\n$\\therefore$ $\\angle CEF=\\angle CFE$, \\\\\nSince $\\angle CEF=\\angle DEG$, $\\angle CFE=\\angle OFB$, and $\\angle ODB=\\angle OBD$, \\\\\n$\\therefore$ $\\angle OFB+\\angle OBD=90^\\circ$, \\\\\n$\\therefore$ $\\angle FOB=90^\\circ$, that is, $CO\\perp AB$, \\\\\n$\\therefore$ $\\triangle OBC$ is an isosceles right triangle, \\\\\n$\\therefore$ $BC: OB=\\sqrt{2}: 1$; \n\nKnowing from (1) that $OG\\parallel BC$, \\\\\n$\\therefore$ $\\triangle BCF\\sim \\triangle DOF$, \\\\\n$\\therefore$ $\\frac{CF}{OF}=\\frac{BC}{OD}=\\frac{BC}{OB}=\\boxed{\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52602144_547.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52601696": { -"question": "As shown in the figure, the straight lines $l_{1} \\parallel l_{2} \\parallel l_{3}$. If $AB = 6$, $BC = 10$, and $EF = 9$, then what is the length of $DE$?", -"image_file_name": "7056435", -"image": [ -"math/52601696_555.png" -], -"solution": "\\textbf{Solution:} Since $l_{1} \\parallel l_{2} \\parallel l_{3}$, and $AB = 6$, $BC = 10$, \\\\\nit follows that $\\frac{DE}{EF} = \\frac{AB}{BC} = \\frac{6}{10} = \\frac{3}{5}$, \\\\\nSince $EF = 9$, \\\\\nthen $DE = \\boxed{\\frac{27}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51545296": { -"question": "As shown in the figure, in right-angled triangle $ABC$ with $\\angle ACB=90^\\circ$, $CD\\perp AB$, $AC=5$, and $BC=12$, point $P$ is a moving point on line segment $CD$. When a circle $\\odot P$ with radius $4$ is tangent to one side of $\\triangle ABC$, what is the length of $CP$?", -"image_file_name": "7056435", -"image": [ -"math/51545296_580.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that in right triangle $ABC$, $AC=5$, $BC=12$,\\\\\ntherefore $AB=\\sqrt{AC^2+BC^2}=\\sqrt{5^2+12^2}=13$,\\\\\nsince $CD\\perp AB$,\\\\\nthe area of $\\triangle ABC = \\frac{1}{2}AB\\cdot CD=\\frac{1}{2}AC\\cdot BC$,\\\\\nthus, $13CD=5\\times 12$,\\\\\ntherefore, $CD= \\frac{60}{13}$,\\\\\nconsidering three cases:\\\\\n(1) When circle $P$ is tangent to side $BC$, as shown in the figure:\\\\\nDraw $PE\\perp BC$ at point E,\\\\\nsince $PE \\perp BC$,\\\\\nthus $\\angle PEC=90^\\circ$,\\\\\nhence $\\angle PCE+\\angle CPE=90^\\circ$, and $\\angle PCE+\\angle B=90^\\circ$,\\\\\ntherefore, $\\angle B=\\angle CPE$,\\\\\nsince $\\angle CEP=\\angle ACB=90^\\circ$,\\\\\nthus $\\triangle BCA\\sim \\triangle PEC$,\\\\\nhence $\\frac{BA}{PC}=\\frac{BC}{PE}$,\\\\\ntherefore, $\\frac{13}{PC}=\\frac{12}{4}$,\\\\\nthus, $PC=\\frac{13}{3}$,\\\\\n(2) When circle $P$ is tangent to side $AB$, as shown in the figure:\\\\\nsince $PD\\perp AB$,\\\\\ntherefore, $CP=CD-PD=\\frac{60}{13}-4=\\frac{8}{13}$,\\\\\n(3) When circle $P$ is tangent to side $AC$, as shown in the figure:\\\\\nDraw $PF\\perp AC$ at point F,\\\\\nsince $PF\\perp AC$,\\\\\nthus $\\angle PFC=90^\\circ$,\\\\\nhence $\\angle CPF+\\angle PCF=90^\\circ$, and $\\angle A+\\angle PCF=90^\\circ$\\\\\ntherefore, $\\angle A=\\angle CPF$,\\\\\nsince $\\angle CFP=\\angle ACB=90^\\circ$,\\\\\nthus $\\triangle BCA\\sim \\triangle CFP$,\\\\\nhence $\\frac{BA}{PC}=\\frac{CA}{FP}$,\\\\\ntherefore, $\\frac{13}{PC}=\\frac{5}{4}$,\\\\\nthus, $PC=\\frac{52}{5}$,\\\\\nsince $\\frac{52}{5}>\\frac{60}{13}$\\\\\ntherefore, $PC=\\frac{52}{5}$ (discarded)\\\\\nIn conclusion, when circle $P$ with radius 4 is tangent to one side of $\\triangle ABC$, the length of $CP$ could be: $\\boxed{\\frac{13}{3}}$ or $\\frac{8}{13}$.", -"solution_image": [ -"solution_images/51545296_589.png", -"solution_images/51545296_5820.png", -"solution_images/51545296_5823.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51545217": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are on AB and AC respectively, $\\angle AED=\\angle B$, $AD=\\frac{3}{4}AC$. If the area of the quadrilateral BCED is 7, what is the area of $\\triangle ADE$?", -"image_file_name": "7056435", -"image": [ -"math/51545217_591.png" -], -"solution": "\\textbf{Solution:} Since $\\angle A = \\angle A$ and $\\angle AED = \\angle B$,\n\nit follows that $\\triangle ADE \\sim \\triangle ACB$.\n\nThus, $\\frac{AD}{AC} = \\frac{\\frac{3}{4}AC}{AC} = \\frac{3}{4}$,\n\nand $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}} = \\left(\\frac{AD}{AC}\\right)^2 = \\left(\\frac{3}{4}\\right)^2 = \\frac{9}{16}$.\n\nLet $S_{\\triangle ADE} = 9x$, then $S_{\\triangle ABC} = 16x$.\n\nTherefore, $S_{BCED} = S_{\\triangle ABC} - S_{\\triangle ADE} = 16x - 9x = 7x = 7$,\n\nimplying $x = 1$,\n\nand therefore $S_{\\triangle ADE} = 9x = \\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51103675": { -"question": "As shown in the figure, in a grid of small squares with equal side lengths, points A, B, C, and D are all on the vertices of these small squares. Lines AB and CD intersect at point P. What is the value of $\\frac{AP}{PB}$? What is the value of $\\tan\\angle APD$?", -"image_file_name": "7058769", -"image": [ -"math/51103675_361.png" -], -"solution": "\\textbf{Solution}:\n\nSince quadrilateral BCED is a square, \\\\\nit follows that DB$\\parallel$AC, \\\\\nwhich means $\\triangle DBP\\sim \\triangle CAP$, \\\\\nthus, $\\frac{AP}{PB} = \\frac{AC}{DB} = \\boxed{3}$, \\\\\nConnect BE, intersecting CD at point F, \\\\\nSince quadrilateral BCED is a square, \\\\\nit follows that DF=CF= $ \\frac{1}{2}$ CD, BF= $ \\frac{1}{2}$ BE, and CD=BE, BE$\\perp$CD, \\\\\nthus, BF=CF. According to the problem, AC$\\parallel$BD, \\\\\nit follows that $\\triangle ACP\\sim \\triangle BDP$, \\\\\nthus, DP$\\colon$ CP=BD$\\colon$ AC=1$\\colon$ 3, \\\\\nwhich means DP$\\colon$ DF=1$\\colon$ 2, therefore, DP=PF= $ \\frac{1}{2}$ CF= $ \\frac{1}{2}$ BF, \\\\\nIn $\\triangle PBF$ right-angled at B, $\\tan\\angle BPF= \\frac{BF}{PF} = \\boxed{2}$, \\\\\nSince $\\angle APD=\\angle BPF$, \\\\\nit follows that $\\tan\\angle APD=2$.", -"solution_image": [ -"solution_images/51103675_362.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51099866": { -"question": "As shown in the figure, in $\\triangle ABC$, $AC>AB$, $AD$ is the angle bisector, $AE$ is the median, $BF\\perp AD$ at point $G$, intersects $AE$ at point $F$, and intersects $AC$ at point $M$, the extension line of $EG$ intersects $AB$ at point $H$. If $\\angle BAC=60^\\circ$, what is the value of $\\frac{FG}{DG}$?", -"image_file_name": "7058769", -"image": [ -"math/51099866_371.jpg" -], -"solution": "\\textbf{Solution:} Extend EH to P such that GH=HP, and connect AP and BP,\\\\\nsince BF$\\perp$AD,\\\\\nit follows that $\\angle$ABG+$\\angle$BAG=$90^\\circ$,\\\\\n$\\angle$AMG+$\\angle$MAG=$90^\\circ$,\\\\\nsince AD is the angle bisector,\\\\\nit follows that $\\angle$BAG=$\\angle$MAG,\\\\\nthus, $\\angle$ABG=$\\angle$AMG,\\\\\nthus, AB=AM,\\\\\nthus, BG=MG,\\\\\nsince BE=EC,\\\\\nit follows that GE$\\parallel$AC,\\\\\nthus, AH=BH,\\\\\nthus, Quadrilateral APBG is a parallelogram,\\\\\nthus, AP=BG, and AP$\\parallel$BG,\\\\\nthus, $\\frac{GF}{PA}=\\frac{GE}{PE}$,\\\\\nthus, $\\frac{GF}{BG}=\\frac{GE}{PE}$,\\\\\nSimilarly, $\\frac{GD}{AG}=\\frac{GE}{PE}$,\\\\\nthus, $\\frac{GF}{BG}=\\frac{GD}{AG}$,\\\\\nthus, $\\frac{GF}{GD}=\\frac{BG}{AG}$,\\\\\nsince $\\angle$BAC=$60^\\circ$ and AD is the angle bisector,\\\\\nit follows that $\\angle$BAG=$30^\\circ$,\\\\\nIn $\\triangle$ABG, $\\frac{BG}{AG}=\\tan 30^\\circ=\\frac{\\sqrt{3}}{3}$,\\\\\nthus, $\\frac{FG}{DG}=\\boxed{\\frac{\\sqrt{3}}{3}}$.", -"solution_image": [ -"solution_images/51099866_370.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52746233": { -"question": "As shown in the figure, semicircles $O_1$, $O_2$, ..., $O_n$ with their centers on the positive x-axis are tangent to the line $l$. Suppose the radii of semicircles $O_1$, $O_2$, ..., $O_n$ are $r_1$, $r_2$, ..., $r_n$ respectively. Given that the acute angle between line $l$ and the x-axis is $30^\\circ$, and $r_1=2$, what is the value of $r_{2021}$?", -"image_file_name": "7058769", -"image": [ -"math/52746233_380.png" -], -"solution": "\\textbf{Solution:} Let the points of tangency be denoted as $A_1$, $A_2$, $A_3,\\dots, A_{2021}$, and connect $O_1A_1$, $O_2A_2$, $O_3A_3$, $\\dots$\n\nSince $\\sin 30^\\circ =\\frac{1}{2}=\\frac{r_1}{OO_1}=\\frac{r_2}{OO_2}=\\frac{r_3}{OO_3}=\\cdots=\\frac{r_{2021}}{OO_{2021}}$,\n\nand $OO_1=2r_1$, $OO_2=OO_1+O_1O_2=2r_1+(r_1+r_2)=3r_1+r_2$,\n\ntherefore, $\\frac{r_2}{3r_1+r_2}=\\frac{1}{2}$,\n\nand since $r_1=2$,\n\nit follows that $r_2=3r_1=2\\times 3=6$,\n\nSimilarly, we can find $r_3=2\\times 3^2=18$, $r_4=2\\times 3^3=54$, $r_5=2\\times 3^4=162$, $\\dots$\n\nThus, $r_{2021}=2\\times 3^{2020}$,\n\nTherefore, the answer is $2\\times 3^{2020}=\\boxed{2\\times 3^{2020}}$.", -"solution_image": [ -"solution_images/52746233_382.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51083573": { -"question": "As shown in the figure, in the Cartesian coordinate system, the coordinates of points $A$ and $B$ are (3, 0) and (0, 4), respectively. Point $C$ is a point on the positive $x$-axis. Line $BC$ is drawn. The line passing through point $A$ and perpendicular to $AB$ intersects with the line passing through point $C$ and perpendicular to $BC$ at point $D$. Line $BD$ is drawn. What is the value of $\\sin\\angle BDC$?", -"image_file_name": "7058769", -"image": [ -"math/51083573_390.png" -], -"solution": "\\textbf{Solution:} Since $BA \\perp AD$ and $BC \\perp CD$,\\\\\nit follows that $\\angle BAD = \\angle BCD = 90^\\circ$.\\\\\nHence, points A, B, C, D are concyclic.\\\\\nTherefore, $\\angle BDA = \\angle BCA$.\\\\\nSince $\\angle BDA + \\angle DBA = \\angle BCA + \\angle CBO = 90^\\circ$,\\\\\nit implies that $\\angle DBA = \\angle CBO$.\\\\\nConsequently, $\\angle DBA - \\angle CBA = \\angle CBO - \\angle CBA$,\\\\\nwhich means $\\angle DBC = \\angle ABO$.\\\\\nMoreover, $\\angle DBC + \\angle BDC = \\angle ABO + \\angle BAO = 90^\\circ$,\\\\\nthus $\\angle BDC = \\angle BAO$.\\\\\nGiven that the coordinates of points A and B are (3, 0) and (0, 4) respectively,\\\\\nit follows that $BO = 4$, $OA = 3$, and $AB = \\sqrt{4^2+3^2} = 5$.\\\\\nHence, $\\sin \\angle BAO = \\frac{BO}{AB} = \\frac{4}{5}$.\\\\\nTherefore, $\\sin \\angle BDC = \\boxed{\\frac{4}{5}}$.", -"solution_image": [ -"solution_images/51083573_394.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51083570": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle C=90^\\circ$ , $AC=12$, and the perpendicular bisector $MN$ of $AB$ intersects $AC$ at $D$, and $BD$ is connected. If $\\cos\\angle CDB=\\frac{3}{5}$, then how much is $BC$?", -"image_file_name": "7058769", -"image": [ -"math/51083570_4010.png" -], -"solution": "\\textbf{Solution:} Given $\\cos\\angle CDB=\\frac{3}{5}$,\\\\\n$\\therefore$ $\\frac{CD}{BD}=\\frac{3}{5}$,\\\\\nLet $CD=3x$ and $BD=5x$,\\\\\n$\\therefore$ $BC=\\sqrt{{(5x)}^{2}-{(3x)}^{2}}=4x$,\\\\\nSince MN is the perpendicular bisector of AB,\\\\\n$\\therefore$ AD=BD=5x,\\\\\n$\\therefore$ AC=CD+AD=3x+5x=8x,\\\\\nGiven that AC=12,\\\\\n$\\therefore$ 8x=12,\\\\\n$\\therefore$ x= $\\frac{3}{2}$,\\\\\n$\\therefore$ BC=4x=\\boxed{6}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51083538": { -"question": "As shown in the figure, the vertices of $\\triangle ABC$ are all at the vertices of a small square with equal sides. What is the value of $\\cos\\angle BAC$?", -"image_file_name": "7058769", -"image": [ -"math/51083538_412.png" -], -"solution": "\\textbf{Solution:} Let the side length of the small square be 1,\\\\\nDraw CD $\\perp$ AB at D,\\\\\n$S_{\\triangle ABC} = \\frac{1}{2} \\times 2 \\times 2 = 2$,\\\\\nBy Pythagoras theorem, we have: $AB = \\sqrt{2^2 + 4^2} = 2\\sqrt{5}$, $AC = \\sqrt{2^2 + 2^2} = 2\\sqrt{2}$,\\\\\n$\\therefore 2 = \\frac{1}{2} \\times 2\\sqrt{5} \\times CD$,\\\\\nSolving for this, we get: $CD = \\frac{2\\sqrt{5}}{5}$,\\\\\nUsing Pythagoras theorem again, we find: $AD = \\sqrt{AC^2 - CD^2} = \\sqrt{(2\\sqrt{2})^2 - \\left(\\frac{2\\sqrt{5}}{5}\\right)^2} = \\frac{6\\sqrt{5}}{5}$,\\\\\n$\\therefore \\cos\\angle BAC = \\frac{AD}{AC} = \\frac{\\frac{6\\sqrt{5}}{5}}{2\\sqrt{2}} = \\boxed{\\frac{3\\sqrt{10}}{10}}$.", -"solution_image": [ -"solution_images/51083538_410.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52585578": { -"question": "As shown in the diagram, the vertices of $\\triangle ABC$ are all on the lattice points of a square grid. What is the value of $\\sin\\angle ACB$?", -"image_file_name": "7058769", -"image": [ -"math/52585578_420.png" -], -"solution": "\\textbf{Solution:} Draw BD $\\perp$ AC, \\\\\nsince BC $= \\sqrt{1^{2}+3^{2}} = \\sqrt{10}$, and BD $= \\sqrt{1^{2}+1^{2}} = \\sqrt{2}$, \\\\\ntherefore, $\\sin\\angle ACB = \\frac{\\sqrt{2}}{\\sqrt{10}} = \\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/52585578_420.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52585579": { -"question": "As shown in the figure, it is known that $\\triangle OAC$ and $\\triangle ABC$ are both isosceles right triangles, with $\\angle ACO=\\angle ABC=90^\\circ$. The graph of the inverse proportion function $y=\\frac{k}{x}$ in the first quadrant passes through point $B$. Connect $OB$, and the area of $\\triangle OAB$ is $4$. What is the value of $k$?", -"image_file_name": "7058769", -"image": [ -"math/52585579_438.png" -], -"solution": "\\textbf{Solution:} Let $OC=AC=a$\\\\\nSince $\\triangle OAC$ is an isosceles right triangle,\\\\\nwe have $\\sin 45^\\circ=\\frac{OC}{AO}=\\frac{\\sqrt{2}}{2}$,\\\\\nthus $OA=\\sqrt{2}a$.\\\\\nSince $\\triangle ABC$ is also an isosceles right triangle,\\\\\nwe have $\\sin 45^\\circ=\\frac{AB}{AC}=\\frac{\\sqrt{2}}{2}$,\\\\\nthus $AB=BC=\\frac{\\sqrt{2}}{2}a$.\\\\\nSince both $\\triangle OAC$ and $\\triangle ABC$ are isosceles right triangles,\\\\\nwe have $\\angle OAC=\\angle BAC=45^\\circ$,\\\\\nhence $\\angle OAB=90^\\circ$,\\\\\ntherefore, ${S}_{\\triangle OAB}=\\frac{1}{2}OA\\cdot AB=\\frac{1}{2}\\cdot \\sqrt{2}a \\cdot \\frac{\\sqrt{2}}{2}a=4$.\\\\\nSolving, we find $a=2\\sqrt{2}$,\\\\\nthus $OC=2\\sqrt{2}$, $BC=2$.\\\\\nDraw $BE\\perp x$ axis through point $B$,\\\\\nSince $\\angle ACB=45^\\circ$,\\\\\nwe have $\\angle BCE=45^\\circ$,\\\\\nhence $\\triangle BCE$ is an isosceles right triangle,\\\\\ntherefore $\\sin 45^\\circ=\\frac{CE}{CB}=\\frac{\\sqrt{2}}{2}$,\\\\\nthus $CE=BE=\\sqrt{2}$,\\\\\nhence $OE=3\\sqrt{2}$,\\\\\ntherefore $B(3\\sqrt{2},\\sqrt{2})$.\\\\\nSince the inverse proportional function $y=\\frac{k}{x}$ passes through point $B$ in the first quadrant,\\\\\nwe have $k=\\boxed{6}$.", -"solution_image": [ -"solution_images/52585579_4328.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52550173": { -"question": "As shown in the figure, the graph of the inverse proportion function $y = \\frac{k}{x}$ ($k \\neq 0$) passes through the vertices $A$ and $B$ of an equilateral triangle $\\triangle ABC$, and the origin $O$ is exactly on $AB$. Given that the coordinates of point $C$ are (3, 3), a line passing through point $C$ and parallel to $AB$ intersects the graph of the inverse proportion function $y = \\frac{k}{x}$ ($k \\neq 0$) at points $M$ and $N$. What is the area of $\\triangle MON$?", -"image_file_name": "7058769", -"image": [ -"math/52550173_442.png" -], -"solution": "Solution: Given point C $(3,3)$, \\\\\ntherefore the equation for line OC is $y=kx$, substituting the coordinates of point C, \\\\\nthus, $3=3k$, \\\\\ntherefore, $k=1$, \\\\\nthus, the equation for OC becomes $y=x$, \\\\\nsince points A and B lie on the graph of an inverse proportional function, \\\\\nthus, points A and B are symmetric about the origin O, with O being the midpoint of AB, \\\\\nsince $\\triangle ABC$ is an equilateral triangle, \\\\\nthus, OC $\\perp$ AB, \\\\\nthus, $\\angle ACO = \\frac{1}{2}\\angle ACB=\\frac{1}{2}\\times 60^\\circ=30^\\circ$, \\\\\ntherefore, according to the Pythagorean theorem, OC $=\\sqrt{3^2+3^2}=3\\sqrt{2}$, \\\\\nthus, AO $=OC\\tan 30^\\circ=3\\sqrt{2}\\times \\frac{\\sqrt{3}}{3}=\\sqrt{6}$, \\\\\nsince AB $\\perp$ OC, with the equation for OC being $y=x$, \\\\\nthus, $\\angle COy=45^\\circ$, \\\\\nthus, $\\angle AOy=45^\\circ$, \\\\\nthus, the y-coordinate of point A is $\\sqrt{6}\\sin 45^\\circ=\\sqrt{6}\\times \\frac{\\sqrt{2}}{2}=\\sqrt{3}$, the x-coordinate of point A is $-\\sqrt{6}\\cos 45^\\circ=-\\sqrt{6}\\times \\frac{\\sqrt{2}}{2}=-\\sqrt{3}$, \\\\\nthus, point A $(-\\sqrt{3}, \\sqrt{3})$, \\\\\nsince point A lies on the graph of the inverse proportion function $y=\\frac{k}{x}$, \\\\\nthus, $k=-\\sqrt{3}\\times \\sqrt{3}=-3$, \\\\\nthus, the inverse proportion function is $y=-\\frac{3}{x}$, \\\\\nLet the equation for OA be $y=k_1x$, by substituting the coordinates of point A, \\\\\n$\\sqrt{3}=-\\sqrt{3}k_1$, \\\\\nsolving yields: $k_1=-1$, \\\\\nthus, the equation for OA is $y=-x$, \\\\\nsince MN $\\parallel$ AB, \\\\\nlet the equation for MN be $y=-x+b$, passing through point C, \\\\\nthus, $3=-3+b$, \\\\\nsolving gives $b=6$, \\\\\nthus, the equation for MN is $y=-x+6$, \\\\\npoints M, N also lie on the graph of the inverse proportion function $y=-\\frac{3}{x}$, \\\\\nthus, $\\left\\{\\begin{array}{l}y=-x+6 \\\\ y=-\\frac{3}{x}\\end{array}\\right.$, \\\\\neliminating $y$ yields $x^2-6x-3=0$, \\\\\nsolving gives $x=3\\pm 2\\sqrt{3}$, \\\\\nthus, $x_1=3+2\\sqrt{3}, x_2=3-2\\sqrt{3}$, \\\\\nthus, $y_1=3-2\\sqrt{3}, y_2=3+2\\sqrt{3}$, \\\\\nPoint M $(3-2\\sqrt{3}, 3+2\\sqrt{3})$, point N $(3+2\\sqrt{3}, 3-2\\sqrt{3})$, \\\\\ntherefore, NM $=\\sqrt{((3-2\\sqrt{3}-3-2\\sqrt{3})^2+((3+2\\sqrt{3}-3+2\\sqrt{3})^2}=4\\sqrt{6}$, \\\\\nthus, $S_{\\triangle MON}=\\frac{1}{2}OC\\cdot MN=\\frac{1}{2}\\times 3\\sqrt{2}\\times 4\\sqrt{6}=\\boxed{12\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52550173_440.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51061530": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in $\\odot O$. If $\\angle A=60^\\circ$ and $\\angle C=45^\\circ$, what is the length of $AC$?", -"image_file_name": "7058769", -"image": [ -"math/51061530_450.jpg" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect BO and extend it to intersect the circle at point D. Draw AD, BD, CD, and construct DH $\\perp$ AC, \\\\\n$\\because$ BD is the diameter, \\\\\n$\\therefore$ $\\angle$BAD=$\\angle$BCD=$90^\\circ$, \\\\\n$\\because$ $\\angle$ADB=$\\angle$ACB=$45^\\circ$, $\\angle$BDC=$\\angle$BAC=$60^\\circ$, \\\\\n$\\therefore$ AD=$\\frac{\\sqrt{2}}{2}$BD=$2\\sqrt{2}$, CD=$\\frac{1}{2}$BD=2, \\\\\n$\\because$ $\\angle$DAH=$\\angle$CBD=$30^\\circ$, $\\angle$DCH=$\\angle$ABD=$45^\\circ$, \\\\\nCH=$\\frac{\\sqrt{2}}{2}$CD=$\\sqrt{2}$, AH=$\\frac{\\sqrt{3}}{2}$AD=$\\sqrt{6}$, \\\\\n$\\therefore$ AC=AH+HC=$\\sqrt{6}+\\sqrt{2}$. \\\\\nThus, the answer is: $AC=\\boxed{\\sqrt{6}+\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51061530_450.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51051524": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\angle ABC=90^\\circ$, point D is the midpoint of side AC, and BD is connected. $\\triangle ABC$ is rotated counterclockwise around point A, such that point B precisely falls on point E on ray BD, and point C falls on point F, and then FD and FC are connected. If $AB=1$ and $BC=2$, what is the value of the tangent of $\\angle CFD$?", -"image_file_name": "7058769", -"image": [ -"math/51051524_460.png" -], -"solution": "\\textbf{Solution:} After triangle $\\triangle ABC$ is rotated as shown in the figure, draw $AG\\perp BE$ at $G$ through $A$, draw $CN\\perp AF$ at $N$ through $C$, draw $FH\\perp BE$ through $F$ intersecting the extended line of $BE$ at $H$, draw $DM\\perp CF$ at $M$ through $D$,\\\\\nsince $\\angle ABC=90^\\circ$, $D$ is the midpoint of $AC$, $AB=1$, $BC=2$,\\\\\ntherefore $DB=DA=DC$, $AC=\\sqrt{5}$,\\\\\nthus $\\angle DAB=\\angle ABD$,\\\\\nBy rotation, it follows that $AE=AB=1$, $\\angle FAE=\\angle BAD$, $EF=BC=2$, $AC=AF=\\sqrt{5}$,\\\\\nthus $\\angle ABE=\\angle AEB=\\angle FAE$,\\\\\ntherefore $AF\\parallel BD$, $\\angle GAF=90^\\circ$,\\\\\nthus, quadrilateral $AGHF$ is a rectangle,\\\\\nsince $\\angle AEF=90^\\circ$,\\\\\nthus $\\angle AEG+\\angle FEH=90^\\circ=\\angle AEG+\\angle GAE$,\\\\\ntherefore $\\angle GAE=\\angle FEH$, similarly $\\angle AFE=\\angle HEF$,\\\\\nthus $\\angle GAE=\\angle FEH=\\angle AFE$,\\\\\nthus $\\tan\\angle GAE=\\tan\\angle FEH=\\tan\\angle AFE$,\\\\\nthus $\\frac{EG}{AG}=\\frac{FH}{EH}=\\frac{AE}{EF}=\\frac{1}{2}$,\\\\\nLet $GE=x$, then $FH=AG=2x$, $EH=4x$,\\\\\nthus $GH=AF=AC=5x$, then $5x=\\sqrt{5}$, so $x=\\frac{\\sqrt{5}}{5}$,\\\\\nthus $AG=\\frac{2\\sqrt{5}}{5}=FH$, $EH=\\frac{4\\sqrt{5}}{5}$,\\\\\nthus $BG=\\sqrt{AB^{2}-AG^{2}}=\\frac{\\sqrt{5}}{5}$, and $BD=AD=CD=\\frac{\\sqrt{5}}{2}$,\\\\\nthus $GD=\\sqrt{AD^{2}-AG^{2}}=\\frac{3\\sqrt{5}}{10}$,\\\\\nsince $AF\\parallel BD$, thus $\\angle NAC=\\angle ADG$,\\\\\nthus $\\cos\\angle ADG=\\frac{DG}{AD}=\\frac{3}{5}=\\cos\\angle NAC=\\frac{AN}{AC}$,\\\\\nthus $AN=\\frac{3\\sqrt{5}}{5}$, $NF=\\frac{2\\sqrt{5}}{5}$,\\\\\nthus $NC=\\sqrt{AC^{2}-AN^{2}}=\\frac{4\\sqrt{5}}{5}$, $CF=\\sqrt{NF^{2}+CN^{2}}=2$,\\\\\nwhile $GH=AF=\\sqrt{5}$, $DG=\\frac{3\\sqrt{5}}{10}$,\\\\\nthus $DH=GH-DG=\\frac{7\\sqrt{5}}{10}$,\\\\\nConnect $FD$,\\\\\nthus $DF^{2}=FH^{2}+DH^{2}=\\frac{13}{4}$, $DC^{2}=\\frac{5}{4}$,\\\\\nLet $CM=y$, then $FM=2-y$,\\\\\nfrom $DC^{2}-CM^{2}=DF^{2}-FM^{2}$,\\\\\nsolving for $y$, yields $y=\\frac{1}{2}$, then $FM=2-\\frac{1}{2}=\\frac{3}{2}$,\\\\\nthus $DM=\\sqrt{DC^{2}-CM^{2}}=1$,\\\\\nthus $\\tan\\angle CFD=\\frac{DM}{FM}=\\boxed{\\frac{2}{3}}$.", -"solution_image": [ -"solution_images/51051524_4610.png", -"solution_images/51051524_4645.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51174827": { -"question": "As shown in the figure, in $ABCD$, $AE \\perp BD$ at $E$, $\\angle EAC = 30^\\circ$, and $AE = 3$. What is the length of $AC$?", -"image_file_name": "7058769", -"image": [ -"math/51174827_470.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, in the right-angled $\\triangle AOE$,\\\\\n$\\cos\\angle EAO = \\frac{AE}{OA}$,\\\\\n$\\therefore OA = \\frac{AE}{\\cos\\angle EAO} = \\frac{3}{\\frac{\\sqrt{3}}{2}} = 2\\sqrt{3}$.\\\\\nFurthermore, $\\because$ quadrilateral ABCD is a parallelogram,\\\\\n$\\therefore AC = 2OA = 4\\sqrt{3}$.\\\\\nTherefore, the length of $AC$ is $\\boxed{4\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51174827_470.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52511772": { -"question": "As shown in the figure, in a square grid, the three vertices of triangle $ABC$ are all on the grid points. What is the value of $\\tan\\angle B$?", -"image_file_name": "7058769", -"image": [ -"math/52511772_480.png" -], -"solution": "\\textbf{Solution:} To find point $B$, move point $C$ down by 1 unit and then left by 3 units. Applying the same procedure to point $A$ gives us point $D$. Connect $AD$, $BD$, $CD$, $AB$ with $AB$ and $CD$ intersecting at point $O$, as shown in the figure: \\\\\nTherefore, quadrilateral $ACBD$ is a parallelogram. \\\\\nSince $AC=BC=\\sqrt{3^2+1^2}=\\sqrt{10}$ and $AB=\\sqrt{4^2+4^2}=4\\sqrt{2}$, $CD=\\sqrt{2^2+2^2}=2\\sqrt{2}$, \\\\\nthus, parallelogram $ACBD$ is a rhombus. \\\\\nTherefore, $AB\\perp CD$, $OB=\\frac{1}{2}AB=2\\sqrt{2}$, $OC=\\frac{1}{2}CD=\\sqrt{2}$, \\\\\nin $\\triangle BOC$, $\\tan\\angle ABC=\\frac{OC}{OB}=\\frac{\\sqrt{2}}{2\\sqrt{2}}=\\boxed{\\frac{1}{2}}$.", -"solution_image": [ -"solution_images/52511772_488.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52511902": { -"question": "As shown in the figure, in the right triangle $\\triangle ABC$ where $\\angle ACB=90^\\circ$ and $AC=BC=8$. $F$ is the midpoint of $AC$, and $D$ is a moving point on segment $AB$. Connect $CD$ and rotate segment $CD$ $90^\\circ$ counterclockwise around point $C$ to obtain segment $CE$. Connect $EF$. During the movement of point $D$, what are the maximum and minimum values of $EF$ respectively?", -"image_file_name": "7058769", -"image": [ -"math/52511902_490.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, let G be the midpoint of BC, and connect DG,\\\\\nby rotation, we have DC=EC, $\\angle$DCE$=90^\\circ$,\\\\\nalso, since $\\angle$ACB$=90^\\circ$, and AC=BC=8, with F being the midpoint of AC,\\\\\ntherefore, CG=CF, $\\angle$DCG+$\\angle$ACD$=\\angle$ECF+$\\angle$ACD$=90^\\circ$,\\\\\ntherefore, $\\angle$DCG=$\\angle$ECF,\\\\\ntherefore, $\\triangle DCG \\cong \\triangle ECF$ by SAS,\\\\\ntherefore, EF=DG,\\\\\n(1) As shown in Figure 1,\\\\\nwhen GD$\\perp$AB, DG is the shortest, at this time $\\triangle BDG$ is an isosceles right triangle,\\\\\ntherefore, DG=BG$\\times \\sin 45^\\circ =4\\times \\frac{\\sqrt{2}}{2}=2\\sqrt{2}$,\\\\\nthus, the minimum value of EF is $2\\sqrt{2}$;\\\\\n(2) When D coincides with B, DG=BG=4;\\\\\n(3) As shown in Figure 2,\\\\\nWhen D coincides with A, DG=$\\sqrt{CG^{2}+AC^{2}}=\\sqrt{4^{2}+8^{2}}=4\\sqrt{5}>4$,\\\\\nthus, the maximum value of EF is $\\boxed{4\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52511902_490.png", -"solution_images/52511902_494.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51034140": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\cos B= \\frac{\\sqrt{2}}{2}$, $\\sin C= \\frac{3}{5}$, and $AC= \\frac{5}{3}$. What is the area of $\\triangle ABC$?", -"image_file_name": "7058769", -"image": [ -"math/51034140_503.png" -], -"solution": "\\textbf{Solution}: Draw AD$\\perp$BC at point D through point A,\\\\\n$\\because$ $\\sin C=\\frac{3}{5}$,\\\\\n$\\therefore$ $\\frac{AD}{AC}=\\frac{3}{5}$,\\\\\n$\\therefore$ AD=$\\frac{3}{5}AC=\\frac{3}{5}\\times\\frac{5}{3}=1$,\\\\\n$\\therefore$ CD=$\\sqrt{AC^{2}-AD^{2}}=\\sqrt{\\left(\\frac{5}{3}\\right)^{2}-1^{2}}=\\frac{4}{3}$,\\\\\n$\\because$ $\\cos B=\\frac{\\sqrt{2}}{2}$,\\\\\n$\\therefore$ $\\angle B=45^\\circ$,\\\\\n$\\therefore$ BD=AD=1,\\\\\n$\\therefore$ BC=BD+CD=1+$\\frac{4}{3}=\\frac{7}{3}$,\\\\\n$\\therefore$ The area of $\\triangle ABC$=$\\frac{1}{2}\\times\\frac{7}{3}\\times1=\\boxed{\\frac{7}{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51032242": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A=30^\\circ$, $\\angle B=45^\\circ$, and $AC=2\\sqrt{3}$. What is the length of $AB$?", -"image_file_name": "7058769", -"image": [ -"math/51032242_511.png" -], -"solution": "\\textbf{Solution:} Draw $CD \\perp AB$ at $D$, \\\\\n$\\therefore$ $\\angle ADC=\\angle BDC=90^\\circ$.\\\\\n$\\because$ $\\angle B=45^\\circ$, \\\\\n$\\therefore$ $\\angle BCD=\\angle B=45^\\circ$, \\\\\n$\\therefore$ $CD=BD$. \\\\\n$\\because$ $\\angle A=30^\\circ$, $AC=2\\sqrt{3}$, \\\\\n$\\therefore$ $CD=\\sqrt{3}$, \\\\\n$\\therefore$ $BD=CD=\\sqrt{3}$. \\\\\nBy the Pythagorean theorem, $AD=\\sqrt{AC^2-CD^2}=3$, \\\\\n$\\therefore$ $AB=AD+BD=3+\\sqrt{3}$. \\\\\nHence, the answer is: $AB=\\boxed{3+\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51032242_510.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51029309": { -"question": "As shown in the diagram, in square $ABCD$, $\\angle B=60^\\circ$, $AB=6$, $BC=4$, what is the area of square $ABCD$? Point $E$ is a moving point on $AB$, extend line $ED$ to point $F$ such that $DE=3DF$, construct square $EFGC$ with $EC$ and $EF$ as adjacent sides, connect $EG$, what is the minimum value of $EG$?", -"image_file_name": "7058769", -"image": [ -"math/51029309_520.png" -], -"solution": "\\textbf{Solution:} Construct $CH\\perp AB$ at point H, and let EG intersect CD at point O,\\\\\nsince in $\\square ABCD$, $\\angle B=60^\\circ$ and BC=4,\\\\\ntherefore, CH=$2\\sqrt{3}$,\\\\\nthus, the area of $\\square ABCD$: AB×CH=$12\\sqrt{3}$;\\\\\nsince quadrilateral ECGF is a parallelogram,\\\\\nthus, $EF\\parallel CG$,\\\\\ntherefore, $\\triangle EOD\\sim \\triangle GOC$,\\\\\nthus, $\\frac{EO}{GO}=\\frac{DO}{CO}=\\frac{DE}{CG}$,\\\\\ntherefore, DE=3DF,\\\\\ntherefore, $\\frac{DE}{EF}=\\frac{3}{4}$,\\\\\nthus, $\\frac{ED}{CG}=\\frac{3}{4}$,\\\\\ntherefore, $\\frac{EO}{GO}=\\frac{3}{4}$,\\\\\nthus, when EO takes its minimum value, EG can also take its minimum value, when EO$\\perp$CD, EO takes the minimum value,\\\\\ntherefore,CH=EO,\\\\\nthus, EO=$2\\sqrt{3}$,\\\\\ntherefore, GO=$\\frac{8\\sqrt{3}}{3}$,\\\\\nthus, the minimum value of EG is $2\\sqrt{3}+\\frac{8\\sqrt{3}}{3}=\\boxed{\\frac{14\\sqrt{3}}{3}}$.", -"solution_image": [ -"solution_images/51029309_521.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51008731": { -"question": "As shown in the figure, within circle $\\odot O$, chord $BC$ is perpendicular to radius $OA$, point $D$ is a point on the major arc $BC$, connecting $BD$, $AD$, $OC$, with $\\angle ADB=30^\\circ$. If chord $BC=8\\sqrt{3}$ cm, what is the length of the arc corresponding to chord $BC$ in the figure in cm?", -"image_file_name": "7058769", -"image": [ -"math/51008731_531.png" -], -"solution": "\\textbf{Solution:} Draw line OB. Since OA$\\perp$BC, it follows that $\\overset{\\frown}{AB}=\\overset{\\frown}{AC}$, and therefore $\\angle$AOC=$\\angle$AOB. According to the inscribed angle theorem, $\\angle$AOB=$2\\angle$ADB=$60^\\circ$, hence $\\angle$AOC=$\\angle$AOB=$60^\\circ$. Since OA$\\perp$BC, it follows that BE= $\\frac{1}{2}$ BC=$4\\sqrt{3}$ cm. In right triangle BOE, with $\\angle$AOB=$60^\\circ$, it follows that $OB=\\frac{BE}{\\sin 60^\\circ}=8$ cm. Therefore, the length of the minor arc BC is $\\frac{120\\pi \\times 8}{180}=\\boxed{\\frac{16}{3}\\pi}$ cm.", -"solution_image": [ -"solution_images/51008731_530.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52483324": { -"question": "As shown in the figure, the side length of each of the four small squares is 1. If an arc is drawn with O as the center and OG as the radius, intersecting AB and CD at points E and F, respectively, what is the length of the arc EF?", -"image_file_name": "7058769", -"image": [ -"math/52483324_540.png" -], -"solution": "\\textbf{Solution:} From the given information, we can deduce that $OE=OG=OF=2$\\\\\n$\\therefore$ $OD=\\frac{1}{2}OF$\\\\\n$\\therefore$ In $\\triangle ODF$ with a right angle at $D$, $\\sin\\angle OFD=\\frac{OD}{OF}=\\frac{1}{2}$\\\\\n$\\therefore$ $\\angle OFD=30^\\circ$\\\\\nSimilarly, we can deduce: $\\angle OEA=30^\\circ$\\\\\nSince $AB\\parallel OG\\parallel DC$\\\\\n$\\therefore \\angle EOG=\\angle OEA=30^\\circ$, $\\angle FOG=\\angle OFD=30^\\circ$\\\\\n$\\therefore$ $\\angle EOF=\\angle EOG+\\angle FOG=60^\\circ$\\\\\nTherefore, $\\overset{\\frown}{EF}=\\frac{n\\pi r}{180}=\\frac{60\\pi \\times 2}{180}=\\boxed{\\frac{2}{3}\\pi}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52483220": { -"question": "As shown in the figure, in the semicircle \\(O\\) with \\(AB\\) as the diameter, \\(C\\) is the trisection point of the semicircle. Point \\(P\\) is a moving point on arc \\(BC\\), and lines \\(CP\\) and \\(AP\\) are connected. Construct \\(OM\\) perpendicular to \\(CP\\) and intersecting \\(AP\\) at \\(N\\), connect \\(BN\\). If \\(AB=12\\), what is the minimum value of \\(NB\\)?", -"image_file_name": "7058769", -"image": [ -"math/52483220_550.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AC and OC. \\\\\n$\\because$ C is the trisecting point of the semicircle, \\\\\n$\\therefore$ $\\angle$AOC = $60^\\circ$, \\\\\n$\\because$ OA = OC, \\\\\n$\\therefore$ $\\triangle$AOC is an equilateral triangle, \\\\\nConstruct the circumscribed circle $\\odot$T of $\\triangle$AOC, and connect TA=TC, TN, TB. \\\\\n$\\because$ OM$\\perp$PC, \\\\\n$\\therefore$ CM = PM, \\\\\n$\\therefore$ NC = NP, \\\\\n$\\therefore$ $\\angle$NPC = $\\angle$NCP = $\\frac{1}{2}\\angle$AOC = $30^\\circ$, \\\\\n$\\therefore$ $\\angle$CNM = $60^\\circ$, \\\\\n$\\therefore$ $\\angle$CNO = $120^\\circ$, \\\\\n$\\because$ $\\angle$CNO + $\\angle$OAC = $180^\\circ$, \\\\\n$\\therefore$ point N is on $\\odot$T, the trajectory is $\\overset{\\frown}{OC}$, \\\\\nDraw TH$\\perp$AB at H through point T. \\\\\nIn the right triangle $\\triangle$ATH, AH=OH=3, $\\angle$TAH=$30^\\circ$, \\\\\n$\\therefore$ TH = AH$\\cdot \\tan30^\\circ$ = $\\sqrt{3}$, \\\\\n$\\therefore$ AT = TN = 2HN = 2$\\sqrt{3}$, \\\\\nIn the right triangle $\\triangle$BHT, BT = $\\sqrt{TH^2+BH^2}=\\sqrt{(\\sqrt{3})^2+9^2}=2\\sqrt{21}$, \\\\\n$\\because$ BN $\\geq$ BT−TN, \\\\\n$\\therefore$ BN $\\geq 2\\sqrt{21}-2\\sqrt{3}$, \\\\\n$\\therefore$ The minimum value of BN is $\\boxed{2\\sqrt{21}-2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52483220_550.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52483257": { -"question": "As shown in the diagram, in rhombus $ABCD$, $\\tan \\angle DAB = \\frac{4}{3}$, $AB=3$, and point $P$ is a moving point on side $AB$. Extend $BA$ to point $Q$ such that $AQ=2AP$, and $CQ$, $DP$ intersect at point $T$. When point $P$ moves from point $A$ to the right towards point $B$, what is the length of the path traced by point $T$?", -"image_file_name": "7058769", -"image": [ -"math/52483257_561.png" -], -"solution": "\\textbf{Solution:} Extend $AT$ until it intersects $CD$ at $N$, as shown in the diagram: \\\\\nSince $CD\\parallel BQ$,\\\\\nit follows that $ \\frac{AP}{DN} = \\frac{AT}{NT} = \\frac{AQ}{CN}$,\\\\\ntherefore, $ \\frac{AP}{AQ} = \\frac{1}{2} = \\frac{DN}{CN}$,\\\\\nthus, point $N$ is the trisection point on $CD$ closer to $D$,\\\\\nhence, point $T$ moves along segment $AN$,\\\\\nwhen $P$ moves from point $A$ to the right until it coincides with $B$, as depicted in the diagram: \\\\\nthe path of point $T$ is along $AT$, draw $DH\\perp AB$ at $H$, and draw $TM\\perp AB$ at $M$,\\\\\nin $\\triangle ADH$, $\\tan \\angle DAB = \\frac{4}{3}$,\\\\\nlet $DH = 4k$, then $AH = 3k$, $AD = 5k$,\\\\\nsince $AD = AB = 3$,\\\\\nit follows that $5k = 3$,\\\\\nthus, $k = \\frac{3}{5}$,\\\\\ntherefore, $DH = \\frac{12}{5}$, $AH = \\frac{9}{5}$,\\\\\nthus, $BH = AB - AH = \\frac{6}{5}$,\\\\\nsince $ \\frac{DT}{PT} = \\frac{CD}{PQ} = \\frac{AP}{AP+AQ} = \\frac{1}{3}$,\\\\\nit follows that $ \\frac{PT}{PD} = \\frac{3}{4}$,\\\\\nsince $DH\\perp AB$, $TM\\perp AB$,\\\\\nit follows that $TM\\parallel DH$,\\\\\nhence, $ \\frac{PT}{PD} = \\frac{TM}{DH} = \\frac{BM}{BH}$, namely $ \\frac{3}{4} = \\frac{TM}{\\frac{12}{5}} = \\frac{BM}{\\frac{6}{5}}$,\\\\\nthus, $TM = \\frac{9}{5}$, $BM = \\frac{9}{10}$,\\\\\ntherefore, $AM = AB - BM = \\frac{21}{10}$,\\\\\nin $\\triangle ATM$, $AT = \\sqrt{AM^{2}+TM^{2}} = \\boxed{\\frac{3\\sqrt{85}}{10}}$.", -"solution_image": [ -"solution_images/52483257_560.png", -"solution_images/52483257_567.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51005089": { -"question": "As shown in the figure, in an equilateral triangle $ABC$, $D$ is the midpoint of $AC$, and $P$ is a moving point on side $AB$. Draw $PE\\perp AB$, intersecting $BC$ at point $E$, and connect $DP$, $DE$. If $AB=8$ and $\\triangle PDE$ is an isosceles triangle, what is the length of $BP$?", -"image_file_name": "7058769", -"image": [ -"math/51005089_570.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, construct DM $\\perp$ AB at point M, and DN $\\perp$ BC at point N.\\\\\n$\\therefore \\angle AMD=\\angle DNC=90^\\circ$,\\\\\nthen $\\triangle AMD$ and $\\triangle DNC$ are both right-angled triangles.\\\\\n$\\because \\triangle ABC$ is an equilateral triangle, and AB=8,\\\\\n$\\therefore \\angle A=\\angle B=\\angle C=60^\\circ$.\\\\\n$\\because D$ is the midpoint of AC,\\\\\n$\\therefore AD=CD=\\frac{1}{2}AC=4$.\\\\\nIn $\\triangle AMD$,\\\\\nAM=$AD\\cdot\\cos\\angle A=4\\cdot\\cos60^\\circ=2$,\\\\\nDM=$AD\\cdot\\sin\\angle A=4\\cdot\\sin60^\\circ=2\\sqrt{3}$,\\\\\nSimilarly, we can derive CN=2, DN=$2\\sqrt{3}$.\\\\\n$\\therefore BM=AB-AM=6$,\\\\\nBN=BC-CN=6.\\\\\nLet BP=a,\\\\\n$\\because$ EP $\\perp$ AB\\\\\n$\\therefore \\angle EPB=90^\\circ$.\\\\\nIn $\\triangle EPB$,\\\\\n$PE=BP\\cdot\\tan\\angle B=a\\cdot\\tan60^\\circ=\\sqrt{3}a$,\\\\\nBE=$\\frac{BP}{\\cos\\angle B}=\\frac{a}{\\cos60^\\circ}=2a$.\\\\\n$\\therefore MP=BM-BP=6-a$,\\\\\nEN=BN-BE=6-2a.\\\\\nWhen $\\triangle PDE$ is an isosceles triangle,\\\\\n(1) When PE=DE,\\\\\nin $\\triangle DEN$, by the Pythagorean theorem,\\\\\n$EN^2+DN^2=DE^2$.\\\\\nWhich gives $(6-2a)^2+(2\\sqrt{3})^2=(\\sqrt{3}a)^2$.\\\\\nSolving this, we get $a_1=12-4\\sqrt{6}$, $a_2=12+4\\sqrt{6}$ (discard as it does not meet the requirements).\\\\\nHence, BP$=\\boxed{12-4\\sqrt{6}}$.\\\\\n(2) When PE=PD,\\\\\nin $\\triangle DMP$, by the Pythagorean theorem,\\\\\n$MP^2+DM^2=PD^2$.\\\\\nWhich gives $(6-a)^2+(2\\sqrt{3})^2=(\\sqrt{3}a)^2$.\\\\\nSolving this, we get $a_1=\\sqrt{33}-3$, $a_2=-\\sqrt{33}-3$ (discard as it does not meet the requirements).\\\\\nHence, BP$=\\boxed{\\sqrt{33}-3}$.\\\\\n(3) When PD=DE, for this to hold, point E must be to the right of point N, with EN=a-6. Since DM=DN, DP=DE, both being right-angled triangles, hence MP=EN, which gives 6-a=2a-6, solving this gets a=4.\\\\\nIn conclusion, the length of BP could be $12-4\\sqrt{6}$ or $\\sqrt{33}-3$ or $\\boxed{4}$.", -"solution_image": [ -"solution_images/51005089_570.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51005030": { -"question": "As shown in the figure, the regular hexagon $ABCDEF$ inscribed in circle $\\odot O$ has a side length of $2\\sqrt{3}$ cm. What is the area of this regular hexagon in cm$^{2}$?", -"image_file_name": "7058769", -"image": [ -"math/51005030_581.jpg" -], -"solution": "\\textbf{Solution:} Construct \\(OH \\perp AB\\) at point H, and connect OA and OB.\\\\\nSince the side length of the inscribed regular hexagon ABCDEF in circle \\(O\\) is \\(2\\sqrt{3}\\) cm,\\\\\nTherefore, OA = OB = AB = \\(2\\sqrt{3}\\) cm,\\\\\nTherefore, OH = OA\\(\\cdot\\cos 30^\\circ\\) = \\(2\\sqrt{3} \\cdot \\frac{\\sqrt{3}}{2}\\) = 3 (cm),\\\\\nTherefore, the area of the regular hexagon ABCDEF = 6\\(\\cdot\\) Area of \\(\\triangle OAB\\) = 6\\(\\cdot \\frac{1}{2} \\cdot 2\\sqrt{3}\\cdot 3\\) = \\(\\boxed{18\\sqrt{3}}\\) (cm)\\(^{2}\\).", -"solution_image": [ -"solution_images/51005030_580.jpg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50987126": { -"question": "As shown in the figure, points A and B are the intersections of the inverse proportion function $y_{1} = \\frac{10}{x}$ and the linear function $y=2x$. Point C is on the inverse proportion function $y_{2} = \\frac{k}{x}$. Connect OC, draw $AD \\perp x$-axis through point A to intersect OC at point D, and connect BD. If $AD=BD$ and $OC=3OD$, then what is the value of $k$?", -"image_file_name": "7058769", -"image": [ -"math/50987126_592.png" -], -"solution": "\\textbf{Solution:} Solve the system of equations $\\begin{cases}y=2x\\\\ y=\\frac{10}{x}\\end{cases}$,\\\\\nwe get $\\begin{cases}x_{1}=-\\sqrt{5}\\\\ y_{1}=-2\\sqrt{5}\\end{cases}$, $\\begin{cases}x_{2}=\\sqrt{5}\\\\ y_{2}=2\\sqrt{5}\\end{cases}$,\\\\\n$\\therefore$ the coordinates of point A are ($-\\sqrt{5}$, $-2\\sqrt{5}$), and the coordinates of point B are ($\\sqrt{5}$, $2\\sqrt{5}$),\\\\\n$\\because$ A and B are symmetric about the origin,\\\\\n$\\therefore$ O is the midpoint of AB,\\\\\nalso, $\\because$ AD = BD,\\\\\n$\\therefore$ point D lies on the perpendicular bisector of segment AB,\\\\\n$\\therefore$ CO$\\perp$AB,\\\\\nalso, $\\because$ AH$\\perp$x-axis,\\\\\n$\\therefore$ $\\angle$AOH + $\\angle$OAH = $\\angle$AOH + $\\angle$COH = $90^\\circ$,\\\\\n$\\therefore$ $\\angle$OAH = $\\angle$COH,\\\\\ndraw CE$\\perp$x-axis at point E,\\\\\n$\\because$ OC = 3OD, and the x-coordinate of point D is $-\\sqrt{5}$,\\\\\n$\\therefore$ the x-coordinate of point C is $-3\\sqrt{5}$,\\\\\n$\\because \\tan \\angle$OAH = $\\tan \\angle$COH = $\\frac{OH}{AH}$ = $\\frac{CE}{OE}$ = $\\frac{1}{2}$,\\\\\n$\\therefore$ CE = $\\frac{1}{2}$OE = $\\frac{3\\sqrt{5}}{2}$,\\\\\n$\\therefore$ the coordinates of point C are ($-3\\sqrt{5}$, $\\frac{3\\sqrt{5}}{2}$),\\\\\n$\\therefore$ k = $-3\\sqrt{5} \\times \\frac{3\\sqrt{5}}{2}$ = $\\boxed{-\\frac{45}{2}}$.", -"solution_image": [ -"solution_images/50987126_597.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52774845": { -"question": "As shown in the figure, in $\\triangle ABC$, the perpendicular bisectors $DE$ and $FG$ of $AB$ and $AC$, respectively, intersect $BC$ at points $E$ and $G$. If point $G$ is to the left of point $E$ and $\\angle GAE=25^\\circ$, then what is the measure of $\\angle BAC$ in degrees?", -"image_file_name": "7046945", -"image": [ -"math/52774845_400.png" -], -"solution": "\\textbf{Solution:} \nGiven that $DE$ is the perpendicular bisector of $AB$, and $FG$ is the perpendicular bisector of $AC$,\\\\\nthus $EA=EB$, $GA=GC$,\\\\\ntherefore, $\\angle B=\\angle BAE$, $\\angle C=\\angle GAC$,\\\\\nsince $\\angle B+\\angle BAE+\\angle GAC+\\angle C-\\angle GAE=180^\\circ$, $\\angle GAE=25^\\circ$,\\\\\nit follows that $2\\angle B+2\\angle C-25^\\circ=180^\\circ$,\\\\\ntherefore, $\\angle B+\\angle C=102.5^\\circ$,\\\\\nhence, $\\angle BAC=180^\\circ-(\\angle B+\\angle C)=\\boxed{77.5^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52756087": { -"question": "As illustrated, in the isosceles triangle $ABC$ where $AB=AC$, $AD$ and $BE$ are the altitudes of the isosceles triangle $ABC$. When $DE$ is connected and given $AE=4$ and $CE=1$, what is the length of $DE$?", -"image_file_name": "7046945", -"image": [ -"math/52756087_410.png" -], -"solution": "\\textbf{Solution:} \nGiven that $AE=4$ and $CE=1$, hence $AC=AB=AE+CE=4+1=5$. Since $AD$ and $BE$ are the altitudes of isosceles triangle $ABC$, it follows that $\\angle AEB=\\angle BEC=90^\\circ$ and $BD=CD$. In right triangle $ABE$, we have $BE=\\sqrt{AB^{2}-AE^{2}}=\\sqrt{5^{2}-4^{2}}=3$; In right triangle $BEC$, $BC=\\sqrt{BE^{2}+CE^{2}}=\\sqrt{3^{2}+1^{2}}=\\sqrt{10}$. In right triangle $BEC$, with $DE$ being the median, therefore $DE=\\frac{1}{2}BC=\\frac{\\sqrt{10}}{2}$. Hence, the answer is: $DE=\\boxed{\\frac{\\sqrt{10}}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52756083": { -"question": "As shown in the figure, $\\angle ACD$ is an exterior angle of $\\triangle ABC$, $CE$ bisects $\\angle ACD$. If $\\angle A=60^\\circ$ and $\\angle B=40^\\circ$, then what is the measure of $\\angle DCE$ in degrees?", -"image_file_name": "7046945", -"image": [ -"math/52756083_420.png" -], -"solution": "\\textbf{Solution}: Since $CE$ bisects $\\angle ACD$, \\\\\nit follows that $\\angle ACD=2\\angle ECD$, \\\\\nsince $\\angle ACD$ is an exterior angle of $\\triangle ABC$, \\\\\nthus $\\angle ACD=2\\angle ECD=\\angle A+\\angle B$, \\\\\ntherefore, $2\\angle DCE=60^\\circ+40^\\circ=100^\\circ$, \\\\\nhence, $\\angle DCE=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52756086": { -"question": "As shown in the figure, in the right-angled triangle $\\triangle ABC$ where $\\angle ACB = 90^\\circ$, squares are constructed externally on the three sides of the right-angled $\\triangle ABC$, with their areas being $S_{1}$, $S_{2}$, and $S_{3}$, respectively, and $S_{1} = 4$, $S_{2} = 16$. What is the value of $S_{3}$?", -"image_file_name": "7046945", -"image": [ -"math/52756086_430.png" -], -"solution": "\\textbf{Solution:} Since in the right-angled triangle $ABC$,\\\\\nthus $AB^2=AC^2+BC^2$;\\\\\nSince three squares are constructed externally on the three sides of the right-angled triangle $ABC$,\\\\\nthus $S_{3}=S_{1}+S_{2}$,\\\\\ntherefore $S_{3}=4+16=\\boxed{20}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52755391": { -"question": "As shown in the figure, a set of triangle rulers is placed as shown in figure a, where $\\angle ACB=\\angle DEC=90^\\circ$, $\\angle A=45^\\circ$, $\\angle D=30^\\circ$, the hypotenuse $AB=6\\text{cm}$, $DC=7\\text{cm}$. The triangle ruler DCE is rotated clockwise by $15^\\circ$ around point C to get $\\triangle D_{1}CE_{1}$ (as shown in figure b). At this time, $AB$ intersects $CD_{1}$ at point $O$, and intersects $D_{1}E_{1}$ at point $F$. What is the degree of $\\angle OFE_{1}$, and what is the length of the line segment $AD_{1}$ in cm?", -"image_file_name": "7046945", -"image": [ -"math/52755391_447.png", -"math/52755391_448.png" -], -"solution": "\\textbf{Solution:}\n\nSince $\\angle ACB = \\angle DEC = 90^\\circ$, $\\angle A = 45^\\circ$, $\\angle D = 30^\\circ$,\\\\\nthus $\\angle DCE = 60^\\circ$, $\\angle B = 45^\\circ$\\\\\nSince rotating triangle DCE around point C clockwise by $15^\\circ$ results in $\\triangle D_1CE_1$,\\\\\nthus $\\angle D_1CE_1 = 60^\\circ$, $\\angle E_1 = \\angle DEC = 90^\\circ$, $\\angle BCE_1 = 15^\\circ$\\\\\ntherefore $\\angle OCB = 45^\\circ$, and $\\angle B = 45^\\circ$,\\\\\nthus $\\angle COB = 90^\\circ$,\\\\\nsince $\\angle COB + \\angle D_1CE_1 + \\angle E_1 + \\angle OFE_1 = 360^\\circ$\\\\\ntherefore $\\angle OFE_1 = 120^\\circ$;\\\\\nsince $\\triangle ACB$ is an isosceles right triangle and $\\angle COB = 90^\\circ$,\\\\\nthus $AO = CO = BO = 3\\text{cm}$,\\\\\ntherefore $D_1O = 4\\text{cm}$,\\\\\nthus $AD_1 = \\sqrt{AO^2 + D_1O^2} = \\sqrt{3^2 + 4^2} = \\boxed{5}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52754267": { -"question": "As shown in the figure, in quadrilateral $ABCD$, points $M$ and $N$ are located on $AB$ and $BC$, respectively. Triangle $\\triangle BMN$ is folded along $MN$ to obtain $\\triangle FMN$. If $MF\\parallel AD$ and $FN\\parallel DC$, what is the measure of $\\angle B$?", -"image_file_name": "7046945", -"image": [ -"math/52754267_450.png" -], -"solution": "\\[\n\\text{Solution: Since } MF \\parallel AD, \\text{ and } FN \\parallel DC,\n\\]\n\\[\n\\therefore \\angle FMB = \\angle A = 110^\\circ, \\angle FNB = \\angle C = 90^\\circ,\n\\]\n\\[\n\\text{Since } \\triangle FMN \\text{ and } \\triangle BMN \\text{ are symmetric about } MN,\n\\]\n\\[\n\\therefore \\angle BMN = \\angle FMN = 55^\\circ, \\angle BNM = \\angle FNM = 45^\\circ,\n\\]\n\\[\n\\therefore \\angle B = 180^\\circ - \\angle BMN - \\angle BNM = \\boxed{80^\\circ}.\n\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52733744": { -"question": "As shown in the figure, $\\triangle ABC \\cong \\triangle DEF$, $BC=7$, and $EC=4$, then what is the length of $CF$?", -"image_file_name": "7046945", -"image": [ -"math/52733744_460.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle DEF$,\\\\\nit follows that $BC = EF = 7$,\\\\\nhence $CF = EF - EC = 7 - 4 = \\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52733745": { -"question": "As shown in the figure, in $\\triangle ABC$, we have $AB=AC$, $AD=BC=8$. Points $E$ and $F$ are on the median $AD$. What is the area of the shaded region?", -"image_file_name": "7046945", -"image": [ -"math/52733745_470.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ AB = AC, AD = BC = 8, AD$\\perp$BC at point D,\\\\\n$\\therefore$ BD=CD=$\\frac{1}{2}$BC=4,\\\\\n$\\therefore$ $\\triangle ABC$ is symmetrical about AD,\\\\\n$\\therefore$ S$_{\\triangle BEF}$=S$_{\\triangle CEF}$,\\\\\n$\\therefore$ the area of the shaded part in the figure = $\\frac{1}{2}$S$_{\\triangle BEF}$=$\\frac{1}{2} \\times \\frac{1}{2} \\times 8 \\times 8 = \\boxed{16}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52733748": { -"question": "As shown in the figure, it is known that $\\angle MON=40^\\circ$, P is a fixed point inside $\\angle MON$, point A is on OM, and point B is on ON. When the perimeter of $\\triangle PAB$ is at its minimum, what is the degree measure of $\\angle APB$?", -"image_file_name": "7046945", -"image": [ -"math/52733748_480.png" -], -"solution": "\\textbf{Solution:} Construct the symmetric points $P_{1}$ and $P_{2}$ of $P$ with respect to $OM$ and $ON$, respectively. Draw the line segment $P_{1}P_{2}$, intersecting $OM$ and $ON$ at points $A$ and $B$, respectively.\\\\\n$\\therefore$ $PA=P_{1}A$, $PB=P_{2}B$, at this moment the perimeter of $\\triangle PAB$ is minimal,\\\\\n$\\therefore$ $\\angle P_{1}PA=\\angle P_{1}$, $\\angle P_{2}PB=\\angle P_{2}$,\\\\\nAccording to the problem, $\\angle P_{1}PP_{2}=180^\\circ-\\angle MON=180^\\circ-40^\\circ=140^\\circ$,\\\\\n$\\therefore$ $\\angle P_{1}PA+\\angle P_{2}PB=\\angle P_{1}+\\angle P_{2}=180^\\circ-\\angle P_{1}PP_{2}=40^\\circ$,\\\\\n$\\therefore$ $\\angle APB=140^\\circ-40^\\circ=\\boxed{100^\\circ}$.", -"solution_image": [ -"solution_images/52733748_480.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52733746": { -"question": "As shown in the diagram, triangle $\\triangle ABC$ is folded along line $l$, positioning point $B$ on point $F$. If $\\angle 1 - \\angle 2 = 70^\\circ$, what is the degree measure of $\\angle B$?", -"image_file_name": "7046945", -"image": [ -"math/52733746_490.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\ndue to the property of folding, we have: $\\angle F=\\angle B$, \\\\\naccording to the external angle property of triangles, we get: $\\angle 1=\\angle 3+\\angle B$, $\\angle 2=\\angle 3-\\angle F=\\angle 3-\\angle B$, \\\\\n$\\therefore \\angle 1-\\angle 2=\\angle 3+\\angle B-(\\angle 3-\\angle B)=2\\angle B=70^\\circ$, \\\\\nthus $\\angle B=\\boxed{35^\\circ}$.", -"solution_image": [ -"solution_images/52733746_490.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52733484": { -"question": "As shown in the figure, $\\triangle ABC \\cong \\triangle DEF$, where $BC = 7$ and $EC = 4$. What is the length of $CF$?", -"image_file_name": "7046945", -"image": [ -"math/52733484_500.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle DEF$,\\\\\nit follows that $BC=EF=7$,\\\\\nthus, $CF=EF-EC=7-4=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52733094": { -"question": "As shown in the figure, it is known that $\\angle BDC=142^\\circ$, $\\angle B=34^\\circ$, and $\\angle C=28^\\circ$. What is the degree measure of $\\angle A$?", -"image_file_name": "7046945", -"image": [ -"math/52733094_510.png" -], -"solution": "\\textbf{Solution:} Construct ray AE passing through points A and D, \\\\\n$\\because$ $\\angle CDE = \\angle CAD + \\angle C$, $\\angle BDE = \\angle BAD + \\angle B$, \\\\\n$\\therefore$ $\\angle BDC = \\angle CDE + \\angle BDE = \\angle CAD + \\angle C + \\angle BAD + \\angle B = 142^\\circ$, \\\\\n$\\therefore$ $\\angle CAB + 34^\\circ + 28^\\circ = 142^\\circ$, \\\\\n$\\therefore$ $\\angle CAB = \\boxed{80^\\circ}$.", -"solution_image": [ -"solution_images/52733094_510.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52733093": { -"question": "As shown in the figure, in $\\triangle ABC$, points D, E, and F are the midpoints of $BC$, $AD$, and $CE$, respectively, and $S_{\\triangle AEF} = 4\\, \\text{cm}^2$, then what is the area of $\\triangle ABC$ in $\\text{cm}^2$?", -"image_file_name": "7046945", -"image": [ -"math/52733093_520.png" -], -"solution": "\\textbf{Solution:} Since point F is the midpoint of CE and the area of $\\triangle AEF = 4\\text{cm}^2$,\\\\\nit follows that AF is the median of $\\triangle AEC$, \\\\\nthus the area of $\\triangle AEC = 2$ times the area of $\\triangle AEF = 2 \\times 4 = 8$;\\\\\nSince point E is the midpoint of AD,\\\\\nit follows that CD is the median of $\\triangle ADC$,\\\\\nthus the area of $\\triangle ADC = 2$ times the area of $\\triangle AEC = 2 \\times 8 = 16$;\\\\\nSince point D is the midpoint of BC,\\\\\nit follows that AD is the median of $\\triangle ABC$,\\\\\nthus the area of $\\triangle ABC = 2$ times the area of $\\triangle ADC = 2 \\times 16 = \\boxed{32}\\text{cm}^2$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52731259": { -"question": "As shown in the figure, the isosceles $\\triangle ABC$ has a base $BC=20$ and an area of $120$. Point $F$ is on side $BC$, and $BF=3FC$. $EG$ is the perpendicular bisector of the leg $AC$. If point $D$ moves on $EG$, what is the minimum perimeter of $\\triangle CDF$?", -"image_file_name": "7046945", -"image": [ -"math/52731259_530.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$\\because$ EG is the perpendicular bisector of the line segment AC,\\\\\n$\\therefore$ DA=DC,\\\\\n$\\therefore$ DF+DC=AD+DF,\\\\\n$\\therefore$ when A, D, F are collinear, DF+DC is minimized, and the minimum value is the length of the line segment AF.\\\\\n$\\because$ $ \\frac{1}{2}\\cdot BC\\cdot AH=120$,\\\\\n$\\therefore$ AH=12,\\\\\n$\\because$ AB=AC, AH$\\perp$BC,\\\\\n$\\therefore$ BH=CH=10,\\\\\n$\\because$ BF=3FC,\\\\\n$\\therefore$ CF=FH=5,\\\\\n$\\therefore$ $AF=\\sqrt{AH^{2}+HF^{2}}=\\sqrt{12^{2}+5^{2}}=13$,\\\\\n$\\therefore$ the minimum value of DF+DC is 13,\\\\\n$\\therefore$ the shortest perimeter of $\\triangle CDF$=13+5=\\boxed{18}.", -"solution_image": [ -"solution_images/52731259_530.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52731253": { -"question": "As shown in the diagram, in rectangle $ABCD$, it is known that $AB=8\\,cm$, $BC=10\\,cm$. Fold $AD$ along the straight line $AE$, making point D land on point F which is on side $BC$. What is the length of $CF$ in $cm$?", -"image_file_name": "7046945", -"image": [ -"math/52731253_548.png" -], -"solution": "\\textbf{Solution:} In the rectangle $ABCD$, \\\\\n$\\because$ $AB=8\\text{cm}$, $BC=10\\text{cm}$, let $CF=x\\text{cm}$, \\\\\n$\\therefore$ $AD=BC=10\\text{cm}$, $BF=(10-x)\\text{cm}$, $\\angle B=90^\\circ$, \\\\\n$\\because$ folding $AD$ along the line $AE$, such that point $D$ falls on point $F$ on side $BC$, \\\\\n$\\therefore$ $\\triangle ADE \\cong \\triangle AFE$, \\\\\n$\\therefore$ $AD=AF=10\\text{cm}$, \\\\\nIn $\\triangle ABF$, by the Pythagorean theorem, $AB^2+BF^2=AF^2$, \\\\\n$\\therefore$ $8^2+(10-x)^2=10^2$, solving for $x$, we find $x=\\boxed{4}$, \\\\\n$\\therefore$ $CF=4\\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52731257": { -"question": "On a line, seven squares are placed in sequence (as shown). It is known that the areas of the three diagonally placed squares are 1, 2, and 3, respectively, and the areas of the four upright squares are $S_1$, $S_2$, $S_3$, and $S_4$. What is the value of $S_3 + S_4 - S_1 - S_2$?", -"image_file_name": "7046945", -"image": [ -"math/52731257_555.png" -], -"solution": "\\textbf{Solution:} Observe that, \\\\\n$\\because AB=BE$, and $\\angle ACB=\\angle BDE=90^\\circ$, \\\\\n$\\therefore \\angle ABC+\\angle BAC=90^\\circ$, and $\\angle ABC+\\angle EBD=90^\\circ$, \\\\\n$\\therefore \\angle BAC=\\angle EBD$, \\\\\n$\\because$ in triangles $\\triangle ABC$ and $\\triangle BDE$, \\\\\n$\\left\\{\\begin{array}{l}\n\\angle ACB=\\angle BDE=90^\\circ \\\\\n\\angle BAC=\\angle EBD \\\\\nAB=BE\n\\end{array}\\right.$, \\\\\n$\\therefore \\triangle ABC\\cong \\triangle BDE(\\text{AAS})$, \\\\\n$\\therefore BC=ED$, \\\\\n$\\because AB^2=AC^2+BC^2$, \\\\\n$\\therefore AB^2=AC^2+ED^2={S}_{1}+{S}_{2}$, \\\\\ni.e., ${S}_{1}+{S}_{2}=1$, \\\\\nSimilarly, ${S}_{3}+{S}_{4}=3$. \\\\\nHence, ${S}_{3}+{S}_{4}-{S}_{1}-{S}_{2}={S}_{3}+{S}_{4}-({S}_{1}+{S}_{2})=3-1=\\boxed{2}$.", -"solution_image": [ -"solution_images/52731257_550.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52755870": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACD=110^\\circ$, $\\angle B=30^\\circ$, then what is the measure of $\\angle A$ in degrees?", -"image_file_name": "7046945", -"image": [ -"math/52755870_564.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ACD$ is an exterior angle of $\\triangle ABC$,\\\\\ntherefore $\\angle ACD = \\angle A + \\angle B$,\\\\\nthus $\\angle A = 110^\\circ - 30^\\circ = \\boxed{80^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52815574": { -"question": "As shown in the figure, a ship sails in the direction indicated by the arrow. There is a lighthouse at point C. When the ship sails from point A to point B, $\\angle ACB = 90^\\circ$.", -"image_file_name": "7046945", -"image": [ -"math/52815574_570.png" -], -"solution": "\\textbf{Solution:} Since $\\angle CBD = \\angle A + \\angle C$,\\\\\nthus $\\angle C = \\angle CBD - \\angle A$\\\\\n$= 70^\\circ - 30^\\circ$\\\\\n$= \\boxed{40^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52715507": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $\\angle BAC=90^\\circ$, point $D$ is on segment $BC$, $\\angle EDB=\\frac{1}{2}\\angle ACB$, $BE\\perp DE$, and $DE$ intersects $AB$ at point $F$. If $BE=4$, what is the length of $DF$?", -"image_file_name": "7046945", -"image": [ -"math/52715507_581.png" -], -"solution": "\\textbf{Solution:} Construct $DH\\parallel AC$ through $D$ and meet $AB$ at $H$. Extend $BE$ to intersect with the extension of $DH$ at point $G$, as shown in the figure:\\\\\nIn $\\triangle ABC$, $AB=AC$, $\\angle BAC=90^\\circ$,\\\\\n$\\therefore \\angle ABC=\\angle C=45^\\circ$,\\\\\n$\\because DH\\parallel AC$,\\\\\n$\\therefore \\angle BDH=\\angle C=45^\\circ$, $\\angle BHD=\\angle A=90^\\circ$,\\\\\n$\\therefore \\triangle HBD$ is an isosceles right triangle,\\\\\n$\\therefore HB=HD$,\\\\\n$\\because \\angle EDB=\\frac{1}{2}\\angle ACB=22.5^\\circ$,\\\\\n$\\therefore \\angle GDE=\\angle EDB=22.5^\\circ$,\\\\\n$\\therefore DE$ bisects $\\angle BDG$,\\\\\n$\\because DE\\perp BG$,\\\\\n$\\therefore \\angle GED=\\angle BED=90^\\circ$,\\\\\nIn $\\triangle BDE$ and $\\triangle GDE$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle GED=\\angle BED=90^\\circ \\\\\nED=ED \\\\\n\\angle GDE=\\angle BDE=22.5^\\circ\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle BDE\\cong \\triangle GDE\\left(AAS\\right)$,\\\\\n$\\therefore BE=GE$, that is $BG=2BE$,\\\\\nIn $\\triangle BGH$ and $\\triangle DFH$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle GBH=\\angle FDH=22.5^\\circ \\\\\nBH=DH \\\\\n\\angle GHB=\\angle FHD\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle BGH\\cong \\triangle DFH(ASA)$,\\\\\n$\\therefore BG=DF$,\\\\\n$\\therefore DF=2BE=\\boxed{8}$.", -"solution_image": [ -"solution_images/52715507_587.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52715503": { -"question": "As shown in the figure, $\\triangle ABD \\cong \\triangle EBC$, $AB=4\\text{cm}$, $BC=7\\text{cm}$, then what is the length of $DE$ in cm?", -"image_file_name": "7046945", -"image": [ -"math/52715503_590.png" -], -"solution": "\\textbf{Solution:}\n\nSince $\\triangle ABD \\cong \\triangle EBC$, and given $AB=4\\, \\text{cm}$, $BC=7\\, \\text{cm}$,\n\nit follows that $BE=AB=4\\, \\text{cm}$, $BD=BC=7\\, \\text{cm}$,\n\nthus $DE=BD-BE=\\boxed{3}\\, \\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52715504": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=BC$, the coordinates of point $A$ are $(-7,3)$, and the coordinates of point $C$ are $(-2,0)$. What are the coordinates of point $B$?", -"image_file_name": "7046945", -"image": [ -"math/52715504_600.png" -], -"solution": "\\textbf{Solution:} Construct $AD \\perp x$-axis at point D, and $BE \\perp x$-axis at point E, as shown in the figure,\\\\\nthen $\\angle ADC=\\angle CEB=90^\\circ$,\\\\\n$\\therefore \\angle ACD+\\angle CAD=90^\\circ$,\\\\\n$\\therefore \\angle ACB=90^\\circ$,\\\\\n$\\therefore \\angle ACD+\\angle BCE=90^\\circ$,\\\\\n$\\therefore \\angle CAD=\\angle BCE$,\\\\\nIn $\\triangle ACD$ and $\\triangle CBE$,\\\\\n$\\left\\{\\begin{array}{l} \\angle ADC=\\angle CEB \\\\ \\angle CAD=\\angle BCE \\\\ AC=CB \\end{array}\\right.$,\\\\\n$\\therefore \\triangle ACD \\cong \\triangle CBE$ (AAS),\\\\\n$\\therefore AD=CE$, $DC=EB$,\\\\\n$\\because$ the coordinates of point A are $(-7, 3)$, and the coordinates of point C are $(-2, 0)$,\\\\\n$\\therefore OD=7$, $AD=3$, $OC=2$,\\\\\n$\\therefore CE=3$, $BE=OD-OC=7-2=5$,\\\\\n$\\therefore OE=CE-OC=3-2=1$,\\\\\n$\\therefore$ the coordinates of point B are $\\boxed{(1, 5)}$.", -"solution_image": [ -"solution_images/52715504_600.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52699727": { -"question": "In the quadrilateral $ABDC$, the diagonal $AD$ bisects $\\angle BAC$, $\\angle ACD=136^\\circ$, $\\angle BCD=44^\\circ$, what is the measure of $\\angle ADB$?", -"image_file_name": "7046945", -"image": [ -"math/52699727_616.png" -], -"solution": "\\textbf{Solution:} Draw line DE$\\perp$AB through point D intersecting the extension of AB at E, and draw DF$\\perp$AC through point D intersecting the extension of AC at F, and draw DG$\\perp$BC through point D at point G, as shown in the figure: \\\\\n$\\because$ $AD$ bisects $\\angle BAC$, $DE\\perp AB$, $DF\\perp AC$\\\\\n$\\therefore$ $\\angle BAD=\\frac{1}{2}\\angle BAC$, $DE=DF$\\\\\n$\\because$ $\\angle ACD=136^\\circ$\\\\\n$\\therefore$ $\\angle DCF=180^\\circ-\\angle ACD=44^\\circ$\\\\\n$\\because$ $\\angle BCD=44^\\circ$, $\\angle ACB=\\angle ACD-\\angle BCD=92^\\circ$\\\\\n$\\therefore$ $CD$ bisects $\\angle BCF$\\\\\n$\\because$ $DF\\perp AC$, $DG\\perp BC$\\\\\n$\\therefore$ $DF=DG$\\\\\n$\\therefore$ $DE=DG$\\\\\n$\\because$ $DE\\perp AB$, $DG\\perp BC$\\\\\n$\\therefore$ $BD$ bisects $\\angle CBE$\\\\\n$\\therefore$ $\\angle DBE=\\frac{1}{2}\\angle CBE$\\\\\n$\\therefore$ $\\angle ADB=\\angle DBE-\\angle BAD$\\\\\n$=\\frac{1}{2}\\angle CBE-\\frac{1}{2}\\angle BAC$\\\\\n$=\\frac{1}{2}\\left(\\angle CBE-\\angle BAC\\right)$\\\\\n$=\\frac{1}{2}\\angle BCA$\\\\\n$=\\boxed{46^\\circ}$.", -"solution_image": [ -"solution_images/52699727_610.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52699778": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle BAC=30^\\circ$, and $BC=1$. Equilateral triangles $ABD$ and $ACE$ are constructed on sides $AB$ and $AC$, respectively. Line $DE$ is drawn and intersects $AB$ at point $F$. What is the length of $DF$?", -"image_file_name": "7046945", -"image": [ -"math/52699778_620.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, \\\\\ndraw DG$\\perp$AB at G, and EH$\\perp$DA intersecting the extension of DA at H, \\\\\nsince $\\angle$EAC=$60^\\circ$ and $\\angle$BAC=$30^\\circ$, \\\\\nthus $\\angle$EAG=$\\angle$AGD=$90^\\circ$, \\\\\nsince BC=1, \\\\\nthus in $\\triangle ABC$, AC=$\\sqrt{3}$ and AB=2, \\\\\nalso since $\\triangle ABD$ and $\\triangle ACE$ are equilateral triangles, \\\\\nthus AE=$\\sqrt{3}$ and DG=$\\sqrt{3}$, \\\\\nthus DG=AE, \\\\\nalso since $\\angle$DFG=$\\angle$EFA, \\\\\nthus $\\triangle AEF \\cong \\triangle GDF$ (AAS), \\\\\nthus DF=$\\frac{1}{2}$DE, \\\\\nalso since in $\\triangle AEH$, $\\angle$EAH=$30^\\circ$, \\\\\nthus HE=$\\frac{1}{2}$AE=$\\frac{1}{2}\\sqrt{3}$ and AH=$\\frac{3}{2}$, \\\\\nthus DH=DA+AH=2+$\\frac{3}{2}$=$\\frac{7}{2}$, \\\\\nthus in $\\triangle DEH$, DE=$\\sqrt{HE^2+DH^2}$=$\\sqrt{\\left(\\frac{1}{2}\\sqrt{3}\\right)^2+\\left(\\frac{7}{2}\\right)^2}$=$\\sqrt{13}$, \\\\\nthus the length of DF is $\\boxed{\\frac{\\sqrt{13}}{2}}$.", -"solution_image": [ -"solution_images/52699778_620.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52699756": { -"question": "As shown in the figure, point $M$ is on the side $BC$ of the equilateral triangle $\\triangle ABC$, with $BM = 8$. The ray $CD$ is perpendicular to $BC$ at point $C$. Point $P$ is a moving point on ray $CD$, and point $N$ is a moving point on line segment $AB$. When the value of $MP+NP$ is minimized, $BN = 9$. What is the length of $AC$?", -"image_file_name": "7046945", -"image": [ -"math/52699756_631.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an equilateral triangle, \\\\\nthus $AC=BC$ and $\\angle B=60^\\circ$, \\\\\nLet point $M$ be the symmetric point with respect to line $CD$ and construct $GN\\perp AB$ at $N$ intersecting $CD$ at $P$, \\\\\nthen, at this time, the value of $MP+PN$ is minimized, \\\\\nSince $\\angle B=60^\\circ$ and $\\angle BNG=90^\\circ$, \\\\\nthus $\\angle G=30^\\circ$, \\\\\nSince $BN=9$, \\\\\nthus $BG=2BN=18$, \\\\\nthus $MG=BG-BM=18-8=10$, \\\\\nthus $CM=CG=5$, \\\\\nthus $AC=BC=\\boxed{13}$.", -"solution_image": [ -"solution_images/52699756_630.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52699755": { -"question": "As shown in the figure, within $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=BC$, points $D$ and $E$ are on $AB$ and $BC$ respectively, connecting $CD$ and $DE$. If $BC=BD$, $AC=2$, and $\\angle CDE=45^\\circ$, what is the length of $BE$?", -"image_file_name": "7046945", -"image": [ -"math/52699755_641.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle ACB=90^\\circ$ and AC=BC,\\\\\n$\\therefore \\angle A=\\angle B=45^\\circ$,\\\\\n$\\because \\angle BDC=\\angle CDE+\\angle BDE=\\angle A+\\angle ACD$ and $\\angle CDE=45^\\circ$,\\\\\n$\\therefore \\angle BDE=\\angle ACD$,\\\\\n$\\because BC=BD$,\\\\\n$\\therefore BD=AC$,\\\\\nIn $\\triangle BDE$ and $\\triangle ACD$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle B=\\angle A \\\\\nBD=AC \\\\\n\\angle BDE=\\angle ACD\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle BDE \\cong \\triangle ACD$ (ASA),\\\\\n$\\therefore BE=AD$,\\\\\n$\\because BC=AC=2$ and $\\angle ACB=90^\\circ$,\\\\\n$\\therefore AB =\\sqrt{AC^2+BC^2}=\\sqrt{2^2+2^2}=2\\sqrt{2}$,\\\\\n$\\because BD=BC=2$,\\\\\n$\\therefore AD=AB-BD=2\\sqrt{2}-2$,\\\\\n$\\therefore BE=\\boxed{2\\sqrt{2}-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52699331": { -"question": "As shown in the figure, in $\\triangle ABC$, $CE$ bisects $\\angle ACB$, and $CF$ bisects the supplementary angle of $\\angle ACD$. If $EF \\parallel BC$ and intersects $AC$ at $M$, with $CE=8\\, cm$ and $CF=6\\, cm$, what is the length of $EM$ in $cm$?", -"image_file_name": "7046945", -"image": [ -"math/52699331_651.png" -], -"solution": "\\textbf{Solution:} Since CE bisects $\\angle ACB$, and CF bisects the supplementary angle $\\angle ACD$, \\\\\nit follows that $\\angle MCE = \\angle BCE = \\frac{1}{2}\\angle ACB$, $\\angle FCM = \\angle FCD = \\frac{1}{2}\\angle ACD$, \\\\\nhence $\\angle ECF = \\frac{1}{2}\\angle ACB + \\frac{1}{2}\\angle ACD = \\frac{1}{2}(\\angle ACD + \\angle ACD) = 90^\\circ$, \\\\\naccording to the Pythagorean theorem, it can be found that $EF = \\sqrt{EC^{2} + CF^{2}} = 10$cm, \\\\\nsince $EF\\parallel BC$, \\\\\nit is inferred that $\\angle MEC = \\angle BCE$, $\\angle MFC = \\angle FCD$, \\\\\nwhich implies $MEC = \\angle MCE$, $\\angle MFC = \\angle MCF$, \\\\\nthus $EM = CM = FM$, \\\\\nhence $EM = \\frac{1}{2}EF = \\boxed{5}$cm,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52699615": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle ACB=90^\\circ$. Squares are constructed externally on the three sides of $\\triangle ABC$, with their areas being $S_1$, $S_2$, and $S_3$, respectively, and it is given that $S_1=9$ and $S_3=16$. What is the value of $S_2$?", -"image_file_name": "7046945", -"image": [ -"math/52699615_669.png" -], -"solution": "\\textbf{Solution:} Given that ${S}_{1}=9$ and ${S}_{3}=16$,\\\\\nit follows that $BC^{2}=9$ and $AB^{2}=16$,\\\\\nsince $\\angle ACB=90^\\circ$,\\\\\nin $\\triangle ABC$,\\\\\nit implies that $BC^{2}+AC^{2}=AB^{2}$,\\\\\ntherefore $9+AC^{2}=16$,\\\\\nhence $AC^{2}=7$,\\\\\nthus, ${S}_{2}=\\boxed{7}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52699721": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD \\perp BC$, $BE \\perp AC$, with the feet of the perpendiculars being points D and E, respectively, $AD$ and $BE$ intersect at point F, $BF=AC$, $\\angle ABE=20^\\circ$, then what is the degree measure of $\\angle CAD$?", -"image_file_name": "7046945", -"image": [ -"math/52699721_671.png" -], -"solution": "\\textbf{Solution:} Given that $AD\\perp BC$, $BE\\perp AC$,\\\\\nthus $\\angle BDF = \\angle ADC = 90^\\circ$, $\\angle BEC = \\angle ADC = 90^\\circ$,\\\\\ntherefore $\\angle DAC + \\angle C = 90^\\circ$, $\\angle DBF + \\angle C = 90^\\circ$,\\\\\ntherefore $\\angle DBF = \\angle DAC$,\\\\\nin $\\triangle DBF$ and $\\triangle DAC$,\\\\\n$\\left\\{\\begin{array}{l} \\angle BDF = \\angle ADC \\hfill \\\\ \\angle DBF = \\angle DAC \\hfill \\\\ BF = AC \\hfill \\end{array}\\right.$, \\\\\nthus $\\triangle DBF \\cong \\triangle DAC$ (AAS),\\\\\nthus $AD = BD$,\\\\\ngiven that $\\angle ADB = 90^\\circ$,\\\\\ntherefore $\\angle ABD = \\angle DAB = 45^\\circ$,\\\\\ngiven that $\\angle ABE = 20^\\circ$,\\\\\ntherefore $\\angle CAD = \\angle DBF = \\angle ABD - \\angle ABE = 45^\\circ - 20^\\circ = \\boxed{25^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52699726": { -"question": "As shown in the figure, two identically sized set squares, ACF and CFB, containing $45^\\circ$ angles, are placed as depicted. Point D is on side AC, and point E is on side BC, with $\\angle CFE=13^\\circ$, and $\\angle CFD=32^\\circ$. What is the measure of $\\angle DEC$?", -"image_file_name": "7046945", -"image": [ -"math/52699726_680.png" -], -"solution": "\\textbf{Solution:} Construct $FH$ perpendicular to $FE$, intersecting $AC$ at point $H$,\n\\[\n\\because \\angle AFC=\\angle EFH=90^\\circ\n\\]\nAlso,\n\\[\n\\because \\angle AFC=\\angle AFH+\\angle CFH,\\ \\angle HFE=\\angle CFE+\\angle CFH\n\\]\n\\[\n\\therefore \\angle AFH=\\angle CFE=13^\\circ\n\\]\n\\[\n\\because \\angle A=\\angle FCE=45^\\circ,\\ FA=CF\n\\]\n\\[\n\\therefore \\triangle FAH\\cong \\triangle FCE\\ (\\text{ASA})\n\\]\n\\[\n\\therefore FH=FE\n\\]\n\\[\n\\because \\angle DFE=\\angle DFC+\\angle EFC=32^\\circ+13^\\circ=45^\\circ\n\\]\n\\[\n\\because \\angle DFH=\\angle HFE−\\angle DFE=90^\\circ−45^\\circ=45^\\circ\n\\]\n\\[\n\\therefore \\angle DFE=\\angle DFH\n\\]\nAlso,\n\\[\n\\because DF=DF\n\\]\n\\[\n\\therefore \\triangle HDF\\cong \\triangle EDF\\ (\\text{SAS})\n\\]\n\\[\n\\therefore \\angle DHF=\\angle DEF\n\\]\n\\[\n\\because \\angle DHF=\\angle A+\\angle HFA=45^\\circ+13^\\circ=58^\\circ\n\\]\n\\[\n\\therefore \\angle DEF=58^\\circ\n\\]\n\\[\n\\because \\angle CFE+\\angle CEF+\\angle FCE=180^\\circ\n\\]\n\\[\n\\therefore \\angle CEF=180^\\circ−\\angle CFE−\\angle FCE=180^\\circ−13^\\circ−45^\\circ=122^\\circ\n\\]\n\\[\n\\therefore \\angle DEC=\\angle CEF−\\angle DEF=122^\\circ−58^\\circ=\\boxed{64^\\circ}\n\\]", -"solution_image": [ -"solution_images/52699726_680.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52694135": { -"question": "As shown in the figure, $\\triangle ADB \\cong \\triangle ECB$, and the corresponding point of A is E, the corresponding point of D is C. If $\\angle CBD = 40^\\circ$ and $BD \\perp EC$, then what is the degree measure of $\\angle D$?", -"image_file_name": "7046945", -"image": [ -"math/52694135_690.png" -], -"solution": "\\textbf{Solution:} Let BD and EC intersect at point G,\\\\\nsince $\\triangle ADB \\cong \\triangle ECB$,\\\\\nit follows that $\\angle C = \\angle D$,\\\\\nsince BD$\\perp$EC,\\\\\nit follows that $\\angle BGC = 90^\\circ$,\\\\\ntherefore, $\\angle C = \\angle D = 90^\\circ - \\angle CBD = 90^\\circ - 40^\\circ = \\boxed{50^\\circ}$.", -"solution_image": [ -"solution_images/52694135_690.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52693980": { -"question": "As shown in the figure, in $\\triangle ABC$, where $AB=5$, $AC=7$, and $AB\\perp AC$, $EF$ is the perpendicular bisector of $BC$, and point $P$ is a moving point on line $EF$. What is the minimum perimeter of $\\triangle ABP$?", -"image_file_name": "7046945", -"image": [ -"math/52693980_700.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect PC,\n\n$\\because$ AB=5,\n\n$\\therefore$ the perimeter of $\\triangle ABP$ is AB+PA+PB=5+PA+PB,\n\nTo minimize the perimeter of $\\triangle ABP$, it is required to minimize the value of PA+PB,\n\n$\\because$ EF is a perpendicular bisector of BC,\n\n$\\therefore$ PC=PB,\n\n$\\therefore$ PA+PB=PA+PC,\n\nAccording to the principle that the shortest distance between two points is a straight line, when points A, P, and C are collinear,\n\nthat is, when point P is on the side AC, PA+PC reaches its minimum value, which is AC,\n\n$\\therefore$ the minimum value of PA+PB is AC=7,\n\n$\\therefore$ the minimum perimeter of $\\triangle ABP$ is 5+7=\\boxed{12},", -"solution_image": [ -"solution_images/52693980_700.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52693977": { -"question": "As shown in the figure, in $\\triangle CEF$, $\\angle E=80^\\circ$, $\\angle F=55^\\circ$, $AB\\parallel CF$, $AD\\parallel CE$, connect BC and CD, then what is the degree measure of $\\angle A$?", -"image_file_name": "7046945", -"image": [ -"math/52693977_716.png" -], -"solution": "\\textbf{Solution}: Connect AC and extend it to intersect EF at point M,\\\\\nsince AB$\\parallel$CF, and AD$\\parallel$CE,\\\\\ntherefore, $\\angle$3=$\\angle$1, $\\angle$2=$\\angle$4,\\\\\ntherefore, $\\angle$BAD=$\\angle$3+$\\angle$4=$\\angle$1+$\\angle$2=$\\angle$FCE,\\\\\nsince $\\angle$FCE=$180^\\circ$−$\\angle$E−$\\angle$F=$180^\\circ−80^\\circ−55^\\circ=45^\\circ$,\\\\\ntherefore, $\\angle$BAD=\\boxed{45^\\circ}.", -"solution_image": [ -"solution_images/52693977_710.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52693978": { -"question": "In $\\triangle ABC$, the perpendicular bisector of $AB$ intersects $AB$ and $BC$ at points $D$ and $E$, respectively, and the perpendicular bisector of $AC$ intersects $AC$ and $BC$ at points $F$ and $G$, respectively. Given that $BG=9$, $CE=11$, and the perimeter of $\\triangle AEG$ is 16, what is the length of $EG$?", -"image_file_name": "7046945", -"image": [ -"math/52693978_720.png" -], -"solution": "Solution: Since $DE$ bisects $AB$ perpendicularly, and $GF$ bisects $AC$ perpendicularly, \\\\\ntherefore $AE=BE$, and $AG=CG$, \\\\\nsince the perimeter of $\\triangle AEG$ is 16, \\\\\ntherefore $AE+EG+AG=16$, \\\\\nhence $BE+EG+CG=16$, \\\\\nthus $9-EG+EG+11-EG=16$, \\\\\nhence $EG=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52693950": { -"question": "As shown in the figure, AD is the median of $\\triangle ABC$, E is a point on AD, and BE intersects AC at F. If $BE=AC$, $BF=9$, and $CF=6$, then what is the length of $AF$?", -"image_file_name": "7046945", -"image": [ -"math/52693950_730.png" -], -"solution": "\\textbf{Solution:} Extend AD to G such that DG = AD, and connect BG,\\\\\n$\\because$ AD is the median of $\\triangle ABC$,\\\\\n$\\therefore$ CD = BD,\\\\\nIn $\\triangle ACD$ and $\\triangle GBD$,\\\\\n$ \\left\\{\\begin{array}{l}CD=BD \\\\ \\angle ADC= \\angle BDG \\\\ AD=DG \\end{array}\\right.$\\\\\n$\\therefore$ $\\triangle ACD \\cong \\triangle GBD$ (SAS),\\\\\n$\\therefore$ $\\angle CAD = \\angle G$, AC = BG,\\\\\n$\\because$ BE = AC,\\\\\n$\\therefore$ BE = BG,\\\\\n$\\therefore$ $\\angle G = \\angle BEG$,\\\\\n$\\because$ $\\angle BEG = \\angle AEF$,\\\\\n$\\therefore$ $\\angle AEF = \\angle EAF$.\\\\\n$\\therefore$ EF = AF,\\\\\n$\\therefore$ AF + CF = BF - AF,\\\\\ni.e., AF + 6 = 9 - AF,\\\\\n$\\therefore$ AF = $\\boxed{\\frac{3}{2}}$.", -"solution_image": [ -"solution_images/52693950_730.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52693948": { -"question": "As shown in the figure, in $\\triangle ABC$, DE is the perpendicular bisector of AC, and AE $= 3\\,cm$. If the perimeter of $\\triangle ABD$ is $13\\,cm$, what is the perimeter of $\\triangle ABC$ in centimeters?", -"image_file_name": "7046945", -"image": [ -"math/52693948_740.png" -], -"solution": "\\textbf{Solution:} Since DE is the perpendicular bisector of AC,\\\\\nit follows that AD = CD, and AC = 2AE = 6cm,\\\\\nFurthermore, since the perimeter of $\\triangle ABD$ equals AB + BD + AD = 13cm,\\\\\nit implies that AB + BD + CD = 13cm,\\\\\nwhich means AB + BC = 13cm,\\\\\nTherefore, the perimeter of $\\triangle ABC$ equals AB + BC + AC = 13 + 6 = \\boxed{19}cm.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52661291": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$ and $E$ are points on $AC$ and $BC$, respectively. If $\\triangle ADB \\cong \\triangle EDB \\cong \\triangle EDC$, what is the measure of $\\angle C$?", -"image_file_name": "7046945", -"image": [ -"math/52661291_755.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ADB \\cong \\triangle EDB \\cong \\triangle EDC$,\\\\\nit follows that $\\angle A = \\angle BED = \\angle CED$, and $\\angle ABD = \\angle EBD = \\angle C$,\\\\\nsince $\\angle BED + \\angle CED = 180^\\circ$,\\\\\nit implies that $\\angle A = \\angle BED = \\angle CED = 90^\\circ$,\\\\\nthus $\\angle ABD + \\angle EBD + \\angle C = 90^\\circ$,\\\\\nhence $\\angle C = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52661292": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $\\angle BAC=90^\\circ$. Line $l$ passes through point $A$, and from point $B$, $BE\\perp l$ at point $E$, and from point $C$, $CF\\perp l$ at point $F$. If $BE=2$, $CF=5$, what is the length of $EF$?", -"image_file_name": "7046945", -"image": [ -"math/52661292_762.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $BE\\perp l$ and $CF\\perp l$,\\\\\nit follows that $\\angle AEB=\\angle CFA=90^\\circ$,\\\\\nthus, $\\angle EAB+\\angle ABE=90^\\circ$,\\\\\nsince $\\angle BAC=90^\\circ$,\\\\\nit follows that $\\angle EAB+\\angle FAC=90^\\circ$,\\\\\nthus, $\\angle ABE=\\angle FAC$,\\\\\nsince $AB=AC$,\\\\\nit follows that $\\triangle AEB\\cong \\triangle CFA$ (AAS),\\\\\ntherefore, $AF=BE=2$, $AE=CF=5$,\\\\\nthus, $EF=AE+AF=5+2=\\boxed{7}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52661191": { -"question": "As shown in the figure, in $\\triangle PAB$, $PA=PB$, $\\angle A=\\angle B$, points $M$, $N$, and $K$ are located on $PA$, $PB$, and $AB$, respectively, and $AM=BK$, $BN=AK$. If $\\angle MKN=44^\\circ$, what is the degree measure of $\\angle P$?", -"image_file_name": "7046945", -"image": [ -"math/52661191_770.png" -], -"solution": "\\textbf{Solution:} Given $\\because$PA=PB,\\\\\n$\\therefore \\angle A=\\angle B$;\\\\\nIn $\\triangle AMK$ and $\\triangle BKN$\n\\[\n\\left\\{\n\\begin{array}{l}\nAM=BK\\\\\n\\angle A=\\angle B\\\\\nBN=AK\n\\end{array}\n\\right.\n\\]\n$\\therefore \\triangle AMK \\cong \\triangle BKN$ (SAS),\\\\\n$\\therefore \\angle AKM=\\angle BNK$;\\\\\n$\\because \\angle AKN=\\angle B+\\angle BNK=\\angle AKM+\\angle MKN$,\\\\\n$\\therefore \\angle MKN=\\angle B=\\angle A=44^\\circ$,\\\\\n$\\therefore \\angle P=180^\\circ-\\angle A-\\angle B=180^\\circ-2\\times 44^\\circ=\\boxed{92^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55452503": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, points C and D are on $\\odot O$, $CE \\perp AB$ and $OF \\perp AD$, with the feet of the perpendiculars being points E and F, respectively, and $\\angle COF = 90^\\circ$. If $BE=3$ and $CE=6$, what is the length of $AD$?", -"image_file_name": "7058812", -"image": [ -"math/55452503_420.png" -], -"solution": "\\textbf{Solution:} Since $CE \\perp AB$ and $OF \\perp AD$, it follows that $\\angle OEC = \\angle AFO = 90^\\circ$. Hence, $\\angle COE + \\angle C = 90^\\circ$. Let the radius of the circle be $r$, then $OE = r - 3$. Therefore, $CE^{2} + OE^{2} = CO^{2}$, i.e., $6^{2} + (r - 3)^{2} = r^{2}$. Solving this yields $r = 7.5$, therefore $OE = 7.5 - 3 = 4.5$. Since $\\angle COF = 90^\\circ$, it follows that $\\angle COE + \\angle AOF = 90^\\circ$. Therefore, $\\angle C = \\angle AOF$, which means $\\triangle AOF \\cong \\triangle OCE$ (AAS). Hence, $OE = AF = 4.5$. Since $OF \\perp AD$, it follows that $AD = 2AF = 2 \\times 4.5 = \\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51213422": { -"question": "As shown in the figure, the line $y = x + 1$ intersects with the parabola $y = x^2 - 4x + 5$ at points $A$ and $B$. Point $P$ is a moving point on the y-axis. When the perimeter of $\\triangle PAB$ is minimized, what are the coordinates of point $P$?", -"image_file_name": "7058812", -"image": [ -"math/51213422_430.png" -], -"solution": "\\textbf{Solution:}\\\\\nFrom $\\begin{cases}y=x+1\\\\ y=x^2-4x+5\\end{cases}$, we can obtain $\\begin{cases}x=1\\\\ y=2\\end{cases}$ or $\\begin{cases}x=4\\\\ y=5\\end{cases}$,\\\\\n$\\therefore$ the coordinates of point A are (1, 2) and the coordinates of point B are (4, 5),\\\\\n$\\therefore$ AB = $\\sqrt{(5-2)^2+(4-1)^2}=3\\sqrt{2}$,\\\\\nConstruct the reflection of point A across the y-axis to get point A$^{\\prime}$, and connect A$^{\\prime}$B to intersect the y-axis at point P, then in this case, the perimeter of $\\triangle PAB$ is minimized,\\\\\n$\\because$ the coordinates of point A$^{\\prime}$ are ($-1$, 2) and the coordinates of point B are (4, 5),\\\\\n$\\therefore$, let the equation of line A$^{\\prime}$B be $y=kx+b$,\\\\\nthen from $\\begin{cases}-k+b=2\\\\ 4k+b=5\\end{cases}$, we can obtain $\\begin{cases}k=\\frac{3}{5}\\\\ b=\\frac{13}{5}\\end{cases}$,\\\\\n$\\therefore$ the equation of line A$^{\\prime}$B is $y= \\frac{3}{5}x+\\frac{13}{5}$,\\\\\n$\\therefore$ when $x=0$, $y= \\frac{13}{5}$,\\\\\nthus, the coordinates of point P are $\\boxed{(0, \\frac{13}{5})}$,", -"solution_image": [ -"solution_images/51213422_430.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51213419": { -"question": "Given: As shown in the figure, $AB$ is the diameter of $\\odot O$, the chord $CD$ intersects $AB$ at point E, $BE=1$, $AE=5$, and $\\angle AEC=30^\\circ$. What is the length of $CD$?", -"image_file_name": "7058812", -"image": [ -"math/51213419_448.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $OF\\perp CD$ at F, and connect OD, \\\\\n$\\therefore$ $\\angle OFE=90^\\circ$, $CD=2FD$, \\\\\n$\\because$ $\\angle AEC=30^\\circ$, \\\\\n$\\therefore$ $OF=\\frac{1}{2}OE$, \\\\\n$\\because$ BE=1, AE=5, \\\\\n$\\therefore$ AB=BE+AE=6, \\\\\n$\\because$ AB is the diameter, \\\\\n$\\therefore$ $OB=OD=\\frac{1}{2}AB=3$, \\\\\n$\\therefore$ $OE=OB-BE=2$, \\\\\n$\\therefore$ $OF=\\frac{1}{2}OE=1$, \\\\\n$\\therefore$ $DF=\\sqrt{OD^2-OF^2}=2\\sqrt{2}$, \\\\\n$\\therefore$ $CD=2DF=\\boxed{4\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51213419_440.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51213420": { -"question": "As shown in the figure, $ \\triangle ABC$ is an inscribed triangle of $ \\odot O$, and $ AB=2\\sqrt{2}$. What is the area of the shaded region in the figure?", -"image_file_name": "7058812", -"image": [ -"math/51213420_454.png" -], -"solution": "\\textbf{Solution:} Connect OA and OB.\\\\\nIn $\\triangle OAB$, OA=OB=2, AB=2$\\sqrt{2}$,\\\\\n$\\therefore$ OA$^{2}$+OB$^{2}$=2$^{2}$+2$^{2}$=8, AB$^{2}$=(2$\\sqrt{2}$)$^{2}$=8,\\\\\n$\\therefore$ OA$^{2}$+OB$^{2}$=AB$^{2}$,\\\\\n$\\therefore$ $\\angle$AOB=$90^\\circ$,\\\\\n$\\therefore$ Area of the sector $OAB$= $\\frac{90}{360}\\times \\pi \\times 4=\\pi$, Area of $\\triangle OAB$= $\\frac{1}{2}$ ×2×2=2,\\\\\n$\\therefore$ Area of the shaded region=Area of the sector $OAB$−Area of $\\triangle OAB$=$\\pi$−2.\\\\\nTherefore, the area of the shaded region in the diagram is $\\boxed{\\pi-2}$.", -"solution_image": [ -"solution_images/51213420_450.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51213352": { -"question": "As shown in the figure, we know for the rectangle $ABCD$, where $AD=10$ and $AB=6$. Now, the side $AD$ is rotated about one of its endpoints, and when the other endpoint falls exactly at point E on the line where side $BC$ is located, what is the length of the segment $DE$?", -"image_file_name": "7058812", -"image": [ -"math/51213352_466.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$\\because$ The quadrilateral ABCD is a rectangle,\\\\\n$\\therefore$ AB=CD=6, AD=BC=10, $\\angle$ABC=$\\angle$DCB=$90^\\circ$,\\\\\nWhen AD=AE=10, BE= $\\sqrt{AE^{2}-AB^{2}}=\\sqrt{10^{2}-6^{2}}=8$,\\\\\n$\\therefore$ DE$_{1}$= $\\sqrt{CD^{2}+EC^{2}}=\\sqrt{6^{2}+2^{2}}=2\\sqrt{10}$, DE$_{2}$= $\\sqrt{CD^{2}+EC^{2}}=\\sqrt{6^{2}+18^{2}}=6\\sqrt{10}$,\\\\\nWhen DE=DA=10, DE=10,\\\\\nIn summary, the values of DE that meet the conditions are $\\boxed{2\\sqrt{10}}$, $\\boxed{6\\sqrt{10}}$, or $\\boxed{10}$.", -"solution_image": [ -"solution_images/51213352_460.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51213351": { -"question": "As shown in the figure, $AB=AC=AD=2$, $\\angle BCD=120^\\circ$, then what is the value of $BD$?", -"image_file_name": "7058812", -"image": [ -"math/51213351_473.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, with A as the center and AB as the radius, draw $\\odot A$, extend BA to intersect $\\odot A$ at T, and connect DT, \\\\\n$\\because$ $AB=AC=AD$,\\\\\n$\\therefore$ point A is the center of the circumscribed circle of $\\triangle BCD$,\\\\\n$\\because$ $\\angle BCD+\\angle T=180^\\circ$, $\\angle BCD=120^\\circ$,\\\\\n$\\therefore$ $\\angle T=60^\\circ$,\\\\\n$\\because$ BT is the diameter,\\\\\n$\\therefore$ $BT=2AB=4$, $\\angle BDT=90^\\circ$,\\\\\n$\\therefore$ $\\angle DBT=90^\\circ-60^\\circ=30^\\circ$,\\\\\n$\\therefore$ $DT=\\frac{1}{2}BT=2$,\\\\\n$\\therefore$ $BD=\\sqrt{BT^2-TD^2}=\\sqrt{4^2-2^2}=\\boxed{2\\sqrt{3}}$,\\\\", -"solution_image": [ -"solution_images/51213351_470.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51213350": { -"question": "As shown in the figure, quadrilateral $ABCD$ is a circumscribed quadrilateral of circle $\\odot O$, and $AB=10$, $CD=15$. What is the perimeter of quadrilateral $ABCD$?", -"image_file_name": "7058812", -"image": [ -"math/51213350_480.png" -], -"solution": "\\textbf{Solution:}\\\\\n$\\because$ Quadrilateral ABCD is a circumscribed quadrilateral of $\\odot$O,\\\\\n$\\therefore$AE = AH, BE = BF, CF = CG, DH = DG,\\\\\n$\\therefore$AD + BC = AB + CD = 25,\\\\\n$\\therefore$The perimeter of quadrilateral ABCD = AD + BC + AB + CD = 25 + 25 = \\boxed{50}", -"solution_image": [ -"solution_images/51213350_480.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51213250": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD\\perp BC$, $BE\\perp AC$, with the feet of the perpendiculars being points $D$ and $E$ respectively, and $AD$ and $BE$ intersecting at point $F$. If $BF=AC$, then what is the measure of $\\angle ABC$ in degrees?", -"image_file_name": "7058812", -"image": [ -"math/51213250_490.png" -], -"solution": "\\textbf{Solution:} Since $AD \\perp BC$ at $D$, and $BE \\perp AC$ at $E$,\\\\\ntherefore, $\\angle EAF + \\angle AFE = 90^\\circ$, and $\\angle DBF + \\angle BFD = 90^\\circ$,\\\\\nAlso, since $\\angle BFD = \\angle AFE$ (vertical angles are equal),\\\\\ntherefore, $\\angle EAF = \\angle DBF$,\\\\\nIn right triangles $\\triangle ADC$ and $\\triangle BDF$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle CAD = \\angle FBD \\\\\n\\angle BDF = \\angle ADC \\\\\nBF = AC\n\\end{array}\\right.$,\\\\\ntherefore, $\\triangle ADC \\cong \\triangle BDF$ (by AAS),\\\\\ntherefore, $BD = AD$,\\\\\nsince $\\angle ADB = 90^\\circ$.\\\\\nTherefore, $\\angle ABC = \\angle BAD = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51213252": { -"question": "As shown in the figure, in $ \\triangle ABC$, the perpendicular bisector of side AB intersects BC and AB at points D and E, respectively, with AE = 3cm and the perimeter of $ \\triangle ADC$ being 9cm. What is the perimeter of $ \\triangle ABC$ in cm?", -"image_file_name": "7058812", -"image": [ -"math/51213252_500.png" -], -"solution": "\\textbf{Solution:} Given that in triangle $ABC$, the perpendicular bisector of side $AB$ intersects $BC$ and $AB$ at points $D$ and $E$, respectively, with $AE=3cm$,\\\\\nit follows that $BD=AD$ and $AB=2AE=6cm$,\\\\\ngiven that the perimeter of $\\triangle ADC$ is $9cm$,\\\\\nthen, $AC+AD+CD=AC+BD+CD=AC+BC=9cm$,\\\\\nthus, the perimeter of $\\triangle ABC$ is given by: AB+AC+BC=\\boxed{15}cm.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51213181": { -"question": "As shown in the figure, given three equilateral triangles arranged from left to right with side lengths of 1, 2, and 3 respectively, what is the area of the shaded region?", -"image_file_name": "7058812", -"image": [ -"math/51213181_510.png" -], -"solution": "\\textbf{Solution:} Let points M, N, H be the intersections of AC with BE, BF, and CF respectively,\n\n$\\because$ AB=1, BC=2, CD=3,\n\n$\\therefore$ AC=CG,\n\n$\\therefore\\angle CAG=\\angle CGA=30^\\circ$,\n\n$\\therefore$ AG $\\perp$ BE,\n\nAlso $\\because\\angle EBA=\\angle FCA=60^\\circ$,\n\n$\\therefore$ EB $\\parallel$ CF, AG $\\perp$ CF,\n\n$\\therefore$ AH=HG, AM=MN,\n\n$\\therefore$ Area of $\\triangle CHG$ = Area of $\\triangle CHA$,\n\nSimilarly, Area of $\\triangle BMN$ = Area of $\\triangle BMA$,\n\nIn $\\triangle ABM$, AB=1, BM= $\\frac{1}{2}$ AB= $\\frac{1}{2}$, AM= $\\frac{\\sqrt{3}}{2}$,\n\n$\\therefore$ Area of $\\triangle ABM$= $\\frac{1}{2} \\times BM \\times AM= \\frac{1}{2}\\times \\frac{1}{2}\\times \\frac{\\sqrt{3}}{2} = \\frac{\\sqrt{3}}{8}$,\n\nSimilarly, it can be shown that Area of $\\triangle ACH$= $\\frac{1}{2} \\times CH \\times AH= \\frac{1}{2}\\times \\frac{3}{2}\\times \\frac{3\\sqrt{3}}{2} = \\frac{9\\sqrt{3}}{8}$,\n\n$\\therefore$ The area of the shaded part= Area of $\\triangle ABM$ + Area of $\\triangle ACH$= $\\frac{\\sqrt{3}}{8}+\\frac{9\\sqrt{3}}{8} = \\boxed{\\frac{5\\sqrt{3}}{4}}$", -"solution_image": [ -"solution_images/51213181_510.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51212188": { -"question": "As shown in the figure, $n$ squares, each with a side length of 1, are arranged as depicted. The points $A_{1}$, $A_{2}$, ..., $A_{n}$ represent the centers of these squares, respectively. What is the total area of the overlapping parts formed by these $n$ squares?", -"image_file_name": "7058812", -"image": [ -"math/51212188_520.png" -], -"solution": "\\textbf{Solution:} Given the problem statement, the area of one shaded part is equal to $\\frac{1}{4}$ of the area of a square, which is $\\frac{1}{4}$.\\\\\nThe total area of the shaded parts (overlap area) for $n$ such squares is: $\\frac{1}{4}\\times (n-1) = \\boxed{\\frac{n-1}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212138": { -"question": "As shown in the figure, the straight lines $a$ and $b$ intersect perpendicularly at point $O$. The curve $C$ is centrally symmetric with respect to point $O$. The symmetric point of point $A$ is $A'$, $AB \\perp a$ at point $B$, and $A'D \\perp b$ at point $D$. If $OB=4$ and $OD=3$, what is the total area of the shaded regions?", -"image_file_name": "7058812", -"image": [ -"math/51212138_5313.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\nsince line a and b are perpendicular and intersect at point O, and curve C is centrally symmetric about point O, with point A's symmetric point being point A', AB $\\perp$ a at point B, and A'D $\\perp$ b at point D, OB = 4, OD = 3, \\\\\ntherefore, AB = 3, \\\\\nthus, the areas of shape (1) and shape (2) are equal, \\\\\nhence, the sum of the areas of the shaded parts equals the area of rectangle ABOE, which is $4 \\times 3 = \\boxed{12}$.", -"solution_image": [ -"solution_images/51212138_530.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212038": { -"question": "As shown in the figure, the vertices of the equilateral triangle \\( ABC \\) are on the coordinate axes, and the side length is \\( 4 \\). What are the coordinates of point \\( A \\)?", -"image_file_name": "7058812", -"image": [ -"math/51212038_540.png" -], -"solution": "\\textbf{Solution:} Given that it’s an equilateral triangle, it follows from the rule that all medians intersect at one point that: $OC = \\frac{1}{2}BC = 2$,\\\\\nApplying Pythagoras’ theorem, we find: $OA = \\sqrt{AC^2 - CO^2} = 2\\sqrt{3}$,\\\\\n$\\therefore$The coordinates of point A are $\\boxed{(0, 2\\sqrt{3})}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51212039": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=50^\\circ$, $\\angle DAC$ and $\\angle ACF$ are two exterior angles of this triangle, then what is the sum of $\\angle DAC + \\angle ACF$ in degrees?", -"image_file_name": "7058812", -"image": [ -"math/51212039_556.png" -], -"solution": "\\textbf{Solution:} Given: $ \\angle DAC=\\angle B+\\angle ACB$, $ \\angle FCA=\\angle B+\\angle BAC$,\\\\\n$\\therefore \\angle DAC+\\angle ACF=\\angle B+\\angle B+\\angle BAC+\\angle BCA$,\\\\\n$\\because \\angle B=50^\\circ$, $\\angle B+\\angle BAC+\\angle BCA=180^\\circ$,\\\\\n$\\therefore \\angle DAC+\\angle ACF=180^\\circ+50^\\circ=\\boxed{230^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51212186": { -"question": "As shown in the figure, two congruent right triangles overlap each other. One of the triangles is translated along the direction from point B to C to the position of $\\triangle DEF$, where $AB=10$, $DO=4$, and the translation distance is $6$. What is the area of the shaded region?", -"image_file_name": "7058812", -"image": [ -"math/51212186_560.png" -], -"solution": "\\textbf{Solution:} Given the property of translation, we have $BE=6$, $DE=AB=10$,\\\\\nthus $OE=DE-DO=10-4=6$,\\\\\ntherefore, the area of quadrilateral $ODFC$ is equal to the area of trapezoid $ABEO$, which is $\\frac{1}{2}\\times(AB+OE)\\times BE =\\frac{1}{2}\\times(10+6)\\times 6=\\boxed{48}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212472": { -"question": "As shown in the figure, $a \\parallel b$, if $\\angle 1=50^\\circ$, then what is the measure of $\\angle 2$ in degrees?", -"image_file_name": "7058812", -"image": [ -"math/51212472_571.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\n$\\because a \\parallel b$, \\\\\n$\\therefore \\angle 3 = \\angle 1$, \\\\\n$\\because \\angle 1 = 50^\\circ$, \\\\\n$\\therefore \\angle 3 = 50^\\circ$ \\\\\n$\\because \\angle 2 + \\angle 3 = 180^\\circ$ \\\\\n$\\therefore \\angle 2 = 180^\\circ - \\angle 3 = 180^\\circ - 50^\\circ = \\boxed{130^\\circ}$", -"solution_image": [ -"solution_images/51212472_570.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51212700": { -"question": "As shown in the figure, two flat strips of paper, each with a width of 1, are overlaid in a cross fashion. The angle between the edges of the two strips is $\\alpha =30^\\circ$. What is the area of their overlapping part (the shaded area in the figure)?", -"image_file_name": "7058812", -"image": [ -"math/51212700_581.png" -], -"solution": "\\textbf{Solution:} As shown in the figure: Draw AE$\\perp$BC and AF$\\perp$CD at F, with the feet of the perpendiculars being E and F,\\\\\n$\\therefore$ $\\angle$AEB=$\\angle$AFD=$90^\\circ$,\\\\\n$\\because$AD$\\parallel$CB and AB$\\parallel$CD,\\\\\n$\\therefore$quadrilateral ABCD is a parallelogram,\\\\\n$\\because$the width of the strip is 1,\\\\\n$\\therefore$AE=AF=1,\\\\\nIn $\\triangle$ABE and $\\triangle$ADF\\\\\n$\\left\\{\\begin{array}{l}\n\\angle ABE=\\angle ADF=30^\\circ \\\\\n\\angle AEB=\\angle AFD=90^\\circ \\\\\nAE=AF\n\\end{array}\\right.$,\\\\\n$\\therefore$ $\\triangle$ABE$\\cong$ $\\triangle$ADF (AAS),\\\\\n$\\therefore$AB=AD,\\\\\n$\\therefore$quadrilateral ABCD is a rhombus.\\\\\n$\\therefore$BC=AB,\\\\\n$\\because$ $\\frac{AE}{AB}=\\sin 30^\\circ$,\\\\\n$\\therefore$BC=AB=$\\frac{1}{\\sin 30^\\circ}=2$,\\\\\n$\\therefore$the area of the overlapping part (the shaded area in the figure) is: BC×AE=2×1=\\boxed{2},", -"solution_image": [ -"solution_images/51212700_580.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51212701": { -"question": "As shown in the figure, it is known that point $E$ is a moving point on the diagonal $AC$ of rectangle $ABCD$, and the vertices $G$ and $H$ of square $EFGH$ are both on side $AD$. If $AB=3$ and $BC=4$, then what is the value of $\\tan\\angle AFE$?", -"image_file_name": "7058812", -"image": [ -"math/51212701_597.png" -], -"solution": "\\textbf{Solution:} Given that $EH\\parallel CD$,\\\\\n$\\triangle AEH \\sim \\triangle ACD$,\\\\\nhence $\\frac{EH}{AH} = \\frac{CD}{AD} = \\frac{3}{4}$,\\\\\nlet $EH = 3a$, then $AH = 4a$,\\\\\nthus, $HG = GF = EH = 3a$,\\\\\nsince $EF\\parallel AD$,\\\\\nthus $\\angle AFE = \\angle FAG$,\\\\\nhence $\\tan\\angle AFE = \\tan\\angle FAG = \\frac{GF}{AG} = \\frac{3a}{4a+3a} = \\boxed{\\frac{3}{7}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212567": { -"question": "As shown in the diagram, within triangle paper $ABC$, $\\angle C=90^\\circ$, $\\angle A=30^\\circ$, and $AC=6$. When folding the paper so that point $C$ lands on point $D$ on side $AB$, and the fold line $BE$ intersects $AC$ at point $E$, what is the length of the fold line $BE$?", -"image_file_name": "7058812", -"image": [ -"math/51212567_600.png" -], -"solution": "\\textbf{Solution:} Given, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle A=30^\\circ$,\\\\\nhence $\\angle ABC=60^\\circ$,\\\\\nby the property of folding, we get: $\\angle ABE=\\frac{1}{2}\\angle ABC=30^\\circ$, $\\angle BDE=\\angle C=90^\\circ$, $DE=CE$,\\\\\nthus $\\angle ABE=\\angle A$,\\\\\nthus $BE=AE$,\\\\\ngiven, in $Rt\\triangle ADE$, $\\angle ADE=90^\\circ$, $\\angle A=30^\\circ$,\\\\\nthus $DE=\\frac{1}{2}AE$,\\\\\nsince $DE+AE=CE+AE=AC=6$,\\\\\ntherefore $\\frac{1}{2}AE+AE=6$, solving gives $AE=4$,\\\\\nhence $BE=\\boxed{4}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51212775": { -"question": "As shown in the figure, AB is the diameter of circle $O$, and chord CD $\\perp$ AB at point H. If AB $= 10$ and CD $= 8$, what is the length of BH?", -"image_file_name": "7058812", -"image": [ -"math/51212775_610.png" -], -"solution": "\\textbf{Solution:} Draw line OC.\n\nFrom the given: In right triangle $OCH$, we have $OC=\\frac{1}{2}AB=5$, and $CH=\\frac{1}{2}CD=4$;\n\nBy the Pythagorean theorem, we find: $OH=\\sqrt{OC^{2}-CH^{2}}=\\sqrt{5^{2}-4^{2}}=3$;\n\nTherefore, $BH=OB-OH=\\boxed{2}$.", -"solution_image": [ -"solution_images/51212775_610.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51209219": { -"question": "As shown in the figure, it is known that $\\triangle ABC$ with $AB=AC$ and $\\angle A=70^\\circ$. Points $O$ and $D$ are the midpoints of $BC$ and $AB$, respectively. A circle is drawn with $O$ as the center and $OD$ as the radius, intersecting $AB$ at another point $E$ and intersecting $AC$ at points $G$ and $F$. What is the degree measure of $\\angle DOE + \\angle FOG$?", -"image_file_name": "7058812", -"image": [ -"math/51209219_620.png" -], -"solution": "\\textbf{Solution:} Since $O$ and $D$ are the midpoints of $BC$ and $AB$ respectively, and $AB=AC$,\\\\\nit follows that $OD\\parallel AC$, and $OG=OD= \\frac{1}{2}AC= \\frac{1}{2}AB$,\\\\\ntherefore, $\\angle ODE=\\angle A=70^\\circ$, and $OG\\parallel AB$,\\\\\nthus, $\\angle OGF=\\angle A=70^\\circ$,\\\\\nsince $OE=OD=OG=OF$,\\\\\nit implies that $\\angle ODE=\\angle OED=70^\\circ$, $\\angle OFG=\\angle OGF=70^\\circ$,\\\\\nthus, $\\angle DOD=\\angle GOF=40^\\circ$,\\\\\nhence, $\\angle DOE+\\angle FOG=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51368376": { -"question": "As shown in the figure, in $\\triangle ABC$, D is the midpoint on side AC. Connect BD and fold $\\triangle BDC$ along BD to obtain $\\triangle BDC'$, where DC' intersects AB at point E. Connect AC'. If AD = AC' = 2 and BD = 3, what is the distance from point D to line BC?", -"image_file_name": "7058812", -"image": [ -"math/51368376_630.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect $CC'$ and let it intersect $BD$ at point $M$. Draw $DH \\perp BC'$ at point $H$, \\\\\nsince $AD=AC'=2$ and $D$ is the midpoint of side $AC$, \\\\\ntherefore $DC=AD=2$. By folding, $\\triangle BDC\\cong \\triangle BDC'$, and $BD$ perpendicularly bisects $CC'$, \\\\\ntherefore $DC=DC'=2$, $BC=BC'$, $CM=C'M$, \\\\\ntherefore $AD=AC'=DC'=2$, \\\\\nthus $\\triangle ADC'$ is an equilateral triangle, \\\\\ntherefore $\\angle ADC'=\\angle AC'D=\\angle C'AC=60^\\circ$, \\\\\nsince $DC=DC'$, \\\\\ntherefore $\\angle DCC'=\\angle DC'C= \\frac{1}{2} \\times 60^\\circ=30^\\circ$, \\\\\nIn $\\triangle C'DM$, with $\\angle DC'C=30^\\circ$ and $DC'=2$, \\\\\nthus $DM=1$, $C'M= \\sqrt{3}DM= \\sqrt{3}$, \\\\\ntherefore $BM=BD−DM=3−1=2$, \\\\\nIn $\\triangle BMC'$, $BC'= \\sqrt{BM^2+C'M^2}=\\sqrt{2^2+(\\sqrt{3})^2}=\\sqrt{7}$, \\\\\nsince the area of $\\triangle BDC'$ is $\\frac{1}{2} BC'\\cdot DH= \\frac{1}{2} BD\\cdot CM$, \\\\\nthus $\\sqrt{7}DH=3\\times \\sqrt{3}$, \\\\\ntherefore $DH= \\frac{3\\sqrt{21}}{7}$, \\\\\nsince $\\angle DBC=\\angle DBC'$, \\\\\ntherefore the distance from point $D$ to $BC$ is $\\boxed{\\frac{3\\sqrt{21}}{7}}$.", -"solution_image": [ -"solution_images/51368376_630.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51368374": { -"question": "As shown in the figure, a sector BAC with a radius of 2 and a central angle of $90^\\circ$ is rotated counterclockwise around point A. During the rotation, point B falls on point B' on the arc of sector BAC, and the corresponding point for point C is point C'. What is the area of the shaded region?", -"image_file_name": "7058812", -"image": [ -"math/51368374_640.png" -], -"solution": "\\textbf{Solution:} Connect $BB'$, and draw $AF \\perp BB'$ at $F$, then $\\angle AFB = 90^\\circ$, as shown in the figure,\\\\\n$\\because$ when the sector $BAC$ with radius $2$ and a central angle of $90^\\circ$ is rotated counterclockwise around point $A$, during the rotation, point $B$ falls on the point $B''$ on the arc of sector $BAC$, and the corresponding point for point $C$ is point $C'$,\\\\\n$\\therefore$ the area of sector $ABC$ is equal to the area of sector $AB'C'$, and $AB = AB' = BC = BB' = 2$,\\\\\n$\\therefore$ $\\triangle ABB'$ is an equilateral triangle,\\\\\n$\\therefore$ $\\angle ABF = 60^\\circ$,\\\\\n$\\therefore$ $\\angle BAF = 30^\\circ$,\\\\\n$\\therefore$ $BF = \\frac{1}{2} AB = \\frac{1}{2} \\times 2 = 1$, by Pythagoras' theorem, we have: $AF = \\sqrt{2^2 - 1^2} = \\sqrt{3}$,\\\\\n$\\therefore$ the area of the shaded part $S = S_{\\text{sector } ABC} - (S_{\\text{sector } ABB'} - S_{\\triangle ABB'})$\\\\\n$= \\frac{90^\\circ\\pi \\times 2^2}{360} - \\left(\\frac{60^\\circ\\pi \\times 2^2}{360} - \\frac{1}{2} \\times 2 \\times \\sqrt{3}\\right)$\\\\\n$= \\boxed{\\sqrt{3} + \\frac{1}{3}\\pi}$.", -"solution_image": [ -"solution_images/51368374_640.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51368331": { -"question": "In the equilateral triangle $\\triangle ABC$, where $AB=6$ and $BD=4$, point $E$ is a moving point on side $AC$. Connect $DE$ and fold $\\triangle CDE$ along $DE$ to obtain $\\triangle FDE$. What is the minimum distance from point $F$ to line $AB$?", -"image_file_name": "7058812", -"image": [ -"math/51368331_650.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw DT$\\perp$AB at T from point D.\\\\\n$\\because \\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore \\angle B=60^\\circ$, $BC=AB=6$,\\\\\n$\\because \\angle DTB=90^\\circ$, $BD=4$,\\\\\n$\\therefore CD=DF=2$, $DT=BD\\cdot\\sin60^\\circ=2\\sqrt{3}$,\\\\\nBy observing the diagram, it is known that when point F is on DT, the distance from point F to AB is the smallest, with the minimum value being $2\\sqrt{3}-2$,\\\\\nTherefore, the answer is: $2\\sqrt{3}-2=\\boxed{2\\sqrt{3}-2}$.", -"solution_image": [ -"solution_images/51368331_650.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51368293": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=10$, and $BC=5$. If points $M$ and $N$ are two movable points on line segments $AC$ and $AB$ respectively, what is the perimeter of $\\triangle BMN$ when $BM+MN$ is minimized?", -"image_file_name": "7058812", -"image": [ -"math/51368293_660.png" -], -"solution": "\\textbf{Solution:}\n\nAs shown in the figure, construct the point $B'$ as the symmetric point of $B$ with respect to $AC$, and draw line $B'A$ intersecting $DC$ at point $E$. Therefore, the minimum value of $BM+MN$ is equal to the minimum value of $B'M+MN$,\\\\\n$\\therefore$ when $B'N \\perp AB$, the minimum value of $BM+MN$ is achieved,\\\\\n$\\therefore$ construct $B'N' \\perp AB$ intersecting $AC$ at $M'$, then $B'N'$ is the minimum value of $BM+MN$;\\\\\n$\\because$ Quadrilateral $ABCD$ is a rectangle,\\\\\n$\\therefore$ $\\angle D=90^\\circ$, $DC \\parallel AB$,\\\\\n$\\therefore$ $\\angle DCA=\\angle BAC$,\\\\\nAlso, $\\because$ $\\angle B'AC=\\angle BAC$,\\\\\n$\\therefore$ $\\angle B'AC=\\angle DCA$,\\\\\n$\\therefore$ $AE=CE$, let $EC=AE=x$,\\\\\n$\\therefore$ in $\\triangle AED$, $DE^2+AD^2=AE^2$, i.e., $(10-x)^2+5^2=x^2$, solving we get: $x=\\frac{25}{4}$,\\\\\n$\\therefore B'E=AB'−AE=10−\\frac{25}{4}=\\frac{15}{4}$,\\\\\nLet the height from $E$ to side $EC$ in $\\triangle B'EC$ be $h$, by symmetry we have $B'C=BC=5$,\\\\\n$\\angle AB'C=\\angle ABC=90^\\circ$,\\\\\n$\\therefore$ $S_{\\triangle B'CE}=\\frac{1}{2}\\times \\frac{15}{4}\\times 5=\\frac{1}{2}\\cdot \\frac{25}{4}\\cdot h$, solving we get: $h=3$,\\\\\n$B'N'=h+5=8$, that is, the minimum value of $BM+MN$ is 8,\\\\\n$\\therefore$ in $\\triangle AB'N'$, $AN'=\\sqrt{AB'^{2}-B'N'^{2}}=\\sqrt{10^{2}-8^{2}}=6$,\\\\\n$\\therefore$ $BN'=AB-AN'=10-6=4$,\\\\\n$\\therefore$ the perimeter of $\\triangle BMN=BN'+B'M'+M'N'=BN'+B'N'=4+8=\\boxed{12}$.", -"solution_image": [ -"solution_images/51368293_661.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51368215": { -"question": "\n\nIn the Cartesian coordinate system $xOy$, the coordinates of point $P$ are $(m-1, -m+5)$. The radius of the circle $\\odot O$ is 1. Point $Q$ lies on $\\odot O$, and line segment $PQ$ is drawn. If $PQ$ is tangent to $\\odot O$, what is the minimum value of line segment $PQ$?", -"image_file_name": "7058812", -"image": [ -"math/51368215_679.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw tangent PQ from point P to the circle, and connect OQ;\\\\\n$\\because$ The coordinates of point P are $(m−1, −m+5)$\\\\\n$\\therefore$ $O{P}^{2}={\\left(−m+5\\right)}^{2}+{\\left(m−1\\right)}^{2}=2{m}^{2}−12m+26$\\\\\n$\\because$ The radius of circle $O$ is 1, that is, OQ=1\\\\\n$\\therefore$ PQ$^{2}$= OP$^{2}$−OQ$^{2}$= $2{m}^{2}−12m+25=2{\\left(m−3\\right)}^{2}+7$\\\\\nHence, when m=3, PQ$^{2}$ attains its minimum value\\\\\n$\\therefore$ When m=3, PQ attains its minimum value $\\boxed{\\sqrt{7}}$.", -"solution_image": [ -"solution_images/51368215_670.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51368180": { -"question": "As shown in the figure, it is known that the area of rectangle $OABC$ is $18$, and its diagonal $OB$ intersects with the hyperbola $y= \\frac{k}{x}$ at point $D$, where $OD: DB=2:1$. What is the value of $k$?", -"image_file_name": "7058812", -"image": [ -"math/51368180_681.png" -], -"solution": "\\textbf{Solution:} Given the problem statement, let the coordinates of point D be $(x_D, y_D)$. Therefore, the coordinates of point B are $\\left(\\frac{3}{2}x_D, \\frac{3}{2}y_D\\right)$,\\\\\n$\\therefore$ the area of rectangle OABC $=\\left|\\frac{3}{2}x_D \\times \\frac{3}{2}y_D\\right|=18$,\\\\\n$\\because$ the figure lies in the first quadrant,\\\\\n$\\therefore k=x_D \\cdot y_D=\\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51368144": { -"question": "As shown in the figure, in $\\triangle ABC$, we have $AB=4$, $AC=6$, and $AD$ is the bisector of $\\angle BAC$. $M$ is the midpoint of $BC$, and $ME\\parallel AD$ intersects $AC$ at $F$ and intersects the extension of $BA$ at $E$. What is the value of $BE$?", -"image_file_name": "7058812", -"image": [ -"math/51368144_690.png" -], -"solution": "\\textbf{Solution:} Proof:\n\nSince $AD$ bisects $\\angle BAC$,\n\nthen $\\angle BAD=\\angle DAC$,\n\nSince $MF \\parallel AD$,\n\nthen $\\angle DAC=\\angle AFE$, $\\angle BAD=\\angle E$,\n\nthus $\\angle E=\\angle AFE$,\n\nhence $AE=AF$;\n\nExtend $FM$ to point $N$ such that $MN=FM$, $\\angle BMN=\\angle CMF$, $MB=CM$,\n\ntherefore $\\triangle BMN \\cong \\triangle CMF$ (SAS),\n\ntherefore $CF=BN$, $\\angle N=\\angle MFC$,\n\nSince $\\angle EFA=\\angle MFC$,\n\nthus $\\angle N=\\angle EFA$,\n\nthus $\\angle N=\\angle E$,\n\nthus $BN=BE$,\n\nthus $AB+AC=AB+AF+FC=AB+AE+FC=BE+FC$,\n\nSince $BE=FC$,\n\ntherefore $2BE=10$,\n\ntherefore $BE=\\boxed{5}$.", -"solution_image": [ -"solution_images/51368144_690.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51368145": { -"question": "As shown in the figure, let P be any point on side BC of the equilateral $\\triangle ABC$. Point D lies on the extension of side BA. Rotate line segment PD $60^\\circ$ counterclockwise around point P to obtain line segment PE. Connect BE. What is the measure of $\\angle CBE$ in degrees?", -"image_file_name": "7058812", -"image": [ -"math/51368145_700.png" -], -"solution": "\\textbf{Solution:} Draw line $DF \\parallel AC$ passing through point $D$ and intersecting the extension of $BC$ at point $F$, as shown in the figure: \\\\\n$\\because$ $\\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore$ $\\angle ABC = \\angle BAC = \\angle BCA = 60^\\circ$,\\\\\n$\\therefore$ $\\angle BAC = \\angle BDF = \\angle BCA = \\angle F = 60^\\circ$,\\\\\n$\\therefore$ $\\triangle DBF$ is an equilateral triangle,\\\\\n$\\therefore$ $DB = DF$,\\\\\n$\\because$ rotating segment $PD$ $60^\\circ$ counterclockwise around point $P$ results in segment $PE$,\\\\\n$\\therefore$ $\\triangle PDE$ is an equilateral triangle,\\\\\n$\\therefore$ $DE = DP$, $\\angle EDP = 60^\\circ$,\\\\\n$\\therefore$ $\\angle EDB + \\angle BDP = \\angle PDF + \\angle BDP = 60^\\circ$,\\\\\n$\\therefore$ $\\angle EDB = \\angle PDF$,\\\\\n$\\therefore$ $\\triangle EDB \\cong \\triangle PDF$ (SAS),\\\\\n$\\therefore$ $\\angle EBD = \\angle F = 60^\\circ$,\\\\\n$\\therefore$ $\\angle CBE = \\angle ABC + \\angle EBD = \\boxed{120^\\circ}$", -"solution_image": [ -"solution_images/51368145_700.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51367866": { -"question": "As shown in the figure, in $ \\triangle ABC$, $AB=AC$, the line EF is the perpendicular bisector of AB, D is the midpoint of BC, M is a moving point on EF, the area of $ \\triangle ABC$ is 12, and $BC=4$, then what is the minimum value of the perimeter of $ \\triangle BDM$?", -"image_file_name": "7058812", -"image": [ -"math/51367866_715.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, we connect AD, and AM,\\\\\n\\(\\because\\) EF is the perpendicular bisector of line segment AB,\\\\\n\\(\\therefore\\) AM=BM,\\\\\n\\(\\therefore\\) the perimeter of \\(\\triangle BDM\\) = BD + BM + DM = AM + DM + BD,\\\\\n\\(\\therefore\\) to minimize the perimeter of \\(\\triangle BDM\\), we need to minimize the value of AM + DM,\\\\\n\\(\\therefore\\) when points A, M, and D are collinear, AM + DM is minimized, which equals to AD,\\\\\n\\(\\because\\) AB=AC, and D is the midpoint of BC,\\\\\n\\(\\therefore\\) AD\\(\\perp\\)BC, \\(BD=\\frac{1}{2}BC=2\\),\\\\\n\\(\\therefore\\) \\(S_{\\triangle ABC}=\\frac{1}{2}AD\\cdot BC=12\\),\\\\\n\\(\\therefore\\) AD=6,\\\\\n\\(\\therefore\\) The minimum perimeter of \\(\\triangle BDM\\) = AD + BD = \\boxed{8},", -"solution_image": [ -"solution_images/51367866_710.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51367862": { -"question": "As shown in the figure, $\\angle B = \\angle D = 90^\\circ$, $BC = CD$, $\\angle 1 = 40^\\circ$, then what is the value of $\\angle 2$?", -"image_file_name": "7058812", -"image": [ -"math/51367862_724.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle B = \\angle D = 90^\\circ$,\\\\\n$\\therefore$ $\\triangle ABC$ and $\\triangle ADC$ are both right-angled triangles,\\\\\nIn $\\triangle ABC$ and $\\triangle ADC$,\\\\\n$\\left\\{\\begin{array}{c} BC = DC \\\\ AC = AC \\end{array}\\right.$,\\\\\n$\\therefore$ $\\triangle ABC \\cong \\triangle ADC$ (HL),\\\\\n$\\therefore$ $\\angle 1 = \\angle CAD = 40^\\circ$,\\\\\n$\\therefore$ $\\angle 2 = 90^\\circ - \\angle CAD = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51367277": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, isosceles right triangles $S_1$ and $S_2$ are constructed on hypotenuses $AC$ and $BC$, respectively, and a square $S$ is constructed on side $AB$. If the sum of the areas of $S_1$ and $S_2$ equals $9$, what is the length of the side of square $S$?", -"image_file_name": "7058812", -"image": [ -"math/51367277_730.png" -], -"solution": "\\textbf{Solution:} As shown in the figure: draw DE $\\perp$ AC at E. In the isosceles right triangle $\\triangle$ACD, we have AD=CD, and $\\angle$ADC=$90^\\circ$,\\\\\nthus, DE=AE=CE=$\\frac{1}{2}$AC,\\\\\ntherefore, ${S}_{1}=\\frac{1}{2}AC\\cdot \\frac{1}{2}AC=\\frac{1}{4}AC^{2}$,\\\\\nSimilarly, ${S}_{2}=\\frac{1}{4}BC^{2}$,\\\\\ntherefore, ${S}_{1}+{S}_{2}=\\frac{1}{4}AC^{2}+\\frac{1}{4}BC^{2}=9$,\\\\\ntherefore, $AC^{2}+BC^{2}=36$,\\\\\nIn $\\triangle$ABC, $\\angle$ACB=$90^\\circ$, $AC^{2}+BC^{2}=AB^{2}$,\\\\\ntherefore, S=$AB^{2}=36$,\\\\\ntherefore, the side length of the square S equals $\\boxed{6}$.", -"solution_image": [ -"solution_images/51367277_730.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51366872": { -"question": "In the grid shown, each small square has a side length of 1, and each vertex of the small squares is called a grid point. Points $O$, $A$, and $B$ are all grid points. If the sector $AOB$ in the figure is the lateral surface development of a cone, what is the radius of the base circle of the cone?", -"image_file_name": "7058812", -"image": [ -"math/51366872_742.png" -], -"solution": "\\textbf{Solution:} Let the radius of the circular base of the cone be $r$. \\\\\nSince each small square has a side length of 1, \\\\\nthus $OA=OB=\\sqrt{3^2+4^2}=5$, $AB=\\sqrt{1^2+7^2}=5\\sqrt{2}$ \\\\\ntherefore $OA^2+OB^2=AB^2$ \\\\\nthus $\\angle AOB=90^\\circ$, \\\\\nsince the sector AOB is a lateral surface of the cone unfolded, \\\\\nthus the arc $AB$ is equal to the circumference of the base circle. \\\\\nLet the radius of the base circle be $r$ \\\\\nthus $\\frac{90^\\circ \\pi \\times 5}{180}=2\\pi r$, \\\\\ntherefore $r=\\boxed{\\frac{5}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51367517": { -"question": "As shown in the figure, within circle $O$, $AB$ is the diameter, and chord $CD \\perp AB$ at $E$. Connect $OC$ and $OD$. If the diameter is $10$ and $CD=8$, then what is the length of $BE$?", -"image_file_name": "7058812", -"image": [ -"math/51367517_750.png" -], -"solution": "Solution: Since $CD \\perp AB$ at $E$, and $CD=8$, with $AB$ being the diameter, \\\\\ntherefore $CE=\\frac{1}{2}CD=\\frac{1}{2}\\times 8=4$, and $\\angle OEC=90^\\circ$\\\\\ntherefore $OE=\\sqrt{OC^{2}-CE^{2}}=\\sqrt{5^{2}-4^{2}}=3$\\\\\ntherefore $BE=OB-OE=5-3=\\boxed{2}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51367326": { -"question": "Given the figure, $\\angle BAC=30^\\circ$, P is a point on the bisector of $\\angle BAC$, PM$\\parallel$AC, PD$\\perp$AC, and PD$=6$. What is the area of $\\triangle AMP$?", -"image_file_name": "7058812", -"image": [ -"math/51367326_760.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw PE$\\perp$AB at point E through point P,\\\\\nsince P is a point on the bisector of $\\angle$BAC, and PD$\\perp$AC, PE$\\perp$AB,\\\\\nit follows that PE=PD=6,\\\\\nsince $\\angle$BAC=30$^\\circ$, and PM$\\parallel$AC,\\\\\nit follows that $\\angle$PME=$\\angle$BAC=30$^\\circ$, and $\\angle$APM=$\\angle$PAD,\\\\\ntherefore PM=2PE=12,\\\\\nsince $\\angle$BAP=$\\angle$PAD,\\\\\nit follows that $\\angle$BAP=$\\angle$APM,\\\\\nthus AM=PM=12.\\\\\nTherefore, the area of $\\triangle AMP$= $\\frac{1}{2}\\times AM\\times PE=\\frac{1}{2}\\times 12\\times 6= \\boxed{36}$.", -"solution_image": [ -"solution_images/51367326_760.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51367325": { -"question": "In $\\triangle ABC$, $AB=AC$, and $\\angle B=30^\\circ$. The perpendicular bisector of side $AC$ intersects $AC$ and $BC$ at points $E$ and $D$ respectively. If $DE=2$, what is the length of $BC$?", -"image_file_name": "7058812", -"image": [ -"math/51367325_770.png" -], -"solution": "\\textbf{Solution:} Draw AD, \\\\\n$\\because$AB = AC, $\\angle B = 30^\\circ$, \\\\\n$\\therefore$ $\\angle C = 30^\\circ$, $\\angle BAC = 120^\\circ$, \\\\\n$\\because$ DE is the perpendicular bisector of AC, \\\\\n$\\therefore$ DC = DA, $\\angle DEC = 90^\\circ$, \\\\\n$\\therefore$ $\\angle DAC = \\angle DCA = 30^\\circ$, \\\\\n$\\because$ in $\\triangle DEC$, $\\angle C = 30^\\circ$, DE = 2, \\\\\n$\\therefore$ CD = AD = 2DE = 4, \\\\\n$\\because$ $\\angle BAC = 120^\\circ$, $\\angle DAC = 30^\\circ$, \\\\\n$\\therefore$ $\\angle BAD = 90^\\circ$, \\\\\n$\\therefore$ BD = 2AD = 8, \\\\\n$\\therefore$ BC = BD + CD = 8 + 4 = \\boxed{12}, \\\\", -"solution_image": [ -"solution_images/51367325_770.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51367328": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, point $P$ is a moving point on the bisector $CD$ of $\\angle ACB$, $CE=\\frac{1}{2}BC=8$, and the area of $\\triangle ABC$ is $48$. What is the minimum value of $PA+PE$?", -"image_file_name": "7058812", -"image": [ -"math/51367328_782.png" -], -"solution": "\\textbf{Solution:} Since CD is the bisector of $\\angle ACB$,\\\\\nwe construct the symmetric point $E'$ of point E with respect to line CD on BC, and draw line AE', where its intersection with line CD is point P.\\\\\nSince CD perpendicularly bisects EF,\\\\\nwe have PE=PE', and CE=CE',\\\\\nthus PA+PE=PA+PE'=AE'.\\\\\nSince $CE=\\frac{1}{2}BC=8$,\\\\\nwe get $BC=16$,\\\\\nwhich means point E' is the midpoint of BC.\\\\\nMoreover, since AB=AC,\\\\\nwe have AE'$\\perp$BC.\\\\\nGiven that the area of $\\triangle ABC$ is 48,\\\\\nwe deduce ${S}_{\\triangle ABC}=\\frac{1}{2}BC\\cdot AE'=\\frac{1}{2}\\times 16\\times AE'=48$,\\\\\nthus AE'=6,\\\\\ntherefore, the minimum value of PA+PE is $\\boxed{6}$.", -"solution_image": [ -"solution_images/51367328_781.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51367276": { -"question": "As shown in the Cartesian coordinate system, $OA=OB=\\sqrt{5}$, and $AB=\\sqrt{10}$. If the coordinates of point $A$ are (1, 2), what are the coordinates of point $B$?", -"image_file_name": "7058812", -"image": [ -"math/51367276_792.png" -], -"solution": "\\textbf{Solution:} Construct line BN$\\perp$x-axis, AM$\\perp$x-axis,\\\\\n$\\because$OA=OB=$\\sqrt{5}$, AB=$\\sqrt{10}$,\\\\\n$\\therefore$AO$^{2}$+OB$^{2}$=AB$^{2}$,\\\\\n$\\therefore$$\\angle$BOA=$90^\\circ$,\\\\\n$\\therefore$$\\angle$BON+$\\angle$AOM=$90^\\circ$,\\\\\n$\\because$$\\angle$BON+$\\angle$NBO=$90^\\circ$,\\\\\n$\\therefore$$\\angle$AOM=$\\angle$NBO,\\\\\n$\\because$$\\angle$AOM=$\\angle$NBO, $\\angle$BNO=$\\angle$AMO, BO=OA,\\\\\n$\\therefore$$\\triangle$BNO$\\cong$$\\triangle$OMA,\\\\\n$\\therefore$NB=OM, NO=AM,\\\\\n$\\because$the coordinates of point A are (1,2),\\\\\n$\\therefore$the coordinates of point B are $\\boxed{(-2,1)}$.", -"solution_image": [ -"solution_images/51367276_790.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51366817": { -"question": "As shown in the figure, $\\angle MON=30^\\circ$, points $A_1$, $A_2$, $A_3$, ... are on ray ON, and points $B_1$, $B_2$, $B_3$, ... are on ray OM. The triangles $\\triangle A_1B_1A_2$, $\\triangle A_2B_2A_3$, $\\triangle A_3B_3A_4$, ... are all equilateral triangles, with the side length of the first equilateral triangle from the left being $a_1$, the second being $a_2$, and so on. If $OA_1=1$, what is the value of $a_{2020}$?", -"image_file_name": "7058812", -"image": [ -"math/51366817_800.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$\\because$ $\\triangle A_1B_1A_2$ is an equilateral triangle,\\\\\n$\\therefore$ $A_1B_1=A_2B_1$, $\\angle 3=\\angle 4=\\angle 1+\\angle O=60^\\circ$,\\\\\n$\\therefore$ $\\angle 2=120^\\circ$,\\\\\n$\\because$ $\\angle MON=30^\\circ$,\\\\\n$\\therefore$ $\\angle 1=180^\\circ-120^\\circ-30^\\circ=30^\\circ$,\\\\\nFurthermore, $\\because$ $\\angle 3=60^\\circ$,\\\\\n$\\therefore$ $\\angle 5=180^\\circ-60^\\circ-30^\\circ=90^\\circ$,\\\\\n$\\because$ $\\angle MON=\\angle 1=30^\\circ$,\\\\\n$\\therefore$ $OA_1=A_1B_1=1$,\\\\\n$\\therefore$ $A_2B_1=1$,\\\\\n$\\because$ $\\triangle A_2B_2A_3$, $\\triangle A_3B_3A_4$ are equilateral triangles,\\\\\n$\\therefore$ $\\angle 11=\\angle 10=60^\\circ$, $\\angle 13=60^\\circ$,\\\\\n$\\because$ $\\angle 4=\\angle 12=60^\\circ$,\\\\\n$\\therefore$ $A_1B_1 \\parallel A_2B_2 \\parallel A_3B_3$, $B_1A_2 \\parallel B_2A_3$,\\\\\n$\\therefore$ $\\angle 1=\\angle 6=\\angle 7=30^\\circ$, $\\angle 5=\\angle 8=90^\\circ$,\\\\\n$\\therefore$ $a_2=2a_1$, $a_3=4a_1=4$, $a_4=8a_1=8$, $a_5=16a_1$,\\\\\nBy analogy: $a_{2020}=2^{2019}$.\\\\\nTherefore, the answer is: $a_{2020}=\\boxed{2^{2019}}$", -"solution_image": [ -"solution_images/51366817_800.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52082526": { -"question": "As shown in the figure, the right-angled triangle $\\triangle OAB$ has its right-angle vertex $A$ on the $y$-axis. The graph of the inverse proportional function $y=\\frac{k}{x}$ (where $k>0$, $x>0$) passes through the midpoint $D$ of line segment $OB$ and intersects line segment $AB$ at point $C$. Connect $CD$. If the area of $\\triangle BCD$ is $3$, what is the value of $k$?", -"image_file_name": "7054440", -"image": [ -"math/52082526_251.png" -], -"solution": "\\textbf{Solution:} Join OC, and draw a perpendicular line from D to the x-axis, intersecting AB at point E and the x-axis at point F,\\\\\n\\(\\because S_{\\triangle CAO} = S_{\\triangle DOF} = \\frac{1}{2}|k|\\),\\\\\n\\(\\because\\) D is the midpoint of the line segment OB,\\\\\n\\(\\therefore S_{\\triangle BDE} = S_{\\triangle DOF} = \\frac{1}{2}|k|\\),\\\\\n\\(\\because\\) DE is the median of \\(\\triangle AOB\\),\\\\\n\\(\\therefore DE : OA = 1 : 2\\),\\\\\n\\(\\therefore S_{\\triangle BDE} = \\frac{1}{4}S_{\\triangle AOB} = S_{\\triangle CAO}\\),\\\\\n\\(\\therefore S_{\\triangle OBC} = S_{\\triangle AOB} - S_{\\triangle CAO} = \\frac{3}{4}S_{\\triangle AOB}\\),\\\\\n\\(\\because\\) D is the midpoint of the line segment OB,\\\\\n\\(\\therefore S_{\\triangle OBC} = 2S_{\\triangle BCD} = 6 = \\frac{3}{4}S_{\\triangle AOB}\\),\\\\\n\\(\\therefore S_{\\triangle AOB} = 8\\),\\\\\n\\(\\therefore S_{\\triangle AOC} = \\frac{1}{4}S_{\\triangle AOB} = 2 = \\frac{1}{2}|k|\\),\\\\\n\\(\\because k > 0\\),\\\\\n\\(\\therefore k = \\boxed{4}\\).", -"solution_image": [ -"solution_images/52082526_250.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52082490": { -"question": "As shown in the diagram, $O$ is the intersection point of the diagonals of square $ABCD$, and $E$ is a point on line segment $AO$. If $AB = 1$, and $\\angle BED = 135^\\circ$, what is the length of $AE$?", -"image_file_name": "7054440", -"image": [ -"math/52082490_260.png" -], -"solution": "\\textbf{Solution:} Since it is a square ABCD,\\\\\nit follows that $\\angle BCA=\\angle BAC=45^\\circ$, $\\angle ABC=90^\\circ$, and BC=AB=1,\\\\\nthus, AC=$\\sqrt{2}$AB=$\\sqrt{2}$,\\\\\nsince E is a point on the diagonal AC of the square, and $\\angle DEB=135^\\circ$,\\\\\nit is easy to derive that $\\angle CEB=\\angle CED=67.5^\\circ$,\\\\\nthus, $\\angle EBC=180^\\circ-67.5^\\circ-45^\\circ=67.5^\\circ$,\\\\\ntherefore, $\\angle EBC=CEB=67.5^\\circ$,\\\\\nhence, BC=EC=1,\\\\\nthus, AE=AC−EC=$\\sqrt{2}-1$.\\\\\nTherefore, the answer is: $AE=\\boxed{\\sqrt{2}-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52082489": { -"question": "As shown in the figure, in rhombus $ABCD$, $AC=6$, and $BD=4$. What is the length of $AB$?", -"image_file_name": "7054440", -"image": [ -"math/52082489_270.png" -], -"solution": "\\textbf{Solution:} Since ABCD is a rhombus,\\\\\nit follows that AC $\\perp$ BD, AO = OC, BO = DO,\\\\\nsince AC = 6, BD = 4,\\\\\nit follows that AO = 3, BO = 2,\\\\\ntherefore AB = $\\sqrt{AO^{2}+BO^{2}}$ = $\\sqrt{3^{2}+2^{2}}$ = $\\boxed{\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52082450": { -"question": "As shown in the figure, square $ABCD$ has a side length of $2$, and points $E$, $F$ are movable points on diagonal $AC$, with the length of $EF$ being $1$. Connecting $BE$ and $BF$, what is the minimum perimeter of $\\triangle BEF$?", -"image_file_name": "7054440", -"image": [ -"math/52082450_280.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $BH \\parallel AC$ such that $BH = EF = 1$, and connect $DH$ intersecting $AC$ at $E$, thus the perimeter of $\\triangle BEF$ is minimized,\\\\\n$\\because BH = EF$, $BH \\parallel EF$,\\\\\n$\\therefore$ the quadrilateral $EFBH$ is a parallelogram,\\\\\n$\\therefore$ $BF = EH$,\\\\\n$\\because$ the quadrilateral $ABCD$ is a square,\\\\\n$\\therefore$ $AC$ bisects $BD$ perpendicularly,\\\\\n$\\therefore$ $EB = ED$,\\\\\n$\\therefore$ $BE + BF = EH + ED = DH$,\\\\\n$\\because$ the quadrilateral $ABCD$ is a square,\\\\\n$\\therefore$ $AC \\perp BD$,\\\\\n$\\because$ $BH \\parallel AC$,\\\\\n$\\therefore$ $BD \\perp BH$, that is, $\\angle DBH = 90^\\circ$,\\\\\nIn $\\triangle DBH$,\\\\\n$DH = \\sqrt{BD^2 + BH^2} = \\sqrt{(2\\sqrt{2})^2 + 1^2} = 3$,\\\\\n$\\therefore$ the minimum possible perimeter of $\\triangle BEF$ is $3 + 1 = \\boxed{4}$.", -"solution_image": [ -"solution_images/52082450_280.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52082448": { -"question": "As illustrated in the diagram, within the rectangle $ABCD$, the ratio of $AB$ to $BC$ is $3:4$, and $BP=3$. When $OABP$ is folded along $AP$ such that point $B$ precisely aligns with point $E$ on the diagonal $AC$, what is the length of $BC$?", -"image_file_name": "7054440", -"image": [ -"math/52082448_290.png" -], -"solution": "Solution: Let $AB=3x$ and $BC=4x$,\\\\\nsince quadrilateral $ABCD$ is a rectangle,\\\\\nthus $AC= \\sqrt{AB^{2}+BC^{2}}=5x$,\\\\\nsince it is folded,\\\\\nthus $BP=PE=3$, $AE=AB=3x$, $\\angle AEP=\\angle B=90^\\circ$,\\\\\nthus $PC=4x-3$, $EC=AC-AE=2x$,\\\\\nthus $PC^{2}=PE^{2}+EC^{2}$, i.e., $(4x-3)^{2}=3^{2}+(2x)^{2}$,\\\\\nSolving gives: $x=2$ or $0$ (discard $0$),\\\\\nthus $BC=4x=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52082370": { -"question": "As shown in the diagram, in rectangle $ABCD$, rectangle $ABCD$ is folded along $EF$ with point $A$ landing on point $A'$, and point $B$ landing on point $B'$ on side $CD$. Line $BB'$ intersects $EF$ at point $G$, and point $M$ is on $A'B'$ with $A'M=2B'M$. Given that $CD=3$ and $AD=6$, during the folding process, when point $B'$ is at different positions on side $CD$, what is the minimum value of $MG+ B'G$?", -"image_file_name": "7054440", -"image": [ -"math/52082370_300.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect GC, and choose a point Q on the segment AB such that AQ=2BQ. Connect QG and QC,\\\\\n$\\because$AB=CD=3,\\\\\n$\\therefore$BQ=1,\\\\\n$\\because$rectangle ABCD is folded along EF, point A falls on point A', and point B falls on point B' on side CD, with A'M=2B'M,\\\\\n$\\therefore$Q and M are symmetrical about EF,\\\\\n$\\therefore$QG=MG,\\\\\nAlso, $\\because$G is the midpoint of BB', and $\\angle$BCB'=$90^\\circ$,\\\\\n$\\therefore$GC=B'G,\\\\\n$\\therefore$MG+ B'G=QG+GC, $\\therefore$when points Q, G, and C are collinear, CQ=QG+GC, at this time, QG+GC is the shortest,\\\\\n$\\therefore$The minimum value of MG+ B'G is the length of CQ,\\\\\nIn right $\\triangle$BCQ, BQ=1, BC=6,\\\\\n$\\therefore$CQ=$\\sqrt{BQ^2+BC^2}$=$\\sqrt{1^2+6^2}$=$\\sqrt{37}$.\\\\\nTherefore, the answer is: $\\boxed{\\sqrt{37}}$.", -"solution_image": [ -"solution_images/52082370_300.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52082449": { -"question": "As shown in the figure, the graph of the function $y= \\frac{k}{x}$ ($x>0$) passes through the midpoint of one side of the rectangle $OBCD$ and also passes through the vertex $P$ of the rectangle $OAPE$. If the area of the shaded part is $6$, what is the value of $k$?", -"image_file_name": "7054440", -"image": [ -"math/52082449_311.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, let $M$ be the midpoint of $CD$, and draw $EF \\perp x$-axis at $N$, \\\\\n$\\therefore$ Rectangle $DONM$ is equal to half of the area of rectangle $OBCD$, \\\\\n$\\because$ Points $M$ and $P$ both lie on the graph of the inverse proportion function, \\\\\n$\\therefore$ The area of rectangle $DOMN$ is equal to the area of rectangle $EOAP$, \\\\\n$\\therefore$ The area of rectangle $EOAP$ is equal to half the area of rectangle $OBCD$, \\\\\n$\\therefore$ The area of rectangle $EOAP$ = area of the shaded part = 6, \\\\\n$\\therefore k=x\\boxed{y=6}$.", -"solution_image": [ -"solution_images/52082449_310.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52076993": { -"question": "As shown in the figure, one of the vertices $A$ of a triangular plate containing a $45^\\circ$ angle coincides with the vertex of the rectangle $ABCD$, the right-angled vertex $E$ is located on side $BC$, and another vertex $F$ falls exactly at the midpoint of side $CD$. If $BC = 12$, what is the length of $AB$?", -"image_file_name": "7054440", -"image": [ -"math/52076993_321.png" -], -"solution": "\\textbf{Solution:} Given that isosceles right triangle AEF,\n\\[\n\\therefore AE=EF, \\angle AEF=90^\\circ,\n\\]\n\\[\n\\therefore \\angle AEB+\\angle CEF=90^\\circ,\n\\]\nGiven rectangle ABCD,\n\\[\n\\therefore \\angle B=\\angle C=90^\\circ,\n\\]\n\\[\n\\therefore \\angle AEB+\\angle BAE=90^\\circ,\n\\]\n\\[\n\\therefore \\angle BAE=\\angle CEF,\n\\]\n\\[\n\\therefore \\triangle ABE \\cong \\triangle CEF \\text{ (AAS)},\n\\]\n\\[\n\\therefore AB=EC, BE=CF,\n\\]\nGiven F is the midpoint of CD and AB=CD,\n\\[\n\\therefore BE=\\frac{1}{2}AB,\n\\]\nGiven BC=12,\n\\[\n\\therefore \\frac{1}{2}AB + AB = 12,\n\\]\n\\[\n\\therefore AB=\\boxed{8}.\n\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076995": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle ACB=90^\\circ$, and $ \\square AEDB$ is constructed outside the triangle with AB as a side, whose diagonals intersect at point F. Given that AE=2 and AB=5, what is the maximum value of CF?", -"image_file_name": "7054440", -"image": [ -"math/52076995_333.png" -], -"solution": "\\textbf{Solution:} As depicted, let O be the midpoint of AB, and draw lines FO and CO.\\\\\n$\\because$ Quadrilateral $AEDB$, AE=2, AB=5,\\\\\n$\\therefore$ BD=2, AO=BO=2.5, AF=DF,\\\\\n$\\therefore$ OF is the median line of $\\triangle ABD$,\\\\\n$\\therefore$ FO=1,\\\\\nAlso, since $\\angle ACB=90^\\circ$,\\\\\n$\\therefore$ OC=2.5,\\\\\nIn $\\triangle FOC$, CF $<$ FO+OC,\\\\\n$\\therefore$ when points F, O, and C are collinear, CF is maximized,\\\\\n$\\therefore$ CFmax=FO+OC=1+2.5=\\boxed{3.5}.", -"solution_image": [ -"solution_images/52076995_330.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076992": { -"question": "As shown in the figure, in square $ABCD$, $E$ lies on the extension of $BC$, $AE$ and $BD$ intersect at point $F$. Connect $FC$. Then, what is the degree measure of $\\angle BCF$?", -"image_file_name": "7054440", -"image": [ -"math/52076992_340.png", -"math/52076992_342.png" -], -"solution": "\\textbf{Solution:} Given square ABCD,\\\\\nit follows that AD$\\parallel$BC, $\\angle$DCB=$90^\\circ$, AD=DC, $\\angle$ADF=$\\angle$CDF=$45^\\circ$,\\\\\nthus $\\triangle$ADF$\\cong$ $\\triangle$CDF (by SAS),\\\\\nwhich means $\\angle$DAF=$\\angle$DCF,\\\\\nalso, since AD$\\parallel$BC, $\\angle$E=$32^\\circ$,\\\\\nit follows that $\\angle$DAF=$32^\\circ$,\\\\\ntherefore $\\angle$DCF=$32^\\circ$,\\\\\nthus $\\angle$BCF=$\\angle$DCB-$\\angle$DCF=$90^\\circ-32^\\circ=\\boxed{58^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52076904": { -"question": "As shown in the figure, in the right triangle $ABC$, both quadrilaterals $DBFE$ and $GFIH$ are squares. Given that $AD=1\\text{cm}$ and $DB=3\\text{cm}$, what is the area of the shaded part in $\\text{cm}^2$?", -"image_file_name": "7054440", -"image": [ -"math/52076904_350.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $BE$, $FH$,\\\\\n$\\because$ $S_{\\triangle ABC}=\\frac{1}{2}AB\\cdot BC=\\frac{1}{2}AB\\cdot DE+\\frac{1}{2}BC\\cdot EF$,\\\\\n$\\therefore$ $4BC=12+3BC$,\\\\\n$\\therefore$ $BC=12$,\\\\\n$\\therefore$ $FC=BC-BF=12-3=9$,\\\\\n$\\because$ $S_{\\triangle EFC}=\\frac{1}{2}EF\\cdot FC=\\frac{1}{2}EF\\cdot GH+\\frac{1}{2}FC\\cdot HI$,\\\\\n$\\therefore$ $27=3GH+9HI$,\\\\\n$\\therefore$ $GH=\\frac{9}{4}$,\\\\\n$\\therefore$ the area of square GFIH is: $\\boxed{\\frac{81}{16}}$.", -"solution_image": [ -"solution_images/52076904_351.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076836": { -"question": "In Figure 1, the hypotenuse of the right-angled triangle is 4. Four of these right-angled triangles from Figure 1 are assembled into a square as shown in Figure 2. As illustrated, the four right-angled triangles are assembled into a square, where the areas of the shaded parts are denoted as $S_1$ and $S_2$, respectively. What is the value of $S_1+S_2$?", -"image_file_name": "7054440", -"image": [ -"math/52076836_362.png" -], -"solution": "\\textbf{Solution}: Let the length of the longer leg of the right triangle be $a$, and the length of the shorter leg be $b$,\\\\\n$\\therefore$ $a^{2}+b^{2}=4^{2}$\\\\\n$\\because$ $S_{1}=a^{2}$, $S_{2}=b^{2}$\\\\\n$\\therefore$ $S_{1}+S_{2}=16$\\\\\nTherefore, the answer is: $\\boxed{16}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076179": { -"question": "As shown in the figure, $E$ and $F$ are the midpoints of sides $CD$ and $BC$ of rectangle $ABCD$ respectively, with segments $AC$, $AE$, $EF$ connected. Given that $AE \\perp EF$ and $AC = 6$, what is the length of $AB$?", -"image_file_name": "7054440", -"image": [ -"math/52076179_3711.png" -], -"solution": "\\textbf{Solution:} Join BD and AF as shown in the diagram: \\\\\nSince quadrilateral ABCD is a rectangle, and $AC=6$, \\\\\ntherefore $BD=AC=6$, $\\angle ADC=\\angle ECF=90^\\circ$, $CD=AB$, \\\\\nBecause E and F are respectively the midpoints of sides CD and BC of rectangle ABCD, \\\\\nthus $EF=\\frac{1}{2}BD=3$, \\\\\nLet $DE=CE=a$, and $CF=BF=b$, then $AB=CD=2a$, $AD=BC=2b$, \\\\\nBecause $AE\\perp EF$, \\\\\ntherefore, in $\\triangle ADE$, $\\triangle CEF$, $\\triangle AEF$, $\\triangle ABF$, by applying the Pythagorean theorem, we get: \\\\\n$a^2+4b^2+9=4a^2+b^2$, $a^2+b^2=9$, \\\\\nthus, from the above equations, we get: $a^2=6$, \\\\\nSolving gives: $a=\\sqrt{6}$ (negative root is discarded), \\\\\ntherefore, $AB=2\\sqrt{6}$; \\\\\nHence, the answer is: $AB=\\boxed{2\\sqrt{6}}$.", -"solution_image": [ -"solution_images/52076179_370.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076092": { -"question": "As shown in the diagram, in rectangle $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. If $\\angle AOD = 60^\\circ$ and $AD = 1$, what is the length of $AB$?", -"image_file_name": "7054440", -"image": [ -"math/52076092_380.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rectangle,\\\\\nit follows that $AO=OC$, $BO=DO$, and $AC=BD$,\\\\\ntherefore $AO=DO$,\\\\\nsince $\\angle AOD=60^\\circ$,\\\\\nit follows that $\\triangle AOD$ is an equilateral triangle,\\\\\nthus $AO=OD=OB=AD=1$,\\\\\ntherefore $BD=2$,\\\\\nIn the right triangle $ABD$, by the Pythagorean theorem, we can find: $AB=\\sqrt{BD^{2}-AD^{2}}=\\boxed{\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076721": { -"question": "As shown in the figure, rectangle OABC is divided into six smaller rectangles by three lines. If D and E are the trisection points on the side CO, and the inverse proportion function $y=\\frac{k}{x}\\left(k\\ne 0\\right)$ just passes through the vertices F, G of the smaller rectangles. If the area of the shaded rectangles in the figure $S_{1}+S_{2}=5$, then what is the value of the inverse proportionality constant $k$?", -"image_file_name": "7054440", -"image": [ -"math/52076721_392.png" -], -"solution": "\\textit{Solution}: Since D and E are the trisection points on side CO, \\\\\nit follows that $S_{1}+S_{2}=\\frac{1}{3}S_{\\text{rectangle} OABC}$, \\\\\nhence $S_{\\text{rectangle} OAGD}=\\frac{2}{3}S_{\\text{rectangle} OABC}$, \\\\\ntherefore $S_{\\text{rectangle} OAGD}=2(S_{1}+S_{2})=10$, \\\\\nthus, $k=\\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52076050": { -"question": "As shown in the diagram, the perimeter of rhombus $ABCD$ is 40, and the diagonal $BD=12$. What is the area of the rhombus $ABCD$?", -"image_file_name": "7054440", -"image": [ -"math/52076050_403.png" -], -"solution": "\\textbf{Solution:} Given that the perimeter of rhombus $ABCD$ is 40,\\\\\nthus, the length of side $BC=10$,\\\\\nsince $BD=12$,\\\\\nthen $OB=\\frac{1}{2}BD=6$,\\\\\nthus $OC=\\sqrt{BC^{2}-OB^{2}}=\\sqrt{10^{2}-6^{2}}=8$,\\\\\ntherefore $AC=2OC=16$,\\\\\nhence the area $S_{\\text{rhombus}ABCD}=\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}\\times 12\\times 16=\\boxed{96}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076093": { -"question": "As shown in the figure, the diagonals $AC$ and $BD$ of the rhombus $ABCD$ intersect at point $O$. If $AC=8$ and $BD=6$, what is the perimeter of the rhombus?", -"image_file_name": "7054440", -"image": [ -"math/52076093_410.png" -], -"solution": "\\textbf{Solution:} It is known from the problem that $BD\\perp AC$, $AO=4$, and $BO=3$, \\\\\n$\\therefore AB= \\sqrt{3^2+4^2}=5$, \\\\\n$\\therefore$ the perimeter of the rhombus is $4\\times 5=\\boxed{20}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52065494": { -"question": "As shown in the figure, DE is the median line of $\\triangle ABC$, with point F on DE, and $\\angle AFB=90^\\circ$. If $AB=8$ and $BC=10$, what is the length of EF?", -"image_file_name": "7054440", -"image": [ -"math/52065494_420.png" -], -"solution": "\\textbf{Solution:} Given that DE is the median of $\\triangle ABC$, with BC=10, \\\\\nthus DE=$\\frac{1}{2}$BC=5, \\\\\nGiven that $\\angle AFB=90^\\circ$, and D is the midpoint of AB, with AB=8, \\\\\nthus DF=$\\frac{1}{2}$AB=4, \\\\\ntherefore EF=DE−DF=5−4=\\boxed{1}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52065495": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ is a point on the extension of $BC$. Connect $AC$, $DE$, and let $BE=AC$. If $\\angle ACB = 40^\\circ$, what is the degree measure of $\\angle E$?", -"image_file_name": "7054440", -"image": [ -"math/52065495_430.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\nit follows that AC=BD, and AC, BD bisect each other,\\\\\ntherefore BO=CO,\\\\\nthus $\\angle$DBE=$\\angle$ACB=40$^\\circ$.\\\\\nSince BE=AC,\\\\\nit follows that BD=BE,\\\\\nthus $\\angle$E=$ \\frac{180^\\circ−\\angle DBE}{2}=\\frac{180^\\circ−40^\\circ}{2}=\\boxed{70^\\circ}$.", -"solution_image": [ -"solution_images/52065495_430.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52065936": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD \\parallel BC$, and $\\angle B + \\angle C = 90^\\circ$. Squares $ABEF$, $ADHG$, and $DCJI$ are constructed externally on sides $AB$, $AD$, and $DC$, respectively, and their areas are denoted as $S_{1}$, $S_{2}$, and $S_{3}$ in sequence. If $S_{1} + S_{3} = 4S_{2}$, then what is the value of $\\frac{BC}{AD}$?", -"image_file_name": "7054440", -"image": [ -"math/52065936_441.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $AQ\\parallel CD$ through point A, and let it intersect $BC$ at point Q,\\\\\n$\\therefore$ $\\angle AQB=\\angle QCD$,\\\\\n$\\because$ $AD\\parallel BC$,\\\\\n$\\therefore$ Quadrilateral $ADCQ$ is a parallelogram,\\\\\n$\\therefore$ $AD=QC$, $AQ=DC$, $\\angle BCD=\\angle AEB$,\\\\\n$\\because$ $\\angle ABC+\\angle BCD=90^\\circ$,\\\\\n$\\therefore$ $\\angle ABC+\\angle QCD=90^\\circ$,\\\\\n$\\therefore$ $\\angle BAQ=90^\\circ$,\\\\\n$\\therefore$ $AB^{2}+AQ^{2}=BQ^{2}$, that is, $AB^{2}+DC^{2}=BQ^{2}$,\\\\\n$\\therefore$ $S_{1}+S_{3}=BQ^{2}$,\\\\\nFurthermore, $\\because$ $S_{1}+S_{3}=4S_{2}$,\\\\\n$\\therefore$ $4S_{2}=BQ^{2}=4AD^{2}$,\\\\\n$\\therefore$ $BQ=2AD$,\\\\\n$\\therefore$ $BC=BQ+QC=2AD+AD=3AD$,\\\\\n$\\therefore$ $\\frac{BC}{AD}=\\frac{3AD}{AD}=\\boxed{3}$.", -"solution_image": [ -"solution_images/52065936_440.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52050259": { -"question": "As shown in the figure, locations A and B are separated by a pond. In order to measure the distance between A and B, an appropriate point C outside of AB is chosen. The lines AC and BC are connected, and the midpoints E and F of the line segments AC and BC, respectively, are identified. It is measured that $EF = 6m$. What is the distance between A and B in meters?", -"image_file_name": "7054440", -"image": [ -"math/52050259_452.jpg" -], -"solution": "\\textbf{Solution:} Since $E$ and $F$ are the midpoints of $AC$ and $BC$ respectively,\\\\\ntherefore, $EF$ is a midsegment of $\\triangle ABC$,\\\\\ntherefore, $AB = 2EF = \\boxed{12}$m.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52050224": { -"question": "As shown in the figure, the quadrilateral $ABCO$ is a rectangle. The coordinates of point $A$ are $(4, 0)$, and the coordinates of point $C$ are $(0, 8)$. When the rectangle $ABCO$ is folded along $OB$, point $A$ falls on point $D$. What are the coordinates of point $D$?", -"image_file_name": "7054440", -"image": [ -"math/52050224_465.png" -], -"solution": "\\textbf{Solution:} Draw $DE \\perp x$-axis at $E$, as shown in the diagram:\\\\\n$\\because$ Quadrilateral $ABCO$ is a rectangle, where the coordinates of point $A$ are $(4, 0)$, and the coordinates of point $C$ are $(0, 8)$,\\\\\n$\\therefore OA = BC = 4, AB = OC = 8$,\\\\\n$\\because$ Folding rectangle $ABCO$ along $OB$,\\\\\n$\\therefore \\triangle ABO \\cong \\triangle DBO$,\\\\\n$\\therefore \\angle FDO = 90^\\circ, OD = OA = 4$,\\\\\nIn $\\triangle DFO$ and $\\triangle CFB$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle BFC = \\angle OFD\\\\\n\\angle FDO = \\angle BCF = 90^\\circ\\\\\nDO = 4 = BC\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle DFO \\cong \\triangle CFB (AAS)$,\\\\\n$\\therefore FD = FC$,\\\\\nLet $FD = FC = x$, then $FO = OC - FC = 8 - x$,\\\\\nIn $\\triangle DFO$, where $\\angle FDO = 90^\\circ, DF = x, OF = 8 - x, DO = 4$, according to the Pythagorean theorem $OF^{2} = DF^{2} + DO^{2}$, we get $(8-x)^{2} = x^{2} + 4^{2}$, solving for $x$ yields $x = 3$,\\\\\n$\\therefore S_{\\triangle DFO} = \\frac{1}{2}DF \\cdot DO = \\frac{1}{2}FO \\cdot OE$, substituting values we get $OE = \\frac{12}{5}$,\\\\\nIn $\\triangle DEO$, where $\\angle DEO = 90^\\circ, OE = \\frac{12}{5}, DO = 4$, according to the Pythagorean theorem, we get $DE = \\sqrt{DO^{2} - OE^{2}} = \\sqrt{4^{2} - \\left(\\frac{12}{5}\\right)^{2}} = \\frac{16}{5}$,\\\\\n$\\because$ Point $D$ is in the second quadrant,\\\\\n$\\therefore D\\left(-\\frac{12}{5}, \\frac{16}{5}\\right)$,\\\\\nHence, the answer is: $\\boxed{\\left(-\\frac{12}{5}, \\frac{16}{5}\\right)}$.", -"solution_image": [ -"solution_images/52050224_460.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52050118": { -"question": "As shown in the diagram, within the rectangle $ABCD$, point $E$ lies on the extension of $AB$. If $BE=AC=6$ and $\\angle E=15^\\circ$, then what is the length of $AB$? ", -"image_file_name": "7054440", -"image": [ -"math/52050118_476.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BD, \\\\\nsince quadrilateral ABCD is a rectangle, \\\\\ntherefore BD=AC, \\\\\nalso since BE=AC, \\\\\ntherefore BD=AC=BE=6, \\\\\ntherefore $\\angle E=\\angle BDE$, \\\\\ntherefore $\\angle ABD=\\angle E+\\angle BDE=2\\angle E=30^\\circ$, \\\\\ntherefore AB=$BD\\cos\\angle ABD$=6×$\\frac{\\sqrt{3}}{2}$=$\\boxed{3\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52050118_470.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52861959": { -"question": "As shown in the figure, squares are constructed externally on each side of the right-angled triangle $ABC$. Line segment $CG$ is drawn, where square $ACDE$ and square $ABGF$ have areas of 1 and 5, respectively. What is the length of $CG$?", -"image_file_name": "7045627", -"image": [ -"math/52861959_420.png" -], -"solution": "\\textbf{Solution:} Draw line AH, \\\\\nsince the areas of square ACDE and square ABGF are 1 and 5, respectively, \\\\\ntherefore, AC$^{2}=1$, AB$^{2}=5$, GB=AB, \\\\\nthus, AC=1, \\\\\nsince $\\angle$ACB$=90^\\circ$, \\\\\ntherefore, BC$^{2}=AB^{2}-AC^{2}=5-1=4$, \\\\\nhence, BC=2, \\\\\nsince quadrilateral BDIH is a square, \\\\\ntherefore, CI=HI=BC=2, $\\angle$ICB$=90^\\circ$, CB=HB, \\\\\nthus, $\\angle$ACB+$\\angle$ICB$=180^\\circ$, \\\\\nhence, points A, C, and I are on the same line, \\\\\nthus, AI=AC+CI=1+2=3, \\\\\ntherefore, HA=$\\sqrt{HI^{2}+AI^{2}}=\\sqrt{2^{2}+3^{2}}=\\sqrt{13}$, \\\\\nsince $\\angle$ABG=$\\angle$CBH$=90^\\circ$, \\\\\ntherefore, $\\angle$GBC=$\\angle$ABH$=90^\\circ+\\angle$ABC, \\\\\nin $\\triangle GBC$ and $\\triangle ABH$, \\\\\n$\\left\\{\\begin{array}{l}GB=AB \\\\ \\angle GBC=\\angle ABH \\\\ CB=HB \\end{array}\\right.$, \\\\\nthus, $\\triangle GBC\\cong \\triangle ABH$ (SAS), \\\\\ntherefore, CG=HA=$\\sqrt{13}$, \\\\\nhence, the length of CG is $\\boxed{\\sqrt{13}}$.", -"solution_image": [ -"solution_images/52861959_420.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52861525": { -"question": " In the figure, inside $\\triangle ABC$, the median from $AB$ intersects side $AC$ at point $E$, with $BE=5$ and $CE=3$. What is the length of $AC$?", -"image_file_name": "7045627", -"image": [ -"math/52861525_437.png" -], -"solution": "Solution: Since the perpendicular bisector of AB intersects side AC at point E, and BE = 5, \\\\\nit follows that AE = BE = 5. \\\\\nSince CE = 3 and $AC = AE + CE$, \\\\\nit follows that $AC = \\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52861346": { -"question": "As shown in the figure, in $\\triangle ABC$, the altitude $AE$ intersects $BC$ at point $E$. If $\\frac{1}{2}\\angle ABE + \\angle C = 45^\\circ$, $CE = 5\\sqrt{2}$, and the area of $\\triangle ABC$ is 20, what is the length of $AB$?", -"image_file_name": "7045627", -"image": [ -"math/52861346_442.png" -], -"solution": "\\textbf{Solution:} Draw CD $\\perp$ BA from point C, intersecting the extension line of BA at point D,\\\\\nthus $\\angle ADC = 90^\\circ$,\\\\\nsince $\\frac{1}{2}\\angle ABE + \\angle ACB = 45^\\circ$,\\\\\nthus $\\angle ABE + 2\\angle ACB = 90^\\circ$,\\\\\nsince $\\angle ABE + \\angle ACB + \\angle ACD = 90^\\circ$,\\\\\nthus $\\angle ACB = \\angle ACD$,\\\\\nsince AE is the altitude of $\\triangle ABC$,\\\\\nthus $\\angle AEC = \\angle ADC = 90^\\circ$,\\\\\nin $\\triangle AEC$ and $\\triangle ADC$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle AEC=\\angle ADC \\\\\n\\angle ACE=\\angle ACD \\\\\nAC=AC\n\\end{array}\\right.$\\\\\nthus $\\triangle AEC\\cong \\triangle ADC$ (AAS),\\\\\nthus CE$=CD=5\\sqrt{2}$,\\\\\nsince $S_{\\triangle ABC}=\\frac{1}{2}\\text{AB}\\cdot\\text{CD}$,\\\\\nthus $20=\\frac{1}{2}\\times\\text{AB}\\times 5\\sqrt{2}$,\\\\\nthus AB$=\\boxed{4\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52861346_440.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52861344": { -"question": "As shown in the figure, in $\\triangle ABC$, it is known that points D, E, and F are the midpoints of sides BC, AD, and CE, respectively, and the area of $\\triangle ABC$ is $8\\,\\text{cm}^2$. What is the area of the shaded region $\\triangle BEF$ in $\\text{cm}^2$?", -"image_file_name": "7045627", -"image": [ -"math/52861344_450.png" -], -"solution": "\\textbf{Solution:}\n\nSince point D is the midpoint of side BC,\\\\\nit follows that AD is the median of $\\triangle ABC$,\\\\\nhence, the area of $\\triangle ABD$ equals the area of $\\triangle ADC$ equals $\\frac{1}{2}$ the area of $\\triangle ABC$ equals $\\frac{1}{2} \\times 8 = 4$;\\\\\nSince E is the midpoint of side AD,\\\\\nthen BE and CE are the medians,\\\\\nhence, the area of $\\triangle EBD$ equals the area of $\\triangle EDC$ equals $\\frac{1}{2}$ the area of $\\triangle ABD$ equals $\\frac{1}{2} \\times 4 = 2$;\\\\\ntherefore, the area of $\\triangle BEC$ equals $2 + 2 = 4$,\\\\\nSimilarly, it is known that BF is the median of $\\triangle BEC$,\\\\\ntherefore, the area of $\\triangle BEF$ equals $\\frac{1}{2} \\times 4 = \\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52861343": { -"question": "As shown in the figure, what is the sum of $\\angle A+\\angle B+\\angle C+\\angle D$?", -"image_file_name": "7045627", -"image": [ -"math/52861343_460.png" -], -"solution": "\\textbf{Solution}: Draw lines AD and BC.\\\\\nIn quadrilateral ABCD, we have $\\angle DAE + \\angle EAB + \\angle ABF + \\angle FBC + \\angle DCF + \\angle BCF + \\angle CDE + \\angle ADE = 360^\\circ$,\\\\\nSince $\\angle DEA = 105^\\circ$ and $\\angle BFC = 120^\\circ$,\\\\\nIt follows that $\\angle DAE + \\angle ADE = 180^\\circ - 105^\\circ = 75^\\circ$ and $\\angle FBC + \\angle BCF = 180^\\circ - 120^\\circ = 60^\\circ$,\\\\\nTherefore, $\\angle EAB + \\angle ABF + \\angle DCF + \\angle CDE = 360^\\circ - 75^\\circ - 60^\\circ = 225^\\circ$.\\\\\nHence, $\\angle A + \\angle B + \\angle C + \\angle D = \\boxed{225^\\circ}$.", -"solution_image": [ -"solution_images/52861343_460.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52861124": { -"question": "As shown in the figure, in the isosceles $\\triangle ABC$, $\\angle ACB=90^\\circ$, point D is a moving point on the ray CB, AE=AD, and AE$\\perp$AD. BE intersects the line containing AC at point P. If AC=5PC, then what is the value of $ \\frac{BD}{CD}$?", -"image_file_name": "7045627", -"image": [ -"math/52861124_471.png" -], -"solution": "\\textbf{Solution:} When point D is on the extension of CB, draw EM $\\perp$ AC at point M on the extension of AC,\\\\\n$\\therefore \\angle$AME=$\\angle$ACB=$90^\\circ$,\\\\\n$\\because$AE$\\perp$AD,\\\\\n$\\therefore \\angle$DAC+$\\angle$EAM=$90^\\circ$, $\\angle$EAM+$\\angle$AEM=$90^\\circ$,\\\\\n$\\therefore \\angle$DAC=$\\angle$AEM,\\\\\nIn $\\triangle ADC$ and $\\triangle AEM$\\\\\n$ \\left\\{\\begin{array}{l}\n\\angle DAC=\\angle AEM\\\\\n\\angle AME=\\angle ACB\\\\\nAE=AD\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle ADC \\cong \\triangle AEM$ (AAS),\\\\\n$\\therefore AC=ME$,\\\\\n$\\because \\triangle ABC$ is an isosceles right triangle,\\\\\n$\\therefore AC=BC$,\\\\\n$\\therefore BC=ME$,\\\\\nIn $\\triangle PME$ and $\\triangle PBC$\\\\\n$ \\left\\{\\begin{array}{l}\n\\angle PCB=\\angle PME\\\\\n\\angle BPC=\\angle EPM\\\\\nBC=ME\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle PME \\cong \\triangle PBC$ (AAS),\\\\\n$\\therefore PC=PM,\\\\\nLet PC=PM=x, then AC=BC=5x, AM=DC=AC+PC+PM=5x+x+x=7x$,\\\\\n$\\therefore DB=DC−BC=7x−5x=2x$,\\\\\n$\\therefore \\frac{BD}{CD}=\\frac{2x}{7x}=\\boxed{\\frac{2}{7}}$;\\\\\nWhen point D is on the line segment CD, draw ME $\\perp$ AC at point M,\\\\\nSimilarly, it can be proven that $\\triangle ADC \\cong \\triangle AEM$, $\\triangle PME \\cong \\triangle PBC$,\\\\\n$\\therefore AC=ME, PC=PM,\\\\\nLet PC=PM=x, then AC=BC=5x, AM=DC=AC−PC−PM=5x−x−x=3x$,\\\\\n$\\therefore DB=BC−DC=5x−3x=2x$,\\\\\n$\\therefore \\frac{BD}{CD}=\\frac{2x}{3x}=\\boxed{\\frac{2}{3}}$;", -"solution_image": [ -"solution_images/52861124_470.png", -"solution_images/52861124_474.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52861122": { -"question": "As shown in the figure, in $\\triangle ABC$, DE is the perpendicular bisector of AC, AB=5, BC=7, then what is the perimeter of $\\triangle ABD$?", -"image_file_name": "7045627", -"image": [ -"math/52861122_480.png" -], -"solution": "Solution: Since $DE$ is the perpendicular bisector of $AC$, \\\\\n$\\therefore$ $AD=DC$, \\\\\n$\\therefore$ the perimeter of $\\triangle ABD$ is $AD+BD+AB=DC+BD+AB=BC+AB=5+7=\\boxed{12}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52845727": { -"question": "As shown in the diagram, D is a point on the bisector of $\\angle MAN$. Point B lies on ray AM, with $DE \\perp AM$ at point E, and $DF \\perp AN$ at point F. Connect AD. Take a point C on ray AN such that $DC=DB$. If $AB=7$ and $BE=2$, what is the length of $AC$?", -"image_file_name": "7045627", -"image": [ -"math/52845727_490.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, since $D$ is a point on the bisector of $\\angle MAN$, and $DE \\perp AM$ at point $E$, $DF \\perp AN$ at point $F$, therefore $\\angle DEB = \\angle DFC = 90^\\circ$, $DE=DF$, and $\\angle BAD=\\angle CAD$. In right triangles $\\triangle DEB$ and $\\triangle DFC$, we have $\\left\\{\\begin{array}{l}BD=DC\\\\ DE=DF\\end{array}\\right.$, therefore right $\\triangle DEB \\cong$ right $\\triangle DFC$ (HL), hence $\\angle DBE=\\angle DCF$, and therefore $\\angle ABD=\\angle ACD$. In $\\triangle ABD$ and $\\triangle ACD$, we have $\\left\\{\\begin{array}{l}\\angle BAD=\\angle CAD\\\\ \\angle ABD=\\angle ACD\\\\ DB=DC\\end{array}\\right.$, therefore $\\triangle ABD \\cong \\triangle ACD$ (AAS), hence $AC=AB=7$. In right triangles $\\triangle DEA$ and $\\triangle DFA$, we have $\\left\\{\\begin{array}{l}AD=DA\\\\ DE=DF\\end{array}\\right.$, therefore right $\\triangle DEA \\cong$ right $\\triangle DFA$ (HL), hence $AF=AE=2+7=9$, therefore $AC=AF+CF=9+2=11$. In summary, the length of $AC$ is $\\boxed{7}$ or $\\boxed{11}$.", -"solution_image": [ -"solution_images/52845727_490.png", -"solution_images/52845727_493.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837435": { -"question": "As shown in the figure, $ \\angle DAC = 2x$, $ \\angle ACB = 4x$, $ \\angle ABC = 3x$, and $AD = BC$, then what is the value of $ \\angle BAD$?", -"image_file_name": "7045627", -"image": [ -"math/52837435_502.png" -], -"solution": "\\textbf{Solution:} Extend BC to point E such that CE=BD,\\\\\n$\\therefore$BD+CD=CE+CD,\\\\\n$\\therefore$BC=DE,\\\\\n$\\because$AD=BC,\\\\\n$\\therefore$AD=DE,\\\\\n$\\therefore \\angle E=\\angle DAE$,\\\\\n$\\because \\angle ACD=4x$,\\\\\n$\\therefore \\angle CAE+\\angle E=4x$,\\\\\n$\\therefore \\angle E=4x-\\angle CAE=\\angle DAE$,\\\\\n$\\therefore 4x-\\angle CAE =2x+\\angle CAE$,\\\\\n$\\therefore \\angle CAE =x$, $\\angle DAE =\\angle E =3x$,\\\\\n$\\because \\angle ABC =3x$,\\\\\n$\\therefore \\angle ABC =\\angle E$,\\\\\n$\\therefore AB=AE$,\\\\\n$\\therefore \\triangle ABD \\cong \\triangle AEC$,\\\\\n$\\therefore \\angle ADB=\\angle ACE$,\\\\\n$\\therefore \\angle ADC=\\angle ACD=4x$,\\\\\n$\\because \\angle ADC+\\angle ACD+\\angle DAC =180^\\circ$,\\\\\n$\\therefore 4x+4x+2x=180^\\circ$,\\\\\nSolving for: $x=18^\\circ$,\\\\\n$\\therefore \\angle BAD= \\boxed{18^\\circ}$.", -"solution_image": [ -"solution_images/52837435_500.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52837433": { -"question": "As shown in the figure, $\\angle 2 : \\angle 3 : \\angle 4 = 3 : 9 : 7$, then what is the degree measure of $\\angle 1$?", -"image_file_name": "7045627", -"image": [ -"math/52837433_510.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle 2 : \\angle 3 : \\angle 4 = 3 : 9 : 7$,\\\\\nlet $\\angle 2 = 3\\beta$, $\\angle 3 = 9\\beta$, and $\\angle 4 = 7\\beta$,\\\\\nsince $\\angle 2 + \\angle 3 = 180^\\circ$,\\\\\nthus $3\\beta + 9\\beta = 180^\\circ$,\\\\\ntherefore $\\beta = 15^\\circ$,\\\\\ntherefore $\\angle 2 = 45^\\circ$ and $\\angle 4 = 105^\\circ$,\\\\\ntherefore $\\angle 1 = 180^\\circ - \\angle 2 - \\angle 4 = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52837434": { -"question": "As shown in the figure, $ \\triangle ABC \\cong \\triangle ADE$, where $AB=8$, $AC=5$, $BC=6$. What is the length of $CD$?", -"image_file_name": "7045627", -"image": [ -"math/52837434_520.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle ADE$, AB=8, AC=5, BC=6,\\\\\nthus AD=AB=8,\\\\\ntherefore CD=AD-AC=8-5=\\boxed{3}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837436": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$, $AD$ bisects $\\angle BAC$ and intersects $BC$ at point $D$. If $BD : CD = 3 : 2$ and the distance from point $D$ to $AB$ is 8, what is the length of $BC$?", -"image_file_name": "7045627", -"image": [ -"math/52837436_5310.png" -], -"solution": "\\textbf{Solution}: Draw $DE\\perp AB$ at point $E$ through point $D$,\\\\\nsince $AD$ bisects $\\angle BAC$, $\\angle C=90^\\circ$, and $DE\\perp AB$,\\\\\nit follows that $CD=DE=8$,\\\\\nalso, since $BD:CD=3:2$,\\\\\nit follows that $BD=12$,\\\\\nhence, $BC=BD+DC=\\boxed{20}$.", -"solution_image": [ -"solution_images/52837436_533.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52827844": { -"question": "In the book \"Gougu Juyu,\" the Qing Dynasty mathematician Mei Wending proved the Pythagorean theorem by using four congruent right triangles to piece together square ABCD, as shown in the figure. By connecting CE, if $CE=5$ and $BE=4$, what is the side length of square ABCD?", -"image_file_name": "7045627", -"image": [ -"math/52827844_542.png" -], -"solution": "As shown in the figure:\n\nFrom the four congruent right triangles, it is known that $BE=CF=4$, and $AE=BF$,\n\nBy Pythagorean theorem, $EF=\\sqrt{CE^{2}-CF^{2}}=\\sqrt{5^{2}-4^{2}}=3$,\n\n$\\therefore BF=BE-EF=4-3=1$,\n\nBy Pythagorean theorem, $AB=\\sqrt{AE^{2}+BE^{2}}=\\sqrt{1^{2}+4^{2}}=\\boxed{\\sqrt{17}}$.", -"solution_image": [ -"solution_images/52827844_540.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52827570": { -"question": "As shown in the figure, it is known that $\\angle A=\\angle B=90^\\circ$, $AB=6$, and E, F are moving points on segment $AB$ and ray $BD$ respectively, with $BF=2BE$. Point G is on ray $AC$, and $EG$ is connected. If $\\triangle AEG$ is congruent to $\\triangle BEF$, what is the length of segment $AG$?", -"image_file_name": "7045627", -"image": [ -"math/52827570_5510.png" -], -"solution": "\\textbf{Solution:} \n(1) As shown in the figure:\\\\\nWhen $\\triangle GAE \\cong \\triangle EBF$, we have: $AG=BE$, $AE=BF$\\\\\nSince $BF=2BE$,\\\\\nit follows that $AE=2BE$,\\\\\nSince $AB=AE+BE=3BE=6$,\\\\\nit follows that $BE=2$,\\\\\nHence $AG=BE=\\boxed{2}$;\\\\\n(2) When $\\triangle GAE \\cong \\triangle FBE$, we have: $AE=BE$, $AG=BF$\\\\\nSince $AB=AE+BE=2BE=6$,\\\\\nit follows that $BE=3$,\\\\\nSince $BF=2BE$,\\\\\nit follows that $AG=2BE=\\boxed{6}$;\\\\", -"solution_image": [ -"solution_images/52827570_550.png", -"solution_images/52827570_556.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52828076": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle A > \\angle B$, the $\\triangle ABC$ is first folded along the crease $CE$ so that point $A$ can fall on $BC$. After flattening, $\\angle B$ is folded along the crease $GF$ making point $B$ coincide with point $A$, where $FG$ intersects sides $BC$ and $AB$ at points $F$ and $G$, respectively. $CD$ is the height from the hypotenuse. If $\\angle DCE = \\angle B$, then what is $\\frac{BF}{CE}$?", -"image_file_name": "7045627", -"image": [ -"math/52828076_5617.png" -], -"solution": "\\textbf{Solution:} Connect $AF$, \\\\\n$\\because$ when $\\triangle ABC$ is folded for the first time along crease $CE$, making point $A$ fall onto $BC$, \\\\\n$\\therefore$ $\\angle ACE=\\angle BCE=45^\\circ$, \\\\\n$\\because$ by folding $\\angle B$ along crease $GF$, making point $B$ coincide with point $A$, \\\\\n$\\therefore$ $\\angle B=\\angle FAB$, $FA=FB$, \\\\\n$\\because$ $\\angle ACD+\\angle DCB=\\angle B+\\angle DCB=90^\\circ$, \\\\\n$\\therefore$ $\\angle ACD=\\angle B$, \\\\\n$\\because$ $\\angle DCE=\\angle B$, \\\\\n$\\therefore$ $\\angle ACD=\\angle DCE=\\angle B=\\frac{1}{2}\\angle ACE=22.5^\\circ$, \\\\\n$\\therefore$ $\\angle AFC=\\angle B+\\angle FAB=2\\angle B=45^\\circ$, \\\\\n$\\therefore$ $\\triangle$ AFC is an isosceles right triangle, \\\\\nLet $AC=CF=a$, then $AF=\\sqrt{a^2+a^2}=\\sqrt{2}a$, \\\\\n$\\because$ $\\angle CAB=90^\\circ-\\angle B=67.5^\\circ$, $\\angle CEA=\\angle B+\\angle BCE=67.5^\\circ$, \\\\\nthat is $\\angle CAE=\\angle CEA$, \\\\\n$\\therefore$ CA=CE, \\\\\n$\\therefore$ $\\frac{BF}{CE}=\\frac{AF}{CA}=\\frac{\\sqrt{2}a}{a}=\\boxed{\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52828076_561.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52828221": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=20\\,cm$, $DE$ is perpendicular bisector of $AB$ with the foot of the perpendicular as $E$, and intersects $AC$ at $D$. If $BC=15\\,cm$, then what is the perimeter of $\\triangle DBC$?", -"image_file_name": "7045627", -"image": [ -"math/52828221_579.png" -], -"solution": "\\textbf{Solution:} Since $DE$ bisects $AB$ perpendicularly,\\\\\nit follows that $AD=BD$,\\\\\nhence the perimeter of $\\triangle DBC = BD+DC+BC = AD+DC+BC = AC+BC$,\\\\\nsince $AB=AC=20\\,cm$, $BC=15\\,cm$,\\\\\ntherefore, the perimeter of $\\triangle DBC =AC+BC=20+15=\\boxed{35}\\,cm$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53009754": { -"question": "In $\\triangle ABC$, $\\angle B=40^\\circ$, $D$ is a point on side $BC$. The triangle is folded along $AD$ such that $AC$ falls on $AB$ and point $C$ coincides with point $E$. If $\\triangle BDE$ is a right-angled triangle, what is the measure of $\\angle C$?", -"image_file_name": "7044920", -"image": [ -"math/53009754_5611.png" -], -"solution": "\\textbf{Solution:} When $\\angle BED=90^\\circ$, $\\angle C=\\angle AED=90^\\circ$.\\\\\nWhen $\\angle BDE=90^\\circ$, $\\angle C=\\angle AED=\\angle B+\\angle BDE=130^\\circ$.\\\\\nIn summary, the measure of $\\angle C$ is either $90^\\circ$ or $130^\\circ$.\\\\\nTherefore, the answer is: $\\boxed{90^\\circ}$ or $130^\\circ$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53009913": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $AB=AC$, $AD$ bisects $\\angle BAC$, and point $E$ is the midpoint of $AB$. If $AC=6$, what is the length of $DE$?", -"image_file_name": "7044920", -"image": [ -"math/53009913_578.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $AB=AC$ and $AD$ bisects $\\angle BAC$, \\\\\nit follows that $D$ is the midpoint of $BC$, \\\\\nSince $E$ is the midpoint of $AB$, \\\\\nit follows that $DE$ is the median of the triangle, \\\\\nGiven $AC=6$, \\\\\nit follows that $DE=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52991703": { -"question": "In right triangle $ABC$, $\\angle B=90^\\circ$, $AB=4$, $BC=8$. Points $D$ and $E$ are located on sides $AC$ and $BC$, respectively. If $\\triangle ABC$ is folded along $DE$ such that points $A$ and $C$ coincide, what is the length of $EC$?", -"image_file_name": "7044920", -"image": [ -"math/52991703_580.jpg" -], -"solution": "\\textbf{Solution:} Let $EC = x$, then $BE = 8 - x$,\\\\\nsince folding $\\triangle ABC$ along $DE$ causes point $A$ to coincide with point $C$,\\\\\nit follows that $AE = EC = x$,\\\\\nIn $\\text{Rt}\\triangle ABE$, we have $AB^2 + BE^2 = AE^2$,\\\\\n$4^2 + (8 - x)^2 = x^2$,\\\\\nsolving for $x$ yields $x = \\boxed{5}$,\\\\\ntherefore, $EC = 5$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52991704": { -"question": "In quadrilateral $ABCD$, $AD\\parallel BC$, $DE\\perp BC$ with the foot of the perpendicular being point $E$, connect $AC$ intersecting $DE$ at point $F$, point $G$ is the midpoint of $AF$, and $\\angle ACD=2\\angle ACB$. If $DG=4$ and $EC=1$, what is the length of $DE$?", -"image_file_name": "7044920", -"image": [ -"math/52991704_590.png" -], -"solution": "\\textbf{Solution:} Given that $AD \\parallel BC$ and $DE \\perp BC$,\\\\\nit follows that $AD \\perp DE$, and $\\angle CAD = \\angle ACB$,\\\\\nGiven that $\\angle ACD = 2\\angle ACB$,\\\\\nit follows that $\\angle ACD = 2\\angle CAD$,\\\\\nGiven that $AD \\perp DE$ and $G$ is the midpoint of $AF$,\\\\\nit follows that $GA = GD$,\\\\\ntherefore, $\\angle GAD = \\angle GDA$,\\\\\nthus, $\\angle DGC = \\angle DCG$,\\\\\ntherefore, $DC = DG = 4$,\\\\\nthus, $DE= \\sqrt{CD^{2}-EC^{2}} = \\boxed{\\sqrt{15}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52991679": { -"question": "In the trapezoid $ABCD$ shown in the figure, $\\angle ABC = \\angle BCD$, $AD \\parallel BC$, and $BD$ bisects $\\angle ABC$. If $AD = 3$ and $BC = 7$, what is the length of $BD$?", -"image_file_name": "7044920", -"image": [ -"math/52991679_600.jpg" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw AE$\\perp$BC at point D, and draw DF$\\perp$BC at point F, then the quadrilateral AEFD is a rectangle.\\\\\nIn trapezoid ABCD, $\\angle ABC=\\angle BCD$, AD$\\parallel$BC,\\\\\n$\\therefore$AB=CD, $\\angle ADB=\\angle DBC$,\\\\\n$\\because$BD bisects $\\angle ABC$,\\\\\n$\\therefore$$\\angle ABD=\\angle DBC=\\angle ADB$,\\\\\n$\\therefore$AB=AD=3,\\\\\n$\\because$AD$\\parallel$CB, AE$\\perp$CB, DF$\\perp$BC,\\\\\n$\\therefore$AD=DF,\\\\\n$\\therefore$right $\\triangle AEB\\cong$ right $\\triangle DFC$ (by HL),\\\\\n$\\therefore$BE=CF,\\\\\n$\\because$quadrilateral AEFD is a rectangle,\\\\\n$\\therefore$AD=EF=3,\\\\\n$\\therefore$BE=CF= $\\frac{1}{2}$(7−3)=2,\\\\\n$\\therefore$AE=DF= $\\sqrt{AB^{2}-BE^{2}}=\\sqrt{3^{2}-2^{2}}=\\sqrt{5}$,\\\\\n$\\therefore$BD= $\\sqrt{DF^{2}+BF^{2}}=\\sqrt{(\\sqrt{5})^{2}+5^{2}}=\\boxed{\\sqrt{30}}$,", -"solution_image": [ -"solution_images/52991679_600.jpg" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52991481": { -"question": "As shown in the figure, it is known that $AB \\parallel CF$, and E is the midpoint of $DF$. If $AB = 8\\,cm$ and $CF = 5\\,cm$, then how many centimeters is $BD$?", -"image_file_name": "7044920", -"image": [ -"math/52991481_616.png" -], -"solution": "\\textbf{Solution:} Given that $AB\\parallel CF$,\\\\\nthus $\\angle A=\\angle ACF$, $\\angle F=\\angle ADE$,\\\\\nsince E is the midpoint of $DF$,\\\\\nthus $DE=EF$,\\\\\nin $\\triangle ADE$ and $\\triangle CFE$, $\\left\\{\\begin{array}{l}\n\\angle A=\\angle ECF\\\\\n\\angle ADE=\\angle F\\\\\nDE=EF\n\\end{array}\\right.$,\\\\\ntherefore $\\triangle ADE\\cong \\triangle CFE$ (by AAS),\\\\\nthus $CF=AD=5cm$,\\\\\nthus $BD=AB-AD=8-5=\\boxed{3cm}$,", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52977108": { -"question": "As shown in the figure, in the rectangle $ABCD$, $AB=3$, $BC=3\\sqrt{3}$, and $\\angle CBD=30^\\circ$. Point $M$ is a point on the ray $BD$ (not coinciding with points $B$, $D$). Line $AM$ is drawn, and through point $M$, $MN \\perp AM$ intersects line $BC$ at point $N$. If $\\triangle BMN$ is an isosceles triangle, what is the length of $BN$? ", -"image_file_name": "7044920", -"image": [ -"math/52977108_626.png" -], -"solution": "\\textbf{Solution:} Connect AN,\\\\\nsince quadrilateral ABCD is a rectangle, it follows that $\\angle ABN=90^\\circ$,\\\\\nsince $MN\\perp AM$, it follows that $\\angle AMN=90^\\circ$,\\\\\nhence $\\angle BNM+\\angle BAM=180^\\circ$,\\\\\nsince $\\angle BAM<90^\\circ$, it follows that $\\angle BNM>90^\\circ$,\\\\\nsince $\\triangle BMN$ is an isosceles triangle, there only exists the case where $BN=MN$,\\\\\nin $Rt\\triangle ABN$ and $Rt\\triangle AMN$, $\\left\\{\\begin{array}{l}AN=AN\\\\ BN=MN\\end{array}\\right.$,\\\\\nhence $Rt\\triangle ABN\\cong Rt\\triangle AMN\\left(HL\\right)$,\\\\\nthus $AB=AM$,\\\\\nsince $\\angle ABN=90^\\circ$, $\\angle CBD=30^\\circ$, hence $\\angle ABM=60^\\circ$,\\\\\nthus $\\triangle ABM$ is an equilateral triangle, hence $\\angle BAM=60^\\circ$,\\\\\nthus $\\angle BAN=\\angle MAN=\\frac{1}{2}\\angle BAM=30^\\circ$, hence $AN=2BN$,\\\\\nsince $AB^2+BN^2=AN^2$, and $AB=3$,\\\\\nhence $3^2+BN^2=(2BN)^2$, hence $BN=\\boxed{\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52977108_620.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52978491": { -"question": "As shown in the diagram, points A, D, and C are on the same straight line, and $\\triangle ABC \\cong \\triangle DBE$. If $\\angle A = 60^\\circ, \\angle C = 30^\\circ$, then what is the measure of $\\angle DBC$?", -"image_file_name": "7044920", -"image": [ -"math/52978491_633.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\triangle ABC\\cong \\triangle DBE$ and $\\angle A=60^\\circ$,\\\\\n$\\therefore$ $AB=BD$,\\\\\n$\\therefore$ $\\angle ADB=\\angle A=60^\\circ$,\\\\\n$\\therefore$ $\\angle ABD=60^\\circ$,\\\\\n$\\because$ $\\angle A=60^\\circ$ and $\\angle C=30^\\circ$,\\\\\n$\\therefore$ $\\angle ABC=90^\\circ$,\\\\\n$\\therefore$ $\\angle DBC=\\angle ABC-\\angle ABD=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978752": { -"question": "As shown in the figure, line segment $AB=8\\,\\text{cm}$, ray $AN \\perp AB$ with the foot of the perpendicular at point A. Point C is a moving point on the ray, and isosceles right triangles are formed with $AC$ and $BC$ as the legs, resulting in $\\triangle ACD$ and $\\triangle BCE$ respectively. $DE$ is connected and intersects ray $AN$ at point M. What is the length of $CM$? ", -"image_file_name": "7044920", -"image": [ -"math/52978752_640.png" -], -"solution": "\\textbf{Solution:} Construct $EF \\perp AN$ at $F$, as shown in the figure.\\\\\nSince $AN \\perp AB$, and $\\triangle BCE$ and $\\triangle ACD$ are isosceles right triangles,\\\\\nthus $\\angle BAC = \\angle BCE = \\angle ACD =\\angle CFE = 90^\\circ$, $BC = CE$, $AC = CD$.\\\\\nTherefore, $\\angle ABC + \\angle ACB = 90^\\circ$, $\\angle FCE + \\angle ACB = 90^\\circ$,\\\\\nthus $\\angle ABC = \\angle FCE$,\\\\\nIn $\\triangle ABC$ and $\\triangle FCE$\\\\\n$\\left\\{\\begin{array}{l} \\angle BAC = \\angle CFE \\\\ \\angle ABC = \\angle FCE \\\\ BC = CE \\end{array}\\right.$\\\\\nTherefore, $\\triangle ABC \\cong \\triangle FCE$\\\\\nTherefore, $AB = FC = 8\\,cm$, $AC = FE$\\\\\nTherefore, $CD = FE$\\\\\nIn $\\triangle DCM$ and $\\triangle EFM$\\\\\n$\\left\\{\\begin{array}{l} \\angle DMC = \\angle EMF \\\\ \\angle DCM = \\angle EFM = 90^\\circ \\\\ CD =\nFE \\end{array}\\right.$\\\\\nTherefore, $\\triangle DCM \\cong \\triangle EFM$\\\\\nTherefore, $CM = FM = \\frac{1}{2}FC = \\boxed{4cm}$.", -"solution_image": [ -"solution_images/52978752_640.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978751": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ bisects $\\angle BAC$, $AE \\perp BC$ at point E, $\\angle B = 40^\\circ$, $\\angle DAE = 15^\\circ$, what is the measure of $\\angle C$?", -"image_file_name": "7044920", -"image": [ -"math/52978751_657.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $AE\\perp BC$, \\\\\nit follows that $\\angle AEB=90^\\circ$, \\\\\nsince $\\angle B=40^\\circ$, \\\\\nit follows that $\\angle BAE = 90^\\circ - 40^\\circ = 50^\\circ$, \\\\\nsince $\\angle DAE = 15^\\circ$, \\\\\nit follows that $\\angle BAD = 50^\\circ - 15^\\circ = 35^\\circ$, \\\\\nsince $AD$ bisects $\\angle BAC$, \\\\\nit follows that $\\angle BAC = 2\\angle BAD = 70^\\circ$, \\\\\nthus, $\\angle C = 180^\\circ - \\angle B - \\angle BAC = \\boxed{70^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978487": { -"question": "As shown in the figure is an axisymmetric figure. If $\\angle A=36^\\circ, \\angle C'=24^\\circ$, then what is the degree measure of $\\angle B$?", -"image_file_name": "7044920", -"image": [ -"math/52978487_662.png" -], -"solution": "\\textbf{Solution:} Since the figure is an axisymmetric figure, \\\\\ntherefore, $\\angle C = \\angle C' = 24^\\circ$,\\\\\nsince $\\angle A = 36^\\circ$,\\\\\ntherefore, $\\angle B = 180^\\circ - \\angle A - \\angle C = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52978720": { -"question": "As shown in the figure, point C is on $BE$, $\\angle B = \\angle E = \\angle ACF$, $AC = CF$, $AB = 4$, and $EF = 6$. What is the length of $BE$?", -"image_file_name": "7044920", -"image": [ -"math/52978720_676.png" -], -"solution": "\\textbf{Solution:} Since $\\angle B+\\angle BAC=\\angle ACE=\\angle FCE+\\angle ACF$,\\\\\nand since $\\angle B=\\angle ACF$,\\\\\nit follows that $\\angle BAC=\\angle FCE$,\\\\\nSince $\\angle B=\\angle E$, $AC=CF$,\\\\\nit follows that $\\triangle ABC\\cong \\triangle CEF$,\\\\\ntherefore $AB=CE$, $BC=EF$,\\\\\nSince $AB=4$, $EF=6$,\\\\\nit follows that $BE=BC+CE=6+4=\\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978601": { -"question": "As shown in the figure, in $ \\triangle MPN $, H is the intersection of the altitudes $ MQ $ and $ NR $, and $ MQ = NQ $. Given $ PQ = 3 $ and $ NQ = 7 $, what is the length of $ MH $?", -"image_file_name": "7044920", -"image": [ -"math/52978601_686.png" -], -"solution": "\\textbf{Solution:} Let $H$ be the intersection of altitudes $MQ$ and $NR$,\\\\\ntherefore $NR\\perp PM$, and $MQ\\perp PN$,\\\\\ntherefore $\\angle PMQ + \\angle MHR = 90^\\circ$, and $\\angle HNQ + \\angle QHN = 90^\\circ$.\\\\\nSince $\\angle MHR = \\angle QHN$,\\\\\ntherefore $\\angle PMQ = \\angle HNQ$.\\\\\nAlso, since $MQ = NQ = 7$ and $\\angle PQM = \\angle HQN = 90^\\circ$,\\\\\ntherefore $\\triangle PMQ \\cong \\triangle HNQ$ (by ASA),\\\\\nthus $PQ = HQ = 3$,\\\\\nhence $MH = MQ - HQ = 7 - 3 = \\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978928": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ is the bisector of $\\angle BAC$, and $E$ is a point on $AD$, with $EF \\perp BC$ at point $F$. If $\\angle C = 35^\\circ$ and $\\angle DEF = 15^\\circ$, what is the measure of $\\angle B$?", -"image_file_name": "7044920", -"image": [ -"math/52978928_690.png" -], -"solution": "\\textbf{Solution:} Since $EF\\perp BC$ and $\\angle DEF=15^\\circ$, we have $\\angle ADB=90^\\circ-15^\\circ=75^\\circ$. \\\\\nSince $\\angle C=35^\\circ$, it follows that $\\angle CAD=75^\\circ-35^\\circ=40^\\circ$. \\\\\nSince $AD$ is the bisector of $\\angle BAC$, we have $\\angle BAC=2\\angle CAD=80^\\circ$, hence $\\angle B=180^\\circ-\\angle BAC-\\angle C=180^\\circ-80^\\circ-35^\\circ=\\boxed{65^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978717": { -"question": "As shown in the figure, in $ \\triangle ABC$, D is a point on $BC$, $AD=BD$, $\\angle B=40^\\circ$, and $\\triangle ADE$ is symmetrical to $\\triangle ADB$ with respect to $AD$. What is the measure of $\\angle CDE$?", -"image_file_name": "7044920", -"image": [ -"math/52978717_708.png" -], -"solution": "\\textbf{Solution:} Since $AD=BD$ and $\\angle B=40^\\circ$, \\\\\nit follows that $\\angle B=40^\\circ=\\angle BAD$, \\\\\ntherefore, $\\angle ADB=180^\\circ-\\left(\\angle BAD+\\angle B\\right)=100^\\circ$ and $\\angle ADC=\\angle B+\\angle BAD=80^\\circ$, \\\\\nsince $\\triangle ADE$ is symmetric to $\\triangle ADB$ with respect to $AD$, \\\\\nit follows that $\\angle ADE=\\angle ADB=100^\\circ$, \\\\\nthus, $\\angle CDE=\\angle ADE-\\angle ADC=100^\\circ-80^\\circ=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52978719": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B = \\angle C$. Point $D$ is on side $AB$. A line is drawn through $D$, with $DE \\perp BC$ intersecting $BC$ at point $E$ and extending to intersect the extended line of $CA$ at point $F$. Given $AC = 5$ and $BD = 3$, what is the length of $AF$?", -"image_file_name": "7044920", -"image": [ -"math/52978719_719.png" -], -"solution": "\\textbf{Solution:} Given that $DE\\perp BC$,\\\\\nit follows that $\\angle DEB=\\angle FEC=90^\\circ$,\\\\\nthus $\\angle B+\\angle BDE=90^\\circ$, $\\angle C+\\angle F=90^\\circ$,\\\\\nsince $\\angle B=\\angle C$,\\\\\nit results in $\\angle F=\\angle BDE$,\\\\\nand since $\\angle FDA=\\angle BDE$,\\\\\nwe have $\\angle FDA=\\angle F$,\\\\\nhence $AF=AD$,\\\\\nas $\\angle B=\\angle C$ and $AC=5$,\\\\\nit implies $AB=AC=5$,\\\\\ngiven $BD=3$,\\\\\nit follows $AD=AB−BD=5−3=2$,\\\\\nthus $AF=AD=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52688312": { -"question": "As shown in the figure, in the square $ABCD$ with a side length of 2, points $E$ and $F$ are the midpoints of sides $AB$ and $BC$, respectively. Connect $EC$ and $FD$. Points $G$ and $H$ are the midpoints of $EC$ and $FD$, respectively. Connect $GH$. What is the length of $GH$?", -"image_file_name": "7056275", -"image": [ -"math/52688312_320.png" -], -"solution": "\\textbf{Solution:} As illustrated, let $DF$ and $CE$ intersect at $O$,\\\\\n$\\because$ Quadrilateral $ABCD$ is a square,\\\\\n$\\therefore \\angle B=\\angle DCF=90^\\circ$, $BC=CD=AB=2$,\\\\\n$\\because$ Points $E$ and $F$ are the midpoints of sides $AB$ and $BC$ respectively,\\\\\n$\\therefore$ $BE=CF=1$,\\\\\n$\\therefore \\triangle CBE \\cong \\triangle DCF$ (SAS),\\\\\n$\\therefore CE=DF$, $\\angle BCE=\\angle CDF$,\\\\\n$\\because \\angle CDF+\\angle CFD=90^\\circ$,\\\\\n$\\therefore \\angle BCE+\\angle CFD=90^\\circ$,\\\\\n$\\therefore \\angle COF=90^\\circ$,\\\\\n$\\therefore$ $DF \\perp CE$,\\\\\n$\\therefore CE=DF=\\sqrt{2^2+1^2}=\\sqrt{5}$,\\\\\n$\\because$ Points $G$ and $H$ are the midpoints of $EC$ and $FD$ respectively,\\\\\n$\\therefore$ $CG=FH=\\frac{\\sqrt{5}}{2}$,\\\\\n$\\because \\angle DCF=90^\\circ$, $CO \\perp DF$,\\\\\n$\\therefore CF^2=OF\\cdot DF$,\\\\\n$\\therefore OF=\\frac{CF^2}{DF}=\\frac{1}{\\sqrt{5}}=\\frac{\\sqrt{5}}{5}$,\\\\\n$\\therefore$ $OH=\\frac{3\\sqrt{5}}{10}$, $OD=\\frac{4\\sqrt{5}}{5}$,\\\\\n$\\because OC^2=OF\\cdot OD$,\\\\\n$\\therefore OC=\\sqrt{\\frac{\\sqrt{5}}{5}\\times \\frac{4\\sqrt{5}}{5}}=\\frac{2\\sqrt{5}}{5}$,\\\\\n$\\therefore$ $OG=CG-OC=\\frac{\\sqrt{5}}{2}-\\frac{2\\sqrt{5}}{5}=\\frac{\\sqrt{5}}{10}$,\\\\\n$\\therefore$ $HG=\\sqrt{OG^2+OH^2}=\\sqrt{\\left(\\frac{\\sqrt{5}}{10}\\right)^2+\\left(\\frac{3\\sqrt{5}}{10}\\right)^2}=\\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/52688312_320.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52661220": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$ is the midpoint of the hypotenuse $AB$, and $DE \\perp AB$ intersects $AC$ at point $E$. If $AC=8$ and $BC=6$, then what is the length of $DE$?", -"image_file_name": "7056275", -"image": [ -"math/52661220_330.png" -], -"solution": "\\textbf{Solution:} In right triangle $\\triangle ABC$, we have\n\\[AB=\\sqrt{AC^{2}+BC^{2}}=\\sqrt{8^{2}+6^{2}}=10,\\]\nsince point D is the midpoint of AB,\n\\[AD=\\frac{1}{2}AB=5;\\]\nsince DE$\\perp$AB,\n\\[\\angle ADE=\\angle C=90^\\circ,\\]\nand since $\\angle A=\\angle A$,\n\\[\\triangle ADE\\sim \\triangle ACB,\\]\nhence\n\\[\\frac{DE}{BC}=\\frac{AD}{AC},\\]\nwhich gives\n\\[\\frac{DE}{6}=\\frac{5}{8}.\\]\nSolving this, we find $DE=\\boxed{\\frac{15}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52620528": { -"question": "As shown in the figure, in $\\triangle ABC$, D and E are points on AB and AC, respectively. AF bisects $\\angle BAC$ and intersects DE at point G and intersects BC at point F. If $\\angle AED=\\angle B$, and $AG: GF=3:2$, what is the ratio of $DE: BC$?", -"image_file_name": "7056275", -"image": [ -"math/52620528_340.jpeg" -], -"solution": "\\textbf{Solution:} Given that $\\angle DAE = \\angle CAB$ and $\\angle AED = \\angle B$,\\\\\nit follows that $\\triangle ADE \\sim \\triangle ACB$,\\\\\nsince $GA$ and $FA$ are the angle bisectors of $\\triangle ADE$ and $\\triangle ABC$ respectively,\\\\\ntherefore $\\frac{DE}{BC} = \\frac{AG}{AF}$ (the ratio of the corresponding angle bisectors is equal to the similarity ratio),\\\\\n$AG:FG = 3:2$,\\\\\nthus, $AG:AF = 3:5$,\\\\\nhence, $DE:BC = \\boxed{3:5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52745997": { -"question": "As shown in the figure, in right-angled triangle $ABC$ with $\\angle C=90^\\circ$, $D$ is the midpoint of $AB$, $AD=5$, $BC=8$, and $E$ is a moving point on line $BC$. After folding $\\triangle BDE$ along line $ED$, point $B$ falls at point $F$. When $FD \\perp BC$, what is the length of segment $BE$?", -"image_file_name": "7056275", -"image": [ -"math/52745997_352.png" -], -"solution": "\\textbf{Solution:} Suppose when point F is below BC, DF intersects BC at point P, as shown in Figure 1:\\\\\n$\\because$D is the midpoint of AB,\\\\\n$\\therefore$AB $=$ 2AD $=$ 10,\\\\\n$\\because$$\\angle$C $= 90^\\circ$,\\\\\n$\\therefore$AC $=$ $\\sqrt{AB^{2}-BC^{2}}$ $=$ $\\sqrt{10^{2}-8^{2}}$ $=$ 6,\\\\\n$\\because$FD$\\perp$BC, $\\angle$C $= 90^\\circ$,\\\\\n$\\therefore$FD$\\parallel$AC, and D is the midpoint of AB,\\\\\n$\\therefore$$\\triangle PBD\\sim \\triangle CBA$\\\\\n$\\therefore$$\\frac{BD}{BA}$ $=$ $\\frac{BP}{BC}$ $=$ $\\frac{DP}{AC}$ $=$ $\\frac{1}{2}$,\\\\\n$\\therefore$BP $=$ PC $=$ $\\frac{1}{2}$BC $=$ 4, DP $=$ $\\frac{1}{2}$AC $=$ 3,\\\\\n$\\because$$\\triangle BDE$ is folded along line ED,\\\\\n$\\therefore$FD $=$ BD $=$ 5, FE $=$ BE,\\\\\n$\\therefore$FP $=$ FD - DP $=$ 5 - 3 $=$ 2,\\\\\nIn $\\triangle FPE$, EF$^{2}$ $=$ FP$^{2}$ + PE$^{2}$,\\\\\n$\\therefore$BE$^{2}$ $=$ $2^{2}$ + $(4-BE)^{2}$,\\\\\nSolving: BE $=$ $\\boxed{\\frac{5}{2}}$;\\\\\nSuppose when point F is above BC, the extension of FD intersects BC at point P, as shown in Figure 2,\\\\\n$\\because$FD = BD = 5, DP $=$ $\\frac{1}{2}$AC $=$ 3,\\\\\n$\\therefore$FP $=$ DP + FD $=$ 3 + 5 $=$ 8,\\\\\nIn $\\triangle EFP$, EF$^{2}$ $=$ FP$^{2}$ + EP$^{2}$,\\\\\n$\\therefore$BE$^{2}$ $=$ 64 + $(BE-4)^{2}$,\\\\\nSolving: BE $=$ 10;", -"solution_image": [ -"solution_images/52745997_350.png", -"solution_images/52745997_3511.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52745998": { -"question": "As shown in the figure, in $ \\triangle ABC$, M and N are points on the sides AB and AC, respectively, where AM = $ \\frac{1}{4}$AB and AN = $ \\frac{1}{4}$AC. What is the ratio of the area of $ \\triangle AMN$ to the area of the quadrilateral MBCN?", -"image_file_name": "7056275", -"image": [ -"math/52745998_364.png" -], -"solution": "\\textbf{Solution:} Since $AM = \\frac{1}{4}AB$ and $AN = \\frac{1}{4}AC$, and $\\angle MAN = \\angle BAC$,\n\n$\\therefore \\triangle AMN \\sim \\triangle ABC$, \n\n$\\therefore \\frac{S_{\\triangle AMN}}{S_{\\triangle ABC}} = \\left(\\frac{AM}{AB}\\right)^2 = \\frac{1}{16}$,\n\n$\\therefore S_{\\triangle AMN} = \\frac{1}{16}S_{\\triangle ABC}$,\n\n$\\therefore \\frac{S_{\\triangle AMN}}{S_{\\text{quadrilateral }MBCN}} = \\frac{S_{\\triangle AMN}}{S_{\\triangle ABC} - S_{\\triangle AMN}} = \\boxed{\\frac{1}{15}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52745993": { -"question": "As shown in the figure, parallelogram $ABCD$ has diagonals $AC$ and $BD$ intersecting at point $O$. Point $F$ is the midpoint of $BC$, and connecting $DF$ intersects $AC$ at point $E$. What is the ratio of $DE:EF$?", -"image_file_name": "7056275", -"image": [ -"math/52745993_370.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OF, \\\\\n$\\because$ Quadrilateral ABCD is a parallelogram,\\\\\n$\\therefore$ O is the midpoint of BD,\\\\\n$\\because$ F is the midpoint of BC,\\\\\n$\\therefore$ OF is the median of $\\triangle$BCD,\\\\\n$\\therefore$ CD $=$ 2OF, and OF $\\parallel$ CD,\\\\\n$\\therefore$ $\\triangle$DEC $\\sim$ $\\triangle$FEO,\\\\\n$\\therefore$ DE$\\colon$EF $=$ CD$\\colon$OF $=$ \\boxed{2\\colon1}.", -"solution_image": [ -"solution_images/52745993_370.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52745996": { -"question": "As illustrated, the graph of the inverse proportion function $y=\\frac{k}{x}$ (where $k>0$) intercepts in the first quadrant at points A(1, 6) and B(3, b). The line $AB$ intersects the x-axis at point C, and D is a point on the line segment $OA$. If $CA\\cdot AD=AB\\cdot AO$, and by connecting $CD$, let the areas of $\\triangle ADC$ and $\\triangle DOC$ be $S_{1}$ and $S_{2}$ respectively, then what is the value of $S_{1}-S_{2}$?", -"image_file_name": "7056275", -"image": [ -"math/52745996_3810.png" -], -"solution": "\\textbf{Solution:} Let $\\because$ A(1, 6) is on the graph of the inverse proportion function $y=\\frac{6}{x}$,\\\\\n$\\therefore$ k=6, the analytical expression of the inverse proportion function is: $y=\\frac{6}{x}$,\\\\\n$\\because$ B(3, b) is on the graph of the inverse proportion function $y=\\frac{6}{x}$,\\\\\n$\\therefore$ b=2, that is, B(3, 2).\\\\\nLet the line AB be: $y=mx+n(m\\ne 0)$,\\\\\n$\\therefore$\n$\\begin{cases}\nm+n=6\\\\\n3m+n=2\n\\end{cases}$, solving we get:\n$\\begin{cases}\nm=-2\\\\\nn=8\n\\end{cases}$,\\\\\n$\\therefore$ the analytical expression for line AB is: $y=-2x+8$.\\\\\n$\\therefore$ For $y=-2x+8$, when $y=0$, i.e., $-2x+8=0$,\\\\\nsolving we get: $x=4$,\\\\\n$\\therefore$ C(4, 0),\\\\\n$\\therefore$ ${S}_{\\triangle AOC}=\\frac{1}{2}OC\\cdot y_{A}=\\frac{1}{2}\\times 4\\times 6=12$,\\\\\n$\\because$ $CA\\cdot AD=AB\\cdot AO$,\\\\\n$\\therefore$ $\\frac{CA}{AB}=\\frac{AO}{AD}$,\\\\\nFurthermore, $\\because$ $\\angle DAB=\\angle OAC$,\\\\\n$\\therefore$ $\\triangle DAB\\sim \\triangle OAC$,\\\\\n$\\therefore$ $\\angle ADB=\\angle AOC$,\\\\\n$\\therefore$ $DB\\parallel OC$,\\\\\n$\\therefore$ $y_{D}=y_{B}=2$,\\\\\n$\\therefore$ ${S}_{\\triangle DOC}=\\frac{1}{2}OC\\cdot y_{D}=\\frac{1}{2}\\times 4\\times 2=4$,\\\\\n$\\therefore$ ${S}_{\\triangle ADC}={S}_{\\triangle AOC}-{S}_{\\triangle DOC}=12-4=8$,\\\\\n$\\therefore$ ${S}_{1}-{S}_{2}={S}_{\\triangle ADC}-{S}_{\\triangle DOC}=8-4=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52586157": { -"question": "As shown in the diagram, it is known that $M$ and $N$ are two points on the side $BC$ of $\\triangle ABC$, and satisfy $BM=MN=NC$. A line parallel to $AC$ intersects the extensions of $AB$, $AM$, and $AN$ at points $D$, $E$, and $F$, respectively. What is the value of $\\frac{EF}{DE}$?", -"image_file_name": "7056275", -"image": [ -"math/52586157_398.png" -], -"solution": "\\textbf{Solution:} Draw line $MG \\parallel DF$ with point $G$ on $AB$, and draw line $NH \\parallel DF$ with point $H$ on $AB$, where $NH$ intersects $AM$ at $I$,\n\nthen we have $MG \\parallel DF \\parallel NH \\parallel AC$\n\n$\\because$ $GM \\parallel NH$,\n\n$\\therefore$ $\\triangle BMG \\sim \\triangle BNH$\n\n$\\therefore$ $\\frac{MG}{NH} = \\frac{BM}{BN}$\n\nFurthermore, $\\because$ $BM = \\frac{1}{2}BN$,\n\n$\\therefore$ $\\frac{MG}{NH} = \\frac{BM}{BN} = \\frac{1}{2}$\n\n$\\because$ $MG \\parallel NH \\parallel AC$, $MN = NC$\n\n$\\therefore$ $\\frac{GH}{AH} = \\frac{MN}{NC} = 1$\n\n$\\therefore$ $\\frac{AH}{AG} = \\frac{1}{2}$\n\n$\\because$ $MG \\parallel NH$\n\n$\\therefore$ $\\triangle AHI \\sim \\triangle AGM$\n\n$\\therefore$ $\\frac{IH}{MG} = \\frac{AH}{AG} = \\frac{1}{2}$\n\nAdditionally, $\\because$ $\\frac{MG}{NH} = \\frac{1}{2}$\n\n$\\therefore$ $\\frac{IH}{NH} = \\frac{IH}{MG} \\cdot \\frac{MG}{NH} = \\frac{1}{2} \\times \\frac{1}{2} = \\frac{1}{4}$\n\n$\\therefore$ $\\frac{IH}{IN} = \\frac{1}{3}$\n\nAlso, $\\because$ $DF \\parallel NH$\n\n$\\therefore$ $\\triangle AHI \\sim \\triangle ADE$, $\\triangle ANI \\sim \\triangle AFE$,\n\n$\\therefore$ $\\frac{IH}{ED} = \\frac{AI}{AE} = \\frac{IN}{EF}$\n\n$\\therefore$ $\\frac{ED}{EF} = \\frac{IH}{IN} = \\frac{1}{3}$\n\n$\\therefore$ $\\frac{EF}{DE} = \\boxed{3}$", -"solution_image": [ -"solution_images/52586157_390.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52550647": { -"question": "As shown, both $\\triangle ABC$ and $\\triangle ADE$ are isosceles right-angled triangles, with $\\angle BAC = \\angle DAE = 90^\\circ$, and $AB = 4$. Point $F$ is the midpoint of $DE$. If point $E$ is a moving point on line $BC$, and $BF$ is connected, what is the minimum value of $BF$?", -"image_file_name": "7056275", -"image": [ -"math/52550647_400.jpeg" -], -"solution": "\\textbf{Solution:} Since both $\\triangle ABC$ and $\\triangle ADE$ are isosceles right-angled triangles,\\\\\nit follows that $\\triangle ABC\\sim \\triangle ADE$,\\\\\nhence $\\angle ADE = \\angle ABE$,\\\\\ntherefore, points A, D, B, E are concyclic,\\\\\nsince $\\angle DAE = 90^\\circ$,\\\\\nit follows that $\\angle DBE = 90^\\circ$,\\\\\nsince F is the midpoint of DE,\\\\\nit follows that BF = $\\frac{1}{2}$DE,\\\\\ntherefore, when DE is at its minimum, the value of BF is also minimal,\\\\\nsince if point E is a moving point on line BC,\\\\\nit follows that when AE$\\perp$BC, AE is at its minimum, at this time, DE is also minimal,\\\\\nsince $\\angle BAC = 90^\\circ$, AB = 4 = AC,\\\\\nit follows that BC = $4\\sqrt{2}$,\\\\\ntherefore, AE = $\\frac{AB \\cdot AC}{BC} = \\frac{4 \\times 4}{4\\sqrt{2}} = 2\\sqrt{2}$,\\\\\ntherefore, DE = 4,\\\\\ntherefore, BF = $\\boxed{2}$.", -"solution_image": [ -"solution_images/52550647_400.jpeg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52550914": { -"question": "As shown in the figure, in $\\triangle ABC$, $DE \\parallel BC$, $G$ is a point on $BC$, and line $AG$ intersects $DE$ at point $F$. It is known that $AF = 2$, $AG = 6$, and $EC = 5$. What is the length of $AC$?", -"image_file_name": "7056275", -"image": [ -"math/52550914_4111.png" -], -"solution": "\\textbf{Solution:} Since $DE \\parallel BC$,\\\\\nit follows that $\\frac{AF}{FG} = \\frac{AE}{EC}$, that is, $\\frac{2}{4} = \\frac{AE}{5}$,\\\\\ntherefore, $AE = \\frac{5}{2}$,\\\\\nhence, $AC = AE + EC = \\frac{5}{2} + 5 = \\boxed{\\frac{15}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52537112": { -"question": "As shown in the figure, there is a point $A(3, 0)$ on the x-axis. Point $D$ is the symmetric point of point $A$ with respect to the y-axis. Point $B$ is on the graph of the inverse proportional function $y=\\frac{k}{x}$ $(x<0)$. When connecting $BD$ and intersecting the graph of the inverse proportional function at point $C$, if $OC\\parallel AB$, and the area of $\\triangle ABD$ is $24$, what is the value of $k$?", -"image_file_name": "7056275", -"image": [ -"math/52537112_423.png" -], -"solution": "\\textbf{Solution:} Let $BE \\perp x$-axis at point E, $CF \\perp x$-axis at point F, \\\\\nsince point D is the symmetric point of point A with respect to the y-axis, \\\\\nthus the coordinates of D are $(-3, 0)$, \\\\\nthus $AD=6$, \\\\\nsince the area of $\\triangle ABD = \\frac{1}{2}BE \\cdot AD = 24$, \\\\\nthus $BE=8$, \\\\\nsince $OC \\parallel AB$, \\\\\nthus $\\triangle DCO \\sim \\triangle DBA$, \\\\\nthus $\\frac{OC}{AB} = \\frac{DO}{AD} = \\frac{1}{2}$, \\\\\nsince $\\triangle OCF \\sim \\triangle ABE$, \\\\\nthus $\\frac{CF}{BE} = \\frac{OC}{AB} = \\frac{OF}{AE} = \\frac{1}{2}$, \\\\\nthus $CF = \\frac{1}{2}BE = 4$, \\\\\nsince B and C are on the graph, \\\\\nthus $B\\left(\\frac{k}{8},8\\right)$, $C\\left(\\frac{k}{4},4\\right)$, \\\\\nsince $AE = 3 - \\frac{k}{8}$, $OF = -\\frac{k}{4}$, \\\\\nthus $\\frac{-\\frac{k}{4}}{3-\\frac{k}{8}} = \\frac{1}{2}$, \\\\\nsolving gives $k = \\boxed{-8}$.", -"solution_image": [ -"solution_images/52537112_420.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52536606": { -"question": "As shown in the figure, within rectangle $ABCD$, $E$ is the midpoint of $BC$. Connect $AE$ and draw $EF \\perp AE$ intersecting $DC$ at point $F$. If $AB=4$ and $BC=6$, what is the length of $DF$? ", -"image_file_name": "7056275", -"image": [ -"math/52536606_430.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, since quadrilateral ABCD is a rectangle,\\\\\nhence AB = CD = 4, and $\\angle$B = $\\angle$C = $90^\\circ$,\\\\\nsince BC = 6, and E is the midpoint of BC,\\\\\nhence BE = EC = 3,\\\\\nsince EF $\\perp$ AE,\\\\\nhence $\\angle$AEF = $90^\\circ$,\\\\\nhence $\\angle$BAE = $90^\\circ$ - $\\angle$AEB = $\\angle$CEF,\\\\\nsince $\\triangle$ABE $\\sim$ $\\triangle$ECF,\\\\\nhence $\\frac{AB}{EC} = \\frac{BE}{CF}$,\\\\\nhence CF = $\\frac{BE \\cdot EC}{AB}$ = $\\frac{3 \\times 3}{4}$ = $\\frac{9}{4}$,\\\\\nhence DF = 4 - $\\frac{9}{4}$ = $\\boxed{\\frac{7}{4}}$,", -"solution_image": [ -"solution_images/52536606_430.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52514055": { -"question": "The large square $ABCD$, as shown in the figure, is composed of four congruent right-angled triangles and a small square. The diagonal $EF$ of the small square is extended bidirectionally to intersect the side $AB$ and the extension of side $BC$ at points $G$ and $H$, respectively. If the ratio of the area of the large square to that of the small square is $5$, and $GH = 2\\sqrt{5}$, then what is the side length of the large square?", -"image_file_name": "7056275", -"image": [ -"math/52514055_441.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram:\\\\\n$\\because$ The ratio of the area of the large square to the small square is 5,\\\\\n$\\therefore$ $\\frac{AD}{EM} = \\sqrt{5}$,\\\\\n$\\therefore$ AD = $\\sqrt{5}$EM,\\\\\nLet EM = a, AE = b, then AD = $\\sqrt{5}$a,\\\\\nBy Pythagoras' theorem: AE$^2$ + DE$^2$ = AD$^2$,\\\\\n$\\therefore$ b$^2$ + (a + b)$^2$ = ($\\sqrt{5}$a)$^2$,\\\\\n$\\therefore$ 2b$^2$ + 2ab - 4a$^2$ = 0,\\\\\n(b - a)(b + 2a) = 0,\\\\\n$\\because$ b + 2a $\\neq$ 0,\\\\\n$\\therefore$ b - a = 0,\\\\\n$\\therefore$ b = a,\\\\\n$\\therefore$ AE = DM = a,\\\\\nAs shown in the diagram, extend BF to meet CD at N,\\\\\n$\\because$ BN $\\parallel$ DE, CF = FM,\\\\\n$\\therefore$ DN = CN,\\\\\n$\\therefore$ EN = $\\frac{1}{2}$DM = $\\frac{1}{2}$a,\\\\\n$\\because$ PN $\\parallel$ BG,\\\\\n$\\therefore$ $\\frac{FN}{BF} = \\frac{PN}{BG} = \\frac{FP}{GF} = \\frac{\\frac{1}{2}a}{2a} = \\frac{1}{4}$,\\\\\nLet PN = x, then BG = 4x,\\\\\n$\\because$ DE = BF, $\\angle$BFG = $\\angle$DEF, $\\angle$BGF = $\\angle$DPE,\\\\\n$\\therefore$ $\\triangle$BFG $\\cong$ $\\triangle$DEP (AAS),\\\\\n$\\therefore$ PD = BG = 4x,\\\\\nSimilarly, EG = FP,\\\\\n$\\therefore$ DN = 3x = CN,\\\\\n$\\therefore$ PC = 2x,\\\\\n$\\because$ CP $\\parallel$ BG,\\\\\n$\\therefore$ $\\frac{CP}{BG} = \\frac{PH}{GH}$, that is $\\frac{2x}{4x} = \\frac{PH}{2\\sqrt{5}}$,\\\\\n$\\therefore$ PH = PG = $\\sqrt{5}$,\\\\\n$\\because$ $\\frac{FP}{FG} = \\frac{1}{4}$,\\\\\n$\\therefore$ EF = $\\sqrt{2}$a = $\\frac{3}{5}$GP = $\\frac{3}{5}\\sqrt{5}$,\\\\\n$\\therefore$ a = $\\frac{3\\sqrt{10}}{10}$,\\\\\n$\\therefore$ AD = $\\sqrt{5}$a = $\\boxed{\\frac{3\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/52514055_440.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52513747": { -"question": "As shown in the figure, in $\\triangle ABC$, with $DE \\parallel BC$, $AD=EC$, $BD=4$, and $AE=3$, what is the length of $AB$?", -"image_file_name": "7056275", -"image": [ -"math/52513747_456.png" -], -"solution": "\\textbf{Solution:} Since $DE\\parallel BC$,\\\\\nit follows that $\\frac{AD}{BD}=\\frac{AE}{EC}$,\\\\\nsince $AD=EC$,\\\\\nthen $AD^2=AE\\cdot BD=3\\times 4=12$,\\\\\nthus $AD=2\\sqrt{3}$,\\\\\ntherefore $AB=AD+BD=2\\sqrt{3}+4$,\\\\\nhence the answer is: $AB=\\boxed{2\\sqrt{3}+4}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52514018": { -"question": "As shown in Figure 1, a rectangular piece of paper $ABCD$, with points $E$ and $F$ located on $AB$ and $CD$ respectively, and points $G$, $H$ located on $AF$ and $EC$ respectively. Now, cut the paper along $AF$, $GH$, $EC$, and reassemble it into the rectangle shown in Figure 2. Given that the ratio $DF:AD=5:12$ and $GH=6$, what is the length of $AD$? ", -"image_file_name": "7056275", -"image": [ -"math/52514018_4617.png" -], -"solution": "\\[ \\textbf{Solution:} \\text{ As shown in the figure, let } DF = 5x, \\text{ according to the problem, we have } AD = 12x, \\]\n\\[ AF = \\sqrt{AD^{2} + DF^{2}} = 13x, \\]\n\\[ \\text{In figure 2, since } \\angle CHA = \\angle FDA = 90^\\circ \\text{ and } \\angle CAH = \\angle FAD, \\]\n\\[ \\therefore \\triangle ADF \\sim \\triangle AHC, \\]\n\\[ \\therefore \\frac{AD}{AH} = \\frac{DF}{HC} = \\frac{AF}{AC}, \\]\n\\[ \\therefore \\frac{12x}{6+12x} = \\frac{5x}{HC} = \\frac{13x}{FC+13x}, \\]\n\\[ \\therefore HC = 5x + \\frac{5}{2}, FC = \\frac{13}{2}, \\]\n\\[ \\therefore \\text{ The area of the rectangle formed as shown in figure 2 } = AH \\times HC = \\left(12x + 6\\right) \\left(5x + \\frac{5}{2} \\right) = 60\\left(x + \\frac{1}{2}\\right)^{2}, \\]\n\\[ \\text{In figure 1,} \\]\n\\[ CD = DF + FC = 5x + \\frac{13}{2}, \\]\n\\[ \\text{The area of the original rectangle } = AD \\times DC = 12x\\left(5x + \\frac{13}{2}\\right), \\]\n\\[ \\therefore 60\\left(x + \\frac{1}{2}\\right)^{2} = 12x\\left(5x + \\frac{13}{2}\\right), \\]\n\\[ \\text{Solving yields } x = \\frac{5}{6}, \\]\n\\[ \\therefore AD = 12x = 12 \\times \\frac{5}{6} = \\boxed{10}. \\]", -"solution_image": [ -"solution_images/52514018_463.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52513833": { -"question": "As shown in the figure, square $ABCD$ has a side length of 10, and contains 6 identical smaller squares within. The vertices $E$, $F$, $G$, and $H$ of a small square are located on sides $AD$, $AB$, $BC$, and $CD$ respectively. What is the length of $DH$?", -"image_file_name": "7056275", -"image": [ -"math/52513833_4710.png" -], -"solution": "\\textbf{Solution:} As illustrated in the figure:\\\\\n$\\because$ The side length of square ABCD is 10,\\\\\n$\\therefore \\angle A=\\angle B=90^\\circ$, $AB=10$,\\\\\nDraw GP$\\perp$AD at point G, with P being the foot of the perpendicular, thus $\\angle 4=\\angle 5=90^\\circ$,\\\\\n$\\therefore$ Quadrilateral APGB is a rectangle,\\\\\n$\\therefore \\angle 2+\\angle 3=90^\\circ$, $PG=AB=10$,\\\\\n$\\because$ Six squares of identical size are placed within the large square as shown in the figure,\\\\\n$\\therefore \\angle 1+\\angle 2=90^\\circ$,\\\\\n$\\therefore \\angle 1=\\angle 3$,\\\\\n$\\therefore \\triangle BGF \\sim \\triangle PGE$,\\\\\n$\\therefore \\frac{BG}{PG}=\\frac{FG}{EG}$,\\\\\n$\\therefore \\frac{BG}{10}=\\frac{1}{5}$,\\\\\n$\\therefore GB=2$,\\\\\n$\\therefore AP=2$,\\\\\nSimilarly, $DE=2$,\\\\\n$\\therefore PE=AD-AP-DE=6$,\\\\\n$\\therefore EG=\\sqrt{10^2+6^2}=2\\sqrt{34}$,\\\\\n$\\therefore$ The side length of the small square is $\\frac{2\\sqrt{34}}{5}$,\\\\\n$\\therefore DH=\\sqrt{EH^2-DE^2}=\\sqrt{\\left(\\frac{2\\sqrt{34}}{5}\\right)^2-2^2}=\\boxed{\\frac{6}{5}}$.", -"solution_image": [ -"solution_images/52513833_470.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52514049": { -"question": "As shown in the figure, $AB\\parallel CD\\parallel EF$. If $AC: CE = 2: 3$ and $BF = 10$, what is the length of the line segment $DF$?", -"image_file_name": "7056275", -"image": [ -"math/52514049_480.png" -], -"solution": "Solution: Since $AB\\parallel CD\\parallel EF$,\\\\\nhence $\\frac{BD}{DF}=\\frac{AC}{CE} = \\frac{2}{3}$,\\\\\nSince $BF=10$,\\\\\nthus $DF=10 \\times \\frac{3}{5} = \\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52513828": { -"question": "As shown in the figure, it is known that $AB\\parallel CD\\parallel EF$. If $AC=6$, $CE=3$, and $DF=2$, what is the length of $BD$?", -"image_file_name": "7056275", -"image": [ -"math/52513828_495.png" -], -"solution": "\\textbf{Solution:} Since $AB\\parallel CD\\parallel EF$, \\\\\ntherefore $\\frac{AC}{CE}=\\frac{BD}{DF}$, \\\\\nsince $AC=6$, $CE=3$, $DF=2$, \\\\\ntherefore $\\frac{6}{3}=\\frac{BD}{2}$, \\\\\nsolving, we get: $BD=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52513834": { -"question": "As shown in the figure, it is known that point $A(0, 2)$, $B(4, 0)$, point $C$ is on the $x$ axis, $CD\\perp x$ axis, intersecting line segment $AB$ at point $D$, and point $D$ does not coincide with points $A$, $B$. Fold $\\triangle ABO$ along $CD$, making point $B$ fall at point $E$ on the $x$ axis. Let the abscissa of point $C$ be $x$. Then, when $\\triangle ADE$ is a right-angled triangle, what is the value of $x$?", -"image_file_name": "7056275", -"image": [ -"math/52513834_5019.png" -], -"solution": "\\textbf{Solution:} Given points A(0, 2), and B(4, 0),\\\\\n$\\therefore OA=2$, $OB=4$. Consider two cases:\\\\\n(1) When $\\angle DAE=90^\\circ$,\\\\\nthen $\\angle EAO+\\angle BAO=90^\\circ$,\\\\\n$\\because \\angle AOB=90^\\circ$,\\\\\n$\\therefore \\angle ABO+\\angle BAO=90^\\circ$,\\\\\n$\\therefore \\angle EAO=\\angle ABO$,\\\\\nalso, $\\because \\angle AOE=\\angle BOA=90^\\circ$,\\\\\n$\\therefore \\triangle AOE \\sim \\triangle BOA$,\\\\\n$\\therefore \\frac{OE}{OA}=\\frac{OA}{OB}=\\frac{1}{2}$,\\\\\n$\\therefore OE=\\frac{1}{2}OA=1$,\\\\\n$\\therefore BE=OE+OB=5$,\\\\\nBy the property of folding: $CE=CB=\\frac{1}{2}BE=2.5$,\\\\\n$\\therefore OC=CE-OE=1.5$,\\\\\n$\\therefore x=1.5$;\\\\\n(2) When $\\angle AED=90^\\circ$,\\\\\nSimilar to (1), $\\triangle AOE \\sim \\triangle BOA$,\\\\\n$\\therefore \\frac{OE}{OA}=\\frac{OA}{OB}=\\frac{1}{2}$,\\\\\n$\\therefore OE=\\frac{1}{2}OA=1$,\\\\\n$\\therefore BE=OB-OE=3$,\\\\\nBy the property of folding: $CE=CB=\\frac{1}{2}BE=1.5$,\\\\\n$\\therefore OC=CE+OE=2.5$,\\\\\n$\\therefore x=2.5$;\\\\\nIn summary, when $\\triangle ADE$ is a right triangle, the value of $x$ can be either $\\boxed{2.5}$ or $\\boxed{1.5}$.", -"solution_image": [ -"solution_images/52513834_504.png", -"solution_images/52513834_5019.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52456886": { -"question": "As shown in the figure, it is known that $\\triangle ABC\\sim \\triangle A'B'C'$, where $AD$ and $A'D'$ are the corresponding angle bisectors. If $AD: A'D'=4:3$ and the perimeter of $\\triangle ABC$ is $16$, then what is the perimeter of $\\triangle A'B'C'$?", -"image_file_name": "7056275", -"image": [], -"solution": "\\textbf{Solution:} Since $\\triangle ABC\\sim \\triangle A'B'C'$, and AD and A'D' are their corresponding angle bisectors, if AD$\\colon$ A'D'=4$\\colon$ 3,\\\\\nthen the similarity ratio of $\\triangle ABC$ to $\\triangle A'B'C'$ is 4$\\colon$ 3,\\\\\ntherefore $\\frac{L_{\\triangle ABC}}{L_{\\triangle A'B'C'}}=\\frac{AD}{A'D'}=\\frac{4}{3}$,\\\\\nsince the perimeter of $\\triangle ABC$ is $16$,\\\\\ntherefore $\\frac{16}{L_{\\triangle A'B'C'}}=\\frac{4}{3}$,\\\\\nsolving this gives: $L_{\\triangle A'B'C'}=\\boxed{12}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52457428": { -"question": "As shown in the figure, in $ \\triangle ABC$, $\\angle ACB=90^\\circ$. $BD=AB$ is taken on the extension line of $BC$, and $AD$ is connected. A perpendicular $BE\\perp AD$ is drawn from point $B$ to point $E$, intersecting $AC$ at point $F$. $DF$ is connected. Point $P$ is a moving point on the ray $BE$. If $AC=9$ and $BC=12$, what is the length of $BP$ when $\\triangle APB$ is similar to $\\triangle AFD$?", -"image_file_name": "7056275", -"image": [ -"math/52457428_5218.png" -], -"solution": "\\textbf{Solution:} Connect AP. \\\\\nIn $\\triangle ACB$, $\\angle ACB=90^\\circ$, $AC=9$, $BC=12$, \\\\\n$\\therefore AB=\\sqrt{AC^{2}+BC^{2}}=\\sqrt{9^{2}+12^{2}}=15$, \\\\\n$\\therefore BD=BA=15$, $CD=BD-BC=15-12=3$, \\\\\n$\\therefore AD=\\sqrt{CD^{2}+AC^{2}}=\\sqrt{3^{2}+9^{2}}=3\\sqrt{10}$, \\\\\n$\\therefore BE\\perp AD$, \\\\\n$\\therefore AE=ED$, \\\\\n$\\therefore FA=FD$, \\\\\nLet $FA=FD=x$, then we have $x^{2}=(9-x)^{2}+3^{2}$, \\\\\n$\\therefore x=5$, \\\\\n$\\therefore FA=FD=5$, \\\\\nBecause $\\angle AEF=\\angle FCB=90^\\circ$, $\\angle AFE=\\angle CFB$, \\\\\n$\\therefore \\angle EAF=\\angle ABP$, \\\\\nWhen $\\triangle APB \\sim \\triangle AFD$, $\\frac{BP}{DF}=\\frac{AB}{AD}$, \\\\\n$\\therefore \\frac{BP}{5}=\\frac{15}{3\\sqrt{10}}$, \\\\\n$\\therefore BP=\\frac{5\\sqrt{10}}{2}$. \\\\\nWhen $\\triangle AFD \\sim \\triangle PAB$, $\\frac{AD}{BP}=\\frac{DF}{AB}$, \\\\\n$\\therefore \\frac{3\\sqrt{10}}{BP}=\\frac{5}{15}$, \\\\\n$\\therefore BP=9\\sqrt{10}$. \\\\\nIn conclusion, the length of $BP$ is $\\boxed{\\frac{5\\sqrt{10}}{2}}$ or $\\boxed{9\\sqrt{10}}$.", -"solution_image": [ -"solution_images/52457428_520.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51369939": { -"question": "As shown in the figure, in the right-angled $\\triangle ABC$ with $\\angle C=90^\\circ$, $AC=8$, and $BC=6$, point $M$ moves from point $C$ along the segment $CA$ towards point $A$, and $BM$ is connected, with $MN\\perp BM$ intersecting side $AB$ at point $N$. If $CM=2$, then how long is the segment $AN$? When point $M$ moves from $C$ to the midpoint of $AC$, what is the length of the path traversed by point $N$?", -"image_file_name": "7056275", -"image": [ -"math/51369939_530.png" -], -"solution": "\\textbf{Solution:}\n\n(1) As shown in the diagram, construct $ND\\perp AC$, it is easy to determine $AB=10$, and it is found that $\\triangle BCM \\sim \\triangle MDN$, \\\\\n$\\therefore \\frac{MD}{ND}=\\frac{BC}{MC}=\\frac{6}{2}=3$, let $ND=x$, then $MD=3x$, \\\\\nthus $AD=AC-CM-MD=6-3x$, it is easy to determine $\\triangle DNA \\sim \\triangle CBA$, \\\\\n$\\therefore \\frac{AD}{AC}=\\frac{ND}{BC}=\\frac{AN}{AB}$, \\\\\n$\\therefore \\frac{6-3x}{8}=\\frac{x}{6}=\\frac{AN}{10}$, \\\\\n$\\therefore AN=\\boxed{\\frac{30}{13}}$. \\\\\n(2) Following the same reasoning as in (1), we obtain $AN=\\boxed{\\frac{40}{17}}$.", -"solution_image": [ -"solution_images/51369939_530.jpg" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51369938": { -"question": "As shown in the figure, in $\\triangle ABC$, $BC=20$, points $B_1$, $B_2$, $B_3$, $B_4$ and points $C_1$, $C_2$, $C_3$, $C_4$ are the quintisection points of $AB$, $AC$ respectively. What is the value of $B_1C_1+B_2C_2+B_3C_3+B_4C_4$?", -"image_file_name": "7056275", -"image": [ -"math/51369938_540.png" -], -"solution": "\\[ \\text{Solution:} \\quad \\because \\frac{AB_4}{AB} = \\frac{AC_4}{AC} = \\frac{4}{5}, \\]\n\\[ \\angle A = \\angle A, \\]\n\\[ \\therefore \\triangle AB_4C_4 \\sim \\triangle ABC, \\]\n\\[ \\therefore \\frac{B_4C_4}{BC} = \\frac{AB_4}{AB} = \\frac{4}{5}, \\]\n\\[ \\therefore B_4C_4 = \\frac{4}{5}BC = \\frac{4}{5} \\times 20 = 16, \\]\nSimilarly, $B_1C_1 = 4$,\n\\[ B_2C_2 = 8, \\]\n\\[ B_3C_3 = 12, \\]\n\\[ \\therefore B_1C_1 + B_2C_2 + B_3C_3 + B_4C_4 = \\boxed{40}. \\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51434121": { -"question": "As shown in the figure, the hyperbola $y=\\frac{k}{x}$ passes through the midpoint A of the hypotenuse of the right triangle $\\triangle BOC$, and intersects with BC at point D. Given that the area of $\\triangle BOD$ is 21, what is the value of $k$?", -"image_file_name": "7056275", -"image": [ -"math/51434121_554.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct $AE\\perp$ to the $x$-axis, then the area of $\\triangle AOE$ and $\\triangle DOC$ is $\\frac{1}{2}|k|$, \\\\\n$\\therefore$ the area of the quadrilateral $BAEC$ and $\\triangle BOD$ is $21$, \\\\\n$\\because$ $AE\\perp x$ axis, \\\\\n$\\angle BCO=90^\\circ$, and point A is the midpoint of OB, \\\\\n$\\therefore$ $\\angle AOE = \\angle BOC$, \\\\\n$\\angle AEO = \\angle BCO = 90^\\circ$ \\\\\n$\\therefore$ $\\triangle AOE \\sim \\triangle BOC$, \\\\\n$\\therefore$ $\\frac{{S}_{\\triangle AOE}}{{S}_{\\triangle BOC}} = \\left(\\frac{OA}{OB}\\right)^{2} = \\frac{1}{4}$, \\\\\n$\\because$ the area of quadrilateral $BAEC$ times the area of $\\triangle AOE$ equals the area of $\\triangle BOC$, \\\\\n$\\therefore$ $\\frac{{S}_{\\triangle AOE}}{{S}_{\\text{quadrilateral }BAEC}} = \\frac{{S}_{\\triangle AOE}}{21} = \\frac{1}{3}$, \\\\\n$\\therefore$ ${S}_{\\triangle AOE} = 7$, \\\\\n$\\therefore$ $\\frac{1}{2}|k| = 7$, \\\\\nSolving for $k$, we get: $k = \\pm 14$, \\\\\n$\\because$ the inverse proportion function passes through the first quadrant, \\\\\n$\\therefore$ $k = \\boxed{14}$.", -"solution_image": [ -"solution_images/51434121_553.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51433790": { -"question": "As shown in the figure, in parallelogram $ABCD$, point $E$ is on $AD$. Connect $CE$ and extend it to intersect the extension of $BA$ at point $F$. If the ratio of $AE$ to $AD$ is $2:3$, and $CD=2$, what is the length of $AF$?", -"image_file_name": "7056275", -"image": [ -"math/51433790_560.png" -], -"solution": "Solution: Since quadrilateral ABCD is a parallelogram, \\\\\nit follows that AB $\\parallel$ CD, \\\\\ntherefore, $\\triangle AFE\\sim \\triangle DCE$,\\\\\nthus $\\frac{AE}{DE}=\\frac{AF}{CD}$, \\\\\nsince AE:AD=2:3 and CD=2, \\\\\nit follows that $\\frac{2}{1}=\\frac{AF}{2}$, \\\\\ntherefore, AF=\\boxed{4}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433574": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=2\\angle B$, and $CD$ bisects $\\angle ACB$. If $AD=2$, $BD=3$, what is the length of $AC$?", -"image_file_name": "7056275", -"image": [ -"math/51433574_572.png" -], -"solution": "\\textbf{Solution}:\\\\\nSince $CD$ bisects $\\angle ACB$,\\\\\nit follows that $\\angle ACD=\\angle BCD=\\frac{1}{2}\\angle ACB$.\\\\\nGiven $\\angle ACB=2\\angle B$,\\\\\nit follows that $\\angle ACD=\\angle B$.\\\\\nConsidering $\\triangle ADC$ and $\\triangle ACB$, we have\\\\\n$\\left\\{\\begin{array}{l}\n\\angle ACD=\\angle B \\\\\n\\angle A=\\angle A\n\\end{array}\\right.$\\\\\nHence, $\\triangle ADC\\sim \\triangle ACB$\\\\\nwhich implies $\\frac{AD}{AC}=\\frac{AC}{AB}$, i.e.,\\\\\n$AC^{2}=AD\\cdot AB$.\\\\\nGiven $AD=2, BD=3$,\\\\\nit follows that $AB=AD+BD=5$\\\\\nand thus $AC^{2}=AD\\cdot AB=10$.\\\\\nSince the length of a segment is a positive number, $AC=\\sqrt{10}$. Therefore, the solution is $AC=\\boxed{\\sqrt{10}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433277": { -"question": "As shown in the figure, $l_{1}\\parallel l_{2}\\parallel l_{3}$. If $AB=2$, $BC=3$, $AD=1$, and $CF=4$, what is the length of $BE$?", -"image_file_name": "7056275", -"image": [ -"math/51433277_580.png" -], -"solution": "\\textbf{Solution:} Construct line $DN \\parallel AC$ through point D to intersect $BE$ at point $M$, and $CF$ at point $N$;\\\\\n$\\therefore$ Quadrilaterals $ABMD$ and $BCNM$ are both parallelograms\\\\\n$\\therefore$ $AB=DM=2$,\\\\\n$BC=MN=3$,\\\\\n$AD=BM=CN=1$\\\\\nFrom the problem, we know\\\\\n$\\frac{AB}{BC}=\\frac{DE}{EF}=\\frac{2}{3}$\\\\\n$\\because BE\\parallel CF$\\\\\n$\\therefore$ $\\triangle DME\\sim \\triangle DNF$\\\\\n$\\therefore$ $\\frac{ME}{NF}=\\frac{DE}{DF}=\\frac{DM}{DN}=\\frac{DM}{DM+MN}=\\frac{2}{5}$\\\\\n$\\because NF=CF-CN=4-1=3$\\\\\n$\\therefore$ $ME=\\frac{6}{5}$\\\\\n$\\therefore$ $BE=BM+ME=1+\\frac{6}{5}=\\boxed{\\frac{11}{5}}$", -"solution_image": [ -"solution_images/51433277_580.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433280": { -"question": "As shown in the figure, within the circle $\\odot O$, the arcs $\\overset{\\frown}{AB} = \\overset{\\frown}{AC}$, $AB=10$, $BC=12$, and $D$ is a point on the arc $\\overset{\\frown}{BC}$ with $CD=5$. What is the length of $AD$?", -"image_file_name": "7056275", -"image": [ -"math/51433280_593.png" -], -"solution": "\\textbf{Solution:} Draw $AE\\perp BC$ at $E$, and draw $CF\\perp AD$ at $F$, then $\\angle AEB=\\angle CFD=90^\\circ$,\n\n$\\because$ $\\stackrel{\\frown}{AB} = \\stackrel{\\frown}{AC}$, and $AB=10$,\n\n$\\therefore$ $\\angle ACB=\\angle B=\\angle D$, and $AB=AC=10$,\n\n$\\because$ $AE\\perp BC$ and $BC=12$,\n\n$\\therefore$ $BE=CE=6$,\n\n$\\therefore$ $AE=\\sqrt{AB^{2}-BE^{2}}=\\sqrt{10^{2}-6^{2}}=8$,\n\n$\\because$ $\\angle B=\\angle D$ and $\\angle AEB=\\angle CFD=90^\\circ$,\n\n$\\therefore$ $\\triangle ABE\\sim \\triangle CDF$,\n\n$\\therefore$ $\\frac{AB}{CD}=\\frac{BE}{DF}=\\frac{AE}{CF}$,\n\n$\\because$ $AB=10$, $CD=5$, $BE=6$, $AE=8$,\n\n$\\therefore$ $\\frac{10}{5}=\\frac{6}{DF}=\\frac{8}{CF}$,\n\nSolving gives: $DF=3$, $CF=4$,\n\nIn $\\triangle AFC$, $\\angle AFC=90^\\circ$, $AC=10$, $CF=4$,\n\nthus $AF=\\sqrt{AC^{2}-CF^{2}}=\\sqrt{10^{2}-4^{2}}=2\\sqrt{21}$,\n\n$\\therefore$ $AD=DF+AF=3+2\\sqrt{21}$.\n\nTherefore, the answer is: $AD=\\boxed{3+2\\sqrt{21}}$.", -"solution_image": [ -"solution_images/51433280_592.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433232": { -"question": "As shown in the figure, in trapezoid $ABCD$, where $AD\\parallel BC$ and $AC$ intersects $BD$ at point $O$, if $BC = 2AD$, what is the value of the ratio $S_{\\triangle AOD} : S_{\\triangle BOC}$?", -"image_file_name": "7056275", -"image": [ -"math/51433232_600.png" -], -"solution": "\\textbf{Solution:} As shown in the figure below:\n\n$\\because$AD $\\parallel$ BC,\n\n$\\therefore\\triangle AOD\\sim \\triangle COB$,\n\n$\\therefore \\frac{S_{\\triangle AOD}}{S_{\\triangle COB}}=\\left(\\frac{AD}{BC}\\right)^2$\n\n$\\because$BC=2AD,\n\n$\\therefore \\frac{S_{\\triangle AOD}}{S_{\\triangle COB}}=\\left(\\frac{AD}{2AD}\\right)^2=\\left(\\frac{1}{2}\\right)^2=\\boxed{\\frac{1}{4}}$", -"solution_image": [ -"solution_images/51433232_600.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433235": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ and $F$ are the midpoints of sides $AB$ and $AD$, respectively, and $BF$ intersects $EC$ and $ED$ at points $M$ and $N$, respectively. Given that $AB=4$ and $BC=6$, what is the length of $MN$?", -"image_file_name": "7056275", -"image": [ -"math/51433235_610.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, extend CE and DA to intersect at point Q, \\\\\n$\\because$ Quadrilateral ABCD is a rectangle, and BC=6, \\\\\n$\\therefore$ $\\angle$BAD=$90^\\circ$, AD=BC=6, and AD$\\parallel$ BC, \\\\\n$\\because$ F is the midpoint of AD, \\\\\n$\\therefore$ AF=DF=3, \\\\\nIn $\\triangle$BAF, by the Pythagorean theorem, we have: $BF=\\sqrt{AB^{2}+AF^{2}}=\\sqrt{4^{2}+3^{2}}=5$, \\\\\n$\\because$ AD $\\parallel$ BC, \\\\\n$\\therefore$ $\\angle$Q=$\\angle$ECB, \\\\\n$\\because$ E is the midpoint of AB, and AB=4, \\\\\n$\\therefore$ AE=BE=2, \\\\\nIn $\\triangle$QAE and $\\triangle$CBE, \\\\\n$\\begin{array}{c}\n\\angle QEA=\\angle BEC\\\\\n\\angle Q=\\angle ECB\\\\\nAE=BE\n\\end{array}$\\\\\n$\\therefore$ $\\triangle$QAE$\\cong$$\\triangle$CBE (AAS), \\\\\n$\\therefore$ AQ=BC=6, thus QF=6+3=9, \\\\\n$\\because$ AD $\\parallel$ BC, \\\\\n$\\therefore$ $\\triangle$QMF$\\sim$$\\triangle$CMB, \\\\\n$\\therefore$ $\\frac{FM}{BM}=\\frac{QF}{BC}=\\frac{9}{6}$, \\\\\n$\\because$ BF=5, \\\\\n$\\therefore$ BM=2, FM=3, \\\\\nAs shown in Figure 2, extend BF and CD to intersect at W, \\\\\nSimilarly, AB=DW=4, CW=8, and BF=FW=5, \\\\\n$\\because$ AB $\\parallel$ CD, \\\\\n$\\therefore$ $\\triangle$BNE$\\sim$$\\triangle$WND, \\\\\n$\\therefore$ $\\frac{BN}{NW}=\\frac{BE}{DW}$, \\\\\n$\\therefore$ $\\frac{BN}{5-BN+5}=\\frac{2}{4}$, \\\\\nSolving this, we get: BN= $\\frac{10}{3}$, \\\\\n$\\therefore$ MN=BN−BM= $\\frac{10}{3}-2= \\boxed{\\frac{4}{3}}$.", -"solution_image": [ -"solution_images/51433235_610.png", -"solution_images/51433235_615.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433090": { -"question": "As shown in the figure, $\\triangle ABC$ is folded along the line $AD$ so that point $B$ coincides with point $E$ on side $AC$. If $AB=AD=4$ and $AC=6$, what is the length of $DC$?", -"image_file_name": "7056275", -"image": [ -"math/51433090_620.png" -], -"solution": "\\textbf{Solution:} Due to the property of folding, we have $\\angle BAD=\\angle DAE$, $\\angle ADB-\\angle ADE$, $AB=AE=4$,\\\\\nsince $AB=AD=4$,\\\\\nthus $\\angle B=\\angle ADB$,\\\\\nlet $\\angle B=\\angle ADB=x$,\\\\\nin $\\triangle ABD$, we have $\\angle BAD=180^\\circ-2x$,\\\\\nsince $\\angle EDC=180^\\circ-\\angle ADB-\\angle ADE=180^\\circ-2x$,\\\\\nthus $\\angle BAD=\\angle EDC$,\\\\\nsince $\\angle BAD=\\angle DAE$,\\\\\nthus $\\angle DAE=\\angle EDC$,\\\\\nsince $\\angle C=\\angle C$,\\\\\nthus $\\triangle DCE\\sim \\triangle ACD$,\\\\\ntherefore, $\\frac{EC}{DC}=\\frac{DC}{AC}=\\frac{6-4}{DC}=\\frac{DC}{6}$,\\\\\nhence, $DC=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52872414": { -"question": "As shown in the figure, $AD$ is the angle bisector of $\\triangle ABC$, $\\angle ADE = \\angle B$, $AE=3$, and $CE=1$. What is the length of $CD$?", -"image_file_name": "7056275", -"image": [ -"math/52872414_636.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $AD$ is the angle bisector of $\\triangle ABC$, \\\\\nthen $\\angle BAD=\\angle DAC$, \\\\\nand since $\\angle ADE=\\angle B$, \\\\\nthus $\\angle AED=\\angle ADB$, \\\\\nthus $\\angle CED=\\angle CDA$, \\\\\nand since $\\angle C=\\angle C$, \\\\\nthus $\\triangle ADC\\sim \\triangle DEC$, \\\\\ntherefore $\\frac{CE}{CD}=\\frac{CD}{AC}$, \\\\\nGiven that $AE=3$ and $CE=1$, \\\\\nthus $AC=AE+EC=3+1=4$, \\\\\ntherefore $\\frac{1}{CD}=\\frac{CD}{4}$, i.e., $CD^2=4$, \\\\\nSolving gives $CD=2$ or $CD=-2$ (discard this), \\\\\nthus $CD=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52872379": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=90^\\circ$, $AB=8$, $BC=6$, and D, E, F are points on sides AB, BC, and AC, respectively. Given that $\\angle BED + \\angle C = 90^\\circ$ and $\\triangle BED$ is symmetrical to $\\triangle FED$ with respect to DE, what is the length of DE?", -"image_file_name": "7056275", -"image": [ -"math/52872379_644.png" -], -"solution": "\\textbf{Solution:} Draw $FN\\perp AB$, with the foot at N, through point E draw $EM\\perp NF$, intersecting the extended line of NF at point M,\\\\\n$\\therefore$ $\\angle FND=\\angle FME=90^\\circ$,\\\\\n$\\because$ $\\angle B=90^\\circ$,\\\\\n$\\therefore$ Quadrilateral NBEM is a rectangle,\\\\\n$\\therefore$ $NB=ME$,\\\\\n$\\because$ $\\angle BED+\\angle C=90^\\circ$, $\\angle C+\\angle A=90^\\circ$,\\\\\n$\\therefore$ $\\angle BED=\\angle A$,\\\\\n$\\because$ $\\angle B=\\angle B$,\\\\\n$\\therefore$ $\\triangle BED\\sim \\triangle BAC$,\\\\\n$\\therefore$ $\\frac{BD}{BE}=\\frac{BC}{BA}=\\frac{6}{8}=\\frac{3}{4}$,\\\\\n$\\because$ Triangle $BED$ and $\\triangle FED$ are symmetric with respect to DE,\\\\\n$\\therefore$ $\\triangle BED\\cong \\triangle FED$,\\\\\n$\\therefore$ $\\angle DFE=\\angle B=90^\\circ$, $DF=BD$, $EF=BE$,\\\\\n$\\therefore$ $\\frac{DF}{EF}=\\frac{BD}{BE}=\\frac{3}{4}$,\\\\\n$\\because$ $\\angle FME=90^\\circ$,\\\\\n$\\therefore$ $\\angle MEF+\\angle MFE=90^\\circ$,\\\\\n$\\because$ $\\angle MFE+\\angle NFD=90^\\circ$,\\\\\n$\\therefore$ $\\angle MEF=\\angle NFD$,\\\\\n$\\therefore$ $\\triangle NDF\\sim \\triangle MFE$,\\\\\n$\\therefore$ $\\frac{NF}{ME}=\\frac{DF}{FE}=\\frac{3}{4}$,\\\\\n$\\therefore$ Let $NF=3x$, $ME=4x$,\\\\\n$\\because$ $\\angle ANF=\\angle B=90^\\circ$, $\\angle A=\\angle A$,\\\\\n$\\therefore$ $\\triangle ANF\\sim \\triangle ABC$,\\\\\n$\\therefore$ $\\frac{NF}{BC}=\\frac{AN}{AB}$,\\\\\n$\\therefore$ $\\frac{3x}{6}=\\frac{8-4x}{8}$,\\\\\n$\\therefore$ $x=1$,\\\\\n$\\therefore$ $NF=3$, $ME=NB=4$,\\\\\nLet $BD=DF=y$,\\\\\nthen $ND=NB-BD=4-y$,\\\\\nIn $\\triangle NDF$, $NF^{2}+ND^{2}=DF^{2}$,\\\\\n$\\therefore$ $3^{2}+(4-y)^{2}=y^{2}$,\\\\\n$\\therefore$ $y=\\frac{25}{8}$,\\\\\n$\\therefore$ $BD=\\frac{25}{8}$,\\\\\n$\\because$ $\\angle B=90^\\circ$, $AB=8$, $BC=6$,\\\\\n$\\therefore$ $AC=\\sqrt{AB^{2}+BC^{2}}=\\sqrt{8^{2}+6^{2}}=10$,\\\\\n$\\because$ $\\triangle BED\\sim \\triangle BAC$,\\\\\n$\\therefore$ $\\frac{DE}{AC}=\\frac{BD}{BC}$,\\\\\n$\\therefore$ $DE=\\boxed{\\frac{125}{24}}$.", -"solution_image": [ -"solution_images/52872379_640.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51445485": { -"question": "As shown in the figure, in quadrilateral \\(ABCD\\), \\(AD \\parallel BC\\), \\(\\angle BAD=90^\\circ\\), and diagonals \\(BD \\perp DC\\), \\(AD=4\\), \\(BC=9\\), what is the length of \\(BD\\)?", -"image_file_name": "7056275", -"image": [ -"math/51445485_650.png" -], -"solution": "\\textbf{Solution:} Given that $AD \\parallel BC$ and $BD \\perp DC$, \\\\\n$\\therefore \\angle ADB = \\angle DBC$, and $\\angle BDC = 90^\\circ$, \\\\\n$\\therefore \\angle BAD = \\angle BDC = 90^\\circ$, \\\\\n$\\therefore \\triangle ADB \\sim \\triangle DBC$, \\\\\n$\\therefore \\frac{AD}{BD} = \\frac{BD}{BC}$, \\\\\n$\\therefore BD^{2} = AD \\cdot BC = 4 \\times 9 = 36$, \\\\\n$\\therefore BD = \\boxed{6}$ (negative values are discarded).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51446578": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $CD\\perp AB$ at point $D$, it is known that $AD=5$, $BD=4$, what is the length of $BC$?", -"image_file_name": "7056275", -"image": [ -"math/51446578_660.png" -], -"solution": "\\textbf{Solution:} Since $CD \\perp AB$,\\\\\nthen $\\angle BDC = 90^\\circ$,\\\\\nthus $\\angle BDC = \\angle BCA$,\\\\\nSince $\\angle B = \\angle B$,\\\\\nthus $\\triangle BDC \\sim \\triangle BCA$,\\\\\ntherefore $\\frac{BD}{BC}=\\frac{BC}{BA}$, that is $\\frac{4}{BC}=\\frac{BC}{4+5}$,\\\\\nSolving gives: $BC=\\boxed{6}$ (negative values have been discarded).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52916763": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in $\\circ O$, and $\\angle CBE$ is one of its exterior angles. If $\\angle CBE=58^\\circ$, what is the degree measure of $\\angle AOC$?", -"image_file_name": "7058778", -"image": [ -"math/52916763_445.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is inscribed in circle $O$,\\\\\nit follows that $\\angle ADC+\\angle ABC=180^\\circ$,\\\\\nsince $\\angle CBE+\\angle ABC=180^\\circ$ and $\\angle CBE=58^\\circ$,\\\\\nthen $\\angle ADC=\\angle CBE=58^\\circ$,\\\\\nBy the Inscribed Angle Theorem, $\\angle AOC=2\\angle ADC=\\boxed{116^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52917444": { -"question": "As shown in the figure, observe the compass and straightedge constructions in the diagram. If $\\angle FMO = 50^\\circ$, what is the measure of $\\angle FOE$?", -"image_file_name": "7058778", -"image": [ -"math/52917444_450.png" -], -"solution": "\\textbf{Solution:} From the drawing, we know that PQ perpendicularly bisects FM, \\\\\n$\\therefore$ point E is the midpoint of the arc $\\overset{\\frown}{FM}$, \\\\\n$\\therefore$ $\\overset{\\frown}{FE} = \\overset{\\frown}{EM}$, \\\\\n$\\therefore$ $\\angle MOE = \\angle BOE = \\frac{1}{2}\\angle AOB$, \\\\\nAlso, $\\because \\angle FMO = 50^\\circ$, $\\angle OFM = 90^\\circ$, \\\\\n$\\therefore$ $\\angle AOB = 40^\\circ$, \\\\\n$\\therefore$ $\\angle FOE = \\boxed{20^\\circ}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"55138396": { -"question": "As shown in the figure, given rectangle $ABCD$, with $AB=4\\sqrt{3}$ and $BC=3$, point $P$ is a moving point on the right side of line $AB$, and $\\angle APB=60^\\circ$, $CE=2\\sqrt{3}-3$. What is the maximum distance of point $P$ to line $AB$? What is the minimum value of $PE$?", -"image_file_name": "7058778", -"image": [ -"math/55138396_462.png" -], -"solution": "\\textbf{Solution:} Given the problem, point $P$ is on the major arc $AB$ of the circumcircle of the equilateral triangle with side $AB$. If we draw $OF \\perp AB$ at point $F$, then $OF$ is the perpendicular bisector of $AB$. Therefore, when point $P$ is on $OF$, the distance from point $P$ to line $AB$ is maximized, with the maximum value being the length of $PF$. At this time, $\\triangle PAB$ is an equilateral triangle, therefore $PB=PA=AB=4\\sqrt{3}$, $\\angle PBA=60^\\circ$, therefore $PF=\\frac{\\sqrt{3}}{2}PB=6$. When points $P$, $E$, and $O$ are collinear, the value of $PE$ is minimized. As shown in the figure, connect $OB$. In $\\triangle BFO$, $\\angle BOF=60^\\circ$, $\\angle FBO=30^\\circ$, $BF=CG=\\frac{1}{2}AB=2\\sqrt{3}$, therefore $OF=\\frac{\\sqrt{3}}{3}BF=2$, therefore $OG=3-2=1$, $GE=CG-CE=3$, therefore $OE=\\sqrt{1^2+3^2}=\\sqrt{10}$, therefore $PE_{\\min}=OP-OE=4-\\sqrt{10}$. Thus, the answers are: $PF=\\boxed{6}$, $PE_{\\min}=\\boxed{4-\\sqrt{10}}$.", -"solution_image": [ -"solution_images/55138396_460.png", -"solution_images/55138396_463.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53106905": { -"question": "As shown in the figure, for the quadrilateral $ABCD$ inscribed in a circle, if $\\angle A=60^\\circ$, then what is the measure of $\\angle C$?", -"image_file_name": "7058778", -"image": [ -"math/53106905_470.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is inscribed in a circle, \\\\\nit follows that $\\angle A + \\angle C = 180^\\circ$, \\\\\nsince $\\angle A = 60^\\circ$, \\\\\nit follows that $\\angle C = 180^\\circ - 60^\\circ = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874743": { -"question": "As shown in the figure, the square $ABCD$ and the equilateral triangle $\\triangle AEF$ are both inscribed in the circle $O$, with $EF$ intersecting $BC$ and $CD$ at points $G$ and $H$ respectively. If $AE=6$, what is the radius of circle $O$? And what is the length of $EG$?", -"image_file_name": "7058778", -"image": [ -"math/52874743_480.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, draw lines OA, OE, and through point O draw line OP $\\perp$ AE at P, \\\\\nthus AP = PE = $\\frac{1}{2}$AE = 3, \\\\\n$\\because$ $\\triangle AEF$ is an equilateral triangle, \\\\\n$\\therefore$ $\\angle AOE = 120^\\circ$, \\\\\n$\\because$ OA = OE, \\\\\n$\\therefore$ $\\angle OAP = 30^\\circ$, \\\\\n$\\therefore$ OA = $\\frac{AP}{\\cos 30^\\circ}$ = $2\\sqrt{3}$; \\\\\nConnect BD and AC, with AC intersecting EF at Q, and connect OF, \\\\\nthen AC $\\perp$ EF, \\\\\n$\\therefore$ EQ = $\\frac{1}{2}$EF = 3, \\\\\nIn $\\triangle OQF$, $\\angle OFQ = 30^\\circ$, \\\\\n$\\therefore$ OQ = $\\frac{1}{2}$OF = $\\sqrt{3}$, \\\\\n$\\therefore$ CQ = OC - OQ = $\\sqrt{3}$, \\\\\n$\\because$ Quadrilateral ABCD is a square, \\\\\n$\\therefore$ $\\angle GCQ = 45^\\circ$, \\\\\n$\\therefore$ GQ = CQ = $\\sqrt{3}$, \\\\\n$\\therefore$ EG = EQ - QG = $3 - \\sqrt{3}$, \\\\\nHence, the answer is: The radius of circle O is $\\boxed{2\\sqrt{3}}$; The length of $EG$ is $\\boxed{3 - \\sqrt{3}}$.", -"solution_image": [ -"solution_images/52874743_480.png", -"solution_images/52874743_484.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52874742": { -"question": "As shown in the figure, AB is the diameter of the semicircle O, and $\\angle BAC=40^\\circ$. What is the measure of $\\angle D$ in degrees?", -"image_file_name": "7058778", -"image": [ -"math/52874742_490.png" -], -"solution": "\\textbf{Solution:} Let $AB$ be the diameter of the semicircle O,\\\\\n$\\therefore$ $\\angle ACB = 90^\\circ$,\\\\\n$\\therefore$ $\\angle BAC + \\angle B = 90^\\circ$,\\\\\nSince $\\angle BAC = 40^\\circ$,\\\\\n$\\therefore$ $\\angle B = 90^\\circ - \\angle BAC = 90^\\circ - 40^\\circ = 50^\\circ$,\\\\\nSince $\\angle B + \\angle D = 180^\\circ$,\\\\\n$\\therefore$ $\\angle D = 180^\\circ - 50^\\circ = \\boxed{130^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874676": { -"question": "As shown in the diagram, in circle $\\odot O$, the diameter $AB\\perp$ chord $CD$. An arc is drawn with $C$ as the center and $CD$ as the radius, intersecting the diameter $AB$ at point $E$. Connect $CE$ and extend it to meet $\\odot O$ at point $F$. Connect $DF$. If $AB=8$, what is the length of $DF$?", -"image_file_name": "7058778", -"image": [ -"math/52874676_500.png" -], -"solution": "\\textbf{Solution:} Construct diameter DG passing through point D, and connect DE and GF, \\\\\nsince a arc is drawn with center C and radius CD intersecting diameter AB at point E, \\\\\nit follows that CD=CE, \\\\\nsince diameter AB is perpendicular to chord CD, \\\\\nit follows that AB perpendicularly bisects CD, \\\\\nthus, we have CE=DE=CD, \\\\\ntherefore, $\\triangle CDE$ is an equilateral triangle, \\\\\nwhich implies $\\angle C=60^\\circ$, \\\\\nsince $\\overset{\\frown}{DF}=\\overset{\\frown}{DF}$, \\\\\nit follows that $\\angle G=\\angle C=60^\\circ$, \\\\\nsince DG is a diameter, \\\\\nit follows that $\\angle DFG=90^\\circ$, \\\\\ntherefore, $\\angle GDF=90^\\circ-60^\\circ=30^\\circ$, \\\\\nhence, FG=$\\frac{1}{2}$DG=$\\frac{1}{2}$×8=4, \\\\\ntherefore, DF=$\\sqrt{DG^{2}-FG^{2}}=\\sqrt{8^{2}-4^{2}}=\\boxed{4\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52874676_500.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874641": { -"question": "As shown in the figure, $\\odot P$ intersects the x-axis at points $A(-5,0)$ and $B(1,0)$, and intersects the positive y-axis at point $C$. If $\\angle ACB=60^\\circ$, what is the ordinate of point $C$?", -"image_file_name": "7058778", -"image": [ -"math/52874641_510.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $PH\\perp AB$ at point $H$, and $PD\\perp OC$ at point $D$. Connect $PA$, $PB$, and $PC$.\\\\\nSince $A(-5,0)$ and $B(1,0)$,\\\\\nthus $OA=5$ and $OB=1$,\\\\\ntherefore, $AB=6$,\\\\\nsince $PH\\perp AB$,\\\\\ntherefore, $AH=BH=\\frac{1}{2}AB=3$,\\\\\nthus $OH=2$,\\\\\nbecause $\\angle ACB=60^\\circ$,\\\\\nthus $\\angle APB=2\\angle ACB=2\\times60^\\circ=120^\\circ$,\\\\\nthus $\\angle APH=60^\\circ$, $\\angle PAH=30^\\circ$,\\\\\nsince in $\\triangle PAH$ right-angled, $PH=\\frac{\\sqrt{3}}{3}AH=\\sqrt{3}$,\\\\\nthus $PA=2PH=2\\sqrt{3}$,\\\\\nbecause $\\angle PHO=\\angle PDO=\\angle HOD=90^\\circ$,\\\\\nthus quadrilateral $PHOD$ is a rectangle,\\\\\nthus $OD=PH=\\sqrt{3}$, $PD=OH=2$,\\\\\nsince in right-angled $\\triangle PCD$, $PC=PA=2\\sqrt{3}$, $PD=2$,\\\\\nthus $CD=\\sqrt{PC^{2}-PD^{2}}=\\sqrt{(2\\sqrt{3})^{2}-2^{2}}=2\\sqrt{2}$,\\\\\nthus $OC=OD+CD=\\sqrt{3}+2\\sqrt{2}$,\\\\\nsince point $C$ is on the positive semi-axis of $y$,\\\\\nthus the $y$-coordinate of point $C$ is $\\boxed{\\sqrt{3}+2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52874641_510.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874569": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, D and C are the trisection points of arc BE, $\\angle COD=32^\\circ$. What is the degree measure of $\\angle E$?", -"image_file_name": "7058778", -"image": [ -"math/52874569_520.png" -], -"solution": "\\textbf{Solution:} Since D and C are the trisecting points of the arc BE,\\\\\nthus, arc DE = arc CD = arc BC,\\\\\nthus, $\\angle$BOC = $\\angle$COD = $\\angle$DOE = $32^\\circ$,\\\\\nthus, $\\angle$BOE = $3 \\times 32^\\circ = 96^\\circ$,\\\\\nthus, $\\angle$A = $\\frac{1}{2}\\angle$BOE = $48^\\circ$.\\\\\nTherefore, the answer is: $\\boxed{48^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874523": { -"question": "As shown in the figure, in $\\triangle ABC$, where $AC=3$, $BC=4\\sqrt{2}$, and $\\angle ACB=45^\\circ$, let $D$ be a moving point within $\\triangle ABC$. Let $\\odot O$ be the circumcircle of $\\triangle ACD$. The line $BD$ intersects $\\odot O$ at point $P$ and intersects $BC$ at point $E$. If the arc $AE=CP$, what is the minimum value of $AD$?", -"image_file_name": "7058778", -"image": [ -"math/52874523_531.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$\\because$ arc AE = arc CP,\\\\\n$\\therefore$ $\\angle$CDP=$\\angle$ACB=$45^\\circ$,\\\\\n$\\therefore$ $\\angle$BDC=$135^\\circ$,\\\\\n$\\therefore$ when AD passes through $O_{1}$, AD has its minimum value,\\\\\n$\\because$ $\\angle$BDC=$135^\\circ$,\\\\\n$\\therefore$ $\\angle$BO$_{1}$C=$90^\\circ$,\\\\\n$\\because$ BC=$4\\sqrt{2}$,\\\\\n$\\therefore$ O$_{1}$C=O$_{1}$B=4=O$_{1}$D,\\\\\n$\\therefore$ $\\angle$O$_{1}$CB=$45^\\circ$,\\\\\n$\\therefore$ $\\angle$AO$_{1}$C=$45^\\circ+45^\\circ=90^\\circ$,\\\\\n$\\because$ AC=3,\\\\\n$\\therefore$ AO$_{1}$=5,\\\\\n$\\therefore$ AD=AO$_{1}$−O$_{1}$D=5−4=\\boxed{1}.", -"solution_image": [ -"solution_images/52874523_530.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874521": { -"question": "As shown in the figure, the regular pentagon ABCDE is inscribed in circle $O$. What is the measure of $\\angle CAD$ in degrees?", -"image_file_name": "7058778", -"image": [ -"math/52874521_540.png" -], -"solution": "\\textbf{Solution}: Since pentagon ABCDE is a regular pentagon,\\\\\ntherefore, \\(\\angle BAE=108^\\circ\\), and \\(BC=CD=DE\\),\\\\\ntherefore, \\(\\angle BAC=\\angle CAD=\\angle DAE=\\frac{1}{3}\\angle BAE=36^\\circ\\),\\\\\nthus, the answer is: \\(\\boxed{36^\\circ}\\).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52871736": { -"question": "As shown in the figure, within circle $\\odot O$, diameter $AB \\perp CD$, and $\\angle A=26^\\circ$, what is the degree measure of the inscribed angle subtended by chord $AC$?", -"image_file_name": "7058778", -"image": [ -"math/52871736_551.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram: Connect OC, BC, take a point E on arc AC, and connect AE, CE,\\\\\n$\\because OA=OC$,\\\\\n$\\therefore \\angle AOC=180^\\circ-2\\times 26^\\circ=128^\\circ$,\\\\\n$\\therefore \\angle B=\\frac{1}{2}\\angle AOC=\\frac{1}{2}\\times 128^\\circ=64^\\circ$,\\\\\n$\\therefore \\angle E=180^\\circ-\\angle B=116^\\circ$,\\\\\n$\\therefore$ the measure of the inscribed angle facing chord AC is $\\boxed{64^\\circ}$ or $116^\\circ$.", -"solution_image": [ -"solution_images/52871736_550.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52866046": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in the circle $\\odot O$. Given that $\\angle ADC = 150^\\circ$, what is the measure of $\\angle AOC$ in degrees?", -"image_file_name": "7058778", -"image": [ -"math/52866046_565.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is inscribed in circle O, \\\\\nit follows that $\\angle B + \\angle ADC = 180^\\circ$, \\\\\nGiven that $\\angle ADC = 150^\\circ$, \\\\\nit follows that $\\angle B = 180^\\circ - 150^\\circ = 30^\\circ$. \\\\\nTherefore, $\\angle AOC = 2\\angle B = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52861797": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and chord $CD \\perp AB$ at $P$. If $CD = AP = 8$, what is the radius of $\\odot O$?", -"image_file_name": "7058778", -"image": [ -"math/52861797_576.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw line $OC$.\\\\\nSince $AP=8$,\\\\\nit follows that $AP=OA+OP=OC+OP=8$.\\\\\nLet $OP=x$, then $OC=8-x$.\\\\\nSince $AB$ is the diameter of the circle $\\odot O$, and chord $CD$ is perpendicular to $AB$ at point $P$,\\\\\nit follows that $CP=\\frac{1}{2}CD=4$.\\\\\nIn $\\triangle OCP$, $\\angle OPC=90^\\circ$,\\\\\nhence $OP^2+CP^2=OC^2$.\\\\\nTherefore, $(8-x)^2=x^2+4^2$.\\\\\nTherefore, $x=3$.\\\\\nTherefore, $OC=8-x=5$.\\\\\nTherefore, the radius of the circle $\\odot O$ is $\\boxed{5}$.", -"solution_image": [ -"solution_images/52861797_571.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52861387": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, a circle with its center at the origin $O$ passes through point $A(2, 0)$. The line $y=\\frac{\\sqrt{3}}{3}x+\\sqrt{3}$ intersects the circle $O$ at points $B$ and $C$. What is the length of chord $BC$?", -"image_file_name": "7058778", -"image": [ -"math/52861387_582.png" -], -"solution": "\\textbf{Solution:} Let us consider the line $y=\\frac{\\sqrt{3}}{3}x+\\sqrt{3}$ intersecting the two coordinate axes at points D and E. Draw OM$\\perp$BC at point M and connect OB,\\\\\nWhen $x=0$, $y=\\sqrt{3}$,\\\\\n$\\therefore$D$\\left(0, \\sqrt{3}\\right)$,\\\\\nWhen $y=0$, $x=-3$,\\\\\n$\\therefore$ point E$(-3,0)$,\\\\\n$\\therefore$ $DE=\\sqrt{\\left(\\sqrt{3}\\right)^{2}+3^{2}}=2\\sqrt{3}$,\\\\\n$\\therefore$DE=2OD,\\\\\n$\\therefore$$\\angle$DEO$=30^\\circ$,\\\\\n$\\therefore$OM$=\\frac{1}{2}$OE$=\\frac{3}{2}$,\\\\\n$\\because$ point A$(2,0)$,\\\\\n$\\therefore$OA=OB=2,\\\\\n$\\therefore$ $BM=\\sqrt{OB^{2}-OM^{2}}=\\sqrt{4-\\frac{9}{4}}=\\frac{\\sqrt{7}}{2}$,\\\\\n$\\because$OM$\\perp$BC,\\\\\n$\\therefore$BC=2BM$=\\boxed{\\sqrt{7}}$.", -"solution_image": [ -"solution_images/52861387_582.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52861153": { -"question": "As shown in the figure, the inscribed angle $\\angle ACB = 130^\\circ$, then what is the degree measure of the central angle $\\angle AOB$?", -"image_file_name": "7058778", -"image": [ -"math/52861153_590.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, take point D on the major arc AB, and connect AD and BD,\\\\\n$\\because$ Quadrilateral ACBD is a cyclic quadrilateral,\\\\\n$\\therefore$ $\\angle$D=180$^\\circ$−$\\angle$ACB=180$^\\circ$−130$^\\circ$=50$^\\circ$,\\\\\n$\\because$ $ \\overset{\\frown}{AB}=\\overset{\\frown}{AB}$ , \\\\\n$\\therefore$ $\\angle$AOB=2$\\angle$D=2×50$^\\circ$=\\boxed{100^\\circ}.", -"solution_image": [ -"solution_images/52861153_590.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52861155": { -"question": "As shown in the figure, it is known that $\\triangle ABC$ is an inscribed triangle of $\\odot O$, and $AD$ is the diameter of $\\odot O$. Connect $BD$, and $BC$ bisects $\\angle ABD$. If $AD=6$, then what is the length of $\\overset{\\frown}{CD}$?", -"image_file_name": "7058778", -"image": [ -"math/52861155_601.png" -], -"solution": "\\textbf{Solution:} Connect OC, \\\\\n$\\because$AD is the diameter, and AD=6 \\\\\n$\\therefore$$\\angle$ABD=90$^\\circ$, OD=3 \\\\\n$\\because$BC bisects $\\angle$ABD, \\\\\n$\\therefore$$\\angle$DBC= $ \\frac{1}{2}$$\\angle$ABD=45$^\\circ$, \\\\\n$\\because$$ \\overset{\\frown}{CD}=\\overset{\\frown}{CD}$, \\\\\n$\\therefore$$\\angle$DOC=2$\\angle$DBC=90$^\\circ$, \\\\\n$\\therefore$ the length of $ \\overset{\\frown}{CD}$ is $ \\frac{90^\\circ\\pi \\times 3}{180}=\\boxed{1.5\\pi} $.", -"solution_image": [ -"solution_images/52861155_600.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52837279": { -"question": "As shown in the diagram, a quadrilateral is inscribed in $\\odot O$. If one of its exterior angles $\\angle DCE=46^\\circ$, then what is the measure of $\\angle A$?", -"image_file_name": "7058778", -"image": [ -"math/52837279_613.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is inscribed in circle $\\odot O$,\\\\\nit follows that $\\angle A+\\angle BCD=180^\\circ$,\\\\\nSince $\\angle DCE+\\angle BCD=180^\\circ$,\\\\\nit follows that $\\angle A=\\angle DCE=46^\\circ$,\\\\\nTherefore, the answer is: $\\boxed{46^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52815682": { -"question": "As shown in the figure, points $A$, $B$, $C$, $D$, $E$ are all on the circle $\\odot O$, with $AC=AE$, and $\\angle D = 128^\\circ$. Then, what is the degree measure of $\\angle B$?", -"image_file_name": "7058778", -"image": [ -"math/52815682_620.png" -], -"solution": "\\textbf{Solution:} Connect AC and CE, \\\\\n$\\because$ Quadrilateral ACDE is inscribed in circle O, \\\\\n$\\therefore$ $\\angle$CAE + $\\angle$C = 180$^\\circ$, \\\\\n$\\therefore$ $\\angle$CAE = 180$^\\circ$ − 128$^\\circ$ = 52$^\\circ$, \\\\\n$\\because$ AC = CE, \\\\\n$\\therefore$ $\\angle$ACE = $\\angle$AEC = $ \\frac{1}{2}$(180$^\\circ$ − 52$^\\circ$) = 64$^\\circ$, \\\\\n$\\because$ Quadrilateral ABCE is inscribed in circle O, \\\\\n$\\therefore$ $\\angle$B + $\\angle$AEC = 180$^\\circ$, \\\\\n$\\therefore$ $\\angle$B = 180$^\\circ$ − 64$^\\circ$ = \\boxed{116^\\circ}.", -"solution_image": [ -"solution_images/52815682_620.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52808494": { -"question": "As shown in the figure, quadrilateral ABCD is inscribed in $\\odot O$, and point M is on the extension of AD. If $\\angle AOC = 142^\\circ$, what is the degree measure of $\\angle CDM$?", -"image_file_name": "7058778", -"image": [ -"math/52808494_630.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOC=142^\\circ$,\\\\\nit follows that $\\angle B=71^\\circ$,\\\\\nsince quadrilateral ABCD is inscribed in $\\odot O$,\\\\\nit implies that $\\angle B+\\angle ADC=180^\\circ$,\\\\\nthus $\\angle ADC=142^\\circ$,\\\\\nwhich means $\\angle CDM=180^\\circ-142^\\circ=71^\\circ$,\\\\\nhence, the answer is: $\\boxed{71^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52808101": { -"question": "As shown in the figure, point $A$ is a point on the circle $\\odot O$, $OD\\perp$ chord $BC$ at point $D$. If $\\angle BAC=60^\\circ$ and $OD=1$, then what is the length of $BC$?", -"image_file_name": "7058778", -"image": [ -"math/52808101_640.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OC.\\\\\nSince $\\angle BAC = 60^\\circ$,\\\\\nthus $\\angle BOC = 2\\angle BAC = 120^\\circ$,\\\\\nSince OB = OC,\\\\\nthus $\\angle OBC = \\angle OCB = 30^\\circ$,\\\\\nSince OD$\\perp$BC,\\\\\nthus BD = CD,\\\\\nIn $\\triangle BOD$, with $\\angle OBC = 30^\\circ$, and OD = 1,\\\\\nthus BD = $\\sqrt{3}$OD = $\\sqrt{3}$,\\\\\ntherefore BC = 2BD = $\\boxed{2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52808101_640.jpg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52808102": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in a semicircle, where $AB$ is the diameter, and the arc $DC$ is equal to the arc $CB$. If $\\angle C = 110^\\circ$, then what is the degree measure of $\\angle ABC$?", -"image_file_name": "7058778", -"image": [ -"math/52808102_650.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is inscribed in a semicircle, and $\\angle C=110^\\circ$,\n\\[\n\\therefore \\angle DAB=180^\\circ-\\angle C=70^\\circ,\n\\]\nsince arc DC equals arc CB,\n\\[\n\\therefore CD=CB,\n\\]\n\\[\n\\therefore \\angle CDB=\\angle CBD=35^\\circ,\n\\]\nsince AB is the diameter,\n\\[\n\\therefore \\angle ADB=90^\\circ,\n\\]\n\\[\n\\therefore \\angle ABD=90^\\circ-\\angle ADB=90^\\circ-70^\\circ=20^\\circ,\n\\]\n\\[\n\\therefore \\angle ABC=\\angle ABD+\\angle CBD=20^\\circ+35^\\circ=\\boxed{55^\\circ}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52793780": { -"question": "As shown in the figure, $AB$ is the diameter of circle $O$. Points $C$ and $D$ are on circle $O$, and segments $AC$, $BC$, and $CD$ are connected respectively. Given that $\\angle DOB=150^\\circ$, what is the measure of $\\angle ACD$?", -"image_file_name": "7058778", -"image": [ -"math/52793780_667.png" -], -"solution": "\\textbf{Solution:} Since $\\angle DOB=150^\\circ$ and $\\angle AOD+\\angle DOB=180^\\circ$,\\\\\nit follows that $\\angle AOD=30^\\circ$,\\\\\nthus $\\angle ACD=\\frac{1}{2}\\angle AOD=15^\\circ$.\\\\\nTherefore, the answer is: $\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52796840": { -"question": "As shown in the figure, $AB$ is a chord of the circle $\\odot O$, and point $C$ is a point on the circle $\\odot O$. Given that $\\angle ACB = 55^\\circ$, what is the measure of $\\angle AOB$?", -"image_file_name": "7058778", -"image": [ -"math/52796840_675.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACB = 55^\\circ$, \\\\\n$\\therefore \\angle AOB = 2\\angle ACB = 110^\\circ$, \\\\\n$\\therefore \\angle AOB = \\boxed{110^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52774801": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $y=ax^2-4ax+2(a>0)$ intersects the $y$-axis at point $A$. Point $B$ is the symmetric point of $A$ with respect to the axis of symmetry, and point $C$ is the vertex of the parabola. If the circumcircle of $\\triangle ABC$ passes through the origin $O$, what are the coordinates of point $C$?", -"image_file_name": "7058778", -"image": [ -"math/52774801_689.png" -], -"solution": "\\textbf{Solution:} Connect OB, which intersects the axis of symmetry of the parabola at point $O^{\\prime}$. The axis of symmetry of the parabola is the line $x=2$. When $x=0$, we have $y=2$. Therefore, point A is $(0,2)$. Since point A and B are symmetrical about the axis of symmetry, point B is $(4,2)$. AB is parallel to the x-axis, therefore $\\angle OAB = 90^\\circ$. Since the circumcircle of $\\triangle ABC$ passes through the origin $O$, OB is the diameter of circle $O^{\\prime}$. The coordinate of point $O^{\\prime}$ is $(2,1)$. Therefore, $OB = \\sqrt{2^2+4^2} = 2\\sqrt{5}$, $O^{\\prime}B=O^{\\prime}C=\\sqrt{5}$. Therefore, the coordinate of point C is $\\boxed{(2, 1-\\sqrt{5})}$.", -"solution_image": [ -"solution_images/52774801_680.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52774800": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in $\\odot O$, where $CD$ is the diameter of $\\odot O$. Connect $AD$. If $CD = 2AD$ and $AB = BC = 6$, then what is the radius of $\\odot O$?", -"image_file_name": "7058778", -"image": [ -"math/52774800_696.png" -], -"solution": "Solution: Since CD is a diameter, \\\\\nit follows that $\\angle DAC=90^\\circ$, \\\\\nsince CD=2AD, \\\\\nit follows that $\\angle ACD=30^\\circ$, $\\angle D=60^\\circ$, \\\\\nsince $\\overset{\\frown}{AC} = \\overset{\\frown}{AC}$, \\\\\nit follows that $\\angle D=\\angle B=60^\\circ$, \\\\\nsince AB=BC, \\\\\nit follows that $\\triangle ABC$ is an equilateral triangle, \\\\\ntherefore BC=AC=6; \\\\\nthus $AD^{2}+AC^{2}=CD^{2}$, that is, $AD^{2}+36=4AD^{2}$ \\\\\nSolving this, we find AD=$2\\sqrt{3}$. \\\\\nTherefore, the radius of the circle is $\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52774551": { -"question": "As shown in the diagram, in square $ABCD$, circle $O$ with diameter $AB$ intersects the midpoint of side $BC$ at point $E$ and intersects diagonal $AC$ at point $F$. Draw $EG \\perp AC$ with the foot of the perpendicular at $M$. If $FA=3CF$, what is the value of $\\frac{CG}{GD}$?", -"image_file_name": "7058778", -"image": [ -"math/52774551_701.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BF and extend GE, where AB intersects at point H, let AC intersect GE at point M,\\\\\nsince AB is the diameter of circle O,\\\\\ntherefore $\\angle AFB=90^\\circ$,\\\\\nsince quadrilateral ABCD is a parallelogram,\\\\\ntherefore $DC\\parallel AB$, $DC=AB$,\\\\\ntherefore $\\angle DCE=\\angle CBH$, $\\angle CGE=\\angle EHB$,\\\\\nsince E is the midpoint of BC,\\\\\ntherefore $CE=BE=\\frac{1}{2}CB$,\\\\\ntherefore $\\triangle GEC\\cong \\triangle HEB$ (AAS),\\\\\ntherefore $GC=BH$,\\\\\nsince $EG\\perp AC$, $BF\\perp AC$,\\\\\ntherefore $ME\\parallel BF$,\\\\\ntherefore $CM:CF=CE:CB=\\frac{1}{2}$,\\\\\ntherefore let $CM=MF=a$, $CF=2a$,\\\\\ntherefore $FA=3CF=6a$,\\\\\ntherefore $CM:MA=a:7a=\\frac{1}{7}$,\\\\\nsince $CD\\parallel AB$\\\\\ntherefore $\\triangle GMC\\sim \\triangle HMA$,\\\\\ntherefore $GC:AH=MC:MA=\\frac{1}{7}$,\\\\\ntherefore $GC:AB=\\frac{1}{6}$,\\\\\ntherefore $GC:CD=\\frac{1}{6}$,\\\\\ntherefore $GC:DG=\\boxed{\\frac{1}{5}}$.", -"solution_image": [ -"solution_images/52774551_700.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52755181": { -"question": "As shown in the figure, point A is on the semicircle O, and BC is the diameter. If $\\angle ABC=40^\\circ$ and BC = 2, then what is the length of $\\overset{\\frown}{AC}$? ", -"image_file_name": "7058778", -"image": [ -"math/52755181_711.png" -], -"solution": "\\textbf{Solution:} Given $\\angle AOC = 2\\angle ABC = 80^\\circ$, by the arc length formula, we have\\\\\nthe length of $\\overset{\\frown}{AC}$ is $\\frac{80\\pi \\times 1}{180} = \\boxed{\\frac{4}{9}\\pi}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52755183": { -"question": "In the circle $\\odot O$, points C and D lie on $\\odot O$, and are distributed on opposite sides of diameter AB. Extending CO intersects chord BD at point E. If $\\angle DEC=120^\\circ$, and point A is the midpoint of $\\overset{\\frown}{DC}$, then what is the degree measure of $\\overset{\\frown}{DC}$?", -"image_file_name": "7058778", -"image": [ -"math/52755183_722.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, join OD, \\\\\n$\\because$ point A is the midpoint of $ \\overset{\\frown}{DC}$, and AB is the diameter, \\\\\n$\\therefore$ AB$\\perp$CD, and $\\angle$AOC = $\\angle$AOD, \\\\\n$\\therefore$ $\\angle$AOD = 2$\\angle$B, \\\\\nLet $\\angle$B = x, then $\\angle$AOC = $\\angle$AOD = 2x, and $\\angle$ODB = $\\angle$B = x, \\\\\n$\\because$ $\\angle$DEC = $120^\\circ$, and $\\angle$COD = $\\angle$DEC + $\\angle$ODB, \\\\\n$\\therefore$ 4x = x + $120^\\circ$, \\\\\nSolving for x, we get x = $40^\\circ$, \\\\\n$\\therefore$ 4x = $160^\\circ$, \\\\\nThat is, $\\angle$COD = $160^\\circ$, \\\\\n$\\therefore$ the degree of $ \\overset{\\frown}{CD}$ is $\\boxed{160^\\circ}$.", -"solution_image": [ -"solution_images/52755183_720.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52755081": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC0$\\\\\nLet the point $P(x, -x^{2}+x+2)$,\\\\\nTherefore, the perimeter of the rectangle $OAPB$ is $2(x-x^{2}+x+2)=-2(x-1)^{2}+6$,\\\\\nSince the parabola opens downwards,\\\\\nTherefore, when $x=1$ the maximum perimeter of the rectangle $OAPB$ is $\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52660903": { -"question": "As shown in the figure, an athlete is shot putting. The shot is released at point A and lands at point B. It is known that the trajectory followed by the shot is a parabola described by the equation \\(y =-\\frac{1}{12}(x-4)^{2}+3\\). What is the horizontal distance from the athlete to the landing point B of the shot in meters?", -"image_file_name": "7057900", -"image": [ -"math/52660903_231.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, \\\\\nthus $-\\frac{1}{12}(x-4)^2+3=0$, \\\\\nwe obtain: $x=-2$ or $x=10$, \\\\\n$\\therefore B(10,0)$, \\\\\n$\\therefore$ the horizontal distance from the shot put landing point B to the athlete is $\\boxed{10}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52586399": { -"question": "As shown in the figure, quadrilateral $OABC$ is a rectangle, with point $A$ in the third quadrant. The point symmetrical to point $A$ with respect to $OB$ is point $D$. Points $B$ and $D$ are both on the graph of the function $y=-\\frac{3\\sqrt{2}}{x}$ $(x<0)$. $BE\\perp y$-axis at point $E$. If the extension line of $DC$ intersects the $y$-axis at point $F$, and when the area of rectangle $OABC$ is $6$, what is the value of $\\frac{OF}{OE}$?", -"image_file_name": "7057900", -"image": [ -"math/52586399_2415.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BF and DO,\\\\\ndue to symmetry and the properties of rectangles, it's easy to see that $\\triangle OAB \\cong \\triangle BCO \\cong \\triangle BDO$,\\\\\n$\\therefore$BO$\\parallel$DF,\\\\\n$\\therefore S_{\\triangle BFE} = S_{\\triangle BDO} = \\frac{1}{2}S_{\\text{rectangle} OABC} = 3$,\\\\\nMoreover, since point B lies on the graph of the inverse proportional function $y = -\\frac{3\\sqrt{2}}{x}$,\\\\\n$\\therefore S_{\\triangle BEO} = \\frac{3\\sqrt{2}}{2}$,\\\\\n$\\therefore \\frac{OF}{OE} = \\frac{S_{\\triangle BFE}}{S_{\\triangle BEO}} = \\frac{3}{\\frac{3\\sqrt{2}}{2}} = \\boxed{\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52586399_240.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52574130": { -"question": "As shown in the graph, the quadratic function $y_{1}=ax^{2}+bx+c$ ($a>0$) intersects with the linear function $y_{2}=kx+m$ ($k\\neq 0$) at points $A(-2,4)$ and $B(8,2)$. What is the range of values of $x$ for which $y_{1}>y_{2}$?", -"image_file_name": "7057900", -"image": [ -"math/52574130_250.png" -], -"solution": "\\textbf{Solution:} From the given conditions, we have: when $x<-2$ or $x>8$, $y_{1}>y_{2}$,\\\\\n$\\therefore$ the range of $x$ for which $y_{1}>y_{2}$ holds true is $x<-2$ or $x>8$.\\\\\nTherefore, the solution is: $\\boxed{x<-2$ or $x>8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52551848": { -"question": "As shown in the figure, points $A$ and $B$ are on the hyperbola $y=\\frac{3}{x}$. Perpendiculars are drawn from points $A$ and $B$ to the $x$-axis and the $y$-axis, respectively. If the area of the shaded region is $S_{\\text{shaded}}=2$, what is the value of $S_{1}+S_{2}$?", -"image_file_name": "7057900", -"image": [ -"math/52551848_264.png" -], -"solution": "\\textbf{Solution:} Given $y= \\frac{3}{x}$,\\\\\nthe area of the shaded region, $S_{\\text{shaded}}=2$,\\\\\ntherefore $S_{1}+S_{\\text{shaded}}=3=S_{2}+S_{\\text{shaded}}$,\\\\\nthus $S_{1}=1$, $S_{2}=1$,\\\\\nhence $S_{1}+S_{2}=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52515604": { -"question": "As shown in the figure, the parabola $y = -x^2 - 4x + 5$ intersects the $x$-axis at points $A$ and $B$, and intersects the $y$-axis at point $C$. Point $P$ is any point on the axis of symmetry of the parabola. If points $D$, $E$, and $F$ are the midpoints of $BC$, $BP$, and $PC$, respectively, and $DE$ and $DF$ are connected, what is the minimum value of $DE + DF$?", -"image_file_name": "7057900", -"image": [ -"math/52515604_2716.png" -], -"solution": "\\textbf{Solution:} Let points D, E, F be the midpoints of BC, BP, and PC, respectively.\\\\\nTherefore, DE and DF are the midlines of $\\triangle PBC$,\\\\\nHence, $DE=\\frac{1}{2}PC$, $DF=\\frac{1}{2}PB$,\\\\\nThus, $DE+DF=\\frac{1}{2}(PB+PC)$,\\\\\nWhen the value of PB+PC is minimum, the value of DE+DF is also at its minimum,\\\\\nWhen $y=0$, solving $-x^2-4x+5=0$, we find $x_1=-5$ and $x_2=1$, thus $A(-5,0)$, $B(1,0)$,\\\\\nWhen $x=0$, $y=-x^2-4x+5=5$, hence $C(0,5)$,\\\\\nConnect AC and the symmetry axis of the parabola at point P',\\\\\nSince $P'A=P'B$,\\\\\nIt follows that $P'B+P'C=P'A+P'C=AC$,\\\\\nTherefore, at this point, the value of $P'B+P'C$ is at its minimum, which is $\\sqrt{5^2+5^2}=5\\sqrt{2}$,\\\\\nHence, the minimum value of DE+DF is $\\boxed{\\frac{5\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/52515604_2713.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51369891": { -"question": "As shown in the figure, the parabola $y=\\frac{1}{3}x^{2}+\\frac{8}{3}x-3$ intersects the x-axis at points $A$ and $B$, and intersects the y-axis at point $C$. Point $D$ is a moving point on the parabola within the third quadrant. When $\\angle ACD+2\\angle ABC=180^\\circ$, what are the coordinates of point $D$?", -"image_file_name": "7057900", -"image": [ -"math/51369891_288.png" -], -"solution": "\\textbf{Solution:} See figure below. \\\\\nWhen $y=0$, $\\frac{1}{3}x^{2}+\\frac{8}{3}x-3=0$, \\\\\nSolving this, we get: $x=-9$ or $1$, \\\\\n$\\therefore$ A$(-9,0)$, B$(1,0)$, \\\\\n$\\therefore$ AB$=10$, \\\\\nWhen $x=0$, $y=3$, \\\\\n$\\therefore$ C$(0,-3)$, \\\\\n$\\because$ AC$^{2}=9^{2}+3^{2}=90$, $BC^{2}=1^{2}+3^{2}=10$, $AB^{2}=100$, \\\\\n$\\therefore$ AC$^{2}+BC^{2}=AB^{2}$, \\\\\n$\\therefore$ $\\angle$ACB$=90^\\circ$, \\\\\n$\\therefore$ $\\angle$BAC$+\\angle$ABC$=90^\\circ$, \\\\\n$\\therefore$ $2\\angle$BAC$+2\\angle$ABC$=180^\\circ$, \\\\\n$\\because$ $\\angle$ACD$+2\\angle$ABC$=180^\\circ$ \\\\\n$\\therefore$ $2\\angle$BAC$=\\angle$ACD, \\\\\nConstruct AE$\\perp$x-axis, intersecting the extension of CD at E, and construct the bisector of $\\angle$ACD, intersecting AE at F, then $\\angle$ACF$=\\angle$BAC, \\\\\n$\\therefore$ CF$\\parallel$AB, \\\\\n$\\therefore$ CF$\\perp$AE, \\\\\n$\\therefore$ AF$=EF=BC=3$, \\\\\n$\\therefore$ E$(-9,-6)$, \\\\\nAssume the equation of the line CD is $y=kx-3$, \\\\\nSubstituting the coordinates of E, we get $-6=-9k-3$, \\\\\n$\\therefore$ $k=\\frac{1}{3}$, \\\\\n$\\therefore$ The equation of line CD is $y=\\frac{1}{3}x-3$, \\\\\n$\\therefore$ $\\left\\{\\begin{array}{l}y=\\frac{1}{3}x-3\\\\ y=\\frac{1}{3}x^{2}+\\frac{8}{3}x-3\\end{array}\\right.$ \\\\\nSolving these, we get: $\\left\\{\\begin{array}{l}x_{1}=0\\\\ y_{1}=-3\\end{array}\\right.$, $\\left\\{\\begin{array}{l}x_{2}=-7\\\\ y_{2}=-\\frac{16}{3}\\end{array}\\right.$ \\\\\n$\\therefore$ The point D is $\\boxed{\\left(-7,-\\frac{16}{3}\\right)}$.", -"solution_image": [ -"solution_images/51369891_280.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51420128": { -"question": "As illustrated, it is known that the parabola $y=-\\frac{3}{16}(x+4)(x-4)$ intersects the $x$ axis at points $A$ and $B$, and intersects the $y$ axis at point $C$. The radius of $\\odot C$ is 2. Let $G$ be a moving point on $\\odot C$, and $P$ be the midpoint of $AG$. What is the minimum value of $AG$? What is the maximum value of $OP$?", -"image_file_name": "7057900", -"image": [ -"math/51420128_2913.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, when $y=0$, we have $0=-\\frac{3}{16}(x+4)(x-4)$. Solving this yields: $x_{1}=-4$, $x_{2}=4$. Therefore, we have point A ($-4$, $0$) and point B ($4$, $0$). Hence, $OB=OA=4$. When $x=0$, we have $y=3$. Therefore, point C ($0$, $3$) and hence $OC=3$; Since the radius of circle C is 2, therefore $CG=2$. Since point P is the midpoint of AG and point O is the midpoint of AB, we have $OP=\\frac{1}{2}BG$. Hence, when BG is at its maximum, the value of OP is maximum. Therefore, when points B, C, G lie on the same straight line, BG is at its maximum, consequently, OP reaches its maximum value. In $\\triangle$BOC, we have $BC=\\sqrt{3^2+4^2}=5$. Therefore, $BG=CG+BC=2+5=7$. Thus, the maximum value of OP is $\\boxed{\\frac{7}{2}}$; As illustrated, connecting AC and intersecting circle C at point $G_{1}$, then point G coincides with point $G_{1}$. At this moment, the length of AG is the shortest. Since $OC$ perpendicularly bisects $AB$, we have $AC=BC=5$. Thus, the minimum value of AG is $5-2=\\boxed{3}$.", -"solution_image": [ -"solution_images/51420128_290.png", -"solution_images/51420128_295.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446351": { -"question": "As shown in the figure, points $A\\left(5a-1, 2\\right)$ and $B\\left(8, 1\\right)$ both lie on the graph of the inverse proportion function $y=\\frac{k}{x}\\left(k\\ne 0\\right)$. Point $P$ is a moving point on the line $y=x$. What is the minimum value of $PA+PB$?", -"image_file_name": "7057900", -"image": [ -"math/51446351_306.png" -], -"solution": "\\textbf{Solution:} Since points A ($5a-1$, 2) and B (8, 1) are both on the graph of the inverse proportion function $y=\\frac{k}{x}$,\\\\\nwe have $(5a-1) \\times 2 = 8$,\\\\\nthus, $a = 1$,\\\\\ntherefore, A (4, 2) and B (8, 1),\\\\\ntherefore, the symmetrical point of A about the line $y=x$ is A' (2, 4),\\\\\nthus, $AB = \\sqrt{(8-2)^{2} + (1-4)^{2}} = 3\\sqrt{5}$,\\\\\ntherefore, the minimum value of $PA + PB$ is $\\boxed{3\\sqrt{5}}$.", -"solution_image": [ -"solution_images/51446351_301.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52872299": { -"question": "As shown in the figure, it is known that a parabola passing through point $B(4, 1)$, given by $y=\\frac{1}{2}x^{2}-\\frac{5}{2}x+c$, intersects with the coordinate axes at points A and C as shown. Lines AC, BC, and AB are connected. Within the first quadrant, a moving point M is on the parabola. A perpendicular line $AM$ is drawn from point M to meet the y-axis at point P. When point P is above point A, and $\\triangle AMP$ is similar to $\\triangle ABC$, what are the coordinates of point M?", -"image_file_name": "7057900", -"image": [ -"math/52872299_315.png" -], -"solution": "\\textbf{Solution:} Substituting point B $(4,1)$ into $y=\\frac{1}{2}x^{2}-\\frac{5}{2}x+c$, we get:\\\\\n$\\frac{1}{2}\\times 1^{2}-\\frac{5}{2}\\times 1+c=4$\\\\\n$\\therefore c=3$\\\\\nHence, the equation of the parabola is $y=\\frac{1}{2}x^{2}-\\frac{5}{2}x+3$\\\\\nLetting x=0, we find y=3,\\\\\n$\\therefore$A$(0,3)$\\\\\nLetting y=0, we get $\\frac{1}{2}x^{2}-\\frac{5}{2}x+3=0$\\\\\nSolving this yields $x_{1}=2$, $x_{2}=3$\\\\\n$\\therefore$C$(3,0)$\\\\\n$\\therefore$AC$=\\sqrt{(3-0)^{2}+(0-3)^{2}}=3\\sqrt{2}$\\\\\nBecause B$(4,1)$\\\\\n$\\therefore$BC$=\\sqrt{(4-3)^{2}+(1-0)^{2}}=\\sqrt{2}$, AB$=\\sqrt{(0-4)^{2}+(3-1)^{2}}=2\\sqrt{5}$\\\\\n$\\therefore AC^{2}+BC^{2}=AB^{2}$\\\\\n$\\therefore \\triangle ABC$ is a right triangle, and $\\frac{BC}{AC}=\\frac{1}{3}$,\\\\\nDraw MG perpendicular to the y-axis at G from the point M, then $\\angle$MGA=90$^\\circ$,\\\\\nLet the x-coordinate of point M be x, and since M is to the right of the y-axis, we have x>0, thus MG=x,\\\\\nBecause PM$\\perp$MA, $\\angle$ACB=90$^\\circ$,\\\\\n$\\therefore \\angle AMP=\\angle ACB=90^\\circ$,\\\\\n(1) As shown in the figure, when $\\angle MAP=\\angle CBA$, then $\\triangle MAP\\sim \\triangle CBA$,\\\\\n$\\therefore \\frac{AM}{MP}=\\frac{BC}{AC}=\\frac{1}{3}$\\\\\nSimilarly, $\\triangle AGM\\sim \\triangle AMP$\\\\\n$\\therefore \\frac{AG}{MG}=\\frac{AM}{MP}=\\frac{1}{3}$\\\\\n$\\therefore$AG$=\\frac{1}{3}$MG$=\\frac{1}{3}$x, therefore M$(x,3+\\frac{1}{3}x)$,\\\\\nSubstituting M$(x,3+\\frac{1}{3}x)$ into $y=\\frac{1}{2}x^{2}-\\frac{5}{2}x+3$, we obtain\\\\\n$\\frac{1}{2}x^{2}-\\frac{5}{2}x+3=3+\\frac{1}{3}x$,\\\\\nSolving this, $x_{1}=0$ (discard), $x_{2}=\\frac{17}{3}$,\\\\\n$\\therefore$3+$\\frac{1}{3}$x=3+$\\frac{17}{9}=\\frac{44}{9}$\\\\\n$\\therefore$M$\\left(\\frac{17}{3},\\frac{44}{9}\\right)$;\\\\\nIn summary, the coordinates of point M are $\\boxed{\\left(\\frac{17}{3},\\frac{44}{9}\\right)}$.", -"solution_image": [ -"solution_images/52872299_3112.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446463": { -"question": "As shown in the figure, in the Cartesian coordinate system, the perpendiculars to the x-axis and y-axis through the point $M(-3, 2)$ intersect the graph of the inverse proportion function $y=\\frac{4}{x}$ at points A and B, respectively. What is the area of the quadrilateral MAOB?", -"image_file_name": "7057900", -"image": [ -"math/51446463_322.png" -], -"solution": "\\textbf{Solution}: As shown in the figure\\\\\nSubstitute $y=2$ into $y=\\frac{4}{x}$ to find $x=2$\\\\\n$\\therefore B\\left(2,2\\right)$, $C\\left(0,2\\right)$\\\\\nSubstitute $x=-3$ into $y=\\frac{4}{x}$ to find $y=-\\frac{4}{3}$\\\\\n$\\therefore A\\left(-3,-\\frac{4}{3}\\right)$, $D\\left(-3,0\\right)$\\\\\n$\\therefore {S}_{\\text{quadrilateral }MAOB}={S}_{\\triangle BOC}+{S}_{\\triangle AOD}+{S}_{\\text{rectangle }MDOC}$\\\\\n$=\\frac{1}{2}OC\\times BC+\\frac{1}{2}OD\\times AD+OD\\times OC$\\\\\n$=\\frac{1}{2}\\times 2\\times 2+\\frac{1}{2}\\times 3\\times \\frac{4}{3}+3\\times 2$\\\\\n$=\\boxed{10}$", -"solution_image": [ -"solution_images/51446463_320.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446501": { -"question": "As shown in the figure, in the Cartesian coordinate system, the side \\(OB\\) of the quadrilateral \\(AOBD\\) coincides with the positive half of the x-axis, \\(AD \\parallel OB\\), \\(DB \\perp x\\)-axis, and the diagonals \\(AB\\), \\(OD\\) intersect at point \\(M\\). It is given that \\(AD:OB = 2:3\\), and the area of \\(\\triangle AMD\\) is 4. If the graph of the inverse proportion function \\(y=\\frac{k}{x}\\) exactly passes through point \\(M\\), what is the value of \\(k\\)?", -"image_file_name": "7057900", -"image": [ -"math/51446501_338.png" -], -"solution": "\\textbf{Solution:} Construct MH $\\perp$ OB at H.\\\\\nSince AD $\\parallel$ OB,\\\\\n$\\therefore$ $\\triangle ADM \\sim \\triangle BOM$,\\\\\n$\\therefore$ $\\frac{S_{\\triangle ADM}}{S_{\\triangle BOM}} = \\left(\\frac{AD}{OB}\\right)^{2} = \\frac{4}{9}$,\\\\\nSince $S_{\\triangle ADM} = 4$,\\\\\n$\\therefore$ $S_{\\triangle BOM} = 9$,\\\\\nSince DB $\\perp$ OB, MH $\\perp$ OB,\\\\\n$\\therefore$ MH $\\parallel$ DB,\\\\\n$\\therefore$ $\\frac{OH}{HB} = \\frac{OM}{DM} = \\frac{OB}{AD} = \\frac{3}{2}$,\\\\\n$\\therefore$ OH = $\\frac{3}{5}$OB,\\\\\n$\\therefore$ $S_{\\triangle MOH} = \\frac{3}{5} \\times S_{\\triangle OBM} = \\frac{27}{5}$,\\\\\nSince $\\frac{k}{2} = \\frac{27}{5}$,\\\\\n$\\therefore$ k = $\\boxed{\\frac{54}{5}}$.", -"solution_image": [ -"solution_images/51446501_330.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51635596": { -"question": "As shown, the area of the paper triangle $\\triangle ABC$ is $12\\,\\text{cm}^2$, where one side $BC$ has a length of $6\\,\\text{cm}$. After two cuts, it is assembled into a seamless, non-overlapping rectangle $BCDE$. What is the perimeter of the rectangle in $\\,\\text{cm}$?", -"image_file_name": "7055653", -"image": [ -"math/51635596_250.png" -], -"solution": "\\textbf{Solution:} Extend AT to intersect BC at point P,\\\\\n$\\because$AP$\\perp$BC,\\\\\n$\\therefore$ $\\frac{1}{2}$•BC•AP=12,\\\\\n$\\therefore$ $\\frac{1}{2}$×6×AP=12,\\\\\n$\\therefore$AP=4 (cm),\\\\\nAccording to the problem, AT=PT=2 (cm),\\\\\n$\\therefore$BE=CD=PT=2 (cm),\\\\\n$\\because$DE=BC=6cm,\\\\\n$\\therefore$The perimeter of rectangle BCDE is 6+6+2+2=\\boxed{16} (cm).", -"solution_image": [ -"solution_images/51635596_250.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53404099": { -"question": "As shown in the figure, point $C$ is the midpoint of segment $BD$, $AD=3\\,\\text{cm}$, $AC=7\\,\\text{cm}$. What is the length of $AB$ in centimeters?", -"image_file_name": "7038193", -"image": [ -"math/53404099_466.png" -], -"solution": "\\textbf{Solution:} Given that $AD=3\\,cm$ and $AC=7\\,cm$,\n\nthus, $CD=AC-AD=4\\,cm$,\n\nsince point $C$ is the midpoint of line segment $BD$,\n\nit follows that $BC=CD=4\\,cm$,\n\ntherefore, $AB=AC+BC=7\\,cm+4\\,cm=\\boxed{11\\,cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53364494": { -"question": "As shown in the figure, point $C$ is on line segment $AB$, it is known that $AB=8$, $CB=3$. If $D$ is the midpoint of line segment $AB$, what is the length of line segment $CD$?", -"image_file_name": "7038193", -"image": [ -"math/53364494_485.png" -], -"solution": "\\textbf{Solution:} Given that D is the midpoint of line segment AB, and AB=8,\\\\\nit follows that $BD=\\frac{1}{2}AB=4$,\\\\\nsince $CB=3$,\\\\\nthus $CD=BD-CB=\\boxed{1}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53498591": { -"question": "As shown in the figure, within the quadrilateral $ABCD$, points E and F are the midpoints of sides AD and BC, respectively. Extend CD to point G such that DG=CD. Construct quadrilateral $DGME$ outside of quadrilateral $ABCD$ using DG and DE as sides. Connect BM to intersect AD at point N, and connect FN. If DG=DE=1 and $\\angle ADC=60^\\circ$, what is the length of FN?", -"image_file_name": "7054442", -"image": [ -"math/53498591_310.png" -], -"solution": "\\textbf{Solution:} As shown in the figure: connect EF, AF\\\\\n$\\because$ quadrilateral $DGME$, $DG=CD=1$,\\\\\n$\\therefore$ $DC\\parallel EF$,\\\\\n$\\because$ $\\angle ADC=60^\\circ$\\\\\n$\\therefore$ $\\angle AEF=60^\\circ$\\\\\n$\\because$ points E, F are the midpoints of sides AD, BC respectively\\\\\n$\\therefore$ $AB\\parallel EF$, $AE=DE$\\\\\n$\\therefore$ Quadrilateral ABFE is a parallelogram, $\\angle BAN=\\angle MEN$\\\\\n$\\because$ $DG=DC$, $DG=DE$\\\\\n$\\therefore$ $AE=EF=AB=ME=1$\\\\\n$\\because$ $\\angle AEF=60^\\circ$\\\\\n$\\therefore$ $\\triangle AEF$ is an equilateral triangle\\\\\nIn $\\triangle ABN$ and $\\triangle EMN$\\\\\n$\\left\\{\\begin{array}{l}\nME=AB \\\\\n\\angle MEN=\\angle BAN \\\\\n\\angle MNE=\\angle ANB\n\\end{array}\\right.$\\\\\n$\\therefore$ $\\triangle ABN \\cong \\triangle EMN$ (by SAA)\\\\\n$\\therefore$ $AN=NE$\\\\\n$\\therefore$ $NE=\\frac{1}{2}AE=\\frac{1}{2}$\\\\\n$\\therefore$ $FN\\perp AE$\\\\\n$\\therefore$ $FN=\\sqrt{1^2-\\left(\\frac{1}{2}\\right)^2}=\\boxed{\\frac{\\sqrt{3}}{2}}$", -"solution_image": [ -"solution_images/53498591_310.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53498119": { -"question": "As shown in the figure, in the rhombus $ABCD$, it is known that $\\angle A : \\angle B = 1 : 2$, and the perimeter of the rhombus is $16$. What is the area of the rhombus?", -"image_file_name": "7054442", -"image": [ -"math/53498119_320.png" -], -"solution": "\\textbf{Solution:} As shown in the figure: \\\\\nDraw DE$\\perp$BC at point E through point D,\\\\\nSince in rhombus ABCD, the perimeter is 16,\\\\\nTherefore, AD=AB=4, $AB\\parallel CD$,\\\\\nTherefore, $\\angle A + \\angle B = 180^\\circ$,\\\\\nSince the ratio $\\angle A\\colon\\angle B=1\\colon2$,\\\\\nTherefore, $\\angle A = 60^\\circ$,\\\\\nTherefore, $\\angle ADE = 30^\\circ$,\\\\\nTherefore, AE=$\\frac{1}{2}AD=2$,\\\\\nTherefore, DE=$\\sqrt{AD^{2}-AE^{2}}=2\\sqrt{3}$,\\\\\nTherefore, the area $S$ of rhombus ABCD is $AB\\cdot DE=\\boxed{8\\sqrt{3}}$.", -"solution_image": [ -"solution_images/53498119_320.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53498213": { -"question": "As shown in the figure, in the Cartesian coordinate system, the quadrilateral $AOBC$ is a rectangle with point $O(0,0)$, point $A(5,0)$, and point $B(0,3)$. The rectangle $AOBC$ is rotated clockwise around the point $A$ to get the rectangle $ADEF$, where $O$, $B$, $C$ correspond to $D$, $E$, $F$, respectively. Let $K$ be the intersection point of the diagonals of rectangle $AOBC$, what is the maximum area of $\\triangle KDE$?", -"image_file_name": "7054442", -"image": [ -"math/53498213_330.png" -], -"solution": "\\textbf{Solution:} Let $A(5, 0)$, and $B(0, 3)$,\\\\\nthus $OA=5$, $OB=3$,\\\\\nsince quadrilateral $AOBC$ is a rectangle,\\\\\nthus $AC=OB=3$, $OA=BC=5$, $\\angle OBC=\\angle C=90^\\circ$,\\\\\nthus $AB=\\sqrt{OA^{2}+OB^{2}}=\\sqrt{25+9}=\\sqrt{34}$\\\\\nthus $BK=AK=\\frac{1}{2}AB=\\frac{\\sqrt{34}}{2}$\\\\\nSince rectangle $ADEF$ is obtained by rotating rectangle $AOBC$,\\\\\nthus $AD=AO=5$,\\\\\nAs shown in the figure, when point $D$ is on segment $BK$, the area of $\\triangle DEK$ is the smallest,\\\\\nWhen point $D$ is on the extension of $BA$, the area of $\\triangle D'E'K$ is the largest,\\\\\nThe maximum area $=\\frac{1}{2}\\times D'E' \\times KD'=\\frac{1}{2}\\times 3\\times \\left(5+\\frac{\\sqrt{34}}{2}\\right)=\\boxed{\\frac{30+3\\sqrt{34}}{4}}$.", -"solution_image": [ -"solution_images/53498213_332.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53498363": { -"question": "As shown in the diagram, in rectangle ABCD, \\(AB = 4\\), \\(BC = 6\\). Fold \\(\\triangle ABC\\) along \\(AC\\), making point \\(B\\) coincide with point \\(E\\), and the intersection of \\(CE\\) and \\(AD\\) is point \\(F\\). What is the length of \\(DF\\)?", -"image_file_name": "7054442", -"image": [ -"math/53498363_340.png" -], -"solution": "\\textbf{Solution:} \nLet rectangle ABCD be folded along the diagonal AC so that $\\triangle ABC$ falls into the position of $\\triangle ACE$,\\\\\ntherefore, AE=AB and $\\angle E=\\angle B=90^\\circ$,\\\\\nFurthermore, since ABCD is a rectangle,\\\\\nit follows that AB=CD,\\\\\nthus, AE=DC,\\\\\nand $\\angle AFE=\\angle DFC$,\\\\\nin triangles $\\triangle AEF$ and $\\triangle CDF$,\\\\\n\\[\n\\left\\{\\begin{array}{l}\n\\angle AFE=\\angle CFD \\\\\n\\angle E=\\angle D \\\\\nAE=CD\n\\end{array}\\right.\n\\]\nthus, $\\triangle AEF\\cong \\triangle CDF$ (AAS),\\\\\nhence, EF=DF;\\\\\nSince ABCD is a rectangle,\\\\\nit follows that AD=BC=6, and CD=AB=4,\\\\\nSince $\\triangle AEF\\cong \\triangle CDF$,\\\\\nit follows that FC=FA,\\\\\nLet FA=x, then FC=x, FD=6−x,\\\\\nin $\\triangle CDF$, CF$^{2}$=CD$^{2}$+DF$^{2}$,\\\\\nthat is, $x^{2}=4^{2}+(6−x)^{2}$,\\\\\nsolving leads to $x=\\frac{13}{3}$,\\\\\ntherefore, $FD=6−x=\\boxed{\\frac{5}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53498365": { -"question": "As shown in the figure, a rectangular piece of paper ABCD is folded along EF and MN, resulting in a pentagon GEFNM. Herein, the vertices A and D coincide at point G, and the overlapping section GHIJ forms a square, with vertex I located on EM. If FN equals $4\\sqrt{5}$ cm and EM equals 10 cm, what is the length of side BC in centimeters?", -"image_file_name": "7054442", -"image": [ -"math/53498365_351.png" -], -"solution": "\\textbf{Solution:} Construct IR$\\perp$BC at R, as shown in the figure:\\\\\n$\\because$ A rectangle paper ABCD is folded along EF, MN, resulting in a pentagon GEFNM, where, vertex A coincides with D at point G, FN=$4\\sqrt{5}$cm, EM=10cm,\\\\\n$\\therefore$ $\\angle$IEF=$\\angle$BFE=$\\angle$EFJ, $\\angle$IMN=$\\angle$MNC=$\\angle$MNH, AB=GJ=CD=HG,\\\\\n$\\therefore$ EI=FI, MI=NI,\\\\\nLet EI=FI=xcm, then MI=NI=EM-EI=(10-x)cm,\\\\\n$\\because$ Quadrilateral GHIJ is a square,\\\\\n$\\therefore$ GH=HI=IJ=GJ, $\\angle$HIJ=$90^\\circ$=$\\angle$FIN,\\\\\nIn $\\triangle$FIN, $EI^{2}+NI^{2}=FN^{2}$,\\\\\n$\\therefore$ $x^{2}+(10-x)^{2}=(4\\sqrt{5})^{2}$,\\\\\nSolving this, we get $x=5-\\sqrt{15}$ or $x=5+\\sqrt{15}$,\\\\\nAssume $x=5-\\sqrt{15}$ (The result is the same for $x=5+\\sqrt{15}$),\\\\\nThen EI=FI=($5-\\sqrt{15}$)cm, MI=NI=($5+\\sqrt{15}$)cm,\\\\\n$\\because$2S$\\triangle$FIN=FN$\\cdot$IR=FI$\\cdot$NI,\\\\\n$\\therefore$ $IR=\\frac{FI\\cdot NI}{FN}=\\frac{(5-\\sqrt{15})(5+\\sqrt{15})}{4\\sqrt{5}}=\\frac{\\sqrt{5}}{2}$cm,\\\\\n$\\therefore$ AB=CD=$\\frac{\\sqrt{5}}{2}$cm,\\\\\n$\\therefore$ GJ=HG=$\\frac{\\sqrt{5}}{2}$cm,\\\\\n$\\because$ Quadrilateral GHIJ is a square,\\\\\n$\\therefore$ HI=JI=$\\frac{\\sqrt{5}}{2}$cm,\\\\\n$\\therefore$ HN=HI+NI=$\\left(\\frac{\\sqrt{5}}{2}+5+\\sqrt{15}\\right)$cm, $FJ=JI+FI=\\left(\\frac{\\sqrt{5}}{2}+5-\\sqrt{15}\\right)$cm,\\\\\n$\\therefore$ CN=HN=$\\left(\\frac{\\sqrt{5}}{2}+5+\\sqrt{15}\\right)$cm, BF=FJ=$\\left(\\frac{\\sqrt{5}}{2}+5-\\sqrt{15}\\right)$cm,\\\\\n$\\therefore$ BC=CN+FN+BF=$\\left(\\frac{\\sqrt{5}}{2}+5+\\sqrt{15}+4\\sqrt{5}+\\frac{\\sqrt{5}}{2}+5-\\sqrt{15}\\right)=\\boxed{10+5\\sqrt{5}}$cm.", -"solution_image": [ -"solution_images/53498365_350.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53498558": { -"question": "As shown in the figure, there are four congruent squares placed inside the parallelogram ABCD, all arranged parallely. The top-left vertices of each square, B, E, F, and G, all lie on the line AB, with $BE = EF = FG$. If the line PQ passes exactly through the point D, and $AB = 14$, $CH = 5$, with $\\angle A = 60^\\circ$, then what is the area of each square?", -"image_file_name": "7054442", -"image": [ -"math/53498558_360.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, extend EP to meet CD at K,\\\\\ngiven $BH\\parallel EP$ and ABCD is a parallelogram,\\\\\n$\\therefore AB\\parallel CD$, $AB=CD=14$, and $\\angle A=\\angle C=60^\\circ$,\\\\\n$\\therefore$ quadrilateral BCKE is a parallelogram, and $\\angle EKD=\\angle C=60^\\circ$,\\\\\n$\\therefore BC=EK$, $BE=CK$,\\\\\nby the property of congruent squares we get EP=BH, $\\angle KPD=90^\\circ$,\\\\\n$\\therefore BC-BH=EK-EP$, that is $PK=CH=5$, $\\angle PDK=30^\\circ$,\\\\\n$\\therefore DK=2PK=10$,\\\\\n$\\therefore CK=CD-DK=4$,\\\\\n$\\therefore BE=4$,\\\\\nAlso, since $BE=EF=FG$,\\\\\n$\\therefore AG=AB-BE-EF-FG=2$,\\\\\nSimilarly, it is found $AG=2AM$,\\\\\n$\\therefore AM=1$,\\\\\n$\\therefore GM=\\sqrt{AG^2-AM^2}=\\sqrt{3}$,\\\\\n$\\therefore$ the area of each small square is $\\boxed{3}$.", -"solution_image": [ -"solution_images/53498558_360.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53490596": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $E$, $F$, $G$, and $H$ are respectively the midpoints of $AB$, $BD$, $CD$, and $AC$. Given that $AD=4$ and $BC=5$, what is the perimeter of quadrilateral $EFGH$?", -"image_file_name": "7054442", -"image": [ -"math/53490596_370.png" -], -"solution": "\\textbf{Solution:} Given that E, F, G, and H are the midpoints of AB, BD, CD, and AC, respectively,\n\n$\\therefore EF = \\frac{1}{2}AD = 2, FG = \\frac{1}{2}BC = 2.5$, $GH = \\frac{1}{2}AD = 2, EH = \\frac{1}{2}BC = 2.5$,\n\n$\\therefore$ the perimeter of the quadrilateral EFGH = EF + FG + GH + HE = \\boxed{9}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53490733": { -"question": "As shown in the figure, in a parallelogram $ABCD$ made of paper, $\\angle BAD=45^\\circ$, with $AB=10$. The paper is folded such that the corresponding point $A'$ of point $A$ lies on the side $BC$, and the fold line $EF$ intersects $AB$, $AD$, and $AA'$ at points $E$, $F$, and $G$, respectively. Continue to fold the paper so that the corresponding point $C'$ of point $C$ falls on $A'F$, and connect $GC'$. What is the distance from point $G$ to $AD$? What is the minimum value of $GC'$?", -"image_file_name": "7054442", -"image": [ -"math/53490733_386.png" -], -"solution": "\\textbf{Solution:} Construct $BH \\perp AD$ at $H$, and $GP \\perp AD$ at $P$, with $GQ \\perp A'F$ at $Q$, and draw $A'R \\perp AD$ at $R$, as shown in the diagram: \\\\\nSince $\\angle BAD = 45^\\circ$ and $AB = 10$, \\\\\nit follows that $BH = \\frac{\\sqrt{2}}{2}AB = 5\\sqrt{2}$, \\\\\nSince quadrilateral $ABCD$ is a parallelogram, and $BH \\perp AD$, $A'R \\perp AD$, \\\\\nit follows that quadrilateral $BHR{A'}$ is a rectangle, \\\\\nthus, $A'R = BH = 5\\sqrt{2}$, \\\\\nSince $GP \\perp AD$ and $A'R \\perp AD$, \\\\\nit follows that $GP \\parallel A'R$, \\\\\nSince the paper is folded so that point $A$ maps to $A'$ on side $BC$, with fold line $EF$, \\\\\nit follows that $AG = A'G$ and $\\angle AFE = \\angle A'FE$, \\\\\ntherefore, $GP$ is the median of $\\triangle A'AR$, \\\\\nthus, $GP = \\frac{1}{2}A'R = \\frac{5\\sqrt{2}}{2}$, \\\\\nSince $GP \\perp AD$ and $GQ \\perp A'F$, \\\\\nit follows that $GP = GQ = \\frac{5\\sqrt{2}}{2}$, \\\\\nSince the paper is folded so that point $C$ maps to $C'$ on $A'F$, \\\\\nit follows that when $C'$ coincides with $Q$, $GC'$ is minimized, with the minimum value being the length of $GQ$, \\\\\nthus, the minimum value of $GC'$ is $\\boxed{\\frac{5\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/53490733_383.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51863891": { -"question": "As shown in the figure, the perimeter of the rhombus ABCD is 16, and $\\angle DAB=60^\\circ$. The point E is the midpoint of the side BC, and the point P is a moving point on the diagonal AC. When connecting BP and EP, what is the minimum value of $PB+PE$?", -"image_file_name": "7054442", -"image": [ -"math/51863891_392.png" -], -"solution": "\\textbf{Solution:} Let's connect BD, which intersects AC at O, and connect DE which intersects AC at P, as shown in the diagram.\\\\\nSince the diagonals of a rhombus are perpendicular bisectors of each other, it can be inferred that B and D are symmetrical about the line AC, hence PD=PB.\\\\\nConsidering that the shortest distance between two points is a straight line,\\\\\n$\\therefore PE+PB=PE+PD=DE$\\\\\nmeaning DE is the minimum value of $PB+PE$.\\\\\n$\\because$ Quadrilateral ABCD is a rhombus with a perimeter of 16, and $\\angle DAB=60^\\circ$,\\\\\n$\\therefore \\angle DCB=\\angle DAB=60^\\circ$, and $BC=DC=4$.\\\\\n$\\therefore \\triangle BDC$ is an equilateral triangle.\\\\\n$\\because$ Point E is the midpoint of side BC,\\\\\n$\\therefore CE=\\frac{1}{2}BC=2$, and $DE\\perp BC$.\\\\\n$\\therefore \\angle DEC=90^\\circ$.\\\\\nIn $\\triangle DCE$, by the Pythagorean theorem, we find that $DE=\\sqrt{BD^2-BE^2}=2\\sqrt{3}$.\\\\\nThus, the minimum value of $PB+PE$ is $\\boxed{2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51863891_390.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51863890": { -"question": "As shown in the figure, $\\angle ACB = 90^\\circ$, D is the midpoint of AB, and point E is the midpoint of AF, such that E, C, D are collinear, and $CE = \\frac{1}{4}CD$. If $BF = 10$, what is the length of AB?", -"image_file_name": "7054442", -"image": [ -"math/51863890_403.jpg" -], -"solution": "\\textbf{Solution:} Since point D is the midpoint of AB and point E is the midpoint of AF, and BF = 10,\\\\\nit follows that $DE = \\frac{1}{2}BF = 5$,\\\\\nSince $CE = \\frac{1}{4}CD$,\\\\\nit then follows that $CD = \\frac{4}{5}DE = 4$,\\\\\nSince $\\angle ACB = 90^\\circ$ and point D is the midpoint of AB,\\\\\nthus $AB = 2CD = \\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51863567": { -"question": "As shown in the figure, in the square $ABCD$, $E$ is a point on the diagonal $BD$, and $BE=BC$, then what is the value of $\\angle DCE$?", -"image_file_name": "7054442", -"image": [ -"math/51863567_412.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a square, \\\\\n$\\therefore \\angle CBE=45^\\circ$, $\\angle BCD=90^\\circ$, \\\\\nSince BE=BC, \\\\\n$\\therefore \\angle BCE= \\frac{1}{2} \\times (180^\\circ-45^\\circ)=67.5^\\circ$, \\\\\nTherefore, $\\angle DCE=\\angle BCD-\\angle BCE=90^\\circ-67.5^\\circ=\\boxed{22.5^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53359603": { -"question": "As shown in the figure, in rectangle $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$, and $AE$ bisects $\\angle BAD$ and intersects $BC$ at point $E$. Connect $OE$. If $\\angle EAO = 15^\\circ$, what is the degree measure of $\\angle COE$?", -"image_file_name": "7054442", -"image": [ -"math/53359603_423.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle, \\\\\n$\\therefore$ AD $\\parallel$ BC, AC = BD, OA = OC, OB = OD, $\\angle$BAD = $90^\\circ$, \\\\\n$\\therefore$ OA = OB, $\\angle$DAE = $\\angle$AEB, \\\\\nSince AE bisects $\\angle$BAD, \\\\\n$\\therefore$ $\\angle$BAE = $\\angle$DAE = $45^\\circ$ = $\\angle$AEB, \\\\\n$\\therefore$ AB = BE, \\\\\nSince $\\angle$EAO = $15^\\circ$, \\\\\n$\\therefore$ $\\angle$BAC = $45^\\circ + 15^\\circ$ = $60^\\circ$, \\\\\n$\\therefore$ $\\triangle$BAO is an equilateral triangle, \\\\\n$\\therefore$ AB = OB, $\\angle$ABO = $\\angle$AOB = $60^\\circ$, \\\\\n$\\therefore$ $\\angle$OBC = $90^\\circ - 60^\\circ$ = $30^\\circ$, $\\angle$BOC = $180^\\circ - 60^\\circ$ = $120^\\circ$, \\\\\nSince AB = OB = BE, \\\\\n$\\therefore$ $\\angle$BOE = $\\angle$BEO = $\\frac{1}{2}$($180^\\circ - 30^\\circ$) = $75^\\circ$, \\\\\n$\\therefore$ $\\angle$COE = $120^\\circ - 75^\\circ$ = $\\boxed{45^\\circ}$, \\\\", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53359566": { -"question": "As shown in the figure, in $ABCD$, $E$ and $F$ are the midpoints of $AB$ and $BC$ respectively, $EH \\perp AC$ with the foot at $H$, and it intersects $AF$ at point $G$. If $AC = 24$ and $GF = 6\\sqrt{5}$, then what is the length of $EG$?", -"image_file_name": "7054442", -"image": [ -"math/53359566_436.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect EF, \\\\\nbecause E and F are the midpoints of AB and BC respectively, \\\\\ntherefore EF is the midline of $\\triangle$BAC, \\\\\ntherefore $EF=\\frac{1}{2}AC=12$, $EF\\parallel AC$, \\\\\nbecause EH$\\perp$AC, \\\\\ntherefore EH$\\perp$EF, that is $\\angle$FEG$=90^\\circ$, \\\\\ntherefore $EG=\\sqrt{GF^{2}-EF^{2}}=\\boxed{6}$.", -"solution_image": [ -"solution_images/53359566_430.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53360049": { -"question": "\\textit{When $n$ squares, each with a side length of 1, are arranged as shown in the figure, with $A_1$, $A_2$, ..., $A_n$ being the intersection points of the diagonals of the squares, what is the total area of the overlapping regions formed by overlapping 2022 such squares in this manner?}", -"image_file_name": "7054442", -"image": [ -"math/53360049_443.png" -], -"solution": "\\textbf{Solution:}\n\nAs shown in the figure, the center of square ABCD is $A_{1}$, and BC, CD intersect with the square where $A_{2}$ is located at points E, and F, respectively. Connect $A_{1}C$, $A_{1}D$,\n\nIn square ABCD, $\\angle A_{1}CB = \\angle A_{1}DA_{2} = 45^\\circ$, $A_{1}C = A_{1}D$, $\\angle CA_{1}D = 90^\\circ$,\n\nAlso, because $\\angle EA_{1}F = 90^\\circ$,\n\nTherefore, $\\angle EA_{1}C = \\angle FA_{1}D$,\n\nIn $\\triangle EA_{1}C$ and $\\triangle FA_{1}D$, $\\left\\{\\begin{array}{l}\\angle E{A}_{1}C=\\angle F{A}_{1}D \\\\ \\angle {A}_{1}CE=\\angle {A}_{1}DF \\\\ {A}_{1}C={A}_{1}D\\end{array}\\right.$,\n\nTherefore, $\\triangle EA_{1}C \\cong \\triangle FA_{1}D$ (AAS),\n\nTherefore, $S_{\\triangle EA_{1}C} = S_{\\triangle FA_{1}D}$,\n\nTherefore, $S_{\\text{Quadrilateral} EA_{1}FC} = S_{\\triangle A_{1}DC} = \\frac{1}{4}S_{\\text{Square} ABCD} = \\frac{1}{4} \\times 1 \\times 1 = \\frac{1}{4}$,\n\nSimilarly, the area of each shaded part is also $\\frac{1}{4}$,\n\nBecause 2022 squares overlap in this manner, and the overlap area of every two squares is $\\frac{1}{4}$, making a total of 2021 overlaps,\n\nTherefore, the sum of the overlap areas formed by the 2022 squares overlapped in this way is $\\boxed{\\frac{2021}{4}}$.", -"solution_image": [ -"solution_images/53360049_440.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53359741": { -"question": "As shown in the diagram, in rectangle $OBAC$, the coordinates of point $A$ are $(5, 12)$. What is the length of $BC$?", -"image_file_name": "7054442", -"image": [ -"math/53359741_450.png" -], -"solution": "\\textbf{Solution:} Draw line OA, and draw AM perpendicular to the x-axis at M, \\\\\nsince the coordinates of point A are (5, 12), \\\\\ntherefore, OM = 5, AM = 12, \\\\\nby the Pythagorean theorem, we get: OA = $\\sqrt{5^{2} + 12^{2}} = 13$, \\\\\nsince quadrilateral OBAC is a rectangle, \\\\\ntherefore, BC = OA = \\boxed{13},", -"solution_image": [ -"solution_images/53359741_450.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53359743": { -"question": "As shown in the figure, points E and F are inside the square ABCD, with AE=CF=4, EF=6, and $\\angle E=\\angle F=90^\\circ$. What is the area of square ABCD?", -"image_file_name": "7054442", -"image": [ -"math/53359743_460.png" -], -"solution": "\\textbf{Solution:} Join AC and intersect EF at point O, as shown in the diagram: \\\\\n$\\because$ $\\angle E=\\angle F=90^\\circ$ and $\\angle AOE=\\angle COF$, AE=CF, \\\\\n$\\therefore$ $\\triangle AEO \\cong \\triangle CFO$, \\\\\n$\\therefore$ AO=OC, EO=OF, \\\\\n$\\because$ EF=6, \\\\\n$\\therefore$ EO=OF=3, \\\\\n$\\because$ AE=CF=4, \\\\\nIn $\\triangle AOE$, according to the Pythagorean theorem, we get OA=5, \\\\\n$\\therefore$ AC=10, \\\\\nIn the square ABCD, AB=BC and $\\angle ABC=90^\\circ$, \\\\\nAccording to the Pythagorean theorem, we have $AB^2+BC^2=AC^2$, \\\\\nSolving this gives $AB^2=50$, \\\\\n$\\therefore$ The area of the square ABCD is $\\boxed{50}$.", -"solution_image": [ -"solution_images/53359743_460.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53359457": { -"question": "As shown in the diagram, in $\\square ABCD$, $\\angle ABC=60^\\circ$, points E and F are located on the extensions of AD and BA, respectively, with $CE \\parallel BD$ and $EF \\perp AB$, and $BC = 1$. What is the length of EF?", -"image_file_name": "7054442", -"image": [ -"math/53359457_480.png" -], -"solution": "\\textbf{Solution:}\n\nSince quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore$AD = BC, and BC $\\parallel$ AD, \\\\\nSince CE $\\parallel$ BD, \\\\\n$\\therefore$ quadrilateral BCED is a parallelogram, \\\\\n$\\therefore$ DE = BC = AD = 1, hence D is the midpoint of AE, \\\\\n$\\therefore$ AE = 2, \\\\\nSince EF $\\perp$ AB, \\\\\n$\\therefore$ $\\angle$EFA = $90^\\circ$, \\\\\nSince AD $\\parallel$ BC, \\\\\n$\\therefore$ $\\angle$EAF = $\\angle$ABC = $60^\\circ$, $\\angle$AEF = $30^\\circ$, \\\\\n$\\therefore$ AF = $\\frac{1}{2}$AE = 1, \\\\\n$\\therefore$ EF = $\\sqrt{AE^{2} - AF^{2}} = \\sqrt{2^{2} - 1^{2}} = \\boxed{\\sqrt{3}}$.", -"solution_image": [ -"solution_images/53359457_480.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53359569": { -"question": "As illustrated in the figure, point $P$ is on the diagonal $AC$ of rectangle $ABCD$. Draw $EF\\parallel BC$ passing through point $P$ and intersecting $AB$ and $CD$ at points $E$ and $F$, respectively. Connect $PB$ and $PD$. If $AE=3$ and $PF=6$, what is the area of the shaded region in the figure?", -"image_file_name": "7054442", -"image": [ -"math/53359569_496.png" -], -"solution": "\\textbf{Solution:} Let line PM be perpendicular to AD at point M and intersect BC at point N.\\\\\nSince quadrilateral ABCD is a rectangle,\\\\\nit follows that $\\angle BAD = \\angle ADC = \\angle DCB = \\angle ABC = 90^\\circ$, AD$\\parallel$BC, and AB$\\parallel$CD,\\\\\ntherefore MN$\\perp$BC.\\\\\nSince EF$\\parallel$BC,\\\\\nit follows that EF$\\perp$AB and EF$\\perp$CD,\\\\\ntherefore $\\angle AEP = \\angle AMP = 90^\\circ$,\\\\\nhence quadrilateral AEPM is a rectangle.\\\\\nSimilarly, quadrilaterals DFPM, BEPN, and CFPN are rectangles,\\\\\nthus $ {S}_{\\triangle ADC}={S}_{\\triangle ABC}$, ${S}_{\\triangle AMP}={S}_{\\triangle AEP}$, ${S}_{\\triangle PBE}={S}_{\\triangle PBN}$, ${S}_{\\triangle PFD}={S}_{\\triangle PDM}$, and ${S}_{\\triangle PFC}={S}_{\\triangle PCN}$,\\\\\ntherefore $ 2{S}_{\\triangle PBE}={S}_{\\triangle ABC}-{S}_{\\triangle APE}-{S}_{\\triangle PNC}$, $2{S}_{\\triangle PDF}={S}_{\\triangle ADC}-{S}_{\\triangle APM}-{S}_{\\triangle PFC}$,\\\\\nthus $ 2{S}_{\\triangle PBE}=2{S}_{\\triangle PDF}$, i.e., ${S}_{\\triangle PBE}={S}_{\\triangle PDF}$,\\\\\nSince $ AE=3$ and $PF=6$,\\\\\nit follows that PM=AE=3,\\\\\nthus $ {S}_{\\triangle DFP}={S}_{\\triangle PBE}=\\frac{1}{2}\\times 3\\times 6=9$,\\\\\ntherefore, the area of the shaded part is $9\\times 2=\\boxed{18}$.", -"solution_image": [ -"solution_images/53359569_490.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53359697": { -"question": "As shown in the figure, the diagonals $AC$ and $BD$ of rectangle $ABCD$ intersect at point $O$. A line passing through point $O$ intersects $AD$ and $BC$ at points $E$ and $F$, respectively. Given $AB=2$ and $BC=3$, what is the area of the shaded region in the figure?", -"image_file_name": "7054442", -"image": [ -"math/53359697_500.png" -], -"solution": "\\textbf{Solution:} Since the diagonals AC and BD of rectangle ABCD intersect at point O, \\\\\nit follows that the area of the blank triangle within quadrilateral ABFE is equal to the area of the shaded triangle within quadrilateral EDCF.\\\\\nTherefore, finding the area of the shaded part can be considered as finding the area of quadrilateral ABFE.\\\\\nHence, the area of the shaded part is: $\\frac{2\\times 3}{2}=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53360048": { -"question": "As shown in the figure, rectangle $ABCD$ is folded along $EF$, with point B exactly landing on point $B'$ on side $AD$. If $AE=2$, $DE=6$, and $\\angle EFB=60^\\circ$, what is the area of rectangle $ABCD$? The core question is: What is the area of rectangle $ABCD$?", -"image_file_name": "7054442", -"image": [ -"math/53360048_518.png" -], -"solution": "\\textbf{Solution:} In rectangle $ABCD$, since $AD\\parallel BC$, it follows that $\\angle DEF=\\angle EFB=60^\\circ$,\\\\\nsince folding rectangle $ABCD$ along $EF$ precisely positions point $B$ at $B^{\\prime}$ on side $AD$,\\\\\ntherefore $\\angle EFB=\\angle EFB=60^\\circ$, $\\angle B=\\angle A^{\\prime}B^{\\prime}F=90^\\circ$, $\\angle A=\\angle A^{\\prime}=90^\\circ$,\\\\\n$AE=A^{\\prime}E=2$, $AB=A^{\\prime}B^{\\prime}$,\\\\\nin $\\triangle EFB^{\\prime}$, since $\\angle DEF=\\angle EFB=\\angle EB^{\\prime}F=60^\\circ$, it follows that $\\triangle EFB^{\\prime}$ is an equilateral triangle,\\\\\nin $\\triangle A^{\\prime}EB^{\\prime}$, since $\\angle A^{\\prime}B^{\\prime}E=90^\\circ-60^\\circ=30^\\circ$, it follows that $B^{\\prime}E=2A^{\\prime}E$, and since $A^{\\prime}E=2$,\\\\\nthus $B^{\\prime}E=4$, therefore $A^{\\prime}B^{\\prime}=2\\sqrt{3}$, that is $AB=2\\sqrt{3}$, since $AE=2$, $DE=6$,\\\\\nthus $AD=AE+DE=2+6=8$, therefore the area of rectangle $ABCD$ = $AB\\cdot AD=2\\sqrt{3}\\times 8=\\boxed{16\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53359605": { -"question": "As shown in the diagram, within rectangle $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. $DF$ is perpendicular to and bisects $OC$, intersecting $AC$ at point $E$ and $BC$ at point $F$. $AF$ is connected. If $CD = 2\\sqrt{3}$, then what is the length of $AF$?", -"image_file_name": "7054442", -"image": [ -"math/53359605_521.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle, \\\\\nit follows that AB=$CD=2\\sqrt{3}$, and AO=CO=BO=DO, \\\\\nsince DF is perpendicular bisector of OC, \\\\\nit follows that OD=DC, \\\\\nthus OD=DC=OC, \\\\\ntherefore, $\\triangle$ODC is an equilateral triangle, \\\\\nthus OD=OC=$CD=2\\sqrt{3}$, \\\\\ntherefore, AC=$4\\sqrt{3}$, \\\\\nthus, BC=$\\sqrt{AC^{2}-AB^{2}}=6$, \\\\\nsince $\\triangle$ODC is an equilateral triangle and DE$\\perp$AC, \\\\\nit follows that $\\angle$CDE=$\\angle$ODE=$30^\\circ$, \\\\\nthus, DC=$\\sqrt{3}$CF=$2\\sqrt{3}$, \\\\\ntherefore, CF=2, \\\\\nthus, BF=4, \\\\\ntherefore, AF=$\\sqrt{AB^{2}+BF^{2}}=\\sqrt{12+16}=\\boxed{2\\sqrt{7}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53359742": { -"question": "As shown in the diagram, within rectangle $ABCD$, point $E$ is on $BC$, and $AE$ bisects $\\angle BAC$, $AE=CE$, $BE=2$. What is the area of rectangle $ABCD$?", -"image_file_name": "7054442", -"image": [ -"math/53359742_530.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\n$\\therefore$ $\\angle B=90^\\circ$,\\\\\n$\\therefore$ $\\angle BAC + \\angle BCA = 90^\\circ$,\\\\\nSince AE bisects $\\angle BAC$ and AE=CE,\\\\\n$\\therefore$ $\\angle BAE = \\angle EAC = \\angle ECA$,\\\\\n$\\therefore$ $\\angle BAE + \\angle EAC + \\angle ECA = 90^\\circ$,\\\\\n$\\therefore$ $\\angle BAE = \\angle EAC = \\angle ECA = 30^\\circ$,\\\\\n$\\therefore$ AE=CE=2BE=4, AB=$\\sqrt{4^2 - 2^2} = 2\\sqrt{3}$,\\\\\n$\\therefore$ BC=BE+CE=6,\\\\\n$\\therefore$ The area of rectangle ABCD=AB×BC=$2\\sqrt{3} \\times 6 = \\boxed{12\\sqrt{3}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53183117": { -"question": " In $\\triangle ABC$, $E$, $F$, $G$, and $H$ are the midpoints of $AC$, $CD$, $BD$, and $AB$, respectively. If $AD=3$ and $BC=8$, then what is the perimeter of the quadrilateral $EFGH$?", -"image_file_name": "7054442", -"image": [ -"math/53183117_540.png" -], -"solution": "\\textbf{Solution:} Given that E, F, G, H are the midpoints of AC, CD, BD, AB respectively,\\\\\nit follows that EF=$\\frac{1}{2}$AD=1.5, GH=$\\frac{1}{2}$AD=1.5, EH=$\\frac{1}{2}$BC=4, FG=$\\frac{1}{2}$BC=4,\\\\\ntherefore, the perimeter of the quadrilateral EFGH is EF+FG+GH+EH=1.5+4+1.5+4=\\boxed{11}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53182977": { -"question": "As shown in the diagram, in square $ABCD$, $AB=9$, point $E$ is on side $CD$, and $DE=2CE$. Point $P$ is a moving point on diagonal $AC$. What is the minimum value of $PE+PD$?", -"image_file_name": "7054442", -"image": [ -"math/53182977_550.png" -], -"solution": "\\textbf{Solution:} Draw BP and BE,\\\\\nsince quadrilateral ABCD is a square,\\\\\nthus AB=AD, and $\\angle$BAP=$\\angle$DAP.\\\\\nsince AP=AP,\\\\\nthus $\\triangle$ABP$\\cong$$\\triangle$ADP,\\\\\nthus BP=DP,\\\\\nthus PE+PD=PE+PB$\\geq$BE,\\\\\nmeaning the minimum value of PE+PD is the length of BE,\\\\\nsince AB=9, and DE=2CE,\\\\\nthus CE=$\\frac{1}{3}CD$=$\\frac{1}{3}\\times 9$=3,\\\\\nthus BE=$\\sqrt{BC^{2}+CE^{2}}$=$\\sqrt{9^{2}+3^{2}}$=$3\\sqrt{10}$,\\\\\nthus the minimum value of PE+PD is \\boxed{3\\sqrt{10}}.", -"solution_image": [ -"solution_images/53182977_550.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52344909": { -"question": "As shown in the figure, the quadrilateral ABCD is a square. Perform the following steps:", -"image_file_name": "7054442", -"image": [ -"math/52344909_560.png" -], -"solution": "\\textbf{Solution:} Based on the drawing process, it is known that $AD=AP=PD$,\\\\\n$\\therefore$ $\\triangle ADP$ is an equilateral triangle,\\\\\n$\\therefore$ $\\angle DAP=\\angle ADP=\\angle APD=60^\\circ$,\\\\\n$\\because$ Quadrilateral $ABCD$ is a square,\\\\\n$\\therefore$ $AB=AD$, $\\angle BAD=\\angle ABC=90^\\circ$,\\\\\n$\\therefore$ $AB=AP$, $\\angle BAP=30^\\circ$,\\\\\n$\\therefore$ $\\angle ABP=\\angle APB=\\frac{180^\\circ-30^\\circ}{2}=75^\\circ$,\\\\\n$\\therefore$ $\\angle PBC=\\angle ABC-\\angle ABP=90^\\circ-75^\\circ=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344910": { -"question": "As illustrated in the Cartesian coordinate system, given that the vertices O and B of the rhombus OABC are (0, 0) and (2, 2), respectively, what are the coordinates of the intersection point D of the diagonals of the rhombus after it has been rotated \\(135^\\circ\\) counterclockwise about point O?", -"image_file_name": "7054442", -"image": [ -"math/52344910_570.png" -], -"solution": "\\textbf{Solution:} Given the vertices of the rhombus OABC are O(0,0) and B(2,2), the coordinate of point D is found to be (1,1).\\\\\n$\\therefore OD=\\sqrt{1^2+1^2}=\\sqrt{2}$, the angle between OB and the positive y-axis is $45^\\circ$,\\\\\nand the angle between the positive y-axis and the negative x-axis is $90^\\circ$,\\\\\n$\\therefore$ when the rhombus is rotated $135^\\circ$ counterclockwise around point O, i.e., when line segment OD is rotated $135^\\circ$ counterclockwise around point O, OD is then on the negative x-axis,\\\\\n$\\therefore$ the coordinates of the intersection of the diagonals of the rhombus D are ($-\\sqrt{2}$, 0).\\\\\nThus, the answer is: $(−\\sqrt{2}, 0) = \\boxed{(-\\sqrt{2}, 0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52344793": { -"question": "As shown in the figure, the side length of square $ABCD$ is $6$. Point $P$ is a movable point on the side $BC$. With $P$ as the right angle vertex and $AP$ as the right angle side, an isosceles right $\\triangle APE$ is constructed. $M$ is the midpoint of side $AE$. When point $P$ moves from point $B$ to point $C$, what is the length of the path that point $M$ moves?", -"image_file_name": "7054442", -"image": [ -"math/52344793_580.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram below, connect AC and BD which intersect at point O, connect EC, and draw ET$\\perp$BC intersecting the extension line of BC at T.\\\\\n$\\because$ $\\triangle APE$ is an isosceles right triangle,\\\\\n$\\therefore \\angle APE=90^\\circ$, $AP=PE$\\\\\n$\\therefore \\angle APB+\\angle TPE=90^\\circ$.\\\\\n$\\because$ Quadrilateral ABCD is a square, ET$\\perp$BC,\\\\\n$\\therefore \\angle ABP=90^\\circ$, $\\angle PTE=90^\\circ$.\\\\\n$\\therefore \\angle ABP=\\angle PTE$, $\\angle BAP+\\angle APB=90^\\circ$.\\\\\n$\\therefore \\angle BAP=\\angle TPE$.\\\\\n$\\therefore \\triangle ABP\\cong \\triangle PTE$ (AAS).\\\\\n$\\therefore AB=PT$, $PB=ET$.\\\\\n$\\because$ Quadrilateral ABCD is a square,\\\\\n$\\therefore AB=BC$.\\\\\n$\\therefore BC=PT$.\\\\\n$\\therefore BC-PC=PT-BC$, that is, PB=CT.\\\\\n$\\therefore PB=CT=ET$.\\\\\n$\\therefore \\angle TEC=\\angle TCE=45^\\circ$.\\\\\n$\\because$ In square ABCD, AC and BD intersect at point O,\\\\\n$\\therefore O is the midpoint of AC$, $\\angle DBC=45^\\circ$.\\\\\n$\\therefore \\angle DBC=\\angle TCE$.\\\\\n$\\therefore OD\\parallel CE$.\\\\\n$\\because$ M is the midpoint of AE,\\\\\n$\\therefore$ OM is the median line of $\\triangle ACE$.\\\\\n$\\therefore OM\\parallel CE$.\\\\\n$\\therefore$ Point M lies on the line OD.\\\\\n$\\because$ Point P moves along side BC,\\\\\n$\\therefore$ The trajectory of point M is OD.\\\\\n$\\because$ The side length of square ABCD is 6, and AC, BD intersect at point O,\\\\\n$\\therefore AB=6$, $AD=6$, O is the midpoint of BD.\\\\\n$\\therefore BD=\\sqrt{AB^2+AD^2}=6\\sqrt{2}$.\\\\\n$\\therefore OD=\\frac{1}{2}BD=3\\sqrt{2}$.\\\\\nHence, the answer is: $\\boxed{3\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52344793_580.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344754": { -"question": "As shown in the diagram, for the rhombus $ABCD$ with diagonals $AC=6\\,cm$ and $BD=8\\,cm$, and $AH \\perp BC$ at point $H$, what is the length of $AH$ in $cm$?", -"image_file_name": "7054442", -"image": [ -"math/52344754_590.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rhombus, \\\\\n$\\therefore$ CO = $\\frac{1}{2}$AC = 3cm, BO = $\\frac{1}{2}$BD = 4cm, AO$\\perp$BO, \\\\\n$\\therefore$ BC=$\\sqrt{OC^{2}+BO^{2}}$=5cm, \\\\\n$\\therefore$ Area of rhombus ABCD = $\\frac{BD\\cdot AC}{2}$ = $\\frac{1}{2}\\times 6\\times 8=24\\text{cm}^{2}$, \\\\\nSince the area of rhombus ABCD = BC$\\times$AH, \\\\\n$\\therefore$ BC$\\times$AH = 24, \\\\\n$\\therefore$ AH=$\\boxed{\\frac{24}{5}}$cm.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53639871": { -"question": "As shown in the figure, the rectangle $ABCD$ is folded along the line $AE$, with the vertex $D$ precisely landing on point $F$ on side $BC$. Given that $CE=3\\,\\text{cm}$ and $AB=8\\,\\text{cm}$, what is the area of the shaded section?", -"image_file_name": "7054442", -"image": [ -"math/53639871_607.png" -], -"solution": "\\textbf{Solution:} Given the properties of folding, $EF=DE=CD-CE=5$, $AD=AF=BC$,\\\\\nby the Pythagorean theorem, $CF=4$, $AF^2=AB^2+BF^2$,\\\\\nthus $AD^2=8^2+(AD-4)^2$,\\\\\nSolving gives, $AD=10$,\\\\\n$\\therefore BF=6$,\\\\\nThe area of the shaded part in the diagram is $S_{\\triangle ABF}+S_{\\triangle CEF}=\\boxed{30\\text{cm}^2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52690931": { -"question": "As shown in the figure, place $\\square ABCO$ in the Cartesian coordinate system $xOy$, where $O$ is the origin. If the coordinate of point $A$ is $(4,0)$ and the coordinate of point $C$ is $(1,3)$, then what are the coordinates of point $B$?", -"image_file_name": "7052940", -"image": [ -"math/52690931_200.png" -], -"solution": "\\textbf{Solution:} Extend BC to intersect the y-axis at point D,\\\\\n$\\because$ the coordinates of point A are (4,0),\\\\\n$\\therefore$ OA = 4,\\\\\n$\\because$ quadrilateral ABCD is a parallelogram,\\\\\n$\\therefore$ BC $\\parallel$ OA, BC = OA = 4,\\\\\n$\\because$ the coordinates of point C are (1,3),\\\\\n$\\therefore$ OD = 3, DC = 1,\\\\\n$\\therefore$ BD = DC + BC = 1 + 4 = 5,\\\\\n$\\therefore$ the coordinates of point B are \\boxed{(5,3)},", -"solution_image": [ -"solution_images/52690931_200.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52690776": { -"question": "As shown in the pentagon $ABCDE$, we have $AB=BC=CD=DE=EA$, $\\angle A=\\angle B=\\angle C=\\angle D=\\angle E$. After placing it in a certain Cartesian coordinate system, if the coordinates of vertices $A$, $B$, $C$, and $D$ are $(0, a)$, $(-3, 2)$, $(b, m)$, and $(c, m)$, respectively, what are the coordinates of point $E$?", -"image_file_name": "7052940", -"image": [ -"math/52690776_2112.png" -], -"solution": "\\textbf{Solution:} Let's draw line $BE$, and through point $A$, construct $AF\\perp CD$, intersecting $BE$ at $H$,\\\\\n$\\because C(b,m)$, and $D(c,m)$,\\\\\n$\\therefore CD \\parallel x$-axis,\\\\\n$\\because A(0,a)$,\\\\\n$\\therefore$ line segment $AF$ is on the y-axis,\\\\\n$\\because \\angle BAE = \\angle ABC = \\angle C = \\angle D = \\angle AED$,\\\\\n$\\therefore \\angle BAE = \\angle ABC = \\angle C = \\angle D = \\angle AED = \\frac{(5-2) \\times 180^\\circ}{5} = 108^\\circ$,\\\\\n$\\because AB = AE$,\\\\\n$\\therefore \\angle ABE = \\angle AEB = \\frac{180^\\circ - \\angle BAE}{2} = 36^\\circ$,\\\\\n$\\therefore \\angle CBE = \\angle ABC - \\angle ABE = 72^\\circ$,\\\\\n$\\therefore \\angle CBE + \\angle C = 180^\\circ$,\\\\\n$\\therefore BE \\parallel CD$,\\\\\n$\\therefore AH \\perp BE$,\\\\\n$\\therefore BH = HE$, i.e., points $B$ and $E$ are symmetric about the y-axis,\\\\\n$\\because B(-3,2)$,\\\\\n$\\therefore E(3,2)$,\\\\\nHence, the answer is: $E = \\boxed{(3,2)}$.", -"solution_image": [ -"solution_images/52690776_210.png" -], -"year": "eight", -"difficult": "medium" -}, -"53729287": { -"question": "As shown in the figure, in the Cartesian coordinate system xOy, the lines $l_{1}$ and $l_{2}$ are respectively the graphs of the functions $y=k_{1}x+b_{1}$ and $y=k_{2}x+b_{2}$. Then, what is the estimated solution set for the inequality $k_{1}x+b_{1}>k_{2}x+b_{2}$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/53729287_220.png" -], -"solution": "\\textbf{Solution:} When $x<-2$, $k_1x+b_1>k_2x+b_2$,\\\\\nthus, the solution set of the inequality $k_1x+b_1>k_2x+b_2$ is $x<-2$.\\\\\nTherefore, the answer is: $\\boxed{x<-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52251666": { -"question": "As shown in the figure, the graph of the linear function $y=-2x$ intersects with the graph of $y=kx+b$ at point $A(-2, 4)$. What is the solution of the equation $kx+b+2x=0$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/52251666_234.png" -], -"solution": "\\textbf{Solution:} Since the graph of the linear function $y=-2x$ intersects with the graph of $y=kx+b$ at point A ($-2$, $4$), \\\\\ntherefore, the solution to the equation in $x$, $-2x=kx+b$, for which $x=-2$, i.e., the solution to $kx+b+2x=0$ is $x=\\boxed{-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52251028": { -"question": "As shown in the figure, the graphs of the functions $y=x$ and $y=ax+4$ intersect at point $A(2, 2)$. What is the solution set of the inequality $x0 \\\\\nkx+b>0 \n\\end{cases}\n\\]\n?", -"image_file_name": "7052940", -"image": [ -"math/52250423_257.png" -], -"solution": "\\textbf{Solution:} Let the equations of the linear functions be $y=k_1x+b_1$ and $y=kx+b$, with their graphs intersecting the $x$-axis at points $A(-1,0)$ and $B(2,0)$, respectively.\\\\\nBased on the graphs, we know that the solution set for $y=k_1x+b_1>0$ is: $x>-1$,\\\\\nand the solution set for $y=kx+b>0$ is: $x<2$,\\\\\nTherefore, the solution set for the system of inequalities $\\begin{cases}k_1x+b_1>0\\\\ kx+b>0\\end{cases}$ is $-1 y_1$,\\\\\n$\\therefore$ combining with the graph, it is known that when $x \\leq -2$, $y_2 > y_1$.\\\\\nThus, the answer is: $\\boxed{x \\leq -2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52211318": { -"question": "As shown in the diagram, within the same Cartesian coordinate system, the graphs of the functions $y_1=|x|$ and $y_2=kx+b$ intersect at points $A(-1, 1)$ and $B(2, 2)$. Based on the graph, what is the solution set of the inequality $|x|-kx-b\\ge 0$?", -"image_file_name": "7052940", -"image": [ -"math/52211318_275.png" -], -"solution": "\\textbf{Solution:} Observing the graph, we find: when $x\\le -1$ or $x\\ge 2$, the graph of the function $y_1=|x|$ is above or intersects with the graph of $y_2=kx+b$, \\\\\n$\\because |x|-kx-b\\ge 0$, \\\\\n$\\therefore |x| \\ge kx+b$, \\\\\n$\\therefore$ the solution set of the inequality $|x|-kx-b\\ge 0$ is $x\\le -1$ or $x\\ge 2$. \\\\\nThus, the answer is: $\\boxed{x\\le -1$ or $x\\ge 2}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52212195": { -"question": "As shown in the figure, the line $l_{1}: y_{1}=ax+b$ and the line $l_{2}: y_{2}=mx$ are depicted in the same Cartesian coordinate system. What is the solution set of the inequality $mx -1$, $mx < ax+b$,\\\\\n$\\therefore$ the solution set is $\\boxed{x > -1}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52211165": { -"question": "As shown in the figure, the graphs of the functions $y=2x$ and $y=ax+4$ intersect at point $A(3,m)$. What is the solution set of the inequality $2x0)$ at point $P(m, 3)$. What is the solution set of the inequality $kx+b<-3x$?", -"image_file_name": "7052940", -"image": [ -"math/52211719_304.png" -], -"solution": "\\textbf{Solution:} Solve: when $y=3$, we have $-3x=3$,\\\\\nSolving this, we get $x=-1$,\\\\\nFrom the graph, the solution set of the inequality $kx+b<-3$ is: $\\boxed{x<-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52211879": { -"question": "As shown in the figure, the graph of the direct proportion function $y=ax$ and the graph of the linear function $y=kx+2$ intersect at the point $(2, 1)$, what is the solution set of the inequality $kx+2\\ge ax$?", -"image_file_name": "7052940", -"image": [ -"math/52211879_314.png" -], -"solution": "\\textbf{Solution:} The intersection point of the two lines is at $(2,1)$,\\\\\nwhen $x=2$, the values of the two functions are equal,\\\\\nwhen $x<2$, the line $y=kx+2$ is above the line $y=ax$, thus $kx+2>ax$,\\\\\ntherefore, the solution set for the inequality $kx+2\\ge ax$ is: $\\boxed{x\\leq 2}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189208": { -"question": "As shown in the figure, the graph of the linear function $y = kx + b$ passes through the point $P\\left(-\\frac{1}{2}, 1\\right)$. What is the solution set of the inequality $kx + b < 1$?", -"image_file_name": "7052940", -"image": [ -"math/52189208_323.png" -], -"solution": "\\textbf{Solution:} The graph of the linear function $y=kx+b$ passes through the point $P\\left( -\\frac{1}{2}, 1\\right)$.\\\\\nBy analyzing the graph, we can find that the solution set of $kx+b<1$ is: $x<-\\frac{1}{2}$,\\\\\nTherefore, the answer is: $\\boxed{x<-\\frac{1}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189468": { -"question": "Given the figure, the line $y=x+1$ intersects the line $y=ax+b$ at point $A(m,3)$. What is the solution set of the inequality $x+10$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/52189048_340.png" -], -"solution": "\\textbf{Solution}: Since the linear function $y=kx+b$ passes through the point $(-2, 0)$, \\\\\nit follows that the solution set for $kx+b>0$ is $\\boxed{x<-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189353": { -"question": "As shown in the figure, the line $y=kx+b$ intersects with the x-axis and y-axis at points $A(-3, 0)$ and $B(0, 2)$ respectively. What is the solution set of the inequality $kx+b>0$?", -"image_file_name": "7052940", -"image": [ -"math/52189353_353.png" -], -"solution": "\\[ \\text{\\textbf{Solution:}} \\quad \\text{According to the graph, it is known that the function values of y to the right of point A are all greater than 0. Therefore, when } x > -3, \\text{ the function values are greater than 0, that is, } kx + b > 0; \\]\n\\[ \\text{Thus, the answer is: } \\boxed{x > -3}. \\]", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189388": { -"question": "As shown in the figure, the graph of the linear function $y = -x + b$ intersects with the graph of $y = kx - 1$ at point P, and intersects the x-axis at point B. It is known that the ordinate of point P is 3, and the abscissa of point B is 4. What is the solution set of the inequality $-x + b > kx - 1$?", -"image_file_name": "7052940", -"image": [ -"math/52189388_363.png" -], -"solution": "\\textbf{Solution:}\n\nSince the linear function $y=-x+b$ intersects the x-axis at point B and the x-coordinate of point B is 4, \n\nwe have B(4,0).\n\nSubstituting B(4,0) into $y=-x+b$, we get: $0=-4+b$.\n\nSolving this, we find $b=4$.\n\nTherefore, the equation of line BP is $y=-x+4$.\n\nGiven that the y-coordinate of point $P$ is 3,\n\nwe therefore have $3=-x+4$.\n\nThus, $x=1$.\n\nHence, P(1,3).\n\nFrom the graph, it is known that when $x<1$, the graph of the line $y=kx-1$ is below the graph of the function $y=-x+b$,\n\ntherefore, the solution set of the inequality $-x+b>kx-1$ is $x<1$,\n\nso the answer is: $\\boxed{x<1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52094910": { -"question": "As shown in the diagram, in the Cartesian coordinate system xOy, if the line $y_1=-2x+a$ and the line $y_2=bx-4$ intersect at point $P(1, -3)$, what is the solution set of the inequality $-2x+a1$, the graph of the function $y_{1}=-2x+a$ is entirely below the graph of $y_{2}=bx-4$. Hence, the solution set of the inequality $-2x+a1$;\\\\\nTherefore, the answer is: $\\boxed{x>1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52094911": { -"question": "As shown in the figure, the graph of the direct proportion function $y = kx \\left(k \\neq 0\\right)$ passes through point $A\\left(2, -4\\right)$. The line $y = x + b$ is translated parallel to the y-axis, intersects the x-axis and y-axis at points $B$ and $C$, respectively, and intersects line $OA$ at point $D$. When the symmetric point $A'$ of point $A$ with respect to line $BC$ happens to fall on the y-axis, what is the area of $\\triangle OBD$?", -"image_file_name": "7052940", -"image": [ -"math/52094911_385.png" -], -"solution": "\\textbf{Solution:} Substitute point A(2, -4) into $y=kx$, we get $-4=2k$, thus $k=-2$,\\\\\n$\\therefore$ the equation of line OA is $y=-2x$,\\\\\nIn $y=x+b$, let $y=0$, then $x=-b$,\\\\\n$\\therefore$ B$(-b, 0)$, which means $OB=|b|$,\\\\\nIn $y=x+b$, let $x=0$, then $y=b$,\\\\\n$\\therefore$ C$(0, b)$, which means $OC=|b|$,\\\\\n$\\therefore$ OB=OC,\\\\\nAlso, $\\because$ $\\angle$BOC$=90^\\circ$,\\\\\n$\\therefore$ $\\angle$OCB=$\\angle$OBC$=45^\\circ$,\\\\\n$\\because$ the symmetric point of point A with respect to line BC precisely falls on the y-axis,\\\\\n$\\therefore$ CD perpendicularly bisects AA$^{\\prime }$,\\\\\n$\\therefore$ CA=CA$^{\\prime }$,\\\\\n$\\therefore$ $\\angle$ACD=$\\angle$OCB$=45^\\circ$,\\\\\n$\\therefore$ $\\angle$ACO$=90^\\circ$,\\\\\n$\\therefore$ OC$=|y_{A}|=4$,\\\\\n$\\therefore$ OB=OC$=4$, that is, C$(0, -4)$,\\\\\nSubstitute point C$(0, -4)$ into $y=x+b$, we get $-4=0+b$,\\\\\n$\\therefore$ b$=-4$,\\\\\n$\\therefore$ the equation of line BC is $y=x-4$,\\\\\nFrom $\\begin{cases}y=-2x\\\\ y=x-4\\end{cases}$, we obtain $\\begin{cases}x=\\frac{4}{3}\\\\ y=-\\frac{8}{3}\\end{cases}$,\\\\\n$\\therefore$ point D$\\left(\\frac{4}{3}, -\\frac{8}{3}\\right)$,\\\\\n$\\therefore$ the area of $\\triangle OBD=\\frac{1}{2}OB\\cdot \\left|y_{D}\\right|=\\frac{1}{2}\\times 4\\times \\frac{8}{3}=\\boxed{\\frac{16}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52095101": { -"question": "Given the functions $y_{1}=2x$ and $y_{2}=ax+4$ ($a\\neq 0$) intersect at point $A(m,3)$, what is the solution set for the inequality $2x0$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/52065351_402.png" -], -"solution": "\\textbf{Solution:} From the graph, we know: \\\\\nThe solution set of the inequality $mx+n>0$ with respect to $x$ is: $x>-1$. \\\\\nThus, the answer is: $\\boxed{x>-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52050161": { -"question": "As shown in the figure, the line $y=kx+b$ ($k\\neq 0$) passes through point $A(1, 2)$. What is the solution set of the inequality $kx+b<2x$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/52050161_410.png" -], -"solution": "\\textbf{Solution:} Given that $\\because x=1$ leads to $y=2$,\\\\\n$\\therefore$ the graph of the function $y=2x$ also passes through point A $(1, 2)$,\\\\\n$\\therefore$ the graphs of the function $y=kx+b$ (where $k<0$) and $y=2x$ both pass through point A $(1, 2)$.\\\\\nUpon observing the graphs, we find that for $x>1$, $kx+b<2x$.\\\\\nHence, the answer is: $\\boxed{x>1}$.", -"solution_image": [ -"solution_images/52050161_410.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52049852": { -"question": "As shown in the figure, the line $l_{1}\\colon y=ax-b$ and the line $l_{2}\\colon y=kx$ are in the same Cartesian coordinate system. What is the solution set for the inequality $ax-b>kx$ in terms of $x$?", -"image_file_name": "7052940", -"image": [ -"math/52049852_423.png" -], -"solution": "\\textbf{Solution:} When $x < -1$, we have $ax - b > kx$. \\\\\nTherefore, the solution set of the inequality $ax - b > kx$ with respect to $x$ is $x < -1$, \\\\\nthus the answer is: $\\boxed{x < -1}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53490772": { -"question": "As shown in the figure, in right-angled triangle $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=6$, and $AB=10$. Point D moves from point B in the direction of ray BC at a speed of $5$ units per second, and point F moves from point A towards point B along edge AB at the same speed. When F reaches point B, point D stops moving. Let the movement time of point D be $t$ seconds. A square $DEFG$ is constructed with $DF$ as its diagonal. During the movement, if one side of square $DEFG$ happens to coincide with one side of the right-angled triangle $ABC$, then what is the value of $t$?", -"image_file_name": "7052940", -"image": [ -"math/53490772_430.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that in the right triangle $ABC$, $AC=6$ and $AB=10$, \\\\\n$\\therefore BC=\\sqrt{AB^2-AC^2}=8$, \\\\\nbecause point $D$ moves from point $B$ in the direction of ray $BC$ at a speed of 5 units per second, and point $F$ moves from point $A$ towards point $B$ along edge $AB$ at the same speed, \\\\\n$\\therefore AF=DB=5t$, \\\\\nAs shown in the figure, taking $B$ as the origin and the line along $BC$ as the x-axis, a Cartesian coordinate system is established, \\\\\n$\\therefore A(8,6)$ \\\\\nLet the equation of line $BA$ be $y=kx$, then $6=8k$ \\\\\nSolving gives $k=\\frac{3}{4}$, \\\\\n$\\therefore$ the equation of line $BA$ is $y=\\frac{3}{4}x$, \\\\\nLet $F(m,\\frac{3}{4}m)$, $0\\le m\\le 8$, \\\\\n(1) As shown in the figure, when $DE$ is on side $BC$, draw $FM\\perp AC$ at $M$. \\\\\n$\\therefore FM=8-m$, $AM=6-\\frac{3}{4}m$, \\\\\n$\\therefore AF^2=AM^2+FM^2=\\left(8-m\\right)^2+\\left(6-\\frac{3}{4}m\\right)^2=\\left(\\frac{5m-40}{4}\\right)^2$, \\\\\nbecause $AF=5t$, \\\\\n$\\therefore 5t=\\left|\\frac{5m-40}{4}\\right|$, \\\\\nSolving gives $t=\\left|\\frac{m-8}{4}\\right|$, \\\\\nbecause $0\\le m\\le 8$, \\\\\n$\\therefore t=\\frac{8-m}{4}$ \\\\\n$\\therefore$ $FM=EC=4t$, $AM=3t$, $CM=EF=DE=6-3t$, \\\\\nbecause $BD+DE+EC=8$, \\\\\n$\\therefore$ $5t+6-3t+4t=8$, \\\\\nSolving gives $t=\\boxed{\\frac{1}{3}}$, \\\\\n(2) As shown in the figure, when $FG$ is on side $AB$, \\\\\nIn right triangle $\\triangle BGD$, with $DB=5t$, similar to (1) we can conclude $DG=FG=3t$, then $BG=4t$, \\\\\nbecause $BG+FG+AF=10$, \\\\\n$\\therefore$ $4t+3t+5t=10$, \\\\\nSolving gives $t=\\frac{5}{6}$, \\\\\n(3) When $DG$ is on side $BC$, \\\\\nthen $FG=DG=6-3t$, $BG=8-4t$, \\\\\nbecause $BD=BG+DG=5t$, \\\\\n$\\therefore$ $8-4t+6-3t=5t$, \\\\\nSolving gives $t=\\frac{7}{6}$; \\\\\n(4) When $EF$ is on side $AB$, \\\\\nSimilar to (1) we can conclude $BE=4t$, $DE=EF=3t$, \\\\\nbecause $BE-EF=BF$, \\\\\n$\\therefore$ $4t-3t=10-5t$, \\\\\nSolving gives $t=\\frac{5}{3}$; \\\\\nIn summary, $t=\\frac{1}{3}$ or $\\frac{5}{6}$ or $\\frac{7}{6}$ or $\\frac{5}{3}$.", -"solution_image": [ -"solution_images/53490772_432.png", -"solution_images/53490772_4312.png", -"solution_images/53490772_4321.png", -"solution_images/53490772_4324.png", -"solution_images/53490772_4326.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53359331": { -"question": "As shown in the figure, in the Cartesian coordinate system, with O as the center and the length of OP as the radius, an arc is drawn intersecting the negative x-axis at point A. Thus, the coordinates of point A are ($- \\sqrt{17}$, 0). Given that the y-coordinate of point P is $-1$, what are the coordinates of point P?", -"image_file_name": "7052940", -"image": [ -"math/53359331_441.png" -], -"solution": "\\textbf{Solution:} Construct line $PB\\perp OA$ at point B, \\\\\n$\\because$ the coordinates of point A are ($-\\sqrt{17}$, 0), \\\\\n$\\therefore$ OP=OA=$\\sqrt{17}$, \\\\\n$\\because$ the ordinate of point P is $-1$, \\\\\n$\\therefore$ PB=1, \\\\\n$\\therefore$ OB=$\\sqrt{OP^{2}-PB^{2}}=4$, \\\\\n$\\therefore$ the coordinates of point P are $\\boxed{(-4, -1)}$.", -"solution_image": [ -"solution_images/53359331_440.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53182760": { -"question": "As shown in the figure, it is known that the graph of the function $y=2x+b$ intersects with the graph of the function $y=kx-3$ at point $P$. What is the solution set of the inequality $kx-3>2x+b$?", -"image_file_name": "7052940", -"image": [ -"math/53182760_453.png" -], -"solution": "\\textbf{Solution}: Observing the graph, we find: when $x<4$, the graph of the function $y=2x+b$ is below the graph of the function $y=kx-3$, \\\\\n$\\therefore$ the solution set of the inequality $kx-3>2x+b$ is $\\boxed{x<4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53182976": { -"question": "As shown in the figure, given the functions $y=ax+b$ and $y=kx$ intersect at point $P$, according to the graph, what is the solution to the system of linear equations $\\begin{cases}y=ax+b,\\\\ y=kx?\\end{cases}$", -"image_file_name": "7052940", -"image": [ -"math/53182976_461.png" -], -"solution": "\\textbf{Solution:} Since the intersection point P of the graphs of the functions $y=ax+b$ and $y=kx$ is at ($-2$, $-1$), \\\\\ntherefore, the solution to the system of linear equations $\\begin{cases}y=ax+b\\\\ y=kx\\end{cases}$ is $\\boxed{\\begin{cases}x=-2\\\\ y=-1\\end{cases}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53182680": { -"question": "The coordinates of the intersection point of the lines $y_{1}=k_{1}x+a$ and $y_{2}=k_{2}x+b$ are $(1, 2)$. What is the range of values of $x$ for which $y_{1} \\ge y_{2}$?", -"image_file_name": "7052940", -"image": [ -"math/53182680_475.png" -], -"solution": "\\textbf{Solution:} Given the graph of the function, the inequality $y_{1}\\ge y_{2}$, which translates to $k_{1}x+a\\ge k_{2}x+b$, corresponds to the set of x-values for which the graph of $y_{1}=k_{1}x+a$ is above the graph of $y_{2}=k_{2}x+b$. Therefore, the solution set to the inequality $y_{1}\\ge y_{2}$ is $x\\geq 1$, \\\\ \nhence the answer is: $\\boxed{x\\geq 1}$.", -"solution_image": [ -"solution_images/53182680_470.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52344437": { -"question": "Given the graph of the linear function $y=kx-b$ as shown in the figure, what is the solution set of the inequality $kx-1>b$ with respect to $x$?", -"image_file_name": "7052940", -"image": [ -"math/52344437_482.png" -], -"solution": "\\textbf{Solution:} Given $\\because kx-1>b$,\\\\\n$\\therefore kx-b>1$,\\\\\n$\\therefore$ the graph of the linear function lies above the line $y=1$. Observing the graph, we find that $x>4$,\\\\\n$\\therefore$ the solution set for the inequality $kx-1>b$ in terms of $x$ is $\\boxed{x>4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51825222": { -"question": "As shown in the figure, in the Cartesian coordinate system, side BC of the parallelogram ABCD is on the x-axis, with point A at $(0, 3)$ and point B at $(-1, 0)$. If the line $y=-2x+4$ perfectly bisects the area of the parallelogram ABCD, what are the coordinates of point D?", -"image_file_name": "7052940", -"image": [ -"math/51825222_493.png" -], -"solution": "\\textbf{Solution:} Let's consider the diagram, where we assume that the line $y=-2x+4$ intersects with AD and BC at points H and G, respectively.\\\\\nSince ABCD is a parallelogram with A at (0, 3),\\\\\nit follows that H is at $\\left(\\frac{1}{2}, 3\\right)$, and G is at (2, 0), with AD $\\parallel$ BC and AD=BC,\\\\\nLet's assume D is at (d, 3),\\\\\nthus DH=AD−AH=d−$\\frac{1}{2}$, and BG=2−(−1)=3,\\\\\nSince the line $y=-2x+4$ precisely bisects the area of the parallelogram ABCD into two congruent trapezoids,\\\\\nit follows that DH=BG,\\\\\nthus d−$\\frac{1}{2}$=3,\\\\\nwhich implies d=$\\frac{7}{2}$,\\\\\nTherefore, the coordinates of D are $\\boxed{\\left(\\frac{7}{2}, 3\\right)}$.", -"solution_image": [ -"solution_images/51825222_490.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52797160": { -"question": "Based on the diagram, the triangle \\(ABC\\) is placed inside a grid with each small square having a side length of 1. The points \\(A\\), \\(B\\), \\(C\\) all lie on the grid points. How do we determine the value of \\(\\tan A\\)?", -"image_file_name": "7058470", -"image": [ -"math/52797160_420.png" -], -"solution": "\\textbf{Solution:}\n\nConsider $BD \\perp AC$ at point $D$, \\\\\n$\\because BC = 2$, $AC = \\sqrt{3^{2}+3^{2}} = 3\\sqrt{2}$, the distance from point $A$ to $BC$ is 3, $AB=\\sqrt{3^{2}+1^{2}}=\\sqrt{10}$,\\\\\n$\\therefore \\frac{AC \\cdot BD}{2}=\\frac{BC\\cdot 3}{2}$, that is $\\frac{3\\sqrt{2}\\times BD}{2}=\\frac{2\\times 3}{2}$,\\\\\nSolving for it, we get: $BD=\\sqrt{2}$,\\\\\n$\\therefore AD= \\sqrt{AB^{2}-BD^{2}}=\\sqrt{(\\sqrt{10})^{2}-(\\sqrt{2})^{2}}=2\\sqrt{2}$,\\\\\n$\\therefore \\tan A=\\frac{BD}{AD}=\\frac{\\sqrt{2}}{2\\sqrt{2}}=\\boxed{\\frac{1}{2}}$.", -"solution_image": [ -"solution_images/52797160_420.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52733116": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC 6$, \\\\\nMB cannot be equal to BC; \\\\\nTherefore, the answer is: $AN = \\boxed{2\\sqrt{3}}$ or $6$.", -"solution_image": [ -"solution_images/52634631_482.png", -"solution_images/52634631_489.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52457426": { -"question": "As depicted in the figure, in square $ABCD$, $E$ is a point on $AB$. Line $DE$ is drawn, and $\\triangle DAE$ is rotated $90^\\circ$ counterclockwise around point $A$ to $\\triangle BAF$ (with $E$ corresponding to $F$ and $D$ to $B$). Lines $FE$ and $FC$ are drawn. If $AB=4$ and $FE$ bisects $\\angle BFC$, what is the length of $AE$?", -"image_file_name": "7058470", -"image": [ -"math/52457426_4918.png" -], -"solution": "\\textbf{Solution:} Let DE and CF intersect at O, as shown in the diagram: \\\\\n$\\because$ Rotating $\\triangle DAE$ $90^\\circ$ counterclockwise around point A to $\\triangle BAF$, \\\\\n$\\therefore AF=AE$, $\\angle ADE=\\angle ABF$ \\\\\n$\\therefore \\angle AFE=\\angle AEF=45^\\circ$, \\\\\n$\\because FE$ bisects $\\angle BFC$, \\\\\n$\\therefore \\angle EFB=\\angle EFC$, \\\\\n$\\therefore \\angle OFD=45^\\circ-\\angle EFC$, $\\angle ADE=\\angle ABF=45^\\circ-\\angle EFB$, \\\\\n$\\therefore \\angle OFD=\\angle ADE$, that is $\\angle CFD=\\angle ADE$, \\\\\n$\\therefore \\tan\\angle CFD=\\tan\\angle ADE$, that is $\\frac{CD}{DF}=\\frac{AE}{AD}$, \\\\\nLet $AE=AF=x$, \\\\\n$\\therefore \\frac{4}{4+x}=\\frac{x}{4}$, \\\\\n$\\therefore x=\\boxed{2\\sqrt{5}-2}$ or $-2\\sqrt{5}-2$ (discard the latter), \\\\\n$\\therefore AE=2\\sqrt{5}-2$.", -"solution_image": [ -"solution_images/52457426_490.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51369888": { -"question": "As shown in the figure, a semicircle $O$ with diameter $AB=6$ is rotated counterclockwise about endpoint $A$. When the intersection point $H$ on the circular arc and the diameter satisfies $BH:AH=1:2$, what is the value of $\\tan\\angle B'AB$?", -"image_file_name": "7058470", -"image": [ -"math/51369888_506.png" -], -"solution": "\\textbf{Solution:} Connect $HB'$,\n\n$\\because$ When semi-circle $O$ with diameter $AB=6$ is rotated counterclockwise around endpoint $A$,\n\n$\\therefore$ $AB'=AB=6$, $\\angle AHB'=90^\\circ$,\n\n$\\because$ $AH+BH=6$, $BH\\colon AH=1\\colon 2$,\n\n$\\therefore$ $BH=2$, $AH=4$\n\n$\\therefore$ $B'H=\\sqrt{AB'^2-AH^2}=\\sqrt{6^2-4^2}=2\\sqrt{5}$;\n\nIn $\\triangle AHB'$,\n\n$\\tan\\angle B'AB=\\frac{B'H}{AH}=\\frac{2\\sqrt{5}}{4}=\\boxed{\\frac{\\sqrt{5}}{2}}$.", -"solution_image": [ -"solution_images/51369888_500.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51446460": { -"question": "As shown in the figure, within a square grid, the quadrilateral ABCD is a rhombus. What is the value of $\\tan\\frac{\\angle BAD}{2}$?", -"image_file_name": "7058470", -"image": [ -"math/51446460_511.png" -], -"solution": "\\textbf{Solution}: From the properties of a rhombus, we know that $\\frac{\\angle BAD}{2}=\\angle BAC$\\\\\nFrom the figure, we have $\\tan\\angle BAC=\\frac{3}{4}$\\\\\n$\\therefore \\tan\\frac{\\angle BAD}{2}=\\tan\\angle BAC=\\boxed{\\frac{3}{4}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51446419": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=2$, and $AB=3$, what is the value of $\\sin B$?", -"image_file_name": "7058470", -"image": [ -"math/51446419_525.png" -], -"solution": "\\textbf{Solution:} Given that in the right-angled triangle $ABC$, $\\angle C=90^\\circ$, $AC=2$, $AB=3$,\\\\\ntherefore, $\\sin B=\\frac{AC}{AB}=\\boxed{\\frac{2}{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52872415": { -"question": "As shown in the figure, $ \\triangle ABC$ is an equilateral triangle with $O$ as the center of its circumcircle, and point $D$ is on the arc $ABC$. Connect $AD$ and $BD$. $AE$ is a chord on the right side of $AD$, and $\\angle DAE=30^\\circ$. Connect $CE$. What is the angle between the lines containing $BD$ and $CE$? When $BD=\\sqrt{3}$, and $CE=4$, what is the radius of circle $O$?", -"image_file_name": "7058470", -"image": [ -"math/52872415_5316.png" -], -"solution": "\\textbf{Solution:} Extend BD and CE to intersect at point F, connect OB, OC, CD, and BE,\\\\\nsince $\\triangle ABC$ is an equilateral triangle,\\\\\ntherefore $\\angle BAC=60^\\circ$,\\\\\nsince $\\angle DBC=\\angle DAC$, $\\angle ECB=\\angle BAE$,\\\\\ntherefore $\\angle BFC=180^\\circ-\\angle FBC-\\angle FCB$\\\\\n$=180^\\circ-\\angle DAC-\\angle BAE$\\\\\n$=180^\\circ-(\\angle DAC+\\angle BAD+\\angle DAE)$\\\\\n$=180^\\circ-(\\angle BAC+\\angle DAE)$\\\\\n$=180^\\circ-(60^\\circ+30^\\circ)$\\\\\n$=90^\\circ$,\\\\\ntherefore the angle between the lines containing BD and CE is $\\boxed{90^\\circ}$;\\\\\nsince $\\angle DAE=30^\\circ$,\\\\\ntherefore $\\angle DBE=\\angle ECD=30^\\circ$,\\\\\nin triangle $\\triangle BEF$, let DF$=m$, EF$=n$,\\\\\ntherefore BF$=BD+DF=\\sqrt{3}+m$,\\\\\nsince $\\angle FBE=30^\\circ$,\\\\\ntherefore $\\tan 30^\\circ=\\frac{EF}{BF}$,\\\\\ntherefore $\\frac{\\sqrt{3}}{3}=\\frac{n}{\\sqrt{3}+m}$,\\\\\ntherefore $n=1+\\frac{\\sqrt{3}}{3}m$,\\\\\nin triangle $\\triangle CDF$, CE$=4$,\\\\\ntherefore CF$=CE+EF=4+n$,\\\\\nsince $\\angle FCD=30^\\circ$,\\\\\ntherefore $\\tan 30^\\circ=\\frac{DF}{CF}$,\\\\\ntherefore $\\frac{\\sqrt{3}}{3}=\\frac{m}{4+n}$,\\\\\ntherefore $m=\\frac{\\sqrt{3}}{3}n+\\frac{4\\sqrt{3}}{3}$,\\\\\ntherefore $m=\\frac{\\sqrt{3}}{3}\\left(1+\\frac{\\sqrt{3}}{3}m\\right)+\\frac{4\\sqrt{3}}{3}$,\\\\\nsolving for $m$ yields: $m=\\frac{5\\sqrt{3}}{2}$,\\\\\ntherefore $n=\\frac{7}{2}$,\\\\\ntherefore $BF=\\sqrt{3}+m=\\sqrt{3}+\\frac{5\\sqrt{3}}{2}=\\frac{7\\sqrt{3}}{2}$,\\\\\n$CF=4+n=4+\\frac{7}{2}=\\frac{15}{2}$,\\\\\ntherefore $BC=\\sqrt{BF^2+CF^2}=\\sqrt{\\left(\\frac{7\\sqrt{3}}{2}\\right)^2+\\left(\\frac{15}{2}\\right)^2}=\\sqrt{93}$,\\\\\ndraw line OH perpendicular to BC at point H through point O,\\\\\nsince OB$=$OC,\\\\\ntherefore $BH=\\frac{1}{2}BC=\\frac{\\sqrt{93}}{2}$,\\\\\nsince $\\angle BOC=2\\angle BAC=120^\\circ$,\\\\\ntherefore $\\angle BOH=60^\\circ$,\\\\\ntherefore $\\sin 60^\\circ=\\frac{BH}{OB}$,\\\\\ntherefore $OB=\\frac{BH}{\\frac{\\sqrt{3}}{2}}=\\boxed{\\sqrt{31}}$,\\\\\nthus, the radius of circle $O$ is $\\boxed{\\sqrt{31}}$.", -"solution_image": [ -"solution_images/52872415_530.png", -"solution_images/52872415_5314.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51446059": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AB \\parallel CD$, $AD=4$, and $AB=BC=BD=6$, what is the sine of $\\angle ACD$?", -"image_file_name": "7058470", -"image": [ -"math/51446059_540.png" -], -"solution": "\\textbf{Solution:} Given that $AB=BC=BD=6$,\\\\\nthus points A, D, C are on the circle with center B and radius equal to the length of AB, as shown in the diagram, extend AB to meet the circle B at point E,\\\\\nsince $AB\\parallel CD$,\\\\\ntherefore $\\angle CDB=\\angle ABD$, $\\angle DCB=\\angle CBE$,\\\\\nsince BD=BC,\\\\\ntherefore $\\angle CDB=\\angle BCD$,\\\\\nthus $\\angle ABD=\\angle CBE$,\\\\\ntherefore $AD=CE=4$,\\\\\nsince AE is the diameter of circle B,\\\\\ntherefore $\\angle ACE=90^\\circ$,\\\\\nin the right triangle $\\triangle ACE$, AE=$2AB=12$,\\\\\ntherefore $\\sin\\angle CAE=\\frac{CE}{AE}=\\frac{4}{12}=\\frac{1}{3}$,\\\\\nsince $\\angle ACD=\\angle CAE$,\\\\\ntherefore $\\sin\\angle ACD=\\boxed{\\frac{1}{3}}$.", -"solution_image": [ -"solution_images/51446059_540.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51445412": { -"question": "As shown in the figure, in $\\triangle ABC$, $AC=6$, $BC=8$, and $D$, $E$ are on $CA$, $CB$ respectively, with point $F$ inside $\\triangle ABC$. If quadrilateral $CDFE$ is a square with a side length of $2$, then what is $\\sin\\angle FBA$?", -"image_file_name": "7058470", -"image": [ -"math/51445412_550.png" -], -"solution": "\\textbf{Solution:} Construct $FG \\perp AB$ at G, and connect AF. \\\\\nSince quadrilateral CDFE is a square with side length 2, \\\\\nthus $CD = CE = DF = EF = 2$, $\\angle C = \\angle ADF = 90^\\circ$, \\\\\nsince $AC = 6$, $BC = 8$, \\\\\nthus $AD = 4$, $BE = 6$, \\\\\ntherefore $AB = \\sqrt{AC^{2} + BC^{2}} = 10$, $AF = \\sqrt{AD^{2} + DF^{2}} = 2\\sqrt{5}$, $BF = \\sqrt{BE^{2} + EF^{2}} = 2\\sqrt{10}$, \\\\\nlet $BG = x$, \\\\\nsince $FG^{2} = AF^{2} - AG^{2} = BF^{2} - BG^{2}$, \\\\\nthus $(2\\sqrt{5})^{2} - (10 - x)^{2} = (2\\sqrt{10})^{2} - x^{2}$, solving gives: $x = 6$, \\\\\ntherefore $FG = \\sqrt{BF^{2} - BG^{2}} = 2$, \\\\\ntherefore $\\sin\\angle FBA = \\frac{FG}{BF} = \\boxed{\\frac{\\sqrt{10}}{10}}$.", -"solution_image": [ -"solution_images/51445412_550.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51446308": { -"question": "In the square grid, the position of $\\triangle ABC$ is shown in the figure, what is the value of $\\sin\\angle BAC$?", -"image_file_name": "7058470", -"image": [ -"math/51446308_561.png" -], -"solution": "\\textbf{Solution:} Connect the lattice points DC, BD.\\\\\nIn $\\triangle ABD$,\\\\\n$\\because CD=3$, $AD=4$,\\\\\n$\\therefore AC= \\sqrt{CD^2+AD^2}=5$.\\\\\n$\\therefore \\sin\\angle BAC= \\frac{CD}{AC}=\\boxed{\\frac{3}{5}}$.", -"solution_image": [ -"solution_images/51446308_560.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51299527": { -"question": "As shown in the figure, points C and D are the trisection points of line segment AB. Construct an equilateral triangle $\\triangle OCD$ upwards with CD as its base. With O as the center and the length of OA as the radius, draw an arc that intersects the extensions of OC and OD at points E and F, respectively. If $AB = 6$, what is the area of the shaded region?", -"image_file_name": "7058470", -"image": [ -"math/51299527_570.png" -], -"solution": "\\textbf{Solution:} Connect OA, OB, and construct $OH\\perp AB$ at point H as shown in the diagram,\\\\\n$\\because AB=6$, C and D are the trisection points of the line segment AB, and $\\triangle COD$ is an equilateral triangle,\\\\\n$\\therefore \\angle OHA=90^\\circ$, $\\angle COH=30^\\circ$, $AC=CD=DB=2$, $AH=BH=3$, $\\angle OCH=60^\\circ$,\\\\\n$\\therefore OH=2\\times \\sin 60^\\circ=\\sqrt{3}$,\\\\\n$\\therefore OA=\\sqrt{3^2+(\\sqrt{3})^2}=2\\sqrt{3}$, $\\tan \\angle OAH=\\frac{OH}{AH}=\\frac{\\sqrt{3}}{3}$, $\\therefore \\angle OAH=30^\\circ$, $\\therefore \\angle AOH=60^\\circ$,\\\\\n$\\therefore \\angle AOC=30^\\circ$,\\\\\n$\\therefore$ the area of the shaded part is: $\\frac{2\\times \\sqrt{3}}{2}+\\left[\\frac{30\\times \\pi \\times (2\\sqrt{3})^{2}}{360}-\\frac{2\\times \\sqrt{3}}{2}\\right]\\times 2=\\boxed{2\\pi -\\sqrt{3}}$", -"solution_image": [ -"solution_images/51299527_571.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51407044": { -"question": "As shown in the figure, square $ABCD$ has a side length of $2$. Points $E$ and $F$ are two moving points on side $AD$, satisfying $AE=DF$. Lines $BE$ and $CF$ are drawn, and $BE$ intersects the diagonal $AC$ at point $G$. Line $DG$ is drawn and intersects $CF$ at point $H$. When line $BH$ is drawn, what is the minimum value of $BH$?", -"image_file_name": "7058470", -"image": [ -"math/51407044_580.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\nsince square ABCD, it follows that $AB=CD$, $\\angle BAE=\\angle CDF=90^\\circ$ thus $\\triangle ABE \\cong \\triangle DCF$ (SAS), hence $\\angle ABE=\\angle DCF$. Since the median line where AC is located is the axis of symmetry of the square, it follows that $\\angle ABE=\\angle ADG=\\angle DCF$. Since $\\angle ADG + \\angle GDC = 90^\\circ$, it implies $\\angle DCF + \\angle GDC = 90^\\circ$, hence $\\angle DHC = 90^\\circ$ which means $DH \\perp CF$. Therefore, point H moves on the circle with CD as its diameter. When point H moves to the midpoint of AC, BH is the shortest. Connect BD and intercept AC at point O, since $BH + DH \\geq BD$, when points B, H, and D are on the same line, since the perpendicular segment is the shortest, hence when BH $\\perp$ AC, that is, when point H coincides with point O, the value of BH is minimum. In right $\\triangle BOC$, $BO=BC\\sin\\angle BCO=2\\times \\sin45^\\circ=2\\times \\frac{\\sqrt{2}}{2}=\\sqrt{2}$. Therefore, the minimum value of BH is $\\boxed{\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51407044_580.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51407002": { -"question": "The cross-section of a certain flood control embankment is the trapezoid ABCD as shown in the figure, with the dam height $AH=3$ meters and the slope of the water-facing side AB being $i=1\\colon3$. What is the length of the slope AB in meters?", -"image_file_name": "7058470", -"image": [ -"math/51407002_592.png" -], -"solution": "\\textbf{Solution:} Given that the slope of embankment AB has a slope $i=1\\colon 3$,\\\\\n$AH=3$ meters,\\\\\n$\\therefore BH=9$ meters.\\\\\nBy the Pythagorean theorem, it follows that $AB=\\sqrt{BH^{2}+AH^{2}}=3\\sqrt{10}$ meters.\\\\\nTherefore, the answer is: $AB=\\boxed{3\\sqrt{10}}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51407004": { -"question": "As shown in the figure, in a grid where the side length of each small square is 1, the vertices A, B, and C of $\\triangle ABC$ all fall on the grid points. What is the value of $\\cos \\angle ABC$?", -"image_file_name": "7058470", -"image": [ -"math/51407004_602.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AD\\perp BC$ with the foot of the perpendicular at D,\\\\\n$AD=3$,\\\\\n$BD=4$,\\\\\n$\\therefore AB=\\sqrt{AD^{2}+BD^{2}}=5$,\\\\\n$\\therefore \\cos\\angle ABC=\\frac{BD}{AB}=\\boxed{\\frac{4}{5}}$.", -"solution_image": [ -"solution_images/51407004_600.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51406974": { -"question": "As shown in the diagram, in rectangle $ABCD$, $AB=4$, $BC=3$. The triangle $\\triangle BCD$ is translated along ray $BD$ by a distance $a$ ($a>0$) to obtain $\\triangle B'C'D'$. When line segments $AB'$ and $AD'$ are connected, what is the value of $a$ when $\\triangle AB'D'$ forms a right-angled triangle?", -"image_file_name": "7058470", -"image": [ -"math/51406974_610.png" -], -"solution": "\\textbf{Solution:} Consider two cases:\\\\\n(1) As shown in Figure 1, $\\angle D'AB' = 90^\\circ$, extend C'B' to meet AB at G, and draw D'H$\\perp$AB, intersecting the extension of BA at H,\\\\\n$\\therefore \\angle H = \\angle AGB' = \\angle BGB' = 90^\\circ$,\\\\\n$\\because$ quadrilateral ABCD is a rectangle,\\\\\n$\\therefore \\angle BAD = \\angle C = 90^\\circ$, AD = BC = 3,\\\\\n$\\because \\tan \\angle ABD = \\frac{AD}{AB} = \\frac{B'G}{BG}$, thus $\\frac{B'G}{BG} = \\frac{3}{4}$,\\\\\nLet B'G = 3x, BG = 4x,\\\\\n$\\therefore BB' = a = 5x$,\\\\\nBy translation: DD' = BB' = 5x,\\\\\n$\\therefore D'H = 3 + 3x$, AH = BG = 4x,\\\\\n$\\therefore AG = AB = BG = 4 - 4x$,\\\\\n$\\because \\angle D'AB' = \\angle HAD' + \\angle BAB' = 90^\\circ$,\\\\\n$\\angle AD'H + \\angle HAD' = 90^\\circ$,\\\\\n$\\therefore \\angle AD'H = \\angle GAB'$,\\\\\n$\\because \\angle H = \\angle AGB' = 90^\\circ$,\\\\\n$\\therefore \\triangle D'HA \\sim \\triangle AGB'$,\\\\\n$\\therefore \\frac{D'H}{AG} = \\frac{AH}{B'G}$, i.e.,\\\\\n$\\frac{3 + 3x}{4 - 4x} = \\frac{4x}{3x}$,\\\\\n$\\therefore x = \\frac{7}{25}$,\\\\\n$\\therefore a = 5 \\times \\frac{7}{25} = \\boxed{\\frac{7}{5}}$;\\\\\n(2) As shown in Figure 2, $\\angle AB'D' = 90^\\circ$, extend C'B' to meet AB at M, then C'M$\\perp$AB,\\\\\n$\\therefore \\angle AMB' = 90^\\circ$,\\\\\nBy translation: B'C' = BC = 3,\\\\\nSimilarly, let B'M = 3m, BM = 4m, then BB' = a = 5m,\\\\\n$\\therefore AM = 4 - 4m$,\\\\\n$\\because \\angle AB'M + \\angle D'B'C' = 90^\\circ$, $\\angle MAB' + \\angle AB'M = 90^\\circ$,\\\\\n$\\therefore \\angle D'B'C' = \\angle MAB'$,\\\\\n$\\because \\angle C' = \\angle AMB' = 90^\\circ$,\\\\\n$\\therefore \\triangle D'C'B' \\sim \\triangle B'MA$,\\\\\n$\\therefore \\frac{C'D'}{MB'} = \\frac{B'C'}{AM}$, i.e.,\\\\\n$\\frac{4}{3m} = \\frac{3}{4 - 4m}$,\\\\\n$\\therefore m = \\frac{16}{25}$,\\\\\n$\\therefore a = 5m = 5 \\times \\frac{16}{25} = \\boxed{\\frac{16}{5}}$;\\\\\nIn summary, the value of a is $\\frac{7}{5}$ or $\\frac{16}{5}$.", -"solution_image": [ -"solution_images/51406974_610.png", -"solution_images/51406974_618.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51406936": { -"question": "In the Cartesian coordinate system $xOy$, a line $y = \\frac{1}{2}x + b$ (where $b$ is a constant and $b < 2$) is drawn through point $P(0, 2)$ perpendicular to it, with the foot of the perpendicular at point $Q$. What is the value of $\\sin\\angle OPQ$?", -"image_file_name": "7058470", -"image": [ -"math/51406936_623.png" -], -"solution": "\\textbf{Solution}: Given $\\because \\angle PBQ = \\angle ABO$,\\\\\n$PQ \\perp AQ$, $BO \\perp AO$\\\\\n$\\therefore \\angle PBQ + \\angle OPQ = \\angle ABO + \\angle OAB$\\\\\n$= 90^\\circ$\\\\\n$\\therefore \\angle OPQ = \\angle OAB$\\\\\nFrom $y=\\frac{1}{2}x+b$, setting $x=0$, $y=b$,\\\\\nSetting $y=0$,\\\\\n$x=-2b$\\\\\n$\\therefore AO=2b$, $BO=b$\\\\\nIn $\\triangle AOB$ right,\\\\\n$AB=\\sqrt{AO^2 + BO^2} = \\sqrt{5}b$\\\\\n$\\therefore \\sin\\angle OPQ =\\sin\\angle BAO =\\frac{BO}{AB} =\\frac{b}{\\sqrt{5}b} = \\boxed{\\frac{\\sqrt{5}}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51403020": { -"question": "As shown in the figure, building AD is 30m high. There is a distant tower BC. Someone at the bottom of the building A measures the elevation angle to the top of the tower to be $60^\\circ$. After climbing to the top of the building D, the elevation angle to the top of the tower is measured to be $30^\\circ$. What is the height of the tower BC in meters?", -"image_file_name": "7058470", -"image": [ -"math/51403020_630.png" -], -"solution": "\\textbf{Solution:} According to the problem, we have: $BC=\\frac{AC}{\\tan 30^\\circ}=\\sqrt{3}AC$,\\\\\nsince $BE=DE\\tan 30^\\circ=AC\\tan 30^\\circ=\\frac{\\sqrt{3}}{3}AC$,\\\\\ntherefore, the height of the building $AD=BC-BE=\\left(\\sqrt{3}-\\frac{\\sqrt{3}}{3}\\right)AC=30$.\\\\\nThus, we find: $AC=15\\sqrt{3}$.\\\\\nHence, $BC=\\sqrt{3}AC=\\boxed{45}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51403273": { -"question": "\\textbf{Definition:} A convex quadrilateral in which one pair of opposite sides is equal and the other pair is unequal is called an \"equilateral quadrilateral\". As shown in the figure, in $Rt\\triangle PBC$, $\\angle PCB=90^\\circ$, point A is on side BP, and point D is on side CP. If $BC=11$, $\\tan\\angle PBC=\\frac{12}{5}$, $AB=13$, and quadrilateral ABCD is an \"equilateral quadrilateral\", then what is the length of CD?", -"image_file_name": "7058470", -"image": [ -"math/51403273_645.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, the position of point D is illustrated as follows: \\\\\n(1) If $CD=AB$, at this time point D is at the position $D_{1}$, $CD_{1}=AB=13$; \\\\\n(2) If $AD=BC=11$, at this time point D is at the positions $D_{2}$, $D_{3}$, $AD_{2}=AD_{3}=BC=11$, \\\\\nThrough point A, draw $AE\\perp BC$, $AF\\perp PC$, with E and F as the feet of the perpendiculars, respectively, \\\\\nLet $BE=x$, \\\\\n$\\because$ $\\tan \\angle PBC = \\frac{12}{5}$, \\\\\n$\\therefore$ $AE=\\frac{12}{5}x$, \\\\\nIn $\\triangle ABE$, $AE^{2}+BE^{2}=AB^{2}$, \\\\\ni.e., $x^{2}+\\left(\\frac{12}{5}x\\right)^{2}=13^{2}$, \\\\\nSolving yields: $x_{1}=5$, $x_{2}=-5$ (discard), \\\\\n$\\therefore$ $BE=5$, $AE=12$, \\\\\n$\\therefore$ $CE=BC-BE=6$, \\\\\nSince quadrilateral $AECF$ is a rectangle, we have $AF=CE=6$, $CF=AE=12$, \\\\\nIn $\\triangle AFD_{2}$, $FD_{2}=\\sqrt{AD_{2}^{2}-AF^{2}}=\\sqrt{85}$, \\\\\n$\\therefore$ $CD_{2}=CF-FD_{2}=12-\\sqrt{85}$, \\\\\n$CD_{3}=CF+FD_{2}=12+\\sqrt{85}$, \\\\\nIn summary, the length of CD can be $13$, $12-\\sqrt{85}$, or $12+\\sqrt{85}$. \\\\\nHence, the answer is: $\\boxed{13}$, $12-\\sqrt{85}$, or $12+\\sqrt{85}$.", -"solution_image": [ -"solution_images/51403273_640.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51402157": { -"question": "As shown in the rectangle $ABCD$, where $AB=4$ and $AD=8$, points $E$ and $F$ are located on sides $AD$ and $BC$ respectively, with $AE=3$. Perform the following steps: First, fold along line $EF$ such that the corresponding point of $A$ falls exactly on the diagonal $AC$, and the corresponding point of $B$ is $B'$. What is the value of $\\tan\\angle AEF$? Second, take points $M$ on $EF$ and $N$ on $A'B'$, and continue folding along line $MN$ so that point $F$ coincides with point $E$. What is the length of segment $MN$?", -"image_file_name": "7058470", -"image": [ -"math/51402157_6523.png" -], -"solution": "\\textbf{Solution:} Let point $O$ be the intersection of $AC$ and $EF$,\\\\\nsince quadrilateral $ABCD$ is a rectangle,\\\\\ntherefore $CD=AB=4$,\\\\\nsince along the line $EF$ when folded, the corresponding point of $A$ exactly falls on the diagonal $AC$, and the corresponding point of $B$ is $B$,\\\\\ntherefore $\\angle AOE=\\angle AOE=90^\\circ$,\\\\\ntherefore $\\angle AOE=\\angle ADC=90^\\circ$,\\\\\nsince $\\angle EAO=\\angle CAD$,\\\\\ntherefore $\\triangle AOE\\sim \\triangle ADC$,\\\\\ntherefore $\\angle AEO=\\angle ACD$,\\\\\ntherefore $\\tan\\angle AEF=\\tan\\angle ACD=\\frac{AD}{CD}=\\frac{8}{4}=\\boxed{2}$,\\\\\nConnect NE, NF, and draw $FT\\perp AD$ at point $T$ through point $F$,\\\\\nsince $\\triangle AOE\\sim \\triangle ADC$,\\\\\ntherefore $\\angle FET=\\angle ACD$,\\\\\nsince $\\angle FTE=\\angle ADC=90^\\circ$,\\\\\ntherefore $\\triangle FTE\\sim \\triangle ADC$,\\\\\ntherefore $\\frac{FT}{AD}=\\frac{ET}{CD}$, that is, $\\frac{4}{8}=\\frac{ET}{4}$,\\\\\ntherefore $ET=2$,\\\\\ntherefore $BF=AT=AE-ET=3-2=1$,\\\\\nBased on the folding property: $BF=BF=1$, $MN\\perp EF$, $NF=NE$,\\\\\nLet $BN=m$,\\\\\nthen $NF^2=1^2+m^2=NE^2=3^2+(4-m)^2$,\\\\\nSolving we get: $m=3$,\\\\\ntherefore $NF=\\sqrt{10}$,\\\\\nsince $EF=\\sqrt{2^2+4^2}=2\\sqrt{5}$,\\\\\ntherefore $MF=\\sqrt{5}$,\\\\\ntherefore $MN=\\sqrt{5}$.", -"solution_image": [ -"solution_images/51402157_650.png", -"solution_images/51402157_6514.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402363": { -"question": "As shown in the figure, place $ \\angle BAC$ on a $5\\times 5$ square grid. If the vertices A, B, and C are all on the grid points, then what is the value of the tangent of $ \\angle BAC$?", -"image_file_name": "7058470", -"image": [ -"math/51402363_663.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BC,\\\\\nthen $AB=BC=\\sqrt{1^2+3^2}=\\sqrt{10}$, $AC=\\sqrt{2^2+4^2}=2\\sqrt{5}$,\\\\\n$\\therefore AB^2+BC^2=10+10=20=AC^2$,\\\\\n$\\therefore \\triangle ABC$ is an isosceles right triangle, and $\\angle ABC=90^\\circ$,\\\\\n$\\therefore \\angle BAC=45^\\circ$,\\\\\nthen $\\tan\\angle BAC=\\boxed{1}$.", -"solution_image": [ -"solution_images/51402363_660.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52602711": { -"question": "As shown in the diagram, the side $OB$ of the rhombus $OBAC$ lies on the x-axis. The point $A$ is located at $(8,4)$, and $\\tan\\angle COB=\\frac{4}{3}$. If the graph of the inverse proportion function $y=\\frac{k}{x}\\left(k\\neq 0\\right)$ passes through point $C$, what is the equation of the inverse proportion function?", -"image_file_name": "7058470", -"image": [ -"math/52602711_672.png" -], -"solution": "\\textbf{Solution:} Draw a perpendicular from point C to $OB$, intersecting at $M$, as shown in the figure.\\\\\nSince quadrilateral $OBAC$ is a rhombus, with $A(8,4)$,\\\\\nit follows that $CM=4$,\\\\\nAlso, since $\\tan\\angle COB=\\frac{CM}{OM}=\\frac{4}{3}$,\\\\\nit follows that $OM=3$,\\\\\nTherefore, the coordinates of point C are $C(3,4)$,\\\\\nSince point $C(3,4)$ lies on the graph of the inverse proportion function $y=\\frac{k}{x}$,\\\\\nit follows that $k=3\\times 4=12$,\\\\\nTherefore, the equation of the inverse proportion function is $\\boxed{y=\\frac{12}{x}}$.", -"solution_image": [ -"solution_images/52602711_672.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51545328": { -"question": "In the square grid paper shown in the figure, each small quadrilateral is an identical square. Points $A$, $B$, $C$, and $D$ are all located at the grid points, and $AB$ intersects with $CD$ at point $O$. What is the value of $\\tan\\angle AOC$?", -"image_file_name": "7058470", -"image": [ -"math/51545328_681.png" -], -"solution": "\\textbf{Solution:} Let $BE$ be connected. We have $OE= \\sqrt{1^2+1^2}=\\sqrt{2}$ and $BE= \\sqrt{3^2+3^2}=3\\sqrt{2}$, and $BO= \\sqrt{4^2+2^2}=2\\sqrt{5}$.\\\\\nTherefore, $BO^2=20=EO^2+EB^2=2+18=20$.\\\\\nHence, $\\triangle OBE$ is a right-angled triangle.\\\\\nTherefore, $\\tan\\angle AOC=\\tan\\angle BOE= \\frac{BE}{EO}=\\frac{3\\sqrt{2}}{\\sqrt{2}}=\\boxed{3}$.", -"solution_image": [ -"solution_images/51545328_685.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52601992": { -"question": "As shown in the figure, the grid is composed of small squares with a side length of 1, arranged in a $4\\times 4$ pattern. What is the value of $\\tan\\angle BAC$?", -"image_file_name": "7058470", -"image": [ -"math/52601992_692.png" -], -"solution": "Solution: Connect BC,\\\\\nBy Pythagoras' theorem, it is known that:\\\\\n$AC = \\sqrt{1^2 + 2^2} = \\sqrt{5}$,\\\\\n$BC = \\sqrt{2^2 + 4^2} = 2\\sqrt{5}$,\\\\\n$AB = \\sqrt{3^2 + 4^2} = 5$,\\\\\nSince $5^2 = (\\sqrt{5})^2 + (2\\sqrt{5})^2$,\\\\\nHence $AB^2 = AC^2 + BC^2$,\\\\\nTherefore, $\\triangle ABC$ is a right-angled triangle,\\\\\nTherefore, $\\tan\\angle BAC = \\frac{BC}{AC} = \\frac{2\\sqrt{5}}{\\sqrt{5}} = \\boxed{2}$.", -"solution_image": [ -"solution_images/52601992_690.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52601801": { -"question": "As shown in the figure, circle $ \\odot A$ with a radius of 3 passes through the origin $O$ and point $C(0, 2)$. Point $B$ is a point on the major arc of $\\odot A$ on the left side of the y-axis. What is the value of $\\tan\\angle OBC$?", -"image_file_name": "7058470", -"image": [ -"math/52601801_704.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect CD,\\\\\n$\\because$ $\\angle$DOC=$90^\\circ$,\\\\\n$\\therefore$ CD is the diameter of circle A,\\\\\n$\\because$ the circle $A$ with radius $3$ passes through the origin $O$ and the point $C(0,2)$,\\\\\n$\\therefore$ CD=6, OC=2,\\\\\n$\\therefore$ DO=$\\sqrt{CD^{2}-OC^{2}}=\\sqrt{6^{2}-2^{2}}=4\\sqrt{2}$,\\\\\n$\\therefore$ $\\tan\\angle$ODC=$\\frac{OC}{OD}=\\frac{2}{4\\sqrt{2}}=\\frac{\\sqrt{2}}{4}$,\\\\\n$\\because$ $\\angle$ODC=$\\angle$OBC,\\\\\n$\\therefore$ $\\tan\\angle$OBC=$\\boxed{\\frac{\\sqrt{2}}{4}}$.", -"solution_image": [ -"solution_images/52601801_700.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55595071": { -"question": "As shown in the figure, in $ \\square ABCD$, $ \\angle D=100^\\circ$. AC is the diagonal. If $ \\triangle ACD$ is rotated clockwise by a certain angle around point A to obtain $ \\triangle AFE$, such that the corresponding point E of point D falls on side AB, and the corresponding point F of point C falls on the extension of side CB, then what is the degree measure of $ \\angle EFB$?", -"image_file_name": "7058811", -"image": [ -"math/55595071_365.png" -], -"solution": "\\textbf{Solution:} In parallelogram $ABCD$, $\\angle D=100^\\circ$,\\\\\n$\\therefore \\angle DAB=180^\\circ - \\angle D=80^\\circ$,\\\\\n$\\because \\triangle ACD$ is rotated clockwise around point $A$ by a certain angle to obtain $\\triangle AEF$,\\\\\n$\\therefore AF=AC$, $\\angle FAE=\\angle CAD$, $\\angle AFE=\\angle ACD$,\\\\\n$\\therefore \\angle FAC=\\angle FAE+\\angle BAC=\\angle CAD+\\angle BAC=\\angle BAD=80^\\circ$\\\\\n$\\therefore \\angle AFC=\\angle ACF=\\frac{1}{2}\\left(180^\\circ-\\angle FAC\\right)=50^\\circ$\\\\\n$\\because AD \\parallel BC$,\\\\\n$\\therefore \\angle DAC=\\angle ACF=50^\\circ$,\\\\\n$\\therefore \\angle ACD=180^\\circ-\\angle D-\\angle CAD=180^\\circ-100^\\circ-50^\\circ=30^\\circ$,\\\\\n$\\therefore \\angle AFE=\\angle ACD=30^\\circ$,\\\\\n$\\therefore \\angle EFB=\\angle AFC-\\angle AFE=50^\\circ-30^\\circ=\\boxed{20^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"3659017": { -"question": "As shown in the figure, the coordinates of the two endpoints of line segment AB are A(6, 6) and B(8, 2), respectively. Using the origin O as the center of similarity, and reducing the line segment AB to half of its original size within the first quadrant, what are the coordinates of endpoint C?", -"image_file_name": "7058811", -"image": [ -"math/3659017_371.png" -], -"solution": "\\textbf{Solution:} Let segments AB have end points A(6,6) and B(8,2). By taking the origin O as a center of similarity and scaling down segment AB to half its size within the first quadrant, we obtain segment CD.\\\\\nTherefore, both the x and y coordinates of endpoint C become half of those of point A,\\\\\nThus, the coordinates of endpoint C are: $\\boxed{(3,3)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"54345169": { -"question": "As shown in the figure, it is known that the side length of the square $ABCD$ is $a$, and point $E$ is a moving point on side $AB$. Connect $ED$, and rotate $ED$ clockwise by $90^\\circ$ around point $E$ to $EF$. Connect $DF$ and $CF$. Then, when the sum of $DF+CF$ takes the minimum value, what is the perimeter of $\\triangle DCF$? (Express in an algebraic equation involving $a$)", -"image_file_name": "7058811", -"image": [ -"math/54345169_382.png" -], -"solution": "\\textbf{Solution:} Draw BF, and through F, draw FG $\\perp$ to the extension of AB at point G, \\\\\nsince rotating ED clockwise by $90^\\circ$ around point E gives EF, \\\\\ntherefore EF$\\perp$DE, EF=DE, \\\\\ntherefore $\\angle$DEA + $\\angle$FEG = $\\angle$DEA + $\\angle$ADE = $90^\\circ$, \\\\\ntherefore $\\angle$ADE = $\\angle$FEG, \\\\\ntherefore $\\triangle$AED $\\cong$ $\\triangle$GFE (AAS), \\\\\ntherefore FG=AE, AD=EG, \\\\\ntherefore AD=EG=AB, \\\\\ntherefore BG=AE=FG, \\\\\ntherefore $\\angle$CBF=$\\angle$GBF+$45^\\circ$, i.e., point F moves along the angle bisector of $\\angle$CBG. \\\\\nConstruct the symmetric point C$^{\\prime }$ of C with respect to BF, then point C$^{\\prime }$ lies on the extension of AB, hence when D, F, and C are collinear, DF+CF=DC is minimal. \\\\\nsince AD=a, AC$^{\\prime }$=2a, \\\\\ntherefore DC$^{\\prime }$= $\\sqrt{5}$a, \\\\\ntherefore the minimum value of DF+CF is $\\sqrt{5}$a, \\\\\ntherefore the perimeter of $\\triangle$DCF is DF+CF+CD=$\\sqrt{5}$a+a=($\\sqrt{5}$+1)a. \\\\\nThus, the answer is: $\\boxed{(\\sqrt{5}+1)a}$.", -"solution_image": [ -"solution_images/54345169_380.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53519694": { -"question": "As shown in Figure (1), in the Cartesian coordinate system, the rectangle $ABCD$ is in the first quadrant, and $BC\\parallel x$-axis. The line $y=2x+1$ translates in the positive direction of the $x$-axis. During the translation process, the length of the segment cut by the line from rectangle $ABCD$ is $a$, and the distance by which the line translates on the $x$-axis is $b$. The graph of the function relationship between $a$ and $b$ is shown in Figure (2). What is the area of rectangle $ABCD$?", -"image_file_name": "7058811", -"image": [ -"math/53519694_395.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw lines parallel to $y=2x+1$ through points $B$ and $D$, intersecting $AD$ and $BC$ at points $E$ and $F$, respectively.\\\\\nFrom the diagram and the given information, we have $AE=4-3=1$, $CF=8-7=1$, $BE=DF=\\sqrt{5}$, and $BF=DE=7-4=3$.\\\\\nThus, $AB=\\sqrt{BE^2-AE^2}=\\sqrt{5-1}=2$ and $BC=BF+CF=3+1=4$.\\\\\nTherefore, the area of rectangle $ABCD$ is $AB\\cdot BC=2\\times 4=\\boxed{8}$.", -"solution_image": [ -"solution_images/53519694_397.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53519734": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=8$, $AD=4$. Point $E$ is a moving point inside rectangle $ABCD$, and $\\angle BEC = 90^\\circ$. Point $P$ is a moving point on side $AB$. With $PD$ and $PE$ connected, what is the minimum value of $PD+PE$?", -"image_file_name": "7058811", -"image": [ -"math/53519734_406.png" -], -"solution": "Solution: Let the point O be the midpoint of BC. According to the problem statement, it is known that point E moves on a semicircle O with BC as the diameter.\\\\\nConstruct the symmetric figure of semicircle O and line segment BC with respect to AB (semicircle O'), where the symmetric point of O is O' and the symmetric point of E is E'.\\\\\nConnect O'E' and PE'. Then, PE=PE'.\\\\\nIt is easy to see that when points D, P, E', and O' are collinear, the sum of PD+PE is minimized and equals the length of DE'.\\\\\nAs shown in the figure,\\\\\nin $\\triangle DCO'$, we have $CD=AB=8$, $CO'=6$,\\\\\n$\\therefore DO'=10$\\\\\nFurthermore $\\because O'E'=2$\\\\\n$\\therefore DE'=DO'-O'E'=8$, that is, the minimum value of $PD+PE$ is $\\boxed{8}$", -"solution_image": [ -"solution_images/53519734_400.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53151242": { -"question": "As shown in the figure, in the square $ABCD$ with side length 2, point $E$ is the midpoint of $AD$. Connect $BE$ and fold $\\triangle ABE$ along $BE$ to obtain $\\triangle FBE$. $BF$ intersects $AC$ at point $G$. What is the length of $CG$?", -"image_file_name": "7058811", -"image": [ -"math/53151242_410.png" -], -"solution": "\\textbf{Solution:} Extend $BF$ to meet $CD$ at $H$, and connect $EH$,\\\\\nsince $\\triangle FBE$ is obtained by folding $\\triangle ABE$ along $BE$,\\\\\ntherefore $EA=EF$, $\\angle EFB=\\angle EAB=90^\\circ$,\\\\\nsince $E$ is the midpoint of $AD$, and the side length of square $ABCD$ is $2$,\\\\\ntherefore $EA=ED=1$,\\\\\ntherefore $ED=EF=1$,\\\\\nsince quadrilateral $ABCD$ is a square,\\\\\ntherefore $\\angle D=\\angle EFB=\\angle EFH=90^\\circ$,\\\\\nin $Rt\\triangle EDH$ and $Rt\\triangle EFH$,\\\\\n$\\left\\{\\begin{array}{l}ED=EF\\\\ EH=EH\\end{array}\\right.$,\\\\\ntherefore $Rt\\triangle EDH \\cong Rt\\triangle EFH\\ (HL)$,\\\\\ntherefore $\\angle DEH=\\angle FEH$,\\\\\nalso since $\\angle AEB=\\angle FEB$,\\\\\ntherefore $\\angle DEH+\\angle AEB=90^\\circ$,\\\\\nsince $\\angle ABE+\\angle AEB=90^\\circ$,\\\\\ntherefore $\\angle ABE=\\angle DEH$,\\\\\ntherefore $\\triangle DHE \\sim \\triangle AEB$,\\\\\ntherefore $\\frac{DH}{DE}=\\frac{AE}{AB}=\\frac{1}{2}$,\\\\\ntherefore $DH=\\frac{1}{2}$,\\\\\ntherefore $CH=CD−DH=2−\\frac{1}{2}=\\frac{3}{2}$,\\\\\nsince $CH\\parallel AB$,\\\\\ntherefore $\\triangle HGC \\sim \\triangle BGA$,\\\\\ntherefore $\\frac{CG}{AG}=\\frac{CH}{AB}=\\frac{3}{4}$,\\\\\ntherefore $CG=\\frac{3}{4}AG=\\frac{3}{4}(AC−CG)$,\\\\\nsince $AB=2$, $CB=2$, $\\angle CBA=90^\\circ$,\\\\\ntherefore $AC=2\\sqrt{2}$,\\\\\ntherefore $CG=\\frac{3}{4}(2\\sqrt{2}−CG)$,\\\\\ntherefore $CG=\\boxed{\\frac{6}{7}\\sqrt{2}}$.", -"solution_image": [ -"solution_images/53151242_413.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53578729": { -"question": "As shown in the rectangle $ABCD$, it is known that $AD=18$ and $AB=24$. Point $E$ is a moving point on side $DC$, and $\\triangle AD'E$ and $\\triangle ADE$ are symmetrical with respect to line $AE$. When $\\triangle CD'E$ is a right-angled triangle, what is the length of $DE$?", -"image_file_name": "7058811", -"image": [ -"math/53578729_422.png" -], -"solution": "\\textbf{Solution:}\n\n(1) When $\\angle CED'=90^\\circ$, as shown in Figure (1),\\\\\n$\\because \\angle CED'=90^\\circ$,\\\\\naccording to the property of axial symmetry, $\\angle AED=\\angle AED'=\\frac{1}{2}\\times90^\\circ=45^\\circ$,\\\\\n$\\because \\angle D=90^\\circ$,\\\\\n$\\therefore \\triangle ADE$ is an isosceles right triangle,\\\\\n$\\therefore DE=AD=18$;\\\\\n(2) When $\\angle ED'A=90^\\circ$, as shown in Figure (2),\\\\\naccording to the property of axial symmetry, $\\angle AD'E=\\angle D=90^\\circ$, $AD'=AD$, $DE=D'E$,\\\\\n$\\triangle CD'E$ is a right triangle,\\\\\nthat is $\\angle CD'E=90^\\circ$,\\\\\n$\\therefore \\angle AD'E+\\angle CD'E=180^\\circ$,\\\\\n$\\therefore A$, $D'$, $C$ are collinear,\\\\\naccording to the Pythagorean theorem, $AC=\\sqrt{AD^{2}+CD^{2}}=30$,\\\\\n$\\therefore CD'=30-18=12$,\\\\\nlet $DE=D'E=x$, then $EC=CD-DE=24-x$,\\\\\nin $\\triangle D'EC$, $D'E^{2}+D'C^{2}=EC^{2}$,\\\\\nthat is $x^{2}+144=(24-x)^{2}$,\\\\\nsolving for $x$ gives $x=9$,\\\\\nthat is $DE=9$;\\\\\nIn summary: The length of $DE$ is either 9 or 18;\\\\\nHence, the answer is: \\boxed{9 \\text{ or } 18}.", -"solution_image": [ -"solution_images/53578729_420.png", -"solution_images/53578729_422.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53578726": { -"question": "As illustrated, $ \\triangle ABC$ and $ \\triangle A_1B_1C_1$ are similar with the center of similarity being point $O$. Given that $OA: OA_1 = 1:2$ and the area of $ \\triangle ABC$ is 3, what is the area of $ \\triangle A_1B_1C_1$?", -"image_file_name": "7058811", -"image": [ -"math/53578726_435.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\sim \\triangle A_1B_1C_1$,\\\\\nit follows that $\\triangle ABC \\sim \\triangle A_1B_1C_1$, $AC \\parallel A_1C_1$,\\\\\nthus $\\triangle AOC \\sim \\triangle A_1OC_1$,\\\\\ntherefore $\\frac{AC}{A_1C_1} = \\frac{OA}{OA_1} = \\frac{1}{2}$,\\\\\nthus, the area ratio of $\\triangle ABC$ to $\\triangle A_1B_1C_1$ is $1\\colon 4$,\\\\\nsince the area of $\\triangle ABC$ is $3$,\\\\\nthe area of $\\triangle A_1B_1C_1$ is $\\boxed{12}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52091239": { -"question": "As shown in the figure, rotate the rectangle $ABCD$ counterclockwise around point $A$ by an angle of $\\alpha$ $(0^\\circ<\\alpha<90^\\circ)$, and connect $EC$ and $ED$. At what value of $\\alpha$ will $EC=ED$?", -"image_file_name": "7058811", -"image": [ -"math/52091239_447.png" -], -"solution": "\\textbf{Solution:} Draw $BE$, and through point $E$, draw $EH \\perp CD$ at point $H$, intersecting $AB$ at point $M$, as shown in the diagram below,\\\\\nTo ensure $EC=ED$, then $EH\\perp CD$, and $CH=CD$,\\\\\n$\\because AB\\parallel CD$,\\\\\n$\\therefore EF\\perp AB$,\\\\\n$\\therefore \\angle BMH=\\angle AMH=\\angle MBC=\\angle BCH=\\angle ADH=\\angle MAD=90^\\circ$,\\\\\n$\\therefore$ Quadrilateral $ADHM$ and quadrilateral $BCHM$ are both rectangles,\\\\\n$\\therefore BM=CH=DH=AM$,\\\\\n$\\therefore EM$ bisects $AB$ perpendicularly,\\\\\n$\\therefore AE=BE$,\\\\\nBy the property of rotation, $AB=AE$,\\\\\n$\\therefore AB=AE=BE$,\\\\\n$\\therefore \\triangle ABE$ is an equilateral triangle,\\\\\n$\\therefore \\angle BAE=60^\\circ$,\\\\\nTherefore, when $\\alpha$ is $\\boxed{60^\\circ}$, then $EC=ED$.", -"solution_image": [ -"solution_images/52091239_443.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52091240": { -"question": "As shown in the figure, an equilateral triangle $ABC$ with a side length of 4 is translated along ray $BC$ to obtain triangle $DEF$. Points $M$ and $N$ are the midpoints of $AC$ and $DF$, respectively. Point $P$ is the midpoint of segment $MN$. When connecting $PA$ and $PC$, if triangle $APC$ forms a right-angled triangle, what is the length of $BE$?", -"image_file_name": "7058811", -"image": [ -"math/52091240_4510.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, when $\\angle APC=90^\\circ$, \\\\\n$\\because$AM=MC, AC=4,\\\\\n$\\therefore$PM is the median to the hypotenuse of $\\triangle APC$,\\\\\n$\\therefore$AM=CM=PM=2,\\\\\n$\\therefore$PN=2,\\\\\n$\\therefore$MN=4,\\\\\nThus, translating $\\triangle ABC$ 4 units to the right is sufficient,\\\\\n$\\therefore$BE=\\boxed{4};\\\\\nAs shown in Figure 2, when $\\angle ACP=90^\\circ$,\\\\\n$\\because$$\\triangle ABC$ is an equilateral triangle, AM=MC,\\\\\n$\\therefore$$\\angle BMC=90^\\circ$,\\\\\n$\\therefore$$\\angle BMC=\\angle ACP$,\\\\\n$\\therefore$BM$\\parallel$CP,\\\\\n$\\because$$\\triangle ABC$ is an equilateral triangle, $\\triangle DEF$ is an equilateral triangle, M and N are the midpoints of AC and DF respectively,\\\\\n$\\therefore$$\\angle ACB=\\angle DFE= 60^\\circ$, CM=NF,\\\\\n$\\therefore$MC$\\parallel$NF,\\\\\n$\\therefore$Quadrilateral MCFN is a parallelogram,\\\\\n$\\therefore$MP$\\parallel$BC,\\\\\n$\\therefore$Quadrilateral BCPM is a parallelogram,\\\\\n$\\therefore$PM=4,\\\\\n$\\therefore$PN=4,\\\\\n$\\therefore$MN=8,\\\\\nThus, translating $\\triangle ABC$ 8 units to the right is sufficient,\\\\\n$\\therefore$BE=\\boxed{8};", -"solution_image": [ -"solution_images/52091240_450.png", -"solution_images/52091240_451.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51615154": { -"question": "As shown in the figure, points $P$, $Q$, and $R$ are located on the graph of the inverse proportion function $y=\\frac{k}{x}$ (where the constant $k>0$ and $x>0$), respectively. Lines parallel to the $x$-axis and the $y$-axis through these three points are drawn, forming shaded regions in the figure with areas denoted as ${S}_{1}$, ${S}_{2}$, and ${S}_{3}$ from left to right. If $OE=ED=DC$ and ${S}_{1}{S}_{3}=27$, what is the value of ${S}_{2}$?", -"image_file_name": "7055653", -"image": [ -"math/51615154_269.png" -], -"solution": "\\textbf{Solution:} Let us assume $CD=DE=OE=a$,\\\\\nHence, $P\\left(\\frac{k}{3a}, 3a\\right)$, $Q\\left(\\frac{k}{2a}, 2a\\right)$, $R\\left(\\frac{k}{a}, a\\right)$,\\\\\nThus, $CP=\\frac{k}{3a}$, $DQ=\\frac{k}{2a}$, $ER=\\frac{k}{a}$,\\\\\nTherefore, $OG=AG$, $OF=2FG$, $OF=\\frac{2}{3}GA$,\\\\\nConsequently, $S_{1}=2S_{2}$, $S_{3}=3S_{2}$,\\\\\nGiven $S_{1}+S_{3}=27$,\\\\\nIt implies $2S_{2}+3S_{2}=27$,\\\\\nHence, $S_{2}=\\boxed{\\frac{27}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51615099": { -"question": "As shown in the figure, the graph of the inverse proportion function $y=\\frac{1}{x}$ intersects with the graph of the direct proportion function $y=x$ at points A and C. $AB\\perp x$-axis and $CD\\perp x$-axis, with the perpendicular feet at points B and D, respectively. What is the area of the quadrilateral ABCD?", -"image_file_name": "7055653", -"image": [ -"math/51615099_274.png" -], -"solution": "\\textbf{Solution:} Solving the system of equations for the two functions gives \\(\\begin{cases}y=\\frac{1}{x}, \\\\ y=x, \\end{cases}\\) which results in \\(\\begin{cases}x=1, \\\\ y=1, \\end{cases}\\) or \\(\\begin{cases}x=-1, \\\\ y=-1. \\end{cases}\\)\n\n\\(\\therefore A(1, 1), C(-1, -1).\\)\n\n\\(\\because AB\\perp x\\) axis, \\(CD\\perp x\\) axis,\n\n\\(\\therefore B(1, 0), D(-1, 0),\\)\n\n\\(\\therefore BD=2, AB=CD=1.\\)\n\n\\(\\because AB\\perp BD, CD\\perp BD\\)\n\n\\(\\therefore AB\\parallel CD\\)\n\n\\(\\therefore\\) Quadrilateral ABCD is a parallelogram,\n\n\\(\\therefore\\) The area of quadrilateral ABCD \\(=AB\\cdot BD=1\\times 2=\\boxed{2}\\).", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51615108": { -"question": "As shown in the figure, the graph of the inverse proportion function $y=\\frac{k}{x}$ $(x>0)$ passes through points A and B. Draw $AC\\perp y$ axis at point C through A, and draw $BD\\perp y$ axis at point D through B. Also, draw $BE\\perp x$ axis at point E through B, and connect AD. It is known that $AC=1$, $BE=1$, and the area of rectangle $BDOE$ is $4$. Then, what is the area of $\\triangle ACD$?", -"image_file_name": "7055653", -"image": [ -"math/51615108_2812.png" -], -"solution": "\\textbf{Solution:} Construct AH $\\perp$ x-axis at point H, intersecting BD at point F, \\\\\n$\\therefore$ Quadrilateral ACOH, quadrilateral ACDF, quadrilateral ODBE are all rectangles, \\\\\n$\\because$ The area of rectangle BDOE is 4, and the inverse proportion function $y=\\frac{k}{x}$ (x>0) passes through point B, with k>0, \\\\\n$\\therefore$k=4 \\\\\n$\\therefore$The area of rectangle ACOH is 4, \\\\\n$\\because$AC=1 \\\\\n$\\therefore$OC=4÷1=4, \\\\\n$\\therefore$CD=OC−OD=OC−BE=4−1=3, \\\\\n$\\therefore$The area of rectangle ACDF=1×3=3, \\\\\n$\\therefore$${S}_{\\triangle ACD}=\\frac{1}{2}{S}_{\\text{rectangle }CDFA}=\\boxed{\\frac{3}{2}}$.", -"solution_image": [ -"solution_images/51615108_280.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51615096": { -"question": "As shown in the figure, in the Cartesian coordinate system, given a rhombus OABC, where the coordinates of point $A$ are $(10, 0)$, and the hyperbola $y=\\frac{k}{x} (x>0)$ passes through point $C$, and $OB \\cdot AC = 160$, what is the value of $k$?", -"image_file_name": "7055653", -"image": [ -"math/51615096_296.png" -], -"solution": "\\textbf{Solution:} Construct $CD\\perp OA$ through point $C$.\\\\\nSince quadrilateral OABC is a rhombus,\\\\\nand $OB\\cdot AC=160$,\\\\\ntherefore, the area of the rhombus OABC is 80,\\\\\nwhich means $OA\\cdot CD=80$.\\\\\nSince $OA=OC=10$\\\\\ntherefore, $CD=8$.\\\\\nIn $\\triangle OCD$, $OC=10$, $CD=8$, \\\\\ntherefore, $OD=\\sqrt{10^{2}-8^{2}}=6$, that is $C(6, 8)$,\\\\\nthus the value of $k$ is $\\boxed{48}$.", -"solution_image": [ -"solution_images/51615096_292.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51614856": { -"question": "As shown in the figure, in the rhombus $ABCD$, $\\angle C = 108^\\circ$, the perpendicular bisector of $AD$ intersects the diagonal $BD$ at point $P$, and the foot of the perpendicular is $E$. Connecting $AP$, what is the measure of $\\angle APB$?", -"image_file_name": "7055653", -"image": [ -"math/51614856_300.jpg" -], -"solution": "\\textbf{Solution:} Given: Since $ABCD$ is a rhombus,\\\\\ntherefore $\\angle C = \\angle DAB = 108^\\circ$, and $AD = AB$\\\\\ntherefore $\\angle ADP = (180^\\circ - 108^\\circ) \\div 2 = 36^\\circ$,\\\\\nsince the perpendicular bisector of $AD$ intersects diagonal $BD$ at point $P$,\\\\\ntherefore $AP = DP$,\\\\\ntherefore $\\angle ADP = \\angle DAP = 36^\\circ$,\\\\\ntherefore $\\angle APB = \\angle ADP + \\angle DAP = 36^\\circ + 36^\\circ = \\boxed{72^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614857": { -"question": "As shown in the figure, in square $ABCD$, $E$ is any point on diagonal $BD$. A line is drawn through point $E$ so that $EF\\perp BC$ at point $F$, and $EG\\perp CD$ at point $G$. If the perimeter of the square $ABCD$ is $a$, what is the perimeter of quadrilateral $EFCG$?", -"image_file_name": "7055653", -"image": [ -"math/51614857_310.png" -], -"solution": "\\textbf{Solution:} Given square $ABCD$, \\\\\n$\\therefore \\angle BDC=45^\\circ$, $\\angle C=90^\\circ$, \\\\\n$\\because$ $EF \\perp BC$, $EG \\perp CD$, \\\\\n$\\therefore \\angle C = \\angle CGE = \\angle CFE = \\angle DGE = 90^\\circ$, \\\\\n$\\therefore \\angle EDG = \\angle DEG = 45^\\circ$, quadrilateral $CGEF$ is a rectangle, \\\\\n$\\therefore EG = DG$, \\\\\n$\\therefore CG+EG=CG+DG=DC$ \\\\\n$\\because$ The perimeter of square $ABCD$ is $a$, \\\\\n$\\therefore$ The perimeter of quadrilateral $EFCG$ is $2DC = \\boxed{\\frac{1}{2}a}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614754": { -"question": "As shown in the figure, for square $ABCD$ with side length $3$, point $E$ is on side $AB$, and $BE=1$. If point $P$ moves along diagonal $BD$, what is the minimum value of $PA+PE$?", -"image_file_name": "7055653", -"image": [ -"math/51614754_320.png" -], -"solution": "\\textbf{Solution:} Given the figure, since ABCD is a square, thus points A and C are symmetrical about BD. Draw line CE intersecting BD at point P, and connect AP. Therefore, $AP=CP$, which implies $AP+PE=CP+PE=CE$. Hence, the minimum value of $AP+PE$ is the length of CE; in $\\triangle BCE$, we have $CE=\\sqrt{BE^2+BC^2}=\\sqrt{3^2+1^2}=\\sqrt{10}$. Consequently, the answer is $\\boxed{\\sqrt{10}}$.", -"solution_image": [ -"solution_images/51614754_320.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51614696": { -"question": "As shown in the figure, in the isosceles right-angled triangle $OAB$ with a hypotenuse length of 1, an inscribed square ${A}_{1}{B}_{1}{C}_{1}{D}_{1}$ is constructed (with the vertices of the square lying on the sides of $\\triangle OAB$). In the isosceles right-angled triangle $O{A}_{1}{B}_{1}$, another inscribed square ${A}_{2}{B}_{2}{C}_{2}{D}_{2}$ is constructed; in the isosceles right-angled triangle $O{A}_{2}{B}_{2}$, an inscribed square ${A}_{3}{B}_{3}{C}_{3}{D}_{3}$ is constructed; and so on. Continuing this process, what is the side length of the fifth square ${A}_{5}{B}_{5}{C}_{5}{D}_{5}$?", -"image_file_name": "7055653", -"image": [ -"math/51614696_337.png" -], -"solution": "\\textbf{Solution:} Given an isosceles right triangle OAB with a hypotenuse of 1, constructing a square $A_{1}B_{1}C_{1}D_{1}$,\n\n\\(\\therefore \\angle A = \\angle B = \\angle AA_{1}D_{1} = \\angle BB_{1}C_{1} = 45^\\circ\\), AO=BO, $A_{1}D_{1} = D_{1}C_{1} = B_{1}C_{1}$,\n\n\\(\\therefore AD_{1} = A_{1}D_{1} = D_{1}C_{1} = A_{1}B_{1} = C_{1}B\\),\n\n\\(\\therefore\\) The edge length of the square $A_{1}B_{1}C_{1}D_{1}$ is $A_{1}B_{1} = \\frac{1}{3}AB = \\frac{1}{3}\\);\n\nSimilarly, the edge length of the square $A_{2}B_{2}C_{2}D_{2}$ is $A_{2}B_{2} = \\left(\\frac{1}{3}\\right)^{2}$;\n\nThe edge length of the square $A_{3}B_{3}C_{3}D_{3}$ is $A_{3}B_{3} = \\left(\\frac{1}{3}\\right)^{3}$;\n\n\\(\\therefore\\) The edge length of the 5th square $A_{5}B_{5}C_{5}D_{5}$ is \\(\\boxed{\\left(\\frac{1}{3}\\right)^{5}}\\).", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614711": { -"question": "As shown in the figure, rectangle $ABCD$ is folded along crease $EF$. The corresponding edge of $BC$, denoted as $B'C'$, intersects $CD$ at point $M$. If $\\angle BMD = 50^\\circ$, then what is the measure of $\\angle BEF$ in degrees?", -"image_file_name": "7055653", -"image": [ -"math/51614711_340.png" -], -"solution": "\\textbf{Solution:} Since we fold the rectangle ABCD along the crease EF,\\\\\nit follows that $\\angle C^{\\prime} = \\angle A = 90^\\circ$, $\\angle DMB^{\\prime} = \\angle C^{\\prime}MF = 50^\\circ$, $\\angle EFC = \\angle C^{\\prime}FE$, and $DC \\parallel AB$\\\\\ntherefore, $\\angle C^{\\prime}FM = 90^\\circ - 50^\\circ = 40^\\circ$, $\\angle MFE = \\angle FEB$, and $\\angle CFE + \\angle FEB = 180^\\circ$,\\\\\nthus, $\\angle C^{\\prime}FE = 40^\\circ + \\angle MFE$, $\\angle EFC = 180^\\circ - \\angle MFE$,\\\\\nit leads to $40^\\circ + \\angle MFE = 180^\\circ - \\angle MFE$,\\\\\nSolving gives: $\\angle MFE = 70^\\circ$,\\\\\nhence, $\\angle BEF = \\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51614626": { -"question": "As shown in the figure, ABCD is a square with a side length of 4. Point H is on the extension of CD, and CEFH is also a square. What is the area of $\\triangle DBF$?", -"image_file_name": "7055653", -"image": [ -"math/51614626_350.png" -], -"solution": "\\textbf{Solution:} Let the side length of the square $CEFH$ be $a$,\n\naccording to the problem, we have: $S_{\\triangle BDF}=S_{\\text{square }ABCD}+S_{\\text{square }CEFH}-S_{\\triangle ABD}-S_{\\triangle DHF}-S_{\\triangle BEF}$,\n\n$=4^2+a^2 -\\frac{1}{2}\\times4\\times4-\\frac{1}{2}a(a-4)-\\frac{1}{2}a(a+4) =\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614526": { -"question": "As shown in the figure, place two strips of paper with parallel opposite sides and equal widths crosswise at will. By rotating one of them, the overlapping part forms a quadrilateral. What can this quadrilateral be?", -"image_file_name": "7055653", -"image": [ -"math/51614526_360.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw heights AE and AF from point D to sides AB and BC, respectively,\\\\\nsince quadrilateral ABCD is formed by overlapping two strips of equal width,\\\\\ntherefore AB$\\parallel$CD, and AD$\\parallel$BC,\\\\\ntherefore, quadrilateral ABCD is a parallelogram,\\\\\nsince DE$\\perp$AB, and DF$\\perp$BC,\\\\\ntherefore DE=DF,\\\\\nsince the area of parallelogram ABCD, $S_{\\text{parallelogram } ABCD}$=AB$\\cdot$DE=BC$\\cdot$DF,\\\\\ntherefore AB=BC,\\\\\ntherefore, quadrilateral ABCD is a rhombus.\\\\\nHence, the answer is: Quadrilateral ABCD is a \\boxed{rhombus}.", -"solution_image": [ -"solution_images/51614526_360.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614529": { -"question": "As shown in the diagram, in quadrilateral $ABCD$, $AB= BC$, and $\\angle ABC=\\angle CDA=90^\\circ$, $BE\\perp AD$ at point $E$, and the area of quadrilateral $ABCD$ is 8. What is the length of $BE$?", -"image_file_name": "7055653", -"image": [ -"math/51614529_370.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw line BF $\\perp$ CD, intersecting the extension of DC at point F, \\\\\n$\\because$ BE $\\perp$ AD, \\\\\n$\\therefore$ $\\angle$AEB = $\\angle$BED = $\\angle$F = 90$^\\circ$, \\\\\n$\\because$ $\\angle$CDA = 90$^\\circ$, \\\\\n$\\therefore$ Quadrilateral DEBF is a rectangle, \\\\\n$\\therefore$ $\\angle$EBF = $\\angle$ABC = 90$^\\circ$, \\\\\n$\\therefore$ $\\angle$ABE = $\\angle$CBF, \\\\\n$\\because$ AB = BC, \\\\\n$\\therefore$ $\\triangle$BCF $\\cong$ $\\triangle$BAE (AAS), \\\\\n$\\therefore$ BE = BF, \\\\\n$\\therefore$ Quadrilateral DEBF is a square, \\\\\n$\\therefore$ Area of Quadrilateral ABCD = Area of Square BEDF = 8, \\\\\n$\\therefore$ BE = \\boxed{2\\sqrt{2}}.", -"solution_image": [ -"solution_images/51614529_370.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614485": { -"question": "As shown in the figure, $O$ is the intersection point of the diagonals of rectangle $ABCD$, $DE \\parallel AC$, $CE \\parallel BD$, and $DE$ intersects $CE$ at point $E$. Given that $AB=4$ and $AD=6$, what is the perimeter of quadrilateral $OCED$?", -"image_file_name": "7055653", -"image": [ -"math/51614485_380.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\nit follows that $\\angle BAD=90^\\circ$, OB=OD=OC=OA,\\\\\nthus BD= $\\sqrt{AB^{2}+AD^{2}}= 2\\sqrt{13}$,\\\\\nsince OD= $\\frac{1}{2}$BD= $\\sqrt{13}$,\\\\\nand DE$\\parallel$ AC, CE$\\parallel$ BD,\\\\\nit follows that quadrilateral OCED is a parallelogram,\\\\\nsince OC=OD,\\\\\nthus quadrilateral OCED is a rhombus,\\\\\nhence the perimeter of quadrilateral OCED $=4$OD$= 4\\sqrt{13}=\\boxed{4\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614463": { -"question": "As shown in the figure, the diagonals $AC$ and $BD$ of the rhombus $ABCD$ intersect at point $O$. Given that $AC=8$ and $BD=6$, what is the length of the side $AB$ of the rhombus $ABCD$? What is its area? If a perpendicular line $OH$ is drawn from point $O$ to side $AB$, with the foot of the perpendicular being point $H$, what is the distance $OH$ from point $O$ to side $AB$?", -"image_file_name": "7055653", -"image": [ -"math/51614463_390.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rhombus, $\\therefore$ $AC\\perp BD$, $OB=OD=3$, $OA=OC=4$. Therefore, $AB= \\sqrt{OA^{2}+OB^{2}}=\\boxed{5}$, $S_{\\text{rhombus}ABCD}= \\frac{1}{2}AC\\cdot BD=\\boxed{24}$, $S_{\\triangle AOB}= \\frac{1}{2}OA\\cdot OB= \\frac{1}{2}AB\\cdot OH$. Therefore, $OH= \\frac{OA\\cdot OB}{AB}=\\boxed{2.4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614464": { -"question": "As shown in the diagram, it is known that in rhombus ABCD, one interior angle $\\angle BAD=80^\\circ$, the diagonals AC and BD intersect at point O, and point E is on AB, with BE=BO. What is the measure of $\\angle EOA$ in degrees?", -"image_file_name": "7055653", -"image": [ -"math/51614464_400.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus,\\\\\nit follows that AC$\\perp$BD, $\\angle$BAO= $\\frac{1}{2}\\angle$BAD=$40^\\circ$,\\\\\nhence $\\angle$ABO=$90^\\circ$−$\\angle$BAO=$50^\\circ$,\\\\\nsince BE=BO,\\\\\nit follows that $\\angle$BOE= $\\frac{180^\\circ−\\angle ABO}{2}$=$65^\\circ$,\\\\\ntherefore $\\angle$EOA=$\\angle$AOB−$\\angle$BOE=$90^\\circ−65^\\circ=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614396": { -"question": "As shown in the figure, in rectangle $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. If $\\angle DOC = 110^\\circ$, what is the measure of $\\angle DAC$ in degrees?", -"image_file_name": "7055653", -"image": [ -"math/51614396_410.png" -], -"solution": "\\textbf{Solution}: Given rectangle ABCD,\\\\\nhence DO=AO,\\\\\nthus $\\angle$ADO=$\\angle$DAO,\\\\\nsince $\\angle$DOC=110$^\\circ$,\\\\\nthus 2$\\angle$DAO=110$^\\circ$, i.e., $\\angle$DAO=55$^\\circ$,\\\\\ntherefore, $\\angle$DAC=\\boxed{55^\\circ}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614398": { -"question": "As shown in the figure, in rectangle $ABCD$, $AE \\perp BD$ at point $E$, and $\\angle DAE = 2\\angle BAE$, what is the measure of $\\angle EAC$?", -"image_file_name": "7055653", -"image": [ -"math/51614398_420.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle,\\\\\nit follows that OA=OC=OB=OD, and $\\angle$BAD=$90^\\circ$,\\\\\ntherefore, $\\angle$ABO=$\\angle$BAO,\\\\\ngiven that $\\angle$DAE=2$\\angle$BAE, and $\\angle$DAE+$\\angle$BAE=$90^\\circ$,\\\\\nit follows that $\\angle$BAE=$30^\\circ$,\\\\\ngiven that AE$\\perp$BD, that is $\\angle$AEB=$90^\\circ$,\\\\\nit follows that $\\angle$ABO=$60^\\circ$,\\\\\ntherefore, $\\angle$BAO=$60^\\circ$,\\\\\ntherefore, $\\angle$EAC=$\\angle$BAO−$\\angle$BAE=$60^\\circ−30^\\circ=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614400": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ is the midpoint of $AD$, and $AE = 1\\,\\text{cm}$. The perpendicular bisector of $BE$, $MN$, exactly passes through point $C$. What is the length of $AB$ in centimeters?", -"image_file_name": "7055653", -"image": [ -"math/51614400_430.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect EC, and BE intersects MN at point F, \\\\\nsince rectangle ABCD, E is the midpoint of AD, and AE=1cm, \\\\\ntherefore AB=CD, AD=BC=2AE=2cm, ED=1cm, \\\\\nsince FC is perpendicular bisector of BE, \\\\\ntherefore EC=BC=2cm, $\\angle$BFC=$\\angle$EFC=$90^\\circ$, \\\\\ntherefore in Rt$\\triangle$EFC, CD= $\\sqrt{EF^{2}-ED^{2}}=\\sqrt{2^{2}-1^{2}}=\\sqrt{3}$, \\\\\ntherefore AB=CD= $\\boxed{\\sqrt{3}}$cm.", -"solution_image": [ -"solution_images/51614400_430.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51604338": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the points are \\(A_{1}(1,0)\\), \\(A_{2}(3,0)\\), \\(A_{3}(6,0)\\), \\(A_{4}(10,0)\\), and so forth. The first square \\(A_{1}C_{1}A_{2}B_{1}\\) is constructed with \\(A_{1}A_{2}\\) as its diagonal, the second square \\(A_{2}C_{2}A_{3}B_{2}\\) with \\(A_{2}A_{3}\\) as its diagonal, the third square \\(A_{3}C_{3}A_{4}B_{3}\\) with \\(A_{3}A_{4}\\) as its diagonal, and so on, with vertices \\(B_{1}\\), \\(B_{2}\\), \\(B_{3}\\), etc., all in the first quadrant. Following this pattern, what are the coordinates of the point \\(B_n\\)?", -"image_file_name": "7055653", -"image": [ -"math/51604338_440.png" -], -"solution": "\\textbf{Solution}: Draw perpendiculars from points $B_1$, $B_2$, $B_3$ to the x-axis at points $D$, $E$, $F$ respectively, such that $B_1D\\perp x$-axis, $B_2E\\perp x$-axis, $B_3F\\perp x$-axis, Since $A_1(1,0)$,\\\\\nTherefore $A_1A_2=3-1=2$, $A_1D=1$, $OD=2$,\\\\\n$B_1D=A_1D=1$,\\\\\nWe obtain $B_1(2,1)$, Since $A_2(3,0)$,\\\\\nTherefore $A_3A_2=6-3=3$,\\\\\n$EB_2=\\frac{3}{2}$,\\\\\n$B_2E=EA_2=\\frac{3}{2}$,\\\\\n$OE=6-\\frac{3}{2}=\\frac{9}{2}$,\\\\\nWe obtain $B_2\\left(\\frac{9}{2},\\frac{3}{2}\\right)$,\\\\\nSimilarly, we find: $B_3(8,2)$, $B_4\\left(\\frac{25}{2},\\frac{5}{2}\\right)$, $\\dots$,\\\\\nSince the x-coordinates of $B_1$, $B_2$, $B_3$, $\\dots$ are respectively: $\\frac{4}{2}$, $\\frac{9}{2}$, $\\frac{16}{2}$, $\\frac{25}{2}\\dots$,\\\\\nTherefore, the x-coordinate of point $B_n$ is: $\\frac{(n+1)^2}{2}$,\\\\\nSince the y-coordinates of $B_1$, $B_2$, $B_3$, $\\dots$ are respectively: 1, $\\frac{3}{2}$, 2, $\\frac{5}{2}$, $\\dots$,\\\\\nTherefore, the y-coordinate of point $B_n$ is: $\\frac{n+1}{2}$,\\\\\nTherefore, the coordinates of point $B_n$ are: $\\left[\\frac{(n+1)^2}{2},\\frac{n+1}{2}\\right]$.\\\\\nHence, the answer is: $\\boxed{\\left[\\frac{(n+1)^2}{2},\\frac{n+1}{2}\\right]}$.", -"solution_image": [ -"solution_images/51604338_449.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51604337": { -"question": "As shown in the figure, the quadrilateral $OABC$ is a rectangular sheet placed in the Cartesian coordinate system, where $O$ is the origin, point $A$ is on the positive semi-axis of the $x$-axis, and point $C$ is on the positive semi-axis of the $y$-axis, with $OA=5$; $OC=4$. A point $D$ is taken on side $OC$, and the sheet is folded along $AD$ so that point $O$ falls on point $E$ on side $BC$. What are the coordinates of point $D$?", -"image_file_name": "7055653", -"image": [ -"math/51604337_450.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral OABC is a rectangle, with OA=5 and OC=4.\n\nHence, $OA=BC=5$, $OC=AB=4$,\n\n$\\angle AOC=\\angle B=\\angle OCB=90^\\circ$,\n\nBy the property of folding, we get: OA=AE=5, OD=DE,\n\nIn $\\triangle ABE$, $BE=\\sqrt{AE^2-AB^2}=3$,\n\nTherefore, $CE=BC-BE=2$,\n\nLet D$(0,x)$, then OD=DE=$x$, CD=$4-x$,\n\nTherefore, in $\\triangle DCE$, by the Pythagorean theorem, we get: $(4-x)^2+2^2=x^2$,\n\nSolving this gives: $x=\\frac{5}{2}$,\n\nHence, $D\\boxed{(0,2.5)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51420049": { -"question": "As shown in the figure, a square is placed on a desk. What is the side length of this square?", -"image_file_name": "7055653", -"image": [ -"math/51420049_460.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, \\\\\n$\\because$ $\\angle B = \\angle D = \\angle ACE = 90^\\circ$, \\\\\n$\\angle BAC + \\angle ACB = 90^\\circ$, $\\angle ECD + \\angle ACB = 90^\\circ$, \\\\\n$\\therefore$ $\\angle BAC = \\angle ECD$, \\\\\n$\\because$ AC = CE, \\\\\n$\\therefore$ $\\triangle ABC \\cong \\triangle CBE$, \\\\\n$\\therefore$ BC = DE = 2, \\\\\n$\\therefore$ AC = $\\sqrt{AB^2 + BC^2} = \\sqrt{1^2 + 2^2} = \\sqrt{5}$, \\\\\n$\\therefore$ the length of the side of the square is $\\boxed{\\sqrt{5}}$.", -"solution_image": [ -"solution_images/51420049_460.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53320060": { -"question": "As shown in the figure, $C$ is a moving point on line segment $BD$, with perpendiculars $AB \\perp BD$ and $ED \\perp BD$ drawn through points $B$ and $D$, respectively. The lines $AC$ and $EC$ are also drawn. Given that $AB=5$, $DE=1$, and $BD=8$, and letting $CD=x$, what is the minimum value of $AC+CE$?", -"image_file_name": "7055653", -"image": [ -"math/53320060_470.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram: \\\\\nWhen points A, C, and E are collinear, AC + CE is minimized;\\\\\nWhen points A, C, and E are on the same line,\\\\\nextend AB and construct line EF $\\perp$ AB at point F,\\\\\n$\\because$AB = 5, DE = 1,\\\\\n$\\therefore$AF = 6,\\\\\n$\\because$$\\angle$ABD = $90^\\circ$,\\\\\n$\\therefore$$\\angle$FBD = $90^\\circ$,\\\\\n$\\because$$\\angle$BDE = $\\angle$BFE = $90^\\circ$,\\\\\n$\\therefore$Quadrilateral BFED is a rectangle,\\\\\n$\\therefore$BD = EF = 8,\\\\\n$\\therefore$AE = $ \\sqrt{AF^{2} + EF^{2}}$ = $ \\sqrt{6^{2} + 8^{2}}$ = \\boxed{10}.", -"solution_image": [ -"solution_images/53320060_470.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53320014": { -"question": "As shown in the figure, five squares with a side length of 1cm are arranged as illustrated. The points $A_1$, $A_2$, ..., $A_n$ represent the centers of the squares, respectively. What is the total area of the overlapping regions formed by the overlap of the five squares?", -"image_file_name": "7055653", -"image": [ -"math/53320014_480.png" -], -"solution": "As shown in the diagram, through the center O of the square ABCD, draw OM$\\perp$CD at M, and draw ON$\\perp$BC at N,\\\\\nthen $\\angle EOM=\\angle FON$, and OM=ON,\\\\\nin $\\triangle OEM$ and $\\triangle OFN$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle OME=\\angle ONF \\\\\nOM=ON \\\\\n\\angle EOM=\\angle FON\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle OEM\\cong \\triangle OFN$ (ASA),\\\\\nthus, the area of the quadrilateral OECF is equal to the area of the square OMCN,\\\\\nif the side length of the square ABCD is 1, then the area of OMCN is $\\frac{1}{4}\\text{cm}^2$,\\\\\n$\\therefore$ the area of the shaded part is equal to $\\frac{1}{4}$ of the square's area,\\\\\n$\\therefore$ the total area of the shaded parts (overlaps) in 5 such squares is $\\frac{1}{4} \\times 4 = \\boxed{1\\text{cm}^2}$.", -"solution_image": [ -"solution_images/53320014_480.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51534395": { -"question": "As shown in the figure, DE is the median of $\\triangle ABC$, the angle bisector of $\\angle ABC$ intersects DE at point F, $AB=8$, $BC=12$, then what is the length of $EF$?", -"image_file_name": "7055653", -"image": [ -"math/51534395_490.png" -], -"solution": "\\textbf{Solution:} Given that $DE$ is the median line of $\\triangle ABC$,\\\\\nit follows that $DE \\parallel BC$ and $DE = \\frac{1}{2}BC = 6$, $BD = AD = \\frac{1}{2}AB = 4$,\\\\\nthus $\\angle DFB = \\angle FBC$,\\\\\nsince $BF$ bisects $\\angle ABC$,\\\\\nit follows that $\\angle DBF = \\angle FBC$,\\\\\nthus $\\angle DFB = \\angle DBF$,\\\\\ntherefore $DF = BD = 4$,\\\\\nhence $EF = DE - DF = 6 - 4 = \\boxed{2}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51534333": { -"question": "As shown in the figure, in $\\triangle ABC$, points D, E, and F are the midpoints of the sides, respectively. If the area of $\\triangle ABC$ is $16\\,cm^2$, then what is the area of $\\triangle DEF$ in $cm^2$?", -"image_file_name": "7055653", -"image": [ -"math/51534333_505.png" -], -"solution": "\\textbf{Solution:}\n\nSince points D and F are the midpoints of AB and AC, respectively, \\\\\n$\\therefore$DF$\\parallel $BC and DF$ = \\frac{1}{2}$BC, \\\\\n$\\therefore$DF$\\parallel $BE, \\\\\nSince E is the midpoint of BC, \\\\\n$\\therefore$BE$ = \\frac{1}{2}$BC, \\\\\n$\\therefore$DF$ = $BE, \\\\\n$\\therefore$Quadrilateral BEFD is a parallelogram, \\\\\n$\\therefore$BD$ = $EF, \\\\\nIn $\\triangle $BDE and $\\triangle $FED, \\\\\n$ \\left\\{\\begin{array}{l}DF=BE \\\\ BD=EF \\\\ DE=DE \\end{array}\\right.$ \\\\\n$\\therefore$$\\triangle $BDE$\\cong $$\\triangle $FED \\text{ (SSS)}, \\\\\nSimilarly, it can be proven that $\\triangle $DAF$\\cong $$\\triangle $FED and $\\triangle $EFC$\\cong $$\\triangle $FED, \\\\\ni.e., $\\triangle $BDE$\\cong $$\\triangle $DAF$\\cong $$\\triangle $EFC$\\cong $$\\triangle $FED, \\\\\n$\\therefore$Area of $\\,\\triangle $DEF$ = \\frac{1}{4}$Area of $\\,\\triangle $ABC$ = \\frac{1}{4} \\times 16 = \\boxed{4} \\text{ (cm}^2\\text{)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51534305": { -"question": "As illustrated, four small squares with side length $b$ are placed around a square with side length $a$ named $EFGH$, forming a larger square $ABCD$. The shaded parts of the figure form an icon resembling a \"red badge\". Let the area of the shaded part be denoted as $S_1$, and the area of each small square with side length $b$ be denoted as $S_2$. If $S_1 = 6S_2$, what is the value of $\\frac{a}{b}$?", -"image_file_name": "7055653", -"image": [ -"math/51534305_519.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, we label the required intersections with letters:\\\\\n$S_{\\triangle DGI}=\\frac{1}{2}(a+b)\\times b=\\frac{1}{2}ab+\\frac{1}{2}b^{2}$,\\\\\n$S_{\\triangle KMD}=S_{ABCD}-S_{\\triangle DMC}-S_{\\triangle DKA}-S_{\\triangle KBM}$\\\\\n$=(a+2b)^{2}-\\frac{1}{2}(a+b)(a+2b)-\\frac{1}{2}(a+2b)(a+b)-\\frac{1}{2}b^{2}$\\\\\n$=ab+\\frac{3}{2}b^{2}$,\\\\\n$S_{\\triangle MNC}=\\frac{1}{2}(a+b)\\times b=\\frac{1}{2}ab+\\frac{1}{2}b^{2}$,\\\\\nTherefore, $S_{1}=S_{\\triangle DGI}+S_{\\triangle KMD}+S_{\\triangle MNC}=2ab+\\frac{5}{2}b^{2}$,\\\\\n$S_{2}=b^{2}$,\\\\\nSince $S_{1}=6S_{2}$,\\\\\ntherefore $2ab+\\frac{5}{2}b^{2}=6b^{2}$,\\\\\nSimplifying yields: $2a=\\frac{7}{2}b$,\\\\\nTherefore, $\\frac{a}{b}=\\boxed{\\frac{7}{4}}$.", -"solution_image": [ -"solution_images/51534305_510.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51534188": { -"question": "As shown in the figure, all vertices of the shape are on the grid points of a $3 \\times 3$ square grid. Then, what is the sum of $\\angle 1+\\angle 2$?", -"image_file_name": "7055653", -"image": [ -"math/51534188_522.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, \\\\\nfrom the given conditions, in right triangles $\\triangle ABC$ and $\\triangle EFC$, \\\\\n$\\because \\left\\{\\begin{array}{l}AB=EF\\\\ \\angle B=\\angle EFC=90^\\circ\\\\ BC=FC\\end{array}\\right.$ \\\\\n$\\therefore$ right triangles $\\triangle ABC\\cong \\triangle EFC$ (SAS) \\\\\n$\\therefore \\angle 3=\\angle 1$ \\\\\n$\\because \\angle 2+\\angle 3=45^\\circ$ \\\\\n$\\therefore \\angle 1+\\angle 2=\\angle 3+\\angle 2=\\boxed{45^\\circ}$", -"solution_image": [ -"solution_images/51534188_520.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510392": { -"question": "As shown in the figure, in rhombus $ABCD$, $DE \\perp AB$ with the foot of the perpendicular being point $E$, and $CE$ is drawn. If $AE=2$ and $\\angle DCE=30^\\circ$, what is the side length of the rhombus?", -"image_file_name": "7055653", -"image": [ -"math/51510392_533.png" -], -"solution": "\\textbf{Solution}: Let $DE = x$. Since quadrilateral $ABCD$ is a rhombus, it follows that $AB \\parallel CD$, and therefore $\\angle CDE = \\angle AED = 90^\\circ$. Given that $\\angle DCE = 30^\\circ$, it follows that $CD = \\sqrt{3}DE = \\sqrt{3}x$. Consequently, $AD = CD = \\sqrt{3}x$. In right triangle $\\triangle AED$, $AD^{2} = DE^{2} + AE^{2}$, which implies $(\\sqrt{3}x)^{2} = x^{2} + 2^{2}$. Solving for $x$ gives $x = \\sqrt{2}$, therefore $CD = \\sqrt{3}x = \\sqrt{6}$. Hence, the answer is: $\\boxed{\\sqrt{6}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510393": { -"question": "As shown in the diagram, in rectangle $ABCD$, $AB=4$, $BC=6$. The perpendicular bisector of diagonal $AC$ intersects $AC$, $AD$, and $BC$ at points $O$, $E$, and $F$, respectively. Connecting $AF$ and $CE$, then what is the value of $\\frac{AE}{BF}$?", -"image_file_name": "7055653", -"image": [ -"math/51510393_542.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle, it follows that AD$\\parallel$BC and $\\angle B=90^\\circ$. Since EF is the perpendicular bisector of AC, we have AF=FC. Moreover, since AD$\\parallel$BC, it follows that $\\angle$EAO=$\\angle$FCO. In $\\triangle$AOE and $\\triangle$COF, we have\n\\[\n\\left\\{\n\\begin{array}{l}\n\\angle EAO=\\angle FCO\\\\\nOA=OC\\\\\n\\angle AOE=\\angle COF\n\\end{array}\n\\right.\n\\]\nTherefore, $\\triangle$AOE$\\cong$$\\triangle$COF by ASA, which implies AE=FC. Consequently, AF=AE=FC. Letting AE=$x$, we find BF=BC−FC=6−$x$. In right triangle ABF, we have AB$^{2}$+BF$^{2}$=AF$^{2}$. Thus, $4^{2}$+$x^{2}$=(6−$x$)$^{2}$, which solves to $x=\\frac{13}{3}$. Therefore, BF=BC−FC=6−$\\frac{13}{3}$=$\\frac{5}{3}$. Hence, $\\frac{AE}{BF}=\\boxed{\\frac{13}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510317": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the rhombus OABC has its side OA on the positive half of the $x$-axis, and the graph of the inverse proportional function $y=\\frac{k}{x}(x>0)$ passes through the midpoint $D$ of the diagonal OB and the vertex $C$. If the area of the rhombus OABC is 12, what is the value of $k$?", -"image_file_name": "7055653", -"image": [ -"math/51510317_555.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point A be $(a, 0)$, and the coordinates of point C be $\\left(c, \\frac{k}{c}\\right)$, \\\\\n$\\because$ the area of the rhombus is 12, \\\\\n$\\therefore a \\cdot \\frac{k}{c}=12$, \\\\\n$\\because$ D is the midpoint of the diagonal OB, \\\\\n$\\therefore$ the coordinates of point D are: $\\left(\\frac{a+c}{2}, \\frac{k}{2c}\\right)$, \\\\\n$\\therefore \\frac{a+c}{2} \\cdot \\frac{k}{2c}=k$, \\\\\nthus $a=3c$, \\\\\n$\\therefore 3c \\cdot \\frac{k}{c}=12$, \\\\\nsolving this gives $k=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51510277": { -"question": "As shown in the figure, given the line segment AB, arcs are drawn with A and B as centers, respectively, and with radii greater than half the length of segment AB. The arcs intersect at points C and D. Connect AC, BC, BD, CD, and AD. Given that $AB=3$ and $CD=4$, what is the perimeter of the quadrilateral $ACBD$?", -"image_file_name": "7055653", -"image": [ -"math/51510277_560.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, AC and CD intersect at point O.\\\\\nFrom the construction steps, it is known that CD is the perpendicular bisector of line segment AB,\\\\\n$\\because$AC=AD=BC=BD,\\\\\n$\\therefore$The quadrilateral ACBD is a rhombus,\\\\\n$\\because$AB=3, CD=4,\\\\\n$\\therefore$AO=$\\frac{1}{2}$AB=$\\frac{3}{2}$, OD=$\\frac{1}{2}$CD=2,\\\\\n$\\therefore$AD=$\\sqrt{AO^{2}+OB^{2}}$=$\\sqrt{\\left(\\frac{3}{2}\\right)^{2}+2^{2}}$=$\\frac{5}{2}$,\\\\\n$\\therefore$The perimeter of rhombus ACBD=4AD=4$\\times\\frac{5}{2}$=$\\boxed{10}$.", -"solution_image": [ -"solution_images/51510277_560.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510278": { -"question": "As shown in the figure, in rhombus $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. $H$ is the midpoint of side $AD$. If the perimeter of rhombus $ABCD$ is $40$, what is the length of $OH$?", -"image_file_name": "7055653", -"image": [ -"math/51510278_570.png" -], -"solution": "Solution: Since the perimeter of the rhombus ABCD is 40,\\\\\ntherefore $CD=10$,\\\\\nand since H is the midpoint of side AD and point O is the midpoint of AC,\\\\\ntherefore $OH$ is the median of $\\triangle ACD$,\\\\\ntherefore $OH=\\frac{1}{2}CD=\\frac{1}{2} \\times 10=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510280": { -"question": "As shown in the figure, the area of square $ABCD$ is $5$ and the area of square $BEFG$ is $4$. What is the area of $\\triangle GCE$?", -"image_file_name": "7055653", -"image": [ -"math/51510280_580.png" -], -"solution": "\\textbf{Solution:} Given that the area of square ABCD is 5, and the area of square BEFG is 4,\\\\\nit follows that the side length of square ABCD is $\\sqrt{5}$, and the side length of square BEFG is 2,\\\\\ntherefore, CE=$\\sqrt{5}-2$,\\\\\nthe area of $\\triangle GCE$=$\\frac{1}{2}$CE·BG=$\\frac{1}{2}\\times(\\sqrt{5}-2)\\times2=\\boxed{\\sqrt{5}-2}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510282": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, a square ABDE is constructed externally on the hypotenuse AB of the triangle, and the diagonals of the square meet at point $O$. Line OC is connected. Given that $AC=3$ and $OC=4\\sqrt{2}$, what is the length of BC?", -"image_file_name": "7055653", -"image": [ -"math/51510282_594.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw line OF $\\perp$ BC at F, and draw line AM $\\perp$ OF at M,\\\\\n$\\because$ $\\angle ACB=90^\\circ$,\\\\\n$\\therefore$ $\\angle AMO=\\angle OFB=90^\\circ$, $\\angle ACB=\\angle CFM=\\angle AMF=90^\\circ$,\\\\\n$\\therefore$ Quadrilateral ACFM is a rectangle,\\\\\n$\\therefore$ AM=CF, AC=MF=3,\\\\\n$\\because$ Quadrilateral ABDE is a square,\\\\\n$\\therefore$ $\\angle AOB=90^\\circ$, OA=OB,\\\\\n$\\therefore$ $\\angle AOM+\\angle BOF=90^\\circ$,\\\\\nAlso $\\because$ $\\angle AMO=90^\\circ$,\\\\\n$\\therefore$ $\\angle AOM+\\angle OAM=90^\\circ$,\\\\\n$\\therefore$ $\\angle BOF=\\angle OAM$,\\\\\n$\\therefore$ $\\triangle AOM \\cong \\triangle OBF$ (AAS),\\\\\n$\\therefore$ AM=OF, OM=FB,\\\\\n$\\therefore$ OF=CF,\\\\\n$\\because$ $\\angle CFO=90^\\circ$,\\\\\n$\\therefore$ $\\triangle CFO$ is an isosceles right-angle triangle,\\\\\n$\\because$ OC=$4\\sqrt{2}$,\\\\\nBy the Pythagorean theorem: CF=OF=4,\\\\\n$\\therefore$ BF=OF-MF=4-3=1,\\\\\n$\\therefore$ BC=CF+BF=4+1=\\boxed{5}.", -"solution_image": [ -"solution_images/51510282_590.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510247": { -"question": "As shown in the figure, in $\\triangle ABC$, D and E are the midpoints of AB and AC, respectively. Extend DE to the point F such that EF=DE. Given AB=10 and BC=8, what is the perimeter of the quadrilateral BCFD?", -"image_file_name": "7055653", -"image": [ -"math/51510247_600.png" -], -"solution": "\\textbf{Solution:} Since $D$ and $E$ are the midpoints of $AB$ and $AC$ respectively,\\\\\nit follows that $DE \\parallel BC$ and $DE = \\frac{1}{2} BC$, $BD = \\frac{1}{2} AB = 5$,\\\\\nsince $DE = EF$,\\\\\nit follows that $DE + EF = DF = BC$,\\\\\ntherefore, quadrilateral $DBCF$ is a parallelogram,\\\\\nhence, the perimeter of quadrilateral $BCFD$ is $2(BD + DF) = 2(5 + 8) = \\boxed{26}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51491488": { -"question": "As shown in the figure, in $\\triangle ABC$, the perimeter of $\\triangle DEF$ formed by the three medians is $15\\text{cm}$. What is the perimeter of $\\triangle ABC$ in $\\text{cm}$?", -"image_file_name": "7055653", -"image": [ -"math/51491488_610.png" -], -"solution": "\\textbf{Solution:} Since DE is the median of $\\triangle ABC$,\\\\\nit follows that DE=$\\frac{1}{2}$BC, similarly EF=$\\frac{1}{2}$AB, and DF=$\\frac{1}{2}$AC,\\\\\nthus $\\frac{DE}{BC}=\\frac{EF}{AB}=\\frac{DF}{AC}=\\frac{1}{2}$,\\\\\ntherefore $\\triangle ABC \\sim \\triangle DEF$,\\\\\nhence the perimeter of $\\triangle ABC$: the perimeter of $\\triangle DEF$=2:1,\\\\\nthus the perimeter of $\\triangle ABC$=2×15=\\boxed{30}\\text{cm}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53232615": { -"question": "As shown in the figure, a rectangular piece of paper ABCD is folded along AE, where the width AB of the paper is 8 cm and the length BC is 10 cm. When folded along AE, the vertex D falls on point F on side BC. What is the length of CE in cm?", -"image_file_name": "7055653", -"image": [ -"math/53232615_620.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle, \\\\\nhence AD = BC = 10cm, DC = AB = 8cm, $\\angle$B = $\\angle$D = $\\angle$C = $90^\\circ$, \\\\\nsince when folded along AE, vertex D falls on point F on side BC, \\\\\nthus AF = AD = 10cm, DE = EF, \\\\\nin $\\triangle ABF$, BF = $\\sqrt{AF^{2}-AB^{2}}$ = $\\sqrt{10^{2}-8^{2}}$ = 6 (cm), \\\\\nhence CF = BC - BF = 10 - 6 = 4 (cm), \\\\\nlet CE = x cm, then DE = EF = (8-x) cm, \\\\\nin $\\triangle CEF$, since $CF^{2}$ + $CE^{2}$ = $EF^{2}$, \\\\\nthus $4^{2}$ + $x^{2}$ = $(8-x)^{2}$, \\\\\nsolving gives x = $\\boxed{3}$, \\\\\nthat is, the length of CE is 3cm.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51435977": { -"question": "As shown in the figure, in the Cartesian coordinate system, the area of the rhombus OABC is 12. Point $B$ is on the $y$-axis, and point $C$ is on the graph of the inverse proportion function $y=\\frac{k}{x}$. What is the value of $k$?", -"image_file_name": "7055653", -"image": [ -"math/51435977_635.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, we connect AC to intersect the y-axis at point D,\\\\\n$\\because$ rhombus OABC,\\\\\n$\\therefore$ AC$\\perp$OB, and CD=AD=$\\frac{1}{2}$AC, BD=OD=$\\frac{1}{2}$BO,\\\\\n$\\because$ the area of rhombus OABC is 12,\\\\\n$\\therefore$ AC$\\cdot$BO=24,\\\\\n$\\therefore$ CD$\\cdot$OD=6,\\\\\n$\\therefore$ $\\left|k\\right|=6$,\\\\\nFurthermore, $\\because$ the graph of the inverse proportional function is located in the second quadrant,\\\\\n$\\therefore$ k$<$0, that is, $k=\\boxed{-6}$.", -"solution_image": [ -"solution_images/51435977_630.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51435951": { -"question": "As shown in the figure, the vertices $C$ and $A$ of the square $ABCO$ are on the $x$-axis and $y$-axis, respectively. $BC$ is the diagonal of the rhombus $BDCE$. If $\\angle D = 60^\\circ$ and $BC = 2$, what are the coordinates of point $D$?", -"image_file_name": "7055653", -"image": [ -"math/51435951_640.png" -], -"solution": "\\textbf{Solution:} As illustrated, draw line DF perpendicular to BC at point F from point D,\\\\\n$\\because$ rhombus BDCE,\\\\\n$\\therefore$ BD = CD,\\\\\nAlso $\\because$ $\\angle$D = 60$^\\circ$,\\\\\n$\\therefore$ $\\triangle$BDC is an equilateral triangle,\\\\\n$\\therefore$ $\\angle$DFC = 90$^\\circ$, BF = CF = 1, so the y-coordinate of point D is: 1,\\\\\n$\\therefore$ in $\\triangle$DFC, DF = $\\sqrt{CD^{2}-CF^{2}} = \\sqrt{2^{2}-1^{2}} = \\sqrt{3}$,\\\\\n$\\because$ square ABCD, BC = 2,\\\\\n$\\therefore$ OC = 2,\\\\\n$\\therefore$ the x-coordinate of point D is: OC + DF = 2 + $\\sqrt{3}$,\\\\\nThus, the answer is: $(2+\\sqrt{3}, 1) = \\boxed{(2+\\sqrt{3}, 1)}$.", -"solution_image": [ -"solution_images/51435951_640.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51435952": { -"question": "As shown in the figure, in rectangle $ABCD$, $CE \\perp BD$ with point $E$ being the foot of the perpendicular. Connect $AE$. If $\\angle DCE : \\angle ECB = 3 : 1$, then what is the measure of $\\angle ACE$?", -"image_file_name": "7055653", -"image": [ -"math/51435952_650.png" -], -"solution": "\\textbf{Solution:} Given that rectangle $ABCD$, with $CE \\perp BD$, \\\\\nhence, $\\angle DCB = \\angle CEB = \\angle CED = 90^\\circ$, and $OC = OA = OD = OB$, \\\\\ntherefore, $\\angle OCB = \\angle OBC$, \\\\\nsince $\\angle DCE : \\angle ECB = 3 : 1$ and $\\angle ECB + \\angle DCE = 90^\\circ$, \\\\\nthus, $4\\angle ECB = 90^\\circ$, \\\\\ntherefore, $\\angle ECB = 22.5^\\circ$, \\\\\nhence, $\\angle OCB = \\angle OBC = 90^\\circ - \\angle ECB = 90^\\circ - 22.5^\\circ = 67.5^\\circ$, \\\\\nhence, $\\angle OCE = \\angle OCB - \\angle ECB = 67.5^\\circ - 22.5^\\circ = 45^\\circ$, \\\\\ntherefore, $\\angle ACE = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51435834": { -"question": "As shown in the figure, within rectangle $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. If $\\angle COD=52^\\circ$, then what is the degree measure of $\\angle CAD$?", -"image_file_name": "7055653", -"image": [ -"math/51435834_660.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rectangle,\\\\\nit follows that $OA=OB=OC=OD$,\\\\\nhence $\\angle CAD=\\angle ADO$,\\\\\nthus $\\angle COD=2\\angle CAD$,\\\\\ntherefore $\\angle CAD=\\boxed{26^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53253409": { -"question": "As shown in the figure, $C$, $D$, $E$ are three points on the line segment $AB$, where $E$ is the midpoint of $BD$, $AC = \\frac{1}{2} CD$, $AB = 5$, and $EB = 1$. What is the length of $CD$?", -"image_file_name": "7038985", -"image": [ -"math/53253409_246.png" -], -"solution": "\\textbf{Solution:} Since $E$ is the midpoint of $BD$, $EB=1$\\\\\nTherefore, $BD=2BE=2$\\\\\nSince $AB=5$\\\\\nTherefore, $AD=AB-BD=5-2=3$\\\\\nSince $AC=\\frac{1}{2}CD$,\\\\\nTherefore, $AD=AC+CD=\\frac{1}{2}CD+CD=3$, solving gives: $CD=\\boxed{2}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53253563": { -"question": "As shown in the figure, point O lies on line AB, and ray OD bisects $\\angle AOC$. If $\\angle AOD = 20^\\circ$, what is the measure of $\\angle COB$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/53253563_250.png" -], -"solution": "\\textbf{Solution:} Since OD bisects $\\angle$AOC,\\\\\nit follows that $\\angle$AOC = 2$\\angle$AOD = 40$^\\circ$,\\\\\ntherefore, $\\angle$COB = 180$^\\circ$ - $\\angle$COA = \\boxed{140^\\circ}", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53404179": { -"question": "As shown in the figure, points C, M, and N are on line segment AB, with $AC=12$, $BC=6$, $AM=\\frac{1}{3}AC$, and $BN=\\frac{1}{3}BC$. What is the length of line segment MN?", -"image_file_name": "7038985", -"image": [ -"math/53404179_261.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $AC=12$,\\\\\nit follows that $AM=\\frac{1}{3}AC=4$,\\\\\nSince $BC=6$,\\\\\nit follows that $BN=\\frac{1}{3}BC=2$,\\\\\nTherefore, $MN=AB-AM-BN=AC+BC-AM-BN=12+6-4-2=\\boxed{12}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404532": { -"question": "As shown in the figure, it is known that $DE \\parallel BC$, and $BE$ bisects $\\angle ABC$. If $\\angle 1 = 70^\\circ$, what is the degree measure of $\\angle AEB$?", -"image_file_name": "7038985", -"image": [ -"math/53404532_471.png" -], -"solution": "\\textbf{Solution:} Since DE $\\parallel$ BC and $\\angle 1 = 70^\\circ$, \\\\\nit follows that $\\angle ABC = \\angle 1 = 70^\\circ$ and $\\angle CBE = \\angle AEB$, \\\\\nsince BE bisects $\\angle ABC$, \\\\\nthus $\\angle CBE = \\frac{1}{2} \\angle ABC = 35^\\circ$, \\\\\ntherefore $\\angle AEB = \\boxed{35^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53253448": { -"question": "The points $A$, $B$, $C$ are on the same line. If $BC=8$ and $AB=\\frac{1}{4}BC$, then what is the length of $AC$?", -"image_file_name": "7038985", -"image": [], -"solution": "\\textbf{Solution:} Since $BC=8$, \\\\\nit follows that $AB=\\frac{1}{4}BC=2$.\\\\\nWhen $A$ is on segment $BC$, \\\\\n$AC=BC-AB=8-2=\\boxed{6}$;\\\\\nWhen $A$ is on the extension of segment $CB$, \\\\\n$AC=BC+AB=8+2=10$.", -"solution_image": [ -"solution_images/53253448_283.png", -"solution_images/53253448_286.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53207134": { -"question": "As shown in the figure, $\\angle AOB$ is a right angle, $\\angle AOC = 40^\\circ$, and $OD$ bisects $\\angle BOC$. What is the measure of $\\angle AOD$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/53207134_290.png" -], -"solution": "\\textbf{Solution:} Because $\\angle BOC = \\angle AOB - \\angle AOC$, \\\\\ntherefore $\\angle BOC = 90^\\circ - 40^\\circ = 50^\\circ$, \\\\\nBecause OD bisects $\\angle BOC$, \\\\\ntherefore $\\angle COD = \\frac{1}{2}\\angle BOC = \\frac{1}{2} \\times 50^\\circ = 25^\\circ$, \\\\\ntherefore $\\angle AOD = \\angle AOC + \\angle COD = 40^\\circ + 25^\\circ = \\boxed{65^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53207045": { -"question": "As shown in the figure, $O$ is a point on line $AC$, $OB$ is a ray, $OD$ bisects $\\angle AOB$, $OE$ is within $\\angle BOC$, $\\angle BOE = \\frac{1}{3}\\angle EOC$, $\\angle DOE = 60^\\circ$, then what is the degree measure of $\\angle EOC$?", -"image_file_name": "7038985", -"image": [ -"math/53207045_3010.png" -], -"solution": "\\textbf{Solution:} Let $\\angle BOE$ be $x^\\circ$, then $\\angle DOB = 60^\\circ - x^\\circ$,\\\\\nsince $\\angle BOE = \\frac{1}{3}\\angle EOC$,\\\\\nit follows that $\\angle EOC = 3\\angle BOE = 3x^\\circ$,\\\\\ngiven that OD bisects $\\angle AOB$,\\\\\nwe get $\\angle AOB = 2\\angle DOB$,\\\\\nthus, we have $3x + x + 2(60 - x) = 180$,\\\\\nsolving the equation, we find $x = 30^\\circ$,\\\\\ntherefore, $\\angle EOC = \\boxed{90^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206252": { -"question": "As shown in the figure, it is known that points $A$, $B$, and $C$ are on the same line segment, $M$ is the midpoint of segment $AC$, $N$ is the midpoint of segment $BC$, and $AM=5\\, \\text{cm}$, $CN=3\\, \\text{cm}$. What is the length of line segment $AB$ in centimeters?", -"image_file_name": "7038985", -"image": [ -"math/53206252_318.png" -], -"solution": "\\textbf{Solution:} Since $M$ is the midpoint of line segment $AC$ and $N$ is the midpoint of line segment $BC$,\\\\\nit follows that $MC = AM = 5\\,\\text{cm}$, $BN = CN = 3\\,\\text{cm}$,\\\\\ntherefore $AB = AM + MC + CN + NB = \\boxed{16}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53211085": { -"question": "As shown in the figure, if $AC=48$ and M is the midpoint of $AC$, with $AB=\\frac{1}{3}AC$, what is the length of $BM$?", -"image_file_name": "7038985", -"image": [ -"math/53211085_324.png" -], -"solution": "\\textbf{Solution:} Given that $AC=48$ and M is the midpoint of $AC$, $AB=\\frac{1}{3}AC$\\\\\nTherefore, $AM=\\frac{1}{2}AC=\\frac{1}{2}\\times 48=24$, $AB=\\frac{1}{3}\\times 48=16$\\\\\nHence, $BM=AM-AB=24-16=\\boxed{8}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53211124": { -"question": "As shown in the figure, $\\angle AOB$ is a right angle, $\\angle BOC = 36^\\circ$, and $OD$ bisects $\\angle AOC$. What is the measure of $\\angle BOD$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/53211124_335.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB$ is a right angle, and $\\angle BOC=36^\\circ$, \\\\\nthen $\\angle AOC=90^\\circ+36^\\circ=126^\\circ$ \\\\\nSince $OD$ bisects $\\angle AOC$, \\\\\nthen $\\angle COD=\\frac{1}{2}\\angle AOC=63^\\circ$, \\\\\ntherefore, $\\angle BOD=\\angle COD-\\angle BOC=63^\\circ-36^\\circ=\\boxed{27^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53124841": { -"question": "As shown in the figure, it is known that $\\angle AOC : \\angle BOC = 1 : 5$. OD is the angle bisector of $\\angle AOB$, and $\\angle COD = 36^\\circ$. What is the degree measure of $\\angle AOC$?", -"image_file_name": "7038985", -"image": [ -"math/53124841_342.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOC : \\angle BOC = 1 : 5$,\\\\\nlet $\\angle AOC = x$, then $\\angle BOC = 5x$,\\\\\nthus $\\angle AOB = \\angle AOC + \\angle BOC = x + 5x = 6x$,\\\\\nsince OD bisects $\\angle AOB$,\\\\\nthus $\\angle AOD = \\frac{1}{2} \\angle AOB = 3x$,\\\\\nthus $\\angle COD = \\angle AOD - \\angle AOC$,\\\\\nthus $3x - x = 36^\\circ$,\\\\\nsolving this gives $x = 18^\\circ$,\\\\\nthus $\\angle AOC = \\boxed{18^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119829": { -"question": "As shown in the figure, $O$ is a point on the straight line $AB$, $\\angle AOC = 53^\\circ 17'$, then what is the degree measure of $\\angle BOC$?", -"image_file_name": "7038985", -"image": [ -"math/53119829_354.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC=53^\\circ 17'$, \\\\\nthus $\\angle BOC=180^\\circ-53^\\circ 17'$ \\\\\n$=179^\\circ 60'-53^\\circ 17'$ $=\\boxed{126^\\circ 43'}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53119292": { -"question": "As shown in the figure, $AB=12\\,cm$, $C$ is the midpoint of $AB$, and point $D$ is on segment $AC$, with $AD\\colon CB=1\\colon 3$, what is the length of $DB$ in $cm$?", -"image_file_name": "7038985", -"image": [ -"math/53119292_360.png" -], -"solution": "\\textbf{Solution:} Given $\\because$AB=12cm, and C is the midpoint of AB,\\\\\n$\\therefore$AC=BC=$\\frac{1}{2}$AB=6(cm),\\\\\n$\\because$AD$\\colon$ CB=1$\\colon$ 3,\\\\\n$\\therefore$AD=2cm,\\\\\n$\\therefore$DC=AC−AD=4(cm),\\\\\n$\\therefore$DB=DC+BC=\\boxed{10}(cm).", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53365412": { -"question": "As shown in the diagram, B is a point on line segment AC, and $AB=24\\,cm$, $BC=\\frac{1}{3}AB$. If O is the midpoint of line segment AC, then what is the length of line segment $OB$ in $cm$?", -"image_file_name": "7038985", -"image": [ -"math/53365412_371.png" -], -"solution": "\\textbf{Solution:} Given that $AB=24cm$, and $BC=\\frac{1}{3}AB$,\\\\\ntherefore, $BC=\\frac{1}{3} \\times 24=8cm$,\\\\\nthus, $AC=AB+BC=24+8=32cm$,\\\\\nsince $O$ is the midpoint of the line segment $AC$,\\\\\nthus, $AO=\\frac{1}{2}AB=\\frac{1}{2} \\times 32=16cm$,\\\\\ntherefore, $OB=AB-AO=24-16=\\boxed{8cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53078560": { -"question": "As shown in the figure, it is known that the line segment $AB=12\\, \\text{cm}$, point $C$ is on the line segment $AB$, $AC=2BC$, then how many centimeters is $BC$?", -"image_file_name": "7038985", -"image": [ -"math/53078560_385.png" -], -"solution": "\\textbf{Solution:} Let $BC=x\\, \\text{cm}$, then $AC=2x\\, \\text{cm}$,\\\\\n$x+2x=12$,\\\\\nsolving for $x$, we get: $x=4$,\\\\\n$\\therefore BC=\\boxed{4}\\, \\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53042576": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, and $\\angle A=100^\\circ$. BD bisects $\\angle ABC$. What is the measure of $\\angle ADB$?", -"image_file_name": "7038985", -"image": [ -"math/53042576_395.png" -], -"solution": "\\textbf{Solution:} Given that $AB=AC$ and $\\angle A=100^\\circ$,\n\n$\\therefore \\angle ABC=\\angle ACB=(180^\\circ-100^\\circ)\\times \\frac{1}{2}=40^\\circ$,\n\n$\\because$ BD bisects $\\angle ABC$,\n\n$\\therefore \\angle ABD=\\angle CBD=20^\\circ$,\n\n$\\therefore \\angle ADB=180^\\circ-20^\\circ-100^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53027060": { -"question": "As shown in the figure, \\(C\\) is the midpoint of segment \\(AB\\), \\(D\\) is a point on \\(CB\\), \\(E\\) is the midpoint of segment \\(DB\\), \\(EB = 1\\,cm\\), and \\(EB = \\frac{1}{5}AB\\), then what is the length of segment \\(CE\\) in centimeters?", -"image_file_name": "7038985", -"image": [ -"math/53027060_405.png" -], -"solution": "Solution: Since $EB=1\\text{cm}$, and $EB=\\frac{1}{5}AB$,\\\\\nit follows that $AB=5EB=5\\text{cm}$, \\\\\nSince C is the midpoint of the segment $AB$, \\\\\nwe have $CB=\\frac{1}{2}AB=\\frac{5}{2}\\text{cm}$, \\\\\nthus $CE=CB-EB=\\frac{5}{2}-1=\\boxed{\\frac{3}{2}}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52826548": { -"question": "A right-angle triangle is placed as shown in the figure, with point C located on the extension line of $FD$, $AB \\parallel CF$, $\\angle F = \\angle ACB = 90^\\circ$. What is the degree measure of $\\angle DBC$?", -"image_file_name": "7038985", -"image": [ -"math/52826548_414.png" -], -"solution": "\\textbf{Solution:} Given the problem, we can deduce: $\\angle EDF = 45^\\circ$, $\\angle ABC = 30^\\circ$,\\\\\nsince AB $\\parallel$ CF,\\\\\nthus $\\angle ABD = \\angle EDF = 45^\\circ$,\\\\\ntherefore $\\angle DBC = 45^\\circ - 30^\\circ = \\boxed{15^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52375758": { -"question": "As shown in the figure, point $C$ is on line $AB$, and $CD$ bisects $\\angle ACE$. If $\\angle 1 = 63^\\circ$, then what is the measure of $\\angle BCE$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/52375758_420.png" -], -"solution": "\\textbf{Solution:} Since $CD$ bisects $\\angle ACE$, and $\\angle 1=63^\\circ$,\n\nit follows that $\\angle ACE=2\\angle 1=126^\\circ$,\n\nSince $\\angle ACE+\\angle BCE=180^\\circ$,\n\nit follows that $\\angle BCE=180^\\circ−126^\\circ=\\boxed{54^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51370077": { -"question": "As shown in the figure, line $AB$ intersects with line $CD$ at point $O$, with $OE \\perp AB$. Given that $\\angle BOD = 30^\\circ$, what is the value of $\\angle COE$?", -"image_file_name": "7038985", -"image": [ -"math/51370077_435.jpg" -], -"solution": "\\textbf{Solution:} Given that $OE\\perp AB$\\\\\nHence, $\\angle AOE=90^\\circ$\\\\\nGiven that $\\angle BOD=30^\\circ$\\\\\nTherefore, $\\angle AOC=\\angle BOD=30^\\circ$\\\\\nThus, $\\angle COE=\\angle AOC+\\angle AOE=\\boxed{120^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51438565": { -"question": "As shown in the figure, the right-angled vertices O of a pair of set squares are made to coincide. If the ratio of $\\angle COB$ to $\\angle DOA$ is $2\\colon 7$ and $OP$ bisects $\\angle DOA$, then what is the degree measure of $\\angle POC$?", -"image_file_name": "7038985", -"image": [ -"math/51438565_440.png" -], -"solution": "\\[\n\\begin{aligned}\n&\\because \\angle COB + \\angle DOA = \\angle COB + \\angle COA + \\angle COB + \\angle DOB \\\\\n&= \\angle AOB + \\angle COD = 180^\\circ \\\\\n&\\therefore \\angle DOA = 180^\\circ \\times \\frac{7}{2+7} = 140^\\circ \\\\\n&\\because OP \\text{ bisects } \\angle DOA \\\\\n&\\therefore \\angle DOP = 70^\\circ \\\\\n&\\therefore \\angle POC = \\boxed{20^\\circ}.\n\\end{aligned}\n\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51439013": { -"question": "As shown in the figure, point $C$ is a point on line segment $AB$, with $AC = 10\\, \\text{cm}$, $CB = 5\\, \\text{cm}$. $M$, $N$ are the midpoints of $AC$ and $BC$, respectively. What is the length of line segment $MN$ in centimeters?", -"image_file_name": "7038985", -"image": [ -"math/51439013_450.png" -], -"solution": "\\textbf{Solution:} Given that $AC=10\\text{cm}$, $CB=5\\text{cm}$, and $M$, $N$ are the midpoints of $AC$, $BC$ respectively,\\\\\nthus, $CM=\\frac{1}{2}AC=5\\text{cm}$, $CN=\\frac{1}{2}CB=2.5\\text{cm}$,\\\\\nhence $MN=CM+CN=\\boxed{7.5}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51438522": { -"question": "As shown in the figure, $D$ is the midpoint of $AC$, $CB = 4\\,cm$, $DB = 7\\,cm$, what is the length of $AB$ in $cm$?", -"image_file_name": "7038985", -"image": [ -"math/51438522_470.png" -], -"solution": "Solution: Since $DC=DB-CB=7-4=3\\,cm$,\\\\\nand since point D is the midpoint of AC,\\\\\nit follows that $AD=DC=3\\,cm$\\\\\nTherefore, $AB=AD+DB = 3+7=\\boxed{10}\\,cm$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52623378": { -"question": "As shown in the figure, $AB$ is the diameter of semicircle $O$, and chord $AC$ makes an angle of $30^\\circ$ with $AB$. Given that $AC=CD$ and $OA=2$, what is the length of $AC$?", -"image_file_name": "7058804", -"image": [ -"math/52623378_497.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $BC$, \\\\\nsince $AB$ is the diameter of $\\odot O$, \\\\\ntherefore, $\\angle ACB=90^\\circ$, \\\\\nsince $\\angle BAC=30^\\circ$ and $OA=OB=2$, \\\\\ntherefore $AC=AB\\cdot\\cos30^\\circ=4\\times \\frac{\\sqrt{3}}{2}=\\boxed{2\\sqrt{3}}.$", -"solution_image": [ -"solution_images/52623378_490.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623268": { -"question": "As shown in the figure, A, B, and C are three points on the circle $\\odot O$, and $\\angle OAB=64^\\circ$, what is the degree measure of $\\angle ACB$?", -"image_file_name": "7058804", -"image": [ -"math/52623268_500.png" -], -"solution": "\\textbf{Solution:} Since $OA = OB$,\\\\\nit follows that $\\angle OAB = \\angle OBA = 64^\\circ$,\\\\\nthus $\\angle AOB = 180^\\circ - 64^\\circ - 64^\\circ = 52^\\circ$,\\\\\ntherefore, $\\angle ACB = \\frac{1}{2}\\angle AOB = \\boxed{26^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623271": { -"question": "As shown in the figure, the radius of the circle $\\odot O$ is 2, and the chord $AB=2\\sqrt{3}$. Point C is a moving point on chord AB, and the length of OC is an integer. What is the length of OC?", -"image_file_name": "7058804", -"image": [ -"math/52623271_511.png" -], -"solution": "\\textbf{Solution:} Draw $OH \\perp AB$ at $H$, as shown in the figure, \\\\\nsince $OH \\perp AB$, \\\\\ntherefore $AH=BH$, \\\\\nthus $AH=BH=\\frac{1}{2}AB=\\frac{1}{2} \\times 2\\sqrt{3} = \\sqrt{3}$, \\\\\nin $\\triangle BOH$, where $OB=2$, and $BH=\\sqrt{3}$, \\\\\ntherefore $OH=\\sqrt{OB^{2}-BH^{2}}=\\sqrt{2^{2}-\\left(\\sqrt{3}\\right)^{2}}=1$, \\\\\nsince point $C$ is a moving point on chord $AB$, \\\\\ntherefore $1 \\le OC \\le 2$, \\\\\nsince the length of $OC$ is an integer, \\\\\nthus $OC=\\boxed{1}$ or $\\boxed{2}$.", -"solution_image": [ -"solution_images/52623271_510.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52622680": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in $\\odot O$. If the quadrilateral $AOCD$ is a rhombus, what is the degree measure of $\\angle B$? .", -"image_file_name": "7058804", -"image": [ -"math/52622680_520.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is inscribed in circle O,\\\\\nit follows that $\\angle B+\\angle D=180^\\circ$,\\\\\nSince quadrilateral OACD is a rhombus,\\\\\nit follows that $\\angle AOC=\\angle D$,\\\\\nBy the inscribed angle theorem, we have $\\angle B= \\frac{1}{2}\\angle AOC$,\\\\\nThus $\\angle B+2\\angle B=180^\\circ$,\\\\\nSolving, we find $\\angle B=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52623149": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, points C and D lie on $\\odot O$, $\\angle BCD=15^\\circ$, what is the degree measure of $\\angle AOD$?", -"image_file_name": "7058804", -"image": [ -"math/52623149_535.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BOD=2\\angle BCD$ and $\\angle BCD=15^\\circ$, \\\\\nit follows that $\\angle BOD=30^\\circ$, \\\\\nthus $\\angle AOD=180^\\circ-\\angle BOD=150^\\circ$, \\\\\ntherefore, $\\angle AOD=\\boxed{150^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52622379": { -"question": "As shown in the figure, in the right triangle $\\triangle ABC$, $\\angle ABC=90^\\circ$, $AB=6$, $BC=5$. $P$ is a moving point inside $\\triangle ABC$, and it satisfies $\\angle PAB=\\angle PBC$. What is the minimum value of the length of the segment $CP$?", -"image_file_name": "7058804", -"image": [ -"math/52622379_550.png" -], -"solution": "\\textbf{Solution:} Given that $\\because$ $\\angle ABC=90^\\circ$ and $\\angle PAB=\\angle PBC$, \\\\\n$\\therefore$ $\\angle PBA+\\angle PBC=90^\\circ$ and $\\angle PBA+\\angle PAB=90^\\circ$, \\\\\n$\\therefore$ $\\angle BPA=90^\\circ$, \\\\\n$\\therefore$ point P lies on the circle with diameter AB, as shown in the figure, with O as the center of the circle. Connect OC, with P being the intersection point of OC and circle O, thus CP represents the minimum value. \\\\\n$\\because$ AB=6, \\\\\n$\\therefore$ OB=OP=3, \\\\\n$\\because$ BC=5, \\\\\n$\\therefore$ OC=$\\sqrt{OB^2+BC^2}=\\sqrt{3^2+5^2}=\\sqrt{34}$, \\\\\n$\\therefore$ CP=$\\sqrt{34}-3$, \\\\\nTherefore, the answer is: $CP=\\boxed{\\sqrt{34}-3}$.", -"solution_image": [ -"solution_images/52622379_550.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52950185": { -"question": "As shown in the figure, BD is the diagonal of rhombus ABCD with side length \\(a\\), where \\( \\angle BAD=60^\\circ\\). Points M and N start simultaneously from points A and B, respectively, moving towards points B and D at the same speed along AB and BD. Lines DM and AN are drawn and intersect at point P. Line BP is then drawn. What is the minimum value of BP?", -"image_file_name": "7058804", -"image": [ -"math/52950185_561.png" -], -"solution": "\\textbf{Solution:} Extend $CD$ such that $CD=DG$,\\\\\n$\\because$ Quadrilateral $ABCD$ is a rhombus, $\\angle BAD=60^\\circ$\\\\\n$\\therefore$ $\\angle ADG=60^\\circ$, $AD=GD$\\\\\n$\\therefore$ $\\triangle ADG$ is an equilateral triangle\\\\\nIn $\\triangle ADM$ and $\\triangle BAN$\\\\\n$\\because$ $\\left\\{\\begin{array}{l}AD=BA\\\\ \\angle DAM=\\angle ABN=60^\\circ\\\\ AM=BN\\end{array}\\right.$\\\\\n$\\therefore$ $\\triangle ADM\\cong \\triangle BAN\\left(SAS\\right)$\\\\\n$\\therefore$ $\\angle ADM=\\angle BAN$\\\\\n$\\because$ $\\angle DAP+\\angle BAN=60^\\circ$\\\\\n$\\therefore$ $\\angle GAD+\\angle DAP+\\angle GDA+\\angle ADP=180^\\circ$\\\\\n$\\therefore$ Points A, P, D, G are concyclic, the radius of the circle is $\\frac{\\frac{AD}{2}}{\\cos30^\\circ}=\\frac{\\sqrt{3}a}{3}$\\\\\n$GB=2AB\\cos30^\\circ=\\sqrt{3}a$\\\\\n$\\therefore$ When points G, P, B are collinear, namely when GP is the diameter of the circle, $BP$ is the shortest,\\\\\n$\\therefore$ $BP=GB−GP=\\sqrt{3}a−2\\times \\frac{\\sqrt{3}a}{3}=\\boxed{\\frac{\\sqrt{3}a}{3}}$", -"solution_image": [ -"solution_images/52950185_560.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52949728": { -"question": "As shown in the figure, the vertices $A$ and $C$ of the rectangle $ABCO$ are located on the $x$-axis and $y$-axis, respectively. The coordinates of point $B$ are $\\left(4, 3\\right)$. Circle $M$ is the inscribed circle of $\\triangle AOC$. Points $N$ and $P$ are moving points on circle $M$ and the $x$-axis, respectively. What is the minimum value of $BP+PN$?", -"image_file_name": "7058804", -"image": [ -"math/52949728_573.png" -], -"solution": "\\textbf{Solution:} Let point $B^{\\prime}$ be the symmetrical point of B with respect to the x-axis. Draw $MB^{\\prime}$, which intersects $\\odot M$ at point N and the x-axis at point P. Draw $MQ \\perp$ x-axis through point M, intersecting the x-axis at point E. Draw $B^{\\prime}Q \\perp MQ$ through point $B^{\\prime}$, \n\n$\\because$ Point B and point $B^{\\prime}$ are symmetrical with respect to the x-axis,\n\n$\\therefore$ $PB + PN = PB^{\\prime} + PN$,\n\nThe minimum value is obtained when N, P, and $B^{\\prime}$ are on the same line and pass through point M.\n\nIn the right triangle $\\triangle ABC$, $AC= \\sqrt{OA^{2}+OC^{2}}=5$,\n\nSince $\\odot M$ is the inscribed circle of $\\triangle AOC$, let the radius of $\\odot M$ be r,\n\n$\\therefore$ $S_{\\triangle AOC} = \\frac{1}{2}(3r + 4r + 5r) = \\frac{1}{2} \\times 3 \\times 4$,\n\nSolving for r gives $r=1$,\n\n$\\therefore$ $ME=MN=1$,\n\n$\\therefore$ $QB^{\\prime}=4-1=3$, $QM=3+1=4$,\n\n$\\therefore$ $MB^{\\prime}=5$,\n\n$\\therefore$ $PB^{\\prime}+PN=5-1=4$,\n\nHence, the minimum value of $PB + PN$ is $\\boxed{4}$.", -"solution_image": [ -"solution_images/52949728_570.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52949726": { -"question": "As shown in the figure, in the Cartesian coordinate system \\(xOy\\), it is known that the chord of \\(\\odot D\\) intersecting the \\(y\\)-axis has a length of 6, and the center of the circle is \\(D(2, 4)\\). What is the length of the shortest chord passing through point \\(B(2, 3)\\)?", -"image_file_name": "7058804", -"image": [ -"math/52949726_583.png" -], -"solution": "\\textbf{Solution:} Let the intersection points of circle $D$ with the y-axis be $E$ and $A$. Connect $DE$. Draw $DC \\perp y$-axis at $C$,\n\n$\\because$ The chord length of circle $D$ intersecting with the y-axis is 6,\n\n$\\therefore$ $AE = 6$,\n\n$\\therefore$ $CE = 3$,\n\n$\\because$ $D(2, 4)$,\n\n$\\therefore$ $CD = 2$,\n\n$\\therefore$ $DE= \\sqrt{CD^{2}+CE^{2}}=\\sqrt{2^{2}+3^{2}}=\\sqrt{13}$,\n\n$\\because$ $D(2, 4)$, $B(2, 3)$,\n\n$\\therefore$ $DB \\parallel y$-axis,\n\n$\\therefore$ Among all the chords through point $B(2, 3)$, the shortest chord is perpendicular to $DB$,\n\nDraw $MN \\perp DB$intersecting circle $D$ at $M$ and $N$. Connect $DN$,\n\nIn $\\triangle DBN$, $\\angle DBN=90^\\circ$, $DB=1$, $DN= \\sqrt{13}$,\n\n$\\therefore$ $BN= \\sqrt{DN^{2}-BD^{2}}=2\\sqrt{3}$,\n\n$\\therefore$ $MN=2BN= 4\\sqrt{3}$,\n\nHence, among all the chords through point $B(2, 3)$, the shortest chord length is $\\boxed{4\\sqrt{3}}$.", -"solution_image": [ -"solution_images/52949726_580.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51458354": { -"question": "As shown in the figure, a circle $\\odot O$ with a radius of 2 is tangent to the regular hexagon ABCDEF at points C and F. What is the area of the shaded region in the figure?", -"image_file_name": "7058804", -"image": [ -"math/51458354_590.png" -], -"solution": "\\textbf{Solution:} Connect $OF$, $OC$, $CF$, from point $O$ draw $OH\\perp ED$ at point H, it intersects $FC$ at point P,\\\\\nin the quadrilateral $OCDH$, $OC\\perp CD$, $OH\\perp HD$, $\\angle CDH=120^\\circ$,\\\\\n$\\therefore$ $\\angle OCD=90^\\circ$, $\\angle DHO=90^\\circ$,\\\\\n$\\therefore$ $\\angle COH=360^\\circ-\\angle OCD-\\angle CDH-\\angle DHO=360^\\circ-90^\\circ-120^\\circ-90^\\circ=60^\\circ$,\\\\\nSimilarly, $\\angle FOH=60^\\circ$,\\\\\nSince $OC=OF$,\\\\\n$\\therefore$ $OP$ is the perpendicular bisector of $FC$,\\\\\nIn $\\triangle OPC$, $\\angle OPC=90^\\circ$, $\\angle COP=60^\\circ$, $OC=2$,\\\\\n$\\therefore$ $\\angle OCP=180^\\circ-\\angle OPC-\\angle COP=180^\\circ-90^\\circ-60^\\circ=30^\\circ$,\\\\\n$\\therefore$ $OP=\\frac{1}{2}\\times OC=\\frac{1}{2}\\times 2=1$,\\\\\n$PC=\\sqrt{OC^2-OP^2}=\\sqrt{2^2-1^2}=\\sqrt{3}$,\\\\\n$\\therefore$ $FC=2PC=2\\times \\sqrt{3}=2\\sqrt{3}$,\\\\\nDraw $DM\\perp FC$ from point D, draw $EN\\perp FC$ from point E,\\\\\n$\\therefore$ $\\angle DMC=\\angle ENF=90^\\circ$,\\\\\nBecause $\\angle OCD=90^\\circ$, $\\angle OCP=30^\\circ$,\\\\\n$\\therefore$ $\\angle PCD=\\angle OCD-\\angle OCP=90^\\circ-30^\\circ=60^\\circ$,\\\\\nSimilarly, $\\angle PFE=60^\\circ$,\\\\\nIn $\\triangle DMC$, $\\angle MDC=180^\\circ-\\angle DMC-\\angle MCD=180^\\circ-90^\\circ-60^\\circ=30^\\circ$,\\\\\n$\\therefore$ $MC=\\frac{1}{2}DC$,\\\\\nIn $\\triangle EFN$, $\\angle FEN=180^\\circ-\\angle EFN-\\angle ENF=180^\\circ-90^\\circ-60^\\circ=30^\\circ$,\\\\\n$\\therefore$ $NF=\\frac{1}{2}EF$,\\\\\n$\\therefore$ $FC=FN+NM+MC=2ED=2\\sqrt{3}$,\\\\\nSince $EF=DE=CD=NM$,\\\\\n$\\therefore$ $ED=CD=EF=NM=\\sqrt{3}$,\\\\\n$MC=NF=\\frac{1}{2}(FC-NM)=\\frac{1}{2}\\times (2\\sqrt{3}-\\sqrt{3})=\\frac{\\sqrt{3}}{2}$,\\\\\n$\\therefore$ $M=\\sqrt{CD^2-MC^2}=\\sqrt{\\sqrt{3}^2-\\left(\\frac{\\sqrt{3}}{2}\\right)^2}=\\frac{3}{2}$,\\\\\nThen $PH=DM=\\frac{3}{2}$,\\\\\n$\\therefore$ ${S}_{OFEDC}={S}_{\\triangle OFC}+{S}_{FEDC}=\\frac{1}{2}\\times 2\\sqrt{3}\\times 1+\\frac{1}{2}\\times (\\sqrt{3}+2\\sqrt{3})\\times \\frac{3}{2}=\\frac{13\\sqrt{3}}{4}$,\\\\\n$S_{\\stackrel{\\frown}{OFC}}=\\frac{\\frac{3\\pi}{2}}{2\\pi}\\cdot\\pi\\cdot 2^2=\\frac{3\\pi}{2}$,\\\\\n$\\therefore$ The area of the shaded part = ${S}_{OFEDC}-{S}_{\\stackrel{\\frown}{OFC}}=\\frac{13\\sqrt{3}}{4}-\\frac{3\\pi}{2}=\\boxed{\\frac{13\\sqrt{3}}{4}-\\frac{3\\pi}{2}}$,", -"solution_image": [ -"solution_images/51458354_591.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351765": { -"question": "As shown in the diagram, within circle $\\odot O$ of radius 5, chord $AB=6$, $OC\\perp AB$ at point $D$, and intersects $\\odot O$ at point $C$, what is the length of $CD$?", -"image_file_name": "7058804", -"image": [ -"math/51351765_600.png" -], -"solution": "\\textbf{Solution:} Draw a line from point O to point A,\\\\\nsince AB=6, and OC $\\perp$ AB at point D,\\\\\ntherefore, AD=$\\frac{1}{2}$AB=$\\frac{1}{2}\\times 6=3$,\\\\\nsince the radius of circle O is 5,\\\\\ntherefore, OD=$\\sqrt{OA^{2}-AD^{2}}=\\sqrt{5^{2}-3^{2}}=4$,\\\\\ntherefore, CD=OC-OD=5-4=\\boxed{1}.", -"solution_image": [ -"solution_images/51351765_600.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51350894": { -"question": "As shown in the figure, PA and PB are tangent to the circle $O$ at points A and B, respectively. C is a moving point on the major arc AB. If $\\angle P = 50^\\circ$, then what is the degree measure of $\\angle ACB$?", -"image_file_name": "7058804", -"image": [ -"math/51350894_610.png" -], -"solution": "\\textbf{Solution:} Draw $OA, OB$ as shown in the diagram,\\\\\n$\\because$ PA and PB are tangent to $\\odot O$ respectively\\\\\n$\\therefore \\angle OAP=\\angle OBP=90^\\circ$\\\\\n$\\therefore \\angle AOB=360^\\circ-\\angle OAP-\\angle OBP-\\angle P=130^\\circ$\\\\\n$\\because \\overset{\\frown}{AB}=\\overset{\\frown}{AB}$\\\\\n$\\therefore \\angle ACB=\\frac{1}{2}\\angle AOB=\\boxed{65^\\circ}$", -"solution_image": [ -"solution_images/51350894_611.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351385": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the points A, B, and C have integer coordinates for both their x- and y-values. If an arc is drawn through these three points, what are the coordinates of the center of the arc?", -"image_file_name": "7058804", -"image": [ -"math/51351385_621.png" -], -"solution": "\\textbf{Solution:} According to the corollary of the Perpendicular Diameter Theorem: the perpendicular bisector of a chord always passes through the center of the circle,\\\\\nthe perpendicular bisectors of chords AB and BC can be drawn, and their intersection point is the center of the circle.\\\\\nAs shown in the figure, the center of the circle is $\\boxed{(2,1)}$.", -"solution_image": [ -"solution_images/51351385_620.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51350892": { -"question": "As shown in the diagram, AB is the diameter of the circle with center O, and the chord CD is perpendicular to AB at point H. If AB = 10 and CD = 8, what is the length of OH?", -"image_file_name": "7058804", -"image": [ -"math/51350892_630.png" -], -"solution": "\\textbf{Solution:} Given that AB is the diameter of $\\odot$O, and chord CD is perpendicular to AB at point H, if AB=10, and CD=8, \\\\\n$\\therefore CH=\\frac{1}{2}CD=4$, $OC=\\frac{1}{2}AB=5$\\\\\nIn $\\triangle OHC$, $ OH=\\sqrt{OC^{2}-CH^{2}}=\\sqrt{5^{2}-4^{2}}=\\boxed{3}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351122": { -"question": "As shown in the diagram, within $\\odot O$, $A$, $B$, and $C$ are three points on $\\odot O$. If $\\angle AOB=70^\\circ$, what is the degree measure of $\\angle C$?", -"image_file_name": "7058804", -"image": [ -"math/51351122_640.png" -], -"solution": "\\textbf{Solution:} Given: $\\angle AOB$ and $\\angle ACB$ both subtend $\\overset{\\frown}{AB}$, and $\\angle AOB=70^\\circ$, \\\\\n$\\therefore \\angle C=\\frac{1}{2}\\angle AOB=\\boxed{35^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51318402": { -"question": "As shown in the figure, AB is the diameter of semicircle O with AB = 4. Points C and D are on the semicircle, and $OC \\perp AB$. It is given that $\\overset{\\frown}{BD} = 2\\overset{\\frown}{CD}$. Point P is a moving point on OC. What is the minimum value of $BP + DP$?", -"image_file_name": "7058804", -"image": [ -"math/51318402_651.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AD, PA, PD, OD. \\\\\n$\\because$ OC $\\perp$ AB, OA = OB, \\\\\n$\\therefore$ PA = PB, $\\angle$ COB = $90^\\circ$, \\\\\n$\\because$ $\\overset{\\frown}{BD} = 2\\overset{\\frown}{CD}$, \\\\\n$\\therefore$ $\\angle$ DOB = $\\frac{2}{3} \\times 90^\\circ = 60^\\circ$, \\\\\n$\\because$ OD = OB, \\\\\n$\\therefore$ $\\triangle$ OBD is an equilateral triangle, \\\\\n$\\therefore$ $\\angle$ ABD = $60^\\circ$, \\\\\n$\\because$ AB is the diameter, \\\\\n$\\therefore$ $\\angle$ ADB = $90^\\circ$, \\\\\n$\\therefore$ AD = AB $\\cdot \\sin\\angle$ ABD = $2\\sqrt{3}$, \\\\\n$\\because$ PB + PD = PA + PD $\\geq$ AD, \\\\\n$\\therefore$ PD + PB $\\geq 2\\sqrt{3}$, \\\\ \n$\\therefore$ The minimum value of PD + PB is $\\boxed{2\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51318402_650.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51318401": { -"question": "As shown in the figure, points A, B, and C are three points on a circle $\\odot$O with a radius of 4. If $\\angle BAC=45^\\circ$, what is the length of chord BC?", -"image_file_name": "7058804", -"image": [ -"math/51318401_660.png" -], -"solution": "\\textbf{Solution:} Connect OB and OC.\\\\\nSince $\\angle$BOC = 2$\\angle$BAC and $\\angle$BAC = 45$^\\circ$,\\\\\nit follows that $\\angle$BOC = 90$^\\circ$,\\\\\nSince OB = OC = 4,\\\\\nit follows that BC = $\\sqrt{4^2 + 4^2} = 4\\sqrt{2}$,\\\\\nTherefore, the answer is: $BC = \\boxed{4\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51318401_660.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51318341": { -"question": "As shown in the figure, a circular pipe in a residential area has ruptured, and the repair workers are preparing to replace a section of the pipe. They have measured the width of the sewage water surface to be $80\\, \\text{cm}$, and the distance from the water surface to the top of the pipe to be $20\\, \\text{cm}$. What should be the inner diameter of the new pipe that the repair workers need to prepare, in $\\text{cm}$?", -"image_file_name": "7058804", -"image": [ -"math/51318341_670.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, let the center of the pipe be point O and the top of the pipe be point A, with BD representing the surface of the sewage. Connect AO, where AO intersects BD perpendicularly at point C.\\\\\nLet AO=OB=r, then OC=r−20, and BC=$\\frac{1}{2}BD=40$.\\\\\nWe have $OB^{2}=OC^{2}+BC^{2}$,\\\\\n$r^{2}=(r−20)^{2}+40^{2}$,\\\\\nSimplifying, we get $r=\\boxed{50}$.\\\\\nTherefore, the internal diameter of the new pipe is $100\\text{cm}$.", -"solution_image": [ -"solution_images/51318341_670.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51318916": { -"question": "In $\\triangle ABC$, $\\angle BAC=60^\\circ$, $\\angle ABC=45^\\circ$, $AB=2$, and $D$ is a moving point on line segment $BC$. With $AD$ as the diameter, draw $\\odot O$ intersecting $AB$, $AC$ at $E$, $F$ respectively. Connect $EF$. What is the minimum length of line segment $EF$?", -"image_file_name": "7058804", -"image": [ -"math/51318916_680.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OE, OF, and draw OH$\\perp$EF through point O with H as the foot,\\\\\n$\\therefore$ $EH=\\frac{1}{2}EF$,\\\\\n$\\because$ OE=OF, OH$\\perp$EF, $\\angle$BAC$=60^\\circ$,\\\\\n$\\therefore$ $\\angle EOH=\\angle FOH=\\frac{1}{2}\\angle EOF=\\angle BAC=60^\\circ$,\\\\\n$\\therefore$ $\\angle$OEH$=30^\\circ$,\\\\\n$\\therefore$ OH$=\\frac{1}{2}OE$,\\\\\n$\\therefore$ $EH=\\sqrt{OE^2-OH^2}=\\frac{\\sqrt{3}}{2}OE$,\\\\\n$\\therefore$ $EF=\\sqrt{3}OE$,\\\\\n$\\therefore$ To minimize EF, that is to minimize the radius OE, which means to minimize the diameter AD,\\\\\n$\\therefore$ According to the property of the perpendicular segment, when AD is the height from side BC of $\\triangle ABC$, the diameter AD is the shortest,\\\\\n$\\because$ In $\\triangle ADB$, $\\angle ABC=45^\\circ$, AB$=2$,\\\\\n$\\therefore$ AD$=$BD, $BD^2+AD^2=AB^2$,\\\\\n$\\therefore$ $2AD^2=4$,\\\\\n$\\therefore$ AD$=$BD$=\\sqrt{2}$,\\\\\n$\\therefore$ $EF=\\frac{\\sqrt{3}}{2}AD=\\boxed{\\frac{\\sqrt{6}}{2}}$", -"solution_image": [ -"solution_images/51318916_680.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51318914": { -"question": "As shown in the figure, $AB$ is the tangent to circle $O$ at point $A$, $OB$ intersects circle $O$ at point $C$, point $D$ is on circle $O$, and $AD$, $CD$, $OA$ are connected. If $\\angle ADC = 25^\\circ$, what is the degree measure of $\\angle B$? ", -"image_file_name": "7058804", -"image": [ -"math/51318914_690.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ADC=25^\\circ$,\\\\\nthus, $\\angle AOC=50^\\circ$,\\\\\nsince $AB$ is a tangent of $\\odot O$ at point A,\\\\\nthus, $\\angle OAB=90^\\circ$,\\\\\ntherefore, $\\angle B=90^\\circ-\\angle AOC=90^\\circ-50^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51318557": { -"question": "As shown in the figure, the circumcircle $O$ of $\\triangle ABC$ has a radius of $2\\text{cm}$. If $BC=2\\text{cm}$, what is the measure of $\\angle A$ in degrees?", -"image_file_name": "7058804", -"image": [ -"math/51318557_700.png" -], -"solution": "\\textbf{Solution:} Connect OB and OC,\\\\\nsince the radius of circle O is 2cm, and BC=2cm,\\\\\ntherefore OB=OC=BC,\\\\\nthus, $\\triangle$OBC is an equilateral triangle,\\\\\ntherefore, $\\angle$BOC=60$^\\circ$,\\\\\ntherefore, $\\angle$A=$\\frac{1}{2}\\angle$BOC=30$^\\circ$,\\\\\nhence, the answer is: $\\boxed{30^\\circ}$.", -"solution_image": [ -"solution_images/51318557_700.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51318343": { -"question": "As shown in the figure, in $\\triangle ABC$, $BC=4$, a circle $\\odot A$ with center A and radius 2 is tangent to $BC$ at point D, intersects $AB$ at point E and $AC$ at point F. Point P is a point on $\\odot A$, and $\\angle EPF = 40^\\circ$. What is the area of the shaded region in the figure?", -"image_file_name": "7058804", -"image": [ -"math/51318343_718.png" -], -"solution": "\\[ \\text{\\bf Solution:} \\text{ As shown in the figure, connect AD.} \\]\n\\[ \\because \\angle EPF=40^\\circ, \\]\n\\[ \\therefore \\angle EAF=2\\angle EPF=80^\\circ, \\]\n\\[ \\therefore S_{\\text{sector} EAF}=\\frac{80\\pi \\times AE^{2}}{360}=\\frac{80\\pi \\times 2^{2}}{360}=\\frac{8\\pi }{9}. \\]\n\\[ \\because \\text{BC is the tangent of } \\odot O \\text{ with the tangent point at D}, \\]\n\\[ \\therefore AD\\perp BC, AD=2, \\]\n\\[ \\therefore S_{\\triangle ABC}=\\frac{1}{2}AD\\cdot BC=\\frac{1}{2}\\times 2\\times 4=4. \\]\n\\[ \\because S_{\\text{shaded}}=S_{\\triangle ABC}-S_{\\text{sector} EAF}, \\]\n\\[ \\therefore S_{\\text{shaded}}=4-\\frac{8\\pi }{9}. \\]\n\\[ \\text{Therefore, the answer is: } \\boxed{4-\\frac{8\\pi }{9}}. \\]", -"solution_image": [ -"solution_images/51318343_710.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51320376": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, the chord $CD\\perp AB$ at point $H$, $CD=8$, $OA=5$, what is the length of $AH$?", -"image_file_name": "7058804", -"image": [ -"math/51320376_726.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OC. \\\\\n$\\because$ AB is the diameter of $\\odot$O, and chord CD $\\perp$ AB at point H with CD=8, \\\\\n$\\therefore$ $CH=DH=\\frac{1}{2}CD=4$, $\\angle$OHC$=90^\\circ$, \\\\\n$\\because$ OC=OA=5, \\\\\n$\\therefore$ $OH=\\sqrt{OC^{2}-CH^{2}}=3$, \\\\\n$\\therefore$ AH=OA+OH=$\\boxed{8}$.", -"solution_image": [ -"solution_images/51320376_720.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51318244": { -"question": "As shown in the diagram, for the inscribed quadrilateral $ABCD$ in the circle $\\odot O$, if $\\angle BCD=130^\\circ$, then what is the degree measure of $\\angle BOD$?", -"image_file_name": "7058804", -"image": [ -"math/51318244_730.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is inscribed in circle $O$, \\\\\nthus $\\angle A = 180^\\circ - \\angle C = 50^\\circ$, \\\\\ntherefore $\\angle BOD = 2\\angle A = \\boxed{100^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51261696": { -"question": "As shown in the figure, there are two points A and B on the outer edge of the protractor, and their readings are $70^\\circ$ and $40^\\circ$ respectively. What is the degree measure of $\\angle 1$?", -"image_file_name": "7058804", -"image": [ -"math/51261696_740.png" -], -"solution": "\\textbf{Solution:} Since $\\angle$AOB $= 70^\\circ - 40^\\circ = 30^\\circ$, \\\\\ntherefore $\\angle 1 = \\frac{1}{2} \\angle$AOB $= \\boxed{15^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51262022": { -"question": "As shown in the figure, PA and PB are tangent to circle \\(O\\) at points A and B, respectively. Point E is a point on circle \\(O\\), and \\(\\angle AEB = 60^\\circ\\). What is the measure of \\(\\angle P\\)?", -"image_file_name": "7058804", -"image": [ -"math/51262022_750.png" -], -"solution": "\\textbf{Solution:} Draw OA, BO;\\\\\nSince $\\angle AOB = 2\\angle E = 120^{\\circ}$,\\\\\nthus $\\angle OAP = \\angle OBP = 90^{\\circ}$,\\\\\ntherefore $\\angle P = 180^{\\circ} - \\angle AOB = \\boxed{60^{\\circ}}$.", -"solution_image": [ -"solution_images/51262022_750.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51261695": { -"question": "As shown in the figure, $O$ is the circumcenter of $\\triangle ABC$, and $\\angle ABC=40^\\circ$, $\\angle ACB=70^\\circ$, what is the measure of $\\angle BOC$?", -"image_file_name": "7058804", -"image": [ -"math/51261695_762.png" -], -"solution": "\\textbf{Solution:} Given: $\\because$ $\\angle ABC=40^\\circ$ and $\\angle ACB=70^\\circ$,\\\\\n$\\therefore$ $\\angle BAC=180^\\circ-40^\\circ-70^\\circ=70^\\circ$,\\\\\n$\\because$ O is the circumcenter of $\\triangle ABC$,\\\\\n$\\therefore$ the circle with center O and radius OB is the circumcircle of $\\triangle ABC$,\\\\\n$\\therefore$ $\\angle BOC=2\\angle BAC=\\boxed{140^\\circ}$.", -"solution_image": [ -"solution_images/51261695_760.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51261993": { -"question": "As shown in the figure, in circle $O$, $AB$ is the diameter, and the length of chord $AC$ is 5 cm. Point $D$ is on the circle, and $\\angle ADC=30^\\circ$. What is the radius of circle $O$ in cm?", -"image_file_name": "7058804", -"image": [ -"math/51261993_775.png" -], -"solution": "\\textbf{Solution:} Connect \\textit{BC} as shown in the figure:\\\\\n$\\because$ $\\angle ADC=30^\\circ$,\\\\\n$\\therefore$ $\\angle ABC=\\angle ADC=30^\\circ$,\\\\\n$\\because$ \\textit{AB} is the diameter,\\\\\n$\\therefore$ $\\angle ACB=90^\\circ$,\\\\\n$\\because$ \\textit{AC} $=5\\text{cm}$,\\\\\n$\\therefore$ \\textit{AB} $=2AC=10\\text{cm}$,\\\\\n$\\therefore$ the radius of $\\odot O$ is $\\boxed{5}\\text{cm}$;", -"solution_image": [ -"solution_images/51261993_770.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51262088": { -"question": "As shown in the figure, the circumcircle of quadrilateral $ABCD$ is $\\odot O$, $BC=CD$, $\\angle DAC=35^\\circ$. What is the measure of $\\angle BDC$?", -"image_file_name": "7058804", -"image": [ -"math/51262088_780.png" -], -"solution": "\\textbf{Solution:} Since $\\angle DAC=35^\\circ$, \\\\\nthen $\\angle DBC=\\angle DAC=35^\\circ$, \\\\\nbecause $BC=CD$, \\\\\nthus $\\angle BDC=\\angle DBC=35^\\circ$, \\\\\nTherefore, the answer is: $\\boxed{35^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53148594": { -"question": "As shown in the figure, the central angle of sector OAB is $110^\\circ$, and C is a point on $\\overset{\\frown}{AB}$. What is the degree measure of $\\angle C$?", -"image_file_name": "7058804", -"image": [ -"math/53148594_791.png" -], -"solution": "\\textbf{Solution:} Construct $\\overset{\\frown}{AB}$'s corresponding central angle $\\angle ADB$, as shown in the diagram,\\\\\n$\\therefore \\angle ADB = \\frac{1}{2}\\angle AOB = \\frac{1}{2} \\times 110^\\circ = 55^\\circ$,\\\\\n$\\because \\angle ADB + \\angle C = 180^\\circ$,\\\\\n$\\therefore \\angle C = 180^\\circ - 55^\\circ = \\boxed{125^\\circ}$.", -"solution_image": [ -"solution_images/53148594_791.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"55498347": { -"question": "As shown in the figure, $AE=AB$, $\\angle E=\\angle B$, $EF=BC$. If $\\angle EAB=52^\\circ$, then what is the measure of $\\angle EFA$?", -"image_file_name": "7044652", -"image": [ -"math/55498347_320.png" -], -"solution": "\\textbf{Solution:} In $\\triangle AEF$ and $\\triangle ABC$, since $AE=AB$, $\\angle E=\\angle B$, and $EF=BC$, then $\\triangle AEF \\cong \\triangle ABC$ by SAS, thus $\\angle EAF=\\angle BAC$, $AF=AC$, and $\\angle C=\\angle EFA$. Therefore, $\\angle EAF-\\angle BAF=\\angle BAC-\\angle BAF$, that is, $\\angle FAC=\\angle EAB=52^\\circ$. Consequently, $\\angle C=\\angle EFA= \\frac{1}{2}(180^\\circ-\\angle FAC)=\\boxed{64^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55587990": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle B=22.5^\\circ$, $AC=2$. Taking points $A$ and $B$ as centers, arcs are drawn with radii longer than $\\frac{1}{2}AB$, intersecting at points $M$ and $N$. The line $MN$ intersects $BC$ at point $D$. Connecting $AD$, what is the length of $BD$?", -"image_file_name": "7044652", -"image": [ -"math/55587990_332.png" -], -"solution": "\\textbf{Solution:} Given the construction, $MN$ bisects $AB$ perpendicularly, hence $DA=DB$, \\\\\n$\\therefore \\angle DAB=\\angle B=22.5^\\circ$, \\\\\n$\\therefore \\angle CDA=22.5^\\circ+22.5^\\circ=45^\\circ$, \\\\\n$\\because \\angle C=90^\\circ$, \\\\\n$\\therefore \\triangle ACD$ is an isosceles right triangle, \\\\\n$\\therefore AD=\\sqrt{2}AC=2\\sqrt{2}$, \\\\\n$\\therefore BD=\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55588141": { -"question": "As shown in the figure, point $D$ lies on side $BC$ of $\\triangle ABC$, with $AC=AB=BD$, $AD=CD$. What is the measure of $\\angle BAC$ in degrees?", -"image_file_name": "7044652", -"image": [ -"math/55588141_345.png" -], -"solution": "\\textbf{Solution:} \\boxed{108}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55553380": { -"question": "As shown in the figure, $OP$ bisects $\\angle MON$, and point $C$ is any point on $OP$ with $CA\\perp ON$ at foot $A$. The perpendicular bisector of line segment $OA$, denoted as $BG$, intersects $OM$ at point $B$ and intersects $OA$ at point $G$. Given $AB=6$ and $AC=3$, what is the area of $\\triangle OBC$?", -"image_file_name": "7044652", -"image": [ -"math/55553380_3515.jpeg" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw line $CE\\perp OM$ at point E. Since $OP$ bisects $\\angle MON$, $CA\\perp ON$, and $CE\\perp OM$, it follows that $CE=CA=3$. Since $BG$ is the perpendicular bisector of $OA$, we have $BA=BO=6$. The area of $\\triangle OBC$ is given by $S_{\\triangle OBC}=\\frac{1}{2}\\times OB\\times CE=\\frac{1}{2}\\times 6\\times 3=\\boxed{9}$.", -"solution_image": [ -"solution_images/55553380_350.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55553377": { -"question": "As shown in the figure, rays $BA$ and $CA$ intersect at point $A$, with $BC$ connected. Given that $AB=AC$ and $\\angle B=40^\\circ$, what is the value of $x$?", -"image_file_name": "7044652", -"image": [ -"math/55553377_360.png" -], -"solution": "\\textbf{Solution:} Since $AB = AC$ and $\\angle B = 40^\\circ$, it follows that $\\angle C = \\angle B = 40^\\circ$, hence $x^\\circ = 40^\\circ + 40^\\circ = \\boxed{80^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978929": { -"question": "As shown in the figure, within $\\triangle ABC$, $AB=AC=10\\text{cm}$, $DE$ is a perpendicular bisector of $AB$ with the foot of the perpendicular being at $E$, and it intersects $AC$ at $D$. If the perimeter of $\\triangle DBC$ is $18\\text{cm}$, what is the length of $BC$ in $\\text{cm}$?", -"image_file_name": "7044652", -"image": [ -"math/52978929_370.png" -], -"solution": "\\textbf{Solution:} Since the perimeter of $\\triangle DBC$ equals BC + BD + CD $= 18\\,\\text{cm}$,\\\\\nand since DE perpendicularly bisects AB,\\\\\nthus AD $=$ BD,\\\\\nhence BC + AD + CD $= 18\\,\\text{cm}$,\\\\\nsince AC $=$ AD + DC $= 10\\,\\text{cm}$,\\\\\ntherefore BC $= 18 - 10 = \\boxed{8}\\,\\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53080331": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in a semicircle $O$ with radius $\\sqrt{5}$, where $AB$ is the diameter. Point $M$ is the midpoint of the arc $\\overset{\\frown}{AC}$. Connecting $BM$ intersects $AC$ at point $E$. $AD$ bisects $\\angle CAB$ and intersects $BM$ at point $D$, and $D$ is the midpoint of $BM$. What is the length of $BC$?", -"image_file_name": "7058773", -"image": [ -"math/53080331_4216.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, construct $MH\\perp AB$ at $H$, connect $AM$, $OM$, where $OM$ intersects $AC$ at $F$. \\\\\n$\\because AB$ is the diameter,\\\\\n$\\therefore \\angle AMB=90^\\circ$, $\\angle ACB=90^\\circ$,\\\\\n$\\therefore \\angle CAB+\\angle CBA=90^\\circ$,\\\\\n$\\because$ point $M$ is the midpoint of $\\overset{\\frown}{AC}$,\\\\\n$\\therefore \\overset{\\frown}{CM}=\\overset{\\frown}{AM}$\\\\\n$\\therefore \\angle CBM=\\angle ABM$,\\\\\n$\\because \\angle CAD=\\angle BAD$,\\\\\n$\\therefore \\angle DAB+\\angle DBA=\\frac{1}{2}(\\angle CAB+\\angle CBA)=45^\\circ$,\\\\\n$\\therefore \\angle ADB=180^\\circ-(\\angle DAB+\\angle DBA)=135^\\circ$,\\\\\n$\\because \\angle ADM=180^\\circ-\\angle ADB=45^\\circ$,\\\\\n$\\therefore MA=MD$,\\\\\n$\\because DM=DB$,\\\\\n$\\therefore BM=2AM$, let $AM=x$, then $BM=2x$,\\\\\n$\\because AB=2\\sqrt{5}$,\\\\\n$\\therefore x^2+4x^2=20$,\\\\\n$\\therefore x=2$ (the negative root has been discarded),\\\\\n$\\therefore AM=2$, $BM=4$,\\\\\n$\\because \\frac{1}{2}\\cdot AM\\cdot BM=\\frac{1}{2}\\cdot AB\\cdot MH$,\\\\\n$\\therefore MH=\\frac{2\\times 4}{2\\sqrt{5}}=\\frac{4\\sqrt{5}}{5}$,\\\\\n$\\therefore OH=\\sqrt{OM^2-MH^2}=\\sqrt{(\\sqrt{5})^2-\\left(\\frac{4\\sqrt{5}}{5}\\right)^2}=\\frac{3\\sqrt{5}}{5}$,\\\\\n$\\because \\overset{\\frown}{CM}=\\overset{\\frown}{AM}$,\\\\\n$\\therefore OM\\perp AC$,\\\\\n$\\therefore AF=FC$,\\\\\n$\\because OA=OB$,\\\\\n$\\therefore BC=2OF$,\\\\\n$\\because \\angle OHM=\\angle OFA=90^\\circ$, $\\angle AOF=\\angle MOH$, $OA=OM$,\\\\\n$\\therefore \\triangle OAF\\cong \\triangle OMH\\left(AAS\\right)$,\\\\\n$\\therefore OF=OH=\\frac{3\\sqrt{5}}{5}$,\\\\\n$\\therefore BC=2OF=\\boxed{\\frac{6\\sqrt{5}}{5}}$.", -"solution_image": [ -"solution_images/53080331_427.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080595": { -"question": "As shown in the figure, within circle $O$ with a radius of $10\\,\\text{cm}$, $AB=16\\,\\text{cm}$, and $OC\\perp$ chord $AB$ at point $C$, what is the length of $OC$ in $\\text{cm}$?", -"image_file_name": "7058773", -"image": [ -"math/53080595_438.png" -], -"solution": "\\textbf{Solution:} Join OA, as shown in the figure,\\\\\n$\\because OC\\perp AB$,\\\\\n$\\therefore AC=BC= \\frac{1}{2}AB=8$,\\\\\nIn Rt$\\triangle$ OAC, $OC=\\sqrt{OA^{2}-AC^{2}}=\\sqrt{10^{2}-8^{2}}=\\boxed{6}\\ (\\text{cm})$.", -"solution_image": [ -"solution_images/53080595_430.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080600": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, with $AB=2$. $OC$ is the radius of $\\odot O$, and $OC\\perp AB$. Point $D$ lies on $\\overset{\\frown}{AC}$, and $\\overset{\\frown}{AD}=2\\overset{\\frown}{CD}$. Point $P$ is a moving point on the radius $OC$. What is the minimum value of $AP+PD$?", -"image_file_name": "7058773", -"image": [ -"math/53080600_4412.png" -], -"solution": "\\textbf{Solution:} Construct line BD, intersecting OC at point P. Draw lines OD, AP, AD.\\\\\nSince $OC\\perp AB$ and point $P$ is a movable point on the radius $OC$,\\\\\nit follows that $AP=PB$\\\\\nSince $DP+AP=DP+PB\\ge DB$\\\\\nthe minimum value of $AP+PD$ is the length of $DB$,\\\\\nhence, $\\overset{\\frown}{AC}=\\overset{\\frown}{CB}$, $\\angle AOC=90^\\circ$\\\\\nSince $\\overset{\\frown}{AD}=2\\overset{\\frown}{CD}$\\\\\nit follows that $\\overset{\\frown}{AD}=\\frac{2}{3}\\overset{\\frown}{AC}$\\\\\nTherefore, $\\angle AOD=\\frac{2}{3}\\angle AOC=60^\\circ$\\\\\nSince $\\overset{\\frown}{AD}=\\overset{\\frown}{AD}$\\\\\nit follows that $\\angle ABD=30^\\circ$\\\\\nIn right triangle $\\triangle ADC$\\\\\n$AB=2$, $AD=\\frac{1}{2}AB=1$\\\\\nTherefore, $BD=\\sqrt{3}$\\\\\nHence, the minimum value of $AP+PD$ is $\\boxed{\\sqrt{3}}$", -"solution_image": [ -"solution_images/53080600_440.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53078985": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in the circle $\\odot O$. If $\\angle ADC=85^\\circ$, then what is the measure of $\\angle B$ in degrees?", -"image_file_name": "7058773", -"image": [ -"math/53078985_454.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is inscribed in circle $O$,\\\\\nit follows that $\\angle ADC + \\angle B = 180^\\circ$,\\\\\nSince $\\angle ADC = 85^\\circ$,\\\\\nthen $\\angle B = 180^\\circ - \\angle ADC$\\\\\n$= 180^\\circ - 85^\\circ$\\\\\n$= \\boxed{95^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"55452478": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, $M$ is a point on $AB$, and $OA=6$, $AM=2$. The chord $PQ$ passes through point $M$, and the minor arc $PQ$ is folded along the chord $PQ$ to just pass through the center $O$. What is the length of $PM$?", -"image_file_name": "7058773", -"image": [ -"math/55452478_460.png" -], -"solution": "\\textbf{Solution:} Draw OF $\\perp$ PQ at point N, intersecting circle O at point F,\\\\\n$\\therefore$ PN=QN, $\\because$ the minor arc PQ folds along the chord PQ to exactly pass through the center O, $\\therefore$ ON=$\\frac{1}{2}$OF=$\\frac{1}{2}$OQ=3,\\\\\n$\\because$ AM=2, $\\therefore$ OM=OA−AM=6−2=4,\\\\\n$\\therefore$ QN=PN=$\\sqrt{OQ^{2}−ON^{2}}=\\sqrt{6^{2}−3^{2}}=3\\sqrt{3}$,\\\\\n$\\therefore$ MN=$\\sqrt{OM^{2}−ON^{2}}=\\sqrt{4^{2}−3^{2}}=\\sqrt{7}$,\\\\\n$\\therefore$ PM=PN−MN=$3\\sqrt{3}−\\sqrt{7}$. Thus, the answer is: $PM=\\boxed{3\\sqrt{3}−\\sqrt{7}}$.", -"solution_image": [ -"solution_images/55452478_460.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53147473": { -"question": "In rectangle $ABCD$, $AB = 3$, $AD = 5$, the point $E$ is on side $AD$ with $AE = 4$. Point $P$ is inside the rectangle and $\\angle APE = 90^\\circ$. Point $M$ is on side $BC$. Connecting $PA$, $DM$, what is the minimum value of $PM + DM$?", -"image_file_name": "7058773", -"image": [ -"math/53147473_478.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, \\\\\n$\\because$ $\\angle APE=90^\\circ$, \\\\\n$\\therefore$ point P moves on circle O with diameter $AE$, \\\\\nConstruct point G as the mirror image of D with respect to $BC$, connect $OG$ to intersect circle $O$ at point P and $BC$ at M, the minimum value of $PM+DM$ is the length of $PG$, \\\\\n$\\because$ quadrilateral $ABCD$ is a rectangle, \\\\\n$\\therefore$ $CG=CD=AB=3$, $\\angle ADC=90^\\circ$, \\\\\nIn $\\triangle ODG$, $DG=CD+CG=6$, $OD=AD−OA=5−2=3$, \\\\\n$\\therefore$ $OG=\\sqrt{OD^{2}+DG^{2}}=3\\sqrt{5}$, \\\\\n$\\therefore$ $PG=OG−OP=3\\sqrt{5}−2$, \\\\\n$\\therefore$ the minimum value of $PM+DM$ is: $\\boxed{3\\sqrt{5}−2}$.", -"solution_image": [ -"solution_images/53147473_470.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53147806": { -"question": "As shown in the figure, in right-angled triangle $ABC$ with $\\angle ABC=90^\\circ$, $AB=4$, and $BC=3$, point $D$ is a moving point on circle $\\odot A$ with radius $2$, and point $M$ is the midpoint of $CD$. What is the maximum value of $BM$?", -"image_file_name": "7058773", -"image": [ -"math/53147806_480.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, take N as the midpoint of AC, and connect MN, BN,\\\\\n$\\because$ in $\\triangle ABC$, $\\angle ABC=90^\\circ$, AB=4, BC=3,\\\\\n$\\therefore AC=\\sqrt{3^2+4^2}=5$\\\\\n$\\because$AN=NC=$\\frac{1}{2}AC=\\frac{5}{2}$,\\\\\n$\\therefore$BN=$\\frac{1}{2}AC=\\frac{5}{2}$\\\\\n$\\because$ point M is the midpoint of CD,\\\\\n$\\therefore$DM=MC,\\\\\n$\\therefore$MN=$\\frac{1}{2}AD=1$\\\\\n$\\therefore$BM$\\leq$BN+NM,\\\\\n$\\therefore$BM$\\leq\\frac{5}{2}+1=\\boxed{\\frac{7}{2}}$,\\\\\ni.e., the maximum value of BM is $\\frac{7}{2}$.", -"solution_image": [ -"solution_images/53147806_480.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53147978": { -"question": "As shown in the figure, points $A, B, C$ are on the circle $\\odot O$, $\\angle B=55^\\circ$, and $\\angle BOC=70^\\circ$. What is the measure of $\\angle C$ in degrees?", -"image_file_name": "7058773", -"image": [ -"math/53147978_493.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BOC=70^\\circ$ and it subtends the same arc $\\overset{\\frown}{BC}$,\\\\\nit follows that $\\angle A=\\frac{1}{2}\\angle BOC=35^\\circ$,\\\\\nSince $\\angle B+\\angle A+\\angle BDA=180^\\circ$,\\\\\nit follows that $\\angle ADB=90^\\circ$,\\\\\nand hence $\\angle ODC=90^\\circ$,\\\\\ntherefore $\\angle C=180^\\circ-\\angle ODC-\\angle BOC=20^\\circ$.\\\\\nThus, the answer is: $\\boxed{20}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53066061": { -"question": "As shown in the figure, let $\\odot O$ have a diameter $AB=6$, with $CD$ being a chord of $\\odot O$ and $CD\\perp AB$ at the perpendicular foot $P$. Connect $AC$ and $AD$. If $\\triangle ACD$ is an equilateral triangle, what is the length of $CD$?", -"image_file_name": "7058773", -"image": [ -"math/53066061_505.png" -], -"solution": "\\textbf{Solution:} Connect $OC$, as shown in the diagram:\\\\\n$\\because$ $CD\\perp AB$,\\\\\n$\\therefore$ $PC=PD=\\frac{1}{2}CD$, $\\angle OPC=90^\\circ$,\\\\\n$\\because$ the diameter $AB$ of $\\odot O$ is $6$,\\\\\n$\\therefore$ $OC=3$,\\\\\n$\\because$ $\\triangle ACD$ is an equilateral triangle,\\\\\n$\\therefore$ $\\angle COP=60^\\circ$, $\\angle OCP=30^\\circ$,\\\\\n$\\therefore$ $OP=\\frac{3}{2}$,\\\\\nBy the Pythagorean theorem we get:\\\\\n$PC=\\sqrt{OC^{2}-OP^{2}}=\\sqrt{3^{2}-\\left(\\frac{3}{2}\\right)^{2}}=\\sqrt{\\frac{27}{4}}=\\frac{3\\sqrt{3}}{2}$,\\\\\n$\\therefore$ $CD=2PC=\\boxed{3\\sqrt{3}}$.", -"solution_image": [ -"solution_images/53066061_501.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53059867": { -"question": " The cross-section of a drainpipe is shown in the figure below. Given that the radius of the drainpipe is $OB=10$, and the width of the water surface $AB=12$. If more water is added, such that the width of the water surface $AB$ changes to $16$, then by how much does the height of the water surface $AB$ increase?", -"image_file_name": "7058773", -"image": [ -"math/53059867_510.png" -], -"solution": "\\textbf{Solution:} Given $EF \\parallel AB$, $EF=16$. Draw $OC \\perp AB$ at point $C$, intersecting $EF$ at point $G$. Connect $OE$.\n\n$\\therefore OC \\perp EF$,\n\n$\\therefore \\angle OGE=\\angle OCB=90^\\circ$, $BC=\\frac{1}{2}AB=6$, $EG=\\frac{1}{2}EF=8$,\n\nIn $\\triangle OCB$, $OC=\\sqrt{OB^{2}-CB^{2}}=\\sqrt{10^{2}-6^{2}}=8$;\n\nIn $\\triangle EOG$, $OG=\\sqrt{OE^{2}-EG^{2}}=\\sqrt{10^{2}-8^{2}}=6$\n\nWhen $EF$ and $AB$ are on the same side of the center $O$, $CG=OC-OG=8-6=2$;\n\nWhen $EF$ and $AB$ are on opposite sides of the center $O$, $CG=OC+OG=8+6=14$;\n\n$\\therefore$ When the width of the water surface $AB$ changes to 16, the height by which the water surface $AB$ rises is $\\boxed{2}$ or 14.", -"solution_image": [ -"solution_images/53059867_510.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53110758": { -"question": "As shown in the figure, points A, B, and C are all on $\\odot O$. If $\\angle AOC = \\angle ABC$, then what is the degree measure of $\\angle A + \\angle C$?", -"image_file_name": "7058773", -"image": [ -"math/53110758_523.png" -], -"solution": "\\paragraph{Solution:} Let's look at the diagram: Select a point $D$ on the major arc $AC$, and connect $AD$ and $CD$, \\\\\n$\\therefore$ $\\angle ADC=\\frac{1}{2}\\angle AOC$, $\\angle ADC+\\angle ABC=180^\\circ$\\\\\n$\\because$ $\\angle AOC=\\angle ABC$\\\\\n$\\therefore$ $\\frac{1}{2}\\angle ABC+\\angle ABC=180^\\circ$, which yields: $\\angle ABC=120^\\circ$\\\\\n$\\because$ in quadrilateral $ABCD$\\\\\n$\\therefore$ $\\angle A+\\angle C+\\angle ABC+\\angle AOC=360^\\circ$\\\\\n$\\therefore$ $\\angle A+\\angle C=360^\\circ-2\\angle ABC=\\boxed{120^\\circ}$.", -"solution_image": [ -"solution_images/53110758_521.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53043223": { -"question": "As shown in the figure, $PM$ and $PN$ are tangent to $\\odot O$ at points $A$ and $B$ respectively, and $C$ is a point on $\\odot O$ that is different from $A$ and $B$. Connect $AC$ and $BC$. If $\\angle P=58^\\circ$, what is the measure of $\\angle ACB$ in degrees?", -"image_file_name": "7058773", -"image": [ -"math/53043223_5311.png" -], -"solution": "\\textbf{Solution:} Connect $OA$ and $OB$ as shown in the figure:\\\\\nSince $PM$ and $PN$ are tangent to circle $O$ at points A and B, respectively,\\\\\nit follows that $OA\\perp PA$ and $OB\\perp PB$,\\\\\nhence $\\angle OAP=\\angle OBP=90^\\circ$,\\\\\nthus $\\angle AOB=360^\\circ-90^\\circ-90^\\circ-58^\\circ=122^\\circ$,\\\\\nWhen point C is on the major arc $AB$, $\\angle ACB=\\frac{1}{2}\\angle AOB=\\frac{1}{2}\\times 122^\\circ=\\boxed{61^\\circ}$,\\\\\nWhen point C is on the minor arc $AB$, $\\angle ACB=180^\\circ-61^\\circ=\\boxed{119^\\circ}$.", -"solution_image": [ -"solution_images/53043223_532.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53042889": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in the circle $\\odot O$. If one of its exterior angles $\\angle DCE=68^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7058773", -"image": [ -"math/53042889_544.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is inscribed in circle O,\\\\\nit follows that $\\angle A = \\angle DCE = 68^\\circ$,\\\\\nby the Inscribed Angle Theorem, we find $\\angle BOD = 2\\angle A = \\boxed{136^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53042887": { -"question": "As shown in the figure, the radius of the semicircle is 5. The vertex of the $30^\\circ$ angle of the triangle plate is placed on the semicircle, and the two sides of this angle intersect with the semicircle at points A and B, respectively. What is the length of $AB$?", -"image_file_name": "7058773", -"image": [ -"math/53042887_551.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\nlet point O be the center of the circle, connect $AO$, $BO$,\\\\\n$\\therefore$ $AO=BO=5$,\\\\\n$\\because$ $\\angle ACB=30^\\circ$,\\\\\n$\\therefore$ $\\angle AOB=60^\\circ$,\\\\\n$\\therefore$ $\\triangle AOB$ is an equilateral triangle,\\\\\n$\\therefore$ $AB=AO=BO=\\boxed{5}$.", -"solution_image": [ -"solution_images/53042887_550.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53043258": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $BE$ being the diameter of circle $\\odot O$. Connect $AE$ and $BD$. If $\\angle BCD=115^\\circ$, what is the measure of $\\angle EBD$?", -"image_file_name": "7058773", -"image": [ -"math/53043258_562.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is inscribed in circle $O$, and $\\angle BCD=115^\\circ$, \\\\\nit follows that $\\angle BAD=180^\\circ-115^\\circ=65^\\circ$\\\\\nDraw line DE, \\\\\nSince arc $\\overset{\\frown}{BD}=\\overset{\\frown}{BD}$, \\\\\nit follows that $\\angle BED=65^\\circ$\\\\\nSince BE is the diameter of circle $O$, \\\\\nit follows that $\\angle BDE=90^\\circ$\\\\\nTherefore, $\\angle EBD=90^\\circ-65^\\circ=\\boxed{25^\\circ}$", -"solution_image": [ -"solution_images/53043258_563.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53102184": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and $C$, $D$ are two points on $\\odot O$. If $\\angle BAC=40^\\circ$, then what is the degree measure of $\\angle ADC$?", -"image_file_name": "7058773", -"image": [ -"math/53102184_577.png" -], -"solution": "\\textbf{Solution:} Connect $CB$, \\\\\n$\\because$ $AB$ is the diameter of $\\odot O$, $\\angle BAC = 40^\\circ$\\\\\n$\\therefore$ $\\angle ACB = 90^\\circ$, \\\\\n$\\because$ $\\angle BAC = 40^\\circ$, \\\\\n$\\therefore$ $\\angle CBA = 50^\\circ$, \\\\\n$\\because$ quadrilateral $ABCD$ is inscribed in $\\odot O$, \\\\\n$\\therefore$ $\\angle ADC + \\angle CBA = 180^\\circ$, \\\\\n$\\therefore$ $\\angle ADC = \\boxed{130^\\circ}$.", -"solution_image": [ -"solution_images/53102184_570.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51918111": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=6$, $BC=8$. $\\triangle ABC$ is rotated counterclockwise about point $A$ to obtain $\\triangle AB'C'$, such that point $C'$ falls on side $AB$. When connecting $BB'$, what is the value of $\\sin\\angle BB'C'$?", -"image_file_name": "7058811", -"image": [ -"math/51918111_465.png" -], -"solution": "\\textbf{Solution:} Because $\\angle C=90^\\circ$, $AC=6$, and $BC=8$, \\\\\ntherefore $AB=\\sqrt{AC^{2}+BC^{2}}=10$, \\\\\nAlso, because $AC'=AC=6$, \\\\\ntherefore $BC'=AB-AC'=4$, \\\\\nBecause $B'C'=BC=8$, $\\angle B'C'B=90^\\circ$, \\\\\ntherefore $BB'=\\sqrt{B'C'^{2}+BC'^{2}}=4\\sqrt{5}$, \\\\\ntherefore $\\sin\\angle BB'C'=\\frac{BC'}{BB'}=\\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51918252": { -"question": "There is a rectangular piece of paper ABCD, with the known dimensions $AB=2\\sqrt{2}$ and $AD=4$. On it, there is a semicircle with $AD$ as the diameter (as shown in Figure 1). Let $E$ be a point on side $AB$. When the paper is folded along $DE$ such that point $A$ exactly falls on $BC$, what is the area of the part of the semicircle that is still exposed (as shown in Figure 2, the shaded area)?", -"image_file_name": "7058811", -"image": [ -"math/51918252_471.png" -], -"solution": "\\textbf{Solution:} Let the center of the circle containing the shaded region be $O$, and let $AD$ intersect the semicircle at point $F$, as shown in the figure. Connect $OF$,\n\nBy the property of folds, we know: $AD=BC=4$,\n\nBy the property of rectangles, we know: $CD=AB=2\\sqrt{2}$, $\\angle DCA=90^\\circ$,\n\n$\\therefore AC=\\sqrt{AD^{2}-CD^{2}}=\\sqrt{4^{2}-(2\\sqrt{2})^{2}}=2\\sqrt{2}=CD$,\n\n$\\therefore \\triangle ADC$ is an isosceles right triangle,\n\n$\\therefore \\angle DAC=45^\\circ$,\n\nBecause $OD\\parallel BC$,\n\n$\\therefore \\angle ODF=\\angle DAC=45^\\circ$,\n\nBecause $OD=OF=2$,\n\n$\\therefore \\angle OFD=\\angle ODF=45^\\circ$,\n\n$\\therefore \\angle DOF=180^\\circ-45^\\circ-45^\\circ=90^\\circ$,\n\n$\\therefore S_{\\text{shaded}}=S_{\\text{sector} DOF}-S_{\\triangle DOF}=\\frac{90^\\circ \\pi \\times 2^{2}}{360}-\\frac{1}{2}\\times 2\\times 2=\\boxed{\\pi -2}$.", -"solution_image": [ -"solution_images/51918252_470.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51910252": { -"question": "As illustrated, $\\triangle OAB$ and $\\triangle ODC$ are similar figures with point O as the center of similarity and a similarity ratio of $1\\colon2$. $\\angle OCD=90^\\circ$, and $CO=CD$. If $A(1, 0)$, what are the coordinates of point C?", -"image_file_name": "7058811", -"image": [ -"math/51910252_485.png" -], -"solution": "\\textbf{Solution:} Draw line $AC$, \\\\\nsince $CO=CD$ and $\\angle OCD=90^\\circ$, \\\\\ntherefore $\\triangle OCD$ is an isosceles right triangle, \\\\\nthus $\\angle COD=45^\\circ$, \\\\\nsince $\\triangle OAB$ and $\\triangle ODC$ are similar figures with center of similarity at $O$ and a similarity ratio of $1:2$, \\\\\nthus $2OA=OD$, and $\\triangle OAB$ is an isosceles right triangle, \\\\\nhence $A$ is the midpoint of $OD$, \\\\\ntherefore $AC \\perp OD$ (the three lines of an isosceles triangle coincide), \\\\\nthus $\\triangle OAC$ is an isosceles right triangle, \\\\\nsince $A(1,0)$, \\\\\nthus $OA=AC=1$, \\\\\nhence the coordinates of point $C$ are $\\boxed{(1,1)}$.", -"solution_image": [ -"solution_images/51910252_480.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52344564": { -"question": "In the figure, in $\\triangle ABC$, $\\angle B=40^\\circ$. If $\\triangle ABC$ is rotated counterclockwise around point A to $\\triangle ADE$, such that point B falls on point D, which is on the extension line of BC, then what is the measure of $\\angle BDE$?", -"image_file_name": "7058811", -"image": [ -"math/52344564_490.png" -], -"solution": "\\textbf{Solution:} Since it is known from the property of rotation that $AB=AD$ and $\\angle ADE=\\angle B=40^\\circ$, in $\\triangle ABD$, as $AB=AD$, according to the property of isosceles triangles, we have $\\angle ADB=\\angle B=40^\\circ$. Therefore, $\\angle BDE=\\angle ADE+\\angle ADB=80^\\circ$.\\\\\nHence, the answer is: $\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51999252": { -"question": " In $\\triangle ABC$, $\\angle C = 90^\\circ$, $AC = 3$, and points $D$ and $E$ are located on sides $AC$ and $AB$ respectively. $\\triangle ADE$ is folded along line $DE$ such that point $A$ lands on side $BC$, denoted as point $F$. If $CF=1$ and $DF \\parallel AB$, what is the length of $AB$?", -"image_file_name": "7058811", -"image": [ -"math/51999252_5015.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ADE$ is folded along the line de, point A falls on side BC, denoted as point F, with CF=1,\\\\\nlet $DC=x$, then $DF=3-x$,\\\\\nIn $Rt\\triangle DCF$,\\\\\n$DC^2+FC^2=DF^2$,\\\\\nwe get $x^2+1^2=(3-x)^2$,\\\\\nSolving this gives: $x=\\frac{4}{3}$, so $DF=3-\\frac{4}{3}=\\frac{5}{3}$,\\\\\nBecause $DF\\parallel AB$,\\\\\n$\\triangle DCF \\sim \\triangle ACB$,\\\\\nthus $\\frac{DC}{AC}=\\frac{DF}{AB}$,\\\\\nwhich gives $\\frac{\\frac{4}{3}}{3}=\\frac{\\frac{5}{3}}{AB}$,\\\\\nSolved to get: $AB=\\boxed{\\frac{15}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53839196": { -"question": "As shown in the figure, in the Cartesian coordinate system, $\\triangle OAB$ is an isosceles right-angled triangle with $\\angle OAB=90^\\circ$. The coordinate of point B is $(0, 2\\sqrt{2})$, and point A is in the first quadrant. When the triangle is translated to the right along the $x$ axis to get $\\triangle O'B'C$, the coordinate of point B' is $(2\\sqrt{2}, 2\\sqrt{2})$. What is the area of the region swept by $\\triangle OAB$ during the translation process?", -"image_file_name": "7058811", -"image": [ -"math/53839196_513.png" -], -"solution": "\\textbf{Solution:} Given that the coordinates of point B' are $(2\\sqrt{2}, 2\\sqrt{2})$, and after shifting the triangle along the x-axis to the right, we obtain the right-angled triangle $\\triangle O'B'C$, \\\\\n$\\therefore$AC=BB'=$2\\sqrt{2}$,\\\\\n$\\because$ $\\triangle OAB$ is an isosceles right-angled triangle,\\\\\n$\\therefore$ the coordinates of A are $(\\sqrt{2}, \\sqrt{2})$, and OA=AB=O'C=CB'=2,\\\\\n$\\therefore$ the area of the shape swept by $\\triangle OAB$ during the shifting process is: $2\\sqrt{2}\\times 2\\sqrt{2}+\\frac{1}{2}\\times 2\\times 2=\\boxed{10}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53308228": { -"question": "As shown in the diagram, place a square grid on the Cartesian plane, where each small square has a side length of 1. $\\triangle ABC$ is translated to $\\triangle A_1B_1C_1$. If a point $P(1.2, 1.4)$ on $AC$ corresponds to point $P_1$ after the translation, and point $P_1$ rotates $180^\\circ$ clockwise around the origin to correspond to point $P_2$, what are the coordinates of point $P_2$?", -"image_file_name": "7058811", -"image": [ -"math/53308228_520.png" -], -"solution": "\\textbf{Solution:} Since point A moves down by 5 and left by 4 to get to point ${A}^{\\prime}$, \\\\\ntherefore, by undergoing the same movement, point P reaches the coordinates of P$_{1}$, \\\\\nsince the coordinates of P are $(1.2, 1.4)$, \\\\\nthus $1.2-4 = -2.8$ and $1.4-5 = -3.6$, \\\\\nmeaning the coordinates for point P$_{1}$ are $(-2.8, -3.6)$, \\\\\nsince point P$_{1}$ rotates clockwise by $180^\\circ$ around the origin to get to point P$_{2}$, \\\\\ntherefore, P$_{2}$ and P$_{1}$ are symmetric about the origin, \\\\\nhence, the coordinates of point P$_{2}$ are $\\boxed{(2.8, 3.6)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium" -}, -"53308020": { -"question": "In real life, we often see many \"standard\" rectangles, such as the covers of our textbooks, A4 printing paper, etc. In fact, the ratio of the length to the width of these rectangles is $\\sqrt{2}: 1$. We might as well call such rectangles \"standard rectangles\". In the \"standard rectangle\" $ABCD$, as shown in the figure, point $Q$ is on $DC$, and $DQ=AD$. If $G$ is a moving point on side $BC$, when the perimeter of $\\triangle AGQ$ is minimized, what is the value of $\\frac{CG}{GB}$?", -"image_file_name": "7058811", -"image": [ -"math/53308020_539.png" -], -"solution": "\\textbf{Solution:} Let DC=$\\sqrt{2}x$, DQ=AD=$x$,\\\\\n$\\therefore$ $CQ=(\\sqrt{2}-1)x$\\\\\n$\\because$ In rectangle ABCD,\\\\\n$\\therefore$ $\\angle D=\\angle DCB=\\angle B=90^\\circ$, $AB=DC=\\sqrt{2}x$, $BC=AD=x$,\\\\\n$\\therefore$ $AQ=\\sqrt{AD^2+DQ^2}=\\sqrt{2}x$,\\\\\nAs shown in the figure, construct the symmetric point E of point Q with respect to BC, and connect AE to intersect BC at point M,\\\\\n$\\therefore$ GQ=GE, CQ=CE=$(\\sqrt{2}-1)x$\\\\\n$\\therefore$ AQ+QG+AG=$\\sqrt{2}x+AG+EG\\ge \\sqrt{2}x+AE$,\\\\\n$\\therefore$ When points A, G, and E are collinear, the perimeter of $\\triangle AGQ$ is minimized,\\\\\nAt this time, point G should be located at point M in the figure;\\\\\n$\\because$ In rectangle ABCD, $\\angle QCG=90^\\circ$,\\\\\n$\\therefore$ Point E lies on the extension line of QC,\\\\\n$\\therefore$ CE$\\parallel$AB,\\\\\n$\\therefore$ $\\frac{CM}{MB}=\\frac{CE}{AB}=\\frac{(\\sqrt{2}-1)x}{\\sqrt{2}x}=\\frac{2-\\sqrt{2}}{2}$,\\\\\nwhich means $\\frac{CG}{GB}=\\boxed{\\frac{2-\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/53308020_534.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51817979": { -"question": "As shown in the rectangle $ABCD$, where $AB = 6$, $AD = 10$, point $E$ is moving on side $AD$. If triangle $DEC$ is folded along $EC$ such that point $D$ is placed at point $D'$, and if there exists a relationship between two sides of triangle $DEC$ where one side is twice the length of the other, what is the distance from point $D'$ to side $AD$?", -"image_file_name": "7058811", -"image": [ -"math/51817979_540.png" -], -"solution": "Solution:Let's solve the problem step by step. \n(1) When $DE=\\frac{1}{2}CE$, construct $D'H\\perp AD$ at H, as shown in the diagram: \\\\\nSince rectangle ABCD, AB=6, \\\\\n$\\therefore$$\\angle$D=$90^\\circ$, CD=6, \\\\\nIn $\\triangle DCE$, $DE^{2}+CD^{2}=CE^{2}$, CD=6, $DE=\\frac{1}{2}CE$, \\\\\n$\\therefore$$DE^{2}+{6}^{2}=(2DE)^{2}$, \\\\\n$\\therefore$$DE=2\\sqrt{3}$, \\\\\nSince $DE=\\frac{1}{2}CE$, $\\angle$D=$90^\\circ$, \\\\\n$\\therefore$$\\angle$DCE=$30^\\circ$, $\\angle$DEC=$60^\\circ$, \\\\\nSince $\\triangle DEC$ is folded along EC causing D to fall on D', \\\\\n$\\therefore$$\\angle$D'EC=$\\angle$DEC=$60^\\circ$, $D'E=2\\sqrt{3}$, \\\\\n$\\therefore$$\\angle$D'EH=$180^\\circ$-$\\angle D'EC-\\angle$DEC=$60^\\circ$, in right $\\triangle D'HE$, $D'H=D'E\\cdot\\sin\\angle D'EH=2\\sqrt{3}\\times \\sin60^\\circ=3$; \\\\\n(2) When $DE=\\frac{1}{2}DC$, construct D'H$\\perp$AD at H, extend HD' to intersect BC at F, as shown in the diagram: \\\\\nIn right $\\triangle DCE$, $DE^{2}+CD^{2}=CE^{2}$, CD=6, $DE=\\frac{1}{2}CD$, \\\\\n$\\therefore$$DE=3$, $CE=3\\sqrt{5}$, \\\\\nSince $\\triangle DEC$ is folded along EC causing D to fall on D', \\\\\n$\\therefore$$\\angle$ED'C=$\\angle$D=$90^\\circ$, DE=D'E, CD=CD', \\\\\n$\\therefore$$\\angle$HD'E=$90^\\circ$-$\\angle$FD'C=$\\angle$FCD', \\\\\nand $\\angle$D'HE=$\\angle$CFD'=$90^\\circ$, \\\\\n$\\therefore$$\\triangle D'HE\\sim \\triangle CFD'$, \\\\\n$\\therefore$$\\frac{HE}{D'F}=\\frac{D'H}{CF}=\\frac{D'E}{CD'}$, \\\\\nSince $DE=\\frac{1}{2}DC$, \\\\\n$\\therefore$$\\frac{DE}{DC}=\\frac{1}{2}$, \\\\\n$\\therefore$$\\frac{HE}{D'F}=\\frac{D'H}{CF}=\\frac{D'E}{CD'}=\\frac{1}{2}$, \\\\\nLet HE=x, D'H=y, then D'F=2x, CF=2y, \\\\\nSince D'H$\\perp$AD, and ABCD is a rectangle, \\\\\n$\\therefore$Quadrilateral HFCD is a rectangle, \\\\\n$\\therefore$$\\begin{cases} 2x+y=6 \\\\ 2y=3+x \\end{cases}$ \\\\\nSolving gives $y=\\frac{12}{5}$, \\\\\n$\\therefore$D'H=$\\boxed{\\frac{12}{5}}$; \\\\\n(3) When $DC=\\frac{1}{2}CE$, construct $D'H\\perp AD$ at H, as shown in the diagram: \\\\\nIn right $\\triangle DCE$, $DE^{2}+CD^{2}=CE^{2}$", -"solution_image": [ -"solution_images/51817979_542.png", -"solution_images/51817979_5414.png", -"solution_images/51817979_5433.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51708611": { -"question": "As illustrated, a square OABC with a side length of 3 rotates counterclockwise by $n^\\circ$ ($00)$, hence $OM=OA-AM=a-1$, $ON=AN+OA=4+a$, \\\\\n$\\therefore B(1-a, 4)$, $C(-4-a, 1)$, \\\\\nSubstituting points $B(1-a, 4)$, $C(-4-a, 1)$ into the inverse proportion function $y=\\frac{k}{x}$ yields: $4(1-a)=k=-4-a$, \\\\\nSolving, we get $a=\\frac{8}{3}$, \\\\\nThus, $k=-4-a=-4-\\frac{8}{3}=\\boxed{-\\frac{20}{3}}$.", -"solution_image": [ -"solution_images/51496547_770.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445135": { -"question": "As shown in the figure, $A(-1, 6)$ is a point on the hyperbola $y=\\frac{k}{x}$ $(x<0)$. Let $P$ be a point on the positive half of the $y$-axis. Rotating point $A$ counterclockwise by $90^\\circ$ around point $P$ precisely lands it on another point $B$ on the hyperbola. What are the coordinates of point $B$?", -"image_file_name": "7058811", -"image": [ -"math/51445135_789.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AM \\perp OM$ at point M through point A, and draw $BN \\perp OM$ at point N through point B, \\\\\n$\\therefore \\angle PMA = \\angle BNP = 90^\\circ$, \\\\\n$\\because$ Rotating point A $90^\\circ$ counterclockwise around point P precisely lands on another point B on the hyperbola, \\\\\n$\\therefore PA=PB$, $\\angle APB=90^\\circ$, \\\\\n$\\therefore \\angle APM + \\angle BPN = \\angle BPN + \\angle PBN = 90^\\circ$, \\\\\n$\\therefore \\angle APM = \\angle PBN$, \\\\\n$\\therefore \\triangle APM \\cong \\triangle BNP$ (AAS), \\\\\n$\\therefore AM=PN$, $PM=BN$, \\\\\n$\\because$ Point A $(-1,6)$ lies on the hyperbola $y=\\frac{k}{x}$ ($x>0$), \\\\\n$\\therefore k = -1 \\times 6 = -6$, $AM=PN=1$, \\\\\nLet point P be $(m,0)$, then $OP=m$, \\\\\n$\\therefore PM=BN=6-m$, $ON=OP-PN=m-1$, \\\\\n$\\therefore$ The coordinates of point B are $(m-6, m-1)$, \\\\\n$\\therefore k = (m-6) \\cdot (m-1) = -6$, solving for $m$ gives $m=3$ or $m=4$, \\\\\n$\\therefore$ The coordinates of point B are $\\boxed{(-3, 2)}$ or $\\boxed{(-2, 3)}$.", -"solution_image": [ -"solution_images/51445135_780.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445131": { -"question": "As shown, the $\\triangle ODC$ is obtained by rotating $\\triangle OAB$ clockwise by $30^\\circ$ around point $O$. If point $D$ falls exactly on $AB$, and the measure of $\\angle AOC$ is $100^\\circ$, then what is the measure of $\\angle B$?", -"image_file_name": "7058811", -"image": [ -"math/51445131_799.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ODC$ is rotated clockwise by $30^\\circ$ around point O to get $\\triangle OAB$,\\\\\nit follows that AO=DO, and $\\angle AOD=\\angle BOC=30^\\circ$,\\\\\nhence $\\angle A=\\angle ADO=(180^\\circ-30^\\circ)\\div 2=75^\\circ$,\\\\\nGiven that $\\angle AOC=100^\\circ$,\\\\\nit then follows that $\\angle DOB=\\angle AOC-\\angle AOD-\\angle BOC=100^\\circ-30^\\circ-30^\\circ=40^\\circ$,\\\\\nSince $\\angle ADO=\\angle B+\\angle DOB$,\\\\\nit follows that $\\angle B=\\angle ADO-\\angle DOB=75^\\circ-40^\\circ=\\boxed{35^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50360712": { -"question": "As shown in the figures, two triangles of different sizes are each chosen and overlaid as in Figure 1 (with the right-angled vertices coinciding). It is given that $ \\angle A=45^\\circ$, $ \\angle CDE=30^\\circ$, and $ CE:BC=1:\\sqrt{6}$. After rotating $ \\triangle DCE$ $45^\\circ$ clockwise around point $ C$, line $ ED$ intersects line $ AC$ at point $ O$. What is the ratio of $ OA:OC$?", -"image_file_name": "7058811", -"image": [ -"math/50360712_809.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw OF $\\perp$ CE through O,\\\\\nby the property of rotation, we have $\\angle$OCE$=45^\\circ$,\\\\\nin $\\triangle OEF$,\\\\\nsince $\\angle$CDE$=30^\\circ$,\\\\\nthus $\\angle$OEF$=60^\\circ$,\\\\\ntherefore OF$=EF\\tan\\angle$OEF$= \\sqrt{3}EF$,\\\\\nthus OF$=CF= \\sqrt{3}EF$, and $OC=\\sqrt{OF^{2}+CF^{2}}=\\sqrt{6}EF$,\\\\\ntherefore CE$=EF+CF= (\\sqrt{3}+1)EF$,\\\\\ntherefore $\\frac{CE}{OC}=\\frac{(\\sqrt{3}+1)EF}{\\sqrt{6}EF}=\\frac{\\sqrt{3}+1}{\\sqrt{6}}$,\\\\\nsince CE$\\colon BC=1\\colon \\sqrt{6}$,\\\\\nthus $\\frac{BC}{OC}=\\frac{BC}{CE} \\cdot \\frac{CE}{OC}=\\sqrt{6} \\times \\frac{\\sqrt{3}+1}{\\sqrt{6}}=\\sqrt{3}+1$,\\\\\nthus $\\frac{OA}{OC}=\\frac{AC-OC}{OC}=\\frac{AC}{OC}-1=\\frac{BC}{OC}-1=\\boxed{\\sqrt{3}}$,\\\\\nthus $OA\\colon OC=\\sqrt{3}$.", -"solution_image": [ -"solution_images/50360712_800.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50322995": { -"question": "As shown in the figure, $O$ is the center of symmetry of $\\square ABCD$, point $E$ is on the side $BC$, $AD=7$, and $BE=3$. Rotate $\\triangle ABE$ around point $O$ by $180^\\circ$. Let the corresponding point of $E$ be $E'$. What is the value of $\\frac{S_{\\triangle AEE'}}{S_{\\square ABCD}}$?", -"image_file_name": "7058811", -"image": [ -"math/50322995_813.png" -], -"solution": "\\textbf{Solution:} Construct $\\triangle CD{E}^{\\prime }$ to be symmetrical to $\\triangle ABE$ with respect to point O, and connect $EE^{\\prime}$.\n\nSince $\\triangle CD{E}^{\\prime }$ is symmetrical to $\\triangle ABE$ with respect to point O,\n\nit follows that $BE=DE^{\\prime }=3$,\n\nGiven that $AD=7$,\n\nit follows that $AE^{\\prime }=4$,\n\nLet the height of quadrilateral $ABCD$ be $h$,\n\nthen the height of $\\triangle AE{E}^{\\prime }$ is also equal to $h$,\n\nThus, $\\frac{S_{\\triangle AE{E}^{\\prime }}}{S_{\\square ABCD}}=\\frac{\\frac{1}{2}\\times 4h}{7h}=\\boxed{\\frac{2}{7}}.$", -"solution_image": [ -"solution_images/50322995_813.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50322886": { -"question": "As shown in the figure, in the square $ABCD$, $\\triangle ABC$ is rotated counterclockwise around point $A$ to obtain $\\triangle AB'C'$, with $AB'$ and $AC'$ intersecting the diagonal $BD$ at points $E$ and $F$, respectively. If $AE=6$, what is the value of $EF\\cdot ED$?", -"image_file_name": "7058811", -"image": [ -"math/50322886_8211.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a square,\\\\\nit follows that $\\angle BAC=\\angle ADB=45^\\circ$, \\\\\nsince triangle ABC is rotated counterclockwise around point A to obtain triangle $AB'C'$, \\\\\nit follows that $\\angle EAF=\\angle BAC=45^\\circ$, \\\\\nsince $\\angle AEF=\\angle DEA$, \\\\\nit follows that $\\triangle AEF\\sim \\triangle DEA$\\\\\ntherefore $\\frac{AE}{DE}=\\frac{EF}{AE}$, \\\\\ntherefore $EF\\cdot ED=AE^{2}$, \\\\\nsince $AE=6$, \\\\\ntherefore, the value of $EF\\cdot ED$ is $\\boxed{36}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51578585": { -"question": "As shown in the figure, rectangle $ABCD$ is folded along diagonal $BD$, and point $C$ lands on point $E$. Connect $CE$ and intersect side $AD$ at point $F$. If $DF=1$ and $BC=4$, what is the length of $AE$?", -"image_file_name": "7058811", -"image": [ -"math/51578585_830.png" -], -"solution": "\\textbf{Solution:} Based on the property of folding, we have $CE\\perp BD$,\\\\\n$\\therefore \\angle ADB + \\angle DFC = 90^\\circ$\\\\\n$\\because$ Quadrilateral $ABCD$ is a rectangle,\\\\\n$\\therefore \\angle ADC = \\angle BCD = 90^\\circ$,\\\\\n$\\therefore \\angle ADB + \\angle CDB = 90^\\circ$,\\\\\n$\\therefore \\angle CDB = \\angle DFC$,\\\\\n$\\because \\angle CDF = \\angle BCD = 90^\\circ$,\\\\\n$\\therefore \\triangle CDF \\sim \\triangle BCD$,\\\\\n$\\therefore \\frac{FD}{CD} = \\frac{CD}{BC}$, i.e., $\\frac{1}{CD} = \\frac{CD}{4}$\\\\\n$\\therefore CD = 2$ (discarding the negative value)\\\\\n$\\because$ Quadrilateral $ABCD$ is a rectangle, $\\triangle BED$ is obtained by folding $\\triangle BCD$,\\\\\n$\\therefore BC = BE = AD$, $\\angle CBD = \\angle DBE$, $AD \\parallel BC$,\\\\\n$\\therefore \\angle ADB = \\angle DBC$,\\\\\n$\\therefore \\angle ADB = \\angle DBE$,\\\\\n$\\therefore \\angle EAD = \\angle ADB = \\angle DBC$,\\\\\n$\\therefore AE \\parallel BD$,\\\\\n$\\therefore CE \\perp AE$,\\\\\nIn $\\triangle DCB$, $\\tan \\angle DBC = \\frac{CD}{BC} = \\frac{2}{4} = \\frac{1}{2}$,\\\\\n$\\because \\angle EAD = \\angle DBC$\\\\\n$\\therefore \\tan \\angle EAD = \\frac{1}{2}$\\\\\nIn $\\triangle AEF$, $EF = \\frac{1}{2}AE$\\\\\nBy the Pythagorean theorem, $AE^2 = AF^2 - EF^2$\\\\\ni.e., $AE^2 = (AD - FD)^2 - \\left(\\frac{1}{2}AE\\right)^2$\\\\\n$\\therefore AE^2 = (4 - 1)^2 - \\frac{1}{4}AE^2$\\\\\nSolving yields: $AE = \\boxed{\\frac{6\\sqrt{5}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51531726": { -"question": "As shown in the figure, quadrilateral $ABCD$ is a rectangular piece of paper, with $AB=4$. Point $G$ is the midpoint of $CD$. First, fold the rectangular paper $ABCD$ along a straight line passing through point $B$ such that point $A$ lands on point $F$ on $BC$, with the fold line being $BE$. Then, unfold the paper. Next, fold the rectangular paper $ABCD$ along $BG$ so that point $C$ precisely lands on point $H$ on $BE$, with the fold line being $BG$. After unfolding the paper, connect $EF$, $HG$, and $BG$. What is the length of $BC$?", -"image_file_name": "7058811", -"image": [ -"math/51531726_840.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $EG$. Due to the properties of folding, it is known that quadrilateral $ABFE$ is a square and quadrilateral $CDEF$ is a rectangle.\\\\\n$\\therefore$AB=AE=4, $BH=BC$, $\\angle BHG=\\angle BCD=90^\\circ$, $CG=HG$.\\\\\n$\\because$ $AB=4$,\\\\\n$\\therefore$ $BE=\\sqrt{AB^2+AE^2}=\\sqrt{4^2+4^2}=4\\sqrt{2}$.\\\\\nAlso, $\\because$ point $G$ is the midpoint of $CD$,\\\\\n$\\therefore$ $CG=HG=DG=2$.\\\\\nIn $Rt\\ \\triangle EHG$ and $Rt\\ \\triangle EDG$,\\\\\n$\\left\\{\\begin{array}{l}HG=DG,\\\\ EG=EG,\\end{array}\\right.$\\\\\n$\\therefore$ $Rt\\ \\triangle EHG\\cong Rt\\ \\triangle EDG$ (HL).\\\\\n$\\therefore$ $EH=ED=FC$.\\\\\nLet $FC=x$, then $BH=BC=4x$.\\\\\n$\\therefore$ $BE=4+2x$. By $4+2x=4\\sqrt{2}$,\\\\\nwe solve to get $x=2\\sqrt{2}-2$.\\\\\n$\\therefore$ $BC=\\boxed{2\\sqrt{2}+2}$.", -"solution_image": [ -"solution_images/51531726_841.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"50583927": { -"question": "As shown in the diagram, a right-angled triangle paper has its two right-angled sides measuring $6$ and $8$, respectively. Now, it is folded such that point $A$ coincides with point $B$, with the crease being $DE$. What is the value of $DE$?", -"image_file_name": "7058811", -"image": [ -"math/50583927_850.png" -], -"solution": "Solution: According to the properties of the fold transformation, we know that $\\triangle DBE \\cong \\triangle DAE$, $\\therefore$AD=BD,\\\\\n$\\because$ the lengths of the two right-angled sides of the rectangular paper are 6 and 8, respectively, $\\therefore$AB=10, $\\tan A = \\frac{3}{4}$,\\\\\nIn $\\triangle ADE$, $DE = \\tan A \\times AD = \\boxed{\\frac{15}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53080023": { -"question": "As shown in the figure, in the isosceles $\\triangle ABC$, with $AB=AC=5$ and $BC=8$, point B is on the y-axis, $BC\\parallel x$-axis. The graph of the inverse proportional function $y=\\frac{k}{x}$ ($k>0, x>0$) passes through point A and intersects $BC$ at point D. If $AB=BD$, what is the value of $k$?", -"image_file_name": "7056499", -"image": [ -"math/53080023_117.png" -], -"solution": "\\textbf{Solution:} Given that $AB=AC=5$, $BC=8$, \\\\\n$\\therefore BE=\\frac{1}{2}BC=4$, \\\\\n$\\therefore AE=\\sqrt{AB^{2}-BE^{2}}=\\sqrt{5^{2}-4^{2}}=3$, \\\\\nLet $OB=m$, \\\\\nAs $AB=AC=5$, $AB=BD$, \\\\\n$\\therefore$ Point A's coordinates are $(4, m+3)$, and Point D's coordinates are $(5, m)$, \\\\\nSince the inverse proportion function $y=\\frac{k}{x}$ $(k>0, x>0)$ passes through point A and intersects BC at point D, \\\\\n$\\therefore \\left\\{\\begin{array}{l}m+3=\\frac{k}{4}\\\\ m=\\frac{k}{5}\\end{array}\\right.$, solving these equations yields: $m=12$, \\\\\n$\\therefore k=\\boxed{60}$.", -"solution_image": [ -"solution_images/53080023_1113.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043145": { -"question": "As shown in the figure, parallelogram $OABC$ has its side $OA$ on the $x$-axis, and vertex $C$ is on the graph of the inverse proportion function $y=\\frac{k}{x}$. $BC$ intersects the $y$-axis at point $D$, and $D$ is the midpoint of $BC$. If the area of the parallelogram $OABC$ is $8$, what is the value of $k$?", -"image_file_name": "7056499", -"image": [ -"math/53043145_121.png" -], -"solution": "\\textbf{Solution:} Since $D$ is the midpoint of $BC$, and the area of parallelogram $OABC$ is 8,\\\\\nit follows that $S_{\\triangle OCD}=\\frac{1}{4}\\times 8=2$,\\\\\nwhich means $\\frac{1}{2}\\left|k\\right|=2$,\\\\\nthus $k=\\pm 4$,\\\\\nsince the graph of the inverse proportion function is in the second quadrant,\\\\\nit follows that $k<0$,\\\\\nhence, $k=\\boxed{-4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53042850": { -"question": "As shown in the figure, the line $y=kx+b$ intersects the parabola $y=-x^2+2x+3$ at points $A$ and $B$, where point $A$ is at $(0, 3)$ and point $B$ is at $(3, 0)$. The parabola intersects the x-axis at another point $C(-1, 0)$. What is the solution set of the inequality $-x^2+2x+3>kx+b$?", -"image_file_name": "7056499", -"image": [ -"math/53042850_132.png" -], -"solution": "\\textbf{Solution:} From the graph and the problem statement, it is given that:\\\\\nThe solution set for the inequality $-x^{2}+2x+3>kx+b$ is $00)$ and vertex $B$ on the graph of $y=\\frac{-3}{x}$ $(x<0)$, then what is the degree measure of $\\angle BAO$?", -"image_file_name": "7056499", -"image": [ -"math/53043676_145.png" -], -"solution": "\\textbf{Solution:} Draw $AC \\perp x$-axis at $C$, and draw $BD \\perp x$-axis at $D$,\\\\\nthen $\\angle BDO = \\angle ACO = 90^\\circ$,\\\\\nsince the vertex $A$ is on the graph of the inverse proportion function $y=\\frac{1}{x}\\left(x>0\\right)$ and vertex $B$ is on the graph of $y=\\frac{-3}{x}\\left(x<0\\right)$,\\\\\nthus, the area ${S}_{\\triangle AOC} = \\frac{1}{2} \\cdot {x}_{A} \\cdot {y}_{A} = \\frac{1}{2} \\times 1 = \\frac{1}{2}$, and the area ${S}_{\\triangle BDO} = \\frac{1}{2} \\cdot |\\,{x}_{B} \\cdot {y}_{B}| = \\frac{1}{2} \\times |-3| = \\frac{3}{2}$,\\\\\nsince $\\angle AOB=90^\\circ$,\\\\\nthus $\\angle BOD + \\angle DBO = \\angle BOD + \\angle AOC = 90^\\circ$,\\\\\ntherefore, $\\angle DBO = \\angle AOC$,\\\\\ntherefore, $\\triangle BDO \\sim \\triangle OCA$,\\\\\ntherefore, $\\frac{{S}_{\\triangle BOD}}{{S}_{\\triangle OAC}} = \\left(\\frac{OB}{OA}\\right)^2 = \\frac{\\frac{3}{2}}{\\frac{1}{2}} = 3$,\\\\\ntherefore, $\\frac{OB}{OA} = \\sqrt{3}$,\\\\\ntherefore, $\\tan\\angle BAO = \\frac{OB}{OA} = \\sqrt{3}$,\\\\\ntherefore, $\\angle BAO = \\boxed{60^\\circ}$.", -"solution_image": [ -"solution_images/53043676_142.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043822": { -"question": "As shown in the figure, given the quadratic function $y=-x^2+2x+m$ with its partial graph illustrated, what is the solution set of the quadratic inequality $-x^2+2x+m>0$ with respect to $x$?", -"image_file_name": "7056499", -"image": [ -"math/53043822_152.png" -], -"solution": "\\textbf{Solution:} From the graph, it is known that the axis of symmetry is the line $x=1$, \\\\\nhence, the coordinate of the other intersection point of the quadratic function graph with the x-axis is $(-1, 0)$, \\\\\nAccording to the graph: The range of $x$ for which the function value is greater than 0 is: $-10$ is $\\boxed{-10)$ intersects the side BC of the square ABCD at point E, and intersects the side CD at point F. Given $BE=3CE$ and $A(4, 0)$, $B(8, 0)$, what is the length of $CF$?", -"image_file_name": "7056499", -"image": [ -"math/52865974_235.png" -], -"solution": "\\textbf{Solution:} Given $\\because BE=3CE$,\n\n$\\therefore CE=a$, $BE=3a$,\n\n$\\therefore E(8,3a)$, $C(8,4a)$,\n\n$\\because$ point E lies on $y=\\frac{k}{x}$,\n\n$\\therefore k=24a$,\n\n$\\therefore$ the equation of the hyperbola is: $y=\\frac{24a}{x}$,\n\nFrom the coordinates of point C, we find that the y-coordinate of point F is $4a$,\n\n$\\because$ point F also lies on $y=\\frac{k}{x}$, by substituting the y-coordinate, we find,\n\n$\\therefore x=6$,\n\n$\\therefore CF=8-6=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"55497792": { -"question": "As shown in the figure, there is a crescent-shaped pond in a park, with five decorative lamps labeled A, B, C, D, and E along the edge of the pond. To estimate the size of the pond, observers at points A and D noticed that points A, E, C and D, E, B are on the same straight line. Walking in the direction of AD to point F, it was found that $\\angle AFC=90^\\circ$. It was measured that $AD=9.6$ meters, $AE=DE=8$ meters, $DF=2.4$ meters. What is the radius of the circle containing $\\overset{\\frown}{AED}$? What is the radius of the circle containing $\\overset{\\frown}{ACD}$?", -"image_file_name": "7055883", -"image": [ -"math/55497792_306.png" -], -"solution": "\\textbf{Solution:} Draw line EG $\\perp$ AD at point G through point E. Thus, the center of the circle passing through points A, E, D must lie on EG. As shown in the figure, take the center as O, and connect AO. Since $AE=DE=8$ meters, AD=9.6 meters, therefore $AG=$ \\(\\frac{1}{2}AD=4.8\\) meters, $EG=$ $\\sqrt{AE^{2}-AG^{2}}=\\sqrt{8^{2}-4.8^{2}}=6.4$ meters. Let the radius of the circle containing $\\overset{\\frown}{AED}$ be r meters, then $AO=EO=r$ meters, $OG=6.4−r$ (meters). In $\\triangle AOG$, $AG^{2}$+$OG^{2}=AO^{2}$, that is $4.8^{2}+(6.4−r)^{2}=r^{2}$. Solving this yields: $r=\\boxed{5}$ meters, that is, the radius is 5 meters. Extending GE to intersect the larger circle at point H, the center of the containing circle must lie on HG. As shown in the figure, let the center of the large circle be $O_{1}$, make $O_{1}M\\perp AC$ at point M, and connect $O_{1}C$. Since AD=9.6 meters, DF=2.4 meters, therefore $AF=9.6+2.4=12$ meters. Since $ACF=90^\\circ$, therefore $EG\\parallel CF$. Therefore $\\frac{AG}{AF}=\\frac{AE}{AC}$, that is, $\\frac{4.8}{12}=\\frac{8}{AC}$. Therefore $AC=20$ meters. Therefore $AM=CM=10$ meters, $EM=10−8=2$ meters. Since $\\triangle AEG\\sim \\triangle O_{1}EM$, therefore $\\frac{EM}{O_{1}M}=\\frac{EG}{AG}$, that is, $\\frac{2}{O_{1}M}=\\frac{6.4}{4.8}$. Therefore $O_{1}M=\\frac{3}{2}$. Therefore $O_{1}C=\\sqrt{O_{1}M^{2}+MC^{2}}=\\sqrt{\\left(\\frac{3}{2}\\right)^{2}+10^{2}}=\\boxed{\\frac{\\sqrt{409}}{2}}$.", -"solution_image": [ -"solution_images/55497792_300.png", -"solution_images/55497792_303.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51058862": { -"question": "Five rectangular books are placed in a square bookshelf as shown in the diagram, with four of them placed vertically, and the fifth one placed diagonally, where point $G$ precisely aligns with the edge of the bookshelf. Each book has a thickness of $5\\,cm$ and a height of $20\\,cm$, and the shelf has a width of $40\\,cm$. What is the length of $FI$ in $cm$?", -"image_file_name": "7055883", -"image": [ -"math/51058862_312.png" -], -"solution": "\\textbf{Solution:} From the given information, we have: $FG=5\\text{cm}$, $BC=5\\times 4=20\\text{cm}$, $BI=40\\text{cm}$, $EF=20\\text{cm}$,\\\\\n$CD\\perp BI$, $BI\\perp GI$, $EF\\perp GF$,\\\\\n$\\therefore \\angle I=\\angle ECF=90^\\circ$, $\\angle GFI+\\angle EFC=\\angle FEC+\\angle EFC=90^\\circ$,\\\\\n$\\therefore \\angle GFI=\\angle FEC$,\\\\\nIn $\\triangle GFI$ and $\\triangle FEC$, $\\left\\{\\begin{array}{l}\\angle I=\\angle ECF=90^\\circ \\\\ \\angle GFI=\\angle FEC\\end{array}\\right.$,\\\\\n$\\therefore \\triangle GFI\\sim \\triangle FEC$,\\\\\n$\\therefore \\frac{FI}{CE}=\\frac{FG}{EF}$,\\\\\nLet $FI=x\\text{cm}$, then $CF=BI-BC-FI=(20-x)\\text{cm}$,\\\\\n$\\therefore \\frac{x}{CE}=\\frac{5}{20}$, solving for $CE$ we get $CE=4x\\text{cm}$,\\\\\nIn right triangle $Rt\\triangle FEC$, $CF^2+CE^2=EF^2$, which gives $(20-x)^2+(4x)^2=20^2$,\\\\\nSolving, we get $x=\\frac{40}{17}$ or $x=0$ (not meeting the requirement, hence discarded),\\\\\nThus, $FI=\\boxed{\\frac{40}{17}\\text{cm}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"9061650": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $CD \\perp AB$ with the foot of the perpendicular as D. If $AD = 2$ and $BD = 4$, then what is the length of $CD$?", -"image_file_name": "7055883", -"image": [ -"math/9061650_323.png" -], -"solution": "\\textbf{Solution:} In the right $\\triangle ACB$, $\\angle ACB=90^\\circ$, $CD\\perp AB$,\\\\\n$\\therefore \\angle ACD=\\angle B=90^\\circ-\\angle A$,\\\\\nAlso, $\\because \\angle ACD=\\angle CDB=90^\\circ$,\\\\\n$\\therefore \\triangle ACD\\sim \\triangle CBD$,\\\\\n$\\therefore CD^2=AD\\cdot BD=8$, that is $CD=\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51032479": { -"question": "As shown in the figure, in $ \\triangle ABC$, points D and E are located on sides $ AB$ and $ AC$ respectively, and $ DE\\parallel BC$. If $ AD=2\\,cm$, $ AB=6\\,cm$, and $ AE=1.5\\,cm$, what is the length of $ EC$ in $cm$?", -"image_file_name": "7055883", -"image": [ -"math/51032479_339.png" -], -"solution": "\\textbf{Solution:} Since $DE\\parallel BC$,\\\\\nit follows that $\\frac{AD}{AB}=\\frac{AE}{AC}=\\frac{2}{6}=\\frac{1}{3}$,\\\\\nthus $\\frac{1.5}{AC}=\\frac{1}{3}$,\\\\\nsolving this gives: $AC=4.5\\text{cm}$,\\\\\ntherefore $EC=AC-AE=4.5-1.5=\\boxed{3}\\text{cm}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"41274449": { -"question": "As shown in the diagram, a cup filled with water is placed tilted on a horizontal table surface. Its cross-section can be considered a rectangle with width $BC=6\\, \\text{cm}$ and length $CD=16\\, \\text{cm}$. When the water surface touches the edge of the cup, half of side $CD$ is above the water surface. What is the height of the water surface in centimeters at this moment?", -"image_file_name": "7055883", -"image": [ -"math/41274449_340.png" -], -"solution": "\\textbf{Solution:} Construct $BF\\perp AF$ at $F$, as shown in the diagram:\\\\\nSince $BC=6$ cm, $CD=16$ cm, and $CE=\\frac{1}{2}CD$,\\\\\nTherefore $CE=8$ cm,\\\\\nSince $\\angle C=90^\\circ$,\\\\\nBy the Pythagorean theorem, we have $BE=\\sqrt{BC^{2}+CE^{2}}=\\sqrt{6^{2}+8^{2}}=10$,\\\\\nSince $\\angle BCE=\\angle FBE=90^\\circ$,\\\\\nTherefore $\\angle EBC=\\angle ABF$,\\\\\nSince $\\angle BCE=\\angle BFA=90^\\circ$,\\\\\nTherefore $\\triangle CBE\\sim \\triangle FBA$,\\\\\nTherefore $\\frac{BE}{AB}=\\frac{BC}{BF}$,\\\\\ni.e., $\\frac{10}{16}=\\frac{6}{BF}$,\\\\\nTherefore $BF=\\boxed{\\frac{48}{5}}$.", -"solution_image": [ -"solution_images/41274449_343.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55604334": { -"question": "As shown in the figure, in parallelogram $ABCD$, point $E$ lies on side $BC$, and $AE$ intersects $BD$ at point $F$. If $BE=2$, $EC=3$, and $DF=10$, then what is the value of $BF$?", -"image_file_name": "7055883", -"image": [ -"math/55604334_358.png" -], -"solution": "\\textbf{Solution:} Given that $BE=2, EC=3$, \\\\\nit follows that $BC=BE+CE=2+3=5$, \\\\\nSince quadrilateral $ABCD$ is a parallelogram, \\\\\nit follows that $AD\\parallel BC$ and $AD=BC=5$, \\\\\nTherefore, $\\triangle BEF\\sim \\triangle DAF$, \\\\\nwhich implies $\\frac{BF}{DF}=\\frac{BE}{AD}$, i.e., $\\frac{BF}{10}=\\frac{2}{5}$, \\\\\nThus, $BF=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53081375": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are on sides AB and AC respectively, $AD:DB = 3:2$, $AE:EC = 1:2$. The line ED and the extension of CB intersect at point F. What is the value of $\\frac{FB}{FC}$?", -"image_file_name": "7055883", -"image": [ -"math/53081375_361.png" -], -"solution": "\\textbf{Solution:} Draw BG$\\parallel$AC through point B, intersecting EF at point G,\\\\\nsince AD$\\colon$DB = 3$\\colon$2, AE$\\colon$EC = 1$\\colon$2,\\\\\nthus AE = $\\frac{1}{2}$EC,\\\\\nthus $\\triangle$BFG$\\sim$$\\triangle$CEF, $\\triangle$BGD$\\sim$$\\triangle$AED,\\\\\nthus $\\frac{BG}{AE}=\\frac{BD}{AD}=\\frac{2}{3}$,\\\\\n$\\frac{BG}{EC}=\\frac{FB}{FC}$,\\\\\nthus $\\frac{BG}{EC}=\\frac{1}{3}$\\\\\nthus $\\frac{FB}{FC}=\\boxed{\\frac{1}{3}}$.", -"solution_image": [ -"solution_images/53081375_360.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080091": { -"question": "As shown in the figure, $\\triangle ABC$ and $\\triangle A'B'C'$ are similar, with the center of similarity at point O, $OA=2AA'$, and the area of $\\triangle ABC$ is 4. What is the area of $\\triangle A'B'C'$?", -"image_file_name": "7055883", -"image": [ -"math/53080091_375.png" -], -"solution": "\\textbf{Solution:} Since $OA = 2AA'$,\\\\\nit follows that $\\frac{OA}{OA'}=\\frac{2}{3}$,\\\\\nSince $\\triangle ABC$ and $\\triangle A'B'C'$ are similar,\\\\\nit implies that $\\triangle ABC\\sim \\triangle A'B'C'$, and $AB\\parallel A'B'$,\\\\\ntherefore $\\triangle OAB\\sim \\triangle OA'B'$,\\\\\nwhich leads to $\\frac{AB}{A'B'}=\\frac{OA}{OA'}=\\frac{2}{3}$,\\\\\nthus $\\frac{S_{\\triangle OAB}}{S_{\\triangle OA'B'}}=\\left(\\frac{2}{3}\\right)^2=\\frac{4}{9}$,\\\\\nGiven that the area of $\\triangle ABC$ is 4,\\\\\nit follows that the area of $\\triangle A'B'C'$ is $\\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080819": { -"question": "As shown in the figure, rectangle $ABCD$ is inscribed in circle $O$, with $AB=40$ and $BC=55$. Let $E$ be a point on arc $BC$, and draw lines $AE$ and $CE$, where $CE=20$. What is the length of $AE$? Let $F$ be a moving point on ray $CE$ such that $\\angle BFE>90^\\circ$. When $BF=AB$, what is the length of $EF$?", -"image_file_name": "7055883", -"image": [ -"math/53080819_3815.png" -], -"solution": "\\textbf{Solution:} Draw $BM\\perp CF$ at point $M$, connect $AC$, let $AE$ intersect $BC$ at point $G$,\\\\\nsince quadrilateral ABCD is a rectangle,\\\\\ntherefore $AB=CD=40$, $AD=BC=55$, $\\angle ABC=\\angle ADC=90^\\circ$,\\\\\ntherefore $AC$ is the diameter,\\\\\ntherefore $\\angle AEC=90^\\circ$,\\\\\nin $\\triangle ADC$, we have $AC^{2}=AD^{2}+DC^{2}=4625$,\\\\\nsince $CE=20$,\\\\\ntherefore $AE=\\sqrt{AC^{2}-CE^{2}}=\\boxed{65}$,\\\\\nin $\\triangle ABG$ and $\\triangle CEG$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle ABG=\\angle CEG=90^\\circ \\\\\n\\angle AGB=\\angle CGE\n\\end{array}\\right.$,\\\\\ntherefore $\\triangle ABG\\sim \\triangle CEG$,\\\\\ntherefore $\\frac{BG}{EG}=\\frac{AG}{CG}=\\frac{AB}{CE}=\\frac{40}{20}=2$,\\\\\ntherefore $BG=2EG$, $AG=2CG$,\\\\\nsince $AG+EG=AE$,\\\\\ntherefore $2CG+EG=65$ (1),\\\\\nsince $BG+CG=BC$,\\\\\ntherefore $2EG+CG=55$ (2),\\\\\nfrom (1) and (2), we get: $CG=25$, $EG=15$,\\\\\ntherefore $BG=2EG=30$, $AG=2CG=50$,\\\\\nin $\\triangle CBM$ and $\\triangle AGB$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle BCM=\\angle BAG \\\\\n\\angle CMB=\\angle ABG=90^\\circ\n\\end{array}\\right.$,\\\\\ntherefore $\\triangle CBM\\sim \\triangle AGB$,\\\\\ntherefore $\\frac{BM}{BG}=\\frac{CM}{AB}=\\frac{BC}{AG}$,\\\\\ntherefore $\\frac{BM}{30}=\\frac{CM}{40}=\\frac{55}{50}$,\\\\\ntherefore $BM=33$, $CM=44$,\\\\\nsince $BM\\perp CF$, $BF=AB=40$,\\\\\ntherefore $FM=\\sqrt{BF^{2}-BM^{2}}=\\sqrt{40^{2}-33^{2}}=\\sqrt{511}$,\\\\\ntherefore $EF=CM-CE-FM=44-20-\\sqrt{511}=\\boxed{24-\\sqrt{511}}$.", -"solution_image": [ -"solution_images/53080819_387.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080160": { -"question": "As shown in the figure, rectangle $ABCD$, where $AB=8$, $AD=6$, and $F$ is a moving point on side $AB$. Connect $CF$, and draw $DG \\perp CF$ at $D$ with the foot of the perpendicular being point $G$, intersecting $BC$ at point $E$. Draw $AH \\perp DE$ through $A$ with the foot of the perpendicular being point $H$, and connect $CH$. What is the maximum area of quadrilateral $AGCH$?", -"image_file_name": "7055883", -"image": [ -"math/53080160_3915.png" -], -"solution": "\\textbf{Solution:}\n\nSince quadrilateral $ABCD$ is a rectangle,\n\n$\\therefore$ $\\angle ADC=90^\\circ$,\n\nand since $DG\\perp CF$, $AH\\perp DE$,\n\n$\\therefore$ $\\angle AHD=\\angle DGC=90^\\circ$,\n\n$\\therefore$ $\\angle HAD+\\angle ADH=\\angle GDC+\\angle ADH=90^\\circ$,\n\n$\\therefore$ $\\angle HAD=\\angle GDC$,\n\nand $\\angle AHD=\\angle DGC=90^\\circ$,\n\n$\\therefore$ $\\triangle AHD\\sim \\triangle DGC$,\n\n$\\therefore$ $\\frac{DH}{CG}=\\frac{AH}{DG}=\\frac{AD}{DC}=\\frac{3}{4}$,\n\nLet $AH=3x$, $DG=4x$, $DH=3a$, $CG=4a$,\n\n$\\therefore$ $GH=DG-DH=4x-3a$,\n\n$\\therefore$ $S_{\\text{quadrilateral }AGCH}=S_{\\triangle AHG}+S_{\\triangle HGC}$,\n\n$=\\frac{1}{2}AH\\cdot GH+\\frac{1}{2}CG\\cdot GH$\n\n$=\\frac{1}{2}GH(AH+CG)$\n\n$=\\frac{1}{2}(4x-3a)(3x+4a)$\n\n$=\\frac{1}{2}(12x^2+7ax-12a^2)$\n\n$=-6a^2+\\frac{7}{2}ax+6x^2$\n\n$=-6(a-\\frac{7}{24}x)^2+\\frac{625}{96}x^2$,\n\n$\\therefore$ when $a=\\frac{7}{24}x$, $S_{\\text{quadrilateral }AGCH}$ reaches its maximum value of $\\frac{625}{96}x^2$,\n\nSince in $Rt\\triangle ADH$,\n\n$AH^2+DH^2=AD^2$, that is $(3x)^2+(3a)^2=36$,\n\n$\\therefore$ $x^2+a^2=4$,\n\nSubstituting $a=\\frac{7}{24}x$ into $x^2+a^2=4$,\n\nwe get $x^2=\\frac{2304}{625}$,\n\n$\\therefore$ $\\frac{625}{96}x^2=\\frac{625}{96}\\times \\frac{2304}{625}=\\boxed{24}$,\n\nThe maximum area of quadrilateral $AGCH$ is: $\\boxed{24}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080024": { -"question": "In rectangle $ABCD$, $AB=2BC$, and points $F$ and $G$ are on sides $AB$ and $DC$ respectively. The quadrilateral $AFGD$ is folded along $GF$ to obtain quadrilateral $EFGP$, where point $E$ lies on side $BC$, and $EP$ intersects $CD$ at point $H$. If $\\sin\\angle CGP=\\frac{3}{5}$ and $GF=2\\sqrt{5}$, what is the length of $CE$?", -"image_file_name": "7055883", -"image": [ -"math/53080024_4011.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $AE$, and draw $GQ\\perp AB$ through point $G$,\\\\\n$\\because$ by folding,\\\\\n$\\therefore AE\\perp FG$,\\\\\n$\\therefore \\angle QGF+\\angle AFG=\\angle BAE+\\angle AFG$,\\\\\n$\\therefore \\angle QGF=\\angle BAE$,\\\\\n$\\because \\angle B=\\angle FQG$,\\\\\n$\\therefore \\triangle ABE\\sim \\triangle GQF$,\\\\\n$\\because AB=2BC$, $GF=2\\sqrt{5}$,\\\\\n$\\therefore \\frac{GF}{AE}=\\frac{QG}{AB}=\\frac{1}{2}$,\\\\\n$\\therefore AE=4\\sqrt{5}$,\\\\\n$\\because GP\\parallel FE$, $DC\\parallel AB$,\\\\\n$\\therefore \\angle PGH=\\angle EFB$,\\\\\n$\\because \\sin\\angle CGP=\\frac{3}{5}$,\\\\\n$\\therefore \\sin\\angle BFE=\\frac{3}{5}$,\\\\\nLet $BE=3k$, then $EF=5k$,\\\\\n$\\therefore FB=4k$,\\\\\n$\\therefore AB=AF+BF=EF+BF=5k+4k=9k$,\\\\\n$\\therefore AE=\\sqrt{AB^2+BE^2}=\\sqrt{(9k)^2+(3k)^2}=3\\sqrt{10}k$,\\\\\n$\\therefore 3\\sqrt{10}k=4\\sqrt{5}$,\\\\\nSolving, we find $k=\\frac{2}{3}\\sqrt{2}$,\\\\\n$\\because BC=\\frac{1}{2}AB=\\frac{9}{2}k$, $BE=3k$,\\\\\n$\\therefore EC=BC-BE=\\frac{9}{2}k-3k=\\frac{3}{2}k=\\boxed{\\sqrt{2}}$", -"solution_image": [ -"solution_images/53080024_403.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53080531": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle B=90^\\circ$, point $E$ is on $AB$, and $CE$ is connected. Folding $\\triangle BCE$ along line $CE$, we obtain $\\triangle FCE$, with the corresponding point $F$ of point $B$ landing exactly on $AC$. Through point $F$, construct $FD \\perp AB$ at point $D$, and point $M$ is on the extension of $DF$, with $CM$ connected. Point $N$ is on $CM$, point $R$ is on $CF$, and a point $Q$ is selected on the extension of $CM$, with $FN$, $RN$, and $RQ$ connected. If $\\angle CFN = \\angle Q$, $RN=FR=CR$, $FN=NQ$, and $AB=\\frac{40}{3}$, $AF=\\frac{1}{2}AB$, then what is the length of the segment $RQ$?", -"image_file_name": "7055883", -"image": [ -"math/53080531_4132.png" -], -"solution": "\\textbf{Solution:} Given $AB=\\frac{40}{3}$ and $AF=\\frac{1}{2}AB$, \\\\\n$\\therefore AF=\\frac{20}{3}$, \\\\\nby the property of folding, we have $CB=CF$, let $CB=CF=x$, \\\\\nby the Pythagorean theorem, we have $\\left(x+\\frac{20}{3}\\right)^{2}=x^{2}+\\left(\\frac{40}{3}\\right)^{2}$, \\\\\nsolving this gives $x=10$, \\\\\n$\\therefore CB=CF=10$, \\\\\nsince $RN=FR=CR$, \\\\\n$\\therefore RN=FR=CR=5$, $\\angle FNC=90^\\circ$, \\\\\nlet the intersection of $FN$ and $RQ$ be O, \\\\\nsince $\\begin{cases}\n\\angle CFN=\\angle Q \\\\\nFN=QN \\\\\n\\angle FNC=\\angle QNO\n\\end{cases}$, \\\\\n$\\therefore \\triangle FNC\\cong \\triangle QNO$, \\\\\n$\\therefore FC=QO=10$, \\\\\nsince $RN=FR=CR$, \\\\\n$\\therefore \\angle CFN=\\angle RNO$, \\\\\nsince $\\angle CFN=\\angle Q$, \\\\\n$\\therefore \\angle Q=\\angle RNO$, \\\\\nsince $\\angle NRO=\\angle QRN$, \\\\\n$\\therefore \\triangle NRO\\sim \\triangle QRN$, \\\\\n$\\therefore \\frac{NR}{RQ}=\\frac{OR}{RN}$, \\\\\nsolving this gives $OR=5\\sqrt{5}-5$ (discarding $OR=-5\\sqrt{5}-5$), \\\\\n$\\therefore RQ=RO+OQ=5\\sqrt{5}-5+10=5\\sqrt{5}+5$, \\\\\nthus the answer is: $RQ=\\boxed{5\\sqrt{5}+5}$.", -"solution_image": [ -"solution_images/53080531_4112.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080328": { -"question": "As shown in the figure, in parallelogram $ABCD$, $AC$ and $BD$ intersect at point $O$. Point $E$ is the midpoint of $OA$. Connect $BE$ and extend it to intersect $AD$ at point $F$. Given that the area of $\\triangle AEF$ is $3$, what is the area of $\\triangle ABE$?", -"image_file_name": "7055883", -"image": [ -"math/53080328_4211.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a parallelogram,\\\\\nit follows that $AD\\parallel BC$ and $OA=OC$,\\\\\ntherefore $\\triangle AFE\\sim \\triangle CBE$,\\\\\nwhich implies $\\frac{AE}{EC}=\\frac{EF}{BE}$,\\\\\nsince point E is the midpoint of $OA$,\\\\\nit follows that $AE=\\frac{1}{3}EC$,\\\\\nhence, $EF=\\frac{1}{3}BE$,\\\\\ngiven that $S_{\\triangle AEF}=3$,\\\\\nthus, $S_{\\triangle AEB}=\\boxed{9}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080399": { -"question": "As shown in the figure, it is known that the area of $\\triangle ABF$ is equal to that of the quadrilateral $CDFE$, with point $E$ on side $BC$, $AE\\parallel CD$ intersecting $BD$ at point $F$, $CD=12$, $EF=9$. What is the length of $AF$?", -"image_file_name": "7055883", -"image": [ -"math/53080399_438.png" -], -"solution": "\\textbf{Solution:}\\\\\n$\\because$ The area of $\\triangle ABF$ is equal to the area of the quadrilateral $CDFE$,\\\\\n$\\therefore$ The area of $\\triangle BEA$ is equal to the area of $\\triangle BCD$,\\\\\n$\\because$ $AE\\parallel CD$,\\\\\n$\\therefore$ $\\triangle BEF\\sim \\triangle BCD$,\\\\\n$\\therefore$ $\\frac{S_{\\triangle BEF}}{S_{\\triangle BCD}}=\\left(\\frac{EF}{CD}\\right)^2$\\\\\n$\\because$ $CD=12$ and $EF=9$,\\\\\n$\\therefore$ $\\frac{S_{\\triangle BEF}}{S_{\\triangle BCD}}=\\left(\\frac{9}{12}\\right)^2=\\frac{9}{16}$,\\\\\n$\\therefore$ $\\frac{S_{\\triangle BEF}}{S_{\\triangle BEA}}=\\frac{9}{16}$\\\\\n$\\therefore$ $\\frac{EF}{EA}=\\frac{9}{16}$\\\\\n$\\therefore$ $\\frac{AF}{EF}=\\frac{7}{9}$\\\\\n$\\therefore$ $AF=\\frac{7}{9}EF=\\frac{7}{9}\\times 9 = \\boxed{7}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53078938": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=6$, and $BC=4$. Rotate $\\triangle ABC$ $90^\\circ$ clockwise around the right-angle vertex $C$ to get $\\triangle DEC$. If point $F$ is the midpoint of $DE$, and connect $AF$, then what is the length of $AF$?", -"image_file_name": "7055883", -"image": [ -"math/53078938_4412.png" -], -"solution": "\\textbf{Solution:} Draw $FH \\perp AC$ at H, as shown in the figure,\\\\\nsince $\\triangle ABC$ is rotated clockwise by $90^\\circ$ around the right angle vertex C to obtain $\\triangle DEC$,\\\\\ntherefore, $CE=BC=4$, $CD=CA=6$, and $\\angle ECD=\\angle ACB=90^\\circ$,\\\\\nthus, $AE=AC-CE=2$, and $FH \\parallel CD$,\\\\\ntherefore, $\\triangle EHF \\sim \\triangle ECD$,\\\\\nsince point F is the midpoint of DE,\\\\\nthus, $\\frac{EH}{EC}=\\frac{HF}{CD}=\\frac{EF}{ED}=\\frac{1}{2}$,\\\\\ntherefore, $EH=\\frac{1}{2}EC=2$, $HF=\\frac{1}{2}CD=3$,\\\\\nthus, $AH=AE+EH=4$,\\\\\nin right-angled $\\triangle AFH$, $AF=\\sqrt{AH^2+HF^2}=\\sqrt{4^2+3^2}=\\boxed{5}$.", -"solution_image": [ -"solution_images/53078938_441.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53079123": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\cos A = \\frac{1}{3}$, where $BE$ and $CF$ are the altitudes on sides $AC$ and $AB$ respectively. Connecting $EF$, what is the ratio of the perimeters of $\\triangle AEF$ and $\\triangle ABC$?", -"image_file_name": "7055883", -"image": [ -"math/53079123_457.png" -], -"solution": "\\textbf{Solution:} Let $BE$ and $CF$ be the altitudes from $AC$ and $AB$, respectively,\\\\\nHence, $\\angle AEB=\\angle AFC=90^\\circ$,\\\\\nSince $\\angle A=\\angle A$,\\\\\nTherefore, $\\triangle AEB\\sim \\triangle AFC$,\\\\\nTherefore, $\\frac{AE}{AF}=\\frac{AB}{AC}$,\\\\\nTherefore, $\\frac{AE}{AB}=\\frac{AF}{AC}$,\\\\\nSince $\\angle A=\\angle A$,\\\\\nTherefore, $\\triangle AEF\\sim \\triangle ABC$,\\\\\nTherefore, the ratio of the perimeters of $\\triangle AEF$ and $\\triangle ABC$ is $AE:AB$,\\\\\nSince $\\cos A=\\frac{AE}{AB}=\\frac{1}{3}$,\\\\\nTherefore, the ratio of the perimeters of $\\triangle AEF$ and $\\triangle ABC$ is $AE:AB=\\boxed{1:3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53079124": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$ and $\\triangle CDB$, $\\angle ACB=\\angle CDB=90^\\circ$, $AC=BC$, $CD=BD$. Connect $AD$ and intersect $BC$ at point $P$. What is the value of $\\tan\\angle CAP$?", -"image_file_name": "7055883", -"image": [ -"math/53079124_468.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ACB=\\angle CDB=90^\\circ$ and $AC=BC$, $CD=BD$,\\\\\nit follows that $\\triangle ACB$ and $\\triangle CDB$ are isosceles right triangles,\\\\\ntherefore $\\angle ABC+\\angle CBD=90^\\circ$\\\\\nthus $\\angle ABD+\\angle CDB=180^\\circ$\\\\\nwhich means $CD\\parallel AB$\\\\\nhence $\\triangle CDP\\sim \\triangle BAP$,\\\\\nlet $CD=DB=a$, then $CB=\\sqrt{2}a$, $AB=2a$\\\\\ntherefore, $\\frac{CD}{AB}=\\frac{CP}{BP}=\\frac{1}{2}$\\\\\nthus, $\\frac{CP}{BC}=\\frac{1}{3}$\\\\\nSince $AC=BC$\\\\\nit follows that $\\tan\\angle CAP=\\boxed{\\frac{1}{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53078795": { -"question": "As shown in the figure, in $\\triangle ABC$, points $D$ and $E$ are located on sides $AB$ and $AC$ respectively, and $DE \\parallel BC$. If $AD = 2$, $DB = 3$, and $DE = 1$, what is the length of $BC$?", -"image_file_name": "7055883", -"image": [ -"math/53078795_470.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ DE $\\parallel$ BC, \\\\\n$\\therefore$ $\\triangle ADE \\sim \\triangle ABC$, \\\\\n$\\therefore$ $\\frac{AD}{AB} = \\frac{DE}{BC}$, \\\\\n$\\because$ AD = 2, DB = 3, \\\\\n$\\therefore$ AB = 5, \\\\\n$\\therefore$ $\\frac{2}{5} = \\frac{1}{BC}$, solving this we get: $BC = \\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53148264": { -"question": "As depicted, the rectangle $DEFG$ has its side $DE$ on side $BC$ of $\\triangle ABC$, with points $G$ and $E$ respectively on sides $AB$ and $AC$. Given that $BC=6\\,cm$, $DE=3\\,cm$, $EF=2\\,cm$, what is the area of $\\triangle ABC$ in $\\,cm^{2}$?", -"image_file_name": "7055883", -"image": [ -"math/53148264_4811.png" -], -"solution": "\\textbf{Solution:} Draw $AH\\perp BC$ at $H$, intersecting $GF$ at $M$,\\\\\nsince $AH\\perp BC$ and quadrilateral $DEFG$ is a rectangle,\\\\\nthus, quadrilateral $HEFM$ is a rectangle, so $MH=EF=2\\,cm$,\\\\\nsince quadrilateral $DEFG$ is a rectangle,\\\\\nthus, $GF\\parallel BC$, $DG=EF=2\\,cm$, $GF=DE=3\\,cm$,\\\\\ntherefore, $\\triangle AGF\\sim \\triangle ABC$,\\\\\nthus, $\\frac{AM}{AH}=\\frac{GF}{BC}$, that is $\\frac{AM}{AM+2}=\\frac{3}{6}$, solving gives: $AM=2\\,cm$,\\\\\nthus, $AH=AM+MH=4\\,cm$,\\\\\ntherefore, ${S}_{\\triangle ABC}=\\frac{1}{2}BC\\cdot AH=\\frac{1}{2}\\times 6\\times 4=\\boxed{12}\\,cm^{2}$;", -"solution_image": [ -"solution_images/53148264_480.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53147979": { -"question": "As shown in the figure, points A, C, D are all on the circle $\\odot O$, and point B is inside $\\odot O$. Furthermore, $AB \\perp BC$ at point B, and $BC \\perp CD$ at point C. Given that $AB = 6$, $BC = 12$, and $CD = 4$, what is the circumference of $\\odot O$?", -"image_file_name": "7055883", -"image": [ -"math/53147979_496.png" -], -"solution": "\\textbf{Solution:} Extend $CB$ to meet $\\odot O$ at point $E$, connect $AE$, $DE$, $AC$, and have $AD$ intersect $CB$ at point $F$.\\\\\nTherefore, $AC=\\sqrt{AB^{2}+BC^{2}}=6\\sqrt{5}$.\\\\\nSince $AB\\perp BC$ and $BC\\perp CD$,\\\\\nTherefore, $AB\\parallel CD$,\\\\\nTherefore, $\\triangle ABF\\sim \\triangle DCF$,\\\\\nTherefore, $\\frac{AB}{CD}=\\frac{BF}{CF}$,\\\\\nTherefore, $\\frac{BF}{CF}=\\frac{6}{4}=\\frac{3}{2}$.\\\\\nSince $BC=BF+CF=12$,\\\\\nTherefore, $BF=\\frac{3}{5}\\times 12=\\frac{36}{5}$, $CF=\\frac{2}{5}\\times 12=\\frac{24}{5}$,\\\\\nTherefore, $AF=\\sqrt{AB^{2}+BF^{2}}=\\sqrt{6^{2}+\\left(\\frac{36}{5}\\right)^{2}}=\\frac{6}{5}\\sqrt{61}$, $DF=\\sqrt{CF^{2}+CD^{2}}=\\sqrt{\\left(\\frac{24}{5}\\right)^{2}+4^{2}}=\\frac{4}{5}\\sqrt{61}$,\\\\\nTherefore, $AD=AF+DF=2\\sqrt{61}$.\\\\\nSince $\\angle DCE=90^\\circ$,\\\\\nTherefore, DE is the diameter,\\\\\nTherefore, $\\angle EAD=\\angle ABC=90^\\circ$.\\\\\nSince $\\angle EDA=\\angle ACB$,\\\\\nTherefore, $\\triangle EDA\\sim \\triangle ACB$,\\\\\nTherefore, $\\frac{AD}{BC}=\\frac{DE}{AC}$, that is, $\\frac{2\\sqrt{61}}{12}=\\frac{DE}{6\\sqrt{5}}$,\\\\\nSolving gives: $DE=\\sqrt{305}$, that is, the diameter of $\\odot O$ is $\\sqrt{305}$,\\\\\nTherefore, the circumference of $\\odot O$ is $\\boxed{\\sqrt{305}\\pi}$.", -"solution_image": [ -"solution_images/53147979_491.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53066266": { -"question": "As shown in the figure, in $\\triangle ABC$, $DE \\parallel BC$, $AD=2$, $BD=3$, $AC=10$, what is the length of $AE$?", -"image_file_name": "7055883", -"image": [ -"math/53066266_516.png" -], -"solution": "\\textbf{Solution:} Since $DE\\parallel BC$, \\\\\nit follows that $\\frac{AD}{BD}=\\frac{AE}{EC}=\\frac{2}{3}$, \\\\\nthus, $\\frac{AE}{AC}=\\frac{2}{5}$, \\\\\ntherefore, $AE=\\frac{2}{5}AC=\\frac{2}{5}\\times 10=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53066022": { -"question": "As shown in the figure, in parallelogram $ABCD$, point $E$ is on $DC$, with $DE:EC = 3:2$. Connecting $AE$ and intersecting $BD$ at point $F$, what is the ratio of $S_{\\triangle DEF}$ to $S_{\\triangle BAF}$?", -"image_file_name": "7055883", -"image": [ -"math/53066022_521.png" -], -"solution": "\\textbf{Solution:} Given, DE: EC = 3: 2,\\\\\nTherefore, DE: DC = 3: 5,\\\\\nGiven parallelogram ABCD,\\\\\nTherefore, AB $\\parallel$ CD and AB = CD,\\\\\nTherefore, $\\frac{DE}{AB} = \\frac{DE}{CD} = \\frac{3}{5}$, $\\triangle$ DEF $\\sim$ $\\triangle$ BAF,\\\\\nTherefore, $\\frac{S_{\\triangle DEF}}{S_{\\triangle BAF}} = \\left(\\frac{DE}{AB}\\right)^2 = \\left(\\frac{3}{5}\\right)^2 = \\boxed{\\frac{9}{25}}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53065562": { -"question": "As shown in the figure, points A and B are on the graphs of the inverse proportion functions $y=\\frac{1}{x} (x>0)$ and $y=\\frac{k}{x} (x>0)$, respectively, and $\\angle AOB=90^\\circ$, $\\sin B=\\frac{1}{2}$. What is the value of $k$?", -"image_file_name": "7055883", -"image": [ -"math/53065562_535.png" -], -"solution": "\\textbf{Solution:} Construct $AC\\perp y$-axis through $A$, and $BD\\perp y$-axis through $B$, it can be obtained that $\\angle ACO=\\angle BDO=90^\\circ$, \\\\\n$\\therefore \\angle AOC+\\angle OAC=90^\\circ$, \\\\\n$\\because OA\\perp OB$, \\\\\n$\\therefore \\angle AOC+\\angle BOD=90^\\circ$, \\\\\n$\\therefore \\angle OAC=\\angle BOD$, \\\\\n$\\therefore \\triangle AOC\\sim \\triangle OBD$, \\\\\n$\\because$ points $A$ and $B$ lie on the graphs of the inverse proportion functions $y=\\frac{1}{x}(x>0)$ and $y=\\frac{k}{x}(x>0)$ respectively, \\\\\n$\\therefore S_{\\triangle AOC}=\\frac{1}{2}$, $S_{\\triangle OBD}=|\\frac{k}{2}|$, \\\\\n$\\therefore S_{\\triangle AOC}\\colon S_{\\triangle OBD}=1\\colon |k|$, \\\\\n$\\therefore \\left(\\frac{OA}{OB}\\right)^2=1\\colon |k|$, \\\\\nthen, in $\\triangle AOB$ with right angle, $\\because \\sin B=\\frac{1}{2}$, \\\\\n$\\therefore \\angle B=30^\\circ$, \\\\\n$\\therefore \\tan B=\\frac{OA}{OB}=\\frac{\\sqrt{3}}{3}$, \\\\\n$\\therefore 1\\colon |k|=1\\colon 3$, \\\\\n$\\therefore |k|=3$, \\\\\n$\\because$ the graph of $y=\\frac{k}{x}(x>0)$ is in the fourth quadrant, \\\\\n$\\therefore k=\\boxed{-3}$.", -"solution_image": [ -"solution_images/53065562_535.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53065888": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $CD \\perp AB$ at $D$, $AD=9$, $CD=6$, then what is the length of $BD$?", -"image_file_name": "7055883", -"image": [ -"math/53065888_547.png" -], -"solution": "\\textbf{Solution:} Given that $CD\\perp AB$,\\\\\nit follows that $\\angle ADC=\\angle CDB=90^\\circ$, $\\angle A+\\angle ACD=90^\\circ$,\\\\\nsince $\\angle ACB=90^\\circ$,\\\\\nit follows that $\\angle ACD+\\angle BCD=90^\\circ$,\\\\\ntherefore $\\angle A=\\angle BCD$,\\\\\ntherefore $\\triangle ADC\\sim \\triangle CDB$,\\\\\ntherefore $\\frac{AD}{CD}=\\frac{CD}{BD}$,\\\\\nsince $AD=9, CD=6$,\\\\\nit follows that $\\frac{9}{6}=\\frac{6}{BD}$,\\\\\ntherefore $BD=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53065988": { -"question": "As shown in the figure, it is known that in rectangle $ABCD$, $AB=2$. A point $E$ is chosen on $BC$, and $\\triangle ABE$ is folded upward along $AE$, causing point $B$ to coincide with point $F$ on $AD$. If quadrilateral $EFDC$ is similar to rectangle $ABCD$, what is the length of $AD$?", -"image_file_name": "7055883", -"image": [ -"math/53065988_550.png" -], -"solution": "\\textbf{Solution:} Given that in rectangle ABCD, AF is obtained by folding AB,\\\\\nthus ABEF is a square.\\\\\nAlso, since AB = 2, thus AF = AB = EF = 2.\\\\\nLet AD = x, then FD = x - 2.\\\\\nSince quadrilateral EFDC is similar to rectangle ABCD,\\\\\nthus $\\frac{EF}{FD} = \\frac{AD}{AB}$, that is $\\frac{2}{x-2} = \\frac{x}{2}$\\\\\nSolving this, we get $x_{1}=1+\\sqrt{5}$, $x_{2}=1−\\sqrt{5}$ (negative value is discarded).\\\\\nUpon verification, $x_{1}=1+\\sqrt{5}$ is the solution of the original equation.\\\\\nTherefore, AD $ =\\boxed{1+\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53066099": { -"question": "In the figure, within $\\triangle ADC$, $\\angle C=90^\\circ$. Point B is on the extension line of $CD$. Connect $AB$. Point E is on $AC$. Connect $DE$. $AD$ bisects $\\angle BAC$. $CE = 2AE$, $DB = DE$, and $CD = 3$. What is the length of $AC$?", -"image_file_name": "7055883", -"image": [ -"math/53066099_5612.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $DF\\perp AB$ at $F$ through point $D$, \\\\\nsince $\\angle C=90^\\circ$ and $AD$ bisects $\\angle BAC$, with $CD=3$, \\\\\ntherefore $DF=CD=3$, \\\\\nsince $DB=DE$, \\\\\ntherefore by the HL theorem, $Rt\\triangle EDC\\cong Rt\\triangle BDF$, \\\\\nhence $BF=CE$, \\\\\nlet $AE=x$, then $CE=2x=BF$, \\\\\nsince $CD=DF$ and $AD=AD$, \\\\\ntherefore, by the Pythagorean theorem, we get: $AC=AF=3x$, \\\\\nhence $AB=5x$, \\\\\nsince $\\angle B=\\angle B$ and $\\angle BFD=\\angle ACB=90^\\circ$, \\\\\ntherefore $\\triangle BFD\\sim \\triangle BCA$, \\\\\ntherefore $\\frac{DF}{AC}=\\frac{BD}{AB}=\\frac{BF}{BC}$, \\\\\ntherefore $\\frac{BD}{5x}=\\frac{3}{3x}$, \\\\\nthus $BD=5$, \\\\\ntherefore from $BF^2+DF^2=BD^2$, we obtain: $(2x)^2=5^2-3^2=16$, \\\\\nsolving gives: $x=2$, \\\\\nthus $AC=3x=\\boxed{6}$.", -"solution_image": [ -"solution_images/53066099_563.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53059869": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in circle $O$, with $AB$ being the diameter of circle $O$. $\\triangle ABC$ is rotated about point $C$ to $\\triangle EDC$, where point $E$ is on the circle. Given that $AE=2$ and $\\tan D=3$, what is the length of $AB$?", -"image_file_name": "7055883", -"image": [ -"math/53059869_570.png" -], -"solution": "\\textbf{Solution:} Since AB is the diameter,\\\\\nit follows that $\\angle ACB=90^\\circ$\\\\\nBecause rotating $\\triangle ABC$ around point C to $\\triangle EDC$,\\\\\nit follows that $\\angle ABC=\\angle D$, $\\angle ACB=\\angle ECD=90^\\circ$, ED=AB, BC=CD, AC=CE,\\\\\ntherefore, $\\angle ACE=\\angle BCD=\\angle ABE$,\\\\\nthus, $\\angle ABE+\\angle ABC+\\angle CBD=\\angle BCD+\\angle D+\\angle CBD=180^\\circ$,\\\\\ntherefore, points E, B, D lie on the same line,\\\\\nin $\\triangle ECD$, $\\tan D= \\frac{EC}{CD}=3$,\\\\\nLet CD=x, then EC=3x,\\\\\ntherefore, $ED=\\sqrt{CD^2+EC^2}=\\sqrt{x^2+9x^2}=\\sqrt{10}x$;\\\\\nBecause $\\overset{\\frown}{AC}=\\overset{\\frown}{AC}$\\\\\nit follows that $\\angle ACE=\\angle BCD$, $\\angle D=\\angle ABC=\\angle AEC$,\\\\\ntherefore, $\\triangle ACE\\sim \\triangle BCD$,\\\\\ntherefore, $\\frac{CE}{CD}=\\frac{AE}{BD}=3$,\\\\\n$\\angle CBD=\\angle CAE$,\\\\\nthus, $\\frac{2}{BD}=3$ Solving this yields: $BD=\\frac{2}{3}$;\\\\\ntherefore, $BE=DE−BD=\\sqrt{10}x-\\frac{2}{3}$\\\\\nIn $\\triangle AEB$, $AE^2+BE^2=AB^2$\\\\\nthus, solving $2^2+\\left(\\sqrt{10}x-\\frac{2}{3}\\right)^2=\\left(\\sqrt{10}x\\right)^2$ yields: $x=\\frac{\\sqrt{10}}{3}$\\\\\ntherefore, $AB=DE=\\frac{\\sqrt{10}}{3}\\times \\sqrt{10}=\\boxed{\\frac{10}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53059666": { -"question": "As shown in the figure, it is known that quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with the diameter $AC=12$. The diagonals $AC$ and $BD$ intersect at point $E$, and $AB=BD$, $EC=2$. What is the length of $AD$?", -"image_file_name": "7055883", -"image": [ -"math/53059666_580.png" -], -"solution": "\\textbf{Solution:} Connect BO to intersect AD at point F, and draw OD, \\\\\n$\\because$ BA = BD, OA = OD, \\\\\n$\\therefore$ BF is the perpendicular bisector of line segment AD, \\\\\n$\\therefore$ BF $\\perp$ AD, \\\\\n$\\because$ AC is the diameter of $\\odot$O, \\\\\n$\\therefore$ $\\angle$ADC = $90^\\circ$, i.e., AD $\\perp$ DC, \\\\\n$\\therefore$ BF $\\parallel$ CD, \\\\\n$\\therefore$ $\\triangle$BOE $\\sim$ $\\triangle$DCE, \\\\\n$\\therefore$ OB : CD = EO : EC, \\\\\n$\\because$ AC = 12, EC = 2, \\\\\n$\\therefore$ OB = OC = 6, \\\\\n$\\therefore$ OE = 4, \\\\\n$\\therefore$ 4CD = 12, \\\\\n$\\therefore$ CD = 3, \\\\\n$\\therefore$ In $\\triangle$ADC, with AD = $\\sqrt{12^{2}-3^{2}}$ = $\\boxed{3\\sqrt{5}}$.", -"solution_image": [ -"solution_images/53059666_580.jpg" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53059515": { -"question": "As shown in the figure, it is known that $AM$ and $DN$ are the medians of $\\triangle ABC$ and $\\triangle DCE$ respectively, $B$, $C$, $D$ are on the same straight line, $AB\\parallel CD$, $AC\\parallel DE$. If $BC=6$, what is the length of $MN$?", -"image_file_name": "7055883", -"image": [ -"math/53059515_594.png" -], -"solution": "\\textbf{Solution:} Given that $AB\\parallel CD$, $AC\\parallel DE$,\\\\\nit follows that $\\angle B = \\angle DCE$, $\\angle E = \\angle ACB$,\\\\\nthus, $\\triangle ABC \\sim \\triangle DCE$,\\\\\nsince $AM$ and $DN$ are the medians of $\\triangle ABC$ and $\\triangle DCE$ respectively,\\\\\nit implies that $\\frac{BC}{CE} = \\frac{AM}{DN} = 2$, $CM = \\frac{1}{2}BC = 3$, $CN = \\frac{1}{2}CE$,\\\\\nthus, $\\frac{6}{CE} = 2$,\\\\\ntherefore $CE = 3$,\\\\\nhence $CN = 1.5$,\\\\\nconsequently $MN = CM + CN = 3 + 1.5 = \\boxed{4.5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53110868": { -"question": "As shown in the figure, in the square $ABCD$, where $AB=6$, $E$ is the midpoint of $BC$, and $F$ is a point on side $CD$. The triangle $CEF$ is folded along $EF$ to obtain the triangle $GEF$. Connect $CG$ and extend it to intersect $EF$ and $AB$ at points $O$ and $H$, respectively. If $G$ is the midpoint of $OH$, what is the length of $CF$?", -"image_file_name": "7055883", -"image": [ -"math/53110868_6012.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a square,\\\\\nit follows that $\\angle B=90^\\circ$,\\\\\nsince $AB=6$ and E is the midpoint of $BC$,\\\\\nthen $CE=BE=\\frac{1}{2}AB=3$,\\\\\nsince $\\triangle CEF$ is folded along $EF$ to obtain $\\triangle GEF$,\\\\\nit follows that $EF$ bisects $CG$ perpendicularly,\\\\\nthus $OG=OC$, $\\angle COE=90^\\circ$\\\\\nGiven G is the midpoint of $OH$,\\\\\nthen $OG=GH$,\\\\\ntherefore $OG=GH=OC=\\frac{1}{3}CH$,\\\\\nlet $OC=x$, then $CH=3x$,\\\\\nsince $\\angle COE=\\angle B=90^\\circ$, $\\angle OCE=\\angle BCH$,\\\\\nit follows that $\\triangle COE\\sim \\triangle CBH$,\\\\\nwhich means $\\frac{CO}{BC}=\\frac{CE}{CH}$,\\\\\nthus $\\frac{x}{6}=\\frac{3}{3x}$,\\\\\nsolving gives $x=\\sqrt{6}$,\\\\\ntherefore $CO=\\sqrt{6}$,\\\\\nhence $OE=\\sqrt{CE^2-CO^2}=\\sqrt{3}$,\\\\\ntherefore $\\sin\\angle OCE=\\frac{OE}{CE}=\\frac{\\sqrt{3}}{3}$,\\\\\nsince $\\angle CFO+\\angle OCF=\\angle OCE+\\angle OCF=90^\\circ$,\\\\\nit follows that $\\angle CFO=\\angle OCE$,\\\\\nthus $\\sin\\angle CFO=\\sin\\angle OCE=\\frac{OC}{CF}=\\frac{\\sqrt{3}}{3}$,\\\\\nhence $CF=\\sqrt{3}OC=\\sqrt{3}\\times \\sqrt{6}=\\boxed{3\\sqrt{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53110839": { -"question": "As shown in the figure, $AB=AC$, $A\\left(0, \\sqrt{15}\\right)$, $C(1, 0)$, D is a point on the ray AO, and a moving point P starts from A, moving along the path $A-D-C$. The speed on AD is $4$ units per second, and the speed on CD is $1$ unit per second. What are the coordinates of D when the total moving time is minimal?", -"image_file_name": "7055883", -"image": [ -"math/53110839_613.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $DH\\perp AB$ at H, and $CM\\perp AB$ at $M$, intersecting AO at ${D}^{\\prime}$.\\\\\nSince the travel time $t=\\frac{AD}{4}+CD$,\\\\\nand since $AB=AC$, $AO\\perp BC$,\\\\\nit follows that $BO=OC=1$,\\\\\ngiven $A(0,\\sqrt{15})$, $C(1,0)$, $AB=AC$, $AO\\perp BC$,\\\\\nit follows that $AB=AC=\\sqrt{OA^2+OB^2}=\\sqrt{15+1}=4$,\\\\\nSince $\\angle DAH=\\angle BAO$, $\\angle DHA=\\angle AOB=90^\\circ$,\\\\\nit follows that $\\triangle AHD\\sim \\triangle AOB$,\\\\\ntherefore $\\frac{AD}{AB}=\\frac{DH}{OB}$,\\\\\nhence $DH=\\frac{1}{4}AD$,\\\\\ntherefore $\\frac{1}{4}AD+CD=CD+DH$,\\\\\nhence, when C, D, H are collinear and coincide with CM, the travel time is minimized,\\\\\nthus $\\frac{1}{2}BC\\cdot AO=\\frac{1}{2}AB\\cdot CM$,\\\\\nhence $CM=\\frac{\\sqrt{15}}{2}$,\\\\\ntherefore $AM=\\sqrt{AC^2-CM^2}=\\sqrt{4^2-\\left(\\frac{\\sqrt{15}}{2}\\right)^2}=\\frac{7}{2}$,\\\\\nGiven $AD^{\\prime}=4MD^{\\prime}$, let $MD^{\\prime}=m$, then $AD^{\\prime}=4m$,\\\\\nwe get: $16m^2-m^2=\\frac{49}{4}$\\\\\nHence $m=\\frac{7\\sqrt{15}}{30}$ or $-\\frac{7\\sqrt{15}}{30}$ (discard latter),\\\\\nTherefore $AD^{\\prime}=\\frac{14\\sqrt{15}}{15}$\\\\\nThus $D\\left(0,\\frac{\\sqrt{15}}{15}\\right)$,\\\\\nTherefore, the answer is $\\boxed{\\left(0,\\frac{\\sqrt{15}}{15}\\right)}$.", -"solution_image": [ -"solution_images/53110839_614.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53043255": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are on sides $AB$ and $AC$, respectively. If $DE \\parallel BC$ and $\\frac{AD}{DB} = \\frac{2}{3}$, $DE = 6\\,\\text{cm}$, then what is the length of $BC$ in cm?", -"image_file_name": "7055883", -"image": [ -"math/53043255_627.png" -], -"solution": "\\textbf{Solution:} Since $\\frac{AD}{DB}=\\frac{2}{3}$,\\\\\nit follows that $\\frac{AD}{AB}=\\frac{2}{5}$,\\\\\nSince $DE\\parallel BC$,\\\\\nit implies $\\triangle ADE\\sim \\triangle ABC$,\\\\\nthus $\\frac{AD}{AB}=\\frac{DE}{BC}$, and given $DE=6$,\\\\\nit means $\\frac{6}{BC}=\\frac{2}{5}$,\\\\\ntherefore $BC=\\boxed{15}$, which is verified to be in accordance with the problem statement;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53010226": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $AB=3$, and $AC=4$. Let point $P$ be any point on $BC$. Connect $PA$, and construct parallelogram $PAQC$ with $PA$ and $PC$ as adjacent sides. Connect $PQ$. What is the minimum value of $PQ$?", -"image_file_name": "7056453", -"image": [ -"math/53010226_320.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle BAC=90^\\circ$ and $AB=3$, $AC=4$,\\\\\n$\\therefore$ $BC=\\sqrt{AC^2+AB^2}=5$,\\\\\nSince quadrilateral $APCQ$ is a parallelogram,\\\\\n$\\therefore$ $PO=QO$, $CO=AO$,\\\\\nSince the shortest distance is $PQ$ which equates to the shortest distance $PO$,\\\\\n$\\therefore$ draw the perpendicular line from $O$ to $BC$, labelled as $OP^{\\prime }$,\\\\\nSince $\\angle ACB=\\angle P^{\\prime }CO$ and $\\angle CP^{\\prime }O=\\angle CAB=90^\\circ$,\\\\\n$\\therefore$ $\\triangle CAB\\sim \\triangle CP^{\\prime }O$,\\\\\n$\\therefore$ $\\frac{CO}{BC}=\\frac{OP^{\\prime }}{AB}$,\\\\\n$\\therefore$ $\\frac{2}{5}=\\frac{OP^{\\prime }}{3}$,\\\\\n$\\therefore$ $OP^{\\prime }=\\frac{6}{5}$,\\\\\n$\\therefore$ the minimum value of $PQ$ is $2OP^{\\prime }=\\boxed{\\frac{12}{5}}$.", -"solution_image": [ -"solution_images/53010226_321.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379369": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=15$, $\\sin\\angle A=\\frac{4}{5}$. Points D and E are located on sides AB and AC, respectively, with $AD=2DB$. The $\\triangle ADE$ is folded along line DE to obtain $\\triangle DEF$. If ray $EF\\perp BC$, then what is the length of $AE$? ", -"image_file_name": "7056453", -"image": [ -"math/51379369_338.png" -], -"solution": "\\textbf{Solution:}\n\nConstruct $DM \\perp AC$ at $M$, and construct $BH \\perp AC$ at $H$. \\\\\nSince $AB = AC = 15$, $\\sin\\angle A = \\frac{4}{5}$, and $AD = 2DB$, \\\\\nthen $AD = 10$, $DM = 8$, $AM = 6$, $BH = 12$, $AH = 9$. \\\\\nTherefore, $CH = AC - AH = 6$. \\\\\nThus, $\\tan\\angle C = \\frac{BH}{CH} = 2$, and $BC = \\sqrt{BH^2 + CH^2} = 6\\sqrt{5}$. \\\\\nConstruct $DG \\perp EF$ intersecting $EF$ at $N$, and intersecting $AC$ at $G$. \\\\\nSince triangle $ADE$ is folded along the straight line $DE$ to form $\\triangle DEF$, \\\\\nthen $DE$ bisects $\\angle AEF$. \\\\\nHence, $DM = DN = 8$, $EM = EN$. \\\\\nSince $EF \\perp BC$, \\\\\nthen $DG \\parallel BC$. \\\\\nThus, $\\frac{DG}{BC} = \\frac{AD}{AB} = \\frac{2}{3}$, and $\\angle C = \\angle NGE$. \\\\\nTherefore, $DG = \\frac{2}{3}BC = 4\\sqrt{5}$. \\\\\nThus, $NG = DG - DN = 4\\sqrt{5} - 8$. \\\\\nSince $\\tan\\angle C = \\tan\\angle NGE = 2 = \\frac{EN}{NG}$, \\\\\nthen $EM = EN = 2NG = 8\\sqrt{5} - 16$. \\\\\nTherefore, $AE = AM + EM = \\boxed{8\\sqrt{5} - 10}$.", -"solution_image": [ -"solution_images/51379369_330.png", -"solution_images/51379369_3310.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"55329877": { -"question": "As shown in the figure, which numbers do points A, B, C, D, and E on the number line represent respectively? Among them, which numbers are opposite numbers of each other?", -"image_file_name": "6951217", -"image": [ -"math/55329877_00.png" -], -"solution": "\\textbf{Solution:} Let points A, B, C, D, and E represent the numbers $-4.5$, $-1$, $1$, $2$, $4.5$, respectively.\\\\\n$\\therefore$ $-4.5$ and $4.5$, $-1$ and $1$ are pairs of opposite numbers, respectively.", -"solution_image": [], -"year": "seven", -"difficult": "easy" -}, -"55253057": { -"question": "As shown in the figure, $AB=20$, point $C$ is the midpoint of segment $AB$, and point $D$ is the midpoint of segment $CB$. Find the length of $AD$.", -"image_file_name": "6951217", -"image": [ -"math/55253057_10.png" -], -"solution": "\\textbf{Solution:} Since point $C$ is the midpoint of segment $AB$, and $AB=20$, \\\\\ntherefore $AC=BC=\\frac{1}{2}AB=10$. \\\\\nSince point $D$ is the midpoint of segment $BC$, \\\\\ntherefore $CD=\\frac{1}{2}BC=5$. \\\\\nTherefore, $AD=AC+CD=10+5=\\boxed{15}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"17130735": { -"question": "As shown in the figure, $A$, $B$, and $C$ are three consecutive points on line $L$, with $M$ being the midpoint of $AB$ and $N$ being the midpoint of $MC$. Given that $AB=6\\,\\text{cm}$ and $NC=8\\,\\text{cm}$, what is the length of $BC$ in centimeters?", -"image_file_name": "6951217", -"image": [ -"math/17130735_30.png" -], -"solution": "Solution: Since M is the midpoint of AB,\\\\\nit follows that AM = BM = $\\frac{1}{2}$AB = 3,\\\\\nSince N is the midpoint of MC,\\\\\nit follows that MN = NC = 8.\\\\\nTherefore, BN = MN - BM = 5,\\\\\nTherefore, BC = BN + NC = 5 + 8 = \\boxed{13} (cm)", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55232695": { -"question": "As shown in the figure, it is known that the line segment $AB=10\\,\\text{cm}$, and point C is a point on the line segment AB. If M is the midpoint of AC and $AM=2\\,\\text{cm}$, find the length of the line segment BC.", -"image_file_name": "6951217", -"image": [ -"math/55232695_42.png" -], -"solution": "\\textbf{Solution:} Given that $M$ is the midpoint of $AC$, and $AM=2\\,\\text{cm}$, \\\\\nthus $AC=2AM=4\\,\\text{cm}$, \\\\\nsince $AB=10\\,\\text{cm}$, \\\\\ntherefore $BC=AB-AC=\\boxed{6}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55192323": { -"question": "As shown in the figure, points B and C are on the line segment AD, and the ratio of AB:BC:CD is 2:3:4. Let M be the midpoint of line segment AC, and let N be the midpoint of line segment CD, with MN=9. Find the length of BD.", -"image_file_name": "6951217", -"image": [ -"math/55192323_80.png" -], -"solution": "\\textbf{Solution:} Let $AB = 2x$,\n\n$\\because M$ is the midpoint of segment $AC$, and $N$ is the midpoint of segment $CD$,\n\n$\\therefore CM = \\frac{1}{2}AC$, $CN = \\frac{1}{2}CD$,\n\n$\\therefore MN = CM + CN = \\frac{1}{2}(AC + CD) = \\frac{1}{2}AB = x = 9$,\n\n$\\therefore AD = 18$.\n\n$\\because AB : BC : CD = 2 : 3 : 4$,\n\n$\\therefore BC = 3x$, $CD = 4x$,\n\n$\\therefore BD = \\frac{3 + 4}{2 + 3 + 4} \\times AD = \\boxed{14}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404045": { -"question": "As shown in the figure, $D$ is the midpoint of segment $AC$, and $E$ is the midpoint of segment $AB$. Given that $AD=6\\,cm$ and $BC=3\\,cm$, find the lengths of segment $AB$ and $EC$ in centimeters.", -"image_file_name": "6951217", -"image": [ -"math/53404045_106.png" -], -"solution": "\\textbf{Solution:} Since $D$ is the midpoint of segment $AC$, and $E$ is the midpoint of segment $AB$\\\\\nThus, $AD=CD=\\frac{1}{2}AC$, $AE=EB=\\frac{1}{2}AB$\\\\\nSince $AD=6cm$, $BC=3cm$\\\\\nThus, $AB = AC + CB = 2AD + BC = 12 + 3 = \\boxed{15cm}$\\\\\n$EC = EB - BC = \\frac{1}{2}AB - BC = \\frac{15}{2} - 3 = \\frac{9}{2} = \\boxed{4.5cm}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55034387": { -"question": "As shown in the figure, P is a point on segment AB, and Q is a point on the extension of AB. If $AB=10$ and $\\frac{AP}{PB} = \\frac{AQ}{QB} = \\frac{3}{2}$. Find the length of segment PQ.", -"image_file_name": "6951217", -"image": [ -"math/55034387_111.png" -], -"solution": "\\textbf{Solution:} Given $\\because AP:PB=3:2$,\\\\\n$\\therefore$ let AP=3a, and PB=2a,\\\\\n$\\because P$ is a point on segment AB, and AB=10,\\\\\n$\\therefore 3a+2a=10$, solving for $a$ we find $a=2$,\\\\\n$\\therefore AP=6$, PB=4. Let the length of BQ be $x$, then $AQ=AB+BQ=10+x$,\\\\\n$\\because \\frac{AQ}{BQ}=\\frac{3}{2}$,\\\\\n$\\therefore \\frac{10+x}{x}=\\frac{3}{2}$, solving for $x$ yields $x=20$, i.e., $BQ=20$,\\\\\n$\\therefore PQ=PB+BQ=\\boxed{24}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53211136": { -"question": "As shown in the figure, it is known: the length of line segment $AB=20\\text{cm}$, points $C$ and $D$ are two points on line segment $AB$, and $BC=\\frac{1}{5}AB$, $AD=\\frac{1}{4}AB$. Points $M$ and $N$ are the midpoints of line segments $AC$ and $BD$, respectively. Question: what is the length of line segment $MN$?", -"image_file_name": "6951217", -"image": [ -"math/53211136_124.png" -], -"solution": "\\textbf{Solution:} Since $AB=20cm$, $BC=\\frac{1}{5}AB$, $AD=\\frac{1}{4}AB$,\\\\\nhence $BC=4cm$, $AD=5cm$,\\\\\nthus $AC=AB-BC=16cm$, $BD=AB-AD=15cm$,\\\\\nas points $M$ and $N$ are the midpoints of line segments $AC$ and $BD$ respectively,\\\\\nthus $AM=\\frac{1}{2}AC=8cm$, $BN=\\frac{1}{2}BD=\\frac{15}{2}cm$,\\\\\ntherefore $MN=AB-AM-BN=20-8-\\frac{15}{2}=\\boxed{\\frac{9}{2}cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53365756": { -"question": "As shown in the figure, point C is a point on segment AB, point M is the midpoint of segment AC, and point N is the midpoint of segment BC. It is known that $AM = \\frac{5}{4}BC = 5\\,\\text{cm}$. What is the length of MN in centimeters?", -"image_file_name": "6951217", -"image": [ -"math/53365756_131.png" -], -"solution": "\\textbf{Solution:} Since $M$ is the midpoint of segment $AC$,\\\\\n$\\therefore AM=CM=5\\text{cm}$, $BC=4\\text{cm}$.\\\\\nAlso, since $N$ is the midpoint of segment $BC$,\\\\\n$\\therefore CN=\\frac{1}{2}BC=2\\text{cm}$,\\\\\n$\\therefore MN=MC+CN=\\boxed{7}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53364074": { -"question": "As shown in the figure, $AB=24$, point $C$ is the midpoint of $AB$, and point $D$ is on the line segment $AC$ with $AD = \\frac{1}{3}CB$. Find the lengths of line segments $CD$ and $BD$.", -"image_file_name": "6951217", -"image": [ -"math/53364074_146.png" -], -"solution": "\\textbf{Solution:} Since point C is the midpoint of AB,\\\\\nit follows that $AC=BC=\\frac{1}{2}AB=12$,\\\\\nsince $AD=\\frac{1}{3}CB$,\\\\\nit follows that $AD=\\frac{1}{3}\\times 12=4$,\\\\\ntherefore $CD=AC-AD=\\boxed{8}$,\\\\\nthus, $BD=BC+CD=20$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206226": { -"question": "As shown in the figure, points C and D are the trisection points of line segment $AB$, and point E is the midpoint of line segment $DB$. Given $AB=12\\,\\text{cm}$, find the length of line segment $CE$.", -"image_file_name": "6951217", -"image": [ -"math/53206226_154.png" -], -"solution": "\\textbf{Solution:} Since points C and D are the trisection points of $AB$ and $AB=12cm$,\\\\\nit follows that $CD=DB=\\frac{1}{3}AB=4cm$,\\\\\nSince point E is the midpoint of the line segment $DB$,\\\\\nit follows that $DE=\\frac{1}{2}DB=2cm$,\\\\\ntherefore, $CE=CD+DE=\\boxed{6cm}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53119205": { -"question": "As shown in the figure, $C$, $D$, $E$ are points on the line segment $AB$, with $AC=5$, $DB=3$. Points $C$ and $E$ are the midpoints of line segments $AD$ and $BD$, respectively. Find the length of $CE$.", -"image_file_name": "6951217", -"image": [ -"math/53119205_166.png" -], -"solution": "\\textbf{Solution:} Since points C and E are the midpoints of segments $AD$ and $BD$, respectively, \\\\\ntherefore $CD=AC=5$, $DE=\\frac{1}{2}BD=\\frac{1}{2}\\times 3=1.5$, \\\\\ntherefore $CE=CD+DE=5+1.5=\\boxed{6.5}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53042337": { -"question": "Unfortunately, you haven't provided any specific text to translate. Please provide the text you'd like translated into English along with the required LaTeX formatting, and I'd be more than happy to assist you.", -"image_file_name": "6951217", -"image": [ -"math/53042337_170.png" -], -"solution": "\\textbf{Solution:} Since $AB = 18$, and point D is the midpoint of line segment AB, \\\\\nthus $BD = 18 \\div 2 = 9$; \\\\\nSince $BD = 3BC$, \\\\\nthus $BC = 9 \\div 3 = 3$, \\\\\ntherefore $AC = AB + BC = 18 + 3 = \\boxed{21}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53042311": { -"question": "As shown in the figure, the segment \\(AC=6\\,cm\\), the segment \\(BC=15\\,cm\\), point M is the midpoint of \\(AC\\), and a point N is taken on \\(CB\\) such that \\(CN=\\frac{1}{2}NB\\). What is the length of \\(MN\\)?", -"image_file_name": "6951217", -"image": [ -"math/53042311_186.png" -], -"solution": "\\textbf{Solution:} Given that $M$ is the midpoint of $AC$, and $AC=6\\,\\text{cm}$,\\\\\nit follows that $MC=\\frac{1}{2}AC=\\frac{1}{2}\\times 6=3\\,\\text{cm}$,\\\\\nsince $CN=\\frac{1}{2}NB$ and $BC=15\\,\\text{cm}$,\\\\\nthen $CN=\\frac{1}{3}BC=\\frac{1}{3}\\times 15=5\\,\\text{cm}$,\\\\\ntherefore, $MN=MC+NC=3\\,\\text{cm}+5\\,\\text{cm}=\\boxed{8\\,\\text{cm}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51323815": { -"question": "As shown in the figure, point $C$ is the midpoint of segment $AB$, point $E$ is a point on segment $AB$, and point $D$ is the midpoint of segment $AE$. If $AB=16$ and $CE=5$, find the length of segment $AD$.", -"image_file_name": "6951217", -"image": [ -"math/51323815_192.png" -], -"solution": "\\textbf{Solution:} Since point C is the midpoint of segment AB, and $AB=16$, \\\\\n$\\therefore BC=\\frac{1}{2}AB=8$, \\\\\nbecause $CE=5$, \\\\\n$\\therefore BE=BC-CE=8-5=3$, \\\\\nhence $AE=AB-BE=16-3=13$, \\\\\nbecause point D is the midpoint of segment AE, \\\\\n$\\therefore AD=\\frac{1}{2}AE=\\boxed{6.5}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51379764": { -"question": "Given: Line segment $AB = 6$, point $C$ is the midpoint of line segment $AB$, extend line segment $AB$ to $D$, such that $BD = 3BC$. Find the length of line segment $AD$?", -"image_file_name": "6951217", -"image": [ -"math/51379764_200.png" -], -"solution": "\\textbf{Solution:} Since point C is the midpoint of line segment AB,\\\\\ntherefore $BC=\\frac{1}{2}AB$,\\\\\nsince AB = 6,\\\\\ntherefore BC = 3,\\\\\nsince BD= 3BC,\\\\\ntherefore BD= 9,\\\\\ntherefore AD=AB+BD=6+9=\\boxed{15}", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52948485": { -"question": "As shown in the figure, point $C$ is a point on segment $AB$ with $AC>BC$. Point $M$ is the midpoint of segment $AB$, and point $N$ is the midpoint of segment $BC$. Given $AM=8$ and $CN=3$, find the length of segment $MN$.", -"image_file_name": "6951217", -"image": [ -"math/52948485_223.png" -], -"solution": "\\textbf{Solution:} Since point M is the midpoint of line segment AB, $AM=8$,\\\\\nhence $BM=AM=8$,\\\\\nand since point N is the midpoint of BC, $CN=3$,\\\\\nhence $BN=CN=3$,\\\\\ntherefore $MC=BM-BN-CN=8-3-3=2$,\\\\\ntherefore $MN=MC+CN=2+3=\\boxed{5}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51429265": { -"question": "As shown in the figure, it is known that points $C$, $D$, and $E$ lie on line $AB$, and point $D$ is the midpoint of segment $AC$, point $E$ is the midpoint of segment $DB$. If point $C$ is on segment $EB$ and $DB=6$, $CE=1$, what is the length of segment $AB$?", -"image_file_name": "6951217", -"image": [ -"math/51429265_230.png" -], -"solution": "\\textbf{Solution:} Since point $E$ is the midpoint of line segment $DB$ and $DB=6$,\\\\\nit follows that $DE=\\frac{1}{2}DB=\\frac{1}{2}\\times 6=3$,\\\\\nsince $EC=1$,\\\\\nthen $DC=DE+EC=3+1=4$,\\\\\nsince point $D$ is the midpoint of line segment $AC$,\\\\\nit follows that $AD=DC=4$,\\\\\ntherefore $AB=AD+DB=4+6=\\boxed{10}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52795546": { -"question": "As shown in the figure, point $C$ is on the line segment $AB$, and point $D$ is the midpoint of the line segment $AB$. If $AC=6\\,cm$ and $BC=3\\,cm$, what is the length of the line segment $CD$ in $cm$?", -"image_file_name": "6951217", -"image": [ -"math/52795546_240.png" -], -"solution": "\\textbf{Solution:} Since $AC=6\\,cm$, $BC=3\\,cm$,\n\nit follows that $AB=AC+BC=6+3=9\\,cm$,\n\nSince point D is the midpoint of segment AB,\n\nit follows that $AD=\\frac{1}{2}AB=\\frac{1}{2}\\times9=4.5\\,cm$,\n\nthus $CD=AC-AD=6-4.5=\\boxed{1.5}\\,cm$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51355677": { -"question": "As shown in the figure, the midpoint of line segment AB, which has a length of 18, is M. Point C divides line segment MB in the ratio MC:CB=1:2. Find the length of line segment AC.", -"image_file_name": "6951217", -"image": [ -"math/51355677_250.png" -], -"solution": "\\textbf{Solution:} Given that the midpoint of line segment AB, which has a length of 18, is M, \\\\\n$ \\therefore AM=BM=\\frac{1}{2}AB=9, $ \\\\\n$ \\because $ the ratio of MC to CB is 1:2, \\\\\n$ \\therefore MC=\\frac{1}{3}\\times 9=3, $ \\\\\n$ \\therefore AC=AM+MC=9+3=\\boxed{12}.$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51438062": { -"question": "As shown in the figure, the length of segment $AB$ is $10\\, \\text{cm}$. Point $C$ is a point on segment $AB$ with $BC=3\\, \\text{cm}$. Points $D$ and $E$ are the midpoints of segments $AC$ and $AB$, respectively. Find the length of segment $DE$.", -"image_file_name": "6951217", -"image": [ -"math/51438062_269.png" -], -"solution": "\\textbf{Solution:} Given that point $C$ lies on the segment $AB$, with segment $AB$ measuring $10cm$, and $BC=3cm$,\\\\\ntherefore, $AC=AB−BC=10−3=7cm$,\\\\\nsince point $D$ is the midpoint of $AC$,\\\\\nthus $AD=\\frac{1}{2}AC=\\frac{1}{2}\\times 7=\\frac{7}{2}$cm;\\\\\nsince point $E$ is the midpoint of $AB$,\\\\\nthus $AE=\\frac{1}{2}AB=\\frac{1}{2}\\times 10=5$cm,\\\\\nhence $DE=AE−AD=5−\\frac{7}{2}=\\boxed{\\frac{3}{2}}$cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51251856": { -"question": "As shown in the figure, it is known that point C is the midpoint of line segment AB, and point D is the midpoint of line segment BC. Given AB = 16 cm, find the length of line segment AD.", -"image_file_name": "6951217", -"image": [ -"math/51251856_270.png" -], -"solution": "Solution: Since $AB=16\\,cm$, and $C$ is the midpoint of $AB$, \\\\\ntherefore $AC=BC=\\frac{1}{2}AB=8\\,cm$, \\\\\nSince $D$ is the midpoint of $BC$, \\\\\ntherefore $CD=\\frac{1}{2}BC=4\\,cm$ \\\\\nthus $AD=AC+CD=\\boxed{12}\\,cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51508769": { -"question": "As shown in the figure, point \\(C\\) is on line segment \\(AB\\), \\(D\\) is the midpoint of line segment \\(AC\\), and \\(E\\) is the midpoint of line segment \\(BC\\).", -"image_file_name": "6951217", -"image": [ -"math/51508769_280.png" -], -"solution": "\\textbf{Solution:}\n\n(1) Since $D$ is the midpoint of segment $AC$, and $AC=8$,\\\\\nit follows that $DC= \\frac{1}{2}AC=\\frac{1}{2}\\times 8=4$\\\\\nSince $E$ is the midpoint of segment $BC$, and $BC=3$,\\\\\nit follows that $CE= \\frac{1}{2}BC=\\frac{1}{2}\\times 3=\\frac{3}{2}$,\\\\\ntherefore, $DE=DC+CE= 4+\\frac{3}{2}=\\boxed{5\\frac{1}{2}}$;\\\\\n(2) Since point $C$ is on segment $AB$, $D$ is the midpoint of segment $AC$, and $E$ is the midpoint of segment $BC$.\\\\\nit follows that $AC=2DC$, $BC=2CE$,\\\\\ntherefore, $AB=AC+BC=2DC+2CE=2(DC+CE)=2DE=2\\times 5=\\boxed{10}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53010381": { -"question": "As shown in the figure, the length of line segment $AB$ is $12$, $C$ is a point on line segment $AB$, $AC=4$, $M$ is the midpoint of $AB$, $N$ is the midpoint of $AC$. Find the length of line segment $MN$.", -"image_file_name": "6951217", -"image": [ -"math/53010381_290.png" -], -"solution": "\\textbf{Solution:} Given: $AM = \\frac{1}{2}AB = 6$, $AN = \\frac{1}{2}AC = 2$\\\\\n$\\therefore MN = AM - AN = \\boxed{4}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52951344": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD \\perp BC$ at $D$, $AE$ bisects $\\angle DAC$, $\\angle BAC = 80^\\circ$, $\\angle B = 60^\\circ$, what is the measure of $\\angle DAE$?", -"image_file_name": "7044986", -"image": [ -"math/52951344_640.png" -], -"solution": "Solution: In $\\triangle ABC$, since $\\angle BAC + \\angle B + \\angle C = 180^\\circ$,\\\\\nthen $\\angle C = 180^\\circ - 80^\\circ - 60^\\circ = 40^\\circ$,\\\\\nsince $AD \\perp BC$ at D,\\\\\nthen $\\angle ADC = 90^\\circ$,\\\\\nin $\\triangle ADC$, $\\angle DAC = 90^\\circ - \\angle C = 90^\\circ - 40^\\circ = 50^\\circ$,\\\\\nsince $AE$ bisects $\\angle DAC$,\\\\\nthen $\\angle DAE = \\frac{1}{2} \\angle DAC = \\boxed{25^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52950688": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ is the altitude, $AE$ and $BF$ are the angle bisectors, and they intersect at point $O$. Given $\\angle ABC=50^\\circ$ and $\\angle C=70^\\circ$, find the measures of $\\angle DAE$ and $\\angle BOA$.", -"image_file_name": "7044986", -"image": [ -"math/52950688_650.png" -], -"solution": "\\textbf{Solution:} Since $AD \\perp BC$,\\\\\nit follows that $\\angle ADC = 90^\\circ$,\\\\\nSince $\\angle C = 70^\\circ$,\\\\\nit follows that $\\angle CAD = 180^\\circ - 90^\\circ - 70^\\circ = 20^\\circ$,\\\\\nSince $\\angle ABC = 50^\\circ$, \\\\\nit follows that $\\angle BAC = 180^\\circ - \\angle ABC - \\angle C = 60^\\circ$,\\\\\nSince AE is the bisector of $\\angle BAC$,\\\\\nit follows that $\\angle EAC = \\angle BAE = 30^\\circ$,\\\\\ntherefore $\\angle EAD = \\angle EAC - \\angle CAD = 30^\\circ - 20^\\circ = \\boxed{10^\\circ}$,\\\\\nSince BF is the bisector of $\\angle ABC$,\\\\\nit follows that $\\angle ABO = 25^\\circ$,\\\\\ntherefore $\\angle BOA = 180^\\circ - \\angle BAO - \\angle ABO = 180^\\circ - 30^\\circ - 25^\\circ = \\boxed{125^\\circ}$,\\\\\nHence, the measures of $\\angle DAE$ and $\\angle BOA$ are $10^\\circ$ and $125^\\circ$, respectively.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52950416": { -"question": "As shown in the figure, line segment $AC$ intersects line segment $BD$ at point $O$. If $\\angle A = 70^\\circ$, $\\angle B = 30^\\circ$, $\\angle C = 60^\\circ$, what is the degree measure of $\\angle D$?", -"image_file_name": "7044986", -"image": [ -"math/52950416_667.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOB = \\angle COD$,\\\\\nit follows that $\\angle A + \\angle B = \\angle C + \\angle D$,\\\\\ngiven $\\angle A = 70^\\circ$, $\\angle B = 30^\\circ$, and $\\angle C = 60^\\circ$,\\\\\nthus $70^\\circ + 30^\\circ = 60^\\circ + \\angle D$,\\\\\ntherefore, $\\angle D = \\boxed{40^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52950323": { -"question": "As shown in the figure, $AD$ and $BE$ are the altitude and angle bisector of $\\triangle ABC$, respectively, with $\\angle BAC=86^\\circ$ and $\\angle C=58^\\circ$. Find the measure of $\\angle AOB$?", -"image_file_name": "7044986", -"image": [ -"math/52950323_676.png" -], -"solution": "\\textbf{Solution:} Given $\\angle BAC=86^\\circ$, $\\angle C=58^\\circ$\\\\\nTherefore, $\\angle ABC=180^\\circ-86^\\circ-58^\\circ=36^\\circ$\\\\\nSince $AD$ and $BE$ are the altitude and angle bisector of $\\triangle ABC$ respectively,\\\\\nTherefore, $\\angle OBD=\\frac{1}{2}\\angle ABC=18^\\circ$, $\\angle ADB=90^\\circ$\\\\\nHence, $\\angle AOB=\\angle OBD+\\angle ADB=18^\\circ+90^\\circ=\\boxed{108^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913906": { -"question": "As shown in the figure, Xiaoying and her classmate are swinging. When the swing AB is at rest, the lower end B' is 0.6m above the ground. When the swing moves to the position AB, the horizontal distance from the lower end B to the rest position EB is 2.4m, and it is 1.4m above the ground. Find the length of the swing AB.", -"image_file_name": "7044986", -"image": [ -"math/52913906_680.jpeg" -], -"solution": "\\textbf{Solution:} Let the length of AB=AB$^{\\prime }$ be $x$ meters. According to the problem, we can deduce that B$^{\\prime }$E = 1.4 - 0.6 = 0.8 (m),\\\\\nhence, AE = AB - 0.8,\\\\\nin $\\triangle AEB$, since AE$^{2}$ + BE$^{2}$ = AB$^{2}$,\\\\\ntherefore, (x-0.8)$^{2}$ + 2.4$^{2}$ = x$^{2}$\\\\\nSolving this, we find x = \\boxed{4},\\\\\nhence, the length of the swing AB is 4m.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52914200": { -"question": "As shown in the diagram, in $\\triangle ABC$, $AB=AC$, $AD$ bisects $\\angle BAC$. Given $BC=10$, $AD=12$, find the length of $AC$.", -"image_file_name": "7044986", -"image": [ -"math/52914200_697.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$ and $AD$ bisects $\\angle BAC$,\\\\\nit follows that $AD\\perp BC$, $BD=CD=\\frac{1}{2}BC=5$,\\\\\nGiven that $AD=12$,\\\\\nwe have $AC=\\sqrt{AD^{2}+CD^{2}}=\\sqrt{12^{2}+5^{2}}=\\boxed{13}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52914135": { -"question": "As shown in the figure, $AE$ and $AD$ are respectively the altitude and the angle bisector of $\\triangle ABC$, and $\\angle B=40^\\circ$, $\\angle C=60^\\circ$, find the degree measure of $\\angle DAE$.", -"image_file_name": "7044986", -"image": [ -"math/52914135_700.jpeg" -], -"solution": "\\textbf{Solution:} Since $\\angle B = 40^\\circ$ and $\\angle C = 60^\\circ$, \\\\\nit follows that $\\angle BAC = 180^\\circ - \\angle B - \\angle C = 80^\\circ$.\\\\\nSince $AD$ is the angle bisector of $\\triangle ABC$, \\\\\nit follows that $\\angle BAD = \\angle DAC = \\frac{1}{2} \\angle BAC = 40^\\circ$, \\\\\ntherefore $\\angle ADE = \\angle B + \\angle BAD = 80^\\circ$, \\\\\ntherefore $\\angle DAE = 90^\\circ - \\angle ADE = 90^\\circ - 80^\\circ = \\boxed{10^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53107094": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, D is the midpoint of side $AB$, E is a point on side $AC$, and line $BF$ is drawn parallel to $AC$ through point B and intersects the extension of $ED$ at point F. If $AD=6$ and $BF=9$, find the length of $CE$.", -"image_file_name": "7044986", -"image": [ -"math/53107094_719.png" -], -"solution": "\\textbf{Solution:} Given that $BF\\parallel AC$, \\\\\nit follows that $\\angle F=\\angle AED$, \\\\\nsince $D$ is the midpoint of $AB$, \\\\\nit implies $AD=BD$, \\\\\nconsidering $\\triangle ADE$ and $\\triangle BDF$, \\\\\nwe have \n$\\left\\{\\begin{array}{l}\n\\angle AED=\\angle F \\\\\n\\angle ADE=\\angle BDF \\\\\nAD=BD\n\\end{array}\\right.$, \\\\\nthus, $\\triangle ADE\\cong \\triangle BDF$ (by AAS), \\\\\nwhich means $AE=BF=9$, \\\\\ngiven $AB=AC$, \\\\\nit results in $AC=2AD=12$, \\\\\ntherefore, $CE=AC-AE=12-9=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52874507": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=45^\\circ$, $AB=6\\sqrt{2}$, $AC=8$, $BC>6$. Points $E$ and $F$ are located on sides $BC$ and $AC$, respectively, and $AF=CE$. What is the minimum value of $AE+BF$?", -"image_file_name": "7044986", -"image": [ -"math/52874507_721.png" -], -"solution": "\\textbf{Solution:} Construct line $AG \\parallel BC$ through point $A$ such that $AG=AC$, and connect $FG$, $BG$. \\\\\nSince $AG \\parallel BC$, \\\\\nthen $\\angle GAF=\\angle ACE$. \\\\\nSince $AF=CE$, $AG=AC$, \\\\\nthen $\\triangle ACE$ is congruent to $\\triangle GAF$, \\\\\nthus $AE=GF$, \\\\\nhence $AE+BF=GF+BF$. \\\\\nWhen points $B$, $F$, $G$ are collinear, $BF+GF$ is minimized. \\\\\nConstruct $AI \\perp BC$ through point $A$, intersecting $BC$ at point $I$, and construct $GH \\perp BC$ through point $G$, intersecting the extended line of $BC$ at point $H$. \\\\\nSince $\\angle ABC=45^\\circ$, \\\\\nthen $AI=BI=6$. \\\\\nIt is easy to see that quadrilateral $AIHG$ is a rectangle, thus $GH=AI=6$, $IH=AG=8$, \\\\\ntherefore $BH=BI+IH=6+8=14$. \\\\\nIn $\\triangle BGH$, $BG= \\sqrt{BH^2+GH^2}=\\sqrt{14^2+6^2}=2\\sqrt{58}$. \\\\\nThus, the minimum value of $AE+BF$ is $\\boxed{2\\sqrt{58}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51369206": { -"question": "As shown in the figure, in $ \\triangle ABC$, $CD$ is the altitude of $ \\triangle ABC$, $AE$ is the angle bisector of $ \\triangle ABC$, and $CD$ intersects $AE$ at point $G$. Given $\\angle BCD = 50^\\circ$ and $\\angle BEA = 110^\\circ$, find the measure of $\\angle ACD$.", -"image_file_name": "7047158", -"image": [ -"math/51369206_8610.png" -], -"solution": "\\textbf{Solution:} By the given information, $CD$ is the height of $\\triangle ABC$,\\\\\nhence $\\angle BDC=\\angle ADC=90^\\circ$.\\\\\nTherefore, $\\angle B=90^\\circ-\\angle BCD=90^\\circ-50^\\circ=40^\\circ$.\\\\\nIn $\\triangle ABE$, $\\angle BAE=180^\\circ-\\angle B-\\angle BEA=180^\\circ-40^\\circ-110^\\circ=30^\\circ$.\\\\\nSince $AE$ is the angle bisector of $\\triangle ABC$,\\\\\nit follows that $\\angle BAC=2\\angle BAE=60^\\circ$.\\\\\nTherefore, $\\angle ACD=90^\\circ-\\angle BAC=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51369007": { -"question": "As shown in the figure, it is known that the perimeter of $\\triangle ACD$ is $14$, $AB-AC=2$, and the perpendicular bisector of $BC$ intersects $AB$ at point $D$ and intersects $BC$ at point $E$. Find the lengths of $AB$ and $AC$.", -"image_file_name": "7047158", -"image": [ -"math/51369007_870.png" -], -"solution": "\\textbf{Solution}: Since the perimeter of $\\triangle ACD$ is 14,\\\\\n$\\therefore AC+AD+CD=14$,\\\\\nbecause $DE$ is the perpendicular bisector of $BC$,\\\\\n$\\therefore BD=CD$,\\\\\n$\\therefore AC+AD+BD=14$,\\\\\n$\\therefore AC+AB=14$,\\\\\nsince $AB-AC=2$,\\\\\n$\\therefore AB=\\boxed{8}$, $AC=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033295": { -"question": "As shown in the figure, $AE \\perp BD$, $CD \\perp BD$, $AB = BC$, $BE = CD$. What is the measure of $\\angle ABC$ in degrees?", -"image_file_name": "7044920", -"image": [ -"math/53033295_725.png" -], -"solution": "\\textbf{Solution:} Given $\\because AE\\perp BD$, $CD\\perp BD$,\\\\\n$\\therefore \\angle AEB=\\angle BDC=90^\\circ$,\\\\\nIn $Rt\\triangle AEB$ and $Rt\\triangle BDC$\\\\\n$\\because \\left\\{\\begin{array}{l}AB=BC\\\\ BE=CD\\end{array}\\right.$,\\\\\n$\\therefore Rt\\triangle AEB\\cong Rt\\triangle BDC$,\\\\\n$\\therefore \\angle A=\\angle CBD$,\\\\\n$\\because \\angle AEB=90^\\circ$,\\\\\n$\\therefore \\angle A+\\angle ABE=90^\\circ$,\\\\\n$\\therefore \\angle ABC=\\angle ABE+\\angle CBD=\\angle ABE+\\angle A=90^\\circ$.\\\\\nHence, the measure of $\\angle ABC$ is $\\boxed{90^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53033292": { -"question": "As shown in the figure, within $\\triangle ABC$, $AD$ is the angle bisector of $\\angle BAC$, $BE$ is the altitude from $B$ to side $AC$, and $AD$ and $BE$ intersect at point $O$. If $\\angle AOE=70^\\circ$, what is the measure of $\\angle ABE$ in degrees?", -"image_file_name": "7044920", -"image": [ -"math/53033292_738.png" -], -"solution": "\\textbf{Solution:} Since $BE$ is the altitude on side $AC$,\\\\\nit follows that $\\angle AEB=90^\\circ$.\\\\\nTherefore, $\\angle OAE=90^\\circ-\\angle AOE=20^\\circ$.\\\\\nSince $AD$ is the angle bisector of $\\angle BAC$,\\\\\nit follows that $\\angle BAC=2\\angle OAE=40^\\circ$.\\\\\nTherefore, $\\angle ABE=90^\\circ-\\angle BAC=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53009863": { -"question": "As shown in the figure, it is known that in the right-angled $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=9$, $BC=12$, the perpendicular bisector of $AB$ intersects $AB$ at point $D$ and intersects $BC$ at point $E$. Connect $AE$. Find the length of $BE$.", -"image_file_name": "7044920", -"image": [ -"math/53009863_740.png" -], -"solution": "\\textbf{Solution:} In right-angled $\\triangle ABC$, by the Pythagorean theorem, we have \n\n\\[AB = \\sqrt{AC^{2} + BC^{2}} = \\sqrt{9^{2} + 12^{2}} = 15,\\]\n\nsince $DE$ is the perpendicular bisector of $AB$, \n\nthus $AE = BE$.\n\nLet $BE = AE = x$, then $CE = 12 - x$.\n\nIn right-angled $\\triangle ACE$, by the Pythagorean theorem, we get \n\n\\[AE^{2} = AC^{2} + CE^{2},\\]\n\nwhich implies\n\n\\[x^{2} = 9^{2} + (12-x)^{2},\\]\n\nsolving this, we find $x = \\boxed{\\frac{75}{8}}$,\n\nthus, the length of $BE$ is $\\frac{75}{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53009855": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=100^\\circ$, $AD\\perp BC$ at point D, and $AE$ bisects $\\angle BAC$ and intersects $BC$ at point E. If $\\angle C=25^\\circ$, find the degree measure of $\\angle DAE$.", -"image_file_name": "7044920", -"image": [ -"math/53009855_750.png" -], -"solution": "\\textbf{Solution:} Since AE bisects $\\angle BAC$, \\\\\nit follows that $\\angle EAC = \\frac{1}{2}\\angle BAC = \\frac{1}{2}\\times 100^\\circ = 50^\\circ$, \\\\\nSince $\\angle C = 25^\\circ$, \\\\\nit follows that $\\angle AED = \\angle C + \\angle EAC = 25^\\circ + 50^\\circ = 75^\\circ$, \\\\\nSince AD is perpendicular to BC, \\\\\nit follows that $\\angle ADE = 90^\\circ$, \\\\\ntherefore, $\\angle DAE = 90^\\circ - 75^\\circ = \\boxed{15^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52991712": { -"question": "As shown in the figure, in triangle $ABC$, $AB=AC$, $\\angle C=25^\\circ$, point $D$ is on the extension line of segment $CA$, and $DA=AC$. What is the measure of $\\angle ABD$ in degrees?", -"image_file_name": "7044920", -"image": [ -"math/52991712_760.jpg" -], -"solution": "\\textbf{Solution:} Since AB = AC, and $\\angle C = 25^\\circ$, \\\\\nhence $\\angle ABC = 25^\\circ$, \\\\\ntherefore $\\angle BAD = \\angle C + \\angle ABC = 50^\\circ$, \\\\\nsince DA = AC, \\\\\nhence AB = AD, \\\\\ntherefore $\\angle ABD = \\frac{1}{2} (180^\\circ - \\angle BAD) = \\boxed{65^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52991413": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ is the altitude on side $BC$, and $CE$ is an angle bisector that intersects with $AD$ at point $P$. Given that $\\angle APE=55^\\circ$ and $\\angle AEP=80^\\circ$, find the measure of $\\angle BAC$.", -"image_file_name": "7044920", -"image": [ -"math/52991413_777.png" -], -"solution": "\\textbf{Solution:} Since $AD\\perp BC$,\\\\\nit follows that $\\angle PDC=90^\\circ$,\\\\\nGiven $\\angle CPD=\\angle APE=55^\\circ$,\\\\\nit implies $\\angle PCD=90^\\circ-55^\\circ=35^\\circ$,\\\\\nSince $CE$ is an angle bisector,\\\\\nit follows $\\angle ACE=\\angle PCD=35^\\circ$,\\\\\nHence, $\\angle BAC=180^\\circ-35^\\circ-80^\\circ=\\boxed{65^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978401": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, point D is the midpoint of $BC$, point E is on $AC$, $AD=AE$, if $\\angle BAD=50^\\circ$, what is the degree measure of $\\angle CED$?", -"image_file_name": "7044920", -"image": [ -"math/52978401_787.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$ and point D is the midpoint of $BC$, \\\\\nit follows that triangle $ABC$ is an isosceles triangle, making $AD$ a median of $BC$ and the bisector of $\\angle BAC$, hence $\\angle CAD=\\angle BAD=50^\\circ$, \\\\\nSince $AD=AE$, \\\\\nit follows that $\\angle ADE=\\angle AED$, \\\\\nSince $\\angle ADE+\\angle AED+\\angle CAD=180^\\circ$, \\\\\nit follows that $\\angle ADE=\\angle AED=\\frac{1}{2}(180^\\circ-50^\\circ)=65^\\circ$, \\\\\nTherefore, $\\angle CED=180^\\circ-65^\\circ=\\boxed{115^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978477": { -"question": "As shown in the figure, $\\angle B = \\angle C = 90^\\circ$, $M$ is the midpoint of $BC$, $DM$ bisects $\\angle ADC$, and $\\angle ADC = 110^\\circ$, find the degree measure of $\\angle MAB$?", -"image_file_name": "7044920", -"image": [ -"math/52978477_796.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $MN \\perp AD$ at N,\\\\\n$\\because$ $\\angle B = \\angle C = 90^\\circ$,\\\\\n$\\therefore$ $AB \\parallel CD$,\\\\\n$\\therefore$ $\\angle DAB = 180^\\circ - \\angle ADC = 70^\\circ$,\\\\\n$\\because$ $DM$ bisects $\\angle ADC$, $MN \\perp AD$, $MC \\perp CD$,\\\\\n$\\therefore$ $\\angle DMN = \\angle DMC$, $\\angle DNM = \\angle DCM = 90^\\circ$,\\\\\nIn $\\triangle DMN$ and $\\triangle DMC$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle DMN = \\angle DMC \\\\\n\\angle DNM = \\angle DCM \\\\\nDM = DM\n\\end{array}\\right.$\\\\\n$\\therefore$ $\\triangle DMN \\cong \\triangle DMC$ (AAS),\\\\\n$\\therefore$ $MN = MC$.\\\\\n$\\because$ M is the midpoint of $BC$,\\\\\n$\\therefore$ $MC = MB$,\\\\\n$\\therefore$ $MN = MB$,\\\\\nAnd since $MN \\perp AD$, $MB \\perp AB$,\\\\\n$\\therefore$ $\\angle MAB = \\frac{1}{2}\\angle DAB = \\boxed{35^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978985": { -"question": "As shown in the diagram, it is known that $\\triangle ABC \\cong \\triangle DBE$, with point D on $AC$, and $BC$ intersects $DE$ at point P. If $\\angle ABE=160^\\circ$ and $\\angle DBC=30^\\circ$, what is the degree measure of $\\angle CBE$?", -"image_file_name": "7044920", -"image": [ -"math/52978985_807.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC \\cong \\triangle DBE$,\\\\\nit follows that $\\angle ABC = \\angle DBE$, that is $\\angle ABD + \\angle DBC = \\angle DBC + \\angle CBE$,\\\\\ntherefore $\\angle ABD = \\angle CBE$,\\\\\nsince $\\angle ABE = 160^\\circ$ and $\\angle DBC = 30^\\circ$,\\\\\nit follows that $\\angle ABD + \\angle DBC + \\angle CBE = \\angle ABE = 160^\\circ$,\\\\\ntherefore $\\angle ABD = \\angle CBE = \\frac{1}{2}(\\angle ABE - \\angle DBC) = \\frac{1}{2}(160^\\circ - 30^\\circ) = \\boxed{65^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978730": { -"question": "As shown in the figure, in $ \\triangle ABC$, point $D$ is on side $BC$, $BD=AD=AC$, $E$ is the midpoint of $CD$, and $ \\angle CAE=20^\\circ$. What is the measure of $ \\angle BAC$?", -"image_file_name": "7044920", -"image": [ -"math/52978730_816.png" -], -"solution": "\\textbf{Solution:} Because $AD=AC$, and point E is the midpoint of $CD$,\n\\[\n\\therefore AE\\perp CD,\n\\]\n\\[\n\\therefore \\angle AEC=90^\\circ,\n\\]\nBecause $\\angle CAE=20^\\circ$,\n\\[\n\\therefore \\angle C=90^\\circ-\\angle CAE=70^\\circ, \\quad \\angle DAC=2\\angle CAE=40^\\circ,\n\\]\nBecause $AD=AC$,\n\\[\n\\therefore \\angle ADC=\\angle C=70^\\circ,\n\\]\nBecause $AD=BD$,\n\\[\n\\therefore \\angle B=\\angle BAD,\n\\]\nBecause $\\angle B+\\angle BAD=\\angle ADC=70^\\circ$,\n\\[\n\\therefore \\angle B=\\angle BAD=\\frac{1}{2}\\angle ADC=35^\\circ,\n\\]\n\\[\n\\therefore \\angle BAC=\\angle DAC+\\angle BAD=40^\\circ+35^\\circ=\\boxed{75^\\circ}.\n\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52978931": { -"question": "As shown in the figure, $AD$ is the altitude of $\\triangle ABC$ on side $BC$, $AE$ bisects $\\angle BAC$. Given that $\\angle B=40^\\circ$, $\\angle C=72^\\circ$, find the measures of $\\angle AEC$ and $\\angle DAE$.", -"image_file_name": "7044920", -"image": [ -"math/52978931_820.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle BAC + \\angle B + \\angle C = 180^\\circ$, $\\angle B = 40^\\circ$, $\\angle C = 72^\\circ$,\\\\\n$\\therefore \\angle BAC = 68^\\circ$,\\\\\n$\\because$ AE bisects $\\angle BAC$,\\\\\n$\\therefore \\angle BAE = \\angle CAE = \\frac{1}{2} \\angle BAC = 34^\\circ$,\\\\\n$\\therefore \\angle AEC = \\angle B + \\angle BAE = 74^\\circ$,\\\\\n$\\because$ AD$\\perp$BC,\\\\\n$\\therefore \\angle ADE = 90^\\circ$,\\\\\n$\\therefore \\angle DAE = 90^\\circ - \\angle AEC = \\boxed{16^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52977143": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $AD$ bisects $\\angle BAC$ and intersects $BC$ at $D$, $AE \\perp BC$ at $E$. If $\\angle ADE = 80^\\circ$, $\\angle EAC = 20^\\circ$, what is the degree measure of $\\angle B$?", -"image_file_name": "7044920", -"image": [ -"math/52977143_8310.png" -], -"solution": "\\textbf{Solution:} Since $AE \\perp BC$ and $\\angle EAC = 20^\\circ$,\\\\\nit follows that $\\angle C = 70^\\circ$,\\\\\nhence $\\angle BAC + \\angle B = 110^\\circ$.\\\\\nSince $\\angle ADE = \\angle B + \\angle BAD = \\frac{1}{2}(\\angle BAC + \\angle B) + \\frac{1}{2}\\angle B$,\\\\\nit follows that $\\angle B = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52536496": { -"question": "As shown in the figure, in $\\triangle ABC$, $DE\\parallel BC$ and $AD: DB = 2: 1$. The area of $\\triangle ABC$ is $27$. What is the area of $\\triangle ADE$?", -"image_file_name": "7056275", -"image": [ -"math/52536496_670.png" -], -"solution": "\\textbf{Solution:} Since $AD:DB = 2:1$, \\\\\nit follows that $\\frac{AD}{AB} = \\frac{2}{3}$. \\\\\nSince $DE \\parallel BC$, \\\\\nit implies $\\triangle ADE \\sim \\triangle ABC$. \\\\\nTherefore, $\\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}} = \\left( \\frac{AD}{AB} \\right)^2$, that is $\\frac{S_{\\triangle ADE}}{27} = \\frac{4}{9}$, \\\\\nSolving this we get: $S_{\\triangle ADE} = \\boxed{12}$, \\\\\nThus, the area of $\\triangle ADE$ is $12$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52536609": { -"question": "As shown in the figure, AD and BC intersect at point P. AC and BD are connected, and $\\angle 1 = \\angle 2$, $AC=3$, $CP=2$, $DP=1$. Find the length of BD.", -"image_file_name": "7056275", -"image": [ -"math/52536609_680.png" -], -"solution": "Solution: Since $\\angle 1 = \\angle 2$ and $\\angle APC = \\angle BPD$,\\\\\n$\\therefore \\triangle APC \\sim \\triangle BPD$,\\\\\n$\\therefore \\frac{AC}{BD} = \\frac{CP}{DP}$,\\\\\n$BD = \\frac{DP \\cdot AC}{CP} = \\frac{1 \\times 3}{2} = \\boxed{1.5}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51446580": { -"question": "As shown in the figure, $D$ and $E$ are points on the sides $AB$ and $AC$ of $\\triangle ABC$ respectively, with $\\angle AED=\\angle B$, $AD=3$, $AB=8$, and $AE=4$. What is the length of $AC$?", -"image_file_name": "7056275", -"image": [ -"math/51446580_6910.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AED = \\angle B$, and $\\angle A = \\angle A$,\\\\\n$\\therefore \\triangle ADE \\sim \\triangle ACB$,\\\\\n$\\therefore \\frac{AD}{AC} = \\frac{AE}{AB}$,\\\\\nGiven that $AD = 3$, $AB = 8$, $AE = 4$,\\\\\n$\\therefore \\frac{3}{AC} = \\frac{4}{8}$,\\\\\n$\\therefore AC = \\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52866055": { -"question": "As shown in the figure, in $\\odot O$, $CP=2$, $PD=6$, $AP=5$, and chord $CD\\perp AB$ with the foot of the perpendicular at point $P$. Find the length of $OP$.", -"image_file_name": "7058778", -"image": [ -"math/52866055_777.png" -], -"solution": "\\textbf{Solution:} Draw $OE\\perp CD$ at point E, and $OF\\perp AB$ at point F, connect $OA$ and $OD$,\\\\\nsince $CD\\perp AB$,\\\\\ntherefore, quadrilateral $OEPF$ is a rectangle,\\\\\nthus $PF=OE$, $OF=PE$,\\\\\ngiven $CP=2$, $PD=6$,\\\\\nthus $CD=CP+DP=8$,\\\\\nsince $CD\\perp OE$,\\\\\nthus $DE=\\frac{1}{2}CD=4$,\\\\\nthus $OF=PE=PD-DE=2$,\\\\\nlet $OE=x$, then $PF=x$, $AF=5-x$,\\\\\nin $\\triangle AOF$, $AF^2+OF^2=OA^2$,\\\\\nin $\\triangle DOE$, $OE^2+DE^2=OD^2$,\\\\\nsince $OA=OD$,\\\\\nthus $AF^2+OF^2=OE^2+DE^2$, i.e., $(5-x)^2+2^2=x^2+4^2$,\\\\\nsolving for $x$ gives $x=\\frac{13}{10}$,\\\\\nin $\\triangle POE$, $OP=\\sqrt{OE^2+PE^2}=\\sqrt{\\left(\\frac{13}{10}\\right)^2+2^2}=\\boxed{\\frac{\\sqrt{569}}{10}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52536754": { -"question": "As shown in the figure, the line $y=-\\frac{1}{2}x+2$ intersects the $x$-axis and the $y$-axis at points $B$ and $A$, respectively. Let $Q$ be a variable point (not coinciding with $A$ or $B$) on segment $AB$. When point $Q$ is rotated clockwise by $90^\\circ$ about point $P(1, 0)$, point $Q'$ is obtained. What is the minimum value of $OQ'$ when connecting $OQ'$?", -"image_file_name": "7057900", -"image": [ -"math/52536754_3415.png" -], -"solution": "\\textbf{Solution}: Construct $QM \\perp x$-axis at point $M$, $Q'N \\perp x$-axis at $N$,\\\\\n$\\because$ $\\angle PMQ=\\angle PNQ'=\\angle QPQ'=90^\\circ$,\\\\\n$\\therefore$ $\\angle QPM+\\angle NPQ'=\\angle PQ'N+\\angle NPQ'$,\\\\\n$\\therefore$ $\\angle QPM=\\angle PQ'N$,\\\\\nIn $\\triangle PQM$ and $\\triangle Q'PN$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle PMQ=\\angle PNQ' \\\\\n\\angle QPM=\\angle PQ'N \\\\\nPQ=PQ'\n\\end{array}\\right.$,\\\\\n$\\therefore$ $\\triangle PQM\\cong \\triangle Q'PN$ (AAS),\\\\\n$\\therefore$ $PN=QM$, $Q'N=PM$,\\\\\nLet $Q\\left(m, -\\frac{1}{2}m+2\\right)$,\\\\\n$\\therefore$ $PM=\\left|m-1\\right|$, $QM=\\left|-\\frac{1}{2}m+2\\right|$,\\\\\n$\\therefore$ $ON=\\left|3-\\frac{1}{2}m\\right|$,\\\\\n$\\therefore$ $Q'\\left(3-\\frac{1}{2}m, 1-m\\right)$,\\\\\n$\\therefore$ $OQ'^2=\\left(3-\\frac{1}{2}m\\right)^2+\\left(1-m\\right)^2=\\frac{5}{4}m^2-5m+10=\\frac{5}{4}\\left(m-2\\right)^2+5$,\\\\\nWhen $m=2$, $OQ'^2$ reaches its minimum value of 5,\\\\\n$\\therefore$ The minimum value of $OQ'$ is $\\boxed{\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51614760": { -"question": "As shown in the figure, in $\\square ABCD$, $\\triangle ACE$ is constructed with $AC$ as the hypotenuse, and $\\angle BED$ is a right angle. Prove that: $\\square ABCD$ is a rectangle.", -"image_file_name": "7055653", -"image": [ -"math/51614760_672.png" -], -"solution": "\\textbf{Solution.} Proof: Connect OE\\\\\n$\\because$ quadrilateral ABCD is a parallelogram,\\\\\n$\\therefore$ AO=CO, BO=DO.\\\\\n$\\because$ $\\angle$AEC=$\\angle$BED=90$^\\circ$,\\\\\n$\\therefore$ AC=2OE, BD=2OE,\\\\\n$\\therefore$ AC=BD,\\\\\n$\\therefore$ $\\square ABCD$ is a \\boxed{rectangle}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614714": { -"question": "As shown in the figure, within the square paper ABCD, E is the midpoint of CD. The square paper is folded so that point B falls on point G on segment AE, with the crease being AF. If AD = 4 cm, what is the length of CF in centimeters?", -"image_file_name": "7055653", -"image": [ -"math/51614714_680.png" -], -"solution": "\\textbf{Solution:}\n\nGiven square ABCD, where point E is the midpoint of CD,\\\\\nthus $\\angle B = \\angle D = 90^\\circ$, AD = CD = 4, DE = CE = $\\frac{1}{2}$CD = 2,\\\\\nin $\\triangle ADE$,\\\\\n$AE = \\sqrt{AD^2 + DE^2} = \\sqrt{4^2 + 2^2} = 2\\sqrt{5}$,\\\\\nbecause folding the square paper such that point B falls on point G on segment AE, with the fold line being AF,\\\\\nthus DE = EF = 2, AG = AB = 4, BF = FG,\\\\\nthus GE = $2\\sqrt{5} - 4$, let BF = x, then CF = 4 - x,\\\\\nin $\\triangle GEF$, $EF^2 = GE^2 + GF^2 = (2\\sqrt{5} - 4)^2 + x^2$,\\\\\nthus in $\\triangle CEF$, $EF^2 = CE^2 + CF^2$,\\\\\nthus $(2\\sqrt{5} - 4)^2 + x^2 = (4 - x)^2 + 2^2$, solving it:\\\\\n$x = 2\\sqrt{5} - 2$,\\\\\nthus $FC = 4 - (2\\sqrt{5} - 2) = \\boxed{6 - 2\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51554788": { -"question": "As shown in the figure, $\\angle ABC=\\angle FAC=90^\\circ$, the length of $BC$ is $3\\text{cm}$, the length of $AB$ is $4\\text{cm}$, and the length of $AF$ is $12\\text{cm}$. What is the area of the square $CDEF$ in $\\text{cm}^2$?", -"image_file_name": "7055653", -"image": [ -"math/51554788_690.jpg" -], -"solution": "\\textbf{Solution:} Given in right triangle $\\triangle ABC$, $AC= \\sqrt{AB^{2}+BC^{2}}=\\sqrt{3^{2}+4^{2}}=5\\,\\text{cm}$,\nin right triangle $\\triangle ACF$, $CF= \\sqrt{AF^{2}+AC^{2}}=\\sqrt{12^{2}+5^{2}}=13\\,\\text{cm}$,\n$\\therefore$ the area of square $CDEF$ is $13\\times13=\\boxed{169}\\,\\text{cm}^{2}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53136572": { -"question": "As shown in the figure, $\\angle ABC=\\angle FAC=90^\\circ$, the length of $BC$ is 3m, the length of $AB$ is 4cm, and the length of $AF$ is 12cm. Calculate the area of the square $CDEF$.", -"image_file_name": "7055653", -"image": [ -"math/53136572_705.png" -], -"solution": "Solution: In right triangle $ABC$,\\\\\n$\\because \\angle ABC=90^\\circ, BC=3\\text{cm}, AB=4\\text{cm}$\\\\\n$\\therefore AC=\\sqrt{AB^{2}+BC^{2}}=\\sqrt{3^{2}+4^{2}}=5\\text{cm}$\\\\\nIn right triangle $ACF$, $\\because \\angle FAC=90^\\circ, AF=12\\text{cm}$\\\\\n$\\therefore CF=\\sqrt{AF^{2}+AC^{2}}=\\sqrt{12^{2}+5^{2}}=13\\text{cm}$\\\\\n$\\therefore$ The area of the square $CDEF$ $=13\\times 13=\\boxed{169}\\text{cm}^{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614402": { -"question": "As shown in the figure, $BD$ is a diagonal of rectangle $ABCD$. Extend $BC$ to point $E$ such that $CE=BD$. Connect $AE$. Given $AB=1$ and $\\angle AEB=15^\\circ$, find the length of $AD$.", -"image_file_name": "7055653", -"image": [ -"math/51614402_970.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AC and intersect BD at point O. Since quadrilateral ABCD is a rectangle, it follows that AD$\\parallel$BE and AC=BD, thus $OA=\\frac{1}{2}AC$ and $OD=\\frac{1}{2}BD$, therefore $OA=OD$. Consequently, $\\angle ADB=\\angle CAD$ and $\\angle E=\\angle DAE$. Also, since $BD=CE$, it follows that $CE=CA$ and thus $\\angle E=\\angle CAE$. Since $\\angle CAD=\\angle CAE+\\angle DAE=30^\\circ$, it follows that $\\angle ADB=30^\\circ$ and hence $BD=2AB=2$, leading to $AD=\\sqrt{BD^2−AB^2}=\\boxed{\\sqrt{3}}.$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53253574": { -"question": "As shown in the figure, it is known that points $B$ and $C$ divide the line segment $AD$ into three parts in the ratio $2:5:3$. Let $M$ be the midpoint of $AD$, and $BM=6$. Find the length of $AD$.", -"image_file_name": "7038985", -"image": [ -"math/53253574_485.png" -], -"solution": "\\textbf{Solution:} Since points B and C divide line segment AD into three parts in the ratio 2:5:3,\\\\\nit follows that AB=$\\frac{1}{5}$AD, and CD=$\\frac{3}{10}$AD.\\\\\nSince M is the midpoint of AD,\\\\\nwe have AM=$\\frac{1}{2}$AD.\\\\\nSince BM=AM−AB,\\\\\nwe find that $\\frac{1}{2}$AD−$\\frac{1}{5}$AD=6.\\\\\nSolving this gives: AD=\\boxed{20}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53253495": { -"question": "As shown in the figure, given two lines $AB$ and $CD$ intersect at point $O$, $OE$ bisects $\\angle BOD$, and $OF$ bisects $\\angle COB$. If $\\angle BOE = 36^\\circ$, what is the degree measure of $\\angle AOF$?", -"image_file_name": "7038985", -"image": [ -"math/53253495_499.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle DOE + \\angle EOB + \\angle BOF + \\angle FOC = 180^\\circ$, and that $OE$ bisects $\\angle BOD$ and $OF$ bisects $\\angle COB$, \\\\\nthus $2\\angle EOB + 2\\angle BOF = 180^\\circ$, \\\\\nhence, $\\angle BOE + \\angle BOF = 90^\\circ$, \\\\\nsince $\\angle BOE = 36^\\circ$, \\\\\ntherefore $\\angle BOF = 90^\\circ - 36^\\circ = 54^\\circ$, \\\\\ngiven that $\\angle AOF + \\angle BOF = 180^\\circ$, \\\\\nthus $\\angle AOF = 180^\\circ - 54^\\circ = \\boxed{126^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53253420": { -"question": "As shown in the figure, point $O$ lies on line $AB$, $OE$ bisects $\\angle AOC$, $\\angle DOC=90^\\circ$, and $\\angle EOC=65^\\circ$. Find the measure of $\\angle BOD$.", -"image_file_name": "7038985", -"image": [ -"math/53253420_505.png" -], -"solution": "\\textbf{Solution:} Since $OE$ bisects $\\angle AOC$,\\\\\nwe have $\\angle AOC=2\\angle EOC=2\\times 65^\\circ=130^\\circ$,\\\\\nthus $\\angle BOC=180^\\circ-\\angle AOC=180^\\circ-130^\\circ=50^\\circ$,\\\\\ngiven that $\\angle DOC=90^\\circ$,\\\\\nit follows $\\angle BOD=\\angle DOC-\\angle BOC=90^\\circ-50^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53404010": { -"question": "As shown in the figure, $O$ is a point on the line $CE$, $\\angle AOB=90^\\circ$, $\\angle AOC=50^\\circ$, and $OB$ bisects $\\angle COD$. What is the degree measure of $\\angle DOE$?", -"image_file_name": "7038985", -"image": [ -"math/53404010_896.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB=90^\\circ$ and $\\angle AOC=50^\\circ$\\\\\nTherefore, $\\angle BOC=\\angle AOB-\\angle AOC=90^\\circ-50^\\circ=40^\\circ$\\\\\nSince $OB$ bisects $\\angle COD$\\\\\nTherefore, $\\angle COD=2\\angle BOC=80^\\circ$\\\\\nTherefore, $\\angle DOE=180^\\circ-\\angle COD=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53207148": { -"question": "As shown in the figure, points $B$ and $C$ divide the line segment $AD$ into three parts in the ratio $2:3:4$. $M$ and $N$ are the midpoints of $AD$ and $AB$, respectively. Given that $CD=8\\,\\text{cm}$, find the length of $MN$.", -"image_file_name": "7038985", -"image": [ -"math/53207148_540.png" -], -"solution": "\\textbf{Solution:} Given that points B and C sequentially divide segment AD into three parts in the ratio 2:3:4,\\\\\nlet AB = 2x, BC = 3x, CD = 4x, and AD = 2x + 3x + 4x = 9x.\\\\\nSince CD = 8cm,\\\\\nthen 4x = 8,\\\\\nthus x = 2,\\\\\nhence AD = 9x = 18, and AB = 4.\\\\\nSince M is the midpoint of AD, and N is the midpoint of CD,\\\\\nthen AM = $\\frac{1}{2}$AD = 9, and AN = $\\frac{1}{2}$AB = 2,\\\\\ntherefore MN = 9 - 2 = \\boxed{7}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53205929": { -"question": "As shown in the figure, $C$ is a point on line segment $AB$, and $P$, $Q$ are the midpoints of line segments $AC$ and $BC$ respectively. If $PQ = 12$, find the length of $AB$.", -"image_file_name": "7038985", -"image": [ -"math/53205929_555.png" -], -"solution": "\\textbf{Solution:} Since $P$ and $Q$ are the midpoints of line segments $AC$ and $BC$ respectively,\\\\\nit follows that $AP=PC=\\frac{1}{2}AC$ and $CQ=QB=\\frac{1}{2}CB$,\\\\\nsince $PQ=PC+CQ=\\frac{1}{2}AC+\\frac{1}{2}CB=\\frac{1}{2}AB=12$,\\\\\nthus $AB=\\boxed{24}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206132": { -"question": "As shown in the figure, the line AB intersects with line MN at point O, with OC $\\perp$ AB, and OA bisects $\\angle MOD$. If $\\angle BON = 25^\\circ$, what is the degree measure of $\\angle COD$?", -"image_file_name": "7038985", -"image": [ -"math/53206132_560.png" -], -"solution": "\\textbf{Solution:} Given $\\angle BON = 25^\\circ$, \\\\\nthen $\\angle AOM = 25^\\circ$, \\\\\nsince OA bisects $\\angle MOD$, \\\\\nthen $\\angle AOD = \\angle MOA = 25^\\circ$, \\\\\nsince OC $\\perp$ AB, \\\\\nthen $\\angle AOC = 90^\\circ$, \\\\\ntherefore $\\angle COD = 90^\\circ - 25^\\circ = \\boxed{65^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206228": { -"question": "As shown in the figure, the lines $AB$ and $CD$ intersect at point O, and $OE \\perp CD$ at O. $OD$ bisects $\\angle AOF$, and $\\angle AOE = 55^\\circ$. What is the degree measure of $\\angle BOF$?", -"image_file_name": "7038985", -"image": [ -"math/53206228_577.png" -], -"solution": "\\textbf{Solution:} According to the construction,\\\\\nsince $OE \\perp CD$ and $\\angle AOE = 55^\\circ$,\\\\\nit follows that $\\angle AOD = 90^\\circ - \\angle AOE = 35^\\circ$,\\\\\nsince $OD$ bisects $\\angle AOF$,\\\\\nit yields $\\angle DOF = \\angle AOD = 35^\\circ$,\\\\\nsince lines $AB$ and $CD$ intersect at point O,\\\\\nthus $\\angle BOC = \\angle AOD = 35^\\circ$,\\\\\ntherefore $\\angle BOF = 180^\\circ - \\angle BOC - \\angle DOF = \\boxed{110^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53211177": { -"question": "As shown in the figure, it is known that $\\angle AOB = 90^{\\circ}$, $\\angle EOF = 60^{\\circ}$, $OE$ bisects $\\angle AOB$, and $OF$ bisects $\\angle BOC$. What are the measures of $\\angle AOC$ and $\\angle COB$?", -"image_file_name": "7038985", -"image": [ -"math/53211177_580.png" -], -"solution": "\\textbf{Solution:} Since OE bisects $\\angle AOB$ and $\\angle AOB=90^\\circ$,\n\\[\n\\therefore \\angle BOE = \\angle AOB = 45^\\circ,\n\\]\nAlso, since $\\angle EOF=60^\\circ$,\n\\[\n\\therefore \\angle BOF = \\angle EOF - \\angle BOE= 15^\\circ,\n\\]\nAnd since OF bisects $\\angle BOC$,\n\\[\n\\therefore \\angle BOC=2\\angle BOF=30^\\circ,\n\\]\nThus, $\\angle AOC=\\angle AOB + \\angle BOC=120^\\circ$,\nHence, $\\angle AOC=\\boxed{120^\\circ}$, $\\angle COB=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53195260": { -"question": "As shown in the diagram, $ \\angle AOC=90^\\circ$, $OD$ bisects $ \\angle AOB$, $ \\angle COD=35^\\circ$, what is the degree measure of $ \\angle BOC$?", -"image_file_name": "7038985", -"image": [ -"math/53195260_595.png" -], -"solution": "\\textbf{Solution:} Because $OD$ bisects $\\angle AOB$, \\\\\ntherefore $\\angle AOD = \\angle BOD = \\frac{1}{2} \\angle AOB$, \\\\\nbecause $\\angle AOC = 90^\\circ$, $\\angle COD = 35^\\circ$, \\\\\ntherefore $\\angle BOD = \\angle AOD = 90^\\circ - 35^\\circ = 55^\\circ$, \\\\\ntherefore $\\angle BOC = \\angle BOD - \\angle COD = 55^\\circ - 35^\\circ = \\boxed{20^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119262": { -"question": "As shown in the figure, the point $O$ is a point on the line $AB$, $OD$ bisects $\\angle BOC$, $\\angle COE=90^\\circ$, if $\\angle AOC=40^\\circ$, what is the measure of $\\angle DOE$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/53119262_607.png" -], -"solution": "\\textbf{Solution:} Given that $O$ is a point on the line $AB$ and $\\angle AOC=40^\\circ$, \\\\\nit follows that $\\angle BOC=180^\\circ-\\angle AOC=140^\\circ$.\\\\\nSince $OD$ bisects $\\angle BOC$, \\\\\nwe have $\\angle COD=\\frac{1}{2}\\angle BOC=70^\\circ$.\\\\\nGiven $\\angle COE=90^\\circ$, \\\\\nit follows that $\\angle DOE=\\angle COE-\\angle COD=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119496": { -"question": "As shown in the figure, the lines $AB$ and $CD$ intersect at point $O$, with $OE$ bisecting $\\angle AOD$ and $\\angle FOC = 90^\\circ$, $\\angle 1 = 40^\\circ$. Find the measure of $\\angle 2$.", -"image_file_name": "7038985", -"image": [ -"math/53119496_617.png" -], -"solution": "\\textbf{Solution:} Given that $ \\because \\angle FOC=90^\\circ$ and $ \\angle 1=40^\\circ$,\\\\\n$ \\therefore \\angle AOC=180^\\circ-\\angle FOC-\\angle 1=180^\\circ-90^\\circ-40^\\circ=50^\\circ$,\\\\\n$ \\therefore \\angle AOD=180^\\circ-\\angle AOC=180^\\circ-50^\\circ=130^\\circ$,\\\\\n$ \\because OE$ bisects $\\angle AOD$,\\\\\n$ \\therefore \\angle 2=\\frac{1}{2}\\angle AOD=\\frac{1}{2}\\times 130^\\circ=\\boxed{65^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53078633": { -"question": "Given, as shown in the figure, points $B$ and $C$ divide the line segment $AD$ into three parts in the ratio $2:5:3$, $M$ is the midpoint of $AD$, and $BM=6\\,\\text{cm}$. What is the length of $CM$ in centimeters?", -"image_file_name": "7038985", -"image": [ -"math/53078633_628.png" -], -"solution": "\\textbf{Solution:} Let $AB=2x\\,cm$, $BC=5x\\,cm$, $CD=3x\\,cm$,\\\\\nthus, $AD=AB+BC+CD=10x\\,cm$\\\\\nGiven that $M$ is the midpoint of $AD$,\\\\\nthus, $AM=MD=\\frac{1}{2}AD=\\frac{1}{2}\\times 10x=5x$, and $AB=2x\\,cm$,\\\\\nthus, $BM=AM−AB=5x−2x=3x\\,cm$,\\\\\nGiven that $BM=6\\,cm$,\\\\\nthus, $3x=6$, $x=2$,\\\\\nGiven that $CM=MD−CD$,\\\\\nthus, $CM=5x−3x=2x=2\\times 2=\\boxed{4\\,cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53027074": { -"question": "As shown in the figure, point C is a point on the line segment AB, with $AC=12\\, \\text{cm}$ and $AC=\\frac{3}{2}CB$. D and E are the midpoints of AC and AB, respectively. Find the length of DE.", -"image_file_name": "7038985", -"image": [ -"math/53027074_631.png" -], -"solution": "\\textbf{Solution:} Given that $AC=12\\,cm$ and $AC=\\frac{3}{2}CB$,\\\\\nit follows that $CB=\\frac{2}{3}AC=\\frac{2}{3}\\times 12=8\\,cm$,\\\\\nthus $AB=AC+CB=12+8=20\\,cm$,\\\\\nsince $D$ and $E$ are the midpoints of $AC$ and $AB$ respectively,\\\\\nwe have $AD=\\frac{1}{2}AC=6\\,cm$ and $AE=\\frac{1}{2}AB=10\\,cm$\\\\\ntherefore $DE=AE-AD=10-6=\\boxed{4\\,cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53106950": { -"question": "As shown in the diagram, it is known that $ \\angle AOC : \\angle BOC = 1 : 5$, $OD$ bisects $\\angle AOB$, and $\\angle COD = 36^\\circ$. What is the degree measure of $\\angle AOB$?", -"image_file_name": "7038985", -"image": [ -"math/53106950_645.png" -], -"solution": "\\textbf{Solution:} Let $\\angle AOC=x$, then $\\angle BOC=5x$,\\\\\nsince $OD$ bisects $\\angle AOB$,\\\\\nthus $\\angle AOD=\\frac{1}{2}\\angle AOB=\\frac{1}{2}(x+5x)=3x$,\\\\\nalso, since $\\angle COD=\\angle AOD-\\angle AOC$,\\\\\nthus $3x-x=36^\\circ$,\\\\\nsolving this, we get $x=18^\\circ$,\\\\\ntherefore $\\angle AOB=\\angle AOC+\\angle BOC=x+5x=\\boxed{108^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51495497": { -"question": "As shown in the figure, the ratio of the measures of $\\angle AOC$ to $\\angle BOC$ is $5\\colon 2$. $OD$ bisects $\\angle AOB$. If $\\angle COD=15^\\circ$, what is the measure of $\\angle AOB$?", -"image_file_name": "7038985", -"image": [ -"math/51495497_650.png" -], -"solution": "\\textbf{Solution:} Given that the ratio of the measures of $\\angle AOC$ to $\\angle BOC$ is $5\\colon 2$,\\\\\nlet $\\angle AOC=5x$ and $\\angle BOC=2x$, then $\\angle AOB=7x$,\\\\\nsince OD bisects $\\angle AOB$,\\\\\nit follows that $\\angle BOD= \\frac{1}{2} \\angle AOB= \\frac{7}{2} x$,\\\\\nsince $\\angle COD=\\angle BOD-\\angle BOC$ and $\\angle COD=15^\\circ$,\\\\\nthen $\\frac{7}{2} x-2x=15^\\circ$,\\\\\nsolving for $x$ gives $x=10^\\circ$,\\\\\ntherefore, $\\angle AOB=7\\times 10^\\circ=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52622748": { -"question": "As shown in the figure, in the circle $O$, the radius $OC$ is perpendicular to the chord $AB$ at $D$, point $E$ is on the circle $O$, $\\angle E=22.5^\\circ$, and $AB=2$. What is the length of the radius $OB$?", -"image_file_name": "7058804", -"image": [ -"math/52622748_800.png" -], -"solution": "\\textbf{Solution:} By the problem statement, radius $OC$ is perpendicular to chord $AB$ at point $D$,\\\\\n$\\therefore \\overset{\\frown}{AC}=\\overset{\\frown}{BC}$,\\\\\n$\\therefore \\angle E=\\frac{1}{2}\\angle BOC=22.5^\\circ$,\\\\\n$\\therefore \\angle BOD=45^\\circ$,\\\\\n$\\therefore \\triangle ODB$ is an isosceles right triangle,\\\\\n$\\because AB=2$,\\\\\n$\\therefore DB=OD=1$,\\\\\n$\\therefore OB=\\sqrt{1^2+1^2}=\\boxed{\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351843": { -"question": "As shown in the figure, M is the midpoint of CD, EM$\\perp$CD. If CD$=4$ and EM$=6$, what is the radius of the circle containing arc $\\overset{\\frown}{CED}$?", -"image_file_name": "7058804", -"image": [ -"math/51351843_811.png" -], -"solution": "\\textbf{Solution:} Connect OC, \\\\\n$\\because$ M is the midpoint of CD, and EM $\\perp$ CD, \\\\\n$\\therefore$ EM passes through the center point O of $\\odot$O, CM = $\\frac{1}{2}$CD = 2, \\\\\nLet the radius be x, \\\\\n$\\because$ EM = 6, \\\\\n$\\therefore$ OM = EM - OE = 6 - x, \\\\\nIn Rt$\\triangle$OCM, we have OM$^{2}$ + CM$^{2}$ = OC$^{2}$, which gives (6-x)$^{2}$ + $2^{2}$ = x$^{2}$, \\\\\nSolving for x, we get x = $\\frac{10}{3}$. \\\\\n$\\therefore$ The radius of the circle that contains the arc $CED$ is $\\boxed{\\frac{10}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351489": { -"question": "As shown in the figure, $AB$ is a chord of $\\odot O$, $C$ is a point on $\\odot O$, and $\\angle ACB=60^\\circ$, $OD\\perp AB$ at point $E$, intersecting $\\odot O$ at point $D$. If the radius of $\\odot O$ is $6$, how long is the chord $AB$?", -"image_file_name": "7058804", -"image": [ -"math/51351489_828.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect OB,\\\\\nthen $\\angle AOB = 2\\angle ACB = 120^\\circ$,\\\\\nsince OD$\\perp$AB,\\\\\nthus $\\angle AOE = \\frac{1}{2}\\angle AOB = 60^\\circ$,\\\\\nsince AO=6,\\\\\nthus in $\\triangle AOE$, $OE = \\frac{1}{2} OA = 3$,\\\\\n$AE = \\sqrt{OA^2 - OE^2} = 3\\sqrt{3}$,\\\\\nthus AB=2AE$=\\boxed{6\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51351028": { -"question": "As shown in the figure, $AB$ is a chord of $\\odot O$, $OC\\perp AB$ at point $M$, and intersects $\\odot O$ at point $C$. If the radius of $\\odot O$ is $10$, and the ratio $OM:MC = 3:2$, what is the length of $AB$?", -"image_file_name": "7058804", -"image": [ -"math/51351028_830.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect OA. \\\\\nSince OM:MC=3:2, and OC=10, \\\\\nthus OM=$\\frac{3}{5}OC=\\frac{3}{5}\\times 10=6$. \\\\\nSince OC$\\perp$AB, \\\\\ntherefore $\\angle$OMA$=90^\\circ$, and AB=2AM. \\\\\nIn $\\triangle$AOM, with AO=10, and OM=6, \\\\\ntherefore AM$=\\sqrt{AO^{2}-OM^{2}}=\\sqrt{10^{2}-6^{2}}=8$. \\\\\nThus, AB=2AM$=\\boxed{16}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51261712": { -"question": "As shown in the figure, $AD$ is the diameter of the circumcircle $\\odot O$ of $\\triangle ABC$. If $\\angle ACB = 50^\\circ$, what is the degree measure of $\\angle BAD$?", -"image_file_name": "7058804", -"image": [ -"math/51261712_842.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BD,\\\\\nsince AD is the diameter of the circumcircle $\\odot O$ of $\\triangle ABC$,\\\\\ntherefore $\\angle ABD=90^\\circ$,\\\\\nsince $\\angle D=\\angle C=50^\\circ$,\\\\\ntherefore $\\angle BAD=90^\\circ-\\angle D=90^\\circ-50^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"10253872": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $\\angle A=50^\\circ$, and the perpendicular bisector of $AB$, $DE$, intersects $AC$ and $AB$ at points $D$ and $E$, respectively. What is the degree measure of $\\angle CBD$?", -"image_file_name": "7044652", -"image": [ -"math/10253872_750.jpg" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $AB=AC$ and $\\angle A=50^\\circ$ \\\\\n$\\therefore$ $\\angle ABC=\\angle ACB=(180^\\circ-50^\\circ)÷2=65^\\circ$ \\\\\nSince $DE$ is the perpendicular bisector of $AB$ \\\\\n$\\therefore$ $DA=DB$ \\\\\n$\\therefore$ $\\angle ABD=\\angle A=50^\\circ$ \\\\\n$\\therefore$ $\\angle CBD=\\angle ABC-\\angle ABD=65^\\circ-50^\\circ=\\boxed{15^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"9100176": { -"question": "In $\\triangle ABC$, $\\angle C=90^\\circ$, $\\angle B=15^\\circ$, and $DE$ is the perpendicular bisector of $AB$, with $BE=5$. Find the length of $AC$.", -"image_file_name": "7044652", -"image": [ -"math/9100176_760.png" -], -"solution": "\\textbf{Solution:} Connect AE, \\\\\n$\\because$ DE is the perpendicular bisector of AB, \\\\\n$\\therefore$ BE = AE, \\\\\n$\\therefore$ $\\angle B = \\angle EAB = 15^\\circ$, \\\\\n$\\therefore$ $\\angle AEC = 30^\\circ$, \\\\\n$\\because$ $\\angle C = 90^\\circ$, \\\\\n$\\therefore$ AC = $\\frac{1}{2}$ AE = $\\frac{1}{2}$ BE = \\boxed{2.5}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"2283164": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC = \\angle BAC = 45^\\circ$, point $P$ lies on $AB$, $AD \\perp CP$, $BE \\perp CP$, with the feet of the perpendiculars being $D$ and $E$ respectively. Given that $DC = 2$, what is the length of $BE$?", -"image_file_name": "7044652", -"image": [ -"math/2283164_770.png" -], -"solution": "\\textbf{Solution:} \\\\\nGiven that $\\angle ABC=\\angle BAC=45^\\circ$, \\\\\nthus, $\\angle ACB=90^\\circ$ and AC=BC, \\\\\nsince $\\angle DAC+\\angle ACD=90^\\circ$ and $\\angle BCE+\\angle ACD=90^\\circ$, \\\\\nit follows that $\\angle DAC=\\angle BCE$, \\\\\nIn $\\triangle ACD$ and $\\triangle CEB$, \\\\\nhence, $\\triangle ACD \\cong \\triangle CEB$ (AAS), \\\\\ntherefore, $BE=CD=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53147949": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, and the bisectors of $\\angle BAC$ and $\\angle ACB$ intersect at point $D$. Given that $\\angle ADC=130^\\circ$, find the measure of $\\angle BAC$?", -"image_file_name": "7044652", -"image": [ -"math/53147949_800.png" -], -"solution": "\\textbf{Solution:} Given that $AB=AC$, and $AE$ bisects $\\angle BAC$,\\\\\nit follows that $AE\\perp BC$ (for an isosceles triangle, three lines coincide),\\\\\nsince $\\angle ADC=130^\\circ$,\\\\\nit follows $\\angle CDE=50^\\circ$,\\\\\nthus $\\angle DCE=90^\\circ-\\angle CDE=40^\\circ$, and since $CD$ bisects $\\angle ACB$,\\\\\nit follows $\\angle ACB=2\\angle DCE=80^\\circ$.\\\\\nSince $AB=AC$,\\\\\nit follows $\\angle B=\\angle ACB=80^\\circ$,\\\\\nthus $\\angle BAC=180^\\circ-(\\angle B+\\angle ACB)=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066432": { -"question": "As shown in the figure, in $\\triangle ABC$, extend $BC$ to point $D$ and connect $AD$. Let $E$ be a point on $AD$. It is known that $\\angle B=50^\\circ$, $\\angle CAE=\\angle D$, $\\angle DCE=\\angle BAC=20^\\circ$. What is the degree measure of $\\angle CED$?", -"image_file_name": "7044652", -"image": [ -"math/53066432_8110.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ACD = \\angle B + \\angle BAC$, and $\\angle DCE = \\angle BAC = 20^\\circ$, \\\\\n$\\therefore \\angle ACD = 50^\\circ + 20^\\circ = 70^\\circ$, \\\\\n$\\therefore \\angle CAE = \\angle D = \\frac{180^\\circ - \\angle ACD}{2} = 55^\\circ$, \\\\\n$\\therefore \\angle CED = 180^\\circ - \\angle DCE - \\angle D = 180^\\circ - 20^\\circ - 55^\\circ = \\boxed{105^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066357": { -"question": "As shown in the figure, within $\\triangle ABC$, $AD$ is the height of $\\triangle ABC$, $AE$ and $BF$ are the angle bisectors of $\\triangle ABC$, and $AE$ intersects $BF$ at point $O$. Given that $\\angle BOA = 125^\\circ$, what is the measure of $\\angle DAC$ in degrees?", -"image_file_name": "7044652", -"image": [ -"math/53066357_823.png" -], -"solution": "\\textbf{Solution:} Since $\\angle OAB + \\angle OBA + \\angle AOB = 180^\\circ$ and $\\angle AOB = 125^\\circ$,\n\\[\n\\therefore \\angle OAB + \\angle OBA = 180^\\circ - 125^\\circ = 55^\\circ,\n\\]\nSince AE and BF are the angle bisectors of $\\triangle ABC$,\n\\[\n\\therefore \\angle OAB = \\frac{1}{2} \\angle BAC, \\angle OBA = \\frac{1}{2} \\angle ABC,\n\\]\n\\[\n\\therefore \\frac{1}{2} \\angle BAC + \\frac{1}{2} \\angle ABC = 55^\\circ,\n\\]\n\\[\n\\therefore \\angle BAC + \\angle ABC = 110^\\circ,\n\\]\nSince $\\angle BAC + \\angle ABC + \\angle ACB = 180^\\circ$,\n\\[\n\\therefore \\angle ACB = 70^\\circ,\n\\]\nSince AD is the altitude of $\\triangle ABC$,\n\\[\n\\therefore \\angle ADC = 90^\\circ,\n\\]\n\\[\n\\therefore \\angle DAC = 90^\\circ - 70^\\circ = \\boxed{20^\\circ}.\n\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53058560": { -"question": "In the figure, in $ \\triangle ABC$, $ \\angle C=90^\\circ$, $ \\angle ABC=60^\\circ$, $BD$ bisects $ \\angle ABC$, if $AD=8$cm, what is the length of $CD$ in cm?", -"image_file_name": "7044652", -"image": [ -"math/53058560_837.png" -], -"solution": "\\textbf{Solution}: Since $\\angle C=90^\\circ$ and $\\angle ABC=60^\\circ$\\\\\nTherefore, $\\angle A=30^\\circ$\\\\\nSince $BD$ bisects $\\angle ABC$\\\\\nTherefore, $\\angle ABD=\\angle CBD=30^\\circ$\\\\\nTherefore, $\\angle A=\\angle ABD$\\\\\nTherefore, $DB=AD=8$\\\\\nSince $\\angle C=90^\\circ$ and $\\angle CBD=30^\\circ$\\\\\nTherefore, $CD=\\frac{1}{2}DB=4$\\\\\nHence, the length of $CD$ is $\\boxed{4}$cm.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53043951": { -"question": "In $\\triangle ABC$, $D$ is a point on $BC$, $AC=10$, $CD=6$, $AD=8$, $AB=17$. Find the length of $BC$.", -"image_file_name": "7044652", -"image": [ -"math/53043951_841.png" -], -"solution": "\\textbf{Solution:} Given $\\because CD=6, AD=8$,\\\\\n$\\therefore CD^{2}+AD^{2}=6^{2}+8^{2}=100$,\\\\\n$\\because AC^{2}=10^{2}=100$,\\\\\n$\\therefore CD^{2}+AD^{2}=AC^{2}$,\\\\\n$\\therefore \\angle ADC=90^\\circ$,\\\\\n$\\therefore \\angle ADB=90^\\circ$,\\\\\n$\\therefore BD=\\sqrt{AB^{2}-AD^{2}}=\\sqrt{17^{2}-8^{2}}=15$,\\\\\n$\\therefore BC=BD+CD=15+6=\\boxed{21}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53333892": { -"question": "As shown in the figure, E is a point on the diagonal BD of the square ABCD. Connect AE and CE, and extend CE to meet AD at point F. If $\\angle AEC = 140^\\circ$, what is the measure of $\\angle DFE$?", -"image_file_name": "7055317", -"image": [ -"math/53333892_650.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a square,\\\\\nit follows that AB = CB, and $\\angle ABE = \\angle CBE = \\angle ADB = 45^\\circ$.\\\\\nIn $\\triangle ABE$ and $\\triangle CBE$, we have\\\\\n\\[\n\\left\\{\n\\begin{array}{l}\nAB = CB\\\\\n\\angle ABE = \\angle CBE\\\\\nBE = BE\n\\end{array}\n\\right.,\n\\]\nthus $\\triangle ABE \\cong \\triangle CBE$,\\\\\nwhich implies $\\angle AEB = \\angle CEB$.\\\\\nAlso, since $\\angle AEC = 140^\\circ$,\\\\\nit follows that $\\angle CEB = 70^\\circ$.\\\\\nBecause $\\angle DEC + \\angle CEB = 180^\\circ$,\\\\\nthus $\\angle DEC = 180^\\circ - \\angle CEB = 110^\\circ$.\\\\\nSince $\\angle DFE + \\angle ADB = \\angle DEC$,\\\\\nit follows that $\\angle DFE = \\angle DEC - \\angle ADB = 110^\\circ - 45^\\circ = \\boxed{65^\\circ}.$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51722351": { -"question": "A student performed the following operations on a rectangular piece of paper ABCD: as shown in the figure, first fold along the line AG so that point B falls on point P on the diagonal AC, then fold along the line CH so that point D falls on point Q on the diagonal AC. If $AB=5$ and $BC=12$, what is the area of the quadrilateral $AGCH$?", -"image_file_name": "7055317", -"image": [ -"math/51722351_663.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle, with $AB=5$ and $BC=12$. Thus, $AB=CD=5$ and $\\angle B=90^\\circ$. Therefore, $AC=\\sqrt{AB^2+BC^2}=13$. From the property of folding, we know that AP=AB=5, BG=PG, and $\\angle B=\\angle APG=90^\\circ$. Similarly, CQ=CD=5, thus CP=8 and $\\angle CPG=90^\\circ$. Let CG=x, then BG=PG=12-x. Therefore, by the Pythagorean theorem, we have $(12-x)^2+8^2=x^2$. Solving this, we get $x=\\frac{26}{3}$, i.e., CG$=\\frac{26}{3}$. Similarly, AH$=\\frac{26}{3}$, hence CG=AH. Since quadrilateral ABCD is a rectangle, we have AD$\\parallel$BC. Consequently, quadrilateral AGCH is a parallelogram. Therefore, the area of quadrilateral AGCH is $S_{\\text{quadrilateral} AGCH}=CG\\cdot AB=\\boxed{\\frac{130}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53296816": { -"question": "As shown in the figure, it is known that rectangle $ABCD$ is folded along line $BD$, such that point $C$ falls on point $C'$, $BC$ intersects $AD$ at $E$, $AD=8$, and $AB=4$. What is the length of $DE$?", -"image_file_name": "7055317", -"image": [ -"math/53296816_670.png" -], -"solution": "\\textbf{Solution:} By the property of folding, we have $\\angle EBD = \\angle CBD$,\\\\\n$\\because$ in rectangle ABCD, AD$\\parallel$BC,\\\\\n$\\therefore \\angle ADB = \\angle CBD$,\\\\\n$\\therefore \\angle EBD = \\angle EDB$,\\\\\n$\\therefore DE = BE$,\\\\\nLet DE = x, then BE = x, AE = 8 - x,\\\\\n$\\because$ in $\\triangle ABE$, by the Pythagorean theorem we have $BE^2 = AB^2 + AE^2$,\\\\\n$\\therefore x^2 = 4^2 + (8 - x)^2$, solving for $x$ gives: $x = \\boxed{5}$,\\\\\n$\\therefore DE = \\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51684389": { -"question": " In the rhombus $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$, with $AC=8$, $BD=6$, and $OE\\perp BC$ with the foot of the perpendicular being point $E$. Find the length of $OE$.", -"image_file_name": "7055317", -"image": [ -"math/51684389_680.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus,\\\\\nit follows that AC $\\perp$ BD, OB = OD = $\\frac{1}{2}$BD = 3, OA = OC = $\\frac{1}{2}$AC = 4,\\\\\nin $\\triangle OBC$, since OB = 3, OC = 4,\\\\\nthus BC = $\\sqrt{3^2 + 4^2} = 5$,\\\\\nsince OE $\\perp$ BC,\\\\\nit follows that $\\frac{1}{2}$OE $\\cdot$ BC = $\\frac{1}{2}$ OB $\\cdot$ OC,\\\\\nthus OE = $\\frac{3 \\times 4}{5} = \\boxed{\\frac{12}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"55190283": { -"question": "As shown in the figure, points A, B, and C are on the same straight line, and BD bisects $\\angle ABE$, $\\angle EBC=30^\\circ$. What is the degree measure of $\\angle DBC$?", -"image_file_name": "7038193", -"image": [ -"math/55190283_360.png" -], -"solution": "\\textbf{Solution:} Since $\\angle EBC=30^\\circ$,\\\\\ntherefore $\\angle ABE=180^\\circ-30^\\circ=150^\\circ$,\\\\\nsince BD bisects $\\angle ABE$,\\\\\nthus $\\angle DBE= \\frac{1}{2}\\angle ABE=75^\\circ$,\\\\\ntherefore $\\angle DBC=\\angle DBE+\\angle EBC=\\boxed{105^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"50057191": { -"question": "As shown in the figure, point $O$ is on the line $AC$, $OD$ bisects $\\angle AOB$, $\\angle BOE = \\frac{1}{2}\\angle EOC$, and $\\angle DOE = 70^\\circ$. Find the measure of $\\angle EOC$.", -"image_file_name": "7038193", -"image": [ -"math/50057191_491.png" -], -"solution": "\\textbf{Solution:} Let $\\angle EOC = \\alpha$ \\\\\nSince $\\angle BOE = \\frac{1}{2} \\angle EOC$ \\\\\nThus $\\angle BOE = \\frac{1}{2} \\alpha$ \\\\\nSince $\\angle DOE = 70^\\circ$ \\\\\nThus $\\angle BOD = \\angle DOE - \\angle BOE = 70^\\circ - \\frac{1}{2} \\alpha$ \\\\\nSince $OD$ bisects $\\angle AOB$ \\\\\nThus $\\angle AOD = \\angle BOD = 70^\\circ - \\frac{1}{2} \\alpha$ \\\\\nSince point O is on line AC, \\\\\nThus $\\angle AOC = 180^\\circ$ \\\\\nTherefore $\\angle EOC + \\angle DOE + \\angle AOD = 180^\\circ$ \\\\\nTherefore $\\alpha + 70^\\circ + 70^\\circ - \\frac{1}{2}\\alpha = 180^\\circ$ \\\\\nTherefore $\\alpha = 80^\\circ$ \\\\\nTherefore $\\angle EOC = \\boxed{80^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53205972": { -"question": "As shown in the figure, straight lines AB and CD intersect at point O, OE bisects $\\angle AOD$, $OF\\perp CD$, and $\\angle AOE=70^\\circ$, find the degree measure of $\\angle BOF$.", -"image_file_name": "7038193", -"image": [ -"math/53205972_500.png" -], -"solution": "\\textbf{Solution:} Given that OE bisects $\\angle AOD$ and $\\angle AOE = 70^\\circ$, \\\\\nthus $\\angle AOD = 2\\angle AOE = 140^\\circ$, \\\\\nsince A, O, B are collinear, \\\\\nthus $\\angle BOD = \\angle AOC = 180^\\circ - \\angle AOD = 180^\\circ - 140^\\circ = 40^\\circ$, \\\\\ngiven that $OF \\perp CD$, \\\\\nthus $\\angle FOD = 90^\\circ$, \\\\\nthus $\\angle BOF = \\angle FOD - \\angle BOD = 90^\\circ - 40^\\circ = \\boxed{50^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55377894": { -"question": "As shown in the figure, straight lines AB and CD intersect at point O, EO $\\perp$ AB with the foot of the perpendicular at O, and $\\angle EOC = 35^\\circ$. What is the measure of $\\angle BOD$?", -"image_file_name": "7038193", -"image": [ -"math/55377894_600.png" -], -"solution": "\\textbf{Solution:} Given that $EO\\perp AB$,\\\\\nit follows that $\\angle AOE=90^\\circ$,\\\\\nand given $\\angle EOC=35^\\circ$,\\\\\nit results in $\\angle AOC=\\angle AOE-\\angle EOC=55^\\circ$,\\\\\ntherefore, $\\angle BOD=\\angle AOC=\\boxed{55^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55301112": { -"question": "As shown in the figure, $\\angle AOC = 90^\\circ$, OC bisects $\\angle DOB$, and $\\angle DOC = 25^\\circ 35'$. Find the degree measure of $\\angle BOA$?", -"image_file_name": "7038193", -"image": [ -"math/55301112_644.png" -], -"solution": "Solution: Since $OC$ bisects $\\angle DOB$ and $\\angle DOC=25^\\circ35'$, \\\\\nit follows that $\\angle DOC=\\angle BOC=25^\\circ35'$. \\\\\nSince $\\angle AOC=90^\\circ$, \\\\\nit follows that $\\angle BOA=90^\\circ-25^\\circ35'=64^\\circ25'$. \\\\\nHence, the answer is $\\boxed{64^\\circ25'}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55191292": { -"question": "As shown in the figure, $C$ is a point on line segment $AB$, and $D$ is the midpoint of line segment $BC$. If $AB=10$ and $AC=6$, find the length of $AD$.", -"image_file_name": "7038193", -"image": [ -"math/55191292_650.png" -], -"solution": "\\textbf{Solution:} Since $C$ is a point on line segment $AB$, $AB=10$, $AC=6$,\\\\\nthus $BC=AB-AC=10-6=4$,\\\\\nsince $D$ is the midpoint of line segment $BC$,\\\\\nthus $BD=\\frac{1}{2}BC=2$,\\\\\ntherefore $AD=AB-BD=10-2=\\boxed{8}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55191220": { -"question": "As shown in the diagram, $AO \\perp BO$, $CO \\perp DO$, where $O$ is the foot of the perpendiculars, $\\angle BOC = 50^\\circ$. What is the degree measure of $\\angle AOD$?", -"image_file_name": "7038193", -"image": [ -"math/55191220_660.png" -], -"solution": "\\textbf{Solution:} Given $AO\\perp BO$, $CO\\perp DO$,\\\\\ntherefore, $\\angle AOB = \\angle COD = 90^\\circ$,\\\\\nsince $\\angle AOB + \\angle BOC + \\angle COD + \\angle AOD = 360^\\circ$, and $\\angle BOC = 50^\\circ$,\\\\\nthus, $90^\\circ + 50^\\circ + 90^\\circ + \\angle AOD = 360^\\circ$,\\\\\nwe find that $\\angle AOD = \\boxed{130^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55191222": { -"question": "As shown in the figure, lines $AB$ and $CD$ intersect at point $O$. $OE$ bisects $\\angle BOC$, $OF\\perp OE$, and $\\angle AOD=66^\\circ$. What is the degree measure of $\\angle BOF$?", -"image_file_name": "7038193", -"image": [ -"math/55191222_670.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOD = 66^\\circ$,\\\\\nhence $\\angle BOC = \\angle AOD = 66^\\circ$,\\\\\nsince OE bisects $\\angle BOC$,\\\\\ntherefore $\\angle BOE = \\frac{1}{2} \\angle BOC = 33^\\circ$,\\\\\nsince OF is perpendicular to OE,\\\\\ntherefore $\\angle EOF = 90^\\circ$,\\\\\nthus $\\angle BOF = 90^\\circ - 33^\\circ = \\boxed{57^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55191221": { -"question": "As shown in the figure, lines AB, CD, and EF intersect at point O. If $\\angle COF = 120^\\circ$ and $\\angle AOD = 100^\\circ$, what is the measure of $\\angle AOF$ in degrees?", -"image_file_name": "7038193", -"image": [ -"math/55191221_680.png" -], -"solution": "\\textbf{Solution:} Since $\\angle COF=120^\\circ$,\\\\\nit follows that $\\angle COE=180^\\circ-120^\\circ=60^\\circ$,\\\\\nthus $\\angle DOF=\\angle COE=60^\\circ$,\\\\\nand since $\\angle AOD=100^\\circ$,\\\\\nit follows that $\\angle AOF=\\angle AOD-\\angle DOF=100^\\circ-60^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51323853": { -"question": "In $\\triangle ABC$, $AD$ is the altitude from $A$ to side $BC$, $\\angle C=45^\\circ$, $\\sin B=\\frac{1}{3}$, and $AD=1$. Find the length of $BC$?", -"image_file_name": "7058470", -"image": [ -"math/51323853_722.png" -], -"solution": "\\textbf{Solution:} Given $\\tan C = \\frac{AD}{DC}$, it follows that $\\tan 45^\\circ = \\frac{1}{DC} = 1$,\\\\\nthus, DC = 1.\\\\\nSince $\\sin B = \\frac{AD}{AB} = \\frac{1}{3}$, this implies $\\frac{1}{AB} = \\frac{1}{3}$,\\\\\nthus, AB = 3.\\\\\nIn right triangle $ABD$, we have $AD^2 + BD^2 = AB^2$,\\\\\ntherefore, $BD = \\sqrt{AB^2 - AD^2} = \\sqrt{3^2 - 1^2} = \\sqrt{8} = 2\\sqrt{2}$.\\\\\nHence, BC = BD + DC = $2\\sqrt{2} + 1 = \\boxed{2\\sqrt{2} + 1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51403336": { -"question": "As illustrated, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $CD$ and $CH$ are the median and the altitude on side $AB$, respectively, $BC = \\sqrt{14}$, $\\cos\\angle ACD = \\frac{3}{4}$, calculate the lengths of $AB$ and $CH$.", -"image_file_name": "7058470", -"image": [ -"math/51403336_733.png" -], -"solution": "\\textbf{Solution:} Draw DE $\\perp$ AC at E, then $\\angle AED = \\angle CED = 90^\\circ$,\\\\\nsince $\\angle ACB = 90^\\circ$,\\\\\nit follows that $\\angle AED = \\angle ACB$,\\\\\nhence, DE $\\parallel$ BC,\\\\\nsince CD is the median of $\\triangle ABC$,\\\\\nit follows that AD = BD,\\\\\nhence, CE = AE, i.e., AC = 2CE\\\\\nsince BC = $\\sqrt{14}$,\\\\\nit follows that DE = $\\frac{1}{2}$BC = $\\frac{\\sqrt{14}}{2}$,\\\\\nsince $\\cos\\angle ACD = \\frac{CE}{CD} = \\frac{3}{4}$\\\\\nlet CE = 3x, CD = 4x,\\\\\nby the Pythagorean theorem, we get: $DE = \\sqrt{CD^2 - CE^2} = \\sqrt{(4x)^2 - (3x)^2} = \\sqrt{7}x$\\\\\nhence, $\\sqrt{7}x = \\frac{\\sqrt{14}}{2}$, i.e., x = $\\frac{\\sqrt{2}}{2}$\\\\\nhence, AE = CE = 3x = $\\frac{3\\sqrt{2}}{2}$\\\\\nhence, AC = AE + CE = $3\\sqrt{2}$\\\\\nsince $\\cos\\angle ACD = \\frac{AC}{AB} = \\frac{3}{4}$, i.e., $\\frac{3\\sqrt{2}}{AB} = \\frac{3}{4}$\\\\\nhence, AB = $4\\sqrt{2}$\\\\\nsince $S_{\\triangle ABC} = \\frac{1}{2} \\times AC \\times BC = \\frac{1}{2} \\times AB \\times CH$\\\\\nhence, $\\frac{1}{2} \\times 3\\sqrt{2} \\times \\sqrt{14} = \\frac{1}{2} \\times 4\\sqrt{2} \\times CH$, solving this gives: CH = $\\frac{3\\sqrt{14}}{4}$.\\\\\nhence, the length of CH is $\\boxed{\\frac{3\\sqrt{14}}{4}}$, and the length of AB is $\\boxed{4\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51403135": { -"question": "The lookout tower $AB$ has a height of $20m$. From the base of the lookout tower $B$, the angle of elevation to the top of the opposite tower $C$ is measured to be $60^\\circ$, and from the top of the lookout tower $A$, the angle of elevation to the tower top $C$ is measured to be $45^\\circ$. Given that the terrain height of the lookout tower and tower $CD$ is the same, what is the height of tower $CD$ in meters?", -"image_file_name": "7058470", -"image": [ -"math/51403135_740.png" -], -"solution": "\\textbf{Solution:} Let the height of the tower $CD$ be $x$, thus $BD=\\frac{\\sqrt{3}}{3}x$,\\\\\nfrom $BD \\cdot \\tan 60^\\circ - BD \\cdot \\tan 45^\\circ = AB$, substituting $BD=\\frac{\\sqrt{3}}{3}x$,\\\\\nwe get: $x-\\frac{\\sqrt{3}}{3}x=20$,\\\\\nsolving this gives: $x=\\boxed{30+10\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53081448": { -"question": "As shown in the figure, $\\angle CAB=\\angle CBD$, $AB=4$, $AC=6$, $BD=7.5$, $BC=5$, find the length of $CD$.", -"image_file_name": "7055883", -"image": [ -"math/53081448_656.png" -], -"solution": "\\textbf{Solution:} Given $AB=4$, $AC=6$, $BD=7.5$, $BC=5$,\\\\\n$\\therefore \\frac{AC}{BD}=\\frac{AB}{BC}=\\frac{4}{5}$,\\\\\n$\\because \\angle CAB=\\angle CBD$,\\\\\n$\\therefore \\triangle ABC \\sim \\triangle BCD$,\\\\\n$\\therefore \\frac{BC}{CD}=\\frac{4}{5}$,\\\\\n$\\therefore CD=\\frac{5}{4}BC=\\frac{5}{4}\\times 5=\\boxed{\\frac{25}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080403": { -"question": "As shown in the figure, in $\\triangle APB$, $C$ and $D$ are respectively points on $AP$ and $BP$. Moreover, $\\angle CDP = \\angle A$, $AB = 8\\text{cm}$, $\\frac{BP}{CP} = \\frac{4}{3}$. Find the length of $CD$.", -"image_file_name": "7055883", -"image": [ -"math/53080403_669.png" -], -"solution": "\\textbf{Solution:} Since $\\left\\{\\begin{array}{l}\n\\angle CDP=\\angle A \\\\\n\\angle P=\\angle P\n\\end{array}\\right.$,\\\\\nit follows that $\\triangle PCD\\sim \\triangle PBA$,\\\\\nhence $\\frac{BP}{CP}=\\frac{AB}{CD}$,\\\\\ngiven that $AB=8\\text{cm}$ and $\\frac{BP}{CP}=\\frac{4}{3}$,\\\\\nwe have $\\frac{4}{3}=\\frac{8}{CD}$,\\\\\ntherefore, $CD=\\boxed{6}\\text{cm}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53065543": { -"question": "As shown in the figure, $D,E$ are points on the sides $AB$ and $BC$ of $\\triangle ABC$, respectively, with $DE\\parallel AC$. If the ratio of the areas ${S}_{\\triangle BDE}:{S}_{\\triangle ADE}=1:3$, what is the value of ${S}_{\\triangle DOE}:{S}_{\\triangle AOC}$?", -"image_file_name": "7055883", -"image": [ -"math/53065543_687.png" -], -"solution": "\\textbf{Solution:} From the construction, we have\n\\[\n\\because S_{\\triangle BDE} : S_{\\triangle ADE} = 1 : 3,\n\\]\n\\[\n\\therefore BD : AD = 1 : 3,\n\\]\n\\[\n\\therefore BD : BA = 1 : 4,\n\\]\n\\[\n\\because DE \\parallel AC,\n\\]\n\\[\n\\therefore \\triangle DOE \\sim \\triangle AOC,\n\\]\n\\[\n\\therefore \\frac{DE}{AC} = \\frac{BD}{BA} = \\frac{1}{4},\n\\]\n\\[\n\\therefore S_{\\triangle DOE} : S_{\\triangle AOC} = \\boxed{1 : 16}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53059521": { -"question": "As shown in the figure, points E and F are located on sides BC and CD of rectangle ABCD, respectively, and $CE = \\frac{2}{3}BC$, $CF = \\frac{2}{3}CD$. If the perimeter of $\\triangle ABC$ is 39, what is the perimeter of $\\triangle CEF$?", -"image_file_name": "7055883", -"image": [ -"math/53059521_693.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle,\\\\\n$\\therefore \\angle B=\\angle ECF=90^\\circ$, $AB=CD$\\\\\n$\\because CE=\\frac{2}{3}BC$, $CF=\\frac{2}{3}CD$\\\\\n$\\therefore \\frac{CE}{BC}=\\frac{CF}{CD}=\\frac{CF}{AB}=\\frac{2}{3}$\\\\\n$\\therefore \\triangle CEF \\sim \\triangle BCA$, with a similarity ratio of $\\frac{2}{3}$.\\\\\n$\\because$ The perimeter of $\\triangle ABC$ is 39, $\\therefore$ the perimeter of $\\triangle CEF$ is $39\\times \\frac{2}{3}=\\boxed{26}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53010292": { -"question": "As shown in the figure, there is a street lamp pole $AB$ on the opposite side of the river. Under the illumination of the lamp, Xiao Ming is at point $D$, and his shadow is $DF=4m$ long. He moves in the direction of $BD$ to reach point $F$, and then measures his shadow to be $FG=5m$ long. If Xiao Ming's height is $1.6m$, calculate the height of the street lamp pole $AB$.", -"image_file_name": "7056453", -"image": [ -"math/53010292_616.png" -], -"solution": "\\textbf{Solution:} Given that $CD\\parallel EF\\parallel AB$,\\\\\nwe can infer that $\\triangle ABF\\sim \\triangle CDF$ and $\\triangle ABG\\sim \\triangle EFG$,\\\\\nhence, $\\frac{AB}{CD}=\\frac{BF}{DF}$ and $\\frac{AB}{EF}=\\frac{BG}{FG}$,\\\\\nsince $CD=EF$,\\\\\nit follows that $\\frac{BF}{DF}=\\frac{BG}{FG}$\\\\\nGiven $DF=4$, $FG=5$, $BF=BD+DF=BD+4$, $BG=BD+DF+FG=BD+9$,\\\\\nwe get $\\frac{4+BD}{4}=\\frac{9+BD}{5}$,\\\\\nsolving for $BD$ yields $BD=16, BF=16+4=20$,\\\\\ntherefore $\\frac{AB}{1.6}=\\frac{20}{4}$,\\\\\nsolving gives $AB=\\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379170": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ is the midpoint of $BC$, $DF \\perp AE$ at $F$, with $AB=6$ and $BC=4$. What are the lengths of $AE$ and $DF$?", -"image_file_name": "7056453", -"image": [ -"math/51379170_620.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rectangle,\\\\\nwe have $\\angle BAE+\\angle DAE=90^\\circ$, and $\\angle ADF+\\angle DAF=90^\\circ$,\\\\\nthus, $\\angle BAE=\\angle ADF$,\\\\\nand since $\\angle AFD=\\angle B=90^\\circ$,\\\\\nwe obtain $\\triangle ADF\\sim \\triangle EAB$,\\\\\nwhich implies $\\frac{AD}{AE}=\\frac{DF}{AB}$,\\\\\nknowing that $E$ is the midpoint of $BC$ and $BC=4$,\\\\\nwe find $BE=2$,\\\\\nthus, $AE=\\sqrt{6^2+2^2}=2\\sqrt{10}$,\\\\\nleading to $\\frac{4}{2\\sqrt{10}}=\\frac{DF}{6}$,\\\\\nsolving this, we find: $DF=\\boxed{\\frac{6\\sqrt{10}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379447": { -"question": "In the figure, for trapezoid $ABCD$, where $AD\\parallel BC$, point $E$ is on line segment $AD$, $CE$ and $BD$ intersect at point $H$, and $CE$ intersects the extension line of $BA$ at point $G$. Given $DE:AE=2:3$, $BC=4DE$, and $CE=10$ cm, find the lengths of $EH$ and $GE$.", -"image_file_name": "7056453", -"image": [ -"math/51379447_6315.png" -], -"solution": "\\textbf{Solution:}\n\nSince $AD \\parallel BC$,\n\n$\\therefore \\frac{DE}{BC}=\\frac{EH}{HC}$.\n\nSince $BC=4DE$,\n\n$\\therefore \\frac{DE}{BC}=\\frac{1}{4}$.\n\nSince $CE=10$,\n\n$\\therefore HC=10-EH$\n\n$\\therefore \\frac{1}{4}=\\frac{EH}{10-EH}$,\n\n$\\therefore EH=\\boxed{2}$.\n\nSince $BC=4DE$, $DE:AE=2:3$,\n\n$\\therefore \\frac{AE}{BC}=\\frac{3}{8}$.\n\nSince $AD \\parallel BC$,\n\n$\\therefore \\triangle AGE \\sim \\triangle BGC$,\n\n$\\therefore \\frac{AE}{BC}=\\frac{GE}{GC}$.\n\nSince $CE=10$,\n\n$\\therefore GC=10+GE$,\n\n$\\therefore \\frac{3}{8}=\\frac{GE}{10+GE}$,\n\n$\\therefore GE=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51350897": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=4$, $AB=5$. Point $D$ is on $AC$ and $AD=3$, $DE\\perp AB$ at point $E$. Find the length of $AE$.", -"image_file_name": "7056453", -"image": [ -"math/51350897_640.png" -], -"solution": "\\textbf{Solution:} Since DE$\\perp$AB at point E, and $\\angle C=90^\\circ$,\\\\\nit follows that $\\angle$AED=$\\angle$C,\\\\\nsince $\\angle$A=$\\angle$A,\\\\\nit follows that $\\triangle$ ADE$\\sim$ $\\triangle$ ABC,\\\\\nthus, $\\frac{AD}{AB}=\\frac{AE}{AC}$,\\\\\n$\\frac{3}{5}=\\frac{AE}{4}$,\\\\\nAE=$\\boxed{\\frac{12}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51351875": { -"question": "As shown in the figure, in parallelogram $ABCD$, point $E$ is the midpoint of $AB$. $CE$ and $BD$ intersect at point $O$. If $S_{\\triangle EOB} = 1$, find the area of quadrilateral $AEOD$.", -"image_file_name": "7056453", -"image": [ -"math/51351875_650.png" -], -"solution": "\\textbf{Solution:} Let's consider parallelogram ABCD, where point E is the midpoint of AB,\\\\\nhence CD$\\parallel$AB, and CD=AB=2BE,\\\\\ntherefore, $\\triangle DOC\\sim \\triangle BOE$,\\\\\nthus, $\\frac{OC}{OE}=\\frac{CD}{BE}=2$,\\\\\ntherefore, $\\frac{S_{\\triangle BOC}}{S_{\\triangle EOB}}=\\frac{OC}{OE}=2$, $ \\frac{S_{\\triangle DOC}}{S_{\\triangle EOB}}=\\left(\\frac{OC}{OE}\\right)^2=4$\\\\\nSince $S_{\\triangle EOB}=1$,\\\\\nthus, $S_{\\triangle BOC}=2$, $S_{\\triangle DOC}=4$,\\\\\ntherefore, $S_{\\triangle BCD}=6$,\\\\\ntherefore, $S_{\\triangle DAB}=6$,\\\\\nthus, the area of quadrilateral AEOD is: $S_{\\triangle DAB}-S_{\\triangle EOB}=6-1=\\boxed{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52423436": { -"question": "As shown in the figure, in $\\triangle ABC$, it is known that $AB=6$, $AC=10$, and $AD$ bisects $\\angle BAC$, with $BD\\perp AD$ at point $D$, and $E$ is the midpoint of $BC$. Find the length of $DE$.", -"image_file_name": "7054392", -"image": [ -"math/52423436_8010.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, extend $BD$ to meet $AC$ at point $F$.\\\\\nSince $AD$ bisects $\\angle BAC$,\\\\\nit follows that $\\angle BAD=\\angle FAD$.\\\\\nSince $BD\\perp AD$,\\\\\nit follows that $\\angle ADB=\\angle ADF=90^\\circ$.\\\\\nHence, $\\angle ABD=\\angle AFD$.\\\\\nTherefore, $AB=AF$ and $BD=DF$.\\\\\nHence, $D$ is the midpoint of $BF$.\\\\\nSince $AC=10$ and $AB=6$,\\\\\nit follows that $FC=AC-AF=AC-AB=10-6=4$.\\\\\nSince $E$ is the midpoint of $BC$,\\\\\nthus $DE$ is the midline of $\\triangle BFC$.\\\\\nTherefore, $DE=\\frac{1}{2}FC=\\frac{1}{2}\\times 4=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52416340": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$, $E$, and $F$ are the midpoints of $AB$, $BC$, and $CA$, respectively, with $AC=20$ and $BC=18$. What is the perimeter of the quadrilateral $DECF$?", -"image_file_name": "7054392", -"image": [ -"math/52416340_813.png" -], -"solution": "\\textbf{Solution:} Since D, E, F are the midpoints of AB, BC, and CA, respectively, and given that $AC=20$, $BC=18$,\\\\\nit follows that $DE=CF=\\frac{1}{2}AC=10$, $DF=CE=\\frac{1}{2}BC=9$,\\\\\ntherefore, the perimeter of the quadrilateral DECF $=DE+CF+DF+CE=10+10+9+9=\\boxed{38}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52836476": { -"question": "As shown in the diagram, four triangular paper pieces $\\triangle ABC$, $\\triangle AB_{1}C_{1}$, $\\triangle AB_{2}C_{2}$, and $\\triangle AB_{3}C_{3}$ are perfectly superimposed and arranged as depicted. Given $BC=\\sqrt{10}$ and $AB=1$, what is the area of quadrilateral $CC_{1}C_{2}C_{3}$?", -"image_file_name": "7048953", -"image": [ -"math/52836476_811.png" -], -"solution": "\\textbf{Solution:} From the given problem, we have Rt$\\triangle ABC \\cong$ Rt$\\triangle AB_{1}C_{1} \\cong$ Rt$\\triangle AB_{2}C_{2} \\cong$ Rt$\\triangle AB_{3}C_{3}$,\\\\\n$\\therefore AC = AC_{1} = AC_{2} = AC_{3}$, and AB$ = AB_{1} = 1$.\\\\\nIn Rt$\\triangle ABC$, by the Pythagorean theorem, we have $AC = \\sqrt{BC^{2} - AB^{2}} = 3$,\\\\\n$\\therefore Area_{\\text{quadrilateral} CC_{1}C_{2}C_{3}} = 4 \\times \\frac{3 \\times 3}{2} = \\boxed{18}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653666": { -"question": "As shown in the figure, $AD$ is the angle bisector of $\\triangle ABC$, and $AE$ is the altitude of $\\triangle ABC$. Given that $\\angle B=40^\\circ$ and $\\angle DAE=15^\\circ$, what is the degree measure of $\\angle C$?", -"image_file_name": "7048953", -"image": [ -"math/52653666_825.png" -], -"solution": "\\textbf{Solution:} Given the construction,\\\\\n$\\because AE$ is the altitude of $\\triangle ABC$,\\\\\n$\\therefore \\angle AEB=90^\\circ$,\\\\\n$\\because \\angle B=40^\\circ$,\\\\\n$\\therefore \\angle BAE=50^\\circ$,\\\\\nAlso, $\\because \\angle DAE=15^\\circ$,\\\\\n$\\therefore \\angle BAD=50^\\circ-15^\\circ=35^\\circ$,\\\\\n$\\because AD$ is the bisector of $\\triangle ABC$,\\\\\n$\\therefore \\angle BAD=\\angle CAD=35^\\circ$,\\\\\n$\\therefore \\angle BAC=70^\\circ$,\\\\\n$\\therefore \\angle C=180^\\circ-\\angle B-\\angle BAC=180^\\circ-40^\\circ-70^\\circ=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51366600": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC = 90^\\circ$, $AB = 15$, $AC = 20$, and $AD \\perp BC$ with D being the foot of the perpendicular. Find the lengths of AD and BD.", -"image_file_name": "7048953", -"image": [ -"math/51366600_835.png" -], -"solution": "\\textbf{Solution:} In the right-angled triangle $ABC$, where $\\angle BAC = 90^\\circ$, $AB = 15$, and $AC = 20$,\\\\\naccording to the Pythagorean theorem, we have $BC = \\sqrt{AB^2 + AC^2} = \\sqrt{15^2 + 20^2} = 25$,\\\\\nsince the area of $\\triangle ABC$ is calculated as ${S}_{\\triangle ABC} = \\frac{1}{2}AB \\cdot AC$ and ${S}_{\\triangle ABC} = \\frac{1}{2}BC \\cdot AD$,\\\\\nit follows that $\\frac{1}{2}AB \\cdot AC = \\frac{1}{2}BC \\cdot AD$.\\\\\nTherefore, $AD = \\frac{AB \\cdot AC}{BC} = \\frac{15 \\times 20}{25} = \\boxed{12}$;\\\\\nsince $AD \\perp BC$,\\\\\nit follows that $\\angle ADB = 90^\\circ$.\\\\\nIn the right-angled triangle $ADB$, according to the Pythagorean theorem, we have $BD = \\sqrt{AB^2 - AD^2} = \\sqrt{15^2 - 12^2} = 9$,\\\\\ntherefore, the lengths of $AD$ and $BD$ are $12$ and $9$ respectively.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385808": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ bisects $\\angle BAC$. Given $AB=AC=3$ and $AD=2$, find the length of $BC$.", -"image_file_name": "7048953", -"image": [ -"math/51385808_840.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$ and $AD$ bisects $\\angle BAC$, \\\\\n$\\therefore AD \\perp BC$, and $BD=DC$, \\\\\n$\\therefore BD= \\sqrt{AB^{2}-AD^{2}}= \\sqrt{5}$, \\\\\n$\\therefore BC=2BD=2\\sqrt{5}=\\boxed{2\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53010582": { -"question": " In the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $AB=AC=a$, $AD$ is the altitude of $\\triangle ABC$, what is the length of $AD$?", -"image_file_name": "7048953", -"image": [ -"math/53010582_850.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle BAC=90^\\circ$ and $AB=AC=a$, \\\\\n$\\therefore$ BC=$\\sqrt{AB^2+AC^2}=\\sqrt{a^2+a^2}=\\sqrt{2}a$,\\\\\nsince $AD$ is the height of $\\triangle ABC$,\\\\\n$\\therefore$ the area $S_{\\triangle ABC}=\\frac{1}{2}\\times AB\\times AC=\\frac{1}{2}\\times BC\\times AD$,\\\\\nthus $\\frac{1}{2}\\times a\\times a=\\frac{1}{2}\\times \\sqrt{2}a\\times AD$,\\\\\nwe find $AD=\\boxed{\\frac{\\sqrt{2}}{2}a}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51378784": { -"question": "As illustrated, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle A=30^\\circ$, $CD\\perp AB$ at point D, $DE\\parallel BC$ intersects AC at point E. If $BD=2$, what is the length of $DE$?", -"image_file_name": "7048953", -"image": [ -"math/51378784_867.png" -], -"solution": "\\textbf{Solution:}\n\nGiven $\\because \\angle ACB=90^\\circ$ and $\\angle A=30^\\circ$,\n\n$\\therefore \\angle B=60^\\circ$ and $AB=2BC$,\n\nSince $CD\\perp AB$ at point $D$,\n\n$\\therefore \\angle CDB=\\angle CDA=90^\\circ$,\n\n$\\therefore \\angle BCD=30^\\circ$,\n\nThus, $BC=2BD$,\n\nGiven $BD=2$,\n\n$\\therefore BC=4$,\n\nTherefore, $AB=2BC=8$,\n\nThus, $AD=AB-BD=6$,\n\nSince $DE\\parallel BC$,\n\n$\\therefore \\angle DEA=\\angle ACB=90^\\circ$,\n\nGiven in $\\triangle ADE$, $\\angle A=30^\\circ$,\n\n$\\therefore DE=\\frac{1}{2}AD=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51378906": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC = 45^\\circ$. $F$ is the intersection point of altitudes $AD$ and $BE$, $AC = \\sqrt{5}$, $BD = 2$. What is the length of segment $DF$?", -"image_file_name": "7048953", -"image": [ -"math/51378906_871.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ and $BE$ are altitudes of $\\triangle ABC$,\\\\\nit follows that $\\angle ADB = \\angle ADC = \\angle BEC = 90^\\circ$.\\\\\nThus, $\\angle C + \\angle DAC = 90^\\circ$; $\\angle C + \\angle DBF = 90^\\circ$.\\\\\nThis means $\\angle DAC = \\angle DBF$.\\\\\nSince $\\angle ABC = 45^\\circ$,\\\\\nit implies $\\angle DAB = 45^\\circ$.\\\\\nHence, $\\angle ABC = \\angle DAB$.\\\\\nTherefore, $DA = DB$.\\\\\nIn $\\triangle ADC$ and $\\triangle BDF$,\\\\\n\\[\\left\\{ \\begin{array}{l} \\angle ADC = \\angle BDF \\\\ DA = DB \\\\ \\angle DAC = \\angle DBF \\end{array} \\right.\\]\\\\\nThus, $\\triangle ADC \\cong \\triangle BDF$ (ASA).\\\\\nTherefore, $AC = BF = \\sqrt{5}$.\\\\\nIn right $\\triangle BDF$, with $\\angle BDF = 90^\\circ$,\\\\\nit follows that $BD^2 + DF^2 = BF^2$.\\\\\nGiven $BD = 2$, and $BF = \\sqrt{5}$,\\\\\nit concludes $DF = \\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51378752": { -"question": "As shown in the figure, $AD$ is the altitude of $\\triangle ABC$, and $CE$ is the angle bisector of $\\triangle ADC$. If $\\angle BAD = \\angle ECD$ and $\\angle B = 70^\\circ$, what is the degree measure of $\\angle CAD$?", -"image_file_name": "7048953", -"image": [ -"math/51378752_885.png" -], -"solution": "\\textbf{Solution:}\n\nSince $AD$ is the altitude of $\\triangle ABC$,\n\\[\\therefore \\angle ADB=\\angle ADC=90^\\circ\\]\n\nSince $\\angle B=70^\\circ$,\n\\[\\therefore \\angle BAD=20^\\circ\\]\n\nSince CE is the bisector of $\\triangle ADC$,\n\\[\\therefore \\angle ECD=\\frac{1}{2}\\angle ACD\\]\n\nSince $\\angle BAD=\\angle ECD=20^\\circ$,\n\\[\\therefore \\angle ACD=40^\\circ\\]\n\nTherefore, in $\\triangle ACD$, $\\angle CAD=90^\\circ-40^\\circ=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52096620": { -"question": "As shown in the figure, in the right-angled triangle $ABC$ with $\\angle B=90^\\circ$, $AB=4$, and $BC=3$, the shaded area is a rectangle, and $AE=1$. What is the area of the shaded region?", -"image_file_name": "7048953", -"image": [ -"math/52096620_890.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, where $\\angle B=90^\\circ$, $AB=4\\text{cm}$, $BC=3\\text{cm}$,\\\\\nby the Pythagorean theorem, we have $AB^2+BC^2=AC^2$,\\\\\nthus $4^2+3^2=AC^2$\\\\\n$\\therefore AC= \\sqrt{3^2+4^2}=5\\text{cm}$,\\\\\n$\\because AE=1\\text{cm}$,\\\\\n$\\therefore$ the area of rectangle $ACDE$ is $5\\times 1=\\boxed{5}\\text{cm}^2$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52891228": { -"question": "As shown in the figure, in $\\triangle ABC$, point D is the midpoint of side AB, and $CD = \\frac{1}{2}AB$. Prove that: $\\angle ACB = 90^\\circ$.", -"image_file_name": "7048953", -"image": [ -"math/52891228_902.png" -], -"solution": "\\textbf{Solution:} Proof: Since point D is the midpoint of side $AB$,\\\\\n$ \\therefore AD=BD=\\frac{1}{2}AB$,\\\\\nAlso since $CD=\\frac{1}{2}AB$,\\\\\n$ \\therefore AD=BD=CD$,\\\\\n$ \\therefore \\angle ACD=\\angle A$, $\\angle BCD=\\angle B$.\\\\\nSince $\\angle A+\\angle B+(\\angle ACD+\\angle BCD)=180^\\circ$,\\\\\n$ \\therefore \\angle ACD+\\angle BCD+(\\angle ACD+\\angle BCD)=180^\\circ$,\\\\\n$ \\therefore 2(\\angle ACD+\\angle BCD)=180^\\circ$,\\\\\n$ \\therefore \\angle ACD+\\angle BCD=90^\\circ$,\\\\\nwhich means $\\angle ACB=\\boxed{90^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52891255": { -"question": "In the figure, within $\\triangle ABC$, $AD$ bisects $\\angle BAC$, $AE\\perp BC$. If $\\angle BAD=40^\\circ$ and $\\angle C=70^\\circ$, find the measure of $\\angle DAE$?", -"image_file_name": "7048953", -"image": [ -"math/52891255_910.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ bisects $\\angle BAC$,\\\\\nthus $\\angle BAC = 2\\angle BAD = 80^\\circ$ (definition of angle bisector),\\\\\nGiven that $\\angle C = 70^\\circ$,\\\\\nin $\\triangle ABC$, thus $\\angle B = 180^\\circ - \\angle BAC - \\angle C\\\\\n= 180^\\circ - 70^\\circ - 80^\\circ = 30^\\circ$ (sum of interior angles in a triangle is $180^\\circ$),\\\\\nGiven that $AE \\perp BC$,\\\\\nthus $\\angle AEB = 90^\\circ$ (definition of perpendicular),\\\\\nin $\\triangle ABE$, $\\angle BAE = 180^\\circ - \\angle B - \\angle AEB\\\\\n= 180^\\circ - 30^\\circ - 90^\\circ = 60^\\circ$ (sum of interior angles in a triangle is $180^\\circ$),\\\\\nthus $\\angle DAE = \\angle BAE - \\angle BAD = 60^\\circ - 40^\\circ = \\boxed{20^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52856072": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle with a side length of 4. Point $P$ is on $AB$. Through point $P$, draw $PE\\perp AC$ with the foot of the perpendicular as $E$. Extend $BC$ to point $Q$ such that $CQ=PA$. Connect $PQ$ and let it intersect $AC$ at point $D$. Find the length of $DE$.", -"image_file_name": "7048953", -"image": [ -"math/52856072_920.png" -], -"solution": "\\textbf{Solution:} Draw $PF \\parallel BC$ through point P intersecting $AC$ at F, then $\\angle FPD = \\angle Q$, $\\angle APF = \\angle B$, $\\angle AFP = \\angle ACB$,\n\n$\\because$ $\\triangle ABC$ is an equilateral triangle,\n\n$\\therefore$ $\\angle B = \\angle A = \\angle ACB = 60^\\circ$,\n\n$\\therefore$ $\\angle APF = \\angle AFP = \\angle A = 60^\\circ$,\n\n$\\therefore$ $\\triangle APF$ is an equilateral triangle, and $PE \\perp AC$,\n\n$\\therefore$ AP=PF, AE=EF, and AP=CQ,\n\n$\\therefore$ PF=CQ,\n\nIn $\\triangle PDF$ and $\\triangle QDC$,\n\n$\\left\\{\\begin{array}{l}\n\\angle FPD = \\angle Q \\\\\n\\angle PDF = \\angle QDC \\\\\nPF = CQ\n\\end{array}\\right.$,\n\n$\\therefore$ $\\triangle PDF \\cong \\triangle QDC$ (AAS),\n\n$\\therefore$ FD=CD,\n\n$\\therefore$ EF + FD = AE + CD,\n\n$\\therefore$ DE = $\\frac{1}{2}$AC, and AC=4,\n\n$\\therefore$ DE = \\boxed{2}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51351195": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=45^\\circ$, $\\tan C=\\frac{2}{3}$, and $AC=2\\sqrt{13}$. Find the length of $BC$.", -"image_file_name": "7058593", -"image": [ -"math/51351195_734.png" -], -"solution": "\\textbf{Solution:} According to the problem, draw $AD \\perp BC$ through point A, as shown:\n\n$\\therefore$ $\\triangle ABD$ and $\\triangle ACD$ are both right-angled triangles,\n\n$\\because$ $\\tan C = \\frac{AD}{CD} = \\frac{2}{3}$,\n\nLet $AD = 2x$, $CD = 3x$,\n\n$\\therefore$ $AC = \\sqrt{(2x)^2 + (3x)^2} = 2\\sqrt{13}$,\n\nSolving, we get: $x = 2$ (negative value is discarded),\n\n$\\therefore$ $AD = 4$, $CD = 6$,\n\n$\\because$ $\\angle B = 45^\\circ$,\n\n$\\therefore$ $BD = AD = 4$,\n\n$\\therefore$ $BC = 4 + 6 = \\boxed{10}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51353489": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle ACB = 90^\\circ$, D is the midpoint of $ AB$, $ ED \\perp AB$ intersects $ AC$ at point E, $ \\tan \\angle EBC = \\frac{3}{4}$. What is the value of $ \\tan \\angle ABE$?", -"image_file_name": "7058593", -"image": [ -"math/51353489_746.png" -], -"solution": "\\textbf{Solution:} In $\\triangle EBC$, we have $\\angle ECB=90^\\circ$,\\\\\n$\\therefore \\tan\\angle EBC=\\frac{CE}{BC}=\\frac{3}{4}$.\\\\\nLet $CE=3k$, $BC=4k$, so $BE=5k$.\\\\\nSince $D$ is the midpoint of $AB$ and $ED\\perp AB$,\\\\\n$\\therefore AE=BE=5k$,\\\\\n$\\therefore \\angle ABE=\\angle BAE$, $AC=8k$,\\\\\nIn $\\triangle ABC$, $\\angle ACB=90^\\circ$,\\\\\n$\\therefore \\tan\\angle CAB=\\frac{BC}{AC}=\\frac{4k}{8k}=\\frac{1}{2}$.\\\\\n$\\therefore$ The tangent of $\\angle ABE$ is $\\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51350901": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=30^\\circ$, $AB=4$, $AD\\perp BC$ at point $D$ and $\\tan \\angle CAD=\\frac{1}{2}$, what is the length of $BC$?", -"image_file_name": "7058593", -"image": [ -"math/51350901_751.png" -], -"solution": "\\textbf{Solution:} Since $AD \\perp BC$ at point D, \\\\\ntherefore, $\\triangle ADB$ and $\\triangle ADC$ are right-angled triangles, \\\\\nin $\\triangle ADB$, $\\angle B=30^\\circ$, $AB=4$, \\\\\ntherefore, $AD=\\frac{1}{2}AB=2$, $BD=\\sqrt{AB^{2}-AD^{2}}=\\sqrt{4^{2}-2^{2}}=2\\sqrt{3}$, \\\\\nin $\\triangle ADC$, $\\tan\\angle CAD=\\frac{1}{2}$, $AD=2$, \\\\\ntherefore, $\\tan\\angle CAD=\\frac{CD}{AD}=\\frac{1}{2}$, \\\\\ntherefore, $CD=1$, \\\\\ntherefore, $BC=BD+CD=2\\sqrt{3}+1=\\boxed{2\\sqrt{3}+1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51298675": { -"question": "As shown in the diagram, a right-angled triangle is placed with point C on the extension of FD, AB $\\parallel$ CF, $\\angle F=\\angle ACB=90^\\circ$, $\\angle E=45^\\circ$, $\\angle A=60^\\circ$, and AC=5. Determine the length of CD.", -"image_file_name": "7058593", -"image": [ -"math/51298675_761.png" -], -"solution": "\\textbf{Solution:} Draw BM$\\perp$FD at point M,\\\\\nIn $\\triangle ACB$, $\\angle ACB=90^\\circ$, $\\angle A=60^\\circ$, AC=5,\\\\\n$\\therefore \\angle ABC=30^\\circ$, BC=AC$\\cdot \\tan 60^\\circ=5\\sqrt{3}$,\\\\\n$\\because AB\\parallel CF$,\\\\\n$\\therefore \\angle BCM=30^\\circ$,\\\\\n$\\therefore$BM=BC$\\cdot \\sin 30^\\circ=\\frac{5\\sqrt{3}}{2}$, CM=BC$\\cdot \\cos 30^\\circ=\\frac{15}{2}$,\\\\\nIn $\\triangle EFD$, $\\angle F=90^\\circ$, $\\angle E=45^\\circ$,\\\\\n$\\therefore \\angle EDF=45^\\circ$,\\\\\n$\\therefore \\angle EDF=\\angle DBM=45^\\circ$,\\\\\n$\\therefore$MD=BM=$\\frac{5\\sqrt{3}}{2}$,\\\\\n$\\therefore$CD=$CM-MD=\\boxed{\\frac{15}{2}-\\frac{5\\sqrt{3}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51231580": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC = 90^\\circ$, extend the hypotenuse $BC$ to point $D$ so that $CD = \\frac{1}{2}BC$. Connect $AD$. If $\\tan B = \\frac{4}{3}$, what is the value of $\\tan \\angle CAD$?", -"image_file_name": "7058593", -"image": [ -"math/51231580_775.png" -], -"solution": "\\textbf{Solution:} Construct line $CF \\perp AC$ intersecting $AD$ at point $F$, \\\\\nit follows that $\\angle ACF=90^\\circ$, \\\\\nsince $\\angle BAC=90^\\circ$, \\\\\nit implies $AB\\parallel CF$, \\\\\nhence $\\angle DCF=\\angle DBA$, \\\\\nthus $\\triangle DCF\\sim \\triangle DBA$, \\\\\nimplying $\\frac{CF}{AB}=\\frac{CD}{BD}$, \\\\\nsince $CD=\\frac{1}{2}BC$, \\\\\nthus $CD=\\frac{1}{3}BD$, \\\\\nthat is $\\frac{CD}{BD}=\\frac{1}{3}$, \\\\\nthus $\\frac{CF}{AB}=\\frac{1}{3}$, \\\\\nhence $CF=\\frac{1}{3}AB$, \\\\\nIn right $\\triangle ABC$, \\\\\nsince $\\tan B=\\frac{4}{3}$, that is $\\frac{AC}{AB}=\\frac{4}{3}$, \\\\\nlet $AC=4x$, then $AB=3x$, \\\\\nthus $CF=\\frac{1}{3} \\times 3x=x$, \\\\\ntherefore $\\tan\\angle CAD=\\frac{CF}{AC}=\\frac{x}{4x}=\\boxed{\\frac{1}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51213326": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A=30^\\circ$, $AC=2\\sqrt{3}$, $\\tan B=\\frac{\\sqrt{3}}{2}$, find the length of $AB$.", -"image_file_name": "7058593", -"image": [ -"math/51213326_785.png" -], -"solution": "\\textbf{Solution}: As shown in the diagram, draw $CD \\perp AB$ at point D,\\\\\n$\\therefore \\angle ADC=\\angle BDC=90^\\circ$\\\\\n$\\because \\angle A=30^\\circ$, $AC=2\\sqrt{3}$,\\\\\n$\\therefore CD=\\frac{1}{2}AC=\\sqrt{3}$,\\\\\n$\\therefore AD=\\sqrt{AC^{2}-CD^{2}}=3$\\\\\n$\\because \\tan B=\\frac{CD}{BD}=\\frac{\\sqrt{3}}{2}$,\\\\\n$\\therefore BD=2$,\\\\\n$\\therefore AB=AD+BD=\\boxed{5}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322360": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $BC=1$, and $AC=\\sqrt{3}$. Find the values of $\\tan A$ and $\\tan B$.", -"image_file_name": "7058593", -"image": [ -"math/51322360_792.png" -], -"solution": "\\textbf{Solution:} Given in right-angled triangle $ABC$, $\\angle C=90^\\circ$, $BC=1$, and $AC=\\sqrt{3}$,\\\\\nthus, $\\tan A=\\frac{BC}{AC}=\\frac{1}{\\sqrt{3}}=\\frac{\\sqrt{3}}{3}$,\\\\\n$\\tan B=\\frac{AC}{BC}=\\frac{\\sqrt{3}}{1}=\\boxed{\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53102380": { -"question": "As illustrated in the diagram, a rectangular wooden box slides down an inclined plane. When the box slides to the position shown in the diagram, we have $AB=2\\text{m}$. Given that the height of the box $BE=1\\text{m}$, and the angle of the inclined plane $\\angle BAC$ is $30^\\circ$, calculate the height of the endpoint $E$ above the ground $AC$.", -"image_file_name": "7058344", -"image": [ -"math/53102380_96.png" -], -"solution": "\\textbf{Solution:} Draw $EH\\perp AC$ intersecting $AC$ at $H$ and $AB$ at $G$, as shown in the figure, \\\\\nFrom the given, \\\\\n$\\angle BAC+\\angle AGH=90^\\circ$, $\\angle BEG+\\angle BGE=90^\\circ$, $\\angle AGH=\\angle BGE$, and $\\angle BAC$ is $30^\\circ$, \\\\\n$\\therefore \\angle BAC=\\angle BEG=30^\\circ$, \\\\\n$\\because \\cos\\angle BEG=\\cos30^\\circ=\\frac{BE}{EG}$, $\\tan\\angle BEG=\\tan30^\\circ=\\frac{BG}{BE}$, $BE=1m$, \\\\\n$\\therefore GE=\\frac{BE}{\\cos30^\\circ}=\\frac{2\\sqrt{3}}{3}$, $BG=BE\\times \\tan30^\\circ=\\frac{\\sqrt{3}}{3}$, \\\\\n$\\because AB=2m$, \\\\\n$\\therefore AG=AB−BG=2−\\frac{\\sqrt{3}}{3}$, \\\\\n$\\because \\cos\\angle BAC=\\cos30^\\circ=\\frac{GH}{GA}$, \\\\\n$\\therefore GH=AG\\times \\cos30^\\circ=(2−\\frac{\\sqrt{3}}{3})\\times \\frac{\\sqrt{3}}{2}=\\sqrt{3}−\\frac{1}{2}$, \\\\\n$EH=EG+GH=\\frac{2\\sqrt{3}}{3}+\\sqrt{3}−\\frac{1}{2}=\\boxed{\\frac{5\\sqrt{3}}{3}−\\frac{1}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53019955": { -"question": "Given: In $\\triangle ABC$, $CD \\perp AB$, $\\sin A = \\frac{4}{5}$, $CD = 4$, $AB = 5$. Find the length of $AD$ and the value of $\\tan B$.", -"image_file_name": "7058344", -"image": [ -"math/53019955_381.png" -], -"solution": "\\textbf{Solution:}\n\nSince $CD \\perp AB$,\\\\\nit follows that $\\angle CDA = 90^\\circ$\\\\\nSince $\\sin A = \\frac{CD}{AC} = \\frac{4}{5}$, and $CD = 4$,\\\\\nit follows that $AC = 5$ \\\\\nBy the Pythagorean theorem,\\\\\n$AD = \\sqrt{AC^{2} - CD^{2}} = \\boxed{3}$\\\\\n$BD = AB - AD = 4$\\\\\nTherefore, $\\tan B = \\frac{CD}{BD} = \\boxed{2}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52977742": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=6$, $\\sin B=\\frac{2}{3}$. Point D is on the extension line of side BC, and $CD=BC$. What is the value of $\\tan D$?", -"image_file_name": "7058344", -"image": [ -"math/52977742_516.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AE\\perp BD$ at point E through point $A$.\\\\\n$\\therefore$ $\\sin B=\\frac{AE}{AB}=\\frac{2}{3}$.\\\\\n$\\because$ $AB=AC=6$,\\\\\n$\\therefore$ $AE=4$,\\\\\n$\\therefore$ $BE=\\sqrt{AB^{2}-AE^{2}}=2\\sqrt{5}$.\\\\\n$\\because$ $AE\\perp BD$, $AB=AC=6$,\\\\\n$\\therefore$ $CE=BE=2\\sqrt{5}$,\\\\\n$\\therefore$ $CD=BC=BE+CE=4\\sqrt{5}$,\\\\\n$\\therefore$ $DE=CD+CE=6\\sqrt{5}$,\\\\\n$\\therefore$ $\\tan D=\\frac{AE}{DE}=\\frac{4}{6\\sqrt{5}}=\\boxed{\\frac{2\\sqrt{5}}{15}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52977771": { -"question": "As shown in the diagram, in $ \\triangle ABC$, $ BA=BC$, point E lies on $ BC$, and $ AE\\perp BC$, $\\cos\\angle B=\\frac{4}{5}$, $ EC=3$, find the length of $ BE$ and the value of $\\tan\\angle CAE$.", -"image_file_name": "7058344", -"image": [ -"math/52977771_528.png" -], -"solution": "\\textbf{Solution:} Given $AE\\perp BC$ and $\\cos\\angle B=\\frac{4}{5}$,\n\\[\\therefore \\frac{BE}{AB}=\\frac{4}{5},\\] suppose $BE=4x$, then $AB=5x$,\n\\[\\because BA=BC,\\] thus $BC=5x$,\n\\[\\because EC=3\\text{ and }EC=BC-BE,\\]\n\\[\\therefore 5x-4x=3,\\] that is $x=3$,\n\\[\\therefore BE=4x=\\boxed{12},\\] $BA=BC=5x=15$,\n\\[\\therefore AE=\\sqrt{AB^{2}-BE^{2}}=\\sqrt{15^{2}-12^{2}}=9,\\]\n\\[\\therefore \\tan\\angle CAE=\\frac{CE}{AE}=\\frac{3}{9}=\\boxed{\\frac{1}{3}}.\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043266": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=30^\\circ$, $AC=12$, $\\sin B=\\frac{3}{5}$, find the length of $BC$.", -"image_file_name": "7058344", -"image": [ -"math/53043266_535.png" -], -"solution": "\\textbf{Solution:} Construct $AD\\perp BC$ at point A, with D as the foot\\\\\nIn $\\triangle ADC$, $AC=12$, $\\angle C=30^\\circ$\\\\\n$\\therefore AD=\\frac{1}{2}AC=6$, $CD=\\sqrt{3}AD=6\\sqrt{3}$\\\\\nIn $\\triangle ABD$, $\\sin B=\\frac{3}{5}$\\\\\n$\\therefore AB=10$\\\\\n$\\therefore BD=8$\\\\\n$\\therefore BC=BD+CD=8+6\\sqrt{3}$\\\\\n$\\therefore$ The length of $BC$ is $\\boxed{8+6\\sqrt{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53019891": { -"question": "As shown in the figure, in $\\triangle ABC$, $AC=12$, $\\angle C=45^\\circ$, $\\angle B=120^\\circ$, find the length of $BC$.", -"image_file_name": "7058344", -"image": [ -"math/53019891_902.png" -], -"solution": "\\textbf{Solution:} Draw $AD\\perp BC$ through point A, where it intersects the extension of $BC$ at point D, then $\\angle ADC=90^\\circ$,\\\\\nIn $\\triangle ADC$, $\\angle C=45^\\circ$,\\\\\n$\\therefore AD=DC$,\\\\\nAccording to the Pythagorean theorem, we have: $AD^2+DC^2=AC^2$,\\\\\nthat is $2AD^2=AC^2=12^2$,\\\\\nSolving this gives $AD=DC=6\\sqrt{2}$,\\\\\n$\\because \\angle ABC=120^\\circ$,\\\\\n$\\therefore \\angle ABD=60^\\circ$,\\\\\nIn $\\triangle ABD$,\\\\\nlet $BD=x$, then $AB=2x$,\\\\\nAccording to the Pythagorean theorem, we have: $AD^2+DB^2=AB^2$,\\\\\nthat is $(6\\sqrt{2})^2+x^2=(2x)^2$,\\\\\nSolving this gives $x=2\\sqrt{6}$,\\\\\nthat is $BD=2\\sqrt{6}$,\\\\\n$\\therefore BC=DC-DB=6\\sqrt{2}-2\\sqrt{6}=\\boxed{6\\sqrt{2}-2\\sqrt{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53019671": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD \\perp BC$ at point $D$, $\\cos B = \\frac{4}{5}$, $\\tan C = \\sqrt{3}$, $AB = 5$. Find the length of $AC$.", -"image_file_name": "7058344", -"image": [ -"math/53019671_916.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $AD\\perp BC$,\\\\\nit follows that $\\angle ADB=\\angle ADC=90^\\circ$,\\\\\nSince $\\cos B=\\frac{4}{5}$ and $AB=5$,\\\\\nit follows that $BD=AB\\cdot\\cos B=5\\times \\frac{4}{5}=4$,\\\\\nTherefore, $AD=\\sqrt{AB^{2}-BD^{2}}=\\sqrt{5^{2}-4^{2}}=3$,\\\\\nSince $\\tan C=\\sqrt{3}$,\\\\\nit follows that $CD=\\frac{AD}{\\tan C}=\\frac{3}{\\sqrt{3}}=\\sqrt{3}$,\\\\\nTherefore, $AC=\\sqrt{AD^{2}+CD^{2}}=\\sqrt{3^{2}+(\\sqrt{3})^{2}}=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043063": { -"question": "In $\\triangle ABC$, $\\angle C=90^\\circ$, $\\tan A=\\frac{3}{4}$, $BC=9$, find the length of $AC$ and the value of $\\sin A$.", -"image_file_name": "7058344", -"image": [ -"math/53043063_925.png" -], -"solution": "\\textbf{Solution}: Given that in $\\triangle ABC$,\\\\\n$\\tan A = \\frac{3}{4}$ and $BC = 9$,\\\\\nthen $\\frac{BC}{AC} = \\frac{3}{4}$,\\\\\nthus $AC = \\boxed{12}$,\\\\\nand $AB = \\sqrt{AC^2 + BC^2} = \\sqrt{9^2 + 12^2} = 15$,\\\\\ntherefore $\\sin A = \\frac{BC}{AB} = \\frac{9}{15} = \\boxed{\\frac{3}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50676993": { -"question": "As shown in the figure, it is known that the line $y=kx+b$ passes through point $A$ and point $B$. Find the coordinates of point $C$, the intersection of this line with the $x$-axis.", -"image_file_name": "7054110", -"image": [ -"math/50676993_460.png" -], -"solution": "\\textbf{Solution:} To solve this, we substitute points $A(-3, 3)$ and $B(0, -3)$ into $y=kx+b$ to get $\\begin{cases}-3k+b=3 \\\\ b=-3\\end{cases}$. Solving this system, we obtain $\\begin{cases}k=-2 \\\\ b=-3\\end{cases}$. Therefore, the equation of line $AB$ is $y=-2x-3$. When $y=0$, solving $-2x-3=0$ yields $x=-\\frac{3}{2}$. Therefore, the coordinates of point $C$ are $\\left(-\\frac{3}{2}, 0\\right)$. Hence, the intersection point $C$ of this line with the $x$-axis is $\\boxed{\\left(-\\frac{3}{2}, 0\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50469243": { -"question": "As shown in the figure, the line $l_{1}$ intersects the x-axis and y-axis at points A and B, respectively, with coordinates $(2, 0)$ and $(0, 3)$. The line $l_{2}: y=\\frac{1}{2}x+3$ passing through point B intersects the x-axis at point C. Point $D(n, 6)$ is a point on the line $l_{1}$, and line segment $CD$ is drawn.", -"image_file_name": "7054110", -"image": [ -"math/50469243_476.png" -], -"solution": "\\textbf{Solution:}\n\n(I) Let the equation of line $l_1$ be $y=kx+b$. Substituting A(2,0) and B(0,3) into it, we get\n\\[\n\\left\\{\n\\begin{array}{l}\n2k+b=0\\\\\nb=3\n\\end{array}\n\\right.\n\\]\nSolving this, we find\n\\[\n\\left\\{\n\\begin{array}{l}\nk=-\\frac{3}{2}\\\\\nb=3\n\\end{array}\n\\right.\n\\]\nTherefore, the equation of line $l_1$ is $y=-\\frac{3}{2}x+3$;\n\n(II) When $y=0$, $\\frac{1}{2}x+3=0$, solving this gives $x=-6$, therefore the coordinates of point C are (-6,0). Substituting D(n,6) into $y=-\\frac{3}{2}x+3$ gives $-\\frac{3}{2}n+3=6$, solving this gives $n=-2$, therefore the coordinates of point D are (-2,6);\n\n(III) $S_{\\triangle BCD}=S_{\\triangle DAC}-S_{\\triangle BAC}=\\frac{1}{2}\\times(2+6)\\times6-\\frac{1}{2}\\times(2+6)\\times3=\\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53080751": { -"question": "After filling a cylindrical oil tank with a diameter of 52 cm with some oil, the cross-section is shown in the figure. If the maximum depth CD of the oil is 16 cm, calculate the width AB of the oil surface.", -"image_file_name": "7058773", -"image": [ -"math/53080751_730.png" -], -"solution": "\\textbf{Solution:} From the problem statement, we have: $OC \\perp AB$ at point D,\\\\\nAccording to the perpendicular diameter theorem, point D is the midpoint of AB, $AB = 2BD$,\\\\\n$\\because$ the diameter is $52\\,\\text{cm}$,\\\\\n$\\therefore$OB = $26\\,\\text{cm}$,\\\\\n$\\therefore$OD = OC - CD = $26 - 16 = 10\\,\\text{cm}$,\\\\\nBy the Pythagorean theorem,\\\\\n$BD = \\sqrt{BO^2 - OD^2} = 24\\,\\text{cm}$,\\\\\n$\\therefore$AB = \\boxed{48}\\,\\text{cm}.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991331": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and the chord $CD \\perp AB$ at point $E$. If $AB=26$ and $EB=8$, find the length of chord $CD$.", -"image_file_name": "7058773", -"image": [ -"math/52991331_746.png" -], -"solution": "\\textbf{Solution:} Draw line $OC$ as shown in the diagram:\\\\\nSince $AB$ is the diameter of circle $O$ and $CD \\perp AB$,\\\\\nit follows that $CE=DE=\\frac{1}{2}CD$, $OC=OB=\\frac{1}{2}AB=13$,\\\\\ntherefore $OE=OB-EB=13-8=5$,\\\\\nIn the right-angled triangle $\\triangle OCE$, by the Pythagorean theorem, we have $CE=\\sqrt{OC^{2}-OE^{2}}=12$,\\\\\nthus, $CD=2CE=\\boxed{24}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53101929": { -"question": "As shown in the diagram, the square $MNPQ$ is inscribed in $\\triangle ABC$, with points M, N on side $BC$, and points P, Q on sides $AC$ and $AB$ respectively. Given that the height $AD$ from side $BC$ is $6\\,cm$ and $BC=12\\,cm$, what is the side length of the square $MNPQ$ in centimeters?", -"image_file_name": "7056088", -"image": [ -"math/53101929_579.png" -], -"solution": "\\textbf{Solution:} Given that: square $MNPQ$ is inscribed in $\\triangle ABC$, with the height from $BC$ being $AD=6\\,cm$, \\\\\n$\\therefore$ $\\angle ADC=\\angle ADB=\\angle CNP=\\angle BMQ=90^\\circ$, \\\\\nSince $\\angle B=\\angle B$, $\\angle C=\\angle C$, \\\\\n$\\therefore$ $\\triangle BMQ\\sim \\triangle BDA$, $\\triangle CNP\\sim \\triangle CDA$, \\\\\n$\\therefore$ $\\frac{BM}{BD}=\\frac{QM}{AD}$, $\\frac{NP}{AD}=\\frac{CN}{CD}$, \\\\\nSince $QM=NP$, let the side length of the square be $x$, \\\\\n$\\therefore$ $BM=\\frac{x}{AD}\\cdot BD$, $CN=\\frac{x}{AD}\\cdot CD$ \\\\\n$\\therefore$ $BM+CN=\\frac{x}{AD}\\cdot (BD+CD)=\\frac{x}{AD}\\cdot BC=BC-x$ \\\\\nSince $AD=6\\,cm$, $BC=12\\,cm$, \\\\\n$\\therefore$ $\\frac{x}{6}\\cdot 12=12-x$, \\\\\nSolving gives: $x=\\boxed{4}$ \\\\\n$\\therefore$ The side length of square $MNPQ$ is $4\\,cm$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991859": { -"question": "As shown in the figure, in $\\triangle ABC$, where $AB = AC = 4$ and $BC = 5$, points D and E are on line segments $BC$ and $AC$ respectively, with $\\angle ADE = \\angle B$. When $BD = 2$, find the length of $EC$.", -"image_file_name": "7056088", -"image": [ -"math/52991859_586.png" -], -"solution": "\\textbf{Solution:} Given: $AB=AC$,\\\\\nthus $\\angle B=\\angle C$.\\\\\nSince $\\angle B+\\angle BAD+\\angle ADB=180^\\circ$,\\\\\nand $\\angle ADE+\\angle EDC+\\angle ADB=180^\\circ$,\\\\\n$\\angle ADE=\\angle B$,\\\\\ntherefore $\\angle BAD=\\angle EDC$,\\\\\nthus $\\triangle ABD\\sim \\triangle DCE$,\\\\\nhence $\\frac{EC}{BD}=\\frac{DC}{AB}$.\\\\\nGiven $AB=4, BC=5, BD=2$,\\\\\nthus $\\frac{EC}{2}=\\frac{5-2}{4}$,\\\\\ntherefore $EC=\\boxed{\\frac{3}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977745": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=8$, $BC=4\\sqrt{2}$, $DE\\perp AC$ at point $F$, and intersects $AB$ at point $E$. Find the length of $DE$.", -"image_file_name": "7056088", -"image": [ -"math/52977745_596.png" -], -"solution": "\\textbf{Solution:} In rectangle $ABCD$,\\\\\n$\\therefore$ $\\angle DAB = \\angle ADC = 90^\\circ$, $CD = AB = 8$, $AD = BC = 4\\sqrt{2}$,\\\\\n$\\therefore$ $\\angle DAF + \\angle ACD = 90^\\circ$,\\\\\n$\\because$ $DE \\perp AC$ at point F, $\\therefore$ $\\angle ADE + \\angle DAF = 90^\\circ$,\\\\\n$\\therefore$ $\\angle ACD = \\angle EDA$,\\\\\n$\\therefore$ $\\triangle ACD \\sim \\triangle EDA$,\\\\\n$\\therefore$ $\\frac{AD}{EA} = \\frac{CD}{AD}$,\\\\\n$\\therefore$ $EA = \\frac{{\\left(4\\sqrt{2}\\right)}^2}{8} = 4$,\\\\\n$\\therefore$ $DE = \\sqrt{AD^2 + EA^2} = \\sqrt{{\\left(4\\sqrt{2}\\right)}^2 + 4^2} = \\boxed{4\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977604": { -"question": "As shown in the diagram, in parallelogram $ABCD$, point $E$ is on side $BC$. Connect $AE$ and extend it to intersect diagonal $BD$ at point $F$ and the extension of $DC$ at point $G$. If $\\frac{CE}{BE}=\\frac{2}{3}$, what is the value of $\\frac{FE}{EG}$?", -"image_file_name": "7056088", -"image": [ -"math/52977604_602.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a parallelogram,\\\\\nthus AD=BC, and AD$\\parallel$BC,\\\\\ntherefore, $\\triangle ADF\\sim \\triangle EBF$, $\\triangle GEC\\sim \\triangle GAD$,\\\\\nthus, $\\frac{EF}{AF}=\\frac{BE}{AD}$, $\\frac{EG}{AG}=\\frac{EC}{AD}$,\\\\\ngiven that $\\frac{CE}{BE}=\\frac{2}{3}$,\\\\\nthus, $\\frac{BE}{AD}=\\frac{3}{5}$, $\\frac{CE}{AD}=\\frac{2}{5}$,\\\\\nthus, $\\frac{FE}{AF}=\\frac{3}{5}$, $\\frac{EG}{AG}=\\frac{2}{5}$,\\\\\nthus, $\\frac{FE}{AE}=\\frac{3}{8}$, $\\frac{EG}{AE}=\\frac{2}{3}$,\\\\\nthus, $\\frac{FE}{EG}=\\boxed{\\frac{9}{16}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977597": { -"question": "As shown in the figure, in rectangle $ABCD$, points $E$ and $F$ are on sides $AD$ and $DC$, respectively, $BE\\perp EF$. Given $AB=6$, $AE=9$, $DE=2$, what is the length of $EF$?", -"image_file_name": "7056088", -"image": [ -"math/52977597_610.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a rectangle, \\\\\n$\\therefore \\angle A=\\angle D=90^\\circ$, \\\\\n$\\therefore \\angle ABE+\\angle AEB=90^\\circ$, \\\\\n$\\because BE\\perp EF$, \\\\\n$\\therefore \\angle DEF+\\angle AEB=90^\\circ$, \\\\\n$\\therefore \\angle DEF=\\angle ABE$, \\\\\nIn $\\triangle DEF$ and $\\triangle ABE$, $\\left\\{\\begin{array}{l}\\angle D=\\angle A=90^\\circ \\\\ \\angle DEF=\\angle ABE\\end{array}\\right.$, \\\\\n$\\therefore \\triangle DEF\\sim \\triangle ABE$, \\\\\n$\\therefore \\frac{DF}{AE}=\\frac{DE}{AB}$, \\\\\n$\\because AB=6, AE=9, DE=2$, \\\\\n$\\therefore \\frac{DF}{9}=\\frac{2}{6}$, \\\\\nSolving gives $DF=3$, \\\\\nIn $\\triangle DEF$, $EF=\\sqrt{DE^2+DF^2}=\\boxed{\\sqrt{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977204": { -"question": "As shown, it is known that in $\\triangle ABC$, $AD$ is the median to $BC$, and point $E$ is on $AD$ with $\\frac{DE}{AE} = \\frac{1}{3}$. The ray $CE$ intersects $AB$ at point $F$. Find the value of $\\frac{AF}{FB}$.", -"image_file_name": "7056088", -"image": [ -"math/52977204_6210.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $DM\\parallel AB$ through $D$, intersecting $CF$ at $M$, \\\\\n$\\therefore \\triangle DME\\sim \\triangle AFE, \\triangle CDM\\sim \\triangle CBF,$ \\\\\n$\\therefore \\frac{DE}{AE}=\\frac{DM}{AF}=\\frac{1}{3}, \\frac{CD}{CB}=\\frac{DM}{BF},$ \\\\\n$\\because D$ is the midpoint of $BC$, \\\\\n$\\therefore \\frac{CD}{CB}=\\frac{DM}{BF}=\\frac{1}{2},$ \\\\\n$\\therefore \\frac{AF}{BF}=\\boxed{\\frac{3}{2}}.$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52942179": { -"question": "As shown in the figure, points D and E are located on the sides $AB$ and $AC$ of $\\triangle ABC$, respectively, with $DE \\parallel BC$. If ${S}_{\\triangle ADE} = 2$ and ${S}_{\\triangle BCE} = 7.5$, what is the area of ${S}_{\\triangle BDE}$?", -"image_file_name": "7056088", -"image": [ -"math/52942179_637.png" -], -"solution": "\\textbf{Solution:} Given $DE\\parallel BC$, it follows that $\\frac{AD}{DB}=\\frac{AE}{EC}$. \\\\\nAlso, since $\\frac{S_{\\triangle ADE}}{S_{\\triangle BDE}}=\\frac{AD}{BD}$, it implies $\\frac{S_{\\triangle ABE}}{S_{\\triangle BCE}}=\\frac{AE}{EC}$, hence $\\frac{S_{\\triangle ADE}}{S_{\\triangle BDE}}=\\frac{S_{\\triangle ABE}}{S_{\\triangle BCE}}$. \\\\\nLet $S_{\\triangle BDE}=x$, with $S_{\\triangle ADE}=2$, and $S_{\\triangle BCE}=7.5$, therefore $\\frac{2}{x}=\\frac{2+x}{7.5}$. Consequently, $x_1=3$, $x_2=-5$ (discard). Therefore, $S_{\\triangle DBE}=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52933571": { -"question": "As shown in the figure, in rectangle $ABCD$, points $E$ and $F$ are respectively on sides $AD$ and $DC$, $\\triangle ABE\\sim \\triangle DEF$, $DF>DE$, $AB=9$, $AE=12$, $DE=3$, what is the length of $FC$?", -"image_file_name": "7056088", -"image": [ -"math/52933571_649.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABE\\sim \\triangle DEF$, \\\\\ntherefore $\\frac{AB}{DE}=\\frac{AE}{DF}$, \\\\\nsince $AB=9$, $AE=12$, and $DE=3$, \\\\\nthen $\\frac{9}{3}=\\frac{12}{DF}$, \\\\\nsolving this gives $DF=4$, \\\\\nsince quadrilateral $ABCD$ is a rectangle, \\\\\ntherefore $DC=AB=9$, \\\\\nthus $FC=DC−DF=9−4=\\boxed{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52211946": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=6$, $BC=8$. Point $D$ is on side $AB$, $DE \\perp AC$, and $DF \\perp BC$ with the feet of the perpendiculars being points $E$ and $F$, respectively. Join $EF$. What is the minimal value of segment $EF$?", -"image_file_name": "7054431", -"image": [ -"math/52211946_790.png" -], -"solution": "\\textbf{Solution:} Therefore, the minimum value of line segment $EF$ is $\\boxed{4.8}$.", -"solution_image": [ -"solution_images/52211946_790.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52284901": { -"question": "As shown in the figure, in $\\triangle ABC$, $M$ is the midpoint of $BC$, $AN$ bisects $\\angle BAC$, $BN\\perp AN$ at point $N$, and $MN$ is connected. If $AB=10$, $BC=15$, and $MN=3$, what is the perimeter of $\\triangle ABC$?", -"image_file_name": "7054431", -"image": [ -"math/52284901_819.png" -], -"solution": "\\textbf{Solution:} Extend $BN$ to meet $AC$ at point $D$,\\\\\n$\\because AN$ bisects $\\angle BAC$, that is $\\angle BAN = \\angle DAN$,\\\\\n$BN \\perp AN$, that is $\\angle BNA = \\angle DNA = 90^\\circ$, and $AN$ is the common side of $\\triangle ABN$ and $\\triangle ADN$\\\\\n$\\therefore \\triangle ABN \\cong \\triangle ADN$, $AD = AB = 10$\\\\\n$BN = DN$, that is, $N$ is the midpoint of $BD$\\\\\nAlso, $M$ is the midpoint of $BC$, $\\therefore CD = 2MN = 6$\\\\\n$\\therefore$ The perimeter is: $AB + BC + CD + AD = 10 + 15 + 6 + 10 = \\boxed{41}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52250885": { -"question": "As shown in the figure, given an equilateral $\\triangle ABC$ with a side length of 4, where points $D$ and $E$ are the midpoints of $AC$ and $BC$ respectively. Draw $DF\\perp DE$, intersecting the extension of $BC$ at point $F$. Find the length of $DF$.", -"image_file_name": "7054431", -"image": [ -"math/52250885_826.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC$ is an equilateral triangle with side length 4,\\\\\n$\\therefore AC=BC=AB=4, \\angle ACB=60^\\circ=\\angle B=\\angle A,$\\\\\nGiven that points D and E are the midpoints of $AC$ and $BC$, respectively,\\\\\n$\\therefore DE\\parallel AB$ and $DE=\\frac{1}{2}AB=2,$\\\\\n$\\therefore \\angle DEC=\\angle B=60^\\circ,$\\\\\nGiven that $DE\\perp DF,$\\\\\n$\\therefore \\angle F=30^\\circ$, and $DE\\colon DF\\colon EF=1\\colon \\sqrt{3}\\colon 2,$\\\\\n$\\therefore DF=\\sqrt{3}DE=2\\sqrt{3}=\\boxed{2\\sqrt{3}}.$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423810": { -"question": "As shown in the diagram, within the rectangle $ABCD$, point $E$ is the midpoint of $AB$, $EF\\perp AB$ intersects $CD$ at point $F$, and point $M$ is located on $AD$. Connect $BM$, and fold $\\triangle ABM$ along $BM$. When the corresponding point $A'$ of point $A$ exactly falls on $EF$, what is the degree measure of $\\angle CBA'$?", -"image_file_name": "7054409", -"image": [ -"math/52423810_8011.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $AA'$.\\\\\nSince point E is the midpoint of $AB$, $EF\\perp AB$ and intersects $CD$ at point F,\\\\\nit follows that $EF$ bisects $AB$ perpendicularly,\\\\\nthus $A'A=A'B$,\\\\\ndue to the properties of folding, it is known that $A'B=AB$,\\\\\ntherefore $A'A=A'B=AB$,\\\\\nhence $\\triangle ABA'$ is an equilateral triangle,\\\\\nthus $\\angle ABA'=60^\\circ$,\\\\\nin rectangle $ABCD$, $\\angle ABC=90^\\circ$,\\\\\nthus $\\angle CBA'=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52303706": { -"question": "As shown in the figure, in rhombus ABCD, the diagonals AC and BD intersect at point O, with $BD = 6$ and $AC = 4$. Find the perimeter of rhombus ABCD.", -"image_file_name": "7054409", -"image": [ -"math/52303706_812.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus,\\\\\nit follows that $\\angle AOB = 90^\\circ$,\\\\\n$BO = \\frac{1}{2}BD = \\frac{1}{2} \\times 6 = 3$,\\\\\n$AO = \\frac{1}{2}AC = \\frac{1}{2} \\times 4 = 2$,\\\\\n$AB = BC = CD = AD$.\\\\\nIn $\\triangle AOB$, by the Pythagorean theorem, we have\\\\\n$AB = \\sqrt{AO^{2} + BO^{2}} = \\sqrt{13}$,\\\\\nthus, the perimeter ${C}_{\\text{rhombus} ABCD} = 4AB = 4\\sqrt{13} = \\boxed{4\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52189539": { -"question": "As shown in the figure, point $E$ is a point inside the square $ABCD$. Connect $AE$, $BE$, $DE$, where $\\angle AEB=90^\\circ$, and the area of $\\triangle ADE$ is 4. What is the length of $AE$?", -"image_file_name": "7054436", -"image": [ -"math/52189539_721.png" -], -"solution": "\\textbf{Solution:} Extend AE, and draw DF perpendicular to AE from point D, where F is the foot of the perpendicular,\\\\\n$\\therefore$ $\\angle$DFA=$90^\\circ$,\\\\\n$\\therefore$ $\\angle$DAF+$\\angle$ADF=$90^\\circ$,\\\\\n$\\because$ In the square ABCD, $\\angle$DAB=$90^\\circ$, and AD=AB,\\\\\n$\\therefore$ $\\angle$DAF+$\\angle$BAE=$90^\\circ$,\\\\\n$\\therefore$ $\\angle$ADF=$\\angle$BAE,\\\\\n$\\because$ $\\angle$AEB=$90^\\circ$,\\\\\n$\\therefore$ $\\angle$AEB=$\\angle$DFA,\\\\\n$\\therefore$ $\\triangle$ABE$\\cong$ $\\triangle$DAF (by AAS),\\\\\n$\\therefore$ AE=DF,\\\\\nGiven $S_{\\triangle ADE}=4$, we have\\\\\n$\\frac{1}{2}AE\\cdot DF=\\frac{1}{2}AE^2=4$,\\\\\nSolving this gives AE=$\\boxed{2\\sqrt{2}}$,\\\\\n$\\therefore$ the length of AE is $2\\sqrt{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50482143": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$. Point $D$ is the midpoint of hypotenuse $AB$, $DE\\perp AC$ at foot $E$. If $DE=2$ and $CD=2\\sqrt{5}$, what is the length of $BE$?", -"image_file_name": "7055712", -"image": [ -"math/50482143_728.png" -], -"solution": "\\textbf{Solution:} Given that in the right-angled triangle $ABC$, angle $\\angle ACB=90^\\circ$ and $DE \\perp AC$, we have $DE \\parallel BC$. Since point $D$ is the midpoint of $AB$, $DE$ is the median of triangle $ABC$. Also, given $DE=2$, we infer $BC=4$. In the right-angled triangle $DCE$, with $DE=2$ and $CD=2\\sqrt{5}$, by Pythagoras' theorem, we have $CE=\\sqrt{CD^2-DE^2}=\\sqrt{(2\\sqrt{5})^2-2^2}=4$. Therefore, in the right-angled triangle $BCE$, applying Pythagoras' theorem again, we find $BE=\\sqrt{BC^2+CE^2}=\\sqrt{4^2+4^2}=4\\sqrt{2}$. Hence, the length of $BE$ is $\\boxed{4\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"50482069": { -"question": "As shown in the figure, quadrilateral $ABCD$ is a rectangle. Fold $\\triangle ACD$ along $AC$ to $\\triangle ACD^{\\prime}$. $AD^{\\prime}$ intersects $BC$ at point $E$. Given $AD=4$ and $DC=3$, find the length of $BE$.", -"image_file_name": "7055712", -"image": [ -"math/50482069_730.jpg" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle, \\\\\nit follows that AB=DC=3, BC=AD=4, AD$\\parallel$BC, and $\\angle$B=90$^\\circ$, \\\\\nSince $\\triangle$ACD is folded along AC to $\\triangle$ACD$^{\\prime}$, and AD$^{\\prime}$ intersects BC at point E, \\\\\nit follows that $\\angle$DAC=$\\angle$D$^{\\prime}$AC, \\\\\nSince AD$\\parallel$BC, it follows that $\\angle$DAC=$\\angle$ACB, \\\\\nhence $\\angle$D$^{\\prime}$AC=$\\angle$ACB, therefore AE=EC, \\\\\nLet BE=x, then EC=4−x, and AE=4−x, \\\\\nIn $\\triangle$ABE, since AB$^{2}$+BE$^{2}$=AE$^{2}$, \\\\\nit follows that 3$^{2}$+x$^{2}$=$(4−x)^{2}$, solving this gives x= $\\boxed{\\frac{7}{8}}$, \\\\\nthus, the length of BE is $\\frac{7}{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"55431957": { -"question": "As shown in the figure, $\\angle AOB$ is a straight angle, $\\angle BOC=36^\\circ$, $OD$ bisects $\\angle AOC$, $\\angle DOE=90^\\circ$. Find the measure of $\\angle AOE$.", -"image_file_name": "7028389", -"image": [ -"math/55431957_20.jpeg" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB$ is a straight angle and $\\angle BOC=36^\\circ$,\\\\\nit follows that $\\angle AOC=180^\\circ-\\angle BOC=180^\\circ-36^\\circ=144^\\circ$.\\\\\nSince $OD$ bisects $\\angle AOC$,\\\\\nthen $\\angle AOD= \\frac{1}{2}\\angle AOC=\\frac{1}{2}\\times144^\\circ=72^\\circ$.\\\\\nSince $\\angle DOE=90^\\circ$,\\\\\nthus $\\angle AOE=\\angle DOE-\\angle AOD=90^\\circ-72^\\circ=\\boxed{18^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066781": { -"question": "As shown in the figure, in triangle \\(ABC\\), \\(AB=10\\text{cm}\\), \\(AC=6\\text{cm}\\), \\(D\\) is the midpoint of \\(BC\\), and \\(E\\) is a point on side \\(AB\\). If the perimeter of triangle \\(BDE\\) is equal to the perimeter of quadrilateral \\(ACDE\\), find the length of segment \\(AE\\).", -"image_file_name": "7028389", -"image": [ -"math/53066781_610.png" -], -"solution": "\\textbf{Solution:} Given the diagram, we have:\\\\\nThe perimeter of triangle $BDE = BE + BD + DE$, the perimeter of quadrilateral $ACDE = AE + AC + DC + DE$,\\\\\nAnd since the perimeter of triangle $BDE$ equals the perimeter of quadrilateral $ACDE$, and $D$ is the midpoint of $BC$,\\\\\nTherefore, $BD = DC$, $BE + BD + DE = AE + AC + DC + DE$,\\\\\nTherefore, $BE = AE + AC$,\\\\\nAnd since $AB= 10\\text{cm}$, $AC = 6\\text{cm}$, $BE = AB - AE$,\\\\\nTherefore, $AE + AC = AB - AE$,\\\\\nTherefore, $10 - AE = AE + 6$,\\\\\nTherefore, $AE = \\boxed{2\\text{cm}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066780": { -"question": "In $\\triangle ABC$, $\\angle BAC=50^\\circ$, $\\angle B=48^\\circ$, $AD$ is the angle bisector of $\\triangle ABC$. What is the measure of $\\angle ADC$?", -"image_file_name": "7028389", -"image": [ -"math/53066780_76.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle BAC=50^\\circ$ and $\\angle B=48^\\circ$, \\\\\nit follows that $\\angle C=180^\\circ-\\angle BAC-\\angle B=82^\\circ$, \\\\\nsince $AD$ is the bisector of $\\triangle ABC$, \\\\\nit implies that $\\angle CAD=\\frac{1}{2}\\angle BAC=25^\\circ$, \\\\\nhence, $\\angle ADC=180^\\circ-\\angle CAD-\\angle C=\\boxed{73^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206394": { -"question": "As shown in the figure, it is known that the lines $AB$ and $CD$ intersect at point $O$, $\\angle COE$ is a right angle, $OF$ bisects $\\angle AOE$, $\\angle COF = 28^\\circ$. Find the measure of $\\angle BOE$.", -"image_file_name": "7028389", -"image": [ -"math/53206394_87.png" -], -"solution": "\\textbf{Solution:} Since $\\angle COE$ is a right angle and $\\angle COF=28^\\circ$,\\\\\nit follows that $\\angle EOF=90^\\circ-28^\\circ=62^\\circ$,\\\\\nsince $OF$ bisects $\\angle AOE$,\\\\\nit follows that $\\angle AOF=\\angle EOF=62^\\circ$,\\\\\ntherefore, $\\angle EOB=180^\\circ-62^\\circ-62^\\circ=\\boxed{56^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52576677": { -"question": "As shown in the figure, $OB$ is the angle bisector of $\\angle AOC$, and $OD$ is the angle bisector of $\\angle COE$. If $\\angle AOB=40^\\circ$ and $\\angle COE=60^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7028389", -"image": [ -"math/52576677_90.png" -], -"solution": "\\textbf{Solution:} Given that OB is the angle bisector of $\\angle AOC$, and OD is the angle bisector of $\\angle COE$, with $\\angle AOB=40^\\circ$ and $\\angle COE=60^\\circ$,\\\\\nthus, $\\angle BOC=\\angle AOB=40^\\circ$ and $\\angle COD= \\frac{1}{2}\\angle COE=\\frac{1}{2}\\times 60^\\circ=30^\\circ$,\\\\\nhence, $\\angle BOD=\\angle BOC+\\angle COD=40^\\circ+30^\\circ=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52915719": { -"question": "As shown in the figure, point O is on line AB, $\\angle COE$ is a right angle, OF bisects $\\angle AOE$, $\\angle COF=30^\\circ$, what is the measure of $\\angle EOB$?", -"image_file_name": "7028389", -"image": [ -"math/52915719_104.png" -], -"solution": "\\textbf{Solution:} Given, $\\because$ $\\angle COE$ is a right angle,\\\\\n$\\therefore$ $\\angle COE=90^\\circ$,\\\\\n$\\because$ $\\angle COE=\\angle COF+\\angle FOE$, $\\angle COF=30^\\circ$,\\\\\n$\\therefore$ $\\angle FOE=\\angle COE−\\angle COF=90^\\circ−30^\\circ=\\boxed{60^\\circ}$,\\\\\n$\\because$ OF bisects $\\angle AOE$,\\\\\n$\\therefore$ $\\angle FOE=\\angle AOF=\\frac{1}{2}\\angle AOE$,\\\\\n$\\therefore$ $\\angle AOE=2\\angle FOE=120^\\circ$,\\\\\n$\\because$ $\\angle AOE+\\angle BOE=180^\\circ$,\\\\\n$\\therefore$ $\\angle BOE=180^\\circ−120^\\circ=60^\\circ$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51495371": { -"question": "As shown in the diagram, $\\angle AOB$ is a straight angle, $\\angle AOC=80^\\circ$, $\\angle BOD=30^\\circ$, $OM$ and $ON$ are the angle bisectors of $\\angle AOC$ and $\\angle BOD$ respectively. What is the degree measure of $\\angle MON$?", -"image_file_name": "7028389", -"image": [ -"math/51495371_112.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOB$ is a straight angle,\\\\\n$\\therefore \\angle AOB=180^\\circ$,\\\\\nsince OM and ON are the bisectors of $\\angle AOC$ and $\\angle BOD$, respectively, and $\\angle AOC=80^\\circ$, $\\angle BOD=30^\\circ$,\\\\\n$\\therefore \\angle AOM=\\frac{1}{2}\\angle AOC=40^\\circ$, $\\angle BON=\\frac{1}{2}\\angle BOD=15^\\circ$,\\\\\n$\\therefore \\angle MON=\\angle AOB-\\angle AOM-\\angle BON=180^\\circ-40^\\circ-15^\\circ=\\boxed{125^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52794957": { -"question": "As the figure shows, $\\angle AOB$ is a right angle, $\\angle AOC=50^\\circ$, $ON$ is the bisector of $\\angle AOC$, and $OM$ is the bisector of $\\angle BOC$. What is the measure of $\\angle MON$?", -"image_file_name": "7028389", -"image": [ -"math/52794957_120.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB$ is a right angle,\\\\\nit follows that $\\angle AOB = 90^\\circ$.\\\\\nTherefore, $\\angle BOC = \\angle AOB + \\angle AOC = 90^\\circ + 50^\\circ = 140^\\circ$.\\\\\nSince OM bisects $\\angle BOC$,\\\\\nit follows that $\\angle COM = \\frac{1}{2} \\angle BOC = 70^\\circ$.\\\\\nSince ON bisects $\\angle AOC$,\\\\\nit follows that $\\angle CON = \\frac{1}{2} \\angle AOC = 25^\\circ$.\\\\\nTherefore, $\\angle MON = \\angle COM - \\angle CON = 70^\\circ - 25^\\circ = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52746394": { -"question": "As shown in the figure, $OC$ is the angle bisector of $\\angle AOB$, $\\angle AOD = 2\\angle BOD$, and $\\angle COD = 18^\\circ$. Please find the measure of $\\angle BOD$ in degrees.", -"image_file_name": "7028389", -"image": [ -"math/52746394_135.png" -], -"solution": "\\textbf{Solution:} From the construction we get \\\\\nSince $OC$ is the bisector of $\\angle AOB$, \\\\\nTherefore $\\angle BOC=\\frac{1}{2}\\angle AOB$; \\\\\nSince $\\angle AOD=2\\angle BOD$, \\\\\nTherefore $\\angle AOB=3\\angle BOD$, i.e., $\\angle BOD=\\frac{1}{3}\\angle AOB$; \\\\\nTherefore $\\angle COD=\\frac{1}{2}\\angle AOB-\\frac{1}{3}\\angle AOB=\\frac{1}{6}\\angle AOB$, \\\\\nTherefore $\\angle BOD=2\\angle COD$, \\\\\nSince $\\angle COD=18^\\circ$, \\\\\nTherefore $\\angle BOD=\\boxed{36^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51251865": { -"question": "As shown in the figure, the lines AB and CD intersect at point O, $\\angle EOC = 90^\\circ$, OF is the angle bisector of $\\angle AOE$, $\\angle COF = 34^\\circ$. What is the degree measure of $\\angle BOD$?", -"image_file_name": "7028389", -"image": [ -"math/51251865_140.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle EOC=90^\\circ$ and $\\angle COF=34^\\circ$, \\\\\nit follows that $\\angle EOF=56^\\circ$,\\\\\nsince OF is the angle bisector of $\\angle AOE$,\\\\\nit follows that $\\angle AOF=\\angle EOF=56^\\circ$,\\\\\nthus $\\angle AOC=\\angle AOF-\\angle COF=22^\\circ$,\\\\\nhence $\\angle BOD=\\angle AOC=\\boxed{22^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52580479": { -"question": "As shown in the figure, $\\angle ACD = \\angle BCE = 90^\\circ$. If $\\angle ACB = 150^\\circ$, can you calculate the measure of $\\angle DCE$? Please write down the solution process.", -"image_file_name": "7028389", -"image": [ -"math/52580479_150.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ACD = \\angle BCE = 90^\\circ$,\\\\\nit follows that $\\angle ACD + \\angle ECB = 180^\\circ$\\\\\nAlso, since $\\angle ACB + \\angle ECD = \\angle ACD + \\angle ECB = 180^\\circ$, and $\\angle ACB = 150^\\circ$,\\\\\nit follows that $\\angle ECD = 180^\\circ - \\angle ACB = \\boxed{30^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51081262": { -"question": "A rectangular piece of iron, with a length of 25 cm and a width of 15 cm, has small squares with a side length of 2 cm cut from each of its four corners. Then, by folding up the four sides, a lidless iron box is made. What is the volume of the iron box in liters?", -"image_file_name": "7028389", -"image": [ -"math/51081262_160.png" -], -"solution": "\\textbf{Solution:} By the problem statement, we have: the length of the iron box $= 25 - 2 \\times 2 = 21\\,\\text{cm}$, the width of the iron box $= 15 - 2 \\times 2 = 11\\,\\text{cm}$, the height of the iron box $= 2\\,\\text{cm}$,\\\\\n$\\therefore$ the volume of the iron box $= 21 \\times 11 \\times 2 = 462\\,\\text{cm}^3 = 0.462$ litres.\\\\\nThus, the volume of the iron box is $\\boxed{0.462}$ litres.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50815659": { -"question": "As shown in the figure, $\\angle AOB$ and $\\angle BOC$ are adjacent supplementary angles. $OD$ is the angle bisector of $\\angle AOB$, and $OE$ is within $\\angle BOC$ such that $\\angle BOE=\\frac{1}{2}\\angle EOC$, and $\\angle DOE={72}^\\circ$. Find the degree measure of $\\angle EOC$?", -"image_file_name": "7028389", -"image": [ -"math/50815659_176.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle BOE = \\frac{1}{2}\\angle EOC$, \\\\\nthen $\\angle BOC = \\angle BOE + \\angle EOC = 3\\angle BOE$, \\\\\nsince $\\angle DOE = 72^\\circ$, \\\\\nthus $\\angle BOD = \\angle DOE - \\angle BOE = 72^\\circ - \\angle BOE$, \\\\\nsince $OD$ bisects $\\angle AOB$, \\\\\nthus $\\angle AOB = 2\\angle BOD = 144^\\circ - 2\\angle BOE$, \\\\\nsince $\\angle AOB$ and $\\angle BOC$ are supplementary, \\\\\nthus $\\angle AOB + \\angle BOC = 180^\\circ$, \\\\\ntherefore $144^\\circ - 2\\angle BOE + 3\\angle BOE = 180^\\circ$, \\\\\ntherefore $\\angle BOE = 36^\\circ$, \\\\\ntherefore $\\angle EOC = 2\\angle BOE = \\boxed{72^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51208120": { -"question": "As shown in the diagram, $\\angle AOB$ is a right angle, $OB$ bisects $\\angle COD$, $\\angle AOC=62^\\circ$, find the degree measure of $\\angle AOD$.", -"image_file_name": "7028389", -"image": [ -"math/51208120_185.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB$ is a right angle,\\\\\nit follows that $\\angle AOB=90^\\circ$,\\\\\ntherefore, $\\angle BOC=\\angle AOB-\\angle AOC=90^\\circ-62^\\circ=28^\\circ$.\\\\\nSince $OB$ bisects $\\angle COD$,\\\\\nit follows that $\\angle BOD=\\angle BOC=28^\\circ$,\\\\\ntherefore, $\\angle AOD=\\angle AOB+\\angle BOD=90^\\circ+28^\\circ=\\boxed{118^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"46945329": { -"question": "As shown in the figure, it is known that $ \\angle AOD=60^\\circ$, $ \\angle BOC$ is a right angle, and OC bisects $ \\angle AOD$. What is the measure of $ \\angle BOD$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/46945329_194.png" -], -"solution": "\\textbf{Solution:} \\\\\n$\\because$ OC bisects $\\angle AOD$,\\\\\n$\\therefore \\angle COD=\\frac{1}{2}\\angle AOD$,\\\\\n$\\because \\angle AOD=60^\\circ$,\\\\\n$\\therefore \\angle COD=30^\\circ$,\\\\\n$\\because \\angle BOC$ is a right angle,\\\\\n$\\therefore \\angle BOC=90^\\circ$,\\\\\n$\\therefore \\angle BOD=\\angle BOC-\\angle COD=90^\\circ-30^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"47019465": { -"question": "As shown in the figure, it is known that $ \\angle AOB = 120^\\circ$ and $ \\angle BOC = 30^\\circ$. If $OD$ is the angle bisector of $ \\angle AOC$, find the measure of $ \\angle BOD$.", -"image_file_name": "7028389", -"image": [ -"math/47019465_205.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\angle AOB=120^\\circ$ and $\\angle BOC=30^\\circ$,\\\\\n$\\therefore \\angle AOC=\\angle AOB - \\angle BOC=90^\\circ$,\\\\\nAlso, $\\because$ OD is the bisector of $\\angle AOC$,\\\\\n$\\therefore \\angle COD=\\frac{1}{2}\\angle AOC=45^\\circ$,\\\\\n$\\therefore \\angle BOD=\\angle COD+\\angle BOC =45^\\circ+30^\\circ=\\boxed{75^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"50166938": { -"question": "As shown in the figure, it is known that $OD$ bisects $\\angle AOB$, ray $OC$ is inside $\\angle AOD$, $\\angle BOC = 2\\angle AOC$, $\\angle AOB = 120^\\circ$, find the complement of $\\angle COD$.", -"image_file_name": "7028389", -"image": [ -"math/50166938_217.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB = \\angle BOC + \\angle AOC$ and $\\angle BOC = 2\\angle AOC$,\\\\\nit follows that $\\angle AOB = 2\\angle AOC + \\angle AOC$, that is $3\\angle AOC = 120^\\circ$,\\\\\nhence $\\angle AOC = 40^\\circ$.\\\\\nSince OD bisects $\\angle AOB$,\\\\\nit follows that $\\angle AOD = \\angle BOD = \\frac{1}{2}\\angle AOB = \\frac{1}{2} \\times 120^\\circ = 60^\\circ$.\\\\\nSince $\\angle COD = \\angle AOD - \\angle AOC$,\\\\\nit follows that $\\angle COD = 60^\\circ - 40^\\circ = 20^\\circ$.\\\\\nTherefore, the supplement of $\\angle COD$ is $180^\\circ - \\angle COD = 180^\\circ - 20^\\circ = \\boxed{160^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"46874295": { -"question": "As shown in the figure, $\\angle AOB$ is a straight angle, $\\angle AOC = 28^\\circ$, $\\angle BOD = 58^\\circ$, $OM$ and $ON$ are the angle bisectors of $\\angle AOC$ and $\\angle BOD$, respectively. Find the measure of $\\angle MON$.", -"image_file_name": "7028389", -"image": [ -"math/46874295_228.png" -], -"solution": "\\textbf{Solution:} From the given, $OM$ and $ON$ are the angle bisectors of $\\angle AOC$ and $\\angle BOD$, respectively, with $\\angle AOC=28^\\circ$ and $\\angle BOD=58^\\circ$.\\\\\nTherefore, $\\angle AOM=\\frac{1}{2}\\angle AOC=14^\\circ$ and $\\angle BON=\\frac{1}{2}\\angle BOD=29^\\circ$.\\\\\nTherefore, $\\angle MON=\\angle AOB-\\angle AOM-\\angle BON=180^\\circ-14^\\circ-29^\\circ=\\boxed{137^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52169958": { -"question": "As shown in the figure, point $O$ lies on line $DE$, $\\angle COD = 60^\\circ$, $\\angle BOD = \\frac{1}{2}\\angle COB$, and $OC$ is the bisector of $\\angle AOB$. Find the degree measure of $\\angle AOE$.", -"image_file_name": "7028389", -"image": [ -"math/52169958_236.png" -], -"solution": "\\[ \\text{Solution:} \\quad \\because \\angle COD = 60^{\\circ} = \\angle DOB + \\angle BOC, \\]\n\\[ \\therefore \\angle DOB = 20^{\\circ}, \\, \\angle BOC = 40^{\\circ}, \\]\n\\[ \\because OC \\text{ is the bisector of } \\angle AOB, \\]\n\\[ \\therefore \\angle AOB = 2\\angle BOC = 80^{\\circ}, \\]\n\\[ \\therefore \\angle AOD = \\angle DOB + \\angle AOB = 100^{\\circ}, \\]\n\\[ \\because D, O, E \\text{ are collinear}, \\]\n\\[ \\therefore \\angle DOE = 180^{\\circ}, \\]\n\\[ \\therefore \\angle AOE = \\angle DOE - \\angle AOD = 180^{\\circ} - 100^{\\circ} = \\boxed{80^{\\circ}}. \\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"50056777": { -"question": "As shown in the figure, $\\angle AOB$ is a right angle, $\\angle AOC = 30^\\circ$, $ON$ is the bisector of $\\angle AOC$, and $OM$ is the bisector of $\\angle BOC$. What is the measure of $\\angle MON$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/50056777_240.png" -], -"solution": "\\textbf{Solution:} Given that $ON$ is the bisector of $\\angle AOC$ and $OM$ is the bisector of $\\angle BOC$, \\\\\nit follows that $\\angle NOC= \\frac{1}{2} \\angle AOC$ and $\\angle MOC= \\frac{1}{2} \\angle BOC$\\\\\nTherefore, $\\angle MON=\\angle MOC-\\angle NOC$\\\\\n$= \\frac{1}{2} \\angle BOC- \\frac{1}{2} \\angle AOC$\\\\\n$= \\frac{1}{2} (\\angle BOC-\\angle AOC)$\\\\\n$= \\frac{1}{2} \\angle AOB$\\\\\n$= \\frac{1}{2} \\times 90^\\circ$\\\\\n$= \\boxed{45^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"50083331": { -"question": "As shown in the figure, $O$ is a point on the line $MN$, $\\angle AOB$ is a right angle, and $OC$ bisects $\\angle MOB$. If $OD$ bisects $\\angle CON$, and $\\angle DON - \\angle AOM = 21^\\circ$, what is the measure of $\\angle BON$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/50083331_259.png" -], -"solution": "\\textbf{Solution:} Since $OC$ bisects $\\angle MOB$,\\\\\n$\\therefore \\angle BOC = \\angle MOC$,\\\\\nSince $OD$ bisects $\\angle CON$ and $\\angle AOB$ is a right angle,\\\\\n$\\therefore \\angle COD = \\angle NOD = \\frac{1}{2}\\left(180^\\circ - \\angle BOC\\right)$,\\\\\n$\\angle AOB = 90^\\circ$,\\\\\nSince $\\angle AOM = 90^\\circ - 2\\angle BOC$,\\\\\nSince $\\angle DON - \\angle AOM = 21^\\circ$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}\n\\frac{1}{2}\\angle BOC + \\angle AOM = 69^\\circ \\\\\n\\angle AOM + 2\\angle BOC = 90^\\circ\n\\end{array}\\right.$,\\\\\nSolving yields $\\left\\{\\begin{array}{l}\n\\angle AOM = 62^\\circ \\\\\n\\angle BOC = 14^\\circ\n\\end{array}\\right.$,\\\\\n$\\therefore \\angle BON = 180^\\circ - 2\\angle BOC = 180^\\circ - 28^\\circ = \\boxed{152^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"42811603": { -"question": "As shown in the figure, it is known that $\\angle AOB = 50^\\circ$, $\\angle BOC = 90^\\circ$, and $OM$ and $ON$ are the angle bisectors of $\\angle AOB$ and $\\angle BOC$ respectively. What is the degree measure of $\\angle MON$?", -"image_file_name": "7028389", -"image": [ -"math/42811603_260.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB=50^\\circ$, and $OM$ is the angle bisector of $\\angle AOB$,\\\\\n$\\therefore \\angle BOM=25^\\circ$.\\\\\nAlso, since $\\angle BOC=90^\\circ$, and $ON$ is the angle bisector of $\\angle BOC$,\\\\\n$\\therefore \\angle BON=45^\\circ$.\\\\\n$\\therefore \\angle MON=25^\\circ+45^\\circ=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"50810088": { -"question": "As shown in the figure, it is known that $\\angle AOE$ is a straight angle, $OD$ bisects $\\angle COE$, $OB$ bisects $\\angle AOC$, and the ratio $\\angle COD : \\angle BOC = 2 : 3$. Find the measures of $\\angle COD$ and $\\angle BOC$ in degrees.", -"image_file_name": "7028389", -"image": [ -"math/50810088_270.png" -], -"solution": "\\textbf{Solution:} Since OD bisects $\\angle COE$, \\\\\nthen $\\angle COD= \\frac{1}{2} \\angle COE$, \\\\\nSince OB bisects $\\angle AOC$, \\\\\nthen $\\angle BOC= \\frac{1}{2} \\angle AOC$, \\\\\ntherefore $\\angle BOD=\\angle COD+\\angle BOC= \\frac{1}{2} (\\angle COE+\\angle AOC)=90^\\circ$, \\\\\nSince the ratio $\\angle COD\\colon \\angle BOC=2\\colon 3$, \\\\\nthus $\\angle COD= \\frac{2}{5}\\times 90^\\circ =\\boxed{36^\\circ}$, $\\angle BOC= \\frac{3}{5}\\times 90^\\circ =\\boxed{54^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51208154": { -"question": "As shown in the figure, O is a point on line AB, and $\\angle COD$ is a right angle. OE bisects $\\angle BOD$, and OF bisects $\\angle AOE$. If $\\angle BOC=54^\\circ$, what are the degrees of $\\angle COE$ and $\\angle DOF$?", -"image_file_name": "7028389", -"image": [ -"math/51208154_280.png" -], -"solution": "\\textbf{Solution:} Since $\\angle COD=90^\\circ$ and $\\angle BOC=54^\\circ$,\\\\\nit follows that $\\angle BOD=90^\\circ-54^\\circ=36^\\circ$,\\\\\nSince OE bisects $\\angle BOD$,\\\\\nit follows that $\\angle DOE=\\angle BOE=18^\\circ$,\\\\\nthus $\\angle COE=\\angle BOC+\\angle BOE=54^\\circ+18^\\circ=\\boxed{72^\\circ}$, $\\angle AOE=180^\\circ-\\angle BOE=180^\\circ-18^\\circ=162^\\circ$.\\\\\nSince OF bisects $\\angle AOE$,\\\\\nit follows that $\\angle EOF=\\frac{1}{2}\\angle AOE=81^\\circ$\\\\\nthus $\\angle DOF=\\angle EOF-\\angle DOE=81^\\circ-18^\\circ=\\boxed{63^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"41968767": { -"question": "As shown in the figure, $\\angle AOB$ is a right angle, $OP$ bisects $\\angle AOB$, $OQ$ bisects $\\angle AOC$, $\\angle POQ=70^\\circ$, find the degree of $\\angle AOC$.", -"image_file_name": "7028389", -"image": [ -"math/41968767_295.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\angle AOB=90^\\circ$ and OP bisects $\\angle AOB$,\\\\\nit follows that $\\angle POA=45^\\circ$,\\\\\nSince $\\angle POQ=70^\\circ$,\\\\\nit results in $\\angle AOQ=\\angle POQ-\\angle POA=25^\\circ$,\\\\\nSince OQ bisects $\\angle AOC$,\\\\\nit concludes that $\\angle AOC=2\\angle AOQ=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"41691975": { -"question": "As shown in the figure, it is known that the straight lines AB and CD intersect at point O, $\\angle COE$ is a right angle, $OF$ bisects $\\angle AOE$, $\\angle COF=34^\\circ$, find the degree measure of $\\angle BOD$.", -"image_file_name": "7028389", -"image": [ -"math/41691975_300.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle COE$ is a right angle, and $\\angle COF=34^\\circ$,\\\\\n$\\therefore \\angle EOF=90^\\circ-34^\\circ=56^\\circ$,\\\\\nSince $OF$ bisects $\\angle AOE$,\\\\\n$\\therefore \\angle AOF=\\angle EOF=56^\\circ$,\\\\\nGiven that $\\angle COF=34^\\circ$,\\\\\n$\\therefore \\angle AOC=56^\\circ-34^\\circ=22^\\circ$,\\\\\nSince $\\angle AOC$ and $\\angle BOD$ are vertically opposite angles,\\\\\n$\\therefore \\angle BOD=\\angle AOC=\\boxed{22^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"42265661": { -"question": "As shown in the figure, lines AB and CD intersect at point O, $\\angle COE$ is a right angle, $OF$ bisects $\\angle AOE$, $\\angle COF=34^\\circ$, what are the measures of $\\angle AOC$ and $\\angle BOD$?", -"image_file_name": "7028389", -"image": [ -"math/42265661_310.png" -], -"solution": "\\textbf{Solution:} Since $\\angle COE=90^\\circ$ and $\\angle COF=34^\\circ$,\\\\\nit follows that $\\angle EOF=\\angle COE-\\angle COF=56^\\circ$,\\\\\nGiven that OF is the bisector of $\\angle AOE$,\\\\\nit implies $\\angle AOE=2\\angle EOF=112^\\circ$,\\\\\nthus, $\\angle AOC=112^\\circ-90^\\circ=\\boxed{22^\\circ}$,\\\\\nSince $\\angle BOD$ and $\\angle AOC$ are vertical angles,\\\\\nwe conclude that $\\angle BOD=\\boxed{22^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"40626917": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ and $AE$ are respectively the altitude and the angle bisector, $\\angle B=33^\\circ$, $\\angle C=67^\\circ$. What is the measure of $\\angle EAD$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/40626917_320.png" -], -"solution": "\\textbf{Solution:} Given $\\angle B=33^\\circ$ and $\\angle C=67^\\circ$,\\\\\nit follows that $\\angle BAC=80^\\circ$. Since AE is the bisector of $\\angle BAC$,\\\\\nit follows that $\\angle BAE=40^\\circ$ and thus $\\angle AED=\\angle BAE+\\angle B=33^\\circ+40^\\circ=73^\\circ$.\\\\\nSince AD is the altitude of the triangle,\\\\\nit follows that $\\angle EAD=90^\\circ-73^\\circ=\\boxed{17^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"10472128": { -"question": "As shown in the figure, it is known that $\\angle AOD$ and $\\angle BOC$ are both right angles, $\\angle AOC = 38^\\circ$, and $OE$ bisects $\\angle BOD$. What is the measure of $\\angle COE$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/10472128_330.png" -], -"solution": "\\textbf{Solution}: Since $\\angle AOD$ is a right angle and $\\angle AOC=38^\\circ$,\\\\\nit follows that $\\angle COD=\\angle AOD-\\angle AOC=90^\\circ-38^\\circ=52^\\circ$.\\\\\nSince $\\angle BOC$ is also a right angle,\\\\\nwe have $\\angle BOD=\\angle BOC-\\angle COD=90^\\circ-52^\\circ=38^\\circ$.\\\\\nGiven that OE bisects $\\angle BOD$,\\\\\nit follows that $\\angle DOE= \\frac{1}{2} \\angle BOD= \\frac{1}{2} \\times 38^\\circ=19^\\circ$.\\\\\nTherefore, $\\angle COE=\\angle COD+\\angle DOE=52^\\circ+19^\\circ=\\boxed{71^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"8928624": { -"question": "As shown in the figure, the lines AB and CD intersect at O, and the ray OE divides $\\angle BOD$ into two angles. Given that $\\angle BOE = \\frac{1}{3} \\angle AOC$ and $\\angle EOD = 36^\\circ$, what is the measure of $\\angle AOC$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/8928624_341.png" -], -"solution": "\\textbf{Solution:} Because $\\angle AOC$ and $\\angle BOD$ are vertically opposite angles, \\\\\ntherefore $\\angle BOD = \\angle AOC$, \\\\\nbecause $\\angle BOE = \\frac{1}{3} \\angle AOC$, $\\angle EOD = 36^\\circ$, \\\\\ntherefore $\\angle EOD = 2\\angle BOE = 36^\\circ$, \\\\\ntherefore $\\angle EOD = 18^\\circ$, \\\\\ntherefore $\\angle AOC = \\angle BOE + \\angle EOD = 18^\\circ + 36^\\circ = \\boxed{54^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"6972741": { -"question": "As shown in the figure, it is known that: $OA\\perp OB$, $\\angle BOC=50^\\circ$, and $\\angle AOD : \\angle COD=4 : 7$. Draw the angle bisector OE of $\\angle BOC$, and find the degree measure of $\\angle DOE$.", -"image_file_name": "7028389", -"image": [ -"math/6972741_360.png" -], -"solution": "\\textbf{Solution:} As shown in the figure:\\\\\nSince OA$\\perp$OB,\\\\\nIt follows that $\\angle$AOB=$90^\\circ$,\\\\\nSince $\\angle$AOD$\\colon$ $\\angle$COD=4$\\colon$ 7,\\\\\nLet $\\angle$AOD=$4x^\\circ$ and $\\angle$COD=$7x^\\circ$,\\\\\nSince $\\angle$AOB+$\\angle$AOD+$\\angle$COD+$\\angle$BOC=$360^\\circ$, and $\\angle$BOC=$50^\\circ$,\\\\\nIt follows that $90+7x+4x+50=360$,\\\\\nThus, $x=20$,\\\\\nTherefore, $\\angle$COD=$140^\\circ$.\\\\\nSince OE is the bisector of $\\angle$BOC,\\\\\nIt follows that $\\angle COE=\\frac{1}{2}\\angle$BOC=$25^\\circ$,\\\\\nTherefore, $\\angle$DOE=$\\angle$COD+$\\angle$COE=\\boxed{165^\\circ}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"10378022": { -"question": "As shown in the figure, it is known that $\\angle BAE=\\angle CAF=110^\\circ$, $\\angle CAE=60^\\circ$, and $AD$ is the angle bisector of $\\angle BAF$. What is the measure of $\\angle BAD$?", -"image_file_name": "7028389", -"image": [ -"math/10378022_370.png" -], -"solution": "\\textbf{Solution:} Since $\\angle$BAE$=110^\\circ$, $\\angle$CAE$=60^\\circ$,\n\ntherefore $\\angle$BAC$=110^\\circ-60^\\circ=50^\\circ$,\n\nand since $\\angle$CAF$=110^\\circ$,\n\ntherefore $\\angle$BAF$=110^\\circ+50^\\circ=160^\\circ$,\n\nand since AD is the angle bisector of $\\angle$BAF,\n\ntherefore $\\angle$BAD= $\\frac{1}{2}$ $\\angle$BAF= $\\frac{1}{2}$ $\\times160^\\circ=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53065827": { -"question": "As shown in the figure, circle $O$ is the incircle of $\\triangle ABC$, where $AB=7, BC=5$, $AC=8$. Determine the radius of the incircle.", -"image_file_name": "7058807", -"image": [ -"math/53065827_584.png" -], -"solution": "\\textbf{Solution:} Construct BD $\\perp$ AC at D, with tangency points E, F, and G, respectively. Connect OE, OF, OG,\\\\\nLet AD = x, CD = 8−x, and the radius of the inscribed circle be r,\\\\\nAccording to the Pythagorean theorem, $AB^{2}-AD^{2}=BC^{2}-CD^{2}$, that is $7^{2}-x^{2}=5^{2}-(8-x)^{2}$,\\\\\nSolving the equation, we get $x=\\frac{11}{2}$,\\\\\nTherefore, BD = $\\sqrt{AB^{2}-AD^{2}}=\\sqrt{7^{2}-\\left(\\frac{11}{2}\\right)^{2}}=\\frac{5}{2}\\sqrt{3}$,\\\\\nBecause circle O is the inscribed circle of $\\triangle ABC$,\\\\\nTherefore, OE $\\perp$ AC, OF $\\perp$ AB, OG $\\perp$ BC, OE = OF = OG = r,\\\\\nTherefore, $S_{\\triangle ABC}=\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}AB\\cdot OF+\\frac{1}{2}BC\\cdot OG+\\frac{1}{2}AC\\cdot OE=\\frac{1}{2}(AB+BC+AC)\\cdot r$,\\\\\nTherefore, AC$\\cdot$BD = $(AB+BC+AC)\\cdot r$,\\\\\nTherefore, $r=\\frac{AC\\cdot BD}{AB+BC+AC}=\\frac{8\\times \\frac{5}{2}\\sqrt{3}}{20}=\\boxed{\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52604050": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=48^\\circ$, the angle bisectors of the exterior angles $\\angle DAC$ and $\\angle ACF$ intersect at point E. What is the measure of $\\angle AEC$ in degrees?", -"image_file_name": "7047897", -"image": [ -"math/52604050_880.png" -], -"solution": "Solution: Since the bisectors of exterior angles $\\angle DAC$ and $\\angle ACF$ of the triangle intersect at point E, \\\\\nit follows that $\\angle CAE + \\angle ACE = \\frac{1}{2}(\\angle B + \\angle ACB) + \\frac{1}{2}(\\angle B + \\angle BAC)\\\\\n= \\frac{1}{2}(\\angle BAC + \\angle B + \\angle ACB + \\angle B)\\\\\n= \\frac{1}{2}(180^\\circ + 48^\\circ)\\\\\n= 114^\\circ$\\\\\nIn $\\triangle ACE$, $\\angle AEC = 180^\\circ - (\\angle CAE + \\angle ACE)\\\\\n= 180^\\circ - 114^\\circ\\\\\n= \\boxed{66^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52603636": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle B=42^\\circ$, $\\angle C=68^\\circ$, $AD$ is the altitude of $\\triangle ABC$, $AE$ is the angle bisector of $\\triangle ABC$. Find the degree measure of $\\angle EAD$.", -"image_file_name": "7047897", -"image": [ -"math/52603636_890.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle B=42^\\circ$ and $\\angle C=68^\\circ$, \\\\\nit follows that $\\angle BAC=180^\\circ-68^\\circ-42^\\circ=70^\\circ$\\\\\nSince AE is the angle bisector of $\\triangle ABC$,\\\\\nit follows that $\\angle CAE=70^\\circ \\div 2=35^\\circ$\\\\\nSince AD is the altitude of $\\triangle ABC$,\\\\\nit follows that $\\angle ADB=90^\\circ$\\\\\nTherefore, $\\angle DAC=90^\\circ-\\angle C=90^\\circ-68^\\circ=22^\\circ$\\\\\nTherefore, $\\angle EAD=\\angle EAC-\\angle DAC=35^\\circ-22^\\circ=\\boxed{13^\\circ}$,\\\\\nthat is, the measure of $\\angle EAD$ is $13^\\circ$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653437": { -"question": "As shown in the figure, \\(AD\\) is the angle bisector of \\( \\triangle ABC\\), \\(CE\\) is the height of \\( \\triangle ABC\\), \\(\\angle BAC=50^\\circ\\), \\(\\angle BCE=25^\\circ\\), what is the degree measure of \\( \\angle ADB\\)?", -"image_file_name": "7047897", -"image": [ -"math/52653437_905.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ is the angle bisector of $\\triangle ABC$, and $\\angle BAC=50^\\circ$,\\\\\ntherefore $\\angle BAD=25^\\circ$,\\\\\nalso given that $CE$ is the altitude of $\\triangle ABC$, and $\\angle BCE=25^\\circ$,\\\\\ntherefore $\\angle BEC=90^\\circ$,\\\\\nthus we get $\\angle B=65^\\circ$,\\\\\nhence, $\\angle ADB=180^\\circ-\\angle B-\\angle BAD=180^\\circ-65^\\circ-25^\\circ=\\boxed{90^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653199": { -"question": "As shown in the figure, in $\\triangle ABC$, $CA=CB$, $D$ is the midpoint of $AB$, $\\angle B=42^\\circ$, what is the measure of $\\angle ACD$ in degrees?", -"image_file_name": "7047897", -"image": [ -"math/52653199_910.png" -], -"solution": "\\textbf{Solution:} Given that $CA=CB$, \\\\\nit follows that $\\triangle ABC$ is an isosceles triangle, \\\\\nsince $\\angle B=42^\\circ$, \\\\\nthen $\\angle A=\\angle B=42^\\circ$, \\\\\nthus $\\angle ACB=96^\\circ$, \\\\\nfurthermore, since D is the midpoint of AB, meaning CD bisects the base AB, \\\\\nit implies that CD bisects $\\angle ACB$, \\\\\ntherefore $\\angle ACD= \\frac{1}{2}\\angle ACB=\\boxed{48^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653340": { -"question": "As shown in the figure, in $\\triangle ABC$, we have $AB=AC$, and the points $D$, $A$, and $E$ all lie on the straight line $m$. Moreover, it is given that $\\angle BDA=\\angle AEC=\\angle BAC=\\alpha$. If $DE=10$ and $BD=3$, find the length of $CE$.", -"image_file_name": "7047897", -"image": [ -"math/52653340_920.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AEC = \\angle BAC = \\alpha$,\\\\\nit follows that $\\angle ECA + \\angle CAE = 180^\\circ - \\alpha$,\\\\\nand $\\angle BAD + \\angle CAE = 180^\\circ - \\alpha$,\\\\\nhence $\\angle ECA = \\angle BAD$,\\\\\nIn $\\triangle BAD$ and $\\triangle ACE$,\\\\\nwe have $\\left\\{ \\begin{array}{l} \\angle BDA = \\angle AEC \\\\ \\angle BAD = \\angle ACE \\\\ AB = AC \\end{array} \\right.$\\\\\nTherefore, $\\triangle BAD \\cong \\triangle ACE$ (AAS),\\\\\nwhich implies CE = AD, and AE = BD = 3,\\\\\nSince DE = AD + AE = 10,\\\\\nit follows that AD = DE - AE = DE - BD = 10 - 3 = 7.\\\\\nTherefore, CE = \\boxed{7}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653557": { -"question": "As shown in the figure, $CD$ is the angle bisector of $\\triangle ABC$, $\\angle 1 = \\angle 2$, $\\angle B = 30^\\circ$. What is the measure of $\\angle ACB$?", -"image_file_name": "7047897", -"image": [ -"math/52653557_935.png" -], -"solution": "\\textbf{Solution:} Let $\\angle ACB=2\\alpha$,\\\\\nsince CD is the angle bisector of $\\triangle ABC$,\\\\\nthen $\\angle BCD=\\angle ACD= \\frac{1}{2} \\angle ACB=\\alpha$,\\\\\nthus $\\angle 1=\\angle B+\\angle BCD=30^\\circ+\\alpha$,\\\\\nsince $\\angle 1=\\angle 2$,\\\\\nthus $\\angle 2=30^\\circ+\\alpha$,\\\\\nsince $\\angle 2+\\angle B+\\angle ACB=180^\\circ$,\\\\\nthus $30^\\circ+\\alpha +30^\\circ+2\\alpha =180^\\circ$,\\\\\nthus $\\alpha =40^\\circ$,\\\\\nthus $\\angle ACB=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52814879": { -"question": "As shown in the figure, ship A leaves the port at a speed of 16 nautical miles per hour, heading southeast. At the same time and from the same location, ship B heads southwest. It is known that one and a half hours after leaving the port, they reach points B and A respectively. Given that the distance between points A and B is 30 nautical miles, how many nautical miles does ship B travel per hour?", -"image_file_name": "7046945", -"image": [ -"math/52814879_780.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram: $OA = 16 \\times 1.5 = 24$ (nautical miles),\\\\\n$AB = 30$ (nautical miles),\\\\\nBy the Pythagorean theorem, we have: $OB = \\sqrt{30^2 - 24^2} = 18$ (nautical miles),\\\\\n$18 \\div 1.5 = \\boxed{12}$ (nautical miles/hour),\\\\\nThus, the ship B travels $12$ nautical miles per hour.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52793336": { -"question": "As shown in the figure, $AD$ is the altitude of $\\triangle ABC$, $BE$ bisects $\\angle ABC$ and intersects $AD$ at $E$. If $\\angle C=70^\\circ$ and $\\angle BED=68^\\circ$, what is the measure of $\\angle BAC$?", -"image_file_name": "7046945", -"image": [ -"math/52793336_798.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ is the height of $\\triangle ABC$, and $\\angle BED=68^\\circ$,\n\\[\n\\therefore \\angle EBD=90^\\circ-\\angle BED=90^\\circ-68^\\circ=22^\\circ,\n\\]\nSince $BE$ bisects $\\angle ABC$ and intersects $AD$ at E,\n\\[\n\\therefore \\angle ABC=2\\angle EBD=2\\times 22^\\circ=44^\\circ,\n\\]\nGiven that $\\angle C=70^\\circ$,\n\\[\n\\therefore \\angle BAC=180^\\circ-\\angle ABC-\\angle C=180^\\circ-44^\\circ-70^\\circ=\\boxed{66^\\circ}.\n\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52774849": { -"question": "As shown in the figure, points A, D, B, E are on the same line, $AC=EF$, $AD=BE$, $\\angle C=\\angle F=90^\\circ$, $\\angle ABC=65^\\circ$, find the degree of $\\angle ADF$.", -"image_file_name": "7046945", -"image": [ -"math/52774849_800.png" -], -"solution": "\\textbf{Solution:} Given that $AD = BE$,\\\\\nit follows that $AD + BD = BE + BD$, which means $AB = DE$,\\\\\nfurthermore, since $AC = EF$,\\\\\nwe have Rt$\\triangle ABC \\cong$ Rt$\\triangle EDF$ (by HL criterion),\\\\\nwhich implies $\\angle FDE = \\angle ABC = 65^\\circ$,\\\\\ntherefore, $\\angle ADF = 180^\\circ - \\angle FDE = 180^\\circ - 65^\\circ = \\boxed{115^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52733494": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $\\angle B=90^\\circ$, $\\angle BCA=60^\\circ$, $AC=2\\sqrt{2}$, $DA=1$, $CD=3$. Find the area of quadrilateral $ABCD$.", -"image_file_name": "7046945", -"image": [ -"math/52733494_811.png" -], -"solution": "\\textbf{Solution:}\n\nGiven $\\because$ $\\angle B=90^\\circ$, $\\angle BCA=60^\\circ$, $\\therefore$ $\\angle A=30^\\circ$, $\\therefore$ BC=$\\frac{1}{2}$AC=$\\sqrt{2}$, AB=$\\sqrt{6}$, $\\because$ AC=2$\\sqrt{2}$, DA=1, CD=3, $\\therefore$ AC$^{2}$+DA$^{2}$=9=CD$^{2}$, $\\therefore$ $\\angle CAD=90^\\circ$, $\\therefore$ $S_{\\text{quadrilateral} ABCD}=S_{\\triangle ABC}+S_{\\triangle ACD}$, =$\\frac{1}{2}\\cdot$AB$\\cdot$BC+$\\frac{1}{2}\\cdot$AC$\\cdot$DA, =$\\frac{1}{2}\\times\\sqrt{6}\\times\\sqrt{2}+\\frac{1}{2}\\times2\\sqrt{2}\\times1$, =$\\boxed{\\sqrt{2}+\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52733493": { -"question": "As shown in the figure, in the right-angled triangle $ABC$, $\\angle BAC=90^\\circ$, $AB=AC$, perpendicular lines $BD$ and $CE$ are drawn from points $B$ and $C$ respectively, through point $A$, with the feet of the perpendiculars being $D$ and $E$. If $BD=4\\,\\text{cm}$ and $CE=3\\,\\text{cm}$, what is the length of $DE$ in centimeters?", -"image_file_name": "7046945", -"image": [ -"math/52733493_820.png" -], -"solution": "\\textbf{Solution:} Since $BD \\perp AD$ and $CE \\perp AD$,\\\\\nit follows that $\\angle D = \\angle E = 90^\\circ$,\\\\\nhence $\\angle DAB + \\angle ABD = 90^\\circ$,\\\\\nSince $\\angle BAC = 90^\\circ$,\\\\\nit follows that $\\angle DAB + \\angle CAE = 90^\\circ$,\\\\\nhence $\\angle ABD = \\angle CAE$,\\\\\nSince $AB = AC$,\\\\\nit follows that $\\triangle DAB \\cong \\triangle ECA$ (AAS),\\\\\nhence $BD = AE = 4\\,\\text{cm}, AD = CE = 3\\,\\text{cm}$,\\\\\ntherefore $DE = AE + AD = \\boxed{7\\,\\text{cm}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52731268": { -"question": "As shown in the figure, in the pentagon $ABCDE$, $AB \\perp BC$, $AE \\perp DE$, $AB=1$, $BC=2$, $CD=2\\sqrt{5}$, $DE=3$, $AE=4$. Find the area of the pentagon $ABCDE$.", -"image_file_name": "7046945", -"image": [ -"math/52731268_839.png" -], -"solution": "\\textbf{Solution:} Draw $AC$ and $AD$,\\\\\nsince $AB\\perp BC$ and $AE\\perp DE$,\\\\\nthus $\\angle B=90^\\circ$ and $\\angle E=90^\\circ$,\\\\\nhence $AB^2+BC^2=AC^2$ and $AE^2+DE^2=AD^2$,\\\\\nsince $AB=1$, $BC=2$, $DE=3$, $AE=4$,\\\\\nthus $1^2+2^2=AC^2$ and $4^2+3^2=AD^2$,\\\\\ntherefore $AC=\\sqrt{5}$ and $AD=5$,\\\\\nsince $CD=2\\sqrt{5}$,\\\\\nthus $AC^2+CD^2=AD^2$,\\\\\nthus $\\angle ACD=90^\\circ$,\\\\\nthus the area of pentagon $ABCDE$ $=S_{\\triangle ABC}+S_{\\triangle ADE}+S_{\\triangle ACD}=\\frac{1}{2}\\cdot AB\\cdot BC+\\frac{1}{2}\\cdot AE\\cdot DE+\\frac{1}{2}\\cdot AC\\cdot CD$\\\\\n$=\\frac{1}{2}\\times 1\\times 2+\\frac{1}{2}\\times 4\\times 3+\\frac{1}{2}\\times \\sqrt{5}\\times 2\\sqrt{5}=1+6+5=\\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52755880": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle B=50^\\circ$. CD is the altitude of $\\triangle ABC$, and CE is the angle bisector of $\\triangle ABC$. Find the measure of $\\angle DCE$.", -"image_file_name": "7046945", -"image": [ -"math/52755880_846.png" -], -"solution": "Solution: Since $CD$ is the height of $\\triangle ABC$,\\\\\nhence $\\angle CDB = 90^\\circ$,\\\\\nthus $\\angle DCB = 90^\\circ - \\angle B = 90^\\circ - 50^\\circ = 40^\\circ$;\\\\\nSince $CE$ bisects $\\angle ACB$,\\\\\nthus $\\angle ECB = \\frac{1}{2} \\angle ACB = \\frac{1}{2} \\times 90^\\circ = 45^\\circ$,\\\\\ntherefore $\\angle DCE = \\angle ECB - \\angle DCB = 45^\\circ - 40^\\circ = \\boxed{5^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52699728": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=82^\\circ$, $\\angle C=58^\\circ$, $BD\\perp AC$ at $D$, $AE$ bisects $\\angle CAB$, and $BD$ intersects $AE$ at point $F$. What is $\\angle AFB$?", -"image_file_name": "7046945", -"image": [ -"math/52699728_851.png" -], -"solution": "\\textbf{Solution:} Given: $\\because \\angle CAB = 180^\\circ - \\angle ABC - \\angle C$,\\\\\nand $\\angle ABC = 82^\\circ, \\angle C = 58^\\circ$,\\\\\n$\\therefore \\angle CAB = 40^\\circ$,\\\\\n$\\because$ AE bisects $\\angle CAB$,\\\\\n$\\therefore \\angle DAF = 20^\\circ$,\\\\\n$\\because$ BD $\\perp$ AC at D,\\\\\n$\\therefore \\angle ADB = 90^\\circ$,\\\\\n$\\therefore \\angle AFB = \\angle ADB + \\angle DAF = 90^\\circ + 20^\\circ = \\boxed{110^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52693957": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ is the altitude on side $BC$, and $AE$ bisects $\\angle BAC$. If $\\angle BAC : \\angle B : \\angle C = 4 : 3 : 2$, find the measure of $\\angle DAE$?", -"image_file_name": "7046945", -"image": [ -"math/52693957_860.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$,\n\nsince $\\angle BAC : \\angle B : \\angle C = 4 : 3 : 2$,\n\nthus $\\angle BAC = 180^\\circ \\times \\frac{4}{9} = 80^\\circ$, $\\angle B = 180^\\circ \\times \\frac{3}{9} = 60^\\circ$,\n\nsince $AD$ is the altitude to side $BC$,\n\nthus $\\angle ADB = 90^\\circ$,\n\nthus $\\angle BAD = 90^\\circ - \\angle B = 30^\\circ$,\n\nsince $AE$ bisects $\\angle BAC$,\n\nthus $\\angle BAE = \\frac{1}{2} \\angle BAC = 40^\\circ$,\n\nthus $\\angle DAE = \\angle BAE - \\angle BAD = \\boxed{10^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52661295": { -"question": "As shown in the figure, in $\\triangle ABC$, $CD$ is the angle bisector of $\\angle ACB$, $DE \\parallel BC$, $\\angle A=65^\\circ$, $\\angle B=35^\\circ$, what is the measure of $\\angle EDC$?", -"image_file_name": "7046945", -"image": [ -"math/52661295_870.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, since $\\angle A=65^\\circ$ and $\\angle B=35^\\circ$, it follows that $\\angle ACB=180^\\circ-\\angle A-\\angle B=180^\\circ-65^\\circ-35^\\circ=80^\\circ$. Since $CD$ is the angle bisector of $\\angle ACB$, it follows that $\\angle BCD=\\frac{1}{2}\\angle ACB=\\frac{1}{2}\\times 80^\\circ=40^\\circ$. Since $DE\\parallel BC$, it follows that $\\angle EDC=\\angle BCD=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51212476": { -"question": "As shown in the figure, $AB=10$, point C is the midpoint of segment AB, and point D is the midpoint of segment CB. Find the length of AD.", -"image_file_name": "7058812", -"image": [ -"math/51212476_811.png" -], -"solution": "\\textbf{Solution:} Since point C is the midpoint of the line segment AB, \\\\\nit follows that $AC=BC=\\frac{1}{2}AB$, \\\\\nsince $AB=10$, \\\\\nit follows that $AC=BC=\\frac{1}{2}\\times 10=5$. \\\\\nSince point D is the midpoint of the line segment BC, \\\\\nit follows that $CD=\\frac{1}{2}BC$, \\\\\ntherefore $CD=\\frac{1}{2}\\times 5=\\frac{5}{2}$. \\\\\nThus, $AD=AC+CD=5+\\frac{5}{2}=\\boxed{\\frac{15}{2}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51212541": { -"question": "As shown in the figure, the length of line segment $AB=10\\, \\text{cm}$. Extend $AB$ to point $C$ such that $BC=6\\, \\text{cm}$. Let points $M$ and $N$ be the midpoints of $AC$ and $BC$, respectively. Find the lengths of the line segments $BM$ and $MN$.", -"image_file_name": "7058812", -"image": [ -"math/51212541_820.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ AB=10, BC=6\\\\\n$\\therefore$ AC=16\\\\\nAlso, $\\because$ M is the midpoint of AC, $\\therefore$ MC=AM=8\\\\\n$\\because$ N is the midpoint of BC, $\\therefore$ BN=NC=3\\\\\nBM=AB−AM=10−8=\\boxed{2}\\\\\nMN=BM+BN=2+3=\\boxed{5}", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51212141": { -"question": "As shown in the figure, a rectangle $ABCD$ with a length of $5\\,cm$ and a width of $3\\,cm$ is first translated $2\\,cm$ to the right and then $1\\,cm$ downwards to obtain rectangle $A'B'C'D'$. What is the area of the shaded part in $cm^{2}$?", -"image_file_name": "7058812", -"image": [ -"math/51212141_837.png" -], -"solution": "\\textbf{Solution:} It can be inferred from the problem that the blank part is a rectangle, with a length of $ \\left(5-2\\right)cm=3cm$ and a width of $ \\left(3-1\\right)cm=2cm$, \\\\\n$\\therefore$ the area of the shaded part $ =5\\times 3\\times 2-2\\times 3\\times 2=\\boxed{18cm^{2}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51367879": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AC=5$, and $BC=12$. If $\\triangle ABC$ is folded along $AD$ such that point $C$ coincides with point $E$ on $AB$, what is the length of $DB$?", -"image_file_name": "7058812", -"image": [ -"math/51367879_845.png" -], -"solution": "\\textbf{Solution}: By the property of folding, we have: $AE=AC=5$, $DC=DE$, and $\\angle AED=\\angle BED=\\angle C=90^\\circ$.\\\\\nSince $\\angle C=90^\\circ$ and $AC=5$, $BC=12$,\\\\\nthus $AB=\\sqrt{AC^2+BC^2}=13$,\\\\\nand hence $BE=AB-AE=8$.\\\\\nLet $DC=x$, then $DE=x$, and $BD=BC-DC=12-x$.\\\\\nIn $\\triangle BDE$, by the Pythagorean theorem, we have $DE^2+BE^2=BD^2$,\\\\\nthus $x^2+8^2=(12-x)^2$,\\\\\nsolving this, we find $x=\\frac{10}{3}$.\\\\\nTherefore, $BD=12-x=\\boxed{\\frac{26}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51366778": { -"question": "As shown in the figure, if $CB=4\\,\\text{cm}$, $DB=7\\,\\text{cm}$, and $D$ is the midpoint of $AC$, find the length of $AB$.", -"image_file_name": "7058812", -"image": [ -"math/51366778_850.png" -], -"solution": "\\textbf{Solution:} Since $CB = 4$cm, $DB = 7$cm,\\\\\nthus $DC = DB - CB = 3$cm.\\\\\nAlso, since $D$ is the midpoint of $AC$,\\\\\nthus $AD = DC = 3$cm,\\\\\ntherefore $AB = AD + DB = \\boxed{10cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52065356": { -"question": "As shown in the figure, the diagonals $AC, BD$ of the rhombus $ABCD$ intersect at point $O$. If $AC=4, BD=6$, what is the length of $AB$?", -"image_file_name": "7054440", -"image": [ -"math/52065356_774.png" -], -"solution": "\\textbf{Solution:} Since rhombus $ABCD$ has diagonals $AC, BD$ intersecting at point $O$, and $AC=4, BD=6$,\\\\\nit follows that $AC\\perp BD$, $AO=\\frac{1}{2}AC=2$, $BO=\\frac{1}{2}BD=3$,\\\\\nIn $\\triangle AOB$, $AB^2=AO^2+BO^2$,\\\\\nthus $AB=\\sqrt{AO^2+BO^2}=\\sqrt{2^2+3^2}=\\boxed{\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51968621": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB = AC = 10$. Point $P$ is on $BC$. Parallel lines to $AC$ and $AB$ are drawn through point $P$, intersecting $AB$ and $AC$ at points $M$ and $N$ respectively. What is the perimeter of the quadrilateral $AMPN$?", -"image_file_name": "7054440", -"image": [ -"math/51968621_782.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$, \\\\\nit follows that $\\angle B=\\angle C$, \\\\\nSince $PM\\parallel AC$ and $PN\\parallel AB$, \\\\\nit implies that quadrilateral AMPN is a parallelogram, and $\\angle MPB=\\angle C$, \\\\\nHence, $AM=PN$, $MP=AN$, and $\\angle B=\\angle MPB$, \\\\\nTherefore, $MB=MP$, \\\\\nConsequently, the perimeter of quadrilateral AMPN is $AM+MP+PN+AN=2(AM+MP)=2(AM+MB)=2AB=\\boxed{20}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51446425": { -"question": "In the figure, within $\\triangle ABC$, points $D$ and $E$ lie on sides $AB$ and $AC$ respectively, with $DE\\parallel BC$. Given that $AB=3$, $AC=4$, and $EC=1$, determine the length of $AD$.", -"image_file_name": "7056435", -"image": [ -"math/51446425_6010.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $DE\\parallel BC$, \\\\\nit follows that $\\frac{DB}{AB}=\\frac{EC}{AC}$, that is $\\frac{DB}{3}=\\frac{1}{4}$, \\\\\ntherefore, $DB=\\frac{3}{4}$, \\\\\nthus, $AD=AB−DB=3−\\frac{3}{4}=\\boxed{\\frac{9}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402923": { -"question": "As illustrated in the diagram, a street lamp (point O) is 6.4m above the ground. Xiao Ming, who is 1.6m tall, walks from point A, which is 9m away from the base of the street lamp (point P), along a straight line in the direction of AP to point D. When he stops, the length of his shadow under the street lamp has reduced by 1.8m. Calculate the distance Xiao Ming has walked.", -"image_file_name": "7056435", -"image": [ -"math/51402923_610.png" -], -"solution": "\\textbf{Solution:} From the given information, we have $OP=64m$, $AB=DE=1.6m$, $AP=9m$, $DF=AC-1.8$,\\\\\n$\\because$ $\\angle OPC=\\angle BAC$, $\\angle BCA=\\angle OCP$,\\\\\n$\\therefore$ $\\triangle BCA\\sim\\triangle OCP$,\\\\\n$\\therefore$ $\\frac{BA}{OP}=\\frac{AC}{PC}$, that is $\\frac{1.6}{6.4}=\\frac{AC}{AC+9}$,\\\\\n$\\therefore$ $AC=3$,\\\\\n$\\therefore$ $DF=AC-1.8=3-1.8=1.2\\text{(m)}$,\\\\\n$\\because$ $\\angle OPC=\\angle EDF=90^\\circ$, $\\angle EFD=\\angle OFP$,\\\\\n$\\therefore$ $\\triangle EFD\\sim\\triangle OFP$,\\\\\n$\\therefore$ $\\frac{DE}{OP}=\\frac{DF}{PF}$, that is $\\frac{1.6}{6.4}=\\frac{1.2}{PF}$,\\\\\n$\\therefore$ $PF=4.8$,\\\\\n$\\therefore$ $AD=AP-PF+DF=9-4.8+1.2=\\boxed{5.4}\\text{(m)}$,\\\\", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52765253": { -"question": "As shown in the figure, in parallelogram $ABCD$, $AB=4$, $BC=2$, point $F$ is on the extension of $BC$, $AF$ intersects $CD$ at point $E$, and $\\angle 1=\\angle F$, find the lengths of $CF$ and $DE$.", -"image_file_name": "7056435", -"image": [ -"math/52765253_620.png" -], -"solution": "\\textbf{Solution:} Since $\\angle B = \\angle B$ and $\\angle 1 = \\angle F$,\\\\\nit follows that $\\triangle ABC \\sim \\triangle FBA$,\\\\\ntherefore, $\\frac{AB}{BF} = \\frac{BC}{AB}$,\\\\\nthus, BF = $\\frac{4 \\times 4}{2} = 8$,\\\\\nhence, CF = BF - BC = 8 - 2 = \\boxed{6},\\\\\nIn the parallelogram ABCD,\\\\\nthus, AD $\\parallel$ BF, CD = AB = 4, AD = BC = 2,\\\\\ntherefore, $\\triangle ADE \\sim \\triangle FCE$,\\\\\nthus, $\\frac{DE}{CE} = \\frac{AD}{CF}$,\\\\\ntherefore, $\\frac{DE}{4 - DE} = \\frac{2}{6}$,\\\\\nthus, DE = \\boxed{1}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52765937": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ is the midpoint of $BC$, $DF \\perp AE$ with the foot of the perpendicular being $F$. If $AB = 4$ and $BC = 6$, find the length of $DF$.", -"image_file_name": "7056435", -"image": [ -"math/52765937_630.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle, \\\\\n$\\therefore AD=BC$, $AD\\parallel BC$, $\\angle B=90^\\circ$, \\\\\nSince $BC=AD=6$, $E$ is the midpoint of $BC$, \\\\\n$\\therefore BE=3$, \\\\\nSince $\\angle B=90^\\circ$, \\\\\n$\\therefore AE=\\sqrt{BE^2+AB^2}=\\sqrt{3^2+4^2}=5$, \\\\\nSince $AD\\parallel BC$, \\\\\n$\\therefore \\angle DAF=\\angle AEB$, \\\\\nSince $DF\\perp AE$, \\\\\n$\\therefore \\angle AFD=90^\\circ=\\angle B$, \\\\\n$\\therefore \\triangle ADF\\sim \\triangle EAB$. \\\\\n$\\therefore \\frac{DF}{AB}=\\frac{AD}{AE}$, \\\\\nThat is $\\frac{DF}{4}=\\frac{6}{5}$, \\\\\nWe find that: $DF=\\boxed{\\frac{24}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52601704": { -"question": "Given the diagram, in $\\triangle ABC$, $AB=AC$. Point $D$ is on $AC$, and satisfies $AD^{2}=CD\\cdot AC$. If $AD=BC$, by connecting $BD$, what is the measure of $\\angle ABD$ in degrees?", -"image_file_name": "7056435", -"image": [ -"math/52601704_647.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$,\\\\\nit follows that $\\angle ABC=\\angle ACB$,\\\\\nSince $AD^{2}=CD\\cdot AC$, $AD=BC$,\\\\\nit follows that $BC^{2}=CD\\cdot AC$,\\\\\nwhich means $\\frac{CB}{CD}=\\frac{AC}{CB}$,\\\\\nAlso, since $\\angle C=\\angle C$,\\\\\nit follows that $\\triangle CBA\\sim \\triangle CDB$,\\\\\nthus, $\\angle BDC=\\angle C=\\angle ABC$, $\\angle A=\\angle DBC$,\\\\\nit follows that $BD=CB$,\\\\\nthus, $DB=DA$,\\\\\nit follows that $\\angle A=\\angle ABD$,\\\\\nLet $\\angle A=\\angle ABD =x^\\circ$,\\\\\nit follows that $\\angle BDC=\\angle A+\\angle ABD=2x^\\circ$,\\\\\nit follows that $\\angle ABC=\\angle C=2\\angle ABD=2x^\\circ$,\\\\\nIn $\\triangle ABC$, by the triangle angle sum theorem,\\\\\n$x+2x+2x=180$,\\\\\nSolving, we find $x=\\boxed{36}$,\\\\\nthus, $\\angle ABD=36^\\circ.$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52602147": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$, $E$, and $F$ are points on $AB$, $BC$ respectively, and $DE\\parallel AC$, $AE\\parallel DF$. Given that $BD: AD=3:2$ and $BF=6$, find the lengths of $EF$ and $FC$.", -"image_file_name": "7056435", -"image": [ -"math/52602147_650.png" -], -"solution": "\\textbf{Solution:} Since $AE\\parallel DF$, \\\\\nthen $\\frac{BD}{AD}=\\frac{BF}{EF}$, that is $\\frac{6}{EF}=\\frac{3}{2}$, \\\\\ntherefore $EF=\\boxed{4}$, \\\\\nthus $BE=BF+EF=6+4=10$, \\\\\nsince $DE\\parallel AC$, \\\\\nthen $\\frac{BD}{AD}=\\frac{BE}{CE}$, that is $\\frac{10}{CE}=\\frac{3}{2}$, \\\\\ntherefore $CE=\\frac{20}{3}$, \\\\\nthus $CF=CE+EF=\\boxed{\\frac{32}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51176403": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\sin B= \\frac{5}{13}$, D is on side $BC$, and $\\angle ADC=45^\\circ$, $AC=5$. Find the tangent value of $\\angle BAD$.", -"image_file_name": "7058769", -"image": [ -"math/51176403_761.png" -], -"solution": "\\textbf{Solution:} Since $\\angle C=90^\\circ$ and $\\angle ADC=45^\\circ$ with $AC=5$,\\\\\nit follows that $AC=CD=5$ and $AD=5\\sqrt{2}$,\\\\\nSince $\\sin B= \\frac{5}{13}$,\\\\\nthen $AB=\\frac{AC}{\\sin B}=13$,\\\\\nSince $\\angle C=90^\\circ$ and $CD=5$,\\\\\nthen $BC=12$ and $BD=7$,\\\\\nDraw $BE\\perp AD$ to extend $AD$ at $E$,\\\\\nSince $\\angle BDE=\\angle ADC=45^\\circ$,\\\\\nit follows that $BE=DE=\\frac{7}{\\sqrt{2}}=\\frac{7\\sqrt{2}}{2}$,\\\\\nTherefore, $AE=AD+DE=5\\sqrt{2}+\\frac{7\\sqrt{2}}{2}=\\frac{17\\sqrt{2}}{2}$,\\\\\nThus, $\\tan \\angle BAD = \\boxed{\\frac{7}{17}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51175037": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ AB=AC=5$, $ BC=6$, find the value of $\\cos A$.", -"image_file_name": "7058769", -"image": [ -"math/51175037_774.png" -], -"solution": "\\textbf{Solution:} Construct $AE\\perp BC$ at $E$, and construct $BD\\perp AC$ at $D$,\\\\\n$\\therefore$ $AB=AC=5$, $BC=6$,\\\\\n$\\therefore$ $BE=\\frac{1}{2}BC=3$,\\\\\n$\\therefore$ $AE=\\sqrt{AB^{2}-BE^{2}}=4$,\\\\\n$\\therefore$ the area of triangle $ABC =\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}BC\\cdot AE$,\\\\\n$\\therefore$ $BD=\\frac{BC\\cdot AE}{AC}=\\frac{6\\times 4}{5}=\\frac{24}{5}$,\\\\\n$\\therefore$ $AD=\\sqrt{AB^{2}-BD^{2}}=\\sqrt{5^{2}-\\left(\\frac{24}{5}\\right)^{2}}=1.4$,\\\\\n$\\therefore$ $\\cos A=\\frac{AD}{AB}=\\frac{1.4}{5}=\\boxed{\\frac{7}{25}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51174836": { -"question": "As shown in the figure, the slope of a river embankment $BC=12\\,m$. In order to reinforce the embankment, it is necessary to thicken the dam. After completion, the slope ratio changes from the original $1\\colon 2$ to $1\\colon 3$. What is the length of the reinforced slope $AD$ in meters?", -"image_file_name": "7058769", -"image": [ -"math/51174836_780.png" -], -"solution": "\\textbf{Solution:} Construct $CE\\perp AB$ through point C, and $DF\\perp AB$ through point D, with the respective perpendicular feet being E and F.\\\\\nLet $CE=x$, then $BE=2x$, $DF=CE=x$, $AF=3x$,\\\\\nsince in $\\triangle CEB$, $\\angle BEC=90^\\circ$, and $BC=12$,\\\\\nthus $x^2+(2x)^2=12^2$, yielding: $x=\\frac{12\\sqrt{5}}{5}$.\\\\\nSince in $\\triangle ADF$, $\\angle AFD=90^\\circ$,\\\\\nthus $AD=\\sqrt{AF^2+DF^2}=\\sqrt{10}x=\\sqrt{10}\\times \\frac{12\\sqrt{5}}{5}=12\\sqrt{2}$ m.\\\\\nAnswer: The reinforced slope $AD$ is $\\boxed{12\\sqrt{2}}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51032247": { -"question": "In the figure, in $ \\triangle ABC$, $ \\angle BAC=90^\\circ$, AD is the altitude to side BC, if $\\sin\\angle CAD=\\frac{3}{5}$ and $ BC=25$, find the length of AC.", -"image_file_name": "7058769", -"image": [ -"math/51032247_794.png" -], -"solution": "\\textbf{Solution:} According to the problem, $\\because$ $\\angle BAC=90^\\circ$ and AD is the height from A to side BC, $\\therefore$ $\\angle BAD+\\angle CAD=90^\\circ$ and $\\angle BAD+\\angle B=90^\\circ$, $\\therefore$ $\\angle CAD=\\angle B$, $\\therefore$ $\\sin B=\\sin CAD=\\frac{3}{5}$. In $Rt\\triangle ABC$ with $\\angle BAC=90^\\circ$, $\\therefore$ $\\sin B=\\frac{AC}{BC}=\\frac{AC}{25}=\\frac{3}{5}$,\\\\\n$\\therefore$ $AC=\\boxed{15}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52478922": { -"question": "As shown in the figure, there is a billboard AB on top of the building. From point D, which is 12 meters away from the building BC, the angle of elevation to the top A of the billboard is $37^\\circ$, and the angle of elevation to the bottom B of the billboard is $30^\\circ$. Calculate the height of the billboard AB. (Leave the result in square root form, reference data: $\\sin 37^\\circ \\approx 0.60$, $\\cos 37^\\circ \\approx 0.80$, $\\tan 37^\\circ \\approx 0.75$)", -"image_file_name": "7058769", -"image": [ -"math/52478922_800.png" -], -"solution": "\\textbf{Solution:} According to the problem, we know\\\\\n$\\angle ADC=37^\\circ$, $\\angle BDC=30^\\circ$, $CD=12$ meters, $AC\\perp DC$.\\\\\nIn $\\triangle DCA$, $\\tan\\angle ADC=\\frac{AC}{CD}$, thus\\\\\n$AC=CD\\cdot \\tan\\angle ADC=12\\times \\tan37^\\circ\\approx 12\\times 0.75=9$ meters.\\\\\nIn $\\triangle DBC$, $\\tan\\angle BDC=\\frac{BC}{CD}$, thus\\\\\n$BC=CD\\cdot \\tan\\angle BDC=12\\times \\tan30^\\circ=12\\times \\frac{\\sqrt{3}}{3}=4\\sqrt{3}$ meters.\\\\\nTherefore, $AB=AC−BC=9−4\\sqrt{3}$.\\\\\nAnswer: The height of the billboard $AB$ is $\\boxed{9−4\\sqrt{3}}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50934100": { -"question": "As shown in the diagram, there is a slope behind a teaching building in the mountainous area, where the slope surface BC is parallel to the ground AD. The slope ratio of the slope AB is $i=1\\colon \\frac{5}{12}$, and AB=26 meters. To prevent landslides and ensure safety, the school decides to modify this slope. According to geological surveys, when the slope angle does not exceed $53^\\circ$, the stability of the slope against landslides can be ensured. To eliminate safety hazards, the school plans to modify the slope AB to AF (as shown in the diagram). What is the minimum length of BF? (The result should be accurate to 1 meter, reference data: $\\sin{53^\\circ} \\approx 0.8$, $\\cos{53^\\circ} \\approx 0.6$, $\\tan{53^\\circ} \\approx 1.33$)", -"image_file_name": "7058769", -"image": [ -"math/50934100_815.png" -], -"solution": "\\textbf{Solution:} Construct FH $\\perp$ AD at H,\\\\\nthen quadrilateral FHEB is a rectangle,\\\\\n$\\therefore$ FH = BE, BF = HE,\\\\\n$\\because$ the slope ratio of slope AB is $i=1\\colon \\frac{5}{12}$,\\\\\n$\\therefore$ BE : AE = 12 : 5,\\\\\nLet BE = 12x meters, then AE = 5x meters,\\\\\nIn $\\triangle ABE$, $AB^{2}$ = $AE^{2}$ + $BE^{2}$, that is $26^{2}$ = $(12x)^{2}$ + $(5x)^{2}$,\\\\\nSolving gives: $x_{1}$ = 2, $x_{2}$ = -2 (discard),\\\\\nThen AE = 10 meters, BE = FH = 24 meters,\\\\\nIn $\\triangle FAH$, $\\tan\\angle FAH$ = $\\frac{FH}{AH}$,\\\\\n$\\therefore$ AH = $\\frac{FH}{\\tan\\angle FAH}$ $\\approx$ $\\frac{24}{1.33} \\approx 18$ (meters),\\\\\n$\\therefore$ BF = HE = AH - AE = 18 - 10 = \\boxed{8} (meters),\\\\\nAnswer: BF is at least 8 meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51445744": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, and chord CD $\\perp$ AB at point E. If AB $=$ 10, BE $=$ 2, what is the length of chord CD?", -"image_file_name": "7058793", -"image": [ -"math/51445744_790.png" -], -"solution": "\\textbf{Solution:} Draw line $OC$ as shown:\\\\\nSince $AB$ is the diameter of $\\odot O$ and $CD\\perp AB$,\\\\\nit follows that $CE=DE=\\frac{1}{2}CD$, and $OC=OA=OB=5$,\\\\\nthus $OE=OB-EB=5-2=3$,\\\\\nin the right triangle $\\triangle OCE$, by the Pythagorean theorem, we have: $CE=\\sqrt{OC^{2}-OE^{2}}=\\sqrt{5^{2}-3^{2}}=4$,\\\\\ntherefore, $CD=2CE=\\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51445862": { -"question": "In the diagram, within circle $\\odot O$, radius $OC$ is perpendicular to chord $AB$ at $D$. Point $E$ is on circle $\\odot O$, with $\\angle E=22.5^\\circ$, and $AB=2$. What is the length of the radius $OB$?", -"image_file_name": "7058793", -"image": [ -"math/51445862_800.png" -], -"solution": "\\textbf{Solution:} Given that $\\because$ radius $OC\\perp$ chord AB at point $D$,\\\\\n$\\therefore \\overset{\\frown}{AC}=\\overset{\\frown}{BC}$,\\\\\n$\\therefore \\angle E=\\frac{1}{2}\\angle BOC=22.5^\\circ$,\\\\\n$\\therefore \\angle BOD=45^\\circ$,\\\\\n$\\therefore \\triangle ODB$ is an isosceles right-angled triangle,\\\\\n$\\because AB=2$,\\\\\n$\\therefore DB=OD=1$,\\\\\n$\\therefore OB=\\sqrt{1^2+1^2}=\\boxed{\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402325": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in $\\odot O$, with $E$ being a point on the extension of $BC$, and point $C$ being the midpoint of the arc $\\overset{\\frown}{BD}$. If $\\angle DCE=110^\\circ$, what is the degree measure of $\\angle BAC$?", -"image_file_name": "7058793", -"image": [ -"math/51402325_811.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is inscribed in circle O,\\\\\nit follows that $\\angle DCE=\\angle BAD$ \\\\\nSince $\\angle DCE=110^\\circ$ \\\\\nthen $\\angle BAD=110^\\circ$ \\\\\nGiven that point C is the midpoint of the arc $BD$\\\\\nit follows that arc $BC=$ arc $DC$ \\\\\nTherefore, $\\angle BAC=\\angle DAC=\\frac{1}{2}\\angle BAD=\\frac{1}{2}\\times 110^\\circ=55^\\circ$ \\\\\nHence, the measure of $\\angle BAC$ is $\\boxed{55^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"50431230": { -"question": "Given that \\(P(2, n)\\) is a point on the graph of the inverse proportion function \\(y= \\frac{4}{x}\\) (\\(x>0\\)). When the line \\(y=-2x\\) is translated to the right along the \\(x\\)-axis passing through point P, it intersects the \\(x\\)-axis at point Q. If point M is a moving point on the \\(y\\)-axis, find the minimum value of \\(PM+QM\\).", -"image_file_name": "7053789", -"image": [ -"math/50431230_541.jpg" -], -"solution": "\\textbf{Solution:} Let us consider the diagram as referred,\\\\\nsince $P(2, n)$ is a point on $y= \\frac{4}{x}$,\\\\\nthen $n= \\frac{4}{2} = 2$, which means $P(2, 2)$.\\\\\nAlso, by translating the line $y= -2x$, the translated line becomes $y= -2x + b$,\\\\\nthus $2 = -2 \\times 2 + b$ gives $b = 6$, which means the translated line is $y= -2x + 6$.\\\\\nTherefore, the reflection of $Q(3, 0)$ across the $y$-axis is $Q'(-3, 0)$,\\\\\nhence $PQ'= \\sqrt{5^2 + 2^2} = \\sqrt{29}$,\\\\\ntherefore, the minimum value of $PM + QM$ is $\\boxed{\\sqrt{29}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52827578": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, the perpendicular bisector $MN$ of $AB$ intersects $AC$ at point $D$ and intersects $AB$ at point $E$, $\\angle A=36^\\circ$, $AD=5$, find the degree measure of $\\angle DBC$ and the length of side $BC$.", -"image_file_name": "7045627", -"image": [ -"math/52827578_839.png" -], -"solution": "\\textbf{Solution:} Since in $\\triangle ABC$, $AB=AC$ and $\\angle A=36^\\circ$,\\\\\nit follows that $\\angle ABC=\\angle C=\\frac{180^\\circ-\\angle A}{2}=72^\\circ$,\\\\\nSince the perpendicular bisector of $AB$, $MN$, intersects $AC$ at point $D$,\\\\\nit follows that $AD=BD$,\\\\\nTherefore, $\\angle ABD=\\angle A=36^\\circ$,\\\\\nTherefore, $\\angle DBC=\\angle ABC-\\angle ABD=36^\\circ$,\\\\\nSince $\\angle BDC=\\angle ABD+\\angle A=72^\\circ$,\\\\\nit follows that $\\angle BDC=\\angle C=72^\\circ$,\\\\\nTherefore, $BC=BD$,\\\\\nAlso, since $AD=BD$,\\\\\nit follows that $BC=AD=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52826811": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle BAC=95^\\circ$, $\\angle B=25^\\circ$, $\\angle CAD=75^\\circ$, determine the measure of $\\angle ADC$.", -"image_file_name": "7045627", -"image": [ -"math/52826811_845.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BAC=95^\\circ$ and $\\angle CAD=75^\\circ$,\\\\\nit follows that $\\angle BAD=\\angle BAC-\\angle CAD=20^\\circ$,\\\\\nSince $\\angle B=25^\\circ$,\\\\\nit follows that $\\angle ADC=\\angle ABC+\\angle BAD=25^\\circ+20^\\circ=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52827547": { -"question": "As shown in the figure, $\\angle AOP = \\angle BOP = 15^\\circ$, $PC \\parallel OA$, $PD \\perp OA$, $PE \\perp OB$. If $PC = 4$, what is the length of $PD$?", -"image_file_name": "7045627", -"image": [ -"math/52827547_851.png" -], -"solution": "\\textbf{Solution:} Since $PC \\parallel OA$,\\\\\nit follows that $\\angle AOP = \\angle CPO = 15^\\circ$,\\\\\nthus $\\angle PCE = \\angle BOP + \\angle CPO = 15^\\circ + 15^\\circ = 30^\\circ$,\\\\\nand since $PC = 4$,\\\\\nit follows that $PE = \\frac{1}{2}PC = \\frac{1}{2} \\times 4 = 2$,\\\\\nsince $\\angle AOP = \\angle BOP$, $PD \\perp OA$, $PE \\perp OB$,\\\\\nit follows that $PD = PE = \\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52808258": { -"question": "As shown in the diagram, in $\\triangle ABC$ and $\\triangle ADC$, $AB=AD$, $BC=DC$, $\\angle B=140^\\circ$, what is the measure of $\\angle D$ in degrees?", -"image_file_name": "7045627", -"image": [ -"math/52808258_860.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$ and $\\triangle ADC$, AB = AD, BC = DC, AC = AC,\\\\\n$\\therefore \\triangle ABC \\cong \\triangle ADC$,\\\\\n$\\therefore \\angle D = \\angle B = \\boxed{140^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53106789": { -"question": "As shown in the figure, in square $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. $E$ is the midpoint of $BC$, and $DE$ intersects $AC$ at $F$. If $DE=12$, what is the length of $EF$?", -"image_file_name": "7056237", -"image": [ -"math/53106789_408.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a square, \\\\\nhence $AD=BC$, $AD\\parallel BC$, \\\\\nsince $E$ is the midpoint of $BC$, \\\\\nhence $CE=\\frac{1}{2}BC=\\frac{1}{2}AD$, \\\\\nsince $AD\\parallel BC$, \\\\\nhence $\\triangle ADF\\sim \\triangle CEF$, \\\\\nhence $\\frac{EF}{DF}=\\frac{CE}{AD}=\\frac{1}{2}$, \\\\\nsince $DE=12$, \\\\\nhence $EF=\\frac{1}{3}DE=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52916840": { -"question": "As shown in the figure, to estimate the width of the fish pond $AB$, Xiao Kai took points $C$, $D$, and $E$ on the land such that $A$, $C$, $D$ are on the same straight line and $B$, $C$, $E$ are on the same straight line. It was measured that $CD = \\frac{1}{2}AC$ and $CE = \\frac{1}{2}BC$. Xiao Kai measured the length of $DE$ to be 10 meters. What is the length of the fish pond width $AB$ in meters?", -"image_file_name": "7056237", -"image": [ -"math/52916840_416.png" -], -"solution": "\\textbf{Solution:} Given that $CD=\\frac{1}{2}AC, CE=\\frac{1}{2}BC$,\\\\\nit follows that $\\frac{CD}{AC}=\\frac{CE}{BC}=\\frac{1}{2}$,\\\\\nand since $\\angle DCE=\\angle ACB$,\\\\\nit implies $\\triangle DCE\\sim \\triangle ACB$,\\\\\nhence $\\frac{ED}{AB}=\\frac{CD}{AC}=\\frac{1}{2}$.\\\\\nGiven $ED=10\\text{m}$,\\\\\ntherefore $AB=\\boxed{20\\text{m}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52872013": { -"question": "As shown in the figure, in the equilateral $\\triangle ABC$, $AB=4$, and $D$ and $P$ are points on the sides $BC$ and $AC$, respectively, with $BP=1$ and $\\angle APD=60^\\circ$. What is the length of $AD$?", -"image_file_name": "7056237", -"image": [ -"math/52872013_425.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore \\angle B=\\angle C=60^\\circ$,\\\\\nIn $\\triangle ABP$, $\\angle B+\\angle APB+\\angle BAP=180^\\circ$,\\\\\n$\\therefore \\angle BAP+\\angle APB=120^\\circ$,\\\\\n$\\because \\angle APB+\\angle CPD=180^\\circ-\\angle APD=120^\\circ$,\\\\\n$\\therefore \\angle BAP=\\angle CPD$,\\\\\n$\\therefore \\triangle ABP\\sim \\triangle PCD$,\\\\\n$\\therefore \\frac{AB}{PC}=\\frac{BP}{CD}$, which gives $\\frac{4}{4-1}=\\frac{1}{CD}$,\\\\\n$\\therefore CD=\\frac{3}{4}$,\\\\\n$\\therefore AD=AC-CD=\\boxed{\\frac{13}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52866412": { -"question": "Given: As shown in the figure, in $\\triangle ABC$, $AB=4$, $BC=8$. $D$ is a point on side $BC$, and $\\angle BDA = \\angle BAC$. Find the length of $BD$.", -"image_file_name": "7056237", -"image": [ -"math/52866412_436.png" -], -"solution": "\\textbf{Solution:} In $\\triangle BDA$ and $\\triangle BAC$,\\\\\n$\\angle B=\\angle B$, $\\angle BDA=\\angle BAC$,\\\\\n$\\therefore \\triangle BDA\\sim \\triangle BAC$,\\\\\n$\\therefore \\frac{AB}{BC}=\\frac{BD}{AB}$,\\\\\n$\\because AB=4$, $BC=8$,\\\\\n$\\therefore \\frac{4}{8}=\\frac{BD}{4}$,\\\\\n$\\therefore BD=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52866377": { -"question": "As shown in the figure: Point D is on the side AB of $\\triangle ABC$, connect CD, $\\angle 1 = \\angle B$, $AD = 4$, $AC = 6$, find the length of AB.", -"image_file_name": "7056237", -"image": [ -"math/52866377_440.png" -], -"solution": "Solution: Since $\\angle 1 = \\angle B$, and $\\angle A = \\angle A$,\\\\\n$\\therefore$ $\\triangle ACD \\sim \\triangle ABC$,\\\\\n$\\therefore$ $\\frac{AD}{AC} = \\frac{AC}{AB}$,\\\\\n$\\therefore$ $\\frac{4}{6} = \\frac{6}{AB}$,\\\\\n$\\therefore$ AB $= \\boxed{9}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52827684": { -"question": "As shown in the figure, $AB \\parallel PQ$, $AB = 80 \\, \\text{m}$, $PQ = 100 \\, \\text{m}$, and points $P$, $A$, $C$ are on the same line, as are points $Q$, $B$, $C$. If the distance between $AB$ and $PQ$ is $20 \\, \\text{m}$, what is the distance from point $C$ to line $PQ$ in meters?", -"image_file_name": "7056237", -"image": [ -"math/52827684_4514.png" -], -"solution": "\\textbf{Solution:} Given that $AB\\parallel PQ$ and $AB=80m$, $PQ=100m$, \\\\\nthus $\\triangle CAB\\sim \\triangle CPQ$, \\\\\nhence, $\\frac{AB}{PQ}=\\frac{CB}{CQ}$, that is $\\frac{CB}{CQ}=\\frac{80}{100}=\\frac{4}{5}$, \\\\\nas shown in the figure, draw a line through point $C$ perpendicular to the extension of $PQ$, with the foot at point $D$, intersecting the extension of $AB$ at point $E$, \\\\\nsince the distance between $AB$ and $PQ$ is $20m$, that is $DE=20m$, and according to the drawing, $CE\\perp AB$, $CE\\perp PD$, $AB\\parallel PQ$, thus $BE\\parallel PD$, \\\\\ntherefore $\\triangle CBE\\sim \\triangle CQD$, \\\\\ntherefore $\\frac{CB}{CQ}=\\frac{CE}{CD}=\\frac{4}{5}$, \\\\\nsince $CD=CE+ED=CE+20$, \\\\\nthus $\\frac{CE}{CE+20}=\\frac{4}{5}$, \\\\\ntherefore $CE=80$, then $CD=20+80=\\boxed{100m}$, which means the distance from point $C$ to line $PQ$ is $100m$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52793606": { -"question": "As shown in the figure, $D$ is a point on side $BC$ of $\\triangle ABC$, with $\\angle CAD = \\angle B$. Given $AD=4$, $AB=8$, $AC=6$, what is the length of $DC$?", -"image_file_name": "7056237", -"image": [ -"math/52793606_468.png" -], -"solution": "Solution: In $\\triangle ADC$ and $\\triangle BAC$, we have $\\left\\{\\begin{array}{l}\n\\angle CAD=\\angle B \\\\\n\\angle C=\\angle C\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle ADC\\sim \\triangle BAC$,\\\\\n$\\therefore \\frac{AD}{AB}=\\frac{DC}{AC}$,\\\\\n$\\because AD=4$, $AB=8$, $AC=6$,\\\\\n$\\therefore \\frac{4}{8}=\\frac{DC}{6}$,\\\\\nSolving for $DC$, we find $DC=\\boxed{3}$,\\\\\nTherefore, the length of $DC$ is 3.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52796970": { -"question": "As shown in the figure, Xiaoxin stands under the light, casting a shadow $AB=2.4\\,m$ on the ground. When she squats down, the shadow becomes $AC=1.05\\,m$. Given that Xiaoming's height $AD=1.6\\,m$ and the height while squatting is half the standing height, what is the height of the lamp above the ground $PH$?", -"image_file_name": "7056237", -"image": [ -"math/52796970_474.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\n\n$\\because$ AD $\\parallel$ PH, $\\therefore \\triangle ADB \\sim \\triangle HPB$; $\\triangle AMC \\sim \\triangle HPC$ (M is the midpoint of AD),\n\n$\\therefore$ AB : HB = AD : PH, AC : AM = HC : PH, that is $2.4 : (2.4 + AH) = 1.6 : PH$, $1.05 : 0.8 = (1.05 + HA) : PH$,\n\nSolving, we get: $AH = 8.4$, $PH = \\boxed{7.2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51434278": { -"question": "As shown in the figure, it is known that the length of line segment $AF$ is $13cm$, and points $B$, $C$, $D$, $E$ are sequentially on $AF$, with $AB=BC=CD$. Point $E$ is the midpoint of $DF$, and $CE=5cm$. Find the length of $BE$.", -"image_file_name": "7043711", -"image": [ -"math/51434278_4012.png" -], -"solution": "\\textbf{Solution:} Let $AB=BC=CD=x\\, \\text{cm}$, thus $BD=2x\\, \\text{cm}$,\\\\\nsince $AF$ is $13\\, \\text{cm}$ long,\\\\\ntherefore $DF=13-3x$,\\\\\nsince $E$ is the midpoint of $DF$,\\\\\ntherefore $DE=\\frac{1}{2}(13-3x)$,\\\\\nsince $CE=5$,\\\\\ntherefore $x+\\frac{1}{2}(13-3x)=5$,\\\\\ntherefore $x=3$,\\\\\ntherefore $BC=3$,\\\\\ntherefore $BE=BC+CE=\\boxed{8}\\, (\\text{cm})$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52795772": { -"question": "Given that $C$ is the midpoint of the segment $AB$, and $D$ is on the segment $CB$, with $DA=6$, $DB=4$, find the length of $CD$.", -"image_file_name": "7043711", -"image": [ -"math/52795772_410.png" -], -"solution": "\\textbf{Solution:} Since $DA=6$ and $DB=4$, \\\\\n$\\therefore$ $AB=10$, \\\\\nSince $C$ is the midpoint of line segment $AB$, \\\\\n$\\therefore$ $AC=5$, \\\\\nSince $DA=6$, \\\\\n$\\therefore$ $CD=\\boxed{1}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52796090": { -"question": "As shown in the figure, it is known that $OC$ is a ray inside $\\angle AOB$, $OD$ is the angle bisector of $\\angle AOB$, the ratio of the degrees of $\\angle AOC$ to $\\angle BOC$ is $3:2$, and $\\angle DOC=12^\\circ$. What is the degree measure of $\\angle AOB$?", -"image_file_name": "7043711", -"image": [ -"math/52796090_4210.png" -], -"solution": "\\textbf{Solution:} Solution 1,\\\\\n$\\because \\angle AOC : \\angle BOC = 3 : 2$,\\\\\n$\\therefore$ let $\\angle AOC = (3x)^\\circ$, $\\angle BOC = (2x)^\\circ$,\\\\\n$\\therefore \\angle AOB = \\angle AOC + \\angle BOC = (5x)^\\circ$,\\\\\n$\\therefore OD$ bisects $\\angle AOB$,\\\\\n$\\therefore \\angle AOD = (2.5x)^\\circ$,\\\\\n$\\because \\angle COD = 12^\\circ$ and $\\angle COD = \\angle AOC - \\angle AOD$,\\\\\n$\\therefore 3x - 2.5x = 12$,\\\\\nSolving for $x$ gives $x = 24$,\\\\\n$\\therefore \\angle AOB = 5 \\times 24^\\circ = \\boxed{120^\\circ}$.\\\\\nSolution 2,\\\\\n$\\because \\angle AOC : \\angle BOC = 3 : 2$,\\\\\n$\\therefore \\angle AOC = 2\\angle BOC$,\\\\\n$\\because \\angle AOB = \\angle AOC + \\angle BOC$,\\\\\n$\\therefore \\angle AOB = \\angle BOC$,\\\\\n$\\because OD$ bisects $\\angle AOB$,\\\\\n$\\therefore \\angle AOD = \\angle AOB = \\angle BOC$,\\\\\n$\\because \\angle COD = \\angle AOC - \\angle AOD$,\\\\\n$\\therefore \\angle COD = \\angle BOC - \\angle BOC = \\angle BOC$,\\\\\ni.e., $\\angle BOC = 4\\angle COD$,\\\\\n$\\because \\angle COD = 12^\\circ$,\\\\\n$\\therefore \\angle BOC = 48^\\circ$,\\\\\n$\\therefore \\angle AOB = \\angle BOC = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52795906": { -"question": "As shown in the figure, it is known that point C is a point on line segment AB, with $AC=12\\, \\text{cm}$ and $CB=\\frac{2}{3}AC$. D is the midpoint of AB. Find the length of DC.", -"image_file_name": "7043711", -"image": [ -"math/52795906_431.png" -], -"solution": "Solution:\\\\\nSince $AC=12$\\\\\nThen $CB=\\frac{2}{3}AC=\\frac{2}{3}\\times 12=8$\\\\\nThen $AB=AC+CB=12+8=20$\\\\\nAlso, since $D$ is the midpoint of $AB$\\\\\nThen $DB=\\frac{1}{2}AB=\\frac{1}{2}\\times 20=10$\\\\\nTherefore $DC=DB-CB=10-8=\\boxed{2}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51284638": { -"question": "As shown in the figure: It is known that $O$ is a point on line $CD$, $OA$ bisects $\\angle BOC$, $\\angle AOC=40^\\circ$, find the degree measure of $\\angle BOD$.", -"image_file_name": "7043711", -"image": [ -"math/51284638_440.png" -], -"solution": "\\textbf{Solution:} Given that $O$ is a point on the line $CD$, and $OA$ bisects $\\angle BOC$, $\\angle AOC=40^\\circ$,\\\\\nthen $\\angle BOC=2\\angle AOC=80^\\circ$,\\\\\nthus $\\angle BOD=180^\\circ-\\angle BOC=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51284639": { -"question": "Given the figure, $AB=16\\text{cm}$, where $C$ is a point on $AB$ and $AC=10\\text{cm}$. Point $D$ is the midpoint of $AC$, and point $E$ is the midpoint of $BC$. Find the lengths of the line segments $DE$ and $AE$.", -"image_file_name": "7043711", -"image": [ -"math/51284639_450.png" -], -"solution": "\\textbf{Solution:} Since $D$ is the midpoint of $AC$, and $AC = 10$ cm,\n\n$\\therefore DC = \\frac{1}{2}AC = 5$ cm.\n\nAlso, since $AB = 16$ cm,\n\n$\\therefore BC = AB - AC = 6$ cm.\n\nSince $E$ is the midpoint of $BC$,\n\n$\\therefore CE = \\frac{1}{2}BC = 3$ cm.\n\nTherefore, $DE = DC + CE = \\boxed{8}$ cm, $AE = AC + CE = \\boxed{13}$ cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51284798": { -"question": "As shown in the figure, it is known that the length of segment $AB=6\\text{cm}$, $C$ is the midpoint of $AB$, point $D$ is on $AC$, and $CD=2AD$, $E$ is the midpoint of $BC$. Find the length of segment $DE$.", -"image_file_name": "7043711", -"image": [ -"math/51284798_460.png" -], -"solution": "\\textbf{Solution:} Given that $AB=6\\text{cm}$, and C is the midpoint of AB,\\\\\nthus $AC=BC=\\frac{1}{2}AB=3\\text{cm}$,\\\\\nalso, since $AB=6\\text{cm}$,\\\\\nthus $AC=BC=3\\text{cm}$,\\\\\nsince E is the midpoint of BC,\\\\\nthus $CE=\\frac{1}{2}BC=1.5\\text{cm}$,\\\\\nsince $CD=2AD$, and $AD+DC=AC$,\\\\\nthus $AD+2AD=AC=3AD$,\\\\\nthus $AD=1\\text{cm}$, $CD=2\\text{cm}$,\\\\\nthus $DE=CD+CE= 2+1.5=\\boxed{3.5cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51284764": { -"question": "As shown in the figure, it is known that $\\angle AOE = \\angle COD$, and the ray $OC$ bisects $\\angle BOE$, $\\angle EOD = 30^\\circ$. What is the degree measure of $\\angle AOD$?", -"image_file_name": "7043711", -"image": [ -"math/51284764_470.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB=180^\\circ$ and $\\angle EOD=30^\\circ$,\\\\\nit follows that $\\angle AOD+\\angle EOC+\\angle COB=150^\\circ$.\\\\\nSince $\\angle AOE=\\angle COD$,\\\\\nit follows that $\\angle AOD=\\angle EOC$.\\\\\nSince $OC$ bisects $\\angle EOB$,\\\\\nit follows that $\\angle EOC=\\angle COB$,\\\\\nhence $\\angle EOC=\\angle COB=\\angle AOD=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53010651": { -"question": "As shown in the figure, it is known that the line segment $AB=3\\text{cm}$. Extend $AB$ to point $C$ such that $BC=2AB$, then extend $BA$ to point $D$ such that $AD=AC$. Find the length of the line segment $BD$.", -"image_file_name": "7043711", -"image": [ -"math/53010651_480.png" -], -"solution": "\\textbf{Solution}: Since $AB = 3\\,cm$, and $BC = 2AB$, \\\\\ntherefore $BC = 2 \\times 3 = 6\\,cm$, and $AC = AB + BC = 3 + 6 = 9\\,cm$, \\\\\nsince $AD = AC = 9\\,cm$, \\\\\ntherefore $BD = AD + AB = 9 + 3 = \\boxed{12}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52890008": { -"question": "As shown in the figure, six rays OA, OB, OC, OD, OE, and OF are drawn from point O, and $\\angle AOB=90^\\circ$, OF bisects $\\angle BOC$, OE bisects $\\angle AOD$. If $\\angle EOF=170^\\circ$, what is the degree measure of $\\angle COD$?", -"image_file_name": "7043711", -"image": [ -"math/52890008_490.png" -], -"solution": "\\textbf{Solution:} Given the problem, we have \\\\\n\\(\\because \\angle AOB=90^\\circ\\), \\(\\angle EOF=170^\\circ\\), \\\\\n\\(\\therefore \\angle AOE + \\angle FOB = 360^\\circ - 90^\\circ - 170^\\circ = 100^\\circ\\). \\\\\n\\(\\because\\) OF bisects \\(\\angle COB\\), OE bisects \\(\\angle AOD\\), \\\\\n\\(\\therefore \\angle COF = \\angle FOB\\), \\(\\angle AOE = \\angle EOD\\). \\\\\n\\(\\therefore \\angle EOD + \\angle COF = 100^\\circ\\). \\\\\n\\(\\therefore \\angle COD = 170^\\circ - 100^\\circ = \\boxed{70^\\circ}\\).", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51481943": { -"question": "As shown in the diagram, $OB$ and $OE$ are two rays within $\\angle AOC$, $OD$ bisects $\\angle AOB$, $\\angle BOE=\\frac{1}{2}\\angle EOC$. Given $\\angle DOE=55^\\circ$ and $\\angle AOC=150^\\circ$, calculate the degree measure of $\\angle EOC$.", -"image_file_name": "7043711", -"image": [ -"math/51481943_508.png" -], -"solution": "\\textbf{Solution:} Let $\\angle BOE = x^\\circ$, then $\\angle DOB = 55^\\circ - x^\\circ$,\\\\\nsince $\\angle BOE = \\frac{1}{2} \\angle EOC$, we have $\\angle EOC = 2x^\\circ$,\\\\\nas $OD$ bisects $\\angle AOB$, we get $\\angle AOB = 2\\angle DOB$,\\\\\nthus $2x + x + 2(55 - x) = 150$,\\\\\nsolving the equation gives $x = 40$,\\\\\nhence $\\angle EOC = 2x = \\boxed{80^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52251792": { -"question": "As shown in the figure, $O$ is a point on the line $CE$. With $O$ as the vertex, we make $ \\angle AOB=90^\\circ$, and $OA$, $OB$ are on opposite sides of the line $CE$, $ \\angle AOC=50^\\circ$, and $OB$ bisects $ \\angle COD$. Find the degree measure of $ \\angle DOE$?", -"image_file_name": "7043711", -"image": [ -"math/52251792_514.png" -], -"solution": "\\textbf{Solution:} \n\nGiven that, $\\angle BOC = \\angle AOB - \\angle AOC = 90^\\circ - 50^\\circ = 40^\\circ$,\\\\\nsince OB bisects $\\angle COD$,\\\\\nit follows that $\\angle COD = 2\\angle BOC = 80^\\circ$,\\\\\nthus, $\\angle DOE = 180^\\circ - \\angle COD = \\boxed{100^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51457634": { -"question": "As shown in the figure, it is given that $\\angle AOC = 2\\angle BOC$, $OD$ bisects $\\angle AOB$, and $\\angle COD = 20^\\circ$. Find the measure of $\\angle AOB$.", -"image_file_name": "7043711", -"image": [ -"math/51457634_523.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOC = 2\\angle BOC$,\\\\\nand $\\angle AOC + \\angle BOC = \\angle AOB$,\\\\\nit follows that $\\angle AOB = 3\\angle BOC$,\\\\\nSince $OD$ bisects $\\angle AOB$,\\\\\nwe have $\\angle AOB = 2\\angle BOD$,\\\\\nthus, $\\angle BOC = \\frac{2}{3}\\angle BOD$,\\\\\nGiven $\\angle BOD = \\angle BOC + \\angle COD$,\\\\\nit follows that $\\angle COD = \\frac{1}{3}\\angle BOD$,\\\\\nGiven $\\angle COD = 20^\\circ$,\\\\\nit follows that $\\angle BOD = 60^\\circ$,\\\\\ntherefore, $\\angle AOB = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52580669": { -"question": "As shown in the diagram, it is known that $\\angle AOB=90^\\circ$, $\\angle BOC=30^\\circ$, $OM$ bisects $\\angle AOC$, and $ON$ bisects $\\angle BOC$. What is the measure of $\\angle MON$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/52580669_530.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOB = 90^\\circ$ and $\\angle BOC = 30^\\circ$,\\\\\nit follows that $\\angle AOC = 90^\\circ + 30^\\circ = 120^\\circ$,\\\\\nsince OM bisects $\\angle AOC$,\\\\\nwe have $\\angle AOM = \\frac{1}{2} \\angle AOC = \\frac{1}{2} (\\angle AOB + \\angle BOC) = \\frac{1}{2} \\times 120^\\circ = 60^\\circ$,\\\\\nsince ON bisects $\\angle BOC$,\\\\\nit follows that $\\angle CON = \\frac{1}{2} \\angle BOC = \\frac{1}{2} \\times 30^\\circ = 15^\\circ$,\\\\\nthus, $\\angle MON = \\angle AOC - \\angle AOM - \\angle CON = 120^\\circ - 60^\\circ - 15^\\circ = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52580413": { -"question": "As shown in the figure, it is known that point $M$ is the midpoint of line segment $AB$, point $N$ is on line segment $MB$, $AM=\\frac{5}{3}MN$, if $MN=3\\,cm$, find the lengths of line segments $AB$ and $NB$.", -"image_file_name": "7043711", -"image": [ -"math/52580413_541.png" -], -"solution": "\\textbf{Solution:} Given that $AM= \\frac{5}{3}MN$, and $MN=3\\,\\text{cm}$\\\\\n$\\therefore AM=5\\,\\text{cm}$\\\\\nFurthermore, since point $M$ is the midpoint of line segment $AB$\\\\\n$\\therefore AM=BM= \\frac{1}{2}AB$,\\\\\n$\\therefore AB=\\boxed{10\\,\\text{cm}}$\\\\\nAlso, since $NB=AB-AM-MN$,\\\\\n$\\therefore NB=\\boxed{2\\,\\text{cm}}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51212743": { -"question": "As shown in the figure, it is known that $AE$ is the bisector of $\\angle BAC$, and $ED\\parallel CA$. Given that $BE=2$, $EC=3$, and $AC=4$, what is the length of $AD$?", -"image_file_name": "7056495", -"image": [ -"math/51212743_610.png" -], -"solution": "\\textbf{Solution:} Given that \\\\\n$\\because ED\\parallel CA$, \\\\\n$\\therefore \\triangle BED\\sim \\triangle BCA$, $\\angle DEA=\\angle EAC$, \\\\\n$\\therefore \\frac{BE}{BC}=\\frac{ED}{CA}$, \\\\\n$\\because BE=2$, $EC=3$, $AC=4$, \\\\\n$\\therefore BC=5$, \\\\\n$\\therefore ED=\\frac{BE\\cdot CA}{BC}=\\frac{8}{5}$, \\\\\n$\\because AE$ bisects $\\angle BAC$, \\\\\n$\\therefore \\angle EAC=\\angle DAE$, \\\\\n$\\therefore \\angle DAE=\\angle DEA$, \\\\\n$\\therefore \\triangle ADE$ is an isosceles triangle, \\\\\n$\\therefore ED=AD=\\boxed{\\frac{8}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51213332": { -"question": "As shown in the figure, in $ \\triangle ABC$, $AD$ is the median to side $BC$, and point $E$ is on $AD$ with $ \\frac{DE}{AE}=\\frac{1}{3}$, ray $CE$ intersects $AB$ at point $F$. Find the value of $ \\frac{AF}{FB}$.", -"image_file_name": "7056495", -"image": [ -"math/51213332_638.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $DM\\parallel AB$ through $D$, intersecting $CF$ at $M$,\\\\\n$\\therefore \\triangle DME\\sim \\triangle AFE$, $\\triangle CDM\\sim \\triangle CBF$,\\\\\n$\\therefore \\frac{DE}{AE}=\\frac{DM}{AF}=\\frac{1}{3}$, $\\frac{CD}{CB}=\\frac{DM}{BF}$,\\\\\n$\\because D$ is the midpoint of $BC$, $\\therefore \\frac{CD}{CB}=\\frac{DM}{BF}=\\frac{1}{2}$,\\\\\n$\\therefore \\frac{AF}{BF}=\\boxed{\\frac{3}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368299": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ is the midpoint of $BC$, and $DF\\perp AE$ with the foot of the perpendicular being $F$. If $AB=12$ and $BC=10$, find the length of $DF$.", -"image_file_name": "7056495", -"image": [ -"math/51368299_640.png" -], -"solution": "\\textbf{Solution:}\n\nSince quadrilateral ABCD is a rectangle, \\\\\nit follows that $\\angle B = \\angle BAD = 90^\\circ$, $\\angle BAE + \\angle DAF = 90^\\circ$, \\\\\nsince DF$\\perp$AE, \\\\\nit follows that $\\angle AFD = 90^\\circ$, $\\angle FAD + \\angle ADF = 90^\\circ$, \\\\\nthus, $\\angle BAE = \\angle FDA$, \\\\\ntherefore, $\\triangle ABE \\sim \\triangle DFA$, \\\\\ntherefore, $\\frac{DF}{AB} = \\frac{DA}{AE}$, \\\\\nGiven that, AD = BC = 10, AB = 12, \\\\\nsince E is the midpoint of BC, \\\\\nit follows that BE = 5, \\\\\nIn $\\triangle ABE$, \\\\\n$AE = \\sqrt{AB^2 + BE^2} = \\sqrt{12^2 + 5^2} = 13$, \\\\\ntherefore, $\\frac{DF}{12} = \\frac{10}{13}$, \\\\\ntherefore, $DF = \\boxed{\\frac{120}{13}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51367526": { -"question": "As shown in the figure, points D and E are on sides AC and AB of $\\triangle ABC$, respectively, with $AE=6$, $AC=10$, $BC=15$, and $\\frac{AD}{AB}=\\frac{3}{5}$. Find the length of DE.", -"image_file_name": "7056495", -"image": [ -"math/51367526_651.png" -], -"solution": "\\textbf{Solution:} Since $AE:AC = 6:10 = 3:5$, and $AD:AB = 3:5$,\\\\\nit follows that $\\frac{AD}{AB} = \\frac{AE}{AC}$.\\\\\nAlso, $\\angle A = \\angle A$,\\\\\ntherefore $\\triangle ADE \\sim \\triangle ABC$,\\\\\nthus $\\frac{DE}{BC} = \\frac{AE}{AC} = \\frac{3}{5}$.\\\\\nGiven that $BC = 15$,\\\\\nit follows that $DE = \\frac{3}{5} \\times 15 = \\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322393": { -"question": "As shown in the figure, $D$ and $E$ are points on $AC$ and $AB$ respectively, $\\triangle ADE \\sim \\triangle ABC$, and $DE=8$, $BC=24$, $CD=18$, $AD=6$. Find the lengths of $AE$ and $BE$.", -"image_file_name": "7056495", -"image": [ -"math/51322393_660.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ADE \\sim \\triangle ABC$,\\\\\nwe have $\\frac{AE}{AC}=\\frac{AD}{AB}=\\frac{DE}{BC}$,\\\\\nSince $DE=8$, $BC=24$, $CD=18$, $AD=6$,\\\\\nthus $AC=AD+CD=24$,\\\\\nthus $AE=\\boxed{8}$, $AB=18$,\\\\\nthus $BE=AB-AE=\\boxed{10}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51317428": { -"question": "In the rectangle $ABCD$, points $E$ and $F$ are located on sides $AD$ and $DC$ respectively. Given that $\\triangle ABE \\sim \\triangle DEF$, $AB=6$, $AE=9$, and $DE=2$, find the length of $EF$.", -"image_file_name": "7056495", -"image": [ -"math/51317428_670.jpg" -], -"solution": "\\textbf{Solution}: Given $\\triangle ABE \\sim \\triangle DEF$, with AB=6, AE=9, and DE=2,\\\\\nthen $\\frac{AB}{DE}=\\frac{AE}{DF}$, which means $\\frac{6}{2}=\\frac{9}{DF}$, thus solving for DF gives DF=3,\\\\\nsince quadrilateral ABCD is a rectangle,\\\\\nthen $\\angle D=90^\\circ$,\\\\\nby the Pythagorean theorem,\\\\\n$EF=\\sqrt{DE^{2}+DF^{2}}=\\sqrt{2^{2}+3^{2}}=\\boxed{\\sqrt{13}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55190284": { -"question": "As shown in the figure, $\\angle AOC = 30^\\circ$, $\\angle BOC = 80^\\circ$, and $OC$ bisects $\\angle AOD$. What is the measure of $\\angle BOD$?", -"image_file_name": "7038193", -"image": [ -"math/55190284_690.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC=30^\\circ$ and OC bisects $\\angle AOD$,\\\\\nit follows that $\\angle COD=\\angle AOC=30^\\circ$,\\\\\nSince $\\angle BOC=80^\\circ$,\\\\\nit follows that $\\angle BOD=\\angle BOC-\\angle COD=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55190266": { -"question": "As shown in the figure, the lines AB and CD intersect at point O, $\\angle 1 = 35^\\circ$, $\\angle 2 = 75^\\circ$. What is the measure of $\\angle EOB$ in degrees?", -"image_file_name": "7038193", -"image": [ -"math/55190266_700.png" -], -"solution": "\\textbf{Solution:} Given that $\\because$ $\\angle 1=35^\\circ$,\\\\\n$\\therefore$ $\\angle BOD=\\angle 1=35^\\circ$,\\\\\n$\\therefore$ $\\angle EOB=\\angle 2+\\angle BOD=75^\\circ+35^\\circ=\\boxed{110^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55190300": { -"question": "As shown in the figure, the straight lines AB and CD intersect at point O, with $\\angle 1: \\angle 2 = 2:3$. Find the measure of $\\angle BOD$ in degrees?", -"image_file_name": "7038193", -"image": [ -"math/55190300_710.png" -], -"solution": "\\textbf{Solution:} Let us assume $\\because$ $\\angle 1\\colon \\angle 2=2\\colon 3$,\\\\\n$\\therefore$ let $\\angle 1=2x$, $\\angle 2=3x$,\\\\\n$\\because$ $\\angle 1+\\angle 2=180^\\circ$,\\\\\n$\\therefore$ $2x+3x=180^\\circ$,\\\\\n$\\therefore$ $x=36^\\circ$,\\\\\n$\\therefore$ $\\angle 1=72^\\circ$,\\\\\n$\\therefore$ $\\angle BOD=\\angle 1=\\boxed{72^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55190302": { -"question": "As shown in the figure, $C$ is a point on line segment $AB$, and $D$ and $E$ are the midpoints of line segments $AC$ and $BC$, respectively. If $AB = 10$ and $AD = 2$, find the length of $CE$.", -"image_file_name": "7038193", -"image": [ -"math/55190302_720.png" -], -"solution": "\\textbf{Solution:} Since $D$ is the midpoint of line segment $AC$,\\\\\n$AD=2$,\\\\\ntherefore $AC=2AD=4$,\\\\\nsince $AB=10$,\\\\\ntherefore $BC=10-4=6$,\\\\\nsince $E$ is the midpoint of line segment $BC$,\\\\\ntherefore $CE=\\frac{1}{2}BC=\\boxed{3}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55192431": { -"question": "As shown in the figure, it is known that $O$ is a point on line $AC$, $OB$ is a ray, $OD$ bisects $\\angle AOB$, $OE$ is within $\\angle BOC$, $2\\angle BOE = \\angle EOC$, $\\angle DOE = 70^\\circ$, find the degree measure of $\\angle EOC$.", -"image_file_name": "7038193", -"image": [ -"math/55192431_750.png" -], -"solution": "\\textbf{Solution:} Let $\\angle AOB = x^\\circ$, so $\\angle BOC = (180-x)^\\circ$.\\\\\nSince OD bisects $\\angle AOB$,\\\\\nit follows that $\\angle DOB= \\frac{1}{2}\\angle AOB$,\\\\\nthus $\\angle DOB= \\frac{1}{2}x^\\circ$\\\\\nSince $2\\angle BOE=\\angle EOC$,\\\\\nit follows that $\\angle BOE= \\frac{1}{3}\\angle BOC= \\frac{1}{3}(180-x)^\\circ$.\\\\\nSince $\\angle DOE=\\angle DOB+\\angle BOE=70^\\circ$,\\\\\nit follows that $\\frac{1}{2}x+ \\frac{1}{3} (180-x)=70$,\\\\\nSolving this, we find $x=60$,\\\\\nTherefore $\\angle BOC= 180^\\circ-60^\\circ= 120^\\circ$,\\\\\nTherefore $\\angle EOC= \\frac{2}{3}\\angle BOC= \\frac{2}{3}\\times120^\\circ= \\boxed{80^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55192320": { -"question": "As shown in the figure, the line segment AB is divided into three parts in the ratio 2:4:7 by points C and D. Points M and N are the midpoints of AC and DB, respectively. If MN equals 17 cm, what is the length of BD in cm?", -"image_file_name": "7038193", -"image": [ -"math/55192320_760.png" -], -"solution": "\\textbf{Solution:} Since segment AB is divided into three parts with ratios 2:4:7 by points C and D,\\\\\nlet AC = 2x, CD = 4x, and BD = 7x.\\\\\nSince M and N are the midpoints of segments AC and DB, respectively,\\\\\nthen CM = $\\frac{1}{2}$AC = x and DN = $\\frac{1}{2}$BD = $\\frac{7}{2}$x.\\\\\nGiven MN = 17 cm, then x + 4x + $\\frac{7}{2}$x = 17,\\\\\nthus x = 2,\\\\\ntherefore BD = \\boxed{14} cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55175882": { -"question": "As shown in the figure, $BC=6\\,cm$, $BD=7\\,cm$, $D$ is the midpoint of $AC$, find the length of $AB$.", -"image_file_name": "7038193", -"image": [ -"math/55175882_775.png" -], -"solution": "\\textbf{Solution:} Since $BC=6\\,\\text{cm}$ and $BD=7\\,\\text{cm}$,\\\\\n$\\therefore CD=BD-BC=1\\,\\text{cm}$,\\\\\nSince point $D$ is the midpoint of $AC$,\\\\\n$\\therefore AD=CD=1\\,\\text{cm}$,\\\\\n$\\therefore AB=AD+BD=1+7=\\boxed{8}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"47362705": { -"question": "Given, as shown in the figure, $AB \\parallel CD$, $\\angle ABE = 80^\\circ$, $EF$ bisects $\\angle BEC$, $EF \\perp EG$, find the degree measure of $\\angle DEG$.", -"image_file_name": "7038193", -"image": [ -"math/47362705_870.png" -], -"solution": "\\textbf{Solution:} Given $AB\\parallel CD$, $\\angle ABE=80^\\circ$,\\\\\nthus, $\\angle BEC=180^\\circ-\\angle ABE=100^\\circ$,\\\\\nsince EF bisects $\\angle BEC$,\\\\\nthus, $\\angle CEF= \\frac{1}{2} \\angle BEC=50^\\circ$,\\\\\nsince $EF\\perp EG$,\\\\\nthus, $\\angle FEG=90^\\circ$,\\\\\nhence, $\\angle DEG=180^\\circ-\\angle CEF-\\angle FEG=\\boxed{40^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404083": { -"question": "As shown in the figure, OD is the bisector of $\\angle BOC$, OE is the bisector of $\\angle AOC$, and $\\angle AOB : \\angle BOC = 3 : 2$. If $\\angle BOE = 13^\\circ$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7038193", -"image": [ -"math/53404083_880.png" -], -"solution": "\\textbf{Solution:} Let $\\angle AOB=3x$ and $\\angle BOC=2x$.\\\\\nThen, $\\angle AOC=\\angle AOB+\\angle BOC=5x$.\\\\\nSince OE is the bisector of $\\angle AOC$,\\\\\n$\\therefore \\angle AOE= \\frac{1}{2}\\angle AOC= \\frac{5}{2}x$,\\\\\n$\\therefore \\angle BOE=\\angle AOB-\\angle AOE=3x- \\frac{5}{2}x= \\frac{1}{2}x$,\\\\\nSince $\\angle BOE=13^\\circ$,\\\\\n$\\therefore \\frac{1}{2}x=13^\\circ$,\\\\\nSolving, we find: $x=26^\\circ$,\\\\\nSince OD is the bisector of $\\angle BOC$,\\\\\n$\\therefore \\angle BOD= \\frac{1}{2}\\angle BOC=x=26^\\circ$,\\\\\n$\\therefore \\angle DOE=\\angle DOB+\\angle BOE=26^\\circ+13^\\circ=\\boxed{39^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51863571": { -"question": "As shown in the figure, the two diagonals of rectangle ABCD intersect at point O, where $ \\angle AOB=60^\\circ$ and $ AB=6$. What is the length of the diagonals of the rectangle?", -"image_file_name": "7054442", -"image": [ -"math/51863571_612.png" -], -"solution": "\\textbf{Solution:} Given rectangle ABCD, \\\\\nit follows that AC = BD, OA = OC, OD = OB, \\\\\ntherefore, OA = OB, \\\\\nsince $\\angle AOB = 60^\\circ$, \\\\\nhence $\\triangle AOB$ is an equilateral triangle, \\\\\ntherefore OA = OB = AB = 6cm, \\\\\nhence AC = BD = 2$\\times$6cm = \\boxed{12cm}, \\\\", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53360000": { -"question": "As shown in the figure, in rectangle $ABCD$, where $AB=3$ and $AD=4$, two lines passing through points $A$ and $C$ intersect at point $E$. If $AE=13$ and $CE=12$, find the area of the shaded region in the figure.", -"image_file_name": "7054442", -"image": [ -"math/53360000_624.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a rectangle, with $AB=3$ and $AD=4$,\\\\\nit follows that $CD=AB=3$ and $\\angle D=90^\\circ$,\\\\\nthus, in right triangle $ACD$, $AC=\\sqrt{AD^2+CD^2}=\\sqrt{4^2+3^2}=5$,\\\\\nin triangle $ACE$, where $AE=13$, $CE=12$, and $AC=5$,\\\\\nsince $AC^2+CE^2=5^2+12^2=169$ and $AE^2=13^2=169$,\\\\\nit follows that $AC^2+CE^2=AE^2$,\\\\\nthus, $\\angle ACE=90^\\circ$,\\\\\nhence, the area of the shaded region, ${S}_{\\text{shaded}}={S}_{\\triangle ACE}-{S}_{\\triangle ACD}$\\\\\n$=\\frac{1}{2}AC\\cdot CE-\\frac{1}{2}AD\\cdot CD$\\\\\n$=\\frac{1}{2}\\times 5\\times 12-\\frac{1}{2}\\times 4\\times 3$\\\\\n$=30-6$\\\\\n$=\\boxed{24}$.\\\\\nTherefore, the area of the shaded region in the figure is $24$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53183161": { -"question": "As shown in the figure, in the rectangular paper ABCD, AB = 4, BC = 8. Now fold the rectangular paper ABCD along the diagonal BD, so that point C coincides with point \\(C'\\). Find the length of AF.", -"image_file_name": "7054442", -"image": [ -"math/53183161_630.png" -], -"solution": "\\textbf{Solution:} Given that ABCD is a rectangle, \\\\\nhence AB-CD = 4, BC = AD = 8, $\\angle A = \\angle ABC = \\angle C = \\angle CDA = 90^\\circ$, \\\\\nafter folding: CD = C$^{\\prime}$D = 4, BC = BC$^{\\prime}$ = 8, $\\angle CBD = \\angle C^{\\prime}BD$, \\\\\nsince $\\angle CBD = \\angle ADB$, \\\\\ntherefore $\\angle ADB = \\angle C^{\\prime}BD$, \\\\\nresulting in FB = FD, \\\\\nlet AF = x, then FC$^{\\prime}$ = x, and FB = FD = 8-x, \\\\\nin the right triangle $\\triangle ABF$, by Pythagoras theorem, \\\\\n$4^2 + x^2 = (8-x)^2$, \\\\\nsolving this, x = $\\boxed{3}$, which means AF = 3.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53183097": { -"question": "As shown in the figure, if two small squares with areas of $15\\text{cm}^2$ and $24\\text{cm}^2$ are cut from a large square, find the area of the remaining part.", -"image_file_name": "7054442", -"image": [ -"math/53183097_642.png" -], -"solution": "\\textbf{Solution:} Because the areas of the two small squares are $15\\text{cm}^2$ and $24\\text{cm}^2$ respectively,\\\\\nhence their side lengths are $\\sqrt{15}$cm and $\\sqrt{24}=2\\sqrt{6}$cm respectively,\\\\\ntherefore, the side length of the large square is $\\sqrt{15}+2\\sqrt{6}$,\\\\\ntherefore, the area of the remaining part (i.e., the shaded area) is $(\\sqrt{15}+2\\sqrt{6})^2−15−24$\\\\\n$=15+2\\times \\sqrt{15}\\times 2\\sqrt{6}+24−15−24$\\\\\n$=4\\sqrt{9\\times 10}$\\\\\n$=12\\sqrt{10}\\text{cm}^2$,\\\\\nthus, the area of the remaining part is $\\boxed{12\\sqrt{10}\\text{cm}^2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53182928": { -"question": "As shown in the figure, the square $ABCD$ and the equilateral triangle $\\triangle CDE$ share the common side $CD$. Connect $AE$ and $AC$. What is the measure of $\\angle EAC$ in degrees?", -"image_file_name": "7054442", -"image": [ -"math/53182928_651.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a square, \\\\\nit follows that $DA=DC$, $\\angle ADC=90^\\circ$, and $\\angle CAD=45^\\circ$, \\\\\nsince $\\triangle CDE$ is an equilateral triangle, \\\\\nit follows that $DE=DC$, $\\angle CDE=60^\\circ$, \\\\\ntherefore, $DA=DE$, $\\angle ADE=90^\\circ+60^\\circ=150^\\circ$, \\\\\nthus, $\\triangle ADE$ is an isosceles triangle, \\\\\ntherefore, $\\angle DAE=\\angle DEA$, \\\\\nhence, $\\angle DAE = \\frac{1}{2}(180^\\circ-150^\\circ)=15^\\circ$, \\\\\ntherefore, $\\angle EAC=\\angle CAD - \\angle DAE = 45^\\circ - 15^\\circ = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52691272": { -"question": "As shown in the figure, rectangle $ABCD$ has side $AB$ on the x-axis, with points $A$ and $B$ being symmetrically positioned about the origin. The coordinates of point $D$ are $(-2, 3)$. Find the analytical expression of line $AC$.", -"image_file_name": "7052940", -"image": [ -"math/52691272_504.png" -], -"solution": "\\textbf{Solution:} Since the side $AB$ of rectangle $ABCD$ lies on the x-axis, and points A, B are symmetrical about the origin, with point D's coordinates being $\\left(-2, 3\\right)$, \\\\\n$\\therefore A\\left(-2, 0\\right), B\\left(2, 0\\right), AB=CD, AB\\parallel CD, \\angle ABC=\\angle BCD=\\angle DAB=90^\\circ,$ \\\\\n$\\therefore C\\left(2, 3\\right),$ \\\\\nLet $AC$ be defined by $y=kx+b,$ \\\\\n$\\therefore \\begin{cases}-2k+b=0\\\\ 2k+b=3\\end{cases},$ \\\\\nSolving, we get: $\\begin{cases}k=\\frac{3}{4}\\\\ b=\\frac{3}{2}\\end{cases},$ \\\\\n$\\therefore$The equation of AC is: $\\boxed{y=\\frac{3}{4}x+\\frac{3}{2}}.$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53182647": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $y=kx+b(k\\neq 0)$ intersects the line $y=x$ at point $A(2, a)$ and intersects the y-axis at point $B(0, 6)$. Find the analytical expression of the function corresponding to the line $y=kx+b$.", -"image_file_name": "7052940", -"image": [ -"math/53182647_515.png" -], -"solution": "\\textbf{Solution:} Substituting point A (2, a) into $y=x$, \\\\\nwe get $a=2$, \\\\\n$\\therefore$ A (2, 2), \\\\\nSubstituting points A (2, 2), B (0, 6) into $y=kx+b$, \\\\\nwe obtain $\\begin{cases}2k+b=2\\\\ b=6\\end{cases}$, \\\\\nSolving this, we find $\\begin{cases}k=-2\\\\ b=6\\end{cases}$, \\\\\n$\\therefore$ the equation of the line is $\\boxed{y=-2x+6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52536543": { -"question": "As shown in the figure, the three vertices of $\\triangle ABC$ are all on the coordinate axes of the Cartesian coordinate system, $BC=6$, and the expression for the line containing side $AB$ is $y=x+2$. What is $\\sin\\angle ACB$?", -"image_file_name": "7058470", -"image": [ -"math/52536543_710.png" -], -"solution": "\\textbf{Solution:} Given that the equation of line AB is $y=x+2$,\\\\\nit follows that when $y=0$, $x=-2$, and when $x=0$, $y=2$,\\\\\ntherefore, point A is $(0,2)$ and point B is $(-2,0)$,\\\\\nthus, OA$=2$ and OB$=2$,\\\\\nsince BC$=6$,\\\\\nit follows that OC$=BC-OB=6-2=4$,\\\\\ntherefore, AC$=\\sqrt{OA^2+OC^2}=\\sqrt{2^2+4^2}=2\\sqrt{5}$,\\\\\nhence, $\\sin\\angle ACB=\\frac{OA}{AC}=\\frac{2}{2\\sqrt{5}}=\\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52977191_45": { -"question": "As shown in the figure, it is known that in rectangle $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. Point $E$ is a moving point on side $AB$, and $CE$ intersects $BD$ at point $F$. Connect $OE$. If point $E$ is the midpoint of $AB$, what is the value of $\\frac{OF}{FB}$?", -"image_file_name": "7056088", -"image": [ -"math/52977191_447.png" -], -"solution": "Solution: $\\frac{OF}{FB} = \\boxed{\\frac{1}{2}}$.", -"solution_image": [ -"solution_images/52977191_4415.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977191_46": { -"question": "As shown in the figure, it is known that in rectangle $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$, and point $E$ is a moving point on side $AB$. The line $CE$ intersects $BD$ at point $F$. Connect $OE$. If point $F$ is the midpoint of $OB$, then what is the value of $\\frac{AE}{BE}$?", -"image_file_name": "7056088", -"image": [ -"math/52977191_447.png" -], -"solution": "\\textbf{Solution:} Given the information, it is insufficient to provide a detailed mathematical solution process. Therefore, it is impossible to directly determine the specific value of \\boxed{\\frac{AE}{BE}}.", -"solution_image": [ -"solution_images/52977191_4415.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53102192_69": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, point $D$ is on line $AB$, $DE\\parallel BC$, $BE\\perp AB$. $\\triangle DEB\\sim \\triangle BAC$; If $BE=2$, $AC=3$, and the area of $\\triangle BDE$ is 1, find the area of $\\triangle ABC$.", -"image_file_name": "7056088", -"image": [ -"math/53102192_656.png" -], -"solution": "\\textbf{Solution:} From (1), we can obtain $ \\triangle DEB\\sim \\triangle BAC$,\\\\\n$\\therefore \\frac{S_{\\triangle BDE}}{S_{\\triangle ABC}}=\\left(\\frac{BE}{AC}\\right)^2=\\left(\\frac{2}{3}\\right)^2=\\frac{4}{9}$,\\\\\n$\\because S_{\\triangle BDE}=1$,\\\\\n$\\therefore \\frac{1}{S_{\\triangle ABC}}=\\frac{4}{9}$, solving this we get: $S_{\\triangle ABC}=\\boxed{\\frac{9}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53102205_71": { -"question": "Given $AC$ and $BD$ are diameters of $\\odot O$, connect $AB$, $BC$, and let point $F$ be a point on $OC$ with $CF=2OF$. As shown in the figure, if $BC=6$ and $\\angle BAC=30^\\circ$, find the length of $OF$.", -"image_file_name": "7056088", -"image": [ -"math/53102206_6603.png" -], -"solution": "\\textbf{Solution:} It follows from the construction that $AC$ is the diameter of $\\odot O$,\\\\\n$\\therefore \\angle ABC=90^\\circ$,\\\\\n$\\because \\angle BAC=30^\\circ$,\\\\\n$\\therefore \\angle C=60^\\circ$,\\\\\n$\\because OB=OC$,\\\\\n$\\therefore \\triangle BOC$ is an equilateral triangle,\\\\\n$\\therefore OC=BC=6$,\\\\\n$\\because CF=2OF$,\\\\\n$\\therefore OF=\\frac{1}{3}OC=2$;\\\\\nTherefore, the length of $OF$ is $\\boxed{2}$.", -"solution_image": [ -"solution_images/53102205_663.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53102165_74": { -"question": "As shown in the figure, in rectangle $ABCD$, $P$ is a point on $AB$, and $PB>PC$. Connect $PC$ and fold rectangle $ABCD$ along $PC$, such that point $B$ falls onto ${B}^{\\prime}$. Extend ${B}^{\\prime}C$ to intersect the extension of $AB$ at point $Q$. Given that $AB=10, BC=4$, and $PB=6$, find the length of $BQ$?", -"image_file_name": "7056088", -"image": [ -"math/53102165_6710.png" -], -"solution": "\\textbf{Solution:} Let $BQ=x$, $CQ=y$,\n\nSince $ABCD$ is folded along $PC$, and point $B$ falls onto $B'$, with $BC=4$, $PB=6$,\n\nTherefore, $PB'=PB=6$, $\\angle PB'Q=\\angle PBC=90^\\circ$,\n\nSince $\\angle Q=\\angle Q$,\n\nTherefore, $\\triangle PB'Q \\sim \\triangle CBQ$,\n\nThus, $\\frac{BC}{CQ} = \\frac{PB'}{PQ}$,\n\nTherefore, $\\frac{4}{y}=\\frac{6}{6+x}$,\n\nSolving gives $y=\\frac{2x+12}{3}$,\n\nBy the Pythagorean theorem, we get ${x}^{2}+16={y}^{2}$,\n\nTherefore, ${x}^{2}+16=\\left(\\frac{2x+12}{3}\\right)^{2}$,\n\nSolving gives $x=\\boxed{\\frac{48}{5}}$, $x=0$ (discard),\n\nTherefore, $BQ=\\boxed{\\frac{48}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53102165_75": { -"question": "As shown in the figure, in rectangle $ABCD$, $P$ is a point on side $AB$, and $PB>PC$. Connect $PC$, and fold rectangle $ABCD$ along $PC$, such that point $B$ falls onto $B'$. Extend $B'C$ to intersect the extended line of $AB$ at $Q$, given that $AB=10, BC=4$. If $DP \\perp PC$, find the length of $BQ$.", -"image_file_name": "7056088", -"image": [ -"math/53102165_6710.png" -], -"solution": "\\textbf{Solution:} Let $PB = m$, $PA = n$, then $m + n = 10$,\\\\\nsince $DP \\perp PC$, and rectangle $ABCD$,\\\\\ntherefore $\\angle A = \\angle B = \\angle DPC = 90^\\circ$,\\\\\nsince $\\angle BPC = 90^\\circ - \\angle APD$, $\\angle ADP = 90^\\circ - \\angle APD$,\\\\\ntherefore $\\angle BPC = \\angle ADP$,\\\\\ntherefore $\\triangle BPC \\sim \\triangle ADP$,\\\\\ntherefore $\\frac{BP}{DA} = \\frac{BC}{AP}$,\\\\\ntherefore $\\frac{m}{4} = \\frac{4}{n}$, that is, $mn = 16$,\\\\\ntherefore $(m - n)^{2} = (m + n)^{2} - 4mn = 100 - 64 = 36$,\\\\\ntherefore $m - n = 6$,\\\\\nsince $m + n = 10$,\\\\\ntherefore $m = 8 = PB$.\\\\\nLet $BQ = x$, $CQ = y$,\\\\\nsince $ABCD$ is folded along $PC$, point B falls on ${B}^{\\prime}$, $BC = 4$, $PB = 6$.\\\\\ntherefore $P{B}^{\\prime} = PB = 6$, $\\angle P{B}^{\\prime}Q = \\angle PBC = 90^\\circ$,\\\\\nsince $\\angle Q = \\angle Q$,\\\\\ntherefore $\\triangle P{B}^{\\prime}Q \\sim \\triangle CBQ$,\\\\\ntherefore $\\frac{BC}{CQ} = \\frac{P{B}^{\\prime}}{PQ}$,\\\\\ntherefore $\\frac{4}{y} = \\frac{8}{8 + x}$,\\\\\nsolving gives $y = \\frac{x + 8}{2}$,\\\\\nby Pythagorean theorem, ${x}^{2} + 16 = {y}^{2}$,\\\\\ntherefore ${x}^{2} + 16 = \\left(\\frac{x + 8}{2}\\right)^{2}$,\\\\\nsolving gives $x = \\boxed{\\frac{16}{3}}, x = 0$ (discard $x = 0$).", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53102159_77": { -"question": "As shown in the figure, in quadrilateral $ABCD$, point $E$ is on the extension of line $BA$, lines $EC$ and $BD$ intersect at point $G$, and line $EC$ intersects $AD$ at point $F$. It is known that $EA: AB = 1:2$. What is $EF: EC$?", -"image_file_name": "7056088", -"image": [ -"math/53102159_686.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a parallelogram, \\\\\n$\\therefore$ $AD \\parallel BC$, \\\\\n$\\therefore$ $\\triangle EAF\\sim \\triangle EBC$, \\\\\n$\\therefore$ $\\frac{EA}{EB}=\\frac{EF}{EC}$, \\\\\nLet $EA=x$, \\\\\n$\\because$ $EA:AB=1:2$, \\\\\n$\\therefore$ $AB=2x$, \\\\\n$\\therefore$ $EB=3x$, \\\\\n$\\therefore$ $\\frac{x}{3x}=\\frac{EF}{EC}$, \\\\\n$\\therefore$ $\\frac{EF}{EC}=\\frac{1}{3}$, \\\\\n$\\therefore$ $EF:EC=1:3$, \\\\\n$\\therefore$ $EF:EC=\\boxed{1:3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53102159_78": { -"question": "As shown in the figure, inside the quadrilateral $ABCD$, point $E$ lies on the extension of side $BA$. Lines $EC$ and $BD$ are drawn and they intersect at point $G$. Line $EC$ intersects with line $AD$ at point $F$. It is known that $EA:AB=1:2$. What is the ratio of $FG:GC$?", -"image_file_name": "7056088", -"image": [ -"math/53102159_686.png" -], -"solution": "\\textbf{Solution:} Given that $AD\\parallel BC$,\\\\\n$\\therefore \\triangle FGD\\sim \\triangle CGB$,\\\\\n$\\therefore \\frac{FG}{GC}=\\frac{FD}{BC}$,\\\\\nFrom $\\triangle EAF\\sim \\triangle EBC$,\\\\\nBased on the conclusion from (1), $\\frac{AF}{BC}=\\frac{1}{3}$,\\\\\n$\\therefore AF=\\frac{BC}{3}$,\\\\\n$\\therefore FD=AD-AF=BC-\\frac{BC}{3}=\\frac{2BC}{3}$,\\\\\n$\\therefore \\frac{FG}{GC}=\\frac{\\frac{2BC}{3}}{BC}=\\boxed{\\frac{2}{3}}$,\\\\\n$\\therefore FG\\colon GC=2\\colon 3$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53102198_81": { -"question": "In the figure, $AB$ is the diameter of the circle $\\odot O$, and $C$, $D$ are two points on the circle. $OC\\parallel BD$, and the chord $AD$ intersects $BC$ and $OC$ at $E$ and $F$, respectively. $\\overset{\\frown}{AC}=\\overset{\\frown}{CD}$; connect $AC$. If $CE=1$, and $EB=3$, find the length of $AC$.", -"image_file_name": "7056088", -"image": [ -"math/53102198_6910.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, \\\\\n$\\because \\overset{\\frown}{AC}=\\overset{\\frown}{CD}$, \\\\\n$\\therefore \\angle CAD=\\angle ABC$, \\\\\n$\\because \\angle ECA=\\angle ACB$, \\\\\n$\\therefore \\triangle ACE\\sim \\triangle BCA$, \\\\\n$\\therefore \\frac{AC}{CE}=\\frac{BC}{AC}$, that is $AC^{2}=CE\\cdot CB$, \\\\\n$\\because CE=1$, $EB=3$, \\\\\n$\\therefore CB=CE+BE=4$, \\\\\nthus $AC^{2}=1\\times (1+3)$, \\\\\n$\\therefore AC=\\boxed{2}$ (negative values are discarded).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53019895_83": { -"question": "As shown in the figure, it is known that the parabola $y = ax^2 + bx + c$ ($a \\neq 0$) passes through points $A(4, 0)$, $B(-1, 0)$, and $C(0, -4)$. Find the equation of this parabola.", -"image_file_name": "7056088", -"image": [ -"math/53019895_704.png" -], -"solution": "\\textbf{Solution:} Substitute the coordinates of A, B, and C into the equation of the parabola to get\n\\[\n\\begin{cases}\n16a+4b+c=0 \\\\\na-b+c=0 \\\\\nc=-4\n\\end{cases}\n\\]\nSolving this system gives\n\\[\n\\begin{cases}\na=1 \\\\\nb=-3 \\\\\nc=-4\n\\end{cases}\n\\]\nThus, the equation of the parabola is $y=x^2-3x-4$. Therefore, the answer is $\\boxed{y=x^2-3x-4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53019895_84": { -"question": "As shown in the graph, it is known that the parabola $y=ax^2+bx+c$ ($a\\neq 0$) passes through points $A(4, 0)$, $B(-1, 0)$, and $C(0, -4)$. If the circle centered at point $A$ is tangent to line $BC$ at point $M$, find the coordinates of the tangent point $M$.", -"image_file_name": "7056088", -"image": [ -"math/53019895_704.png" -], -"solution": "\\textbf{Solution:} Draw $AM\\perp BC$ through point A, with M as the foot,\n\nthus, $\\angle AMB = \\angle COB = 90^\\circ$,\n\nsince $\\angle ABM = \\angle CBO$,\n\ntherefore, $\\triangle BOC \\sim \\triangle BMA$,\n\ntherefore, $\\frac{OB}{BM}=\\frac{BC}{AB}$,\n\nsince $BC = \\sqrt{OC^2 + OB^2} = \\sqrt{17}$,\n\ntherefore, $\\frac{1}{BM} = \\frac{\\sqrt{17}}{5}$,\n\ntherefore, $BM = \\frac{5}{\\sqrt{17}}$,\n\nDraw $MN \\perp AB$ through M, with N as the foot,\n\nthus, $MN \\parallel OC$,\n\ntherefore, $\\triangle BOC \\sim \\triangle BNM$,\n\ntherefore, $\\frac{OC}{MN} = \\frac{OB}{NB} = \\frac{\\sqrt{17}}{\\frac{5}{\\sqrt{17}}}$,\n\ntherefore, $MN = \\frac{4}{MN} = \\frac{1}{NB} = \\frac{20}{17}$, $NB = \\frac{5}{17}$,\n\ntherefore, $ON = \\frac{12}{17}$,\n\ntherefore, $\\boxed{M\\left(-\\frac{12}{17}, -\\frac{20}{17}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53019683_87": { -"question": "As shown in the figure, in $\\triangle ABD$, C is a point on $AD$, and $AD = 4CD$, $\\angle CBD = \\angle A$. A line is drawn through point D such that $DH \\parallel AB$, intersecting the extension of $BC$ at point H. We have $\\triangle HCD \\sim \\triangle HDB$. If $BC = 6$, find the length of $DH$.", -"image_file_name": "7056088", -"image": [ -"math/53019683_716.png" -], -"solution": "\\textbf{Solution:} Since $AD=4CD$,\\\\\nit follows that $\\frac{CD}{AC}=\\frac{1}{3}$,\\\\\nGiven $DH\\parallel AB$,\\\\\nit leads to $\\triangle HCD\\sim \\triangle BCA$,\\\\\nwhich implies $\\frac{HC}{BC}=\\frac{CD}{AC}=\\frac{1}{3}$,\\\\\nSince $BC=6$,\\\\\nwe find that $HC=2$ and $HB=HC+BC=8$,\\\\\nBecause $\\triangle HCD\\sim \\triangle HDB$,\\\\\nit can be deduced that $\\frac{HC}{HD}=\\frac{HD}{HB}$, thus $HD^2=HC\\cdot HB=2\\times 8=16$,\\\\\nTherefore, $HD=\\boxed{4}$ (the negative value has been discarded).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53009966_90": { -"question": "As shown in the figure, points C and D lie on a semicircle with AB as the diameter. AD bisects $\\angle BAC$, and the line segment OD intersects BC at point E. OD $\\parallel$ AC. If AB $=10$ and BC $=8$, and we connect BD, find the length of BD.", -"image_file_name": "7056088", -"image": [ -"math/53009966_720.jpeg" -], -"solution": "\\textbf{Solution:} Let AD intersect BC at M,\\\\\nbecause AB is the diameter of circle O,\\\\\ntherefore, $\\angle C=\\angle ADB=90^\\circ$,\\\\\nbecause OD$\\parallel$AC,\\\\\ntherefore, $\\angle DEM=90^\\circ$,\\\\\nby the Pythagorean theorem, we have $AC=\\sqrt{AB^{2}-BC^{2}}=\\sqrt{10^{2}-8^{2}}=6$,\\\\\nbecause AO=BO and OD$\\parallel$AC,\\\\\ntherefore, CE=BE=$\\frac{1}{2}\\times 8=4$,\\\\\nbecause AC=6,\\\\\ntherefore, OE=$\\frac{1}{2}$AC=3,\\\\\nbecause OD=$\\frac{1}{2}$AB=$\\frac{1}{2}\\times 10=5$,\\\\\ntherefore, DE=5-3=2,\\\\\nbecause OD$\\parallel$AC,\\\\\ntherefore, $\\triangle DEM\\sim \\triangle ACM$,\\\\\ntherefore, $\\frac{AC}{DE}=\\frac{CM}{EM}$,\\\\\ntherefore, $\\frac{6}{2}=\\frac{4-EM}{EM}$,\\\\\nsolving for EM gives: EM=1, thus, BM=4+1=5,\\\\\nin $\\triangle DEM$, by the Pythagorean theorem, we have $DM=\\sqrt{DE^{2}+ME^{2}}=\\sqrt{2^{2}+1^{2}}=\\sqrt{5}$,\\\\\nin $\\triangle MDB$, by the Pythagorean theorem, we have $BD=\\sqrt{BM^{2}-DM^{2}}=\\sqrt{5^{2}-(\\sqrt{5})^{2}}=\\boxed{2\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53009969_92": { -"question": "In the Cartesian coordinate system, the parabola $y=x^2+(k-1)x-k$ intersects the line $y=kx+1$ at points $A$ and $B$, where point $A$ is to the left of point $B$. As shown in Fig. 1, when $k=1$, directly write down the coordinates of points $A$ and $B$.", -"image_file_name": "7056088", -"image": [ -"math/53009969_730.jpeg" -], -"solution": "\\textbf{Solution}: Let $\\boxed{A(-1,0)}$, $\\boxed{B(2,3)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53009969_93": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $y=x^{2}+(k-1)x-k$ intersects with the line $y=kx+1$ at points $A$ and $B$, where point $A$ is to the left of point $B$. Given $A(-1, 0)$ and $B(2, 3)$, let point $P$ be a moving point on the parabola, situated below the line $AB$. Determine the maximum area of $\\triangle ABP$ and the coordinates of point $P$ under this condition.", -"image_file_name": "7056088", -"image": [ -"math/53009969_730.jpeg" -], -"solution": "\\textbf{Solution}: Let $P(x, x^{2}-1)$. Draw $PF\\parallel y$-axis through point P, intersecting line $AB$ at point $F$, hence $F(x, x+1)$.\\\\\n$\\therefore PF=y_{F}-y_{P}=(x+1)-(x^{2}-1)=-x^{2}+x+2$.\\\\\n$S_{\\triangle ABP}=\\frac{1}{2}PF(x_{F}-x_{A})+\\frac{1}{2}PF(x_{B}-x_{F})=\\frac{1}{2}PF(x_{B}-x_{A})=\\frac{3}{2}PF$\\\\\n$\\therefore S_{\\triangle ABP}=\\frac{3}{2}(-x^{2}+x+2)=-\\frac{3}{2}(x-\\frac{1}{2})^{2}+\\frac{27}{8}$\\\\\nWhen $x=\\frac{1}{2}$, $y_{P}=x^{2}-1=-\\frac{3}{4}$.\\\\\n$\\therefore$ The maximum area of $\\triangle ABP$ is $\\boxed{\\frac{27}{8}}$, with point $P$ coordinates at $\\boxed{\\left(\\frac{1}{2}, -\\frac{3}{4}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53009969_94": { -"question": "In the Cartesian coordinate system, the parabola $y=x^{2}+(k-1)x-k$ intersects with the line $y=kx+1$ at points $A$ and $B$, where point $A$ is to the left of point $B$. As shown in the figure, the parabola $y=x^{2}+(k-1)x-k$ ($k>0$) intersects with the x-axis at points $C$ and $D$, with point $C$ being to the left of point $D$. There exists a unique point $Q$ on the line $y=kx+1$ such that $\\angle OQC=90^\\circ$. What is the value of $k$ in this case?", -"image_file_name": "7056088", -"image": [ -"math/53009969_730.jpeg" -], -"solution": "\\textbf{Solution:} Method 1:\\\\\nLet line AB: $y=kx+1$ intersect the x-axis and y-axis at point E and F, respectively,\\\\\nthen E$\\left(-\\frac{1}{k},0\\right)$, F$\\left(0,1\\right)$, OE$=\\frac{1}{k}$, OF$=1$.\\\\\nIn $\\triangle EOF$, by the Pythagorean theorem, we have: $EF=\\sqrt{\\left(\\frac{1}{k}\\right)^2+1}=\\frac{\\sqrt{1+k^2}}{k}$\\\\\nLet $y=x^2+(k-1)x-k=0$, that is, $(x+k)(x-1)=0$, solving this yields: $x=-k$ or $x=1$.\\\\\n$\\therefore$C$\\left(-k,0\\right)$, OC$=k$.\\\\\nI. Assume there exists a unique point Q such that $\\angle OQC=90^\\circ$,\\\\\nthen the circle with OC as its diameter touches line AB at point Q, according to the inscribed angle theorem, this implies $\\angle OQC=90^\\circ$.\\\\\nLet point N be the midpoint of OC, and connect NQ, then NQ$\\perp$EF, NQ$=CN=ON=\\frac{k}{2}$.\\\\\n$\\therefore$EN$=OE-ON=\\frac{1}{k}-\\frac{k}{2}$.\\\\\n$\\because \\angle NEQ=\\angle FEO$, $\\angle EQN=\\angle EOF=90^\\circ$,\\\\\n$\\therefore \\triangle EQN\\sim \\triangle EOF$,\\\\\n$\\therefore \\frac{NQ}{OF}=\\frac{EN}{EF}$, that is: $\\frac{\\frac{k}{2}}{1}=\\frac{\\frac{1}{k}-\\frac{k}{2}}{\\frac{\\sqrt{1+k^2}}{k}}$\\\\\nSolving this yields: $k=\\pm\\frac{2\\sqrt{5}}{5}$,\\\\\n$\\because k>0$,\\\\\n$\\therefore k=\\boxed{\\frac{2\\sqrt{5}}{5}}$.\\\\\nII. If line AB passes through point C, at that point the line and circle have only another point Q as their intersection, hence there exists a unique point Q such that $\\angle OQC=90^\\circ$,\\\\\nSubstituting C$\\left(-k,0\\right)$ into $y=kx+1$,\\\\\nwe get $k=1$, $k=-1$ (discard),\\\\\nthus, there exists a unique point Q such that $\\angle OQC=90^\\circ$, at this time $k=1$.\\\\\nTo sum up, when $k=\\frac{2\\sqrt{5}}{5}$ or $1$, there exists a unique point Q such that $\\angle OQC=90^\\circ$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53009960_97": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle, with points $D$ and $E$ located on sides $BC$ and $AC$ respectively, and $\\angle ADE = 60^\\circ$. $\\triangle ABD \\sim \\triangle DCE$; if $AB=3$ and $EC=\\frac{2}{3}$, what is the length of $DC$?", -"image_file_name": "7056088", -"image": [ -"math/53009960_740.jpeg" -], -"solution": "\\textbf{Solution:} From equation (1), we have proved that $\\triangle ABD \\sim \\triangle DCE$,\\\\\n$\\therefore \\frac{BD}{AB}=\\frac{CE}{DC}$\\\\\nLet $CD = x$, then $BD = 3 - x$,\\\\\n$\\therefore \\frac{3-x}{3}=\\frac{\\frac{2}{3}}{x}$\\\\\n$\\therefore x = 1$ or $x = 2$,\\\\\n$\\therefore DC = \\boxed{1}$ or $DC = \\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991580_99": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and chord $CD\\perp AB$. Point $E$ is on the extension of $CA$. Connect $DE$ to intersect $\\odot O$ at point $F$, and connect $AF, CF$. If the degree of $\\overset{\\frown}{BD}$ is $40^\\circ$, what is the degree of $\\angle AFC$?", -"image_file_name": "7056088", -"image": [ -"math/52991580_757.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, connect $OD, AD$, and let $AB$ intersect $CD$ at $H$. \\\\\nSince the degree of $\\overset{\\frown}{BD}$ is $40^\\circ$, \\\\\ntherefore $\\angle BOD=40^\\circ$, \\\\\ntherefore $\\angle DAB=\\frac{1}{2}\\angle DOB=20^\\circ$, \\\\\nsince $AB\\perp CD$, \\\\\ntherefore $\\angle AHD=90^\\circ$, \\\\\ntherefore $\\angle ADH=90^\\circ-\\angle DAB=70^\\circ$, \\\\\ntherefore $\\angle AFC=\\angle ADH=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991580_101": { -"question": "As shown in the diagram, $AB$ is the diameter of the circle $\\odot O$, with chord $CD\\perp AB$. Point E is located on the extension line of $CA$, and line $DE$ intersects $\\odot O$ at point F. Lines $AF$ and $CF$ are drawn. Given that $AB=5$ and $CD=4$, and that $CF$ passes through the center of the circle, calculate the length of $CE$.", -"image_file_name": "7056088", -"image": [ -"math/52991580_757.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 2, suppose $AB$ intersects $CD$ at $H$. \\\\\nSince $AB$ is a diameter and $AB\\perp CD$, $CD=4$ \\\\\nThus, $CH=DH=2$, \\\\\nSince $OC=\\frac{1}{2}CF=\\frac{1}{2}AB=\\frac{5}{2}$, $\\angle OHC=90^\\circ$, \\\\\nThus, $OH=\\sqrt{OC^{2}-CH^{2}}=\\sqrt{\\left(\\frac{5}{2}\\right)^{2}-2^{2}}=\\frac{3}{2}$, \\\\\nTherefore, $HA=OH+OA=4$, \\\\\nAs a result, $AC=\\sqrt{CH^{2}+AH^{2}}=\\sqrt{2^{2}+4^{2}}=2\\sqrt{5}$, \\\\\nSince $CF$ is a diameter, \\\\\nThus, $\\angle CDF=\\angle AHC=90^\\circ$, \\\\\nTherefore, $AH\\parallel DE$, \\\\\nTherefore, $\\triangle AHC\\sim \\triangle EDC$, \\\\\nThus, $\\frac{CH}{CD}=\\frac{AC}{CE}$ \\\\\nSince $CH=HD$, \\\\\nThus, $CD=2CH$ \\\\\nTherefore, $CE=2AC=4\\sqrt{5}$, \\\\\nTherefore, $CE=\\boxed{4\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991580_102": { -"question": "In the figure, $AB$ is the diameter of $\\odot O$, and the chord $CD\\perp AB$. Point $E$ is on the extension of $CA$. Connect $DE$ intersecting $\\odot O$ at point $F$, and connect $AF, CF$. Given the conditions in (3), connect $AD$, $EH$, intersecting at point $G$. What is the length of $GH$?", -"image_file_name": "7056088", -"image": [ -"math/52991580_757.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram below, connect $AD$ and $EH$, intersecting at point G,\\\\\n$\\because DE^2+DC^2=CE^2$,\\\\\n$\\therefore DE=\\sqrt{CE^2-DC^2}=8$,\\\\\n$\\because DE^2+DH^2=HE^2$,\\\\\n$\\therefore HE=2\\sqrt{17}$,\\\\\n$\\because AH\\parallel DE$,\\\\\n$\\therefore \\triangle AHG\\sim \\triangle DGE$,\\\\\n$\\therefore \\frac{AH}{DE}=\\frac{HG}{GE}$,\\\\\n$\\therefore \\frac{AH}{DE}=\\frac{HG}{HE-HG}$,\\\\\n$\\therefore \\frac{HG}{2\\sqrt{17}-HG}=\\frac{4}{8}$,\\\\\n$\\therefore HG=\\boxed{\\frac{3}{4}\\sqrt{17}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991872_104": { -"question": "As shown in Figure 1, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=8$, and $BC=6$. Points D and E are movable points on sides $BC$ and $AB$, respectively, with $BE=BD$. Connect $DE$ and fold $\\triangle BDE$ along $DE$ such that point B falls on point F. Connect $AF$. As shown in Figure 2, when point F is on side $AC$, what is the length of $BE$?", -"image_file_name": "7056088", -"image": [ -"math/52991872_768.png" -], -"solution": "\\textbf{Solution:} Solving: By the property of folding, we get $BE=BD=FE=FD$, \\\\\n$\\therefore$ quadrilateral $BEFD$ is a rhombus, \\\\\n$\\therefore$ $EF\\parallel BC$. \\\\\n$\\because$ point F is on side $AC$, \\\\\n$\\therefore$ $\\triangle AEF\\sim \\triangle ABC$, \\\\\n$\\therefore$ $\\frac{EF}{BC}=\\frac{AE}{AB}=\\frac{AF}{AC}$. \\\\\n$\\because$ $AC=8, BC=6, \\angle ACB=90^\\circ$, \\\\\n$\\therefore$ in $Rt\\triangle ABC$, $AB=\\sqrt{6^2+8^2}=10$. \\\\\nLet $BE=EF=x$, \\\\\nthen $\\frac{x}{6}=\\frac{10-x}{10}$, \\\\\n$\\therefore$ $x=\\frac{15}{4}$, \\\\\n$\\therefore$ $BE=\\boxed{\\frac{15}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52991872_105": { -"question": "As shown in Figure 1, in right triangle $ABC$, where $\\angle ACB=90^\\circ, AC=8, BC=6$, $D$ and $E$ are moving points located on sides $BC$ and $AB$ respectively, and $BE=BD$. Connect $DE$. Triangle $BDE$ is folded along $DE$ such that point $B$ coincides with point $F$. Connect $AF$. As shown in Figure 3, during the movement of points $D$ and $E$, when $AF \\parallel DE$, find the length of $AF$.", -"image_file_name": "7056088", -"image": [ -"math/52991872_768.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, join $BF$ intersecting $ED$ at point O, and let $EF$ intersect $AC$ at point G.\\\\\nSince quadrilateral $BEFD$ is a rhombus,\\\\\nit follows that $BF\\perp ED, OB=OF, EF\\parallel BC$.\\\\\nSince $AF\\parallel ED$,\\\\\nit implies $FA\\perp BF, \\frac{BE}{BA}=\\frac{BO}{BF}=\\frac{1}{2}$,\\\\\nthus, $\\angle AFB=90^\\circ, BE=\\frac{1}{2}AB=5$,\\\\\nSince E is the midpoint of $AB$,\\\\\nit follows that $EF=AE=BE=5$.\\\\\nSince $EF\\parallel BC$,\\\\\nit implies $\\frac{EG}{BC}=\\frac{AE}{AB}=\\frac{AG}{AC}=\\frac{1}{2}$,\\\\\nthus, $EG=3, GF=2, AG=4$.\\\\\nIn $\\triangle AGF$ with a right angle at $F$, $AF=\\sqrt{AG^{2}+GF^{2}}=\\sqrt{4^{2}+2^{2}}=\\boxed{2\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52991468_108": { -"question": "As shown in Figure 1, in $\\triangle ACB$, $\\angle ACB=90^\\circ, AC=4, BC=3$. Point $D$ is a moving point on the hypotenuse $AB$ ($00$, \\\\\n$\\therefore$ $m=1$, \\\\\n$\\therefore$ $AC=\\boxed{4}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991464_113": { -"question": "Definition: If a moving point P satisfies the condition that the distances from P to the two endpoints of a line segment $AB$ are in the ratio $PA = 4PB$, then P is called the $KZ$ point of the line segment $AB$. However, point P is not considered a $KZ$ point of the line segment $BA$. As illustrated in the diagram, within a rhombus $ABCD$ where $AB=8$ and $\\angle B=120^\\circ$, points E and F are located on $BC$ and $CD$ respectively, satisfying $\\angle AEF=120^\\circ$. By connecting $AF$, assuming point E is the $KZ$ point of line segment $AF$, what is the length of $DF$?", -"image_file_name": "7056088", -"image": [ -"math/52991464_786.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 3, take $CJ$ on $CB$ such that $CJ=CF$.\\\\\nSince quadrilateral $ABCD$ is a rhombus,\\\\\nit follows that $AB=BC=CD=AD=8$, $AB\\parallel CD$,\\\\\nhence $\\angle B+\\angle C=180^\\circ$,\\\\\nsince $\\angle B=120^\\circ$,\\\\\nit follows that $\\angle C=60^\\circ$,\\\\\nsince $CJ=CF$,\\\\\nit follows that $\\triangle CFJ$ is an equilateral triangle,\\\\\nthus $FJ=CF=CJ$, $\\angle CJF=60^\\circ$,\\\\\ntherefore $\\angle FJE=120^\\circ=\\angle B$,\\\\\nsince point E is the $KZ$ point on the line segment $AF$,\\\\\nit follows that $AE=4EF$,\\\\\nsince $\\angle AEC=\\angle AEF+\\angle FEJ=\\angle B+\\angle BAE$, $\\angle AEF=\\angle B=120^\\circ$,\\\\\nit follows that $\\angle FEJ=\\angle BAE$,\\\\\ntherefore $\\triangle ABE\\sim \\triangle EJF$,\\\\\nthus $\\frac{AB}{EJ}=\\frac{BE}{FJ}=\\frac{AE}{EF}=4$,\\\\\nthus $EJ=2$, $BE=4FJ=4CJ$,\\\\\nthus $BC=BE+EJ+CJ=4CJ+2+CJ=8$,\\\\\ni.e., $CJ=\\frac{6}{5}$,\\\\\ntherefore $CF=CJ=\\frac{6}{5}$,\\\\\nthus $DF=CD-CF=8-\\frac{6}{5}=\\boxed{\\frac{34}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991574_116": { -"question": "As shown in the diagram, $O$ is a point on line segment $PB$. Taking $O$ as the center and the length of $OB$ as the radius, circle $\\odot O$ intersects $PB$ at point A. Point C is on circle $\\odot O$. Line $PC$ is drawn, satisfying $PC^{2}=PA\\cdot PB$. $\\triangle PAC\\sim \\triangle PCB$. If $AB=3PA$, find the value of $\\frac{AC}{BC}$.", -"image_file_name": "7056088", -"image": [ -"math/52991574_797.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram below, connect $OC$,\n\n$\\because \\triangle PAC\\sim \\triangle PCB$,\n\n$\\therefore \\frac{PA}{PC}=\\frac{AC}{BC}$, $ \\angle PCA=\\angle ABC$\n\n$\\because OC=OA$, $OC=OB$\n\n$\\therefore \\angle OCA=\\angle CAO$, $\\angle OCB=\\angle OBC$\n\n$\\because \\angle PCA=\\angle ABC$, $\\angle OCB=\\angle OBC$\n\n$\\therefore \\angle PCA=\\angle OCB$\n\n$\\because AB$ is the diameter,\n\n$\\therefore \\angle ACB=90^\\circ$,\n\n$\\therefore \\angle ACO+\\angle OCB=90^\\circ$,\n\n$\\therefore \\angle ACO+\\angle PCA=90^\\circ$,\n\n$\\therefore \\angle PCO=90^\\circ$,\n\n$\\because AB=3PA$, $PB=PA+AB$,\n\n$\\therefore PB=4PA$,\n\n$\\because AB=2OC=2OA$,\n\n$\\therefore OA=OC=1.5PA$,\n\n$\\therefore PO=2.5PA$,\n\n$\\because PC^2+OC^2=PO^2$\n\n$\\therefore PC=\\sqrt{PO^2−OC^2}=2PA$,\n\n$\\therefore \\frac{AC}{BC}=\\frac{PA}{PC}=\\boxed{\\frac{1}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991542_119": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in circle $\\odot O$, $BD$ bisects $\\angle ABC$, through point $D$ draw $DE\\parallel AB$, intersecting $BC$ at point $E$, connect $AE$ and intersect $BD$ at point $F$. Given that $\\angle AFD = \\angle ADB + \\angle CDE$, if $AB^2 = BF \\cdot BD$ and $AD = 2$, find the length of $CB$.", -"image_file_name": "7056088", -"image": [ -"math/52991542_809.png" -], -"solution": "\\textbf{Solution}: Given from equation (1), we have $\\angle AFD=180^\\circ-3\\alpha$,\\\\\n$\\therefore$ $\\angle FAB=180^\\circ-4\\alpha$,\\\\\n$\\because$ it is about an inscribed quadrilateral,\\\\\n$\\therefore$ $\\angle CDE+2\\alpha +\\alpha +2\\alpha =180^\\circ$, that is $\\angle CDE=180^\\circ-5\\alpha$,\\\\\n$\\therefore$ $\\angle CDF=\\angle CDE+\\angle EDB=\\alpha +180^\\circ-5\\alpha =180^\\circ-4\\alpha$,\\\\\n$\\therefore$ $\\angle BAF=\\angle BDC=180^\\circ-4\\alpha$, and $\\angle ABF=\\angle FBC=\\alpha$,\\\\\n$\\therefore$ $\\triangle ABF\\sim \\triangle DBC$,\\\\\n$\\therefore$ $\\frac{AB}{DC}=\\frac{FB}{BC}$, thus $BC=\\frac{FB\\cdot DC}{AB}$,\\\\\n$\\therefore$ $\\angle AFB=\\angle DCB=180^\\circ-(180^\\circ-3\\alpha )=3\\alpha$,\\\\\n$\\because$ $\\angle DAF+\\angle FAB+\\angle DCB=180^\\circ$, that is $\\angle DAF+(180^\\circ-4\\alpha )+3\\alpha =180^\\circ$,\\\\\n$\\therefore$ $\\angle DAF=\\angle FDE=\\angle DBE=\\alpha$,\\\\\n$\\therefore$ $\\triangle ADE\\sim \\triangle BCD$,\\\\\n$\\therefore$ $\\frac{AD}{BC}=\\frac{AE}{BD}$, thus $BC=\\frac{AD\\cdot BD}{AE}$,\\\\\n$\\therefore$ $BC=\\frac{FB\\cdot DC}{AB}=\\frac{AD\\cdot BD}{AE}$,\\\\\nand $\\triangle ABE\\cong \\triangle BAD$ (by SAS),\\\\\n$\\because$ $AB^{2}=BF\\cdot BD$, $AD=2$, and $AB=AE$, $AD=EC=DC=2$\\\\\n$\\therefore$ $CB=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52991542_120": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $BD$ bisecting $\\angle ABC$. Through point $D$, draw $DE\\parallel AB$, intersecting $BC$ at point $E$. Connect $AE$ and intersect $BD$ at point $F$. Given $\\angle AFD = \\angle ADB + \\angle CDE$, and if $CE = 2$, $AB = 8$, what is the length of $DE$?", -"image_file_name": "7056088", -"image": [ -"math/52991542_809.png" -], -"solution": "\\textbf{Solution:} From equation (2), it is known that $\\triangle ABE \\cong \\triangle BAD$ (SAS), $CE=2$, $AB=8$, \\\\\n$\\therefore BE=BC-CE=4-2=2$, \\\\\n$\\therefore DE=BE=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977907_122": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=\\sqrt{5}, BC=2$, and a line is drawn from point $B$ perpendicular to $AC$, intersecting $AC$ at point $D$. Find the value of $\\cot\\angle ACB$.", -"image_file_name": "7056088", -"image": [ -"math/52977907_815.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AG \\perp BC$ at point $G$,\\\\\nsince $AB=AC$,\\\\\nthen $CG= \\frac{1}{2}BC=1$, and $AG \\perp BC$,\\\\\nin $\\triangle AGC$, by the Pythagorean theorem, we have $AG=\\sqrt{AC^{2}-CG^{2}}=\\sqrt{5-1}=2$,\\\\\nthus, $\\cot\\angle ACB=\\frac{CG}{AG}=\\boxed{\\frac{1}{2}}$,", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977907_123": { -"question": "As shown in the figure, in $\\triangle ABC$, we have $AB=AC=\\sqrt{5}$, and $BC=2$. A line is drawn from point $B$ such that $BD \\perp AC$ with $D$ being the foot of the perpendicular. Point $E$ is a point on the extension of $BD$. Connect $CE$. When $\\angle E = \\angle A$, find the length of the segment $CE$.", -"image_file_name": "7056088", -"image": [ -"math/52977907_815.png" -], -"solution": "\\textbf{Solution:} Since $S_{\\triangle ABC}=\\frac{1}{2}AG\\cdot BC=\\frac{1}{2}BD\\cdot AC$,\\\\\nit follows that $BD= \\frac{4\\sqrt{5}}{5}$,\\\\\nand since $\\cot\\angle ACB=\\frac{1}{2}$,\\\\\nit further follows that $\\frac{CD}{BD}=\\frac{1}{2}$,\\\\\nthus, $CD= \\frac{2\\sqrt{5}}{5}$,\\\\\nand since $\\angle BAC=\\angle E$,\\\\\nit can be concluded that $\\triangle ADB\\sim \\triangle EDC$,\\\\\ntherefore, $\\frac{EC}{AB}=\\frac{CD}{BD}=\\frac{1}{2}$,\\\\\nhence, $EC=\\frac{1}{2}AB=\\boxed{\\frac{\\sqrt{5}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977407_126": { -"question": "As shown in the figure, points $D$ and $E$ are located on sides $AB$ and $AC$ of $\\triangle ABC$, respectively, with $AD=2$, $AC=6$, and $\\frac{AE}{AB}=\\frac{1}{3}$, $BC=\\frac{15}{4}$. Given that $\\triangle ADE\\sim \\triangle ACB$; what is the length of $DE$?", -"image_file_name": "7056088", -"image": [ -"math/52977407_822.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\triangle ADE \\sim \\triangle ACB$,\\\\\n$\\therefore \\frac{DE}{BC}=\\frac{AD}{AC}=\\frac{1}{3}$,\\\\\n$\\because BC = \\frac{15}{4}$,\\\\\n$\\therefore DE = \\frac{1}{3} \\times \\frac{15}{4} = \\boxed{\\frac{5}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977417_129": { -"question": "As shown in the diagram, in $\\triangle ABC$, $AB=AC$, $AD \\perp BC$ at $D$, draw $DE \\perp AC$ at $E$, and let $F$ be the midpoint of $AB$. Connect $EF$ and intersect $AD$ at point $G$. It is given that $AD^{2}=AB\\cdot AE$; if $AB=5$ and $AE=4$, find the value of $DG$.", -"image_file_name": "7056088", -"image": [ -"math/52977417_8311.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect DF.\\\\\n$\\because$AB $= 5$, $\\angle$ADB $= 90^\\circ$, BF $=$ AF,\\\\\n$\\therefore$DF $= \\frac{1}{2}$AB $= \\frac{5}{2}$,\\\\\n$\\because$AB $=$ AC, AD $\\perp$ BC,\\\\\n$\\therefore$BD $=$ DC,\\\\\n$\\therefore$DF $\\parallel$ AC,\\\\\n$\\therefore$ $ \\frac{DF}{AE} = \\frac{DG}{AG} = \\frac{\\frac{5}{2}}{4} = \\frac{5}{8}$,\\\\\n$\\therefore$ $ \\frac{DG}{AD} = \\frac{5}{13}$\\\\\n$\\because$AD$^{2}$ $=$ AB $\\cdot$ AE.\\\\\n$\\therefore$ $ AD = \\sqrt{AB \\cdot AE} = \\sqrt{5 \\times 4} = 2\\sqrt{5}$ \\\\ \n$\\therefore$ $ DG = \\frac{5}{13} \\times 2\\sqrt{5} = \\boxed{\\frac{10\\sqrt{5}}{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977747_132": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ AB=AC$, points E, F are on side BC, and $ \\angle EAF=\\angle C$. $ \\triangle ABF\\sim \\triangle ECA$; if $ BF=8$ and $ CE=6$, find the length of AB.", -"image_file_name": "7056088", -"image": [ -"math/52977747_843.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABF\\sim \\triangle ECA$, \\\\\nwe have $\\frac{AB}{EC}=\\frac{BF}{AC}$, \\\\\nSince $BF=8$, $CE=6$, $AB=AC$, \\\\\nit follows that $\\frac{AB}{6}=\\frac{8}{AB}$, that is $AB^{2}=6\\times 8=48$, \\\\\nHence, $AB=\\boxed{4\\sqrt{3}}$ (negative value discarded).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977987_134": { -"question": "In rectangle $ABCD$, $AB=4$, $BC=5$, P is a moving point on ray $BC$, draw $PE\\perp AP$, $PE$ intersects ray $DC$ at point E, ray $AE$ intersects ray $BC$ at point F, let $BP=x$, $CF=y$. When $\\sin\\angle APB=\\frac{4}{5}$, what is the length of $CE$?", -"image_file_name": "7056088", -"image": [ -"math/52977987_8511.png" -], -"solution": "\\textbf{Solution:} In the right triangle $Rt\\triangle APB$, where $AB=4$ and $\\sin\\angle APB=\\frac{4}{5}$,\n\\[\n\\therefore \\sin\\angle APB=\\frac{AB}{AP}=\\frac{4}{5}, \\text{ thus } \\frac{4}{AP}=\\frac{4}{5},\n\\]\n\\[\n\\therefore AP=5,\n\\]\n\\[\n\\therefore PB=\\sqrt{AP^2-AB^2}=3,\n\\]\n\\[\n\\therefore PC=BC-PB=5-3=2,\n\\]\n\\[\n\\because PE\\perp AP,\n\\]\n\\[\n\\therefore \\angle CPE+\\angle APB=90^\\circ,\n\\]\n\\[\n\\because \\angle BAP+\\angle APB=90^\\circ,\n\\]\n\\[\n\\therefore \\angle CPE=\\angle BAP,\n\\]\n\\[\n\\because \\angle ECP=\\angle B=90^\\circ,\n\\]\n\\[\n\\therefore \\triangle PCE\\sim \\triangle ABP,\n\\]\n\\[\n\\therefore \\frac{CE}{BP}=\\frac{PC}{AB},\n\\]\n\\[\n\\therefore CE=\\frac{BP\\cdot PC}{AB}=\\frac{3\\times 2}{4}=\\boxed{\\frac{3}{2}}\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52977987_135": { -"question": "In rectangle $ABCD$, $AB=4$, $BC=5$, $P$ is a moving point on ray $BC$, draw $PE\\perp AP$, $PE$ intersects ray $DC$ at point $E$, ray $AE$ intersects ray $BC$ at point $F$. Let $BP=x$, $CF=y$. As shown in the figure, when point $P$ is on side $BC$ (point $P$ does not coincide with points $B$ or $C$), what is the function relationship between $y$ and $x$?", -"image_file_name": "7056088", -"image": [ -"math/52977987_8511.png" -], -"solution": "\\textbf{Solution:} Given the construction, \\\\\n$\\because EC\\parallel AB$, \\\\\n$\\therefore \\triangle ECF\\sim \\triangle ABF$, \\\\\n$\\therefore \\frac{FC}{FB}=\\frac{EC}{AB}$, \\\\\nthen $CE=\\frac{FC\\cdot AB}{FB}=\\frac{4y}{5+y}$, \\\\\n$\\because \\triangle PCE\\sim \\triangle ABP$, \\\\\n$\\therefore \\frac{CE}{BP}=\\frac{PC}{AB}$, \\\\\nthen $CE=\\frac{BP\\cdot PC}{AB}=\\frac{x(5-x)}{4}$, \\\\\n$\\therefore \\frac{4y}{5+y}=\\frac{x(5-x)}{4}$, \\\\\nUpon rearrangement, we get: $y=\\frac{25x-5x^2}{16+x^2-5x} \\left(04$ (discard),\\\\\n$\\therefore$ $-m+4=-\\frac{5-\\sqrt{17}}{2}+4=\\frac{3+\\sqrt{17}}{2}$,\\\\\n$\\therefore$ the coordinates of point M are $\\boxed{\\left(\\frac{5-\\sqrt{17}}{2}, \\frac{3+\\sqrt{17}}{2}\\right)}$.\\\\\nThere are three possible coordinates for point M that satisfy the conditions: $\\boxed{\\left(\\frac{5-\\sqrt{17}}{2}, \\frac{3+\\sqrt{17}}{2}\\right)}$ or $\\boxed{(2,2)}$ or $\\boxed{(3,1)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52936243_166": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $AB$ passing through point $A(4,0)$ intersects the $y$-axis at point $B(0,4)$. The parabola $y=-x^2+bx+c$ that goes through the origin $O$ intersects line $AB$ at points $A$ and $C$, with the vertex of the parabola being $D$. Let $P$ be a moving point on the parabola and $Q$ a point in the Cartesian coordinate system. Is there a quadrilateral with vertices $A$, $C$, $P$, $Q$ that is a rectangle? If it exists, write down the coordinates of point $Q$ directly; if not, please explain why.", -"image_file_name": "7056088", -"image": [ -"math/52936243_940.png" -], -"solution": "\\textbf{Solution:}\n\nGiven: When AC is the side of a rectangle, \\\\\n$\\because -x^2+4x=-x+4$ Solve for: $x_1=4$, $x_2=1$, \\\\\nWhen $x=1$, we have $y=-1+4=3$, \\\\\n$\\therefore$ Point C is at $(1,3)$, \\\\\n$\\because y=-x^2+4x=-(x-2)^2+4$, \\\\\n$\\therefore$ Point D is at $(2,4)$ when $x=2$ and $y=-2+4=2$, \\\\\n$\\therefore$ Point R is at $(2,2)$. Lines perpendicular to AB through points C and A intersect the parabola at points $P_1$ and $P_2$, respectively, \\\\\n$\\because$C is at $(1,3)$ and D is at $(2,4)$, \\\\\n$\\therefore CD^2=(1-2)^2+(4-3)^2=2$, $CR^2=1$, and $RD=2$, \\\\\n$\\therefore CD^2+CR^2=DR^2$, \\\\\n$\\therefore \\angle RCD=90^\\circ$, \\\\\n$\\therefore$ Point $P_1$ coincides with point D, \\\\\nWhen $CP_1\\parallel AQ_1$ and $CP_1=AQ_1$, the quadrilateral $ACP_1Q_1$ is a rectangle, \\\\\n$\\because$ Moving C$(1,3)$ 1 unit to the right and 1 unit up yields $P_1(2,4)$, \\\\\n$\\therefore$ Moving A$(4,0)$ 1 unit to the right and 1 unit up yields $Q_1(5,1)$, \\\\\nNow, the equation of line $P_1C$ is: $y=x+2$, \\\\\n$\\because$ Line $P_2A$ is parallel to $P_1C$ and passes through A$(4,0)$, \\\\\n$\\therefore$ The equation of line $P_2A$ is: $y=x-4$, \\\\\n$\\because$ Point $P_2$ is at the intersection of the line $y=x-4$ and the parabola $y=-x^2+4x$, \\\\\n$\\therefore -x^2+4x=x-4$, solving for: $x_1=-1$, $x_2=4$ (discard), \\\\\n$\\therefore P_2$ lies at $(-1,-5)$, \\\\\nWhen $AC\\parallel P_2Q_2$, the quadrilateral $ACQ_2P_2$ is a rectangle, \\\\\n$\\because$ Moving A$(4,0)$ 3 units to the left and 3 units up yields C$(1,3)$, \\\\\n$\\therefore$ Moving $P_2(-1,-5)$ 3 units to the left and 3 units up yields $Q_2(-4,-2)$; \\\\\nWhen AC is the diagonal of the rectangle, \\\\\nLet $P_3(m, -m^2+4m)$ \\\\\nWhen $\\angle AP_3C=90^\\circ$, draw $P_3H\\perp x$-axis through $P_3$, and $CK\\perp P_3H$ through C, \\\\\n$\\therefore \\angle P_3KC=\\angle AHP_3=90^\\circ$, $\\angle P_3CK=\\angle AP_3H$, \\\\\n$\\therefore \\triangle P_3CK\\sim \\triangle AP_3H$, \\\\\n$\\therefore \\frac{P_3K}{CK}=\\frac{AH}{P_3H}$ \\\\\n$\\therefore \\frac{-m^2+4m-3}{m-1}=\\frac{4-m}{-m^2+4m}$, \\\\\n$\\because$ Point P does not coincide with points A or C, \\\\\n$\\therefore m\\neq 1$ and $m\\neq 4$, \\\\\n$\\therefore -m^2-3m+1=0$, \\\\\n$\\therefore m=\\frac{3\\pm \\sqrt{5}}{2}$, \\\\\n$\\therefore$ As illustrated, the conditions are satisfied. \\boxed{Q_1(5,1)}, \\boxed{Q_2(-4,-2)}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52935315_169": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ is a point on $AD$, connecting $AC$ and $BE$ intersecting at point $F$, and $FG \\perp CD$ at $G$. If $AE=DE=3$, find the length of $FG$.", -"image_file_name": "7056088", -"image": [ -"math/52935315_950.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rectangle, with AE=DE=3, it follows that AD$\\parallel$BC, and BC=AD=6. Hence $\\triangle$AEF$\\sim$$\\triangle$CBF, implying that $\\frac{CF}{AF}=\\frac{BC}{AE}=2$. Since FG$\\parallel$AD, $\\triangle$CFG$\\sim$$\\triangle$CAD, leading to $\\frac{FG}{AD}=\\frac{CF}{AC}=\\frac{2}{3}$, thus FG=\\boxed{4}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52935324_172": { -"question": "As illustrated, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $AB$ being the diameter of circle $\\odot O$. Let $DE \\perp AB$ at point $E$, intersecting $AC$ at point $F$. It is given that arc $\\overset{\\frown}{BC} = \\overset{\\frown}{AD}$. We have $\\triangle ABC \\sim \\triangle DAE$. When $AD = \\sqrt{5}$ and $BE = 4$, what is the length of $CD$?", -"image_file_name": "7056088", -"image": [ -"math/52935324_961.png" -], -"solution": "\\textbf{Solution:} Draw $CH\\perp AB$ at point H.\\\\\nSince $\\triangle ABC\\sim \\triangle DAE$,\\\\\nit follows that $\\frac{AE}{BC}=\\frac{AD}{AB}$, $\\angle BAC=\\angle ADE$,\\\\\nhence $\\frac{AE}{\\sqrt{5}}=\\frac{\\sqrt{5}}{4+AE}$,\\\\\nthus $AE=1$ (negative values are discarded),\\\\\ntherefore $AB=AE+BE=5$,\\\\\n$DE=\\sqrt{AD^{2}-AE^{2}}=\\sqrt{5-1}=2$,\\\\\ntherefore $AC=\\sqrt{AB^{2}-BC^{2}}=\\sqrt{25-5}=2\\sqrt{5}$,\\\\\nsince $\\overset{\\frown}{BC}=\\overset{\\frown}{AD}$,\\\\\nit follows that $\\angle ACD=\\angle BAC$, hence $\\angle ADE=\\angle ACD$,\\\\\nalso, since $\\angle DAF=\\angle DAC$,\\\\\nit follows that $\\triangle DAF\\sim \\triangle CAD$,\\\\\nthus $\\frac{AD}{AC}=\\frac{AF}{AD}=\\frac{DF}{DC}$,\\\\\nhence $AF=\\frac{\\sqrt{5}}{2}$, $DC=2DF$,\\\\\nthus $EF=\\sqrt{AF^{2}-AE^{2}}=\\frac{1}{2}$,\\\\\ntherefore $DF=\\frac{3}{2}$,\\\\\ntherefore $CD=2DF=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52934010_175": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $CD \\perp AB$ with the foot of the perpendicular being $D$. $\\triangle ABC \\sim \\triangle ACD$. Given that $AC = 4$ and $BC = 3$, what is the length of $AD$?", -"image_file_name": "7056088", -"image": [ -"math/52934010_973.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ACB=90^\\circ$, $AC=4$, and $BC=3$, it follows that $AB=5$. Since $\\triangle ABC \\sim \\triangle ACD$, we have $\\frac{AC}{AD}=\\frac{AB}{AC}$. Therefore, $\\frac{4}{AD}=\\frac{5}{4}$, which implies that $AD=\\boxed{\\frac{16}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52934013_178": { -"question": "As shown in the figure, point $E$ is a point on the extension of side $BA$ of rectangle $ABCD$. Lines $ED$ and $EC$ are drawn, and $EC$ intersects $AD$ at point $G$. Construct $CF\\parallel ED$ intersecting $AB$ at point $F$, and $DC = DE$. Quadrilateral $CDEF$ is a rhombus; if $BC = 3$ and $CD = 5$, what is the length of $AE$?", -"image_file_name": "7056088", -"image": [ -"math/52934013_980.png" -], -"solution": "\\textbf{Solution:} Given that $BC=3$, $CD=5$, it follows that $AD=3$, $ED=5$. Therefore, $AE= \\sqrt{DE^{2}-AD^{2}}=\\sqrt{5^{2}-3^{2}}=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52934013_179": { -"question": "As shown in the figure, point $E$ is a point on the extension line of side $BA$ of rectangle $ABCD$. Connect $ED$ and $EC$, where $EC$ intersects $AD$ at point $G$. Construct $CF \\parallel ED$ intersecting $AB$ at point $F$, with $DC = DE$. Under the condition of (2), what is the length of $AG$?", -"image_file_name": "7056088", -"image": [ -"math/52934013_980.png" -], -"solution": "\\textbf{Solution:} Since $AD \\parallel BC$,\\\\\n$\\therefore \\frac{AG}{BC} = \\frac{AE}{EB}$,\\\\\n$\\therefore \\frac{AG}{3} = \\frac{4}{4+5}$,\\\\\n$\\therefore AG = \\boxed{\\frac{4}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52933588_182": { -"question": "As shown in Figure 1, it is known that the radius of circle $O$ is 5, and the chord $AB=4\\sqrt{5}$. Points C and D are on the major arc $\\overset{\\frown}{BCA}$ (points B, C, and D are arranged clockwise), $\\overset{\\frown}{CD}=\\overset{\\frown}{AB}$. Point F is a moving point on $\\overset{\\frown}{CD}$, connect CF and extend it to intersect the extension of chord AD at point E. $BC\\parallel AD$. As shown in Figure 2, connect $AC$, $BF$, $AF$. When $\\angle BFA$ is equal to one of the interior angles of $\\triangle ACE$, and the length of $BF$ can be determined, find all possible lengths of $BF$ that satisfy the condition.", -"image_file_name": "7056088", -"image": [ -"math/52933588_997.png" -], -"solution": "\\textbf{Solution}: In figure (2), \\\\\n$\\because \\overset{\\frown}{CD}=\\overset{\\frown}{AB}$, \\\\\n$\\therefore \\angle BFA=\\angle CAE$, $AB=CD$, \\\\\nThus, regardless of the value of $BF$, we always have $\\angle BFA=\\angle CAE$, which is inconsistent with the problem statement; \\\\\nWhen $\\angle BFA=\\angle ACE$, $\\because \\angle ACE=\\angle ABF$ \\\\\n$\\therefore \\angle BFA=\\angle ABF$, \\\\\n$\\therefore AB=AF$, thus $\\triangle BAF$ is an isosceles triangle, \\\\\nAs shown in the figure, draw $AH\\perp BF$ at H through A, then $BH=HF=\\frac{1}{2}BF$, \\\\\nExtend $AH$ to meet $\\odot O$ at P, connect $BP$, then $AP$ is the diameter, \\\\\n$\\therefore \\angle ABP=90^\\circ$, and since $AB=4\\sqrt{5}$, $AP=2AO=10$, \\\\\n$\\therefore BP=\\sqrt{AP^{2}-AB^{2}}=2\\sqrt{5}$, \\\\\nFrom $S_{\\triangle ABP}=\\frac{1}{2}AP\\cdot BH=\\frac{1}{2}AB\\cdot BP$, we get: $BH=\\frac{AB\\cdot BP}{AP}=\\frac{4\\sqrt{5}\\times 2\\sqrt{5}}{10}=4$, \\\\\n$\\therefore BF=2BH=\\boxed{8}$; \\\\\nWhen $\\angle BFA=\\angle E$, $\\because \\angle AFC=\\angle BFA+\\angle BFC=\\angle E+\\angle FAE$, \\\\\n$\\therefore \\angle BFC=\\angle FAE$ \\\\\n$\\therefore \\overset{\\frown}{BC}=\\overset{\\frown}{DF}$, thus $\\overset{\\frown}{BF}=\\overset{\\frown}{CD}$, \\\\\n$\\therefore BF=CD=AB=4\\sqrt{5}$, \\\\\nTo sum up, the length of $BF$ that satisfies the condition is either $8$ or $\\boxed{4\\sqrt{5}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52933588_183": { -"question": "As shown in Figure 1, it is known that the radius of $\\odot O$ is 5, and the chord $AB = 4\\sqrt{5}$. Points C and D are on the major arc $\\overset{\\frown}{BCA}$ (points B, C, D are arranged clockwise), $\\overset{\\frown}{CD} = \\overset{\\frown}{AB}$. Point F is a moving point on $\\overset{\\frown}{CD}$. Connect CF and extend it to intersect the extension line of chord AD at point E. $BC \\parallel AD$. As shown in Figure 3, when $\\angle B = 90^\\circ$ and $CE = 5\\sqrt{5}$, connect AC, OE, and let OE intersect $\\odot O$ at point K. Calculate the ratio of the area of $\\triangle KDE$ to the area of $\\triangle EOC$.", -"image_file_name": "7056088", -"image": [ -"math/52933588_997.png" -], -"solution": "\\textbf{Solution:} In Figure 3, connect $CD$,\\\\\n$\\because$ $\\angle B=90^\\circ$,\\\\\n$\\therefore$ $AC$ is the diameter of $\\odot O$,\\\\\n$\\therefore$ $\\angle ADC=90^\\circ$, $AC=2AO=10$,\\\\\nIn $Rt\\triangle CDE$, $CE=5\\sqrt{5}$, $CD=AB=4\\sqrt{5}$,\\\\\n$\\therefore$ $DE=\\sqrt{CE^{2}-CD^{2}}=3\\sqrt{5}$,\\\\\nIn $Rt\\triangle ADC$, $AD=\\sqrt{AC^{2}-CD^{2}}=2\\sqrt{5}$,\\\\\n$\\therefore$ $AE=AD+DE=5\\sqrt{5}$,\\\\\n$\\therefore$ $AE=CE$, thus $\\triangle AEC$ is an isosceles triangle,\\\\\n$\\because$ $AO=OC$,\\\\\n$\\therefore$ $OE\\perp AC$,\\\\\nIn $Rt\\triangle AOE$, $OE=\\sqrt{AE^{2}-OA^{2}}=\\sqrt{(5\\sqrt{5})^{2}-5^{2}}=10$,\\\\\n$\\therefore$ $KE=OE-OK=5$,\\\\\nDraw $KM\\perp DE$ at M through point K, then $\\angle KME=\\angle AOE=90^\\circ$, and also $\\angle KEM=\\angle AEO$,\\\\\n$\\therefore$ $\\triangle KME\\sim \\triangle AOE$,\\\\\n$\\therefore$ $\\frac{KM}{AO}=\\frac{KE}{AE}$, that is $\\frac{KM}{5}=\\frac{5}{5\\sqrt{5}}$,\\\\\nSolving for $KM$, we get: $KM=\\sqrt{5}$,\\\\\n$\\therefore$ $\\frac{S_{\\triangle KDE}}{S_{\\triangle EOC}}=\\frac{\\frac{1}{2}DE\\cdot KM}{\\frac{1}{2}OC\\cdot OE}=\\frac{3\\sqrt{5}\\times \\sqrt{5}}{5\\times 10}=\\boxed{\\frac{3}{10}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080245_25": { -"question": "As shown in the figure, the parabola $y = ax^{2} + bx + c \\left(a \\ne 0\\right)$ intersects the y-axis at point $C(0, 4)$ and intersects the x-axis at points A and B, where the coordinates of point A are $(-2, 0)$. The axis of symmetry of the parabola, $x = 1$, intersects the parabola at point D and intersects line $BC$ at point E. What is the equation of the parabola?", -"image_file_name": "7056499", -"image": [ -"math/53080245_246.png" -], -"solution": "\\textbf{Solution:} Given the problem, we know the parabola $y=ax^2+bx+c$ passes through points $C(0, 4)$ and $A(-2, 0)$, and its axis of symmetry is the line $x=1$,\n\\[\n\\therefore \\left\\{\\begin{array}{l}\nc=4 \\\\\n4a-2b+c=0 \\\\\n-\\frac{b}{2a}=1\n\\end{array}\\right.,\n\\]\nsolving this system yields\n\\[\n\\left\\{\\begin{array}{l}\na=-\\frac{1}{2} \\\\\nb=1 \\\\\nc=4\n\\end{array}\\right.,\n\\]\n\\[\n\\therefore \\text{the equation of the parabola is } y=-\\frac{1}{2}x^2+x+4=\\boxed{-\\frac{1}{2}x^2+x+4}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080245_26": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+c\\ (a\\ne 0)$ intersects the y-axis at point $C(0, 4)$ and intersects the $x$-axis at points A and B, where the coordinates of point A are $(-2, 0)$. The axis of symmetry of the parabola $x=1$ intersects the parabola at point D and intersects the line $BC$ at point E. Suppose point F is a moving point on the parabola above the line $BC$. Determine whether there exists a point F that maximizes the area of the quadrilateral $ABFC$. If such a point exists, find the coordinates of point F and the maximum area; if not, please explain why.", -"image_file_name": "7056499", -"image": [ -"math/53080245_246.png" -], -"solution": "\\textbf{Solution:} Existence is proven as follows: As shown in Figure 1, draw $FH \\perp x$-axis at point $H$ intersecting $BC$ at point $G$, and let $F(x, -\\frac{1}{2}x^2+x+4)$,\\\\\n$\\because$ Point $B$ is symmetric to point $A(-2, 0)$ with respect to the line $x=1$,\\\\\n$\\therefore B(4, 0)$, and $AB=6$,\\\\\nLet the equation of line $BC$ be $y=kx+4$, then $4k+4=0$,\\\\\nSolving gives $k=-1$,\\\\\n$\\therefore y=-x+4$,\\\\\n$\\therefore G(x, -x+4)$,\\\\\n$\\therefore FG=-\\frac{1}{2}x^2+2x$,\\\\\n$\\therefore S_{\\triangle FBC}=\\frac{1}{2} \\times 4(-\\frac{1}{2}x^2+2x)=-x^2+4x$,\\\\\n$\\therefore S_{\\text{quadrilateral} ABFC}=-x^2+4x+\\frac{1}{2} \\times 6 \\times 4=-(x-2)^2+16$,\\\\\n$\\therefore$ When $x=2$, the maximum area of $\\text{quadrilateral } ABFC=\\boxed{16}$, and $F(2, 4)$,\\\\\n$\\therefore$ The coordinates of point $F$ are $(2, 4)$, and the maximum area of quadrilateral $ABFC$ is $\\boxed{16}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080245_27": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+c\\ (a\\neq 0)$ intersects the y-axis at point $C(0, 4)$ and intersects the x-axis at points A and B, with the coordinates of point A being $(-2, 0)$. The axis of symmetry of the parabola, $x=1$, intersects the parabola at point D and intersects the line $BC$ at point E. Investigate whether there exists a point P on the axis of symmetry such that the triangle formed by points P, C, and A is an isosceles triangle. If such a point P exists, find the coordinates of all such points P that meet the condition. If it does not exist, please explain why.", -"image_file_name": "7056499", -"image": [ -"math/53080245_246.png" -], -"solution": "\\textbf{Solution:} Existence proved, let $P(1, m)$,\n\n$\\because A(-2, 0)$, $C(0, 4)$,\n\n$\\therefore AC^2=2^2+4^2=20$, $PA^2=m^2+(1+2)^2=m^2+9$, $PC^2=(m-4)^2+1^2=m^2-8m+17$,\n\nWhen $PA=PC$, then $m^2+9=m^2-8m+17$,\n\nSolving gives $m=1$,\n\n$\\therefore P_1(1, 1)$;\n\nWhen $PC=AC$, then $m^2-8m+17=20$,\n\nSolving gives $m_1=4-\\sqrt{19}$, $m_2=4+\\sqrt{19}$,\n\n$\\therefore P_2(1, 4-\\sqrt{19})$, $P_3(1, 4+\\sqrt{19})$;\n\nWhen $PA=AC$, then $m^2+9=20$,\n\nSolving gives $m_1=\\sqrt{11}$, $m_2=-\\sqrt{11}$,\n\n$\\therefore P_4(1, \\sqrt{11})$, $P_5(1, -\\sqrt{11})$,\n\nTherefore, summarizing the above, the coordinates of point $P$ are \\boxed{(1, 1)}, \\boxed{(1, 4-\\sqrt{19})}, \\boxed{(1, 4+\\sqrt{19})}, \\boxed{(1, \\sqrt{11})}, or \\boxed{(1, -\\sqrt{11})}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080553_29": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $y=-\\frac{1}{4}x^{2}+bx+c$ intersects with the line at points $B(2, 0)$ and $K(-12, -14)$, and intersects with the y-axis at point C. Find the equation of the parabola and the coordinates of its vertex.", -"image_file_name": "7056499", -"image": [ -"math/53080553_254.png" -], -"solution": "\\textbf{Solution:} Given that the parabola $y=-\\frac{1}{4}x^2+bx+c$ passes through points $B(2, 0)$ and $K(-12, -14)$,\\\\\nthen $\\begin{cases}-\\frac{1}{4}\\cdot 4+2b+c=0\\\\ -\\frac{1}{4}\\cdot 144-12b+c=-14\\end{cases}$,\\\\\nSolving this, we get $\\begin{cases}b=-\\frac{3}{2}\\\\ c=4\\end{cases}$,\\\\\nTherefore, the equation of the parabola is $y=-\\frac{1}{4}x^2-\\frac{3}{2}x+4$,\\\\\nSince $y=-\\frac{1}{4}x^2-\\frac{3}{2}x+4=-\\frac{1}{4}(x+3)^2+\\frac{25}{4}$,\\\\\nTherefore, the coordinates of the vertex are $\\boxed{\\left(-3, \\frac{25}{4}\\right)}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080553_30": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the parabola $y = -\\frac{1}{4}x^2 + bx + c$ intersects the line $KB$ at point $B(2, 0)$ and point $K(-12, -14)$, and intersects the y-axis at point $C$. Connect $BC$. Let point $P$ be a moving point on the parabola above line segment $BK$. Draw $PZ \\parallel x$-axis intersecting $CB$ at point $Z$, and draw $PQ \\parallel CB$ intersecting line $KB$ at point $Q$. Find the maximum value of $\\frac{6}{5}\\sqrt{5}PQ + PZ$ and the coordinates of point $P$ at this time?", -"image_file_name": "7056499", -"image": [ -"math/53080553_254.png" -], -"solution": "textbf{Solution:} Let $P\\left(t, -\\frac{1}{4}t^{2}-\\frac{3}{2}t+4\\right)\\left(-120$, $m>0$) intersect at points A and B respectively, and intersect with the x-axis at point C and with the y-axis at point D. The coordinates of point A are $(1, 3)$. What is the equation of line AB and the hyperbolic function $y=\\frac{m}{x}$?", -"image_file_name": "7056499", -"image": [ -"math/53080174_2610.png" -], -"solution": "\\textbf{Solution:} Substitute $ \\left(1, 3\\right)$ to get $ 3 = m$,\\\\\n$\\therefore$ the equation of line $AB$ is $y = -x + 4$, $y = \\boxed{\\frac{3}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53080174_34": { -"question": "As shown in the figure, it is known that the line $y=-x+m+1$ and the inverse proportional function $y=\\frac{m}{x}$ (where $x>0$, $m>0$) intersect at points A and B, respectively, and intersect the $x$-axis at point C and the $y$-axis at point D, and the coordinate of point A is $(1, 3)$. If point $P$ is a point on the $y$-axis, when the area of $\\triangle ABP$ is 6, find the coordinates of point $P$.", -"image_file_name": "7056499", -"image": [ -"math/53080174_2610.png" -], -"solution": "\\textbf{Solution:} Solve the system \n\\[\n\\begin{cases}\ny=\\frac{3}{x}\\\\\ny=-x+4\n\\end{cases},\n\\]\nto obtain\n\\[\n\\begin{cases}\nx_1=1\\\\\ny_1=3\n\\end{cases}, \n\\begin{cases}\nx_2=3\\\\\ny_2=1\n\\end{cases},\n\\]\n\\(\\therefore\\) the coordinates of point \\(B\\) are \\((3, 1)\\),\n\n\\(\\therefore AB=\\sqrt{(3-1)^2+(1-3)^2}=2\\sqrt{2}\\),\n\nsubstitute \\(x=0\\) into \\(y=-x+4\\) to get \\(y=4\\),\n\nsubstitute \\(y=0\\) into \\(y=-x+4\\) to get \\(x=4\\),\n\n\\(\\therefore\\) the coordinates of point \\(D\\) are \\((0, 4)\\), and the coordinates of point \\(C\\) are \\((4, 0)\\), \\(\\triangle DOC\\) is an isosceles right triangle, construct a line parallel to \\(AB\\) through point \\(P\\) intersecting the \\(x\\)-axis at point \\(M\\), construct \\(CF\\perp PM\\) at point \\(F\\),\n\nthen \\({S}_{\\triangle ABP}=\\frac{1}{2}AB\\cdot CF=2\\),\n\n\\(\\therefore CF=\\sqrt{2}\\)\n\n\\(\\because \\angle DCO=45^\\circ, \\angle BCF=90^\\circ\\), \\(PM\\parallel AB\\),\n\n\\(\\therefore \\angle FCM=\\angle FMC=45^\\circ\\)\n\n\\(\\therefore \\triangle CFM\\) is an isosceles right triangle,\n\n\\(\\therefore CM=\\sqrt{2}CF=2\\),\n\n\\(\\therefore\\) the coordinates of point \\(M\\) are \\((6, 0)\\),\n\nlet the equation of \\(PM\\) be \\(y=-x+b\\),\n\nsubstitute \\((6, 0)\\) into \\(y=-x+b\\): \\(0=-6+b\\),\n\nsolve to get \\(b=6\\),\n\nthe equation of line \\(PM\\) is \\(y=-x+6\\),\n\nlet \\(\\frac{3}{x}=-x+6\\)\n\nsolve to get \\({x}_{1}=3-\\sqrt{6}, {x}_{2}=3+\\sqrt{6}\\),\n\nsubstitute \\(x=3-\\sqrt{6}\\) into \\(y=-x+6\\) to get \\(y=3+\\sqrt{6}\\),\n\nsubstitute \\(x=3+\\sqrt{6}\\) into \\(y=-x+6\\) to get \\(y=3-\\sqrt{6}\\),\n\n\\(\\therefore\\) the coordinates of point \\(P\\) are \\(\\boxed{\\left(3-\\sqrt{6}, 3+\\sqrt{6}\\right)}\\) or \\(\\boxed{\\left(3+\\sqrt{6}, 3-\\sqrt{6}\\right)}\\).", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53080174_35": { -"question": "As shown in the figure, it is known that the line $y=-x+m+1$ intersects with the reciprocal function $y=\\frac{m}{x}$ ($x>0$, $m>0$) at points A and B, intersects the $x$-axis at point C, and intersects the $y$-axis at point D. The coordinates of point A are given as $(1, 3)$. If the line CD is translated 2 units to the right to obtain line EF, and the part of the hyperbola below line CD is folded along line CD, and if the folded image (the dashed part in the figure) has only one common point with line EF, then find the value of $m$.", -"image_file_name": "7056499", -"image": [ -"math/53080174_2610.png" -], -"solution": "\\textbf{Solution:} Consider the line $y=-x+m+1$. After translating it 2 units to the right, its equation becomes\n\\[y=-(x-2)+m+1=-x+m+3,\\]\nFor the lines $y=-x+m+1, y=-x+m+3$,\nand the inverse proportional function $y=\\frac{m}{x}$ symmetric about the line $y=x$,\nas illustrated, draw the line $y=x$, which intersects the hyperbola at point $M$, intersects the line $y=-x+m+1$ at point $N$,\nand intersects the line $y=-x+m+3$ at point $P$,\nSet $x=-x+m+1$,\nwe get $x=\\frac{m+1}{2}$,\nthus, the coordinates of point $N$ are $\\left(\\frac{m+1}{2}, \\frac{m+1}{2}\\right)$,\nSet $x=-x+m+3$, we obtain $x=\\frac{m+3}{2}$,\nthus, the coordinates of point $P$ are $\\left(\\frac{m+3}{2}, \\frac{m+3}{2}\\right)$,\nSet $x=\\frac{m}{x}$, solving gives $x=-\\sqrt{m}$ (discard) or $x=\\sqrt{m}$,\nthus, the coordinates of point $M$ are $\\left(\\sqrt{m}, \\sqrt{m}\\right)$,\nBased on the problem statement, points $M$, $P$ are symmetric about point $N$, meaning $N$ is the midpoint of $M$, $P$,\ntherefore $\\sqrt{m}+\\frac{m+3}{2}=2\\times \\frac{m+1}{2}$,\nsolving gives $m_1=3-2\\sqrt{2}$ (discard), $m_2=\\boxed{3+2\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53080621_37": { -"question": "As shown in the figure, the parabola $y=ax^2+3ax+c$ ($a>0$) intersects the y-axis at point C and the x-axis at points A and B, with point A to the left of point B. The coordinate of point B is $(1, 0)$, and $OC=3OB$. Find the equation of the parabola.", -"image_file_name": "7056499", -"image": [ -"math/53080621_273.png" -], -"solution": "\\textbf{Solution:} Because the coordinates of B are $(1,0)$,\\\\\ntherefore $OB = 1$.\\\\\nBecause $OC = 3OB = 3$, and point C is below the x-axis,\\\\\ntherefore C is $(0, -3)$.\\\\\nBecause substituting B $(1,0)$, C $(0, -3)$ into the quadratic equation yields $\\begin{cases}4a+c=0\\\\ c=-3\\end{cases}$, solving gives: $\\begin{cases}a=\\frac{3}{4}\\\\ c=-3\\end{cases}$,\\\\\ntherefore the equation of the parabola is $\\boxed{y=\\frac{3}{4}x^{2}+\\frac{9}{4}x-3}$.", -"solution_image": [ -"solution_images/53080621_270.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080621_38": { -"question": "Given, as shown in the graph, the parabola $y=ax^{2}+3ax+c$ ($a>0$) intersects with the y-axis at point C, and intersects with the x-axis at points A and B, where point A is to the left of point B. The coordinates of point B are $(1, 0)$, and $OC=3OB$. If point D is a moving point on the parabola below line segment AC, what is the maximum area of quadrilateral AOCD?", -"image_file_name": "7056499", -"image": [ -"math/53080621_273.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1: draw line DE through point D parallel to y-axis, intersecting AC at point E.\n\nSince $x=-\\frac{b}{2a}=\\frac{-\\frac{9}{4}}{2\\times \\frac{3}{4}}=-\\frac{3}{2}$, B(1,0),\n\ntherefore, A(-4,0).\n\nThus, AB=5.\n\nTherefore, $S_{\\triangle ABC}=\\frac{1}{2}$AB$\\cdot$OC$=\\frac{1}{2}\\times 5\\times 3=7.5$.\n\nSuppose the equation of AC is $y=kx+b$.\n\nSince substituting A(-4,0) and C(0,-3) gives $\\begin{cases}-4k+b=0\\\\ b=-3\\end{cases}$, we solve to get $\\begin{cases}k=-\\frac{3}{4}\\\\ b=-3\\end{cases}$,\n\nTherefore, the equation of line AC is $y=-\\frac{3}{4}x-3$.\n\nLet D(a, $\\frac{3}{4}a^{2}+\\frac{9}{4}a-3$), then E(a, $-\\frac{3}{4}a-3$).\n\nSince DE$=-\\frac{3}{4}a-3-\\left(\\frac{3}{4}a^{2}+\\frac{9}{4}a-3\\right)=-\\frac{3}{4}(a+2)^{2}+3$,\n\nTherefore, when $a=-2$, DE reaches its maximum value of 3.\n\nTherefore, the maximum area of $\\triangle ADC =\\frac{1}{2}$DE$\\cdot$AO$=\\frac{1}{2}\\times 3\\times 4=6$.\n\nTherefore, $S_{\\text{quadrilateral }ABCD}$=$S_{\\triangle ABC}$+$S_{\\triangle ACD}$=7.5+6=\\boxed{13.5},\n\nThus, the maximum area of quadrilateral ABCD is \\boxed{13.5}.", -"solution_image": [ -"solution_images/53080621_270.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080621_39": { -"question": "Given the parabola $y=ax^2+3ax+c$ ($a>0$) intersects the y-axis at point C and the x-axis at points A and B, with point A being to the left of point B. The coordinates of point B are $(1, 0)$, and $OC=3OB$. If point E lies on the x-axis and point P lies on the parabola, is there a parallelogram with vertices A, C, E, and P that has AC as one of its sides? If such a parallelogram exists, provide the coordinates of point P; if it does not exist, explain why.", -"image_file_name": "7056499", -"image": [ -"math/53080621_273.png" -], -"solution": "\\textbf{Solution:} There exist $\\boxed{P_1(-3, -3)}$, $\\boxed{P_2\\left(\\frac{-3-\\sqrt{41}}{2}, 3\\right)}$, $\\boxed{P_3\\left(\\frac{-3+\\sqrt{41}}{2}, 3\\right)}$.", -"solution_image": [ -"solution_images/53080621_270.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080571_41": { -"question": "As shown in Figure 1, the parabola \\(y = -x^2 + bx + c\\) intersects the x-axis at points A and B, and intersects the y-axis at point C \\((0, 3)\\). The axis of symmetry is the line \\(x=1\\), intersecting the x-axis at point D, and the vertex of the parabola is point E. What is the analytical expression of this parabola?", -"image_file_name": "7056499", -"image": [ -"math/53080571_281.png" -], -"solution": "\\textbf{Solution:} Since the parabola $y=-x^{2}+bx+c$ intersects the y-axis at point C(0, 3),\\\\\nlet $x=0$, then we have $c=3$,\\\\\nSince the axis of symmetry is the line $x=1$,\\\\\nit follows that $-\\frac{b}{2\\times (-1)}=1$,\\\\\nthus, $b=2$,\\\\\ntherefore, the equation of the parabola is $y=-x^{2}+2x+3=\\boxed{-x^{2}+2x+3}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080571_42": { -"question": "As shown in Figure 1, the parabola $y=-x^2+bx+c$ intersects the x-axis at points A and B, and intersects the y-axis at point C $(0,3)$. The axis of symmetry is the line $x=1$, which intersects the x-axis at point D. The vertex is point E. Connect AC, CE, AE. What is the area of $\\triangle ACE$?", -"image_file_name": "7056499", -"image": [ -"math/53080571_281.png" -], -"solution": "\\textbf{Solution:} As illustrated in figure 1, let the point of intersection between line AE and the y-axis be denoted as H,\\\\\ngiven the equation of the parabola as $y=-x^2+2x+3$,\\\\\nsetting $y=0$, yields $-x^2+2x+3=0$,\\\\\n$\\therefore x=-1$ or $x=3$,\\\\\n$\\therefore A(-1,0)$,\\\\\nwhen $x=1$, $y=-1+2+3=4$,\\\\\n$\\therefore E(1,4)$,\\\\\n$\\therefore$ the equation of line AE is $y=2x+2$,\\\\\n$\\therefore H(0,2)$,\\\\\n$\\therefore CH=3-2=1$,\\\\\n$\\therefore S_{\\triangle ACE}=\\frac{1}{2}CH\\cdot|x_E-x_A|=\\frac{1}{2}\\times 1\\times 2=\\boxed{1};$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080571_43": { -"question": "As shown in Figure 1, the parabola $y=-x^2+bx+c$ intersects the x-axis at points A and B, and intersects the y-axis at point C (0, 3). The axis of symmetry is the line $x=1$, which intersects the x-axis at point D, and the vertex is point E. As shown in Figure 2, point F is on the y-axis, and $OF=\\sqrt{2}$, point N is a moving point on the parabola within the first quadrant, and is to the right of the parabola's axis of symmetry. The line ON intersects the axis of symmetry at point G, and line GF is drawn. If GF bisects $\\angle OGE$, find the coordinates of point N.", -"image_file_name": "7056499", -"image": [ -"math/53080571_281.png" -], -"solution": "\\textbf{Solution:} Let $FP \\perp DE$ at point P through point F, thus $FP=1$. Draw $FQ \\perp ON$ at Q through point F, \\\\\nsince $GF$ bisects $\\angle OGE$, \\\\\ntherefore $FQ=FP=1$, \\\\\nin $\\triangle FQO$, $OF= \\sqrt{2}$, \\\\\naccording to the Pythagorean theorem, we get $OQ=\\sqrt{OF^{2}-FQ^{2}}=1$, \\\\\nthus $OQ=FQ$, \\\\\nthus $\\angle FOQ=45^\\circ$, \\\\\nthus $\\angle BON=90^\\circ-45^\\circ=45^\\circ$, \\\\\ndraw $QM \\perp OB$ at M through point Q, $OM=QM$ \\\\\ntherefore, the equation of $ON$ is $y=x$, \\\\\nsince point N lies on the parabola $y=-x^{2}+2x+3$, \\\\\nby solving the system $\\begin{cases}y=x\\\\ y=-x^{2}+2x+3\\end{cases}$, \\\\\nwe obtain $\\left\\{\\begin{array}{l}x=\\frac{1+\\sqrt{13}}{2}\\\\ y=\\frac{1+\\sqrt{13}}{2}\\end{array}\\right\\}$ or $\\left\\{\\begin{array}{l}x=\\frac{1-\\sqrt{13}}{2}\\\\ y=\\frac{1-\\sqrt{13}}{2}\\end{array}\\right\\}$ (since point N is to the right of the axis of symmetry $x=1$, the latter is discarded), \\\\\nthus, the coordinates of point N are: $\\left(\\boxed{\\frac{1+\\sqrt{13}}{2}}, \\boxed{\\frac{1+\\sqrt{13}}{2}}\\right)$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53078816_45": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the line $l\\colon y=kx-1$ ($k\\neq 0$) intersects with the graph of the function $y=\\frac{m}{x}$ ($x>0$) at point $A(3,2)$. What are the values of $k$ and $m$?", -"image_file_name": "7056499", -"image": [ -"math/53078816_291.png" -], -"solution": "\\textbf{Solution:} Since the line $l\\colon y=kx-1$ ($k\\neq 0$) intersects with the graph of the function $y=\\frac{m}{x}$ ($x>0$) at point $A(3,2)$,\\\\\nwe have $2=3k-1$ and $2=\\frac{m}{3}$,\\\\\nsolving these equations, we find $k=\\boxed{1}, m=\\boxed{6}$.", -"solution_image": [ -"solution_images/53078816_290.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53078816_46": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the line $l\\colon y=kx-1$ ($k\\neq 0$) intersects the graph of the function $y=\\frac{m}{x}$ ($x>0$) at point $A(3,2)$. After the line $l$ is translated upwards along the y-axis by $t$ ($t>0$) units, the resulting line intersects the $x$ axis and the $y$ axis at points $P$ and $Q$, respectively, and intersects the graph of the function $y=\\frac{m}{x}$ ($x>0$) at point $C$.", -"image_file_name": "7056499", -"image": [ -"math/53078816_291.png" -], -"solution": "\\textbf{Solution:}\\\\\n(1) Given the equation of line $l$ as $y=x-1$ and the equation of the hyperbola as $y=\\frac{6}{x}$,\\\\\nwhen $t=2$, the shifted equation of line $l$ is $y=x+1$,\\\\\nwhen $x=0$, $y=1$, and when $y=0$, $x=-1$,\\\\\n$\\therefore$ points $P(-1, 0), Q(0, 1)$,\\\\\ncombining $y=x+1$ and $y=\\frac{6}{x}$ yields:\\\\\n$\\begin{cases}\ny=x+1\\\\ \ny=\\frac{6}{x}\n\\end{cases}$, solving gives:\\\\\n$\\begin{cases}\nx_1=2\\\\ \ny_1=3\n\\end{cases}, \\begin{cases}\nx_2=-3\\\\ \ny_2=-2\n\\end{cases}$ (discarded),\\\\\n$\\therefore$ point $C(2, 3)$,\\\\\n$\\therefore QC=\\sqrt{(2-0)^2+(3-1)^2}=\\boxed{2\\sqrt{2}}$;\\\\\n(2) $1+\\frac{\\sqrt{2}}{2}0\\)) at points \\(A(m, 6)\\) and \\(B(n, 2)\\). The line \\(AC\\) is perpendicular to the \\(y\\)-axis at point \\(C\\), and the line \\(BD\\) is perpendicular to the \\(x\\)-axis at point \\(D\\). What is the value of \\(k\\)?", -"image_file_name": "7056499", -"image": [ -"math/53078921_311.png" -], -"solution": "\\textbf{Solution:} Since the graph of the linear function $y=-2x+8$ passes through the points $A(m,6)$ and $B(n,2)$,\\\\\nit follows that $-2m+8=6$ and $-2n+8=2$,\\\\\nfrom which we find $m=1$ and $n=3$.\\\\\nSince the graph of the function $y=\\frac{k}{x}$ (for $x>0$) passes through the points $A(1,6)$ and $B(3,2)$,\\\\\nit follows that $k=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53078921_54": { -"question": "As shown in the figure, the graph of the linear function $y=-2x+8$ intersects with the graph of the function $y=\\frac{k}{x}$ (where $x>0$) at points $A(m, 6)$ and $B(n, 2)$. Line segment $AC$ is perpendicular to the $y$-axis at point $C$, and line segment $BD$ is perpendicular to the $x$-axis at point $D$. Based on the graph, directly write down the range of values of $x$ for which $-2x+8-\\frac{k}{x}<0$.", -"image_file_name": "7056499", -"image": [ -"math/53078921_311.png" -], -"solution": "\\textbf{Solution:} The range of values for $x$ is \\boxed{03}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53078921_55": { -"question": "As illustrated in the figure, the graph of the linear function $y=-2x+8$ intersects with the graph of the function $y=\\frac{k}{x}$ ($x>0$) at points $A(m,6)$ and $B(n,2)$. $AC$ is perpendicular to the $y$-axis at point $C$, and $BD$ is perpendicular to the $x$-axis at point $D$. Let $P$ be a point on the line segment $AB$. Lines $PC$ and $PD$ are drawn. If the areas of triangles $\\triangle PCA$ and $\\triangle PDB$ are equal, find the coordinates of point $P$.", -"image_file_name": "7056499", -"image": [ -"math/53078921_311.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point $P$ on the line $y=-2x+8$ be $(x, -2x+8)$, \\\\\nby the equality of areas of $\\triangle PCA$ and $\\triangle PDB$, we get: $\\frac{1}{2}AC\\times |y_A-y_P|=\\frac{1}{2}BD\\times |y_B-y_P|$, \\\\\n$\\therefore \\frac{1}{2}\\times 1\\times[6-(-2x+8)]=\\frac{1}{2}\\times 2\\times(3-x)$, \\\\\nSolving this yields: $x=2$, \\\\\nthus $y=-2x+8=4$, \\\\\n$\\therefore$ the coordinates of point $P$ are $\\boxed{(2,4)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53078897_57": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the vertices $B$, $C$ of rectangle $ABCD$ are on the positive x-axis, with $AB=8$ and $BC=6$. The diagonals $AC$ and $BD$ intersect at point $E$. The graph of the inverse proportion function $y=\\frac{k}{x}(x>0)$ passes through point $E$ and intersects $AB$ and $CD$ at points $F$ and $G$, respectively. If $OC=10$, what is the value of $k$?", -"image_file_name": "7056499", -"image": [ -"math/53078897_3215.png" -], -"solution": "\\[\n\\textbf{Solution:} \\quad \\text{Given that in rectangle ABCD, AB = 8, BC = 6, and OC = 10,} \\\\\n\\therefore OB = OC - BC = 4, \\\\\n\\therefore B(4,0), A(4,8), C(10,0), \\\\\n\\text{since diagonals AC and BD intersect at point E,} \\\\\n\\therefore \\text{point E is the midpoint of AC,} \\\\\n\\therefore E(7,4), \\\\\n\\text{substituting } E(7,4) \\text{ into } y = \\frac{k}{x} \\text{ gives } k = 7 \\times 4 = \\boxed{28}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53078897_58": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertices $B$ and $C$ of rectangle $ABCD$ are located on the positive half of the $x$-axis, with $AB=8$ and $BC=6$. The diagonals $AC$ and $BD$ intersect at point $E$. The graph of the inverse proportion function $y=\\frac{k}{x}$ (for $x>0$) passes through point $E$ and intersects $AB$ and $CD$ at points $F$ and $G$, respectively. Connect $EG$. If $BF+BE=11$, what is the area of $\\triangle CEG$?", -"image_file_name": "7056499", -"image": [ -"math/53078897_3215.png" -], -"solution": "\\textbf{Solution:} \nGiven that $AC=\\sqrt{AB^2+BC^2}=\\sqrt{6^2+8^2}=10$,\\\\\nhence $BE=EC=5$,\\\\\nGiven that $BF+BE=11$,\\\\\nhence $BF=6$,\\\\\nLet $OB=t$, then $F(t,6)$, and $E(t+3,4)$,\\\\\nSince the graph of the inverse proportion function $y=\\frac{36}{x}$ passes through points E and F,\\\\\nthus $6t=4(t+3)$,\\\\\nSolving this, we find $t=6$,\\\\\nthus $k=6t=36$,\\\\\nHence, the equation of the inverse proportion function is $y=\\frac{36}{x}$,\\\\\nwhen $x=12$, $y=\\frac{36}{12}=3$,\\\\\nthus $G(12,3)$,\\\\\ntherefore, the area of $\\triangle CEG$ equals $\\frac{1}{2}\\times 3\\times 3=\\boxed{\\frac{9}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53147494_60": { -"question": "As shown in the figure, it's known that the point $A(-1,-3)$ lies on the line $l: y=kx-2$, and point $M(m,y_{1})$ is a moving point on the parabola $y=ax^{2}-4ax+2\\ (a\\neq 0)$. If the parabola intersects the line $l$ at point $A$.", -"image_file_name": "7056499", -"image": [ -"math/53147494_334.png" -], -"solution": "\\textbf{Solution:}\n\n(1) Substituting the point $A(-1,-3)$ into the line $l: y=kx-2$ yields\\\\\n$-k-2=-3$, solving this equation gives $k=1$,\\\\\nsubstituting the point $A(-1,-3)$ into the parabola $y=ax^2-4ax+2$ yields\\\\\n$a+4a+2=-3$, solving this equation gives $a=-1$;\\\\\n(2) Since $a=-1$ and $k=1$,\\\\\nthe parabola is $y=-x^2+4x+2$ and the line $l: y=x-2$,\\\\\nconsider $M(m,y_1)$ as a moving point on the parabola $y=-x^2+4x+2$,\\\\\nhence $y_1=-m^2+4m+2$,\\\\\nsince line segment $MN$ is parallel to the y-axis and intersects line $l$ at point $N$,\\\\\nwe have $N(m,m-2)$,\\\\\n$MN=-m^2+3m+4=-(m-\\frac{3}{2})^2+\\frac{25}{4}$,\\\\\nwhen $m=\\frac{3}{2}$, the maximal length of the line segment $MN$ is $\\boxed{\\frac{25}{4}}$, at this point the coordinates of $M$ are $\\left(\\frac{3}{2},\\frac{23}{4}\\right)$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53147494_61": { -"question": "Given that point $A(-1, -3)$ lies on the line $l: y=kx-2$, and point $M(m, y_1)$ is a moving point on the parabola $y=ax^2-4ax+2\\ (a\\neq 0)$. Point $B(x_2, y_2)$ is the intersection of the parabola and line $l$ in the first quadrant. If $y_1 \\leq y_2$, directly write out the range of values for $m$.", -"image_file_name": "7056499", -"image": [ -"math/53147494_334.png" -], -"solution": "\\textbf{Solution}: We have $\\boxed{m\\le 0}$ or $m\\ge 4}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53147831_63": { -"question": "In the Cartesian coordinate system, the graph of the quadratic function \\(y=ax^2+bx+c (a \\ne 0)\\) intersects the x-axis at points \\(A(-3,0)\\) and \\(B(1,0)\\), and intersects the y-axis at point \\(C(0, -3)\\). The vertex is \\(D\\), and its axis of symmetry intersects the x-axis at point \\(E\\). What is the analytic expression of the quadratic function?", -"image_file_name": "7056499", -"image": [ -"math/53147831_349.png" -], -"solution": "\\textbf{Solution:} Let $y=ax^{2}+bx+c\\ (a\\ne 0)$, \\\\\nsince $A(-3,0)$, $B(1,0)$, $C(0, -3)$, \\\\\ntherefore $\\begin{cases}\n(-3)^{2}a+(-3)b+c=0\\\\\na+b+c=0\\\\\nc=-3\n\\end{cases}$, \\\\\nhence $\\begin{cases}\na=1\\\\\nb=2\\\\\nc=-3\n\\end{cases}$, \\\\\ntherefore the quadratic function is: \\boxed{y=x^{2}+2x-3}.", -"solution_image": [ -"solution_images/53147831_343.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53147831_65": { -"question": "In the Cartesian coordinate system, the graph of the quadratic function $y=ax^2+bx+c\\ (a\\ne 0)$ intersects the x-axis at points $A(-3,0)$ and $B(1,0)$, and intersects the y-axis at point $C(0, -3)$. The vertex is denoted as $D$, and its axis of symmetry intersects the x-axis at point $E$. Let point $P$ be a point on the parabola in the third quadrant. The area of $\\triangle APC$ is denoted as $S$. Find the maximum value of $S$ and the coordinates of point $P$ at this time?", -"image_file_name": "7056499", -"image": [ -"math/53147831_349.png" -], -"solution": "\\textbf{Solution:} Suppose the equation of line $AC$ is: $y=kx+m$,\\\\\nsince $A(-3,0)$, $B(0, -3)$,\\\\\nthen $\\left\\{\\begin{array}{l}\n-3k+m=0\\\\\nm=-3\n\\end{array}\\right.$,\\\\\nthus $k=-1$, $m=-3$,\\\\\ntherefore $y=-x-3$.\\\\\nDraw a perpendicular line from point $P$ to the x-axis intersecting $AC$ at $G$, let $P\\left(x, -x-3\\right)$,\\\\\nthen $G\\left(x, -x-3\\right)$.\\\\\nSince point $P$ is in the third quadrant,\\\\\ntherefore $PG=-x-3-\\left(-x^2+2x-3\\right)$\\\\\n$=-x-3-x^2-2x+3$\\\\\n$=-x^2-3x$,\\\\\nthus the area of $\\triangle APC=\\frac{1}{2}PG\\cdot OA$\\\\\n$=\\frac{1}{2}\\left(-x^2-3x\\right)\\times 3$\\\\\n$=-\\frac{3}{2}x^2-\\frac{9}{2}x$\\\\\n$=-\\frac{3}{2}\\left(x+\\frac{3}{2}\\right)^2+\\frac{27}{8}$.\\\\\nTherefore, when $x=-\\frac{3}{2}$, the maximum area $S_{\\text{max}}=\\boxed{\\frac{27}{8}}$, at this point $P\\left(-\\frac{3}{2}, -\\frac{15}{4}\\right)$.", -"solution_image": [ -"solution_images/53147831_343.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53147831_66": { -"question": "In the Cartesian coordinate system, the graph of the quadratic function $y=ax^2+bx+c\\ (a \\neq 0)$ intersects the x-axis at points $A(-3,0)$ and $B(1,0)$, and intersects the y-axis at point $C(0, -3)$. The vertex of the parabola is $D$, and its axis of symmetry intersects the x-axis at point $E$. On the segment $AC$, is there a point $F$ such that triangle $\\triangle AEF$ is an isosceles triangle? If such a point exists, provide the coordinates of point $F$ directly; if it does not exist, please explain the reason.", -"image_file_name": "7056499", -"image": [ -"math/53147831_349.png" -], -"solution": "\\textbf{Solution}: Let $F_1(-1, -2)$, $F_2(\\sqrt{2}-3, -\\sqrt{2})$, and $F_3(-2, -1)$. $\\boxed{F_1(-1, -2)}$, $\\boxed{F_2(\\sqrt{2}-3, -\\sqrt{2})}$, and $\\boxed{F_3(-2, -1)}$.", -"solution_image": [ -"solution_images/53147831_343.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53147515_68": { -"question": "As shown in the figure, the coordinates of points A and B are respectively $(-2,0)$ and $(0,3)$. Rotating line segment AB $90^\\circ$ counterclockwise around point B gives line segment BC. Draw line CD $\\perp$ OB with the foot of the perpendicular being D. The graph of the inverse proportion function $y=\\frac{k}{x}$ passes through point C. Write down the coordinates of point C directly, and find the equation of the inverse proportion function.", -"image_file_name": "7056499", -"image": [ -"math/53147515_351.png" -], -"solution": "\\textbf{Solution:} We have $C(3,1)$; $k=3\\times1=3$,\\\\\n$\\therefore$ the equation of the inverse proportion function is $\\boxed{y=\\frac{3}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53147515_69": { -"question": "As shown in the figure, the coordinates of points A and B are $(-2,0)$ and $(0,3)$, respectively. Segment AB is rotated counterclockwise by $90^\\circ$ about point B to obtain segment BC. Through point C, line CD is drawn perpendicular to OB, with D being the foot of the perpendicular. The graph of the inverse proportion function $y=\\frac{k}{x}$ passes through point C. Point P is on the graph of the inverse proportion function $y=\\frac{k}{x}$. When the area of $\\triangle PCD$ is 3, find the coordinates of point P.", -"image_file_name": "7056499", -"image": [ -"math/53147515_351.png" -], -"solution": "\\textbf{Solution:} Let $P\\left( \\frac{3}{m}, m \\right)$,\\\\\nsince $CD \\perp y$-axis, and $CD = 3$,\\\\\nfrom the area of $\\triangle PCD$ being 3, we have: $\\frac{1}{2}CD \\cdot |m-1|=3$,\\\\\nthus, $\\frac{1}{2} \\times 3 |m-1| = 3$,\\\\\nthus, $m-1 = \\pm 2$,\\\\\nthus, $m=3$ or $m=-1$,\\\\\nwhen $m=3$, $\\frac{3}{m}=1$; when $m=-1$, $\\frac{3}{m}=-3$,\\\\\nthus, the coordinates of point P are $\\boxed{(1, 3)}$ or $\\boxed{(-3, -1)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53148288_71": { -"question": "In the Cartesian coordinate system, the parabola $y = ax^2 - 6ax - 16a \\, (a \\neq 0)$ intersects the $x$-axis at points $A$ and $B$, and intersects the $y$-axis at point $C$. The line $BC$ is drawn, and it is known that point C is at $(0,4)$. Find the coordinates of points $A$ and $B$, and the equation of the parabola?", -"image_file_name": "7056499", -"image": [ -"math/53148288_365.png" -], -"solution": "\\textbf{Solution:}\n\nGiven $y=-\\frac{1}{4}x^2+\\frac{3}{2}x+4$ passes through point $C(0, 4)$,\\\\\n$\\therefore -16a=4$,\\\\\nsolving for $a$ gives $a=-\\frac{1}{4}$,\\\\\n$\\therefore y=-\\frac{1}{4}x^2+\\frac{3}{2}x+4$;\\\\\nLet $y=0$, i.e., $-\\frac{1}{4}x^2+\\frac{3}{2}x+4=0$,\\\\\nsolving yields: $x_1=-2, x_2=8$\\\\\n$\\therefore \\boxed{A(-2, 0)}, \\boxed{B(8, 0)}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53065570_74": { -"question": "As shown in the figure, the graph of the linear function $y=kx+2$ intersects the x-axis and the y-axis at points $A$ and $B$, respectively, and intersects the graph of the inverse proportion function $y=\\frac{n}{x}$ $(n \\neq 0)$ at point $C$ in the first quadrant. If $OA=OB$, and $B$ is the midpoint of segment $AC$, find the analytical expressions of the linear function and the inverse proportion function.", -"image_file_name": "7056499", -"image": [ -"math/53065570_3710.png" -], -"solution": "\\textbf{Solution:} Construct $CD\\perp x$-axis at $D$,\\\\\nsince the graph of the linear function $y=kx+2$ intersects the $y$-axis at point $B$,\\\\\nthus $B(0, 2)$,\\\\\ntherefore $OB=2$,\\\\\ntherefore $OA=OB=2$,\\\\\nthus $A\\left(-2, 0\\right)$,\\\\\nsubstituting $A\\left(-2, 0\\right)$ into $y=kx+2$ gives $k=1$,\\\\\ntherefore, the equation of the linear function is $y=x+2$;\\\\\nFurthermore, since $B$ is the midpoint of the segment $AC$, and $OB\\parallel CD$,\\\\\nthus $OB$ is the median of $\\triangle ACD$,\\\\\nthus $OA=OD=2$, $CD=2OB=4$,\\\\\nthus $C(2, 4)$,\\\\\nsince the graph of the inverse proportionality function $y=\\frac{n}{x}(n\\ne 0)$ intersects in the first quadrant at point $C$,\\\\\nthus $n=2\\times 4=8$,\\\\\nthus, the equation of the inverse proportionality function is $y=\\frac{8}{x}$\\\\\nTherefore, the equations of the linear function and the inverse proportionality function are $\\boxed{y=x+2}$ and $\\boxed{y=\\frac{8}{x}}$, respectively;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53065570_75": { -"question": "As shown in the figure, the graph of the linear function $y=kx+2$ intersects the x-axis and the y-axis at points $A$ and $B$, respectively. It also intersects the graph of the inverse proportion function $y=\\frac{n}{x} (n\\ne 0)$ at point $C$ in the first quadrant. If $OA=OB$ and $B$ is the midpoint of the line segment $AC$. Directly write down the solution set of the inequality $kx+2<\\frac{n}{x}$.", -"image_file_name": "7056499", -"image": [ -"math/53065570_3710.png" -], -"solution": "\\textbf{Solution:} The solution set of $x<-4$ or $0\\frac{k}{x}$?", -"image_file_name": "7056499", -"image": [ -"math/53065859_394.png" -], -"solution": "\\textbf{Solution:} The solution set of the inequality $mx+n>\\frac{k}{x}$ is $x<-2$ or $00$) at points $A(m, 6)$ and $B(3, n)$. Find the explicit expression of the linear function.", -"image_file_name": "7056499", -"image": [ -"math/53043725_486.jpeg" -], -"solution": "\\textbf{Solution:} Given points A(1, 6) and B(3, 2) are on the graph of the inverse proportional function $y=\\frac{6}{x}$ ($x>0$),\\\\\n$\\therefore$ 6m=3n=6,\\\\\n$\\therefore$ m=1, n=2,\\\\\nAlso, since points A(1, 6) and B(3, 2) are on the graph of the linear function $y=kx+b$ ($k\\neq 0$),\\\\\n$\\therefore$ $\\left\\{\\begin{array}{l}6=k+b \\\\ 2=3k+b \\end{array}\\right.$,\\\\\nSolving these, we get $\\left\\{\\begin{array}{l}k=-2 \\\\ b=8 \\end{array}\\right.$,\\\\\nThus, the equation of the linear function is: $\\boxed{y=-2x+8}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043725_111": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ ($k\\ne 0$) intersects with the graph of the inverse proportion function $y=\\frac{6}{x}$ ($x>0$) at points $A(m, 6)$ and $B(3, n)$. Based on the graph, directly write the range of $x$ values for which $kx+b<\\frac{6}{x}$ holds.", -"image_file_name": "7056499", -"image": [ -"math/53043725_486.jpeg" -], -"solution": "\\textbf{Solution:} For the values of $x$ that satisfy $kx+b<\\frac{6}{x}$, the range of $x$ is $03$, \\\\\nthus the answer is $x \\in \\boxed{(0,1) \\cup (3, +\\infty)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043725_112": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ (where $k\\ne 0$) intersects with the graph of the inverse proportion function $y=\\frac{6}{x}$ (where $x>0$) at points $A(m, 6)$ and $B(3, n)$. Find the area of triangle $\\triangle AOB$.", -"image_file_name": "7056499", -"image": [ -"math/53043725_486.jpeg" -], -"solution": "\\textbf{Solution:} As shown in the diagram, lines are drawn from point A and point B perpendicular to the x-axis, meeting the x-axis at points E and C respectively. The line AB intersects the x-axis at point D.\\\\\nLet $-2x+8=0$, we get $x=4$, that is, D(4,0).\\\\\nSince A(1,6) and B(3,2),\\\\\nit follows that AE=6 and BC=2,\\\\\ntherefore, the area of triangle AOB is calculated as $S_{\\triangle AOB}=S_{\\triangle AOD}-S_{\\triangle BOD}=\\frac{1}{2}\\times4\\times6-\\frac{1}{2}\\times4\\times2=\\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043807_114": { -"question": "As shown in the graph, within the Cartesian coordinate system, the parabola $y = \\frac{1}{2}x^{2} + bx + c$ passes through point $A(-4,0)$. Point $M$ is the vertex of the parabola, and point $B$ is on the $y$-axis, with $OA=OB$. The line $AB$ intersects with the parabola at point $C(2,6)$ in the first quadrant. Find the equation of the parabola and the coordinates of the vertex $M$?", -"image_file_name": "7056499", -"image": [ -"math/53043807_491.png" -], -"solution": "\\textbf{Solution:} Let's substitute $A(-4,0)$, $C(2,6)$ into $y=\\frac{1}{2}x^{2}+bx+c$, we get: $\\left\\{\\begin{array}{l}0=\\frac{1}{2}\\times 16-4b+c \\\\ 6=\\frac{1}{2}\\times 4+2b+c\\end{array}\\right.$. Solving these, we find $\\left\\{\\begin{array}{l}b=2 \\\\ c=0\\end{array}\\right.$, \\\\\n$\\therefore$ the equation of the parabola is $y=\\frac{1}{2}x^{2}+2x=\\frac{1}{2}(x+2)^{2}-2$, \\\\\n$\\therefore$ the coordinates of the vertex $M$ are $\\boxed{(-2,-2)}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043807_115": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $y=\\frac{1}{2}x^{2}+bx+c$ passes through point $A(-4, 0)$. Point $M$ is the vertex of the parabola, and point $B$ is on the $y$-axis, with $OA=OB$. The line $AB$ intersects the parabola at point $C(2, 6)$ in the first quadrant. Find the equation of line $AB$ and the value of $\\sin\\angle ABO$; connect $OC$. If a line through point $O$ intersects segment $AC$ at point $P$, dividing the area of triangle $AOC$ into two parts in the ratio $1:2$, find the coordinates of point $P$.", -"image_file_name": "7056499", -"image": [ -"math/53043807_491.png" -], -"solution": "\\textbf{Solution:} Given that $A(-4,0)$, \\\\\ntherefore $OA=4$, \\\\\nsince $OA=OB$, \\\\\nthus $OB=4$, \\\\\ntherefore, $B(0,4)$, \\\\\nLet the equation of line AB be $y=kx+b$, \\\\\nSubstituting $A(-4,0)$ and $B(0,4)$ into the equation yields: $\\left\\{\\begin{array}{l}0=-4k+b \\\\ 4=b\\end{array}\\right.$, \\\\\nSolving this, we get $\\left\\{\\begin{array}{l}k=1 \\\\ b=4\\end{array}\\right.$, \\\\\nTherefore, the equation of line AB is $y=x+4$, \\\\\nIn $\\triangle AOB$, $AB=\\sqrt{OA^2+OB^2}=4\\sqrt{2}$, \\\\\nthus $\\sin\\angle ABO=\\frac{OA}{AB}=\\frac{4}{4\\sqrt{2}}=\\frac{\\sqrt{2}}{2}$. \\\\\nA line through the point O intersects segment AC at point P, dividing the area of triangle AOC into two parts with a ratio of 1:2. Draw $PQ\\perp x$-axis at Q, and draw $CH\\perp x$-axis at H, \\\\\nWe consider two cases: \\\\\n(1) If $S_{\\triangle AOP}:S_{\\triangle COP}=1:2$, \\\\\nsince $S_{\\triangle AOP}:S_{\\triangle AOC}=1:3$, \\\\\ntherefore $PQ:CH=1:3$, \\\\\ngiven that $C(2,6)$, \\\\\nthus $CH=6$, \\\\\ntherefore $PQ=2$, i.e., $y_P=2$, \\\\\nIn $y=x+4$, setting $y=2$ gives, $2=x+4$, \\\\\nthus $x=-2$, \\\\\ntherefore $P(-2,2)$; \\\\\n(2) If $S_{\\triangle COP}:S_{\\triangle AOP}=1:2$, \\\\\nsince $S_{\\triangle COP}:S_{\\triangle AOP}=1:2$, \\\\\ntherefore $S_{\\triangle AOP}:S_{\\triangle AOC}=2:3$, \\\\\nthus $PQ:CH=2:3$, \\\\\ngiven that $CH=6$, \\\\\ntherefore $PQ=4$, i.e., $y_P=4$, \\\\\nIn $y=x+4$, setting $y=4$ gives, $4=x+4$, \\\\\nthus $x=0$, \\\\\ntherefore $P(0,4)$; \\\\\nIn summary, a line through the point O intersects segment AC at point P, dividing the area of triangle AOC into two parts with a ratio of 1:2, then the coordinates of P are \\boxed{(-2,2)} or \\boxed{(0,4)}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043807_116": { -"question": "As shown in the graph, in the Cartesian coordinate system, the parabola $y=\\frac{1}{2}x^{2}+bx+c$ passes through point $A(-4,0)$. Point $M$ is the vertex of the parabola, and point $B$ is on the $y$-axis, with $OA=OB$. The line $AB$ intersects the parabola in the first quadrant at point $C(2,6)$. Is there a point $N$ in the coordinate plane such that the quadrilateral with vertices $A$, $O$, $C$, and $N$ is a parallelogram? If it exists, please write the coordinates of point $N$ directly; if not, please explain why.", -"image_file_name": "7056499", -"image": [ -"math/53043807_491.png" -], -"solution": "\\textbf{Solution:} There exists, the coordinates of point $N$ are: $\\boxed{(6,6)}$, $\\boxed{(-2,6)}$, or $\\boxed{(-6,-6)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043922_118": { -"question": "As shown in the figure, the parabola $y=-x^2+bx+c$ passes through point $A(3, 0)$ and point $B(0, 3)$. Find the expression of the parabola and the coordinates of vertex $C$.", -"image_file_name": "7056499", -"image": [ -"math/53043922_503.png" -], -"solution": "\\textbf{Solution:} Substitute $A\\left(3, 0\\right)$ and $B\\left(0, 3\\right)$ into the parabola equation $y=-{x}^{2}+bx+c$ and get:\n\\[\n\\begin{cases}\n3b+c-9=0\\\\\nc=3\n\\end{cases}\n\\]\nSolving these, we find $b=2$ and $c=3$;\\\\\nTherefore, the equation of the parabola is: $y=-{x}^{2}+2x+3$\\\\\nSince $y=-{x}^{2}+2x+3=-{\\left(x-1\\right)}^{2}+4$,\\\\\nTherefore, the coordinates of the vertex $C$ of the parabola are: $\\boxed{\\left(1, 4\\right)}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043682_121": { -"question": "As shown in the figure, the graph of the linear function $y=kx+2$ intersects with the graph of the inverse proportion function $y=\\frac{m}{x}$ (where $x>0$) at point $P$. Point $P$ is located in the first quadrant, with $PA\\perp x$-axis at point A. The graph of the linear function intersects the x-axis and y-axis at points $C$ and $D$, respectively, and ${S}_{\\triangle COD}=1$, $\\frac{CO}{OA}=\\frac{1}{2}$. What are the coordinates of point $D$?", -"image_file_name": "7056499", -"image": [ -"math/53043682_515.png" -], -"solution": "\\textbf{Solution:} In the equation $y=kx+2$, let $x=0$, then $y=2$. \\\\\n$\\therefore$ The coordinates of point D are $\\boxed{(0, 2)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043682_122": { -"question": "As shown in the figure, the graph of the linear function $y=kx+2$ intersects with the graph of the hyperbolic function $y=\\frac{m}{x}$ ($x>0$) at point P, which lies in the first quadrant. $PA$ is perpendicular to the $x$-axis at point A. The graph of the linear function intersects the $x$-axis and $y$-axis at points C and D, respectively, and the area of $\\triangle COD$ is 1, and $\\frac{CO}{OA}=\\frac{1}{2}$. Find the analytical expressions of the linear function and the hyperbolic function?", -"image_file_name": "7056499", -"image": [ -"math/53043682_515.png" -], -"solution": "\\textbf{Solution:} Given $PA\\perp CA$, $DO\\perp CO$,\\\\\n$\\therefore \\angle PAC=\\angle COD=90^\\circ$\\\\\nSince $\\angle DCO=\\angle DCO$,\\\\\n$\\therefore Rt\\triangle PAC\\sim Rt\\triangle DOC$\\\\\nGiven $\\frac{CO}{OA}=\\frac{1}{2}$, and $OD=2$,\\\\\n$\\therefore \\frac{OD}{PA}=\\frac{CO}{CA}=\\frac{1}{3}$\\\\\nWe find $PA=6$\\\\\nGiven ${S}_{\\triangle COD}=1$, we have: $\\frac{1}{2}OC\\cdot OD=1$,\\\\\nWe find $OC=1$\\\\\n$\\therefore OA=2$, $P(2, 6)$\\\\\nSubstitute $P(2, 6)$ into $y=kx+2$ and $y=\\frac{m}{x}$\\\\\nThus, the linear function is $y=2x+2$, and the inverse proportion function is $\\boxed{y=\\frac{12}{x}}\\left(x>0\\right)$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043682_123": { -"question": "As shown in the figure, the graph of the linear function $y=kx+2$ intersects with the graph of the inverse proportion function $y=\\frac{m}{x}$ at point P, which lies in the first quadrant. $PA\\perp x$ axis at point A, and the graph of the linear function intersects the x-axis and y-axis at points C and D, respectively, with $S_{\\triangle COD}=1$ and $\\frac{CO}{OA}=\\frac{1}{2}$. Based on the figure, directly write the range of $x$ for which $x>0$ and the value of the linear function is greater than or equal to the value of the inverse proportion function.", -"image_file_name": "7056499", -"image": [ -"math/53043682_515.png" -], -"solution": "\\textbf{Solution:} According to the graph, we directly write that for $x>0$, the range of x for which the value of the linear function is greater than or equal to the value of the inverse proportion function is $x\\ge \\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043766_125": { -"question": "As shown in Figure (1), it is known that the line $y = \\frac{4}{3}x + 4$ intersects the x-axis at point A and the y-axis at point C. A parabola $y = ax^2 + bx + c$ passes through points A and C, and intersects the x-axis at another point, B, with its axis of symmetry being the line $x = -1$. Let D be a moving point on the parabola in the second quadrant with its x-coordinate being $m$. What is the equation of the parabola?", -"image_file_name": "7056499", -"image": [ -"math/53043766_523.png" -], -"solution": "\\textbf{Solution:} Substituting $x=0$ into $y=\\frac{4}{3}x+4$, we get $y=4$.\\\\\n$\\therefore$ The coordinates of point C are $(0,4)$.\\\\\nSubstituting $y=0$ into $y=\\frac{4}{3}x+4$, we get $x=-3$.\\\\\n$\\therefore$ The coordinates of point A are $(-3,0)$.\\\\\n$\\because$ The axis of symmetry for the parabola is the line $x=-1$,\\\\\n$\\therefore$ $-\\frac{b}{2a}=-1$, that is, $b=2a$.\\\\\nForming a system of equations from the given information, we get\\\\\n$\\begin{cases}\n9a-3b+c=0,\\\\\nb=2a,\\\\\nc=4.\n\\end{cases}$ Solving this system, we find $\\begin{cases}\na=-\\frac{4}{3},\\\\\nb=-\\frac{8}{3},\\\\\nc=4.\n\\end{cases}$\\\\\n$\\therefore$ The equation of the parabola is $y=-\\frac{4}{3}x^2-\\frac{8}{3}x+4$.\\\\\nHence, the expression for the parabola is $\\boxed{y=-\\frac{4}{3}x^2-\\frac{8}{3}x+4}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043766_126": { -"question": "As shown in Figure (1), it's known that the line $y=\\frac{4}{3}x+4$ intersects the x-axis at point A and the y-axis at point C. The parabola $y=ax^2+bx+c$ passes through points A and C, also intersects the x-axis at another point B, with its axis of symmetry being the line $x=-1$. Point D is a moving point on the parabola in the second quadrant, and the x-coordinate of D is denoted as $m$. What is the maximum value of the area $S$ of quadrilateral $ABCD$ and the coordinates of D at this maximum?", -"image_file_name": "7056499", -"image": [ -"math/53043766_523.png" -], -"solution": "\\textbf{Solution:} Connect $OD$,\\\\\nsince point B is symmetric to point $A(-3,0)$ with respect to the line $x=-1$,\\\\\ntherefore, the coordinates of point B are $(1,0)$.\\\\\nAccording to the problem, the coordinates of point D are $(m, -\\frac{4}{3}m^{2}-\\frac{8}{3}m+4)$.\\\\\nTherefore, the area $S_{\\text{quadrilateral} ABCD}$ of quadrilateral $ABCD$ equals $S_{\\triangle OAD}+S_{\\triangle OCD}+S_{\\triangle OBC}$\\\\\n$=\\frac{1}{2}\\times3\\times(-\\frac{4}{3}m^{2}-\\frac{8}{3}m+4)+\\frac{1}{2}\\times4\\times(-m)+\\frac{1}{2}\\times1\\times4$\\\\\n$=-2m^{2}-6m+8=-2(m+\\frac{3}{2})^{2}+\\frac{25}{2}$\\\\\nSince $-2<0$,\\\\\ntherefore, when $m=-\\frac{3}{2}$, the maximum area of quadrilateral $ABCD$ is $\\boxed{\\frac{25}{2}}$.\\\\\nAt this point, the coordinates of point D are $\\boxed{(-\\frac{3}{2}, 5)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043766_127": { -"question": "As shown in Figure (1), it is known that the line $y=\\frac{4}{3}x+4$ intersects the x-axis at point A and the y-axis at point C. The parabola $y=ax^2+bx+c$ passes through points A and C, and has another intersection with the x-axis at point B. The axis of symmetry is the line $x=-1$. D is a moving point on the parabola in the second quadrant, and the x-coordinate of point D is denoted by m. A perpendicular line is drawn from point D to the y-axis, creating a perpendicular foot at point E, as shown in Figure (2). Is there a point D that makes $\\triangle CDE$ similar to $\\triangle AOC$? If so, find the value of the x-coordinate m of point D; if not, please explain why.", -"image_file_name": "7056499", -"image": [ -"math/53043766_523.png" -], -"solution": "\\textbf{Solution:} Existence proven. From the given information, we have: $OA=3$, $OC=4$, $DE=-m$,\\\\\nsince $\\triangle CDE$ is similar to $\\triangle AOC$, $\\angle AOC=\\angle CED=90^\\circ$\\\\\ntherefore $\\triangle CDE\\sim \\triangle ACO$ or $\\triangle CDE\\sim \\triangle CAO$\\\\\nthus $\\frac{CE}{DE}=\\frac{OA}{OC}=\\frac{3}{4}$ or $\\frac{CE}{DE}=\\frac{OC}{OA}=\\frac{4}{3}$\\\\\ntherefore $CE=-\\frac{3}{4}m$ or $-\\frac{4}{3}m$\\\\\nhence, point $D$'s coordinates are $(m, -\\frac{3}{4}m+4)$ or $(m, \\frac{3}{4}m+4)$ or $(m, -\\frac{4}{3}m+4)$ or $(m, \\frac{4}{3}m+4)$\\\\\nSubstituting $(m, -\\frac{3}{4}m+4)$ into $y=-\\frac{4}{3}x^2-\\frac{8}{3}x+4$, yields: $-\\frac{3}{4}m+4=-\\frac{4}{3}m^2-\\frac{8}{3}m+4$\\\\\nSolving gives $m=\\boxed{-\\frac{23}{16}}$;\\\\\nSubstituting $(m, \\frac{3}{4}m+4)$ into $y=-\\frac{4}{3}x^2-\\frac{8}{3}x+4$, yields: $\\frac{3}{4}m+4=-\\frac{4}{3}m^2-\\frac{8}{3}m+4$\\\\\nSolving gives $m=\\boxed{-\\frac{41}{16}}$;\\\\\nSubstituting $(m, -\\frac{4}{3}m+4)$ into $y=-\\frac{4}{3}x^2-\\frac{8}{3}x+4$, yields: $-\\frac{4}{3}m+4=-\\frac{4}{3}m^2-\\frac{8}{3}m+4$\\\\\nSolving gives $m=\\boxed{-1}$;\\\\\nSubstituting $(m, \\frac{4}{3}m+4)$ into $y=-\\frac{4}{3}x^2-\\frac{8}{3}x+4$, yields: $\\frac{4}{3}m+4=-\\frac{4}{3}m^2-\\frac{8}{3}m+4$\\\\\nSolving gives $m=-3$, which is discarded;\\\\\ntherefore, the possible values for $m$ are $\\boxed{-\\frac{23}{16}}$, $\\boxed{-1}$, or $\\boxed{-\\frac{41}{16}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043068_129": { -"question": "As shown in the figure, the graph of the inverse proportion function $y=\\frac{k_1}{x}$ intersects with the graph of the direct proportion function $y=k_2x$ at points $A(a, 1)$ and B. Point $M(a-3, a)$ lies on the graph of the inverse proportion function. Connect $OM$ and $BM$, where $BM$ intersects the y-axis at point N. Determine the analytic expression of the inverse proportion function.", -"image_file_name": "7056499", -"image": [ -"math/53043068_536.png" -], -"solution": "\\textbf{Solution:} Since points A$(4,1)$ and M$(1,4)$ lie on the graph of an inverse variation function, \\\\\nit follows that the equation of the inverse variation function is $\\boxed{y=\\frac{4}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043068_130": { -"question": "As shown in the figure, the graph of the inverse proportion function $y = \\frac{k_1}{x}$ intersects with the graph of the direct proportion function $y = k_2x$ at points $A(a, 1)$ and $B$. The point $M(a-3, a)$ lies on the graph of the inverse proportion function. Connect $OM$ and extend $BM$ to intersect the y-axis at point $N$. What is the area of $\\triangle BOM$?", -"image_file_name": "7056499", -"image": [ -"math/53043068_536.png" -], -"solution": "\\textbf{Solution:} Since the graph of the inverse proportion function $y=\\frac{k_1}{x}$ intersects with the graph of the direct proportion function $y=k_2x$ at points A and B, and given A(4, 1),\\\\\nit follows that the coordinates of point B are $(-4, -1)$,\\\\\nAssuming the equation of line $BM$ is $y=mx+b$,\\\\\nSubstituting points $B(-4, -1)$ and $M(1, 4)$ we have\\\\\n$\\left\\{\n\\begin{array}{ll}\n-4m+b=-1\\\\\nm+b=4\n\\end{array}\n\\right.$,\\\\\nSolving this gives $\\left\\{\n\\begin{array}{ll}\nm=1\\\\\nb=3\n\\end{array}\n\\right.$,\\\\\ntherefore, the equation of line $BM$ is $y=x+3$,\\\\\nwhen $x=0$, $y=3$,\\\\\nthus, the coordinates of point N are (0, 3),\\\\\nAs shown in the figure, vertical lines to the y-axis are drawn through points M and B, with the feet of the perpendiculars being points P and Q, respectively,\\\\\nthus, $PM=1$, $BQ=4$,\\\\\nTherefore, $S_{\\triangle BOM}=S_{\\triangle BON}+S_{\\triangle MON}=\\frac{1}{2}\\times 3\\times 4+\\frac{1}{2}\\times 3\\times 1=\\boxed{\\frac{15}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53042870_132": { -"question": "As shown in the figure, it is known that the vertex of the parabola $y=ax^2+bx+c$ is $A(4, 3)$, and it intersects the y-axis at point $B(0, -5)$. The axis of symmetry is line $l$, and point $M$ is the midpoint of segment $AB$. What is the equation of the parabola?", -"image_file_name": "7056499", -"image": [ -"math/53042870_541.png" -], -"solution": "\\textbf{Solution:} Let the function be expressed as: $y=a(x-4)^2+3$, \\\\\nSubstituting the coordinates of point B into the equation and solving, we obtain: $a=-\\frac{1}{2}$, \\\\\nTherefore, the equation of the parabola is: $y=-\\frac{1}{2}x^2+4x-5=\\boxed{-\\frac{1}{2}x^2+4x-5}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53042870_133": { -"question": "As shown in the diagram, given the parabola $y = ax^2 + bx + c$ with its vertex at $A(4, 3)$ and intersecting the y-axis at point $B(0, -5)$, with the line of symmetry being the line $l$, and the point $M$ being the midpoint of segment $AB$. Find the coordinates of point $M$ and the equation of line $AB$.", -"image_file_name": "7056499", -"image": [ -"math/53042870_541.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of midpoint $M$ be $(x, y)$,\\\\\nsince $A(4, 3), B(0, -5)$,\\\\\nthus $x-0=4-x$, i.e., $x=\\frac{4+0}{2}=2$,\\\\\nSimilarly, we get $y=\\frac{-5+3}{2}=-1$,\\\\\ntherefore the midpoint $\\boxed{M(2, -1)}$,\\\\\nLet the equation of the line $AB$ be: $y=kx-5$,\\\\\nSubstituting the coordinates of point $A$ into the equation yields: $3=4k-5$, solving gives: $k=2$,\\\\\nHence, the equation of the line $AB$ is: $\\boxed{y=2x-5}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53042870_134": { -"question": "As shown in the figure, it is known that the parabola $y=ax^2+bx+c$ has its vertex at $A(4,3)$ and intersects the $y$-axis at point $B(0,-5)$. The axis of symmetry is the line $l$. Let point $M$ be the midpoint of segment $AB$. Assume that $P$ and $Q$ are moving points on the parabola and the axis of symmetry $l$ respectively. When the quadrilateral with vertices $A$, $P$, $Q$, $M$ forms a parallelogram, determine the coordinates of points $P$ and $Q$.", -"image_file_name": "7056499", -"image": [ -"math/53042870_541.png" -], -"solution": "\\textbf{Solution:} Let point $Q(4, s)$ and point $P(m, -\\frac{1}{2}m^2+4m-5)$,\\\\\n(1) When $AM$ is one side of the parallelogram,\\\\\nWhen point Q is below A,\\\\\nPoint A is moved 2 units to the left and 4 units down to get M,\\\\\nSimilarly, point $P(m, -\\frac{1}{2}m^2+4m-5)$ moved 2 units to the left and 4 units down to get $Q(4, s)$\\\\\ni.e., $m-2=4, -\\frac{1}{2}m^2+4m-5-4=s$\\\\\nSolving yields: $m=6, s=-3,$\\\\\nTherefore, when point Q is above point A, $AQ=MP=2,$\\\\\nSimilarly, the coordinates of point Q are found to be $(4, 5),$\\\\\n(2) When $AM$ is the diagonal of the parallelogram,\\\\\nBy the midpoint theorem, $4+2=m+4, 3-1=-\\frac{1}{2}m^2+4m-5+s$\\\\\nSolving yields: $m=2, s=1$\\\\\nTherefore, the coordinates of points $P, Q$ are respectively $\\left(2, 1\\right), \\left(4, 1\\right)$\\\\\nIn summary, the coordinates of $P, Q$ are respectively $\\left(6, -3\\right), \\left(4, 5\\right)$ or $\\boxed{\\left(2, 1\\right)}, \\boxed{\\left(4, 1\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043125_136": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y_1=k_1x+b$ intersects with the hyperbola $y_2=\\frac{k_2}{x}$ at points $A(-2, 3)$ and $B(m, -2)$. What are the expressions for the functions corresponding to $y_1$ and $y_2$?", -"image_file_name": "7056499", -"image": [ -"math/53043125_553.png" -], -"solution": "\\textbf{Solution:} Let point $A\\left(-2, 3\\right)$ be substituted into the equation of the inverse proportion function to find: $k=-6$,\\\\\n$\\therefore y_{2}=-\\frac{6}{x}$,\\\\\n$\\because$ point B is on the graph of the inverse proportion function,\\\\\n$\\therefore -2m=-6$, which gives: $m=3$,\\\\\n$\\therefore B\\left(3, -2\\right)$,\\\\\nSubstituting points A and B into the equation of the line gives: $\\left\\{\\begin{array}{l}\n-2k_{1}+b=3 \\\\\n3k_{1}+b=-2\n\\end{array}\\right.$, solving this yields: $\\left\\{\\begin{array}{l}\nk_{1}=-1 \\\\\nb=1\n\\end{array}\\right.$,\\\\\n$\\therefore y_{1}=\\boxed{-x+1}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043125_137": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y_1=k_1x+b$ intersects with the hyperbola $y_2=\\frac{k_2}{x}$ at points $A(-2, 3)$ and $B(m, -2)$. A line through point B, $BP\\parallel x$-axis, intersects the y-axis at point P. What is the area of $\\triangle ABP$?", -"image_file_name": "7056499", -"image": [ -"math/53043125_553.png" -], -"solution": "\\textbf{Solution:} From (1) we have: $A(-2, 3)$, $B(3, -2)$,\\\\\nsince $BP\\parallel x$-axis,\\\\\ntherefore, $BP=3$,\\\\\nthus, the distance from point A to PB is $3-(-2)=5$,\\\\\nhence, the area of $\\triangle ABP$ is $\\frac{1}{2}\\times 3\\times 5=\\boxed{\\frac{15}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043125_138": { -"question": "As shown in the Cartesian coordinate system, the line $y_1=k_1x+b$ intersects the hyperbola $y_2=\\frac{k_2}{x}$ at points $A(-2, 3)$ and $B(m, -2)$. Based on the graph of the function, directly write the solution set of the inequality $k_1x+b<\\frac{k_2}{x}$ with respect to $x$.", -"image_file_name": "7056499", -"image": [ -"math/53043125_553.png" -], -"solution": "Solution:\nAccording to the graph of the function, we can directly write the solution set of the inequality $k_1x + b < \\frac{k_2}{x}$ with respect to $x$ as $-2 < x < 0$ or $x > 3$.\n\nHence, the answer is $x \\in \\boxed{(-2, 0) \\cup (3, +\\infty)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043850_140": { -"question": "As shown in the figure, the parabola $y = ax^2 + bx + \\frac{5}{2}$ intersects the line $AB$ at points $A(-1, 0)$ and $B(4, \\frac{5}{2})$. Point $D$ is a moving point on the parabola between points $A$ and $B$ (not coinciding with points $A$ and $B$). The line $CD$ is parallel to the y-axis and intersects the line $AB$ at point $C$. Connect $AD$ and $BD$. What is the analytic expression of the parabola?", -"image_file_name": "7056499", -"image": [ -"math/53043850_567.png" -], -"solution": "\\textbf{Solution:} Solve: The parabola $y=a{x}^{2}+bx+\\frac{5}{2}$ intersects the line $AB$ at point $A\\left(-1, 0\\right)$ and $B\\left(4, \\frac{5}{2}\\right)$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}\n0=a(-1)^{2}-b+\\frac{5}{2}\\\\\n\\frac{5}{2}=16a+4b+\\frac{5}{2}\n\\end{array}\\right.$,\\\\\nSolving, we get: $\\left\\{\\begin{array}{l}\na=-\\frac{1}{2}\\\\\nb=2\n\\end{array}\\right.$,\\\\\n$\\therefore$ the equation of the parabola is $\\boxed{y=-\\frac{1}{2}{x}^{2}+2x+\\frac{5}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043850_141": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+\\frac{5}{2}$ intersects with line segment $AB$ at points $A(-1,0)$ and $B(4,\\frac{5}{2})$. Point $D$ is a moving point on the parabola between points $A$ and $B$ (not coinciding with $A$ or $B$), the line $CD$ is parallel to the y-axis and intersects line $AB$ at point $C$, and lines $AD$ and $BD$ are connected. Let the x-coordinate of point $D$ be $m$, and the area of $\\triangle ADB$ be $S$. Determine the function of $S$ in terms of $m$, and find the coordinates of point $C$ when $S$ reaches its maximum value.", -"image_file_name": "7056499", -"image": [ -"math/53043850_567.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct $BF\\perp DE$ at point F passing through point B.\\\\\nLet the equation of line $AB$ be: $y=kx+m$,\\\\\nthen: $\\left\\{\\begin{array}{l}\n0=-k+m \\\\\n\\frac{5}{2}=4k+m\n\\end{array}\\right.$,\\\\\nsolving this gives: $\\left\\{\\begin{array}{l}\nk=\\frac{1}{2} \\\\\nm=\\frac{1}{2}\n\\end{array}\\right.$,\\\\\n$\\therefore y=\\frac{1}{2}x+\\frac{1}{2}$,\\\\\n$\\because$ the abscissa of point D is m and $CD\\parallel y$-axis,\\\\\n$\\therefore$ the coordinate of point C is $\\left(m, \\frac{1}{2}m+\\frac{1}{2}\\right)$, and the ordinate of point D is $\\left(-\\frac{1}{2}m^{2}+2m+\\frac{5}{2}\\right)$,\\\\\n$\\therefore AE=m+1, BF=4-m$, $CD=-\\frac{1}{2}m^{2}+\\frac{3}{2}m+2$,\\\\\n$\\therefore S=\\frac{1}{2}CD\\cdot (AE+BF)=\\frac{1}{2}\\times \\left(-\\frac{1}{2}m^{2}+\\frac{3}{2}m+2\\right)\\times (m+1+4-m)$\\\\\n$=-\\frac{5}{4}\\left(m-\\frac{3}{2}\\right)^{2}+\\frac{125}{16}$,\\\\\n$\\therefore$ when $m=\\frac{3}{2}$, $S$ reaches its maximum value $\\boxed{\\frac{125}{16}}$, at this point $C\\left(\\frac{3}{2}, \\frac{5}{4}\\right)$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043850_142": { -"question": "As shown in the diagram, the parabola $y=ax^2+bx+\\frac{5}{2}$ intersects line $AB$ at points $A(-1, 0)$ and $B(4, \\frac{5}{2})$. Point $D$ is a moving point on the parabola between points $A$ and $B$ (not coinciding with points $A$ and $B$), and line $CD$ is parallel to the y-axis, intersecting line $AB$ at point $C$. Lines $AD$ and $BD$ are drawn. Point $D$ is the vertex of the parabola, point $P$ is a moving point on the parabola, and point $Q$ is a moving point on line $AB$. When the quadrilateral with vertices at points $P$, $Q$, $C$, and $D$ forms a parallelogram, determine the coordinates of point $Q$.", -"image_file_name": "7056499", -"image": [ -"math/53043850_567.png" -], -"solution": "Solution: Suppose there exist points P and Q such that the quadrilateral formed by the vertices P, Q, C, and D is a parallelogram.\\\\\n$\\because y=-\\frac{1}{2}x^2+2x+\\frac{5}{2}=-\\frac{1}{2}(x-2)^2+\\frac{9}{2}$, point D is the vertex of the parabola, $CD\\parallel y$-axis,\\\\\n$\\therefore D(2, \\frac{9}{2})$, $C(2, \\frac{3}{2})$,\\\\\n(1) When $CD$ is a side of the parallelogram, $PQ\\parallel CD, PQ=CD$ \\\\\\\\\nLet $P(x, -\\frac{1}{2}x^2+2x+\\frac{5}{2})$, then: $Q(x, \\frac{1}{2}x+\\frac{1}{2})$\\\\\nAs shown in the figure, when P is above Q: $PQ=-\\frac{1}{2}x^2+2x+\\frac{5}{2}-\\frac{1}{2}x-\\frac{1}{2}=3$\\\\\nSolving, $x=1$ or $x=2$ (discard),\\\\\n$\\therefore \\boxed{Q\\left(1, 1\\right)}$;\\\\\nWhen P is below Q: $PQ=\\frac{1}{2}x+\\frac{1}{2}+\\frac{1}{2}x^2-2x-\\frac{5}{2}=3$,\\\\\nSolving: $x=5$ or $x=-2$,\\\\\n$\\therefore \\boxed{Q\\left(5, 3\\right)}$ or \\boxed{Q\\left(-2, -\\frac{1}{2}\\right)};\\\\\n(2) When $CD$ is a diagonal of the parallelogram,\\\\\nDraw $PE\\perp CD$ at point E from point P, and draw $QF\\perp CD$ at point F from point Q, then $PE=QF, DE=FC$.\\\\\nLet $P(x, -\\frac{1}{2}x^2+2x+\\frac{5}{2})$, then $E(2, -\\frac{1}{2}x^2+2x+\\frac{5}{2})$,\\\\\n$\\therefore Q(4-x, \\frac{5}{2}-\\frac{1}{2}x)$, $F(2, \\frac{5}{2}-\\frac{1}{2}x)$,\\\\\nFrom $DE=CF$, we get $\\frac{9}{2}-(\\frac{5}{2}-\\frac{1}{2}x^2+2x+\\frac{5}{2})=\\frac{5}{2}-\\frac{1}{2}x-\\frac{3}{2}$,\\\\\nSolving, $x=1$ or $x=2$ (discard),\\\\\n$\\therefore \\boxed{Q\\left(3, 2\\right)}$\\\\\nIn summary: when \\boxed{Q\\left(1, 1\\right)} or \\boxed{Q\\left(5, 3\\right)} or \\boxed{Q\\left(-2, -\\frac{1}{2}\\right)} or \\boxed{Q\\left(3, 2\\right)}, the quadrilateral formed by the vertices P, Q, C, and D is a parallelogram.\n", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53043696_144": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+3$ intersects the x-axis at points $A$ and $B$ (with $A$ to the left of $B$) and intersects the y-axis at point $C$, with $\\tan\\angle CAB=3$. The hyperbola $y=\\frac{k}{x}$ (with $k\\neq 0$) passes through the vertex $D$ of the parabola $y=ax^2+bx+3$, where the x-coordinate of point $D$ is 1. Find the equations of the parabola and the hyperbola.", -"image_file_name": "7056499", -"image": [ -"math/53043696_579.png" -], -"solution": "\\textbf{Solution:} Let us set $x=0$, which yields: $y=3$,\\\\\nTherefore, the coordinates of point C are $\\left(0, 3\\right)$,\\\\\nTherefore, $OC=3$.\\\\\nSince $\\tan\\angle CAB=3$,\\\\\nTherefore, $\\frac{OC}{OA}=3$, that is $\\frac{3}{OA}=3$,\\\\\nTherefore, $OA=1$.\\\\\nTherefore, the coordinates of point A are $\\left(-1, 0\\right)$.\\\\\nSince the axis of symmetry for the parabola is $x=1$,\\\\\nTherefore, the coordinates of point B are $\\left(3, 0\\right)$.\\\\\nSubstituting $A\\left(-1, 0\\right)$ and $B\\left(3, 0\\right)$ yields: $\\left\\{\\begin{array}{l}a-b+3=0 \\\\ 9a+3b+3=0\\end{array}\\right.$,\\\\\nSolving this, we find: $a=-1, b=2$,\\\\\nTherefore, the equation of the parabola is $y=-x^{2}+2x+3$.\\\\\nSubstituting $x=1$ yields: $y=-1+2+3=4$.\\\\\nTherefore, the coordinates of point D are $\\left(1, 4\\right)$.\\\\\nSubstituting $\\left(1, 4\\right)$ into the equation of the inverse proportion function yields: $4=\\frac{k}{1}$,\\\\\nSolving this, we find: $k=4$.\\\\\nTherefore, the equation of the inverse proportion function is $y=\\frac{4}{x}$.\\\\\n$\\therefore \\boxed{y=-x^{2}+2x+3}$ and $\\boxed{y=\\frac{4}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043696_145": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+3$ intersects the x-axis at points $A$ and $B$ (with $A$ to the left of $B$), and intersects the y-axis at point $C$, where $\\tan\\angle CAB=3$. The hyperbola $y=\\frac{k}{x}$ (with $k\\ne 0$) passes through the vertex $D$ of the parabola $y=ax^2+bx+3$, with the x-coordinate of point $D$ being 1. Let point $P$ be a moving point on the parabola, located in the first quadrant. Connect points $BP$ and $CP$. Find the coordinates of point $P$ and the maximum value of the quadrilateral $ABPC$ when it reaches its maximum value.", -"image_file_name": "7056499", -"image": [ -"math/53043696_579.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1: Connect $BC$, and draw $PE\\perp AB$ through point P, intersecting $BC$ at point E.\\\\\n$\\because AB=4, OC=3$,\\\\\n$\\therefore {S}_{\\triangle ABC}=\\frac{1}{2}AB\\times OC=\\frac{1}{2}\\times 4\\times 3=6$.\\\\\nLet the equation of line BC be $y=kx+b$, substituting $(3, 0)$ and $(0, 3)$ into it gives: $3k+b=0$, $b=3$,\\\\\nsolving this yields $b=3, k=-1$,\\\\\n$\\therefore$ the equation of line BC is $y=-x+3$.\\\\\nLet the coordinates of point P be $\\left(x, -{x}^{2}+2x+3\\right)$, then the coordinates of point E are $\\left(x, -x+3\\right)$.\\\\\n$\\therefore PE=-{x}^{2}+3x$,\\\\\n$\\therefore {S}_{\\triangle PBC}=\\frac{1}{2}PE\\cdot OB=\\frac{1}{2}\\times 3\\times \\left(-{x}^{2}+3x\\right)=-\\frac{3}{2}{x}^{2}+\\frac{9}{2}x$.\\\\\n$\\therefore {S}_{\\text{quadrilateral} ABPC}=-\\frac{3}{2}{x}^{2}+\\frac{9}{2}x+6=-\\frac{3}{2}{\\left(x-\\frac{3}{2}\\right)}^{2}+\\frac{75}{8}$,\\\\\nSubstituting $x=\\frac{3}{2}$ into the equation of the parabola yields: $y=\\frac{15}{4}$,\\\\\n$\\therefore$ The coordinates of point P are $\\left(\\frac{3}{2}, \\frac{15}{4}\\right)$, ${S}_{\\text{quadrilateral ABPC}\\text{ maximum}}=\\boxed{\\frac{75}{8}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53043696_146": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+3$ intersects the x-axis at points $A$ and $B$ (with $A$ on the left side of $B$) and intersects the y-axis at point $C$, with $\\tan\\angle CAB=3$; the hyperbola $y=\\frac{k}{x}$ ($k\\ne 0$) passes through the vertex $D$ of the parabola $y=ax^2+bx+3$, where the x-coordinate of point $D$ is 1. If there exists a point $Q$ on this parabola and hyperbola such that $QB=QC$, what are the coordinates of point $Q$?", -"image_file_name": "7056499", -"image": [ -"math/53043696_579.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 2: Connect $BC$, and draw $OE\\perp BC$ through point O with E as the foot of the perpendicular.\\\\\n$\\because QB=QC$,\\\\\n$\\therefore$ point Q lies on the perpendicular bisector of $BC$.\\\\\n$\\because OE\\perp BC$, $OB=OC$,\\\\\n$\\therefore EC=BE$,\\\\\n$\\therefore OE$ is the perpendicular bisector of $BC$,\\\\\n$\\therefore$ point Q lies on $OE$,\\\\\n$\\because OE$ bisects $BC$ perpendicularly,\\\\\n$\\therefore$ the equation of line OE is $y=x$.\\\\\nSolving $y=x$ together with $y=\\frac{4}{x}$ yields $\\left\\{\\begin{array}{l}y=x \\\\ y=\\frac{4}{x}\\end{array}\\right.$,\\\\\nwhich gives $\\left\\{\\begin{array}{l}x=2 \\\\ y=2\\end{array}\\right.$ or $\\left\\{\\begin{array}{l}x=-2 \\\\ y=-2\\end{array}\\right.$\\\\\n$\\therefore$ the coordinates of point Q are $\\left(2, 2\\right)$ or $\\left(-2, -2\\right)$,\\\\\nSolving $y=x$ together with $y=-x^{2}+2x+3$ yields $\\left\\{\\begin{array}{l}y=x \\\\ y=-x^{2}+2x+3\\end{array}\\right.$,\\\\\nwhich gives $\\left\\{\\begin{array}{l}x=\\frac{1+\\sqrt{13}}{2} \\\\ y=\\frac{1+\\sqrt{13}}{2}\\end{array}\\right.$ or $\\left\\{\\begin{array}{l}x=\\frac{1-\\sqrt{13}}{2} \\\\ y=\\frac{1-\\sqrt{13}}{2}\\end{array}\\right.$,\\\\\n$\\therefore$ the coordinates of point Q are $\\left(\\frac{1+\\sqrt{13}}{2}, \\frac{1+\\sqrt{13}}{2}\\right)$ or $\\left(\\frac{1-\\sqrt{13}}{2}, \\frac{1-\\sqrt{13}}{2}\\right)$.\\\\\nIn summary, the coordinates of point Q are $\\boxed{\\left(2, 2\\right)}$ or $\\boxed{\\left(-2, -2\\right)}$ or $\\boxed{\\left(\\frac{1+\\sqrt{13}}{2}, \\frac{1+\\sqrt{13}}{2}\\right)}$ or $\\boxed{\\left(\\frac{1-\\sqrt{13}}{2}, \\frac{1-\\sqrt{13}}{2}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53101984_148": { -"question": "Given the diagram, it is known that the line $AB$ intersects the parabola $C: y=ax^2+2x+c$ at points $A(-1, 0)$ and $B(2, 3)$. What is the function expression of the parabola $C$?", -"image_file_name": "7056499", -"image": [ -"math/53101984_585.png" -], -"solution": "\\textbf{Solution:} By substituting the points $(-1,0)$ and $(2,3)$ into $y=ax^{2}+2x+c$, we obtain\n\\[\n\\begin{cases}\na-2+c=0\\\\\n4a+4+c=3\n\\end{cases},\n\\]\nfrom which we get\n\\[\n\\begin{cases}\na=-1\\\\\nc=3\n\\end{cases}.\n\\]\nThus, the equation of parabola $C$ is: \\boxed{y=-x^{2}+2x+3}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53101984_149": { -"question": "As shown in the figure, it is known that line $AB$ intersects the parabola $C\\colon y=ax^2+2x+c$ at points $A(-1, 0)$ and $B(2, 3)$. If point $M$ is a moving point on the parabola above line $AB$, and a parallelogram $MANB$ is formed with $MA$ and $MB$ as two adjacent sides, when the area of the parallelogram $MANB$ is maximized, find the area $S$ of the parallelogram $MANB$ at this time and the coordinates of point $M$?", -"image_file_name": "7056499", -"image": [ -"math/53101984_585.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, draw line $MH\\perp x$-axis at point $H$ through point $M$, and intersect line $AB$ at point $K$.\\\\\nSubstituting the points $\\left(-1,0\\right)$ and $\\left(2,3\\right)$ into $y=kx+b$, we get\n\\[\n\\begin{cases}\n-k+b=0\\\\\n2k+b=3\n\\end{cases},\n\\]\nfrom which we find\n\\[\n\\begin{cases}\nk=1\\\\\nb=1\n\\end{cases},\n\\]\nthus $\\therefore y_{AB}=x+1$.\\\\\nLet $M$ be the point $\\left(a,-a^{2}+2a+3\\right)$, then $K$ is $\\left(a,a+1\\right)$,\\\\\nthen $MK=-a^{2}+2a+3-(a+1)=-\\left(a-\\frac{1}{2}\\right)^{2}+\\frac{9}{4}$.\\\\\nAccording to the properties of quadratic functions, when $a=\\frac{1}{2}$, $MK$ has the maximum length $\\frac{9}{4}$.\\\\\n$\\therefore \\text{The maximum area of } \\triangle AMB=S_{\\triangle AMK}+S_{\\triangle BMK}$\\\\\n$=\\frac{1}{2}MK\\cdot AH+\\frac{1}{2}MK\\cdot \\left(x_{B}-x_{H}\\right)$\\\\\n$=\\frac{1}{2}MK\\cdot \\left(x_{B}-x_{A}\\right)$\\\\\n$=\\frac{1}{2}\\times \\frac{9}{4}\\times 3$\\\\\n$=\\frac{27}{8}$,\\\\\n$\\therefore$ For parallelogram $MANB$ constructed with sides $MA$ and $MB$ being adjacent sides, when the area of parallelogram $MANB$ is maximized,\\\\\n$\\text{The maximum area } S_{\\text{max}}=2S_{\\text{max } \\triangle AMB}=2\\times \\frac{27}{8}=\\boxed{\\frac{27}{4}}$, with $\\boxed{M\\left(\\frac{1}{2}, \\frac{15}{4}\\right)}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53101984_150": { -"question": "As shown in the figure, it is known that the line $AB$ intersects the parabola $C\\colon y=ax^2+2x+c$ at points $A(-1, 0)$ and $B(2, 3)$. Is there a fixed point $F$ on the axis of symmetry of the parabola $C$ such that the distance from any point $P$ on the parabola $C$ to point $F$ is equal to the distance to the line $y=\\frac{17}{4}$? If such a point exists, determine the coordinates of the fixed point $F$; if not, please explain why.", -"image_file_name": "7056499", -"image": [ -"math/53101984_585.png" -], -"solution": "\\textbf{Solution:}\n\nThere exists a point $F$, \\\\\n$\\because y = -x^2 + 2x + 3 = - (x - 1)^2 + 4$, \\\\\n$\\therefore$ the axis of symmetry is the line $x = 1$, \\\\\nwhen $y = 0$, $x_1 = -1$, $x_2 = 3$, \\\\\n$\\therefore$ the parabola intersects the positive $x$-axis at point $C(3, 0)$, \\\\\nPerpendiculars to the line $y = \\frac{17}{4}$ through points $B$, $C$ are drawn, with foot of perpendiculars being $N$, $H$, respectively, \\\\\nThere exists a point $F$ on the axis of symmetry of the parabola such that for any point $P$ on the parabola $C$, the distance from $P$ to point $F$ is equal to its distance to the line $y = \\frac{17}{4}$. Let $F(1,t)$, connect $BF$, $CF$, \\\\\nthen $BF = BN = \\frac{17}{4} - 3 = \\frac{5}{4}$, $CF = CH = \\frac{17}{4}$, \\\\\nBased on the problem statement, we can form the equations: $\\begin{cases}\n(2 - 1)^2 + (t - 3)^2 = \\left(\\frac{5}{4}\\right)^2 \\\\\n(3 - 1)^2 + t^2 = \\left(\\frac{17}{4}\\right)^2\n\\end{cases}$, \\\\\nSolving, we get $t = \\frac{15}{4}$, \\\\\n$\\therefore F\\left(1, \\boxed{\\frac{15}{4}}\\right)$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53101933_152": { -"question": "As shown in the figure, it is known that the line $y_1=x+m$ intersects the x-axis and y-axis at points A and B, respectively, and intersects the hyperbola $y_2=\\frac{k}{x}$ (where $x<0$) at points C and D, with the coordinates of point C being $(-1, 2)$. Find the expressions for the line and the hyperbola respectively.", -"image_file_name": "7056499", -"image": [ -"math/53101933_593.png" -], -"solution": "\\textbf{Solution:} Given that point $C(-1, 2)$ lies on the graph of $y_1=x+m$,\\\\\nit follows that $2=-1+m$,\\\\\nsolving this gives $m=3$, hence $y_1=x+3$.\\\\\nGiven that $C(-1, 2)$ also lies on the graph of $y_2=\\frac{k}{x}$ (for $x<0$),\\\\\nit follows that $2=\\frac{k}{-1}$, solving for $k$ gives $k=-2$,\\\\\ntherefore, \\boxed{y_1=x+3} and \\boxed{y_2=\\frac{-2}{x} \\left(x<0\\right)}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53101933_153": { -"question": "As shown in the figure, it is known that the line $y_1=x+m$ intersects the x-axis and y-axis at points A and B, respectively, and intersects the hyperbola $y_2=\\frac{k}{x}$ ($x<0$) at points C and D, where the coordinates of point C are $(-1, 2)$. Find the coordinates of point D.", -"image_file_name": "7056499", -"image": [ -"math/53101933_593.png" -], -"solution": "\\textbf{Solution:} Solving the systems of equations simultaneously, we get\n\\[\n\\begin{cases}\ny=x+3\\\\\ny=\\frac{-2}{x}\n\\end{cases}\n\\]\nwhich yields\n\\[\n\\begin{cases}\nx=-1\\\\\ny=2\n\\end{cases}\n\\]\nor\n\\[\n\\begin{cases}\nx=-2\\\\\ny=1\n\\end{cases}\n\\]\nSince the coordinates of point C are $(-1, 2)$,\\\\\ntherefore, the coordinates of point D are $\\boxed{(-2, 1)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53101933_154": { -"question": "As shown in the figure, it is known that the line $y_1 = x + m$ intersects the x-axis and y-axis at points A and B, respectively, and intersects the hyperbola $y_2 = \\frac{k}{x} \\, (x < 0)$ at points C and D, with the coordinates of point C being $(-1, 2)$. Using the graph, directly write out: when $x$ takes values in what range does $y_1 > y_2$?", -"image_file_name": "7056499", -"image": [ -"math/53101933_593.png" -], -"solution": "\\textbf{Solution}: It can be known from the graph that when $-2y_2$. Therefore, when $x$ takes values in the range $(-2,-1)$, $y_1>y_2$ holds. Hence, the answer is $x\\in\\boxed{(-2,-1)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53033041_156": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $y=\\frac{1}{2}x^{2}+bx+c$ passes through points $A\\left(0, 2\\right)$ and $B\\left(1, \\frac{3}{2}\\right)$. What is the equation of the parabola?", -"image_file_name": "7056499", -"image": [ -"math/53033041_603.png" -], -"solution": "\\textbf{Solution:} Let us substitute points $A\\left(0, 2\\right)$ and $B\\left(1, \\frac{3}{2}\\right)$ into $y=\\frac{1}{2}x^{2}+bx+c$,\\\\\nwe get: $\\begin{cases}c=2\\\\ \\frac{1}{2}+b+c=\\frac{3}{2}\\end{cases}$,\\\\\nSolving these, we find: $\\begin{cases}b=-1\\\\ c=2\\end{cases}$,\\\\\nTherefore, the equation of the parabola is $\\boxed{y=\\frac{1}{2}x^{2}-x+2}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53033041_157": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the parabola $y=\\frac{1}{2}x^{2}+bx+c$ passes through points $A\\left(0, 2\\right)$ and $B\\left(1, \\frac{3}{2}\\right)$. Given that point C is symmetric to point A with respect to the axis of symmetry of this parabola, what are the coordinates of point C?", -"image_file_name": "7056499", -"image": [ -"math/53033041_603.png" -], -"solution": "\\textbf{Solution:} Since $y=\\frac{1}{2}x^{2}-x+2=\\frac{1}{2}(x-1)^{2}+\\frac{3}{2}$,\\\\\nthe axis of symmetry of the parabola is the line $x=1$,\\\\\nand since point C is symmetric to point A with respect to this axis of the parabola,\\\\\nthe coordinates of point C are $\\boxed{(2, 2)}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53033041_158": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $y=\\frac{1}{2}x^{2}+bx+c$ passes through points $A(0, 2)$ and $B(1, \\frac{3}{2})$. Point $D$ is on the parabola with an x-coordinate of $4$. Denote the segment of the parabola between points $A$ and $D$ (including points $A$ and $D$) as graph $G$. If graph $G$ is translated downwards by $t$ units ($t>0$) and intersects line $BC$ at only one point, find the range of values for $t$.", -"image_file_name": "7056499", -"image": [ -"math/53033041_603.png" -], -"solution": "\\textbf{Solution:} Let the equation of line BC be $y=mx+n$,\\\\\nsubstituting $B\\left(1, \\frac{3}{2}\\right)$ and $C\\left(2, 2\\right)$ into $y=mx+n$,\\\\\nwe get: $\\left\\{\\begin{array}{l}\nm+n=\\frac{3}{2}\\\\\n2m+n=2\n\\end{array}\\right.$,\\\\\nsolving this, we find: $\\left\\{\\begin{array}{l}\nm=\\frac{1}{2}\\\\\nn=1\n\\end{array}\\right.$,\\\\\n$\\therefore$ the equation of line BC is $y=\\frac{1}{2}x+1$,\\\\\nwhen $x=0$, $y=\\frac{1}{2}x+1=1$,\\\\\n$\\therefore$ when graph G is translated downwards by 1 unit, point A lies on line BC,\\\\\nwhen $x=4$, $y=\\frac{1}{2}x+1=3$,\\\\\nsince for $x=4$, $y=\\frac{1}{2}x^2-x+2=6$,\\\\\n$\\therefore$ when graph G is translated downwards by 3 units, point D lies on line BC,\\\\\n$\\therefore$ when $10$) units, it intersects line BC at only one point,\\\\\nthe desired range of values for $t$ is $t\\in\\boxed{(1,3]}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53019865_160": { -"question": "In a Cartesian coordinate system, point \\(O\\) is the origin. The parabola \\(y=ax^2+bx+3\\) passes through point \\(B(-3, 0)\\), point \\(C(1, 0)\\), and intersects the y-axis at point \\(A\\). What are the values of \\(a\\) and \\(b\\)?", -"image_file_name": "7056499", -"image": [ -"math/53019865_613.png" -], -"solution": "Solution: Since the parabola $y=ax^2+bx+3$ passes through points $B(-3, 0)$ and $C(1, 0)$,\n\\[\n\\therefore \n\\begin{cases}\n9a-3b+3=0 \\\\\na+b+3=0\n\\end{cases}\n\\]\n\\[\n\\therefore \n\\begin{cases}\na=-1 \\\\\nb=-2\n\\end{cases}\n\\]\nHence, $a=\\boxed{-1}$, $b=\\boxed{-2}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53019865_161": { -"question": "In the Cartesian coordinate system, point O is the origin. The parabola $y = ax^2 + bx + 3$ passes through points $B(-3, 0)$ and $C(1, 0)$, and intersects the y-axis at point A. As shown in Figure 1, point P lies on the parabola. A line through point P parallel to the y-axis intersects the line segment $AB$ at point D. Denoting the x-coordinate of point P as t, and the length of segment $PD$ as d, find the functional expression of d in terms of t (it is not required to state the domain of the independent variable t).", -"image_file_name": "7056499", -"image": [ -"math/53019865_613.png" -], -"solution": "\\textbf{Solution:}\n\n\\[\n\\begin{aligned}\n&\\because a=-1, b=-2 \\\\\n&\\therefore y=x^2-2x+3 \\\\\n&\\text{when} x=0, y=3 \\\\\n&\\therefore A(0, 3) \\\\\n&\\text{Let the line} AB: y=kx+b' \\\\\n&\\because B(-3, 0) \\\\\n&\\therefore\n\\left\\{\n\\begin{array}{l}\nb'=3 \\\\\n-3k+b'=0\n\\end{array}\n\\right. \\\\\n&\\therefore\n\\left\\{\n\\begin{array}{l}\nk=1 \\\\\nb'=3\n\\end{array}\n\\right. \\\\\n&\\therefore \\text{The equation of line} AB \\text{is} y=x+3 \\\\\n&\\because DP \\parallel \\text{the y-axis}, \\\\\n&\\therefore P, O \\text{have the same x-coordinate} t \\\\\n&\\therefore p(t, -t^2-2t+3), O(t, t+3) \\\\\n&\\therefore d=-t^2-2t+3-(t+3) \\\\\n&=-t^2-3t \\\\\n&\\therefore d=\\boxed{-t^2-3t}\n\\end{aligned}\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53019865_162": { -"question": "In the Cartesian coordinate system, point O is the origin. The parabola $y=a{x}^{2}+bx+3$ passes through point $B(-3, 0)$ and point $C(1, 0)$, and intersects the y-axis at point A. As shown in the figure, under the given conditions, connect $CD$, draw $AE\\perp CD$ at point F where $AE=CD$, draw $EG\\perp AB$ at point G, draw $GH\\parallel DP$ intersecting the x-axis at point H, and connect $FH$ and $FO$. If $\\angle HFO=90^\\circ$, find the coordinates of point P.", -"image_file_name": "7056499", -"image": [ -"math/53019865_613.png" -], -"solution": "\\textbf{Solution:}\n\n(1) Construct $EL \\perp OA$ at L, extend $PD$ to intersect the x-axis at T.\\\\\n$\\therefore \\angle AFC = \\angle AOC = 90^\\circ$\\\\\n$\\because \\angle 1 = \\angle 2$\\\\\n$\\therefore \\angle EAL = \\angle DCT$\\\\\n$\\because AE = CD$\\\\\n$\\therefore \\triangle AEL \\cong \\triangle CDT$\\\\\n$\\therefore EL = DT$, $AL = CT$\\\\\n$\\because D(t, t+3)$\\\\\n$\\therefore EL = t+3$, $AL = CT = 1-t$\\\\\n$\\because OL = OA - AL = 3 - (1 - t) = 2 + t$\\\\\n$\\therefore E(-t-3, 2+t)$\\\\\n(2) Construct $EW \\parallel y$-axis, intersecting $AB$ at W, and $OB$ at V, extend $GE$ to intersect the x-axis at R.\\\\\nThus, $W(-t-3, -t)$, $V(-t-3, 0)$, $WE = -2t-2$, $WV = -t$\\\\\nFrom the coordinates of points A and B, we get: $OA = OB$\\\\\n$\\therefore \\angle ABO = 45^\\circ$,\\\\\n$\\therefore \\angle BWV = \\angle WEG = \\angle GRB = \\angle ABO = 45^\\circ$\\\\\n$\\therefore WG = GE$, $WV = BV$, $GR = BG$\\\\\n$\\therefore$ By Pythagorean theorem, $GW = \\frac{\\sqrt{2}}{2}WE = -\\sqrt{2}(t+1)$, $BW = \\sqrt{2}WV = -\\sqrt{2}t$,\\\\\n$\\therefore BG = BW - GW = \\sqrt{2}$\\\\\nBy Pythagorean theorem, $BR = \\sqrt{2}BG = 2$\\\\\nAlso, point H is the midpoint of $BR$, $OB = 3$\\\\\n$\\therefore G(-2, 1)$, $R(-1, 0)$, $H(-2, 0)$\\\\\n(3) Extend $GE$ to intersect the x-axis at R, connect $DH$ and $OE$.\\\\\n$\\because D(t, t+3), G(-2, 1), E(-t-3, 2+t), R(-1, 0)$\\\\\n$\\therefore DG = ER$, $OR = GH = 1$, $\\angle DGH = \\angle FRO = 135^\\circ$\\\\\n$\\therefore \\triangle DGH \\cong \\triangle ERO$\\\\\n$\\therefore DH = EO$, $\\angle GDH = \\angle REO$\\\\\nConnect $AC$\\\\\n$\\because \\angle HFO = \\angle DFE = 90^\\circ$,\\\\\n$\\therefore \\angle DFH = \\angle EFO$\\\\\n$\\because EG \\perp AB$, $AF \\perp CD$, $\\angle DAF = \\angle EAG$\\\\\n$\\therefore \\angle ADF = \\angle AEG$,\\\\\n$\\therefore \\angle GDF = \\angle FER$\\\\\n$\\because \\angle GDH = \\angle REO$\\\\\n$\\therefore \\angle FEO = \\angle FDH$,\\\\\n$\\because DH = EO$\\\\\n$\\therefore \\triangle DHF \\cong \\triangle EOF$\\\\\n$\\therefore DF = EF$\\\\\n$\\because AE = CD$\\\\\n$\\therefore AF = CF$\\\\\n$\\therefore \\angle FAC = 45^\\circ$\\\\\nIn right triangle $AOC$, $\\tan\\angle OAC = \\frac{1}{3}$\\\\\n$\\because \\angle BAO = \\angle FAC = 45^\\circ$\\\\\n$\\therefore \\angle GAE = \\angle OAC$\\\\\n$\\therefore \\tan\\angle GAE = \\frac{EG}{AG} = \\frac{1}{3}$\\\\\nThat is, $\\frac{\\sqrt{2}}{2}(-2t-2) = \\frac{2}{3}\\sqrt{2}$\\\\\nSolving for $t$, we get: $t = -\\frac{5}{3}$\\\\\n$\\therefore \\boxed{P\\left(-\\frac{5}{3}, \\frac{32}{9}\\right)}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53009704_164": { -"question": "In Figure 1, within rectangle $ABCD$, $AC$ and $BD$ intersect at point $O$, and $E$ is a point on $AD$, with $CE$ and $BD$ intersecting at point $F$. Given that $AE = CD$, and $BD \\perp CE$, (1) find the degree measure of $\\angle DEC$. (2) As shown in Figure 2, connect $AF$. When $BC = 3$, find the length of $AF$.", -"image_file_name": "7056499", -"image": [ -"math/53009704_620.jpeg" -], -"solution": "\\textbf{Solution:}\n\n(1)\\\\\nSince AE = CE,\\\\\nit follows that $\\angle$EAC = $\\angle$ECA,\\\\\nSince AD $\\parallel$ BC,\\\\\nit follows that $\\angle$EAC = $\\angle$ACB,\\\\\nSince OB = OC,\\\\\nit follows that $\\angle$ACB = $\\angle$DBC,\\\\\nHence, $\\angle$ACB = $\\angle$DBC = $\\angle$ECA,\\\\\nSince BD $\\perp$ CE,\\\\\nit follows that $\\angle$BFC = 90$^\\circ$,\\\\\nTherefore, $\\angle$ECA + $\\angle$ACB + $\\angle$DBC = 90$^\\circ$,\\\\\nTherefore, $\\angle$ECA = $\\angle$ACB = $\\angle$DBC = 30$^\\circ$,\\\\\nTherefore, $\\angle$DEC = $\\angle$ECB = \\boxed{60^\\circ},\\\\\n\n(2) Draw FH $\\perp$ AD at point H,\\\\\nIn $\\triangle$BCD, $\\angle$DBC = 30$^\\circ$, BC = 3,\\\\\nit follows that BD = 2$\\sqrt{3}$,\\\\\nIn $\\triangle$BFC, $\\angle$FBC = 30$^\\circ$, BC = 3,\\\\\nit follows that BF = $\\frac{3}{2}\\sqrt{3}$,\\\\\nTherefore, DF = BD - BF = $\\frac{\\sqrt{3}}{2}$,\\\\\nIn $\\triangle$DHF, $\\angle$FDH = $\\angle$DBC = 30$^\\circ$,\\\\\nit follows that FH = $\\frac{1}{2}$DF = $\\frac{\\sqrt{3}}{4}$,\\\\\nTherefore, HD = $\\sqrt{3}$HF = $\\frac{3}{4}$,\\\\\nTherefore, AH = AD - DH = 3 - $\\frac{3}{4}$ = $\\frac{9}{4}$,\\\\\nTherefore, AF = $\\sqrt{AH^2 + HF^2} = \\sqrt{\\left(\\frac{9}{4}\\right)^2 + \\left(\\frac{\\sqrt{3}}{4}\\right)^2} = \\boxed{\\frac{\\sqrt{21}}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53009704_165": { -"question": "As shown in Figure 1, within rectangle $ABCD$, $AC$ and $BD$ intersect at point $O$, and point $E$ is on $AD$, with $CE$ and $BD$ intersecting at point $F$. Let $\\frac{DE}{AD}=k (0-\\left(x-b\\right)^2+4b+1$, according to the graph, write down the range of values for $x$.", -"image_file_name": "7056499", -"image": [ -"math/53009807_630.jpeg" -], -"solution": "\\textbf{Solution:} As shown in Figure 1,\\\\\nthe line $y=mx+5$ intersects the y-axis at point $B$,\\\\\n$\\therefore$ the coordinates of point $B$ are $(0,5)$,\\\\\nSince $B$ lies on the parabola,\\\\\n$\\therefore 5 = -\\left(0-b\\right)^2 + 4b + 1 = 5$,\\\\\nsolving for $b$ yields $b=2$,\\\\\nThe analytical expression for the quadratic function is $y=-\\left(x-2\\right)^2+9$,\\\\\nWhen $y=0$, $-\\left(x-2\\right)^2+9=0$,\\\\\nsolving for $x$ yields $x_1=5$, $x_2=-1$,\\\\\n$\\therefore A(5,0)$,\\\\\nFrom the graph, we find that when $mx+5 > -\\left(x-b\\right)^2 + 4b + 1$, the range of $x$ is $x<0$ or $x>5$;\\\\\nTherefore, the range of $x$ is $\\boxed{x<0}$ or $\\boxed{x>5}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53009807_169": { -"question": "Given that point $M$ is the vertex of the quadratic function $y=-(x-b)^2+4b+1$, and the line $y=mx+5$ intersects the positive half of the $x$-axis and the $y$-axis at points $A$ and $B$ respectively. As shown in Figure 2, the coordinates of point $A$ are $(5,0)$, and point $M$ is inside $\\triangle AOB$. If points $C\\left(\\frac{1}{4},y_1\\right)$ and $D\\left(\\frac{3}{4},y_2\\right)$ are both on the graph of the quadratic function, compare the sizes of $y_1$ and $y_2$.", -"image_file_name": "7056499", -"image": [ -"math/53009807_630.jpeg" -], -"solution": "\\textbf{Solution:}\n\nSubstituting $A(5,0)$ into $y=mx+5$ yields, \\\\\n$0=5m+5$, \\\\\nsolving for $m$ gives $m=-1$, \\\\\n$\\therefore y=-x+5$, \\\\\n$\\because M(b,4b+1)$ is inside $\\triangle AOB$, \\\\\n$\\therefore \\left\\{\\begin{array}{l}0y_2}, \\\\\nfor $b=\\frac{1}{2}$, \\boxed{y_1=y_2}, \\\\\nand for $\\frac{1}{2}0\\right)$.\\\\\nGiven $V=5\\mathrm{m}^3$ and $\\rho=1.98\\mathrm{kg/m}^3$,\\\\\nhence $1.98=\\frac{k}{5}$,\\\\\nthus $k=1.98\\times 5=9.9$.\\\\\nTherefore, the formula relating density $\\rho$ to volume $V$ is: \\boxed{\\rho=\\frac{9.9}{V}\\left(V>0\\right)}", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52977197_179": { -"question": "As shown in the diagram, a sealed container holds a certain mass of carbon dioxide. When the volume $V$ (in cubic meters, $m^{3}$) of the container changes, the density $\\rho$ (in kilograms per cubic meter, $kg/m^{3}$) of the gas changes accordingly. It is known that the relationship between density $\\rho$ and volume $V$ is an inverse proportion, as depicted in the graph. When $V = 5m^{3}$, $\\rho = 1.98kg/m^{3}$. For $3 \\leq V \\leq 9$, determine the range of the carbon dioxide density $\\rho$.", -"image_file_name": "7056499", -"image": [ -"math/52977197_666.png" -], -"solution": "\\textbf{Solution:} By observing the function graph, it is known that $\\rho$ decreases with the increase of $V$,\\\\\nwhen $V=3\\,m^{3}$, $\\rho=\\frac{9.9}{3}=3.3\\,kg/m^{3}$,\\\\\nwhen $V=9\\,m^{3}$, $\\rho=\\frac{9.9}{9}=1.1\\,kg/m^{3}$,\\\\\n$\\therefore$ when $3\\le V\\le 9$, $1.1\\le \\rho \\le 3.3\\,(kg/m^{3})$\\\\\nThat is, the range of change in the density of carbon dioxide $\\rho$ is $\\boxed{1.1\\le \\rho \\le 3.3\\,(kg/m^{3})}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52978121_181": { -"question": "It is known that the parabola $y=\\frac{1}{4}x^{2}+1$ has the following property: the distance from any point on the parabola to the fixed point $F(0, 2)$ is equal to its distance to the x-axis, as illustrated in the figure. The point $M$ has coordinates $(\\sqrt{3}, 3)$. Let $P$ be a moving point on the parabola $y=\\frac{1}{4}x^{2}+1$. When the area of $\\triangle POF$ is 4, find the coordinates of point $P$?", -"image_file_name": "7056499", -"image": [ -"math/52978121_674.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point $P$ be $\\left(x, \\frac{1}{4}x^{2}+1\\right)$,\n\nsince the coordinates of point $F$ are $\\left(0, 2\\right)$,\n\ntherefore $OF=2$,\n\ntherefore when the area of $\\triangle POF$ is 4, $\\frac{1}{2}\\times 2\\times |x|=4$,\n\nsolving this, we get: $x=\\pm 4$,\n\ntherefore $y=\\frac{1}{4}\\times (\\pm 4)^{2}+1=5$,\n\nhence, the coordinates of point $P$ are $\\boxed{\\left(-4, 5\\right)}$ or $\\boxed{\\left(4, 5\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52978121_182": { -"question": "It is known that the parabola $y=\\frac{1}{4}x^{2}+1$ has the following property: for any point on the parabola, its distance to the fixed point $F(0, 2)$ is equal to its distance to the x-axis, as shown in the figure. The coordinate of point $M$ is $(\\sqrt{3}, 3)$, and $P$ is a moving point on the parabola $y=\\frac{1}{4}x^{2}+1$. What is the minimum perimeter of $\\triangle PMF$?", -"image_file_name": "7056499", -"image": [ -"math/52978121_674.png" -], -"solution": "\\textbf{Solution:} Draw $ME\\perp x$ axis at point $E$, and $ME$ intersects the parabola at point ${P}^{\\prime}$.\\\\\nSince the distance from any point on the parabola to the fixed point $F(0, 2)$ is equal to its distance to the x-axis,\\\\\nit follows that ${P}^{\\prime}F={P}^{\\prime}E$,\\\\\nand since $MF$ is constant,\\\\\nit follows that when point $P$ moves to point ${P}^{\\prime}$, the perimeter of $\\triangle PMF$ takes its minimum value,\\\\\nsince $F(0, 2)$, $M(\\sqrt{3}, 3)$,\\\\\nit follows that $ME=3$, $FM=\\sqrt{(\\sqrt{3}-0)^{2}+(3-2)^{2}}=2$,\\\\\nthus $MP^{\\prime}+P^{\\prime}F+MF=MP^{\\prime}+P^{\\prime}E+MF=ME+MF=3+2=\\boxed{5}$,\\\\\ntherefore, the minimum perimeter of $\\triangle PMF$ is $\\boxed{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977560_184": { -"question": "As shown in Figure 1, the nozzle B of a certain irrigation equipment is $1.25m$ above the ground. The parabolic water flow reaches its maximum height of $2.25m$ from the ground at a distance of $1m$ from the bottom of the nozzle A, as shown in Figure 2, where a Cartesian coordinate system is established. What is the quadratic function equation corresponding to this parabolic water flow?", -"image_file_name": "7056499", -"image": [ -"math/52977560_683.png" -], -"solution": "\\textbf{Solution:}\n\nSince the parabolic water flow corresponds to a quadratic function graph passing through the origin,\n\nwe assume the quadratic function relationship of the parabolic water flow to be $y=ax^{2}$;\n\nAccording to the problem statement, the distance from point B to the x-axis is $1m$, and the distance from point B to the y-axis is $2.25-1.25=1m$,\n\ntherefore, the coordinates of point B are $(-1,-1)$,\n\nsubstituting $B(-1,-1)$ into $y=ax^{2}$, we get $-1=a(-1)^{2}$,\n\nsolving this gives $a=-1$,\n\ntherefore, the quadratic function relationship of the parabolic water flow is $\\boxed{y=-x^{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977560_185": { -"question": "As shown in Figure 1, the nozzle B of an irrigation equipment is $1.25m$ above the ground. The parabolic water flow emitted reaches its maximum height of $2.25m$ above the ground at a distance of $1m$ from the bottom of the nozzle A, as illustrated in Figure 2 by establishing a Cartesian coordinate system. Find the horizontal distance between the nozzle and the point where the water flow touches the ground.", -"image_file_name": "7056499", -"image": [ -"math/52977560_683.png" -], -"solution": "\\textbf{Solution:} Let $y=-2.25$, i.e., $-{x}^{2}=-2.25$,\\\\\nSolving gives: $x_{1}=1.5$, $x_{2}=-1.5$ (discard),\\\\\n$1+1.5=2.5m$,\\\\\nThe horizontal distance between the nozzle and the point where the stream of water hits the ground is $\\boxed{2.5m}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977350_187": { -"question": "As shown in the figure, it is known that the parabola $y = -x^2 + bx + c$ passes through points A$(-1, 0)$ and B$(3, 0)$. What is the analytic equation of the parabola?", -"image_file_name": "7056499", -"image": [ -"math/52977350_691.png" -], -"solution": "\\textbf{Solution:} Let's substitute points A ($-1$, $0$) and B ($3$, $0$) into $y=-x^2+bx+c$,\\\\\n$\\therefore \\begin{cases}0=-1^2-b+c\\\\ 0=-9+3b+c\\end{cases}$,\\\\\nSolving, we get $\\begin{cases}b=2\\\\ c=3\\end{cases}$,\\\\\n$\\therefore$ the equation of the parabola is: $y=-x^2+2x+3=\\boxed{-x^2+2x+3}$.", -"solution_image": [ -"solution_images/52977350_693.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977350_188": { -"question": "As shown in the figure, it is known that the parabola $y=-x^2+bx+c$ passes through points $A(-1,0)$ and $B(3,0)$. When $0y_{1}\\).", -"image_file_name": "7056499", -"image": [ -"math/52977772_704.png" -], -"solution": "\\textbf{Solution:} When $-4 < x < 0$ or $x > 1$, we have $y_{2} > y_{1}$.\n\nWe directly express the range of the independent variable $x$ as \\boxed{x \\in (-4, 0) \\cup (1, +\\infty)}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52977381_194": { -"question": "As shown in the figure, the line $y=-\\frac{1}{2}x+2$ intersects the x-axis at point B and the y-axis at point C. A parabola with the axis of symmetry $x=\\frac{3}{2}$ passes through points B and C, and intersects the negative half of the x-axis at point A. What is the analytic equation of the parabola?", -"image_file_name": "7056499", -"image": [ -"math/52977381_712.png" -], -"solution": "\\textbf{Solution:} Let $x=0$, then $y=2$. Let $y=0$, then $-\\frac{1}{2}x+2=0$, which implies $x=4$,\n\\[\\therefore B(4, 0), C(0, 2),\\]\n\\[\\because\\] the axis of symmetry of the parabola is $x=\\frac{3}{2}$,\n\\[\\therefore\\] the parabola can be expressed as $y=a\\left(x-\\frac{3}{2}\\right)^{2}+k$,\n\\[\\because\\] the parabola passes through points $B(4, 0)$, $C(0, 2)$,\n\\[\\therefore \\left\\{\\begin{array}{l}\\frac{25}{4}a+k=0 \\\\ \\frac{9}{4}a+k=2\\end{array}\\right.,\\]\nSolving this, we get \\[\\left\\{\\begin{array}{l}a=-\\frac{1}{2} \\\\ k=\\frac{25}{8}\\end{array}\\right.,\\]\n\\[\\therefore\\] the equation of the parabola is \\[y=-\\frac{1}{2}\\left(x-\\frac{3}{2}\\right)^{2}+\\frac{25}{8}=-\\frac{1}{2}x^{2}+\\frac{3}{2}x+2=\\boxed{-\\frac{1}{2}x^{2}+\\frac{3}{2}x+2}.\\]", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977381_195": { -"question": "As shown in the diagram, the line $y=-\\frac{1}{2}x+2$ intersects the x-axis at point B and the y-axis at point C. A parabola with the axis of symmetry $x=\\frac{3}{2}$ passes through points B and C and intersects the negative x-axis at point A. Let P be a point on the parabola. Connect AP, and rotate line segment AP clockwise by $90^\\circ$ around point A to obtain line segment AQ. When the distance from point Q to the axis of symmetry is $\\frac{1}{2}$, what are the coordinates of point P?", -"image_file_name": "7056499", -"image": [ -"math/52977381_712.png" -], -"solution": "\\textbf{Solution:}\n\nLet $PH \\perp AB$, $QG \\perp AB$, and $QM \\perp l$, where H, G, M are the feet of the perpendiculars. Due to the symmetry of the parabola, it can be derived that $A(-1, 0)$,\n\nsince $AP = AQ$, $\\angle APH = \\angle QAG = 90^\\circ - \\angle PAH$, $\\angle AHP = \\angle QGA = 90^\\circ$,\n\nthus $\\triangle AHP \\cong \\triangle QGA \\ (AAS)$,\n\ntherefore, $PH = AG$,\n\nsince the distance from A to the axis of symmetry is $\\frac{5}{2}$ and the distance from Q to the axis of symmetry is $\\frac{1}{2}$,\n\nwhen Q is on the left side of the axis of symmetry, $PH = AG = 2$,\n\nwhen Q is on the right side of the axis of symmetry, $PH = AG = 3$,\n\ntherefore, $-\\frac{1}{2}x^2 + \\frac{3}{2}x + 2 = 2$ or $-\\frac{1}{2}x^2 + \\frac{3}{2}x + 2 = 3$,\n\nsolving yields $x_1 = 0$, $x_2 = 3$ or $x_1 = 1$, $x_1 = 2$\n\nthus, the coordinates of point P are $\\boxed{(0, 2)}$ or $\\boxed{(3, 2)}$ or $\\boxed{(1, 3)}$ or $\\boxed{(2, 3)}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977381_196": { -"question": "As shown in the diagram, the line $y = -\\frac{1}{2}x + 2$ intersects the x-axis at point B and the y-axis at point C. A parabola with the axis of symmetry $x = \\frac{3}{2}$ passes through points B and C and intersects the negative half of the x-axis at point A. Let M be a moving point on the parabola, and N be on the line $BC$. When the quadrilateral formed by points O, C, M, and N is a parallelogram, directly write down the coordinates of point N.", -"image_file_name": "7056499", -"image": [ -"math/52977381_712.png" -], -"solution": "\\textbf{Solution:} Let $N_1(2, 1)$, $N_2\\left(2+2\\sqrt{2}, 1-\\sqrt{2}\\right)$, $N_3\\left(2-2\\sqrt{2}, 1+\\sqrt{2}\\right)$, $N_4\\left(-2\\sqrt{2}-2, 3+\\sqrt{2}\\right)$, and $N_5\\left(-2+2\\sqrt{2}, 3-\\sqrt{2}\\right)$. \n\n\\boxed{N_1(2, 1)}, \\boxed{N_2\\left(2+2\\sqrt{2}, 1-\\sqrt{2}\\right)}, \\boxed{N_3\\left(2-2\\sqrt{2}, 1+\\sqrt{2}\\right)}, \\boxed{N_4\\left(-2\\sqrt{2}-2, 3+\\sqrt{2}\\right)}, and \\boxed{N_5\\left(-2+2\\sqrt{2}, 3-\\sqrt{2}\\right)}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977484_198": { -"question": "As shown in the figure, the graph of the quadratic function $y=ax^2+bx+c$ intersects the x-axis at points B and C, and intersects the y-axis at point A. If the coordinates of point A are $(0, -3)$, $\\angle ABC=45^\\circ$, and $3OC=OA$, find the expression for this quadratic function.", -"image_file_name": "7056499", -"image": [ -"math/52977484_721.png" -], -"solution": "\\textbf{Solution:} Given the coordinates of point A, we know that $AO=3$, \\\\\n$\\because$ $\\angle ABC=45^\\circ$ and $OC=OA$, \\\\\n$\\therefore$ $BO=3$, $CO=1$, \\\\\nTherefore, the coordinates of points B and C are $(-3,0)$ and $(1,0)$, respectively, \\\\\nLet the equation of the parabola be $y=a(x-x_1)(x-x_2)=a(x-1)(x+3)$, \\\\\n$\\because$ the coordinates of point A are $(0,-3)$, thus $-3a=-3$, solving this gives $a=1$, \\\\\nTherefore, the equation of the parabola is $y=x^2+2x-3=\\boxed{x^2+2x-3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977484_199": { -"question": "As shown in the figure, it is the graph of the quadratic function $y=ax^2+bx+c$, which intersects the x-axis at points B and C, and intersects the y-axis at point A. Point P is on the parabola, and the area of $\\triangle BCP$ is $\\frac{4}{3}$ times the area of $\\triangle ABC$. What are the coordinates of point P?", -"image_file_name": "7056499", -"image": [ -"math/52977484_721.png" -], -"solution": "\\textbf{Solution:} Because $S_{\\triangle BCP} = \\frac{4}{3}S_{\\triangle ABC}$, \\\\\nit follows that $|y_P| = \\frac{4}{3}|y_C|$, which means $y_P = \\pm 4$, \\\\\ni.e. $y = x^2 + 2x - 3 = \\pm 4$, \\\\\nSolving this gives: $x= -1 \\pm 2\\sqrt{2}$ or $-1$, \\\\\nHence, the coordinates of point P are $\\boxed{(-1+2\\sqrt{2},4)}$ or $\\boxed{(-1-2\\sqrt{2},4)}$ or $\\boxed{(-1,-4)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977501_201": { -"question": "As shown in the Cartesian coordinate system $xOy$, A and B are two points on the x-axis, while C and D are two points on the y-axis. The parabolic segment $C_1$ passing through points A, C, B and the parabolic segment $C_2$ passing through points A, D, B combine to form a closed curve, which we call the “egg curve”. It is known that the coordinates of point C are $(0,)$, and point M is the vertex of the parabola $C_2\\colon y=mx^2-2mx-3m$ ($m<0$). What are the coordinates of points A and B?", -"image_file_name": "7056499", -"image": [ -"math/52977501_731.png", -"math/52977501_734.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, then $mx^{2}-2mx-3m=0$,\\\\\nsince $m<0$, it follows that $x^{2}-2x-3=0$, solving this we get: $x_{1}=-1$, $x_{2}=3$.\\\\\nTherefore, the coordinates of A are $\\boxed{(-1,0)}$, and the coordinates of B are $\\boxed{(3,0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977501_202": { -"question": "As shown in the diagram, in the Cartesian coordinate system $xOy$, A and B are two points on the x-axis, C and D are two points on the y-axis. A segment of a parabola passing through points A, C, and B, denoted as $C_1$, and a segment of a parabola passing through points A, D, and B, denoted as $C_2$, combine to form a closed curve, which we call the \"egg curve\". It is known that the coordinate of point C is (0, ), and point M is the vertex of the parabola $C_2$: $y=mx^2-2mx-3m$ ($m<0$). Is there a point P on the \"egg curve\" in the fourth quadrant such that the area of $\\triangle PBC$ is maximized? If such a point exists, find the maximum area of $\\triangle PBC$; if not, provide a reason.", -"image_file_name": "7056499", -"image": [ -"math/52977501_731.png", -"math/52977501_734.png" -], -"solution": "\\textbf{Solution:} There exists a solution. The reason is as follows:\\\\\n$\\because$ Let the expression of parabola $C_1$ be $y=\\frac{1}{2}(x+1)(x-3)$. Substituting $C(0, -\\frac{3}{2})$ into it, we get $a=\\frac{1}{2}$.\\\\\n$\\therefore$ The expression of $C_1$ is: $y=\\frac{1}{2}x^2-x-\\frac{3}{2}$.\\\\\nLet $P(p, \\frac{1}{2}p^2-p-\\frac{3}{2})$,\\\\\n$\\therefore S_{\\triangle PBC}=S_{\\triangle POC}+S_{\\triangle BOP}-S_{\\triangle BOC}=-\\frac{3}{4}\\left(p-\\frac{3}{2}\\right)^2+\\frac{27}{16}$.\\\\\n$\\because a=-\\frac{3}{4}<0$, $\\therefore$ when $p=\\frac{3}{2}$, the maximum value of $S_{\\triangle PBC}$ is $\\boxed{\\frac{27}{16}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977501_203": { -"question": "In the Cartesian coordinate system $xOy$, A and B are two points on the x-axis, and C and D are two points on the y-axis. A part of the parabola passing through points A, C, and B, denoted as $C_{1}$, and a part of the parabola passing through points A, D, and B, denoted as $C_{2}$, combine to form a closed curve. We call this closed curve an \"egg curve\". Given that the coordinates of point C are (0,), and point M is the vertex of the parabola $C_{2}\\colon y=mx^{2}-2mx-3m$ ($m<0$). When $\\triangle BDM$ is a right-angled triangle, what is the value of $m$?", -"image_file_name": "7056499", -"image": [ -"math/52977501_731.png", -"math/52977501_734.png" -], -"solution": "\\textbf{Solution:} From $C_{2}$, it is known that: $B(3,0)$, $D(0,-3m)$, $M(1,-4m)$, \\\\\n$\\therefore BD^{2}=9m^{2}+9$, $BM^{2}=16m^{2}+4$, $DM^{2}=m^{2}+1$. \\\\\n$\\because$ $\\angle MBD<90^\\circ$, $\\therefore$ we discuss the cases of $\\angle BMD=90^\\circ$ and $\\angle BDM=90^\\circ$: \\\\\nWhen $\\angle BMD=90^\\circ$, $BM^{2}+DM^{2}=BD^{2}$, i.e., $16m^{2}+4+m^{2}+1=9m^{2}+9$, \\\\\nwe obtain: $m_{1}=-\\frac{\\sqrt{2}}{2}$, $m_{2}=\\frac{\\sqrt{2}}{2}$ (discard). \\\\\nWhen $\\angle BDM=90^\\circ$, $BD^{2}+DM^{2}=BM^{2}$, i.e., $9m^{2}+9+m^{2}+1=16m^{2}+4$, \\\\\nwe obtain: $m_{1}=-1$, $m_{2}=1$ (discard). \\\\\nIn summary, when $m=-\\frac{\\sqrt{2}}{2}$ or $m=-1$, $\\triangle BDM$ is a right-angled triangle. \\\\\nTherefore, the value of $m$ is $\\boxed{-\\frac{\\sqrt{2}}{2}}$ or $\\boxed{-1}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977819_205": { -"question": "As shown in the graph, the parabola $y=2x^{2}-4x-6$ intersects the x-axis at points A and B, with point A being to the left of point B, and intersects the y-axis at point C. Point D is a moving point on the parabola. Find the coordinates of points A, B, and C.", -"image_file_name": "7056499", -"image": [ -"math/52977819_741.png" -], -"solution": "\\textbf{Solution:} Substitute $y=0$ into $y=2x^{2}-4x-6$,\\\\\nwe get $2x^{2}-4x-6=0$.\\\\\nSolving it, we find $x_{1}=-1$, $x_{2}=3$.\\\\\nTherefore, the coordinates of point A are $\\boxed{\\left(-1, 0\\right)}$, and the coordinates of point B are $\\boxed{\\left(3, 0\\right)}$.\\\\\nSubstitute $x=0$ into $y=2x^{2}-4x-6$, we get $y=-6$.\\\\\nTherefore, the coordinates of point C are $\\boxed{\\left(0, -6\\right)}$.", -"solution_image": [ -"solution_images/52977819_741.png", -"solution_images/52977819_7412.png", -"solution_images/52977819_7414.png", -"solution_images/52977819_7422.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977819_206": { -"question": "Synthesis and Practice\\\\\nAs shown in the figure, the parabola $y=2x^2-4x-6$ intersects the x-axis at points $A$ and $B$, where point $A$ is to the left of point $B$, and intersects the y-axis at point $C$. Point $D$ is a moving point on the parabola. As shown in Figure 2, when point $D$ is in the fourth quadrant, connect $BD$, $CD$, and $BC$ to form $\\triangle BCD$. When the area of $\\triangle BCD$ is maximized, what are the coordinates of point $D$?", -"image_file_name": "7056499", -"image": [ -"math/52977819_741.png" -], -"solution": "Solution: Let the coordinates of point D be $\\left(m, 2m^{2}-4m-6\\right)$.\n\nAs shown in the diagram, draw $DH \\perp x$-axis at point H, and draw $DG \\perp y$-axis at point G, then connect $OD$.\n\n$\\therefore DG=m$, $DH=-2m^{2}+4m+6$.\n\n$\\because$ The coordinates of point B are $\\left(3, 0\\right)$, and the coordinates of point C are $\\left(0, -6\\right)$.\n\n$\\therefore OB=3$, $OC=6$.\n\n$\\because S_{\\triangle BCD}=S_{\\triangle OCD}+S_{\\triangle OBD}-S_{\\triangle OBC}$,\n\n$\\therefore S_{\\triangle BCD}=\\frac{OC\\cdot DG}{2}+\\frac{OB\\cdot DH}{2}-\\frac{OC\\cdot OB}{2}$\n\n$S_{\\triangle BCD}=\\frac{6m}{2}+\\frac{3(-2m^{2}+4m+6)}{2}-\\frac{6\\times 3}{2}$\n\nSimplifying, we get $S_{\\triangle BCD}=-3\\left(m-\\frac{3}{2}\\right)^{2}+\\frac{27}{4}$.\n\n$\\because -3<0$,\n\n$\\therefore$ When $m=\\frac{3}{2}$, the maximum area of $\\triangle BCD$ is $\\frac{27}{4}$.\n\n$\\therefore 2m^{2}-4m-6=2\\times \\left(\\frac{3}{2}\\right)^{2}-4\\times \\frac{3}{2}-6=2\\times \\frac{9}{4}-6-6=-\\frac{15}{2}$.\n\n$\\therefore$ The coordinates of point D are $\\boxed{\\left(\\frac{3}{2}, -\\frac{15}{2}\\right)}$.", -"solution_image": [ -"solution_images/52977819_741.png", -"solution_images/52977819_7412.png", -"solution_images/52977819_7414.png", -"solution_images/52977819_7422.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977885_209": { -"question": "As shown in the figure, the parabola $y=2x^2-4x-6$ intersects the x-axis at points A and B, with point A to the left of point B, and intersects the y-axis at point C. Point D is a moving point on the parabola. Find the coordinates of points A, B, and C.", -"image_file_name": "7056499", -"image": [ -"math/52977885_751.png" -], -"solution": "\\textbf{Solution:} Substitute $y=0$ into $y=2x^{2}-4x-6$,\nwe have $2x^{2}-4x-6=0$.\\\\\nSolving this, we find $x_{1}=-1$ and $x_{2}=3$.\\\\\nTherefore, the coordinates of point A are $\\boxed{\\left(-1, 0\\right)}$, and the coordinates of point B are $\\boxed{\\left(3, 0\\right)}$.\\\\\nSubstituting $x=0$ into $y=2x^{2}-4x-6$, we get $y=-6$.\\\\\nTherefore, the coordinates of point C are $\\boxed{\\left(0, -6\\right)}$.", -"solution_image": [ -"solution_images/52977885_751.png", -"solution_images/52977885_7512.png", -"solution_images/52977885_7514.png", -"solution_images/52977885_7522.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977885_210": { -"question": "Comprehensive and Practical\n\nAs shown in the figure, the parabola $y=2x^2-4x-6$ intersects the x-axis at points A and B, with point A on the left of point B, and intersects the y-axis at point C. Point D is a moving point on the parabola. As shown in Figure 2, when point D is in the fourth quadrant, connect $BD$, $CD$, and $BC$ to form $\\triangle BCD$. What are the coordinates of point D when the area of $\\triangle BCD$ is maximized?", -"image_file_name": "7056499", -"image": [ -"math/52977885_751.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point D be $\\left(\\frac{3}{2}, 2m^2-4m-6\\right)$.\n\nDraw $DH \\perp x$-axis at point H, and draw $DG \\perp y$-axis at point G, connecting $OD$.\n\n$\\therefore DG=m$, $DH=-2m^2+4m+6$.\n\n$\\because$ The coordinates of point B are $(3, 0)$ and the coordinates of point C are $(0, -6)$.\n\n$\\therefore OB=3$, $OC=6$.\n\n$\\because S_{\\triangle BCD}=S_{\\triangle OCD}+S_{\\triangle OBD}-S_{\\triangle OBC}$,\n\n$\\therefore S_{\\triangle BCD}=\\frac{OC \\cdot DG}{2}+\\frac{OB \\cdot DH}{2}-\\frac{OC \\cdot OB}{2}$\n\n$S_{\\triangle BCD}=\\frac{6m}{2}+\\frac{3(-2m^2+4m+6)}{2}-\\frac{6 \\times 3}{2}$\n\nSimplifying, we get $S_{\\triangle BCD}=-3\\left(m-\\frac{3}{2}\\right)^2+\\frac{27}{4}$.\n\n$\\because -3<0$,\n\n$\\therefore$ When $m=\\frac{3}{2}$, the area of $\\triangle BCD$ is maximized at $\\frac{27}{4}$.\n\n$\\therefore 2m^2-4m-6=2\\times \\left(\\frac{3}{2}\\right)^2-4\\times \\frac{3}{2}-6=2\\times \\frac{9}{4}-6-6=-\\frac{15}{2}$.\n\n$\\therefore$ The coordinates of point D are $\\boxed{\\left(\\frac{3}{2}, -\\frac{15}{2}\\right)}$.", -"solution_image": [ -"solution_images/52977885_751.png", -"solution_images/52977885_7512.png", -"solution_images/52977885_7514.png", -"solution_images/52977885_7522.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52978190_213": { -"question": "As shown in the figure, it is known that the parabola $y=x^2+bx+c$ passes through points $A(-1,0)$ and $B(3,0)$. What are the equation of the parabola and the coordinates of its vertex?", -"image_file_name": "7056499", -"image": [ -"math/52978190_763.png" -], -"solution": "\\textbf{Solution:} Substituting the points $A(-1,0)$ and $B(3,0)$ into $y=x^{2}+bx+c$, \\\\\nwe get: $\\begin{cases}1-b+c=0\\\\ 9+3b+c=0\\end{cases}$, \\\\\nSolving, we find: $\\begin{cases}b=-2\\\\ c=-3\\end{cases}$, \\\\\n$\\therefore$ The equation of the parabola is $y=x^{2}-2x-3$, \\\\\n$\\because y=x^{2}-2x-3=(x-1)^{2}-4$, \\\\\n$\\therefore$ The vertex coordinates are $\\boxed{(1, -4)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52978190_214": { -"question": "As shown in the figure, it is known that the parabola $y=x^2+bx+c$ passes through points $A(-1,0)$ and $B(3,0)$. What is the range of $y$ when $00$) intersects the $y$ axis at point $D$, intersects the parabola above $BC$ at point $E$, and intersects $BC$ at point $F$. Find the analytical expression of the parabola and the coordinates of points $A$ and $B$.", -"image_file_name": "7056499", -"image": [ -"math/52977788_7814.png" -], -"solution": "\\textbf{Solution:} \n\nSubstitute $C\\left(0, 2\\right)$ into $y=a{x}^{2}-3ax-4a$, which gives $-4a=2$. Solving this, we find $a=-\\frac{1}{2}$.\n\n$\\therefore$ The equation of the parabola is $y=-\\frac{1}{2}{x}^{2}+\\frac{3}{2}x+2$.\n\nSetting $-\\frac{1}{2}{x}^{2}+\\frac{3}{2}x+2=0$,\n\nwe find:${x}_{1}=-1, {x}_{2}=4$.\n\n$\\therefore \\boxed{A\\left(-1, 0\\right)}, \\boxed{B\\left(4, 0\\right)}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52977788_221": { -"question": "As shown in the figure, the parabola $y=ax^2-3ax-4a$ passes through point $C(0, 2)$ and intersects the x-axis at points $A$ and $B$ (point $A$ is to the left of point $B$). Line $BC$ is drawn, and the line $y=kx+1$ ($k>0$) intersects the y-axis at point $D$ and intersects the parabola above line $BC$ at point $E$, and intersect line $BC$ at point $F$. Does $\\frac{EF}{DF}$ have a maximum value? If it exists, please find the maximum value and the coordinates of point $E$ at that time; if it does not exist, please explain why.", -"image_file_name": "7056499", -"image": [ -"math/52977788_7814.png" -], -"solution": "\\textbf{Solution:} Existence is shown as follows,\\\\\nAs illustrated, according to the problem, point $E$ is on the right side of the $y$-axis. Construct $EG\\parallel y$-axis, intersecting $BC$ at point $G$\\\\\n$\\therefore CD\\parallel EG$\\\\\n$\\therefore \\frac{EF}{DF}=\\frac{EG}{CD}$\\\\\n$\\because$ The line $y=kx+1\\,(k>0)$ intersects the $y$-axis at point $D$\\\\\n$\\therefore D(0, 1),$\\\\\n$\\therefore CD=2-1=1,$\\\\\n$\\therefore \\frac{EF}{DF}=EG$\\\\\nAssume the equation of the line where $BC$ lies is $y=mx+n\\,(m\\ne 0)$,\\\\\nSubstituting $B(4, 0), C(0, 2)$ into the above equation yields: $\\left\\{\\begin{array}{l} 0=4m+n \\\\ 2=n \\end{array}\\right.$\\\\\nSolving gives: $\\left\\{\\begin{array}{l} m=-\\frac{1}{2} \\\\ n=2 \\end{array}\\right.$\\\\\n$\\therefore$ The equation of line $BC$ is $y=-\\frac{1}{2}x+2$\\\\\nLet $E(t, -\\frac{1}{2}t^2+\\frac{3}{2}t+2)$\\\\\nThen $G(t, -\\frac{1}{2}t+2)$, where $0y_{\\text{top of the tree}}$,\\\\\n$\\therefore$ the ball M can fly over the tree, hence the answer is $\\boxed{\\text{Yes}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52934216_236": { -"question": "As shown in the figure, a small ball M is thrown from point O on slope $OA$. The trajectory of the ball is a part of a parabola. A Cartesian coordinate system is established as shown in the figure, and the slope can be characterized by the linear function $y=\\frac{1}{2}x$. If the highest point reached by the ball is at coordinates $(4, 8)$, find the maximum height of ball M from the slope $OA$ during its flight.", -"image_file_name": "7056499", -"image": [ -"math/52934216_823.png" -], -"solution": "\\textbf{Solution:} Solve the system of equations $\\begin{cases}y=-\\frac{1}{2}x^2+4x\\\\ y=\\frac{1}{2}x\\end{cases}$, and we find: $\\begin{cases}x_1=0\\\\ y_1=0\\end{cases}$, $\\begin{cases}x_2=7\\\\ y_2=\\frac{7}{2}\\end{cases}$. Therefore, $0\\le x\\le 7$. As shown in the figure, draw $MF\\perp x$-axis at point F, intersecting $OA$ at point E. Let $E(t, \\frac{1}{2}t)(0\\le t\\le 7)$, then $M(t, -\\frac{1}{2}t^2+4t)$, hence $EM=y_M-y_E=-\\frac{1}{2}t^2+4t-\\frac{1}{2}t=-\\frac{1}{2}(t-\\frac{7}{2})^2+\\frac{49}{8}$. Since $-\\frac{1}{2}<0$ and $0\\le t\\le 7$, when $t=\\frac{7}{2}$, $EM$ reaches its maximum value, which is \\boxed{\\frac{49}{8}} meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52934017_238": { -"question": "As shown in the figure, in rectangle $OABC$, $OA=3$, $OC=4$. By respectively using the lines on which $OA$ and $OC$ lie as the $x$-axis and $y$-axis, we establish a Cartesian coordinate system. Let $D$ be a variable point on side $CB$ (not coinciding with $C$ or $B$). The graph of the inverse proportion function $y=\\frac{k}{x}$ (where $k>0$) passes through point $D$ and intersects side $BA$ at point $E$. Line $DE$ is drawn. When point $D$ moves to the midpoint of $BC$, find the value of $k$?", -"image_file_name": "7056499", -"image": [ -"math/52934017_8313.png", -"math/52934017_8314.png" -], -"solution": "\\textbf{Solution:} Since $OA=3$, $OC=4$, and quadrilateral $OABC$ is a rectangle,\\\\\nit follows that $BC=OA=3$, and the coordinates of point $B$ are $(3,4)$. Since point $D$ is the midpoint of side $BC$,\\\\\nit follows that $CD=\\frac{1}{2}BC=\\frac{3}{2}$\\\\\nTherefore, the coordinates of point $D$ are $\\left(\\frac{3}{2}, 4\\right)$\\\\\nFurthermore, since point $D$ lies on the graph of the inverse proportion function $y=\\frac{k}{x}(k>0)$,\\\\\nit follows that $k=\\frac{3}{2}\\times 4=\\boxed{6}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52934017_239": { -"question": "As shown in the figure, in rectangle $OABC$, we have $OA=3$ and $OC=4$. The lines containing $OA$ and $OC$ are taken as the $x$-axis and $y$-axis, respectively, establishing a Cartesian coordinate system. Let $D$ be a variable point on side $CB$ (not coinciding with $C$ or $B$), and the graph of the inverse proportion function $y=\\frac{k}{x}$ $(k>0)$ passes through point $D$ and intersects side $BA$ at point $E$. Construct line $DE$. Find the value of $\\frac{BD}{BE}$?", -"image_file_name": "7056499", -"image": [ -"math/52934017_8313.png", -"math/52934017_8314.png" -], -"solution": "Solution: Since points D and E lie on the graph of the inverse proportion function $y=\\frac{k}{x}$ ($k>0$),\\\\\nit follows that the coordinates of D are $\\left(\\frac{k}{4}, 4\\right)$, and the coordinates of E are $\\left(3, \\frac{k}{3}\\right)$.\\\\\nGiven also that the coordinates of point B are (3, 4),\\\\\nit follows that $BD=3-\\frac{k}{4}$ and $BE=4-\\frac{k}{3}$,\\\\\ntherefore, $\\frac{BD}{BE}=\\frac{3-\\frac{k}{4}}{4-\\frac{k}{3}}=\\boxed{\\frac{3}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52934017_240": { -"question": "As shown in the figure, in rectangle $OABC$, $OA=3$, $OC=4$. The lines containing $OA$ and $OC$ are taken as the $x$-axis and the $y$-axis, respectively, to establish a Cartesian coordinate system. Point $D$ is a moving point on side $CB$ (not coinciding with $C$ or $B$), and the graph of the inverse proportion function $y=\\frac{k}{x}$ ($k>0$) passes through point $D$ and intersects side $BA$ at point $E$. Line $DE$ is drawn. Connect $DA$. When the area of $\\triangle DAE$ is $\\frac{4}{3}$, what is the value of $k$?", -"image_file_name": "7056499", -"image": [ -"math/52934017_8313.png", -"math/52934017_8314.png" -], -"solution": "\\textbf{Solution:} From equation (2), we know that $AE=\\frac{k}{3}$ and $BD=3-\\frac{k}{4}$,\\\\\ntherefore, the area of $\\triangle DAE$ is ${S}_{\\triangle DAE}=\\frac{1}{2}AE\\cdot BD=\\frac{1}{2}\\times \\frac{k}{3}\\times \\left(3-\\frac{k}{4}\\right)=\\frac{4}{3}$,\\\\\nSimplifying, we get: ${k}^{2}-12k+32=0$,\\\\\nSolving, we find ${k}_{1}=\\boxed{4}$ and ${k}_{2}=\\boxed{8}$, therefore, when the area of $\\triangle DAE$ is $\\frac{4}{3}$, the value of $k$ is \\boxed{4} or \\boxed{8}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52916643_242": { -"question": "Given that the parabola $y=ax^2-3ax-4a$ intersects the x-axis at points $A$ and $B$ (with $A$ to the left of $B$), and intersects the negative half of the y-axis at point $C$, and $P$ is a point on the parabola in the fourth quadrant. If the area of $\\triangle ABC$ is $5$, what is the value of $a$?", -"image_file_name": "7056499", -"image": [ -"math/52916643_842.png" -], -"solution": "\\textbf{Solution:} Set $y=0$, we obtain $ax^{2}-3ax-4a=0$, solving this gives: $x_{1}=-1$, $x_{2}=4$.\\\\\nSince $y=ax^{2}-3ax-4a$ intersects with the x-axis at points $AB$ (A on the left and B on the right), and intersects the y-axis at point C,\\\\\nTherefore, $A(-1,0)$, $B(4,0)$, $C(0,-4a)$, and $AB=5$,\\\\\nSince the area ${S}_{\\triangle ABC}=5$,\\\\\n${S}_{\\triangle ABC}=\\frac{1}{2}\\times AB\\times OC=\\frac{1}{2}\\times 5\\times 4a=5$,\\\\\nSolving gives: $a=\\boxed{\\frac{1}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52916643_243": { -"question": "Given the parabola $y=ax^{2}-3ax-4a$ intersects the x-axis at points $A$ and $B$ (with $A$ to the left of $B$) and intersects the negative y-axis at point $C$. Let $P$ be a point on the parabola in the fourth quadrant. If $a=1$, a line through point $P$ is drawn perpendicular to the x-axis, intersecting line segment $BC$ at point $Q$. Find the maximum value of the line segment $PQ$ and the coordinates of point $P$ at this time.", -"image_file_name": "7056499", -"image": [ -"math/52916643_842.png" -], -"solution": "\\textbf{Solution:} When $a=1$, the parabola is $y=x^{2}-3x-4$. By substituting the coordinates of points $B(4,0)$ and $C(0,-4)$ into the expression of the linear function, we obtain the equation of line $BC$ as: $y=x-4$. Let point $P$ be $(t,t^{2}-3t-4)$, then point $Q$ is $(t,t-4)$, $\\therefore PQ=(t-4)-(t^{2}-3t-4)=-t^{2}+4t=-(t-2)^{2}+4$, $\\therefore$ when $t=2$, $PQ$ reaches its maximum value $\\boxed{4}$, at which point $P$ is $\\boxed{(2,-6)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52916643_244": { -"question": "As shown in the figure, it is known that the parabola $y=ax^2-3ax-4a$ intersects the x-axis at points $A$ and $B$ (with $A$ to the left of $B$) and intersects the negative half of the y-axis at point $C$. Let $P$ be a point on the parabola in the fourth quadrant. The line $AP$ intersects the y-axis at point $M$, and the line $BP$ intersects the y-axis at point $N$. Find the value of $\\frac{4OM+ON}{OC}$.", -"image_file_name": "7056499", -"image": [ -"math/52916643_842.png" -], -"solution": "\\textbf{Solution:} Given from (1) that points $A(-1,0)$, $B(4,0)$, and $C(0,-4a)$. Let point $P(m,am^{2}-3am-4a)$, by substituting the coordinates of points P and A into the expression of a linear function and solving, we find the equation of line $PA$ to be: $y=a(m-4)x+a(m-4)$. Therefore, $OM=-a(m-4)$. Similarly, the equation of line $BP$ is $y=a(m+1)x-4a(m+1)$, $ON=4a(m+1)$. Hence, $4OM+ON=-4a(m-4)+4a(m+1)=20a$. Since $C(0,-4a)$, it follows that $OC=4a$. Thus, $\\frac{4OM+ON}{OC}=\\frac{20a}{4a}=\\boxed{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52914172_247": { -"question": "As shown in the figure, it is known that the parabola $y=x^{2}+5x+4$ intersects the $x$-axis at point $A$ (point $A$ is to the left of the axis of symmetry of this parabola), and intersects the $y$-axis at point $B$. The line segment $AB$ intersects the axis of symmetry of the parabola at point $P$. $OA=OB$. Find the coordinates of point $P$.", -"image_file_name": "7056499", -"image": [ -"math/52914172_850.jpeg" -], -"solution": "\\[ \\textbf{Solution:} \\text{ Let the equation of line AB be } y=kx+b, \\]\n\\[ \\text{then } \\begin{cases} b=4 \\\\ 4k+b=0 \\end{cases} \\]\n\\[ \\text{Solving yields } \\begin{cases} k=-1 \\\\ b=4 \\end{cases} \\]\n\\[ \\therefore \\text{ the equation of line AB is } y=-x+4, \\]\n\\[ \\because \\text{ the axis of symmetry of the parabola is the line } x=-\\frac{5}{2}, \\]\n\\[ \\therefore \\text{ when } x=-\\frac{5}{2}, y=-\\frac{5}{2}+4=\\frac{3}{2}, \\]\n\\[ \\therefore \\text{ the coordinates of point } P \\text{ are } \\boxed{\\left(-\\frac{5}{2}, \\frac{3}{2}\\right)}. \\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52917576_249": { -"question": "As shown in the figure, it is known that in the Cartesian coordinate system $xOy$, the graph of the linear function $y=kx+b$ ($k\\neq 0$) passes through points A and $B(-1,0)$, and the graph of the inverse proportion function $y=\\frac{6}{x}$ also passes through point A, whose abscissa is 2. Find the analytical expression of the linear function.", -"image_file_name": "7056499", -"image": [ -"math/52917576_864.png" -], -"solution": "\\textbf{Solution:} Since the graph of the inverse proportion function $y=\\frac{6}{x}$ passes through point A, and the abscissa of point A is 2,\\\\\nhence $y_{A}=\\frac{6}{2}=3$, that is, $A(2,3)$.\\\\\nSince the graph of the linear function $y=kx+b(k\\ne 0)$ passes through points A, $B(-1,0)$,\\\\\nthus $\\left\\{\\begin{array}{l}3=2k+b \\\\ 0=-k+b \\end{array}\\right.$,\\\\\nsolving this, we get: $\\left\\{\\begin{array}{l}k=1 \\\\ b=1 \\end{array}\\right.$,\\\\\ntherefore the explicit formula of the linear function is $\\boxed{y=x+1}$;", -"solution_image": [ -"solution_images/52917576_8613.png", -"solution_images/52917576_8622.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52917576_250": { -"question": "As shown in the figure, it is known that in the Cartesian coordinate system $xOy$, the graph of the linear function $y=kx+b(k\\ne 0)$ passes through points A and $B(-1,0)$, the graph of the inverse proportion function $y=\\frac{6}{x}$ also passes through point A, and the abscissa of point A is 2. Point C is a point on the positive half of the x-axis, connect $AC$, $\\tan\\angle ACB=\\frac{3}{4}$. A line through point C is drawn perpendicular to the x-axis and intersects the graphs of the inverse proportion function $y=\\frac{6}{x}$ and the linear function $y=kx+b(k\\ne 0)$ at points D and E, respectively. Find the coordinates of points D and E.", -"image_file_name": "7056499", -"image": [ -"math/52917576_864.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AH \\perp x$-axis at point H.\n\n$\\therefore \\tan\\angle ACB = \\frac{AH}{CH} = \\frac{3}{4}$.\n\n$\\because A(2,3)$,\n\n$\\therefore AH=3$, $OH=2$\n\n$\\therefore CH=4$,\n\n$\\therefore OC=OH+CH=6$,\n\n$\\therefore C(6,0)$.\n\n$\\because x_C=x_D=x_E=6$.\n\n$\\therefore y_D=\\frac{6}{x_D}=1$, $y_E=x_E+1=7$,\n\n$\\therefore D(6,1)$, $E(6,7)$;\n\nHence, the coordinates of points D and E are $D=\\boxed{(6,1)}$, $E=\\boxed{(6,7)}$.", -"solution_image": [ -"solution_images/52917576_8613.png", -"solution_images/52917576_8622.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52917576_251": { -"question": "As shown in the diagram, it is known that in the Cartesian coordinate system $xOy$, the graph of the linear function $y=kx+b(k\\ne 0)$ passes through points A and $B(-1,0)$, and the graph of the hyperbolic function $y=\\frac{6}{x}$ also passes through point A, where the abscissa of point A is 2. Under this condition, when connecting $AD$, is there a point F on the graph of the linear function $y=kx+b(k\\ne 0)$ such that triangles $\\triangle EAD$ and $\\triangle ECF$ are similar? If such a point exists, please write down the coordinates of point F directly; if not, please explain why.", -"image_file_name": "7056499", -"image": [ -"math/52917576_864.png" -], -"solution": "\\textbf{Solution:} Exist, the coordinates of point F are $\\boxed{\\left(\\frac{4}{3},\\frac{7}{3}\\right)}$.", -"solution_image": [ -"solution_images/52917576_8613.png", -"solution_images/52917576_8622.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52917460_253": { -"question": "As shown in the figure, the parabola $y=ax^2-a$ (where $a>0$) intersects the x-axis at points $A$ and $B$ (with point $A$ to the left of point $B$), and intersects the y-axis at point $C$. Given that $OC = 2OA$, what are the coordinates of points $A$ and $B$?", -"image_file_name": "7056499", -"image": [ -"math/52917460_873.png" -], -"solution": "\\textbf{Solution:} According to the given information, we have $y=0$, which implies $ax^2-a=0$, \\\\\nthus $a(x+1)(x-1)=0$, \\\\\nsolving this we get: $x=-1$ or $x=1$, \\\\\nthus, we have the points \\boxed{A(-1, 0)}, \\boxed{B(1, 0)}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52917460_254": { -"question": "As shown in the figure, the parabola $y=ax^{2}-a$ ($a>0$) intersects the x-axis at points $A$ and $B$ ($A$ is to the left of $B$), and intersects the y-axis at point $C$, with $OC=2OA$. What is the analytical expression of the parabola?", -"image_file_name": "7056499", -"image": [ -"math/52917460_873.png" -], -"solution": "\\textbf{Solution:} \nGiven $A(-1, 0)$, \\\\\n$\\therefore OA=1$, \\\\\n$\\therefore OC=2OA=2$, \\\\\n$\\therefore C(0, -2)$, \\\\\nSubstituting into the parabola $y=ax^{2}-a(a>0)$, we get: $-a=-2$, \\\\\n$\\therefore a=2$, \\\\\n$\\therefore$ The equation of the parabola is $y=2x^{2}-2=\\boxed{2x^{2}-2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52917460_255": { -"question": "As shown in the figure, the parabola $y=ax^2-a$ ($a>0$) intersects the x-axis at points $A$ and $B$ (point $A$ is to the left of point $B$), and intersects the y-axis at point $C$, with $OC=2OA$. Is there a point $P$ on the parabola such that the incenter of $\\triangle PAC$ lies on the x-axis? If it exists, find the coordinates of point $P$; if not, please explain why.", -"image_file_name": "7056499", -"image": [ -"math/52917460_873.png" -], -"solution": "\\textbf{Solution:} Existence is proven,\\\\\nAssume there exists a point $P$ such that the intersection of the angle bisectors of the three interior angles of $\\triangle PAC$ lies on the $x$-axis, then the $x$-axis is the angle bisector of $\\angle PAC$.\\\\\n$\\therefore$ The reflection point of $C$ about the $x$-axis must lie on line $PA$. Denote it as $C'$,\\\\\n$\\because$ $C(0, -2)$,\\\\\n$\\therefore$ $C'(0, 2)$,\\\\\n$\\therefore$ Line $AP$ passes through $A(-1, 0), C'(0, 2)$,\\\\\nLet the equation of line $AP$ be $y=kx+2$,\\\\\n$\\therefore$ $-k+2=0$, solving yields $k=2$,\\\\\n$\\therefore$ The equation of line $AP$ is $y=2x+2$,\\\\\n$\\because$ Line $AP$ intersects the quadratic function $y=2x^2-2$ at point $P$,\\\\\n$\\therefore$ $2x+2=2x^2-2$,\\\\\nSolving gives: $x=2$ or $x=-1$,\\\\\nWhen $x=2$, $y=6$,\\\\\nWhen $x=-1$, $y=0$, which corresponds to point $A$,\\\\\n$\\therefore$ There exists a point $P$ such that the intersection of the angle bisectors of the three interior angles of $\\triangle PAC$ lies on the $x$-axis, and the coordinates of point $P$ are $\\boxed{(2,6)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52916776_257": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $C_1\\colon y=-\\frac{1}{4}x^2+bx+c$ passes through the points $(-3,0)$ and $(3,3)$, and intersects the y-axis at point C. What is the equation of the parabola $C_1$?", -"image_file_name": "7056499", -"image": [ -"math/52916776_884.png" -], -"solution": "\\textbf{Solution:} Since the graph of $y=-\\frac{1}{4}x^2+bx+c$ passes through the points $(-3,0)$ and $(3,3)$,\\\\\nwe have \n\\[\n\\begin{cases}\n-\\frac{1}{4}(-3)^2+3b+c=0\\\\\n-\\frac{1}{4}3^2+3b+c=3\n\\end{cases},\n\\]\nfrom which we deduce\n\\[\n\\begin{cases}\nb=\\frac{1}{2}\\\\\nc=\\frac{15}{4}\n\\end{cases},\n\\]\nTherefore, the equation of the parabola $C_1$ is $\\boxed{y=-\\frac{1}{4}x^2+\\frac{1}{2}x+\\frac{15}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52916776_258": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $C_1\\colon y=-\\frac{1}{4}x^2+bx+c$ passes through the points $(-3,0)$ and $(3,3)$, and intersects the y-axis at point C. The parabola $C_1$ is first translated 3 units to the left and then 2 units downward to obtain the parabola $C_2$. The vertex of parabola $C_2$ is D. What is the area of $\\triangle ODC$?", -"image_file_name": "7056499", -"image": [ -"math/52916776_884.png" -], -"solution": "Solution: Since $y=-\\frac{1}{4}x^2+\\frac{1}{2}x+\\frac{15}{4}=-\\frac{1}{4}(x-1)^2+4$,\\\\\nthe vertex of parabola $C_1$ is located at $(1,4)$, and it intersects the y-axis at point $C(0,\\frac{15}{4})$,\\\\\nsince moving parabola $C_1$ 3 units to the left and 2 units down yields parabola $C_2$,\\\\\nthe vertex $D$ of parabola $C_2$ has coordinates $(-2,2)$,\\\\\ntherefore, the area of $\\triangle ODC$ is $\\frac{1}{2}\\times 2\\times \\frac{15}{4}=\\boxed{\\frac{15}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52917427_260": { -"question": "As shown in the figure, the parabola $y=2x^2-4x-6$ intersects the x-axis at points A and B, with point A to the left of point B, and intersects the y-axis at point C. Point D is a moving point on the parabola. Find the coordinates of points A, B, and C.", -"image_file_name": "7056499", -"image": [ -"math/52917427_891.png" -], -"solution": "\\textbf{Solution:} Substitute $y=0$ into $y=2x^{2}-4x-6$, \\\\\nwe get $2x^{2}-4x-6=0$. \\\\\nSolving this, we find $x_{1}=-1$, $x_{2}=3$. \\\\\nTherefore, the coordinates of point A are $\\boxed{\\left(-1, 0\\right)}$, and the coordinates of point B are $\\boxed{\\left(3, 0\\right)}$. \\\\\nSubstitute $x=0$ into $y=2x^{2}-4x-6$, we get $y=-6$. \\\\\nTherefore, the coordinates of point C are $\\boxed{\\left(0, -6\\right)}$.", -"solution_image": [ -"solution_images/52917427_892.png", -"solution_images/52917427_8912.png", -"solution_images/52917427_8919.png", -"solution_images/52917427_8922.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52917427_261": { -"question": "As shown in the figure, the parabola $y=2x^2-4x-6$ intersects the x-axis at points $A$ and $B$, with point $A$ to the left of point $B$, and intersects the y-axis at point $C$. Point $D$ is a moving point on the parabola. As shown in figure 2, when point $D$ is in the fourth quadrant, connect $BD$, $CD$, and $BC$ to form $\\triangle BCD$. When the area of $\\triangle BCD$ is maximized, what are the coordinates of point $D$?", -"image_file_name": "7056499", -"image": [ -"math/52917427_891.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point D be $\\left(m, 2m^{2}-4m-6\\right)$.\n\nAs shown in the figure, draw $DH\\perp x$ axis at point H and $DG\\perp y$ axis at point G, then connect $OD$.\n\nTherefore, $DG=m$, $DH=-2m^{2}+4m+6$.\n\nBecause the coordinates of point B are $\\left(3, 0\\right)$ and the coordinates of point C are $\\left(0, -6\\right)$.\n\nTherefore, $OB=3$, $OC=6$.\n\nBecause $S_{\\triangle BCD}=S_{\\triangle OCD}+S_{\\triangle OBD}-S_{\\triangle OBC}$,\n\nTherefore, $S_{\\triangle BCD}=\\frac{OC\\cdot DG}{2}+\\frac{OB\\cdot DH}{2}-\\frac{OC\\cdot OB}{2}$\n\n$S_{\\triangle BCD}=\\frac{6m}{2}+\\frac{3(-2m^{2}+4m+6)}{2}-\\frac{6\\times 3}{2}$\n\nUpon simplification, we get $S_{\\triangle BCD}=-3\\left(m-\\frac{3}{2}\\right)^{2}+\\frac{27}{4}$.\n\nBecause $-3<0$,\n\nTherefore, when $m=\\frac{3}{2}$, the maximum area of $\\triangle BCD$ is $\\frac{27}{4}$.\n\nTherefore, $2m^{2}-4m-6=2\\times \\left(\\frac{3}{2}\\right)^{2}-4\\times \\frac{3}{2}-6=2\\times \\frac{9}{4}-6-6=-\\frac{15}{2}$.\n\nTherefore, the coordinates of point D are $\\boxed{\\left(\\frac{3}{2}, -\\frac{15}{2}\\right)}$.", -"solution_image": [ -"solution_images/52917427_892.png", -"solution_images/52917427_8912.png", -"solution_images/52917427_8919.png", -"solution_images/52917427_8922.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52916890_264": { -"question": "As shown in the figure, it is known that the graph of the quadratic function $y=-x^2+bx+c$ passes through two points $A(-2, -1)$ and $B(0, 7)$. What is the analytic expression of the parabola and its axis of symmetry?", -"image_file_name": "7056499", -"image": [ -"math/52916890_903.png" -], -"solution": "\\textbf{Solution:} Let the graph of the quadratic function $y=-x^2+bx+c$ pass through points $A(-2, -1)$, and $B(0, 7)$.\n\nHence, $\\left\\{\\begin{array}{l}\n-1=-4-2b+c \\\\\nc=7\n\\end{array}\\right.$,\n\nSolving this system, we get: $\\left\\{\\begin{array}{l}\nb=2 \\\\\nc=7\n\\end{array}\\right.$,\n\nTherefore, $y=-x^2+2x+7$,\n\n$=-\\left(x^2-2x\\right)+7$,\n\n$=-\\left[\\left(x^2-2x+1\\right)-1\\right]+7$,\n\n$=-(x-1)^2+8$,\n\nHence, the axis of symmetry is the line $x=\\boxed{1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52916890_265": { -"question": "As shown in the figure, it is known that the graph of the quadratic function $y=-x^2+bx+c$ passes through points $A(-2, -1)$ and $B(0, 7)$. For what values of $x$ is $y>0$?", -"image_file_name": "7056499", -"image": [ -"math/52916890_903.png" -], -"solution": "\\textbf{Solution}: When $y=0$,\\\\\n$0=-(x-1)^2+8$,\\\\\n$\\therefore x-1=\\pm 2\\sqrt{2}$,\\\\\n${x}_{1}=1+2\\sqrt{2}$, ${x}_{2}=1-2\\sqrt{2}$,\\\\\n$\\therefore$ the intersection points of the parabola and the $x$-axis are: $(1-2\\sqrt{2}, 0)$, $(1+2\\sqrt{2}, 0)$,\\\\\n$\\therefore$ when \\boxed{1-2\\sqrt{2}0$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52916890_266": { -"question": "As illustrated, it is known that the graph of the quadratic function $y=-x^2+bx+c$ passes through points $A(-2, -1)$ and $B(0, 7)$. On the upper side of the x-axis, a line $l$ is drawn parallel to the x-axis, intersecting the parabola at points $C$ and $D$ (with point $C$ being on the left side of the axis of symmetry). Perpendiculars are drawn from points $C$ and $D$ to the x-axis, with foot points at $F$ and $E$, respectively. When the rectangle $CDEF$ becomes a square, what are the coordinates of point $C$?", -"image_file_name": "7056499", -"image": [ -"math/52916890_903.png" -], -"solution": "\\textbf{Solution:} When the rectangle $CDEF$ is a square,\\\\\nlet the coordinates of point $C$ be $(x, -x^2+2x+7)$,\\\\\n$\\therefore$ the coordinates of point $D$ are $(-x^2+3x+7, -x^2+2x+7)$,\\\\\n$\\because$ the axis of symmetry is the line $x=1$, and the distance from $D$ to the axis of symmetry is equal to the distance from $C$ to the axis of symmetry,\\\\\n$\\therefore -x^2+3x+7-1=-x+1$,\\\\\nsolving this gives $x_1=-1$, $x_2=5$ (discard as it does not meet the condition),\\\\\nwhen $x=-1$, $-x^2+2x+7=4$,\\\\\n$\\therefore$ the coordinates of point $C$ are: $\\boxed{(-1, 4)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"55138456_268": { -"question": "As shown in the figure, a parabola $y=ax^2+bx+c$ ($a\\neq 0$) with the axis of symmetry $x=-1$ intersects the x-axis at points $A$ and $B$ $(-3, 0)$, and the point $(2, 5)$ lies on the parabola $y=ax^2+bx+c$. Determine the equation of the parabola.", -"image_file_name": "7056499", -"image": [ -"math/55138456_910.png" -], -"solution": "\\textbf{Solution}: By the symmetry axis of the parabola being $x=-1$ and point $A(-3, 6)$ being on the parabola, we get the following system of equations:\n\\[\n\\begin{cases}\n9a-3b+c=6\\\\\n4a+2b+c=5\\\\\n-\\frac{b}{2a}=-1\n\\end{cases}\n\\]\nSolving this, we obtain:\n\\[\n\\begin{cases}\na=3\\\\\nb=2\\\\\nc=-3\n\\end{cases}\n\\]\n$\\therefore$ The equation of the parabola is: \\boxed{y=3x^2+2x-3}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53107133_271": { -"question": "Given that the graph of the parabola $y=ax^2+bx+3$ intersects the x-axis at point A and point $B(1,0)$, and intersects the y-axis at point C. Connect $AC$. Let a moving point D be on segment $AC$. Draw a perpendicular to the x-axis from point D, which intersects the parabola at point E and intersects the x-axis at point F. Given $AB=4$, let the x-coordinate of point D be m. Find the equation of the parabola?", -"image_file_name": "7056499", -"image": [ -"math/53107133_925.png" -], -"solution": "Solution: Since point $B(1,0)$ and $AB=4$, \\\\\ntherefore $A(-3,0)$, \\\\\nsubstituting $B(1,0)$ and $A(-3,0)$ into $y=ax^2+bx+3$, \\\\\ntherefore $\\begin{cases}\na+b+3=0\\\\\n9a-3b+3=0\n\\end{cases}$, \\\\\nthus $\\begin{cases}\na=-1\\\\\nb=-2\n\\end{cases}$, \\\\\ntherefore the equation of the parabola is $\\boxed{y=-x^2-2x+3}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53107133_272": { -"question": "As shown in the figure, it is known that the parabola $y = ax^2 + bx + 3$ intersects the x-axis at points A and $B(1,0)$, and intersects the y-axis at point C. Line segment $AC$ is drawn, and a moving point D moves on segment $AC$. A perpendicular line to the x-axis is drawn from point D, intersects the parabola at point E, and intersects the x-axis at point F. It is given that $AB = 4$. Let the x-coordinate of point D be m. Lines $AE$ and $CE$ are drawn. When the area of $\\triangle ACE$ is maximized, find the maximum area of $\\triangle ACE$ and the coordinates of point D.", -"image_file_name": "7056499", -"image": [ -"math/53107133_925.png" -], -"solution": "\\textbf{Solution:} Suppose the equation of line AC is $y=k'x+b'$,\n\n$\\therefore \\left\\{\\begin{array}{l}\n-3k'+b'=0 \\\\\nb'=3\n\\end{array}\\right.$, solving this we get: $\\left\\{\\begin{array}{l}\nk'=1 \\\\\nb'=3\n\\end{array}\\right.$,\n\n$\\therefore$ the equation of line AC is $y=x+3$,\n\n$\\therefore D(m, m+3), E(m, -m^2-2m+3)$,\n\n$\\therefore DE=-m^2-3m$,\n\n$\\therefore {S}_{\\triangle ACE}=\\frac{1}{2}\\times 3\\times (-m^2-3m)=-\\frac{3}{2}(m+\\frac{3}{2})^2+\\frac{27}{8}$,\n\n$\\therefore$ when $m=-\\frac{3}{2}$, the maximum value of ${S}_{\\triangle ACE}$ is $\\boxed{\\frac{27}{8}}$,\n\n$\\therefore \\boxed{D\\left(-\\frac{3}{2}, \\frac{3}{2}\\right)}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53107133_273": { -"question": "Given the parabola $y=ax^2+bx+3$ intersects the x-axis at points A and $B(1,0)$, and the y-axis at point C. Connect $AC$. A moving point D is on the line segment $AC$. Draw a perpendicular line from D to the x-axis, which intersects the parabola at point E and the x-axis at point F. Given $AB=4$, let the x-coordinate of point D be $m$. When $m=-2$, is there a point Q in the plane such that the quadrilateral formed by vertices B, C, E, Q is a parallelogram? If such a point exists, please provide the coordinates of point Q directly; if not, please explain why.", -"image_file_name": "7056499", -"image": [ -"math/53107133_925.png" -], -"solution": "\\textbf{Solution:} When point $Q$ is at $\\boxed{(3, 0)}$, $\\boxed{(-1, 0)}$, or $\\boxed{(-3, 6)}$, the quadrilateral formed by vertices B, C, E, and Q is a parallelogram.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53107240_275": { -"question": "The parabola $y=ax^2+bx+4$ intersects the x-axis at points $A(-4, 0)$ and $B(1, 0)$, and intersects the y-axis at point C. Point P is a moving point on the parabola above the line $AC$. Find the equation of the parabola.", -"image_file_name": "7056499", -"image": [ -"math/53107240_934.png" -], -"solution": "\\textbf{Solution:} Since the parabola $y=ax^2+bx+4$ intersects the x-axis at points $A(-4, 0)$ and $B(1, 0)$, \\\\\nwe have $\\left\\{\\begin{array}{l}\n16a+4b+4=0 \\\\\na+b+4=0\n\\end{array}\\right.$. \\\\\nSolving this system, we find $\\left\\{\\begin{array}{l}\na=-1 \\\\\nb=-3\n\\end{array}\\right.$. \\\\\nTherefore, the quadratic function is $\\boxed{y=-x^2-3x+4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53107240_276": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+4$ intersects the x-axis at points $A(-4, 0)$ and $B(1, 0)$, and intersects the y-axis at point C. Point P is a moving point on the parabola above line $AC$. Draw $PE\\perp AC$ at point E. Find the maximum value of $\\frac{\\sqrt{2}}{2}PE$ and the coordinates of point P at this time.", -"image_file_name": "7056499", -"image": [ -"math/53107240_934.png" -], -"solution": "\\textbf{Solution:} Given that the quadratic function $y=-x^2-3x+4$ intersects with the y-axis at point C,\\\\\nhence the coordinates of point C are $(0, 4)$,\\\\\nlet the equation of line $AC$ be $y=kx+4$,\\\\\nsince line $AC$ passes through point $A(-4, 0)$,\\\\\ntherefore $0=-4k+4$,\\\\\nsolving for $k$ gives $k=1$,\\\\\nthus the equation of line $AC$ is $y=-x+4$,\\\\\ndraw $PF\\perp x$-axis at point F, intersecting line $AC$ at point D,\\\\\nlet point $P(x, -x^2-3x+4)$, then $D(x, x+4)$,\\\\\nhence $PD=-x^2-4x=-(x+2)^2+4$,\\\\\nthus when $x=-2$, $PD$ is maximized, with the maximum value being $4$.\\\\\nSince $A(-4, 0)$, $C(0, 4)$,\\\\\ntherefore $OA=OC$,\\\\\nhence $\\angle OAC=45^\\circ$,\\\\\nsince $PF\\perp x$-axis,\\\\\nthus $\\angle ADF=\\angle PDE=45^\\circ$,\\\\\nsince $PE\\perp AC$,\\\\\ntherefore $\\triangle PDE$ is an isosceles right triangle,\\\\\nthus $\\sqrt{2}PE=PD$,\\\\\nhence $\\frac{\\sqrt{2}}{2}PE=\\frac{1}{2}PD$,\\\\\ntherefore the maximum value of $\\frac{\\sqrt{2}}{2}PE$ is $\\frac{1}{2}\\times 4=2$,\\\\\nat this moment, the coordinates of point P are $(-2, 6)$,\\\\\ntherefore, the maximum value of $\\frac{\\sqrt{2}}{2}PE$ is $\\boxed{2}$, with the coordinates of point P being $\\boxed{(-2, 6)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53107063_278": { -"question": "As shown in the diagram, the parabola $y=ax^2+bx+3$ intersects the x-axis at points $A(-1, 0)$ and $B(3, 0)$, and intersects the y-axis at point C. Connect $BC$. Find the analytical expression of the parabola.", -"image_file_name": "7056499", -"image": [ -"math/53107063_944.png" -], -"solution": "\\textbf{Solution:} Substitute points $A(-1, 0)$ and $B(3, 0)$ into $y=ax^{2}+bx+3$,\\\\\nwe get $\\begin{cases}a-b+3=0\\\\ 9a+3b+3=0\\end{cases}$,\\\\\nsolving this yields $\\begin{cases}a=-1\\\\ b=2\\end{cases}$,\\\\\n$\\therefore \\boxed{y=-x^{2}+2x+3}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53107063_279": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+3$ intersects the x-axis at points $A(-1, 0)$ and $B(3, 0)$, and intersects the y-axis at point C. Connect $BC$. Point P is a point on the parabola above line $BC$, connect $PB$ and $PC$. Find the maximum area of $\\triangle PBC$ and the coordinates of point P at this time.", -"image_file_name": "7056499", -"image": [ -"math/53107063_944.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $PF\\perp AB$ at $F$, intersecting $BC$ at $E$,\\\\\nsince the intersection of the parabola $y=-x^2+2x+3$ with the y-axis is point $C$,\\\\\nthus $C(0, 3)$,\\\\\nsuppose the equation of line $BC$ is $y=kx+b\\ (k\\ne 0)$,\\\\\nsubstituting $B(3, 0)$, $C(0, 3)$ into the equation yields $\\begin{cases}3k+b=0\\\\ b=3\\end{cases}$,\\\\\nsolving this, we get $\\begin{cases}k=-1\\\\ b=3\\end{cases}$,\\\\\ntherefore, the equation of line $BC$ is: $y=-x+3$,\\\\\nlet point $P(t, -t^2+2t+3)$,\\\\\nthus $E(t, -t+3)$,\\\\\nthus $PE=-t^2+3t$,\\\\\nthus the area of $\\triangle PBC=\\frac{1}{2}\\times (-t^2+3t)\\times 3=-\\frac{3}{2}\\left(t-\\frac{3}{2}\\right)^2+\\frac{27}{8}$,\\\\\nthus, when $t=\\frac{3}{2}$, the maximum area of $\\triangle PBC$ is $\\boxed{\\frac{27}{8}}$,\\\\\nthus, point $\\boxed{P\\left(\\frac{3}{2}, \\frac{15}{4}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53107063_280": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+3$ intersects the x-axis at points $A(-1, 0)$ and $B(3, 0)$, and intersects the y-axis at point C. Line $BC$ is drawn. When the parabola $y=ax^2+bx+3$ is translated 1 unit to the right, a new parabola is obtained. Point M is on the axis of symmetry of the new parabola and point N is a moving point on the new parabola. If the quadrilateral formed by points M, N, B, and C is a parallelogram, directly write down the coordinates of point M.", -"image_file_name": "7056499", -"image": [ -"math/53107063_944.png" -], -"solution": "\\textbf{Solution:} The coordinates of point $M$ are $\\boxed{(2, -8)}$, $\\boxed{(2, -2)}$, or $\\boxed{(2, 0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52874723_282": { -"question": "As shown in the figure, it is known that the graph of the parabola $y=x^2+bx+c$ intersects the x-axis at point $A(-1,0)$ and intersects the y-axis at point $C(0,3)$. Find the analytical expression of the parabola and the coordinates of the other intersection point $B$ with the x-axis.", -"image_file_name": "7056499", -"image": [ -"math/52874723_950.png" -], -"solution": "Solution: Substituting points $A(-1,0)$ and $C(0,-3)$ into the parabola $y=x^{2}+bx+c$ yields the system of equations\n\\[\n\\left\\{\n\\begin{array}{l}\n1-b+c=0\\\\\nc=-3\n\\end{array}\n\\right.\n\\]\nSolving the system of equations, we get:\n\\[\n\\left\\{\n\\begin{array}{l}\nb=-2\\\\\nc=-3\n\\end{array}\n\\right.\n\\]\nHence, the function equation is $y=x^{2}-2x-3$. When $y=0$, $x^{2}-2x-3=0$, solving this gives $x_{1}=-1$, $x_{2}=3$;\\\\\nThe coordinate of another intersection point $B$ is $\\boxed{(3,0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52874723_283": { -"question": "As shown in the figure, the graph of the parabola $y=x^2+bx+c$ intersects the x-axis at one point $A(-1,0)$ and the y-axis at point $C(0,3)$. Based on the graph, for what values of $x$ is $y<0$?", -"image_file_name": "7056499", -"image": [ -"math/52874723_950.png" -], -"solution": "\\textbf{Solution:} It can be concluded from the graph that when $-10$, find the range of values for $x$.", -"image_file_name": "7056499", -"image": [ -"math/52871856_973.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, then $x^{2}+3x-4=0$, \\\\\nsolving this yields $x_{1}=-4$ and $x_{2}=1$, \\\\\n$\\therefore$ the coordinates of point B are $\\left(1,0\\right)$, \\\\\n$\\therefore$ from the graph of the function, it is known that when $y>0$, \\boxed{x<-4} or \\boxed{x>1}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52871717_293": { -"question": "As shown in the figure, the line $y_1=-x+3$ intersects the x-axis and y-axis at points $B$ and $C$ respectively. The parabola $y_2=ax^2+bx+c$ passing through points $B$ and $C$ has another intersection point with the x-axis at point $A$, and its axis of symmetry is the line $x=2$. Find the analytical expression of the parabola.", -"image_file_name": "7056499", -"image": [ -"math/52871717_986.png" -], -"solution": "Solution: Let $x=0$, we obtain $y=-x+3=3$,\\\\\nLet $y=0$, we obtain $-x+3=0$,\\\\\nSolving yields $x=3$,\\\\\n$\\therefore B(3, 0)$ and $C(0, 3)$,\\\\\n$\\because$ The axis of symmetry of the parabola is the line $x=2$, and the other intersection point of the parabola $y=ax^2+bx+c$ with the x-axis is A,\\\\\n$\\therefore A(1, 0)$,\\\\\nSuppose the equation of the parabola is $y=a(x-1)(x-3)$,\\\\\nSubstituting $C(0, 3)$ into it, we get $3a=3$,\\\\\n$\\therefore a=1$,\\\\\n$\\therefore$ The equation of the parabola is $y=x^2-4x+3$; hence, the equation of the parabola is $\\boxed{y=x^2-4x+3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52871717_294": { -"question": "As shown in the figure, the line $y_1=-x+3$ intersects the x-axis and the y-axis at points $B$ and $C$ respectively, and the parabola $y_2=ax^2+bx+c$ that passes through points $B$ and $C$ has another intersection point with the x-axis at point $A$, with its axis of symmetry being the line $x=2$. When $y_13$.\n\nDirectly write the range of $x$ as \\boxed{x<0} or \\boxed{x>3}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52866560_296": { -"question": "Synthesis and Exploration\\\\\nAs shown in Figure 1, the parabola $y=-\\frac{1}{2}x^{2}+\\frac{3}{2}x+2$ intersects the x-axis at points A and B (where point A is to the left of point B), and intersects the y-axis at point C. Point D is on the parabola in the first quadrant. Please write down the coordinates of points A, B, and C directly.", -"image_file_name": "7056499", -"image": [ -"math/52866560_991.png" -], -"solution": "\\textbf{Solution:} Let \\boxed{A(-1, 0)}, \\boxed{B(4, 0)}, \\boxed{C(0, 2)}", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52866560_297": { -"question": "Synthesis and Exploration\\\\ As shown in Figure 1, the parabola $y=-\\frac{1}{2}x^{2}+\\frac{3}{2}x+2$ intersects the x-axis at points A and B (point A is to the left of point B) and intersects the y-axis at point C. Point D lies on the parabola in the first quadrant.\\\\ If $ S_{\\triangle COD}=\\frac{1}{3}S_{\\triangle OBD}$, find the coordinates of point D.", -"image_file_name": "7056499", -"image": [ -"math/52866560_991.png" -], -"solution": "\\textbf{Solution:} Let $DG \\perp x$-axis and $DH \\perp y$-axis through the point D, with the feet of the perpendiculars being G and H, respectively.\n\nSuppose $D\\left(m, -\\frac{1}{2}m^{2}+\\frac{3}{2}m+2\\right)$.\n\nSince the area of $\\triangle DCO = \\frac{1}{2}OC \\cdot DH = \\frac{1}{2} \\times 2 \\times m$.\n\nThe area of $\\triangle BOD = \\frac{1}{2}OB \\cdot DG = \\frac{1}{2} \\times 4 \\times \\left(-\\frac{1}{2}m^{2}+\\frac{3}{2}m+2\\right)$\n\nSince the area of $\\triangle COD = \\frac{1}{3}$ the area of $\\triangle CBD$.\n\nTherefore, $\\frac{1}{2} \\times 2 \\times m = \\frac{1}{3} \\times \\frac{1}{2} \\times 4 \\times \\left(-\\frac{1}{2}m^{2}+\\frac{3}{2}m+2\\right)$\n\nSolving this, we get $m_{1}=2$, $m_{2}=-2$ (discard).\n\nWhen $m=2$, $-\\frac{1}{2}m^{2}+\\frac{3}{2}m+2=3$.\n\nTherefore, $D\\left(2, 3\\right)$.\n\nHence, the coordinates of point D are $\\boxed{D\\left(2, 3\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53080618_61": { -"question": "As shown in the figure, in the circle $\\odot O$, $PA$ is a diameter, $PC$ is a chord, $PH$ bisects $\\angle APB$ and intersects $\\odot O$ at point $H$. A line is drawn through $H$ such that $HB\\perp PC$ and it intersects the extension of $PC$ at point $B$. $HB$ is a tangent to the circle $\\odot O$; if $HB=4$ and $BC=2$, what is the diameter of $\\odot O$?", -"image_file_name": "7058807", -"image": [ -"math/53080618_590.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw OE$\\perp$PC with E being the foot of the perpendicular from O, \\\\\nsince OE$\\perp$PC, OH$\\perp$BH, BP$\\perp$BH, \\\\\nthus, quadrilateral EOHB is a rectangle, \\\\\ntherefore, OE=BH=4, OH=BE, \\\\\ntherefore, CE=OH-2, \\\\\nsince OE$\\perp$PC, \\\\\ntherefore, PE=EC=OH-2=OP-2, \\\\\nin $\\triangle POE$, $OP^{2}=PE^{2}+OE^{2}$, \\\\\ntherefore, $OP^{2}=(OP-2)^{2}+16$, \\\\\ntherefore, OP=5, \\\\\ntherefore, AP=2OP=\\boxed{10}, \\\\\ntherefore, the diameter of $\\odot O$ is \\boxed{10}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53066245_64": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, the angle bisector of $\\angle BAC$ intersects $BC$ at point D. Point O is on $AB$, and the circle with point O as the center and $OA$ as the radius just passes through point D and intersects $AC$, $AB$ at points E, F respectively. If $BD=2\\sqrt{5}$ and $BF=2$, what is the radius of circle $O$?", -"image_file_name": "7058807", -"image": [ -"math/53066245_608.png" -], -"solution": "\\textbf{Solution:} In the right-angled triangle $\\triangle OBD$, let the radius be $r$. According to the Pythagorean theorem, we have\n\\[r^{2}+BD^{2}=(r+BF)^{2},\\]\n\\[\\because BD=2\\sqrt{5}, BF=2,\\]\n\\[\\therefore r^{2}+(2\\sqrt{5})^{2}=(r+2)^{2},\\]\nsolving this gives $r=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53110769_67": { -"question": "As shown in the figure, point \\(A\\) lies on the extension line of diameter \\(CD\\) of circle \\(\\odot O\\), and point \\(B\\) is on circle \\(\\odot O\\), with \\(\\angle A=\\angle C=30^\\circ\\). Line \\(AB\\) is a tangent to circle \\(\\odot O\\); if \\(BC=2\\sqrt{3}\\), what is the length of \\(AC\\)?", -"image_file_name": "7058807", -"image": [ -"math/53110769_614.png" -], -"solution": "\\textbf{Solution:} Construct $BE\\perp AC$ at point $E$\\\\\nSince $\\angle C=30^\\circ$ and $BC=2\\sqrt{3}$\\\\\nIt follows that $BE=\\sqrt{3}$\\\\\nThus, $CE=\\sqrt{BC^{2}-BE^{2}}=\\sqrt{(2\\sqrt{3})^{2}-(\\sqrt{3})^{2}}=3$\\\\\nSince $\\angle A=\\angle C=30^\\circ$\\\\\nIt implies $AB=BC$\\\\\nSince $BE\\perp AC$\\\\\nIt concludes $AC=2EC=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53110813_69": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, point $D$ is on the extension of $AB$, and $C$ is a point on $\\odot O$. Given that $\\angle A=25^\\circ$ and $\\angle D=40^\\circ$, what is the degree measure of $\\angle DOC$?", -"image_file_name": "7058807", -"image": [ -"math/53110813_626.png" -], -"solution": "\\textbf{Solution:} Given $OA = OC$, $\\angle A = 25^\\circ$, \\\\\n$\\therefore \\angle A = \\angle OCA = 25^\\circ$, \\\\\n$\\therefore \\angle DOC = 2\\angle A = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53043272_73": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, $BC$ is a chord of $\\odot O$, $AE \\perp OC$ at point $D$, intersecting $BC$ at $F$, and intersecting the line passing through point $B$ at point $E$, with $BE=EF$. $BE$ is a tangent line of $\\odot O$; if the radius of $\\odot O$ is 10, and $OD=6$, find the length of $BE$.", -"image_file_name": "7058807", -"image": [ -"math/53043272_637.png" -], -"solution": "\\textbf{Solution}: Since the radius of circle $O$ is 10,\\\\\nhence $OA=OB=OC=10$,\\\\\ntherefore $AB=20$,\\\\\nsince $AE\\perp OC$,\\\\\ntherefore $\\angle ADO=90^\\circ$,\\\\\nthus in right triangle $ADO$, $AD=\\sqrt{AO^{2}-DO^{2}}$,\\\\\nsince $OD=6$,\\\\\ntherefore $AD=\\sqrt{AO^{2}-DO^{2}}=\\sqrt{10^{2}-6^{2}}=8$,\\\\\nsince combining (1), it is known that $\\angle ABE=\\angle ADO=90^\\circ$ and $\\angle BAE=\\angle DAO$,\\\\\ntherefore $\\triangle ADO\\sim \\triangle ABE$,\\\\\ntherefore $\\frac{BE}{AB}=\\frac{DO}{AD}$, that is $BE=\\frac{DO}{AD}\\times AB$,\\\\\nsince $AD=8$, $AB=20$, $DO=6$,\\\\\ntherefore $BE=\\frac{DO}{AD}\\times AB=\\frac{6}{8}\\times 20=\\boxed{15}$,\\\\\nthat is, the sought value is \\boxed{15}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53101898_76": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and point $P$ is on $\\odot O$ with $PA=PB$. Point $M$ is outside $\\odot O$, and $MB$ is tangent to $\\odot O$ at point $B$. Connect $OM$, and draw $AC\\parallel OM$ through point $A$ to intersect with $\\odot O$ at point $C$, and connect $BC$ to intersect $OM$ at point $D$. $MC$ is a tangent to $\\odot O$. Given that $AB=20$ and $BC=16$, connect $PC$. What is the length of $PC$?", -"image_file_name": "7058807", -"image": [ -"math/53101898_6412.png" -], -"solution": "\\textbf{Solution:} Since $AB$ is the diameter of $\\odot O$,\\\\\nit follows that $\\angle ACB=\\angle APB=90^\\circ$,\\\\\nSince $AB=20$,\\\\\nwe have $PA=PB=\\frac{\\sqrt{2}}{2}\\times 20=10\\sqrt{2}$,\\\\\nSince $BC=16$,\\\\\nwe get $AC=\\sqrt{AB^{2}-BC^{2}}=\\sqrt{20^{2}-16^{2}}=12$,\\\\\nDraw $AH\\perp PC$ at point H through point A,\\\\\nthus $\\angle AHC=\\angle AHP=90^\\circ$,\\\\\nSince $\\angle ACH=\\angle ABP=45^\\circ$,\\\\\nwe have $AH=CH=AC\\times \\sin 45^\\circ=12\\times \\frac{\\sqrt{2}}{2}=6\\sqrt{2}$,\\\\\nTherefore, $PH=\\sqrt{PA^{2}-AH^{2}}=\\sqrt{(10\\sqrt{2})^{2}-(6\\sqrt{2})^{2}}=8\\sqrt{2}$,\\\\\nHence, $PC=PH+CH=\\boxed{14\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53019920_79": { -"question": "As shown in the figure, $AC$ is the diameter of the circle $\\odot O$, $P$ is the midpoint of the semicircle $AC$. Line $AP$ is extended to point $B$ such that $PB=AP$. Lines $CP$, $CB$, and $OP$ are drawn. $BC$ is a tangent of circle $\\odot O$. If $AC=4$, what is the area of the shaded section in the figure?", -"image_file_name": "7058807", -"image": [ -"math/53019920_656.png" -], -"solution": "\\textbf{Solution:} Given $AC=4$,\\\\\nthus $BC=AC=4$, $OA=OP=2$,\\\\\nsince $P$ is the midpoint of the semicircle $AC$,\\\\\nhence $AC\\perp OP$,\\\\\ntherefore $S_{\\text{shaded}}=S_{\\triangle ABC}-S_{\\triangle AOP}-S_{\\text{sector} POC}=\\frac{1}{2}\\times 4\\times 4-\\frac{1}{2}\\times 2\\times 2-\\frac{90^\\circ\\pi \\times 2^2}{360}=\\boxed{6-\\pi}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53019892_82": { -"question": "As shown in the figure, the diameter AB of the circle $\\odot O$ forms an angle $\\angle A=30^\\circ$ with the chord AC, where $AC=CP$. $CP$ is a tangent to $\\odot O$; if $PC=6$, what is the area of the shaded region in the figure?", -"image_file_name": "7058807", -"image": [ -"math/53019892_662.png" -], -"solution": "\\textbf{Solution:}\n\nSince $AC=PC$,\n\nit follows that $\\angle P=\\angle A=30^\\circ$,\n\nthus $\\angle COB=60^\\circ$ and $OP=2OC$.\n\nGiven $PC=6$,\n\nwe have $OP^2-OC^2=6^2$,\n\nwhich leads to $OC=2\\sqrt{3}$.\n\nTherefore, the area of the shaded region in the diagram $S_{\\triangle POC}-S_{\\text{sector} COB}$\n\n$=\\frac{1}{2}\\times 6\\times 2\\sqrt{3}-\\frac{60^\\circ \\cdot \\pi \\times (2\\sqrt{3})^2}{360^\\circ}=6\\sqrt{3}-2\\pi$.\n\nHence, the area of the shaded region in the diagram is $\\boxed{6\\sqrt{3}-2\\pi}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53019750_85": { -"question": "As shown in the diagram, points $A,B$ lie on circle $O$, and the bisector of $\\angle BAO$ intersects circle $O$ at point $D$. Point $C$ is on the extension of $OA$ such that $\\angle CBA=\\angle D$. $CB$ is a tangent to circle $O$; If $DB\\parallel OA$ and $BD=3$, what is the radius of circle $O$?", -"image_file_name": "7058807", -"image": [ -"math/53019750_674.png" -], -"solution": "\\textbf{Solution:} Method 1:\\\\\nSince $DB\\parallel OA$,\\\\\nit follows that $\\angle OAD=\\angle D$,\\\\\nSince $AD$ is the bisector of $\\angle BAO$,\\\\\nit follows that $\\angle OAD=\\angle BAD$,\\\\\nTherefore $\\angle BAD=\\angle D$, hence $BD=AB=3$,\\\\\nSince $\\angle AOB=2\\angle E=2\\angle D=2\\angle BAD=\\angle OAB$, and $OA=OB$,\\\\\nit follows that $\\triangle AOB$ is an equilateral triangle, hence $OA=AB$,\\\\\nTherefore, $OA=\\boxed{3}$, which means the radius of circle O is 3.\\\\\nMethod 2:\\\\\nConnect $DO$, where $OD=OA$,\\\\\nTherefore $\\angle ODA=\\angle OAD$,\\\\\nMoreover, since $\\angle OAD=\\angle BAD$,\\\\\nTherefore $\\angle ODA=\\angle BAD$,\\\\\nTherefore $OD\\parallel AB$ (since the alternate interior angles are equal, the lines are parallel),\\\\\nAlso, since $DB\\parallel OA$,\\\\\nTherefore the quadrilateral $OABD$ is a parallelogram,\\\\\nHence, $OA=BD=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52814924_88": { -"question": "As shown in the figure, in $\\triangle ABC$, we have $AB=AC$. A circle $\\odot O$ with diameter $AC$ intersects $BC$ at point $D$. A line through point $D$ and perpendicular to $AB$ is drawn, with the foot of the perpendicular being point $E$. Extend $BA$ to intersect $\\odot O$ at point $F$. $DE$ is a tangent to $\\odot O$. Given $DE=2$ and $AF=3$, find the length of $AE$.", -"image_file_name": "7058807", -"image": [ -"math/52814924_680.png" -], -"solution": "Given that the provided information is only the number \"1\", there is not enough context or specific LaTeX code to perform any cleaning or modification. Please provide the complete LaTeX code or a more detailed description of the problem, so that I can offer accurate assistance.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52551457_90": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and lines $BD$ and $CD$ are the tangents to $\\odot O$ at points $B$ and $C$, respectively. If $BD=2$, what is the length of $CD$?", -"image_file_name": "7058807", -"image": [ -"math/52551457_697.png" -], -"solution": "\\textbf{Solution:} Due to insufficient information provided in the question, it is impossible to offer a \\boxed{solution}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52551457_91": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and the lines $BD$ and $CD$ are tangents to $\\odot O$ at points $B$ and $C$, respectively. If $\\angle BDC = 130^\\circ$, what is the degree measure of $\\angle A$?", -"image_file_name": "7058807", -"image": [ -"math/52551457_697.png" -], -"solution": "\\textbf{Solution:} Let's connect $OC$, $BC$.\\\\\nSince $BD$, $CD$ are tangents to the circle centered at $O$ through points $B$ and $C$ respectively,\\\\\nTherefore $OC\\perp CD$, $OB\\perp BD$,\\\\\nTherefore $\\angle OCD=\\angle OBD=90^\\circ$,\\\\\nSince $\\angle BDC=130^\\circ$,\\\\\nTherefore $\\angle BOC=360^\\circ-\\angle OCD-\\angle BDC-\\angle OBD=50^\\circ$,\\\\\nTherefore $\\angle A=\\frac{1}{2}\\angle BOC=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52536729_94": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, with $C$ and $D$ being two points on $\\odot O$, $\\angle BAC = \\angle DAC$. A line $EF \\perp AD$ is drawn through point $C$, intersecting the extension of $AD$ at point $E$, and $BC$ is connected. $EF$ is the tangent of $\\odot O$; if $DE=2$ and $BC=4$, what is the length $l$ of the minor arc $\\overset{\\frown}{BC}$?", -"image_file_name": "7058807", -"image": [ -"math/52536729_704.png" -], -"solution": "\\textbf{Solution:} Draw $OD$, $DC$,\\\\\nsince $\\angle DAC = \\frac{1}{2}\\angle DOC$, $\\angle OAC = \\frac{1}{2}\\angle BOC$, $\\angle DAC = \\angle OCA = \\angle OAC$,\\\\\nthus $\\angle DOC = \\angle BOC$, $DC=BC=4$,\\\\\ntherefore, in $\\triangle CED$, $\\sin\\angle ECD = \\frac{DE}{DC} = \\frac{1}{2}$,\\\\\nthus $\\angle ECD = 30^\\circ$,\\\\\nalso, since $EF$ is a tangent to $\\odot O$,\\\\\nthus $\\angle OCD = 60^\\circ$,\\\\\ntherefore, $\\triangle COD$ is an equilateral triangle,\\\\\nthus $\\angle BOC = \\angle COD = 60^\\circ$,\\\\\ntherefore, $\\triangle BOC$ is an equilateral triangle,\\\\\nthus $OC = BC = 4$,\\\\\ntherefore, $l = \\frac{60\\pi \\times 4}{180} = \\boxed{\\frac{4}{3}\\pi}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52536794_97": { -"question": "As shown in the figure, AB is the diameter of the circle $\\odot$O, and points F, C are on circle $\\odot$O, with $\\overset{\\frown}{AF}=\\overset{\\frown}{FC}=\\overset{\\frown}{CB}$. Connect AC and AF, and draw $CD\\perp AF$ extending through point C to meet the extension of AF at point D, with D being the foot of the perpendicular. CD is the tangent of circle $\\odot$O; If CD=$2\\sqrt{3}$, what is the radius of $\\odot$O?", -"image_file_name": "7058807", -"image": [ -"math/52536794_711.png" -], -"solution": "\\textbf{Solution:} Connect BC as shown in the figure, \\\\\nsince AB is the diameter, \\\\\ntherefore, $\\angle ACB=90^\\circ$, \\\\\nsince $\\overset{\\frown}{AF}=\\overset{\\frown}{FC}=\\overset{\\frown}{CB}$, \\\\\ntherefore, $\\angle BOC= \\frac{1}{3}\\times180^\\circ=60^\\circ$, \\\\\ntherefore, $\\angle BAC=30^\\circ$, \\\\\ntherefore, $\\angle DAC=30^\\circ$, \\\\\nin $\\triangle ADC$, where CD=$2\\sqrt{3}$, \\\\\ntherefore, AC=2CD=$4\\sqrt{3}$, \\\\\nin $\\triangle ACB$, where BC$^{2}$+AC$^{2}$=AB$^{2}$, \\\\\nthat is, ($4\\sqrt{3}$)$^{2}$+($\\frac{1}{2}$AB)$^{2}$=AB$^{2}$, \\\\\ntherefore, AB=8, \\\\\ntherefore, the radius of $\\odot O$ is $\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52536497_100": { -"question": "As shown in the figure, $AD$ is tangent to the circle $\\odot O$ at point $D$, and point $A$ is on the extension of the diameter $CB$. $\\angle DCB = \\angle ADB$; If $\\angle DCB = 30^\\circ$ and $AC = 3\\sqrt{3}$, find the length of $AD$.", -"image_file_name": "7058807", -"image": [ -"math/52536497_720.png" -], -"solution": "\\textbf{Solution:} Since $\\because \\angle DCB = \\angle ADB$ and $\\angle DAC = \\angle CAD$,\\\\\n$\\therefore \\triangle ADB \\sim \\triangle ACD$,\\\\\n$\\therefore \\frac{DB}{CD} = \\frac{AD}{AC}$,\\\\\nSince $CB$ is the diameter,\\\\\n$\\therefore \\angle CDB = 90^\\circ$, $\\angle DCB = 30^\\circ$,\\\\\n$\\therefore \\tan \\angle DCB = \\frac{DB}{CD} = \\frac{\\sqrt{3}}{3}$,\\\\\n$\\therefore \\frac{AD}{AC} = \\frac{\\sqrt{3}}{3}$,\\\\\nSince $AC = 3\\sqrt{3}$,\\\\\n$\\therefore AD = \\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52512571_103": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$ and $\\angle B=30^\\circ$. Point $D$ is the midpoint of side $AB$, and point $O$ is on side $BC$. A circle with center $O$ passes through vertex $C$ and intersects side $AB$ at point $D$. The line $AB$ is a tangent to circle $O$; if $AC=\\sqrt{3}$, what is the area of the shaded region?", -"image_file_name": "7058807", -"image": [ -"math/52512571_730.jpeg" -], -"solution": "\\textbf{Solution:} From (1) we know: $AC=AD=BD=\\frac{1}{2}AB$,\\\\\nand since $AC=\\sqrt{3}$,\\\\\ntherefore $BD=AC=\\sqrt{3}$,\\\\\nsince $\\angle B=30^\\circ$, $\\angle BDO=\\angle ADO=90^\\circ$,\\\\\ntherefore $\\angle BOD=60^\\circ$, $BO=2DO$,\\\\\nby the Pythagorean theorem we have: $BO^2=OD^2+BD^2$,\\\\\nwhich gives $(2OD)^2=OD^2+(\\sqrt{3})^2$,\\\\\nsolving this yields: $OD=1$ (negatives disregarded),\\\\\nthus the area of the shaded region $S=S_{\\triangle BDO}-S_{\\text{sector} DOE}=\\frac{1}{2}\\times 1\\times \\sqrt{3}-\\frac{60^\\circ\\pi \\times 1^2}{360}=\\boxed{\\frac{\\sqrt{3}}{2}-\\frac{\\pi}{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51323934_106": { -"question": "As shown in the diagram, $AB$ is the diameter of $\\odot O$, the chord $AC = BC$, and $E$ is the midpoint of $OB$. Extend line $CE$ to point $F$ such that $EF=CE$, and draw line $AF$ intersecting $\\odot O$ at point $D$. Draw lines $BD$ and $BF$. The line $BF$ is tangent to $\\odot O$; if the length of $AF$ is $5\\sqrt{2}$, find the radius of $\\odot O$ and the length of $BD$.", -"image_file_name": "7058807", -"image": [ -"math/51323934_7410.png" -], -"solution": "\\textbf{Solution:} Let the radius of $\\odot O$ be $r$, hence $AB=2r$, $BF=OC=r$. In $\\triangle ABF$, we have: ${\\left(2r\\right)}^{2}+{r}^{2}={\\left(5\\sqrt{2}\\right)}^{2}$. \n\n$\\therefore$ We only take $r=\\sqrt{10}$, thus the radius of $\\odot O$ is $\\boxed{\\sqrt{10}}$.\n\n$\\because$ $AB$ is the diameter of $\\odot O$, thus $AB=2\\sqrt{10}$,\n\n$\\therefore$ $BD\\perp AF$,\n\n$\\therefore$ $BF=\\sqrt{AF^{2}-AB^{2}}=\\sqrt{{\\left(5\\sqrt{2}\\right)}^{2}-{\\left(2\\sqrt{10}\\right)}^{2}}=\\sqrt{10}$,\n\n$\\because$ AB is a diameter,\n\n$\\therefore$ $\\angle ADB=90^\\circ$,\n\n$\\therefore$ ${s}_{\\triangle ABF}=\\frac{1}{2}AB\\times BF=\\frac{1}{2}AF\\times BD$,\n\n$\\therefore$ $\\frac{1}{2}\\times 2\\sqrt{10}\\times \\sqrt{10}=\\frac{1}{2}\\times 5\\sqrt{2}\\times BD$, solving this yields $BD=\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51433735_109": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, point D and E are on $\\odot O$, and quadrilateral BDEO is a parallelogram. A line through point D, $DC\\perp AE$, intersects the extension of AE at point C. CD is the tangent of $\\odot O$. If $AC=9$, what is the area of the shaded region?", -"image_file_name": "7058807", -"image": [ -"math/51433735_751.png" -], -"solution": "\\textbf{Solution:}\n\nGiven (1) we have $\\angle EAO = \\angle AOE = \\angle OBD = \\angle BOD = 60^\\circ$, and $ED \\parallel AB$,\n\n$\\therefore \\angle EAO = \\angle CED = 60^\\circ$,\n\n$\\because \\angle AOE + \\angle EOD + \\angle BOD = 180^\\circ$,\n\n$\\therefore \\angle EOD = 60^\\circ$,\n\n$\\therefore \\triangle DEO$ is an equilateral triangle,\n\n$\\therefore ED = OE = AE$,\n\n$\\because CD \\perp AE$, $\\angle CED = 60^\\circ$,\n\n$\\therefore \\angle CDE = 30^\\circ$,\n\n$\\therefore ED = 2CE = AE$,\n\n$\\because AC = 9$,\n\n$\\therefore CE = 3$, $AE = OE = ED = 6$,\n\n$\\therefore CD = \\sqrt{ED^2 - CE^2} = 3\\sqrt{3}$,\n\nLet the height of $\\triangle OED$ be $h$,\n\n$\\therefore h = OE \\cdot \\sin 60^\\circ = 3\\sqrt{3}$,\n\n$\\therefore S_{\\text{sector} ED} = S_{\\text{sector} OED} - S_{\\triangle OED} = \\frac{\\pi r^{2}n}{360}-\\frac{1}{2}ED\\cdot h = 6\\pi - 9\\sqrt{3}$,\n\n$\\therefore S_{\\text{shaded area}} = S_{\\triangle CED} - S_{\\text{arc} ED} = \\frac{1}{2}CE \\cdot CD - (6\\pi - 9\\sqrt{3}) = \\boxed{\\frac{27\\sqrt{3}}{2} - 6\\pi}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51433589_112": { -"question": "As shown in the figure, in the right-angled triangle $\\triangle ABC$ with $\\angle C=90^\\circ$, point D is on AB. The circle $O$ with diameter AD intersects BC at point E, and AC at point F, with AE bisecting $\\angle BAC$. BC is a tangent to circle $O$. Given that $\\angle EAB=30^\\circ$ and $OD=5$, find the perimeter of the shaded area in the diagram.", -"image_file_name": "7058807", -"image": [ -"math/51433589_761.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\angle EAB=30^\\circ$, \\\\\n$\\therefore \\angle EOD=60^\\circ$, \\\\\n$\\therefore \\angle OEB=90^\\circ$, \\\\\n$\\therefore \\angle B=30^\\circ$, \\\\\n$\\therefore OB=2OE=2OD=10$, \\\\\n$\\therefore BD=5$, \\\\\n$\\therefore BE= \\sqrt{OB^{2}-OE^{2}} = \\sqrt{10^{2}-5^{2}}=5\\sqrt{3}$, \\\\\n$\\therefore$ the length of arc DE is $= \\frac{60^\\circ \\pi \\times 5}{180} = \\frac{5\\pi }{3}$, \\\\\n$\\therefore C_{\\text{shaded}}= BD+BE+l_{\\overset{\\frown}{DE}} = 5+5\\sqrt{3}+\\frac{5\\pi}{3} = \\boxed{5+5\\sqrt{3}+\\frac{5\\pi}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446547_115": { -"question": "Given, as shown in the figure, line MN intersects $\\odot O$ at points A and B, AC is a diameter, DE is tangent to $\\odot O$ at point D, and DE is drawn perpendicular to MN at point E. AD bisects $\\angle CAE$; If AE=2 and AD=4, what is the radius of $\\odot O$?", -"image_file_name": "7058807", -"image": [ -"math/51446547_770.png" -], -"solution": "\\textbf{Solution:} Draw OF$\\perp$AB through point O, it's clear that the quadrilateral ODEF is a rectangle,\\\\\nhence, OF=DE, OD=EF,\\\\\nLet the radius of the circle OD=EF=OA=$r$,\\\\\nsince AE=2, AD=4, and $\\angle$AED=90$^\\circ$,\\\\\ntherefore, DE=$\\sqrt{AD^2-AE^2}=2\\sqrt{3}$,\\\\\nthus, OF=DE=$2\\sqrt{3}$, AF=EF−AE=$r−2$,\\\\\nIn $\\triangle$AOF, according to the Pythagorean theorem, we have: OA$^2$=AF$^2$+OF$^2$, i.e., $r^2$=$(r−2)^2+(2\\sqrt{3})^2$,\\\\\nSolving this, we find: $r=\\boxed{4}$,\\\\\nHence, the radius of circle O is \\boxed{4}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446035_118": { -"question": "As shown in the figure, $\\triangle ABC$ is an inscribed triangle of circle $\\odot O$ with $AB$ as the diameter. $BD$ is tangent to $\\odot O$ at point $B$, and intersects the extension line of $AC$ at point $D$. $E$ is the midpoint of $BD$, and $CE$ intersects the extension line of $BA$ at point $F$. Given that $BD=8$, and $BE = \\frac{1}{3}EF$. $FC$ is a tangent line of $\\odot O$; find the length of $AF$?", -"image_file_name": "7058807", -"image": [ -"math/51446035_781.png" -], -"solution": "\\textbf{Solution:} Given $BD=8$ and point $E$ is the midpoint of $BD$,\\\\\nhence $BE= \\frac{1}{2}BD=4$,\\\\\nsince $BE= \\frac{1}{3}EF$,\\\\\nthus $EF=3BE=12$,\\\\\nin $\\triangle FBE$, $BF= \\sqrt{EF^{2}-BE^{2}}=\\sqrt{12^{2}-4^{2}}=8\\sqrt{2}$,\\\\\nfrom (1) we have $\\angle OCF=\\angle ABD=90^\\circ$,\\\\\nsince $\\angle F=\\angle F$,\\\\\nthus $\\triangle FOC\\sim \\triangle FEB$,\\\\\nhence $\\frac{OC}{BE}=\\frac{OF}{EF}$,\\\\\nlet $OC=x$, then $OF=BF-OB=8\\sqrt{2}-x$,\\\\\nhence $\\frac{x}{4}=\\frac{8\\sqrt{2}-x}{12}$,\\\\\nthus $x=2\\sqrt{2}$,\\\\\nhence $AF=8\\sqrt{2}-2x=4\\sqrt{2}$;\\\\\nTherefore, the length of $AF$ is $\\boxed{4\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51446035_119": { -"question": "As shown in the diagram, $\\triangle ABC$ is an inscribed triangle of circle $\\odot O$ with $AB$ as the diameter. $BD$ is tangent to $\\odot O$ at point $B$ and intersects the extension line of $AC$ at point $D$. $E$ is the midpoint of $BD$, and $CE$ intersects the extension line of $BA$ at point $F$. $BD=8$, and $BE = \\frac{1}{3}EF$. If $\\angle F= 20^\\circ$ and $BC=3\\sqrt{2}$, what is the area of the shaded region in the diagram?", -"image_file_name": "7058807", -"image": [ -"math/51446035_781.png" -], -"solution": "\\textbf{Solution:} Let OM $\\perp$ BC at point M,\\\\\n$\\therefore$ BM=$\\frac{1}{2}$BC=$\\frac{3\\sqrt{2}}{2}$,\\\\\nIn $\\triangle BMO$, OM=$\\sqrt{OB^{2}-BM^{2}}=\\sqrt{(2\\sqrt{2})^{2}-\\left(\\frac{3\\sqrt{2}}{2}\\right)^{2}}=\\frac{\\sqrt{14}}{2}$,\\\\\n$\\therefore$ Area of $\\triangle BOC$=$\\frac{1}{2}$BC$\\cdot$OM=$\\frac{1}{2}\\times 3\\sqrt{2}\\times\\frac{\\sqrt{14}}{2}=\\frac{3\\sqrt{7}}{2}$,\\\\\n$\\because \\angle F=20^\\circ$,\\\\\n$\\therefore \\angle BOC=\\angle F+\\angle OCF=110^\\circ$,\\\\\n$\\therefore$ Area of the sector BOC=$\\frac{110}{360}\\pi \\times (2\\sqrt{2})^{2}=\\frac{22}{9}\\pi$,\\\\\n$\\therefore$ Area of the shaded region=Area of the sector BOC-Area of $\\triangle BOC$=$\\frac{22}{9}\\pi -\\frac{3\\sqrt{7}}{2}$,\\\\\n$\\therefore$ The area of the shaded part in the figure is $\\boxed{\\frac{22}{9}\\pi -\\frac{3\\sqrt{7}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51446366_122": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and $OC$ is the radius. Connect $AC$ and $BC$. Extend $OC$ to point $D$ such that $\\angle CAD = \\angle B$. Draw $DM\\perp AD$ meeting the extension of $AC$ at point $M$. $AD$ is the tangent line of $\\odot O$. If $AD=6$ and $\\tan\\angle CAD=\\frac{1}{2}$, find the length of the radius of $\\odot O$.", -"image_file_name": "7058807", -"image": [ -"math/51446366_7912.png" -], -"solution": "\\textbf{Solution:}\\\\\nBecause $\\tan\\angle CAD=\\frac{1}{2}=\\frac{DM}{AD}$, and $AD=6$,\\\\\nthen $DM=3$,\\\\\nSince $OA=OC$,\\\\\nit follows that $\\angle OAC=\\angle OCA$,\\\\\nGiven $AD\\perp OA$ and $DM\\perp AD$,\\\\\nit implies $OA\\parallel DM$,\\\\\nthus $\\angle M=\\angle OAC$,\\\\\nSince $\\angle OCA=\\angle DCM$,\\\\\nit results in $\\angle DCM=\\angle M$,\\\\\ntherefore $DC=DM=3$,\\\\\nIn $\\triangle OAD$, using $OA^2+AD^2=OD^2$, which means $OA^2+6^2=(OC+3)^2=(OA+3)^2$,\\\\\nthus $OA=\\frac{9}{2}$,\\\\\nHence, the radius of $\\odot O$ is $\\boxed{\\frac{9}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51445866_125": { -"question": "As shown in the figure, $AB$ is a chord of the circle $\\odot O$. Through point $O$, draw $OC\\perp OA$, where $OC$ intersects $AB$ at $P$, and $CP=BC$. Point $Q$ lies on the arc $\\overset{\\frown}{AmB}$. $BC$ is a tangent line to the circle $\\odot O$; Given that $\\angle BAO=25^\\circ$, what is the measure of $\\angle AQB$?", -"image_file_name": "7058807", -"image": [ -"math/51445866_801.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BAO=25^\\circ$,\\\\\nit follows that $\\angle ABO=25^\\circ$, $\\angle APO=65^\\circ$,\\\\\nthus $\\angle POB=\\angle APO-\\angle ABO=40^\\circ$,\\\\\ntherefore $\\angle AQB=\\frac{1}{2}(\\angle AOP+\\angle POB)=\\frac{1}{2}\\times 130^\\circ=\\boxed{65^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51299533_129": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$. Points $F$ and $C$ are on $\\odot O$, and arc $AF = \\text{arc} FC = \\text{arc} BC$. Connect $AC$ and $AF$. Through point $C$, draw $CD \\perp AF$ to intersect the extended line of $AF$ at point $D$, with the foot of the perpendicular being $D$. $CD$ is a tangent of $\\odot O$; If $CD = 2\\sqrt{3}$, what is the radius of $\\odot O$?", -"image_file_name": "7058807", -"image": [ -"math/51299533_810.png" -], -"solution": "\\textbf{Solution:} Connect BC as shown in the figure. \\\\\nSince AB is the diameter, it follows that $\\angle ACB=90^\\circ$. Since $\\overset{\\frown}{AF} = \\overset{\\frown}{FC} = \\overset{\\frown}{BC}$, it follows that $\\angle BOC = \\frac{1}{3} \\times 180^\\circ = 60^\\circ$.\\\\\nTherefore, $\\angle BAC = 30^\\circ$, thus $\\angle DAC = 30^\\circ$. In $\\triangle ADC$, given $CD = 2\\sqrt{3}$, it follows that $AC = 2CD = 4\\sqrt{3}$.\\\\\nIn $\\triangle ACB$, $BC = \\frac{\\sqrt{3}}{3}AC = \\frac{\\sqrt{3}}{3} \\times 4\\sqrt{3} = 4$, therefore $AB = 2BC = 8$.\\\\\nHence, the radius of the circle $O$ is $\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402215_132": { -"question": "As illustrated in the diagram, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $AC = BC$, and point $O$ lies inside $\\triangle ABC$. Circle $O$ passes through points $B$ and $C$, and intersects line $AB$ at point $D$. Extend line $CO$ to intersect line segment $AB$ at point $G$, and construct parallelogram $GDEC$ with $GD$ and $GC$ as adjacent sides. Line $DE$ is a tangent to circle $O$; given $DE = 7$ and $CE = 5$, what is the radius of circle $O$?", -"image_file_name": "7058807", -"image": [ -"math/51402215_820.png" -], -"solution": "\\textbf{Solution:} Let the radius of $\\odot O$ be $r$,\\\\\nSince quadrilateral GDEC is a parallelogram,\\\\\nit follows that CG = DE = 7, and DG = CE = 5,\\\\\nSince $\\angle GOD=90^\\circ$,\\\\\nit follows that OD$^{2}$+OG$^{2}$=DG$^{2}$, that is, $r^{2}+(7-r)^{2}=5^{2}$,\\\\\nSolving this gives: $r_{1}=3$, $r_{2}=4$,\\\\\nWhen $r=3$, OG = 4 > 3, meaning point G is outside $\\odot O$, which is against the problem statement, thus discarded,\\\\\nTherefore, $r=\\boxed{4}$, meaning the radius of $\\odot O$ is \\boxed{4}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402523_135": { -"question": "As shown in the diagram, $\\odot O$ is the circumcircle of the right-angled triangle $ABC$, with the diameter $AC=4$. A tangent line is drawn through point $C$ to $\\odot O$, intersecting the extended line of $AB$ at point $D$. $M$ is the midpoint of $CD$, and lines $BM$ and $OM$ are drawn, with $BC$ and $OM$ intersecting at point $N$. $BM$ is tangent to $\\odot O$; when $\\angle BAC=60^\\circ$, what is the area of the shape enclosed by chord $AB$ and arc $AB$?", -"image_file_name": "7058807", -"image": [ -"math/51402523_830.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BAC=60^\\circ$ and $OA=OB$, \\\\\nit follows that $\\triangle ABO$ is an equilateral triangle, \\\\\nwhich implies that $\\angle AOB=60^\\circ$.\\\\\nGiven that $AC=4$, it follows that $OA=2$,\\\\\ntherefore, the area of the region bounded by chord $AB$ and arc $AB$ $=S_{\\text{sector}}AOB-S_{\\triangle}AOB$\\\\\n$=\\frac{60^\\circ\\pi \\times 2^2}{360^\\circ}-\\frac{\\sqrt{3}}{4}\\times 2^2=\\boxed{\\frac{2\\pi}{3}-\\sqrt{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402246_139": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, $PA$ and $PC$ are tangents to $\\odot O$, with $A$ and $C$ being the points of tangency. Connect $AC$ and $PO$, intersecting at point $D$. $\\angle BAC=\\angle OPC$; extend $PO$ to intersect $\\odot O$ at point $E$, and connect $BE$ and $CE$. If $\\angle BEC=30^\\circ$ and $PA=8$, what is the length of $AB$?", -"image_file_name": "7058807", -"image": [ -"math/51402246_842.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, since $\\angle BEC=30^\\circ,$\\\\\nthus $\\angle BAC=30^\\circ,$ and $AC\\perp OP,$\\\\\nthus $\\angle AOP=60^\\circ,$\\\\\nsince $\\angle OAP=90^\\circ, PA=8,$\\\\\nthus $\\tan\\angle AOP=\\frac{PA}{AO}=\\tan60^\\circ=\\sqrt{3},$\\\\\nthus $AO=\\frac{8}{\\sqrt{3}}=\\frac{8\\sqrt{3}}{3},$\\\\\nthus $AB=2AO=\\boxed{\\frac{16\\sqrt{3}}{3}}.$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51403003_142": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, the chord $CD\\perp AB$ at point $E$, and chord $AF$ intersects chord $CD$ at point $G$, with $AG=CG$. A perpendicular line to $BF$ through point $C$ intersects the extension of $BF$ at point $H$. $CH$ is the tangent of $\\odot O$; if $FH=2$ and $BF=4$, what is the length of arc $CD$?", -"image_file_name": "7058807", -"image": [ -"math/51403003_858.png" -], -"solution": "\\textbf{Solution}: From (1) we have: $BH \\perp CH$, $OC \\perp CH$,\\\\\n$\\therefore OC \\parallel BH$,\\\\\n$\\because CH \\parallel AF$,\\\\\n$\\therefore$ Quadrilateral $CMFH$ is a parallelogram,\\\\\n$\\because OC \\perp CH$,\\\\\n$\\therefore \\angle OCH = 90^\\circ$,\\\\\n$\\therefore$ Quadrilateral $CMFH$ is a rectangle,\\\\\n$\\therefore OC \\perp AF$, $CM = HF = 2$,\\\\\n$\\therefore AM = FM$,\\\\\n$\\because$ Point $O$ is the midpoint of $AB$,\\\\\n$\\therefore OM = \\frac{1}{2} BF = 2$,\\\\\n$\\therefore CM = OM$,\\\\\n$\\therefore OC = 4$, $AM$ perpendicularly bisects $OC$,\\\\\n$\\therefore AC = AO$,\\\\\nand $AO = OC$,\\\\\n$\\therefore AC = OC = OA$,\\\\\n$\\therefore \\triangle AOC$ is an equilateral triangle,\\\\\n$\\therefore \\angle AOC = 60^\\circ$,\\\\\n$\\because \\overset{\\frown}{AC} = \\overset{\\frown}{AD}$,\\\\\n$\\therefore \\angle AOD = \\angle AOC = 60^\\circ$,\\\\\n$\\therefore \\angle COD = 120^\\circ$,\\\\\n$\\therefore$ The length of arc $CD$ is $\\frac{120 \\times \\pi \\times 4}{180} = \\boxed{\\frac{8}{3}\\pi}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52602632_145": { -"question": "As shown in the diagram, in $ \\triangle ABC$, with $ \\angle C=90^\\circ$, AC and BC are tangent to circle $ \\odot O$ at points E and F, respectively. AB passes through point M on circle $ \\odot O$, and $ AE=AM$. AB is a tangent to circle $ \\odot O$; if $ AC=8$ and $ BC=6$, what is the radius of circle $ \\odot O$?", -"image_file_name": "7058807", -"image": [ -"math/52602632_865.png" -], -"solution": "\\textbf{Solution:} Connect OF. Let the radius of $\\odot O$ be $r$.\\\\\nSince BC is tangent to $\\odot O$ at point F,\\\\\nthus OF$\\perp$BC,\\\\\ntherefore $\\angle$OFC$=90^\\circ$,\\\\\nAlso, since $\\angle$C$=90^\\circ$, $\\angle$OEC$=90^\\circ$, and OF=OE,\\\\\ntherefore, quadrilateral OFCE is a square,\\\\\nthus CF=CE=OE$=r$,\\\\\nSince AB, BC, AC are all tangent to $\\odot O$,\\\\\ntherefore BM=BF$=6-r$, AM=AE$=8-r$,\\\\\nIn $\\triangle ABC$, $AB=\\sqrt{BC^2+AC^2}=10$,\\\\\nSince BM+AM=AB,\\\\\ntherefore $6-r+8-r=10$,\\\\\ntherefore $r=\\boxed{2}$\\\\\nthus the radius of $\\odot O$ is \\boxed{2}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52601859_148": { -"question": "As shown in the diagram, it is known that $AB$ is the diameter of $\\odot O$, and $C$ is a point on $\\odot O$. The bisector of $\\angle OCB$ intersects $\\odot O$ at point $D$. A tangent to $\\odot O$ at point $D$ intersects the extension of line $CB$ at point $E$. $CE \\perp DE$; if $AB=10$, and $\\tan A= \\frac{1}{3}$, find the length of $DE$.", -"image_file_name": "7058807", -"image": [ -"math/52601859_870.png" -], -"solution": "\\textbf{Solution:} Given $OD\\parallel CE$,\\\\\nit follows that $\\angle ODC=\\angle DCE$.\\\\\nGiven $OD=OA$ and $OC=OD$,\\\\\nit implies $\\angle A=\\angle ADO$ and $\\angle ODC=\\angle OCD$.\\\\\nSince $\\angle A=\\angle DCE$,\\\\\nwe have $\\angle A=\\angle OCD=\\angle ADO=\\angle CDO$.\\\\\nGiven $OA=OC$,\\\\\nit results in $\\triangle ADO\\cong \\triangle CDO$ (AAS),\\\\\nthus, $CD=AD$.\\\\\nSince $AB$ is the diameter, we have $\\angle ADB=90^\\circ$,\\\\\nand given $\\tan A=\\frac{DB}{AD}=\\frac{1}{3}$ and $AB=10$,\\\\\nfrom $AD^2+DB^2=AB^2=100$\\\\\nwe find $BD=\\sqrt{10}$, $AD=3\\sqrt{10}$,\\\\\nthus, $CD=AD=3\\sqrt{10}$.\\\\\nSince $\\angle A=\\angle DCE$ and $\\angle ADB=\\angle E=90^\\circ$,\\\\\n$\\triangle ADB\\sim \\triangle CED$,\\\\\nit follows that $\\frac{AB}{CD}=\\frac{BD}{DE}$,\\\\\nthus, $\\frac{10}{3\\sqrt{10}}=\\frac{\\sqrt{10}}{DE}$,\\\\\nresulting in $DE=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52602184_151": { -"question": "As shown in the figure, within circle $\\odot O$, point C is on the extension line of diameter AB, point D is a point on the circle above diameter AB, and CD is connected such that $\\angle A = \\angle BDC$. CD is a tangent of $\\odot O$. If CE bisects $\\angle ACD$ and intersects AD, BD at points E, F, respectively, when $DE = 2$, what is the length of $EF$?", -"image_file_name": "7058807", -"image": [ -"math/52602184_880.png" -], -"solution": "\\textbf{Solution:} Since $CE$ bisects $\\angle ACD$,\\\\\nit follows that $\\angle DCE = \\angle ACE$.\\\\\nAdditionally, since $\\angle A=\\angle BDC$,\\\\\nit implies that $\\angle A+\\angle ACE=\\angle BDC+\\angle DCE$,\\\\\nwhich means that $\\angle DEF=\\angle DFE$.\\\\\nGiven that $\\angle ADB=90^\\circ$ and $DE=2$,\\\\\nit follows that $DF=DE=2$,\\\\\nhence $EF=\\sqrt{DE^2+DF^2}=2\\sqrt{2}=\\boxed{2\\sqrt{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52602982_154": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point O is a point on side BC, a circle with center O and radius OB intersects side AB at point D, connect DC, and $DC=AC$. $DC$ is the tangent to $\\odot O$; If the radius of $\\odot O$ is 3, and $CD=4$, find the length of BC.", -"image_file_name": "7058807", -"image": [ -"math/52602982_890.jpeg" -], -"solution": "Solution: In $\\triangle \\mathrm{ODC}$, we have $OD=3$ and $CD=4$, \\\\\n$\\therefore OC=\\sqrt{OD^2+CD^2}=5$ \\\\\n$\\therefore BC=OB+OC=3+5=\\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52602698_157": { -"question": "As shown in the diagram, it is known that $AB$ is the diameter of $\\odot O$, $AD$ is a chord of $\\odot O$, $BC$ is a tangent of $\\odot O$ with the point of tangency at B, and points D, F are the trisection points of the arc $\\overset{\\frown}{ADB}$. The extensions of $BA$ and $CD$ intersect at point E. $DC$ is a tangent of $\\odot O$. If the radius of $\\odot O$ is 1, calculate the area of the shaded region.", -"image_file_name": "7058807", -"image": [ -"math/52602698_909.png" -], -"solution": "Solution: From the construction, we have\n\\[\n\\because OD\\perp EC,\n\\]\n\\[\n\\therefore \\angle EDO=90^\\circ,\n\\]\n\\[\n\\therefore \\text{in} \\triangle DOE, \\angle OED + \\angle DOE = 90^\\circ,\n\\]\n\\[\n\\because \\angle DOE=60^\\circ,\n\\]\n\\[\n\\therefore \\angle DEO=30^\\circ,\n\\]\n\\[\n\\therefore \\text{in} \\triangle DOE, OE=2OD=2,\n\\]\n\\[\n\\therefore \\text{in} \\triangle DOE, \\text{by the Pythagorean theorem}: DE=\\sqrt{OE^2-OD^2}=\\sqrt{2^2-1^2}=\\sqrt{3},\n\\]\n\\[\n\\therefore S_{\\triangle DOE}=\\frac{1}{2}\\times 1\\times \\sqrt{3}=\\frac{\\sqrt{3}}{2},\n\\]\n\\[\nS_{\\text{sector} DOE}=\\frac{60^\\circ \\pi \\times 1^2}{360}=\\frac{\\pi}{6},\n\\]\n\\[\n\\therefore S_{\\text{shaded}}=S_{\\triangle DOE}-S_{\\triangle AOD}=\\boxed{\\frac{\\sqrt{3}}{2}-\\frac{\\pi}{6}}.\n\\]\n", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52719793_160": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\odot O$ is the inscribed circle of $\\triangle ABC$, and D, E, F are the points of tangency. Quadrilateral ODCE is a square; if $AB=5$ and $AC=3$, what is the radius of the inscribed circle $\\odot O$?", -"image_file_name": "7058807", -"image": [ -"math/52719793_914.png" -], -"solution": "\\textbf{Solution:} Let the radius of circle $ \\odot O$ be $r$,\\\\\nsince quadrilateral $ODCE$ is a square,\\\\\ntherefore $OD=DC=CE=r$,\\\\\nin $\\triangle ABC$, $BC=\\sqrt{AB^{2}-AC^{2}}=4$,\\\\\ntherefore $BD=4-r$, $AE=3-r$,\\\\\nsince circle $ \\odot O$ is tangent to the sides of $\\triangle ABC$ at points $D$, $E$, and $F$,\\\\\ntherefore $AE=AF=3-r$, $BF=BD=4-r$,\\\\\nand since $AB=AF+BF=5$,\\\\\ntherefore $3-r+4-r=5$, solving this gives $r=\\boxed{1}$\\\\\ntherefore, the radius of the inscribed circle is \\boxed{1}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720239_162": { -"question": "Given that $AB$ is the diameter of $\\odot O$, and the chord $CD$ intersects $AB$ at point $E$. A tangent to $\\odot O$ at point $C$ intersects the extension of $BA$ at point $P$, with $\\angle BPC=38^\\circ$. Connect $OD$. If $D$ is the midpoint of $\\overset{\\frown}{AB}$, what is the measure of $\\angle ODC$?", -"image_file_name": "7058807", -"image": [ -"math/52720239_920.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, connect $OC$, \\\\\nsince $D$ is the midpoint of $\\overset{\\frown}{AB}$,\\\\\nit follows that $\\overset{\\frown}{AD}=\\overset{\\frown}{BD}$,\\\\\nthus $\\angle AOD=\\angle BOD=\\frac{1}{2}\\angle AOB=90^\\circ$,\\\\\nsince $PC$ is the tangent to the circle $\\odot O$ at point $C$,\\\\\nit follows that $\\angle PCO=90^\\circ$,\\\\\nthus $\\angle POC=90^\\circ-\\angle BPC=90^\\circ-38^\\circ=52^\\circ$,\\\\\ntherefore, $\\angle COD=\\angle POC+\\angle AOD=52^\\circ+90^\\circ=142^\\circ$,\\\\\nsince $OC=OD$,\\\\\nit follows that $\\angle OCD=\\angle ODC$,\\\\\nthus $\\angle OCD=\\angle ODC=\\frac{180^\\circ-\\angle COD}{2}=\\frac{180^\\circ-142^\\circ}{2}=19^\\circ$\\\\\nhence, $\\angle ODC=\\boxed{19^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52766163_165": { -"question": "As shown in the diagram, the diameter $AB$ of the circle $\\odot O$ is $2$, point $C$ is on the circumference of the circle, and $\\angle CAB=30^\\circ$. Point $D$ is a moving point on the circle, $DE\\parallel AB$ intersects the extension line of $CA$ at point $E$, and $CD$ is connected, intersecting $AB$ at point $F$. As shown in Figure 1, when $DE$ is tangent to $\\odot O$, what is the degree measure of $\\angle CFB$?", -"image_file_name": "7058807", -"image": [ -"math/52766163_930.png" -], -"solution": "\\textbf{Solution:} As shown in the figure: Connect OD\\\\\n$\\because$ DE is tangent to $\\odot$O\\\\\n$\\therefore \\angle$ODE$=90^\\circ$\\\\\n$\\because$ AB $\\parallel$ DE\\\\\n$\\therefore \\angle$AOD$+\\angle$ODE$=180^\\circ$\\\\\n$\\therefore \\angle$AOD$=90^\\circ$\\\\\n$\\because \\angle$AOD$=2\\angle$C\\\\\n$\\therefore \\angle$C$=45^\\circ$\\\\\n$\\because \\angle$CFB$=\\angle$CAB$+\\angle$C\\\\\n$\\therefore \\angle$CFB$=\\boxed{75^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52766163_166": { -"question": "As shown in the figure, the diameter $AB$ of the circle $\\odot O$ is $2$. Point $C$ is on the circumference, and $\\angle CAB=30^\\circ$. Point $D$ is a moving point on the circle, with $DE\\parallel AB$ intersecting the extension of $CA$ at point $E$, and $CD$ is connected intersecting $AB$ at point $F$. As shown in figure 2, when point $F$ is the midpoint of $CD$, find the area of $\\triangle CDE$.", -"image_file_name": "7058807", -"image": [ -"math/52766163_930.png" -], -"solution": "\\textbf{Solution:} As shown in the figure: connect OC\\\\\n$\\because$ AB is the diameter, and point F is the midpoint of CD\\\\\n$\\therefore$ AB$\\perp$CD, CF=DF,\\\\\n$\\because$ $\\angle$COF$=2\\angle$CAB$=60^\\circ$,\\\\\n$\\therefore$ OF$=\\frac{1}{2}$OC$=\\frac{1}{2}$, CF$=\\sqrt{3}$ OF$=\\frac{\\sqrt{3}}{2}$,\\\\\n$\\therefore$ CD$=2$CF$=\\sqrt{3}$, AF$=$OA$+$OF$=\\frac{3}{2}$,\\\\\n$\\because$ AF$\\parallel$AD, and point F is the midpoint of CD,\\\\\n$\\therefore$ DE$\\perp$CD, AF is the midline of $\\triangle CDE$,\\\\\n$\\therefore$ DE$=2$AF$=3$,\\\\\n$\\therefore$ $S_{\\triangle CED}=\\frac{1}{2}\\times 3\\times \\sqrt{3}=\\boxed{\\frac{3\\sqrt{3}}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52765452_169": { -"question": "As shown in the figure, point $C$ is on the circle $\\odot O$, point $P$ is on the extension of the diameter $AB$ of $\\odot O$. Connect $AC$, $OC$, $BC$, $CP$, and it is given that $BO=BC=BP$. $CP$ is the tangent to the circle $\\odot O$; If $OP=4$, find the length of $AC$.", -"image_file_name": "7058807", -"image": [ -"math/52765452_940.png" -], -"solution": "\\textbf{Solution:} Since $OP=4$, and $BO=BC=BP$.\\\\\nTherefore, $OB=OC=OA=BC=BP=2$, and $AB=4$,\\\\\nSince $AB$ is the diameter,\\\\\nTherefore, $\\angle ACB=90^\\circ$,\\\\\nThus, $AC=\\sqrt{AB^{2}-BC^{2}}=\\sqrt{4^{2}-2^{2}}=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52719941_172": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, point $C$ is a point on $\\odot O$, the bisector of $\\angle CAB$ intersects $\\overset{\\frown}{BC}$ at point $D$, a line is drawn through point $D$ such that $DE\\parallel BC$ and it intersects the extension of $AC$ at point $E$. $DE$ is a tangent line of $\\odot O$; if $DE=2$ and $CE=1$, find the length of $BD$.", -"image_file_name": "7058807", -"image": [ -"math/52719941_951.png" -], -"solution": "\\textbf{Solution}: Connect CD,\\\\\n$\\because$ $\\angle OAD = \\angle CAD$,\\\\\n$\\therefore$ $\\overset{\\frown}{CD} = \\overset{\\frown}{BD}$,\\\\\n$\\therefore$ CD = BC,\\\\\nIn $\\triangle CED$, $\\angle E = 90^\\circ$, DE = 2, CE = 1,\\\\\n$\\therefore$ $CD = \\sqrt{DE^2 + CE^2} = \\sqrt{2^2 + 1^2} = \\sqrt{5}$,\\\\\n$\\therefore$ BD = $\\boxed{\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52765493_175": { -"question": "As shown in the figure, AB is the diameter of semicircle O, D is the midpoint of BC, extending OD intersects the arc $BC$ at point E, and point F is a point on the extension of OD such that $\\angle B = \\angle F$. CF is a tangent to the circle $O$; if AB = 4, $\\angle B = 30^\\circ$, connect AD, find the length of AD.", -"image_file_name": "7058807", -"image": [ -"math/52765493_961.png" -], -"solution": "\\textbf{Solution:} Join AD,\\\\\n$\\because$ AB is the diameter of semicircle $O$,\\\\\n$\\therefore \\angle ACB=90^\\circ$.\\\\\n$\\because$ AB$=4$, and $\\angle B=30^\\circ$,\\\\\n$\\therefore$ AC$=2$, and $BC=\\sqrt{4^2-2^2}=2\\sqrt{3}$,\\\\\n$\\therefore$ CD$=\\sqrt{3}$,\\\\\nIn $\\triangle ACD$, $AD=\\sqrt{2^2+(\\sqrt{3})^2}=\\boxed{\\sqrt{7}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52602536_178": { -"question": "As shown in the figure, with AB as the diameter, construct $\\odot O$. Take a point C on $\\odot O$, extend AB to point D, and connect DC, where $\\angle DCB=\\angle DAC$. Through point A, draw $AE\\perp AD$ to meet the extension of DC at point E. CD is the tangent to $\\odot O$; if $CD=4$ and $DB=2$, find the length of AE.", -"image_file_name": "7058807", -"image": [ -"math/52602536_974.png" -], -"solution": "\\textbf{Solution:} Since $\\angle DCO = 90^\\circ$ and $OC = OB$, it follows that $OC^2 + CD^2 = OD^2$, which implies $OB^2 + 4^2 = (OB + 2)^2$. Hence, $OB = 3$, leading to $AB = 6$ and $AD = 8$. \\\\\nSince $AE \\perp AD$ and $AB$ is the diameter of the circle $O$, it follows that $AE$ is the tangent of circle $O$. \\\\\nSince $CD$ is the tangent of circle $O$, it implies $AE = CE$. In $\\triangle ADE$, we have $AD^2 + AE^2 = DE^2$, so $8^2 + AE^2 = (4+AE)^2$, resulting in $AE = \\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720307_180": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of $\\odot O$, and $BD$ is the tangent of $\\odot O$ with the point of tangency at $B$. Through the point $C$ on $\\odot O$, draw $CD\\parallel AB$, intersecting $BD$ at point $D$. Connect $AC$ and $BC$. If $DC$ is the tangent of $\\odot O$ with the point of tangency at $C$. What are the measures of $\\angle BCD$ and $\\angle DBC$?", -"image_file_name": "7058807", -"image": [ -"math/52720307_981.png" -], -"solution": "\\textbf{Solution:} Given that AB is the diameter of circle O, and BD is a tangent to circle O at point B,\\\\\n\\[\\therefore \\text{DB} \\perp \\text{AB},\\]\n\\[\\therefore \\angle \\text{DBA} = 90^\\circ,\\]\nGiven that DC is a tangent to circle O at point C,\\\\\n\\[\\therefore \\text{DC} = \\text{DB},\\]\nGiven that CD is parallel to AB,\\\\\n\\[\\therefore \\angle D + \\angle \\text{DBA} = 180^\\circ,\\]\n\\[\\therefore \\angle D = 90^\\circ,\\]\n\\[\\therefore \\angle \\text{BCD} = \\angle \\text{DBC} = \\boxed{45^\\circ};\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720307_181": { -"question": "Given that $AB$ is the diameter of $\\odot O$, and $BD$ is a tangent to $\\odot O$ at point $B$. Through point $C$ on $\\odot O$, construct $CD\\parallel AB$, intersecting $BD$ at point $D$. Connect $AC$ and $BC$. As shown in Figure (2), when $CD$ intersects $\\odot O$ at point $E$, connect $BE$. If $\\angle EBD=30^\\circ$, what are the measures of $\\angle BCD$ and $\\angle DBC$?", -"image_file_name": "7058807", -"image": [ -"math/52720307_981.png" -], -"solution": "\\textbf{Solution:} Given that,\\\\\n$\\because$ AB is the diameter of $\\odot$O, and DB is the tangent of $\\odot$O touching at B,\\\\\n$\\therefore$ DB$\\perp$AB,\\\\\n$\\therefore$ $\\angle$DBA$=90^\\circ$,\\\\\n$\\angle$DEB$=\\angle$EBA,\\\\\n$\\therefore$ $\\angle$BDC$=90^\\circ$,\\\\\n$\\because$ $\\angle$EBD$=30^\\circ$,\\\\\n$\\therefore$ $\\angle$DEB$=60^\\circ$,\\\\\n$\\therefore$ $\\angle$EBA$=60^\\circ$,\\\\\n$\\therefore$ $\\angle$ACE$=120^\\circ$,\\\\\n$\\because$ AB is the diameter of $\\odot$O,\\\\\n$\\therefore$ $\\angle$BCA$=90^\\circ$,\\\\\n$\\therefore$ $\\angle$BCD$=\\boxed{30^\\circ}$,\\\\\n$\\therefore$ $\\angle$DBC$=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52720273_184": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, and AC intersects $\\odot O$ at point C. The bisector of $\\angle BAC$ intersects $\\odot O$ at point D, DE $\\perp$ AC at point E. DE is the tangent to $\\odot O$; if the diameter AB $= 10$, and the chord AC $= 6$, what is the length of DE?", -"image_file_name": "7058807", -"image": [ -"math/52720273_990.png" -], -"solution": "\\textbf{Solution:} Draw OF$\\perp$AC, with F being the foot of the perpendicular.\\\\\n$\\therefore AF=\\frac{1}{2}AC=3$,\\\\\nIn $\\triangle AFO$, $AF^{2}+OF^{2}=AO^{2}$, $AO=\\frac{1}{2}AB=5$,\\\\\n$\\therefore 3^{2}+OF^{2}=5^{2}$,\\\\\n$\\therefore OF=4$,\\\\\n$\\because \\angle AED=\\angle ODE=\\angle OFE=90^\\circ$,\\\\\n$\\therefore$ Quadrilateral ODEF is a rectangle,\\\\\n$\\therefore DE=OF=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53359333_48": { -"question": "As shown in the figure, it is known that the side length of square $ABCD$ is $6\\,cm$, and $E$ is a point on side $AB$ with $AE$ being $1\\,cm$ long. A moving point $P$ starts from point $B$ and moves along the direction of ray $BC$ at a speed of $1\\,cm$ per second. $\\triangle EBP$ is folded along $EP$, with point $B$ landing at point ${B}^{\\prime}$, and the movement time is $t$ seconds. When $t$ equals what value, is $\\angle {B}^{\\prime}PC$ a right angle?", -"image_file_name": "7054442", -"image": [ -"math/53359333_4710.png" -], -"solution": "\\textbf{Solution:} Given that the problem information is insufficient, it is impossible to provide specific solution steps. Please provide a complete problem description for an accurate mathematical solution.", -"solution_image": [ -"solution_images/53359333_479.png", -"solution_images/53359333_4726.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53359333_49": { -"question": "As shown in the figure, it is known that the side length of square $ABCD$ is $6\\,cm$, and $E$ is a point on side $AB$, with the length of $AE$ being $1\\,cm$. A moving point $P$ starts from point $B$ and moves in the direction of ray $BC$ at a speed of $1\\,cm$ per second. Triangle $EBP$ is folded along $EP$, and point $B$ falls at point ${B}^{\\prime}$. Let the moving time be $t$ seconds. If the distance from point ${B}^{\\prime}$ to line $AD$ is $3\\,cm$, what is the length of $BP$ in $cm$?", -"image_file_name": "7054442", -"image": [ -"math/53359333_4710.png" -], -"solution": "\\textbf{Solution:} We have the length of $BP$ as $\\boxed{\\frac{5}{7}\\sqrt{21}}$ or $\\boxed{15cm}$.", -"solution_image": [ -"solution_images/53359333_479.png", -"solution_images/53359333_4726.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53498569_70": { -"question": "In right-angled triangle $ABC$, with $\\angle BAC=90^\\circ$, E and F are the midpoints of BC and AC, respectively. Extend BA to point D such that $AB = 2AD$. Connect DE, DF, AE, EF, and the intersection of AF and DE is point O. If $AB=8$ and $BC=12$, what is the length of DE?", -"image_file_name": "7054442", -"image": [ -"math/53498569_660.png" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $AB=8$, $BC=12$,\\\\\ntherefore, by the Pythagorean theorem, $AC=\\sqrt{BC^2-AB^2}=\\sqrt{12^2-8^2}=4\\sqrt{5}$\\\\\nAdditionally, given that $OA=OF$ and $AF=CF$,\\\\\nthus $OA=\\frac{1}{2}AF=\\frac{1}{4}AC=\\sqrt{5}$,\\\\\ntherefore, in $\\triangle AOD$, $\\angle DAO=90^\\circ$, $AD=\\frac{1}{2}AB=4$, $OA=\\sqrt{5}$,\\\\\nthus by the Pythagorean theorem, $DO=\\sqrt{DA^2+OA^2}=\\sqrt{4^2+(\\sqrt{5})^2}=\\sqrt{21}$,\\\\\nhence $DE=2DO=2\\sqrt{21}=\\boxed{2\\sqrt{21}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53498546_72": { -"question": "As illustrated in the diagram, in $\\triangle ABC$, $\\angle BAC=90^\\circ$ and $\\angle B=45^\\circ$. A line is drawn from point A such that $AD \\parallel BC$, with point D being to the right of point A. Points P and Q are respectively on rays $AD$ and $CB$. Point E is a point on segment $CQ$ and $CQ=2AP$. Let $AP=x$ and $CE=y$, it follows that $y=2x-2$. When point Q is the midpoint of $BC$, $y=3$. What are the lengths of $QE$ and $BC$?", -"image_file_name": "7054442", -"image": [ -"math/53498546_6713.png" -], -"solution": "\\textbf{Solution}:\nAs shown in the figure below,\\\\\nGiven that $y=3$, that is $3=2x-2$,\\\\\nwe find $x=\\frac{5}{2}$, thus $AP=\\frac{5}{2}$,\\\\\n$\\therefore CE=y=2x-2=2\\times \\frac{5}{2}-2=3$, $CQ=2AP=2\\times \\frac{5}{2}=5$,\\\\\n$\\therefore QE=CQ-CE=5-3=\\boxed{2}$,\\\\\n$\\because$ point Q is the midpoint of BC,\\\\\n$\\therefore BC=2CQ=2\\times 5=\\boxed{10}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53498546_73": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle BAC=90^\\circ$ and $\\angle B=45^\\circ$. A line is drawn through point A such that $AD \\parallel BC$, with point D to the right of point A. Points P and Q are located on ray $AD$ and ray $CB$, respectively. Point E is a point on line segment $CQ$, and $CQ=2AP$. Let $AP=x$ and $CE=y$, then $y=2x-2$. When point Q is the midpoint of $BC$, $y=3$. If $PE \\perp BC$, find the length of $BQ$.", -"image_file_name": "7054442", -"image": [ -"math/53498546_6713.png" -], -"solution": "\\textbf{Solution}: As shown in the diagram, draw $AM\\perp BC$ at point M, PE intersects AC at point N,\\\\\n$\\because$ $\\angle BAC=90^\\circ$, $\\angle B=45^\\circ$,\\\\\n$\\therefore$ $\\angle C=180^\\circ-\\angle BAC-\\angle B=45^\\circ$,\\\\\n$\\therefore$ $\\angle B=\\angle C$, $BM=MC=\\frac{1}{2}BC=\\frac{1}{2}\\times 10=5$,\\\\\n$\\because$ $AM\\perp BC$, $PE\\perp BC$,\\\\\n$\\therefore$ $AM\\parallel PE$,\\\\\nAlso, $\\because$ $AD\\parallel BC$,\\\\\n$\\therefore$ Quadrilateral AMEP is a parallelogram,\\\\\n$\\therefore$ $ME=AP=x$,\\\\\n$\\because$ $CE=y=2x-2$,\\\\\nFrom $MC=CE+ME$, we get, $5=2x-2+x$,\\\\\nSolving yields $x=\\frac{7}{3}$, that is $AP=\\frac{7}{3}$,\\\\\n$\\therefore$ $CQ=2AP=2\\times \\frac{7}{3}=\\frac{14}{3}$,\\\\\n$\\therefore$ $BQ=BC-CQ=10-\\frac{14}{3}=\\boxed{\\frac{16}{3}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53498546_74": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $\\angle B=45^\\circ$. A line through point A such that $AD\\parallel BC$ is drawn, and point D is to the right of point A. Points P and Q are located on the rays $AD$ and $CB$ respectively. Point E is a point on the line segment $CQ$, and $CQ=2AP$. Let $AP=x$, $CE=y$, then $y=2x-2$. When point Q is the midpoint of $BC$, $y=3$. There exists a value of x such that the quadrilateral with vertices A, B, E, and P is a parallelogram. Find the value of x.", -"image_file_name": "7054442", -"image": [ -"math/53498546_6713.png" -], -"solution": "\\textbf{Solution:} Existence is proven as follows:\n\n(1) As shown in the figure below, when points Q, E are on the line segment BC, if the quadrilateral formed by vertices A, B, E, P is a parallelogram, then $AP=BE=x$,\\\\\nsince $CE=y=2x-2$,\\\\\nthus $BE=BC-CE=10-(2x-2)=12-2x$,\\\\\ntherefore $x=12-2x$,\\\\\nsolving this gives $x=\\boxed{4}$;\\\\\n(2) As shown in the figure below, when points Q, E are on the extension of the line segment CB, if the quadrilateral formed by vertices A, B, E, P is a parallelogram, then $AP=BE=x$,\\\\\nsince $CE=y=2x-2$,\\\\\nthus $BE=CE-BC=2x-2-10=2x-12$,\\\\\ntherefore $x=2x-12$,\\\\\nsolving this gives $x=\\boxed{12}$.\n\nIn conclusion, when the quadrilateral formed by vertices A, B, E, P is a parallelogram, $x=\\boxed{4}$ or \\boxed{12}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53498505_77": { -"question": "As shown in the figure, in square $ABCD$, point $E$ is on side $BC$, and point $F$ is on side $AD$, with $AF=CE$, and $EF$ intersects the diagonal $BD$ at point $O$. $O$ is the midpoint of $BD$. If $EF\\perp BD$ and the perimeter of square $ABCD$ is 24, upon connecting $BF$, what is the perimeter of $\\triangle ABF$?", -"image_file_name": "7054442", -"image": [ -"math/53498505_686.png" -], -"solution": "\\textbf{Solution:} Since there's insufficient information provided by the question, specific steps and results cannot be provided. Please provide the complete question information for an accurate solution.", -"solution_image": [ -"solution_images/53498505_680.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53498608_79": { -"question": "As shown in the figure, in the square $ABCD$, $A(-10,0)$, $B(-2,0)$, $C(0,4)$. Points $P$, $Q$ are respectively on the line segments $OA$, $CD$, with $OP=2DQ$. Connect $PQ$, $PC$, and let $DQ=x$. For what value of $x$ is $PQ \\parallel AD$?", -"image_file_name": "7054442", -"image": [ -"math/53498608_690.png" -], -"solution": "\\textbf{Solution:} Given, $A(-10,0)$, $B(-2,0)$, $C(0,4)$,\\\\\nthus $OA=10$, $OB=2$, $OC=4$,\\\\\nthus $AB=OA-OB=10-2=8$,\\\\\nsince quadrilateral $ABCD$ is a parallelogram,\\\\\nthus $CD=AB=8$, $AB \\parallel CD$,\\\\\nsince $OP=2DQ$, $DQ=x$,\\\\\nthus $OP=2x$,\\\\\nthus $AP=AO-OP=10-2x$,\\\\\nsince $PQ \\parallel AD$, $AP \\parallel DQ$,\\\\\nthus quadrilateral $APQD$ is a parallelogram,\\\\\nthus $AP=DQ$,\\\\\nthus $10-2x=x$,\\\\\nthus $x=\\boxed{\\frac{10}{3}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53498608_80": { -"question": "As shown in the figure, in $\\square ABCD$, $A(-10,0)$, $B(-2,0)$, $C(0,4)$. Points $P$ and $Q$ are on the line segments $OA$ and $CD$, respectively, with $OP=2DQ$. Connect $PQ$ and $PC$, and let $DQ=x$. There exists an $x$ such that the distance from point $Q$ to $PC$ is $4$. What is the value of $x$ obtained?", -"image_file_name": "7054442", -"image": [ -"math/53498608_690.png" -], -"solution": "\\textbf{Solution:} There exists $x$ such that the distance from Q to PC is 4, for the following reasons: Draw line QE$\\perp$PC at point E, then QE=4, $\\angle$CEQ=$\\angle$POC=$90^\\circ$, \\\\\n$\\because$OC=4, \\\\\n$\\therefore$QE=OC, \\\\\n$\\because$AB$\\parallel$CD, \\\\\n$\\therefore$$\\angle$QCE=$\\angle$CPO, \\\\\nIn $\\triangle$QCE and $\\triangle$CPO, \\\\\n$\\left\\{\\begin{array}{l}\n\\angle QCE=\\angle CPO \\\\\n\\angle CEQ=\\angle POC \\\\\nQE=OC\n\\end{array}\\right.$, \\\\\n$\\therefore$$\\triangle$QCE$\\cong$$\\triangle$CPO, \\\\\n$\\therefore$CQ=PC, \\\\\n$\\therefore$CQ$^2$=PC$^2$, \\\\\n$\\because$CQ=CD−DQ=8−x, PC$^2$=OC$^2$+OP$^2$=$4^2$+$(2x)^2$, \\\\\n$\\therefore$(8−x)$^2$=$4^2$+$(2x)^2$, \\\\\nSolving this, we find: $x=\\frac{4\\sqrt{13}−8}{3}$ or $x=\\frac{−4\\sqrt{13}−8}{3}<0$ (discard the negative solution), \\\\\n$\\therefore x=\\boxed{\\frac{4\\sqrt{13}−8}{3}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53498608_81": { -"question": "As shown in the diagram, in quadrilateral $ABCD$, we have $A(-10, 0)$, $B(-2, 0)$, and $C(0, 4)$. Points $P$ and $Q$ are located on line segments $OA$ and $CD$, respectively, with $OP=2DQ$. By connecting $PQ$ and $PC$, and denoting $DQ$ as $x$, construct the symmetric point $Q'$ of point $Q$ with respect to line $PC$. When $Q'$ lies on an axis, determine the value of $x$ that satisfies this condition.", -"image_file_name": "7054442", -"image": [ -"math/53498608_690.png" -], -"solution": "\\textbf{Solution:} When point $Q'$ is on the y-axis, as shown in the diagram:\\\\\n\\[\n\\because \\text{Point Q and point $Q'$ are symmetric with respect to PC,}\n\\]\n\\[\n\\therefore QQ' \\perp PC, \\text{ CQ=C$Q'$},\n\\]\n\\[\n\\therefore \\text{PC bisects } \\angle DCO,\n\\]\n\\[\n\\therefore \\angle PCO=45^\\circ,\n\\]\n\\[\n\\because \\text{PO}\\perp\\text{CQ},\n\\]\n\\[\n\\therefore \\text{PO=CO},\n\\]\n\\[\n\\therefore 2x=4,\n\\]\n\\[\n\\therefore x=\\boxed{2};\n\\]\nWhen point $Q'$ is on the x-axis, as shown in the diagram:\\\\\nConnect C$Q'$, C$Q'$=CQ=8−x,\\\\\n\\[\n\\because \\text{DQ=x, CD=8, OP=2DQ},\n\\]\n\\[\n\\therefore \\text{CQ=CD−DQ}=8−x, \\text{OP=2x},\n\\]\n\\[\n\\because \\text{Point Q's symmetric point with respect to line PC is $Q'$},\n\\]\n\\[\n\\therefore \\text{PC}\\perp QQ', \\text{ QE=$Q'E$}, \\text{C$Q'$=CQ=8−x},\n\\]\n\\[\n\\because \\text{AB}\\parallel\\text{CD},\n\\]\n\\[\n\\therefore \\angle QCE=\\angle Q'PE,\n\\]\nIn $\\triangle QCE$ and $\\triangle Q'PE$,\n\\[\n\\left\\{ \\begin{array}{l}\n\\angle QCE=\\angle Q'PE \\\\\n\\angle CEQ=\\angle Q'EP \\\\\nQE=Q'E\n\\end{array} \\right.,\n\\]\n\\[\n\\therefore \\triangle QCE \\cong \\triangle Q'PE,\n\\]\n\\[\n\\therefore \\text{CQ=PQ'}=8−x,\n\\]\n\\[\n\\therefore \\text{OQ'}=\\left|OP-PQ'\\right|=\\left|3x−8\\right|,\n\\]\nIn $\\triangle OCQ'$,\n\\[\nOQ'^{2}+OC^{2}=CQ'^{2},\n\\]\n\\[\n\\text{i.e., } \\left(3x−8\\right)^{2}+4^{2}=\\left(8−x\\right)^{2},\n\\]\nSolving this, we find $x=2+\\sqrt{2}$ or $x=2-\\sqrt{2}$,\\\\\nIn conclusion, when $Q'$ lies on the coordinate axes, the values of $x$ that satisfy the conditions are \\boxed{2} or \\boxed{2+\\sqrt{2}} or \\boxed{2-\\sqrt{2}}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53490642_84": { -"question": "As shown in the diagram, within quadrilateral $ABCD$, points $E$ and $F$ are on the diagonal $AC$ such that $AE=EF=FC$. Quadrilateral $DEBF$ is a parallelogram; if $\\angle CDE=90^\\circ$, $DC=8$, and $DE=6$, what is the perimeter of quadrilateral $DEBF$?", -"image_file_name": "7054442", -"image": [ -"math/53490642_700.png" -], -"solution": "\\textbf{Solution:} Given, \\\\\n$\\because \\angle CDE=90^\\circ$, $DC=8$, $ED=6$, \\\\\n$\\therefore CE= \\sqrt{CD^2+DE^2}=\\sqrt{64+36}=10$, \\\\\n$\\because EF=CF$, \\\\\n$\\therefore DF= \\frac{1}{2}CE=5$, \\\\\n$\\therefore$ the perimeter of $\\square DEBF$ $=2(DF+DE)=2\\times(5+6)=\\boxed{22}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53490651_86": { -"question": "As shown in the quadrilateral $ABCD$, where $AB\\parallel CD$ and $\\angle BCD=90^\\circ$, with $AB=AD=10\\text{cm}$ and $BC=8\\text{cm}$. Point $P$ starts moving from point $A$, moving at a constant speed of $3\\text{cm/s}$ along the polyline in the direction of $ABCD$; point $Q$ starts moving from point $D$, moving at a constant speed of $2\\text{cm/s}$ along the line segment in the direction of $DC$. It is known that both points start moving at the same time, and when one point reaches its endpoint, the other point also stops moving. Let the movement time be $t\\text{(s)}$. Find the length of $CD$, in cm.", -"image_file_name": "7054442", -"image": [ -"math/53490651_717.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $AE\\perp DC$ at E,\\\\\nsince $AB\\parallel CD$ and $\\angle BCD=90^\\circ$, with $AB=AD=10\\text{cm}$ and $BC=8\\text{cm}$, and $AE\\perp DC$,\\\\\nthus, quadrilateral $ABCE$ is a rectangle, that is, $AE=BC=8$ and $AB=AD=CE=10$,\\\\\ntherefore, in $\\triangle ADE$, $DE=\\sqrt{AD^{2}-AE^{2}}=\\sqrt{10^{2}-8^{2}}=6$,\\\\\nthus, $CD=DE+EC=6+10=\\boxed{16}$,\\\\\nhence, the length of $CD$ is $16\\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53490651_87": { -"question": "In the quadrilateral $ABCD$, $AB \\parallel CD$, $\\angle BCD = 90^\\circ$, $AB = AD = 10 \\text{cm}$, $BC = 8 \\text{cm}$. Point $P$ starts from point $A$ and moves at a constant speed of $3\\text{cm/s}$ along the polyline $ABCD$ direction; point $Q$ starts from point $D$ and moves at a constant speed of $2\\text{cm/s}$ along the segment $DC$ direction. It is known that both points start simultaneously, and when one point reaches the end, the other point also stops moving, let the motion time be $t (s)$. When the quadrilateral $PBQD$ is a parallelogram, what is the perimeter of the quadrilateral $PBQD$?", -"image_file_name": "7054442", -"image": [ -"math/53490651_717.png" -], -"solution": "\\textbf{Solution:} Draw lines $PD$ and $BP$, \\\\\nwhen the quadrilateral $PBQD$ forms a parallelogram, we have $PB = DQ$, \\\\\ngiven that point P starts from point A and moves in the direction of the polyline $ABCD$ at a constant speed of $3\\text{cm/s}$; point Q starts from point D and moves along the line segment $DC$ at a constant speed of $2\\text{cm/s}$, \\\\\nlet the time of movement for point P be t seconds, then $AP = 3t$, $DQ = 2t$, \\\\\n$\\therefore PB = 10 - 3t$, \\\\\n$\\therefore 10 - 3t = 2t$, solving this equation, we find $t = 2$, \\\\\n$\\therefore PB = DQ = 10 - 3 \\times 2 = 4$, hence $CQ = 16 - 4 = 12$, \\\\\nin $\\triangle BCQ$, $BQ = \\sqrt{BC^2 + CQ^2} = \\sqrt{8^2 + 12^2} = 4\\sqrt{13}$, \\\\\n$\\therefore$ the perimeter of the parallelogram $PBQD$ is: $2(PB + BQ) = 2 \\times (4 + 4\\sqrt{13}) = 8 + 8\\sqrt{13}\\text{cm}$, \\\\\n$\\therefore$ the perimeter of the quadrilateral $PBQD$ is $\\boxed{8 + 8\\sqrt{13}\\text{cm}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53490651_88": { -"question": "In quadrilateral $ABCD$, $AB\\parallel CD$, $\\angle BCD=90^\\circ$, $AB=AD=10\\text{cm}$, $BC=8\\text{cm}$. Point $P$ starts moving from point $A$ at a constant speed of $3\\text{cm/s}$ along the polyline $ABCD$ direction; point $Q$ starts moving from point $D$ at a constant speed of $2\\text{cm/s}$ along the line segment $DC$ direction. It is known that both points start moving at the same time, and when one point reaches its destination, the other point stops moving, let the motion time be $t(s)$. During the movement of points $P$ and $Q$, there exists a moment when the area of $\\triangle BPQ$ is $16\\text{cm}^2$. Find all possible values of $t$ that satisfy this condition?", -"image_file_name": "7054442", -"image": [ -"math/53490651_717.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, we connect $PQ$, $BQ$, and let the time of motion be $t(s)$,\\\\\n$\\because AB=10$, $BC=8$, the speed of point P is $3cm/s$, $DC=16$, the speed of point Q is $2cm/s$,\\\\\n$\\therefore$ the time for point P to reach point B is $\\frac{10}{3}$ seconds, the time for point P to reach point C is $6$ seconds, and the time for point Q to reach point C is $8$ seconds,\\\\\n(1) When $0DE, \\text{ i.e., } DF=DE \\text{ does not exist};\n\\]\n\nIn summary, the length of $BG$ can be \\boxed{5-2\\sqrt{5}}, \\boxed{\\frac{1}{2}}, or \\boxed{4-\\sqrt{13}}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51722675_126": { -"question": "As shown in the figure, in rectangle $ABCD$, $BC=1$, $AB=2$. A perpendicular line to $AB$ through a point $P$ on the diagonal $BD$ intersects $AB$ at point $F$ and $CD$ at point $E$. A line through $E$ such that $EG \\parallel BD$ intersects $BC$ at point $G$. Connect $FG$ and $BD$ at point $H$, and connect $DF$. The symmetrical point of $B$ with respect to $FG$ is denoted as $B'$. If $B'$ lies inside $\\triangle EFG$ (excluding the boundary), find the range of values for the length of $DP$.", -"image_file_name": "7058811", -"image": [ -"math/51722675_940.jpg" -], -"solution": "\\textbf{Solution:} \n\nWhen point $B^{\\prime}$ is on the side $EG$, let $BG = x$ and $B^{\\prime}F = BF = CE = 2-2x$,\\\\\n$\\because$ $\\angle FB^{\\prime}G = \\angle FBG = 90^\\circ$,\\\\\n$\\therefore$ $\\angle EFB^{\\prime} = \\angle CEG = \\angle CDB$, $\\angle C = \\angle EB^{\\prime}F = 90^\\circ$,\\\\\n$\\therefore$ $\\triangle EFB^{\\prime} \\sim \\triangle BDC$,\\\\\n$\\therefore$ $\\frac{B^{\\prime}F}{EF} = \\frac{DC}{BD}$,\\\\\n$\\therefore$ $\\frac{2-2x}{1} = \\frac{2}{\\sqrt{5}}$,\\\\\nSolving this, we get $x = 1-\\frac{\\sqrt{5}}{5}$,\\\\\n$\\therefore$ $DP = \\sqrt{5}$ $EP = \\sqrt{5}-1$\\\\\nWhen point $B^{\\prime}$ is on the side $EF$,\\\\\n$\\because$ $BG = B^{\\prime}G = CE$,\\\\\n$\\therefore$ $x = 2-2x$,\\\\\nSolving this, we get $x = \\frac{2}{3}$,\\\\\n$\\therefore$ $DP = \\sqrt{5}x = \\frac{2\\sqrt{5}}{3}$,\\\\\nIn summary, $\\boxed{\\sqrt{5}-1 < DP < \\frac{2\\sqrt{5}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51807002_129": { -"question": "As shown in the figure, within rectangle $ABCD$, point $E$ is on side $CD$. When $\\triangle BCE$ is folded along $BE$ such that point $C$ coincides with point $F$ on side $AD$, and a line is drawn from point $F$ such that $FG \\parallel CD$ and intersects $BE$ at point $G$, and $CG$ is connected. Quadrilateral $CEFG$ is a rhombus. Given that $AB=6$ and $AD=10$, what is the area of quadrilateral $CEFG$?", -"image_file_name": "7058811", -"image": [ -"math/51807002_950.png" -], -"solution": "\\textbf{Solution:} Given rectangle ABCD, where AD=10,\\\\\nit follows that BC=10.\\\\\nGiven that $\\triangle$BCE is folded along BE, such that point C lands on point F on side AD,\\\\\nit then follows that BF=BC=10.\\\\\nIn $\\triangle$ABF, where AB=6, AF=$\\sqrt{BF^{2}-AB^{2}}$=8,\\\\\nthus, DF=AD−AF=2.\\\\\nLet EF=x, then CE=x, and DE=6−x.\\\\\nIn $\\triangle$DEF, we have $DF^{2}+DE^{2}=EF^{2}$,\\\\\nthus, $2^{2}+(6-x)^{2}=x^{2}$. Solving this, we find $x=\\frac{10}{3}$,\\\\\ntherefore, CE=$\\frac{10}{3}$.\\\\\nHence, the area of quadrilateral CEFG is: CE$\\cdot$DF=$\\frac{10}{3}\\times 2=\\boxed{\\frac{20}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51628092_131": { -"question": "As shown in the figure, it is known that the parabola $y= \\frac{1}{4}x^{2}+bx+c$ passes through point $A(0, 2)$ and point $C(4, 0)$, and intersects the x-axis at another point $B$. What is the analytic equation of the parabola?", -"image_file_name": "7058811", -"image": [ -"math/51628092_961.png" -], -"solution": "\\textbf{Solution:} Substituting points A and C into $y= -\\frac{1}{4}x^2+bx+c$ yields,\n\\[\n\\left\\{\\begin{array}{l}\nc=2\\\\\n4+4b+c=0\n\\end{array}\\right.\n\\] Solving this gives \\[\n\\left\\{\\begin{array}{l}\nb=\\frac{3}{2}\\\\\nc=2\n\\end{array}\\right.\n\\]\n$\\therefore$ The equation of the parabola is $\\boxed{y= -\\frac{1}{4}x^{2}+ \\frac{3}{2}x+2}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51628092_132": { -"question": "Given a parabola $y= \\frac{1}{4}x^{2}+bx+c$ passing through the points $A(0, 2)$ and $C(4, 0)$, and intersecting the $x$-axis at another point $B$. There is a point $M$ on the parabola above the line $AC$. What is the maximum area of the triangle $ACM$ and the coordinates of the point $M$ at that moment?", -"image_file_name": "7058811", -"image": [ -"math/51628092_961.png" -], -"solution": "\\textbf{Solution:} Through point $M$, construct $MN\\perp x$ axis, intersecting $AC$ at point $N$, as shown in Figure 1,\\\\\nLet $M(a, -\\frac{1}{4}a^2+ \\frac{1}{2}a+2)$, then $N(a, -\\frac{1}{2}a+2)$,\\\\\n$S_{\\triangle ACM} = \\frac{1}{2}MN \\cdot OC = \\frac{1}{2}(-\\frac{1}{4}a^2+a) \\times 4 = -\\frac{1}{2}a^2+2a$,\\\\\n$\\therefore S_{\\triangle ACM} = -\\frac{1}{2}a^2+2a$,\\\\\n$\\therefore$ when $a=2$, the area of triangle $ACM$ is maximized, with its maximum value being $\\boxed{2}$,\\\\\nat this moment, the coordinates of $M$ are $\\boxed{(2, 2)}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51628092_133": { -"question": "As shown in the figure, it is known that the parabola $y= \\frac{1}{4}x^{2}+bx+c$ passes through the points $A(0,2)$ and $C(4,0)$, and intersects the $x$-axis at another point $B$. When the segment $OA$ is rotated clockwise by $90^\\circ$ around a moving point $P(m,0)$ on the $x$-axis to obtain the segment $O'A'$, if the segment $O'A'$ has only one intersection point with the parabola, please combine the function graph to determine the range of values for $m$.", -"image_file_name": "7058811", -"image": [ -"math/51628092_961.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince segment 0A is rotated clockwise by $90^\\circ$ around the moving point P(m, 0) on the x-axis to obtain segment O'A’,\\\\\nthus PO'=P0=m, O'A'=OA=2,\\\\\nthus O'(m, m), A'(m+2, m),\\\\\nWhen A'(m+2, m) is on the parabola, it satisfies $-\\frac{1}{4}(m+2)^{2}$+ $\\frac{1}{2}(m+2)+2=m$,\\\\\nSolving this gives, $m=-3\\pm \\sqrt{17}$,\\\\\nWhen point O'(m, m) is on the parabola, it satisfies $-\\frac{1}{4}m^{2}$+ $\\frac{1}{2}m+2=m$,\\\\\nSolving this gives, $m=-4$ or $2$,\\\\\ntherefore when $-3-\\sqrt{17}\\leq m\\leq -4$ or $-3+\\sqrt{17}\\leq m\\leq 2$, segment O'A' and the parabola have only one common point.\\\\\nHence, the range of $m$ is $m=\\boxed{-4}$ or $\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51496741_135": { -"question": "As shown in Fig. 1, $Rt\\triangle BAC$ and $Rt\\triangle DAE$ are both isosceles right-angled triangles, and $AB=AC=2\\sqrt{5}$, $AD=AE=2\\sqrt{2}$, $\\angle BAC=\\angle DAE=90^\\circ$. $\\triangle DAE$ rotates counterclockwise around point A; connect CD. When $\\tan\\angle EAC=\\frac{1}{3}$, find the length of CD.", -"image_file_name": "7058811", -"image": [ -"math/51496741_976.png", -"math/51496741_977.png", -"math/51496741_978.jpg" -], -"solution": "\\textbf{Solution:} Draw $DW \\perp AC$ at $W$,\\\\\nsince $\\angle DAE=90^\\circ$ and $\\tan\\angle EAC=\\frac{1}{3}$,\\\\\nthus $\\angle ADW+\\angle DAW=\\angle DAW+\\angle EAC$,\\\\\nhence $\\angle EAC=\\angle ADW$,\\\\\nin right triangle $\\triangle AWD$ with $\\angle AWD=90^\\circ$,\\\\\nthus $\\tan\\angle ADW=\\frac{AW}{DW}=\\frac{1}{3}$,\\\\\nassume $DW=3k$ and $AW=k$, then $(3k)^2+k^2=(2\\sqrt{2})^2$,\\\\\nhence $AW=\\frac{2\\sqrt{5}}{5}$ and $DW=\\frac{6\\sqrt{5}}{5}$,\\\\\nthus $WC=AC-AW=\\frac{8\\sqrt{5}}{5}$,\\\\\nin right triangle $\\triangle DWC$ with $\\angle DWC=90^\\circ$,\\\\\nthus $DW^2+WC^2=DC^2$,\\\\\ntherefore, $DC=\\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/51496741_975.png", -"solution_images/51496741_9732.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51445145_139": { -"question": "As shown in the figure, it is known that the graph of the inverse proportion function $y_{1}=\\frac{k}{x}$ intersects with the graph of the linear function $y_{2}=ax+b$ at points $A(1, 4)$ and $B(m, -2)$. Find the value of $m$ and the equation of the linear function.", -"image_file_name": "7058811", -"image": [ -"math/51445145_984.png" -], -"solution": "\\textbf{Solution:} Since the graph of the inverse proportion function $y_1 = \\frac{k}{x}$ intersects with the graph of the linear function $y_2 = ax + b$ at points $A(1, 4)$ and $B(m, -2)$,\\\\\nwe have $k = 1 \\times 4 = 4$,\\\\\nthus, the equation of the inverse proportion function is: $y = \\frac{4}{x}$,\\\\\nhence, $-2 = \\frac{4}{m}$, solving this gives $m = \\boxed{-2}$, that is point $B(-2, -2)$,\\\\\ntherefore $\\left\\{\\begin{array}{l} 4 = a + b \\\\ -2 = -2a + b \\end{array}\\right.$, solving this set gives $\\left\\{\\begin{array}{l} a = 2 \\\\ b = 2 \\end{array}\\right.$,\\\\\nthus, the equation of the linear function is: $\\boxed{y = 2x + 2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445145_140": { -"question": "As shown in the figure, the graph of the inverse proportion function $y_{1}=\\frac{k}{x}$ intersects with the graph of the linear function $y_{2}=ax+b$ at points $A(1, 4)$ and $B(m, -2)$. If point $C$ is symmetrical to point $A$ with respect to the $x$-axis, what is the area of $\\triangle ABC$?", -"image_file_name": "7058811", -"image": [ -"math/51445145_984.png" -], -"solution": "\\textbf{Solution:} Since point C is symmetric to point A with respect to the x-axis, and given A(1, 4), it follows that point C is at (1, -4). By plotting and connecting points AC and BC in the Cartesian coordinate system, we find that AC = 8 and BC = 3. Therefore, the area of triangle $ABC$ is given by $S_{\\triangle ABC} = \\frac{1}{2} \\cdot AC \\cdot BC = \\frac{1}{2} \\times 8 \\times 3 = \\boxed{12}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445148_143": { -"question": "As shown in the figure, rotate rectangle $ABCD$ clockwise about point $A$, causing point $E$ to fall on $BD$, thus forming rectangle $AEFG$. $EF$ intersects $AD$ at point $H$. Connect $AF$. $BD \\parallel AF$; If $AB=1$ and $BC=2$, find the length of $AH$.", -"image_file_name": "7058811", -"image": [ -"math/51445148_990.png" -], -"solution": "\\textbf{Solution:} Given that $BD\\parallel AF$, $\\therefore \\angle 3=\\angle EFA$. Since $\\angle 4=\\angle EFA$, $\\therefore \\angle 4=\\angle 3$. Hence, $EH=DH$. Given $AB=1$, $BC=2$, we have $AE=1$, $AD=2$. Let $EH=DH=x$, then $AH=2-x$. In $\\triangle AEH$, by Pythagoras' theorem, we have $AE^2+EH^2=AH^2$, which implies $1^2+x^2=(2-x)^2$. Solving this, we find $x=\\frac{3}{4}$, hence $AH=2-\\frac{3}{4}=\\boxed{\\frac{5}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52537026_84": { -"question": "As shown in the figure, AB is the diameter of circle $O$, with C and D being two points on the circle. $OC \\parallel BD$, and $OC$ intersects $AD$ at point E. $AC = CD$; if $OE = 2$ and $AD = 8$, find the radius of circle $O$.", -"image_file_name": "7058793", -"image": [ -"math/52537026_820.png" -], -"solution": "\\textbf{Solution:} From (1) we know that $OC\\perp AD$,\\\\\n$\\because AD=8$,\\\\\n$\\therefore AE=\\frac{1}{2}AD=4$,\\\\\n$\\because OE=2$,\\\\\n$\\therefore OA=\\sqrt{OE^{2}+AE^{2}}=2\\sqrt{5}$,\\\\\n$\\therefore$ the radius of circle $O$ is $\\boxed{2\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52536503_87": { -"question": "As shown in the figure, AD is the bisector of the exterior angle $\\angle EAC$ of $\\triangle ABC$, and AD intersects the circumcircle $O$ of $\\triangle ABC$ at point D. $DB = DC$; if $\\angle CAB=30^\\circ$, and $BC=4$, what is the length of the minor arc $\\overset{\\frown}{DC}$?", -"image_file_name": "7058793", -"image": [ -"math/52536503_830.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect OB, OC, and OD.\\\\\nBy the Circumference Angle Theorem, $\\angle COB=2\\angle CAB=60^\\circ$, $\\angle CDB=\\angle CAB=30^\\circ$,\\\\\n$\\therefore \\triangle COB$ is an equilateral triangle,\\\\\n$\\therefore OC=BC=4$,\\\\\n$\\because DC=DB$, $\\angle CDB=30^\\circ$,\\\\\n$\\therefore \\angle DCB=75^\\circ$,\\\\\n$\\therefore \\angle DCO=15^\\circ$,\\\\\n$\\therefore \\angle COD=150^\\circ$,\\\\\nTherefore, the length of the minor arc $\\overset{\\frown}{DC}$ is $= \\frac{150\\pi \\times 4}{180}=\\boxed{\\frac{10}{3}\\pi}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52458135_90": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of the circle $\\odot O$, and $\\odot O$ intersects side $AE$ of $\\triangle ABE$ at point $D$. Connect $OD$, and it satisfies $OD\\parallel BE$. Point $P$ is on the extension line of $BA$, and $PD$ intersects $BE$ at point $C$. $AB=BE$; If $PA=2$, $\\angle B=60^\\circ$, $PC\\perp BE$, find the length of diameter $AB$.", -"image_file_name": "7058793", -"image": [ -"math/52458135_840.png" -], -"solution": "\\textbf{Solution:} Since $\\angle PCB=90^\\circ$ and $\\angle B=60^\\circ$, it follows that $\\angle P=30^\\circ$. From this, we have $OD\\parallel BE$, hence $\\angle B=\\angle DOA=60^\\circ$. Also, since $OA=OD$, it follows that $\\triangle AOD$ is an equilateral triangle, thus $AD=OA$, and $\\angle DAO=60^\\circ$. Therefore, $\\angle ADP=\\angle P=30^\\circ$, which implies that $PA=AD=OA=2$, hence $AB=2OA=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52457114_93": { -"question": "As illustrated, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, and diagonal $BD$ is the diameter. A tangent line $AE$ from point $A$ to circle $\\odot O$ intersects the extension of $CD$ at point $E$. It is given that $DA$ bisects $\\angle BDE$ and $AE \\perp DE$; if the radius of $\\odot O$ is $5$ and $CD=6$, what is the length of $AD$?", -"image_file_name": "7058793", -"image": [ -"math/52457114_8510.png" -], -"solution": "\\textbf{Solution:} Construct $OF \\perp DC$ through point $O$, with the perpendicular foot at $F$,\\\\\n$\\therefore \\angle OFD=90^\\circ$,\\\\\n$\\because \\angle OAE=\\angle E=90^\\circ$,\\\\\n$\\therefore$ Quadrilateral $OAEF$ is a rectangle,\\\\\n$\\therefore OA=EF=5$, $AE=OF$,\\\\\n$\\because OF\\perp CD$,\\\\\n$\\therefore DF=\\frac{1}{2}CD=3$,\\\\\n$\\therefore DE=EF-DF=5-3=2$,\\\\\n$\\therefore OF=\\sqrt{OD^{2}-DF^{2}}=\\sqrt{5^{2}-3^{2}}=4$,\\\\\n$\\because AE=OF=4$,\\\\\n$\\therefore AD=\\sqrt{AE^{2}+DE^{2}}=\\sqrt{4^{2}+2^{2}}=\\boxed{2\\sqrt{5}}$,\\\\\n$\\therefore$ The length of $AD$ is $2\\sqrt{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52457436_95": { -"question": "As shown in the diagram, $AB$ is the diameter of circle $O$, $AC$ is a chord of circle $O$, $D$ is the midpoint of arc $BC$, and $DE$ is drawn perpendicular to $AC$ at point $E$, intersecting the extension of $AB$ at point $F$, and $DA$ is connected. If $AB=90\\text{cm}$, what is the distance from the center $O$ to the \"lever $EF$\"?", -"image_file_name": "7058793", -"image": [ -"math/52457436_8611.png" -], -"solution": "\\textbf{Solution:} Connect $OD$,\\\\\nsince $D$ is the midpoint of the arc $BC$,\\\\\nit follows that $\\angle CAD=\\angle BAD$,\\\\\nsince $OA=OD$,\\\\\nit follows that $\\angle BAD=\\angle ADO$,\\\\\nhence $\\angle CAD=\\angle ADO$,\\\\\nsince $DE\\perp AC$,\\\\\nit follows that $\\angle E=90^\\circ$,\\\\\nhence $\\angle CAD+\\angle EDA=90^\\circ$, which means $\\angle ADO+\\angle EDA=90^\\circ$,\\\\\nit follows that $OD\\perp EF$,\\\\\nhence the length of $OD$ is the distance from the center $O$ to the \"lever $EF$\",\\\\\nsince $AB=90\\text{cm}$,\\\\\nit follows that $OD=OA=\\boxed{45\\text{cm}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52457436_96": { -"question": "As shown in the figure, $AB$ is the diameter of circle $O$, $AC$ is a chord of $\\odot O$, $D$ is the midpoint of arc $BC$, draw $DE\\perp AC$ at point $E$, and intersect the extension line of $AB$ at point $F$, connect $DA$. If $DA=DF=6\\sqrt{3}$, calculate the area of the shaded region. (Keep the result in terms of $\\pi$)", -"image_file_name": "7058793", -"image": [ -"math/52457436_8611.png" -], -"solution": "\\textbf{Solution:} Given $DA=DF$, \\\\\nit follows that $\\angle F=\\angle BAD$, \\\\\nthus, we have $\\angle CAD=\\angle BAD$, \\\\\nhence, $\\angle F=\\angle BAD=\\angle CAD$, \\\\\nsince $\\angle F+\\angle BAD+\\angle CAD=90^\\circ$, \\\\\nit implies $\\angle F=\\angle BAD=\\angle CAD=30^\\circ$, \\\\\ntherefore, $\\angle BOD=2\\angle BAD=60^\\circ$, and $OF=2OD$, \\\\\ngiven $DF=6\\sqrt{3}$, \\\\\nit leads to $(2OD)^{2}-OD^{2}=(6\\sqrt{3})^{2}$, \\\\\nsolving yields: $OD=6$, \\\\\nthus, $S_{\\text{shaded}}=S_{\\text{sector} BOD}+S_{\\triangle AOD}=\\frac{60\\pi \\times 6^{2}}{360}+\\frac{1}{2}\\times 6\\times \\frac{\\sqrt{3}}{2}\\times 6=6\\pi +9\\sqrt{3}=\\boxed{6\\pi +9\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51433720_99": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $AC$ being the diameter, and point $C$ as the midpoint of the minor arc $BD$. $AB=AD$, if $\\angle ACD=60^\\circ$, and $AD=\\sqrt{3}$, find the length of $BD$.", -"image_file_name": "7058793", -"image": [ -"math/51433720_870.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\overset{\\frown}{AD}=\\overset{\\frown}{AD}$, $\\angle ACD=60^\\circ$,\\\\\n$\\therefore$ $\\angle ABD=\\angle ACD=60^\\circ$,\\\\\n$\\because$ $AB=AD$,\\\\\n$\\therefore$ $\\triangle ABD$ is an equilateral triangle,\\\\\n$\\because$ $AD=\\sqrt{3}$,\\\\\n$\\therefore$ $BD=AD=\\boxed{\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51433293_101": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, with the chord $CD\\perp AB$ at $E$, and $F$ is a point on the extension of $AB$. Connect $CF$ and $DF$. Given that $OE = 3$, $BE = 2$, find the length of $CD$.", -"image_file_name": "7058793", -"image": [ -"math/51433293_880.png" -], -"solution": "\\textbf{Solution:} Connect OC, \\\\\n$\\because$ CD$\\perp$AB, \\\\\n$\\therefore$ CE = DE, \\\\\n$\\therefore$ OC = OB = OE + BE = 3 + 2 = 5, \\\\\nIn $\\triangle OCE$, $\\angle OEC = 90^\\circ$, by the Pythagorean theorem, we have: \\\\\nCE$^{2}$ = OC$^{2}$ - OE$^{2}$, \\\\\n$\\therefore$ CE$^{2}$ = 5$^{2}$ - 3$^{2}$, \\\\\n$\\therefore$ CE = 4, \\\\\n$\\therefore$ CD = 2CE = \\boxed{8}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51433307_105": { -"question": "As shown in the figure, within the circle $\\odot O$, chord $AC$ intersects chord $BD$ at point $P$, with $AC=BD$ and $AP=BP$. Connect $AB$. If $AB=8$, $BP=5$, and $DP=3$, what is the radius of the circle $\\odot O$?", -"image_file_name": "7058793", -"image": [ -"math/51433307_890.png" -], -"solution": "\\textbf{Solution:} Extend line $PO$ and let it intersect $AB$ at point $E$, connect $OA$, $OB$, and draw $OF\\perp AC$ at point $F$, \\\\\n$\\therefore AF=\\frac{1}{2}AC$, \\\\\n$\\because AP=BP, OA=OB$, \\\\\n$\\therefore PE$ is the perpendicular bisector of $AB$, \\\\\n$\\therefore PE\\perp AB, AE=\\frac{1}{2}AB=4$, \\\\\n$\\because AB=8, BP=5, DP=3, AC=BD$, \\\\\n$\\therefore AC=BD=AB=8, AP=5$, \\\\\n$\\therefore AF=4=AE, PF=AP-AF=1, PE=\\sqrt{AP^{2}-AE^{2}}=3$, \\\\\nIn right triangles $\\triangle AOE$ and $\\triangle AOF$, \\\\\n$\\left\\{\\begin{array}{l}AE=AF \\\\ OA=OA\\end{array}\\right.$, \\\\\n$\\therefore \\triangle AOE\\cong \\triangle AOF(HL)$, \\\\\n$\\therefore OE=OF$, let $OE=OF=x(x>0)$, then $OP=PE-OE=3-x$, \\\\\nIn $\\triangle POF$, $OF^{2}+PF^{2}=OP^{2}$, solving gives $x^{2}+1^{2}=(3-x)^{2}$, we find $x=\\frac{4}{3}$, \\\\\nIn $\\triangle AOE$, $OA=\\sqrt{AE^{2}+OE^{2}}=\\sqrt{4^{2}+{(\\frac{4}{3})}^{2}}=\\frac{4\\sqrt{10}}{3}$, \\\\\nthus, the radius of $\\odot O$ is $\\boxed{\\frac{4\\sqrt{10}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872426_107": { -"question": "As shown in the diagram, it is known that $AB$ is the diameter of $\\odot O$ and $AB=8C$. Point $D$ is on $\\odot O$, $OC \\parallel BD$, intersecting $AD$ at point $E$. Connect $BC$, where $\\angle CBD=30^\\circ$. What is the degree measure of $\\angle COA$?", -"image_file_name": "7058793", -"image": [ -"math/52872426_9011.png" -], -"solution": "\\textbf{Solution}: Since $OC \\parallel BD$,\\\\\nit follows that $\\angle OCB = \\angle CBD = 30^\\circ$,\\\\\nSince $OC = OB$,\\\\\nit follows that $\\angle OCB = \\angle OBC = 30^\\circ$,\\\\\nTherefore, $\\angle COA = \\angle OCB + \\angle OBC = \\boxed{60^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872426_108": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of $\\odot O$, and $AB=8C$. Point $D$ is on $\\odot O$, $OC\\parallel BD$, intersecting $AD$ at point $E$. Connect $BC$, with $\\angle CBD=30^\\circ$. What is the length of $CE$?", -"image_file_name": "7058793", -"image": [ -"math/52872426_9011.png" -], -"solution": "\\textbf{Solution:} Since AB is the diameter of $\\odot O$,\\\\\n$\\therefore \\angle ADB=90^\\circ$,\\\\\nSince OC $\\parallel$ BD,\\\\\n$\\therefore \\angle AEO=\\angle ADB=90^\\circ$,\\\\\nSince $\\angle AOC=60^\\circ$,\\\\\n$\\therefore \\angle OAE=30^\\circ$,\\\\\n$\\therefore$ OE=$\\frac{1}{2}$ OA,\\\\\n$\\therefore$ CE=$\\frac{1}{2}$ OC=$\\frac{1}{2} \\times 4=\\boxed{2}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52872426_109": { -"question": "As shown in the diagram, it is known that $AB$ is the diameter of $\\odot O$, and $AB=8C$, $D$ is a point on $\\odot O$, $OC\\parallel BD$, intersecting $AD$ at point $E$, and $BC$ is connected, $\\angle CBD=30^\\circ$. Calculate the area of the shaded region in the diagram (the result should retain $\\pi$).", -"image_file_name": "7058793", -"image": [ -"math/52872426_9011.png" -], -"solution": "\\[ \\text{Solution: Connect } OD, \\]\n\\[ \\because \\angle CBD = \\angle OBC = 30^\\circ, \\]\n\\[ \\therefore \\angle BOD = 60^\\circ, \\]\n\\[ \\because OB = OD, \\]\n\\[ \\therefore \\triangle BOD \\text{ is an equilateral triangle}, \\]\n\\[ \\therefore \\text{Area of the shaded region} = \\text{Area of sector } BOD - \\text{Area of } \\triangle BOD = \\frac{60\\pi \\times 4^2}{360} - \\frac{1}{2} \\times 4 \\times \\frac{\\sqrt{3}}{2} \\times 4 = \\boxed{\\frac{8}{3}\\pi -4\\sqrt{3}}. \\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51445755_113": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, the angle bisectors of $\\angle BAC$ and $\\angle ABC$ intersect at point $E$, and the extended line of $AE$ intersects the circumcircle of $\\triangle ABC$ at point $D$, connect $BD$. If $AB=5$, $BC=8$, and $\\angle BAD=\\angle DBC$; points $B$, $E$, $C$ are on the same circle centered at point $D$; what is the distance between the incenter and the circumcenter of $\\triangle ABC$?", -"image_file_name": "7058793", -"image": [ -"math/51445755_910.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram:\\\\\n$\\because BD=DC, \\angle ABD=\\angle ACD=90^\\circ, AD=AD$,\\\\\n$\\therefore Rt\\triangle ABD\\cong Rt\\triangle ACD(HL)$,\\\\\n$\\therefore AB=AC$,\\\\\n$\\because AH=AH, \\angle BAH=\\angle CAH$,\\\\\n$\\therefore \\triangle ABH\\cong \\triangle ACH(SAS)$,\\\\\n$\\therefore BH=CH$,\\\\\n$\\therefore BH=\\frac{1}{2}BC=4$,\\\\\n$\\therefore \\angle AHB=\\angle AHC=90^\\circ$,\\\\\n$\\therefore AD\\perp BC$,\\\\\nIn $Rt\\triangle ABH$, $AH=3$,\\\\\nIn $Rt\\triangle BHO$, let $BO=x$, $OH=x-3$,\\\\\nThen $BO^2=BH^2+OH^2$,\\\\\ni.e., $x^2=16+(x-3)^2$,\\\\\nSolving yields: $x=\\frac{25}{6}$,\\\\\ni.e., $BO=\\frac{25}{6}$,\\\\\n$\\because AD$ is the diameter,\\\\\n$\\therefore \\angle ABD=90^\\circ$,\\\\\nIn $Rt\\triangle ABD$,\\\\\n$BD=\\sqrt{AD^2-AB^2}=\\frac{20}{3}$,\\\\\n$\\therefore DE=\\frac{20}{3}$,\\\\\n$\\therefore OE=\\frac{20}{3}-\\frac{25}{6}=\\frac{5}{2}$,\\\\\n$\\because E$ is the intersection of the angle bisectors of $\\triangle ABC$,\\\\\n$\\therefore E$ is the incenter,\\\\\n$\\therefore OE$ is the distance between the incenter and circumcenter of $\\triangle ABC$,\\\\\n$\\therefore The distance between the incenter and circumcenter of \\triangle ABC$ is $\\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446430_115": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, PD is tangent to $\\odot O$ at point C, and intersects the extension line of AB at point D, and $\\angle D = 2\\angle CAD$. What is the degree measure of $\\angle D$?", -"image_file_name": "7058793", -"image": [ -"math/51446430_920.png" -], -"solution": "\\textbf{Solution:} Since $OA=OC$,\\\\\nit follows that $\\angle A=\\angle ACO$,\\\\\nthus $\\angle COD=\\angle A+\\angle ACO=2\\angle A$,\\\\\ngiven $\\angle D=2\\angle A$,\\\\\nit implies $\\angle D=\\angle COD$,\\\\\nsince line $PD$ is tangent to circle $O$ at point $C$,\\\\\ntherefore $\\angle OCD=90^\\circ$,\\\\\nhence $\\angle D=\\angle COD=\\boxed{45^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446430_116": { -"question": "As shown in the figure, AB is the diameter of the circle $\\odot O$, PD is tangent to $\\odot O$ at point C, and intersects the extension of AB at point D, and $\\angle D=2\\angle CAD$. If CD=1, what is the length of BD?", -"image_file_name": "7058793", -"image": [ -"math/51446430_920.png" -], -"solution": "\\textbf{Solution}: Since $\\angle D = \\angle COD$ and $CD=1$,\\\\\nit follows that $OC=OB=CD=1$,\\\\\nIn $\\triangle OCD$, by the Pythagorean theorem, we have $OD=\\sqrt{1^2+1^2}=\\sqrt{2}$,\\\\\ntherefore, $BD=OD-OB=\\boxed{\\sqrt{2}-1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51446673_119": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=45^\\circ$, OC $\\parallel$ AD, and AD intersects the extension line of BC at D, AB intersects OC at E. AD is a tangent to the circle $O$; If AE=$2\\sqrt{5}$ and CE=2, what are the radius of circle $O$ and the length of the line segment BC?", -"image_file_name": "7058793", -"image": [ -"math/51446673_932.png" -], -"solution": "\\textbf{Solution:} Let the radius of $\\odot O$ be $R$, hence $OA=R$, $OE=R-2$.\\\\\nIn $\\triangle OAE$, $AO^2+OE^2=AE^2$,\\\\\n$\\therefore R^2+(R-2)^2=(2\\sqrt{5})^2$,\\\\\nwe get $R_1=\\boxed{4}$ or $R_2=-2$ (which is irrelevant to the problem, so discard),\\\\\nExtend $CO$ to intersect $\\odot O$ at $F$, and draw $AF$,\\\\\n$\\because \\angle AEF=\\angle CEB$, $\\angle B=\\angle AFE$,\\\\\n$\\therefore \\triangle CEB\\sim \\triangle AEF$,\\\\\n$\\therefore \\frac{AE}{CE}=\\frac{AF}{BC}$,\\\\\n$\\because CF$ is the diameter,\\\\\n$\\therefore CF=8$, $\\angle CAF=90^\\circ$,\\\\\nAlso $\\because \\angle F=\\angle ABC=45^\\circ$,\\\\\n$\\therefore \\angle F=\\angle ACF=45^\\circ$,\\\\\n$\\therefore AF=4\\sqrt{2}$,\\\\\n$\\therefore \\frac{2\\sqrt{5}}{2}=\\frac{4\\sqrt{2}}{BC}$,\\\\\n$\\therefore BC=\\boxed{\\frac{4\\sqrt{10}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52872394_122": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of $\\odot O$, and the chord $AC$ is parallel to the radius $OD$. Point $D$ is the midpoint of the arc $\\overset{\\frown}{BC}$. If $AC=OD=6$, find the area of the shaded part (the segment $AC$).", -"image_file_name": "7058793", -"image": [ -"math/52872394_941.png" -], -"solution": "\\textbf{Solution:} Let $CE\\perp AB$ at E,\\\\\nas shown in Figure 2, $\\because AC=OD=OC=OA$,\\\\\n$\\therefore \\triangle AOC$ is an equilateral triangle,\\\\\n$\\therefore \\angle AOC=60^\\circ$,\\\\\n$\\therefore {S}_{\\text{sector} AOC}=\\frac{60\\pi \\times {6}^{2}}{360}=6\\pi$,\\\\\n$\\therefore \\angle OCE=30^\\circ$,\\\\\n$\\therefore OE=\\frac{1}{2}OC=\\frac{1}{2}\\times 6=3$,\\\\\n$\\therefore CE=\\sqrt{3}OE=3\\sqrt{3}$,\\\\\n$\\therefore {S}_{\\triangle AOC}=\\frac{1}{2}AO\\cdot CE=\\frac{1}{2}\\times 6\\times 3\\sqrt{3}=9\\sqrt{3}$,\\\\\n$\\therefore {S}_{\\text{shaded}}={S}_{\\text{sector} AOC}-{S}_{\\triangle AOC}=6\\pi -9\\sqrt{3}=\\boxed{6\\pi -9\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51446274_124": { -"question": "As shown in the figure, assume $\\odot O$ is the cross-section of a water pipe, with the width of the water surface $AB=48\\,cm$, and the maximum depth of the water being $36\\,cm$. What is the radius of $\\odot O$?", -"image_file_name": "7058793", -"image": [ -"math/51446275_9504.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $OD\\perp AB$ at D, extend DO to intersect circle O at C, and connect AO,\\\\\nAccording to the problem, $AB=48\\text{cm}$, $CD=36\\text{cm}$,\\\\\n$\\therefore$ by the Perpendicular Diameter Theorem, $AD=\\frac{1}{2}AB=24$,\\\\\nLet $OA=OC=x\\text{cm}$, then $OD=CD-OD=(36-x)$,\\\\\n$\\because$ $AD^2+OD^2=AO^2$,\\\\\n$\\therefore$ $24^2+(36-x)^2=x^2$,\\\\\nSolving for $x$, we get $x=26$,\\\\\n$\\therefore$ the radius of circle O is $\\boxed{26\\text{cm}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51446274_125": { -"question": "As shown in the figure, in the equilateral triangle $ABC$, point $E$ is a point on side $CB$ (not coinciding with point $C$), and point $F$ is a point on side $AC$. Given $BC=10$, $EC=6$, and $\\angle AEF=60^\\circ$, what is the length of $AF$?", -"image_file_name": "7058793", -"image": [ -"math/51446276_9515.png" -], -"solution": "\\textbf{Solution:} Given from the problem, $\\triangle ABC$ is an equilateral triangle,\n\\[\n\\therefore \\angle B = \\angle C = 60^\\circ, \\quad AC = BC = AB = 10,\n\\]\n\\[\n\\because EC = 6,\n\\]\n\\[\n\\therefore BE = 4,\n\\]\n\\[\n\\because \\angle AEC = \\angle BAE + \\angle B,\n\\]\nthat is, $\\angle AEF + \\angle CEF = \\angle BAE + \\angle B$,\nand considering $\\angle AEF = 60^\\circ$, $\\angle B = 60^\\circ$,\n\\[\n\\therefore \\angle BAE = \\angle CEF,\n\\]\n\\[\n\\because \\angle B = \\angle C,\n\\]\n\\[\n\\therefore \\triangle ABE \\sim \\triangle ECF,\n\\]\n\\[\n\\therefore \\frac{BE}{CF} = \\frac{AB}{EC}, \\text{ that is, } \\frac{4}{CF} = \\frac{10}{6},\n\\]\n\\[\n\\therefore CF = \\frac{12}{5},\n\\]\n\\[\n\\therefore AF = AC - CF = 10 - \\frac{12}{5} = \\boxed{\\frac{38}{5}}\\].", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402739_127": { -"question": "As shown in the figure, a circular arc in the Cartesian coordinate system passes through the grid points $A(0, 4)$, $B(4, 4)$, and $C(6, 2)$. What are the coordinates of the center of the circle containing this arc?", -"image_file_name": "7058793", -"image": [ -"math/51402739_963.png" -], -"solution": "\\textbf{Solution:} The center of the circle containing the arc has coordinates $\\boxed{(2,0)}$.", -"solution_image": [ -"solution_images/51402739_960.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51402739_128": { -"question": "As shown in the figure, within the rectangular coordinate system, an arc passes through grid points $A\\left(0, 4\\right)$, $B\\left(4, 4\\right)$, and $C\\left(6, 2\\right)$. Find the length of arc ABC.", -"image_file_name": "7058793", -"image": [ -"math/51402739_963.png" -], -"solution": "\\textbf{Solution:} Connect AC,\\\\\nBased on the grid, we can determine that OP=CQ=2, OA=PQ=4,\\\\\n$\\angle AOP=\\angle PQC=90^\\circ$,\\\\\nBy Pythagorean theorem,\\\\\nAP= $\\sqrt{OP^2+OA^2}=\\sqrt{2^2+4^2}=2\\sqrt{5}=PC$,\\\\\n$\\because AP^2=2^2+4^2=20$, CP$^2=2^2+4^2=20$, AC$^2=2^2+6^2=40$,\\\\\n$\\therefore AP^2+CP^2=AC^2$,\\\\\n$\\therefore \\angle APC=90^\\circ$,\\\\\n$\\therefore$ The length of arc ABC is $\\frac{90^\\circ \\pi \\times 2\\sqrt{5}}{180}=\\boxed{\\sqrt{5}\\pi}$.", -"solution_image": [ -"solution_images/51402739_960.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51403374_130": { -"question": "As shown in the figure, it's known that $AB$ is the diameter of $\\odot O$, $PD$ is tangent to $\\odot O$ at point C, and intersects the extension line of $AB$ at point D, and $\\angle D=2\\angle CAD$. Find the size of $\\angle D$.", -"image_file_name": "7058793", -"image": [ -"math/51403374_976.png" -], -"solution": "\\textbf{Solution:} Connect $OC$.\\\\\nSince $\\overset{\\frown}{BC}=\\overset{\\frown}{BC}$,\\\\\nit follows that $ \\angle CAD=\\frac{1}{2}\\angle COB$, i.e., $ \\angle COB=2\\angle CAD$.\\\\\nSince $ \\angle D=2\\angle CAD$,\\\\\nit follows that $ \\angle COB=\\angle D$.\\\\\nSince $ PD$ is tangent to $\\odot O$,\\\\\nit follows that $ OC\\perp PD$, i.e., $ \\angle OCD=90^\\circ$.\\\\\nTherefore, $ \\angle COB+\\angle D=90^\\circ$.\\\\\nTherefore, $ 2\\angle D=90^\\circ$.\\\\\nTherefore, $ \\angle D=\\angle COB=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51403374_131": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of the circle $\\odot O$, $PD$ is tangent to $\\odot O$ at point C, and intersects the extension line of $AB$ at point D, and $\\angle D = 2\\angle CAD$. If $CD=2$, find the length of the arc $\\overset{\\frown}{AC}$.", -"image_file_name": "7058793", -"image": [ -"math/51403374_976.png" -], -"solution": "Solution: Since $\\angle COB=\\angle D$, and $CD=2$,\nthus $CO=CD=2$.\nSince $\\angle COB=45^\\circ$,\nthus $\\angle AOC=135^\\circ$.\nTherefore, the length of the arc $\\overset{\\frown}{AC}$, $l=\\frac{n\\pi R}{180}=\\frac{135\\times 2\\times \\pi }{180}=\\boxed{\\frac{3}{2}\\pi}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52766514_133": { -"question": "As shown in the figure, point $E$ is the incenter of $\\triangle ABC$. The extension line of $AE$ intersects the circumcircle of $\\triangle ABC$ at point $D$. Connect $BE$. If $\\angle CBD = 34^\\circ$, what is the degree measure of $\\angle BEC$?", -"image_file_name": "7058793", -"image": [ -"math/52766514_980.png" -], -"solution": "\\textbf{Solution}:\\\\\nSince $\\angle CBD=34^\\circ$,\\\\\nit follows that $\\angle CAD=34^\\circ$,\\\\\nsince point E is the incenter of $\\triangle ABC$,\\\\\nit follows that $\\angle BAC=2\\angle CAD=68^\\circ$,\\\\\ntherefore $\\angle EBC+\\angle ECB=(180^\\circ-68^\\circ)\\div 2=56^\\circ$,\\\\\nhence, $\\angle BEC=180^\\circ-56^\\circ=\\boxed{124^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51545272_137": { -"question": "As shown in the figure, $O$ is the center of the semicircle, and $C$, $D$ are two points on the semicircle. Connect $CD$, $BD$, $AD$, where $CD=BD$. Extend $AC$ to intersect the extension of $BD$ at point $E$. Given that $CD=DE$; if $AC=6$ and the radius $OB=5$, find the length of $BD$.", -"image_file_name": "7058793", -"image": [ -"math/51545272_991.png" -], -"solution": "\\textbf{Solution:} In right triangle $\\triangle ACB$, we have $BC=\\sqrt{AB^{2}-AC^{2}}=\\sqrt{10^{2}-6^{2}}=8$.\\\\\nSince $CD=DE$ and $CD=BD$,\\\\\nit follows that $BD=ED$.\\\\\nIn $\\triangle ADB$ and $\\triangle ADE$, we have\\\\\n$\\left\\{\\begin{array}{l}\nAD=AD \\\\\n\\angle ADB=\\angle EDA \\\\\nBD=ED\n\\end{array}\\right.$,\\\\\ntherefore, $\\triangle ADB \\cong \\triangle ADE \\text{ (SAS)}$,\\\\\nthus, $AE=AB=10$,\\\\\nhence, $CE=AE-AC=10-6=4$,\\\\\nIn right triangle $\\triangle ECB$, $BE=\\sqrt{CE^{2}+CB^{2}}=\\sqrt{4^{2}+8^{2}}=4\\sqrt{5}$,\\\\\ntherefore, $BD=\\frac{1}{2}BE=2\\sqrt{5}=\\boxed{2\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"55502350_43": { -"question": "As shown in the figure, we have $AB=AC=2\\sqrt{2}$ and $\\angle BAC=90^\\circ$. There is a moving point $D$ on the line segment $BC$. We connect $AD$. Through point $A$, we draw $AD\\perp AE$ where $AD=AE$. We then connect $DE$. What is the length of $BC$?", -"image_file_name": "7044652", -"image": [ -"math/55502350_424.png" -], -"solution": "\\textbf{Solution:} According to the problem, we have $BC=\\boxed{4}$.", -"solution_image": [ -"solution_images/55502350_425.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55502350_44": { -"question": "As shown in the figure, $AB=AC=2\\sqrt{2}$, $\\angle BAC=90^\\circ$. On the line segment $BC$, there is a moving point $D$. Connect $AD$. Through point $A$, construct $AD \\perp AE$ and $AD=AE$. Connect $DE$. When $BD=1$, what is the length of $DE$?", -"image_file_name": "7044652", -"image": [ -"math/55502350_424.png" -], -"solution": "\\textbf{Solution:} When $BD = 1$, the length of $DE$ is $\\boxed{\\sqrt{10}}$.", -"solution_image": [ -"solution_images/55502350_425.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066385_61": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=75^\\circ$, $AE\\perp BC$ at point E, $CD\\perp AB$ at point D, $AE$ and $CD$ intersect at point F, and $\\angle AFC=120^\\circ$. Calculate how many degrees is $\\angle BCD$?", -"image_file_name": "7044652", -"image": [ -"math/53066385_587.png" -], -"solution": "\\textbf{Solution}: $\\angle BCD = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066385_62": { -"question": "As shown, in $\\triangle ABC$, $\\angle ACB=75^\\circ$, $AE\\perp BC$ at point E, $CD\\perp AB$ at point D, $AE$ and $CD$ intersect at point F, and $\\angle AFC=120^\\circ$. If $BD=1$, $AD=\\sqrt{3}$, then how long is $EF$?", -"image_file_name": "7044652", -"image": [ -"math/53066385_587.png" -], -"solution": "\\textbf{Solution:} We have $EF=\\boxed{\\frac{\\sqrt{3}-1}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55498361_78": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, CE is the altitude to the hypotenuse AB, and the angle bisector BD intersects CE at point M. $\\triangle CDM$ is an isosceles triangle. If AB = 10 and AC = 8, find the length of CM.", -"image_file_name": "7044652", -"image": [ -"math/55498361_720.png" -], -"solution": "\\textbf{Solution:} Construct $DF\\perp AB$ at point $F$, as shown in the figure,\\\\\n$\\because \\angle DCB=90^\\circ$ and $BD$ bisects $\\angle ABC$,\\\\\n$\\therefore DC=DF$,\\\\\n$\\because \\angle ACB=90^\\circ$, $AB=10$, $AC=8$,\\\\\n$\\therefore BC= \\sqrt{AB^{2}-AC^{2}}=\\sqrt{10^{2}-8^{2}}=6$,\\\\\n$\\because S_{\\triangle ABC}=S_{\\triangle BCD}+S_{\\triangle ADB}$,\\\\\n$\\therefore \\frac{AC\\cdot BC}{2}=\\frac{BC\\cdot CD}{2}+\\frac{AB\\cdot DF}{2}$,\\\\\nthus $\\frac{8\\times 6}{2}=\\frac{6\\cdot CD}{2}+\\frac{10\\cdot DF}{2}$,\\\\\nsolving gives $CD=DF=3$,\\\\\nFrom (1) we know: $CM=CD$,\\\\\n$\\therefore CM=\\boxed{3}$,\\\\\nwhich means the length of $CM$ is $3$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55588005_80": { -"question": "In the diagram, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $AB=5\\,cm$, $BC=13\\,cm$, point $D$ is on line segment $AC$, and $CD=7\\,cm$. A moving point $P$ starts from point $E$, which is $15\\,cm$ away from point $B$, and moves in the direction of the ray $EA$ at a speed of $2\\,cm$ per second, for a time of $t$ seconds. Find the length of $AD$.", -"image_file_name": "7044652", -"image": [ -"math/55588005_7314.png" -], -"solution": "\\textbf{Solution:} According to the Pythagorean theorem, we have $AC=\\sqrt{BC^{2}-AB^{2}}=\\sqrt{13^{2}-5^{2}}=12\\,(\\text{cm})$,\\\\\n$\\therefore AD=AC-CD=5$,\\\\\n$\\therefore$ the length of $AD$ is $\\boxed{5}\\,\\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55588005_81": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $AB=5\\,cm$, and $BC=13\\,cm$. Point $D$ is on line segment $AC$, and $CD=7\\,cm$. Moving point $P$ starts from point $E$, which is $15\\,cm$ away from point $B$, and moves in the direction of ray $EA$ at a speed of $2\\,cm$ per second, for a time of $t$ seconds. Express the length of $AP$ in centimeters as an algebraic expression containing $t$.", -"image_file_name": "7044652", -"image": [ -"math/55588005_7314.png" -], -"solution": "\\textbf{Solution:} Given that $BE=15$ and $AB=5$,\\\\\ntherefore $AE=20$,\\\\\nthus when $P$, $A$ coincide, $t=\\frac{20}{2}=10$,\\\\\ntherefore for $0\\le t\\le 10$, $AP=\\left(20-2t\\right)\\text{cm}$,\\\\\nwhen $t>10$, $AP=\\left(2t-20\\right)\\text{cm}$.\\\\\n$\\therefore \\boxed{AP=\\left(20-2t\\right)\\text{cm} \\text{ for } 0\\le t\\le 10}$,\\\\\n$\\boxed{AP=\\left(2t-20\\right)\\text{cm} \\text{ for } t>10}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55588005_82": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BAC=90^\\circ$, $AB=5\\text{cm}$, $BC=13\\text{cm}$. Point $D$ is on segment $AC$, and $CD=7\\text{cm}$. A moving point $P$ starts from point $E$, which is $15\\text{cm}$ away from point $B$, and moves in the direction of ray $EA$ at a speed of $2\\text{cm}$ per second, for a time of $t$ seconds. During the motion, is there a moment when $\\triangle ABC$ and $\\triangle ADP$ are congruent? If yes, please calculate the value of $t$; if no, please explain the reason.", -"image_file_name": "7044652", -"image": [ -"math/55588005_7314.png" -], -"solution": "\\textbf{Solution:} There exists a moment such that $\\triangle ABC$ is congruent to $\\triangle ADP$, for the following reasons:\\\\\n$\\because$ $\\angle DAP=\\angle BAC=90^\\circ$, and $DA=BA$,\\\\\n$\\therefore$ when $AP=AC$, $\\triangle ABC\\cong \\triangle ADP$,\\\\\n$\\therefore$ $20-2t=12$ or $2t-20=12$,\\\\\nSolving this, we get $t=\\boxed{4}$ or $t=16$,\\\\\n$\\therefore$ the values of $t$ that satisfy the conditions are \\boxed{4} or \\boxed{16}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55588163_85": { -"question": "As shown in the diagram, point $C$ is a moving point on $AB$. On the same side of $AB$, isosceles right triangles $ACD$ and $CBE$ are constructed with $AC$ and $BC$ as hypotenuses, respectively. Line segment $DE$ is drawn, and point $F$ is located on $DE$ with $CF$ connected and $FD=FC$. Point $F$ is the midpoint of $DE$. A perpendicular line to $AB$ is drawn from point $F$, and point $G$ is the foot of the perpendicular. What is the value of $\\frac{FG}{AB}$?", -"image_file_name": "7044652", -"image": [ -"math/55588163_7410.png" -], -"solution": "\\textbf{Solution:} Construct $DM \\perp AB$ at $M$ through point $D$, and construct $EN \\perp AB$ at $N$ through point $E$,\\\\\nsince $\\triangle ADC$ and $\\triangle BCE$ are isosceles right triangles,\\\\\ntherefore $AC=2DM$, $BC=2EN$,\\\\\nthus $AB=AC+BC=2(DM+EN)$,\\\\\nsince $FG\\perp AB$,\\\\\nthus $DM\\parallel FG\\parallel EN$,\\\\\nsince $DF=EF$,\\\\\nthus $MG=NG$,\\\\\ntherefore $FG=\\frac{1}{2}(DM+EN)$,\\\\\ntherefore $\\frac{FG}{AB}=\\frac{\\frac{1}{2}(DM+EN)}{2(DM+EN)}=\\boxed{\\frac{1}{4}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"55588163_86": { -"question": "As shown in the figure, point $C$ is a moving point on line segment $AB$. Isoceles right triangles $\\triangle ACD$ and $\\triangle CBE$ are constructed on the same side of $AB$ with $AC$ and $BC$ as their hypotenuses, respectively. Line segment $DE$ is drawn, and point $F$ is located on $DE$. Line segments $CF$ and $FD=FC$ are drawn. Given that $AB=12$, and the sum of the areas of triangles $\\triangle ACD$ and $\\triangle CEB$ is denoted as $S$, find the minimum value of $S$.", -"image_file_name": "7044652", -"image": [ -"math/55588163_7410.png" -], -"solution": "\\textbf{Solution:} Let $\\because AB=12$,\\\\\n$\\therefore$let $AC=x$, then $BC=12-x$,\\\\\n$\\because DM\\perp AB$, $EN\\perp AB$,\\\\\n$\\therefore DM=\\frac{1}{2}AC$, $EN=\\frac{1}{2}BC$,\\\\\n$\\therefore S=\\frac{1}{2}AC\\cdot DM+\\frac{1}{2}BC\\cdot EN=\\frac{1}{4}AC^{2}+\\frac{1}{4}BC^{2}=\\frac{1}{4}x^{2}+\\frac{1}{4}(12-x)^{2}$,\\\\\ni.e., $S=\\frac{1}{2}x^{2}-6x+36=\\frac{1}{2}(x-6)^{2}+18$\\\\\n$\\therefore S$'s minimum value is $\\boxed{18}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"55498635_91": { -"question": "As shown in the figure, in the Cartesian coordinate system (with $O$ as the origin), it is known that the line $y=kx+b$ intersects the $x$-axis and the $y$-axis at points $A(-2,0)$ and $B(0,-1)$ respectively, and the coordinates of point $C$ are $(0,2)$. What is the equation of line $AB$?", -"image_file_name": "7044652", -"image": [ -"math/55498635_780.png" -], -"solution": "\\textbf{Solution:} Since the line $y=kx+b$ intersects the x-axis and y-axis at points $A(-2,0)$ and $B(0,-1)$ respectively,\n\n$\\therefore$ $\\begin{cases} -2k+b=0\\\\ b=-1 \\end{cases}$,\n\nSolving this yields $\\begin{cases} k=-\\frac{1}{2}\\\\ b=-1 \\end{cases}$,\n\n$\\therefore$ the equation of line $AB$ is: $\\boxed{y=-\\frac{1}{2}x-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"55498635_92": { -"question": "As shown in the figure, in the Cartesian coordinate system (where $O$ is the origin), it is known that the line $y=kx+b$ intersects the $x$ axis and the $y$ axis at points $A(-2,0)$ and $B(0,-1)$, respectively. The coordinates of point $C$ are $(0,2)$. Suppose point $D$ is a point on line $AB$ and $CD=BD$. Find the coordinates of point $D$.", -"image_file_name": "7044652", -"image": [ -"math/55498635_780.png" -], -"solution": "\\textbf{Solution:} Let us draw $DH \\perp BC$ from point $D$, with the perpendicular foot at $H$, as shown in the figure:\\\\\n$\\because CD=BD$,\\\\\n$\\therefore HC=HB=\\frac{1}{2}BC$,\\\\\n$\\because B(0, -1), C(0, 2) \\therefore BC=3, OC=2$\\\\\n$\\therefore CH=\\frac{3}{2}$,\\\\\n$\\therefore OH=\\frac{1}{2}$,\\\\\n$\\therefore$ substitute $y=\\frac{1}{2}$ into the line equation $y=-\\frac{1}{2}x-1$,\\\\\nwe get $\\frac{1}{2}=-\\frac{1}{2}x-1$, solving for $x$, we find $x=-3$\\\\\n$\\therefore$ The coordinates of point $D$ are $\\boxed{(-3, \\frac{1}{2})}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"55502397_95": { -"question": "As shown in the figure, $AD \\parallel BC$, E is the midpoint of $CD$, extend line $AE$ to intersect the extension of line $BC$ at point F. $\\triangle ADE \\cong \\triangle FCE$. If $\\angle BAF = 90^\\circ$, $AB = 8$, and $EF = 3$, what is the area of quadrilateral $ABCD$?", -"image_file_name": "7044652", -"image": [ -"math/55502397_794.png" -], -"solution": "\\textbf{Solution:} Given that $ \\because \\triangle ADE \\cong \\triangle FCE$,\\\\\n$ \\therefore AE=EF=3$, $ {S}_{\\triangle ADE}={S}_{\\triangle FCE}$\\\\\n$ \\therefore AF=AE+EF=6$\\\\\n$ \\because \\angle BAF=90^\\circ$,\\\\\n$ {S}_{\\triangle ABF}=\\frac{1}{2}AB\\cdot AF=\\frac{1}{2}\\times 8\\times 6=24$\\\\\n$ \\therefore {S}_{\\text{quadrilateral }ABCD}={S}_{\\text{quadrilateral }ABCE}+{S}_{\\triangle ADE}={S}_{\\text{quadrilateral }ABCE}+{S}_{\\triangle FCE}={S}_{\\triangle ABF}=\\boxed{24}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50979784_102": { -"question": "As shown in the diagram, the line \\(l_{1}\\colon y=x+3\\) intersects with the line \\(l_{2}\\) passing through point \\(A(3,0)\\) at point \\(C(1,m)\\), and intersects with the \\(x\\)-axis at point \\(B\\). What is the equation of line \\(l_{2}\\)?", -"image_file_name": "7044652", -"image": [ -"math/50979784_850.png" -], -"solution": "\\textbf{Solution:} Substitute $(1, m)$ into $y = x + 3$ to get $m = 4$, therefore $C(1, 4)$. Let the equation of line $l_2$ be $y = kx + b$. Substituting $(1, 4)$ and $(3, 0)$ into the equation, we get \n\\[\n\\left\\{\n\\begin{array}{l}\nk + b = 4 \\\\\n3k + b = 0\n\\end{array}\n\\right.\n\\]\nSolving the system, we find \n\\[\n\\left\\{\n\\begin{array}{l}\nk = -2 \\\\\nb = 6\n\\end{array}\n\\right.\n\\]\nTherefore, the equation of line $l_2$ is $y = -2x + 6$. Hence, the answer is $y = \\boxed{-2x + 6}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50979784_103": { -"question": "As shown in the figure, the line $l_{1}\\colon y=x+3$ intersects with the line $l_{2}$ that passes through the point $A(3,0)$ at point $C(1,m)$, and intersects with the $x$-axis at point $B$. Point $M$ is on the line $l_{1}$, $MN$ is parallel to the $y$-axis, and intersects line $l_{2}$ at point $N$. If $MN=AB$, find the coordinates of point $M$.", -"image_file_name": "7044652", -"image": [ -"math/50979784_850.png" -], -"solution": "\\textbf{Solution:} In the equation $y = x + 3$, let $y = 0$ to find $x = -3$,\n\n$\\therefore B(-3,0)$,\n\n$\\therefore AB = 3 - (-3) = 6$,\n\nLet $M(a, a + 3)$. Since $MN$ is parallel to the y-axis, we get $N(a, -2a + 6)$,\n\n$MN = |a + 3 - (-2a + 6)| = |3a - 3|$,\n\nSince $MN = AB$,\n\n$\\therefore |3a - 3|= 6$,\n\nSolving this gives $a = 3$ or $a = -1$,\n\n$\\therefore \\boxed{M(3, 6)} or \\boxed{M(-1, 2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50979784_104": { -"question": "As shown in the figure, the line $l_{1}: y = x + 3$ intersects with the line $l_{2}$ passing through point A$(3, 0)$ at point C$(1, m)$, and with the x-axis at point B. Is there a point P on the x-axis that makes the triangle BCP an isosceles triangle? If such a point exists, please write down the coordinates of point P; if not, please explain why.", -"image_file_name": "7044652", -"image": [ -"math/50979784_850.png" -], -"solution": "\\textbf{Solution:} As shown in Fig. 2, $\\because B(-3,0), C(1,4)$.\n$\\therefore BC= \\sqrt{(1+3)^{2}+(4-0)^{2}}=4\\sqrt{2}$.\nLet $P(x,0)$,\nWhen $PC=BC$, at this time point $P$ is symmetric to point $B$ about the line $x=1$, then $P_{1}(5,0)$;\nWhen $PC=PB$, $(x+3)^{2}=(x-1)^{2}+(0-4)^{2}$.\nSolving this yields $x=1$. At this time, $P_{2}(1,0)$;\nWhen $BP=BC$, $\\left|x+3\\right|=4\\sqrt{2}$,\nSolving this yields $x=-3+4\\sqrt{2}$ or $x=-3-4\\sqrt{2}$.\nAt this time, $P_{3}(-3+4\\sqrt{2},0)$, $P_{4}(-3-4\\sqrt{2},0)$.\nIn summary, the coordinates of point $P$ that meet the conditions are \\boxed{P_{1}(5,0)}, \\boxed{P_{2}(1,0)}, \\boxed{P_{3}(-3+4\\sqrt{2},0)}, \\boxed{P_{4}(-3-4\\sqrt{2},0)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52978934_107": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $AC=BC$, $BE\\perp CE$ at $E$, and $AD\\perp CE$ at $D$. We have $\\triangle ADC \\cong \\triangle CEB$. Given $AD=5\\text{cm}$ and $DE=3\\text{cm}$, find the length of $BE$ in cm.", -"image_file_name": "7044652", -"image": [ -"math/52978934_860.png" -], -"solution": "\\textbf{Solution:} \\\\\nFrom (1), we know that $\\triangle ADC \\cong \\triangle CEB$,\\\\\nhence $AD = CE = 5\\,\\text{cm}$, and $CD = BE$.\\\\\nSince $CD = CE - DE$,\\\\\nit follows that $BE = AD - DE = 5 - 3 = \\boxed{2}\\,\\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53081172_110": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=12$, $AC=16$, $BC=20$. If point $P$ is a point on line segment $AC$, connect $BP$, and $BP=CP$, what is the length of $AP$?", -"image_file_name": "7044652", -"image": [ -"math/53081172_872.png" -], -"solution": "\\textbf{Solution:} Let $AP=x$, then $BP=CP=16-x$.\\\\\nIn $\\triangle ABP$ right-angled at $B$, since $AB^2+AP^2=BP^2$,\\\\\nhence $12^2+x^2=(16-x)^2$,\\\\\nsolving gives $x=\\boxed{3.5}$, therefore the length of $AP$ is \\boxed{3.5}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53080378_112": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ is the altitude on side $BC$, $CE$ is the median on side $AB$, $G$ is the midpoint of $EC$, connecting $DG$, $CD = AE$, $AD = 6$, and $BD = 8$. Find the length of $CD$?", -"image_file_name": "7044652", -"image": [ -"math/53080378_8810.png" -], -"solution": "\\textbf{Solution:} Since $AD$ is the altitude from $A$ to side $BC$, and $AD=6$, \\\\\n$BD=8$, \\\\\ntherefore $\\angle ADB=90^\\circ$, and $AB=\\sqrt{AD^{2}+BD^{2}}=\\sqrt{6^{2}+8^{2}}=10$, \\\\\nsince $CE$ is the median to side $AB$, \\\\\ntherefore $BE=AE=\\frac{1}{2}AB=5$, \\\\\nsince $CD=AE$, \\\\\ntherefore $CD=\\boxed{5}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53078535_116": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$ is a point on $AB$, $E$ is the midpoint of $AC$, $DE$ is extended to point $F$ such that $EF=ED$, and $CF$ is drawn. $CF\\parallel AB$. If $\\angle A=70^\\circ$, $\\angle F=35^\\circ$, and $BE\\perp AC$, what is the degree measure of $\\angle BED$?", -"image_file_name": "7044652", -"image": [ -"math/53078535_899.png" -], -"solution": "Solution: From (1) we know that $\\angle A = \\angle ACF$,\\\\\n$\\therefore \\angle ACF = \\angle A = 70^\\circ$,\\\\\nAdditionally, since $\\angle F = 35^\\circ$,\\\\\n$\\therefore \\angle DEC = \\angle F + \\angle ACF = 70^\\circ + 35^\\circ = 105^\\circ$\\\\\nAlso, since $BE \\perp AC$\\\\\n$\\therefore \\angle BEC = 90^\\circ$\\\\\nThus, $\\angle BED = \\angle DEC - \\angle BEC = 105^\\circ - 90^\\circ = \\boxed{15^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53147720_118": { -"question": "As shown in the figure, in $\\triangle ABC$, the perpendicular bisector $OM$ of side $AB$ intersects with the perpendicular bisector $ON$ of side $AC$ at point $O$. These two perpendicular bisectors respectively intersect $BC$ at points $D$ and $E$. Given $\\angle ABC=30^\\circ$ and $\\angle ACB=40^\\circ$, what is the measure of $\\angle DAE$ in degrees?", -"image_file_name": "7044652", -"image": [ -"math/53147720_900.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ABC=30^\\circ$ and $\\angle ACB=40^\\circ$, \\\\\nit follows that $\\angle BAC=180^\\circ-\\angle ABC-\\angle ACB=180^\\circ-30^\\circ-40^\\circ=110^\\circ$, \\\\\nSince $DM$ is the perpendicular bisector of segment $AB$, \\\\\nit follows that $DA=DB$, \\\\\nTherefore, $\\angle DAB=\\angle ABC=30^\\circ$, \\\\\nSimilarly, $EA=EC$, \\\\\nTherefore, $\\angle EAC=\\angle ACB=40^\\circ$, \\\\\nTherefore, $\\angle DAE=\\angle BAC-\\angle BAD-\\angle EAC=110^\\circ-30^\\circ-40^\\circ=\\boxed{40^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53147720_119": { -"question": "As shown in the figure, in $\\triangle ABC$, the perpendicular bisector of side $AB$, $OM$, and the perpendicular bisector of side $AC$, $ON$, intersect at point $O$. These two perpendicular bisectors intersect $BC$ at points $D$ and $E$, respectively. It is known that the perimeter of $\\triangle ADE$ is $7\\,\\text{cm}$. The lines $OA$, $OB$, and $OC$ are drawn. If the perimeter of $\\triangle OBC$ is $15\\,\\text{cm}$, find the length of $OA$.", -"image_file_name": "7044652", -"image": [ -"math/53147720_900.png" -], -"solution": "\\textbf{Solution:} Connect OA, OB, OC,\\\\\n$\\because$ the perimeter of $\\triangle ADE$ is $7\\,\\text{cm}$,\\\\\n$\\therefore$ $AD+DE+EA=7\\,\\text{cm}$,\\\\\n$\\therefore$ $BC=DB+DE+EC=AD+DE+EA=7\\,\\text{cm}$;\\\\\n$\\because$ the perimeter of $\\triangle OBC$ is $15$,\\\\\n$\\therefore$ $OB+OC+BC=15$,\\\\\n$\\because$ $BC=7$,\\\\\n$\\therefore$ $OB+OC=8$,\\\\\n$\\because$ $OM$ is the perpendicular bisector of $AB$,\\\\\n$\\therefore$ $OA=OB$,\\\\\nSimilarly, $OA=OC$,\\\\\n$\\therefore$ $OA=OB=OC=\\boxed{4\\,\\text{cm}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066403_122": { -"question": "As shown in the diagram, in $ \\triangle ABC$, extend $ BC$ to point D such that $ CD=AB$, draw $ DE\\parallel AB$ with $ DE=BC$, and connect $ CE, AE$. $ \\angle BAC=\\angle DCE$; If $ \\angle B=32^\\circ$ and $ \\angle ACD=58^\\circ$, what is the measure of $ \\angle CEA$?", -"image_file_name": "7044652", -"image": [ -"math/53066403_916.png" -], -"solution": "\\textbf{Solution:} Since $\\angle B=32^\\circ$ and $\\angle ACD=58^\\circ$,\\\\\nit follows that $\\angle DCE=\\angle BAC=\\angle ACD-\\angle B=58^\\circ-32^\\circ=26^\\circ$,\\\\\ntherefore, $\\angle ACE=\\angle ACD+\\angle DCE=58^\\circ+26^\\circ=84^\\circ$,\\\\\nsince $\\triangle ABC\\cong \\triangle CDE$,\\\\\nit implies $AC=CE$,\\\\\nthus, $\\angle CEA=\\angle CAE=\\frac{1}{2}\\left(180^\\circ-\\angle ACE\\right)=\\frac{1}{2}\\left(180^\\circ-84^\\circ\\right)=\\boxed{48^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066397_124": { -"question": "As shown in the diagram, in $\\triangle ABC$, point D is on the extension of line $BC$. A line through point D, $DF\\perp AC$ at point F, is extended to intersect line $AB$ at point E and the bisector of $\\angle ACB$ at point N. Point M is the intersection of $CN$ and $AB$, with $\\angle BMC=80^\\circ$ and $\\angle B=40^\\circ$. What is the measure of $\\angle AEF$?", -"image_file_name": "7044652", -"image": [ -"math/53066397_9210.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BMC=80^\\circ$ and $\\angle B=40^\\circ$, \\\\\nit follows that $\\angle BCM=180^\\circ-\\angle B-\\angle BMC=60^\\circ$ and $\\angle AMC=180^\\circ-\\angle BMC=100^\\circ$. \\\\\nSince $DF\\perp AC$, \\\\\nit implies that $\\angle EFC=90^\\circ$. \\\\\nSince $CN$ bisects $\\angle ACB$, \\\\\nit implies that $\\angle ACN=\\angle BCN=60^\\circ$. \\\\\nHence, $\\angle MEF=360^\\circ-\\angle AMC-\\angle ACM-\\angle EFC=110^\\circ$, \\\\\nthus, $\\angle AEF=180^\\circ-\\angle MEF=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066328_128": { -"question": "As shown in the figure, the line $l_{1}\\colon y=ax+b$ (with constants $a<0$, $b>0$) intersects the x-axis and the y-axis at points A and B, respectively, while the line $l_{2}\\colon y=ca+d$ (with constants $c>0$, $d>0$) intersects the x-axis and the y-axis at points C and D, respectively. The lines $l_{1}$ and $l_{2}$ intersect at point E, and $\\triangle AOB\\cong \\triangle COD$. $AB\\perp CD$. If $a=-2$ and $b=4$, what is the area of $\\triangle ADE$?", -"image_file_name": "7044652", -"image": [ -"math/53066328_9311.png" -], -"solution": "\\textbf{Solution}: From the given information, we have $a=-2$, $b=4$, \\\\\n$\\therefore$ the line $l_1\\colon y=-2x+4$, \\\\\nLet $x=0$, we get $y=4$; let $y=0$, we get $-2x+4=0$, solving this gives $x=2$, \\\\\n$\\therefore$ point A is $(2, 0)$, point B is $(0, 4)$, \\\\\n$\\therefore OA=2$, $OB=4$, \\\\\n$\\because \\triangle AOB \\cong \\triangle COD$, \\\\\n$\\therefore OC=OA=2$, $OD=OB=4$, \\\\\n$\\therefore$ points C and D are $(0, 2)$ and $(-4, 0)$ respectively, \\\\\nSolving gives: $\\begin{cases} c=\\frac{1}{2} \\\\ d=2 \\end{cases}$, \\\\\n$\\therefore$ the line $l_2\\colon y=\\frac{1}{2}x+2$, \\\\\nBy solving the system of equations $\\begin{cases} y=\\frac{1}{2}x+2 \\\\ y=-2x+4 \\end{cases}$, we get: $\\begin{cases} x=\\frac{4}{5} \\\\ y=\\frac{12}{5} \\end{cases}$, \\\\\n$\\therefore$ the coordinates of point E are $\\left(\\frac{4}{5}, \\frac{12}{5}\\right)$, \\\\\n$\\therefore$ the area of $\\triangle ADE$ is $\\frac{1}{2}AD\\cdot y_E=\\frac{1}{2}\\times (2+4)\\times \\frac{12}{5}=\\boxed{\\frac{36}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53059814_131": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=CB$, $\\angle ABC=90^\\circ$, $F$ is a point on the extension of $AB$, and point $E$ is on $BC$, with $BE=BF$. $\\triangle ABE \\cong \\triangle CBF$. If $\\angle CAE = 20^\\circ$, what is the measure of $\\angle ACF$?", -"image_file_name": "7044652", -"image": [ -"math/53059814_940.png" -], -"solution": "\\textbf{Solution:} Given that $AB=BC$ and $\\angle ABC=90^\\circ$, it follows that $\\angle CAB=\\angle ACB=45^\\circ$. Also, given that $\\angle BAE=\\angle CAB-\\angle CAE=45^\\circ-20^\\circ=25^\\circ$ and according to (1), $\\triangle ABE\\cong \\triangle CBF$. Hence, $\\angle BCF=\\angle BAE=25^\\circ$, which means $\\angle ACF=\\angle BCF+\\angle ACB=45^\\circ+25^\\circ=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53059820_134": { -"question": "As shown in the figure, in $\\triangle ABC$ and $\\triangle ECF$, we have $\\angle ACB = \\angle ECF = 90^\\circ$, and also $AC = BC$, $EC = FC$. Connecting $AE$ and $BF$, they intersect at point $O$. $\\triangle ACE \\cong \\triangle BCF$. What is the measure of $\\angle AOB$?", -"image_file_name": "7044652", -"image": [ -"math/53059820_950.png" -], -"solution": "\\textbf{Solution:} In $\\triangle BOM$ and $\\triangle ACM$, \\\\\nsince $\\angle AMC = \\angle BMO$, $\\angle CAE = \\angle BEF$, \\\\\nit follows that $\\angle BOM = \\angle ACM$, \\\\\nsince $\\angle ACB = 90^\\circ$, \\\\\nit implies $\\angle AOB = \\boxed{90^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53059214_137": { -"question": "As shown in the figure, $CE$ is the angle bisector of the exterior angle $\\angle ACD$ of $\\triangle ABC$, and $CE$ intersects the extension of $BA$ at point $E$. If $\\angle B=35^\\circ$ and $\\angle E=25^\\circ$, what is the measure of $\\angle CAE$?", -"image_file_name": "7044652", -"image": [ -"math/53059214_965.png" -], -"solution": "\\textbf{Solution:} Since $\\angle DCE$ is an exterior angle of $\\triangle BCE$ and $\\angle B=35^\\circ$, $\\angle E=25^\\circ$,\n\\[\\therefore \\angle DCE=\\angle B+\\angle E=60^\\circ,\\]\nSince $CE$ bisects $\\angle ACD$,\n\\[\\therefore \\angle ACE=\\angle DCE=60^\\circ,\\]\n\\[\\therefore \\angle CAE=180^\\circ-\\angle ACE-\\angle E=\\boxed{95^\\circ}.\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044239_140": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$ is a point on side $BC$, and $AB=AD=DC$. If $\\angle B=60^\\circ$, what is the degree measure of $\\angle C$?", -"image_file_name": "7044652", -"image": [ -"math/53044239_974.png" -], -"solution": "\\textbf{Solution:} Since $AB=AD$, and $\\angle B=60^\\circ$,\\\\\nthus, $\\triangle ABD$ is an equilateral triangle,\\\\\ntherefore, $\\angle ADB=60^\\circ$,\\\\\nSince $AD=CD$,\\\\\nthus $\\angle C=\\angle DAC=\\frac{1}{2}\\angle ADB= \\boxed{30^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044239_141": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$ is a point on side $BC$, and $AB=AD=DC$. If $AC=BC$, what is the degree measure of $\\angle C$?", -"image_file_name": "7044652", -"image": [ -"math/53044239_974.png" -], -"solution": "\\textbf{Solution:} Let $ \\angle C=x$\\\\\nSince $AD=DC$\\\\\nThen $\\angle DAC=\\angle C=x$\\\\\nThus $\\angle ADB=2x$\\\\\nSince $AB=AD$\\\\\nThen $\\angle B=\\angle ADB=2x$\\\\\nSince $AC=BC$\\\\\nThen $\\angle BAC=\\angle B=2x$\\\\\nIn $ \\triangle ABC$,\\\\\n$2x+2x+x=180^\\circ$\\\\\nTherefore $x=36^\\circ$\\\\\nThus, the measure of $\\angle C$ is $\\boxed{36^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044190_143": { -"question": "As shown in the figure, in $ \\triangle ABC$, $D$ is a point on side $BC$, with $AB=AD=DC$. If $ \\angle B=60^\\circ$, find the measure of $ \\angle C$.", -"image_file_name": "7044652", -"image": [ -"math/53044190_983.png" -], -"solution": "\\textbf{Solution:} Since $AB=AD, \\angle B=60^\\circ$,\\\\\nit follows that $\\triangle ABD$ is an equilateral triangle,\\\\\ntherefore $\\angle ADB=60^\\circ$,\\\\\nsince $AD=DC$,\\\\\nit implies that $\\angle C=\\angle DAC=\\frac{1}{2}\\angle ADB=\\boxed{30^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044190_144": { -"question": "As shown in the figure, in $\\triangle ABC$, D is a point on side $BC$, and $AB=AD=DC$. If $AC=BC$, find the measure of $\\angle C$.", -"image_file_name": "7044652", -"image": [ -"math/53044190_983.png" -], -"solution": "\\textbf{Solution:} Let $\\angle C=x$,\\\\\nsince $AD=DC$,\\\\\nthus $\\angle DAC=\\angle C=x$,\\\\\ntherefore $\\angle ADB=2x$,\\\\\nsince $AB=AD$,\\\\\nthus $\\angle B=\\angle ADB=2x$,\\\\\nsince $AC=BC$,\\\\\nthus $\\angle BAC=\\angle B=2x$,\\\\\nin $\\triangle ABC$, $2x+2x+x=180^\\circ$,\\\\\ntherefore $x=\\boxed{36^\\circ}$,\\\\\ntherefore the degree of $\\angle C$ is $\\boxed{36^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53044604_146": { -"question": "As shown in the figure, it is known that $\\angle ADC=90^\\circ$, $DC\\parallel AB$, $BA=BC$, $AE\\perp BC$ with the foot of the perpendicular being point E, and point F is the midpoint of $AC$. Is $\\angle AFB=90^\\circ$?", -"image_file_name": "7044652", -"image": [ -"math/53044604_990.png" -], -"solution": "\\textbf{Solution:} Proof: \\\\\nSince $BA = BC$, and $F$ is the midpoint of $AC$, \\\\\ntherefore $BF \\perp AC$. \\\\\nTherefore, $\\angle AFB = 90^\\circ$. \\\\\nHence, the answer is $\\boxed{90^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52422726_85": { -"question": "As shown in Figure 1, in quadrilateral $ABCD$, $AB \\parallel DC$, $AB=DC$, and the diagonals $AC$ and $BD$ intersect at point $O$, with $AC$ bisecting $\\angle BAD$. $\\angle DAC = \\angle DCA$; quadrilateral $ABCD$ is a rhombus. As shown in Figure 2, draw $CE \\perp AB$ extended to meet at point $E$, and connect $OE$. If $AB= \\sqrt{5}$ and $BD=2$, what is the length of $OE$?", -"image_file_name": "7054392", -"image": [ -"math/52422726_821.png" -], -"solution": "\\textbf{Solution:} \n\nSince quadrilateral ABCD is a rhombus and $OA=OC$, $OB=OD$, $BD\\perp AC$, and $CE\\perp AB$, it follows that $OE=OA=OC$. Given that $BD=2$, thus $OB=\\frac{1}{2}BD=1$. In $\\triangle AOB$, by the Pythagorean theorem, we have: $OA=\\sqrt{AB^{2}-OB^{2}}=\\sqrt{(\\sqrt{5})^{2}-1^{2}}=\\boxed{2}$, therefore $OE=OA=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52423203_88": { -"question": "As shown in the diagram, in parallelogram $ABCD$, the heights on the adjacent sides $AD$ and $CD$ are equal, that is, $BE=BF$. Parallelogram $ABCD$ is a rhombus; if $DB=10$ and $AB=13$, what is the area of parallelogram $ABCD$?", -"image_file_name": "7054392", -"image": [ -"math/52423203_833.png" -], -"solution": "\\textbf{Solution:} Draw line $AC$ intersecting $BD$ at point $O$, \\\\\nsince quadrilateral $ABCD$ is a rhombus, it follows that $AC \\perp BD$, and $BO = \\frac{1}{2}BD = 5$,\\\\\nin $\\triangle ABO$, by the Pythagorean theorem, we have: $AO = \\sqrt{AB^{2} - BO^{2}} = 12$, \\\\\nthus $AC = 2AO = 24$, \\\\\ntherefore, the area of parallelogram $ABCD$ $= \\frac{1}{2}AC \\times BD = \\boxed{120}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52423280_91": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD\\parallel BC$, $AB=BC$, and the diagonals $AC$ and $BD$ intersect at point $O$, where $BD$ bisects $\\angle ABC$. Quadrilateral $ABCD$ is a rhombus; through point $D$, draw $DE\\perp BC$ and extend it to meet the extension of $BC$ at point $E$, then connect $OE$. Given that $OE=3$ and $AC=4$, what is the length of the sides of the rhombus?", -"image_file_name": "7054392", -"image": [ -"math/52423280_845.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rhombus, \\\\\nthus AC$\\perp$BD, OB=OD=$\\frac{1}{2}$BD, OC=$\\frac{1}{2}$AC=2, \\\\\nsince DE$\\perp$BC, \\\\\nthus $\\angle$DEB$=90^\\circ$, \\\\\nsince OB=OD, \\\\\nthus OE=$\\frac{1}{2}$BD, \\\\\nsince OD=$\\frac{1}{2}$BD, \\\\\nthus OD=OE=3, \\\\\nin $\\triangle$OCD, by the Pythagorean theorem, $CD=\\sqrt{OD^2+OC^2}=\\sqrt{3^2+2^2}=\\boxed{\\sqrt{13}},$ \\\\\ntherefore, the side length of the rhombus is $\\boxed{\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52422339_93": { -"question": "As shown in the figure, the perimeter of square $ABCD$ is 40. Point $P$ is a moving point on the diagonal $AC$ of square $ABCD$. Perpendiculars are drawn from point $P$ to $AB$ and $BC$, with the feet of the perpendiculars being $E$ and $F$, respectively. Prove that the quadrilateral $PEBF$ is a rectangle.", -"image_file_name": "7054392", -"image": [ -"math/52422339_855.png" -], -"solution": "\\textbf{Solution:} Proof:\\\\\nSince $PE\\perp AB$ and $PF\\perp BC$,\\\\\nit follows that $\\angle PEB=\\angle PFB=90^\\circ$.\\\\\nFurthermore, since $ABCD$ is a square,\\\\\nit follows that $\\angle ABC=90^\\circ$.\\\\\nTherefore, the quadrilateral PEBF is a \\boxed{rectangle}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52422339_95": { -"question": "As shown in the figure, the perimeter of square $ABCD$ is $40$. Point $P$ is a moving point on the diagonal $AC$ of square $ABCD$. Perpendiculars are drawn from point $P$ to $AB$ and $BC$ respectively, with the feet of the perpendiculars being $E$ and $F$, respectively. Quadrilateral $PEBF$ is a rectangle, and $PD=EF$. As point $P$ moves, the length of $EF$ also changes. What is the minimum value of $EF$?", -"image_file_name": "7054392", -"image": [ -"math/52422339_855.png" -], -"solution": "\\textbf{Solution:} Given equation (2), we have $DP=EF$. Thus, the minimum value of $EF$, which is also the minimum value of $DP$, occurs when $DP\\perp AC$, meaning $DP$ is perpendicular to $AC$.\n\nSince the perimeter of square ABCD is 40,\n\\[AD=CD=10.\\]\n\nGiven $AD=CD$ and $\\angle ADC=90^\\circ$,\n\\[AC=\\sqrt{10^2+10^2}=10\\sqrt{2}.\\]\n\nSince $DP\\perp AC$,\n\\[DP=\\frac{1}{2}AC=5\\sqrt{2}.\\]\n\nTherefore, the minimum value of $EF$ is \\boxed{5\\sqrt{2}}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52416356_98": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=12$, $AD=16$, $E$ and $F$ are the midpoints of $AD$ and $BC$, respectively. $G$ and $H$ are two moving points on diagonal $AC$, and they move towards each other from points $A$ and $C$ at a speed of $1$ unit length per second, for $t$ seconds, where $0\\le t<10$. If quadrilateral $EGFH$ is a rectangle, what is the value of $t$?", -"image_file_name": "7054392", -"image": [ -"math/52416356_863.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, connect $EF$,\\\\\nsince $AE=BF$, $AE\\parallel BF$, and $\\angle B=90^\\circ$,\\\\\nthus quadrilateral $ABFE$ is a rectangle,\\\\\ntherefore $EF=AB=12$. When quadrilateral $EGFH$ is a rectangle,\\\\\nthus $GH=EF=12$,\\\\\nin $\\triangle ABC$, by the Pythagorean theorem, we get $AC=\\sqrt{AB^2+BC^2}=\\sqrt{12^2+16^2}=20$,\\\\\nsince $AG=CH=t$,\\\\\nthus $12+2t=20$,\\\\\ntherefore $t=\\boxed{4}$, i.e., when quadrilateral $EGFH$ is a rectangle, $t=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52416356_99": { -"question": "In the rectangle $ABCD$, where $AB=12$ and $AD=16$, $E$ and $F$ are the midpoints of $AD$ and $BC$, respectively. Points $G$ and $H$ are two moving points on the diagonal $AC$, moving towards each other from points $A$ and $C$ at a speed of $1$ unit per second, for a duration of $t$ seconds, with $0\\le t<10$. If point $E'$ starts from point $E$ and moves to the right along line $AD$, and point $F'$ starts from point $F$ and moves to the left along line $CB$, both at the same speed as points $G$ and $H$ starting simultaneously, find the value of $t$ when the quadrilateral $E'G{F'}H$ forms a rhombus.", -"image_file_name": "7054392", -"image": [ -"math/52416356_863.png" -], -"solution": "\\textbf{Solution:} Let's assume at time $t$ seconds, the quadrilateral $E'GF'H$ forms a rhombus, with point E and F moved to positions $E'$ and $F'$ respectively (as shown in Figure 2). Connect $AF'$, $CE'$, $E'F'$, where $E'F'$ intersects AC at point O.\\\\\n$\\because$ Quadrilateral $E'GF'H$ is a rhombus, $E'F' \\perp AC$, $OG=OH$, $OE'=OF'$,\\\\\n$\\therefore OA=OC$, $AE'=CF'$, $\\therefore$ Quadrilateral $AE'CF'$ is a rhombus, $\\therefore CE'=AE'=AE+EE'=8+t$, $DE'=ED-EE'=8-t$. In $\\triangle CDE'$,\\\\\nby Pythagoras' theorem, we have $CD^2+DE'^2=CE'^2$, that is $12^2+(8-t)^2=(8+t)^2$. Solving this gives $t=\\boxed{\\frac{9}{2}}$, $\\therefore$ when $t=\\frac{9}{2}$, the quadrilateral $E'GF'H$ forms a rhombus.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52416493_102": { -"question": "As shown in the diagram, in $\\triangle ABC$, $D$ and $E$ are the midpoints of $AB$ and $AC$, respectively. A line through point $C$ is drawn such that $CF \\parallel BD$, intersecting the extension of $DE$ at point $F$. Quadrilateral $BCFD$ is a parallelogram; if $BC = 6$, find the length of $EF$.", -"image_file_name": "7054392", -"image": [ -"math/52416493_872.png" -], -"solution": "\\textbf{Solution:} Given that $DE$ is the mid-segment of $\\triangle ABC$,\\\\\nhence $DE = \\frac{1}{2}BC = 3$,\\\\\nsince quadrilateral BCFD is a parallelogram,\\\\\nthus $DF = BC = 6$,\\\\\ntherefore $EF = DF - DE = 6 - 3 = \\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52416409_105": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AC$ and $BD$ intersect at point $O$, $AD\\parallel BC$, and $BO=DO$. Quadrilateral $ABCD$ is a parallelogram. A line through point $O$ is drawn to be perpendicular to $BD$ and intersects $BC$ at point $E$, and $DE$ is connected. If $\\angle CDE=\\angle CBD=15^\\circ$, what is the degree measure of $\\angle ABC$?", -"image_file_name": "7054392", -"image": [ -"math/52416409_886.png" -], -"solution": "\\textbf{Solution:} Given that $OE\\perp BD$, that is $\\angle BOE=\\angle DOE=90^\\circ$,\\\\\ntherefore, in $\\triangle BOE$ and $\\triangle DOE$, we have $\\left\\{\\begin{array}{l}BO=DO \\\\ \\angle BOE=\\angle DOE=90^\\circ \\\\ OE=OE \\end{array}\\right.$,\\\\\nhence $\\triangle BOE\\cong \\triangle DOE$ (SAS),\\\\\nthus $\\angle EBD=\\angle EDB$, which means $\\angle CBD=\\angle EDB$.\\\\\nSince $\\angle CDE=\\angle CBD=15^\\circ$,\\\\\nthen $\\angle CDE=\\angle CBD=\\angle EDB=15^\\circ$,\\\\\ntherefore $\\angle BDC=\\angle EDB+\\angle CDE=30^\\circ$.\\\\\nSince quadrilateral $ABCD$ is a parallelogram,\\\\\nthen $\\angle ABD=\\angle BDC=30^\\circ$,\\\\\nhence $\\angle ABC=\\angle ABD+\\angle CBD=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395259_108": { -"question": "As shown in the diagram, point O is a point inside $\\triangle ABC$. Connect OB, OC, and join the midpoints D, E, F, G of AB, OB, OC, AC respectively, to get quadrilateral DEFG. Quadrilateral DEFG is a parallelogram. If $\\angle OBC=45^\\circ$, $\\angle OCB=30^\\circ$, and OC$=8$, what is the length of EF?", -"image_file_name": "7054392", -"image": [ -"math/52395259_890.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw OM$\\perp$BC at M, \\\\\nIn Rt$\\triangle$OCM, $\\angle$OCM=$30^\\circ$, OC=8, \\\\\n$\\therefore$OM=$\\frac{1}{2}$OC=4, \\\\\n$\\therefore$CM=$\\sqrt{OC^{2}-OM^{2}}=4\\sqrt{3}$, \\\\\nIn Rt$\\triangle$OBM, \\\\\n$\\because$$\\angle$OBC=$45^\\circ$, \\\\\n$\\therefore$$\\angle$OBM=$\\angle$BOM=$45^\\circ$ \\\\\n$\\therefore$BM=OM=4, \\\\\n$\\therefore$BC=4+$4\\sqrt{3}$, \\\\\n$\\because$EF=$\\frac{1}{2}$BC, \\\\\n$\\therefore$EF=$2+2\\sqrt{3}$. \\\\\nHence, the length of EF is $\\boxed{2+2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395032_110": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=-\\frac{1}{2}x+b$ passes through point $A(0,3)$. Point $P$ is a moving point on this line. Perpendiculars $PM$ and $PN$ are drawn from point $P$ to the $x$-axis at point $M$ and the $y$-axis at point $N$, respectively. On the quadrilateral $PMON$, the following segments are taken: $PC=\\frac{1}{3}MP$, $MB=\\frac{1}{3}OM$, $OE=\\frac{1}{3}ON$, $ND=\\frac{1}{3}NP$. What is the value of $b$?", -"image_file_name": "7054392", -"image": [ -"math/52395032_905.png" -], -"solution": "\\textbf{Solution:} We have $b=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395032_112": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=-\\frac{1}{2}x+b$ passes through point $A(0,3)$. Point $P$ is a moving point on this line. Through point $P$, $PM$ is drawn perpendicular to the $x$-axis at point $M$, and $PN$ is drawn perpendicular to the $y$-axis at point $N$. On quadrilateral $PMON$, the following segments are intercepted: $PC=\\frac{1}{3}MP$, $MB=\\frac{1}{3}OM$, $OE=\\frac{1}{3}ON$, and $ND=\\frac{1}{3}NP$. Quadrilateral $BCDE$ is a parallelogram. Is there such a point $P$ on the line $y=-\\frac{1}{2}x+b$ that makes quadrilateral $BCDE$ a square? If such a point exists, please find the coordinates of all such points $P$; if it does not exist, please explain why.", -"image_file_name": "7054392", -"image": [ -"math/52395032_905.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point $P$ be $(x,y)$,\n\nwhen $\\triangle OBE \\cong \\triangle MCB$, quadrilateral $BCDE$ becomes a square,\n\n$OE=BM$,\n\nwhen point $P$ is in the first quadrant, i.e., $\\frac{1}{3}y=\\frac{1}{3}x$, $x=y$.\n\nPoint $P$ lies on the line,\n\n$\\left\\{\\begin{array}{l}\ny=\\frac{1}{2}x+3 \\\\\ny=x\n\\end{array}\\right.$,\n\nsolving we get $\\left\\{\\begin{array}{l}\nx=\\boxed{2} \\\\\ny=2\n\\end{array}\\right.$,\n\nwhen point $P$ is in the second quadrant, $-x=y$\n\n$\\left\\{\\begin{array}{l}\ny=\\frac{1}{2}x+3 \\\\\ny=-x\n\\end{array}\\right.$,\n\nsolving we get $\\left\\{\\begin{array}{l}\nx=-6 \\\\\ny=6\n\\end{array}\\right.$\n\nThere exists such a point $P$ on the line $y=-\\frac{1}{2}x+b$ that makes quadrilateral $BCDE$ a square, with $P$'s coordinates being $\\boxed{(2,2)}$ or $\\boxed{(-6,6)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52395580_115": { -"question": "As shown in the diagram, in quadrilateral $ABCD$, $E$ and $F$ are two points on the diagonal $AC$, and $AE=CF$. Quadrilateral $BEDF$ is a parallelogram; if $AB \\perp BF$, $AB=8$, $BF=6$, and $AC=16$. Find the length of the line segment $EF$.", -"image_file_name": "7054392", -"image": [ -"math/52395580_913.png" -], -"solution": "\\textbf{Solution:} In right triangle $Rt\\triangle ABF$, we have $AF=\\sqrt{AB^{2}+BF^{2}}=\\sqrt{8^{2}+6^{2}}=10$,\\\\\nsince $AC=16$,\\\\\nthen $CF=AC-AF=16-10=6$,\\\\\nsince $AE=CF$, thus $AE=6$,\\\\\ntherefore $EF=AF-AE=10-6=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387374_118": { -"question": "As shown in the figure, in rectangle $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, with $DE \\parallel AC$ and $CE \\parallel BD$. Quadrilateral $ODEC$ is a rhombus; connect $OE$. If $BC = 2\\sqrt{2}$, find the length of $OE$.", -"image_file_name": "7054392", -"image": [ -"math/52387374_920.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, connect OE, intersecting CD at point F,\\\\\n$\\because$ from (1) we know that quadrilateral OCED is a rhombus,\\\\\n$\\therefore$ OE $\\perp$ CD,\\\\\n$\\therefore \\angle ADC=\\angle OFC=90^\\circ$,\\\\\n$\\therefore$ AD $\\parallel$ OE,\\\\\n$\\because$ DE $\\parallel$ AC,\\\\\n$\\therefore$ quadrilateral AOED is a parallelogram,\\\\\n$\\therefore$ OE=AD=BC=$\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386487_121": { -"question": "As shown in the figure, in rhombus $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. $E$ is the midpoint of $AD$, and points $F$, $G$ are on $CD$, with $EF\\perp CD$ and $OG\\parallel EF$. Quadrilateral $OEFG$ is a rectangle; if $AD=10$ and $EF=3$, find the lengths of $OE$ and $CG$.", -"image_file_name": "7054392", -"image": [ -"math/52386487_937.png" -], -"solution": "Solution: Since quadrilateral ABCD is a rhombus, \\\\\n$\\therefore$ $\\angle AOD=90^\\circ$, AD=CD=10,\\\\\nalso $\\because$ point E is the midpoint of AD,\\\\\n$\\therefore$ $OE=DE=\\frac{1}{2}AD=5$,\\\\\n$\\therefore$ $GF=OE=5$,\\\\\nIn $\\triangle DEF$, $\\angle EFD=90^\\circ$,\\\\\n$\\therefore$ $DF=\\sqrt{DE^2-EF^2}=\\sqrt{5^2-3^2}=4$,\\\\\n$\\therefore$ $CG=CD-GF-DF=10-5-4=\\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386182_124": { -"question": "Given: As shown in the figure, in rectangle $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. Lines parallel to $AC$ and $BD$ are drawn passing through points $B$ and $C$, respectively, and intersect at point $F$. Quadrilateral $BFCO$ is a rhombus. If $AB=3$ and $BC=4$, what is the perimeter of quadrilateral $BFCO$?", -"image_file_name": "7054392", -"image": [ -"math/52386182_949.png" -], -"solution": "\\textbf{Solution:} Because quadrilateral ABCD is a rectangle, it follows that $\\angle ABC=90^\\circ$. By the Pythagorean theorem, we have $AC=\\sqrt{AB^2+BC^2}=\\sqrt{3^2+4^2}=5$. Therefore, $OC=\\frac{1}{2}AC=\\frac{5}{2}$. From statement (1), we know quadrilateral BFCO is a rhombus. Therefore, $BF=FC=OC=OB$, hence the perimeter of quadrilateral BFCO is $4OC=4\\times \\frac{5}{2}=\\boxed{10}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52386348_127": { -"question": "As shown in the figure, it is known that after the line segment AD is moved downward by $m$ units and then moved to the right by $n$ units to the line segment BC, the corresponding points of points A and D are points B and C, respectively. Connect AB, CD, AC, and BD, with AC and BD intersecting at point O. It is given that $OB = OD$. Draw $DM \\perp BC$ at M, let N be the midpoint of CD, and connect MN. If $\\angle ADB = 45^\\circ$ and $OD = 3\\sqrt{2}$, with MN equal to 4, what is the value of $\\frac{BM}{MC}$?", -"image_file_name": "7054392", -"image": [ -"math/52386348_950.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\nit follows that $\\angle ADB=\\angle CBD$. $OB=OD=3\\sqrt{2}$, $BD=6\\sqrt{2}$.\\\\\nSince $\\angle ADB=45^\\circ$, and $DM\\perp BC$, \\\\\nit follows that $\\triangle BDM$ is an isosceles right triangle, hence $BM=MD=6$.\\\\\nSince $\\triangle CMD$ is a right triangle, with $N$ being the midpoint of $CD$, and $MN=4$, it follows that $CD=2MN=8$.\\\\\nIn $\\triangle DCM$, by the Pythagorean theorem, we find $MC=2\\sqrt{7}$, hence $\\frac{BM}{MC}=\\frac{6}{2\\sqrt{7}}=\\boxed{\\frac{3\\sqrt{7}}{7}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52386348_128": { -"question": "Given that line segment $AD$ is translated down by $m$ units and then translated to the right by $n$ units to line segment $BC$, with corresponding points of $A$, $D$ being points $B$ and $C$ respectively, and connecting $AB$, $CD$, $AC$, $BD$, where $AC$ intersects $BD$ at point $O$. Under the given conditions, as $H$ moves on $BC$, when $\\triangle CDH$ is an isosceles triangle, write down the length of $HC$.", -"image_file_name": "7054392", -"image": [ -"math/52386348_950.png" -], -"solution": "\\textbf{Solution:}\\\\\n(1) When $HC=DC=8$, as shown in the figure, an isosceles triangle is formed.\\\\\n(2) When $HD=HC$, as shown in the figure, an isosceles triangle is formed.\\\\\nAt this time, let $HM$ be $x$,\\\\\n$\\because H{M}^{2}+M{D}^{2}=H{D}^{2}=M{C}^{2}$,\\\\\n$\\therefore {x}^{2}+{6}^{2}={\\left(x+2\\sqrt{7}\\right)}^{2}$,\\\\\nSolving this, we get: $x=\\frac{2\\sqrt{7}}{7}$,\\\\\n$\\therefore HC=x+MC= \\frac{2\\sqrt{7}}{7}+2\\sqrt{7}=\\frac{16\\sqrt{7}}{7}$.\\\\\n(3) When $DH=DC$, as shown in the figure, an isosceles triangle is formed:\\\\\nIn this case $HC=2MC= 4\\sqrt{7}$.\\\\\nTherefore, the length of $HC$ can be: $8$ or \\boxed{\\frac{16\\sqrt{7}}{7}} or $4\\sqrt{7}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52387465_131": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$. A line parallel to $AC$ is drawn through point $B$, intersecting the bisector of $\\angle BAC$ at point $D$. Point $E$ is a point on $AC$, and $BE\\perp AD$ at point $F$. Connect $DE$. The quadrilateral $ABDE$ is a rhombus. Given that $AB=2$ and $\\angle ADC=90^\\circ$, what is the length of $BC$?", -"image_file_name": "7054392", -"image": [ -"math/52387465_967.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that quadrilateral $ABDE$ is a rhombus, it follows that $DE=AE=AB=2$, hence $\\angle EAD=\\angle EDA$. Given that $\\angle ADC=90^\\circ$, it follows that $\\angle EDC+\\angle EDA=90^\\circ$ and $\\angle EAD+\\angle ECD=90^\\circ$. Therefore, $\\angle EDC=\\angle ECD$, which implies $DE=EC=2$. Consequently, $AC=AE+CE=4$. Considering $\\angle ABC=90^\\circ$, it can be derived that $BC=\\sqrt{AC^{2}-AB^{2}}=\\sqrt{4^{2}-2^{2}}=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52387502_134": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=4$ and $AD=10$. When the vertex $P$ of the right angle of a right-angled ruler slides along side $AD$ (point $P$ does not coincide with $A$ or $D$), one of the right-angle sides passes through point $C$ and the other right-angle side intersects $AB$ at point $E$. $Rt\\triangle AEP \\sim Rt\\triangle DPC$; when $\\angle CPD=30^\\circ$, what is the length of $AE$?", -"image_file_name": "7054392", -"image": [ -"math/52387502_975.png" -], -"solution": "\\textbf{Solution:} In right triangle $\\triangle PCD$, $\\angle CPD=30^\\circ$ and $CD=4$, \\\\\ntherefore $PC=8$, \\\\\ntherefore $PD=\\sqrt{PC^{2}-CD^{2}}=4\\sqrt{3}$, \\\\\ntherefore $AP=AD-PD=10-4\\sqrt{3}$, \\\\\nAs right triangles $\\triangle AEP \\sim \\triangle DPC$ indicate: $\\frac{PD}{AE}=\\frac{CD}{AP}$, thus $\\frac{4\\sqrt{3}}{AE}=\\frac{4}{10-4\\sqrt{3}}$, \\\\\ntherefore $AE=\\boxed{10\\sqrt{3}-12}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52387502_135": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=4$ and $AD=10$. When the right-angle vertex $P$ of the square slides on $AD$ (point $P$ does not coincide with $A$ or $D$), one right-angle side passes through point $C$, and the other intersects $AB$ at point $E$. Is there such a point $P$ that makes the perimeter of $\\triangle DPC$ equal to twice the perimeter of $\\triangle AEP$? Find the length of $DP$.", -"image_file_name": "7054392", -"image": [ -"math/52387502_975.png" -], -"solution": "\\textbf{Solution:} Let's assume that there is a point $P$ that satisfies the given conditions, let $DP=x$, then $AP=10-x$.\n\nSince $\\triangle AEP \\sim \\triangle DPC$, according to the perimeter of $\\triangle CDP$ being twice the perimeter of $\\triangle PAE$, we get the ratio of similarity between the two triangles is 2,\n\nthus $\\frac{CD}{AP}=\\frac{4}{10-x}=2$,\n\nsolving this equation gives $x=\\boxed{8}$,\n\ntherefore, there exists a point $P$ that satisfies the conditions, with the length of $DP$ being \\boxed{8}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52387533_138": { -"question": "As shown in the figure, in parallelogram $ABCD$, $E$ and $F$ are points on sides $AD$ and $BC$ respectively, and $\\angle ABE = \\angle CDF$. Quadrilateral $BEDF$ is a parallelogram; connect $CE$. If $CE$ bisects $\\angle DCB$, $CF = 3$, and $DE = 5$, what is the perimeter of parallelogram $ABCD$?", -"image_file_name": "7054392", -"image": [ -"math/52387533_981.png" -], -"solution": "\\textbf{Solution:} Given that CE bisects $\\angle BCD$, it follows that $\\angle 1 = \\angle 2$. Furthermore, since $AD \\parallel BC$, it implies $\\angle 1 = \\angle 3$, which leads to $\\angle 2 = \\angle 3$, and consequently, $ED = DC = 5$. In quadrilateral $EBFD$, it can be deduced that $BF = ED = 5$. Hence, the perimeter of the quadrilateral $ABCD$ equals $2 \\times (5 + 3) + 2 \\times 5 = \\boxed{26}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52380930_141": { -"question": "As shown in the figure, it is known that in rectangle $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. Lines parallel to $AC$ and $BD$ are drawn through points $D$ and $C$ respectively, intersecting at point $E$. Quadrilateral $OCED$ is a rhombus. If $AB=3$ and $BC=4$, what is the area of the rhombus $OCED$?", -"image_file_name": "7054392", -"image": [ -"math/52380930_990.png" -], -"solution": "\\textbf{Solution:} Given $AB=3$, $BC=4$,\\\\\nthus, the area of rectangle $ABCD$ equals $3\\times 4=12$,\\\\\nsince $S_{\\triangle ODC}=\\frac{1}{4}S_{\\text{rectangle}ABCD}=3$,\\\\\ntherefore, the area of the quadrilateral $OCED$ equals $2S_{\\triangle ODC}=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51438029_47": { -"question": "Assemble a set of triangles as shown in the figure, where points B, C, and D lie on the same straight line, $\\angle ACB=45^\\circ$, $\\angle DCE=60^\\circ$. If CM and CN bisect $\\angle ACB$ and $\\angle DCE$ respectively, what is the measure of $\\angle MCN$?", -"image_file_name": "7038985", -"image": [ -"math/51438029_460.png" -], -"solution": "\\textbf{Solution:} Hence, $\\angle MCN = \\boxed{127.5^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438029_48": { -"question": "Join a set of triangles together as shown in the figure, where points B, C, and D lie on the same straight line, $\\angle ACB=45^\\circ$, and $\\angle DCE=60^\\circ$. If CM bisects $\\angle BCE$ and CN bisects $\\angle DCA$, as shown in Figure 2, what is the measure of $\\angle MCN$?", -"image_file_name": "7038985", -"image": [ -"math/51438029_460.png" -], -"solution": "\\textbf{Solution:} We have $\\angle MCN = \\boxed{52.5^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53224379_69": { -"question": "As shown in the figure, point $A$, $O$, and $B$ are on the same line, and $OC$ bisects $\\angle AOB$. If $\\angle COD = 28^\\circ$, what is the measure of $\\angle BOD$?", -"image_file_name": "7038985", -"image": [ -"math/53224379_660.png" -], -"solution": "\\textbf{Solution:} Since points A, O, and B are on the same line, and OC bisects $\\angle AOB$,\\\\\ntherefore $\\angle AOC = \\angle BOC = 90^\\circ$,\\\\\nthus $\\angle BOD = \\angle BOC - \\angle COD = 90^\\circ - 28^\\circ = \\boxed{62^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53224379_70": { -"question": "As shown in the figure, points A, O, and B are on the same line, and OC bisects $\\angle AOB$. If $\\angle COD=28^\\circ$ and OE bisects $\\angle BOD$, what is the measure of $\\angle COE$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/53224379_660.png" -], -"solution": "\\textbf{Solution:} Given that OE bisects $\\angle$BOD,\\\\\nit follows that $\\angle$DOE = $\\frac{1}{2} \\angle$BOD = $31^\\circ$,\\\\\nhence, $\\angle$COE = $\\angle$DOE + $\\angle$COD = $31^\\circ + 28^\\circ = \\boxed{59^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53403960_72": { -"question": "As shown in the figure, $OB$ is a ray inside $\\angle AOC$, $OM$ is a ray inside $\\angle AOB$, and $ON$ is a ray inside $\\angle BOC$. As shown in Figure 1, $OM$ and $ON$ are the angle bisectors of $\\angle AOB$ and $\\angle BOC$, respectively. Given that $\\angle AOB=30^\\circ$ and $\\angle MON=70^\\circ$, what is the degree measure of $\\angle BOC$?", -"image_file_name": "7038985", -"image": [ -"math/53403960_676.png" -], -"solution": "\\textbf{Solution:} Given that $OM$ is the bisector of $\\angle AOB$ and $\\angle AOB=30^\\circ$,\\\\\nit follows that $\\angle BOM=\\frac{1}{2}\\angle AOB=15^\\circ$,\\\\\nGiven that $\\angle MON=70^\\circ$,\\\\\nit follows that $\\angle BON=\\angle MON-\\angle BOM=55^\\circ$,\\\\\nSince $ON$ is the bisector of $\\angle BOC$,\\\\\nit follows that $\\angle BOC=2\\angle BON=\\boxed{110^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53403960_73": { -"question": "As shown in the figure, $OB$ is a ray inside $\\angle AOC$, $OM$ is a ray inside $\\angle AOB$, and $ON$ is a ray inside $\\angle BOC$. In Figure 2, if $\\angle AOC=140^\\circ$, $\\angle AOM=\\angle NOC=\\frac{1}{4}\\angle AOB$, and $\\angle BOM:\\angle BON=3:2$, what is the degree measure of $\\angle MON$?", -"image_file_name": "7038985", -"image": [ -"math/53403960_676.png" -], -"solution": "\\textbf{Solution:} Let $\\angle AOM=\\angle NOC=x$, thus $\\angle AOB=4x$,\\\\\n$\\therefore \\angle BOM=\\angle AOB-\\angle AOM=3x$,\\\\\n$\\because \\angle BOM\\colon \\angle BON=3\\colon 2$,\\\\\n$\\therefore \\angle BON=2x$,\\\\\n$\\therefore \\angle AOC=\\angle AOB+\\angle BON+\\angle NOC=7x=140^\\circ$,\\\\\n$\\therefore x=20^\\circ$,\\\\\n$\\therefore \\angle MON=\\angle BOM+\\angle BON=5x=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53404231_75": { -"question": "As shown in the figure, the direction of ray $OA$ is $15^\\circ$ east of north, and the direction of ray $OB$ is $40^\\circ$ west of north. Ray $OA$ is the angle bisector of $\\angle BOC$. $OF$ is the extension line in the opposite direction of $OB$. Find: the direction of ray $OC$.", -"image_file_name": "7038985", -"image": [ -"math/53404231_688.png" -], -"solution": "\\textbf{Solution:} From the diagram, it is known that: $\\angle AOB=15^\\circ+40^\\circ=55^\\circ$,\\\\\nsince $OA$ is the angle bisector of $\\angle BOC$,\\\\\nthus $\\angle AOC=55^\\circ$,\\\\\ntherefore $\\angle NOC=\\angle NOA+\\angle AOC$\\\\\n$=15^\\circ+55^\\circ=70^\\circ$,\\\\\nhence, the ray $OC$ is in the direction of \\boxed{70^\\circ} East of North.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404231_76": { -"question": "As shown in the figure, the direction of ray $OA$ is $15^\\circ$ east of north, and the direction of ray $OB$ is $40^\\circ$ west of north. $OA$ is the angle bisector of $\\angle BOC$. $OF$ is the straight extension in the opposite direction of $OB$. What is the degree measure of $\\angle COF$?", -"image_file_name": "7038985", -"image": [ -"math/53404231_688.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BOC = \\angle AOB + \\angle AOC$\\\\\n$=55^\\circ \\times 2 = 110^\\circ$,\\\\\nthen $\\angle COF = 180^\\circ - \\angle BOC$\\\\\n$=180^\\circ - 110^\\circ$\\\\\n$=70^\\circ$.\\\\\nTherefore, the measure of $\\angle COF$ is $\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53365775_78": { -"question": "As shown in the figure, $\\angle AOB=90^\\circ$, $OM$ bisects $\\angle AOC$, and $ON$ bisects $\\angle BOC$. If $\\angle BOC=30^\\circ$, what is the measure of $\\angle MON$?", -"image_file_name": "7038985", -"image": [ -"math/53365775_690.png" -], -"solution": "\\textbf{Solution}: Given that, \\\\\n$\\because \\angle AOB=90^\\circ, \\angle BOC=30^\\circ$,\\\\\n$\\therefore \\angle AOC=\\angle AOB+\\angle BOC=120^\\circ$.\\\\\n$\\because OM$ bisects $\\angle AOC, ON$ bisects $\\angle BOC$,\\\\\n$\\therefore \\angle MOC=\\frac{1}{2}\\angle AOC=120^\\circ \\times \\frac{1}{2}=60^\\circ, \\angle NOC=\\frac{1}{2}\\angle BOC=\\frac{1}{2}\\times 30^\\circ=15^\\circ$.\\\\\n$\\therefore \\angle MON=\\angle MOC-\\angle NOC=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53365775_79": { -"question": "As shown in the figure, $\\angle AOB=90^\\circ$, $OM$ bisects $\\angle AOC$, and $ON$ bisects $\\angle BOC$. Let $\\angle BOC=(2x)^\\circ$, find the measure of $\\angle MON$?", -"image_file_name": "7038985", -"image": [ -"math/53365775_690.png" -], -"solution": "\\textbf{Solution:} Given that, $\\angle AOB=90^\\circ$, \\\\\n$\\therefore \\angle AOC=\\angle AOB+\\angle BOC=90^\\circ+(2x)^\\circ$, \\\\\n$\\because OM$ bisects $\\angle AOC$ and $ON$ bisects $\\angle BOC$,\\\\\n$\\therefore \\angle MOC=\\frac{1}{2}\\angle AOC=45^\\circ+x^\\circ$, $\\angle NOC=\\frac{1}{2}\\angle BOC=\\frac{1}{2}\\times (2x)^\\circ=x^\\circ$, \\\\\n$\\therefore \\angle MON=\\angle MOC-\\angle NOC=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53364075_82": { -"question": "As shown in the diagram, $OC \\perp AB$ at point O, $OD$ bisects $\\angle BOC$, $OE$ bisects $\\angle AOD$. Find the degree measure of $\\angle BOD$.", -"image_file_name": "7038985", -"image": [ -"math/53364075_705.png" -], -"solution": "\\textbf{Solution:} Since $OC\\perp AB$,\\\\\nit follows that $\\angle BOC=\\angle AOC=90^\\circ$,\\\\\nSince $OD$ bisects $\\angle BOC$,\\\\\nit follows that $\\angle BOD=\\angle COD=\\frac{1}{2}\\angle BOC=45^\\circ$,\\\\\nTherefore, the measure of $\\angle BOD$ is $\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53364075_83": { -"question": "As shown in the figure, $OC \\perp AB$ at point O, $OD$ bisects $\\angle BOC$, $OE$ bisects $\\angle AOD$. Find the degree measure of $\\angle COE$.", -"image_file_name": "7038985", -"image": [ -"math/53364075_705.png" -], -"solution": "\\textbf{Solution:} From (1), we have\n\\[\n\\angle AOD = \\angle AOC + \\angle COD = 90^\\circ + 45^\\circ = 135^\\circ,\n\\]\n\\[\n\\because OE \\text{ bisects } \\angle AOD,\n\\]\n\\[\n\\therefore \\angle AOE = \\frac{1}{2}\\angle AOD = 67.5^\\circ\n\\]\n\\[\n\\therefore \\angle COE = 90^\\circ - 67.5^\\circ = \\boxed{22.5^\\circ}\n\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53223346_85": { -"question": "As shown in the figure, the lines $EF$ and $CD$ intersect at the point $O$, with $\\angle AOB = 90^\\circ$, and $OC$ bisects $\\angle AOF$. If $\\angle AOE = 40^\\circ$, find the degree measure of $\\angle BOD$.", -"image_file_name": "7038985", -"image": [ -"math/53223346_716.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle AOE+\\angle AOE=180^\\circ$, $\\angle AOE=40^\\circ$,\\\\\n$\\therefore \\angle AOF=180^\\circ-\\angle AOE=140^\\circ$\\\\\nSince $OC$ bisects $\\angle AOF$,\\\\\n$\\therefore \\angle AOC=\\frac{1}{2}\\angle AOF=\\frac{1}{2}\\times 140^\\circ=70^\\circ$\\\\\nGiven $\\angle AOB=90^\\circ$\\\\\n$\\therefore \\angle BOD=180^\\circ-\\angle AOC-\\angle AOB$\\\\\n$=180^\\circ-70^\\circ-90^\\circ$\\\\\n$=\\boxed{20^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53223346_86": { -"question": "As shown in the figure, line $EF$ intersects line $CD$ at point $O$, $\\angle AOB=90^\\circ$, $OC$ bisects $\\angle AOF$. If $\\angle AOE=30^\\circ$, please write directly the measure of $\\angle BOD$ in degrees.", -"image_file_name": "7038985", -"image": [ -"math/53223346_716.png" -], -"solution": "\\textbf{Solution:} We have $\\angle BOD = \\boxed{15^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53223463_89": { -"question": "As shown in the figure, line AB and CD intersect at point O, with OA bisecting $\\angle EOC$. If $\\angle EOC = 70^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7038985", -"image": [ -"math/53223463_720.png" -], -"solution": "\\textbf{Solution:} \\\\\n$\\because$ OA bisects $\\angle EOC$, \\\\\n$\\therefore \\angle AOC= \\frac{1}{2}\\angle EOC$, \\\\\n$\\because \\angle EOC=70^\\circ$, \\\\\n$\\therefore \\angle AOC= \\frac{1}{2}\\times 70^\\circ=35^\\circ$, \\\\\n$\\because$ Straight lines AB and CD intersect at point O, \\\\\n$\\therefore \\angle BOD=\\angle AOC=\\boxed{35^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53223463_90": { -"question": "As shown in the figure, lines AB and CD intersect at point O, with OA bisecting $\\angle EOC$. If $\\angle EOC = \\frac{2}{3}\\angle EOD$, find the degree measure of $\\angle BOD$.", -"image_file_name": "7038985", -"image": [ -"math/53223463_720.png" -], -"solution": "\\textbf{Solution}: Since $\\angle EOC = \\frac{2}{3}\\angle EOD$ and $\\angle EOC + \\angle EOD = 180^\\circ$,\\\\\nthus $\\frac{2}{3}\\angle EOD + \\angle EOD = 180^\\circ$,\\\\\nwhich implies $\\frac{5}{3}\\angle EOD = 180^\\circ$,\\\\\ntherefore $\\angle EOD = 108^\\circ$,\\\\\nthus $\\angle EOC = \\frac{2}{3} \\times 108^\\circ = 72^\\circ$,\\\\\nsince OA bisects $\\angle EOC$,\\\\\nit follows that $\\angle AOC = \\frac{1}{2}\\angle EOC = \\frac{1}{2} \\times 72^\\circ = 36^\\circ$,\\\\\nsince lines AB and CD intersect at point O,\\\\\nthus $\\angle BOD = \\angle AOC = \\boxed{36^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206772_92": { -"question": "As shown in the figure, it is known that $O$ is a point on line $AB$. Three rays $OC$, $OD$, and $OE$ are drawn upward from point $O$ to line $AB$, and $OC$ bisects $\\angle AOD$, with $\\angle 2=3\\angle 1$. Suppose $\\angle 1=18^\\circ$, what is the degree measure of $\\angle COE$?", -"image_file_name": "7038985", -"image": [ -"math/53206772_7310.png" -], -"solution": "\\textbf{Solution:} From the given conditions, we have \\\\\n$\\because \\angle 1=18^\\circ$ and $\\angle 2=3\\angle 1$, \\\\\n$\\therefore \\angle 2=54^\\circ$, \\\\\n$\\therefore \\angle AOD=180^\\circ-\\angle 1-\\angle 2=108^\\circ$. \\\\\n$\\because OC$ bisects $\\angle AOD$, \\\\\n$\\therefore \\angle 3=54^\\circ$, \\\\\n$\\therefore \\angle COE=\\angle 1+\\angle 3=\\boxed{72^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206772_93": { -"question": "As shown in the diagram, it is known that $O$ is a point on line $AB$, and three rays $OC$, $OD$, and $OE$ are drawn upward from point $O$ to line $AB$, with $OC$ bisecting $\\angle AOD$ and $\\angle 2 = 3\\angle 1$. If $\\angle COE = 70^\\circ$, what is the degree measure of $\\angle 2$?", -"image_file_name": "7038985", -"image": [ -"math/53206772_7310.png" -], -"solution": "\\textbf{Solution:} Let $ \\angle 1=x^\\circ$, $OC$ bisects $ \\angle AOD$, $\\angle COE=\\angle 1+\\angle 3=70^\\circ$, \\\\\n$\\therefore \\angle 3=\\angle 4=70^\\circ-x^\\circ$. \\\\\nMoreover, since $\\angle 1+\\angle 2+\\angle 3+\\angle 4=180^\\circ$, \\\\\n$\\therefore x^\\circ+\\angle 2+2(70^\\circ-x^\\circ)=180^\\circ$, \\\\\n$\\therefore \\angle 2=40^\\circ+x^\\circ$. \\\\\nGiven $\\angle 2=3\\angle 1$, that is $40^\\circ+x^\\circ=3x^\\circ$, \\\\\nsolving this gives $x=20$, \\\\\n$\\therefore \\angle 2=3\\angle 1=3\\times 20^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206669_96": { -"question": "As shown in the figure, the lines AB and CD intersect at point O, with OM $\\perp$ AB, and ON $\\perp$ CD. If $\\angle 1 = \\frac{1}{3}\\angle BOC$, find the degree measure of $\\angle BOD$.", -"image_file_name": "7038985", -"image": [ -"math/53206669_740.png" -], -"solution": "\\textbf{Solution:} Given: $\\because \\angle 1 = \\frac{1}{3} \\angle BOC$,\\\\\n$\\therefore \\angle BOM = 2\\angle 1 = 90^\\circ$,\\\\\nWe find: $\\angle 1 = 45^\\circ$,\\\\\n$\\therefore \\angle BOD = 90^\\circ - 45^\\circ = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206178_98": { -"question": "As shown in Figure 1, segment $AC=6\\,\\text{cm}$, segment $BC=15\\,\\text{cm}$, point $M$ is the midpoint of $AC$, and a point $N$ is taken on $CB$ such that $CN\\colon NB=1\\colon 2$, find the length of $MN$.", -"image_file_name": "7038985", -"image": [ -"math/53206179_7500.png", -"math/53206179_7501.png" -], -"solution": "\\textbf{Solution:} Since $M$ is the midpoint of $AC$, and $AC=6$cm,\\\\\nit follows that $MC=\\frac{1}{2}AC=6\\times\\frac{1}{2}=3$cm.\\\\\nAlso, since $CN:NB=1:2$, and $BC=15$cm,\\\\\nit follows that $CN=15\\times\\frac{1}{3}=5$cm,\\\\\ntherefore $MN=MC+CN=3+5=\\boxed{8}$cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206178_99": { -"question": "As shown in the diagram, $\\angle BOE = 2\\angle AOE$, $OF$ bisects $\\angle AOB$, and $\\angle EOF = 20^\\circ$. Find the degree measure of $\\angle AOB$.", -"image_file_name": "7038985", -"image": [], -"solution": "\\textbf{Solution:} Given that $\\angle BOE = 2\\angle AOE$ and $\\angle AOB = \\angle BOE + \\angle AOE$,\\\\\nthus, $\\angle BOE = \\frac{2}{3}\\angle AOB$.\\\\\nSince OF bisects $\\angle AOB$,\\\\\nthus $\\angle BOF = \\frac{1}{2}\\angle AOB$,\\\\\ntherefore $\\angle EOF = \\angle BOE - \\angle BOF = \\frac{1}{6}\\angle AOF$.\\\\\nGiven that $\\angle EOF = 20^\\circ$,\\\\\nthus, $\\angle AOB = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206048_101": { -"question": "As shown in the figure, points B and C divide line segment AD into three parts in the ratio 2:3:4, and $CD = 20$ cm. What is the length of line segment AD in centimeters?", -"image_file_name": "7038985", -"image": [ -"math/53206048_761.png" -], -"solution": "\\textbf{Solution:} \nLet $AB=2x$, $BC=3x$, and $CD=4x$\\\\\nSince $CD=20$\\\\\n$\\therefore 4x=20$\\\\\n$\\therefore x=5$\\\\\nThen $AD=AB+BC+CD=2x+3x+4x=9x=9\\times 5=\\boxed{45}$ cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206048_102": { -"question": "As shown in the figure, points B and C divide the line segment AD into three parts in the ratio 2:3:4, and $CD=20$. If point P is the midpoint of AD, and point Q is the midpoint of CD, what is the length of line segment PQ?", -"image_file_name": "7038985", -"image": [ -"math/53206048_761.png" -], -"solution": "\\textbf{Solution:} Since point P is the midpoint of AD,\\\\\nwe have $PD=\\frac{1}{2}AD=\\frac{45}{2}$.\\\\\nSince point Q is the midpoint of CD,\\\\\nwe have $QD=\\frac{1}{2}CD=10$.\\\\\nTherefore, $PQ=PD−QD=\\frac{45}{2}−10=\\boxed{\\frac{25}{2}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206081_104": { -"question": "As shown in the figure, line AB and line CD intersect at point O, and OB bisects $\\angle EOD$. If $\\angle EOC = 110^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7038985", -"image": [ -"math/53206081_770.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle DOC = 180^\\circ$ and $\\angle EOC = 110^\\circ$, \\\\\n$\\therefore \\angle DOE = 180^\\circ - \\angle EOC = 180^\\circ - 110^\\circ = 70^\\circ$, \\\\\nSince $OB$ bisects $\\angle EOD$, \\\\\n$\\therefore \\angle BOD = \\frac{1}{2} \\angle DOE = \\frac{1}{2} \\times 70^\\circ = \\boxed{35^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206081_105": { -"question": "As shown in the figure, line AB and line CD intersect at point O, and OB bisects $\\angle EOD$. If $\\angle DOE : \\angle EOC = 2 : 3$, find the degree measure of $\\angle AOC$.", -"image_file_name": "7038985", -"image": [ -"math/53206081_770.png" -], -"solution": "Solution:\\\\\nSince $\\angle DOE \\colon \\angle EOC = 2 \\colon 3$\\\\\nTherefore, $\\angle DOE = 180^\\circ \\times \\frac{2}{5} = 72^\\circ$\\\\\nSince $OB$ bisects $\\angle EOD$\\\\\nTherefore, $\\angle DOB = \\frac{1}{2} \\times 72^\\circ = 36^\\circ$\\\\\nTherefore, $\\angle AOC = \\angle DOB = \\boxed{36^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53205833_107": { -"question": "As shown in the figure, it is known that $AB \\parallel CD$, $\\angle BAE = 30^\\circ$, $\\angle DCE = 60^\\circ$, and $EF$, $EG$ trisect $\\angle AEC$ (that is, $\\angle AEF = \\angle FEG = \\angle GEC$). What is the measure of $\\angle AEF$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/53205833_786.png" -], -"solution": "\\textbf{Solution:} Construct $EF' \\parallel AB$ through point $E$, then $\\angle BAE=\\angle F'EA=30^\\circ$,\\\\\nbecause $AB\\parallel CD$,\\\\\ntherefore $EF' \\parallel CD$,\\\\\nthus $\\angle DCE=\\angle F'EC=60^\\circ$\\\\\nAlso, because $\\angle AEC=\\angle F'EA+\\angle F'EC$,\\\\\nthus $\\angle AEC=90^\\circ$,\\\\\nbecause $EF, EG$ trisect $\\angle AEC$ (i.e., $\\angle AEF=\\angle FEG=\\angle GEC$)\\\\\ntherefore $\\angle AEF=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53363928_110": { -"question": "As shown in the figure, $OM$ is the bisector of $\\angle AOC$, and $ON$ is the bisector of $\\angle BOC$. As shown in Figure 1, when $\\angle AOB$ is a right angle and $\\angle BOC=60^\\circ$, what is the degree measure of $\\angle MON$?", -"image_file_name": "7038985", -"image": [ -"math/53363928_794.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOB=90^\\circ$ and $\\angle BOC=60^\\circ$, \\\\\nthus $\\angle AOC=\\angle AOB+\\angle BOC=90^\\circ+60^\\circ=150^\\circ$. \\\\\nSince $OM$ bisects $\\angle AOC$ and $ON$ bisects $\\angle BOC$, \\\\\nthus $\\angle MOC=\\frac{1}{2}\\angle AOC=75^\\circ$ and $\\angle NOC=\\frac{1}{2}\\angle BOC=30^\\circ$. \\\\\nTherefore, $\\angle MON=\\angle MOC-\\angle NOC=75^\\circ-30^\\circ=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53211137_114": { -"question": "As shown in the diagram, it is known that $\\angle COD$ is inside $\\angle AOB$, and $\\angle AOB=160^\\circ$, $\\angle COD=\\frac{1}{4}\\angle AOB$, ray $OE$ bisects $\\angle AOD$, $\\angle COE=18^\\circ$. Find the measure of $\\angle AOD$ in degrees.", -"image_file_name": "7038985", -"image": [ -"math/53211137_807.png" -], -"solution": "\\textbf{Solution:} Given: $\\because$ $\\angle AOB=160^\\circ$ and $\\angle COE=18^\\circ$,\\\\\n$\\therefore$ $\\angle COD=\\frac{1}{4}\\angle AOB=\\frac{1}{4}\\times 160^\\circ=40^\\circ$,\\\\\n$\\therefore$ $\\angle EOD=\\angle EOC+\\angle COD=18^\\circ+40^\\circ=58^\\circ$,\\\\\n$\\because$ ray $OE$ bisects $\\angle AOD$,\\\\\n$\\therefore$ $\\angle AOE=\\angle EOD=\\frac{1}{2}\\angle AOD$,\\\\\n$\\therefore$ $\\angle AOD=2\\angle EOD=2\\times 58^\\circ=\\boxed{116^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53211137_115": { -"question": "As shown in the figure, given: $\\angle COD$ is inside $\\angle AOB$, and $\\angle AOB=160^\\circ$, $\\angle COD=\\frac{1}{4}\\angle AOB$, ray $OE$ bisects $\\angle AOD$, $\\angle COE=18^\\circ$. Find: What is the degree measure of $\\angle BOC$?", -"image_file_name": "7038985", -"image": [ -"math/53211137_807.png" -], -"solution": "\\textbf{Solution:} From equation (1), we have $\\angle AOE=\\angle EOD=58^\\circ$,\\\\\nsince $\\angle COE=18^\\circ$ and $\\angle AOB=160^\\circ$,\\\\\ntherefore $\\angle AOC=\\angle AOE+\\angle COE=58^\\circ+18^\\circ=76^\\circ$,\\\\\nthus $\\angle BOC=\\angle AOB-\\angle AOC=160^\\circ-76^\\circ=\\boxed{84^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53211413_117": { -"question": "As shown in the figure, points $A$, $O$, and $B$ are on the same line, $OC$ bisects $\\angle AOB$. If $\\angle COD = 28^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7038985", -"image": [ -"math/53211413_813.png" -], -"solution": "\\textbf{Solution:} Since points A, O, and B lie on the same line, and $OC$ bisects $\\angle AOB$,\\\\\n$\\therefore$ $\\angle AOC=\\angle BOC=90^\\circ$,\\\\\n$\\therefore$ $\\angle BOD=\\angle BOC-\\angle COD=90^\\circ-28^\\circ=\\boxed{62^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53211413_118": { -"question": "As shown in the figure, points $A$, $O$, $B$ lie on the same line, and $OC$ bisects $\\angle AOB$. If $\\angle COD = 28^\\circ$, and $OE$ bisects $\\angle BOD$, find the degree measure of $\\angle COE$.", -"image_file_name": "7038985", -"image": [ -"math/53211413_813.png" -], -"solution": "\\textbf{Solution:} Since $OE$ bisects $\\angle BOD$,\\\\\nwe have $\\angle DOE = \\frac{1}{2}\\angle BOD = 31^\\circ$,\\\\\nhence, $\\angle COE = \\angle DOE + \\angle COD = 31^\\circ + 28^\\circ = \\boxed{59^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53195484_120": { -"question": "Given points $A$, $B$, $C$, and $D$ are on the same line, where point $C$ is the midpoint of segment $AB$, and point $D$ is on segment $AB$. If $AB=6$ and $BD=\\frac{1}{3}BC$, what is the length of segment $CD$?", -"image_file_name": "7038985", -"image": [ -"math/53195484_820.png" -], -"solution": "\\textbf{Solution:} Given that point C is the midpoint of segment AB, and $AB=6$,\\\\\n$\\therefore$ $BC=\\frac{1}{2}AB=3$,\\\\\n$\\therefore$ $BD=\\frac{1}{3}BC$,\\\\\n$\\therefore$ $BD=\\frac{1}{3}\\times 3=1$,\\\\\n$\\therefore$ $CD=BC-BD=3-1=\\boxed{2}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53195484_121": { -"question": "As shown in the figure, it is known that points $A$, $B$, $C$, $D$ are on the same line, with point $C$ being the midpoint of segment $AB$, and point $D$ on segment $AB$. If point $E$ is a point on segment $AB$, and $AE=2BE$, when $AD:BD=2:3$, what is the value of $CD:CE$?", -"image_file_name": "7038985", -"image": [ -"math/53195484_820.png" -], -"solution": "\\textbf{Solution:} Let $AD=2x$ and $BD=3x$, hence $AB=5x$, \\\\\nsince point C is the midpoint of segment AB, \\\\\ntherefore $AC=\\frac{1}{2}AB=\\frac{5}{2}x$, \\\\\ntherefore $CD=AC-AD=\\frac{1}{2}x$, \\\\\nsince $AE=2BE$, \\\\\ntherefore $AE=\\frac{2}{3}AB=\\frac{10}{3}x$, \\\\\ntherefore $CE=AE-AC=\\frac{10}{3}x-\\frac{5}{2}x=\\frac{5}{6}x$, \\\\\ntherefore $CD: CE=\\frac{1}{2}x: \\frac{5}{6}x=3:5$, \\\\\nthus, the ratio of segment $CD:CE$ is $\\boxed{3:5}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53119430_124": { -"question": "As shown in the figure, $O$ is a point on the line $MN$, $\\angle MOC=130^\\circ$, $OA$ bisects $\\angle MOC$, $\\angle AOB=90^\\circ$. What is the measure of $\\angle BOC$?", -"image_file_name": "7038985", -"image": [ -"math/53119430_835.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB=90^\\circ$,\\\\\n$\\angle AOC=65^\\circ$,\\\\\n$\\angle AOB=\\angle AOC+\\angle BOC$,\\\\\ntherefore, $\\angle BOC=\\angle AOB-\\angle AOC=25^\\circ$.\\\\\nHence, $\\angle BOC=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119355_127": { -"question": "As shown in the figure, it is known that $O$ is a point on the line $AB$, $\\angle COD=90^\\circ$, $OE$ bisects $\\angle BOC$. If $\\angle AOC=40^\\circ$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7038985", -"image": [ -"math/53119355_845.png" -], -"solution": "\\textbf{Solution}: Thus, we have $\\angle DOE = \\boxed{20^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119355_128": { -"question": "As shown in the figure, it is known that $O$ is a point on the line $AB$, $\\angle COD = 90^\\circ$, and $OE$ bisects $\\angle BOC$. If $\\angle AOC = \\alpha$, what is the degree measure of $\\angle DOE$ (expressed in an algebraic expression involving $\\alpha$)?", -"image_file_name": "7038985", -"image": [ -"math/53119355_845.png" -], -"solution": "\\textbf{Solution:} Given the problem, \\\\\n$\\because \\angle AOC=\\alpha$, \\\\\n$\\therefore \\angle BOC=180^\\circ-\\alpha$, \\\\\n$\\because OE$ bisects $\\angle BOC$, \\\\\n$\\therefore \\angle COE=\\frac{1}{2}\\angle BOC=90^\\circ-\\frac{\\alpha}{2}$, \\\\\n$\\because \\angle COD=90^\\circ$, \\\\\n$\\therefore \\angle DOE=90^\\circ-(90^\\circ-\\frac{\\alpha}{2})=\\boxed{\\frac{\\alpha}{2}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119651_130": { -"question": "As shown in the figure, $OD$ bisects $\\angle AOB$, $OE$ bisects $\\angle BOC$, and $\\angle COD=20^\\circ$, $\\angle AOB=140^\\circ$. Find the degree measure of $\\angle BOC$?", -"image_file_name": "7038985", -"image": [ -"math/53119651_850.png" -], -"solution": "\\textbf{Solution:} Since $OD$ bisects $\\angle AOB$, \\\\\nit follows that $\\angle DOB = \\frac{1}{2} \\angle AOB = \\frac{1}{2} \\times 140^\\circ = 70^\\circ$, \\\\\ntherefore, $\\angle BOC = \\angle BOD - \\angle COD = 70^\\circ - 20^\\circ = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119651_131": { -"question": "As shown in the figure, $OD$ bisects $\\angle AOB$, $OE$ bisects $\\angle BOC$, $\\angle COD=20^\\circ$, $\\angle AOB=140^\\circ$. What is the measure of $\\angle DOE$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/53119651_850.png" -], -"solution": "\\textbf{Solution:} Since $OE$ bisects $\\angle BOC$,\\\\\nit follows that $\\angle COE = \\frac{1}{2}\\angle BOC = \\frac{1}{2} \\times 50^\\circ = 25^\\circ$,\\\\\ntherefore, $\\angle DOE = \\angle COE + \\angle COD = 25^\\circ + 20^\\circ = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119839_133": { -"question": "As shown in the figure, $OB$ is the bisector of $\\angle AOC$, and $OD$ is the bisector of $\\angle COE$. If $\\angle AOB=50^\\circ$ and $\\angle DOE=35^\\circ$, then what is the degree measure of $\\angle BOD$?", -"image_file_name": "7038985", -"image": [ -"math/53119839_860.png" -], -"solution": "\\textbf{Solution:} Since OB is the bisector of $\\angle AOC$, and OD is the bisector of $\\angle COE$, \\\\\ntherefore $\\angle COD = \\angle DOE = 35^\\circ$, $\\angle COB = \\angle BOA = 50^\\circ$. \\\\\nThus, $\\angle BOD = \\angle COD + \\angle COB = \\boxed{85^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119839_134": { -"question": "As shown in the figure, $OB$ is the bisector of $\\angle AOC$, and $OD$ is the bisector of $\\angle COE$. If $\\angle AOE=160^\\circ$ and $\\angle COD=25^\\circ$, then what is the measure of $\\angle AOB$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/53119839_860.png" -], -"solution": "\\textbf{Solution}: Since $OD$ is the bisector of $\\angle COE$,\\\\\nit follows that $\\angle COE=2\\angle COD=2\\times 25^\\circ=50^\\circ$,\\\\\nthus $\\angle AOC=\\angle AOE-\\angle COE=160^\\circ-50^\\circ=110^\\circ$,\\\\\nalso, since $OB$ is the bisector of $\\angle AOC$,\\\\\nit follows that $\\angle AOB=\\frac{1}{2}\\angle AOC=\\frac{1}{2}\\times 110^\\circ=\\boxed{55^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53066707_136": { -"question": "As shown in the figure, point C is on the line segment $AD$, and point B is the midpoint of $CD$, with $AD=9\\,cm$, $BC=2\\,cm$. What is the length of $AC$ in cm?", -"image_file_name": "7038985", -"image": [ -"math/53066707_874.png" -], -"solution": "Solution: Since $B$ is the midpoint of $CD$, and $BC=2\\,cm$, \\\\\nit follows that $CD=2BC=4\\,cm$, \\\\\nGiven $AD=9\\,cm$, \\\\\nthus $AC=AD-CD=\\boxed{5}\\,cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53066707_137": { -"question": "As shown in the figure, point $C$ is on line segment $AD$, point $B$ is the midpoint of $CD$, and $AD=9\\,cm$, $BC=2\\,cm$. If point $E$ is on line segment $AD$ and $AE=3\\,cm$, what is the length of $BE$?", -"image_file_name": "7038985", -"image": [ -"math/53066707_874.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $AB = AC + BC = 7\\,cm$, \\\\\n$AE = 3\\,cm$, \\\\\nTherefore $BE = AB - AE = 4\\,cm$, \\\\\nhence the length of $BE$ is \\boxed{4\\,cm}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52872897_139": { -"question": "As shown in the figure, it is known that point $C$ is on the straight line $AB$, and points $M$ and $N$ are the midpoints of $AC$ and $BC$, respectively. If $C$ is on the line segment $AB$ with $AC=6$ cm and $MB=10$ cm, find the lengths of line segments $BC$ and $MN$.", -"image_file_name": "7038985", -"image": [ -"math/52872897_886.png" -], -"solution": "\\textbf{Solution:} Given that $M$ is the midpoint of $AC$,\\\\\nit follows that $MC=\\frac{1}{2}AC=3\\,\\text{cm}$,\\\\\nthus $BC=MB-MC=7\\,\\text{cm}$,\\\\\nand since $N$ is the midpoint of $BC$,\\\\\nit then follows that $CN=\\frac{1}{2}BC=3.5\\,\\text{cm}$,\\\\\ntherefore $MN=MC+NC=\\boxed{6.5\\,\\text{cm}}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52872897_140": { -"question": "Given that point $C$ is on line $AB$, and points $M$ and $N$ are the midpoints of $AC$ and $BC$, respectively. If point $C$ is on the extension of segment $AB$, and it satisfies $AC-BC=a$ cm, please draw a diagram according to the given conditions, and calculate the length of $MN$ (express the result in terms of $a$).", -"image_file_name": "7038985", -"image": [ -"math/52872897_886.png" -], -"solution": "\\textbf{Solution:} According to the problem, the position of point $M$ can be in two situations:\n\n(1) The position of point $M$ is to the left of point $B$, as shown in the diagram:\\\\\nSince $M$ is the midpoint of $AC$,\\\\\nTherefore, $CM=\\frac{1}{2}AC$,\\\\\nSince $N$ is the midpoint of $BC$,\\\\\nTherefore, $CN=\\frac{1}{2}BC$,\\\\\nTherefore, $MN=CM-CN=\\frac{1}{2}AC-\\frac{1}{2}BC=\\frac{1}{2}(AC-BC)=\\boxed{\\frac{1}{2}a}\\,cm$;\\\\\n(2) The position of point $M$ is to the right of point $B$, as shown in the diagram:\\\\\nSince $M$ is the midpoint of $AC$,\\\\\nTherefore, $CM=\\frac{1}{2}AC$,\\\\\nSince $N$ is the midpoint of $BC$,\\\\\nTherefore, $CN=\\frac{1}{2}BC$,\\\\\nTherefore, $MN=CM-CN=\\frac{1}{2}AC-\\frac{1}{2}BC=\\frac{1}{2}(AC-BC)=\\boxed{\\frac{1}{2}a}\\,cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52375765_142": { -"question": "As shown in the figure, it is known that $AB\\parallel CD$, and the line $MN$ intersects $AB$ and $CD$ at points $E$ and $F$ respectively, and $\\angle NEB=58^\\circ$. What is the degree measure of $\\angle CFE$?", -"image_file_name": "7038985", -"image": [ -"math/52375765_890.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle NEB$ and $\\angle AEF$ are vertical angles, and $\\angle NEB=58^\\circ$,\\\\\nit follows that $\\angle AEF=\\angle NEB=58^\\circ$.\\\\\nSince $AB \\parallel CD$,\\\\\nwe have $\\angle AEF + \\angle CFE = 180^\\circ$,\\\\\ntherefore $\\angle CFE = 180^\\circ - 58^\\circ = \\boxed{122^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52375765_143": { -"question": "As shown in the figure, it is known that $AB \\parallel CD$, and the line $MN$ intersects $AB$ and $CD$ at points $E$ and $F$, respectively, with $\\angle NEB = 58^\\circ$. If $EG \\perp AB$, and $EH$ bisects $\\angle NEG$ and intersects $CD$ at point $H$, what is the measure of $\\angle BEH$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/52375765_890.png" -], -"solution": "\\textbf{Solution:} Since $EG\\perp AB$, it follows that $\\angle BEG=90^\\circ$, \\\\\nhence, $\\angle BEH=90^\\circ-\\angle GEH$, \\\\\nsince $EH$ bisects $\\angle NEG$, \\\\\nit follows that $\\angle GEH= \\frac{1}{2}\\angle NEG=\\frac{1}{2}(180^\\circ-\\angle MEG)$, \\\\\nfrom (1) we know $\\angle AEM=58^\\circ$, and since $EG\\perp AB$, \\\\\nthus, $\\angle MEG=90^\\circ-\\angle AEM=90^\\circ-58^\\circ=32^\\circ$, \\\\\nhence, $\\angle GEH=\\frac{1}{2}(180^\\circ-32^\\circ)=74^\\circ$, \\\\\nthus, $\\angle BEH=90^\\circ-74^\\circ=\\boxed{16^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51495222_145": { -"question": "As shown in the figure, it is known that $\\angle AOB=30^\\circ$, $\\angle AOE=140^\\circ$, $OB$ bisects $\\angle AOC$, and $OD$ bisects $\\angle AOE$. What is the measure of $\\angle AOC$?", -"image_file_name": "7038985", -"image": [ -"math/51495222_903.png" -], -"solution": "\\textbf{Solution:} From the given, \\\\\nsince $\\angle AOB = 30^\\circ$ and OB bisects $\\angle AOC$, \\\\\nit follows that $\\angle AOC = 2\\angle AOB = 2 \\times 30^\\circ = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51495222_146": { -"question": "As shown in the figure, it is known that $ \\angle AOB=30^\\circ$, $ \\angle AOE=140^\\circ$, $OB$ bisects $ \\angle AOC$, and $OD$ bisects $ \\angle AOE$. Find the degree measure of $ \\angle COD$.", -"image_file_name": "7038985", -"image": [ -"math/51495222_903.png" -], -"solution": "\\textbf{Solution:}\n\nSince $\\angle AOE = 140^\\circ$ and $\\angle AOC = 60^\\circ$,\n\nit follows that $\\angle COE = \\angle AOE - \\angle AOC = 140^\\circ - 60^\\circ = 80^\\circ$.\n\nAlso, since OD bisects $\\angle AOE$,\n\nwe have $\\angle DOE = \\frac{1}{2} \\angle AOE = \\frac{1}{2} \\times 140^\\circ = 70^\\circ$.\n\nTherefore, $\\angle COD = \\angle COE - \\angle DOE = 80^\\circ - 70^\\circ = \\boxed{10^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51494981_148": { -"question": "As shown in the figure, point $O$ is a point on the line $AB$, with $\\angle BOC=40^\\circ$, and $OD$ bisects $\\angle AOC$. What is the degree measure of $\\angle AOD$?", -"image_file_name": "7038985", -"image": [ -"math/51494981_912.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BOC=40^\\circ$,\\\\\nit follows that $\\angle AOC=180^\\circ-\\angle BOC=140^\\circ$,\\\\\nsince OD bisects $\\angle AOC$,\\\\\nthus $\\angle AOD= \\frac{1}{2} \\angle AOC= \\boxed{70^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51494981_149": { -"question": "As shown in the figure, point $O$ is a point on the line segment $AB$, with $ \\angle BOC=40^\\circ$, and $OD$ bisects $ \\angle AOC$. Construct ray $OE$ such that $ \\angle BOE=\\frac{2}{3}\\angle COE$. Find the degree measure of $ \\angle COE$.", -"image_file_name": "7038985", -"image": [ -"math/51494981_912.png" -], -"solution": "\\textbf{Solution:}\n\n(1) As shown in Figure 1, when ray OE is above AB, $\\angle BOE = \\frac{2}{3} \\angle COE$,\n\n$\\because \\angle BOE + \\angle COE = \\angle BOC$,\n\n$\\therefore \\frac{2}{3} \\angle COE + \\angle COE = 40^\\circ$,\n\n$\\therefore \\angle COE = \\boxed{24^\\circ}$;\n\n(2) As shown in Figure 2, when ray OE is below AB, $\\angle BOE = \\frac{2}{3} \\angle COE$,\n\n$\\because \\angle COE - \\angle BOE = \\angle BOC$,\n\n$\\therefore \\angle COE - \\frac{2}{3} \\angle COE = 40^\\circ$,\n\n$\\therefore \\angle COE = \\boxed{120^\\circ}$;\n\nIn conclusion: The degree of $\\angle COE$ can be either \\boxed{24^\\circ} or \\boxed{120^\\circ}.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51324353_154": { -"question": "As shown in the figure, $\\angle AOD = 130^\\circ$, $\\angle BOC : \\angle COD = 1 : 2$, $\\angle AOB$ is $\\frac{1}{3}$ of the complement of $\\angle COD$. How many degrees is $\\angle COD$?", -"image_file_name": "7038985", -"image": [ -"math/51324353_931.png" -], -"solution": "\\textbf{Solution:} We have $\\angle COD = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51324353_155": { -"question": "As shown in the figure, $\\angle AOD = 130^\\circ$, $\\angle BOC : \\angle COD = 1 : 2$, and $\\angle AOB$ is $\\frac{1}{3}$ of the supplement of $\\angle COD$. In the plane, the ray OM satisfies $\\angle AOM = 2\\angle DOM$. What is the measure of $\\angle AOM$?", -"image_file_name": "7038985", -"image": [ -"math/51324353_931.png" -], -"solution": "\\textbf{Solution:} When ray OM is inside $\\angle AOD$,\\\\\n$\\because \\angle AOD = 130^\\circ$, and $\\angle AOM = 2\\angle DOM$,\\\\\n$\\therefore \\angle AOM = \\frac{2}{3}\\angle AOD = \\boxed{\\left(\\frac{260}{3}\\right)^\\circ}$.\\\\\nWhen ray OM is outside $\\angle AOD$,\\\\\n$\\because \\angle AOD = 130^\\circ$, and $\\angle AOM = 2\\angle DOM$, $\\angle AOD + \\angle AOM + \\angle DOM = 360^\\circ$,\\\\\n$\\therefore \\angle AOM = \\boxed{\\left(\\frac{460}{3}\\right)^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51324353_156": { -"question": "Given the figure, $\\angle AOD = 130^\\circ$, $\\angle BOC : \\angle COD = 1 : 2$, $\\angle AOB$ is $\\frac{1}{3}$ of the complement of $\\angle COD$. Fix $\\angle COD$ and rotate rays OA and OB clockwise at a speed of $2^\\circ/s$ until OA overlaps with OD. During the rotation, if ray OP bisects $\\angle AOB$ and OQ bisects $\\angle COD$, when $\\angle POQ + \\angle AOD = 50^\\circ$, find the range of the rotation time $t$ (in seconds).", -"image_file_name": "7038985", -"image": [ -"math/51324353_931.png" -], -"solution": "\\textbf{Solution:} From (1) we have: $\\angle AOB=40^\\circ$, $\\angle COD=60^\\circ$\\\\\nSince ray OP is the bisector of $\\angle AOB$, and OQ is the bisector of $\\angle COD$,\\\\\ntherefore $\\angle AOP=\\frac{1}{2}\\angle AOB=20^\\circ$, $\\angle DOQ=\\frac{1}{2}\\angle COD=30^\\circ$,\\\\\nIt can be observed that: $\\angle AOP+\\angle DOQ=50^\\circ$,\\\\\nTo find the range of time $t$, we need to find the critical condition,\\\\\nWhen $OP$ coincides with $OQ$, at this moment $\\angle AOD=\\angle AOP+\\angle DOQ=50^\\circ$, $\\angle POQ=0^\\circ$,\\\\\nIt is observed that, if $OP$ and $OQ$ do not coincide, there must be $\\angle AOD>\\angle AOP+\\angle DOQ=50^\\circ$ which does not satisfy $\\angle POQ+\\angle AOD=50^\\circ$, hence the time $t$ exactly reaches its minimum value at this moment,\\\\\nAccording to the problem statement: $OA$ rotates a total of $130^\\circ-\\angle AOD=80^\\circ$, thus time $t=80\\div 2=40s$,\\\\\n$\\therefore t\\ge 40s$,\\\\\nWhen $OA$ coincides with $OD$, at this moment $\\angle AOD=0^\\circ$, $\\angle POQ=\\angle AOP+\\angle DOQ=50^\\circ$,\\\\\nIf $OA$ continues to rotate downwards at this moment, there must be $\\angle POQ>\\angle AOP+\\angle DOQ=50^\\circ$, which does not satisfy $\\angle POQ+\\angle AOD=50^\\circ$, hence the time $t$ exactly reaches its maximum value at this moment,\\\\\nAccording to the problem statement: $OA$ rotates a total of $130^\\circ-\\angle AOD=130^\\circ$, thus time $t=130\\div 2=65s$,\\\\\n$\\therefore t\\le 65s$,\\\\\nIn conclusion: $40s\\le t\\le 65s$, hence the range of rotation time $t$ is $t\\in\\boxed{[40s, 65s]}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51323829_158": { -"question": "As shown in the figure, point $O$ is on line $AB$, and $OC$, $OD$ bisect $\\angle AOE$, $\\angle BOE$ respectively. It can be deduced that $\\angle COD=90^\\circ$. (No solution required)\n\nGiven that point $O$ is on line $AB$, and $\\angle COD=90^\\circ$, $OE$ bisects $\\angle BOC$. As shown in the figure, if $\\angle AOC=50^\\circ$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7038985", -"image": [ -"math/51323829_949.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle COD=90^\\circ$, $\\therefore$ $\\angle AOC+\\angle BOD=90^\\circ$. $\\because$ $\\angle AOC=50^\\circ$, $\\therefore$ $\\angle BOD=40^\\circ$. $\\therefore$ $\\angle COB=\\angle COD+\\angle BOD=90^\\circ+40^\\circ=130^\\circ$. $\\because$ $OE$ bisects $\\angle BOC$, $\\therefore$ $\\angle COE=\\frac{1}{2}\\angle BOC=\\frac{1}{2}\\times 130^\\circ=65^\\circ$. $\\therefore$ $\\angle DOE=\\angle COD-\\angle COE=90^\\circ-65^\\circ=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438609_161": { -"question": "As shown in the figure, point $O$ is a point on the line $AB$, $CO \\perp DO$, $OE$ bisects $\\angle BOC$. If $\\angle AOC=50^\\circ$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7038985", -"image": [ -"math/51438610_9502.png" -], -"solution": "\\textbf{Solution:} Because $\\angle AOB$ is a straight angle,\\\\\ntherefore $\\angle BOC=180^\\circ-\\angle AOC=180^\\circ-50^\\circ=130^\\circ$,\\\\\ntherefore $\\angle EOC=\\frac{1}{2}\\angle BOC=\\frac{1}{2}\\times 130^\\circ=65^\\circ$,\\\\\nbecause $CO\\perp DO$,\\\\\ntherefore $\\angle DCC=90^\\circ$,\\\\\ntherefore $\\angle DOE=\\angle DOC=\\angle EOC=90^\\circ-65^\\circ=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438609_162": { -"question": "As shown in the figure, point $O$ is a point on line $AB$, with $CO \\perp DO$, and $OE$ bisects $\\angle BOC$. If $\\angle COE = \\frac{1}{3}\\angle DOB$, determine the measure of $\\angle AOC$.", -"image_file_name": "7038985", -"image": [ -"math/51438611_9512.png" -], -"solution": "\\textbf{Solution:} Let $\\angle COE=x^\\circ$, then $\\angle DOB=3x^\\circ$ \\\\\n$\\because OE$ bisects $\\angle BOC$ \\\\\n$\\therefore \\angle BOE=\\angle COE=x^\\circ$ \\\\\n$\\because CO\\perp DO$ \\\\\n$\\therefore \\angle DOC=90^\\circ$ \\\\\n$\\therefore x^\\circ+x^\\circ+3x^\\circ=90^\\circ$ \\\\\n$\\therefore x=18$ \\\\\n$\\therefore \\angle BOE=\\angle COE=18^\\circ$ \\\\\n$\\therefore \\angle AOC=\\angle AOB-\\angle BOE-\\angle COE=180^\\circ-18^\\circ-18^\\circ=\\boxed{144^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438726_164": { -"question": "Given that $O$ is a point on line $AB$, and $OC \\perp OE$. As shown in Figure (1), if $\\angle COA = 34^\\circ$, what is the measure of $\\angle BOE$?", -"image_file_name": "7038985", -"image": [ -"math/51438726_960.png" -], -"solution": "\\textbf{Solution:} Since $OC\\perp OE$ and $\\angle COA = 34^\\circ$, \\\\\nit follows that $\\angle BOE = 180^\\circ-90^\\circ-34^\\circ = \\boxed{56^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438726_165": { -"question": "Given that O is a point on line AB, and OC $\\perp$ OE. As shown in the diagram, when ray OC is below line AB, OF bisects $\\angle AOE$, $\\angle BOE = 130^\\circ$, find the degree measure of $\\angle COF$.", -"image_file_name": "7038985", -"image": [ -"math/51438726_960.png" -], -"solution": "\\textbf{Solution:} Given $\\angle BOE = 130^\\circ$,\\\\\nit follows that $\\angle AOE = 180^\\circ - \\angle BOE = 50^\\circ$\\\\\nSince OF bisects $\\angle AOE$,\\\\\nwe have $\\angle EOF = \\frac{1}{2} \\angle AOE = 25^\\circ = \\angle AOF$\\\\\nSince $OC \\perp OE$,\\\\\nit follows that $\\angle COF = 90^\\circ - \\angle EOF = \\boxed{65^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438726_166": { -"question": "Given that $O$ is a point on line $AB$, and $OC \\perp OE$. Under these conditions, as shown in the figure, draw ray $OM$ inside $\\angle BOE$, such that $\\angle COM + \\frac{17}{10}\\angle AOE = 2\\angle BOM + \\angle FOM$, what is the degree measure of $\\angle BOM$?", -"image_file_name": "7038985", -"image": [ -"math/51438726_960.png" -], -"solution": "\\textbf{Solution:} Given $\\because$OC$\\perp$OE,\\\\\n$\\therefore \\angle AOC=90^\\circ-\\angle AOE=40^\\circ$\\\\\nLet the measure of $\\angle BOM$ be $x$\\\\\n$\\therefore \\angle COM=\\angle AOC+\\angle AOM=40^\\circ+180^\\circ-x=220^\\circ-x$, and $\\angle FOM=\\angle AOM-\\angle AOF=180^\\circ-x-25^\\circ=155^\\circ-x$\\\\\n$\\because \\angle COM+ \\frac{17}{10}\\angle AOE=2\\angle BOM+\\angle FOM$,\\\\\n$\\therefore 220^\\circ-x+ \\frac{17}{10}\\times 50^\\circ=2x+155^\\circ-x$\\\\\nSolving gives $x=\\boxed{75^\\circ}$\\\\\n$\\therefore$ The measure of $\\angle BOM$ is $\\boxed{75^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438377_168": { -"question": "As shown in the figure, it is known that $\\angle AOB=120^\\circ$, and OC is a ray inside $\\angle AOB$, and $\\angle AOC : \\angle BOC=1 : 2$. Find the measures of $\\angle AOC$ and $\\angle BOC$.", -"image_file_name": "7038985", -"image": [ -"math/51438377_970.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC : \\angle BOC = 1 : 2$ and $\\angle AOB = 120^\\circ$,\n\nthus $\\angle AOC = \\frac{1}{3} \\angle AOB = \\frac{1}{3} \\times 120^\\circ = \\boxed{40^\\circ}$,\n\nand $\\angle BOC = \\frac{2}{3} \\angle AOB = \\frac{2}{3} \\times 120^\\circ = \\boxed{80^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438377_169": { -"question": "As shown in the figure, it is known that $\\angle AOB=120^\\circ$. OC is a ray inside $\\angle AOB$, and $\\angle AOC: \\angle BOC=1: 2$. Draw ray OM to bisect $\\angle AOC$. Inside $\\angle BOC$, draw ray ON such that $\\angle CON: \\angle BON=1: 3$. What is the measure of $\\angle MON$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/51438377_970.png" -], -"solution": "\\textbf{Solution:} Given that OM bisects $\\angle$AOC,\\\\\n$\\therefore \\angle$COM$= \\frac{1}{2}\\angle$AOC$= \\frac{1}{2}\\times 40^\\circ=20^\\circ$,\\\\\nSince $\\angle$CON$\\colon \\angle$BON$=1\\colon 3$,\\\\\n$\\therefore \\angle$CON$= \\frac{1}{4}\\angle$BOC$= \\frac{1}{4}\\times 80^\\circ=20^\\circ$,\\\\\nHence, $\\angle$MON$=\\angle$COM$+\\angle$CON$=20^\\circ+20^\\circ=\\boxed{40^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438377_170": { -"question": "As shown in the figure, it is known that $\\angle AOB=120^\\circ$, and $OC$ is a ray inside $\\angle AOB$, with $\\angle AOC : \\angle BOC = 1 : 2$. A ray $OD$ passes through point $O$. If $2\\angle AOD = 3\\angle BOD$, what is the measure of $\\angle COD$ in degrees?", -"image_file_name": "7038985", -"image": [ -"math/51438377_970.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, when OD is inside $\\angle AOB$,\\\\\nlet $\\angle BOD=x^\\circ$,\\\\\nsince $2\\angle AOD=3\\angle BOD$,\\\\\nthen $\\angle AOD= \\frac{3}{2}x^\\circ$,\\\\\nsince $\\angle AOB=120^\\circ$,\\\\\nthen $x+ \\frac{3}{2}x=120$,\\\\\nsolving this gives: $x=48$,\\\\\nthus $\\angle BOD=48^\\circ$,\\\\\ntherefore $\\angle COD=\\angle BOC-\\angle BOD=80^\\circ-48^\\circ=32^\\circ$,\\\\\nAs shown in the figure, when OD is outside $\\angle AOB$,\\\\\nlet $\\angle BOD=y^\\circ$,\\\\\nsince $2\\angle AOD=3\\angle BOD$,\\\\\nthen $\\angle AOD= \\frac{3}{2}y^\\circ$,\\\\\nsince $\\angle AOB=120^\\circ$,\\\\\nthen $\\frac{3}{2}y+y+120^\\circ=360^\\circ$,\\\\\nsolving this gives: $y=96^\\circ$,\\\\\nthus $\\angle COD=\\angle BOD+\\angle BOC=96^\\circ+80^\\circ=176^\\circ$,\\\\\nIn conclusion, the degree measure of $\\angle COD$ is $\\boxed{32^\\circ}$ or $\\boxed{176^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51439120_172": { -"question": "Given that segment $ AD=80$, points B and C are both on segment AD. As shown in Figure 1, $ BC: AB: CD=1:3:4$, point E is the midpoint of segment AC, and point F is the midpoint of segment BD. Find the length of EF.", -"image_file_name": "7038985", -"image": [ -"math/51439120_981.png" -], -"solution": "\\textbf{Solution:} Let $BC\\colon AB\\colon CD=1\\colon 3\\colon 4$,\\\\\nThus, let BC=x, then AB=3x, CD=4x,\\\\\nTherefore, AD=3x+x+4x=80, which means x=10,\\\\\nHence, AB=30, BC=10, CD=40,\\\\\nSince point E is the midpoint of segment AC, and point F is the midpoint of segment BD,\\\\\nThus, AE=20, DF=20,\\\\\nTherefore, EF=80−20−20=\\boxed{40};", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51439120_173": { -"question": "Given that the line segment $AD=80$, and points B and C are on the line segment AD. If $AB=10$, $BC=20$, and point P moves from B towards D at a speed of 3 units per second, taking $t$ seconds, where point Q is the midpoint of CD, find the value of $t$ when $AP=AQ$.", -"image_file_name": "7038985", -"image": [ -"math/51439120_981.png" -], -"solution": "\\textbf{Solution:} Given that $AD=80$, $AB=10$, and $BC=20$, \\\\\nhence, $CD=80-10-20=50$, \\\\\nsince $Q$ is the midpoint of $CD$, \\\\\nthus, $CQ=\\frac{1}{2}CD=25$, and $AQ=10+20+25=55$, \\\\\nafter $t$ seconds, $AP=10+3t$, \\\\\nwhen $AP=AQ$, $10+3t=55$, \\\\\ntherefore, $t=\\boxed{15}$, \\\\\nwhen $AP=AQ$, the value of $t$ is \\boxed{15}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51439127_175": { -"question": "As shown in Figure 1, it is known that $\\angle AOB = 90^\\circ$, OE and OD bisect $\\angle AOB$ and $\\angle BOC$ respectively. If $\\angle EOD = 64^\\circ$, what is the degree measure of $\\angle BOC$?", -"image_file_name": "7038985", -"image": [ -"math/51439127_990.png" -], -"solution": "\\textbf{Solution:} It is known from the problem that $\\angle BOC = \\boxed{38^\\circ}$.", -"solution_image": [ -"solution_images/51439127_993.png", -"solution_images/51439127_998.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51439127_176": { -"question": "Given that $\\angle AOB = 90^\\circ$, as shown in figure 2, $OE$ and $OD$ bisect $\\angle AOC$ and $\\angle BOC$ respectively. If $\\angle BOC = 40^\\circ$, find the measure of $\\angle EOD$.", -"image_file_name": "7038985", -"image": [ -"math/51439127_990.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle EOD = \\angle EOC - \\angle COD$ \\\\\n= $\\frac{1}{2}\\angle AOC - \\frac{1}{2}\\angle BOC$ \\\\\n= $\\frac{1}{2}(\\angle AOB + \\angle BOC) - \\frac{1}{2}\\angle BOC$ \\\\\n= $\\frac{1}{2}(90^\\circ + 40^\\circ) - \\frac{1}{2} \\times 40^\\circ$ \\\\\n= $65^\\circ - 20^\\circ$ \\\\\n= $\\boxed{45^\\circ}$", -"solution_image": [ -"solution_images/51439127_993.png", -"solution_images/51439127_998.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52551303_90": { -"question": "As shown in the figure, it is known that $\\angle C=\\angle D$, $OC=OD$. If $\\angle O=72^\\circ$, $\\angle C=20^\\circ$, and $\\triangle OAD \\cong \\triangle OBC$; what is the degree measure of $\\angle DAC$?", -"image_file_name": "7047158", -"image": [ -"math/52551303_882.png" -], -"solution": "\\textbf{Solution:} Given that $ \\triangle OAD \\cong \\triangle OBC$,\\\\\n$\\therefore \\angle C=\\angle D=20^\\circ$,\\\\\n$\\therefore \\angle DAC=\\angle O+\\angle D=20^\\circ+72^\\circ=\\boxed{92^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52457281_93": { -"question": "As shown in the diagram, in $\\triangle ABC$, $D$ is a point on side $BC$, $AB=DB$, $BE$ bisects $\\angle ABC$, and intersects side $AC$ at point $E$, with $DE$ connected. $\\triangle ABE \\cong \\triangle DBE$; if $\\angle A=105^\\circ$, $\\angle C=50^\\circ$, what is the degree measure of $\\angle DEC$?", -"image_file_name": "7047158", -"image": [ -"math/52457281_899.png" -], -"solution": "\\textbf{Solution:} Given: $\\because \\angle A=105^\\circ$, $\\angle C=50^\\circ$, $\\triangle ABE \\cong \\triangle DBE$,\\\\\n$\\therefore \\angle BDE=\\angle A=105^\\circ$,\\\\\n$\\therefore \\angle EDC=180^\\circ-\\angle BDE=180^\\circ-105^\\circ=75^\\circ$,\\\\\n$\\therefore \\angle DEC=180^\\circ-\\angle EDC-\\angle C=180^\\circ-75^\\circ-50^\\circ=\\boxed{55^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51369714_96": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=CB$, and $\\angle ABC=90^\\circ$. Point F lies on the extension of side AB, and point E is on side BC, with $AE=CF$. $Rt\\triangle ABE \\cong Rt\\triangle CBF$. If $\\angle CAE=25^\\circ$, what is the measure of $\\angle CFA$?", -"image_file_name": "7047158", -"image": [ -"math/51369714_906.png" -], -"solution": "\\textbf{Solution:} Since $AB=CB$ and $\\angle ABC=90^\\circ$,\n\nit follows that $\\angle BAC=\\angle BCA=45^\\circ$.\n\nGiven $\\angle CAE=25^\\circ$,\n\nthen $\\angle BAE=45^\\circ-25^\\circ=20^\\circ$.\n\nSince Rt$\\triangle ABE \\cong$ Rt$\\triangle CBF$,\n\nit implies that $\\angle BCF=\\angle BAE=20^\\circ$,\n\ntherefore, $\\angle CFA=90^\\circ-20^\\circ=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51369213_98": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, and $CD$ is the altitude to side $AB$. Fold side $AC$ such that the crease is $EF$, and connect $CE$. If $CD$ bisects $\\angle BCE$, find the measure of $\\angle A$.", -"image_file_name": "7047158", -"image": [ -"math/51369213_919.png" -], -"solution": "\\textbf{Solution.} From the given problem, $EF$ is the axis of symmetry of $AC$,\\\\\nhence $FA=FC$, $EA=EC$,\\\\\nhence $\\angle ECA=\\angle A$.\\\\\nMoreover, since $CD$ is the height from $AB$,\\\\\nhence $\\angle CDE=\\angle CDB=90^\\circ$.\\\\\nAlso, since $CD$ bisects $\\angle BCE$,\\\\\nhence $\\angle DCE=\\angle DCB$.\\\\\nAlso, since $CD=CD$,\\\\\nhence $\\triangle CDE\\cong \\triangle CDB$ (ASA),\\\\\nhence $\\angle CED=\\angle CBD$.\\\\\nMoreover, since $\\angle CED=\\angle A+\\angle ECA$, $\\angle ECA=\\angle A$,\\\\\nhence $\\angle CBD=2\\angle A$.\\\\\nAlso, since $\\angle ACB=90^\\circ$,\\\\\nhence $\\angle A+\\angle B=90^\\circ$,\\\\\nhence $3\\angle A=90^\\circ$,\\\\\nhence $\\angle A=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51369004_101": { -"question": "In the figure, in $\\triangle ABC$, $AB=AC$, $AD\\perp BC$ at point D, and point E is on side $AB$, with $EF\\parallel AC$ intersecting the extension of $AD$ at point F. If $\\angle C=40^\\circ$, what is the degree measure of $\\angle AEF$?", -"image_file_name": "7047158", -"image": [ -"math/51369004_926.png" -], -"solution": "\\textbf{Solution:} Given the problem,\\\\\n$\\because AB=AC$,\\\\\n$\\angle C=40^\\circ$,\\\\\n$\\therefore \\angle B=\\angle C=40^\\circ$,\\\\\n$\\therefore \\angle BAC=180^\\circ-\\angle B-\\angle C=100^\\circ$,\\\\\n$\\because EF\\parallel AC$,\\\\\n$\\therefore \\angle BAC+\\angle AEF=180^\\circ$,\\\\\n$\\therefore \\angle AEF=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51368838_105": { -"question": "As shown in the figure, $AB=AD$, $AC=AE$, $BC=DE$, with point $E$ on $BC$. If $\\angle EAC=\\angle BAD$ and $\\angle EAC=42^\\circ$, what is the degree measure of $\\angle DEB$?", -"image_file_name": "7047158", -"image": [ -"math/51368838_930.png" -], -"solution": "\\textbf{Solution:} Since $AC=AE$, and $\\angle EAC=42^\\circ$, \\\\\ntherefore $\\angle AEC=\\angle C= \\frac{1}{2} \\times(180^\\circ-42^\\circ)=69^\\circ$. \\\\\nSince $\\triangle ABC \\cong \\triangle ADE$, \\\\\ntherefore $\\angle AED=\\angle C=69^\\circ$, \\\\\nthus $\\angle DEB=180^\\circ-\\angle AED-\\angle C=180^\\circ-69^\\circ-69^\\circ=\\boxed{42^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51368553_107": { -"question": "Please provide the text you wish to have translated into English in a format suitable for LaTeX. Without the original text, I'm unable to assist with your request.", -"image_file_name": "7047158", -"image": [ -"math/51368553_941.png" -], -"solution": "\\textbf{Solution:} Given that $AB=AC$ and $\\angle A=39^\\circ$, \\\\\nit follows that $\\angle ABC=\\angle ACB=70.5^\\circ$, \\\\\nsince $DM$ is the perpendicular bisector of $AB$, \\\\\nit implies $DA=DB$ and thus $\\angle A=\\angle DBA=39^\\circ$, \\\\\ntherefore, $\\angle DBC=\\angle ABC-\\angle DBA=\\boxed{31.5^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51368553_108": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=10$, $BC=8$, $\\angle A=39^\\circ$. The perpendicular bisector $MN$ of $AB$ intersects $AC$ at $D$ and $AB$ at $M$. $BD$ is connected. Find: What is the perimeter of $\\triangle BDC$?", -"image_file_name": "7047158", -"image": [ -"math/51368553_941.png" -], -"solution": "\\textbf{Solution:} Since $DB=AD$, $AC=10$, $BC=8$, \\\\\nhence $DB+DC=AD+DC=AC=10$. \\\\\nTherefore, the perimeter of $\\triangle BDC$ is $DB+DC+BC=18=\\boxed{18}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51435342_110": { -"question": "As shown in the figure, the line $l_{1}: y=-2x+4$ intersects the x-axis at point D and the y-axis at point A, while the line $l_{2}: y=x+1$ intersects the x-axis at point C. The two lines $l_{1}$ and $l_{2}$ intersect at point B. Connect A to C. Find the coordinates of point B and the equation of the line AC.", -"image_file_name": "7047158", -"image": [ -"math/51435342_950.png" -], -"solution": "\\textbf{Solution:} Since lines $l_1$ and $l_2$ intersect at point B, by solving the system of equations $\\begin{cases}y=-2x+4\\\\ y=x+1\\end{cases}$, we obtain $\\begin{cases}x=1\\\\ y=2\\end{cases}$. Therefore, the coordinates of point B are $\\boxed{(1,2)}$. Since line $l_1: y=-2x+4$ intersects the y-axis at point A, by setting $x=0$, we get $y=4$. Therefore, the coordinates of point A are $\\boxed{(0,4)}$. Since line $l_2: y=x+1$ intersects the x-axis at point C, by setting $y=0$, we solve $x+1=0$ to get $x=-1$. Therefore, the coordinates of point C are $\\boxed{(-1,0)}$. Let the equation of line AC be $y=kx+b$. Substituting the coordinates, we have $\\begin{cases}0=-k+b\\\\ b=4\\end{cases}$, which gives us $\\begin{cases}k=4\\\\ b=4\\end{cases}$. Therefore, the equation of line AC is $\\boxed{y=4x+4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51435342_111": { -"question": "As shown in the figure, the line $l_{1}\\colon y=-2x+4$ intersects with the x-axis at point D and with the y-axis at point A, the line $l_{2}\\colon y=x+1$ intersects with the x-axis at point C, the two lines $l_{1}$ and $l_{2}$ intersect at point B, and AC is connected. What is the area of $\\triangle ABC$?", -"image_file_name": "7047158", -"image": [ -"math/51435342_950.png" -], -"solution": "\\textbf{Solution:} Let the line $l_{2}\\colon y=x+1$ intersect the y-axis at point E. By setting $x=0$, $y=1$,\\\\\n$\\therefore$ point E$(0,1)$,\\\\\n$\\therefore AE=4-1=3$,\\\\\n$\\therefore S_{\\triangle ABC}= S_{\\triangle AEC}+S_{\\triangle ABE}=\\frac{1}{2}AE\\cdot OC+\\frac{1}{2}AE\\cdot x_{B}=\\frac{1}{2}\\times 3\\times 1+\\frac{1}{2}\\times 3\\times 1=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51435258_114": { -"question": "As shown in the figure, point $D$ is on side $BC$ of $\\triangle ABC$, with $AC \\parallel BE$, $BC = BE$, and $\\angle ABC = \\angle E$. $\\triangle ABC \\cong \\triangle DEB$; if $BE = 9$ and $AC = 4$, find the length of $CD$.", -"image_file_name": "7047158", -"image": [ -"math/51435258_964.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC\\cong \\triangle DEB$,\\\\\ntherefore $AC=DB=4$,\\\\\ntherefore $CD=BC-BD=9-4=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51419677_117": { -"question": "As shown in the figure, in an equilateral $\\triangle ABC$, points $E$ and $D$ are located on sides $AC$ and $BC$, respectively, with $AE=CD$. Lines $AD$ and $BE$ intersect at point $O$. $\\triangle ABE \\cong \\triangle CAD$; If $\\angle OBD=45^\\circ$, find the measure of $\\angle ADC$.", -"image_file_name": "7047158", -"image": [ -"math/51419677_970.png" -], -"solution": "\\textbf{Solution:} From (1) we have $\\triangle ABE \\cong \\triangle CAD$,\\\\\n$\\therefore \\angle ABE = \\angle CAD$,\\\\\n$\\therefore \\angle BOD = \\angle ABE + \\angle BAO = \\angle BAC = 60^\\circ$,\\\\\n$\\therefore \\angle ADC = \\angle OBD + \\angle BOD = 45^\\circ + 60^\\circ = \\boxed{105^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51419687_119": { -"question": "As shown in Figure (1), it is known that the line $y=-2x+4$ intersects the $x$-axis and the $y$-axis at points $A$ and $C$ respectively. A rectangle $OABC$ is constructed in the first quadrant with $OA$ and $OC$ as sides. What are the coordinates of points $A$ and $C$?", -"image_file_name": "7047158", -"image": [ -"math/51419687_980.png" -], -"solution": "\\textbf{Solution:} The coordinates of point $A$ are \\boxed{(2,0)}; the coordinates of point $C$ are \\boxed{(0,4)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51419687_120": { -"question": "As shown in the figure, it is known that the line $y=-2x+4$ intersects the $x$-axis and $y$-axis at points $A$ and $C$ respectively. A rectangle $OABC$ is constructed in the first quadrant with $OA$ and $OC$ as sides. $\\triangle ABC$ is folded so that point $A$ coincides with point $C$, and the fold intersects $AB$ at point $D$. Find the equation of line $CD$.", -"image_file_name": "7047158", -"image": [ -"math/51419687_980.png" -], -"solution": "\\textbf{Solution:} Given from the fold: $CD=AD$. Let $AD=x$, then $CD=x$, $BD=4-x$. According to the given conditions, we have: $(4-x)^{2}+2^{2}=x^{2}$. Solving this gives: $x=\\frac{5}{2}$. At this point, $AD=\\frac{5}{2}$, $D\\left(2, \\frac{5}{2}\\right)$. Let the equation of line $CD$ be $y=kx+b$, substituting $D\\left(2, \\frac{5}{2}\\right)$ into it yields $\\frac{5}{2}=2k+b$. Solving this gives: $k=-\\frac{3}{4}$, $b=4$. $\\therefore$ The equation of line $CD$ is $\\boxed{y=-\\frac{3}{4}x+4}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51419593_123": { -"question": "As shown in Figure 1, the straight line $AB$ intersects the coordinate axes at points $A(0, -3)$ and $B(-5, 0)$, respectively. Point $C$ is the midpoint of line segment $AB$, and point $P$ is a point on the y-axis. Connecting $CP$, and drawing a perpendicular line from point $C$ to line segment $BO$ intersecting at point $Q$. What is the analytic equation of line $AB$?", -"image_file_name": "7047158", -"image": [ -"math/51419593_990.png" -], -"solution": "\\textbf{Solution:} Let the equation of line AB be $y=kx+b$ ($k\\neq 0$). Given $A(0, -3)$, $B(-5, 0)$, we have $\\begin{cases}b=-3\\\\ -5k+b=0\\end{cases}$. Solving these equations yields $\\begin{cases}k=-\\frac{3}{5}\\\\ b=-3\\end{cases}$. Therefore, the equation of line AB is $\\boxed{y=-\\frac{3}{5}x-3}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51419593_124": { -"question": "As shown in Figure 1, line AB intersects the coordinate axes at points A $(0, -3)$ and B $(-5, 0)$, respectively. Point C is the midpoint of line segment AB, and point P is a point on the y-axis. Connect CP, and draw a perpendicular from C to line segment BO intersecting at point Q. As shown in Figure 2, when point Q coincides with point B, connect PQ. Find the length of PO.", -"image_file_name": "7047158", -"image": [ -"math/51419593_990.png" -], -"solution": "\\[ \\text{Solution: From the given, point } C \\text{ is the midpoint of segment } AB, \\]\n\\[ \\therefore C\\left( -\\frac{5}{2}, -\\frac{3}{2} \\right), \\]\n\\[ \\text{Let } P(0,t), \\]\n\\[ \\because CP\\perp CQ \\text{ and point } Q \\text{ coincides with point } B, \\]\n\\[ \\therefore CP \\text{ is the perpendicular bisector of segment } AB, \\]\n\\[ \\therefore PA=PB, \\]\n\\[ \\text{In } \\triangle PBO, PB^2=OB^2+OP^2, OB=5, OP=t, \\]\n\\[ \\therefore PB^2=5^2+t^2=25+t^2, \\]\n\\[ \\because PA=OP+OA=t+3, \\]\n\\[ \\therefore (t+3)^2=25+t^2, \\]\n\\[ \\text{Solving, we get: } t= \\frac{8}{3}, \\]\n\\[ \\therefore P\\left(0, \\frac{8}{3}\\right), \\]\n\\[ \\therefore \\text{The length of } PO \\text{ is } \\boxed{\\frac{8}{3}}. \\]", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51419593_125": { -"question": "As shown in the figure, the line $AB$ intersects the coordinate axes at points $A(0, -3)$ and $B(-5, 0)$, respectively. Point $C$ is the midpoint of segment $AB$, and point $P$ is a point on the $y$-axis. Connecting $CP$, a perpendicular line to $CP$ is drawn from point $C$ intersecting segment $BO$ at point $Q$. Let $AP=m$ and $BQ=n$. Find the expression of $m$ as a function of $n$.", -"image_file_name": "7047158", -"image": [ -"math/51419593_990.png" -], -"solution": "\\textbf{Solution:} Let line $CE\\perp OA$ at point E, and $CF\\perp OB$ at point F,\\\\\nthen $E(0,-\\frac{3}{2})$, $F(-\\frac{5}{2},0)$, $\\angle CEP=\\angle CFQ=90^\\circ$,\\\\\nbecause $AP=m$, $BQ=n$,\\\\\nthus $OQ=5-n$, $OP=3-m$,\\\\\ntherefore $QF=OQ-OF=5-n-\\frac{5}{2}=\\frac{5}{2}-n$, $PE=OE-OP=\\frac{3}{2}-(3-m)=m-\\frac{3}{2}$,\\\\\nbecause $\\angle CEP+\\angle AOB=180^\\circ$,\\\\\ntherefore $CE\\parallel OB$,\\\\\ntherefore $\\angle ECF=\\angle CFQ=90^\\circ$,\\\\\ntherefore $\\angle PCE+\\angle PCF=90^\\circ$,\\\\\nbecause $\\angle QCF+\\angle PCF=90^\\circ$,\\\\\ntherefore $\\angle PCE=\\angle QCF$,\\\\\ntherefore $\\triangle PCE\\sim \\triangle QCF$,\\\\\ntherefore $\\frac{PE}{CE}=\\frac{QF}{CF}$, i.e., $\\frac{m-\\frac{3}{2}}{\\frac{5}{2}}=\\frac{\\frac{5}{2}-n}{\\frac{3}{2}}$,\\\\\ntherefore $m=-\\frac{5}{3}n+\\frac{17}{3}$, hence the function expression of $m$ in terms of $n$ is $m=\\boxed{-\\frac{5}{3}n+\\frac{17}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52906015_79": { -"question": "As shown in the figure, $C$ is the midpoint of $\\overset{\\frown}{ACB}$, $\\angle AOC=4\\angle B$, and $OC=4$. What is the degree measure of $\\angle A$?", -"image_file_name": "7058778", -"image": [ -"math/52906015_783.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $AC, BC$\\\\\n$\\because \\overset{\\frown}{AB}=\\overset{\\frown}{AB}$,\\\\\n$\\therefore \\angle AOB=2\\angle ACB$,\\\\\n$\\because OA=OB$,\\\\\n$\\therefore \\angle OAB=\\angle OBA$,\\\\\n$\\therefore \\angle AOB=180^\\circ-2\\angle B$,\\\\\n$\\because C$ is the midpoint of $\\overset{\\frown}{ACB}$,\\\\\n$\\therefore \\overset{\\frown}{AC}=\\overset{\\frown}{BC}$,\\\\\n$\\therefore \\angle AOC=\\angle BOC$,\\\\\n$\\because \\angle AOC=4\\angle B$,\\\\\n$\\therefore \\angle AOC+\\angle BOC+\\angle AOB=360^\\circ$,\\\\\nthat is, $4\\angle B+4\\angle B+180^\\circ-2\\angle B=360^\\circ$,\\\\\n$\\therefore 6\\angle B=180^\\circ$,\\\\\n$\\therefore \\angle A=\\angle B=30^\\circ$;\\\\\nThus, the measure of $\\angle A$ is $\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52906015_80": { -"question": "As shown in the figure, $C$ is the midpoint of $\\overset{\\frown}{ACB}$, $\\angle AOC = 4\\angle B$, and $OC = 4$. What is the length of line segment $AB$?", -"image_file_name": "7058778", -"image": [ -"math/52906015_783.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, extend $CO$ to intersect $AB$ at point D,\\\\\n$\\because C$ is the midpoint of $\\overset{\\frown}{ACB}$,\\\\\n$\\therefore \\overset{\\frown}{AC}=\\overset{\\frown}{BC}$, $CD\\perp AB$, $AD=DB$,\\\\\n$\\because OC=4$, $\\angle A=30^\\circ$,\\\\\n$\\therefore AO=4, OD=2$,\\\\\n$\\therefore AD=\\sqrt{AO^{2}-OD^{2}}=\\sqrt{4^{2}-2^{2}}=2\\sqrt{3}$,\\\\\n$\\therefore AB=2AD=4\\sqrt{3}=\\boxed{4\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52906012_83": { -"question": "As shown in the diagram, quadrilateral $ABCD$ is inscribed in circle $O$, $\\angle ABC=135^\\circ$, $OE \\perp AC$, $\\angle AOE = \\angle D$. If $AC=4$, what is the radius of circle $O$?", -"image_file_name": "7058778", -"image": [ -"math/52906012_792.png" -], -"solution": "\\textbf{Solution:} From (1), we know that $\\triangle AOC$ is an isosceles right triangle, \\\\\nbecause $AC=4$, \\\\\ntherefore $OA=OC=2\\sqrt{2}$, \\\\\nwhich means the radius of the circle $O$ is $\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52916773_86": { -"question": "As shown in the figure, within $\\odot O$, points B and C divide $\\overset{\\frown}{AD}$ into three equal parts. The chords $AC$ and $BD$ intersect at point E. $AC=BD$; $AB$ is connected. If $\\angle BAC=25^\\circ$, what is the degree measure of $\\angle BEC$?", -"image_file_name": "7058778", -"image": [ -"math/52916773_803.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle BAC=25^\\circ$, $\\overset{\\frown}{AB}=\\overset{\\frown}{BC}=\\overset{\\frown}{CD}$, \\\\\n$\\therefore \\angle BAC=\\angle CAD=\\angle BDA=25^\\circ$, \\\\\n$\\because \\angle AED+\\angle CAD+\\angle BDA=180^\\circ$, \\\\\n$\\therefore \\angle AED=180^\\circ-\\angle CAD-\\angle BDA=130^\\circ$, \\\\\n$\\therefore \\angle BEC=\\angle AED=\\boxed{130^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874761_88": { -"question": "As shown in the figure, $AD$ is the angle bisector of the exterior angle $\\angle EAC$ of $\\triangle ABC$, intersecting the circumcircle $\\odot O$ of $\\triangle ABC$ at point D, with $\\angle EAC=120^\\circ$. What is the degree measure of arc $\\overset{\\frown}{BC}$?", -"image_file_name": "7058778", -"image": [ -"math/52874761_810.png" -], -"solution": "\\textbf{Solution:} Draw lines OB and OC,\n\nsince $\\angle EAC = 120^\\circ$,\n\ntherefore $\\angle BAC = 180^\\circ - \\angle EAC = 60^\\circ$,\n\ntherefore $\\angle BDC = \\angle BAC = 60^\\circ$,\n\ntherefore $\\angle BOC = 2\\angle BDC = 2 \\times 60^\\circ = 120^\\circ$,\n\nthus, the degree measure of arc $\\overset{\\frown}{BC}$ is $\\boxed{120^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874751_92": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, and CD is a chord with AB $\\perp$ CD at point E. Connect AC, OC, and BC. If AE = 2cm and BE = 8cm, what is the length of chord CD in cm?", -"image_file_name": "7058778", -"image": [ -"math/52874751_820.png" -], -"solution": "\\textbf{Solution:} Given $AE=2\\text{cm}$ and $BE=8\\text{cm}$,\\\\\nit follows that $OA=5\\text{cm}$ and $OE=3\\text{cm}$,\\\\\nIn $\\triangle OCE$, $CE= \\sqrt{5^2-3^2}=4\\text{cm}$,\\\\\nSince $AB\\perp CD$,\\\\\nit implies $CE=DE$,\\\\\nTherefore, $CD=2CE=\\boxed{8\\text{cm}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874717_95": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of $\\odot O$, $\\angle ACD$ is the angle subtended by arc $AD$ on the circumference, $\\angle ACD=30^\\circ$. What is the measure of $\\angle DAB$ in degrees?", -"image_file_name": "7058778", -"image": [ -"math/52874717_830.png" -], -"solution": "\\textbf{Solution:} Connect BD, \\\\\n$\\because$ AB is the diameter of the circle, \\\\\n$\\therefore \\angle ADB=90^\\circ$, \\\\\n$\\because \\angle ACD=\\angle B=30^\\circ$, \\\\\n$\\therefore \\angle DAB=90^\\circ-\\angle B=90^\\circ-30^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874717_96": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of the circle $\\odot O$, $\\angle ACD$ is the angle subtended by arc $AD$ on the circumference of the circle, and $\\angle ACD=30^\\circ$. A line is drawn through point $D$ such that $DE\\perp AB$ with $E$ being the foot of the perpendicular, and the extension of $DE$ intersects $\\odot O$ at point $F$. If $AB=4$, what is the length of $DF$?", -"image_file_name": "7058778", -"image": [ -"math/52874717_830.png" -], -"solution": "\\textbf{Solution:} Extend line OD, \\\\\n$\\because \\angle DAB=60^\\circ$ and OD=OA=2,\\\\\n$\\therefore \\triangle AOD$ is an equilateral triangle,\\\\\n$\\therefore AD=2$,\\\\\n$\\because DE \\perp AB$,\\\\\n$\\therefore \\angle ADE=30^\\circ$ and DF=2DE,\\\\\n$\\therefore AE=\\frac{1}{2}AD=1$,\\\\\nIn $\\triangle ADE$, $DE=\\sqrt{AD^{2}-AE^{2}}=\\sqrt{3}$,\\\\\n$\\therefore DF=2\\sqrt{3}=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874685_99": { -"question": "As shown in the figure, within circle $O$, the diameter $AB \\perp$ chord $CD$ at point $M$, and point $E$ is the midpoint of arc $AD$. Connect $AD$ and $CE$, and extend $AE$ and $CD$ to meet at point $F$. It is given that $\\angle AEC = 2\\angle C$. When $AM=4$ and $CD=6$, what is the length of $AF$?", -"image_file_name": "7058778", -"image": [ -"math/52874685_840.png" -], -"solution": "\\textbf{Solution:} Given the problem statement,\\\\\n$\\because \\angle AEC = 2\\angle C$ and $\\angle AEC = \\angle C + \\angle F$,\\\\\n$\\therefore \\angle C = \\angle F$,\\\\\nAlso, $\\because \\angle DAE = \\angle C$,\\\\\n$\\therefore \\angle DAE = \\angle F$,\\\\\n$\\therefore AD=DF$,\\\\\n$\\because AM=4$, $CD=6$, and diameter $AB\\perp$ chord CD,\\\\\n$\\therefore AD=DF=5$,\\\\\n$\\therefore AF=\\sqrt{4^2+8^2}=\\boxed{4\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874653_101": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, point $C$ is on $\\odot O$, extend $BC$ to point $D$ such that $DC=CB$, extend $DA$ to meet $\\odot O$ at another point $E$, and connect $AC$, $CE$. If $\\angle E = 32^\\circ$, what is the measure of $\\angle D$ in degrees?", -"image_file_name": "7058778", -"image": [ -"math/52874653_850.png" -], -"solution": "\\textbf{Solution:} Given: $\\because$ AB is the diameter of $\\odot$O,\\\\\n$\\therefore$ $\\angle$ACB=$90^\\circ$,\\\\\n$\\because$ CD=CB,\\\\\n$\\therefore$ AC is the perpendicular bisector of BD.\\\\\n$\\therefore$ AB=AD,\\\\\n$\\therefore$ $\\angle$B=$\\angle$D,\\\\\n$\\because$ $\\angle$B=$\\angle$E,\\\\\n$\\therefore$ $\\angle$D=$\\angle$E,\\\\\n$\\because$ $\\angle$E=$32^\\circ$,\\\\\n$\\therefore$ $\\angle$D=$\\boxed{32^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52874653_102": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, point C is on $\\odot O$, extend BC to point D such that DC=CB, extend DA to another intersection point E with $\\odot O$, and connect AC, CE. If AB=13 and BC−AC=7, what is the length of CE?", -"image_file_name": "7058778", -"image": [ -"math/52874653_850.png" -], -"solution": "\\textbf{Solution:} Let $AC=x$,\\\\\nsince $BC-AC=7$,\\\\\ntherefore $BC=x+7$,\\\\\nin $\\triangle ABC$, where $AB=13$,\\\\\nthus $AB^2=AC^2+BC^2=13^2$, that is $x^2+(x+7)^2=13^2$,\\\\\nhence $x_1=5$, $x_2=-12$ (discard),\\\\\ntherefore $AC=5$,\\\\\ntherefore $BC=CD=12$,\\\\\nsince $\\angle D=\\angle E$,\\\\\nthus $CD=CE$,\\\\\ntherefore $CE=\\boxed{12}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52871720_104": { -"question": "As shown in the figure, in the sector $ABC$ with a radius of 6, $\\angle AOB=120^\\circ$, C is a moving point on the arc $\\overset{\\frown}{AB}$ (not coinciding with A or B), $OD\\perp AC$, $OE\\perp BC$, with the feet of the perpendiculars being points D and E, respectively. What is the length of $DE$?", -"image_file_name": "7058778", -"image": [ -"math/52871720_864.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect $AB$, and draw $OF\\perp AB$ at $F$,\\\\\n$\\because \\angle AOB=120^\\circ, OA=OB$,\\\\\n$\\therefore \\angle OAB=\\angle OBA=\\frac{180^\\circ-\\angle AOB}{2}=30^\\circ$,\\\\\n$\\therefore OF=\\frac{1}{2}OA=3$,\\\\\nIn $\\triangle AOF$, by the Pythagorean theorem, $AF=\\sqrt{OA^{2}-OF^{2}}=3\\sqrt{3}$,\\\\\n$\\therefore$, by the perpendicular diameter theorem, $AB=2AF=6\\sqrt{3}$,\\\\\n$\\because OD\\perp AC, OE\\perp BC$,\\\\\n$\\therefore$ D and E are respectively the midpoints of $AC$ and $BC$,\\\\\n$\\therefore DE$ is the midline of $\\triangle ABC$,\\\\\n$\\therefore DE=\\frac{1}{2}AB=3\\sqrt{3}$;\\\\\nThus, the length of $DE$ is $\\boxed{3\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52871720_105": { -"question": "As shown in the figure, in the sector $ABC$ with a radius of $6$, where $\\angle AOB = 120^\\circ$, $C$ is a moving point on the arc $\\overset{\\frown}{AB}$ (not coinciding with $A$ or $B$), $OD \\perp AC$, $OE \\perp BC$, with the feet of the perpendiculars being points $D$ and $E$, respectively. Find the measures of each interior angle of the quadrilateral $ODCE$.", -"image_file_name": "7058778", -"image": [ -"math/52871720_864.png" -], -"solution": "\\textbf{Solution:} As the figure shows, take a point $H$ on the major arc $AB$, and connect $AH$, $BH$, \\\\\n$\\therefore \\angle AHB=\\frac{1}{2}\\angle AOB=60^\\circ$, \\\\\n$\\because$ quadrilateral $ACBH$ is a cyclic quadrilateral, \\\\\n$\\therefore \\angle DCE=180^\\circ-\\angle AHB=\\boxed{120^\\circ}$, \\\\\n$\\because OD\\perp AC$, $OE\\perp BC$, \\\\\n$\\therefore \\angle ODC=\\angle OEC=90^\\circ$, \\\\\n$\\therefore \\angle BOD=360^\\circ-\\angle ODC-\\angle OEC-\\angle DCE=\\boxed{60^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52871917_107": { -"question": "In the circle $\\odot O$, $AB$ is a diameter, and point C is a point on the circle. The minor arc is folded along the chord $AC$ intersecting $AB$ at point D, and $CD$ is connected. As shown in Figure 1, if point D coincides with the center O and $AC = \\sqrt{3}$, what is the radius $r$ of $\\odot O$?", -"image_file_name": "7058778", -"image": [ -"math/52871917_875.png" -], -"solution": "\\textbf{Solution:} Let the point $D$ be symmetric to the chord $AC$, and call this symmetric point $F$. Connect $DF$ and let it intersect $AC$ at point $E$,\n\nthus $DE=EF, DF\\perp AC, AE=EC$,\n\nsince $AC=\\sqrt{3}$,\n\ntherefore $AE=EC=\\frac{\\sqrt{3}}{2}$,\n\nlet $DE=EF=\\frac{r}{2}$,\n\nthen $AD=DF=r$,\n\naccording to the Pythagorean theorem, we get ${r}^{2}-\\left(\\frac{r}{2}\\right)^{2}=\\left(\\frac{\\sqrt{3}}{2}\\right)^{2}$,\n\nsolving this yields $r=\\boxed{1}$,\n\ntherefore, the radius $r$ of the circle is \\boxed{1}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52871917_108": { -"question": "In circle $ \\odot O$, $ AB$ is a diameter, and point $C$ is a point on the circle. Fold the minor arc along chord $ AC$ to intersect $ AB$ at point $D$. Connect $ CD$. As shown in Figure 2, if point $D$ and the center $O$ do not coincide, and $ \\angle BAC=20^\\circ$, find the degree measure of $ \\angle DCA$.", -"image_file_name": "7058778", -"image": [ -"math/52871917_875.png" -], -"solution": "\\textbf{Solution:} Let the symmetrical point of point D with respect to chord $AC$ be F, and connect $AF$ and $CB$, \\\\\nAccording to the problem, we get $\\angle BAC=\\angle FAC=20^\\circ$, $CD=CF$, \\\\\nHence, $CB=CF=CD$, \\\\\nThus, $\\angle B=\\angle CDB$; \\\\\nSince $AB$ is the diameter, \\\\\nTherefore, $\\angle ACB=90^\\circ, \\angle B=\\angle CDB=70^\\circ$, \\\\\nTherefore, $\\angle DCA=\\angle CDB-\\angle BAC=70^\\circ-20^\\circ=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52871917_109": { -"question": "In circle $ \\odot O$, where $AB$ is the diameter and point C is a point on the circle. The minor arc is folded along chord $AC$ to intersect $AB$ at point D. Connect $CD$. As shown in Figure 2, if $AD=6$ and $DB=2$, find the length of $AC$.", -"image_file_name": "7058778", -"image": [ -"math/52871917_875.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $OC$ and $CB$, and draw $CG\\perp AB$ at point G,\\\\\naccording to (2) we have $CB=CD$,\\\\\n$\\therefore BG=DG$,\\\\\n$\\because AD=6$, $DB=2$,\\\\\n$\\therefore BG=DG=\\frac{1}{2}DB=1$, $AB=AD+DB=6+2=8$,\\\\\n$\\therefore r=OC=\\frac{1}{2}AB=4$,\\\\\n$\\therefore OD=AD-OB=6-4=2$, $OG=OD+DG=1+2=3$,\\\\\n$\\therefore CG=\\sqrt{OC^{2}-DG^{2}}=\\sqrt{4^{2}-3^{2}}=\\sqrt{7}$, $AG=AD+DG=6+1=7$,\\\\\n$\\therefore AC=\\sqrt{AG^{2}+CG^{2}}=\\sqrt{7^{2}+(\\sqrt{7})^{2}}=\\boxed{2\\sqrt{14}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52861807_112": { -"question": "Given in the diagram, $AB$ is the diameter of $\\odot O$, and points $C$, $D$ are on $\\odot O$, with $BC\\perp AC$ and $OD\\parallel BC$, $AC$ intersects with $BD$, $OD$ at point $E$, $F$ respectively. Point $D$ is the midpoint of $\\overset{\\frown}{AC}$; if $DF=7$, $AC=24$, what is the diameter of $\\odot O$?", -"image_file_name": "7058778", -"image": [ -"math/52861807_8812.png" -], -"solution": "Solution: From the given information, we have\n\n\\[\n\\because OF\\perp AC,\n\\]\n\\[\n\\therefore AF=\\frac{1}{2}AC=12,\n\\]\n\\[\n\\because DF=7,\n\\]\n\\[\n\\therefore OF=OD-DF=OA-7,\n\\]\n\\[\n\\because OA^2=AF^2+OF^2,\n\\]\n\\[\n\\therefore OA^2=12^2+(OA-7)^2,\n\\]\n\\[\n\\therefore OA=\\frac{193}{14},\n\\]\n\\[\n\\therefore \\text{The diameter of the circle } O \\text{ is } \\boxed{\\frac{193}{7}}.\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52861398_115": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, point $E$ is on $AC$, the circle $O$ passing through points $A$, $B$, and $E$ intersects $BC$ at point $D$, and point $D$ is the midpoint of arc $BE$, with $AB$ being the diameter of the circle; if $AB=8$ and $\\angle C=60^\\circ$, what is the area of the shaded region?", -"image_file_name": "7058778", -"image": [ -"math/52861398_890.png" -], -"solution": "\\textbf{Solution:}\n\nLet $OF \\perp BE$,\\\\\n$\\therefore \\angle OFB=90^\\circ$, $BE=2BF$,\\\\\n$\\because AB=AC$, $\\angle C=60^\\circ$,\\\\\n$\\therefore \\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore \\angle BAC=60^\\circ$,\\\\\n$\\because \\overset{\\frown}{BE}=\\overset{\\frown}{BE}$,\\\\\n$\\therefore \\angle BOE=2\\angle BAC=120^\\circ$, $\\angle AOE=180^\\circ-120^\\circ=60^\\circ$,\\\\\n$\\because AB=8$,\\\\\n$\\therefore$ the radius of the circle is 4,\\\\\n$\\because OB=OE$, $\\angle BOE=120^\\circ$, $OF\\perp BE$,\\\\\n$\\therefore \\angle BOF= \\frac{1}{2}\\angle BOE=60^\\circ$,\\\\\n$\\therefore \\angle OBF=90^\\circ-60^\\circ=30^\\circ$,\\\\\n$\\therefore OF= \\frac{1}{2}OB=2$,\\\\\n$\\therefore BF=\\sqrt{4^2-2^2}=2\\sqrt{3}$,\\\\\n$\\therefore BE=4\\sqrt{3}$,\\\\\n$\\therefore S_{\\text{shaded part}}= S_{\\text{sector} AOE}+S_{\\triangle BOE}=\\frac{60^\\circ \\pi \\times 4^2}{360}+\\frac{1}{2}\\times 2\\times 4\\sqrt{3}=\\boxed{\\frac{8}{3}\\pi +4\\sqrt{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52861206_119": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, point C is the midpoint of $\\overset{\\frown}{BD}$, CF is a chord of $\\odot O$, and CF $\\perp$ AB with the foot of the perpendicular at point E. Connect BD and CF at point G, and connect CD, AD, BF. $\\triangle BFG \\cong \\triangle CDG$; if AD=10 and EF=15, find the length of BE.", -"image_file_name": "7058778", -"image": [ -"math/52861206_901.png" -], -"solution": "\\textbf{Solution:} Draw line OF,\\\\\n$\\because$ arc CD = arc CB = arc BF,\\\\\n$\\therefore$ arc CF = arc DB,\\\\\n$\\therefore$ BD = CF = 2, EF = 30,\\\\\n$\\because$ AD = 10, $\\angle ADB = 90^\\circ$,\\\\\n$\\therefore$ AB = $10\\sqrt{10}$,\\\\\n$\\therefore$ OF = $5\\sqrt{10}$,\\\\\n$\\because$ CF $\\perp$ AB,\\\\\n$\\therefore$ OE = 5, BE = $5\\sqrt{10} - 5 = \\boxed{5\\sqrt{10} - 5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52814915_121": { -"question": "As shown in the figure, within circle $\\odot O$, the diameter $AB$ intersects with the chord $CD$ at point $P$, $\\angle CAB=40^\\circ$, $\\angle APD=65^\\circ$. What is the measure of $\\angle DAB$?", -"image_file_name": "7058778", -"image": [ -"math/52814915_910.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle APD = \\angle C + \\angle CAB$,\\\\\n$\\therefore \\angle C = \\angle APD - \\angle CAB = 65^\\circ - 40^\\circ = 25^\\circ$,\\\\\n$\\therefore \\angle B = \\angle C = 25^\\circ$.\\\\\nBecause $AB$ is the diameter of $\\odot O$, $\\therefore \\angle ADB = 90^\\circ$,\\\\\n$\\therefore \\angle DAB = 90^\\circ - \\angle B = 90^\\circ - 25^\\circ = \\boxed{65^\\circ}$.", -"solution_image": [ -"solution_images/52814915_910.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52814915_122": { -"question": "As shown in the figure, within circle $O$, the diameter $AB$ intersects the chord $CD$ at point $P$, $\\angle CAB=40^\\circ$, $\\angle APD=65^\\circ$. If $AD=6$, what is the distance from the center of the circle $O$ to $BD$?", -"image_file_name": "7058778", -"image": [ -"math/52814915_910.png" -], -"solution": "\\textbf{Solution:} It is insufficient to deduce the distance from the center $O$ to $BD$ based on the given information, therefore a specific solution cannot be provided. $\\boxed{\\text{Insufficient information}}$.", -"solution_image": [ -"solution_images/52814915_910.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52808502_125": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and $CD$ is a chord of $O$ with $CD\\perp AB$ at point $E$. $\\angle BCO = \\angle D$; If $BE=9\\text{cm}$ and $CD=6\\text{cm}$, what is the radius of $\\odot O$?", -"image_file_name": "7058778", -"image": [ -"math/52808502_920.png" -], -"solution": "\\textbf{Solution:} Let the radius be $x$, then $OE=9-x$.\\\\\nSince diameter $AB \\perp CD$ and $CD= 6$,\\\\\nit follows that $CE=3$.\\\\\nIn $\\triangle OCE$, we have $OC^{2}=OE^{2}+CE^{2}$,\\\\\ntherefore $x^{2}=(9-x)^{2}+3^{2}$,\\\\\nhence $x=\\boxed{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52774665_127": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in a circle $\\odot O$, where $\\overset{\\frown}{AD}=\\overset{\\frown}{CD}$, $\\angle ABD=33^\\circ$, and $\\angle ACB=44^\\circ$. What is the degree measure of $\\angle BAC$?", -"image_file_name": "7058778", -"image": [ -"math/52774665_931.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\overset{\\frown}{AD}=\\overset{\\frown}{CD}$,\\\\\n$\\therefore \\angle ABD=\\angle DBC=\\angle DAC=33^\\circ$,\\\\\n$\\therefore \\angle ABC=\\angle ABD+\\angle DBC=33^\\circ+33^\\circ=66^\\circ$,\\\\\n$\\therefore \\angle BAC=180^\\circ-\\angle ABC-\\angle ACB=180^\\circ-66^\\circ-44^\\circ=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52774665_128": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $O$, with $\\overset{\\frown}{AD} = \\overset{\\frown}{CD}$, $\\angle ABD = 33^\\circ$, and $\\angle ACB = 44^\\circ$. What is the measure of $\\angle BAD$?", -"image_file_name": "7058778", -"image": [ -"math/52774665_931.png" -], -"solution": "Solution: Since $\\overset{\\frown}{CD}=\\overset{\\frown}{CD}$,\\\\\n$\\therefore \\angle DAC=\\angle DBC=33^\\circ$,\\\\\n$\\therefore \\angle BAD=\\angle DAC+\\angle CAB=33^\\circ+70^\\circ=\\boxed{103^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52755194_131": { -"question": "As shown in the diagram, $AB$ and $CD$ are diameters of $\\odot O$, with chords $DE$ and $BF$ intersecting the radii $AO$ and $CO$ at points $G$ and $H$, respectively, and $\\angle FBA=\\angle EDC$. Given $DE=BF$, and if $\\overset{\\frown}{AE}=\\overset{\\frown}{EF}=\\overset{\\frown}{FC}$, and $\\angle DOB=\\angle EGO$, what is the degree measure of $\\overset{\\frown}{AC}$?", -"image_file_name": "7058778", -"image": [ -"math/52755194_940.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, since $OB = OD$, it follows that $\\angle 1 = \\angle 2$, therefore $\\angle DOB = 180^\\circ - 2\\angle 1$. Since $\\angle EGO = \\angle EDB + \\angle ABD = \\angle 3 + \\angle 1 + \\angle 2 = \\angle 3 + 2\\angle 1$, and $\\angle DOB = \\angle EGO$, it follows that $180^\\circ - 2\\angle 1 = \\angle 3 + 2\\angle 1$, therefore $\\angle 3 = 180^\\circ - 4\\angle 1$. Since $\\overset{\\frown}{AE} = \\overset{\\frown}{EF} = \\overset{\\frown}{FC}$, it follows that $\\angle 3 = 2\\angle ADE$, therefore $\\angle ADE = \\frac{1}{2}\\angle 3$. Since $CD$ is the diameter of $\\odot O$, it follows that $\\overset{\\frown}{AD} + \\overset{\\frown}{AE} + \\overset{\\frown}{CE} = 180^\\circ$, therefore $\\angle 2 + \\angle ADE + \\angle 3 = 90^\\circ$, hence $\\angle 1 + \\frac{1}{2} \\times (180^\\circ - 4\\angle 1) + (180^\\circ - 4\\angle 1) = 90^\\circ$, therefore $5\\angle 1 = 180^\\circ$, thus $\\angle 1 = 36^\\circ$, hence $\\angle DOB = 180^\\circ - 36^\\circ \\times 2 = 108^\\circ$, therefore $\\angle AOC = 108^\\circ$, hence the degree of $\\overset{\\frown}{AC}$ is $\\boxed{108^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52747354_134": { -"question": "As shown in the figure, $AB$ is the diameter of the semicircle $\\odot O$, and $C,D$ are two points on the circle, with $OD\\parallel AC$ and $OD$ intersecting $BC$ at point $E$. $E$ is the midpoint of $BC$. If $BC=6$ and $DE=2$, what is the length of $AB$?", -"image_file_name": "7058778", -"image": [ -"math/52747354_954.png" -], -"solution": "\\textbf{Solution:} From (1), we have $BE=3$. Let $OB=OD=x$, then $OE=x-2$. In right triangle $OEB$, we have $BE^2+OE^2=OB^2$, that is $3^2+(x-2)^2=x^2$. Solving this, we get: $x=\\frac{13}{4}$, so $OB=\\frac{13}{4}$, therefore $AB=2OB=\\boxed{\\frac{13}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52733204_136": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, the chord $CD \\perp AB$ at point $E$. $G$ is a moving point on arc $AC$ and does not coincide with points $A$ and $C$. The extensions of $AG$ and $DC$ intersect at point $F$. Connect $BC$. Given $CD = 4\\sqrt{3}$ and $BE = 2$, find the length of the radius.", -"image_file_name": "7058778", -"image": [ -"math/52733204_961.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OD and let OD = OB = r. Since AB is the diameter and AB $\\perp$ CD, with CD = $4\\sqrt{3}$, it follows that DE = EC = $2\\sqrt{3}$. In $\\triangle ODE$, by the Pythagorean theorem, we have $OD^2 = OE^2 + DE^2$. Therefore, $r^2 = (r-2)^2 + 12$. Solving this, we obtain $r = \\boxed{4}$. Hence, the radius of circle O is \\boxed{4}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52733204_137": { -"question": "As shown in the diagram, AB is the diameter of the circle $\\odot O$. The chord CD is perpendicular to AB at point E. G is a moving point on the arc AC and does not coincide with points A and C. The extensions of AG and DC intersect at point F. Connect BC. The length of CD is $4\\sqrt{3}$ and BE is 2. What is the area of the sector DOC?", -"image_file_name": "7058778", -"image": [ -"math/52733204_961.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OC, \\\\\n$\\because$ in $\\triangle ODE$, $DO=4$, $OE=2$, \\\\\n$\\therefore \\angle ODE=30^\\circ$, \\\\\n$\\because$ $OD=OC$, \\\\\n$\\therefore \\angle OCD=30^\\circ$, \\\\\n$\\therefore \\angle DOC=120^\\circ$, \\\\\n$\\therefore$ the area of sector DOC $=\\frac{120^\\circ \\cdot \\pi \\cdot 16}{360^\\circ}=\\boxed{\\frac{16\\pi}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52733131_139": { -"question": "As shown in the figure, $E$ is a point on semicircle $O$, $C$ is the midpoint of arc $\\overset{\\frown}{BE}$, and diameter $AB \\parallel$ chord $DC$, intersecting $AE$ at point $F$. Prove that: $CF=AF$.", -"image_file_name": "7058778", -"image": [ -"math/52733131_971.png" -], -"solution": "\\textbf{Solution:} Proof: \\\\\n$\\because C$ is the midpoint of $\\overset{\\frown}{BE}$, \\\\\n$\\therefore \\angle EAC = \\angle CAB$, \\\\\n$\\because$ diameter AB$\\parallel$chord DC, \\\\\n$\\therefore \\angle DCA = \\angle CAB$, \\\\\n$\\therefore \\angle DCA = \\angle EAC$, \\\\\n$\\therefore \\boxed{CF = AF}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52733131_140": { -"question": "As shown in the figure, E is a point on the semicircle with center O, C is the midpoint of the arc $\\overset{\\frown}{BE}$, and the diameter $AB$ is parallel to chord $DC$, intersecting $AE$ at point $F$. It is given that $CF=AF$. When $AB=4$ and $OE \\perp CD$, find the value of $EF$.", -"image_file_name": "7058778", -"image": [ -"math/52733131_971.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect OC, OE.\\\\\n$\\because$ OE$\\perp$CD, $\\therefore$ $\\overset{\\frown}{AE}=\\overset{\\frown}{BE}$, $\\therefore$ $\\angle AOE=\\angle BOE=90^\\circ$.\\\\\n$\\because$ AB=4, $\\therefore$ AO=EO=2, $\\therefore$ AE= $2\\sqrt{2}$, $\\angle OAC=\\angle OCA$. By (1) we have $\\angle DCA=\\angle EAC=\\angle CAB$, $\\therefore$ $\\angle FCA=\\angle FAC=\\angle OAC=\\angle OCA$. Also, $\\because$ AC=AC, $\\therefore$ $\\triangle AOC\\cong \\triangle AFC$, $\\therefore$ AF=AO=2, $\\therefore$ EF=AE−AF= $2\\sqrt{2}-2=\\boxed{2\\sqrt{2}-2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52731766_143": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in $\\odot O(AC>BC)$, with $AB$ being the diameter of $\\odot O$. Points E, C, D lie on $\\odot O$, and the arcs $\\overset{\\frown}{EC}=\\overset{\\frown}{CB}=\\overset{\\frown}{BD}$. Lines $ED$ intersect $AC, AB$ at points F and G, respectively. $\\triangle EFA\\sim \\triangle BCA$. If $BC=5, BG=4$, calculate the length of $AE$.", -"image_file_name": "7058778", -"image": [ -"math/52731766_988.png" -], -"solution": "\\textbf{Solution:} Given that $AB$ is the diameter of $\\odot O$,\\\\\n$\\therefore \\angle ACB=90^\\circ$,\\\\\n$\\because \\triangle EFA\\sim \\triangle BCA$,\\\\\n$\\therefore \\angle EFA=\\angle C=90^\\circ$, $\\frac{EF}{AE}=\\frac{BC}{AB}$,\\\\\nAlso $\\because \\angle CAE=\\angle CAB$, $AF=AF$,\\\\\n$\\therefore \\triangle AEF\\cong \\triangle AFG$ (ASA),\\\\\n$\\therefore AE=AG$, $EF=FG$,\\\\\n$\\because \\angle AEG=\\angle ABD$, $\\angle AGE=\\angle BGD$,\\\\\n$\\therefore \\triangle AEG\\sim \\triangle DBG$,\\\\\n$\\therefore \\frac{BD}{BG}=\\frac{AE}{EG}=\\frac{5}{4}$,\\\\\nLet $EF=FG=2x, AE=AG=5x$,\\\\\n$\\therefore AB=5x+4$,\\\\\n$\\therefore \\frac{BC}{AB}=\\frac{EF}{AE}=\\frac{5}{5x+4}=\\frac{2}{5}$,\\\\\n$\\therefore x=\\frac{17}{10}$,\\\\\n$\\therefore AE=5x=\\boxed{\\frac{17}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52807144_146": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, CD is a chord, and CD $\\perp$ AB at point E. Connect DO and extend it to intersect $\\odot O$ at point F. Connect AF, which intersects CD at point G, with CG = AG, and connect AC. AC $\\parallel$ DF; if AB = 12, what are the lengths of AC and GD?", -"image_file_name": "7058778", -"image": [ -"math/52807144_990.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect CO,\\\\\nsince AB$\\perp$CD,\\\\\nthus $\\overset{\\frown}{AC} $= $\\overset{\\frown}{AD}$, CE=DE,\\\\\nsince $\\angle$DCA=$\\angle$CAF,\\\\\nthus $\\overset{\\frown}{AD} $= $\\overset{\\frown}{CF}$,\\\\\nthus $\\overset{\\frown}{AC} $= $\\overset{\\frown}{AD} $= $\\overset{\\frown}{CF}$,\\\\\nthus $\\angle$AOD=$\\angle$AOC=$\\angle$COF,\\\\\nsince DF is the diameter,\\\\\nthus $\\angle$AOD=$\\angle$AOC=$\\angle$COF=$60^\\circ$,\\\\\nsince OA=OC,\\\\\nthus $\\triangle$AOC is an equilateral triangle,\\\\\nthus AC=AO=6, $\\angle$CAO=$60^\\circ$,\\\\\nsince CE$\\perp$AO,\\\\\nthus AE=EO=3, $\\angle$ACD=$30^\\circ$,\\\\\nthus CE=3$\\sqrt{3}$=DE,\\\\\nsince AG$^{2}$=GE$^{2}$+AE$^{2}$,\\\\\nthus AG$^{2}$=(3$\\sqrt{3}$−AG)$^{2}$+9,\\\\\nthus AG=2$\\sqrt{3}$,\\\\\nthus GE=$\\sqrt{3}$,\\\\\nthus DG=4$\\sqrt{3}$.\\\\\nTherefore, the lengths of AC and GD are respectively AC=\\boxed{6} and DG=\\boxed{4\\sqrt{3}}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"50561277_49": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $l_{1}$ passes through points $A(1,0)$ and $B(0,2)$. What is the analytical expression of line $l_{1}$?", -"image_file_name": "7054110", -"image": [ -"math/50561277_480.png" -], -"solution": "\\textbf{Solution:} Let the equation of line $l_{1}$ be $y=kx+b$. According to the problem, we have\n\\[\n\\left\\{\n\\begin{array}{l}\nk+b=0, \\\\\nb=2.\n\\end{array}\n\\right.\n\\]\nSolving these equations, we find\n\\[\n\\left\\{\n\\begin{array}{l}\nk=-2, \\\\\nb=2.\n\\end{array}\n\\right.\n\\]\n$\\therefore$ The equation of line $l_{1}$ is \\boxed{y=-2x+2}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50561277_50": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $l_{1}$ passes through point $A(1,0)$ and point $B(0,2)$. The moving point $P(m,n)$ is on the line $l_{1}$. When $-2y_2>0$ holds.", -"image_file_name": "7054110", -"image": [ -"math/50561230_490.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, let us draw perpendicular lines $l$ and $m$ from $D$ and $C$ respectively to the x-axis. The segment between lines $l$ and $m$ satisfies $y_1>y_2>0$. In this case, $2y_2>0$ is $x\\in\\boxed{(2,3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50561201_57": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, for rectangle $ABCD$, edge $AB$ lies on the $x$-axis, $AB = 3$, and $AD = 2$. The line passing through point $C$ described by $y = x - 2$ intersects the $x$-axis and the $y$-axis at points $E$ and $F$, respectively. What are the coordinates of point $D$?", -"image_file_name": "7054110", -"image": [ -"math/50561201_5012.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point $C$ be $(4, 2)$,\\\\\n$\\because$ point $C$ is on the line $y=x-2$,\\\\\n$\\therefore 2=4-2$,\\\\\nwhich means the coordinates of point $C$ are $(4, 2)$,\\\\\n$\\because$ quadrilateral $ABCD$ is a rectangle,\\\\\n$\\therefore AB=CD=3$, $AD=BC=2$,\\\\\n$\\therefore$ the coordinates of point $D$ are $\\boxed{(1, 2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50561201_58": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the rectangle $ABCD$ has its side $AB$ on the $x$-axis, with $AB=3$ and $AD=2$. The line passing through point $C$ and described by $y=x-2$ intersects the $x$-axis and $y$-axis at points $E$ and $F$, respectively. The question is whether there exists a point $P$ on the line $y=x-2$ such that $\\triangle PDC$ is an isosceles right-angled triangle. Determine the coordinates of point $P$.", -"image_file_name": "7054110", -"image": [ -"math/50561201_5012.png" -], -"solution": "\\textbf{Solution:} There exists.\n\\\\\n$\\because \\triangle EBC$ is an isosceles right-angled triangle,\\\\\n$\\therefore \\angle CEB=\\angle ECB=45^\\circ$,\\\\\nAlso, $\\because DC\\parallel AB$,\\\\\n$\\therefore \\angle DCE=\\angle CEB=45^\\circ$,\\\\\n$\\therefore \\triangle PDC$ can only be an isosceles right-angled triangle with $P$ and $D$ as the right-angled vertices.\\\\\nAs shown in the figure, (1) when $\\angle D=90^\\circ$, extend $DA$ to intersect the line $y=x-2$ at point $P_1$,\\\\\n$\\because$ the coordinates of point $D$ are $(1, 2)$,\\\\\n$\\therefore$ the $x$-coordinate of point $P_1$ is 1,\\\\\nSubstituting $x=1$ into $y=x-2$ gives, $y=-1$,\\\\\n$\\therefore$ the point $P_1(1, -1)$;\\\\\n(2) when $\\angle DPC=90^\\circ$, draw the perpendicular bisector of $DC$ to intersect the line $y=x-2$ at point $P_2$,\\\\\nTherefore, the $x$-coordinate of point $P_2$ is $\\frac{1+4}{2}=\\frac{5}{2}$,\\\\\nSubstituting $x=\\frac{5}{2}$ into $y=x-2$ gives, $y=\\frac{1}{2}$,\\\\\nTherefore, the point $P_2\\left(\\frac{5}{2}, \\frac{1}{2}\\right)$,\\\\\nIn summary, the coordinates of the suitable point $P$ are \\boxed{(1, -1)} or \\boxed{\\left(\\frac{5}{2}, \\frac{1}{2}\\right)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50561201_59": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the rectangle $ABCD$ has side $AB$ on the $x$ axis, with $AB=3$ and $AD=2$. The line through point $C$, given by $y=x-2$, intersects the $x$ axis and the $y$ axis at points $E$ and $F$, respectively. Determine the coordinate of point $M$ in the Cartesian coordinate system such that the quadrilateral formed by points $M$, $D$, $C$, and $E$ is a parallelogram. Please directly provide the coordinates of point $M$.", -"image_file_name": "7054110", -"image": [ -"math/50561201_5012.png" -], -"solution": "\\textbf{Solution:} When $y=0$, we have $x-2=0$, solving this gives $x=2$, thus $OE=2$. Since the quadrilateral with vertices $M$, $D$, $C$, $E$ is a parallelogram, if $DE$ is a diagonal, then $EM=CD=3$, therefore $OM=EM-OE=3-2=1$, in this case, the coordinates of point $M$ are $(-1, 0)$. If $CE$ is a diagonal, then $EM=CD=3$, and $OM=OE+EM=2+3=5$, in this case, the coordinates of point $M$ are $(5, 0)$. If $CD$ is a diagonal, then the center of the parallelogram has coordinates $\\left(\\frac{5}{2}, 2\\right)$, let the coordinates of point $M$ be $(x, y)$, then we have $\\frac{x+2}{2}=\\frac{5}{2}$ and $\\frac{y+0}{2}=2$, solving these gives $x=3$ and $y=4$, in this case, the coordinates of point $M$ are $(3, 4)$. In summary, the coordinates of point $M$ can be $(-1, 0)$, $(5, 0)$, or \\boxed{(3, 4)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50561111_61": { -"question": "As shown in the figure, the line $y=x+7$ intersects with the line $y=-2x-2$ at point C, and they intersect the y-axis at points A and B, respectively. What are the coordinates of points A, B, and C?", -"image_file_name": "7054110", -"image": [ -"math/50561111_512.png" -], -"solution": "\\textbf{Solution:} For the line $y=x+7$, when $x=0$, we have $y=0+7=7$, therefore $A(0, 7)$. On the line $y=-2x-2$, when $x=0$, we have $y=0-2=-2$, therefore $B(0, -2)$. Solving the system of equations $\\begin{cases}y=x+7\\\\ y=-2x-2\\end{cases}$ yields $\\begin{cases}x=-3\\\\ y=4\\end{cases}$, therefore $C(-3, 4)$. Consequently, the coordinates of points $A$, $B$, and $C$ are $\\boxed{A(0, 7)}$, $\\boxed{B(0, -2)}$, and $\\boxed{C(-3, 4)}$, respectively.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50561111_62": { -"question": "As shown in the figure, the line $y=x+7$ intersects with the line $y=-2x-2$ at point $C$. They intersect the y-axis at points $A$ and $B$, respectively. Point $F$ is on the positive x-axis, such that the area of $\\triangle ABC$ equals the area of $\\triangle AFC$. Find the coordinates of point $F$.", -"image_file_name": "7054110", -"image": [ -"math/50561111_512.png" -], -"solution": "\\textbf{Solution:} Since $S_{\\triangle AFC} = S_{\\triangle ABC}$, \\\\\nit follows that $BF \\parallel AC$, and thus the equation of line $BF$ is $y=x-2$. When $y=0$, $x-2=0$, which implies $x=2$, \\\\\nhence, the coordinates of $F$ are $\\boxed{(2, 0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50561111_63": { -"question": "As shown in the figure, the line $y=x+7$ intersects with the line $y=-2x-2$ at point C, and they intersect the y-axis at points A and B, respectively. Point P is on the x-axis, such that $\\angle PBO=2\\angle PAO$. Directly write down the coordinates of point P.", -"image_file_name": "7054110", -"image": [ -"math/50561111_512.png" -], -"solution": "\\textbf{Solution:} Take point $B'$(0, 2) on the positive semi-axis of $y$, then $OB=OB'=2$, connect $PB'$,\\\\\n$\\therefore PB=PB'$, hence $\\angle PBO=\\angle PB'O=2\\angle PAO$,\\\\\n$\\therefore \\angle B'AP=\\angle B'PA$,\\\\\ntherefore $PB'=B'A=7-2=5$,\\\\\nAssume point $P(x, 0)$,\\\\\nthen $PB'^2=2^2+x^2=5^2$, solving for $x$ yields $x=\\pm \\sqrt{21}$,\\\\\nTherefore, the coordinates of point P are $\\boxed{P_1(\\sqrt{21}, 0)}$ or $\\boxed{P_2(-\\sqrt{21}, 0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50560467_65": { -"question": "As shown in Figure 1, the analytical expression of line $AB$ is $y=kx+6$. The coordinates of point $D$ are $\\left(8, 0\\right)$. The symmetric point $C$ of point $O$ with respect to line $AB$ lies on line $AD$. What are the analytical expressions of lines $AD$ and $AB$?", -"image_file_name": "7054110", -"image": [ -"math/50560467_528.png", -"math/50560467_529.png", -"math/50560467_5210.png" -], -"solution": "\\textbf{Solution:} From the problem, we have\n\\[\n\\because y=kx+6,\n\\]\n\\[\n\\therefore A\\left(0, 6\\right),\n\\]\nthat is, $OA=6$. Also,\n\\[\n\\because D\\left(8, 0\\right),\n\\]\n\\[\n\\therefore OD=8,\n\\]\nSuppose the equation of line $AD$ is $y=nx+6$. Substituting point $D\\left(8, 0\\right)$ into it, we get the equation of line $AD$ as $y=-\\frac{3}{4}x+6$.\n\nIn $\\triangle ABD$, $AD=\\sqrt{6^2+8^2}=10$,\n\n\\[\n\\because \\text{Point $O$ and point $C$ are symmetric about line $AB$},\n\\]\n\\[\n\\therefore \\text{Let $OB=BC=a$, $OA=AC=6$, $CD=4$},\n\\]\n\\[\n\\therefore BD=8-a,\n\\]\nIn $\\triangle BCD$, $a^2+4^2=(8-a)^2$,\n\n\\[\n\\therefore a=3 \\text{(area method is also applicable)}\n\\]\n\\[\n\\therefore B\\left(3, 0\\right),\n\\]\n\\[\n\\therefore \\text{The equation of line $AB$ is } y=-2x+6.\n\\]\n\nTherefore, the equation of line $AD$ is $\\boxed{y=-\\frac{3}{4}x+6}$, and the equation of line $AB$ is $\\boxed{y=-2x+6}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50560467_66": { -"question": "As shown in Figure 1, the equation of line $AB$ is $y=kx+6$, and the coordinate of point $D$ is $(8, 0)$. The symmetric point of point $O$ with respect to line $AB$ is point $C$, which lies on line $AD$. As shown in Figure 2, if $OC$ intersects $AB$ at point $E$, is there a point $F$ on segment $AD$ such that the area of $\\triangle ABC$ is equal to the area of $\\triangle AEF$? Determine the coordinates of point $F$.", -"image_file_name": "7054110", -"image": [ -"math/50560467_528.png", -"math/50560467_529.png", -"math/50560467_5210.png" -], -"solution": "Solution: From (1), we have $BC=OB=3$, $CD=4$, and $BD=5$. Thus, $\\frac{1}{2}\\times 3\\times 4=\\frac{1}{2}\\times 5\\times y_c$. Solving this gives: $y_c=\\frac{12}{5}$. Substituting $y_c=\\frac{12}{5}$ into $y=-\\frac{3}{4}x+6$ yields: $x_c=\\frac{24}{5}$. Therefore, $C\\left(\\frac{24}{5}, \\frac{12}{5}\\right)$. The equation of line $AD$ is: $y=-\\frac{3}{4}x+6$. $\\therefore$ The equation of line $OC$ is: $y=\\frac{1}{2}x$. $\\because S_{\\triangle ABC}=S_{\\triangle AEF}$, $\\therefore S_{\\triangle BEC}=S_{\\triangle ECF}$, $\\therefore BF\\parallel OC$. Let the equation of line $BF$ be: $y=\\frac{1}{2}x+b$. Point $B(3, 0)$ lies on line $BF$, therefore $\\frac{1}{2}\\times 3+b=0$, hence $b=-\\frac{3}{2}$. Thus, the equation of line $BF$ is: $y=\\frac{1}{2}x-\\frac{3}{2}$. Solving the system of equations $\\begin{cases}y=\\frac{1}{2}x-\\frac{3}{2}\\\\ y=-\\frac{3}{4}x+6\\end{cases}$, we get $\\begin{cases}x=6\\\\ y=\\frac{3}{2}\\end{cases}$. Therefore, point $\\boxed{F\\left(6, \\frac{3}{2}\\right)}$ exists.\n", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50560467_67": { -"question": "As shown in the figure, the equation of line $AB$ is $y=kx+6$, the coordinates of point $D$ are $(8, 0)$, and the symmetric point $C$ of point $O$ with respect to line $AB$ lies on line $AD$. Consider a line $l: y=mx+b$ passing through point $D$. When the angle between line $l$ and line $AB$ is equal to $45^\\circ$, find the corresponding value of $m$.", -"image_file_name": "7054110", -"image": [ -"math/50560467_528.png", -"math/50560467_529.png", -"math/50560467_5210.png" -], -"solution": "\\textbf{Solution:} Set if the angle between line $DE$, $DF$ and line $AB$ is $45^\\circ$, i.e., $\\triangle DEF$ is an isosceles right triangle. Construct $EM\\perp DM$ at $M$, $FN\\perp DN$ at $N$, then $\\triangle DEM\\cong \\triangle FDN$,\n\n$\\therefore EM=DN$, $DM=FN$. Line $l$ passes through $D(8, 0)$, hence $0=8m+b$, solving this gives: $b=-8m$,\n\n$\\therefore$ the equation of line $l$ is: $y=mx-8m$. Let the coordinates of $E$ be $(t, -2t+6)$, then $EM=DN=8-t$, $DM=FN=-2t+6$,\n\n$\\therefore$ the coordinates of $F$ are $(2+2t, t-8)$. Point $F$ lies on line $AB$,\n\n$\\therefore t-8=-2(2+2t)+6$, solving this gives: $t=2$,\n\n$\\therefore E(2, 2)$, $F(6, -6)$. When line $l$ passes through point $E$, $2m-8m=2$, solving this gives: $m=\\boxed{-\\frac{1}{3}}$, when line $l$ passes through point $F$, $6m-8m=-6$, solving this gives: $m=\\boxed{3}$.\n\nTherefore, $m=\\boxed{3}$ or $\\boxed{-\\frac{1}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50560455_69": { -"question": "As shown in the Cartesian coordinate system $xOy$, given $A\\left(0, 4\\right)$ and $B\\left(4, 0\\right)$, the graph of the linear function $y=-2x$ intersects with line $AB$ at point $P$. Find the coordinates of point $P$.", -"image_file_name": "7054110", -"image": [ -"math/50560455_536.png" -], -"solution": "\\textbf{Solution:} According to the problem, let the equation of line $AB$ be: $y=kx+m$. Also, since $A\\left(0, 4\\right)$ and $B\\left(4, 0\\right)$ are on line $AB$, it follows that $m=4$, and $4k+4=0$. Solving this gives $k=-1$. Therefore, the equation of line $AB$ is $y=-x+4$. By solving the system of equations, we have $\\begin{cases}y=-x+4\\\\ y=-2x\\end{cases}$, which yields $\\begin{cases}x=-4\\\\ y=8\\end{cases}$. Therefore, the coordinates of point $P$ are $\\boxed{(-4, 8)}$.", -"solution_image": [ -"solution_images/50560455_538.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50560455_70": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, it is known that $A(0, 4)$ and $B(4, 0)$. The graph of the linear function $y=-2x$ intersects with line $AB$ at point $P$. If point $M$ is located on the $y$ axis, and the area of $\\triangle PMA$ is equal to $10$, what are the coordinates of point $M$?", -"image_file_name": "7054110", -"image": [ -"math/50560455_536.png" -], -"solution": "\\textbf{Solution:} From the problem, we have\n\\[\n\\because S_{\\triangle PMA} = \\frac{1}{2}AM \\times |x_{P}|,\n\\]\n\\[\n\\therefore \\frac{1}{2} \\times AM \\times 4 = 10,\n\\]\n\\[\n\\therefore AM = 5,\n\\]\n\\[\n\\because A(0, 4),\n\\]\n\\[\n\\therefore M(0, 9) \\text{ or } M(0, -1).\n\\]\n\nThus, the coordinates of point $M$ are $\\boxed{M(0, 9)}$ or $\\boxed{M(0, -1)}$.", -"solution_image": [ -"solution_images/50560455_538.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50560455_71": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, given $A\\left(0, 4\\right)$ and $B\\left(4, 0\\right)$, the graph of the linear function $y=-2x$ intersects with line $AB$ at point $P$. If the line $y=-2x+b$ has exactly two intersection points with the three sides of $\\triangle AOB$, what is the range of values for $b$?", -"image_file_name": "7054110", -"image": [ -"math/50560455_536.png" -], -"solution": "\\textbf{Solution:} Let the range of $b$ be $02x+2$?", -"image_file_name": "7054110", -"image": [ -"math/50555324_6011.png" -], -"solution": "\\textbf{Solution:} Given the inequality $kx+b>2x+2$.\n\nFirst, convert the inequality into standard form, that is, move all terms to one side to obtain $kx - 2x + b - 2 > 0$.\n\nTo solve the inequality, we need to determine the values of $k$ and $b$. However, these values are not provided in the question, hence we cannot directly find the solution set for this inequality.\n\nHowever, the given information is $x<1$, which does not directly assist us in resolving the original problem, as there is insufficient information to determine the solution set of the inequality $kx+b>2x+2$.\n\n\\boxed{\\text{Indeterminate}}, due to the lack of specific information about $k$ and $b$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50555324_95": { -"question": "As shown in the figure, the line $l_{1}: y=2x+2$ intersects the $x$-axis at point $A$ and the $y$-axis at point $C$; the line $l_{2}: y=kx+b$ intersects the $x$-axis at point $B(3, 0)$ and intersects with the line $l_{1}$ at point $D$, and the $y$-coordinate of point $D$ is 4. Find the equation of line $l_{2}$ and the area of $\\triangle CDE$.", -"image_file_name": "7054110", -"image": [ -"math/50555324_6011.png" -], -"solution": "\\textbf{Solution:} Substitute $B(3, 0)$ and $D(1, 4)$ into $y=kx+b$ to obtain: $\\begin{cases}3k+b=0\\\\ k+b=4\\end{cases}$\\\\\n$\\therefore \\begin{cases}k=-2\\\\ b=6\\end{cases}$\\\\\n$\\therefore$ the equation of line $l_{2}$ is: $y=-2x+6$\\\\\nLet $x=0$\\\\\n$\\therefore y=6$\\\\\n$\\therefore E(0, 6)$\\\\\nFrom $y=2x+2$, we know: $C(0, 2)$\\\\\n$\\therefore Area_{\\triangle CDE}=\\frac{1}{2}\\times (6-2)\\times 1=\\boxed{2}$\\\\\n$\\therefore$ The area of $\\triangle CDE$ is $\\boxed{2}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50555230_98": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $AC$ intersects the x-axis at point $C$ and the y-axis at point $A$, the line $AB$ intersects the x-axis at point $B$ and the y-axis at point $A$, with $A(0,4)$, $B(2,0)$ known. What is the analytical expression of line $AB$?", -"image_file_name": "7054110", -"image": [ -"math/50555230_610.png" -], -"solution": "\\textbf{Solution:} Let the equation of line AB be $y=kx+b$.\\\\\nSince line AB passes through A$(0, 4)$ and B$(2, 0)$,\\\\\ntherefore,\n\\[\n\\left\\{\n\\begin{array}{l}\nb=4 \\\\\n2k+b=0\n\\end{array}\n\\right.\n\\]\nSolving this, we get $k=-2$ and $b=4$,\\\\\ntherefore, the equation of line AB is $y=-2x+4=\\boxed{y=-2x+4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50555230_99": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line AC intersects the x-axis at point C, and intersects the y-axis at point A. The line AB intersects the x-axis at point B, and intersects the y-axis at point A. Given that A(0, 4) and B(2, 0). If $S_{\\triangle ABC} = 12$, find the coordinates of point C.", -"image_file_name": "7054110", -"image": [ -"math/50555230_610.png" -], -"solution": "\\textbf{Solution:} Let C$(x,0)$, since A$(0,4)$ and B$(2,0)$, therefore OA$=4$, OB$=2$. Given that the area $S_{\\triangle ABC}=12$, thus $\\frac{1}{2}$BC$\\cdot$OA$=12$, therefore BC$=6$, hence $|x-2|=6$. Solving this gives $x=8$ or $x=-4$. Therefore, the coordinates of C are $\\boxed{(-4,0)}$ or $\\boxed{(8,0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50555108_101": { -"question": "As shown in the diagram, in the Cartesian coordinate system, line $l_1: y = -2x + 1$ intersects the y-axis at point A, and line $l_2$ intersects the y-axis at point B $(0, -2)$ and intersects line $l_1$ at point C. The ordinate of point C is -1. Point D is an arbitrary point on line $l_2$. A perpendicular line to the x-axis is drawn from point D and intersects line $l_1$ at point E. What is the equation of line $l_2$?", -"image_file_name": "7054110", -"image": [ -"math/50555108_625.png" -], -"solution": "\\textbf{Solution:} Since the ordinate of point $C$ is $-1$ and point $C$ lies on line $l_1$,\\\\\nwe have $-1=-2x+1$, solving this gives $x=1$,\\\\\nthus the coordinates of point $C$ are $(1, -1)$,\\\\\nLet the equation of line $l_2$ be $y=kx+b$,\\\\\nsince line $l_2$ intersects the $y$-axis at point $B(0, -2)$, and intersects line $l_1$ at point $C$,\\\\\nwe obtain $\\begin{cases}k+b=-1\\\\ b=-2\\end{cases}$ solving this gives $\\begin{cases}k=1\\\\ b=-2\\end{cases}$\\\\\nTherefore, the equation of line $l_2$ is $y=x-2$, thus the equation of line $l_2$ is $\\boxed{y=x-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50555108_102": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $l_1\\colon y=-2x+1$ intersects with the y-axis at point A, and the line $l_2$ intersects with the y-axis at point B(0, -2) and intersects with line $l_1$ at point C, where the y-coordinate of point C is -1. Point D is any point on line $l_2$. A perpendicular line is drawn from point D to the x-axis, intersecting line $l_1$ at point E. When $DE = 2AB$, find the coordinates of point D?", -"image_file_name": "7054110", -"image": [ -"math/50555108_625.png" -], -"solution": "\\textbf{Solution:} Let $x=0$, we get $y=-2\\times 0+1=1$, \\\\\n$\\therefore$ the coordinates of point $A$ are $\\left(0, 1\\right)$, \\\\\n$\\therefore$ $AB=3$, let the abscissa of point $D$ be $m$, then the coordinates of point $D$ are $\\left(m, m-2\\right)$, \\\\\n$\\because$ $DE$ is parallel to the y-axis, \\\\\n$\\therefore$ the coordinates of point $E$ are $\\left(m, -2m+1\\right)$, \\\\\n$\\therefore$ $DE=\\left|\\left(m-2\\right)-\\left(-2m+1\\right)\\right|=\\left|3m-3\\right|$, \\\\\n$\\because$ $DE=2AB=6$, \\\\\n$\\therefore$ $\\left|3m-3\\right|=6$, solving gives $m=3$ or $m=-1$, \\\\\nWhen $m=3$, the coordinates of point $D$ are $\\left(3, 1\\right)$, \\\\\nWhen $m=-1$, the coordinates of point $D$ are $\\left(-1, -3\\right)$. \\\\\nTo summarize: The coordinates of point $D$ are $\\boxed{\\left(3, 1\\right)}$ or $\\boxed{\\left(-1, -3\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50553735_104": { -"question": "As shown in the figure, the line $l_1$ passing through point $B(2, 0)$ intersects with the line $l_2: y=2x+8$ at point $P(-1, n)$. What is the value of $n$?", -"image_file_name": "7054110", -"image": [ -"math/50553735_634.png" -], -"solution": "\\textbf{Solution:} Substitute $P(-1, n)$ into $y=2x+8$ to get $n=2\\times (-1)+8$. Solving this, we find $n=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50553735_105": { -"question": "The line $l_1$ passing through point $B(2, 0)$ intersects with the line $l_2: y=2x+8$ at point $P(-1, n)$. Try to find the length of $PB$.", -"image_file_name": "7054110", -"image": [ -"math/50553735_634.png" -], -"solution": "\\textbf{Solution:} Construct $PI\\perp x$-axis at point $I$,\n\nsince the coordinates of point $P$ are $(-1, 6)$,\n\nand point $B(2, 0)$,\n\ntherefore $BP=\\sqrt{PI^{2}+BI^{2}}=\\sqrt{6^{2}+3^{2}}=\\boxed{3\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50553714_107": { -"question": "As shown in the Cartesian coordinate system, the line $y=\\frac{1}{2}x+m$ intersects the $x$ axis at point $A$ and the $y$ axis at point $B$, where the coordinates of point $A$ are $\\left(-2, 0\\right)$, and the coordinates of point $C$ are $\\left(3, 0\\right)$. What are the coordinates of point $B$?", -"image_file_name": "7054110", -"image": [ -"math/50553714_649.png" -], -"solution": "\\textbf{Solution:} Substitute $A(-2, 0)$ into $y=\\frac{1}{2}x+m$, yielding $\\frac{1}{2}\\times (-2)+m=0$. Solving for $m$ gives $m=1$. Therefore, the equation of line $AB$ is $y=\\frac{1}{2}x+1$. Letting $x=0$, we find $y=1$, thus $B(0, 1)$. Hence, the coordinates of point $B$ are $\\boxed{B(0, 1)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50553714_108": { -"question": "As shown in the Cartesian coordinate system, the line $y=\\frac{1}{2}x+m$ intersects the $x$-axis and the $y$-axis at points $A$ and $B$, respectively. The coordinates of point $A$ are $\\left(-2, 0\\right)$, and the coordinates of point $C$ are $\\left(3, 0\\right)$. If points $B$ and $C$ are symmetrical about line $l$, draw line $l$ in the auxiliary figure and then find the analytical expression of line $l$.", -"image_file_name": "7054110", -"image": [ -"math/50553714_649.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, let the intersection of line $l$ with the x-axis be $E$, and it intersects the y-axis at $F$. Let $OE=x$, and connect $BE$, then $BE=CE=3-x$. In $\\triangle BOE$, we have $BE^2=OB^2+OE^2$, $\\therefore (3-x)^2=1+x^2$. Solving this, we find $x=\\frac{4}{3}$, $\\therefore E\\left(\\frac{4}{3}, 0\\right)$. Let $H$ be the intersection of $BC$ and $l$, then $H\\left(\\frac{3}{2}, \\frac{1}{2}\\right)$. Let the equation of line $l$ be $y=kx+b$, then $\\begin{cases}\\frac{3}{2}k+b=\\frac{1}{2}\\\\ \\frac{4}{3}k+b=0\\end{cases}$, solving this gives $\\begin{cases}k=3\\\\ b=-4\\end{cases}$, $\\therefore$ the equation of line $l$ is \\boxed{y=3x-4}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50553714_109": { -"question": "As shown in the Cartesian coordinate system, the line $y=\\frac{1}{2}x+m$ intersects the $x$-axis and the $y$-axis at points $A$ and $B$ respectively, with point $A$ having the coordinates $\\left(-2, 0\\right)$, and point $C$ having the coordinates $\\left(3, 0\\right)$. Point $M$ is the intersection of the line $y=x+m$ and line $l$, and point $N$ is in the first quadrant. When $\\triangle BMN$ forms an isosceles right triangle, directly write out the coordinates of point $N$.", -"image_file_name": "7054110", -"image": [ -"math/50553714_649.png" -], -"solution": "\\textbf{Solution:} From (1) we know $m=1$. Solving the system of equations $\\begin{cases}y=x+1\\\\ y=3x-4\\end{cases}$ gives $x=\\frac{5}{2}$ and $y=\\frac{7}{2}$, that is $M\\left(\\frac{5}{2}, \\frac{7}{2}\\right)$,\\\\\n$\\therefore BM=\\sqrt{\\left(\\frac{5}{2}-0\\right)^{2}+\\left(\\frac{7}{2}-1\\right)^{2}}=\\frac{5\\sqrt{2}}{2}$. Point $N$ is in the first quadrant. When $\\triangle BMN$ is an isosceles right triangle, the following cases are considered;\\\\\n(1) When $BM$ is the hypotenuse, it is evident from the diagram that when $\\triangle BMN$ is an isosceles right triangle, $N\\left(\\frac{5}{2}, 1\\right)$, fulfilling: $BM^{2}=BN^{2}+MN^{2}$ and $BN=MN=\\frac{5}{2}$, thus $\\triangle BMN$ is an isosceles right triangle;\\\\\n(2) When $BM$ is a leg, based on symmetry, the point $N$ at this instance, with $M$ being symmetrical to the point $N$ mentioned in (1), $\\therefore N\\left(\\frac{5}{2}, -\\frac{3}{2}\\right)$, which contradicts with point $N$ being in the first quadrant and is thus discarded,\\\\\n(3) When $BM$ is a leg, based on symmetry, the point $N$ at this instance, with $B$ being symmetrical to the point $N$ mentioned in (1), $\\therefore N(5, 1)$, fulfilling $BN^{2}=MB^{2}+MN^{2}$ and $MN=MB$. When $N$ is on the upper left side of $BM$, there exists a point $N$ that meets the conditions,\\\\\nIn summary: $N\\left(\\frac{5}{2}, 1\\right)$ and $N(5, 1)$ are the coordinates of point $N$, directly presented as \\boxed{N\\left(\\frac{5}{2}, 1\\right)} and \\boxed{N(5, 1)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50553639_111": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the graph of the linear function $y=kx+b$ passes through point $A(-2, 4)$, and intersects with the graph of the direct proportion function $y=-\\frac{2}{3}x$ at point $B(a, 2)$. What is the value of $a$ and what is the equation of the linear function $y=kx+b$?", -"image_file_name": "7054110", -"image": [ -"math/50553639_655.png" -], -"solution": "\\textbf{Solution:} Given the graph of the direct proportion function $y=-\\frac{2}{3}x$ passes through point $B(a, 2)$,\\\\\n$\\therefore 2=-\\frac{2}{3}a$, solving for $a$, we find $a=\\boxed{-3}$,\\\\\n$\\therefore B(-3, 2)$.\\\\\nGiven that the graph of the linear function $y=kx+b$ passes through points $A(-2, 4)$, $B(-3, 2)$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}\n-2k+b=4 \\\\\n-3k+b=2\n\\end{array}\\right.$, solving for, $\\left\\{\\begin{array}{l}\nk=\\boxed{2} \\\\\nb=\\boxed{8}\n\\end{array}\\right.$,\\\\\n$\\therefore$ the equation of the linear function $y=kx+b$ is $\\boxed{y=2x+8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50553639_112": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the graph of the linear function $y=kx+b$ passes through point $A(-2, 4)$, and intersects with the graph of the direct proportion function $y=-\\frac{2}{3}x$ at point $B(a, 2)$. Write down directly the solution set of the inequality $-\\frac{2}{3}x>kx+b$ with respect to $x$.", -"image_file_name": "7054110", -"image": [ -"math/50553639_655.png" -], -"solution": "\\textbf{Solution:} From the given problem, it is known based on the graph that the solution set for $-\\frac{2}{3}x > kx + b$ is: $\\boxed{x < -3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50545780_114": { -"question": "As shown in the figure, in the Cartesian coordinate system, the coordinates of point $A$ are $\\left(5, 0\\right)$, and point $B$ is on the positive semi-axis of the $y$-axis ($OB y_2$?", -"image_file_name": "7054110", -"image": [ -"math/50677475_7215.png" -], -"solution": "\\textbf{Solution:} Given the problem, the line $l_{1}: y=-\\frac{1}{2}x+5$ and the line $l_{2}: y_{2}=2x$ intersect at point $C(2, 4)$,\\\\\n$\\therefore$ when $x<2$, $y_{1}>y_{2}$.\\\\\nThus, the answer is $\\boxed{x<2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677413_139": { -"question": "Synthesis and Exploration: As shown in the figure, in the Cartesian coordinate system, the line $l_{1}: y_{1}=-\\frac{1}{2}x+6$ intersects with the x-axis and y-axis at point B and C, respectively, and intersects with the line $l_{2}: y_{2}=\\frac{1}{2}x$ at point A. Determine the coordinates of point A.", -"image_file_name": "7054110", -"image": [ -"math/50677413_732.png" -], -"solution": "\\textbf{Solution:} Solve the system of equations for the two lines to get $\\begin{cases}y=-\\frac{1}{2}x+6\\\\ y=\\frac{1}{2}x\\end{cases}$, and we find: $\\begin{cases}x=6\\\\ y=3\\end{cases}$, $\\therefore$ the coordinates of point A are $\\boxed{(6,3)}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677413_140": { -"question": "Synthesis and Inquiry: As shown in the figure, in the Cartesian coordinate system, the line $l_1\\colon y_1 = -\\frac{1}{2}x + 6$ intersects the x-axis and y-axis at points B and C, respectively, and intersects with the line $l_2\\colon y_2 = \\frac{1}{2}x$ at point A. When $y_1 < y_2$, write down directly the range of values for x.", -"image_file_name": "7054110", -"image": [ -"math/50677413_732.png" -], -"solution": "\\textbf{Solution:} Given point A$(6,3)$ and the graph, when $y_16}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677413_141": { -"question": "In the Cartesian coordinate system, the line $l_{1}\\colon y_{1}=-\\frac{1}{2}x+6$ intersects the x-axis and y-axis at points B and C, respectively, and intersects with the line $l_{2}\\colon y_{2}=\\frac{1}{2}x$ at point A. Is there a point Q in the plane such that the quadrilateral with vertices O, C, A, and Q is a parallelogram? Find the coordinates of point Q.", -"image_file_name": "7054110", -"image": [ -"math/50677413_732.png" -], -"solution": "\\textbf{Solution:} There exists a point Q such that the quadrilateral with vertices O, C, A, Q is a parallelogram; as shown in the diagram, consider three cases:\n- $\\because C(0, 6)$, A(6,3)\n - (1) When the quadrilateral OAQ$_{1}$C is a parallelogram, $OC=AQ_{1}$, \\\\\n $\\therefore$ the x-coordinate of point Q$_{1}$ is 6, and the y-coordinate is $3+6=9$,\\\\\n $\\therefore$ the coordinates of Q$_{1}$ are (6,9),\n - (2) When the quadrilateral OQ$_{2}$AC is a parallelogram, $OC=AQ_{2}$,\\\\\n the x-coordinate of point Q$_{2}$ is 6, and the y-coordinate is $3-6=-3$,\\\\\n $\\therefore$ the coordinates of Q$_{2}$ are (6, −3),\n - (3) When the quadrilateral OACQ$_{3}$ is a parallelogram,\\\\\n $\\because AC=\\sqrt{6^{2}+(6-3)^{2}}=3\\sqrt{5}$, $AO=\\sqrt{3^{2}+6^{2}}=3\\sqrt{5}$,\\\\\n $\\therefore AC=AO$,\\\\\n $\\therefore$ the quadrilateral OACQ$_{3}$ is a rhombus,\\\\\n Given that a rhombus is an axis-symmetric figure, with $OC$ as a diagonal,\\\\\n point Q$_{3}$ is symmetric to point A with respect to OC,\\\\\n $\\therefore$ the coordinates of Q$_{3}$ are (−6, 3),\\\\\nSummarizing, the coordinates of point Q are: $\\boxed{(6,9)}$ or $\\boxed{(6, −3)}$ or $\\boxed{(−6, 3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677341_143": { -"question": "As shown in the diagram, it is known that in parallelogram $OABC$, point $O$ is the coordinate vertex, point $A(3, 0)$, $C(1, 2)$, and the graph of the function $y=\\frac{k}{x} \\ (k\\ne 0)$ passes through point $C$. Determine the value of $k$ and the equation of line $OB$.", -"image_file_name": "7054110", -"image": [ -"math/50677341_745.png" -], -"solution": "\\textbf{Solution:} According to the problem, point $C(1, 2)$ is on the graph of the inverse proportion function $y=\\frac{k}{x}(k\\ne 0)$, \\\\\nhence $k=xy=2$, \\\\\nsince $A(3, 0)$, \\\\\nhence $CB=OA=3$, \\\\\nalso, $CB$ is parallel to the x-axis, \\\\\nhence $B(4, 2)$, \\\\\nlet the equation of line $OB$ be $y=ax$, \\\\\nhence $2=4a$, \\\\\nhence $a=\\frac{1}{2}$, \\\\\ntherefore, the equation of line $OB$ is $\\boxed{y=\\frac{1}{2}x}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677341_144": { -"question": "As shown in the figure, it is known that in the parallelogram $OABC$, point $O$ is the origin of the coordinates, point $A(3, 0)$, and point $C(1, 2)$. The graph of the function $y=\\frac{k}{x} (k \\neq 0)$ passes through point $C$. What is the perimeter of the parallelogram $OABC$?", -"image_file_name": "7054110", -"image": [ -"math/50677341_745.png" -], -"solution": "\\textbf{Solution:} Construct $CD\\perp OA$ at point $D$, \\\\\n$\\because$ $C(1, 2)$, \\\\\n$\\therefore$ $OC=\\sqrt{1^2+2^2}=\\sqrt{5}$, \\\\\nIn parallelogram $OABC$, $CB=OA=3$, $AB=OC=\\sqrt{5}$, \\\\\n$\\therefore$ the perimeter of parallelogram $OABC$ is: $3+3+\\sqrt{5}+\\sqrt{5}=6+2\\sqrt{5}$, \\\\\nhence, the perimeter of parallelogram $OABC$ is $\\boxed{6+2\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677300_146": { -"question": "Given, as shown in the figure, the graph of a linear function passes through points $P(3, 2)$ and $B(0, -2)$, and intersects the x-axis at point $A$. What is the analytical expression of the linear function?", -"image_file_name": "7054110", -"image": [ -"math/50677300_750.png" -], -"solution": "\\textbf{Solution:} Let the linear function be $y=kx+b$. Substituting points $P(3,2)$ and $B(0, -2)$ into $y=kx+b$, we get\n\\[\n\\begin{cases}\n3k+b=2\\\\\nb=-2\n\\end{cases}\n\\]\nSolving these equations, we obtain\n\\[\n\\begin{cases}\nk=\\frac{4}{3}\\\\\nb=-2\n\\end{cases}\n\\]\n$\\therefore$ The equation of the linear function is $\\boxed{y=\\frac{4}{3}x-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677300_147": { -"question": "As shown in the figure, the graph of a linear function passes through points $P(3, 2)$ and $B(0, -2)$, and intersects with the x-axis at point $A$. Point $M$ is on the y-axis, and the area of $\\triangle ABM$ is $\\frac{15}{4}$. Find the coordinates of point $M$.", -"image_file_name": "7054110", -"image": [ -"math/50677300_750.png" -], -"solution": "\\textbf{Solution:} When $y=0$, $\\frac{4}{3}x-2=0$, solving for $x$ gives $x=\\frac{3}{2}$, so $A\\left(\\frac{3}{2},0\\right)$,\\\\\n$\\therefore OA=\\frac{3}{2}$.\\\\\n$\\because$ point M is on the y-axis, and the area of $\\triangle ABM$ is $\\frac{15}{4}$,\\\\\n$\\therefore S_{\\triangle ABM}=\\frac{1}{2}BM\\cdot OA=\\frac{15}{4}$,\\\\\n$\\therefore BM=5$,\\\\\n$\\because B(0,-2)$,\\\\\n$\\therefore \\boxed{M(0,3)} or \\boxed{M(0,-7)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677275_149": { -"question": "In the Cartesian coordinate system $xOy$, line $y=-2x+a$ intersects the $y$-axis at point $A$ and intersects the line $y=x+1$ at point $P(3, b)$. $B$ is a point on the line $y=x+1$. Find the values of $a$ and $b$?", -"image_file_name": "7054110", -"image": [ -"math/50677275_760.png" -], -"solution": "\\textbf{Solution:} Substituting point P$(3, b)$ into the line equation $y=x+1$, we get: $b=4$. Substituting P$(3, 4)$ into $y=-2x+a$, we derive: $a=10$.\\\\\nHence, $a=\\boxed{10}$ and $b=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677275_150": { -"question": "In the Cartesian coordinate system $xOy$, the line $y=-2x+a$ intersects with the $y$-axis at point $A$ and intersects with the line $y=x+1$ at point $P(3,b)$. $B$ is a point on the line $y=x+1$. What are the coordinates of point $B$ when the segment $AB$ is at its shortest length?", -"image_file_name": "7054110", -"image": [ -"math/50677275_760.png" -], -"solution": "\\textbf{Solution:} When $AB\\perp$ line $y=x+1$, the segment $AB$ is shortest. Label the intersection point of line $y=x+1$ with the $y$-axis $(0,1)$ as $E$. Given the conditions, we have $A(0,10)$, and $\\angle AEB=45^\\circ$, $\\triangle AEB$ is an isosceles right triangle,\\\\\n$\\therefore AE=9$, $AB=BE=\\frac{9\\sqrt{2}}{2}$\\\\\n$\\therefore$ The x-coordinate of B is $\\frac{9\\sqrt{2}}{2}\\times \\frac{\\sqrt{2}}{2}=\\frac{9}{2}$, and the y-coordinate is $\\frac{9}{2}+1=\\frac{11}{2}$,\\\\\n$\\therefore \\boxed{B\\left(\\frac{9}{2}, \\frac{11}{2}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677275_151": { -"question": "In the Cartesian coordinate system $xOy$, the line $y=-2x+a$ intersects the $y$ axis at point $A$ and intersects the line $y=x+1$ at point $P(3,b)$. Point $B$ lies on the line $y=x+1$. Find a point $C$ on the $x$ axis such that the value of $AC-PC$ is maximized. Please write the coordinates of point $C$ and find the maximum value.", -"image_file_name": "7054110", -"image": [ -"math/50677275_760.png" -], -"solution": "\\textbf{Solution:} When points $A$, $P$, and $C$ are collinear, the maximum value of $AC-PC$ is equal to $AP$. Solving $0 = -2x + 10$ gives $x = 5$, thus $C(5,0)$.\\\\\nSince $P(3,4)$,\\\\\n$AP= \\sqrt{AH^{2}+PH^{2}}=\\sqrt{(10-4)^{2}+3^{2}}=\\boxed{3\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677242_153": { -"question": "As shown in the figure, a rectangular paper ABCO is placed in the Cartesian coordinate system, with BC = 10. After folding the paper, point B exactly falls on the x-axis, denoted as $B'$, and the fold line is CE. Given that the ratio $OC:OB'=4:3$, what are the coordinates of point $B'$?", -"image_file_name": "7054110", -"image": [ -"math/50677242_772.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral OABC is a rectangle, $\\angle$AOC$=90^\\circ$. Given OC$\\colon$ OB'$=4\\colon 3$, it follows that B$^{\\prime }$C$\\colon$ OB$^{\\prime }$=$5\\colon 3$. Given B$^{\\prime }$C=BC=10, it implies OB$^{\\prime }$=6. Therefore, the coordinates of point B$^{\\prime}$ are: $\\boxed{(6,0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677242_154": { -"question": "As shown in the diagram, a rectangular paper ABCO is placed in a Cartesian coordinate system, where BC = 10. The paper is folded so that point B precisely lands on the x-axis, denoted as $B'$, with CE being the crease. Given that the ratio $OC:OB'=4:3$, what is the equation of the line on which the crease CE lies?", -"image_file_name": "7054110", -"image": [ -"math/50677242_772.png" -], -"solution": "\\textbf{Solution:} After folding the paper, point B lands precisely on point B' on the x-axis, with CE being the fold line. Therefore, $\\triangle CBE \\cong \\triangle CB^{\\prime}E$, which implies that BE=B$^{\\prime}E$, and CB$^{\\prime}=CB=OA$. Given OB$^{\\prime}=6$ and the ratio OC:OB'=4:3, it follows that OC=8. Let AE=a, then EB$^{\\prime}=EB=8-a$, and AB$^{\\prime}=AO-OB^{\\prime}=10-6=4$. By the Pythagorean theorem, we obtain $a^{2}+4^{2}=(8-a)^{2}$. Solving for a yields $a=3$. Therefore, the coordinates of point E are $(10,3)$, and the coordinates of point C are $(0,8)$. Let the equation of line CE be $y=kx+b$. According to the given conditions, we have\n\\[\n\\begin{cases}\n3=10k+b\\\\ \n8=b\n\\end{cases}\n\\]\nSolving this, we find:\n\\[\n\\begin{cases}\nk=-\\frac{1}{2}\\\\ \nb=8\n\\end{cases}\n\\]\nTherefore, the equation of line CE is $y= -\\frac{1}{2}x+8$, so the answer is $\\boxed{y= -\\frac{1}{2}x+8}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677242_155": { -"question": "As shown in the figure, a rectangular paper ABCO is placed in the Cartesian coordinate system, with $BC=10$. After folding the paper, point B falls exactly on the x-axis, denoted as $B'$, and the crease is CE. Given that the ratio $OC:OB'=4:3$. If point P is a moving point on the y-axis, when $\\triangle CPE$ is an isosceles triangle, find the coordinates of point P.", -"image_file_name": "7054110", -"image": [ -"math/50677242_772.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point E be (10, 3), and those of C be (0, 8), $\\therefore$ the coordinates of B are (10, 8), $\\therefore$ CE= $\\sqrt{5^2+10^2}=\\sqrt{125}=5\\sqrt{5}$,\\\\\n(1) When PC=CE, the coordinates of P are ($8+5\\sqrt{5}$, 0) and ($8-5\\sqrt{5}$, 0);\\\\\n(2) When PE=CE, the coordinates of P are ($-2$, 0);\\\\\n(3) When PC=PE, let the coordinates of P be (0, y), then PC=$8-y$, PE= $\\sqrt{10^2+(3-y)^2}$, hence $(8-y)^2=100+(3-y)^2$, solving this gives: $64-16y+y^2=100+9-6y+y^2$, $-10y=45$, $y=-\\frac{9}{2}$, the coordinates of P are $\\left(-\\frac{9}{2}, 0\\right)$;\\\\\nOverall, the coordinates of P are ($8+5\\sqrt{5}$, 0), ($8-5\\sqrt{5}$, 0), ($-2$, 0), $\\boxed{\\left(-\\frac{9}{2}, 0\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677077_157": { -"question": "As shown in the figure, in the Cartesian coordinate system xOy, OA = OB, $\\angle AOB = 90^{\\circ}$. A line parallel to the x-axis is drawn through point B, which intersects with the line passing through point A, $y = -x + b$, at point C. Given that the coordinates of point A are (2, 1), what are the coordinates of points C and D?", -"image_file_name": "7054110", -"image": [ -"math/50677077_780.png" -], -"solution": "\\textbf{Solution:} Let the line $y=-x+b$ pass through point A, with the coordinates of point A being $(2,1)$.\\\\\nTherefore, we have $1=-2+b$,\\\\\nwhich implies $b=3$,\\\\\nthus, the equation of the line is: $y=-x+3$,\\\\\nGiven that $\\angle AOB=90^\\circ$,\\\\\nwe find $B(-1,2)$,\\\\\nConstructing a line parallel to the x-axis through point B,\\\\\nimplies that the y-coordinates of points B and C are the same, both are 2,\\\\\nGiven that C lies on the line,\\\\\nthe coordinates of point C are $\\boxed{(1,2)}$,\\\\\nThe line $y=-x+3$ intersects the x-axis at point D,\\\\\nthus, the coordinates of point D are $\\boxed{(3,0)}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50677077_158": { -"question": "As shown in the graph, in the Cartesian coordinate system $xOy$, we have $OA=OB$ and $\\angle AOB=90^\\circ$. A line parallel to the $x$-axis is drawn through point B, and it intersects with the line passing through point A, which is $y=-x+b$, at point C. Given that the coordinates of point A are (2, 1), what is the degree measure of $\\angle ACB$?", -"image_file_name": "7054110", -"image": [ -"math/50677077_780.png" -], -"solution": "\\textbf{Solution:} Let the line intersect the y-axis at point E, as shown in the figure:\\\\\n$\\therefore OD=OE$,\\\\\n$\\therefore \\angle OEC=\\angle ODC=45^\\circ$,\\\\\nAlso, since $BC\\parallel OD$,\\\\\n$\\therefore \\angle BCA+\\angle CDO=180^\\circ$,\\\\\n$\\therefore \\angle BCA=135^\\circ$,\\\\\nTherefore, the measure of $\\angle ACB$ is $\\boxed{135^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50676718_160": { -"question": "The graph of the linear function $y=kx+b$ passes through points $A(0, 2)$ and $B(-2, 0)$. Find the analytic expression of this linear function.", -"image_file_name": "7054110", -"image": [ -"math/50676718_793.png" -], -"solution": "Based on the information given in the question, we have\n\\[\n\\left\\{\n\\begin{array}{l}\nb=2 \\\\\n-2k+b=0\n\\end{array}\n\\right.\n\\]\nSolving this, we obtain\n\\[\n\\left\\{\n\\begin{array}{l}\nk=1 \\\\\nb=2\n\\end{array}\n\\right.\n\\]\nHence, the equation of the linear function is \\boxed{y=x+2}.\n", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50676718_161": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=kx+b$ passes through point $A(0, 2)$ and point $B(-2, 0)$. What is the area of the triangle formed by the linear function and the coordinate axes?", -"image_file_name": "7054110", -"image": [ -"math/50676718_793.png" -], -"solution": "\\textbf{Solution:} Given that $A(0, 2)$, $B(-2, 0)$,\\\\\nit follows that $OB=OA=2$,\\\\\nthus, the area of $\\triangle AOB$ is given by ${S}_{\\triangle AOB}=\\frac{1}{2}OA\\cdot OB=\\frac{1}{2}\\times 2\\times 2=\\boxed{2}$,\\\\\nwhich means the area of the triangle formed by the linear function and the coordinate axes is \\boxed{2}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50676718_162": { -"question": "Given the linear function $y=kx+b$ whose graph passes through points $A(0, 2)$ and point $B(-2, 0)$, for what values of $x$ is $y > 0$?", -"image_file_name": "7054110", -"image": [ -"math/50676718_793.png" -], -"solution": "\\textbf{Solution:} From the graph, it is known that when $x>-2$, $y>0$. Therefore, $\\boxed{x>-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50676594_164": { -"question": "As shown in the figure, in the Cartesian coordinate system, point O is the origin. The line $y=2x-1$ intersects the line $y=\\frac{3}{4}x+\\frac{3}{2}$ at point A. A perpendicular line to the x-axis is drawn through point A, with point B being the foot of the perpendicular. The x-coordinate of point C is $-1$, and point C lies on the line $y=2x-1$. Connect BC. What are the coordinates of point A?", -"image_file_name": "7054110", -"image": [ -"math/50676594_802.png" -], -"solution": "\\textbf{Solution:} Solve the system of equations:\n\\[\n\\left\\{\n\\begin{array}{l}\ny=2x-1 \\\\\ny=\\frac{3}{4}x+\\frac{3}{2}\n\\end{array}\n\\right.\n\\]\nto get\n\\[\n\\left\\{\n\\begin{array}{l}\nx=2\\\\\ny=3\n\\end{array}\n\\right.\n\\]\n$\\therefore$ The coordinates of point A are $\\boxed{(2,3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50676594_165": { -"question": "As shown in the figure, in the Cartesian coordinate system, point O is the origin. The line $y=2x-1$ and the line $y=\\frac{3}{4}x+\\frac{3}{2}$ intersect at point A. A perpendicular line to the x-axis is drawn from point A, and point B is the foot of the perpendicular. The x-coordinate of point C is $-1$, and point C lies on the line $y=2x-1$. Connect points B and C. What is the degree measure of $\\angle CBO$?", -"image_file_name": "7054110", -"image": [ -"math/50676594_802.png" -], -"solution": "\\textbf{Solution:} Construct $CD\\perp x$-axis at D, \\\\\n$\\because A(2,3)$, \\\\\n$\\therefore B(2,0)$, \\\\\n$\\because$ point C has an x-coordinate of $-1$ and lies on the line $y=2x-1$, \\\\\n$\\therefore y=2\\times(-1)-1=-3$, \\\\\n$\\therefore C(-1,-3)$, \\\\\n$\\therefore BD=3$, $CD=3$, \\\\\n$\\therefore$ triangle $CBD$ is an isosceles right triangle, \\\\\n$\\therefore \\angle CBO=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50676403_167": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the graph of the linear function $y = -\\frac{1}{2}x + 5$, denoted as $l_{1}$, intersects the x-axis and y-axis at points A and B, respectively. The graph of the direct proportionality function, denoted as $l_{2}$, intersects $l_{1}$ at point C $(m, 4)$. What is the value of $m$ and the equation of $l_{2}$?", -"image_file_name": "7054110", -"image": [ -"math/50676403_811.png" -], -"solution": "\\textbf{Solution:} Substitute $C(m,4)$ into the linear function $y=-\\frac{1}{2}x+5$, we get: $4=-\\frac{1}{2}m+5$, solving for $m$ gives: $m=\\boxed{2}$.\\\\\nTherefore, for $C(2,4)$, let the equation of line $l_{2}$ be $y=ax$, then we have $4=2a$, solving for $a$ gives $a=2$,\\\\\ntherefore, the equation of line $l_{2}$ is $\\boxed{y=2x}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50676403_168": { -"question": " In the Cartesian coordinate system xOy, the graph of the linear function $y = -\\frac{1}{2}x + 5$, denoted by $l_1$, intersects the x and y axes at points A and B, respectively. The graph of the direct proportionality function, denoted by $l_2$, intersects $l_1$ at point C$(m, 4)$. What is the area $S_{\\triangle AOC}$ of $\\triangle AOC$?", -"image_file_name": "7054110", -"image": [ -"math/50676403_811.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $CD\\perp AO$ at D, then $CD=4$. Since points A and B are on the linear function $y=-\\frac{1}{2}x+5$, let $y=0$, then $x=0$, $x=10$, thus $O(0,0)$, $A(10,0)$, hence $AO=10$. Therefore, the area of $\\triangle AOC$ is $\\frac{1}{2}\\times 10\\times 4=\\boxed{20}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50676403_169": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the graph of the linear function $y = -\\frac{1}{2}x + 5$, denoted as $l_1$, intersects the x and y axes at points $A$ and $B$, respectively. The graph of the direct proportion function, denoted as $l_2$, intersects $l_1$ at point $C(m, 4)$. The graph of the linear function $y = kx+1$ intersects line segment $AC$. Directly write down the value of $k$.", -"image_file_name": "7054110", -"image": [ -"math/50676403_811.png" -], -"solution": "\\textbf{Solution:} Solve: When $y=kx+1$ exactly passes through point C, we have $4=2k+1$, and get $k=\\frac{3}{2}$. When $y=kx+1$ exactly passes through point A, we have $0=10k+1$, and get $k=-\\frac{1}{10}$.\\\\\n$\\therefore$ When $-\\frac{1}{10}\\le k\\le \\frac{3}{2}$, the graph of the linear function $y=kx+1$ intersects with the line segment AC.\\\\\nThus, the value of $k$ is $\\boxed{-\\frac{1}{10}\\le k\\le \\frac{3}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50675997_171": { -"question": "As shown in the figure, place the rectangle OABC within the Cartesian coordinate system with the x-axis and y-axis, positioning OA and OC along the positive halves of the x-axis and y-axis, respectively. Here, AB = 15, and the equation of the line containing the diagonal AC is given by $y=-\\frac{5}{3}x+b$. If the rectangle OABC is folded along BE such that point A lands on point D on side OC, what are the coordinates of point B?", -"image_file_name": "7054110", -"image": [ -"math/50675997_821.png" -], -"solution": "\\textbf{Solution:} Given that $AB=15$ and the quadrilateral OABC is a rectangle, $\\therefore OC=AB=15$. Thus, $C(0,15)$. By substituting into $y=-\\frac{5}{3}x+b$, we find $b=15$. Therefore, the equation of line AC is $y=-\\frac{5}{3}x+15$. Setting $y=0$ gives $x=9$. Therefore, $A(9,0)$ and $B=\\boxed{(9,15)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50675997_172": { -"question": "As shown in the figure, place the rectangle OABC into the Cartesian coordinate system xO, such that OA and OC lie on the positive semi-axes of the x and y axes respectively, where AB = 15. The equation of the line containing the diagonal AC is given by $y=-\\frac{5}{3}x+b$. Fold the rectangle OABC along BE such that point A falls on point D located on side OC. What is the length of EA?", -"image_file_name": "7054110", -"image": [ -"math/50675997_821.png" -], -"solution": "\\textbf{Solution:} In $\\triangle BCD$, we have $BC=9$, $BD=AB=15$,\\\\\n$\\therefore CD= \\sqrt{15^2-9^2} = 12$,\\\\\n$\\therefore OD=15-12=3$. Let $DE=AE=x$,\\\\\nIn $\\triangle DEO$, $\\because DE^2=OD^2+OE^2$,\\\\\n$\\therefore x^2=3^2+(9-x)^2$,\\\\\n$\\therefore x=5$,\\\\\n$\\therefore AE=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50675997_173": { -"question": "As shown in the figure, place rectangle OABC in the Cartesian coordinate system with points OA and OC along the positive half-axis of x and y respectively. Here AB=15, and the equation of the line containing diagonal AC is $y=- \\frac{5}{3}x+b$. Fold rectangle OABC along BE, such that point A falls on point D located on side OC. If point P is a moving point on the y-axis, there exists a point P for which the perimeter of $\\triangle PBE$ is minimized. What are the coordinates of point P?", -"image_file_name": "7054110", -"image": [ -"math/50675997_821.png" -], -"solution": "\\textbf{Solution:} Construct point $E'$, which is symmetric to point E with respect to the y-axis, and draw line $BE'$ intersecting the y-axis at point P. Under these conditions, the perimeter of $\\triangle BPE$ is minimized.\\\\\nSince $E(4,0)$,\\\\\nit follows that $E'(-4,0)$.\\\\\nLet the equation of the line $BE'$ be $y=kx+b$, then we have\n\\[\n\\begin{cases}\n9k+b=15,\\\\\n4k+b=0.\n\\end{cases}\n\\]\nSolving these equations yields\n\\[\n\\begin{cases}\nk=\\frac{15}{13},\\\\\nb=\\frac{60}{13}.\n\\end{cases}\n\\]\nHence, the equation of the line $BE'$ is $y=\\frac{15}{13}x+\\frac{60}{13}$,\\\\\ntherefore, the coordinates of P are $\\boxed{(0, \\frac{60}{13})}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50675755_176": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the linear function $y = -\\frac{3}{4}x + 6$ intersects the coordinate axes at points $A$ and $B$. The line $AE$ bisects the angle $\\angle BAO$ and intersects the x-axis at point $E$. What is the equation of the line $AE$?", -"image_file_name": "7054110", -"image": [ -"math/50675755_831.png" -], -"solution": "**Solution:**\n\nLet line $EG \\perp AB$ pass through point E and intersect AB at point G,\n\n$\\because$ AE bisects $\\angle BAO$,\n\n$\\therefore \\angle OAE = \\angle BAE$,\n\nAlso, $\\because \\angle AOE = \\angle AGE = 90^\\circ$, AE = AE,\n\n$\\therefore \\triangle AOE \\cong \\triangle AGE$ (AAS),\n\n$\\therefore OE = GE$, AO = AG = 6,\n\nAlso, $\\because$ The coordinates of point A are (0, 6), and the coordinates of point B are (8, 0),\n\nIn $\\triangle AOB$, $AB= \\sqrt{OA^2 + OB^2} = \\sqrt{6^2 + 8^2} = 10$,\n\n$\\therefore BG = AB - AG = 4$,\n\nLet OE = GE = x, then BE = 8 - x,\n\nIn $\\triangle BEG$, $4^2 + x^2 = (8 - x)^2$,\n\nSolving for $x$, we get: $x=3$,\n\n$\\therefore$ The coordinates of point E are (3, 0),\n\nLet the equation of line AE be $y = kx + b$ ($k \\neq 0$),\n\nSubstituting E(3, 0) and A(0, 6) into the equation, we get:\n\n$\\begin{cases} 3k + b = 0 \\\\ b = 6 \\end{cases}$,\n\nSolving for $k$ and $b$, we get:\n\n$\\begin{cases} k = -2 \\\\ b = 6 \\end{cases}$,\n\n$\\therefore$ The equation of line AE is $\\boxed{y = -2x + 6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50675755_177": { -"question": "In the Cartesian coordinate system, the graph of the linear function $y=-\\frac{3}{4}x+6$ intersects with the coordinate axes at points $A$ and $B$. Segment $AE$ bisects $\\angle BAO$ and intersects the x-axis at point $E$. A line is drawn from point $B$ perpendicular to $AE$, denoted as $BF$, with $F$ as the foot of the perpendicular. The segment $OF$ is then connected. Determine the shape of $\\triangle OFB$ and calculate the area of $\\triangle OFB$.", -"image_file_name": "7054110", -"image": [ -"math/50675755_831.png" -], -"solution": "\\textbf{Solution:} Draw a line $FM$ perpendicular to the x-axis from point F, intersecting the x-axis at point M,\\\\\nsince $A(0,6), E(3,0)$,\\\\\nin $\\triangle AOE$, $AE= \\sqrt{OA^2+OE^2}=\\sqrt{6^2+3^2}=3\\sqrt{5}$,\\\\\nsince $BF\\perp AE$,\\\\\ntherefore $\\angle AOE=\\angle BFE$,\\\\\nalso, since $\\angle AEO=\\angle BEF$,\\\\\ntherefore $\\triangle AOE \\sim \\triangle BEF$,\\\\\ntherefore $\\frac{BF}{OA}=\\frac{BE}{AE}$,\\\\\ntherefore $\\frac{BF}{6}=\\frac{5}{3\\sqrt{5}}$,\\\\\nsolving, we find $BF= 2\\sqrt{5}$,\\\\\nsince $\\angle FMB=\\angle BFE, \\angle MBF=\\angle FBE$,\\\\\ntherefore $\\triangle BMF \\sim \\triangle BFE$,\\\\\ntherefore $\\frac{BF}{BE}=\\frac{BM}{BF}$,\\\\\ntherefore $\\frac{2\\sqrt{5}}{5}=\\frac{BM}{2\\sqrt{5}}$,\\\\\nsolving, we find $BM=4$,\\\\\nin $\\triangle BMF$, $FM= \\sqrt{BF^2-BM^2}=2$,\\\\\nalso, since the coordinates of point B are $(8,0)$,\\\\\ntherefore $OM=BM=4$ and $FM\\perp x$-axis,\\\\\ntherefore $OF=BF$,\\\\\ntherefore $\\triangle OFB$ is an isosceles triangle,\\\\\ntherefore the area of $\\triangle OFB$ is $\\frac{1}{2}OB\\cdot FM=\\frac{1}{2}\\times 8\\times 2=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50520352_179": { -"question": "As shown in the Cartesian coordinate system, the graph of line $L_1$: $y=kx+b$ passes through point $C(-2, 7)$, and intersects the x-axis at point $B$, and intersects line $L_2$: $y=\\frac{1}{2}x$ at point $A$, where the x-coordinate of point $A$ is $6$. What is the equation of line $AB$?", -"image_file_name": "7054110", -"image": [ -"math/50520352_848.png" -], -"solution": "\\textbf{Solution:} Given the problem's statement, point $A$ lies on the line $y=\\frac{1}{2}x$ and the abscissa of point $A$ is $6$,\\\\\n$\\therefore$ the ordinate of point $A$ is $3$.\\\\\n$\\because$ line $L_1$ passes through point $C(-2, 7)$, we can establish the system of equations $\\left\\{\\begin{array}{l}-2k+b=7, \\\\ 6k+b=3,\\end{array}\\right.$ which yields $\\left\\{\\begin{array}{l}k=-\\frac{1}{2}, \\\\ b=6.\\end{array}\\right.$\\\\\n$\\therefore$ the equation of line $AB$ is $y=-\\frac{1}{2}x+6$; thus, the answer is $\\boxed{y=-\\frac{1}{2}x+6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50520352_180": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the graph of the line $L_1\\colon y = kx + b$ passes through point $C(-2, 7)$, intersects with the $x$-axis at point $B$, and intersects with the line $L_2\\colon y = \\frac{1}{2}x$ at point $A$, where the $x$-coordinate of point $A$ is $6$. Write directly the solution set of the inequality $kx + b > \\frac{1}{2}x$ in terms of $x$.", -"image_file_name": "7054110", -"image": [ -"math/50520352_848.png" -], -"solution": "\\textbf{Solution:} The solution set of the inequality $kx+b>\\frac{1}{2}x$ with respect to $x$ is: $\\boxed{x<6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50520352_181": { -"question": "As shown in the figure, in the Cartesian coordinate system, line $L_1$: $y=kx+b$ passes through point $C(-2, 7)$ and intersects the $x$-axis at point $B$, and it intersects line $L_2$: $y=\\frac{1}{2}x$ at point $A$, where the abscissa of point $A$ is $6$. If $D$ is a point on the $y$-axis, and $S_{\\triangle AOD}=\\frac{1}{3}S_{\\triangle AOB}$, find the coordinates of point $D$.", -"image_file_name": "7054110", -"image": [ -"math/50520352_848.png" -], -"solution": "\\textbf{Solution:} Let $D\\left(0, y\\right)$. Since point $B$ is the intersection of line $L_{1}$ and the x-axis, we get $-\\frac{1}{2}x+6=0$. Solving for $x$, we find $x=12$, hence $OB=12$. Since the area $S_{\\triangle AOD}=\\frac{1}{3}S_{\\triangle AOB}$, it follows that $\\frac{1}{2}\\times 6\\times |y|=\\frac{1}{3}\\times 18=6$. Solving for $y$, we get: $y=\\pm 2$. Therefore, the coordinates of point $D$ are $\\boxed{D\\left(0, 2\\right)}$ or $\\boxed{\\left(0, -2\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50520008_183": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the graph of the linear function \\(y=kx+b\\) intersects the x-axis and y-axis at points A and B, respectively, and it passes through the point \\(D(-2, 6)\\). It intersects the graph of the direct proportion function \\(y=3x\\) at point C, where the \\(x\\)-coordinate of point C is 1. What is the equation of the linear function \\(y=kx+b\\)?", -"image_file_name": "7054110", -"image": [ -"math/50520008_853.png" -], -"solution": "\\textbf{Solution:} Solve: When $x=1$, $y=3$. Let the line $y=kx+b$ pass through $(1, 3)$ and $(-2, 6)$\\\\\n$\\therefore$ $\\begin{cases}6=-2k+b\\\\ 3=k+b\\end{cases}$\\\\\nSolving these, we get: $\\begin{cases}k=-1\\\\ b=4\\end{cases}$\\\\\n$\\therefore$ The equation of the function is $y=-x+4=\\boxed{-x+4}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50520008_184": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the graph of the linear function $y=kx+b$ intersects the x-axis and y-axis at points A and B respectively, and passes through the point $D\\left(-2,6\\right)$. It intersects the graph of the direct proportionality function $y=3x$ at point C, where the x-coordinate of point C is 1. What is the area of $\\triangle BOC$?", -"image_file_name": "7054110", -"image": [ -"math/50520008_853.png" -], -"solution": "\\textbf{Solution:} When $x=0$, then $y=4$, \\\\\n$\\therefore$ $S_{\\triangle BOC}=\\frac{1}{2}\\times 4\\times 1=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50520008_185": { -"question": "As shown in the figure, in a Cartesian coordinate system, the graph of the linear function $y=kx+b$ intersects the x-axis and the y-axis at points A and B, respectively, and passes through point $D(-2, 6)$. It intersects the graph of the direct proportion function $y=3x$ at point C, where the x-coordinate of point C is 1. If point E is a moving point on line $OC$, and the area of $\\triangle ADE$ is 6 times the area of $\\triangle BOC$, please directly write down the coordinates of point E.", -"image_file_name": "7054110", -"image": [ -"math/50520008_853.png" -], -"solution": "\\textbf{Solution:}\n\nFrom given, we have: $6S_{\\triangle BOC}=6\\times 2=12$,\\\\\nAs per the diagram: $S_{\\triangle AED}=\\frac{1}{2}\\times 6\\times AE=\\frac{1}{2}\\times 6\\times 4=12$,\\\\\n$\\therefore E(0, 0)$,\\\\\nPoint E is a variable point on line $OC$. According to symmetry, when point $E$ at the origin is symmetrical about point $C$ and falls on $y=3x$, it also satisfies the condition,\\\\\nBased on symmetry about a point, we obtain: $E(2, 6)$,\\\\\nTherefore, the coordinates that satisfy the condition are: $E=\\boxed{(0, 0)}$, $E=\\boxed{(2, 6)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50519550_187": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the vertices of rectangle $OABC$ are such that vertex $A$ is on the positive $y$-axis, and point $C$ is on the positive $x$-axis, with $AO=\\sqrt{3}$, and $\\angle BAC=30^\\circ$. Point $D$ is a point on segment $OC$, and triangle $AOD$ is folded along line $AD$ such that point $O$ coincides with point $E$ on the diagonal $AC$ of the rectangle. What are the coordinates of point $B$?", -"image_file_name": "7054110", -"image": [ -"math/50519550_8614.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $OABC$ is a rectangle, it follows that $BC=AO=\\sqrt{3}$. In $\\triangle ACB$, with $\\angle BAC=30^\\circ$, we have $AC=2BC=2\\sqrt{3}$. Thus, $AB=\\sqrt{AC^{2}-BC^{2}}=3$. Therefore, the coordinates of point $B$ are $\\boxed{B\\left(3, \\sqrt{3}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50519550_188": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertices of rectangle $OABC$ with vertex $A$ on the positive y-axis and point $C$ on the positive x-axis. Given $AO=\\sqrt{3}$ and $\\angle BAC=30^\\circ$, point $D$ is located on line segment $OC$. When $\\triangle AOD$ is folded along line $AD$, point $O$ falls on point $E$ on the diagonal $AC$ of the rectangle. What is the equation of line $DE$?", -"image_file_name": "7054110", -"image": [ -"math/50519550_8614.png" -], -"solution": "\\textbf{Solution:} Let $EH\\perp y$-axis at $H$, and $EG\\perp x$-axis at $G$. Then, quadrilateral EHOG is a rectangle, \\\\\n$\\therefore EG=HO$. By folding, $AE=AO=\\sqrt{3}$.\\\\\n$\\because AC=2\\sqrt{3}$,\\\\\n$\\therefore E$ is the midpoint of $AC$,\\\\\n$\\therefore G$ is the midpoint of $OC$, and $H$ is the midpoint of $AO$,\\\\\n$\\therefore HE, EG$ are midlines,\\\\\n$HE=OG=GC=\\frac{1}{2}OC=\\frac{3}{2}$,\\\\\n$EG=HO=AH=\\frac{1}{2}AO=\\frac{\\sqrt{3}}{2}$,\\\\\n$\\therefore$ Point $E\\left(\\frac{3}{2}, \\frac{\\sqrt{3}}{2}\\right)$.\\\\\nIn $\\triangle ADO$, $\\angle OAD=\\frac{1}{2}\\angle OAC=30^\\circ$, $AO=\\sqrt{3}$,\\\\\n$\\therefore OD=1$,\\\\\n$\\therefore$ Point $D\\left(1, 0\\right)$.\\\\\nLet the equation of line $ED$ be $y=kx+b$.\\\\\nSubstituting the coordinates of $D$, $E$ gives $\\left\\{\\begin{array}{l}\\frac{3}{2}k+b=\\frac{\\sqrt{3}}{2} \\\\ k+b=0\\end{array}\\right.$,\\\\\nSolving gives, $\\left\\{\\begin{array}{l}k=\\sqrt{3} \\\\ b=-\\sqrt{3}\\end{array}\\right.$.\\\\\nThus, the equation of line $ED$ is: $y=\\sqrt{3}x-\\sqrt{3}$.\\\\\nHence, the answer is $\\boxed{y=\\sqrt{3}x-\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50519550_189": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertices of rectangle $OABC$ are such that vertex $A$ is on the positive half of the $y$-axis, and point $C$ is on the positive half of the $x$-axis, with $AO=\\sqrt{3}$ and $\\angle BAC=30^\\circ$. Point $D$ is a point on segment $OC$, and triangle $AOD$ is folded along line $AD$, placing point $O$ at point $E$ on the diagonal $AC$ of the rectangle. There exists a point $M$ on line $DE$ and a point $N$ on one of the coordinate axes, such that the quadrilateral formed by vertices $N$, $A$, $M$, and $C$ is a rhombus. Write down the coordinates of point $N$.", -"image_file_name": "7054110", -"image": [ -"math/50519550_8614.png" -], -"solution": "\\textbf{Solution:} Consider two situations:\n1. When the diagonal of the rhombus is $AC$, the line $ED$ is the perpendicular bisector of $AC$. The vertex $N$ of the rhombus must be on the line $ED$, and point $N$ only has two opportunities on the coordinate axis:\n (1) When line $ED$ intersects with the $x$-axis, point $N$ coincides with point $D$, forming the rhombus $AN_1CM_1$, as shown in the figure $N_1(1, 0)$;\n (2) When line $ED$ intersects with the $y$-axis, $y=\\sqrt{3}x-\\sqrt{3}$, let $x=0$, then $y=-\\sqrt{3}$, forming the rhombus $AN_2CM_2$, as shown in the figure $N_2(0, -\\sqrt{3})$;\n2. When the side of the rhombus is $AC$:\n (1) When $N$, $M$ are above side $AC$, point $N$ is on the $y$-axis, $AN=AC=2\\sqrt{3}$, $N(0, 3\\sqrt{3})$.\n $y=\\sqrt{3}x-\\sqrt{3}$, let $x=3$, then $y=2\\sqrt{3}$.\n $CM_3=2\\sqrt{3}$. $M_3(0, 3\\sqrt{3})$. $AN$ is parallel and equal to $CM_3$ forming the rhombus $ACM_3N_3$. As shown in the figure $N_3(0, 3\\sqrt{3})$.\n (2) When $N$, $M$ are below side $AC$, point $N$ is on the $x$-axis, $ON_4=OC=3$, $N_4(-3, 0)$.\n $y=\\sqrt{3}x-\\sqrt{3}$, let $x=0$, then $y=-\\sqrt{3}$.\n $AO=OM_4=\\sqrt{3}$, forming the rhombus $AN_4M_4C$. As shown in the figure $N_4(-3, 0)$.\n\n$\\therefore$ The coordinates of $N$ are: \\boxed{N(1, 0)}, \\boxed{N(0, -\\sqrt{3})}, \\boxed{N(0, 3\\sqrt{3})}, or \\boxed{N(-3, 0)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50519365_191": { -"question": "As shown in the figure, the line $y=2x+1$ intersects the x-axis at point $A$ and the y-axis at point $B$. What are the coordinates of points $A$ and $B$?", -"image_file_name": "7054110", -"image": [ -"math/50519365_875.png" -], -"solution": "\\textbf{Solution:} Substituting $x=0$ into $y=2x+1$, we get $y=1$,\\\\\nthus the coordinates of point $B$ are $(0,1)$;\\\\\nSubstituting $y=0$ into $y=2x+1$, we get $0=2x+1$,\\\\\nsolving for $x$, we find $x=-\\frac{1}{2}$,\\\\\nthus the coordinates of point $A$ are $\\left(-\\frac{1}{2},0\\right)$.\\\\\nHence, the coordinates of points $A$ and $B$ are $\\boxed{\\left(-\\frac{1}{2},0\\right)}$ and $\\boxed{(0,1)}$, respectively.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50519365_192": { -"question": "As shown in the figure, the line $y=2x+1$ intersects the $x$ axis at point $A$, and the $y$ axis at point $B$. Draw line $BP$ from point $B$ to intersect the $x$ axis at point $P$, and let $OP=2OA$, find the equation of the line $BP$.", -"image_file_name": "7054110", -"image": [ -"math/50519365_875.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that the coordinates of point A is $\\left(-\\frac{1}{2}, 0\\right)$, \\\\\ntherefore, OA $= \\frac{1}{2}$, \\\\\nthus, OP $= 2\\text{OA} = 1$, \\\\\nwhen point P is on the positive half of the x-axis, then the coordinates of P is $(1,0)$, \\\\\nlet the equation of line BP be: $y=kx+b$, \\\\\nsubstituting P $(1,0)$ and B $(0,1)$ into the equation, we get\n\\[\n\\begin{cases}\nk+b=0\\\\\nb=1\n\\end{cases}\n\\]\nSolving this we get:\n\\[\n\\begin{cases}\nk=-1\\\\\nb=1\n\\end{cases}\n\\]\ntherefore, the equation of line BP is: $y=-x+1$; \\\\\nwhen point P is on the negative half of the x-axis, then the coordinates of P is $(-1,0)$, \\\\\nlet the equation of line BP be $y=mx+n$, \\\\\nsubstituting P $(-1, 0)$ and B $(0, 1)$, we get\n\\[\n\\begin{cases}\n-m+n=0\\\\\nn=1\n\\end{cases}\n\\]\nSolving this we get\n\\[\n\\begin{cases}\nm=1\\\\\nn=1\n\\end{cases}\n\\]\ntherefore, the equation of line BP is: $y=x+1$; \\\\\nIn summary, the equation of line BP is either \\boxed{y=x+1} or \\boxed{y=-x+1}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056352_194": { -"question": "As shown in the figure, line $l_1$ passes through points $A(0, 4)$ and $D(4, 0)$, line $l_2\\colon y=\\frac{1}{2}x+1$ intersects the $x$-axis at point $C$, and the two lines $l_1$ and $l_2$ intersect at point $B$. Find the equation of line $l_1$ and the coordinates of point $B$.", -"image_file_name": "7054110", -"image": [ -"math/52056352_881.png" -], -"solution": "Solution: Let the equation of line $l_1$ be $y=kx+b$,\\\\\nAccording to the problem, we have $\\begin{cases}b=4 \\\\ 4k+b=0\\end{cases}$,\\\\\nSolving these equations gives: $\\begin{cases}k=-1 \\\\ b=4\\end{cases}$,\\\\\nTherefore, the equation of line $l_1$ is $y=-x+4$;\\\\\nBy combining $\\begin{cases}y=-x+4 \\\\ y=\\frac{1}{2}x+1\\end{cases}$,\\\\\nWe find: $\\begin{cases}x=2 \\\\ y=2\\end{cases}$,\\\\\n$\\therefore$The coordinates of point \\boxed{B(2,2)};", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056352_195": { -"question": "As shown in the figure, the line $l_1$ passes through points A(0,4) and D(4,0), the line $l_2: y=\\frac{1}{2}x+1$ intersects the x-axis at point C, and the two lines $l_1$ and $l_2$ intersect at point B. Find the area of $\\triangle BCD$.", -"image_file_name": "7054110", -"image": [ -"math/52056352_881.png" -], -"solution": "\\textbf{Solution:} The line $y=\\frac{1}{2}x+1$ intersects the x-axis at point $C$,\\\\\n$\\therefore$ the coordinates of point $C$ are $(-2,0)$,\\\\\n$\\therefore$ $CD=6$,\\\\\n$\\therefore$ the area of $\\triangle ABC=S_{\\triangle ACD}-S_{\\triangle BCD}=\\frac{1}{2}\\times 6\\times 4-\\frac{1}{2}\\times 6\\times 2=6$.\\\\\n$\\therefore$ the area of $\\triangle BCD=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52055836_197": { -"question": "The graph of the linear function $y=kx+b$ passes through points $A(1, 6)$ and $B(-3, -2)$. Find the equation of this linear function.", -"image_file_name": "7054110", -"image": [ -"math/52055836_890.png" -], -"solution": "\\textbf{Solution:} Let's substitute points A$(1,6)$ and B$(-3,-2)$ into $y=kx+b$ to get:\\\\\n\\[\n\\begin{cases}\nk+b=6\\\\\n-3k+b=-2\n\\end{cases},\n\\]\nfrom which we find:\n\\[\n\\begin{cases}\nk=2\\\\\nb=4\n\\end{cases},\n\\]\ntherefore the expression of the linear function is: $\\boxed{y=2x+4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52055836_198": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ passes through the points $A(1, 6)$ and $B(-3, -2)$. What is the area of $\\triangle AOB$?", -"image_file_name": "7054110", -"image": [ -"math/52055836_890.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, the line intersects the y-axis at point D,\\\\\nfor $y=2x+4$, by setting $x=0$, we get $y=4$,\\\\\n$\\therefore$ the coordinates of point D are: $(0,4)$,\\\\\n$\\therefore$ OD=4,\\\\\n$\\therefore$ ${S}_{\\triangle AOB}={S}_{\\triangle AOD}+{S}_{\\triangle BOD}$,\\\\\n$\\therefore$ ${S}_{\\triangle AOB}=\\frac{1}{2}\\times 4\\times 1+\\frac{1}{2}\\times 4\\times \\left|-3\\right|=2+6=\\boxed{8}$;\\\\\n$\\therefore$ the area of $\\triangle AOB$ is $\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056412_200": { -"question": "As shown in the diagram, the line BC intersects the x-axis at point C and the y-axis at point B, and it intersects the line $y=ax$ at point A. The x-coordinate of point A is 2, $\\angle ACO = 45^\\circ$, and the area of $\\triangle ABO$ is 1. What is the value of $a$ and the equation of the line BC?", -"image_file_name": "7054110", -"image": [ -"math/52056412_903.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point A be $(x_A, y_A)$,\n\n$\\because$ $S_{\\triangle ABO} = \\frac{1}{2} BO \\cdot x_A = \\frac{1}{2} \\times BO \\times 2 = 1$,\n\n$\\therefore$ $BO = 1$,\n\n$\\therefore$ $B(0, 1)$,\n\n$\\because$ $\\angle ACO = 45^\\circ$, $\\angle BOC = 90^\\circ$,\n\n$\\therefore$ $\\angle CBO = \\angle ACO = 45^\\circ$,\n\n$\\therefore$ OC = BO = 1\n\n$\\therefore$ C$(-1,0)$\n\nLet the analytic expression for BC be $y=kx+b$, where $k\\neq 0$\n\nSubstituting the coordinates of points B and C into $y=kx+b$, we get: $\\left\\{ \\begin{array}{l} b=1 \\\\ -k+b=0 \\end{array} \\right.$\n\n$\\therefore$ $\\left\\{ \\begin{array}{l} k=1 \\\\ b=1 \\end{array} \\right.$\n\n$\\therefore$ The analytic expression for BC is $y=x+1$,\n\n$\\because$ when $x=2$, $y=3$,\n\n$\\therefore$ $A(2, 3)$,\n\nAlso $\\because$ A is on the line $y=ax$,\n\n$\\therefore$ $a=\\boxed{\\frac{3}{2}}$;", -"solution_image": [ -"solution_images/52056412_900.png", -"solution_images/52056412_903.png", -"solution_images/52056412_9012.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056412_201": { -"question": "As shown in the diagram, the line BC intersects the x-axis at point C and the y-axis at point B, and intersects the line $y=ax$ at point A. The x-coordinate of point A is 2, $\\angle ACO = 45^\\circ$, and the area of $\\triangle ABO$ is 1. If the line $y=ax+m$ intersects the y-axis at point D, when the area of $\\triangle ABD$ is 4, what is the value of $m$?", -"image_file_name": "7054110", -"image": [ -"math/52056412_903.png" -], -"solution": "\\textbf{Solution:} Since the line $y=ax+m$ intersects the y-axis at point D, \\\\ \ntherefore $D(0, m)$, \\\\ \nsince the area of $\\triangle ABD=\\frac{1}{2}BD\\cdot x_A=\\frac{1}{2}BD\\times 2=4$, \\\\ \nthus $BD=4$, \\\\ \nsince $B(0, 1)$, \\\\ \ntherefore the coordinates of point D are $(0, 5)$ or $(0, -3)$, \\\\ \nthus $m=\\boxed{5}$ or \\boxed{-3};", -"solution_image": [ -"solution_images/52056412_900.png", -"solution_images/52056412_903.png", -"solution_images/52056412_9012.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056412_202": { -"question": "As shown in the figure, the line BC intersects the x-axis at point C, the y-axis at point B, and intersects the line $y=ax$ at point A. The x-coordinate of point A is 2, $\\angle ACO = 45^\\circ$, and the area of $\\triangle ABO$ is 1. Suppose point P is a point on the line BC, and point Q is a point in the coordinate plane. There exist points P and Q that satisfy the conditions making the quadrilateral OAPQ a rhombus. Write down the coordinates of point Q.", -"image_file_name": "7054110", -"image": [ -"math/52056412_903.png" -], -"solution": "\\textbf{Solution:} The coordinates of point $Q$ are $\\boxed{\\left(-1, 1\\right)}$ or $\\left(\\frac{\\sqrt{26}}{2}, \\frac{\\sqrt{26}}{2}\\right)$ or $\\left(-\\frac{\\sqrt{26}}{2}, -\\frac{\\sqrt{26}}{2}\\right)$ or $\\left(\\frac{13}{10}, \\frac{13}{10}\\right)$.", -"solution_image": [ -"solution_images/52056412_900.png", -"solution_images/52056412_903.png", -"solution_images/52056412_9012.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056156_204": { -"question": "As shown in the figure, two lines $l_1$ and $l_2$ passing through point $A(2, 0)$ intersect the $y$-axis at points $B$ and $C$, respectively, where point $B$ is above the origin and point $C$ is below the origin. It is known that $AB = \\sqrt{13}$. What are the coordinates of point $B$?", -"image_file_name": "7054110", -"image": [ -"math/52056156_914.png" -], -"solution": "\\textbf{Solution:} Given that $\\because A(2,0)$, \\\\\n$\\therefore OA=2$, \\\\\nIn the right-angled triangle $Rt\\triangle AOB$, $\\angle AOB=90^\\circ$, \\\\\n$OB=\\sqrt{AB^{2}-OA^{2}}=\\sqrt{13-4}=3$, \\\\\n$\\therefore$ the coordinates of point B are $\\boxed{(0,3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056156_205": { -"question": "As shown in the figure, two lines $l_{1}$ and $l_{2}$ pass through point A(2,0) and intersect the y-axis at points B and C, respectively, where point B is above the origin and point C is below the origin. It is known that $AB=\\sqrt{13}$. If $BC=4$, find the equation of line $l_{2}$.", -"image_file_name": "7054110", -"image": [ -"math/52056156_914.png" -], -"solution": "\\textbf{Solution:} Since $BC=4$,\\\\\nthe coordinates of point C are (0, -1),\\\\\nlet the equation of $l_{2}$ be $y=kx+b$,\\\\\nsubstituting A(2, 0), C(0, -1) into it, we get:\\\\\n$\\therefore \\left\\{\\begin{array}{l}2k+b=0 \\\\ b=-1 \\end{array}\\right.$\\\\\nSolving, we find: $\\left\\{\\begin{array}{l}k=\\frac{1}{2} \\\\ b=-1 \\end{array}\\right.$\\\\\nHence, the equation of $l_{2}$ is $y=\\frac{1}{2}x-1=\\boxed{y=\\frac{1}{2}x-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056028_207": { -"question": "As shown in the figure, in rectangle $ABCO$, point $C$ is on the x-axis, point $A$ is on the y-axis, and the coordinates of point $B$ are $(-9, 12)$. Rectangle $ABCO$ is folded along line $BD$ so that point $A$ falls at point $E$ on the diagonal $OB$, and line $BD$ intersects $OA$ and the x-axis at points $D$ and $F$, respectively. What is the length of segment $BO$?", -"image_file_name": "7054110", -"image": [ -"math/52056028_928.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 3, since quadrilateral $ABCO$ is a rectangle, \\\\\nthus $\\angle BCO=90^\\circ$. \\\\\nIn $\\triangle BCO$ right-angled at $C$, \\\\\n$BO^{2}=BC^{2}+OC^{2}$, $BO^{2}=12^{2}+9^{2}$, \\\\\nhence, $BO=\\boxed{15}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056028_208": { -"question": "As shown in the diagram, in rectangle $ABCO$, point $C$ is on the x-axis, and point $A$ is on the y-axis, with the coordinates of point $B$ being $(-9, 12)$. The rectangle $ABCO$ is folded along line $BD$ such that point $A$ falls on point $E$ on the diagonal $OB$, and line $BD$ intersects $OA$ and the x-axis at points $D$ and $F$, respectively. What is the area of $\\triangle OBD$?", -"image_file_name": "7054110", -"image": [ -"math/52056028_928.png" -], -"solution": "\\textbf{Solution:} Let $OD=x$, \\\\\nsince quadrilateral $ABCO$ is a rectangle, \\\\\ntherefore $\\angle BAD=90^\\circ$. \\\\\nAccording to the problem, $\\triangle BAD\\cong \\triangle BED$, \\\\\ntherefore $BE=BA=9$, $AD=ED=12-x$, $\\angle BED=\\angle BAD=90^\\circ$, \\\\\nthus $\\angle OED=90^\\circ$, $EO=BO-BE=15-9=6$. \\\\\nIn $\\triangle DEO$, $OD^2=OE^2+DE^2$, $x^2=6^2+(12-x)^2$, \\\\\n$x=\\frac{15}{2}$, i.e., $OD=\\frac{15}{2}$, \\\\\ntherefore, the area of $\\triangle OBD=\\frac{1}{2}OD\\cdot AB=\\boxed{\\frac{135}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056028_209": { -"question": "As shown in the figure, within the rectangle $ABCO$, point $C$ is on the $x$-axis, and point $A$ is on the $y$-axis, with point $B$ having the coordinates $(-9, 12)$. The rectangle $ABCO$ is folded along line $BD$, such that point $A$ falls at point $E$ on the diagonal $OB$, and line $BD$ intersects lines $OA$ and the $x$-axis at points $D$ and $F$, respectively. On the $x$-axis, there exists a point $M$, such that the quadrilateral formed by vertices $A$, $B$, $F$, and $M$ is a parallelogram. If such a point $M$ exists, find the coordinates of point $M$ that satisfy this condition.", -"image_file_name": "7054110", -"image": [ -"math/52056028_928.png" -], -"solution": "\\textbf{Solution:} From equation (2), we have $OD=\\frac{15}{2}$, thus $D\\left(0,\\frac{15}{2}\\right)$.\\\\\nLet the equation of line BD be $y=kx+b$,\\\\\nSince $B(-9,12)$, $D\\left(0,\\frac{15}{2}\\right)$,\\\\\nThen $\\begin{cases}-9k+b=12,\\\\ b=\\frac{15}{2},\\end{cases}$ yields $\\begin{cases}k=-\\frac{1}{2},\\\\ b=\\frac{15}{2},\\end{cases}$\\\\\nTherefore, the equation of $BD$ is: $y=-\\frac{1}{2}x+\\frac{15}{2}$.\\\\\nWhen $y=0$, $x=15$,\\\\\nTherefore, $OF=15$.\\\\\nAlso, since $AB=9$,\\\\\nTherefore, the coordinates of the point M that satisfy the conditions are $\\boxed{(6,0)}$ or $\\boxed{(24,0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056193_211": { -"question": "In the Cartesian coordinate system $xOy$, the linear function $y=-4x-2$ intersects with the $y$-axis at point $C$ and intersects with the line $AB: y=kx+2$ at point $D$, and the area of $\\triangle ACD$ is $\\frac{16}{7}$. What are the coordinates of point $D$?", -"image_file_name": "7054110", -"image": [ -"math/52056193_931.png" -], -"solution": "\\textbf{Solution:} Start by considering the line $y=-4x-2$ which intersects the y-axis at point C, \\\\\nthus the coordinates of point C are $(0, -2)$, \\\\\nFrom the line $AB: y=kx+2$, \\\\\nwe get the coordinates of point A as $(0, 2)$, \\\\\n$\\therefore AC=4$, \\\\\n$\\because$ the area of $\\triangle ACD=\\frac{16}{7}$, \\\\\n$\\therefore$ the height of $\\triangle ACD$ from side $AC=\\frac{8}{7}$, \\\\\n$\\therefore$ the x-coordinate of point D is $-\\frac{8}{7}$, \\\\\nWhen $x=-\\frac{8}{7}$, $y=-4x-2=\\frac{18}{7}$ \\\\\n$\\therefore$ the coordinates of point D are $\\boxed{\\left(-\\frac{8}{7}, \\frac{18}{7}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056193_212": { -"question": "In the Cartesian coordinate system $xOy$, the linear function $y=-4x-2$ intersects the $y$-axis at point $C$ and intersects the line $AB: y=kx+2$ at point $D$, and the area of $\\triangle ACD$ is $\\frac{16}{7}$. Connect $BC$. What is the area of $\\triangle BCD$?", -"image_file_name": "7054110", -"image": [ -"math/52056193_931.png" -], -"solution": "\\textbf{Solution:} Substituting the coordinates of point D into the equation of line $AB: y=kx+2$,\\\\\nwe get $-\\frac{8}{7}k+2=\\frac{18}{7}$,\\\\\n$\\therefore k=-\\frac{1}{2}$,\\\\\n$\\therefore$ the equation of line $AB$ is $y=-\\frac{1}{2}x+2$;\\\\\n$\\because$ B is the intersection point of line AB and the x-axis,\\\\\n$\\therefore$ the coordinates of point B are (4, 0),\\\\\n$\\therefore S_{\\triangle ABC}=\\frac{1}{2}AC\\cdot OB=\\frac{1}{2}\\times4\\times4=8$,\\\\\n$\\therefore$ the area of $\\triangle BCD$ $=S_{\\triangle ACD}+S_{\\triangle ABC}=\\frac{16}{7}+8=\\boxed{\\frac{72}{7}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056193_213": { -"question": "In the Cartesian coordinate system $xOy$, the linear function $y=-4x-2$ intersects with the $y$ axis at point $C$ and intersects with the line $AB: y=kx+2$ at point $D$, and the area of $\\triangle ACD$ is $\\frac{16}{7}$. Point $P$ lies on the $y$ axis. When $\\triangle ABP$ is an isosceles triangle, find the coordinates of point $P$.", -"image_file_name": "7054110", -"image": [ -"math/52056193_931.png" -], -"solution": "\\textbf{Solution:} \nGiven the equation of line $AB$ as $y=-\\frac{1}{2}x+2$,\\\\\nwe find the coordinates of point $B$ to be $(4, 0)$,\\\\\n$\\therefore AB=2\\sqrt{5}$,\\\\\nWhen $\\triangle ABP$ is an isosceles triangle, consider three cases:\\\\\n(1) Taking A as the center and the length of $AB$ as the radius, we draw a circle, so $AB=AP=2\\sqrt{5}$,\\\\\n$\\therefore$ the coordinates of point $P_1$ are $(0, 2+2\\sqrt{5})$, and of $P_2$ are $(0, 2-2\\sqrt{5})$;\\\\\n(2) Taking B as the center and the length of $AB$ as the radius, we draw a circle, so $AB=BP=2\\sqrt{5}$,\\\\\nFrom the property of the isosceles triangle that all lines converge, we get $OP=OA=2$,\\\\\n$\\therefore$ the coordinates of point $P_3$ are $(0, -2)$;\\\\\n(3) Drawing the perpendicular bisector of $AB$, which intersects the y-axis at point P, then $AP_4=BP_4$,\\\\\nLet $OP_4=x$, so $AP_4=BP_4=x+2$,\\\\\nSince $OB=4$, in $\\triangle OBP_4$,\\\\\n$OP_4^2+OB^2=BP_4^2$, i.e., $x^2+4^2=(x+2)^2$,\\\\\nSolving this gives: $x=3$,\\\\\n$\\therefore$ the coordinates of point $P_4$ are $(0, -3)$,\\\\\n$\\therefore$ the coordinates of point $P$ are $\\boxed{(0, 2+2\\sqrt{5})}$ or $\\boxed{(0, 2-2\\sqrt{5})}$ or $\\boxed{(0, -2)}$ or $\\boxed{(0, -3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056013_215": { -"question": "Given the line $y=kx+b$ passes through points $A(6, 0)$ and $B(2, 2)$. Find the analytical expression of line $AB$.", -"image_file_name": "7054110", -"image": [ -"math/52056013_943.png" -], -"solution": "\\textbf{Solution}: Since the line $y=kx+b$ passes through points $A(6, 0)$ and $B(2, 2)$, \\\\\nthen $\\left\\{\\begin{array}{l}\n6k+b=0 \\\\\n2k+b=2\n\\end{array}\\right.$. Solving this system of equations, we find $\\left\\{\\begin{array}{l}\nk=-\\frac{1}{2} \\\\\nb=3\n\\end{array}\\right.$. \\\\\nTherefore, the equation of line $AB$ is: \\boxed{y=-\\frac{1}{2}x+3}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056013_216": { -"question": "As shown in the diagram, it is known that the line $y=kx+b$ passes through points $A\\left(6, 0\\right)$ and $B\\left(2, 2\\right)$. If the line $y=x-3$ intersects with line $AB$ at point $C$, find the coordinates of point $C$.", -"image_file_name": "7054110", -"image": [ -"math/52056013_943.png" -], -"solution": "\\textbf{Solution}: Given the problem, if the line $y=x-3$ intersects with line $AB$ at point $C$,\\\\\nthen we have the system of equations $\\left\\{\\begin{array}{l}y=-\\frac{1}{2}x+3 \\\\ y=x-3\\end{array}\\right.$, solving this gives $\\left\\{\\begin{array}{l}x=4\\\\ y=1\\end{array}\\right.$\\\\\n$\\therefore$ The coordinates of point $C$ are $\\boxed{(4, 1)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52056013_217": { -"question": "Given the line $y=kx+b$ passes through the points $A(6, 0)$, $B(2, 2)$. According to the graph, write the solution set for the inequality $x-3>kx+b$ with respect to $x$.", -"image_file_name": "7054110", -"image": [ -"math/52056013_943.png" -], -"solution": "\\textbf{Solution:} From the graph, we can conclude that $\\boxed{x>4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50493321_219": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, point $A$ is on the positive half of the $y$-axis, and point $B$ is on the positive half of the $x$-axis, with $OA = OB = 10$. What is the equation of line $AB$?", -"image_file_name": "7054110", -"image": [ -"math/50493321_950.png" -], -"solution": "\\textbf{Solution:} Since point $A$ is on the positive half of the y-axis, and point $B$ is on the positive half of the x-axis, with $OA=OB=10$, \\\\\nthus $A\\left(0, 10\\right)$, $B\\left(10, 0\\right)$. \\\\\nLet the equation of line $AB$ be $y=kx+b$, \\\\\nhence $\\begin{cases}10k+b=0\\\\ b=10\\end{cases}$, solving gives: \\\\\n$\\begin{cases}k=-1\\\\ b=10\\end{cases}$, \\\\\nthus the equation of line $AB$ is $\\boxed{y=-x+10}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50493321_220": { -"question": "As shown in the diagram, in the Cartesian coordinate system xOy, point A lies on the positive half of the y-axis, and point B lies on the positive half of the x-axis, with $OA=OB=10$. If point P is a moving point on line AB, and $S_{\\triangle OBP} = \\frac{1}{4} S_{\\triangle OAP}$, find the coordinates of point P.", -"image_file_name": "7054110", -"image": [ -"math/50493321_950.png" -], -"solution": "Solution: Given equation (1) and the conditions, we can assume point $P\\left(m, -m+10\\right)$. Thus, for $\\triangle OBP$ with OB as the base, the absolute value of the y-coordinate of point P is its height, and for $\\triangle OAP$ with OA as the base, the absolute value of the x-coordinate of point P is its height.\\\\\nSince $S_{\\triangle OBP} = \\frac{1}{4} S_{\\triangle OAP}$,\\\\\nit follows that $\\frac{1}{2}\\cdot OB\\cdot \\left|-m+10\\right|=\\frac{1}{4}\\cdot \\frac{1}{2}\\cdot OA\\cdot \\left|m\\right|$,\\\\\nGiven $OA=OB=10$,\\\\\nit implies $\\left|-m+10\\right|=\\frac{1}{4}\\left|m\\right|$,\\\\\nSolving this gives: $m=8$ or $m=\\frac{40}{3}$,\\\\\nTherefore, the coordinates of point P are $\\boxed{\\left(8, 2\\right)}$ or $\\boxed{\\left(\\frac{40}{3}, -\\frac{10}{3}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50493321_221": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, point $A$ is on the positive half of the $y$-axis, and point $B$ is on the positive half of the $x$-axis, with $OA=OB=10$. Line $AB$ is translated downwards by 10 units to obtain line $l$, and points $M$ and $N$ are moving points on line $l$ (the abscissas of $M$ and $N$ are $x_{M}$ and $x_{N}$, respectively, and $x_{M}\\frac{k_2}{x}$.", -"image_file_name": "7058047", -"image": [ -"math/51402407_294.png" -], -"solution": "\\textbf{Solution:} Observing the graph, the range of $x$ for $k_1x+b>\\frac{k_2}{x}$ is \\boxed{-21}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51402407_32": { -"question": "As shown in the figure, the graph of the linear function $y=k_1x+b$ intersects the graph of the inverse proportion function $y=\\frac{k_2}{x}$ at points $A(1, 2)$ and $B(-2, n)$. If point $P$ is on segment $AB$, and the area ratio $S_{\\triangle AOP} : S_{\\triangle BOP} = 1 : 4$, find the coordinates of point $P$.", -"image_file_name": "7058047", -"image": [ -"math/51402407_294.png" -], -"solution": "\\textbf{Solution:} Let $P(x, x+1)$,\n\n$\\because$ the ratio of areas $S_{\\triangle AOP} : S_{\\triangle BOP} = 1 : 4$,\n\n$\\therefore$ the ratio of segments $AP : PB = 1 : 4$,\n\nwhich means $PB = 4PA$,\n\n$\\therefore (x+2)^2+(x+1+1)^2=16[(x-1)^2+(x+1-2)^2]$,\n\nsolving yields $x_1 = \\frac{2}{5}$, $x_2 = 2$ (discard),\n\n$\\therefore$ the coordinates of point $P$ are $\\boxed{\\left( \\frac{2}{5}, \\frac{7}{5} \\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51402967_34": { -"question": "As shown in the figure, in the Cartesian coordinate system, the rectangle $OABC$ has its vertex $O$ at the origin. Side $OC$ is on the positive half of the $x$-axis, and side $OA$ is on the positive half of the $y$-axis, with $OA=3$ and $AB=4$. The graph of the inverse proportion function $y=\\frac{k}{x}$ ($k>0$) intersects sides $AB$ and $BC$ at points $D$ and $E$, respectively, and $BD=2AD$. Find the coordinates of point $D$ and the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/51402967_301.png" -], -"solution": "\\textbf{Solution:} Given that $AB=4$ and $BD=2AD$,\\\\\nit follows that $AB=AD+BD=AD+2AD=3AD=4$,\\\\\nhence $AD=\\frac{4}{3}$.\\\\\nAlso, given that $OA=3$,\\\\\nit follows that $D\\left(\\frac{4}{3}, 3\\right)$.\\\\\nSince point D lies on the hyperbola $y=\\frac{k}{x}$,\\\\\nit follows that $k=\\frac{4}{3}\\times 3=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51402967_35": { -"question": "As shown in the figure, in the Cartesian coordinate system, the rectangle OABC has its vertex O at the origin. Side OC is on the positive x-axis, and side OA is on the positive y-axis, with OA = 3 and AB = 4. The graph of the inverse proportion function $y=\\frac{k}{x}$ (where $k>0$) intersects the sides AB and BC of the rectangle at points D and E, respectively, and BD = 2AD. Connect OD, OE, and DE. Find the area of $\\triangle DOE$.", -"image_file_name": "7058047", -"image": [ -"math/51402967_301.png" -], -"solution": "\\textbf{Solution:} From the given problem, we have \\\\\n$\\because AD=\\frac{4}{3}$, $OA=3$, \\\\\n$\\therefore S_{\\triangle AOD}=\\frac{1}{2}AD\\cdot AO=\\frac{1}{2}\\times \\frac{4}{3}\\times 3=2$. \\\\\n$\\because k=4$, \\\\\n$\\therefore$ the inverse proportion function can be expressed as $y=\\frac{4}{x}$. \\\\\n$\\because$ in rectangle ABCD, $BC=OA=3$, $OC=AB=4$, \\\\\nalso, $\\because$ point E lies on the graph of the inverse proportion function $y=\\frac{4}{x}$, \\\\\n$\\therefore E(4, 1)$. \\\\\n$\\therefore CE=1$, \\\\\n$\\therefore BE=2$, \\\\\n$\\therefore S_{\\triangle OCE}=\\frac{1}{2}OC\\cdot CE=2$. \\\\\n$\\because AB=4$, $AD=\\frac{4}{3}$. \\\\\n$\\therefore BD=\\frac{8}{3}$, \\\\\n$\\therefore S_{\\triangle BDE}=\\frac{1}{2}BD\\cdot BE=\\frac{8}{3}$, \\\\\n$\\because S_{\\text{rectangle} AOCB}=AO\\cdot OC=3\\times 4=12$, \\\\\n$\\therefore S_{\\triangle DOE}=S_{\\text{rectangle} AOCB}-S_{\\triangle AOD}-S_{\\triangle OCE}-S_{\\triangle BDE}=12-2-2-\\frac{8}{3}=\\boxed{\\frac{16}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51402967_36": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertices of rectangle $OABC$ are such that vertex $O$ is at the origin, side $OC$ is on the positive half-axis of the $x$-axis, and side $OA$ is on the positive half-axis of the $y$-axis, with $OA=3$, $AB=4$. The graph of the inverse proportion function $y=\\frac{k}{x}$ (where $k>0$) intersects the sides $AB$ and $BC$ of the rectangle at points $D$ and $E$, respectively, and it is given that $BD=2AD$. For a point $P$ on the segment $OC$, does there exist a point $P$ such that $\\angle APE=90^\\circ$? If such a point exists, find the coordinates of point $P$; if it does not exist, please explain why.", -"image_file_name": "7058047", -"image": [ -"math/51402967_301.png" -], -"solution": "\\textbf{Solution:} Exist. Assume there exists the required point $P$ with coordinates $(m,0)$,\\\\\n$\\therefore OP=m$, $CP=4-m$.\\\\\n$\\because \\angle APE=90^\\circ$,\\\\\n$\\therefore \\angle APO+\\angle EPC=90^\\circ$,\\\\\nAlso $\\because \\angle APO+\\angle OAP=90^\\circ$,\\\\\n$\\therefore \\angle EPC=\\angle OAP$,\\\\\nAlso $\\because \\angle AOP=\\angle PCE=90^\\circ$,\\\\\n$\\therefore \\triangle AOP\\sim \\triangle PCE$,\\\\\n$\\therefore \\frac{OA}{CP}=\\frac{OP}{CE}$,\\\\\n$\\because OA\\cdot CE=OP\\cdot CP$.\\\\\n$\\therefore m(4-m)=3$,\\\\\nSolving: $m=1$ or $m=3$.\\\\\n$\\therefore$ There exists the required point $P$, with coordinates $\\boxed{(1, 0)}$ or $\\boxed{(3, 0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51403139_38": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $y=-x^2+bx+c$ passes through points $A(-3,0)$ and $B(1,0)$ and intersects the $y$-axis at point $C$. Line segment $BC$ is drawn, and point $P$ is a moving point on the parabola, which is above the $x$-axis. A perpendicular line $PE$ is drawn from $P$ to the $x$-axis, with $E$ being the foot of the perpendicular. What is the equation of the parabola?", -"image_file_name": "7058047", -"image": [ -"math/51403139_310.png" -], -"solution": "\\textbf{Solution:} By substituting A ($-3$, $0$) and B ($1$, $0$) into $y=-x^{2}+bx+c$, we get:\n\\[\n\\left\\{\n\\begin{array}{l}\n0=-9+3b+c \\\\\n0=-1+b+c\n\\end{array}\n\\right.\n\\]\nSolving this, we find:\n\\[\n\\left\\{\n\\begin{array}{l}\nb=-2 \\\\\nc=3\n\\end{array}\n\\right.\n\\]\n$\\therefore$ The equation of the parabola is $y=-x^{2}-2x+3=\\boxed{-x^{2}-2x+3}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51403139_39": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the parabola $y=-x^2+bx+c$ passes through points $A(-3,0)$ and $B(1,0)$, and intersects the $y$-axis at point $C$. Line segment $BC$ is drawn, and point $P$ is a moving point on the parabola above the $x$-axis. A perpendicular line from $P$ to the $x$-axis is drawn, with the foot of the perpendicular being point $E$. Is there a point $P$ such that the triangle formed by $A$, $P$, and $E$ is similar to $\\triangle BOC$? If such a point exists, find the coordinates of point $P$ and explain the reasoning.", -"image_file_name": "7058047", -"image": [ -"math/51403139_310.png" -], -"solution": "\\textbf{Solution:} Let $A(-3,0)$, $B(1,0)$, $C(0,3)$,\\\\\ntherefore $OC=3$, $OB=1$,\\\\\nlet $P(m,-m^2-2m+3)$,\\\\\nthus $PE=-m^2-2m+3$, $AE=m+3$,\\\\\nBased on the given conditions, we have $\\frac{m+3}{-m^2-2m+3}=\\frac{1}{3}$,\\\\\nSolving this, we find $m_1=-2$, $m_2=-3$ (discard),\\\\\nthus $-m^2-2m+3=-(-2)^2-2\\times(-2)+3=3$,\\\\\nthus $P_1(-2,3)$,\\\\\nor $\\frac{m+3}{-m^2-2m+3}=\\frac{3}{1}$,\\\\\nSolving this, we find $m_1=\\frac{2}{3}$, $m_2=-3$ (discard),\\\\\nthus $-m^2-2m+3=-\\left(\\frac{2}{3}\\right)^2-2\\times\\frac{2}{3}+3=\\frac{11}{9}$,\\\\\nthus $P_2\\left(\\frac{2}{3},\\frac{11}{9}\\right)$,\\\\\nIn conclusion, the coordinates of point $P$ are $\\boxed{P_1(-2,3)}$ or $\\boxed{P_2\\left(\\frac{2}{3},\\frac{11}{9}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51403139_40": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $y=-x^{2}+bx+c$ passes through points $A(-3,0)$ and $B(1,0)$ and intersects the $y$-axis at point $C$. The segment $BC$ is drawn. Point $P$ is a moving point on the parabola above the $x$-axis, and a line through $P$ is drawn perpendicular to the $x$-axis, with the foot of the perpendicular being point $E$. Is there a point $P$ that maximizes the area of quadrilateral $ABCP$? If such a point exists, find the coordinates of point $P$ and provide the reasoning.", -"image_file_name": "7058047", -"image": [ -"math/51403139_310.png" -], -"solution": "\\textbf{Solution:} To solve, we connect $AC$ and intersect it with $PE$ at point $H$,\\\\\nfrom point $A(-3,0)$ and point $C(0,3)$, we derive the equation of line $AC$ as: $y=x+3$,\\\\\nlet $P(m,-m^2-2m+3)$, then $H(m,m+3)$,\\\\\nthus, $PH=-m^2-3m$,\\\\\ntherefore, the area of $\\triangle PAC$ is $\\frac{1}{2}\\cdot(-m^2-3m)\\times3$,\\\\\nhence, the area of quadrilateral $ABCP$ is $S_{\\triangle PAC}+S_{\\triangle ABC}=-\\frac{3}{2}m^2-\\frac{9}{2}m+6=-\\frac{3}{2}\\left(m+\\frac{3}{2}\\right)^2+\\frac{75}{8}$,\\\\\nwhen $m=-\\frac{3}{2}$, the maximum area $S_{\\text{max}}=\\boxed{\\frac{75}{8}}$, at this moment, the coordinate of point $P$ is $\\boxed{\\left(-\\frac{3}{2},\\frac{15}{4}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51403218_42": { -"question": "As shown in the figure, the graph of the direct proportion function $y_{1}=kx$ intersects with the graph of the inverse proportion function $y_{2}=\\frac{m}{x}$ at points A$(2,4)$ and point B. The coordinates of point C are $(4,0)$, and point D lies on the graph of the inverse proportion function $y_{2}=\\frac{m}{x}$. What is the expression of the inverse proportion function?", -"image_file_name": "7058047", -"image": [ -"math/51403218_322.png" -], -"solution": "\\textbf{Solution:} Since the graph of the inverse proportion function $y=\\frac{m}{x}$ passes through point A$(2,4)$,\\\\\nthen $m=2\\times 4=8$,\\\\\nthus, the expression of the inverse proportion function is $\\boxed{y=\\frac{8}{x}}$.", -"solution_image": [ -"solution_images/51403218_320.png", -"solution_images/51403218_322.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51403218_43": { -"question": "As shown in the figure, the graph of the direct proportion function $y_1=kx$ intersects with the graph of the inverse proportion function $y_2=\\frac{m}{x}$ at points $A(2,4)$ and point $B$. The coordinates of point $C$ are $(4,0)$, and point $D$ is on the graph of $y_2=\\frac{m}{x}$. Suppose point $E$ is on the x-axis, and $\\angle AEB = 90^\\circ$, find the coordinates of point $E$.", -"image_file_name": "7058047", -"image": [ -"math/51403218_322.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, draw $AG\\perp x$-axis at $G$, and $BH\\perp x$-axis at $H$,\\\\\nsince the graph of the direct proportion function $y_{1}=kx$ intersects with the graph of the inverse proportion function $y_{2}=\\frac{8}{x}$ at points $A(2,4)$ and $B$,\\\\\ntherefore $B(-2,-4)$,\\\\\nhence $OG=OH=2$, $AG=BH=4$,\\\\\nlet the coordinate of $E$ be $(x,0)$ (where $|x|>2$), then $EG=|2-x|$, $EH=|x+2|$,\\\\\nsince $\\angle AEG+\\angle BEH=\\angle AEB=90^\\circ$, $\\angle BEH+\\angle EBH=90^\\circ$,\\\\\ntherefore $\\angle AEG=\\angle EBH$,\\\\\nsince $\\angle AGE=\\angle EHB=90^\\circ$,\\\\\ntherefore $\\triangle EBH\\sim \\triangle AEG$,\\\\\ntherefore $\\frac{EH}{AG}=\\frac{BH}{EG}$, that is $\\frac{|x+2|}{4}=\\frac{4}{|x-2|}$,\\\\\nrewriting, we get $x^2-4=16$,\\\\\nsolving, $x=\\pm 2\\sqrt{5}$,\\\\\ntherefore the coordinates of point $E$ are $\\boxed{(2\\sqrt{5},0)}$ or $\\boxed{(-2\\sqrt{5},0)}$;", -"solution_image": [ -"solution_images/51403218_320.png", -"solution_images/51403218_322.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51403218_44": { -"question": "As shown in the figure, the graph of the direct proportion function $y_1=kx$ intersects with the graph of the inverse proportion function $y_2=\\frac{m}{x}$ at points $A(2,4)$ and point $B$. The coordinate of point $C$ is $(4,0)$, and point $D$ lies on the graph of $y_2=\\frac{m}{x}$. Let point $M$ be on the $x$-axis, and point $N$ be within the Cartesian coordinate system. When the quadrilateral $CDNM$ is a square, directly write down the coordinates of point $M$.", -"image_file_name": "7058047", -"image": [ -"math/51403218_322.png" -], -"solution": "\\textbf{Solution:} When the quadrilateral $CDNM$ is a square, the coordinates of the point $M$ are $\\boxed{(2,0)}$ or $\\boxed{(6,0)}$.", -"solution_image": [ -"solution_images/51403218_320.png", -"solution_images/51403218_322.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51403162_46": { -"question": "\"The Joy of Winter Olympics: Mingxi Enthusiastically Welcomes the Basketball Match\" has begun with athletes attacking and defending, every second counts. In this event, the basketball player Xiaoming performs a long throw from position O. The ball is thrown from point A, which is 1 meter above the ground. It reaches its highest point at B, 6 meters away from O, with the highest point C being 4 meters above the ground. The ball bounces again and lands at point E, with the distance between E and F being 2 meters. According to experiments, the trajectory of the basketball's second bounce on the court has the same shape as the first but its maximum height is reduced to half of the original. Taking Xiaoming's standing position O as the origin, a Cartesian coordinate system is established as shown in the figure (all calculated results are to be rounded to the nearest integer, $ \\sqrt{3} \\approx 1.75$; $ \\sqrt{6} \\approx 2.5$). What is the equation of the parabola ACD?", -"image_file_name": "7058047", -"image": [ -"math/51403162_332.png" -], -"solution": "\\textbf{Solution:} Let us assume that the equation of the parabola describing the basketball's trajectory from its initial launch to its first landing is $y=a(x-h)^2+k$,\\\\\nwhere $h=6$, $k=4$,\\\\\nthus $y=a(x-6)^2+4$.\\\\\nFrom the given information, when $x=0$, $y=1$,\\\\\nwhich implies $1=36a+4$,\\\\\ntherefore $a=-\\frac{1}{12}$,\\\\\nhence the equation is $\\boxed{y=-\\frac{1}{12}(x-6)^2+4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51403162_47": { -"question": "As shown in the figure, the basketball player Xiao Ming throws the ball from point O. The ball is thrown from point A, which is 1 meter above the ground. The ball reaches its highest point, B, 6 meters away from point O, with the highest point C being 4 meters above the ground. It bounces again and lands at point E, with the distance between E and F being 2 meters. According to experiments, the parabola described by the basketball on its second bounce on the court has the same shape as the first, but the maximum height is reduced to half of the original maximum height. Taking the standing position of Xiao Ming at point O as the origin, a Cartesian coordinate system is established as shown in the figure. (All calculated results are to be rounded to the nearest integer, with $ \\sqrt{3}\\approx1.75$ and $ \\sqrt{6}\\approx2.5$). What is the distance from point E, where the basketball lands for the second time, to point O?", -"image_file_name": "7058047", -"image": [ -"math/51403162_332.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, $-\\frac{1}{12}(x-6)^2+4=0$,\\\\\n$\\therefore (x-6)^2=48$,\\\\\nWe find: $x_1=4\\sqrt{3}+6\\approx 13$, $x_2=-4\\sqrt{3}+6$,\\\\\n$\\therefore$ the coordinates of point D are $(13,0)$.\\\\\n$\\therefore OD=13\\text{m}$\\\\\nAs shown in the diagram, draw $MG\\parallel x$ axis from the vertex M of the parabola DE, intersecting the parabola ACD at points G and H.\\\\\n$\\because$ The trajectory of the basketball after the second bounce on the court forms a parabola identical in shape to the first, but its maximum height is reduced to half of the first\\\\\n$\\therefore$ The parabola DME is equivalent to the parabola ACD moved two units downward and then moved to the right.\\\\\n$\\therefore GH=DE$, the $y$-coordinates of points G, H, and M are 2.\\\\\nWhen $y=2$, $-\\frac{1}{12}(x-6)^2+4=2$\\\\\n$x_1=6-2\\sqrt{6}$, $x_2=6+2\\sqrt{6}$\\\\\n$\\therefore DE=GH=x_2-x_1=4\\sqrt{6}\\approx 10$\\\\\n$OE=OD+DE$\\\\\n$=13+10$\\\\\n$=\\boxed{23\\text{m}}$\\\\\n$\\therefore$ The distance from point E, the basketball's second landing point, to point O is $23\\text{m}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51403162_48": { -"question": "As shown in the figure, Xiaoming stands at point $O$ and throws a ball. The ball is thrown from point $A$, which is $1$m above the ground. The basketball reaches its highest point at point $B$, $6$m away from point $O$. The highest point, $C$, is $4$m above the ground. Then it bounces again and falls at point $E$. The distance between $E$ and $F$ is $2$m. According to experiments, the parabola described by the basketball on its second bounce on the court is the same shape as the first parabola, but its maximum height is reduced to half of the original maximum height. Taking the position where Xiaoming stands, $O$, as the origin, a Cartesian coordinate system is established. (All calculated results are rounded to the nearest integer, $\\sqrt{3}\\approx1.75$; $\\sqrt{6}\\approx2.5$) If Xiaoming wants to make a basket on his first throw, how far should he walk forward?", -"image_file_name": "7058047", -"image": [ -"math/51403162_332.png" -], -"solution": "\\textbf{Solution:} As illustrated in the figure, when $y=3$, $-\\frac{1}{12}(x-6)^2+4=3$,\\\\\nwe find: $x_1=-2\\sqrt{3}+6 \\approx 3$; $x_2=2\\sqrt{3}+6 \\approx 9$\\\\\nThus, the point $OR=9\\,\\text{m}$,\\\\\nsince $EF=2\\,\\text{m}$,\\\\\ntherefore $OF=OE+EF=23+2=25\\,\\text{m}$\\\\\nIf Xiaoming wants to make the basket on his first throw, the distance he should walk forward is:\\\\\n$RF=OF-OR=25-9=\\boxed{16}\\,\\text{m}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51402562_50": { -"question": "As shown in the figure, the parabola $y=ax^2+bx-3$ passes through three points $A$, $B$, and $C$, where point $A(-3,0)$, point $C(1,0)$, and point $B$ is on the $y$-axis. Point $P$ is a moving point on the parabola below the line $AB$ (not coinciding with $A$ or $B$). What is the analytical expression of this parabola?", -"image_file_name": "7058047", -"image": [ -"math/51402562_340.png" -], -"solution": "\\textbf{Solution:} Let's substitute points A $(-3,0)$ and C $(1,0)$ into $y=ax^{2}+bx-3$, to get\n\\[\n\\left\\{\n\\begin{array}{l}\n0=9a-3b-3 \\\\\n0=a+b-3\n\\end{array}\n\\right.\n\\]\nSolving this system, we find\n\\[\n\\left\\{\n\\begin{array}{l}\na=1 \\\\\nb=2\n\\end{array}\n\\right.\n\\]\n$\\therefore$ The equation of the parabola is $\\boxed{y=x^{2}+2x-3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51402562_51": { -"question": "As shown in the figure, the parabola $y=ax^2+bx-3$ passes through three points $A$, $B$, and $C$, with points $A(-3,0)$, $C(1,0)$, and point $B$ on the $y$-axis. Point $P$ is a moving point on the parabola below line $AB$ (not coinciding with $A$, $B$). A perpendicular line is drawn from point $P$ to the $x$-axis, the foot of the perpendicular is $D$, and it intersects line $AB$ at point $E$. When is $PE$ maximum, and what is the coordinate of point $P$ at this time?", -"image_file_name": "7058047", -"image": [ -"math/51402562_340.png" -], -"solution": "\\textbf{Solution:} Let $P(x, x^2+2x-3)$, and the equation of line AB is $y=kx+b$,\\\\\nFrom the parabolic equation $y=x^2+2x-3$,\\\\\nLet $x=0$, then $y=-3$,\\\\\n$\\therefore B(0, -3)$,\\\\\nSubstituting $A(-3, 0)$ and $B(0, -3)$ into $y=kx+b$, we get\n\\[\n\\left\\{\n\\begin{array}{l}\n0=-3k+b \\\\\n-3=b\n\\end{array}\n\\right.\n\\]\nSolving, we obtain\n\\[\n\\left\\{\n\\begin{array}{l}\nk=-1 \\\\\nb=-3\n\\end{array}\n\\right.\n\\]\n$\\therefore$ The equation of line AB is $y=-x-3$,\\\\\n$\\because PE\\perp x$-axis,\\\\\n$\\therefore E(x, -x-3)$,\\\\\n$\\because P$ is below the line AB,\\\\\n$\\therefore PE=-x-3-(x^2+2x-3)=-x^2-3x=-\\left(x+\\frac{3}{2}\\right)^2+\\frac{9}{4}$,\\\\\nWhen $x=-\\frac{3}{2}$, $y=x^2+2x-3=-\\frac{15}{4}$,\\\\\n$\\therefore$ When $PE$ is maximum, the coordinates of point $P$ are $\\boxed{\\left(-\\frac{3}{2}, -\\frac{15}{4}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51402562_52": { -"question": "As shown in the figure, the parabola $y=ax^2+bx-3$ passes through points $A$, $B$, and $C$, where $A(-3,0)$, $C(1,0)$, and point $B$ is on the $y$-axis. Point $P$ is a moving point on the parabola below the line $AB$ (not coinciding with $A$ or $B$). Point $Q$ is a moving point on the axis of symmetry of the parabola. Is there a point $Q$ for which the triangle with vertices $A$, $B$, and $Q$ is a right-angled triangle? If such a point exists, find the coordinates of point $Q$; if it does not exist, please explain why.", -"image_file_name": "7058047", -"image": [ -"math/51402562_340.png" -], -"solution": "\\textbf{Solution:} The point $Q$ exists, and the reasons are as follows,\\\\\n$\\because x=-\\frac{2}{2\\times 1}=-1$,\\\\\n$\\therefore$ the axis of symmetry of the parabola is the line $x=-1$,\\\\\nLet $Q(-1,a)$,\\\\\n$\\because B(0,-3), A(-3,0)$,\\\\\n(1) When $\\angle QAB=90^\\circ$, it holds that $AQ^2+AB^2=BQ^2$,\\\\\n$\\therefore 2^2+a^2+3^2+3^2=1^2+(3+a)^2$,\\\\\nSolving this, we find: $a=2$,\\\\\n$\\therefore Q_1(-1,2)$,\\\\\n(2) When $\\angle QBA=90^\\circ$, it holds that $BQ^2+AB^2=AQ^2$,\\\\\n$\\therefore 1^2+(3+a)^2+3^2+3^2=2^2+a^2$,\\\\\nSolving this, we find: $a=-4$,\\\\\n$\\therefore Q_2(-1,-4)$,\\\\\n(3) When $\\angle AQB=90^\\circ$, it holds that $BQ^2+AQ^2=AB^2$,\\\\\n$\\therefore 1^2+(3+a)^2+2^2+a^2=3^2+3^2$,\\\\\nSolving this, we find: $a_1=\\frac{-3+\\sqrt{17}}{2}$ or $a_1=\\frac{-3-\\sqrt{17}}{2}$,\\\\\n$\\therefore Q_3(-1,\\frac{-3+\\sqrt{17}}{2})$, $Q_4(-1,\\frac{-3-\\sqrt{17}}{2})$,\\\\\nTo conclude: the coordinates of point $Q$ are $\\boxed{(-1,2)}$, $\\boxed{(-1,-4)}$, $\\boxed{(-1,\\frac{-3+\\sqrt{17}}{2})}$, or $\\boxed{(-1,\\frac{-3-\\sqrt{17}}{2})}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51402287_57": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the graph of the linear function $y = -2x$ intersects with the graph of the inverse proportion function $y = \\frac{k}{x}$ at a point $A(-1, n)$. What is the equation of the inverse proportion function $y = \\frac{k}{x}$?", -"image_file_name": "7058047", -"image": [ -"math/51402287_361.png" -], -"solution": "\\textbf{Solution:} Since point A $(-1, 2)$ lies on the graph of the linear function $y=-2x$,\\\\\n$\\therefore n=-2\\times(-1)=2$\\\\\n$\\therefore$ The coordinates of point A are $(-1, 2)$\\\\\nSince point A lies on the graph of the inverse proportion function,\\\\\n$\\therefore k=-2$\\\\\n$\\therefore$ The equation of the inverse proportion function is $\\boxed{y=-\\frac{2}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51402287_58": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the graph of the linear function $y=-2x$ intersects with the graph of the inverse proportion function $y=\\frac{k}{x}$ at point $A(-1, n)$. If $P$ is a point on the coordinate axis and satisfies $PA=OA$, write down the coordinates of point $P$ directly.", -"image_file_name": "7058047", -"image": [ -"math/51402287_361.png" -], -"solution": "\\textbf{Solution:} The coordinates of point $P$ are \\boxed{(-2, 0)} or \\boxed{(0, 4)}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51403084_60": { -"question": "As shown in the diagram, the line $y=kx+b$ and the inverse proportion function $y=\\frac{8}{x}$ (where $x>0$) intersect at points $A(m, 4)$ and $B(8, n)$, and intersect the coordinate axes at points $C$ and $D$ respectively. What is the analytical expression of line $AB$?", -"image_file_name": "7058047", -"image": [ -"math/51403084_372.png" -], -"solution": "\\textbf{Solution:} From the given information, point $A\\left(2, 4\\right)$ and point $B\\left(8, 1\\right)$ lie on the graph of $y=\\frac{8}{x}$,\\\\\n$\\therefore m=\\frac{8}{4}=2$, $n=\\frac{8}{8}=1$,\\\\\nthat is, $A\\left(2, 4\\right)$, $B\\left(8, 1\\right)$.\\\\\nSubstituting points $A\\left(2, 4\\right)$ and $B\\left(8, 1\\right)$ into $y=kx+b$ yields\\\\\n$\\left\\{\\begin{array}{l}\n4=2k+b \\\\\n1=8k+b\n\\end{array}\\right.$, solving for which we get: $\\left\\{\\begin{array}{l}\nk=-\\frac{1}{2} \\\\\nb=5\n\\end{array}\\right.$,\\\\\nTherefore, the equation of line $AB$ is: $y=-\\frac{1}{2}x+5=\\boxed{-\\frac{1}{2}x+5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51403084_61": { -"question": "The line \\(y=kx+b\\) and the inverse proportion function \\(y=\\frac{8}{x}\\) (\\(x>0\\)) intersect at points \\(A(m, 4)\\) and \\(B(8, n)\\), respectively, and intersect the coordinate axes at points \\(C\\) and \\(D\\). By observing the graph, when \\(x>0\\), directly write the solution set of \\(kx+b>\\frac{8}{x}\\).", -"image_file_name": "7058047", -"image": [ -"math/51403084_372.png" -], -"solution": "\\textbf{Solution:} When $x>0$, the solution set for $kx+b>\\frac{8}{x}$ is $x\\in(2,8)$. Therefore, the answer is $x\\in\\boxed{(2,8)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51403084_62": { -"question": "The straight line $y=kx+b$ and the inverse proportion function $y=\\frac{8}{x}$ $(x>0)$ intersect at points $A(m, 4)$ and $B(8, n)$, respectively, and intersect the coordinate axes at points $C$ and $D$, respectively. If $P$ is a moving point on the $x$-axis, and the area of $\\triangle ADP$ is $6$, find the coordinates of point $P$.", -"image_file_name": "7058047", -"image": [ -"math/51403084_372.png" -], -"solution": "\\[ \\text{Solution: From (1), the equation of line AB is } y=-\\frac{1}{2}x+5, \\]\n\\[ \\text{when } y=0, \\text{ we have } x=10, \\]\n\\[ \\therefore \\text{ the coordinates of point } D \\text{ are } (10, 0) \\]\n\\[ \\text{Let the coordinates of point } P \\text{ be } (a, 0), \\text{ then } PD=|10-a| \\]\n\\[ \\because \\text{ the area of } \\triangle ADP \\text{ is } 6 \\]\n\\[ \\therefore \\frac{1}{2} \\times 4 \\times PD = 6 \\]\n\\[ \\therefore PD = 3 \\]\n\\[ \\therefore |10-a| = 3 \\]\n\\[ \\text{Solving this gives } a=7 \\text{ or } 13 \\]\n\\[ \\therefore \\text{The coordinates of } P \\text{ are } (\\boxed{7}, 0) \\text{ or } \\boxed{(13, 0)} \\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51402702_64": { -"question": "As shown in the figure, in the Cartesian coordinate system, point O is the origin, and the coordinates of vertex A of the rhombus OABC are (3, 4). Find the equation of the inverse proportion function $y = \\frac{k}{x}$ that passes through point B.", -"image_file_name": "7058047", -"image": [ -"math/51402702_380.png" -], -"solution": "\\textbf{Solution:} Construct AE$\\perp$x-axis through point A, and BF$\\perp$x-axis through point B, where E and F are the feet of the perpendiculars, as shown in the diagram,\\\\\nsince A(3,4),\\\\\nthus OE=3, AE=4,\\\\\ntherefore AO$= \\sqrt{OE^{2}+AE^{2}}$=5,\\\\\nsince quadrilateral OABC is a rhombus,\\\\\ntherefore AO=AB=OC=5, AB$\\parallel$x-axis,\\\\\ntherefore EF=AB=5,\\\\\ntherefore OF=OE+EF=3+5=8,\\\\\ntherefore B(8,4),\\\\\nsince the inverse proportion function passing through point B is $y=\\frac{k}{x}$,\\\\\nsubstituting the coordinates of point B gives $k=32$,\\\\\ntherefore, the expression for the inverse proportion function is $\\boxed{y=\\frac{32}{x}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51402702_65": { -"question": "As shown in the figure, in the Cartesian coordinate system, point O is the origin, and the vertex A of the rhombus OABC has coordinates (3, 4). Connect OB and AC to intersect at point H. Draw line $BD \\parallel AC$ passing through point B to intersect the x-axis at point D. Find the equation of line BD.", -"image_file_name": "7058047", -"image": [ -"math/51402702_380.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral OABC is a rhombus, \\\\\nit follows that OB$\\perp$AC, \\\\\nand since BD$\\parallel$AC, \\\\\nit also follows that OB$\\perp$BD, that is $\\angle$OBD$=90^\\circ$, \\\\\ntherefore, $\\angle$OBF+$\\angle$DBF$=90^\\circ$, \\\\\nand since $\\angle$DBF+$\\angle$BDF$=90^\\circ$, \\\\\nit follows that $\\angle$OBF$=\\angle$BDF, \\\\\nfurthermore, since $\\angle$OFB$=\\angle$BFD$=90^\\circ$, \\\\\nit follows that $\\triangle$OBF$\\sim$$\\triangle$BDF, \\\\\nthus, $\\frac{OF}{BF}=\\frac{BF}{DF}$, \\\\\nleading to $\\frac{8}{4}=\\frac{4}{DF}$, \\\\\nfrom which we solve that DF$=2$, \\\\\ntherefore, OD$=$OF$+$DF$=8+2=10$, \\\\\nthus, D(10,0). \\\\\nSuppose the equation of the line on which BD lies is $y=k_{1}x+b$, \\\\\nsubstituting B(8,4), D(10,0) into the equation gives $\\begin{cases}8k_{1}+b=4\\\\ 10k_{1}+b=0\\end{cases}$, \\\\\nsolving this yields $\\begin{cases}k_{1}=-2\\\\ b=20\\end{cases}$. \\\\\nTherefore, the equation of line BD is $\\boxed{y=-2x+20}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51546388_67": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=kx+b$ intersects the $x$ axis and the $y$ axis at points $A$ and $B$ respectively, and intersects the graph of the inverse proportion function $y= \\frac{m}{x}$ in the first quadrant at point $C$, with $CD$ perpendicular to the $x$ axis, and the foot of the perpendicular being $D$. If $OA=OB=OD=1$, find: the coordinates of points $A$, $B$, and $C$?", -"image_file_name": "7058047", -"image": [ -"math/51546388_391.png" -], -"solution": "\\textbf{Solution:} Since $OA=OB=OD=1$, \\\\\nit follows that $A(-1,0)$, $B(0,1)$, substituting into the linear equation of line AB $y=kx+b$, \\\\\nwe obtain $\\begin{cases}0=-k+b \\\\ 1=0+b\\end{cases}$, solving this gives $\\begin{cases}k=1 \\\\ b=1\\end{cases}$, \\\\\nhence, the equation of line AB is $y=x+1$. Substituting $x=1$ into $y=x+1$ yields $y=2$, \\\\\nthus $C(1,2)$.\\\\\nTherefore, the coordinates of points $A$, $B$, and $C$ are $\\boxed{A(-1,0)}$, $\\boxed{B(0,1)}$, and $\\boxed{C(1,2)}$ respectively.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51546388_68": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=kx+b$ intersects the $x$ axis and the $y$ axis at points $A$ and $B$, respectively, and intersects the graph of the inverse proportion function $y= \\frac{m}{x}$ at point $C$ in the first quadrant. The line $CD$ is perpendicular to the $x$ axis, and the foot of the perpendicular is $D$. If $OA=OB=OD=1$, find the expression of this inverse proportion function.", -"image_file_name": "7058047", -"image": [ -"math/51546388_391.png" -], -"solution": "\\textbf{Solution:} Substitute $C(1,2)$ into $y=\\frac{m}{x}$,\n\n$\\therefore m=2$,\n\n$\\therefore$ the equation of the inverse proportion function is $\\boxed{y=\\frac{2}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51546388_69": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=kx+b$ intersects the $x$-axis and the $y$-axis at points $A$ and $B$, respectively, and intersects the graph of the inverse proportion function $y= \\frac{m}{x}$ at point $C$ in the first quadrant. The line $CD$ is perpendicular to the $x$-axis, with $D$ being the foot of the perpendicular. If $OA=OB=OD=1$, find the expression for the linear function.", -"image_file_name": "7058047", -"image": [ -"math/51546388_391.png" -], -"solution": "\\textbf{Solution:} From equation (1), we find points A(-1, 0) and B(0, 1), therefore the equation of line AB is $y = x + 1$, \\\\\nthus, the equation of the linear function is: \\boxed{y = x + 1}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52719985_71": { -"question": "As shown in the diagram, the parabola $y=\\frac{3}{4}x^{2}-\\frac{15}{4}x+3$ intersects the x-axis at points A and B, with point A to the left of point B, and intersects the y-axis at point C. What are the coordinates of points A, B, and C?", -"image_file_name": "7058047", -"image": [ -"math/52719985_401.png" -], -"solution": "Solution: Substituting \\(x=0\\) into \\(y=\\frac{3}{4}x^{2}-\\frac{15}{4}x+3\\), we get \\(y=3\\).\n\\\\\nTherefore, the coordinates of point \\(C\\) are \\((0, 3)\\).\n\\\\\nSubstituting \\(y=0\\) into \\(y=\\frac{3}{4}x^{2}-\\frac{15}{4}x+3\\), we get \\(\\frac{3}{4}x^{2}-\\frac{15}{4}x+3=0\\).\n\\\\\nSolving this, we find \\(x_{1}=1\\) and \\(x_{2}=4\\).\n\\\\\nTherefore, the coordinates of point \\(A\\) are \\((1, 0)\\), and the coordinates of point \\(B\\) are \\((4, 0)\\).\n\\\\\nTherefore, the coordinates of point \\(A\\) are \\(\\boxed{(1, 0)}\\), the coordinates of point \\(B\\) are \\(\\boxed{(4, 0)}\\), and the coordinates of point \\(C\\) are \\(\\boxed{(0, 3)}\\).", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52719985_72": { -"question": "As illustrated in the figure, the parabola $y=\\frac{3}{4}x^{2}-\\frac{15}{4}x+3$ intersects the x-axis at points $A$ and $B$, with point $A$ located to the left of point $B$, and intersects the y-axis at point $C$. Point $E$ is a moving point on line segment $BC$. A perpendicular line to the x-axis is drawn through point $E$ and it intersects the parabola at point $F$. When $EF=OC$, find the x-coordinate of point $E$.", -"image_file_name": "7058047", -"image": [ -"math/52719985_401.png" -], -"solution": "\\textbf{Solution:} Let the equation of the line $BC$ be $y=-\\frac{3}{4}x+3$.\\\\\nSince it passes through point $B(4, 0)$,\\\\\nthus we find $k=-\\frac{3}{4}$.\\\\\nTherefore, the equation of the line $BC$ is $y=-\\frac{3}{4}x+3$.\\\\\nSince point $E$ is a moving point on line $BC$, and a perpendicular to the $x$ axis through point $E$ intersects the parabola at point $F$,\\\\\nthus, let the coordinates of point $E$ be $\\left(m, -\\frac{3}{4}m+3\\right)$, then the coordinates of point $F$ are $\\left(m, \\frac{3}{4}m^2-\\frac{15}{4}m+3\\right)$.\\\\\nSince $EF=OC$, and the coordinates of point $C$ are $(0, 3)$,\\\\\ntherefore, $\\left|\\frac{3}{4}m^2-\\frac{15}{4}m+3-\\left(-\\frac{3}{4}m+3\\right)\\right|=3$.\\\\\nTherefore, $\\frac{3}{4}m^2-3m=3$, or $\\frac{3}{4}m^2-3m=-3$.\\\\\nSolving gives $m_1=2+2\\sqrt{2}$, $m_2=2-2\\sqrt{2}$, $m_3=m_4=2$.\\\\\nTherefore, the $x$-coordinates of point $E$ are $\\boxed{2+2\\sqrt{2}}$, $\\boxed{2-2\\sqrt{2}}$, and $\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52719985_73": { -"question": "Synthesis and Inquiry\\\\\nAs shown in the figure, the parabola $y=\\frac{3}{4}x^{2}-\\frac{15}{4}x+3$ intersects the x-axis at points $A$ and $B$, with point $A$ located to the left of point $B$, and intersects the y-axis at point $C$. Point $P$ starts from point $B$ and moves towards the endpoint $C$ along $BC$ at a speed of $1$ unit length per second. Simultaneously, point $Q$ starts from point $O$ and moves towards the endpoint $B$ at the same speed along the positive half of the x-axis. Once arrived, both points stop moving. Connect $PQ$. When $\\triangle BPQ$ is an isosceles triangle, please directly write down the time of movement.", -"image_file_name": "7058047", -"image": [ -"math/52719985_401.png" -], -"solution": "\\textbf{Solution:} Let the motion time be $t$. According to the problem statement, in order to form $\\triangle BPQ$, points P and Q must not coincide with B, hence the range of $t$ is $0y_2$.", -"image_file_name": "7058047", -"image": [ -"math/52602886_433.png" -], -"solution": "\\textbf{Solution:} When $y_1>y_2$, the range of values for $x$ is $\\boxed{x\\leq -2 or 0 3$. \n\n(2) When point N coincides with point Q or point P, $\\triangle CAN$ is a right triangle, which does not meet the criteria. \n\n(3) When point N is on the line segment $PQ$ (excluding the endpoints), $\\triangle CAN$ is an acute triangle, which does not meet the criteria. \n\n(4) When point N is on the line segment $PC$ (excluding the endpoints), $\\angle ANC$ is obtuse, $\\triangle CAN$ is an obtuse triangle, in this case, $0 < n < \\frac{3}{5}$. \n\n(5) When point N coincides with point C, it cannot form a triangle, which does not meet the criteria. \n\n(6) When point N is below point C, $\\angle ACN$ is obtuse, $\\triangle CAN$ is an obtuse triangle, in this case, $n < 0$. \n\nOverall, the range of $n$ is $n > 3$ or $0 < n < \\frac{3}{5}$ or $n < 0$ (also can be written as $n > 3$ or $n < \\frac{3}{5}$ and $n \\neq 0$). \n\nTherefore, the range of $n$ is $\\boxed{n > 3 \\text{ or } 0 < n < \\frac{3}{5} \\text{ or } n < 0}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52602949_91": { -"question": "A triangular piece of material is shown in the figure, where $ \\angle A=30^\\circ$, $ \\angle C=90^\\circ$, and $AB=12$. Cut out a rectangle CDEF from this material, where points D, E, and F are respectively on AC, AB, and BC. Let the length of AE be x, and the area of rectangle CDEF be S. Write down the expression of S as a function of x, and state the domain of x.", -"image_file_name": "7058047", -"image": [ -"math/52602949_453.png" -], -"solution": "\\textbf{Solution:} We have $AB=12$, $AE=x$, and the point E does not coincide with points A or B,\\\\\ntherefore $00)$ at points A and B, and intersects with the x-axis at point C. If the x-coordinates of points A and B are 1 and 2 respectively, please directly provide the solution set of $k_{1}x+b>\\frac{k_{2}}{x}$.", -"image_file_name": "7058047", -"image": [ -"math/52601705_572.png" -], -"solution": "\\textbf{Solution:} From the given problem, we have $k_{1}x+b>\\frac{k_{2}}{x}$,\\\\\nthe solution set is $x\\in(1,2)$,\\\\\n$\\therefore$ the solution set is $x\\in\\boxed{(1,2)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52601705_137": { -"question": "As shown in the figure, the line $l: y=k_{1}x+b$ intersects the hyperbola $y=\\frac{k_{2}}{x}$ (for $x>0$) at points $A$ and $B$, and intersects the $x$-axis at point $C$. If the abscissas of points $A$ and $B$ are $1$ and $2$, respectively, and the area of $\\triangle AOB$ is $3$, what is the value of $k_{2}$?", -"image_file_name": "7058047", -"image": [ -"math/52601705_572.png" -], -"solution": "\\textbf{Solution:} Let $AM\\perp x$-axis at $M$, and $BN\\perp x$-axis at $N$. Hence, the area of $\\triangle AOM$ and the area of $\\triangle BON$ are both equal to $\\frac{1}{2}|k_{2}|$, \\\\\nLet $A(1,k_{2})$, and $B(2,\\frac{k_{2}}{2})$, \\\\\nSince the area of $\\triangle AOB$ is $3$, \\\\\nTherefore, $S_{\\triangle AOB}=S_{\\triangle AOM}+S_{\\text{trapezoid} AMNB}-S_{\\triangle BON}=S_{\\text{trapezoid} AMNB}=\\frac{1}{2}\\left(k_{2}+\\frac{k_{2}}{2}\\right)\\times(2-1)=3$, \\\\\nHence, $k_{2}=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602496_139": { -"question": "As shown in the figure, the points $A(-6, 2)$ and $B(n, -4)$ are two intersection points of the linear function $y=kx+b$ and the inverse proportion function $y=\\frac{m}{x}$. Find the expressions for the inverse proportion function and the linear function.", -"image_file_name": "7058047", -"image": [ -"math/52602496_584.png" -], -"solution": "\\textbf{Solution:} Substitute $A(-6, 2)$ into $y=\\frac{m}{x}$, thus we get $m=2\\times(-6)=-12$, \\\\\n$\\therefore$ the inverse proportion function equation is $y=-\\frac{12}{x}$, \\\\\nSubstituting $B(n, -4)$ into $y=-\\frac{12}{x}$, it yields $-4=-\\frac{12}{n}$, \\\\\nSolving that gives $n=3$, \\\\\nSubstituting $A(-6, 2)$ and $B(3, -4)$ into $y=kx+b$, we get \\\\\n$\\begin{cases}\n-6k+b=2\\\\ \n3k+b=-4\n\\end{cases}$, resulting in: $\\begin{cases}\nk=-\\frac{2}{3}\\\\ \nb=-2\n\\end{cases}$, \\\\\n$\\therefore$ the linear function equation is $\\boxed{y=-\\frac{2}{3}x-2}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602496_140": { -"question": "As shown in the figure, points $A\\left(-6, 2\\right)$ and $B\\left(n, -4\\right)$ are two intersections of the linear function $y=kx+b$ and the inverse proportion function $y=\\frac{m}{x}$. What is the area of $\\triangle AOB$?", -"image_file_name": "7058047", -"image": [ -"math/52602496_584.png" -], -"solution": "\\textbf{Solution:} Solving by substituting $y=0$ into $y=-\\frac{2}{3}x-2$, we get $0=-\\frac{2}{3}x-2$,\\\\\nwhich yields: $x=-3$,\\\\\nhence, the coordinates of point C are ($-3$, $0$),\\\\\nthus, $S_{\\triangle AOB}=S_{\\triangle AOC}+S_{\\triangle BOC}=\\frac{1}{2} \\times OC \\times y_A + \\frac{1}{2} \\times OC \\times (-y_B) = \\frac{1}{2} \\times OC \\times (y_A-y_B) = \\frac{1}{2} \\times 3 \\times (2+4) = \\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52765598_142": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the linear function $y_1=kx+b$ intersects with the x-axis at point $A$ and with the y-axis at point $B$. It intersects with the graph of the inverse proportion function $y_2=\\frac{m}{x}$ at points $C$ and $D$, where point $C(-2,3)$, and the ordinate of point $D$ is $-1$. Find the analytic expressions of the inverse proportion function and the linear function?", -"image_file_name": "7058047", -"image": [ -"math/52765598_591.png" -], -"solution": "\\textbf{Solution:} Given the inverse proportional function $y_2=\\frac{m}{x}$ passes through point $C(-2, 3)$, substituting gives:\\\\\n$\\therefore m=-2\\times 3=-6$,\\\\\n$\\therefore$ the equation of the inverse proportional function is $y=-\\frac{6}{x}$;\\\\\nGiven the y-coordinate of point $D$ is $-1$,\\\\\n$\\therefore D(6, -1)$,\\\\\nSubstituting points $C$ and $D$ into $y_1=kx+b$,\\\\\nwe get $\\begin{cases}-2k+b=3\\\\ 6k+b=-1\\end{cases}$, solving this gives $\\begin{cases}k=-\\frac{1}{2}\\\\ b=2\\end{cases}$,\\\\\n$\\therefore$ the equation of the inverse proportional function is $\\boxed{y=-\\frac{6}{x}}$,\\\\\n$\\therefore$ the equation of the linear function is $\\boxed{y=-\\frac{1}{2}x+2}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52765598_143": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the linear function $y_1=kx+b$ intersects the x-axis at point A and the y-axis at point B. It intersects with the graph of the hyperbolic function $y_2=\\frac{m}{x}$ at points C and D, with point C being (-2, 3) and the ordinate of point D being -1. If point E is a point on the graph of the hyperbolic function in the fourth quadrant, and a line is drawn from point E perpendicular to the y-axis to point F, and lines OE and AF are connected, if the area of $\\triangle BAF$ is 4 times that of $\\triangle EFO$, determine the coordinates of point E.", -"image_file_name": "7058047", -"image": [ -"math/52765598_591.png" -], -"solution": "\\textbf{Solution:} From the problem, since the graph of the linear function $y_{1}=-\\frac{1}{2}x+2$ intersects the x-axis at point A and the y-axis at point B, \\\\\n$\\therefore A(4, 0)$, $B(0, 2)$, that is $OA=4$, $OB=2$, \\\\\nLet $E(x, -\\frac{6}{x})$, \\\\\nsince $E$ is in the fourth quadrant, \\\\\n$\\therefore EF=x$, $OF=\\frac{6}{x}$, \\\\\n$\\therefore$ The area of $\\triangle EFO=\\frac{1}{2}EF\\cdot OF=\\frac{1}{2}x\\cdot \\frac{6}{x}=3$, \\\\\nsince the area of $\\triangle BAF=4$ times the area of $\\triangle EFO$, \\\\\n$\\therefore$ The area of $\\triangle BAF=12$, \\\\\n$\\therefore$ The area of $\\triangle BAF=\\frac{1}{2}BF\\cdot OA=\\frac{1}{2}BF\\cdot 4=12$, \\\\\n$\\therefore BF=6$, \\\\\n$\\therefore OF=6-2=4$, \\\\\n$\\therefore F(0, -4)$, \\\\\nWhen $y=-4$, substitute into $y=-\\frac{6}{x}$, and solve to obtain $x=\\frac{3}{2}$, \\\\\n$\\therefore E\\left(\\frac{3}{2}, -4\\right)$.Therefore, the coordinates of point E are $\\boxed{\\left(\\frac{3}{2}, -4\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52766565_145": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola passes through points $A(-1,0)$, $B(4,0)$, and $C(0,-2)$. Determine the equation of the parabola and its axis of symmetry.", -"image_file_name": "7058047", -"image": [ -"math/52766565_600.png" -], -"solution": "\\textbf{Solution}: Let the equation of the parabola be $y=ax^{2}+bx+c$, \\\\\nsince the parabola passes through points A($-1, 0$), B($4, 0$), and C($0, -2$), substituting, we get: \\\\\n\\[\\begin{cases}\na-b+c=0\\\\\n16a+4b+c=0\\\\\nc=-2\n\\end{cases}\\] \\\\\nSolving, we find: \\\\\n\\[\\begin{cases}\na=\\frac{1}{2}\\\\\nb=-\\frac{3}{2}\\\\\nc=-2\n\\end{cases}\\] \\\\\nTherefore, the equation of this parabola is $y=\\frac{1}{2}x^{2}-\\frac{3}{2}x-2$. \\\\\nSince the equation of the parabola is $y=\\frac{1}{2}x^{2}-\\frac{3}{2}x-2=\\frac{1}{2}(x-\\frac{3}{2})^{2}-\\frac{25}{8}$ \\\\\nTherefore, the axis of symmetry of the parabola is $x=\\boxed{\\frac{3}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52766565_146": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the parabola passes through points A $(-1, 0)$, B $(4, 0)$, and C $(0, -2)$. Is there a point P on the axis of symmetry of this parabola such that the perimeter of $\\triangle PAC$ is minimized? If such a point exists, find the coordinates of point P; if not, explain why.", -"image_file_name": "7058047", -"image": [ -"math/52766565_600.png" -], -"solution": "\\textbf{Solution}: Exist, the reason is as follows:\\\\\nConnect PB\\\\\nDue to the symmetry of the parabola: $PA=PB$\\\\\n$\\therefore$ the perimeter of $\\triangle PAC$ $PA+PC+AC=PB+PC+AC$,\\\\\n$\\therefore$ when points B, P, C are collinear, $PB+PC$ is minimized,\\\\\nthat is, when points B, P, C are collinear, the perimeter of $\\triangle PAC$ is minimized,\\\\\nSuppose the equation of line BC is $y=kx+m$,\\\\\nSubstitute points B$(4,0)$ and C$(0,-2)$ into it,\\\\\nwe get $\\begin{cases}0=4k+m\\\\ -2=m\\end{cases}$, and solve to get: $\\begin{cases}k=\\frac{1}{2}\\\\ m=-2\\end{cases}$,\\\\\nthus, the equation of line BC is $y=\\frac{1}{2}x-2$.\\\\\nLet $x=\\frac{3}{2}$, then $y=\\frac{1}{2}\\times \\frac{3}{2}-2=-\\frac{5}{4}$,\\\\\nthus, the coordinates of point P are $\\left(\\frac{3}{2},-\\frac{5}{4}\\right)$.\\\\\n$\\therefore$ There exists a point P on the axis of symmetry of this parabola that minimizes the perimeter of $\\triangle PAC$, at which the coordinates of point P are $\\boxed{\\left(\\frac{3}{2},-\\frac{5}{4}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52719950_148": { -"question": "Synthesis and Inquiry: As shown in the figure, in the Cartesian coordinate system, the graph of the quadratic function $y=x^2+bx+c$ passes through point $A\\left(0, -\\frac{7}{4}\\right)$ and point $B\\left(1, \\frac{1}{4}\\right)$. What is the analytical expression of this quadratic function?", -"image_file_name": "7058047", -"image": [ -"math/52719950_613.png" -], -"solution": "\\textbf{Solution:} Substitute $A\\left(0, -\\frac{7}{4}\\right)$ and point $B\\left(1, \\frac{1}{4}\\right)$ into $y=x^{2}+bx+c$ to get: \\\\\n\\[\n\\begin{cases}\n-\\frac{7}{4}=c\\\\\n\\frac{1}{4}=1+b+c\n\\end{cases}\n,\\] solving this system of equations gives\n\\[\n\\begin{cases}\nb=1\\\\\nc=-\\frac{7}{4}\n\\end{cases},\n\\]\n$\\therefore y=x^{2}+x-\\frac{7}{4}$. Therefore, the quadratic function is $\\boxed{y=x^{2}+x-\\frac{7}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52719950_149": { -"question": "Synthesis and Exploration: As shown in the diagram, in the Cartesian coordinate system, the graph of the quadratic function $y=x^2+bx+c$ passes through point $A\\left(0, -\\frac{7}{4}\\right)$ and point $B\\left(1, \\frac{1}{4}\\right)$. When $-2\\le x\\le 2$, what are the maximum and minimum values of the quadratic function $y=x^2+bx+c$?", -"image_file_name": "7058047", -"image": [ -"math/52719950_613.png" -], -"solution": "\\textbf{Solution:} Given the equation $y=x^2+bx+c$ can be rewritten as $y=\\left(x+\\frac{1}{2}\\right)^2-\\frac{9}{4}$,\\\\\n$\\therefore$ the parabola opens upwards, and its axis of symmetry is the line $x=-\\frac{1}{2}$.\\\\\n$\\therefore$ when $x=-\\frac{1}{2}$, $y$ attains its minimum value of $-\\frac{9}{4}$.\\\\\n$\\because$ $2-\\left(-\\frac{1}{2}\\right) > -\\frac{1}{2}-(-2)$,\\\\\n$\\therefore$ when $x=2$, $y$ reaches its maximum value $2^2+2\\cdot2+c=\\boxed{\\frac{17}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52719950_150": { -"question": "Synthesis and Exploration: As shown in the figure, in the Cartesian coordinate system, the graph of the quadratic function $y=x^2+bx+c$ passes through point $A\\left(0, -\\frac{7}{4}\\right)$ and point $B\\left(1, \\frac{1}{4}\\right)$. Point $P$ is an arbitrary point on the graph of this function, with the x-coordinate $m$. A line segment $PQ$ is drawn parallel to the x-axis from point $P$, and the x-coordinate of point $Q$ is $-2m+1$. It is known that point $P$ and point $Q$ do not coincide, and the length of segment $PQ$ decreases as $m$ increases. What is the range of values for $m$?", -"image_file_name": "7058047", -"image": [ -"math/52719950_613.png" -], -"solution": "Solution: $PQ=\\left|-3m+1\\right|$, \\\\\nwhen $-3m+1>0$, $PQ=-3m+1$, the length of $PQ$ decreases as $m$ increases, \\\\\nwhen $-3m+1<0$, $PQ=3m-1$, the length of $PQ$ increases as $m$ increases, \\\\\n$\\therefore$ $-3m+1>0$ satisfies the condition, \\\\\nsolving gives $\\boxed{m<\\frac{1}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52601999_152": { -"question": "As shown in the figure, the line $y_1=k_1x+b$ intersects with the hyperbola $y_2=\\frac{k_2}{x} \\left(x>0\\right)$ at points $A$ and $B$ within the first quadrant. Given $A(1, m)$ and $B(2, 1)$, find the equations of the line and the hyperbola.", -"image_file_name": "7058047", -"image": [ -"math/52601999_624.png" -], -"solution": "\\textbf{Solution:} Given point $B(2, 1)$ is on the hyperbola $y_{2}=\\frac{k_{2}}{x}$, \\\\\n$\\therefore k_{2}=2\\times 1=2$,\\\\\n$\\therefore$ the equation of the hyperbola is $y_{2}=\\frac{2}{x}$\\\\\nSince $A(1, m)$ is on the hyperbola $y_{2}=\\frac{2}{x}$, \\\\\n$\\therefore m=\\frac{2}{1}=2$,\\\\\n$\\therefore A(1, 2)$\\\\\nSince line $y_{1}=k_{1}x+b$ passes through points $A(1, 2)$ and $B(2, 1)$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}k_{1}+b=2\\\\ 2k_{1}+b=1\\end{array}\\right.$, solving this gives $\\left\\{\\begin{array}{l}k_{1}=-1\\\\ b=3\\end{array}\\right.$,\\\\\n$\\therefore$ the equation for line $AB$ is $\\boxed{y_{1}=-x+3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52601999_153": { -"question": "As shown in the figure, the line $y_1=k_1x+b$ intersects with the hyperbola $y_2=\\frac{k_2}{x}\\ (x>0)$ at points $A$ and $B$ within the first quadrant, where $A(1, m)$ and $B(2, 1)$. Based on the graph, directly write down the solution set for the inequality $y_12$. Therefore, the answer is $x\\in\\boxed{(0,1)\\cup(2,+\\infty)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602046_155": { -"question": "As shown in the figure, the graph of the linear function $y=-\\frac{1}{2}x+1$ intersects with the graph of the inverse proportion function $y=\\frac{k}{x}$ at points $A$ and $B$. The x-coordinate of point $A$ is $-2$, and the x-coordinate of point $B$ is $4$. The graph of the linear function intersects with the y-axis at point $C$. What is the expression of the inverse proportion function?", -"image_file_name": "7058047", -"image": [ -"math/52602046_632.png" -], -"solution": "\\textbf{Solution:} When $x=-2$, $y=-\\frac{1}{2}\\times (-2)+1=2$,\\\\\n$\\therefore \\boxed{A(-2,2)}$,\\\\\n$\\because$ the graph of the inverse proportion function $y=\\frac{k}{x}$ passes through point A,\\\\\n$\\therefore k=2\\times (-2)=-4$,\\\\\n$\\therefore$ the expression for the inverse proportion function is $\\boxed{y=-\\frac{4}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602046_156": { -"question": "As shown in the figure, the graph of the linear function $y=-\\frac{1}{2}x+1$ intersects the graph of the hyperbolic function $y=\\frac{k}{x}$ at points $A$ and $B$, with the $x$-coordinate of point $A$ being $-2$ and the $x$-coordinate of point $B$ being $4$. The graph of the linear function intersects the $y$-axis at point $C$. If point $P$ is on the $y$-axis, and the area of $\\triangle ABP$ is $6$, find the coordinates of point $P$.", -"image_file_name": "7058047", -"image": [ -"math/52602046_632.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that the graph of the inverse proportion function $y=-\\frac{4}{x}$ passes through point B, and the x-coordinate of point B is 4,\n\n$\\therefore y=-1$, i.e., B(4, -1),\n\nLet the coordinates of point P be (0, $a$),\n\nSince the graph of the linear function $y=-\\frac{1}{2}x+1$ intersects the y-axis at point C,\n\n$\\therefore$ C(0, 1),\n\n$\\therefore$ PC=$|1-a|$,\n\nSince the area of $\\triangle ABP$ is 6,\n\n$\\therefore$ $\\frac{1}{2}\\times |1-a|\\times 6=6$,\n\nSolving gives $a=-1$ or $a=3$,\n\n$\\therefore$ the coordinates of point P are (0, $-1$) or (0, $\\boxed{3}$).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602919_158": { -"question": "As shown in the figure, the parabola $y=ax^{2}+bx+3$ ($a\\neq 0$) intersects with the x-axis at points $A(1,0)$ and $B(-3,0)$ and with the y-axis at point $C$. Line segment $BC$ intersects with the axis of symmetry of the parabola at point $E$, with the vertex being point $D$. Find the equation of the parabola.", -"image_file_name": "7058047", -"image": [ -"math/52602919_640.png" -], -"solution": "\\textbf{Solution:} Given that the parabola $y=ax^{2}+bx+3$ passes through points $A(1,0)$ and $B(-3,0)$,\\\\\nwe have $\\begin{cases} a+b+3=0 \\\\ 9a-3b+3=0 \\end{cases}$,\\\\\nsolving these equations yields $\\begin{cases} a=-1 \\\\ b=-2 \\end{cases}$,\\\\\ntherefore, the equation of the parabola is: \\boxed{y=-x^{2}-2x+3}.", -"solution_image": [ -"solution_images/52602919_640.png", -"solution_images/52602919_641.png", -"solution_images/52602919_642.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52602919_159": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+3$ ($a\\neq 0$) intersects the x-axis at points $A(1,0)$ and $B(-3,0)$, and intersects the y-axis at point $C$. The line segment $BC$ is drawn and intersects the axis of symmetry of the parabola at point $E$, with the vertex being point $D$. If $M$ is a moving point on the parabola located above the line segment $BC$, what is the maximum area of $\\triangle BCM$?", -"image_file_name": "7058047", -"image": [ -"math/52602919_640.png" -], -"solution": "\\textbf{Solution:} Draw $MF\\perp x$ axis from point M, intersecting BC at point G and the x-axis at point F, \\\\\nwhen $x=0$, $y=3$, thus the coordinates of C are $(0,3)$, \\\\\nit is easy to derive the equation of BC as $y=x+3$, \\\\\nlet $G(x, x+3)$, $M(x, -x^{2}-2x+3)$, \\\\\nthen $MG= -x^{2}-2x+3-(x+3)=-x^{2}-3x$, \\\\\nTherefore, ${S}_{\\triangle BCM}={S}_{\\triangle BMG}+{S}_{\\triangle CMG}=\\frac{1}{2}MG\\cdot BO=\\frac{1}{2}(-x^{2}-3x)\\times 3=-\\frac{3}{2}x^{2}-\\frac{9}{2}x$, \\\\\nsince $a=-\\frac{3}{2}<0$, \\\\\nTherefore, when $x=-\\frac{b}{2a}=-\\frac{3}{2}$, ${S}_{\\triangle BCM}$ reaches its maximum value, which is $\\boxed{\\frac{27}{8}}$.", -"solution_image": [ -"solution_images/52602919_640.png", -"solution_images/52602919_641.png", -"solution_images/52602919_642.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52602919_160": { -"question": "As shown in the diagram, the parabola $y=ax^2+bx+3$ ($a\\neq 0$) intersects the x-axis at points $A(1,0)$ and $B(-3,0)$, and intersects the y-axis at point $C$. Line $BC$ is drawn and it intersects the axis of symmetry of the parabola at point $E$, with the vertex being point $D$. Point $P$ is a moving point on the left side of the parabola's axis of symmetry, and point $Q$ lies on the ray $ED$. If the triangle formed by points $P$, $Q$, and $E$ is similar to $\\triangle BOC$, please write down the coordinates of point $P$ directly.", -"image_file_name": "7058047", -"image": [ -"math/52602919_640.png" -], -"solution": "\\textbf{Solution:} The coordinates of point $P$ are $\\boxed{\\left(-1-\\sqrt{2}, 2\\right)}$ or $\\boxed{\\left(-2, 3\\right)}$.", -"solution_image": [ -"solution_images/52602919_640.png", -"solution_images/52602919_641.png", -"solution_images/52602919_642.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52602539_162": { -"question": "As shown in the figure, within the Cartesian coordinate system, the vertices of rectangle OABC are $A\\left(0, 3\\right)$, and $C\\left(-1, 0\\right)$. Now, rectangle OABC is rotated clockwise by $90^\\circ$ around the origin O to obtain rectangle $O{A}^{\\prime}{B}^{\\prime}{C}^{\\prime}$. The line $B{B}^{\\prime}$ intersects the x-axis at point M and the y-axis at point N. The graph of the parabola $y=ax^{2}+bx+c$ passes through points C, M, and N. Please directly write down the coordinates of points B and ${B}^{\\prime}$.", -"image_file_name": "7058047", -"image": [ -"math/52602539_655.png" -], -"solution": "\\textbf{Solution:} Point $B$ and point ${B}^{\\prime}$ have coordinates $\\boxed{B(-1, 3)}$ and $\\boxed{{B}^{\\prime}(3, 1)}$, respectively.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52602539_163": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertices of rectangle $OABC$ are $A(0, 3)$ and $C(-1, 0)$. Now, rectangle $OABC$ is rotated $90^\\circ$ clockwise around the origin $O$ to obtain rectangle $O{A}^{\\prime }{B}^{\\prime }{C}^{\\prime }$. The line $B{B}^{\\prime }$ intersects the x-axis at point $M$ and the y-axis at point $N$. The graph of the parabola $y=ax^{2}+bx+c$ passes through points $C$, $M$, and $N$. Find the equation of the parabola.", -"image_file_name": "7058047", -"image": [ -"math/52602539_655.png" -], -"solution": "\\textbf{Solution:} Let the equation of line BB' be $y=kx+b$. Substituting the points B $(-1, 3)$, B' $(3, 1)$ into it, we obtain\n\\[\n\\begin{cases}\n-k+b=3\\\\\n3k+b=1\n\\end{cases},\n\\]\nfrom which it follows that\n\\[\n\\begin{cases}\nk=-\\frac{1}{2}\\\\\nb=\\frac{5}{2}\n\\end{cases}\n\\]\n$\\therefore$ The equation of line BB' is $y=-\\frac{1}{2}x+\\frac{5}{2}$; setting $x=0$, we find $y=\\frac{5}{2}$, and setting $y=0$, we find $x=5$, $\\therefore$ the intersection points of line BB' with the x-axis and y-axis are M $(5, 0)$ and N $(0, \\frac{5}{2})$, respectively. $\\because$ C $(-1, 0)$, $\\therefore$ let the equation of the parabola be $y=a(x-5)(x+1)$, $\\because$ the parabola passes through point N, $\\therefore$ $\\frac{5}{2}=a\\times (-5)\\times 1$, $\\therefore$ a $=-\\frac{1}{2}$, $\\therefore$ the equation of the parabola is $y=-\\frac{1}{2}(x-5)(x+1)=-\\frac{1}{2}x^2+2x+\\frac{5}{2}$; hence, the equation of the parabola is $\\boxed{y=-\\frac{1}{2}x^2+2x+\\frac{5}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52602539_164": { -"question": "As shown in the figure, in the Cartesian coordinate system, rectangle $OABC$ has vertices at $A\\left(0, 3\\right)$ and $C\\left(-1, 0\\right)$. Now, rotate rectangle $OABC$ clockwise by $90^\\circ$ around the origin $O$ to obtain rectangle $O{A}^{\\prime}{B}^{\\prime}{C}^{\\prime}$. The line $B{B}^{\\prime}$ intersects the $x$-axis at point $M$ and the $y$-axis at point $N$. The parabola $y=ax^{2}+bx+c$ passes through points $C$, $M$, and $N$. Let point $P$ be a moving point on the parabola and above the line $B{B}^{\\prime}$. Determine the coordinates of point $P$ and the maximum value of the area of $\\triangle PMN$ when the area of $\\triangle PMN$ is maximized.", -"image_file_name": "7058047", -"image": [ -"math/52602539_655.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $PQ \\perp x$-axis through point P, intersecting $BB'$ at point Q. Let $P\\left(m, -\\frac{1}{2}m^2+2m+\\frac{5}{2}\\right)$, then $Q\\left(m, -\\frac{1}{2}m+\\frac{5}{2}\\right)$,\\\\\n$\\therefore PQ=-\\frac{1}{2}m^2+2m+\\frac{5}{2}-\\left(-\\frac{1}{2}m+\\frac{5}{2}\\right)=-\\frac{1}{2}m^2+\\frac{5}{2}m=-\\frac{1}{2}\\left(m^2-5m+\\frac{25}{4}\\right)+\\frac{25}{8}$;\\\\\nWhen $m=\\frac{5}{2}$, $PQ$ attains its maximum value of $\\frac{25}{8}$, at this moment $-\\frac{1}{2}\\left(\\frac{5}{2}-5\\right)\\left(\\frac{5}{2}+1\\right)=\\frac{35}{8}$,\\\\\n$\\therefore P\\left(\\frac{5}{2}, \\frac{35}{8}\\right)$\\\\\n$\\therefore$ The maximum area of $\\triangle PMN$ is: $S_{\\triangle PMN}=\\frac{1}{2}\\times OM\\times PQ=\\frac{1}{2}\\times 5\\times \\frac{25}{8}=\\boxed{\\frac{125}{16}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52602854_166": { -"question": "As shown in the figure, the line $y=\\frac{1}{2}x$ intersects the graph of the inverse proportion function $y=\\frac{k}{x}\\ (x>0)$ at point $A(4, m)$, and point $B(n, 2n)$ is another point on the graph of the inverse proportion function. The line AB intersects the x-axis at point C. Find the analytical expression of the inverse proportion function and the coordinates of point B?", -"image_file_name": "7058047", -"image": [ -"math/52602854_664.png" -], -"solution": "\\textbf{Solution:} Given that the line $y=\\frac{1}{2}x$ intersects the graph of the inverse proportionality function $y=\\frac{k}{x}\\left(x>0\\right)$ at point $A\\left(4, m\\right)$,\\\\\nthen $m=\\frac{1}{2}\\times 4=2$,\\\\\nthus the coordinates of point A are $\\left(4, 2\\right)$,\\\\\nthereby $k=2\\times 4=8$,\\\\\nhence the equation of the inverse proportionality function is: $y=\\frac{8}{x}$,\\\\\nGiven that point $B\\left(n, 2n\\right)$ lies on the graph of the inverse proportionality function,\\\\\nthus $2n=\\frac{8}{n}$,\\\\\nsolving this gives: $n_{1}=2$, $n_{2}=-2$ (discard),\\\\\nupon verification, these are the roots of the equation\\\\\ntherefore, the coordinates of point B are $\\boxed{\\left(2, 4\\right)}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602854_167": { -"question": "As shown in the figure, the line $y=\\frac{1}{2}x$ intersects the graph of the inverse proportion function $y=\\frac{k}{x}\\left(x>0\\right)$ at point $A\\left(4, m\\right)$. Point $B\\left(n, 2n\\right)$ is another point on the graph of the inverse proportion function, and the line AB intersects the x-axis at point C. Find the area of $\\triangle AOB$.", -"image_file_name": "7058047", -"image": [ -"math/52602854_664.png" -], -"solution": "\\textbf{Solution:} Connect OB,\\\\\nAssume the equation of line AB is: $y=-x+6$, substituting points $A(4, 2)$ and $B(2, 4)$ into it, we get:\\\\\n$\\left\\{\\begin{array}{l}\n2=4a+b \\\\\n4=2a+b\n\\end{array}\\right.$, solving this yields: $\\left\\{\\begin{array}{l}\na=-1 \\\\\nb=6\n\\end{array}\\right.$,\\\\\n$\\therefore$ The equation of line AB is: $y=-x+6$,\\\\\nThen $C(6, 0)$,\\\\\nTherefore, the area of $\\triangle AOB ={S}_{\\triangle BOC}-{S}_{\\triangle AOC}=\\frac{1}{2}\\times 6\\times 4-\\frac{1}{2}\\times 6\\times 2=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602187_169": { -"question": "As shown in the figure, the graph of the linear function $y = -x + b$ intersects with the graph of the inverse proportion function $y = \\frac{k}{x}$ ($x < 0$) at point $A(-6, m)$, and intersects with the x-axis at point $B(-4, 0)$. What are the expressions for the linear function and the inverse proportion function?", -"image_file_name": "7058047", -"image": [ -"math/52602187_671.png" -], -"solution": "\\textbf{Solution:} Given $B(-4, 0)$ lies on $y=-x+b$, we find that $b=-4$,\\\\\nthus the expression of the linear function is $y=-x-4$.\\\\\nGiven $A(-6, m)$ lies on $y=-x-6$, we find that $m=-2$,\\\\\ntherefore $A(-6, -2)$.\\\\\nSubstituting $A(-6, -2)$ into $y=\\frac{k}{x}$ yields $k=-12$,\\\\\ntherefore the expression of the inverse proportionality function is $\\boxed{y=-\\frac{12}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602187_170": { -"question": " In the figure, the graph of the linear function $y=-x+b$ intersects with the graph of the hyperbolic function $y=\\frac{k}{x}$ ($x<0$) at point $A(-6,m)$, and intersects with the x-axis at point $B(-4,0)$. If the line $y=4$ intersects line $AB$ at point $C$, and intersects the hyperbola at point $D$, based on the graph, directly write out the solution set for the inequality $-x+b<\\frac{k}{x}<4$.", -"image_file_name": "7058047", -"image": [ -"math/52602187_671.png" -], -"solution": "\\textbf{Solution:} Solving directly, the solution set of the inequality $-x+b<\\frac{k}{x}<4$ is $\\boxed{-60$) at points $A(m, 4)$ and $B(2, n)$, and intersects with the coordinate axes at points $M$ and $N$, respectively. What is the analytical expression of the linear function?", -"image_file_name": "7058047", -"image": [ -"math/52601975_691.png" -], -"solution": "\\textbf{Solution:} Given that A $(1, 4)$ and B $(2, 2)$ are on the graph of the inverse proportion function $y=\\frac{4}{x}$,\n\n\\[\n\\therefore\n\\begin{cases}\n4=\\frac{4}{m} \\\\\nn=\\frac{4}{2}\n\\end{cases}\n\\text{, which implies }\n\\begin{cases}\nm=1 \\\\\nn=2\n\\end{cases},\n\\]\nthus A $(1, 4)$ and B $(2, 2)$.\n\nSubstituting A $(1, 4)$ and B $(2, 2)$ into $y=kx+b$, we get:\n\\[\n\\begin{cases}\n4=k+b \\\\\n2=2k+b\n\\end{cases}\n\\]\nwhich solves to:\n\\[\n\\begin{cases}\nk=-2 \\\\\nb=6\n\\end{cases},\n\\]\ntherefore, the equation of the linear function is \\boxed{y=-2x+6}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52601975_177": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ intersects with the graph of the inverse proportion function $y=\\frac{4}{x}$ ($x>0$) at points $A(m, 4)$ and $B(2, n)$. It also intersects with the coordinate axes at points $M$ and $N$. Based on the graph, write directly the solution set of the inequality $kx+b-\\frac{4}{x}<0$.", -"image_file_name": "7058047", -"image": [ -"math/52601975_691.png" -], -"solution": "\\textbf{Solution:} According to the graph, we directly obtain the solution set of the inequality $kx+b-\\frac{4}{x}<0$ as $02$.\\\\\nHence, the answer is $x\\in(0,1)\\cup(x>2)$.\\\\\nTherefore, the solution set is $x\\in\\boxed{(0,1)\\cup(2,\\infty)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52601975_178": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ intersects with the graph of the inverse proportion function $y=\\frac{4}{x}$ ($x>0$) at two points $A(m, 4)$ and $B(2, n)$. It also intersects with the coordinate axes at points $M$ and $N$ respectively. What is the area of $\\triangle AOB$?", -"image_file_name": "7058047", -"image": [ -"math/52601975_691.png" -], -"solution": "\\textbf{Solution:} For $y=-2x+6$, let $y=0$, then $-2x+6=0$,\\\\\nsolving this yields $x=3$,\\\\\n$\\therefore$ the coordinates of point N are $(3,0)$,\\\\\n$\\therefore$ ${S}_{\\triangle AOB}={S}_{\\triangle AON}-{S}_{\\triangle BON}=\\frac{1}{2}ON\\cdot y_A-\\frac{1}{2}ON\\cdot y_B=\\frac{1}{2}\\times 3\\times (4-2)=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51545233_180": { -"question": "As shown in the figure, the four vertices of rectangle DEFG are respectively on the sides of equilateral triangle ABC. Given that the side length of $\\triangle ABC$ is 4, and denoting the area of rectangle DEFG as $S$, and the line segment BE as $x$. Find the expression of $S$ as a function of $x$.", -"image_file_name": "7058047", -"image": [ -"math/51545233_700.png" -], -"solution": "\\textbf{Solution:}\n\nIn the equilateral triangle $ABC$, the length of line segment $BE$ is denoted as $x$,\n\n$\\therefore \\angle B = \\angle C = 60^\\circ$.\n\n$\\therefore DE = BE \\cdot \\tan 60^\\circ = \\sqrt{3}x$.\n\nSince the four vertices of rectangle $DEFG$ are located on the sides of equilateral triangle $ABC$,\n\n$\\therefore DE = GF$, and $\\angle BED = \\angle CFG = 90^\\circ$,\n\n$\\therefore \\triangle BED \\cong \\triangle CFG \\left(AAS\\right)$.\n\n$\\therefore BE = CF = x$.\n\nSince the side length of $\\triangle ABC$ is 4,\n\n$\\therefore EF = 4 - 2x$.\n\n$\\therefore S = DE \\cdot EF = \\sqrt{3}x(4 - 2x) = -2\\sqrt{3}x^2 + 4\\sqrt{3}x \\left(0 < x < 2\\right)$.\n\nThus, the function expression for $S$ with respect to $x$ is $S = \\boxed{-2\\sqrt{3}x^2 + 4\\sqrt{3}x}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51545233_181": { -"question": "As shown in the figure, the four vertices of rectangle DEFG each lie on the sides of equilateral triangle ABC. It is known that the side length of $\\triangle ABC$ is 4. Denote the area of rectangle DEFG as $S$, and the length of segment BE as $x$. When $S = \\sqrt{3}$, find the value of $x$.", -"image_file_name": "7058047", -"image": [ -"math/51545233_700.png" -], -"solution": "\\textbf{Solution:} When $S=\\sqrt{3}$, we get $-2\\sqrt{3}x^{2}+4\\sqrt{3}x=\\sqrt{3}$. \\\\\nSolving gives $x=1\\pm \\frac{\\sqrt{2}}{2}$. \\\\\nSince $00)$ also passes through point A. What is the analytical expression of the inverse proportion function?", -"image_file_name": "7058047", -"image": [ -"math/52602253_724.png" -], -"solution": "\\textbf{Solution}: Construct $AM\\perp y$-axis at M and $AN\\perp x$-axis at N through point A, as shown in the figure,\\\\\n$\\therefore$ Quadrilateral $AMON$ is a rectangle,\\\\\n$\\because$ $\\triangle AOB$ is an isosceles right triangle,\\\\\n$\\therefore$ $\\angle AON=45^\\circ$,\\\\\n$\\therefore$ $ON=NA$,\\\\\n$\\therefore$ Quadrilateral $AMON$ is a square,\\\\\n$\\therefore$ $AM=AN$,\\\\\nLet $A\\left(a, a\\right)$,\\\\\n$\\because$ Point $A$ lies on the line $y=3x-4$,\\\\\n$\\therefore$ $a=3a-4$,\\\\\nSolving gives $a=2$,\\\\\n$\\therefore$ $A\\left(2, 2\\right)$,\\\\\n$\\because$ The graph of the inverse proportion function $y=\\frac{k}{x}\\left(x>0\\right)$ passes through point A,\\\\\n$\\therefore$ $2=\\frac{k}{2}$,\\\\\n$\\therefore$ $k=4$,\\\\\n$\\therefore$ The analytical expression of the inverse proportion function is $\\boxed{y=\\frac{4}{x}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52602253_187": { -"question": "As shown in the figure, $\\triangle AOB$ is an isosceles right triangle, with the hypotenuse $OB$ on the x-axis. The graph of the linear function $y=3x-4$ passes through point A and intersects the y-axis at point C. The graph of the inverse proportion function $y=\\frac{k}{x}$ (where $x>0$) also passes through point A. Draw $OD \\perp AC$ at point $D$ from point O. Find the value of $CD^2-AD^2$.", -"image_file_name": "7058047", -"image": [ -"math/52602253_724.png" -], -"solution": "\\textbf{Solution:} Given $A\\left(2, 2\\right)$,\\\\\ntherefore $AO^{2}=2^{2}+2^{2}=8$,\\\\\nsubstitute $x=0$ into $y=3x-4$ to obtain $y=-4$,\\\\\ntherefore $C\\left(0, -4\\right)$,\\\\\ntherefore $OC=4$,\\\\\nin $\\triangle COD$, we have $CD^{2}=OC^{2}-OD^{2}$ (1),\\\\\nin $\\triangle AOD$, we have $AD^{2}=OA^{2}-OD^{2}$ (2),\\\\\nSubtracting (2) from (1) yields: $CD^{2}-AD^{2}=OC^{2}-OA^{2}=16-8=\\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52601775_189": { -"question": "As shown in the figure, the side $OC$ of the rhombus $OABC$ is on the positive half of the $x$-axis, and the coordinates of point $B$ are $\\left(8, 4\\right)$. What is the length of the side of this rhombus?", -"image_file_name": "7058047", -"image": [ -"math/52601775_731.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, point B is drawn such that $BE\\perp x$ axis at point E. Let the side length of the diamond be $x$, \\\\\n$\\because B(8,4)$, \\\\\n$\\therefore CE=8-x$, $BE=4$, \\\\\nIn $\\triangle CBE$, $CB^{2}=CE^{2}+BE^{2}$, \\\\\nthus, $x^{2}=(8-x)^{2}+4^{2}$, solving for $x$ gives $x=\\boxed{5}$, \\\\\n$\\therefore$ the side length of the diamond is \\boxed{5}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52601775_190": { -"question": "As shown in the figure, the sides of rhombus $OABC$ are such that side $OC$ is on the positive semi-axis of the $x$-axis, and the coordinates of point $B$ are $ \\left(8, 4\\right)$. If the graph of the inverse proportion function $y=\\frac{k}{x}\\left(x>0\\right)$ passes through point $A$ and intersects side $BC$ at point $D$, find the coordinates of point $D$.", -"image_file_name": "7058047", -"image": [ -"math/52601775_731.png" -], -"solution": "\\textbf{Solution:} Given that the side length of the diamond is 5, \\\\\nit follows that A(3, 4), \\\\\ntherefore, $k=3\\times4=12$, the inverse proportional function can be expressed as $y=\\frac{12}{x}$.\\\\\nGiven points C(5, 0) and B(8, 4), \\\\\nlet the equation of line CB be $y=kx+b$, \\\\\nthen $\\begin{cases}5k+b=0\\\\ 8k+b=4\\end{cases}$, \\\\\nsolving this, we get $\\begin{cases}k=\\frac{4}{3}\\\\ b=-\\frac{20}{3}\\end{cases}$, \\\\\ntherefore, the equation of line CB is: $y=\\frac{4}{3}x-\\frac{20}{3}$,\\\\\nFrom $\\begin{cases}y=\\frac{12}{x}\\\\ y=\\frac{4}{3}x-\\frac{20}{3}\\end{cases}$\\\\\nwe solve to get $\\begin{cases}x=\\frac{5+\\sqrt{61}}{2}\\\\ y=\\frac{2\\sqrt{61}-10}{3}\\end{cases}$ or $\\begin{cases}x=\\frac{5-\\sqrt{61}}{2}\\\\ y=-\\frac{2\\sqrt{61}+10}{3}\\end{cases}$ (discarded for being irrelevant to the problem),\\\\\ntherefore, the coordinates of point D are $\\boxed{\\left(\\frac{5+\\sqrt{61}}{2}, \\frac{2\\sqrt{61}-10}{3}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51284522_192": { -"question": "As illustrated, the parabola $y=ax^2+bx+c$ intersects the x-axis at points $A(-1, 0)$ and $B(3, 0)$, and intersects the y-axis at point C, also passing through point $D(2, -3)$. Points P and Q are moving points on the parabola $y=ax^2+bx+c$. What is the equation of the parabola?", -"image_file_name": "7058047", -"image": [ -"math/51284522_745.png" -], -"solution": "\\textbf{Solution:} The expression for the function is: $y=a(x+1)(x-3)$. Substituting the coordinates of point D into the above equation and solving gives: $a=1$, \\\\\nHence, the equation of the parabola is: $y=x^2-2x-3$. \\boxed{y=x^2-2x-3}", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51284522_193": { -"question": "Given the parabola \\(y=ax^2+bx+c\\) intersects the x-axis at points \\(A(-1, 0)\\) and \\(B(3, 0)\\), and intersects the y-axis at point C. It also passes through point \\(D(2, -3)\\). Points P and Q are moving points on the parabola \\(y=ax^2+bx+c\\). When point P is located below the line OD, what is the maximum area of \\(\\triangle POD\\)?", -"image_file_name": "7058047", -"image": [ -"math/51284522_745.png" -], -"solution": "\\textbf{Solution:} Let the line PD intersect the y-axis at point G, assume point $P\\left(m, m^{2}-2m-3\\right)$,\\\\\nSubstituting the coordinates of points P, D into the linear function equation: $y=mx+t$ and solving, we get the expression for the line PD as: $y=mx-3-2m$, thus $OG=3+2m$,\\\\\n$S_{\\triangle POD}=\\frac{1}{2}\\times OG(x_{D}-x_{P})=\\frac{1}{2}(3+2m)(2-m)=-m^{2}+\\frac{1}{2}m+3$,\\\\\nSince $-1<0$, it follows that $S_{\\triangle POD}$ has a maximum value, when $m=\\frac{1}{4}$, its maximum value is $\\boxed{\\frac{49}{16}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51284522_194": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+c$ intersects the x-axis at points $A(-1, 0)$ and $B(3, 0)$, and intersects the y-axis at point C, and passes through the point $D(2, -3)$. Points P and Q are moving points on the parabola $y=ax^2+bx+c$. The line OQ intersects the segment BC at point E. When $\\triangle OBE$ is similar to $\\triangle ABC$, what are the coordinates of point Q?", -"image_file_name": "7058047", -"image": [ -"math/51284522_745.png" -], -"solution": "\\textbf{Solution:} Given that $OB=OC=3$, it follows that $\\angle OCB=\\angle OBC=45^\\circ$, \\\\\nsince $\\angle ABC=\\angle OBE$, the triangle $\\triangle OBE$ and $\\triangle ABC$ are similar. This leads to two cases: \\\\\n(1) When $\\angle ACB=\\angle BOQ$, we have $AB=4$, $BC=3\\sqrt{2}$, $AC=\\sqrt{10}$, \\\\\ndraw $AH$ perpendicular to $BC$ at point H, \\\\\nthe area of $\\triangle ABC$ is $\\frac{1}{2}\\times AH\\times BC=\\frac{1}{2}AB\\times OC$, solving for $AH$ gives: $AH=2\\sqrt{2}$, \\\\\nthus $CH=\\sqrt{2}$ \\\\\ntherefore $\\tan\\angle ACB=2$, \\\\\nthe equation of line OQ is: $y=-2+x$... (2), \\\\\nsolving (1) and (2) gives: $x=\\pm \\sqrt{3}$, \\\\\nthus point $\\boxed{Q(\\sqrt{3}, -2\\sqrt{3})}$ or $\\boxed{(−\\sqrt{3}, 2\\sqrt{3})}$; \\\\\n(2) When $\\angle BAC=\\angle BOQ$, \\\\\n$\\tan\\angle BAC=\\frac{OC}{OA}=3=\\tan\\angle BOQ$, \\\\\nthe equation of line OQ is: $y=-3+x$... (3), \\\\\nsolving (1) and (3) gives: $x=\\frac{-1\\pm \\sqrt{13}}{2}$, \\\\\nthus point $\\boxed{Q\\left(\\frac{-1+\\sqrt{13}}{2}, \\frac{-1-\\sqrt{13}}{2}\\right)}$ or $\\boxed{\\left(\\frac{-1-\\sqrt{13}}{2}, \\frac{3+3\\sqrt{13}}{2}\\right)}$; \\\\\nIn summary, the point $\\boxed{Q(\\sqrt{3}, -2\\sqrt{3})}$ or $\\boxed{(−\\sqrt{3}, 2\\sqrt{3})}$ or $\\boxed{\\left(\\frac{-1+\\sqrt{13}}{2}, \\frac{-1-\\sqrt{13}}{2}\\right)}$ or $\\boxed{\\left(\\frac{-1-\\sqrt{13}}{2}, \\frac{3+3\\sqrt{13}}{2}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51379335_196": { -"question": "As shown in the figure, the linear function $y_{1}=x+b$ and the inverse proportion function $y_{2}=\\frac{k}{x}$ intersect at points $A\\left(1, a\\right)$ and $D\\left(-4, -1\\right)$, and intersect the $y$-axis and $x$-axis at points $B$ and $C$, respectively. What is the expression of the inverse proportion function?", -"image_file_name": "7058047", -"image": [ -"math/51379335_758.png" -], -"solution": "\\textbf{Solution:} Since point $D(-4, -1)$ lies on the graph of the inverse proportion function $y=\\frac{k}{x}$,\\\\\ntherefore $k=-4\\times (-1)=4$,\\\\\nthus, the expression for the inverse proportion function is $\\boxed{y=\\frac{4}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51379335_197": { -"question": "As shown in the figure, the linear function $y_{1}=x+b$ intersects with the hyperbolic function $y_{2}=\\frac{k}{x}$ at points $A(1, a)$ and $D(-4, -1)$, and intersects with the $y$-axis and $x$-axis at points $B$ and $C$, respectively. Draw $AE\\perp y$-axis at point $E$, and connect $DE$. What is the area of $\\triangle ADE$?", -"image_file_name": "7058047", -"image": [ -"math/51379335_758.png" -], -"solution": "\\textbf{Solution:} Since point $A(1, 4)$ lies on the graph of the inverse proportion function $y=\\frac{4}{x}$,\\\\\nit follows that $a=4$,\\\\\nhence the coordinates of point $A$ are $(1, 4)$,\\\\\nsince $AE \\perp y$-axis,\\\\\nit follows that $AE=1, OE=4$,\\\\\nDraw $DM\\perp AE$ intersecting the extension of $AE$ at point $M$, and intersecting the $x$-axis at point $N$.\\\\\nHence, $\\angle NME=90^\\circ$,\\\\\nsince $AE \\perp y$-axis,\\\\\nit follows that $\\angle MEO=90^\\circ$,\\\\\nsince $\\angle EON=90^\\circ$\\\\\nit follows that $\\angle NME=\\angle MEO=\\angle EON=90^\\circ$,\\\\\nhence, quadrilateral EONM is a rectangle,\\\\\ntherefore $MN=OE=4, ND=1$,\\\\\nhence, $MD=5$,\\\\\ntherefore, ${S}_{\\triangle ADE}=\\frac{1}{2}\\times AE\\times DM=\\frac{1}{2}\\times 1\\times 5=\\boxed{\\frac{5}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51379335_198": { -"question": "As shown in the figure, the linear function $y_{1}=x+b$ and the inverse proportion function $y_{2}=\\frac{k}{x}$ intersect at points $A(1, a)$ and $D(-4, -1)$, and intersect the $y$-axis and $x$-axis at points $B$ and $C$, respectively. Based on the graph, please directly write down the range of $x$ values when $y_{1}>y_{2}$.", -"image_file_name": "7058047", -"image": [ -"math/51379335_758.png" -], -"solution": "\\textbf{Solution:} When $y_{1}>y_{2}$, the graph of the linear function $y_{1}=x+3$ is above the graph of the hyperbolic function $y_{2}=\\frac{4}{x}$,\\\\\nsince the intersection points of the two functions are $A(1, 4)$ and $D(-4, 1)$,\\\\\nto the right of point D, to the left of the y-axis, and to the right of point A meet the condition,\\\\\ntherefore, \\boxed{-41}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51379530_200": { -"question": "As shown in the figure, it is known that the line $y=-\\frac{2}{3}x+2$ intersects the x-axis at point A and the y-axis at point B. The parabola $y=-\\frac{2}{3}x^2+bx+c$ passes through points A and B. What is the expression of this parabola?", -"image_file_name": "7058047", -"image": [ -"math/51379530_762.png" -], -"solution": "\\textbf{Solution:} From $y=-\\frac{2}{3}x+2$, we obtain:\\\\\nWhen $x=0$, $y=2$; when $y=0$, $x=3$,\\\\\n$\\therefore \\boxed{A(3,0)}, \\boxed{B(0,2)}$,\\\\\nSubstituting the coordinates of $A$, $B$ into $y=-\\frac{2}{3}x^{2}+bx+c$ yields:\\\\\n$\\left\\{\\begin{array}{l}\n-\\frac{2}{3}\\times 9+3b+c=0 \\\\\nc=2\n\\end{array}\\right.$,\\\\\nSolving this gives: $\\left\\{\\begin{array}{l}\nb=\\frac{4}{3} \\\\\nc=2\n\\end{array}\\right.$,\\\\\n$\\therefore$ The equation of the parabola is: \\boxed{y=-\\frac{2}{3}x^{2}+\\frac{4}{3}x+2}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51379219_203": { -"question": "As shown in the figure, the line $y=x+b$ intersects the x-axis at point $C(4,0)$ and the y-axis at point $B$, and intersects with the hyperbola $y=\\frac{m}{x}$ (where $x<0$) at point $A(-1,n)$. The line segment $OA$ is drawn. Find the analytic expression of the line and the hyperbola?", -"image_file_name": "7058047", -"image": [ -"math/51379219_771.png" -], -"solution": "\\textbf{Solution:} By substituting point $C$ into $y=x+b$, we get $b=-4$,\\\\\ntherefore $y=x-4$;\\\\\nsubstituting point $A$ into $y=x-4$, we find $n=-5$,\\\\\ntherefore $A(-1, -5)$,\\\\\nthus $m=-1\\times (-5)=5$,\\\\\ntherefore $y=\\frac{5}{x}$\\\\\ntherefore, the equations of the line and the hyperbola are \\boxed{y=x-4} and \\boxed{y=\\frac{5}{x}}, respectively.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51379219_204": { -"question": "As shown in the figure, the line $y=x+b$ intersects the $x$-axis at point $C(4,0)$ and the $y$-axis at point $B$, and intersects the hyperbola $y=\\frac{m}{x}$ (where $x<0$) at point $A(-1,n)$. Connect $OA$. What is the area of $\\triangle OAC$?", -"image_file_name": "7058047", -"image": [ -"math/51379219_771.png" -], -"solution": "\\textbf{Solution:} Since point $B$ passes through the y-axis,\\\\\n$ \\therefore x=0$,\\\\\n$ \\therefore y=-4$,\\\\\n$ \\therefore {S}_{\\triangle AOC}={S}_{\\triangle AOB}+{S}_{\\triangle BOC}$,\\\\\n$ =\\frac{1}{2}\\times 4\\times 1+\\frac{1}{2}\\times 4\\times 4$,\\\\\n$ =\\boxed{10}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51379219_205": { -"question": "As shown in the figure, the line $y=x+b$ intersects the $x$ axis at point $C(4,0)$ and the $y$ axis at point $B$, and it intersects the hyperbola $y=\\frac{m}{x}$ (where $x<0$) at point $A(-1,n)$. Connect $OA$. What is the sine value of $\\angle OAB$?", -"image_file_name": "7058047", -"image": [ -"math/51379219_771.png" -], -"solution": "\\textbf{Solution:} Construct $OM \\perp AC$ at point $M$ through point $O$,\\\\\nwhen $x=0$, $y=-4$, that is, $B(0, -4)$.\\\\\nSince $OC=OB=4$,\\\\\nTherefore, $\\triangle OCB$ is an isosceles right triangle,\\\\\nThus, $\\angle OBC=\\angle OCB=45^\\circ$\\\\\nTherefore, in $\\triangle OMB$ $\\sin 45^\\circ=\\frac{OM}{OB}$,\\\\\nThus, $OM=4\\times \\frac{\\sqrt{2}}{2}=2\\sqrt{2}$.\\\\\nTherefore, in the right triangle $AOM$,\\\\\n$AO=\\sqrt{(-1-0)^{2}+(-5-0)^{2}}=\\sqrt{26}$,\\\\\n$\\sin\\angle OAB=\\frac{OM}{OA}=\\boxed{\\frac{2\\sqrt{2}}{\\sqrt{26}}}=\\boxed{\\frac{2\\sqrt{13}}{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51379457_207": { -"question": "In the Cartesian coordinate system $xOy$, points $A$ and $B$ lie on the line $y=\\frac{1}{2}x$, as shown in the figure. The graph of the quadratic function $y=ax^2+bx-2$ also passes through points $A$ and $B$, and intersects the $y$-axis at point $C$. If $BC$ is parallel to the $x$-axis, and the $x$-coordinate of point $A$ is $2$, what is the analytical expression of this quadratic function?", -"image_file_name": "7058047", -"image": [ -"math/51379457_7814.png" -], -"solution": "\\textbf{Solution:} Given that the quadratic function $y=\\frac{1}{4}x^{2}+bx-2$ intersects the $y$-axis at point $C$,\n\nthus the coordinates of point $C$ are $(0, -2)$,\n\nsince $BC\\parallel x$-axis,\n\nthus the ordinate of point $B$ is $-2$,\n\nsince points $A$ and $B$ lie on the line $y=\\frac{1}{2}x$ and the abscissa of point $A$ is $2$,\n\nthus the coordinates of point $A$ are $(2, 1)$, and those of point $B$ are $(-4, -2)$,\n\nsince the graph of the quadratic function also passes through points $A(2, 1)$ and $B(-4, -2)$, we get\n\n\\[\n\\left\\{\n\\begin{array}{l}\n4a+2b-2=1\\\\\n16a-4b-2=-2\n\\end{array}\n\\right.,\n\\]\n\nsolving this system of equations, we find $a=\\frac{1}{4}$, $b=1$,\n\ntherefore, the explicit formula of the quadratic function is $\\boxed{y=\\frac{1}{4}x^{2}+x-2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51379457_208": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, points $A$ and $B$ lie on the line $y=\\frac{1}{2}x$. The graph of the quadratic function $y=ax^2+bx-2$ also passes through points $A$ and $B$, and intersects the $y$-axis at point $C$. If $BC$ is parallel to the $x$-axis, and the $x$-coordinate of point $A$ is $2$. Suppose the axis of symmetry of the graph of this quadratic function intersects $BC$ at point $D$, and point $E$ is on the negative $x$-axis. If the triangle formed by points $E$, $O$, and $B$ is similar to $\\triangle OBD$, and the ratio of similarity is not $1$, what are the coordinates of point $E$?", -"image_file_name": "7058047", -"image": [ -"math/51379457_7814.png" -], -"solution": "\\textbf{Solution:} From (1), we get that the axis of symmetry of the quadratic function $y=\\frac{1}{4}x^{2}+x-2$ is the line $x=-2$, \\\\\n$\\therefore$ the coordinates of point $D$ are $(-2, -2)$, \\\\\n$\\therefore$ $OB=2\\sqrt{5}$, $BD=2$, \\\\\n$\\because$ $BC\\parallel x$-axis, \\\\\n$\\therefore$ $\\angle OBD=\\angle BOE$, \\\\\n$\\therefore$ The triangle formed by points $E$, $O$, and $B$ is similar to $\\triangle OBD$, there are two possibilities: \\\\\nIf $\\frac{BO}{OB}=\\frac{BD}{OE}$, then $\\triangle BOD\\sim \\triangle OBE$, \\\\\nObviously, these two similar triangles have a similarity ratio of $1$, \\\\\nThis contradicts the given information that the similarity ratio is not $1$; thus, this case should be discarded; \\\\\nWhen $\\frac{BO}{OE}=\\frac{BD}{OB}$, then $\\triangle BOD\\sim \\triangle OEB$, \\\\\n$\\therefore$ $\\frac{2\\sqrt{5}}{OE}=\\frac{2}{2\\sqrt{5}}$, \\\\\n$\\therefore$ $OE=10$, \\\\\nSince point $E$ is on the negative half of the x-axis, \\\\\n$\\therefore$ the coordinates of point $E$ are $\\boxed{(-10, 0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51379457_209": { -"question": "In the Cartesian coordinate system $xOy$, points $A$ and $B$ lie on the line $y=\\frac{1}{2}x$, as shown in the figure. The graph of the quadratic function $y=ax^2+bx-2$ also passes through points $A$ and $B$, and intersects the $y$-axis at point $C$. If line $BC$ is parallel to the $x$-axis, and the $x$-coordinate of point $A$ is $2$. Let the vertex of the graph of this quadratic function be $M$, calculate the value of $\\tan\\angle AMC$?", -"image_file_name": "7058047", -"image": [ -"math/51379457_7814.png" -], -"solution": "\\textbf{Solution:} Draw $CH\\perp AM$ at point $C$, with the foot of the perpendicular being $H$.\\\\\nLet the equation of line $AM$ be $y=kx+b$,\\\\\nthen $\\left\\{\\begin{array}{l}2k+b=1 \\\\ -2k+b=-3\\end{array}\\right.$,\\\\\nwhich gives us $k=1$ and $b=-1$.\\\\\nTherefore, the equation of line $AM$ is $y=x-1$.\\\\\nLet the intersections of line $AM$ with the $x$-axis and $y$-axis be points $P$ and $Q$ respectively,\\\\\nthen the coordinates of point $P$ are $(1, 0)$, and the coordinates of point $Q$ are $(0, -1)$,\\\\\ntherefore, $\\triangle OPQ$ is an isosceles right triangle, $\\angle OQP=45^\\circ$, $OQ=OP=1$,\\\\\nsince $\\angle OQP=\\angle HQC$,\\\\\nit follows that $\\angle HQC=45^\\circ$,\\\\\ngiven that the coordinates of point $C$ are $(0, -2)$,\\\\\nit follows that $CQ=1$,\\\\\ntherefore, $HC=HQ=\\frac{\\sqrt{2}}{2}$,\\\\\nand $MQ=\\sqrt{(-2-0)^2+(-3-(-1))^2}=2\\sqrt{2}$,\\\\\ntherefore, $MH=MQ-HQ=\\frac{3\\sqrt{2}}{2}$,\\\\\nthus, $\\tan\\angle AMC=\\frac{HC}{MH}=\\boxed{\\frac{1}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52304593_211": { -"question": "As the diagram shows, a certain school in Xi'an city has carried out \"fumigation disinfection\" in all classrooms to further prevent the \"novel coronavirus\". It is known that during the burning and releasing process of the disinfectant, the concentration of the disinfectant in the classroom air, \\(y\\) (mg) per cubic meter, and the burning time \\(x\\) (min) have the following functional relationship: when \\(x < 6\\), \\(y\\) is directly proportional to \\(x\\); when \\(x \\geq 6\\), \\(y\\) is inversely proportional to \\(x\\). Based on the information provided by the graph, find the functional relation between \\(y\\) and \\(x\\) when \\(x \\geq 6\\).", -"image_file_name": "7058047", -"image": [ -"math/52304593_791.png" -], -"solution": "\\textbf{Solution}: From the graph, it is known that when $x \\geq 6$, $y$ is an inverse proportion function of $x$, let $y=\\frac{k}{x}$ ($k \\neq 0$).\\\\\n$\\because$ point $(15,4)$,\\\\\n$\\therefore k=15 \\times 4=60$,\\\\\nThe functional relationship between $y$ and $x$ is $\\boxed{y=\\frac{60}{x}}\\left(x\\geq 6\\right)$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52304593_212": { -"question": "To further prevent the \"novel coronavirus\", a school in Xi'an has disinfected all classrooms through the method of \"fumigation\". It is known that during the combustion release process of the medicine, the concentration of the medicine in the air of the classrooms per cubic meter, \\(y\\) (mg), is related to the burning time, \\(x\\) (min), as shown in the graph. Here, when \\(x < 6\\), \\(y\\) is directly proportional to \\(x\\), and when \\(x \\ge 6\\), \\(y\\) is inversely proportional to \\(x\\). Based on the information provided by the graph, solve the following question: Find the coordinates of point A.", -"image_file_name": "7058047", -"image": [ -"math/52304593_791.png" -], -"solution": "\\textbf{Solution:} Solve: When $x=6$, we have $10y=60$. Solving for $y$, we get $y=6$. \\\\\n$\\therefore$, the coordinates of point A are $(6, \\boxed{6})$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622749_215": { -"question": "As shown in the figure, the graph of the inverse proportion function $y=\\frac{2m}{x}$ and the graph of the linear function $y=kx-1$ intersect at points $A(m, 2m)$ and $B$. Find the expression for the linear function.", -"image_file_name": "7058047", -"image": [ -"math/52622749_801.png" -], -"solution": "\\textbf{Solution:} Since point $A(m,2m)$ lies on the graph of the inverse proportion function, it follows that $2m = \\frac{2m}{m}$, so $m=1$, hence $A(1,2)$.\\\\\nFurthermore, since $A(1,2)$ lies on the graph of the linear function $y=kx-1$, it follows that $2=k-1$, which gives $k=3$,\\\\\nthus, the expression for the linear function is: $\\boxed{y=3x-1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622749_216": { -"question": "As shown in the figure, the hyperbola represented by the inverse proportion function $y=\\frac{2m}{x}$ and the straight line represented by the linear function $y=kx-1$ intersect at points $A(m, 2m)$ and $B$. Find the coordinates of point $B$ and, based on the graph, directly write out the range of $x$ values that satisfy the inequality $\\frac{2m}{x}1}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622522_218": { -"question": "As shown in the figure, it is known that the parabola $y=x^2+bx+c$ passes through points A($-3$, $0$) and C($0$, $-3$). What are the values of $b$ and $c$?", -"image_file_name": "7058047", -"image": [ -"math/52622522_811.png" -], -"solution": "\\textbf{Solution}: Substitute $(-3, 0)$ and $(0, -3)$ into $y=x^{2}+bx+c$ to obtain:\\\\\n\\[\n\\begin{cases}\n9-3b+c=0\\\\\nc=-3\n\\end{cases},\n\\]\nSolving this gives:\n\\[\n\\begin{cases}\nb=\\boxed{2}\\\\\nc=\\boxed{-3}\n\\end{cases},\n\\]\nTherefore, the values of $b$ and $c$ are $2$ and $-3$, respectively.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52622522_219": { -"question": "As shown in the figure, it is known that the parabola $y=x^2+bx+c$ passes through points A($-3$, $0$) and C($0$, $-3$). Determine the coordinates of another intersection point B of the parabola with the x-axis, and based on the graph, write the range of values for $x$ when $y<0$.", -"image_file_name": "7058047", -"image": [ -"math/52622522_811.png" -], -"solution": "\\textbf{Solution:} From (1) we know the equation of the parabola is $y = x^2 + 2x - 3$,\\\\\nWhen $y = 0$, $x^2 + 2x - 3 = 0$,\\\\\nWe find: $x_1 = 1$, $x_2 = -3$,\\\\\n$\\therefore$ the other intersection point B of the parabola and the x-axis is at $\\boxed{(1,0)}$,\\\\\nFrom the graph, we know that when $y < 0$, $\\boxed{-3 < x < 1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52622423_221": { -"question": "As shown in the figure, it is known that the parabola $y=ax^{2}+bx+c\\ (a\\ne 0)$ has its vertex at point $Q(2, -1)$, it intersects the y-axis at point $C(0, 3)$, and intersects the x-axis at points $A$ and $B$ (with point $A$ to the right of point $B$). Point $P$ is a moving point on this parabola, moving from point $C$ along the parabola towards point $A$ (point $P$ does not coincide with $A$). A line is drawn through point $P$ parallel to the y-axis, intersecting $AC$ at point $D$. What is the equation of this parabola?", -"image_file_name": "7058047", -"image": [ -"math/52622423_824.png" -], -"solution": "\\textbf{Solution:} Since the vertex of the parabola is Q(2,−1),\\\\\nhence, let $y=a(x-2)^{2}-1$,\\\\\nSubstituting C(0, 3) into the above equation, we get $3=a(0-2)^{2}-1$,\\\\\nSolving for $a$, we find that $a=1$,\\\\\ntherefore $y=(x-2)^{2}-1$,\\\\\nwhich simplifies to $\\boxed{y=x^{2}-4x+3}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52622423_222": { -"question": "As shown in the diagram, it is known that the parabola $y=ax^2+bx+c\\ (a\\ne 0)$ has its vertex at point Q$(2, -1)$, and it intersects with the y-axis at point C$(0, 3)$ and with the x-axis at points A and B (point A to the right of point B). Point P is a moving point on the parabola, moving from point C towards point A along the parabola (point P does not coincide with A). A line through point P is drawn, $PD \\parallel y$-axis, intersecting AC at point D. When $\\triangle ADP$ is a right-angled triangle, what are the coordinates of point P?", -"image_file_name": "7058047", -"image": [ -"math/52622423_824.png" -], -"solution": "\\textbf{Solution:} There are two cases to consider: When point $P_1$ is the right angle vertex, point $P_1$ coincides with point B (as shown in the diagram)\\\\\n Let $y=0$, then $x^{2}-4x+3=0$\\\\\n Solving this, we get $x_{1}=1$, $x_{2}=3$\\\\\n Since point A is to the right of point B,\\\\\n Therefore, B(1, 0), A(3, 0)\\\\\n Hence, $P_1$(1, 0)\n When point A is the right angle vertex of $\\triangle APD_{2}$ (as shown in the diagram)\\\\\n Since OA=OC and $\\angle AOC=90^\\circ$,\\\\\n Therefore, $\\angle OAD_{2}=45^\\circ$\\\\\n When $\\angle D_{2}AP_{2}=90^\\circ$, $\\angle OAP_{2}=45^\\circ$,\\\\\n Hence, AO bisects $\\angle D_{2}AP_{2}$\\\\\n Also, since $P_{2}D_{2}\\parallel y$-axis,\\\\\n Therefore, $P_{2}D_{2}\\perp$ AO,\\\\\n Therefore, $P_{2}$ and $D_{2}$ are symmetric about the $x$-axis\\\\\n Let the equation of line AC be $y=kx+b$\\\\\n Substituting A(3, 0), C(0, 3) into the equation, we get\\\\\n $\\left\\{\\begin{array}{l}\n 0=3k+b\\\\\n 3=b\n \\end{array}\\right.$,\\\\\n Therefore, $\\left\\{\\begin{array}{l}\n k=-1\\\\\n b=3\n \\end{array}\\right.$\\\\\n Hence, $y=-x+3$\\\\\n Since $D_{2}$ is on $y=-x+3$ and $P_{2}$ is on $y=x^{2}-4x+3$,\\\\\n Let $D_{2}$($x$, $-x+3$), $P_{2}$($x$, $x^{2}-4x+3$)\\\\\n Hence, ($-x+3$) + ($x^{2}-4x+3$) = 0\\\\\n That is, $x^{2}-5x+6=0$,\\\\\n Therefore, $x_{1}=2$, $x_{2}=3$ (discard)\\\\\n Therefore, when $x=2$, $y=x^{2}-4x+3=2^{2}-4\\times 2+3=-1$\\\\\n Hence, the coordinates of $P_{2}$ are $P_{2}$(2, $-1$) (i.e., the vertex of the parabola)\\\\\n Therefore, the coordinates of point P are \\boxed{P_{1}(1, 0)}, \\boxed{P_{2}(2, -1)}", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52622054_224": { -"question": "As shown in the figure, it is known that the hyperbola $y=\\frac{k}{x}$ ($k\\ne 0$) and the line $y=mx+n$ intersect at points $A$ and $B$, with $B$ having coordinates $(2, -3)$. The line $AC$ is perpendicular to the $y$-axis at point $C$, and $AC=\\frac{3}{2}$. What are the analytical equations of the hyperbola and the line?", -"image_file_name": "7058047", -"image": [ -"math/52622054_835.png" -], -"solution": "\\textbf{Solution:}\n\nSince $B$ lies on the hyperbola $y=\\frac{k}{x}$ ($k\\ne 0$), and the coordinates of point $B$ are $(2, -3)$,\\\\\nhence $k=-6$,\\\\\ntherefore the equation of the hyperbola is: $y=-\\frac{6}{x}$.\\\\\nSince $AC$ is perpendicular to the y-axis at point $C$, and $AC=\\frac{3}{2}$,\\\\\nthus the x-coordinate of point $A$ is $-\\frac{3}{2}$,\\\\\nsubstituting into $y=-\\frac{6}{x}$ gives $y=-\\frac{6}{-\\frac{3}{2}}=4$,\\\\\nhence $A\\left(-\\frac{3}{2}, 4\\right)$,\\\\\nsubstituting the coordinates of A and B into $y=mx+n$, we obtain $\\begin{cases}-\\frac{3}{2}m+n=4\\\\ 2m+n=-3\\end{cases}$,\\\\\nsolving this yields $\\begin{cases}m=-2\\\\ n=1\\end{cases}$,\\\\\ntherefore, the equation of line $AB$ is $\\boxed{y=-2x+1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622054_225": { -"question": "As shown in the figure, it is known that the hyperbola $y=\\frac{k}{x} \\ (k \\ne 0)$ and the line $y=mx+n$ intersect at points $A$ and $B$, with the coordinates of point $B$ being $(2, -3)$. The line $AC$ is perpendicular to the $y$-axis at point $C$, with $AC = \\frac{3}{2}$. If the area of $\\triangle AOB$ is $S_{1}$ and the area of $\\triangle ACB$ is $S_{2}$, what is the value of $\\frac{S_{1}}{S_{2}}$?", -"image_file_name": "7058047", -"image": [ -"math/52622054_835.png" -], -"solution": "\\textbf{Solution:} In the equation $y=-2x+1$, let $y=0$, then we solve for $x=\\frac{1}{2}$,\\\\\n$\\therefore$ the coordinates of the intersection point of line $AB$ and the x-axis are $\\left(\\frac{1}{2}, 0\\right)$,\\\\\n$\\therefore$ ${S}_{1}=\\frac{1}{2}\\times \\frac{1}{2}\\times 4+\\frac{1}{2}\\times \\frac{1}{2}\\times 3=\\frac{7}{4}$,\\\\\n$\\because$ ${S}_{2}=\\frac{1}{2}\\times \\frac{3}{2}\\times (4+3)=\\frac{21}{4}$\\\\\n$\\therefore$ $\\frac{{S}_{1}}{{S}_{2}}=\\boxed{\\frac{1}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52623645_227": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y=kx+b$ ($k \\neq 0$) intersects with the hyperbola $y=\\frac{m}{x}$ ($m \\neq 0$) at points $A(2, -3)$ and $B(n, 2)$. What are the expressions for the functions of the line and the hyperbola respectively?", -"image_file_name": "7058047", -"image": [ -"math/52623645_841.png" -], -"solution": "\\textbf{Solution:} Since the hyperbola $y = \\frac{m}{x}$ (where $m \\neq 0$) passes through point $A(2, -3)$,\nit follows that $m = -6$.\nTherefore, the equation of the hyperbola is $y = -\\frac{6}{x}$.\n\nGiven that point $B(n, 2)$ lies on the hyperbola $y = -\\frac{6}{x}$,\nthe coordinates of point $B$ are $(-3, 2)$.\n\nSince the line $y = kx + b$ passes through points $A(2, -3)$ and $B(-3, 2)$,\nwe have the system of equations $\\begin{cases} 2k + b = -3 \\\\ -3k + b = 2 \\end{cases}$.\n\nSolving this system yields $\\begin{cases} k = -1 \\\\ b = -1 \\end{cases}$.\n\nTherefore, the equation of the line is $\\boxed{y = -x - 1}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52623645_228": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y=kx+b$ ($k\\neq 0$) intersects with the hyperbola $y=\\frac{m}{x}$ ($m\\neq 0$) at points $A(2,-3)$ and $B(n,2)$. Directly write out the solution set of the inequality $kx+b>\\frac{m}{x}$ in terms of $x$.", -"image_file_name": "7058047", -"image": [ -"math/52623645_841.png" -], -"solution": "\\textbf{Solution:} Solve: \\boxed{x < -3} or \\boxed{0 < x < 2}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52623363_230": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $AB$ intersects the $x$ axis and $y$ axis at points $A$ and $B$, respectively; the line $CD$ intersects the $x$ axis and $y$ axis at points $C$ and $D$, respectively. The lines $AB$ and $CD$ intersect at point $E$. The lengths of the segments $OA$ and $OC$ are the two roots of the quadratic equation $x^{2}-18x+72=0$ (with $OA>OC$). Given that $BE=5$ and $\\tan\\angle ABO=\\frac{3}{4}$, what are the coordinates of points $A$ and $C$?", -"image_file_name": "7058047", -"image": [ -"math/52623363_8514.png" -], -"solution": "\\textbf{Solution:} Since ${x}^{2}-18x+72=0$, \\\\\nwe find $x_{1}=6, x_{2}=12$, \\\\\nSince the lengths of line segments $OA$ and $OC$ are the two roots of the quadratic equation ${x}^{2}-18x+72=0$ ($OA>OC$), \\\\\ntherefore $OA=12, OC=6$, \\\\\ntherefore, the coordinates of point $A$ are $\\boxed{(-12,0)}$, and the coordinates of point $C$ are $\\boxed{(6,0)}$;", -"solution_image": [ -"solution_images/52623363_852.png", -"solution_images/52623363_8511.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52623363_231": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $AB$ intersects the $x$-axis and $y$-axis at point $A$ and $B$, respectively, and the line $CD$ intersects the $x$-axis and $y$-axis at point $C$ and $D$, respectively. The lines $AB$ and $CD$ intersect at point $E$. The lengths of segments $OA$ and $OC$ are the two roots of the quadratic equation ${x}^{2}-18x+72=0$ (with $OA>OC$), and $BE=5$, $\\tan\\angle ABO=\\frac{3}{4}$. If the graph of the inverse proportion function $y=\\frac{k}{x}$ passes through point $E$, what is the value of $k$?", -"image_file_name": "7058047", -"image": [ -"math/52623363_8514.png" -], -"solution": "\\textbf{Solution:} Draw a line $EH \\perp AC$ at point H through point E,\\\\\nbecause $\\tan\\angle ABO=\\frac{3}{4}$,\\\\\nthus $\\frac{OA}{OB}=\\frac{3}{4}$, solving gives: $OB=16$,\\\\\nhence $AB=\\sqrt{16^2+12^2}=20$,\\\\\nsince $BE=5$,\\\\\nthus $AE=15$,\\\\\nbecause $EH\\perp AC$, $OB\\perp AC$,\\\\\nthus $EH\\parallel OB$,\\\\\nhence $\\triangle AEH\\sim \\triangle AOB$,\\\\\nthus $\\frac{EH}{BO}=\\frac{AH}{AO}=\\frac{AE}{AB}$, that is $\\frac{EH}{16}=\\frac{AH}{12}=\\frac{15}{20}$,\\\\\nsolving gives: $EH=12$, $AH=9$,\\\\\nthus $OH=3$,\\\\\nhence point E is (−3,12),\\\\\nsince the graph of the inverse proportion function $y=\\frac{k}{x}$ passes through point E,\\\\\nthus $12=\\frac{k}{-3}$, solving gives: $k=\\boxed{-36}$;", -"solution_image": [ -"solution_images/52623363_852.png", -"solution_images/52623363_8511.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622329_234": { -"question": "Given in the diagram, points $A(-4, 2)$ and $B(n, -4)$ are two intersection points of the graph of the linear function $y=kx+b$ and the graph of the inverse proportion function $y=\\frac{m}{x}$. Find the equations of the linear function and the inverse proportion function?", -"image_file_name": "7058047", -"image": [ -"math/52622329_864.png" -], -"solution": "\\textbf{Solution:} Given that $A(-4, 2)$ lies on the curve of $y=\\frac{m}{x}$,\\\\\n$\\therefore m=-8$.\\\\\n$\\therefore$ The equation of the inverse proportion function is $y=-\\frac{8}{x}$.\\\\\nGiven that point $B(2, -4)$ is on $y=-\\frac{8}{x}$,\\\\\n$\\therefore n=2$.\\\\\n$\\therefore B(2, -4)$.\\\\\nGiven $y=kx+b$ passes through $A(-4, 2)$ and $B(2, -4)$,\\\\\n$\\therefore \\left\\{\\begin{array}{l} -4k+b=2 \\\\ 2k+b=-4 \\end{array}\\right.$.\\\\\nSolving yields: $\\left\\{\\begin{array}{l} k=-1 \\\\ b=-2 \\end{array}\\right.$.\\\\\n$\\therefore$ The linear function equation is $\\boxed{y=-x-2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622329_235": { -"question": "As shown in the figure, it is known that points $A(-4, 2)$ and $B(n, -4)$ are two intersection points between the graph of the linear function $y=kx+b$ and the graph of the inverse proportion function $y=\\frac{m}{x}$. By observing the graphs, directly write the solution set of the inequality $kx+b-\\frac{m}{x}>0$.", -"image_file_name": "7058047", -"image": [ -"math/52622329_864.png" -], -"solution": "\\textbf{Solution:} It follows from the problem statement that the solution set for $kx+b-\\frac{k}{x}>0$ is $\\boxed{\\text{indeterminate without further information}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622329_236": { -"question": "As shown in the figure, it is known that points $A(-4, 2)$ and $B(n, -4)$ are two intersection points of the graph of the linear function $y=kx+b$ with the graph of the inverse proportion function $y=\\frac{m}{x}$. What is the area of $\\triangle AOB$?", -"image_file_name": "7058047", -"image": [ -"math/52622329_864.png" -], -"solution": "\\textbf{Solution:} Since $y=-x-2$,\\\\\ntherefore when y=0, x=$-2$.\\\\\nThus, point C is ($-2$, $0$).\\\\\nTherefore, OC=2.\\\\\nTherefore, $S_{\\triangle AOB}=S_{\\triangle ACO}+S_{\\triangle BCO}=\\frac{1}{2}\\times 2\\times 4+\\frac{1}{2}\\times 2\\times 2=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622585_238": { -"question": "As shown in the figure, the parabola $y=ax^2+bx-3a$ intersects the negative half of the x-axis at point $A(-1, 0)$, intersects the x-axis at another point $B$, and intersects the positive half of the y-axis at point $C(0, 3)$. The axis of symmetry of the parabola intersects line $BC$ at point $M$, and intersects the x-axis at point $G$. Find the analytical expression of the parabola and the axis of symmetry?", -"image_file_name": "7058047", -"image": [ -"math/52622585_871.png" -], -"solution": "Solution: Substituting $A(-1, 0)$ and $C(0, 3)$ into $y=ax^{2}+bx-3a$ yields:\n\\[\n\\left\\{\n\\begin{array}{l}\na-b-3a=0 \\\\\n-3a=3\n\\end{array}\n\\right.\n\\]\nSolving this, we get:\n\\[\n\\left\\{\n\\begin{array}{l}\na=-1 \\\\\nb=2\n\\end{array}\n\\right.\n\\]\nThus, the equation of the parabola is $y=-x^{2}+2x+3$, and its axis of symmetry is $x=-\\frac{b}{2a}=\\boxed{1}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52622585_239": { -"question": "As shown in the figure, the parabola $y=ax^2+bx-3a$ intersects the negative half of the x-axis at point $A(-1,0)$, and another intersection point with the x-axis is $B$, and it intersects the positive half of the y-axis at point $C(0,3)$. The axis of symmetry of the parabola intersects line $BC$ at point $M$ and intersects the x-axis at point $G$. There exists a point $P$ on the axis of symmetry of the parabola, and when point $P$ is above the x-axis, it satisfies $\\angle APB = \\angle ABC$. What is the length of $PG$?", -"image_file_name": "7058047", -"image": [ -"math/52622585_871.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, we get: $-x^2+2x+3=0$, solving this gives $x_1=-1$, $x_2=3$,\\\\\n$\\therefore$OB=OC=3,\\\\\n$\\therefore\\angle ABC=45^\\circ$,\\\\\n$\\because\\angle APB=\\angle ABC=45^\\circ$, and PA=PB,\\\\\n$\\therefore\\angle PBA=\\frac{1}{2}(180^\\circ-45^\\circ)=67.5^\\circ$,\\\\\n$\\therefore\\angle MPB=\\frac{1}{2}\\angle APB=22.5^\\circ$,\\\\\n$\\because\\angle MBP=67.5^\\circ-45^\\circ=22.5^\\circ$,\\\\\n$\\therefore\\angle MPB=\\angle MBP$,\\\\\n$\\therefore$MP=MB, in Rt$\\triangle BMG$, we have BG=MG=2, by the Pythagorean theorem, we find: BM=$2\\sqrt{2}$,\\\\\n$\\therefore$MP=$2\\sqrt{2}$,\\\\\n$\\therefore$PG=MG+MP=2+$2\\sqrt{2}$.\\\\\nHence, the length of $PG$ is $\\boxed{2+2\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52623662_241": { -"question": "As shown in the figure, the parabola $y=x^{2}+bx+c$ (where $b$ and $c$ are constants) intersects the $x$-axis at points $A(-1,0)$ and $B(3,0)$, and intersects the $y$-axis at point $C$. Let $P$ be a point on the parabola with an abscissa of $m$. Find the equation of this parabola.", -"image_file_name": "7058047", -"image": [ -"math/52623662_880.png" -], -"solution": "\\textbf{Solution}: Since the parabola $y=x^{2}+bx+c$ (where $b$ and $c$ are constants) intersects the x-axis at points $A(-1, 0)$ and $B(3, 0)$,\\\\\nwe have $\\begin{cases} 1-b+c=0 \\\\ 9+3b+c=0 \\end{cases}$,\\\\\nwhich yields $\\begin{cases} b=-2 \\\\ c=3 \\end{cases}$.\\\\\nThus, the equation of the parabola is $\\boxed{y=x^{2}-2x+3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52623662_242": { -"question": "As shown in the figure, the parabola $y=x^2+bx+c$ (where $b$ and $c$ are constants) intersects the x-axis at points $A(-1,0)$ and $B(3,0)$, and the y-axis at point $C$. Let $P$ be a point on the parabola with the x-coordinate $m$. Let the area of $\\triangle ABP$ be denoted as $S$. Find the range of possible values for $S$ when $0 \\leq m \\leq \\frac{5}{2}$.", -"image_file_name": "7058047", -"image": [ -"math/52623662_880.png" -], -"solution": "\\textbf{Solution:} Draw $PE\\perp AB$ at point E through point P, as shown in the figure,\\\\\nsince $0\\leq m\\leq \\frac{5}{2}$,\\\\\nthus P($m$, $m^{2}-2m-3$) is in the fourth quadrant,\\\\\ntherefore $PE=-m^{2}+2m+3$.\\\\\nSince A($-1$,0), B(3,0),\\\\\nthus $OA=1$, $OB=3$,\\\\\ntherefore $AB=OA+OB=4$.\\\\\nTherefore, the area of $\\triangle PAB=\\frac{1}{2}AB\\cdot PE$\\\\\n$=\\frac{1}{2}\\times 4\\times (-m^{2}+2m+3)$\\\\\n$=-2m^{2}+4m+6$\\\\\n$=-2(m-1)^{2}+8$.\\\\\nThus, when $m=1$, the area of $\\triangle PAB$ reaches its maximum value of $8$.\\\\\nSince $0\\leq m\\leq \\frac{5}{2}$,\\\\\nthus, when $m=\\frac{5}{2}$, the area of $\\triangle PAB$ reaches its minimum value of $\\frac{7}{2}$.\\\\\nTherefore, the range of values for $S$ is: $\\boxed{\\frac{7}{2}\\leq S\\leq 8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52623662_243": { -"question": "As shown in the figure, the parabola $y=x^{2}+bx+c$ (where $b$ and $c$ are constants) intersects the x-axis at points $A(-1,0)$ and $B(3,0)$, and intersects the y-axis at point $C$. Let $P$ be a point on the parabola with an abscissa of $m$. When the difference between the maximum and minimum y-coordinates of the section of the parabola between points $C$ and $P$ (including points $C$ and $P$) is $2$, find the value of $m$?", -"image_file_name": "7058047", -"image": [ -"math/52623662_880.png" -], -"solution": "\\textbf{Solution:} From the given, we have $y=x^{2}-2x-3=(x-1)^{2}-4$,\\\\\n$\\therefore$ the vertex of the parabola is $(1,-4)$.\\\\\nLet $x=0$, then $y=-3$,\\\\\n$\\therefore$ point $C(0,-3)$ is established.\\\\\n$\\because$ the difference between the highest and lowest ordinate (y-coordinate) of the segment between point $C$ and point $P$ (including points $C$ and $P$) is $2$,\\\\\n$\\therefore$ point $P$ cannot be below point $C$.\\\\\n$\\therefore$ point $P$ is above point $C$.\\\\\n$\\therefore$ the ordinate of point $P$ is $-1$,\\\\\nLet $y=-1$, then $m^{2}-2m-3=-1$.\\\\\nSolving yields: $m=1\\pm\\sqrt{3}$.\\\\\n$\\therefore$ the value of $m$ is: $1+\\sqrt{3}$ or $1-\\sqrt{3}$.\\\\\nThus, the value of $m$ is $\\boxed{1+\\sqrt{3}}$ or $\\boxed{1-\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52623325_245": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=kx+b$ intersects with the graph of the inverse proportion function $y=\\frac{m}{x}$ at points $A$ and $B$. The coordinates of point $A$ are $\\left(-2, 1\\right)$, and the coordinates of point $B$ are $\\left(1, n\\right)$. Determine the analytical expressions of the two functions.", -"image_file_name": "7058047", -"image": [ -"math/52623325_898.png" -], -"solution": "\\textbf{Solution:} Since the graph of the inverse proportion function $y=\\frac{m}{x}$ passes through point $A(-2, 1)$,\n\n\\[m=-2\\times 1=-2,\\]\n\nthus, the analytical expression of the inverse proportion function is $y=-\\frac{2}{x}$.\n\nSince the graph of the inverse proportion function $y=-\\frac{2}{x}$ passes through point $B(1, n)$,\n\n\\[-2=1\\times n,\\]\n\nthus, $n=-2$,\n\nimplying $B(1, -2)$.\n\nSince the graph of the linear function $y=kx+b$ passes through points $A$, $B$,\n\nwe have the system of equations\n\\[\n\\left\\{\\begin{array}{l}\nk+b=-2 \\\\\n-2k+b=1\n\\end{array}\\right.,\n\\]\n\nsolving this system yields\n\\[\n\\left\\{\\begin{array}{l}\nk=-1 \\\\\nb=-1\n\\end{array}\\right.,\n\\]\n\nhence, the analytical expression of the linear function is $y=-x-1$;\n\nTherefore, the answers are \\boxed{y=-\\frac{2}{x}} and \\boxed{y=-x-1}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52623325_246": { -"question": "As shown in the graph, it is known that the graph of the linear function $y=kx+b$ intersects with that of the hyperbolic function $y=\\frac{m}{x}$ at points $A$ and $B$, where point $A$ has the coordinates $\\left(-2, 1\\right)$ and point $B$ has the coordinates $\\left(1, n\\right)$. Is there a point $P$ on the positive x-axis such that $\\triangle ABP$ is an isosceles triangle? If it exists, find the coordinates of point $P$; if not, explain why.", -"image_file_name": "7058047", -"image": [ -"math/52623325_898.png" -], -"solution": "\\textbf{Solution:} Exist, \\\\\nLet point $P(m, 0) (m>0)$, \\\\\n$\\because A(-2, 1)$, $B(1, -2)$, \\\\\n$\\therefore AB^{2}=(-2-1)^{2}+[1-(-2)]^{2}=18$, \\\\\n$AP^{2}=(m+2)^{2}+1^{2}=m^{2}+4m+5$, \\\\\n$BP^{2}=(m-1)^{2}+4=m^{2}-2m+5$, \\\\\n$\\because \\triangle ABP$ is isosceles, \\\\\n$\\therefore$ (1) When $AP=AB$, $AP^{2}=AB^{2}$, \\\\\n$\\therefore m^{2}+4m+5=18$, \\\\\n$\\therefore m=-2-\\sqrt{17}$ (discard) or $m=-2+\\sqrt{17}$, \\\\\n$\\therefore P(-2+\\sqrt{17}, 0)$, \\\\\n(2) When $AP=BP$, $AP^{2}=BP^{2}$, \\\\\n$\\therefore m^{2}+4m+5=m^{2}-2m+5$, \\\\\n$\\therefore m=0$ (discard), \\\\\n(3) When $AB=BP$, $AB^{2}=BP^{2}$, \\\\\n$\\therefore m^{2}-2m+5=18$, \\\\\n$\\therefore m=1-\\sqrt{14}$ (discard) or $m=1+\\sqrt{14}$, \\\\\n$\\therefore P(1+\\sqrt{14}, 0)$, \\\\\nHence, the coordinates of point $P$ that meet the conditions are $\\boxed{(-2+\\sqrt{17}, 0)}$ or $\\boxed{(1+\\sqrt{14}, 0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622495_248": { -"question": "As shown in the figure, the graph of the linear function $y_1=k_1x+b$ intersects with the graph of the inverse proportion function $y_2=\\frac{k_2}{x}\\ (x<0)$ at points $A$ and $B$. The intersections with the coordinate axes are $\\left(-6, 0\\right)$ and $\\left(0, 6\\right)$, respectively, and the x-coordinate of point $B$ is $-4$. Determine the equation of the inverse proportion function?", -"image_file_name": "7058047", -"image": [ -"math/52622495_904.png" -], -"solution": "\\textbf{Solution:} Let the equation of the linear function be $y=kx+b$,\\\\\n$\\because$ The intersections of the linear function with the coordinate axes are $\\left(-6, 0\\right)$ and $\\left(0, 6\\right)$,\\\\\n$\\therefore$\n$\\begin{cases}\n-6k+b=0, \\\\\nb=6,\n\\end{cases}$\\\\\n$\\therefore$\n$\\begin{cases}\nk=1, \\\\\nb=6,\n\\end{cases}$\\\\\n$\\therefore$ The equation of the linear function is: $y=x+6$,\\\\\n$\\therefore$ For point $B\\left(-4, 2\\right)$,\\\\\n$\\therefore$ The equation of the inverse proportional function is: $\\boxed{y=\\frac{-8}{x}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622495_249": { -"question": "As shown in the figure, the graph of the linear function $y_1=k_1x+b$ intersects with the graph of the inverse proportion function $y_2=\\frac{k_2}{x}$ (where $x<0$) at points $A$ and $B$. The graphs also intersect the coordinate axes at $(-6, 0)$ and $(0, 6)$. The x-coordinate of point $B$ is $-4$. What is the area of $\\triangle AOB$?", -"image_file_name": "7058047", -"image": [ -"math/52622495_904.png" -], -"solution": "Solution: Since point A and point B are the intersection points of the inverse proportion function and the linear function,\n\nit follows that: $x+6=-\\frac{8}{x}$,\n\nSolving this, we get $x=-2$ or $x=-4$,\n\nhence $A(-2, 4)$,\n\ntherefore, the area of $\\triangle AOB$ is $6\\times 6\\div 2-6\\times 2=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52622495_250": { -"question": "As shown in the figure, a linear function $y_{1}=k_{1}x+b$ intersects with the hyperbolic function $y_{2}=\\frac{k_{2}}{x}\\left(x<0\\right)$ at points $A$ and $B$, and intersects with the coordinate axes at $\\left(-6, 0\\right)$ and $\\left(0, 6\\right)$. The x-coordinate of point $B$ is $-4$. Directly write the solution to the inequality $k_{1}x+b>\\frac{k_{2}}{x}$.", -"image_file_name": "7058047", -"image": [ -"math/52622495_904.png" -], -"solution": "\\textbf{Solution:} Solve: $-4\\frac{k_{2}}{x}$ as $x \\in \\boxed{(-4, -2)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52949741_252": { -"question": "As shown in the figure, within the square $OABC$, point $O$ is the origin, point $C(-3, 0)$, point $A$ is on the positive y-axis, points $E$ and $F$ are on $BC$ and $CO$ respectively, with $CE=CF=2$. The graph of the linear function $y=kx+b(k\\ne 0)$ passes through points $E$ and $F$, intersecting the y-axis at point $G$. The graph of the reciprocal function $y=\\frac{m}{x}(m\\ne 0)$ passing through point $E$ intersects $AB$ at point $D$. What are the equations of the reciprocal function and the linear function?", -"image_file_name": "7058047", -"image": [ -"math/52949741_914.png" -], -"solution": "\\textbf{Solution:} Given the problem statement, point $C(-3, 0)$, hence the side length of the square $OABC$ is 3, implying $OA=AB=BC=CO=3$. Since $CE=CF=2$, it follows that $OF=1$. Thus, $E(-3, 2)$ and $F(-1, 0)$. Substituting $E(-3, 2)$ and $F(-1, 0)$ into $y=kx+b$ yields $\\begin{cases}-3k+b=2\\\\ -k+b=0\\end{cases}$. Solving this system of equations, we get $\\begin{cases}k=-1\\\\ b=-1\\end{cases}$. Therefore, the linear function is $y=-x-1$. Substituting $E(-3, 2)$ into $y=\\frac{m}{x}$ gives $2=\\frac{m}{-3}$. Solving for $m$ yields $m=-6$. Therefore, the inverse proportionality function is $y=-\\frac{6}{x}$. Answer: The inverse proportionality function is $\\boxed{y=-\\frac{6}{x}}$, and the linear function is $\\boxed{y=-x-1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52949741_253": { -"question": "As shown in the figure, in the square OABC, point O is the origin, point $C(-3, 0)$, point A is on the positive y-axis, points E and F are respectively on BC and CO, with $CE=CF=2$. The graph of the linear function $y=kx+b\\ (k\\ne 0)$ passes through points E and F, intersecting the y-axis at point G. The graph of the inverse proportion function $y=\\frac{m}{x}\\ (m\\ne 0)$ through point E intersects AB at point D. Is there a point P on segment EF such that $S_{\\triangle ADP}=S_{\\triangle APG}$? If so, find the coordinates of point P; if not, please explain why.", -"image_file_name": "7058047", -"image": [ -"math/52949741_914.png" -], -"solution": "\\textbf{Solution:} Suppose there exists a point $P$ such that $S_{\\triangle ADP}=S_{\\triangle APG}$. In the equation $y=-x-1$, let $x=0$ to obtain $y=-1$,\\\\\ntherefore $G(0, -1)$,\\\\\nhence $AG=4$,\\\\\nin the equation $y=-\\frac{6}{x}$, let $y=3$ to obtain $x=-2$,\\\\\ntherefore $D(-2, 3)$,\\\\\nthus $AD=2$,\\\\\nlet $P(t, -t-1)$,\\\\\nsince $S_{\\triangle ADP}=S_{\\triangle APG}$,\\\\\nit follows that $\\frac{1}{2}\\times 2\\cdot [3-(-t-1)]=\\frac{1}{2}\\times 4\\times (-t)$,\\\\\nsolving this yields $t=-\\frac{4}{3}$,\\\\\ntherefore \\boxed{P\\left(-\\frac{4}{3}, \\frac{1}{3}\\right)}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52948375_255": { -"question": "As shown in the figure, the graph of the inverse proportion function $y_{1}=\\frac{k}{x}$ (where $k$ is a constant and $k\\neq 0$) and the graph of the linear function $y_{2}=2x+2$ both pass through points $A(1, m)$ and $B(a, b)$. Find the coordinates of point A and the expression for the inverse proportion function.", -"image_file_name": "7058047", -"image": [ -"math/52948375_925.png" -], -"solution": "\\textbf{Solution:} Substituting point A into $y_2=2x+2$, we get $m=4$,\\\\\n$\\therefore$ the coordinates of A are $\\boxed{(1,4)}$;\\\\\n$\\because$ $y_1=\\frac{k}{x}$ passes through point A,\\\\\n$\\therefore$ $k=1\\times 4=4$,\\\\\n$\\therefore$ the expression for the inverse proportion function is $\\boxed{y_1=\\frac{4}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52948375_256": { -"question": "As shown in the figure, the graph of the inverse proportion function $y_{1}=\\frac{k}{x}$ (where $k$ is a constant and $k \\neq 0$) and the graph of the linear function $y_{2}=2x+2$ both pass through points $A(1, m)$ and $B(a, b)$. Determine the coordinates of point B and, by referring to the graph, directly write out the range of values for $x$ when $y_{1} > y_{2}$.", -"image_file_name": "7058047", -"image": [ -"math/52948375_925.png" -], -"solution": "\\textbf{Solution:} Since $y_{1} = \\frac{k}{x}$ intersects with $y_{2} = 2x + 2$ at points A and B,\\\\\nit follows that $\\frac{4}{x} = 2x + 2$,\\\\\nthus $x = -2$ or $x = 1$,\\\\\ntherefore $y = -2$ or $y = 4$,\\\\\nhence, the coordinates of point B are \\boxed{(-2, -2)};\\\\\nWhen $y_{1} > y_{2}$, the range of $x$ is \\boxed{x < -2} or \\boxed{0 < x < 1}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51458362_258": { -"question": " As shown in the figure, the graph of the direct proportion function $y_1=x$ intersects with that of the quadratic function $y_2=x^2-bx$ at points $O(0,0)$ and $A(4,4)$. What is the value of $b$?", -"image_file_name": "7058047", -"image": [ -"math/51458362_930.png" -], -"solution": "\\textbf{Solution:} Substitute point A (4,4) into $y_2=x^2-bx$, we get $16-4b=4$, $4b=12$,\\\\\nsolving for $b$, we find $b=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51458362_259": { -"question": "As shown in the figure, the proportional function $y_{1}=x$ and the quadratic function $y_{2}=x^{2}-bx$ intersect at points $O(0,0)$ and $A(4,4)$. When $y_{1} < y_{2}$, directly write the range of $x$.", -"image_file_name": "7058047", -"image": [ -"math/51458362_930.png" -], -"solution": "\\textbf{Solution:} Solve: When $y_{1}< y_{2}$, directly write the range of $x$ as $x<0$ or $x>4$, \\\\\nhence, the range of $x$ is $\\boxed{x<0}$ or $\\boxed{x>4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51458226_261": { -"question": "As shown in the figure, the vertex A of the right triangle $\\triangle ABO$ is the intersection point in the second quadrant between the hyperbola $y=\\frac{k}{x}$ and the line $y=-x-(k+1)$. $\\overline{AB} \\perp x$-axis at B, and the area of $\\triangle ABO$ is $\\frac{3}{2}$. What are the equations of these two functions?", -"image_file_name": "7058047", -"image": [ -"math/51458226_945.png" -], -"solution": "\\textbf{Solution:} Since $AB \\perp x$-axis at B, and the area of $\\triangle ABO = \\frac{3}{2}$,\\\\\nit follows that $\\frac{1}{2}|k| = \\frac{3}{2}$. Solving this, we find $k = \\pm 3$.\\\\\nSince the graph of the inverse proportionality function lies in the second and fourth quadrants,\\\\\nwe have $k < 0$,\\\\\nthus $k = -3$,\\\\\nwhich means the equation of the inverse proportionality function is $\\boxed{y = -\\frac{3}{x}}$, and the equation of the linear function is $\\boxed{y = -x + 2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51458226_262": { -"question": "As shown in the figure, the vertex A of the right triangle \\(Rt\\triangle ABO\\) is the intersection point in the second quadrant of the hyperbola \\(y=\\frac{k}{x}\\) and the line \\(y=-x-(k+1)\\). \\(AB \\perp x\\)-axis at B, and the area of the triangle \\(S_{\\triangle ABO}=\\frac{3}{2}\\). Determine the coordinates of the two intersection points A and C of the line and the hyperbola.", -"image_file_name": "7058047", -"image": [ -"math/51458226_945.png" -], -"solution": "Solution: Combine the analytic expressions of the two functions into a system of equations, $\\begin{cases}y=-\\frac{3}{x}\\\\ y=-x+2\\end{cases}$. Solving this, we find: $\\begin{cases}x_1=-1\\\\ y_1=3\\end{cases}$ and $\\begin{cases}x_2=3\\\\ y_2=-1\\end{cases}$,\\\\\n$\\therefore$ the coordinates of point A are $\\boxed{\\left(-1, 3\\right)}$, and the coordinates of point C are $\\boxed{\\left(3, -1\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51458203_264": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the line $AB$ intersects the x-axis at point $B$ and the y-axis at point $C(0, 2)$, and intersects the graph of the inverse proportion function $y=\\frac{6}{x}$ within the first quadrant at point $A$. Line $AD$ is drawn perpendicular to the x-axis at point $D$, with $OD=2$. Find the analytic equation of line $AB$?", -"image_file_name": "7058047", -"image": [ -"math/51458203_956.png" -], -"solution": "Solution:\n\nSince AD is perpendicular to the x-axis, and OD = 2, the x-coordinate of point D is 2. By substituting x = 2 into $y= \\frac{6}{x}$, we get y = 3. Therefore, A(2, 3). Let the equation of line AB be $y=kx+b$ (where $k\\neq 0$). Substituting points C(0, 2) and A(2, 3) into $y=kx+b$ gives $\\begin{cases}b=2\\\\ 2k+b=3\\end{cases}$. Therefore, $\\begin{cases}b=2\\\\ k=\\frac{1}{2}\\end{cases}$. Hence, the equation of line AB is $y=\\frac{1}{2}x+2$; so, the answer is $\\boxed{y=\\frac{1}{2}x+2}$.\n", -"solution_image": [ -"solution_images/51458203_952.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51458203_265": { -"question": "In the Cartesian coordinate system $xOy$, the line $AB$ intersects the x-axis at point $B$ and the y-axis at point $C(0, 2)$. It also intersects the graph of the inverse proportion function $y=\\frac{6}{x}$ within the first quadrant at point $A$. Line $AD$ is perpendicular to the x-axis at point $D$, with $OD=2$. Let point $P$ be a point on the y-axis. If the area of triangle $ACP$ is equal to 4, what are the coordinates of point $P$?", -"image_file_name": "7058047", -"image": [ -"math/51458203_956.png" -], -"solution": "\\textbf{Solution:} Since point P is on the y-axis and the area of $\\triangle ACP$ is equal to 4, with A(2,3),\\\\\nit follows that $S_{\\triangle ACP} = \\frac{1}{2} \\times \\text{CP} \\times |x_A| = \\frac{1}{2} \\times \\text{CP} \\times 2 = 4$,\\\\\nthus CP = 4.\\\\\nSince point C is (0,2) and point P is on the y-axis,\\\\\nit follows that \\boxed{P(0,6)} or \\boxed{P(0,-2)}.", -"solution_image": [ -"solution_images/51458203_952.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51458203_266": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, line $AB$ intersects the x-axis at point B and intersects the y-axis at point $C(0, 2)$. It also intersects the graph of the inverse proportional function $y=\\frac{6}{x}$ within the first quadrant at point A. Draw $AD\\perp x$ axis at point $D$, with $OD=2$. Suppose point E is on the x-axis, and $\\triangle EBC$ is an isosceles triangle. Directly write down the coordinates of point E.", -"image_file_name": "7058047", -"image": [ -"math/51458203_956.png" -], -"solution": "\\textbf{Solution:} The coordinates of point $E$ are $(2\\sqrt{5}-4, 0)$ or $(-2\\sqrt{5}-4, 0)$ or $(4, 0)$ or $(-1.5, 0)$. Therefore, the answer is $(2\\sqrt{5}-4, 0)$ or $(-2\\sqrt{5}-4, 0)$ or $\\boxed{(4, 0)}$ or $(-1.5, 0)$.", -"solution_image": [ -"solution_images/51458203_952.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51457966_268": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $y=\\frac{1}{2}x+2$ intersects with the x-axis at point A, and intersects with the y-axis at point C. The axis of symmetry of the parabola $y=ax^{2}+bx+c$ is $x=-\\frac{3}{2}$, and it passes through points A and C, with another intersection point on the x-axis being point B. What are the coordinates of points A and B?", -"image_file_name": "7058047", -"image": [ -"math/51457966_963.png" -], -"solution": "Solution: From the equation of the line, we get $y=\\frac{1}{2}x+2$. When $x=0$, $y=2$; when $y=0$, $x=-4$.\\\\\n$\\therefore$ $C(0, 2)$ and $A(-4, 0)$. Due to the symmetry of the parabola, point A and point B are symmetric about the line $x=-1.5$,\\\\\n$\\therefore$ $B\\left(1, 0\\right)$.\\\\\nTherefore, the coordinates of points A and B are respectively $A=\\boxed{(-4, 0)}$, $B=\\boxed{(1, 0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51457966_269": { -"question": "As shown in the diagram, within the Cartesian coordinate system, the line $y=\\frac{1}{2}x+2$ intersects the x-axis at point A and the y-axis at point C. The parabola $y=ax^2+bx+c$ has its axis of symmetry at $x=-\\frac{3}{2}$ and passes through points A and C, with another intersection point with the x-axis being point B. Determine the equation of the parabola.", -"image_file_name": "7058047", -"image": [ -"math/51457966_963.png" -], -"solution": "Solution: The parabola $y=ax^{2}+bx+c$ passes through the points $A(-4, 0)$, $B(1, 0)$, so we can set the equation of the parabola to $y=a(x+4)(x-1)$. Moreover, the parabola passes through the point $C(0, 2)$, $\\therefore$ $-4a=2$, $\\therefore$ $a=-0.5$, \\\\\n$\\therefore$ \\boxed{y=-\\frac{1}{2}x^{2}-\\frac{3}{2}x+2}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51457966_270": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y=\\frac{1}{2}x+2$ intersects the x-axis at point A and the y-axis at point C. The parabola $y=ax^2+bx+c$ has its axis of symmetry at $x=-\\frac{3}{2}$, and it passes through points A and C, with another intersection with the x-axis at point B. Suppose point P is a point on the parabola above line AC, and let $PQ\\perp x$ axis, intersecting AC at point Q. Find the maximum value of the line segment PQ and the coordinates of point P at this maximum value.", -"image_file_name": "7058047", -"image": [ -"math/51457966_963.png" -], -"solution": "\\textbf{Solution:} Let $P\\left(m, -\\frac{1}{2}m^{2}-\\frac{3}{2}m+2\\right)$, and $PQ\\perp x$ axis, intersecting line AC at point Q, \\\\\n$\\therefore Q\\left(m, \\frac{1}{2}m+2\\right)$, \\\\\n$\\therefore PQ=\\left(-\\frac{1}{2}m^{2}-\\frac{3}{2}m+2\\right)-\\left(\\frac{1}{2}m+2\\right)=-\\frac{1}{2}m^{2}-2m$, \\\\\n$PQ=-\\frac{1}{2}(m+2)^{2}+2$, \\\\\n$\\therefore$ when $m=-2$, the maximum value of $PQ$ is $\\boxed{2}$, at this time $\\boxed{P\\left(-2, 3\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51457952_272": { -"question": "As shown in the figure, the graph of the linear function $y_{1}=-x-1$ intersects the x-axis at point A and the y-axis at point B. It intersects the graph of the inverse proportion function $y_{2}= \\frac{k}{x}$ at point M($-2$, $m$). What is the analytic expression of the inverse proportion function?", -"image_file_name": "7058047", -"image": [ -"math/51457952_971.png" -], -"solution": "\\textbf{Solution:} Since point M($-2$, $m$) lies on the graph of the linear function $y_{1}=-x-1$,\\\\\nby substitution we get: $m=-(-2)-1=1$,\\\\\nthus, the coordinates of M are ($-2$, $1$),\\\\\nsubstituting M's coordinates into $y_{2}=\\frac{k}{x}$ gives: $k=-2$,\\\\\ntherefore, the equation of the inverse proportion function is: $y_{2}=\\boxed{-\\frac{2}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51457952_273": { -"question": "As shown in the figure, the graph of the linear function $y_{1}=-x-1$ intersects the x-axis at point A and the y-axis at point B. It has a point of intersection, M($-2$, m), with the graph of the inverse proportional function $y_{2}= \\frac{k}{x}$. What is the area of $\\triangle MOB$?", -"image_file_name": "7058047", -"image": [ -"math/51457952_971.png" -], -"solution": "\\[ \\textbf{Solution:} \\text{Given the problem, when } x=0, \\text{ we have } y=-1, \\text{ meaning the coordinates of B are }(0, -1), \\text{ thus } OB=1, \\]\n\\[ \\text{Since the coordinates of M are } (-2, 1), \\]\n\\[ \\text{Therefore, the distance from point M to line OB is } 2, \\]\n\\[ \\text{Therefore, the area of }\\triangle MOB \\text{ is } \\frac{1}{2} \\times 1 \\times 2 = \\boxed{1}. \\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51457885_275": { -"question": "As shown in the figure, it is known that the graph of the linear function $y_1=kx+b$ and the graph of the hyperbolic function $y_2=\\frac{m}{x}$ intersect at points $A(6, 1)$ and $B(a, -3)$ in the first and third quadrants, respectively. Lines $OA$ and $OB$ are drawn. What are the analytical expressions for the linear function and the hyperbolic function?", -"image_file_name": "7058047", -"image": [ -"math/51457885_982.png" -], -"solution": "\\textbf{Solution:} Substitute $A(6, 1)$, $B(-2, -3)$ into ${y}_{2}=\\frac{m}{x}$, we get $m=-3a=6\\times 1$ $\\therefore$ $m=6$, $a=-2$ $\\therefore$ ${y}_{2}=\\frac{6}{x}$, $B(-2, -3)$. Substitute $A(6, 1)$, $B(-2, -3)$ into ${y}_{1}=kx+b$, we obtain: $\\begin{cases} 6k+b=1 \\\\ -2k+b=-3 \\end{cases}$ $\\therefore$ $\\begin{cases} k=\\frac{1}{2} \\\\ b=-2 \\end{cases}$ \\\\\n$\\therefore$ The equation of the linear function is $\\boxed{{y}_{1}=\\frac{1}{2}x-2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51457885_276": { -"question": "As shown in the diagram, it is known that the graph of the linear function $y_1=kx+b$ and the graph of the inverse proportion function $y_2=\\frac{m}{x}$ intersect at points A(6,1) and B(a,-3) in the first and third quadrants, respectively. Lines OA and OB are drawn. What is the area of $\\triangle AOB$?", -"image_file_name": "7058047", -"image": [ -"math/51457885_982.png" -], -"solution": "\\textbf{Solution:} Let the linear function $y=\\frac{1}{2}x-2$ intersect the y-axis at point C. Draw $AD\\perp y$ axis at point D through point A, and draw $BE\\perp y$ axis at point E through point B. In $y=\\frac{1}{2}x-2$, let $x=0$, then $y=-2$, thus $OC=2$. Given $A(6, 1)$, $B(-2, -3)$, and $AD\\perp y$ axis, $BE\\perp y$ axis. Therefore, $AD=6$, $BE=2$ \\\\\nTherefore, the area of $\\triangle AOB$ is $\\frac{1}{2}OC\\cdot AD+\\frac{1}{2}OC\\cdot BE= \\frac{1}{2}OC(AD+BE)=\\frac{1}{2}\\times 2\\times 8 = \\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51457885_277": { -"question": "As shown in the figure, it is known that the graph of the linear function $y_{1}=kx+b$ and the graph of the inverse proportional function $y_{2}=\\frac{m}{x}$ intersect at points A(6,1) and B(a,−3) in the first and third quadrants, respectively. Lines OA and OB are connected. Directly state the range of the independent variable $x$ when $y_{1}\\frac{k}{x}$.", -"image_file_name": "7058047", -"image": [ -"math/51353246_993.png" -], -"solution": "\\textbf{Solution:} The solution set of the inequality $-x+4>\\frac{k}{x}$ is $10$). What is the area of $\\triangle AOB$?", -"image_file_name": "7056237", -"image": [ -"math/52917352_574.png" -], -"solution": "\\textbf{Solution:} Solve: In the equation $y=-\\frac{4}{3}x+8$,\\\\\nwhen $x=0$, $y=8$,\\\\\nwhen $y=0$, $-\\frac{4}{3}x+8=0$,\\\\\nwe get: $x=6$,\\\\\n$\\therefore A(6,0), B(0,8)$,\\\\\nthus $OA=6, OB=8$,\\\\\n$\\therefore {S}_{\\triangle AOB}=\\frac{1}{2}OA\\cdot OB=\\frac{1}{2}\\times 6\\times 8=\\boxed{24}$,\\\\\nmeaning the area of $\\triangle AOB$ is $\\boxed{24}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917352_79": { -"question": "As shown in the figure, it is known that the line $y=-\\frac{4}{3}x+8$ intersects the x-axis at point A and the y-axis at point B. A moving point C starts from point B and moves towards point A along line $BA$ at a constant speed of 1 unit per second. Simultaneously, another moving point D starts from point A and moves towards point O along line $AO$ at a constant speed of 2 units per second. The motion of one point stops when the other point stops. Let the time of motion be t seconds ($t>0$). Express the coordinates of point C using an algebraic equation involving t.", -"image_file_name": "7056237", -"image": [ -"math/52917352_574.png" -], -"solution": "\\textbf{Solution:} Construct $CM\\perp x$ axis and $CN\\perp y$ axis through point C,\\\\\n$\\therefore CN\\parallel x$ axis and $CM\\parallel y$ axis,\\\\\nIn $\\triangle AOB$, $AB=\\sqrt{OA^2+OB^2}=10$,\\\\\nAccording to the given information, $BC=t$, thus $AC=10-t$,\\\\\n$\\therefore \\frac{CN}{OA}=\\frac{BC}{AB}$, which means $\\frac{CN}{6}=\\frac{t}{10}$,\\\\\nSolving this gives: $CN=\\frac{3}{5}t$,\\\\\n$\\frac{CM}{OB}=\\frac{AC}{BC}$, which means $\\frac{CM}{8}=\\frac{10-t}{10}$,\\\\\nSolving this gives: $CM=\\frac{40-4t}{5}$,\\\\\n$\\therefore$The coordinates of point C are $\\boxed{\\left(\\frac{3}{5}t, \\frac{40-4t}{5}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917352_80": { -"question": "As shown in the figure, it is known that the line $y=-\\frac{4}{3}x+8$ intersects the x-axis at point A and the y-axis at point B. A moving point C starts from point B, moving towards point A at a uniform speed of 1 unit per second along direction $BA$. Simultaneously, a moving point D starts from point A, moving towards point O at a uniform speed of 2 units per second along direction $AO$. When one point stops moving, the other point stops as well. Let the time of movement be t seconds ($t>0$). Directly state the value of t when the area of $\\triangle ACD$ is $\\frac{84}{5}$.", -"image_file_name": "7056237", -"image": [ -"math/52917352_574.png" -], -"solution": "\\textbf{Solution:} We have $t=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917352_81": { -"question": "As shown in the figure, it is known that the line $y=-\\frac{4}{3}x+8$ intersects the x-axis at point A and the y-axis at point B. A moving point C starts from point B and moves at a uniform speed of 1 unit per second in the direction of $BA$. Simultaneously, a moving point D starts from point A and moves at a uniform speed of 2 units per second in the direction of $AO$ towards point O. When one point stops moving, the other point will also stop moving. Let the time of movement be $t$ seconds ($t>0$). Directly state the value of $t$ when $\\triangle ACD$ is similar to $\\triangle AOB$.", -"image_file_name": "7056237", -"image": [ -"math/52917352_574.png" -], -"solution": "\\textbf{Solution:} From the problem, we know that when $\\triangle ACD$ is similar to $\\triangle AOB$, the value of $t$ is $\\boxed{\\frac{30}{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917601_83": { -"question": "As shown in the figure, it is known that in trapezoid $ABCD$, $AB \\parallel CD$, and diagonals $AC$ and $BD$ intersect at point $O$, with $CO = \\frac{2}{5} AC$. What is the value of $\\frac{CD}{AB}$?", -"image_file_name": "7056237", -"image": [ -"math/52917601_586.png" -], -"solution": "\\textbf{Solution:} Because $CO = \\frac{2}{5}AC$, \\\\\nthus $CO: OA = 2:3$, \\\\\nBecause $CD \\parallel AB$, \\\\\nthus $\\frac{CD}{AB} = \\frac{OC}{OA} = \\boxed{\\frac{2}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917616_86": { -"question": "As illustrated in the rectangle $ABCD$, where $AB=4$ and $BC=5$, $P$ is a moving point on ray $BC$. Construct $PE\\perp AP$ with $PE$ intersecting ray $DC$ at point $E$, and ray $AE$ intersecting ray $BC$ at point $F$. Let $BP=x$ and $CF=y$. When $\\sin\\angle APB=\\frac{4}{5}$, what is the length of $CE$?", -"image_file_name": "7056237", -"image": [ -"math/52917616_5911.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a rectangle,\\\\\n$\\therefore \\angle B=90^\\circ$,\\\\\nIn $\\triangle APB$, $AB=4$, $\\sin\\angle APB=\\frac{4}{5}$,\\\\\n$\\therefore \\sin\\angle APB=\\frac{AB}{AP}=\\frac{4}{5}$,\\\\\n$\\therefore AP=5$,\\\\\n$\\therefore PB=\\sqrt{AP^2-AB^2}=\\sqrt{5^2-4^2}=3$,\\\\\n$\\therefore PC=BC-PB=5-3=2$,\\\\\nBecause $PE\\perp AP$,\\\\\n$\\therefore \\angle APE=90^\\circ$,\\\\\n$\\therefore \\angle CPE+\\angle APB=90^\\circ$,\\\\\nBecause $\\angle BAP+\\angle APB=90^\\circ$,\\\\\n$\\therefore \\angle CPE=\\angle BAP$,\\\\\nBecause $\\angle ECP=\\angle B=90^\\circ$,\\\\\n$\\therefore \\triangle PCE\\sim \\triangle ABP$,\\\\\n$\\therefore \\frac{CE}{BP}=\\frac{PC}{AB}$,\\\\\ni.e., $\\frac{CE}{3}=\\frac{2}{4}$,\\\\\nSolving for: $CE=\\boxed{\\frac{3}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52917616_87": { -"question": "As shown in the rectangle $ABCD$, where $AB=4$ and $BC=5$. Let $P$ be a moving point on ray $BC$. Construct $PE\\perp AP$ where $PE$ intersects ray $DC$ at point E, and ray $AE$ intersects ray $BC$ at point F. Let $BP=x$ and $CF=y$. As illustrated, when point P is on side $BC$ (excluding points B and C), find the function relationship between $y$ and $x$, and state its domain.", -"image_file_name": "7056237", -"image": [ -"math/52917616_5911.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral $ABCD$ is a rectangle, \\\\\n$\\therefore EC\\parallel AB$, \\\\\n$\\therefore \\triangle ECF \\sim \\triangle ABF$, \\\\\n$\\therefore \\frac{CF}{BF}=\\frac{CE}{AB}$, \\\\\nthat is, $\\frac{y}{5+y}=\\frac{CE}{4}$, \\\\\nsolving this, we get: $CE=\\frac{4y}{5+y}$, \\\\\n$\\because \\triangle PCE \\sim \\triangle ABP$, \\\\\n$\\therefore \\frac{CE}{x}=\\frac{5-x}{4}$, \\\\\nsolving this, we obtain: $CE=\\frac{x(5-x)}{4}$, \\\\\n$\\therefore \\frac{4y}{5+y}=\\frac{x(5-x)}{4}$, \\\\\nwhich simplifies to: $y=\\frac{25x-5x^2}{x^2-5x+16}$, for $00$,\\\\\nthus, $x= \\boxed{3\\sqrt{10}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52827689_140": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertices of rectangle $OABC$ are such that vertex $O$ coincides with the origin of the coordinates, vertices $A$ and $C$ are respectively on the x-axis and y-axis, and the coordinates of point $B$ are $\\left(2, 3\\right)$. The graph of the inverse proportion function $y=\\frac{k}{x}$ passes through the midpoint $D$ of $BC$ and intersects $AB$ at point $E$. Connect $DE$. Find the value of $k$ and the coordinates of point $E$.", -"image_file_name": "7056237", -"image": [ -"math/52827689_766.png" -], -"solution": "\\textbf{Solution:} In rectangle $OABC$,\\\\\nsince the coordinates of point $B$ are $(2, 3)$,\\\\\nthen the coordinates of midpoint $D$ on side $BC$ are $(1, 3)$,\\\\\nand since the inverse proportion function $y=\\frac{k}{x}$ passes through point $D(1, 3)$,\\\\\nthen $3=\\frac{k}{1}$,\\\\\ntherefore $k=\\boxed{3}$,\\\\\nsince point $E$ is on $AB$,\\\\\nthen the x-coordinate of $E$ is 2,\\\\\nand since $y=\\frac{3}{x}$ passes through point $E$,\\\\\nthen the y-coordinate of $E$ is $\\frac{3}{2}$,\\\\\ntherefore, the coordinates of point $E$ are $\\boxed{\\left(2, \\frac{3}{2}\\right)}$,", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52827689_141": { -"question": "As shown in the figure, in the Cartesian coordinate system, the rectangle $OABC$ has its vertex O coinciding with the origin, vertices A and C respectively on the x-axis and y-axis, and the coordinate of point B is $\\left(2, 3\\right)$. The graph of the inverse proportion function $y=\\frac{k}{x}$ passes through the midpoint D of BC, and intersects AB at point E, with DE being joined. If point F is a point on the side OC, and $\\triangle FBC\\sim \\triangle DEB$, find the equation of the straight line FB.", -"image_file_name": "7056237", -"image": [ -"math/52827689_766.png" -], -"solution": "\\textbf{Solution:} From (1) we have $BD=1$, $BE=\\frac{3}{2}$, $CB=2$,\n\nsince $\\triangle FBC\\sim \\triangle DEB$,\n\nthen $\\frac{BD}{CF}=\\frac{BE}{CB}$, which is $\\frac{1}{CF}=\\frac{\\frac{3}{2}}{2}$,\n\ntherefore $CF=\\frac{4}{3}$,\n\nthus $OF=\\frac{5}{3}$, meaning the coordinates of point F are $\\left(0, \\frac{5}{3}\\right)$,\n\nAssume the equation of line $FB$ is $y=k_1x+b\\ (k_1\\ne 0)$, and line $FB$ passes through $B(2, 3)$, $F\\left(0, \\frac{5}{3}\\right)$,\n\ntherefore $\\begin{cases}3=2k_1+b \\\\ \\frac{5}{3}=b \\end{cases}$,\n\nhence $k_1=\\frac{2}{3}, b=\\frac{5}{3}$,\n\ntherefore, the equation of line $FB$ is $\\boxed{y=\\frac{2}{3}x+\\frac{5}{3}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52827689_142": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the vertices of the rectangle $OABC$ are such that vertex $O$ coincides with the origin, and vertices $A$ and $C$ are respectively on the x-axis and y-axis. The coordinates of point $B$ are $(2, 3)$. The graph of the inverse proportion function $y=\\frac{k}{x}$ passes through the midpoint $D$ of $BC$, and intersects with $AB$ at point $E$. Connect $DE$. If point $P$ is on the y-axis, and the area of $\\triangle OPD$ is equal to the area of quadrilateral $BDOE$, find the coordinates of point $P$.", -"image_file_name": "7056237", -"image": [ -"math/52827689_766.png" -], -"solution": "\\textbf{Solution:} Given that $S_{\\text{quadrilateral} BDOE}=S_{\\text{rectangle} OABC}-{S}_{\\triangle AOE}-{S}_{\\triangle COD}=2\\times 3-\\frac{1}{2}\\times 2\\times \\frac{3}{2}-\\frac{1}{2}\\times 3\\times 1=3$,\\\\\naccording to the problem, we have $\\frac{1}{2}OP\\cdot DC=3, DC=1$,\\\\\n$\\therefore OP=6$,\\\\\n$\\therefore$ the coordinates of point P are $\\boxed{\\left(0, 6\\right)}$ or $\\left(0, -6\\right)$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52797177_145": { -"question": "In the figure, in the isosceles $\\triangle ABC$, where $AB=AC$, the circle $\\odot O$ with diameter $AB$ intersects $BC$ at point $D$, $DE\\perp AC$ with the foot of the perpendicular at $E$, and the extension of $ED$ intersects the extension of $AB$ at point $F$. $EF$ is a tangent to $\\odot O$; If the radius of $\\odot O$ is $\\frac{7}{2}$ and $BD=3$, find the length of $CE$.", -"image_file_name": "7056237", -"image": [ -"math/52797177_778.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect $AD$,\\\\\nsince $AB$ is the diameter of $\\odot O$,\\\\\nthus $AD\\perp BC$.\\\\\nSince $DE\\perp AC$,\\\\\nthus $\\angle ADC=\\angle DEC=90^\\circ$.\\\\\nSince $\\angle C=\\angle C$,\\\\\nthus $\\triangle CDE\\sim \\triangle CAD$,\\\\\nthus $\\frac{CD}{CA}=\\frac{CE}{CD}$.\\\\\nSince $AB=AC=7$,\\\\\nthus $DC=DB=3$.\\\\\nTherefore, $\\frac{3}{7}=\\frac{CE}{3}$\\\\\nTherefore, $CE=\\boxed{\\frac{9}{7}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52793804_148": { -"question": "As shown in Figure 1, it is known that $AB$ is the diameter of $\\odot O$, $\\triangle ABC$ is inscribed in $\\odot O$, $AB=10$, $BC=6$, and point $D$ is a moving point on $\\odot O$ (point $D$ does not coincide with points $A$ or $B$). $OC \\parallel AD$, what is the length of $AD$?", -"image_file_name": "7056237", -"image": [ -"math/52793804_788.png" -], -"solution": "\\textbf{Solution:} Given that $AB=10$ and $BC=6$,\\\\\nthus $OC=AO=OB=5$,\\\\\nsince $\\angle BHO=\\angle BHC=90^\\circ$,\\\\\nit follows that $OB^2-OH^2=CB^2-CH^2=BH^2$,\\\\\nthus $5^2-OH^2=6^2-(5-OH)^2$,\\\\\ntherefore $OH=1.4$,\\\\\nsince $\\overset{\\frown}{BC}=\\overset{\\frown}{CD}$,\\\\\nit follows that $DH=BH$,\\\\\nhence $AD=2OH=\\boxed{2.8}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52793804_149": { -"question": "As shown in Figure 1, it is known that $AB$ is the diameter of $\\odot O$, $\\triangle ABC$ is inscribed in $\\odot O$, $AB=10$, $BC=6$, and point $D$ is a moving point on $\\odot O$ (point $D$ does not coincide with points $A$ or $B$).\n\nAs shown in Figure 2, if $CD$ bisects $\\angle ACB$, and $AD$ is connected, determine the area of $\\triangle ACD$.", -"image_file_name": "7056237", -"image": [ -"math/52793804_788.png" -], -"solution": "\\textbf{Solution:} Draw line BD and let AG $\\perp$ CD at point G,\\\\\nsince AB is the diameter,\\\\\nit follows that $\\angle ACB=\\angle ADB=90^\\circ$.\\\\\nSince CD bisects $\\angle ACB$,\\\\\nwe have $\\angle ACD=\\angle BCD=45^\\circ$,\\\\\nwhich implies $\\overset{\\frown}{AD}=\\overset{\\frown}{BD}$,\\\\\nhence $AD=BD=\\frac{\\sqrt{2}}{2}AB=5\\sqrt{2}$, $AC=\\sqrt{AB^{2}-BC^{2}}=8$,\\\\\nthus $AG=CG=\\frac{\\sqrt{2}}{2}AC=4\\sqrt{2}$,\\\\\nand therefore $DG=\\sqrt{AD^{2}-AG^{2}}=3\\sqrt{2}$,\\\\\nwhich means $CD=DG+CG=7\\sqrt{2}$,\\\\\nso $S_{\\triangle ACD}=\\frac{1}{2}CD\\cdot AG=\\frac{1}{2}\\times 7\\sqrt{2}\\times 4\\sqrt{2}=\\boxed{28}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52793804_150": { -"question": "As shown in Figure 1, it is known that $AB$ is the diameter of $\\odot O$, $\\triangle ABC$ is inscribed in $\\odot O$, $AB=10$, $BC=6$, and point $D$ is a moving point on $\\odot O$ (point $D$ does not coincide with points $A$ or $B$). When is $AD$ such that $\\triangle ACD$ is an isosceles triangle?", -"image_file_name": "7056237", -"image": [ -"math/52793804_788.png" -], -"solution": "\\textbf{Solution:} \n(1) When $AC=AD=8$, $\\triangle ACD$ is an isosceles triangle,\\\\\n(2) When $AC=CD=8$, $\\triangle ACD$ is an isosceles triangle,\\\\\nAs shown in the figure, draw $CF\\perp AD$ at $F$,\\\\\n$\\therefore AD=2DF$, $\\angle CFD=90^\\circ$,\\\\\n$\\because \\angle B=\\angle D$, $\\angle CFD=\\angle ACB=90^\\circ$,\\\\\n$\\therefore \\triangle CDF\\sim \\triangle ABC$,\\\\\n$\\therefore \\frac{CD}{AB}=\\frac{DF}{BC}$,\\\\\n$\\therefore \\frac{8}{10}=\\frac{DF}{6}$,\\\\\n$\\therefore DF=\\frac{24}{5}$,\\\\\n$\\therefore AD=\\frac{48}{5}$;\\\\\n(3) When $AD=CD$, $\\triangle ACD$ is an isosceles triangle,\\\\\nAs shown in the figure, when point $D$ is on the major arc $ADC$, connect $DO$ and extend it to meet $AC$ at $M$,\\\\\nthen $AM=CM=\\frac{1}{2}AC=4$, $DM\\perp AC$,\\\\\n$\\because AO=BO$,\\\\\n$\\therefore OM=\\frac{1}{2}BC=3$,\\\\\n$\\therefore DM=OM+OD=8$,\\\\\n$\\therefore AD=\\sqrt{AM^2+DM^2}=\\sqrt{4^2+8^2}=4\\sqrt{5}$,\\\\\nWhen point $D$ is on the minor arc $AD$, by similar reasoning, we get $AD=2\\sqrt{5}$,\\\\\nIn summary, when $AD$ is $8$ or $\\boxed{\\frac{48}{5}}$ or $\\boxed{4\\sqrt{5}}$ or $\\boxed{2\\sqrt{5}}$, $\\triangle ACD$ is an isosceles triangle.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52793389_152": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=8$, $BC=12$. Point $E$ is on $AB$ with $AE=5$. $P$ is a point on $AD$. The rectangle is folded along $PE$ making point $A$ fall on point $A'$. $AC$ is joined and intersects $PE$ at point $F$. Let $AP=x$. What is the length of $AC$?", -"image_file_name": "7056237", -"image": [ -"math/52793389_7911.png" -], -"solution": "\\textbf{Solution:} We have $AC=\\boxed{4\\sqrt{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52793389_153": { -"question": "As shown in the diagram, within rectangle $ABCD$, $AB=8$, $BC=12$. Point $E$ is on $AB$, with $AE=5$. $P$ is a point on $AD$, and the rectangle is folded along $PE$ such that point $A$ falls on point ${A}^{\\prime}$. Connect $AC$ and let it intersect $PE$ at point $F$, with $AP=x$. If point ${A}^{\\prime}$ lies on the bisector of $\\angle BAC$, what is the length of $FC$?", -"image_file_name": "7056237", -"image": [ -"math/52793389_7911.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1,\\\\\n$\\because AA'$ bisects $\\angle BAC$,\\\\\n$\\therefore \\angle EAA' = \\angle FAA'$,\\\\\nFrom the folding, it is known that $AA' \\perp EF$,\\\\\n$\\therefore \\angle EAA' + \\angle AEF = 90^\\circ$, $\\angle AFE + \\angle FAA' = 90^\\circ$,\\\\\n$\\therefore \\angle AEF = \\angle AFE$,\\\\\n$\\therefore AE = AF = 5$,\\\\\n$\\therefore CF = AC - AF = 4\\sqrt{13} - 5 = \\boxed{4\\sqrt{13} - 5}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52793389_154": { -"question": "As shown in the diagram, within rectangle $ABCD$, where $AB=8$ and $BC=12$, point E is on $AB$ with $AE=5$. Point P is located on $AD$. The rectangle is folded along $PE$ so that point A lands on point ${A}^{\\prime}$. Line $AC$ is drawn and intersects $PE$ at point F, with $AP=x$. Find the minimum distance between points ${A}^{\\prime}$ and D, and calculate the value of $\\frac{AE}{AP}$ under these conditions;", -"image_file_name": "7056237", -"image": [ -"math/52793389_7911.png" -], -"solution": "\\textbf{Solution:} Connect $DE$ and $D{A}^{\\prime}$.\n\nIn $\\triangle ADE$, $\\angle EAD=90^\\circ$, $AE=5$, $AD=BC=12$,\n\n$\\therefore DE=13$,\n\n$\\because$ According to the property of folding: $EA=E{A}^{\\prime}=5$,\n\n$\\therefore$ In $\\triangle D{A}^{\\prime}E$, $D{A}^{\\prime}>DE-E{A}^{\\prime}=8$,\n\nWhen ${A}^{\\prime}$ is on $DE$, $D{A}^{\\prime}=DE-E{A}^{\\prime}=8$,\n\nThat is: $D{A}^{\\prime}\\ge 8$,\n\n$\\therefore$ The minimum value of $D{A}^{\\prime}$ is $\\boxed{8}$,\n\nAt this time, ${A}^{\\prime}$ is on $DE$, that is, E, ${A}^{\\prime}$, D are collinear,\n\nAccording to the property of folding: $\\angle P{A}^{\\prime}E=\\angle PAE=90^\\circ$,\n\nThat is: $\\angle P{A}^{\\prime}E=\\angle P{A}^{\\prime}D=90^\\circ$,\n\nTherefore, $\\triangle P{A}^{\\prime}D$ is a right triangle, thus $PD^2={A}^{\\prime}P^2+{A}^{\\prime}D^2$,\n\nAccording to $PA=P{A}^{\\prime}=x$, we have $PD=AD-PA=12-x$,\n\nThus, $(12-x)^2=x^2+8^2$,\n\nSolving gives $x=\\frac{10}{3}$,\n\n$\\therefore \\frac{AE}{AP}=\\frac{5}{\\frac{10}{3}}=\\boxed{\\frac{3}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52793389_155": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=8$, $BC=12$, point E is on $AB$ with $AE=5$, and P is a point on $AD$. The rectangle is folded along $PE$ such that point A falls on point ${A}^{\\prime}$, and $AC$ is connected, intersecting with $PE$ at point F. Let $AP=x$. If point ${A}^{\\prime}$ is inside $\\triangle ABC$, directly write down the range of $x$.", -"image_file_name": "7056237", -"image": [ -"math/52793389_7911.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 3-1, when point $A'$ falls on $AC$, \\\\\n$\\because$ $\\angle AEP+\\angle EAC=90^\\circ$, $\\angle ACB+\\angle EAC=90^\\circ$, \\\\\n$\\therefore$ $\\angle AEP=\\angle ACB$, \\\\\nAlso, $\\because$ in rectangle $ABCD$, we have $\\angle EAP=\\angle ABC=90^\\circ$, \\\\\n$\\therefore$ $\\triangle AEP\\sim \\triangle BCA$, \\\\\n$\\therefore$ $\\frac{AP}{AE}=\\frac{AB}{BC}$, \\\\\ni.e., $AP=\\frac{AB}{BC}\\times AE=\\frac{8}{12}\\times 5=\\frac{10}{3}$; \\\\\nIn Figure 3-2, when point $A'$ falls on $CB$, draw $PH\\perp BC$ at H, \\\\\nIt is easy to prove that quadrilateral $APHB$ is a rectangle, \\\\\nThen $PH=AB=8$, $PA=BH$. \\\\\nIn $\\triangle BEA'$, $BE=3$, $EA'=EA=5$, \\\\\n$\\therefore$ $BA'=4$, \\\\\n$\\because$ $\\angle B=\\angle EA'P=\\angle PHA'=90^\\circ$, \\\\\n$\\therefore$ $\\angle BA'E+\\angle PA'H=90^\\circ$, $\\angle PA'H+\\angle A'PH=90^\\circ$, \\\\\n$\\therefore$ $\\angle BA'E=\\angle A'PH$, \\\\\n$\\therefore$ $\\triangle BA'E\\sim \\triangle HPA'$, \\\\\n$\\therefore$ $\\frac{A'H}{HP}=\\frac{BE}{BA'}$, \\\\\n$\\because$ $BE=3$, $PH=AB=8$, $BA'=4$, \\\\\n$\\therefore$ $A'H=\\frac{BE}{BA'}\\times HP=\\frac{3}{4}\\times 8=6$, \\\\\n$\\therefore$ $AP=BH=BA'+A'H=10$. \\\\\nThus, when $\\frac{10}{3}AC$, connect $BO$ and extend it to intersect side $AC$ at point $D$. If $\\angle A=45^\\circ$, $\\frac{OD}{OB}=\\frac{2}{3}$, what is $\\frac{AD}{DC}$?", -"image_file_name": "7056435", -"image": [ -"math/52872084_680.png" -], -"solution": "\\textbf{Solution:}\n\nExtend $BD$ to intersect $\\odot O$ at point $H$, and connect $CH$, $CO$, and $AH$. \\\\\n\nSince $\\frac{OD}{OB} = \\frac{2}{3}$, \\\\\n\nThus, set $BO = 3a = OC = OH$, and $OD = 2a$, \\\\\n\nHence, $DH = a$, \\\\\n\nSince $\\angle BAC = 45^\\circ$, \\\\\n\nThus $\\angle BOC = 2\\angle BAC = 90^\\circ$, \\\\\n\nHence, $CD = \\sqrt{OD^2 + OC^2} = \\sqrt{13}a$, $CH = \\sqrt{OH^2 + OC^2} = 3\\sqrt{2}a$, \\\\\n\nSince $BH$ is a diameter, hence $\\angle BAH = 90^\\circ$, \\\\\n\nSince $\\angle BAC = \\angle BHC = 45^\\circ$ \\\\\n\nThus $\\angle CAH = 90^\\circ - \\angle BAC = 45^\\circ = \\angle CHD$ \\\\\n\nAlso, since $\\angle ACH = \\angle DCH$, \\\\\n\nTherefore, $\\triangle ACH \\sim \\triangle HCD$, \\\\\n\nTherefore, $\\frac{AC}{CH} = \\frac{CH}{CD}$, \\\\\n\nThus, $\\frac{AC}{3\\sqrt{2}a} = \\frac{3\\sqrt{2}a}{\\sqrt{13}a}$, \\\\\n\nHence, $AC = \\frac{18\\sqrt{13}a}{\\sqrt{13}}$, \\\\\n\nThus, $AD = AC - CD = \\frac{18\\sqrt{13}a}{\\sqrt{13}} - \\sqrt{13}a = \\frac{5\\sqrt{13}a}{\\sqrt{13}}$, \\\\\n\nTherefore, $\\frac{AD}{CD} = \\frac{\\frac{5\\sqrt{13}a}{\\sqrt{13}}}{\\sqrt{13}a} = \\boxed{\\frac{5}{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52872073_87": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ is the angle bisector, and point $E$ is a point on side $AC$, satisfying $\\angle ADE = \\angle B$. $\\triangle ADB \\sim \\triangle AED$; if $AE = 3$ and $AD = 5$, find the length of $AB$.", -"image_file_name": "7056435", -"image": [ -"math/52872073_692.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ADB \\sim \\triangle AED$, \\\\\nit follows that $\\frac{AD}{AE}=\\frac{AB}{AD}$, \\\\\nsince $AE=3$, and $AD=5$, \\\\\nthus $\\frac{5}{3}=\\frac{AB}{5}$, \\\\\ntherefore $AB=\\boxed{\\frac{25}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52872215_89": { -"question": "As shown in the diagram, in quadrilateral $ABCD$, $AC$ and $BD$ intersect at point $F$. Point $E$ is on $BD$, and $\\angle BAE = \\angle CAD$, $\\frac{AB}{AE} = \\frac{AC}{AD}$. Prove that: $\\triangle ABC \\sim \\triangle AED$.", -"image_file_name": "7056435", -"image": [ -"math/52872215_702.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BAE = \\angle CAD$, \\\\\nit follows that $\\angle BAE + \\angle EAF = \\angle CAD + \\angle EAF$, \\\\\nwhich implies $\\angle BAC = \\angle DAE$, \\\\\nand thus $\\frac{AB}{AE}=\\frac{AC}{AD}$. \\\\\nConsidering triangles $\\triangle ABC$ and $\\triangle AED$, where \\\\\n$\\left\\{\\begin{array}{l}\n\\frac{AB}{AE}=\\frac{AC}{AD} \\\\\n\\angle BAC = \\angle DAE\n\\end{array}\\right.$, \\\\\nit can be concluded that \\boxed{\\triangle ABC \\sim \\triangle AED}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52872215_90": { -"question": "As shown in the diagram, within quadrilateral $ABCD$, $AC$ and $BD$ intersect at point $F$. Point $E$ is on $BD$, and $\\angle BAE=\\angle CAD$, $\\frac{AB}{AE}=\\frac{AC}{AD}$. If $\\angle BAE=20^\\circ$, find the measure of $\\angle CBD$.", -"image_file_name": "7056435", -"image": [ -"math/52872215_702.png" -], -"solution": "Solution: Since $\\triangle ABC\\sim \\triangle AED$, \\\\\nit follows that $\\angle ADB=\\angle ACB$, \\\\\nAlso, since $\\angle AFD=\\angle BFC$, by virtue of vertical angles being equal, \\\\\nit implies $\\triangle AFD\\sim \\triangle BFC$, \\\\\nthus $\\angle CBD=\\angle CAD$, \\\\\nGiven $\\angle BAE=\\angle CAD$, and $\\angle BAE=20^\\circ$, \\\\\nit results in $\\angle CAD=20^\\circ$, \\\\\nTherefore, the answer is: $\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52872384_93": { -"question": "As shown in the figure, it is known that D and E are points on sides AC and AB of $\\triangle ABC$ respectively, with $\\angle AED = \\angle C$, $AE=5$, $AC=9$, and $DE=6$. $\\triangle ABC \\sim \\triangle ADE$. Find the length of BC.", -"image_file_name": "7056435", -"image": [ -"math/52872384_715.png" -], -"solution": "\\textbf{Solution:}\n\nSince $ \\triangle ABC\\sim \\triangle ADE$,\\\\\n$\\therefore \\frac{BC}{DE}=\\frac{AC}{AE}$,\\\\\n$\\therefore \\frac{BC}{6}=\\frac{9}{5}$,\\\\\n$\\therefore BC=\\boxed{\\frac{54}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52872397_95": { -"question": "As shown in Figure 1, given the quadratic function $y=-\\frac{4}{3}(x+1)^{2}+\\frac{16}{3}$ intersects the x-axis at points $A$ and $B$ (with point $A$ to the left of point $B$), and intersects the y-axis at point $C$. Point $D$ is the vertex of the parabola. Find the coordinates of points $A$ and $C$.", -"image_file_name": "7056435", -"image": [ -"math/52872397_721.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, we get $-\\frac{4}{3}(x+1)^2+\\frac{16}{3}=0$,\\\\\nSolving for $x$, we find $x_1=-3$ and $x_2=1$,\\\\\n$\\therefore \\boxed{A(-3, 0)}, B(1, 0)$,\\\\\nLet $x=0$, we get $y=-\\frac{4}{3}(0+1)^2+\\frac{16}{3}=4$,\\\\\n$\\therefore \\boxed{C(0,4)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52872397_97": { -"question": "As shown in Figure 1, it is known that the graph of the quadratic function $y=-\\frac{4}{3}(x+1)^2+\\frac{16}{3}$ intersects the x-axis at points A and B (with point A to the left of B) and intersects the y-axis at point C. Point D is the vertex of the parabola. As shown in Figure 2, connect AC and DC, and draw $CE\\parallel AB$ through point C to intersect the parabola at point E. As shown in Figure 3, $\\angle DCE = \\angle CAO$; connect BC, and on the extension of EC there is a point P such that the triangle with vertices D, E, P is similar to $\\triangle ABC$. What is the length of EP?", -"image_file_name": "7056435", -"image": [ -"math/52872397_721.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect DE,\\\\\n$\\because A(-3,0), B(1,0), C(0,4), D(-1,\\frac{16}{3})$,\\\\\n$\\therefore AC=\\sqrt{3^2+4^2}=5$, AB=4, $DC=\\sqrt{1^2+\\left(\\frac{4}{3}\\right)^2}=\\frac{5}{3}$,\\\\\nUsing the symmetry property of the parabola, we have: $DE=DC=\\frac{5}{3}$, CE=2,\\\\\n$\\therefore \\angle ECD=\\angle DEC$,\\\\\nFrom (2) we get $\\angle ECD=\\angle CAO$,\\\\\n$\\therefore \\angle DEC=\\angle CAB$,\\\\\n$\\because \\triangle DEP$ and $\\triangle ABC$ are similar,\\\\\n(1) When $\\triangle DEP \\sim \\triangle CAB$, we have $\\frac{DE}{AC}=\\frac{EP}{AB}$,\\\\\n$\\therefore \\frac{\\frac{5}{3}}{5}=\\frac{EP}{4}$,\\\\\n$\\therefore EP=\\boxed{\\frac{4}{3}}$.\\\\\n(2) When $\\triangle DEP \\sim \\triangle BAC$, we have $\\frac{DE}{AB}=\\frac{EP}{AC}$,\\\\\n$\\therefore \\frac{\\frac{5}{3}}{4}=\\frac{EP}{5}$,\\\\\n$\\therefore EP=\\frac{25}{12}$.\\\\\nIn conclusion, EP=$\\boxed{\\frac{4}{3}}$ or $\\boxed{\\frac{25}{12}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51445791_100": { -"question": "As shown in the figure, point D lies on the circle $\\odot O$, and point C is on the extension line of diameter BA. Connect CD, and $\\angle CDA=\\angle CBD$. CD is the tangent of $\\odot O$; if $DC=4$ and $AC=2$, what is the length of OC?", -"image_file_name": "7056435", -"image": [ -"math/51445791_730.png" -], -"solution": "\\textbf{Solution:} Since $\\angle CDA=\\angle CBD$ and $\\angle ACD=\\angle DCB$,\\\\\nit follows that $\\triangle ACD\\sim \\triangle DCB$,\\\\\nthus $\\frac{CD}{CB}=\\frac{AC}{DC}$,\\\\\ni.e., $\\frac{4}{CB}=\\frac{2}{4}$,\\\\\nhence $CB=8$,\\\\\ntherefore $OA=\\frac{CB-AC}{2}=\\frac{8-2}{2}=3$,\\\\\nthus $OC=OA+AC=3+2=\\boxed{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51446069_103": { -"question": "As shown in the figure, the line segment $CD \\parallel AB$, $AD$ and $BC$ intersect at point $E$. $AE \\cdot CE = DE \\cdot BE$; through point $E$, draw $EF \\parallel AB$, intersecting $AC$ at point $F$. If $AB=5$ and $EF=2$, what is the length of $CD$?", -"image_file_name": "7056435", -"image": [ -"math/51446069_740.png" -], -"solution": "\\textbf{Solution:} Since EF$\\parallel$AB,\\\\\nit follows that $\\angle$EFC$=\\angle$BAC, $\\angle$CEF$=\\angle$B,\\\\\ntherefore, $\\triangle$ CEF$\\sim$ $\\triangle$ CBA,\\\\\nthus, $\\frac{CF}{CA}=\\frac{EF}{AB}=\\frac{2}{5}$,\\\\\nso, $\\frac{AF}{CA}=\\frac{3}{5}$,\\\\\nSince CD$\\parallel$AB and EF$\\parallel$AB,\\\\\nit follows that EF$\\parallel$CD,\\\\\ntherefore, $\\angle$EAF$=\\angle$DAC, $\\angle$EFA$=\\angle$DCA,\\\\\nthus, $\\triangle$ AEF$\\sim$ $\\triangle$ ADC,\\\\\nit follows that $\\frac{EF}{CD}=\\frac{AF}{CA}$,\\\\\nhence, $\\frac{2}{CD}=\\frac{3}{5}$,\\\\\ntherefore, CD$=\\boxed{\\frac{10}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51446284_106": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, point $F$ is on $\\odot O$, $AE$ bisects $\\angle CAD$ and intersects $\\odot O$ at point $E$. Through point $E$, construct $ED\\perp AF$, and extend it to meet the extension of $AF$ at point $D$. Extend $DE$ and $AB$ to meet at point $C$. $CD$ is a tangent to $\\odot O$; given that $AB=10, \\frac{ED}{AD}=\\frac{1}{2}$, find the length of $BC$.", -"image_file_name": "7056435", -"image": [ -"math/51446284_755.png" -], -"solution": "\\textbf{Solution:} Draw BE. Since AB is the diameter,\\\\\n$\\angle AEB=90^\\circ=\\angle D$, and $\\angle DAE=\\angle BAE$,\\\\\nthus $\\triangle ADE\\sim \\triangle AEB$,\\\\\nthus $\\frac{AD}{AE}=\\frac{AE}{AB}=\\frac{DE}{BE}$,\\\\\nand $\\frac{ED}{AD}=\\frac{1}{2}$,\\\\\nthus $\\frac{DE}{AD}=\\frac{BE}{AE}=\\frac{1}{2}$, hence AE=2BE, and AB=10,\\\\\nin $\\triangle ABE$, $AE^2+BE^2=AB^2$, that is $(2BE)^2+BE^2=10^2$,\\\\\nsolving gives: BE=$2\\sqrt{5}$, then AE=$4\\sqrt{5}$,\\\\\nthus $\\frac{AD}{4\\sqrt{5}}=\\frac{4\\sqrt{5}}{10}=\\frac{DE}{2\\sqrt{5}}$,\\\\\nsolving gives: AD=8, DE=4,\\\\\nsince OE$\\parallel$AD,\\\\\n$\\triangle COE\\sim \\triangle CAD$,\\\\\nthus $\\frac{CO}{CA}=\\frac{OE}{AD}$, let BC=x,\\\\\nthus $\\frac{x+5}{x+10}=\\frac{5}{8}$, solving gives: x=$\\boxed{\\frac{10}{3}}$,\\\\\nupon verification: x=$\\frac{10}{3}$ is the solution to the original equation,\\\\\ntherefore, the length of BC is $\\boxed{\\frac{10}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299801_113": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD \\parallel BC$, $\\angle B = \\angle ACD = 90^\\circ$, $\\triangle ABC \\sim \\triangle DCA$. If $BC=1$, $AC=2$, find the length of $AD$.", -"image_file_name": "7056435", -"image": [ -"math/51299801_770.jpg" -], -"solution": "Solution: Since $\\triangle ABC \\sim \\triangle DCA$, \\\\\n$\\therefore \\frac{BC}{AC}=\\frac{AC}{AD}$, which means $\\frac{1}{2}=\\frac{2}{AD}$, \\\\\n$\\therefore AD=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51407111_115": { -"question": "As shown in the figure, the line $y=-x+3$ intersects the graph of the inverse proportion function $y=\\frac{2}{x}\\ (x>0)$ at points A and B. What are the coordinates of points A and B?", -"image_file_name": "7056435", -"image": [ -"math/51407111_782.png" -], -"solution": "\\textbf{Solution}: From the given problem, we have\n\\[\n\\left\\{\n\\begin{array}{l}\ny=-x+3 \\\\\ny=\\frac{2}{x}\n\\end{array}\n\\right.\n\\]\nTherefore, $-x+3=\\frac{2}{x}$, solving this gives $x_1=1$, $x_2=2$, $y_1=2$, $y_2=1$,\ntherefore, the points are \\boxed{A(1, 2)}, \\boxed{B(2, 1)}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51407111_116": { -"question": "As shown in the figure, the line $y=-x+3$ intersects with the inverse proportion function $y=\\frac{2}{x}\\ (x>0)$ at points A and B. As shown in Figure 1, point E is a point on segment AC. Connect OE and OA. If $\\angle AOE=45^\\circ$, what is the value of $\\frac{AE}{EC}$?", -"image_file_name": "7056435", -"image": [ -"math/51407111_782.png" -], -"solution": "\\textbf{Solution:} Since $y=-x+3$ intersects the $x$-axis at point $C$, $C(3, 0)$. Since $\\angle OCA = \\angle AOE = 45^\\circ$ and $\\angle OAE = \\angle CAO$, $\\triangle AOE \\sim \\triangle ACO$. Therefore, $\\frac{AO}{AE} = \\frac{AC}{AO}$, and thus $AO^2 = AE \\cdot AC$. Given $A(1, 2)$ and $C(3, 0)$, we find $AO = \\sqrt{2^2 + 1^2} = \\sqrt{5}$ and $AC = \\sqrt{2^2 + 2^2} = \\sqrt{8} = 2\\sqrt{2}$. Therefore, $AE = \\frac{AO^2}{AC} = \\frac{5}{2\\sqrt{2}}$ and $EC = \\frac{3}{2\\sqrt{2}}$. Hence, $\\frac{AE}{EC} = \\boxed{\\frac{5}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51407111_117": { -"question": "As shown in the figure, the line $y=-x+3$ intersects the graph of the inverse proportion function $y=\\frac{2}{x}$ $(x>0)$ at points A and B. As illustrated in figure 2, when line AB is translated m units to the right along the x-axis, it intersects the graph of the inverse proportion function $y=\\frac{2}{x}$ $(x>0)$ at points P and Q. By connecting AP and BQ, if the area of the quadrilateral ABQP is exactly equal to $m^{2}$, find the value of m.", -"image_file_name": "7056435", -"image": [ -"math/51407114_7822.png", -"math/51407111_782.png" -], -"solution": "\\textbf{Solution:} Let the equation of the line after translation be $y_{PQ}=-x+3+m$. Draw $DF\\perp PQ$ at point F from D, thus $ED=m$ and $DF= \\frac{\\sqrt{2}m}{2}$.\\\\\nThe area of $\\triangle ABPQ$ is $\\frac{(AB+PQ)\\cdot \\frac{\\sqrt{2}m}{2}}{2}=\\frac{\\sqrt{2}m(\\sqrt{2}+PQ)}{4}=m^{2}$.\\\\\nTherefore, $\\sqrt{2}+PQ=2\\sqrt{2}m$,\\\\\nHence, $PQ= 2\\sqrt{2}m - \\sqrt{2}$.\\\\\nAccording to the problem, $\\begin{cases}y=-x+3+m\\\\ y=\\frac{x}{2}\\end{cases}$.\\\\\nSolving, we get $x_{1}=\\frac{m+3+\\sqrt{m^{2}+6m+1}}{2}$ and $x_{2}=\\frac{m+3-\\sqrt{m^{2}+6m+1}}{2}$,\\\\\nThus, $QH=x_{1}-x_{2}= \\sqrt{m^{2}+6m+1}$,\\\\\nTherefore, $PQ=\\sqrt{2}\\sqrt{m^{2}+6m+1}$,\\\\\nTherefore, $\\sqrt{2}\\sqrt{m^{2}+6m+1} = 2\\sqrt{2}m - \\sqrt{2}$.\\\\\nTherefore, $m^{2}+6m+1=4m^{2}-4m+1$,\\\\\nSolving we get $m_{1}=0$ (discarded), $m_{2}=\\frac{10}{3}$,\\\\\nthus $m=\\boxed{\\frac{10}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51403136_120": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=90^\\circ$, circle $\\odot O$ with diameter $AB$ intersects $AC$ at point $D$, $AE$ is perpendicular to the tangent at point $D$, with the foot of the perpendicular being $E$. $AD$ bisects $\\angle BAE$; If $CD=\\frac{9}{5}$ and $BC=3$, find the length of segment $AB$.", -"image_file_name": "7056435", -"image": [ -"math/51403136_790.png" -], -"solution": "\\textbf{Solution:} Connect BD, as shown in the figure,\n\n$\\because$ AB is a diameter,\n\n$\\therefore$ $\\angle$ADB$=90^\\circ$,\n\n$\\because$ $\\angle 2+\\angle$ABD$=90^\\circ$, $\\angle 3+\\angle$ABD$=90^\\circ$,\n\n$\\therefore$ $\\angle 2=\\angle 3$,\n\n$\\because$ $\\angle$DCB$=\\angle$BCA,\n\n$\\therefore$ $\\triangle CDB\\sim \\triangle CBA$,\n\n$\\therefore$ $\\frac{CD}{CB}=\\frac{CB}{AC}$,\n\n$\\therefore$ $\\frac{\\frac{9}{5}}{3}=\\frac{3}{AC}$,\n\n$\\therefore$ AC$=5$,\n\n$\\therefore$ AB$=\\sqrt{AC^2-BC^2}=\\sqrt{5^2-3^2}=\\boxed{4}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403109_123": { -"question": "As shown in the diagram, $AB$ is the diameter of $\\odot O$, with points $E$ and $F$ on $\\odot O$, and $\\overset{\\frown}{BF} = 2\\overset{\\frown}{BE}$. Connect $OE$ and $AF$, and draw the tangent to $\\odot O$ at point $B$, which intersects the extensions of $OE$ and $AF$ at points $C$ and $D$, respectively. $\\angle COB = \\angle A$; if $AB = 6$ and $CB = 4$, calculate the length of the line segment $FD$.", -"image_file_name": "7056435", -"image": [ -"math/51403109_802.png" -], -"solution": "\\textbf{Solution:} Connect $BF$, as shown in the figure, \\\\\nsince $CD$ is the tangent to $\\odot O$, \\\\\ntherefore $AB\\perp CD$, \\\\\nhence $\\angle OBC=\\angle ABD=90^\\circ$, \\\\\nsince $\\angle COB=\\angle A$, \\\\\nthus $\\triangle OBC\\sim \\triangle ABD$, \\\\\nthus $\\frac{OB}{AB}=\\frac{BC}{BD}$, that is $\\frac{3}{6}=\\frac{4}{BD}$, solving for $BD=8$, \\\\\nin $\\triangle ABD$ right-angled at $B$, $AD=\\sqrt{AB^{2}+BD^{2}}=\\sqrt{6^{2}+8^{2}}=10$, \\\\\nsince $AB$ is the diameter of $\\odot O$, \\\\\nthus $\\angle AFB=90^\\circ$, \\\\\nsince $\\angle BDF=\\angle ADB$, \\\\\nthus $\\triangle BDF$ right-angled at $B \\sim \\triangle ADB$ right-angled at $B$, \\\\\nthus $\\frac{DF}{DB}=\\frac{DB}{DA}$, that is $\\frac{DF}{8}=\\frac{8}{10}$, \\\\\nsolving for: $DF=\\boxed{\\frac{32}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402971_126": { -"question": "Let point E be chosen on the side of rectangle ABCD. Fold $ \\triangle BCE$ along BE so that point C precisely lands on point F on side AD. If $ \\angle CBE=15^\\circ$, $ BC=2BA$, as shown in the figure, when $ AB=5$ and $ AF\\cdot FD=10$, find the length of BC.", -"image_file_name": "7056435", -"image": [ -"math/51402973_8112.png" -], -"solution": "\\textbf{Solution:} Let's fold $\\triangle BCE$ along $BE$ such that point $C$ precisely lands on point $F$ on side $AD$, \\\\\nthen $\\angle BFE=\\angle C=90^\\circ$, $CE=EF$, \\\\\nalso, since in rectangle $ABCD$, $\\angle A=\\angle D=90^\\circ$, \\\\\nthen $\\angle AFB+\\angle DFE=90^\\circ$, $\\angle DEF+\\angle DFE=90^\\circ$, \\\\\ntherefore $\\angle AFB=\\angle DEF$, \\\\\nthus $\\triangle FAB\\sim \\triangle EDF$, \\\\\nthus $\\frac{AF}{DE}=\\frac{AB}{DF}$, \\\\\nthus $AF\\cdot DF=AB\\cdot DE$, \\\\\nsince $AF\\cdot DF=10$, $AB=5$, \\\\\nthen $DE=2$, \\\\\ntherefore $CE=DC-DE=5-2=3$, \\\\\nthus $EF=3$, \\\\\ntherefore $DF=\\sqrt{EF^2-DE^2}=\\sqrt{3^2-2^2}=\\sqrt{5}$, \\\\\nthus $AF=\\frac{10}{\\sqrt{5}}=2\\sqrt{5}$, \\\\\ntherefore $BC=AD=AF+DF=2\\sqrt{5}+\\sqrt{5}=\\boxed{3\\sqrt{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51402971_127": { -"question": "Consider a point $E$ on the side of rectangle $ABCD$. Fold $\\triangle BCE$ along $BE$ such that point $C$ exactly aligns with point $F$ on side $AD$. As shown in the diagram, extend $EF$ and let it intersect the angle bisector of $\\angle ABF$ at point $M$. Let $BM$ intersect $AD$ at point $N$. Given that $NF = AN + FD$, find the value of $\\frac{AB}{BC}$.", -"image_file_name": "7056435", -"image": [ -"math/51402974_8123.png" -], -"solution": "\\textbf{Solution:} Draw $NG \\perp BF$ at point G,\n\nsince $NF=AN+FD$,\n\nthus $NF= \\frac{1}{2}AD= \\frac{1}{2}BC$,\n\nsince $BC=BF$,\n\nthus $NF= \\frac{1}{2}BF$,\n\nsince $\\angle NFG=\\angle AFB$, $\\angle NGF=\\angle BAF=90^\\circ$,\n\nthus $\\triangle NFG \\sim \\triangle BFA$,\n\nthus $\\frac{NG}{AB}=\\frac{FG}{FA}=\\frac{NF}{BF}=\\frac{1}{2}$,\n\nLet $AN=x$,\n\nsince $BN$ bisects $\\angle ABF$, $AN \\perp AB$, $NG \\perp BF$,\n\nthus $AN=NG=x$, $AB=BG=2x$,\n\nLet $FG=y$, then $AF=2y$,\n\nsince $AB^2+AF^2=BF^2$,\n\nthus $(2x)^2+(2y)^2=(2x+y)^2$,\n\nsolving yields $y=\\frac{4}{3}x$,\n\nthus $BF=BG+GF=2x+\\frac{4}{3}x=\\frac{10}{3}x$,\n\nthus $\\frac{AB}{BC}=\\frac{AB}{BF}=\\frac{2x}{\\frac{10}{3}x}=\\boxed{\\frac{3}{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51403288_129": { -"question": "As shown in the figure, the parabola $y=-\\frac{3}{4}x^{2}+bx+c$ intersects the x-axis at point $A(4,0)$ and the y-axis at point $B(0,3)$. Point $M(m,0)$ is a moving point on segment $OA$. The line passing through point $M$ and perpendicular to the x-axis intersects line $AB$ and the parabola at points $P$ and $N$, respectively. Find the equation of the parabola and write down the coordinates of its axis of symmetry and vertex.", -"image_file_name": "7056435", -"image": [ -"math/51403288_821.png" -], -"solution": "\\textbf{Solution:} Since the parabola $y=-\\frac{3}{4}x^{2}+bx+c$ intersects the $x$ axis at point $A(4,0)$ and the $y$ axis at point $B(0,3)$,\\\\\nwe have $\\begin{cases}-\\frac{3}{4}\\times 4^{2}+4b+c=0\\\\ c=3\\end{cases}$,\\\\\nsolving this, we get $\\begin{cases}b=\\frac{9}{4}\\\\ c=3\\end{cases}$,\\\\\ntherefore, the equation of the parabola is $y=-\\frac{3}{4}x^{2}+\\frac{9}{4}x+3$,\\\\\nsince $y=-\\frac{3}{4}x^{2}+\\frac{9}{4}x+3=-\\frac{3}{4}(x-\\frac{3}{2})^{2}+\\frac{75}{16}$,\\\\\ntherefore, the axis of symmetry of this parabola is $x=\\frac{3}{2}$,\\\\\nand the vertex coordinates are $\\boxed{\\left(\\frac{3}{2}, \\frac{75}{16}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51403288_130": { -"question": "As shown in the figure, the parabola $y=-\\frac{3}{4}x^{2}+bx+c$ intersects the x-axis at point $A(4,0)$ and the y-axis at point $B(0,3)$. Point $M(m,0)$ is a moving point on line segment $OA$, and the line passing through point $M$ and perpendicular to the x-axis intersects line $AB$ and the parabola at points $P$ and $N$, respectively. If the quadrilateral formed by points $P$, $N$, $B$, and $O$ is a parallelogram, find the value of $m$?", -"image_file_name": "7056435", -"image": [ -"math/51403288_821.png" -], -"solution": "\\textbf{Solution:} Let the equation of line AB be $y=px+q$,\\\\\nSubstituting A(4, 0) and B(0, 3) gives $\\left\\{\\begin{array}{l}4p+q=0 \\\\ q=3\\end{array}\\right.$,\\\\\nSolving for $p$ and $q$ yields $\\left\\{\\begin{array}{l}p=-\\frac{3}{4} \\\\ q=3\\end{array}\\right.$,\\\\\n$\\therefore$ The equation of line AB is $y=-\\frac{3}{4}x+3$,\\\\\n$\\because$ M(m, 0), and MN$\\perp$x-axis,\\\\\n$\\therefore$ N(m, $-\\frac{3}{4}m^{2}+\\frac{9}{4}m+3$), and P(m, $-\\frac{3}{4}m+3$),\\\\\n$\\therefore$ NP= $-\\frac{3}{4}m^{2}+3m$, OB=3,\\\\\n$\\because$ NP$\\parallel$OB, and the quadrilateral formed by vertices P, N, B, and O is a parallelogram,\\\\\n$\\therefore$ NP= OB, i.e., $-\\frac{3}{4}m^{2}+3m=3$,\\\\\nUpon rearrangement: $m^{2}-4m+4=0$,\\\\\nSolving yields: $m=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51403288_131": { -"question": "As shown in the figure, the parabola $y=-\\frac{3}{4}x^{2}+bx+c$ intersects the x-axis at point $A(4,0)$ and the y-axis at point $B(0,3)$. Point $M(m,0)$ is a moving point on line segment $OA$, and the line passing through point $M$ and perpendicular to the x-axis intersects line $AB$ and the parabola at points $P$ and $N$, respectively. If the triangle with vertices $B$, $P$, $N$ is similar to $\\triangle ABO$, what are the coordinates of point $M$?", -"image_file_name": "7056435", -"image": [ -"math/51403288_821.png" -], -"solution": "\\textbf{Solution:} Given that $A(4,0)$, $B(0,3)$, and $P(m, -\\frac{3}{4}m+3)$,\\\\\nhence $AB= \\sqrt{4^2+3^2}=5$, and $BP= \\sqrt{m^2+\\left(-\\frac{3}{4}m+3-3\\right)^2}=\\frac{5}{4}m$,\\\\\nmeanwhile $NP=-\\frac{3}{4}m^2+3m$,\\\\\nsince $PN\\parallel OB$,\\\\\nit follows that $\\angle BPN=\\angle ABO$,\\\\\nwhen $\\frac{PB}{OB}=\\frac{PN}{AB}$, $\\triangle BPN\\sim \\triangle OBA$,\\\\\nthat is $\\frac{\\frac{5}{4}m}{3}=\\frac{-\\frac{3}{4}m^2+3m}{5}$,\\\\\nafter simplification, we get $9m^2-11m=0$, solving this yields $m_1=0$ (discard), $m_2=\\frac{11}{9}$,\\\\\nat this point, the coordinates of point M are $\\boxed{\\left(\\frac{11}{9},0\\right)}$;\\\\\nwhen $\\frac{PB}{AB}=\\frac{PN}{OB}$, $\\triangle BPN\\sim \\triangle ABO$,\\\\\nthat is $\\frac{\\frac{5}{4}m}{5}=\\frac{-\\frac{3}{4}m^2+3m}{3}$,\\\\\nafter simplification, we get $2m^2-5m=0$, solving this yields $m_1=0$ (discard), $m_2=3$,\\\\\nat this point, the coordinates of point M are $\\boxed{(3,0)}$;\\\\\nIn conclusion, the coordinates of point M are either $\\boxed{\\left(\\frac{11}{9},0\\right)}$ or $\\boxed{(3,0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51403000_134": { -"question": "As shown in the figure, in $\\triangle ABC$ and $\\triangle ADE$, $\\triangle ABD \\sim \\triangle ACE$; $\\angle BAC = \\angle DAE = 90^\\circ$, $\\angle ABC = \\angle ADE = 30^\\circ$, $AC$ and $DE$ intersect at point F. Point D is on side $BC$, $\\frac{AD}{BD} = \\sqrt{3}$. Find the value of $\\frac{DF}{CF}$.", -"image_file_name": "7056435", -"image": [ -"math/51403000_830.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, draw line EC,\\\\\n$\\because \\angle BAC = \\angle DAE = 90^\\circ$, $\\angle ABC = \\angle ADE = 30^\\circ$,\\\\\n$\\therefore \\triangle ABC \\sim \\triangle ADE$,\\\\\nFrom (1), we know $\\triangle ABD \\sim \\triangle ACE$,\\\\\n$\\therefore \\frac{AE}{CE} = \\frac{AD}{BD} = \\sqrt{3}$, $\\angle ACE = \\angle ABD = \\angle ADE$,\\\\\nIn $\\triangle ADE$, $\\angle ADE = 30^\\circ$,\\\\\n$\\therefore \\frac{AD}{AE} = \\sqrt{3}$,\\\\\n$\\therefore \\frac{AD}{EC} = \\frac{AD}{AE} \\times \\frac{AE}{CE} = \\sqrt{3} \\times \\sqrt{3} = 3$.\\\\\n$\\because \\angle ADF = \\angle ECF$, $\\angle AFD = \\angle EFC$,\\\\\n$\\therefore \\triangle ADF \\sim \\triangle ECF$,\\\\\n$\\therefore \\frac{DF}{CF} = \\frac{AD}{CE} = \\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403036_137": { -"question": "As shown in the figure, A, B, and C are three points on circle \\(O\\) with a radius of 2, where AB is the diameter. The bisector of \\(\\angle BAC\\) intersects the circle at point D. A perpendicular line is drawn from point D to the extended line of AC, intersecting it at point E. The extended line ED intersects the extended line of AB at point F. The line EF is tangent to circle \\(O\\); if \\(DF = 4\\sqrt{2}\\), find the value of \\(\\cos\\angle EAD\\).", -"image_file_name": "7056435", -"image": [ -"math/51403036_840.png" -], -"solution": "\\textbf{Solution:} In $\\triangle \\text{ODF}$, we have $OD=2$, $DF=4\\sqrt{2}$,\\\\\n$\\therefore OF= \\sqrt{OD^2+DF^2}=6$,\\\\\n$\\because OD\\parallel AE$,\\\\\n$\\therefore \\frac{OD}{AE}=\\frac{OF}{AF}$,\\\\\n$\\therefore \\frac{2}{AE}=\\frac{6}{8}$,\\\\\n$\\therefore AE=\\frac{8}{3}$,\\\\\n$\\therefore ED=\\sqrt{AF^2-AE^2}=\\sqrt{8^2-\\left(\\frac{8}{3}\\right)^2}=\\frac{16}{3}\\sqrt{2}$,\\\\\n$\\therefore AD=\\sqrt{AE^2+ED^2}=\\sqrt{\\frac{64}{9}+\\frac{256}{9}}=\\frac{4\\sqrt{6}}{3}$,\\\\\n$\\therefore \\cos\\angle EAD=\\frac{AE}{AD}=\\boxed{\\frac{\\sqrt{6}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403342_140": { -"question": "As shown in the figure, in a square $ABCD$ with side length 1, the diagonals $AC$ and $BD$ intersect at point $O$. Points $Q$ and $R$ are located on sides $AD$ and $DC$, respectively. Line $BR$ intersects line segment $OC$ at point $P$, where $QP \\perp BP$ and $QP$ intersects $BD$ at point $E$. $\\triangle APQ \\sim \\triangle DBR$; when $\\angle QED$ equals $60^\\circ$, find the value of $\\frac{AQ}{DR}$.", -"image_file_name": "7056435", -"image": [ -"math/51403342_851.png" -], -"solution": "\\textbf{Solution:} Let $OE=a$. In square $ABCD$, $\\angle POE=90^\\circ$, $OA=OB=OD$, \\\\\n$\\because \\angle QED=60^\\circ$, \\\\\n$\\therefore \\angle BEP=60^\\circ$, \\\\\nIn $\\triangle OEP$, \\\\\n$PE=\\frac{OE}{\\cos 60^\\circ}=2a$, $OP=OE\\cdot \\tan 60^\\circ=\\sqrt{3}a$, \\\\\n$\\because QP\\perp BP$, $\\angle BEP=60^\\circ$, \\\\\n$\\therefore \\angle PBE=30^\\circ$, \\\\\n$\\therefore BE=2PE=4a$, $BP=PE\\cdot \\tan 60^\\circ=2\\sqrt{3}a$, \\\\\n$\\therefore$ OA=OB=BE−OE=3a, \\\\\n$\\therefore$ BD=2OB=6a, \\\\\n$\\therefore AP=OA+OP=3a+\\sqrt{3}a=(3+\\sqrt{3})a$, \\\\\n$\\because \\triangle APQ\\sim \\triangle DBR$, \\\\\n$\\therefore \\frac{AQ}{DR}=\\frac{AP}{BD}=\\frac{(3+\\sqrt{3})a}{6a}=\\boxed{\\frac{3+\\sqrt{3}}{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402171_143": { -"question": "As shown in the figure, $AB$ is the tangent to the circle $\\odot O$, point $D$ is on $\\odot O$, and line $AD$ intersects $\\odot O$ at $C$. $CE$ is the diameter of $\\odot O$, and line $BC$ is drawn. Given $\\angle A=90^\\circ$ and $CB$ bisects $\\angle ACE$; when $AB=2$ and $AC=1$, what is the radius of $\\odot O$?", -"image_file_name": "7056435", -"image": [ -"math/51402171_8611.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect $BE$,\\\\\nin the right triangle $ABC$, $AB=2$, $AC=1$,\\\\\nby the Pythagorean theorem, we have: $BC=\\sqrt{AB^2+AC^2}=\\sqrt{5}$,\\\\\nsince $CE$ is the diameter of $\\odot O$,\\\\\nthus $\\angle CBE=90^\\circ$,\\\\\ntherefore $\\angle BAC=\\angle EBC$,\\\\\nsince $\\angle ACB=\\angle OCB$,\\\\\nthus $\\triangle BAC\\sim \\triangle EBC$,\\\\\ntherefore $\\frac{AC}{BC}=\\frac{BC}{CE}$, that is, $\\frac{1}{\\sqrt{5}}=\\frac{\\sqrt{5}}{CE}$,\\\\\nsolving this gives: $CE=5$,\\\\\nthus, the radius of $\\odot O$ is $\\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403345_145": { -"question": "Given the figure in the Cartesian coordinate system $xOy$, it is known that the parabola $y=x^{2}+bx$ passes through point A $(2, 0)$ and point $B\\left(-1, m\\right)$, with vertex at point D. What is the equation of line AB?", -"image_file_name": "7056435", -"image": [ -"math/51403345_873.png" -], -"solution": "\\textbf{Solution:}\n\nGiven the parabola $y=x^{2}+bx$ passes through point A(2, 0),\n\n\\[\n\\therefore 2^{2}+2b=0, \\text{ solving for } b, \\text{ we get } b=-2,\n\\]\n\n\\[\n\\therefore \\text{the equation of the parabola is } y=x^{2}-2x,\n\\]\n\nWhen $x=-1$, $y=3$,\n\n\\[\n\\therefore \\text{the coordinates of point B are } B(-1, 3),\n\\]\n\nLet the equation of line AB be $y=kx+m\\ (k\\neq 0)$,\n\nSubstituting A(2, 0) and $B(-1, 3)$ into it, we get:\n\n\\[\n\\begin{cases}\n2k+m=0, \\\\\n-k+m=3,\n\\end{cases}\n\\]\nsolving these yields:\n\\[\n\\begin{cases}\nk=-1, \\\\\nm=2,\n\\end{cases}\n\\]\n\n\\[\n\\therefore \\text{the equation of line AB is } \\boxed{y=-x+2};\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51403345_146": { -"question": "As shown in the diagram, in the Cartesian coordinate system $xOy$, it is known that the parabola $y=x^{2}+bx$ passes through point $A(2,0)$ and point $B(-1, m)$, with its vertex at point $D$. What is the value of $\\tan(\\angle ABD)$?", -"image_file_name": "7056435", -"image": [ -"math/51403345_873.png" -], -"solution": "\\textbf{Solution:} Connect BD and AD, \n\n\\[\n\\because y=x^{2}-2x=(x-1)^{2}-1,\n\\]\n\n\\[\n\\therefore \\text{the coordinates of point } D \\text{ are } D(1, -1),\n\\]\n\n\\[\n\\because A(2,0), B(-1, 3),\n\\]\n\n\\[\n\\therefore AB^{2}=(-1-2)^{2}+3^{2}=18, AD^{2}=(2-1)^{2}+(-1)^{2}=2, BD^{2}=(-1-1)^{2}+(-1-3)^{2}=20,\n\\]\n\n\\[\n\\therefore AB^{2}+AD^{2}=BD^{2},\n\\]\n\n\\[\n\\therefore \\triangle ABD \\text{ is a right-angled triangle},\n\\]\n\n\\[\n\\therefore \\tan\\angle ABD=\\frac{AD}{AB}=\\frac{\\sqrt{2}}{\\sqrt{18}}=\\boxed{\\frac{1}{3}}\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51403345_147": { -"question": "As shown in the diagram, in the Cartesian coordinate system $xOy$, it is known that the parabola $y=x^{2}+bx$ passes through point A $(2,0)$ and point $B(-1, m)$, with its vertex at point D. Suppose the line segment BD intersects the $x$-axis at point P. If point C is on the $x$-axis, and $\\triangle ABC$ is similar to $\\triangle ABP$, find the coordinates of point C.", -"image_file_name": "7056435", -"image": [ -"math/51403345_873.png" -], -"solution": "Solution: Let the equation of line BD be $y=k_1x+b_1\\left(k_1\\ne 0\\right)$.\\\\\nSubstituting points $D\\left(1, -1\\right)$ and $B\\left(-1, 3\\right)$ yields:\\\\\n$\\begin{cases}k_1+b_1=-1\\\\ -k_1+b_1=3\\end{cases}$, solving this gives: $\\begin{cases}k_1=-2\\\\ b_1=1\\end{cases}$,\\\\\n$\\therefore$ the equation of line BD is $y=-2x+1$,\\\\\nWhen $y=0$, $x=\\frac{1}{2}$,\\\\\n$\\therefore$ the coordinates of point P are $P\\left(\\frac{1}{2}, 0\\right)$,\\\\\nWhen $\\triangle ABP\\sim \\triangle ABC$, $\\angle ABC=\\angle APB$,\\\\\nAs illustrated, draw BQ⊥x-axis at point Q from point B, then BQ=3, OQ=1,\\\\\n$\\because \\triangle ABP\\sim \\triangle ABC$,\\\\\n$\\therefore \\angle ABD=\\angle BCQ$,\\\\\nFrom (2), we know $\\tan\\angle ABD=\\frac{1}{3}$,\\\\\n$\\therefore \\tan\\angle BCQ=\\frac{1}{3}$,\\\\\n$\\therefore \\frac{BQ}{CQ}=\\frac{1}{3}$,\\\\\n$\\therefore CQ=9$,\\\\\n$\\therefore OC=OQ+CQ=10$,\\\\\n$\\therefore$ the coordinates of point C are $C\\left(-10, 0\\right)$;\\\\\nWhen $\\triangle ABP\\sim \\triangle ABC$, $\\angle APB=\\angle ACB$, in this case, point C coincides with point P,\\\\\n$\\therefore$ the coordinates of point C are $C\\left(\\frac{1}{2}, 0\\right)$,\\\\\nIn conclusion, the coordinates of point C are either $C\\left(-10, 0\\right)$ or $\\boxed{C\\left(\\frac{1}{2}, 0\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51402165_149": { -"question": "As shown in Figure 1, in the quadrilateral $ABCD$, $\\angle ABD = \\angle BCD = 90^\\circ$, and $DB$ bisects $\\angle ADC$. If $CD = 6$ and $AD = 8$, what is the length of $BD$?", -"image_file_name": "7056435", -"image": [ -"math/51402165_886.png" -], -"solution": "\\textbf{Solution:} Given that $DB$ bisects $\\angle ADC$,\\\\\nthus $\\angle ADB=\\angle BDC$,\\\\\nsince $\\angle ABD=\\angle BCD=90^\\circ$,\\\\\nit follows that $\\triangle ADB\\sim \\triangle BDC$,\\\\\nhence $\\frac{AD}{BD}=\\frac{BD}{CD}$,\\\\\ngiven that $CD=6$, $AD=8$,\\\\\nthus $\\frac{8}{BD}=\\frac{BD}{6}$,\\\\\nsolving yields: $BD=\\boxed{4\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402165_150": { -"question": "As shown in Figure 1, in quadrilateral $ABCD$, $\\angle ABD = \\angle BCD = 90^\\circ$, $DB$ bisects $\\angle ADC$, given that $CD = 6$, $AD = 8$. As shown in Figure 2, draw $BM \\parallel CD$ through point $B$ to intersect $AD$ at $M$, and connect $CM$ to intersect $DB$ at $N$. Find the length of $DN$.", -"image_file_name": "7056435", -"image": [ -"math/51402165_886.png" -], -"solution": "\\textbf{Solution:} Given that $BM\\parallel CD$ and $DB$ bisects $\\angle ADC$,\\\\\n$\\therefore \\angle MBD=\\angle BDC$, $\\angle BDC=\\angle BDM$,\\\\\n$\\therefore \\angle MBD=\\angle BDM$,\\\\\n$\\therefore MB=MD$,\\\\\nGiven $\\angle MBD+\\angle MBA=\\angle ABD=90^\\circ$ and $\\angle BDM+\\angle A=90^\\circ$,\\\\\n$\\therefore \\angle MBA=\\angle A$,\\\\\n$\\therefore MB=MA$,\\\\\n$\\therefore MB=\\frac{1}{2}AD=4$,\\\\\nGiven $BM\\parallel CD$,\\\\\n$\\therefore \\triangle MNB\\sim \\triangle CND$,\\\\\n$\\therefore \\frac{BM}{DC}=\\frac{BN}{DN}$,\\\\\n$\\therefore \\frac{BN}{DN}=\\frac{4}{6}=\\frac{2}{3}$,\\\\\n$\\therefore \\frac{DN}{DB}=\\frac{3}{5}$,\\\\\nGiven $BD=4\\sqrt{3}$,\\\\\n$\\therefore DN=\\frac{3}{5}DB=\\frac{3}{5}\\times 4\\sqrt{3}=\\boxed{\\frac{12\\sqrt{3}}{5}}$,\\\\\ni.e., the length of $DN$ is $\\frac{12\\sqrt{3}}{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402867_153": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$ is a point on $AC$ and $AC=kAD$. $E$ is a point on $BC$, and $BD$ intersects $AE$ at point $O$. If $\\angle AOB + \\angle BAC = 180^\\circ$. In figure 2, if $BE=2CE$, find the value of $\\frac{AO}{AB}$.", -"image_file_name": "7056435", -"image": [ -"math/51402867_890.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 2, construct $EF \\parallel BD$ intersecting $AC$ at $F$, let $AD=a$, let $OD=x$, thus $AC=k\\cdot a$, $CD=(k-1)\\cdot a$,\n\n$\\therefore \\triangle EFC\\sim \\triangle BDC$, $\\triangle AOD\\sim \\triangle AEF$\n\n$\\therefore \\frac{EF}{BD}=\\frac{CF}{CD}=\\frac{CE}{BC}=\\frac{1}{3}$, $\\frac{OD}{EF}=\\frac{AD}{AF}$,\n\n$\\therefore BD=3EF$, $CF=\\frac{1}{3}CD=\\frac{1}{3}(k-1)\\cdot a$,\n\n$\\therefore \\frac{x}{EF}=\\frac{a}{ka-\\frac{1}{3}(k-1)a}$,\n\n$\\therefore EF=\\frac{2k+1}{3}x$,\n\n$\\therefore BD=(2k+1)\\cdot x$,\n\n$\\because \\angle CAE=\\angle ACD$, $\\angle ADO=\\angle ADB$,\n\n$\\therefore \\triangle AOD\\sim \\triangle BAD$,\n\n$\\therefore \\frac{AD}{BD}=\\frac{OD}{AD}=\\frac{AO}{AB}$,\n\n$\\therefore \\frac{a}{(2k+1)\\cdot x}=\\frac{x}{a}$,\n\n$\\therefore x=\\sqrt{\\frac{1}{2k+1}}\\cdot a$\n\n$\\therefore \\frac{AO}{AB}=\\frac{\\sqrt{\\frac{1}{2k+1}}}{a}\\cdot a=\\boxed{\\frac{\\sqrt{2k+1}}{2k+1}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51402858_156": { -"question": "As shown in the figure, DP is the tangent of the circle $\\odot O$, with D being the point of tangency. The chord AB is parallel to DP. Extend BO to intersect $\\odot O$ at point C and DP at point E. Extend AC to intersect DP at point F. Connect OD. AF is parallel to OD; If OD = 5 and AB = 8, find the length of the line segment EF.", -"image_file_name": "7056435", -"image": [ -"math/51402858_901.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that OH $\\perp$ AB, and AB = 8, \\\\\n$\\therefore$ BH = AH = 4, \\\\\n$\\therefore$ OH = $\\sqrt{OB^{2} - BH^{2}}$ = $\\sqrt{5^{2} - 4^{2}}$ = 3, \\\\\nGiven that BH $\\parallel$ ED, \\\\\n$\\therefore$ $\\triangle$ BOH $\\sim$ $\\triangle$ EOD, \\\\\n$\\therefore$ $\\frac{BH}{ED}$ = $\\frac{OH}{OD}$, that is, $\\frac{4}{ED}$ = $\\frac{3}{5}$, \\\\\nSolving this yields: ED = $\\frac{20}{3}$, \\\\\nGiven that $\\angle$BAC = $90^\\circ$, DH $\\perp$ AB, DH $\\perp$ DP, \\\\\n$\\therefore$ Quadrilateral AFDH is a rectangle, \\\\\n$\\therefore$ DF = AH = 4, \\\\\n$\\therefore$ EF = ED - DF = $\\frac{20}{3} - 4$ = $\\boxed{\\frac{8}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403292_158": { -"question": "As shown in the figure, the side length of the square is 1. Take a point E on ray AB, connect DE, and rotate $\\triangle ADE$ $90^\\circ$ around point D. Point E falls on point F, connect EF, which intersects with the line containing diagonal BD at point M, and intersects with ray DC at point N. When $AE=\\frac{1}{3}$, what is the value of $\\tan\\angle EDB$?", -"image_file_name": "7056435", -"image": [ -"math/51403292_910.png" -], -"solution": "\\textbf{Solution:} Draw $EH \\perp BD$ at H,\n\nsince the side length of the square is 1, $AE=\\frac{1}{3}$,\n\nthus $EB=1-AE=1-\\frac{1}{3}=\\frac{2}{3}$,\n\nsince BD is the diagonal of the square,\n\nthus BD bisects $\\angle ABC$,\n\nthus $\\angle ABD=45^\\circ$,\n\nsince $EH \\perp BD$,\n\nthus $\\angle BEH=180^\\circ-\\angle EBH-\\angle EHB=180^\\circ-45^\\circ-90^\\circ=45^\\circ$,\n\nthus $EH=BH$,\n\nthus $EH=BH=BE\\sin45^\\circ= \\frac{2}{3}\\times \\frac{\\sqrt{2}}{2}=\\frac{\\sqrt{2}}{3}$,\n\nthus $BD=1\\div\\frac{\\sqrt{2}}{2}=\\sqrt{2}$,\n\nthus $DH=DB-BH= \\sqrt{2}-\\frac{\\sqrt{2}}{3}=\\frac{2\\sqrt{2}}{3}$,\n\nthus $\\tan\\angle EDB=\\frac{EH}{HD}=\\frac{\\frac{\\sqrt{2}}{3}}{\\frac{2\\sqrt{2}}{3}}=\\boxed{\\frac{1}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403292_159": { -"question": "Given: As shown in the diagram, the side length of the square is 1. Take a point E on ray AB, connect DE, and rotate ADE $90^\\circ$ about point D. Point E falls on point F. Connect EF, intersecting the line where diagonal BD is located at point M, and intersecting ray DC at point N. When point E is on segment AB, if $AE=x$ and $FM=y$, find the analytic expression of $y$ as a function of $x$, and state its domain.", -"image_file_name": "7056435", -"image": [ -"math/51403292_910.png" -], -"solution": "\\textbf{Solution:} Given the problem, we have \\\\\n$\\because$AE=x,\\\\\n$\\therefore$BE=1−x,\\\\\n$\\because$ Rotating $\\triangle ADE$ $90^\\circ$ around point D gives $\\triangle DCF$,\\\\\n$\\therefore$CF=AE=x, ED=FD=$\\sqrt{AD^{2}+AE^{2}}=\\sqrt{1+x^{2}}$,\\\\\n$\\therefore$BF=BC+CF=1+x,\\\\\nIn $\\triangle EBF$, EF=$\\sqrt{BE^{2}+BF^{2}}=\\sqrt{(1−x)^{2}+(1+x)^{2}}=\\sqrt{2+2x^{2}}$,\\\\\n$\\because$$\\angle EDF=90^\\circ$, ED=FD,\\\\\n$\\therefore$$\\triangle DEF$ is an isosceles right triangle,\\\\\n$\\therefore$$\\angle DFE=\\angle DEF=45^\\circ$,\\\\\n$\\therefore$$\\angle EBM=\\angle MFD=45^\\circ$,\\\\\n$\\because$$\\angle EMB=\\angle DMF$,\\\\\n$\\therefore$$\\triangle BEM\\sim \\triangle FDM$,\\\\\n$\\therefore$$\\frac{BE}{DF}=\\frac{BM}{FM}$, that is, $\\frac{1−x}{\\sqrt{1+x^{2}}}=\\frac{BM}{y}$,\\\\\n$\\because$$\\angle DEM=\\angle FBM=45^\\circ$, $\\angle EMD=\\angle BMF$,\\\\\n$\\therefore$$\\triangle EMD\\sim \\triangle BMF$,\\\\\n$\\therefore$$\\frac{ED}{BF}=\\frac{EM}{BM}$, that is, $\\frac{\\sqrt{1+x^{2}}}{1+x}=\\frac{\\sqrt{2+2x^{2}}−y}{BM}$,\\\\\n$\\therefore$$\\frac{1−x}{\\sqrt{1+x^{2}}}\\times \\frac{\\sqrt{1+x^{2}}}{1+x}=\\frac{BM}{y}\\times \\frac{\\sqrt{2+2x^{2}}−y}{BM}$,\\\\\n$\\therefore$$\\frac{1−x}{1+x}=\\frac{\\sqrt{2+2x^{2}}−y}{y}$,\\\\\n$\\therefore$$\\frac{1−x+1+x}{1+x}=\\frac{\\sqrt{2+2x^{2}}−y+y}{y}$, that is, $\\frac{2}{1+x}=\\frac{\\sqrt{2+2x^{2}}}{y}$,\\\\\n$\\therefore$$\\boxed{y=\\frac{1}{2}(1+x)\\sqrt{2+2x^{2}}}$, with the domain $0\\leq x\\leq 1$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403292_160": { -"question": "As shown in the figure, the side length of the square is 1. A point E is chosen on ray AB, and DE is connected. Then, triangle ADE is rotated $90^\\circ$ around point D, and point E falls on point F. Connect EF, which intersects the line containing diagonal BD at point M, and intersects ray DC at point N. Connect AM, and let the line AM intersect line BC at point G. When $BG = \\frac{1}{3}$, find the value of AE.", -"image_file_name": "7056435", -"image": [ -"math/51403292_910.png" -], -"solution": "\\textbf{Solution:} For point G on segment BC, where $BG=\\frac{1}{3}$,\n\nsince quadrilateral ABCD is a square,\n\ntherefore AD$\\parallel$BG,\n\nthus $\\angle$DAM=$\\angle$BGM, $\\angle$ADM=$\\angle$GBM,\n\nwhich implies $\\triangle$BGM$\\sim$$\\triangle$DAM,\n\nhence $\\frac{BG}{DA}=\\frac{BM}{DM}=\\frac{\\frac{1}{3}}{1}=\\frac{1}{3}$,\n\ngiven from (2) that $\\triangle$BEM$\\sim$$\\triangle$FDM,\n\nthus $\\frac{BM}{MF}=\\frac{BE}{DF}$,\n\nsince DB=$\\sqrt{AB^{2}+AD^{2}}=\\sqrt{2}$,\n\nthen BM=$\\frac{\\sqrt{2}}{4}$,\n\nhence $\\frac{\\frac{\\sqrt{2}}{4}}{y}=\\frac{1-x}{\\sqrt{1+x^{2}}}$,\n\ngiven $y=\\frac{1}{2}(1+x)\\sqrt{2+2x^{2}}$,\n\nthus $\\frac{\\frac{\\sqrt{2}}{4}}{\\frac{1}{2}(1+x)\\sqrt{2+2x^{2}}}=\\frac{1-x}{\\sqrt{1+x^{2}}}$ results in $1-x^{2}=\\frac{1}{2}$,\n\nsolution $x_{1}=\\frac{\\sqrt{2}}{2}$, $x_{2}=-\\frac{\\sqrt{2}}{2}$ discard;\n\nFor point G on the extension of CB, where $BG=\\frac{1}{3}$, draw ML$\\perp$BC intersecting line BC at L,\n\nsince GB$\\parallel$AD,\n\nthus $\\angle$DAM=$\\angle$BGM, $\\angle$ADM=$\\angle$GBM,\n\nwhich implies $\\triangle$BGM$\\sim$$\\triangle$DAM,\n\nhence $\\frac{BG}{DA}=\\frac{BM}{DM}=\\frac{\\frac{1}{3}}{1}=\\frac{1}{3}$,\n\nthus BM=$\\frac{1}{3}DM$,\n\nhence BM=$\\frac{1}{2}BD$,\n\ngiven $\\angle$LBM=$\\angle$CBD=$45^\\circ$, and ML$\\perp$BC,\n\n$\\triangle$MLB forms an isosceles right triangle,\n\nsince ML$\\parallel$CD,\n\nthus $\\angle$LMB=$\\angle$CDB, $\\angle$L=$\\angle$DCB,\n\nwhich implies $\\triangle$MLB$\\sim$$\\triangle$DCB,\n\nthus $\\frac{BM}{BD}=\\frac{ML}{DC}=\\frac{1}{2}$, with CD=1,\n\nhence ML=$\\frac{1}{2}$,\n\nsince ML$\\parallel$BE,\n\nthus $\\angle$L=$\\angle$FBE, $\\angle$LMF=$\\angle$BEF,\n\nwhich implies $\\triangle$LMF$\\sim$$\\triangle$BEF,\n\nthus $\\frac{LM}{BE}=\\frac{LF}{BF}$,\n\ngiven BE=AE−AB=x−1, LF=LB+BC+CF=$\\frac{1}{2}+1+x=\\frac{3}{2}+x$, BF=BC+CF=1+x,\n\nthus $\\frac{\\frac{1}{2}}{x-1}=\\frac{\\frac{3}{2}+x}{1+x}$,\n\nrearranging gives: $2x^{2}=4$,\n\nsolution $x_{3}=\\sqrt{2}$, $x_{4}=-\\sqrt{2}$ discard,\n\ntherefore, the value of AE is $\\boxed{\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403181_162": { -"question": "As shown in the figure, both $\\triangle ADB$ and $\\triangle BCD$ are equilateral triangles. Extend $AD$ to $E$ such that $\\angle AEC=90^\\circ$, and $AD=5$. A moving point $M$ starts from point $B$ and moves towards $D$ at a speed of $1$ unit per second, while point $N$ moves from $D$ towards $C$ at a speed of $2$ units per second. The movement stops when one of them reaches their endpoint. Connect $AM$, $CM$, $MN$, $NE$. Let the movement time be $t$ ($0\\leq t\\leq 2.5$). At what value of $t$ is $MN\\parallel BC$?", -"image_file_name": "7056435", -"image": [ -"math/51403181_920.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ADB$ and $\\triangle BCD$ are both equilateral triangles, and $AD=5$,\\\\\nthus $BD=DC=AD=5$,\\\\\ntherefore $BM=t$, $DN=2t$,\\\\\ngiven $MN\\parallel BC$;\\\\\nthus $\\angle NMD=\\angle DBC=60^\\circ=\\angle MDN$,\\\\\ntherefore $\\triangle MDN$ is an equilateral triangle,\\\\\nthus $DM=DN$, i.e., $5-t=2t$,\\\\\nsolving gives $t=\\boxed{\\frac{5}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51403181_163": { -"question": "As illustrated, both $\\triangle ADB$ and $\\triangle BCD$ are equilateral triangles. Extend $AD$ to point $E$ such that $\\angle AEC=90^\\circ$, with $AD=5$. A moving point $M$ starts from point $B$, travelling towards $D$ at a speed of 1 unit/second, while simultaneously, point $N$ moves from $D$ towards $C$ at a speed of 2 units/second. The movement of both points ceases the moment either reaches its destination. Connect $AM$, $CM$, $MN$, and $NE$. Given the duration of movement as $t$ ($0 \\leq t \\leq 2.5$), connect $BN$. At what value of $t$ will points $B$, $N$, and $E$ be collinear?", -"image_file_name": "7056435", -"image": [ -"math/51403181_920.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ADE$ is a straight angle, \\\\\nit follows that $\\angle CDE=180^\\circ-\\angle ADB-\\angle BDC=180^\\circ-60^\\circ-60^\\circ=60^\\circ$,\\\\\nSince $\\angle CEA=90^\\circ$,\\\\\nit follows that $\\angle DCE=180^\\circ-\\angle CDE-\\angle CED=180^\\circ-60^\\circ-90^\\circ=30^\\circ$,\\\\\ntherefore $DE=\\frac{1}{2}CD=\\frac{1}{2}\\times 5=2.5$, and $CE=\\sqrt{CD^{2}-DE^{2}}=\\sqrt{5^{2}-2.5^{2}}=\\frac{5}{2}\\sqrt{3}$\\\\\nSince points B, N, and E are collinear;\\\\\nit follows that $\\angle BNC=\\angle END$,\\\\\nSince $\\angle BCD=\\angle CDE=60^\\circ$,\\\\\nit follows that BC$\\parallel$DE,\\\\\ntherefore $\\triangle BCN\\sim \\triangle EDN$,\\\\\nthus $\\frac{BC}{ED}=\\frac{CN}{DN}$ that is $\\frac{5}{2.5}=\\frac{5-DN}{DN}$,\\\\\nsolving gives $DN=\\frac{5}{3}$,\\\\\nhence $2t=\\frac{5}{3}$,\\\\\nsolving for $t$ yields $t=\\boxed{\\frac{5}{6}}$,\\\\\ntherefore, when $t=\\boxed{\\frac{5}{6}}$, points B, N, and E are collinear.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52766358_168": { -"question": "As shown in the figure, it is known that in triangle $ABC$, the side $AB$ is tangent to circle $O$ at point $B$. $AC$ passes through the center $O$ and intersects the circle at points $D$ and $C$. A line $CE$ is drawn through $C$ perpendicular to $AB$, intersecting the extension of $AB$ at point $E$, and $CB$ bisects $\\angle ACE$; if $BE=3$ and $CE=4$, what is the radius of circle $O$?", -"image_file_name": "7056435", -"image": [ -"math/52766358_930.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 2, draw line BD, \\\\\nsince $CE \\perp AB$, \\\\\nhence $\\angle E=90^\\circ$, \\\\\nthus $BC=\\sqrt{BE^2+CE^2}=\\sqrt{3^2+4^2}=5$, \\\\\nsince CD is the diameter of the circle $O$, \\\\\nhence $\\angle DBC=90^\\circ$, \\\\\nthus $\\angle E=\\angle DBC$, \\\\\nhence $\\triangle DBC \\sim \\triangle CBE$, \\\\\nthus $\\frac{CD}{BC}=\\frac{BC}{CE}$, \\\\\nhence $BC^2=CD \\cdot CE$, \\\\\nthus $CD=\\frac{5^2}{4}=\\frac{25}{4}$, \\\\\nhence $OC=\\frac{1}{2}CD=\\frac{25}{8}$, \\\\\nthus the radius of circle $O$ is $\\boxed{\\frac{25}{8}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51545199_171": { -"question": "As shown in the figure, in $\\triangle ABC$, D and E are points on AB and AC respectively, $\\angle AED = \\angle B$, $AD = 2$, $AC = 3$, and the angle bisector of $\\triangle ABC$ intersects DE at point G and intersects BC at point F. $\\triangle ADE \\sim \\triangle ACB$; find the value of $\\frac{AG}{GF}$.", -"image_file_name": "7056435", -"image": [ -"math/51545199_942.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ADE \\sim \\triangle ACB$,\\\\\n$\\therefore \\angle ADE = \\angle C$,\\\\\nas $AF$ bisects $\\angle BAC$,\\\\\n$\\therefore \\angle DAG = \\angle CAF$,\\\\\n$\\therefore \\triangle ADG \\sim \\triangle ACF$,\\\\\n$\\therefore \\frac{AG}{AF} = \\frac{AD}{AC}$,\\\\\ngiven that $AD = 2$ and $AC = 3$,\\\\\n$\\therefore \\frac{AG}{AF} = \\frac{2}{3}$,\\\\\n$\\therefore \\frac{AG}{GF} = \\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52601679_174": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=5$, $BC=\\frac{10}{3}$, point $O$ is on $AB$, $OB=2$, and a circle $\\odot O$ with $OB$ as the radius intersects $BC$ at point $D$. $AC$ is a tangent to $\\odot O$; what is the length of $CD$?", -"image_file_name": "7056435", -"image": [ -"math/52601679_951.png" -], -"solution": "\\textbf{Solution:} Draw OF$\\perp$BC at point O, with F as the foot,\\\\\nsince $\\angle$OEA=$\\angle$C=$\\angle$OFC=90$^\\circ$,\\\\\nthus quadrilateral OFCE is a rectangle,\\\\\nthus OE=CF=2,\\\\\nsince BC=$\\frac{10}{3}$,\\\\\nthus BF=BC−CF=$\\frac{4}{3}$,\\\\\nsince OF$\\perp$BD,\\\\\nthus BD=2BF=$\\frac{8}{3}$,\\\\\nthus CD=BC−BD=$\\boxed{\\frac{2}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51545341_176": { -"question": "As shown in the figure, point $C$ is on the line segment $AB$. Through point $B$, a line $l \\perp AB$ is drawn, and point $P$ is a point on line $l$. Connect $AP$, and point $Q$ is the midpoint of $AP$. Draw $QR \\perp AB$ with the foot of the perpendicular being $R$. Connect $CQ$, with $AC=2$, $BC=1$, and $CQ=1$. What is the length of $CR$?", -"image_file_name": "7056435", -"image": [ -"math/51545341_965.png" -], -"solution": "\\textbf{Solution:} Given that, $QR\\perp AB$ and $l\\perp AB$, \\\\\n$\\therefore QR\\parallel BP$, \\\\\n$\\therefore \\frac{AQ}{AP}=\\frac{AR}{AB}$, \\\\\nAs point Q is the midpoint of AP, \\\\\n$\\therefore \\frac{AQ}{AP}=\\frac{AR}{AB}=\\frac{1}{2}$, \\\\\nAlso given that $AC=2$ and $BC=1$, \\\\\n$\\therefore AB=3$, \\\\\n$\\therefore AR=\\frac{3}{2}$, \\\\\n$\\therefore CR=AC-AR=\\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51545341_178": { -"question": "As shown in the figure, point $C$ is on line segment $AB$. A line $l \\perp AB$ passes through point $B$, with point $P$ on line $l$. Connect $AP$, let point $Q$ be the midpoint of $AP$, and draw $QR \\perp AB$ with the foot at $R$. Connect $CQ$, with $AC=2$, $BC=1$, and $CQ=1$. $\\triangle RCQ \\sim \\triangle QCA$. What is the measure, in degrees, of $\\angle AQC$?", -"image_file_name": "7056435", -"image": [ -"math/51545341_965.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle RCQ\\sim \\triangle QCA$, \\\\\nit follows that $\\angle AQC=\\angle QRC=90^\\circ=\\boxed{90^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52719745_181": { -"question": "In the figure, point D is on side AB of $\\triangle ABC$, with $\\angle ABC = \\angle ACD$. $\\triangle ABC \\sim \\triangle ACD$; if $AD = 2$ and $AB = 8$, find the length of $AC$.", -"image_file_name": "7056435", -"image": [ -"math/52719745_970.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC\\sim \\triangle ACD$,\\\\\nit follows that $\\frac{AC}{AD}=\\frac{AB}{AC}$,\\\\\nGiven $AD=2$, $AB=8$,\\\\\nwe have $\\frac{AC}{2}=\\frac{8}{AC}$,\\\\\ntherefore $AC= \\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52601788_184": { -"question": "As shown in the diagram, in $\\triangle ABC$, where $AB=AC=10$ and $BC=12$, points $D$ and $E$ are located on sides $BC$ and $AC$ respectively (with point $D$ being distinct from endpoints $B$ and $C$), and it is given that $\\angle ADE = \\angle B$. $\\triangle ABD \\sim \\triangle DCE$; Let $BD=x$ and $CE=y$, determine the value of $x$ for which $y$ attains its maximum value. What is the maximum value of $y$?", -"image_file_name": "7056435", -"image": [ -"math/52601788_980.png" -], -"solution": "Solution: Let $BD=x$, $CE=y$, \\\\\nTherefore, $DC=BC-BD=12-x$, \\\\\nFrom (1), we know that $\\triangle ABD \\sim \\triangle DCE$, \\\\\nTherefore, $\\frac{AB}{CD}=\\frac{BD}{CE}$, \\\\\nTherefore, $\\frac{10}{12-x}=\\frac{x}{y}$, \\\\\nTherefore, $y=-\\frac{1}{10}x^2+\\frac{6}{5}x=-\\frac{1}{10}(x-6)^2+\\frac{18}{5}$, \\\\\nSince $0m)$ at point P. Also, the graph of the linear function $y=-3x+n$ intersects the x-axis and y-axis at points C and D, respectively. Express the coordinates of point P in an algebraic expression involving $m$ and $n$.", -"image_file_name": "7054436", -"image": [ -"math/52205271_794.png" -], -"solution": "\\textbf{Solution:} Given that the graph of the linear function $y=x+m$ intersects the $x$-axis and $y$-axis at points $A$ and $B$, respectively. Therefore, $A(-m,0)$ and $B(0,m)$, which implies $OA=OB$. Hence, $\\angle PAC=\\angle ABO=45^\\circ$. Since the graph of the linear function $y=x+m$ intersects with the graph of the linear function $y=-3x+n$ at point $P$, by solving the system of equations \n\\[\\left\\{\\begin{array}{l}\ny=x+m\\\\ \ny=-3x+n \n\\end{array}\\right.,\\]\nwe get \n\\[\\left\\{\\begin{array}{l}\nx=\\frac{n-m}{4}\\\\ \ny=\\frac{n+3m}{4}\n\\end{array}\\right..\\]\nTherefore, $\\boxed{P\\left(\\frac{n-m}{4},\\frac{n+3m}{4}\\right)}$, which leads to $\\angle PAC=45^\\circ$, $\\boxed{P\\left(\\frac{n-m}{4},\\frac{n+3m}{4}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52205271_97": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, it is known that the graph of the linear function $y=x+m$ intersects the x-axis and y-axis at points A and B, respectively. It also intersects with the graph of the linear function $y=-3x+n\\ (n>m)$ at point P. Furthermore, the graph of the linear function $y=-3x+n$ intersects the x-axis and y-axis at points C and D, respectively. If the area of $\\triangle ABO$ is equal to the area of $\\triangle BDP$, and the area of quadrilateral BOCP is 4, what are the expressions of these two linear functions?", -"image_file_name": "7054436", -"image": [ -"math/52205273_7911.png", -"math/52205271_794.png" -], -"solution": "\\textbf{Solution:}\nGiven a linear function $y=-3x+n$, its graph intersects the x-axis and y-axis at points $C$ and $D$, respectively.\n\nTherefore, $C\\left(\\frac{n}{3},0\\right)$ and $D(0,n)$.\n\nSince the area of $\\triangle ABO$ is equal to the area of $\\triangle BDP$,\n\nit follows that $\\frac{1}{2}m^2=\\frac{1}{2}(n-m)\\cdot\\frac{n-m}{4}$,\n\nwhich leads to $4m^2=(n-m)^2$.\n\nConsequently, $n=3m$,\n\nresulting in $C(m,0)$, $D(0,3m)$, $P\\left(\\frac{m}{2},\\frac{3m}{2}\\right)$.\n\nGiven that the area of quadrilateral $OBCP$ is 4,\n\nwe have the area of $\\triangle OCD$ minus the area of $\\triangle BDP$ equals 4,\n\nyielding $\\frac{1}{2}m\\cdot 3m-\\frac{1}{2}\\cdot 2m\\cdot\\frac{m}{2}=4$,\n\nfrom which we find $m=2$,\n\nthus, $n=6$.\n\nHence, the expressions for the two linear functions are $\\boxed{y=x+2}$ and $\\boxed{y=-3x+6}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52205271_98": { -"question": "As shown in the diagram, within the Cartesian coordinate system $xOy$, it is known that the graph of the linear function $y=x+m$ intersects the x-axis and y-axis at points A and B, respectively. It intersects the graph of the linear function $y=-3x+n\\ (n>m)$ at point P. Additionally, the graph of the linear function $y=-3x+n$ intersects the x-axis and y-axis at points C and D, respectively. Given the conditions in (2), there exists a point M on line AB and a point N in the plane such that the quadrilateral formed by vertices D, P, M, N is a rhombus. Please directly provide the coordinates of point N.", -"image_file_name": "7054436", -"image": [ -"math/52205271_794.png" -], -"solution": "\\textbf{Solution:} Given that $m=2, n=6$, we have $D(0,6)$ and $P(1,3)$, thus $OD=6$ and $DP= \\sqrt{(0-1)^{2}+(6-3)^{2}}=\\sqrt{10}$. Since $\\angle PAC=45^\\circ$ and $\\angle AOB=90^\\circ$, it follows that $\\angle ABO=45^\\circ$. We discuss in three scenarios:\n\n(1) Draw a line from point N such that $NE\\perp y$-axis at point E. Since quadrilateral DPMN is a rhombus, it follows that $DN\\parallel PM$, and hence $\\angle EDN=\\angle ABO=45^\\circ$, with $DN=DP= \\sqrt{10}$. Therefore, $EN=DE=\\sqrt{5}$, and thus $OE=6+\\sqrt{5}$, which gives $N(\\sqrt{5},6+\\sqrt{5})$;\n\n(2) Draw a line from point N such that $NF\\perp y$-axis at point F. Since quadrilateral DPMN is a rhombus, it follows that $DN\\parallel PM$, and hence $\\angle FDN=\\angle ABO=45^\\circ$, with $DN=DP= \\sqrt{10}$. Therefore, $EF=DF=\\sqrt{5}$, and thus $OE=6-\\sqrt{5}$, which gives $N(-\\sqrt{5},6-\\sqrt{5})$;\n\n(3) Connect MN to intersect DP at point G. Since quadrilateral DMPN is a rhombus, it follows that $DN\\parallel PM$, $DG=PG$, and $DP\\perp MN$. Given the equation of line AB as $y=x+2$, with $D(0,6)$, the equation for DN becomes $y=x+6$. Suppose $N(n,n+6)$, and since $D(0,6)$, $P(1,3)$, and $DG=PG$, we have $G\\left(\\frac{1}{2},\\frac{9}{2}\\right)$. Considering $DN^{2}=DG^{2}+NG^{2}$, we find $(n-0)^{2}+(n+6-6)^{2}=\\left(0-\\frac{1}{2}\\right)^{2}+\\left(6-\\frac{9}{2}\\right)^{2}+\\left(n-\\frac{1}{2}\\right)^{2}+\\left(n+6-\\frac{9}{2}\\right)^{2}$, which gives $n=-\\frac{5}{2}$. Therefore, $N\\left(-\\frac{5}{2},\\frac{7}{2}\\right)$, leading to $N_1\\left(\\sqrt{5}, \\sqrt{5}+6\\right)$, $N_2\\left(-\\sqrt{5}, 6-\\sqrt{5}\\right)$, and $N_3\\left(-\\frac{5}{2}, \\frac{7}{2}\\right)$.\n\nTherefore, the answer is $N_1\\left(\\boxed{\\sqrt{5}, \\sqrt{5}+6}\\right)$, $N_2\\left(\\boxed{-\\sqrt{5}, 6-\\sqrt{5}}\\right)$, $N_3\\left(\\boxed{-\\frac{5}{2}, \\frac{7}{2}}\\right)$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52205241_101": { -"question": "As shown in the diagram, in rhombus $ABCD$, $ \\angle A=60^\\circ$. Points $E$ and $F$ are located on sides $AB$ and $AD$ respectively, and satisfy $ \\angle BCE=\\angle DCF$, $EF$ is connected. $ \\angle CFE=\\angle CEF$. If $AF=2\\sqrt{3}$ cm, what is the area of $\\triangle AEF$?", -"image_file_name": "7054436", -"image": [ -"math/52205241_808.png" -], -"solution": "\\textbf{Solution:} Construct $FM \\perp AB$ at $M$, \\\\\nsince $\\triangle CDF \\cong \\triangle CBE$, \\\\\nhence $FD=BE$, \\\\\nsince quadrilateral $ABCD$ is a rhombus, \\\\\nhence $AB=AD$, \\\\\nthus $AB-BE=AD-FD$, \\\\\ntherefore $AF=AE$, \\\\\nalso, since $\\angle A=60^\\circ$, \\\\\nhence $\\triangle AEF$ is an equilateral triangle, \\\\\nthus $AE=AF=2\\sqrt{3}$, \\\\\nhence $AM=\\sqrt{3}$, \\\\\ntherefore $FM=\\sqrt{AF^2-AM^2}=3$, \\\\\nhence the area of $\\triangle AEF$ = $\\frac{1}{2} \\times AE \\times FM=\\frac{1}{2} \\times 3 \\times 2\\sqrt{3}=\\boxed{3\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52205074_103": { -"question": " As shown in the diagram, the diagonals $AC$ and $BD$ of square $\\square ABCD$ intersect at point $O$. A line $EF\\perp AC$ passing through point $O$ intersects $AB$ and $DC$ at points $E$ and $F$, respectively. Lines $AF$ and $CE$ are connected. If $OE= \\frac{3}{2}$, what is the length of $EF$?", -"image_file_name": "7054436", -"image": [ -"math/52205074_810.png" -], -"solution": "\\textbf{Solution:} From the given, since $\\square ABCD$, we have AO=OC, AB$\\parallel$DC, therefore $\\angle$FCO=$\\angle$EAO, $\\angle$CFO=$\\angle$AEO, hence $\\triangle FCO\\cong \\triangle EAO$ (AAS), thus FC=AE, therefore quadrilateral AECF is a parallelogram, thus OE=OF=$\\frac{1}{2}$EF, since OE=$\\frac{3}{2}$, therefore EF=\\boxed{3}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52204885_107": { -"question": "As shown in the figure, it is known that quadrilateral $ABCD$ is a rhombus, with points $E$ and $F$ being the midpoints of sides $AB$ and $BC$, respectively. Lines $DE$, $EF$, and $DF$ are drawn. $\\triangle DEF$ is an isosceles triangle; if $AD=10$ and $EF=8$, what is the area of rhombus $ABCD$?", -"image_file_name": "7054436", -"image": [ -"math/52204885_820.png" -], -"solution": "\\textbf{Solution:} Connect $AC$ and $BD$ intersecting at point $O$. \\\\\nSince $ABCD$ is a rhombus, \\\\\nthen $AC \\perp BD$, $OA=OC$, $OB=OD$. \\\\\nSince points $E$ and $F$ are the midpoints of sides $AB$ and $BC$, respectively, \\\\\nthen $AC=2EF=16$, thus $OA=8$. \\\\\nSince $AD=10$, \\\\\nthen $OD=\\sqrt{10^2-8^2}=6$, \\\\\nthus $BD=12$. \\\\\nThe area of rhombus $ABCD$ is $\\frac{1}{2}AC \\cdot BD=\\boxed{96}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52204235_110": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD \\parallel BC$, $\\angle ABC = \\angle BCD = 90^\\circ$. The diagonals $AC$ and $BD$ intersect at point $O$. Line $DE$ bisects $\\angle ADC$ and meets $BC$ at point $E$. Connect $OE$. Quadrilateral $ABCD$ is a rectangle, if $CD = 2$ and $\\angle DBC = 30^\\circ$, find the area of $\\triangle BED$.", -"image_file_name": "7054436", -"image": [ -"math/52204235_839.png" -], -"solution": "Solution: In the right-angled triangle $BCD$, we have $\\angle BCD=90^\\circ$, $\\angle DBC=30^\\circ$, and $CD=2$. \\\\\nTherefore, $BD=2CD=4$, $BC=\\sqrt{BD^2-CD^2}=2\\sqrt{3}$, \\\\\nAs proved in (1), the quadrilateral $ABCD$ is a rectangle, \\\\\nTherefore, $\\angle ADC=90^\\circ$, \\\\\nBecause $DE$ bisects $\\angle ADC$, \\\\\nTherefore, $\\angle CDE=\\frac{1}{2}\\angle ADC=45^\\circ$, \\\\\nTherefore, $\\angle CED=90^\\circ-\\angle CDE=45^\\circ=\\angle CDE$, \\\\\nTherefore, $CE=CD=2$, \\\\\nTherefore, $BE=BC-CE=2\\sqrt{3}-2$, \\\\\nThus, the area of $\\triangle BED$ is $\\frac{1}{2}BE\\cdot CD=\\frac{1}{2}\\times (2\\sqrt{3}-2)\\times 2=\\boxed{2\\sqrt{3}-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52188291_113": { -"question": "As shown in the diagram, within quadrilateral $ABCD$, $AC \\perp AD$. Construct $\\angle ECA = \\angle ACD$, where $CE$ intersects $AB$ at point $O$ and extends to intersect the extended line of $DA$ at point $E$, and connect $BE$. Quadrilateral $ACBE$ is a rectangle; connect $OD$. If $AB=4$ and $\\angle ACD=60^\\circ$, what is the length of $OD$?", -"image_file_name": "7054436", -"image": [ -"math/52188291_840.png" -], -"solution": "\\textbf{Solution:} Draw $OF \\perp AE$ at point F. In $\\triangle ACD$, $\\angle ADC = 90^\\circ - \\angle ACD = 90^\\circ - 60^\\circ = 30^\\circ$,\\\\\nsince parallelogram ABCD,\\\\\ntherefore $\\angle ADC = \\angle ABC = 30^\\circ$,\\\\\nsince rectangle ABCD,\\\\\ntherefore $AO = CO = 2$, $\\angle ACB = 90^\\circ$,\\\\\ntherefore $\\angle BAC = 90^\\circ - \\angle ABC = 90^\\circ - 30^\\circ = 60^\\circ$,\\\\\ntherefore $\\triangle AOC$ is an equilateral triangle,\\\\\ntherefore $AC = 2$;\\\\\ntherefore $BC = AE = AD = \\sqrt{AB^2 - AC^2} = \\sqrt{4^2 - 2^2} = 2\\sqrt{3}$,\\\\\nsince $AC \\perp AE$,\\\\\ntherefore $OF \\parallel AC$,\\\\\ntherefore $OF$ is the midline of $\\triangle ACE$,\\\\\ntherefore $OF = \\frac{1}{2}AC = 1$, AF$=\\frac{1}{2}AE=\\sqrt{3}$;\\\\\ntherefore $DF = AF + AD = 2\\sqrt{3} + \\sqrt{3} = 3\\sqrt{3}$,\\\\\nin $\\triangle OFD$,\\\\\n$OD=\\sqrt{OF^2+DF^2}=\\sqrt{1^2+(3\\sqrt{3})^2}=\\boxed{2\\sqrt{7}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52188906_116": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB = AC$, $AD$ is drawn through points $A$ and $C$ parallel to $BC$, and $CD$ is drawn parallel to $AB$ intersecting at point $D$. Extend $DC$ to point $E$ such that $DC = CE$, and connect $BE$. Quadrilateral $ACEB$ is a rhombus; If $AB = 4$, $BC = 6$, what is the area of the quadrilateral $ACEB$?", -"image_file_name": "7054436", -"image": [ -"math/52188906_853.png" -], -"solution": "\\textbf{Solution:} Construct line AE intersecting BC at point O, \\\\\nsince quadrilateral ACEB is a rhombus, \\\\\nthus AE$\\perp$BC, \\\\\nsince AB=4, BC=6, \\\\\nthus OB=$\\frac{1}{2}$BC=3, \\\\\nthus OA=$\\sqrt{AB^{2}−OB^{2}}=\\sqrt{4^{2}−3^{2}}=\\sqrt{7}$, \\\\\nthus AE=2OA=2$\\sqrt{7}$, \\\\\nthus the area of quadrilateral $ACEB$, $S=\\frac{1}{2}AE\\cdot BC=\\frac{1}{2}\\times 6\\times 2\\sqrt{7}=\\boxed{6\\sqrt{7}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52189638_119": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AB \\parallel DC$, $AB=AD$, and the diagonals $AC$ and $BD$ intersect at point $O$, with $AC$ bisecting $\\angle BAD$. Quadrilateral $ABCD$ is a rhombus; through point $C$, draw $CE \\perp AB$ to the extended line of $AB$ at point $E$, given that $AB=13$ and $BD=10$, what is the length of $CE$?", -"image_file_name": "7054436", -"image": [ -"math/52189638_860.png" -], -"solution": "\\textbf{Solution:} In the rhombus ABCD, we have OA = OC, OB = OD, and AC $\\perp$ BD, \\\\\n$\\therefore$ OB = $\\frac{1}{2}$BD = 5, $\\angle$AOB = 90$^\\circ$, \\\\\nIn $\\triangle AOB$, AO = $\\sqrt{AB^2−AO^2}$ = $\\sqrt{13^2−5^2}$ = 12, \\\\\n$\\therefore$ AC = 2AO = 24; \\\\\n$\\because$ The area of the rhombus ABCD = $\\frac{1}{2} \\cdot AC \\cdot BD = AB \\cdot CE$, \\\\\n$\\therefore$ $\\frac{1}{2} \\times 24 \\times 10 = 13 \\times CE$, \\\\\n$\\therefore$ CE = $\\boxed{\\frac{120}{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52189680_123": { -"question": "As shown in the figure, it is known that both quadrilaterals $ABCD$ and $CEFG$ are squares. Point $K$ is on $BC$, and $CD$ is extended to point $H$ such that $DH=BK=CE$. Connect $AK, KF, HF, AH$. $AK=AH$; Quadrilateral $AKFH$ is a square; If the area of quadrilateral $AKFH$ is $10$, and $CE=1$, what is the distance between points $A$ and $E$?", -"image_file_name": "7054436", -"image": [ -"math/52189680_876.png" -], -"solution": "\\textbf{Solution:} Since the area of quadrilateral $AKFH$ is 10, \\\\\nand from (2) we know that quadrilateral $AKFH$ is a square,\\\\\ntherefore $KF=\\sqrt{10}$,\\\\\nsince $EF=CE=1$,\\\\\ntherefore $KE=\\sqrt{KF^{2}-EF^{2}}=\\sqrt{10-1}=3$,\\\\\nthus $AB=KE=3$,\\\\\nsince $BK=EF=1$,\\\\\ntherefore $BE=BK+KE=4$,\\\\\nthus $AE=\\sqrt{AB^{2}+BE^{2}}=\\sqrt{3^{2}+4^{2}}=\\boxed{5}$,\\\\\nhence the distance between points $A$ and $E$ is \\boxed{5}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52188880_126": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are the midpoints of sides BC and AC, respectively, with $BE = 2DE$. Line $AF$ is drawn parallel to $BE$ and intersects the extension of line DE at point F. Quadrilateral ABEF is a rhombus. If $\\angle ABE = 45^\\circ$ and $AB = 4$, what is the area of quadrilateral ABDF?", -"image_file_name": "7054436", -"image": [ -"math/52188880_882.png" -], -"solution": "\\textbf{Solution:} Draw $EM\\perp AB$ at point M, \\\\\n$AB=2DE$, $AB=4$, \\\\\n$DE=2$, \\\\\nBecause quadrilateral ABEF is a rhombus, \\\\\nTherefore $BE=EF=AB=4$, \\\\\nTherefore $DF=DE+EF=2+4=6$, \\\\\nIn $\\triangle EBM$, $\\angle ABE=45^\\circ$, \\\\\nTherefore $\\triangle EBM$ is an isosceles right triangle, \\\\\nThus $EM^2+BM^2=BE^2$, \\\\\nTherefore $EM=\\frac{\\sqrt{2}}{2}BE=\\frac{\\sqrt{2}}{2}\\times 4=2\\sqrt{2}$, \\\\\nTherefore, the area of quadrilateral ABDE is: $\\frac{1}{2}(AB+DF)\\cdot EM = \\frac{1}{2}\\times (4+6)\\times 2\\sqrt{2} = \\boxed{10\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52188888_129": { -"question": "As shown in the figure, within square $ABCD$, point $E$ is on side $CD$. Connect $AE$, and draw $AF\\perp AE$ intersecting the extension of $CB$ at point $F$. Connect $EF$, and $AG$ bisects $\\angle FAE$, with $AG$ intersecting $BC$ and $EF$ at points $G$ and $H$, respectively. Connect $EG$ and $DH$. Given $AF=AE$; if $\\angle BAG=10^\\circ$, what is the degree measure of $\\angle EGC$?", -"image_file_name": "7054436", -"image": [ -"math/52188888_891.png" -], -"solution": "\\textbf{Solution:} Given that $AG$ bisects $\\angle EAF$,\\\\\nit follows that $\\angle GAF = \\angle GAE$,\\\\\ngiven that $AF=AE$, and $AG=AG$,\\\\\nit follows that $\\triangle AGF \\cong \\triangle AGE$ (SAS),\\\\\nthus $\\angle AGF = \\angle AGE = 90^\\circ - \\angle BAG$,\\\\\nsince $\\angle BAG = 10^\\circ$,\\\\\nit follows that $\\angle AGF = \\angle AGE = 80^\\circ$,\\\\\nthus $\\angle EGC = 180^\\circ - \\angle AGF - \\angle AGE = \\boxed{20^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52188888_130": { -"question": "As shown in the figure, in the square $ABCD$, with point $E$ on side $CD$, connect $AE$. Construct $AF\\perp AE$, intersecting the extension of $CB$ at point $F$, and connect $EF$. Let $AG$ bisect $\\angle FAE$, with $AG$ intersecting $BC$ and $EF$ at points $G$ and $H$, respectively. Connect $EG$ and $DH$. If $DE=CE$, find the value of $CE:CG:EG$?", -"image_file_name": "7054436", -"image": [ -"math/52188888_891.png" -], -"solution": "\\textbf{Solution:}\nGiven (1), we have $\\triangle ADE \\cong \\triangle ABF$,\\\\\n$\\therefore BF=DE$,\\\\\nFrom (2), we have $\\triangle AGF \\cong \\triangle AGE$,\\\\\n$\\therefore GE=GF$,\\\\\nLet $DE=EC=a$, $BG=x$, thus $BF=a$, $BC=CD=2a$,\\\\\n$\\therefore FG= a+x$,\\\\\n$\\therefore EG=a+x$, $GC=2a-x$,\\\\\nIn $\\triangle ECG$, $EG^2=EC^2+CG^2$,\\\\\n$\\therefore (x+a)^2=a^2+(2a-x)^2$, solving gives $x=\\frac{2}{3}a$,\\\\\n$\\therefore CG=\\frac{4}{3}a$, $EG=\\frac{5}{3}a$,\\\\\n$\\therefore CE:CG:EG=a:\\frac{4}{3}a:\\frac{5}{3}a=3:4:5$.\\\\\n\nTherefore, the answer is $CE:CG:EG=\\boxed{3:4:5}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52189001_133": { -"question": "As shown in the diagram, it is known that in rectangle $ABCD$, $AC$ and $BD$ intersect at point $O$. Through point $O$, draw $EF\\perp BD$ intersecting $AB$ and $CD$ at $E$ and $F$, respectively. Quadrilateral $BEDF$ is a rhombus. If $BC=3$ and $CD=5$, find the area of the rhombus $BEDF$.", -"image_file_name": "7054436", -"image": [ -"math/52189001_901.png" -], -"solution": "\\textbf{Solution:} Let $CF = x$, then $DF = CD - CF = 5 - x$, \\\\\nsince quadrilateral $BEDF$ is a rhombus, \\\\\ntherefore $BF = DF = 5 - x$, \\\\\nin $\\triangle BFC$, $BF^2 = BC^2 + CF^2$, \\\\\ntherefore $(5-x)^2 = 3^2 + x^2$, \\\\\nsolving for $x$ yields $x = \\frac{8}{5}$, \\\\\nthus $DF = 5 - \\frac{8}{5} = \\frac{17}{5}$, \\\\\ntherefore the area of rhombus $BEDF$ is $DF \\cdot BC = \\frac{17}{5} \\times 3 = \\boxed{\\frac{51}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52189064_136": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, D and E are the midpoints of sides AC and AB, respectively. Lines CE and DE are connected. A line passing through point D and parallel to CE intersects the extension of BC at point F. If $AB = 13$ cm and $AC = 5$ cm, what is the perimeter of quadrilateral DECF in cm?", -"image_file_name": "7054436", -"image": [ -"math/52189064_910.png" -], -"solution": "\\textbf{Solution:} In right triangle $ABC$, by the Pythagorean theorem, we have: $BC=\\sqrt{AB^{2}-AC^{2}}=\\sqrt{13^{2}-5^{2}}=12$, \\\\\nsince $DE$ is the midline of $\\triangle ABC$, \\\\\nthus $DE=\\frac{1}{2}BC=\\frac{1}{2}\\times 12=6$, \\\\\nsince the quadrilateral $DECF$ is a parallelogram, \\\\\nthus $DE=CF=6$, and $DF=CE$, \\\\\nsince $D$ is the midpoint of the side $AC$, \\\\\nthus $CD=\\frac{1}{2}AC=\\frac{1}{2}\\times 5=\\frac{5}{2}$, \\\\\nsince $\\angle ACB=90^\\circ$ and $CF$ is the extension of $BC$, \\\\\nthus $\\angle DCF=90^\\circ$, \\\\\nin right triangle $DCF$, by the Pythagorean theorem, we get: $DF=\\sqrt{CD^{2}+CF^{2}}=\\sqrt{\\left(\\frac{5}{2}\\right)^{2}+6^{2}}=\\frac{13}{2}$, \\\\\nthus the perimeter of the quadrilateral $DECF$ $=2(\\text{DE}+\\text{DF})=2\\times\\left(6+\\frac{13}{2}\\right)=\\boxed{25}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52189671_139": { -"question": "As shown in the diagram, in parallelogram $ABCD$, draw $DE\\perp AB$ at point $E$, with point $F$ on side $CD$ and $FC=AE$. Connect $AF$ and $BF$. Quadrilateral $DEBF$ is a rectangle; if $AF$ bisects $\\angle DAB$, $FC=3$, and $DF=5$, find the length of $BF$.", -"image_file_name": "7054436", -"image": [ -"math/52189671_922.png" -], -"solution": "\\textbf{Solution:} Given that $\\because AF$ bisects $\\angle DAB$,\\\\\n$\\therefore \\angle DAF=\\angle BAF$,\\\\\n$\\because CD\\parallel AB$,\\\\\n$\\therefore \\angle DFA=\\angle BAF$,\\\\\n$\\therefore \\angle DFA=\\angle DAF$,\\\\\n$\\therefore AD=DF=5$,\\\\\nIn $\\triangle AED$, $AE=FC=3$,\\\\\nBy the Pythagorean theorem, we have $DE=\\sqrt{AD^{2}-AE^{2}}=\\sqrt{5^{2}-3^{2}}=4$,\\\\\nFrom (1), it is deduced that the quadrilateral DEBF is a rectangle,\\\\\n$\\therefore BF=DE=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52188913_141": { -"question": "As shown in the figure, on a square sheet of paper ABCD, there is a point P, with $PA=1$, $PD=2$, and $PC=3$. Now, cut out $\\triangle PCD$ and place it as shown in the figure (where C coincides with A, P coincides with G, and D coincides with D). Find the length of the segment PG.", -"image_file_name": "7054436", -"image": [ -"math/52188913_930.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a square, \\\\\nit follows that AD=CD, and $\\angle ADC=90^\\circ$, \\\\\nsince PA=1, PD=2, PC=3, \\\\\nby cutting $\\triangle PCD$ and pasting it as shown in the figure (C coincides with A, P with G, and D with D), \\\\\ntherefore PD=GD=2, $\\angle CDP=\\angle ADG$, AG=PC=3, \\\\\ntherefore $\\angle PDG=\\angle ADC=90^\\circ$, \\\\\nthus, $\\triangle PDG$ is an isosceles right triangle, \\\\\nhence $\\angle GPD=45^\\circ$, PG=$\\sqrt{2}$PD=$\\boxed{2\\sqrt{2}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52188913_142": { -"question": "As shown in the figure, on the square paper $ABCD$, there is a point $P$ such that $PA=1$, $PD=2$, and $PC=3$. Now, cut $\\triangle PCD$ and paste it to the position as shown in the figure (where $C$ coincides with $A$, $P$ coincides with $G$, and $D$ coincides with $D$). Find: What is the degree measure of $\\angle APD$?", -"image_file_name": "7054436", -"image": [ -"math/52188913_930.png" -], -"solution": "\\textbf{Solution:} Given equation (1), we know that $\\angle GPD=45^\\circ$ and $PG=\\sqrt{2}PD=2\\sqrt{2}$,\\\\\nbecause $AG=PC=3$ and $AP=1$,\\\\\ntherefore, $1^2+(2\\sqrt{2})^2=3^2$,\\\\\nthus, $AP^2+PG^2=AG^2$,\\\\\nwhich means $\\angle GPA=90^\\circ$,\\\\\nhence $\\angle APD=90^\\circ+45^\\circ=\\boxed{135^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52160938_144": { -"question": "As shown in the figure, let $ABCD$ be a square with side length $2$. Let points $E$ and $F$ be the midpoints of $AB$ and $CD$, respectively. Connect $CE$ and $AF$, and extend a line from $D$ perpendicular to $AF$ at point $G$. Extend $DG$ to intersect with $CE$ at point $H$. What is the length of $DG$?", -"image_file_name": "7054436", -"image": [ -"math/52160938_940.png" -], -"solution": "\\textbf{Solution:} Given a square ABCD, we have AD=CD=AB=2 and $\\angle ADC=90^\\circ$. Since point F is the midpoint of CD, it follows that DF=$\\frac{1}{2}$CD=1. In $\\triangle ADF$, we find $AF=\\sqrt{AD^2+DF^2}=\\sqrt{2^2+1^2}=\\sqrt{5}$. Considering $S_{\\triangle ADF}=\\frac{1}{2}AD\\cdot DF=\\frac{1}{2}AF\\cdot DG$ and DG$\\perp$AF, we deduce that $2\\times 1=\\sqrt{5}DG$. Solving this, we get $DG=\\boxed{\\frac{2\\sqrt{5}}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52160938_145": { -"question": "As shown in the figure, square $ABCD$ has a side length of $2$. Points $E$ and $F$ are the midpoints of $AB$ and $CD$, respectively. Connect $CE$ and $AF$. Draw $DG \\perp AF$ through point $D$ with $G$ as the foot of the perpendicular. Extend $DG$ to intersect $CE$ at point $H$. Find the length of $GH$.", -"image_file_name": "7054436", -"image": [ -"math/52160938_940.png" -], -"solution": "\\textbf{Solution:} Since points E and F are the midpoints of AB and CD respectively, \\\\\ntherefore $AE=\\frac{1}{2}AB$, $CF=\\frac{1}{2}CD$, \\\\\nhence $AE=CF$, \\\\\nsince $AE\\parallel CF$, \\\\\nthus quadrilateral AFCE is a parallelogram, \\\\\ntherefore $AF\\parallel CE$, \\\\\nsince point F is the midpoint of DC, \\\\\nthus point G is the midpoint of DH, \\\\\ntherefore $DG=GH=\\boxed{\\frac{2\\sqrt{5}}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52160938_146": { -"question": "As shown in the figure, consider a square $ABCD$ with side length $2$. Points $E$ and $F$ are the midpoints of $AB$ and $CD$ respectively. Connect $CE$ and $AF$, and draw $DG \\perp AF$ from point $D$ with $G$ as the foot of the perpendicular. Extend $DG$ to meet $CE$ at point $H$. What is the length of $EH$?", -"image_file_name": "7054436", -"image": [ -"math/52160938_940.png" -], -"solution": "\\textbf{Solution:} Since $DG \\perp AF$ and $AF \\parallel CE$, it follows that $DG \\perp CE$. Therefore, $\\angle DHC = \\angle AGD = 90^\\circ$, $\\angle ADG + \\angle CDH = 90^\\circ$, $\\angle CDH + \\angle DCH = 90^\\circ$. Hence, $\\angle ADG = \\angle DCH$. In triangles $\\triangle ADG$ and $\\triangle DCH$, we have\n\\[\n\\left\\{\\begin{array}{l}\n\\angle DHC = \\angle AGD \\\\\n\\angle ADG = \\angle DCH \\\\\nAD = CD\n\\end{array}\\right.\n\\]\nTherefore, $\\triangle ADG \\cong \\triangle DCH$ (by AAS), so $CH = DG = \\frac{2\\sqrt{5}}{5}$. Since parallelogram $AFCE$, we have $AF = CE = \\sqrt{5}$. Therefore, $EH = CE - CH = \\sqrt{5} - \\frac{2\\sqrt{5}}{5} = \\boxed{\\frac{3\\sqrt{5}}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52160932_149": { -"question": "As shown in the figure, it is known that points $E$ and $F$ are the midpoints of sides $BC$ and $AD$ of quadrilateral $ABCD$, respectively. Connect $AC$, $AE$, and $CF$. Quadrilateral $AECF$ is a parallelogram; If $BC=12$ and $\\angle BAC=90^\\circ$, what is the perimeter of parallelogram $AECF$?", -"image_file_name": "7054436", -"image": [ -"math/52160932_950.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BAC=90^\\circ$ in $\\triangle ABC$, and point E is the midpoint of BC,\\\\\n$\\therefore AE=CE=\\frac{1}{2}BC=6$,\\\\\n$\\therefore$ Quadrilateral AECF is a rhombus,\\\\\n$\\therefore$ The perimeter of quadrilateral AECF is $6\\times 4=\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52160216_152": { -"question": "As shown in the figure, BD is the diagonal of the rhombus ABCD, and $\\angle CBD = 76^\\circ$. The perpendicular bisector of segment AB, with the foot of the perpendicular being point E, intersects AD at point F. Connect BF. Find the degree of $\\angle DBF$?", -"image_file_name": "7054436", -"image": [ -"math/52160216_960.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\nit follows that CD=CB, $AB\\parallel CD$, and $\\angle A=\\angle C$, \\\\\nBecause $\\angle CBD=76^\\circ$, \\\\\nit follows that $\\angle CDB=\\angle CBD=76^\\circ$, \\\\\nhence $\\angle ABD=\\angle CDB=76^\\circ$, \\\\\nthus $\\angle A=\\angle C=180^\\circ-\\angle CDB-\\angle CBD=28^\\circ$, \\\\\nBecause FE is the perpendicular bisector of segment AB, \\\\\nit follows that AF=BF, \\\\\nhence $\\angle FBA=\\angle A=28^\\circ$, \\\\\nthus $\\angle DBF=\\angle ABD-\\angle FBA=\\boxed{48^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52159940_155": { -"question": "As shown in the figure, quadrilateral $ABCD$ is a parallelogram, with $AD=BD$. Draw $CE\\parallel BD$, intersecting the extension of $AD$ at point $E$. Quadrilateral $BDEC$ is a rhombus; draw $BE$. If $AB=4$ and $AD=7$, what is the length of $BE$?", -"image_file_name": "7054436", -"image": [ -"math/52159940_972.png" -], -"solution": "\\textbf{Solution:} Extend BE to intersect CD at O,\\\\\nsince quadrilateral ABCD is a parallelogram,\\\\\nthus CD = AB = 4.\\\\\nFrom (1), we know quadrilateral BDEC is a rhombus,\\\\\nthus DO = CO = $\\frac{1}{2}$CD = 2, and BO = $\\frac{1}{2}$BE, with CD$\\perp$BE.\\\\\nIn $\\triangle BDO$, BD = AD = 7, and DO = 2,\\\\\nthus BO = $\\sqrt{BD^{2}-DO^{2}}$ = $\\sqrt{7^{2}-2^{2}}$ = $3\\sqrt{5}$,\\\\\ntherefore, BE = 2BO = $\\boxed{6\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52160377_158": { -"question": "It seems there's no content provided for translation. Please provide the specific text you want to be translated into English and in LaTeX format.", -"image_file_name": "7054436", -"image": [ -"math/52160377_9810.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 2, draw $BD$ intersecting $AC$ at point $O$,\\\\\nsince quadrilateral $ABCD$ is a rhombus with $AB=2$,\\\\\nit follows that $AB=AD$, $AO=OC$, $OB=OD=\\frac{1}{2}BD$, and $AC\\perp BD$,\\\\\ngiven $\\angle BAD=60^\\circ$,\\\\\ntriangle $ABD$ is an equilateral triangle,\\\\\nthus $BD=AB=2$, $OB=OD=1$, $OC=OA=\\sqrt{AB^{2}-OB^{2}}=\\sqrt{2^{2}-1^{2}}=\\sqrt{3}$,\\\\\nsince $BG\\perp DF$,\\\\\nwe have $OE=OB=OD=1$,\\\\\ntherefore, $CE=OC-OE=\\sqrt{3}-1=\\boxed{\\sqrt{3}-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52122243_160": { -"question": "As shown in the figure, there is a rectangular sheet of paper ABCD with point E on the side AB. Fold $\\triangle BCE$ along the straight line CE, so that point B falls on the diagonal AC, denoted as point F. If $AB=4$ and $BC=3$, what is the length of $AE$?", -"image_file_name": "7054436", -"image": [ -"math/52122243_990.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, in the rectangular paper ABCD, $\\because$AB=4, BC=3, thus by the Pythagorean theorem, we get AC=5. From the fold, it follows: FC=BC=3, $\\angle$EFC=$\\angle$B=$90^\\circ$, BE=FE. $\\therefore$ $AF=AC-FC=5-3=2$. Let AE=x, then $BE=4-x=FE$. In $\\triangle AFE$, $2^2+(4-x)^2=x^2$, solving for x, we get: $x=\\frac{5}{2}$.\\\\\n$\\therefore$ $AE=\\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52122243_161": { -"question": "As shown in the figure, there is a rectangular piece of paper ABCD, with point E on side AB. Triangle $BCE$ is folded along line CE, such that point B falls on the diagonal AC, marked as point F. Connect DF. If points D, F, and E are on the same straight line, and $DF=2$, find the length of AE.", -"image_file_name": "7054436", -"image": [ -"math/52122243_990.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 2, in the rectangle ABCD, since $DC\\parallel AB$, it follows that $\\angle DCE = \\angle BEC$. From the folding, we know that $\\angle BEC = \\angle FEC$, therefore $\\angle DCE = \\angle FEC$, which implies $DC = DE$. Moreover, since points D, F, and E lie on the same straight line and $\\angle EFC = \\angle B$, it follows that $\\angle DFC = 90^\\circ$, hence $\\angle DFC = \\angle DAE = 90^\\circ$. Given $CF = CB = DA$, it follows that $\\triangle CDF \\cong \\triangle DEA$, \\\\\ntherefore $AE = DF = \\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52694111_72": { -"question": "As shown in the figure, $AD$ is the median of $\\triangle ABC$, and $\\angle DAC=\\angle B$. Point $E$ is on $AD$, with $CD=CE$. $\\triangle ACE\\sim \\triangle BAD$: If $AB=10$, and $BC=6$, determine the length of the line segment $AD$.", -"image_file_name": "7056275", -"image": [ -"math/52694111_700.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ is the median of $\\triangle ABC$,\\\\\nthus $CD = BD = CE = \\frac{1}{2} BC = 3$,\\\\\nsince $\\angle DAC = \\angle B$, it follows that $\\angle ACD = \\angle BCA$, and thus $\\triangle ACD \\sim \\triangle BCA$,\\\\\nso $\\frac{AC}{BC} = \\frac{CD}{AC}$, that is, $\\frac{AC}{6} = \\frac{3}{AC}$,\\\\\nwhich leads to $AC = 3\\sqrt{2}$. Given that $\\triangle ACE \\sim \\triangle BAD$,\\\\\nwe have $\\frac{AC}{BA} = \\frac{CE}{AD}$, that is, $\\frac{3\\sqrt{2}}{10} = \\frac{3}{AD}$,\\\\\ntherefore $AD = \\boxed{5\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52694105_74": { -"question": "As shown in the figure, within $\\triangle ABC$, points D, E, and F are located on the sides AB, AC, and BC, respectively, and lines DE and EF are connected. It is known that quadrilateral BFED is a parallelogram, and $\\frac{DE}{BC} = \\frac{1}{4}$. If AB = 8, find the length of the line segment AD.", -"image_file_name": "7056275", -"image": [ -"math/52694105_712.png" -], -"solution": "\\textbf{Solution}: Since quadrilateral BFED is a parallelogram,\\\\\nit implies that DE$\\parallel$BF, and hence DE$\\parallel$BC, which further implies $\\triangle$ADE$\\sim$$\\triangle$ABC,\\\\\nthus $\\frac{AD}{AB} = \\frac{DE}{BC} = \\frac{1}{4}$,\\\\\ngiven that AB$=8$,\\\\\nit follows that AD$=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52694105_75": { -"question": "As shown in the figure, in $\\triangle ABC$, points D, E, and F are located on sides AB, AC, and BC, respectively, with DE and EF connected. It is known that quadrilateral BFED is a parallelogram, and $\\frac{DE}{BC} = \\frac{1}{4}$. If the area of $\\triangle ADE$ is 1, what is the area of the parallelogram BFED?", -"image_file_name": "7056275", -"image": [ -"math/52694105_712.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\triangle ADE \\sim \\triangle ABC$,\\\\\n$\\therefore \\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}} = \\left( \\frac{DE}{BC} \\right)^2 = \\left( \\frac{1}{4} \\right)^2 = \\frac{1}{16}$, since the area of $\\triangle ADE$ is 1, $\\therefore$ the area of $\\triangle ABC$ is 16,\\\\\n$\\because$ quadrilateral BFED is a parallelogram, $\\therefore EF \\parallel AB$, $\\therefore \\triangle EFC \\sim \\triangle ABC$,\\\\\n$\\therefore \\frac{S_{\\triangle ADE}}{S_{\\triangle ABC}} = \\left( \\frac{3}{4} \\right)^2 = \\frac{9}{16}$, hence the area of $\\triangle EFC$ $= 9$, $\\therefore$ the area of parallelogram BFED $= 16 - 9 - 1 = \\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52661234_78": { -"question": "As shown in the diagram, in $\\triangle ABC$, $CD$ is the angle bisector, and $DE$ bisects $\\angle CDB$ and intersects $BC$ at point $E$, and $DE \\parallel AC$. It is given that $CD^2 = CA \\cdot CE$. If $\\frac{AD}{BD} = \\frac{4}{3}$ and $AC = 14$, what is the length of $AD$?", -"image_file_name": "7056275", -"image": [ -"math/52661234_720.png" -], -"solution": "\\textbf{Solution:} Since $CD$ bisects $\\angle ACB$, then $\\angle BCD = \\angle ACD$. Since $DE\\parallel BC$, then $\\angle EDC = \\angle BCD$, which leads to $\\angle ECD = \\angle EDC$; hence $DE=CE$. Given $DE\\parallel BC$, we have $\\frac{AD}{BD}=\\frac{4}{3}$, which implies $\\triangle BDE \\sim \\triangle BAC$. Therefore, $\\frac{DE}{AC}=\\frac{BD}{AB}=\\frac{3}{7}$. This simplifies to $\\frac{CE}{14}=\\frac{3}{7}$. Solving this gives $CE=DE=6$. Since $DE\\parallel BC$, it follows that $\\angle ACD = \\angle CDE$ and $\\angle A = \\angle EDB$. Given $\\angle CDE = \\angle EDB$, then $\\angle ACD = \\angle A$, which implies $AD=CD$. Knowing $CD^2 = CA \\cdot CE$, we find $AD^2 = 14 \\times 6$. Solving this gives $AD= \\boxed{2\\sqrt{21}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52660728_81": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in $\\odot O$, with $AB$ being the diameter of $\\odot O$, $AD=16$, and $CE=6$. Connect $OC$, and the chord $AD$ intersects $OC$ and $BC$ at points $E$ and $F$, respectively, where point $E$ is the midpoint of $AD$. $\\angle CAD=\\angle CBA$. What is the length of $AB$?", -"image_file_name": "7056275", -"image": [ -"math/52660728_730.png" -], -"solution": "\\textbf{Solution:} Given that $AB$ is the diameter,\\\\\nthen $\\angle ACB=90^\\circ$,\\\\\nsince $AE=DE=\\frac{1}{2}AD=8$,\\\\\nit follows that $OC\\perp AD$,\\\\\nthus $\\angle AEC=90^\\circ$,\\\\\ngiven $CE=6$,\\\\\nit follows that $AC=\\sqrt{AE^2+CE^2}=10$,\\\\\nsince $\\angle AEC=\\angle ACB$ and $\\angle CAD=\\angle CBA$,\\\\\ntherefore $\\triangle AEC\\sim \\triangle BCA$,\\\\\nthus $\\frac{CE}{AC}=\\frac{AC}{AB}$,\\\\\nwhich gives $\\frac{6}{10}=\\frac{10}{AB}$,\\\\\ntherefore $AB=\\boxed{\\frac{50}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52745974_84": { -"question": "As shown in the figure, the angle bisector of $\\angle BAC$ intersects the circumcircle of $\\triangle ABC$ at point $D$ and intersects $BC$ at point $F$. The angle bisector of $\\angle ABC$ meets $AD$ at point $E$. Given $DE=DB$, if $\\angle BAC=90^\\circ$ and $BD=4$, what is the radius of the circumcircle of $\\triangle ABC$?", -"image_file_name": "7056275", -"image": [ -"math/52745974_740.png" -], -"solution": "\\textbf{Solution:} Draw line CD, as shown,\\\\\n$\\because$ $\\angle BAC=90^\\circ$,\\\\\n$\\therefore$ BC is the diameter,\\\\\n$\\therefore$ $\\angle BDC=90^\\circ$,\\\\\n$\\because$ $\\angle 1=\\angle 2$,\\\\\n$\\therefore$ DB=BC,\\\\\n$\\therefore$ $\\triangle DBC$ is an isosceles right triangle,\\\\\n$\\therefore$ BC=$\\sqrt{2}$BD=$4\\sqrt{2}$,\\\\\n$\\therefore$ the radius of the circumscribed circle of $\\triangle ABC$ is $\\boxed{2\\sqrt{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52745974_85": { -"question": "As shown in the diagram, the bisector of $\\angle BAC$ intersects the circumcircle of $\\triangle ABC$ at point D and intersects BC at point E. The bisector of $\\angle ABC$ intersects AD at point F. If BD$=6$ and DF$=4$, what is the length of AD?", -"image_file_name": "7056275", -"image": [ -"math/52745974_740.png" -], -"solution": "\\textbf{Solution:} Given $\\angle 5=\\angle 2=\\angle 1$ and $\\angle FDB=\\angle BDA$,\\\\\n$\\therefore \\triangle DBF\\sim \\triangle ADB$,\\\\\n$\\therefore \\frac{BD}{DA}=\\frac{DF}{DB}$, thus $\\frac{6}{AD}=\\frac{4}{6}$,\\\\\n$\\therefore AD=\\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52550670_87": { -"question": "As shown in the figure, it is known that the parabola $y=ax^2+bx+3$ (where $a\\neq 0$) intersects the x-axis at points $A(-4,0)$ and $B(6,0)$, and intersects the y-axis at point $C$. Suppose $G$ is a moving point between $A$ and $C$ on the parabola, and a line $GD$ is drawn through $G$ parallel to the x-axis, intersecting the parabola at point $D$. Through points $D$ and $G$, perpendiculars to the x-axis are drawn, with the feet of the perpendiculars being $E$ and $F$, respectively, forming rectangle $DEFG$. What is the equation of this parabola?", -"image_file_name": "7056275", -"image": [ -"math/52550670_750.jpeg" -], -"solution": "Solution: Substituting $A(-4,0)$, $B(6,0)$ into $y=ax^2+bx+3$, we get\n\\[\n\\begin{cases}\n16a-4b+3=0\\\\\n36a+6b+3=0\n\\end{cases}\n\\]\nSolving for $a$ and $b$, we find\n\\[\n\\begin{cases}\na=-\\frac{1}{18}\\\\\nb=\\frac{1}{4}\n\\end{cases}\n\\]\n$\\therefore$ The equation of the parabola is $y=-\\frac{1}{18}x^2+\\frac{1}{4}x+3=\\boxed{-\\frac{1}{18}x^2+\\frac{1}{4}x+3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52550670_88": { -"question": "As shown in the figure, it is known that the parabola $y=ax^2+bx+3$ ($a \\neq 0$) intersects the x-axis at points $A(-4,0)$ and $B(6,0)$, and intersects the y-axis at point $C$. If $G$ is a moving point on the parabola between points $A$ and $C$, draw line $GD$ parallel to the x-axis, intersecting the parabola at point $D$. Draw vertical lines from points $D$ and $G$ to the x-axis, with the feet of the perpendiculars being $E$ and $F$, respectively, forming the rectangle $DEFG$. When point $G$ coincides with point $C$, what is the area of rectangle $DEFG$?", -"image_file_name": "7056275", -"image": [ -"math/52550670_750.jpeg" -], -"solution": "\\textbf{Solution:} When point $G$ coincides with $C$, the coordinates of point $G$ are $(0,3)$.\\\\\nSubstituting $y=3$ into $y=-\\frac{1}{18}x^{2}+\\frac{1}{4}x+3$,\\\\\nwe get $-\\frac{1}{18}x^{2}+\\frac{1}{4}x+3=3$.\\\\\nSolving this equation, we find $x_{1}=0$ and $x_{2}=2$.\\\\\n$\\therefore$ The coordinates of point $D$ are $(2,3)$.\\\\\n$\\therefore GD=2$, $DE=3$.\\\\\n$\\therefore$ The area of rectangle DEFG is $S_{\\text{rectangle} DEFG}=GD \\cdot DE=2 \\times 3=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52550670_89": { -"question": "As shown in the figure, it is known that the parabola $y=ax^2+bx+3$ ($a\\neq 0$) intersects with the x-axis at points $A(-4,0)$ and $B(6,0)$, and intersects with the y-axis at point $C$. If $G$ is a moving point between $A$ and $C$ on the parabola, draw line $GD\\parallel x$ axis through point $G$, intersecting the parabola at point $D$. Draw perpendiculars to the x-axis through points $D$ and $G$, with feet at $E$ and $F$ respectively, to form rectangle $DEFG$. If line $BC$ intersects $DG$ and $DE$ at points $M$ and $N$ respectively, what is the maximum area of $\\triangle DMN$?", -"image_file_name": "7056275", -"image": [ -"math/52550670_750.jpeg" -], -"solution": "\\textbf{Solution:} Let the equation of line BC be $y=kx+m$ ($k\\neq 0$). By substituting B(6,0) and C(0,3) into the equation, we get\n\\[\n\\left\\{\n\\begin{array}{l}\n6k+m=0\\\\\nm=3\n\\end{array}\n\\right.\n\\]\nFrom which we solve\n\\[\n\\left\\{\n\\begin{array}{l}\nk=-\\frac{1}{2}\\\\\nm=3\n\\end{array}\n\\right.\n\\]\nTherefore, the expression for line BC is $y=-\\frac{1}{2}x+3$.\n\nAssume the x-coordinate of point D is n, due to symmetry, $2\\leq n\\leq 6$,\n\nTherefore, the coordinates of points D and N are respectively D$\\left(n, -\\frac{1}{8}n^{2}+\\frac{1}{4}n+3\\right)$, N$\\left(n, -\\frac{1}{2}n+3\\right)$.\n\nTherefore $DN=-\\frac{1}{8}n^{2}+\\frac{1}{4}n+3-\\left(-\\frac{1}{2}n+3\\right)=-\\frac{1}{8}\\left(n-3\\right)^{2}+\\frac{9}{8}$.\n\nTherefore, when $n=3$, DN reaches its maximum value of $\\frac{9}{8}$.\n\nSince DG is parallel to the x-axis,\n\nTherefore, $\\angle DMN=\\angle OBC$.\n\nAlso, since $\\angle MDN=\\angle BOC=90^\\circ$\n\nTherefore, $\\triangle DMN\\sim \\triangle OBC$.\n\nTherefore, $\\frac{S_{\\triangle DMN}}{S_{\\triangle OBC}}=\\left(\\frac{DN}{OC}\\right)^{2}$.\n\nTherefore, when DN is at its maximum, the area of $\\triangle DMN$ is also at its maximum.\n\nSince $S_{\\triangle OBC}=3\\times 6\\times \\frac{1}{2}=9$,\n\nTherefore $S_{\\triangle DMN}=S_{\\triangle OBC}\\times \\left(\\frac{DN}{OC}\\right)^{2}=9\\times \\left(\\frac{9}{8}\\div 3\\right)^{2}=\\boxed{\\frac{81}{64}}$.\n\nTherefore, the maximum area of $\\triangle DMN$ is $\\boxed{\\frac{81}{64}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52550935_92": { -"question": "As shown in the figure, there is a square $ABCD$ with a side length of $10$. $E$ is a moving point on side $BC$ (not coinciding with $B$ or $C$), and $AE$ is connected. $G$ is a point on the extension of $BC$. A perpendicular line through point $E$ to $AE$ intersects the angle bisector of $\\angle DCG$ at point $F$. If $FG \\perp BG$, then $\\triangle ABE \\sim \\triangle EGF$; if $EC = 2$, find the area of $\\triangle CEF$.", -"image_file_name": "7056275", -"image": [ -"math/52550935_7615.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a square,\\\\\n$ \\therefore \\angle DCG=90^\\circ$,\\\\\nSince $CF$ bisects $\\angle DCG$,\\\\\n$ \\therefore \\angle FCG=\\frac{1}{2}\\angle DCG=45^\\circ$,\\\\\nSince $\\angle CGF=90^\\circ$,\\\\\n$ \\therefore \\angle GCF=\\angle CFG=45^\\circ$,\\\\\n$ \\therefore FG=CG$,\\\\\nSince $AB=BC=10$, $CE=2$,\\\\\n$ \\therefore BE=8$,\\\\\n$ \\therefore EG=CE+CG=2+FG$,\\\\\nFrom $(1)$, we know that $\\triangle BAE \\sim \\triangle GEF$,\\\\\n$ \\therefore \\frac{AB}{EG}=\\frac{BE}{FG}$,\\\\\n$ \\therefore \\frac{10}{2+FG}=\\frac{8}{FG}$,\\\\\n$ \\therefore FG=8$,\\\\\n$ \\therefore {S}_{\\triangle ECF}=\\frac{1}{2}CE\\cdot FG=\\frac{1}{2}\\times 2\\times 8=\\boxed{8}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52550935_93": { -"question": "As shown in the figure, there is a square $ABCD$ with a side length of 10. Let $E$ be a moving point on side $BC$ (not coinciding with $B$ or $C$), connect $AE$. Let $G$ be a point on the extension line of $BC$. A perpendicular line is drawn from point $E$ to the angle bisector of $\\angle DCG$, intersecting at point $F$. If $FG \\perp BG$, please directly write down the value of $EC$ for which the area of $\\triangle CEF$ is maximized.", -"image_file_name": "7056275", -"image": [ -"math/52550935_7615.png" -], -"solution": "\\textbf{Solution:} Let $CE=x$, thus $BE=10-x$, \\\\\n$\\therefore EG=CE+CG=x+FG$, \\\\\nAccording to (1), $\\triangle BAE \\sim \\triangle GEF$, \\\\\n$\\therefore \\frac{AB}{EG}=\\frac{BE}{FG}$, \\\\\n$\\therefore \\frac{10}{x+FG}=\\frac{10-x}{FG}$, \\\\\n$\\therefore FG=10-x$, \\\\\n$\\therefore \\text{Area of }\\triangle ECF=\\frac{1}{2}\\times CE\\times FG=\\frac{1}{2}\\cdot x\\cdot (10-x)=-\\frac{1}{2}(x^2-10x)=-\\frac{1}{2}(x-5)^2+\\frac{25}{2}$, \\\\\nWhen $x=\\boxed{5}$, $\\text{Area of }\\triangle ECF$ is maximal.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52551774_95": { -"question": "As shown in the figure, the parabola $y=ax^{2}+bx+c$ passes through three points $A(-1,0)$, $B(4,0)$, and $C(0,3)$. Point $D$ is a moving point on the parabola above line $BC$, and $DE\\perp BC$ at $E$. Find the expression of the parabola.", -"image_file_name": "7056275", -"image": [ -"math/52551774_770.png" -], -"solution": "\\textbf{Solution:} Given the problem, we have\n\\[\n\\begin{cases}\na-b+c=0\\\\\n16a+4b+c=0\\\\\nc=3\n\\end{cases}\n\\]\nSolving these, we find\n\\[\n\\begin{cases}\na=-\\frac{3}{4}\\\\\nb=\\frac{9}{4}\\\\\nc=3\n\\end{cases}\n\\]\nThus, the equation of the parabola is \\boxed{y=-\\frac{3}{4}x^{2}+\\frac{9}{4}x+3}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52551774_96": { -"question": "As shown in the figure, the parabola $y=ax^{2}+bx+c$ passes through three points $A(-1,0)$, $B(4,0)$, and $C(0,3)$. $D$ is a moving point on the parabola above the line $BC$, and $DE\\perp BC$ at point $E$. What is the maximum length of the line segment $DE$?", -"image_file_name": "7056275", -"image": [ -"math/52551774_770.png" -], -"solution": "\\textbf{Solution:} Let the equation of line $BC$ be $y=kx+b$, with the system $\\left\\{\\begin{array}{l}4k+b=0\\\\ b=3\\end{array}\\right.$. Solving, we find $\\left\\{\\begin{array}{l}k=-\\frac{3}{4}\\\\ b=3\\end{array}\\right.$, $\\therefore y=-\\frac{3}{4}x+3$.\n\nLet $D(a,-\\frac{3}{4}a^2+\\frac{9}{4}a+3)$ (where $03$). Point $Q$ is on the axis of symmetry, and $AQ \\perp PQ$. If $AQ=2PQ$, find the value of $m$.", -"image_file_name": "7056275", -"image": [ -"math/52536969_810.png" -], -"solution": "\\textbf{Solution:} Draw a line parallel to the x-axis passing through point Q, intersecting the line parallel to the y-axis passing through point P at point N, and intersecting the line parallel to the y-axis passing through point A at point M.\\\\\n$\\therefore \\angle AMQ=\\angle QNP=90^\\circ$\\\\\n$\\therefore \\angle QPN+\\angle PQN=90^\\circ$\\\\\n$\\because \\angle AQP=90^\\circ$,\\\\\n$\\therefore \\angle AQM+\\angle PQN=90^\\circ$,\\\\\n$\\therefore \\angle AQM=\\angle QPN$,\\\\\n$\\therefore \\triangle AMQ\\sim \\triangle QNP$.\\\\\n$\\therefore \\frac{AM}{QN}=\\frac{MQ}{NP}=\\frac{AQ}{QP}=2$.\\\\\nThe axis of symmetry of this parabola is the line $x=1$,\\\\\nthus let the coordinates of point Q be (1, t),\\\\\ngiven that the coordinates of point P are ($m$, $m^{2}-2m-3$),\\\\\nhence $AM=t$, $QN=m-1$, $MQ=2$,\\\\\n$NP=t-m^{2}+2m+3$.\\\\\n$\\therefore \\frac{t}{m-1}=\\frac{2}{t-m^{2}+2m+3}=2$.\\\\\nSolving, we get $m=0$ (discard) or $4$.\\\\\nTherefore, $m=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52537023_111": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$, points D and E are located on sides AC and AB, respectively, BD bisects $\\angle ABC$, $DE \\perp AB$, $AE = 6$, $\\cos A = \\frac{3}{5}$. Find: the lengths of $DE$ and $CD$?", -"image_file_name": "7056275", -"image": [ -"math/52537023_821.png" -], -"solution": "Solution: In right-angled $\\triangle ADE$, given $AE=6$ and $\\cos A= \\frac{AE}{AD}=\\frac{3}{5}$, it follows that $AD=10$,\\\\\nby Pythagoras' theorem, $DE= \\sqrt{AD^{2}-AE^{2}}=\\sqrt{10^{2}-6^{2}}=\\boxed{8}$\\\\\nSince $BD$ bisects $\\angle ABC$ and $DE\\perp AB$, $\\angle C=90^\\circ$,\\\\\nby the property of angle bisector, we have $DC=DE=\\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52537023_112": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$, points D and E are located on sides AC and AB respectively, BD bisects $\\angle ABC$, $DE \\perp AB$, $AE = 6$, $\\cos A = \\frac{3}{5}$. Find the value of $\\tan\\angle DBC$?", -"image_file_name": "7056275", -"image": [ -"math/52537023_821.png" -], -"solution": "\\textbf{Solution:} Given that $AD=10$ and $DC=8$, we have $AC=AD+DC=18$.\\\\\nIn triangles $\\triangle ADE$ and $\\triangle ABC$, $\\angle A=\\angle A$, and $\\angle AED=\\angle ACB$,\\\\\ntherefore $\\triangle ADE \\sim \\triangle ABC$. It follows that $\\frac{DE}{BC}=\\frac{AE}{AC}$, that is $\\frac{8}{BC}=\\frac{6}{18}$, hence $BC=24$,\\\\\nTherefore, $\\tan\\angle DBC=\\frac{CD}{BC}=\\frac{8}{24}=\\boxed{\\frac{1}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52536896_115": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle, CE is an external angle bisector, and point D is on AC. Extend BD to intersect with CE at point E. $\\triangle ABD\\sim \\triangle CED$, if $AB=6$ and $AD=2CD$, find the length of $BE$.", -"image_file_name": "7056275", -"image": [ -"math/52536896_830.png" -], -"solution": "\\textbf{Solution:} Draw BM$\\perp$AC at point M, where AC=AB=6.\\\\\n$\\therefore$AM=CM=3, BM=AB$\\cdot\\sin 60^\\circ=3\\sqrt{3}$.\\\\\n$\\because$AD=2CD,\\\\\n$\\therefore$CD=2, AD=4, MD=1.\\\\\nIn $\\triangle BDM$, BD=$\\sqrt{BM^2+MD^2}=2\\sqrt{7}$.\\\\\nSince $\\triangle ABD\\sim\\triangle CED$,\\\\\n$\\frac{BD}{ED}=\\frac{AD}{CD}$, $\\frac{2\\sqrt{7}}{ED}=2$,\\\\\n$\\therefore$ED=$\\sqrt{7}$\\\\\n$\\therefore$BE=BD+ED=$3\\sqrt{7}$.\\\\\nHence, the length of $BE$ is $\\boxed{3\\sqrt{7}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52513755_118": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$ is a point on $AB$, and $\\angle ABC = \\angle ACD$. $\\triangle ABC \\sim \\triangle ACD$; if $AC=3$, $AD=2$, find the length of $AB$.", -"image_file_name": "7056275", -"image": [ -"math/52513755_844.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\sim \\triangle ACD$, \\\\\n$\\therefore \\frac{AB}{AC}=\\frac{AC}{AD}$, \\\\\nwhich means $\\frac{AB}{3}=\\frac{3}{2}$, \\\\\n$\\therefore AB=\\boxed{\\frac{9}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52513835_121": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, points $P$ and $D$ are on sides $BC$ and $AC$ respectively, and $\\angle APD = \\angle B$. $AC\\cdot CD = CP\\cdot BP$; If $AB=10$, $BC=12$, when $PD \\parallel AB$, find the length of $BP$.", -"image_file_name": "7056275", -"image": [ -"math/52513835_857.png" -], -"solution": "\\textbf{Solution:} Since $PD\\parallel AB$,\\\\\n$\\therefore \\angle APD=\\angle BAP$.\\\\\nAlso, since $\\angle APD=\\angle C$,\\\\\n$\\therefore \\angle BAP=\\angle C$.\\\\\nAlso, since $\\angle B=\\angle B$,\\\\\n$\\therefore \\triangle BAP \\sim \\triangle BCA$,\\\\\n$\\therefore \\frac{BA}{BC}=\\frac{BP}{BA}$.\\\\\nAlso, since $AB=10$, $BC=12$,\\\\\n$\\therefore \\frac{10}{12}=\\frac{BP}{10}$,\\\\\n$\\therefore BP=\\boxed{\\frac{25}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52457443_124": { -"question": "As shown in the figure, $AB$ is the diameter of circle $\\odot O$, and points $C$ and $D$ are two points on circle $\\odot O$. Lines $BC$ and $DC$ are drawn, $BC=CD$, and $CE\\perp DA$, intersecting the extension of $DA$ at point $E$. $CE$ is the tangent to circle $\\odot O$; if $AE=2$ and $CE=4$, what is the length of $AD$?", -"image_file_name": "7056275", -"image": [ -"math/52457443_8611.png" -], -"solution": "\\textbf{Solution:} Draw line $AC$, as shown in the diagram,\\\\\nfrom $\\left(1\\right)$ we know $\\angle ECA+\\angle ACO=90^\\circ$,\\\\\nsince $AB$ is the diameter of $\\odot O$,\\\\\ntherefore $\\angle ACB=90^\\circ$,\\\\\ntherefore $\\angle ACO+\\angle OCB=90^\\circ$,\\\\\nthus $\\angle ECA=\\angle OCB$.\\\\\nSince $OC=OB$,\\\\\nthus $\\angle B=\\angle OCB$,\\\\\ntherefore $\\angle ECA=\\angle B$,\\\\\nsince $\\angle B=\\angle ADC$,\\\\\nthus $\\angle ADC=\\angle ECA$.\\\\\nSince $\\angle E=\\angle E$,\\\\\nthus $\\triangle EAC\\sim \\triangle ECD$,\\\\\ntherefore $\\frac{EA}{EC}=\\frac{EC}{ED}$,\\\\\nsince $AE=2$, $CE=4$,\\\\\nthus $ED=8$,\\\\\ntherefore $AD=DE−AE=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52457074_126": { -"question": "As shown in the figure, it is known that the vertex of the quadratic function $y=ax^2+bx+c$ is $M(2, 1)$, and it passes through the point $N(3, 2)$. What is the equation of this quadratic function?", -"image_file_name": "7056275", -"image": [ -"math/52457074_873.png" -], -"solution": "\\textbf{Solution:} Let the quadratic function be defined as $y=a(x-2)^2+1$.\\\\\nBy substituting $x=3$ and $y=2$, we get $a+1=2$, solving for $a$ gives $a=\\boxed{1}$.\\\\\nTherefore, the equation of the quadratic function is $y=(x-2)^2+1$ (or written as $y=x^2-4x+5$).", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52457074_127": { -"question": "Given the graph of the quadratic function $y=ax^2+bx+c$ with its vertex at $M(2, 1)$, and it passes through point $N(3, 2)$. If the graph of the linear function $y=-\\frac{4}{3}x-4$ intersects the x-axis at point $A$ and the y-axis at point $B$. Let $P$ be a moving point on the parabola. Draw line $PQ\\parallel y$ axis intersecting line $AB$ at point $Q$. A circle with diameter $PQ$ intersects line $AB$ at point $D$. Let the x-coordinate of point $P$ be $n$. What is the value of $n$ when the length of segment $DQ$ is minimized, and what is the minimum value?", -"image_file_name": "7056275", -"image": [ -"math/52457074_873.png" -], -"solution": "\\textbf{Solution:} Given $P\\left(n, n^{2}-4n+5\\right)$, $Q\\left(n, -\\frac{4}{3}n-4\\right)$. \\\\\nTherefore, $PQ=n^{2}-4n+5-\\left(-\\frac{4}{3}n-4\\right)=n^{2}-\\frac{8}{3}n+9=\\left(n-\\frac{4}{3}\\right)^{2}+\\frac{65}{9}$. \\\\\nHence, when $n=\\frac{4}{3}$, $PQ$ reaches its minimum value of $\\frac{65}{9}$. \\\\\nIt is easy to prove that $\\triangle DPQ \\sim \\triangle OAB$, \\\\\ntherefore $\\frac{DQ}{PQ}=\\frac{OB}{AB}$, \\\\\nresulting in $DQ=\\frac{4}{5}PQ$. \\\\\nThus, when $n=\\frac{4}{3}$, $DQ$ reaches its minimum value, which is $\\boxed{\\frac{52}{9}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51369960_130": { -"question": "As shown in the figure, $\\Delta DBE$ is inscribed in $\\odot O$, with $BD$ as the diameter and $DE=EB$. Point $C$ is on $\\odot O$ (not coinciding with $D$, $B$, $E$), $\\angle A=45^\\circ$, point $A$ is on line $CD$, and line $AB$ is drawn. $\\triangle ABD \\sim \\triangle CBE$, $DC=6$, $DB=10$. What is the length of segment $CE$?", -"image_file_name": "7056275", -"image": [ -"math/51369960_880.png" -], -"solution": "\\textbf{Solution:} By the given problem, \\\\\nsince $\\angle BCD=90^\\circ$, \\\\\ntherefore $BC= \\sqrt{BD^{2}-CD^{2}}=8$, \\\\\nsince $\\triangle ABC$ and $\\triangle BED$ are isosceles right triangles,\\\\\ntherefore $AB= \\sqrt{2}BC= 8\\sqrt{2}$, $BE= \\frac{\\sqrt{2}}{2}BD= 4\\sqrt{2}$,\\\\\ntherefore $AD=AC-CD=8-6=2$,\\\\\nby similarity $\\triangle ADB\\sim \\triangle CEB$,\\\\\ntherefore $\\frac{BE}{BC}=\\frac{CE}{AD}$, that is $\\frac{4\\sqrt{2}}{8}=\\frac{CE}{2}$,\\\\\nsolving for $CE$ yields $CE= \\boxed{\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51369960_131": { -"question": "As shown in the diagram, $\\Delta DBE$ is inscribed in $\\odot O$, with $BD$ as the diameter and $DE=EB$. Point $C$ is on $\\odot O$ (not coincident with $D$, $B$, or $E$), $\\angle A=45^\\circ$, and point $A$ is on line $CD$. Connect $AB$. If line $BC$ intersects line $DE$ at point $F$, when $\\frac{DC}{CB}=\\frac{1}{3}$, find the value of $\\frac{BF}{DF}$.", -"image_file_name": "7056275", -"image": [ -"math/51369960_880.png" -], -"solution": "\\textbf{Solution:} Join $DG$, construct $EH \\perp BC$ at point $H$,\\\\\nsince $\\frac{DC}{CB} = \\frac{1}{3}$, let $DC = k$, $CB = 3k$,\\\\\nas $\\triangle ABC$ is an isosceles right-angled triangle, then $BC = AC = 3k$, $AD = 2k$,\\\\\nsince $BD$ is the diameter,\\\\\ntherefore $\\angle DGB = \\angle DGA = 90^\\circ$,\\\\\nsince $\\angle A = 45^\\circ$,\\\\\ntherefore $DG = AD\\sin\\angle A = \\sqrt{2}k$,\\\\\nsince $\\angle ABC = \\angle DBE$, that is $\\angle DBG + \\angle CBD = \\angle CBH + \\angle CBD$,\\\\\ntherefore $\\angle DBG = \\angle EBH$,\\\\\ntherefore $\\triangle DBG \\sim \\triangle EHB$,\\\\\ntherefore $\\frac{DB}{EB} = \\frac{DG}{EH} = \\sqrt{2}$,\\\\\ntherefore $EH = k$,\\\\\nsince $DC \\parallel EH$,\\\\\ntherefore $\\triangle DCF \\sim \\triangle EHF$,\\\\\ntherefore $\\frac{EF}{DF} = \\frac{EH}{DC} = 1$;\\\\\nAs shown in figure 2, join $DG$, construct $EH \\perp BC$ at point $H$,\\\\\nsince $\\frac{DC}{CB} = \\frac{1}{3}$, let $DC = k$, $CB = 3k$,\\\\\nas $\\triangle ABC$ is an isosceles right-angled triangle, then $BC = AC = 3k$, $AD = 4k$,\\\\\nsince $BD$ is the diameter,\\\\\ntherefore $\\angle DGB = \\angle DGA = 90^\\circ$,\\\\\nsince $\\angle A = 45^\\circ$,\\\\\ntherefore $DG = \\sqrt{2}k$,\\\\\nsince $\\angle ABC = \\angle DBE$,\\\\\ntherefore $\\angle DBG = \\angle EBH$,\\\\\ntherefore $\\triangle DBG \\sim \\triangle EHB$,\\\\\ntherefore $\\frac{DB}{EB} = \\frac{DG}{EH} = \\sqrt{2}$,\\\\\ntherefore $EH = 2k$,\\\\\nsince $DC \\parallel EH$,\\\\\ntherefore $\\triangle DCF \\sim \\triangle EHF$,\\\\\ntherefore $\\frac{EF}{DF} = \\frac{EH}{DC} = 2$;\\\\\nIn conclusion, the value of $\\frac{BF}{DF}$ is $\\boxed{1}$ or $\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51434139_134": { -"question": "As shown in the figure, in the square $ABCD$, $M$ is a point on $BC$, $ME\\perp AM$, $ME$ intersects $CD$ at $F$, and intersects the extension of $AD$ at point $E$. $\\triangle ABM\\sim \\triangle MCF$; if $AB=4$ and $BM=2$, what is the area of $\\triangle DEF$?", -"image_file_name": "7056275", -"image": [ -"math/51434139_891.png" -], -"solution": "\\textbf{Solution:}\n\nSince $\\triangle ABM\\sim \\triangle MCF$,\n\nit follows that $\\frac{AB}{MC}=\\frac{BM}{CF}$,\n\nSince quadrilateral $ABCD$ is a square, $AB=4$, $BM=2$,\n\ntherefore $BC\\parallel AD$, $BC=CD=4$, $MC=BC-BM=4-2=2$,\n\n$\\angle FDE=\\angle CDA=90^\\circ$,\n\nthus $CF=\\frac{MC\\cdot BM}{AB}=\\frac{2\\times 2}{4}=1$,\n\nthus $DF=DC-CF=4-1=3$,\n\nSince $BC\\parallel AD$,\n\nit follows that $\\triangle MCF\\sim \\triangle EDF$,\n\nthus $\\frac{MC}{DE}=\\frac{CF}{DF}=\\frac{1}{3}$,\n\nthus $DE=6$,\n\nthus $S_{\\triangle DEF}=\\frac{1}{2}DF\\times DE=\\frac{1}{2}\\times 3\\times 6=\\boxed{9}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433795_137": { -"question": "As shown in the figure, in $\\triangle ABC$, points D, E, and F are located on sides AB, BC, and AC, respectively, with $DE \\parallel AC$ and $EF \\parallel AB$. $\\triangle BDE \\sim \\triangle EFC$. If $\\frac{AF}{FC} = \\frac{1}{2}$ and $AD = 6$, find the length of AB.", -"image_file_name": "7056275", -"image": [ -"math/51433795_903.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ EF $\\parallel$ AB, $\\therefore$ $\\frac{BE}{EC}=\\frac{AF}{FC}=\\frac{1}{2}$, and $\\because$ DE $\\parallel$ AC, $\\therefore$ $\\frac{BD}{AD}=\\frac{BE}{EC}=\\frac{1}{2}$, thus $\\frac{BD}{AD}=\\frac{AF}{FC}=\\frac{1}{2}$. Given AD=6, $\\therefore$ $\\frac{BD}{6}=\\frac{1}{2}$, thus BD=3, hence AB=\\boxed{9}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433255_140": { -"question": "As shown in the figure, $AC$ is the diameter of $\\odot O$, $BC$ is the chord of $\\odot O$, point $P$ is a point outside $\\odot O$, and $PB$ and $AB$ are connected, with $\\angle PBA=\\angle C$. $PB$ is the tangent of $\\odot O$; connect $OP$, if $OP\\parallel BC$ and $OP=8$, the radius of $\\odot O$ is $3$, find the length of $BC$.", -"image_file_name": "7056275", -"image": [ -"math/51433255_910.png" -], -"solution": "Solution:\\\\\nSince the radius of $\\odot O$ is $3$,\\\\\nhence $OB=3$, $AC=6$,\\\\\nSince $OP \\parallel BC$,\\\\\nthus $\\angle CBO = \\angle BOP$,\\\\\nSince $OC=OB$,\\\\\nthus $\\angle C = \\angle CBO$,\\\\\nthus $\\angle C = \\angle BOP$,\\\\\nAlso, since $\\angle ABC = \\angle PBO = 90^\\circ$,\\\\\nthus $\\triangle ABC \\sim \\triangle PBO$,\\\\\nthus $\\frac{BC}{OB} = \\frac{AC}{OP}$,\\\\\nthat is $\\frac{BC}{3} = \\frac{6}{8}$,\\\\\nhence $BC = \\boxed{\\frac{9}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433236_143": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ is the midpoint of $BC$, and $DF \\perp AE$ with the foot of the perpendicular being $F$. $\\triangle ABE \\sim \\triangle DFA$; If $AB = 10$ and $BC = 4$, find the length of $DF$.", -"image_file_name": "7056275", -"image": [ -"math/51433236_920.png" -], -"solution": "\\textbf{Solution:} Given that $E$ is the midpoint of $BC$, and $BC=4$. Since quadrilateral $ABCD$ is a rectangle, it follows that $AD=BC=4$. Hence, $BE=EC=\\frac{1}{2}BC=2$. Since $\\angle ABE=90^\\circ$, we have $AE=\\sqrt{AB^{2}+BE^{2}}=2\\sqrt{26}$. Given that $\\triangle ABE\\sim \\triangle DFA$, we have $\\frac{AE}{AD}=\\frac{AB}{DF}$. Thus, $DF=\\frac{AB\\cdot AD}{AE}=\\boxed{\\frac{10\\sqrt{26}}{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433210_146": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, with $C$ and $D$ being two points on the circle. Connect $AC$ and $CD$, and let $AC=CD$. Extend $DC$ to intersect with the extension of $BA$ at point $E$. $\\triangle EAC\\sim \\triangle ECO$; if $\\tan\\angle EOC=\\frac{3}{4}$, find the value of $\\frac{EC}{EO}$.", -"image_file_name": "7056275", -"image": [ -"math/51433210_930.png" -], -"solution": "\\textbf{Solution:} Draw $CF\\perp EO$ through point C, \\\\\nsince $\\tan\\angle EOC=\\frac{3}{4}$, \\\\\ntherefore, $\\frac{CF}{OF}=\\frac{3}{4}$. Let $CF=3x$, then $OF=4x$, \\\\\nthus, $OC= \\sqrt{(3x)^{2}+(4x)^{2}}=5x=OA$, \\\\\ntherefore, $AF=5x-4x=x$, \\\\\nthus, $AC= \\sqrt{(3x)^{2}+x^{2}}=\\sqrt{10}x$, \\\\\ntherefore, $\\frac{AC}{OC}=\\frac{\\sqrt{10}x}{5x}=\\frac{\\sqrt{10}}{5}$. From (1), we get $\\triangle EAC\\sim \\triangle ECO$, \\\\\nthus, $\\frac{EC}{EO}=\\frac{AC}{OC}$, \\\\\ntherefore, $\\frac{EC}{EO}=\\boxed{\\frac{\\sqrt{10}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433170_149": { -"question": "As shown in the figure, in rectangle $ABCD$, point $M$ is on $BC$, and $EM \\perp AM$ meets the extension of $AD$ at point $E$. $\\triangle ABM \\sim \\triangle EMA$; if $AB=4$ and $BM=3$, find the value of $AE$.", -"image_file_name": "7056275", -"image": [ -"math/51433170_940.png" -], -"solution": "Solution: Since $AB=4$ and $BM=3$, \\\\\nwe have $AM= \\sqrt{AB^{2}+BM^{2}}=\\sqrt{4^{2}+3^{2}}=5$, \\\\\nBecause $\\triangle ABM \\sim \\triangle EMA$, \\\\\nit follows that $\\frac{AM}{AE}=\\frac{AB}{AM}$, \\\\\nThus, $AE= \\frac{AM^{2}}{AB}=\\boxed{\\frac{25}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433177_152": { -"question": "As shown in the figure, point C is on the semicircle O with diameter AB, and $AB=2$. AD bisects $\\angle BAC$ and intersects BC at point D. CP bisects $\\angle BCA$ and intersects AD at point P. $PF\\perp AC$, $PE\\perp BC$. Quadrilateral CEPF is a square; what is the maximum value of $AC\\cdot BC$?", -"image_file_name": "7056275", -"image": [ -"math/51433177_955.png" -], -"solution": "\\textbf{Solution:} Let line $CG\\perp AB$ pass through point C. From the area formula of triangle $ABC$, $S_{\\triangle ABC}=\\frac{1}{2}AB\\cdot CG=\\frac{1}{2}AC\\cdot BC$, we know that when $CG$ is at its maximum, $AC\\cdot BC$ will also reach its maximum value, that is, $CG=\\frac{1}{2}AB=\\frac{1}{2}\\times 2=1$. Using the area formula of a triangle, $S_{\\triangle ABC}=\\frac{1}{2}AB\\cdot CG=\\frac{1}{2}AC\\cdot BC$, since $AB=2$, it follows that $\\frac{1}{2}\\times 2\\times 1=\\frac{1}{2}AC\\cdot BC$, therefore, $AC\\cdot BC=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433177_153": { -"question": "As shown in the figure, point C is a point on the semicircle O with AB as its diameter, and $AB=2$. AD bisects $\\angle BAC$ and intersects BC at point D. CP bisects $\\angle BCA$ and intersects AD at point P. $PF\\perp AC$, $PE\\perp BC$. Find the minimum value of $\\frac{1}{AC}+\\frac{1}{DC}$.", -"image_file_name": "7056275", -"image": [ -"math/51433177_955.png" -], -"solution": "\\textbf{Solution:} Let $PE=PF=CE=CF=x$,\\\\\n$\\because$ $PE\\perp BC$, $AC\\perp BC$,\\\\\n$\\therefore PE\\parallel AC$,\\\\\n$\\therefore \\triangle PED\\sim \\triangle ACD$,\\\\\n$\\therefore \\frac{PE}{AC}=\\frac{PD}{AD}$ (1);\\\\\nSimilarly, $PF\\parallel BC$, $\\triangle PAF\\sim \\triangle DAC$,\\\\\n$\\therefore \\frac{PF}{CD}=\\frac{AP}{AD}$ (2),\\\\\nFrom (1) + (2), we get $\\frac{PE}{AC}+\\frac{PF}{CD}=\\frac{PD}{AD}+\\frac{AP}{AD}=\\frac{AD}{AD}=1$,\\\\\n$\\therefore \\frac{PE}{AC}+\\frac{PF}{CD}=1$,\\\\\nthat is $\\frac{x}{AC}+\\frac{x}{CD}=1$,\\\\\n$\\therefore \\frac{1}{AC}+\\frac{1}{DC}=\\frac{1}{x}$;\\\\\nWhen x is at its maximum, $\\frac{1}{AC}+\\frac{1}{DC}$ is at its minimum;\\\\\n$\\because AD$ bisects $\\angle BAC$,\\\\\n$\\therefore$ Point P is the incenter of $\\triangle ACB$,\\\\\n$\\therefore PE, PF$ are the radii of the incircle;\\\\\nDraw $PH\\perp AB$, with H as the foot,\\\\\nthen it is easy to see $AF=AH$, $BE=BH$,\\\\\n$\\therefore AF+BE=AH+BH=AB$,\\\\\n$\\therefore CE=CF=\\frac{AC+BC-AB}{2}$,\\\\\nLet $AC=b$, $BC=a$, $AB=c=2$,\\\\\n$\\therefore x=\\frac{a+b-c}{2}=\\frac{a+b-2}{2}=\\frac{a+b}{2}-1$,\\\\\n$\\because AC^{2}+BC^{2}=AB^{2}$,\\\\\n$\\therefore a^{2}+b^{2}=4$,\\\\\n$\\because (a-b)^{2}=a^{2}+b^{2}-2ab\\ge 0$,\\\\\n$\\therefore 2ab\\le a^{2}+b^{2}=4$,\\\\\n$\\therefore ab\\le 2$,\\\\\n$\\because (a+b)^{2}=a^{2}+b^{2}+2ab=4+2ab\\le 4+4=8$,\\\\\n$\\therefore a+b\\le 2\\sqrt{2}$,\\\\\n$\\therefore$ the maximum value of $a+b$ is $2\\sqrt{2}$;\\\\\n$\\therefore x=\\frac{a+b}{2}-1=\\frac{2\\sqrt{2}}{2}-1=\\sqrt{2}-1$,\\\\\n$\\therefore$ the maximum value of $x$ is $\\sqrt{2}-1$,\\\\\n$\\therefore \\frac{1}{x}=\\frac{1}{\\sqrt{2}-1}=\\sqrt{2}+1$,\\\\\n$\\therefore$ the minimum value of $\\frac{1}{AC}+\\frac{1}{DC}$ is $\\boxed{\\sqrt{2}+1}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51433106_155": { -"question": "As shown in the figure, in the Cartesian coordinate system, the sides of the rhombus OABC are such that OC is on the x-axis, and B is at (18, 6). The graph of the inverse proportion function $y=\\frac{k}{x} (k \\neq 0)$ passes through point A and intersects OB at point E. What is the length of the sides of the rhombus OABC?", -"image_file_name": "7056275", -"image": [ -"math/51433106_961.png" -], -"solution": "\\textbf{Solution:} Draw line $BF \\perp x$-axis at point F, according to the given information, we have $BF=6$ and $OF=18$.\\\\\nSince quadrilateral OABC is a rhombus,\\\\\nit follows that $OC=BC$.\\\\\nIn $\\triangle BCF$, $6^{2}+(18-BC)^{2}=BC^{2}$.\\\\\nSolving this, we find $BC=\\boxed{10}$,\\\\\nthus, the side length of rhombus OABC is $\\boxed{10}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51433106_156": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the side OC of the rhombus OABC lies on the x-axis, with B(18,6). The graph of the inverse proportion function $y=\\frac{k}{x}$ ($k \\ne 0$) passes through point A and intersects OB at point E. Find the value of k.", -"image_file_name": "7056275", -"image": [ -"math/51433106_961.png" -], -"solution": "\\textbf{Solution:} From equation (1), we find that the coordinate of point A is (8, 6). Substituting point A (8, 6) into $y= \\frac{k}{x}$, we solve for $k=\\boxed{48}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51433106_157": { -"question": "As shown in the figure, in the Cartesian coordinate system, the sides of the rhombus OABC are located with OC on the x-axis, and point B is at (18, 6). The graph of the inverse proportion function $y=\\frac{k}{x}$ ($k\\neq 0$) passes through point A and intersects with OB at point E. Find the value of OE: EB.", -"image_file_name": "7056275", -"image": [ -"math/51433106_961.png" -], -"solution": "\\textbf{Solution:} Set $E(a, \\frac{48}{a})$. Draw line $EG$ perpendicular to the x-axis at point $G$. According to the problem, it is known that $OG=a$ and $EG=\\frac{48}{a}$. From the drawing, we know that $EG \\parallel BF$,\\\\\n$\\therefore \\triangle OGE \\sim \\triangle OBF$,\\\\\n$\\therefore \\frac{\\frac{48}{a}}{6}=\\frac{a}{18}$. Solving this gives $a=12$,\\\\\n$\\therefore \\frac{OE}{OB}=\\frac{OG}{OF}=\\frac{12}{18}=\\frac{2}{3}$,\\\\\n$\\therefore \\frac{OE}{EB}=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52872420_160": { -"question": "As shown in the figure, inside $\\triangle ABC$, points $D$, $E$, and $F$ lie on $AB$, $BC$, and $AC$ respectively, with $DE\\parallel AC$, and $EF\\parallel AB$. $\\triangle BDE\\sim \\triangle EFC$. Given that $\\frac{AF}{FC}=\\frac{4}{3}$ and the area of $\\triangle EFC$ is 9, find the area of $\\triangle ABC$.", -"image_file_name": "7056275", -"image": [ -"math/52872420_979.png" -], -"solution": "\\textbf{Solution:} Given that $FE\\parallel AB$,\\\\\n$\\therefore \\angle A=\\angle EFC, \\angle B=\\angle FEC$.\\\\\n$\\therefore \\triangle ABC\\sim \\triangle FEC$.\\\\\nGiven that $\\frac{AF}{FC}=\\frac{4}{3}$,\\\\\n$\\therefore AF=\\frac{4}{3}FC$.\\\\\n$\\therefore \\frac{FC}{AC}=\\frac{FC}{AF+FC}=\\frac{FC}{\\frac{4}{3}FC+FC}=\\frac{3}{7}$.\\\\\n$\\therefore \\frac{S_{\\triangle EFC}}{S_{\\triangle ABC}}=\\left(\\frac{3}{7}\\right)^2=\\frac{9}{49}$.\\\\\nSince the area of $\\triangle EFC$ is 9,\\\\\n$\\therefore S_{\\triangle ABC}=\\boxed{49}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51445941_162": { -"question": "As shown in the figure, in right triangle $ABC$ with $\\angle ACB=90^\\circ$, we have $AB=25$ and $AC=15$. Point $P$ starts from point $B$ and moves towards $A$ at a speed of $2$ units per second. Simultaneously, point $Q$ starts from $C$ and moves towards $B$ at a speed of $1$ unit per second. When one point reaches its endpoint, the other point stops moving. Connect $PQ$ and on the ray $PB$, take $PN=PQ$ to form quadrilateral $PQMN$ with $PN$ and $PQ$ as sides. Let the movement time be $t$ seconds ($t>0$). What is the length of $BC$?", -"image_file_name": "7056275", -"image": [ -"math/51445941_980.png" -], -"solution": "\\textbf{Solution:} From the given conditions, we have $BC=\\boxed{20}$.", -"solution_image": [ -"solution_images/51445941_982.png", -"solution_images/51445941_986.png", -"solution_images/51445941_988.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51445941_163": { -"question": "As shown in the figure, in $\\mathrm{Rt}\\triangle ABC$ where $\\angle ACB=90^\\circ$, $AB=25$, and $AC=15$, point $P$ starts from point $B$ and moves toward $A$ at a speed of $2$ units per second. At the same time, point $Q$ starts from $C$ and moves toward $B$ at a speed of $1$ unit per second. When one point reaches its destination, the other point stops moving. Connect $PQ$. On ray $PB$, take $PN=PQ$ and construct $\\square PQMN$ using $PN$ and $PQ$ as sides. Let the movement time be $t$ seconds ($t>0$). Find the value of $t$ when $\\square PQMN$ is a square.", -"image_file_name": "7056275", -"image": [ -"math/51445941_980.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$\\because$ Quadrilateral PQMN is a square,\\\\\n$\\therefore$ $\\angle$BPQ$=90^\\circ$,\\\\\n$\\therefore$ $\\triangle BPQ \\sim \\triangle BCA$,\\\\\n$\\therefore$ $\\frac{PB}{BQ}=\\frac{BC}{AB}=\\frac{20}{25}=\\frac{4}{5}$,\\\\\n$\\therefore$ BP$=\\frac{4}{5}$BQ,\\\\\n$\\because$ BP$=2t$, CQ$=t$,\\\\\n$\\therefore$ $2t=\\frac{4}{5}(20-t)$,\\\\\n$\\therefore$ $t=\\boxed{\\frac{40}{7}}$;", -"solution_image": [ -"solution_images/51445941_982.png", -"solution_images/51445941_986.png", -"solution_images/51445941_988.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51445941_164": { -"question": "As shown in the figure, within $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AB=25$, and $AC=15$. Point $P$ starts from point $B$ and moves towards $A$ at a speed of $2$ units per second, while point $Q$ starts from $C$ and moves towards $B$ at a speed of $1$ unit per second. The movement of one point ceases immediately when the other point arrives at its destination. Connect $PQ$, and on ray $PB$, take $PN=PQ$, then construct $\\square PQMN$ with $PN$ and $PQ$ as edges. Let the movement time be $t$ seconds ($t>0$). Construct the symmetric point $C'$ of point $C$ with respect to the line $PQ$. When points $C$, $Q$, and $C'$ are not collinear, and $\\angle CQC'$ equals twice the internal angle of $\\triangle ABC$, directly write out the value of $t$.", -"image_file_name": "7056275", -"image": [ -"math/51445941_980.png" -], -"solution": "\\textbf{Solution:} We have $t=\\boxed{\\frac{40}{7}}$ or $t=\\boxed{\\frac{100}{21}}$.", -"solution_image": [ -"solution_images/51445941_982.png", -"solution_images/51445941_986.png", -"solution_images/51445941_988.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51445794_166": { -"question": "As shown in the figure, $AB=4$, $CD=6$, point $F$ is on $BD$, lines $BC$ and $AD$ intersect at point $E$, and $AB \\parallel CD \\parallel EF$. If $AE=3$, what is the length of $ED$?", -"image_file_name": "7056275", -"image": [ -"math/51445794_992.png" -], -"solution": "\\textbf{Solution:} Given $AB\\parallel CD$,\\\\\n$\\therefore \\triangle AEB\\sim \\triangle DEC$,\\\\\n$\\therefore \\frac{AE}{DE}=\\frac{AB}{CD}$,\\\\\nGiven $AB=4$, $CD=6$, $AE=3$,\\\\\n$\\therefore \\frac{3}{DE}=\\frac{4}{6}$,\\\\\nSolving gives: $DE=\\boxed{\\frac{9}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51445794_167": { -"question": "As shown in the figure, $AB=4$, $CD=6$, point $F$ is on $BD$, $BC$ and $AD$ intersect at point $E$, and $AB \\parallel CD \\parallel EF$. What is the length of $EF$?", -"image_file_name": "7056275", -"image": [ -"math/51445794_992.png" -], -"solution": "\\textbf{Solution:} Since $CD\\parallel EF$, \\\\\n$\\therefore \\triangle BEF\\sim \\triangle BCD$, \\\\\n$\\therefore \\frac{EF}{CD}=\\frac{BF}{BD}$, \\\\\nSimilarly: $\\frac{EF}{AB}=\\frac{DF}{BD}$, \\\\\n$\\therefore \\frac{EF}{CD}+\\frac{EF}{AB}=\\frac{BF}{BD}+\\frac{DF}{BD}=1$, \\\\\n$\\therefore \\frac{EF}{6}+\\frac{EF}{4}=1$, \\\\\nSolving for $EF$, we get $EF=\\boxed{\\frac{12}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55307630_3": { -"question": "As shown in the figure, point B is a point on line segment AC, and $AB=21$, $BC= \\frac{1}{3}AB$. What is the length of line segment AC?", -"image_file_name": "6951217", -"image": [ -"math/55307630_21.png" -], -"solution": "\\textbf{Solution:} Given that $AB=21$ and $BC= \\frac{1}{3}AB$, \\\\\nit follows that $BC=7$ and $AC=AB+BC=21+7=\\boxed{28}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55307630_4": { -"question": "As shown in the figure, point B is a point on line segment AC, with $AB=21$ and $BC= \\frac{1}{3}AB$. If point O is the midpoint of line segment AC, what is the length of line segment QB?", -"image_file_name": "6951217", -"image": [ -"math/55307630_21.png" -], -"solution": "\\textbf{Solution:} Given that point O is the midpoint of line segment AC, \\\\\nthus $OA = \\frac{1}{2}AB = \\frac{1}{2} \\times 28 = 14$, \\\\\n$OB = AB - OA = 21 - 14 = \\boxed{7}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927244_8": { -"question": "As shown in Figure 1, it is known that point $B$ is on line segment $AC$, and point $D$ is on line segment $AB$. If $AB=10\\, \\text{cm}$, $BC=6\\, \\text{cm}$, and $D$ is the midpoint of line segment $AC$, what is the length of line segment $DB$ in $\\text{cm}$?", -"image_file_name": "6951217", -"image": [ -"math/54927244_50.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1 in the problem, \\\\\nsince AB=10cm, and BC=6cm, \\\\\ntherefore AC=AB+BC=10+6=16cm. \\\\\nAlso, since D is the midpoint of segment AC, \\\\\ntherefore DC=$\\frac{1}{2}AC=\\frac{1}{2}\\times 16=8$cm, \\\\\ntherefore DB=DC−BC=8−6=$\\boxed{2}$cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927244_9": { -"question": "As shown in Figure 2, it is known that point $B$ is on line segment $AC$, and point $D$ is on line segment $AB$. If $BD = \\frac{1}{4}AB = \\frac{1}{3}CD$, with $E$ being the midpoint of line segment $AB$ and $EC=16\\, \\text{cm}$, find the length of line segment $AC$.", -"image_file_name": "6951217", -"image": [ -"math/54927244_50.png" -], -"solution": "\\textbf{Solution:} Let $BD=x$,\\\\\nsince $BD=\\frac{1}{4}AB=\\frac{1}{3}CD$,\\\\\nthus $AB=4BD=4x$ and $CD=3BD=3x$,\\\\\ntherefore $BC=DC-DB=3x-x=2x$,\\\\\nthus $AC=AB+BC=4x+2x=6x$.\\\\\nSince $E$ is the midpoint of the segment $AB$,\\\\\nthus $BE=\\frac{1}{2}AB=\\frac{1}{2}\\times 4x=2x$,\\\\\nthus $EC=BE+BC=2x+2x=4x$.\\\\\nFurthermore, since $EC=16$,\\\\\nthus $4x=16$,\\\\\nsolving this gives: $x=4$,\\\\\ntherefore $AC=6x=6\\times 4=\\boxed{24}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54962545_11": { -"question": "As shown in the figure, \\(C\\) is a point on line segment \\(AB\\), \\(M\\) is the midpoint of line segment \\(AC\\), and \\(N\\) is the midpoint of line segment \\(BC\\). If \\(AM = \\frac{5}{4} BC = 5 \\, \\text{cm}\\), find the length of \\(MN\\).", -"image_file_name": "6951217", -"image": [ -"math/54962545_60.png" -], -"solution": "\\textbf{Solution:} Since $M$ is the midpoint of segment $AC$, $AM=\\frac{5}{4}BC=5\\text{cm}$,\\\\\nthus $AM=CM=5\\text{cm}$, and $BC=4\\text{cm}$.\\\\\nAdditionally, since $N$ is the midpoint of segment $BC$,\\\\\nthus $CN=\\frac{1}{2}BC=2\\text{cm}$,\\\\\ntherefore $MN=MC+CN=\\boxed{7\\text{cm}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54962545_12": { -"question": "As shown in the figure, C is a point on the line segment AB, M is the midpoint of the line segment AC, N is the midpoint of the line segment BC. If $AC=x$ cm, and $BC= (10-x)$ cm, then what is the length of $MN$ in cm?", -"image_file_name": "6951217", -"image": [ -"math/54962545_60.png" -], -"solution": "\\textbf{Solution:} Since $M$ is the midpoint of line segment $AC$ and $N$ is the midpoint of line segment $BC$, \\\\\nit follows that $CM=\\frac{1}{2}AC=\\frac{1}{2}x$ and $CN=\\frac{1}{2}BC=\\frac{1}{2}\\left(10-x\\right)$, \\\\\ntherefore, $MN=CM+CN=\\boxed{5}$ cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927374_14": { -"question": "As shown in the figure, it is known that line segment $AB=m$ (where $m$ is a constant), point $C$ is a point on the line $AB$ (not coinciding with $A$ or $B$), and points $P$, $Q$ are respectively on segments $BC$, $AC$, and satisfy $CQ=2AQ$, $CP=2BP$. As shown in Figure 1, with point $C$ on segment $AB$, what is the length of $PQ$ (expressed in terms of $m$)?", -"image_file_name": "6951217", -"image": [ -"math/54927374_70.png" -], -"solution": "\\textbf{Solution:} Let $AQ=a$ and $BP=b$,\\\\\nthen $CQ=2a$ and $CP=2b$,\\\\\nsince $AB=AQ+CQ+CP+BP=a+2a+2b+b=3a+3b=m$,\\\\\nit follows that $a+b=\\frac{m}{3}$,\\\\\nthus $PQ=CQ+CP=2a+2b=2(a+b)=\\boxed{\\frac{2m}{3}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927374_15": { -"question": "As shown in the figure, it is known that the length of segment $AB=m$ (where $m$ is a constant), point $C$ is on the line segment $AB$ (not coinciding with $A$ or $B$), points $P$ and $Q$ are respectively on the segments $BC$ and $AC$, and it satisfies $CQ=2AQ$, $CP=2BP$. As shown in figure 2, if point $C$ is to the left of point $A$, while point $P$ is on the segment $AB$ (not coinciding with the endpoints), find the value of $2AP+CQ-2PQ$.", -"image_file_name": "6951217", -"image": [ -"math/54927374_70.png" -], -"solution": "\\textbf{Solution:} Let $AQ=x$, and $BP=y$,\n\nthen we have $CQ= 2x$, and $CP= 2y$,\n\nthus $AP=CP-CA=2y- 3x$, $PQ=CP-CQ=2y- 2x$,\n\nhence $2AP+CQ- 2PQ=2(2y- 3x) + 2x - 2(2y-2x)=4y - 6x+2x-4y+4x=0$.\n\n$\\therefore$ The value of $2AP+CQ- 2PQ$ is $\\boxed{0}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55000668_18": { -"question": "As shown in the figure, $C$ is the midpoint of the line segment $AB$, and $D$ is on the line segment $CB$, and $DA=6$, $DB=4$. Find the length of $AB$.", -"image_file_name": "6951217", -"image": [ -"math/55000668_93.png" -], -"solution": "\\textbf{Solution:} Since $DA=6, DB=4$,\\\\\nit follows that $AB=6+4=\\boxed{10}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55000668_19": { -"question": "As shown in the figure, $C$ is the midpoint of segment $AB$, and $D$ is on segment $CB$, with $DA=6, DB=4$. Find the length of $CD$.", -"image_file_name": "6951217", -"image": [ -"math/55000668_93.png" -], -"solution": "\\textbf{Solution:} Since point C is the midpoint of the line segment $AB$,\\\\\n$\\therefore AC=\\frac{1}{2}AB=5$.\\\\\n$\\therefore CD=AD-AC=6-5=\\boxed{1}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54962520_33": { -"question": "As shown in the figure, $C$ is a point on line segment $AD$, $B$ is the midpoint of $CD$, and $AD=13\\, \\text{cm}$, $BC=3\\, \\text{cm}$. What is the length of $AC$ in centimeters?", -"image_file_name": "6951217", -"image": [ -"math/54962520_210.png" -], -"solution": "\\textbf{Solution:} Since $B$ is the midpoint of $CD$, and $BC=3\\text{cm}$, \\\\\nthen $CD=2BC=6\\text{cm}$. \\\\\nSince $AD=13\\text{cm}$, \\\\\nthen $AC=AD-CD=13-6=\\boxed{7}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54962520_34": { -"question": "As shown in the diagram, point \\(C\\) lies on segment \\(AD\\), and \\(B\\) is the midpoint of \\(CD\\), with \\(AD=13 \\, \\text{cm}\\), and \\(BC=3 \\, \\text{cm}\\). If point \\(E\\) is on line \\(AD\\), and \\(EA=4 \\, \\text{cm}\\), what is the length of \\(BE\\) in cm?", -"image_file_name": "6951217", -"image": [ -"math/54962520_210.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, when point E is on segment AC, \\\\\n$\\because AB=AC+BC=10\\text{cm}$, $EA=4\\text{cm}$, \\\\\n$\\therefore BE=AB-AE=10-4=\\boxed{6}\\text{cm}$. \\\\\nAs shown in Figure 2, when point E is on the extension line of segment CA, \\\\\n$\\because AB=10\\text{cm}$, $AE=4\\text{cm}$, \\\\\n$\\therefore BE=AE+AB=14\\text{cm}$. \\\\\nIn summary, the length of BE is either \\boxed{6\\text{cm}} or \\boxed{14\\text{cm}}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53848489_44": { -"question": "As shown in the figure, point $C$ is a point on line segment $AB$, and points $M$, $N$, $P$ are the midpoints of line segments $AC$, $BC$, $AB$, respectively. If $AB = 10\\, \\text{cm}$, what is the length of line segment $MN$?", -"image_file_name": "6951217", -"image": [ -"math/53848489_300.png" -], -"solution": "\\textbf{Solution:} Since $M$ and $N$ are the midpoints of $AC$ and $BC$ respectively,\n\n$\\therefore$ $MC = \\frac{1}{2}AC$, $CN = \\frac{1}{2}BC$,\n\n$\\therefore$ $MN = MC + CN = \\frac{1}{2}AC + \\frac{1}{2}BC = \\frac{1}{2}(AC + BC) = \\frac{1}{2}AB = \\frac{1}{2} \\times 10 = \\boxed{5}$ (cm).", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53848489_45": { -"question": "As shown in the figure, point \\(C\\) is a point on line segment \\(AB\\), and points \\(M\\), \\(N\\), and \\(P\\) are the midpoints of line segments \\(AC\\), \\(BC\\), and \\(AB\\), respectively. If \\(AC = 3\\, \\text{cm}\\) and \\(CP = 1\\, \\text{cm}\\), what is the length of line segment \\(PN\\)?", -"image_file_name": "6951217", -"image": [ -"math/53848489_300.png" -], -"solution": "\\textbf{Solution:} \\\\ \nSince $AC=3$ and $CP=1$, \\\\\nthus $AP=AC+CP=4$, \\\\\nSince point P is the midpoint of segment AB, \\\\\nthus $AB=2AP=8$, $CB=AB-AC=5$, \\\\\nSince point N is the midpoint of segment CB, \\\\\nthus $CN=\\frac{1}{2}CB=\\frac{5}{2}$, \\\\\ntherefore $PN=CN-CP=\\frac{5}{2}-1=\\boxed{\\frac{3}{2}}$ (cm).", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206849_47": { -"question": "As shown in the figure, it is known that point C is on line segment AB, and points M and N are on line segments AC and BC, respectively, with $AM=2MC$, $BN=2NC$. If $AC=9$ and $BC=6$, what is the length of line segment MN?", -"image_file_name": "6951217", -"image": [ -"math/53206849_310.png" -], -"solution": "\\textbf{Solution:} Given that $AC=9$ and $BC=6$, and also that $AM=2MC$ and $BN=2NC$.\\\\\nTherefore, $MC= \\frac{1}{3} AC=3$ and $NC= \\frac{1}{3} BC=2$,\\\\\nTherefore, $MN=MC+NC=3+2=\\boxed{5}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206849_48": { -"question": "As shown in the figure, it is known that point C is on line segment AB, and points M and N are on line segments AC and BC, respectively, with $AM=2MC$ and $BN=2NC$. If $MN=5$, what is the length of line segment AB?", -"image_file_name": "6951217", -"image": [ -"math/53206849_310.png" -], -"solution": "\\textbf{Solution:} Since $AM=2MC$ and $BN=2NC$,\\\\\nit follows that $MC= \\frac{1}{3} AC$ and $NC= \\frac{1}{3} BC$,\\\\\nThus $MN=MC+NC= \\frac{1}{3} AC+ \\frac{1}{3} BC= \\frac{1}{3} AB$,\\\\\nIf $MN=5$, then $AB=3MN=15$,\\\\\nAnswer: The length of $AB$ is $\\boxed{15}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53205976_50": { -"question": "As shown in the figure, point $C$ is the midpoint of line segment $AB$, point $D$ is the midpoint of line segment $AC$, and $BE=\\frac{1}{3}BC$. If $BE=2\\,\\text{cm}$, what is the length of $AB$ in cm?", -"image_file_name": "6951217", -"image": [ -"math/53205976_325.png" -], -"solution": "\\textbf{Solution:} Since $BE=\\frac{1}{3}BC$ and $BE=2\\,\\text{cm}$, \\\\\nthen $BC=3BE=6\\,\\text{cm}$. \\\\\nGiven that point $C$ is the midpoint of line segment $AB$, \\\\\nit follows that $AB=2BC=\\boxed{12}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53205976_51": { -"question": "As shown in the figure, point $C$ is the midpoint of line segment $AB$, point $D$ is the midpoint of line segment $AC$, and $BE=\\frac{1}{3}BC$. If $DE=14\\,\\text{cm}$, find the length of $AB$.", -"image_file_name": "6951217", -"image": [ -"math/53205976_325.png" -], -"solution": "\\textbf{Solution:} Let $BE = x\\,cm$, hence $BC = 3x\\,cm$,\\\\\nsince point $C$ is the midpoint of segment $AB$,\\\\\ntherefore $AB = 2BC = 6x\\,cm$, $AC = 3x\\,cm$,\\\\\nsince point $D$ is the midpoint of segment $AC$,\\\\\ntherefore $AD = \\frac{1}{2}AC = \\frac{3}{2}x\\,cm$,\\\\\ntherefore $DE = AB - AD - BE = 6x - \\frac{3}{2}x - x = \\frac{7}{2}x\\,cm$,\\\\\nsince $DE = 14\\,cm$,\\\\\ntherefore $\\frac{7}{2}x = 14$, solving for $x$ yields: $x = 4$,\\\\\ntherefore $AB = 6x = \\boxed{24\\,cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53462104_53": { -"question": "As shown in the figure, it is known that the length of segment AB is $a$, and segment AB is extended to point C so that $BC = \\frac{1}{2}AB$. Find the length of segment AC (expressed as an algebraic expression involving $a$).", -"image_file_name": "6951217", -"image": [ -"math/53462104_331.png" -], -"solution": "\\textbf{Solution:} Given that $\\because AB=a$,\\\\\n$\\therefore BC=\\frac{1}{2}a$,\\\\\n$\\therefore AC=AB+BC=a+\\frac{1}{2}a=\\boxed{\\frac{3}{2}a}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53462104_54": { -"question": "As shown in the figure, it is known that the length of line segment $AB$ is $a$. Extend line segment $AB$ to point $C$, making $BC=\\frac{1}{2}AB$. Take the midpoint $D$ of line segment $AC$. If $DB=2$, find the value of $a$.", -"image_file_name": "6951217", -"image": [ -"math/53462104_331.png" -], -"solution": "Solution: Since $AC = \\frac{3}{2}a$ and D is the midpoint of AC,\\\\\nit follows that $CD = \\frac{1}{2}AC = \\frac{3}{4}a$,\\\\\nSince $BC = \\frac{3}{2}a$ and $DB = CD - BC = 2$,\\\\\nit follows that $\\frac{3}{4}a - \\frac{3}{2}a = 2$,\\\\\nSolving this, we find: $a = \\boxed{8}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206007_56": { -"question": "As shown in the figure, point $C$ is a point on the line segment $AB$ ($AC>BC$), $D$ is on the line segment $BC$, with $BD=2CD$, and point $E$ is the midpoint of $AB$. If $AD=10$ and $EC=3CD$, what is the length of line segment $CD$?", -"image_file_name": "6951217", -"image": [ -"math/53206007_345.png" -], -"solution": "\\textbf{Solution:} Let $CD=x$, then $BD=2CD=2x$,\\\\\nsince $AD=10$,\\\\\nthus $AB=10+2x$,\\\\\nsince point E is the midpoint of $AB$,\\\\\nthus $AE=\\frac{1}{2}AB=5+x=BE$,\\\\\nthus $EC=EB-CB=5+x-3x=5-2x$,\\\\\nthus $5-2x=3x$,\\\\\nsolving gives $x=\\boxed{1}$,\\\\\nhence $CD=\\boxed{1}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206007_57": { -"question": "As shown in the figure, point C is a point on segment $AB$ ($AC>BC$), D is on segment $BC$, $BD=2CD$, and point E is the midpoint of $AB$. If $AC=2BC$, find the value of $\\frac{EC}{BD}$.", -"image_file_name": "6951217", -"image": [ -"math/53206007_345.png" -], -"solution": "\\textbf{Solution:} From the given information, we have $BC=CD+BD=3x$, $AC=2BC=6x$,\n\\[\\therefore AB=3x+6x=9x,\\]\n\\[\\because \\text{E is the midpoint of } AB,\\]\n\\[\\therefore EB=\\frac{1}{2}AB=4.5x,\\]\n\\[\\therefore EC=EB-BC=1.5x,\\]\n\\[\\therefore \\frac{EC}{BD}=\\frac{1.5x}{2x}=\\boxed{\\frac{3}{4}}.\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51355086_59": { -"question": "As shown in the figure, it is known that the length of line segment AB is 24 cm. AB is extended to C such that BC is equal to $\\frac{1}{2}$ of AB. What is the length of AC?", -"image_file_name": "6951217", -"image": [ -"math/51355086_351.png" -], -"solution": "\\textbf{Solution:} Given that $BC = \\frac{1}{2}AB$ and $AB = 24$ cm, \\\\\nthen $BC = \\frac{1}{2} \\times 24 = 12\\, \\text{cm}$, \\\\\ntherefore $AC = AB + BC = \\boxed{36}\\, \\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51355086_60": { -"question": "As shown in the figure, it is known that the segment $AB=24\\,cm$, extending $AB$ to $C$ such that $BC=\\frac{1}{2}AB$. If $D$ is the midpoint of $AB$, and $E$ is the midpoint of $AC$, what is the length of $DE$ in $cm$?", -"image_file_name": "6951217", -"image": [ -"math/51355086_351.png" -], -"solution": "\\textbf{Solution:} Since $D$ is the midpoint of $AB$, and $E$ is the midpoint of $AC$,\\\\\n$\\therefore$ $AD = \\frac{1}{2}AB = 12$cm, $AE = \\frac{1}{2}AC = 18$cm,\\\\\n$\\therefore$ $DE = 18 - 12 = \\boxed{6}$cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53106951_62": { -"question": "As shown in the diagram, extend the line segment $AB$ to $C$ so that $BC=4AB$. Point $D$ is the midpoint of the line segment $BC$. If $CD=4\\,cm$, find the length of $AC$.", -"image_file_name": "6951217", -"image": [ -"math/53106951_364.png" -], -"solution": "\\textbf{Solution:} Let $AB=x$,\\\\\n$\\therefore BC=4AB=4x$, $AC=AB+BC=5x$\\\\\n$\\because$ point $D$ is the midpoint of line segment $BC$,\\\\\n$\\therefore CD=BD=\\frac{1}{2}BC=2x$,\\\\\nthen $2x=4$, solving this yields: $x=2$,\\\\\n$CD=BD=2x=4\\text{cm}$,\\\\\n$\\therefore AC=5x=\\boxed{10}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53106951_63": { -"question": "As shown in the figure, extend the line segment $AB$ to $C$ so that $BC=4AB$. Let $D$ be the midpoint of line segment $BC$. If $CD=4\\text{cm}$, and let $E$ be the midpoint of line segment $AC$, what is the length of $ED$ in cm?", -"image_file_name": "6951217", -"image": [ -"math/53106951_364.png" -], -"solution": "\\textbf{Solution:} Given that point $E$ is the midpoint of segment $AC$,\\\\\nit follows that $AE=\\frac{1}{2}AC=5\\text{cm}$,\\\\\nsince $BD=4\\text{cm}$ and $AB=2\\text{cm}$,\\\\\nwe have $AD=AB+BD=6\\text{cm}$,\\\\\ntherefore $ED=AD-AE=6-5=\\boxed{1}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52732986_65": { -"question": "As shown in the figure, segment $AB=12$, point $C$ is the midpoint of segment $AB$, and point $D$ is the midpoint of segment $BC$. What is the length of segment $AD$?", -"image_file_name": "6951217", -"image": [ -"math/52732986_370.png" -], -"solution": "\\textbf{Solution:} Given $\\because AB=12$ and C is the midpoint of AB,\\\\\n$\\therefore AC=BC=6$,\\\\\n$\\because D$ is the midpoint of $BC$,\\\\\n$\\therefore CD=\\frac{1}{2}BC=3$,\\\\\n$\\therefore AD=AC+CD=\\boxed{9}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52732986_66": { -"question": "As shown in the figure, the length of segment AB is 12, and point C is the midpoint of segment AB, while point D is the midpoint of segment BC. If there is a point E on segment AB such that $CE = \\frac{1}{3}BC$, calculate the length of AE.", -"image_file_name": "6951217", -"image": [ -"math/52732986_370.png" -], -"solution": "\\textbf{Solution:} Given that $BC=6$, and $CE=\\frac{1}{3}BC$, \\\\\nthus $CE=\\frac{1}{3}\\times 6=2$, \\\\\nwhen E is to the left of C, $AE=AC-CE=6-2=4$; \\\\\nwhen E is to the right of C, $AE=AC+CE=6+2=8$. \\\\\nTherefore, the length of $AE$ is $\\boxed{4}$ or $\\boxed{8}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54661145_68": { -"question": "As shown in the figure, $B$ and $C$ are two points on the line segment $AD$, and $AB:BC:CD=2:3:4$, $M$ is the midpoint of $AD$, if $MC=1$. What is the length of the line segment $AD$?", -"image_file_name": "6951217", -"image": [ -"math/54661145_385.png" -], -"solution": "\\textbf{Solution:} Let $AB=2x$, hence $BC=3x, CD=4x$.\\\\\n$AD=2x+3x+4x=9x.$\\\\\nSince $M$ is the midpoint of $AD$,\\\\\nit follows that $MD=\\frac{1}{2}AD=\\frac{9}{2}x.$\\\\\n$MC=MD-CD=\\frac{9}{2}x-4x=\\frac{1}{2}x$,\\\\\nAccording to the problem, $\\frac{1}{2}x=1$,\\\\\nSolving this gives $x=2$,\\\\\nTherefore, $AD=9x=\\boxed{18}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54661145_69": { -"question": "As shown in the figure, $B$ and $C$ are two points on the line segment $AD$, and $AB:BC:CD = 2:3:4$. Let $M$ be the midpoint of $AD$, with $MC = 1$. If $N$ is a point on the line segment $AD$ such that $CN = \\frac{1}{7}DB$, find the length of the line segment $DN$.", -"image_file_name": "6951217", -"image": [ -"math/54661145_385.png" -], -"solution": "\\textbf{Solution:} From (1), we know that $DB=18\\times \\frac{3+4}{2+3+4}=14, CN=\\frac{1}{7}DB$,\\\\\n$\\therefore CN=\\frac{1}{7}\\times 14=2$.\\\\\nConsider the following two cases:\\\\\n(1) When point $N$ is on segment $CD$, $DN=CD-CN=8-2=6$;\\\\\n(2) When point $N$ is on segment $CB$, $DN=CD+CN=8+2=10$.\\\\\nIn conclusion, the length of segment $DN$ is either $6$ or $\\boxed{10}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52579842_71": { -"question": "As shown in the figure, the length of line segment $AB=8$, point $C$ is the midpoint of line segment $AB$, and point $D$ is the midpoint of line segment $BC$. What is the length of line segment $AD$?", -"image_file_name": "6951217", -"image": [ -"math/52579842_391.png" -], -"solution": "\\textbf{Solution:} Since $AB=8$ and C is the midpoint of AB, it follows that $AC=BC=4$. Since D is the midpoint of BC, it follows $CD=DB=\\frac{1}{2}BC=2$. Therefore, $AD=AC+CD=4+2=\\boxed{6};$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52579842_72": { -"question": "As shown in the figure, the line segment $AB=8$, point $C$ is the midpoint of line segment $AB$, and point $D$ is the midpoint of line segment $BC$. There is a point $E$ on line segment $AC$ such that $CE=BC$. What is the length of $AE$?", -"image_file_name": "6951217", -"image": [ -"math/52579842_391.png" -], -"solution": "\\textbf{Solution:} Since $CE=BC$ and $BC=4$, \\\\\nit follows that $CE=4$, \\\\\nthus, $AE=AC-CE=4-4=\\boxed{0}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51251486_74": { -"question": "As shown in the figure, the length of the segment $AB$ is $20$, point $C$ is the midpoint of segment $AB$, point $D$ is the midpoint of segment $BC$, and point $E$ is on the segment $AC$ with $CE = \\frac{2}{5}AC$. Find the length of the segment $DB$.", -"image_file_name": "6951217", -"image": [ -"math/51251486_401.png" -], -"solution": "\\textbf{Solution:} Since point C is the midpoint of line segment AB,\\\\\nit follows that $AC=BC=\\frac{1}{2}AB=\\frac{1}{2}\\times 20=10$,\\\\\nFurthermore, since point D is the midpoint of line segment BC,\\\\\nit follows that $BD=CD=\\frac{1}{2}BC=\\frac{1}{2}\\times 10=\\boxed{5}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51251486_75": { -"question": "As shown in the figure, segment \\(AB=20\\), point \\(C\\) is the midpoint of segment \\(AB\\), point \\(D\\) is the midpoint of segment \\(BC\\), and point \\(E\\) is on segment \\(AC\\) such that \\(CE=\\frac{2}{5}AC\\). Find the length of segment \\(ED\\).", -"image_file_name": "6951217", -"image": [ -"math/51251486_401.png" -], -"solution": "\\textbf{Solution:} Since $CE=\\frac{2}{5}AC$,\\\\\nthen $CE=\\frac{2}{5}\\times 10=4$,\\\\\nthus $ED=CE+CD=4+5=\\boxed{9}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52916470_77": { -"question": "As illustrated in the figure, point $C$ is a point on line segment $AB$, point $M$ is the midpoint of line segment $AC$, and point $N$ is the midpoint of line segment $BC$. If $AB = 12\\,cm$ and $AM = 5\\,cm$, what is the length of $BC$ in centimeters?", -"image_file_name": "6951217", -"image": [ -"math/52916470_410.png" -], -"solution": "\\textbf{Solution:} Since point M is the midpoint of line segment AC,\\\\\nit follows that AC $= 2$AM,\\\\\nsince AM $= 5$cm,\\\\\nit follows that AC $= 10$cm,\\\\\nsince AB $= 12$cm,\\\\\nit follows that BC $=$ AB $-$ AC $= \\boxed{2}$cm;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52916470_78": { -"question": "As shown in the figure, point \\(C\\) is a point on segment \\(AB\\), point \\(M\\) is the midpoint of segment \\(AC\\), and point \\(N\\) is the midpoint of segment \\(BC\\). If \\(MN = 8 \\, \\text{cm}\\), what is the length of \\(AB\\) in centimeters?", -"image_file_name": "6951217", -"image": [ -"math/52916470_410.png" -], -"solution": "\\textbf{Solution:} Since point M is the midpoint of line segment AC, and point N is the midpoint of line segment BC, \\\\\n$\\therefore$ BC$=2$NC, AC$=2$MC, \\\\\nSince MN$=$NC$+$MC$=8$cm, \\\\\n$\\therefore$ AB$=$BC$+$AC$=2$MN$=2\\times 8=\\boxed{16}$cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53319958_80": { -"question": "As shown in the figure, $C$ is a point on line segment $AB$, and $M$, $N$ are the midpoints of $AC$, $BC$, respectively. If $AC=8\\,cm$ and $BC=6\\,cm$, what is the length of line segment $MN$ in $cm$?", -"image_file_name": "6951217", -"image": [ -"math/53319958_426.png" -], -"solution": "\\textbf{Solution:} Given that $M$ and $N$ are the midpoints of $AC$ and $BC$ respectively, \\\\\n$\\therefore CM=\\frac{1}{2}AC=4\\,cm$, $CN=\\frac{1}{2}BC=3\\,cm$, \\\\\n$\\therefore MN=CM+CN=4+3=\\boxed{7}\\,cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53319958_81": { -"question": "As shown in the figure, $C$ is a point on line segment $AB$, and $M$ and $N$ are the midpoints of $AC$ and $BC$, respectively. If the ratio of the lengths of line segments $CM$ and $CN$ is $2:1$, and the length of line segment $CN$ is $4\\,\\text{cm}$, find the length of line segment $AB$.", -"image_file_name": "6951217", -"image": [ -"math/53319958_426.png" -], -"solution": "Solution: Since the ratio of the lengths of segments $CM$ and $CN$ is $2\\colon 1$ and $CN=4\\,\\text{cm}$,\\\\\n$\\therefore$ segment $CM=8\\,\\text{cm}$.\\\\\nSince $M$ and $N$ are the midpoints of $AC$ and $BC$ respectively,\\\\\n$\\therefore$ $AC=2CM=16\\,\\text{cm}$, $BC=2CN=8\\,\\text{cm}$,\\\\\n$\\therefore$ $AB=AC+BC=16+8=\\boxed{24}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53363922_83": { -"question": "As shown in the figure, it is known that the length of line segment $AB=23$, $BC=15$, and $M$ is the midpoint of $AC$. What is the length of line segment $CM$?", -"image_file_name": "6951217", -"image": [ -"math/53363922_434.png" -], -"solution": "\\textbf{Solution:} Since $AB=23$, $BC=15$,\\\\\nthus $AC=AB-BC=23-15=8$.\\\\\nAlso, since $M$ is the midpoint of $AC$,\\\\\nthus $CM=\\frac{1}{2}AC=\\frac{1}{2}\\times 8=\\boxed{4}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53363922_84": { -"question": "As shown in the figure, it is known that the length of segment $AB=23$, $BC=15$, and $M$ is the midpoint of $AC$. Take a point $N$ on $CB$ such that the ratio $CN: NB=1:2$. Find the length of segment $MN$.", -"image_file_name": "6951217", -"image": [ -"math/53363922_434.png" -], -"solution": "\\textbf{Solution:} Given that $BC=15$ and $CN:NB=1:2$,\\\\\nit follows that $CN=\\frac{1}{3}BC=\\frac{1}{3}\\times 15=5$.\\\\\nSince $M$ is the midpoint of $AC$,\\\\\nthen $CM=\\frac{1}{2}AC=4$.\\\\\nTherefore, $MN=CM+CN=4+5=\\boxed{9}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53211052_86": { -"question": "As shown in the figure, the line segment $AB = 21, BC = 15$, and point $M$ is the midpoint of $AC$. What is the length of the line segment $AM$?", -"image_file_name": "6951217", -"image": [ -"math/53211052_442.png" -], -"solution": "\\textbf{Solution:} Given that $AB=21$ and $BC=15$,\\\\\nthus $AC=AB-BC=21-15=6$.\\\\\nSince point M is the midpoint of AC,\\\\\nit follows that $AM=\\frac{1}{2}AC=\\frac{1}{2}\\times 6=\\boxed{3}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53211052_87": { -"question": "As shown in the figure, for the line segments $AB=21, BC=15$, point $M$ is the midpoint of $AC$. A point $N$ is chosen on $CB$ such that $CN:NB=1:2$. What is the length of $MN$?", -"image_file_name": "6951217", -"image": [ -"math/53211052_442.png" -], -"solution": "\\textbf{Solution:} Since $BC=15$ and $CN:NB=1:2$,\\\\\nit follows that $CN=\\frac{1}{3}BC=\\frac{1}{3}\\times 15=5$.\\\\\nAdditionally, since point M is the midpoint of AC and $AC=6$,\\\\\nit follows that $MC=\\frac{1}{2}AC=3$,\\\\\ntherefore $MN=MC+NC=3+5=\\boxed{8}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51438092_89": { -"question": "As shown in Figure 1, it is known that point $B$ is on line segment $AC$, and point $D$ is on line segment $AB$. If $AB=6\\,\\text{cm}$, $BC=4\\,\\text{cm}$, and $D$ is the midpoint of line segment $AC$, what is the length of line segment $DB$ in centimeters?", -"image_file_name": "6951217", -"image": [ -"math/51438092_450.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $AC=AB+BC$, $AB=6\\text{cm}$, $BC=4\\text{cm}$\\\\\nTherefore $AC=6+4=10\\text{cm}$\\\\\nAlso, since $D$ is the midpoint of line segment $AC$\\\\\nTherefore $DC= \\frac{1}{2}AC= \\frac{1}{2}\\times10=5\\text{cm}$\\\\\nTherefore $DB=DC-BC=6-5=\\boxed{1}\\text{cm}$", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51438092_90": { -"question": "Given point B on line segment AC and point D on line segment AB. As shown in Figure 2, if $BD=\\frac{1}{4}AB=\\frac{1}{3}CD$, and E is the midpoint of line segment AB, with $EC=12\\,\\text{cm}$, find the length of line segment AC.", -"image_file_name": "6951217", -"image": [ -"math/51438092_450.png" -], -"solution": "\\textbf{Solution:} Let $BD=x$ cm,\\\\\nsince $BD= \\frac{1}{4}AB= \\frac{1}{3}CD$,\\\\\nthus $AB=4BD=4x$ cm, $CD=3BD=3x$ cm,\\\\\nmoreover, since $DC=DB+BC$,\\\\\nthus $BC=3x-x=2x$,\\\\\nand since $AC=AB+BC$,\\\\\nthus $AC=4x+2x=6x$ cm,\\\\\nsince $E$ is the midpoint of segment $AB$,\\\\\nthus $BE= \\frac{1}{2}AB= \\frac{1}{2} \\times 4x=2x$ cm,\\\\\nmoreover, since $EC=BE+BC$,\\\\\nthus $EC=2x+2x=4x$ cm,\\\\\nand since $EC=12$ cm,\\\\\nthus $4x=12$,\\\\\nsolving gives: $x=3$,\\\\\nthus $AC=6x=6 \\times 3=\\boxed{18}$ cm.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53210853_92": { -"question": "As shown in the figure, it is known that the length of line segment $AB=23$, $BC=15$, and point $M$ is the midpoint of $AC$. What is the length of line segment $AM$?", -"image_file_name": "6951217", -"image": [ -"math/53210853_462.png" -], -"solution": "\\textbf{Solution:} Given that line segment $AB=23$, and $BC=15$, \\\\\n$\\therefore AC=AB-BC=23-15=8$, \\\\\nalso, since point M is the midpoint of AC, \\\\\n$\\therefore AM=\\frac{1}{2}AC=\\frac{1}{2}\\times 8=\\boxed{4}$, meaning the length of segment AM is 4.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53210853_93": { -"question": "As shown in the figure, it is known that line segment $AB = 23$, $BC = 15$, and point $M$ is the midpoint of $AC$. Take a point $N$ on $CB$ such that the ratio $CN:NB = 1:2$. What is the length of line segment $MN$?", -"image_file_name": "6951217", -"image": [ -"math/53210853_462.png" -], -"solution": "Solution: Since $BC=15$ and $CN:NB=1:2$, \\\\\nit follows that $CN=\\frac{1}{3}BC=\\frac{1}{3}\\times 15=5$, \\\\\nand since point M is the midpoint of AC, and $AC=8$, \\\\\nit follows that $MC=\\frac{1}{2}AC=4$, \\\\\ntherefore $MN=MC+NC=4+5=\\boxed{9}$, meaning the length of MN is 9.\n", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51379914_95": { -"question": "As illustrated, point C is the midpoint of segment AB, point D is a point on segment BC, and point E is the midpoint of segment CD. Given $AB=20$ and $BD=4$, find the length of segment CD.", -"image_file_name": "6951217", -"image": [ -"math/51379914_470.png" -], -"solution": "\\textbf{Solution:} Because $AB=20$ and $BD=4$,\\\\\nit follows that $AD=AB-BD=20-4=16$,\\\\\nsince point C is the midpoint of line segment AB,\\\\\nit follows that $AC=BC=10$,\\\\\ntherefore $CD=AD-AC=16-10=\\boxed{6};$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51379914_96": { -"question": "As shown in the figure, point C is the midpoint of line segment AB, point D is a point on line segment BC, and point E is the midpoint of line segment CD. Given that $AB=20$ and $BD=4$, find the length of line segment BE.", -"image_file_name": "6951217", -"image": [ -"math/51379914_470.png" -], -"solution": "\\textbf{Solution:} Since $E$ is the midpoint of $CD$,\\\\\nthus, $ED = \\frac{1}{2}CD = 3$,\\\\\ntherefore, $BE = BD + ED = 4 + 3 = \\boxed{7}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53274798_98": { -"question": "As shown in the figure, C is a point on line segment AB, and M, N are the midpoints of AC and BC, respectively. If AC = 8 cm and BC = 6 cm, what is the length of line segment MN?", -"image_file_name": "6951217", -"image": [ -"math/53274798_480.png" -], -"solution": "\\textbf{Solution}: Since $M$ and $N$ are the midpoints of $AC$ and $BC$ respectively,\\\\\n$\\therefore CM=\\frac{1}{2}AC=4\\text{cm}$, $CN=\\frac{1}{2}BC=6\\text{cm}$,\\\\\n$\\therefore MN=CM+CN=4+6=\\boxed{10}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53274798_99": { -"question": "As shown in the figure, C is a point on the line segment AB, with M and N being the midpoints of AC and BC, respectively. If the ratio of the lengths of segments CM to CN is 2:1, and the length of segment CN is 4 cm, find the length of segment AB.", -"image_file_name": "6951217", -"image": [ -"math/53274798_480.png" -], -"solution": "\\textbf{Solution:} Given that the ratio of the lengths of segments CM to CN is $2\\colon 1$ and $CN=4\\,\\text{cm}$, \\\\\n$\\therefore$ the length of segment CM is $8\\,\\text{cm}$.\\\\\nSince M and N are the midpoints of AC and BC, respectively, \\\\\n$\\therefore$ AC$=2\\cdot CM=16\\,\\text{cm}$ and BC$=2\\cdot CN=8\\,\\text{cm}$,\\\\\n$\\therefore$ AB$=AC+BC=16+8=\\boxed{24}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53223520_102": { -"question": "As shown in the figure, points A, C, E, B, D are on the same straight line, and $AB=CD$, with point E being the midpoint of line segment AD. If $AB=11$ and $CE=3$, find the length of the line segment AD.", -"image_file_name": "6951217", -"image": [ -"math/53223520_491.png" -], -"solution": "\\textbf{Solution:} Given that $CE=3, CE=BE$,\\\\\nhence $BC=CE+BE=3+3=6$,\\\\\nsince $AB=11$,\\\\\nthus $AC=AB-BC=11-6=5$,\\\\\nsince $CD=AB=11$,\\\\\ntherefore $AD=AC+CD=5+11=\\boxed{16}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51482139_104": { -"question": "As shown in the figure, it is known that the length of line segment $AD=30\\,cm$, points C and B are both on line segment $AD$, and point E is the midpoint of $AB$. If $BD=6\\,cm$, what is the length of line segment $AE$ in $cm$?", -"image_file_name": "6951217", -"image": [ -"math/51482139_503.png" -], -"solution": "\\textbf{Solution:} Given $\\because AD=30\\,cm$, $BD=6\\,cm$,\\\\\n$\\therefore AB=AD-BD=24\\,cm$,\\\\\n$\\because E$ is the midpoint of $AB$,\\\\\n$\\therefore AE= \\boxed{12\\,cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51482139_105": { -"question": "As shown in the figure, it is known that the line segment $AD=30\\,cm$, with points C and B both on the line segment $AD$ and point E being the midpoint of $AB$. If $AC=\\frac{1}{3}AD$, and point F is the midpoint of line segment $CD$, what is the length of line segment $EF$ in $cm$?", -"image_file_name": "6951217", -"image": [ -"math/51482141_5013.png", -"math/51482139_503.png" -], -"solution": "\\textbf{Solution:} Given that $\\because AC= \\frac{1}{3} AD=10\\,cm$,\\\\\n$\\therefore CD=AD-AC=20\\,cm$,\\\\\nsince $F$ is the midpoint of $CD$,\\\\\n$\\therefore DF= \\frac{1}{2} CD=10\\,cm$,\\\\\n$\\therefore BF=DF-BD=4\\,cm$,\\\\\n$\\therefore EF=BE-BF=AE-BF=\\boxed{8}\\,cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51445267_107": { -"question": "As shown in the figure, it is known that the length of segment $AD=30\\text{cm}$, points $C$ and $B$ are both on segment $AD$, and point $E$ is the midpoint of segment $AB$. If $BD=6\\text{cm}$, what is the length of segment $AE$ in $\\text{cm}$?", -"image_file_name": "6951217", -"image": [ -"math/51445267_510.png" -], -"solution": "\\textbf{Solution:} Given that $AD=30cm$, $BD=6cm$,\\\\\nhence $AB=AD-BD=30-6=24cm$,\\\\\nsince point E is the midpoint of AB,\\\\\nthus $AE= \\frac{1}{2}AB= \\frac{1}{2} \\times 24=\\boxed{12}cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51445267_108": { -"question": "As shown in the figure, it is known that the length of line segment $AD$ is 30 cm, and points $C$ and $B$ are both on line segment $AD$. Point $E$ is the midpoint of $AB$. The length of $AE$ is 12 cm. If $AC = \\frac{1}{3} AD$, and point $F$ is the midpoint of line segment $CD$, find the length of line segment $EF$.", -"image_file_name": "6951217", -"image": [ -"math/51445267_510.png" -], -"solution": "\\textbf{Solution:} As shown in the figure,\\\\\n$\\because AC= \\frac{1}{3} AD= \\frac{1}{3}\\times30=10\\,\\text{cm}$,\\\\\n$\\therefore CD=AD-AC=30-10=20\\,\\text{cm}$,\\\\\n$\\because$ Point F is the midpoint of line segment CD,\\\\\n$\\therefore DF=\\frac{1}{2}CD=10\\,\\text{cm}$,\\\\\n$\\therefore EF=AD-AE-DF=30-12-10=\\boxed{8}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51495344_110": { -"question": "The given line segment $AB=a$ (as shown in the figure), where $C$ is a point on the extension of $AB$ in the opposite direction, and $AC=\\frac{1}{3}AB$, $D$ is the midpoint of line segment $BC$. What is the length of $CD$ expressed as an algebraic expression involving $a$?", -"image_file_name": "6951217", -"image": [ -"math/51495344_522.png" -], -"solution": "\\textbf{Solution:} We have $CD=\\boxed{\\frac{2}{3}a}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51495344_111": { -"question": "Given that the length of segment \\(AB=a\\) (as shown in the diagram), where \\(C\\) is a point on the extension of \\(AB\\) in the opposite direction, and \\(AC=\\frac{1}{3}AB\\), \\(D\\) is the midpoint of segment \\(BC\\). If \\(AD=3\\text{cm}\\), find the value of \\(a\\).", -"image_file_name": "6951217", -"image": [ -"math/51495344_522.png" -], -"solution": "\\textbf{Solution}: Since $AC= \\frac{1}{3}a$ and $AD=3\\text{cm}$,\\\\\nit follows that $CD= \\frac{1}{3}a+3$,\\\\\nwhich implies $\\frac{1}{3}a+3= \\frac{2}{3}a$.\\\\\nSolving for $a$ yields: $a=\\boxed{9}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51407587_113": { -"question": "As shown in the figure: Given the line segment $AB=16\\,\\text{cm}$, point $N$ is on the line segment $AB$ with $NB=3\\,\\text{cm}$, and $M$ is the midpoint of $AB$. What is the length of the line segment $MN$ in centimeters?", -"image_file_name": "6951217", -"image": [ -"math/51407587_536.png" -], -"solution": "\\textbf{Solution:} \n\nGiven that $AB=16\\,\\text{cm}$, and $M$ is the midpoint of $AB$,\n\n$\\therefore AM=MB=\\frac{1}{2}AB=8\\,\\text{cm}$,\n\nGiven that $NB=3\\,\\text{cm}$,\n\n$\\therefore MN=MB-NB=\\boxed{5}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51407587_114": { -"question": "As shown in the figure: It is known that the length of line segment $AB=16\\,\\text{cm}$, point $N$ is on the line segment $AB$, $NB=3\\,\\text{cm}$, $M$ is the midpoint of $AB$. If there is a point $C$ on the line segment $AB$ satisfying $BC=10\\,\\text{cm}$, find the length of line segment $MC$.", -"image_file_name": "6951217", -"image": [ -"math/51407587_536.png" -], -"solution": "\\textbf{Solution:} Since there exists a point $C$ on line segment $AB$, and $BC=10\\,\\text{cm}$, \\\\\nit follows that $MC=BC-MB=10-8=\\boxed{2}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53119305_116": { -"question": "As shown in the figure, it is known that the length of segment $AB=4$. The segment $AB$ is extended to point C such that $BC=\\frac{1}{2}AB$. The segment $AB$ is also extended in the opposite direction to point $D$ such that $AC=2AD$. Find the length of segment $CD$.", -"image_file_name": "6951217", -"image": [ -"math/53119305_546.png" -], -"solution": "\\textbf{Solution:} Given that $AB=4\\text{cm}$, $BC=\\frac{1}{2}AB$,\\\\\nit follows that $BC=2\\text{cm}$, $AC=AB+BC=4+2=6\\text{cm}$,\\\\\nsince $AC=2AD$,\\\\\nit implies that $AD=3\\text{cm}$,\\\\\ntherefore $CD=AD+AC=3+6=\\boxed{9}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53119305_117": { -"question": "As shown in the figure, it is known that the length of segment $AB=4$. Extend $AB$ to point C such that $BC=\\frac{1}{2}AB$, and extend $AB$ in the opposite direction to point $D$ so that $AC=2AD$. If $Q$ is the midpoint of $AB$, and $P$ is a point on the segment $CD$; and $BP=\\frac{1}{2}BC$, calculate the length of the segment $PQ$.", -"image_file_name": "6951217", -"image": [ -"math/53119305_546.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, when $P$ is on segment $AB$, we have $BP_1=\\frac{1}{2}BC$\\\\\nSince $Q$ is the midpoint of $AB$,\\\\\nit follows that $BQ= \\frac{1}{2}AB=2\\text{cm}$,\\\\\nSince $BP_1=\\frac{1}{2}BC$,\\\\\nit follows that $BP_1=1\\text{cm}$,\\\\\nTherefore, $P_1Q=BQ-BP_1=2-1=1\\text{cm}$.\\\\\nWhen $P$ is on segment $BC$, $BP_2=\\frac{1}{2}BC=1$,\\\\\n$P_2Q=BQ+BP_2=2+1=3\\text{cm}$.\\\\\nTherefore, the length of segment $PQ$ is $\\boxed{1}$ or $\\boxed{3\\text{cm}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51495383_119": { -"question": "As shown in the figure, point C is a point on line segment AB, point D is the midpoint of line segment BC, and $AB=16\\,cm$, $CD=3\\,cm$. Find the length of line segment AC.", -"image_file_name": "6951217", -"image": [ -"math/51495383_552.png" -], -"solution": "\\textbf{Solution:} Since point D is the midpoint of line segment BC, and $CD=3\\,\\text{cm}$,\\\\\nit follows that $BC=2CD=6\\,\\text{cm}$,\\\\\ntherefore, $AC=AB-BC=16-6=\\boxed{10}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51495383_120": { -"question": "As shown in the figure, point C is a point on line segment AB, point D is the midpoint of line segment BC, and $AB=16\\,cm$, $CD=3\\,cm$. If point E is on line AB, and $AE=2\\,cm$, what is the length of line segment DE in $cm$?", -"image_file_name": "6951217", -"image": [ -"math/51495383_552.png" -], -"solution": "\\textbf{Solution:} Given that $AC=10\\,cm$, $CD=3\\,cm$, \\\\\nit follows that $AD=AC+CD=10+3=13\\,cm$. \\\\\nWhen point E is to the left of point A, denoted as $E_1$, $DE_1=AD+AE_1=13+2=15\\,cm$. \\\\\nWhen point E is to the right of point A, denoted as $E_2$, $DE_2=AD-AE_2=13-2=11\\,cm$. \\\\\nTherefore, the length of segment DE is either \\boxed{11\\,cm} or \\boxed{15\\,cm}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51179538_122": { -"question": "As shown in the figure, points D, B, E are three points on the line segment AC, with D being the midpoint of the line segment AB. If point E is the midpoint of BC and $BE= \\frac{1}{5} AC=2cm$, find the length of the line segment DE.", -"image_file_name": "6951217", -"image": [ -"math/51179538_560.png" -], -"solution": "\\textbf{Solution:}\n\nSince point $E$ is the midpoint of $BC$, \\\\\nthus $BC=2BE=2\\times \\frac{1}{5}=\\frac{2}{5}$cm \\\\\nTherefore $AB=AC−BC=2−\\frac{2}{5}=\\frac{8}{5}$cm \\\\\nSince $D$ is the midpoint of line segment $AB$, \\\\\ntherefore $BD=\\frac{1}{2}AB=\\frac{1}{2}\\times \\frac{8}{5}=\\frac{4}{5}$ \\\\\nTherefore $DE=BD+BE=\\frac{4}{5}+\\frac{1}{5}=\\boxed{1}$cm", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51179538_123": { -"question": "As shown in the figure, points D, B, and E are three points on line segment AC, with D being the midpoint of line segment AB. If $AC = 2DE = 20$ and $AD: EC = 3:2$, find the length of line segment EC.", -"image_file_name": "6951217", -"image": [ -"math/51179538_560.png" -], -"solution": "Solution: Since point E is the midpoint of BC, and D is the midpoint of segment AB,\\\\\nit follows that $BD=AD=\\frac{1}{2}AB$, and $BE=EC=\\frac{1}{2}BC$,\\\\\nSince $AC=AD+DC=AD+BD+BE+EC=2(AD+EC)=20$,\\\\\nit follows that $AD+EC=10$,\\\\\nSince $AD\\colon EC=3\\colon 2$,\\\\\nit follows that $EC=\\boxed{4}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206769_125": { -"question": "As shown in the figure, point B is a point on line segment AC, and \\(AB = 27cm\\), \\(BC = \\frac{1}{3}AB\\). What is the length of line segment \\(AC\\)?", -"image_file_name": "6951217", -"image": [ -"math/53206769_571.png" -], -"solution": "\\textbf{Solution:} Solution: According to the given problem, $AB=27\\text{cm}$, $BC=\\frac{1}{3}AB$,\\\\\n$\\therefore BC=9\\text{cm}$,\\\\\n$\\therefore AC=AB+BC=27+9=\\boxed{36}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53206769_126": { -"question": "As shown in the figure, point $B$ is on line segment $AC$, and $AB=27\\text{cm}$, $BC=\\frac{1}{3}AB$. If point $O$ is the midpoint of line segment $AC$, find the length of line segment $OB$.", -"image_file_name": "6951217", -"image": [ -"math/53206769_571.png" -], -"solution": "\\textbf{Solution:} Since point O is the midpoint of AC, \\\\\n$\\therefore$ OC=$\\frac{1}{2}$AC=$\\frac{1}{2} \\times 36=18$, \\\\\n$\\therefore$ OB=OC−BC=18−9=\\boxed{9}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52794225_128": { -"question": "As shown in the figure, there are three points C, D, and E sequentially on the line segment AB, dividing the line segment AB into four parts with the ratios $2: 3: 4: 5$. Given that $AB=28$, what is the length of the line segment AE?", -"image_file_name": "6951217", -"image": [ -"math/52794225_580.png" -], -"solution": "Solution: Let $AC=2x$, then $CD$, $DE$, and $EB$ are $3x$, $4x$, and $5x$ respectively,\\\\\nGiven that, $2x+3x+4x+5x=28$\\\\\nSolving for $x$, we get $x=2$\\\\\nThen, $AC$, $CD$, $DE$, and $EB$ are $4\\text{cm}$, $6\\text{cm}$, $8\\text{cm}$, and $10\\text{cm}$ respectively,\\\\\nTherefore, $AE=AC+CD+DE=\\boxed{18\\text{cm}}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52794225_129": { -"question": "As shown in the figure, there are three points $C$, $D$, $E$ sequentially placed on the segment $AB$, which divide the segment $AB$ into four parts with ratios $2:3:4:5$. Given that $AB=28$, and if $M$, $N$ are the midpoints of segments $DE$ and $EB$ respectively, what is the length of segment $MN$?", -"image_file_name": "6951217", -"image": [ -"math/52794225_580.png" -], -"solution": "Solution: From the given problem,\\\\\nsince $M$ is the midpoint of $DE$,\\\\\ntherefore $ME = \\frac{1}{2}DE = 4\\,\\text{cm}$,\\\\\nsince $N$ is the midpoint of $EB$,\\\\\ntherefore $EN = \\frac{1}{2}EB = 5\\,\\text{cm}$,\\\\\ntherefore $MN = ME + EN = \\boxed{9\\,\\text{cm}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52531561_131": { -"question": "As shown in the diagram, point $D$ is the midpoint of segment $AC$, and point $E$ is the midpoint of segment $BC$, with $BC=\\frac{4}{7}AC$. If $BC=8$, what is the length of $DC$?", -"image_file_name": "6951217", -"image": [ -"math/52531561_595.png" -], -"solution": "\\textbf{Solution:} Since $BC=8$ and $BC=\\frac{4}{7}AC$,\\\\\nit follows that $AC=8\\div\\frac{4}{7}=14$,\\\\\nGiven that point $D$ is the midpoint of line segment $AC$,\\\\\nit follows that $DC=\\frac{1}{2}AC=\\frac{1}{2}\\times 14=\\boxed{7}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52531561_132": { -"question": "As shown in the figure, point $D$ is the midpoint of line segment $AC$, and point $E$ is the midpoint of line segment $BC$, with $BC=\\frac{4}{7}AC$. If $DE=6$, what is the length of $AC$?", -"image_file_name": "6951217", -"image": [ -"math/52531561_595.png" -], -"solution": "\\textbf{Solution:} Given from the problem, $BC=\\frac{4}{7}AC$,\n\n$\\therefore AC=AB+BC=\\frac{7}{4}BC$,\n\n$\\because$ point $D$ is the midpoint of line segment $AC$, and point $E$ is the midpoint of line segment $BC$,\n\n$\\therefore DC=DA=\\frac{1}{2}AC=\\frac{7}{8}BC$, $EC=BE=\\frac{1}{2}BC$,\n\n$\\therefore DE=DC-EC=\\frac{7}{8}BC-\\frac{1}{2}BC=6$,\n\nSolving this, we find $BC=16$,\n\n$\\therefore AC=\\frac{7}{4}\\times 16=\\boxed{28}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53119836_134": { -"question": "As shown in the figure, there are three points $D$, $B$, and $E$ successively on the line segment $AC$, with $AD=\\frac{1}{2}DB$, $E$ is the midpoint of $BC$, and $BE=\\frac{1}{5}AC=2$. Find the length of the line segment $AB$.", -"image_file_name": "6951217", -"image": [ -"math/53119836_606.png" -], -"solution": "\\textbf{Solution:} Since $BE=\\frac{1}{5}AC=2$, and $E$ is the midpoint of $BC$, \\\\\n$\\therefore BC=2BE=4$, $AC=10$, \\\\\n$\\therefore AB=\\frac{3}{5}AC=\\boxed{6}$,", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53119836_135": { -"question": "As shown in the figure, there are three points $D$, $B$, and $E$ successively located on the line segment $AC$, with $AD = \\frac{1}{2}DB$, $E$ being the midpoint of $BC$, and $BE = \\frac{1}{5}AC = 2$. Calculate the length of line segment $DE$.", -"image_file_name": "6951217", -"image": [ -"math/53119836_606.png" -], -"solution": "\\textbf{Solution:} Since $AD=\\frac{1}{2}DB$,\\\\\nit follows that $AB=AD+DB=\\frac{3}{2}DB$,\\\\\nSince $AB=6$,\\\\\nit follows that $DB=4$,\\\\\nAlso, since $BE=2$,\\\\\nit follows that $DE=DB+BE$\\\\\n$=4+2=\\boxed{6}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52916287_137": { -"question": "The line segments $AB$ and $CD$ are on the same straight line, with $M$ and $N$ being the midpoints of line segments $AB$ and $CD$, respectively. It is known that $AB=6\\,cm$ and $CD=8\\,cm$. When the points $A$ and $C$ coincide, what is the length of $MN$ in $cm$?", -"image_file_name": "6951217", -"image": [ -"math/52916287_610.png" -], -"solution": "Solution: Since $M$ and $N$ are the midpoints of line segments $AB$ and $CD$ respectively, and $AB=6\\,cm$, $CD=8\\,cm$, with points $A$ and $C$ coinciding,\\\\\ntherefore, $AM=3\\,cm$, $AN=4\\,cm$,\\\\\nhence $MN=AN-AM=\\boxed{1\\,cm}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52916287_138": { -"question": "As shown in the figure, the line segments $AB$ and $CD$ are on the same straight line, where $M$ and $N$ are the midpoints of $AB$ and $CD$, respectively. Given that $AB = 6\\,\\text{cm}$ and $CD = 8\\,\\text{cm}$. When point $C$ is on line segment $AB$, if the common part $BC$ of the line segments $AB$ and $CD$ is $2\\,\\text{cm}$, then what is the length of $MN$ in cm?", -"image_file_name": "6951217", -"image": [ -"math/52916287_610.png" -], -"solution": "\\textbf{Solution:} Since M and N are the midpoints of the line segments AB and CD, respectively, and AB=6cm, CD=8cm,\\\\\ntherefore, AM=3cm, DN=4cm.\\\\\nSince the common part of the line segments AB and CD is BC=2cm,\\\\\ntherefore, the length of AD is AB+CD−BC=6+8−2=12cm,\\\\\ntherefore, the length of MN is AD−AM−DN=12−3−4=\\boxed{5cm};", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50056753_141": { -"question": "It is known that the length of segment $AB=20$. $M$ is the midpoint of segment $AB$, and $P$ is any point on segment $AB$. $N$ is the midpoint of segment $PB$. When $P$ is the midpoint of segment $AM$, what is the length of segment $NB$?", -"image_file_name": "6951217", -"image": [ -"math/50056753_624.png" -], -"solution": "\\textbf{Solution}: As shown in the figure, since $M$ is the midpoint of the segment $AB$, $AB=20$\\\\\ntherefore $MA=\\frac{1}{2}AB=10$\\\\\nsince $P$ is the midpoint of the segment $AM$,\\\\\ntherefore $AP=\\frac{1}{2}AM=5$\\\\\ntherefore $PB=AB-AP=20-5=15$\\\\\nsince $N$ is the midpoint of the segment $PB$\\\\\ntherefore $NB=\\frac{1}{2}PB=\\boxed{7.5}$", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50056753_142": { -"question": "As shown in the figure, it is known that the length of line segment $AB=20$, $M$ is the midpoint of line segment $AB$, $P$ is any point on line segment $AB$, and $N$ is the midpoint of line segment $PB$. When the length of line segment $MP=1$, what is the length of line segment $NB$?", -"image_file_name": "6951217", -"image": [ -"math/50056753_624.png" -], -"solution": "\\textbf{Solution:} Since $MP=1$,\\\\\nTherefore, when P is on the left side of M, $BP=MB+MP=11$,\\\\\nSince N is the midpoint of the line segment $PB$,\\\\\nTherefore, $NB=\\frac{1}{2}PB=5.5$,\\\\\nWhen P is on the right side of M, $BP=MB-MP=9$,\\\\\nSince N is the midpoint of the line segment $PB$,\\\\\nTherefore, $NB=\\frac{1}{2}PB=\\boxed{4.5}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50733799_145": { -"question": "As shown in the figure, the line segment $AB=8$, point C is the midpoint of line segment AB, and point D is the midpoint of line segment BC. Find the length of line segment AD.", -"image_file_name": "6951217", -"image": [ -"math/50733799_631.png" -], -"solution": "\\textbf{Solution:} Since $AB=8$ and C is the midpoint of AB,\\\\\nit follows that $AC=BC=4$.\\\\\nSince D is the midpoint of BC,\\\\\nit follows that $CD=DB=\\frac{1}{2}BC=2$.\\\\\nTherefore, $AD=AC+CD=4+2=\\boxed{6}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50733799_146": { -"question": "As shown in the figure, the length of the line segment $AB=8$, point $C$ is the midpoint of line segment $AB$, and point $D$ is the midpoint of line segment $BC$. There is a point $E$ on the line segment $AC$, where $CE=\\frac{1}{3}BC$. Find the length of $AE$.", -"image_file_name": "6951217", -"image": [ -"math/50733799_631.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $CE = \\frac{1}{3}BC$ and $BC = 4$, \\\\\nit follows that $CE = \\frac{4}{3}$, \\\\\ntherefore $AE = AC - CE = 4 - \\frac{4}{3} = \\boxed{\\frac{8}{3}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"43067255_148": { -"question": "Given that point $C$ is a point on segment $AB$, point $M$ is the midpoint of segment $AC$, and point $N$ is the midpoint of segment $BC$, if $AB=10\\,\\text{cm}$, what is the length of $MN$?", -"image_file_name": "6951217", -"image": [ -"math/43067255_640.png" -], -"solution": "\\textbf{Solution:} We have $MN=CM+CN=\\frac{1}{2}AC+\\frac{1}{2}BC=\\frac{1}{2}AB=5\\,\\text{cm}$,\\\\\ntherefore $MN=\\boxed{5\\,\\text{cm}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"43067255_149": { -"question": "It is known that point $C$ is a point on segment $AB$, point $M$ is the midpoint of segment $AC$, and point $N$ is the midpoint of segment $BC$. If $AC:CB=3:2$ and $NB=3.5\\,cm$, then how many $cm$ does $AB$ equal?", -"image_file_name": "6951217", -"image": [ -"math/43067255_640.png" -], -"solution": "\\textbf{Solution:} Given that $\\because NB=3.5\\,cm$,\\\\\n$\\therefore BC=7\\,cm$,\\\\\n$\\therefore AB=7\\div \\frac{2}{5}=17.5\\,cm$.\\\\\nHence, $AB=\\boxed{17.5}\\,cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51000645_151": { -"question": "As shown in Figure 1, it is known that point $D$ is the midpoint of line segment $AB$, and point $C$ is on line segment $AB$. If $AC=8\\,\\text{cm}$ and $BC=6\\,\\text{cm}$, what is the length of line segment $CD$ in cm?", -"image_file_name": "6951217", -"image": [ -"math/51000646_6502.png" -], -"solution": "\\textbf{Solution:} Given that $AC=8\\text{cm}, BC=6\\text{cm}$,\\\\\nit follows that $AB=AC+BC=8+6=14\\text{cm}$,\\\\\nsince point D is the midpoint of the line segment $AB$,\\\\\nwe have $BD=\\frac{1}{2}AB=\\frac{1}{2}\\times 14=7\\text{cm}$.\\\\\nSince $CD=BD-BC$,\\\\\nwe conclude that $CD=7-6=\\boxed{1}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51000645_152": { -"question": "Given that point \\(D\\) is the midpoint of line segment \\(AB\\), and point \\(C\\) lies on line segment \\(AB\\). As shown in Figure 2, if \\(BC = 2CD\\), and point \\(E\\) is the midpoint of \\(BD\\), with \\(AE = 18cm\\), find the length of line segment \\(AB\\).", -"image_file_name": "6951217", -"image": [ -"math/51000647_6514.png" -], -"solution": "\\textbf{Solution:} Let $CD=x\\, \\text{cm}$.\\\\\nSince $BC=2CD$,\\\\\nit follows that $BC=2x\\, \\text{cm}$.\\\\\nSince $BD=CD+BC$,\\\\\nit follows that $BD=x+2x=3x\\, \\text{cm}$.\\\\\nSince $E$ is the midpoint of $BD$,\\\\\nit follows that $DE=\\frac{1}{2}BD=\\frac{3}{2}x\\, \\text{cm}$.\\\\\nMoreover, since $D$ is the midpoint of $AB$,\\\\\nit follows that $AD=BD=3x\\, \\text{cm}$.\\\\\nSince $AE=AD+DE$,\\\\\nit follows that $AE=3x+\\frac{3}{2}x=\\frac{9}{2}x\\, \\text{cm}$.\\\\\nSince $AE=18\\, \\text{cm}$,\\\\\nit follows that $\\frac{9}{2}x=18$, $x=4$,\\\\\nthus $AB=2BD=6x=24\\, \\text{cm}$,\\\\\ntherefore, the length of segment $AB$ is $\\boxed{24\\, \\text{cm}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52837995_154": { -"question": "Given points $C$ and $D$ are on the line segment $AB$, where $AB=22$ and $CD=8$. If point $C$ is the midpoint of line segment $AB$, find the length of $BD$.", -"image_file_name": "6951217", -"image": [ -"math/52837995_665.png" -], -"solution": "\\textbf{Solution:} Since $AB=22$ and $C$ is the midpoint of $AB$,\\\\\nit follows that $BC=11$,\\\\\nSince $CD=8$,\\\\\nit follows that $BD=BC-CD=\\boxed{3}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52837995_155": { -"question": " Given points $C$ and $D$ are on segment $AB$, and $AB=22$, $CD=8$. If points $M$ and $N$ are respectively the midpoints of $AC$ and $BD$, find the length of $MN$.", -"image_file_name": "6951217", -"image": [ -"math/52837995_665.png" -], -"solution": "\\textbf{Solution:} Given $\\because AB=22$, $CD=8$.\\\\\n$\\therefore AC+BD=AB-CD=14$.\\\\\nAlso, $\\because M$, $N$ are the midpoints of $AC$, $BD$ respectively,\\\\\n$\\therefore CM+DN=7$.\\\\\n$\\therefore MN=CM+DN+CD=\\boxed{15}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"47162039_157": { -"question": "As shown in the figure, points $B$ and $C$ are on the line segment $AD$, and $AB:BC:CD=2:3:4$. Point $M$ is the midpoint of the line segment $AC$, and point $N$ is a point on the line segment $CD$, with $MN=9$. If point $N$ is the midpoint of line segment $CD$, what is the length of $BD$?", -"image_file_name": "6951217", -"image": [ -"math/47162039_675.png" -], -"solution": "\\textbf{Solution}: As shown in the figure,\\\\\nsince point M is the midpoint of line segment AC, and point N is the midpoint of line segment CD,\\\\\nit follows that $CM= \\frac{1}{2} AC$, $CN= \\frac{1}{2} CD$,\\\\\nthus $MN=CM+CN= \\frac{1}{2} (AC+CD)= \\frac{1}{2} AD=9$,\\\\\ntherefore $AD=18$,\\\\\nsince $AB:BC:CD=2:3:4$,\\\\\nit follows that $AB= \\frac{2}{9} \\times AD=4$,\\\\\ntherefore $BD=AD-AB=18-4=\\boxed{14}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"47162039_158": { -"question": "As shown in the figure, points B and C are on line segment $AD$, and $AB:BC:CD=2:3:4$. Point M is the midpoint of line segment $AC$, and point N is a point on line segment $CD$, with $MN=9$. When $CN=\\frac{1}{3}CD$, find the length of $BD$.", -"image_file_name": "6951217", -"image": [ -"math/47162039_675.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince CN = $\\frac{1}{3}$CD,\\\\\nand AB:BC:CD = 2:3:4,\\\\\nlet AB = 2x, BC = 3x, CD = 4x.\\\\\nThus, AC = 5x,\\\\\nand since point M is the midpoint of segment AC,\\\\\nCM = $\\frac{1}{2}$AC = 2.5x,\\\\\nand since CN = $\\frac{1}{3}$CD = $\\frac{4}{3}$x,\\\\\nCM+CN = $\\frac{5}{2}$x+$\\frac{4}{3}$x = MN = 9,\\\\\nthus, x = $\\frac{54}{23}$,\\\\\nHence, BD = 7x = $\\boxed{\\frac{378}{23}}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51561259_160": { -"question": "As shown in the figure, points $C$ and $E$ are two points on segment $AB$, point $D$ is the midpoint of segment $AB$, and $AB=6$, $CD=1$. What is the length of $BC$?", -"image_file_name": "6951217", -"image": [ -"math/51561259_680.png" -], -"solution": "\\textbf{Solution:} Since point D is the midpoint of line segment AB, \\\\\n$\\therefore$ AD=DB=$\\frac{1}{2}$AB=3, \\\\\n$\\therefore$ BC=DB−DC=3−1=\\boxed{2};", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51561259_161": { -"question": "As shown in the figure, points $C$ and $E$ are two points on line segment $AB$, point $D$ is the midpoint of line segment $AB$, and $AB=6$, $CD=1$. If $AE:EC=1:3$, what is the length of $EC$?", -"image_file_name": "6951217", -"image": [ -"math/51561259_680.png" -], -"solution": "\\textbf{Solution:} Let $AE=x$, then $EC=3x$. \\\\\nSince $AC=AD+DC=AE+EC$, \\\\\nit follows that $3+1=x+3x$, solving this gives: $x=1$, \\\\\ntherefore, $EC=3x=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51419997_163": { -"question": "As shown in the figure, point $C$ is the midpoint of line segment $AB$, and point $D$ is on $AB$, with $AD=\\frac{1}{3}AB$. If $AD=6$, find the length of line segment $CD$.", -"image_file_name": "6951217", -"image": [ -"math/51419997_693.png" -], -"solution": "\\textbf{Solution:} Given $\\because AD= \\frac{1}{3} AB$ and $AD=6$,\\\\\n$\\therefore AB=18$,\\\\\n$\\because C$ is the midpoint of $AB$,\\\\\n$\\therefore AC= \\frac{1}{2} AB=9$,\\\\\n$\\therefore CD=AC-AD=9-6=\\boxed{3}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51419997_164": { -"question": "As shown in the figure, point $C$ is the midpoint of line segment $AB$, and point $D$ is on $AB$ with $AD=\\frac{1}{3}AB$. If $CD=2$, what is the length of line segment $AB$?", -"image_file_name": "6951217", -"image": [ -"math/51419997_693.png" -], -"solution": "\\textbf{Solution:} Given that $C$ is the midpoint of $AB$, \\\\\nwe have $AC= \\frac{1}{2}AB$, \\\\\nsince $AD= \\frac{1}{3}AB$, \\\\\nit follows that $CD=AC-AD= \\frac{1}{6}AB$, \\\\\ngiven that $CD=2$, \\\\\nthus $AB=6CD=\\boxed{12}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51653655_166": { -"question": "As shown in the figure, points $C$, $E$ are two points on line segment $AB$, point $D$ is the midpoint of line segment $AB$, and $AB=6$, $CD=1$. What is the length of $BC$?", -"image_file_name": "6951217", -"image": [ -"math/51653655_700.png" -], -"solution": "\\textbf{Solution:} Since point D is the midpoint of line segment AB, and AB$=6$, \\\\\nit follows that BD$=\\frac{1}{2}$AB$=3$, \\\\\nSince CD$=1$, \\\\\nit follows that BC$=BD-CD=3-1=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51653655_167": { -"question": "As shown in the figure, points C and E are two points on the line segment AB, point D is the midpoint of line segment AB, and AB = 6, CD = 1. If AE : EC = 1 : 3, find the length of EC.", -"image_file_name": "6951217", -"image": [ -"math/51653655_700.png" -], -"solution": "\\textbf{Solution:} Since point D is the midpoint of line segment AB, and AB$=6$,\\\\\nthus AD$=\\frac{1}{2}$AB$=3$,\\\\\nsince CD$=1$, thus AC$=$AD$+$CD$=4$,\\\\\nsince AE:EC$=1:3$, thus EC$=\\frac{3}{1+3}\\times 4=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51237402_169": { -"question": "Given point $B$ is on line segment $AC$, and point $D$ is on line segment $AB$. If $AB=8\\text{cm}$, $BC=6\\text{cm}$, and $D$ is the midpoint of line segment $AC$, what is the length of line segment $DB$ in $\\text{cm}$?", -"image_file_name": "6951217", -"image": [ -"math/51237402_710.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1:\\\\\n$\\because AB=8\\text{cm}$, $BC=6\\text{cm}$\\\\\n$\\therefore AC=AB+BC=8+6=14\\text{cm}$\\\\\nFurthermore, $\\because D$ is the midpoint of segment $AC$\\\\\n$\\therefore DC=\\frac{1}{2}AC=\\frac{1}{2}\\times14=7\\text{cm}$\\\\\n$\\therefore DB=DC-BC=7-6=\\boxed{1\\text{cm}}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51237402_170": { -"question": "Given point $B$ is on line segment $AC$, and point $D$ is on line segment $AB$. As shown in the figure, if $BD = \\frac{1}{4}AB = \\frac{1}{3}CD$, $E$ is the midpoint of line segment $AB$, $EC=20\\,cm$, find the length of line segment $AC$.", -"image_file_name": "6951217", -"image": [ -"math/51237402_710.png" -], -"solution": "\\textbf{Solution:} Let $BD=x$ cm, \\\\\nsince $BD= \\frac{1}{4}AB= \\frac{1}{3}CD$, \\\\\nthus $AB=4BD=4x$ cm, $CD=3BD=3x$ cm, \\\\\nhence $BC=DC-DB=3x-x=2x$, \\\\\nthus $AC=AB+BC=4x+2x=6x$ cm, \\\\\nsince $E$ is the midpoint of segment $AB$, \\\\\nthus $BE= \\frac{1}{2}AB= \\frac{1}{2}\\times4x=2x$ cm, \\\\\nthus $EC=BE+BC=2x+2x=4x$ cm, \\\\\nalso, since $EC=20$ cm, \\\\\nthus $4x=20$, \\\\\nsolving gives: $x=5$, \\\\\nhence $AC=6x=6\\times5=\\boxed{30}$ cm.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"46945019_172": { -"question": "As shown in the figure, point C is the midpoint of line segment AB, point D is a point on line segment CB, and point E is the midpoint of line segment DB. Given $AB=20$ and $EB=3$, find the length of line segment DB.", -"image_file_name": "6951217", -"image": [ -"math/46945019_720.png" -], -"solution": "\\textbf{Solution:} Since point E is the midpoint of segment DB, \\\\\ntherefore $DB = 2EB = 2 \\times 3 = \\boxed{6}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"46945019_173": { -"question": "As shown in the figure, point $C$ is the midpoint of segment $AB$, point $D$ is a point on segment $CB$, and point $E$ is the midpoint of segment $DB$. Given that $AB=20$ and $EB=3$, what is the length of segment $CD$?", -"image_file_name": "6951217", -"image": [ -"math/46945019_720.png" -], -"solution": "\\textbf{Solution:} Since point C is the midpoint of line segment AB,\\\\\nit follows that $CB=\\frac{1}{2}AB=\\frac{1}{2}\\times 20=10$\\\\\nGiven that $CD=CB-DB$,\\\\\nit then results in $CD=10-6=\\boxed{4}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52794258_175": { -"question": "Point \\(C\\) lies on segment \\(AB\\), and point \\(M\\) is the midpoint of \\(AC\\), with \\(AM=1\\), \\(BC=4\\). If point \\(N\\) is the midpoint of \\(BC\\), what is the length of \\(MN\\)?", -"image_file_name": "6951217", -"image": [ -"math/52794258_730.png" -], -"solution": "\\textbf{Solution:} Given that, \\\\\n$ \\because $ point $ M$ is the midpoint of $ AC$, and $ AM=1$, \\\\\n$ \\therefore CM=AM=1$, \\\\\n$ \\because $ point $ N$ is the midpoint of $ BC$, and $ BC=4$, \\\\\n$ \\therefore CN=\\frac{1}{2}BC=2$, \\\\\n$ \\therefore MN=CM+CN=1+2=\\boxed{3}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52251794_178": { -"question": "As shown in the figure, point B is a point on line segment AC, and $AB=21$, $BC=\\frac{1}{3}AB$. Calculate the length of line segment AC.", -"image_file_name": "6951217", -"image": [ -"math/52251794_742.png" -], -"solution": "\\textbf{Solution:} We have $BC = \\frac{1}{3}AB = 7$, \\\\\n$AC = AB + BC = AB + \\frac{1}{3}AB = 21 + 7 = \\boxed{28}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52251794_179": { -"question": "As shown in the figure, point B is a point on line segment AC, and $AB=21$, $BC=\\frac{1}{3}AB$. If point O is the midpoint of line segment AC, calculate the length of line segment OB.", -"image_file_name": "6951217", -"image": [ -"math/52251794_742.png" -], -"solution": "\\textbf{Solution:} Since $O$ is the midpoint of $AC$,\\\\\ntherefore, $OC=\\frac{1}{2}AC=14$,\\\\\ntherefore, $OB=OC-BC=14-7=\\boxed{7}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51251319_181": { -"question": "As shown in the figure, it is known that the line segment $AB = 26$, $BC = 18$, and the point $M$ is the midpoint of $AC$. What is the length of the line segment $AC$?", -"image_file_name": "6951217", -"image": [ -"math/51251319_750.png" -], -"solution": "\\textbf{Solution:} Because $AB=26$ and $BC=18$, \\\\\ntherefore $AC=AB-BC=\\boxed{8}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51251319_182": { -"question": "Given the diagram, we know that the length of segment $AB=26$ and $BC=18$. Point $M$ is the midpoint of $AC$. A point $N$ is chosen on $CB$ such that the ratio of $CN: NB=1:2$. What is the length of segment $MN$?", -"image_file_name": "6951217", -"image": [ -"math/51251319_750.png" -], -"solution": "\\textbf{Solution:} Since point $M$ is the midpoint of line segment $AC$,\\\\\nit follows that $MC= \\frac{1}{2}AC$,\\\\\nSince $AC=8$,\\\\\nit follows that $MC=4$. Additionally, since $BC=18$ and $CN:NB=1:2$,\\\\\nit follows that $CN= \\frac{1}{3}BC=6$,\\\\\ntherefore, $MN=MC+CN=6+4=\\boxed{10}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"47110741_184": { -"question": "As shown in the diagram, it is known that point $D$ is on segment $AB$, and point $C$ is the midpoint of segment $AB$. If $AB=8\\,\\text{cm}$ and $BD=3\\,\\text{cm}$, what is the length of segment $CD$ in cm?", -"image_file_name": "6951217", -"image": [ -"math/47110741_765.png" -], -"solution": "\\textbf{Solution:} Given that point $C$ is the midpoint of line segment $AB$,\\\\\nhence, $CB = \\frac{1}{2}AB = 4\\,\\text{cm}$,\\\\\nthus, $CD = CB - BD = 4 - 3 = 1\\,\\text{cm}$,\\\\\nmeaning the length of line segment $CD$ is \\boxed{1}\\,\\text{cm}.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"47110741_185": { -"question": "As shown in the figure, it is known that point $D$ is a point on line segment $AB$, point $C$ is the midpoint of line segment $AB$, if $AB=8\\,\\text{cm}, BD=3\\,\\text{cm}$. If point $E$ is a point on line $AB$, and $BE=\\frac{1}{3}BD$, point $F$ is the midpoint of $BE$, what is the length of line segment $CF$ in $\\,\\text{cm}$?", -"image_file_name": "6951217", -"image": [ -"math/47110741_765.png" -], -"solution": "\\textbf{Solution}:\n\n(1) When point E is on the left side of point B\\\\\n$\\because BE=\\frac{1}{3}BD$\\\\\n$\\therefore BE=\\frac{1}{3}\\times 3=1\\,\\text{cm}$\\\\\n$\\because F$ is the midpoint of $BE$\\\\\n$\\therefore BF=\\frac{1}{2}BE=0.5\\,\\text{cm}$\\\\\n$\\therefore CF=CB−BF=4−0.5=\\boxed{3.5}\\,\\text{cm}$\\\\\n(2) When point E is on the right side of point B\\\\\n$\\because BE=\\frac{1}{3}BD$\\\\\n$\\therefore BE=\\frac{1}{3}\\times 3=1\\,\\text{cm}$\\\\\n$\\because F$ is the midpoint of $BE$\\\\\n$\\therefore BF=\\frac{1}{2}BE=0.5\\,\\text{cm}$\\\\\n$\\therefore CF=CB+BF=4+0.5=\\boxed{4.5}\\,\\text{cm}$\\\\\nIn summary, the length of segment $CF$ can be \\boxed{3.5}\\,\\text{cm} or \\boxed{4.5}\\,\\text{cm}.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51212253_187": { -"question": "Point $C$ is on line segment $AB$, point $M$ is the midpoint of $AC$, $AM=1$, $BC=4$. If point $N$ is the midpoint of $BC$, what is the length of $MN$?", -"image_file_name": "6951217", -"image": [ -"math/51212253_770.png" -], -"solution": "\\textbf{Solution:} Since point $M$ is the midpoint of $AC$, $AM=1$,\\\\\n$\\therefore CM=AM=1$,\\\\\nSince point $N$ is the midpoint of $BC$, $BC=4$,\\\\\n$\\therefore CN=\\frac{1}{2}BC=2$,\\\\\n$\\therefore MN=CM+CN=1+2=\\boxed{3}$;", -"solution_image": [ -"solution_images/51212253_7710.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51212253_188": { -"question": "Point C lies on segment AB, and point M is the midpoint of AC, where $AM=1$ and $BC=4$. If point N lies on ray AB with $AN=7$, please complete the figure and directly state the length of $BN$.", -"image_file_name": "6951217", -"image": [ -"math/51212253_770.png" -], -"solution": "\\textbf{Solution:} Given the information in the problem, it is not sufficient to complete the figure, thus we cannot directly determine the length of $\\boxed{BN}$.", -"solution_image": [ -"solution_images/51212253_7710.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52632926_190": { -"question": "As shown in the figure, $AB=6$. Extend the line segment $AB$ to point $C$, and $D$ is the midpoint of $AC$. If $BC=2AB$, what is the length of $BD$?", -"image_file_name": "6951217", -"image": [ -"math/52632926_780.png" -], -"solution": "\\textbf{Solution:} Since $BC = 2AB$ and $AB = 6$,\\\\\nit follows that $BC = 12$,\\\\\nhence $AC = AB + BC = 18$,\\\\\nGiven that $D$ is the midpoint of $AC$,\\\\\nit means $AD = \\frac{1}{2}AC = 9$,\\\\\ntherefore $BD = AD - AB = \\boxed{3};$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51354427_193": { -"question": "As shown in the figure, points C and D are two points on line segment AB, with AC:BC = 3:2, and point D being the midpoint of AB. If AB = 40, find the length of line segment CD.", -"image_file_name": "6951217", -"image": [ -"math/51354427_790.png" -], -"solution": "\\textbf{Solution}: Since $AC:BC=3:2$ and $AB=40$, \\\\\nit follows that $AC=40\\times \\frac{3}{3+2}=24$, \\\\\nsince point D is the midpoint of AB, \\\\\nit follows that $AD=\\frac{1}{2}AB=20$, \\\\\ntherefore $CD=AC-AD=\\boxed{4}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51354427_194": { -"question": "As shown in the figure, points C and D are two points on line segment AB, with $AC:BC = 3:2$, and point D is the midpoint of AB. As shown in Figure 2, if E is the midpoint of AC and $ED = 7$, find the length of line segment AB.", -"image_file_name": "6951217", -"image": [ -"math/51354427_790.png" -], -"solution": "\\textbf{Solution:} Let $AC=3x, BC=2x$, thus $AB=5x$, \\\\\nsince point D is the midpoint of AB.\\\\\nTherefore, $AD=\\frac{1}{2}AB=\\frac{5}{2}x$, \\\\\nsince E is the midpoint of AC, \\\\\nTherefore, $AE=\\frac{1}{2}AC=\\frac{3}{2}x$, \\\\\nTherefore, $DE=AD−AE=\\frac{5}{2}x−\\frac{3}{2}x=x$, \\\\\nsince $ED=7$, \\\\\nTherefore, $x=7$, \\\\\nTherefore, $AB=5x=\\boxed{35}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50810423_197": { -"question": "As shown in the figure, point $C$ is a point on line segment $AB$, and points $M$ and $N$ are the midpoints of line segments $AC$ and $BC$, respectively. If point $P$ is the midpoint of line segment $AB$, $AC=6\\,\\text{cm}$, and $CP=2\\,\\text{cm}$, what is the length of line segment $PN$ in cm?", -"image_file_name": "6951217", -"image": [ -"math/50810423_800.png" -], -"solution": "\\textbf{Solution:} Since $AC=6\\text{cm}$, $CP=2\\text{cm}$,\\\\\nit follows that $AP=AC+CP=8\\text{cm}$,\\\\\nSince $P$ is the midpoint of segment $AB$,\\\\\nit follows that $AB=2AP=16\\text{cm}$,\\\\\nTherefore, $CB=AB-AC=16-6=10\\text{cm}$,\\\\\nSince $N$ is the midpoint of segment $CB$,\\\\\nit follows that $CN= \\frac{1}{2} CB=5\\text{cm}$,\\\\\nTherefore, $PN=CN-CP=5-2=\\boxed{3}\\text{cm}$.", -"solution_image": [ -"solution_images/50810423_800.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50810294_199": { -"question": "As shown in the figure, it is known that points $A$, $B$, $C$, and $D$ lie on the same straight line, point $C$ is the midpoint of segment $AB$, and point $D$ is on segment $AB$. If $AB=6$ and $BD=\\frac{1}{3}BC$, what is the length of segment $CD$?", -"image_file_name": "6951217", -"image": [ -"math/50810294_810.png" -], -"solution": "\\textbf{Solution:} Since point C is the midpoint of segment AB, and $AB=6$, \\\\\ntherefore $BC= \\frac{1}{2}AB=3$, \\\\\nsince $BD=\\frac{1}{3}BC$, \\\\\nthus $BD=\\frac{1}{3} \\times 3=1$, \\\\\ntherefore $CD=BC-BD=3-1=\\boxed{2}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50810294_200": { -"question": "Given points $A$, $B$, $C$, and $D$ lie on the same straight line, with point $C$ being the midpoint of segment $AB$, and point $D$ lies on segment $AB$. If point $E$ is a point on segment $AB$, and $AE=2BE$, when $AD:BD=2:3$, what is the value of $CD:CE$?", -"image_file_name": "6951217", -"image": [ -"math/50810294_810.png" -], -"solution": "\\textbf{Solution:} Let $AD=2x$, $BD=3x$, then $AB=5x$.\\\\\nSince point C is the midpoint of line segment AB,\\\\\nit follows that $AC=\\frac{1}{2}AB=\\frac{5}{2}x$,\\\\\nthus $CD=AC-AD=\\frac{1}{2}x$,\\\\\nsince $AE=2BE$,\\\\\nit follows that $AE=\\frac{2}{3}AB=\\frac{10}{3}x$,\\\\\nthus $CE=AE-AC=\\frac{10}{3}x-\\frac{5}{2}x=\\frac{5}{6}x$,\\\\\nthus $CD\\colon CE=\\frac{1}{2}x\\colon \\frac{5}{6}x=\\boxed{3\\colon 5}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51292247_202": { -"question": "As shown in the figure, point $B$ is a point on line segment $AC$, and $AB=27\\text{cm}$, $BC=\\frac{1}{3}AB$. Try to find the length of line segment $AC$?", -"image_file_name": "6951217", -"image": [ -"math/51292247_821.png" -], -"solution": "\\textbf{Solution:} Given that $AB=27\\text{cm}$, and $BC=\\frac{1}{3}AB=9\\text{cm}$,\\\\\nthus $AC=AB+BC=27+9=\\boxed{36}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51292247_203": { -"question": "As shown in the figure, point B is a point on line segment AC, and $AB=27\\text{cm}$, $BC=\\frac{1}{3}AB$. If point O is the midpoint of line segment AC, what is the length of line segment $OB$ in cm?", -"image_file_name": "6951217", -"image": [ -"math/51292247_821.png" -], -"solution": "\\textbf{Solution:} From (1) we know: $AC=24\\,\\text{cm}$,\\\\\nsince point O is the midpoint of line segment AC,\\\\\ntherefore $OC=\\frac{1}{2}AC=\\frac{1}{2}\\times 24=12\\,\\text{cm}$.\\\\\nTherefore $OB=OC-BC=12-9=\\boxed{9}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51494975_205": { -"question": "As shown in the figure, point C is a point on the line segment AB, where M and N are the midpoints of AB and CB, respectively. Given that $AC=10\\,cm$ and $NB=6\\,cm$, find the length of CM.", -"image_file_name": "6951217", -"image": [ -"math/51494975_832.png" -], -"solution": "\\textbf{Solution:} \\\\\n$\\because$ N is the midpoint of BC, and NB = 6cm, \\\\\n$\\therefore$ BC = 2NB = $2 \\times 6$ = 12cm, \\\\\n$\\because$ AC = 10cm, \\\\\n$\\therefore$ AB = AC + BC = 10 + 12 = 22cm, \\\\\n$\\because$ M is the midpoint of AB, \\\\\n$\\therefore$ BM = AM = $\\frac{1}{2}$AB = $\\frac{1}{2} \\times 22$ = 11cm, \\\\\n$\\therefore$ CM = AM - AC = 11 - 10 = \\boxed{1}cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51494975_206": { -"question": "As shown in the figure, point C is a point on line segment AB, M and N are the midpoints of AB and CB respectively, with $AC=10\\,cm$ and $NB=6\\,cm$. Find the length of MN.", -"image_file_name": "6951217", -"image": [ -"math/51494975_832.png" -], -"solution": "\\textbf{Solution:} From (1) we have $BM=11\\,\\text{cm}$,\n\n$\\because NB=6\\,\\text{cm}$,\n\n$\\therefore MN=BM-NB=11-6=\\boxed{5}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"47112699_208": { -"question": "As shown in the figure, it is known that $AB=60\\,\\text{cm}$, point C is the midpoint of line segment AB, and point D is a point on line segment AB, with the length ratio of $AD$ to $DB$ being $2\\colon 1$. What is the length of $BD$ in $\\text{cm}$?", -"image_file_name": "6951217", -"image": [ -"math/47112699_841.png" -], -"solution": "\\textbf{Solution:} Given that $AB=60\\text{cm}$ and the ratio of the lengths of AD to DB is $2\\colon 1$, \\\\\nit follows that $BD=60\\times \\frac{1}{3}=\\boxed{20}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"47112699_209": { -"question": "As shown in the figure, it is known that $AB=60\\,cm$, point C is the midpoint of line segment AB, and point D is a point on line segment AB with the ratio of the lengths of AD to DB being $2\\colon 1$. What is the length of CD in $cm$?", -"image_file_name": "6951217", -"image": [ -"math/47112699_841.png" -], -"solution": "\\textbf{Solution:} Since $AB=60\\,cm$, and point C is the midpoint of line segment AB,\\\\\ntherefore, $BC=\\frac{1}{2}AB=30\\,cm$,\\\\\ntherefore, $CD=BC-BD=30-20=\\boxed{10}\\,cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54565727_211": { -"question": "As shown in the figure, $C$ is the midpoint of line segment $AB$, and point $D$ divides line segment $AB$ into two parts, $AD$ and $DB$, in the ratio of $3\\colon 2$. If $CD=1\\text{cm}$, what is the length of line segment $AB$?", -"image_file_name": "6951217", -"image": [ -"math/54565727_856.png" -], -"solution": "\\textbf{Solution:} Let $AD=3x\\,(\\text{cm})$, and $BD=2x\\,(\\text{cm})$, thus $AB=5x\\,(\\text{cm})$ \\\\\nSince $C$ is the midpoint of $AB$, \\\\\nThen $AC=BC=\\frac{5}{2}x\\,(\\text{cm})$ \\\\\nTherefore $CD=BC-BD=\\frac{1}{2}x\\,(\\text{cm})$ \\\\\nSince $CD=1\\,\\text{cm}$, \\\\\nThen $\\frac{1}{2}x=1$, \\\\\nTherefore $x=2\\,\\text{cm}$, \\\\\nTherefore $AB=5x=\\boxed{10\\,\\text{cm}}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"42461901_214": { -"question": "As shown in the diagram, it is known that the length of segment $AB=20$. Point $C$ is on segment $AB$, point $D$ is on segment $CB$, and point $E$ is the midpoint of segment $DB$, with $DE=3$. If $CE=8$, what is the length of $AC$?", -"image_file_name": "6951217", -"image": [ -"math/42461901_868.png" -], -"solution": "\\textbf{Solution:} We have $E$ as the midpoint of $DB$, with $DE=3$, and $CE=8$, \\\\ \nthus $DB=2DE=6$, and $CD=CE-DE=5$, \\\\ \ntherefore, $AC=AB-CD-DB=20-6-5=\\boxed{9}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"42461901_215": { -"question": "As shown in the figure, it is known that segment $AB=20$, $C$ is a point on segment $AB$, $D$ is a point on $CB$, $E$ is the midpoint of $DB$, and $DE=3$. If $C$ is the midpoint of $AB$, what is the length of $CD$?", -"image_file_name": "6951217", -"image": [ -"math/42461901_868.png" -], -"solution": "\\textbf{Solution:} Since $C$ is the midpoint of $AB$, and $AB=20$,\n\n$\\therefore$ $AC=CB=10$. Given also that $DB=6$,\n\n$\\therefore$ $CD=CB-DB=10-6=\\boxed{4}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"42460301_217": { -"question": "Point $O$ is the midpoint of line segment $AB$, where $OB=14\\,\\text{cm}$. Point $P$ divides the line segment $AB$ into two parts such that the ratio of $AP$ to $PB$ is $5:2$. Find the length of line segment $OP$.", -"image_file_name": "6951217", -"image": [ -"math/42460301_870.png" -], -"solution": "\\textbf{Solution:} Since point O is the midpoint of line segment AB, $OB=14\\,\\text{cm}$,\\\\\ntherefore $AB=2OB=28\\,\\text{cm}$,\\\\\nsince $AP\\colon PB=5\\colon 2$,\\\\\ntherefore $BP= \\frac{2}{7}AB=8\\,\\text{cm}$,\\\\\ntherefore $OP=OB-BP=14-8=\\boxed{6}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"42460301_218": { -"question": "As shown in the figure, point $O$ is the midpoint of line segment $AB$, with $OB=14\\,cm$. Point $P$ divides line segment $AB$ into two parts, with $AP:PB=5:2$. Point $M$ is on line segment $AB$. If the distance from point $M$ to point $P$ is $4\\,cm$, what is the length of line segment $AM$ in $cm$?", -"image_file_name": "6951217", -"image": [ -"math/42460301_870.png" -], -"solution": "Solution: As shown in Figure 1, when point M is to the left of point P,\\\\\n$AM=AB-(PM+BP)=28-(4+8)=\\boxed{16}\\,(\\text{cm})$,\\\\\nAs shown in Figure 2, when point M is to the right of point P,\\\\\n$AM=AB-BM=AB-(BP-PM)=28-(8-4)=\\boxed{24}\\,(\\text{cm})$.\\\\\nIn summary, $AM=16\\,\\text{cm}$ or $24\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50009912_220": { -"question": "Given points $B$ and $D$ on line segment $AC$, as shown in the figure, if $AC=20$, $AB=8$, and point $D$ is the midpoint of line segment $AC$, what is the length of line segment $BD$?", -"image_file_name": "6951217", -"image": [ -"math/50009913_8805.png" -], -"solution": "\\textbf{Solution:} Given that $AC=20$ and point $D$ is the midpoint of segment $AC$, \\\\\n$\\therefore AD=DC=\\frac{1}{2}AC=\\frac{1}{2}\\times 20=10$, \\\\\nSince $AB=8$, \\\\\n$\\therefore BD=AD-AB=10-8=\\boxed{2}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50009912_221": { -"question": "As shown in the figure, it is known that points $B$ and $D$ are on the line segment $AC$. If $BD=\\frac{1}{3}AB=\\frac{1}{4}CD$, $AE=BE$, and $EC=13$, find the length of the line segment $AC$.", -"image_file_name": "6951217", -"image": [ -"math/50009914_8814.png" -], -"solution": "\\textbf{Solution:} Given that $BD=\\frac{1}{3}AB=\\frac{1}{4}CD$,\\\\\nit follows that $AB=3BD, CD=4BD$,\\\\\nGiven $AE=BE$,\\\\\nit then follows $AE=BE=\\frac{1}{2}AB=\\frac{3}{2}BD$,\\\\\nSince $EC=BE+BD+DC=\\frac{3}{2}BD+BD+4BD=\\frac{13}{2}BD=13$,\\\\\nthen $BD=2$,\\\\\nThus, $AE=\\frac{3}{2}BD=\\frac{3}{2}\\times 2=3$,\\\\\nTherefore, $AC=AE+EC=3+13=\\boxed{16}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52794293_223": { -"question": "As shown in the figure, point $C$ is on line segment $AB$, $D$ is the midpoint of $AC$, and $E$ is the midpoint of $BC$. If $AB=9\\, \\text{cm}$ and $AC=5\\, \\text{cm}$. Find: What is the length of $AD$ in centimeters?", -"image_file_name": "6951217", -"image": [ -"math/52794293_890.png" -], -"solution": "\\textbf{Solution:} Given that AC$=5\\,\\text{cm}$ and D is the midpoint of AC,\\\\\nit follows that AD$=$DC$=\\frac{1}{2}$AC$=\\boxed{\\frac{5}{2}}\\,\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52794293_224": { -"question": "As shown in the figure, $C$ is a point on the line segment $AB$, $D$ is the midpoint of $AC$, and $E$ is the midpoint of $BC$. If $AB=9\\,\\text{cm}$, $AC=5\\,\\text{cm}$. Find: the length of $DE$ in centimeters?", -"image_file_name": "6951217", -"image": [ -"math/52794293_890.png" -], -"solution": "\\textbf{Solution:} Given that $AB=9\\text{cm}$, $AC=5\\text{cm}$,\\\\\nthus $BC=AB-AC=9-5=4\\text{cm}$,\\\\\nsince $E$ is the midpoint of $BC$,\\\\\nthus $CE=\\frac{1}{2}BC=2\\text{cm}$,\\\\\ntherefore $DE=CD+CE=\\frac{5}{2}+2=\\boxed{\\frac{9}{2}}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52354693_83": { -"question": "As shown in Figure 1, point $E$ is the midpoint of side $BC$ of a square $ABCD$ with side length 2, and $DF \\perp AE$ at $F$. What is the length of $DF$?", -"image_file_name": "7054409", -"image": [ -"math/52354693_825.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $DE$,\n\nsince point $E$ is the midpoint of side $BC$ of square $ABCD$ with a side length of 2,\n\ntherefore $BE=1$,\n\nthus, in $\\triangle ABE$ right-angled at $B$, $AE=\\sqrt{1^2+2^2}=\\sqrt{5}$,\n\nsince $DF\\perp AE$,\n\ntherefore $\\frac{1}{2}\\times AE\\times DF=\\frac{1}{2}\\times AD\\times AB$,\n\nthus, $DF=\\frac{AD\\times AB}{AE}=\\frac{2\\times 2}{\\sqrt{5}}=\\boxed{\\frac{4}{\\sqrt{5}}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354937_88": { -"question": "As shown in the figure, point $E$ is a point on the diagonal $AC$ of the square $ABCD$. Connect $DE$ and draw $EF\\perp DE$ to intersect ray $BC$ at point $F$. Construct rectangle $DEFG$ with $DE$ and $EF$ as adjacent sides, and connect $CG$. Rectangle $DEFG$ is a square; if $AB=4$ and $CE=3\\sqrt{2}$, what is the length of $CG$?", -"image_file_name": "7054409", -"image": [ -"math/52354937_8312.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw EH $\\perp$ AB at point H, \\\\\nthen $\\angle EHB=90^\\circ$, since $\\angle ENB=90^\\circ$, and $\\angle B=90^\\circ$, thus quadrilateral BNEH is a rectangle, and therefore $EN=BH$. Within square ABCD, $AD=CD$, and $\\angle ADC=90^\\circ$. In square DEFG, $DE=DG$, and $\\angle EDG=90^\\circ$, thus $\\angle ADE=\\angle CDG$. In $\\triangle ADE$ and $\\triangle CDG$, we have $\\left\\{ \\begin{array}{l} AD=CD \\\\ \\angle ADE=\\angle CDG \\\\ DE=DG \\end{array} \\right.$, therefore $\\triangle ADE \\cong \\triangle CDG$ (SAS), hence $CG=AE$. Since $CE=3\\sqrt{2}$, $\\angle ECN=45^\\circ$, and $\\angle ENC=90^\\circ$, therefore $\\angle NEC=45^\\circ$, thus $NC=NE=3$. Given that $AB=4$, thus $AH=4-3=1$. As $\\angle HAE=45^\\circ$, therefore $\\angle HEA=45^\\circ$, thus $AH=HE=1$, hence $AE=\\sqrt{1^2+1^2}=\\sqrt{2}$, thus $CG=\\boxed{\\sqrt{2}}$;", -"solution_image": [ -"solution_images/52354937_830.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354937_89": { -"question": "As shown in the figure, point $E$ is a point on the diagonal $AC$ of the square $ABCD$. Line $DE$ is drawn, and through point $E$, line $EF\\perp DE$ is drawn, which intersects the ray $BC$ at point $F$. A rectangle $DEFG$ is constructed with $DE$ and $EF$ as adjacent sides, and $CG$ is connected. When the angle between line segment $DE$ and one side of square $ABCD$ is $25^\\circ$, directly write down the degree measure of $\\angle EFC$.", -"image_file_name": "7054409", -"image": [ -"math/52354937_8312.png" -], -"solution": "\\textbf{Solution:} We have $\\angle EFC = \\boxed{115^\\circ}$ or $\\boxed{25^\\circ}$.", -"solution_image": [ -"solution_images/52354937_830.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354319_91": { -"question": "As shown in the figure, point E is a point on side AD of quadrilateral ABCD. Extend line EB such that $BF = BE$, and extend line EC such that $CG = CE$. Connect FG. H is the midpoint of FG. Connect DH and AF. If $\\angle BAE = 70^\\circ$ and $\\angle DCE = 20^\\circ$, what is the measure of $\\angle DEC$?", -"image_file_name": "7054409", -"image": [ -"math/52354319_843.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore \\angle BAE=\\angle BCD=70^\\circ$, with AD$\\parallel$BC, \\\\\nsince $\\angle DCE=20^\\circ$, and given $AB\\parallel CD$, \\\\\n$\\therefore \\angle CDE=180^\\circ-\\angle BAE=110^\\circ$, \\\\\n$\\therefore \\angle DEC=180^\\circ-\\angle DCE-\\angle CDE=\\boxed{50^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354319_93": { -"question": "As shown in the diagram, point E is located on side AD of quadrilateral $ABCD$. Extend EB such that $BF=BE$, and extend EC such that $CG=CE$, then connect F and G. Let H be the midpoint of FG, and connect DH and AF. Quadrilateral AFHD is a parallelogram; connect EH, intersecting BC at point O. If $OC=OH$, prove that $OE=\\frac{1}{2}BC$.", -"image_file_name": "7054409", -"image": [ -"math/52354319_843.png" -], -"solution": "\\textbf{Solution:} Proof: Connect $BH$ and $CH$, \\\\\n$\\because$ $CE=CG$, $FH=HG$, \\\\\n$\\therefore$ $CH=\\frac{1}{2}EF$, $CH\\parallel EF$, \\\\\n$\\because$ $EB=BF=\\frac{1}{2}EF$, \\\\\n$\\therefore$ $BE=CH$, \\\\\n$\\therefore$ Quadrilateral $EBHC$ is a parallelogram, \\\\\n$\\therefore$ $OB=OC$, $OE=OH$, \\\\\n$\\because$ $OC=OH$, \\\\\n$\\therefore$ $OE=OB=OC=\\boxed{\\frac{1}{2}BC}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354552_96": { -"question": "As shown in the figure, the diagonals of rhombus $ABCD$ intersect at point $O$. $DE \\parallel AC$ and $CE \\parallel BD$. Connect $OE$. Quadrilateral $OCED$ is a rectangle. If $AC=6$ and $BD=8$, find the length of $OE$.", -"image_file_name": "7054409", -"image": [ -"math/52354552_853.png" -], -"solution": "\\textbf{Solution}: Since the quadrilateral $ABCD$ is a rhombus, $AC=6, BD=8$, it follows that $OC=\\frac{1}{2}AC=3, OD=\\frac{1}{2}BD=4, AC\\perp BD$, hence $CD=\\sqrt{OC^{2}+OD^{2}}=5$. Since the quadrilateral $OCED$ is a rectangle, it follows that $OE = \\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354771_100": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is a square, with $E$ and $F$ being two points on the diagonal $AC$, and $AE=CF$. $\\triangle ADE\\cong \\triangle CBF$; the quadrilateral $BEDF$ forms a rhombus. If $AC=8, AE=2$, what is the perimeter of the quadrilateral $BEDF$?", -"image_file_name": "7054409", -"image": [ -"math/52354771_863.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $BD$, intersecting $AC$ at point O, \\\\\nsince quadrilateral $ABCD$ is a square and $AC=8$, \\\\\ntherefore $AC\\perp BD, OD=OA=\\frac{1}{2}AC=4$, \\\\\nsince $AE=2$, \\\\\ntherefore $OE=OA-AE=2$, \\\\\nIn right triangle $\\triangle DOE$, $DE=\\sqrt{OD^{2}+OE^{2}}=2\\sqrt{5}$, \\\\\nthus, the perimeter of quadrilateral $BEDF$ is $4DE=4\\times 2\\sqrt{5}=\\boxed{8\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354589_102": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $DE \\perp AC$, $BF \\perp AC$, with the perpendicular feet being $E$ and $F$ respectively. Extend $DE$ and $BF$ to meet $AB$ at point $H$ and $BC$ at point $G$ respectively. If $AD \\parallel BC$ and $AE=CF$, then prove that quadrilateral $ABCD$ is a parallelogram.", -"image_file_name": "7054409", -"image": [ -"math/52354589_870.png" -], -"solution": "Proof:\n\nSince $DE \\perp AC$ and $BF \\perp AC$, \n\nit follows that $\\angle AED = \\angle CFB = 90^\\circ$ and $DE \\parallel BF$.\n\nGiven $AD \\parallel BC$,\n\nit implies $\\angle DAE = \\angle BCF$.\n\nIn $\\triangle DAE$ and $\\triangle BCF$,\n\n\\[\n\\left\\{\\begin{array}{l}\n\\angle DEA = \\angle BFC = 90^\\circ \\\\\nAE = CF \\\\\n\\angle DAE = \\angle BCF\n\\end{array}\\right.\n\\]\n\nTherefore, $\\triangle DAE \\cong \\triangle BCF$ (ASA),\n\nwhich means $AD = CB$.\n\nSince $AD \\parallel BC$,\n\nthe quadrilateral $ABCD$ is \\boxed{a \\ parallelogram}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52354589_103": { -"question": "Given: In quadrilateral $ABCD$, $DE\\perp AC$ and $BF\\perp AC$ with perpendicular feet $E$ and $F$ respectively. Extend $DE$ and $BF$ to intersect $AB$ at point $H$ and $BC$ at point $G$, if $AD\\parallel BC$ and $AE=CF$. If $\\angle DAH=\\angle GBA$, $GF=2$, and $CF=4$, find the length of $AD$.", -"image_file_name": "7054409", -"image": [ -"math/52354589_870.png" -], -"solution": "\\textbf{Solution:} Since $DE\\perp AC$ and $BF\\perp AC$, it follows that $DH\\parallel BG$. Consequently, $\\angle GBA=\\angle DHA$. Given that $\\angle DAH=\\angle GBA$, we have $\\angle DAH=\\angle DHA$, which implies $AD=DH$. In $\\triangle GCF$, where $GF=2$ and $CF=4$, we find that $CG=\\sqrt{CF^2+GF^2}=2\\sqrt{5}$. Because quadrilateral $ABCD$ is a parallelogram, we have $DC\\parallel AB$ and $AB=CD$, which means $DG\\parallel HB$. Given that $DH\\parallel GB$, quadrilateral $DHBG$ forms a parallelogram, thus $DG=HB$. Therefore, $AH=CG=2\\sqrt{5}$. In $\\triangle AEH$, where $AE=CF=4$ and $AH=2\\sqrt{5}$, it follows that $EH=2$. In $\\triangle ADE$, we have $AD^2=DE^2+AE^2$, which gives us $AD^2=(AD-2)^2+4^2$. Solving this, we find $AD=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53706609_105": { -"question": "As shown in the figure, in the Cartesian coordinate system, it is known that the graph of the linear function $y=\\frac{1}{2}x+1$ intersects the x-axis and y-axis at points A and B, respectively. A square ABCD is constructed in the second quadrant with AB as a side. What is the area of the square ABCD?", -"image_file_name": "7054409", -"image": [ -"math/53706609_881.png" -], -"solution": "\\textbf{Solution:} For the line $y=\\frac{1}{2}x+1$, by setting $x=0$, we find $y=1$; by setting $y=0$, we find $x=-2$,\\\\\n$\\therefore$A$(-2,0)$, B$(0,1)$,\\\\\n$\\therefore$in $\\triangle AOB$, $OA=2$, $OB=1$,\\\\\n$\\therefore$according to the Pythagorean theorem: $AB=\\sqrt{2^2+1^2}=\\sqrt{5}$,\\\\\n$\\therefore$the area of the square $ABCD$ is $\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53706609_106": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the graph of the linear function \\(y=\\frac{1}{2}x+1\\) intersects the x-axis and y-axis at points A and B, respectively. A square ABCD is constructed in the second quadrant with AB as one of its sides. What are the coordinates of points C and D?", -"image_file_name": "7054409", -"image": [ -"math/53706609_881.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, let $CE\\perp y$ axis, $DF\\perp x$ axis,\\\\\n$\\therefore \\angle CEB=\\angle AFD=\\angle AOB=90^\\circ$.\\\\\n$\\because$ Quadrilateral $ABCD$ is a square,\\\\\n$\\therefore BC=AB=AD$, $\\angle DAB=\\angle ABC=90^\\circ$,\\\\\n$\\therefore \\angle DAF+\\angle BAO=90^\\circ$, $\\angle ABO+\\angle CBE=90^\\circ$,\\\\\n$\\because \\angle DAF+\\angle ADF=90^\\circ$, $\\angle BAO+\\angle ABO=90^\\circ$,\\\\\n$\\therefore \\angle BAO=\\angle ADF=\\angle CBE$,\\\\\n$\\therefore \\triangle BCE\\cong \\triangle DAF\\cong \\triangle ABO(AAS)$,\\\\\n$\\therefore BE=DF=OA=2$, $CE=AF=OB=1$,\\\\\n$\\therefore OE=OB+BE=3$, $OF=OA+AF=3$,\\\\\n$\\therefore$ The coordinates of point C are $\\boxed{(-1, 3)}$, the coordinates of point D are $\\boxed{(-3, 2)}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53706609_107": { -"question": "As shown in the figure, in the Cartesian coordinate system, it is known that the graph of the linear function $y=\\frac{1}{2}x+1$ intersects the x-axis and y-axis at points A and B, respectively. A square ABCD is constructed in the second quadrant with AB as a side. Is there a point M on the x-axis such that the perimeter of $\\triangle MDB$ is minimized? Find the coordinates of point M.", -"image_file_name": "7054409", -"image": [ -"math/53706609_881.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, find the point $B^{\\prime}$, which is the reflection of point B across the x-axis. Connect $B\\prime D$. If it intersects the x-axis at point M, then the perimeter of $\\triangle BMD$ is minimized at this moment.\\\\\n$\\because$B(0,1),\\\\\n$\\therefore B^{\\prime}$(0,−1)\\\\\nLet the equation of the line $B\\prime D$ be $y=kx+b(k\\ne 0)$,\\\\\nSubstituting the coordinates of $B^{\\prime}$ and D gives: $\\begin{cases}b=−1\\\\−3k+b=2\\end{cases}$,\\\\\nSolving these, we get: $\\begin{cases}k=−1\\\\b=−1\\end{cases}$,\\\\\n$\\therefore$The equation of the line $B\\prime D$ is $y=−x−1$.\\\\\nFor $y=−x−1$, let $y=0$, we find $x=−1$,\\\\\n$\\therefore M(\\boxed{-1},0)$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53706374_110": { -"question": "As shown in the figure, in rectangle $ABCD$, point $O$ is the midpoint of diagonal $AC$. Through point $O$, $EF \\perp AC$ intersects $BC$ and $AD$ at points $E$ and $F$, respectively. Connect $AE$ and $CF$. Quadrilateral $AECF$ is a rhombus; if $AB = 3$ and $BC = 5$, find the length of $AE$.", -"image_file_name": "7054409", -"image": [ -"math/53706374_890.png" -], -"solution": "\\textbf{Solution:} Let $AE=CE=x$, so $BE=5-x$, \\\\\nsince quadrilateral ABCD is a rectangle, \\\\\ntherefore, $\\angle B=90^\\circ$.\\\\\nIn $\\triangle ABE$, by the Pythagorean theorem, $AB^2+BE^2=AE^2$,\\\\\nwhich gives $3^2+(5-x)^2=x^2$,\\\\\nsolving this, we get $x=\\boxed{3.4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52345537_113": { -"question": "As shown in the figure, in the quadrilateral $ABCD$, $E$ is the midpoint of $AD$, and $F$ is a point on the extension of $BC$, with $CF = \\frac{1}{2}BC$. Connect $CE$ and $DF$. Quadrilateral $CEDF$ is a parallelogram; if $AB=4$, $AD=6$, and $\\angle B=60^\\circ$, find the length of $DF$.", -"image_file_name": "7054409", -"image": [ -"math/52345537_907.png" -], -"solution": "\\textbf{Solution:} Let the line through $DH$ perpendicular to $BF$ at $H$, \\\\\nsince quadrilateral $ABCD$ is a parallelogram, it follows that $AB \\parallel CD$ and $CD=AB=4$. Hence, $\\angle DCH=\\angle B=60^\\circ$, thus $\\angle CDH=30^\\circ$. Therefore, $CH=\\frac{1}{2}CD=2$, and thus $DH=\\sqrt{CD^{2}-CH^{2}}=\\sqrt{4^{2}-2^{2}}=2\\sqrt{3}$. Since $CF=\\frac{1}{2}AD=\\frac{1}{2}BC=3$, it follows that $HF=CF-CH=3-2=1$. Therefore, $DF=\\sqrt{DH^{2}+HF^{2}}=\\sqrt{12+1}=\\boxed{\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52345544_115": { -"question": "As illustrated in the Cartesian coordinate system, $AB\\parallel OC$, with $A(0, 12)$, $B(a, c)$, $C(b, 0)$, and $a, b$ satisfying $\\left|a-21\\right|+\\left(b-16\\right)^2=0$. A moving point $P$ departs from point $A$ and travels towards point $B$ along line segment $AB$ at a speed of 2 units per second; another moving point $Q$ starts from point $O$ and moves towards point $C$ along line segment $OC$ at a speed of 1 unit per second. Points $P$ and $Q$ commence their movements from points $A$ and $O$ respectively, simultaneously. When point $P$ reaches point $B$, it stops, and point $Q$ stops accordingly. Let the duration of the movement be $t$ seconds. What are the coordinates of points $B$ and $C$?", -"image_file_name": "7054409", -"image": [ -"math/52345544_9118.png" -], -"solution": "\\textbf{Solution:} We have $\\because$ $\\left|a-21\\right|+\\left(b-16\\right)^{2}=0$,\n\n$\\therefore$ $\\left\\{\\begin{array}{l}\na-21=0\\\\ \nb-16=0\n\\end{array}\\right.$, solving this gives us: $a=21$, $b=16$,\n\n$\\therefore$ $\\boxed{C(16,0)}$, $\\because$ $AB\\parallel OC$, $OA=12$,\n\n$\\therefore$ $\\boxed{B(21,12)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52345544_116": { -"question": "As shown in the figure, in the Cartesian coordinate system, $AB\\parallel OC$, with $A(0, 12)$, $B(a, c)$, $C(b, 0)$, and $a, b$ satisfying $\\left|a-21\\right|+\\left(b-16\\right)^2=0$. A moving point $P$ starts from point $A$ and moves towards point $B$ along the line segment $AB$ at a speed of 2 units per second; a moving point $Q$ starts from point $O$ and moves towards point $C$ along the line segment $OC$ at a speed of 1 unit per second. Points $P$ and $Q$ start moving from points $A$ and $O$ simultaneously, and when point $P$ reaches point $B$, it stops moving, and point $Q$ stops moving as well. Let the movement time be $t$ seconds. At what value of $t$ will the quadrilateral $PQCB$ be a parallelogram? What are the coordinates of points $P$ and $Q$ at this time?", -"image_file_name": "7054409", -"image": [ -"math/52345544_9118.png" -], -"solution": "\\textbf{Solution:} Since $BQ \\parallel CP$, when $BQ=CP$, the quadrilateral $PQCB$ is a parallelogram,\\\\\nthus, $21-2t=16-t$, solving this gives: $t=\\boxed{5}$,\\\\\ntherefore, when $t=5$, the quadrilateral $PQCB$ is a parallelogram,\\\\\nthus, $AP=2t=10$,$OQ=t=5$,\\\\\n$\\boxed{P(10,12)}$, $\\boxed{Q(5,0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52345544_117": { -"question": "As shown in the figure, in the Cartesian coordinate system, $AB\\parallel OC$, $A(0, 12)$, $B(a, c)$, $C(b, 0)$, and $a, b$ satisfy $\\left|a-21\\right|+\\left(b-16\\right)^2=0$. A moving point $P$ starts from point $A$ and moves towards point $B$ along the segment $AB$ at a speed of 2 units per second; another moving point $Q$ starts from point $O$ and moves towards point $C$ along the segment $OC$ at a speed of 1 unit per second. Points $P, Q$ start simultaneously from points $A, O$ respectively, and the movement of point $P$ stops when it reaches point $B$, and consequently, point $Q$ stops moving. Suppose the movement duration is $t$ seconds. At what value of $t$ is $\\triangle PQC$ an isosceles triangle with $PQ$ as its equal side? Determine the coordinates of points $P$ and $Q$ at this time.", -"image_file_name": "7054409", -"image": [ -"math/52345544_9118.png" -], -"solution": "\\textbf{Solution:} Given: $Q(t,0)$, $P(2t,12)$,\n\n(1) When $PQ=PC$, constructing $PM \\perp x$-axis at point $M$, it follows that: $QM=t$, $CM=16-2t$,\n\n$\\therefore QM=CM$ (coincidence of three lines),\n\n$\\therefore t=16-2t$,\n\nSolving for $t$ gives $t=\\frac{16}{3}$,\n\n$\\therefore AP=2t=\\frac{32}{3}$, $OQ=\\frac{16}{3}$,\n\n$\\therefore P\\left(\\frac{32}{3}, 12\\right), Q\\left(\\frac{16}{3}, 0\\right)$;\n\n(2) When $PQ=CQ$, constructing $QN \\perp AB$ at point $N$, it follows that: $QN=12$, $PN=2t-t=t$, $CQ=16-t$,\n\n$\\because PQ^2=CQ^2$,\n\n$\\therefore 12^2+(2t-t)^2=(16-t)^2$,\n\nSolving for $t$ gives $t=\\frac{7}{2}$,\n\n$\\therefore AP=2t=7$, $OQ=\\frac{7}{2}$,\n\n$\\therefore P(7, 12), Q\\left(\\frac{7}{2}, 0\\right)$;\n\nIn summary, the coordinates of points $P$ and $Q$ are $\\boxed{P(7, 12)}, \\boxed{Q\\left(\\frac{7}{2}, 0\\right)}$ or $\\boxed{P\\left(\\frac{32}{3}, 12\\right)}, \\boxed{Q\\left(\\frac{16}{3}, 0\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52344234_120": { -"question": "As shown in the figure, it is known that the diagonals of the rhombus $ABCD$ intersect at point $O$. Extend $AB$ to point $E$ such that $BE=AB$, and connect $CE$. Given $BD=EC$; at what angle $\\angle DAB$ will the quadrilateral $BECD$ form a rhombus? Please explain the reason.", -"image_file_name": "7054409", -"image": [ -"math/52344234_920.png" -], -"solution": "\\textbf{Solution:} When $\\angle DAB=60^\\circ$, the quadrilateral $BECD$ is a rhombus.\\\\\nThe reason is as follows:\\\\\n$\\because$ Quadrilateral $ABCD$ is a rhombus,\\\\\n$\\therefore$ $AD=AB$,\\\\\n$\\because$ $\\angle DAB=60^\\circ$,\\\\\n$\\therefore$ $\\triangle ADB$, $\\triangle DCB$ are equilateral triangles,\\\\\n$\\therefore$ $DC=DB$,\\\\\n$\\because$ Quadrilateral $BECD$ is a parallelogram,\\\\\n$\\therefore$ Quadrilateral $BECD$ is a rhombus.\\\\\n$\\therefore$ \\boxed{\\angle DAB=60^\\circ}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52425278_123": { -"question": "As shown in the figure, in parallelogram $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. $E$ and $F$ are respectively the midpoints of $OB$ and $OD$. Connect $AE$, $AF$, $CE$, and $CF$. Quadrilateral $AECF$ is a parallelogram; if $AB \\perp AC$ and $AB = 3$, $BC = 5$. What is the length of $BD$?", -"image_file_name": "7054409", -"image": [ -"math/52425278_930.png" -], -"solution": "\\textbf{Solution:} Since AB$\\perp$AC,\\\\\nit follows that $\\angle$BAC$=90^\\circ$,\\\\\nhence, AC$= \\sqrt{BC^{2}-AB^{2}}=\\sqrt{5^{2}-3^{2}}=4$,\\\\\nthus, OA$=\\frac{1}{2}AC=2$,\\\\\nIn right triangle $\\triangle$AOB, by the Pythagorean theorem, we get OB$=\\sqrt{AB^{2}+OA^{2}}=\\sqrt{3^{2}+2^{2}}=\\sqrt{13}$,\\\\\ntherefore, BD$=2OB=2\\sqrt{13}$. Therefore, the length of BD is $\\boxed{2\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52424185_125": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AC$ intersects $BD$ at point $O$, and $AO=CO$. Point $E$ is on segment $BO$, and $\\angle CEO=\\angle ADO$. Prove that quadrilateral $AECD$ is a parallelogram.", -"image_file_name": "7054409", -"image": [ -"math/52424185_942.png" -], -"solution": "\\textbf{Solution.} Proof:\n\nSince $\\angle CEO = \\angle ADO$,\n\nit follows that $CE \\parallel AD$.\n\nGiven $\\angle CEO = \\angle ADO$, $\\angle COE = \\angle AOD$, and $OC = OA$,\n\nwe have $\\triangle COE \\cong \\triangle AOD$,\n\nwhich implies $CO = AO$, $OE = OD$.\n\nThus, quadrilateral \\boxed{AECD} is a parallelogram.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52424185_126": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AC$ and $BD$ intersect at point $O$, and $AO=CO$. Point $E$ is on line segment $BO$, and $\\angle CEO=\\angle ADO$. If $AB=BC$, $CD=10$, and $AC=16$, find the area of quadrilateral $AECD$.", -"image_file_name": "7054409", -"image": [ -"math/52424185_942.png" -], -"solution": "\\textbf{Solution:} Given $AB=BC$ and $OA=OC$, it follows that $BO \\perp AC$. Within $\\triangle COD$, we have $OC=\\frac{1}{2}AC=8$, therefore $OD=\\sqrt{CD^{2}-OC^{2}}=\\sqrt{10^{2}-8^{2}}=6$. Consequently, $DE=2OD=12$. Thus, the area of quadrilateral AECD $=\\frac{1}{2}\\times DE\\times AC=\\frac{1}{2}\\times 12\\times 16=\\boxed{96}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52424024_129": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle BCA=90^\\circ$, CD is the median to side AB, and lines parallel to BA and BC are drawn through points C and D, respectively, intersecting at point E, where DE intersects AC at point O, and AE is connected. It is given that AD=CD; if $\\angle B=60^\\circ$ and BC=3, what is the area of quadrilateral ADCE?", -"image_file_name": "7054409", -"image": [ -"math/52424024_950.png" -], -"solution": "\\textbf{Solution:} In the right-angled $\\triangle ABC$, where $CD$ is the median to side $AB$, and $\\angle B=60^\\circ$, $BC=3$,\\\\\n$\\therefore AD=DB=CD=3$.\\\\\n$\\therefore AB=6$, by the Pythagorean theorem, $AC=3\\sqrt{3}$.\\\\\nSince quadrilateral $DBCE$ is a parallelogram, $\\therefore DE=BC=3$.\\\\\nSince $EC=BD=AD$ and $CE\\parallel DB$, $\\therefore$ quadrilateral $ADCE$ is a parallelogram.\\\\\n$\\therefore ED\\parallel BC$.\\\\\n$\\therefore \\angle AOD=\\angle ACB$.\\\\\nSince $\\angle ACB=90^\\circ$, $\\therefore \\angle AOD=\\angle ACB=90^\\circ$.\\\\\n$\\therefore$ parallelogram $ADCE$ is a rhombus,\\\\\n$\\therefore$ Area of the rhombus $ADCE$ is $\\frac{AC\\cdot ED}{2}=\\frac{3\\sqrt{3}\\times 3}{2}=\\boxed{\\frac{9\\sqrt{3}}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52303866_132": { -"question": "As shown in the figure, fold the rectangular paper $ABCD$ along $EF$ so that vertex $C$ coincides with vertex $A$, and point $D$ falls at point $G$. If $AB=4$ and $BC=8$, find the area of the overlapping part of the paper after folding.", -"image_file_name": "7054409", -"image": [ -"math/52303866_966.png" -], -"solution": "Solution: From the folding, we have: $AE=EC$, $\\angle AEF=\\angle CEF$. Let $BE=x$, then $AE=EC=8-x$. In $\\triangle ABE$, we have $AB^2+BE^2=AE^2$,\n\\[\\therefore x^2+4^2=(8-x)^2\\], solving this gives $x=3$,\n\\[\\therefore AE=EC=8-x=5\\],\n\\[\\because rectangle ABCD\\],\n\\[\\therefore AD\\parallel BC\\],\n\\[\\therefore \\angle AFE=\\angle CEF\\],\n\\[\\therefore \\angle AEF=\\angle AFE\\],\n\\[\\therefore AE=AF=5\\],\nTherefore, the area of the overlapped part of the paper after folding, $\\triangle AEF$, is $\\frac{1}{2}AB\\cdot AF=\\frac{1}{2}\\times 4\\times 5=\\boxed{10}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52303875_134": { -"question": "As shown in the figure, rectangle $OABC$ is in a Cartesian coordinate system, with the coordinate of vertex $B$ being $\\left(4, n\\right)$. Diagonals $OB$ and $AC$ intersect at $D$. The line $y=\\frac{3}{4}nx-\\frac{3}{2}n$ intersects $OA$, $AC$, and $OB$ at $P$, $M$, and $N$, respectively. Find the length of $DP$ (expressed in terms of $n$).", -"image_file_name": "7054409", -"image": [ -"math/52303875_9713.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral OABC is a rectangle,\\\\\nit follows that point D is the midpoint of OB,\\\\\nSince $O(0,0)$ and $B(4,n)$,\\\\\nit follows that $D(2,\\frac{n}{2})$,\\\\\nFrom $\\frac{3}{4}nx-\\frac{3}{2}n=0$ we get: $x=2$, therefore $P(2,0)$,\\\\\nthus $DP\\parallel$ y-axis,\\\\\nthus $DP=\\boxed{\\frac{n}{2}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52303875_136": { -"question": "As shown in the figure, rectangle $OABC$ is in the Cartesian coordinate system, where the coordinate of vertex $B$ is $(4, n)$, and the diagonals $OB$ and $AC$ intersect at $D$. The line $y=\\frac{3}{4}nx-\\frac{3}{2}n$ intersects $OA$, $AC$, and $OB$ at points $P$, $M$, and $N$, respectively. When $CN=2MN$, what is the value of $n$?", -"image_file_name": "7054409", -"image": [ -"math/52303875_9713.png" -], -"solution": "\\textbf{Solution:} Since point M is the midpoint of the line segment PN,\\\\\n$PN=2MN=CN$,\\\\\nSince $CN=\\sqrt{3^2+\\left(n-\\frac{3}{4}n\\right)^2}=\\sqrt{9+\\frac{1}{16}n^2}$,\\\\\n$PN=\\sqrt{(2-3)^2+\\left(0-\\frac{3}{4}n\\right)^2}=\\sqrt{1+\\frac{9}{16}n^2}$,\\\\\nTherefore, $\\sqrt{9+\\frac{1}{16}n^2} = \\sqrt{1+\\frac{9}{16}n^2}$,\\\\\nSolving this, we get: $n=4$ or $n=-4$,\\\\\nSince $n>0$,\\\\\nTherefore, $n=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52302802_139": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=9$, $AD=3$, and $M$, $N$ are points on $AB$, $CD$ respectively. When quadrilateral $MBCN$ is folded along $MN$, point $B$ coincides exactly with point $D$ and point $C$ with point $E$. Connect $BN$. Quadrilateral $DMBN$ is a rhombus; determine the length of the line segment $AM$.", -"image_file_name": "7054409", -"image": [ -"math/52302802_980.png" -], -"solution": "\\textbf{Solution:} Let $AM=x$, then $DM=BM=AB-AM=9-x$,\\\\\nsince quadrilateral $ABCD$ is a rectangle,\\\\\ntherefore $\\angle A=90^\\circ$,\\\\\nin $\\triangle ADM$, $AD^2+AM^2=DM^2$,\\\\\ntherefore $3^2+x^2=(9-x)^2$, solving gives: $x=\\boxed{4}$,\\\\\nthat is, $AM=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52302802_140": { -"question": "In rectangle $ABCD$, $AB=9$ and $AD=3$, $M$ and $N$ are points on $AB$ and $CD$, respectively. When quadrilateral $MBCN$ is folded along $MN$, point $B$ coincides exactly with point $D$, and point $C$ coincides with point $E$. Connect $BN$. What is the length of the fold $MN$?", -"image_file_name": "7054409", -"image": [ -"math/52302802_980.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect BD, \\\\\n$\\because$ Quadrilateral ABCD is a rectangle, \\\\\n$\\therefore$ $\\angle A=90^\\circ$, \\\\\nIn $\\triangle ABD$, AB=9, AD=3, \\\\\n$\\therefore$ $BD=\\sqrt{AD^2+AB^2}=3\\sqrt{10}$, \\\\\nFrom (2), we get: AM=4, \\\\\n$\\therefore$BM=5, \\\\\n$\\because$ ${S}_{\\text{rhombus }BMDN}=\\frac{1}{2}MN\\cdot BD=BM\\cdot AD$, \\\\\n$\\therefore$ $\\frac{1}{2}MN \\times 3\\sqrt{10}=5\\times 3$, \\\\\nSolving this gives: $MN=\\boxed{\\sqrt{10}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52302554_143": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertices $A$ and $C$ of the rectangle $OABC$ are located on the positive semi-axis of the $x$-axis and $y$-axis, respectively, and the coordinates of point $B$ are $\\left(8, 4\\right)$. The rectangle is folded along $OB$, with point $A$ corresponding to point $D$. $OD$ intersects $BC$ at point $E$. Given that $EO=EB$, find the coordinates of point $E$?", -"image_file_name": "7054409", -"image": [ -"math/52302554_9913.png" -], -"solution": "\\textbf{Solution:} From equation (1), it is known that $EO=EB$, and since the vertices $A$, $C$ of the rectangle $OABC$ are located on the positive halves of the $x$-axis and $y$-axis respectively, with the coordinate of point $B$ being $\\left(8, 4\\right)$, it follows that $OC=AB=4$, and $OA=CB=8$. Let $OE=x$, then $DE=8-x$, and consequently $BE=OE=x$, $BD=4$. In $\\triangle BDE$, we have $BD^2+DE^2=BE^2$, hence $4^2+(8-x)^2=x^2$, leading to $x=5$, thus $BE=5$. Therefore, $CE=BC-BE=8-5=3$, which yields that the coordinate of point $E$ is $\\boxed{\\left(3, 4\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53065890_51": { -"question": "As illustrated in the rectangle $ABCD$, where $DC=6$, there exists a point $E$ on $DC$. When $\\triangle ADE$ is folded along the line $AE$, such that point $D$ precisely falls on side $BC$, let this point be $F$. If the area of $\\triangle ABF$ is 24, what is the length of $BF$?", -"image_file_name": "7055883", -"image": [ -"math/53065890_5010.png" -], -"solution": "\\textbf{Solution:} From the given information, the length of $BF$ is $\\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53065890_52": { -"question": "As shown in the figure, in rectangle $ABCD$, $DC=6$. There is a point $E$ on $DC$. By folding $\\triangle ADE$ along the line $AE$, such that point $D$ falls exactly on the side $BC$, and let this point be $F$. If the area of $\\triangle ABF$ is $24$, what is the length of $CE$?", -"image_file_name": "7055883", -"image": [ -"math/53065890_5010.png" -], -"solution": "\\textbf{Solution:} We have $CE = \\boxed{\\frac{8}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"55497770_66": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in $\\odot O$, $\\angle ABC>90^\\circ$, the bisector of its exterior angle $\\angle EAC$ intersects $\\odot O$ at point D, connect $DB, DC$, and $DB$ intersects $AC$ at point F. If $\\angle EAD=75^\\circ$, what is the degree measure of $\\overset{\\frown}{BC}$?", -"image_file_name": "7055883", -"image": [ -"math/55497770_637.png" -], -"solution": "\\textbf{Solution:} Since $\\angle EAD=75^\\circ$ and $AD$ bisects $\\angle EAC$,\\\\\nit follows that $\\angle EAC=2\\angle DAE=150^\\circ$,\\\\\nthus $\\angle BAC=180^\\circ-\\angle EAC=30^\\circ$,\\\\\ntherefore, the degree measure of $\\overset{\\frown}{BC}$ is $30^\\circ \\times 2=\\boxed{60^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55497770_68": { -"question": "As shown in the figure, $ \\triangle ABC$ is inscribed in $ \\odot O$, $ \\angle ABC>90^\\circ$. The bisector of its exterior angle $ \\angle EAC$ intersects $ \\odot O$ at point D. Connect $ DB, DC$, where $ DB$ intersects $ AC$ at point F. Given $ DB=DC$ and $ DA=DF$, when $ \\angle ABC=\\alpha $, find the measure of $ \\angle DFC$ in degrees (expressed in an algebraic formula involving $ \\alpha$)?", -"image_file_name": "7055883", -"image": [ -"math/55497770_637.png" -], -"solution": "\\textbf{Solution:} Given that $DA=DF$,\\\\\nit follows that $\\angle DAF=\\angle DFA$,\\\\\nhence, $\\angle DAF=\\angle DFA=\\angle CBD=\\angle BCD$,\\\\\ntherefore, $\\triangle DAF\\sim \\triangle DBC$,\\\\\nwhich means that $\\angle ADF=\\angle BDC$,\\\\\ngiven that $\\angle ABC=\\alpha$ and knowing that the opposite angles in a cyclic quadrilateral are supplementary,\\\\\nit follows that $\\angle ADC=180^\\circ-\\alpha$,\\\\\nthus, $\\angle ADF=90^\\circ-\\frac{\\alpha}{2}$,\\\\\nresulting in $\\angle DAF=\\angle DFA=\\left(180^\\circ-\\angle ADF\\right)\\div 2=45^\\circ+\\frac{\\alpha}{4}$,\\\\\ntherefore, $\\angle DFC=180^\\circ-\\angle DFA=\\boxed{135^\\circ-\\frac{\\alpha}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55497848_71": { -"question": "As shown in Figure 1, triangle $ABC$ is inscribed in circle $O$, with $AB$ as the diameter and point $C$ located above $AB$, such that $\\angle CAB > \\angle B$. Connect $OC$. $CG$ is the altitude from $C$ to side $AB$. A line through point $O$ and perpendicular to $OC$ intersects the extension of $CG$ at point $D$ and intersects $BC$ at point $E$. It is given that $\\angle ACG = \\angle BCO$. When $OE = OD$, find the value of $\\frac{OG}{OC}$.", -"image_file_name": "7055883", -"image": [ -"math/55497848_6413.png" -], -"solution": "\\textbf{Solution:} Since $DE \\perp OC$, it follows that $\\angle BCO + \\angle CEO = 90^\\circ$. Since $\\angle ACG = \\angle BCO$, we have $\\angle CEO = \\angle A$.\\\\\nSince $\\angle A + \\angle ACG = 90^\\circ$ and also $\\angle BCG + \\angle ACG = 90^\\circ$, it follows that $\\angle BCG = \\angle A$, hence $\\angle BCG = \\angle CEO$,\\\\\ntherefore $DC = DE$. Since $OE = OD$ and $CO \\perp DE$, we have $DC = CE$, thus $DC = DE = CE$,\\\\\ntherefore, $\\triangle CDE$ is an equilateral triangle, hence $\\angle DCE = 60^\\circ$, and thus $\\angle OCG = 30^\\circ$, therefore $\\frac{OG}{OC} = \\sin 30^\\circ = \\boxed{\\frac{1}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55533039_81": { -"question": "In the Cartesian coordinate system $xOy$, it is known that the parabola $y=ax^{2}+bx$ passes through the points $A(4,0)$ and $B(1,4)$. Point $P$ lies on the parabola and above the line $AB$. What is the equation of the parabola?", -"image_file_name": "7055883", -"image": [ -"math/55533039_700.png" -], -"solution": "\\textbf{Solution:} Substituting $A(4, 0)$ and $B(1, 4)$ into $y = ax^2 + bx$,\\\\\n$\\therefore$ we find the solution.\\\\\n$\\therefore$ The equation of the parabola is: \\boxed{y = -x^2 + x}.", -"solution_image": [ -"solution_images/55533039_700.png", -"solution_images/55533039_701.png" -], -"year": "nine", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51407093_86": { -"question": "In quadrilateral $ABCD$, $E$ is the midpoint of $DC$. Line $AE$ is extended to meet the extended line of $BC$ at point $F$, and $BC = CF$. Let $G$ be a point on $CF$, and line $AG$ intersects $CD$ at point $H$, where $\\angle DAF = \\angle GAF$. Given $CG = 2$ and $GF = 5$, find the length of $AH$.", -"image_file_name": "7055883", -"image": [ -"math/51407093_711.png" -], -"solution": "\\textbf{Solution:} Given that $AD\\parallel BC$,\\\\\nit follows that $\\angle DAF=\\angle F$,\\\\\nsince $\\angle GAF=\\angle DAF$,\\\\\nwe have $\\angle GAF=\\angle F$,\\\\\nthus $AG=GF=5$,\\\\\ngiven that $CG=2$, $GF=5$,\\\\\nit follows that $AD=CF=7$,\\\\\nsince $AD\\parallel BC$,\\\\\nit implies $\\triangle AHD\\sim \\triangle GHC$,\\\\\ntherefore $\\frac{AH}{GH}=\\frac{AD}{GC}=\\frac{7}{2}$,\\\\\nwhich means $\\frac{AH}{AG}=\\frac{7}{9}$, i.e., $\\frac{AH}{5}=\\frac{7}{9}$,\\\\\n$AH=\\boxed{\\frac{35}{9}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53124745_89": { -"question": "As shown in Figure 1, there is a circular paper with point O as the center and AB as the diameter. Point C is on the circle $\\odot$O. Folding the circular paper along the diameter CF, point B falls on point D located on $\\odot$O (not coinciding with point A). After unfolding the paper, connect CB, CD, and AD. Let CD intersect with diameter AB at point E. AD$\\parallel$OC; as shown in Figure 2, when CD$\\perp$AB, if OC=2, what is the length of BC?", -"image_file_name": "7055883", -"image": [ -"math/53124745_720.png" -], -"solution": "\\textbf{Solution:} From the fold, it is known that: $\\angle ECO = \\angle BCO$,\\\\\n$\\because OB = OC$,\\\\\n$\\therefore \\angle OCB = \\angle B$,\\\\\n$\\therefore \\angle ECO = \\angle OCB = \\angle B$,\\\\\n$\\because CD \\perp AB$,\\\\\n$\\therefore \\angle ECO + \\angle OCB + \\angle B = 90^\\circ$,\\\\\n$\\therefore \\angle ECO = \\angle OCB = \\angle B = 30^\\circ$,\\\\\n$\\because OC = OB = 2$,\\\\\n$\\therefore OE = 1$,\\\\\n$\\therefore CE = \\sqrt{3}$,\\\\\n$\\therefore BC = 2CE = 2\\sqrt{3}$;\\\\\nHence, the length of BC is $BC = \\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53124745_90": { -"question": "As shown in Fig. 1, there is a circular paper with point O as the center and AB as the diameter. Point C is on the circle $\\odot$O. The circular paper is folded along the diameter CF, causing point B to fall on point D on $\\odot$O (not coinciding with point A). After restoring the paper, connect CB, CD, AD. Assume CD intersects diameter AB at point E. As shown in Fig. 3, when $AD=DE$, if $BC=2$, what is the length of $AD$?", -"image_file_name": "7055883", -"image": [ -"math/53124745_720.png" -], -"solution": "\\textbf{Solution:} Given that $AD=DE$, \\\\\nit follows that $\\angle DAE=\\angle DEA$, \\\\\ngiven that $\\angle DEA=\\angle BEC$ and $\\angle DAE=\\angle BCE$, \\\\\nit follows that $\\angle BEC=\\angle BCE$, \\\\\nconsidering the circle paper folded along the line CF, \\\\\nit follows that $\\angle ECO=\\angle BCO$, \\\\\nfurthermore, given that $OB=OC$, \\\\\nit follows that $\\angle OCB=\\angle B$, \\\\\ngiven that $\\angle ECO=\\angle B$, and $\\angle CEO=\\angle CEB$, \\\\\nit follows that $\\triangle CEO\\sim \\triangle BEC$, \\\\\nresulting in $\\frac{CE}{ED} = \\frac{BE}{CE}$, \\\\\nand therefore $CE^2=EO\\cdot BE$, \\\\\nlet EO=x, EC=OC=OB=a, \\\\\nhence $a^2=x(x+a)$, \\\\\nsolving yields, x= $\\frac{\\sqrt{5}-1}{2}a$ (negative value discarded), \\\\\ntherefore, $OE= \\frac{\\sqrt{5}-1}{2}a$, \\\\\ntherefore, $AE=OA-OE=a- \\frac{\\sqrt{5}-1}{2}a= \\frac{3-\\sqrt{5}}{2}a$, \\\\\ngiven that $\\angle AED=\\angle BEC$, $\\angle DAE=\\angle BCE$, \\\\\nit follows that $\\triangle BCE\\sim \\triangle DAE$, \\\\\nresulting in $\\frac{BC}{AD} = \\frac{EC}{AE}$, \\\\\ngiven that $BC=2$, \\\\\n$\\frac{2}{AD} = \\frac{a}{\\frac{3-\\sqrt{5}}{2}a}$, \\\\\nthus, $AD=\\boxed{3- \\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53081503_92": { -"question": "As shown in Figure 1, in the intelligent triangle $\\triangle ABC$, where $AB=2$, $BC=2\\sqrt{2}$, and $AD$ is the median on side $BC$, find the value of $\\frac{AD}{AC}$.", -"image_file_name": "7055883", -"image": [ -"math/53081503_731.png" -], -"solution": "\\textbf{Solution:} Let: $AD$ be the median of $BC$, $AB=2$, $BC=2\\sqrt{2}$,\\\\\nThus, $BD=\\frac{1}{2}BC=\\sqrt{2}$,\\\\\nTherefore, $\\frac{BD}{AB}=\\frac{AB}{BC}=\\frac{\\sqrt{2}}{2}$,\\\\\nGiven that, $\\angle B=\\angle B$,\\\\\nIt follows that, $\\triangle ABD\\sim \\triangle CBA$,\\\\\nTherefore, $\\frac{AD}{AC}=\\frac{BD}{AB}=\\boxed{\\frac{\\sqrt{2}}{2}}$.", -"solution_image": [ -"solution_images/53081503_736.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53081381_96": { -"question": "As shown in the figure, quadrilaterals ABCD, DCFE, and EFGH are three squares with side length of 1. Connect AC, AF, and AG. It follows that $\\triangle ACF \\sim \\triangle GCA$. Find the degree measure of $\\angle 1 + \\angle 2 + \\angle 3$?", -"image_file_name": "7055883", -"image": [ -"math/53081381_740.png" -], -"solution": "\\textbf{Solution:} From (1) we have $\\angle 1 = \\angle \\text{FAC}$.\\\\\nSince quadrilateral ABCD is a square,\\\\\ntherefore $\\angle 3 = 45^\\circ$,\\\\\ntherefore $\\angle 2 + \\angle \\text{FAC} = \\angle 3 = 45^\\circ$,\\\\\ntherefore $\\angle 1 + \\angle 2 = 45^\\circ$,\\\\\ntherefore $\\angle 1 + \\angle 2 + \\angle 3 = \\boxed{90^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080096_99": { -"question": "As shown in the figure, in $\\triangle ABC$, point D is located on side AB, and $\\angle ADC=\\angle ACB$, with $AD=2$ and $BD=6$. Given that $\\triangle ACD \\sim \\triangle ABC$, find the length of side AC.", -"image_file_name": "7055883", -"image": [ -"math/53080096_750.png" -], -"solution": "\\textbf{Solution:} Given that $AD=2, BD=6$,\n\n$\\therefore AB=AD+BD=8$,\n\nFrom (1) it has been proven that $\\triangle ACD\\sim \\triangle ABC$,\n\n$\\therefore \\frac{AC}{AB}=\\frac{AD}{AC}$, that is $\\frac{AC}{8}=\\frac{2}{AC}$,\n\nSolving this yields $AC=\\boxed{4}$ or $AC=-4<0$ (which is discarded as it does not meet the problem requirements),\n\nUpon verification, $AC=4$ is a solution of the listed fractional equation,\n\nTherefore, the length of side $AC$ is \\boxed{4}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080826_102": { -"question": "In figure, in $ \\triangle ABC$, $AB=AC$, $AD$ is the median to side $BC$, $DE\\perp AB$ at point $E$. Triangles $ \\triangle BDE \\sim \\triangle CAD$. If $AC=13$, $BC=10$, find the length of the line segment $BE$.", -"image_file_name": "7055883", -"image": [ -"math/53080826_766.png" -], -"solution": "\\textbf{Solution:} Since $AD$ is the median line on side $BC$ and $BC=10$,\\\\\nsince $BD=CD=\\frac{1}{2}BC=5$,\\\\\nsince $\\triangle BDE\\sim \\triangle CAD$ and $AC=13$,\\\\\ntherefore $\\frac{BE}{CD}=\\frac{BD}{AC}$,\\\\\nwhich means $\\frac{BE}{5}=\\frac{5}{13}$,\\\\\ntherefore $BE=\\boxed{\\frac{25}{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080186_104": { -"question": "In $\\triangle ABC$, $AC=BC=10$, $\\tan A = \\frac{3}{4}$, points $D$ and $E$ are movable points on sides $AB$ and $AC$ respectively, and segment $DE$ is connected. Construct $\\triangle ADE$ symmetric to $\\triangle A'DE$ about $DE$. As shown in figure 1, when point $A'$ coincides with point $C$, what is the length of $DE$?", -"image_file_name": "7055883", -"image": [ -"math/53080186_7711.png" -], -"solution": "\\textbf{Solution:} Given that $AE=CE$, $\\angle AED=90^\\circ$,\\\\\nsince $AC=10$,\\\\\nit follows that $AE=5$,\\\\\nsince $\\tan A=\\frac{3}{4}=\\frac{DE}{AE}$,\\\\\nthen $DE=5\\times \\frac{3}{4}=\\boxed{\\frac{15}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080186_105": { -"question": "In $\\triangle ABC$, $AC=BC=10$, and $\\tan A = \\frac{3}{4}$. Points $D$ and $E$ are moving points on sides $AB$ and $AC$, respectively. Connect $DE$ and construct the triangle $\\triangle A'DE$ symmetric to $\\triangle ADE$ with respect to $DE$. As shown in figure 2, $E$ is the midpoint of side $AC$. When $\\triangle A'DE$ is an isosceles triangle, what is the length of $AD$?", -"image_file_name": "7055883", -"image": [ -"math/53080186_7711.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ADE$ and $\\triangle A'DE$ are symmetric about $DE$,\\\\\nthen to find the length of $AD$ when $\\triangle A'DE$ is an isosceles triangle is equivalent to finding the length of $AD$ when $\\triangle ADE$ is an isosceles triangle,\\\\\nsince $E$ is the midpoint of side $AC$,\\\\\nthen $AE=5$.\\\\\n(1) When $AE=AD$,\\\\\n$AD=AE=5$;\\\\\n(2) When $AE=ED$,\\\\\nas shown in the diagram, draw $EM \\perp AD$ intersecting $AD$ at $M$,\\\\\nsince $AE=ED$ and $EM \\perp AD$,\\\\\nthen $EM$ is the perpendicular bisector of $AD$,\\\\\nsince $\\tan A=\\frac{3}{4}$ and $AE=5$,\\\\\nthen $AM=4$,\\\\\nthus $AD=8$;\\\\\n(3) When $AD=ED$,\\\\\nas shown in the diagram, draw $DN \\perp AE$ intersecting $AE$ at $N$,\\\\\nsince $DN \\perp AE$ and $AD=ED$,\\\\\nthen $DN$ is the perpendicular bisector of $AE$,\\\\\nthus $AN=\\frac{5}{2}$,\\\\\nsince $\\tan A=\\frac{3}{4}$,\\\\\nthen $AD=\\frac{25}{8}$;\\\\\ntherefore, the length of $AD$ is $5$, $8$, or \\boxed{\\frac{25}{8}}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080186_106": { -"question": "In $\\triangle ABC$, $AC=BC=10$, $\\tan A=\\frac{3}{4}$. Points $D$ and $E$ are moving points on sides $AB$ and $AC$ respectively, connecting $DE$. Construct the symmetric figure of $\\triangle ADE$ with respect to $DE$, denoted as $\\triangle A'DE$. As shown in Figure 3, $E$ is the midpoint of side $AC$. Connect $A'B$, let $F$ be the midpoint of $A'B$, and then connect $CF$. During the movement of point $D$, find the maximum length of segment $CF$.", -"image_file_name": "7055883", -"image": [ -"math/53080186_7711.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $BE$, draw $CH\\perp AB$ at H, take the midpoint O of $BE$, connect $OF, OH$, and draw $OG\\perp CH$ at G,\\\\\n$\\because$ $\\tan A = \\frac{3}{4}$, $AC=10$,\\\\\n$\\therefore$ $AH=8$, $HC=6$,\\\\\n$\\because$ $E$ is the midpoint of side $AC$,\\\\\n$\\therefore$ $AE=CE=5$,\\\\\n$\\therefore$ $A'E=5$,\\\\\n$\\because$ point F is the midpoint of $A'B$, point O is the midpoint of $BE$,\\\\\n$\\therefore$ $FO=\\frac{1}{2}A'E=\\frac{5}{2}$,\\\\\n$\\therefore$ point F moves on a circle with center O and radius $OF$,\\\\\n$\\therefore$ when point F is on the extension line of $CO$, $CF$ has its maximum value,\\\\\n$\\because$ $AH=BH$, point O is the midpoint of $BE$,\\\\\n$\\therefore$ $OH\\parallel AE$, $OH=\\frac{1}{2}AE=\\frac{5}{2}$,\\\\\n$\\therefore$ $\\angle ACH = \\angle CHO$,\\\\\nAnd $\\because$ $\\angle AHC = \\angle OGH = 90^\\circ$,\\\\\n$\\therefore$ $\\triangle ACH \\sim \\triangle OHG$,\\\\\n$\\therefore$ $\\frac{OH}{AC}=\\frac{GH}{CH}=\\frac{OG}{AH}=\\frac{1}{4}$,\\\\\n$\\therefore$ $HG=\\frac{3}{2}, GO=2$,\\\\\n$\\therefore$ $CG=\\frac{9}{2}$,\\\\\nIn $\\triangle GCO$ right-angled at $G$, by Pythagoras theorem, we get: $CO=\\sqrt{\\frac{81}{4}+4}=\\frac{\\sqrt{97}}{2}$,\\\\\n$\\therefore$ the maximum value of $CF$ is $\\boxed{\\frac{\\sqrt{97}+5}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080947_108": { -"question": "As shown in the figure, the graph of the linear function $y=-2x+10$ intersects the graph of the inverse proportion function $y=\\frac{k}{x}$ at points $A$ and $B$ (with $A$ being to the right of $B$), and the x-coordinate of point $A$ is 4. Determine the equation of the inverse proportion function and the coordinates of point $B$.", -"image_file_name": "7055883", -"image": [ -"math/53080947_781.png" -], -"solution": "\\textbf{Solution:} Substitute $x=4$ into $y=-2x+10$ to obtain $y=2$, \\\\\n$\\therefore A(4,2)$, \\\\\nSubstitute $A(4,2)$ into $y=\\frac{k}{x}$, to get $k=4\\times 2=8$. \\\\\n$\\therefore$ The equation of the inverse proportion function is $y=\\frac{8}{x}$, \\\\\nSolve the system of equations $\\left\\{\\begin{array}{l}y=-2x+10 \\\\ y=\\frac{8}{x}\\end{array}\\right.$, to obtain $\\left\\{\\begin{array}{l}x=1 \\\\ y=8\\end{array}\\right.$, or $\\left\\{\\begin{array}{l}x=4 \\\\ y=2\\end{array}\\right.$\\\\\n$\\therefore$ The coordinates of point $B$ are $\\boxed{(1,8)}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53080947_109": { -"question": "Given: As shown in the figure, the graph of the linear function $y=-2x+10$ intersects with the graph of the inverse proportion function $y=\\frac{k}{x}$ at points $A$ and $B$ (with $A$ located to the right of $B$), where the abscissa of point $A$ is $4$. Observing the graph, directly write out the solution set of the inequality $-2x+10-\\frac{k}{x}>0$ with respect to $x$.", -"image_file_name": "7055883", -"image": [ -"math/53080947_781.png" -], -"solution": "\\textbf{Solution:} Observing the graph, the solution set of the inequality $-2x+10-\\frac{k}{x}>0$ with respect to $x$ is: \\boxed{10$) intersects the x-axis at points $A$ and $B$ (with $A$ to the left of $B$), and intersects the y-axis at point $C$. Point $G$ is the midpoint of segment $AC$. Find the coordinates of points $A$ and $B$, and the axis of symmetry of the parabola.", -"image_file_name": "7058470", -"image": [ -"math/51545315_990.png" -], -"solution": "\\textbf{Solution:} Given the problem, we have $y=ax^2-6ax-16a=a(x^2-6x-16)$ \\\\\nSetting $y=0$, then $x^2-6x-16=0$, \\\\\nSolving yields $x=-2$, $x=8$ \\\\\nTherefore, $\\boxed{A(-2, 0)}$, $\\boxed{B(8, 0)}$ \\\\\nAlso, since $y=a(x-3)^2-25a$, \\\\\nTherefore, the axis of symmetry is the line $x=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51545315_151": { -"question": "Given the parabola: $y=ax^{2}-6ax-16a$ ($a>0$) intersects the x-axis at points $A$ and $B$ (with $A$ to the left of $B$) and intersects the y-axis at point $C$. Point $G$ is the midpoint of segment $AC$. The line $y=-\\frac{3}{2}x$ intersects the parabola at points $M$ and $N$, and $MO=NO$. Find the equation of the parabola.", -"image_file_name": "7058470", -"image": [ -"math/51545315_990.png" -], -"solution": "\\textbf{Solution:} Solve the system of equations\n\\[\n\\begin{cases}\ny=-\\frac{3}{2}x\\\\\ny=ax^2-6ax-16a\n\\end{cases}\n\\]\nUpon simplification, we have $ax^2-6ax+\\frac{3}{2}x-16a=0$,\\\\\nThus, $x_M+x_N=6-\\frac{3}{2a}$,\\\\\nSince $MO=NO$,\\\\\nIt follows that points M and N are symmetric about the origin,\\\\\nThus, $x_M+x_N=0$,\\\\\nTherefore, $6-\\frac{3}{2a}=0$,\\\\\nThus, $a=\\frac{1}{4}$,\\\\\nTherefore, $\\boxed{y=\\frac{1}{4}x^2-\\frac{3}{2}x-4}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51545315_152": { -"question": "Given the parabola: $y=ax^2-6ax-16a$ ($a>0$) intersects the $x$-axis at points $A$ and $B$ ($A$ is to the left of $B$), and intersects the $y$-axis at point $C$. The midpoint of $AC$ is point $G$. It is known that point $P$ is a moving point in the fourth quadrant on the parabola, and a perpendicular line to the $x$-axis through point $P$ intersects $BC$ at point $E$ and the $x$-axis at point $F$. If the triangle formed by points $C$, $P$, $E$ is similar to $\\triangle AOG$, determine the coordinates of point $P$.", -"image_file_name": "7058470", -"image": [ -"math/51545315_990.png" -], -"solution": "\\[ \\textbf{Solution:} \\]\nGiven \\(y=\\frac{1}{4}x^{2}-\\frac{3}{2}x-4\\), we know \\(C(0, -4)\\),\n\nSuppose the equation of line BC is \\(y=kx+b\\),\n\n\\[\n\\therefore \\left\\{\\begin{array}{l}\nb=-4\\\\\n8k+b=0\n\\end{array}\\right.,\n\\]\n\n\\[\n\\therefore \\left\\{\\begin{array}{l}\nk=\\frac{1}{2}\\\\\nb=-4\n\\end{array}\\right.,\n\\]\n\n\\[\n\\therefore y=\\frac{1}{2}x-4,\n\\]\n\nLet \\(P(t, \\frac{1}{4}t^{2}-\\frac{3}{2}t-4)\\), then \\(E(t, \\frac{1}{2}t-4)\\),\n\n\\[\n\\therefore PE=-\\frac{1}{4}t^{2}+2t,\n\\]\n\n\\[\n\\therefore CE=\\sqrt{t^{2}+(\\frac{1}{2}t-4)^{2}}, \\quad CP=\\sqrt{t^{2}+\\frac{1}{16}t^{2}(t-6)^{2}},\n\\]\n\nSince point G is the midpoint of AC,\n\n\\[\n\\therefore G(-1, -2),\n\\]\n\n\\[\n\\therefore AG=\\sqrt{5}, \\quad GO=\\sqrt{5},\n\\]\n\n\\[\n\\therefore \\triangle AOG \\text{ is an isosceles triangle},\n\\]\n\nSince OA=2, OC=4,\n\n\\[\n\\therefore \\tan\\angle OAC=2,\n\\]\n\nSince OB=8,\n\n\\[\n\\therefore \\tan\\angle OCB=2,\n\\]\n\n\\[\n\\therefore \\angle CAO=\\angle OCB,\n\\]\n\nSince \\(PE\\parallel OC\\),\n\n\\[\n\\therefore \\angle FEB=\\angle OCB,\n\\]\n\n\\[\n\\therefore \\angle FEB=\\angle CAO,\n\\]\n\n(1) When \\(CP=PE\\), \\(\\triangle AOG\\sim \\triangle CEP\\),\n\n\\[\n\\therefore PE=PC,\n\\]\n\n\\[\n\\therefore \\sqrt{t^{2}+\\frac{1}{16}t^{2}(t-6)^{2}}=-\\frac{1}{4}t^{2}+2t,\n\\]\n\nSolving gives \\(t=3\\), \\(t=0\\),\n\nSince point P is in the fourth quadrant,\n\n\\[\n\\therefore t>0,\n\\]\n\n\\[\n\\therefore P(3, -\\frac{25}{4});\n\\]\n\n(2) When \\(PC=CE\\), \\(\\triangle AOG\\sim \\triangle PEC\\),\n\n\\[\n\\therefore \\sqrt{t^{2}+\\frac{1}{16}t^{2}(t-6)^{2}}=\\sqrt{t^{2}+(\\frac{1}{2}t-4)^{2}},\n\\]\n\nSolving gives \\(t=4\\),\n\n\\[\n\\therefore P(4, -6).\n\\]\n\nIn conclusion, the coordinates of point P are \\(\\boxed{(4, -6)}\\) or \\(\\boxed{(3, -\\frac{25}{4})}\\).", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51212719_87": { -"question": "As shown in Figure 1, $E$ is a point on the side $BC$ of the equilateral triangle $\\triangle ABC$ (not coinciding with point $B$ or $C$). Connect $AE$ and construct an equilateral triangle $\\triangle AEF$ to the right using $AE$ as a side, and connect $CF$. It is known that the function relationship between the area ($S$) of $\\triangle ECF$ and the length ($x$) of $BE$ is shown in Figure 2 ($P$ is the vertex of the parabola). When the area of $\\triangle ECF$ is maximized, what is the degree measure of $\\angle FEC$?", -"image_file_name": "7058812", -"image": [ -"math/51212719_863.png" -], -"solution": "\\textbf{Solution:} Let the side length of the equilateral $\\triangle ABC$ be $a$. Draw $FD\\perp BC$ at $D$, \\\\\n$\\because$ $\\triangle ABC$ is equilateral, $\\triangle AEF$ is equilateral, \\\\\n$\\therefore AB=AC$, $AE=AF$, $\\angle BAC=\\angle ABC=\\angle ACB=\\angle EAF=\\angle AEF=60^\\circ$, \\\\\n$\\therefore \\angle BAE=\\angle CAF$, \\\\\n$\\therefore \\triangle ABE\\cong \\triangle ACF$ (SAS), \\\\\n$\\therefore CF=BE=x$, $\\angle ACF=\\angle ABE=60^\\circ$, $\\angle FCD=180^\\circ-\\angle ACB-\\angle ACF=60^\\circ$, \\\\\n$FD=CF\\cdot\\sin60^\\circ=\\frac{\\sqrt{3}}{2}x$, \\\\\n$S_{\\triangle ECF}=\\frac{1}{2}CE\\times FD = -\\frac{\\sqrt{3}}{4}x^2+\\frac{\\sqrt{3}}{4}ax$ \\\\\n$\\therefore$ When $S_{\\triangle ECF}$ is maximized, $x= \\frac{1}{2}a$, i.e., E is the midpoint of BC, the maximum value of $S_{\\triangle ECF}$ is $\\frac{\\sqrt{3}}{16}a^2$ \\\\\n$\\because$ E is the midpoint of BC \\\\\n$\\therefore AE\\perp BC$, $\\angle AEB=90^\\circ$ \\\\\n$\\therefore \\angle FEC=180^\\circ-\\angle AEB-\\angle AEF=30^\\circ$ \\\\\nHence, the measure of $\\angle FEC$ is $\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51212719_88": { -"question": "As shown in Figure 1, E is a point on side BC of the equilateral $\\triangle ABC$ (not coinciding with points B and C). Draw AE, and construct an equilateral $\\triangle AEF$ to the right side using AE as its side. Draw CF. It is known that the function relationship between the area ($S$) of $\\triangle ECF$ and the length ($x$) of BE is shown in Figure 2 (P is the vertex of the parabola). What is the side length of the equilateral $\\triangle ABC$?", -"image_file_name": "7058812", -"image": [ -"math/51212719_863.png" -], -"solution": "\\textbf{Solution:} It is known from the diagram that the maximum value of $S_{\\triangle ECF}$ is $2\\sqrt{3}$,\\\\\n$\\therefore \\frac{\\sqrt{3}}{16}a^{2}=2\\sqrt{3}$\\\\\nSolving gives $a=4\\sqrt{2}$ or $a=-4\\sqrt{2}$ (discard)\\\\\n$\\therefore$ The side length of equilateral $\\triangle ABC$ is $\\boxed{4\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51212830_91": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, point O is on side AC. Circle $\\odot O$ passes through point C and is tangent to hypotenuse AB at point D, intersecting side AC at point E. $\\angle ACD=\\frac{1}{2}\\angle B$. Given that $BC=6$ and $AC=8$, what are the lengths of $AD$ and $CD$?", -"image_file_name": "7058812", -"image": [ -"math/51212830_871.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, we have $AB=\\sqrt{6^2+8^2}=10$,\\\\\nsince $OC \\perp CB$ and $OC$ is the radius,\\\\\nthus $BC$ is the tangent,\\\\\ntherefore $BD=BC=6$,\\\\\nthus $AD=4$,\\\\\nlet the radius of $\\odot O$ be $r$, then $OD=OC=r$, $OA=8-r$,\\\\\nin $\\triangle AOD$, we have $r^2+4^2=(8-r)^2$,\\\\\nsolving this, we get $r=3$,\\\\\ntherefore, $OC=3$,\\\\\ndraw $OB$ intersecting $CD$ at $H$,\\\\\nsince $OC=OD$ and $BC=BD$,\\\\\nthus $OB$ perpendicularly bisects $CD$,\\\\\nin $\\triangle OCB$, we have $OB=\\sqrt{3^2+6^2}=3\\sqrt{5}$,\\\\\nbecause $\\frac{1}{2}OB \\cdot CH=\\frac{1}{2}OC \\cdot BC$,\\\\\nthus $CH=\\frac{3 \\times 6}{3\\sqrt{5}}=\\frac{6\\sqrt{5}}{5}$,\\\\\ntherefore, $CD=2CH=\\boxed{\\frac{12\\sqrt{5}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51212645_94": { -"question": "As shown, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $CB=CA$, $CE\\perp AB$ at point $E$, point $F$ is on $CE$, connect $AF$ and extend it to intersect $BC$ at point $D$, $CG\\perp AD$ at point $G$, connect $EG$. $CD^2=DG\\cdot DA$; as shown in Figure 1, if $CF=2EF$, prove that point $D$ is the midpoint of $BC$.", -"image_file_name": "7058812", -"image": [ -"math/51212645_880.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, draw EH$\\parallel$AD through point E and intersecting BC at point H,\\\\\nsince HE$\\parallel$AD,\\\\\ntherefore, BH:HD = BE:EA, and CD:HD = CF:EF,\\\\\nsince CB=CA, and $\\angle$ACB$=90^\\circ$, with CE$\\perp$AB,\\\\\ntherefore, E is the midpoint of AB,\\\\\ntherefore, BE:EA=1,\\\\\ntherefore, BH:HD=BE:EA=1,\\\\\nsince CF=2EF,\\\\\ntherefore, CD:HD=CF:EF=2,\\\\\ntherefore, BH=HD, and CD=2HD,\\\\\ntherefore, BD=BH+HD=2HD,\\\\\ntherefore, BD=CD,\\\\\ntherefore, \\boxed{D\\text{ is the midpoint of }BD}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212645_95": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $CB = CA$, $CE \\perp AB$ at point $E$, point $F$ is a point on $CE$, extend $AF$ to intersect $BC$ at point $D$, $CG \\perp AD$ at point $G$, connect $EG$. As shown in Figure 2, if $GC = 2$ and $GE = 2\\sqrt{2}$, find the length of $GD$.", -"image_file_name": "7058812", -"image": [ -"math/51212645_880.png" -], -"solution": "\\textbf{Solution:} Since $CB=CA$, and $\\angle ACB=90^\\circ$,\\\\\nit follows that $\\angle BAC=45^\\circ$,\\\\\nSince $CE\\perp AB$, and $CG\\perp AD$,\\\\\nit implies that $\\angle AGC=\\angle AEC=90^\\circ$, and $\\angle ACE=45^\\circ$,\\\\\nTherefore, points A, C, G, E are concyclic,\\\\\nhence $\\angle AGE=\\angle ACE=45^\\circ$,\\\\\nAs shown in Figure 2, draw EH$\\perp$AD at point H through point E,\\\\\nthus $\\triangle EGH$ is an isosceles right triangle,\\\\\n$EH=GH=GE\\cdot \\sin 45^\\circ=2\\sqrt{2}\\times \\frac{\\sqrt{2}}{2}=2$,\\\\\nSince $CG=2$,\\\\\nit follows that $CG=EH$,\\\\\nSince $\\angle CGF=\\angle EHF=90^\\circ$, and $\\angle CFG=\\angle EFH$,\\\\\ntherefore $\\triangle CFG\\cong \\triangle EFH$ (by AAS),\\\\\nthus $FG=FH=1$, and $CF=EF$,\\\\\nIn $\\triangle CFG$, $CF=\\sqrt{CG^2+FG^2}=\\sqrt{2^2+1^2}=\\sqrt{5}$,\\\\\nthus $CE=2CF=2\\sqrt{5}$,\\\\\nthus $AC=\\frac{CE}{\\sin\\angle CAE}=\\frac{2\\sqrt{5}}{\\sin 45^\\circ}=2\\sqrt{10}$,\\\\\nthus $AG=\\sqrt{AC^2-CG^2}=\\sqrt{(2\\sqrt{10})^2-2^2}=6$,\\\\\nSince $\\angle CGD=\\angle AGC=90^\\circ$,\\\\\nit follows that $\\angle CAG+\\angle ACG=90^\\circ$,\\\\\nSince $\\angle ACG+\\angle DCG=90^\\circ$,\\\\\nit implies that $\\angle CAG=\\angle DCG$,\\\\\nTherefore, $\\triangle CAG\\sim \\triangle DCG$,\\\\\nthus $\\frac{DG}{CG}=\\frac{CG}{AG}$,\\\\\nthus $DG=\\frac{CG^2}{AG}=\\frac{2^2}{6}=\\boxed{\\frac{2}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212147_98": { -"question": "Given in the figure, it is known that point $P$ is a point inside the equilateral triangle $ABC$, and $PA=6$, $PB=8$, $PC=10$. What is the measure of $\\angle APB$ in degrees?", -"image_file_name": "7058812", -"image": [ -"math/51212147_895.png" -], -"solution": "\\textbf{Solution}: Draw EP, \\\\\n$\\therefore$BE=BP=8, AE=PC=10, $\\angle$PBE=60$^\\circ$\\\\\n$\\therefore$ $\\triangle BPE$ is an equilateral triangle,\\\\\n$\\therefore$PE=PB=8, $\\angle$BPE=60$^\\circ$,\\\\\nIn $\\triangle AEP$, AE=10, AP=6, PE=8,\\\\\n$\\therefore$AE$^{2}$=PE$^{2}$+PA$^{2}$,\\\\\n$\\therefore$ $\\triangle APE$ is a right-angled triangle, and $\\angle$APE=90$^\\circ$,\\\\\n$\\therefore$ $\\angle APB=90^\\circ+60^\\circ=\\boxed{150^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212821_100": { -"question": "As shown in the figure, point $O$ is a point inside the equilateral triangle $ABC$, with $\\angle BOC = 150^\\circ$. Triangle $BOC$ is rotated counterclockwise around point $C$ to obtain triangle $ADC$. Connect $OD$ and $OA$. What is the degree measure of $\\angle ODC$?", -"image_file_name": "7058812", -"image": [ -"math/51212821_900.png" -], -"solution": "\\textbf{Solution:} From the property of rotation, we have $CD=CO$, $\\angle ACD=\\angle BCO$,\\\\\nsince $\\angle ACB=60^\\circ$,\\\\\nhence $\\angle DCO=60^\\circ$,\\\\\ntherefore, $\\triangle OCD$ is an equilateral triangle,\\\\\nthus $\\angle ODC=\\boxed{60^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51212821_101": { -"question": "As shown in the figure, point $O$ is a point inside the equilateral triangle $ABC$, with $\\angle BOC = 150^\\circ$. The triangle $BOC$ is rotated counterclockwise around point $C$ to obtain triangle $ADC$, and then lines $OD$ and $OA$ are drawn. If $OB=2$ and $OC=3$, what is the length of $AO$?", -"image_file_name": "7058812", -"image": [ -"math/51212821_900.png" -], -"solution": "\\textbf{Solution}: From the property of rotation, we have $AD=OB=2$,\\\\\nsince $\\triangle OCD$ is an equilateral triangle,\\\\\ntherefore $OD=OC=3$,\\\\\nsince $\\angle BOC=150^\\circ$, $\\angle ODC=60^\\circ$,\\\\\ntherefore $\\angle ADO=90^\\circ$,\\\\\nin $\\triangle AOD$, by Pythagoras' theorem, we get $AO=\\sqrt{AD^2+OD^2}=\\sqrt{2^2+3^2}=\\boxed{\\sqrt{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51209230_104": { -"question": "As shown in the figure, $\\odot O$ is the circumcircle of quadrilateral $ABCD$, with $AD$ being the diameter of $\\odot O$. Connect $BD$. If $\\overset{\\frown}{AC} = \\overset{\\frown}{BD}$ and $\\angle 1 = \\angle 2$, when $AD = 4\\sqrt{2}$ and $BC = 4$, what is the area of $\\triangle ABD$?", -"image_file_name": "7058812", -"image": [ -"math/51209230_911.png" -], -"solution": "\\textbf{Solution:} Draw $OE\\perp BC$ at point E. \\\\\n$\\therefore BE=CE=\\frac{1}{2}BC=2$, \\\\\n$\\because AD$ is the diameter of $\\odot O$, \\\\\n$\\therefore OB=\\frac{1}{2}AD=2\\sqrt{2}$, \\\\\n$\\therefore OE=\\sqrt{OB^2-BE^2}=\\sqrt{(2\\sqrt{2})^2-2^2}=2$, \\\\\n$\\therefore {S}_{\\triangle ABD}=\\frac{1}{2}AD\\cdot OE=\\frac{1}{2}\\times 4\\sqrt{2}\\times 2=\\boxed{4\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51368308_106": { -"question": "As shown in the figure, it is known that the graph of the inverse proportion function $y= \\frac{k}{x}$ intersects with the line $y=ax+b$ at point $A\\left( \\frac{1}{3}, m+9\\right)$ and point $B(1, m)$. Determine the analytical expressions for the inverse proportion function $y= \\frac{k}{x}$ and the line $y=ax+b$.", -"image_file_name": "7058812", -"image": [ -"math/51368308_922.png" -], -"solution": "\\textbf{Solution:} Let's solve this. Since the graph of the inverse proportion function $y= \\frac{k}{x}$ intersects with the line $y=ax+b$ at points A$\\left(\\frac{1}{3}m, m+9\\right)$ and B$(1, m)$.\n\nTherefore, substituting point A into $y= \\frac{k}{x}$ gives: $k=\\frac{1}{3}m(m+9)$, and substituting point B gives: $k=m$,\n\nTherefore, $\\frac{1}{3}m(m+9)=m$, solving this gives: $m_1=0$ (discard), $m_2=-6$,\n\nTherefore, A$(-2, 3)$, B$(1, -6)$.\n\nTherefore, substituting point A$(-2, 3)$ into $y= \\frac{k}{x}$ gives: $k=-6$,\n\nTherefore, the equation of the inverse proportion function $y= \\frac{k}{x}$ is $\\boxed{y=-\\frac{6}{x}}$,\n\nSubstituting points A$(-2, 3)$, B$(1, -6)$ into the line $y=ax+b$, gives: $\\begin{cases}3=-2a+b\\\\ -6=a+b\\end{cases}$, solving this gives: $\\begin{cases}a=-3\\\\ b=-3\\end{cases}$,\n\nTherefore, the equation of the line $y=ax+b$ is $\\boxed{y=-3x-3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51368308_107": { -"question": "As shown in the figure, it is known that the graph of the inverse proportion function \\(y = \\frac{k}{x}\\) intersects with the line \\(y = ax + b\\) at points \\(A\\left(\\frac{1}{3}, m + 9\\right)\\) and \\(B(1, m)\\). There is a point \\(P\\) on the x-axis such that the area of \\(\\triangle PAB\\) is \\(18\\). Find the coordinates of point \\(P\\).", -"image_file_name": "7058812", -"image": [ -"math/51368308_922.png" -], -"solution": "\\textbf{Solution:} Let us draw line $AB$ and construct $AC\\perp x$-axis at point $C$ and $BD\\perp x$-axis at point $D$. Let $AB$ intersect the $x$-axis at point $E$. When $y=-3x-3=0$, we solve and find $x=-1$. That is, $E(-1, 0)$. The area of $\\triangle PAB$ is $\\frac{1}{2}PE\\cdot AC+\\frac{1}{2}PE\\cdot DB=\\frac{3}{2}PE+\\frac{6}{2}PE=\\frac{9}{2}PE$, and since the area of $\\triangle PAB=18$, we have $\\frac{9}{2}PE=18$, $\\therefore PE=4$. Thus, when point $P$ is to the right of the origin, $P(3, 0)$; when point $P$ is to the left of the origin, $P(-5, 0)$.\n\n$\\therefore \\boxed{P(3, 0)}$ and $\\boxed{P(-5, 0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51368165_109": { -"question": "As shown in the figure, $\\triangle AOB$ is an isosceles right triangle. If $A(-4, 1)$, what are the coordinates of point $B$?", -"image_file_name": "7058812", -"image": [ -"math/51368165_930.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw AE$\\perp$x-axis at E through point A, and draw BF$\\perp$x-axis at F through point B,\\\\\n$\\therefore \\angle$AEO=$\\angle$OFB=$90^\\circ$,\\\\\n$\\therefore \\angle$AOE+$\\angle$OAE=$90^\\circ$,\\\\\nAlso, $\\because \\angle$AOB=$90^\\circ$,\\\\\n$\\therefore \\angle$AOE+$\\angle$BOF=$90^\\circ$,\\\\\n$\\therefore \\angle$OAE=$\\angle$BOF,\\\\\n$\\because$AO=OB,\\\\\n$\\therefore \\triangle$OAE$\\cong \\triangle$BOF (AAS),\\\\\n$\\therefore$OF=AE, BF=OE,\\\\\n$\\because$the coordinates of point A are (-4, 1),\\\\\n$\\therefore$OF=AE=1, BF=OE=4,\\\\\n$\\therefore$the coordinates of point B are $\\boxed{(1,4)}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51368165_110": { -"question": "As shown in the figure, $\\triangle AOB$ is an isosceles right triangle. $AN \\perp$ the y-axis, with the foot of the perpendicular being N, and $BM \\perp$ the y-axis, with the foot of the perpendicular being point M. Point P is the midpoint of AB. Connect PM and find the degree measure of $\\angle PMO$?", -"image_file_name": "7058812", -"image": [ -"math/51368165_930.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, we extend $MP$ to intersect $AN$ at $H$,\\\\\nsince $AH \\perp y$-axis, and $BM \\perp y$-axis,\\\\\nit follows that $BM \\parallel AN$,\\\\\nhence, $\\angle MBP = \\angle HAP$, and $\\angle AHP = \\angle BMP$,\\\\\nsince point $P$ is the midpoint of $AB$,\\\\\nit implies that $AP = BP$,\\\\\ntherefore, $\\triangle APH \\cong \\triangle BPM$ (AAS),\\\\\nthus, $AH = BM$,\\\\\nsince the coordinates of point $A$ are $(-4,1)$, and the coordinates of point $B$ are $(1,4)$,\\\\\nit follows that $AN = 4$, $OM = 4$, $BM = 1$, $ON = 1$,\\\\\nthus, $HN = AN - AH = AN - BM = 3$, $MN = OM - ON = 3$,\\\\\nhence, $HN = MN$,\\\\\ntherefore, $\\angle NHM = \\angle NMH = 45^\\circ$, that is $\\angle PMO = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51368158_113": { -"question": "As shown in the figure, in a right-angled triangle paper with $\\angle C=90^\\circ$, $AB=10$, $BC=8$, and $AC=6$, the triangle is folded along a line passing through point $B$ such that point $C$ falls on point $E$ on side $AB$, with the fold line being $BD$. What is the perimeter of $\\triangle ADE$?", -"image_file_name": "7058812", -"image": [ -"math/51368158_940.png" -], -"solution": "\\textbf{Solution:} From the properties of folding, we know that $BE=BC=8$, $DE=CD$,\\\\\n$\\therefore AE=AB-BE=2$,\\\\\n$\\therefore$ the perimeter of $\\triangle ADE$ $=AD+AE+DE=AD+DE+AE=AC+AE=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51368158_114": { -"question": "As shown in the figure, in a right-angled triangle paper, where $\\angle C=90^\\circ$, $AB=10$, $BC=8$, and $AC=6$, fold the triangle along the line passing through point $B$ such that point $C$ falls on point $E$ on side $AB$, with the crease being $BD$. Find the length of $DE$.", -"image_file_name": "7058812", -"image": [ -"math/51368158_940.png" -], -"solution": "\\textbf{Solution:} Let $CD=DE=x$, then $AD=AC-CD=6-x$. By the property of folding, we know that $\\angle DEB=\\angle C=90^\\circ$, $\\therefore \\angle DEA=90^\\circ$, $\\therefore AD^2=AE^2+DE^2$, $\\therefore (6-x)^2=2^2+x^2$, solving this, we find $x=\\frac{8}{3}$, \\\\\n$\\therefore DE=\\boxed{\\frac{8}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51368161_116": { -"question": "Consider the diagram, where we have an equilateral triangle $\\triangle ABC$ with point $M$ on side $BC$, and $MN\\perp AC$ at point $N$, intersecting $AB$ at point $P$. Prove that: $BP=BM$.", -"image_file_name": "7058812", -"image": [ -"math/51368161_950.png" -], -"solution": "\\textbf{Solution:} Proof:\n\nSince $\\triangle ABC$ is an equilateral triangle,\n\n$\\therefore \\angle ABC=\\angle C=60^\\circ$,\n\nSince $MN \\perp AC$ at $N$,\n\n$\\therefore \\angle BMP=\\angle CMN=90^\\circ-60^\\circ=30^\\circ$,\n\n$\\therefore \\angle P+\\angle BMP=\\angle ABC=60^\\circ$,\n\n$\\therefore \\angle P=30^\\circ$, that is, $\\angle P=\\angle BMP=30^\\circ$,\n\n$\\therefore \\boxed{BP=BM}$.", -"solution_image": [ -"solution_images/51368161_950.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51368161_118": { -"question": "Given an equilateral triangle $\\triangle ABC$, $M$ is on side $BC$, $MN\\perp AC$ at $N$, and intersects $AB$ at point $P$. If $E$, $F$ are respectively on $AB$, $AC$, and $\\triangle MEF$ is an equilateral triangle, when the value of $\\frac{S_{\\triangle MEF}}{S_{\\triangle ABC}}$ is minimal, what is the value of $\\frac{BM}{BC}$?", -"image_file_name": "7058812", -"image": [ -"math/51368161_950.png" -], -"solution": "\\textbf{Solution:} When the value of $\\frac{S_{\\triangle MEF}}{S_{\\triangle ABC}}$ is minimal, $\\frac{BM}{BC}=\\boxed{\\frac{1}{2}}$.", -"solution_image": [ -"solution_images/51368161_950.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51367124_120": { -"question": "As shown in the figure, a high school in Liupanshui City has an irregular quadrilateral space ABCD. The school plans to lay a suspended floor on the space. After measurement, $\\angle ABC=90^\\circ$, $BC=6\\text{m}$, $AB=8\\text{m}$, $AD=26\\text{m}$, $CD=24\\text{m}$. What is the area of the space ABCD in square meters?", -"image_file_name": "7058812", -"image": [ -"math/51367124_960.png" -], -"solution": "\\textbf{Solution:} Connect AC,\\\\\nIn the right-angled triangle ABC,\\\\\n$\\because \\angle ABC=90^\\circ$, BC=6m, AB=8m,\\\\\n$\\therefore AC=\\sqrt{BC^2+AB^2}=10$m,\\\\\n$\\because AC^2+CD^2=10^2+24^2=676=AD^2$,\\\\\n$\\therefore \\angle ACD=90^\\circ$,\\\\\n$\\therefore S_{\\text{quadrilateral }ABCD}=S_{\\triangle ABC}+S_{\\triangle ACD}=\\frac{1}{2}\\times 6\\times 8+\\frac{1}{2}\\times 10\\times 24=\\boxed{144}$m$^2$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51367124_121": { -"question": "As shown in the figure, there is an irregular quadrilateral plot of land, ABCD, at a certain middle school in Liupanshui City. The school plans to pave the space with a floating floor. After measurement, $\\angle ABC=90^\\circ$, $BC=6\\text{m}$, $AB=8\\text{m}$, $AD=26\\text{m}$, and $CD=24\\text{m}$. If it costs $120\\text{ yuan}$ to pave $1\\text{ square meter}$ of floating floor, how much in total will need to be invested?", -"image_file_name": "7058812", -"image": [ -"math/51367124_960.png" -], -"solution": "\\textbf{Solution:} Solve: $144\\times 120=\\boxed{17280}$ (yuan).", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51366955_123": { -"question": "Given that the length of segment $AB=15\\text{cm}$, and point $C$ is on segment $AB$ with $AC:CB=3:2$. Find the lengths of segments $AC$ and $CB$.", -"image_file_name": "7058812", -"image": [ -"math/51366955_970.png" -], -"solution": "\\textbf{Solution:} Given that $AB=15\\text{cm}$, and the ratio of $AC$ to $CB$ is $3:2$,\n\nit follows that $AC=\\frac{3}{3+2}AB=\\frac{3}{5}\\times 15=\\boxed{9\\text{cm}}$, and $CB=\\frac{2}{3+2}AB=\\frac{2}{5}\\times 15=\\boxed{6\\text{cm}}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51366955_124": { -"question": "As shown in the figure, it is known that the length of segment $AB=15\\text{cm}$, point $C$ is on segment $AB$, and $AC:CB=3:2$. If point $P$ is the midpoint of segment $AB$, and point $M$ is the midpoint of segment $AP$, find the length of segment $MC$.", -"image_file_name": "7058812", -"image": [ -"math/51366955_970.png" -], -"solution": "\\textbf{Solution:} Since point P is the midpoint of line segment AB,\\\\\nit follows that $AP=BP=\\frac{1}{2}AB=\\frac{15}{2}$,\\\\\nFurthermore, since point M is the midpoint of line segment AP,\\\\\nit follows that $MP=\\frac{1}{2}AP=\\frac{15}{4}$,\\\\\nAlso, since $BC=6$,\\\\\nit follows that $PC=PB−BC=\\frac{15}{2}−6=\\frac{3}{2}$,\\\\\nTherefore, $MC=MP+PC=\\frac{15}{4}+\\frac{3}{2}=\\boxed{\\frac{21}{4}}cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51366887_127": { -"question": "As shown in the figure, the hexagon $ABCDEF$ is a regular hexagon inscribed in circle $\\odot O$. Let the area of the circle $\\odot O$ be $S_1$ and the area of the hexagon $ABCDEF$ be $S_2$. Find the value of $\\frac{S_1}{S_2}$.", -"image_file_name": "7058812", -"image": [ -"math/51366887_981.png" -], -"solution": "\\textbf{Solution:} Draw OG $\\perp$ DE at G, and connect OE,\\\\\nLet the radius of circle O be r,\\\\\n$\\therefore$ EF=BC=ED=r, AD=2r,\\\\\nIn the regular hexagon ABCDEF,\\\\\n$\\angle$OED=$\\angle$ODE=60$^\\circ$,\\\\\n$\\therefore$ $\\angle$EOG=30$^\\circ$,\\\\\n$\\therefore$ EG=$ \\frac{1}{2}$r,\\\\\n$\\therefore$ OG=$ \\sqrt{OE^{2}-EG^{2}}$=$ \\frac{\\sqrt{3}}{2}$r,\\\\\n$\\therefore$ The area of regular hexagon ABCDEF=$ 6\\times \\frac{1}{2}\\times r\\times \\frac{\\sqrt{3}}{2}r$=$ \\frac{3\\sqrt{3}}{2}r^{2}$,\\\\\nThe area of circle O=$ \\pi r^{2}$,\\\\\n$\\therefore$ $ \\frac{{S}_{1}}{{S}_{2}}$=$ \\frac{\\pi r^{2}}{\\frac{3\\sqrt{3}}{2}r^{2}}$=$ \\boxed{\\frac{2\\sqrt{3}\\pi }{9}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51367169_129": { -"question": "As shown in the figure, in $\\triangle ABC$, the perpendicular bisector DM of AC intersects AC at D, and the perpendicular bisector EN of BC intersects BC at E, where DM and EN intersect at point F. If the perimeter of $\\triangle CMN$ is 16 cm, what is the length of AB in cm?", -"image_file_name": "7058812", -"image": [ -"math/51367169_991.png" -], -"solution": "Solution: Since $DM$ is the perpendicular bisector of side $AC$,\\\\\nit follows that $MA=MC$,\\\\\nand since $EN$ is the perpendicular bisector of side $BC$,\\\\\nit follows that $NB=NC$,\\\\\nThus, $AB=AM+MN+NB=MC+MN+NC=$ the perimeter of $\\triangle CMN = \\boxed{16}$cm;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51367169_130": { -"question": "As shown in the figure, in $\\triangle ABC$, the perpendicular bisector DM of side AC intersects AC at D, and the perpendicular bisector EN of side CB intersects BC at E. DM and EN intersect at point F. If $\\angle MFN=70^\\circ$, what is the measure of $\\angle MCN$?", -"image_file_name": "7058812", -"image": [ -"math/51367169_991.png" -], -"solution": "\\textbf{Solution:} Given that MD$\\perp$AC and NE$\\perp$BC, \\\\\nit follows that $\\angle ACB=180^\\circ-\\angle MFN=110^\\circ$, \\\\\nwhich leads to $\\angle A+\\angle B=70^\\circ$, \\\\\nGiven MA=MC and NB=NC, \\\\\nit follows that $\\angle MCA=\\angle A$ and $\\angle NCB=\\angle B$, \\\\\nHence, $\\angle MCN=\\angle ACB -\\angle MCA-\\angle NCB =\\angle ACB -(\\angle A+\\angle B)=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52867068_60": { -"question": "In the figure, suppose $\\triangle AED$ where $\\angle AED=90^\\circ$, $AB=AC=AD$, $EC=2$, and $BE=8$. If $AB=\\sqrt{41}$, what is the value of $AE$?", -"image_file_name": "7044986", -"image": [ -"math/52867068_592.png" -], -"solution": "\\textbf{Solution:} We have $AE = \\boxed{5}$.", -"solution_image": [ -"solution_images/52867068_592.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52867068_61": { -"question": "In the figure, in $\\triangle AED$, $\\angle AED=90^\\circ$, $AB=AC=AD$, $EC=2$, $BE=8$, then what is the value of $DE$?", -"image_file_name": "7044986", -"image": [ -"math/52867068_592.png" -], -"solution": "\\textbf{Solution:} We have $DE=\\boxed{4}$.", -"solution_image": [ -"solution_images/52867068_592.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55403719_77": { -"question": "As shown in the figure, $\\triangle ABC$ is an isosceles right-angled triangle, with $\\angle ACB=90^\\circ$, $AC=BC=6$. Point $D$ is on segment $BC$, and $E$ is a point on segment $AD$. Now taking $CE$ as the right angle side, with $C$ as the right angle vertex, an isosceles right-angled triangle $\\triangle ECF$ is constructed below $CE$, and $BF$ is connected. $\\triangle AEC \\cong \\triangle BFC$. When points $A$, $E$, and $F$ are collinear, as shown in figure 2, if $AF=8$, what is the length of $BF$?", -"image_file_name": "7044986", -"image": [ -"math/55403719_7312.png" -], -"solution": "Solution: As shown in Figure 2,\\\\\n$\\because CA=CB=6$, $\\angle ACB=90^\\circ$,\\\\\n$\\therefore AB=6\\sqrt{2}$,\\\\\n$\\because \\triangle ACE \\cong \\triangle BCF$,\\\\\n$\\therefore \\angle CAD=\\angle DBF$,\\\\\n$\\because \\angle ADC=\\angle BDF$,\\\\\n$\\therefore \\angle ACD=\\angle DFB=90^\\circ$,\\\\\n$\\therefore BF=\\sqrt{AB^{2}-AF^{2}}=\\sqrt{(6\\sqrt{2})^{2}-8^{2}}=\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55403719_78": { -"question": "As shown in the figure, $\\triangle ABC$ is an isosceles right triangle with $\\angle ACB=90^\\circ$ and $AC=BC=6$. Point $D$ is on the line segment $BC$, and point $E$ is on the line segment $AD$. Now, taking $CE$ as the right angle side and $C$ as the right angle vertex, an isosceles right triangle $\\triangle ECF$ is constructed below $CE$, and $BF$ is connected. As shown in figure 3, if $\\angle BAD=15^\\circ$ and $DF$ is connected, when $E$ moves to make $\\angle ACE=30^\\circ$, what is the area of $\\triangle CDF$?", -"image_file_name": "7044986", -"image": [ -"math/55403719_7312.png" -], -"solution": "\\textbf{Solution:} Let $FH \\perp BC$ at $H$.\\\\\nSince $\\angle ACE = \\angle CAE = 30^\\circ$,\\\\\nit follows that $AE = EC$,\\\\\nsince $\\triangle ACE \\cong \\triangle BCF$,\\\\\nit follows that $BF = AE$ and $CF = CE$,\\\\\nthus $CF = BF$ and $\\angle FCB = \\angle CBF = 30^\\circ$,\\\\\nsince $FC = FB$ and $FH \\perp BC$,\\\\\nit follows that $CH = BH = 3$ and $FH = \\sqrt{3}$, $CF = BF = 2\\sqrt{3}$,\\\\\nsince $\\angle CED = \\angle CAE + \\angle ACE = 60^\\circ$ and $\\angle ECD = 90^\\circ - 30^\\circ = 60^\\circ$,\\\\\nthus $\\triangle ECD$ is an equilateral triangle,\\\\\nthus $EC = CF = CD = 2\\sqrt{3}$,\\\\\ntherefore, the area of $\\triangle CDF$ is $\\frac{1}{2} \\times CD \\times FH = \\frac{1}{2} \\times 2\\sqrt{3} \\times \\sqrt{3} = \\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55403716_80": { -"question": "As shown in the figure, in $\\triangle ABC$, point $D$ is on side $BC$, and $AD=AB$, $AE\\parallel BC$, $\\angle BAD=\\angle CAE$. Connect $DE$ and intersect $AC$ at point $F$. If $\\angle B=70^\\circ$, what is the degree measure of $\\angle C$?", -"image_file_name": "7044986", -"image": [ -"math/55403716_749.png" -], -"solution": "\\textbf{Solution:} Since $ AD=AB$ and $ \\angle B=70^\\circ$,\\\\\nit follows that $ \\angle B=\\angle ADB=70^\\circ$,\\\\\nwhich means $ \\angle BAD=180^\\circ-\\angle B-\\angle ADB=40^\\circ$,\\\\\nthus $ \\angle BAD=\\angle CAE=40^\\circ$,\\\\\nand since $ AE\\parallel BC$,\\\\\nit follows that $ \\angle C=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52950975_84": { -"question": "In the figure, if $\\triangle ACB$ and $\\triangle DCE$ are both isosceles right triangles with $\\angle ACB = \\angle DCE = 90^\\circ$, points A, D, and E lie on the same straight line, and $CM$ is the altitude from $C$ to the side $DE$ in $\\triangle DCE$, with $BE$ connected. $\\triangle ACD \\cong \\triangle BCE$; if $CM = 2$ and $BE = 3$, find the length of $AE$. The core problem of this LaTeX is {to find the length of $AE$.}", -"image_file_name": "7044986", -"image": [ -"math/52950975_757.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ACD\\cong \\triangle BCE$, it follows that $AD=BE=3$. Since $CD=CE$ and $CM\\perp DE$, it follows that $DM=ME$, and $\\angle MCD=\\angle MCE=45^\\circ$. Since $\\angle CDE=\\angle CED=45^\\circ$, it follows that $DM=ME=CM$. Therefore, $DE=2CM=4$. Thus, $AE=AD+DE=\\boxed{7}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52950966_87": { -"question": "As shown in the figure, $AD$ is the altitude of $\\triangle ABC$, $E$ is a point on $AC$, $BE$ intersects $AD$ at point $F$, and it is given that $BF=AC$, $FD=CD$. $\\triangle BFD \\cong \\triangle ACD$; what is the measure of $\\angle ABD$?", -"image_file_name": "7044986", -"image": [ -"math/52950966_767.png" -], -"solution": "\\textbf{Solution:} Given that $Rt\\triangle BFD\\cong Rt\\triangle ACD$,\\\\\nit follows that $BD=AD$,\\\\\nsince $\\angle ADB=90^\\circ$,\\\\\nit results in $\\angle ABD=\\angle BAD=\\frac{1}{2}(180^\\circ-\\angle ADB)=\\frac{1}{2}\\times (180^\\circ-90^\\circ)=45^\\circ$,\\\\\nhence, the measure of $\\angle ABD$ is $\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52950696_89": { -"question": "As shown in the figure, it is known that in an equilateral triangle $ABC$, $D$ is the midpoint of $AC$, $E$ is a point on the extension line of $BC$, and $CD = CE$, $M$ is the midpoint of $BE$. What is the measure of $\\angle E$ in degrees?", -"image_file_name": "7044986", -"image": [ -"math/52950696_775.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC$ is an equilateral triangle, \\\\\n$\\therefore \\angle ACB=60^\\circ$, \\\\\nsince $CD=CE$, \\\\\n$\\therefore \\angle CDE=\\angle E$, \\\\\nAlso, since $\\angle ACB=\\angle CDE+\\angle E$, \\\\\n$\\therefore \\angle E=\\boxed{30^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52935555_93": { -"question": "As shown in the figure, $DE\\perp AB$ at $E$, $DF\\perp AC$ at $F$. Given that $BD=CD$ and $BE=CF$, $\\triangle BDE \\cong \\triangle CDF$. It's known that $AC=12$ and $BE=2$, find the length of $AB$.", -"image_file_name": "7044986", -"image": [ -"math/52935555_786.png" -], -"solution": "\\textbf{Solution:} From (1) it is known that: $Rt\\triangle BDE \\cong Rt\\triangle CDF$,\\\\\n$\\therefore DE=DF$, $BE=CF=2$,\\\\\nAlso, since $AC=12$, $\\therefore AF=10$,\\\\\nBecause $\\angle E=\\angle DFA=90^\\circ$ and $AD=AD$,\\\\\n$\\therefore$ $Rt\\triangle AED \\cong Rt\\triangle AFD$ (HL),\\\\\n$\\therefore AE=AF=10$,\\\\\n$\\therefore AB=AE-BE=10-2=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206635_95": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle A=40^\\circ$, and the bisector of the exterior angle $\\angle CBD$ of $\\triangle ABC$, labeled as $BE$, intersects the extension of $AC$ at point $E$. Point $F$ is located on the extension of $AC$, and $DF$ is connected. What is the measure of $\\angle CBE$ in degrees?", -"image_file_name": "7044986", -"image": [ -"math/53206635_790.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ACB=90^\\circ$ and $\\angle A=40^\\circ$,\n\\[\\therefore \\angle CBD=\\angle A+\\angle ACB=130^\\circ,\\]\nSince $BE$ bisects $\\angle CBD$,\n\\[\\therefore \\angle CBE=\\frac{1}{2}\\angle CBD=\\boxed{65^\\circ}.\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52918922_100": { -"question": "As shown in the figure, $AE$ and $BD$ are two altitudes of $\\triangle ABM$, where $AE$ and $BD$ intersect at point $C$, and $AE=BE$. $\\triangle AME \\cong \\triangle BCE$; what is the measure of $\\angle MDE$ in degrees?", -"image_file_name": "7044986", -"image": [ -"math/52918922_804.png" -], -"solution": "\\textbf{Solution:} Draw $EF\\perp ED$ through point E and intersect $BC$ at point F,\\\\\nsince $\\angle DEF=\\angle AEB$,\\\\\ntherefore $\\angle DEA=\\angle BEF$,\\\\\nin $\\triangle AED$ and $\\triangle BEF$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle DEA=\\angle BEF \\\\\nAE=BE \\\\\n\\angle DAE=\\angle FBE\n\\end{array}\\right.$,\\\\\ntherefore $\\triangle AED\\cong \\triangle BEF$ (ASA),\\\\\nthus $ED=EF$,\\\\\ntherefore $\\angle EDF=\\angle EFD=45^\\circ$,\\\\\nsince $\\angle BDE=90^\\circ$,\\\\\nthus $\\angle MDE=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913913_102": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=4$, $\\angle B=\\angle C=40^\\circ$. Point D moves on line segment $BC$ (D does not coincide with B or C). Connect $AD$ and construct $\\angle ADE=40^\\circ$, with $DE$ intersecting line segment $AC$ at $E$. When $\\angle BDA=100^\\circ$, what is the value of $\\angle DEC$?", -"image_file_name": "7044986", -"image": [ -"math/52913913_810.jpeg" -], -"solution": "\\textbf{Solution:} Given that in $\\triangle BAD$, $\\angle B=\\angle C=40^\\circ$, $\\angle BDA=100^\\circ$, \\\\\nthus, $\\angle BAD=180^\\circ-\\angle B-\\angle BDA=180^\\circ-40^\\circ-100^\\circ=40^\\circ$;\\\\\n$\\angle EDC=180^\\circ-\\angle ADB-\\angle ADE=180^\\circ-100^\\circ-40^\\circ=40^\\circ$.\\\\\n$\\angle DEC=180^\\circ-\\angle C-\\angle EDC=180^\\circ-40^\\circ-40^\\circ=\\boxed{100^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913913_103": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=4$ and $\\angle B=\\angle C=40^\\circ$. Point $D$ moves on line segment $BC$ (not coinciding with $B$ or $C$), and $AD$ is connected. Let $\\angle ADE=40^\\circ$, and let $DE$ intersect line segment $AC$ at $E$. When does $DC$ equal such that $\\triangle ABD\\cong \\triangle DCE$? Please state your reasons.", -"image_file_name": "7044986", -"image": [ -"math/52913913_810.jpeg" -], -"solution": "\\textbf{Solution:} When $DC=4$, $\\triangle ABD\\cong \\triangle DCE$ for the following reason:\\\\\n$\\because \\angle C=40^\\circ$,\\\\\n$\\therefore \\angle DEC+\\angle EDC=140^\\circ$,\\\\\nAlso, $\\because \\angle ADE=40^\\circ$,\\\\\n$\\therefore \\angle ADB+\\angle EDC=140^\\circ$,\\\\\n$\\therefore \\angle ADB=\\angle DEC$,\\\\\nAlso, $\\because AB=DC=4$,\\\\\nIn $\\triangle ABD$ and $\\triangle DCE$, we have $\\left\\{\\begin{array}{l}\\angle ADB=\\angle DEC \\\\ \\angle B=\\angle C \\\\ AB=DC\\end{array}\\right.$,\\\\\n$\\therefore \\triangle ABD\\cong \\triangle DCE$ (AAS);\\\\\nThus, $DC=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913913_104": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=4$, $\\angle B=\\angle C=40^\\circ$. Point D moves along the segment $BC$ (D does not coincide with B or C). Connect $AD$ and construct $\\angle ADE=40^\\circ$, where $DE$ intersects segment $AC$ at $E$. During the movement of point D, is $\\triangle ADE$ an isosceles triangle? Calculate the degree measure of $\\angle BDA$.", -"image_file_name": "7044986", -"image": [ -"math/52913913_810.jpeg" -], -"solution": "\\textbf{Solution:} Solve: When the degree of $\\angle BDA$ is $110^\\circ$ or $80^\\circ$, the shape of $\\triangle ADE$ is an isosceles triangle,\\\\\n$\\because$ when $\\angle BDA = 110^\\circ$,\\\\\n$\\therefore$ $\\angle ADC = 70^\\circ$,\\\\\n$\\because$ $\\angle C = 40^\\circ$,\\\\\n$\\therefore$ $\\angle DAE = 70^\\circ$,\\\\\n$\\therefore$ $\\angle AED = 180^\\circ - 70^\\circ - 40^\\circ=70^\\circ$\\\\\n$\\therefore$ the shape of $\\triangle ADE$ is an isosceles triangle;\\\\\n$\\because$ when the degree of $\\angle BDA$ is $80^\\circ$,\\\\\n$\\therefore$ $\\angle ADC = 100^\\circ$,\\\\\n$\\because$ $\\angle C = 40^\\circ$,\\\\\n$\\therefore$ $\\angle DAE = 40^\\circ$,\\\\\n$\\therefore$ $\\angle DAE = \\angle ADE$,\\\\\n$\\therefore$ the shape of $\\triangle ADE$ is an isosceles triangle.\\\\\nTherefore, the degree of $\\angle BDA$ is $\\boxed{110^\\circ}$ or $\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913839_107": { -"question": "As shown in the diagram, in $\\triangle ABC$, $D$ is a point on $AB$, and $E$ is the midpoint of $AC$. Connect $DE$ and extend it to point $F$ such that $EF=ED$, and connect $CF$. Given $CF\\parallel AB$ and $\\angle ABC=50^\\circ$, connect $BE$. $BE$ bisects $\\angle ABC$, and $AC$ bisects $\\angle BCF$. Find the measure of $\\angle A$.", -"image_file_name": "7044986", -"image": [ -"math/52913839_820.jpeg" -], -"solution": "\\textbf{Solution:} Given $AC$ bisects $\\angle BCF$,\\\\\nthus, $\\angle ACB = \\angle ACF$,\\\\\nsince $\\angle A = \\angle ACF$,\\\\\nthus, $\\angle A = \\angle ACB$,\\\\\nsince $\\angle A + \\angle ABC + \\angle ACB = 180^\\circ$, $\\angle ABC = 50^\\circ$,\\\\\nthus, $2\\angle A = 130^\\circ$,\\\\\ntherefore, $\\angle A = \\boxed{65^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52913903_110": { -"question": "As shown in the figure, $AD$ and $BC$ intersect at point $O$, with $AD=BC$, and $\\angle C=\\angle D=90^\\circ$. We have $AC=BD$; if $\\angle ABC=35^\\circ$, what is the degree measure of $\\angle CAO$?", -"image_file_name": "7044986", -"image": [ -"math/52913903_830.jpeg" -], -"solution": "\\textbf{Solution:} In $\\triangle ACB$, $\\angle ABC=35^\\circ$, \\\\\n$\\therefore \\angle CAB=90^\\circ-35^\\circ=55^\\circ$, \\\\\nFrom (1) it is known $\\triangle ACB \\cong \\triangle BDA$, \\\\\n$\\therefore \\angle BAD=\\angle ABC=35^\\circ$, \\\\\n$\\therefore \\angle CAO=\\angle CAB-\\angle BAD=55^\\circ-35^\\circ=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52914139_113": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle, point D is a point on side AB, an equilateral $\\triangle CDE$ is constructed upwards with CD as its side, and AE is connected. $\\triangle BCD \\cong \\triangle ACE$. If $AE=1$, $AB=3$, what is the length of $AD$?", -"image_file_name": "7044986", -"image": [ -"math/52914139_840.jpeg" -], -"solution": "\\textbf{Solution:} Since $\\triangle BCD \\cong \\triangle ACE$, $AE=1$, $AB=3$,\\\\\n$\\therefore$ $BD=AE=1$,\\\\\n$\\therefore$ $AD=AB-BD=3-1=\\boxed{2}$,\\\\\n$\\therefore$ the length of $AD$ is \\boxed{2}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913907_115": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$. An arc is drawn with point B as the center and BC as the radius, intersecting segment AB at point D; an arc is drawn with point A as the center and AD as the radius, intersecting segment AC at point E. Connect CD. If $\\angle A=24^\\circ$, what is the degree measure of $\\angle ACD$?", -"image_file_name": "7044986", -"image": [ -"math/52913907_850.jpeg" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle ACD=90^\\circ$ and $\\angle A=24^\\circ$,\\\\\n$\\therefore \\angle B=66^\\circ$.\\\\\nSince $BD=BC$,\\\\\n$\\therefore \\angle BCD=\\angle BDC=\\frac{180^\\circ-66^\\circ}{2}=57^\\circ$.\\\\\nThus, $\\angle ACD=90^\\circ-\\angle BCD=90^\\circ-57^\\circ=\\boxed{33^\\circ};$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913907_116": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, an arc is drawn with point B as the center and the length of BC as the radius, intersecting line segment AB at D; an arc is drawn with point A as the center and AD as the radius, intersecting line segment AC at point E, and CD is connected. If $BC=5$ and $AC=12$, what is the length of $AD$?", -"image_file_name": "7044986", -"image": [ -"math/52913907_850.jpeg" -], -"solution": "\\textbf{Solution:} Since $\\angle ACB=90^\\circ$ and $BC=5$, $AC=12$,\\\\\nby the Pythagorean theorem, we have $AB=\\sqrt{AC^2+BC^2}=\\sqrt{12^2+5^2}=13$,\\\\\nSince $AB=AD+BD$ and $BD=BC=5$,\\\\\nit follows that $AD=13-5=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913910_118": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are located on sides AB and AC, respectively. CD and BE are connected, and it is given that BD = BC = BE. If $\\angle A = 30^\\circ$ and $\\angle ACB = 70^\\circ$, what are the measures of $\\angle BDC$ and $\\angle ACD$?", -"image_file_name": "7044986", -"image": [ -"math/52913910_860.jpeg" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle A + \\angle ACB + \\angle ABC = 180^\\circ$, with $\\angle A = 30^\\circ$ and $\\angle ACB = 70^\\circ$,\\\\\n$\\therefore \\angle ABC = 80^\\circ$.\\\\\nIn $\\triangle BDC$, where $BD = BC$,\\\\\n$\\therefore \\angle BDC = \\angle BCD = \\frac{180^\\circ - 80^\\circ}{2} = 50^\\circ$,\\\\\n$\\therefore \\angle ACD = \\angle BDC - \\angle A = 20^\\circ$.\\\\\nHence, $\\angle BDC = \\boxed{50^\\circ}$ and $\\angle ACD = \\boxed{20^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913848_121": { -"question": "As shown in Figure 1, in $\\triangle ABC$, $BO \\perp AC$ at point $O$, $AO=BO=3$, $OC=1$. A line is drawn through point $A$ such that $AH \\perp BC$ at point $H$, intersecting $BO$ at point $P$. What is the length of line segment $OP$?", -"image_file_name": "7044986", -"image": [ -"math/52913848_870.jpeg" -], -"solution": "\\textbf{Solution:} Since $BO \\perp AC$ and $AH \\perp BC$,\\\\\n$\\therefore$ $\\angle AOP=\\angle BOC=\\angle AHC=90^\\circ$,\\\\\n$\\therefore$ $\\angle OAP+\\angle C=\\angle OBC+\\angle C=90^\\circ$,\\\\\n$\\therefore$ $\\angle OAP=\\angle OBC$,\\\\\nIn $\\triangle OAP$ and $\\triangle OBC$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle AOP=\\angle BOC \\\\\nAO=BO \\\\\n\\angle OAP=\\angle OBC\n\\end{array}\\right.$,\\\\\n$\\therefore$ $\\triangle OAP \\cong \\triangle OBC$ (ASA),\\\\\n$\\therefore$ OP=OC=\\boxed{1};", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913848_122": { -"question": "As shown in Figure 1, in $\\triangle ABC$, $BO\\perp AC$ at point $O$, $AO=BO=3$, $OC=1$. A line is drawn through point $A$ such that $AH\\perp BC$ at point $H$, and it intersects $BO$ at point $P$. Connect $OH$. What is the degree measure of $\\angle AHO$?", -"image_file_name": "7044986", -"image": [ -"math/52913848_870.jpeg" -], -"solution": "\\textbf{Solution:} Draw $OM \\perp CB$ at point M and $ON \\perp HA$ at point N, as shown in Figure 1:\\\\\nIn quadrilateral $OMHN$, $\\angle MON = 360^\\circ - 3 \\times 90^\\circ = 90^\\circ$,\\\\\n$\\therefore \\angle COM = \\angle PON = 90^\\circ - \\angle MOP$.\\\\\nIn $\\triangle COM$ and $\\triangle PON$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle COM = \\angle PON \\\\\n\\angle OMC = \\angle ONP = 90^\\circ \\\\\nOC = OP\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle COM \\cong \\triangle PON$ (AAS),\\\\\n$\\therefore OM = ON$.\\\\\nBecause $OM \\perp CB$ and $ON \\perp HA$,\\\\\n$\\therefore HO$ bisects $\\angle CHA$,\\\\\n$\\therefore \\angle AHO = \\frac{1}{2} \\angle AHC = \\boxed{45^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52913842_126": { -"question": "As shown in the figure, in an acute-angled $\\triangle ABC$, point E is a point on side AB, with $BE=CE$, $AD\\perp BC$ at point D, and $AD$ intersects $EC$ at point G. $\\triangle AEG$ is an isosceles triangle. If $BE=10$, $CD=3$, and $G$ is the midpoint of $CE$, what is the length of $AG$?", -"image_file_name": "7044986", -"image": [ -"math/52913842_880.jpeg" -], -"solution": "\\textbf{Solution:} Draw EF$\\perp$AG at point E with F as the foot, \\\\\n$\\therefore \\angle EFG=90^\\circ$, \\\\\n$\\because EA=EG$ and EF$\\perp$AG, \\\\\n$\\therefore AG=2FG$, \\\\\n$\\because G$ is the midpoint of $CE$, \\\\\n$\\therefore EG=GC=\\frac{1}{2}EC$, \\\\\n$\\because EB=EC=10$, \\\\\n$\\therefore GC=\\frac{1}{2}EC=5$, \\\\\n$\\because \\angle EFG=\\angle CDG=90^\\circ$ and $\\angle EGF=\\angle CGD$, \\\\\n$\\therefore \\triangle EFG \\cong \\triangle CDG$ (AAS), \\\\\n$\\therefore FG=DG$, \\\\\nIn $\\triangle CDG$, $CD=3$, \\\\\n$\\therefore DG=\\sqrt{CG^2-CD^2}=\\sqrt{5^2-3^2}=4$, \\\\\n$\\therefore FG=DG=4$, \\\\\n$\\therefore AG=2FG=8$, \\\\\n$\\therefore$ The length of $AG$ is $\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52914212_128": { -"question": "As shown in the figure, $\\triangle ABC$ is an isosceles triangle, with $AB=BC=5$ and $AC=6$. Point $O$ is the midpoint of $AC$, and a line is drawn through $O$ such that $OD \\perp AB$ at point $D$. Point $P$ lies on ray $BO$, and point $Q$ lies on line segment $BC$ (not coinciding with points $B$ or $C$). Connect $PQ$. Find the lengths of $BO$ and $OD$.", -"image_file_name": "7044986", -"image": [ -"math/52914212_8917.png" -], -"solution": "\\textbf{Solution:} Given that $AB=BC=5$, $AC=6$, and $OD\\perp AB$,\\\\\nit follows that $AO=CO=3$,\\\\\nin $\\triangle ABO$, we have $BO=\\boxed{4}$,\\\\\nsince the area $S_{\\triangle ABO}=\\frac{1}{2}\\times 5\\times OD=\\frac{1}{2}\\times 3\\times 4$,\\\\\nthus, $OD=\\boxed{\\frac{12}{5}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52914212_129": { -"question": "As shown in the diagram, $\\triangle ABC$ is an isosceles triangle with $AB=BC=5$ and $AC=6$. Point $O$ is the midpoint of $AC$, and a line is drawn from $O$ perpendicular to $AB$ at point $D$. Point $P$ is located on the ray $BO$, and point $Q$ is located on the line segment $BC$ (not coinciding with points $B$ or $C$), with $PQ$ connected. Given $BQ=4$, point $P$ is rotated $90^\\circ$ counterclockwise around point $Q$ to obtain point $E$. When point $E$ lies on one side of $\\triangle BPQ$, find the length of $BP$.", -"image_file_name": "7044986", -"image": [ -"math/52914212_8917.png" -], -"solution": "\\textbf{Solution:} When point $E$ is on line $PE$, as shown in Figure 1,\\\\\ndraw $QH\\perp OC$ at point $H$ through point $Q$, let the intersection of $PQ$ and $CO$ be $G$,\\\\\n$\\because \\angle PQE=90^\\circ$, $QE=QP$,\\\\\n$\\therefore \\angle QPE=45^\\circ$,\\\\\n$\\therefore \\angle OGP=45^\\circ$,\\\\\n$\\because BQ=4$, $BC=5$,\\\\\n$\\therefore CQ=1$,\\\\\n$\\because QH\\parallel BO$,\\\\\n$\\therefore \\frac{CQ}{BC}=\\frac{CH}{OC}=\\frac{QH}{BO}$, i.e., $\\frac{1}{5}=\\frac{CH}{3}=\\frac{QH}{4}$,\\\\\n$\\therefore QH=\\frac{4}{5}$, $CH=\\frac{3}{5}$,\\\\\n$\\because \\angle QGH=45^\\circ$,\\\\\n$\\therefore QH=HG=\\frac{4}{5}$,\\\\\n$\\because CO=3$,\\\\\n$\\therefore OG=3-\\frac{3}{5}-\\frac{4}{5}=\\frac{8}{5}$,\\\\\n$\\therefore OP=\\frac{8}{5}$,\\\\\n$\\therefore BP=4+\\frac{8}{5}=\\frac{28}{5}$;\\\\\nWhen point $E$ is on line $BQ$,\\\\\n$\\because \\angle BQP=\\angle BOC=90^\\circ$, $BQ=BO=4$,\\\\\n$\\therefore \\triangle BCO\\cong \\triangle BPQ$ (ASA),\\\\\n$\\therefore BP=BC=5$;\\\\\nIn summary: The length of $BP$ is $\\boxed{5}$ or $\\boxed{\\frac{28}{5}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52914212_130": { -"question": "As shown in the diagram, $\\triangle ABC$ is an isosceles triangle with $AB=BC=5$ and $AC=6$. Point $O$ is the midpoint of $AC$, and a line is drawn from $O$ perpendicular to $AB$ at point $D$. Point $P$ is located on ray $BO$, and point $Q$ is located on line segment $BC$ (not coinciding with points $B$ or $C$). Line $PQ$ is drawn. When point $P$ coincides with point $O$, a point $F$ is chosen on line segment $AB$ such that points $C$ and $F$ are symmetrical about $PQ$. What is the distance $h$ from point $F$ to $AC$?", -"image_file_name": "7044986", -"image": [ -"math/52914212_8917.png" -], -"solution": "\\textbf{Solution:}\n\nLet $O$ be the origin, the line where $AC$ lies be the $x$-axis, and the line where $OB$ lies be the $y$-axis to establish a Cartesian coordinate system. Connect $CF$,\\\\\nsince $C(3, 0)$, $B(0, 4)$, $A(3, 0)$,\\\\\nLet the equation of line $BC$ be $y=kx+b$,\\\\\nthus $\\left\\{\\begin{array}{l}b=4 \\\\ -3k+b=0\\end{array}\\right.$,\\\\\nsolving yields $\\left\\{\\begin{array}{l}b=4 \\\\ k=\\frac{4}{3}\\end{array}\\right.$,\\\\\ntherefore $y=\\frac{4}{3}x+4$,\\\\\nSimilarly, the equation of line $AB$ can be found as $y=-\\frac{4}{3}x+4$,\\\\\nLet $Q\\left(m, \\frac{4}{3}m+4\\right)$, $F\\left(n, -\\frac{4}{3}n+4\\right)$,\\\\\nThe equation of line $OQ$ can be found as $y=\\left(\\frac{4}{3}+\\frac{4}{m}\\right)x$,\\\\\nsince points $C$ and $F$ are symmetric about $PQ$,\\\\\nthus the midpoint $K$ of $CF$ is $\\left(\\frac{n-3}{2}, -\\frac{2}{3}n+2\\right)$,\\\\\nSubstituting point $K$ into $y=\\left(\\frac{4}{3}+\\frac{4}{m}\\right)x$,\\\\\nyields $-\\frac{2}{3}n+2=\\left(\\frac{4}{3}+\\frac{4}{m}\\right)\\cdot \\left(\\frac{n-3}{2}\\right)$,\\\\\nsolving for $m$ gives $m=-\\frac{3}{2}$,\\\\\nthus $Q\\left(-\\frac{3}{2}, 2\\right)$,\\\\\nsince $CQ=QF$,\\\\\nthus $\\left(\\frac{3}{2}\\right)^{2}+4=\\left(n+\\frac{3}{2}\\right)^{2}+\\left(2-\\frac{4}{3}n\\right)^{2}$,\\\\\nsolving yields $n=0$ (discarded) or $n=\\frac{21}{25}$,\\\\\nthus $F\\left(\\frac{21}{25}, \\frac{72}{25}\\right)$,\\\\\ntherefore, the distance $h$ from point $F$ to $AC$ is $\\boxed{\\frac{72}{25}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52905816_132": { -"question": "As shown in the figure, a regular hexagon and a regular pentagon are placed as depicted, with the common vertex $O$, and the side $AB$ of the hexagon and the side $DE$ of the pentagon lying on the same straight line. What is the measure of $\\angle ABO$?", -"image_file_name": "7044986", -"image": [ -"math/52905816_900.png" -], -"solution": "\\textbf{Solution}: From what is given in the problem, we have $\\angle ABO = \\frac{1}{6} \\times (6-2) \\times 180^\\circ = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52905816_133": { -"question": "As shown in the figure, a regular hexagon and a regular pentagon are placed in the manner shown, with a common vertex O, and side AB of the hexagon and side DE of the pentagon lying on the same straight line. What is the measure of $\\angle BOE$?", -"image_file_name": "7044986", -"image": [ -"math/52905816_900.png" -], -"solution": "\\textbf{Solution:} Similarly, we can obtain: $\\angle DEO=108^\\circ$,\\\\\n$\\therefore \\angle OEB=180^\\circ-108^\\circ=72^\\circ$, $\\angle OBE=180^\\circ-120^\\circ=60^\\circ$,\\\\\n$\\therefore \\angle BOE=180^\\circ-72^\\circ-60^\\circ=\\boxed{48^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52905611_136": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD\\perp BC$ and $CE\\perp AB$ with perpendicular feet at points D and E respectively, $AD$ and $CE$ intersect at point H, and $AE=CE$. Since $\\triangle BEC\\cong \\triangle HEA$, if $BE=8$ and $CH=3$, what is the length of the line segment $AB$?", -"image_file_name": "7044986", -"image": [ -"math/52905611_910.png" -], -"solution": "Solution: From Equation (1), we know that $\\triangle BEC \\cong \\triangle HEA$,\\\\\nhence, BE = EH = 8,\\\\\nsince CH = 3,\\\\\nthus, CE = AE = 3 + 8 = 11,\\\\\ntherefore, AB = AE + BE = 11 + 8 = \\boxed{19}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52906079_138": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ is the altitude from $A$ to side $BC$, and $BE$ is an angle bisector, intersecting at point $P$. Given that $\\angle EPD=120^\\circ$, what is the degree measure of $\\angle BAD$?", -"image_file_name": "7044986", -"image": [ -"math/52906079_924.png" -], -"solution": "\\textbf{Solution:} Let $\\angle BAD=x^\\circ$\\\\\nGiven the problem, we have: $\\angle BDA=90^\\circ$, $\\angle ABE=\\angle CBE=\\frac{1}{2}\\angle ABD$,\\\\\n$\\therefore$ $\\angle ABD=90^\\circ-x^\\circ$, $\\angle ABE=\\angle CBE=45^\\circ-\\frac{x^\\circ}{2}$,\\\\\nBy the exterior angle property of triangles, we get $\\angle EBD+\\angle BDA=\\angle DPE$,\\\\\nthat is $45^\\circ-\\frac{x^\\circ}{2}+90^\\circ=120^\\circ$, solving this gives $x=\\boxed{30}$,\\\\\nhence $\\angle BAD=\\boxed{30^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52906079_139": { -"question": "As shown in the diagram, in $\\triangle ABC$, $AD$ is the altitude on side $BC$, and $BE$ is an angle bisector, intersecting at point P. Given that $\\angle BAC=75^\\circ$ and $BD=\\sqrt{3}$, find the length of $AC$.", -"image_file_name": "7044986", -"image": [ -"math/52906079_924.png" -], -"solution": "\\textbf{Solution:} From (1) we have $ \\angle BAD=30^\\circ$, hence $ \\angle DAC=45^\\circ$,\\\\\n$\\therefore$ $ \\angle DAC=\\angle C=45^\\circ$,\\\\\n$\\therefore$ $ AD=CD$,\\\\\nIn $\\triangle ABD$, $ \\angle BAD=30^\\circ$, $ BD=\\sqrt{3}$,\\\\\n$\\therefore$ $ AB=2BD=2\\sqrt{3}$,\\\\\nBy the Pythagorean theorem, we have: $ AD=\\sqrt{AB^{2}-BD^{2}}=3$,\\\\\n$ AC=\\sqrt{AD^{2}+CD^{2}}=3\\sqrt{2}$,\\\\\ni.e., $ AC=\\boxed{3\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52905934_141": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD\\perp BC$, $AE$ bisects $\\angle BAC$, $\\angle B=70^\\circ$, and $\\angle C=30^\\circ$. What is the measure of $\\angle BAE$?", -"image_file_name": "7044986", -"image": [ -"math/52905934_930.png" -], -"solution": "\\textbf{Solution:} Therefore, $\\angle BAE = \\boxed{40^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52905934_142": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD \\perp BC$, $AE$ bisects $\\angle BAC$, $\\angle B = 70^\\circ$, $\\angle C = 30^\\circ$. What is the measure of $\\angle DAE$?", -"image_file_name": "7044986", -"image": [ -"math/52905934_930.png" -], -"solution": "\\textbf{Solution:} Since $AD \\perp BC$, \\\\\nit follows that $\\angle ADC=90^\\circ$, \\\\\nwhich implies $\\angle DAC=90^\\circ - \\angle C=60^\\circ$, \\\\\nthus $\\angle DAE=\\angle DAC - \\angle EAC=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53106979_145": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AC=BC$, and point E is a point inside $\\angle ACB$. Connect $CE$, draw $AD\\perp CE$ and $BE\\perp CE$, with the perpendicular feet being points D and E respectively. $\\triangle CAD\\cong \\triangle BCE$, if $AD=15\\,cm$ and $BE=6\\,cm$, find the length of $DE$.", -"image_file_name": "7044986", -"image": [ -"math/53106979_947.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle CAD\\cong \\triangle BCE$,\\\\\nit follows that $AD=CE=15\\text{cm}$, and $BE=CD=6\\text{cm}$,\\\\\nthus $DE=CE-CD=\\boxed{9}\\text{cm}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53106969_147": { -"question": "As shown in the figure, in $\\triangle ABC$, $CD$ bisects $\\angle ACB$, $\\angle A=68^\\circ$, $\\angle ACD=30^\\circ$. Find: the measure of $\\angle BDC$?", -"image_file_name": "7044986", -"image": [ -"math/53106969_955.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BDC=\\angle A+\\angle ACD$, and $\\angle A=68^\\circ$, $\\angle ACD=30^\\circ$,\\\\\ntherefore, $\\angle BDC=68^\\circ+30^\\circ=\\boxed{98^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53106969_148": { -"question": "As shown in the figure, in $\\triangle ABC$, $CD$ bisects $\\angle ACB$, $\\angle A=68^\\circ$, $\\angle ACD=30^\\circ$. Find: the degree measure of $\\angle B$?", -"image_file_name": "7044986", -"image": [ -"math/53106969_955.png" -], -"solution": "\\textbf{Solution:} Given that $CD$ bisects $\\angle ACB$ and $\\angle ACD=30^\\circ$, \\\\\n$\\therefore \\angle ACB=2\\angle ACD=60^\\circ$, \\\\\n$\\therefore \\angle B=180^\\circ-\\angle A-\\angle ACB=180^\\circ-68^\\circ-60^\\circ=\\boxed{52^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52873822_151": { -"question": "As shown in the figure, $A$, $B$, and $D$ are consecutively on the same straight line, $\\angle A=\\angle D=\\angle CBE=90^\\circ$, $AC=BD$, $CB=BE$. If $AC=2$ and $AD=6$, what is the length of $CE$?", -"image_file_name": "7044986", -"image": [ -"math/52873822_960.png" -], -"solution": "Solution: Since $AC=BD=2$ and $AD=6$,\\\\\nthen $AB=AD-BD=6-2=4$,\\\\\nthus $CB^{2}=AC^{2}+AB^{2}=2^{2}+4^{2}=20$,\\\\\nwhich means $CB^{2}=BE^{2}=20$,\\\\\ntherefore $CE= \\sqrt{CB^{2}+BE^{2}}=\\sqrt{20+20}=2\\sqrt{10}$,\\\\\nhence the length of $CE$ is $CE=\\boxed{2\\sqrt{10}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52867084_154": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle, with $P$ and $Q$ located on sides $AC$ and $BC$ respectively, such that $AP=CQ$. Lines $AQ$ and $BP$ intersect at point $O$. Since $\\triangle ACQ \\cong \\triangle BAP$, we are asked to find the measure of $\\angle BOQ$.", -"image_file_name": "7044986", -"image": [ -"math/52867084_974.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ACQ\\cong \\triangle BAP$,\\\\\nit follows that $\\angle CAQ=\\angle ABP$,\\\\\nthus $\\angle BOQ=\\angle BAO+\\angle ABP=\\angle BAO+\\angle CAQ=BAC=60^\\circ$;\\\\\ntherefore, the measure of $\\angle BOQ$ is $\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52867084_155": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle, with points $P$ and $Q$ located on sides $AC$ and $BC$ respectively, and $AP=CQ$. Lines $AQ$ and $BP$ intersect at point $O$. When $\\angle CBP=45^\\circ$ and $BQ=4\\sqrt{6}$, what is the length of $OB$?", -"image_file_name": "7044986", -"image": [ -"math/52867084_974.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, construct $QH\\perp BP$ at H, \\\\\nsince $\\angle CBP=45^\\circ$ and $QH\\perp BP$, \\\\\nit follows that $\\angle PBQ=\\angle BQH=45^\\circ$, \\\\\nhence $BH=HQ$, \\\\\ngiven $BQ=4\\sqrt{6}$, \\\\\nit follows that $BH=HQ=4\\sqrt{3}$, \\\\\nsince $\\angle BOQ=60^\\circ$, \\\\\nit follows that $\\angle AQH=30^\\circ$, \\\\\ntherefore $HQ=\\sqrt{3}OH$, \\\\\nhence $OH=4$, \\\\\nthus $OB=OH+BH=4\\sqrt{3}+4=\\boxed{4\\sqrt{3}+4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52867075_157": { -"question": "As shown in the figure, in $ \\triangle ABC$, $\\angle ACB=90^\\circ$, $AM=AC$, $BN=BC$. When $\\angle A=30^\\circ$, what is the measure of $\\angle MCN$ in degrees?", -"image_file_name": "7044986", -"image": [ -"math/52867075_982.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle A=30^\\circ$ and $AC=AM$,\\\\\nit follows that $\\angle AMC=\\frac{1}{2}\\times \\left(180^\\circ-30^\\circ\\right)=75^\\circ$,\\\\\nSince $\\angle B=60^\\circ$ and $BC=BN$,\\\\\nit implies $\\angle CNB=\\frac{1}{2}\\times \\left(180^\\circ-60^\\circ\\right)=60^\\circ$,\\\\\nThus, $\\angle MCN=180^\\circ-60^\\circ-75^\\circ=\\boxed{45^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52867075_158": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $AM=AC$, $BN=BC$. When the degree of $\\angle A$ changes, does the degree of $\\angle MCN$ change? If it does not change, find the degree of $\\angle MCN$.", -"image_file_name": "7044986", -"image": [ -"math/52867075_982.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\angle AMC=\\frac{1}{2}\\left(180^\\circ-\\angle A\\right), \\angle CNB=\\frac{1}{2}\\left(180^\\circ-\\angle B\\right)$,\\\\\nit follows that $\\angle MCN=180^\\circ-\\angle AMC-\\angle BNC=\\frac{1}{2}\\left(\\angle A+\\angle B\\right)=45^\\circ$,\\\\\ntherefore, as the measure of $\\angle A$ changes, the measure of $\\angle MCN$ remains constant, $\\angle MCN=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52866951_161": { -"question": "As shown in the figure, in $\\triangle ACB$, $\\angle ACB=90^\\circ$, point M is the midpoint of side $AB$, point E is on segment $AM$, $EF\\perp AC$ at point F, connect $CM$, $CE$. It is known that $\\angle A=50^\\circ$, $\\angle ACE=30^\\circ$, and $CE=CM$. If $AB=4$, find the length of segment $FC$.", -"image_file_name": "7044986", -"image": [ -"math/52866951_999.png" -], -"solution": "\\textbf{Solution:} Since $AB=4$,\\\\\nit follows that $CE=CM=\\frac{1}{2}AB=2$,\\\\\nsince $EF\\perp AC$ and $\\angle ACE=30^\\circ$,\\\\\nit follows that $EF=\\frac{1}{2}CE=1$,\\\\\ntherefore $FC=\\sqrt{CE^{2}-EF^{2}}=\\sqrt{2^{2}-1^{2}}=\\boxed{\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52653743_94": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle with side length 2, $D$ is a point on the extension line of $CA$, an equilateral triangle $BDE$ is constructed with $BD$ as a side, and $AE$ is connected. Find the degree measure of $\\angle EAD$.", -"image_file_name": "7048953", -"image": [ -"math/52653743_936.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC$ and $\\triangle BDE$ are equilateral triangles,\\\\\n$\\therefore AB=BC=AC=2$, $BD=BE$, $\\angle ABC=\\angle C=\\angle BAC=\\angle DBE=60^\\circ$,\\\\\n$\\therefore \\angle ABC+\\angle ABD=\\angle DBE+\\angle ABD$,\\\\\nwhich means $\\angle CBD=\\angle ABE$,\\\\\nIn $\\triangle CBD$ and $\\triangle ABE$,\\\\\n$ \\left\\{\\begin{array}{l}\nBC=AB \\\\\n\\angle CBD=\\angle ABE \\\\\nBD=BE\n\\end{array}\\right.$\\\\\n$\\therefore \\triangle CBD\\cong \\triangle ABE$ (SAS),\\\\\n$\\therefore \\angle BAE=\\angle BCD=60^\\circ$,\\\\\n$\\therefore \\angle EAD=180^\\circ-60^\\circ-60^\\circ=\\boxed{60^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52653743_95": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle with side length 2. Point $D$ is on the extension of side $CA$. An equilateral triangle $BDE$ is constructed with $BD$ as a side. Connect $AE$. Find the value of $AE-AD$.", -"image_file_name": "7048953", -"image": [ -"math/52653743_936.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle CBD \\cong \\triangle ABE$,\\\\\nit follows that $CD=AE$,\\\\\nthus $AE-AD=CD-AD=AC=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385818_97": { -"question": "As shown in the figure, it is a \"Gougu Circle and Square Diagram\" (also known as \"Zhao Shuang's Chord Diagram\") created by ancient Chinese mathematician Zhao Shuang. It consists of four congruent right-angled triangles and a small square EFGH seamlessly put together to form a larger square ABCD. If $\\angle ABE=30^\\circ$ and $EF=\\sqrt{3}-1$, find the length of AB.", -"image_file_name": "7048953", -"image": [ -"math/51385818_940.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\triangle ABE \\cong \\triangle BCF$, $\\therefore AE=BF$, $\\because \\angle ABE=30^\\circ$, let $AE=x$, $\\therefore \\tan \\angle ABE = \\frac{AE}{BE} = \\frac{x}{x+\\sqrt{3}-1} = \\frac{\\sqrt{3}}{3}$, solving this, we get $x=1$, $\\therefore AE=1$, $BE=BF+EF= \\sqrt{3}$, $\\therefore AB=\\sqrt{AE^2+BE^2}=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51385818_98": { -"question": "As shown in the figure, it is a \"Gougu Circle and Square Diagram\" (also known as \"Zhao Shuang's Chord Diagram\") created by the ancient Chinese mathematician Zhao Shuang. It consists of four congruent right-angled triangles and a smaller square EFGH seamlessly pieced together to form a larger square ABCD. Point M is on FG, with $AB\\parallel EM$ and $AB=2EM$. Find the ratio of the perimeter of square ABCD to that of square EFGH.", -"image_file_name": "7048953", -"image": [ -"math/51385818_940.png" -], -"solution": "\\textbf{Solution:} Given that $AB\\parallel EM$, it follows that $\\angle ABE = \\angle FEM$ and $\\angle AEB = \\angle EFM = 90^\\circ$. Therefore, $\\triangle ABE \\sim \\triangle EMF$, which implies $\\frac{EM}{AB}=\\frac{EF}{BE}=\\frac{1}{2}$, so $BF=EF$. Thus, $AE=BF=EF$. Let EF=1, then $AB=\\sqrt{AE^2+BE^2}=\\sqrt{5}$. Therefore, the perimeter ratio of square ABCD to square EFGH is $AB\\colon EF = \\boxed{\\sqrt{5}\\colon 1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52096283_100": { -"question": "As shown in the figure, two straight lines $l_{1}$ and $l_{2}$ passing through point A intersect the y-axis at points B and C, respectively, where point B is above the origin, and point C is below the origin. Given that AB = $\\sqrt{13}$ and B(0, 3), what are the coordinates of point A?", -"image_file_name": "7048953", -"image": [ -"math/52096283_951.png" -], -"solution": "\\textbf{Solution}: Since $B(0,3)$,\\\\\nit follows that $OB=3$,\\\\\nIn $\\triangle AOB$, $OA= \\sqrt{AB^{2}-OB^{2}}=\\sqrt{13-3^{2}}=2$,\\\\\nthus \\boxed{A(2,0)}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52096283_101": { -"question": "As shown in the figure, two lines $l_{1}$ and $l_{2}$ passing through point A intersect the y-axis at points B and C, respectively, where point B is above the origin and point C is below the origin. It is known that $AB = \\sqrt{13}$ and $B(0,3)$. If the area of $\\triangle ABC$ is 4, what is the equation of the line $l_{2}$?", -"image_file_name": "7048953", -"image": [ -"math/52096283_951.png" -], -"solution": "\\textbf{Solution:} Let $\\because S_{\\triangle ABC}=\\frac{1}{2}BC \\cdot OA$,\\\\\n$\\therefore 4=\\frac{1}{2} \\cdot BC \\times 2$, solving this gives $BC=4$,\\\\\n$\\therefore OC=BC-OB=4-3=1$,\\\\\n$\\therefore C(0, -1)$,\\\\\nLet the equation of the line $l_{2}$ be $y=kx+b$,\\\\\nSubstituting $A(2, 0)$, $C(0, -1)$ into $y=kx+b$, we get:\\\\\n$\\begin{cases}\n0=2k+b\\\\\n-1=b\n\\end{cases}$, solving this gives $\\begin{cases}\nk=\\frac{1}{2}\\\\\nb=-1\n\\end{cases}$,\\\\\n$\\therefore$ the equation of line $l_{2}$ is $\\boxed{y=\\frac{1}{2}x-1}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52891027_104": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle, with $D$ and $E$ located on $AB$ and $BC$ respectively, and $AD=BE$, $AE$ and $CD$ intersect at point $F$. What is the measure of $\\angle CFE$ in degrees?", -"image_file_name": "7048953", -"image": [ -"math/52891028_9601.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1,\\\\\nFigure 1\\\\\n$\\because$ $\\triangle ABC$ is an equilateral triangle\\\\\n$\\therefore$ $AB=BC=CA$, and $\\angle ABC=\\angle BCA=\\angle CAB=60^\\circ$\\\\\nIn $\\triangle ABE$ and $\\triangle CAD$,\\\\\n$\\because$ $\\left\\{\\begin{array}{l}\nAB=CA\\\\\n\\angle ABE=\\angle CAD\\\\\nBE=AD\n\\end{array}\\right.$\\\\\n$\\therefore$ $\\triangle ABE \\cong \\triangle CAD$ (SAS)\\\\\n$\\therefore$ $\\angle ACD=\\angle BAE$\\\\\nIn $\\triangle AFC$, $\\angle CFE=\\angle ACD+\\angle CAF=\\angle BAE+\\angle CAF=\\angle BAC=60^\\circ$\\\\\n$\\therefore$ $\\angle CFE=\\boxed{60^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52891027_105": { -"question": "As shown in the figure, $\\triangle ABC$ is an equilateral triangle, with D and E located on $AB$ and $BC$ respectively, and $AD=BE$, $AE$ intersects $CD$ at point F. As shown in Figure 2, draw $CH\\perp AE$ at point H through point C. If $AE=5$ and $HF=2$, what is the length of $DF$?", -"image_file_name": "7048953", -"image": [ -"math/52891029_9614.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 2,\\\\\n$\\because CH\\perp AE$\\\\\n$\\therefore \\angle FHC=90^\\circ$\\\\\nIn $\\triangle FHC$, $\\angle FCH=90^\\circ-\\angle CFH=30^\\circ$\\\\\n$\\because HF=2$\\\\\n$\\therefore FC=2FH=4$\\\\\n$\\because \\triangle ABE\\cong \\triangle CAD$\\\\\n$\\therefore AE=CD=5$\\\\\n$\\therefore DF=CD-CF=5-4=\\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52890848_107": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AC \\perp BC$, $AB=13$, $BC=12$, $CD=3$, $AD=4$. What is the length of $AC$?", -"image_file_name": "7048953", -"image": [ -"math/52890848_973.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$,\\\\\nsince $AC \\perp BC$,\\\\\nit follows that $AC = \\sqrt{AB^{2} - BC^{2}} = \\sqrt{169 - 144} = \\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52890848_108": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AC \\perp BC$, $AB=13$, $BC=12$, $CD=3$, $AD=4$. What is the area of quadrilateral $ABCD$?", -"image_file_name": "7048953", -"image": [ -"math/52890848_973.png" -], -"solution": "\\textbf{Solution:} Given that $\\because A{D}^{2}+C{D}^{2}=16+9=25=A{C}^{2}$,\\\\\n$\\therefore \\angle D=90^\\circ$,\\\\\n$\\therefore {S}_{\\text{quadrilateral }ABCD}={S}_{\\triangle ABC}+{S}_{\\triangle ACD}=\\frac{12\\times 5}{2}+\\frac{4\\times 3}{2}=\\boxed{36}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52095924_110": { -"question": "As shown in the figure, in the right-angled triangle $ABC$, where $\\angle C=90^\\circ$, the bisector of $\\angle CAB$ intersects $BC$ at point $D$, and $DE$ is the perpendicular bisector of $AB$ with the foot of the perpendicular being $E$. What is the measure of $\\angle CAD$?", -"image_file_name": "7048953", -"image": [ -"math/52095924_980.png" -], -"solution": "\\textbf{Solution:} Since DE is the perpendicular bisector of AB,\\\\\nit follows that AD=BD,\\\\\nhence, $\\angle B=\\angle EAD$,\\\\\nmoreover, since AD is the bisector of $\\angle CAB$,\\\\\nit follows that $\\angle CAD=\\angle EAD$,\\\\\nlet $\\angle CAD=x$, then $3x=90^\\circ$,\\\\\ntherefore, $x=30^\\circ$,\\\\\nthus, $\\angle CAD=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52095924_111": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, the bisector of $\\angle CAB$ intersects $BC$ at point $D$, and $DE$ is the perpendicular bisector of $AB$, with $E$ being the foot of the perpendicular. If $BC=3$, what is the length of $DE$?", -"image_file_name": "7048953", -"image": [ -"math/52095924_980.png" -], -"solution": "\\textbf{Solution:} Since $AD$ is the bisector of $\\angle CAB$, and $DC \\perp AC$, $DE \\perp AB$,\\\\\nit follows that $DC=DE$,\\\\\nLet $DC=y$, then $DE=y$, and $BD=3-y$,\\\\\nFurthermore, since $\\angle B=30^\\circ$,\\\\\nwe have $y=\\frac{3-y}{2}$,\\\\\nSolving this, we get $\\boxed{y=1}$,\\\\\nthus $DE=\\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52095800_113": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A=90^\\circ$, $BD$ bisects $\\angle ABC$ and intersects $AC$ at point $D$, with $AB=4$, $BC=12$, $AD=3$. If point $P$ moves along $BC$, what is the minimum value of the length of segment $DP$?", -"image_file_name": "7048953", -"image": [ -"math/52095800_990.png" -], -"solution": "\\textbf{Solution:} When $DP \\perp BC$, the length of the line segment $DP$ is minimized, \\\\\n$\\because BD$ bisects $\\angle ABC$ and $\\angle A = 90^\\circ$, \\\\\nwhen $DP \\perp BC$, $DP = AD$, \\\\\n$\\because AD = 3$, \\\\\n$\\therefore$ the minimal value of $DP$ is $\\boxed{3}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52095800_114": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A=90^\\circ$, BD bisects $\\angle ABC$ and intersects AC at point D, AB=4, BC=12, and AD=3. If point P moves on BC, when DP is minimized, what is the area of $\\triangle CDP$?", -"image_file_name": "7048953", -"image": [ -"math/52095800_990.png" -], -"solution": "\\textbf{Solution}: Since $\\angle A=90^\\circ$, \\\\\nit follows that BD=$\\sqrt{AB^{2}+AD^{2}}=\\sqrt{4^{2}+3^{2}}=5$, \\\\\nWhen DP is at its minimum, DP=3, and DP$\\perp$BC, \\\\\nthus $\\angle$DPB=$\\angle$DPC=$90^\\circ$, \\\\\nso PB=$\\sqrt{BD^{2}-DP^{2}}=\\sqrt{5^{2}-3^{2}}=4$, \\\\\nthus CP=BC-PB=12-4=8, \\\\\ntherefore, the area of $\\triangle CDP$=$\\frac{1}{2}$CP$\\times$DP=$\\frac{1}{2}\\times8\\times3=\\boxed{12}$, \\\\\ni.e., when DP is at its minimum, the area of $\\triangle CDP$ is \\boxed{12}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55532993_52": { -"question": "As shown in the figure, it is known that point $C$ is a point on $AB$, $AC=30\\,cm$, $BC=\\frac{2}{5}AC$, and $D$, $E$ are the midpoints of $AC$, $AB$ respectively. How many line segments are there in the figure in total?", -"image_file_name": "7038193", -"image": [ -"math/55532993_515.png" -], -"solution": "\\textbf{Solution:} In the figure, there are \\boxed{10} line segments.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55532993_53": { -"question": "As shown in the figure, it is known that point $C$ is a point on $AB$, $AC=30\\,cm$, $BC=\\frac{2}{5}AC$, and $D$, $E$ are the midpoints of $AC$, $AB$ respectively. What is the length of $DE$ in $cm$?", -"image_file_name": "7038193", -"image": [ -"math/55532993_515.png" -], -"solution": "\\textbf{Solution:} Given that $AC=30\\,cm$, $BC=\\frac{2}{5}AC$,\\\\\nhence $BC=\\frac{2}{5}\\times 30=12\\,cm$, $AB=AC+BC=42\\,cm$,\\\\\nalso, since D and E are the midpoints of $AC$ and $AB$, respectively,\\\\\nthus $AD=DC=\\frac{1}{2}AC=15\\,cm$, $AE=BE=\\frac{1}{2}AB=21\\,cm$\\\\\ntherefore $DE=AE-AD=21-15=\\boxed{6}\\,cm$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55503444_55": { -"question": "As shown in the figure, point $O$ is a point on line $AB$, and ray $OC$ passes through point $O$ such that $\\angle BOC=65^\\circ$. A right-angled triangle ruler is placed with its right-angled vertex at point $O$. As shown in Figure 1, when one side $ON$ of the triangle ruler $MON$ coincides with ray $OB$, then what is the degree measure of $\\angle MOC$?", -"image_file_name": "7038193", -"image": [ -"math/55503444_526.png" -], -"solution": "\\textbf{Solution:} We have $\\angle MOC = \\boxed{25^\\circ}$.", -"solution_image": [ -"solution_images/55503444_522.png", -"solution_images/55503444_5218.png" -], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55503444_56": { -"question": "As shown in the diagram, point $O$ is located on line segment $AB$. A ray $OC$ is drawn from point $O$ such that $\\angle BOC = 65^\\circ$. A right-angled triangle ruler is placed with its right angle vertex at point $O$. As shown in Diagram 2, the triangle ruler $MON$ is rotated counterclockwise around point $O$ by a certain angle, such that ray $OC$ bisects angle $\\angle MOB$. What are the measures of $\\angle BON$ and $\\angle CON$?", -"image_file_name": "7038193", -"image": [ -"math/55503444_526.png" -], -"solution": "\\textbf{Solution}: Since $\\angle BOC=65^\\circ$ and $OC$ is the angle bisector of $\\angle MOB$,\\\\\nit follows that $\\angle MOB=2\\angle BOC=130^\\circ.$\\\\\nHence, $\\angle BON=\\angle MOB-\\angle MON=130^\\circ-90^\\circ=40^\\circ.$\\\\\n$\\angle CON=\\angle COB-\\angle BON=65^\\circ-40^\\circ=25^\\circ.$\\\\\nThus, $\\angle BON=\\boxed{40^\\circ}, \\angle CON=\\boxed{25^\\circ}$.", -"solution_image": [ -"solution_images/55503444_522.png", -"solution_images/55503444_5218.png" -], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55574660_59": { -"question": "As shown in the figure, $OM$ is the bisector of $\\angle AOC$, and $ON$ is the bisector of $\\angle BOC$. As in Figure 1, when $\\angle AOB$ is a right angle and $\\angle BOC=60^\\circ$, what is the degree measure of $\\angle MON$?", -"image_file_name": "7038193", -"image": [ -"math/55574660_534.png" -], -"solution": "\\textbf{Solution:} By the given problem, \\\\\n$\\because \\angle AOB=90^\\circ, \\angle BOC=60^\\circ$, \\\\\n$\\therefore \\angle AOC=90^\\circ+60^\\circ=150^\\circ$, \\\\\n$\\because OM$ bisects $\\angle AOC, ON$ bisects $\\angle BOC$, \\\\\n$\\therefore \\angle MOC=\\frac{1}{2}\\angle AOC=75^\\circ, \\angle NOC=\\frac{1}{2}\\angle BOC=30^\\circ$, \\\\\n$\\therefore \\angle MON=\\angle MOC-\\angle NOC=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55575467_64": { -"question": "If $ \\angle BON = 160^\\circ$, what is the degree measure of $ \\angle AOC$? If OD bisects $ \\angle CON$ and $ \\angle AOM = 62^\\circ$, find the degree measure of $ \\angle BOD$.", -"image_file_name": "7038193", -"image": [], -"solution": "\\textbf{Solution:} Given that, $\\angle AOB=90^\\circ, \\angle AOM=62^\\circ$,\\\\\n$\\therefore \\angle BOM=28^\\circ$.\\\\\nSince $OC$ bisects $\\angle MOB$,\\\\\n$\\therefore \\angle BOC=\\angle MOC=14^\\circ$,\\\\\n$\\therefore \\angle CON=180^\\circ-14^\\circ=166^\\circ$.\\\\\nSince $OD$ bisects $\\angle CON$,\\\\\n$\\therefore \\angle COD=166^\\circ \\div 2=83^\\circ$,\\\\\n$\\therefore \\angle BOD=\\angle COD-\\angle BOC=83^\\circ-14^\\circ=\\boxed{69^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55431962_66": { -"question": "\n\nThe point $P$ is a point on the line segment $AB$, and the points $M$ and $N$ are the midpoints of the line segments $AP$ and $PB$, respectively. As shown in the figure, if the point $P$ is the midpoint of the line segment $AB$, and $MP=4\\, \\text{cm}$, what is the length of the line segment $AB$ in cm?", -"image_file_name": "7038193", -"image": [ -"math/55431962_550.jpeg" -], -"solution": "\\textbf{Solution:} Given that point $M$ and $N$ are the midpoints of line segments $AP$ and $PB$ respectively,\\\\\n$\\therefore AP=2MP$, $BP=2PN$.\\\\\n$\\because MP=4\\, \\text{cm}$, $\\therefore AP=8\\, \\text{cm}$.\\\\\n$\\because P$ is the midpoint of $AB$, $\\therefore AB=2AP=\\boxed{16}\\, \\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55431962_67": { -"question": "As shown in the figure, point $P$ is a point on the line segment $AB$, and points $M$ and $N$ are the midpoints of line segments $AP$ and $PB$, respectively. If point $P$ is any point on the line segment $AB$, and $AB=12\\, \\text{cm}$, what is the length of the line segment $MN$ in $\\text{cm}$?", -"image_file_name": "7038193", -"image": [ -"math/55431962_550.jpeg" -], -"solution": "\\textbf{Solution:} Since points M and N are the midpoints of the line segments AP and PB, respectively,\\\\\n$\\therefore AP=2MP$, $BP=2PN$.\\\\\n$\\therefore AP+BP=2MP+2PN=2MN$, that is $AB=2MN$.\\\\\n$\\because AB=12\\ \\text{cm}$,\\\\\n$\\therefore MN=\\boxed{6}\\ \\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55431959_70": { -"question": "As shown in the figure, it is known that ship A is in the direction of 30 degrees north of east from lighthouse P, ship B is in the direction of 70 degrees south of east from lighthouse P, and ship C is on the bisector of $\\angle APB$. What is the degree measure of $\\angle APB$?", -"image_file_name": "7038193", -"image": [ -"math/55431959_560.jpeg" -], -"solution": "\\textbf{Solution:} Given that $\\angle APN=30^\\circ$ and $\\angle BPS=70^\\circ$, \\\\\n$\\therefore \\angle APB=180^\\circ-\\angle APN-\\angle BPS=180^\\circ-30^\\circ-70^\\circ=80^\\circ$.\\\\\n$\\therefore$ The measure of $\\angle APB$ is $\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55431959_71": { -"question": "As shown in the figure, it is known that ship A is in the direction $30^\\circ$ north of east from lighthouse P, ship B is in the direction $70^\\circ$ south of east from lighthouse P, and ship C is on the bisector of $\\angle APB$. How many degrees north of east is ship C from lighthouse P?", -"image_file_name": "7038193", -"image": [ -"math/55431959_560.jpeg" -], -"solution": "\\textbf{Solution:} Since $PC$ bisects $\\angle APB$ and $\\angle APB=80^\\circ$,\n\\[\\therefore \\angle APC= \\frac{1}{2}\\angle APB= \\frac{1}{2}\\times 80^\\circ=40^\\circ.\\]\n\\[\\therefore \\angle NPC=\\angle APN+\\angle APC=30^\\circ+40^\\circ=\\boxed{70^\\circ}.\\]\nTherefore, the ship C is in the direction of 70$^\\circ$ north by east from the lighthouse P.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55429566_73": { -"question": "As shown in the figure, point C is on the line segment AB, with $AC=12\\,cm$ and $CB=9\\,cm$. M and N are the midpoints of AC and BC, respectively. What is the length of the line segment MN in cm?", -"image_file_name": "7038193", -"image": [ -"math/55429566_572.png" -], -"solution": "\\textbf{Solution:} Given that M and N are the midpoints of AC and BC, respectively,\n\n\\[\n\\therefore MC=\\frac{1}{2}AC, \\quad CN=\\frac{1}{2}CB,\n\\]\n\n\\[\n\\therefore MC+CN=\\frac{1}{2}AC+\\frac{1}{2}CB=\\frac{1}{2}(AC+CB),\n\\]\n\nwhich means $MN=\\frac{1}{2}(AC+CB)=\\frac{1}{2}\\times(12+9)=\\boxed{\\frac{21}{2}}\\text{cm}.$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55393350_77": { -"question": "As shown in the figure, points $A$, $B$, and $C$ are on the same straight line, point $D$ is the midpoint of segment $AC$, and point $E$ is the midpoint of segment $BC$. As shown in Figure 1, point $C$ is on the segment $AB$; if $AC=6$ and $BC=4$, how long is segment $DE$?", -"image_file_name": "7038193", -"image": [ -"math/55393350_584.png" -], -"solution": "\\textbf{Solution:} Since $D$ is the midpoint of line segment $AC$, and $E$ is the midpoint of line segment $BC$,\\\\\ntherefore $DC=\\frac{1}{2}AC=3$, and $CE=\\frac{1}{2}BC=2$,\\\\\nthus $DE=DC+CE=3+2=\\boxed{5}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55393350_78": { -"question": "As shown in the figure, points A, B, and C are on the same straight line. Point $D$ is the midpoint of line segment $AC$, and point $E$ is the midpoint of line segment $BC$. As shown in Figure 2, point $C$ is on the extension of line segment $AB$. If $DE=5$, find the length of line segment $AB$.", -"image_file_name": "7038193", -"image": [ -"math/55393350_584.png" -], -"solution": "\\textbf{Solution:} Since $D$ is the midpoint of the line segment $AC$ and $E$ is the midpoint of the line segment $BC$, \\\\\nthus $DC = \\frac{1}{2} AC$, $CE = \\frac{1}{2} BC$, \\\\\nthus $DE = DC - CE = \\frac{1}{2} (AC - BC) = \\frac{1}{2} AB = 5$, \\\\\nthus $AB = \\boxed{10}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55393357_80": { -"question": "As shown in the figure, it is known that $O$ is a point on the line $AB$. Rays $OC$, $OD$, and $OM$ are drawn such that $OM$ bisects $\\angle AOC$. When $OC$, $OD$, and $OM$ are all above $AB$, given that $\\angle COD=60^\\circ$ and $\\angle BOC=10^\\circ$, what is the degree measure of $\\angle DOM$?", -"image_file_name": "7038193", -"image": [ -"math/55393357_594.png" -], -"solution": "\\textbf{Solution}: From the given information, we have $\\angle AOC=180^\\circ-10^\\circ=170^\\circ$, \\\\\nsince $OM$ bisects $\\angle AOC$, \\\\\nthus $\\angle MOC=\\frac{170^\\circ}{2}=85^\\circ$, \\\\\ntherefore $\\angle MOD=85^\\circ-60^\\circ=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55393357_81": { -"question": "As shown in the diagram, it is known that $O$ is a point on line $AB$, with rays $OC$, $OD$, and $OM$ drawn such that $OM$ bisects $\\angle AOC$. When $OC$ and $OM$ are above $AB$, and $OD$ is below $AB$, given that $\\angle COD=90^\\circ$ and the ratio of $\\angle BOC$ is $1:10$, what is the degree measure of $\\angle DOM$?", -"image_file_name": "7038193", -"image": [ -"math/55393359_5915.png", -"math/55393357_594.png" -], -"solution": "\\textbf{Solution:} Let $\\angle AOD=a$, then $\\angle BOC=10a$, $\\angle AOC=90^\\circ-a$,\\\\\nfrom the given problem we have: $\\angle AOC+\\angle BOC=90^\\circ-a+10a=180^\\circ$,\\\\\nsolving this gives us $a=10^\\circ$.\\\\\nTherefore, $\\angle AOC=90^\\circ-10^\\circ=80^\\circ$, $\\angle BOC=100^\\circ$.\\\\\nSince $OM$ bisects $\\angle AOC$,\\\\\nit follows that $\\angle AOM=\\frac{1}{2}\\angle AOC=80^\\circ \\div 2=40^\\circ$.\\\\\nTherefore, $\\angle DOM=40^\\circ+10^\\circ=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55327759_85": { -"question": "As shown in the figure, it is known that the length of line segment AB is $a$. Extend BA to point C such that $AC = \\frac{1}{2} AB$. Point D is the midpoint of line segment BC. What is the length of CD?", -"image_file_name": "7038193", -"image": [ -"math/55327759_611.png" -], -"solution": "\\textbf{Solution:} Since $AB = a$, \\\\\ntherefore $AC = \\frac{1}{2}AB = \\frac{1}{2}a$, \\\\\nthus $BC = AC + AB = a + \\frac{1}{2}a = \\frac{3}{2}a$, \\\\\nsince D is the midpoint of the line segment BC, \\\\\nthus $CD = BD = \\frac{1}{2}BC = \\frac{3}{4}a = \\boxed{\\frac{3}{4}a}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55327759_86": { -"question": "As shown in the figure, it is known that the length of line segment $AB$ is $a$. Extend $BA$ to point $C$, making $AC=\\frac{1}{2}AB$. Let $D$ be the midpoint of line segment $BC$. If $AD=3\\, \\text{cm}$, what is the value of $a$?", -"image_file_name": "7038193", -"image": [ -"math/55327759_611.png" -], -"solution": "Solution: Since $AD=AB-BD=a-\\frac{3}{4}a=3\\text{cm}$, \\\\\nit follows that $a=\\boxed{12}\\text{cm}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55426370_88": { -"question": "As shown in the figure, the lines AB and CD intersect at point O. OE is the bisector of $\\angle AOC$, $OF\\perp CD$, $OG\\perp OE$, and $\\angle BOD=52^\\circ$. What is the measure of $\\angle AOF$?", -"image_file_name": "7038193", -"image": [ -"math/55426370_620.png" -], -"solution": "\\textbf{Solution:} Since OF$\\perp$CD, \\\\\n$\\therefore$ $\\angle$COF$=90^\\circ$, \\\\\nAlso, since $\\angle$AOC and $\\angle$BOD are vertical angles, \\\\\n$\\therefore$ $\\angle$AOC$=\\angle$BOD$=52^\\circ$, \\\\\n$\\therefore$ $\\angle$AOF=$\\angle$COF-$\\angle$AOC=$90^\\circ-52^\\circ$=$\\boxed{38^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55253062_92": { -"question": "As shown in the figure, it is known that $\\angle AOB=2\\angle BOC$, and $OD$ is the bisector of $\\angle AOC$. If $\\angle AOB=60^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7038193", -"image": [ -"math/55253063_6300.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle AOB=2\\angle BOC$ and $\\angle AOB=60^\\circ$,\\\\\n$\\therefore \\angle BOC= \\frac{1}{2}\\angle AOB=30^\\circ$,\\\\\n$\\therefore \\angle AOC=\\angle AOB+\\angle BOC=90^\\circ$,\\\\\n$\\because$ OD is the bisector of $\\angle AOC$,\\\\\n$\\therefore \\angle COD= \\frac{1}{2}\\angle AOC=45^\\circ$,\\\\\n$\\therefore \\angle BOD=\\angle COD-\\angle BOC=45^\\circ-30^\\circ=\\boxed{15^\\circ}$.", -"solution_image": [ -"solution_images/55253062_630.png", -"solution_images/55253062_636.png" -], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55190308_104": { -"question": "As shown in the figure, it is known that $\\angle BOC = 60^\\circ$, $OE$ bisects $\\angle AOC$, and $OF$ bisects $\\angle BOC$. If $AO \\perp BO$, then what is the measure of $\\angle EOF$ in degrees?", -"image_file_name": "7038193", -"image": [ -"math/55190308_730.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle BOC=60^\\circ$, and OF bisects $\\angle BOC$, $\\therefore \\angle COF= \\frac{1}{2}\\angle BOC=30^\\circ$, $\\because AO\\perp BO$, $\\therefore \\angle AOB=90^\\circ$, hence $\\angle AOC=90^\\circ+60^\\circ=150^\\circ$, $\\because OE$ bisects $\\angle AOC$, $\\therefore \\angle COE= \\frac{1}{2}\\angle AOC=75^\\circ$, thus $\\angle EOF=\\angle COE-\\angle COF=\\boxed{45^\\circ};$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55190308_105": { -"question": "As shown in the figure, it is known that $\\angle BOC=60^\\circ$, $OE$ bisects $\\angle AOC$, and $OF$ bisects $\\angle BOC$. If $\\angle AOC + \\angle EOF = 210^\\circ$, then how many degrees is $\\angle EOF$?", -"image_file_name": "7038193", -"image": [ -"math/55190308_730.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle BOC=60^\\circ$ and OF bisects $\\angle BOC$,\\\\\nit follows that $\\angle COF= \\frac{1}{2}\\angle BOC=30^\\circ$,\\\\\nGiven that OE bisects $\\angle AOC$,\\\\\nit follows that $\\angle AOC=2\\angle COE$,\\\\\nGiven that $\\angle AOC+\\angle EOF=210^\\circ$,\\\\\nit follows that $2\\angle COE+\\angle COE-\\angle COF=210^\\circ$,\\\\\nwhich simplifies to $3\\angle COE-30^\\circ=210^\\circ$,\\\\\nand therefore $\\angle COE=80^\\circ$,\\\\\nconsequently, $\\angle EOF=\\angle COE-\\angle COF=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55192442_107": { -"question": "As shown in Figure 1, it is known that $\\angle AOB= 40^\\circ$. If $\\angle AOC= \\frac{1}{3}\\angle BOC$, what is the degree measure of $\\angle BOC$?", -"image_file_name": "7038193", -"image": [ -"math/55192442_740.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, when OC is outside of $\\angle AOB$,\\\\\n$\\because \\angle AOC= \\frac{1}{3}\\angle BOC= \\frac{1}{3}(\\angle AOB+\\angle AOC)$,\\\\\n$\\therefore \\angle AOC= \\frac{1}{2}\\angle AOB= \\frac{1}{2}\\times 40^\\circ=20^\\circ$,\\\\\n$\\therefore \\angle BOC=\\angle AOB+\\angle AOC=40^\\circ+ 20^\\circ= 60^\\circ$;\\\\\nAs shown in the diagram, when OC is inside of $\\angle AOB$,\\\\\n$\\because \\angle AOC= \\frac{1}{3}\\angle BOC= \\frac{1}{3} (\\angle AOB-\\angle AOC)$,\\\\\n$\\therefore \\angle AOC= \\frac{1}{4}\\angle AOB= \\frac{1}{4}\\times 40^\\circ=10^\\circ$,\\\\\n$\\therefore \\angle BOC=\\angle AOB-\\angle AOC=40^\\circ- 10^\\circ= 30^\\circ$.\\\\\nHence, the degree of $\\angle BOC$ is $\\boxed{60^\\circ}$ or $\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55192442_108": { -"question": "As shown in the figure, it is known that $\\angle AOB= 40^\\circ$. As shown in figure 2, $\\angle AOC= 30^\\circ$, $OM$ is a straight line inside $\\angle AOB$, $ON$ is the quadrisection line of $\\angle MOC$, and $3\\angle CON=\\angle NOM$, what is the value of $4\\angle AON+\\angle COM$?", -"image_file_name": "7038193", -"image": [ -"math/55192442_740.png" -], -"solution": "\\textbf{Solution:} Let $\\angle CON = \\alpha$, \\\\\nsince ON is the angle bisector of $\\angle MOC$, \\\\\nthus $\\angle MOC = 4\\alpha$. \\\\\nSince $3\\angle CON = \\angle NOM$, \\\\\nthus $\\angle MON = 3\\angle CON = 3\\alpha$ \\\\\nSince $\\angle AOC = 30^\\circ$, \\\\\nthus $\\angle AON = \\angle AOC - \\angle CON = 30^\\circ - \\alpha$, \\\\\ntherefore $4\\angle AON + \\angle COM = 4(30^\\circ-\\alpha) + 4\\alpha = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55000649_113": { -"question": "As shown in the figure, it is known that the length of segment $AB=4$. Extend $AB$ to $C$ such that $BC=\\frac{1}{2}AB$. Extend $AB$ in the opposite direction to $D$ such that $AD=\\frac{1}{2}AC$. What is the length of segment $CD$?", -"image_file_name": "7038193", -"image": [ -"math/55000649_787.png" -], -"solution": "\\textbf{Solution:} Given the problem,\\\\\n$\\because AB=4$, $BC=\\frac{1}{2}AB$,\\\\\n$\\therefore BC=\\frac{1}{2}\\times 4=2$.\\\\\n$\\therefore AC=AB+BC=4+2=6$.\\\\\n$\\because AD=\\frac{1}{2}AC$,\\\\\n$\\therefore AD=\\frac{1}{2}\\times 6=3$.\\\\\n$\\therefore CD=AD+AC=3+6=\\boxed{9}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55000649_114": { -"question": "As shown in the figure, it is known that the line segment $AB=4$. Extend $AB$ to $C$ so that $BC=\\frac{1}{2}AB$. Extend $AB$ in the opposite direction to $D$ so that $AD=\\frac{1}{2}AC$. If $Q$ is the midpoint of $AB$, and $P$ is a point on the line segment $CD$, and $BP=\\frac{1}{2}BC$, what is the length of the line segment $PQ$?", -"image_file_name": "7038193", -"image": [ -"math/55000649_787.png" -], -"solution": "\\textbf{Solution}: Since $AB=4$, and $Q$ is the midpoint of $AB$, \\\\\n$\\therefore QB=\\frac{1}{2}AB=\\frac{1}{2}\\times 4=2$.\\\\\nSince $BC=2$.\\\\\n$\\therefore BP=\\frac{1}{2}BC=\\frac{1}{2}\\times 2=1$.\\\\\nWhen point $P$ is to the right of point $B$, $PQ=QB+BP=2+1=3$;\\\\\nWhen point $P$ is to the left of point $B$, $PQ=QB-BP=2-1=1$.\\\\\nThus, the length of $PQ$ is either $1$ or \\boxed{3}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54962548_116": { -"question": "As shown in the figure, line AB and line CD intersect at point O, with OM$\\perp$AB at point O. If $\\angle BOC=2\\angle AOC$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7038193", -"image": [ -"math/54962548_790.png" -], -"solution": "\\textbf{Solution}:\nGiven that $\\because \\angle BOC = 2\\angle AOC$, and $\\angle BOC + \\angle AOC = 180^\\circ$,\\\\\n$\\therefore 2\\angle AOC + \\angle AOC = 180^\\circ$,\\\\\n$\\therefore 3\\angle AOC = 180^\\circ$,\\\\\n$\\therefore \\angle AOC = 60^\\circ$,\\\\\n$\\therefore \\angle BOD = \\angle AOC = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54962530_119": { -"question": "Lines AB and CD intersect at point O, and OE bisects $\\angle BOD$. As shown in Figure 1, if $\\angle BOC=130^\\circ$, what is the degree measure of $\\angle AOE$?", -"image_file_name": "7038193", -"image": [ -"math/54962530_800.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BOC= 130^\\circ$,\\\\\nit follows that $\\angle AOD=\\angle BOC=130^\\circ$,\\\\\n$\\angle BOD=180^\\circ-\\angle BOC=50^\\circ$.\\\\\nSince OE bisects $\\angle BOD$,\\\\\nit follows that $\\angle DOE=25^\\circ$,\\\\\ntherefore $\\angle AOE=\\angle AOD+\\angle DOE=\\boxed{155^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54962530_120": { -"question": "Line AB intersects line CD at point O, and OE bisects $\\angle BOD$. As shown in Figure 2, ray OF is inside $\\angle AOD$.", -"image_file_name": "7038193", -"image": [ -"math/54962530_800.png" -], -"solution": "\\textbf{Solution:}\n\n(1) OF is the bisector of $\\angle$AOD, for the following reason:\n\nSince OF $\\perp$ OE, therefore $\\angle$EOF $=90^\\circ$,\n\nthus $\\angle$BOE + $\\angle$AOF = $90^\\circ$.\n\nSince OE bisects $\\angle$BOD, therefore $\\angle$BOE = $\\angle$DOE,\n\nthus $\\angle$DOE + $\\angle$AOF = $90^\\circ$.\n\nTherefore, $\\angle$DOE + $\\angle$DOF = $90^\\circ$,\n\ntherefore, $\\angle$AOF = $\\angle$DOF,\n\ntherefore, OF is the bisector of $\\angle$AOD.\n\n(2) Since $\\angle AOF = \\frac{5}{3}\\angle DOF$,\n\nlet $\\angle$DOF = 3x, then $\\angle$AOF = 5x.\n\nSince OF bisects $\\angle$AOE,\n\nthus $\\angle$AOF = $\\angle$EOF = 5x, hence $\\angle$DOE = 2x.\n\nSince OE bisects $\\angle$BOD, therefore $\\angle$BOD = 4x,\n\ntherefore 5x + 3x + 4x = $180^\\circ$, therefore x = $15^\\circ$, therefore $\\angle$BOD = 4x = $\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927250_122": { -"question": "As shown in the figure, it is known that $OB$, $OC$, and $OD$ are three rays within $\\angle AOE$, with $OB$ bisecting $\\angle AOE$ and $OD$ bisecting $\\angle COE$. If $\\angle AOB=70^\\circ$ and $\\angle DOE=20^\\circ$, what is the degree measure of $\\angle BOC$?", -"image_file_name": "7038193", -"image": [ -"math/54927250_810.png" -], -"solution": "\\textbf{Solution:} Because $OB$ bisects $\\angle AOE$ and $OD$ bisects $\\angle COE$, \\\\\ntherefore $\\angle BOE = \\angle AOB = 70^\\circ$, $\\angle COE = 2\\angle DOE = 40^\\circ$, \\\\\nthus $\\angle BOC = \\angle BOE - \\angle COE = 70^\\circ - 40^\\circ = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"54927250_123": { -"question": "As shown in the figure, it is known that $OB$, $OC$, and $OD$ are three rays within $\\angle AOE$, $OB$ bisects $\\angle AOE$, $OD$ bisects $\\angle COE$. If $\\angle AOE=136^\\circ$ and $AO\\perp CO$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7038193", -"image": [ -"math/54927250_810.png" -], -"solution": "\\textbf{Solution:} Given the construction,\\\\\n$\\because$ OB bisects $\\angle AOE$, OD bisects $\\angle COE$,\\\\\n$\\therefore \\angle BOE=\\frac{1}{2}\\angle AOE$, $\\angle DOE=\\frac{1}{2}\\angle COE$.\\\\\n$\\because \\angle BOD=\\angle BOE-\\angle DOE$,\\\\\n$\\therefore \\angle BOD=\\angle BOE-\\angle DOE=\\frac{1}{2}\\left(\\angle AOE-\\angle COE\\right)=\\frac{1}{2}\\angle AOC$,\\\\\n$\\because$ AO$\\perp$CO,\\\\\n$\\therefore \\angle AOC=90^\\circ$,\\\\\n$\\therefore \\angle BOD=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"54927250_124": { -"question": "As shown in the figure, it is known that $OB$, $OC$, $OD$ are three rays within $\\angle AOE$, with $OB$ bisecting $\\angle AOE$, and $OD$ bisecting $\\angle COE$. If $\\angle DOE = 20^\\circ$ and $\\angle AOE + \\angle BOD = 220^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7038193", -"image": [ -"math/54927250_810.png" -], -"solution": "\\textbf{Solution:} From the given information, we have\\\\\n$\\because$ OB bisects $\\angle AOE$,\\\\\n$\\therefore \\angle AOE=2\\angle BOE$.\\\\\n$\\because \\angle AOE+\\angle BOD=220^\\circ$,\\\\\n$\\therefore 2\\angle BOE+\\angle BOD=220^\\circ$.\\\\\n$\\because \\angle BOE-\\angle BOD=\\angle DOE=20^\\circ$,\\\\\n$\\therefore 2\\angle BOE-2\\angle BOD=40^\\circ$, i.e., $2\\angle BOE=40^\\circ+2\\angle BOD$,\\\\\n$\\therefore 2\\angle BOE+\\angle BOD=40^\\circ+3\\angle BOD=220^\\circ$,\\\\\n$\\therefore 3\\angle BOD=180^\\circ$,\\\\\n$\\therefore \\angle BOD=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"54927213_126": { -"question": "As shown in the figure, it is known that lines $AB$ and $CD$ intersect at point $O$. $OE$ and $OF$ are rays, $\\angle AOE = 90^\\circ$, and $OF$ bisects $\\angle BOC$. If $\\angle EOF = 30^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7038193", -"image": [ -"math/54927213_820.png" -], -"solution": "\\textbf{Solution:} Given the construction, we have\\\\\n$\\because \\angle AOE= 90^\\circ$,\\\\\n$\\therefore \\angle EOB= 180^\\circ-\\angle AOE= 90^\\circ$.\\\\\n$\\because \\angle EOF= 30^\\circ$,\\\\\n$\\therefore \\angle FOB=\\angle EOB-\\angle EOF= 60^\\circ$.\\\\\n$\\because$ OF bisects $\\angle BOC$,\\\\\n$\\therefore \\angle BOC=2\\angle FOB= 120^\\circ$,\\\\\n$\\therefore \\angle BOD=180^\\circ-\\angle BOC=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"54927380_129": { -"question": "As shown in the figure, it is known that point $C$ is on the line segment $AB$, and $M$, $N$ are the midpoints of $AC$, $BC$ respectively. If the length of segment $AC=12$ and $BC=8$, find the length of segment $MN$.", -"image_file_name": "7038193", -"image": [ -"math/54927380_830.png" -], -"solution": "\\textbf{Solution:} By the given information, we have \\(AC=12\\) and \\(BC=8\\), with \\(M\\), \\(N\\) being the midpoints of \\(AC\\), \\(BC\\) respectively, \\\\\n\\(\\therefore MC= \\frac{1}{2}AC\\), \\(NC= \\frac{1}{2}BC\\), \\\\\n\\(\\therefore MN= \\frac{1}{2}AC+ \\frac{1}{2}BC= \\frac{1}{2} \\times 12+ \\frac{1}{2} \\times 8=\\boxed{10}.\\)", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927380_130": { -"question": "As shown in the figure, it is known that point $C$ is on the line segment $AB$, and $M$, $N$ are the midpoints of $AC$, $BC$ respectively. Let $AB=a$, find the length of the line segment $MN$.", -"image_file_name": "7038193", -"image": [ -"math/54927380_830.png" -], -"solution": "\\textbf{Solution:} From (1) it is known that $MN= \\frac{1}{2}AC+ \\frac{1}{2}BC= \\frac{1}{2}(AC+BC)= \\frac{1}{2}AB$,\\\\\nsince $AB=a$,\\\\\ntherefore $MN= \\frac{1}{2}a=\\boxed{\\frac{1}{2}a}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927380_131": { -"question": "As shown in the figure, it is known that point C is on the line segment AB, and M and N are the midpoints of AC and BC, respectively. Given the line segment DE, extend DE to F such that EF= $ \\frac{1}{2}$DE; extend ED to G such that DG=2DE, with P and Q being the midpoints of EF and DG, respectively. If PQ=18 cm, what is the length of DE in cm?", -"image_file_name": "7038193", -"image": [ -"math/54927380_830.png" -], -"solution": "\\textbf{Solution:} Let $DE=x$ cm, then $EF= \\frac{1}{2}x$ cm, $EP= \\frac{1}{2}EF= \\frac{1}{4}x$ cm, $DG=2x$ cm, and $DQ= \\frac{1}{2}DG=x$ cm.\\\\\nSince $PQ=18$ cm, we have $x+x+\\frac{1}{4}x=18$,\\\\\nsolving this yields $x=\\boxed{8}$,\\\\\nthus $DE=\\boxed{8}$ cm.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927620_133": { -"question": "As shown in the figure, line AB and line CD intersect at point O, with OM $\\perp$ AB. If $\\angle 1=40^\\circ$ and $\\angle 2= 30^\\circ$, what is the degree measure of $\\angle$NOD?", -"image_file_name": "7038193", -"image": [ -"math/54927620_840.png" -], -"solution": "\\textbf{Solution:} Since OM$\\perp$AB,\\\\\nit follows that $\\angle$AOM= $90^\\circ$.\\\\\nSince $\\angle$1=$40^\\circ$,\\\\\nit follows that $\\angle$AOC=$\\angle$AOM−$\\angle$1= $90^\\circ−40^\\circ= 50^\\circ$,\\\\\nSince $\\angle$2=$30^\\circ$,\\\\\nit follows that $\\angle$NOD=$\\angle$DOC−$\\angle$AOC−$\\angle$2= $\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927579_136": { -"question": "As shown in the figure, the lines AB, CD, and EF intersect at point O. Write the vertical angles of $\\angle AOC$ and $\\angle BOF$.", -"image_file_name": "7038193", -"image": [ -"math/54927579_850.png" -], -"solution": "\\textbf{Solution:} From the given, we understand that the vertical angle of $\\angle AOC$ is \\boxed{\\angle BOD}, and the vertical angle of $\\angle BOF$ is \\boxed{\\angle AOE}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927579_137": { -"question": "As shown in the figure, lines AB, CD, and EF intersect at point O. If $\\angle AOC=70^\\circ$ and $\\angle BOF=20^\\circ$, what are the measures of $\\angle BOC$ and $\\angle DOE$?", -"image_file_name": "7038193", -"image": [ -"math/54927579_850.png" -], -"solution": "\\textbf{Solution}: Given the problem,\\\\\nsince $\\angle AOC=70^\\circ$, and $\\angle AOC + \\angle BOC= 180^\\circ$,\\\\\nthus $\\angle BOC= \\boxed{110^\\circ}$.\\\\\nSince $\\angle BOF= 20^\\circ$,\\\\\nthus $\\angle COF=\\angle BOC-\\angle BOF= 90^\\circ$,\\\\\ntherefore $\\angle DOE=\\boxed{90^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927588_139": { -"question": "As shown in the figure, lines MD and CN intersect at point O. OA is a ray inside $\\angle MOC$, and OB is a ray inside $\\angle NOD$. $\\angle MON=70^\\circ$. If $\\angle BOD=\\frac{1}{2}\\angle COD$, find the degree measure of $\\angle BON$.", -"image_file_name": "7038193", -"image": [ -"math/54927588_860.png" -], -"solution": "\\textbf{Solution:}\n\nSince $\\angle MON=70^\\circ$,\\\\\nit follows that $\\angle COD= \\angle MON=70^\\circ$,\\\\\nthus $\\angle BOD= \\frac{1}{2}\\angle COD= \\frac{1}{2}\\times70^\\circ=35^\\circ$,\\\\\ntherefore $\\angle BON= 180^\\circ-\\angle MON-\\angle BOD= 180^\\circ-70^\\circ- 35^\\circ=\\boxed{75^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927588_140": { -"question": "As shown in the figure, line MD and CN intersect at point O. OA is a ray inside $\\angle MOC$, and OB is a ray inside $\\angle NOD$. $\\angle MON=70^\\circ$. If $\\angle AOD=2\\angle BOD$ and $\\angle BOC=3\\angle AOC$, what is the measure of $\\angle BON$?", -"image_file_name": "7038193", -"image": [ -"math/54927588_860.png" -], -"solution": "\\textbf{Solution:} Let $\\angle AOC=x^\\circ$, then $\\angle BOC=3x^\\circ$,\\\\\nsince $\\angle COD=\\angle MON=70^\\circ$,\\\\\nthus $\\angle BOD=\\angle BOC-\\angle COD= 3x^\\circ- 70^\\circ$.\\\\\nTherefore, $\\angle AOD=\\angle AOC+\\angle COD=x^\\circ+70^\\circ$.\\\\\nSince $\\angle AOD=2\\angle BOD$,\\\\\ntherefore $x+70= 2(3x-70)$,\\\\\nsolving this, we get $x=42$,\\\\\nthus $\\angle BOD=3x^\\circ- 70^\\circ=3\\times42^\\circ- 70^\\circ=56^\\circ$,\\\\\ntherefore, $\\angle BON= 180^\\circ-\\angle MON-\\angle BOD= 180^\\circ-70^\\circ-56^\\circ=\\boxed{54^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"9349800_146": { -"question": "As shown in the figure, $EF \\parallel CD$, $\\angle 1 + \\angle 2 = 180^\\circ$. If $CD$ bisects $\\angle ACB$, $DG$ bisects $\\angle CDB$, and $\\angle A = 40^\\circ$, what is the measure of $\\angle ACB$?", -"image_file_name": "7038193", -"image": [ -"math/9349800_900.png" -], -"solution": "\\textbf{Solution:} Given from the previous question, we know that $GD\\parallel CA$,\\\\\n$\\therefore \\angle GDB = \\angle A = 40^\\circ$,\\\\\n$\\because DG$ bisects $\\angle CDB$, and $\\angle CDB$ is the exterior angle of triangle $ADC$,\\\\\n$\\therefore \\angle CDB = \\angle A + \\angle ACD = 40^\\circ + \\angle ACD = 80^\\circ$,\\\\\n$\\therefore \\angle ACD = 40^\\circ$,\\\\\nMoreover, since $CD$ bisects $\\angle ACB$,\\\\\n$\\therefore \\angle ACB = 40^\\circ \\times 2 = \\boxed{80^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54368654_148": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=80^\\circ$, $\\angle ACB=50^\\circ$. What is the measure of $\\angle A$ in degrees?", -"image_file_name": "7038193", -"image": [ -"math/54368654_910.png" -], -"solution": "\\textbf{Solution}: Since $\\angle ABC=80^\\circ$ and $\\angle ACB=50^\\circ$, \\\\\nit follows that $\\angle A=180^\\circ - \\angle ABC - \\angle ACB=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"54368654_149": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ABC=80^\\circ$, $\\angle ACB=50^\\circ$. $BP$ bisects $\\angle ABC$, $CP$ bisects $\\angle ACB$. Find the measure of $\\angle BPC$ in degrees?", -"image_file_name": "7038193", -"image": [ -"math/54368654_910.png" -], -"solution": "\\textbf{Solution:} Given that $BP$ bisects $\\angle ABC$ and $CP$ bisects $\\angle ACB$,\\\\\nit follows that $\\angle PBC= \\frac{1}{2}\\angle ABC$ and $\\angle PCB= \\frac{1}{2}\\angle ACB$,\\\\\nhence $\\angle PBC+\\angle PCB= \\frac{1}{2}(\\angle ABC+\\angle ACB)=65^\\circ$,\\\\\ntherefore, $\\angle BPC=180^\\circ-(\\angle PBC+\\angle PCB)=\\boxed{115^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53414133_151": { -"question": "As shown in Figure 1, it is known that point $O$ is on line $AB$, with rays $OD$ and $OC$ located respectively above and below line $AB$, and $\\angle COD = 80^\\circ$. Ray $OE$ is always the bisector of $\\angle AOD$. If $\\angle AOE = 10^\\circ$, what is the degree measure of $\\angle COE$?", -"image_file_name": "7038193", -"image": [ -"math/53414133_922.png" -], -"solution": "\\textbf{Solution:} Since $OE$ bisects $\\angle AOD$,\\\\\nit follows that $\\angle AOE=\\angle DOE=10^\\circ$,\\\\\nhence $\\angle COE-\\angle COD-\\angle DOE=80^\\circ-10^\\circ-70^\\circ=\\boxed{0^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53414133_152": { -"question": "As shown in Figure 1, it is known that point O is on line AB, with rays OD and OC on opposite sides of line AB, and $ \\angle COD=80^\\circ$. Ray OE is always the bisector of $ \\angle AOD$. As shown in Figure 2, let $ \\angle AOD=n^\\circ$. It is known that $ \\angle DOE=2\\angle AOC$. Find the value of $n$.", -"image_file_name": "7038193", -"image": [ -"math/53414133_922.png" -], -"solution": "\\textbf{Solution:} Given that,\\\\\n$\\because OE$ bisects $\\angle AOD$,\\\\\n$\\therefore \\angle DOE=\\frac{n^\\circ}{2}$,\\\\\n$\\because \\angle COD=80^\\circ$,\\\\\n$\\therefore \\angle AOC=80^\\circ-n^\\circ$,\\\\\n$\\because \\angle DOE=2\\angle AOC$,\\\\\n$\\therefore \\frac{n}{2}=2(80-n)$,\\\\\n$\\therefore n=\\boxed{64}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53414133_153": { -"question": "As shown in Figure 1, it is known that point O is on line AB, and rays OD and OC are on the upper and lower sides of line AB, respectively, with $\\angle COD=80^\\circ$. OE is always the bisector of $\\angle AOD$. As illustrated in Figure 3, under the condition of (2), ray OP starts rotating counterclockwise from OB around point O at a speed of $4^\\circ$ per second, and ray OQ starts rotating clockwise from OE around point O at a speed of $2^\\circ$ per second. Rays OP and OQ start rotating simultaneously, and the rotation time is denoted as t seconds $\\left(0\\leq t\\leq 45\\right)$. When $\\angle DOQ$ and $\\angle EOP$ are complementary, find the value of the rotation time t.", -"image_file_name": "7038193", -"image": [ -"math/53414133_922.png" -], -"solution": "\\textbf{Solution:} When $n=64$, we have $\\angle EOD=\\angle AOE=32^\\circ$ and $\\angle EOB=180^\\circ-32^\\circ=148^\\circ$.\n\n(1) When $0\\leq t \\leq 16$\n\nSince $\\angle QOD=32^\\circ-2t^\\circ$ and $\\angle EOP=148^\\circ-4t^\\circ$,\n\nit follows that $32-2t+148-4t=90$.\n\nTherefore, $t=\\boxed{15}$.\n\n(2) For $16 < t < 37$\n\nSince $\\angle QOD=2t^\\circ-32^\\circ$ and $\\angle EOP=148^\\circ-4t^\\circ$,\n\nit follows that $2t-32+148-4t=90$.\n\nTherefore, $t=13$ (discarded).\n\n(3) For $37 \\leq t \\leq 45$\n\n$\\angle QOD=2t^\\circ-32^\\circ$ and $\\angle EOP=4t^\\circ-148^\\circ$,\n\nit follows that $2t-32+4t-148=90$.\n\nTherefore, $t=\\boxed{45}$.\n\nIn summary, $t=\\boxed{15}$ seconds or $\\boxed{45}$ seconds.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53403641_155": { -"question": "As shown in the figure, $AB$ is a straight line, $OD$ and $OE$ are respectively the bisectors of $\\angle AOC$ and $\\angle BOC$. Given $\\angle BOC=72^\\circ 20'$, find the measures of $\\angle 1$, $\\angle 2$, and $\\angle DOE$.", -"image_file_name": "7038193", -"image": [ -"math/53403641_933.png" -], -"solution": "\\textbf{Solution}: Since $AB$ is a straight line, and $OD, OE$ are the bisectors of $\\angle AOC, \\angle BOC$ respectively, and $\\angle BOC=72^\\circ 20'$,\\\\\nthus $\\angle 1=\\angle EOB=\\frac{1}{2}\\angle BOC=36^\\circ 10'$,\\\\\nthus $\\angle DOC=\\angle AOD=\\frac{1}{2}\\angle AOC=\\frac{1}{2}(180^\\circ-\\angle BOC)=\\frac{1}{2}(180^\\circ-72^\\circ 20')=53^\\circ 50'$\\\\\nthus $\\angle DOE=\\angle 1+\\angle 2=36^\\circ 10'+53^\\circ 50'=\\boxed{90^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53403641_156": { -"question": "As shown in the figure, $AB$ is a straight line, and $OD$, $OE$ are the angle bisectors of $\\angle AOC$, $\\angle BOC$, respectively. If $\\angle BOC = \\alpha$, what is $\\angle DOE$?", -"image_file_name": "7038193", -"image": [ -"math/53403641_933.png" -], -"solution": "\\textbf{Solution:} Since $AB$ is a straight line, and $OD, OE$ are the bisectors of $\\angle AOC, \\angle BOC$ respectively,\\\\\nthus $\\angle 1=\\angle EOB=\\frac{1}{2}\\angle BOC$\\\\\nthus $\\angle DOC=\\angle AOD=\\frac{1}{2}\\angle AOC$,\\\\\nthus $\\angle DOE=\\angle 1+\\angle 2=\\frac{1}{2}\\angle AOC+\\frac{1}{2}\\angle BOC=90^\\circ=\\boxed{90^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53404569_158": { -"question": "As shown in the figure, lines $AB$ and $CD$ intersect at point $O$, $EO\\perp CD$ at point $O$, and $OF$ bisects $\\angle BOC$. If $\\angle AOC = 58^\\circ$, what is the degree measure of $\\angle EOF$?", -"image_file_name": "7038193", -"image": [ -"math/53404569_945.png" -], -"solution": "\\textbf{Solution:} From the construction, we have\\\\\n$\\because \\angle AOC + \\angle BOC = 180^\\circ$, $\\angle AOC = 58^\\circ$,\\\\\n$\\therefore \\angle BOC = 122^\\circ$,\\\\\n$\\because OF$ bisects $\\angle BOC$,\\\\\n$\\therefore \\angle COF = \\frac{1}{2}\\angle BOC = 61^\\circ$,\\\\\n$\\because EO \\perp CD$,\\\\\n$\\therefore \\angle COE = 90^\\circ$,\\\\\n$\\therefore \\angle EOF = \\angle COE - \\angle COF = 90^\\circ - 61^\\circ = \\boxed{29^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404119_161": { -"question": "As shown in the figure, points $A$, $O$, and $B$ lie on the same straight line, and $\\angle AOC = \\angle BOD$. Lines $OM$ and $ON$ are the angle bisectors of $\\angle AOC$ and $\\angle BOD$, respectively. If $\\angle COD = 80^\\circ$, what is the measure of $\\angle MON$?", -"image_file_name": "7038193", -"image": [ -"math/53404119_955.png" -], -"solution": "\\textbf{Solution:} Since $OM$ and $ON$ are the angle bisectors of $\\angle AOC$ and $\\angle BOD$ respectively, \\\\\nhence, $\\angle MOC = \\frac{1}{2}\\angle AOC$ and $\\angle NOD = \\frac{1}{2}\\angle BOD$, \\\\\ntherefore, $\\angle MON = \\frac{1}{2}(\\angle AOC + \\angle BOD) + \\angle COD$ \\\\\n$= \\frac{1}{2}(180^\\circ - \\angle COD) + \\angle COD$ \\\\\n$= 90^\\circ + \\frac{1}{2}\\angle COD$, \\\\\nsince $\\angle COD = 80^\\circ$, \\\\\ntherefore, $\\angle MON = 90^\\circ + \\frac{1}{2} \\times 80^\\circ = \\boxed{130^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53364075_164": { -"question": "As shown in the figure, $OC \\perp AB$ at point O, $OD$ bisects $\\angle BOC$, $OE$ bisects $\\angle AOD$. Find the degree measure of $\\angle BOD$.", -"image_file_name": "7038193", -"image": [ -"math/53364075_965.png" -], -"solution": "\\textbf{Solution:} Since $OC \\perp AB$,\\\\\nit follows that $\\angle BOC = \\angle AOC = 90^\\circ$,\\\\\nsince $OD$ bisects $\\angle BOC$,\\\\\nit follows that $\\angle BOD = \\angle COD = \\frac{1}{2}\\angle BOC = 45^\\circ = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53364075_165": { -"question": "As shown in the figure, $OC \\perp AB$ at point O, $OD$ bisects $\\angle BOC$, and $OE$ bisects $\\angle AOD$. Find the degree measure of $\\angle COE$.", -"image_file_name": "7038193", -"image": [ -"math/53364075_965.png" -], -"solution": "\\textbf{Solution:} From (1), we have\n\\[ \\angle AOD = \\angle AOC + \\angle COD = 90^\\circ + 45^\\circ = 135^\\circ, \\]\n\\[ \\because OE \\text{ bisects } \\angle AOD, \\]\n\\[ \\therefore \\angle AOE = \\frac{1}{2}\\angle AOD = 67.5^\\circ \\]\n\\[ \\therefore \\angle COE = 90^\\circ - 67.5^\\circ = \\boxed{22.5^\\circ} \\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53364701_167": { -"question": "As shown in the figure, point $C$ is a point on line $AB$, and point $M$ is the midpoint of segment $AC$. If $AB=8$, point $C$ is on segment $AB$, and $AC=3BC$, then what is the length of $AM$?", -"image_file_name": "7038193", -"image": [ -"math/53364701_974.png" -], -"solution": "\\textbf{Solution:} Since the information given in the problem is insufficient, it is not possible to provide a solution. Hence, the length of $AM$ cannot be determined. Therefore, the length of $AM$ is \\boxed{\\text{undetermined}}.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53364701_168": { -"question": "As shown in the figure, point $C$ is a point on line $AB$, and point $M$ is the midpoint of segment $AC$. If $AB=a$, and $AB-AC=\\frac{a}{3}$, find the length of $BM$ (expressed in an algebraic expression with $a$).", -"image_file_name": "7038193", -"image": [ -"math/53364701_974.png" -], -"solution": "\\textbf{Solution:}\n\n(1) When point $C$ lies between points $A$ and $B$, \\\\\n$\\because BC=AB-AC=\\frac{a}{3}$, \\\\\n$\\therefore AC=AB-BC=a-\\frac{a}{3}=\\frac{2a}{3}$, \\\\\n$\\because$ point $M$ is the midpoint of $AC$, \\\\\n$\\therefore CM=\\frac{1}{2}AC=\\frac{1}{2}\\times \\frac{2a}{3}=\\frac{a}{3}$, \\\\\n$\\therefore BM=CM+BC=\\frac{a}{3}+\\frac{a}{3}=\\boxed{\\frac{2a}{3}}$, \\\\\n(2) When point $C$ is to the left of point $A$, \\\\\n$\\because AC=AB-\\frac{a}{3}=\\frac{2a}{3}$, \\\\\nAdditionally, $\\because$ point $M$ is the midpoint of $AC$, \\\\\n$\\therefore AM=\\frac{1}{2}AC=\\frac{1}{2}\\times \\frac{2a}{3}=\\frac{a}{3}$, \\\\\n$\\therefore BM=AM+AB=\\frac{a}{3}+a=\\boxed{\\frac{4a}{3}}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53364112_170": { -"question": "As shown in Figure 1, it is known that $\\angle BOC = 40^\\circ$, $OE$ bisects $\\angle AOC$, and $OF$ bisects $\\angle BOC$. If $AO \\perp BO$, then what is the measure of $\\angle EOF$ in degrees?", -"image_file_name": "7038193", -"image": [ -"math/53364112_985.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle BOC=40^\\circ$ and $AO\\perp BO$,\\\\\n$\\therefore$ $\\angle AOB=90^\\circ, \\angle AOC=\\angle AOB+\\angle BOC=130^\\circ$,\\\\\n$\\because$ $OE$ bisects $\\angle AOC$ and $OF$ bisects $\\angle BOC$,\\\\\n$\\therefore$ $\\angle EOC=\\frac{1}{2}\\angle AOC=65^\\circ, \\angle COF=\\frac{1}{2}\\angle BOC=20^\\circ$,\\\\\n$\\therefore$ $\\angle EOF=\\angle EOC−\\angle COF=65^\\circ−20^\\circ=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53364698_173": { -"question": "As shown in the figure, it is known that the straight lines $AB$ and $CD$ intersect at point $O$, and $OE$ bisects $\\angle AOD$. If $\\angle AOC = 50^\\circ$, find the measure of $\\angle BOE$.", -"image_file_name": "7038193", -"image": [ -"math/53364698_994.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle AOC=50^\\circ$, \\\\\n$\\therefore \\angle BOD=\\angle AOC=50^\\circ$ \\\\\n$\\therefore \\angle AOD=180^\\circ-\\angle AOC=180^\\circ-50^\\circ=130^\\circ$\\\\\nSince $OE$ bisects $\\angle AOD$\\\\\n$\\therefore \\angle DOE=\\frac{1}{2}\\angle AOD=\\frac{1}{2}\\times 130^\\circ=65^\\circ$\\\\\nTherefore, $\\angle BOE=\\angle BOD+\\angle DOE=50^\\circ+65^\\circ=\\boxed{115^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51321729_56": { -"question": "As shown in Figure (1), it is known that $AM \\parallel CN$, and point B is a point in the plane, with $AB \\perp BC$ at point B. A line is drawn through point B such that $BD \\perp AM$ at point D, where $\\angle BCN = \\alpha$. If $\\alpha = 30^\\circ$, what is the measure of $\\angle ABD$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/51321729_554.png" -], -"solution": "\\textbf{Solution:} Extend $DB$ to intersect $NC$ at point H, as shown in the diagram,\\\\\n$\\because AM\\parallel CN$ and $BD\\perp AM$,\\\\\n$\\therefore DH\\perp NC$.\\\\\n$\\therefore \\angle BHC=90^\\circ$.\\\\\n$\\because \\angle BCN=\\alpha =30^\\circ$,\\\\\n$\\therefore \\angle HBC=90^\\circ-\\angle BCN=60^\\circ$.\\\\\n$\\because AB\\perp BC$,\\\\\n$\\therefore \\angle ABC=90^\\circ$.\\\\\n$\\therefore \\angle ABD=180^\\circ-\\angle ABC-\\angle HBC=\\boxed{30^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51321729_57": { -"question": "As shown in Figure (1), it is known that $AM\\parallel CN$, where point B is a point in the plane and $AB\\perp BC$ at point B. Through point B, construct $BD\\perp AM$ at point D, and let $\\angle BCN=\\alpha$. As shown in Figure (2), if points E and F are on $DM$, and $BE$, $BF$, and $CF$ are connected such that $BE$ bisects $\\angle ABD$ and $BF$ bisects $\\angle DBC$, what is the measure of $\\angle EBF$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/51321729_554.png" -], -"solution": "\\textbf{Solution:} Extend $DB$, intersect $NC$ at point H, as shown,\\\\\nsince $AM\\parallel CN$, $BD\\perp AM$,\\\\\ntherefore $DH\\perp NC$.\\\\\nTherefore $\\angle BHC=90^\\circ$.\\\\\nSince $\\angle BCN=\\alpha $,\\\\\ntherefore $\\angle HBC=90^\\circ-\\alpha $.\\\\\nSince $AB\\perp BC$,\\\\\ntherefore $\\angle ABC=90^\\circ$.\\\\\nTherefore $\\angle ABD=180^\\circ-\\angle ABC-\\angle HBC=\\alpha $.\\\\\nSince $BE$ bisects $\\angle ABD$,\\\\\ntherefore $\\angle DBE=\\angle ABE=\\frac{1}{2}\\alpha $.\\\\\nSince $\\angle HBC=90^\\circ-\\alpha $,\\\\\ntherefore $\\angle DBC=180^\\circ-\\angle HBC=90^\\circ+\\alpha $.\\\\\nSince $BF$ bisects $\\angle DBC$,\\\\\ntherefore $\\angle DBF=\\angle CBF=\\frac{1}{2}\\angle DBC=45^\\circ+\\frac{1}{2}\\alpha $.\\\\\nTherefore $\\angle EBF=\\angle DBF-\\angle DBE=45^\\circ+\\frac{1}{2}\\alpha -\\frac{1}{2}\\alpha =\\boxed{45^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51321729_58": { -"question": "As shown in Figure (1), it is known that \\( AM\\parallel CN \\), with B being a point on the plane, and \\( AB\\perp BC \\) at point B. A line is drawn through point B such that \\( BD\\perp AM \\) at point D, and let \\( \\angle BCN=\\alpha \\). As in Figure (3), under the conditions of question (2), if \\( CF \\) bisects \\(\\angle BCH\\), and \\(\\angle BFC=3\\angle BCN\\), find the degree measure of \\(\\angle EBC\\).", -"image_file_name": "7043711", -"image": [ -"math/51321729_554.png" -], -"solution": "\\textbf{Solution:} Given the construction, we have\n\\begin{align*}\n\\because \\angle BCN &= \\alpha, \\\\\n\\therefore \\angle HCB &= 180^\\circ - \\angle BCN = 180^\\circ - \\alpha. \\\\\n\\because CF &\\text{ bisects } \\angle BCH, \\\\\n\\therefore \\angle BCF &= \\angle HCF = \\frac{1}{2}\\angle HCB = 90^\\circ - \\frac{1}{2}\\alpha. \\\\\n\\because AM &\\parallel CN, \\\\\n\\therefore \\angle DFC &= \\angle HCF = 90^\\circ - \\frac{1}{2}\\alpha. \\\\\n\\because \\angle BFC &= 3\\angle BCN, \\\\\n\\therefore \\angle BFC &= 3\\alpha. \\\\\n\\therefore \\angle DFB &= \\angle DFC - \\angle BFC = 90^\\circ - \\frac{7}{2}\\alpha. \\\\\nFrom (2) we know: & \\angle DBF = 45^\\circ + \\frac{1}{2}\\alpha. \\\\\n\\because BD &\\perp AM, \\\\\n\\therefore \\angle D &= 90^\\circ. \\\\\n\\therefore \\angle DBF + \\angle DFB &= 90^\\circ. \\\\\n\\therefore 45^\\circ + \\frac{1}{2}\\alpha + 90^\\circ - \\frac{7}{2}\\alpha &= 90^\\circ. \\\\\nSolving, we find: & \\alpha = \\boxed{15^\\circ}. \\\\\n\\therefore \\angle FBC &= \\angle DBF = 45^\\circ + \\alpha = 60^\\circ. \\\\\n\\therefore \\angle EBC &= \\angle FBC + \\angle EBF = 60^\\circ + 37.5^\\circ = \\boxed{97.5^\\circ}.\n\\end{align*}", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51317331_60": { -"question": "As shown in the figure, it is known that $O$ is a point on the line $AB$, $\\angle COD$ is a right angle, $OE$ bisects $\\angle BOC$. If $\\angle AOC = 30^\\circ$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7043711", -"image": [ -"math/51317331_560.jpg" -], -"solution": "\\textbf{Solution:}\\\\\n$\\because \\angle AOC=30^\\circ$,\\\\\n$\\therefore \\angle BOC=180^\\circ-30^\\circ=150^\\circ$,\\\\\n$\\because$ OE bisects $\\angle BOC$,\\\\\n$\\therefore \\angle COE= \\frac{1}{2} \\angle BOC=75^\\circ$,\\\\\n$\\because \\angle COD$ is a right angle,\\\\\n$\\therefore \\angle COD=90^\\circ$,\\\\\n$\\therefore \\angle DOE=90^\\circ-75^\\circ=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51317331_61": { -"question": "As shown in the diagram, it is known that $O$ is a point on line $AB$, $\\angle COD=90^\\circ$, and $OE$ bisects $\\angle BOC$. If $\\angle AOC=\\alpha$, find the measure of $\\angle DOE$ (expressed as an algebraic expression containing $\\alpha$).", -"image_file_name": "7043711", -"image": [ -"math/51317331_560.jpg" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOC = \\alpha$ \\\\\nTherefore, $\\angle BOC = 180^\\circ - \\alpha$ \\\\\nSince OE bisects $\\angle BOC$ \\\\\nThen, $\\angle COE = \\frac{1}{2} \\angle BOC = 90^\\circ - \\frac{1}{2} \\alpha$ \\\\\nGiven that $\\angle COD$ is a right angle \\\\\nTherefore, $\\angle COD = 90^\\circ$ \\\\\nHence, $\\angle DOE = 90^\\circ - (90^\\circ - \\frac{1}{2} \\alpha) = \\boxed{\\frac{1}{2} \\alpha}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51317331_62": { -"question": "It is known that $O$ is a point on line $AB$, $\\angle COD$ is a right angle, and $OE$ bisects $\\angle BOC$. In the process where $\\angle DOC$ in Figure 1 is rotated clockwise around vertex $O$ to the position in Figure 2, with ray $OC$ remaining above line $AB$, at what degree of $\\angle AOC$ will $\\angle COE = 2\\angle DOB$?", -"image_file_name": "7043711", -"image": [ -"math/51317331_560.jpg" -], -"solution": "\\textbf{Solution:}\n\n(1) When OD is above the line AB, let $\\angle DOB=\\alpha$, then $\\angle COE=2\\alpha$.\\\\\nSince OE bisects $\\angle BOC$,\\\\\nit follows that $\\angle COE=\\angle BOE=2\\alpha$.\\\\\nSince $\\angle DOE=2\\alpha-\\alpha=\\alpha$,\\\\\nit follows that $\\angle COD=90^\\circ=\\angle COE+\\angle DOE=2\\alpha+\\alpha=3\\alpha$.\\\\\nThus, $\\alpha=30^\\circ$.\\\\\nTherefore, from (2) we have $\\angle AOC=2\\angle DOE=60^\\circ$.\\\\\n(2) When OD is below the line AB, let $\\angle DOB=\\alpha$, then $\\angle COE=2\\alpha$.\\\\\nSince OE bisects $\\angle BOC$,\\\\\nit follows that $\\angle COE=\\angle BOE=2\\alpha$.\\\\\nSince $\\angle COD=90^\\circ=\\angle COE+\\angle BOE+\\angle DOB=5\\alpha$,\\\\\nit follows that $\\alpha=18^\\circ$.\\\\\nThus, $\\angle COE+\\angle BOE=4\\alpha=72^\\circ$.\\\\\nTherefore, $\\angle AOC=180^\\circ-72^\\circ=\\boxed{108^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51434664_64": { -"question": "As shown in the figure, point O is a point on line AB, with $\\angle BOC : \\angle AOC = 1 : 2$. OD bisects $\\angle BOC$, and OE is perpendicular to OD at point O. What is the measure of $\\angle BOC$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/51434664_570.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB = \\angle BOC + \\angle AOC = 180^\\circ$ and $\\angle BOC : \\angle AOC = 1 : 2$, it follows that $\\angle AOC = 2\\angle BOC$. Therefore, $\\angle BOC + 2\\angle BOC = 180^\\circ$, which implies $\\angle BOC = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51434356_68": { -"question": "As shown in the figure, it is known that $AB\\parallel CD$, $AD\\parallel BC$, $\\angle DCE=90^\\circ$, point E is on segment AB, $\\angle FCG=90^\\circ$, point F is on line AD, $\\angle AHG=90^\\circ$. If $\\angle ECF=25^\\circ$, what is the degree measure of $\\angle BCD$?", -"image_file_name": "7043711", -"image": [ -"math/51434356_580.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ECF=25^\\circ$ and $\\angle DCE=90^\\circ$,\n\n$\\therefore \\angle FCD=65^\\circ$. Also, since $\\angle BCF=90^\\circ$,\n\n$\\therefore \\angle BCD=65^\\circ+90^\\circ=\\boxed{155^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51434356_69": { -"question": "As shown in the figure, it is known that $AB\\parallel CD$, $AD\\parallel BC$, $\\angle DCE=90^\\circ$, point E is on the line segment AB, $\\angle FCG=90^\\circ$, point F is on the line AD, $\\angle AHG=90^\\circ$. Given the conditions in (2), point C (point C does not coincide with points B and H) starts from point B and moves in the direction of ray BG, with other conditions unchanged, find the degree measure of $\\angle BAF$?", -"image_file_name": "7043711", -"image": [ -"math/51434356_580.png" -], -"solution": "\\textbf{Solution:} Discuss in two cases:\\\\\n(1) As shown in figure a, when point C is on segment BH, point F is on the extension of DA, then $\\angle ECF=\\angle DCG=\\angle B=25^\\circ$.\\\\\nSince AD$\\parallel$BC,\\\\\ntherefore $\\angle BAF=\\angle B=25^\\circ$;\\\\\n(2) As shown in figure b, when point C is on the extension of BH, point F is on segment AD.\\\\\nSince $\\angle B=25^\\circ$, AD$\\parallel$BC,\\\\\ntherefore $\\angle BAF=180^\\circ-25^\\circ=155^\\circ$.\\\\\nIn summary, the degree of $\\angle BAF$ is $\\boxed{25^\\circ or 155^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51420172_71": { -"question": "As shown in the figure, it is known that lines $AB$ and $CD$ intersect at point $O$, and $\\angle COE = 90^\\circ$. If $\\angle AOC = 37^\\circ$, what is the measure of $\\angle BOE$?", -"image_file_name": "7043711", -"image": [ -"math/51420172_592.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\angle COE=90^\\circ$, $\\angle AOC=37^\\circ$, \\\\\n$\\therefore \\angle BOE=180^\\circ-\\angle AOC-\\angle COE$ \\\\\n$=180^\\circ-37^\\circ-90^\\circ$ \\\\\n$=\\boxed{53^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51420172_72": { -"question": "As shown in the figure, it is known that lines $AB$ and $CD$ intersect at point $O$, and $\\angle COE=90^\\circ$. If $\\angle BOD:\\angle BOC = 3:6$, what is the degree measure of $\\angle AOE$?", -"image_file_name": "7043711", -"image": [ -"math/51420172_592.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that $\\angle BOD : \\angle BOC = 3 : 6$,\\\\\nand $\\angle BOD + \\angle BOC = 180^\\circ$,\\\\\nhence, $\\angle BOD = 60^\\circ$,\\\\\nSince $\\angle BOD = \\angle AOC$,\\\\\nit follows that $\\angle AOC = 60^\\circ$,\\\\\nGiven $\\angle COE = 90^\\circ$,\\\\\nthus, $\\angle AOE = \\angle COE + \\angle AOC = 90^\\circ + 60^\\circ = \\boxed{150^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51407373_74": { -"question": "Understanding Calculation: As shown in Figure (1), $ \\angle AOB=80^\\circ$, $ \\angle AOC=40^\\circ$. Ray $ OM$ bisects $ \\angle BOC$, $ ON$ bisects $ \\angle AOC$, find the degree measure of $ \\angle MON$?", -"image_file_name": "7043711", -"image": [ -"math/51407373_600.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle BOC=\\angle AOB+\\angle AOC=80^\\circ+40^\\circ=120^\\circ$,\\\\\nray $OM$ bisects $\\angle BOC$,\\\\\n$\\therefore \\angle COM=\\frac{1}{2}\\angle BOC=\\frac{1}{2}\\times 120^\\circ=60^\\circ$,\\\\\n$\\because ON$ bisects $\\angle AOC$,\\\\\n$\\therefore \\angle CON=\\frac{1}{2}\\angle AOC=\\frac{1}{2}\\times 40^\\circ=20^\\circ$,\\\\\n$\\therefore \\angle MON=\\angle COM-\\angle CON=60^\\circ-20^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51407373_75": { -"question": "Extended exploration: As shown in the figure, $ \\angle AOB = \\alpha $, $ \\angle AOC = \\beta $ ($\\alpha$ and $\\beta$ are acute angles). Ray $OM$ bisects $\\angle BOC$, and ray $ON$ bisects $\\angle AOC$. What is the degree measure of $\\angle MON$?", -"image_file_name": "7043711", -"image": [ -"math/51407373_600.png" -], -"solution": "\\textbf{Solution:}\n\n\\[\n\\because \\angle BOC = \\angle AOB + \\angle AOC = \\alpha + \\beta,\n\\]\n\\[\n\\because \\text{ray } OM \\text{ bisects } \\angle BOC,\n\\]\n\\[\n\\therefore \\angle COM = \\frac{1}{2}\\angle BOC = \\frac{1}{2}(\\alpha + \\beta),\n\\]\n\\[\n\\because \\text{ray } ON \\text{ bisects } \\angle AOC,\n\\]\n\\[\n\\therefore \\angle CON = \\frac{1}{2}\\angle AOC = \\frac{1}{2}\\beta,\n\\]\n\\[\n\\therefore \\angle MON = \\angle COM - \\angle CON = \\frac{1}{2}(\\alpha + \\beta) - \\frac{1}{2}\\beta = \\boxed{\\frac{1}{2}\\alpha}.\n\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51407373_76": { -"question": "As shown in the figure, the length of the line segment $AB$ is $a$. Extend the line segment $AB$ to $C$ so that $BC=b$. Let points $M$ and $N$ be the midpoints of $AC$ and $BC$, respectively. Find the length of $MN$.", -"image_file_name": "7043711", -"image": [ -"math/51407373_600.png" -], -"solution": "\\textbf{Solution:} Given that $AB=a$ and $BC=b$,\\\\\nthus $AC=AB+BC=a+b$,\\\\\nand since points $M$ and $N$ are the midpoints of $AC$ and $BC$ respectively,\\\\\nthus $CM=\\frac{1}{2}AC=\\frac{1}{2}(a+b)$ and $CN=\\frac{1}{2}BC=\\frac{1}{2}b$,\\\\\nthus $MN=CM-CN=\\frac{1}{2}(a+b)-\\frac{1}{2}b=\\boxed{\\frac{1}{2}a}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52732451_78": { -"question": "As shown in the figure, in triangle $ABC$, the angle bisectors of $\\angle ABC$ and $\\angle ACB$ intersect at point $P$. When $\\angle A=60^\\circ$, what is the measure of $\\angle BPC$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/52732451_610.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, since BP is the bisector of $\\angle ABC$,\\\\\nthen $\\angle PBC = \\frac{1}{2}\\angle ABC$. (Definition of an angle bisector)\\\\\nSince CP is the bisector of $\\angle ACB$,\\\\\nthen $\\angle PCB = \\frac{1}{2}\\angle ACB$,\\\\\nthus $\\angle PBC + \\angle PCB = \\frac{1}{2}(\\angle ACB + \\angle ABC)$,\\\\\nSince $\\angle A = 60^\\circ$,\\\\\nthen $\\angle ACB + \\angle ABC = 120^\\circ$,\\\\\nthus $\\angle PBC + \\angle PCB = \\frac{1}{2}\\left(\\angle ACB + \\angle ABC\\right) = 60^\\circ$,\\\\\ntherefore $\\angle BPC = 180^\\circ - \\angle PBC - \\angle PCB = 180^\\circ - (\\angle PBC + \\angle PCB) = 180^\\circ - 60^\\circ = \\boxed{120^\\circ}.$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52916518_81": { -"question": "Given $\\angle AOB$ and $\\angle COD$, the ray $OE$ bisects $\\angle AOD$; as shown in Figure 1, given $\\angle AOB = 180^\\circ$ and $\\angle COD = 90^\\circ$, if $\\angle DOB = 46^\\circ$, what is the measure of $\\angle COE$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/52916519_6204.png" -], -"solution": "\\textbf{Solution:} Given $\\angle AOB=180^\\circ$ and $\\angle DOB=46^\\circ$, \\\\\nit follows that $\\angle AOD=134^\\circ$. \\\\\nSince $OE$ bisects $\\angle AOD$, \\\\\nwe have $\\angle EOD=\\frac{1}{2}\\angle AOD=\\frac{1}{2}\\times 134^\\circ=67^\\circ$. \\\\\nGiven $\\angle COD=90^\\circ$, \\\\\nit follows that $\\angle COE=\\angle COD-\\angle EOD=90^\\circ-67^\\circ=\\boxed{23^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52916518_82": { -"question": "Given $ \\angle AOB$ and $ \\angle COD$, the ray $ OE$ bisects $ \\angle AOD$; the positions of $ \\angle AOB$ and $ \\angle COD$ are as shown in Figure 2. Given that $ \\angle COD = \\frac{1}{2}\\angle AOB$, find the value of $ \\angle COE : \\angle DOB$.", -"image_file_name": "7043711", -"image": [ -"math/52916520_6214.png" -], -"solution": "\\textbf{Solution:} From the given information, we have\\\\\n$\\because OE$ bisects $\\angle AOD$,\\\\\n$\\therefore \\angle EOD=\\frac{1}{2}\\left(\\angle AOB+\\angle BOD\\right)$\\\\\n$\\because \\angle COD=\\frac{1}{2}\\angle AOB$,\\\\\n$\\therefore \\angle EOC=\\angle EOD-\\angle COD$\\\\\n$=\\frac{1}{2}\\angle AOB+\\frac{1}{2}\\angle BOD-\\frac{1}{2}\\angle AOB$\\\\\n$=\\frac{1}{2}\\angle BOD$\\\\\n$\\therefore \\angle COE\\colon \\angle DOB=\\boxed{1\\colon 2}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52732940_84": { -"question": "As shown in Figure (1), given point $O$ is the intersection point of lines $AB$ and $CD$, $\\angle BOD=32^\\circ$, $OE$ bisects $\\angle AOD$, $\\angle EOF=90^\\circ$, find the degree measure of $\\angle COF$.", -"image_file_name": "7043711", -"image": [ -"math/52732941_6308.png" -], -"solution": "Solution: $\\because$ $\\angle BOD=32^\\circ$,\\\\\n$\\therefore$ $\\angle AOD=180^\\circ-\\angle BOD=180^\\circ-32^\\circ=148^\\circ$.\\\\\n$\\because$ $OE$ bisects $\\angle AOD$,\\\\\n$\\therefore$ $\\angle DOE=\\frac{1}{2}\\angle AOD=74^\\circ$.\\\\\n$\\because$ $\\angle EOF=90^\\circ$,\\\\\n$\\therefore$ $\\angle COF=180^\\circ-\\angle DOE-\\angle EOF=180^\\circ-74^\\circ-90^\\circ=\\boxed{16^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52732940_85": { -"question": "As shown in the figure, it is known that the length of line segment $AB=10$. Extend $AB$ to point $C$ such that $BC=2AB$. Let points $M$ and $N$ be the midpoints of line segments $AC$ and $AB$, respectively. Find the length of $MN$.", -"image_file_name": "7043711", -"image": [ -"math/52732942_6319.png" -], -"solution": "\\textbf{Solution:} Given that $BC=2AB$ and $AB=10$,\\\\\nthen $BC=2\\times 10=20$.\\\\\nTherefore, $AC=AB+BC=10+20=30$.\\\\\nSince points $M$ and $N$ are the midpoints of line segments $AC$ and $AB$ respectively,\\\\\nthen $AM=\\frac{1}{2}AC=\\frac{1}{2}\\times 30=15$.\\\\\nAnd $AN=\\frac{1}{2}AB=\\frac{1}{2}\\times 10=5$.\\\\\nTherefore, $MN=AM-AN=15-5=\\boxed{10}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52916280_87": { -"question": "As shown in the figure, O is a point on the line AB, $\\angle AOC=50^\\circ$, OD bisects $\\angle AOC$, and $\\angle DOE=90^\\circ$. What is the measure of $\\angle COD$?", -"image_file_name": "7043711", -"image": [ -"math/52916280_640.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC=50^\\circ$ and $OD$ bisects $\\angle AOC$,\n\n$\\therefore \\angle COD=\\angle DOA= \\frac{1}{2}\\angle AOC=\\boxed{25^\\circ}$,", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52916280_88": { -"question": "As shown in the figure, $O$ is a point on the line $AB$, $\\angle AOC=50^\\circ$, $OD$ bisects $\\angle AOC$, and $\\angle DOE=90^\\circ$. What is the measure of $\\angle BOD$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/52916280_640.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOD + \\angle BOD = 180^\\circ$,\\\\\nit follows that $\\angle BOD = 180^\\circ - \\angle AOD = \\boxed{155^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52916444_91": { -"question": "Given $\\angle AOB=40^\\circ$, $OD$ is the bisector of $\\angle BOC$. As shown in Figure 1, when $\\angle AOB$ and $\\angle BOC$ are complementary, what is the degree measure of $\\angle COD$?", -"image_file_name": "7043711", -"image": [ -"math/52916444_650.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOB$ and $\\angle BOC$ are complementary,\\\\\nit follows that $\\angle AOB+\\angle BOC=180^\\circ$,\\\\\ntherefore $\\angle BOC=180^\\circ-40^\\circ=140^\\circ$,\\\\\nsince $OD$ is the bisector of $\\angle BOC$,\\\\\nit results in $\\angle COD=\\frac{1}{2}\\angle BOC=\\boxed{70^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52916444_92": { -"question": "As shown in the figure, it is known that $\\angle AOB = 40^\\circ$, and $OD$ is the bisector of $\\angle BOC$. When $\\angle AOB$ and $\\angle BOC$ are complementary, what is the degree measure of $\\angle COD$?", -"image_file_name": "7043711", -"image": [ -"math/52916444_650.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB$ and $\\angle BOC$ are complementary,\\\\\nit follows that $\\angle AOB+\\angle BOC=90^\\circ$,\\\\\nhence $\\angle BOC=90^\\circ-40^\\circ=50^\\circ$,\\\\\nsince $OD$ bisects $\\angle BOC$,\\\\\nit results in $\\angle COD=\\frac{1}{2}\\angle BOC=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837816_94": { -"question": "As shown in the figure, OC is the bisector of $\\angle AOB$, and $\\angle COD=20^\\circ$. If $\\angle AOD=30^\\circ$, what is the measure of $\\angle AOB$?", -"image_file_name": "7043711", -"image": [ -"math/52837816_660.png" -], -"solution": "\\textbf{Solution:} Since $\\angle COD=20^\\circ$ and $\\angle AOD=30^\\circ$,\\\\\n$\\therefore \\angle AOC=\\angle COD+\\angle AOD=20^\\circ+30^\\circ=50^\\circ$,\\\\\nSince OC is the bisector of $\\angle AOB$,\\\\\n$\\therefore \\angle AOB=2\\angle AOC=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837816_95": { -"question": "As shown in the figure, OC is the bisector of $\\angle AOB$, and $\\angle COD = 20^\\circ$. If $\\angle BOD = 2\\angle AOD$, what is the degree measure of $\\angle AOB$?", -"image_file_name": "7043711", -"image": [ -"math/52837816_660.png" -], -"solution": "\\textbf{Solution:} Let $\\angle AOD=x$, then $\\angle BOD=2x$,\\\\\nthus $\\angle AOB=\\angle AOD+\\angle BOD=3x$,\\\\\nsince $OC$ is the bisector of $\\angle AOB$,\\\\\nthus $\\angle AOC=\\frac{1}{2}\\angle AOB=\\frac{3}{2}x$,\\\\\nthus $\\frac{3}{2}x-x=20^\\circ$,\\\\\nsolving for $x=40^\\circ$,\\\\\nthus $\\angle AOB=3x=\\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52837576_97": { -"question": "As shown in the figure, line AE intersects with CD at point B, and BF $\\perp$ AE. If $\\angle DBE=60^\\circ$, what is the degree measure of $\\angle FBD$?", -"image_file_name": "7043711", -"image": [ -"math/52837576_670.png" -], -"solution": "\\textbf{Solution:} Since BF$\\perp$AE,\\\\\nit follows that $\\angle$DBF + $\\angle$DBE = $90^\\circ$,\\\\\nsince $\\angle$DBE = $60^\\circ$,\\\\\nthus $\\angle$DBF = $90^\\circ$ - $\\angle$DBE = $30^\\circ$.\\\\\nHence, the measure of $\\angle FBD$ is $\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52795107_100": { -"question": "As shown in the figure, lines AB and CD intersect at point O, $\\angle DOE = 90^\\circ$, OD bisects $\\angle BOF$, $\\angle BOE = 50^\\circ$. What is the degree measure of $\\angle AOC$?", -"image_file_name": "7043711", -"image": [ -"math/52795107_683.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle DOE=90^\\circ$, $\\angle BOE=50^\\circ$,\\\\\n$\\therefore \\angle BOD=\\angle DOE-\\angle BOE=40^\\circ$, $\\angle AOD=180^\\circ-\\angle BOD=140^\\circ$,\\\\\n$\\therefore \\angle AOC=180^\\circ-\\angle AOD=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52795107_101": { -"question": "As shown in the figure, line AB and CD intersect at point O, $ \\angle DOE = 90^\\circ$, OD bisects $ \\angle BOF$, $ \\angle BOE = 50^\\circ$. What is the degree measure of $ \\angle EOF$?", -"image_file_name": "7043711", -"image": [ -"math/52795107_683.png" -], -"solution": "\\textbf{Solution:} Since $OD$ bisects $\\angle BOF$, \\\\\n$\\therefore \\angle DOF=\\angle BOD=40^\\circ$, \\\\\n$\\therefore \\angle EOF=\\angle DOF+\\angle DOE=40^\\circ+90^\\circ=\\boxed{130^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52795107_102": { -"question": "As shown in the figure, line $AB$ and line $CD$ intersect at point $O$, $\\angle DOE = 90^\\circ$, $OD$ bisects $\\angle BOF$, $\\angle BOE = 50^\\circ$. What is the measure of $\\angle AOF$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/52795107_683.png" -], -"solution": "\\textbf{Solution:} From the given conditions, we have\n\\[\n\\angle AOF = 180^\\circ - \\angle AOC - \\angle DOF = 180^\\circ - 40^\\circ - 40^\\circ = \\boxed{100^\\circ}.\n\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52794817_104": { -"question": "As shown in the figure, it is known that points $B$ and $C$ divide the line segment $AD$ into three parts in the ratio $2:4:3$, with $M$ being the midpoint of $AD$. If $CD=6$, find the length of line segment $MC$.", -"image_file_name": "7043711", -"image": [ -"math/52794818_6908.png" -], -"solution": "\\textbf{Solution:} Given that points B and C divide the line segment AD into three parts in the ratio 2:4:3, that is, 2+4+3=9,\\\\\nit follows that $CD=\\frac{1}{3}AD$,\\\\\nSince CD equals 6,\\\\\nit follows that AD equals 18,\\\\\nGiven that M is the midpoint of AD,\\\\\nit follows that $MD=\\frac{1}{2}AD=9$,\\\\\ntherefore, $MC=MD-CD=9-6=\\boxed{3}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52794817_105": { -"question": "As shown in the figure, $ OM $, $ OB $, and $ ON $ are three rays within $ \\angle AOC $, where $ OM $ and $ ON $ are the angle bisectors of $ \\angle AOB $ and $ \\angle BOC $, respectively. Furthermore, $ \\angle NOC $ is three times that of $ \\angle AOM $, and $ \\angle BON $ is $ 20^\\circ $ larger than $ \\angle MOB $. Determine the degree measure of $ \\angle AOC $.", -"image_file_name": "7043711", -"image": [ -"math/52794819_69114.png" -], -"solution": "Let the measure of $\\angle AOM$ be $x$, then the measure of $\\angle NOC$ is $3x$,\\\\\nsince OM and ON are the bisectors of $\\angle AOB$ and $\\angle BOC$ respectively,\\\\\ntherefore $\\angle MOB=\\angle AOM=x$ and $\\angle BON=\\angle NOC=3x$,\\\\\nsince $\\angle BON$ is $20^\\circ$ greater than $\\angle MOB$,\\\\\ntherefore $3x-x=20^\\circ$,\\\\\ntherefore $x=10^\\circ$,\\\\\ntherefore $\\angle AOC=\\angle AOM+\\angle MOB+\\angle BON+\\angle NOC=8x=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52794787_107": { -"question": "As shown in the figure, $\\angle AOB$ is a right angle, $\\angle BOC$ is an acute angle, and $OM$ bisects $\\angle AOC$, $ON$ bisects $\\angle BOC$. If $\\angle BOC=36^\\circ$, what is the measure of $\\angle MON$?", -"image_file_name": "7043711", -"image": [ -"math/52794787_700.png" -], -"solution": "\\textbf{Solution}: Since $\\angle AOB$ is a right angle and $\\angle BOC=36^\\circ$,\\\\\nit follows that $\\angle AOC=\\angle AOB+\\angle BOC=90^\\circ+36^\\circ=126^\\circ$,\\\\\nSince OM bisects $\\angle AOC$ and ON bisects $\\angle BOC$.\\\\\nThus, $\\angle MOC= \\frac{1}{2}\\angle AOC=63^\\circ$, $\\angle NOC= \\frac{1}{2}\\angle BOC=18^\\circ$,\\\\\nTherefore, $\\angle MON=\\angle MOC-\\angle NOC=63^\\circ-18^\\circ=\\boxed{45^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52794787_108": { -"question": "As shown in the figure, $\\angle AOB$ is a right angle and $\\angle BOC$ is an acute angle. Moreover, $OM$ bisects $\\angle AOC$ and $ON$ bisects $\\angle BOC$. Given $\\angle AOB = 90^\\circ$ and $\\angle BOC = \\beta$, with $\\alpha$ and $\\beta$ being acute angles and all other conditions unchanged, what is the degree measure of $\\angle MON$?", -"image_file_name": "7043711", -"image": [ -"math/52794787_700.png" -], -"solution": "\\textbf{Solution:} \nGiven: $\\angle AOB=a$ and $\\angle BOC=\\beta$,\\\\\nThus, $\\angle AOC=\\angle AOB+\\angle BOC= a+\\beta$,\\\\\nSince OM bisects $\\angle AOC$ and ON bisects $\\angle BOC$,\\\\\nThus $\\angle MOC= \\frac{1}{2}\\angle AOC= \\frac{1}{2}(a+\\beta)$ and $\\angle NOC= \\frac{1}{2}\\angle BOC= \\frac{1}{2}\\beta$,\\\\\nTherefore, $\\angle MON=\\angle MOC-\\angle NOC= \\frac{1}{2}(a+\\beta)- \\frac{1}{2}\\beta= \\frac{1}{2}a$. Hence, the measure of $\\angle MON$ is $\\boxed{\\frac{1}{2}a}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52795995_113": { -"question": "Given: As shown in the figure, $OC$ is the bisector of $\\angle AOB$. When $\\angle AOB = 60^\\circ$, what is the measure of $\\angle AOC$?", -"image_file_name": "7043711", -"image": [ -"math/52795995_720.png" -], -"solution": "\\textbf{Solution:} Given that OC bisects $\\angle AOB$,\\\\\nit follows that $\\angle AOC= \\frac{1}{2}\\angle AOB$,\\\\\nsince $\\angle AOB=60^\\circ$,\\\\\nwe find $\\angle AOC=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52795995_114": { -"question": "As shown in the figure, $OC$ is the bisector of $\\angle AOB$. Given the condition (1), that $\\angle EOC = 90^\\circ$, please complete the figure in the diagram and find the measure of $\\angle AOE$?", -"image_file_name": "7043711", -"image": [ -"math/52795995_720.png" -], -"solution": "\\textbf{Solution:} Since OE $\\perp$ OC, it follows that $\\angle$EOC$=90^\\circ$, as shown in Figure 1, $\\angle$AOE = $\\angle$COE + $\\angle$COA = $90^\\circ + 30^\\circ = \\boxed{120^\\circ}$.\n\nAs shown in Figure 2, $\\angle$AOE = $\\angle$COE - $\\angle$COA = $90^\\circ - 30^\\circ = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52795995_115": { -"question": "Given: As shown in the figure, $OC$ is the bisector of $\\angle AOB$. When $\\angle AOB = \\alpha$, $\\angle EOC = 90^\\circ$, write down the degree measure of $\\angle AOE$ directly. (Express in terms of $\\alpha$)", -"image_file_name": "7043711", -"image": [ -"math/52795995_720.png" -], -"solution": "\\textbf{Solution:} We have $\\angle AOE=90^\\circ+\\frac{\\alpha}{2}$ or $\\angle AOE=90^\\circ-\\frac{\\alpha}{2}$. Therefore, the degree measure of $\\angle AOE$ is \\boxed{90^\\circ+\\frac{\\alpha}{2}} or \\boxed{90^\\circ-\\frac{\\alpha}{2}}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52796437_117": { -"question": "As shown in the figure, it is known that $\\angle AOB = 80^\\circ$, $OC$ is the bisector of $\\angle AOB$, and $OD$ is the bisector of $\\angle BOC$. What is the measure of $\\angle AOD$?", -"image_file_name": "7043711", -"image": [ -"math/52796437_735.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOB=80^\\circ$ and OC is the bisector of $\\angle AOB$, \\\\\nit follows that $\\angle AOC=\\angle BOC=0.5\\times 80^\\circ=40^\\circ$. \\\\\nAlso, since OD is the bisector of $\\angle BOC$, \\\\\nit follows that $\\angle COD=\\angle BOD=0.5\\times 40^\\circ=20^\\circ$. \\\\\nTherefore, $\\angle AOD=\\angle AOC+\\angle COD=40^\\circ+20^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52796437_118": { -"question": "As shown in the figure, it is known that $\\angle AOB = 80^\\circ$, $OC$ is the bisector of $\\angle AOB$, $OD$ is the bisector of $\\angle BOC$. If $\\angle COE = \\frac{1}{4}\\angle COB$, what is the degree measure of $\\angle AOE$?", -"image_file_name": "7043711", -"image": [ -"math/52796437_735.png" -], -"solution": "\\textbf{Solution:} Given from (1) that $\\angle COB=40^\\circ$,\\\\\n$\\therefore \\angle COE=10^\\circ$,\\\\\nwhen OE is above OC, then $\\angle AOE=\\angle AOC-\\angle COE=40^\\circ-10^\\circ=\\boxed{30^\\circ}$;\\\\\nwhen OE is below OC, then $\\angle AOE=\\angle AOC+\\angle COE=40^\\circ+10^\\circ=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52795749_120": { -"question": "It is known that there are three rays inside $\\angle AOB$. Among them, $OE$ bisects $\\angle BOC$, and $OF$ bisects $\\angle AOC$. As shown in Figure 1, if $\\angle AOB=90^\\circ$ and $\\angle AOC=30^\\circ$, what is the measure of $\\angle EOF$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/52795749_745.png" -], -"solution": "\\textbf{Solution:}\n\nGiven: $\\angle BOC=\\angle AOB-\\angle AOC=90^\\circ-30^\\circ=60^\\circ$,\\\\\nSince OE bisects $\\angle BOC$, and OF bisects $\\angle AOC$,\\\\\nThen $\\angle EOC=\\frac{1}{2}\\angle BOC=\\frac{1}{2}\\times 60^\\circ=30^\\circ$ and $\\angle COF= \\frac{1}{2}\\angle AOC=\\frac{1}{2}\\times 30^\\circ=15^\\circ$,\\\\\nTherefore $\\angle EOF=\\angle EOC+\\angle COF=30^\\circ+15^\\circ=\\boxed{45^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52795749_121": { -"question": "As shown in the figure, it is known that inside $ \\angle AOB$ there are three rays, among which, $OE$ bisects $ \\angle BOC$, and $OF$ bisects $ \\angle AOC$. If $ \\angle AOB = \\alpha $, what is the measure of $ \\angle EOF$ (expressed in terms of $\\alpha$)?", -"image_file_name": "7043711", -"image": [ -"math/52795749_745.png" -], -"solution": "\\textbf{Solution:} Since OE bisects $\\angle BOC$, and OF bisects $\\angle AOC$,\n\n$\\therefore \\angle EOC= \\frac{1}{2}\\angle BOC$, $\\angle COF= \\frac{1}{2}\\angle AOC$,\n\n$\\therefore \\angle EOF=\\angle EOC+\\angle COF= \\frac{1}{2}\\angle BOC+ \\frac{1}{2}\\angle AOC= \\frac{1}{2}(\\angle BOC+\\angle AOC)= \\frac{1}{2}\\angle AOB= \\boxed{\\frac{1}{2}\\alpha}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385662_124": { -"question": "As shown in Figure 1, point $D$ is the midpoint of segment $AC$, and $AB=\\frac{2}{3}BC$, $BC=6$. Find the length of segment $BD$.", -"image_file_name": "7043711", -"image": [ -"math/51385663_7502.png" -], -"solution": "\\textbf{Solution:} By the given conditions, \\\\\nsince $AB=\\frac{2}{3}BC$ and $BC=6$, \\\\\nthen $AB=4$ and $AC=10$, \\\\\nsince point $D$ is the midpoint of line segment $AC$, \\\\\nthus $AD=\\frac{1}{2}AC=5$, \\\\\ntherefore $BD=5-4=\\boxed{1}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51385662_125": { -"question": "Since there was no text provided in the initial query, I am unable to provide a translated version in LaTeX format. If you have specific text in mind, please share it, and I'll be happy to assist with the translation.", -"image_file_name": "7043711", -"image": [ -"math/51385664_7513.png" -], -"solution": "\\textbf{Solution:} Given the problem,\\\\\n\\[\\because \\angle AOD=100^\\circ,\\text{ and }OB \\text{ bisects } \\angle AOD,\\]\n\\[\\therefore \\angle AOB=\\frac{1}{2}\\angle AOD=50^\\circ,\\]\n\\[\\because \\angle AOC : \\angle COB = 3 : 2,\\]\n\\[\\therefore \\angle COB=\\frac{2}{5}\\angle AOC=\\frac{2}{5}\\times 50^\\circ=\\boxed{20^\\circ}.\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53010670_127": { -"question": "As shown in the diagram, $OC$ is outside $\\angle AOB$, and $OM$, $ON$ are the angle bisectors of $\\angle AOC$ and $\\angle BOC$, respectively. If $\\angle AOB=110^\\circ$ and $\\angle BOC=60^\\circ$, what is the measure of $\\angle MON$?", -"image_file_name": "7043711", -"image": [ -"math/53010670_760.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOB=110^\\circ$ and $\\angle BOC=60^\\circ$,\\\\\nthus $\\angle AOC=\\angle AOB+\\angle BOC=170^\\circ$,\\\\\nsince OM bisects $\\angle AOC$,\\\\\nthus $\\angle MOC=\\angle MOA=\\frac{1}{2}\\angle AOC=85^\\circ$,\\\\\nsince ON bisects $\\angle BOC$,\\\\\nthus $\\angle BON=\\angle CON=30^\\circ$,\\\\\ntherefore $\\angle MON=\\angle COM-\\angle CON=\\boxed{55^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53010670_128": { -"question": "As shown in the figure, OC is outside of $\\angle AOB$, and OM, ON are the angle bisectors of $\\angle AOC$ and $\\angle BOC$, respectively. If $\\angle AOB = \\alpha$ and $\\angle BOC = 40^\\circ$, with all other conditions remaining the same, find the value of $\\angle MON$ (expressed in terms of $\\alpha$).", -"image_file_name": "7043711", -"image": [ -"math/53010670_760.png" -], -"solution": "\\textbf{Solution:} When $OM$ and $ON$ are on the same side of $OC$,\\\\\n$\\because$ $\\angle AOB=\\alpha$, $\\angle BOC=40^\\circ$,\\\\\n$\\therefore$ $\\angle AOC=\\angle AOB+\\angle BOC=40^\\circ+\\alpha$,\\\\\n$\\because$ $OM$ bisects $\\angle AOC$,\\\\\n$\\therefore$ $\\angle MOC=\\angle MOA=\\frac{1}{2}\\angle AOC=\\frac{1}{2}\\alpha +20^\\circ$,\\\\\n$\\because$ $ON$ bisects $\\angle BOC$,\\\\\n$\\therefore$ $\\angle BON=\\angle CON=20^\\circ$,\\\\\n$\\therefore$ $\\angle MON=\\angle COM-\\angle CON=\\frac{1}{2}\\alpha +20^\\circ-20^\\circ=\\frac{1}{2}\\alpha$; When $OM$ and $ON$ are on opposite sides of $OC$,\\\\\n$\\because$ $\\angle AOB=\\alpha$, $\\angle BOC=40^\\circ$,\\\\\n$\\therefore$ $\\angle AOC=360^\\circ-\\angle AOB-\\angle BOC=320^\\circ-\\alpha$,\\\\\n$\\because$ $OM$ bisects $\\angle AOC$,\\\\\n$\\therefore$ $\\angle MOC=\\angle MOA=\\frac{1}{2}\\angle AOC=160^\\circ-\\frac{1}{2}\\alpha$,\\\\\n$\\because$ $ON$ bisects $\\angle BOC$,\\\\\n$\\therefore$ $\\angle BON=\\angle CON=20^\\circ$,\\\\\n$\\therefore$ $\\angle MON=\\angle COM+\\angle CON=160^\\circ-\\frac{1}{2}\\alpha +20^\\circ=180^\\circ-\\frac{1}{2}\\alpha$; In summary, the value of $\\angle MON$ is either $\\boxed{\\frac{1}{2}\\alpha}$ or $\\boxed{180^\\circ-\\frac{1}{2}\\alpha}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51380002_130": { -"question": "As shown in the figure, $OB$ is the bisector of $\\angle AOC$, $OD$ is the bisector of $\\angle COE$. If $\\angle AOB = 42^\\circ$, $\\angle DOE = 36^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7043711", -"image": [ -"math/51380002_774.png" -], -"solution": "\\textbf{Solution:} Since $OB$ is the bisector of $\\angle AOC$ and $\\angle AOB=42^\\circ$,\\\\\nand $OD$ is the bisector of $\\angle COE$ and $\\angle DOE=36^\\circ$,\\\\\n$\\therefore$ $\\angle AOB=\\angle BOC=42^\\circ$,\\\\\n$\\angle COD=\\angle DOE=36^\\circ$,\\\\\n$\\therefore$ $\\angle BOD=\\angle BOC+\\angle DOC=42^\\circ+36^\\circ=\\boxed{78^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51380002_131": { -"question": "As shown in the figure, $OB$ is the bisector of $\\angle AOC$, and $OD$ is the bisector of $\\angle COE$. If $\\angle AOD$ and $\\angle BOD$ are complementary, and $\\angle DOE=30^\\circ$, find the degree measure of $\\angle AOC$.", -"image_file_name": "7043711", -"image": [ -"math/51380002_774.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOD$ and $\\angle BOD$ are complementary,\\\\\nwe have $\\angle AOD+\\angle BOD=180^\\circ$,\\\\\nFrom the figure, we know: $\\angle AOD=\\angle AOC+\\angle COD$,\\\\\nand $\\angle BOD=\\angle BOC+\\angle COD$,\\\\\nBy the definition of angle bisector, we know: $\\angle BOC=\\frac{1}{2}\\angle AOC$,\\\\\nThus, $\\angle AOC+\\angle DOE+\\frac{1}{2}\\angle AOC+\\angle DOE=180^\\circ$,\\\\\nwhich implies $\\frac{3}{2}\\angle AOC+2\\angle DOE=180^\\circ$,\\\\\nSince $\\angle DOE=30^\\circ$,\\\\\nit follows that $\\frac{3}{2}\\angle AOC+2\\times 30^\\circ=180^\\circ$,\\\\\nhence, $\\angle AOC=\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51508981_133": { -"question": "As shown in the figure, $OC$ is the bisector of $\\angle AOD$, and $OE$ is the bisector of $\\angle BOD$. If $OB$ and $OD$ are perpendicular to each other, and $\\angle AOD=30^\\circ$, then what is the degree measure of $\\angle COE$?", -"image_file_name": "7043711", -"image": [ -"math/51508981_784.png" -], -"solution": "Solution: Since $OB$ and $OD$ are perpendicular to each other, \\\\\n$\\therefore \\angle BOD=90^\\circ$, \\\\\nSince $OE$ is the bisector of $\\angle BOD$, \\\\\n$\\therefore \\angle DOE=\\frac{1}{2}\\angle BOD=\\frac{1}{2}\\times 90^\\circ=45^\\circ$, \\\\\nSince $OC$ is the bisector of $\\angle AOD$, and $\\angle AOD=30^\\circ$, \\\\\n$\\therefore \\angle COD=\\frac{1}{2}\\angle AOD=\\frac{1}{2}\\times 30^\\circ=15^\\circ$, \\\\\n$\\therefore \\angle COE=\\angle DOE+\\angle COD=45^\\circ+15^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51508981_134": { -"question": "As shown in the figure, $OC$ is the bisector of $\\angle AOD$, and $OE$ is the bisector of $\\angle BOD$. If $\\angle AOB=140^\\circ$, then what is the degree measure of $\\angle COE$?", -"image_file_name": "7043711", -"image": [ -"math/51508981_784.png" -], -"solution": "\\textbf{Solution:} Since $OC$ is the bisector of $\\angle AOD$ and $OE$ is the bisector of $\\angle BOD$,\\\\\n$\\therefore \\angle COD=\\frac{1}{2}\\angle AOD$, $\\angle DOE=\\frac{1}{2}\\angle BOD$,\\\\\nGiven that $\\angle AOB=140^\\circ$,\\\\\n$\\therefore \\angle AOD+\\angle BOD=140^\\circ$,\\\\\n$\\therefore \\angle COE=\\angle COD+\\angle DOE=\\frac{1}{2}\\left(\\angle AOD+\\angle BOD\\right)=\\frac{1}{2}\\times 140^\\circ=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51508770_136": { -"question": "As shown in the diagram, $AB$ is a straight line, and $OC$ is the bisector of $\\angle AOD$. As illustrated in figure (1), if $\\angle COE$ is a right angle, and $\\angle AOD=70^\\circ$, what is the measure of $\\angle BOE$?", -"image_file_name": "7043711", -"image": [ -"math/51508770_790.png" -], -"solution": "\\textbf{Solution:} Since $OC$ is the bisector of $\\angle AOD$ and $\\angle AOD = 70^\\circ$,\\\\\nit follows that $\\angle AOC = \\angle DOC = \\frac{1}{2}\\angle AOD = \\frac{1}{2}\\times 70^\\circ = 35^\\circ$,\\\\\nSince $\\angle COE is a right angle,\\\\\nwe have $\\angle COE = 90^\\circ$,\\\\\nHence, $\\angle BOE = 180^\\circ - \\angle AOC - \\angle COE = 180^\\circ - 35^\\circ - 90^\\circ = \\boxed{55^\\circ};$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51508770_137": { -"question": "As shown in the figure, AB is a straight line, and OC is the bisector of $\\angle AOD$. As shown in Figure (2), if the ratio $\\angle DOE : \\angle BOD = 2 : 5$ and $\\angle COE = 80^\\circ$, find the degree measure of $\\angle BOE$.", -"image_file_name": "7043711", -"image": [ -"math/51508770_790.png" -], -"solution": "\\textbf{Solution:} Let $\\angle COD=x^\\circ$, $\\angle DOE=y^\\circ$,\\\\\n$\\therefore x+y=80$,\\\\\n$\\because$ OC is the bisector of $\\angle AOD$,\\\\\n$\\therefore \\angle AOD=2\\angle COD=2x^\\circ$,\\\\\n$\\because \\angle DOE\\colon \\angle BOD=2\\colon 5$,\\\\\n$\\therefore \\angle BOD= \\frac{5}{2}\\angle DOE=\\frac{5}{2}y^\\circ$,\\\\\n$\\because \\angle AOD+\\angle BOD=180^\\circ$,\\\\\n$\\therefore 2x+\\frac{5}{2}y=180$,\\\\\n$\\therefore$ solving the above equations we get $y=40$,\\\\\n$\\therefore x=80-40=40$,\\\\\n$\\therefore \\angle AOD=2x^\\circ=80^\\circ$,\\\\\n$\\therefore \\angle BOD=180^\\circ-80^\\circ=100^\\circ$,\\\\\n$\\therefore \\angle BOE=\\angle BOD-\\angle DOE=100^\\circ-40^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52792815_139": { -"question": "As shown in the figure, it is known that $ OB$ is a ray inside $ \\angle AOC$, $ OE$ bisects $ \\angle AOC$, and $ OF$ bisects $ \\angle BOC$. If $ AO\\perp BO$ and $ \\angle BOC=60^\\circ$, find the measure of $ \\angle EOF$.", -"image_file_name": "7043711", -"image": [ -"math/52792815_803.png" -], -"solution": "\\textbf{Solution:} Given $AO\\perp BO$, $\\angle BOC=60^\\circ$\\\\\n$\\therefore \\angle AOB=90^\\circ, \\angle AOC=\\angle AOB+\\angle BOC=150^\\circ$\\\\\nSince OE bisects $\\angle AOC$, and OF bisects $\\angle BOC$\\\\\n$\\therefore \\angle EOC=\\frac{1}{2}\\angle AOC=75^\\circ, \\angle COF=\\frac{1}{2}\\angle BOC=30^\\circ$\\\\\n$\\therefore \\angle EOF=\\angle EOC-\\angle COF=75^\\circ-30^\\circ=\\boxed{45^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52890230_142": { -"question": "As shown in the figure, in $\\triangle ABC$, $BD$ bisects $\\angle ABC$, $E$ is a point on $BD$, $EA \\perp AB$, and $EB=EC$, $\\angle EBC=\\angle ECB$. If $\\angle ABC=40^\\circ$, what is the measure of $\\angle DEC$?", -"image_file_name": "7043711", -"image": [ -"math/52890230_810.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ABC=40^\\circ$ and BD bisects $\\angle ABC$,\\\\\nit follows that $\\angle EBC= \\frac{1}{2}\\angle ABC=20^\\circ$,\\\\\nSince $EB=EC$,\\\\\nwe have $\\angle ECB=\\angle EBC=20^\\circ$,\\\\\nBecause $\\angle DEC is an exterior angle of \\triangle EBC$,\\\\\nit follows that $\\angle DEC=\\angle ECB+\\angle EBC=\\boxed{40^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52792740_145": { -"question": "As shown in the figure, points $C$ and $D$ divide the line segment $AB$ into three parts in the ratio $2\\colon 5\\colon 3$, with $E$ being the midpoint of $AB$. If the numbers represented by points $A$, $B$, and $D$ are $-10$, $+20$, and $x$ respectively, what is the value of $x$?", -"image_file_name": "7043711", -"image": [ -"math/52792740_826.png" -], -"solution": "\\textbf{Solution:} Given the problem, the numbers represented by points $A$, $B$, $D$ are respectively $-10$, $+20$, $x$,\\\\\n$\\therefore AB=20-(-10)=30$, $BD=20-x$,\\\\\n$\\because$ On the number line, points $C$ and $D$ divide segment $AB$ into three parts in the ratio $2\\colon 5\\colon 3$,\\\\\n$\\therefore BD=\\frac{3}{2+5+3}AB=\\frac{3}{10}\\times 30=9$,\\\\\n$\\therefore 20-x=9$,\\\\\n$\\therefore x=\\boxed{11}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52792740_146": { -"question": "As shown in the figure, on the number line, points $C$ and $D$ divide the line segment $AB$ into three parts in the ratio $2:5:3$, with $E$ being the midpoint of $AB$. If $ED=3\\,cm$, what is the length of the line segment $AB$?", -"image_file_name": "7043711", -"image": [ -"math/52792740_826.png" -], -"solution": "\\textbf{Solution:} From the given information, \\\\\nsince $E$ is the midpoint of $AB$, \\\\\nthus $EB=\\frac{1}{2}AB$, \\\\\nsince points $C$, $D$ on the number line divide the segment $AB$ into three parts in the ratio $2:5:3$, \\\\\nthus $BD=\\frac{3}{2+5+3}AB=\\frac{3}{10}AB$, \\\\\nthus $ED=EB-BD=\\frac{1}{2}AB-\\frac{3}{10}AB=\\frac{1}{5}AB$, \\\\\nalso, since $ED=3\\text{cm}$, \\\\\nthus $\\frac{1}{5}AB=3\\text{cm}$, \\\\\nthus $AB=\\boxed{15\\text{cm}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52792852_148": { -"question": "As shown in the figure, line $AB$ intersects line $CD$ at point $O$, $OE \\perp CD$ and $OE$ bisects $\\angle BOF$. If $\\angle BOD$ is $10^\\circ$ larger than $\\angle BOE$, what is the degree measure of $\\angle COF$?", -"image_file_name": "7043711", -"image": [ -"math/52792852_835.png" -], -"solution": "\\textbf{Solution:}\nSince $OE \\perp CD$,\\\\\nit follows that $\\angle DOE = 90^\\circ$,\\\\\nwhich means $\\angle DOB + \\angle EOB = 90^\\circ$,\\\\\nSince $\\angle DOB = \\angle EOB + 10^\\circ$,\\\\\nit follows that $\\angle EOB = 40^\\circ$,\\\\\nSince $OE$ bisects $\\angle BOF$,\\\\\nit follows that $\\angle EOF = \\angle BOE = 40^\\circ$,\\\\\nTherefore, $\\angle COF = 90^\\circ - \\angle EOF = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52792885_151": { -"question": "As shown in the figure, it is known that lines AB and CD intersect at point O, with OE $\\perp$ CD. If $\\angle AOC = 42^\\circ$, what is the degree measure of $\\angle BOE$?", -"image_file_name": "7043711", -"image": [ -"math/52792885_840.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC=42^\\circ$,\\\\\nit follows that $\\angle BOD=42^\\circ$,\\\\\nsince $OE \\perp CD$,\\\\\nit follows that $\\angle BOE=90^\\circ-42^\\circ=\\boxed{48^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52792885_152": { -"question": "As shown in the figure, it is known that lines AB and CD intersect at point O, with OE $\\perp$ CD. If $\\angle BOD : \\angle BOC = 2 : 7$ and OF bisects $\\angle AOD$, what is the measure of $\\angle EOF$?", -"image_file_name": "7043711", -"image": [ -"math/52792885_840.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\angle$BOD : $\\angle$BOC = 2 : 7,\\\\\nthen $\\angle$BOC = $180^\\circ \\times \\frac{7}{7+2} = 140^\\circ$,\\\\\nthus $\\angle$AOD = $140^\\circ$,\\\\\nSince OF bisects $\\angle$AOD,\\\\\nthen $\\angle$DOF = $\\frac{1}{2}\\angle$AOD = $70^\\circ$,\\\\\nSince OE$\\perp$CD,\\\\\nthen $\\angle$EOF = $90^\\circ + 70^\\circ = \\boxed{160^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52774176_154": { -"question": "As shown in the figure, point O is on line AB, $\\angle BOD$ and $\\angle COD$ are complementary, and $\\angle BOC = n\\angle EOC$. If $\\angle AOD = 24^\\circ$ and $n = 3$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7043711", -"image": [ -"math/52774176_853.png" -], -"solution": "\\textbf{Solution:} Given that,\\\\\nsince $\\angle BOD$ and $\\angle COD$ are complementary,\\\\\nthus $\\angle BOD + \\angle AOD = 180^\\circ$,\\\\\ntherefore, $\\angle COD = \\angle AOD$,\\\\\nsince $\\angle AOD = 24^\\circ$, $n=3$, $\\angle BOC = n\\angle EOC$,\\\\\nthus $\\angle COD = 24^\\circ$, $\\angle BOC = 3\\angle EOC$,\\\\\ntherefore, $\\angle BOC = 180^\\circ - 24^\\circ - 24^\\circ = 132^\\circ$, $\\angle EOC = 44^\\circ$,\\\\\ntherefore, $\\angle DOE = 24^\\circ + 44^\\circ = \\boxed{68^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52774176_155": { -"question": "As shown in the figure, point $O$ is on line $AB$, $\\angle BOD$ and $\\angle COD$ are complementary, and $\\angle BOC = n\\angle EOC$. If $DO \\perp OE$, what is the value of $n$?", -"image_file_name": "7043711", -"image": [ -"math/52774176_853.png" -], -"solution": "\\textbf{Solution:} Given that, since $\\angle BOD$ and $\\angle COD$ are complementary,\\\\\nwe have $\\angle BOD + \\angle AOD = 180^\\circ$,\\\\\nthus $\\angle COD = \\angle AOD$,\\\\\nLet $\\angle COE = x$,\\\\\nthen $\\angle BOE = nx - x$,\\\\\nsince $OD \\perp OE$,\\\\\nit follows that $\\angle COD + \\angle COE = 90^\\circ = \\angle AOD + \\angle BOE$,\\\\\nthus $\\angle COE = \\angle BOE$,\\\\\nhence $nx - x = x$,\\\\\nand given $x \\ne 0$,\\\\\nwe find $n = \\boxed{2}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52774176_156": { -"question": "As shown in the figure, point $O$ lies on line $AB$, $\\angle BOD$ and $\\angle COD$ are complementary, $\\angle BOC = n\\angle EOC$. If $n=4$, let $\\angle AOD = \\alpha$, find the degree measure of $\\angle DOE$ (express the degree measure of $\\angle DOE$ in terms of $\\alpha$).", -"image_file_name": "7043711", -"image": [ -"math/52774176_853.png" -], -"solution": "\\textbf{Solution:} Given the problem statement,\\\\\n\\(\\because \\angle BOD\\) and \\(\\angle COD\\) are complementary, \\\\\n\\(\\therefore \\angle BOD + \\angle AOD = 180^\\circ\\),\\\\\n\\(\\therefore \\angle COD = \\angle AOD = \\alpha\\),\\\\\nLet \\(\\angle COE = y\\),\\\\\nand \\(n = 4\\),\\\\\nthen \\(\\angle BOC = 4y\\), \\(\\angle BOE = 3y\\),\\\\\n\\(\\therefore 4y + 2\\alpha = 180^\\circ\\),\\\\\n\\(\\therefore y = 45^\\circ - \\frac{1}{2}\\alpha\\),\\\\\n\\(\\therefore \\angle DOE = \\alpha + 45^\\circ - \\frac{1}{2}\\alpha = 45^\\circ + \\frac{1}{2}\\alpha\\).\\\\\nHence, the measure of \\(\\angle DOE\\) is \\(\\boxed{45^\\circ + \\frac{1}{2}\\alpha}\\).", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52774109_158": { -"question": "Given the diagram, $OC\\perp AB$ at point $O$, and $\\angle COD= \\frac{1}{4}\\angle BOD$, with $OE$ bisecting $\\angle BOD$. Find the measures of $\\angle COE$ and $\\angle AOE$?", -"image_file_name": "7043711", -"image": [ -"math/52774109_865.png" -], -"solution": "\\textbf{Solution:} Since OC $\\perp$ AB, it follows that $\\angle BOC = \\angle AOC = 90^\\circ$. Since $\\angle COD = \\frac{1}{3}\\angle BOC = 30^\\circ$, it follows that $\\angle BOD = 120^\\circ$. Since OE bisects $\\angle BOD$, it follows that $\\angle BOE = \\angle DOE = 60^\\circ$. Therefore, $\\angle COE = \\angle BOC - \\angle BOE = 90^\\circ - 60^\\circ = \\boxed{30^\\circ}$, $\\angle AOE = 180^\\circ - \\angle BOE = 180^\\circ - 60^\\circ = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52774109_159": { -"question": "As shown in the figure, $OC\\perp AB$ at point $O$, $\\angle COD=\\frac{1}{4}\\angle BOD$, and $OE$ bisects $\\angle BOD$. A ray $OF$ is drawn through point $O$, and if $OF\\perp OE$, what is the measure of $\\angle BOF$?", -"image_file_name": "7043711", -"image": [ -"math/52774109_865.png" -], -"solution": "Solution: As shown in the figure, when OF is above line AB,\n\n$\\because$ OF$\\perp$OE,\n\n$\\therefore$ $\\angle EOF=90^\\circ$,\n\n$\\because$ $\\angle BOE=60^\\circ$,\n\n$\\therefore$ $\\angle BOF=\\angle BOE+\\angle EOF=60^\\circ+90^\\circ=150^\\circ$;\n\nWhen OF is below line AB,\n\n$\\because$ OF$\\perp$OE,\n\n$\\therefore$ $\\angle EOF=90^\\circ$,\n\n$\\because$ $\\angle BOE=60^\\circ$,\n\n$\\therefore$ $\\angle BOF=\\angle EOF-\\angle BOE=90^\\circ-60^\\circ=\\boxed{30^\\circ}$,\n\nTherefore, the measure of $\\angle BOF$ is $150^\\circ$ or $\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52773591_161": { -"question": "As shown in the figure, points $C$, $D$, and $E$ are on the line segment $AB$, with $AB=12$ and $AC=4$. $D$ and $E$ are the midpoints of $AB$ and $CB$ respectively. Find the length of $DE$.", -"image_file_name": "7043711", -"image": [ -"math/52773591_870.png" -], -"solution": "\\textbf{Solution:} Given $\\because AB=12$, $AC=4$, \\\\\n$\\therefore BC=AB-AC=12-4=8$, \\\\\n$\\because D$ and $E$ are the midpoints of $AB$ and $CB$, respectively, \\\\\n$\\therefore BD= \\frac{1}{2}AB= \\frac{1}{2}\\times 12=6$, $BE=CE= \\frac{1}{2}BC= \\frac{1}{2}\\times 8=4$, \\\\\n$\\therefore DE=BD-BE=6-4=\\boxed{2}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52773591_162": { -"question": "As shown in the figure, it is known that $OC$ bisects $\\angle AOD$, $\\angle BOC=30^\\circ$, and $\\angle BOC$ is complementary to $\\angle AOD$. Find the measures of $\\angle AOD$ and $\\angle BOD$.", -"image_file_name": "7043711", -"image": [ -"math/52773591_870.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\angle$BOC and $\\angle$AOD are complementary,\\\\\n$\\therefore$ $\\angle$BOC + $\\angle$AOD = 180$^\\circ$,\\\\\nSince $\\angle$BOC = 30$^\\circ$,\\\\\n$\\therefore$ $\\angle$AOD = 150$^\\circ$,\\\\\nSince OC bisects $\\angle$AOD,\\\\\n$\\therefore$ $\\angle$DOC = $\\frac{1}{2}\\angle$AOD = $\\frac{1}{2} \\times 150^\\circ = 75^\\circ$,\\\\\n$\\therefore$ $\\angle$BOD = $\\angle$DOC + $\\angle$BOC\\\\\n= 75$^\\circ$ + 30$^\\circ$\\\\\n= \\boxed{105^\\circ},\\\\\nthat is, $\\angle$AOD = \\boxed{150^\\circ}, $\\angle$BOD = \\boxed{105^\\circ}.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52949136_165": { -"question": "As shown in the figure, $OC$ is a ray inside $\\angle AOB$, $OD$ bisects $\\angle BOC$, and $OE$ bisects $\\angle AOC$. If $\\angle AOB=130^\\circ$, find the degree measure of $\\angle DOE$.", -"image_file_name": "7043711", -"image": [ -"math/52949136_886.png" -], -"solution": "\\textbf{Solution:} When $\\angle AOB = 130^\\circ$,\\\\\nwe have $\\angle DOE = \\frac{1}{2}\\angle AOB$\\\\\n$= \\frac{1}{2}\\times 130^\\circ$\\\\\n$= 65^\\circ$.\\\\\nTherefore, the measure of $\\angle DOE$ is $\\boxed{65^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52949146_167": { -"question": "As shown in the figure, $AB\\parallel CD$, and point E is a point between the two lines. If $\\angle BAE=35^\\circ$ and $\\angle DCE=20^\\circ$, then what is the degree measure of $\\angle AEC$?", -"image_file_name": "7043711", -"image": [ -"math/52949146_891.png" -], -"solution": "\\textbf{Solution:} We have $\\angle AEC = \\boxed{55^\\circ}$.", -"solution_image": [ -"solution_images/52949146_891.png" -], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52948847_171": { -"question": "As shown in the figure, point $O$ is a point on line $AB$, $OM$ and $ON$ are on opposite sides of line $AB$, and $\\angle MON=90^\\circ$, $OE$ bisects $\\angle MOB$, $OF$ bisects $\\angle AON$. Given $\\angle BOM=150^\\circ$, what are the degrees of $\\angle BOE$ and $\\angle NOF$?", -"image_file_name": "7043711", -"image": [ -"math/52948847_9010.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $OE$ bisects $\\angle MOB$ and $\\angle BOM=150^\\circ$,\\\\\nwe have $\\angle BOE=\\frac{1}{2}\\angle BOM=\\frac{1}{2}\\times 150^\\circ=\\boxed{75^\\circ}$;\\\\\nSince $\\angle AOM=180^\\circ-\\angle BOM=180^\\circ-150^\\circ=30^\\circ$,\\\\\nand since $\\angle MON=90^\\circ$,\\\\\nwe get $\\angle AON=\\angle MON-\\angle AOM=90^\\circ-30^\\circ=60^\\circ$,\\\\\nSince $OF$ bisects $\\angle AON$,\\\\\ntherefore, $\\angle NOF=\\frac{1}{2}\\angle AON=\\frac{1}{2}\\times 60^\\circ=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52948847_172": { -"question": "As shown in the figure, point $O$ is on line $AB$, with $OM$ and $ON$ on opposite sides of line $AB$ and $\\angle MON=90^\\circ$. $OE$ bisects $\\angle MOB$, and $OF$ bisects $\\angle AON$. Let $\\angle AOF = \\theta$, express $\\angle MOE$ in terms of $\\theta$.", -"image_file_name": "7043711", -"image": [ -"math/52948847_9010.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\angle AOF=\\theta$,\\\\\nit follows that $\\angle AON=2\\angle AOF=2\\theta$,\\\\\nand since $\\angle MON=90^\\circ$,\\\\\nwe have $\\angle AOM=90^\\circ-2\\theta$,\\\\\nthus $\\angle BOM=180^\\circ-\\left(90^\\circ-2\\theta \\right)=90^\\circ+2\\theta$,\\\\\ntherefore $\\angle MOE=\\frac{1}{2}\\angle BOM=\\frac{1}{2}\\left(90^\\circ+2\\theta \\right)=45^\\circ+\\theta$.\\\\\nHence, $\\angle MOE$ can be expressed in a formula containing $\\theta$ as $\\angle MOE=\\boxed{45^\\circ+\\theta}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51482433_174": { -"question": "As shown in the figure, $OA \\perp OB$, $\\angle COD = 60^\\circ$. If $OC$ bisects $\\angle AOD$, what is the degree measure of $\\angle BOC$?", -"image_file_name": "7043711", -"image": [ -"math/51482433_912.png" -], -"solution": "\\textbf{Solution:} Since $OC$ bisects $\\angle AOD$, $\\angle COD=60^\\circ$,\\\\\nthus $\\angle AOC=\\angle COD=60^\\circ$,\\\\\nsince $OA\\perp OB$,\\\\\nthus $\\angle AOB=90^\\circ$,\\\\\ntherefore $\\angle BOC=\\angle AOB-\\angle AOC=90^\\circ-60^\\circ=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51482433_175": { -"question": "As shown in the figure, $OA \\perp OB$, $\\angle COD = 60^\\circ$. If $\\angle BOC = \\frac{3}{7}\\angle AOD$, what is the degree measure of $\\angle AOD$?", -"image_file_name": "7043711", -"image": [ -"math/51482433_912.png" -], -"solution": "\\textbf{Solution:}\nGiven: $\\because$ $\\angle AOB=90^\\circ$,\\\\\n$\\therefore$ $\\angle BOD=\\angle AOD-\\angle AOB=\\angle AOD-90^\\circ$,\\\\\n$\\because$ $\\angle COD=60^\\circ$,\\\\\n$\\therefore$ $\\angle BOD=\\angle COD-\\angle BOC=60^\\circ-\\angle BOC$,\\\\\n$\\therefore$ $60^\\circ-\\angle BOC=\\angle AOD-90^\\circ$,\\\\\n$\\because$ $\\angle BOC=\\frac{3}{7}\\angle AOD$,\\\\\n$\\therefore$ $60^\\circ-\\frac{3}{7}\\angle AOD=\\angle AOD-90^\\circ$,\\\\\nSolving, we get: $\\angle AOD=\\boxed{105^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51482322_177": { -"question": "As shown in the figure, point $D$ is the midpoint of segment $AC$, and $AB = \\frac{2}{3} BC$, $BC = 6$. Find the length of segment $BD$.", -"image_file_name": "7043711", -"image": [ -"math/51482322_920.png" -], -"solution": "\\textbf{Solution:} Given that $AB= \\frac{2}{3} BC$ and $BC=6$,\n\\[\n\\therefore AB= \\frac{2}{3} \\times 6=4,\n\\]\n\\[\n\\therefore AC=AB+BC=10,\n\\]\nSince point D is the midpoint of segment AC,\n\\[\n\\therefore AD= \\frac{1}{2} AC=5,\n\\]\n\\[\n\\therefore BD=AD-AB=5-4=\\boxed{1}.\n\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51482322_178": { -"question": "As shown in the figure, it is known that $OB$ bisects $\\angle AOD$, $\\angle BOC = \\frac{2}{3} \\angle AOC$, and if $\\angle AOD=100^\\circ$, find the degree measure of $\\angle BOC$.", -"image_file_name": "7043711", -"image": [ -"math/51482322_920.png" -], -"solution": "\\textbf{Solution:} Given that OB bisects $\\angle AOD$, and $\\angle AOD = 100^\\circ$, \\\\\n$\\therefore \\angle AOB = \\frac{1}{2} \\angle AOD = 50^\\circ$, \\\\\nGiven that $\\angle BOC + \\angle AOC = \\angle AOB$, and $\\angle BOC = \\frac{2}{3} \\angle AOC$, \\\\\n$\\therefore \\frac{2}{3} \\angle AOC + \\angle AOC = 50^\\circ$, \\\\\n$\\therefore \\angle AOC = 30^\\circ$, \\\\\n$\\therefore \\angle BOC = \\frac{2}{3} \\angle AOC = \\boxed{20^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51481976_180": { -"question": "Given the diagram, place the right-angled vertex \\(O\\) of the right-angled triangle \\(MON\\) on the line \\(AB\\), and let the ray \\(OC\\) bisect \\(\\angle AON\\). As shown in Figure 1, if \\(\\angle MOC = 28^\\circ\\), what is the degree measure of \\(\\angle BON\\)?", -"image_file_name": "7043711", -"image": [ -"math/51481976_930.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, since $\\angle MOC=28^\\circ$ and $\\angle MON=90^\\circ$,\\\\\nit follows that $\\angle NOC=90^\\circ-28^\\circ=62^\\circ$,\\\\\nand since $OC$ bisects $\\angle AON$,\\\\\nit follows that $\\angle AOC=\\angle NOC=62^\\circ$,\\\\\ntherefore $\\angle BON=180^\\circ-2\\angle NOC=180^\\circ-62^\\circ\\times 2=\\boxed{56^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51481976_181": { -"question": "As shown in the figure, it is known that the right-angled vertex $O$ of the right-angled triangle $MON$ is placed on the line $AB$, and the ray $OC$ bisects $\\angle AON$. If $\\angle MOC = m^\\circ$, what is the measure of $\\angle BON$ in degrees?", -"image_file_name": "7043711", -"image": [ -"math/51481976_930.png" -], -"solution": "\\textbf{Solution:} We have $\\angle BON = \\boxed{2m^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51457845_185": { -"question": "As shown in the figure, point $O$ is on line $AB$, $CO \\perp AB$, and $OE$ bisects $\\angle BOD$, with $OF \\perp OE$. If $\\angle 2 - \\angle 1 = 20^\\circ$, what is the degree measure of $\\angle BOE$?", -"image_file_name": "7043711", -"image": [ -"math/51457845_943.png" -], -"solution": "\\textbf{Solution:} Given $CO \\perp AB$,\n\nit follows that $\\angle COA = 90^\\circ$, which means $\\angle 2 = 90^\\circ - \\angle 1$.\n\nAlso, given $\\angle 2 - \\angle 1 = 20^\\circ$,\n\nit results in $\\angle 2 = 20^\\circ + \\angle 1$,\n\nhence $90^\\circ - \\angle 1 = 20^\\circ + \\angle 1$.\n\nSolving this, we find $\\angle 1 = 35^\\circ$,\n\ntherefore $\\angle 2 = 55^\\circ$,\n\nand thus $\\angle BOD = 180^\\circ - \\angle 2 = 125^\\circ$.\n\nSince $OE$ bisects $\\angle BOD$,\n\nit means $\\angle BOE = \\angle DOE = \\frac{1}{2} \\angle BOD = \\boxed{62.5^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51457701_187": { -"question": "As shown in the figure, $ \\angle AOB=40^\\circ$, $OB$ is the bisector of $ \\angle AOC$, and $OD$ is the bisector of $ \\angle COE$. If $ \\angle DOE=10^\\circ$, find the degree measure of $ \\angle BOD$.", -"image_file_name": "7043711", -"image": [ -"math/51457701_955.png" -], -"solution": "\\textbf{Solution:} Since $OB$ is the bisector of $\\angle AOC$, and $OD$ is the bisector of $\\angle COE$,\\\\\n$\\therefore \\angle BOC=\\angle AOB=40^\\circ$, $\\angle COD=\\angle DOE=10^\\circ$,\\\\\n$\\therefore \\angle BOD=\\angle BOC+\\angle COD=40^\\circ+10^\\circ=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51457701_188": { -"question": "As shown in the diagram, $ \\angle AOB=40^\\circ$, $ OB$ is the bisector of $ \\angle AOC$, and $ OD$ is the bisector of $ \\angle COE$. If $ \\angle AOD$ and $ \\angle BOD$ are complementary angles, find the degree measure of $ \\angle COE$?", -"image_file_name": "7043711", -"image": [ -"math/51457701_955.png" -], -"solution": "\\textbf{Solution:} \n\nGiven that $OB$ is the bisector of $\\angle AOC$, and $OD$ is the bisector of $\\angle COE$,\\\\\n$\\therefore \\angle BOC=\\angle AOB=40^\\circ$,\\\\\nLet $\\angle COD=\\angle DOE=x^\\circ$,\\\\\n$\\therefore \\angle BOD=\\angle BOC+\\angle COD=(40+x)^\\circ$, $\\angle AOD=\\angle AOB+\\angle BOC+\\angle COD=(80+x)^\\circ$,\\\\\nSince $\\angle AOD$ and $\\angle BOD$ are complementary,\\\\\n$\\therefore \\angle AOD+\\angle BOD=(40+x)^\\circ+(80+x)^\\circ=180^\\circ$,\\\\\n$\\therefore x=\\boxed{30}$,\\\\\n$\\therefore \\angle COD=\\angle DOE=30^\\circ$,\\\\\n$\\therefore \\angle COE=2\\angle COD=60^\\circ$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51457698_190": { -"question": "As shown in the figure, it is known that the line segment \\( AC=12\\,cm \\), and point \\( B \\) is on line segment \\( AC \\), satisfying \\( BC= \\frac{1}{2} AB \\). What is the length of \\( AB \\)?", -"image_file_name": "7043711", -"image": [ -"math/51457698_961.png" -], -"solution": "\\textbf{Solution:} Since $BC=\\frac{1}{2}AB$, \\\\\nit follows that $AB=\\frac{2}{3}AC=\\frac{2}{3}\\times 12=\\boxed{8\\text{cm}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51457698_191": { -"question": "As shown in the figure, it is known that the length of line segment $AC=12\\, \\text{cm}$, and point $B$ is on line segment $AC$, satisfying $BC= \\frac{1}{2} AB$. If $D$ is the midpoint of $AB$, and $E$ is the midpoint of $AC$, find the length of $DE$.", -"image_file_name": "7043711", -"image": [ -"math/51457698_961.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $D$ is the midpoint of $AB$,\\\\\nthus $AD=\\frac{1}{2}AB=4\\text{cm}$,\\\\\nSince $E$ is the midpoint of $AC$,\\\\\nthus $AE=\\frac{1}{2}AC=6\\text{cm}$,\\\\\nTherefore, $DE=AE-AD=\\boxed{2\\text{cm}}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51457662_193": { -"question": "As shown in the figure, $O$ is a point on the straight line $AB$, $\\angle DOB=90^\\circ$, $\\angle EOC=90^\\circ$. If $\\angle DOE=50^\\circ$, what is the degree measure of $\\angle BOC$?", -"image_file_name": "7043711", -"image": [ -"math/51457662_970.png" -], -"solution": "\\textbf{Solution:} From the given conditions, we have \\\\\n$\\because \\angle BOC + \\angle COD = 90^\\circ$, \\\\\n$\\angle COD + \\angle DOE = 90^\\circ$, \\\\\n$\\therefore \\angle BOC = \\angle DOE = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51457662_194": { -"question": "As shown in the figure, $O$ is a point on line $AB$, $\\angle DOB = 90^\\circ$, $\\angle EOC = 90^\\circ$. If $OE$ bisects $\\angle AOD$, what is the degree measure of $\\angle BOE$?", -"image_file_name": "7043711", -"image": [ -"math/51457662_970.png" -], -"solution": "Solution:\n\\[\n\\because OE \\text{ bisects } \\angle AOD, \n\\]\n\\[\n\\therefore \\angle DOE=\\frac{1}{2}\\angle AOD=45^\\circ,\n\\]\n\\[\n\\text{Also, } \\because \\angle BOE = \\angle BOD + \\angle DOE,\n\\]\n\\[\n\\therefore \\angle BOE = \\boxed{135^\\circ}.\n\\]\n", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52579729_196": { -"question": "As shown in the figure, it is known that there is a line $AE$, and $O$ is a point on line $AE$. $OB$ is the bisector of $\\angle AOC$, $OD$ is the bisector of $\\angle COE$. If $\\angle AOB=30^\\circ$, what is the degree measure of $\\angle COE$?", -"image_file_name": "7043711", -"image": [ -"math/52579729_987.png" -], -"solution": "\\textbf{Solution:} Since OB is the bisector of $\\angle AOC$ and $\\angle AOB=30^\\circ$,\\\\\nit follows that $\\angle BOC=\\angle AOB=30^\\circ$,\\\\\nthus $\\angle AOC=2\\angle AOB=60^\\circ$.\\\\\nSince $\\angle AOC+\\angle COE=180^\\circ$,\\\\\nwe have $\\angle COE=180^\\circ-\\angle AOC=180^\\circ-60^\\circ=\\boxed{120^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52579729_197": { -"question": "As shown in the figure, it is known that $AE$ is a straight line, and $O$ is a point on the straight line $AE$. $OB$ is the bisector of $\\angle AOC$, and $OD$ is the bisector of $\\angle COE$. Given that $\\angle AOB=30^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7043711", -"image": [ -"math/52579729_987.png" -], -"solution": "\\textbf{Solution:} Since $OD$ is the bisector of $\\angle COE$,\\\\\nit follows that $\\angle COD= \\frac{1}{2}\\angle COE=60^\\circ$,\\\\\ntherefore, $\\angle BOD=\\angle COD+\\angle BOC=60^\\circ+30^\\circ=\\boxed{90^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52579788_199": { -"question": "As shown in the figure, with point O as the endpoint, rays OA, OB, OC, OD, and OE are drawn successively in clockwise direction. Moreover, OB is the bisector of $\\angle AOC$, and OD is the bisector of $\\angle COE$. If $\\angle AOB=50^\\circ$ and $\\angle DOE=30^\\circ$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7043711", -"image": [ -"math/52579788_990.png" -], -"solution": "\\textbf{Solution:} Given that $OB$ is the bisector of $\\angle AOC$,\\\\\nhence $\\angle BOC = \\angle AOB = 50^\\circ$;\\\\\nsince $OD$ is the bisector of $\\angle COE$,\\\\\nthus $\\angle COD = \\angle DOE = 30^\\circ$,\\\\\ntherefore $\\angle BOD = \\angle BOC + \\angle COD = 50^\\circ + 30^\\circ = \\boxed{80^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52579788_200": { -"question": "As shown in the figure, rays OA, OB, OC, OD, and OE are drawn sequentially in a clockwise direction from point O as the endpoint. Moreover, OB is the bisector of $\\angle AOC$, and OD is the bisector of $\\angle COE$. If $\\angle AOD = 110^\\circ$ and $\\angle BOE = 100^\\circ$, what is the measure of $\\angle AOE$?", -"image_file_name": "7043711", -"image": [ -"math/52579788_990.png" -], -"solution": "\\textbf{Solution:} Given $OD$ bisects $\\angle COE$, let $\\angle EOD = \\angle DOC = x$, $OB$ bisects $\\angle AOC$, hence $\\angle AOB = \\angle COB$. Given $\\angle BOE = 100^\\circ$, we have: $\\angle AOB = \\angle COB = \\angle BOE - \\angle COE = 100^\\circ - 2x$. From $\\angle AOD = 110^\\circ$, we have: $\\angle AOD = \\angle COD + \\angle COB + \\angle AOB = 110^\\circ$, thus $x + (100^\\circ - 2x) + (100^\\circ - 2x) = 110^\\circ$. Solving this gives $x = 30^\\circ$, i.e., $\\angle EOD = \\angle DOC = 30^\\circ$. Therefore, $\\angle AOE = \\angle AOD + \\angle DOE = 110^\\circ + 30^\\circ = \\boxed{140^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52579788_201": { -"question": "As shown in the figure, with point O as the endpoint, make rays OA, OB, OC, OD, and OE in clockwise order. Moreover, OB is the bisector of $\\angle AOC$ and OD is the bisector of $\\angle COE$. When $\\angle AOD = n^\\circ$, then $\\angle BOE = (150 - n)^\\circ$. What is the degree measure of $\\angle BOD$?", -"image_file_name": "7043711", -"image": [ -"math/52579788_990.png" -], -"solution": "\\textbf{Solution:} Let $\\angle EOD = \\angle DOC = x^\\circ$ and $\\angle AOB = \\angle BOC = y^\\circ$. According to the problem statement, we have $\\angle AOD = \\angle AOB + \\angle BOC + \\angle COD = y^\\circ + y^\\circ + x^\\circ = n^\\circ$ and $\\angle BOE = \\angle BOC + \\angle COD + \\angle DOE = y^\\circ + x^\\circ + x^\\circ = (150 - n)^\\circ$. Hence, $\\angle AOD + \\angle BOE = 3x^\\circ + 3y^\\circ = 150^\\circ$, therefore $x^\\circ + y^\\circ = 50^\\circ$. Since $\\angle BOD = \\angle BOC + \\angle COD = x^\\circ + y^\\circ$, it follows that $\\angle BOD = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51827682_71": { -"question": "In quadrilateral $ABCD$, $AC$ and $BD$ intersect at point $O$, with $AD \\parallel BC$ and $AO=CO$. Quadrilateral $ABCD$ is a parallelogram. Through point $O$, draw $OE \\perp BD$ intersecting $BC$ at point $E$, and connect $DE$. If $\\angle CDE = \\angle CBD = 15^\\circ$, what is the measure of $\\angle ABC$ in degrees?", -"image_file_name": "7055317", -"image": [ -"math/51827682_690.png" -], -"solution": "\\textbf{Solution:} Given that OB = OD, and OE $\\perp$ BD, it follows that BE = ED. Consequently, $\\angle CBD = \\angle BDE = 15^\\circ$. Since $\\angle CDE = 15^\\circ$, we find that $\\angle BDC = 30^\\circ$. Given that quadrilateral ABCD is a parallelogram, it follows that AB $\\parallel$ CD, implying $\\angle ABD = \\angle BDC = 30^\\circ$. Therefore, $\\angle ABC = \\angle ABD + \\angle CBD = 30^\\circ + 15^\\circ = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51825337_74": { -"question": "As shown in the figure, points $D$, $E$, and $F$ are the midpoints of the sides $AB$, $BC$, and $AC$ of $\\triangle ABC$, respectively. Extend $DE$ to point $G$ such that $DE=EG$, and connect $AE$, $FG$. Quadrilateral $AEGF$ is a parallelogram. If $\\angle BAC=90^\\circ$ and $AD=AC=3$, find the length of $FG$.", -"image_file_name": "7055317", -"image": [ -"math/51825337_700.jpg" -], -"solution": "\\textbf{Solution:} From (1), we know: $DE=\\frac{1}{2}AC$, $DE\\parallel AC$, since $\\angle BAC=90^\\circ$, therefore $\\angle EAD=90^\\circ$. Also, since $AC=AD=3$, therefore $DE=\\frac{3}{2}$, hence $AE=\\sqrt{DE^2+AD^2}=\\sqrt{\\left(\\frac{3}{2}\\right)^2+3^2}=\\frac{3\\sqrt{5}}{2}$. From (1), it is known that quadrilateral AEGF is a parallelogram, therefore $FG=\\boxed{\\frac{3\\sqrt{5}}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51825231_76": { -"question": "As shown in the figure, in parallelogram \\(ABCD\\), \\(\\angle B = 60^\\circ\\), \\(BC = 6\\), and point \\(E\\) is the midpoint of side \\(BC\\). Triangle \\(ABE\\) is folded to the right along \\(AE\\), with point \\(B\\) falling on \\(B'\\). Connect \\(CB'\\) and extend it to intersect \\(AD\\) at point \\(F\\). Prove that quadrilateral \\(AECF\\) is a parallelogram.", -"image_file_name": "7055317", -"image": [ -"math/51825231_710.png" -], -"solution": "Proof:\n\nBecause $\\triangle ABE$ is folded along $AE$ with point $B$ landing on $B'$,\n\nit follows that $\\triangle ABE \\cong \\triangle AB'E$,\n\nthus $\\angle AEB = \\angle AEB' = \\frac{1}{2}\\angle BEB'$, and $EB = EB'$,\n\nsince $E$ is the midpoint of side $BC$,\n\nwe have $EB = EC = EB'$,\n\ntherefore, $\\angle EB'C = \\angle ECB' = \\frac{1}{2}\\angle BEB'$,\n\nhence, $\\angle BEA = \\angle ECB'$,\n\nwhich implies $AE \\parallel CF$,\n\ngiven that quadrilateral $ABCD$ is a parallelogram,\n\nwe have $AD \\parallel BC$,\n\nthus, quadrilateral \\boxed{AECF} is a parallelogram.\n\nThis completes the proof.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51825231_77": { -"question": "Given, as shown in the diagram, in parallelogram $ABCD$, $\\angle B=60^\\circ$, $BC=6$, and point $E$ is the midpoint of side $BC$. Triangle $ABE$ is folded to the right along $AE$ so that point $B$ falls at point $B'$. Line $CB'$ is drawn and extended to intersect $AD$ at point $F$. When $AB' \\perp CD$, what is the length of $AE$?", -"image_file_name": "7055317", -"image": [ -"math/51825231_710.png" -], -"solution": "\\textbf{Solution:} Given $AB \\parallel CD$ and $AB' \\perp CD$, \\\\\nit follows that $AB' \\perp AB$, which means $\\angle BAB' = 90^\\circ$, \\\\\nby folding, we have $\\angle BAE = \\angle EAB' = 45^\\circ$, \\\\\nas shown in the diagram, draw $EH \\perp AB$ at point H, \\\\\nin $\\triangle BEH$, $\\angle B = 60^\\circ$ and $BE = 3$, \\\\\nthus $BH = \\frac{3}{2}$, $HE = \\sqrt{BE^2 - BH^2} = \\sqrt{3^2 - \\left(\\frac{3}{2}\\right)^2} = \\frac{3}{2}\\sqrt{3}$, \\\\\nin $\\triangle AEH$, $\\angle HAE = \\angle AEH = 45^\\circ$, $AH = EH = \\frac{3}{2}\\sqrt{3}$, \\\\\ntherefore $AE = \\sqrt{2}HE = \\boxed{\\frac{3}{2}\\sqrt{6}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51825026_80": { -"question": "As shown in the figure, the diagonals $AC$ and $BD$ of the quadrilateral $\\square ABCD$ intersect at point $Q$, with $E$ and $F$ being the midpoints of $OB$ and $OD$, respectively. Lines $AE$, $AF$, $CE$, and $CF$ are connected. Quadrilateral $AECF$ is a parallelogram. If $AB \\perp AC$ and $AB=3$, $BC=5$, what is the length of $BD$?", -"image_file_name": "7055317", -"image": [ -"math/51825026_721.png" -], -"solution": "\\textbf{Solution:} Given that $AB \\perp AC$, it follows that $\\angle BAC = 90^\\circ$. In right triangle $\\triangle ABC$, we have $AC = \\sqrt{BC^2 - AB^2} = \\sqrt{5^2 - 3^2} = 4$. Thus, $OA = \\frac{1}{2}AC = 2$. In right triangle $\\triangle AOB$, $BO = \\sqrt{AB^2 + OA^2} = \\sqrt{3^2 + 2^2} = \\sqrt{13}$, hence $BD = 2BO = 2\\sqrt{13}$. Therefore, the length of $BD$ is $\\boxed{2\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53333420_83": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $BD=AD$. Extend $CB$ to point $E$ such that $BE=BD$, and connect $AE$. Quadrilateral $AEBD$ is a rhombus; connect $DE$ and intersect $AB$ at point $F$. If $DC=\\sqrt{10}$ and the ratio $DC:DE=1:3$, what is the length of $AD$?", -"image_file_name": "7055317", -"image": [ -"math/53333420_731.png" -], -"solution": "\\textbf{Solution}: As shown in the diagram, extend DE to meet AB at F, \\\\\n$\\because$ Quadrilateral AEBD is a rhombus,\\\\\n$\\therefore$ AB$\\perp$DE,\\\\\n$\\therefore$ $\\angle$EFB$=90^\\circ$. \\\\\n$\\because$ Quadrilateral ABCD is a parallelogram,\\\\\n$\\therefore$ AB$ \\parallel $DC.\\\\\n$\\therefore$ $\\angle$EDC $=\\angle$EFB$=90^\\circ$.\\\\\n$\\because$ DC$= \\sqrt{10}$ and the ratio DC$\\colon$ DE$=1\\colon 3$,\\\\\n$\\therefore$ DE$= 3\\sqrt{10}$.\\\\\nIn $\\triangle$EDC, by the Pythagorean theorem, we have $EC=\\sqrt{ED^{2}+DC^{2}}=10$\\\\\n$\\therefore$ AD$=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53333469_86": { -"question": "As shown in the figure, in rhombus $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, $DE \\parallel AC$, and $AE \\parallel BD$. Quadrilateral $AODE$ is a rectangle; if $AB=10$ and $\\angle ABC=60^\\circ$, what is the area of quadrilateral $AODE$?", -"image_file_name": "7055317", -"image": [ -"math/53333469_746.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a rhombus,\\\\\n$\\therefore$ $AD=AB=BC=10$, $OA=OC$, $AC\\perp BD$,\\\\\nSince $\\angle ABC=60^\\circ$,\\\\\n$\\therefore$ $\\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore$ $AC=AB=10$,\\\\\n$\\therefore$ $OA=\\frac{1}{2}AC=5$,\\\\\nIn $Rt\\triangle AOD$, by the Pythagorean theorem, $OD=\\sqrt{AD^{2}-OA^{2}}=\\sqrt{10^{2}-5^{2}}=5\\sqrt{3}$,\\\\\nFrom (1), quadrilateral $AODE$ is a rectangle,\\\\\n$\\therefore$ the area of quadrilateral $AODE$ $=OA\\cdot OD=5\\times 5\\sqrt{3}=\\boxed{25\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53333382_89": { -"question": "As shown in the figure, quadrilateral ABCD is a rhombus, with $BE \\perp AD$ and $BF \\perp CD$, where the feet of the perpendiculars are points E and F, respectively. $BE = BF$; When the diagonals of the rhombus ABCD satisfy $AC = 8$ and $BD = 6$, what is the length of $BE$?", -"image_file_name": "7055317", -"image": [ -"math/53333382_750.png" -], -"solution": "\\textbf{Solution:} Since the diagonals of rhombus ABCD are $AC=8$ and $BD=6$,\\\\\nit follows that $OA=OC=\\frac{1}{2}AC=4$, $OB=OD=\\frac{1}{2}BD=3$, and $\\angle AOD=90^\\circ$,\\\\\nthus $AD=\\sqrt{OA^{2}+OD^{2}}=5$,\\\\\nGiven that the area of rhombus ABCD is $S_{\\text{rhombus} ABCD}=\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}AD\\cdot BE$,\\\\\nit follows that $BE=\\frac{AC\\cdot BD}{2AD}=\\boxed{\\frac{24}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51817965_92": { -"question": "As shown in the figure, in the rhombus $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$, with $DE \\parallel AC$ and $AE \\parallel BD$. Quadrilateral $AODE$ is a rectangle; if $AB=2\\sqrt{3}$ and $\\angle BCD=120^\\circ$, connect $CE$. What is the length of $CE$?", -"image_file_name": "7055317", -"image": [ -"math/51817965_760.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle BCD=120^\\circ$ and quadrilateral ABCD is a rhombus,\\\\\n$\\therefore \\angle BAD=\\angle BCD=120^\\circ$, $\\angle CAB=\\angle CAD=60^\\circ$, AB=BC,\\\\\n$\\therefore \\triangle ABC$ is an equilateral triangle,\\\\\n$\\therefore AC=AB=2\\sqrt{3}$, OB=OD=AE=3,\\\\\nIn $\\triangle AEC$, $EC=\\sqrt{AC^2+AE^2}=\\sqrt{(2\\sqrt{3})^2+3^2}=\\boxed{\\sqrt{21}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53599308_94": { -"question": "As shown in the figure, in quadrilateral ABCD, $AD\\parallel BC$, $\\angle A=90^\\circ$, $BD=BC$, point E is the midpoint of CD, ray BE intersects the extension of AD at point F, connect CF. Prove that the quadrilateral BCFD is a rhombus.", -"image_file_name": "7055317", -"image": [ -"math/53599308_770.png" -], -"solution": "\\textbf{Solution.} Proof: Since AF$\\parallel$BC,\\\\\nit follows that $\\angle$DCB=$\\angle$CDF, $\\angle$FBC=$\\angle$BFD,\\\\\nsince point E is the midpoint of CD,\\\\\nit follows that DE=EC,\\\\\nin $\\triangle$ BCE and $\\triangle$ FDE,\\\\\nsince $\\left\\{\\begin{array}{l}\n\\angle FBC=\\angle BFD \\\\\n\\angle DCB=\\angle CDF \\\\\nDE=EC\n\\end{array}\\right.$,\\\\\nit follows that $\\triangle$ BCE$\\cong$ $\\triangle$ FDE,\\\\\nthus, DF=BC,\\\\\nand since DF$\\parallel$BC,\\\\\nit follows that quadrilateral BCFD is a parallelogram,\\\\\nsince BD=BC,\\\\\nit follows that \\boxed{quadrilateral\\ BCFD\\ is\\ a\\ rhombus};", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53599308_95": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD \\parallel BC$, $\\angle A=90^\\circ$, $BD=BC$. Point $E$ is the midpoint of $CD$, the ray $BE$ extends and intersects the extension line of $AD$ at point $F$, and $CF$ is connected. If $AD=1$, $BC=2$, find the length of $BF$.", -"image_file_name": "7055317", -"image": [ -"math/53599308_770.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral BCFD is a rhombus,\\\\\nit follows that BD=DF=BC=2,\\\\\nin $\\triangle BAD$, AB=$\\sqrt{BD^{2}-AD^{2}}=\\sqrt{3}$,\\\\\nSince AF=AD+DF=1+2=3, in $\\triangle BAF$, BF=$\\sqrt{AB^{2}+AF^{2}}=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53599320_97": { -"question": "Given that AP is a ray outside of square ABCD, and $B'$ is the reflection point of B about line AP, connect $B'D$. As shown in Figure 1. If $\\angle BAP=20^\\circ$, find the magnitude of the angle $\\angle ADB'$.", -"image_file_name": "7055317", -"image": [ -"math/53599320_782.png" -], -"solution": "\\textbf{Solution:} Draw $A{B}^{\\prime}$, as shown in figure 1,\\\\\n$\\because$ ${B}^{\\prime}$ is the symmetric point of B with respect to the line AP,\\\\\n$\\therefore$ $AB=A{B}^{\\prime}$,\\\\\n$\\therefore$ $\\angle BAP=\\angle {B}^{\\prime}AP=20^\\circ$\\\\\n$\\because$ quadrilateral ABCD is a square,\\\\\n$\\therefore$ $A{B}^{\\prime}=AB=AD$,\\\\\n$\\therefore$ $\\angle A{B}^{\\prime}D=\\angle AD{B}^{\\prime}$,\\\\\n$\\because$ $\\angle {B}^{\\prime}AD=\\angle {B}^{\\prime}AB+\\angle BAD=90^\\circ+40^\\circ=130^\\circ$,\\\\\n$\\therefore$ $\\angle AD{B}^{\\prime}=\\boxed{25^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53313215_101": { -"question": "As shown in the figure, the diagonals AC and BD of the rhombus ABCD intersect at point O, and $DE\\parallel OC$, $CE\\parallel OD$. The quadrilateral OCED is a rectangle; Given that $AC=4\\sqrt{5}$ and $BD=2\\sqrt{5}$, find the perimeter and area of the rectangle OCED.", -"image_file_name": "7055317", -"image": [ -"math/53313215_792.png" -], -"solution": "\\textbf{Solution:} \\[\\quad \\text{Since in the rhombus } ABCD, \\; OC=\\frac{1}{2}AC=2\\sqrt{5}, \\; OD=\\frac{1}{2}BD=\\sqrt{5}, \\\\\n\\therefore \\text{the perimeter of the rectangle } OCED \\text{ is: } (2\\sqrt{5}+\\sqrt{5})\\times 2=\\boxed{6\\sqrt{5}}, \\text{ and the area of } OCED \\text{ is: } 2\\sqrt{5}\\times \\sqrt{5}=\\boxed{10}\\].", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53313106_104": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ is the midpoint of $AD$. After folding $\\triangle ABE$ along $BE$, $\\triangle GBE$ is obtained, and point $G$ is inside the rectangle $ABCD$. Extending $BG$ intersects $DC$ at point $F$ such that $GF=DF$; If $DC=9$ and $DE=2CF$, what is the length of $AD$?", -"image_file_name": "7055317", -"image": [ -"math/53313106_802.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince quadrilateral ABCD is a rectangle, \\\\\ntherefore AB=CD=BG=9, AD=BC, \\\\\nlet CF=x, then DF=9-x, DE=2CF=2x, BC=AD=2DE=4x, \\\\\nsince GF=DF, \\\\\ntherefore GF=9-x, \\\\\ntherefore BF=BG+GF=9+9-x=18-x, \\\\\nin $\\triangle BCF$, $BC^2+CF^2=BF^2$, \\\\\ntherefore $(4x)^2+x^2=(18-x)^2$, \\\\\nupon solving, we get $x=\\frac{9\\sqrt{17}-9}{8}$ or $x=\\frac{9-9\\sqrt{17}}{8}$ (discard), \\\\\ntherefore AD=4x=$\\boxed{\\frac{9\\sqrt{17}-9}{2}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"53313103_108": { -"question": "As shown in the diagram, it is known that in the equilateral $\\triangle ABC$, $BE$ and $CD$ are medians on sides $AC$ and $AB$, respectively, and $BE$ and $CD$ intersect at point $O$. Points $M$ and $N$ are the midpoints of line segments $OB$ and $OC$, respectively. Quadrilateral $DENM$ is a rectangle; if the side length of the equilateral $\\triangle ABC$ is $12$, find the area of rectangle $DENM$.", -"image_file_name": "7055317", -"image": [ -"math/53313103_811.png" -], -"solution": "\\textbf{Solution:} Given $\\triangle ABC$ with side length 12, and BE as the median,\\\\\nthus $BC=AC=12$, $\\angle BEC=90^\\circ$, CE=6,\\\\\nthus $DE=MN=\\frac{1}{2}BC=6$,\\\\\nusing the Pythagorean theorem we get $BE=\\sqrt{BC^{2}-EC^{2}}=6\\sqrt{3}$,\\\\\nfrom (1) we know, OM=OE, with M being the midpoint of OB,\\\\\nthus $BM=OM=OE$,\\\\\nthus $OM=OE=\\frac{1}{3}BE=2\\sqrt{3}$,\\\\\nsince quadrilateral DENM is a rectangle, and $\\angle DEO=30^\\circ$,\\\\\nthus $\\angle OEN=60^\\circ$, implying $\\triangle OEN$ is an equilateral triangle, hence EN=OE=2$\\sqrt{3}$,\\\\\nthus the area of rectangle DENM $=EN \\times DE=2\\sqrt{3} \\times 6=\\boxed{12\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53313476_110": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=3\\text{cm}$, and $BC=6\\text{cm}$. Point $P$ starts moving from point $D$ towards point $A$ and stops upon reaching point $A$; simultaneously, point $Q$ starts moving from point $B$ towards point $C$ and stops upon reaching point $C$. The speeds of points $P$ and $Q$ are both $1\\text{cm/s}$. Connect $PQ$, $AQ$, and $CP$. Let the time for points $P$ and $Q$ to move be $t$ seconds. For what value of $t$ is quadrilateral $ABQP$ a rectangle?", -"image_file_name": "7055317", -"image": [ -"math/53313476_824.png" -], -"solution": "\\textbf{Solution:} From the given information, we have $BQ=DP=t, \\, AP=CQ=6-t$,\\\\\nIn rectangle $ABCD$, $\\angle B=90^\\circ$, $AD\\parallel BC$,\\\\\nWhen $BQ=AP$, quadrilateral $ABQP$ forms a rectangle,\\\\\n$\\therefore t=6-t$, solving for $t$ yields $t=\\boxed{3}$,\\\\\nTherefore, when $t=3$, quadrilateral $ABQP$ is a rectangle.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53313476_111": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=3\\text{cm}$, and $BC=6\\text{cm}$. Point $P$ starts moving from point $D$ towards point $A$ and stops upon reaching point $A$; simultaneously, point $Q$ starts moving from point $B$ towards point $C$ and stops upon reaching point $C$. The speeds of points $P$ and $Q$ are both $1\\text{cm/s}$. Connect $PQ$, $AQ$, $CP$. Let the time during which points $P$ and $Q$ move be $t$ seconds. When $t$ equals what value, is quadrilateral $AQCP$ a rhombus?", -"image_file_name": "7055317", -"image": [ -"math/53313476_824.png" -], -"solution": "\\textbf{Solution:} Since $AP=CQ$ and $AP\\parallel CQ$, \\\\\n$\\therefore$ quadrilateral $AQCP$ is a parallelogram, \\\\\n$\\therefore$ when $AQ=CQ$, quadrilateral $AQCP$ becomes a rhombus, \\\\\ni.e., when $\\sqrt{3^2+t^2}=6-t$, quadrilateral $AQCP$ is a rhombus, solving this gives $t=\\boxed{\\frac{9}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53313476_112": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB = 3\\,cm$, $BC = 6\\,cm$. Point $P$ starts moving from point $D$ towards point $A$ and stops upon reaching $A$; simultaneously, point $Q$ starts moving from point $B$ towards point $C$ and stops upon reaching $C$. The speeds of points $P$ and $Q$ are $1\\,cm/s$ each. Connect $PQ$, $AQ$, $CP$. Let the time taken for points $P$ and $Q$ to move be $t$ seconds. When $t=\\frac{9}{4}$ seconds, the quadrilateral $AQCP$ forms a rhombus; calculate the perimeter and area of the rhombus $AQCP$?", -"image_file_name": "7055317", -"image": [ -"math/53313476_824.png" -], -"solution": "\\textbf{Solution:} When $t=\\frac{9}{4}$, $AQ=\\frac{15}{4},\\ CQ=\\frac{15}{4}$, \\\\\nthen the perimeter is: $4AQ=4\\times \\frac{15}{4}=\\boxed{15}\\ (\\text{cm})$, \\\\\nand the area is: $CQ\\cdot AB=\\frac{15}{4}\\times 3=\\boxed{\\frac{45}{4}}\\ (\\text{cm}^2)$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53313100_115": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is a rectangle, with two diagonals $AC$ and $BD$ intersecting at point $O$, and $AE \\parallel BD$, $DE \\parallel AC$. If $BC = 4$ and $AC = 6$, what is the area of the quadrilateral $AODE$?", -"image_file_name": "7055317", -"image": [ -"math/53313100_832.png" -], -"solution": "\\textbf{Solution:}\n\nSince $BC=4$ and $AC=6$, \n\nwe have $AB=\\sqrt{AC^{2}-BC^{2}}=\\sqrt{36-16}=2\\sqrt{5}$.\n\nGiven that quadrilateral ABCD is a rectangle,\n\nit follows that $OB=OD$,\n\nimplying $Area_{\\triangle AOD}=\\frac{1}{2}Area_{\\triangle ABD}$.\n\nSince quadrilateral AODE is a rhombus,\n\nit follows that $Area_{\\triangle AOD}=\\frac{1}{2}Area_{\\text{rhombus} AODE}$.\n\nTherefore, $Area_{\\text{rhombus} AODE}=Area_{\\triangle ABD}=\\frac{1}{2}AB\\cdot AD=\\frac{1}{2}\\times 2\\sqrt{5}\\times 4=\\boxed{4\\sqrt{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53437314_121": { -"question": "As shown in the figure, $O$ is the intersection point of the diagonals of rectangle $ABCD$, with $DE \\parallel AC$ and $CE \\parallel BD$. Quadrilateral $OCED$ is a rhombus. If $AB=3$ and $BC=4$, what is the area of the quadrilateral $OCED$?", -"image_file_name": "7055317", -"image": [ -"math/53437314_853.png" -], -"solution": "\\textbf{Solution:} Given that $AB=3$, $BC=4$, \\\\\nTherefore, the area of rectangle $ABCD$ is equal to $3\\times 4=12$, \\\\\nSince the area of $\\triangle ODC=\\frac{1}{4}$ of the area of rectangle $ABCD=3$, \\\\\nHence, the area of quadrilateral $OCED$ equals $2$ times the area of $\\triangle ODC=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53436646_123": { -"question": "As shown in the figure, P is a point on the diagonal AC of the rhombus ABCD, $PE\\perp AB$ at point E, and $PF\\perp AD$ at point F. Given that $\\angle BAD=60^\\circ$, $PE=1$, find the length of AE.", -"image_file_name": "7055317", -"image": [ -"math/53436646_860.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus and $\\angle BAD=60^\\circ$,\\\\\nit follows that $\\angle PAE=30^\\circ$\\\\\nSince $PE \\perp AB$,\\\\\nit follows that $AP=2PE=2$,\\\\\ntherefore $AE=\\sqrt{AP^{2}-PE^{2}}=\\boxed{\\sqrt{3}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53313073_127": { -"question": "As shown in Figure 1, the quadrilateral $ABCD$ is a square, and point $G$ is any point on side $BC$. $DE \\perp AG$ at point $E$, and $BF \\parallel DE$ intersecting $AG$ at point $F$. $DE = AF$; If $AB=4$ and $BG=3$, what is the length of $AF$?", -"image_file_name": "7055317", -"image": [ -"math/53313073_875.png" -], -"solution": "\\textbf{Solution:} In right triangle $\\text{Rt}\\triangle ABG$, $AB=4$, $BG=3$. According to the Pythagorean theorem, $AG=5$.\\\\\n$\\because \\frac{1}{2}AB \\cdot BG = \\frac{1}{2}AG \\cdot BF$,\\\\\n$\\therefore BF = \\frac{AB \\cdot BG}{AG} = \\frac{12}{5}$,\\\\\nIn right triangle $\\text{Rt}\\triangle ABF$, $AF = \\sqrt{AB^2 - BF^2} = \\boxed{\\frac{16}{5}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53313110_132": { -"question": "As shown in the figure, within the square $ABCD$, $P$ is a point on the diagonal $BD$, and point $E$ is on the extension of $AB$, such that $PC=PE$ and $PA=PE$; $AE=\\sqrt{2}DP$; given that the side length of the square is $2$, what is the minimum value of $CP+\\frac{1}{2}BP$?", -"image_file_name": "7055317", -"image": [ -"math/53313110_880.jpeg" -], -"solution": "\\textbf{Solution:} As shown in the figure, rotate segment BD $30^\\circ$ counterclockwise around point B, intersecting AD at G. Draw $PH\\perp BG$ at H through point P, and connect AC, intersecting BD at O,\\\\\n$\\because \\angle PBH=30^\\circ$,\\\\\n$\\therefore PH=\\frac{1}{2}PB$,\\\\\n$\\therefore$ when points C, P, H are collinear, $PC+\\frac{1}{2}PB$ has the minimum value CH,\\\\\n$\\because$ the side length of the square is 2,\\\\\n$\\therefore OC=OB=\\sqrt{2}$,\\\\\n$\\because \\angle PBH+\\angle BPH=90^\\circ$, $\\angle OCP+\\angle OPC=90^\\circ$, $\\angle OPC=\\angle BPH$,\\\\\n$\\therefore \\angle OCP=\\angle PBH=30^\\circ$,\\\\\n$\\therefore OP=\\frac{1}{2}CP$,\\\\\nIn $\\triangle OPC$, $PC^2=OP^2+OC^2$, that is $4OP^2=OP^2+2$,\\\\\n$\\therefore OP=\\frac{\\sqrt{6}}{3}$ (discard the negative value),\\\\\n$\\therefore CP=\\frac{2\\sqrt{6}}{3}$,\\\\\n$\\therefore PB=\\sqrt{2}-\\frac{\\sqrt{6}}{3}$, $PH=\\frac{1}{2}PB=\\frac{\\sqrt{2}}{2}-\\frac{\\sqrt{6}}{6}$,\\\\\n$\\therefore CH=CP+PH=\\frac{2\\sqrt{6}}{3}+\\frac{\\sqrt{2}}{2}-\\frac{\\sqrt{6}}{6}=\\boxed{\\frac{\\sqrt{6}+\\sqrt{2}}{2}}$,\\\\\n$\\therefore CP+\\frac{1}{2}BP$'s minimum value is $\\boxed{\\frac{\\sqrt{6}+\\sqrt{2}}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53313466_134": { -"question": "As shown in the figure, in square ABCD, point F is on CD, and BF intersects AC at point E. What is the measure of $\\angle ACB$ in degrees?", -"image_file_name": "7055317", -"image": [ -"math/53313466_890.png" -], -"solution": "\\textbf{Solution:} We have $\\angle ACB = \\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53313466_136": { -"question": "As shown in the figure, in the square $ABCD$, point $F$ is on the side $CD$, and $BF$ intersects $AC$ at point $E$. $\\triangle ABE \\cong \\triangle ADE$, If $\\angle CBF = 20^\\circ$, then what is the measure of $\\angle AED$?", -"image_file_name": "7055317", -"image": [ -"math/53313466_890.png" -], -"solution": "By the given information, we have $\\angle AED = \\boxed{65^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53599241_138": { -"question": "As shown in the figure, within the square $ABCD$, $P$ is a point on the diagonal $AC$, and point $E$ lies on the extension of $BC$, with $PE=PB$. When $PC=CE$, what is the degree measure of $\\angle CDP$?", -"image_file_name": "7055317", -"image": [ -"math/53599241_900.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a square,\\\\\nwe have AB=BC=CD=AD, $\\angle$BCP=$\\angle$DCP=$45^\\circ$, $\\angle$BCD=$\\angle$DCE=$90^\\circ$,\\\\\nthus, $\\angle$PCE=$45^\\circ+90^\\circ=135^\\circ$,\\\\\nIn $\\triangle$BCP and $\\triangle$DCP,\\\\\n$\\left\\{\\begin{array}{l}\nBC=DC\\\\\n\\angle BCP=\\angle DCP\\\\\nCP=CP\n\\end{array}\\right.$,\\\\\nthus, $\\triangle$BCP $\\cong$ $\\triangle$DCP (SAS),\\\\\ntherefore, BP=DP, $\\angle$CBP=$\\angle$CDP,\\\\\nsince PE=PB, PC=CE,\\\\\nthus, PD=PE, $\\angle$CBP=$\\angle$PEB=$\\angle$CPE= $\\frac{1}{2}(180^\\circ - 135^\\circ)=22.5^\\circ$,\\\\\ntherefore, $\\angle$CDP=$\\boxed{22.5^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51798762_141": { -"question": "As shown in the figure, in square $ABCD$, $E$ is the midpoint of $BC$, and $F$ is a point on $CD$ with $CF=\\frac{1}{4}CD$. If the length of $CF$ is 1, what are the lengths of $EF$ and $AE$ respectively?", -"image_file_name": "7055317", -"image": [ -"math/51798762_914.png" -], -"solution": "\\textbf{Solution}: Given by the problem, $ABCD$ is a square, \\\\\n$\\therefore AB=BC=CD=AD$. \\\\\n$\\because E$ is the midpoint of $BC$, \\\\\n$\\therefore BE=EC$. \\\\\nAlso, $\\because CF=\\frac{1}{4}CD$, \\\\\n$\\therefore AB=2BE=2EC=4FC$. \\\\\n$\\therefore AB=4$, $BE=EC=2$. \\\\\nIn $\\triangle ABE$, \\\\\n$AE=\\sqrt{AB^2+BE^2}=\\sqrt{4^2+2^2}=2\\sqrt{5}$. \\\\\n$\\therefore$ Similarly, $EF=\\sqrt{EC^2+CF^2}=\\sqrt{2^2+1^2}=\\sqrt{5}$. \\\\\n$\\therefore$ The lengths of $EF$ and $AE$ are $\\boxed{\\sqrt{5}}$ and $\\boxed{2\\sqrt{5}}$, respectively.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51798762_142": { -"question": "In the square $ABCD$, $E$ is the midpoint of $BC$, and $F$ is a point on $CD$ such that $CF = \\frac{1}{4}CD$. Prove what the degree measure of $\\angle AEF$ is.", -"image_file_name": "7055317", -"image": [ -"math/51798762_914.png" -], -"solution": "\\textbf{Solution:} Let the length of $CF$ be $a$ \\\\\nThen $EF=\\sqrt{5}a$, $AE=2\\sqrt{5}a$ \\\\\nConnect $AF$, thus $DF=3a$, and $AD=4a$, \\\\\nIn $Rt\\triangle ADF$, $AF=\\sqrt{AD^{2}+DF^{2}}=5a$ \\\\\nIn $\\triangle AEF$, \\\\\n$\\because AE^{2}+EF^{2}=AF^{2}$ \\\\\n$\\therefore \\boxed{\\angle AEF=90^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53572668_144": { -"question": "As shown in the figure, a right-angled triangle paper $ABO$ is placed in the Cartesian coordinate system, with point $A(\\sqrt{3}, 0)$, point $B(0, 1)$, and point $O(0, 0)$. $P$ is a moving point on side $AB$ (point $P$ does not coincide with points $A$ or $B$), and the paper is folded along $OP$ to obtain the corresponding point $A'$ of point $A$. As shown in Figure 1, when point $A'$ is in the first quadrant and satisfies $A'B \\perp OB$, what are the coordinates of point $A'$?", -"image_file_name": "7055317", -"image": [ -"math/53572668_927.png" -], -"solution": "\\textbf{Solution:} Let point $A\\left(\\sqrt{3}, 0\\right)$ and point $B\\left(0, 1\\right)$. Hence, $OA=\\sqrt{3}$ and $OB=1$. According to the property of folding, we have $OA'=OA=\\sqrt{3}$. Since $A'B\\perp OB$, it follows that $\\angle A'BO=90^\\circ$. In right triangle $\\triangle A'OB$, we find that $A'B=\\sqrt{OA'^{2}-OB^{2}}=\\sqrt{2}$,\\\\\nthus the coordinates of point $A'$ are $\\boxed{\\left(\\sqrt{2}, 1\\right)}$.", -"solution_image": [ -"solution_images/53572668_920.png", -"solution_images/53572668_9212.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53572668_145": { -"question": "As shown in the figure, a right-angled triangle paper $ABO$ is placed in the Cartesian coordinate system. It is known that point $A\\left(\\sqrt{3}, 0\\right)$, point $B\\left(0, 1\\right)$, and point $O\\left(0, 0\\right)$. $P$ is a moving point on side $AB$ (point $P$ does not coincide with points $A$ or $B$). By folding the paper along $OP$, we obtain the corresponding point $A'$ of point $A$. As shown in Figure 2, when $P$ is the midpoint of $AB$, what is the length of $A'B$?", -"image_file_name": "7055317", -"image": [ -"math/53572668_927.png" -], -"solution": "\\textbf{Solution:} In right triangle $Rt\\triangle AOB$, we have $OA=\\sqrt{3}$ and $OB=1$, therefore $AB=\\sqrt{OA^{2}+OB^{2}}=2$. Since $P$ is the midpoint of $AB$, we have $AP=BP=1$ and $OP=\\frac{1}{2}AB=1$. Thus, $OP=OB=BP$, which means $\\triangle BOP$ is an equilateral triangle, therefore $\\angle OBP=\\angle BOP=\\angle BPO=60^\\circ$. Consequently, $\\angle OPA=180^\\circ-\\angle BPO=120^\\circ$. According to the property of reflection, $\\angle OPA'=\\angle OPA=120^\\circ$ and $PA'=PA=1$, which gives $\\angle BPA'=\\angle OBP=60^\\circ$. Therefore, $OB\\parallel PA'$. Moreover, since $OB=PA'=1$, the quadrilateral $OPA'B$ is a parallelogram,\\\\\nhence, $A'B=OP=\\boxed{1}$.", -"solution_image": [ -"solution_images/53572668_920.png", -"solution_images/53572668_9212.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53572668_146": { -"question": "As shown in the figure, a right-angled triangle paper $ABO$ is placed in the Cartesian coordinate system, where point $A(\\sqrt{3}, 0)$, point $B(0, 1)$, and point $O(0, 0)$. $P$ is a moving point on side $AB$ (point $P$ does not coincide with points $A$ or $B$), and the paper is folded along $OP$ to obtain the corresponding point $A'$ of point $A$. When $\\angle BPA' = 30^\\circ$, directly write down the coordinates of point $P$.", -"image_file_name": "7055317", -"image": [ -"math/53572668_927.png" -], -"solution": "\\textbf{Solution:} When $\\angle BPA'=30^\\circ$, the coordinates of point $P$ are $\\boxed{\\left(\\frac{3-\\sqrt{3}}{2}, \\frac{3-\\sqrt{3}}{2}\\right)}$ or $\\boxed{\\left(\\frac{2\\sqrt{3}-3}{2}, \\frac{\\sqrt{3}}{2}\\right)}$.", -"solution_image": [ -"solution_images/53572668_920.png", -"solution_images/53572668_9212.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51708898_149": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC=4$, $D$ and $E$ are the midpoints of $AB$ and $AC$ respectively. Line $CD$ is drawn, and through point $E$, line $EF\\parallel DC$ intersects the extension of $BC$ at point $F$. $DE=CF$, if $\\angle B=60^\\circ$, what is the length of $EF$?", -"image_file_name": "7055317", -"image": [ -"math/51708898_930.jpg" -], -"solution": "\\textbf{Solution:} Since $AB=AC$ and $\\angle B=60^\\circ$ \\\\\nit follows that $\\triangle ABC$ is an equilateral triangle \\\\\nHence, $BC=AB=4$ \\\\\nGiven $D$ is the midpoint of $AB$ \\\\\nit follows $\\angle BDC=90^\\circ$ and $BD=\\frac{1}{2}AB$ \\\\\nThus, $BD=2$ \\\\\nTherefore, $CD=\\sqrt{BC^{2}-BD^{2}}=\\sqrt{4^{2}-2^{2}}=2\\sqrt{3}$ \\\\\nSince quadrilateral $DCFE$ is a parallelogram \\\\\nit follows that $EF=CD=2\\sqrt{3}$ \\\\\nThus, the length of $EF$ is $\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51737267_151": { -"question": "As shown in the figure, in $\\triangle ABC$, $D$ is any point on side $AB$, $F$ is the midpoint of $AC$, and line $CE \\parallel AB$ is drawn through point $C$ intersecting the extension of $DF$ at point $E$. $AE$ and $CD$ are connected. Prove that the quadrilateral $ADCE$ is a parallelogram.", -"image_file_name": "7055317", -"image": [ -"math/51737267_941.png" -], -"solution": "Proof: Since $AB \\parallel CE$, \\\\\nit follows that $\\angle CAD = \\angle ACE$ and $\\angle ADE = \\angle CED$. \\\\\nSince $F$ is the midpoint of $AC$, \\\\\nthen $AF = CF$. \\\\\nIn $\\triangle AFD$ and $\\triangle CFE$, \\\\\nwe have $\\left\\{\\begin{array}{l}\n\\angle CAD = \\angle ACE \\\\\n\\angle ADE = \\angle CED \\\\\nAF = CF\n\\end{array}\\right.$, \\\\\nthus $\\triangle AFD \\cong \\triangle CFE$ (AAS), \\\\\ntherefore $DF = EF$, \\\\\nhence \\boxed{quadrilateral \\, ADCE \\, is \\, a \\, parallelogram}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51737267_152": { -"question": "As shown in the figure, in $\\triangle ABC$, D is an arbitrary point on side AB, F is the midpoint of AC, and a line is drawn through point C such that $CE \\parallel AB$ intersects the extension of DF at point E. Line segments AE and CD are then drawn. If $\\angle B=30^\\circ$, $\\angle CAB=45^\\circ$, and $AC=\\sqrt{2}$, find the length of AB.", -"image_file_name": "7055317", -"image": [ -"math/51737267_941.png" -], -"solution": "\\textbf{Solution:} Construct $CG\\perp AB$ at point G,\\\\\nsince $\\angle CAB=45^\\circ$,\\\\\nit follows that $AG=CG$,\\\\\nin $\\triangle ACG$, $\\angle AGC=90^\\circ$,\\\\\nthus $AG^2+CG^2=AC^2$,\\\\\nsince $AC=\\sqrt{2}$,\\\\\nit follows that $CG=AG=1$,\\\\\nsince $\\angle B=30^\\circ$,\\\\\nit follows that $CG=\\frac{1}{2}BC$,\\\\\nthus $BC=2$,\\\\\nin $\\triangle BCG$, $BG=\\sqrt{BC^2-CG^2}=\\sqrt{4-1}=\\sqrt{3}$,\\\\\nthus $AB=AG+BG=1+\\sqrt{3}=\\boxed{1+\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51737166_155": { -"question": "As shown in the figure, point $O$ is the intersection point of the diagonals of rhombus $ABCD$, with $CE\\parallel BD$ and $EB\\parallel AC$. Line $OE$ is drawn and intersects $BC$ at point $F$. Quadrilateral $OBEC$ is a rectangle. Line $DG$ is drawn perpendicular to the extension of line $BA$ at point $G$, and line $OG$ is connected. If $OC:OB=1:2$ and $OE=4\\sqrt{5}$, find the length of $OG$.", -"image_file_name": "7055317", -"image": [ -"math/51737166_957.png" -], -"solution": "\\textbf{Solution:} \\text{ In rhombus } ABCD, DO = OB,\n\\[\n\\text{and since } DG \\perp BA,\n\\]\n\\[\n\\therefore \\angle DGB = 90^\\circ,\n\\]\n\\[\n\\therefore OG = \\frac{1}{2}BD = OB,\n\\]\n\\[\n\\text{In rectangle } OBEC, OE = BC = 4\\sqrt{5},\n\\]\n\\[\n\\text{and since } OC:OB = 1:2,\n\\]\n\\[\n\\therefore \\text{let } OC = x, OB = 2x,\n\\]\n\\[\n\\text{By the Pythagorean theorem: } OC^2 + OB^2 = BC^2, \\text{ namely } x^2 + (2x)^2 = (4\\sqrt{5})^2,\n\\]\n\\[\n\\text{Solving, we get } x = 4, \\text{ thus } OB = 8,\n\\]\n\\[\n\\therefore OG = \\boxed{8}\n\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51737207_157": { -"question": "As shown in the figure, the rectangle \\(ABCD\\) is rotated counterclockwise around point \\(A\\) to obtain rectangle \\(AEFG\\), such that point \\(E\\) falls on the diagonal \\(BD\\). Connect \\(DG\\) and \\(DF\\). If \\(\\angle BAE = 50^\\circ\\), what is the degree measure of \\(\\angle DGF\\)?", -"image_file_name": "7055317", -"image": [ -"math/51737207_960.png" -], -"solution": "\\textbf{Solution:} Given by rotation, $AB=AE$, $AD=AG$, $\\angle BAD=\\angle EAG=\\angle AGF=90^\\circ$,\\\\\n$\\therefore \\angle BAE=\\angle DAG=50^\\circ$,\\\\\n$\\therefore \\angle AGD=\\angle ADG= \\frac{180^\\circ-50^\\circ}{2}=65^\\circ$,\\\\\n$\\therefore \\angle DGF=90^\\circ-65^\\circ=\\boxed{25^\\circ};$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51747371_161": { -"question": "As shown in the figure, in quadrilateral $ABCD$, point $E$ is on side $AC$, and point $F$ is on side $AD$, with $AF=CE$. $EF$ intersects diagonal $BD$ at point $O$. $O$ is the midpoint of $BD$. If $EF\\perp BD$ and the perimeter of quadrilateral $ABCD$ is 24, when connecting $BF$, what is the perimeter of $\\triangle ABF$?", -"image_file_name": "7055317", -"image": [ -"math/51747371_971.png" -], -"solution": "\\textbf{Solution:} Given the insufficient information from the problem statement, it is not possible to determine the perimeter of $\\triangle ABF$ directly. Additional information is required to solve this problem.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51722482_163": { -"question": "As shown in the rectangle $ABCD$, the lengths of sides $AB$ and $BC$ ($AB < BC$) are the two roots of the equation ${x}^{2}-7x+12=0$. Point $P$ starts from point $A$ and moves along the edge $ABC$ in the direction $A\\to B\\to C\\to A$ at a speed of $1$ unit per second, with the movement time being $t$ seconds. What are the lengths of $AB$ and $BC$?", -"image_file_name": "7055317", -"image": [ -"math/51722482_9812.png" -], -"solution": "\\textbf{Solution:} Since $x^{2}-7x+12=0$,\\\\\nthen $(x-3)(x-4)=0$,\\\\\ntherefore $x_{1}=3$, $x_{2}=4$.\\\\\nHence $AB=\\boxed{3}$, $BC=\\boxed{4}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51722482_164": { -"question": "As shown in figure, within the rectangle $ABCD$, the lengths of sides $AB$ and $BC$ $(AB0$). Find the value of $n$ and the equation of the line $OA$.", -"image_file_name": "7052940", -"image": [ -"math/52250480_632.png" -], -"solution": "\\textbf{Solution:} Let's substitute point A$(4,n)$ into $y=\\frac{8}{x}$, we get $n=2$;\\\\\nLet the equation of line OA be $y=kx$. Substitute $\\left\\{\\begin{array}{l}x=4\\\\ y=2\\end{array}\\right.$ into it, we have\\\\\n$4k=2$, solving this yields: $k=\\frac{1}{2}$,\\\\\n$\\therefore$ the equation of line OA is $y=\\frac{1}{2}x$;\\\\\n$\\therefore$ the value of $n$ is $\\boxed{2}$, and the equation of line $OA$ is $\\boxed{y=\\frac{1}{2}x}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52250480_92": { -"question": "Given: As shown in Figure 1, point $A(4, n)$ lies on the graph of the inverse proportion function $y=\\frac{8}{x}$ ($x>0$). As shown in Figure 2, after rotating the graph of the inverse proportion function $y=\\frac{8}{x}$ ($x>0$) counterclockwise around the origin $O$ by $45^\\circ$, it intersects the $y$-axis at point $M$. Find the length of segment $OM$.", -"image_file_name": "7052940", -"image": [ -"math/52250480_632.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, rotate the y-axis clockwise by $45^\\circ$, intersecting the graph of $y=\\frac{8}{x}(x>0)$ at point N,\\\\\nthen $OM=ON$,\\\\\nthe equation of line ON is $y = x$,\\\\\nfrom $\\left\\{\\begin{array}{l}y=\\frac{8}{x}\\\\ y=x\\end{array}\\right.$, we get: $\\left\\{\\begin{array}{l}x=2\\sqrt{2}\\\\ y=2\\sqrt{2}\\end{array}\\right.$ or $\\left\\{\\begin{array}{l}x=-2\\sqrt{2}\\\\ y=-2\\sqrt{2}\\end{array}\\right.$ (discard)\\\\\n$\\therefore$Point N ($2\\sqrt{2}, 2\\sqrt{2}$)\\\\\n$\\therefore OM=ON=\\sqrt{(2\\sqrt{2})^{2}+(2\\sqrt{2})^{2}}=\\boxed{4}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52250480_93": { -"question": "Given: As shown in Figure 1, the point $A(4, n)$ lies on the graph of the inverse proportion function $y=\\frac{8}{x}(x>0)$. As shown in Figure 3, rotate line $OA$ counterclockwise by $45^\\circ$ around the origin $O$, and it intersects the graph of the inverse proportion function $y=\\frac{8}{x}(x>0)$ at point $B$. Find the coordinates of point $B$.", -"image_file_name": "7052940", -"image": [ -"math/52250480_632.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 2, construct the symmetric point $A_1$ of point A with respect to the line OB, \\\\\nthen $OA=OA_1$, $AA_1 \\perp OB$, \\\\\nconstruct $A_1C \\perp y$-axis at point C, construct $AD \\perp x$-axis at point D, \\\\\nit is easy to prove $\\triangle A_1OC \\cong \\triangle AOD$, \\\\\n$\\therefore OC=OD$, $A_1C=AD$, \\\\\n$\\because$ The coordinates of A are $(4,2)$, \\\\\n$\\therefore$ The coordinates of $A_1$ are $(-2, 4)$, \\\\\n$\\therefore$ The equation of line $AA_1$ is: $y=-\\frac{1}{3}x+\\frac{10}{3}$, \\\\\n$\\therefore$ The equation of line $OB$ is: $y=3x$, \\\\\nFrom $\\begin{cases}y=\\frac{9}{x}\\\\ y=3x\\end{cases}$, we get $\\begin{cases}x=\\frac{2\\sqrt{6}}{3}\\\\ y=2\\sqrt{6}\\end{cases}$ or $\\begin{cases}x=-\\frac{2\\sqrt{6}}{3}\\\\ y=-2\\sqrt{6}\\end{cases}$ (negative solution is discarded) \\\\\n$\\therefore$ The coordinates of point $B\\left(\\frac{2\\sqrt{6}}{3}, 2\\sqrt{6}\\right)$ are $\\boxed{\\left(\\frac{2\\sqrt{6}}{3}, 2\\sqrt{6}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52251020_95": { -"question": "As illustrated in the Cartesian coordinate system, the line \\( l: y=-\\frac{\\sqrt{3}}{3}x+4 \\) intersects the x-axis and y-axis at points M and N, respectively. An equilateral triangle \\(\\triangle ABC\\) with a height of 3 units, and side \\(BC\\) lying on the x-axis, is translated in the positive direction of the x-axis. During this translation, \\(\\triangle A_1B_1C_1\\) is obtained. When point \\(B_1\\) coincides with the origin, determine the coordinates of point \\(A_1\\) and ascertain whether \\(A_1\\) lies on line \\(l\\)?", -"image_file_name": "7052940", -"image": [ -"math/52251020_643.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $A_1D\\perp OM$ through point $A_1$, with D being the foot of the perpendicular.\\\\\nSince $\\triangle A_1B_1C_1$ is an equilateral triangle, and $A_1D\\perp OM$,\\\\\ntherefore, $\\angle B_1A_1D=30^\\circ$,\\\\\ntherefore, in $Rt\\triangle A_1DB_1$, $B_1D=\\frac{1}{2}A_1B_1$.\\\\\nSince $A_1D=3$,\\\\\ntherefore, $A_1B_1^2-B_1D^2=3B_1D^2=A_1D^2=9$,\\\\\ntherefore, $B_1D=\\sqrt{3}, A_1B_1=2\\sqrt{3}$.\\\\\ntherefore, the coordinates of point $A_1$ are \\(\\boxed{(\\sqrt{3}, 3)}\\).\\\\\nFrom the equation of line l, we get\\\\\nwhen $x=\\sqrt{3}$, $y=-\\frac{\\sqrt{3}}{3}\\times \\sqrt{3}+4=3$\\\\\ntherefore, point \\(\\boxed{A_1}\\) lies on the line l.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52251020_96": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $l\\colon y=-\\frac{\\sqrt{3}}{3}x+4$ intersects the x-axis and y-axis at points M and N, respectively. An equilateral triangle ABC with a height of 3, where side BC is on the x-axis, is translated in the positive direction of the x-axis. During the translation process, $\\triangle A_1B_1C_1$ is obtained. When point $B_1$ coincides with the origin, find a point P on the right side of line $A_1C_1$ such that the quadrilateral formed by vertices P, $A_1$, $C_1$, and M is a parallelogram. Find the coordinates of point P.", -"image_file_name": "7052940", -"image": [ -"math/52251020_643.png" -], -"solution": "\\textbf{Solution:}\n\n(1) If we consider $\\angle A_1C_1M$ as an internal angle of the parallelogram, then the desired parallelogram is parallelogram $A_1C_1MP$.\n\nAs shown in Figure (1), draw $A_1E\\perp ON$ from point $A_1$, with E being the foot of the perpendicular.\n\nFrom the analytic equation of line $l$, we get\n\nwhen $y=0$, $-\\frac{\\sqrt{3}}{3}x+4=0$,\n\ntherefore $x=4\\sqrt{3}$.\n\nTherefore, the coordinates of point M are $(4\\sqrt{3}, 0)$\n\nTherefore, $OM=4\\sqrt{3}$.\n\nBecause $B_1C_1=A_1B_1=2\\sqrt{3}$.\n\nTherefore, $C_1M=OM-B_1C_1=4\\sqrt{3}-2\\sqrt{3}=2\\sqrt{3}$\n\nTherefore, $A_1P=C_1M=2\\sqrt{3}$\n\nTherefore, $PE=A_1E+A_1P=\\sqrt{3}+2\\sqrt{3}=3\\sqrt{3}$.\n\nTherefore, the coordinates of point P are $\\boxed{(3\\sqrt{3}, 3)}$;\n\n(2) If we consider $\\angle C_1A_1M$ as an internal angle of the parallelogram, then the desired parallelogram is $A_1C_1PM$. As shown in Figure (2), draw $PG\\perp OM$ from point P, with G being the foot of the perpendicular.\n\nBecause $\\triangle A_1B_1C_1$ is an equilateral triangle,\n\ntherefore $\\angle A_1C_1B_1=60^\\circ$,\n\ntherefore $\\angle AC_1G=120^\\circ$,\n\nbecause parallelogram $A_1C_1PM$ is a parallelogram,\n\ntherefore $A_1C_1\\parallel PM$, $PM=A_1C_1=A_1B_1=2\\sqrt{3}$,\n\ntherefore $\\angle PMC_1=120^\\circ$,\n\ntherefore $\\angle PMG=60^\\circ$,\n\ntherefore, in $\\triangle PMG$, $\\angle MPG=90^\\circ-\\angle PMG=90^\\circ-60^\\circ=30^\\circ$.\n\nTherefore, $MG=\\frac{1}{2}PM=\\frac{1}{2}\\times 2\\sqrt{3}=\\sqrt{3}$,\n\n$PG=\\sqrt{PM^2-MG^2}=\\sqrt{(2\\sqrt{3})^2-(\\sqrt{3})^2}=3$,\n\ntherefore $OG=OM+MG=4\\sqrt{3}+\\sqrt{3}=5\\sqrt{3}$.\n\nTherefore, the coordinates of point P are $\\boxed{(5\\sqrt{3}, -3)}$\n\nIn conclusion, the coordinates of point P are either $\\boxed{(3\\sqrt{3}, 3)}$ or $\\boxed{(5\\sqrt{3}, -3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52250730_98": { -"question": "As shown in the figure, the line $y=-2x+8$ intersects the $x$-axis and the $y$-axis at points $A$ and $B$, respectively, and the line $y=\\frac{1}{2}x+3$ intersects the $y$-axis at point $C$. The two lines intersect at point $D$. What are the coordinates of point $D$?", -"image_file_name": "7052940", -"image": [ -"math/52250730_659.png" -], -"solution": "\\textbf{Solution:} According to the problem, we can establish the following system of equations:\n\\[\n\\begin{cases}\ny = -2x + 8\\\\\ny = \\frac{1}{2}x + 3\n\\end{cases}\n\\]\nSolving this, we obtain:\n\\[\n\\begin{cases}\nx = 2\\\\\ny = 4\n\\end{cases}\n\\]\nTherefore, the coordinates of point $D$ are $\\boxed{(2, 4)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52250730_99": { -"question": "As shown in the figure, the line $y=-2x+8$ intersects the $x$-axis and the $y$-axis at points $A$ and $B$, respectively, and the line $y=\\frac{1}{2}x+3$ intersects the $y$-axis at point $C$. The two lines intersect at point $D$. As shown in figure 2, draw $AE\\parallel y$-axis from point $A$ to intersect the line $y=\\frac{1}{2}x+3$ at point $E$, and connect $AC$, $BE$. Prove that quadrilateral $ACBE$ is a rhombus.", -"image_file_name": "7052940", -"image": [ -"math/52250730_659.png" -], -"solution": "\\textbf{Solution:} Proof: \\\\\n$ \\because $ the line $y=-2x+8$ intersects the $x$-axis and the $y$-axis at points $A$ and $B$, respectively, \\\\\n$ \\therefore $ point $B(0,8)$, and point $A(4, 0)$, \\\\\n$ \\because $ the line $y=\\frac{1}{2}x+3$ intersects the $y$-axis at point $C$, \\\\\n$ \\therefore $ point $C(0, 3)$, \\\\\n$ \\because $AE$\\parallel$y-axis and intersects the line $y=\\frac{1}{2}x+3$ at point $E$, \\\\\n$ \\therefore $ point $E(4, 5)$ \\\\\n$ \\because $ point $B(0,8)$, point $A(4, 0)$, point $C(0, 3)$, and point $E(4, 5)$, \\\\\n$ \\therefore $BC=5, $AE=5$, $AC=5$, $BE=5$, \\\\\n$ \\therefore $BC=AE=AC=BE, \\\\\n$ \\therefore $ the quadrilateral $ACBE$ is a rhombus $\\boxed{}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52250730_100": { -"question": "As shown in the figure, the line $y=-2x+8$ intersects the $x$-axis and the $y$-axis at points $A$ and $B$, respectively, and the line $y=\\frac{1}{2}x+3$ intersects the $y$-axis at point $C$. The two lines intersect at point $D$. As shown in Figure 3, under the condition of (2), point $F$ is on the line segment $BC$, and point $G$ is on the line segment $AB$. Connect $CG$ and $FG$. When $CG=FG$ and $\\angle CGF=\\angle ABC$, what are the coordinates of point $G$?", -"image_file_name": "7052940", -"image": [ -"math/52250730_659.png" -], -"solution": "\\textbf{Solution:} Given $BC=AC$,\\\\\nit follows that $\\angle ABC=\\angle CAB$,\\\\\nsince $\\angle CGF=\\angle ABC$ and $\\angle AGF=\\angle ABC+\\angle BFG=\\angle AGC+\\angle CGF$,\\\\\nit implies $\\angle AGC=\\angle BFG$ and $FG=CG$, $\\angle ABC=\\angle CAB$,\\\\\nthus $\\triangle ACG\\cong \\triangle BGF$ (By the AAS criterion),\\\\\nimplying $BG=AC=5$,\\\\\nlet point $G(a, -2a+8)$,\\\\\nhence $(-2a+8-8)^2+(a-0)^2=5^2$,\\\\\nleading to $a=\\pm \\sqrt{5}$,\\\\\nsince point $G$ lies on segment $AB$,\\\\\nit must be $a=\\sqrt{5}$,\\\\\ntherefore, the coordinates of point $G$ are $\\boxed{(\\sqrt{5}, 8-2\\sqrt{5})}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52250984_102": { -"question": "Given the figure, in the Cartesian coordinate system, the graph of the function $y=kx+2$ passes through the point $A(3,0)$. After moving the graph upwards by 2 units, it intersects the $x$ axis at point $B$ and the $y$ axis at point $C$. What is the linear equation represented by the graph passing through points $B$ and $C$?", -"image_file_name": "7052940", -"image": [ -"math/52250984_660.png" -], -"solution": "\\textbf{Solution:} Substituting $A(3, 0)$ into $y=kx+2$ gives: $3k+2=0$, \\\\\nSolving for $k$, we find $k=-\\frac{2}{3}$, \\\\\n$\\therefore y=-\\frac{2}{3}x+2$. \\\\\n$\\because$ Shifting the graph of the function $y=-\\frac{2}{3}x+2$ up by 2 units results in $y=-\\frac{2}{3}x+4$, \\\\\n$\\therefore$ The linear equation passing through points B and C is $\\boxed{y=-\\frac{2}{3}x+4}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52250984_103": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the function $y=kx+2$ passes through point $A(3,0)$. After the graph is translated upwards by $2$ units, it intersects the $x$ axis at point $B$ and the $y$ axis at point $C$. Find the area of $\\triangle OBC$.", -"image_file_name": "7052940", -"image": [ -"math/52250984_660.png" -], -"solution": "\\textbf{Solution:} In the line $y=-\\frac{2}{3}x+4$, when $x=0$, then $y=4$; when $y=0$, then $x=6$,\\\\\n$\\therefore$ the coordinates of $B$ are $(6, 0)$, and the coordinates of $C$ are $(0, 4)$\\\\\n$\\therefore$ $OB=6, OC=4$,\\\\\n$\\therefore$ the area of $\\triangle OBC$ is $\\frac{1}{2}\\times 6\\times 4=\\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52226206_105": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $l_{1}$ intersects the x-axis at point A $(-3,0)$, intersects the y-axis at point B, and intersects with line $l_{2}: y=\\frac{4}{3}x$ at point C $(a,4)$. What is the equation of line $l_{1}$?", -"image_file_name": "7052940", -"image": [ -"math/52226206_671.png" -], -"solution": "\\textbf{Solution:} Given point C(3, 4), let the equation of line $l_{1}$ be $y=kx+b$, \\\\\n$\\left\\{\\begin{array}{l}\n3k+b=4\\\\\n-3k+b=0\n\\end{array}\\right.$ Solving this system, we get $\\left\\{\\begin{array}{l}\nk=\\frac{2}{3}\\\\\nb=2\n\\end{array}\\right.$\\\\\n$\\therefore$ The equation of line $l_{1}$ is: $\\boxed{y=\\frac{2}{3}x+2}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52226206_106": { -"question": "As illustrated in the Cartesian coordinate system, the line $l_{1}$ intersects with the x-axis at point A$(-3, 0)$ and with the y-axis at point B, while its intersection with line $l_{2}\\colon y=\\frac{4}{3}x$ is point C$(a, 4)$. If the quadrilateral formed by points O, D, B, C is a parallelogram, write down the coordinates of point D directly.", -"image_file_name": "7052940", -"image": [ -"math/52226206_671.png" -], -"solution": "\\textbf{Solution:} Given that $B(0,2)$ and $C(3,4)$. When $OB$ is a side, by drawing a parallel line to $OB$ through point $C$ and setting $CD=OB$, point $C$ can be translated up or down by 2 units. Thus, the positions of point $D$ are $D_1(3,2)$ and $D_2(3,6)$. When $OB$ is a diagonal, by constructing point $D_1$'s symmetric point $D_3$ with respect to point $O$ and given that $D_1(3,2)$, we find that $D_3(-3,-2)$. Therefore, the coordinates of point $D$ are $\\boxed{(3,2)}$, $\\boxed{(3,6)}$, or $\\boxed{(-3,-2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52226206_107": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $l_{1}$ intersects the x-axis at point $A(-3,0)$ and intersects the y-axis at point $B$. Additionally, it intersects line $l_{2}\\colon y=\\frac{4}{3}x$ at point $C(a,4)$. The line $l_{1}$ is translated 3 units downward along the y-axis to obtain line $l_{3}$. Point $P(m,n)$ is a moving point on line $l_{2}$, from which a perpendicular to the x-axis is drawn, intersecting lines $l_{1}$ and $l_{3}$ at points $M$ and $N$ respectively. When point $P$ is on the segment $MN$, determine the range of values for $m$.", -"image_file_name": "7052940", -"image": [ -"math/52226206_671.png" -], -"solution": "\\textbf{Solution:} Since the line $l_{1}$ is translated 3 units downwards along the y-axis to obtain the line $l_{3}$,\\\\\ntherefore, the equation of the line $l_{3}$ is $y=\\frac{2}{3}x+2-3=\\frac{2}{3}x-1$\\\\\nSolving for: $\\left\\{\\begin{array}{l}\ny=\\frac{2}{3}x-1\\\\ \ny=\\frac{4}{3}x\n\\end{array}\\right.$\\\\\nYields: $\\left\\{\\begin{array}{l}\nx=-\\frac{3}{2}\\\\ \ny=-2\n\\end{array}\\right.$\\\\\nTherefore, the intersection point of line $l_{2}$ and line $l_{3}$ is $\\left(-\\frac{3}{2}, -2\\right)$;\\\\\nSince the intersection point of line $l_{2}$ and line $l_{3}$ is given as $(3, 4)$,\\\\\ntherefore, the range of values for $m$ is: \\boxed{-\\frac{3}{2}\\le m \\le 3}", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52225566_109": { -"question": "As shown in the figure, point $N(0, 6)$ lies on the plane, and point $M$ is on the negative $x$-axis with $ON = 3OM$. $A$ is a point on line segment $MN$, $AB \\perp x$-axis with $B$ as the foot of the perpendicular, and $AC \\perp y$-axis with $C$ as the foot of the perpendicular. Write down the coordinates of point $M$.", -"image_file_name": "7052940", -"image": [ -"math/52225566_680.png" -], -"solution": "\\textbf{Solution:} Given, $\\because N(0,6)$,\\\\\n$\\therefore ON=6$,\\\\\n$\\because ON=3OM$,\\\\\n$\\therefore OM=2$,\\\\\n$\\therefore$ the coordinates of point M are $\\boxed{(-2,0)}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52225566_110": { -"question": "As shown in the figure, point $N(0,6)$ and point $M$ is on the negative half axis of the $x$-axis, with $ON=3OM$. $A$ is a point on the line segment $MN$. $AB \\perp x$-axis with the foot of the perpendicular as point $B$, and $AC \\perp y$-axis with the foot of the perpendicular as point $C$. What is the equation of line $MN$?", -"image_file_name": "7052940", -"image": [ -"math/52225566_680.png" -], -"solution": "\\textbf{Solution:} To find the equation of line $MN$, we utilize the equation $y=kx+b$. Substituting $M(-2,0)$ and $N(0,6)$ into it, we get\n\\[\n\\left\\{\n\\begin{array}{l}\n-2k+b=0 \\\\\nb=6\n\\end{array}\n\\right.\n\\]\nSolving this system yields\n\\[\n\\left\\{\n\\begin{array}{l}\nk=3 \\\\\nb=6\n\\end{array}\n\\right.\n\\]\n$\\therefore$ The equation of line $MN$ is $\\boxed{y=3x+6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52225566_111": { -"question": "As shown in the diagram, point N(0,6) and point M is on the negative half-axis of the x-axis, with ON = 3OM. A is a point on segment MN, AB$\\perp$x-axis with B as its foot, and AC$\\perp$y-axis with C as its foot. If the x-coordinate of point A is $-1$, what is the area of rectangle ABOC?", -"image_file_name": "7052940", -"image": [ -"math/52225566_680.png" -], -"solution": "\\textbf{Solution:} In the equation $y=3x+6$, when $x=-1$, we have $y=3$,\\\\\n$\\therefore OB=1$, $AB=3$,\\\\\n$\\therefore$ the area of the rectangle ABOC is $1\\times 3=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52212500_113": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line \\( y=\\frac{3}{4}x+6\\) intersects the x-axis at point A and the y-axis at point B. Triangle \\(AOB\\) is folded along BC, with point O exactly falling on point D on side AB, where BC is the fold line. What is the length of segment AB?", -"image_file_name": "7052940", -"image": [ -"math/52212500_691.png" -], -"solution": "\\textbf{Solution:} Let $x=0$, then $y=6$,\\\\\nLet $y=0$, then $\\frac{3}{4}x+6=0$, solving this gives $x=-8$,\\\\\n$\\therefore$ the coordinates of point A are $(-8,0)$, and the coordinates of point B are $(0,6)$,\\\\\n$\\therefore$ OA=8, OB=6,\\\\\n$\\therefore$ $AB=\\sqrt{OA^2+OB^2}=\\boxed{10}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52212500_114": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y=\\frac{3}{4}x+6$ intersects the x-axis at point A and the y-axis at point B. Triangle $\\triangle AOB$ is folded along BC, where point O precisely lands on point D on side AB, with BC being the crease. Find the analytical expression of line BC.", -"image_file_name": "7052940", -"image": [ -"math/52212500_691.png" -], -"solution": "\\textbf{Solution:} According to the problem statement, we have: $\\angle ADC=\\angle BDC=\\angle BOC=90^\\circ$, $BD=OB=6$,\\\\\n$\\therefore AD=AB-BD=10-6=4$,\\\\\nlet $OC=x$, then $AC=OA-OC=8-x$,\\\\\nin $\\triangle ACD$, $AD^2+CD^2=AC^2$,\\\\\n$\\therefore 4^2+x^2=(8-x)^2$, solving for $x$ yields: $x=3$, that is $OC=3$,\\\\\n$\\therefore$ the coordinates of point C are $(-3,0)$,\\\\\nlet the equation of line BC be $y=kx+b\\ (k\\neq 0)$,\\\\\nsubstituting points B$(0,6)$, C$(-3,0)$ into the equation gives:\\\\\n$\\begin{cases} b=6 \\\\ -3k+b=0 \\end{cases}$, solving for $k$ and $b$ gives: $\\begin{cases} k=2 \\\\ b=6 \\end{cases}$,\\\\\n$\\therefore$ the equation of line BC is $y=2x+6$. Hence, the answer is $\\boxed{y=2x+6}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52211015_116": { -"question": "As shown in the figure, in the Cartesian coordinate system \\(xOy\\), the line \\( l_{1}: y_{1}=2x \\) intersects with the line \\( l_{2}: y_{2}=-x+3 \\) at point A. What are the coordinates of point A?", -"image_file_name": "7052940", -"image": [ -"math/52211015_702.png" -], -"solution": "\\textbf{Solution:} From the given, we have\n\\[\n\\begin{cases}\ny=2x \\\\\ny=-x+3\n\\end{cases}\n\\]\nSolving these equations, we get:\n\\[\n\\begin{cases}\nx=1 \\\\\ny=2\n\\end{cases}\n\\]\n$\\therefore$ The coordinates of point A are $\\boxed{(1, 2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52211015_117": { -"question": "As shown in the graph, in the Cartesian coordinate system \\(xOy\\), the line \\(l_1: y_1 = 2x\\) intersects with the line \\(l_2: y_2 = -x + 3\\) at point A. When \\(y_1 < y_2\\), directly write the range of values for \\(x\\).", -"image_file_name": "7052940", -"image": [ -"math/52211015_702.png" -], -"solution": "\\textbf{Solution:} From (1), it is known that point A is at $(1, 2)$,\\\\\nAccording to the graph, when ${y}_{1}<{y}_{2}$, the range of x can be directly written as $\\boxed{x<1}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52205237_119": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ intersects the graph of the inverse proportion function $y=\\frac{m}{x}$ where $x>0$, at points $A(1, 4)$ and $B(4, n)$. What are the expressions for the linear function and the inverse proportion function?", -"image_file_name": "7052940", -"image": [ -"math/52205237_714.png" -], -"solution": "\\textbf{Solution:} Substituting point A into the inverse proportion function $y=\\frac{m}{x}\\left(x>0\\right)$, we have $m=xy=4$. Therefore, the expression of the inverse proportion function is: $y=\\frac{4}{x}$. Hence, $4n=4$, solving this equation, we find $n=1$. Therefore, point $B(4, 1)$ is determined. This leads to the system $\\left\\{\\begin{array}{l}1=4k+b\\\\ 4=k+b\\end{array}\\right.$, from which we solve $\\left\\{\\begin{array}{l}k=-1\\\\ b=5\\end{array}\\right.$. Therefore, the equation of the linear function is: \\boxed{y=-x+5};", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52205237_120": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ and the graph of the inverse proportion function $y=\\frac{m}{x}$ (for $x>0$) intersect at points $A(1, 4)$ and $B(4, n)$. Based on the graph, directly write out the solution set for the inequality $kx+b-\\frac{m}{x}>0$ in terms of $x$.", -"image_file_name": "7052940", -"image": [ -"math/52205237_714.png" -], -"solution": "\\textbf{Solution:} According to the graph, we can directly write the solution set of the inequality $kx + b - \\frac{m}{x} > 0$ with respect to $x$ as $\\boxed{10)$ at points $A(1, 4)$ and $B(4, n)$. Find the area of $\\triangle AOB$.", -"image_file_name": "7052940", -"image": [ -"math/52205237_714.png" -], -"solution": "Solution: As shown in the figure, let the graph of the linear function intersect the coordinate axis at points C and D, and draw AE perpendicular to the y-axis at E and BF perpendicular to the x-axis at F, \\\\\n$\\because A\\left(1, 4\\right)$ , $B(4, 1)$,\\\\\n$\\therefore$AE=BF=1,\\\\\n$\\because$ the equation of the linear function is: $y=-x+5$,\\\\\n$\\therefore$OC=OD=5,\\\\\n$\\therefore$ $ {S}_{\\triangle AOC}={S}_{\\triangle BOD}=\\frac{1}{2}OA\\times AE=\\frac{5}{2}$,\\\\\n$ {S}_{\\triangle COD}=\\frac{1}{2}OC\\times OD=\\frac{25}{2}$,\\\\\n$\\therefore$ $ {S}_{\\triangle AOB}={S}_{\\triangle COD}-{S}_{\\triangle AOC}-{S}_{\\triangle BOD}=\\frac{25}{2}-\\frac{5}{2}-\\frac{5}{2}=\\boxed{\\frac{15}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52205244_123": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $y=2x+10$ intersects the $x$ axis at point $A$ and the $y$ axis at point $B$. Another line passing through point $B$ intersects the positive half of the $x$ axis at point $C$, and the area of $\\triangle ABC$ is $60$. What are the coordinates of point $C$ and the equation of line $BC$?", -"image_file_name": "7052940", -"image": [ -"math/52205244_725.png" -], -"solution": "\\textbf{Solution:} Since point B is on the line $y=2x+10$, we have B(0,10). When $y=0$, $x=-5$, therefore OA=5. The area of $\\triangle ABC$, $S_{\\triangle ABC}=\\frac{1}{2}AC\\cdot OB=60$, solving this gives $AC=12$. Therefore, OC=AC−OA=7, so C(7,0). Let the equation of line BC be $y=kx+10$, thus $0=7k+10$. Solving for $k$ yields $k=-\\frac{10}{7}$, hence $y=-\\frac{10}{7}x+10$. Therefore, the coordinates of point C are $\\boxed{C(7,0)}$, and the equation of line BC is $\\boxed{y=-\\frac{10}{7}x+10}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52205244_124": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y=2x+10$ intersects the $x$-axis at point $A$ and the $y$-axis at point $B$. Another line passing through point $B$ intersects the positive half of the $x$-axis at point $C$, and the area of $\\triangle ABC$ is $60$. If $M$ is a point on segment $BC$ and the line $AM$ divides the area of $\\triangle ABC$ into two parts with an area ratio of $1\\colon 2$, what are the coordinates of $M$?", -"image_file_name": "7052940", -"image": [ -"math/52205244_725.png" -], -"solution": "\\textbf{Solution:} Let $M(m,-\\frac{10}{7}m+10)$,\\\\\n(1) When $\\frac{S_{\\Delta ACM}}{S_{\\Delta ABM}} = \\frac{1}{2}$, that is $S_{\\Delta ACM} = \\frac{1}{3}S_{\\Delta ABC}$,\\\\\n$\\therefore \\frac{1}{2}AC \\cdot y_{M} = \\frac{1}{3} \\times 60 = 20$,\\\\\n$\\because AC = 12$,\\\\\n$\\therefore y_{M} = \\frac{10}{3}$,\\\\\n$\\therefore \\frac{10}{3} = -\\frac{10}{7}m + 10$,\\\\\nSolving, we get $m = \\frac{14}{3}$,\\\\\n$\\therefore M\\left(\\frac{14}{3}, \\frac{10}{3}\\right)$;\\\\\n(2) When $\\frac{S_{\\Delta ABM}}{S_{\\Delta ACM}} = \\frac{1}{2}$, that is $S_{\\Delta ACM} = \\frac{2}{3}S_{\\Delta ABC}$,\\\\\n$\\therefore \\frac{1}{2}AC \\cdot y_{M} = \\frac{2}{3} \\times 60 = 40$,\\\\\n$\\because AC = 12$,\\\\\n$\\therefore y_{M} = \\frac{20}{3}$,\\\\\n$\\therefore \\frac{20}{3} = -\\frac{10}{7}m + 10$,\\\\\nSolving, we get $m = \\frac{7}{3}$,\\\\\n$\\therefore M\\left(\\frac{7}{3}, \\frac{20}{3}\\right)$,\\\\\nIn conclusion, the coordinates of point M are $\\boxed{\\left(\\frac{14}{3}, \\frac{10}{3}\\right)}$, $\\boxed{\\left(\\frac{7}{3}, \\frac{20}{3}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52205244_125": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $y=2x+10$ intersects with the $x$ axis at point $A$ and with the $y$ axis at point $B$. Another line passing through point $B$ intersects the positive $x$ axis at point $C$, and the area of $\\triangle ABC$ is $60$. When the area of $\\triangle ABM$ is $20$, point $E$ is a moving point on line $AM$. Does there exist a point $D$ on the $x$ axis such that the quadrilateral formed by points $D$, $E$, $B$, and $C$ is a parallelogram? If it exists, write down the coordinates of point $D$ directly; if not, please explain the reason.", -"image_file_name": "7052940", -"image": [ -"math/52205244_725.png" -], -"solution": "\\textbf{Solution:} There exist coordinates for point $D$ as $(13,0)$, $(-23,0)$, or $(1,0)$, for the following reasons:\\\\\n$\\because S_{\\triangle ACM}=S_{\\triangle ABC}-S_{\\triangle ABM}=60-20=40$,\\\\\n$\\therefore \\frac{1}{2}AC \\cdot y_M=40$,\\\\\n$\\because AC=12$,\\\\\n$\\therefore y_M=\\frac{20}{3}$,\\\\\n$\\therefore \\frac{20}{3}=-\\frac{10}{7}m+10$,\\\\\nSolving this yields: $m=\\frac{7}{3}$,\\\\\n$\\therefore M\\left(\\frac{7}{3}, \\frac{10}{3}\\right)$,\\\\\nLet the equation of line AM be $y=kx+b$, then $\\left\\{\\begin{array}{l}\\frac{7}{3}m+n=\\frac{20}{3}\\\\ -5m+n=0\\end{array}\\right.$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}m=\\frac{10}{11}\\\\ n=\\frac{50}{11}\\end{array}\\right.$,\\\\\n$\\therefore$ The equation of line AM is $y=\\frac{10}{11}x+\\frac{50}{11}$,\\\\\n(1) When BC is a side of a parallelogram, and quadrilateral BCDE forms a parallelogram,\\\\\n$\\because BE\\parallel CD$, $B(0,10)$,\\\\\n$\\therefore y_E=10$,\\\\\n$\\therefore 10=\\frac{10}{11}x+\\frac{50}{11}$,\\\\\nSolving for $x$ gives $x=6$,\\\\\n$\\therefore E(6,10)$,\\\\\n$\\because$ quadrilateral BCDE forms a parallelogram,\\\\\n$\\therefore CD=BE=6$,\\\\\n$\\therefore OD=OC+CD=7+6=13$,\\\\\n$\\therefore \\boxed{D(13,0)}$;\\\\\n(2) When BC is a side of a parallelogram, and quadrilateral BDEC forms a parallelogram, by drawing EF$\\perp$CD at point F,\\\\\n$\\because$ quadrilateral BDCE forms a parallelogram,\\\\\n$\\therefore BC=DE$, $BC\\parallel DE$,\\\\\n$\\therefore \\angle EDF=\\angle BCO$,\\\\\nAnd $\\because \\angle EFD=\\angle BOC$,\\\\\n$\\therefore \\triangle BDC\\cong \\triangle ECD$ (AAS),\\\\\n$\\therefore EF=OB=10$, $DF=OC=7$,\\\\\n$\\therefore y_E=-10$,\\\\\n$\\therefore -10=\\frac{10}{11}x+\\frac{50}{11}$,\\\\\nSolving for $x$ gives $x=-16$,\\\\\n$\\therefore E(-16,10)$,\\\\\n$\\therefore OF=16$,\\\\\n$\\therefore OD=OF+FD=16+7=23$,\\\\\n$\\therefore \\boxed{D(-23,0)}$;\\\\\n(3) When BC is a diagonal of a parallelogram, and quadrilateral BDEC forms a parallelogram,\\\\\n$\\because BE\\parallel CD$, $B(0,10)$,\\\\\n$\\therefore y_E=10$,\\\\\n$\\therefore 10=\\frac{10}{11}x+\\frac{50}{11}$,\\\\\nSolving for $x$ gives $x=6$,\\\\\n$\\therefore E(6,10)$,\\\\\n$\\because$ quadrilateral BCDE forms a parallelogram,\\\\\n$\\therefore CD=BE=6$,\\\\\n$\\because OC=7$,\\\\\n$\\therefore OD=OC-CD=1$,\\\\\n$\\therefore \\boxed{D(1,0)}$;\\\\\nIn summary, the coordinates of point $D$ are: \\boxed{(13,0)}, \\boxed{(-23,0)}, or \\boxed{(1,0)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52204038_127": { -"question": "As shown in the figure, the graph of the direct proportion function $y=kx$ intersects with the graph of the inverse proportion function $y=\\frac{m}{x}$ ($x>0$) at point $A(2, 2)$. By translating the line $y=kx$ downwards, we obtain line $l$. If line $l$ intersects with the graph of the inverse proportion function at point $B(3, n)$. What are the values of $m$ and $n$?", -"image_file_name": "7052940", -"image": [ -"math/52204038_731.png" -], -"solution": "\\textbf{Solution}: From the given information, substituting point A$(2,2)$ into the inverse proportion function $y=\\frac{m}{x}$, we get: $m=2\\times 2=4$,\\\\\n$\\therefore y=\\frac{4}{x}$. Then, substituting B$(3,n)$ into $y=\\frac{4}{x}$, we find: $n=\\frac{4}{3}$;\\\\\nHence, $m=\\boxed{4}$, $n=\\boxed{\\frac{4}{3}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52204038_128": { -"question": "As shown in the figure, the graph of the direct proportion function $y=kx$ intersects with the graph of the inverse proportion function $y=\\frac{m}{x}$ (where $x>0$) at point $A(2, 2)$. By translating the line $y=kx$ downward, we obtain line $l$. If line $l$ intersects with the graph of the inverse proportion function at point $B(3, n)$, connect $AB$ and $OB$. What is the area of $\\triangle AOB$?", -"image_file_name": "7052940", -"image": [ -"math/52204038_731.png" -], -"solution": "\\textbf{Solution:} Start by substituting point A(2,2) into $y=kx$, we get: $2=2k$, thus $k=1$, and therefore $y=x$. Since the line $y=kx$ is translated downwards to form line $l$, we set the equation of line $l$ as $y=x+b$. Given it intersects the x-axis at point C, substituting point B(3,$\\frac{4}{3}$) yields: $b=-\\frac{5}{3}$. Hence, the equation of line $l$ is $y=x-\\frac{5}{3}$. When $y=0$, we have $x=\\frac{5}{3}$, thus $OC=\\frac{5}{3}$. Connecting AC and knowing that $OA\\parallel BC$, we conclude that ${S}_{\\triangle AOB}={S}_{\\triangle AOC}=\\frac{1}{2}\\times \\frac{5}{3}\\times 2=\\boxed{\\frac{5}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52188279_130": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $l_1\\colon y_1=kx+b$ that passes through point $A(-6, 0)$ intersects with the line $l_2\\colon y_2=2x$ at point $B(m, 4)$. What is the analytical expression of line $l_1$?", -"image_file_name": "7052940", -"image": [ -"math/52188279_740.png" -], -"solution": "\\[ \\textbf{Solution:} \\]\nSince point B $(m, 4)$ lies on the line $y = 2x$,\\\\\nwe have $2m = 4$. Solving this gives $m = 2$.\\\\\nTherefore, point B is $(2, 4)$;\\\\\nSince the line $l_1$ passes through point A $(-6, 0)$ and also goes through point B $(2, 4)$,\\\\\nwe get \n\\[\\left\\{\\begin{aligned}\n-6k + b &= 0\\\\ \n2k + b &= 4\n\\end{aligned}\\right.\\]\nSolving these equations, we find\n\\[\\left\\{\\begin{aligned}\nk &= \\frac{1}{2}\\\\ \nb &= 3\n\\end{aligned}\\right.,\\]\nTherefore, $y_1 = \\frac{1}{2}x + 3 = \\boxed{\\frac{1}{2}x + 3}$.", -"solution_image": [ -"solution_images/52188279_740.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52188279_131": { -"question": "As illustrated in the Cartesian coordinate system, the line $l_1\\colon y_1=kx+b$, passing through point $A(-6,0)$, intersects with the line $l_2\\colon y_2=2x$ at point $B(m,4)$. Utilize the graphical representation of functions to directly determine the range of $x$ values for which $y_2\\leq y_1$.", -"image_file_name": "7052940", -"image": [ -"math/52188279_740.png" -], -"solution": "\\textbf{Solution:} By using the function graph, we can directly write the range of $x$ when $y_2 \\leq y_1$ as $\\boxed{x \\leq 2}$.", -"solution_image": [ -"solution_images/52188279_740.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189067_133": { -"question": "As shown in the figure, the line $l\\colon y = \\frac{4}{3}x+b$ passes through the point $A(-3,0)$ and intersects with the $y$-axis at point $B$. The bisector of $\\angle OAB$ intersects the $y$-axis at point $C$. A perpendicular is drawn from point $C$ to line $AB$, intersecting the $x$-axis at point $E$, with the foot of the perpendicular being point $D$. What are the coordinates of points $B$ and $C$?", -"image_file_name": "7052940", -"image": [ -"math/52189067_751.png" -], -"solution": "\\textbf{Solution}: Substituting point $A(-3,0)$ into $y=\\frac{4}{3}x+b$, we find $b=4$,\\\\\n$\\therefore B(0,4)$,\\\\\n$\\therefore OB=4$,\\\\\n$\\because A(-3,0)$,\\\\\n$\\therefore OA=3$,\\\\\nIn $\\triangle AOB$, $\\angle AOB=90^\\circ$,\\\\\n$\\therefore AB=\\sqrt{OA^2+OB^2}=5$.\\\\\n$\\because AC$ bisects $\\angle OAB$, $CD\\perp AB$, $CO\\perp OA$,\\\\\n$\\therefore CD=CO$, $\\angle ACD=\\angle ACO$,\\\\\n$\\because AC=AC$,\\\\\n$\\therefore \\triangle ACD\\cong \\triangle ACO$ (SAS),\\\\\n$\\therefore AD=AO=3$, $BD=AB-AD=2$.\\\\\nLet $CD=CO=m$, then $BC=4-m$,\\\\\nIn $\\triangle BDC$,\\\\\nby the Pythagorean theorem, $CD^2+BD^2=BC^2$,\\\\\n$\\therefore m^2+2^2=(4-m)^2$,\\\\\nSolving, we get $m=\\frac{3}{2}$,\\\\\n$\\therefore C(0,\\frac{3}{2})$;\\\\\n$\\therefore$ The coordinates of $B$ and $C$ are $B(0,4)$ and $C(0,\\frac{3}{2})$ respectively.\\\\\nTherefore, the coordinates of points $B$ and $C$ are $B=\\boxed{(0,4)}$ and $C=\\boxed{(0,\\frac{3}{2})}$.", -"solution_image": [ -"solution_images/52189067_750.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189067_134": { -"question": "As shown in the diagram, the line $l: y = \\frac{4}{3}x + b$ passes through the point $A(-3, 0)$ and intersects the $y$-axis at point $B$. The bisector of $\\angle OAB$ intersects the $y$-axis at point $C$. A perpendicular line to $AB$ is drawn through point $C$, intersecting the $x$-axis at point $E$, with the foot of the perpendicular being point $D$. What is the equation of the line $DE$?", -"image_file_name": "7052940", -"image": [ -"math/52189067_751.png" -], -"solution": "\\textbf{Solution:} Since $CD\\perp AB$ and $CO\\perp OA$, \\\\\nit follows that $\\angle CDB = \\angle COE = 90^\\circ$, \\\\\nSince $CD=CO$ and $\\angle BCD = \\angle ECO$, \\\\\nit follows that $\\triangle BCD \\cong \\triangle ECO$ (ASA), \\\\\nOE=BD=2, \\\\\nThus, the coordinates of E are $(2,0)$, \\\\\nGiven that $C(0, \\frac{3}{2})$, \\\\\nlet the equation of line DE be $y=kx+\\frac{3}{2}$, \\\\\nThus, $0=2k+\\frac{3}{2}$, solving this gives $k=-\\frac{3}{4}$, \\\\\nTherefore, the equation of line DE is $\\boxed{y=-\\frac{3}{4}x+\\frac{3}{2}}$.", -"solution_image": [ -"solution_images/52189067_750.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189067_135": { -"question": "As shown in the figure, the line $l\\colon y=\\frac{4}{3}x+b$ passes through point $A(-3,0)$ and intersects the $y$-axis at point $B$. The bisector of $\\angle OAB$ intersects the $y$-axis at point $C$. A perpendicular line to line $AB$ passing through point $C$ intersects the $x$-axis at point $E$, and the foot of the perpendicular is point $D$. Let point $P$ be a moving point on the $y$-axis. When the value of $PA+PD$ is minimized, please write down the coordinates of point $P$ directly.", -"image_file_name": "7052940", -"image": [ -"math/52189067_751.png" -], -"solution": "\\textbf{Solution:} The coordinate of point $P$ is $\\boxed{\\left(0, \\frac{12}{7}\\right)}$.", -"solution_image": [ -"solution_images/52189067_750.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189578_137": { -"question": "As shown in the figure, the line $y=ax+1$ intersects with the x-axis and y-axis at points $A$ and $B$, respectively, and intersects with the hyperbola $y=\\frac{k}{x}$ ($x>0$) at point $P$. $PC\\perp x$-axis at point $C$, and $PC=2$. The coordinates of point $A$ are $(-2, 0)$. Find the expressions of line $AP$ and the hyperbola?", -"image_file_name": "7052940", -"image": [ -"math/52189578_761.png" -], -"solution": "\\textbf{Solution:} Substitute $A(-2,0)$ into $y=\\frac{1}{2}x+1$ and obtain $a=\\frac{1}{2}$,\\\\\n$\\therefore y=\\frac{1}{2}x+1$,\\\\\nGiven $PC=2$, substitute $y=2$ into $y=\\frac{1}{2}x+1$ to find $x=2$,\\\\\nthat is, $P(2,2)$,\\\\\nSubstituting $P(2,2)$ into $y=\\frac{k}{x}$ yields $k=4$,\\\\\n$\\therefore$ the expression for the hyperbola is $\\boxed{y=\\frac{4}{x}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52189578_138": { -"question": "As shown in the figure, the straight line $y=ax+1$ intersects the $x$-axis and the $y$-axis at points $A$ and $B$ respectively, and intersects the hyperbola $y=\\frac{k}{x}$ (where $x>0$) at point $P$, $PC\\perp x$-axis at point $C$, and $PC=2$, the coordinates of point $A$ are $(-2, 0)$. If point $Q$ is a point on the right side of point $P$ on the hyperbola, and $QH\\perp x$-axis at $H$, when the triangle formed by points $Q$, $C$, and $H$ is similar to $\\triangle AOB$, what are the coordinates of point $Q$?", -"image_file_name": "7052940", -"image": [ -"math/52189578_761.png" -], -"solution": "\\textbf{Solution:} Given the diagram, draw $QH\\perp$ x-axis and let $Q(m,n)$, \\\\\nsince $Q(m,n)$ lies on $y= \\frac{4}{x}$, \\\\\nthus, $n= \\frac{4}{m}$.\\\\\nWhen $\\triangle QCH\\sim \\triangle BAO$, it follows that $\\frac{CH}{AO}=\\frac{QH}{BO}$,\\\\\nwhich means $\\frac{m-2}{2}=\\frac{n}{1}$,\\\\\ntherefore $m-2=2n$,\\\\\nwhich implies $m-2=\\frac{8}{m}$,\\\\\nleading to $m^{2}-2m-8=0$,\\\\\nsolving this, we find $m=4$ or $m=-2$ (discard),\\\\\nhence, $Q\\left(4, 1\\right)$,\\\\\nWhen $\\triangle QCH\\sim \\triangle ABO$, it follows that $\\frac{CH}{BO}=\\frac{QH}{AO}$,\\\\\nwhich means $\\frac{m-2}{1}=\\frac{n}{2}$,\\\\\nrearranging gives $2m-4=\\frac{8}{m}$,\\\\\nleading to $2m^{2}-4m-8=0$,\\\\\nsolving this, we find $m=1+\\sqrt{3}$ or $m=1-\\sqrt{3}$ (discard),\\\\\nhence, $Q\\left(1+\\sqrt{3}, 2\\sqrt{3}-2\\right)$,\\\\\nIn conclusion, $Q\\left(4, 1\\right)$ or $Q\\left(1+\\sqrt{3}, 2\\sqrt{3}-2\\right)$.\\\\\nTherefore, the coordinates of point $Q$ are $\\boxed{Q\\left(4, 1\\right)}$ or $\\boxed{Q\\left(1+\\sqrt{3}, 2\\sqrt{3}-2\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52189644_140": { -"question": "As shown in the figure, the line $y=-\\frac{3}{2}x-2$ intersects the $x$-axis and $y$-axis at points $A$ and $B$ respectively, and intersects with the hyperbola $y=\\frac{m}{x}$ (where $m \\neq 0$) at point $C$ in the second quadrant. $CD$ is perpendicular to the $y$-axis at point $D$, and $CD=4$. What is the equation of the hyperbola?", -"image_file_name": "7052940", -"image": [ -"math/52189644_772.png" -], -"solution": "\\textbf{Solution:} Given that the point of intersection in the second quadrant is C, and CD is perpendicular to the y-axis at point D, with CD equal to 4,\\\\\nthus the x-coordinate of point C is $-4$,\\\\\nsubstituting $x = -4$ into $y = -\\frac{3}{2}x - 2$, we get $y = -\\frac{3}{2} \\times (-4) - 2 = 4$,\\\\\ntherefore, C$(-4,4)$,\\\\\nsubstituting C$(-4,4)$ into $y = \\frac{m}{x}$, we get $4 = \\frac{m}{-4}$,\\\\\nhence, $m = -16$,\\\\\ntherefore, the equation of the hyperbola is: \\boxed{y = -\\frac{16}{x}}.", -"solution_image": [ -"solution_images/52189644_770.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52189644_141": { -"question": "As illustrated, the line $y=-\\frac{3}{2}x-2$ intersects the $x$-axis and $y$-axis at points $A$ and $B$ respectively, and intersects the hyperbola $y=\\frac{m}{x}$ (where $m\\neq 0$) at point $C$ in the second quadrant. Line segment $CD$ is perpendicular to the $y$-axis at point $D$, and $CD=4$. Let point $Q$ be a point on the hyperbola, and the area of triangle $QOB$ is twice the area of triangle $AOB$. Find the coordinates of point $Q$.", -"image_file_name": "7052940", -"image": [ -"math/52189644_772.png" -], -"solution": "\\textbf{Solution:} Insert $x=0$ into $y=-\\frac{3}{2}x-2$, we get $y=-\\frac{3}{2}\\times0-2=-2$,\\\\\n$\\therefore B(0,-2)$,\\\\\nInsert $y=0$ into $y=-\\frac{3}{2}x-2$, we get $0=-\\frac{3}{2}x-2$,\\\\\n$\\therefore x=-\\frac{4}{3}$,\\\\\n$\\therefore A\\left(-\\frac{4}{3},0\\right)$,\\\\\n$\\because S_{\\triangle QOB}=2S_{\\triangle AOB}$,\\\\\n$\\therefore \\frac{1}{2}OB\\cdot |x_{Q}|=2\\times \\frac{1}{2}OA\\cdot OB$,\\\\\n$\\therefore \\frac{1}{2}\\times 2|x_{Q}|=2\\times \\frac{1}{2}\\times \\left|-\\frac{4}{3}\\right|\\times 2$,\\\\\nsolving this gives $x_Q=\\pm \\frac{8}{3}$,\\\\\nInsert $x=\\frac{8}{3}$ into $y=-\\frac{16}{x}$, we get $y=-6$,\\\\\nInsert $x=-\\frac{8}{3}$ into $y=-\\frac{16}{x}$, we get $y=6$,\\\\\n$\\therefore Q\\left(\\frac{8}{3},-6\\right)$ or $\\boxed{Q\\left(-\\frac{8}{3},6\\right)}$;", -"solution_image": [ -"solution_images/52189644_770.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52189644_142": { -"question": "As shown in the figure, the line $y=-\\frac{3}{2}x-2$ intersects the $x$-axis and $y$-axis at points $A$ and $B$, respectively. It intersects with the hyperbola $y=\\frac{m}{x}$ ($m\\neq 0$) at point $C$ in the second quadrant. $CD\\perp y$-axis at point $D$, and $CD=4$. There exists a point $P$ on the $y$-axis such that $PA+PC$ is the shortest. Please directly write the coordinates of point $P$.", -"image_file_name": "7052940", -"image": [ -"math/52189644_772.png" -], -"solution": "\\textbf{Solution:} The coordinates of point $P$ are $\\boxed{(0,1)}$.", -"solution_image": [ -"solution_images/52189644_770.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52189291_144": { -"question": "As shown in the figure, in the Cartesian coordinate system, point $O$ is the origin. The line $BC$ intersects the y-axis at point $B$ and the x-axis at point $C$. The coordinates of point $B$ are $(0,4)$, and $OB=OC$. What is the analytical expression of line $BC$?", -"image_file_name": "7052940", -"image": [ -"math/52189291_783.png" -], -"solution": "\\textbf{Solution:} Since $B(0, 4)$, \\\\\nit follows that $OB=4$, \\\\\nthus $OC=OB=4$, \\\\\nimplying $C(4, 0)$ \\\\\nLet the equation of line $BC$ be $y=kx+b\\ (k \\neq 0)$, \\\\\ntherefore $\\left\\{\\begin{array}{l}b = 4 \\\\ 4k + b = 0 \\end{array}\\right.$ \\\\\nhence $\\left\\{\\begin{array}{l}k = -1 \\\\ b = 4 \\end{array}\\right.$ \\\\\nThus, the equation of line $BC$ is $y = -x + 4$, so the answer is \\boxed{y = -x + 4}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189291_145": { -"question": "In the Cartesian coordinate system, point O is the origin, and the line $BC$ intersects the y-axis at point B and the x-axis at point C. The coordinates of point B are $\\left(0,4\\right)$, and $OB=OC$. If the area of $\\triangle ABO$ is 2, find the coordinates of point A.", -"image_file_name": "7052940", -"image": [ -"math/52189291_783.png" -], -"solution": "\\textbf{Solution:} Construct $AD \\perp y$-axis at point D, \\\\\n$\\therefore {S}_{\\triangle ABO} = \\frac{1}{2}BO \\times AD = \\frac{1}{2} \\times 4AD = 2AD$, \\\\\n$\\because {S}_{\\triangle ABO} = 2$, \\\\\n$\\therefore 2AD = 2$, \\\\\n$\\therefore AD = 1$, \\\\\n$\\therefore$ The x-coordinate of point A is 1, \\\\\nWhen $x=1$, $y = -1 + 4 = 3$, \\\\\n$\\therefore A\\left(1, 3\\right)$. Therefore, the coordinates of point A are $\\boxed{A(1, 3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189515_147": { -"question": "As shown in the figure, the quadrilateral OABC is a rectangle, where points A and C are on the coordinate axes, and $\\triangle ODE$ is obtained by rotating $\\triangle OCB$ $90^\\circ$ clockwise around point O. Point D is on the x-axis, and line BD intersects the y-axis at point F and intersects OE at point H. The lengths of segments BC and OC are the solutions to the system of equations $\\begin{cases} 2x+3y=14 \\\\ 4x-5y=6 \\end{cases}$, with OC > BC. What is the analytical expression of line BD?", -"image_file_name": "7052940", -"image": [ -"math/52189515_791.png" -], -"solution": "\\textbf{Solution}: From the given problem, we have\n\\[\n\\begin{cases}\n2x+3y=14\\\\\n4x-5y=6\n\\end{cases}\n\\]\nSolving these equations, we obtain\n\\[\n\\begin{cases}\nx=4\\\\\ny=2\n\\end{cases},\n\\]\nSince $OC>BC$,\\\\\nHence, $CO=4$ and $BC=2$,\\\\\nThus, point B is $(-2,4)$,\\\\\nSince $\\triangle ODE$ is obtained by rotating $\\triangle OCB$ $90^\\circ$ clockwise around point O,\\\\\nTherefore, $\\triangle ODE \\cong \\triangle OCB$,\\\\\nHence, $OD=OC$ and $DE=BC$,\\\\\nThus, point D is $(4,0)$ and point E is $(4,2)$,\\\\\nLet the equation of line BD be $y=kx+b$,\\\\\nSubstituting points B and D, we get\n\\[\n\\begin{cases}\n-2k+b=4\\\\\n4k+b=0\n\\end{cases},\n\\]\nSolving these, we find\n\\[\n\\begin{cases}\nk=-\\frac{2}{3}\\\\\nb=\\frac{8}{3}\n\\end{cases},\n\\]\nTherefore, the equation of line BD is $y=-\\frac{2}{3}x+\\frac{8}{3}$; hence, the equation of line BD is $\\boxed{y=-\\frac{2}{3}x+\\frac{8}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52189515_148": { -"question": "As shown in the figure, quadrilateral $OABC$ is a rectangle with points $A$ and $C$ on the coordinate axes. $\\triangle ODE$ is obtained by rotating $\\triangle OCB$ $90^\\circ$ clockwise about point $O$. Point $D$ is on the $x$ axis, and line $BD$ intersects the $y$ axis at point $F$ and $OE$ at point $H$. The lengths of segments $BC$ and $OC$ are the solutions of the system of equations $\\left\\{\\begin{array}{l}2x+3y=14 \\\\ 4x-5y=6\\end{array}\\right.$. Given that $OC > BC$, find the area of $\\triangle OFH$.", -"image_file_name": "7052940", -"image": [ -"math/52189515_791.png" -], -"solution": "\\textbf{Solution:} Given $y=-\\frac{2}{3}x+\\frac{8}{3}$, by setting $x=0$, we obtain $y=\\frac{8}{3}$\\\\\n$\\therefore F\\left(0, \\frac{8}{3}\\right)$\\\\\nLet the equation of line OE be $y=k_1x$,\\\\\nSubstituting point E yields $k_1=\\frac{1}{2}$,\\\\\n$\\therefore y=\\frac{1}{2}x$,\\\\\n$\\begin{cases} y=\\frac{1}{2}x \\\\ y=-\\frac{2}{3}x+\\frac{8}{3} \\end{cases}$,\\\\\nSolving this system gives $\\begin{cases} x=\\frac{16}{7} \\\\ y=\\frac{8}{7} \\end{cases}$,\\\\\n$\\therefore H\\left(\\frac{16}{7}, \\frac{8}{7}\\right)$,\\\\\nTherefore, the area of $\\triangle OFH$ $= \\frac{1}{2} \\times \\frac{8}{3} \\times \\frac{16}{7} = \\boxed{\\frac{64}{21}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52190033_150": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the linear function $y=x+b$ intersects the x-axis and y-axis at points A and B, respectively, and intersects the graph of the direct proportionality function $y=-2x$ at point C. The ordinate of point C is 4. Find the coordinates of points A, B, and C?", -"image_file_name": "7052940", -"image": [ -"math/52190033_804.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince point C lies on the graph of $y=-2x$, when $y=4$, $-2x=4$, thus $x=-2$, \\\\\nhence the coordinates of point C are $\\left(-2, 4\\right)$, \\\\\nfurthermore, since $y=x+b$ passes through point $\\left(-2, 4\\right)$, \\\\\nit follows that $-2+b=4$, solving this gives $b=6$, \\\\\nhence $y=x+6$, when $x=0$, $y=6$, thus the coordinates of point A are $\\left(0, 6\\right)$, \\\\\nwhen $y=0$, $x=-6$, thus the coordinates of point B are $\\left(-6, 0\\right)$. \\\\\n$\\therefore \\boxed{A\\left(0, 6\\right)}, \\boxed{B\\left(-6, 0\\right)}, \\boxed{C\\left(-2, 4\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52190033_151": { -"question": "In the Cartesian coordinate system, the graph of the linear function \\(y = x + b\\) intersects the x-axis and the y-axis at points \\(A\\) and \\(B\\) respectively, and intersects the graph of the direct proportionality function \\(y = -2x\\) at point \\(C\\), where the y-coordinate of point \\(C\\) is \\(4\\). If a moving point \\(P\\) is on the ray \\(CA\\), and the area of triangle \\(OAP\\) is \\(\\frac{1}{8}\\) of the area of triangle \\(OBC\\), what are the coordinates of point \\(P\\)?", -"image_file_name": "7052940", -"image": [ -"math/52190033_804.png" -], -"solution": "\\textbf{Solution:} Let $P\\left(x, x+6\\right)$,\\\\\nwhen $S_{\\triangle OAP}=\\frac{1}{8}S_{\\triangle OBC}$, then $\\frac{1}{2}AO\\cdot |x|=\\frac{1}{8}\\times \\frac{1}{2}\\times BO\\cdot |y_c|$,\\\\\n$\\therefore \\frac{1}{2}\\times 6|x|=\\frac{1}{8}\\times \\frac{1}{2}\\times 6\\times 4$, hence $x=\\pm \\frac{1}{2}$,\\\\\nMoreover, since the moving point P is on the ray $CA$,\\\\\n$\\therefore x\\ge -2$,\\\\\n$\\therefore$ the coordinates of point P are $\\boxed{P_{1}\\left(-\\frac{1}{2}, \\frac{11}{2}\\right)}$, $\\boxed{P_{2}\\left(\\frac{1}{2}, \\frac{13}{2}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52190033_152": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the linear function $y=x+b$ intersects with the $x$ and $y$ axes at points A and B, respectively, and intersects with the graph of the direct proportion function $y=-2x$ at point C, where the ordinate of point C is 4. If the point $Q(m, 2)$ is inside $\\triangle OBC$ (excluding the boundary), please write down the range of the values of $m$ directly.", -"image_file_name": "7052940", -"image": [ -"math/52190033_804.png" -], -"solution": "\\textbf{Solution:} The range of $-4kx+b$ in terms of x.", -"image_file_name": "7052940", -"image": [ -"math/52159946_843.png" -], -"solution": "\\textbf{Solution:} From equation (1), we have point C at $(-1,3)$,\\\\\n$3x+6>kx+b$ implies $y_1>y_2$,\\\\\nmeaning the graph of $y_1=3x+6$ is above that of $y_2=-\\frac{3}{4}x+\\frac{9}{4}$,\\\\\nBased on the graph above, the solution set is $\\boxed{x>-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52159946_165": { -"question": "As shown in the figure, the line $y_1=3x+6$ intersects the x-axis and y-axis at points A and B, respectively. The line $y_2=kx+b$ passes through point D(3, 0) and intersects line $y_1=3x+6$ at point C(m, 3). There exists a point P on line AB, and through point P, a line PQ is drawn parallel to the y-axis, intersecting line CD at point Q. If the length of segment PQ is 5, what are the coordinates of point P?", -"image_file_name": "7052940", -"image": [ -"math/52159946_843.png" -], -"solution": "\\textbf{Solution:} Given that point $P$ lies on line $AB$ and point $Q$ lies on line $CD$, and $PQ \\parallel y$-axis, \\\\\nlet the coordinates of point $P$ be $(n, 3n+6)$, then the coordinates of point $Q$ are $\\left(n, -\\frac{3}{4}n+\\frac{9}{4}\\right)$, \\\\\nsince the length of segment $PQ$ is $3$, \\\\\n$\\therefore \\left|3n+6+\\frac{3}{4}n-\\frac{9}{4}\\right|=5$, \\\\\nsolving this gives $n=\\frac{1}{3}$ or $n=-\\frac{7}{3}$, \\\\\nwhen $n=\\frac{1}{3}$, $3n+6=7$; \\\\\nwhen $n=-\\frac{7}{3}$, $3n+6=-1$, \\\\\n$\\therefore$ the coordinates of point P are $\\boxed{\\left(\\frac{1}{3},7\\right)}$ or $\\boxed{\\left(-\\frac{7}{3},-1\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52095492_167": { -"question": "As shown in the figure, the graph of the linear function $y=(m-2)x-4$ intersects the negative x-axis at point A and intersects the y-axis at point B, and the area of $\\triangle OAB$ is 8. Find the value of $m$ and the coordinates of point A.", -"image_file_name": "7052940", -"image": [ -"math/52095492_852.png" -], -"solution": "\\textbf{Solution:} When $x=0$, we have $y=(m-2)x-4=-4$, thus $B(0, -4)$,\\\\\n$\\therefore OB=4$,\\\\\n$\\because$ The area of $\\triangle OAB$ is 8,\\\\\n$\\therefore \\frac{1}{2}\\times OA\\times 4=8$, solving this gives: $OA=4$,\\\\\n$\\therefore \\boxed{A(-4,0)}$.\\\\\nSubstituting point $A(-4,0)$ into $y=(m-2)x-4$, gives: $-4m+8-4=0$,\\\\\n$\\therefore m=\\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52095492_168": { -"question": "As shown in the figure, the graph of the linear function $y=(m-2)x-4$ intersects the negative half-axis of the x-axis at point A, and intersects the y-axis at point B, and the area of $\\triangle OAB$ is 8. A line $CD \\parallel AB$ is drawn through point C (0, 3), intersecting the x-axis at point D. Find the equation of line BD.", -"image_file_name": "7052940", -"image": [ -"math/52095492_852.png" -], -"solution": "\\textbf{Solution:} Given that $C(0,3)$ and $AB\\parallel CD$, thus the equation of line CD is: $y=-x+3$. Hence, the coordinate of point D is $(3,0)$. Let the equation of line BD be $y=kx+b$. Substituting points B$(0,-4)$ and D$(3,0)$ into the equation, we get:\n\\[b=-4\\\\\n3k+b=0\\],\nsolving this, we obtain:\n\\[k=\\frac{4}{3}\\\\\nb=-4\\].\\\\\nTherefore, the equation of line BD is $\\boxed{y=\\frac{4}{3}x-4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52094893_170": { -"question": "As shown in the figure, in rectangle OABC, point A is on the x-axis, and point C is on the y-axis. The coordinates of point B are $\\left(6, 8\\right)$. Rectangle OABC is folded along line BD so that point C lands exactly on point E on the diagonal OB. The line of the fold BD intersects the y-axis and the x-axis at points D and F, respectively. What is the length of line segment OE?", -"image_file_name": "7052940", -"image": [ -"math/52094893_861.png" -], -"solution": "\\textbf{Solution:} Since in rectangle OABC, point A is on the x-axis and point C is on the y-axis, with point B having the coordinates (6, 8),\\\\\nit follows that OA = 6, AB = 8, and $\\angle$OAB$=90^\\circ$,\\\\\nthus OB $= \\sqrt{OA^{2} + AB^{2}} = \\sqrt{6^{2} + 8^{2}} = 10$,\\\\\nfrom folding, we know BE = BC = 6,\\\\\ntherefore, OE = OB - BE = 10 - 6 = \\boxed{4};", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52094893_171": { -"question": "As shown in the figure, in rectangle OABC, point A is on the x-axis, point C is on the y-axis, and the coordinates of point B are $(6, 8)$. The rectangle OABC is folded along the line BD, making point C exactly coincide with point E on the diagonal OB. The fold line BD intersects the y-axis and x-axis at points D and F, respectively. What are the coordinates of point F?", -"image_file_name": "7052940", -"image": [ -"math/52094893_861.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point D be $(0,a)$, so $OD=a$, $CD=8-a$,\\\\\nsince $BC=6$, $CD=DE=8-a$, $OB=10$,\\\\\nsince $\\frac{S_{\\triangle ODB}}{2}=\\frac{OD\\cdot BC}{2}=\\frac{OB\\cdot DE}{2}$,\\\\\nthus $\\frac{a\\times 6}{2}=\\frac{10(8-a)}{2}$,\\\\\nsolving, we get $a=5$,\\\\\nwhich means the coordinates of point D are $(0,5)$,\\\\\nLet the equation of the line containing the crease BD be $y=kx+b$,\\\\\nsince points D $(0,5)$ and B $(6,8)$ lie on line BD,\\\\\nthus $\\left\\{\\begin{array}{l}b=5 \\\\ 6k+b=8\\end{array}\\right.$, gives $\\left\\{\\begin{array}{l}k=0.5 \\\\ b=5\\end{array}\\right.$,\\\\\nhence, the equation of the line containing the crease BD is $y=0.5x+5$,\\\\\nwhen $y=0$, $0.5x+5=0$,\\\\\nsolving, we get $x=-10$,\\\\\nthus, the coordinates of point F are $\\boxed{(-10,0)}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52094893_172": { -"question": "As shown in the figure, in rectangle $OABC$, point $A$ is on the $x$-axis, point $C$ is on the $y$-axis, and the coordinates of point $B$ are $\\left(6, 8\\right)$. The rectangle $OABC$ is folded along the line $BD$ so that point $C$ exactly falls on point $E$ on the diagonal $OB$. The fold line $BD$ intersects with the $y$-axis and the $x$-axis at points $D$ and $F$, respectively. If point $M$ is on the line $y=-\\frac{1}{2}x$, then is there a point $P$ on the line $BD$ such that the quadrilateral with vertices $C$, $D$, $M$, and $P$ is a parallelogram? Find the coordinates of the point $P$ that satisfy the condition.", -"image_file_name": "7052940", -"image": [ -"math/52094893_861.png" -], -"solution": "\\textbf{Solution}: Let there exist a point $P$ on line $BD$ such that the quadrilateral constituted by vertices $C$, $D$, $M$, and $P$ forms a parallelogram,\\\\\n$\\because$ from (2) we know the equation of line $BD$ is $y=0.5x+5$,\\\\\n$\\therefore D(0,5)$,\\\\\nand $\\because C(0,8)$,\\\\\n$\\therefore CD=3$,\\\\\nPoint $M$ lies on the line $y=-0.5x$, and point $P$ lies on line $BD$,\\\\\nTo make the quadrilateral with vertices $C$, $D$, $M$, and $P$ a parallelogram,\\\\\nit requires either $CD$ to be parallel and equal to $MP$ or $CP$ to be parallel and equal to $MD$,\\\\\nWhen $CD$ is parallel and equal to $MP$, let the coordinate of point $P$ be $(m,0.5m+5)$, then $M(m,-0.5m)$,\\\\\n$\\therefore MP=|\\left(0.5m+5\\right)-\\left(-0.5m\\right)|=3$,\\\\\nFrom which, $m_{1}=-2$, $m_{2}=-8$,\\\\\n$\\therefore P_{1}(-2,4)$, $P_{2}(-8,1)$\\\\\nWhen $CP$ and $MD$ are parallel and equal, let the coordinate of point $P$ be $(m,0.5m+5)$, then $M(-m,0.5m)$,\\\\\n$\\therefore |8-(0.5m+5)|=|0.5m-5|$,\\\\\nFrom which, $m=8$,\\\\\n$\\therefore P_{3}(8,9)$\\\\\nThus, the coordinates of point $P$ satisfying the requirements are \\boxed{P_{1}(-2,4)}, \\boxed{P_{2}(-8,1)}, and \\boxed{P_{3}(8,9)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52076885_174": { -"question": "As shown in the figure, in $\\triangle AOB$, $\\angle ABO=90^\\circ$, $OB=4$, $AB=8$. The line $y=-x+b$ intersects $OA$ and $AB$ at points $C$ and $D$, respectively, and the area of $\\triangle BOD$ is $4$. What is the equation of line $AO$?", -"image_file_name": "7052940", -"image": [ -"math/52076885_870.png" -], -"solution": "\\textbf{Solution:} Given that $OB=4$, $AB=8$, and $\\angle ABO=90^\\circ$,\\\\\nthus, the coordinates of point A are (4, 8).\\\\\nAssume the equation of line $AO$ is $y=kx$, then $4k=8$,\\\\\nsolving this gives $k=2$, thus the equation of line $AO$ is $\\boxed{y=2x}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52076885_175": { -"question": "As shown in the diagram, in $\\triangle AOB$, $\\angle ABO=90^\\circ$, $OB=4$, and $AB=8$. The line $y=-x+b$ intersects $OA$ and $AB$ at points $C$ and $D$, respectively, and the area of $\\triangle BOD$ is $4$. Find the equation of line $CD$.", -"image_file_name": "7052940", -"image": [ -"math/52076885_870.png" -], -"solution": "\\textbf{Solution:} Given that $OB=4$ and $\\angle ABO=90^\\circ$, the area of $\\triangle BOD$ is $S_{\\triangle BOD} = \\frac{1}{2} \\times OB \\times BD = 4$, \\\\\nthus $DB=2$, \\\\\ntherefore, the coordinates of point D are $(4,2)$, \\\\\nsubstituting D$(4,2)$ into $y=-x+b$ yields: $b=6$, \\\\\ntherefore, the equation of line CD is $\\boxed{y=-x+6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52076225_177": { -"question": "As shown in the figure, the graph of the linear function $y_{1}=kx+b$ ($k\\neq 0$) intersects with the graph of the inverse proportion function $y_{2}=\\frac{m}{x}$ ($m\\neq 0$) at points $A(-3, 2)$ and $B(n, -\\frac{3}{2})$. Find the expressions of the linear function and the inverse proportion function?", -"image_file_name": "7052940", -"image": [ -"math/52076225_882.png" -], -"solution": "\\textbf{Solution:} Given the inverse proportion function $y_{2}=\\frac{m}{x}$ (where $m\\neq 0$) passes through point A ($-3$, $2$),\n\n$\\therefore m=-3\\times 2=-6$,\n\n$\\therefore$ the expression of the inverse proportion function is $y=-\\frac{6}{x}$.\n\nGiven point B ($n$, $-\\frac{3}{2}$) lies on the graph of the inverse proportion function $y=-\\frac{6}{x}$,\n\n$\\therefore n=4$.\n\n$\\therefore$ the coordinates of point B are ($4$, $-\\frac{3}{2}$).\n\nGiven the linear function $y_{1}=kx+b$ (where $k\\neq 0$) passes through points A ($-3$, $2$) and B ($4$, $-\\frac{3}{2}$),\n\n$\\therefore \\left\\{\\begin{array}{l}-3k+b=2 \\\\ 4k+b=-\\frac{3}{2}\\end{array}\\right.$,\n\nsolving this gives $\\left\\{\\begin{array}{l}k=-\\frac{1}{2} \\\\ b=\\frac{1}{2}\\end{array}\\right.$,\n\n$\\therefore$ the linear function is $\\boxed{y=-\\frac{1}{2}x+\\frac{1}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52076225_178": { -"question": "As shown in the figure, the graph of the linear function $y_{1}=kx+b$ ($k\\neq 0$) intersects with the graph of the inverse proportion function $y_{2}=\\frac{m}{x}$ ($m\\neq 0$) at points $A(-3, 2)$ and $B(n, -\\frac{3}{2})$. Please directly write down the range of $x$ when $y_{1}>y_{2}$.", -"image_file_name": "7052940", -"image": [ -"math/52076225_882.png" -], -"solution": "\\textbf{Solution:} When $y_{1}>y_{2}$, the range of $x$ is $x<-3$ or $04$. Hence, the solution set is $x\\in\\boxed{(-2,0)\\cup(4,+\\infty)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52050093_182": { -"question": "As shown in the figure, the graph of the linear function $y_{1}=kx+2$ intersects with the graph of the inverse proportion function $y_{2}=-\\frac{8}{x}$ at points $A(a,-2a)$ and $B(4,-2)$. Connect $OA$ and $OB$. What is the area of $\\triangle AOB$?", -"image_file_name": "7052940", -"image": [ -"math/52050093_891.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, AB intersects the x-axis at point C. According to (1), we have $y_1 = -x + 2$, $\\therefore$ the coordinates of point C are $(2, 0)$, $\\therefore OC = 2$, $\\therefore$ the area of $\\triangle AOB$, $S_{\\triangle AOB} = \\frac{1}{2} \\times OC \\times (y_A - y_B) = \\frac{1}{2} \\times 2 \\times (4 + 2) = \\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51968557_184": { -"question": "As shown in the figure, line $y_{1} = -x + 3$ and line $y_{2} = kx - 2$ intersect the $y$-axis at points $A$ and $B$, respectively, and intersect at point $C(2, m)$. What are the values of $m$ and $k$?", -"image_file_name": "7052940", -"image": [ -"math/51968557_900.png" -], -"solution": "\\textbf{Solution:} Substitute $C(2, m)$ into $y_1 = -x + 3$, \\\\\nwe get: $m = -2 + 3 = 1$, \\\\\n$\\therefore$ the coordinates of point $C$ are $(2, 1)$, \\\\\nsubstitute $C(2, 1)$ into $y_2 = kx - 2$, \\\\\nwe get: $2k - 2 = 1$, \\\\\nsolving for $k$, we obtain $k = \\boxed{1.5}$. \\\\\nIn conclusion, $m = \\boxed{1}$ and $k = \\boxed{1.5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51968557_185": { -"question": "The lines $y_1 = -x + 3$ and $y_2 = kx - 2$ intersect the y-axis at points $A$ and $B$, respectively, and intersect at point $C(2, m)$. What is the area of $\\triangle ABC$?", -"image_file_name": "7052940", -"image": [ -"math/51968557_900.png" -], -"solution": "\\textbf{Solution:} When $x=0$, $y_1=3$,\\\\\nthen $A(0,3)$;\\\\\nWhen $x=0$, $y_2=-2$,\\\\\nthen $B(0,-2)$,\\\\\n$\\therefore$ The area of $\\triangle ABC = \\frac{1}{2} \\times (3+2) \\times 2 = \\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51968557_186": { -"question": "The line $y_{1} = -x + 3$ and the line $y_{2} = kx - 2$ respectively intersect the $y$-axis at points $A$ and $B$, and intersect each other at point $C(2, m)$. Based on the graph, directly write the range of the independent variable $x$ when $y_{1} > y_{2}$.", -"image_file_name": "7052940", -"image": [ -"math/51968557_900.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, when $\\boxed{x<2}$, $y_{1}>y_{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51919603_188": { -"question": "It seems like there was a mistake in your question. You've asked for a translation of a text, but you haven't provided any text to translate. Could you please provide the text you'd like translated into English?", -"image_file_name": "7052940", -"image": [ -"math/51919603_913.png" -], -"solution": "\\textbf{Solution:} Since the graph of the linear function $y=kx+b$ ($k\\neq 0$) passes through the points $A(-2,-4)$ and $B(2,0)$,\\\\\nwe have $\\begin{cases} -2k+b=-4\\\\ 2k+b=0 \\end{cases}$,\\\\\nsolving this system of equations gives $k=1$ and $b=-2$,\\\\\ntherefore, the expression of the function is: \\boxed{y=x-2}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51919603_189": { -"question": "It is known that the graph of the linear function $y=kx+b\\left(k\\ne 0\\right)$ passes through points $A\\left(-2, -4\\right)$ and $B\\left(2, 0\\right)$. If point $P$ lies on the $x$-axis and the area of $\\triangle ABP$ is 10, find the coordinates of point $P$.", -"image_file_name": "7052940", -"image": [ -"math/51919603_913.png" -], -"solution": "\\textbf{Solution:} Since point P is on the x-axis,\\\\\nlet P be $(x,0)$,\\\\\nthen $BP=|x-2|$,\\\\\nsince the area of $\\triangle ABP$ is 10,\\\\\n$\\frac{1}{2} \\times 4 \\times |x-2|=10$,\\\\\nthus, $|x-2|=5$,\\\\\nso, $x-2=5$ or $x-2=-5$,\\\\\nsolving this gives $x_{1}=-3$ or $x_{2}=7$,\\\\\ntherefore, the coordinates of point P are \\boxed{(-3,0)} or \\boxed{(7,0)}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51894652_191": { -"question": "As shown in the graph, the line $y=-\\frac{3}{4}x+3$ intersects the x-axis at point A and the y-axis at point B. The $\\triangle AOB$ is folded along a certain line passing through point B, such that point A falls on point D located on the negative y-axis. The fold line intersects the x-axis at point C. Please find the coordinates of points A, B, and C?", -"image_file_name": "7052940", -"image": [ -"math/51894652_922.png" -], -"solution": "\\textbf{Solution:} Let's solve it. When $x=0$, then $y=3$; \\\\\nwhen $y=0$, then $x=4$, \\\\\ntherefore, the coordinates of point A are $\\boxed{(4,0)}$, and the coordinates of point B are $\\boxed{(0,3)}$, \\\\\ntherefore, $AB=\\sqrt{3^2+4^2}=5$, \\\\\nsince BD=AB=5, \\\\\ntherefore, the coordinates of point D are $\\boxed{(0,-2)}$, \\\\\nlet the coordinates of point C be $(a,0)$, according to the problem, we have CD=AC, \\\\\ntherefore, $\\sqrt{4+a^2}=4-a$, \\\\\nsolving it we find $a=\\frac{3}{2}$, \\\\\ntherefore, the coordinates of point C are $\\boxed{\\left(\\frac{3}{2}, 0\\right)}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51894652_192": { -"question": "As shown in the figure, the line $y=-\\frac{3}{4}x+3$ intersects the x-axis at point A and the y-axis at point B. Triangle $AOB$ is folded along a certain line passing through point B such that point A falls on point D located on the negative y-axis. The fold intersects the x-axis at point C. Find the equation of line BC.", -"image_file_name": "7052940", -"image": [ -"math/51894652_922.png" -], -"solution": "\\textbf{Solution:} Let the expression for line BC be $y=kx+b$,\\\\\n$\\therefore \\begin{cases}3=b\\\\ 0=\\frac{3}{2}k+b\\end{cases}$,\\\\\nsolving yields $\\begin{cases}k=-2\\\\ b=3\\end{cases}$,\\\\\n$\\therefore$ the expression for line BC is $\\boxed{y=-2x+3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53498218_194": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the line $y=mx$ intersects with the hyperbola $y=\\frac{n}{x}$ at points $A(-1, a)$ and $B$. The line segment $BC$ is perpendicular to the $x$-axis, with the foot of the perpendicular being $C$, and the area of $\\triangle AOC$ is 1. Find the equation of line $AC$.", -"image_file_name": "7052940", -"image": [ -"math/53498218_935.png" -], -"solution": "\\textbf{Solution:} Given that the line $y=mx$ intersects the hyperbola $y=\\frac{n}{x}$ at points $A(-1, a)$ and $B$,\\\\\nthe x-coordinate of point $B$ is 1,\\\\\nsince $BC$ is perpendicular to the x-axis with the foot at $C$,\\\\\nwe have $C(1, 0)$, and the distance $OC=1$,\\\\\nconsidering the area of $\\triangle AOC$ is 1,\\\\\nwe get $\\frac{1}{2}\\times 1\\cdot a=1$,\\\\\nsolving this equation yields $a=2$,\\\\\nthus, $A(-1, 2)$,\\\\\nLet the equation of line $AC$ be $y=kx+b$,\\\\\nsubstituting points $A(-1, 2), C(1, 0)$ into the equation yields: $\\left\\{\\begin{array}{l}-k+b=2 \\\\ k+b=0 \\end{array}\\right.$, solving these equations gives $\\left\\{\\begin{array}{l}k=-1 \\\\ b=1 \\end{array}\\right.$,\\\\\ntherefore, the equation of line $AC$ is $\\boxed{y=-x+1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53490748_197": { -"question": "As shown in the diagram, in the Cartesian coordinate system, given points $A(8, 1)$ and $B(0, -3)$, the graph of the inverse proportion function $y=\\frac{k}{x}$ $(x>0)$ passes through point A. The moving line $x=t$ $(00)$ passes through point $A\\left(8, 1\\right)$,\\\\\nthus, substituting the coordinates of point A into $y=\\frac{k}{x}$ yields: $1=\\frac{k}{8}$,\\\\\nsolving for $k$ gives $k=\\boxed{8}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53490748_198": { -"question": "As shown in the figure, in the Cartesian coordinate system, it is known that points $A(8, 1)$ and $B(0, -3)$. The graph of the inverse proportion function $y=\\frac{k}{x}$ $(x>0)$ passes through point A. The moving line $x=t$ $(00)$.\\\\\nLet the equation of line $AB$ be $y=k'x+b$,\\\\\nsubstituting points $A\\left(8, 1\\right)$ and $B\\left(0, -3\\right)$, we get $\\left\\{\\begin{array}{l}8k'+b=1\\\\ b=-3\\end{array}\\right.$,\\\\\nsolving this yields $\\left\\{\\begin{array}{l}k'=\\frac{1}{2}\\\\ b=-3\\end{array}\\right.$,\\\\\nthus, the equation of line $AB$ is $y=\\frac{1}{2}x-3$,\\\\\nthus, in $y=\\frac{1}{2}x-3$, when $x=t=4$, we find $y=-1$,\\\\\nthus, point $N\\left(4, -1\\right)$,\\\\\nin $y=\\frac{8}{x}(x>0)$, when $x=t=4$, we find $y=2$,\\\\\nthus, point $M\\left(4, 2\\right)$,\\\\\nthus, the distance $MN=2-\\left(-1\\right)=3$,\\\\\nsince points $A\\left(8, 1\\right)$ and $B\\left(0, -3\\right)$,\\\\\nthus, the area of $\\triangle BMA=\\frac{1}{2}MN\\times \\left({x}_{A}-{x}_{B}\\right)=\\frac{1}{2}\\times 3\\times \\left(8-0\\right)=\\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"53359586_200": { -"question": "The location of rectangle $ABCD$ in the Cartesian coordinate system is shown in the diagram, where $F$ is a point on $AB$. Fold $\\triangle BCF$ along $CF$ so that point $B$ precisely falls on the intersection point $E$ of $AD$ and the $y$-axis. Connect $CE$, if the lengths of $AE, AB$ satisfy $\\sqrt{AE-4}+(AB-8)^{2}=0$. What are the coordinates of points $A$ and $B$?", -"image_file_name": "7052940", -"image": [ -"math/53359586_958.png" -], -"solution": "\\textbf{Solution:} Solving from $\\sqrt{AE-4}+(AB-8)^{2}=0$, we have:\\\\\n$AE-4=0$ and $AB-8=0$\\\\\n$\\therefore AE=4$\\\\\n$AB=8$\\\\\n$\\therefore A(\\boxed{-4,8})$\\\\\n$B(\\boxed{-4,0})$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53359586_201": { -"question": "As shown in the figure, rectangle $ABCD$ is positioned in the Cartesian coordinate system as depicted, with $F$ being a point on $AB$. Fold $\\triangle BCF$ along $CF$ making point $B$ precisely fall on the intersection point $E$ of $AD$ and the y-axis. Connect $CE$. If the lengths of $AE$ and $AB$ satisfy $\\sqrt{AE-4}+(AB-8)^2=0$, what are the coordinates of point $D$?", -"image_file_name": "7052940", -"image": [ -"math/53359586_958.png" -], -"solution": "\\textbf{Solution:} Let $AE$ be $x$. According to the Pythagorean theorem, we have:\\\\\n$(8-x)^{2}-x^{2}=4^{2}$\\\\\nSolving this, we get: $x=3$\\\\\nLet $ED$ be $y$. According to the Pythagorean theorem, we have:\\\\\n$y^{2}+8^{2}=(y+4)^{2}$\\\\\nSolving this, we get: $y=6$\\\\\n$\\therefore \\boxed{D(6,8)}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53182915_204": { -"question": "As shown in the figure, in the Cartesian coordinate system \\(xOy\\), the side AB of the rhombus ABCD lies on the x-axis, and the vertex C is on the y-axis. It is known that the coordinates of points A and C are \\((-2, 0)\\) and \\((0, 4)\\), respectively. What are the coordinates of points B and D?", -"image_file_name": "7052940", -"image": [ -"math/53182915_962.png" -], -"solution": "\\textbf{Solution:} According to the problem, we know: $OA=2$, $OC=4$, $AB=BC$,\\\\\nLet $AB=BC=x$, $OB=AB-OA=x-2$,\\\\\n$\\therefore$ in right-angled $\\triangle OBC$, $BC^2=OB^2+OC^2$,\\\\\n$\\therefore$ $x^2=(x-2)^2+4^2$, solving this gives: $x=5$,\\\\\n$\\because$ rhombus ABCD, $AB=BC=CD$,\\\\\n$\\therefore$ $AB=CD=5$,\\\\\n$\\therefore$ $OB=3$,\\\\\n$\\therefore$ $B(3, 0)$,\\\\\n$\\because$ $CD \\parallel x$ axis, $CD=5$, $OC=4$,\\\\\n$\\therefore$ point $D(-5, 4)$,\\\\\nThus, the coordinates of points B and D are respectively \\boxed{B(3, 0)} and \\boxed{D(-5, 4)}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53182915_205": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the rhombus $ABCD$ has its edge $AB$ on the x-axis and vertex $C$ on the y-axis. It is known that the coordinates of points $A$ and $C$ are $\\left(-2, 0\\right)$ and $\\left(0, 4\\right)$, respectively. What is the area of the rhombus $ABCD$?", -"image_file_name": "7052940", -"image": [ -"math/53182915_962.png" -], -"solution": "\\textbf{Solution:} From the problem, we have the area of rhombus $ABCD$, $S_{\\text{rhombus} ABCD} = AB \\times OC = 5 \\times 4 = \\boxed{20}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53183208_207": { -"question": "As shown in the figure, the graph of the direct proportion function $y=2x$ intersects with the graph of the linear function $y=kx+b$ at point $A(m, 2)$. The graph of the linear function passes through point $B(-2, -1)$ and intersects with the $x$-axis at point $C$. What is the analytical expression of the linear function?", -"image_file_name": "7052940", -"image": [ -"math/53183208_970.png" -], -"solution": "\\textbf{Solution:} Since the graph of the direct proportion function $y=2x$ intersects with the graph of the linear function $y=kx+b$ at point $A(m, 2)$,\\\\\ntherefore $2m=2$, that is, $m=1$.\\\\\nSubstituting $(1, 2)$ and $(-2, -1)$ into $y=kx+b$, we get\\\\\n$\\begin{cases}\nk+b=2\\\\\n-2k+b=-1\n\\end{cases}$, which solves to $\\begin{cases}\nk=1\\\\\nb=1\n\\end{cases}$,\\\\\ntherefore the equation of the linear function is $\\boxed{y=x+1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53183208_208": { -"question": "As shown in the diagram, the graph of the direct proportion function $y=2x$ intersects with the graph of the linear function $y=kx+b$ at point $A(m, 2)$. The graph of the linear function passes through point $B(-2, -1)$ and intersects with the $x$-axis at point $C$. What is the area of $\\triangle AOC$?", -"image_file_name": "7052940", -"image": [ -"math/53183208_970.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, then $x+1=0$, thus $x=-1$.\\\\\nHence, the coordinates of point C are $(-1,0)$,\\\\\ntherefore, the area of $\\triangle AOC$ is $=\\frac{1}{2} \\times 1 \\times 2 = \\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53183204_210": { -"question": "The graph of the linear function $y=kx+b$ (where $k$ and $b$ are constants, and $k \\neq 0$) is shown in the figure. What are the values of $k$ and $b$?", -"image_file_name": "7052940", -"image": [ -"math/53183204_982.png" -], -"solution": "\\textbf{Solution:} Since the graph of the linear function $y=kx+b$ passes through the points $(1,0)$ and $(0,2)$,\\\\\nit follows that $\\begin{cases} b=2 \\\\ k+b=0 \\end{cases}$,\\\\\nwhich yields $\\begin{cases} k=\\boxed{-2} \\\\ b=\\boxed{2} \\end{cases}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53183204_211": { -"question": "The graph of the linear function $y=kx+b$ ($k$ and $b$ are constants, and $k\\neq 0$) is shown in the figure. Using the graph, directly write down the solution set of the inequality $kx+b<2$ with respect to $x$.", -"image_file_name": "7052940", -"image": [ -"math/53183204_982.png" -], -"solution": "\\textbf{Solution:} Let \\boxed{x > 0}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52344480_213": { -"question": "As shown in the figure, the graph of the linear function $y=ax+b$ passes through the points $(1,2)$ and $(-1,6)$. Question: What is the analytic expression of this linear function?", -"image_file_name": "7052940", -"image": [ -"math/52344480_990.png" -], -"solution": "\\textbf{Solution:} According to the problem, \\\\\nwhen $x=1$, $y=2$; \\\\\nwhen $x=-1$, $y=6$. \\\\\nTherefore, $\\begin{cases}2=a+b\\\\ 6=-a+b\\end{cases}$ \\\\\nSolving this system, we get $\\begin{cases}a=-2\\\\ b=4\\end{cases}$ \\\\\n$\\therefore$ the linear equation is: $y=-2x+4$. \\\\\nHence, the answer is $\\boxed{y=-2x+4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52344480_214": { -"question": "Given the graph as shown, the graph of the linear function $y=ax+b$ passes through points $(1,2)$ and $(-1,6)$. Find: the area enclosed by the graph of the linear function and the two coordinate axes.", -"image_file_name": "7052940", -"image": [ -"math/52344480_990.png" -], -"solution": "\\textbf{Solution:} The graph of the linear function intersects the y-axis and x-axis at points A and B, respectively.\n\nGiven $y=-2x+4$, we have\n\nCoordinates of point A $(0,4)$, coordinates of point B $(2,0)$,\n\nwhich means $OA=4$, $OB=2$.\n\nTherefore, the area of $\\triangle AOB$ is $\\frac{1}{2}OA \\cdot OB=\\frac{1}{2} \\times 4 \\times 2=\\boxed{4}$.\n\nThus, the area enclosed by the graph of the linear function and the two coordinate axes is \\boxed{4}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53102367_61": { -"question": "As shown in the figure, $AC$ bisects $\\angle BAD$, and $\\angle BAD = \\angle BCD$. What is the measure of $\\angle DBC$?", -"image_file_name": "7058773", -"image": [ -"math/53102367_603.png" -], -"solution": "\\textbf{Solution:} We have $\\angle DBC = \\boxed{45^\\circ}$.", -"solution_image": [ -"solution_images/53102367_6015.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53102367_62": { -"question": "As shown in the figure, $AC$ bisects $\\angle BAD$, and $\\angle BAD = \\angle BCD$. If $AD=6$, $AB=8$, then what is the length of $AC$?", -"image_file_name": "7058773", -"image": [ -"math/53102367_603.png" -], -"solution": "\\textbf{Solution:} We have $AC=\\boxed{7\\sqrt{2}}$.", -"solution_image": [ -"solution_images/53102367_6015.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53124735_79": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, and the quadrilateral ABCD is inscribed in $\\odot O$. OD intersects AC at point E, where OD $\\parallel$ BC, and AD = CD; if AC = 8 and DE = 2, find the length of BC.", -"image_file_name": "7058773", -"image": [ -"math/53124735_750.png" -], -"solution": "\\textbf{Solution:} Given that $\\because$ OD$\\perp$AC, and AC$=8$,\n\n$\\therefore$ AE$= \\frac{1}{2}$ AC$=4$,\n\nLet the radius of $\\odot$O be r,\n\n$\\because$ DE$=2$,\n\n$\\therefore$ OE$=$OD$-$DE$=r-2$,\n\nIn the $\\triangle AEO$, $AE^{2}$ + $OE^{2}$ = $AO^{2}$,\n\n$\\therefore$ $16+(r-2)^{2}=r^{2}$,\n\nSolving for r we get r$=5$,\n\n$\\therefore$ AB$=2r=10$,\n\nIn $\\triangle ACB$, $BC= \\sqrt{AB^{2}-AC^{2}} = \\sqrt{10^{2}-8^{2}} = \\boxed{6}$,\n\n$\\therefore$ the length of BC is $\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53081489_81": { -"question": "As shown in the figure, $AB$ is a chord of the circle $\\odot O$, $OD\\perp AB$ with the foot of the perpendicular at $E$, intersecting $\\odot O$ at points $C$ and $D$. If $\\angle AOD=50^\\circ$, what is the degree measure of $\\angle DOB$?", -"image_file_name": "7058773", -"image": [ -"math/53081489_767.png" -], -"solution": "\\textbf{Solution:} Since $OD \\perp AB$,\\\\\nit follows that $\\overset{\\frown}{AD} = \\overset{\\frown}{BD}$,\\\\\ntherefore, $\\angle DOB = \\angle AOD = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53081489_82": { -"question": "As shown in the figure, $AB$ is a chord of the circle $\\odot O$, $OD\\perp AB$, the foot of the perpendicular is $E$, intersecting $\\odot O$ at points $C$ and $D$. Given that $AB=2\\sqrt{5}$ and $ED=1$, what is the length of the radius of $\\odot O$?", -"image_file_name": "7058773", -"image": [ -"math/53081489_767.png" -], -"solution": "\\textbf{Solution:} Let the radius be $r$. Since $OD\\perp AB$ and $AB=2\\sqrt{5}$, it follows that $AE=BE=\\frac{1}{2}AB=\\sqrt{5}$. In $\\triangle AOE$, we have $OE^2+AE^2=OA^2$. Given $ED=1$ and the radius is $r$, we have $OE=r-1$. Thus, $(r-1)^2+(\\sqrt{5})^2=r^2$, which solves to $r=\\boxed{3}$. Therefore, $OA=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53081384_85": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, and the semicircle $O$ with diameter $AB$ intersects $BC$ and $AC$ at points $D$ and $E$, respectively. Connect $DE$ and $OD$. $\\overset{\\frown}{BD}=\\overset{\\frown}{ED}$. When the ratio of the degrees of $\\overset{\\frown}{AE}$ and $\\overset{\\frown}{BE}$ is $4\\colon 5$, find the degrees of the four interior angles of quadrilateral $ABDE$.", -"image_file_name": "7058773", -"image": [ -"math/53081384_770.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\overset{\\frown}{AE}$ + $\\overset{\\frown}{BE}$ = $180^\\circ$ and the ratio of the degrees of $\\overset{\\frown}{AE}$ to $\\overset{\\frown}{BE}$ is $4\\colon 5$, $\\therefore$ $\\overset{\\frown}{AE}$ = $80^\\circ$, $\\overset{\\frown}{BE}$ = $100^\\circ$. Consequently, $\\overset{\\frown}{BD}$ = $\\overset{\\frown}{ED}$ = $50^\\circ$, hence $\\overset{\\frown}{AD}$ = $\\overset{\\frown}{AE}$ + $\\overset{\\frown}{ED}$ = $130^\\circ$. Therefore, $\\angle BAE$ = $\\frac{1}{2} \\overset{\\frown}{BE}$ = $50^\\circ$, $\\angle B$ = $\\frac{1}{2} \\overset{\\frown}{AD}$ = $65^\\circ$, $\\because$ $\\angle AED$ + $\\angle B$ = $180^\\circ$ and $\\angle BDE$ + $\\angle A$ = $180^\\circ$, $\\therefore$ $\\angle AED$ = $115^\\circ$, $\\angle BDE$ = $130^\\circ$, thus $\\angle BAE$ = $\\boxed{50^\\circ}$, $\\angle B$ = $\\boxed{65^\\circ}$, $\\angle BDE$ = $\\boxed{130^\\circ}$, $\\angle AED$ = $\\boxed{115^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080790_88": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$. Circle $\\odot O$ is drawn with $AB$ as the diameter, intersecting $BC$ at point $D$ and $AC$ at point $E$. The arc $\\overset{\\frown}{BD}=\\overset{\\frown}{DE}$. If $\\angle BAC=50^\\circ$, find the degree measure of the arc $\\overset{\\frown}{AE}$.", -"image_file_name": "7058773", -"image": [ -"math/53080790_787.png" -], -"solution": "\\textbf{Solution:} Connect $OE$, as shown in Figure 2:\\\\\n$\\because$ $AB$ is the diameter of $\\odot O$,\\\\\n$\\therefore$ $OA$ is the radius,\\\\\n$\\therefore$ $OA=OE$,\\\\\n$\\therefore$ $\\angle OEA=\\angle BAC=50^\\circ$,\\\\\n$\\therefore$ $\\angle AOE=180^\\circ-50^\\circ-50^\\circ=80^\\circ$,\\\\\n$\\therefore$ The degree measure of $\\overset{\\frown}{AE}$ is $\\boxed{80^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080238_90": { -"question": "As shown in the figure, in circle $O$, chord $AB=8$, point $C$ is on circle $O$ ($C$ does not coincide with $A$ and $B$). Connect $CA$ and $CB$, and draw $OD\\perp AC$ and $OE\\perp BC$ through point $O$, where the feet of the perpendiculars are points $D$ and $E$, respectively. Find the length of line segment $DE$.", -"image_file_name": "7058773", -"image": [ -"math/53080238_7914.png" -], -"solution": "\\textbf{Solution:} Since $OD$ passes through the center $O$, and $OD\\perp AC$,\\\\\n$\\therefore AD=DC$,\\\\\nSimilarly, $CE=EB$,\\\\\n$\\therefore DE$ is the median of $\\triangle ABC$,\\\\\n$\\therefore DE=\\frac{1}{2}AB$,\\\\\nSince $AB=8$,\\\\\n$\\therefore DE=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080238_91": { -"question": "As shown in the diagram, within circle $O$, chord $AB=8$, and point $C$ is on circle $O$ (and is distinct from $A$ and $B$). Connect $CA$ and $CB$, and draw $OD \\perp AC$ and $OE \\perp BC$ with perpendicular foot at points $D$ and $E$, respectively. The distance from point $O$ to $AB$ is 3. What is the radius of circle $O$?", -"image_file_name": "7058773", -"image": [ -"math/53080238_7914.png" -], -"solution": "\\textbf{Solution:} Draw $OH\\perp AB$ through point $O$, with the foot as point $H$, where $OH=3$, and connect $OA$.\\\\\nSince $OH$ passes through the center $O$,\\\\\nit follows that $AH=BH=\\frac{1}{2}AB$,\\\\\nSince $AB=8$,\\\\\nit follows that $AH=4$,\\\\\nIn $\\triangle AHO$, we have $AH^2+OH^2=AO^2$,\\\\\ntherefore $AO=\\boxed{5}$,\\\\\nwhich means the radius of circle $O$ is $\\boxed{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080605_94": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $AC$ being the diameter of $\\odot O$, and $\\angle ADB = \\angle CDB$. If $AB = 2\\sqrt{2}$ and $AD = 2$, find the length of $CD$.", -"image_file_name": "7058773", -"image": [ -"math/53080605_805.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC$ is an isosceles right-angled triangle,\\\\\nit follows that $BC=AB=2\\sqrt{2}$,\\\\\nhence $AC=\\sqrt{AB^{2}+BC^{2}}=4$,\\\\\nIn $\\triangle ADC$, where $\\angle ADC=90^\\circ$ and $AD=2$,\\\\\nit therefore follows that $CD=\\sqrt{AC^{2}-AD^{2}}=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080407_96": { -"question": "As shown in the diagram, in $\\triangle ABC$, $AB=AC$, a semicircle with diameter $AB$ intersects $AC$ and $BC$ at points $E$ and $D$, respectively. Connect $ED$. If $\\angle BAC=55^\\circ$, find the degree measure of arc $AE$.", -"image_file_name": "7058773", -"image": [ -"math/53080407_816.png" -], -"solution": "\\textbf{Solution:} Connect $BE$, $OE$\\\\\nSince $AB$ is a diameter\\\\\nTherefore $\\angle AEB=90^\\circ$\\\\\nSince $\\angle BAC=55^\\circ$\\\\\nTherefore $\\angle ABE=90^\\circ-\\angle BAC=35^\\circ$\\\\\nTherefore $\\angle AOE=2\\angle ABE=70^\\circ$;\\\\\nTherefore, the degree measure of arc $AE$ is $\\boxed{70^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080543_100": { -"question": "Given: As shown in the figure, $\\triangle ABC$ is inscribed in $\\odot O$, with $AB$ being the diameter. The bisector of $\\angle CBA$ intersects $AC$ at point $F$ and intersects $\\odot O$ at point $D$. $DE \\perp AB$ at point $E$, and it intersects $AC$ at point $P$. Connect $AD$. $\\angle DAC = \\angle DBA$; Connect $CD$. If $CD=6$ and $BD=8$, find the radius of $\\odot O$ and the length of $DE$.", -"image_file_name": "7058773", -"image": [ -"math/53080543_8213.png" -], -"solution": "Solution: As shown in the diagram:\\\\\n$\\because \\angle CBD=\\angle DBA$,\\\\\n$\\therefore AD=CD=6$,\\\\\n$\\therefore AB=\\sqrt{AD^{2}+BD^{2}}=10$,\\\\\n$\\therefore$ the radius of $\\odot O$ is $\\boxed{5}$,\\\\\n$\\because \\frac{1}{2}AD\\cdot BD=\\frac{1}{2}AB\\cdot DE$,\\\\\n$\\therefore \\frac{1}{2}\\times 6\\times 8=\\frac{1}{2}\\times 10\\times DE$,\\\\\nSolving gives: $DE=\\boxed{4.8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53080829_102": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $\\angle ADC=2\\angle B$, and point $D$ is the midpoint of $\\overset{\\frown}{AC}$. What is the measure of $\\angle B$ in degrees?", -"image_file_name": "7058773", -"image": [ -"math/53080829_835.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ADC=2\\angle B$\\\\\nAnd since $\\angle ADC+\\angle B=180^\\circ$\\\\\nTherefore, $\\angle B=\\boxed{60^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53078807_105": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $OC=2$, and $AC=2\\sqrt{2}$. The quadrilateral $AOCD$ is a rhombus. Find the distance from point $O$ to $AC$.", -"image_file_name": "7058773", -"image": [ -"math/53078807_841.png" -], -"solution": "\\textbf{Solution:} Connect OA and construct OH $\\perp$ AC at H,\\\\\nOA$^{2}$+OC$^{2}=8$, AC$^{2}=8$,\\\\\n$\\therefore$ OA$^{2}$+OC$^{2}$=AC$^{2}$,\\\\\n$\\therefore$ $\\triangle AOC$ is an isosceles right triangle, $\\angle AOC=90^\\circ$,\\\\\n$\\therefore$ OH=$\\frac{1}{2}$AC=$\\sqrt{2}$, that is, the distance from point O to AC is $\\boxed{\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53078807_106": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in a circle $\\odot O$, $OC=2$, and $AC=2\\sqrt{2}$. What is the measure of $\\angle ADC$ in degrees?", -"image_file_name": "7058773", -"image": [ -"math/53078807_841.png" -], -"solution": "\\textbf{Solution:} From the given condition, we have\\\\\n$\\because \\angle AOC=90^\\circ,$\\\\\n$\\therefore \\angle B= \\frac{1}{2}\\angle AOC=45^\\circ,$\\\\\n$\\because$ quadrilateral ABCD is inscribed in circle $O$,\\\\\n$\\therefore \\angle ADC=180^\\circ-45^\\circ=\\boxed{135^\\circ}.$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53065830_109": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, point $C$ is a point on $\\odot O$, connect $BC$ and $AC$. Point $E$ is the midpoint of $BC$, connect and extend $OE$ to intersect the circle at point $D$. $OD\\parallel AC$. If $DE=2$ and $BE=2\\sqrt{3}$, find the area of the shaded region.", -"image_file_name": "7058773", -"image": [ -"math/53065830_850.png" -], -"solution": "\\textbf{Solution:} Connect OC, and set the radius of the circle as $r$, then $OE=r-2$,\\\\\n$\\because O{E}^{2}+B{E}^{2}=O{B}^{2}$,\\\\\n$\\therefore {\\left(r-2\\right)}^{2}+{\\left(2\\sqrt{3}\\right)}^{2}={r}^{2}$,\\\\\nSolving this, we get $r=4$,\\\\\n$\\therefore OE=2=\\frac{1}{2}OB$,\\\\\n$\\therefore \\angle ABC=30^\\circ$,\\\\\n$\\therefore \\angle COA=60^\\circ$,\\\\\nFrom (1), we have $BE=CE=2\\sqrt{3}$,\\\\\n$\\therefore BC=4\\sqrt{3}$,\\\\\n$\\therefore {S}_{\\triangle BOC}=\\frac{1}{2}OE\\cdot BC=4\\sqrt{3}$,\\\\\n$\\because \\triangle BOC$ and $\\triangle AOC$ have the same base and height,\\\\\n$\\therefore {S}_{\\triangle AOC}={S}_{\\triangle BOC}=4\\sqrt{3}$,\\\\\n$\\therefore {S}_{\\text{shaded}}={S}_{\\text{sector} AOC}-{S}_{\\triangle AOC}=\\frac{60^\\circ \\cdot \\pi \\times {4}^{2}}{360}-4\\sqrt{3}=\\boxed{\\frac{8\\pi }{3}-4\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53110820_112": { -"question": "As shown in Figure 1, $AB$ is the diameter of $\\odot O$, and the tangent $BM$ is drawn from point B. The chord $CD$ is parallel to $BM$ and intersects $AB$ at point F, with $\\overset{\\frown}{DA}=\\overset{\\frown}{DC}$. The lines $AC$ and $AD$ are connected, and $AD$ is extended to meet $BM$ at point E. $\\triangle ACD$ is an equilateral triangle; $OE$ is connected. If $OE=2\\sqrt{7}$, find the length of $DE$.", -"image_file_name": "7058773", -"image": [ -"math/53110820_8611.png" -], -"solution": "\\textbf{Solution:} Given the problem statement, since $\\triangle ACD$ is an equilateral triangle and $AB \\perp CD$, \\\\\nit follows that $\\angle BAD = 30^\\circ$, \\\\\nconnect $BD$, \\\\\nsince $AB$ is the diameter of $\\odot O$, \\\\\nit follows that $\\angle ADB = 90^\\circ$, \\\\\nthus $\\angle ABD = 60^\\circ$, $BD = \\frac{1}{2}AB = OB$, \\\\\nsince $\\angle ABE = 90^\\circ$, \\\\\nit follows that $\\angle DBE = 30^\\circ$, \\\\\nthus $BE = 2DE$, \\\\\nlet $DE = x$, then $BE = 2x$, \\\\\nthus $BD = \\sqrt{BE^{2} - DE^{2}} = \\sqrt{(2x)^{2} - x^{2}} = \\sqrt{3}x$, \\\\\nthus $OB = \\sqrt{3}x$, \\\\\nthus $OE = \\sqrt{BE^{2} + OB^{2}} = \\sqrt{(2x)^{2} + (\\sqrt{3}x)^{2}} = \\sqrt{7}x$, \\\\\nsince $OE = 2\\sqrt{7}$, \\\\\nit follows that $x = \\boxed{2}$, \\\\\nthus $DE = \\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53042797_115": { -"question": "As shown in the figure, with side $AB$ of $\\triangle ABC$ as the diameter, draw $\\odot O$, which intersects side $AC$ at point $D$, and $BC$ is a tangent of $\\odot O$. A chord $DE \\perp AB$ at point $F$, and connect $BE$. It is given that $\\angle ABE = \\angle C$. If point $F$ is the midpoint of $OB$, and $OF=1$, what is the length of the line segment $ED$?", -"image_file_name": "7058773", -"image": [ -"math/53042797_876.png" -], -"solution": "\\textbf{Solution:} Connect $OE$,\\\\\nsince point $F$ is the midpoint of $OB$,\\\\\nit follows that $OF=\\frac{1}{2}OB=\\frac{1}{2}OE$,\\\\\nand since $OF=1$,\\\\\nit follows that $OE=2$. By the Pythagorean theorem, $EF=\\sqrt{3}$,\\\\\nand since $DE\\perp AB$,\\\\\nit follows that $DE=2EF=2\\sqrt{3}$,\\\\\nthus, the length of segment $ED$ is $DE=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53043302_118": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, and chord $CD\\perp AB$ at point $E$. A perpendicular line to $DB$ is drawn through point $C$, intersecting the extension of $AB$ at point $G$, with the foot of the perpendicular being point $F$. Connect $AC$, where $\\angle A=\\angle D$. $AC=CG$; given $CD=EG=8$, what is the radius of $\\odot O$?", -"image_file_name": "7058773", -"image": [ -"math/53043302_887.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect $OC$,\\\\\nlet the radius of $\\odot O$ be $r$, thus $OA=OC=r$,\\\\\nsince $CA=CG$, $CD\\perp AB$, $CD=EG=8$,\\\\\ntherefore $AE=EG=8$, $EC=ED=\\frac{1}{2}CD=4$,\\\\\nhence $OE=AE−OA=8−r,$\\\\\nin $\\triangle OEC$, by the Pythagorean theorem, we have $OC^{2}=OE^{2}+EC^{2}$, which is $r^{2}=(8−r)^{2}+4^{2}$,\\\\\nsolving it, we get $r=\\boxed{5}$,\\\\\ntherefore, the radius of $\\odot O$ is $5$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53042861_121": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, $CD$ is a chord of $\\odot O$, and $CD \\perp AB$ at point $E$. $\\angle BCO = \\angle D$; Given $BE = 8\\,\\text{cm}, CD = 6\\,\\text{cm}$, what is the radius of $\\odot O$?", -"image_file_name": "7058773", -"image": [ -"math/53042861_890.png" -], -"solution": "\\textbf{Solution:}\n\nBecause $AB$ is the diameter of the circle $O$, and $CD \\perp AB$,\n\ntherefore $CE=DE=\\frac{1}{2}CD=\\frac{1}{2}\\times 6=3$,\n\nbecause $\\angle B=\\angle D$ and $\\angle BEC=\\angle DEA$,\n\ntherefore $\\triangle BCE \\sim \\triangle DAE$,\n\ntherefore $AE: CE=DE: BE$,\n\ntherefore $AE: 3=3: 8$,\n\nsolving gives $AE=\\frac{9}{8}$,\n\ntherefore $AB=AE+BE=\\frac{9}{8}+8=\\frac{73}{8}$,\n\ntherefore the radius of circle $O$ is $\\boxed{\\frac{73}{16}}$ (cm).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53102087_123": { -"question": "As shown in the figure, within circle $O$, $AB$ is a diameter, and point $D$ lies on circle $O$. Point $C$ is the midpoint of arc $\\stackrel{\\frown}{AD}$. Chord $CM$ is perpendicular to $AB$ at point $F$. Connect $AD$, which intersects $CF$ at point $P$, and connect $BC$. Given that $\\angle DAB=30^\\circ$, what is the measure of $\\angle ABC$?", -"image_file_name": "7058773", -"image": [ -"math/53102087_9013.png" -], -"solution": "\\textbf{Solution}: Draw line BD, since AB is the diameter of $\\odot$O,\\\\\ntherefore $\\angle ADB=90^\\circ$,\\\\\nsince $\\angle DAB=30^\\circ$,\\\\\ntherefore $\\angle ABD=90^\\circ-30^\\circ=60^\\circ$,\\\\\nsince C is the midpoint of $\\overset{\\frown}{AD}$,\\\\\ntherefore $\\angle ABC=\\angle DBC=\\frac{1}{2}\\angle ABD=30^\\circ$;\\\\\nthus, the degree of $\\angle ABC$ is $\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53102087_124": { -"question": "As shown in the figure, inside the circle $\\odot O$, $AB$ is a diameter, point $D$ is a point on $\\odot O$, point $C$ is the midpoint of the arc $\\overset{\\frown}{AD}$, the chord $CM\\perp AB$ at point $F$, connect $AD$, intersecting $CF$ at point $P$, and connect $BC$, with $\\angle DAB=30^\\circ$. If $CM=8\\sqrt{3}$, find the length of the arc $\\overset{\\frown}{AC}$ (the result should retain $\\pi$).", -"image_file_name": "7058773", -"image": [ -"math/53102087_9013.png" -], -"solution": "\\textbf{Solution:} Connect OC, then $\\angle AOC=2\\angle ABC=60^\\circ$,\\\\\n$\\because$ CM $\\perp$ diameter AB at point F,\\\\\n$\\therefore$ CF=$\\frac{1}{2}$CM=$4\\sqrt{3}$, $\\angle CFO=90^\\circ$,\\\\\n$\\therefore$ in $\\triangle COF$, $\\angle OCF=30^\\circ$,\\\\\n$\\therefore$ OC=2OF, $OF^2+CF^2=OC^2$, that is $OF^2+(4\\sqrt{3})^2=(2OF)^2$,\\\\\nSolving gives: OF=4, $\\therefore$ OC=8,\\\\\n$\\therefore$ the length of $\\overset{\\frown}{AC}$ is $\\frac{60^\\circ\\pi \\times 8}{180}=\\boxed{\\frac{8\\pi }{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53019741_126": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $\\angle C = 2\\angle A$. $DE$ is the diameter of $\\odot O$, and $BD$ is connected. What is the degree measure of $\\angle A$?", -"image_file_name": "7058773", -"image": [ -"math/53019741_916.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is inscribed in circle $\\odot O$,\\\\\nit follows that $\\angle C+\\angle A=180^\\circ$,\\\\\nand since $\\angle C=2\\angle A$,\\\\\nit results in $\\angle A=\\boxed{60^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53019741_127": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with $\\angle C=2\\angle A$. $DE$ is the diameter of circle $\\odot O$, and $BD$ is connected. If the diameter of $\\odot O$ is 4, what is the length of $BD$?", -"image_file_name": "7058773", -"image": [ -"math/53019741_916.png" -], -"solution": "\\textbf{Solution:} Connect $BE$,\\\\\nsince by the Inscribed Angle Theorem we have $\\angle BED=\\angle A=60^\\circ$,\\\\\nand since $DE$ is the diameter of circle $\\odot O$,\\\\\nit follows that $\\angle EBD=90^\\circ$,\\\\\nthus $\\angle BDE=90^\\circ-60^\\circ=30^\\circ$,\\\\\ntherefore $BE=\\frac{1}{2}DE=\\frac{1}{2}\\times 4=2$,\\\\\ntherefore $BD=\\sqrt{DE^{2}-BE^{2}}=2\\sqrt{3}$.\\\\\nHence, the length of $BD$ is $\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53009799_129": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $\\odot O$ is the circumcircle of $\\triangle ABC$, and the extension of $BO$ intersects side $AC$ at point $D$. If $\\angle ACB=60^\\circ$ and $BC=8\\sqrt{3}$, what is the radius of $\\odot O$?", -"image_file_name": "7058773", -"image": [ -"math/53009799_920.jpeg" -], -"solution": "\\textbf{Solution:} Draw line OA and extend it to intersect BC at point E,\\\\\n$\\because$ AB = AC,\\\\\n$\\therefore$ $\\overset{\\frown}{AB}$ = $\\overset{\\frown}{AC}$,\\\\\n$\\because$ AE passes through the center O,\\\\\n$\\therefore$ AE is the perpendicular bisector of BC,\\\\\n$\\therefore$ AE bisects $\\angle$BAC, and BE = $\\frac{1}{2}$BC = $4\\sqrt{3}$,\\\\\n$\\therefore$ $\\angle$BAC = $2\\angle$BAE,\\\\\n$\\because$ OA = OB,\\\\\n$\\therefore$ $\\angle$ABD = $\\angle$BAE,\\\\\n$\\because$ AB = AC and $\\angle$ACB = $60^\\circ$,\\\\\n$\\therefore$ $\\angle$ABC = $\\angle$ACB = $\\angle$BAC = $60^\\circ$,\\\\\n$\\therefore$ $\\angle$ABD = $\\frac{1}{2}\\angle$BAC = $30^\\circ$,\\\\\n$\\therefore$ $\\angle$CBD = $30^\\circ$,\\\\\n$\\therefore$ OB = \\boxed{8},\\\\\nThus, the radius of $\\odot$O is 8.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53009799_130": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, and $\\odot O$ is the circumcircle of $\\triangle ABC$, with the extension line of $BO$ intersecting side $AC$ at point $D$. When $\\triangle BCD$ is an isosceles triangle, find the measure of $\\angle BCD$.", -"image_file_name": "7058773", -"image": [ -"math/53009799_920.jpeg" -], -"solution": "\\textbf{Solution:} Let $\\angle ABD=x$,\\\\\nfrom (1) we know that $\\angle BAC=2\\angle ABD=2x$,\\\\\n$\\therefore \\angle BDC=3x$,\\\\\n$\\triangle BCD$ is an isosceles triangle,\\\\\n(1) If $BD=BC$,\\\\\nthen $\\angle C=\\angle BDC=3x$,\\\\\n$\\because AB=AC$,\\\\\n$\\therefore \\angle ABC=\\angle C=3x$,\\\\\nIn $\\triangle ABC$, $\\angle ABC+\\angle C+\\angle BAC=180^\\circ$,\\\\\n$\\therefore 3x+3x+2x=180^\\circ$,\\\\\nsolving for $x$, we get $x=22.5^\\circ$,\\\\\n$\\therefore \\angle BCD=3x=67.5^\\circ$,\\\\\n(2) If $BC=CD$, then $\\angle BDC=\\angle CBD=3x$,\\\\\n$\\therefore \\angle ABC=\\angle ACB=4x$,\\\\\nIn $\\triangle ABC$, $\\angle ABC+\\angle C+\\angle BAC=180^\\circ$,\\\\\n$\\therefore 4x+4x+2x=180^\\circ$,\\\\\n$\\therefore x=18^\\circ$,\\\\\n$\\therefore \\angle BCD=4x=72^\\circ$,\\\\\nIn summary, $\\triangle BCD$ is an isosceles triangle, $\\angle BCD$ is either $\\boxed{67.5^\\circ}$ or $\\boxed{72^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53009890_132": { -"question": "As shown in the figure, the running trajectory of the \"Tube Cart\" water barrel is a circle centered at $O$. It is known that the center $O$ is always above the water surface, and when the chord $AB$ cut by the water surface is $6\\, \\text{m}$, the maximum depth of the water barrel below the water surface is $1\\, \\text{m}$ (that is, the maximum distance from a point on the part of the circle below the water surface to the water surface). Find the radius of the circle in meters.", -"image_file_name": "7058773", -"image": [ -"math/53009890_937.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $OD\\perp AB$ at point $E$, intersecting the circle at point $D$, \\\\\nthen $AE=\\frac{1}{2}AB=3$ meters, $DE=1$ meter, \\\\\nlet the radius of the circle be $r$ meters, \\\\\nin the right triangle $\\triangle AOE$, we have $AE^{2}+OE^{2}=OA^{2}$, \\\\\n$\\therefore 3^{2}+(r-1)^{2}=r^{2}$, \\\\\nsolving this equation, we find $r=\\boxed{5}$, \\\\\n$\\therefore$ the radius of the circle is $\\boxed{5}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53009890_133": { -"question": "As illustrated, the operating track of the \"Tank Car\" water tank is a circle centered at axis $O$. It is known that the center $O$ is always above the water surface. When the chord $AB$ intercepted by the water surface is $6\\text{m}$, the maximum depth of the water tank below the surface is $1\\text{m}$ (i.e., the maximum distance from a point on the circle below the surface to the water surface). If the water level rises causing the chord $AB$ intercepted by the water surface to change from the original $6\\text{m}$ to $8\\text{m}$, what is the new maximum depth of the water tank below the surface, in meters?", -"image_file_name": "7058773", -"image": [ -"math/53009890_937.png" -], -"solution": "\\textbf{Solution:} As shown in the figure above, when $AB=8$ meters, $AE=\\frac{1}{2}AB=4$,\\\\\nin the right-angled triangle $\\triangle AOE$, $AE^2+OE^2=OA^2$,\\\\\n$\\therefore 4^2+OE^2=5^2$,\\\\\n$\\therefore OE=3$ meters,\\\\\n$\\therefore DE=5-3=2$ meters,\\\\\nTherefore, the maximum depth of the water container below the surface is $\\boxed{2}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53009663_136": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $\\angle A=30^\\circ$, $AB=10$. The circle $\\odot O$ with $AB$ as the diameter intersects $BC$ at point $D$ and $AC$ at point $E$. Connect $DE$. Draw $BP$ through point $B$ parallel to $DE$ and intersect $\\odot O$ at point $P$. Connect $CP$ and $OP$. Point $D$ is the midpoint of $BC$; find the length of $\\overset{\\frown}{AP}$.", -"image_file_name": "7058773", -"image": [ -"math/53009663_9418.png" -], -"solution": "\\textbf{Solution:} Given $AB=AC$ and $\\angle A=30^\\circ$,\\\\\nit follows that $\\angle ABC=\\frac{1}{2}\\left(180^\\circ-30^\\circ\\right)=75^\\circ$,\\\\\nsince quadrilateral $ABDE$ is inscribed in a circle,\\\\\nwe have $\\angle BAE+\\angle BDE=\\angle BDE+\\angle CDE=180^\\circ$,\\\\\nthus $\\angle CDE=\\angle BAE=30^\\circ$,\\\\\ngiven $BP\\parallel DE$,\\\\\nit follows that $\\angle PBC=\\angle EDC=30^\\circ$,\\\\\ntherefore, $\\angle ABP=\\angle ABC-\\angle PBC=75^\\circ-30^\\circ=45^\\circ$,\\\\\nthus, $\\angle AOP=2\\angle ABP=90^\\circ$,\\\\\nhence, the length of $\\overset{\\frown}{AP}$ is: $\\frac{90\\pi \\times 5}{180}=\\boxed{\\frac{5}{2}\\pi}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53009507_138": { -"question": "As shown in the figure, $AB$ is the diameter of the semicircle $O$, and $C$ and $D$ are two points on the semicircle $O$, with $OD \\parallel BC$, and $OD$ intersects $AC$ at point $E$. If $\\angle B=72^\\circ$, find the degree measure of $\\angle CAD$.", -"image_file_name": "7058773", -"image": [ -"math/53009507_959.png" -], -"solution": "\\textbf{Solution:} Given that $AB$ is the diameter of the semicircle $O$,\\\\\nit follows that $\\angle C=90^\\circ$,\\\\\nsince $\\angle B=72^\\circ$,\\\\\nit follows that $\\angle CAB=90^\\circ-\\angle B=18^\\circ$,\\\\\nsince $OD\\parallel BC$,\\\\\nit follows that $\\angle AOD=\\angle B=72^\\circ$,\\\\\nsince $OA=OD$,\\\\\nit follows that $\\angle OAD=\\angle D=54^\\circ$,\\\\\ntherefore $\\angle CAD=\\angle OAD-\\angle CAB=\\boxed{36^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53009507_139": { -"question": "As shown in the figure, $AB$ is the diameter of the semicircle $O$, and $C$, $D$ are two points on the semicircle $O$, with $OD\\parallel BC$, and $OD$ intersects $AC$ at point $E$. If $AB=13$ and $AC=12$, find the length of $DE$.", -"image_file_name": "7058773", -"image": [ -"math/53009507_959.png" -], -"solution": "\\textbf{Solution:} Given that $AB=13$ and $AC=12$,\\\\\nit follows that $BC=\\sqrt{AB^{2}-AC^{2}}=5$.\\\\\nSince $OD\\parallel BC$ and $\\angle C=90^\\circ$,\\\\\nit implies $OD\\perp AC$,\\\\\nwhich means $AE=CE$.\\\\\nGiven $OA=OB$,\\\\\nit can be deduced that $OE=\\frac{1}{2}BC=2.5$.\\\\\nSince $OD=OA=\\frac{1}{2}AB=6.5$,\\\\\nit follows that $DE=OD-OE=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53009657_141": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, $BC$ is the chord of $\\odot O$, the radius $OD \\perp BC$ with the foot of the perpendicular being $E$. Given that $BC=6\\sqrt{3}$ and $DE=3$, find the radius of $\\odot O$?", -"image_file_name": "7058773", -"image": [ -"math/53009657_967.png" -], -"solution": "\\textbf{Solution:} Let the radius of $\\odot O$ be $r$,\\\\\nsince radius $OD\\perp BC$,\\\\\nthen it follows that $CE=\\frac{1}{2}BC=3\\sqrt{3}$,\\\\\nsince $OC^{2}=CE^{2}+OE^{2}$,\\\\\nthen $r^{2}=(r-3)^{2}+(3\\sqrt{3})^{2}$,\\\\\nthus $r=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"53009657_142": { -"question": "As shown in the figure, $AB$ is the diameter of $\\odot O$, $BC$ is a chord of $\\odot O$, and the radius $OD\\perp BC$ with the foot of the perpendicular being $E$. If $BC=6\\sqrt{3}$ and $DE=3$, find the area of the shaded region (the result should retain $\\pi$).", -"image_file_name": "7058773", -"image": [ -"math/53009657_967.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle CEO=90^\\circ$ and $CO=2OE$,\\\\\n$\\therefore \\angle ECO=30^\\circ$.\\\\\nSince $AB$ is the diameter of $\\odot O$,\\\\\n$\\therefore \\angle ACB=90^\\circ$,\\\\\n$\\therefore \\angle ACO=60^\\circ$.\\\\\nSince $OA=OC$,\\\\\n$\\therefore \\triangle ACO$ is an equilateral triangle,\\\\\n$\\therefore \\angle AOC=60^\\circ$,\\\\\n$\\therefore S_{\\text{shaded}}=S_{\\text{sector} ACO}-S_{\\triangle AOC}=\\frac{60\\pi \\times 6^2}{360}-\\frac{1}{2}\\times 6\\times 6\\times \\frac{\\sqrt{3}}{2}=6\\pi -9\\sqrt{3}$.\\\\\n$\\therefore$ The area of the shaded part is $S_{\\text{shaded}}=\\boxed{6\\pi -9\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991389_144": { -"question": "As shown in the figure, it is known that $C$ and $D$ are points on the circle $\\odot O$ and are located on either side of the diameter $AB$, with $BC=2\\sqrt{3}$ and $\\angle ABC=30^\\circ$. When $CD\\perp AB$ at point $E$, what is the length of $CD$?", -"image_file_name": "7058773", -"image": [ -"math/52991389_974.png" -], -"solution": "\\textbf{Solution:} Given that $CD \\perp AB$ and $AB$ is the diameter of the circle,\\\\\ntherefore $CD = 2CE$ and $\\angle CEB = 90^\\circ$. Also, given that $\\angle ABC = 30^\\circ$,\\\\\nthus $BC = 2CE$,\\\\\ntherefore $CD = BC = 2\\sqrt{3}$;\\\\\nHence, the length of $CD$ is $\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52991389_145": { -"question": "As shown in the figure, it is known that $C$ and $D$ are points on the circle $\\odot O$, and they are located on both sides of the diameter $AB$, with $BC=2\\sqrt{3}$, and $\\angle ABC=30^\\circ$. When $D$ is the midpoint of arc $AB$, what is the length of $CD$?", -"image_file_name": "7058773", -"image": [ -"math/52991389_974.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct $BF\\perp CD$ at point F,\\\\\nsince D is the midpoint of $\\overset{\\frown}{AB}$, and $BC=2\\sqrt{3}$,\\\\\nthus $\\angle BCD=45^\\circ$,\\\\\ntherefore, $\\triangle BCF$ is an isosceles right triangle,\\\\\nthus $BF=CF=\\frac{\\sqrt{2}BC}{2}=\\sqrt{6}$,\\\\\nalso, since $\\angle BDC=60^\\circ$,\\\\\nthus $DF=\\frac{\\sqrt{3}BF}{3}=\\sqrt{2}$,\\\\\ntherefore, $CD=\\sqrt{6}+\\sqrt{2}=\\boxed{\\sqrt{6}+\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52977640_147": { -"question": "As shown in the figure, within circle $\\odot O$, chord $AB$ perpendicularly bisects radius $OC$. Find the degree measure of $\\angle C$?", -"image_file_name": "7058773", -"image": [ -"math/52977640_980.png" -], -"solution": "\\textbf{Solution:} Since chord $AB$ perpendicularly bisects radius $OC$,\n\nit follows that $OB=BC$,\n\nand since $OB=OC$,\n\nit follows that $\\triangle OCB$ is an equilateral triangle,\n\nhence, $\\angle C = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52977640_148": { -"question": "As shown in the figure, within circle $O$, chord $AB$ perpendicularly bisects radius $OC$. If the length of chord $AB$ is $10$, what is the diameter of circle $O$?", -"image_file_name": "7058773", -"image": [ -"math/52977640_980.png" -], -"solution": "\\textbf{Solution:} Given that AB is a chord, OC is the radius, and $OC\\perp AB$ with $AB=10$,\\\\\nhence $BD= \\frac{1}{2}AB=5$,\\\\\nsince the chord AB bisects the radius OC vertically and $OB=OC$,\\\\\nthus $OD= \\frac{1}{2}OC= \\frac{1}{2}OB$,\\\\\nin $\\triangle ODB$, we have $OD^{2}+BD^{2}=OB^{2}$, that is $\\left( \\frac{1}{2}OB\\right)^{2}+5^{2}=OB^{2}$,\\\\\nsolving this, we get: $OB= \\frac{10\\sqrt{3}}{3}$ (neglecting the negative value),\\\\\ntherefore, the diameter of $\\odot O$ is $2\\times \\frac{10\\sqrt{3}}{3}=\\boxed{\\frac{20\\sqrt{3}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52978029_150": { -"question": "As shown in the figure, within a circle $\\odot O$ with a radius of $50\\,mm$, the chord $AB$ has a length of $50\\,mm$. Find the measure of $\\angle AOB$ in degrees.", -"image_file_name": "7058773", -"image": [ -"math/52978029_994.png" -], -"solution": "\\textbf{Solution:} Since OA and OB are radii of the circle O, \\\\\nthus OA = OB = 50mm, \\\\\nand since AB = 50mm, \\\\\ntherefore OA = OB = AB, \\\\\ntherefore $\\triangle$ AOB is an equilateral triangle, \\\\\ntherefore $\\angle$AOB = \\boxed{60^\\circ}", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"52978029_151": { -"question": "As shown in the figure, in circle $\\odot O$ with a radius of $50mm$, the chord $AB$ has a length of $50mm$. Question: What is the distance in $mm$ from point $O$ to $AB$?", -"image_file_name": "7058773", -"image": [ -"math/52978029_994.png" -], -"solution": "\\textbf{Solution:} Draw $OC\\perp AB$ at point $O$ with the foot at point $C$, as shown in the figure,\\\\\nby the perpendicular diameter theorem, we have $AC=CB=\\frac{1}{2}AB=25\\,mm$,\\\\\nin $\\triangle OAC$, $OC^2=OA^2-AC^2=50^2-25^2=25^2\\times 3$,\\\\\n$\\therefore OC=\\sqrt{25^2\\times 3}=25\\sqrt{3}\\,mm$,\\\\\nthat is, the distance from point $O$ to $AB$ is \\boxed{25\\sqrt{3}\\,mm}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51318132_40": { -"question": "In rectangle $ABCD$, $E$ is a point on side $AB$. Triangle $ADE$ is folded along $DE$ so that the corresponding point of $A$ is precisely point $F$ on side $BC$. Line $AF$ intersects $DE$ at point $N$, and line $BN$ is drawn. If $AD = 3$ and $BF = \\frac{1}{3}BC$, what is the area of rectangle $ABCD$?", -"image_file_name": "7058593", -"image": [ -"math/51318132_393.png" -], -"solution": "\\textbf{Solution:} The area of rectangle $ABCD$ is $3\\sqrt{5}=\\boxed{3\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51318132_41": { -"question": "In rectangle $ABCD$, where $E$ is a point on side $AB$, fold $\\triangle ADE$ along $DE$ such that the corresponding point of $A$, point $F$, falls exactly on side $BC$. Connect $AF$ and intersect $DE$ at point $N$, then connect $BN$. Given $AD=3$ and $BF=\\frac{1}{3}BC$, find the value of $\\sin\\angle BNF$.", -"image_file_name": "7058593", -"image": [ -"math/51318132_393.png" -], -"solution": "\\textbf{Solution:} We have $\\sin\\angle BNF = \\boxed{\\frac{\\sqrt{5}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51458337_83": { -"question": "As shown in Figure 1, $\\triangle ABC$ is an equilateral triangle, where D is a point on side $AC$ that does not coincide with point A. Extend $BC$ to point E such that $CE=AD$, and extend $AC$ to F so that $CF=AC$. Connect $EF$ and $BD$. If $\\angle ABD=20^\\circ$, what are the degrees of $\\angle CFE$ and $\\angle CEF$?", -"image_file_name": "7058593", -"image": [ -"math/51458337_807.png" -], -"solution": "Solution: Since $\\triangle ABC$ is an equilateral triangle, we have $AB=AC$, and $\\angle A=\\angle ACB=60^\\circ$. Therefore, $\\angle ECF=60^\\circ$, which means $\\angle A=\\angle ECF$. Given that $CF=AC$, we find $AB=CF$. Since $CE=AD$, we deduce $\\triangle ABD \\cong \\triangle CFE$, thus $\\angle CFE=\\angle ABD=20^\\circ$. Consequently, $\\angle CEF=180^\\circ-\\angle CFE-\\angle ECF=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51457882_87": { -"question": "As shown in the figure, behind a building \\textup{AB} there is an artificial hill with a slope \\textup{CD} of $i=1\\colon 2$. At point \\textup{E} on the slope, there is a pavilion. It is measured that the horizontal distance from the foot of the hill to the building $BC=24$ meters, and the distance to the pavilion $CE=8\\sqrt{5}$ meters. Xiao Li measures the angle of depression of point \\textup{E} from the top of the building to be $45^\\circ$. What is the distance from point \\textup{E} to the horizontal ground in meters?", -"image_file_name": "7058593", -"image": [ -"math/51457882_811.png" -], -"solution": "\\textbf{Solution:} Draw line $EF \\perp BC$ extending through point $E$ to $F$. In $\\triangle CEF$,\\\\\nsince the slope of $CD$ is $i=EF:CF=1:2$,\\\\\nit follows that $EF:CF:CE=1:2:\\sqrt{5}$,\\\\\nsince $CE=8\\sqrt{5}$,\\\\\nthus $EF=8$, and $CF=16$ meters,\\\\\ntherefore, the distance from point $E$ to the flat ground is $\\boxed{8}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51457882_88": { -"question": "As shown in the figure, behind the building \\(AB\\) there is a rockery \\(CD\\) with a slope of \\(i=1:2\\). At point \\(E\\) on the slope, there is a pavilion. It is measured that the horizontal distance from the bottom of the rockery to the building is \\(BC=24\\) meters, and the distance to the pavilion is \\(CE=8 \\sqrt{5}\\) meters. Xiao Li measures the angle of depression to \\(E\\) from the top of the building to be \\(45^\\circ\\). What is the height of the building \\(AB\\) in meters?", -"image_file_name": "7058593", -"image": [ -"math/51457882_811.png" -], -"solution": "\\textbf{Solution:} Construct $EH \\perp AB$ at point H. Since $AB \\perp BF$ and $EF \\perp BF$, it follows that quadrilateral BFEH is a rectangle; thus, $BH=EF=8$ and $HE=BF$. Given $BC=24$ and $CF=16$, we have $HE=BF=BC+CF=24+16=40$. In right triangle $AHE$, since $\\angle HAE=90^\\circ-45^\\circ=45^\\circ$, it follows that $AH=HE=40$. Therefore, $AB=AH+HB=40+8=\\boxed{48}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51353456_90": { -"question": "As shown in the figure, in $\\triangle ABC$, $AC=5$, $\\cot A=2$, $\\cot B=3$. Point D is on side $AB$, and $\\angle BDC=45^\\circ$. What is the length of segment $BD$?", -"image_file_name": "7058593", -"image": [ -"math/51353456_824.png" -], -"solution": "\\textbf{Solution:}\n\nConstruct $CE\\perp AB$ at point E,\n\nsince $\\angle BDC=45^\\circ$,\n\ntherefore $\\angle DCE=90^\\circ-\\angle CDE=45^\\circ=\\angle CDE$,\n\ntherefore $DE=CE$,\n\nsince $AC=5$, and $\\cot A=2$,\n\nlet $CE=x$, and $\\cot A=\\frac{AE}{CE}=2$,\n\ntherefore, $AE=2CE=2x$,\n\nin $\\triangle ACE$, according to Pythagoras' theorem $AC^2=CE^2+AE^2$ hence $5^2=x^2+(2x)^2$,\n\nsolving for $x$ gives $x=\\sqrt{5}$,\n\ntherefore, $DE=CE=\\sqrt{5}$,\n\nin $\\triangle CEB$, $\\cot B=\\frac{EB}{CE}=3$,\n\ntherefore, $BE=3CE=3\\sqrt{5}$,\n\ntherefore, $BD=DE+BE=\\sqrt{5}+3\\sqrt{5}=4\\sqrt{5}$;\n\nHence, the length of segment $BD$ is $BD=\\boxed{4\\sqrt{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51353456_91": { -"question": "As shown in the figure, in $\\triangle ABC$, $AC=5$, $\\cot A=2$, $\\cot B=3$. Point $D$ lies on side $AB$, and $\\angle BDC=45^\\circ$. If we let $\\overrightarrow{CA}=a$ and $\\overrightarrow{CB}=b$, then $\\overrightarrow{AB}=\\square$, $\\overrightarrow{AD}=\\square$, $\\overrightarrow{CD}=\\square$ (expressed in terms of $a$ and $b$).", -"image_file_name": "7058593", -"image": [ -"math/51353456_824.png" -], -"solution": "\\textbf{Solution:} From the given information, we have $ \\overrightarrow{CA}=a, \\overrightarrow{CB}=b$,\n\nsince $ \\overrightarrow{AB}=\\overrightarrow{AC}+\\overrightarrow{CB}$ and $ \\overrightarrow{AC}=-\\overrightarrow{CA}$,\n\nthus $ \\overrightarrow{AB}=\\overrightarrow{CB}-\\overrightarrow{CA}=b-a$,\n\nsince AD=AE−DE=2DE−DE=DE and BD=4DE,\n\nthus AB=AD+BD=5AD,\n\nthus AD=$ \\frac{1}{5}AB$,\n\nthus $ \\overrightarrow{AD}=\\frac{1}{5}\\overrightarrow{AB}=\\frac{1}{5}(b-a)=\\frac{1}{5}b-\\frac{1}{5}a$,\n\nthus $ \\overrightarrow{CD}=\\overrightarrow{CA}+\\overrightarrow{AD}=a+\\frac{1}{5}b-\\frac{1}{5}a=\\frac{4}{5}a+\\frac{1}{5}b$.\n\nTherefore, the answers are: $ \\boxed{b-a}$, $ \\boxed{\\frac{1}{5}b-\\frac{1}{5}a}$, $ \\boxed{\\frac{4}{5}a+\\frac{1}{5}b}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51351152_94": { -"question": "As shown in the diagram, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $CD\\perp AB$ at $D$, draw $CE\\parallel AB$ through point $C$, and draw $AE\\parallel CD$ through point $A$, with the two lines intersecting at point $E$. Connect $DE$. Quadrilateral $AECD$ is a rectangle. If $BD=4\\sqrt{5}$ and $\\sin\\angle ACE=\\frac{2\\sqrt{5}}{5}$, what is the length of $DE$?", -"image_file_name": "7058593", -"image": [ -"math/51351152_830.png" -], -"solution": "Solution: Given that the quadrilateral AECD is a rectangle,\n\n$\\therefore \\angle DCE=\\angle AEC=90^\\circ$, AC=DE,\n\n$\\because \\angle ACB=90^\\circ$,\n\n$\\therefore \\angle DCB+\\angle ACD=90^\\circ$,\n\n$\\because \\angle ACE+\\angle ACD=90^\\circ$,\n\n$\\therefore \\angle BCD=\\angle ACE$,\n\n$\\because \\sin\\angle ACE=\\frac{2\\sqrt{5}}{5}$,\n\n$\\therefore \\sin\\angle BCD=\\frac{2\\sqrt{5}}{5}$,\n\n$\\because CD\\perp AB$,\n\n$\\therefore \\angle CDB=90^\\circ$,\n\n$\\because BD=4\\sqrt{5}$,\n\n$\\therefore BC=10, CD=2\\sqrt{5}$,\n\n$\\therefore AE=CD=2\\sqrt{5}$,\n\nIn $\\triangle ACE$,\n\n$\\angle AEC=90^\\circ, \\sin\\angle ACE=\\frac{2\\sqrt{5}}{5}$,\n\n$\\therefore AE=2\\sqrt{5}, AC=5$,\n\n$\\therefore DE=AC=\\boxed{5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51318176_96": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ is the altitude on side $BC$, $AE$ is the median on side $BC$, $\\angle C=45^\\circ$, $\\sin B=\\frac{2}{3}$, and $AD=4$. What is the length of $BC$?", -"image_file_name": "7058593", -"image": [ -"math/51318176_841.png" -], -"solution": "\\textbf{Solution:} Given $\\triangle ABC$, since AD is the height from A to side BC,\\\\\nthus $\\angle ADB = \\angle ADC = 90^\\circ$.\\\\\nIn $\\triangle ADC$, since $\\angle ADC = 90^\\circ$, $\\angle C = 45^\\circ$, and AD = 4,\\\\\nthus DC = AD = 4.\\\\\nIn $\\triangle ADB$, since $\\angle ADB = 90^\\circ$, $\\sin B = \\frac{2}{3}$, and AD = 4,\\\\\nthus AB = $\\frac{AD}{\\sin B} = 6$\\\\\nthus BD = $\\sqrt{AB^2 - AD^2} = 2\\sqrt{5}$,\\\\\nthus BC = BD + DC = $2\\sqrt{5} + 4 = \\boxed{2\\sqrt{5} + 4}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51318176_97": { -"question": "As illustrated, in $\\triangle ABC$, $AD$ is the altitude to side $BC$, $AE$ is the median to side $BC$, $\\angle C=45^\\circ$, $\\sin B=\\frac{2}{3}$, and $AD=4$. What is the value of $\\tan \\angle DAE$?", -"image_file_name": "7058593", -"image": [ -"math/51318176_841.png" -], -"solution": "\\textbf{Solution:} Since AE is the median to side BC,\\\\\nhence CE = $\\frac{1}{2}$BC = $\\sqrt{5}+2$,\\\\\ntherefore DE = CE - CD = $\\sqrt{5} - 2$,\\\\\nthus $\\tan \\angle DAE = \\frac{DE}{AD} = \\boxed{\\frac{\\sqrt{5}-2}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51318739_99": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=5$, and $BC=3$. Point P starts from point A and moves along $AC-CB-BA$ at a speed of 2 units per second until it stops at point A. When point P does not coincide with the vertices of $\\triangle ABC$, a perpendicular line is drawn from point P to the side it lies on, intersecting another side of $\\triangle ABC$ at point Q. Let the movement time of point P be t seconds. What is the length of side $AC$?", -"image_file_name": "7058593", -"image": [ -"math/51318739_857.png" -], -"solution": "\\textbf{Solution:} Due to the insufficient information provided by the problem, it is impossible to directly determine the length of side $AC$. Therefore, specific solution steps and results cannot be provided.", -"solution_image": [ -"solution_images/51318739_858.png", -"solution_images/51318739_8518.png", -"solution_images/51318739_8527.png", -"solution_images/51318739_8539.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51318739_100": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=5$, and $BC=3$. Point $P$ starts from point $A$ and moves along $AC-CB-BA$ at a speed of 2 units per second until it stops at point $A$. When point $P$ does not coincide with the vertices of $\\triangle ABC$, a perpendicular line is drawn from point $P$ to the side it is on, intersecting another side of $\\triangle ABC$ at point $Q$. Let the movement time of point $P$ be $t$ seconds. When point $P$ is moving along the right-angle sides of $\\triangle ABC$, what is the distance from point $P$ to side $AB$? (Expressed in an algebraic equation containing $t$)", -"image_file_name": "7058593", -"image": [ -"math/51318739_857.png" -], -"solution": "\\textbf{Solution:} Let the distance from point P to side $AB$ be $h$.\n\\begin{enumerate}\n \\item When point P moves on side $AC$, draw $PH\\perp AB$ at H, as shown in figure 1:\\\\\n $\\because \\sin A=\\frac{PH}{AP}=\\frac{BC}{AB}=\\frac{3}{5}$, $AP=2t$,\\\\\n $\\therefore PH=h=AP\\cdot \\sin A=2t\\times \\frac{3}{5}=\\boxed{\\frac{6}{5}t}$;\n \\item When point P moves on side $BC$, draw $PH\\perp AB$ at H, as shown in figure 2:\\\\\n $\\because \\sin B=\\frac{PH}{PB}=\\frac{AC}{AB}=\\frac{4}{5}$, $PB=7-2t$,\\\\\n $\\therefore PH=h=PB\\cdot \\sin B=(7-2t)\\times \\frac{4}{5}=\\boxed{-\\frac{8}{5}t+\\frac{28}{5}}$;\n\\end{enumerate}\nIn conclusion, the distance from point P to side $AB$ is $\\boxed{\\frac{6}{5}t}$ or $\\boxed{-\\frac{8}{5}t+\\frac{28}{5}}$.", -"solution_image": [ -"solution_images/51318739_858.png", -"solution_images/51318739_8518.png", -"solution_images/51318739_8527.png", -"solution_images/51318739_8539.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51318739_101": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=5$, $BC=3$. Point P starts from point A and moves at a speed of 2 units per second along the path $AC-CB-BA$ until it stops at point A. When point P does not coincide with the vertices of $\\triangle ABC$, a perpendicular line is drawn from point P to the edge it is on, intersecting another side of $\\triangle ABC$ at point Q. Let the movement time of point P be $t$ seconds. When point Q is on the right-angled sides of $\\triangle ABC$ and $PQ=\\frac{3}{2}$, find the value of $t$.", -"image_file_name": "7058593", -"image": [ -"math/51318739_857.png" -], -"solution": "\\textbf{Solution}: \n\nFrom the problem statement, we get:\n\n(1) When point $Q$ is on side $AC$, $AP=12-2t$,\n\nthen $PQ=\\frac{3}{2}=AP\\cdot \\tan A$,\n\nwhich means $\\frac{3}{2}=(12-2t)\\times \\frac{3}{4}$,\n\nsolving this yields: $t=\\boxed{5}$.\n\n(2) When point $Q$ is on side $BC$, $BP=2t-7$,\n\nthen $PQ=\\frac{3}{2}=BP\\cdot \\tan B$,\n\nwhich means $\\frac{3}{2}=(2t-7)\\times \\frac{4}{3}$,\n\nsolving this yields: $t=\\boxed{\\frac{65}{16}}$;\n\nIn summary, if $PQ=\\frac{3}{2}$, the value of $t$ is either \\boxed{5} or \\boxed{\\frac{65}{16}}.", -"solution_image": [ -"solution_images/51318739_858.png", -"solution_images/51318739_8518.png", -"solution_images/51318739_8527.png", -"solution_images/51318739_8539.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51318739_102": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$, $AB = 5$, and $BC = 3$. Point P starts from point A and moves along $AC-CB-BA$ with a velocity of 2 units per second, and stops at point A. When point P does not coincide with the vertices of $\\triangle ABC$, a perpendicular line is drawn from point P to the side it is on, intersecting another side of $\\triangle ABC$ at point Q. Let the motion time of point P be $t$ seconds. When one vertex of $\\triangle APQ$ is equidistant from the hypotenuse and one leg of $\\triangle ABC$, write down the value of $t$ directly.", -"image_file_name": "7058593", -"image": [ -"math/51318739_857.png" -], -"solution": "\\textbf{Solution:} The value of $t$ can be directly written as $t=\\boxed{\\frac{5}{4}}$, $t=\\boxed{\\frac{8}{3}}$, $t=\\boxed{4}$, and $t=\\boxed{5}$.", -"solution_image": [ -"solution_images/51318739_858.png", -"solution_images/51318739_8518.png", -"solution_images/51318739_8527.png", -"solution_images/51318739_8539.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51319005_104": { -"question": "As shown in the figure, the parabola $y=ax^{2}+2ax+c$ intersects the x-axis at points $A$ and $B$ (where point $A$ is to the left of point $B$), and intersects the y-axis at point $C(0, 3)$. The y-coordinate of its vertex $D$ is $4$. What is the expression of this parabola?", -"image_file_name": "7058593", -"image": [ -"math/51319005_863.png" -], -"solution": "\\textbf{Solution:} Substitute the point $C(0, 3)$ into $y=ax^{2}+2ax+c$ to get: $c=3$\\\\\n$\\therefore y=ax^{2}+2ax+3$\\\\\n$\\therefore -\\frac{b}{2a}=-\\frac{2a}{2a}=-1$\\\\\nWhen $x=-1$, $\\therefore y=a-2a=-a+3$\\\\\nSince the ordinate of the vertex D is $4$,\\\\\n$\\therefore -a+3=4$\\\\\n$a=-1$\\\\\n$\\therefore D(-1, 4)$\\\\\nTherefore, the equation of the parabola is $y=-x^{2}-2x+3=\\boxed{-x^{2}-2x+3}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51319005_105": { -"question": "As shown in the figure, the parabola $y=ax^2+2ax+c$ intersects the x-axis at points $A$ and $B$ (with point $A$ to the left of point $B$) and intersects the y-axis at point $C(0, 3)$. The y-coordinate of its vertex $D$ is $4$. What is the value of the tangent of $\\angle ACB$?", -"image_file_name": "7058593", -"image": [ -"math/51319005_863.png" -], -"solution": "\\textbf{Solution:} Draw $BE\\perp AC$ at point E,\\\\\nLet $y=-x^2-2x+3=0$\\\\\nThen $x^2+2x-3=0$\\\\\n$\\therefore x_1=-3$, $x_2=1$\\\\\nHence $A(-3,0)$, $B(1,0)$\\\\\n$\\therefore AB=1-(-3)=4$, $OC=3$\\\\\n$\\therefore S_{\\triangle ABC}=\\frac{1}{2}\\cdot AB\\cdot OC=\\frac{1}{2}\\times 4\\times 3=6$\\\\\n$\\because A(-3, 0)$, $C(0, 3)$\\\\\n$\\therefore AC=\\sqrt{(-3-0)^2+(0-3)^2}=3\\sqrt{2}$\\\\\n$\\because S_{\\triangle ABC}=\\frac{1}{2}\\cdot AC\\cdot BE=\\frac{1}{2}\\times 3\\sqrt{2}\\times BE$\\\\\n$\\therefore \\frac{1}{2}\\times 3\\sqrt{2}\\times BE=6$\\\\\n$\\therefore BE=2\\sqrt{2}$\\\\\n$\\because BC^2=OC^2+OB^2=3^2+1^2=10$\\\\\n$\\therefore EC=\\sqrt{BC^2-BE^2}=\\sqrt{10-8}=\\sqrt{2}$\\\\\n$\\therefore \\tan\\angle ACB=\\frac{BE}{EC}=\\frac{2\\sqrt{2}}{\\sqrt{2}}=\\boxed{2}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51319005_106": { -"question": "As shown in the figure, the parabola $y=ax^2+2ax+c$ intersects the x-axis at points $A$ and $B$ (with point $A$ on the left side of point $B$), and intersects the y-axis at point $C(0, 3)$. The y-coordinate of its vertex $D$ is $4$. Point $F$ is located on the extension line of segment $CB$, and $\\angle AFC = \\angle DAB$. What is the length of $CF$?", -"image_file_name": "7058593", -"image": [ -"math/51319005_863.png" -], -"solution": "\\textbf{Solution:} Draw $DM\\perp x$-axis through point D, and draw $AN\\perp BC$ through point A,\\\\\n$\\because D(-1, 4)$, $\\because M(-1, 0)$,\\\\\n$\\because A\\left(-3, 0\\right)$,\\\\\n$\\therefore AM=2$, $DM=4$,\\\\\n$\\therefore \\tan\\angle DAB=\\frac{DM}{AM}=\\frac{4}{2}=2$,\\\\\n$\\because AN\\perp BC$,\\\\\n$\\therefore \\angle ANB=90^\\circ$,\\\\\n$\\therefore \\angle ANB=\\angle BOC$,\\\\\n$\\because \\angle ABN=\\angle OBC$,\\\\\n$\\therefore \\triangle OBC\\sim \\triangle NBA$,\\\\\n$\\therefore \\frac{OB}{NB}=\\frac{OC}{NC}=\\frac{BC}{BA}$,\\\\\n$\\therefore \\frac{1}{NB}=\\frac{3}{NC}=\\frac{\\sqrt{10}}{4}$,\\\\\n$NB=\\frac{2\\sqrt{10}}{5}$, $NA=\\frac{6\\sqrt{10}}{5}$,\\\\\n$\\because \\angle DAB=\\angle AFC$,\\\\\n$\\therefore \\tan\\angle DAB=\\tan\\angle AFC=2$,\\\\\n$\\therefore \\tan\\angle AFC=\\frac{AN}{NF}=2$,\\\\\n$\\therefore \\frac{\\frac{6\\sqrt{10}}{5}}{NF}=2$,\\\\\n$NF=\\frac{3\\sqrt{10}}{5}$,\\\\\nWhen point F is on the extension of CB, F can only be in the fourth quadrant, hence $CF=NF+CN$,\\\\\n$\\because BC=\\sqrt{10}NB=\\frac{2\\sqrt{10}}{5}$,\\\\\n$\\because CN=BC-NB=\\sqrt{10}-\\frac{2\\sqrt{10}}{5}=\\frac{3\\sqrt{10}}{5}$,\\\\\n$\\therefore CF=\\frac{3\\sqrt{10}}{5}+\\frac{3\\sqrt{10}}{5}=\\boxed{\\frac{6\\sqrt{10}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51262135_108": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\angle C = 90^\\circ$, $AB = 4$, and $AC = \\sqrt{7}$. Find the length of $BC$.", -"image_file_name": "7058593", -"image": [ -"math/51262135_871.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=4$, and $AC=\\sqrt{7}$.\\\\\n$BC=\\sqrt{AB^2-AC^2}=\\sqrt{4^2-(\\sqrt{7})^2}=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51262135_109": { -"question": "Known in $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=4$, $AC=\\sqrt{7}$. Find $\\sin A$.", -"image_file_name": "7058593", -"image": [ -"math/51262135_871.png" -], -"solution": "\\textbf{Solution:} We have $\\sin A = \\frac{BC}{AB} = \\boxed{\\frac{3}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53148615_112": { -"question": "As shown in Figure (1), $BC$ is the diameter of $\\odot O$, and points $D, F$ are on $\\odot O$. Connect $CD, BF$ and extend them to intersect at point $A$, with $AD=2CD=8$, $AF=3BF$. $\\triangle AFD\\sim \\triangle ACB$. Find: $\\cos\\angle ADF$?", -"image_file_name": "7058593", -"image": [ -"math/53148615_886.png" -], -"solution": "\\textbf{Solution:} Connect $CF$,\\\\\nsince $BC$ is the diameter of $\\odot O$,\\\\\ntherefore $\\angle BFC=90^\\circ$,\\\\\nfrom (1) we know $\\triangle AFD\\sim \\triangle ACB$,\\\\\ntherefore $\\frac{AF}{AC}=\\frac{AD}{AB}$,\\\\\nsince $AD=2CD=8$,\\\\\ntherefore $CD=4$,\\\\\nsince $AF=3BF$,\\\\\ntherefore $AB=AF+BF=3BF+BF=4BF$,\\\\\nthus $\\frac{3BF}{12}=\\frac{8}{4BF}$,\\\\\ntherefore $BF=2\\sqrt{2}$,\\\\\ntherefore $AF=6\\sqrt{2}$,\\\\\nin $Rt\\triangle ACF$, $CF=\\sqrt{AC^{2}-AF^{2}}=\\sqrt{12^{2}-(6\\sqrt{2})^{2}}=6\\sqrt{2}$,\\\\\nin $Rt\\triangle BCF$, $BC=\\sqrt{BF^{2}+CF^{2}}=\\sqrt{(2\\sqrt{2})^{2}+(6\\sqrt{2})^{2}}=4\\sqrt{5}$,\\\\\ntherefore $\\cos\\angle ADF=\\cos\\angle B=\\frac{BF}{BC}=\\frac{2\\sqrt{2}}{4\\sqrt{5}}=\\boxed{\\frac{\\sqrt{10}}{10}}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53148615_113": { -"question": "As shown in the figure, $BC$ is the diameter of $\\odot O$, points $D$ and $F$ are on $\\odot O$. Connect $CD$ and $BF$ and extend them to intersect at point $A$, where $AD=2CD=8$, $AF=3BF$. If point $E$ is the midpoint of arc $BC$, connect $BE$ and $DE$. Find the value of $EG\\cdot EF$?", -"image_file_name": "7058593", -"image": [ -"math/53148615_886.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $E$ is the midpoint of the arc $BC$, \\\\\nhence $\\overset{\\frown}{BE}=\\overset{\\frown}{CE}$, \\\\\ntherefore $\\angle BFE=\\angle CBE$, \\\\\nalso since $\\angle GEB=\\angle BEF$, \\\\\nhence $\\triangle EBG\\sim \\triangle EFB$, \\\\\nthus $\\frac{BE}{EF}=\\frac{EG}{BE}$, \\\\\nthat is $EG\\cdot EF=BE^{2}$, \\\\\nsince $\\overset{\\frown}{BE}=\\overset{\\frown}{CE}$ again, \\\\\nhence $BE=CE$, \\\\\nsince $BE^{2}+CE^{2}=BC^{2}$, \\\\\nthat is $2BE^{2}=BC^{2}$, \\\\\ntherefore $BE^{2}=\\frac{1}{2}BC^{2}=\\frac{1}{2}\\times \\left(4\\sqrt{5}\\right)^{2}=40$, \\\\\ntherefore $EG\\cdot EF=\\boxed{40}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53149410_116": { -"question": "As shown in the figure, $AB$ is the diameter of the circle $\\odot O$, $C$ is a point on $\\odot O$, line $AD$ is perpendicular to the line passing through point $C$ with the foot of the perpendicular being $D$, and $AC$ bisects $\\angle DAB$. $DC$ is a tangent line of $\\odot O$; If the radius of $\\odot O$ is 2, and $AC=2\\sqrt{3}$, what is the length of the line segment $AD$?", -"image_file_name": "7058593", -"image": [ -"math/53149410_899.png" -], -"solution": "\\textbf{Solution:} Connect $BC$,\n\nSince $AB$ is the diameter of $\\odot O$,\n\nTherefore, $\\angle ACB=90^\\circ$,\n\nSince $\\angle DAC=\\angle OAC$, $\\angle ADC=\\angle ACB=90^\\circ$,\n\nTherefore, $\\triangle ADC\\sim \\triangle ACB$,\n\nTherefore, $\\frac{AD}{AC}=\\frac{AC}{AB}$,\n\nSince the radius of $\\odot O$ is 2, $AC=2\\sqrt{3}$,\n\nTherefore, $\\frac{AD}{2\\sqrt{3}}=\\frac{2\\sqrt{3}}{4}$,\n\nTherefore, $AD=\\boxed{3}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53148902_119": { -"question": "As shown in the diagram, in $ \\triangle ABC$, $ \\angle ACB=90^\\circ$, $CD\\perp AB$ with the foot of the perpendicular at D, $AC=4$, $BC=3$. What is the length of $BD$?", -"image_file_name": "7058593", -"image": [ -"math/53148902_905.png" -], -"solution": "Solution: In right-angled triangle $ABC$, we have $\\angle ACB=90^\\circ$, $AC=4$, and $BC=3$,\\\\\ntherefore, $AB=\\sqrt{AC^2+BC^2}=5$,\\\\\nsince $CD\\perp AB$,\\\\\nand $\\cos B=\\frac{BD}{BC}=\\frac{BC}{AB}$,\\\\\nit follows that $\\frac{BD}{3}=\\frac{3}{5}$,\\\\\nthus, $BD=\\boxed{\\frac{9}{5}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53148902_120": { -"question": "As illustrated in the diagram, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $CD\\perp AB$ with the foot of the perpendicular being D, $AC=4$, and $BC=3$. Find the tangent value of $\\angle ACD$.", -"image_file_name": "7058593", -"image": [ -"math/53148902_905.png" -], -"solution": "Solution: Since $\\angle ACD + \\angle BCD = 90^\\circ$ and $\\angle BCD + \\angle B = 90^\\circ$,\\\\\nit follows that $\\angle ACD = \\angle B$,\\\\\nthus $\\tan \\angle ACD = \\tan \\angle B = \\frac{AC}{BC} = \\boxed{\\frac{4}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51367530_122": { -"question": "In the Cartesian coordinate system, the graph of the linear function $y=ax+b$ ($a\\neq 0$) intersects the graph of the inverse proportion function $y=\\frac{k}{x}$ ($k\\neq 0$) at points $A$ and $B$ within the second and fourth quadrants, and intersects the $y$-axis at point $C$. A perpendicular line is drawn from point $A$ to the $y$-axis, with $H$ as the foot, where $OH=3$, $\\tan\\angle AOH =\\frac{4}{3}$, and the coordinates of point $B$ are ($m$, $-2$). Calculate the perimeter of $\\triangle AHO$.", -"image_file_name": "7058593", -"image": [ -"math/51367530_912.png" -], -"solution": "\\textbf{Solution:} Given that $\\because$ OH $=$ 3, $\\tan\\angle AOH =\\frac{4}{3}$, and $AH\\perp$ y-axis\\\\\n$\\therefore$ $\\frac{AH}{OH}=\\frac{4}{3}$ \\\\\n$\\therefore$ $AH=\\frac{4OH}{3}=4$ \\\\\n$\\therefore$ $AO=\\sqrt{AH^{2}+OH^{2}}=5$ \\\\\n$\\therefore$ the perimeter of $\\triangle AHO$ is $AH+OH+AO=4+3+5=\\boxed{12}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51367530_123": { -"question": "In the Cartesian coordinate system, the graph of the linear function $y=ax+b$ ($a\\neq 0$) intersects with the graph of the inverse proportion function $y=\\frac{k}{x}$ ($k\\neq 0$) at points $A$ and $B$ within the second and fourth quadrants, respectively, and with the $y$-axis at point $C$. Drawing a line perpendicular to the $y$-axis from point $A$ to point $H$ such that $AH \\perp y$-axis and the foot of the perpendicular is $H$, with $OH=3$ and $\\tan\\angle AOH =\\frac{4}{3}$. The coordinates of point $B$ are ($m$, $-2$). Determine the analytical expressions of the inverse proportion function and the linear function.", -"image_file_name": "7058593", -"image": [ -"math/51367530_912.png" -], -"solution": "\\textbf{Solution:} Let $\\because$OH$=3$, $AH=4$, and point A is in the second quadrant\\\\\n$\\therefore$ $A\\left(-4, 3\\right)$ \\\\\n$\\because$ the graph of the inverse proportion function $y=\\frac{k}{x}$ (where $k\\neq 0$) passes through point A\\\\\n$\\therefore$ $3=\\frac{k}{-4}$\\\\\n$\\therefore$ $k=-12$ \\\\\n$\\therefore$ the equation of the inverse proportion function is: $y=-\\frac{12}{x}$;\\\\\n$\\because$ the graph of the inverse proportion function passes through point B, and the coordinates of point B are $(6, -2)$\\\\\n$\\therefore$ $-2=-\\frac{12}{6}$\\\\\n$\\therefore$ $m=6$ \\\\\nUpon verification, $m=6$ is a solution to $-2=-\\frac{12}{m}$;\\\\\n$\\therefore$ $B\\left(6, -2\\right)$ \\\\\n$\\because$ the graph of the linear function $y=ax+b$ (where $a\\neq 0$) passes through points A and B\\\\\n$\\therefore$ $\\left\\{\\begin{array}{l}-4a+b=3 \\\\ 6a+b=-2\\end{array}\\right.$ \\\\\n$\\therefore$ $\\left\\{\\begin{array}{l}a=-\\frac{1}{2} \\\\ b=1\\end{array}\\right.$ \\\\\n$\\therefore$ the equation of the linear function is: $\\boxed{y=-\\frac{1}{2}x+1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51322362_125": { -"question": "As shown in the figure, it is known that the diameter $AB$ of $\\odot O$ is perpendicular to the chord $CD$, with the foot of the perpendicular being point $E$. Also, $AD=5$, and $\\cos\\angle BCD=\\frac{4}{5}$. What is the length of the chord $CD$?", -"image_file_name": "7058593", -"image": [ -"math/51322362_921.png" -], -"solution": "\\textbf{Solution:} Since $AB \\perp CD$,\\\\\nthus $CE = DE = \\frac{1}{2}CD$,\\\\\nSince $\\cos\\angle BCD = \\frac{4}{5}$,\\\\\nthus $\\cos\\angle A= \\cos\\angle BCD = \\frac{4}{5}$,\\\\\nIn $\\triangle ADE$, $AD=5$, and $\\cos\\angle A= \\frac{4}{5}$,\\\\\nthus $AE=4$,\\\\\nthus $DE=3$, then $CD=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322362_126": { -"question": "As shown in the figure, it is known that the diameter $AB$ of the circle $\\odot O$ and chord $CD$ are perpendicular to each other at point $E$. Also, $AD=5$ and $\\cos\\angle BCD=\\frac{4}{5}$. Find the radius of $\\odot O$.", -"image_file_name": "7058593", -"image": [ -"math/51322362_921.png" -], -"solution": "\\textbf{Solution:} Let us connect $OD$, with the radius being $r$, thus $OE = 4 - r$, $OD = r$.\\\\\nIn $\\triangle BCE$, we have $OE^{2} + DE^{2} = OD^{2}$,\\\\\n$\\therefore$ $(4-r)^{2} + 9 = r^{2}$,\\\\\n$\\therefore$ $r = \\boxed{\\frac{25}{8}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322742_128": { -"question": "In $\\triangle ABC$, $AB=6$, $BC=4$, and $\\angle B$ is an acute angle with $\\cos B=\\frac{1}{2}$. What is the measure of $\\angle B$ in degrees?", -"image_file_name": "7058593", -"image": [ -"math/51322742_935.png" -], -"solution": "\\textbf{Solution:} Since $\\angle B$ is an acute angle and $\\cos B = \\frac{1}{2}$,\\\\\nit follows that $\\angle B = \\boxed{60^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322742_129": { -"question": "In $\\triangle ABC$, $AB=6$, $BC=4$, and $\\angle B$ is an acute angle with $\\cos B=\\frac{1}{2}$. Find the tangent of $\\angle C$.", -"image_file_name": "7058593", -"image": [ -"math/51322742_935.png" -], -"solution": "\\textbf{Solution:} Let $AD \\perp BC$ at $D$, as shown in the figure:\\\\\nSince $\\cos B = \\frac{1}{2}$,\\\\\nit follows that $\\frac{BD}{AB} = \\frac{1}{2}$,\\\\\nGiven $AB = 6$,\\\\\nthen $BD = \\frac{1}{2}AB = 3$,\\\\\nthus $AD = \\sqrt{AB^{2} - BD^{2}} = 3\\sqrt{3}$,\\\\\nGiven $BC = 4$, and $BD = 3$,\\\\\nthen $CD = BC - BD = 1$,\\\\\ntherefore, $\\tan C = \\frac{AD}{CD} = \\frac{3\\sqrt{3}}{1} = \\boxed{3\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51322908_131": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\angle ABC=90^\\circ$, the circle $\\odot O$ with diameter $AB$ intersects $AC$ at point $D$, and point $E$ is the midpoint of $BC$, connect $BD$, $DE$. If $\\frac{AD}{AB}=\\frac{1}{3}$, find $\\sin C$.", -"image_file_name": "7058593", -"image": [ -"math/51322908_9410.png" -], -"solution": "\\textbf{Solution:} From the given information, we know that $AB$ is a diameter,\\\\\n$\\therefore \\angle ADB=90^\\circ$,\\\\\n$\\therefore \\angle ABD + \\angle BAD=90^\\circ$,\\\\\n$\\because \\angle ABC=90^\\circ$,\\\\\n$\\therefore \\angle C + \\angle BAC=90^\\circ$,\\\\\n$\\therefore \\angle C = \\angle ABD$,\\\\\n$\\because \\frac{AD}{AB}=\\frac{1}{3}$,\\\\\n$\\therefore \\sin \\angle ABD=\\frac{1}{3}$,\\\\\n$\\therefore \\sin C = \\boxed{\\frac{1}{3}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51317370_134": { -"question": "Given that, in the Cartesian coordinate system, for square $ABCD$, point $A(0,10)$, point $B(8,4)$, and point $C$ is in the first quadrant. Point $P$ starts from vertex $A$ and moves counterclockwise along the sides of the square for one round. Construct $\\angle OPQ = \\angle OAB$ on the right side of $OP$ intersecting the $x$-axis at point $Q$. Find the coordinates of point $C$.", -"image_file_name": "7058593", -"image": [ -"math/51317370_950.jpg" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, since quadrilateral ABCD is a square, it follows that $\\angle ABC=90^\\circ$, and AB=BC. Therefore, $\\angle ABE+\\angle CBF=90^\\circ$. Draw $BE\\perp OA$ at E, and draw $CF\\perp BE$ at F. Thus, $\\angle AEB=\\angle ABC=\\angle F=90^\\circ$, which implies that $\\angle EAB+\\angle ABE=90^\\circ$. Therefore, $\\angle EAB=\\angle CBF$. Consequently, $\\triangle ABE\\cong \\triangle BCF$ (by AAS). Therefore, BF=AE, CF=BE. Given that point A is at (0,10) and point B is at (8,4), we deduce AE=6, BE=8, OE=4. Therefore, BF=6, CF=8. Hence, EF=BE+BF=14 and CF+OE=12. Thus, the coordinates of point C are \\boxed{(14,12)}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51317370_135": { -"question": "Given, in the Cartesian coordinate system, square $ABCD$, with point $A(0,10)$, point $B(8,4)$, and point $C$ in the first quadrant. Point $P$ starts from vertex $A$ and moves counterclockwise along the edges of the square for one round. On the right side of $OP$, make $\\angle OPQ = \\angle OAB$ intersecting the x-axis at point $Q$. When point $P$ coincides with point $B$, find the length of $OQ$.", -"image_file_name": "7058593", -"image": [ -"math/51317370_950.jpg" -], -"solution": "\\textbf{Solution:} As shown in Figure 2, draw $BE\\perp OQ$ at $E$, and $QF\\perp OB$ at $F$, \\\\\nsince $B(8,4)$, \\\\\ntherefore $OB=\\sqrt{8^2+4^2}=4\\sqrt{5}$, $\\tan\\angle BOE=\\frac{BE}{OE}=\\frac{1}{2}$, \\\\\n$\\tan\\angle OBQ=\\tan\\angle OAB=\\frac{BG}{AG}=\\frac{8}{6}=\\frac{4}{3}$, \\\\\nthus $\\frac{QF}{BF}=\\frac{4}{3}$, $\\frac{QF}{OF}=\\frac{1}{2}$. Let $FQ=4k$, $BF=3k$, $OF=8k$, since $OF+BF=OB$, \\\\\nthus $8k+3k=4\\sqrt{5}$, \\\\\nthus $k=\\frac{4\\sqrt{5}}{11}$, \\\\\nthus $OF=\\frac{32\\sqrt{5}}{11}$, $FQ=\\frac{16\\sqrt{5}}{11}$, \\\\\nthus $OQ=\\sqrt{OF^2+FQ^2}=\\boxed{\\frac{80}{11}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51317370_136": { -"question": "Since you have not provided a specific text to translate, I'm unable to fulfill this request accurately. Please provide the text you want translated to English in standard LaTeX format, and I would be happy to assist.", -"image_file_name": "7058593", -"image": [ -"math/51317370_950.jpg" -], -"solution": "\\textbf{Solution:} Let point P be on AB, as shown in Figure 3. When $PO=PQ$, draw $PE\\perp x$-axis at E, draw $PF\\perp OA$ at F\\\\\n$\\therefore \\angle OPE= \\frac{1}{2}\\angle OPQ = \\frac{1}{2}\\angle OAB$,\\\\\n$\\because PE\\parallel OA$,\\\\\n$\\therefore \\angle AOP=\\angle OPE= \\frac{1}{2} \\angle OAB$,\\\\\nConstruct $\\angle OPG=\\angle AOP$,\\\\\n$\\therefore \\angle APG=2\\angle AOP=\\angle OAB$,\\\\\n$\\because \\tan\\angle OAB= \\frac{PF}{AF} = \\frac{4}{3}$,\\\\\n$\\therefore$ let $PF=4a$, $AF=3a$, $OG=PG=AP=5a$,\\\\\n$\\therefore OF=OG+FG=8a$,\\\\\n$\\therefore P(4a,8a)$, $B(8,4)$,\\\\\n$\\therefore$ the equation of line AB is: $y= -\\frac{3}{4}x+10$,\\\\\n$\\therefore -\\frac{3}{4} \\times 4a+10=8a$,\\\\\n$\\therefore a= \\frac{10}{11}$,\\\\\n$\\therefore PF=4a= \\frac{40}{11}$,\\\\\n$\\therefore OQ=2PF= \\boxed{\\frac{80}{11}}$,\\\\\nAs shown in Figure 4, when $OQ=PQ$, draw $PE\\perp OP$ at E,\\\\\n$\\therefore \\angle POQ=\\angle OPQ=\\angle OAB$, $OE= \\frac{1}{2} OP$,\\\\\n$\\because \\angle AOP+\\angle POQ=90^\\circ$,\\\\\n$\\therefore \\angle OAB+\\angle AOP=90^\\circ$,\\\\\n$\\therefore \\angle APO=90^\\circ$,\\\\\n$\\because \\tan\\angle OAB= \\frac{4}{3}$,\\\\\n$\\therefore$ let $AP=3a$, $OP=4a$,\\\\\n$\\therefore OA=5a=10$,\\\\\n$\\therefore a=2$,\\\\\n$\\therefore OP=4a=8$,\\\\\n$\\therefore OE=4$,\\\\\n$\\because \\frac{OQ}{OE} = \\frac{5}{3}$,\\\\\n$\\therefore OQ= \\boxed{\\frac{20}{3}}$,\\\\\nWhen P is on CD, as in Figure 5, when $OQ=PQ$, draw $QE\\perp OP$ at E,\\\\\nFrom above, we know: $OP\\perp CD$, $OP=8+10=18$,\\\\\n$\\therefore OE=9$,\\\\\n$\\therefore OQ=9\\times \\frac{5}{3} =\\boxed{15}$,\\\\\nAs in Figure 6, when $PQ=PO$, draw $PE\\perp OQ$ at E,\\\\\n$\\because$ line AB: $y= -\\frac{3}{4}x+10$, $CD\\parallel AB$, $C(14,12)$,\\\\\n$\\therefore$ the equation of line CD is: $y= -\\frac{3}{4}x+ \\frac{45}{2}$,\\\\\nLet $P(a,2a)$,\\\\\n$\\therefore -\\frac{3}{4} \\times a+ \\frac{45}{2} =2a$,\\\\\n$\\therefore 2a= \\frac{180}{11}$,\\\\\n$\\therefore OQ=2a= \\boxed{\\frac{180}{11}}$,\\\\\nOverall, during the entire movement of point P, when $\\triangle OPQ$ is an isosceles triangle with $PQ$ as the base, $OQ= \\boxed{\\frac{80}{11}}$ or $\\boxed{\\frac{20}{3}} or \\boxed{15} or \\boxed{\\frac{180}{11}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51284477_139": { -"question": "During a project learning session, the teacher asked the students to collaborate on creating questions. Inspired by the Chord Diagram of Zhao Shuang, a study group came up with the following problem for you to solve:", -"image_file_name": "7058593", -"image": [ -"math/51284477_961.png", -"math/51284477_962.png" -], -"solution": "\\textbf{Solution:} Let $AE=x$, then $BE=DG=x+1$. In $\\triangle BEF$, $\\angle FEB=45^\\circ$,\\\\\n$\\therefore$ BE=FB,\\\\\n$\\because$ BF=DH=x+1,\\\\\n$\\therefore$ AH=x+1+1=x+2,\\\\\nAlso, $\\because$ $\\tan\\angle AEH=2$,\\\\\n$\\therefore$ $\\frac{AH}{AE}=2$,\\\\\n$\\therefore$ AH=2AE=2x,\\\\\n$\\therefore$ 2x=x+2,\\\\\nSolving, we get $x=2$,\\\\\n$\\therefore$ AE=\\boxed{2}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51265419_141": { -"question": "As shown in the figure, semicircle $O$ with diameter $AB$ of $\\triangle ABC$ intersects sides $AC$ and $BC$ at points $E$ and $D$, respectively, and $D$ is the midpoint of arc $\\overset{\\frown}{BE}$. If $\\angle A=80^\\circ$, what is the measure of $\\angle DBE$?", -"image_file_name": "7058593", -"image": [ -"math/51265419_971.png" -], -"solution": "\\textbf{Solution:} Draw $OD$, intersect $BE$ at point $H$, connect $ED$,\n\n$\\because D$ is the midpoint of $\\overset{\\frown}{BE}$,\n\n$\\therefore \\overset{\\frown}{DE}=\\overset{\\frown}{DB}$,\n\n$OD\\perp BE$, $BH=EH$,\n\n$\\therefore DE=DB$, $\\angle DEB=\\angle DBE$,\n\n$\\because AB$ is the diameter, then $\\angle AEB=90^\\circ$,\n\n$\\therefore \\angle BEC=90^\\circ$,\n\n$\\therefore \\angle CBE+\\angle BCE=90^\\circ$,\n\n$\\angle BED+\\angle CED=90^\\circ$,\n\n$\\therefore \\angle CBE+\\angle CED=90^\\circ$,\n\n$\\therefore \\angle C=\\angle CED$,\n\n$\\therefore DC=DE$,\n\n$\\therefore DC=DB$,\n\n$\\because OA=OB$,\n\n$\\therefore OD$ is the median of $\\triangle ABC$,\n\n$\\therefore OD \\parallel AC$,\n\n$\\therefore \\angle DOB=\\angle CAB$,\n\n$\\angle ODB=\\angle C$,\n\n$\\because \\angle CAB=80^\\circ$, then $\\angle DOB=80^\\circ$,\n\n$\\therefore \\angle ODB=\\angle OBD=\\frac{1}{2}(180^\\circ-80^\\circ)=50^\\circ$,\n\nAlso, $\\angle OBE=90^\\circ-80^\\circ=10^\\circ$,\n\nThen, $\\angle DBE=\\angle OBD-\\angle OBE=50^\\circ-10^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51265419_143": { -"question": "As shown in the diagram, with the side $AB$ of $\\triangle ABC$ as the diameter, the semicircle $O$ intersects sides $AC$ and $BC$ at points $E$ and $D$, respectively, and $D$ is the midpoint of the arc $\\overset{\\frown}{BE}$. Given $AB=AC$, if the radius of $\\odot O$ is $5cm$ and $BC=12cm$, what is the length of segment $BE$ in $cm$?", -"image_file_name": "7058593", -"image": [ -"math/51265419_971.png" -], -"solution": "\\textbf{Solution:} Connect $AC$,\\\\\n$\\because AB=AC$,\\\\\n$\\therefore \\triangle ABC$ is an isosceles triangle,\\\\\n$\\because AB$ is the diameter of $\\odot O$,\\\\\n$\\therefore \\angle ADB=90^\\circ$, which means $AD\\perp BC$,\\\\\n$\\because BC=12cm$,\\\\\n$\\therefore CD=BD=\\frac{1}{2}BC=6cm$,\\\\\nAlso, $AC=2OD=10cm$,\\\\\nBy the Pythagorean theorem, $AD=\\sqrt{AC^{2}-CD^{2}}=\\sqrt{10^{2}-6^{2}}=8cm$,\\\\\n$\\therefore \\sin C=\\frac{AD}{AC}=\\frac{8}{10}=\\frac{4}{5}$,\\\\\n$\\therefore \\sin\\angle ODB=\\sin C=\\frac{4}{5}$,\\\\\n$\\therefore \\frac{BH}{BD}=\\frac{4}{5}$,\\\\\n$\\therefore BH=\\frac{4}{5}BD=\\frac{24}{5}$,\\\\\n$\\therefore BE=2BH=\\boxed{\\frac{48}{5}cm}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51265343_146": { -"question": "As shown in the figure, in $\\triangle ABC$, with a circle having diameter $BC$ intersecting $AB$ at point $D$, and $\\angle ACD = \\angle ABC$. If point $E$ is on $BC$, given $BE = 6$, $\\cos\\angle ABC = \\frac{3\\sqrt{13}}{13}$, $\\tan\\angle AEC = \\frac{5}{3}$, and $CA$ is a tangent to the circle. What is the diameter of the circle?", -"image_file_name": "7058593", -"image": [ -"math/51265343_980.png" -], -"solution": "\\textbf{Solution:} In $\\triangle AEC$, $\\tan \\angle AEC = \\frac{5}{3}$, thus $\\frac{AC}{EC} = \\frac{5}{3}$, and $EC = \\frac{3}{5} AC$. In $\\triangle ABC$, $\\cos \\angle ABC = \\frac{3\\sqrt{13}}{13}$, thus $\\frac{BC}{AB} = \\frac{3\\sqrt{13}}{13}$, and $\\frac{AC}{BC} = \\frac{2}{3}$, thus $BC = \\frac{3}{2} AC$. Since $BC - EC = BE$ and $BE = 6$, it follows that $\\frac{3}{2} AC - \\frac{3}{5} AC = 6$. Solving this gives $AC = \\frac{20}{3}$, thus $BC = \\frac{3}{2} AC = \\frac{3}{2} \\times \\frac{20}{3} = 10$. The diameter of the circle is $\\boxed{10}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53080796_9": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ is a point on $BC$, and $DF \\perp AE$ at point $F$, with $\\frac{AD}{AE} = \\lambda$ ($\\lambda > 0$). If $\\lambda = 1$, prove that $CE=FE$.", -"image_file_name": "7058344", -"image": [ -"math/53080796_85.png" -], -"solution": "\\textbf{Solution.} Proof: Draw $DE$ as shown in the figure:\\\\\nSince quadrilateral $ABCD$ is a rectangle,\\\\\nit follows that $\\angle C=90^\\circ$, and $AD\\parallel BC$,\\\\\nthus, $\\angle ADE=\\angle CED$,\\\\\nsince $DF\\perp AE$,\\\\\nit follows that $\\angle DFE=90^\\circ$,\\\\\nthus, $\\angle DFE=\\angle C$,\\\\\nsince $\\frac{AD}{AE}=\\lambda=1$,\\\\\nit follows that $AD=AE$,\\\\\nthus, $\\angle ADE=\\angle FED$,\\\\\nthus, $\\angle FED=\\angle CED$,\\\\\nin $\\triangle DFE$ and $\\triangle DCE$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle DFE=\\angle C \\\\\n\\angle FED=\\angle CED \\\\\nDE=DE\n\\end{array}\\right.$,\\\\\nit follows that $\\triangle DFE\\cong \\triangle DCE$ (AAS),\\\\\nthus, $CE=FE=\\boxed{FE}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53080796_10": { -"question": "As shown in the figure, in rectangle $ABCD$, $E$ is a point on $BC$, $DF\\perp AE$ at point $F$, and let $\\frac{AD}{AE}=\\lambda$ ($\\lambda>0$). If $AB=3$, $AD=4$, and $D$, $B$, $F$ are on the same straight line, find the value of $\\lambda$.", -"image_file_name": "7058344", -"image": [ -"math/53080796_85.png" -], -"solution": "\\textbf{Solution:} When points D, B, and F are on the same line as depicted:\\\\\nSince quadrilateral $ABCD$ is a rectangle,\\\\\nit follows that $\\angle BAD=\\angle ABC=90^\\circ$,\\\\\nIn $\\triangle ADB$, where $AB=3$ and $AD=4$,\\\\\nit follows that $\\tan\\angle ABD=\\frac{AD}{AB}=\\frac{4}{3}$,\\\\\nSince $DF\\perp AE$,\\\\\nit follows that $\\angle BFE=90^\\circ$,\\\\\nSince $\\angle ABD+\\angle DBC=90^\\circ$ and $\\angle DBC+\\angle FEB=90^\\circ$,\\\\\nit follows that $\\angle FEB=\\angle ABD$,\\\\\nHence $\\frac{AB}{BE}=\\tan\\angle FEB=\\tan\\angle ABD=\\frac{4}{3}$,\\\\\nSince $AB=3$,\\\\\nit follows that $BE=\\frac{9}{4}$,\\\\\nIn $\\triangle ABE$, by the Pythagorean theorem, $AE=\\sqrt{3^2+\\left(\\frac{9}{4}\\right)^2}=\\frac{15}{4}$,\\\\\nThus, $\\lambda=\\frac{AD}{AE}=\\frac{4}{\\frac{15}{4}}=\\boxed{\\frac{16}{15}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53102171_23": { -"question": "As shown in the diagram, in rectangle $ABCD$, point $M$ lies on diagonal $BD$. A circle passing through points $A$, $B$, and $M$ intersects $BC$ at point $E$. If $AM=4$, $EB=EM=3$, find the length of $BM$.", -"image_file_name": "7058344", -"image": [ -"math/53102171_200.png" -], -"solution": "\\textbf{Solution:} Let $AE$ intersect $BD$ at point $G$. Consider the circle passing through points $A$, $B$, and $M$, denoted as $\\odot O$. In rectangle $ABCD$, we have $\\angle ABC=\\angle BAD=90^\\circ$, \\\\\nsince $\\angle ABC=90^\\circ$, \\\\\nthus, chord $AE$ is the diameter of $\\odot O$,\\\\\ntherefore, $\\angle AME=90^\\circ=\\angle ABC$,\\\\\nsince $EB=EM=3$, $AE=AE$,\\\\\ntherefore, $Rt\\triangle AEB\\cong Rt\\triangle AEM$,\\\\\ntherefore, $AB=AM$,\\\\\nsince $EB=EM=3$,\\\\\ntherefore, $\\angle EAB=\\angle EAM$, that is, $AG$ bisects $\\angle BAM$,\\\\\ntherefore, by the \"angle bisector theorem\", $AG\\perp BM$, $BG=GM$,\\\\\nin $Rt\\triangle AEM$, $EM=3$, $AM=4$,\\\\\ntherefore, $AE=\\sqrt{AM^{2}+EM^{2}}=5$,\\\\\nsince $\\text{Area}_{\\triangle AME}=\\frac{1}{2}\\times AM\\times EM=\\frac{1}{2}\\times AE\\times GM$,\\\\\ntherefore, $GM=\\frac{3\\times 4}{5}=\\frac{12}{5}$,\\\\\nsince $BG=GM$,\\\\\ntherefore, $BM=BG+GM=\\boxed{\\frac{24}{5}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53102171_24": { -"question": "As shown in the figure, in rectangle $ABCD$, point $M$ is on diagonal $BD$. The circle passing through points $A$, $B$, and $M$ intersects $BC$ at point $E$. Given that $AB = 6$, $BC = 8$, and the ratio of $AM$ to $ME$. If $BM = 7$, what is the length of $BE$?", -"image_file_name": "7058344", -"image": [ -"math/53102171_200.png" -], -"solution": "\\textbf{Solution:} In $(1)$ we have already proved that chord $AE$ is the diameter of $\\odot O$,\\\\\nwhich gives $\\angle AME=90^\\circ$,\\\\\ntherefore, in $\\triangle AEM$ right angled at $M$, $AM: ME=\\tan\\angle AEM$,\\\\\nsince $\\angle AEM=\\angle ABM$,\\\\\nin $\\triangle ABD$ right angled at $B$, $\\tan\\angle ABM=\\frac{AD}{AB}$,\\\\\nsince in the rectangle $ABCD$, $AB=CD$, $AD=BC$, $AB=6$, $BC=8$\\\\\ntherefore, $\\tan\\angle ABM=\\frac{AD}{AB}=\\frac{8}{6}=\\frac{4}{3}$,\\\\\ntherefore, $AM: ME=\\tan\\angle AEM=\\tan\\angle ABD=\\frac{4}{3}$;\\\\\n$(2)$ Let $AD$ intersect $\\odot O$ at point $H$, connect $HM$ and $HE$, as shown in the diagram,\\\\\nAccording to the property that opposite angles supplement each other in a cyclic quadrilateral,\\\\\nwe have: $\\angle AHE=\\angle ABE=90^\\circ=\\angle BEH=\\angle BAH$, $\\angle BMH=\\angle BAH=90^\\circ$,\\\\\ntherefore, quadrilateral $ABEH$ is a rectangle, hence $AH=BE$,\\\\\nsince $\\angle BMH=\\angle BAH=90^\\circ$,\\\\\ntherefore, $\\angle DMH=\\angle BAD=90^\\circ$,\\\\\nsince $\\angle HDM=\\angle BDA$,\\\\\ntherefore, $\\triangle DMH\\sim \\triangle DAB$,\\\\\ntherefore, $\\frac{DH}{DM}=\\frac{DB}{DA}$, $DH=\\frac{DB\\times DM}{DA}$,\\\\\nsince $AB=6$, $AD=BC=8$,\\\\\ntherefore, $BD=\\sqrt{AD^2+AB^2}=\\sqrt{8^2+6^2}=10$,\\\\\nsince $BM=7$,\\\\\ntherefore, $DM=BD−BM=3$,\\\\\ntherefore, $DH=\\frac{DB\\times DM}{DA}=\\frac{10\\times 3}{8}=\\frac{15}{4}$,\\\\\ntherefore, $AH=AD−DH=8−\\frac{15}{4}=\\frac{17}{4}$,\\\\\ntherefore, $BE=AH=\\boxed{\\frac{17}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53059948_27": { -"question": "As shown in the figure, in $\\triangle ABC$, circle $\\odot O$ with diameter $BC$ intersects $AC$ at point $E$. A line through point $E$ is drawn such that $EF\\perp AB$ at point $F$, and extending $EF$ to intersect the extension of $CB$ at point $G$, with $\\angle ABG=2\\angle C$. If $\\sin\\angle EGC=\\frac{3}{5}$, and the radius of $\\odot O$ is $3$, find the area of the shaded region in the figure. ($\\sin 36^\\circ=\\frac{3}{5}$)", -"image_file_name": "7058344", -"image": [ -"math/53059948_210.png" -], -"solution": "\\textbf{Solution:} Let's consider Right triangles $\\triangle EOG$ and $\\triangle BFG$, where $\\sin\\angle EGC=\\frac{OE}{OG}=\\frac{BF}{BG}=\\frac{3}{5}$. This means $\\frac{3}{OG}=\\frac{3}{5}$. Solving this, we get: $OG=5$, hence $BG=OG-OB=5-3=2$, implying $\\frac{BF}{2}=\\frac{3}{5}$, hence $BF=\\frac{6}{5}$, and thus $EG=\\sqrt{OG^2-OE^2}=\\sqrt{5^2-3^2}=4$. Let $EF=x$, then $GF=4-x$. Since $BF\\parallel OE$, we have $\\frac{GB}{OB}=\\frac{GF}{EF}$, that is $\\frac{2}{3}=\\frac{4-x}{x}$. Solving this, we get: $x=EF=\\frac{12}{5}$. Given $\\sin\\angle EGC=\\frac{3}{5}$, we find $\\angle G=36^\\circ$, hence $\\angle EOB=90^\\circ-36^\\circ=54^\\circ$. The area of the shaded region $S_{\\text{shaded}}=S_{\\text{trapezoid} BFEO}-S_{\\text{sector} EOB}=\\frac{1}{2}\\left(\\frac{6}{5}+3\\right)\\times \\frac{12}{5}-\\frac{54^\\circ\\pi \\times 3^2}{360}=\\boxed{\\frac{126}{25}-\\frac{27}{20}\\pi}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53059881_30": { -"question": "As shown in the figure, AB is the diameter of $\\odot O$, and D, E are two points on $\\odot O$ located on opposite sides of AB. Extend BD to point C such that CD=BD, connect AC which intersects $\\odot O$ at point F, and connect AE, DE, DF. $\\angle E=\\angle C$; If $\\angle E=55^\\circ$, what is the degree measure of $\\angle BDF$?", -"image_file_name": "7058344", -"image": [ -"math/53059881_220.png" -], -"solution": "\\textbf{Solution:}\n\nSince the quadrilateral AEDF is inscribed in circle O,\n\\[\\therefore \\angle AFD=180^\\circ-\\angle E\\]\nSince \\(\\angle CFD=180^\\circ-\\angle AFD\\),\n\\[\\therefore \\angle CFD=\\angle E=55^\\circ\\]\nFrom (1), we have \\(\\angle E=\\angle C=55^\\circ\\),\n\\[\\therefore \\angle BDF=\\angle C+\\angle CFD=55^\\circ+55^\\circ=\\boxed{110^\\circ}\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53059881_31": { -"question": "As shown in the figure, $AB$ is the diameter of circle $O$, and $D,E$ are two points on circle $O$ on opposite sides of $AB$. Connect $BD$ and extend it to point $C$ such that $CD=BD$. Connect $AC$ and let it intersect circle $O$ at point $F$. Connect $AE$, $DE$, $DF$. Suppose $DE$ intersects $AB$ at point $G$, and if $AB=10$ and $E$ is the midpoint of arc $AEB$, what is the value of $EG\\cdot ED$?", -"image_file_name": "7058344", -"image": [ -"math/53059881_220.png" -], -"solution": "\\textbf{Solution:} Since $E$ is the midpoint of $\\overset{\\frown}{AEB}$, it follows that $AE=BE$\\\\\nTherefore, $\\angle EAB=\\angle EBA=45^\\circ$\\\\\nAlso, since $\\angle EAB$ and $\\angle EDB$ are the angles subtended by arc $\\widehat{BE}$ on the circle, it follows that $\\angle EAB=\\angle EDB=45^\\circ$\\\\\nThus, $\\angle EDB=\\angle EBA=45^\\circ$\\\\\nAdditionally, since $\\angle DEB=\\angle BEG$\\\\\nIt follows that $\\triangle DEB \\sim \\triangle BEG$\\\\\nTherefore, $\\frac{EG}{EB}=\\frac{EB}{ED}$\\\\\n$EG\\cdot ED=EB^2$\\\\\nThat is, in $\\triangle AEB$, $BE=AB\\cos45^\\circ=5\\sqrt{2}$\\\\\nThus, $EG\\cdot ED=\\boxed{25}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53065573_33": { -"question": "As shown in the figure, a supermarket's storage center has a slope $AB$, with a gradient of $i=1\\colon 2$, the height at its top $AC=4m$, and points B, C are on the same horizontal ground. What is the length of the slope $AB$?", -"image_file_name": "7058344", -"image": [ -"math/53065573_233.png" -], -"solution": "\\textbf{Solution:} Given that the slope ratio is $i=1\\colon 2$ and $AC=4m$, \\\\\ntherefore $i=\\frac{AC}{BC}=\\frac{1}{2}$, \\\\\nthus $BC=2AC=4\\times 2=8m$, \\\\\nIn the right triangle $\\triangle ABC$, according to the Pythagorean theorem, the slope is: \\\\\n$AB=\\sqrt{AC^{2}+BC^{2}}=\\sqrt{4^{2}+8^{2}}=\\boxed{4\\sqrt{5}m}$, \\\\\nhence, the length of the slope $AB$ is $4\\sqrt{5}m$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53065573_34": { -"question": "As shown in the figure, the storage center of a supermarket has a slope $AB$ with a gradient of $1:2$. The height at the top, $AC=4\\text{m}$, and $B$, $C$ are on the same horizontal ground. Rectangle $DEFG$ represents the side view of a rectangular container, which is being transported up the slope. At this moment, $GB=6\\text{m}$, and Xiao Ming, who is $1.5\\text{m}$ tall, stands at point $B$ and sees a chandelier directly above point $D$ at a height of $1.5\\text{m}$. Find the height of point $D$ from the ground and calculate the tangent value of Xiao Ming's elevation angle $\\alpha$.", -"image_file_name": "7058344", -"image": [ -"math/53065573_233.png" -], -"solution": "\\textbf{Solution:} Let line $DS \\perp BC$ at point S and intersect with $AB$ at point H, \\\\\n$\\because \\angle DGH=\\angle BSH=90^\\circ$, $\\angle GHD=\\angle BHS$, \\\\\n$\\therefore \\angle GDH=\\angle SBH$, \\\\\n$\\therefore \\tan\\alpha =\\tan\\angle GDH=\\tan\\angle SBH=\\frac{AC}{BC}=\\frac{GH}{DG}=\\frac{1}{2}$, \\\\\n$\\because DG=EF=2\\text{m}$, \\\\\n$\\therefore GH=1\\text{m}$, \\\\\n$\\therefore DH=\\sqrt{GH^2+DG^2}=\\sqrt{1^2+2^2}=\\sqrt{5}\\text{m}$, $BH=GB-GH=6-1=5\\text{m}$, \\\\\nLet $HS=x\\text{m}$, then $BS=2x\\text{m}$, by the Pythagorean theorem: $HS^2+BS^2=BH^2$, \\\\\nhence, $x^2+(2x)^2=5^2$, \\\\\nSolving gives: $x=\\sqrt{5}$ (negative value discarded), \\\\\n$\\therefore DS=DH+HS=\\sqrt{5}+\\sqrt{5}=2\\sqrt{5}\\text{m}$, thus the height of point D from the ground is $\\boxed{2\\sqrt{5}\\text{m}}$, \\\\\n$\\therefore BS=2x=2\\sqrt{5}\\text{m}$, \\\\\nLet the angle of elevation for Xiaoming be $\\alpha$, \\\\\nthen $\\tan\\alpha =\\frac{DS+1.5-1.5}{BS}=\\frac{2\\sqrt{5}+1.5-1.5}{2\\sqrt{5}}=\\boxed{1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043157_36": { -"question": "As shown in the figure, there is a schematic diagram of a simulated rocket launch setup. A carrier rocket is launched from the ground at point L. When the rocket reaches point A, the distance $AR$ measured from the radar station located on the ground at point R is $5km$, with an elevation angle of $39^\\circ$; about $1.5s$ later, when the rocket reaches point B, the measured elevation angle is $45^\\circ$ (Reference data: $\\sin 39^\\circ \\approx 0.63$, $\\cos 39^\\circ \\approx 0.78$, $\\tan 39^\\circ \\approx 0.8$). Determine the horizontal distance from the ground radar station R to the launch site L.", -"image_file_name": "7058344", -"image": [ -"math/53043157_249.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ARL$, we have $RL=AR\\cdot \\cos 39^\\circ \\approx 5\\times 0.78=3.90$ ($km$),\\\\\nThus, the horizontal distance from the radar station to the launch site is $RL=\\boxed{3.90km}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043157_37": { -"question": "Please provide the text you need translated into English and formatted in standard LaTeX.", -"image_file_name": "7058344", -"image": [ -"math/53043157_249.png" -], -"solution": "\\textbf{Solution:} In $Rt\\triangle ARL$, $AL=AR\\cdot \\sin 39^\\circ \\approx 5\\times 0.63=3.15$ ($km$),\\\\\nIn $Rt\\triangle BRL$, $BL=RL\\approx 3.90$ ($km$),\\\\\n$\\therefore AB=BL-AL=3.90-3.15\\approx 0.75$ ($km$),\\\\\n$\\therefore$ the average velocity of the rocket from A to B is $0.75\\div 1.5=0.5$ ($km/s$),\\\\\n\\textbf{Answer:} The average velocity of the rocket from A to B is $\\boxed{0.5\\ km/s}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53009955_43": { -"question": "As shown in the figure, $AB$ is the diameter of the circle $O$, and the chord $CD\\perp AB$ with the foot of the perpendicular being $E$. Connect $AC$ and $BC$. If $\\angle BAC=30^\\circ$ and $CD=6\\,\\text{cm}$. What is the degree measure of $\\angle BCD$?", -"image_file_name": "7058344", -"image": [ -"math/53009955_290.jpeg" -], -"solution": "\\textbf{Solution:} Since diameter $AB \\perp CD$, \\\\\nit follows that $\\overset{\\frown}{BC} = \\overset{\\frown}{BD}$,\\\\\ntherefore, $\\angle BCD = \\angle CAB = 30^\\circ$,\\\\\nhence, $\\angle BCD = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53009955_44": { -"question": "As shown in the figure, AB is the diameter of the circle $\\odot O$. Chord CD is perpendicular to AB at point E. Lines AC and BC are connected. If $\\angle BAC=30^\\circ$ and $CD=6\\text{cm}$, what is the diameter of $\\odot O$ in cm?", -"image_file_name": "7058344", -"image": [ -"math/53009955_290.jpeg" -], -"solution": "\\textbf{Solution:} Since diameter AB$\\perp$CD and CD = 6cm,\\\\\nit follows that CE = 3cm,\\\\\nIn $\\triangle ACE$, with $\\angle A=30^\\circ$,\\\\\nit follows that AC = 6cm,\\\\\nSince AB is a diameter,\\\\\nit follows that $\\angle ACB=90^\\circ$,\\\\\nIn $\\triangle ACB$, AB = $\\frac{AC}{\\cos\\angle A}=\\frac{6}{\\cos 30^\\circ}=4\\sqrt{3}$ (cm).\\\\\nTherefore, the diameter of $\\odot O$ is $\\boxed{4\\sqrt{3}}$ cm.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52977945_46": { -"question": "Given in the Cartesian coordinate system $xOy$ (as shown in the figure), the line $y=2x+2$, intersects the x-axis and y-axis at points A and B respectively, and the coordinates of point C are $(3, 2)$. Connecting AC and intersecting the y-axis at point D. Find the length of segment AB.", -"image_file_name": "7058344", -"image": [ -"math/52977945_302.png" -], -"solution": "\\textbf{Solution:} Let $x=0$, then $y=2$,\\\\\n$\\therefore B(0,2)$,\\\\\n$\\therefore OB=2$,\\\\\nLet $y=0$, then $x=-1$,\\\\\n$\\therefore A(-1,0)$,\\\\\n$\\therefore OA=1$,\\\\\n$\\therefore AB=\\boxed{\\sqrt{5}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52977945_47": { -"question": "Given in the Cartesian coordinate system $xOy$ (as shown in the figure), the line $y=2x+2$, intersects the x-axis and y-axis at points A and B, respectively, and the coordinates of point C are $\\left(3, 2\\right)$. Connect AC and intersect the y-axis at point D. Find the coordinates of point D.", -"image_file_name": "7058344", -"image": [ -"math/52977945_302.png" -], -"solution": "\\textbf{Solution:} Let the equation of line $AC$ be $y=kx+b$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}\n-k+b=0 \\\\\n3k+b=2\n\\end{array}\\right.$,\\\\\nSolving, we get $\\left\\{\\begin{array}{l}\nk=\\frac{1}{2} \\\\\nb=\\frac{1}{2}\n\\end{array}\\right.$,\\\\\n$\\therefore y=\\frac{1}{2}x+\\frac{1}{2}$,\\\\\nLet $x=0$, then $y=\\frac{1}{2}$,\\\\\n$\\therefore \\boxed{D\\left(0,\\frac{1}{2}\\right)}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"55502222_58": { -"question": "As shown in the figure, in $ \\triangle ABC$, $ \\angle A=90^\\circ$, $\\sin\\angle ABC=\\frac{1}{2}$. $\\odot O$ is the inscribed circle of $ \\triangle ABC$, which is tangent to $ AC$, $ AB$, $ BC$ at points $ F$, $ P$, and $ E$ respectively. What is the value of $\\angle EPF$ in degrees?", -"image_file_name": "7058344", -"image": [ -"math/55502222_3911.png" -], -"solution": "\\textbf{Solution:} We have $\\angle EPF = \\boxed{60^\\circ}$.", -"solution_image": [ -"solution_images/55502222_395.png", -"solution_images/55502222_3926.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55502222_59": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A=90^\\circ$, $\\sin\\angle ABC=\\frac{1}{2}$. Circle $O$ is the inscribed circle of $\\triangle ABC$, tangent to $AC$, $AB$, $BC$ at points $F$, $P$, $E$, respectively. If $BC=4$, then what is the length of $AP$?", -"image_file_name": "7058344", -"image": [ -"math/55502222_3911.png" -], -"solution": "\\textbf{Solution:} We have $AP = \\boxed{\\sqrt{3} - 1}$.", -"solution_image": [ -"solution_images/55502222_395.png", -"solution_images/55502222_3926.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"55502234_65": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of $\\odot O$, $C$ is the midpoint of $\\overset{\\frown}{BD}$, and $AD$ is perpendicular to the line passing through point $C$ at point $E$. $CE$ is the tangent to $\\odot O$. If $\\angle BAD=60^\\circ$ and $AB=4\\sqrt{3}$, what is the length of $CE$?", -"image_file_name": "7058344", -"image": [ -"math/55502234_437.png" -], -"solution": "\\textbf{Solution:} Draw $BC$.\\\\\nSince $AB$ is the diameter of circle $O$,\\\\\nit follows that $\\angle ACB=90^\\circ$.\\\\\nSince $\\angle BAD=60^\\circ$,\\\\\nit follows that $\\angle CAD=\\angle BAC=30^\\circ$.\\\\\nSince $AB=4\\sqrt{3}$,\\\\\nit follows that $AC=AB\\cos\\angle BAC=4\\sqrt{3}\\times \\frac{\\sqrt{3}}{2}=6$,\\\\\nthus $CE=AC\\sin\\angle CAD=6\\times \\frac{1}{2}=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53065875_82": { -"question": "As shown in the figure, in rectangle $ABCD$, point $F$ is on $CD$, and line $BF$ intersects $AC$ at point $E$. If $\\frac{BC}{AB}=\\frac{2}{3}$ and point $F$ is the midpoint of $CD$, connecting $AF$, find the value of $\\sin\\angle CAF$.", -"image_file_name": "7058344", -"image": [ -"math/53065875_584.png" -], -"solution": "\\textbf{Solution:}\nLet a perpendicular be drawn from point F to AC at H, \\\\\nLet $BC = 2a$, then $AB = CD = 3a$, \\\\\nBy the Pythagorean theorem, $AC = \\sqrt{BC^{2} + CD^{2}} = \\sqrt{13}a$, \\\\\nSince point F is the midpoint of $CD$, \\\\\nThus, $DF = \\frac{3}{2}a$, \\\\\nThen $AF = \\sqrt{AD^{2} + DF^{2}} = \\frac{5}{2}a$, \\\\\nSince the area of $\\triangle AFC = \\frac{1}{2} AC \\cdot FH = \\frac{1}{2} CF \\cdot AD$, \\\\\nTherefore, $\\frac{1}{2} \\times \\sqrt{13}a \\cdot FH = \\frac{1}{2} \\times \\frac{3}{2} \\times a \\times 2a$, \\\\\nSolving this, we find $FH = \\frac{3\\sqrt{13}}{13}a$, \\\\\nThus, $\\sin\\angle CAF = \\frac{FH}{AF} = \\frac{\\frac{3\\sqrt{13}}{13}a}{\\frac{5}{2}a} = \\boxed{\\frac{6\\sqrt{13}}{65}}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53066251_85": { -"question": "Given: As shown in the figure, in the circle $\\odot O$ with a radius of 4, $AB$ and $CD$ are two diameters, $M$ is the midpoint of $OB$, the extension line of $CM$ intersects $\\odot O$ at point $E$, and $EM>MC$. Connect $DE$, where $DE=\\sqrt{15}$. It is known that $AM\\cdot MB=EM\\cdot MC$; find the length of $EM$.", -"image_file_name": "7058344", -"image": [ -"math/53066251_591.png" -], -"solution": "\\textbf{Solution}: From the given problem, we know that\\\\\nsince $DC$ is the diameter of the circle $O$,\\\\\nthus $\\angle DEC = 90^\\circ$,\\\\\ntherefore $DE^2 + EC^2 = DC^2$,\\\\\nsince $DE = \\sqrt{15}$ and $CD = 8$, and $EC$ is a positive number,\\\\\nthus $EC = 7$,\\\\\nsince $M$ is the midpoint of $OB$,\\\\\nthus $BM = 2$, $AM = 6$,\\\\\nsince $AM \\cdot BM = EM \\cdot CM = EM(EC - EM) = EM(7 - EM) = 12$, and $EM > MC$,\\\\\ntherefore $EM = \\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53066251_86": { -"question": "Given: As shown in the figure, in the circle $\\odot O$ with a radius of $4$, $AB$ and $CD$ are two diameters, $M$ is the midpoint of $OB$, and the extension line of $CM$ intersects $\\odot O$ at point $E$, with $EM > MC$. Connect $DE$, and $DE = \\sqrt{15}$. Find the value of $\\sin\\angle EOB$.", -"image_file_name": "7058344", -"image": [ -"math/53066251_591.png" -], -"solution": "\\textbf{Solution:} Draw $EF \\perp AB$ through point $E$, with the foot of the perpendicular at point $F$.\n\nSince $OE=4$ and $EM=4$,\n\nit follows that $OE=EM$,\n\nthus $OF=FM=1$,\n\nso $EF=\\sqrt{4^2-1^2}=\\sqrt{15}$,\n\ntherefore, $\\sin\\angle EOB=\\boxed{\\frac{\\sqrt{15}}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53043832_88": { -"question": "Given: As shown in the figure, within $\\triangle ABC$, $AD$ is the altitude from $A$ to side $BC$, $E$ is the midpoint of side $AC$, $BC=14$, $AD=12$, and $\\sin B=\\frac{4}{5}$. Find: The length of segment $DC$.", -"image_file_name": "7058344", -"image": [ -"math/53043832_601.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, since AD is the altitude on side BC,\\\\\ntherefore AD $\\perp$ BC.\\\\\ntherefore $\\sin B= \\frac{AD}{AB}=\\frac{4}{5}$.\\\\\nsince AD=12,\\\\\ntherefore $AB=\\frac{5}{4}AD=15$.\\\\\nIn $\\triangle ABD$, since $BD=\\sqrt{AB^{2}−AD^{2}}=\\sqrt{15^{2}−12^{2}}=9$,\\\\\ntherefore CD=BC−BD=14−9=\\boxed{5}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043832_89": { -"question": "Given: As shown in the figure, in $\\triangle ABC$, $AD$ is the altitude on the side $BC$, $E$ is the midpoint of side $AC$, $BC=14$, $AD=12$, $\\sin B=\\frac{4}{5}$. Find the value of $\\tan\\angle EDC$.", -"image_file_name": "7058344", -"image": [ -"math/53043832_601.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ADC$, E is the midpoint of AC, \\\\\n$\\therefore DE=EC$, \\\\\n$\\therefore \\angle EDC=\\angle C$, \\\\\n$\\therefore \\tan\\angle EDC=\\tan\\angle C=\\frac{AD}{CD}=\\boxed{\\frac{12}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53065871_91": { -"question": "As shown in the figure, it is known that the parabola $y=-\\frac{1}{2}x^2+bx+c$ intersects the x-axis at points $A(-1, 0)$ and $B(4, 0)$, and intersects the y-axis at point C. What is the expression of this parabola?", -"image_file_name": "7058344", -"image": [ -"math/53065871_613.png" -], -"solution": "\\textbf{Solution}: Let us consider the parabola $y=-\\frac{1}{2}x^2+bx+c$ intersects the x-axis at points $A(-1, 0)$, and $B(4, 0)$. Thus,\n\\[\n\\begin{cases}\n-\\frac{1}{2}(-1)^2+b(-1)+c=0\\\\\n-\\frac{1}{2}(4)^2+4b+c=0\n\\end{cases}\n\\]\nSolving the system of equations, we find:\n\\[\n\\begin{cases}\nb=\\frac{3}{2}\\\\\nc=2\n\\end{cases}\n\\]\nTherefore, the equation of the parabola is $y=-\\frac{1}{2}x^2+\\frac{3}{2}x+2=\\boxed{-\\frac{1}{2}x^2+\\frac{3}{2}x+2}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53065871_92": { -"question": "As shown in the figure, it is known that the parabola $y=-\\frac{1}{2}x^2+bx+c$ intersects the x-axis at points $A(-1, 0)$ and $B(4, 0)$, and intersects the y-axis at point $C$. If point $P$ is a point on the parabola and $\\tan\\angle BAP=1$, what are the coordinates of point $P$?", -"image_file_name": "7058344", -"image": [ -"math/53065871_613.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram:\n\n(1) When point P is above the x-axis, draw $PE\\perp x$ axis at point E,\n\n$\\because$ $\\tan\\angle BAP=\\frac{PE}{AE}=1$,\n\n$\\therefore$ $PE=AE$,\n\n$\\because$ $A(-1, 0)$,\n\n$\\therefore$ $OA=1$,\n\n$\\because$ $AE=PE=OE+OA=OE+1$,\n\nLet $OE=m$, $PE=m+1$,\n\n$\\therefore$ the coordinates of point P are $(m, m+1)$,\n\n$\\because$ point P is on the parabola,\n\n$\\therefore$ $-\\frac{1}{2}m^{2}+\\frac{3}{2}m+2=m+1$,\n\nSolving this, we get: $m_{1}=2$, $m_{2}=-1$ (irrelevant, discard),\n\n$\\therefore$ the coordinates of point P are $\\boxed{(2, 3)}$;\n\n(2) When point $P'$ is below the x-axis, draw $P'F\\perp x$ axis at point F,\n\n$\\because$ $\\tan\\angle BAP=\\frac{P'F}{AF}=1$,\n\n$\\therefore$ $P'F=AF$,\n\n$\\because$ $OA=1$,\n\n$\\therefore$ $AF=P'F=OF+OA=OF+1$,\n\nLet $OF=n$, then $P'F=n+1$,\n\n$\\therefore$ the coordinates of point $P'$ are $(n, -n-1)$,\n\n$\\because$ point $P'$ is on the parabola,\n\n$\\therefore$ $-\\frac{1}{2}n^{2}+\\frac{3}{2}n+2=-n-1$,\n\nSolving this, we get: $n_{1}=6$, $n_{2}=-1$ (irrelevant, discard),\n\n$\\therefore$ the coordinates of point $P'$ are $\\boxed{(6, -7)}$,\n\nIn conclusion: the coordinates of point P are $\\boxed{(2, 3)}$ or $\\boxed{(6, -7)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53065871_93": { -"question": "As shown in the figure, it is known that the parabola $y=-\\frac{1}{2}x^2+bx+c$ intersects the x-axis at points $A(-1, 0)$ and $B(4, 0)$, and intersects the y-axis at point C. Let the expression of line $BC$ be $y=mx+c$. If the first-degree equation in $x$, $x^2-2(b-m)x+2n=0$, has two positive real roots, directly write the range of values for $n$.", -"image_file_name": "7058344", -"image": [ -"math/53065871_613.png" -], -"solution": "\\textit{Solution:} We have $\\boxed{00$), then AH$=2x$,\\\\\nBy Pythagoras' theorem, $x^{2}+(2x)^{2}=10^{2}$,\\\\\nSolving this gives: $x=2\\sqrt{5}$,\\\\\ntherefore AH$=2x=4\\sqrt{5}$, DH$=2\\sqrt{5}$,\\\\\nSince quadrilateral ABEF is a rhombus,\\\\\nthen CD$=$AB$=$BE$=6$,\\\\\nIn $\\triangle CDH$, CH$=\\sqrt{CD^{2}-DH^{2}}=\\sqrt{6^{2}-(2\\sqrt{5})^{2}}=4$,\\\\\ntherefore AC$=$AH$+$CH$=4\\sqrt{5}+4=\\boxed{4\\sqrt{5}+4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53043623_131": { -"question": "As shown in the diagram, $ \\triangle ABC$ is inscribed in circle $\\odot O$, with D and F respectively on arcs $\\overset{\\frown}{AC}$ and $\\overset{\\frown}{AB}$, and $\\overset{\\frown}{BF} = \\overset{\\frown}{DA}$. Extend AF to intersect the extension of CB at point E, and connect AD, CD. $\\triangle AEB \\sim \\triangle CAD$; if $\\triangle ABC$ is an equilateral triangle with side length 6, and $AD = 3, AE = 8$. Find $\\tan\\angle DAC$?", -"image_file_name": "7058344", -"image": [ -"math/53043623_838.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\triangle AEB\\sim \\triangle CAD$,\\\\\n$\\therefore \\frac{AD}{EB}=\\frac{AC}{EA}$, $\\angle DAC=\\angle AEC$,\\\\\n$\\because AD=3, AE=8, AB=AC=BC=6$,\\\\\n$\\therefore \\frac{3}{EB}=\\frac{6}{8}$,\\\\\n$\\therefore EB=4$,\\\\\n$\\therefore EC=EB+BC=4+6=10$,\\\\\n$\\therefore AE^2+AC^2=8^2+6^2=10^2=EC^2$,\\\\\n$\\therefore \\triangle AEC$ is a right-angled triangle,\\\\\n$\\therefore \\tan\\angle DAC=\\tan\\angle AEC=\\frac{AC}{AE}=\\frac{6}{8}=\\boxed{\\frac{3}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53080937_133": { -"question": "As shown in the figure, there are two islands C and D in the sea. A fishing boat at point A in the sea measures that island D is in the northeast direction, and the distance is $30\\sqrt{2}$ nautical miles. The fishing boat then sails from the west to the east for a while and reaches point B. At this point, it's measured that island C is exactly to the north of point B and the distance is $75$ nautical miles. It's also measured that the distance between point B and island D is $30\\sqrt{5}$ nautical miles. Find the value of $\\sin\\angle ABD$.", -"image_file_name": "7058344", -"image": [ -"math/53080937_842.png" -], -"solution": "\\textbf{Solution:} Construct $DE \\perp AB$ at $E$,\\\\\nIn $\\triangle AED$, $AD=30\\sqrt{2}$, $\\angle DAE=45^\\circ$,\\\\\n$\\therefore DE=30\\sqrt{2}\\times\\sin45^\\circ=30$,\\\\\nIn $\\triangle BED$, $BD=30\\sqrt{5}$,\\\\\n$\\therefore \\sin\\angle ABD=\\frac{ED}{BD}=\\frac{30}{30\\sqrt{5}}=\\boxed{\\frac{\\sqrt{5}}{5}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53080937_134": { -"question": "As illustrated, there are two islands, C and D, in the sea. A fishing boat at point A found island D to the northeast, at a distance of $30\\sqrt{2}$ nautical miles. The boat then traveled from west to east for a period of time to reach point B, where it measured that island C was exactly to the north of point B, at a distance of $75$ nautical miles, and also measured that point B was $30\\sqrt{5}$ nautical miles away from island D. What is the distance between islands C and D in nautical miles?", -"image_file_name": "7058344", -"image": [ -"math/53080937_842.png" -], -"solution": "\\textbf{Solution:} Construct line DF such that DF $\\perp$ BC at F. In the right triangle $\\triangle BED$, where DE = 30 and BD = $30\\sqrt{5}$, \\\\\nthus, BE = $\\sqrt{BD^{2}-DE^{2}}=60$, \\\\\nsince quadrilateral BFDE is a rectangle, \\\\\nthus, DF = EB = 60 and BF = DE = 30, \\\\\ntherefore, CF = BC−BF = 45, \\\\\nin the right triangle $\\triangle CDF$, CD = $\\sqrt{DF^{2}+CF^{2}}=\\boxed{75}$, \\\\\ntherefore, the distance between islands C and D is \\boxed{75} nautical miles.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53065849_137": { -"question": "As shown in the figure, point $P$ is inside the square $ABCD$, and lines $AP$, $BP$, and $DP$ are connected, with $\\angle 1 = \\angle 2$. If $AB = m$ and $\\tan \\angle 2 = \\frac{1}{2}$, what is the area of $\\triangle ABP$? (Express in terms of $m$).", -"image_file_name": "7058344", -"image": [ -"math/53065849_860.png" -], -"solution": "\\textbf{Solution:} Therefore, the area of $\\triangle ABP$ is $\\boxed{\\frac{m^2}{5}}$.", -"solution_image": [ -"solution_images/53065849_8618.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53065849_138": { -"question": "As shown in the figure, point $P$ is a point inside the square $ABCD$, with lines $AP$, $BP$, $DP$ connected, and $\\angle 1 = \\angle 2$. If $AB = 2$, and the tangent of one of the acute angles in $\\triangle PAB$ is 2, then what is the area of $\\triangle PAD$?", -"image_file_name": "7058344", -"image": [ -"math/53065849_860.png" -], -"solution": "\\textbf{Solution:} Therefore, the area of $\\triangle PAD$ is $\\boxed{\\frac{2}{5}}$.", -"solution_image": [ -"solution_images/53065849_8618.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52977974_146": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\cos B=\\frac{4}{5}$, $AB=10$, and point $D$ is on side $BC$ with $AC=DC$. What is the length of $BD$?", -"image_file_name": "7058344", -"image": [ -"math/52977974_936.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle C=90^\\circ$ and $\\cos B=\\frac{4}{5}$,\\\\\nit follows that $\\frac{BC}{AB}=\\frac{4}{5}$, hence $\\frac{BC}{10}=\\frac{4}{5}$,\\\\\nsolving this gives $BC=8$,\\\\\nthus, $AC=\\sqrt{AB^{2}-BC^{2}}=\\sqrt{10^{2}-8^{2}}=6$,\\\\\nwhich means $CD=AC=6$,\\\\\ntherefore, $BD=BC-CD=8-6=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52977974_147": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $\\cos B=\\frac{4}{5}$, $AB=10$, and point D is a point on side $BC$, with $AC=DC$. Find the value of $\\cot \\angle BAD$?", -"image_file_name": "7058344", -"image": [ -"math/52977974_936.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $DE \\perp AB$ at E,\\\\\nin $\\triangle BED$, $BD=2$, $\\cos B=\\frac{4}{5}$,\\\\\n$\\therefore \\frac{BE}{BD}=\\frac{4}{5}$, which implies $\\frac{BE}{2}=\\frac{4}{5}$,\\\\\nsolving this gives $BE=\\frac{8}{5}$,\\\\\n$\\therefore AE=10-\\frac{8}{5}=\\frac{42}{5}$, and $DE=\\sqrt{BD^2-BE^2}=\\sqrt{2^2-\\left(\\frac{8}{5}\\right)^2}=\\frac{6}{5}$,\\\\\nin $\\triangle ADE$, $\\cot \\angle BAD=\\frac{AE}{DE}=\\frac{\\frac{42}{5}}{\\frac{6}{5}}=\\boxed{7}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53080876_149": { -"question": "As shown in the figure, the parabola passes through points A$(-2, 0)$ and C$(0, -3)$, and its axis of symmetry is the line $x=\\frac{1}{2}$. Find the equation of the parabola.", -"image_file_name": "7058344", -"image": [ -"math/53080876_941.png" -], -"solution": "\\textbf{Solution:} Let the equation of the parabola be $y=ax^2+bx+c$,\\\\\nsince the axis of symmetry is the line $x=\\frac{1}{2}$,\\\\\nthus $-\\frac{b}{2a}=\\frac{1}{2}$,\\\\\nthus $b=-a$,\\\\\nthus $y=ax^2-ax+c$,\\\\\nSubstituting points A ($-2$, $0$) and C ($0$, $-3$),\\\\\nthus $\\begin{cases}c=-3 \\\\ 4a+2a+c=0\\end{cases}$,\\\\\nSolving yields $\\begin{cases}c=-3 \\\\ a=\\frac{1}{2}\\end{cases}$,\\\\\nthus $y=\\frac{1}{2}x^2-\\frac{1}{2}x-3$;\\\\\nHence, the equation of the parabola is $\\boxed{y=\\frac{1}{2}x^2-\\frac{1}{2}x-3}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"55595013_155": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD\\perp BC$ at point $D$, $E$ is a point on $AD$, and $AE: ED = 7: 5$. $CE$ is extended to intersect side $AB$ at point $F$, $AC = 13$, $BC = 8$, $\\cos\\angle ACB = \\frac{5}{13}$. Find the value of $\\tan\\angle DCE$?", -"image_file_name": "7058344", -"image": [ -"math/55595013_968.png" -], -"solution": "\\textbf{Solution:} Since $AD \\perp BC$, it follows that $\\angle ADC=90^\\circ$. In $\\triangle ADC$, given that $AC=13$ and $\\cos\\angle ACB=\\frac{5}{13}$, it can be deduced that $CD=5$ and therefore $AD=\\sqrt{AC^{2}-CD^{2}}=\\sqrt{13^{2}-5^{2}}=12$. Given that the ratio $AE:ED=7:5$, it follows that $ED=12\\times \\frac{5}{7+5}=5$. Consequently, $\\tan\\angle DCE=\\frac{ED}{CD}=\\boxed{1}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55595013_156": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD \\perp BC$ at point $D$, $E$ is a point on $AD$, and $AE:ED = 7:5$. Connect $CE$ and extend it to intersect side $AB$ at point $F$, $AC=13$, $BC=8$, $\\cos\\angle ACB = \\frac{5}{13}$. What is the value of $\\frac{AF}{BF}$?", -"image_file_name": "7058344", -"image": [ -"math/55595013_968.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw line $DG\\parallel CF$ passing through point $D$ and intersecting $AB$ at point $G$, \\\\\nsince $BC=8, CD=5$, \\\\\nthus $BD=BC-CD=3$. \\\\\nSince $DG\\parallel CF$, it follows that $\\frac{BD}{CD}=\\frac{BG}{FG}=\\frac{3}{5}$, $\\frac{AF}{FG}=\\frac{AE}{DE}=\\frac{7}{5}$, \\\\\ntherefore $AF=\\frac{7}{5}FG$. Let $BG=3x$, then $FG=5x, AF=7x$. \\\\\nHence $BF=FG+BG=8x$, therefore $\\frac{AF}{BF}=\\boxed{\\frac{7}{8}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52808108_36": { -"question": "Given the graph of the parabola $y = x^2 - 2x - 3$ as shown in the figure. What are the coordinates of the points where the parabola intersects the x-axis and y-axis?", -"image_file_name": "7057900", -"image": [ -"math/52808108_350.png" -], -"solution": "\\textbf{Solution:} Let $x=0$, then $y=-3$. Therefore, the intersection point of the parabola with the $y$-axis is \\boxed{(0,-3)}. Let $y=0$, then $x^2-2x-3=0$. Solving this yields: $x_1=-1$, $x_2=3$. Therefore, the intersection points of the parabola with the $x$-axis are \\boxed{(-1,0)} and \\boxed{(3,0)}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52808108_37": { -"question": "Given the parabola $y=x^{2}-2x-3$ as shown in the graph. Based on the graph, answer the following: For what values of $x$ is $y>0$? For what values of $x$ is $y<0$?", -"image_file_name": "7057900", -"image": [ -"math/52808108_350.png" -], -"solution": "\\textbf{Solution:} From the graph and the coordinates of the intersection points of the parabola with the x-axis, we know that\\\\\nwhen $x>3$ or $x<-1$, $y>0$;\\\\\nwhen $-13\\ or\\ x<-1,\\ y>0};\\ \\boxed{when\\ -1kx+b$ with respect to $x$.", -"image_file_name": "7057900", -"image": [ -"math/52797108_374.png" -], -"solution": "\\textbf{Solution:} The solution set for $x<-1$ or $0CD$, and $BC$ and $CD$ are the two roots of the quadratic equation $x^2-14x+48=0$ respectively. Connect $BD$. A moving point $P$ starts from $B$ and moves towards $D$ along $BD$ at a speed of 1 unit per second. At the same time, another moving point $Q$ starts from $D$ and moves along the ray $DA$ at the same speed. When point $P$ reaches point $D$, point $Q$ stops moving. Let the duration of the motion be $t$ seconds. Construct $\\text{Rt}\\triangle PQM$ with $PQ$ as the hypotenuse, such that point $M$ falls on segment $BD$. What is the length of segment $BD$?", -"image_file_name": "7057900", -"image": [ -"math/52774682_4119.png" -], -"solution": "\\textbf{Solution:} Given $x^{2}-14x+48=0$,\\\\\n$\\therefore$ $(x-6)(x-8)=0$. Solving this gives $x_{1}=6$, $x_{2}=8$. \\\\\n$\\therefore$ $BC=8$, $CD=6$,\\\\\n$\\because$ Rectangle ABCD,\\\\\n$\\therefore$ $\\angle C=90^\\circ$,\\\\\n$\\therefore$ $BD=\\sqrt{BC^{2}+CD^{2}}=\\sqrt{8^{2}+6^{2}}=\\boxed{10}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52774682_58": { -"question": "As shown in the diagram, in rectangle $ABCD$, $BC>CD$, and $BC$ and $CD$ are the two roots of the quadratic equation ${x}^{2}-14x+48=0$. Connect $BD$. A moving point $P$ starts from $B$ and moves towards $D$ along $BD$ at a speed of $1$ unit per second. At the same time, another moving point $Q$ starts from $D$ and moves along the ray $DA$ at the same speed. When point $P$ reaches point $D$, point $Q$ stops moving. Let the movement time be $t$ seconds. Construct $\\triangle PQM$ with $PQ$ as the hypotenuse, such that point $M$ lies on the segment $BD$. What is the maximum area of $\\triangle PDQ$?", -"image_file_name": "7057900", -"image": [ -"math/52774682_4119.png" -], -"solution": "\\textbf{Solution:} Draw $PE \\perp AD$ at point E, \\\\\n$\\therefore \\angle DEP=\\angle DAB=90^\\circ$,\\\\\n$\\therefore PE \\parallel AB$,\\\\\n$\\therefore \\triangle DEP \\sim \\triangle DAB$,\\\\\n$\\therefore \\frac{EP}{AB}=\\frac{PD}{BD}$, given $AB=CD=6$, $DQ=BP=t$, then $PD=10-t$,\\\\\n$\\therefore \\frac{EP}{6}=\\frac{10-t}{10}$, solving this: $PE=6-\\frac{3}{5}t$,\\\\\n$\\therefore S_{\\triangle PQD}=\\frac{1}{2}DQ \\cdot PE=\\frac{1}{2}t\\left(6-\\frac{3}{5}t\\right)=-\\frac{3}{10}(t-5)^2+\\frac{15}{2}$,\\\\\n$\\because$ the parabola opens downwards,\\\\\nwhen $t=5$, the maximum area is $\\boxed{7.5}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52774682_59": { -"question": "As shown in the diagram, in rectangle $ABCD$, $BC>CD$ with $BC$ and $CD$ being the two roots of the quadratic equation $x^2-14x+48=0$. Connect $BD$. A moving point $P$ starts from $B$ and moves towards $D$ along $BD$ at a speed of 1 unit per second, while another moving point $Q$ starts from $D$ and moves along ray $DA$ at the same speed. When point $P$ reaches point $D$, point $Q$ stops moving. Let the motion time be $t$ seconds. Construct triangle $\\triangle PQM$ with $PQ$ as the hypotenuse such that point $M$ is on the line segment $BD$. When triangle $\\triangle PQM$ is similar to $\\triangle BCD$, what is the value of $t$?", -"image_file_name": "7057900", -"image": [ -"math/52774682_4119.png" -], -"solution": "\\textbf{Solution:} From the given information, $\\because \\angle QMD = \\angle QMP = \\angle C = 90^\\circ$, $AD \\parallel BC$, $\\therefore \\angle DBC = \\angle QDM$, $\\therefore \\triangle DQM \\sim \\triangle BDC$, $\\therefore \\frac{QM}{DC} = \\frac{QD}{BD} = \\frac{DM}{CB}$, that is, $\\frac{QM}{6} = \\frac{t}{10} = \\frac{DM}{8}$. Solving these equations gives: $QM = \\frac{3}{5}t$, $DM = \\frac{4}{5}t$.\n\n$\\because \\triangle PQM \\sim \\triangle BCD$, $\\therefore \\frac{QM}{DC} = \\frac{PM}{BC}$ or $\\frac{QM}{BC} = \\frac{PM}{DC}$, $\\therefore QM = \\frac{3}{4}PM$ or $QM = \\frac{4}{3}PM$.\n\nWhen point M is on segment PD, $PM = 10 - t - \\frac{4}{5}t = 10 - \\frac{9}{5}t$, $\\therefore QM = \\frac{3}{4}PM$ that is $\\frac{3}{5}t = \\frac{3}{4}\\left(10 - \\frac{9}{5}t\\right)$. Solving this equation yields: $t = \\boxed{\\frac{50}{13}}$.\n\nWhen $QM = \\frac{4}{3}PM$, $\\frac{3}{5}t = \\frac{4}{3}\\left(10 - \\frac{9}{5}t\\right)$. Solving this equation yields: $t = \\boxed{\\frac{40}{9}}$.\n\nWhen point M is on PB, $PM = t + \\frac{4}{5}t - 10 = \\frac{9}{5}t - 10$, $QM = \\frac{4}{3}PM$ that is $\\frac{3}{5}t = \\frac{4}{3}\\left(\\frac{9}{5}t - 10\\right)$. Solving this equation yields: $t = \\boxed{\\frac{200}{27}}$.\n\nWhen $QM = \\frac{3}{4}PM$, $\\frac{3}{5}t = \\frac{3}{4}\\left(\\frac{9}{5}t - 10\\right)$. Solving this equation yields: $t = \\boxed{10}$.\n\nTherefore, the possible values for $t$ are \\boxed{\\frac{50}{13}}, \\boxed{\\frac{40}{9}}, \\boxed{\\frac{200}{27}}, or \\boxed{10}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53124516_61": { -"question": "As shown in the diagram, the parabola $y=x^2+bx+c$ intersects the $x$-axis at points $A$ and $B(3,0)$, and intersects the $y$-axis at point $C(0,3)$. Find the analytical expression of the parabola.", -"image_file_name": "7057900", -"image": [ -"math/53124516_420.png" -], -"solution": "\\textbf{Solution:} Substitute points B$(3,0)$, C$(0,3)$ into the parabola $y=x^{2}+bx+c$, we get:\n\\[\n\\left\\{\n\\begin{array}{l}\n0=9+3b+c\\\\\n3=c\n\\end{array}\n\\right.\n\\]\nSolving this, we obtain:\n\\[\n\\left\\{\n\\begin{array}{l}\nb=-4\\\\\nc=3\n\\end{array}\n\\right.\n\\]\n$\\therefore$ The equation of the parabola is \\boxed{y=x^{2}-4x+3}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"53124516_62": { -"question": "As shown in the figure, the parabola $y=x^2+bx+c$ intersects the x-axis at points $A$ and $B(3,0)$, and the y-axis at point $C(0,3)$. If point $M$ is a moving point on the parabola below the x-axis, and through point $M$ a line $MN$ is drawn parallel to the y-axis intersecting the line $BC$ at point $N$, what is the maximum value of the line segment $MN$?", -"image_file_name": "7057900", -"image": [ -"math/53124516_420.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point M be $(m, m^2-4m+3)$. Assume the equation of line BC is $y=-x+3$, \\\\\nSubstituting point B $(3,0)$ into $y=-x+3$, \\\\\nWe get: $0=3k+3$, solving for $k$ we find $k=-1$, \\\\\n$\\therefore$ The equation of line BC is $y=-x+3$.\\\\\n$\\because MN\\parallel y$-axis, \\\\\n$\\therefore$ The coordinates of point N are $(m, -m+3)$.\\\\\n$\\because$ The equation of the parabola is $y=x^2-4x+3=(x-2)^2-1$, \\\\\n$\\therefore$ The axis of symmetry for the parabola is $x=2$,\\\\\n$\\therefore$ The point $(1,0)$ lies on the graph of the parabola,\\\\\n$\\therefore$ $10$) at points $A$ and $B$. Given $A(1,2)$, what are the equations of the linear and the inverse proportionality functions?", -"image_file_name": "7057900", -"image": [ -"math/52694023_511.png" -], -"solution": "\\textbf{Solution:} Substitute point A$(1,2)$ into $y=-x+m$, to obtain $-1+m=2$, $\\therefore m=3$, $\\therefore$ the linear function can be expressed as $y=-x+3$; Substitute point A$(1,2)$ into $y=\\frac{k}{x}$, $\\therefore k=1\\times 2=2$, $\\therefore$ the inverse proportional function can be expressed as $\\boxed{y=-x+3}$ and $\\boxed{y=\\frac{2}{x}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52694023_95": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the linear function $y=-x+m$ intersects with the graph of the inverse proportion function $y=\\frac{k}{x}$ ($x>0$) at points $A$ and $B$. It is known that $A(1,2)$. Connect $AO$ and $BO$, what is the area of $\\triangle AOB$?", -"image_file_name": "7057900", -"image": [ -"math/52694023_511.png" -], -"solution": "\\textbf{Solution:} Solve the system of equations\n\\[\n\\left\\{\\begin{array}{l}\ny=-x+3\\\\ \ny=\\frac{2}{x}\n\\end{array}\\right.\n\\]\nto get\n\\[\n\\left\\{\\begin{array}{l}\nx=1\\\\ \ny=2\n\\end{array}\\right.\n\\]\nor\n\\[\n\\left\\{\\begin{array}{l}\nx=2\\\\ \ny=1\n\\end{array}\\right.\n\\]\n$\\therefore$ For point B $(2, 1)$, let the intersection of the line $y=-x+3$ with the $y$-axis be point C, $\\therefore$ C $(0, 3)$. Therefore, the area of $\\triangle AOB$ equals the area of $\\triangle COB$ minus the area of $\\triangle COA$, which is $\\frac{1}{2}\\times3\\times2-\\frac{1}{2}\\times3\\times1=\\boxed{1.5}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52693909_97": { -"question": "Given the partial graph of the parabola $y = -x^2 + bx - c$ as shown in the figure. Find the values of $b$ and $c$.", -"image_file_name": "7057900", -"image": [ -"math/52693909_520.png" -], -"solution": "Solution: Substituting $(1, 0)$ into $y = -x^2 + bx - c$ yields\n\\[\n\\left\\{\n\\begin{array}{l}\n-1 + b + c = 0 \\\\\n-c = 3\n\\end{array}\n\\right.\n\\]\nSolving yields $b = \\boxed{-2}$, $c = \\boxed{-3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52693909_98": { -"question": "As shown in the figure, it is known that part of the graph of the parabola $y = -x^2 + bx - c$. Find the axis of symmetry and the maximum value of $y$ for the parabola, respectively.", -"image_file_name": "7057900", -"image": [ -"math/52693909_520.png" -], -"solution": "\\textbf{Solution:} Given the function $y = -x^{2} - 2x + 3$,\\\\\nit can be rewritten as $y = -(x + 1)^{2} + 4$,\\\\\ntherefore, the axis of symmetry of the parabola is the line $\\boxed{x = -1}$,\\\\\nthus, the maximum value of $y$ is $\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52660399_100": { -"question": "As shown in the figure, it is known that the parabola $y=-x^2+2x+4$ intersects the y-axis at point $C$, and its vertex is point $D$. Find the coordinates of points $C$ and $D$.", -"image_file_name": "7057900", -"image": [ -"math/52660399_534.png" -], -"solution": "\\textbf{Solution:} The equation of the parabola is $y=-x^2+2x+4=-(x-1)^2+5$,\\\\\n$\\therefore$ the coordinates of point $D$ are \\boxed{(1,5)}.\\\\\nLet $x=0$, then $y=4$,\\\\\n$\\therefore$ the coordinates of point $C$ are \\boxed{(0,4)}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52660399_102": { -"question": "As shown in the figure, it is known that the parabola $y=-x^2+2x+4$ intersects the $y$-axis at point $C$ and has the vertex at $D$. Connect $CD$. Point $Q$ is on the line $CD$ in the first quadrant. Draw $QM\\perp x$-axis, intersecting the $x$-axis at point $M$. If the abscissa of point $Q$ is $x$, and the area of $\\triangle QMO$ is $S$, what is the function expression of $S$ in terms of $x$?", -"image_file_name": "7057900", -"image": [ -"math/52660399_534.png" -], -"solution": "\\textbf{Solution:} Let the equation of line $CD$ be $y=ax+b$. Substituting points $D(1, 5)$ and $C(0, 4)$ into this, we get\n\\[\n\\left\\{\n\\begin{array}{l}\na+b=5 \\\\\nb=4\n\\end{array}\n\\right.\n\\]\nSolving this system yields\n\\[\n\\left\\{\n\\begin{array}{l}\na=1 \\\\\nb=4\n\\end{array}\n\\right.\n\\]\nTherefore, the equation of line $CD$ is $y=x+4$.\\\\\nSince the x-coordinate of point $Q$ is $x$,\\\\\nTherefore, $Q(x, x+4)$, $M(x, 0)$,\\\\\nSince point $Q$ is in the first quadrant,\\\\\nTherefore, $QM=x+4$, $MO=x$,\\\\\nTherefore, $S=\\frac{1}{2}QM\\cdot MO=\\frac{1}{2}x(x+4)=\\boxed{\\frac{1}{2}x^2+2x}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52660930_104": { -"question": "As shown in Figure 1, the parabola $y = ax^2 + bx + 3$ intersects the x-axis at points $A(3,0)$ and $B(-1,0)$, and intersects the y-axis at point $C$. Point $P$ is a moving point on the parabola in the first quadrant, and point $F$ is a moving point on the y-axis. Connect $PA$, $PF$, $AF$. What is the function expression corresponding to this parabola?", -"image_file_name": "7057900", -"image": [ -"math/52660930_540.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince the parabola $y=ax^{2}+bx+3$ intersects the $x$-axis at points $A(3,0)$ and $B(-1,0)$, \\\\\nwe have $\\begin{cases}9a+3b+3=0 \\\\ a-b+3=0 \\end{cases}$ \\\\\nSolving these, we get $\\begin{cases}a=-1 \\\\ b=2 \\end{cases}$ \\\\\nTherefore, the corresponding function expression for the parabola is $y=-x^{2}+2x+3=\\boxed{-x^{2}+2x+3}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52660930_105": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+3$ intersects the $x$-axis at points $A(3,0)$ and $B(-1,0)$, and intersects the $y$-axis at point $C$. Point $P$ is a moving point on the parabola in the first quadrant, and point $F$ is a moving point on the $y$-axis. Lines $PA$, $PF$, and $AF$ are connected. When the coordinates of point $F$ are $(0,-4)$, what is the maximum value of the area of $\\triangle AFP$?", -"image_file_name": "7057900", -"image": [ -"math/52660930_540.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, we draw PQ through point P parallel to the y-axis to meet line AF at point Q, \\\\\nlet the equation of line AF be $y = kx + d$, \\\\\nsince A(3, 0), F(0, -4), \\\\\nthus $\\begin{cases} 3k+d=0 \\\\ d=-4 \\end{cases}$, solving gives: $\\begin{cases} k=\\frac{4}{3} \\\\ d=-4 \\end{cases}$, \\\\\ntherefore, the equation of line AF is $y=\\frac{4}{3}x-4$, \\\\\nlet $P(t, -t^{2}+2t+3)$ (-10$.", -"image_file_name": "7057900", -"image": [ -"math/52605434_560.jpg" -], -"solution": "\\textbf{Solution:} Since the parabola passes through the point ($-3$, $0$) and its axis of symmetry is the line $x = -1$, \\\\\nit follows that the parabola also passes through the point ($1$, $0$), \\\\\ntherefore, when \\boxed{-3 < x < 1}, we have $y > 0$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52605441_116": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $y=x^{2}-2x+c$ intersects with the line $y=x+1$ at points $A$ and $C$, and the coordinates of point $A$ are $(-1,0)$. What are the coordinates of point $C$?", -"image_file_name": "7057900", -"image": [ -"math/52605441_570.jpg" -], -"solution": "Solution: Since point A $(-1,0)$ lies on the parabola $y=x^{2}-2x+c$, \\\\\n$\\therefore$ $0=-1^{2}-2(-1)+c$, \\\\\n$\\therefore$ $c=-3$, \\\\\n$\\therefore$ the equation of the parabola is $y=x^{2}-2x-3$, \\\\\nBy solving the system with the line $y=x+1$, we get $\\left\\{\\begin{array}{l}y=x^{2}-2x-3 \\\\ y=x+1\\end{array}\\right.$, \\\\\nwhich yields $\\left\\{\\begin{array}{l}x=4\\\\ y=5\\end{array}\\right.$ or $\\left\\{\\begin{array}{l}x=-1\\\\ y=0\\end{array}\\right.$, \\\\\n$\\therefore$ the coordinates of point C are $\\boxed{(4,5)}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52605441_117": { -"question": "As shown in the figure, in the Cartesian coordinate system, the parabola $y=x^{2}-2x+c$ intersects with the line $y=x+1$ at points $A$ and $C$, and the coordinates of point $A$ are $(-1,0)$. If point $P$ is a moving point on the parabola below line $AC$, what is the maximum distance from point $P$ to line $AC$?", -"image_file_name": "7057900", -"image": [ -"math/52605441_570.jpg" -], -"solution": "\\textbf{Solution}: Draw $PM\\perp x$-axis from point $P$ to meet $AC$ at point $M$, as shown in the diagram: Let $P(m,m^{2}-2m-3)$ ($-1mx+n$.", -"image_file_name": "7057900", -"image": [ -"math/52536619_681.png" -], -"solution": "\\textbf{Solution:} The solution set is \\boxed{04}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52536619_158": { -"question": "As shown in the figure, rectangle $OCBA$ is located in the Cartesian coordinate system. Point $C$ is on the positive x-axis, and point $A$ is on the positive y-axis. It is known that the coordinates of point $B$ are $(4,2)$. The graph of the inverse proportion function $y=\\frac{k}{x}$ passes through the midpoint $D$ of $AB$ and intersects $BC$ at point $E$. Assume the equation of line $DE$ is $y=mx+n$. Connect points $OD$ and $OE$. Point $M$ is on the positive y-axis. If the area of $\\triangle MBO$ is equal to the area of $\\triangle ODE$, what are the coordinates of point $M$?", -"image_file_name": "7057900", -"image": [ -"math/52536619_681.png" -], -"solution": "\\textbf{Solution}: Given, $D(2,2)$, $E(4,1)$,\\\\\n$\\therefore$ the area of $\\triangle ODE$ is $2\\times 4-\\frac{1}{2}\\times 2\\times 2-\\frac{1}{2}\\times 2\\times 1-\\frac{1}{2}\\times 4\\times 1=3$,\\\\\nLet $M(0,m)$, and the area of $\\triangle MBO$ $=\\frac{1}{2}|m|\\times 4=3$,\\\\\n$\\therefore m=\\pm\\frac{3}{2}$,\\\\\n$\\therefore \\boxed{M(0,\\frac{3}{2})}$, and $(0,-\\frac{3}{2})$ (discard).", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52536619_159": { -"question": "It is known that the rectangle $OCBA$ is located as shown in the diagram within the Cartesian coordinate system. Point $C$ is on the positive semi-axis of $x$, and point $A$ is on the positive semi-axis of $y$. It is known that point $B$ has coordinates $(4,2)$, and the graph of the inverse proportion function $y=\\frac{k}{x}$ passes through the midpoint $D$ of $AB$ and intersects $BC$ at point $E$. Suppose the equation of line $DE$ is $y=mx+n$. Connect $OD$ and $OE$. Let point $P$ be a point on the $x$-axis, and point $Q$ be a point on the graph of the inverse proportion function $y=\\frac{k}{x}$. Are there points $P$ and $Q$ such that the quadrilateral with vertices $P$, $Q$, $D$, and $E$ forms a parallelogram? If such points exist, provide the coordinates of point $Q$ directly; if not, explain why.", -"image_file_name": "7057900", -"image": [ -"math/52536619_681.png" -], -"solution": "\\textbf{Solution:} Yes, there exists. The coordinates of point $Q$ are $\\boxed{(-4, -1)}$ or $\\boxed{\\left(\\frac{4}{3}, 3\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52513841_161": { -"question": "As shown in the figure, the parabola passes through points \\(A(4, 0)\\), \\(B(1, 0)\\), and \\(C(0, -2)\\). Find the analytical expression of this parabola.", -"image_file_name": "7057900", -"image": [ -"math/52513841_693.jpeg" -], -"solution": "\\textbf{Solution:} Given that the parabola passes through point $C(0, -2)$,\\\\\nwe can assume the equation of the parabola to be $y=ax^2+bx-2$.\\\\\nSubstituting points $A(4, 0)$, $B(1, 0)$ into it,\\\\\nwe get $\\begin{cases}16a+4b-2=0\\\\ a+b-2=0\\end{cases}$,\\\\\nfrom which we find $\\begin{cases}a=-\\frac{1}{2}\\\\ b=\\frac{5}{2}\\end{cases}$,\\\\\ntherefore, the equation of this parabola is $y=-\\frac{1}{2}x^2+\\frac{5}{2}x-2=\\boxed{-\\frac{1}{2}x^2+\\frac{5}{2}x-2}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52513841_162": { -"question": "As shown in the figure, the parabola passes through points $A\\left(4, 0\\right)$, $B\\left(1, 0\\right)$, and $C\\left(0, -2\\right)$. Let $P$ be a moving point on the parabola, and a perpendicular line is drawn from $P$ to the $x$-axis, with the foot of the perpendicular being $M$. Is there a point $P$ on the parabola such that the triangle with vertices $A$, $P$, and $M$ is similar to $\\triangle OAC$? If such a point exists, find the coordinates of point $P$; if not, please explain why.", -"image_file_name": "7057900", -"image": [ -"math/52513841_693.jpeg" -], -"solution": "\\textbf{Solution:} A solution exists. Let the x-coordinate of point $P$ be $m$, then the y-coordinate of $P$ is $-\\frac{1}{2}m^{2}+\\frac{5}{2}m-2$. When $14$, $AM=m-4$, $PM=\\frac{1}{2}m^{2}-\\frac{5}{2}m+2$,\\\\\n(1) $\\frac{PM}{AM}=\\frac{OC}{OA}=\\frac{1}{2}$ or (2) $\\frac{PM}{AM}=\\frac{OA}{OC}=2$,\\\\\nSubstituting $P\\left(m, -\\frac{1}{2}m^{2}+\\frac{5}{2}m-2\\right)$ yields: $2\\left(\\frac{1}{2}m^{2}-\\frac{5}{2}m+2\\right)=m-4$, $2\\left(m-4\\right)=\\frac{1}{2}m^{2}-\\frac{5}{2}m+2$,\\\\\nThe solutions are: the first equation yields $m=-2-2\\sqrt{3}<4$ (discard) $m=-2+2\\sqrt{3}<4$ (discard), the second equation yields $m=5$, $m=4$ (discard)\\\\\nSolving for $m=5$, $-\\frac{1}{2}m^{2}+\\frac{5}{2}m-2=-2$, then $P(5, -2)$, when $m<1$, $AM=4-m$, $PM=\\frac{1}{2}m^{2}-\\frac{5}{2}m+2$.\\\\\n(1) $\\frac{PM}{AM}=\\frac{OC}{OA}=\\frac{1}{2}$ or $\\frac{PM}{AM}=\\frac{OA}{OC}=2$,\\\\\nYields: $2\\left(\\frac{1}{2}m^{2}-\\frac{5}{2}m+2\\right)=4-m$, $2\\left(4-m\\right)=\\frac{1}{2}m^{2}-\\frac{5}{2}m+2$,\\\\\nThe solutions are: the first equation yields $m=0$ (discard), $m=4$ (discard), the second equation yields $m=4$ (discard), $m=-3$,\\\\\nFor $m=-3$, $-\\frac{1}{2}m^{2}+\\frac{5}{2}m-2=-14$, then $P(-3, -14)$,\\\\\nIn summary, the points $P$ that meet the conditions are $\\boxed{(2, 1)}$, $\\boxed{(5, -2)}$, or $\\boxed{(-3, -14)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52513841_163": { -"question": "As shown in the figure, the parabola passes through points $A(4, 0)$, $B(1, 0)$, and $C(0, -2)$. There exists a point $D$ on the parabola above line $AC$ for which the area of $\\triangle DCA$ is maximized. Determine the coordinates of point $D$.", -"image_file_name": "7057900", -"image": [ -"math/52513841_693.jpeg" -], -"solution": "\\textbf{Solution:} Let the $x$-coordinate of point $D$ be $t(01$, \\\\\nat $x=m$, we have $q=m^2-2m-3$, \\\\\nat $x=m+2$, we have $p=(m+2)^2-2(m+2)-3$, \\\\\n$\\therefore p-q=(m+2)^2-2(m+2)-3-m^2+2m+3=2$, \\\\\nsolving this gives $m=\\frac{1}{2}$ (discard);\n\n(2) When $m+2<1$, i.e., $m<-1$, \\\\\nat $x=m$, we have $p=m^2-2m-3$, \\\\\nat $x=m+2$, we have $q=(m+2)^2-2(m+2)-3$, \\\\\n$\\therefore p-q=m^2-2m-3-(m+2)^2+2(m+2)+3=2$, \\\\\nsolving this gives $m=-\\frac{1}{2}$ (discard);\n\n(3) When $m\\le 1\\le m+1$, i.e., $0\\le m\\le 1$, \\\\\nat $x=1$, we have $q=-4$, \\\\\nat $x=m+2$, we have $p=(m+2)^2-2(m+2)-3$, \\\\\n$\\therefore p-q=(m+2)^2-2(m+2)-3+4=2$, \\\\\nsolving this gives $m=\\sqrt{2}-1$ or $m=-\\sqrt{2}-1$ (discard);\n\n(4) When $m+1<1\\le m+2$, i.e., $-1\\le m<0$, \\\\\nat $x=1$, we have $q=-4$, \\\\\nat $x=m$, we have $p=m^2-2m-3$, \\\\\n$\\therefore p-q=m^2-2m-3+4=2$, \\\\\nsolving this gives $m=\\sqrt{2}+1$ (discard) or $m=-\\sqrt{2}+1$,\n\nTo conclude: The values for $m$ are $m=\\boxed{\\sqrt{2}-1}$ or $m=\\boxed{1-\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52512802_718.png", -"solution_images/52512802_7124.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52512802_171": { -"question": "As shown in the figure, in the Cartesian coordinate system, it is known that the parabola $y=x^2-2x-3$ has its vertex at point $A$, intersects the $y$-axis at point $C$, and the segment $CB\\parallel x$-axis intersects the parabola at another point $B$. The parabola $y=x^2-2x-3$ is translated so that its vertex always moves along the line $AC$. When the translated parabola has only one common point with the ray $BA$, let the $x$-coordinate of the vertex of the parabola at this time be $n$. Please write down the range of values of $n$ directly.", -"image_file_name": "7057900", -"image": [ -"math/52512802_716.png" -], -"solution": "\\textbf{Solution:} The range of values for $n$ is $1y_{2}$, directly write the range of $x$.", -"image_file_name": "7057900", -"image": [ -"math/52457688_741.png" -], -"solution": "\\textbf{Solution:} From the given, we have $x > -2$ or $0 < x < 1$,\n\n$\\therefore$ the value range of $x$ is \\boxed{(-2, \\infty) \\cup (0, 1)}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52457688_183": { -"question": "In a Cartesian coordinate system, suppose the inverse proportional function $y_{1}=\\frac{k_{1}}{x}$ ($k_{1}\\ne 0$) and the linear function $y_{2}=k_{2}x+b$ ($k_{2}\\neq 0$) both pass through points $A$ and $B$, with coordinates of point $A$ being $(1, m)$ and coordinates of point $B$ being $(-2, -2)$. If the graph of the function $y_{2}$ is translated downwards by $n$ ($n>0$) units, and intersects with the graph of the function $y_{1}$ at points $(p_{1}, q_{1})$ and $(p_{2}, q_{2})$, given that $p_{1}=-1$, find the values of $n$ and $p_{2}\\times q_{2}$ at this time.", -"image_file_name": "7057900", -"image": [ -"math/52457688_741.png" -], -"solution": "\\textbf{Solution:} The equation of the function after translating the graph of $y_{2}$ downwards by $n$ ($n>0$) units is $y=2x+2-n$; When $p_{1}=-1$ (at point $(-1, q_{1})$), since translating the graph of $y_{2}$ downwards by $n$ ($n>0$) units intersects with the graph of $y_{1}$ at points $(-1, q_{1})$ and $(p_{2}, q_{2})$, hence $-1q_{1}=4$, $p_{2}\\times q_{2}=4$, solving these we find $q_{1}=-4$, thus point $(-1, -4)$, hence $-2+2-n=-4$; solving for this gives $n=\\boxed{4}$; therefore, at this instance $n=4$, $p_{2}\\times q_{2}=\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52457729_185": { -"question": "As shown in the figure, the vertices $A$ and $C$ of the rectangle $OABC$ are on the positive semi-axes of the $x$ and $y$ axes, respectively. Point $F$ is a moving point on side $BC$ (not coinciding with points $B$, $C$). The inverse proportion function $y=\\frac{k}{x}$ ($x>0$) passing through point $F$ intersects side $AB$ at point $E(8, m)$, with $AB=4$. If $BE=3AE$,\n- (1) Find the expression of the inverse proportion function;\n- (2) Fold rectangle $OABC$ such that point $O$ coincides with point $F$. The fold intersects the $x$ and $y$ axes at points $H$ and $G$, respectively. Find the length of the line segment $OG$.", -"image_file_name": "7057900", -"image": [ -"math/52457729_751.png" -], -"solution": "\\textbf{Solution:}\n\n(1) Since $BE=3AE$ and $AB=4$,\\\\\nthen $AE=1$ and $BE=3$,\\\\\nthus $E(8,1)$,\\\\\nthus $k=8\\times 1=8$,\\\\\ntherefore, the expression for the inverse proportion function is $y=\\frac{8}{x}$;\\\\\n(2) When $y=4$, then $x=2$,\\\\\nthus $F(2,4)$,\\\\\nthus $CF=2$,\\\\\nlet $OG=x$, then $CG=4-x$ and $FG=x$,\\\\\nby the Pythagorean theorem, we get,\\\\\n$(4-x)^2+2^2=x^2$,\\\\\nsolving for $x$, we find $x=\\frac{5}{2}$,\\\\\nthus $OG=\\boxed{\\frac{5}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52457729_186": { -"question": "The vertex $A$ and $C$ of the rectangle $OABC$ are respectively on the positive half-axis of $x$ and $y$. Point $F$ is a moving point on side $BC$ (not coinciding with points $B$ and $C$). The inverse proportion function $y=\\frac{k}{x}$ $(x>0)$ passing through point $F$ intersects with side $AB$ at point $E(8,m)$, where $AB=4$. As shown in the figure, connect $OF$ and $EF$. Please use an equation involving $m$ to express the area of quadrilateral $OAEF$, and find the maximum value of the area of $OAEF$.", -"image_file_name": "7057900", -"image": [ -"math/52457729_751.png" -], -"solution": "\\textbf{Solution:} Since points E and F are on the graph of the inverse proportion function $y=\\frac{k}{x}$ $(x>0)$,\\\\\nthus $CF \\times 4 = 8m$,\\\\\ntherefore $CF = 2m$,\\\\\ntherefore, the area of quadrilateral $OAEF$ is $8 \\times 4 - \\frac{1}{2} \\times 4 \\times 2m - \\frac{1}{2} \\times (8 - 2m) \\times (4 - m)$\\\\\n$= -m^{2} + 4m + 16 = -\\left(m - 2\\right)^{2} + 20$,\\\\\nsince $0 < m < 4$,\\\\\ntherefore, when $m = 2$, the maximum area of quadrilateral $OAEF$ is $\\boxed{20}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51369956_188": { -"question": "As shown in the figure, the graph of the quadratic function $y=x^2+bx+c$ intersects the x-axis at points $A$ and $B$, and intersects the y-axis at point $C$. Furthermore, it is symmetrical about the line $x=1$, and the coordinates of point $A$ are $(-1,0)$. What is the expression of the quadratic function?", -"image_file_name": "7057900", -"image": [ -"math/51369956_760.png" -], -"solution": "\\textbf{Solution:} From the given, we have:\n\n\\[\n\\left\\{\\begin{array}{l}\n-\\frac{b}{2a}=1\\\\ \n1-b+c=0\n\\end{array}\\right.\n\\]\n\nTherefore, \n\n\\[\n\\left\\{\\begin{array}{l}\nb=-2\\\\ \nc=-3\n\\end{array}\\right.\n\\]\n\nHence, \\(y=x^{2}-2x-3=\\boxed{x^{2}-2x-3}\\)", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51369956_189": { -"question": "As shown in the figure, the graph of the quadratic function $y=x^2+bx+c$ intersects the $x$-axis at points $A$ and $B$, and intersects the $y$-axis at point $C$. It is symmetric about the line $x=1$, and the coordinates of point $A$ are $(-1,0)$. When $y<0$, write down the range of values for $x$.", -"image_file_name": "7057900", -"image": [ -"math/51369956_760.png" -], -"solution": "\\textbf{Solution:} When $y<0$, the range of $x$ is \\boxed{-11$, when $x=a$, y reaches its minimum value, which is\n\\[a^{2}-2a-3=2a\\]\n\\[\\therefore a=2\\pm \\sqrt{7}\\] (discard the negative value)\n\nHence, $a= \\boxed{1-\\sqrt{5}}$ or $a= \\boxed{2+\\sqrt{7}}$\n", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51369908_192": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertex $C$ of the parabola passing through points $A\\left(0, 4\\right)$ and $B\\left(5, 9\\right)$ is located on the positive half of the $x$-axis. Find the equation of the parabola.", -"image_file_name": "7057900", -"image": [ -"math/51369908_773.png" -], -"solution": "\\textbf{Solution:} Since the vertex of the parabola is on the x-axis, we can assume the equation of the parabola to be $y=a(x-h)^{2}$. Therefore,\n\\[\n\\left\\{\n\\begin{array}{l}\na(0-h)^{2}=4\\\\\na(5-h)^{2}=9\n\\end{array}\n\\right.\n\\]\nSolving this gives $h_{1}=2$, $h_{2}=-10$ (which is not consistent with the problem statement). When $h=2$, $a=1$, therefore the equation of the parabola is $y=(x-2)^{2}=x^{2}-4x+4$. Thus, the equation of the parabola is $\\boxed{y=x^{2}-4x+4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51369908_193": { -"question": "As shown in the figure, in the Cartesian coordinate system, the vertex $C$ of the parabola passing through points $A\\left(0, 4\\right)$ and $B\\left(5, 9\\right)$ is on the positive half-axis of the $x$-axis. Find the coordinates of point $C$.", -"image_file_name": "7057900", -"image": [ -"math/51369908_773.png" -], -"solution": "\\textbf{Solution:}\nSince the equation of the parabola is $y=(x-2)^2$, \\\\\ntherefore, the coordinates of point $C$ are $\\boxed{(2,0)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51369908_194": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the vertex $C$ of the parabola passing through points $A(0, 4)$ and $B(5, 9)$ is located on the positive half of the $x$-axis. Let $P(x, y)$ be a point on segment $AB$, with $1\\leq x\\leq 4$. Draw $PM\\parallel y$-axis to intersect the parabola at point $M$. Find the maximum and minimum values of $PM$.", -"image_file_name": "7057900", -"image": [ -"math/51369908_773.png" -], -"solution": "\\textbf{Solution:} Let the equation of AB be: $y=kx+b$. Substituting points A$(0,4)$ and B$(5,9)$ into $y=kx+b$, we obtain:\n\\[\n\\left\\{\n\\begin{array}{l}\nb=4\\\\\n5k+b=9\n\\end{array}\n\\right.\n\\]\nSolving this gives:\n\\[\n\\left\\{\n\\begin{array}{l}\nk=1\\\\\nb=4\n\\end{array}\n\\right.\n\\]\n$\\therefore$The equation of AB is: $y=x+4$,\n\n$\\because$Point P is a point on line segment AB, and point M is a point on the parabola $y=(x-2)^2$, $PM\\parallel y$-axis,\n\nLet $P(t, t+4)$, then $M(t, t^2-4t+4)$,\n\n$\\therefore PM=(t+4)-(t^2-4t+4)=-t^2+5t=-(t-\\frac{5}{2})^2+\\frac{25}{4}$,\n\nAdditionally, $\\because 1\\leq t\\leq 4$,\n\n$\\therefore$When $1\\le t\\le \\frac{5}{2}$, the value of PM increases with increasing t; when $\\frac{5}{2}\\le t\\le 4$, the value of PM decreases with increasing t;\n\n$\\therefore$When $t=\\frac{5}{2}$, $PM_{\\max}=\\boxed{\\frac{25}{4}}$;\n\nSince $\\because 4-\\frac{5}{2}=\\frac{5}{2}-1=\\frac{3}{2}$,\n\n$\\therefore$When $t=1$ and $t=4$, the minimum value of PM is reached, $PM_{\\min}=\\boxed{4}$.\n\nIn conclusion, the maximum value of PM is $\\boxed{\\frac{25}{4}}$, and the minimum value of PM is $\\boxed{4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51323941_196": { -"question": "As shown in Figure 1, in the Cartesian coordinate system $xOy$, the parabola $y=ax^2+bx$ passes through the point $(-2, 5)$, and intersects with the line $y=-\\frac{1}{2}x$ at point A in the second quadrant. Through point A, draw $AB\\perp x$ axis, with the foot of the perpendicular at point $B\\left(-4, 0\\right)$. Suppose P is a point on the parabola above the line OA, through point P draw $PC\\perp x$ axis at point C, intersecting OA at point D. Connect $OP$ and $PA$. What is the analytical expression of the parabola?", -"image_file_name": "7057900", -"image": [ -"math/51323941_7811.png" -], -"solution": "\\textbf{Solution:} Let $AB$ be perpendicular to the $x$-axis, with the point $B(-4, 0)$,\\\\\n$\\therefore y=-\\frac{1}{2}\\times 4=-2$,\\\\\n$\\therefore A(-4, 2)$. Furthermore, since the parabola passes through $(-2, 5)$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}\n16a-4b=2\\\\\n4a-2b=5\n\\end{array}\\right.$, solving this gives: $\\left\\{\\begin{array}{l}\na=-1\\\\\nb=-\\frac{9}{2}\n\\end{array}\\right.$,\\\\\n$\\therefore$ the equation of the parabola is $y=-x^{2}-\\frac{9}{2}x=\\boxed{-x^{2}-\\frac{9}{2}x}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51323941_197": { -"question": "As shown in Figure 1, in the Cartesian coordinate system $xOy$, the parabola $y=ax^2+bx$ passes through the point $\\left(-2, 5\\right)$, and intersects with the line $y=-\\frac{1}{2}x$ at point A in the second quadrant. A line perpendicular to the $x$-axis passing through point A meets the $x$-axis at point $B\\left(-4, 0\\right)$. Let P be a moving point on the parabola above line OA, draw $PC\\perp x$-axis at point C, and intersect line OA at point D. Connect $OP$ and $PA$. What is the maximum value of the area $S$ of $\\triangle AOP$?", -"image_file_name": "7057900", -"image": [ -"math/51323941_7811.png" -], -"solution": "\\textbf{Solution}: Let point $P\\left(t, -{t}^{2}-\\frac{9}{2}t\\right)$, then point $D\\left(t, -\\frac{1}{2}t\\right)$,\\\\\n$\\therefore PD=\\left(-{t}^{2}-\\frac{9}{2}t\\right)-\\left(-\\frac{1}{2}t\\right)=-{t}^{2}-4t$,\\\\\n$\\therefore S=\\frac{1}{2}\\cdot PD\\cdot 4=\\frac{1}{2}\\cdot \\left(-{t}^{2}-4t\\right)\\cdot 4=-2{\\left(t+2\\right)}^{2}+8$,\\\\\n$\\therefore$ when $t=-2$, $S_{\\max}=\\boxed{8}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51323941_198": { -"question": "As shown in Figure 1, in the Cartesian coordinate system $xOy$, the parabola $y=ax^2+bx$ passes through the point $\\left(-2, 5\\right)$, and intersects with the line $y=-\\frac{1}{2}x$ at point $A$ in the second quadrant. A perpendicular line $AB$ is drawn from point $A$ to the $x$-axis, with the foot of the perpendicular being point $B\\left(-4, 0\\right)$. Let $P$ be a moving point on the parabola above line $OA$, and draw a line $PC\\perp x$-axis at point $C$, intersecting $OA$ at point $D$. Connect $OP$ and $PA$. Connect $PB$ intersecting $OA$ at point $E$, as shown in Figure 2. Can the line segments $PB$ and $AD$ bisect each other? If so, please find the coordinates of point $E$; if not, please explain why.", -"image_file_name": "7057900", -"image": [ -"math/51323941_7811.png" -], -"solution": "\\textbf{Solution:} Solution: The line segment $PB$ and $AD$ bisect each other. The reason is as follows: Connect $BD$, $\\because$ the line segments $PB$ and $AD$ bisect each other, $\\therefore$ the quadrilateral $ABDP$ is a parallelogram, $\\therefore$ $PD=AB$, $\\because A(-4, 2)$, $PD = -t^2 - 4t$, $\\therefore$ $-t^2 - 4t = 2$, $\\therefore$ $t = -2 + \\sqrt{2}$ or $t = -2 - \\sqrt{2}$. When $t = -2 + \\sqrt{2}$, then $D(-2 + \\sqrt{2}, 1 - \\frac{\\sqrt{2}}{2})$, $\\because E$ is the midpoint of $AD$, $\\therefore$ the coordinates of point E are $\\boxed{\\left(\\frac{-6 + \\sqrt{2}}{2}, \\frac{6 - \\sqrt{2}}{4}\\right)}$. When $t = -2 - \\sqrt{2}$, then $D(-2 - \\sqrt{2}, 1 + \\frac{\\sqrt{2}}{2})$, $\\because E$ is the midpoint of $AD$, $\\therefore$ the coordinates of point E are $\\boxed{\\left(\\frac{-6 - \\sqrt{2}}{2}, \\frac{6 + \\sqrt{2}}{4}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51321592_200": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the quadratic function $y=-x^2+bx+c$ intersects the coordinate axes at points $A$, $B$, and $C$. The coordinates of point $B$ are $(1,0)$, the coordinates of point $C$ are $(0,4)$, and the coordinates of point $D$ are $(0,2)$. Point $P$ is a moving point on the graph of the quadratic function. Find the analytical expressions for the quadratic function and the line $AD$.", -"image_file_name": "7057900", -"image": [ -"math/51321592_790.png" -], -"solution": "Solution: Substitute B(1, 0) and C(0, 4) into $y=-x^{2}+bx+c$, we get\n\\[\n\\left\\{\n\\begin{array}{l}\n0=-1+b+c\\\\\n4=c\n\\end{array}\n\\right.,\n\\]\nSolving this, we have\n\\[\n\\left\\{\n\\begin{array}{l}\nb=-3\\\\\nc=4\n\\end{array}\n\\right.,\n\\]\n$\\therefore$ The quadratic function can be written as $y=-x^{2}-3x+4$.\n\nSubstitute $y=0$ into $y=-x^{2}-3x+4$, we have $-x^{2}-3x+4=0$, solving this we find $x_{1}=-4$, $x_{2}=1$,\n\n$\\therefore$ \\boxed{A(-4, 0)}.\n\nLet's assume the equation of line AD as $y=kx+b'$.\n\n$\\because$ D(0, 2),\n\n$\\therefore$\n\\[\n\\left\\{\n\\begin{array}{l}\n0=-4k+b' \\\\\n2=b'\n\\end{array}\n\\right.,\n\\]\nSolving this, we find:\n\\[\n\\left\\{\n\\begin{array}{l}\nk=\\frac{1}{2}\\\\\nb'=2\n\\end{array}\n\\right.,\n\\]\n$\\therefore$ The equation of line AD is \\boxed{y=\\frac{1}{2}x+2}.\n", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51321592_201": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the quadratic function $y=-x^2+bx+c$ intersects the coordinate axes at points $A$, $B$, and $C$, where point $B$ has the coordinates $(1,0)$, point $C$ has the coordinates $(0,4)$, and point $D$ has the coordinates $(0,2)$. Let point $P$ be a moving point on the graph of the quadratic function. When point $P$ is located in the second quadrant on the graph of the quadratic function, connect points $AD$ and $AP$, and construct the parallelogram $APED$ with $AD$ and $AP$ as adjacent sides. Let the area of parallelogram $APED$ be $S$. Find the maximum value of $S$.", -"image_file_name": "7057900", -"image": [ -"math/51321592_790.png" -], -"solution": "\\textbf{Solution:} Draw PD and construct PG $\\parallel$ y-axis intersecting AD at point G, as shown in the figure.\\\\\nLet P$(t,-t^{2}-3t+4)$ (where $-4 \\frac{45}{16}$, which is not reasonable. Therefore, summarizing the above discussion, the speed of point N is $\\frac{16}{9}$ units per second and when $t = \\boxed{\\frac{45}{37}}$, the rectangle DENM forms a square.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51433217_215": { -"question": "As shown in the figure, the parabola $y=ax^2-2ax-3a$ (where $a$ is a constant and $a<0$) intersects the x-axis at points A and B (point A is to the left of point B), and intersects the y-axis at point C, and $OB=OC$. Find the value of $a$.", -"image_file_name": "7057900", -"image": [ -"math/51433217_832.png" -], -"solution": "\\textbf{Solution.} From the given information, we have\n\\[y = a{x}^{2}-2ax-3a \\\\\n= a({x}^{2}-2x-3) \\\\\n= a(x-3)(x+1)\\]\nSetting $y=0$, we find ${x}_{1}=-1$, ${x}_{2}=3$. Setting $x=0$, we have $y=-3a$.\n\nThe parabola $y=a{x}^{2}-2ax-3a$ (where $a$ is a constant, $a<0$) intersects the $x$-axis at points $A$ and $B$ (with $A$ to the left of $B$) and the $y$-axis at point $C$, making the intersection points with the $x$-axis $A(-1,0)$, $B(3,0)$, and with the $y$-axis $C(0,-3a)$.\n\nSince $OB=OC$, we have $OC=3$, hence $C(0,3)$, which implies $-3a=3$.\n\nSolving for $a$ gives $a=\\boxed{-1}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51433217_216": { -"question": "As shown in the figure, the parabola $y=ax^2-2ax-3a$ (where $a$ is a constant and $a<0$) intersects the x-axis at points A and B (with point A to the left of point B) and intersects the y-axis at point C, with OB=OC. Point D is the vertex of the parabola, and point P $(m, n)$ is a point on the parabola in the third quadrant. Lines BD, BC, CD, and BP are drawn. When $\\angle PBA=\\angle CBD$, find the value of $m$?", -"image_file_name": "7057900", -"image": [ -"math/51433217_832.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $PE\\perp x$ axis at point $E$,\\\\\n$\\because y=-x^2+2x+3=-(x-1)^2+4$\\\\\n$\\therefore D(1, 4)$\\\\\n$\\because B(3, 0), C(3, 0)$\\\\\n$\\therefore CD=\\sqrt{1^2+1^2}=\\sqrt{2}, BC=\\sqrt{3^2+3^2}=3\\sqrt{2}, BD=\\sqrt{(3-1)^2+4^2}=2\\sqrt{5}$\\\\\n$\\therefore CD^2+BC^2=20, BD^2=20$\\\\\n$\\therefore CD^2+BC^2=BD^2$\\\\\n$\\therefore \\triangle BCD$ is a right triangle, with $\\angle BCD=90^\\circ$\\\\\n$\\because PE\\perp AB$\\\\\n$\\therefore \\angle PEB=\\angle PCD=90^\\circ$\\\\\nAlso, $\\because \\angle PBA=\\angle CBD$\\\\\n$\\therefore \\triangle BCD\\sim \\triangle BEP$\\\\\n$\\therefore \\frac{CD}{PE}=\\frac{BC}{BE}$\\\\\n$\\because P(m, n)$ lies on the parabola $y=-x^2+2x+3$,\\\\\n$\\therefore n=-m^2+2m+3$\\\\\n$\\therefore PE=-n=m^2-2m-3, BE=3-m$\\\\\n$\\therefore \\frac{\\sqrt{2}}{m^2-2m-3}=\\frac{3\\sqrt{2}}{3-m}$\\\\\nAfter rearranging, we get $(3m+4)(m-3)=0$\\\\\nSolving this, we find $m_1=-\\frac{4}{3}, m_2=3$ (discard)\\\\\n$\\because P(m, n)$ is in the third quadrant,\\\\\n$\\therefore m=\\boxed{-\\frac{4}{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51433217_217": { -"question": "As shown in the figure, the parabola $y=ax^2-2ax-3a$ (where \\(a\\) is a constant, $a<0$) intersects the x-axis at points A and B (with point A to the left of point B), and intersects the y-axis at point C, with OB=OC. Point K is a point in the coordinate plane, and DK=2, point M is the midpoint of segment BK. Connect AM. When AM is maximized, find the coordinates of point K.", -"image_file_name": "7057900", -"image": [ -"math/51433217_832.png" -], -"solution": "\\textbf{Solution:} Connect $BD$ and take the midpoint $Q$ of $BD$. Connect $QM$. Therefore, $QM$ is the median of $\\triangle BDK$, thus $QM=\\frac{1}{2}DK=1$. According to the problem, point $K$ lies on the circle with center $D$ and radius 2, so $M$ moves on the circle with center $Q$ and radius 1. When points $A$, $Q$, $M$ are collinear, and $M$ lies on the extension of $AQ$, $AM$ is maximized. Since $B(3, 0)$ and $D(1, 4)$, thus $Q\\left(\\frac{1+3}{2}, \\frac{4+0}{2}\\right)$ i.e., $Q(2, 2)$. Since $A(-1, 0)$ and $Q(2, 2)$, let the equation of line $AM$ be $y=kx+d$. Substitute points $A(-1, 0)$ and $Q(2, 2)$ to get\n\\[\n\\begin{cases}\n0=-k+d\\\\\n2=2k+d\n\\end{cases}\n\\]\nSolving these equations gives\n\\[\n\\begin{cases}\nk=\\frac{2}{3}\\\\\nb=\\frac{2}{3}\n\\end{cases}\n\\]\nTherefore, the equation of line $AM$ is $y=\\frac{2}{3}x+\\frac{2}{3}$. Since $DK\\parallel QM$, let the equation of line $DK$ be $y=\\frac{2}{3}x+b$. Given $D(1, 4)$, thus $4=\\frac{2}{3}+b$, solving this gives $b=\\frac{10}{3}$, so the equation of $DK$ is $y=\\frac{2}{3}x+\\frac{10}{3}$. Let point $K(m, \\frac{2}{3}m+\\frac{10}{3})$ $(m>0)$, given $D(1, 4)$ and $DK=2$, thus $(m-1)^2+\\left(\\frac{2}{3}m+\\frac{10}{3}-4\\right)^2=2^2$, solving this gives $m_1=\\frac{6\\sqrt{13}+13}{13}$, $m_2=\\frac{-6\\sqrt{13}+13}{13}$ (discard), thus $m=\\frac{6\\sqrt{13}+13}{13}$, thus $\\frac{2}{3}m+\\frac{10}{3}=\\frac{2}{3}\\times \\frac{6\\sqrt{13}+13}{13}+\\frac{10}{3}=\\frac{4\\sqrt{13}+52}{13}$, thus $K\\boxed{\\left(\\frac{6\\sqrt{13}+13}{13}, \\frac{4\\sqrt{13}+52}{13}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446444_219": { -"question": "As shown in the diagram, in the Cartesian coordinate system $xOy$, the parabola $y=ax^{2}+bx-4$ intersects the $x$-axis at points $A$ and $B$ (with $B$ to the right of $A$) and intersects the $y$-axis at point $C$. It is known that $OA=1$ and $OB=4OA$. Connect $BC$. What is the equation of the parabola?", -"image_file_name": "7057900", -"image": [ -"math/51446444_8412.png" -], -"solution": "\\[ \\text{Solution: From } OA=1 \\text{ we get } A(-1, 0). \\]\n\\[ \\because OB=4OA=4, \\]\n\\[ \\therefore B(4, 0). \\]\nSubstituting $A(-1, 0)$ and $B(4, 0)$ into $y=ax^2+bx-4$ we get:\n\\[ \\begin{cases} a-b-4=0 \\\\ 16a+4b-4=0 \\end{cases}, \\]\nSolving this yields\n\\[ \\begin{cases} a=1 \\\\ b=-3 \\end{cases}, \\]\n\\[ \\therefore y=x^2-3x-4; \\]\nThus, the equation of the parabola is $\\boxed{y=x^2-3x-4}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446444_220": { -"question": "As shown in the figure, in the Cartesian coordinate system \\(xOy\\), the parabola \\(y=ax^2+bx-4\\) intersects the \\(x\\)-axis at points \\(A\\) and \\(B\\) (with \\(B\\) to the right of \\(A\\)) and intersects the \\(y\\)-axis at point \\(C\\). It is known that \\(OA=1\\), \\(OB=4OA\\), and segment \\(BC\\) is drawn. As shown in Figure 1, point \\(P\\) is a moving point on the parabola below \\(BC\\), and segments \\(BP\\) and \\(CP\\) are drawn. When the area of \\(\\triangle BCP\\) equals the area of \\(\\triangle BOC\\), what are the coordinates of point \\(P\\)?", -"image_file_name": "7057900", -"image": [ -"math/51446444_8412.png" -], -"solution": "\\textbf{Solution:} Given $y=ax^2+bx-4$ intersects at point $C$,\\\\\nhence $C(0, -4)$,\\\\\nLet $y=kx+b$, substituting $B(4, 0)$ and $C(0, -4)$, we get\\\\\n\\[\\left\\{\\begin{array}{l}\n0=4k+b \\\\\n-4=b\n\\end{array}\\right.,\\]\\\\\nfrom which we find\\\\\n\\[\\left\\{\\begin{array}{l}\nk=1 \\\\\nb=-4\n\\end{array}\\right.,\\]\\\\\ntherefore, $y=x-4$,\\\\\nDraw $PH\\perp x$-axis from point $P$, intersecting the $x$-axis at $H$, and denote the intersection with $BC$ as point $D$,\\\\\nLet $P(m, m^2-3m-4)$,\\\\\nsubstituting $x=m$ into $y=x-4$, we obtain $y=m-4$,\\\\\nthus $D(m, m-4)$,\\\\\ntherefore, $DP=m-4-(m^2-3m-4)=-m^2+4m$,\\\\\nsince $S_{\\triangle BOC}=\\frac{1}{2}OB\\cdot OC=\\frac{1}{2}\\times 4\\times 4=8$,\\\\\ntherefore, $S_{\\triangle BCP}=8$,\\\\\nthus, $S_{\\triangle PDC}+S_{\\triangle PDB}=8$,\\\\\nwhich leads to $\\frac{1}{2}PD\\cdot OH+\\frac{1}{2}PD\\cdot BH=8$, that is $\\frac{1}{2}PD\\cdot OB=8$,\\\\\nhence $(-m^2+4m)\\times 4\\times \\frac{1}{2}=8$,\\\\\nsolving this gives $m=2$,\\\\\ntherefore, \\boxed{P\\left(2, -6\\right)}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446444_221": { -"question": "In the cartesian coordinate system $xOy$, the parabola $y=ax^2+bx-4$ intersects the $x$-axis at points $A$ and $B$ (with $B$ to the right of $A$) and intersects the $y$-axis at point $C$. It is given that $OA=1$ and $OB=4OA$. Connect $BC$. As shown in figure 2, let point $N$ be a point on segment $OC$. Find the minimum value of $AN+\\frac{\\sqrt{2}}{2}CN$?", -"image_file_name": "7057900", -"image": [ -"math/51446444_8412.png" -], -"solution": "\\textbf{Solution:} Let point $N$ be constructed such that $NM\\perp BC$ at point $M$, and draw $AH\\perp BC$ at $H$,\\\\\n$\\because OB=OC$, $\\angle BOC=90^\\circ$\\\\\n$\\therefore \\triangle BOC$ is an isosceles right triangle, $\\angle BCO=\\angle OBC=45^\\circ$\\\\\n$\\because NM\\perp BC$\\\\\n$\\therefore \\angle NMC=90^\\circ$,\\\\\n$\\therefore \\angle CNM=90^\\circ-\\angle NCM=90^\\circ-\\angle OCB=45^\\circ$,\\\\\n$\\therefore \\triangle NCM$ is an isosceles right triangle,\\\\\n$\\therefore NM=NC\\cdot \\sin45^\\circ=\\frac{\\sqrt{2}}{2}NC$,\\\\\n$\\therefore AN+\\frac{\\sqrt{2}}{2}CN=AN+NE \\geq AH$,\\\\\nWhen points A, $N$, and $M$ are collinear, the minimum value of $AN+NM$ $=AH$,\\\\\n$\\because AB=OA+OB=5$,\\\\\n$\\because \\angle ABH=45^\\circ$, $AH\\perp BC$,\\\\\n$\\therefore \\angle BAH=90^\\circ-\\angle ABH=45^\\circ=\\angle ABH$,\\\\\n$\\therefore \\triangle AEB$ is an isosceles right triangle, $\\angle ABE=45^\\circ$,\\\\\n$\\therefore AH=AB\\cdot \\sin45^\\circ=\\boxed{\\frac{5\\sqrt{2}}{2}}$\\\\\n$\\therefore$ The minimum value of $AN+\\frac{\\sqrt{2}}{2}CN$ $\\boxed{\\frac{5\\sqrt{2}}{2}}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446676_223": { -"question": "As shown in the figure, the graph of the linear function $y=k_1x+b$ intersects with the graph of the inverse proportion function $y=\\frac{k_2}{x}$ at points A and B. The coordinates of point A are $(-1, 4)$, and the coordinates of point B are $(4, n)$. What are the expressions of these two functions?", -"image_file_name": "7057900", -"image": [ -"math/51446676_852.png" -], -"solution": "\\textbf{Solution}: According to the problem, the graph of the function $y=\\frac{k_2}{x}$ passes through points $A(-1, 4)$ and $B(4, n)$,\\\\\n$\\therefore k_2=-1\\times 4=4n$,\\\\\n$\\therefore k_2=-4$, $n=-1$,\\\\\n$\\therefore$ point $B(4, -1)$,\\\\\nFurthermore, since the linear function $y=k_1x+b$ passes through points $A$ and $B$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}\n-k_1+b=4 \\\\\n4k_1+b=-1\n\\end{array}\\right.$, yielding: $\\left\\{\\begin{array}{l}\nk_1=-1 \\\\\nb=3\n\\end{array}\\right.$;\\\\\n$\\therefore$ the expression for the linear function is $\\boxed{y=-x+3}$, and for the inverse proportion function, $\\boxed{y=-\\frac{4}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446676_224": { -"question": "As shown in the figure, the graph of the linear function $y=k_1x+b$ intersects with the graph of the inverse proportion function $y=\\frac{k_2}{x}$ at points A and B, where the coordinates of point A are $(-1, 4)$, and the coordinates of point B are $(4, n)$. Point P is on line segment AB, and $\\frac{S_{\\triangle AOP}}{S_{\\triangle BOP}}=1:2$. Find the coordinates of point P.", -"image_file_name": "7057900", -"image": [ -"math/51446676_852.png" -], -"solution": "\\textbf{Solution:} Let the intersection of line $AB$ and the $y$-axis be point $C$, \\\\\nsince the analytical expression of the linear function is $y=-x+3$, \\\\\nthus $C(0, 3)$, \\\\\nsince the area of $\\triangle AOC = \\frac{1}{2} \\times 3 \\times 1 = \\frac{3}{2}$, \\\\\nthus the area of $\\triangle AOB = \\text{area of} \\ \\triangle AOC + \\text{area of} \\ \\triangle BOC = \\frac{1}{2} \\times 3 \\times 1 + \\frac{1}{2} \\times 3 \\times 4 = \\frac{15}{2}$, \\\\\nsince the ratio of the areas $S_{\\triangle AOP} : S_{\\triangle BOP} = 1:2$, \\\\\nthus $S_{\\triangle AOP} = \\frac{15}{2} \\times \\frac{1}{3} = \\frac{5}{2}$, \\\\\ntherefore, $S_{\\triangle AOC} < S_{\\triangle AOP}$, the area of $\\triangle COP = \\frac{5}{2} - \\frac{3}{2} = 1$, \\\\\ntherefore, $\\frac{1}{2} \\times 3 \\times x_{P} = 1$, \\\\\nthus $x_{P} = \\frac{2}{3}$, \\\\\nsince point $P$ is on the segment $AB$, \\\\\nthus $y = -\\frac{2}{3} + 3 = \\frac{7}{3}$, \\\\\ntherefore, \\boxed{P\\left(\\frac{2}{3}, \\frac{7}{3}\\right)}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446075_226": { -"question": "As shown in the figure, the parabola $y=ax^2+bx-3$ intersects the x-axis at points $A(-1,0)$ and $B(3,0)$. The line $l$ passing through point $A$ intersects the parabola at point $C(2,n)$. Find the analytical expression of the parabola.", -"image_file_name": "7057900", -"image": [ -"math/51446075_860.png" -], -"solution": "Solution: Substituting A ($-1$, $0$) and B ($3$, $0$) into $y=ax^2+bx-3$, we get\n\\[\n\\left\\{\n\\begin{array}{l}\na-b-3=0 \\\\\n9a+3b-3=0\n\\end{array}\n\\right.\n\\]\nSolving this, we obtain\n\\[\n\\left\\{\n\\begin{array}{l}\na=1 \\\\\nb=-2\n\\end{array}\n\\right.\n\\]\n$\\therefore$The equation of the parabola is \\boxed{y=x^2-2x-3}.\n", -"solution_image": [ -"solution_images/51446075_860.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446075_227": { -"question": "As shown in the figure, the parabola $y=ax^2+bx-3$ intersects the $x$-axis at points $A(-1,0)$ and $B(3,0)$. A line $l$ passing through point $A$ intersects the parabola at point $C(2,n)$. Point $P$ is a moving point on segment $AC$, and a perpendicular line to the $x$-axis passing through point $P$ intersects the parabola at point $E$. Find the coordinates of point $P$ when the length of segment $PE$ is maximal.", -"image_file_name": "7057900", -"image": [ -"math/51446075_860.png" -], -"solution": "Solution: To solve this problem, substitute the x-coordinate $x=2$ into $y=x^2-2x-3$,\\\\\nwe get $y=-3$,\\\\\n$\\therefore C(2, -3)$,\\\\\nSubstituting $A(-1, 0)$ and $C(2, -3)$ into $y=kx+b$ yields $\\left\\{\\begin{array}{l}-k+b=0 \\\\ 2k+b=-3\\end{array}\\right.$,\\\\\nfrom which we solve $\\left\\{\\begin{array}{l}k=-1 \\\\ b=-1\\end{array}\\right.$,\\\\\n$\\therefore$ the equation of line AC is $y=-x-1$,\\\\\nLet the x-coordinate of point P be $m(-1\\leq m\\leq 2)$, then, the coordinates of P and E are: $P\\left(m, -m-1\\right)$, $E\\left(m, m^2-2m-3\\right)$;\\\\\n$\\therefore PE=\\left(-m-1\\right)-\\left(m^2-2m-3\\right)$\\\\\n$=-m^2+m+2$\\\\\n$=-\\left(m-\\frac{1}{2}\\right)^2+\\frac{9}{4}$,\\\\\n$\\because -1<0$,\\\\\n$\\therefore$ when $m=\\frac{1}{2}$, the maximum value of PE $=\\frac{9}{4}$,\\\\\n$\\therefore -m-1=-\\frac{1}{2}-1=-\\frac{3}{2}$,\\\\\nat this time $P\\left(\\frac{1}{2}, -\\frac{3}{2}\\right)$,\\\\\n$\\therefore$ when the segment PE is at its maximum, the coordinates of point P are $\\boxed{\\left(\\frac{1}{2}, -\\frac{3}{2}\\right)}$.", -"solution_image": [ -"solution_images/51446075_860.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446075_228": { -"question": "As shown in the figure, the parabola $y=ax^2+bx-3$ intersects the x-axis at points $A(-1,0)$ and $B(3,0)$. The line $l$ passing through point $A$ intersects the parabola at point $C(2,n)$. Given a point $F$ moving on the parabola, is there a point $D$ on the x-axis such that the quadrilateral with vertices $A$, $C$, $D$, $F$ is a parallelogram? If such a point $D$ exists, please write down the coordinates of all points $D$ that satisfy the condition; if not, please explain why.", -"image_file_name": "7057900", -"image": [ -"math/51446075_860.png" -], -"solution": "\\textbf{Solution:} Exist; The coordinates of point $D$ meeting the conditions are $\\boxed{(-3,0)}$ or $\\boxed{(1,0)}$ or $\\boxed{\\left(4 -\\sqrt{7},0\\right)}$ or $\\boxed{\\left(4 +\\sqrt{7},0\\right)}$.", -"solution_image": [ -"solution_images/51446075_860.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446287_230": { -"question": "As shown in the figure, in the rectangle $AOBC$, using the lines through $OB$ and $OA$ as the x-axis and y-axis respectively, a Cartesian coordinate system is established as shown in the figure. The coordinates of point A are $(0, 3)$, and the coordinates of point B are $(4, 0)$. F is a moving point on line segment $BC$ (not coinciding with B or C). The graph of the inverse proportion function $y=\\frac{k}{x} (x > 0)$ passing through point F intersects the edge $AC$ at point E. Lines $OE$ and $OF$ are then drawn, and line EF is constructed. If $CF=2$,find the new equation of the inverse proportion function.", -"image_file_name": "7057900", -"image": [ -"math/51446287_878.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral AOBC is a rectangle, and the coordinates of point A are (0, 3), and the coordinates of point B are (4, 0), \\\\\nthus $AC=OB=4$, and $BC=OA=3$, \\\\\nsince $CF=2$, \\\\\ntherefore, the coordinates of F are (4, 1), \\\\\nSubstituting the coordinates of F (4, 1) into $y=\\frac{k}{x}$ gives $1=\\frac{k}{4}$, \\\\\nSolving this yields $k=4$, \\\\\ntherefore, the equation of the inverse proportion function is $\\boxed{y=\\frac{4}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446287_231": { -"question": "As shown in the figure, in the rectangle $AOBC$, taking the lines containing $OB$ and $OA$ as the x-axis and y-axis respectively, a Cartesian coordinate system is established as shown. The coordinates of point A are $(0, 3)$ and the coordinates of point B are $(4, 0)$. Let F be a moving point on $BC$ (not coinciding with B or C). The graph of the inverse proportion function $y=\\frac{4}{x}$ ($x>0$) passing through point F intersects side $AC$ at point E. Connect $OE$ and $OF$, and draw line EF. Given $CF=2$, calculate the area of $\\triangle EOF$.", -"image_file_name": "7057900", -"image": [ -"math/51446287_878.png" -], -"solution": "\\textbf{Solution:}\n\nSubstituting $y=3$ into $y=\\frac{4}{x}$, we get $3=\\frac{4}{x}$.\n\nSolving, we find $x=\\frac{4}{3}$.\n\n$\\therefore$ The coordinates of point E are $\\left(\\frac{4}{3}, 3\\right)$.\n\n$\\therefore AE=\\frac{4}{3}$, and $CE=AC-AE=\\frac{8}{3}$.\n\nSince $BF=1$,\n\n$\\therefore CF=2$.\n\nGiven that $S_{\\triangle EOF}=S_{\\text{rectangle} AOBC}-S_{\\triangle CEF}-S_{\\triangle AOE}-S_{\\triangle BOF}$,\n\n$=OA \\times OB - \\frac{1}{2} \\times CF \\times CE - \\frac{1}{2} \\times OA \\times AE - \\frac{1}{2} \\times OB \\times BF$,\n\n$=3 \\times 4 - \\frac{1}{2} \\times 2 \\times \\frac{8}{3} - \\frac{1}{2} \\times 3 \\times \\frac{4}{3} - \\frac{1}{2} \\times 4 \\times 1$,\n\n$=12 - \\frac{8}{3} - 2 - 2$,\n\n$=\\boxed{\\frac{16}{3}}$.\n\n$\\therefore$ The area of $\\triangle EOF$ is $\\frac{16}{3}\\text{cm}^2$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445937_234": { -"question": "As shown in the figure, pass point C(8, 6) to draw $CB\\perp x$-axis and $CA\\perp y$-axis respectively, with perpendicular feet at points B and A. Point F is a mobile point on segment BC but does not coincide with points B and C. The graph of the inverse proportion function $y=\\frac{k}{x}$ ($k>0$) passes through point F and intersects segment AC at point E. Connect EF. When point E is the midpoint of segment AC, what are the coordinates of point F?", -"image_file_name": "7057900", -"image": [ -"math/51445937_881.png" -], -"solution": "\\textbf{Solution:} Given that point E is the midpoint of line segment AC,\\\\\nthus E(4, 6),\\\\\nsince point E lies on the graph of the inverse proportion function $y=\\frac{24}{x}$,\\\\\nthus $k=xy=4\\times 6=24$,\\\\\ntherefore $y=\\frac{24}{x}$,\\\\\nwhen $x=8$, $y=3$,\\\\\nthus \\boxed{F(8,3)}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445937_236": { -"question": "As shown in the figure, from point $C(8, 6)$, construct $CB\\perp x$-axis and $CA\\perp y$-axis, with the feet of the perpendiculars being points $B$ and $A$, respectively. Point $F$ is a moving point on line segment $BC$, but does not coincide with points $B$ or $C$. The graph of the inverse proportion function $y=\\frac{k}{x}$ $(k>0)$ passes through point $F$ and intersects line segment $AC$ at point $E$. Connect $EF$. If the area of $\\triangle CEF$ is $6$, find the expression of the inverse proportion function?", -"image_file_name": "7057900", -"image": [ -"math/51445937_881.png" -], -"solution": "\\textbf{Solution:} Since the area of $\\triangle CEF$ is 6,\\\\\nwe have $\\frac{1}{2} \\times CE \\times CF=6$,\\\\\nthus $\\frac{1}{2} \\times \\frac{48-k}{6} \\times \\frac{48-k}{8}=6$,\\\\\nsolving this gives $k_{1}=24$, $k_{2}=72>48$ (which we discard),\\\\\ntherefore, the equation of the inverse proportion function is $\\boxed{y=\\frac{24}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446477_238": { -"question": "As shown in the figure, the graph of the linear function $y=k_1x+b$ intersects with the graph of the inverse proportion function $y=\\frac{k_2}{x}$ at points A and B. The coordinates of point A are $(-1, 4)$, and the coordinates of point B are $(4, n)$. What are the expressions for these two functions?", -"image_file_name": "7057900", -"image": [ -"math/51446477_894.png" -], -"solution": "\\textbf{Solution:} To solve, substitute $A(-1, 4)$ into $y=\\frac{k_2}{x}$, obtaining $k_2=-4$, \\\\\n$\\therefore y=-\\frac{4}{x}$,\\\\\n$\\because$ point $B(4, n)$ is on $y=-\\frac{4}{x}$,\\\\\n$\\therefore n=-1$,\\\\\n$\\therefore \\boxed{B(4, -1)}$,\\\\\nSubstituting $A(-1, 4)$, $B(4, -1)$ into $y=k_1x+b_1$ yields\\\\\n$\\begin{cases}\n-k_1+b=4\\\\\n4k_1+b=-1\n\\end{cases}$, solving gives $\\begin{cases}\nk_1=-1\\\\\nb=3\n\\end{cases}$,\\\\\n$\\therefore \\boxed{y=-x+3}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446477_239": { -"question": "As shown in the figure, the graph of the linear function $y=k_1x+b$ intersects with the graph of the inverse proportion function $y=\\frac{k_2}{x}$ at points A and B, where the coordinates of point A are $(-1, 4)$, and the coordinates of point B are $(4, n)$. Based on the graph, directly write down the range of values of $x$ for which $k_1x+b>\\frac{k_2}{x}$.", -"image_file_name": "7057900", -"image": [ -"math/51446477_894.png" -], -"solution": "\\textbf{Solution:} By observing the graph, it is known that when $x<-1$ or $0\\frac{k_2}{x}}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446477_240": { -"question": "As shown in the figure, the graph of the linear function $y=k_1x+b$ intersects with the graph of the inverse proportion function $y=\\frac{k_2}{x}$ at points A and B, where the coordinates of point A are $(-1, 4)$, and the coordinates of point B are $(4, n)$. Connect OA and OB, what is the area of $\\triangle AOB$?", -"image_file_name": "7057900", -"image": [ -"math/51446477_894.png" -], -"solution": "\\[\n\\text{{Solution}}: \\text{{As shown in the figure,}} \\\\\n\\text{{let }} AB \\text{{ intersect the }} y \\text{{-axis at point }} C, \\\\\n\\text{{since }} C \\text{{ lies on the line }} y = -x + 3, \\\\\n\\text{{it follows that }} C(0, 3), \\\\\n\\text{{therefore, }} {S}_{\\triangle AOB} = \\frac{1}{2} OC \\cdot (\\left|{x}_{A}\\right| + \\left|{x}_{B}\\right|) = \\frac{1}{2} \\times 3 \\times (1+4) = \\boxed{7.5};\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446477_241": { -"question": "As shown in the figure, the graph of the linear function $y=k_1x+b$ intersects with the graph of the hyperbolic function $y=\\frac{k_2}{x}$ at points $A$ and $B$, where the coordinates of point $A$ are $(-1, 4)$, and the coordinates of point $B$ are $(4, n)$. Point $P$ is on segment $AB$, and $\\frac{S_{\\triangle AOP}}{S_{\\triangle BOP}}=1\\colon 2$. Find the coordinates of point $P$.", -"image_file_name": "7057900", -"image": [ -"math/51446477_894.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, \\\\\n$\\because S_{\\triangle AOP} : S_{\\triangle BOP} = 1 : 2$, \\\\\n$\\therefore S_{\\triangle AOP} = \\frac{1}{3} \\times 7.5 = 2.5$, $S_{\\triangle BOP} = 5$, \\\\\nMoreover, $S_{\\triangle AOC} = \\frac{1}{2} \\times 3 \\times 1 = 1.5$, \\\\\n$\\therefore$ point $P$ is in the first quadrant, \\\\\n$\\therefore S_{\\triangle COP} = 2.5 - 1.5 = 1$, \\\\\nMoreover, $OC = 3$, \\\\\n$\\therefore \\frac{1}{2} \\times 3 \\times x_{P} = 1$, thus solving gives $x_{P} = \\frac{2}{3}$, \\\\\nSubstituting $x_{P} = \\frac{2}{3}$ into $y = -x + 3$, we get $y_{P} = \\frac{7}{3}$, \\\\\n$\\therefore \\boxed{P\\left(\\frac{2}{3}, \\frac{7}{3}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445968_243": { -"question": "As shown in the figure, the linear function $y=kx+2$ intersects the $y$-axis at point A and intersects the graph of the inverse proportion function $y=\\frac{m}{x}$ at points B and C. Line $BD\\perp y$-axis intersects the $y$-axis at point D, $OA=OD$, and the area of triangle $\\triangle ABD$ is $8$. Find the expressions of the linear function and the inverse proportion function.", -"image_file_name": "7057900", -"image": [ -"math/51445968_906.png" -], -"solution": "Solution: From the given information, point $A$ is the intersection point of the linear function $y=kx+2$ with the $y$-axis,\\\\\n$\\therefore$ setting $x=0$, we get $y=k\\times 0+2=2$,\\\\\nwhich means $A(0,2)$,\\\\\n$\\therefore OA=2$,\\\\\nand since $OD=OA$,\\\\\n$\\therefore OD=2$,\\\\\n$\\therefore D(0,-2)$,\\\\\n$\\therefore AD=2OD=4$,\\\\\nsince $BD \\perp y$-axis,\\\\\n$\\therefore$ the ordinate of point $B$ is $-2$,\\\\\nsince $S_{\\triangle ABD}=8$,\\\\\n$\\therefore \\frac{1}{2}AD\\times BD=8$,\\\\\n$\\therefore \\frac{1}{2}\\times 4\\times BD=8$,\\\\\n$\\therefore BD=4$,\\\\\n$\\therefore$ the coordinates of point $B$ are $(-4,-2)$,\\\\\nSubstituting point $B(-4,-2)$ into the linear function $y=kx+2$ and the inverse proportion function $y=\\frac{m}{x}$ respectively,\\\\\nwe find: $-4=-2k+2$, $-2=\\frac{m}{-4}$,\\\\\n$\\therefore k=1$, $m=8$,\\\\\n$\\therefore$ the equation of the linear function is: \\boxed{y=x+2}, and the equation of the inverse proportion function is: \\boxed{y=\\frac{8}{x}};", -"solution_image": [ -"solution_images/51445968_902.png", -"solution_images/51445968_9013.png", -"solution_images/51445968_9024.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445968_244": { -"question": "As shown in the figure, a linear function $y=kx+2$ intersects the $y$-axis at point A and intersects the graph of the hyperbolic function $y=\\frac{m}{x}$ at points B and C. Line BD is perpendicular to the $y$-axis and intersects the $y$-axis at point D. It is given that OA=OD and the area of $\\triangle ABD$ is $8$. Determine the coordinates of point C, and directly write the solution set of the inequality $kx+2>\\frac{m}{x}$.", -"image_file_name": "7057900", -"image": [ -"math/51445968_906.png" -], -"solution": "\\textbf{Solution:} From equation (1), we can set up the system of equations\n\\[\n\\begin{cases}\ny=x+2\\\\\ny=\\frac{8}{x}\n\\end{cases}\n\\]\nSolving this system, we get:\n\\[\n\\begin{cases}\nx=-4\\\\\ny=-2\n\\end{cases}\n\\]\nor\n\\[\n\\begin{cases}\nx=2\\\\\ny=4\n\\end{cases}\n\\]\n$\\because$ Point $C$ is in the first quadrant,\\\\\nthus the coordinates of point $C$ are $\\boxed{(2, 4)}$,\\\\\nFrom the graph, it is obtained that when $-42$, $kx+2>\\frac{m}{x}$;", -"solution_image": [ -"solution_images/51445968_902.png", -"solution_images/51445968_9013.png", -"solution_images/51445968_9024.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445968_245": { -"question": "As illustrated in the figure, the linear function \\(y=kx+2\\) intersects the \\(y\\)-axis at point A and intersects the graph of the inverse proportion function \\(y=\\frac{m}{x}\\) at points B and C. Line BD is perpendicular to the \\(y\\)-axis and intersects it at point D. OA is equal to OD, and the area of triangle \\(ABD\\) is 8. In the given plane, there exists a point E such that the quadrilateral formed by points B, C, D, and E is a parallelogram. Please directly provide the coordinates of all possible points E that satisfy these conditions.", -"image_file_name": "7057900", -"image": [ -"math/51445968_906.png" -], -"solution": "\\textbf{Solution:} The coordinates of the point $E$ that meet the conditions are: $\\boxed{(6,4)}$, $\\boxed{(-6,-8)}$, $\\boxed{(-2,4)}$.", -"solution_image": [ -"solution_images/51445968_902.png", -"solution_images/51445968_9013.png", -"solution_images/51445968_9024.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446358_247": { -"question": "As shown in the figure, the line $y=k_1x+b$ intersects with the hyperbola $y=\\frac{k_2}{x}$ at points $A$ and $B$. The line $AB$ intersects the $x$-axis at point $C$ and the $y$-axis at point $D(0, -5)$. The length of $OA$ is $5$, and $\\tan\\angle AOC=\\frac{3}{4}$. The $y$-coordinate of point $B$ is $-8$. What is the analytical expression of the inverse proportion function?", -"image_file_name": "7057900", -"image": [ -"math/51446358_9112.png" -], -"solution": "Solution: As shown in the diagram, construct line $AE$ perpendicular to the $x$-axis at point $E$, \\\\\n$\\because \\tan\\angle AOC=\\frac{3}{4}$, let $AE=3a$, then $EO=4a$, \\\\\n$\\therefore OA=5a$ \\\\\n$\\because OA=5$, \\\\\n$\\therefore a=1$ \\\\\n$\\therefore AE=3$, $EO=4$, \\\\\n$\\therefore$ the coordinates of point $A$ are $\\left(-4, 3\\right)$, \\\\\n$\\therefore$ the equation of the hyperbola is $\\boxed{y=\\frac{-12}{x}}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446358_248": { -"question": "As illustrated, the line $y=k_1x+b$ intersects the hyperbola $y=\\frac{k_2}{x}$ at points $A$ and $B$. The line $AB$ intersects the $x$-axis at point $C$ and the $y$-axis at point $D(0, -5)$. Given that $OA=5$ and $\\tan\\angle AOC=\\frac{3}{4}$, and the $y$-coordinate of point $B$ is $-8$, what is the area of $\\triangle AOD$?", -"image_file_name": "7057900", -"image": [ -"math/51446358_9112.png" -], -"solution": "\\textbf{Solution:} Substituting $A(-4, 3)$ and $D(0, -5)$ into $y=k_1x+b$, we obtain $b=-5$ and $-4k_1+b=3$. Solving these equations yields $k_1=-2$ and $b=-5$, \\\\\n$\\therefore$ the equation of line $AB$ is $y=-2x-5$, \\\\\nSubstituting $y=0$ into $y=-2x-5$, we get $x=-\\frac{5}{2}$, \\\\\n$\\therefore$ the coordinates of point $C$ are $\\left(-\\frac{5}{2}, 0\\right)$, and $OC=\\frac{5}{2}$, \\\\\n$\\therefore$ the area of $\\triangle AOD$ is $\\frac{1}{2}\\times \\frac{5}{2}\\times 3+\\frac{1}{2}\\times \\frac{5}{2}\\times 5=\\boxed{10}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446358_249": { -"question": "As shown in the figure, the line $y=k_1x+b$ intersects with the hyperbola $y=\\frac{k_2}{x}$ at points $A$ and $B$. The line $AB$ intersects the $x$-axis at point $C$ and the $y$-axis at point $D(0, -5)$. It is given that $OA=5$, $\\tan\\angle AOC=\\frac{3}{4}$, and the $y$-coordinate of point $B$ is $-8$. Directly write the solution set for the inequality $k_1x+b\\le \\frac{k_2}{x}$.", -"image_file_name": "7057900", -"image": [ -"math/51446358_9112.png" -], -"solution": "\\textbf{Solution:} The solution set to the inequality ${k}_{1}x+b\\le \\frac{{k}_{2}}{x}$ is: $-4\\le x<0$ or $x\\ge \\frac{3}{2}$.\n\nTherefore, the solution set to the inequality is: $-4\\le x<0$ or $x\\ge \\frac{3}{2}$.\n\nHence, the answer is: \\boxed{-4\\le x<0} or \\boxed{x\\ge \\frac{3}{2}}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446664_251": { -"question": "A car passes through a certain section of the road at a constant speed. The required time $t$ (h) and the driving speed $v$ (km/h) meet the functional relationship: $t=\\frac{k}{v}$, whose graph is a curve as shown, with endpoints $A(40, 1)$ and $B(m, 0.5)$. What are the values of $k$ and $m$?", -"image_file_name": "7057900", -"image": [ -"math/51446664_921.png" -], -"solution": "\\textbf{Solution:} From the given, the function $t=\\frac{k}{v}$ passes through the point $(40,1)$, \\\\\n$1=\\frac{k}{40}$, then we get $k=\\boxed{40}$, \\\\\nHence, the function equation is: $t=\\frac{40}{v}$ \\\\\nSubstituting $(m,0.5)$ into $t=\\frac{40}{v}$, we find $m=\\boxed{80}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446664_252": { -"question": "A car passes a certain section of the road at a constant speed. The time $t$ (h) required and the driving speed $v$ (km/h) satisfy the function relationship: $t=\\frac{k}{v}$, and its graph is a curve as shown, with endpoints at $A(40, 1)$ and $B(m, 0.5)$. If the driving speed cannot exceed $50\\text{km/h}$, what is the minimum amount of time needed for the car to pass this section of the road?", -"image_file_name": "7057900", -"image": [ -"math/51446664_921.png" -], -"solution": "\\textbf{Solution:} Substituting $v=50$ into $t=\\frac{40}{v}$, we get $t=\\frac{4}{5}$,\\\\\nsince $t$ decreases as $v$ increases,\\\\\ntherefore, the minimum time required for the car to pass through the section is $\\boxed{\\frac{4}{5}}$ hours.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445903_254": { -"question": "As shown in the figure, the graph of the linear function $y=k_1x-4$ intersects with the graph of the hyperbolic function $y=\\frac{k_2}{x}$ (where $x>0$) at point $A(3, -6)$, and intersects with the $x$-axis at point $B$. Point $D$ is a point on segment $AB$, and lines $OD$ and $OA$ are connected, with $\\frac{S_{\\triangle BOD}}{S_{\\triangle BOA}}=1\\colon 3$. Find the analytic expressions of the linear and hyperbolic functions?", -"image_file_name": "7057900", -"image": [ -"math/51445903_931.png" -], -"solution": "\\textbf{Solution:} Substituting point A (3, −6) into $y=k_1x-4$,\\\\\nwe get $-6=3k_1-4$,\\\\\nfrom which we find $k_1=-\\frac{2}{3}$,\\\\\nSubstituting point A (3, −6) into $y=\\frac{k_2}{x}$ (where $x>0$), we get $-6=\\frac{k_2}{3}$,\\\\\n$\\therefore k_2=-18$,\\\\\n$\\therefore$ the equation of the linear function is $\\boxed{y=-\\frac{2}{3}x-4}$, and the equation of the inverse proportion function is $\\boxed{y=-\\frac{18}{x}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445903_255": { -"question": "Given the diagram, the graph of the linear function $y=k_1x-4$ intersects with the graph of the inverse proportion function $y=\\frac{k_2}{x}$ ($x>0$) at point $A(3, -6)$, and intersects with the x-axis at point $B$. Point $D$ lies on line segment $AB$. Connecting $OD$ and $OA$, and given that the area ratio $S_{\\triangle BOD}: S_{\\triangle BOA}=1:3$, what are the coordinates of point $D$?", -"image_file_name": "7057900", -"image": [ -"math/51445903_931.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $DM\\perp x$-axis through point D, with M being the foot of the perpendicular, and draw $AN\\perp x$-axis through point A, with N being the foot of the perpendicular, \\\\\n$\\because \\frac{S_{\\triangle BOD}}{S_{\\triangle BOA}}=\\frac{\\frac{1}{2}OB\\cdot DM}{\\frac{1}{2}OB\\cdot AN}=\\frac{1}{3}$, \\\\\n$\\therefore \\frac{DM}{AN}=\\frac{1}{3}$, \\\\\n$\\because$ the coordinates of point A are (3, -6), \\\\\n$\\therefore AN=6$, \\\\\n$\\therefore DM=2$, i.e., the ordinate of point D is -2, \\\\\nSubstituting $y=-2$ into $y=-\\frac{2}{3}x-4$, \\\\\nwe get $x=-3$, \\\\\n$\\therefore$ the coordinates of point D are $\\boxed{(-3, -2)}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445907_258": { -"question": "As shown in Figure 1, the parabola $y=x^{2}+bx+c$ intersects the x-axis at points $A(-3,0)$ and $B(1,0)$, and intersects the y-axis at point $D$. The vertex is at point $C$, and the line $BC$ intersects the y-axis at point $E$. Find the analytical expression of the parabola?", -"image_file_name": "7057900", -"image": [ -"math/51445907_940.png" -], -"solution": "Solution: Since the parabola $y=x^{2}+bx+c$ intersects the x-axis at points $A(-3,0)$ and $B(1,0)$, \\\\\nit follows that the roots of $x^{2}+bx+c=0$ are $-3$ and $1$. \\\\\nHence, $c=-3\\times 1=-3$, and $b=-(-3+1)=2$. \\\\\nTherefore, the equation of the parabola is \\boxed{y=x^{2}+2x-3};", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446670_261": { -"question": "As shown in the figure, the cross-section of a tunnel is composed of a parabola and a rectangle. The rectangle has a length of 8m and a width of 2m. The highest point of the tunnel, point P, is located at the center of AB and is 6m above the ground. Establish the coordinate system as shown in the figure. Find the expression of the parabola.", -"image_file_name": "7057900", -"image": [ -"math/51446670_950.png" -], -"solution": "\\textbf{Solution:} Given the problem, we know that the vertex of the parabola is at $(4,6)$. Assume the equation of the parabola is $y=a(x-4)^2+6$. Since point A$(0,2)$ lies on the parabola, it follows that $2=a(0-4)^2+6$. Solving this gives $a=-\\frac{1}{4}$. Therefore, the equation of the parabola is: $y=-\\frac{1}{4}(x-4)^2+6=\\boxed{-\\frac{1}{4}(x-4)^2+6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446099_264": { -"question": "As shown in the figure, water is sprayed out from window A of a building, forming a parabola (the plane of the parabola is perpendicular to the wall). The height of point A from the ground is 6 meters, the vertical distance of the highest point P from the wall is 2 meters, and its vertical distance from the ground is 8 meters. A Cartesian coordinate system is established as shown in the figure. What is the analytical equation of the parabola?", -"image_file_name": "7057900", -"image": [ -"math/51446099_960.png" -], -"solution": "Solution: From the given information, we know that the vertex of the parabola is at $(2,8)$, and it passes through point $A(0,6)$,\\\\\n$\\therefore$let the equation of the parabola be $y=a(x-2)^2+8$,\\\\\nSubstituting $A(0,6)$ into the equation, we get $4a+8=6$,\\\\\nSolving for $a$, we find $a=-\\frac{1}{2}$,\\\\\n$\\therefore$the equation of the parabola is $y=-\\frac{1}{2}(x-2)^2+8$,\\\\\nHence, the equation of the parabola is $\\boxed{y=-\\frac{1}{2}(x-2)^2+8}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446099_265": { -"question": "As shown in the figure, water is sprayed outwards from the window $A$ of a building, forming a parabolic trajectory (the plane of the parabola is perpendicular to the wall). The height of point $A$ from the ground is $6$ meters. The highest point of the parabola, $P$, is $2$ meters away from the wall in the perpendicular direction, and $8$ meters away from the ground in the vertical direction. A Cartesian coordinate system is established as shown in the figure. Determine the maximum distance from the wall where the water hits the ground, in meters.", -"image_file_name": "7057900", -"image": [ -"math/51446099_960.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, we get $-\\frac{1}{2}(x-2)^2+8=0$,\\\\\nSolving this gives: $x_1=6$, $x_2=-2$ (discard),\\\\\n$\\therefore$ Hence, the furthest distance the water falls from the wall is $\\boxed{6}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51446330_267": { -"question": "As shown in Figure 1, the vertices A and C of the rectangle $OABC$ are located on the positive semi-axes of the x-axis and y-axis, respectively, and point B (4, 3). The graph of the inverse proportion function $y=\\frac{k}{x}$ ($x>0$) intersects with $AB$ and $BC$ at points $D$ and $E$, respectively, with $BD=1$. Let point $P$ be a moving point on the line segment $OA$. Determine the equation of the inverse proportion function and the coordinates of point $E$?", -"image_file_name": "7057900", -"image": [ -"math/51446330_971.png", -"math/51446330_972.png", -"math/51446330_973.png" -], -"solution": "\\textbf{Solution:} Because the coordinates of point B are (4, 3),\\\\\nthus OC=AB=3, OA=BC=4.\\\\\nBecause BD=1,\\\\\nthus AD=2,\\\\\nthus the coordinates of point D are (4, 2).\\\\\nBecause the graph of the inverse proportion function $y= \\frac{k}{x}$ (where $x>0$) passes through point D,\\\\\nthus $k=4\\times 2=8$,\\\\\nthus the equation of the inverse proportion function is $y= \\frac{8}{x}$.\\\\\nWhen $y=3$, $3= \\frac{8}{x}$, solving this gives: $x= \\frac{8}{3}$,\\\\\nthus the coordinates of point E are $\\boxed{\\left( \\frac{8}{3}, 3 \\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446330_268": { -"question": "As shown in Figure 1, the vertices $A$ and $C$ of rectangle $OABC$ are located on the positive half-axes of the $x$-axis and $y$-axis, respectively, with point $B(4,3)$. The graph of the inverse proportion function $y=\\frac{k}{x}$ ($x>0$) intersects $AB$ and $BC$ at points $D$ and $E$ respectively, with $BD=1$. Point $P$ is a moving point on segment $OA$. As shown in Figure 2, when $PE$ and $PD$ are connected, what is the minimum value of $PD+PE$?", -"image_file_name": "7057900", -"image": [ -"math/51446330_971.png", -"math/51446330_972.png", -"math/51446330_973.png" -], -"solution": "\\textbf{Solution:} In Figure 2, construct the symmetric point $D'$ of point D about the x-axis. Draw a line from $D'$ to E, intersecting the x-axis at point P. Connect PD. At this point, $PD+PE$ reaches its minimum value, which is equal to $D'E$. \\\\\n$\\because$ The coordinates of point D are (4, 2), \\\\\n$\\therefore$ The coordinates of point $D'$ are (4, −2). \\\\\nAlso, $\\because$ The coordinates of point E are $\\left(\\frac{8}{3}, 3\\right)$, \\\\\n$\\therefore D'E=\\sqrt{\\left(4-\\frac{8}{3}\\right)^{2}+\\left(-2-3\\right)^{2}}=\\frac{\\sqrt{241}}{3}$. \\\\\n$\\therefore$ The minimum value of $PD+PE$ is $\\boxed{\\frac{\\sqrt{241}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51446330_269": { -"question": " As shown in the figure, vertices $A$ and $C$ of rectangle $OABC$ lie on the positive semiaxis of the $x$-axis and $y$-axis, respectively, with point $B(4,3)$. The graph of the inverse proportion function $y=\\frac{k}{x}$ ($x>0$) intersects lines $AB$ and $BC$ at points $D$ and $E$, respectively, with $BD=1$. Point $P$ is a moving point on line segment $OA$. When $\\angle PDO=45^\\circ$, find the length of line segment $OP$.", -"image_file_name": "7057900", -"image": [ -"math/51446330_971.png", -"math/51446330_972.png", -"math/51446330_973.png" -], -"solution": "\\textbf{Solution}: In the figure, draw $PF\\perp OD$ at point F, then $\\triangle PDF$ is an isosceles right triangle.\\\\\n$\\because$OA=4, AD=2,\\\\\n$\\therefore$OD=$\\sqrt{OA^2+AD^2}=2\\sqrt{5}$.\\\\\nLet AP=m, then OP=4−m,\\\\\n$\\therefore$PD=$\\sqrt{AD^2+AP^2}=\\sqrt{4+m^2}$.\\\\\n$\\because$$\\triangle PDF$ is an isosceles right triangle,\\\\\n$\\therefore$DF=PF=$\\frac{\\sqrt{2}}{2}PD=\\frac{\\sqrt{8+2m^2}}{2}$,\\\\\n$\\therefore$OF=OD−DF=$2\\sqrt{5}-\\frac{\\sqrt{8+2m^2}}{2}$.\\\\\n$\\because$OF$^2$+PF$^2$=OP$^2$, that is, $(2\\sqrt{5}-\\frac{\\sqrt{8+2m^2}}{2})^2+(\\frac{\\sqrt{8+2m^2}}{2})^2=(4−m)^2$,\\\\\nAfter simplification, we get: $3m^2+16m-12=0$,\\\\\nSolving, we find: $m_1=\\frac{2}{3}$, $m_2=-6$ (discard as it is not meaningful for this problem),\\\\\n$\\therefore$OP=4−m=$\\boxed{\\frac{10}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52872343_271": { -"question": "As shown in the figure, in the Cartesian coordinate system \\(xOy\\), the graph of the linear function \\(y=x\\) intersects the graph of the quadratic function \\(y=-x^2+bx\\) (where \\(b\\) is a constant) at points \\(O\\) and \\(A\\). The coordinates of point \\(A\\) are \\((3, m)\\). What is the value of \\(m\\) and the expression of the quadratic function?", -"image_file_name": "7057900", -"image": [ -"math/52872343_980.png" -], -"solution": "\\textbf{Solution:} \n\nSubstitute the coordinates of point A, $(3,m)$, into the linear function $y=x$ to get:\\\\\n$m=3$,\\\\\n$\\therefore A(3,3)$,\\\\\nSubstituting the coordinates of point A, $(3,3)$, into the quadratic function $y=-x^{2}+bx$ gives:\\\\\n$3=-9+3b$,\\\\\nSolving for $b$ yields: $b=4$,\\\\\n$\\therefore y=-x^{2}+4x$,\\\\\nAnswer: The value of $m$ is $\\boxed{3}$, and the expression for the quadratic function is: $y=-x^{2}+4x$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52872343_272": { -"question": "As shown in the Cartesian coordinate system $xOy$, the graph of the linear function $y=x$ intersects with the graph of the quadratic function $y=-x^2+bx$ (where $b$ is a constant) at points $O$ and $A$. The coordinates of point $A$ are $(3, m)$. If point $P$ is the vertex of the parabola, and lines $OP$ and $AP$ are drawn, what is the area of $\\triangle POA$?", -"image_file_name": "7057900", -"image": [ -"math/52872343_980.png" -], -"solution": "\\textbf{Solution:} Construct $PC\\perp x$-axis through point P, with the foot at C, and intersecting OA at point D. Construct $AE\\perp PC$ through point A, with the foot at E,\\\\\n$\\because y=-x^{2}+4x=-(x-2)^{2}+4$,\\\\\n$\\therefore$ vertex P$(2,4)$,\\\\\nSubstituting $x=2$ into $y=x$ yields:\\\\\n$y=2$,\\\\\n$\\therefore D(2,2)$,\\\\\n$\\therefore PD=4-2=2$,\\\\\n$\\because$ the area of $\\triangle POA$ equals the sum of the areas of $\\triangle OPD$ and $\\triangle APD$,\\\\\n$\\therefore$ the area of $\\triangle POA$ $=\\frac{1}{2}PD\\cdot OC+\\frac{1}{2}PD\\cdot AE$\\\\\n$=\\frac{1}{2}PD(OC+AE)$\\\\\n$=\\frac{1}{2}\\times 2\\times 3$\\\\\n$=\\boxed{3}$,\\\\", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51445655_274": { -"question": "As shown in Figure 1, the graph of the linear function $y=kx-3$ ($k\\neq 0$) intersects the y-axis at point B and intersects the graph of the inverse proportion function $y=\\frac{m}{x}$ ($x>0$) at point A (8,1). What are the analytical expressions of the linear function and the inverse proportion function?", -"image_file_name": "7057900", -"image": [ -"math/51445655_991.png" -], -"solution": "\\textbf{Solution:} Given that point A$(8,1)$ lies on the line $y=kx-3$,\\\\\ntherefore $1=8k-3$,\\\\\nsolving for $k$, we find $k=\\frac{1}{2}$,\\\\\nthus, the linear function can be expressed as $\\boxed{y=\\frac{1}{2}x-3}$,\\\\\nsince A$(8,1)$ also lies on the graph of $y=\\frac{m}{x}$ (for $x>0$),\\\\\ntherefore $1=\\frac{m}{8}$,\\\\\nsolving for $m$, we obtain $m=8$,\\\\\nhence, the inverse proportionality function is expressed as $\\boxed{y=\\frac{8}{x}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51445655_275": { -"question": "As shown in Figure 1, the graph of the linear function $y=kx-3$ (where $k\\neq 0$) intersects the y-axis at point B and intersects the graph of the inverse proportion function $y=\\frac{m}{x}$ (where $x>0$) at point A (8, 1). Point C is located on the line segment AB (distinct from points A and B). A line parallel to the y-axis passing through point C intersects the graph of the inverse proportion function at point D. Lines OC, OD, and AD are connected. When CD equals 6, what are the coordinates of point C and the area of $\\triangle ACD$?", -"image_file_name": "7057900", -"image": [ -"math/51445655_991.png" -], -"solution": "\\textbf{Solution:} Let C$(a, \\frac{1}{2}a-3)$ (where $00$) at point A (8, 1). Assuming condition (2), by translating $\\triangle OCD$ a certain distance in the direction of ray BA, we obtain $\\triangle O'CD'$. If the corresponding point of point O, O', falls exactly on the graph of the inverse proportion function (as shown in Figure 2), determine the coordinates of points O' and D'.", -"image_file_name": "7057900", -"image": [ -"math/51445655_991.png" -], -"solution": "\\textbf{Solution:} Connect $OO'$, due to the translation we have: $OO' \\parallel AC$, \\\\\ntherefore, the equation of line $OO'$ is $y= \\frac{1}{2}x$, \\\\\nsolving simultaneously, we get: $\\left\\{\\begin{array}{l}y=\\frac{8}{x}\\\\ y=\\frac{1}{2}x\\end{array}\\right.$, \\\\\nthis yields: $\\left\\{\\begin{array}{l}x=4\\\\ y=2\\end{array}\\right.$ or $\\left\\{\\begin{array}{l}x=-4\\\\ y=-2\\end{array}\\right.$ (discard as it is irrelevant to the question), \\\\\ntherefore, the coordinates of $O'$ are $\\boxed{(4,2)}$, \\\\\nwhich means point $O$ (0,0) is translated 4 units to the right and 2 units up to obtain $O'$ (4,2), \\\\\nfurthermore, from (2) we know the coordinates of D are (2,4), \\\\\ntherefore, point D (2,4) translated 4 units to the right and 2 units up gives the coordinates of $D'$ as $\\boxed{(6,6)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50496938_56": { -"question": "As shown in Figure 1, it is known that the line $l$: $y=-x+6$ intersects with the $x$ axis at point $A$, and with the $y$ axis at point $B$. The line $m$ intersects with the $y$ axis at point $C(0, -2)$, and intersects with the line $l$ at point $D(t, 1)$. What is the analytical expression of line $m$?", -"image_file_name": "7053789", -"image": [ -"math/50496938_5511.png" -], -"solution": "\\textbf{Solution:} Let $\\because D(5, 1)$ lies on the line $l: y = -x + 6$,\\\\\n$\\therefore 1 = -5 + 6$,\\\\\n$\\therefore t = 5$,\\\\\n$\\therefore D(5, 1)$,\\\\\nLet the equation of line $m$ be $y = kx + b$,\\\\\nSubstituting points C and D, we get,\\\\\n$\\begin{cases}\n5k + b = 1\\\\\nb = -2\n\\end{cases}$,\\\\\nSolving this, we find,\\\\\n$\\begin{cases}\nk = \\frac{3}{5}\\\\\nb = -2\n\\end{cases}$,\\\\\nTherefore, the equation of line $m$ is $y = \\boxed{\\frac{3}{5}x - 2}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50496938_57": { -"question": "As illustrated in Figure 1, it is known that line $l$: $y=-x+6$ intersects the $x$ axis at point $A$ and the $y$ axis at point $B$. Line $m$ intersects the $y$ axis at point $C(0, -2)$ and intersects line $l$ at point $D(t, 1)$. As shown in Figure 2, point $P$ is on line $l$ and to the left of the $y$ axis. A line is drawn from point $P$ parallel to the $y$ axis intersecting line $m$ at point $Q$ and the $x$ axis at point $G$. When ${S}_{\\triangle PCG}=2{S}_{\\triangle QCG}$, determine the coordinates of points $P$ and $Q$.", -"image_file_name": "7053789", -"image": [ -"math/50496938_5511.png" -], -"solution": "\\textbf{Solution:} Let $P(a, 6-a)$. Since point $P$ is on the left side of the x-axis, we have $a<0$. Given $PQ\\parallel$ to the y-axis, let $G(a,0)$, and $Q(a, \\frac{3}{5}a-2)$. As illustrated, points $P$ and $Q$ are on opposite sides of the x-axis.\n\nSince the area of $\\triangle PCG$ is $S_{\\triangle PCG}=\\frac{1}{2}PG\\cdot(-a)$, and the area of $\\triangle QCG$ is $S_{\\triangle QCG}=\\frac{1}{2}GQ\\cdot(-a)$, and given that $S_{\\triangle PCG}=2S_{\\triangle QCG}$,\n\nit follows that $PG=2QG$,\n\nleading to $6-a=2\\left(2-\\frac{3}{5}a\\right)$.\n\nSolving for $a$, we find $a=\\boxed{-10}$,\n\nTherefore, $6-a=6-(-10)=\\boxed{16}$, and $\\frac{3}{5}a-2=\\frac{3}{5}\\times (-10)-2=\\boxed{-8}$.\n\nThus, the coordinates of point $P$ are $\\boxed{(-10, 16)}$, and the coordinates of point $Q$ are $\\boxed{(-10, -8)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50496638_60": { -"question": "Given the graph of a linear function $y=kx+b$ intersects with the graph of the inverse proportional function $y=\\frac{m}{x}$ $(x>0)$ at point A, and intersects with the x-axis at point B $(5,0)$. If $OB=AB$ and the area of $\\triangle OAB$ is $\\frac{15}{2}$, find the expressions of the inverse proportional function and the linear function.", -"image_file_name": "7053789", -"image": [ -"math/50496638_563.png" -], -"solution": "\\textbf{Solution:} Let's consider the diagram, draw $AM\\perp x$-axis at M,\n\n$\\because B(5,0)$,\n\n$\\therefore OB=5$,\n\n$\\because S_{\\triangle OAB}=\\frac{15}{2}$,\n\n$\\therefore \\frac{1}{2} \\cdot OB \\cdot AM=\\frac{15}{2}$,\n\n$\\therefore AM=3$,\n\n$\\because OB=AB$,\n\n$\\therefore AB=5$,\n\nWithin $\\triangle AMB$, by applying the Pythagorean theorem, $BM=\\sqrt{AB^2-AM^2}=4$,\n\n$\\therefore OM=OB+BM=9$,\n\n$\\therefore A(9,3)$,\n\n$\\because$ point A is on the graph of the inverse proportion function $y=\\frac{m}{x}$,\n\n$\\therefore m=9\\times 3=27$,\n\n$\\therefore$ the expression for the inverse proportion function is $\\boxed{y=\\frac{27}{x}}$;\n\n$\\because$ points A$(9,3)$, B$(5,0)$ are on the graph of the linear function $y=kx+b$,\n\n$\\therefore \\left\\{\\begin{array}{l}9k+b=3\\\\ 5k+b=0\\end{array}\\right.$,\n\n$\\therefore \\left\\{\\begin{array}{c}k=\\frac{3}{4}\\\\ b=-\\frac{15}{4}\\end{array}\\right.$,\n\n$\\therefore$ the expression for the linear function is $\\boxed{y=\\frac{3}{4}x-\\frac{15}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50496638_61": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=kx+b$ intersects with the graph of the hyperbolic function $y=\\frac{m}{x}$ $(x>0)$ at point A and with the x-axis at point B$(5,0)$. If $OB=AB$ and the area of $\\triangle OAB$ is $\\frac{15}{2}$, directly state the solution set for the inequality $\\frac{m}{x}>kx+b$ when $x>0$.", -"image_file_name": "7053789", -"image": [ -"math/50496638_563.png" -], -"solution": "\\textbf{Solution:} Since point A is (9, 3), from the graph, the solution set of $\\frac{m}{x} > kx + b$ is $\\boxed{00)$ at point A, and intersects with the x-axis at point B$(5,0)$. If $OB=AB$, and the area of $\\triangle OAB$ is $\\frac{15}{2}$. If point P is on the y-axis, and point Q is on the graph of the inverse proportion function $y=\\frac{m}{x}$ $(x>0)$, and the quadrilateral ABPQ is precisely a parallelogram, directly write down the coordinates of point P.", -"image_file_name": "7053789", -"image": [ -"math/50496638_563.png" -], -"solution": "\\textbf{Solution:} According to the given problem, PQ is located to the top left of AB. Let P be $(0,t)$, then PQ can be seen as moving AB 5 units to the left, and then t units up.\\\\\n$\\therefore$ The coordinates of point Q are $(4,3+t)$\\\\\n$\\because$ Point Q is on the graph of $y= \\frac{27}{x}$,\\\\\n$\\therefore$ $3+t=\\frac{27}{4}$\\\\\n$\\therefore$ $t=\\frac{15}{4}$\\\\\n$\\therefore$ $P\\boxed{\\left(0,\\frac{15}{4}\\right)}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50496356_64": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y=-\\frac{1}{2}x$ intersects the graph of the inverse proportion function $y=\\frac{k}{x}$ at two points $A$ and $B$ that are symmetric about the origin. Given that the y-coordinate of point $A$ is 3, what is the expression for the inverse proportion function?", -"image_file_name": "7053789", -"image": [ -"math/50496356_575.png" -], -"solution": "\\textbf{Solution:} Let the linear function be $y=-\\frac{1}{2}x$ and set $y=3$, then $3=-\\frac{1}{2}x$. Solving this, we get: $x=-6$, thus the coordinates of point $A$ are $\\left(-6, 3\\right)$.\\\\\nSince point $A\\left(-6, 3\\right)$ lies on the graph of the inverse proportion function $y=\\frac{k}{x}$,\\\\\nit follows that $k=-6\\times 3=-18$,\\\\\nhence, the expression for the inverse proportion function is $\\boxed{y=-\\frac{18}{x}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50496356_65": { -"question": "In the figure, in the Cartesian coordinate system, the line $y=-\\frac{1}{2}x$ intersects with the graph of the inverse proportion function $y=\\frac{k}{x}$ at points $A$ and $B$, which are symmetric about the origin. It is known that the ordinate of point $A$ is 3. Based on the graph, directly write the solution set of $-\\frac{1}{2}x<\\frac{k}{x}$.", -"image_file_name": "7053789", -"image": [ -"math/50496356_575.png" -], -"solution": "\\textbf{Solution:} Solve the system of equations:\n\\[\n\\begin{cases}\ny=-\\frac{1}{2}x \\\\\ny=\\frac{-18}{x}\n\\end{cases}\n\\]\nThe solutions are:\n\\[\n\\begin{cases}\nx=-6 \\\\\ny=3\n\\end{cases}\n\\]\nor\n\\[\n\\begin{cases}\nx=6 \\\\\ny=-3\n\\end{cases}\n\\]\nTherefore, for point $B(6, -3)$, when $-66$, we have $-\\frac{1}{2}x<\\frac{k}{x}$. Hence, the solution set for $-\\frac{1}{2}x<\\frac{k}{x}$ is \\boxed{-66}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50496356_66": { -"question": "As shown in the Cartesian coordinate system, the line $y=-\\frac{1}{2}x$ intersects with the inverse proportion function $y=\\frac{k}{x}$ at two points, $A$ and $B$, which are symmetrical about the origin. It is known that the ordinate of point $A$ is 3. After the line $y=-\\frac{1}{2}x$ is translated upwards, it intersects with the inverse proportion function in the second quadrant at point $C$. If the area of $\\triangle ABC$ is 36, what is the equation of the translated line?", -"image_file_name": "7053789", -"image": [ -"math/50496356_575.png" -], -"solution": "\\textbf{Solution:} Set the line after translation intersects the $y$-axis at point $F$, and connect $AF$, $BF$ as shown in the figure. Assume the equation of the line after translation is $y=-\\frac{1}{2}x+b$,\\\\\n$\\because$ this line is parallel to line $AB$,\\\\\n$\\therefore S_{\\triangle ABC}=S_{\\triangle ABF}$,\\\\\n$\\because$ the area of $\\triangle ABC$ is 36,\\\\\n$\\therefore S_{\\triangle ABF}=\\frac{1}{2}OF\\cdot (x_{B}-x_{A})=36$,\\\\\nBy symmetry, it is known: $x_{B}=-x_{A}$,\\\\\n$\\because x_{A}=-6$,\\\\\n$\\therefore x_{B}=6$,\\\\\n$\\therefore \\frac{1}{2}b\\times 12=36$,\\\\\n$\\therefore b=6$.\\\\\n$\\therefore$ The equation of the line after translation is $\\boxed{y=-\\frac{1}{2}x+6}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50496315_68": { -"question": "As shown in the diagram, the graph of the linear function $y=kx+b$ intersects with the graph of the inverse proportion function $y=\\frac{m}{x}$ at points A and B, and intersects with the x-axis at point C. The coordinates of point A are (2, 3), and the coordinates of point B are (-6, n). What are the analytic expressions for the linear function and the inverse proportion function?", -"image_file_name": "7053789", -"image": [ -"math/50496315_582.png" -], -"solution": "\\textbf{Solution:} Given that the graph of the inverse proportion function $y=\\frac{k}{x}$ passes through point A(2, 3),\\\\\nwe have $k=6$,\\\\\nthus, the expression for the inverse proportion function is $y=\\frac{6}{x}$.\\\\\nSince point B(-6, n) lies on the graph of the inverse proportion function $y=\\frac{6}{x}$,\\\\\nit follows that $n=-1$.\\\\\nSubstituting A(2, 3) and B(-6, -1) into $y=kx+b$, we get\n\\[\n\\left\\{\n\\begin{array}{l}\n2k+b=3, \\\\\n-6k+b=-1,\n\\end{array}\n\\right.\n\\]\nFrom which we derive\n\\[\n\\left\\{\n\\begin{array}{l}\nk=\\frac{1}{2}, \\\\\nb=2,\n\\end{array}\n\\right.\n\\]\nTherefore, the expression for the linear function is $\\boxed{y=\\frac{1}{2}x+2}$ and the expression for the inverse proportion function is $\\boxed{y=\\frac{6}{x}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50496315_69": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ intersects with the graph of the inverse proportion function $y=\\frac{m}{x}$ at points A and B, and intersects with the x-axis at point C. The coordinates of point A are $(2, 3)$, and the coordinates of point B are $(-6, n)$. Connect AO and OB, then find the area of $\\triangle AOB$.", -"image_file_name": "7053789", -"image": [ -"math/50496315_582.png" -], -"solution": "\\textbf{Solution:} When $y=0$, $x=4$, \\\\\n$\\therefore C(-4,0)$, \\\\\n$\\therefore OC=4$. Construct $AD\\perp x$ axis at point $D$, and $BE\\perp x$ axis at point $E$. \\\\\nThen, $AD=3$, $BE=1$, \\\\\n$\\therefore$ the area of $\\triangle AOB$ is $S_{\\triangle AOB} = S_{\\triangle BOC} + S_{\\triangle AOC} = \\frac{1}{2} \\times 4 \\times 1 + \\frac{1}{2} \\times 4 \\times 3 = \\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50496315_70": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ intersects with the graph of the inverse proportion function $y=\\frac{m}{x}$ at points A and B, and intersects with the x-axis at point C. The coordinate of point A is $(2, 3)$, and the coordinate of point B is $(-6, n)$. Based on the graph, directly write down the solution set of the system of inequalities $\\frac{m}{x}\\le kx+b<0$.", -"image_file_name": "7053789", -"image": [ -"math/50496315_582.png" -], -"solution": "\\textbf{Solution:} From the graph, it is known that the graph of the inverse proportion function $y=\\frac{m}{x}$ is below that of the linear function $y=kx+b$. The range of the variable $x$, which is less than 0, is: $-6\\le x<-4$. Therefore, the solution set is $\\boxed{-6\\le x<-4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50482334_72": { -"question": "As shown in the figure, the line $AB$ intersects the x-axis at point A and the y-axis at point B, where $\\angle OAB=30^\\circ$, and the coordinates of point B are $(0, 2\\sqrt{3})$. The line $y=kx+b$ passes through point A and intersects the y-axis at point C, and $OC=OA$. What is the equation of the line $AC$?", -"image_file_name": "7053789", -"image": [ -"math/50482334_595.png" -], -"solution": "\\textbf{Solution:} Given $B(0,2\\sqrt{3})$, we have $OB=2\\sqrt{3}$. In $\\triangle AOB$, $\\angle OAB=30^\\circ$, hence $AB=2OB=4\\sqrt{3}$. Therefore, $AO=\\sqrt{AB^{2}-OB^{2}}=6$, resulting in $A(6,0)$. Since $OA=6$ and $OA=OC$, we get $OC=6$ and consequently $C(0,-6)$. Assuming the equation of line AC is $y=kx-6$ and substituting point A into it gives $k=1$. Therefore, the equation of line AC is $y=x-6$. Hence, the answer is $\\boxed{y=x-6}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50482334_73": { -"question": "As illustrated, the line $AB$ intersects the x-axis at point A and the y-axis at point B, with $ \\angle OAB=30^\\circ$. The coordinates of point B are $(0, 2\\sqrt{3})$. The line $y=kx+b$ passes through point A and intersects the y-axis at point C, and $OC=OA$. Point D is on the perpendicular bisector $l$ of segment $AB$, located in the first quadrant. By folding $\\triangle ABD$ along $BD$, $\\triangle A'BD$ is obtained. If point $A'$ precisely falls on the line $l$, find the coordinates of points D and $A'$.", -"image_file_name": "7053789", -"image": [ -"math/50482334_595.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, connect $A$ to $A'$,\n\n$\\because$ Folding $\\triangle ABD$ along $BD$ results in $\\triangle A'BD$,\n\n$\\therefore$ $AB = A'B$, and $BD$ bisects $A$ to $A'$ perpendicularly, $\\angle ABD = \\angle A'BD$,\n\nAgain, $\\because$ $l$ is the perpendicular bisector of $AB$, and $A'$ is a point on line $l$,\n\n$\\therefore$ $A'B = AA'$,\n\n$\\therefore$ $A'B = AB = AA'$,\n\n$\\therefore$ $\\triangle AA'B$ is an equilateral triangle,\n\n$\\therefore$ $\\angle ABD = \\angle OAB = 30^\\circ$,\n\n$\\therefore$ $BD \\parallel OA$,\n\n$\\therefore$ The ordinate of $D$ is $2\\sqrt{3}$,\n\n$\\because$ $l$ is the perpendicular bisector of $AB$, and $D$ is a point on line $l$,\n\n$\\therefore$ $DB = DA = A'D$,\n\n$\\therefore$ $\\angle DBA = \\angle DAB = 30^\\circ$,\n\n$\\therefore$ $\\angle DAO = 60^\\circ$,\n\nConstruct $DM \\perp OA$ at $M$,\n\n$\\therefore$ $\\angle ADM = 90^\\circ - \\angle DAO = 30^\\circ$,\n\nLet $AM = a$, then $AD = 2a$,\n\n$\\because$ $AD^2 - AM^2 = DM^2$,\n\n$\\therefore$ $3a^2 = 12$,\n\n$\\therefore$ $a = 2$,\n\n$\\therefore$ $AM = 2$,\n\n$\\therefore$ $OM = 6 - AM = 4$,\n\n$\\therefore$ The coordinates of $D$ are $\\boxed{(4, 2\\sqrt{3})}$,\n\n$\\because$ $\\angle A'AB = 60^\\circ$,\n\n$\\therefore$ $\\angle A'AO = \\angle A'AB + \\angle BAO = 90^\\circ$,\n\n$\\therefore$ $AA' \\perp OA$,\n\nAlso, $AA' = AB = 4\\sqrt{3}$,\n\n$\\therefore$ The coordinates of $A'$ are $\\boxed{(6, 4\\sqrt{3})}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50482334_74": { -"question": "As shown in the figure, line $AB$ intersects the x-axis at point A and the y-axis at point B, where $ \\angle OAB=30^\\circ$, and the coordinates of point B are $(0, 2\\sqrt{3})$. The line $y=kx+b$ passes through point A and intersects the y-axis at point C, with $OC=OA$. Let P be a point on line $AC$, and Q be a point on line $l$. When $\\triangle APQ$ is an equilateral triangle, write down the side length of $\\triangle APQ$.", -"image_file_name": "7053789", -"image": [ -"math/50482334_595.png" -], -"solution": "\\textbf{Solution:}\n\n(1) As shown in Figure 2, when P is on the extension line of segment CA, connect $A'$P, and $A'$ with BQ,\\\\\n$\\because \\triangle APQ$ is an equilateral triangle,\\\\\n$\\therefore AP = AQ = PQ$,\\\\\n$\\angle BAA' = \\angle PAQ = 60^\\circ$,\\\\\n$\\therefore \\angle BAQ = \\angle A'AP$,\\\\\nIn $\\triangle ABQ$ and $\\triangle AA'P$,\\\\\n$\\left\\{\\begin{array}{l}\nAB = AA' \\\\\n\\angle BAQ = \\angle A'AP \\\\\nAQ = AP\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle ABQ \\cong \\triangle AA'P$ (SAS),\\\\\n$\\therefore BQ = A'P$,\\\\\nAlso, $\\because Q$ is a point on the perpendicular bisector of AB,\\\\\n$\\therefore BQ = AQ$,\\\\\n$\\therefore AQ = A'P$,\\\\\nAlso, $\\because AP = AQ$,\\\\\n$\\therefore AP = A'P$,\\\\\n$\\therefore P$ is on the perpendicular bisector of $AA'$,\\\\\n$\\because AA' \\perp OA$, and $AA' = 4\\sqrt{3}$,\\\\\n$\\therefore$ The ordinate of P is $2\\sqrt{3}$,\\\\\nLet $y = 2\\sqrt{3}$, then $x-6 = 2\\sqrt{3}$,\\\\\n$\\therefore x = 6 + 2\\sqrt{3}$,\\\\\n$\\therefore P(6+2\\sqrt{3}, 2\\sqrt{3})$,\\\\\n$\\therefore AP = \\sqrt{(6+2\\sqrt{3}-6)^2+(2\\sqrt{3})^2} = 2\\sqrt{6}$,\\\\\n(2) As shown in Figure 3, when P is on the ray AC, connect BP,\\\\\nSimilarly, we can get $\\triangle ABP \\cong AA'Q$,\\\\\n$\\therefore PB = QA'$, $\\angle PBA = \\angle QA'A$,\\\\\n$\\because \\angle BAA' = 60^\\circ$, and $A'Q$ vertically bisects AB,\\\\\n$\\therefore \\angle QA'A = 30^\\circ$,\\\\\n$\\therefore \\angle PBA = 30^\\circ$,\\\\\nAlso, $\\angle ABO = 90^\\circ - \\angle BAO = 60^\\circ$,\\\\\n$\\therefore \\angle PBO = \\angle ABO - \\angle PBA = 30^\\circ$,\\\\\nDraw $PG \\perp y$-axis at point G from P, let P$(m, m-6)$,\\\\\nIn $\\triangle PBG$, $\\angle PBO = 30^\\circ$,\\\\\n$\\therefore PB = 2PG = 2m$,\\\\\n$\\therefore BG = \\sqrt{3}m$,\\\\\n$\\therefore \\sqrt{3}m = 2\\sqrt{3}-(m-6)$,\\\\\n$\\therefore m = 2\\sqrt{3}$,\\\\\n$\\therefore P(2\\sqrt{3}, 2\\sqrt{3}-6)$,\\\\\n$\\therefore AP = \\sqrt{(2\\sqrt{3}-6)^2+(2\\sqrt{3}-6)^2} = 6\\sqrt{2}-2\\sqrt{6}$.\\\\\nIn summary: The side length of $\\triangle APQ$ is either \\boxed{2\\sqrt{6}} or \\boxed{6\\sqrt{2}-2\\sqrt{6}}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50482144_76": { -"question": "As shown in the figure, it is known that the graph of the function $y=x+1$ intersects the $y$ axis at point $A$. The graph of the linear function $y=kx+b$ passes through point $B(0, -1)$ and intersects the $x$ axis and the graph of $y=x+1$ at points $C$ and $D$ respectively. If the $x$-coordinate of point $D$ is 1, determine the analytical expression of the linear function $y=kx+b$.", -"image_file_name": "7053789", -"image": [ -"math/50482144_608.png" -], -"solution": "\\textbf{Solution}: From the problem, we know that the x-coordinate of point $D$ is 1, and point $D$ lies on the line, thus $y=x+1$.\n\n$\\therefore$ Substituting $x=1$ into $y=x+1$, we get $y=2$.\n\n$\\therefore D(1, 2)$.\n\nSubstituting points $B(0, -1)$ and $D(1, 2)$ into $y=kx+b$, we obtain $\\begin{cases}b=-1 \\\\ k+b=2\\end{cases}$. Solving these equations, we find $\\begin{cases}k=3 \\\\ b=-1\\end{cases}$.\n\n$\\therefore$ The equation of line $BD$ is $\\boxed{y=3x-1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50482144_77": { -"question": "As shown in the diagram, it is known that the graph of the function $y=x+1$ intersects the $y$-axis at point $A$. The graph of the linear function $y=kx+b$ passes through point $B(0, -1)$ and intersects the $x$-axis and the graph of $y=x+1$ at points $C$ and $D$, respectively. Find the area of quadrilateral $AOCD$ (i.e., the area of the shaded region in the diagram).", -"image_file_name": "7053789", -"image": [ -"math/50482144_608.png" -], -"solution": "\\textbf{Solution:} From equation (1), substituting $x=0$ into $y=x+1$, we get $y=1$,\\\\\n$\\therefore A(0, 1)$. Substituting $y=0$ into $y=3x-1$ gives $x=\\frac{1}{3}$,\\\\\n$\\therefore C\\left(\\frac{1}{3}, 0\\right)$,\\\\\n$\\therefore$ the area of quadrilateral $AOCD=S_{\\triangle AOD}+S_{\\triangle COD}$\\\\\n$=\\frac{1}{2}\\times 1\\times 1+\\frac{1}{2}\\times \\frac{1}{3}\\times 2=\\boxed{\\frac{5}{6}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50482083_79": { -"question": "As shown in the figure, the line $y=-x+m$ intersects the $x$ axis at point $B(4,0)$ and the $y$ axis at point $A$. Point $C$ is a point on the $x$ axis, and it is known that the area of $\\triangle ABC$ is $4$. What is the equation of line $AB$?", -"image_file_name": "7053789", -"image": [ -"math/50482083_610.png" -], -"solution": "The solution is as follows: Substitute point B$(4,0)$ into $y=-x+m$ to obtain $-4+m=0$,\\\\\nsolving for $m$ gives $m=4$,\\\\\n$\\therefore$ the equation of line $AB$ is $\\boxed{y=-x+4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50482083_80": { -"question": "As shown in the figure, the line $y = -x + m$ intersects the $x$-axis at point $B(4, 0)$ and the $y$-axis at point $A$. Point $C$ is on the $x$-axis, and the area of $\\triangle ABC$ is known to be 4. Find the coordinates of point $C$.", -"image_file_name": "7053789", -"image": [ -"math/50482083_610.png" -], -"solution": "\\textbf{Solution:} Given $x=0$, then $y=-x+4=4$, thus point $A(0,4)$,\\\\\nsince $S_{\\triangle ABC}=4$,\\\\\nthus $\\frac{1}{2} BC \\cdot 4=4$, solving gives $BC=2$,\\\\\nsince point $B(4,0)$,\\\\\nthus $OB=4$,\\\\\nthus $OC=OB-BC=4-2=2$ or $OC=OB+BC=4+2=6$,\\\\\nthus point $\\boxed{C(2,0)}$ or $\\boxed{(6,0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50481662_82": { -"question": "As shown in Figure 1, the graph of the linear function \\(y=-\\frac{1}{2}x+4\\) intersects the \\(x\\)-axis and \\(y\\)-axis at point \\(A\\) and point \\(B\\), respectively, and intersects the graph of the direct proportion function \\(y=\\frac{3}{2}x\\) at point \\(C\\). Point \\(C\\) is translated 1 unit to the right and 6 units downward to obtain point \\(D\\). Find the perimeter of \\(\\triangle OAB\\) and the coordinates of point \\(D\\).", -"image_file_name": "7053789", -"image": [ -"math/50481662_629.png" -], -"solution": "\\textbf{Solution:} Solve: In the equation $y=-\\frac{1}{2}x+4$, when $x=0$, we get $y=4$, and when $y=0$, from $0=-\\frac{1}{2}x+4$ we have: $x=8$,\\\\\n$\\therefore$ Points A(8,0) and B(0,4).\\\\\n$\\therefore$ $OA=8$, $OB=4$.\\\\\n$\\therefore$ $AB=\\sqrt{OA^{2}+OB^{2}}=\\sqrt{8^{2}+4^{2}}=4\\sqrt{5}$.\\\\\n$\\therefore$ The perimeter of $\\triangle OAB$ $=OA+OB+AB=12+4\\sqrt{5}=\\boxed{12+4\\sqrt{5}}$.\\\\\nBy solving the system of equations $y=-\\frac{1}{2}x+4$ and $y=\\frac{3}{2}x$, we get:\\\\\n$\\left\\{\\begin{array}{l}\nx=2\\\\\ny=3\n\\end{array}\\right.$.\\\\\n$\\therefore$ Point D is (3,−3); The coordinates of point D are $\\boxed{(3,-3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50481662_83": { -"question": "As shown in Figure 1, the graph of the linear function $y=-\\frac{1}{2}x+4$ intersects the $x$-axis and $y$-axis at points $A$ and $B$ respectively, and intersects the graph of the direct proportion function $y=\\frac{3}{2}x$ at point $C$. By moving point $C$ 1 unit to the right and then 6 units downward, point $D$ is obtained. As shown in Figure 2, point $P$ is a moving point on the $y$-axis. When the sum of $CP+PD$ is minimized, what are the coordinates of point $P$?", -"image_file_name": "7053789", -"image": [ -"math/50481662_629.png" -], -"solution": "\\textbf{Solution:} Let point $D'$ be the symmetric point of point $D$ about the $y$-axis, then $D'(-3, -3)$. Connect $CD'$ and let it intersect the $y$-axis at point $P'$. Connect $P'D$. At this time, $CP'+PD$ is minimal. Let the equation of line $CD'$ be $y=kx+b$. Substituting points $C(2,3)$ and $D'(-3,-3)$, we obtain:\n\\[\n\\left\\{\n\\begin{array}{l}\n2k+b=3 \\\\\n-3k+b=-3\n\\end{array}\n\\right.\n\\]\nSolving this yields $k=\\frac{6}{5}$ and $b=\\frac{3}{5}$. Therefore, the equation of line $CD'$ is $y=\\frac{6}{5}x+\\frac{3}{5}$. When $x=0$, we have $y=\\frac{3}{5}$. Therefore, the coordinates of point $P'$ are $\\boxed{(0, \\frac{3}{5})}$, which represent the coordinates of point $P$ when $CP+PD$ is minimized.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50481662_84": { -"question": "As shown in Figure 1, the graph of the linear function $y=-\\frac{1}{2}x+4$ intersects the $x$-axis and $y$-axis at points $A$ and $B$, respectively, and intersects the graph of the direct proportionality function $y=\\frac{3}{2}x$ at point $C$. Moving point $C$ 1 unit to the right and then 6 units downward yields point $D$. If point $Q$ is a moving point on the $x$-axis, and $\\triangle OQD$ forms an isosceles triangle, directly write the coordinates of point $Q$.", -"image_file_name": "7053789", -"image": [ -"math/50481662_629.png" -], -"solution": "\\textbf{Solution:} Let point Q be $(x,0)$. Since D is $(3,-3)$ and O is $(0,0)$, it follows that $OD^2=(3-0)^2+(-3-0)^2=18$, and $OQ^2=(x-0)^2+(0-0)^2=x^2$. The distance $DQ^2=(x-3)^2+(0+3)^2=x^2-6x+18$. For $\\triangle OQD$ to be an isosceles triangle, there are three cases:\n- When $OD=OQ$, from $18=x^2$, we have $x=\\pm 3\\sqrt{2}$. Hence, $Q(-3\\sqrt{2},0)$ or $Q(3\\sqrt{2},0)$,\n- When $OD=DQ$, from $18=x^2-6x+18$, we get $x=6$ or $x=0$ (coinciding with O, which is disregarded). Therefore, $Q(6,0)$,\n- When $OQ=DQ$, from $x^2=x^2-6x+18$, we obtain $x=3$. Therefore, $Q(3,0)$,\n\nIn summary, when $\\triangle OQD$ is an isosceles triangle, the coordinates of point Q are $\\boxed{Q(-3\\sqrt{2},0)}$, or $\\boxed{Q(3\\sqrt{2},0)}$, or $\\boxed{Q(3,0)}$, or $\\boxed{Q(6,0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50481348_86": { -"question": "As shown in the diagram, in the Cartesian coordinate system, line $l_1$ intersects the x-axis at point $A$ and the y-axis at point $B$. The coordinates of point $B$ are $(0, 3)$. Line $l_2: y=2x$ intersects line $l_1$ at point $C$, and the x-coordinate of point $C$ is 1. What is the equation of line $l_1$?", -"image_file_name": "7053789", -"image": [ -"math/50481348_6311.png" -], -"solution": "\\textbf{Solution:} Since line $l_{2}\\colon y=2x$ intersects with line $l_{1}$ at point $C$, and the x-coordinate of point $C$ is 1, therefore $y=2$, thus point $C(1, 2)$. Let the equation of line $l_{1}$ be $y=kx+b$. Substituting the coordinates of point $C$ yields: $\\begin{cases}k+b=2\\\\ b=3\\end{cases}$, solving this gives: $\\begin{cases}k=-1\\\\ b=3\\end{cases}$, therefore the equation of line $l_{1}$ is $y=-x+3$; hence, the equation of line $l_{1}$ is $\\boxed{y=-x+3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50481348_87": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $l_1$ intersects the $x$-axis at point $A$ and the $y$-axis at point $B$. The coordinates of point $B$ are $(0, 3)$. The line $l_2: y=2x$ intersects line $l_1$ at point $C$, and the x-coordinate of point $C$ is 1. If point $D$ is on the $y$-axis and the area of $\\triangle OCD$ is $\\frac{2}{3}$ of the area of $\\triangle AOC$, what are the coordinates of point $D$?", -"image_file_name": "7053789", -"image": [ -"math/50481348_6311.png" -], -"solution": "\\textbf{Solution:} From (1), we can get the equation of line $l_1$ as $y=-x+3$, and point $C(1, 2)$,\\\\\n$\\therefore$ when $y=0$, then $-x+3=0$, solving this we get: $x=3$,\\\\\n$\\therefore$ point $A(3, 0)$,\\\\\n$\\therefore$ the area of $\\triangle AOC$ with OA as the base and the distance from point C to the x-axis as the height, i.e., $S_{\\triangle AOC}=\\frac{1}{2}\\times 3\\times 2=3$,\\\\\n$\\therefore$ $S_{\\triangle OCD}=\\frac{2}{3}S_{\\triangle AOC}=2$,\\\\\nLet point $D(0, a)$, then the area of $\\triangle OCD$ has OD as the base and the distance from point C to the y-axis as the height,\\\\\n$\\therefore$ $S_{\\triangle OCD}=\\frac{1}{2}\\times 1\\cdot |a|=2$,\\\\\nSolving this, we find: $a=\\pm 4$,\\\\\n$\\therefore$ $\\boxed{D\\left(0, 4\\right)$ or $D\\left(0, -4\\right)}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50475225_90": { -"question": "As shown in the figure, the graph of the linear function $y_1=x+1$ intersects with the graph of the inverse proportion function $y_2= \\frac{2}{x}$ at points $A$ and $B$. A line is drawn from point $A$ perpendicular to the $x$-axis, and the foot of the perpendicular is point $H$. Then, line $BH$ is drawn. What are the coordinates of points $A$ and $B$ and the area of $\\triangle ABH$?", -"image_file_name": "7053789", -"image": [ -"math/50475225_641.jpg" -], -"solution": "\\textbf{Solution:} From the given problem, we have $x+1= \\frac{2}{x}$, therefore $x_{1}=1$, $x_{2}=-2$, then $A(1,2)$, $B(-2,-1)$, $H(1,0)$. Let the intersection point of the line $y=x+1$ and the $x$-axis be $C$, thus $C(-1, 0)$. Therefore, $CH=2$, which leads to the area of $\\triangle ABH = S_{\\triangle ACH} + S_{\\triangle BCH} = \\frac{1}{2} \\times 2 \\times 2 + \\frac{1}{2} \\times 2 \\times 1 = \\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"50475225_91": { -"question": "As shown in the figure, the graph of the linear function $y_1=x+1$ intersects with the graph of the inverse proportion function $y_2= \\frac{2}{x}$ at points $A$ and $B$. A line is drawn from point $A$ perpendicular to the $x$-axis, forming a perpendicular foot at point $H$, and then connecting $BH$. When $y_1>y_2$, please directly state the range of the independent variable $x$ using the graph.", -"image_file_name": "7053789", -"image": [ -"math/50475225_641.jpg" -], -"solution": "Solution: As can be seen from the figure, when $y_1>y_2$, we have \\boxed{x>1} or \\boxed{-2x$,\\\\\nWe find: $\\boxed{x<\\frac{16}{3}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52019348_98": { -"question": "\nAs shown in the plane Cartesian coordinate system, line $L_1\\colon y=-\\frac{1}{2}x+8$ intersects the $x$-axis and the $y$-axis at points $B$ and $C$, respectively, and intersects line $L_2\\colon y=x$ at point $A$. If $D$ is a point on line $L_2$, and the area of $\\triangle BOD$ is $32$, find the function expression of line $CD$.", -"image_file_name": "7053789", -"image": [ -"math/52019348_667.png" -], -"solution": "\\textbf{Solution:} Given the line $L_1: y=-\\frac{1}{2}x+8$ intersects with the x-axis at point $B$ and with the y-axis at point $C$, \\\\\n$\\therefore B(16, 0)$, $C(0, 8)$, \\\\\n$\\therefore OB=16$, \\\\\nthen the height of $\\triangle BOD$ is: $32\\times 2\\div16=4$, \\\\\n$\\because D$ is a point on the line $L_2$, \\\\\n$\\therefore$ Coordinates of point D are: $(4, 4)$ or $(-4, -4)$, \\\\\nLet the equation of line $CD$ be: $y=kx+b$, \\\\\nThen $\\left\\{\\begin{array}{l} b=8 \\\\ 4=4k+b \\end{array}\\right.$ or $\\left\\{\\begin{array}{l} b=8 \\\\ -4=-4k+b \\end{array}\\right.$, \\\\\nSolving, we get: $\\left\\{\\begin{array}{l} k=-1 \\\\ b=8 \\end{array}\\right.$ or $\\left\\{\\begin{array}{l} k=3 \\\\ b=8 \\end{array}\\right.$, \\\\\n$\\therefore$ The function expression of line $CD$ is: \\boxed{y=-x+8} or \\boxed{y=3x+8}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52019276_101": { -"question": "As shown in Figure 1, the coordinates of point C are $(4\\sqrt{2}, 4\\sqrt{2})$. Perpendiculars are drawn from point C to the x-axis and y-axis, meeting at points B and D, respectively. Point E is on the line segment OD (not coinciding with points O or D). Connect BE, construct the symmetric point $O'$ of point O with respect to line BE, connect $CO'$, point P is the midpoint of $CO'$, connect BP, extend $CO'$ to intersect the extended line of BE at point F, connect DF. $\\angle PBF=45^\\circ$; As shown in Figure 2, connect BD, when point $O'$ just falls on the line segment BD, what is the equation of line BF?", -"image_file_name": "7053789", -"image": [ -"math/52019276_672.png" -], -"solution": "\\textbf{Solution:}\n\nConnect $EO'$, as shown in the figure: \\\\\nIn $\\triangle BOD$, we have $OB=OD=4\\sqrt{2}$, \\\\\n$\\therefore BD=\\sqrt{OB^2+OD^2}=8$, \\\\\n$\\because$ point O is the symmetric point of line BE with respect to O', \\\\\n$\\therefore OE=O'E$, $O'B=OB=4\\sqrt{2}$, $\\angle EO'B=\\angle EOB=90^\\circ$, \\\\\n$\\therefore \\angle DOE=90^\\circ$, $DO'=BD-O'B=8-4\\sqrt{2}$, \\\\\nLet $OE=O'E=x$, then $DE=4\\sqrt{2}-x$, \\\\\nIn $\\triangle DOE$, we have $DO'^2+O'E^2=DE^2$, \\\\\n$\\therefore (8-4\\sqrt{2})^2+x^2=(4\\sqrt{2}-x)^2$, \\\\\nSolving for $x$ gives $x=8-4\\sqrt{2}$, \\\\\n$\\therefore E(0,8-4\\sqrt{2})$, \\\\\nLet the equation of line BF be $y=kx+b$. Substituting $B(4\\sqrt{2},0)$ and $E(0,8-4\\sqrt{2})$ into this gives: \\\\\n$\\begin{cases} 0=4\\sqrt{2}k+b \\\\ 8-4\\sqrt{2}=b \\end{cases}$, solving yields $\\begin{cases} k=1-\\sqrt{2} \\\\ b=8-4\\sqrt{2} \\end{cases}$, \\\\\n$\\therefore$ The equation of line BF is $\\boxed{y=(1-\\sqrt{2})x+8-4\\sqrt{2}}$.", -"solution_image": [ -"solution_images/52019276_670.png", -"solution_images/52019276_6714.png", -"solution_images/52019276_6723.png", -"solution_images/52019276_6728.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52019276_102": { -"question": "As shown in Figure 1, it is known that the coordinates of point C are $(4\\sqrt{2}, 4\\sqrt{2})$. Perpendiculars are drawn from point C to the x-axis and y-axis, with the feet of the perpendiculars being points B and D, respectively. Point E is a point on line segment OD (not coinciding with points O or D). Line segment BE is connected. The symmetric point of O with respect to line BE is constructed as \\(O'\\). Line segment \\(CO'\\) is drawn, and point P is the midpoint of \\(CO'\\). Line segment BP is connected. Line \\(CO'\\) is extended to intersect the extended line of BE at point F. Line segment DF is connected. Is there a point M in the plane such that the quadrilateral formed by vertices M, O, \\(O'\\), and F is a parallelogram? If it exists, please write down the coordinates of point M directly; if it does not exist, please explain the reason.", -"image_file_name": "7053789", -"image": [ -"math/52019276_672.png" -], -"solution": "\\textbf{Solution:} Yes, it exists. The coordinates of $M$ are \\(\\boxed{\\left(6\\sqrt{2}-8, 4+2\\sqrt{2}\\right)}\\), \\(\\boxed{\\left(-2\\sqrt{2}, 2\\sqrt{2}-4\\right)}\\), or \\(\\boxed{\\left(2\\sqrt{2}, 4-2\\sqrt{2}\\right)}\\).", -"solution_image": [ -"solution_images/52019276_670.png", -"solution_images/52019276_6714.png", -"solution_images/52019276_6723.png", -"solution_images/52019276_6728.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52019425_104": { -"question": "As shown in the figure, the line \\(l_{1}\\) intersects the y-axis at point A in the Cartesian coordinate system, and point B \\((-3, 3)\\) is also on line \\(l_{1}\\). By moving point B 1 unit to the right and then 2 units downward, we obtain point C, which is also on line \\(l_{1}\\). Determine the coordinates of point C and the equation of line \\(l_{1}\\).", -"image_file_name": "7053789", -"image": [ -"math/52019425_684.png" -], -"solution": "\\textbf{Solution:} By the translation rule, the coordinates of point C are $(-3+1, 3-2)$, i.e., $(-2, 1)$.\\\\\nLet the equation of line $l_{1}$ be $y=kx+c$,\\\\\nthen $\\begin{cases}3=-3k+c\\\\ 1=-2k+c\\end{cases}$, solving this gives: $\\begin{cases}k=-2\\\\ c=-3\\end{cases}$,\\\\\n$\\therefore$ the equation of line $l_{1}$ is $y=-2x-3$.\\\\\nTherefore, the coordinates of point C are $\\boxed{(-2, 1)}$ and the equation of line $l_{1}$ is $\\boxed{y=-2x-3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52019425_105": { -"question": "As shown in the figure, line $l_{1}$ intersects the y-axis at point A in the Cartesian coordinate system, and point B$(-3, 3)$ is also on line $l_{1}$. Point B is translated 1 unit to the right and then 2 units down to get point C, which is also on line $l_{1}$. It is known that line $l_{2}: y=x+b$ passes through point B and intersects the y-axis at point E. Find the area of $\\triangle ABE$.", -"image_file_name": "7053789", -"image": [ -"math/52019425_684.png" -], -"solution": "\\textbf{Solution:} Substitute the coordinates of point B into $y=x+b$ to get,\\\\\n$3=-3+b$, solving for $b$ gives $b=6$,\\\\\n$\\therefore y=x+6$.\\\\\nWhen $x=0$, $y=6$,\\\\\n$\\therefore$ the coordinates of point E are $(0,6)$.\\\\\nWhen $x=0$, $y=-3$,\\\\\n$\\therefore$ the coordinates of point A are $(0,-3)$,\\\\\n$\\therefore AE=6+3=9$,\\\\\n$\\therefore$ the area of $\\triangle ABE$ is $\\frac{1}{2} \\times 9 \\times |-3| = \\boxed{13.5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52019464_107": { -"question": "As shown in the diagram, in the Cartesian coordinate system, points $E$, $F$, $G$ are on the sides of rectangle $ABCO$. When $\\triangle EFO$ is folded along $EF$, point $O$ coincides exactly with point $G$, $GH\\perp x$-axis at point $H$, and point $M$ is the intersection of $GH$ and $EF$. If $CG=2$, and $B(6,4)$, find the coordinates of point $F$.", -"image_file_name": "7053789", -"image": [ -"math/52019464_690.png" -], -"solution": "\\textbf{Solution:} Let $OF=x$, then $CF=4-x$, and $GF=x$,\\\\\nIn $\\triangle CGF$, by the Pythagorean theorem, we have\\\\\n$CF^2+CG^2=GF^2$,\\\\\n$\\therefore (4-x)^2+2^2=x^2$, solving this gives $x=\\frac{5}{2}$,\\\\\n$\\therefore F\\boxed{\\left(0,\\frac{5}{2}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52019464_108": { -"question": "As shown in the diagram, within a Cartesian coordinate system, points $E$, $F$, and $G$ are located on the sides of rectangle $ABCO$. When triangle $EFO$ is folded along $EF$, point $O$ coincides exactly with point $G$. $GH$ is perpendicular to the x-axis at point $H$, and point $M$ is the intersection of $GH$ and $EF$. Given that $CG=2$ and $B(6,4)$, determine the analytical expression of line $EF$.", -"image_file_name": "7053789", -"image": [ -"math/52019464_690.png" -], -"solution": "\\textbf{Solution:} Since $GH \\perp x$-axis, and $OC \\perp x$-axis,\\\\\ntherefore $GH \\parallel OC$, thus $\\angle OFE = \\angle GMF$.\\\\\nSince $\\angle OFE = \\angle GFE$, therefore $\\angle GFM = \\angle GMF$,\\\\\nthus $GF = GM = \\frac{5}{2}$, and $HM = 4 - \\frac{5}{2} = \\frac{3}{2}$.\\\\\nTherefore $M(2, \\frac{3}{2})$.\\\\\nLet the equation of line $EF$ be $y = kx + b$.\\\\\nTherefore $\\left\\{ \\begin{array}{l} b = \\frac{5}{2}, \\\\ 2k + b = \\frac{3}{2}, \\end{array} \\right.$ thus $\\left\\{ \\begin{array}{l} k = -\\frac{1}{2}, \\\\ b = \\frac{5}{2}. \\end{array} \\right.$\\\\\nThus, the equation of line $EF$ is $y = -\\frac{1}{2}x + \\frac{5}{2} = \\boxed{-\\frac{1}{2}x + \\frac{5}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50613254_110": { -"question": "As shown in the figure, point A is a point in the Cartesian coordinate system with coordinates (1, $\\sqrt{3}$). Line AB passes through point A, and point B is the intersection of the line with the x-axis. A parallelogram AOBC is formed with OA and OB as adjacent sides. If OD bisects $\\angle AOB$ and D is the midpoint of AC. What are the coordinates of points B and D?", -"image_file_name": "7053789", -"image": [ -"math/50613254_701.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral AOBC is a parallelogram, and OD is the bisector of $\\angle AOB$,\\\\\nthus $\\angle ADO = \\angle BOD$, $\\angle AOD = \\angle BOD$,\\\\\nthus $\\angle ADO = \\angle AOD$,\\\\\nthus $OA = AD$.\\\\\nSince the coordinates of point A are $(1, \\sqrt{3})$, and D is the midpoint of AC,\\\\\nthus $OA = \\sqrt{1^2+(\\sqrt{3})^2} = 2$,\\\\\nthus $AD = 2$, $AC = 4$,\\\\\nthus $OB = AC = 4$,\\\\\nthus the coordinates of point B are $\\boxed{(4, 0)}$, and the coordinates of point D are $\\boxed{(3, \\sqrt{3})}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50613254_111": { -"question": "As illustrated, point $A$ in the Cartesian coordinate system has coordinates $(1, \\sqrt{3})$. Line $AB$ passes through point $A$, and point $B$ is the intersection of the line with the $x$-axis. A parallelogram $AOBC$ is formed with $OA$ and $OB$ as adjacent sides. If $OD$ is the bisector of $\\angle AOB$, and $D$ is the midpoint of $AC$. What is the equation of line $AB$?", -"image_file_name": "7053789", -"image": [ -"math/50613254_701.png" -], -"solution": "\\textbf{Solution:} Let the equation of the line AB be $y=kx+b$. Given that $A(1, \\sqrt{3})$ and $B(4,0)$, according to the problem, we get\n\\[\n\\left\\{\n\\begin{array}{l}\n\\sqrt{3}=k+b \\\\\n0=4k+b\n\\end{array}\n\\right.\n\\]\nSolving this, we find\n\\[\n\\left\\{\n\\begin{array}{l}\nk=-\\frac{\\sqrt{3}}{3} \\\\\nb=\\frac{4\\sqrt{3}}{3}\n\\end{array}\n\\right.\n\\]\n$\\therefore$ The equation of the line AB is $\\boxed{y=-\\frac{\\sqrt{3}}{3}x+\\frac{4\\sqrt{3}}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50613254_112": { -"question": "As shown in the figure, point $A$ is located at $(1, \\sqrt{3})$ in the Cartesian coordinate system. $AB$ is a line passing through point $A$, and $B$ is the intersection of this line with the $x$-axis. A parallelogram $AOBC$ is formed using $OA$ and $OB$ as adjacent sides. If $OD$ is the bisector of $\\angle AOB$ and $D$ is the midpoint of $AC$. If $P$ is a moving point on the line $AB$, and $S_{\\triangle POD} = \\frac{1}{2} S_{\\text{parallelogram} AOBC}$, please directly write down the coordinates of the point $P$ that satisfies the condition.", -"image_file_name": "7053789", -"image": [ -"math/50613254_701.png" -], -"solution": "\\textbf{Solution:}\n\n(1) Let the intersection of AB and the y-axis be M, and the intersection with OD be E, connect MD and BD. Set $x=0$, then $y=-\\frac{\\sqrt{3}}{3}x+\\frac{4\\sqrt{3}}{3}=\\frac{4\\sqrt{3}}{3}$.\\\\\nTherefore, the intersection M of line AB and the y-axis is $\\left(0,\\frac{4\\sqrt{3}}{3}\\right)$, therefore MO$=\\frac{4\\sqrt{3}}{3}$. Let the equation of OD be $y=mx$, substitute the coordinates of point D $\\left(3,\\sqrt{3}\\right)$ to get $m=\\frac{3}{\\sqrt{3}}=\\sqrt{3}$. Therefore, the equation of OD is $y=\\sqrt{3}x$, by solving the system\n\\[\n\\begin{cases}\ny=\\sqrt{3}x\\\\\ny=-\\frac{\\sqrt{3}}{3}x+\\frac{4\\sqrt{3}}{3}\n\\end{cases}\n\\]\nwe get\n\\[\n\\begin{cases}\nx=2\\\\\ny=\\frac{2\\sqrt{3}}{3}\n\\end{cases}\n\\]\nTherefore, the coordinates of point E are $\\left(2,\\frac{2\\sqrt{3}}{3}\\right)$, therefore OE$=\\sqrt{2^2+\\left(\\frac{2\\sqrt{3}}{3}\\right)^2}=\\frac{4\\sqrt{3}}{3}$, ME$=\\sqrt{(2-0)^2+\\left(\\frac{2\\sqrt{3}}{3}-\\frac{4\\sqrt{3}}{3}\\right)^2}=\\frac{4\\sqrt{3}}{3}$, AM$=\\sqrt{(1-0)^2+\\left(\\sqrt{3}-\\frac{4\\sqrt{3}}{3}\\right)^2}=\\frac{2\\sqrt{3}}{3}$, AE$=\\sqrt{(2-1)^2+\\left(\\frac{2\\sqrt{3}}{3}-\\sqrt{3}\\right)^2}=\\frac{2\\sqrt{3}}{3}$.\\\\\nTherefore, OM=OE=EM, AE=AM$=\\frac{2\\sqrt{3}}{3}$, therefore $S_{\\triangle OAM}$=$S_{\\triangle OAE}$, $S_{\\triangle AMD}$=$S_{\\triangle AED}$, therefore $S_{\\triangle ODM}$=$S_{\\triangle OAM}$+$S_{\\triangle OAE}$+$S_{\\triangle AMD}$+$S_{\\triangle AED}$=2$S_{\\triangle OAD}$=$\\frac{1}{2}S_{\\text{parallelogram }AOBC}$. Therefore P and M coincide, so the coordinates of point P are $\\boxed{\\left(0,\\frac{4\\sqrt{3}}{3}\\right)}$;\\\\\n(2) Because point D is the midpoint of AC, therefore $S_{\\triangle OBD}$=$\\frac{1}{2}S_{\\text{parallelogram }AOBC}$, therefore P coincides with B, so the coordinates of point P are $\\boxed{\\left(4,0\\right)}$.\\\\\nTherefore, the coordinates of point P are $\\boxed{\\left(0,\\frac{4\\sqrt{3}}{3}\\right)}$ or $\\boxed{\\left(4,0\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52342947_114": { -"question": "In the Cartesian coordinate system, the coordinates of point A are $(6, 4)$. Through point A, lines $AB \\perp x$-axis at point B and $AC \\perp y$-axis at point C are drawn, respectively. The graph of the linear function $y = kx + b$ passes through point $P(2, 3)$. Express $b$ in an algebraic formula involving $k$.", -"image_file_name": "7053789", -"image": [ -"math/52342947_715.png" -], -"solution": "\\textbf{Solution}: Substitute point P$(2,3)$ into $y=kx+b$, we get $3=2k+b$, \\\\\n$\\therefore b=\\boxed{-2k+3}$.", -"solution_image": [ -"solution_images/52342947_713.png", -"solution_images/52342947_7112.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52342947_115": { -"question": "In the Cartesian coordinate system, the coordinates of point A are $(6,4)$. Lines $AB$ and $AC$ are drawn from point A and are perpendicular to the x-axis at point B and to the y-axis at point C, respectively. The graph of the linear function $y=kx+b$ passes through point $P(2,3)$. When $k=2$, how long is the segment intercepted by the line $y=kx+b$ on the rectangle $OBAC$?", -"image_file_name": "7053789", -"image": [ -"math/52342947_715.png" -], -"solution": "\\textbf{Solution:} For the line $y=kx+b$, the length of the segment intercepted by the rectangle $OBAC$ is $\\boxed{2\\sqrt{5}}$.", -"solution_image": [ -"solution_images/52342947_713.png", -"solution_images/52342947_7112.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52342947_116": { -"question": "In the Cartesian coordinate system, the coordinates of point $A$ are $(6, 4)$. The lines $AB$ and $AC$ are drawn from point $A$ perpendicular to the x-axis and y-axis at points $B$ and $C$ respectively. The graph of the linear function $y=kx+b$ passes through the point $P(2, 3)$. When $1\\le x\\le 5$, the function value $y$ satisfies $-1\\le y\\le 4$. Determine the range of values for $k$.", -"image_file_name": "7053789", -"image": [ -"math/52342947_715.png" -], -"solution": "\\textbf{Solution:} Given the problem statement, when $k>0$, $y$ increases as $x$ increases. When $x=1$, we have ${y}_{\\min}=k-2k+3=3-k$. When $x=5$, we have ${y}_{\\max}=5k-2k+3=3k+3$. From the given conditions, we have\n\\[\n\\left\\{\n\\begin{array}{l}\n3-k\\geq-1, \\\\\n3k+3\\leq4.\n\\end{array}\n\\right.\n\\]\nSolving this, we find $k\\leq\\frac{1}{3}$. Therefore, $00$). If $m=-4$ and $n=\\frac{1}{2}$, what is the equation of the line $l_1$?", -"image_file_name": "7053789", -"image": [ -"math/51983386_908.png" -], -"solution": "\\textbf{Solution:} Given the problem, we know:\\\\\nPoint A ($-4$, $0$), Point B ($0$, $-2$),\\\\\nLet the equation of line $l_{1}$ be: $y=kx+b$,\\\\\n$\\begin{cases} b=-2 \\\\ -4k+b=0 \\end{cases}$, solving this gives: $\\begin{cases} b=-2 \\\\ k=-\\frac{1}{2} \\end{cases}$,\\\\\n$\\therefore y=-\\frac{1}{2}x-2$;\\\\\n$\\therefore$ The equation of line $l_{1}$ is $\\boxed{y=-\\frac{1}{2}x-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51983386_180": { -"question": "As shown in Figure 1, in the Cartesian coordinate system $xOy$, the line $l_1$ intersects the $x$-axis at point $A(m, 0)$ and the $y$-axis at point $B(0, mn)$ ($m<0$, $n>0$). As shown in Figure 2, under the condition of (1), the line $l_2: y=\\frac{1}{2}x$ intersects the line $l_1$ at point $C$, and let's consider point $D(0, 2)$. Does there exist a point $G$ on the line $l_2$ such that $\\frac{S_{\\triangle ACD}}{S_{\\triangle CDG}}=\\frac{4}{3}$? If it exists, find the coordinates of point $G$.", -"image_file_name": "7053789", -"image": [ -"math/51983386_908.png" -], -"solution": "\\textbf{Solution:} Solve the system $\\begin{cases}y=-\\frac{1}{2}x-2\\\\ y=\\frac{1}{2}x\\end{cases}$. We find $\\begin{cases}x=-2\\\\ y=-1\\end{cases}$, thus $C(-2,-1)$.\n\nLet the equation of line CD be: $y=mx+n$.\n\nHence $\\begin{cases}n=2\\\\ -2m+n=-1\\end{cases}$. Solving this, we find $\\begin{cases}n=2\\\\ m=\\frac{3}{2}\\end{cases}$, thus $y=\\frac{3}{2}x+2$.\n\nSetting $y=0$, $0=\\frac{3}{2}x+2$ leads to $x=-\\frac{4}{3}$, thus $E\\left(-\\frac{4}{3},0\\right)$.\n\nTherefore, $AE=4-\\frac{4}{3}=\\frac{8}{3}$.\n\nTherefore, the area of $\\triangle ACD$, $S_{\\triangle ACD}=\\frac{1}{2}AE\\cdot DF=\\frac{1}{2}\\times\\frac{8}{3}\\times3=4$.\n\nSince $\\frac{S_{\\triangle ACD}}{S_{\\triangle CDG}}=\\frac{4}{3}$,\n\nThus, $S_{\\triangle CDG}=3$.\n\nLet $G(x, \\frac{1}{2}x)$.\n\nThus, $\\frac{1}{2}OD\\cdot |x+2|=3$,\n\nor $\\frac{1}{2}\\times2\\cdot |x+2|=3$,\n\nThus, $x_{1}=1, x_{2}=-5$,\n\nTherefore, \\boxed{G(1, \\frac{1}{2})} or \\boxed{G\\left(-5, -\\frac{5}{2}\\right)}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51983386_181": { -"question": "As shown in Figure 1, in the Cartesian coordinate system $xOy$, the line ${l}_{1}$ intersects the $x$-axis at point $A(m, 0)$ and the $y$-axis at point $B(0, mn)$ ($m<0$, $n>0$). There is a point $P$ below the line ${l}_{1}$, whose abscissa is $m+n$. Connect $PB$. If $\\angle PBA=2\\angle BAO$, find the range of values for $\\frac{n}{OA}$.", -"image_file_name": "7053789", -"image": [ -"math/51983386_908.png" -], -"solution": "Solution: As shown in Figure 2,\n(1) When $m+n<0$, that is $-\\frac{n}{m}<1$,\\\\\nextend line $AO$ and take $OC=OA$,\\\\\nsince $OB\\perp AC$,\\\\\nit follows that $AB=BC$,\\\\\ntherefore $\\angle BCO=\\angle BAO$,\\\\\nhence $\\angle APB=\\angle BAO+\\angle BCO=2\\angle BAO$,\\\\\nhence point $P$ lies on the extension of line $CB$,\\\\\nthus, there exists a point $P$ below $l_1$, satisfying $\\angle PBA=2\\angle BAO$,\\\\\nas shown in Figure 3,\\\\\n(2) Extend line $AO$ and take $OC=OA$,\\\\\nwhen $m+n>0$, that is $-\\frac{n}{m}>1$,\\\\\nfrom (1) it is known that: $\\angle ABE=2\\angle BAO$,\\\\\nthus $\\angle PBA=\\angle ABE+\\angle PBE$,\\\\\ntherefore $\\angle PBA>\\angle ABE$,\\\\\ntherefore $\\angle PBA\\neq 2\\angle BAO$,\\\\\nIn summary: $\\boxed{\\frac{n}{OA}<1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51983442_183": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $l_{1}\\colon y=3x$ intersects with the line $l_{2}\\colon y=kx+b$ at point $A(a, 3)$, and point $B(2, 4)$ lies on the line $l_{2}$. Find the value of $a$ and the explicit equation of the line $l_{2}$.", -"image_file_name": "7053789", -"image": [ -"math/51983442_910.png" -], -"solution": "\\textbf{Solution}: The line $l_{1}\\colon y=3x$ intersects with the line $l_{2}\\colon y=kx+b$ at the point $A(a,3)$, which yields $3a=3$. \\\\\nSolving this gives $a=\\boxed{1}$. \\\\\n$\\therefore$ For the point $A(1,3)$, \\\\\nthe line $l_{2}\\colon y=kx+b$ passes through the point $A(1,3)$, and point $B(2,4)$, \\\\\nhence $\\begin{cases}k+b=3 \\\\ 2k+b=4 \\end{cases}$, \\\\\nsolving this leads to $\\begin{cases}k=1 \\\\ b=2 \\end{cases}$, \\\\\nthus, the equation of the line $l_{2}$ is $\\boxed{y=x+2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51983442_184": { -"question": "As shown in the Cartesian coordinate system, the line $l_{1}\\colon y=3x$ intersects with the line $l_{2}\\colon y=kx+b$ at point $A(a, 3)$, and point $B(2, 4)$ lies on the line $l_{2}$. Write directly the solution set of the inequality $kx+b<3x$ in terms of $x$.", -"image_file_name": "7053789", -"image": [ -"math/51983442_910.png" -], -"solution": "\\textbf{Solution:} The solution to the inequality $kx + b < 3x$ in terms of $x$ is $x > \\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50431231_186": { -"question": "As shown in the diagram, within the same coordinate system, the line $l_{1}: y=-x+2$ intersects the x-axis at point P, and the line $l_{2}: y=ax-4$ passes through point P. What is the value of $a$?", -"image_file_name": "7053789", -"image": [ -"math/50431231_920.jpg" -], -"solution": "\\textbf{Solution:} Since $l_{1}\\colon y=-x+2$ intersects the x-axis at point P, \\\\\nit follows that $P(2,0)$, \\\\\nAlso, since $l_{2}\\colon y=ax-4$ passes through point P, \\\\\nthus $0=2a-4$ yields $a=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50431231_187": { -"question": "As shown in the coordinate system, the line $l_{1}\\colon y=-x+2$ intersects the $x$-axis at point $P$, and the line $l_{2}\\colon y=ax-4$ passes through point $P$. Points $M$ and $N$ lie on lines $l_{1}$ and $l_{2}$, respectively, and are symmetric about the origin. What is the area of $\\triangle PMN$?", -"image_file_name": "7053789", -"image": [ -"math/50431231_920.jpg" -], -"solution": "\\textbf{Solution:} Given $a=2$, we have $l_2\\colon y=2x-4$. Let the x-coordinate of point $M$ be $x$, hence $M\\left(x, -x+2\\right)$, $N\\left(-x, x-2\\right)$. Furthermore, since $N\\left(-x, x-2\\right)$ lies on the line $l_2\\colon y=2x-4$, $\\therefore$ $x-2=-2x-4$ yields $x= -\\frac{2}{3}$. Thus, $M\\left(-\\frac{2}{3}, \\frac{8}{3}\\right)$, $N\\left(\\frac{2}{3}, -\\frac{8}{3}\\right)$. $\\therefore S_{\\triangle PMN}=\\frac{1}{2} \\cdot OP\\cdot |My|+ \\frac{1}{2} \\cdot OP\\cdot |Ny| = \\frac{1}{2} \\times 2\\times \\frac{8}{3} + \\frac{1}{2} \\times 2\\times \\frac{8}{3} = \\boxed{\\frac{16}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50431079_189": { -"question": "Given the figure, it is known that the line \\(l_1\\) passing through the point \\(B(1, 0)\\) intersects with the line \\(l_2: y=2x+4\\) at the point \\(P(-1, a)\\). Find the equation of the line \\(l_1\\).", -"image_file_name": "7053789", -"image": [ -"math/50431079_930.jpg" -], -"solution": "\\textbf{Solution:} Since point P$(-1, a)$ lies on the line $y=2x+4$, we have $2 \\times (-1) + 4 = a$, which means $a=2$. Therefore, the coordinates of P are $(-1, 2)$. Let the equation of line $l_1$ be $y=kx+b$ (where $k \\neq 0$). Substituting points B$(1, 0)$ and P$(-1, 2)$ into this equation, we get $\\begin{cases} k + b = 0 \\\\ -k + b = 2 \\end{cases}$. Solving this system of equations, we find $\\begin{cases} k = -1 \\\\ b = 1 \\end{cases}$. Hence, the equation of line $l_1$ is \\boxed{y = -x + 1}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"50431079_190": { -"question": "As shown in the figure, it is known that the line $l_1$ passing through point $B(1,0)$ intersects with line $l_2\\colon y=2x+4$ at point $P(-1,a)$. Find the area of the quadrilateral $PAOC$.", -"image_file_name": "7053789", -"image": [ -"math/50431079_930.jpg" -], -"solution": "\\textbf{Solution:} \n\nSince the line $l_1\\colon y=-x+1$ intersects with the y-axis at point C,\n\nthe coordinates of C are (0, 1),\n\nAnd since the line $l_2\\colon y=2x+4$ intersects with the x-axis at point A,\n\nthe coordinates of A are (-2, 0),\n\nBecause $S_{\\text{quadrilateral} PAOC}=S_{\\triangle PAB}-S_{\\triangle BOC}$,\n\ntherefore, $S_{\\text{quadrilateral} PAOC}=\\frac{1}{2}\\times3\\times2-\\frac{1}{2}\\times1\\times1=\\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663234_192": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the vertices of the rectangle $OABC$ are such that vertex $O$ coincides with the origin, and vertices $A$ and $C$ are respectively on the coordinate axes, with the coordinates of vertex $B$ being $\\left(6, 4\\right)$. $E$ is the midpoint of $AB$, and the line passing through points $D\\left(8, 0\\right)$ and $E$ intersects $BC$ and the y-axis at points $F$ and $G$, respectively. What is the equation of the line $DE$?", -"image_file_name": "7053789", -"image": [ -"math/51663234_945.png" -], -"solution": "\\textbf{Solution:} Let the equation of $DE$ be: $y=kx+b\\ (k\\ne 0)$,\\\\\nsince $B(6, 4)$ and $E$ is the midpoint of $AB$,\\\\\nthus $E(6, 2)$,\\\\\nsubstituting $E(6, 2)$ and $D(8, 0)$ into the equation gives $\\left\\{\\begin{array}{l}6k+b=2 \\\\ 8k+b=0 \\end{array}\\right.$,\\\\\nsolving this yields $\\left\\{\\begin{array}{l}k=-1 \\\\ b=8 \\end{array}\\right.$,\\\\\ntherefore $\\boxed{y=-x+8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663234_193": { -"question": "As shown in the diagram, within the Cartesian coordinate system, the rectangle $OABC$ has its vertex O coincide with the coordinate origin, and vertices A and C respectively lie on the coordinate axes, with vertex B at the coordinates $\\left(6, 4\\right)$. E is the midpoint of $AB$, and the line passing through points $D\\left(8, 0\\right)$ and E intersects $BC$ and the y-axis at points F and G, respectively. The graph of the function $y=mx-2$ goes through point F and intersects the x-axis at point H. Determine the coordinates of point F and the value of $m$?", -"image_file_name": "7053789", -"image": [ -"math/51663234_945.png" -], -"solution": "\\textbf{Solution:} When $y=4$, $-x+8=4$, hence $x=4$,\\\\\ntherefore, the coordinates of point F are $\\boxed{\\left(4, 4\\right)}$,\\\\\nsince the graph of the function $y=mx-2$ passes through point F,\\\\\ntherefore $4m-2=4$, yielding $m=\\boxed{\\frac{3}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663234_194": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the vertices of the rectangle $OABC$ with vertex O coinciding with the origin, and vertices A and C located on the coordinate axes respectively, whereas the coordinates of vertex B are $\\left(6, 4\\right)$. E is the midpoint of $AB$, and the line passing through points $D\\left(8, 0\\right)$ and E intersects with $BC$ and the y-axis at points F and G, respectively. Calculate the area of the quadrilateral $OHFG$.", -"image_file_name": "7053789", -"image": [ -"math/51663234_945.png" -], -"solution": "\\textbf{Solution:}\n\nThe equation of line $FH$ is: $y=\\frac{3}{2}x-2$,\n\nWhen $y=0$, we have $\\frac{3}{2}x-2=0$, thus $x=\\frac{4}{3}$,\n\nTherefore, point $H\\left(\\frac{4}{3}, 0\\right)$,\n\nSince $G$ is the intersection of line $DE$ with the y-axis, thus point $G\\left(0, 8\\right)$,\n\nTherefore, $OH=\\frac{4}{3}$, $CF=4$, $OC=4$, $CG=OG-OC=4$,\n\nTherefore, the area of quadrilateral $OHFG$ is the sum of the area of trapezoid $OHFC$ and the area of triangle $CFG$: ${S}_{\\text{quadrilateral} OHFG}={S}_{\\text{trapezoid} OHFC}+{S}_{\\triangle CFG}=\\frac{1}{2}\\times \\left(\\frac{4}{3}+4\\right)\\times 4+\\frac{1}{2}\\times 4\\times 4=\\boxed{18\\frac{2}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663193_196": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=kx+b$ passes through points $A(-2, -2)$ and $B(1, 4)$, and intersects the x-axis at point C and the y-axis at point D. What is the analytical expression of this linear function?", -"image_file_name": "7053789", -"image": [ -"math/51663193_953.png" -], -"solution": "\\textbf{Solution}: Substituting $A(-2, -2)$ and $B(1, 4)$ into $y=kx+b$, we get \n\\[\n\\begin{cases} \n-2k+b=-2 \\\\ \nk+b=4 \n\\end{cases},\n\\]\nsolving this yields \n\\[\n\\begin{cases} \nk=2 \\\\ \nb=2 \n\\end{cases},\n\\]\n\\[\n\\therefore\n\\] the equation of the linear function is $\\boxed{y=2x+2}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663193_197": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=kx+b$ passes through points $A(-2, -2)$, $B(1, 4)$, and intersects the x-axis at point C, and the y-axis at point D. What is the area of $\\triangle AOB$?", -"image_file_name": "7053789", -"image": [ -"math/51663193_953.png" -], -"solution": "\\textbf{Solution:} When $x=0$, $y=2x+2=2$,\\\\\n$\\therefore$ the coordinates of point D are $\\left(0, 2\\right)$;\\\\\n$\\therefore S_{\\triangle AOB}=\\frac{1}{2}\\times 2\\times 1+\\frac{1}{2}\\times 2\\times 2=\\boxed{3}$\\\\\n$\\therefore$ The area of $\\triangle AOB$ is \\boxed{3}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51662536_199": { -"question": "As shown in the figure, the line \\(l_1\\) passes through points \\(A(0, 2)\\) and \\(C(6, -2)\\). The coordinates of point B are \\( (4, 2) \\). Point P is a moving point on segment AB (point P does not coincide with point A). The line \\(l_2: y = kx + 2k\\) passes through point P and intersects \\(l_1\\) at point M. Through point P, draw \\(PN \\perp l_2\\), intersecting \\(l_1\\) at point N. Find the function expression of \\(l_1\\)?", -"image_file_name": "7053789", -"image": [ -"math/51662536_9610.png" -], -"solution": "\\textbf{Solution:} Let the equation of ${l}_{1}$ be: $y={k}_{1}x+b$,\\\\\nSubstituting points $A(0, 2)$ and $C(6, -2)$ into the equation, we get: $\\begin{cases}b=2 \\\\ 6{k}_{1}+b=-2\\end{cases}$,\\\\\nSolving these equations, we find: $\\begin{cases}{k}_{1}=-\\frac{2}{3} \\\\ b=2\\end{cases}$,\\\\\nTherefore, the equation of ${l}_{1}$ is: \\boxed{y=-\\frac{2}{3}x+2}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51662963_202": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line \\(l\\) passes through points \\(A(0, 1)\\) and \\(B(-2, 0)\\). Find the equation of the line \\(l\\).", -"image_file_name": "7053789", -"image": [ -"math/51662963_970.png" -], -"solution": "\\textbf{Solution:} Set the expression for line $l$ as: $y=kx+b$, passing through $A(0,1)$, $B(-2,0)$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}b=1 \\\\ -2k+b=0 \\end{array}\\right.$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}k=\\frac{1}{2} \\\\ b=1 \\end{array}\\right.$,\\\\\n$\\therefore$ the expression for line $l$ is: $\\boxed{y=\\frac{1}{2}x+1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51662963_203": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line \\(l\\) passes through points \\(A(0, 1)\\) and \\(B(-2, 0)\\). If point \\(M(3, m)\\) is on line \\(l\\), find the value of \\(m\\).", -"image_file_name": "7053789", -"image": [ -"math/51662963_970.png" -], -"solution": "\\textbf{Solution:} Since $M(3,m)$ lies on line $l$,\\\\\ntherefore $m=\\frac{1}{2}\\times3+1=\\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51662963_204": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $l$ passes through points $A(0,1)$ and $B(-2,0)$. If $y=-x+b$ passes through point $A$ and intersects the $x$-axis at point $C$, what is the area of $\\triangle ABC$?", -"image_file_name": "7053789", -"image": [ -"math/51662963_970.png" -], -"solution": "Solution: The line $y = -x + b$ passes through point $A(0,1)$, thus $b = 1$. Therefore, the line $y = -x + 1$ intersects the $x$-axis at point $C(1,0)$.\\\\\nTherefore, the area of $\\triangle ABC$ is $= \\frac{1}{2} \\times (2+1) \\times 1 = \\boxed{\\frac{3}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663132_206": { -"question": "As shown in the figure, the line $y=-\\frac{1}{2}x+3$ intersects the coordinate axes at points A and B, respectively, and intersects the line $y=x$ at point C. A point Q on the line segment OA moves from point O towards point A at a constant speed of 1 unit per second. Let the movement time be $t(s)$. Connect C and Q. Find the coordinates of point C.", -"image_file_name": "7053789", -"image": [ -"math/51663132_983.png" -], -"solution": "\\textbf{Solution:} Since the line $y=-\\frac{1}{2}x+3$ intersects the line $y=x$ at point C,\\\\\nit follows that $\\begin{cases} y=-\\frac{1}{2}x+3 \\\\ y=x \\end{cases}$,\\\\\nsolving these equations yields $\\begin{cases} x=2 \\\\ y=2 \\end{cases}$,\\\\\ntherefore, the coordinates of point C are $\\boxed{(2,2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663132_207": { -"question": "As shown in the figure, the line $y=-\\frac{1}{2}x+3$ intersects the coordinate axes at points A and B, and intersects the line $y=x$ at point C. A point Q on the line segment OA moves from point O to point A at a uniform speed of 1 unit per second. Let the motion time be $t(s)$. Connect C and Q. If $\\triangle OQC$ is an isosceles right triangle, find the value of $t$.", -"image_file_name": "7053789", -"image": [ -"math/51663132_983.png" -], -"solution": "\\textbf{Solution:}\\\\\n(1) As shown in Figure 1, when $\\angle CQO=90^\\circ$, CQ=OQ,\\\\\n$\\because C(2,2)$,\\\\\n$\\therefore OQ=CQ=2$,\\\\\n$\\therefore t=2$;\\\\\n(2) As shown in Figure 2, when $\\angle OCQ=90^\\circ$, OC=CQ, draw CM$\\perp$OA at M through point C,\\\\\n$\\because C(2,2)$,\\\\\n$\\therefore CM=OM=2$,\\\\\n$\\therefore QM=OM=2$,\\\\\n$\\therefore t=2+2=4$,\\\\\nthus the value of t is 2 or 4;\\\\\nTherefore, the value of $t$ is $\\boxed{2}$ or $\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51663132_208": { -"question": "As shown in the figure, the line $y=-\\frac{1}{2}x+3$ intersects with the coordinate axes at points A and B, respectively, and intersects with the line $y=x$ at point C. A point Q on line segment OA moves from point O to point A at a uniform speed of 1 unit per second, with the time of motion denoted as $t(s)$. If line segment CQ bisects the area of $\\triangle OAC$, what is the functional expression of line CQ?", -"image_file_name": "7053789", -"image": [ -"math/51663132_983.png" -], -"solution": "\\textbf{Solution:} Let $x=6$,\\\\\nhence A$(6,0)$,\\\\\n$\\because$ CQ bisects the area of $\\triangle OAC$,\\\\\n$\\therefore$ Q$(3,0)$,\\\\\nAssume the equation of line CQ is $y=kx+b$,\\\\\nSubstituting C$(2,2)$ and Q$(3,0)$ into it, we get:\\\\\n$\\begin{cases} 3k+b=0 \\\\ 2k+b=2 \\end{cases}$,\\\\\nSolving the system, we find:\\\\\n$\\begin{cases} k=-2 \\\\ b=6 \\end{cases}$,\\\\\n$\\therefore$ the function corresponding to line CQ is: \\boxed{y=-2x+6}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51662414_210": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $l_{1}$ intersects the x-axis at point A and the y-axis at point B, where the coordinate of point B is $(0, 3)$. The line $l_{2}\\colon y=2x$ intersects the line $l_{1}$ at point C, where the x-coordinate of point C is 1. What is the equation of line $l_{1}$?", -"image_file_name": "7053789", -"image": [ -"math/51662414_995.png" -], -"solution": "\\[ \\textbf{Solution:} \\]\nSince point C is on the line \\( l_{2} \\) with an x-coordinate of 1,\\\\\nthus substituting \\( x=1 \\) into \\( y=2x \\) gives \\( y=2\\times 1=2 \\),\\\\\nhence, the coordinates of point C are \\( (1, 2) \\).\\\\\nAssume the equation of line \\( l_{1} \\) is \\( y=kx+b \\). Substituting the coordinates of points B and C, we get \n\\[ \n\\left\\{ \\begin{array}{l}\n3=k\\times 0+b, \\\\ \n2=k\\times 1+b, \n\\end{array} \\right.\n\\]\nfrom which we derive \n\\[\n\\left\\{ \\begin{array}{l}\nk=-1, \\\\ \nb=3.\n\\end{array} \\right.\n\\]\nTherefore, the equation of line \\( l_{1} \\) is \\(\\boxed{y=-x+3}\\).", -"solution_image": [ -"solution_images/51662414_9912.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51662414_211": { -"question": "As shown in the Cartesian coordinate system, line $l_1$ intersects the x-axis at point A and the y-axis at point B, with the coordinates of point B being $(0, 3)$. Line $l_2$: $y=2x$ intersects line $l_1$ at point C, with the x-coordinate of point C being 1. If point D is a point on the y-axis, and the area of $\\triangle OCD$ is $\\frac{2}{3}$ of the area of $\\triangle AOC$, find the coordinates of point D.", -"image_file_name": "7053789", -"image": [ -"math/51662414_995.png" -], -"solution": "\\textbf{Solution:} Given that point A is the intersection of line $l_{1}$ and the $x$-axis,\\\\\ntherefore, substituting $y=0$ into $y=-x+3$, we find $x=3$,\\\\\ntherefore, the coordinates of point A are $(3, 0)$.\\\\\nAs shown in the figure, draw $CM\\perp x$-axis through point C, with M being the foot of the perpendicular; draw $CN\\perp y$-axis through point C, with N being the foot of the perpendicular.\\\\\nGiven the coordinates of point C as $(1, 2)$, we obtain $CM=2$, $CN=1$,\\\\\nLet the coordinates of point D be $(0, y)$.\\\\\nAccording to the problem, we have $\\frac{1}{2}\\cdot OD\\cdot CN=\\frac{2}{3}\\times \\frac{1}{2}\\cdot OA\\cdot CM$,\\\\\nwhich is $\\frac{1}{2}\\times |y|\\times 1=\\frac{2}{3}\\times \\frac{1}{2}\\times 3\\times 2$.\\\\\nSolving this, we get $|y|=4$, that is $y=\\pm 4$.\\\\\nTherefore, the coordinates of point D are $\\boxed{(0, 4)}$ or $\\boxed{(0, -4)}$.", -"solution_image": [ -"solution_images/51662414_9912.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51662414_212": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $l_1$ intersects the x-axis at point A and the y-axis at point B, with the coordinates of point B being $\\left(0, 3\\right)$. The line $l_2$: $y=2x$ intersects the line $l_1$ at point C, where the x-coordinate of point C is 1. Is there a point E in the plane such that the quadrilateral with vertices O, A, C, and E is a parallelogram? If such a point exists, directly write down the coordinates of the point E that meet the conditions.", -"image_file_name": "7053789", -"image": [ -"math/51662414_995.png" -], -"solution": "\\textbf{Solution:} There exists a point E with coordinates $\\boxed{(4,2)}$.", -"solution_image": [ -"solution_images/51662414_9912.png" -], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52837765_67": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $y =\\frac{3}{4}x +\\frac{3}{2}$ intersects the x-axis at point A and passes through point B $(2, a)$. There is a moving point P on the y-axis, and a moving point M on line BC, where point C is $(3, 0)$. What is the value of $a$?", -"image_file_name": "7047897", -"image": [ -"math/52837765_662.png" -], -"solution": "\\textbf{Solution:} From the given problem, we have \\(a=\\boxed{3}\\).", -"solution_image": [ -"solution_images/52837765_6615.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52837765_68": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y =\\frac{3}{4}x +\\frac{3}{2}$ intersects the x-axis at point A, and passes through point B (2, a). There is a moving point P on the y-axis, and a moving point M on the line BC, with C (3, 0). If $\\triangle APM$ is an isosceles right triangle with segment AM as its hypotenuse, what are the coordinates of point M?", -"image_file_name": "7047897", -"image": [ -"math/52837765_662.png" -], -"solution": "\\textbf{Solution:} The coordinates of point M are $\\boxed{\\left(\\frac{7}{2}, -\\frac{3}{2}\\right)}$.", -"solution_image": [ -"solution_images/52837765_6615.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52653516_88": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $\\angle BAD=121^\\circ$, $\\angle B=\\angle D=90^\\circ$, points $M$ and $N$ are respectively on $BC$ and $CD$. When $\\angle MAN=\\angle C$, what is the degree measure of $\\angle AMN+\\angle ANM$?", -"image_file_name": "7047897", -"image": [ -"math/52653516_850.png" -], -"solution": "\\textbf{Solution:} Given that, $\\triangle MAN$ and $\\triangle C$ are similar,\\\\\n$\\because$ in any triangle, the sum of the interior angles equals $180^\\circ$,\\\\\n$\\therefore \\angle AMN + \\angle ANM = 180^\\circ - \\angle MAN = 180^\\circ - \\angle C = \\boxed{180^\\circ - \\angle C}$.", -"solution_image": [ -"solution_images/52653516_850.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52653516_89": { -"question": "As shown in the figure, in the quadrilateral $ABCD$, $\\angle BAD=121^\\circ$, $\\angle B=\\angle D=90^\\circ$, and points $M,N$ are on $BC,CD$ respectively. When the perimeter of $\\triangle AMN$ is minimized, what is the sum of $\\angle AMN+\\angle ANM$ in degrees?", -"image_file_name": "7047897", -"image": [ -"math/52653516_850.png" -], -"solution": "\\textbf{Solution:} It is known from the problem statement that when the perimeter of $\\triangle AMN$ is minimized, $\\angle AMN + \\angle ANM = 180^\\circ - \\angle MNA$.\\\\\nSince $\\angle MNA$ is the external angle of $\\triangle AMN$,\\\\\n$\\therefore \\angle AMN + \\angle ANM = 180^\\circ - \\angle MNA = \\boxed{180^\\circ}$.", -"solution_image": [ -"solution_images/52653516_850.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52720370_100": { -"question": "As shown in the figure, in $\\triangle ABC$ and $\\triangle DCE$, we have $AC = DE$, $\\angle B = \\angle DCE = 90^\\circ$, and the points A, C, D are collinear in that order, with $AB \\parallel DE$. Therefore, $\\triangle ABC \\cong \\triangle DCE$. Connecting $AE$, when $BC = 5$ and $AB = 12$, find the length of $AD$.", -"image_file_name": "7047897", -"image": [ -"math/52720370_945.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC \\cong \\triangle DCE$,\\\\\nit follows that $BC=EC$, $AC=DE$, and $AB=CD$.\\\\\nIn the right triangle $\\triangle ABC$, with $AB=12$ and $BC=5$,\\\\\nby the Pythagorean theorem, we have $AC=\\sqrt{AB^2+BC^2}=\\sqrt{12^2+5^2}=13$,\\\\\nthus, $AD=AC+CD=13+12=\\boxed{25}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51545374_102": { -"question": "Given: As shown in the diagram, the graph of the direct proportion function $y=2x$ intersects with the graph of the linear function $y=-\\frac{2}{3}x+4$ at the point $A\\left(\\frac{3}{2}, 3\\right)$, and the graph of the linear function $y=-\\frac{2}{3}x+4$ intersects with the $x$-axis at point $B$. Find the coordinates of point $B$.", -"image_file_name": "7047897", -"image": [ -"math/51545374_956.png" -], -"solution": "\\textbf{Solution}: Given that the equation of the linear function is $y=-\\frac{2}{3}x+4$,\\\\\nsetting $y=0$ yields: $0=-\\frac{2}{3}x+4$,\\\\\nsolving for $x$, we get: $x=6$,\\\\\n$\\therefore$ the coordinates of point $B$ are $\\boxed{(6, 0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51545374_103": { -"question": "Given: As shown in the diagram, the graph of the directly proportional function $y=2x$ and the graph of the linear function $y=-\\frac{2}{3}x+4$ intersect at point $A\\left(\\frac{3}{2}, 3\\right)$, and the graph of the linear function $y=-\\frac{2}{3}x+4$ intersects the $x$-axis at point $B$. Find the area of $\\triangle AOB$.", -"image_file_name": "7047897", -"image": [ -"math/51545374_956.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1 \\\\\n$\\because A\\left(\\frac{3}{2}, 3\\right)$, $B(6, 0)$ \\\\\n$\\therefore OB = 6$, the height on side OB is 3, \\\\\n$\\therefore S_{\\triangle AOB} = \\frac{1}{2} \\times 6 \\times 3 = \\boxed{9}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52604307_109": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $D$ is the midpoint of side $BC$, $\\angle B=25^\\circ$. Find the measure of $\\angle DAC$?", -"image_file_name": "7047897", -"image": [ -"math/52604307_970.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$,\\\\\nit follows that $\\angle C=\\angle B=25^\\circ$,\\\\\nSince $AD\\perp BC$,\\\\\nit implies $\\angle ADB=90^\\circ$,\\\\\nthus $\\angle DAC=90^\\circ-25^\\circ=\\boxed{65^\\circ};$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52604307_110": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, $D$ is the midpoint of side $BC$, $\\angle B=25^\\circ$. If $AB=13$ and $AD=5$, what is the length of $BC$?", -"image_file_name": "7047897", -"image": [ -"math/52604307_970.png" -], -"solution": "\\textbf{Solution:} Given that $\\because AB=13$ and $AD=5$,\\\\\n$\\therefore BD= \\sqrt{AB^{2}-AD^{2}}=\\sqrt{13^{2}-5^{2}}=12$,\\\\\n$\\because AD\\perp BD$,\\\\\n$\\therefore BC=2BD=2\\times 12=\\boxed{24}.$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51545371_112": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, the perpendicular bisector of $AB$, $DE$, intersects $AC$ at point $D$ and $AB$ at point $E$, $\\angle C=75^\\circ$. What is the degree measure of $\\angle A$?", -"image_file_name": "7047897", -"image": [ -"math/51545371_981.png" -], -"solution": "\\textbf{Solution:} Given that $AB=AC$ and $\\angle C=75^\\circ$, \\\\\nthus $\\angle ABC=\\angle C=75^\\circ$, \\\\\ntherefore $\\angle A=180^\\circ-75^\\circ-75^\\circ=30^\\circ$, \\\\\nthus the measure of $\\angle A$ is $\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51545371_113": { -"question": "Could you please provide the text you need to be translated into English and formatted in LaTeX?", -"image_file_name": "7047897", -"image": [ -"math/51545371_981.png" -], -"solution": "Solution: Since $DE$ is the perpendicular bisector of $AB$, \\\\\n$\\therefore DA=DB$, \\\\\n$\\therefore \\angle DBA=\\angle A=30^\\circ$, \\\\\n$\\therefore \\angle CBD=\\angle ABC-\\angle ABD=75^\\circ-30^\\circ=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52655159_115": { -"question": "As shown in the diagram, within $ \\triangle ABC$, $ AD$ and $ AF$ are the median and the altitude of $ \\triangle ABC$, respectively, and $ BE$ is the angle bisector of $ \\triangle ABD$. Given that the area of $ \\triangle ABC$ is 40 and $ BD=5$, find the length of $ AF$.", -"image_file_name": "7047897", -"image": [ -"math/52655159_996.png" -], -"solution": "\\textbf{Solution:} Since $AD$ is the median of $\\triangle ABC$ and $BD=5$,\\\\\nit follows that $BC=2BD=2\\times 5=10$.\\\\\nGiven $AF\\perp BC$ and the area of $\\triangle ABC$ is $40$,\\\\\nwe have $\\frac{1}{2}BC\\cdot AF=\\frac{1}{2}\\times 10\\cdot AF=40$,\\\\\nwhich leads to $AF=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52655159_116": { -"question": "As shown in the figure, in $\\triangle ABC$, $AD$ and $AF$ are respectively the median and height of $\\triangle ABC$, $BE$ is the angle bisector of $\\triangle ABD$. If $\\angle BED=40^\\circ$ and $\\angle BAD=25^\\circ$, find the measure of $\\angle BAF$.", -"image_file_name": "7047897", -"image": [ -"math/52655159_996.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABE$, $\\angle BED$ is an exterior angle, and $\\angle BED=40^\\circ$, $\\angle BAD=25^\\circ$,\\\\\n$\\therefore \\angle ABE=\\angle BED-\\angle BAD=40^\\circ-25^\\circ=15^\\circ$.\\\\\nSince $BE$ is the angle bisector of $\\triangle ABD$,\\\\\n$\\therefore \\angle ABC=2\\angle ABE=2\\times 15^\\circ=30^\\circ$.\\\\\nSince $AF\\perp BC$,\\\\\n$\\therefore \\angle AFB=90^\\circ$,\\\\\nIn $Rt\\triangle ABF$, $\\angle BAF=90^\\circ-\\angle ABC=90^\\circ-30^\\circ=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51103676_83": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$, $AB = 4$, and $AC = \\sqrt{7}$. What is the length of $BC$?", -"image_file_name": "7058769", -"image": [ -"math/51103676_821.png" -], -"solution": "\\textbf{Solution:} In $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=4$, $AC=\\sqrt{7}$.\\\\\n$BC=\\sqrt{AB^2-AC^2}=\\sqrt{4^2-(\\sqrt{7})^2}=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51103676_84": { -"question": "Given that in $\\triangle ABC$, $\\angle C=90^\\circ$, $AB=4$, $AC=\\sqrt{7}$. Find $\\sin A$.", -"image_file_name": "7058769", -"image": [ -"math/51103676_821.png" -], -"solution": "\\textbf{Solution:} We have $\\sin A= \\frac{BC}{AB}=\\boxed{\\frac{3}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51103651_86": { -"question": "As shown in the figure, a mathematics interest group measures the height of an ancient tree $BH$ and a teaching building $CG$. First, at point $A$, they use an altimeter with a height of $1.5$ meters to measure the angle of elevation $\\angle HDE=45^\\circ$ of the top of the ancient tree $H$. At this moment, the top of the teaching building $G$ is exactly in the line of sight $DH$. Then, they move forward $7$ meters to point $B$ and measure the angle of elevation $\\angle GEF=60^\\circ$ of the top of the teaching building $G$. Points $A$, $B$, $C$ are on the same horizontal line. Calculate the height of the ancient tree $BH$ in meters.", -"image_file_name": "7058769", -"image": [ -"math/51103651_830.png" -], -"solution": "\\textbf{Solution:} Solution: According to the problem statement: Quadrilateral ABED is a rectangle, so we get $DE=AB=7$ meters.\\\\\nIn $\\triangle DEH$, $\\because \\angle EDH=45^\\circ$,\\\\\n$\\therefore HE=DE=7$ meters,\\\\\n$\\therefore BH=EH+BE=\\boxed{8.5}$ meters.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51103651_87": { -"question": "As shown in the figure, in order to measure the heights of an ancient tree BH and a teaching building CG, a math interest group first takes a measurement at point A with a theodolite that is 1.5 meters tall. They measure the angle of elevation to the top of the ancient tree H to be $\\angle HDE=45^\\circ$. At this moment, the top of the teaching building G is exactly in line with sight DH. Then, moving forward 7 meters to point B, they measure the angle of elevation to the top of the teaching building G to be $\\angle GEF=60^\\circ$. Points A, B, and C are on the same horizontal line. Calculate the height of the teaching building CG. (Reference data: $\\sqrt{2} \\approx 1.4$, $\\sqrt{3} \\approx 1.7$)", -"image_file_name": "7058769", -"image": [ -"math/51103651_830.png" -], -"solution": "\\textbf{Solution:} Let $HJ \\perp CG$ at $G$. Then $\\triangle HJG$ is an isosceles triangle, and quadrilateral $BCJH$ is a rectangle. Let $HJ=GJ=BC=x$. In $\\triangle EFG$, $\\tan 60^\\circ = \\frac{GF}{EF}$,\n\n\\[\n\\therefore \\sqrt{3} = \\frac{7+x}{x},\n\\]\n\n\\[\n\\therefore x = \\frac{7}{2}(\\sqrt{3}+1),\n\\]\n\n\\[\n\\therefore GF = \\sqrt{3}x \\approx 16.45,\n\\]\n\n\\[\n\\therefore CG = CF + FG = 1.5 + 16.45 \\approx \\boxed{18.0} \\text{ meters.}\n\\]", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51246271_89": { -"question": "As shown in the figure, in $ \\triangle PMN$, $\\angle MPN=90^\\circ$, $PN=4$, $\\sin\\angle PMN=\\frac{4}{5}$. What are the lengths of $BC$ and $FG$?", -"image_file_name": "7058769", -"image": [ -"math/51246271_844.png" -], -"solution": "\\textbf{Solution:} Let the height from the hypotenuse of $\\triangle PMN$ be $h$,\\\\\nsince the orthographic projection of the right prism is given,\\\\\nthus $BC=MN$, $FG=h$, $AB=EF$,\\\\\n$\\sin\\angle PMN=\\frac{PN}{MN}=\\frac{4}{5}$,\\\\\nSolving gives: $MN=BC=\\boxed{5}$,\\\\\nthus $PM=3$,\\\\\ntherefore the area of $\\triangle PMN=\\frac{1}{2}PM\\cdot PN=\\frac{1}{2}MN\\cdot h$,\\\\\nthus $\\frac{1}{2}\\times 3\\times 4=\\frac{1}{2}\\times 5\\cdot h$,\\\\\nSolving gives: $h=FG=\\boxed{\\frac{12}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51246271_90": { -"question": "The three views of a geometric body are interrelated. Given the three views of a right triangular prism as shown in the figure, in $\\triangle PMN$, $\\angle MPN=90^\\circ$, $PN=4$, and $\\sin\\angle PMN=\\frac{4}{5}$. If the rectangles in the front view and the left view are similar, what is the length of $AB$?", -"image_file_name": "7058769", -"image": [ -"math/51246271_844.png" -], -"solution": "\\textbf{Solution:} Since rectangle ABCD is similar to rectangle EFGH, and AB=EF, \\\\\nit follows that $\\frac{AB}{FG} = \\frac{BC}{EF}$, which means $\\frac{AB}{\\frac{12}{5}} = \\frac{5}{EF}$. Solving this gives: $AB = \\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52746343_93": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\sin\\angle BAC=\\frac{5}{13}$, $AB=13$, $AC=7.2$, $BD\\perp AC$ with the foot of the perpendicular at point D, point E is the midpoint of BD, and AE intersects BC at point F. Find the tangent of $\\angle CBD$?", -"image_file_name": "7058769", -"image": [ -"math/52746343_851.png" -], -"solution": "\\textbf{Solution:} Since $BD\\perp AC$,\\\\\nit follows that $\\angle D=90^\\circ$,\\\\\ntherefore $\\sin\\angle BAD=\\frac{BD}{AB}=\\frac{5}{13}$,\\\\\nhence $BD=\\frac{5}{13}AB=5$,\\\\\nthus $AD=\\sqrt{AB^{2}-BD^{2}}=12$,\\\\\ntherefore $CD=AD-AC=4.8$,\\\\\nhence $\\tan\\angle CBD=\\frac{CD}{BD}=\\frac{4.8}{5}=\\boxed{\\frac{24}{25}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52746343_94": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\sin\\angle BAC=\\frac{5}{13}$, $AB=13$, $AC=7.2$, $BD\\perp AC$ with the foot of the perpendicular at point $D$, point $E$ is the midpoint of $BD$, and $AE$ intersects $BC$ at point $F$. Find the value of $\\frac{BF}{CF}$.", -"image_file_name": "7058769", -"image": [ -"math/52746343_851.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $FH\\parallel BD$ through point F and intersect AD at H, \\\\\n$\\therefore \\angle FHC=\\angle EDC=90^\\circ$, $\\angle HFC=\\angle DBC$, \\\\\n$\\therefore \\triangle CHF\\sim \\triangle CDE$, $\\triangle AHF\\sim \\triangle ADE$, $\\tan\\angle HFC=\\tan\\angle CBD=\\frac{CH}{FH}=\\frac{24}{25}$, \\\\\n$\\therefore \\frac{HF}{BD}=\\frac{CF}{CB}$, $CH=\\frac{24}{25}FH$, $\\frac{AH}{AD}=\\frac{HF}{DE}$, \\\\\nLet $FH=x$, then $CH=\\frac{24}{25}x$, $AH=AC+CH=7.2+\\frac{24}{25}x$, \\\\\nSince E is the midpoint of BD, \\\\\n$\\therefore DE=\\frac{1}{2}BD=\\frac{5}{2}$, \\\\\n$\\therefore \\frac{7.2+\\frac{24}{25}x}{12}=\\frac{x}{\\frac{5}{2}}$, \\\\\n$\\therefore$ solving yields $x=\\frac{15}{8}$, \\\\\n$\\therefore FH=\\frac{15}{8}$, \\\\\n$\\therefore \\frac{\\frac{15}{8}}{5}=\\frac{CF}{CB}$, that is $\\frac{CF}{CB}=\\frac{3}{8}$, \\\\\n$\\therefore CF=\\frac{3}{8}CB$, \\\\\n$\\therefore BF=\\frac{5}{8}CB$, \\\\\n$\\therefore \\frac{BF}{CF}=\\boxed{\\frac{5}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52746246_97": { -"question": "As shown in the diagram, AB is a diameter of circle $O$, point P is on circle $O$, and $PA=PB$. Point M is outside circle $O$, and $MB$ is tangent to circle $O$ at point B. Connect $OM$, and draw $AC\\parallel OM$ through point A intersecting circle $O$ at point C, then connect $BC$ and intersect $OM$ at point D. $MC$ is a tangent to circle $O$; if $OB=\\frac{15}{2}$ and $BC=12$, connect $PC$. Find the length of $PC$.", -"image_file_name": "7058769", -"image": [ -"math/52746246_861.png" -], -"solution": "\\textbf{Solution:} Given that AB is the diameter of circle O,\\\\\nit follows that $\\angle ACB=\\angle APB=90^\\circ$,\\\\\ngiven that $OB=\\frac{15}{2}$,\\\\\nit follows that $AB=15$,\\\\\nthus $PA=PB=\\frac{15\\sqrt{2}}{2}$,\\\\\ngiven that $BC=12$,\\\\\nit follows that $AC=\\sqrt{AB^{2}-BC^{2}}=\\sqrt{15^{2}-12^{2}}=9$,\\\\\ndraw line AH perpendicular to PC at point H,\\\\\nthus $\\angle AHC=\\angle AHP=90^\\circ$,\\\\\ngiven that $\\angle ACH=\\angle ABP=45^\\circ$,\\\\\nit follows that $AH=CH=AC\\times \\sin 45^\\circ=9\\times \\frac{\\sqrt{2}}{2}=\\frac{9\\sqrt{2}}{2}$,\\\\\n$PH=\\sqrt{PA^{2}-AH^{2}}=\\sqrt{(\\frac{15\\sqrt{2}}{2})^{2}-(\\frac{9\\sqrt{2}}{2})^{2}}=6\\sqrt{2}$,\\\\\nthus $PC=PH+CH=\\boxed{\\frac{21\\sqrt{2}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51083577_99": { -"question": "As shown in the figure, in the Cartesian coordinate system, $OB=5$, $\\sin\\angle AOB= \\frac{3}{5}$, and the coordinate of point $A$ is $(10,0)$. What are the coordinates of point $B$?", -"image_file_name": "7058769", -"image": [ -"math/51083577_871.png" -], -"solution": "\\textbf{Solution:} Draw $BC\\perp OA$ at $C$ through point $B$. In $\\triangle BOC$, $\\sin\\angle AOB= \\frac{BC}{OB}=\\frac{3}{5}$,\\\\\ntherefore $BC=3$. According to the problem, $OB^2=BC^2+OC^2$,\\\\\ntherefore $OC=\\sqrt{OB^2-BC^2}=\\sqrt{5^2-3^2}=4$,\\\\\ntherefore the coordinates of point $B$ are $\\boxed{(4,3)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51083577_100": { -"question": "As shown in the figure, in the Cartesian coordinate system, $OB=5$, $\\sin\\angle AOB= \\frac{3}{5}$, and the coordinates of point $A$ are $(10,0)$. What is the value of $\\sin\\angle OAB$?", -"image_file_name": "7058769", -"image": [ -"math/51083577_871.png" -], -"solution": "\\textbf{Solution:} Given the information in the problem, the coordinates of point A are (10, 0),\\\\\n$\\therefore OA=10$,\\\\\n$\\because OC=4$,\\\\\n$\\therefore AC=6$,\\\\\nIn $\\triangle ABC$, by Pythagoras' theorem we have\\\\\n$AB=\\sqrt{AC^2+BC^2}=\\sqrt{6^2+3^2}=3\\sqrt{5}$,\\\\\n$\\therefore \\sin\\angle OAB=\\frac{BC}{AB}=\\frac{3}{3\\sqrt{5}}=\\boxed{\\frac{\\sqrt{5}}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51051573_102": { -"question": "As shown in the figure, the line $y=-\\frac{1}{3}x+1$ intersects the x-axis and y-axis at points A and B, respectively. Find the coordinates of points A and B.", -"image_file_name": "7058769", -"image": [ -"math/51051573_881.png" -], -"solution": "\\textbf{Solution:} For $y = -\\frac{1}{3}x + 1$, let $x = 0$, then $y = 1$, let $y = 0$, that is $-\\frac{1}{3}x + 1 = 0$, solving gives $x = 3$,\\\\\nhence the coordinates of points A and B are \\boxed{(3,0)} and \\boxed{(0,1)}, respectively.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51051573_103": { -"question": "The straight line $y=-\\frac{1}{3}x+1$ intersects the x-axis and y-axis at points A and B, respectively. Given that the coordinates of point G are $(2,7)$, the straight line BG is drawn through points G and B, and AG is connected. What is the value of $\\tan(\\angle AGB)$?", -"image_file_name": "7058769", -"image": [ -"math/51051573_881.png" -], -"solution": "\\textbf{Solution:} Given the coordinates of A, B, and G, $BG^{2}=2^{2}+(7-1)^{2}=40$, similarly $AB^{2}=10$, $AG^{2}=50$, thus $AG^{2}=AB^{2}+BG^{2}$,\\\\\n$\\therefore \\triangle ABG$ is a right triangle,\\\\\n$\\therefore \\tan\\angle AGB=\\frac{AB}{BG}=\\frac{\\sqrt{10}}{\\sqrt{40}}=\\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51051573_104": { -"question": "The line $y=-\\frac{1}{3}x+1$ intersects the x-axis and the y-axis at points A and B, respectively. Does there exist a point Q on the line BG such that the triangle formed by points A, B, and Q is similar to $\\triangle AOB$? If such a point exists, find the coordinates of point Q; if it does not exist, explain why.", -"image_file_name": "7058769", -"image": [ -"math/51051573_881.png" -], -"solution": "\\textbf{Solution:} Let the equation of line BG be $y=kx+b$, then\n\\[\n\\left\\{\n\\begin{array}{l}\n7=2k+b \\\\\nb=1\n\\end{array}\n\\right.\n\\]\nSolving gives\n\\[\n\\left\\{\n\\begin{array}{l}\nk=3 \\\\\nb=1\n\\end{array}\n\\right.\n\\]\nThus, the equation of line BG is $y=3x+1$. Let point Q be $(m,3m+1)$,\n\n(1) When $\\triangle ABQ \\sim \\triangle AOB$,\nthen $\\frac{AB}{AO}=\\frac{BQ}{OB}$, i.e., $\\frac{\\sqrt{10}}{3}=\\frac{\\sqrt{m^2+(3m+1-1)^2}}{1}$, solving gives $m=\\pm \\frac{1}{3}$,\n$\\therefore$ $Q_1\\left(\\frac{1}{3}, 2\\right)$, $Q_2\\left(-\\frac{1}{3}, 0\\right)$\n\n(2) When $\\triangle ABQ \\sim \\triangle BOA$,\n$\\frac{AB}{OB}=\\frac{BQ}{AO}$, i.e., $\\frac{\\sqrt{10}}{1}=\\frac{\\sqrt{m^2+(3m+1-1)^2}}{3}$, solving gives $m=\\pm3$,\n$\\therefore$ $Q_3\\left(3, 10\\right)$, $Q_4\\left(-3, -8\\right)$\n\nHence, the coordinates of point Q are $\\boxed{\\left(\\frac{1}{3}, 2\\right)}$ or $\\boxed{\\left(-\\frac{1}{3}, 0\\right)}$ or $\\boxed{\\left(3, 10\\right)}$ or $\\boxed{\\left(-3, -8\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51051567_106": { -"question": "As shown in the figure, in $\\triangle ABC$, CD is the median to side AB, $\\angle B=45^\\circ$, $\\tan\\angle ACB=3$, $AC= \\sqrt{10}$. Find: the area of $\\triangle ABC$?", -"image_file_name": "7058769", -"image": [ -"math/51051567_891.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, construct $AH \\perp BC$ at $H$. In $\\triangle ACH$, since $\\tan \\angle ACB = 3$ and $AC= \\sqrt{10}$, let $CH=x$ and $AH=3x$. According to the Pythagorean theorem, we find $AC= \\sqrt{10}x$, thus $CH=1$ and $AH=3$. In $\\triangle ABH$, $\\angle B=45^\\circ$, so $BH=AH=3$,\\\\\ntherefore $S_{\\triangle ABC}= \\frac{1}{2} \\times 4 \\times 3 = \\boxed{6}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51051567_107": { -"question": "As shown in the figure, in $\\triangle ABC$, $CD$ is the median to side $AB$, $\\angle B=45^\\circ$, $\\tan \\angle ACB=3$, and $AC= \\sqrt{10}$. Find the value of $\\sin \\angle ACD$?", -"image_file_name": "7058769", -"image": [ -"math/51051567_891.png" -], -"solution": "\\textbf{Solution:} Draw $DF \\perp BC$ at $F$, and $DE$ perpendicular to $AC$ at $E$. \\\\\nSince the area of $\\triangle ACD= \\frac{1}{2} \\times \\sqrt{10} \\times DE=3$, \\\\\nit follows that $DE= \\frac{3}{5}\\sqrt{10}$, \\\\\nBecause $AH \\perp BC$, $DF \\perp BC$, and $CD$ is the median to side $AB$, \\\\\nit follows that $DF= \\frac{1}{2}AH= \\frac{3}{2}$, \\\\\nTherefore, $BF=DF= \\frac{3}{2}$, \\\\\nIn $\\triangle CDF$, $CD= \\sqrt{DF^{2}+FC^{2}}=\\sqrt{\\left(\\frac{3}{2}\\right)^{2}+\\left(\\frac{5}{2}\\right)^{2}}=\\frac{\\sqrt{34}}{2}$, \\\\\nTherefore, in $\\triangle CDE$, $\\sin\\angle ACD= \\frac{DE}{CD}=\\boxed{\\frac{6\\sqrt{85}}{85}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51029323_109": { -"question": "As shown in the figure, in the right-angled triangle $\\triangle ABO$ where $\\angle O = 90^\\circ$, a circle with center $O$ and radius $OB$ intersects $AB$ at point $C$, and intersects $OA$ at point $D$. If $C$ is the midpoint of $AB$, what is the measure of $\\angle A$?", -"image_file_name": "7058769", -"image": [ -"math/51029323_900.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect OC, where $\\angle AOB=90^\\circ$, and C is the midpoint of AB, \\\\\ntherefore $OC=AC=BC$, \\\\\nsince $OB=OC$, \\\\\nhence $\\triangle BOC$ is an equilateral triangle, \\\\\ntherefore $\\angle B=60^\\circ$, \\\\\nthus $\\angle A=90^\\circ-60^\\circ=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51029323_110": { -"question": "As shown in the figure, in the right-angled triangle $\\mathrm{Rt}\\triangle ABO$, $\\angle O=90^\\circ$. A circle with point $O$ as its center and $OB$ as its radius intersects $AB$ at point $C$ and intersects $OA$ at point $D$. If $BO=2$ and $AO=4$, find the length of $BC$.", -"image_file_name": "7058769", -"image": [ -"math/51029323_900.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw $OQ\\perp AB$ at Q, and $\\angle AOB=90^\\circ$,\\\\\n$\\therefore \\angle BOQ+\\angle B=90^\\circ=\\angle B+\\angle A=90^\\circ$,\\\\\n$\\therefore \\angle BOQ=\\angle A$,\\\\\n$\\because OB=2$, $AO=4$,\\\\\n$\\therefore AB=\\sqrt{2^2+4^2}=2\\sqrt{5}$,\\\\\n$\\therefore \\sin A=\\frac{OB}{AB}=\\frac{2}{2\\sqrt{5}}=\\frac{\\sqrt{5}}{5}$,\\\\\n$\\therefore \\sin\\angle BOQ=\\frac{BQ}{OB}=\\frac{BQ}{2}=\\frac{\\sqrt{5}}{5}$,\\\\\n$\\therefore BQ=\\frac{2\\sqrt{5}}{5}$,\\\\\n$\\because OQ\\perp AB$,\\\\\n$\\therefore BC=2BQ=\\boxed{\\frac{4\\sqrt{5}}{5}}.$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51152292_112": { -"question": "As shown in the diagram, rectangle $OABC$ has vertices $A$ and $C$ located on the positive semiaxes of the $x$-axis and $y$-axis, respectively, with the coordinate of point $B$ being $(2\\sqrt{3}, 4)$. The graph of the linear function $y=-\\frac{\\sqrt{3}}{3}x+b$ intersects sides $OC$, $AB$, and the $x$-axis at points $D$, $E$, and $F$, respectively, with $\\angle DFO=30^\\circ$, and it satisfies $OD=BE$, where point $M$ is a moving point on line segment $DF$. What is the value of $b$?", -"image_file_name": "7058769", -"image": [ -"math/51152292_9118.png" -], -"solution": "\\textbf{Solution:} Given $y=-\\frac{\\sqrt{3}}{3}x+b$, let $x=0$, then $y=b$,\\\\\n$\\therefore$ the coordinates of point $D$ are $(0, b)$,\\\\\n$\\because OD=BE$ and $B(2\\sqrt{3}, 4)$,\\\\\n$\\therefore E(2\\sqrt{3}, 4-b)$,\\\\\nSubstituting $E(2\\sqrt{3}, 4-b)$ into $y=-\\frac{\\sqrt{3}}{3}x+b$ we get:\\\\\n$4-b=-\\frac{\\sqrt{3}}{3}\\times 2\\sqrt{3}+b$,\\\\\nSolving for $b$ yields: $b=\\boxed{3}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51152292_113": { -"question": "As shown in the diagram, the vertices $A$ and $C$ of the rectangle $OABC$ are on the positive half-axes of $x$ and $y$, respectively, and the coordinates of point $B$ are $(2\\sqrt{3}, 4)$. The graph of the linear function $y=-\\frac{\\sqrt{3}}{3}x+b$ intersects with sides $OC$, $AB$, and the $x$ axis at points $D$, $E$, and $F$, respectively, with $\\angle DFO=30^\\circ$, and satisfying $OD=BE$. Point $M$ is a moving point on the segment $DF$. Connect $OM$. If the ratio of the area of $\\triangle ODM$ to the area of the quadrilateral $OAEM$ is $1:3$, what are the coordinates of point $M$?", -"image_file_name": "7058769", -"image": [ -"math/51152292_9118.png" -], -"solution": "\\textbf{Solution:} From (1), we obtain the linear function $y=-\\frac{\\sqrt{3}}{3}x+3$, with points $D(0, 3)$ and $E(2\\sqrt{3}, 1)$,\\\\\n$\\therefore OD=3$, $AE=1$, $OA=2\\sqrt{3}$,\\\\\n$\\therefore S_{\\text{quadrilateral }OADE}=\\frac{1}{2}(OD+AE)\\cdot OA=\\frac{1}{2}\\times (3+1)\\times 2\\sqrt{3}=4\\sqrt{3}$,\\\\\n$\\because$ the area ratio of $\\triangle ODM$ to the quadrilateral $OAEM$ is $1:3$,\\\\\n$\\therefore$ the area ratio of $\\triangle ODM$ to the quadrilateral $OADE$ is $1:4$,\\\\\n$\\therefore S_{\\triangle ODM}=\\frac{1}{4}S_{\\text{quadrilateral }OADE}=\\sqrt{3}$,\\\\\nLet the x-coordinate of point $M$ be $a$, hence $\\frac{1}{2}\\times 3a=\\sqrt{3}$,\\\\\nSolving this yields $a=\\frac{2\\sqrt{3}}{3}$,\\\\\nSubstituting $x=\\frac{2\\sqrt{3}}{3}$ into $y=-\\frac{\\sqrt{3}}{3}x+3$ gives $y=\\frac{7}{3}$,\\\\\n$\\therefore \\boxed{M\\left(\\frac{2\\sqrt{3}}{3}, \\frac{7}{3}\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51152292_114": { -"question": "As shown in the diagram, the vertices $A$ and $C$ of the rectangle $OABC$ are located on the positive semi-axes of the $x$ and $y$ axes, respectively, and the coordinate of point $B$ is $(2\\sqrt{3}, 4)$. The graph of the linear function $y=-\\frac{\\sqrt{3}}{3}x+b$ intersects the sides $OC$, $AB$, and the $x$ axis at points $D$, $E$, and $F$, respectively, with $\\angle DFO=30^\\circ$, and it satisfies $OD=BE$. Point $M$ is a movable point on segment $DF$. Find the minimum value of $OM+\\frac{1}{2}MF$.", -"image_file_name": "7058769", -"image": [ -"math/51152292_9118.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $MN\\perp x$ axis through point $M$, intersecting at point $N$,\\\\\n$\\because \\angle DFO=30^\\circ$,\\\\\n$\\therefore MN=\\frac{1}{2}MF$,\\\\\n$\\therefore OM+\\frac{1}{2}MF=OM+MN$,\\\\\nConstruct the symmetric point ${O}^{\\prime}$ of point $O$ with respect to the linear function, and let $OO’$ intersect line $DF$ at point $Q$. Draw a perpendicular to the $x$ axis from point ${O}^{\\prime}$, intersecting the $x$ axis at point ${N}^{\\prime}$,\\\\\n$\\therefore OM={O}^{\\prime}M$,\\\\\n$\\therefore OM+\\frac{1}{2}MF=OM+MN={O}^{\\prime}M+MN$,\\\\\nWhen ${O}^{\\prime}$, $M$, and $N$ are on the same line, ${O}^{\\prime}M+MN$ is minimized,\\\\\nThat is, the minimum value of $OM+\\frac{1}{2}MF=OM+MN={O}^{\\prime}M+MN$ is ${O}^{\\prime}{N}^{\\prime}$,\\\\\n$\\because \\angle DFO=30^\\circ$,\\\\\n$\\therefore \\angle ODF=60^\\circ$, $\\angle DOQ=30^\\circ$, $\\angle {O}^{\\prime}O{N}^{\\prime}=60^\\circ$,\\\\\nIn $Rt\\triangle ODQ$, $OQ=OD\\cdot \\sin60^\\circ=3\\times \\frac{\\sqrt{3}}{2}=\\frac{3\\sqrt{3}}{2}$,\\\\\n$\\therefore OO^{\\prime}=2OQ=3$,\\\\\nIn $Rt\\triangle O{N}^{\\prime}{O}^{\\prime}$, ${O}^{\\prime}{N}^{\\prime}=OO^{\\prime}\\sin60^\\circ=3\\times \\frac{\\sqrt{3}}{2}=\\frac{3\\sqrt{3}}{2}$,\\\\\nTherefore, the minimum value of $OM+\\frac{1}{2}MF$ is $\\boxed{\\frac{3\\sqrt{3}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51152254_116": { -"question": "As shown in Figure 1, in the Cartesian coordinate system xOy, point $A(-1, 0)$ and point $B(4, 0)$ are given. Point $C$ is located on the negative semi-axis of the y-axis. The lines $AC$ and $BC$ are connected and it is given that $\\angle ACO = \\angle CBO$. What is the equation of the line $BC$?", -"image_file_name": "7058769", -"image": [ -"math/51152254_923.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle AOC = \\angle BOC = 90^\\circ$ and $\\angle ACO = \\angle CBO$,\n\\\\\n$\\therefore$ $\\triangle AFC \\sim \\triangle CFG$,\n\\\\\n$\\therefore$ $\\frac{OA}{OC} = \\frac{OC}{OB}$,\n\\\\\n$\\because$ OA = 1 and OB = 4,\n\\\\\n$\\therefore$ OC = 2, and the coordinates of point C are (0, $-2$),\n\\\\\nLet the equation of line BC be $y = kx - 2$,\n\\\\\nSubstituting point $B(4, 0)$ into the equation yields $0 = 4k - 2$,\n\\\\\nSolving for $k$ gives: $k = \\frac{1}{2}$,\n\\\\\n$\\therefore$ the equation of line BC is $\\boxed{y = \\frac{1}{2}x - 2}$.", -"solution_image": [ -"solution_images/51152254_920.png", -"solution_images/51152254_9211.png", -"solution_images/51152254_9222.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51152250_119": { -"question": "As shown in Figure 1, in the rhombus ABCD, AC is a diagonal, and AB = AC = 6. Points E and F are moving points on sides AB and BC, respectively, satisfying AE = BF. Lines AF and CE intersect at point G. Find the measure of $\\angle CGF$.", -"image_file_name": "7058769", -"image": [ -"math/51152250_930.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABCD is a rhombus, and AB=AC, \\\\\n$\\therefore$ AB=AC=BC=AD=CD, \\\\\n$\\therefore$ $\\triangle ABC$, $\\triangle ACD$ are equilateral triangles. \\\\\n$\\therefore$ $\\angle ABC=\\angle CAE$, in $\\triangle ABF$ and $\\triangle CAE$, \\\\\n$\\left\\{\\begin{array}{l}\nAB=CA\\\\\n\\angle ABF=\\angle CAE\\\\\nBF=AE\n\\end{array}\\right.$ \\\\\n$\\therefore$ $\\triangle ABF\\cong \\triangle CAE$ (SAS), \\\\\n$\\therefore$ $\\angle BAF=\\angle ACE$, \\\\\n$\\therefore$ $\\angle CGF=\\angle GAC+\\angle ACG=\\angle GAC+\\angle BAF=\\angle BAC=60^\\circ$; \\\\\nHence, the measure of $\\angle CGF$ is $\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51152250_120": { -"question": "As shown in Figure 1, in rhombus $ABCD$, $AC$ is the diagonal, and $AB=AC=6$. Points $E$ and $F$ are points on edges $AB$ and $BC$, respectively, satisfying $AE=BF$. Lines $AF$ and $CE$ intersect at point $G$. As shown in Figure 2, draw $DH\\perp CE$ meeting $CE$ at point $H$. If $CF=4$ and $AF=2\\sqrt{7}$, determine the value of $GH$.", -"image_file_name": "7058769", -"image": [ -"math/51152250_930.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, extend GA to point K so that $AK = CG$. \\\\\n$\\because \\angle BAF = \\angle ACE$, \\\\\n$\\therefore \\angle FAC = \\angle GCF$, \\\\\n$\\because \\angle GFC = \\angle AFC$, \\\\\n$\\therefore \\triangle AFC \\sim \\triangle CFG$, \\\\\n$\\therefore \\frac{FG}{FC} = \\frac{FC}{FA} = \\frac{CG}{AC}$, \\\\\n$\\because CF = 4$, $AF = 2\\sqrt{7}$, $AC = 6$, \\\\\n$\\therefore GF = \\frac{8\\sqrt{7}}{7}$, $AG = \\frac{6\\sqrt{7}}{7}$, $CG = \\frac{12\\sqrt{7}}{7}$, \\\\\n$\\because \\angle FGC = 60^\\circ$, $\\angle ADC = 60^\\circ$, \\\\\n$\\therefore \\angle AGC + \\angle ADC = 180^\\circ$, \\\\\n$\\therefore \\angle GAD + \\angle GCD = 180^\\circ$, \\\\\n$\\because \\angle KAD + \\angle GAD = 180^\\circ$, \\\\\n$\\therefore \\angle KAD = \\angle GCD$, \\\\\nMoreover, $\\because DC = DA$, \\\\\n$\\therefore \\triangle ADK \\cong \\triangle CDG$ (SAS), \\\\\n$\\therefore DK = DG$, $\\angle KDA = \\angle GDC$, \\\\\n$\\therefore \\angle KDG = \\angle ADC = 60^\\circ$, \\\\\n$\\therefore \\triangle DKG$ is an equilateral triangle, \\\\\n$\\therefore \\angle AGD = \\angle DGH = 60^\\circ$, $DG = KG = AK + AG = AG + CG = \\frac{18\\sqrt{7}}{7}$, \\\\\n$\\because DH \\perp CE$, $\\angle DGH = 60^\\circ$, \\\\\n$\\therefore GH = \\frac{1}{2}DG = \\boxed{\\frac{9\\sqrt{7}}{7}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51152250_121": { -"question": "As shown in the figure, in rhombus $ABCD$, $AC$ is a diagonal, and $AB=AC=6$. Points $E$ and $F$ are on sides $AB$ and $BC$ respectively, satisfying $AE=BF$. The segments $AF$ and $CE$ intersect at point $G$. Point $O$ is the midpoint of segment $CE$, and segment $EO$ is rotated clockwise by $60^\\circ$ around point $E$ to obtain segment $EM$. When $\\triangle MAC$ forms an isosceles triangle, please directly state the length of $AE$.", -"image_file_name": "7058769", -"image": [ -"math/51152250_930.png" -], -"solution": "Solution:\n\n(1) If $AM=MC$, then $\\triangle MAC$ is an isosceles triangle. In this case, let point $P$ be the midpoint of $AC$, and connect $OP$, $OM$, and $BM$,\n\n$\\because \\angle MEO=60^\\circ$, $EO=EM$,\n\n$\\therefore \\triangle OEM$ is an equilateral triangle,\n\n$\\because \\angle FGC=60^\\circ$,\n\n$\\therefore \\angle MEO=\\angle FGC$,\n\n$\\therefore ME\\parallel AF$,\n\n$\\because O$ is the midpoint of $CE$, $P$ is the midpoint of $AC$,\n\n$\\therefore OP$ is the midline of $\\triangle AEC$, $OP\\parallel AB$,\n\n$\\because \\triangle ABC$ is an equilateral triangle, $\\triangle MAC$ is an isosceles triangle, $P$ is the midpoint of $AC$,\n\n$\\therefore from$ \"three lines coincide,\" points $B$, $M$, $P$ are collinear, and $BP\\perp AC$, $AP=PC= \\frac{1}{2}AC=3$, $\\angle ABP= \\frac{1}{2} \\angle ABC=30^\\circ$,\n\n$\\because \\triangle OEM$ is an equilateral triangle,\n\n$\\therefore OE=OM$, $\\angle OEM=\\angle OME$,\n\n$\\because OE=OC$,\n\n$\\therefore OM=OC$, $\\angle OMC=\\angle OCM$,\n\n$\\therefore \\angle OEM+\\angle OCM=\\angle OME+\\angle OMC$,\n\nthat is: $\\angle OEM+\\angle OCM=\\angle EMC$,\n\n$\\therefore \\angle EMC=90^\\circ$, $CM\\perp EM$,\n\n$\\therefore in \\triangle CEM$, $\\angle ECM=90^\\circ-60^\\circ=30^\\circ$,\n\nAt this point, as shown in the figure, rotate $\\triangle AEC$ counterclockwise around point $C$ through $60^\\circ$ until $\\triangle BNC$, connect $MN$,\n\nthen $\\angle ACE=\\angle BCN$, $\\angle NBC=60^\\circ$,\n\n$\\because \\angle ECM=30^\\circ$,\n\n$\\therefore \\angle ACE+\\angle MCB=30^\\circ$,\n\n$\\therefore \\angle BCN+\\angle MCB=\\angle MCN=30^\\circ$,\n\n$\\therefore \\angle MCN=\\angle MCE=30^\\circ$,\n\n$\\because CE=CN$, $\\angle MCN=\\angle MCE$, $CM=CM$,\n\n$\\therefore \\triangle MCE\\cong \\triangle MCN$,\n\n$\\therefore \\angle CMN=\\angle CME=90^\\circ$,\n\n$\\therefore points $E, $M$, $N$ are collinear,\n\n$\\therefore \\triangle ECN$ is an equilateral triangle,\n\n$\\because \\angle NBC=\\angle ACB=60^\\circ$,\n\n$\\therefore BN\\parallel AC$,\n\n$\\because \\angle BPC=90^\\circ$,\n\n$\\therefore \\angle NBM=90^\\circ$,\n\n$\\because \\angle CMN=90^\\circ$,\n\n$\\therefore \\angle BMN+\\angle CMP=90^\\circ$,\n\n$\\because \\angle BMN+\\angle BNM=90^\\circ$,\n\n$\\therefore \\angle BNM=\\angle CMP$,\n\n$\\therefore \\triangle BMN\\sim \\triangle PCM$,\n\n$\\therefore \\frac{BM}{PC}=\\frac{NM}{MC}$,\n\n$\\because \\frac{NM}{MC}=\\tan\\angle MCN=\\tan30^\\circ$,\n\n$\\therefore \\frac{BM}{PC}=\\tan30^\\circ=\\frac{\\sqrt{3}}{3}$,\n\n$\\because PC=3$,\n\n$\\therefore BM= \\sqrt{3}$,\n\nIn $\\triangle ABP$, $AP=3$, $\\angle ABP=30^\\circ$,\n\n$\\therefore BP= 3\\sqrt{3}$,\n\n$\\therefore PM=BP-BM= 2\\sqrt{3}$,\n\n$\\because \\angle MBC=30^\\circ$, $\\angle OMC=90^\\circ-\\angle OME=30^\\circ$,\n\n$\\therefore \\angle MBC+\\angle MCB=\\angle OMC+\\angle OMP$,\n\n$\\therefore \\boxed{AE=3}$.\n", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51010356_123": { -"question": "As shown in the figure, quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with diagonal $AC$ being the diameter of $\\odot O$. Through point $C$, draw $CE \\perp AC$, intersecting the extension of $AD$ at point $E$. Let $F$ be the midpoint of $CE$, and connect $DB$ and $DF$. What is the measure of $\\angle CDE$?", -"image_file_name": "7058769", -"image": [ -"math/51010356_940.png" -], -"solution": "\\textbf{Solution:} Since $AC$ is the diameter of $\\odot O$,\\\\\n\\(\\therefore \\angle ADC=90^\\circ\\),\\\\\n\\(\\therefore \\angle CDE=\\boxed{90^\\circ}\\);", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51010356_125": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed in circle $\\odot O$, with the diagonal $AC$ being the diameter of $\\odot O$. Through point $C$, draw $CE \\perp AC$ to intersect the extension of line $AD$ at point $E$. Let $F$ be the midpoint of $CE$, and connect $DB$, $DF$. $DF$ is the tangent to $\\odot O$. If $\\tan\\angle ABD=3$, find the value of $\\frac{AC}{DE}$.", -"image_file_name": "7058769", -"image": [ -"math/51010356_940.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $\\angle ACD = \\angle ABD$, \\\\\nit follows that $\\tan \\angle ACD = \\frac{AD}{CD} = 3$, \\\\\nLet $AD=3$ and $CD=1$, \\\\\nthus $AC = \\sqrt{AD^2 + CD^2} = \\sqrt{10}$, \\\\\nSince $\\angle ACD + \\angle DCE = \\angle DEC + \\angle DCE$, \\\\\nit follows that $\\angle ACD = \\angle DEC$, \\\\\nthus $\\tan \\angle DEC = \\frac{DC}{DE} = 3$, \\\\\ntherefore $DE = \\frac{1}{3}$, \\\\\nhence $\\frac{AC}{DE} = \\frac{\\sqrt{10}}{\\frac{1}{3}} = \\boxed{3\\sqrt{10}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51106915_128": { -"question": "As shown in the figure, $AB$ is the diameter of circle $O$, points $C$ and $D$ are on circle $O$, and $AC=CD$. Line segments $AD$ and $BC$ intersect at point $E$, point $F$ is on the extension of $BC$, and $AF=AE$. $AF$ is the tangent to circle $O$. If $EF=12$, $\\sin \\angle BAC = \\frac{4}{5}$, what is the radius of circle $O$?", -"image_file_name": "7058769", -"image": [ -"math/51106915_954.png" -], -"solution": "\\textbf{Solution:} Given that $AE=AF$, $\\angle ACB=90^\\circ$, hence $CF=CE=\\frac{1}{2}EF=6$, since $\\angle CAB=\\angle CEA$, then $\\sin\\angle CAB=\\sin\\angle CEA=\\frac{4}{5}$. It follows that $\\frac{AC}{AE}=\\frac{4}{5}$, thus $AC=\\frac{4}{5}AE$. Consequently, $\\left(\\frac{4}{5}AE\\right)^2+6^2=AE^2$, from which we find $AE=10$, thereby $AC=8$. Given that $\\sin\\angle CAB=\\frac{BC}{AB}=\\frac{4}{5}$, it leads to $BC=\\frac{4}{5}AB$. Therefore, $8^2+\\left(\\frac{4}{5}AB\\right)^2=AB^2$, hence $AB=\\frac{40}{3}$, which implies the radius of $\\odot O$ is $\\boxed{\\frac{20}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50951684_131": { -"question": "As shown in the figure, in $\\triangle ABC$, $O$ is a point on $AC$. Taking point O as the center and $OC$ as the radius, a circle is drawn tangent to $BC$ at point C. A line is drawn through point O such that $OE \\perp AB$ and intersects $AB$ at point E. Through point A, $AD \\perp BO$ is drawn, and it intersects the extension of $BO$ at point D, and $\\angle AOD = \\angle BAD$. Given $OE=OC$, if $BC=6$ and $\\tan \\angle ABC = \\frac{4}{3}$, find the length of $AD$.", -"image_file_name": "7058769", -"image": [ -"math/50951684_960.png" -], -"solution": "\\textbf{Solution:} Given that $BC=6$, $\\tan\\angle ABC =\\frac{4}{3}$, and $\\angle ACB=90^\\circ$,\\\\\nit follows that $AC=BC\\cdot\\tan\\angle ABC=8$\\\\\nThus, $AB =\\sqrt{6^2+8^2}=10$\\\\\nSince $OE=OC$,\\\\\nit implies $BE=BC=6$\\\\\nHence, $AE=AB-BE=4$\\\\\nLet $OC=OE=x$, then in $\\triangle AEO$, $(8-x)^2=4^2+x^2$ yields $x=3$,\\\\\nTherefore, $OB= \\sqrt{OC^2+BC^2}=3\\sqrt{5}$\\\\\nGiven that $S_{\\triangle BOA}= \\frac{1}{2} AB \\cdot OE= \\frac{1}{2} BO \\cdot AD$,\\\\\nit follows that $AB \\cdot OE= BO \\cdot AD$\\\\\nTherefore, $AD =\\boxed{2\\sqrt{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51073825_133": { -"question": "Given that $AB$ is the diameter of circle $O$, and $\\angle ACD$ is the angle subtended by the arc $\\overset{\\frown}{AD}$ on the circumference of the circle with $\\angle ACD=30^\\circ$. What is the measure of $\\angle DAB$?", -"image_file_name": "7058769", -"image": [ -"math/51073825_971.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect BD,\\\\\n$\\because \\angle ACD=30^\\circ$,\\\\\n$\\therefore \\angle B=\\angle ACD=30^\\circ$,\\\\\n$\\because AB$ is the diameter of $\\odot O$,\\\\\n$\\therefore \\angle ADB=90^\\circ$,\\\\\n$\\therefore \\angle DAB=90^\\circ-\\angle B= \\boxed{60^\\circ};$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51073825_134": { -"question": "Given that $AB$ is the diameter of $\\odot O$ and $\\angle ACD$ is the inscribed angle corresponding to the arc $\\overset{\\frown}{AD}$, where $\\angle ACD=30^\\circ$. Through point $D$, draw $DE\\perp AB$ with $E$ as the foot of the perpendicular. The extension of $DE$ intersects $\\odot O$ at point $F$. If $AB=4$, find the length of $DF$.", -"image_file_name": "7058769", -"image": [ -"math/51073825_971.png" -], -"solution": "\\textbf{Solution:} Since $\\angle ADB=90^\\circ$ and $\\angle B=30^\\circ$, with $AB=4$,\\\\\nit follows that $AD=\\frac{1}{2} AB=2$.\\\\\nSince $\\angle DAB=60^\\circ$, $DE\\perp AB$, and $AB$ is the diameter,\\\\\nit results in $EF=DE=AD\\sin60^\\circ=\\sqrt{3}$,\\\\\nhence $DF=2DE=2\\sqrt{3}$.\\\\\nTherefore, the length of $DF$ is $\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"50890989_139": { -"question": "As shown in the figure, it is known that the parabola \\(y=\\frac{k}{8}(x-2)(x+4)\\) (where \\(k\\) is a constant and \\(k>0\\)) intersects the x-axis at points A and B from left to right, and intersects the y-axis at point C. Point D is on the graph of the parabola in the first quadrant, and \\(\\angle BAD=30^\\circ\\). If the x-coordinate of point D is 5, what is the equation of the parabola?", -"image_file_name": "7058769", -"image": [ -"math/50890989_992.png" -], -"solution": "\\textbf{Solution:} Let the parabola be $y=\\frac{k}{8}(x-2)(x+4)$. Setting $y=0$, we obtain $(x-2)(x+4)=0$, which solves to $x=2$ or $x=-4$. Thus, $A(-4,0)$ and $B(2,0)$. Therefore, $AO=4$. Construct $DE\\perp$ x-axis at point $E$, hence $OE=5$, $AE=AO+OE=4+5=9$. Since $\\angle BAD=30^\\circ$, it follows that $DE=AE\\cdot\\tan{30^\\circ}=9\\times \\frac{\\sqrt{3}}{3}=3\\sqrt{3}$. Hence, point $D$ is at $(5,3\\sqrt{3})$. Given that point $D$ lies on the parabola $y=\\frac{k}{8}(5-2)(5+4)=3\\sqrt{3}$, it follows that $k= \\frac{8\\sqrt{3}}{9}$. Thus, the expression for the parabola is: $y= \\frac{\\sqrt{3}}{9}(x-2)(x+4)$. In other words, $\\boxed{y= \\frac{\\sqrt{3}}{9}x^{2}+ \\frac{2\\sqrt{3}}{9}x- \\frac{8\\sqrt{3}}{9}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"50890989_140": { -"question": "As shown in the figure, it is known that the parabola $y=\\frac{k}{8}(x-2)(x+4)$ (where $k$ is a constant and $k>0$) intersects the $x$-axis at points $A$ and $B$ from left to right, respectively, and intersects the $y$-axis at point $C$. Point $D$ lies on the graph of the parabola in the first quadrant, and $\\angle BAD=30^\\circ$. Under these conditions, let $F$ be a point on segment $AD$ (excluding the endpoints), and connect $BF$. A moving point $M$ starts from point $B$, moves along segment $BF$ at a speed of 1 unit per second to point $F$, then moves along segment $FD$ at a speed of 2 units per second to point $D$ and stops. When the coordinates of point $F$ are what values, will point $M$ spend the least time in the entire movement process, and what is the minimum time spent?", -"image_file_name": "7058769", -"image": [ -"math/50890989_992.png" -], -"solution": "\\textbf{Solution:} From (1), we know $D(5,3\\sqrt{3})$. As shown in the diagram, draw $DN\\perp x$-axis at point N, then $DN=3\\sqrt{3}$, $ON=5$, $AN=4+5=9$. Draw $DK\\parallel x$-axis through point D, then $\\angle KDF=\\angle DAB=30^\\circ$. Draw $FG\\perp DK$ at point G through point F, then $FG=\\frac{1}{2}DF$. According to the problem statement, the path of the moving point M is the polyline $BF+DF$, with the movement time: $t=BF+\\frac{1}{2}DF$, $\\therefore t=BF+FG$, that is, the time value of the movement is equal to the length value of the polyline $BF+FG$. It is known from the shortest vertical segment that the minimum length of the polyline $BF+FG$ is the vertical segment between $DK$ and the $x$-axis. Draw $BH\\perp DK$ at point B through point H, then $t_{\\text{minimum}}=BH$, and the intersection of line segment $BH$ with line $AD$ is the desired point F. Suppose the equation of line $AD$ is $y=kx+b$, substituting $(-4,0)$ and $(5,3\\sqrt{3})$, we get\n\\[\n\\begin{cases}\n-4k+b=0\\\\\n5k+b=3\\sqrt{3}\n\\end{cases}\n\\]\nSolving, we find\n\\[\n\\begin{cases}\nk=\\frac{\\sqrt{3}}{3}\\\\\nb=\\frac{4\\sqrt{3}}{3}\n\\end{cases}\n\\]\n$\\therefore$ The equation of line $AD$ is: $y=\\frac{\\sqrt{3}}{3}x+\\frac{4\\sqrt{3}}{3}$, $\\because$ the $x$-coordinate of point B is 2, $\\therefore y=\\frac{2\\sqrt{3}}{3}+\\frac{4\\sqrt{3}}{3}=2\\sqrt{3}$, $\\therefore F(2,2\\sqrt{3})$. $\\therefore HF=BH-BF=3\\sqrt{3}-2\\sqrt{3}=\\sqrt{3}$, $\\therefore FD=2\\sqrt{3}$.\n\nIn summary, when the coordinates of point F are $(2,2\\sqrt{3})$, point M takes the least amount of time in the entire motion, which is $2\\sqrt{3}\\div 1+2\\sqrt{3}\\div 2=2\\sqrt{3}+\\sqrt{3}=\\boxed{3\\sqrt{3}}$ (seconds).", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52082505_81": { -"question": "As shown in the diagram, $O$ is the intersection point of the diagonals of $\\square ABCD$, $BE\\perp OC$ at point $E$, $BE$ is extended to point $F$ such that $EF=BE$, and $DF$ is connected. $\\angle F=90^\\circ$. When $\\square ABCD$ is a rectangle, $AC=6$, and $BF= 2\\sqrt{5}$, find the lengths of $DF$ and $CE$.", -"image_file_name": "7054440", -"image": [ -"math/52082505_790.png" -], -"solution": "\\textbf{Solution:} Since $ABCD$ is a rectangle, $BD=AC=6$, thus $OB=\\frac{1}{2}BD=3$. Given $EF=BE$ and $BF=2\\sqrt{5}$, it follows that $BE=\\sqrt{5}$. Since $BE\\perp OC$, $\\angle BEO=90^\\circ$. In $\\triangle BOE$, $OE=\\sqrt{BO^{2}-BE^{2}}=2$,\\\\\nthus $DF=2OE=\\boxed{4}$,\\\\\nand since $CO=\\frac{1}{2}AC=3$,\\\\\nit follows that $CE=CO-OE=3-2=\\boxed{1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52077009_83": { -"question": "As shown in the diagram, the vertices A and B of the rhombus ABCD are located on the y-axis and the positive half of the x-axis, respectively, while C and D are in the first quadrant, with $AC \\parallel x$-axis. The graph of the inverse proportion function $y=\\frac{k}{x}$ passes through vertex D. Given $A(0, 2)$ and $B(1, 0)$, find the equation of the inverse proportion function.", -"image_file_name": "7054440", -"image": [ -"math/52077009_802.png" -], -"solution": "**Solution:**\n\n(1) Draw a perpendicular line from point D to the y-axis, intersecting at point F,\n\n$\\because ABCD$ is a rhombus,\n\n$\\therefore BD\\perp AC$, $BE=DE$, $AE=EC$\n\nIt is easy to prove that quadrilaterals AOBE and AEDF are rectangles.\n\n$\\therefore AO=BE=DE=2$, $\\therefore D\\left(1, 4\\right)$, $\\therefore y=\\frac{4}{x}$\n\n(2) Draw a perpendicular line from point C to the x-axis, intersecting at point G,\n\nIt is easy to prove that quadrilaterals AEBO and ACGO are rectangles.\n\n$\\therefore AO=CG=2$, $AC=2AE=2$ $\\therefore C\\left(2, 2\\right)$, $\\therefore$C lies on the graph of the inverse proportional function $\\boxed{y=\\frac{4}{x}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52077009_84": { -"question": "As shown in the figure, the vertices A and B of rhombus ABCD are located on the positive y-axis and positive x-axis, respectively, while vertices C and D are located in the first quadrant. $AC$ is parallel to the x-axis, and the graph of the inverse proportion function $y=\\frac{k}{x}$ passes through vertex D. Given $k=18\\sqrt{3}$ and $\\angle ABD=30^\\circ$, what is the length of the sides of rhombus ABCD?", -"image_file_name": "7054440", -"image": [ -"math/52077009_802.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle ABD=30^\\circ$ and $AC\\perp BD$. Let $AE=a$, $BE=\\sqrt{3}a$, and $AB=2a$.\\\\\nThus, $D\\left(a, 2\\sqrt{3}a\\right)$. Since D lies on the inverse proportional function,\\\\\nwe have $2\\sqrt{3}a^2=18\\sqrt{3}$, thus $a=3\\left(a>0\\right)$.\\\\\nTherefore, $AB=2a=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52077012_87": { -"question": "Fold a parallelogram sheet $ABCD$ as shown in Diagram 1, so that vertices $A$ and $B$ coincide at point $M$ on segment $HF$, and vertices $C$ and $D$ coincide at point $N$ on segment $HF$, where the length of $AD$ is $6$, and the length of $AE$ is $x$. Quadrilateral $EFGH$ is a rectangle; please express the length of $HF$ with an algebraic expression involving $x$; if you can't, simply write out the length of $HF$.", -"image_file_name": "7054440", -"image": [ -"math/52077012_810.png" -], -"solution": "\\textbf{Solution:} By folding, we get: $\\angle B=\\angle FME$, $\\angle D=\\angle HNG$, $AH=MH$, $FC=FN$, $BF=FM$, $HD=HN$,\\\\\n$\\therefore HF=MH+FM=AH+BF$,\\\\\n$\\because$ Rectangle EFGH,\\\\\n$\\therefore EH=FG$, $EH\\parallel FG$,\\\\\n$\\therefore \\angle EHM=\\angle NFG$,\\\\\nFurthermore, $\\because$ parallelogram ABCD,\\\\\n$\\therefore \\angle B=\\angle D$,\\\\\n$\\therefore \\angle FME=\\angle HNG$,\\\\\n$\\therefore \\angle EMH=\\angle GNF$,\\\\\n$\\therefore \\triangle EMH \\cong \\triangle GNF$,\\\\\n$\\therefore MH=FN$,\\\\\n$\\therefore BF=MF=NH=DH$,\\\\\n$\\therefore HF=AH+DH=AD$,\\\\\n$\\because AD=6$,\\\\\n$\\therefore HF=\\boxed{6}$,\\\\\nHence, the length of $HF$ remains unchanged.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52077012_88": { -"question": "Folding the parallelogram-shaped paper ABCD as shown in Figure 1, so that the vertices A, B both fall on point M on the segment HF, and the vertices C, D both fall on point N on the segment HF, where $AD=6$, $AE=x$. If $AE=2$ and $AF$ is connected such that $AF\\perp BC$ (as shown in Figure 2), find the value of $\\frac{BF}{FC}$.", -"image_file_name": "7054440", -"image": [ -"math/52077012_810.png" -], -"solution": "\\textbf{Solution:} Solution Method (1): Given $AE=EM=BE$, \\\\\n$\\therefore AB=2AE=4$, \\\\\n$\\because AF\\perp BC$, $\\therefore EF=\\frac{1}{2}AB=2$, $HG=EF=2$, \\\\\nSimilarly, $CG=DG=2$, \\\\\n$\\therefore CH\\perp AD$, $CH\\perp BC$, $CH=AF$, \\\\\nLet $BF=\\alpha$, then $CF=6-\\alpha$, \\\\\n$\\therefore AF^{2}=AB^{2}-BF^{2}=16-\\alpha^{2}$, $CH^{2}=FH^{2}-FC^{2}=36-(6-\\alpha)^{2}$, \\\\\n$\\therefore 16-\\alpha^{2}=36-(6-\\alpha)^{2}$, \\\\\n$\\therefore \\alpha=\\frac{4}{3}$, $6-\\alpha=\\frac{14}{3}$, $\\therefore \\frac{BF}{CF}=\\boxed{\\frac{2}{7}}$; \\\\\nMethod (2): As shown in the diagram, connect EG intersecting AF at point P, \\\\\nGiven: $AE=EM=BE$, \\\\\n$\\therefore AB=2AE=4$, \\\\\n$\\because AP\\perp BC$, $\\therefore EF=\\frac{1}{2}AB=2$, $EG=FH=6$, \\\\\n$\\therefore FG=4\\sqrt{2}$, \\\\\n$\\because EG\\parallel BC$, $AF\\perp BC$, $\\therefore EG\\perp AF$, \\\\\n$\\because AE=EF$, $\\therefore AP=PF=\\frac{EF\\cdot FG}{EG}=\\frac{4\\sqrt{2}}{3}$, $AF=\\frac{8\\sqrt{2}}{3}$, \\\\\nIn $\\triangle ABF$, $AB^{2}=AF^{2}+BF^{2}$, \\\\\n$\\therefore BF=\\frac{4}{3}$, $FC=\\frac{14}{3}$, $\\therefore \\frac{BF}{FC}=\\boxed{\\frac{2}{7}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52076923_91": { -"question": "As shown in the figure, within rectangle $ABCD$, $E$ and $F$ are two points on $BC$, and $BE=CF$. Lines $AF$ and $DE$ intersect at point $O$. $\\triangle AOD$ is an isosceles triangle; if $AF\\perp DE$, $OF= \\frac{1}{3} OA=1$, calculate the perimeter of rectangle $ABCD$.", -"image_file_name": "7054440", -"image": [ -"math/52076923_820.png" -], -"solution": "Solution: Since $OF = \\frac{1}{3} OA = 1$,\\\\\nit follows that $OA = 3, AF = 4$,\\\\\nwhich means $OA = OD = 3$,\\\\\nGiven $AF \\perp DE$,\\\\\nit follows that $\\angle AOD = 90^\\circ$,\\\\\ntherefore, $\\angle OAD = \\angle ODA = 45^\\circ$,\\\\\n$AD = \\sqrt{3^2 + 3^2} = 3\\sqrt{2}$,\\\\\nIn rectangle ABCD, $\\angle BAD = \\angle ADC = 90^\\circ$,\\\\\nit follows that $\\angle BAF = \\angle CDE = 45^\\circ$,\\\\\nthus $\\angle AFB = 45^\\circ = \\angle BAF$,\\\\\nwhich leads to $AB = BF$,\\\\\nGiven $AB^2 + BF^2 = AF^2$,\\\\\nit follows that $AB = BF = 2\\sqrt{2}$,\\\\\nHence, the perimeter of rectangle ABCD is $2 \\times (2\\sqrt{2} + 3\\sqrt{2}) = \\boxed{10\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52076067_94": { -"question": "As shown in the figure, in rectangle $ABCD$, $M$ is the midpoint of side $AD$, and $P$ is a moving point on side $BC$, such that $PE\\perp MC$, $PF\\perp BM$, with the perpendicular feet being $E$ and $F$, respectively. If quadrilateral $PEMF$ is a rectangle, when does point $P$ move to a position that makes quadrilateral $PEMF$ a square? Prove your conclusion.", -"image_file_name": "7054440", -"image": [ -"math/52076067_832.png" -], -"solution": "\\textbf{Solution:} When point $P$ moves to the midpoint of side $BC$, the rectangle $PEMF$ becomes a square, at which point $BP=CP$. \\\\\n\\textit{Proof:} Since quadrilateral $PEMF$ is a rectangle, \\\\\n$\\therefore$ $\\angle PFM=\\angle PFB=\\angle PEC=90^\\circ$. \\\\\nIn $\\triangle BFP$ and $\\triangle CEP$, $\\left\\{\\begin{array}{l}\\angle FBP=\\angle ECP=45^\\circ \\\\ \\angle PFB=\\angle PEC \\\\ BP=CP \\end{array}\\right.$, \\\\\n$\\therefore$ $\\triangle BFP\\cong \\triangle CEP$ (AAS), \\\\\n$\\therefore$ $PF=PE$. \\\\\nMoreover, since quadrilateral $PEMF$ is a rectangle, \\\\\n$\\therefore$ rectangular $PEMF$ is a square, \\\\\nthat is, when point $P$ moves to the midpoint of $BC$, quadrilateral $PEMF$ is a \\boxed{square}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52065947_97": { -"question": "As shown in the figure, in quadrilateral ABCD, AC and BD intersect at point O, where O is the midpoint of AC, AB$\\parallel$DC, AC=20, and BD=10. Quadrilateral ABCD is a parallelogram; if AC$\\perp$BD, find the area of parallelogram ABCD.", -"image_file_name": "7054440", -"image": [ -"math/52065947_840.png" -], -"solution": "\\textbf{Solution:} It follows from equation (1) that quadrilateral ABCD is a parallelogram. Furthermore, since $AC \\perp BD$, the parallelogram ABCD is thereby a rhombus. Given that $AC=20$, and $BD=10$, \\\\\nthe area of quadrilateral ABCD is $=\\frac{1}{2}AC \\times BD=\\frac{1}{2} \\times 20 \\times 10=\\boxed{100}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52065370_99": { -"question": "As shown in the diagram, let $ABCD$ be a square, and let points $E$ and $F$ be on the diagonal $AC$. Given that $\\angle EBF = 45^\\circ$, when lines $BE$ and $BF$ are connected, triangles $ABE$ and $GBE$ are symmetric about line $BE$. Point $G$ is on $BD$, and line $FG$ is connected. What is the measure of $\\angle FBC$?", -"image_file_name": "7054440", -"image": [ -"math/52065370_8510.png", -"math/52065370_8511.png" -], -"solution": "\\textbf{Solution:} Let the intersection point of the diagonals be $O$.\\\\\n$\\because \\angle ABO=\\angle EBF=45^\\circ$\\\\\n$\\therefore \\angle ABE+\\angle EBO=\\angle EBO+\\angle DBF$\\\\\n$\\therefore \\angle ABE=\\angle DBF$\\\\\n$\\because \\triangle ABE$ and $\\triangle GBE$ are symmetric with respect to the line $BE$\\\\\n$\\therefore \\angle ABE=\\angle EBO$\\\\\n$\\therefore \\angle EBO=\\angle OBF=\\frac{1}{2}\\angle EBF=22.5^\\circ$\\\\\n$\\therefore \\angle FBC=45^\\circ-\\angle OBF=\\boxed{22.5^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52065370_100": { -"question": "As shown in the figure, for the square $ABCD$, with points $E$ and $F$ located on the diagonal $AC$, $\\angle EBF=45^\\circ$. The lines $BE$ and $BF$ are drawn. The triangles $ABE$ and $GBE$ are symmetrical about the line $BE$. Point $G$ is on $BD$, and the line $FG$ is drawn. As shown in the auxiliary figure, extend $BF$ to intersect $CD$ at point $H$. Draw the line $HG$. Find the value of $\\frac{CD}{CH}$.", -"image_file_name": "7054440", -"image": [ -"math/52065370_8510.png", -"math/52065370_8511.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that\\\\\n\\begin{equation}\n \\because \\triangle ABE \\text{ and } \\triangle GBE \\text{ are symmetrical about the line } BE\n\\end{equation}\n\\begin{equation}\n \\therefore AB=BG=BC\n\\end{equation}\n\\begin{equation}\n \\therefore \\left\\{\\begin{array}{l}BG=BC \\\\ \\angle DBF=\\angle FBC \\\\ BF=BF \\end{array}\\right.\n\\end{equation}\n\\begin{equation}\n \\therefore \\triangle GBF \\cong \\triangle CBF(SAS)\n\\end{equation}\n\\begin{equation}\n \\therefore GF=FC, \\angle BGF=\\angle BCF=45^\\circ\n\\end{equation}\n\\begin{equation}\n \\because \\left\\{\\begin{array}{l}BG=BC \\\\ \\angle DBF=\\angle FBC \\\\ BH=BH \\end{array}\\right.\n\\end{equation}\n\\begin{equation}\n \\therefore \\triangle HGB \\cong \\triangle HCB(SAS)\n\\end{equation}\n\\begin{equation}\n \\therefore \\angle BGH=\\angle BCH=90^\\circ\n\\end{equation}\n\\begin{equation}\n \\because \\text{Square } ABCD\n\\end{equation}\n\\begin{equation}\n \\therefore AC \\perp BD\n\\end{equation}\n\\begin{equation}\n \\therefore \\angle BOC=90^\\circ\n\\end{equation}\n\\begin{equation}\n \\therefore \\angle BOC=\\angle BGH=90^\\circ\n\\end{equation}\n\\begin{equation}\n \\therefore OF \\parallel GH\n\\end{equation}\n\\begin{equation}\n \\therefore OC \\parallel GH\n\\end{equation}\n\\begin{equation}\n \\therefore CF \\parallel GH\n\\end{equation}\n\\begin{equation}\n \\because \\angle BGF=45^\\circ, \\angle BOC=90^\\circ\n\\end{equation}\n\\begin{equation}\n \\therefore \\angle OFG=45^\\circ\n\\end{equation}\n\\begin{equation}\n \\therefore \\angle OFG=\\angle ACD=45^\\circ\n\\end{equation}\n\\begin{equation}\n \\therefore GF \\parallel CD\n\\end{equation}\n\\begin{equation}\n \\therefore GF \\parallel CH\n\\end{equation}\n\\begin{equation}\n \\because CF \\parallel GH\n\\end{equation}\n\\begin{equation}\n \\therefore \\text{Quadrilateral } GHCF \\text{ is a parallelogram}\n\\end{equation}\n\\begin{equation}\n \\because GF=FC\n\\end{equation}\n\\begin{equation}\n \\therefore \\text{Quadrilateral } GHCF \\text{ is a rhombus;}\n\\end{equation}\n(2) Given that $\\angle BGH=90^\\circ$\n\\begin{equation}\n \\therefore \\angle HGD=90^\\circ\n\\end{equation}\n\\begin{equation}\n \\because \\angle BDC=45^\\circ\n\\end{equation}\n\\begin{equation}\n \\therefore \\angle GHD=45^\\circ\n\\end{equation}\n\\begin{equation}\n \\therefore \\triangle DGH \\text{ is an isosceles right triangle}\n\\end{equation}\n\\begin{equation}\n \\therefore DG=GH\n\\end{equation}\n\\begin{equation}\n \\therefore DH=\\sqrt{2}GH\n\\end{equation}\n\\begin{equation}\n \\because \\text{Quadrilateral } GHCF \\text{ is a rhombus}\n\\end{equation}\n\\begin{equation}\n \\therefore GH=CH\n\\end{equation}\n\\begin{equation}\n \\therefore CD=CH+DH=GH+DH=GH+\\sqrt{2}GH=\\left(1+\\sqrt{2}\\right)GH\n\\end{equation}\n\\begin{equation}\n \\therefore \\frac{CD}{CH}=\\frac{\\left(1+\\sqrt{2}\\right)CH}{CH}=1+\\sqrt{2}\n\\end{equation}\nThus, $\\frac{CD}{CH}=\\boxed{1+\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"52050232_102": { -"question": "Quadrilateral $ABCD$ is a rectangle, and quadrilateral $AEFG$ is a square, with $AD > AE$, point $E$ is on the left side of segment $AD$. Connect $DE$ and $BG$. As shown in Figure 1, if point $F$ is on side $AD$ and $AD=3$, $AE= \\sqrt{2}$, find the length of $DE$.", -"image_file_name": "7054440", -"image": [ -"math/52050232_860.png" -], -"solution": "\\textbf{Solution:} Let the intersection of EG and AF be point H, as shown in the figure,\\\\\n$\\because$ Quadrilateral AEFG is a square\\\\\n$\\therefore EG\\perp AF$, $EH=HG$, $FH=AF$, $AF=EG$\\\\\n$\\therefore FH=EH=HG=AH=\\frac{1}{2}EG=\\frac{1}{2}FA$\\\\\nIn $\\triangle AEF$,\\\\\n$AF^{2}=EF^{2}+AE^{2}$\\\\\n$\\therefore AF=\\sqrt{2^{2}+2^{2}}=2$\\\\\n$\\therefore EH=AH=1$\\\\\nIn $\\triangle DHE$,\\\\\n$DE^{2}=EH^{2}+DH^{2}$\\\\\nThat is, $DE^{2}=EH^{2}+(AD-AH)^{2}$\\\\\n$\\therefore DE=\\sqrt{1^{2}+(3-1)^{2}}=\\sqrt{5}=\\boxed{\\sqrt{5}}$", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52049799_105": { -"question": "As shown in the figure, the vertex of the parabola is $P(1, 4)$, it intersects with the $y$-axis at point $C(0, 3)$, and intersects with the $x$-axis at points $A$ and $B$. Find the equation of the parabola.", -"image_file_name": "7054440", -"image": [ -"math/52049799_870.png" -], -"solution": "\\textbf{Solution:} Let $y=-a(x-1)^2+4$, where $a\\neq 0$.\n\nSubstituting point $C(0, 3)$, we get: $-a+4=3$, which means $a=-1$.\n\n$\\therefore$ The equation of the parabola is $\\boxed{y=-(x-1)^2+4=-x^2+2x+3}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52049799_106": { -"question": "Given that the vertex of the parabola is $P(1, 4)$, it intersects the y-axis at point $C(0, 3)$, and it intersects the x-axis at points $A$ and $B$. If the parabola has only one intersection point with the line $y = x + m$, what is the value of $m$?", -"image_file_name": "7054440", -"image": [ -"math/52049799_870.png" -], -"solution": "\\textbf{Solution:} Since the parabola and the line $y=x+m$ intersect at only one point,\\\\\nit follows that $-{x}^{2}+2x+3=x+m$, which simplifies to ${x}^{2}-x+(m-3)=0$,\\\\\nhence, $\\Delta=1-4(m-3)=0$,\\\\\nsolving for $m$, we get $m=\\boxed{\\frac{13}{4}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52049799_107": { -"question": "As shown in the figure, the vertex of the parabola is $P(1, 4)$, it intersects the y-axis at point $C(0, 3)$, and intersects the x-axis at points $A$ and $B$. Let $Q$ be a point on the parabola other than point $P$, and the area of $\\triangle BCQ$ is equal to the area of $\\triangle BCP$, find the coordinates of point $Q$.", -"image_file_name": "7054440", -"image": [ -"math/52049799_870.png" -], -"solution": "\\textbf{Solution:} Given the parabola's equation $y=-x^2+2x+3$, by setting $y=0$, we find $x_1=-1, x_2=3$,\\\\\n$\\therefore$ points $A(-1, 0), B(3, 0)$,\\\\\nLet the equation of line BC be $y=kx+b$, then:\\\\\n$\\begin{cases}\n3k+b=0\\\\\nb=3\n\\end{cases}$, solving gives: $\\begin{cases}\nk=-1\\\\\nb=3\n\\end{cases}$,\\\\\n$\\therefore$ the equation of line BC is $y=-x+3$,\\\\\nDraw $PQ_1 \\parallel BC$ through $P$, intersecting the parabola at point $Q_1$,\\\\\nLet the equation of line $PQ_1$ be $y=-x+n$,\\\\\n$\\because P(1, 4)$,\\\\\n$\\therefore$ equation of line $PQ_1$ is $y=-x+5$,\\\\\nBy solving: $\\begin{cases}\ny=-x+5\\\\\ny=-x^2+2x+3\n\\end{cases}$,\\\\\nWe get: $\\begin{cases}\nx=1\\\\\ny=4\n\\end{cases}$ or $\\begin{cases}\nx=2\\\\\ny=3\n\\end{cases}$, that is, $(1, 4)$ coincides with $P$, $Q_1(2, 3)$;\\\\\nThrough point $P$, draw a perpendicular to the $x$-axis intersecting BC at $G$, take $PG=GH$ on line $PG$,\\\\\n$\\because$ the equation of line BC is $y=-x+3$, $P(1, 4)$,\\\\\n$\\therefore G(1, 2)$,\\\\\n$\\therefore PG=GH=2$,\\\\\n$\\therefore H(1, 0)$,\\\\\nDraw line $Q_2Q_3 \\parallel BC$ through $H$, intersecting the parabola at points $Q_2, Q_3$,\\\\\nSimilarly, we find the equation of line $Q_2Q_3$ to be $y=-x+1$,\\\\\nBy solving: $\\begin{cases}\ny=-x+1\\\\\ny=-x^2+2x+3\n\\end{cases}$,\\\\\nWe get: $\\begin{cases}\nx=\\frac{3+\\sqrt{17}}{2}\\\\\ny=\\frac{-1-\\sqrt{17}}{2}\n\\end{cases}$ or $\\begin{cases}\nx=\\frac{3-\\sqrt{17}}{2}\\\\\ny=\\frac{-1+\\sqrt{17}}{2}\n\\end{cases}$,\\\\\n$\\therefore Q_2\\left(\\frac{3-\\sqrt{17}}{2}, \\frac{-1+\\sqrt{17}}{2}\\right)$, $Q_3\\left(\\frac{3+\\sqrt{17}}{2}, \\frac{-1-\\sqrt{17}}{2}\\right)$;\\\\\nTherefore, the coordinates of point $Q$ are $\\boxed{Q_2\\left(\\frac{3-\\sqrt{17}}{2}, \\frac{-1+\\sqrt{17}}{2}\\right)}$ or $\\boxed{Q_3\\left(\\frac{3+\\sqrt{17}}{2}, \\frac{-1-\\sqrt{17}}{2}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"52049906_111": { -"question": "As shown in the figure, in rhombus $ABCD$, the diagonals intersect at point $O$, with $DE \\parallel AC$ and $CE \\parallel BD$. Quadrilateral $OCED$ is a rectangle; if $AD = 5$ and $BD = 8$, calculate the value of $DE$.", -"image_file_name": "7054440", -"image": [ -"math/52049906_882.png" -], -"solution": "Solution: Since quadrilateral ABCD is a rhombus, and $BD=8$, \\\\\ntherefore, $OD=\\frac{1}{2}BD=4$, $OC=OA$, and $AD=CD$, \\\\\nsince $AD=5$, \\\\\nthus, $OC=AO=\\sqrt{AD^{2}-OD^{2}}=3$, \\\\\nsince quadrilateral OCED is a rectangle, \\\\\ntherefore, $DE=OC=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52050144_113": { -"question": "Let $A$ and $B$ be two fixed points on the side $OP$ of $\\angle POQ$, and let $E$ be a moving point on the side $OQ$. Construct squares $ABCD$ and $AEFG$ on the same side above $OP$, with $AB$ and $AE$ as their respective sides. As shown in the figure, $\\angle POQ=45^\\circ$, $OB=6$, and $OA=2$. Connect $BG$ and $DE$. When point $E$ moves along side $OQ$, the length of segment $BG$ has a minimum value. Determine this minimum value.", -"image_file_name": "7054440", -"image": [ -"math/52050144_8911.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, let $OQ$ intersect $AD$ at point $M$, and $CD$ at point $N$. Draw $DE' \\perp OQ$ at point $E'$,\\\\\n$\\because \\angle OAD=90^\\circ$, $\\angle QOA=45^\\circ$,\\\\\n$\\therefore \\angle QOA=\\angle AMO=45^\\circ$,\\\\\n$\\therefore OA=AM=2$,\\\\\n$\\because OB=6$,\\\\\n$\\therefore AD=AB=OB-OA=4$,\\\\\n$\\therefore DM=AD-AM=2$,\\\\\n$\\because \\angle DMN=\\angle AMO=45^\\circ$,\\\\\n$\\therefore DE'=DM\\sin\\angle DMN=2 \\times \\frac{\\sqrt{2}}{2}=\\sqrt{2}$,\\\\\n$\\therefore$ when point $E$ coincides with $E'$, the value of $DE$ is at its minimum,\\\\\n$\\because BG=DE$,\\\\\n$\\therefore$ the minimum value of $BG$ is $\\boxed{\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51968626_117": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=AC$, AD is the altitude, $AE\\parallel BC$, $BC=2AE$. The quadrilateral ADCE is a rectangle, point F is the midpoint of AB, connect DF, EF, if $\\angle DFE=90^\\circ$, $AB=4$, find the length of EF.", -"image_file_name": "7054440", -"image": [ -"math/51968626_904.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect DE.\\\\\nSince quadrilateral ADCE is a rectangle,\\\\\nit follows that $DE=AC=AB=4$.\\\\\nSince point F is the midpoint of AB, and $\\triangle ABD$ is a right-angled triangle,\\\\\nit follows that $DF=\\frac{1}{2}AB=2$.\\\\\nIn $\\triangle DEF$, by the Pythagorean theorem, we have $EF=\\sqrt{DE^{2}-DF^{2}}=2\\sqrt{3}$.\\\\\nTherefore, the length of EF is $\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51968684_120": { -"question": "As shown in the figure, O is the intersection point of the diagonals of rectangle ABCD, DE $\\parallel$ AC, and CE $\\parallel$ BD. Quadrilateral OCED is a rhombus. If AB = 6 and BC = 8, find the perimeter of the quadrilateral OCED.", -"image_file_name": "7054440", -"image": [ -"math/51968684_910.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\nit follows that $\\angle ABC=90^\\circ$,\\\\\nSince AB=6, and BC=8,\\\\\nthen in $\\triangle ABC$, by the Pythagorean theorem, we have: AC=10,\\\\\nwhich means OC$=\\frac{1}{2}$AC=5,\\\\\nSince quadrilateral OCED is a rhombus,\\\\\nit follows that OC=OD=DE=CE=5,\\\\\ntherefore, the perimeter of quadrilateral OCED is $5+5+5+5=\\boxed{20}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51968629_124": { -"question": "As shown in the figure, within square $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, with $E$ and $F$ located on $OB$ and $OC$ respectively. The extension of line $AE$ intersects $BF$ at point $M$, and $OE=OF$. $\\triangle AOE \\cong \\triangle BOF$; $AM \\perp BF$; Given $AE=\\sqrt{5}$ and $OE=1$, calculate the length of $EM$.", -"image_file_name": "7054440", -"image": [ -"math/51968629_920.jpeg" -], -"solution": "Solution: Since $AE=\\sqrt{5}$ and $OE=1$, $\\angle AOE=90^\\circ$, \\\\\nit follows that $OA=\\sqrt{AE^2-OE^2}=2$, \\\\\nSince $\\triangle AOE \\cong \\triangle BOF$, \\\\\nit follows that $S_{\\triangle AOE}=S_{\\triangle BOF}=S_{\\triangle EOF}+S_{\\triangle BEF}$, with $BF=AE=\\sqrt{5}$, \\\\\nTherefore, $\\frac{1}{2}OE \\cdot AO=\\frac{1}{2}OE \\cdot OF+\\frac{1}{2}BF \\cdot EM$, \\\\\nThus, $\\frac{1}{2} \\times 1 \\times 2=\\frac{1}{2} \\times 1 \\times 1+\\frac{\\sqrt{5}}{2}EM$, \\\\\nHence, $EM=\\boxed{\\frac{2}{\\sqrt{5}}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51942351_127": { -"question": "As shown in the figure, it is known that in the rhombus $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. Point $E$ is on the extension of side $AB$, and $AB=BE$. Connect $CE$. Given that $BD \\parallel EC$, if $AD=5$ and $CE=6$, what is the area of the rhombus $ABCD$?", -"image_file_name": "7054440", -"image": [ -"math/51942351_930.jpg" -], -"solution": "\\textbf{Solution:} Given that rhombus $ABCD$ with $AD=5$, hence $AB=5$. The diagonals $AC$ and $BD$ are perpendicular and bisect each other, hence $\\angle AOB=90^\\circ$, and $AO=OC$. Also, since $AB=BE$ and $CE=6$, we have $BO= \\frac{1}{2}CE=3$ and $BD=2BO=6$. Thus, $AO= \\sqrt{5^2-3^2}=4$ and $AC=2AO=8$. Therefore, the area of rhombus $ABCD$ is $S_{\\text{rhombus }ABCD}=\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}\\times 8\\times 6=\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51920372_130": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AB\\parallel CD$, $AD\\perp CD$, $\\angle B=45^\\circ$. Extend $CD$ to point $E$ such that $DE=DA$, and connect $AE$. Quadrilateral $ABCE$ is a parallelogram. If $AB=6$, $CD=2$, find the area of quadrilateral $ABCE$.", -"image_file_name": "7054440", -"image": [ -"math/51920372_948.png" -], -"solution": "\\textbf{Solution:} Given from (1) $AB=CE$,\\\\\nsince $CD=2$, $AB=6$,\\\\\nthus $DE=4$,\\\\\nsince $AD=DE$,\\\\\nthus $AD=4$,\\\\\ntherefore, the area of quadrilateral $ABCE=AB\\times AD=6\\times 4=\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51920381_133": { -"question": "As shown in Figure 1, there is a rectangular piece of paper $ABCD$, where $AD=8\\text{cm}$ and $AB=6\\text{cm}$. First, fold along the diagonal $BD$, and point $C$ falls onto the position of point $C'$, with $BC'$ intersecting $AD$ at point $G$. $BG=DG$; what is the length of $C'G$ in centimeters?", -"image_file_name": "7054440", -"image": [ -"math/51920381_959.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle GAB \\cong \\triangle GC'D$,\\\\\n$\\therefore AG=C'G$,\\\\\nLet $C'G=x$, then $GD=BG=8-x$,\\\\\n$\\therefore x^2+6^2=(8-x)^2$,\\\\\nSolving this gives: $x=\\frac{7}{4}$,\\\\\n$\\therefore C'G=\\boxed{\\frac{7}{4}\\text{cm}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51920381_134": { -"question": "As shown in Figure 1, there is a rectangular piece of paper $ABCD$, where $AD=8\\text{cm}$ and $AB=6\\text{cm}$. First, fold along the diagonal $BD$, so that point $C$ falls on the position of point $C'$, and $BC'$ intersects $AD$ at point $G$. It is given that $BG=DG$; as shown in Figure 2, fold it again such that point $D$ coincides with point $A$. The crease $EN$ intersects $AD$ at $M$. Find the length of $EM$ in cm.", -"image_file_name": "7054440", -"image": [ -"math/51920381_959.png" -], -"solution": "\\textbf{Solution:} Since point $D$ coincides with point $A$, we get the crease $EN$,\\\\\n$\\therefore DM=4\\,\\text{cm}$,\\\\\n$\\because AD=8\\,\\text{cm}$, $AB=6\\,\\text{cm}$,\\\\\n$\\therefore$ in $\\triangle ABD$, $BD=10\\,\\text{cm}$,\\\\\n$\\because EN\\perp AD$, $AB\\perp AD$,\\\\\n$\\therefore EN\\parallel AB$,\\\\\n$\\therefore MN$ is the midline of $\\triangle ABD$,\\\\\n$\\therefore DN=\\frac{1}{2}BD=5\\,\\text{cm}$,\\\\\nIn $\\triangle MND$, $MN=\\sqrt{5^2-4^2}=3\\,\\text{cm}$,\\\\\nBy the properties of folding, it is known that $\\angle NDE=\\angle NDC$,\\\\\n$\\because EN\\parallel CD$,\\\\\n$\\therefore \\angle END=\\angle NDC$,\\\\\n$\\therefore \\angle END=\\angle NDE$,\\\\\n$\\therefore EN=ED$,\\\\\nLet $EM=x$, then $ED=EN=x+3$,\\\\\nBy the Pythagorean theorem, $ED^2=EM^2+DM^2$, that is, $(x+3)^2=x^2+4^2$,\\\\\nSolving for $x$, we get $x=\\frac{7}{6}$, thus $EM=\\boxed{\\frac{7}{6}\\,\\text{cm}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51770657_137": { -"question": "As shown in the figure, in an equilateral triangle $\\triangle ABC$, points $D$ and $E$ are the midpoints of sides $AB$ and $AC$ respectively. Extend $BC$ to point $F$ such that $CF = \\frac{1}{2}BC$, and connect $DE$, $CD$, and $EF$. Quadrilateral $DCFE$ is a parallelogram. If $AB=6$, what is the perimeter of parallelogram $DCFE$?", -"image_file_name": "7054440", -"image": [ -"math/51770657_961.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABC$ is an equilateral triangle and $AB=6$, with $D$ being the midpoint of $AB$, it follows that $BC=6$ and $CD\\perp AB$ with $BD=\\frac{1}{2}AB=3$. Therefore, $DC=\\sqrt{BC^2-BD^2}=\\sqrt{6^2-3^2}=3\\sqrt{3}$. From statement (1), we know that $DE$ is the median of $\\triangle ABC$, and quadrilateral $DCFE$ is a parallelogram, thus $DE=CF=\\frac{1}{2}BC=3$ and $EF=DC=3\\sqrt{3}$. Therefore, the perimeter of the parallelogram $DCFE$ is $2(DE+DC)=2(3+3\\sqrt{3})=\\boxed{6+6\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51770540_139": { -"question": "As shown in the figure, extend the side BC of the rectangle ABCD to point E, such that CE = BD, and connect AE. If $\\angle ADB = 40^\\circ$, what is the degree measure of $\\angle E$?", -"image_file_name": "7054440", -"image": [ -"math/51770540_970.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect AC and let the intersection of AC and BD be O,\\\\\n$\\because$ Quadrilateral ABCD is a rectangle,\\\\\n$\\therefore$ AC=BD, AD$\\parallel$BC, OA=OB=OC=OD,\\\\\nAlso, $\\because$ CE=BD,\\\\\n$\\therefore$ AC=CE,\\\\\n$\\therefore$ $\\angle$CAE=$\\angle$E,\\\\\n$\\because$ AD$\\parallel$BC,\\\\\n$\\therefore$ $\\angle$ADB=$\\angle$CBD=40$^\\circ$,\\\\\n$\\because$ OB=OC,\\\\\n$\\therefore$ $\\angle$ACB=$\\angle$CBD=40$^\\circ$,\\\\\n$\\therefore$ $\\angle$ACB=$\\angle$CAE+$\\angle$E=2$\\angle$E=40$^\\circ$,\\\\\n$\\therefore$ $\\angle$E=\\boxed{20^\\circ}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51770540_140": { -"question": "As shown in the figure, extend the side $BC$ of the rectangle $ABCD$ to the point $E$ such that $CE = BD$, and connect $AE$. If $AB = 3$ and $CE = 5$, what is the length of $AE$?", -"image_file_name": "7054440", -"image": [ -"math/51770540_970.png" -], -"solution": "\\textbf{Solution}: From (1), we know $AC=CE=5$, \\\\\n$\\therefore BC= \\sqrt{AC^{2}-AB^{2}} = \\sqrt{5^{2}-3^{2}}=4$, \\\\\n$\\therefore BE=BC+CE=4+5=9$, \\\\\n$\\because \\angle ABE=90^\\circ$, \\\\\n$\\therefore AE=\\sqrt{AB^{2}+BE^{2}}=\\sqrt{3^{2}+9^{2}}=\\boxed{3\\sqrt{10}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51897754_143": { -"question": "As shown in the diagram, in parallelogram $ABCD$, $AC \\perp AD$. Let $\\angle ECA = \\angle ACD$, with $CE$ intersecting $AB$ at point $O$ and the extension of $DA$ at point $E$, and connect $BE$. Quadrilateral $ACBE$ is a rectangle; connect $OD$. If $AB=4$ and $\\angle ACD=60^\\circ$, what is the length of $OD$?", -"image_file_name": "7054440", -"image": [ -"math/51897754_983.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, draw OF$\\perp$DE at F through point O,\\\\\nfrom (1) it is known that quadrilateral ACBE is a rectangle,\\\\\n$\\therefore$ the diagonals AB and CE are equal and bisect each other, AO=$ \\frac{1}{2}AB=2$,\\\\\n$\\therefore$OA=OC,\\\\\n$\\because$$\\angle$ACD=$\\angle$ACO=60^\\circ,\\\\\n$\\therefore$$\\triangle$AOC is an equilateral triangle,\\\\\n$\\therefore$$\\angle$OAC=60^\\circ,\\\\\n$\\because$$\\angle$EAC=90^\\circ,\\\\\n$\\therefore$$\\angle$FAO=90^\\circ−60^\\circ=30^\\circ,\\\\\nIn right $\\triangle$AFO,\\\\\nOF=$ \\frac{1}{2}AO=1$, $ AF=\\sqrt{3}$,\\\\\nIn right $\\triangle$AEB, $ BE=\\frac{1}{2}AB=2$,\\\\\nAD=AE=$ \\sqrt{{4}^{2}−{2}^{2}}=2\\sqrt{3}$,\\\\\n$\\therefore$DF=AF+AD=$ \\sqrt{3}+2\\sqrt{3}=3\\sqrt{3}$,\\\\\n$\\therefore$OD=$ \\sqrt{DF^{2}+OF^{2}}=\\boxed{2\\sqrt{7}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52422319_28": { -"question": "As shown in the figure, the graph of the function $y=kx+b$ (where $k$ and $b$ are constants) is illustrated. What is the value of $k$?", -"image_file_name": "7051872", -"image": [ -"math/52422319_271.png" -], -"solution": "\\textbf{Solution:} From the given problem, we see that the slope $k$ of the function $y=kx+b$ is $-\\frac{1}{2}$,\n\n$\\therefore k=\\boxed{-\\frac{1}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52422319_29": { -"question": "As shown in the figure, the graph of the function $y=kx+b$ (where $k$ and $b$ are constants) is depicted. What is the range of $y$ when $0\\frac{2}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52422271_65": { -"question": "As shown in the figure, the line $y_{1}=2x-2$ intersects the $y$ axis at point $A$, and the line $y_{2}=-2x+6$ intersects the $y$ axis at point $B$. The two lines intersect at point $C$. Solve the system of equations $\\left\\{\\begin{array}{l}2x-y=2 \\\\ 2x+y=6 \\end{array}\\right.$.", -"image_file_name": "7051872", -"image": [ -"math/52422271_547.png" -], -"solution": "\\textbf{Solution:} The solution to the system of equations $\\left\\{\\begin{array}{l}2x-y=2 \\\\ 2x+y=6 \\end{array}\\right.$ is: $\\left\\{\\begin{array}{l}x=\\boxed{2} \\\\ \\boxed{y=2} \\end{array}\\right.$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52422271_66": { -"question": "As shown in the figure, the line $y_{1}=2x-2$ intersects the y-axis at point $A$, and the line $y_{2}=-2x+6$ intersects the y-axis at point $B$. The two lines intersect at point $C$. What is the range of values for $x$ when both $2x-2>0$ and $-2x+6>0$ are true?", -"image_file_name": "7051872", -"image": [ -"math/52422271_547.png" -], -"solution": "\\textbf{Solution:} When both $y_1>0$ and $y_2>0$ hold, \\\\\n$\\therefore$ the range of values for $x$ is: $x\\in\\boxed{(1,3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52422271_67": { -"question": "As shown in the figure, the line $y_{1} = 2x - 2$ intersects the y-axis at point $A$, and the line $y_{2} = -2x + 6$ intersects the y-axis at point $B$, with the two lines intersecting at point $C$. Find the area of $\\triangle ABC$.", -"image_file_name": "7051872", -"image": [ -"math/52422271_547.png" -], -"solution": "Solution: Since let $x=0$, then ${y}_{1}=-2$, ${y}_{2}=6$\\\\\nTherefore, $A(0, 2)$, $B(0, 6)$.\\\\\nTherefore, $AB=8$\\\\\nTherefore, the area of $\\triangle ABC$ is $\\frac{1}{2}\\times 8\\times 2=\\boxed{8}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52423206_69": { -"question": "As shown in the figure, the graph of the line $y_{1}=2x-2$ intersects the y-axis at point A, and the graph of the line $y_{2}=-2x+6$ intersects the y-axis at point B. The two lines intersect at point C. What is the solution to the system of equations $\\begin{cases}2x-y=2, \\\\ 2x+y=6?\\end{cases}$", -"image_file_name": "7051872", -"image": [ -"math/52423206_550.png" -], -"solution": "\\textbf{Solution:} Given the system of equations $\\begin{cases}2x-y=2, \\\\ 2x+y=6\\end{cases}$, we find the solution $x=2$, $y=2$.\n\n$\\therefore$ The solution to the system is $x=\\boxed{2}$, $\\boxed{y=2}$.", -"solution_image": [ -"solution_images/52423206_550.png" -], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52423206_70": { -"question": "As shown in the figure, the graph of the line $y_{1}=2x-2$ intersects the y-axis at point A, and the graph of the line $y_{2}=-2x+6$ intersects the y-axis at point B. The two lines intersect at point C. What is the range of $x$ when both $y_{1}>0$ and $y_{2}>0$ are satisfied?", -"image_file_name": "7051872", -"image": [ -"math/52423206_550.png" -], -"solution": "\\textbf{Solution:} When both $y_{1}>0$ and $y_{2}>0$ hold, the range of $x$ is $x=\\boxed{10$ indicates an upward shift, and $b<0$ indicates a downward shift). When the translated line passes through point A (4,0), we have $0=12+3+b$, hence $b=\\boxed{-15}$. When the translated line passes through point C (-5,3), we have $3=-15+3+b$, thus $b=\\boxed{15}$. Therefore, the line always intersects with the rhombus, so the range of $b$ is $\\boxed{-15\\leq b\\leq 15}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52422771_83": { -"question": "As shown in the figure, point P $(x, y)$ is a moving point in the first quadrant, and it lies on the line $y=-2x+8$. The line intersects the x-axis at point A. What is the area of $\\triangle APO$ when the x-coordinate of point P is 3?", -"image_file_name": "7051872", -"image": [ -"math/52422771_580.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, then $-2x+8=0$, solving this we find $x=4$,\\\\\n$\\therefore OA=4$.\\\\\n$\\because$ Point P$(x,y)$ is a moving point in the first quadrant, and lies on the line $y=-2x+8$,\\\\\n$\\therefore$ when $x=3$, $y=-2\\times 3+8=2$.\\\\\n$\\therefore S_{\\triangle APO}=\\frac{1}{2}\\times 4\\times 2=\\boxed{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52422771_84": { -"question": "As shown in the figure, point \\(P(x, y)\\) is a moving point in the first quadrant and is on the line \\(y = -2x + 8\\), where the line intersects the x-axis at point \\(A\\). Let the area of \\(\\triangle APO\\) be \\(S\\), express \\(S\\) with an algebraic formula involving \\(x\\), and write down the range of values for \\(x\\).", -"image_file_name": "7051872", -"image": [ -"math/52422771_580.png" -], -"solution": "\\textbf{Solution:} Given that point P lies on the line $y=-2x+8$,\\\\\nthus P$(x, -2x+8)$.\\\\\nTherefore, $S_{\\triangle APO}=OA \\times (-2x+8) = 4 \\times (-2x+8) = -4x+32$,\\\\\nwhere the range of $x$ is $0kx+5$ with respect to $x$.", -"image_file_name": "7051872", -"image": [ -"math/52416375_600.png" -], -"solution": "Observe the graph of the function, we know that for $x>3$, the line $y=2x-4$ is above the line $y=kx+5$, \\\\\n$\\therefore$ the solution set of the inequality $2x-4>kx+5$ is $\\boxed{x>3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52416375_91": { -"question": "As shown in the figure, it is known that the line $y=kx+5$ intersects the $x$-axis at point $A$ and the $y$-axis at point $B$, and the coordinates of point $A$ are $(5,0)$. The line $y=2x-4$ intersects the $x$-axis at point $D$ and intersects the line $AB$ at point $C$. What is the area of $\\triangle ADC$?", -"image_file_name": "7051872", -"image": [ -"math/52416375_600.png" -], -"solution": "\\textbf{Solution:} Substituting $y=0$ into $y=2x-4$, we get $2x-4=0$. Solving this yields $x=2$. Thus, the coordinates of point D are $(2,0)$. Since A$(5,0)$, it follows that $AD=3$. Given the coordinates of point C as $C(3,2)$, it follows that the area of $\\triangle ADC$ is $\\frac{1}{2} \\cdot 3 \\cdot 2 = \\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52395164_93": { -"question": "As shown in the figure, the analytical expression of the line $l_1$ is: $y = -3x + 3$, and the line $l_1$ intersects the x-axis at point D. The line $l_2$ passes through points A$(4,0)$ and B$\\left(3, -\\frac{3}{2}\\right)$. The lines $l_1$ and $l_2$ intersect at point C. What are the coordinates of point D?", -"image_file_name": "7051872", -"image": [ -"math/52395164_617.png" -], -"solution": "\\textbf{Solution}: Since point D is on the x-axis, the equation of line $l_{1}$ is $y=-3x+3$. \\\\\nTherefore, setting $y=0$ yields $-3x+3=0$, solving for $x$ gives us $x=1$, \\\\\nTherefore, the coordinates of point D are $\\boxed{(1, 0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52395164_94": { -"question": "As shown in the figure, the analytical expression of line $l_1$ is $y=-3x+3$, and line $l_1$ intersects the x-axis at point D. Line $l_2$ passes through points A$(4,0)$ and $B\\left(3, -\\frac{3}{2}\\right)$. Lines $l_1$ and $l_2$ intersect at point C. What is the analytical expression of line $l_2$?", -"image_file_name": "7051872", -"image": [ -"math/52395164_617.png" -], -"solution": "\\textbf{Solution:}\nLet the analytical expression of line $l_2$ be: $y=kx+b (k\\ne 0)$. Since line $l_2$ passes through points $A(4, 0)$ and $B\\left(3, -\\frac{3}{2}\\right)$, substituting into the expression, we get:\n\\[\n\\begin{cases}\n4k+b=0\\\\ \n3k+b=-\\frac{3}{2}\n\\end{cases}\n\\]\nSolving this system of equations yields:\n\\[\n\\begin{cases}\nk=\\frac{3}{2}\\\\ \nb=-6\n\\end{cases}\n\\]\nTherefore, the analytical expression of line $l_2$ is: $\\boxed{y=\\frac{3}{2}x-6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52395164_95": { -"question": "As shown in the figure, the analytic expression of line $ l_{1}$ is: $ y=-3x+3$, and line $ l_{1}$ intersects the x-axis at point D, line $ l_{2}$ passes through point A$(4,0)$ and point $B\\left(3, -\\frac{3}{2}\\right)$, lines $ l_{1}$ and $ l_{2}$ intersect at point C. What is the area of $\\triangle ADC$?", -"image_file_name": "7051872", -"image": [ -"math/52395164_617.png" -], -"solution": "Solution: By solving the system of equations of lines $l_1$ and $l_2$\n\\[\n\\begin{cases}\ny=-3x+3\\\\\ny=\\frac{3}{2}x-6\n\\end{cases}\n\\]\nwe obtain\n\\[\n\\begin{cases}\nx=2\\\\\ny=-3\n\\end{cases}\n\\]\n$\\therefore C(2, -3)$, $\\because$ in $\\triangle ADC$, $AD=3$, and the height from $AD$ is $|-3|=3$, $\\therefore$ the area of $\\triangle ADC$ is $\\frac{1}{2} \\times 3 \\times 3 = \\boxed{\\frac{9}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52395164_96": { -"question": "As shown in the figure, the analytical expression of the line $l_1$ is: $y=-3x+3$, and the line $l_1$ intersects with the x-axis at point D. Line $l_2$ passes through points A$(4,0)$ and B$\\left(3, -\\frac{3}{2}\\right)$. Line $l_1$ and line $l_2$ intersect at point C. On line $l_2$, there exists another point P different from point C, such that the area of $\\triangle ADP$ is equal to the area of $\\triangle ADC$. Please directly write out the coordinates of point P.", -"image_file_name": "7051872", -"image": [ -"math/52395164_617.png" -], -"solution": "\\textbf{Solution:} The coordinates of point P are $\\boxed{(6,3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52395385_98": { -"question": "As shown in Figure 1, in the Cartesian coordinate system, point O is the origin, and the quadrilateral $ABCO$ is a rhombus. The coordinates of point A are $(-5, 12)$, and point C is on the positive half-axis of the x-axis. The line AC intersects the y-axis at point M, and the side AB intersects the y-axis at point H. What is the side length of the rhombus $ABCO$?", -"image_file_name": "7051872", -"image": [ -"math/52395385_622.png" -], -"solution": "Solution: Since the coordinates of point A are $(-5, 12)$, \\\\\nthus $AH = 5$, and $OH = 12$, \\\\\nBy the Pythagorean theorem, we have: $OA = \\sqrt{AH^{2}+OH^{2}} = \\sqrt{5^{2}+12^{2}} = \\boxed{13}$, \\\\\nTherefore, the side length of the rhombus $ABCO$ is \\boxed{13}.\n", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52395385_99": { -"question": "As shown in Figure 1, in the Cartesian coordinate system, point $O$ is the origin, and quadrilateral $ABCO$ is a rhombus. The coordinates of point $A$ are $(-5, 12)$, and point $C$ is located on the positive half of the x-axis. Line $AC$ intersects the y-axis at point $M$, and side $AB$ intersects the y-axis at $H$. Find the analytical expression of line $AC$.", -"image_file_name": "7051872", -"image": [ -"math/52395385_622.png" -], -"solution": "\\textbf{Solution:} Given that the side length of the rhombus $ABCO$ is $13$,\\\\\nhence $OC=13$,\\\\\nthus $C(13,0)$,\\\\\nlet the equation of line $AC$ be: $y=kx+b$ (where $k\\neq 0$),\\\\\nsubstituting $A(-5,12)$ and $C(13,0)$ into the equation yields: $\\begin{cases}-5k+b=12\\\\ 13k+b=0\\end{cases}$,\\\\\nsolving this system gives: $\\begin{cases}k=-\\frac{2}{3}\\\\ b=\\frac{26}{3}\\end{cases}$,\\\\\ntherefore, the equation of line $AC$ is: \\boxed{y=-\\frac{2}{3}x+\\frac{26}{3}}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52395385_100": { -"question": "As shown in Figure 1, in the Cartesian coordinate system, point O is the origin, and quadrilateral $ABCO$ is a rhombus. The coordinate of point A is $(-5, 12)$, and point C is on the positive half-axis of the x-axis. The line AC intersects the y-axis at point M, and the side AB intersects the y-axis at point H. As shown in Figure 2, a moving point P starts from point A, moving along the polyline $A-B-C$ towards the endpoint C. A line $PQ\\parallel y$-axis is drawn through point P intersecting AC at point Q, let the x-coordinate of point P be $a$, and the length of the segment PQ be $l$.", -"image_file_name": "7051872", -"image": [ -"math/52395385_622.png" -], -"solution": "\\textbf{Solution}: Since $PQ\\parallel y$-axis and the x-coordinate of point P is a,\\\\\nit follows that $Q(a, -\\frac{2}{3}a+\\frac{26}{3})$,\\\\\n(1) When $-5\\le a\\le 8$, point P is on AB, P$(a, 12)$,\\\\\nthus $l=12-\\left(-\\frac{2}{3}a+\\frac{26}{3}\\right)=\\frac{2}{3}a+\\frac{10}{3}$;\\\\\nWhen $8-\\frac{4}{3}$.\\\\\nHence, the length of the line segment DE is $DE=\\boxed{\\frac{3}{2}t+2}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52395484_114": { -"question": "As shown in the figure, the line $x=t$ intersects the line $y=-x$ and the line $y=\\frac{1}{2}x+2$ at points E and D (D is above E), respectively. Point N is a moving point on the y-axis, and $\\triangle NDE$ is an isosceles right triangle. Directly write the value of $t$ and the coordinates of point N.", -"image_file_name": "7051872", -"image": [ -"math/52395484_663.png" -], -"solution": "\\textbf{Solution:} Write directly the value of $t$ and the coordinates of point $N$.\\\\\nWhen $t=-\\frac{4}{5}$, the coordinates of point N are $\\left(0, \\frac{8}{5}\\right)$ or $\\left(0, \\frac{4}{5}\\right)$;\\\\\nWhen $t=-\\frac{4}{7}$, the coordinates of point N are $\\left(0, \\frac{8}{7}\\right)$;\\\\\nWhen $t=4$, $\\triangle NDE$ is an isosceles right triangle, at this point the coordinates of N are \\boxed{\\left(0, 0\\right)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386847_116": { -"question": "As shown in the diagram, it's known that the line $l_1\\colon y=kx+b$ ($k\\ne 0$), which passes through the point $B(1, 0)$, intersects with the line $l_2\\colon y=2x+4$ at point $P(-1, a)$. Find the equation of the line $l_1$.", -"image_file_name": "7051872", -"image": [ -"math/52386847_677.png" -], -"solution": "\\textbf{Solution}: Since point P ($-1$, $2$) lies on the line $l_2: y=2x+4$, \\\\\nit follows that $2\\times(-1)+4=2$, which means $a=2$, so the coordinates of P are ($-1$, $2$).\\\\\nAccording to the problem, we have\n\\[\n\\left\\{\n\\begin{array}{l}\nk+b=0\\\\\n-k+b=2\n\\end{array}\n\\right.,\n\\]\nfrom which we obtain:\n\\[\n\\left\\{\n\\begin{array}{l}\nk=-1\\\\\nb=1\n\\end{array}\n\\right.,\n\\]\nTherefore, the equation for $l_1$ is: \\boxed{y=-x+1};", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386847_117": { -"question": "As shown in the figure, it is known that the line $l_1: y=kx+b$ ($k\\ne 0$) passing through point $B(1, 0)$ intersects with line $l_2: y=2x+4$ at point $P(-1, a)$. What is the area of $\\triangle ABP$?", -"image_file_name": "7051872", -"image": [ -"math/52386847_677.png" -], -"solution": "Solution: Since the line $l_2\\colon y=2x+4$ intersects the x-axis at point A, let $y=0$, then $2x+4=0$. Solving this gives: $x=-2$, therefore, the coordinates of point A are $(-2,0)$. Given that $AB=3$, and since $P(-1, 2)$, the area of triangle $ABP$ is $\\frac{1}{2}\\times3\\times2=\\boxed{3}", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386704_119": { -"question": "As shown in Figure 1, in the Cartesian coordinate system, the line $l_{1}$: $y=kx+b\\ (k \\neq 0)$ intersects the x-axis at point $A(a, 0)$ and the y-axis at point $B(0, b)$. The line $l_{2}$, which passes through the origin, intersects the line $l_{1}$ at point C. If $a=2$ and $b=4$, what is the equation of the line $l_{1}$?", -"image_file_name": "7051872", -"image": [ -"math/52386704_686.png" -], -"solution": "\\textbf{Solution:} Let's suppose $a=2$, $b=4$, then point $A(2, 0)$ and point $B(0, 4)$ are given. Substituting into the equation $y=kx+b$, we get:\n\\begin{align*}\n\\begin{cases}\n2k+b=0\\\\\nb=4\n\\end{cases}\n\\end{align*},\nwhich solves to\n\\begin{align*}\n\\begin{cases}\nk=-2\\\\\nb=4\n\\end{cases}\n\\end{align*},\n$\\therefore$ the equation for the line ${l}_{1}$ is $\\boxed{y=-2x+4}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386704_120": { -"question": "As shown in Figure 1, in the Cartesian coordinate system, the line ${l}_{1}$: $y=kx+b\\ (k\\ne 0)$ intersects the x-axis at point $A(a, 0)$, and it intersects the y-axis at point $B(0, b)$. The line ${l}_{2}$ passing through the origin intersects line ${l}_{1}$ at point C. Given condition (1), when the x-coordinate of point C is 1, what is the area of $\\triangle AOC$?", -"image_file_name": "7051872", -"image": [ -"math/52386704_686.png" -], -"solution": "\\textbf{Solution:} Substitute $x=1$ into $y=-2x+4$, we get $y=-2\\times 1+4=2$,\\\\\n$\\therefore C(1, 2)$,\\\\\n$\\because A(2, 0)$,\\\\\n$\\therefore OA=2$,\\\\\n$\\therefore {S}_{\\triangle AOC}=\\frac{1}{2}OA\\times \\left|{y}_{C}\\right|=\\frac{1}{2}\\times 2\\times 2=\\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386761_123": { -"question": "As shown in the figure, in the Cartesian coordinate system, it is known that the graph of the linear function $y=\\frac{1}{2}x+1$ intersects the x-axis and y-axis at points $A$ and $B$, respectively. A square $ABCD$ is constructed inside the second quadrant with $AB$ as its side. What is the area of square $ABCD$?", -"image_file_name": "7051872", -"image": [ -"math/52386761_697.png" -], -"solution": "\\textbf{Solution:} For the line $y=\\frac{1}{2}x+1$, let $x=0$, then we obtain $y=1$; let $y=0$, then we obtain $x=-2$,\\\\\n$\\therefore A(-2, 0)$, $B(0, 1)$,\\\\\nIn the right triangle $Rt\\triangle AOB$, $OA=2$, $OB=1$,\\\\\nAccording to the Pythagorean theorem: $AB=\\sqrt{2^2+1^2}=\\sqrt{5}$;\\\\\nTherefore, the area of square $ABCD$ is $\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386761_124": { -"question": "As shown in the figure, in the Cartesian coordinate system, it is known that the graph of the linear function $y=\\frac{1}{2}x+1$ intersects the $x$ axis and the $y$ axis at points $A$ and $B$, respectively. A square $ABCD$ is constructed in the second quadrant with $AB$ as its side. What are the coordinates of points $C$ and $D$?", -"image_file_name": "7051872", -"image": [ -"math/52386761_697.png" -], -"solution": "\\textbf{Solution:} Construct $CE \\perp y$-axis and $DF \\perp x$-axis, we can get $\\angle CEB = \\angle AFD = \\angle AOB = 90^\\circ$,\\\\\nsince square $ABCD$,\\\\\nthus $BC = AB = AD$, $\\angle DAB = \\angle ABC = 90^\\circ$,\\\\\nthus $\\angle DAF + \\angle BAO = 90^\\circ$, $\\angle ABO + \\angle CBE = 90^\\circ$,\\\\\nsince $\\angle DAF + \\angle ADF = 90^\\circ$, $\\angle BAO + \\angle ABO = 90^\\circ$,\\\\\nthus $\\angle BAO = \\angle ADF = \\angle CBE$,\\\\\nthus $\\triangle BCE \\cong \\triangle DAF \\cong \\triangle ABO$,\\\\\nthus $BE = DF = OA = 2$, $CE = AF = OB = 1$,\\\\\nthus $OE = OB + BE = 2 + 1 = 3$, $OF = OA + AF = 2 + 1 = 3$,\\\\\nthus $\\boxed{C(-1, 3)}$, $\\boxed{D(-3, 2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386761_125": { -"question": "As shown in the diagram, in the Cartesian coordinate system, it's known that the graph of the linear function $y=\\frac{1}{2}x+1$ intersects the $x$-axis and $y$-axis at points $A$ and $B$, respectively. A square $ABCD$ is constructed inside the second quadrant with $AB$ as its side. Does there exist a point $M$ on the $x$-axis such that the perimeter of $\\triangle MDB$ is minimized? Determine the coordinates of point $M$.", -"image_file_name": "7051872", -"image": [ -"math/52386761_697.png" -], -"solution": "\\textbf{Solution:} To solve this, find the point $B'$ which is symmetrical to $B$ with respect to the $x$-axis, and connect $BD$, intersecting the $x$-axis at point $M$. At this time, the perimeter of $\\triangle BMD$ is minimized,\\\\\n$\\because B(0, 1)$,\\\\\n$\\therefore B'(0, -1)$\\\\\nLet the equation of line $B'D$ be $y=kx+b$,\\\\\nSubstituting the coordinates of $B'$ and $D$ yields: $\\begin{cases}b=-1\\\\ -3k+b=2\\end{cases}$,\\\\\nSolving this, we get: $\\begin{cases}k=-1\\\\ b=-1\\end{cases}$, that is, the equation of line $B'D$ is $y=-x-1$,\\\\\nSetting $y=0$, we find $x=-1$, i.e., \\boxed{M(-1, 0)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386556_127": { -"question": "As shown in the figure, the line $y = \\frac{3}{2}x - 2$ intersects with the line $y = -x + 3$ at point P. The line $y = \\frac{3}{2}x - 2$ intersects the x-axis and y-axis at points C and D, respectively; the line $y = -x + 3$ intersects the x-axis and y-axis at points A and B, respectively. What are the coordinates of the intersection point P?", -"image_file_name": "7051872", -"image": [ -"math/52386556_704.png" -], -"solution": "\\textbf{Solution}: According to the problem, we have:\\\\\n\\[\n\\begin{cases}\ny=\\frac{3}{2}x-2 \\\\\ny=-x+3\n\\end{cases}\n\\], solving this we get: \\[\n\\begin{cases}\nx=2 \\\\\ny=1\n\\end{cases}\n\\], \\\\\n$\\therefore \\boxed{P\\left(2, 1\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386556_128": { -"question": "As shown in the figure, the line $y=\\frac{3}{2}x-2$ intersects with $y=-x+3$ at point P, and the line $y=\\frac{3}{2}x-2$ intersects the x-axis and y-axis at points C and D respectively; the line $y=-x+3$ intersects the x-axis and y-axis at points A and B, respectively. Connect BC. What is the area of $\\triangle BCD$?", -"image_file_name": "7051872", -"image": [ -"math/52386556_704.png" -], -"solution": "\\textbf{Solution:} Substitute $x=0$ into the line $y=\\frac{3}{2}x-2$ to get: $y=-2$,\\\\\nthus $D(0, -2)$,\\\\\nSubstitute $x=0$ into the line $y=-x+3$ to get: $y=3$,\\\\\nthus $B(0, 3)$,\\\\\nSubstitute $y=0$ into the line $y=\\frac{3}{2}x-2$ to get: $x=\\frac{4}{3}$,\\\\\nthus $C\\left(\\frac{4}{3}, 0\\right)$,\\\\\n$\\therefore BD=5, OC=\\frac{4}{3}$,\\\\\n$\\therefore {S}_{\\triangle BCD}=\\frac{1}{2}BD\\cdot OC=\\boxed{\\frac{10}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386314_130": { -"question": "As shown in the figure, in the Cartesian coordinate system, line $l_1$: $y=2x-1$ intersects the x-axis and y-axis at points $A$ and $B$, respectively. Line $l_2$: $y=-\\frac{1}{2}x+1$ intersects the x-axis and y-axis at points $P$ and $C$, respectively. Connect $AC$, and lines $l_1$ and $l_2$ intersect at point $D$. Find the coordinates of point $D$, and directly write the solution set of the inequality $2x-1>-\\frac{1}{2}x+1$.", -"image_file_name": "7051872", -"image": [ -"math/52386314_7116.png" -], -"solution": "\\textbf{Solution:} Solve the system of equations\n\\[\n\\begin{cases}\ny=2x-1\\\\\ny=-\\frac{1}{2}x+1\n\\end{cases}\n\\]\nto find\n\\[\n\\begin{cases}\nx=\\frac{4}{5}\\\\\ny=\\frac{3}{5}\n\\end{cases}\n\\]\n$\\therefore D\\left(\\frac{4}{5}, \\frac{3}{5}\\right)$\n\nFrom the graph of the functions, it is known that the solution set for $2x-1>-\\frac{1}{2}x+1$ is $\\boxed{x>\\frac{4}{5}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386314_131": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $l_1: y=2x-1$ intersects the $x$-axis and the $y$-axis at points $A$ and $B$, respectively, and the line $l_2: y=-\\frac{1}{2}x+1$ intersects the $x$-axis and the $y$-axis at points $P$ and $C$, respectively. Connecting $AC$, the lines $l_1$ and $l_2$ intersect at point $D$. What is the area of $\\triangle ACD$?", -"image_file_name": "7051872", -"image": [ -"math/52386314_7116.png" -], -"solution": "\\textbf{Solution:} Given $y=2x-1$, let $y=0$, we find $x=\\frac{1}{2}$, thus $A\\left(\\frac{1}{2}, 0\\right)$,\\\\\nlet $x=0$, we find $y=-1$, thus $B\\left(0, -1\\right)$,\\\\\nGiven $y=-\\frac{1}{2}x+1$, let $x=0$, we find $y=1$, thus $C\\left(0, 1\\right)$,\\\\\nlet $y=0$, we find $x=2$, thus $P\\left(2, 0\\right)$,\\\\\n$\\therefore BC=2, AO=\\frac{1}{2}$,\\\\\n$\\therefore Area_{\\triangle ACD}=Area_{\\triangle BCD}-Area_{\\triangle ABC}=\\frac{1}{2}BC\\times \\left|x_{D}\\right|-\\frac{1}{2}BC\\times OA=\\frac{1}{2}\\times 2\\times \\left(\\frac{4}{5}-\\frac{1}{2}\\right)=\\boxed{\\frac{3}{10}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386314_132": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $l_{1}: y=2x-1$ intersects the $x$-axis and $y$-axis at points $A$ and $B$, respectively, and the line $l_{2}: y=-\\frac{1}{2}x+1$ intersects the $x$-axis and $y$-axis at points $P$ and $C$, respectively. Connect $AC$, and lines $l_{1}$ and $l_{2}$ intersect at point $D$. If point $E$ is on line $l_{1}$ and $F$ is any point in the coordinate plane, investigate whether there exists a quadrilateral with $B$, $C$, $E$, $F$ as vertices which is a rectangle? Write down the coordinates of point $F$.", -"image_file_name": "7051872", -"image": [ -"math/52386314_7116.png" -], -"solution": "\\textbf{Solution:} Existence of coordinates for $F$ are either $\\left(1, -1\\right)$ or $\\left(-\\frac{4}{5}, -\\frac{3}{5}\\right)$,\n\n(1) When $BC$ is the side of the rectangle, the quadrilateral $BCEF$ is a rectangle, \\\\\nthen $CE \\perp BC$ \\\\\n$\\therefore CE \\parallel x$-axis, $BF \\parallel x$-axis \\\\\n$\\because C\\left(0, 1\\right)$, $B\\left(0, -1\\right)$ \\\\\nLet $E\\left(m, 1\\right)$, $\\because E$ is on line $l_1\\colon y = 2x - 1$, \\\\\n$\\therefore 2m - 1 = 1$ \\\\\nSolving, we get $m = 1$ \\\\\n$\\therefore x_F = 1$ \\\\\n$\\therefore F \\left(1, -1\\right)$; \\\\\n(2) When $BC$ is the diagonal of the rectangle, \\\\\n$\\because OB = OC = 1$, $O$ is the intersection point of the diagonal, $C\\left(0, 1\\right), D\\left(\\frac{4}{5}, \\frac{3}{5}\\right), B\\left(0, -1\\right)$, \\\\\n$\\therefore BC=2, CD=\\sqrt{\\left(\\frac{4}{5}\\right)^2+\\left(1-\\frac{3}{5}\\right)^2}=\\frac{2\\sqrt{5}}{5}, BD=\\sqrt{\\left(\\frac{4}{5}\\right)^2+\\left(1+\\frac{3}{5}\\right)^2}=\\frac{4\\sqrt{5}}{5}$, \\\\\n$\\therefore CD^2+BD^2=\\frac{4}{5}+\\frac{16}{5}=4=BC^2$, \\\\\n$\\therefore \\triangle BCD$ is a right triangle, with $\\angle ADC = 90^\\circ$ \\\\\n$\\therefore$ When $BC$ is the diagonal of rectangle $BECF$, points $D, E$ coincide, \\\\\n$\\therefore O$ is also the midpoint of $DF$, \\\\\nThrough central symmetry, we get $F\\left(-\\frac{4}{5}, -\\frac{3}{5}\\right)$ \\\\\nIn conclusion, the coordinates of $F$ are either $\\boxed{\\left(1, -1\\right)}$ or $\\boxed{\\left(-\\frac{4}{5}, -\\frac{3}{5}\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386525_134": { -"question": "As shown in the figure, in the Cartesian coordinate system, the equation of line $l_{1}$ is $y=kx+b$ ($k\\neq 0$), and the equation of line $l_{2}$ is $y=x$. Line $l_{1}$ passes through points $A(6, 0)$ and $B(0, 3)$, and line $l_{1}$ intersects with line $l_{2}$ at point C. What is the equation of line $l_{1}$?", -"image_file_name": "7051872", -"image": [ -"math/52386525_729.png" -], -"solution": "\\textbf{Solution}: Because point $A(6, 0)$ and $B(0, 3)$ are on the line $y=kx+b$,\\\\\ntherefore $\\begin{cases}6k+b=0\\\\ b=3\\end{cases}$,\\\\\nsolving we get: $\\begin{cases}k=-\\frac{1}{2}\\\\ b=3\\end{cases}$,\\\\\ntherefore the equation of line $l_1$ is: \\boxed{y=-\\frac{1}{2}x+3}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386525_135": { -"question": "As shown in the figure, in the Cartesian coordinate system, the equation of line ${l}_{1}$ is $y=kx+b(k \\ne 0)$, and the equation of line ${l}_{2}$ is $y=x$. Line ${l}_{1}$ passes through points $A(6, 0)$ and $B(0, 3)$, and line ${l}_{1}$ intersects line ${l}_{2}$ at point C. What is the area of $\\triangle COB$?", -"image_file_name": "7051872", -"image": [ -"math/52386525_729.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 1, draw $CD\\perp OB$ at point D through point C,\\\\\nSolve $y=-\\frac{1}{2}x+3$ and $y=x$ simultaneously,\\\\\n$\\begin{cases}y=-\\frac{1}{2}x+3\\\\ y=x\\end{cases}$,\\\\\nto get $\\begin{cases}x=2\\\\ y=2\\end{cases}$.\\\\\nThus, the coordinates of the intersection point C of line $l_1$ and line $l_2$ are: (2, 2)\\\\\n$\\therefore CD=x_C=2$\\\\\nObviously, $OB=y_B=3$\\\\\n$\\therefore S_{\\triangle COB}=\\frac{1}{2}OB\\cdot CD=\\frac{1}{2}\\times 3\\times 2=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52386525_136": { -"question": "As shown in the figure, in the Cartesian coordinate system, the equation of line $l_{1}$ is $y=kx+b \\left(k \\ne 0\\right)$, and the equation of line $l_{2}$ is $y=x$. Line $l_{1}$ passes through point $A(6, 0)$ and $B(0, 3)$, and line $l_{1}$ intersects with line $l_{2}$ at point C. Is there a point P on the x-axis such that $\\triangle POC$ is an isosceles triangle? Find the coordinates of point P.", -"image_file_name": "7051872", -"image": [ -"math/52386525_729.png" -], -"solution": "\\textbf{Solution:} There exists a point $P$ on the $x$-axis such that $\\triangle POC$ is an isosceles triangle. The reasoning is as follows:\\\\\nBased on the problem statement, there are three scenarios:\\\\\n(1) When point $O$ is the vertex angle, $OP=OC$. The two intersection points $P_1$ and $P_2$ of the circle centered at $O$ with radius $OC$ and the $x$-axis are the desired points $P$. It follows that $OC=2\\sqrt{2}$.\\\\\n$\\therefore$ The coordinates of point $P_1$ are: $\\left(-2\\sqrt{2}, 0\\right)$, and the coordinates of point $P_2$ are: $\\left(2\\sqrt{2}, 0\\right)$.\\\\\n(2) When point $C$ is the vertex angle, $CP=CO$. The intersection point $P_3$ of the circle centered at $C$ with radius $CO$ and the $x$-axis is the desired point $P$. It follows that the coordinates of point $P_3$ are: $\\left(4, 0\\right)$.\\\\\n(3) When point $P$ is the vertex angle, the intersection point $P_4$ of the perpendicular bisector of $OC$ and the $x$-axis is the desired point $P$. It follows that the coordinates of point $P_4$ are: $\\left(2, 0\\right)$.\\\\\nCombining (1), (2), and (3), it can be concluded that there are four points $P$ that form an isosceles triangle $\\triangle POC$, which are: $\\boxed{P_1\\left(-2\\sqrt{2}, 0\\right)}$, $\\boxed{P_2\\left(2\\sqrt{2}, 0\\right)}$, $\\boxed{P_3\\left(4, 0\\right)}$, $\\boxed{P_4\\left(2, 0\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381910_138": { -"question": "As shown in the diagram, two vehicles depart simultaneously from locations A and B, respectively, along the same road, traveling at constant speeds. It is known that the sedan travels $20km$ per hour faster than the truck. After meeting, the two vehicles take a break for a while and then continue traveling at the same time. The relationship between the distance $y(km)$ between the two vehicles and the truck's travel time $x(h)$ is represented by the piecewise linear graph $AB-BC-CD-DE$. What are the respective speeds of the two vehicles in $km/h$?", -"image_file_name": "7051872", -"image": [ -"math/52381910_734.png" -], -"solution": "\\textbf{Solution:} From the graph of the function, we learn that the distance between location A and B is 180 km. Let the speed of the truck be $x\\,km/h$, and the speed of the sedan is $(x+20)\\,km/h$. According to the problem, we have: $x + (x + 20) = 180$, solving this gives $x = \\boxed{80}$,\\\\\nthus, the speed of the truck is $80\\,km/h$, and the speed of the sedan is $\\boxed{100}\\,km/h$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381910_139": { -"question": "As shown in the figure, a truck is traveling from Place A to Place B, and a sedan is traveling from Place B to Place A. Both vehicles set off from their respective locations along the same road at the same time, moving at constant speeds. It is known that the sedan travels $20\\,km$ per hour faster than the truck. After the vehicles meet, they rest for a while and then continue to travel at the same time. The relationship between the distance $y(km)$ separating the two vehicles and the travel time $x(h)$ of the truck is represented by the line segments $AB-BC-CD-DE$ in the figure. Based on the figure, answer the following questions: What is the function equation for segment $CD$? After how many hours from the truck's departure, is the distance between the truck and the sedan $20\\,km$?", -"image_file_name": "7051872", -"image": [ -"math/52381910_734.png" -], -"solution": "\\textbf{Solution:} Let the $x$-coordinate of point $D$ be $x$. Then we have:\n\\[80(x-1.5)+100(x-1.5)=144\\]\nSolving this gives $x=2.3$. Hence, the coordinates of point D are $(2.3, 144)$. Let the function of line segment $CD$ be $y=kx+b (k\\ne 0)$. Then:\n\\[\n\\left\\{\n\\begin{array}{l}\n1.5k+b=0\\\\\n2.3k+b=144\n\\end{array}\n\\right.\n\\]\nSolving these equations gives:\n\\[\n\\left\\{\n\\begin{array}{l}\nk=180\\\\\nb=-270\n\\end{array}\n\\right.\n\\]\nTherefore, $y=180x-270$. When $180x-270=20$, solving for $x$ gives $x=\\frac{29}{18}$. Let the equation for $AB$ be $y=mx+n (m\\ne 0)$. Then:\n\\[\n\\left\\{\n\\begin{array}{l}\nn=180\\\\\nm+n=0\n\\end{array}\n\\right.\n\\]\nSolving this yields:\n\\[\n\\left\\{\n\\begin{array}{l}\nm=-180\\\\\nn=180\n\\end{array}\n\\right.\n\\]\nTherefore, the equation for line segment $AB$ is: $y=-180x+180$. When $-180x+180=20$, solving for $x$ gives $x=\\frac{8}{9}$. Hence, the truck departs after $\\boxed{\\frac{8}{9}}$ hours or $\\boxed{\\frac{29}{18}}$ hours and will be $20km$ away from the car.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381906_141": { -"question": "As shown in the figure, the line $y_1 = x + 2$ intersects the x and y axes at points A and B, respectively. The line $y_2 = kx + 4$ intersects the x and y axes at points C and D, respectively. The two lines intersect at point $E\\left(\\frac{2}{3}, n\\right)$. What is the value of $k$?", -"image_file_name": "7051872", -"image": [ -"math/52381906_743.png" -], -"solution": "\\textbf{Solution:} Because the line $y_{1}=x+2$ intersects with the line $y_{2}=kx+4$ at point $E\\left(\\frac{2}{3}, n\\right)$,\\\\\ntherefore, when $x= \\frac{2}{3}$, $n= \\frac{2}{3} +2= \\frac{8}{3}$,\\\\\nthus, the coordinates of point E are $\\left( \\frac{2}{3} , \\frac{8}{3}\\right)$. Substituting point E$\\left( \\frac{2}{3} , \\frac{8}{3}\\right)$ into $y_{2}=kx+4$, we get $ \\frac{8}{3} = \\frac{2}{3}k+4$. Solving this, we find $k=\\boxed{-2}$,\\\\\ntherefore, $y_{2}=-2x+4$, which means the value of $k$ is $-2$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381906_142": { -"question": "As shown in the figure, the line $y_1=x+2$ intersects the x-axis and y-axis at points A and B, respectively, and the line $y_2=kx+4$ intersects the x-axis and y-axis at points C and D, respectively. The two lines intersect at point $E\\left(\\frac{2}{3}, n\\right)$. What is the area of $\\triangle ACE$?", -"image_file_name": "7051872", -"image": [ -"math/52381906_743.png" -], -"solution": "\\textbf{Solution:} Given the line $y_1=x+2$, when $y=0$, we have $0=x+2$. Solving this, we get $x=-2$, hence the coordinates of point A are $(-2,0)$. For the line $y_2=-2x+4$, when $y=0$, we have $0=-2x+4$. Solving this, we get $x=2$, hence the coordinates of point C are $(2,0)$. Therefore, the length of $AC=2-(-2)=4$. As shown in the figure, draw $EH\\perp AC$ at point H. Since the coordinates of point E are $E\\left(\\frac{2}{3}, \\frac{8}{3}\\right)$, it follows that $EH=\\frac{8}{3}$. Therefore, the area of $\\triangle ACE$ is $\\frac{1}{2} AC\\times EH=\\frac{1}{2}\\times 4\\times \\frac{8}{3}=\\boxed{\\frac{16}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381479_144": { -"question": "Place a rectangular sheet $OABC$ in the Cartesian coordinate system, where $O$ is the origin, point $C$ is on the $x$-axis, and point $A$ is on the $y$-axis, with $OA=9$ and $OC=15$. As shown in Figure 1, take a point $E$ on $OA$ and fold $\\triangle EOC$ along $EC$, such that point $O$ falls on point $D$ on side $AB$. Find the equation of the line $EC$.", -"image_file_name": "7051872", -"image": [ -"math/52381479_750.png" -], -"solution": "\\textbf{Solution:} In rectangle $ABCO$, we have $AB=OC$, $OA=BC$, $\\angle B=\\angle BAO=\\angle BCO=\\angle EOC=90^\\circ$, since $OA=9$, $OC=15$, therefore $AB=15$, $BC=9$. The coordinates of point $C$ are $(15,0)$. Based on the property of folding, we have: $DC=OC$, $EO=ED$, therefore $DC=15$. In $\\triangle DBC$, $DB=\\sqrt{DC^{2}-BC^{2}}=\\sqrt{15^{2}-9^{2}}=12$. Therefore, $AD=AB-DB=15-12=3$. Since $OA=9$, $EO=ED$, thus $AE=OA-EO=9-ED$. In $\\triangle AED$, we have $AE^{2}+AD^{2}=ED^{2}$, with $AD=3$, we get $(9-ED)^{2}+3^{2}=ED^{2}$. Solving this gives $DE=5$, therefore $EO=ED=5$. Thus, the coordinates of point $E$ are $(0,5)$. Let the equation of line $EC$ be $y=kx+b$. Substituting the coordinates of point $C$ as $(15,0)$ and point $E$ as $(0,5)$, we obtain $\\begin{cases} 15k+b=0 \\\\ b=5 \\end{cases}$. Solving this, we get $\\begin{cases} k=-\\frac{1}{3} \\\\ b=5 \\end{cases}$, hence the equation of line $EC$ is \\boxed{y=-\\frac{1}{3}x+5}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381479_146": { -"question": "As shown in the diagram, a rectangular paper $OABC$ is placed in the Cartesian coordinate system, where $O$ is the origin, point $C$ is on the $x$-axis, and point $A$ is on the $y$-axis, with $OA=9$ and $OC=15$. Under the given conditions, if point $T$ has the coordinates $(6,\\frac{5}{2})$, and point $P$ is on the line $MN$, is there a point $Q$ on the coordinate axes such that the quadrilateral with vertices $M$, $D'$, $Q$, $P$ is a parallelogram? If such a point exists, please directly write the coordinates of point $Q$.", -"image_file_name": "7051872", -"image": [ -"math/52381479_750.png" -], -"solution": "\\textbf{Solution:} There exists such a point Q, $\\because$ in rectangle ABCO, $D'G \\perp OC$, $\\therefore$ quadrilateral $AD'GO$ is also a rectangle, $\\therefore GD'=AO=9$, $AD'=OG$, $\\because T(6, \\frac{5}{2})$, $\\therefore AD'=OG=6$, $TG=\\frac{5}{2}$, $D'(6, 9)$, $\\therefore TD'=GD'-TG=9-\\frac{5}{2}=\\frac{13}{2}$, $\\therefore$ the side length of the rhombus $MD'TO$ is $\\frac{13}{2}$, that is $OM=MD'=D'T=TO=\\frac{13}{2}$, $\\therefore$ the coordinates of point M are: $(0, \\frac{13}{2})$.\n\nSuppose the equation of the line MN is $y=kx+b$, with point T on line MN, substitute $M(0, \\frac{13}{2})$, $T(6, \\frac{5}{2})$ into it, yielding $\\left\\{\\begin{array}{l}6k+b=\\frac{5}{2}\\\\ b=\\frac{13}{2}\\end{array}\\right.$, solve to get $\\left\\{\\begin{array}{l}k=-\\frac{2}{3}\\\\ b=\\frac{13}{2}\\end{array}\\right.$, thus the equation of MN is $y=-\\frac{2}{3}x+\\frac{13}{2}$.\n\n$\\because$ Point P is on the line MN, and point Q is on the coordinate axis, $\\therefore$ assume the coordinates of point P are $(x, -\\frac{2}{3}x+\\frac{13}{2})$,\n\nWhen point Q is on the x-axis, let the coordinates of Q be $(a, 0)$, i.e.: $P(x, -\\frac{2}{3}x+\\frac{13}{2})$, $Q(a, 0)$, $M(0, \\frac{13}{2})$, $D'(6, 9)$, these four points can form a parallelogram, knowing that the diagonals of a parallelogram bisect each other, it is solved that $x=6$, $a=0$, $\\therefore$ at this time the coordinates of Q are $Q(0, 0)$; solved to get $x=\\frac{27}{2}$, $a=\\frac{39}{2}$, $\\therefore$ at this time the coordinates of Q are $Q(\\frac{39}{2}, 0)$; solved to get $x=-\\frac{27}{2}$, $a=\\frac{39}{2}$, $\\therefore$ at this time the coordinates of Q are $Q(\\frac{39}{2}, 0)$.\n\nWhen point Q is on the y-axis, let the coordinates of Q be $(0, a)$, knowing that the diagonals of a parallelogram bisect each other, it is solved that $x=6$, $a=0$, $\\therefore$ at this time the coordinates of Q are $Q(0, 0)$; solved to get $x=-6$, $a=13$, $\\therefore$ at this time the coordinates of Q are $Q(0, 13)$; solved to get $x=6$, $a=13$, $\\therefore$ at this time the coordinates of Q are $Q(0, 13)$.\n\nIn conclusion: The coordinates of the point Q that satisfy the conditions are: \\boxed{Q(0, 0)}, \\boxed{Q\\left(\\frac{39}{2}, 0\\right)}, \\boxed{Q(0, 13)}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381120_148": { -"question": "Given: As shown in the figure, the linear function $y_{1}=kx-2$ intersects with the x-axis at point $B(-2, 0)$, $y_{2}=x+b$ intersects with the x-axis at point $C(4, 0)$, and the graphs of these two functions intersect at point $A$. Find the values of $k$ and $b$ and the coordinates of point $A$.", -"image_file_name": "7051872", -"image": [ -"math/52381120_767.png" -], -"solution": "\\textbf{Solution:} Substitute $B(-2, 0)$ into $y_1=kx-2$ to get, $0=-2k-2$,\\\\\nthus, $k=-1$;\\\\\nSubstitute $C(4, 0)$ into $y_2=x+b$ to get, $0=4+b$,\\\\\nthus, $b=-4$;\\\\\nSolving the system of equations yields, $\\left\\{\\begin{array}{l}y=-x-2 \\\\ y=x-4\\end{array}\\right.$,\\\\\nwhich gives, $\\left\\{\\begin{array}{l}x=1 \\\\ y=-3\\end{array}\\right.$,\\\\\nThe coordinates of point A are: $A(1, -3)$.\\\\\nTherefore, $k=\\boxed{-1}$, $b=\\boxed{-4}$, and the coordinates of point $A$ are $\\boxed{(1, -3)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381120_149": { -"question": "Given: As shown in the figure, the linear function $y_{1}=kx-2$ intersects the $x$-axis at point $B(-2, 0)$, and $y_{2}=x+b$ intersects the $x$-axis at point $C(4, 0)$. The graphs of these two functions intersect at point $A$. Connect $OA$. Is there a point $P$ on the line $y_{2}=x+b$ such that $S_{\\triangle OCP}=\\frac{1}{3}S_{\\triangle OAC}$? If so, find the coordinates of point $P$.", -"image_file_name": "7051872", -"image": [ -"math/52381120_767.png" -], -"solution": "\\textbf{Solution:} Given that OC=4, and A(1, −3),\n\n\\[S_{\\triangle OAC}=\\frac{1}{2}\\times 3\\times 4=6,\\]\n\n\\[S_{\\triangle OCP}=\\frac{1}{3}S_{\\triangle OAC}=2,\\]\n\nLet the coordinates of point P be (x, y),\n\n\\[S_{\\triangle OCP}=\\frac{1}{2}OC\\times |y|,\\]\n\n\\[2=\\frac{1}{2}\\times 4\\times |y|,\\]\n\n\\[|y|=1,\\]\n\nWhen y=1, $1=x+b$,\n\nx=5, the coordinates of point P are $\\boxed{\\left(5, 1\\right)}$;\n\nWhen y=−1, $−1=x+b$,\n\nx=3, the coordinates of point P are $\\boxed{\\left(3, −1\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381120_150": { -"question": "As shown in the figure, the linear function $y_1=kx-2$ intersects the x-axis at point $B(-2, 0)$, and $y_2=x+b$ intersects the x-axis at point $C(4, 0)$. The graphs of these two functions intersect at point $A$. Based on the graph, directly write the range of values for $x$ when $y_1\\ge y_2$.", -"image_file_name": "7051872", -"image": [ -"math/52381120_767.png" -], -"solution": "\\textbf{Solution:} From the graph, it is known that at point A or to the left of point A, ${y}_{1}\\ge {y}_{2}$. \\\\\nHence, when $\\boxed{x\\leq 1, {y}_{1}\\ge {y}_{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381215_152": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ intersects the $x$ axis at point $A$, with $OA=4$, and intersects the graph of the direct proportion function $y=3x$ at point $B$, where the $x$-coordinate of point $B$ is 1. Find the equation of the linear function $y=kx+b$.", -"image_file_name": "7051872", -"image": [ -"math/52381215_777.png" -], -"solution": "\\textbf{Solution:} Given that $OA=4$, we have $A(4,0)$. Substituting $x=1$ into $y=3x$, we get $y=3$, thus $B(1,3)$. Substituting $A(4,0)$ and $B(1,3)$ into $y=kx+b$, we have the system of equations\n\\[\\left\\{\\begin{array}{l}\n4k + b = 0 \\\\\nk + b = 3\n\\end{array}\\right.\\]\nThus, we find that\n\\[\\left\\{\\begin{array}{l}\nk = -1 \\\\\nb = 4\n\\end{array}\\right.\\]\nTherefore, the linear equation is $\\boxed{y = -x + 4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381215_153": { -"question": "As shown in the figure, the graph of the linear function $y=kx+b$ intersects the $x$ axis at point $A$, where $OA=4$, and intersects the graph of the direct proportion function $y=3x$ at point $B$, with the $x$-coordinate of point $B$ being 1. If point $C$ is on the $y$ axis, and $S_{\\triangle BOC} = \\frac{1}{2}S_{\\triangle AOB}$, what are the coordinates of point $C$?", -"image_file_name": "7051872", -"image": [ -"math/52381215_777.png" -], -"solution": "\\textbf{Solution:} Given $A(4, 0)$, $B(1, 3)$, \\\\\nthus the area of $\\triangle AOB = \\frac{1}{2}OA\\cdot y_B = \\frac{1}{2}\\times 4\\times 3=6$, \\\\\nthus the area of $\\triangle BOC = \\frac{1}{2}$ area of $\\triangle AOB = $\\frac{1}{2}\\times 6=3$, \\\\\nSince point $C$ is on the y-axis, let $C(0, y)$, \\\\ \nthus the area of $\\triangle BOC = \\frac{1}{2}|y|\\cdot x_B = 3$, that is $\\frac{1}{2}|y|\\times 1=3$, solving this gives $y=\\pm 6$, \\\\\nthus the coordinates of point $C$ are $\\boxed{(0, 6)}$ or $\\boxed{(0, -6)}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381215_154": { -"question": "As shown in the diagram, the graph of the linear function $y=kx+b$ intersects the $x$-axis at point $A$, where $OA=4$, and intersects the graph of the direct proportion function $y=3x$ at point $B$, whose abscissa is 1. Please directly specify the range of $x$ for which $kx+b>3x$.", -"image_file_name": "7051872", -"image": [ -"math/52381215_777.png" -], -"solution": "\\textbf{Solution:} From the result of (1), we know the inequality is: $-x+4>3x$. Given $B(1, 3)$, when the graph of the linear function $y=-x+4$ is above the graph of the direct proportionality function $y=3x$, the range of the variable $x$ is: $\\boxed{x<1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381008_156": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y_1=k_1x+b$ intersects with the hyperbola $y_2=\\frac{k_2}{x}$ at points $A(4, 2)$ and $B(m, -4)$. Find the expressions for functions $y_1$ and $y_2$.", -"image_file_name": "7051872", -"image": [ -"math/52381008_784.png" -], -"solution": "\\textbf{Solution:} Since the line $y_{1}=k_{1}x+b$ intersects the hyperbola $y_{2}=\\frac{k_{2}}{x}$ at points $A(4, 2)$ and $B(m, -4)$,\\\\\nwe have $2=\\frac{k_{2}}{4}$, solving which gives $k_{2}=8$,\\\\\ntherefore, the equation of the hyperbola $y_{2}$ is $y_{2}=\\frac{8}{x}$,\\\\\nsubsequently, substituting $B(m, -4)$ into $y_{2}=\\frac{8}{x}$, we get $-4=\\frac{8}{m}$, solving which gives $m=-2$,\\\\\nthus $B(-2, -4)$, substituting $A(4, 2)$ and $B(-2, -4)$ into $y_{1}=k_{1}x+b$ yields the system $\\left\\{\\begin{array}{l}4k_{1}+b=2 \\\\ -2k_{1}+b=-4\\end{array}\\right.$, from which we solve $\\left\\{\\begin{array}{l}k_{1}=1 \\\\ b=-2\\end{array}\\right.$,\\\\\ntherefore, the equation of the line $y_{1}$ is: \\boxed{y_{1}=x-2}; and the equation of the hyperbola $y_{2}$ is: \\boxed{y_{2}=\\frac{8}{x}}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52381008_157": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y_1=k_1x+b$ intersects with the hyperbola $y_2=\\frac{k_2}{x}$ at points $A(4, 2)$ and $B(m, -4)$. A line is drawn from point B perpendicular to the x-axis intersecting it at point P. What is the area of $\\triangle ABP$?", -"image_file_name": "7051872", -"image": [ -"math/52381008_784.png" -], -"solution": "\\textbf{Solution:} Given $\\because A(4, 2)$, $B(-2, -4)$, $\\therefore BP=4$, $\\therefore {S}_{\\triangle ABP}=\\frac{1}{2}\\times 4\\times (4+2)=\\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52381008_158": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y_1=k_1x+b$ intersects with the hyperbola $y_2=\\frac{k_2}{x}$ at points $A(4, 2)$ and $B(m, -4)$. Based on the graph of the function, directly write down the solution set of the inequality $k_1x+b>\\frac{k_2}{x}$ in terms of $x$.", -"image_file_name": "7051872", -"image": [ -"math/52381008_784.png" -], -"solution": "\\textbf{Solution:} Observing the graph, the solution set of the inequality ${k}_{1}x+b>\\frac{{k}_{2}}{x}$ with respect to $x$ is \\boxed{-24}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52381542_160": { -"question": "As shown in the figure, the line $l_{1} \\colon y_{1} = -2x + 6$ intersects the x-axis and the y-axis at points A and B, respectively. The line $l_{2}$ passes through the point C $(-5, 0)$ and intersects the line $l_{1}$ at the point D $(a, 8)$, and intersects the y-axis at the point E. Find the analytical expression of the line $l_{2}$?", -"image_file_name": "7051872", -"image": [ -"math/52381542_790.png" -], -"solution": "\\textbf{Solution:} Given that line $l_{1}$ passes through point $D(-1,8)$,\n\n\\[\n\\therefore 8 = -2a + 6,\n\\]\n\\[\n\\therefore a = -1,\n\\]\n\\[\n\\therefore D(-1,8),\n\\]\nGiven that line $l_{2}$ passes through points $C(-5,0)$ and $D(-1,8)$,\n\n\\[\n\\therefore \\begin{cases}\n-5k + b = 0 \\\\\n-k + b = 8\n\\end{cases},\n\\]\nsolving this, we get \n\\[\n\\begin{cases}\nk = 2 \\\\\nb = 10\n\\end{cases},\n\\]\n\\[\n\\therefore \\text{the equation of line}\\ l_{2}\\ \\text{is}\\ \\boxed{y = 2x + 10};\n\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381542_161": { -"question": "As shown in the figure, the line $l_{1}\\colon y_{1}=-2x+6$ intersects the x-axis at point A and the y-axis at point B. The line $l_{2}$ passes through point C ($-5$, $0$) and intersects line $l_{1}$ at point D ($a$, $8$) and the y-axis at point E. What is the area of $\\triangle BDE$?", -"image_file_name": "7051872", -"image": [ -"math/52381542_790.png" -], -"solution": "Solution: In $y=-2x+6$, let $x=0$, then $y=6$,\\\\\n$\\therefore B(0,6)$,\\\\\nIn $y=2x+10$, let $x=0$, then $y=10$,\\\\\n$\\therefore E(0,10)$,\\\\\n$\\therefore BE=10-6=4$,\\\\\n$\\therefore$ The area of $\\triangle BDE$ is $\\frac{1}{2} \\times 4 \\times 1 = \\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52380902_163": { -"question": "As shown in the figure, the line $y_{1}=x+1$ intersects the x-axis and y-axis at points A and B, respectively, and the line $y_{2}=-2x+4$ intersects the x-axis and y-axis at points C and D, respectively. The two lines intersect at point E. What are the coordinates of point E?", -"image_file_name": "7051872", -"image": [ -"math/52380902_800.png" -], -"solution": "\\textbf{Solution:} Since $\\begin{cases}y_1=x+1\\\\ y_2=-2x+4\\end{cases}$,\\\\\nwe have $\\begin{cases}x=1\\\\ y=2\\end{cases}$,\\\\\nthus, the coordinates of point E are $\\boxed{(1,2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52380902_164": { -"question": "As shown in the figure, the line $y_1 = x + 1$ intersects the x-axis and y-axis at points A and B, respectively. The line $y_2 = -2x + 4$ intersects the x-axis and y-axis at points C and D, respectively. The two lines intersect at point E. What is the area of $\\triangle ACE$?", -"image_file_name": "7051872", -"image": [ -"math/52380902_800.png" -], -"solution": "\\textbf{Solution:} Solve when $y_1=x+1=0$, we get: $x=-1$, $\\therefore A(-1,0)$. When $y_2=-2x+4=0$, we get: $x=2$, $\\therefore C(2,0)$, $\\therefore AC=2-(-1)=3$, $S_{\\triangle ACE}=\\frac{1}{2}\\times AC\\times y_E =\\frac{1}{2}\\times 3\\times 2 =\\boxed{3}.$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52380902_165": { -"question": "As shown in the figure, the line $y_1 = x+1$ intersects the x-axis and the y-axis at points A and B, respectively, and the line $y_2 = -2x+4$ intersects the x-axis and the y-axis at points C and D, respectively. The two lines intersect at point E. Based on the figure, answer directly: For what values of $x$ is $y_1 < y_2$?", -"image_file_name": "7051872", -"image": [ -"math/52380902_800.png" -], -"solution": "\\textbf{Solution:} Given $E(1, 2),$ when $y_18$, $d= \\frac{3}{8}t+\\frac{3}{4}t-9=\\frac{9}{8}t-9$;\\\\\n(2) since the line segment with endpoints H$(\\frac{1}{2}, t)$ and G$(1, t)$ intersects with the edge of the square DEPQ at only one point,\\\\\nhence $\\frac{1}{2}\\leq t \\leq 1$ or $\\left\\{\\begin{array}{l}\n-\\frac{9}{8}t+9\\le t-\\frac{1}{2} \\\\\n-\\frac{9}{8}t+9\\ge t-1\n\\end{array}\\right.$,\\\\\nhence $\\frac{1}{2}\\leq t \\leq 1$ or \\boxed{\\frac{76}{17}\\le t \\leq \\frac{80}{17}}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381468_174": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the graph of the linear function $y=kx+b$ passes through point $A(-2, 6)$, intersects the $x$ axis at point $B$, and intersects the graph of the direct proportion function $y=3x$ at point $C$, where the $x$-coordinate of point $C$ is $1$. Find the values of $k$ and $b$?", -"image_file_name": "7051872", -"image": [ -"math/52381468_830.png" -], -"solution": "\\textbf{Solution:} When $x=1$, $y=3x=3$. Therefore, the coordinates of point $C$ are $(1, 3)$. Since the line $y=kx+b$ passes through $(-2, 6)$ and $(1, 3)$, we have\n\\[\n\\begin{cases}\n6=-2k+b \\\\\n3=k+b\n\\end{cases}\n\\]\nSolving this system of equations, we find\n\\[\n\\begin{cases}\nk=\\boxed{-1} \\\\\nb=\\boxed{4}\n\\end{cases}\n\\]\nTherefore, the explicit formula for the linear function is $y=-x+4$, which means $k=-1$, $b=4$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381468_175": { -"question": "As shown in the graph, in the Cartesian coordinate system, the graph of the linear function $y=kx+b$ passes through point $A(-2,6)$, and intersects with the $x$-axis at point $B$, and intersects with the graph of the direct proportion function $y=3x$ at point $C$, where the abscissa of point $C$ is $1$. Please directly write down the solution set of the inequality $kx+b-3x>0$.", -"image_file_name": "7051872", -"image": [ -"math/52381468_830.png" -], -"solution": "\\textbf{Solution:} From (1), we know that the linear function $y=kx+b$ is $y=-x+4$, i.e., the inequality $kx+b-3x>0$ is transformed into: the inequality $-x+4>3x$. According to the graph of the function, the solution set of the inequality $-x+4>3x$ is $\\boxed{x<1}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381468_176": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the graph of the linear function $y=kx+b$ passes through the point $A(-2,6)$ and intersects the $x$-axis at point $B$, and intersects the graph of the direct proportion function $y=3x$ at point $C$, with the $x$-coordinate of point $C$ being $1$. If point $D$ is on the $y$-axis, and the area of $\\triangle BCD$ is twice the area of $\\triangle BOC$, find the coordinates of point $D$.", -"image_file_name": "7051872", -"image": [ -"math/52381468_830.png" -], -"solution": "\\textbf{Solution:} From (1), we know the linear function $y=kx+b$ is $y=-x+4$. When $y=0$, we have $0=-x+4$, solving this gives $x=4$, $\\therefore B(4, 0)$, $\\therefore S_{\\triangle BCO}=\\frac{1}{2}\\times 4\\times 3=6$, $\\because S_{\\triangle BCD}=2S_{\\triangle BOC}$, $\\therefore S_{\\triangle BCD}=12$. Assume the coordinates of point D are (0, m), when point D is on the positive y-axis,\\\\\n$S_{\\triangle DBC}=S_{\\triangle DOB}-S_{\\triangle DCO}-S_{\\triangle BOC}=\\frac{1}{2}\\times 4m-\\frac{1}{2}\\times 1\\times m-6=\\frac{3}{2}m-6$, $\\because S_{\\triangle BCD}=12$,\\\\\n$\\therefore \\frac{3}{2}m-6=6\\times 2$, $\\therefore m=12$, $\\therefore$ the coordinates of point D are $\\boxed{(0,12)}$; when point D is on the negative y-axis,\\\\\n$S_{\\triangle DBC}=S_{\\triangle DOB}-S_{\\triangle DCO}+S_{\\triangle BOC}=\\frac{1}{2}\\times 4\\times (-m)+6-\\frac{1}{2}\\times 1\\times (-m)=-\\frac{3}{2}m+6$, $\\because S_{\\triangle BCD}=12$,\\\\\n$\\therefore -\\frac{3}{2}m+6=6\\times 2$, $\\therefore m=-4$, $\\therefore$ the coordinates of point D are $\\boxed{(0,-4)}$,\\\\\nIn conclusion, the coordinates of point D are $\\boxed{(0,12)}$ or $\\boxed{(0,-4)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381257_178": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the line $AB: y=-\\frac{1}{2}x+3$ and the line $CD: y=kx-2$ intersect at point $M(4, a)$, and intersect the coordinate axes at points A, B, C, and D, respectively. What are the values of $a$ and $k$?", -"image_file_name": "7051872", -"image": [ -"math/52381257_843.png" -], -"solution": "\\textbf{Solution:} Let's substitute the coordinates of point M into $y=-\\frac{1}{2}x+3$ and solve to get: $a=1$,\\\\\n$\\therefore$ for point $M(4, 1)$, substituting $M(4, 1)$ into $y=kx-2$, we get $4k-2=1$, solving this yields: $k=\\frac{3}{4}$,\\\\\n$\\therefore a=\\boxed{1}$, $k=\\boxed{\\frac{3}{4}}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52381257_179": { -"question": "As shown in the figure, in the Cartesian coordinate system \\(xOy\\), the line \\(AB: y=-\\frac{1}{2}x+3\\) and the line \\(CD: y=kx-2\\) intersect at point \\(M(4, a)\\), intersecting the coordinate axes at points A, B, C, and D, respectively. As depicted, point \\(P\\) is a moving point on line \\(CD\\). When the area of triangle \\(PBM\\) is \\(20\\), what are the coordinates of point \\(P\\)?", -"image_file_name": "7051872", -"image": [ -"math/52381257_843.png" -], -"solution": "\\textbf{Solution:} Let $P\\left(m, \\frac{3}{4}m-2\\right)$. The equation of line CD is: $y=\\frac{3}{4}x-2$. Setting $x=0$, we find $y=-2$, thus point $D\\left(0, -2\\right)$. For line AB: $y=-\\frac{1}{2}x+3$, setting $x=0$, we obtain $y=3$, thus point $B\\left(0, 3\\right)$, hence $BD=5$. Therefore, the area of $\\triangle PBM$ equals $\\frac{1}{2}\\times BD\\times \\left|{x}_{M}-m\\right|=\\frac{1}{2}\\times 5\\times \\left|4-m\\right|=20$, therefore $\\left|4-m\\right|=8$. Solving this results in: $m=-4$ or $m=12$. In conclusion, the points are $P\\left(-4, -5\\right)$ or $P\\left(12, 7\\right)$; therefore, the answer is $\\boxed{P\\left(-4, -5\\right)}$ or $\\boxed{P\\left(12, 7\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354898_182": { -"question": "As shown in the figure, the line $y=kx+b$ intersects the $x$-axis at point $B$ and the $y$-axis at point $C(0,3)$, and intersects with $y=2x$ at point $A(a,2)$. Point $M$ is on line $OA$. What is the equation of line $AB$?", -"image_file_name": "7051872", -"image": [ -"math/52354898_859.png" -], -"solution": "\\textbf{Solution:} Since point A$(1,2)$ lies on the line $y=2x$, it follows that $2=2 \\cdot 1$, hence $a=1$. Therefore, A$(1,2)$. Since the line $y=kx+b$ passes through $C(0,3)$ and $A(1,2)$, it follows that $\\begin{cases} 3=0\\cdot k+b \\\\ 2=k+b \\end{cases}$. \\\\\nSolving these equations, we get $\\begin{cases} k=-1 \\\\ b=3 \\end{cases}$. Therefore, the equation of line $AB$ is \\boxed{y=-x+3};", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354898_183": { -"question": "As shown in the figure, the line $y=kx+b$ intersects the $x$-axis at point $B$ and the $y$-axis at point $C(0,3)$, and intersects $y=2x$ at point $A(a,2)$. Point $M$ is on the line $OA$. What is the area of $\\triangle OAB$?", -"image_file_name": "7051872", -"image": [ -"math/52354898_859.png" -], -"solution": "\\textbf{Solution:} Let $y=0$, we have $-x+3=0$. Solving this, we obtain: $x=3$, $\\therefore B(3,0)$, $\\therefore OB=3$, $\\therefore$ the area of $\\triangle OAB$ is $=\\frac{1}{2}\\times 3\\times 2=\\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354898_184": { -"question": "As shown in the figure, the line $y=kx+b$ intersects the $x$-axis at point $B$ and the $y$-axis at point $C(0,3)$, and it intersects $y=2x$ at point $A(a,2a)$. Point $M$ lies on the line $OA$. Is there a point $M$ such that the area of $\\triangle OMC$ is equal to the area of $\\triangle OAB$? Find the coordinates of point $M$.", -"image_file_name": "7051872", -"image": [ -"math/52354898_859.png" -], -"solution": "\\textbf{Solution:} Let there be a point $M$ such that the area of $\\triangle OMC$ is equal to the area of $\\triangle OAB$, for the following reasons:\\\\\n$\\because$ Point $C(0,3)$,\\\\\n$\\therefore OC=3$, $\\therefore OB=OC=3$.\\\\\n$\\because$ The area of $\\triangle OMC$ is equal to the area of $\\triangle OAB$,\\\\\n$\\therefore$ The distance from $M$ to the $y$-axis is equal to the $y$-coordinate of point $A$, which is $2$,\\\\\n$\\therefore$ The $x$-coordinate of point $M$ is $2$ or $-2$;\\\\\nWhen the $x$-coordinate of $M$ is $2$, in $y=2x$,\\\\\nwhen $x=2$, $y=4$, then the coordinates of $M$ are $(2,4)$;\\\\\nWhen the $x$-coordinate of $M$ is $-2$, in $y=2x$,\\\\\nwhen $x=-2$, $y=-4$, then the coordinates of $M$ are $(-2,-4)$.\\\\\nIn summary: The coordinates of point $M$ are either $\\boxed{(2,4)}$ or $\\boxed{(-2,-4)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354168_186": { -"question": "As shown in the figure, it is known that the line $y=kx+5$ intersects the $x$-axis at point $A$ and the $y$-axis at point $B$, and the coordinates of point $A$ are $(5,0)$. The line $y=2x-4$ intersects the $x$-axis at point $D$ and intersects the line $AB$ at point $C$. What are the coordinates of point $C$?", -"image_file_name": "7051872", -"image": [ -"math/52354168_860.png" -], -"solution": "\\textbf{Solution:} Given that the line $y=kx+5$ passes through point $A(5,0)$,\\\\\nthus $5k+5=0$ and we find $k=-1$.\\\\\nTherefore, the equation of line $AB$ is: $y=-x+5$;\\\\\nBy solving the system of equations for lines $AB$ and $CD$ simultaneously $\\left\\{\\begin{array}{l}y=-x+5 \\\\ y=2x-4\\end{array}\\right.$, we find: $\\left\\{\\begin{array}{l}x=3 \\\\ y=2\\end{array}\\right.$,\\\\\nhence, the coordinates of point $C$ are $\\boxed{(3,2)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354168_187": { -"question": "As shown in the figure, it is known that the line $y=kx+5$ intersects the $x$ axis at point $A$ and the $y$ axis at point $B$, and the coordinate of point $A$ is $(5,0)$. The line $y=2x-4$ intersects the $x$ axis at point $D$, and intersects the line $AB$ at point $C$. Based on the graph, what is the solution set of the inequality $2x-4>kx+5$ with respect to $x$?", -"image_file_name": "7051872", -"image": [ -"math/52354168_860.png" -], -"solution": "\\textbf{Solution:} Observing the graph of the function, we see that when $x>3$, the line $y=2x-4$ is above the line $y=kx+5$. \\\\\n$\\therefore$ The solution set of the inequality $2x-4>kx+5$ is $\\boxed{x>3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354168_188": { -"question": "As shown in the figure, it is known that the line $y=kx+5$ intersects the $x$-axis at point $A$ and the $y$-axis at point $B$, with the coordinates of point $A$ being $(5,0)$. The line $y=2x-4$ intersects the $x$-axis at point $D$ and intersects line $AB$ at point $C$. What is the area of $\\triangle ADC$?", -"image_file_name": "7051872", -"image": [ -"math/52354168_860.png" -], -"solution": "\\textbf{Solution:} Substitute $y=0$ into $y=2x-4$ to obtain $2x-4=0$, solving this yields $x=2$, $\\therefore$ the coordinates of point D are $(2,0)$, $\\because$ A$(5,0)$, $\\therefore$ $AD=3$, $\\because$ the coordinates of point C are $C(3,2)$, $\\therefore$ $S_{\\triangle ADC} = \\frac{1}{2} \\cdot 3 \\cdot 2 = \\boxed{3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52355125_190": { -"question": "As shown in the figure, the graph of the function $y=-2x+3$ intersects with the graph of the function $y=-\\frac{1}{2}x+m$ at point $P(n, -2)$. The line $y=-2x+3$ intersects with the y-axis at point A, and the line $y=-\\frac{1}{2}x+m$ intersects with the y-axis at point B. Determine the values of $m$ and $n$.", -"image_file_name": "7051872", -"image": [ -"math/52355125_875.png" -], -"solution": "\\textbf{Solution:} Since the graph of the function $y=-2x+3$ passes through the point $P(n, -2)$,\\\\\nit follows that $-2=-2n+3$. Solving this, we find $n=\\boxed{\\frac{5}{2}}$.\\\\\nThus, the coordinates of point $P$ are $\\left(\\frac{5}{2}, -2\\right)$.\\\\\nSince the graph of the function $y=-\\frac{1}{2}x+m$ passes through point $P\\left(\\frac{5}{2}, -2\\right)$,\\\\\nit follows that $-2=-\\frac{1}{2}\\times \\frac{5}{2}+m$. Solving this, we find $m=\\boxed{-\\frac{3}{4}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52355125_191": { -"question": "As shown in the figure, the graph of the function $y=-2x+3$ intersects with the graph of $y=-\\frac{1}{2}x+m$ at point $P(n, -2)$. The line $y=-2x+3$ intersects with the y-axis at point A, and the line $y=-\\frac{1}{2}x+m$ intersects with the y-axis at point B. Directly write out the solution set for the inequality $-\\frac{1}{2}x+m > -2x+3$.", -"image_file_name": "7051872", -"image": [ -"math/52355125_875.png" -], -"solution": "\\textbf{Solution:} The solution set of the inequality $-\\frac{1}{2}x+m>-2x+3$ is $\\boxed{x>\\frac{5}{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52355125_192": { -"question": "As shown in the figure, the graph of the function $y=-2x+3$ intersects with the graph of the function $y=-\\frac{1}{2}x+m$ at point $P(n, -2)$. The line $y=-2x+3$ intersects the y-axis at point A, and the line $y=-\\frac{1}{2}x+m$ intersects the y-axis at point B. Calculate the area of $\\triangle ABP$.", -"image_file_name": "7051872", -"image": [ -"math/52355125_875.png" -], -"solution": "\\textbf{Solution:} Given that in the equation $y=-2x+3$, when $x=0$, $y=3$, thus point $A(0, 3)$ is found. Also, in the equation $y=-\\frac{1}{2}x-\\frac{3}{4}$, when $x=0$, $y=-\\frac{3}{4}$, hence point $B\\left(0, -\\frac{3}{4}\\right)$ is determined. Consequently, the length of $AB=\\frac{15}{4}$. Therefore, the area of the triangle $\\triangle ABP$ is calculated as $\\frac{1}{2}\\times \\frac{15}{4}\\times \\frac{5}{2}=\\boxed{\\frac{75}{16}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354930_194": { -"question": "As shown in the figure, the line $l_1: y = -x - b$ intersects the $x$ and $y$ axes at points $A(6, 0)$ and $B$ respectively. The line $l_2$ passing through point $B$ intersects the negative $x$ axis at point $C$, and $OB:OC = 3:1$. Find the coordinates of points $B$ and $C$, and the function expression of line $BC$.", -"image_file_name": "7051872", -"image": [ -"math/52354930_8811.png" -], -"solution": "\\textbf{Solution:} Substitute point $A(6,0)$ into the equation of line $AB$ to get: $0=-6-b$, solving this gives: $b=-6$, $\\therefore$ the equation of line $AB$ is $y=-x+6$, $\\therefore$ the coordinates of point $B$ are: $\\boxed{(0,6)}$. Since $OB:OC=3:1$, $\\therefore$ $OC=2$, $\\therefore$ the coordinates of point $C$ are $\\boxed{(-2,0)}$. Let the equation of line $BC$ be $y=kx+6$, $0=-2k+6$, solving this gives: $k=3$, $\\therefore$ the equation of line $BC$ is: $\\boxed{y=3x+6}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354930_195": { -"question": "As shown in the figure, the line $l_{1}\\colon y=-x-b$ intersects the $x$ and $y$ axes at points $A(6, 0)$ and $B$, respectively. The line $l_{2}$ passing through point $B$ intersects the negative semi-axis of the $x$ axis at point $C$, with $OB:OC=3:1$. Find the value of $S_{\\triangle AOB}-S_{\\triangle BOC}$.", -"image_file_name": "7051872", -"image": [ -"math/52354930_8811.png" -], -"solution": "\\textbf{Solution:} Given by the problem, we have $S_{\\triangle AOB}-S_{\\triangle BOC}=\\frac{1}{2}\\cdot OA\\cdot OB-\\frac{1}{2}\\cdot OC\\cdot OB=\\frac{1}{2}\\times 6\\times 6-\\frac{1}{2}\\times 6\\times 2=\\boxed{12}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52354930_196": { -"question": "As shown in the figure, the line $l_{1}\\colon y=-x-b$ intersects the $x$-axis at $A(6, 0)$ and the $y$-axis at point $B$. Another line $l_{2}$ passing through point $B$ intersects the negative semi-axis of the $x$-axis at point $C$, and $OB:OC = 3:1$. If the point $P(m+1, m-1)$ is inside $\\triangle ABC$ (including the boundary), what is the range of $m$?", -"image_file_name": "7051872", -"image": [ -"math/52354930_8811.png" -], -"solution": "\\textbf{Solution:} Therefore, the range of values for $m$ is $1 \\leq m \\leq 3$,\\\\\n$\\therefore$ the range of values for $m$ is $\\boxed{1 \\leq m \\leq 3}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53706908_198": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the linear function $y=kx+b$ passes through point $A(-2, 6)$ and intersects with the $x$-axis at point $B$, and intersects with the graph of the direct proportion function $y=3x$ at point $C$, where the $x$-coordinate of point $C$ is 1. What is the analytic expression of the linear function?", -"image_file_name": "7051872", -"image": [ -"math/53706908_890.png" -], -"solution": "\\textbf{Solution:} Given that the x-coordinate of point C is 1,\\\\\n$\\therefore C(1, 3)$,\\\\\nsubstitute points $A(-2, 6)$ and $C(1, 3)$ into $y=kx+b$,\\\\\n$\\therefore \\left\\{\\begin{array}{l}k+b=3 \\\\ -2k+b=6\\end{array}\\right.$,\\\\\nsolving this yields $\\left\\{\\begin{array}{l}k=-1 \\\\ b=4\\end{array}\\right.$,\\\\\n$\\therefore \\boxed{y=-x+4}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53706908_199": { -"question": "Integrated Exploration\n\nAs shown in the figure, in the Cartesian coordinate system, the graph of the linear function $y=kx+b$ passes through point $A(-2,6)$, intersects with the $x$-axis at point $B$, and intersects with the graph of the direct proportion function $y=3x$ at point $C$, where the $x$-coordinate of $C$ is $1$. If point $D$ is on the $y$-axis and satisfies $S_{\\triangle COD} = \\frac{1}{3} S_{\\triangle BOC}$, what are the coordinates of point $D$?", -"image_file_name": "7051872", -"image": [ -"math/53706908_890.png" -], -"solution": "\\textbf{Solution:} From the problem statement, we have $y=-x+4$,\\\\\nthus $B(4, 0)$,\\\\\ntherefore $OB=4$,\\\\\nthus $\\frac{1}{3}S_{\\triangle BOC}=\\frac{1}{3}\\times \\frac{1}{2}\\times 4\\times 3=2$,\\\\\nsince $S_{\\triangle COD}=\\frac{1}{3}S_{\\triangle BOC}$,\\\\\nthus $S_{\\triangle COD}=2=\\frac{1}{2}\\times 1\\times |OD|$,\\\\\ntherefore $OD=4$,\\\\\nhence the coordinates of $D$ are $\\boxed{(0, 4)}$ or $\\boxed{(0, -4)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53706908_200": { -"question": "As shown in the figure, in the Cartesian coordinate system, the graph of the linear function $y=kx+b$ passes through point $A(-2,6)$, and intersects with the x-axis at point $B$, and intersects with the graph of the direct proportion function $y=3x$ at point $C$, where the x-coordinate of point $C$ is $1$. In the coordinate plane, is there a point $P$ such that the quadrilateral with vertices $O$, $B$, $C$, and $P$ is a parallelogram? If it exists, directly write down the coordinates of point $P$.", -"image_file_name": "7051872", -"image": [ -"math/53706908_890.png" -], -"solution": "\\textbf{Solution:} Yes, there exists such a point $P$, and the coordinates of point $P$ are $\\boxed{(-3, 3)}$ or $\\boxed{(3, -3)}$ or $(5, 3)$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53706598_202": { -"question": "As shown in the figure, it is known that the graphs of the functions $y_1=2x+b$ and $y_2=ax-3$ intersect at the point $P(-2, -5)$. The graphs of these two functions intersect the x-axis at points A and B, respectively. Determine the analytic expressions of these two functions.", -"image_file_name": "7051872", -"image": [ -"math/53706598_903.png" -], -"solution": "\\textbf{Solution:} Since substituting point $P(-2, -5)$ into $y_1=2x+b$ gives $-5=2\\times (-2)+b$, solving this equation yields $b=-1$.\\\\\nSubstituting point $P(-2, -5)$ into $y_2=ax-3$ gives $-5=a\\times (-2)-3$, solving this equation yields $a=1$.\\\\\nTherefore, the equations of the two functions are $\\boxed{y_1=2x-1}$ and $\\boxed{y_2=x-3}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53706598_203": { -"question": "As shown in the figure, it is known that the graphs of the functions $y_{1}=2x+b$ and $y_{2}=ax-3$ intersect at point $P(-2, -5)$, while the graphs of these two functions intersect the x-axis at points A and B, respectively. What is the area of $\\triangle ABP$?", -"image_file_name": "7051872", -"image": [ -"math/53706598_903.png" -], -"solution": "\\textbf{Solution:} Since in $y_{1}=2x-1$, by setting $y_{1}=0$, we get $x=\\frac{1}{2}$.\\\\\nHence $A\\left(\\frac{1}{2}, 0\\right)$.\\\\\nSince in $y_{2}=x-3$, by setting $y_{2}=0$, we get $x=3$,\\\\\nHence $B\\left(3, 0\\right)$.\\\\\nTherefore, the area $S_{\\triangle ABP}=\\frac{1}{2}AB\\times 5=\\frac{1}{2}\\times \\frac{5}{2}\\times 5=\\boxed{\\frac{25}{4}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53706598_204": { -"question": "As shown in the figure, the graphs of the functions $y_1=2x+b$ and $y_2=ax-3$ intersect at point $P(-2, -5)$. The graphs of these two functions intersect the x-axis at points A and B, respectively. Based on the graph, directly write the range of values for $x$ when $y_1kx+k+1$.", -"image_file_name": "7051872", -"image": [ -"math/52345530_913.png" -], -"solution": "\\textbf{Solution:} Since the intersection point of the two lines is A$(1,3)$, when $x<1$, the graph of the linear function $y=-x+4$ lies above the graph of the linear function $y=kx+k+1$, \\\\\nthus, the solution set of the inequality $-x+4>kx+k+1$ is $\\boxed{x<1}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52345530_208": { -"question": "As shown in the figure, it is known that the graph of the linear function $y=kx+k+1$ intersects with the graph of the linear function $y=-x+4$ at point $A(1, a)$. Considering the graph, when $x>2$, find the range of values of $y$ for the linear function $y=-x+4$.", -"image_file_name": "7051872", -"image": [ -"math/52345530_913.png" -], -"solution": "\\textbf{Solution:} When $x=2$, $y=-x+4=-2+4=2$,\\\\\nsince $k=-1<0$,\\\\\nthus, according to this function, as $x$ increases, it decreases,\\\\\ntherefore, when $x>2$, $y<2$.\\\\\nHence, the range of the function value $y$ is $y\\in(-\\infty, \\boxed{2})$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52345458_210": { -"question": "As shown in the figure, the line $AB\\colon y=2x-k$ passes through the point $M\\left(k, 2\\right)$, and intersects the $x$-axis at point $A$ and the $y$-axis at point $B$. Find the value of $k$.", -"image_file_name": "7051872", -"image": [ -"math/52345458_926.png" -], -"solution": "\\textbf{Solution:} Since the line $AB: y = 2x - k$ passes through the point $M(k, 2)$,\n\ntherefore, $2k - k = 2$. Solving this gives $k = \\boxed{2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52345458_211": { -"question": "As shown in the figure, the line $AB: y=2x-k$ passes through point $M(k, 2)$ and intersects the $x$-axis and $y$-axis at points $A$ and $B$, respectively. The line $AB$ is translated upward by 3 units to obtain line $l$. If $C$ is a point on line $l$, and the area of $\\triangle AOC=3$, find the coordinates of point $C$.", -"image_file_name": "7051872", -"image": [ -"math/52345458_926.png" -], -"solution": "\\textbf{Solution:} Since the equation of line AB is $y=2x-2$, when $y=0$, $2x-2=0$. Solving this gives $x=1$, hence point A is $(1,0)$, and thus OA$=1$. Translating line $AB$ upwards by 3 units gives line $l$, with the equation $y=2x+1$. Given that $C$ is a point on line $l$, let $C(m,2m+1)$. Since the area of $\\triangle AOC$ is $3$, we have $\\frac{1}{2}\\times 1\\times |2m+1|=3$. Solving this yields $m_1=\\frac{5}{2}$ and $m_2=-\\frac{7}{2}$. When $m_1=\\frac{5}{2}$, $2m+1=6$; and when $m_1=-\\frac{7}{2}$, $2m+1=-6$; hence the coordinates of point $C$ are $\\boxed{\\left(\\frac{5}{2}, 6\\right)}$ or $\\boxed{\\left(-\\frac{7}{2}, -6\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52425281_213": { -"question": "As shown in the figure, the line ${l}_{1}\\colon y=x+3$ intersects with the line ${l}_{2}$, which passes through point $A(3, 0)$, at point $C(1, m)$, and intersects with the x-axis at point B. What is the equation of line ${l}_{2}$?", -"image_file_name": "7051872", -"image": [ -"math/52425281_934.png" -], -"solution": "\\textbf{Solution:} Let's substitute the point $C\\left(1, m\\right)$ into the line $l_{1}: y=x+3$, we get: $m=1+3=4$,\n\n$\\therefore$ the point $C\\left(1, 4\\right)$,\n\nLet's assume the equation of the line $l_{2}$ is: $y=kx+b\\left(k\\ne 0\\right)$,\n\nSubstituting points $A\\left(3, 0\\right)$ and $C\\left(1, 4\\right)$,\n\nWe obtain $\\begin{cases}3k+b=0\\\\ k+b=4\\end{cases}$,\n\nSolving these, we find $\\begin{cases}k=-2\\\\ b=6\\end{cases}$,\n\n$\\therefore$ the equation of $l_{2}$: \\boxed{y=-2x+6}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52423819_216": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y=\\frac{1}{2}x+b$ intersects the x-axis at point A, and the line $y=-x+2$ intersects the x-axis at point B. The two lines intersect at point $C(-2, a)$. What are the values of $a$ and $b$?", -"image_file_name": "7051872", -"image": [ -"math/52423819_943.png" -], -"solution": "\\textbf{Solution:} Since point $C$ lies on the line $y=-x+2$, it follows that $a=2+2=\\boxed{4}$. Also, since point $C(-2, 4)$ lies on the line $y=\\frac{1}{2}x+b$, it follows that $\\frac{1}{2}\\times(-2)+b=4$, solving for $b$ gives $b=\\boxed{5}$; therefore, $a=4$, $b=5$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52423819_217": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $y=\\frac{1}{2}x+b$ intersects the x-axis at point A, and the line $y=-x+2$ intersects the x-axis at point B. The two lines intersect at point $C(-2, a)$. What is the area of $\\triangle ABC$?", -"image_file_name": "7051872", -"image": [ -"math/52423819_943.png" -], -"solution": "\\textbf{Solution:} For the equation $y=\\frac{1}{2}x+5$, when $y=0$, we have $x=-10$, thus $A(-10, 0)$. In the equation $y=-x+2$, when $y=0$, we get $x=2$, hence $B(2, 0)$. Consequently, $AB=12$ and the area of $\\triangle ABC$ is given by ${S}_{\\triangle ABC}=\\frac{1}{2}\\times 12\\times 4=\\boxed{24}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52423819_218": { -"question": "As shown in the figure, within the Cartesian coordinate system, the line $y=\\frac{1}{2}x+b$ intersects the x-axis at point A, and the line $y=-x+2$ intersects the x-axis at point B. The two lines intersect at point $C(-2, a)$. A point $P(m, 0)$ is to the right of point A, and segment $PC$ is drawn. When $\\triangle ACP$ is an isosceles triangle, find the value of $m$.", -"image_file_name": "7051872", -"image": [ -"math/52423819_943.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $CD\\perp AB$ and connect $PC$,\\\\\nwe have $CD=4$, $AD=8$, $PA=m+10$,\\\\\n$\\therefore AC=\\sqrt{8^2+4^2}=4\\sqrt{5}$.\\\\\nWhen $PC=PA$, let $PC=PA=m+10$, then $PD=-2-m$,\\\\\nin $\\triangle PCD$, $PC^2=PD^2+CD^2$,\\\\\n$\\therefore (m+10)^2=(-2-m)^2+4^2$, solving this yields: $m=\\boxed{-5}$;\\\\\nWhen $AC=AP$, we have $AP=4\\sqrt{5}$,\\\\\n$\\therefore m=\\boxed{-10+4\\sqrt{5}}$;\\\\\nWhen $CA=CP$, point D is the midpoint of $AP$,\\\\\n$\\therefore AP=2AD=16$,\\\\\n$\\therefore m=\\boxed{6}$.\\\\\nIn summary, when $\\triangle ACP$ is an isosceles triangle, the value of $m$ is \\boxed{-5}, \\boxed{-10+4\\sqrt{5}}, or \\boxed{6}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52424049_220": { -"question": "As shown in the figure, the equation of the straight line $l$ is $y=kx+b$. The line $l$ intersects the $x$ axis at point $A$ and intersects the $y$ axis at point $B(0,12)$. Additionally, the area of $\\triangle AOB$ is $24$. What is the equation of the straight line $l$?", -"image_file_name": "7051872", -"image": [ -"math/52424049_953.png" -], -"solution": "\\textbf{Solution:} Given $B(0,12)$ and the area of $\\triangle AOB = 24$,\\\\\nwe have $\\frac{1}{2} \\cdot OA \\cdot 12 = 24$,\\\\\ntherefore $OA=4$,\\\\\nthus $A(-4,0)$,\\\\\nSubstituting $A(-4,0)$ and $B(0,12)$ into $y=kx+b$ yields: $\\left\\{\\begin{array}{l} -4k+b=0 \\\\ b=12 \\end{array}\\right.$,\\\\\nsolving this we get $\\left\\{\\begin{array}{l} k=3 \\\\ b=12 \\end{array}\\right.$,\\\\\nthus, the equation of line $l$ is: \\boxed{y=3x+12};", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52424049_221": { -"question": "As shown in the figure, the equation of line $l$ is $y=kx+b$. Line $l$ intersects the $x$-axis at point $A$ and intersects the $y$-axis at point $B(0,12)$, and the area ${S}_{\\triangle AOB}=24$. If point $P$ is a point on line $l$ and ${S}_{\\triangle AOP}=36$, determine the coordinates of point $P$.", -"image_file_name": "7051872", -"image": [ -"math/52424049_953.png" -], -"solution": "\\textbf{Solution:} Let $P(m, 3m+12)$, \\\\\nsince $S_{\\triangle AOP} = 36$, \\\\\nthus $\\frac{1}{2} \\cdot OA \\cdot |y_P| = 36$, that is $\\frac{1}{2} \\times 4 \\times |3m + 12| = 36$, \\\\\ntherefore $|3m + 12| = 18$, \\\\\nsolving for $m$, we get $m = 2$ or $m = -10$, \\\\\nthus $P(2, 18)$ or $P(-10, -18)$. \\\\\nHence, the coordinates of point $P$ are $P(2, \\boxed{18})$ or $P(-10, \\boxed{-18})$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52423792_223": { -"question": "It is known, as shown in the figure, that the graph of the linear function $y=kx+b$ intersects the $x$-axis and $y$-axis at points $A(3, 0)$ and $B(0, -4)$, respectively. What is the analytical expression of the linear function $y=kx+b$?", -"image_file_name": "7051872", -"image": [ -"math/52423792_960.png" -], -"solution": "\\textbf{Solution:} Since the graph of the linear function $y=kx+b$ intersects the x-axis at point $A(3,0)$ and the y-axis at point $B(0,-4)$,\\\\\nwe have $\\begin{cases}3k+b=0\\\\ b=-4\\end{cases}$,\\\\\nthus, $\\begin{cases}k=\\frac{4}{3}\\\\ b=-4\\end{cases}$,\\\\\ntherefore, the equation of the linear function is $\\boxed{y=\\frac{4}{3}x-4}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52423792_224": { -"question": "It is known that, as shown in the diagram, the graph of the linear function $y=kx+b$ intersects the $x$-axis and $y$-axis at points $A(3,0)$ and $B(0,-4)$ respectively. Point $M$ is on the $y$-axis, and the area of $\\triangle ABM$ is $7.5$. Write down the coordinates of point $M$ directly.", -"image_file_name": "7051872", -"image": [ -"math/52423792_960.png" -], -"solution": "\\textbf{Solution:} The coordinates of point $M$ are $\\boxed{(0,1)}$ or $\\boxed{(0,-9)}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52423839_226": { -"question": "As shown in the figure, the straight line \\(l\\) is the graph of the linear function \\(y=kx+b\\).", -"image_file_name": "7051872", -"image": [ -"math/52423839_971.png" -], -"solution": "\\textbf{Solution:} Based on the problem, we know that the points $(-2,0)$ and $(2,2)$ lie on the graph of a linear function,\\\\\nSubstituting $(-2,0)$ and $(2,2)$ into $y=kx+b$, we get: $\\begin{cases}-2k+b=0 \\\\ 2k+b=2\\end{cases}$,\\\\\nSolving this, we find: $\\begin{cases}k=\\frac{1}{2} \\\\ b=1\\end{cases}$,\\\\\nTherefore, the equation of the linear function is \\boxed{y=\\frac{1}{2}x+1};", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52423839_227": { -"question": "As shown in the figure, the line $l$ is the graph of the linear function $y=kx+b$. Based on the graph of the function, directly write down the range of $x$ when $y<0$.", -"image_file_name": "7051872", -"image": [ -"math/52423839_971.png" -], -"solution": "\\textbf{Solution:} According to the graph of the function, we can directly state that when $y<0$, the range of $x$ is $\\boxed{x<-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52304489_229": { -"question": "As shown in the diagram, in the Cartesian coordinate system $xOy$, line $AB$ intersects the $x$-axis and $y$-axis at point $A$ and point $B$, respectively, and line $CD$ intersects the $x$-axis and $y$-axis at point $C$ and point $D$, respectively. The equation of line $AB$ is $y=-\\frac{5}{8}x+5$, and the equation of line $CD$ is $y=kx+b\\ (k\\neq 0)$. The two lines intersect at point $E\\left(m, \\frac{10}{3}\\right)$, and $OB:OC=5:4$. What is the equation of line $CD$?", -"image_file_name": "7051872", -"image": [ -"math/52304489_9817.png" -], -"solution": "\\textbf{Solution:} Let's substitute point $E\\left(\\frac{8}{3}, \\frac{10}{3}\\right)$ into $y=-\\frac{5}{8}x+5$, then we get $m=\\frac{8}{3}$, hence the coordinates of point $E$ are $\\left(\\frac{8}{3}, \\frac{10}{3}\\right)$. Setting $x=0$ in $y=-\\frac{5}{8}x+5$, we find $y=5$, hence the coordinates of point $B$ are $(0, 5)$, thus $OB=5$. Since $OB:OC=5:4$, it follows that $OC=4$, hence the coordinates of point $C$ are $(-4, 0)$. Substituting $E\\left(\\frac{8}{3}, \\frac{10}{3}\\right)$, $C(-4, 0)$ into $y=kx+b$ (where $k\\neq 0$), we obtain\n\\[\n\\left\\{\n\\begin{array}{l}\n\\frac{8}{3}k+b=\\frac{10}{3}\\\\\n-4k+b=0\n\\end{array}\n\\right.\n\\]\nSolving the system, we find\n\\[\n\\left\\{\n\\begin{array}{l}\nk=\\frac{1}{2}\\\\\nb=2\n\\end{array}\n\\right.\n\\]\nTherefore, the equation of line $CD$ is $\\boxed{y=\\frac{1}{2}x+2}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52304489_230": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the line $AB$ intersects the $x$-axis and $y$-axis at point $A$ and point $B$, respectively, and the line $CD$ intersects the $x$-axis and $y$-axis at point $C$ and point $D$, respectively. The equation of the line $AB$ is $y=-\\frac{5}{8}x+5$, and the equation of the line $CD$ is $y=kx+b$, where $k\\ne 0$. The two lines intersect at point $E\\left(m, \\frac{10}{3}\\right)$, and $OB:OC=5:4$. The line $CD$ is translated downwards by a certain distance so that the translated line passes through point $A$ and intersects the $y$-axis at point $F$. What is the area of the quadrilateral $AEDF$?", -"image_file_name": "7051872", -"image": [ -"math/52304489_9817.png" -], -"solution": "\\textbf{Solution:} Let $y=-\\frac{5}{8}x+5$ with $y=0$, we obtain $-\\frac{5}{8}x+5=0$. Solving for $x$ yields $x=8$, $\\therefore$ the coordinates of point A are $(8,0)$. Assume the equation of line CD after moving downwards is $y=\\frac{1}{2}x+m$. Substituting the coordinates of point A, we find $m=-4$, $\\therefore$ the equation of line AF is $y=\\frac{1}{2}x-4$, $\\therefore$ the coordinates of point F are $(0,-4)$. $\\because$ the equation of line CD is $y=\\frac{1}{2}x+2$, $\\therefore$ the intersection with the y-axis gives the coordinates of point D as $(0,2)$. Connecting OE,\\\\\n$\\therefore$ the area of quadrilateral $AEDF = S_{\\triangle ODE}+S_{\\triangle OAE}+S_{\\triangle OAF} = \\frac{1}{2}\\times 2\\times \\frac{8}{3}+\\frac{1}{2}\\times 8\\times \\frac{10}{3}+\\frac{1}{2}\\times 8\\times 4 = \\boxed{32}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52304119_232": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line \\(y=-\\frac{4}{3}x+4\\) intersects the \\(x\\) and \\(y\\) axes at points \\(A\\) and \\(B\\), respectively. The coordinates of point \\(C\\) are \\((0, -2)\\), and a line is drawn through \\(A\\) and \\(C\\). What is the equation of the line \\(AC\\)?", -"image_file_name": "7051872", -"image": [ -"math/52304119_999.png" -], -"solution": "\\textbf{Solution:} In the equation $y=-\\frac{4}{3}x+4$, let $y=0$ to find $x=3$. $\\therefore$ The coordinates of point A are $(3,0)$. Assume the equation of line $AC$ is $y=kx+b$. Substituting A$(3,0)$ and C$(0,-2)$ into it, we get: $\\left\\{\\begin{array}{l} 0=3k+b \\\\ b=-2 \\end{array}\\right.$, solving this yields $\\left\\{\\begin{array}{l} k=\\frac{2}{3} \\\\ b=-2 \\end{array}\\right.$. $\\therefore$ The equation of line $AC$ is $\\boxed{y=\\frac{2}{3}x-2}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"52304119_233": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $y=-\\frac{4}{3}x+4$ intersects with the x-axis and y-axis at points $A$ and $B$ respectively. The coordinate of point $C$ is $(0, -2)$, and a line is drawn through points $A$ and $C$. Given that point $P$ is a moving point on line $AB$, and point $Q$ is a moving point on line $AC$, when the quadrilateral formed by vertices $O$, $A$, $P$, $Q$ is a parallelogram, determine the coordinates of point $P$.", -"image_file_name": "7051872", -"image": [ -"math/52304119_999.png" -], -"solution": "\\textbf{Solution:} Let P($m$, $-\\frac{4}{3}m+4$), Q($n$, $\\frac{2}{3}n-2$), and A(3, 0), O(0, 0),\n\n(1) For the parallelogram with diagonals PQ and AO, the midpoints of PQ and AO coincide,\n\\[\n\\therefore \\left\\{\\begin{array}{l}m+n=3\\\\ -\\frac{4}{3}m+4+\\frac{2}{3}n-2=0\\end{array}\\right.,\n\\]\nsolving we get\n\\[\n\\left\\{\\begin{array}{l}m=2\\\\ n=1\\end{array}\\right.,\n\\]\ntherefore the coordinates of point P are ($2$, $\\frac{4}{3}$);\n\n(2) For the parallelogram with diagonals PA and QO, the midpoints of PA and QO coincide,\n\\[\n\\therefore \\left\\{\\begin{array}{l}m+3=n\\\\ -\\frac{4}{3}m+4=\\frac{2}{3}n-2\\end{array}\\right.,\n\\]\nsolving we get\n\\[\n\\left\\{\\begin{array}{l}m=2\\\\ n=5\\end{array}\\right.,\n\\]\ntherefore the coordinates of point P are ($2$, $\\frac{4}{3}$);\n\n(3) For the parallelogram with diagonals PO and QA, the midpoints of PO and QA coincide,\n\\[\n\\therefore \\left\\{\\begin{array}{l}m=n+3\\\\ -\\frac{4}{3}m+4=\\frac{2}{3}n-2\\end{array}\\right.,\n\\]\nsolving we get\n\\[\n\\left\\{\\begin{array}{l}m=4\\\\ n=1\\end{array}\\right.,\n\\]\ntherefore the coordinates of point P are ($4$, $-\\frac{4}{3}$);\n\nIn conclusion, the coordinates of point P are ($2$, $\\frac{4}{3}$) or ($4$, $-\\frac{4}{3}$). Therefore, the coordinates of point P are $\\boxed{(2, \\frac{4}{3})}$ or $\\boxed{(4, -\\frac{4}{3})}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51635755_73": { -"question": "As shown in the figure, in quadrilateral ABCD, $AB\\parallel DC$, $AB=AD$, diagonals AC and BD intersect at point O, AC bisects $\\angle BAD$, and a line is drawn through point C such that $CE\\perp AB$ and intersects the extended line of AB at point E. Quadrilateral ABCD is a rhombus; if $AC=8$, $BD=6$, find the length of CE.", -"image_file_name": "7055653", -"image": [ -"math/51635755_713.png" -], -"solution": "\\textbf{Solution:} \n\nSince quadrilateral ABCD is a rhombus, and $BD=6$, $AC=8$,\\\\\nit follows that $OA=OC=\\frac{1}{2}AC=\\frac{1}{2}\\times 8=4$, and since $BD\\perp AC$, we have $OB=OD=\\frac{1}{2}BD=\\frac{1}{2}\\times 6=3$,\\\\\nthus, $\\angle AOB=90^\\circ$,\\\\\nIn $\\triangle AOB$, by applying the Pythagorean theorem, we find\\\\\n$AB=\\sqrt{OA^2+OB^2}=\\sqrt{4^2+3^2}=5$,\\\\\ntherefore, the area of the rhombus $S=\\frac{1}{2}AC\\cdot BD=\\frac{1}{2}\\times 8\\times 6=24$,\\\\\nsince $CE\\perp AB$,\\\\\nthe area of the rhombus $S=AB\\cdot CE=5CE=24$,\\\\\ntherefore, $CE=\\boxed{\\frac{24}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51615141_75": { -"question": "As shown in the figure, the rectangle $ABCD$ has two sides $AD$, $AB$ with lengths $3$, $8$ respectively, and $E$ is the midpoint of $DC$. The graph of the inverse proportion function $y=\\frac{m}{x}$ (where $x<0$) passes through point $E$, and intersects $AB$ at point $F$. Given that the coordinates of point $B$ are $(-6, 0)$, find the value of $m$ and the expression of the linear function that passes through points $A$ and $E$.", -"image_file_name": "7055653", -"image": [ -"math/51615141_723.png" -], -"solution": "\\textbf{Solution:} Given that the coordinates of point B are $(-6,0)$, $AD=3$, $AB=8$, and $E$ is the midpoint of $CD$, thus $A(-6,8)$ and $E(-3,4)$. Since the graph of the inverse proportion function passes through point $E$, it follows that $m=-3\\times 4=\\boxed{-12}$. Suppose the expression of the linear function passing through points $A$ and $E$ is $y=kx+b(k\\ne 0)$. Then,\n\\[\n\\left\\{\n\\begin{array}{l}\n-6k+b=8, \\\\\n-3k+b=4,\n\\end{array}\n\\right.\n\\]\nfrom which we can solve\n\\[\n\\left\\{\n\\begin{array}{l}\nk=-\\frac{4}{3}, \\\\\nb=0,\n\\end{array}\n\\right.\n\\]\ntherefore, the expression of the linear function is $\\boxed{y=-\\frac{4}{3}x}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51615141_76": { -"question": "As shown in the figure, for the rectangle $ABCD$, the lengths of sides $AD$ and $AB$ are $3$ and $8$, respectively. Point $E$ is the midpoint of $DC$. The graph of the inverse proportional function $y=\\frac{m}{x}$ ($x<0$) passes through point $E$ and intersects $AB$ at point $F$. If $AF-AE=2$, find the expression of the inverse proportional function.", -"image_file_name": "7055653", -"image": [ -"math/51615141_723.png" -], -"solution": "\\textbf{Solution:} Given $\\because AD=3, DE=4$, \\\\\n$\\therefore AE=\\sqrt{AD^2+DE^2}=5$ \\\\\n$\\because AF-AE=2$ \\\\\n$\\therefore AF=7, BF=1$ \\\\\nLet the coordinates of point $E$ be $(a, 4)$, then the coordinates of point $F$ are $(a-3, 1)$,\\\\\n$\\because E, F$ are on the graph of the function $y=\\frac{m}{x} (x<0)$,\\\\\n$\\therefore 4a=a-3$, solving this gives $a=-1$,\\\\\n$\\therefore E(-1, 4)$ \\\\\n$\\therefore m=-1\\times 4=-4$ \\\\\n$\\therefore \\boxed{y=-\\frac{4}{x}} (x<0)$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51614858_79": { -"question": "As shown in the figure, it is known that quadrilateral ABCD is a rhombus, AE $\\perp$ BC at point E, and AF $\\perp$ CD at point F. AE=AF. If $\\angle B=70^\\circ$, find the degree measure of $\\angle EAF$.", -"image_file_name": "7055653", -"image": [ -"math/51614858_730.png" -], -"solution": "\\textbf{Solution:} Since $AE\\perp BC$ at point $E$, and $\\angle B=70^\\circ$, it follows that $\\angle BAE=20^\\circ$. Because $\\triangle ABE\\cong \\triangle ADF$, it follows that $\\angle BAE=\\angle DAF=20^\\circ$, thus $\\angle EAF=180^\\circ-\\angle B-\\angle BAE-\\angle DAF=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614839_82": { -"question": "As shown in the figure, it is known that point $G$ is on the diagonal $AC$ of the square $ABCD$, $GE \\perp BC$ with the foot of the perpendicular as point $E$, and $GF \\perp CD$ with the foot of the perpendicular as point $F$. Quadrilateral $CEGF$ is a square. Find the value of $\\frac{AG}{BE}$.", -"image_file_name": "7055653", -"image": [ -"math/51614839_740.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $CEGF$ is a square, it follows that $\\angle CEG=\\angle B=90^\\circ$ and $\\angle ECG=45^\\circ$. Consequently, $GC=\\sqrt{2}EC$ and $AC=\\sqrt{2}BC$. Therefore, $AG=AC-GC=\\sqrt{2}(BC-EC)=\\sqrt{2}(m-n)$ and $BE=m-n$. Thus, $\\frac{AG}{BE}=\\boxed{\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614832_85": { -"question": " In quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$, where $AO=CO=10$, $BO=DO$, and $AB=12$, $BC=16$. Quadrilateral $ABCD$ is a rectangle. If $\\angle ADF : \\angle FDC=3:2$, and $DF\\perp AC$ at point $E$, what is the measure of $\\angle BDF$?", -"image_file_name": "7055653", -"image": [ -"math/51614832_750.png" -], -"solution": "\\textbf{Solution:}\nGiven that $\\angle ADC=90^\\circ$ and $\\angle ADF : \\angle FDC = 3 : 2$,\nit follows that $\\angle FDC=36^\\circ$.\nGiven also that $DF \\perp AC$,\nit implies that $\\angle DCO=90^\\circ - 36^\\circ = 54^\\circ$.\nSince quadrilateral ABCD is a rectangle,\nit follows that $OC=OD$,\nwhich means $\\angle ODC=54^\\circ$.\nTherefore, $\\angle BDF=\\angle ODC - \\angle FDC=\\boxed{18^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614835_88": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=4$, $AD=10$, point $E$ is on side $AD$, it is known that points $B$ and $E$ are symmetrical with respect to line $l$, line $l$ intersects sides $AD$ and $BC$ at points $M$ and $N$, respectively. Connect $BM$ and $NE$. Quadrilateral $BMEN$ is a rhombus. If $DE=2$, what is the length of $NC$?", -"image_file_name": "7055653", -"image": [ -"math/51614835_760.png" -], -"solution": "\\textbf{Solution:} Let the side length of the rhombus be $x$, then $AM=8-x$. In $\\triangle ABM$, we have $4^2+(8-x)^2=x^2$. Solving for $x$, we obtain $x=5$. $\\therefore NC=\\boxed{5}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614761_91": { -"question": "As shown in the figure, in the square $ABCD$, a rhombus $BDFE$ is constructed with the diagonal $BD$ as its side, such that points $B$, $C$, and $E$ lie on the same line. Connect $BF$ and let it intersect $CD$ at point $G$. It is given that $CG=CE$. If the side length of the square is $4$, what is the area of rhombus $BDFE$?", -"image_file_name": "7055653", -"image": [ -"math/51614761_770.png" -], -"solution": "\\textbf{Solution:} Since the side length of the square $BC=4$,\\\\\nthus $BD=\\sqrt{2}BC=4\\sqrt{2}$, and $DC=BC=4$.\\\\\nThe area of the rhombus $BDFE$ is $S=4\\sqrt{2}\\times 4=16\\sqrt{2}$,\\\\\ntherefore, the area of the rhombus $BDFE$ is $S=\\boxed{16\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614702_94": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD \\parallel BC$, $\\angle B=90^\\circ$, $AB=8\\, \\text{cm}$, $AD=12\\, \\text{cm}$, $BC=18\\, \\text{cm}$. Point $P$ starts moving from point $A$ towards point $D$ at a speed of $1\\, \\text{cm/s}$; simultaneously, point $Q$ starts moving from point $C$ towards point $B$ at a speed of $2\\, \\text{cm/s}$. The movement of point $P$ stops when point $Q$ reaches point $B$. Let the time during which points $P$ and $Q$ are moving be $t\\, \\text{(s)}$. At what value of $t$ will quadrilateral $PQBA$ be a rectangle?", -"image_file_name": "7055653", -"image": [ -"math/51614702_780.png" -], -"solution": "\\paragraph{Solution:} Since point P starts from point A and moves toward point D at a speed of $1\\,\\text{cm/s}$, and point Q starts from point C at the same time, moving toward point B at a speed of $2\\,\\text{cm/s}$,\\\\\nit follows that $AP=t$, $CQ=2t$, $BQ=18-2t$,\\\\\nSince rectangle $PQBA$,\\\\\nit follows that $AP=BQ$,\\\\\nThus, $t=18-2t$,\\\\\nSolving this gives $t=\\boxed{6}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614702_95": { -"question": "As shown in the figure, in quadrilateral $ABCD$, $AD\\parallel BC$, $\\angle B=90^\\circ$, $AB=8\\,cm$, $AD=12\\,cm$, $BC=18\\,cm$. Point $P$ starts moving from point $A$ towards point $D$ at a speed of $1\\,cm/s$; simultaneously, point $Q$ starts moving from point $C$ towards point $B$ at a speed of $2\\,cm/s$. When point $Q$ reaches point $B$, point $P$ also stops moving. Let the time taken for points $P$ and $Q$ to move be $t(s)$. There exists a value of $t$ during the entire motion such that quadrilateral $PQCD$ is a rhombus. Find the value of $t$.", -"image_file_name": "7055653", -"image": [ -"math/51614702_780.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral PQCD is a rhombus, \\\\\ntherefore CQ=CD, \\\\\ntherefore $2t=10$, \\\\\nSolving this, we get $t=\\boxed{5}$. At this time, $DP=AD-AP=12-5=7$, \\\\\ntherefore $DP \\neq CD$, \\\\\ntherefore, the quadrilateral PQCD is not a rhombus.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614698_97": { -"question": "In the rectangle \\(ABCD\\), where \\(AB=6\\) and \\(BC=8\\). The rectangle is folded along \\(BD\\) so that point \\(A\\) coincides with point \\(E\\) (as shown in Figure 1). \\(DE\\) and \\(BC\\) intersect at point \\(F\\), and \\(ABDF\\) forms an isosceles triangle. Determine the length of \\(BF\\).", -"image_file_name": "7055653", -"image": [ -"math/51614698_790.png" -], -"solution": "\\textbf{Solution:} Given that when the rectangle is folded along BD, making point A coincide with point E,\\\\\nthus AD$\\parallel$BC and $\\angle$ADB = $\\angle$EDB,\\\\\nhence $\\angle$ADB = $\\angle$DBF = $\\angle$EDB,\\\\\ntherefore BF=DF,\\\\\nimplying that $\\triangle$BDF is an isosceles triangle;\\\\\nLet BF=DF=x, then CF=8−x,\\\\\nin $\\triangle$DCF, we have CD$^{2}$+CF$^{2}$=DF$^{2}$, that is $6^{2}$+(8−x)$^{2}$=x$^{2}$,\\\\\nsolving this, we get: x= \\boxed{\\frac{25}{4}},\\\\\ntherefore, the length of BF is \\boxed{\\frac{25}{4}}.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51614698_98": { -"question": "In rectangle $ABCD$, $AB=6$, and $BC=8$. The rectangle is folded so that point $B$ coincides with point $D$ (as shown in Figure 2). What is the length of $DG$?", -"image_file_name": "7055653", -"image": [ -"math/51614698_790.png" -], -"solution": "\\textbf{Solution:}\n\\[DG = \\boxed{\\frac{25}{4}}.\\]", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51614632_103": { -"question": "As shown in the figure, it is known that the side length of the square $ABCD$ is $1$, the area of the square $CEFG$ is $S_1$, point $E$ is on side $CD$, and point $G$ is on the extension of side $BC$. Suppose the area of the rectangle with sides $AD$ and $DE$ as adjacent edges is $S_2$ and $S_1=S_2$. What is the length of the line segment $CE$?", -"image_file_name": "7055653", -"image": [ -"math/51614632_810.png" -], -"solution": "\\textbf{Solution:} Let the side length of the square $CEFG$ be $a$,\\\\\nsince the side length of the square $ABCD$ is $1$, therefore $DE=1-a$, \\\\\nsince $S_1=S_2$, therefore $a^2=1\\times(1-a)$, \\\\\ntherefore $a=\\frac{-1+\\sqrt{5}}{2}$ or $a=\\frac{-1-\\sqrt{5}}{2}$ (discard), \\\\\ntherefore $CE=\\boxed{\\frac{-1+\\sqrt{5}}{2}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614498_107": { -"question": "As shown in the figure, within rectangle $ABCD$, point $E$ is on side $CD$. Fold $\\triangle BCE$ along $BE$ so that point $C$ falls on point $F$ on side $AD$. Draw $FG \\parallel CD$ intersecting $BE$ at point $G$, and then connect $CG$. Quadrilateral $CEFG$ is a rhombus. If $AB = 6$ and $AD = 10$, find the area of quadrilateral $CEFG$.", -"image_file_name": "7055653", -"image": [ -"math/51614498_820.png" -], -"solution": "\\textbf{Solution:} Given that the figure is folded, \\\\\nwe have $BF=BC=AD=10$, thus $AF= \\sqrt{BF^2-AB^2}=8$, and $DF=AD-AF=2$. Let $DE=x$, then $EC=CD-DE=6-x=EF$. In $\\triangle EDF$, since $DE^2+DF^2=EF^2$, we have $x^2+2^2=(6-x)^2$. Solving this equation gives $x= \\frac{8}{3}$, hence $EC=6-DE=6- \\frac{8}{3}=\\frac{10}{3}$. Therefore, the area of the rhombus CEFG is $EC \\times FD= \\frac{10}{3} \\times 2= \\boxed{\\frac{20}{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51614495_110": { -"question": "As shown in the diagram, in quadrilateral $ABCD$, diagonal $BD$ bisects $\\angle ABC$. Quadrilateral $ABCD$ is a rhombus. A line through point $A$ is drawn such that $AE \\parallel BD$, intersecting the extension of line $CD$ at point $E$. A line through point $E$ is drawn such that $EF \\perp BC$, intersecting the extension of line $BC$ at point $F$. If $\\angle ABC=45^\\circ$ and $BC=2$, what is the length of $EF$?", -"image_file_name": "7055653", -"image": [ -"math/51614495_831.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rhombus, \\\\\nit follows that AB$\\parallel$DE, \\\\\nsince AE$\\parallel$BD, \\\\\nit follows that quadrilateral ABDE is a parallelogram, \\\\\nhence, AB=DE, \\\\\nsince quadrilateral ABCD is a rhombus, \\\\\nit follows that CD=AB=BC=2, \\\\\nthus, DE=AB=2, \\\\\ntherefore, CE=CD+DE=4, \\\\\nsince $\\triangle$CFE is an isosceles right triangle, \\\\\nit follows that EF=$\\frac{\\sqrt{2}}{2}$CE=$\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614472_112": { -"question": "As shown in the figure, in rhombus $ABCD$, $E$ is the midpoint of $AB$, and $DE\\perp AB$, with $AE=2$. What is the measure of $\\angle ABC$ in degrees?", -"image_file_name": "7055653", -"image": [ -"math/51614472_840.png" -], -"solution": "\\textbf{Solution:} Given that $E$ is the midpoint of $AB$, and $DE \\perp AB$,\\\\\n$\\therefore AD = BD$.\\\\\nAlso, in rhombus $ABCD$, $AD = AB$,\\\\\n$\\therefore AD = AB = BD$,\\\\\n$\\therefore \\triangle ABD$ is an equilateral triangle,\\\\\n$\\therefore \\angle ABD = 60^\\circ$,\\\\\n$\\therefore \\angle ABC = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614472_113": { -"question": "As shown in the diagram, in rhombus $ABCD$, $E$ is the midpoint of $AB$, and $DE \\perp AB$, with $AE=2$. What are the lengths of the diagonals $AC$ and $BD$?", -"image_file_name": "7055653", -"image": [ -"math/51614472_840.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABD$ is an equilateral triangle and $AE=2$,\n\n$\\therefore AB=BD=AD=4$,\n\n$\\therefore DE=AO=\\sqrt{AD^{2}-AE^{2}}=\\sqrt{4^{2}-2^{2}}=2\\sqrt{3}$,\n\n$\\therefore AC=\\boxed{4\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614476_115": { -"question": "As shown in the figure, in rhombus $ABCD$, $AB=4$, $E$ is the midpoint of $BC$, $AE \\perp BC$ at point $E$, $AF \\perp CD$ at point $F$, $CG \\parallel AE$, $CG$ intersects $AF$ at point $H$, and intersects $AD$ at point $G$. What is the area of the rhombus $ABCD$?", -"image_file_name": "7055653", -"image": [ -"math/51614476_850.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect $AC$. Since $E$ is the midpoint of $BC$ and $AE\\perp BC$, it follows that $AB=AC$. Furthermore, since quadrilateral $ABCD$ is a rhombus, we have $AB=BC$. Therefore, $\\triangle ABC$ is an equilateral triangle. Hence, $BE=\\frac{1}{2}BC=2$, and $AE=\\sqrt{AB^{2}-BE^{2}}=\\sqrt{4^{2}-2^{2}}=2\\sqrt{3}$. Consequently, the area of rhombus $ABCD$ is given by $BC\\cdot AE=4\\times 2\\sqrt{3}=\\boxed{8\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614476_116": { -"question": "As shown in the figure, in rhombus $ABCD$, $AB=4$, $E$ is the midpoint of $BC$, $AE\\perp BC$ at point $E$, $AF\\perp CD$ at point $F$, $CG\\parallel AE$, $CG$ intersects $AF$ at point $H$, and intersects $AD$ at point $G$. What is the degree measure of $\\angle CHA$?", -"image_file_name": "7055653", -"image": [ -"math/51614476_850.png" -], -"solution": "\\textbf{Solution:} In equilateral triangle ABC,\\\\\n$\\because AE\\perp BC$,\\\\\n$\\therefore \\angle CAE=\\frac{1}{2}\\angle BAC=\\frac{1}{2}\\times 60^\\circ=30^\\circ.$\\\\\nSimilarly, $\\angle CAF=30^\\circ$.\\\\\n$\\therefore \\angle EAF=\\angle CAE+\\angle CAF=30^\\circ+30^\\circ=60^\\circ$\\\\\n$\\because AE\\parallel CG$\\\\\n$\\therefore \\angle CHA=180^\\circ-\\angle EAF=180^\\circ-60^\\circ=\\boxed{120^\\circ}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51614441_119": { -"question": "As shown in the diagram, extend the side $DC$ of the quadrilateral $ABCD$ to point $E$ such that $CE=DC$. Connect $AE$, which intersects $BC$ at point $F$, and connect $AC$, $BE$. Given that $BF=CF$; if $AB=2$, $AD=4$, and $\\angle AFC=2\\angle D$, what is the area of the quadrilateral $ABCD$?", -"image_file_name": "7055653", -"image": [ -"math/51614441_860.png" -], -"solution": "\\textbf{Solution:} From (1), we know that quadrilateral ABEC is a parallelogram, $\\therefore$ FA=FE, FB=FC. $\\because$ Quadrilateral ABCD is a parallelogram $\\therefore$ $\\angle ABC=\\angle D$. Also $\\because$ $\\angle AFC=2\\angle D$, $\\therefore$ $\\angle AFC=2\\angle ABC$. $\\because$ $\\angle AFC=\\angle ABC+\\angle BAF$, $\\therefore$ $\\angle ABC=\\angle BAF$, $\\therefore$ FA=FB, $\\therefore$ FA=FE=FB=FC, $\\therefore$ AE=BC, $\\therefore$ Quadrilateral ABEC is a rectangle, $\\therefore$ $\\angle BAC=90^\\circ$ $\\therefore$ BC=AD=4, $\\therefore$ $AC=\\sqrt{BC^2-AB^2}=\\sqrt{4^2-2^2}=2\\sqrt{3}$, $\\therefore$ ${S}_{\\square ABCD}=AB\\cdot AC=2\\times 2\\sqrt{3}=\\boxed{4\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53339149_121": { -"question": "As shown in the figure, it is known that in quadrilateral $ABCD$, $AB \\parallel CD$, $BC=AD=4$, $AB=CD=10$, $\\angle DCB=90^\\circ$. $E$ is a point on the side $CD$, with $DE=7$. A moving point $P$ starts from point $A$ and moves towards point $B$ along side $AB$ at a speed of 1 unit per second. Line $PE$ is drawn, and the time taken for point $P$ to move is $t$ seconds. What is the length of $BE$?", -"image_file_name": "7055653", -"image": [ -"math/53339149_871.png" -], -"solution": "\\textbf{Solution:} Since $CD=10$ and $DE=7$, \\\\\nthus $CE=10-7=3$, \\\\\nSince $\\angle DCB=90^\\circ$, \\\\\nhence, in $\\triangle CBE$, $BE=\\sqrt{BC^2+CE^2}=\\sqrt{4^2+3^2}=\\boxed{5}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53339149_122": { -"question": "Given the quadrilateral $ABCD$, where $AB \\parallel CD$, $BC=AD=4$, $AB=CD=10$, and $\\angle DCB=90^\\circ$. Let $E$ be a point on the side $CD$, with $DE=7$. A moving point $P$ starts from point $A$, moving towards point $B$ along side $AB$ at a speed of 1 unit per second. Connect $PE$. Let the time taken for point $P$ to move be $t$ seconds. If $\\triangle BPE$ is a right-angled triangle, find the value of $t$.", -"image_file_name": "7055653", -"image": [ -"math/53339149_871.png" -], -"solution": "\\textbf{Solution:}\n\nSince $BC=AD=4$ and $AB=CD=10$,\n\nit follows that quadrilateral ABCD is a parallelogram.\n\nSince $\\angle DCB=90^\\circ$,\n\nABCD is a rectangle.\n\nTherefore $\\angle A=\\angle D=90^\\circ$.\n\nWhen $\\angle BPE=90^\\circ$, that is $\\angle APE=90^\\circ$,\n\nquadrilateral APED is a rectangle,\n\nthus $AP=DE=7$,\n\nso $t=7\\div 1=\\boxed{7}$ seconds,\n\nWhen $\\angle BEP=90^\\circ$, draw $PF\\perp CD$ at F through point P,\n\nsince $\\angle A=\\angle D=\\angle DFP=90^\\circ$,\n\nquadrilateral ADFP is a rectangle,\n\nhence $DF=AP=t$, $PF=AD=4$,\n\nthus $PE^2=PF^2+EF^2=4^2+(7-t)^2$,\n\nsince in $\\triangle BEP$, $BP^2=BE^2+PE^2$,\n\nit follows that $(10-t)^2=5^2+4^2+(7-t)^2$\n\nSolving yields: $t=\\frac{5}{3}$,\n\nTherefore, when $t=7$ or $t=\\boxed{\\frac{5}{3}}$, $\\triangle BPE$ is a right-angled triangle.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51420070_124": { -"question": "As shown in the figure, rectangle $ABCD$ is folded along $EF$, causing point $D$ to coincide with point $B$. If $\\angle AEB = 40^\\circ$, what is the degree measure of $\\angle BFE$?", -"image_file_name": "7055653", -"image": [ -"math/51420070_880.jpg" -], -"solution": "\\textbf{Solution:} Given the method,\\\\\n$\\because \\angle AEB=40^\\circ$,\\\\\n$\\therefore \\angle BED=140^\\circ$,\\\\\n$\\therefore$ From the property of folding: $\\angle BEF=\\angle DEF=70^\\circ$,\\\\\n$BG=CD$, $GF=CF$, $\\angle G=\\angle D=90^\\circ$,\\\\\n$\\because$ Quadrilateral ABCD is a rectangle,\\\\\n$\\therefore AD\\parallel BC$, $CD=AB$, $BC=AD$,\\\\\n$\\therefore \\angle BFE=\\angle DEF=\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51420070_125": { -"question": "As shown in the figure, rectangle $ABCD$ is folded along $EF$ so that point $D$ coincides with point $B$. Given $AB = 6$ and $AD = 18$, find the length of $CF$.", -"image_file_name": "7055653", -"image": [ -"math/51420070_880.jpg" -], -"solution": "\\textbf{Solution:} Given that $BC=AD=18$, \\\\\nhence $BF=18-CF$, \\\\\nsince $\\angle G=90^\\circ$, \\\\\nit follows that $BG^2+GF^2=BF^2$, \\\\\ngiven that $BG=CD=AB=6$ and $GF=CF$, \\\\\nwe get $6^2+CF^2=(18-CF)^2$, \\\\\nthus, $CF=\\boxed{8}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51510416_127": { -"question": "As shown in the figure, in the rhombus $ABCD$, $CE \\perp AB$ at point $E$. If $CE=4$ and $AE=2BE$, what is the perimeter of the rhombus $ABCD$?", -"image_file_name": "7055653", -"image": [ -"math/51510416_890.png" -], -"solution": "\\textbf{Solution:} Given that $AE=2BE$, \\\\\nit follows that $AB=3BE$. \\\\\nSince quadrilateral $ABCD$ is a rhombus, \\\\\nwe have $AB=BC=CD=AD=3BE$. \\\\\nIn $\\triangle BCE$, we have $BE^2+CE^2=BC^2$, \\\\\ntherefore $BE^2+4^2=(3BE)^2$, solving this gives $BE=\\sqrt{2}$ (neglect the negative value), \\\\\nthus $AB=BC=CD=AD=3BE=3\\sqrt{2}$, \\\\\nhence the perimeter of rhombus $ABCD$ is $3\\sqrt{2}\\times 4=\\boxed{12\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Circle" -} -}, -"51510410_131": { -"question": "As shown in the figure, within quadrilateral $ABCD$, point $F$ is the midpoint of side $AD$, and side $BC$ is extended to point $E$ such that $CE = \\frac{1}{2}BC$. When connecting $DE$ and $CF$, the quadrilateral $CEDF$ forms a parallelogram. Given that $AB = 4$, $AD = 6$, and $\\angle B = 60^\\circ$, what is the length of $DE$?", -"image_file_name": "7055653", -"image": [ -"math/51510410_904.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, draw $DH\\perp BE$ at point H. In quadrilateral $ABCD$, since $\\angle B=60^\\circ$ and $AB\\parallel DC$, it follows that $\\angle B=\\angle DCE$, hence $\\angle DCE=60^\\circ$. Since $AB=4$, it follows that $CD=AB=4$, thus $CH=\\frac{1}{2}CD=2$, and $DH=2\\sqrt{3}$. In quadrilateral $CEDF$, $CE=DF=\\frac{1}{2}AD=3$, thus $EH=1$. Therefore, in $\\triangle DHE$, according to the Pythagorean theorem, $DE=\\sqrt{(2\\sqrt{3})^2+1^2}=\\sqrt{13}$. Hence, the length of $DE$ is $\\boxed{\\sqrt{13}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510300_134": { -"question": "As shown in the figure, it is known that quadrilateral $ABCD$ is a rhombus, $E$ is a point moving on diagonal $AC$, $DE$ is extended to intersect the extension line of $AB$ at point $F$, and $BE$ is connected. $\\angle AFD = \\angle EBC$. If $DE = EC$ and $BE \\perp AF$, find the degree measure of $\\angle DAB$?", -"image_file_name": "7055653", -"image": [ -"math/51510300_910.png" -], -"solution": "\\textbf{Solution:} Given rhombus ABCD, it follows that $\\angle DAB = \\angle DCB$ and DC$\\parallel$AB implies $\\angle CBF = \\angle DCB$. From (1) it has been proven that $\\triangle DCE \\cong \\triangle BCE$, thus $\\angle EDC = \\angle EBC$ and $\\angle DCE = \\angle BCE$. Since DE=EC, it results in $\\angle EDC = \\angle ECD$, hence $\\angle EDC = \\angle ECD = \\angle EBC = \\angle BCE$. Let $\\angle EDC = \\angle ECD = \\angle EBC = \\angle BCE = x$, thus $\\angle CBF = \\angle DCB = 2x$. Given BE$\\perp$AF, it leads to $\\angle CBF + \\angle EBC = 2x + x = 90^\\circ$, consequently $x = 30^\\circ$, which means $\\angle DAB = \\angle DCB = 2x = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510300_135": { -"question": "Given that quadrilateral $ABCD$ is a rhombus, $E$ is a moving point on the diagonal $AC$. Extend line $DE$ to intersect the extension of line $AB$ at point $F$, and connect $BE$. If $\\angle DAB=90^\\circ$ and $\\triangle BEF$ is an isosceles triangle, find the measure of $\\angle EFB$.", -"image_file_name": "7055653", -"image": [ -"math/51510300_910.png" -], -"solution": "\\textbf{Solution:}\n\n(1) When $F$ is on the extension line of $AB$, as shown in the figure, if $\\angle DAB=90^\\circ$, the rhombus $ABCD$ is a square, $\\therefore \\angle DAB=\\angle ADC=90^\\circ$, $DC\\parallel AB$, $\\therefore \\angle CDF=\\angle EFB$, $\\because \\triangle BEF$ is an isosceles triangle, $\\therefore \\angle EFB=\\angle FEB=\\angle CDF$, let $\\angle EFB=\\angle FEB=\\angle CDF=y$, $\\therefore \\angle ABE=2y$, $\\angle CDF=y$. Combining the conclusions from (1), it is easy to prove that $\\triangle ADE\\cong \\triangle ABE$, $\\therefore \\angle ADE=\\angle ABE$, $\\therefore 90^\\circ-y=2y$, $\\therefore \\boxed{y=30^\\circ}$, $\\therefore \\angle EFB=30^\\circ$;\n\n(2) When $F$ is on the line segment $AB$, as shown in the figure, if $\\angle DAB=90^\\circ$, the rhombus $ABCD$ is a square, $\\therefore \\angle DAB=\\angle ADC=90^\\circ$, $DC\\parallel AB$, $\\therefore \\angle CDF=\\angle AFD$, $\\because \\triangle BEF$ is an isosceles triangle, $\\therefore \\angle EBF=\\angle BEF$, let $\\angle EFB=\\angle FEB=\\angle CDF=y$, $\\therefore \\angle CBE=90^\\circ-y$, $\\angle CDF=\\angle AFD=2y$. Combining the conclusions from (1), $\\triangle CDE\\cong \\triangle CBE$, $\\therefore \\angle CDE=\\angle CBE=90^\\circ-y$, $\\therefore 2y=90^\\circ-y$, $\\therefore y=30^\\circ$, $\\therefore \\angle EFB=180^\\circ-30^\\circ-30^\\circ=\\boxed{120^\\circ}$,\n\nIn summary, $\\angle EFB=30^\\circ$ or $\\boxed{120^\\circ}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510287_137": { -"question": "As shown in the figure, it is known that the area of the rhombus ABCD is $2\\sqrt{6}$, and the length of the diagonal AC is $2\\sqrt{3}$. What is the length of the diagonal BD?", -"image_file_name": "7055653", -"image": [ -"math/51510287_922.png" -], -"solution": "\\textbf{Solution:} Since the area of the rhombus $ABCD$ is $2\\sqrt{6}$ and the length of diagonal $AC$ is $2\\sqrt{3}$, \\\\\n\\therefore $\\frac{1}{2}\\times 2\\sqrt{3}\\times BD=2\\sqrt{6}$, solving this we get $BD=\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51510287_138": { -"question": "As shown in the figure, it is known that the area of the rhombus ABCD is $2\\sqrt{6}$, and the length of the diagonal AC is $2\\sqrt{3}$. Find the perimeter of the rhombus ABCD.", -"image_file_name": "7055653", -"image": [ -"math/51510287_922.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince quadrilateral ABCD is a rhombus, \\\\\nit follows that $AC\\perp BD$, $AO=CO$, $BO=DO$\\\\\nSince $AC=2\\sqrt{3}$, $BD=2\\sqrt{2}$ \\\\\nit follows that $AO=\\sqrt{3}$, $BO=\\sqrt{2}$\\\\\nTherefore, $AB=\\sqrt{BO^2+AO^2}=\\sqrt{5}$\\\\\nThus, the perimeter of the rhombus ABCD is $4\\sqrt{5}=\\boxed{4\\sqrt{5}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53232760_141": { -"question": "As shown in the figure, in $\\triangle ABC$, where $AB=AC=4$, $D$ and $E$ are the midpoints of $AB$ and $AC$, respectively. Connect $CD$, and draw $EF \\parallel DC$ through $E$ to intersect the extension of $BC$ at $F$; $DE=CF$; If $\\angle B=60^\\circ$, find the length of $EF$.", -"image_file_name": "7055653", -"image": [ -"math/53232760_931.png" -], -"solution": "\\textbf{Solution:} Given $\\because AB=AC=4$, $\\angle B=60^\\circ$,\\\\\n$\\therefore BC=AB=AC=4$,\\\\\nAlso, $\\because D$ is the midpoint of $AB$,\\\\\n$\\therefore CD\\perp AB$,\\\\\n$\\therefore$ in $\\triangle BCD$,\\\\\n$BD= \\frac{1}{2}AB=2$,\\\\\n$\\therefore CD= \\sqrt{BC^{2}-BD^{2}}=2\\sqrt{3}$,\\\\\n$\\because$ quadrilateral $CDEF$ is a parallelogram,\\\\\n$\\therefore EF=CD=2\\sqrt{3}$,\\\\\nThus, the length of $EF$ is $\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51435842_144": { -"question": "As shown in the figure, in rhombus $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. Line $DE$ is drawn through point $D$ such that $DE \\parallel AC$ and $DE = OC$, and $CE$ is then connected. Quadrilateral $OCED$ is a rectangle. Line $AE$ is drawn and intersects $OD$ at point $F$. If the side length of rhombus $ABCD$ is $6$ and $\\angle ABC = 60^\\circ$, find the length of $AE$.", -"image_file_name": "7055653", -"image": [ -"math/51435842_940.png" -], -"solution": "\\textbf{Solution:}\\\\\n$\\because$ The side length of rhombus ABCD is 6,\\\\\n$\\therefore AB=BC=CD=AD=6$, $BD\\perp AC$, $AO=CO=\\frac{1}{2}AC$\\\\\n$\\because \\angle ABC=60^\\circ$, $AB=BC$\\\\\n$\\therefore \\triangle ABC$ is an equilateral triangle\\\\\n$\\therefore AC=AB=6$\\\\\n$\\because$ In $\\triangle AOD$, $BD\\perp AC$, $AD=6$, $AO=3$,\\\\\n$\\therefore OD=\\sqrt{AD^2-AO^2}=3\\sqrt{3}$\\\\\n$\\because$ Quadrilateral OCED is a rectangle,\\\\\n$\\therefore CE=OD=3\\sqrt{3}$\\\\\n$\\because$ In $\\triangle ACE$, $AC=6$, $CE=3\\sqrt{3}$,\\\\\n$\\therefore AE=\\sqrt{AC^2+CE^2}=\\sqrt{6^2+(3\\sqrt{3})^2}=\\boxed{3\\sqrt{7}}$", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"51212662_28": { -"question": "Fold the rectangle $ABCD$ as shown in the diagram, with $BE$, $EG$, and $FG$ being the fold lines. If vertices $A$, $C$, $D$ all fall on point $O$, and points $B$, $O$, $G$ are on the same straight line, while points $E$, $O$, $F$ are on another straight line, what is the value of $\\frac{EG}{BE}$?", -"image_file_name": "7056495", -"image": [ -"math/51212662_270.png" -], -"solution": "\\textbf{Solution:} From the context, we know that the value of $\\frac{EG}{BE}$ is \\boxed{\\frac{\\sqrt{2}}{2}}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51212662_29": { -"question": "Fold rectangle $ABCD$ as shown in the figure, with $BE$, $EG$, $FG$ being the creases. If vertices $A$, $C$, $D$ all coincide at point $O$, and points $B$, $O$, $G$ lie on the same line, while points $E$, $O$, $F$ lie on another line. If $AD=4\\sqrt{2}$, what is the area of quadrilateral $BEGF$?", -"image_file_name": "7056495", -"image": [ -"math/51212662_270.png" -], -"solution": "\\textbf{Solution:} Hence, the area of the quadrilateral $BEGF$ is $\\boxed{9\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"55452515_65": { -"question": "As shown in the figure, points A, B, C, and D are on the circle, where $\\overset{\\frown}{AB}=\\overset{\\frown}{AD}=\\overset{\\frown}{CD}$. The lines BD and AC intersect at point E. As shown in figure 1, if AE=4 and CE=8, what is the length of AB?", -"image_file_name": "7056495", -"image": [ -"math/55452515_621.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\overset{\\frown}{AB}=\\overset{\\frown}{AD}=\\overset{\\frown}{CD}$, $\\therefore \\angle ABD=\\angle CBD=\\angle ACD=\\angle ACB$, \\\\\nFurthermore, $\\because \\angle BAE=\\angle CAB$, \\\\\n$\\therefore \\triangle ABE \\sim \\triangle ACB$, \\\\\n$\\therefore \\frac{AE}{AB}=\\frac{AB}{AC}$, that is, $\\frac{4}{AB}=\\frac{AB}{12}$ \\\\\n$\\therefore AB=\\boxed{4\\sqrt{3}}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"55452515_66": { -"question": "As shown in the figure, points A, B, C, and D are on the circle, with $ \\overset{\\frown}{AB}=\\overset{\\frown}{AD}=\\overset{\\frown}{CD}$. Line BD intersects AC at point E. As shown in figure 2, the bisector of $\\angle ACB$ intersects BD at point M and AB at point N. If point N is the midpoint of AB, and BE equals DM, what is the value of $\\frac{DM}{BM}$?", -"image_file_name": "7056495", -"image": [ -"math/55452515_621.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince CN bisects $\\angle ACB$, it follows that NH=NF, \\\\\nSince AN=BN, it follows that Rt$\\triangle ANH \\cong$ Rt$\\triangle BNF$, \\\\\nHence, $\\angle BAC = \\angle ABC$, \\\\\nTherefore, $\\overset{\\frown}{BC} = \\overset{\\frown}{AC} = 2\\overset{\\frown}{CD} = 2\\overset{\\frown}{AD} = 2\\overset{\\frown}{AB}$, \\\\\nTherefore, $\\angle ABD = \\angle CBD = \\angle ACB = 36^\\circ$, \\\\\n$\\angle BAC = \\angle BDC = 72^\\circ$, \\\\\nTherefore, $\\angle DCM = 54^\\circ$, $\\angle DMC = 54^\\circ$, \\\\\nThus, CD=DM, \\\\\nSince $\\angle BDC = 72^\\circ$, $\\angle ACD = 36^\\circ$, it follows that $\\angle DEC = 72^\\circ$, \\\\\nHence, CD=CE, \\\\\nSince $\\angle CBD = \\angle ACB$, it follows that BE=CE, \\\\\nTherefore, BE=CE=CD=DM. \\\\\nLet DE=1, CD=x, then BE=CE=CD=x. \\\\\nIt is easy to see that $\\triangle DCE \\sim \\triangle DBC$, hence $\\frac{DE}{CD} = \\frac{CD}{BD}$, \\\\\nTherefore, $\\frac{1}{x} = \\frac{x}{1+x}$, \\\\\nSolving this obtains $x=\\frac{1+\\sqrt{5}}{2}$ ($x>0$). \\\\\nSince BE=DM, it follows that BM=DE. \\\\\nTherefore, $\\frac{DM}{BM}=\\frac{DM}{DE}=\\frac{CD}{DE}=\\boxed{\\frac{1+\\sqrt{5}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212753_73": { -"question": "As shown in the figure, within $\\triangle ABC$, points E and F are located on side AD and diagonal AC respectively. Line segment EF is drawn, and $\\angle AEF = \\angle CAB$. Prove that: $\\triangle AEF \\sim \\triangle ABC$.", -"image_file_name": "7056495", -"image": [ -"math/51212753_680.png" -], -"solution": "\\textbf{Solution:} Proof: \\\\\n$\\because$ Quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore$ AB $\\parallel$ CD, \\\\\n$\\therefore$ $\\angle$CAB $=$ $\\angle$ACD, \\\\\n$\\because$ $\\angle$AEF $=$ $\\angle$CAB, \\\\\n$\\therefore$ $\\angle$AEF $=$ $\\angle$ACD, \\\\\n$\\because$ $\\angle$EAF $=$ $\\angle$CAD, \\\\\n$\\therefore$ \\boxed{$\\triangle AEF \\sim \\triangle ACD$}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212753_74": { -"question": "As shown in the diagram, in square $ABCD$, points $E$ and $F$ are respectively on side $AD$ and diagonal $AC$. Connect $EF$, and $\\angle AEF = \\angle CAB$, $\\triangle AEF \\sim \\triangle ACD$; if $AF = 2CF$, $AE = 4$, $DE = 5$, find the length of $AC$?", -"image_file_name": "7056495", -"image": [ -"math/51212753_680.png" -], -"solution": "\\textbf{Solution:} Given the problem statement,\\\\\n$\\because \\triangle AEF\\sim \\triangle ACD$,\\\\\n$\\therefore \\frac{AE}{AC}=\\frac{AF}{AD}$.\\\\\n$\\because AF=2CF$,\\\\\n$\\therefore AF=\\frac{2}{3}AC$.\\\\\n$\\because AE=4, DE=5$,\\\\\n$\\therefore \\frac{4}{AC}=\\frac{\\frac{2}{3}AC}{4+5}$.\\\\\n$\\therefore \\frac{2}{3}AC^2=36$.\\\\\nSolving gives $AC=\\boxed{3\\sqrt{6}}$ (Negative values discarded).", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212669_77": { -"question": "As shown in the figure, $AF$ and $AG$ are the altitudes of $\\triangle ABC$ and $\\triangle ADE$, respectively, with $\\angle BAF = \\angle DAG$. $\\triangle ABC \\sim \\triangle ADE$; If $DE = 3$ and $\\frac{AD}{AB} = \\frac{2}{5}$, find the length of $BC$.", -"image_file_name": "7056495", -"image": [ -"math/51212669_693.png" -], -"solution": "\\textbf{Solution:} Since $\\triangle ABC\\sim \\triangle ADE$,\\\\\n$\\therefore \\frac{AD}{AB}=\\frac{DE}{BC}$,\\\\\nand given $\\frac{AD}{AB}=\\frac{2}{5}$, $DE=3$,\\\\\n$\\therefore \\frac{2}{5}=\\frac{3}{BC}$,\\\\\n$\\therefore BC=\\boxed{\\frac{15}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212675_79": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=8$, $\\angle B=90^\\circ$, point $P$ is a moving point on side $AB$, draw $PD\\parallel AC$ intersecting $BC$ at $D$, and draw $PE\\parallel BC$ intersecting $AC$ at $E$. When point $P$ is the midpoint of $AB$, $PE=3$. What is the length of side $BC$?", -"image_file_name": "7056495", -"image": [ -"math/51212675_703.png" -], -"solution": "\\textbf{Solution:} Given $\\because PE\\parallel BC$, and point P is the midpoint of AB\\\\\n$\\therefore \\frac{AE}{EC}=\\frac{AP}{PB}=1$\\\\\n$\\therefore AE=EC$\\\\\nThis means E is the midpoint of AC\\\\\n$\\therefore$ PE is the median\\\\\n$\\therefore BC=2PE=2\\times 3=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212675_81": { -"question": "As shown in the figure, in $\\triangle ABC$, $AB=8$, $\\angle B=90^\\circ$. Point $P$ is a moving point on side $AB$, and through point $P$, $PD \\parallel AC$ intersects $BC$ at $D$, and $PE \\parallel BC$ intersects $AC$ at $E$. When point $P$ is the midpoint of $AB$, $PE=3$. $\\triangle APE \\sim \\triangle PBD$; find the value of $AP$ for which the quadrilateral $PDCE$ is a rhombus.", -"image_file_name": "7056495", -"image": [ -"math/51212675_703.png" -], -"solution": "\\textbf{Solution:} Let $AP=x$, then $BP=8-x$\\\\\nSince $PE\\parallel BC$, $PD\\parallel AC$\\\\\nTherefore, quadrilateral PDCE is a parallelogram\\\\\nTherefore, $CD=PE$\\\\\nSince $\\triangle APE\\sim \\triangle PBD$\\\\\nTherefore, $\\frac{AP}{PB}=\\frac{PE}{BD}$\\\\\ni.e., $\\frac{x}{8-x}=\\frac{PE}{6-CD}$\\\\\n$\\frac{x}{8-x}=\\frac{PE}{6-PE}$\\\\\nTherefore, $PE=\\frac{3}{4}x$\\\\\nTherefore, $CD=PE=\\frac{3}{4}x$\\\\\nTherefore, $BD=BC-CD=6-\\frac{3}{4}x$\\\\\nWhen $PE=PD$, parallelogram PDCE becomes a rhombus.\\\\\nBy the Pythagorean theorem, $PB^{2}+BD^{2}=PD^{2}$\\\\\nTherefore, $(8-x)^{2}+(6-\\frac{3}{4}x)^{2}=(\\frac{3}{4}x)^{2}$\\\\\nSimplify to get $x^{2}-25x+100=0$\\\\\nSolving this equation gives $x_{1}=5$, $x_{2}=20$\\\\\n$x=20>8$ is not feasible, disregard it.\\\\\nTherefore, when $AP=5$, quadrilateral PDCE is a rhombus.\\\\\nSolutions 2, 3, and 4 are omitted, as they are identical to Solution 1.\\\\\nTherefore, when $AP=\\boxed{5}$, quadrilateral PDCE is a rhombus.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51212783_84": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of $\\odot O$, the bisector of the acute angle $\\angle DAB$ intersects $\\odot O$ at point $C$. Draw $CD \\perp AD$ at $D$, and the extension of line $CD$ intersects the extension of $AB$ at point $E$. The line $CD$ is the tangent of $\\odot O$; when $AB=2BE$, and $CE=\\sqrt{3}$, find the length of $AD$.", -"image_file_name": "7056495", -"image": [ -"math/51212783_710.png" -], -"solution": "\\textbf{Solution}: Since diameter AB $= 2$BE,\\\\\nit follows that OE $= 2$OC,\\\\\nIn $\\triangle EOC$, let CO $= x$, thus OE $= 2x$,\\\\\nBy the Pythagorean theorem: CE $= \\sqrt{3}x$,\\\\\nAlso, since CE $= \\sqrt{3}$, it follows that $x = 1$, hence OC $= 1$,\\\\\nSince OC $\\parallel$ AD, it follows that $\\triangle EOC \\sim \\triangle EAD$,\\\\\nHence $\\frac{OC}{AD} = \\frac{OE}{AE}$, that is, $\\frac{1}{AD} = \\frac{2}{3}$,\\\\\nSolving gives $AD = \\boxed{\\frac{3}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51209236_87": { -"question": "As shown in the figure, rectangle $ABCD$, $BF \\perp AC$ intersects $CD$ at point $E$, and intersects the extension line of $AD$ at point $F$. $AB^{2} = BC \\cdot AF$. When $\\frac{BC}{AB} = \\frac{2}{3}$ and $DF = 5$, find the length of $AC$.", -"image_file_name": "7056495", -"image": [ -"math/51209236_720.png" -], -"solution": "\\textbf{Solution:}\nGiven that,\n\\begin{align*}\n\\because \\frac{BC}{AB} &= \\frac{2}{3}, \\\\\n\\therefore \\text{let} BC &= 2x, AB = 3x, \\\\\n\\because AB^2 &= BC \\cdot AF, \\\\\n\\therefore (3x)^2 &= 2x(2x + 5), \\\\\n\\therefore x_1 &= 0, x_2 = 2, \\\\\n\\therefore BC &= 4, AB = 6, \\\\\n\\therefore AC &= \\sqrt{6^2 + 4^2} = 2\\sqrt{13}.\n\\end{align*}\nThus, the length of $AC$ is $\\boxed{2\\sqrt{13}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51209242_90": { -"question": "As shown in Figure 1, it is known that $\\triangle ABC$, $\\angle CAB = 45^\\circ$, $AB = 7$, $AC = 3\\sqrt{2}$, and $CD \\perp AB$ at point D. Point E is a moving point on side BC, a circle $\\odot O$ is drawn with DE as the diameter, intersecting BC at F, and intersecting AB at G. Connect DF and FG. $\\angle BCD = \\angle FDB$. When point E is on segment BF, and $\\triangle DFG$ is an isosceles triangle, find the length of DG.", -"image_file_name": "7056495", -"image": [ -"math/51209242_731.png" -], -"solution": "\\textbf{Solution:}\n\n(i) When $DF = DG$,\n\n$\\because \\angle CAB = 45^\\circ$, $CD \\perp AB$, $AC = 3\\sqrt{2}$,\n\n$\\therefore AD = CD = 3$,\n\n$\\because AB = 7$,\n\n$\\therefore BD = 7 - 3 = 4$,\n\n$\\therefore BC = \\sqrt{3^2 + 4^2} = 5$,\n\n$\\therefore DF = \\frac{3 \\times 4}{5} = \\frac{12}{5}$,\n\n$\\therefore DG = \\frac{12}{5}$,\n\n(ii) When $DF = FG$, draw $FH \\perp BD$ intersecting $BD$ at point $H$,\n\n$\\therefore \\triangle DFH \\sim \\triangle CBD$,\n\n$\\therefore \\frac{DH}{CD} = \\frac{DF}{CB}$,\n\n$\\therefore DH = DF \\times \\frac{3}{5} = \\frac{12}{5} \\times \\frac{3}{5} = \\frac{36}{25}$,\n\n$\\therefore DG = 2DH = \\frac{72}{25}$,\n\n(iii) When $FG = DG$, $\\angle 1 = \\angle 2$,\n\n$\\because \\angle 1 + \\angle 3 = \\angle 2 + \\angle 4 = 90^\\circ$,\n\n$\\therefore \\angle 3 = \\angle 4$,\n\n$\\therefore FG = GB = DG$,\n\n$\\therefore DG = \\frac{1}{2}BD = 2$,\n\nHence, the lengths of $DG$ are $\\boxed{\\frac{12}{5}}$, $\\boxed{\\frac{72}{25}}$, $\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51209242_91": { -"question": "As shown in Figure 1, given $\\triangle ABC$ with $\\angle CAB=45^\\circ$, $AB=7$, and $AC=3\\sqrt{2}$, $CD\\perp AB$ at point D. E is a moving point on side BC. A circle $\\odot O$ with diameter DE intersects BC at point F and AB at point G. Lines DF and FG are drawn. As shown in Figure 2, another intersection point of $\\odot O$ and CD is P. If ray AP passes through point F, find the value of $\\frac{AP}{DE}$.", -"image_file_name": "7056495", -"image": [ -"math/51209242_731.png" -], -"solution": "\\textbf{Solution:}\\\\\n(1) Since quadrilateral PDEF is a cyclic quadrilateral inside circle O,\\\\\ntherefore $\\angle APD = \\angle DEF$,\\\\\nsince $\\angle APD + \\angle PAD = \\angle DEF + \\angle EDF = 90^\\circ$,\\\\\ntherefore $\\angle PAD = \\angle EDF$.\\\\\n(2) Connect PG,\\\\\nsince $\\angle PAD = \\angle EDF$,\\\\\n$\\angle ADP = \\angle DFE = 90^\\circ$,\\\\\ntherefore $\\triangle ADP \\sim \\triangle DFE$,\\\\\ntherefore $\\frac{AP}{DE} = \\frac{AD}{DF} = 3 \\times \\frac{5}{12} = \\boxed{\\frac{5}{4}}$.\\\\\nSince $\\angle PDG = 90^\\circ$,\\\\\ntherefore PG is a diameter,\\\\\ntherefore $\\angle PFG = 90^\\circ$,\\\\\nsince $\\angle FPG = \\angle FDG = \\angle BCD$,\\\\\ntherefore $\\triangle CDB \\sim \\triangle PFG$,\\\\\ntherefore $\\frac{FG}{FG} = \\frac{CB}{DB} = \\frac{5}{4}$,\\\\\ntherefore $\\frac{DE}{FG} = \\frac{CB}{DB} = \\frac{5}{4}$,\\\\\ntherefore $\\frac{AP}{FG} = \\frac{AP}{DE} \\cdot \\frac{DE}{FG} = \\frac{5}{4} \\times \\frac{5}{4} = \\frac{25}{16}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368402_93": { -"question": "In $\\triangle ABC$, $\\angle CAB=90^\\circ$, $AC=AB$. If point $D$ lies on $AC$, and $BD$ is connected and rotated $90^\\circ$ clockwise around point $B$ to obtain $BE$, and $CE$ is connected and intersects $AB$ at point $F$, as shown in Figure 1. If $\\angle ABE=75^\\circ$ and $BD=4$, what is the length of $AC$?", -"image_file_name": "7056495", -"image": [ -"math/51368402_740.png" -], -"solution": "\\textbf{Solution:} Draw DG$\\perp$BC from D with the foot as G, as shown in Fig. 1:\\\\\n$\\because$ Rotating BD $90^\\circ$ clockwise around point B yields BE,\\\\\n$\\therefore$ $\\angle$EBD$=90^\\circ$,\\\\\n$\\because$ $\\angle$ABE$=75^\\circ$,\\\\\n$\\therefore$ $\\angle$ABD$=15^\\circ$,\\\\\n$\\because$ $\\angle$ABC$=45^\\circ$,\\\\\n$\\therefore$ $\\angle$DBC$=30^\\circ$,\\\\\n$\\therefore$ in right $\\triangle$BDG, we have $DG=\\frac{1}{2}BD=2$, $BG=\\sqrt{3}DG=2\\sqrt{3}$,\\\\\n$\\because$ $\\angle$ACB$=45^\\circ$,\\\\\n$\\therefore$ in right $\\triangle$DCG, CG$=DG=2$,\\\\\n$\\therefore$ BC$=BG+CG=2+2\\sqrt{3}$,\\\\\n$\\therefore$ AC$=\\frac{\\sqrt{2}}{2}BC=\\sqrt{2}+\\sqrt{6}$;\\\\\nThus, the length of AC is $\\boxed{\\sqrt{2}+\\sqrt{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368402_95": { -"question": "In $\\triangle ABC$, $\\angle CAB=90^\\circ$, and $AC=AB$. Let point $D$ be a point on $AC$, and connect $BD$. Rotate $BD$ $90^\\circ$ clockwise around point $B$ to get $BE$, and connect $CE$ to intersect $AB$ at point $F$. As shown in figure 3, if $AB=4$ and $D$ is the midpoint of $AC$, rotate $\\triangle ABD$ around point $B$ to get $\\triangle A'BD'$. Connect $A'C$ and $A'D$. When $A'D+ \\frac{\\sqrt{2}}{2} A'C$ is minimized, find $S_{\\triangle A'BC}$.", -"image_file_name": "7056495", -"image": [ -"math/51368402_740.png" -], -"solution": "\\textbf{Solution:} Let $AB=a$, then $BC=\\sqrt{2}a$. Take the midpoint $N$ of $BC$, connect $A'D$, $A'C$, and $A'N$, also connect $DN$. By rotation, we know $A'B=AB=a$, \\\\\n$\\because \\frac{A'B}{BN}=\\frac{a}{\\frac{\\sqrt{2}}{2}a}=\\sqrt{2}$, $\\frac{BC}{A'B}=\\frac{\\sqrt{2}a}{a}=\\sqrt{2}$, \\\\\n$\\therefore \\frac{A'B}{BN}=\\frac{BC}{A'B}=\\sqrt{2}$. Also, $\\angle A'BN=\\angle CBA'$, \\\\\n$\\therefore \\triangle A'BN\\sim \\triangle CBA'$, \\\\\n$\\therefore \\frac{A'N}{A'C}=\\frac{A'B}{BC}=\\frac{\\sqrt{2}}{2}$, \\\\\n$\\therefore A'N=\\frac{\\sqrt{2}}{2}A'C$. According to rotation and the principle that the shortest distance between two points is a straight line, $A'D+\\frac{\\sqrt{2}}{2}A'C$ is minimized, which means $A'D+A'N$ is minimized. At this point, $D$, $A'$, $N$ are collinear, that is, $A'$ is on the line segment $DN$. Assume at this moment $A'$ falls at the position $A''$. Draw $A''F\\perp AB$ at $F$, connect $AA''$, \\\\\n$\\because D$, $N$ are the midpoints of $AC$, $BC$ respectively, \\\\\n$\\therefore DN$ is the median of $\\triangle ABC$, \\\\\n$\\therefore DN\\parallel AB$, \\\\\n$\\because AB\\perp AC$, \\\\\n$\\therefore DN\\perp AC$, \\\\\n$\\because \\angle A=\\angle A''FA=\\angle A''DA=90^\\circ$, \\\\\n$\\therefore$ quadrilateral $A''FAD$ is a rectangle, \\\\\n$\\therefore AF=A''D$, $A''F=AD=2$, also $A''B=AB=4$. Let $AF=x$, in the right triangle $A''FB$, $A''B^2=A''F^2+BF^2$, \\\\\n$\\therefore 16=4+(4-x)^2$, solving this gives $x=4-2\\sqrt{3}$. \\\\\n$\\therefore$ at this moment, $S_{\\triangle A''BC}=S_{\\triangle ABC}-S_{\\triangle AA''B}-S_{\\triangle A''AC}=\\frac{1}{2}AB\\cdot AC-\\frac{1}{2}AB\\cdot A''F-\\frac{1}{2}AC\\cdot A''D=4\\sqrt{3}-4$. \\\\\nHence, $S_{\\triangle A'BC}=\\boxed{4\\sqrt{3}-4}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368352_97": { -"question": "As shown in the figure, in right triangle $ABC$, $\\angle C=90^\\circ$, $AC=8\\,\\text{cm}$, $BC=6\\,\\text{cm}$. Now, a moving point $P$ starts from point $B$, moving towards point $A$ along segment $BA$, and another moving point $Q$ starts from point $A$, moving towards the end point along the polyline $AC-CB$. If the speed of point $P$ is $1\\,\\text{cm/s}$ and the speed of point $Q$ is $1\\,\\text{cm/s}$. They start at the same time, and when one point reaches the end point, the other point also stops moving. Let the time of motion be $t$ seconds. As shown in Figure 1, $Q$ is on $AC$, at what time $t$ in seconds, will the triangle formed by points $A$, $P$, $Q$ be similar to $\\triangle ABC$?", -"image_file_name": "7056495", -"image": [ -"math/51368352_750.png" -], -"solution": "Solution: As shown in Figure 1, when $\\angle AQP=90^\\circ$, $\\triangle AQP\\sim \\triangle ABC$,\n\\[\\therefore \\frac{AQ}{AC}=\\frac{AP}{AB}.\\]\nIn $\\triangle ABC$, by the Pythagorean theorem, we have\n\\[AB= \\sqrt{AC^2+BC^2}=\\sqrt{8^2+6^2}=10 \\text{ (cm)}.\\]\n\\[\\because BP=t,\\ AQ=t,\\]\n\\[\\therefore PA=10-t,\\]\n\\[\\therefore \\frac{t}{8}=\\frac{10-t}{10},\\]\n\\[\\therefore t= \\boxed{\\frac{40}{9}};\\]\nAs shown in Figure 2, when $\\angle APQ=90^\\circ$, $\\triangle APQ\\sim \\triangle ABC$,\n\\[\\therefore \\frac{AQ}{AB}=\\frac{AP}{AC},\\]\n\\[\\therefore \\frac{t}{10}=\\frac{10-t}{8},\\]\n\\[t= \\boxed{\\frac{50}{9}}.\\]\nIn conclusion, when $t= \\boxed{\\frac{40}{9}} or t= \\boxed{\\frac{50}{9}}, the triangle with vertices A, P, and Q is similar to $\\triangle ABC$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368352_98": { -"question": "As shown in the figure, in right-angled triangle $ABC$, $\\angle C=90^\\circ$, $AC=8\\text{cm}$, and $BC=6\\text{cm}$. Now, a moving point $P$ starts from point $B$ and moves towards the endpoint $A$ along line segment $BA$, and a moving point $Q$ starts from point $A$ and moves towards the endpoint along the polyline $AC-CB$. If the speed of point $P$ is $1\\text{cm/s}$, and the speed of point $Q$ is $1\\text{cm/s}$. They start at the same time, and when one point reaches the endpoint, the other point also stops moving. Let the time of movement be $t$ seconds. As shown in figure 2, $Q$ is on $CB$. Is there a moment that makes the triangle with vertices $B$, $P$, $Q$ similar to $\\triangle ABC$? If it exists, find the value of $t$; if not, please explain the reason.", -"image_file_name": "7056495", -"image": [ -"math/51368352_750.png" -], -"solution": "\\textbf{Solution:} As shown in Figure 3, when $\\triangle BPQ\\sim \\triangle BAC$, \\\\\n$\\therefore \\frac{BP}{AB}=\\frac{BQ}{BC}$. \\\\\n$\\because BQ=14-t$ and $BP=t$,\\\\\n$\\therefore \\frac{t}{10}=\\frac{14-t}{6}$,\\\\\n$\\therefore t= \\boxed{\\frac{35}{4}}$,\\\\\nWhen $\\triangle BQP\\sim \\triangle BAC$,\\\\\n$\\therefore \\frac{BP}{BC}=\\frac{BQ}{BA}$,\\\\\n$\\therefore \\frac{t}{6}=\\frac{14-t}{10}$,\\\\\n$\\therefore t= \\frac{21}{4}$,\\\\\n$\\because Q$ is on $CB$,\\\\\n$\\therefore t>8$,\\\\\n$\\therefore t= \\frac{21}{4}$ is discarded,\\\\\n$\\therefore when $t= \\frac{35}{4}$, $Q$ is on $CB$, and the triangle formed by points $B$, $P$, and $Q$ is similar to $\\triangle ABC$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368305_101": { -"question": "As illustrated in the diagram, in $\\triangle ABC$, where $AB=AC$, the circle $\\odot O$ with diameter $AB$ intersects $BC$ at point $D$. A line $EF$ passing through point $D$ intersects $AC$ at point $F$ and the extension of $AB$ at point $E$, and $\\angle BAC=2\\angle BDE$. $DF$ is a tangent to $\\odot O$; when $CF=4$ and $BE=6$, find the length of $AF$.", -"image_file_name": "7056495", -"image": [ -"math/51368305_760.png" -], -"solution": "\\textbf{Solution:} Since $AB=AC$ and $AD\\perp BC$, we have $BD=CD$. Since $BO=AO$, it follows that $OD$ is the median line of triangle $ABC$, thus $OD\\parallel AC$ and $AC=2OD$. Therefore, $\\triangle EOD\\sim \\triangle EAF$, which implies $\\frac{OD}{AF}=\\frac{EO}{EA}$. Let $OD=x$, then $AC=2x$. Since $CF=4$ and $BE=6$, we have $OA=OB=x$, $AF=AC-CF=2x-4$, $EO=x+6$, and $EA=2x+6$. So, $\\frac{x}{2x-4}=\\frac{x+6}{2x+6}$. Solving this, we find $x=12$. Checking, we find $x=12$ is the solution of the given fractional equation. Therefore, $AF=2x-4=\\boxed{20}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368311_104": { -"question": "Given that $AC$ and $EC$ are the diagonals of the rectangles $ABCD$ and $EFCG$ respectively, point $E$ is inside $\\triangle ABC$, and $\\frac{AB}{BC}=\\frac{EF}{FC}=k$, $\\angle CAE+\\angle CBE=90^\\circ$. $\\triangle CAE\\sim \\triangle CBF$; if $BE=2$, $AE=4$, $CE=6$, find the value of $k$.", -"image_file_name": "7056495", -"image": [ -"math/51368311_771.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\triangle CAE\\sim \\triangle CBF$,\\\\\nwe have $\\frac{AC}{BC}=\\frac{EF}{FC}=k$,\\\\\nthus $\\angle CBF=\\angle CAE$,\\\\\nand since $\\angle CAE+\\angle CBE=90^\\circ$,\\\\\nit follows that $\\angle EBF=90^\\circ$,\\\\\nlet $BC=a$, then $AB=ka$, let $FC=b$, then $EF=kb$,\\\\\nthus $AC=\\sqrt{AB^2+BC^2}=a\\sqrt{k^2+1}$,\\\\\nand $EC=\\sqrt{EF^2+FC^2}=b\\sqrt{k^2+1}$,\\\\\nhence $\\frac{AE}{BF}=\\frac{AC}{BC}=\\sqrt{k^2+1}$,\\\\\ngiven that $AE=4$,\\\\\nit follows that $BF=\\frac{4}{\\sqrt{k^2+1}}$,\\\\\nsince $\\angle EBF=90^\\circ$,\\\\\nit follows that $EF^2=BE^2+BF^2=4+\\frac{16}{k^2+1}=k^2b^2$,\\\\\nsince $CE^2=EF^2+CF^2$, i.e., $6^2=(kb)^2+b^2$,\\\\\nwe get $b^2=\\frac{36}{k^2+1}$, hence $\\frac{36k^2}{k^2+1}=4+\\frac{16}{k^2+1}$,\\\\\nsolving for $k$ yields $k=\\boxed{\\frac{\\sqrt{10}}{4}}$ or $k=-\\frac{\\sqrt{10}}{4}$ (discard as irrelevant).\\\\\nTherefore, the value of $k$ is $\\boxed{\\frac{\\sqrt{10}}{4}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368194_107": { -"question": "As shown in the figure, $D$ is a point on the circle $\\odot O$, and point $C$ is on the extension line of diameter $BA$, with $CD^{2}=CA\\cdot CB$; $CD$ is the tangent of $\\odot O$; a tangent to $\\odot O$ is drawn through point $B$ and intersects the extension line of $CD$ at point $E$. If $BC=10$ and $\\tan\\angle CDA=\\frac{3}{5}$, what is the length of $BE$?", -"image_file_name": "7056495", -"image": [ -"math/51368194_780.png" -], -"solution": "\\textbf{Solution:} From the given information, $BE$ and $CE$ are tangent to the circle $O$, \\\\\n$\\therefore ED=EB$, \\\\\n$\\because \\triangle DCA\\sim \\triangle BCD$, \\\\\n$\\therefore \\angle DBA=\\angle CDA$, \\\\\n$\\therefore \\frac{DC}{BC}=\\frac{DA}{BD}=\\tan\\angle DBA=\\tan\\angle CDA=\\frac{3}{5}$, \\\\\n$\\therefore CD=\\frac{3}{5}BC=6$, \\\\\nLet $BE=x$, then $DE=x$, $CE=x+6$, \\\\\nIn $\\triangle CBE$, $(x+6)^{2}=x^{2}+10^{2}$, \\\\\nSolving this gives: $x=\\frac{16}{3}$, \\\\\n$\\therefore BE=\\boxed{\\frac{16}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368188_110": { -"question": "As shown in the figure, square DEFG has a side length of 4 cm, and all four vertices are on the sides of $\\triangle ABC$. In right $\\triangle ABC$, with $\\angle A=90^\\circ$, where $BD > EC$, and $BC=14$ cm, $\\triangle BDG \\sim \\triangle FEC$; find the length of $BD$ in cm?", -"image_file_name": "7056495", -"image": [ -"math/51368188_792.png" -], -"solution": "\\textbf{Solution:} Given that the side length of the square DEFG is 4cm,\\\\\nthus DE=DG=FE=4cm. Let BD=xcm.\\\\\nGiven that BC=14cm,\\\\\nthus $EC=BC−BD−DE=(10−x)cm$.\\\\\nGiven that $\\triangle BDG\\sim \\triangle FEC$,\\\\\nthus $\\frac{BD}{FE}=\\frac{DG}{EC}$.\\\\\nTherefore, $\\frac{x}{4}=\\frac{4}{10−x}$. Solving gives $x_{1}=8$, $x_{2}=2$. Upon verification, $x=8$ and $x=2$ are solutions to the aforementioned fractional equation,\\\\\nthus BD=8cm or BD=2cm. When BD=8cm, EC=2cm, which satisfies BD>EC. When BD=2cm, EC=8cm, does not satisfy BD>EC.\\\\\nTherefore, BD=\\boxed{8cm}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51368197_112": { -"question": "As shown in the figure, the parabola intersects the x-axis at $A(5, 0)$ and $B(-1, 0)$, and intersects the positive semi-axis of the y-axis at point $C$. Lines $BC$ and $AC$ are drawn, and it is known that $\\sin\\angle BAC=\\frac{\\sqrt{2}}{2}$. What is the analytical equation of the parabola?", -"image_file_name": "7056495", -"image": [ -"math/51368197_802.png" -], -"solution": "\\textbf{Solution:} Given $A\\left(5, 0\\right)$, it is known that $OA=5$. In $\\triangle AOC$, $\\sin\\angle BAC=\\frac{\\sqrt{2}}{2}$, \\\\\n$\\therefore \\angle BAC=45^\\circ$, \\\\\n$\\therefore OA=OC=5$, i.e., point C is (0, 5), \\\\\nAccording to the problem, let $y=a\\left(x-5\\right)\\left(x+1\\right)$, substituting point C into it results in: \\\\\n$-5a=5$, \\\\\nSolving this gives: $a=-1$, \\\\\n$\\therefore$ The equation of the parabola is $\\boxed{y=-\\left(x-5\\right)\\left(x+1\\right)=-x^{2}+4x+5}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51368197_113": { -"question": "As shown in the figure, the parabola intersects the x-axis at $A(5,0)$ and $B(-1,0)$, and intersects the positive half-axis of the y-axis at point $C$. Lines $BC$ and $AC$ are drawn. It is known that $\\sin\\angle BAC=\\frac{\\sqrt{2}}{2}$. The line $y=kx$ ($k>0$) intersects segment $AC$ at point $M$. When the triangle with vertices $A$, $O$, and $M$ is similar to $\\triangle ABC$, find the value of $k$ and then find the coordinates of point $M$.", -"image_file_name": "7056495", -"image": [ -"math/51368197_802.png" -], -"solution": "\\textbf{Solution:} From (1) we obtain: $C(0,5)$, $A(5,0)$. Assume the equation of line AC is $y=k_1x+b$. Substituting the coordinates of points A and C, we get:\n\\[\n\\begin{cases}\nb=5\\\\\n5k_1+b=0\n\\end{cases}\n\\]\nSolving, we find:\n\\[\n\\begin{cases}\nb=5\\\\\nk_1=-1\n\\end{cases}\n\\]\n$\\therefore$ The equation of line AC is $y=-x+5$,\n\n$\\because$ Line $y=kx$ ($k>0$) intersects segment AC at point M, then let $M\\left(m, -m+5\\right)$,\n\n$\\therefore k=\\frac{-m+5}{m}$,\n\nFrom (1) it is known $OA=OC=5$, $OB=1$,\n\n$\\therefore AC=\\sqrt{(0-5)^2+(5-0)^2}=5\\sqrt{2}$, $AB=6$,\n\nAccording to the problem, we can divide into two cases:\n\n(1) When $\\triangle AOM\\sim \\triangle ABC$,\n\n$\\therefore \\frac{AO}{AB}=\\frac{AM}{AC}=\\frac{5}{6}$,\n\n$\\therefore AM=\\frac{5}{6}AC=\\frac{25\\sqrt{2}}{6}$,\n\n$\\therefore$ By the distance formula between two points:\n\n$(m-5)^2+(m-5)^2=\\frac{625}{18}$,\n\nSolving, we find: $m_1=\\frac{5}{6}$, $m_2=\\frac{55}{6}$,\n\n$\\because 0\\le m\\le 5$,\n\n$\\therefore m=\\frac{5}{6}$,\n\n$\\therefore M\\left(\\frac{5}{6}, \\frac{25}{6}\\right)$, $k=\\boxed{5}$;\n\n(2) When $\\triangle AOM\\sim \\triangle ACB$,\n\n$\\therefore \\frac{AO}{AC}=\\frac{AM}{AB}=\\frac{5}{5\\sqrt{2}}=\\frac{\\sqrt{2}}{2}$,\n\n$\\therefore AM=\\frac{\\sqrt{2}}{2}AB=3\\sqrt{2}$,\n\n$\\therefore$ By the distance formula between two points:\n\n$(m-5)^2+(m-5)^2=18$,\n\nSolving, we find: $m_1=2$, $m_2=8$ (discarding as it does not meet the problem criteria),\n\n$\\therefore M\\left(2, 3\\right)$, $k=\\boxed{\\frac{3}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51367439_117": { -"question": "As shown in the diagram, the vertices A and C of $\\triangle ABC$ are located on circle O, and circle O intersects with side AB at point D. Through point D, $DF \\parallel BC$ is drawn, intersecting AC at point E and circle O at point F. DC is connected, and point C is the midpoint of arc DF. BC is the tangent to circle O; if the radius of circle O is 3 and $DF=4\\sqrt{2}$, find the value of $CE\\cdot CA$.", -"image_file_name": "7056495", -"image": [ -"math/51367439_810.png" -], -"solution": "\\textbf{Solution:} Connect CO and extend it to meet $\\odot O$ at G, DF and CG intersect at point M, connect DO, as shown in the figure:\\\\\nSince $OC\\perp BC$ and $DF\\parallel BC$,\\\\\nit follows that $OM\\perp DF$\\\\\nTherefore, $DM=FM=\\frac{1}{2}DF=2\\sqrt{2}$\\\\\nSince the radius of $\\odot O$ is 3,\\\\\nit follows that $OD=OC=OG=3$\\\\\nTherefore, $OM=\\sqrt{OD^{2}-DM^{2}}=1$, and $CG=OC+OG=6$\\\\\nTherefore, $MC=OC-OM=2$\\\\\nSince CG is a diameter,\\\\\nit follows that $\\angle CAG=90^\\circ$\\\\\nSince $\\angle MCE=\\angle ACG$\\\\\nit follows that $\\triangle MCE\\sim \\triangle ACG$\\\\\nTherefore, $\\frac{MC}{CA}=\\frac{CE}{CG}$\\\\\nTherefore, $\\frac{2}{CA}=\\frac{CE}{6}$\\\\\nTherefore, $CE\\cdot CA=\\boxed{12}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51367439_118": { -"question": "As shown in the figure, the vertices A and C of $\\triangle ABC$ are on circle O, and circle O intersects side AB at point D. Through point D, draw $DF \\parallel BC$, intersecting AC at point E and circle O at point F. Join DC, with point C being the midpoint of arc DF. Given these conditions, connect AF. If $BD = AF$, find the length of AD.", -"image_file_name": "7056495", -"image": [ -"math/51367439_810.png" -], -"solution": "\\textbf{Solution:} Let's extend CO and intersect $\\odot O$ at G, and let DF and CG intersect at point M, then connect DO, AF, CF,\\\\\naccording to the conclusion of (2), we have $OM\\perp DF$, $MC=2$, $DM=FM=2\\sqrt{2}$\\\\\n$\\therefore CD=CF=\\sqrt{MC^{2}+MF^{2}}=2\\sqrt{3}$\\\\\n$\\because$DF$\\parallel$BC,\\\\\n$\\therefore \\angle ADF=\\angle B$, $\\angle BCD=\\angle CDF$\\\\\n$\\because \\angle ADF=\\angle ACF$, $\\angle CAF=\\angle CDF$\\\\\n$\\therefore \\angle B=\\angle ACF$, $\\angle BCD=\\angle CAF$\\\\\n$\\therefore \\triangle BCD\\sim \\triangle CAF$\\\\\n$\\therefore \\frac{BD}{CF}=\\frac{CD}{AF}$\\\\\n$\\therefore \\frac{BD}{2\\sqrt{3}}=\\frac{2\\sqrt{3}}{AF}$\\\\\n$\\because BD=AF$\\\\\n$\\therefore BD=AF=2\\sqrt{3}$ or $BD=AF=-2\\sqrt{3}$ (discard)\\\\\n$\\therefore BD=AF=CF=CD=2\\sqrt{3}$\\\\\n$\\because$ point C is the midpoint of the arc DF.\\\\\n$\\therefore \\angle CFD=\\angle CAF$\\\\\n$\\because \\angle ECF=\\angle FCA$\\\\\n$\\therefore \\triangle ECF\\sim \\triangle FCA$\\\\\n$\\therefore \\frac{EF}{AF}=\\frac{CE}{CF}$\\\\\n$\\because AF=CF=2\\sqrt{3}$\\\\\n$\\therefore EF=CE$\\\\\nLet $CE=x$\\\\\n$\\therefore ME=FM-EF=FM-CE=2\\sqrt{2}-x$\\\\\n$\\because CE^{2}=MC^{2}+ME^{2}$\\\\\n$\\therefore x^{2}=4+{(2\\sqrt{2}-x)}^{2}$\\\\\n$\\therefore x=\\frac{3\\sqrt{2}}{2}$\\\\\n$\\therefore CA=\\frac{12}{CE}=4\\sqrt{2}$\\\\\n$\\therefore AE=CA-CE=\\frac{5}{2}\\sqrt{2}$\\\\\n$\\because \\angle ADF=\\angle B$, $\\angle DAE=\\angle BAC$\\\\\n$\\therefore \\triangle ADE\\sim \\triangle ABC$\\\\\n$\\therefore \\frac{AD}{AB}=\\frac{AE}{AC}=\\frac{5}{8}$\\\\\n$\\therefore \\frac{AD}{AD+BD}=\\frac{AD}{AD+2\\sqrt{3}}=\\frac{5}{8}$\\\\\n$\\therefore AD=\\boxed{\\frac{10\\sqrt{3}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51366880_121": { -"question": "As shown in the figure, in $\\triangle ABC$, the circle $\\odot O$ with diameter $AB$ intersects $BC$ at point $D$ and the extension line of $CA$ at point $E$. The tangent $DF$ of $\\odot O$ is perpendicular to $AC$ at $F$. $AB=AC$. If $CF=2AF$ and $AE=4$, find the radius of $\\odot O$.", -"image_file_name": "7056495", -"image": [ -"math/51366880_820.png", -"math/51366880_829.png" -], -"solution": "\\textbf{Solution:} Connect BE and AD as shown in the figure, \\\\\n$\\because$ AB is the diameter of $\\odot O$, \\\\\n$\\therefore$ AD$\\perp$BC, BE$\\perp$EC, \\\\\n$\\because$ AB=AC, \\\\\n$\\therefore$ BD=DC, \\\\\n$\\because$ DF$\\perp$AC, BE$\\perp$EC, \\\\\n$\\therefore$ DF$\\parallel$BE, \\\\\n$\\therefore$ $\\frac{CD}{BD}=\\frac{CF}{EF}$, \\\\\n$\\therefore$ CF=EF, \\\\\n$\\because$ $CF=2AF$, AE=4, \\\\\nLet AF=x, then CF=2x, EF=4+x, AC=3x, \\\\\n$\\therefore$ 2x=4+x, solving gives: x=4, \\\\\n$\\therefore$ AC=12, \\\\\n$\\therefore$ AB=AC=12, \\\\\n$\\therefore$ The radius of $\\odot O$ is $\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51367443_123": { -"question": "As shown in Figure 1, in the Cartesian coordinate system, the parabola $y=ax^2-2ax-3a$ ($a<0$) intersects the x-axis at points A and B (A is to the left of B), and intersects the y-axis at point C. Point D is the vertex of the parabola, and the axis of symmetry intersects the x-axis at point E, with $OB=OC$. Find the analytical expression of the parabola?", -"image_file_name": "7056495", -"image": [ -"math/51367443_832.png" -], -"solution": "\\textbf{Solution:} To solve for the parabola $y=ax^{2}-2ax-3a$, let $y=0$ to get $ax^{2}-2ax-3a=0$. Solving this yields $x=-1$ or $3$, \\\\\n\\[\\therefore \\boxed{A(-1,0)}, \\boxed{B(3,0)},\\] \\\\\n\\[\\therefore OA=1, OB=OC=3,\\] \\\\\n\\[\\therefore \\boxed{C(0,3)},\\] \\\\\n\\[\\therefore -3a=3,\\] \\\\\n\\[\\therefore a=-1,\\] \\\\\n\\[\\therefore\\] the equation of the parabola is \\boxed{y=-x^{2}+2x+3}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51367443_124": { -"question": "As shown in Figure 1, in the Cartesian coordinate system, the parabola $y = ax^2 - 2ax - 3a$ ($a < 0$) intersects the x-axis at points A and B (with A to the left of B), and intersects the y-axis at point C. Point D is the vertex of the parabola, and the axis of symmetry intersects the x-axis at point E, with $OB = OC$. Connect BD. Is there a point F on the parabola such that $\\angle FBO = \\angle BDE$? If such a point exists, find the coordinates of point F; if not, explain why.", -"image_file_name": "7056495", -"image": [ -"math/51367443_832.png" -], -"solution": "\\textbf{Solution:} From the given information, we know that $A(-1, 0)$, $B(3, 0)$, $D(1, 4)$,\\\\\n$\\therefore DE=4$, $BE=2$,\\\\\nLet $F(x, -x^2+2x+3)$,\\\\\nWhen $F$ is at ${F}_{1}$, draw ${F}_{1}H\\perp$ to the x-axis,\\\\\n$\\because \\angle BDE=\\angle {F}_{1}BH$, $\\angle {F}_{1}HB=\\angle BED=90^\\circ$,\\\\\n$\\therefore \\triangle BDE\\sim \\triangle {F}_{1}BH$,\\\\\n$\\therefore \\frac{BE}{DE}=\\frac{{F}_{1}H}{BH}$, which means $\\frac{1}{2}=\\frac{-x^2+2x+3}{3-x}$,\\\\\n$\\therefore 2x^2-5x-3=0$,\\\\\nSolve to get: $x=3$ or $x=-\\frac{1}{2}$,\\\\\n$\\because x<0$,\\\\\n$\\therefore x=-\\frac{1}{2}$, at this time $y=\\frac{7}{4}$,\\\\\nThus, ${F}_{1}\\left(-\\frac{1}{2}, \\frac{7}{4}\\right)$;\\\\\nWhen $F$ is at ${F}_{2}$, draw ${F}_{2}K\\perp$ to the x-axis,\\\\\n$\\because \\angle BDE=\\angle {F}_{2}BK$, $\\angle {F}_{2}KB=\\angle BED=90^\\circ$,\\\\\n$\\therefore \\triangle BDE\\sim \\triangle {F}_{2}BK$,\\\\\n$\\therefore \\frac{BE}{DE}=\\frac{{F}_{2}K}{BK}$, which means $\\frac{1}{2}=\\frac{-(-x^2+2x+3)}{3-x}$,\\\\\n$\\therefore 2x^2-3x-9=0$,\\\\\nSolve to get: $x=3$ or $x=-\\frac{3}{2}$,\\\\\n$\\because x<0$,\\\\\n$\\therefore x=-\\frac{3}{2}$, at this time $y=-\\frac{9}{4}$,\\\\\n$\\therefore$ the coordinates of point $F$ are $\\boxed{\\left(-\\frac{3}{2}, -\\frac{9}{4}\\right)}$ or $\\left(-\\frac{1}{2}, \\frac{7}{4}\\right)$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51367443_125": { -"question": "As shown in Figure 1, in the Cartesian coordinate system, the parabola $y=ax^2-2ax-3a$ (where $a<0$) intersects the x-axis at points A, B (with A to the left of B), and intersects the y-axis at point C. Point D is the vertex of the parabola, and its axis of symmetry intersects the x-axis at point E. Also, OB=OC. As shown in Figure 2, point P is a moving point on the line $y=5$ (point P is not on the axis of symmetry of the parabola). There are two lines $l_1$ and $l_2$ passing through point P, each having only one common point with the parabola, and neither is parallel to the y-axis. Lines $l_1$ and $l_2$ intersect the axis of symmetry of the parabola at points M and N, respectively. Point G is a point on the axis of symmetry below points M and N, and it always satisfies $GP^2=GM\\cdot GN$. Find the coordinates of point G.", -"image_file_name": "7056495", -"image": [ -"math/51367443_832.png" -], -"solution": "\\textbf{Solution:}\n\nLet $P(p, 5)$, and let $y=5$ intersect with the axis of symmetry at $H$, \n\nthen the equation of the line passing through point $P$ is $y=k(x-p)+5$,\n\n\\[\n\\therefore \\left\\{\n\\begin{array}{l}\ny=-x^{2}+2x+3\\\\ \ny=k(x-p)+5\n\\end{array}\n\\right.,\n\\]\n\n\\[\n\\therefore -x^{2}+(2-k)x+kp-2=0,\n\\]\n\nlet $\\Delta =b^{2}-4ac=(2-k)^{2}+4(kp-2)=0$,\n\n\\[\n\\therefore k^{2}+(4p-4)k-4=0,\n\\]\n\n\\[\n\\therefore k_{1}+k_{2}=-\\frac{b}{a}=4-4p, \\quad k_{1}k_{2}=\\frac{c}{a}=-4,\n\\]\n\nwhen $x=1$, $y=k(1-p)+5$,\n\nthus $y_{M}=k_{1}(1-p)+5=y_{1}$, $y_{N}=k_{2}(1-p)+5=y_{2}$,\n\nlet $G(1, t)$,\n\n\\[\n\\because GP^{2}=GM\\cdot GN,\n\\]\n\n\\[\n\\therefore GH^{2}+PH^{2}=GM\\cdot GN, \\text{ i.e., } (5-t)^{2}+(p-1)^{2}=(y_{1}-t)(y_{2}-t),\n\\]\n\n\\[\n\\therefore (5-t)^{2}+(p-1)^{2}=(y_{1}-t)(y_{2}-t),\n\\]\n\n\\[\n\\therefore (5-t)^{2}+(p-1)^{2}=y_{1}y_{2}-t(y_{1}+y_{2})+t^{2},\n\\]\n\n\\[\n\\therefore (5-t)^{2}+(p-1)^{2}=[k_{1}(1-p)+5][k_{2}(1-p)+5]-t[k_{1}(1-p)+5+k_{2}(1-p)+5]+t^{2},\n\\]\n\n\\[\n\\therefore (5-t)^{2}+(p-1)^{2}=k_{1}k_{2}(1-p)^{2}+5(k_{1}+k_{2})(1-p)+25-t(k_{1}+k_{2})(1-p)-10t+t^{2},\n\\]\n\n\\[\n\\therefore (5-t)^{2}+(p-1)^{2}=-4(1-p)^{2}+20(1-p)^{2}+25-4t(1-p)^{2}-10t+t^{2},\n\\]\n\n\\[\n\\therefore 25-10t+t^{2}+(p-1)^{2}=-4(1-p)^{2}+20(1-p)^{2}+25-4t(1-p)^{2}-10t+t^{2},\n\\]\n\n\\[\n\\therefore (15-4t)(1-p)^{2}=0,\n\\]\n\n\\[\n\\because \\text{ The equation always holds, so it is independent of } p,\n\\]\n\n\\[\n\\therefore 15-4t=0,\n\\]\n\nSolving for $t$, we get $t=\\frac{15}{4}$,\n\nThe coordinates of point $G$ are $\\left(1, \\boxed{\\frac{15}{4}}\\right)$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51322751_127": { -"question": "As shown in the figure, point \\(P\\) is a point on the side \\(AB\\) of the square \\(ABCD\\) (not coinciding with points \\(A\\) or \\(B\\)), connect \\(PD\\) and rotate the line segment \\(PD\\) \\(90^\\circ\\) clockwise around point \\(P\\) to get the line segment \\(PE\\), which intersects side \\(BC\\) at point \\(F\\), connect \\(BE\\), \\(DF\\). If \\(\\angle ADP = 32^\\circ\\), what is the measure of \\(\\angle FPB\\)?", -"image_file_name": "7056495", -"image": [ -"math/51322751_841.png" -], -"solution": "\\textbf{Solution:} Since the quadrilateral ABCD is a square,\\\\\nit follows that $\\angle A=\\angle PBC=90^\\circ$ and AB=AD,\\\\\ntherefore, $\\angle ADP+\\angle APD=90^\\circ$,\\\\\nsince $\\angle DPE=90^\\circ$,\\\\\nit follows that $\\angle APD+\\angle EPB=90^\\circ$,\\\\\ntherefore, $\\angle ADP=\\angle FPB=\\boxed{32^\\circ}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322751_128": { -"question": "As shown in the figure, point $P$ is a point on the side $AB$ of the square $ABCD$ (not coinciding with points $A$, $B$). Connect $PD$ and rotate the line segment $PD$ clockwise by $90^\\circ$ around point $P$ to obtain the line segment $PE$, where $PE$ intersects side $BC$ at point $F$. Connect $BE$ and $DF$. If $AP=\\sqrt{3}$, what is the length of $BE$?", -"image_file_name": "7056495", -"image": [ -"math/51322751_841.png" -], -"solution": "\\textbf{Solution:} Draw $EQ \\perp AB$ through point E to intersect the extended line of AB at point Q, hence $\\angle EQP = \\angle A = 90^\\circ$,\\\\\nIn $\\triangle PAD$ and $\\triangle EQP$,\\\\\n$\\left\\{\\begin{array}{l}\n\\angle A = \\angle EQP \\\\\n\\angle ADP = \\angle EPB \\\\\nPD = PE\n\\end{array}\\right.$,\\\\\n$\\therefore \\triangle PAD \\cong \\triangle EQP$ (AAS),\\\\\n$\\therefore EQ = AP = \\sqrt{3}$, AD = AB = PQ,\\\\\n$\\therefore AP = EQ = BQ$,\\\\\n$\\therefore \\angle CBE = \\angle EBQ = 45^\\circ$;\\\\\n$\\therefore BE = \\sqrt{2}EQ = \\boxed{\\sqrt{6}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322751_129": { -"question": "As shown in the figure, point $P$ is on the side $AB$ of the square $ABCD$ (not coinciding with points $A$, $B$). Connect $PD$ and rotate the line segment $PD$ $90^\\circ$ clockwise around point $P$ to obtain the line segment $PE$, where $PE$ intersects side $BC$ at point $F$. Connect $BE$, $DF$. If $\\triangle PFD\\sim \\triangle BFP$, find $\\frac{AP}{AB}$?", -"image_file_name": "7056495", -"image": [ -"math/51322751_841.png" -], -"solution": "\\textbf{Solution:} From the given information,\n\n$\\because \\triangle PFD \\sim \\triangle BFP$,\n\n$\\therefore \\frac{PB}{BF} = \\frac{PD}{PF}$,\n\n$\\therefore PD \\cdot BF = PB \\cdot PF$,\n\n$\\because \\angle ADP = \\angle EPB, \\angle CBP = \\angle A = 90^\\circ$,\n\n$\\therefore \\triangle DAP \\sim \\triangle PBF$,\n\n$\\therefore \\frac{PD}{PF} = \\frac{PA}{BF}$,\n\n$\\therefore PD \\cdot BF = AP \\cdot PF$,\n\n$\\therefore PB \\cdot PF = AP \\cdot PF$,\n\n$\\therefore PA = PB$,\n\n$\\because AB = PA + PB = 2PA$,\n\n$\\therefore \\frac{AP}{AB} = \\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322957_132": { -"question": "As shown in Figure 1, given $\\triangle ABC$, $\\angle CAB=45^\\circ$, $AB=7$, $AC=3\\sqrt{2}$, and $CD\\perp AB$ at point D. E is a moving point on side BC. A circle $\\odot O$ is drawn with DE as the diameter, intersecting BC at point F and AB at point G. Lines DF and FG are drawn. $\\angle BCD=\\angle FDB$. When point E is on segment BF, and $\\triangle DFG$ is an isosceles triangle, what is the length of DG?", -"image_file_name": "7056495", -"image": [ -"math/51322957_852.png" -], -"solution": "\\textbf{Solution:}\n\n(i) When $DF=DG$, as shown in the figure:\n\nSince $\\angle CAB=45^\\circ$, $CD\\perp AB$, $AC=3\\sqrt{2}$\n\nTherefore $AD=CD=3$\n\nSince $AB=7$\n\nTherefore $BD=7-3=4$\n\nTherefore $BC=\\sqrt{3^2+4^2}=5$\n\nTherefore $DF=\\frac{3\\times 4}{5}=\\frac{12}{5}$\n\nTherefore $DG=\\boxed{\\frac{12}{5}}$\n\n(ii) As shown in the figure:\n\nWhen $DF=FG$, draw $FH\\perp BD$ intersecting $BD$ at point $H$,\n\nTherefore $\\triangle DFH\\sim \\triangle CBD$\n\nTherefore $\\frac{DH}{CD}=\\frac{DF}{CB}$\n\nTherefore $DH=DF\\times \\frac{3}{5}=\\frac{12}{5}\\times \\frac{3}{5}=\\frac{36}{25}$\n\nTherefore $DG=2DH=\\boxed{\\frac{72}{25}}$\n\n(iii) As shown in the figure:\n\nWhen $FG=DG$, $\\angle 1=\\angle 2$\n\nSince $\\angle 1+\\angle 3=\\angle 2+\\angle 4=90^\\circ$\n\nTherefore $\\angle 3=\\angle 4$\n\nTherefore $FG=GB=DG$\n\nTherefore $DG=\\frac{1}{2}BD=\\boxed{2}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322957_133": { -"question": "As shown in Figure 1, given $ \\triangle ABC$ with $\\angle CAB=45^\\circ$, $AB=7$, and $AC=3\\sqrt{2}$. $CD\\perp AB$ at point D. E is a moving point on side BC. A circle $\\odot O$ is drawn with DE as its diameter, intersecting BC at F and AB at point G. Connect DF and FG. As depicted in Figure 2, the other intersection point of $\\odot O$ and CD is P. If ray AP passes through point F, find the value of $\\frac{AP}{DE}$.", -"image_file_name": "7056495", -"image": [ -"math/51322957_852.png" -], -"solution": "\\textbf{Solution:} As shown in the figure:\\\\\n$\\because$ Quadrilateral PDEF is a cyclic quadrilateral inside circle $O$\\\\\n$\\therefore \\angle APD=\\angle DEF$\\\\\n$\\because \\angle APD+\\angle PAD=\\angle DEF+\\angle EDF=90^\\circ$\\\\\n$\\therefore \\angle PAD=\\angle EDF$\\\\\nConnect PG\\\\\n$\\because \\angle PAD=\\angle EDF$\\\\\n$\\angle ADP=\\angle DFE=90^\\circ$\\\\\n$\\therefore \\triangle ADP\\sim \\triangle DFE$\\\\\n$\\therefore \\frac{AP}{DE}=\\frac{AD}{DF}=3\\times \\frac{5}{12}=\\boxed{\\frac{5}{4}}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322983_136": { -"question": "As shown in the figure, in quadrilateral $ABCD$, draw $BE\\perp CD$ at point $E$, connect $AE$, and let $F$ be a point on $AE$ with $\\angle AFB=\\angle D$. $\\triangle ABF\\sim \\triangle EAD$. If $AB=4\\sqrt{3}$, $AD=6$, and $\\angle BAE=30^\\circ$, find the length of $BF$.", -"image_file_name": "7056495", -"image": [ -"math/51322983_860.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $BE\\perp CD$, \\\\\ntherefore, $\\angle BEC=90^\\circ$, \\\\\nsince $AB\\parallel CD$, \\\\\ntherefore, $\\angle ABE=\\angle BEC=90^\\circ$, \\\\\nsince $\\angle BAE=30^\\circ$, \\\\\ntherefore, $\\cos30^\\circ=\\frac{AB}{AE}$, \\\\\nthus, $AE=8$, \\\\\nsince $\\triangle ABF\\sim \\triangle EAD$, \\\\\ntherefore, $\\frac{BF}{AD}=\\frac{AB}{AE}$, \\\\\nthus, $\\frac{BF}{6}=\\frac{4\\sqrt{3}}{8}$, \\\\\nwe find: $BF=\\boxed{3\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322517_139": { -"question": "As shown in the figure, $AB$ is a chord of the circle $\\odot O$, $OP\\perp OA$ intersects $AB$ at point $P$, and the line passing through point $B$ intersects the extension of $OP$ at point $C$, and $BC$ is a tangent to $\\odot O$. If $OA=6$, $OP=2$, find the length of $CB$.", -"image_file_name": "7056495", -"image": [ -"math/51322517_870.png" -], -"solution": "\\textbf{Solution}: Let $BC=x$, then $PC=x$,\\\\\nin $\\triangle OBC$, $OB=OA=6$, $OC=CP+OP=x+2$,\\\\\nsince $OB^2+BC^2=OC^2$,\\\\\nthus $6^2+x^2=(x+2)^2$,\\\\\nwe find $x=8$,\\\\\nthat is, the length of $BC$ is $\\boxed{8}$;", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322517_140": { -"question": "As illustrated in the figure, AB is a chord of the circle $\\odot O$, $OP\\perp OA$ intersects AB at point P, and a line passing through point B intersects the extension of $OP$ at point C, with $BC$ being a tangent of $\\odot O$. Let the area of $\\triangle AOP$ be $S_1$ and the area of $\\triangle BCP$ be $S_2$, with $\\frac{S_1}{S_2}=\\frac{2}{5}$. Given that the radius of $\\odot O$ is $6$ and $BP=4\\sqrt{5}$, find $\\tan\\angle APO$?", -"image_file_name": "7056495", -"image": [ -"math/51322517_870.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, construct $CD\\perp BP$ at $D$,\\\\\n$\\because PC=CB$,\\\\\n$\\therefore PD=BD=\\frac{1}{2}PB=2\\sqrt{5}$,\\\\\n$\\because \\angle PDC=\\angle AOP=90^\\circ$, $\\angle APO=\\angle CPD$,\\\\\n$\\therefore \\triangle AOP\\sim \\triangle PCD$,\\\\\n$\\because \\frac{{S}_{1}}{{S}_{2}}=\\frac{2}{5}$,\\\\\n$\\therefore \\frac{{S}_{\\triangle AOP}}{{S}_{\\triangle PCD}}=\\frac{4}{5}$,\\\\\n$\\therefore \\frac{OA^{2}}{CD^{2}}=\\frac{4}{5}$,\\\\\n$\\because OA=6$,\\\\\n$\\therefore CD=3\\sqrt{5}$,\\\\\n$\\therefore \\tan\\angle APO=\\tan\\angle CBP=\\frac{CD}{BD}=\\frac{3\\sqrt{5}}{2\\sqrt{5}}=\\boxed{\\frac{3}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51322681_142": { -"question": "As shown in the figure, the line $y=2x$ passing through the origin intersects the inverse proportion function $y_{1}=\\frac{2}{x}$ at point $B$, and intersects another inverse proportion function $y_{2}=\\frac{k}{x}$ at point $C$, with $OB=BC$. The abscissa of point $A$ is $4$ and is a point on $y_{1}=\\frac{2}{x}$. A line is drawn from point $B$ such that $BD\\perp x$ axis, with the foot of the perpendicular at point $D$. Find the analytical expression of the inverse proportion function $y_{2}=\\frac{k}{x}$ and the line $AD$.", -"image_file_name": "7056495", -"image": [ -"math/51322681_883.png" -], -"solution": "\\textbf{Solution:} Solving the system of equations, we get\n\\begin{align*}\n\\begin{cases}\ny=2x \\\\\ny=\\frac{2}{x}\n\\end{cases}\n\\end{align*}\nwhich yields\n\\begin{align*}\n\\begin{cases} x_{1}=1 \\\\ y_{1}=2 \\end{cases}, \\quad\n\\begin{cases} x_{2}=-1 \\\\ y_{2}=-2 \\end{cases}\n\\end{align*}\n\\(\\therefore B(1, 2)\\)\n\n\\(\\because\\) BD \\(\\perp\\) x-axis,\n\n\\(\\therefore D(1, 0)\\)\n\n\\(\\therefore BD=2, OD=1.\\)\n\nWhen \\(x=4\\), \\(y_{1}=\\frac{2}{4}=\\frac{1}{2}\\)\n\n\\(\\therefore A(4, \\frac{1}{2})\\)\n\nThrough point C, construct CE \\(\\perp\\) x-axis at point E,\n\n\\(\\therefore\\) BD \\(\\parallel\\) CE\n\n\\(\\therefore \\triangle BOD \\sim \\triangle COE\\)\n\n\\(\\therefore \\frac{OB}{OC}=\\frac{BD}{CE}=\\frac{OD}{OE}\\)\n\n\\(\\because\\) OB = BC, BD = 2\n\n\\(\\therefore \\frac{2}{CE}=\\frac{1}{OE}=\\frac{1}{2}\\)\n\n\\(\\therefore\\) CE = 4, OE = 2\n\n\\(\\therefore C(2, 4)\\)\n\nSubstituting into \\(y_{2}=\\frac{k}{x}\\), we get \\(\\frac{k}{2}=4\\)\n\n\\(\\therefore k=8\\)\n\n\\(\\therefore y_{2}=\\frac{8}{x}\\)\n\nAssume the equation of line AD is \\(y=kx+b\\)\n\nSubstituting \\((1, 0)\\) and \\((4, \\frac{1}{2})\\), we get\n\\begin{align*}\n\\begin{cases}\nk+b=0 \\\\\n4k+b=\\frac{1}{4}\n\\end{cases}\n\\end{align*}\nSolving, we find\n\\begin{align*}\n\\begin{cases}\nk=\\frac{1}{6} \\\\\nb=-\\frac{1}{6}\n\\end{cases}\n\\end{align*}\n\\(\\therefore\\) The equation of line AD is \\(y=\\frac{1}{6}x-\\frac{1}{6}\\), thus the answer is \\(\\boxed{y=\\frac{1}{6}x-\\frac{1}{6}}\\).", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51322681_143": { -"question": "As shown in the figure, the line passing through the origin $y=2x$ intersects the inverse proportional function $y_{1}=\\frac{2}{x}$ at point $B$, and intersects another inverse proportional function $y_{2}=\\frac{k}{x}$ at point $C$, with $OB=BC$. The point $A$ has an abscissa of $4$ and lies on the curve $y_{1}=\\frac{2}{x}$. A perpendicular line $BD \\perp x$-axis is drawn from point $B$, with $D$ being the foot of the perpendicular. Is there a point $P$ on the graph of the inverse proportional function $y_{2}=\\frac{k}{x}$ within the first quadrant such that $S_{\\triangle ABP}=\\frac{5}{11}S_{\\text{quadrilateral} ADBP}$? If such a point exists, find the coordinates of point $P$; if not, please state the reason.", -"image_file_name": "7056495", -"image": [ -"math/51322681_883.png" -], -"solution": "\\textbf{Solution:} From the given problem, we have $A(4, \\frac{1}{2}), B(1, 2), D(1, 0)$,\\\\\n$\\therefore S_{\\triangle ABD}=\\frac{1}{2}BD\\cdot |x_{A}-x_{B}|$, $AB=\\sqrt{(4-1)^{2}+(\\frac{1}{2}-2)^{2}}=\\frac{3\\sqrt{5}}{2}$\\\\\nLet the equation of line AB be $y=mx+n$. Substituting $A(4, \\frac{1}{2}), B(1, 2)$, we get $\\left\\{\\begin{array}{l}m+n=2 \\\\ 4m+n=\\frac{1}{2}\\end{array}\\right.$, solving this gives, $\\left\\{\\begin{array}{l}m=-\\frac{1}{2} \\\\ n=\\frac{5}{2}\\end{array}\\right.$\\\\\n$\\therefore$ The equation of line AB is $y=-\\frac{1}{2}x+\\frac{5}{2}$\\\\\nConstruct PR$\\perp$x-axis from P, meeting AB at point F,\\\\\n$\\therefore S_{\\triangle ABP}=S_{\\triangle AFP}+S_{\\triangle BFP}$\\\\\n$=\\frac{1}{2}PF\\cdot |x_{P}-x_{B}|+\\frac{1}{2}PF\\cdot |x_{A}-x_{P}|$\\\\\n$=\\frac{1}{2}PF\\cdot |x_{A}-x_{B}|$\\\\\n$\\because S_{\\triangle ABP}=\\frac{5}{11}S_{\\text{quadrilateral}ADBP}$,\\\\\n$\\therefore S_{\\triangle ABP}=\\frac{5}{6}S_{\\triangle ABD}$\\\\\n$\\therefore PF=\\frac{5}{6}BD=\\frac{5}{6}\\times 2=\\frac{5}{3}$\\\\\nLet $P(x, \\frac{8}{x}), F(x, -\\frac{1}{2}x+\\frac{5}{2})$,\\\\\n$\\therefore PF=\\frac{8}{x}-\\left(-\\frac{1}{2}x+\\frac{5}{2}\\right)=\\frac{8}{x}+\\frac{1}{2}x-\\frac{5}{2}=\\frac{5}{3}$\\\\\nRearranging gives: $3x^{2}-25x+48=0$\\\\\nSolving, we find $x_{1}=\\frac{16}{3}, x_{2}=3$.\\\\\nUpon verification, $x_{1}=\\frac{16}{3}, x_{2}=3$ are the roots of the original equation\\\\\n$\\therefore \\boxed{P_{1}\\left(\\frac{16}{3}, \\frac{3}{2}\\right)}, \\boxed{P_{2}\\left(3, \\frac{8}{3}\\right)}$", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51322681_144": { -"question": "As shown in the figure, the line passing through the origin $y=2x$ intersects the inverse proportion function $y_{1}=\\frac{2}{x}$ at point $B$, and intersects another inverse proportion function $y_{2}=\\frac{k}{x}$ at point $C$, with $OB=BC$. Point $A$ has an abscissa of $4$ and is a point on $y_{1}=\\frac{2}{x}$. A perpendicular line from point $B$ to the x-axis is drawn, and the foot of the perpendicular is point $D$. Suppose a moving point $Q$ is on the graph of $y_{2}=\\frac{k}{x}$. Is there a point $H$ in the plane such that points $A$, $B$, $Q$, $H$ can form a rectangle with $AB$ as one side? If it exists, please write down the coordinates of point $H$ directly; if not, please explain the reason.", -"image_file_name": "7056495", -"image": [ -"math/51322681_883.png" -], -"solution": "\\textbf{Solution:} There exists a point $\\boxed{H\\left(5, \\frac{5}{2}\\right)}$ such that points $A$, $B$, $Q$, and $H$ can form a rectangle with $AB$ as a side.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51317435_146": { -"question": "In the Cartesian coordinate system shown in the figure, $O$ is the origin. The parabola $y=-x^{2}+6x+3$ intersects the $y$-axis at point $A$. A line $AB$ is drawn parallel to the $x$-axis from point $A$, and it intersects the parabola at point $B$. The line segment $OB$ is connected. A point $P$ is located above segment $AB$ on the parabola, and a line $PA$ is drawn. Perpendicular $PQ$ is dropped from $P$ to $AB$, with the foot of the perpendicular being $H$, and it intersects $OB$ at point $Q$. Find the length of $AB$.", -"image_file_name": "7056495", -"image": [ -"math/51317435_890.jpg" -], -"solution": "\\textbf{Solution:} Given $y=-x^{2}+6x+3$, let $x=0$, then we have $y=3$. Thus, point $A(0,3)$, \\\\\nlet $y=-x^{2}+6x+3=3$, solving this gives $x=0$ or $x=6$. Hence, point $B(6,3)$, \\\\\n$\\therefore AB=\\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51317435_147": { -"question": "As shown in the Cartesian coordinate system, the point $O$ is the origin. The parabola $y=-x^2+6x+3$ intersects the $y$-axis at point $A$. A line segment $AB$ is drawn parallel to the $x$-axis, intersecting the parabola at point $B$, and $OB$ is connected. Point $P$ lies above $AB$ on the parabola, and $PA$ is connected. A perpendicular $PQ$ is drawn to $AB$ at the foot point $H$, intersecting $OB$ at point $Q$. When $\\angle APQ = \\angle B$, what are the coordinates of point $P$?", -"image_file_name": "7056495", -"image": [ -"math/51317435_890.jpg" -], -"solution": "\\textbf{Solution:} Let $P(m, -m^{2}+6m+3)$,\\\\\nsince $\\angle P = \\angle B$ and $\\angle AHP = \\angle OAB = 90^\\circ$,\\\\\nit follows that $\\triangle ABO \\sim \\triangle HPA$, hence $\\frac{HP}{AB}=\\frac{AH}{AO}$,\\\\\nthus $\\frac{-m^{2}+6m}{6}=\\frac{m}{3}$,\\\\\nsolving for $m$ gives $m=4$.\\\\\nTherefore, $P(4,11)$. Thus, the coordinates of point $P$ are $\\boxed{(4,11)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51317435_148": { -"question": "As shown in the Cartesian coordinate system, let $O$ be the origin. The parabola $y=-x^2+6x+3$ intersects the $y$-axis at point $A$. A line segment $AB$ is drawn parallel to the $x$-axis from $A$ and intersects the parabola at point $B$. The segment $OB$ is then connected. Let $P$ be a point on the parabola above segment $AB$, and draw $PA$ and $PQ \\perp AB$ with the foot of the perpendicular on $AB$ at $H$ and intersecting $OB$ at point $Q$. When the area of $\\triangle APH$ is twice the area of the quadrilateral $AOQH$, find the coordinates of point $P$.", -"image_file_name": "7056495", -"image": [ -"math/51317435_890.jpg" -], -"solution": "\\textbf{Solution:} When the area of $\\triangle APH$ is twice the area of quadrilateral $AOQH$,\\\\\nthen $2(AO+HQ)=PH$,\\\\\n$\\therefore 2\\left(3+ \\frac{6-m}{2}\\right)=-m^2+6m$,\\\\\nsolving this gives: $m_1=4$, $m_2=3$,\\\\\n$\\therefore \\boxed{P(4,11)} or \\boxed{P\\left(3,12\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51317409_150": { -"question": "As illustrated, it is known in $\\triangle ABC$ that $\\angle BAC=30^\\circ$ and $\\angle C=90^\\circ$. The coordinates of point A are $(-1,0)$ and those of point B are $(3,0)$. The parabola $y_1$ has its vertex labeled as Q and passes through the three vertices A, B, and C of $\\triangle ABC$ (with point A to the left of B and point C below the x-axis). Another parabola $y_2$ also intersects the x-axis at points A and B, with its vertex labeled as P. The task is to find the coordinates of point C and the coordinates of the vertex Q of the parabola $y_1$.", -"image_file_name": "7056495", -"image": [ -"math/51317409_900.jpg" -], -"solution": "Solution: Since $\\angle BAC=30^\\circ$ and $\\angle C=90^\\circ$, with A located at $(-1,0)$ and B at $(3,0)$, it follows that $AC=2\\sqrt{3}$. Consequently, $y_C=-\\sqrt{3}$. Therefore, the coordinates of point C are $(2, -\\sqrt{3})$. Given that the parabola $y_1$ passes through points A, B, and C, let the equation of the parabola $y_1$ be $y_1=a(x+1)(x-3)$. It follows that $-\\sqrt{3}=-3a$, hence $a=\\frac{\\sqrt{3}}{3}$. Therefore, $y_1=\\frac{\\sqrt{3}}{3}(x+1)(x-3)=\\frac{\\sqrt{3}}{3}(x-1)^2-\\frac{4\\sqrt{3}}{3}$. Hence, the coordinates of the vertex Q are $\\boxed{(1, -\\frac{4\\sqrt{3}}{3})}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51317409_151": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\angle BAC=30^\\circ$, $\\angle C=90^\\circ$, the coordinate of point A is $(-1, 0)$, and the coordinate of point B is $(3, 0)$. The vertex of the parabola $y_1$ is denoted as Q, and it passes through the three vertices A, B, and C of $\\triangle ABC$ (with point A to the left of point B, and point C below the x-axis). The parabola $y_2$ also intersects the x-axis at points A and B, and its vertex is P. When the value of $BP+CP$ is minimized, find the equation of the parabola $y_2$.", -"image_file_name": "7056495", -"image": [ -"math/51317409_900.jpg" -], -"solution": "Solution: Since the parabola $y_{1}$ and the parabola $y_{2}$ intersect the $x$-axis at the same points, the axis of symmetry of the parabola $y_{2}$ is $x=1$. Since point A is symmetrical to point B about the line $x=1$, the value of $BP+CP$ is minimized when $P$ is the intersection of line $AC$ and the axis of symmetry. Let the equation of line $AC$ be: $y=kx+b$. Then we have\n\\[\n\\left\\{\n\\begin{array}{l}\n-k+b=0\\\\\n2k+b=-\\sqrt{3}\n\\end{array}\n\\right.\n\\]\nSolving this, we get\n\\[\n\\left\\{\n\\begin{array}{l}\nk=-\\frac{\\sqrt{3}}{3}\\\\\nb=-\\frac{\\sqrt{3}}{3}\n\\end{array}\n\\right.\n\\]\nTherefore, the equation of line $AC$ is: $y=-\\frac{\\sqrt{3}}{3}x-\\frac{\\sqrt{3}}{3}$. Thus, the coordinates of point $P$ are $\\left(1,-\\frac{2\\sqrt{3}}{3}\\right)$. Let $y_{2}=m(x+1)(x-3)$, then $-4m=-\\frac{2\\sqrt{3}}{3}$, therefore $m=\\frac{\\sqrt{3}}{6}$, hence the equation of the parabola $y_{2}$ is: $y_{2}=\\frac{\\sqrt{3}}{6}(x+1)(x-3)=\\frac{\\sqrt{3}}{6}x^{2}-\\frac{\\sqrt{3}}{3}x-\\frac{\\sqrt{3}}{2}$. Therefore, the answer is $y_{2}=\\boxed{\\frac{\\sqrt{3}}{6}x^{2}-\\frac{\\sqrt{3}}{3}x-\\frac{\\sqrt{3}}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51317409_152": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $\\angle BAC = 30^\\circ$, $\\angle C = 90^\\circ$, the coordinate of point A is $(-1,0)$, and the coordinate of point B is $(3,0)$. The vertex of parabola $y_1$ is denoted as Q, and it passes through the three vertices A, B, and C of $\\triangle ABC$ (with A to the left of B, and C below the x-axis). Parabola $y_2$ also intersects the x-axis at points A and B, with its vertex denoted as P. Suppose point M is a moving point on parabola $y_1$, located to the right of its axis of symmetry. If $\\triangle PQM$ is similar to $\\triangle ABC$, determine the coordinates of vertex P of parabola $y_2$.", -"image_file_name": "7056495", -"image": [ -"math/51317409_900.jpg" -], -"solution": "\\textbf{Solution:} Since point M is on the right side of the symmetry axis of the parabola $y_{1}$, it follows that point Q is not the right-angle vertex. Let point M be $(a, \\frac{\\sqrt{3}}{3}a^{2}- \\frac{2\\sqrt{3}}{3}a- \\sqrt{3})$, thus, the distance of point M from the symmetry axis is $a-1$, and $y_{M}-y_{Q} = \\frac{\\sqrt{3}}{3}a^{2}- \\frac{2\\sqrt{3}}{3}a- \\sqrt{3} -(- \\frac{4\\sqrt{3}}{3}) = \\frac{\\sqrt{3}}{3}a^{2}- \\frac{2\\sqrt{3}}{3}a+ \\frac{\\sqrt{3}}{3}$. Since triangle $PQM$ is similar to triangle $ABC$ with $\\angle ACB = 90^\\circ$.\n\n(1) When $\\angle PMQ = 90^\\circ$,\n\n(i) If $\\angle PQM = 30^\\circ$ and $\\angle QPM = 60^\\circ$, then $y_{M}-y_{Q} = \\sqrt{3}(a-1)$ and $y_{P}-y_{M} = \\frac{\\sqrt{3}}{3}(a-1)$. Therefore, $\\frac{\\sqrt{3}}{3}a^{2}- \\frac{2\\sqrt{3}}{3}a+ \\frac{\\sqrt{3}}{3} = \\sqrt{3}(a-1)$. Solving, we find $a=1$ (discard) or $a=4$. Therefore, $M(4, \\frac{5\\sqrt{3}}{3})$, and $y_{P}-y_{M} = \\frac{\\sqrt{3}}{3}(4-1) = \\sqrt{3}$. Hence, the y-coordinate of point P is $\\frac{5\\sqrt{3}}{3} + \\sqrt{3} = \\frac{8\\sqrt{3}}{3}$. Therefore, $P(1, \\frac{8\\sqrt{3}}{3})$.\n\n(ii) If $\\angle PQM = 60^\\circ$ and $\\angle QPM = 30^\\circ$, then $\\sqrt{3}(y_{M}-y_{Q}) = a-1$, and $y_{P}-y_{M} = \\sqrt{3}(a-1)$. Therefore, $\\sqrt{3}(\\frac{\\sqrt{3}}{3}a^{2}- \\frac{2\\sqrt{3}}{3}a+ \\frac{\\sqrt{3}}{3}) = a-1$. Solving, we find $a=1$ (discard) or $a=2$. Therefore, $M(2, -\\sqrt{3})$, and $y_{P}-y_{M} = \\sqrt{3} \\times (2-1) = \\sqrt{3}$. Hence, the y-coordinate of point P is $-\\sqrt{3} + \\sqrt{3} = 0$. Therefore, $P(1, 0)$.\n\n(2) When $\\angle MPQ = 90^\\circ$,\n\n(i) If $\\angle PQM = 30^\\circ$, then $y_{M}-y_{Q} = \\sqrt{3}(a-1)$. Therefore, $\\frac{\\sqrt{3}}{3}a^{2}- \\frac{2\\sqrt{3}}{3}a- \\frac{\\sqrt{3}}{3} = \\sqrt{3}(a-1)$. Solving, we find $a=1$ (discard) or $a=4$. Therefore, $M(4, \\frac{5\\sqrt{3}}{3})$. Hence, $P(1, \\frac{5\\sqrt{3}}{3})$.\n\n(ii) If $\\angle PQM = 60^\\circ$, then $\\sqrt{3}(y_{M}-y_{Q}) = a-1$. Therefore, $\\sqrt{3}(\\frac{\\sqrt{3}}{3}a^{2}- \\frac{2\\sqrt{3}}{3}a- \\frac{\\sqrt{3}}{3}) = a-1$. Solving, we find $a=1$ (discard) or $a=?$.\n\n\\boxed{P(1, \\frac{8\\sqrt{3}}{3})}", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51317366_154": { -"question": "As shown in the diagram, it is known that $AB$ is the diameter of circle $O$, and chord $CD$ intersects diameter $AB$ at point $E$, with $AC=CD$. Extend line $CO$ to intersect chord $AD$ at point $F$, and connect $AC$, $BC$, $BD$. Given $AB=10$ and $BE=2$, what is the length of $BD$?", -"image_file_name": "7056495", -"image": [ -"math/51317366_910.jpg" -], -"solution": "\\textbf{Solution:} Since the diameter AB $= 10$, it follows that OA $=$ OB $=$ OC $= 5$ and $\\angle ADB = \\angle ACB = 90^\\circ$. Since BE $= 2$, it follows that OE $=$ OB - EB $= 3$. Since AC $=$ CD, it implies $\\overset{\\frown}{AC} = \\overset{\\frown}{CD}$, thus CF $\\perp$ AD, leading to AF $=$ DF. Since $\\angle AFC = \\angle ADB = 90^\\circ$, it follows that CF $\\parallel$ BD,\n\\[\n\\therefore \\frac{OC}{BD}=\\frac{OE}{EB},\n\\]\n\\[\n\\therefore \\frac{5}{BD}=\\frac{3}{2}, \\therefore BD=\\boxed{\\frac{10}{3}}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51317366_155": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of circle $O$, and chord $CD$ intersects with diameter $AB$ at point $E$, with $AC=CD$. Extend line $CO$ to intersect chord $AD$ at point $F$. Connect $AC$, $BC$, $BD$, with $AB=10$ and $BE=2$. What is the length of $AF$?", -"image_file_name": "7056495", -"image": [ -"math/51317366_910.jpg" -], -"solution": "\\textbf{Solution:} Given that $AO=OB$ and $AF=FD$, \\\\\nhence $OF=\\frac{1}{2}BD=\\frac{5}{3}$, \\\\\nin $\\triangle AOF$, $AF=\\sqrt{OA^{2}-OF^{2}}=\\sqrt{5^{2}-\\left(\\frac{5}{3}\\right)^{2}}=\\boxed{\\frac{10\\sqrt{2}}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51317366_156": { -"question": "As shown in the figure, it is known that $AB$ is the diameter of circle $O$, and chord $CD$ intersects diameter $AB$ at point $E$. Given $AC=CD$, connect $CO$ and extend it to intersect chord $AD$ at point $F$. Connect $AC$, $BC$, $BD$, and given $AB=10$, $BE=2$. What is the area of $\\triangle ABC$?", -"image_file_name": "7056495", -"image": [ -"math/51317366_910.jpg" -], -"solution": "\\textbf{Solution:} In $\\triangle \\mathrm{ACF}$, $\\angle \\mathrm{AFC} = 90^\\circ$, $\\mathrm{AF} = \\frac{10\\sqrt{2}}{3}$, $\\mathrm{CF} = \\mathrm{OC} + \\mathrm{OF} = 5 + \\frac{5}{3} = \\frac{20}{3}$, \\\\\n$\\therefore \\mathrm{AC} = \\sqrt{\\mathrm{AF}^2 + \\mathrm{CF}^2} = \\sqrt{\\left(\\frac{10\\sqrt{2}}{3}\\right)^2 + \\left(\\frac{20}{3}\\right)^2} = \\frac{10\\sqrt{6}}{3}$, \\\\\nIn $\\triangle \\mathrm{ABC}$, $\\mathrm{BC} = \\sqrt{\\mathrm{AB}^2 - \\mathrm{AC}^2} = \\sqrt{10^2 - \\left(\\frac{10\\sqrt{6}}{3}\\right)^2} = \\frac{10\\sqrt{3}}{3}$, \\\\\n$\\therefore S_{\\triangle \\mathrm{ABC}} = \\frac{1}{2} \\cdot \\mathrm{AC} \\cdot \\mathrm{BC} = \\frac{1}{2} \\times \\frac{10\\sqrt{6}}{3} \\times \\frac{10\\sqrt{3}}{3} = \\boxed{\\frac{50\\sqrt{2}}{3}}.$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51317358_158": { -"question": "As shown in the figure, in $\\mathrm{Rt}\\triangle ABC$ with $\\angle A=90^\\circ$, $O$ is a point on side $BC$. A semicircle centered at $O$ is tangent to side $AB$ at point $D$ and intersects sides $AC$ and $BC$ at points $E$, $F$, and $G$, respectively. Line $OD$ is drawn, given that $BD = 2$, $AE = 3$, and $\\tan\\angle BOD= \\frac{2}{3}$. What is the radius of the circle centered at $O$, $OD$?", -"image_file_name": "7056495", -"image": [ -"math/51317358_921.jpg" -], -"solution": "\\textbf{Solution:} Since AB is tangent to circle O,\\\\\nit follows that OD$\\perp$AB. In $\\triangle BDO$, BD=2, $\\tan\\angle BOD= \\frac{BD}{OD} = \\frac{2}{OD}$,\\\\\nhence, OD=\\boxed{3}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51317358_160": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle A = 90^\\circ$, O is a point on side BC. A semicircle centered at O is tangent to side AB at point D and intersects sides AC and BC at points E, F, and G, respectively. Segment OD is drawn. It is known that BD = 2, AE = 3, and $\\tan \\angle BOD = \\frac{2}{3}$. AE is a tangent to circle O; what is the sum of the areas of the two shaded regions?", -"image_file_name": "7056495", -"image": [ -"math/51317358_921.jpg" -], -"solution": "\\textbf{Solution:} Since $OD \\parallel AC$, it follows that $\\frac{BD}{AB} = \\frac{OD}{AC}$, that is, $\\frac{2}{2+3} = \\frac{3}{AC}$. Thus, $AC = 7.5$, and therefore $EC = AC - AE = 7.5 - 3 = 4.5$. Hence, the area of the shaded region $S_{\\text{shaded}} = S_{\\triangle BDO} + S_{\\triangle OEC} - S_{\\text{sector} FOD} - S_{\\text{sector} EOG}$ \\\\\n$= \\frac{1}{2} \\times 2 \\times 3 + \\frac{1}{2} \\times 3 \\times 4.5 - \\frac{90^\\circ \\pi \\times {3}^{2}}{360}$ \\\\\n$= 3 + \\frac{27}{4} - \\frac{9\\pi }{4}$ \\\\\n$= \\boxed{\\frac{39-9\\pi }{4}}.$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51179503_163": { -"question": "As shown in the figure, $\\triangle ABC$ is inscribed in $\\odot O$, with $AB$ being the diameter of $\\odot O$, $AB=10$, $AC=6$. Connect $OC$, and the chord $AD$ intersects $OC$, $BC$ at points $E$, $F$, where point $E$ is the midpoint of $AD$. $\\angle CAD=\\angle CBA$. What is the length of $OE$?", -"image_file_name": "7056495", -"image": [ -"math/51179503_930.png" -], -"solution": "\\textbf{Solution:} Since $AB$ is a diameter, \\\\\n$\\therefore \\angle ACB=90^\\circ$, \\\\\nBecause $AE=DE$, \\\\\n$\\therefore OC\\perp AD$, \\\\\n$\\therefore \\angle AEC=90^\\circ$, \\\\\n$\\therefore \\angle AEC=\\angle ACB$, \\\\\n$\\therefore \\triangle AEC\\sim \\triangle BCA$, \\\\\n$\\therefore \\frac{CE}{AC} = \\frac{AC}{AB}$, \\\\\n$\\therefore \\frac{CE}{6} = \\frac{6}{10}$, \\\\\n$\\therefore CE=3.6$, \\\\\nSince $OC= \\frac{1}{2} AB=5$, \\\\\n$\\therefore OE=OC-EC=5-3.6=\\boxed{1.4}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299773_165": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C = 90^\\circ$, points D and E are located on AC and AB respectively, BD bisects $\\angle ABC$, $DE \\perp AB$ at point $E$, $AE = 6$, and $\\cos A = \\frac{3}{5}$. What is the length of CD?", -"image_file_name": "7056495", -"image": [ -"math/51299773_945.png" -], -"solution": "\\textbf{Solution:} In right $\\triangle ADE$, where $\\angle AED=90^\\circ$ and $AE=6$, with $\\cos A=\\frac{3}{5}$, we find that\\\\\n$\\therefore AD=\\frac{AE}{\\cos A}=10$\\\\\n$\\therefore DE=\\sqrt{AD^2-AE^2}=\\sqrt{10^2-6^2}=8$\\\\\nSince $BD$ bisects $\\angle ABC$, and $DE\\perp AB$, $DC\\perp BC$,\\\\\n$\\therefore CD=DE=\\boxed{8}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299773_166": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, points D and E are on AC and AB respectively, BD bisects $\\angle ABC$, $DE\\perp AB$ at point $E$, $AE=6$, $\\cos A=\\frac{3}{5}$. What is the value of $\\tan \\angle DBC$?", -"image_file_name": "7056495", -"image": [ -"math/51299773_945.png" -], -"solution": "\\textbf{Solution:} Given $AD=10$, $DC=8$,\n\n$\\therefore AC=AD+DC=18$,\n\nIn triangles $\\triangle ADE$ and $\\triangle ABC$,\n\n$\\because \\angle A=\\angle A$, $\\angle AED=\\angle ACB$,\n\n$\\therefore \\triangle ADE \\sim \\triangle ABC$,\n\n$\\therefore \\frac{DE}{BC}=\\frac{AE}{AC}$, which means $\\frac{8}{BC}=\\frac{6}{18}$, thus $BC=24$,\n\n$\\therefore \\tan\\angle DBC=\\frac{CD}{BC}=\\frac{8}{24}=\\boxed{\\frac{1}{3}}.$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299739_169": { -"question": "As shown in Figure 1, AC is the diameter of $\\odot O$, PA is the tangent to $\\odot O$, with A being the point of tangency. Point B lies on $\\odot O$, and PA = PB. Chord AB intersects PC at point M. PB is the tangent to $\\odot O$, and segment BC is connected. If $\\angle APB = 4\\angle BPC$ and AP = 6, what is the length of BC?", -"image_file_name": "7056495", -"image": [ -"math/51299739_950.png" -], -"solution": "\\textbf{Solution:} Connect PO.\\\\\nSince PA and PB are tangents to the circle $O$,\\\\\nit follows that PA=PB=6, and $\\angle APO=\\angle BPO$, that is, $\\angle 1=\\angle 2+\\angle 3$,\\\\\nSince $\\angle APB=4\\angle BPC$,\\\\\nit follows that $\\angle APM=3\\angle BPM$,\\\\\ntherefore $\\angle 1+\\angle 2=3\\angle 3$,\\\\\nthus $2\\angle 2+\\angle 3=3\\angle 3$, which means $\\angle 2=\\angle 3=\\frac{1}{2}\\angle 1$.\\\\\nLet $\\angle 2=\\angle 3=\\alpha$, then $\\angle 1=2\\alpha$, $\\angle APB=4\\alpha$,\\\\\nthus $\\angle PBA=\\frac{1}{2}(180^\\circ-4\\alpha)=90^\\circ-2\\alpha$,\\\\\nConsidering that AC is a diameter,\\\\\nthus $\\angle ABC=90^\\circ$,\\\\\ntherefore $\\angle PBC=180^\\circ-2\\alpha$,\\\\\nthus $\\angle 4=180^\\circ-\\angle 3-\\angle PBC=180^\\circ-\\alpha-(180^\\circ-2\\alpha)=\\alpha$,\\\\\ntherefore $\\angle 3=\\angle 4$,\\\\\nthus BC=PB=\\boxed{6}.", -"solution_image": [ -"solution_images/51299739_951.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299739_170": { -"question": "As shown in Figure 1, AC is the diameter of $\\odot O$, PA is the tangent to $\\odot O$ with A being the point of tangency, point B is on $\\odot O$, PA = PB, and the chord AB intersects PC at point M. As shown in Figure 2, if AB = 4BM, find the value of $ \\frac{MC}{MB}$.", -"image_file_name": "7056495", -"image": [ -"math/51299739_950.png" -], -"solution": "\\textbf{Solution:} Connect PO and intersect AB at point Q, connect BO and BC.\\\\\n$\\because$ PA and PB are the tangents to $\\odot$O,\\\\\n$\\therefore$ PA=PB, $\\angle$APO=$\\angle$BPO,\\\\\n$\\therefore$ AQ=BQ= $ \\frac{1}{2}$ AB, $\\angle$PQM=$90^\\circ$,\\\\\n$\\because$ AB=4BM,\\\\\n$\\therefore$2BQ=4BM, that is BQ=2BM,\\\\\n$\\therefore$ M is the midpoint of BQ.\\\\\nLet BM=QM=x, then AQ=BQ=2x, AM=3x,\\\\\n$\\because$ $\\angle$PQM=$\\angle$CBM=$90^\\circ$, BM=QM, $\\angle$PMQ=CMB,\\\\\n$\\therefore$ $\\triangle$PQM$\\cong$$\\triangle$CBM (ASA),\\\\\n$\\therefore$ PM=CM,\\\\\n$\\because$ $\\angle$PAC=$90^\\circ$,\\\\\n$\\therefore$AM=CM=3x,\\\\\n$\\therefore$ $ \\frac{MC}{MB}=\\frac{3x}{x}=\\boxed{3}$.", -"solution_image": [ -"solution_images/51299739_951.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51299739_171": { -"question": "As shown in the figure, $AC$ is the diameter of $\\odot O$, $PA$ is the tangent of $\\odot O$ with $A$ being the point of tangency, point $B$ is on $\\odot O$, $PA=PB$, chord $AB$ intersects $PC$ at point $M$, if $AP=AC$, $PO$ intersects $AB$ at point $D$, $PC$ intersects $\\odot O$ at point $N$, draw $DN$, then what is the value of $\\frac{DP}{DN}$?", -"image_file_name": "7056495", -"image": [ -"math/51299739_950.png" -], -"solution": "\\textbf{Solution:} We have $\\frac{DP}{DN}=\\boxed{2\\sqrt{2}}$.", -"solution_image": [ -"solution_images/51299739_951.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51155320_174": { -"question": "As shown in the figure, in $\\triangle ABC$, points D and E are on sides AB and AC, respectively, with $\\angle AED=\\angle B$. AG bisects $\\angle BAC$, and the line segment AG intersects line segments DE and BC at points F and G, respectively. If $\\frac{AD}{DB}=\\frac{1}{2}$, find the value of $\\frac{EF}{FG}$.", -"image_file_name": "7056495", -"image": [ -"math/51155320_960.png" -], -"solution": "\\textbf{Solution:} Since $AG$ bisects $\\angle BAC$,\\\\\nwe have $\\angle BAG = \\angle EAF$,\\\\\nand since $\\angle AEF = \\angle B$,\\\\\nit follows that $\\triangle BAG \\sim \\triangle EAF$,\\\\\nthus $\\frac{EF}{BG} = \\frac{AF}{AG}$,\\\\\nSince $\\triangle ADF \\sim \\triangle ACG$,\\\\\nwe have $\\frac{AD}{AC} = \\frac{AF}{AG} = \\frac{1}{2}$,\\\\\ntherefore, $\\frac{EF}{BG} = \\frac{AD}{AC} = \\boxed{\\frac{1}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51155328_176": { -"question": "As shown in the figure, a rectangular paper ABCD (AD > DC) is folded along a straight line passing through point D, so that point A falls on side BC at point E, and the crease intersects side AB at point F. If BE = 1, EC = 2, then what is the value of $\\sin\\angle EDC$?", -"image_file_name": "7056495", -"image": [ -"math/51155328_970.png" -], -"solution": "\\textbf{Solution}: We have $\\sin\\angle EDC = \\boxed{\\frac{2}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51155328_177": { -"question": "As shown in the figure, a rectangular piece of paper ABCD (with AD > DC) is folded along a straight line passing through point D, so that point A lands on side BC, with the landing point being E, and the crease intersects side AB at point F. Given that \\(BE:EC = 1:4\\) and \\(CD = 9\\), find the length of \\(BF\\).", -"image_file_name": "7056495", -"image": [ -"math/51155328_970.png" -], -"solution": "\\textbf{Solution:} Let $\\because BE:EC=1:4$, assume $BE=x$, $EC=4x$, by the properties of the rectangle, we have: $AD=BC=BE+EC=5x$. From the property of folding, we get: $DE=AD=5x$. In $\\triangle DEC$, we have $CD^2+CE^2=DE^2$, that is $9^2+(4x)^2=(5x)^2$. Solving this gives $x=3$ (neglect the negative value), hence $BE=3$. Let $BF=a$, then $EF=AF=AB-BF=9-a$. By the Pythagorean theorem, we have $BE^2+BF^2=EF^2$, that is $3^2+a^2=(9-a)^2$. Solving this yields $a=\\boxed{4}$, so $BF=4$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51155328_178": { -"question": "As shown in the figure, fold the rectangular paper ABCD (AD > DC) at point A along the line passing through point D, making point A land on the side BC, with the landing point being E, and the fold line intersecting side AB at point F. If $BE: EC = m: n$, find $AF: FB$ (expressed as an algebraic expression involving $m$ and $n$).", -"image_file_name": "7056495", -"image": [ -"math/51155328_970.png" -], -"solution": "\\textbf{Solution:} From the given conditions, we can derive: $\\angle EFD=\\angle A=\\angle B=\\angle C=90^\\circ$\\\\\n$\\therefore$ $\\angle BEF+\\angle DEC=90^\\circ$, $\\angle DEC+\\angle EDC=90^\\circ$\\\\\n$\\therefore$ $\\angle BEF=\\angle EDC$\\\\\n$\\therefore$ $\\triangle BEF\\sim \\triangle CDE$\\\\\n$\\therefore$ $\\frac{EF}{DE}=\\frac{BF}{CE}$, that is $\\frac{EF}{BF}=\\frac{DE}{CE}$\\\\\nSince $BE\\colon EC=m\\colon n$\\\\\nLet $BE=mk$, $EC=nk$\\\\\nThen $DE=AD=BC=BE+CE=mk+nk$\\\\\n$\\therefore$ $\\frac{EF}{BF}=\\frac{DE}{CE}=\\frac{mk+nk}{nk}=\\frac{m+n}{n}$\\\\\nFrom the property of folding, we obtain: $AF=EF$\\\\\n$\\therefore$ $AF\\colon FB=\\boxed{\\frac{m+n}{n}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51284029_180": { -"question": "As shown in Figure 1, the quadrilateral ABCD and the quadrilateral CEFG are both rectangles, with points E and G located on the sides CD and CB respectively, and point $F$ on AC, with $AB=3$, $BC=4$. Calculate the value of $\\frac{AF}{BG}$.", -"image_file_name": "7056495", -"image": [ -"math/51284029_982.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD and quadrilateral CEFG are both rectangles,\\\\\nit follows that $\\angle ABC=\\angle FGC=90^\\circ$\\\\\nThus, $AB\\parallel FG, \\ AC=\\sqrt{AB^{2}+BC^{2}}=5$\\\\\nTherefore, $\\frac{AF}{BG}=\\frac{CF}{CG}=\\frac{AC}{BC}=\\boxed{\\frac{5}{4}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51284444_183": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+6$ intersects the x-axis at points $A(2,0)$ and $B(8,0)$, and intersects the y-axis at point $C$. Find the analytical expression of the parabola.", -"image_file_name": "7056495", -"image": [ -"math/51284444_990.png" -], -"solution": "\\textbf{Solution:} By substituting points A(2,0) and B(8,0) according to the problem, we have:\n\\[\n\\begin{cases}\n0=4a+2b+6\\\\ \n0=64a+8b+6\n\\end{cases},\n\\]\nfrom which we derive:\n\\[\n\\begin{cases}\na=\\frac{3}{8}\\\\ \nb=-\\frac{15}{4}\n\\end{cases},\n\\]\nTherefore, the equation of the parabola is: $\\boxed{y=\\frac{3}{8}x^2-\\frac{15}{4}x+6}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51284444_184": { -"question": "As shown in the figure, the parabola $y=ax^2+bx+6$ intersects the x-axis at points $A(2,0)$ and $B(8,0)$, and intersects the y-axis at point $C$. Point $P$ is a moving point on the parabola, when $\\angle PCB =\\frac{1}{2}\\angle BCO$, find the x-coordinate of point $P$.", -"image_file_name": "7056495", -"image": [ -"math/51284444_990.png" -], -"solution": "\\textbf{Solution:} When point $P$ is on the parabola below $BC$, then $\\angle PCB =\\frac{1}{2}\\angle BCO$ i.e., $CP$ bisects $\\angle BCO$. As shown in the figure, draw $CP$ to bisect $\\angle BCO$, intersecting the x-axis at point $D$, and draw $DE\\perp BC$, with $E$ being the foot of the perpendicular,\\\\\n$\\because CP$ bisects $\\angle BCO$, $DE\\perp BC$,\\\\\n$\\therefore OD=DE$, $\\angle DCO=\\angle DCE$,\\\\\n$\\because OD=DE$, $\\angle DCO=\\angle DCE$, $\\angle COD=\\angle CED=90^\\circ$,\\\\\n$\\therefore \\triangle DOC\\cong \\triangle DEC, CO=CE=6$,\\\\\n$\\therefore BC=\\sqrt{CO^2+BO^2}=\\sqrt{6^2+8^2}=10, BE=BC−CE=4$,\\\\\nLet $OD=DE=m$, $BD=8−m$,\\\\\nBy the Pythagorean theorem: $BE^2+DE^2=BD^2$, i.e., $4^2+m^2=(8−m)^2$,\\\\\nSolving this yields: $m=3$, i.e., $OD=DE=3$, the coordinates of $D$ are $(3,0)$,\\\\\nLet the equation of $CD$ be: $y=kx+b(k\\ne 0)$, substituting points $C, D$ we get:\\\\\n$\\begin{cases} 6=b \\\\ 0=3k+b \\end{cases}$, thus solving we get: $\\begin{cases} k=-2 \\\\ b=6 \\end{cases}$, so, the equation of $CD$ is: $y=-2x+6$,\\\\\n$\\because P$ is the intersection point of line $CD$ and the parabola,\\\\\n$\\therefore$ we solve together to get: $-2x+6=\\frac{3}{8}x^2-\\frac{15}{4}x+6$,\\\\\nSolving for $x=0$ (discard) or $x=\\boxed{\\frac{14}{3}}$, hence the x-coordinate of $P$ is $x=\\frac{14}{3}$,\\\\\nWhen $P$ is on the parabola above $BC$, then $\\angle PCB =\\frac{1}{2}\\angle BCO$. As shown in the figure, draw $\\angle PCB =\\frac{1}{2}\\angle BCO$ intersecting the parabola at point $P$, extend $DE$ to intersect $CP$ at point $F$, draw $EH\\perp$x-axis from $E$ intersecting at point $H$,\\\\\n$\\because \\angle PCB =\\frac{1}{2}\\angle BCO$, $\\angle DCB=\\angle DCO$,\\\\\n$\\therefore \\angle PCB=\\angle DCB$,\\\\\n$\\because \\angle PCB=\\angle DCB, CE=CE, \\angle DEC=\\angle FEC$,\\\\\n$\\therefore \\triangle DEC\\cong \\triangle FEC, DE=DF$,\\\\\n$\\because \\angle CBO=\\angle EBH, \\angle COB=\\angle EHB=90^\\circ$,\\\\\n$\\therefore \\triangle EHB\\sim \\triangle COB$,\\\\\n$\\therefore \\frac{BE}{BC}=\\frac{EH}{CO}=\\frac{BH}{BO}, \\frac{4}{10}=\\frac{EH}{6}=\\frac{BH}{8}$,\\\\\nHence $EH=\\frac{12}{5}, BH=\\frac{16}{5}, OH=BO−BH=\\frac{24}{5}$,\\\\\n$\\therefore E(\\frac{24}{5}, \\frac{12}{5})$,\\\\\nLet $F$ be $(m, n)$, by $DE=DF$ we get $\\frac{m+3}{2}=\\frac{24}{5}, \\frac{n+0}{2}=\\frac{12}{5}$, solving for: $m=\\frac{33}{5}, n=\\frac{24}{5}$,\\\\\nThat is, $F$ is $(\\frac{33}{5}, \\frac{24}{5})$,\\\\\nLet the equation of $CF$ be: $y=kx+b(k\\ne 0)$, substituting $C, F$ we find:\\\\\n$\\begin{cases} 6=b \\\\ \\frac{24}{5}=\\frac{33}{5}k+b \\end{cases}$, solving, we get: $\\begin{cases} k=-2 \\\\ b=6 \\end{cases}$, therefore, the equation of $CF$ is: $y=-2x+6$,\\\\", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51458277_54": { -"question": "As shown in the figure, $AB$ is the diameter of a semicircle, and $BC$ is a chord of the semicircle. The arc $\\overset{\\frown}{BC}$ is folded along the chord $BC$ to intersect the diameter $AB$ at point D. When $AD=BD=5$, what is the length of $BC$?", -"image_file_name": "7056453", -"image": [ -"math/51458277_535.png" -], -"solution": "\\textbf{Solution:} We have $BC = \\boxed{5\\sqrt{3}}$.", -"solution_image": [ -"solution_images/51458277_530.png", -"solution_images/51458277_538.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51458277_55": { -"question": "As shown in the figure, $AB$ is the diameter of a semicircle, and $BC$ is a chord of the semicircle. The arc $\\overset{\\frown}{BC}$ is folded along the chord $BC$ to intersect the diameter $AB$ at point D. When $AD=4$ and $BD=6$, what is the length of $BC$?", -"image_file_name": "7056453", -"image": [ -"math/51458277_535.png" -], -"solution": "\\textbf{Solution:} We have $BC=\\boxed{4\\sqrt{5}}$.", -"solution_image": [ -"solution_images/51458277_530.png", -"solution_images/51458277_538.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Symmetry of Shapes" -} -}, -"51385629_70": { -"question": "As shown in the figure, the quadrilateral $ABCD$ is inscribed within the semicircle $O$, with $AB$ being the diameter and $C$ is the midpoint of arc $\\overset{\\frown}{BD}$. Extending $AD$ and $BC$ to meet at point $E$, we have $CE = CD$. Given $AB = 5$ and $BC = \\sqrt{5}$, find the length of $AD$.", -"image_file_name": "7056453", -"image": [ -"math/51385629_661.png" -], -"solution": "\\textbf{Solution:} From (1) we have: $AE=AB=5$, $CD=CE=BC=\\sqrt{5}$, $\\triangle CED \\sim \\triangle AEB$,\\\\\n$\\therefore \\frac{CE}{AE}=\\frac{DE}{BE}$, $\\therefore DE=\\frac{\\sqrt{5}\\times 2\\sqrt{5}}{5}=2.$\\\\\n$\\therefore AD=AE-DE=\\boxed{3}.$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53010347_74": { -"question": "As shown in the figure, point $P$ is on the positive $y$-axis, $\\odot P$ intersects the $x$-axis at points $B$ and $C$. With $AC$ as one of its right-angled sides, an isosceles $\\triangle ACD$ is constructed. $BD$ intersects the $y$-axis and $\\odot P$ at points $E$ and $F$, respectively. $AC$ and $FC$ are connected, and $AC$ intersects $BD$ at point $G$. $\\angle ACF=\\angle ADB$; $CF=DF$; what is the degree measure of $\\angle DBC$?", -"image_file_name": "7056453", -"image": [ -"math/53010347_672.png" -], -"solution": "\\textbf{Solution:} We have $\\angle DBC = \\boxed{45^\\circ}$.", -"solution_image": [ -"solution_images/53010347_670.png", -"solution_images/53010347_672.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53010347_75": { -"question": "As shown in the figure, point $P$ is located on the positive half of the y-axis, and $\\odot P$ intersects the x-axis at points $B$ and $C$. An isosceles triangle $\\triangle ACD$ is formed with $AC$ as the right angle side. $BD$ intersects the y-axis and $\\odot P$ at points $E$ and $F$ respectively. Connect $AC$ and $FC$, with $AC$ and $BD$ intersecting at point $G$. If $OB=3$ and $OA=6$, then what is the area of $\\triangle GDC$?", -"image_file_name": "7056453", -"image": [ -"math/53010347_672.png" -], -"solution": "\\textbf{Solution:} Hence, the area of $\\triangle GDC$ is \\boxed{15}.", -"solution_image": [ -"solution_images/53010347_670.png", -"solution_images/53010347_672.png" -], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53010285_78": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle C=90^\\circ$, $AE$ bisects $\\angle BAC$ and intersects $BC$ at point $E$, and point $D$ is on $AB$, with $DE\\perp AE$. The circumcircle $\\odot O$ of $\\triangle ADE$ intersects $AC$ at point $F$. The line $BC$ is a tangent to the circle $\\odot O$; if the radius of $\\odot O$ is $10$ and $AC=16$, find the area of $\\triangle ADE$.", -"image_file_name": "7056453", -"image": [ -"math/53010285_689.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ is the diameter of $\\odot O$,\\\\\n$\\therefore \\angle AED=90^\\circ$,\\\\\n$\\therefore \\angle C=\\angle AED=90^\\circ$,\\\\\nGiven that $\\angle 1=\\angle 2$,\\\\\n$\\therefore \\triangle ACE\\sim \\triangle AED$,\\\\\n$\\therefore \\frac{AC}{AE}=\\frac{AE}{AD}$, that is $\\frac{16}{AE}=\\frac{AE}{20}$,\\\\\n$\\therefore AE=8\\sqrt{5}$ (negative values are discarded),\\\\\n$\\therefore DE=\\sqrt{AD^{2}-AE^{2}}=\\sqrt{20^{2}-\\left(8\\sqrt{5}\\right)^{2}}=4\\sqrt{5}$,\\\\\n$\\therefore S_{\\triangle ADE}=\\frac{1}{2}AE\\cdot DE=\\frac{1}{2}\\times 8\\sqrt{5}\\times 4\\sqrt{5}=\\boxed{80}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379378_81": { -"question": "As shown in the trapezoid $ABCD$, $\\angle ABC = 90^\\circ$, $AD \\parallel BC$, $BC = 2AD$, and the diagonals $AC$ and $BD$ intersect at point $E$. Point $F$ is a point on the line segment $EC$, and $\\angle BDF = \\angle BAC$. If $BC = 6$ and $\\sin\\angle BAC = \\frac{2}{3}$, what is the length of $FC$?", -"image_file_name": "7056453", -"image": [ -"math/51379378_694.png" -], -"solution": "\\textbf{Solution:}\n\nSince $\\angle ABC=90^\\circ$, $BC=6$, and $\\sin\\angle BAC=\\frac{2}{3}$,\n\nit follows that $\\frac{BC}{AC}=\\frac{2}{3}$, hence $AC=9$,\n\nthus $AB=\\sqrt{AC^2-BC^2}=3\\sqrt{5}$,\n\nsince $BC=2AD$,\n\ntherefore $AD=3$,\n\ngiven that $AD\\parallel BC$,\n\nit follows that $\\angle BAD=90^\\circ$,\n\nhence $BD=\\sqrt{AB^2+AD^2}=3\\sqrt{6}$,\n\nbecause $\\triangle EAD\\sim \\triangle ECB$,\n\nit follows that $\\frac{EA}{EC}=\\frac{ED}{EB}=\\frac{AD}{BC}=\\frac{3}{6}=\\frac{1}{2}$,\n\nthus $\\frac{EA}{AC}=\\frac{1}{3}$, $\\frac{ED}{BD}=\\frac{1}{3}$,\n\ntherefore $EA=\\frac{1}{3}AC=3$, $ED=\\frac{1}{3}BD=\\sqrt{6}$,\n\nhence $EC=6$, $BE=2\\sqrt{6}$,\n\nsince $EB^2=EF\\cdot EC$,\n\nit follows that $(2\\sqrt{6})^2=6EF$,\n\ntherefore $EF=4$,\n\ntherefore $FC=EC-EF=6-4=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379494_83": { -"question": "As shown in the figure, in the Cartesian coordinate system \\(xOy\\), the parabola \\(y=x^2+bx+c\\) intersects with the x-axis at points A \\((-1,0)\\) and B \\((3,0)\\), and intersects with the y-axis at point C, with the vertex being point D. Find the expression of the parabola and the coordinates of point C?", -"image_file_name": "7056453", -"image": [ -"math/51379494_701.png" -], -"solution": "\\textbf{Solution:} Substitute A ($-1$, $0$) and B ($3$, $0$) into $y=x^{2}+bx+c$, we have\n\\[\n\\left\\{\n\\begin{array}{l}\n1-b+c=0, \\\\\n9+3b+c=0.\n\\end{array}\n\\right.\n\\]\nSolving we get:\n\\[\n\\left\\{\n\\begin{array}{l}\nb=-2, \\\\\nc=-3.\n\\end{array}\n\\right.\n\\]\nTherefore, $y=x^{2}-2x-3$.\n\nWhen $x=0$, $y=-3$. $\\therefore$ The coordinates of point C are $\\boxed{(0, -3)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51379494_84": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the parabola $y=x^2+bx+c$ intersects the x-axis at point A ($-1$, $0$) and point B ($3$, $0$), and intersects the y-axis at point C. The vertex is point D. Connecting BC and BD, what is the value of the tangent of $\\angle CBD$?", -"image_file_name": "7056453", -"image": [ -"math/51379494_701.png" -], -"solution": "\\textbf{Solution:} Let's connect CD, and draw DE $\\perp$ y-axis at point E,\\\\\n$\\because y={x}^{2}-2x-3={(x-1)}^{2}-4$,\\\\\n$\\therefore$ the coordinates of point D are (1, -4).\\\\\n$\\because$ B(3, 0), C(0, -3), D(1, -4), E(0, -4),\\\\\n$\\therefore$ OB=OC=3, CE=DE=1,\\\\\n$\\therefore$ BC=$3\\sqrt{2}$, DC=$\\sqrt{2}$, BD=$2\\sqrt{5}$.\\\\\n$\\therefore BC^{2}+DC^{2}=18+2=20=DB^{2}$.\\\\\n$\\therefore\\angle BCD=90^\\circ$.\\\\\n$\\therefore\\tan\\angle CBD=\\frac{DC}{BC}=\\frac{\\sqrt{2}}{3\\sqrt{2}}=\\boxed{\\frac{1}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51379494_85": { -"question": "As shown in the figure, in the Cartesian coordinate system $xOy$, the parabola $y=x^{2}+bx+c$ intersects the x-axis at points A ($-1$, $0$) and B ($3$, $0$), and intersects the y-axis at point C, with the vertex being point D. If point P is a point on the x-axis, when $\\triangle BDP$ is similar to $\\triangle ABC$, determine the coordinates of point P.", -"image_file_name": "7056453", -"image": [ -"math/51379494_701.png" -], -"solution": "\\textbf{Solution:} We have $\\because \\tan\\angle ACO=\\frac{AO}{OC}=\\frac{1}{3}$,\n$\\therefore \\angle ACO=\\angle CBD$.\n$\\because OC=OB$,\n$\\therefore \\angle OCB=\\angle OBC=45^\\circ$.\n$\\therefore \\angle ACO+\\angle OCB=\\angle CBD+\\angle OBC$.\nThat is: $\\angle ACB=\\angle DBO$.\n$\\therefore$, when $\\triangle BDP$ is similar to $\\triangle ABC$, point P is to the left of point B.\n(i) When $\\frac{AC}{CB}=\\frac{DB}{BP}$,\n$\\therefore \\frac{\\sqrt{10}}{3\\sqrt{2}}=\\frac{2\\sqrt{5}}{BP}$.\n$\\therefore BP=6$.\n$\\therefore P(-3,0)$.\n(ii) When $\\frac{AC}{CB}=\\frac{BP}{DB}$,\n$\\therefore \\frac{\\sqrt{10}}{3\\sqrt{2}}=\\frac{BP}{2\\sqrt{5}}$.\n$\\therefore BP=\\frac{10}{3}$.\n$\\therefore P\\left(-\\frac{1}{3},0\\right)$.\nIn conclusion, the coordinates of point P are $\\boxed{(-3,0)}$ or $\\boxed{\\left(-\\frac{1}{3},0\\right)}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51379304_88": { -"question": "As shown in the diagram, $\\triangle ABC$ is inscribed in circle $\\odot O$, with $D$ being a point on the extension of diameter $AB$ of $\\odot O$, and $\\angle DCB = \\angle OAC$. A line parallel to $BC$ passing through the center $O$ of the circle intersects the extension of $DC$ at point $E$. $CD$ is a tangent to circle $\\odot O$; if $CD = 4$ and $CE = 6$, find the radius of circle $\\odot O$ and the value of $\\tan \\angle OCB$.", -"image_file_name": "7056453", -"image": [ -"math/51379304_710.png" -], -"solution": "\\textbf{Solution:} Since OE $\\parallel$ BC, \\\\\n$\\therefore \\frac{BD}{OB}=\\frac{CD}{CE}$, \\\\\nGiven that CD = 4, CE = 6, \\\\\n$\\therefore \\frac{BD}{OB}=\\frac{4}{6}=\\frac{2}{3}$, \\\\\nLet BD = 2x, then OB = OC = 3x, OD = OB + BD = 5x, \\\\\nSince OC $\\perp$ DC, \\\\\n$\\therefore \\triangle OCD$ is a right-angled triangle, \\\\\nIn $\\triangle OCD$, $OC^{2}+CD^{2}=OD^{2}$, \\\\\n$\\therefore (3x)^{2}+4^{2}=(5x)^{2}$, \\\\\nSolving this, we find x = 1, \\\\\n$\\therefore OC=3x=3$, i.e., the radius of $\\odot O$ is $\\boxed{3}$, \\\\\nSince BC $\\parallel$ OE, \\\\\n$\\therefore \\angle OCB=\\angle EOC$, \\\\\nIn $\\triangle OCE$, $\\tan \\angle EOC= \\frac{EC}{OC}=\\frac{6}{3}=2$, \\\\\n$\\therefore \\tan \\angle OCB=\\tan \\angle EOC=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379484_90": { -"question": "As shown in the diagram, in the parallelogram $ABCD$, point $E$ is on the side $AD$, and $CE$ and $BD$ intersect at point $F$, with $BF = 3DF$. What is the value of $AE\\colon ED$?", -"image_file_name": "7056453", -"image": [ -"math/51379484_720.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\nit follows that AD$\\parallel$BC and AD=BC. \\\\\nTherefore, $\\frac{BC}{ED}=\\frac{BF}{DF}$. \\\\\nSince BF=3DF, \\\\\nit follows that $\\frac{BF}{DF}=3$. \\\\\nTherefore, $\\frac{BC}{ED}=3$. \\\\\nTherefore, $\\frac{AD}{ED}=3$, which means $AE\\colon ED=\\boxed{2}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379461_93": { -"question": "As shown in the figure, in parallelogram $ABCD$, diagonal $AC$ is perpendicular to side $CD$, $\\frac{AB}{AC}=\\frac{3}{4}$, the perimeter of quadrilateral $ABCD$ is $16$, point $E$ is on the extension of $AD$, point $F$ is on ray $AB$, $\\angle CED=\\angle CDF$. If point $F$ coincides with point $B$, find the cotangent of $\\angle AFD$?", -"image_file_name": "7056453", -"image": [ -"math/51379461_7311.png" -], -"solution": "\\textbf{Solution:} Given the problem, \\\\\nsince $\\frac{AB}{AC}=\\frac{3}{4}$, \\\\\nlet AB=3k, AC=4k, and the intersection of AC and BD be O, \\\\\nsince quadrilateral ABCD is a parallelogram, \\\\\nthus OA=OC=$\\frac{1}{2}AC=2k$, and CD$\\parallel$AB, \\\\\nsince AC$\\perp$CD, \\\\\nthus AC$\\perp$AB, \\\\\nthus BC=$\\sqrt{AC^2+AB^2}=5k$, \\\\\nsince the perimeter of quadrilateral ABCD is 16, \\\\\nthus $5k+5k+3k+3k=16$, \\\\\nsolving gives $k=1$, \\\\\nthus AB=3, AC=4, BC=5, OA=2, \\\\\nthus $\\cot \\angle AFD = \\frac{AB}{AO} = \\boxed{\\frac{3}{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379461_94": { -"question": "In parallelogram $ABCD$, diagonal $AC$ is perpendicular to side $CD$, $\\frac{AB}{AC}=\\frac{3}{4}$, and the perimeter of quadrilateral $ABCD$ is $16$. Point $E$ is on the extension of line $AD$, and point $F$ is on the ray $AB$, $\\angle CED=\\angle CDF$. As shown in Figure 2, point $F$ is a point on side $AB$. Let $AE=x$, $BF=y$, find the functional relationship between $y$ and $x$?", -"image_file_name": "7056453", -"image": [ -"math/51379461_7311.png" -], -"solution": "\\textbf{Solution:} From the given information, \\\\\n$\\because CD \\parallel AB$, \\\\\n$\\therefore \\angle EDC = \\angle FAD$, $\\angle CDF = \\angle AFD$, \\\\\n$\\because \\angle CED = \\angle CDF$, \\\\\n$\\therefore \\angle CED = \\angle AFD$, \\\\\n$\\therefore \\triangle CDE \\sim \\triangle DAF$, \\\\\n$\\therefore \\frac{DE}{AF} = \\frac{DC}{AD}$, \\\\\n$\\because AE = x$, $BF = y$, $AD = BC = 5$, \\\\\n$\\therefore DE = x - 5$, $DC = AB = 3$, $AF = 3 - y$, \\\\\n$\\therefore \\frac{x - 5}{3 - y} = \\frac{3}{5}$, \\\\\n$\\therefore y = -\\frac{5}{3}x + \\frac{34}{3}$, \\\\\nThe domain is: $5 < x \\le \\frac{34}{5}$. \\\\\n$\\therefore \\boxed{y = -\\frac{5}{3}x + \\frac{34}{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379461_95": { -"question": "In parallelogram $ABCD$, the diagonal $AC$ is perpendicular to side $CD$, and $\\frac{AB}{AC} = \\frac{3}{4}$. The perimeter of quadrilateral $ABCD$ is $16$. Point $E$ is on the extension of side $AD$, and point $F$ is on the ray $AB$, with $\\angle CED = \\angle CDF$. If $BF:FA = 1:2$, what is the area of $\\triangle CDE$?", -"image_file_name": "7056453", -"image": [ -"math/51379461_7311.png" -], -"solution": "\\textbf{Solution:} Given point $F$ on the ray $AB$, we can deduce: $\\triangle CDE\\sim \\triangle DAF$, \\\\\n$\\therefore \\frac{S_{\\triangle CDE}}{S_{\\triangle DAF}}=\\left(\\frac{DC}{AD}\\right)^{2}$, \\\\\n(1) When point $F$ is on side $AB$, \\\\\n$\\because BF:FA=1:2$, $AB=3$, $\\therefore AF=2$, \\\\\nAccording to the problem, we have $S_{\\triangle DAF}=\\frac{1}{2}AF\\cdot AC$, \\\\\n$\\because AC=4$, \\\\\n$\\therefore S_{\\triangle DAF}=\\frac{1}{2}AF\\cdot AC=4$, \\\\\n$\\therefore \\frac{S_{\\triangle CDE}}{4}=\\left(\\frac{3}{5}\\right)^{2}$, \\\\\n$\\therefore S_{\\triangle CDE}=\\boxed{\\frac{36}{25}}$, \\\\\n(2) When point $F$ is on the extension of $AB$, \\\\\n$\\because BF:FA=1:2$, $AB=3$, \\\\\n$\\therefore AF=6$, \\\\\nAccording to the problem, we have $S_{\\triangle DAF}=\\frac{1}{2}AF\\cdot AC$, \\\\\n$\\therefore S_{\\triangle DAF}=\\frac{1}{2}AF\\cdot AC=12$, \\\\\n$\\therefore \\frac{S_{\\triangle CDE}}{12}=\\left(\\frac{3}{5}\\right)^{2}$, \\\\\n$\\therefore S_{\\triangle CDE}=\\boxed{\\frac{108}{25}}$, \\\\\nTo sum up, the area of $\\triangle CDE$ is either \\boxed{\\frac{36}{25}} or \\boxed{\\frac{108}{25}}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379561_97": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $CD \\perp AB$ with the foot of the perpendicular at point $D$, $AD=2$, $BD=6$, $\\tan\\angle B=\\frac{2}{3}$. Point $E$ is the midpoint of side $BC$. Find the length of side $AC$.", -"image_file_name": "7056453", -"image": [ -"math/51379561_745.png" -], -"solution": "\\textbf{Solution:} Since $CD \\perp AB$ \\\\\nTherefore, both $\\triangle ACD$ and $\\triangle BCD$ are right-angled triangles, \\\\\nSince $\\tan B = \\frac{2}{3}$ \\\\\nTherefore $\\frac{CD}{BD} = \\frac{2}{3}$ \\\\\nSince $BD = 6,$ \\\\\nTherefore $CD = \\frac{2}{3}BD = \\frac{2}{3} \\times 6 = 4$ \\\\\nSince $AD = 2$ \\\\\nBy the Pythagorean theorem, we have $AC = \\sqrt{CD^{2}+AD^{2}} = \\sqrt{4^{2}+2^{2}} = \\boxed{2\\sqrt{5}}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379561_98": { -"question": "As shown in the figure, it is known that in $\\triangle ABC$, $CD\\perp AB$ with the foot of the perpendicular at point $D, AD=2, BD=6, \\tan\\angle B=\\frac{2}{3}$. Point $E$ is the midpoint of side $BC$. Find the sine of $\\angle EAB$.", -"image_file_name": "7056453", -"image": [ -"math/51379561_745.png" -], -"solution": "\\textbf{Solution:} Construct $EF\\perp AB$ at point F through point $E$, as shown in the figure,\\\\\nsince $CD\\perp AB$,\\\\\ntherefore $EF\\parallel CD$\\\\\ntherefore $\\triangle BEF\\sim \\triangle BCD$\\\\\ntherefore $\\frac{BE}{BC}=\\frac{BF}{BD}=\\frac{EF}{CD}$\\\\\nsince point $E$ is the midpoint of side $BC$\\\\\ntherefore $BE=CE=\\frac{1}{2}BC$\\\\\ntherefore $\\frac{BF}{BD}=\\frac{EF}{CD}=\\frac{1}{2}$\\\\\nsince $CD=4, BD=6$\\\\\ntherefore $EF=2, BF=3$\\\\\ntherefore $DF=3$\\\\\ntherefore $AF=DF+DF=2+3=5$\\\\\nIn $\\triangle EAF$, since $AF^{2}+EF^{2}=AE^{2}$\\\\\ntherefore $AE=\\sqrt{AF^{2}+EF^{2}}=\\sqrt{5^{2}+2^{2}}=\\sqrt{29}$\\\\\ntherefore $\\sin\\angle EAB=\\frac{EF}{AE}=\\frac{2}{\\sqrt{29}}=\\boxed{\\frac{2\\sqrt{29}}{29}}", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379520_100": { -"question": "As shown in the figure, it is known that in the parallelogram $ABCD$, $G$ is a point on the extension line of $AB$. Connect $DG$, which intersects $AC$ and $BC$ at points $E$ and $F$ respectively, and $AE: EC = 3: 2$. If $AB = 10$, what is the length of $BG$?", -"image_file_name": "7056453", -"image": [ -"math/51379520_750.png" -], -"solution": "Solution: Since quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore$AB$\\parallel$CD, \\\\\n$\\therefore$$\\angle GAE=\\angle CDE$, $\\angle AGE=\\angle CDE$, \\\\\n$\\therefore$$\\triangle AGE\\sim \\triangle CDE$, \\\\\n$\\therefore$$\\frac{AG}{CD}=\\frac{AE}{CE}=\\frac{3}{2}$, \\\\\nFurthermore, since AB=CD=10, \\\\\n$\\therefore$AG=$\\frac{3}{2}$CD=$\\frac{3}{2}\\times 10=15$, \\\\\n$\\therefore$BG=AG−AB=15−10=\\boxed{5};", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379520_101": { -"question": "As shown in the figure, it is known that in the parallelogram $ABCD$, $G$ is a point on the extension line of $AB$. Connect $DG$, and let it intersect $AC$ and $BC$ at point $E$ and point $F$, respectively, and $AE: EC = 3: 2$. Find the value of $\\frac{EF}{FG}$.", -"image_file_name": "7056453", -"image": [ -"math/51379520_750.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a parallelogram, \\\\\nit follows that AD $\\parallel$ BC, which means AD $\\parallel$ CF, \\\\\nhence, $\\angle ADE = \\angle CFE$, and $\\angle DAE = \\angle FCE$, \\\\\nthus, $\\triangle ADE \\sim \\triangle CFE$, \\\\\ntherefore, $\\frac{DE}{EF} = \\frac{AE}{EC} = \\frac{3}{2}$, \\\\\nFurthermore, since $\\triangle AGE \\sim \\triangle CDE$, \\\\\nit follows that $\\frac{DE}{GE} = \\frac{EC}{AE} = \\frac{2}{3}$, \\\\\ntherefore, $\\frac{EF}{GE} = \\frac{EF}{DE} \\times \\frac{DE}{GE} = \\frac{2}{3} \\times \\frac{2}{3} = \\frac{4}{9}$, \\\\\nhence, $\\frac{EF}{FG} = \\frac{EF}{GE-EF} = \\boxed{\\frac{4}{5}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379498_103": { -"question": "In quadrilateral $ABCD$, $AD \\parallel BC$, $AB= \\sqrt{5}$, $AD=2$, $DC= 2\\sqrt{5}$, $\\tan \\angle ABC=2$ (as shown in the figure). Point $E$ is on ray $AD$, and point $F$ is on side $BC$, with $BE$ and $EF$ connected, and $\\angle BEF=\\angle DCB$. What is the length of segment $BC$?", -"image_file_name": "7056453", -"image": [ -"math/51379498_763.png", -"math/51379498_764.png" -], -"solution": "\\textbf{Solution:} Draw $AH\\perp BC$ and $DG\\perp BC$ through points A and D respectively, with H and G as the foot of the perpendiculars.\\\\ \nWe can get: $AD=HG=2$, $AH=DG$,\\\\ \n$\\because \\tan\\angle ABC=2$, $AB= \\sqrt{5}$,\\\\ \n$\\therefore AH=2$, $BH=1$,\\\\ \n$\\therefore DG=2$,\\\\ \n$\\because DC= 2\\sqrt{5}$,\\\\ \n$\\therefore CG= \\sqrt{DC^{2}-DG^{2}}=4$,\\\\ \n$\\therefore BC=BH+HG+GC=1+2+4=\\boxed{7}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379498_104": { -"question": "In quadrilateral $ABCD$, $AD \\parallel BC$, $AB= \\sqrt{5}$, $AD=2$, $DC= 2\\sqrt{5}$, $\\tan \\angle ABC=2$ (as shown in the figure). Point $E$ is on ray $AD$, and point $F$ is on side $BC$. Lines $BE$ and $EF$ are drawn such that $\\angle BEF=\\angle DCB$. When $FB=FE$, what is the length of segment $BF$?", -"image_file_name": "7056453", -"image": [ -"math/51379498_763.png", -"math/51379498_764.png" -], -"solution": "\\textbf{Solution:} Construct $EM\\perp BC$ at point M. It follows that $EM=2$, \\\\\nFrom (1), we have $\\tan\\angle C= \\frac{DG}{GC}=\\frac{1}{2}$, \\\\\nSince $FB=FE$, \\\\\nit follows that $\\angle FEB=\\angle FBE$, \\\\\nSince $\\angle FEB=\\angle C$, \\\\\nit follows that $\\angle FBE=\\angle C$, \\\\\nthus, $\\tan\\angle FBE= \\frac{1}{2}$, \\\\\nwhich leads to $\\frac{EM}{BM}=\\frac{1}{2}$, \\\\\ntherefore, $BM=4$, \\\\\nGiven that $FM^2+EM^2=FE^2$, \\\\\nit follows that $(4−FB)^2+2^2=FB^2$, \\\\\nthus, $BF=\\boxed{\\frac{5}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51379498_105": { -"question": "In quadrilateral $ABCD$, $AD \\parallel BC$, $AB= \\sqrt{5}$, $AD=2$, $DC= 2\\sqrt{5}$, and $\\tan \\angle ABC=2$ (as shown in the figure). Point $E$ is on the ray $AD$, and point $F$ is on side $BC$. $BE$ and $EF$ are connected, and $\\angle BEF=\\angle DCB$. When point $E$ is on the extension line of segment $AD$, let $DE=x$, $BF=y$. Find the analytical expression of $y$ as a function of $x$.", -"image_file_name": "7056453", -"image": [ -"math/51379498_763.png", -"math/51379498_764.png" -], -"solution": "\\textbf{Solution:} Construct line $EN\\parallel DC$ through point E, intersecting the extension of BC at point N.\\\\\nSince $DE\\parallel CN$,\\\\\ntherefore quadrilateral DCNE is a parallelogram,\\\\\nthus $DE=CN$, $\\angle DCB=\\angle ENB$,\\\\\nSince $\\angle FEB=\\angle DCB$,\\\\\nthus $\\angle FEB=\\angle ENB$,\\\\\nAlso, since $\\angle EBF=\\angle NBE$,\\\\\nthus $\\triangle BEF\\sim \\triangle BNE$,\\\\\nthus $\\frac{BF}{BE}=\\frac{BE}{BN}$,\\\\\nthus $BE^2=BF\\cdot BN$,\\\\\nConstruct $EM\\perp BC$ through point E, with M being the foot of the perpendicular. We find $EM=2$, $BM=x+3$.\\\\\nthus $BE^2=ME^2+BM^2=(x+3)^2+2^2=x^2+6x+13$,\\\\\nthus $y(7+x)=x^2+6x+13$,\\\\\nthus $y=\\frac{x^2+6x+13}{7+x}$\\\\\nWhen $y=7$, $x^2-x-36=0$,\\\\\nSolving yields: $x=\\frac{1+\\sqrt{145}}{2}$, (neglect the negative root)\\\\\nthus \\boxed{y=\\frac{x^2+6x+13}{7+x}} \\left(00)$ passes through point A and intersects the $x$-axis at point B, creating line $BC \\perp x$-axis. Line $OC$ intersects line $AB$ at point D and line $AH$ at point M. What is the expression of this reciprocal function?", -"image_file_name": "7056453", -"image": [ -"math/51458261_908.png" -], -"solution": "Since point B has the coordinates $(6, 0)$, and $AO=AB=5$, $AH \\perp x$-axis, \\\\\nthus $OB=6$, $OH=HB=3$,\\\\\nthus $AH= \\sqrt{AO^{2}-OH^{2}}=\\sqrt{5^{2}-3^{2}}=4$,\\\\\nthus $A(3,4)$,\\\\\nthus $k=3\\times 4=12$,\\\\\nthus, the expression of the inverse proportion function is: \\boxed{y=\\frac{12}{x} \\left(x>0\\right)}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51458261_153": { -"question": "As shown in the figure, in the Cartesian coordinate system, the coordinates of point B are $(6, 0)$, and $AO=AB=5$, $AH \\perp x$-axis at point H. A hyperbola $y = \\frac{k}{x} (x>0)$ passing through point A intersects the $x$-axis at B and intersecting it at point C when a line perpendicular to the $x$-axis is drawn through B. Connect $OC$, which intersects $AB$ at point D and $AH$ at point M. Find the value of $\\frac{AD}{DB}$.", -"image_file_name": "7056453", -"image": [ -"math/51458261_908.png" -], -"solution": "\\textbf{Solution:}\n\nGiven that point B has coordinates $(6, 0)$, and $y=\\frac{12}{x}$ $(x>0)$, with $BC\\perp x$ axis intersecting the reciprocal function $y=\\frac{k}{x}$ $(x>0)$ at point C,\\\\\nthus $y= \\frac{12}{6} =2$,\\\\\nhence point C is $(6,2)$,\\\\\nthus $BC=2$,\\\\\nLet the equation of OC be $y=kx$,\\\\\nthus $2=6k$,\\\\\nhence $k= \\frac{1}{3}$,\\\\\ntherefore, the equation of OC is $y= \\frac{1}{3} x$,\\\\\nwhen $x=3$, then $y= \\frac{1}{3} x=1$,\\\\\ntherefore, point M is $(3,1)$,\\\\\nthus $MH=1$,\\\\\ntherefore $AM=3$,\\\\\nsince $AH\\perp x$ axis and $BC\\perp x$ axis,\\\\\nthus $AM\\parallel BC$,\\\\\ntherefore $\\triangle ADM\\sim \\triangle BDC$,\\\\\nhence $AD: DB=AM: BC=3:2$.\\\\\nThus, $\\frac{AD}{DB}=\\boxed{\\frac{3}{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51458264_157": { -"question": "As shown in the diagram, point $P$ is a point on the diagonal $BD$ of the rhombus $ABCD$. Line $CP$ is extended to meet $AD$ at point $E$ and the extended line of $BA$ at point $F$. It is given that $\\triangle APD \\cong \\triangle CPD$; $\\triangle APE \\sim \\triangle FPA$; If $PE = 4$ and $PF = 12$, what is the length of $PC$?", -"image_file_name": "7056453", -"image": [ -"math/51458264_915.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle APE \\sim \\triangle FPA$,\\\\\n$\\therefore \\frac{AP}{PF} = \\frac{PE}{PA}$,\\\\\n$\\therefore PA^{2} = PE \\cdot PF$,\\\\\nSince $\\triangle APD \\cong \\triangle CPD$,\\\\\n$\\therefore PA = PC$,\\\\\n$\\therefore PC^{2} = PE \\cdot PF$,\\\\\nGiven that $PE = 4$, $PF = 12$,\\\\\n$\\therefore PC = 4\\sqrt{3}$.\\\\\nThus, the length of $PC$ is $\\boxed{4\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51458229_159": { -"question": "As shown in the figure, in the Cartesian coordinate system, the quadrilateral $ABCD$ is a parallelogram with $AD=6$. If the lengths of $OA$ and $OB$ are the two roots of the quadratic equation in $x$, ${x}^{2}-7x+12=0$, and $OA>OB$, find the lengths of $OA$ and $OB$.", -"image_file_name": "7056453", -"image": [ -"math/51458229_926.png" -], -"solution": "\\textbf{Solution:} To solve the equation $x^2-7x+12=0$, factorize it to get: $\\left(x-3\\right)\\left(x-4\\right)=0$. So, we have: $x-3=0$ and $x-4=0$. Therefore, the solutions are: $x_1=3$ and $x_2=4$. Since $OA>OB$, \\\\\nit follows that $OA=\\boxed{4}$ and $OB=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51458229_161": { -"question": "As shown in the figure, in the Cartesian coordinate system, quadrilateral $ABCD$ is a parallelogram with $AD=6$. If the lengths of $OA$ and $OB$ are the two roots of the quadratic equation in $x$, ${x}^{2}-7x+12=0$, and $OA>OB$, and if point M is within the Cartesian coordinate system, then is there a point F on line $AB$ such that the quadrilateral with vertices A, C, F, and M, with $AC$ and $AF$ as adjacent sides, forms a rhombus? If such a point exists, provide the coordinates of point F. If it does not exist, explain why.", -"image_file_name": "7056453", -"image": [ -"math/51458229_926.png" -], -"solution": "\\textbf{Solution:} According to the calculated data, $OB=OC=3$, $\\because$ $AO\\perp BC$, $\\therefore$ $AO$ bisects $\\angle BAC$. Consider two scenarios:\n- (1) If $AC$ and $AF$ are adjacent sides, and point F is on the ray $AB$, then $AF=AC=5$, $\\therefore$ point F coincides with B, that is $F\\left(-3, 0\\right)$;\n- (2) If $AC$ and $AF$ are adjacent sides, and point F is on the ray $BA$, then M should be on line $AD$, and $FC$ perpendicularly bisects $AM$. Given $A\\left(0, 4\\right)$, $D\\left(6, 4\\right)$, $C\\left(3, 0\\right)$, $FC=8$, ${x}_{C}={x}_{F}=3$, $\\therefore$ in this case, the coordinates of point F are $\\left(3, 8\\right)$.\n\nIn conclusion, there are two points that meet the conditions: \\boxed{{F}_{1}\\left(-3, 0\\right)}; \\boxed{{F}_{2}\\left(3, 8\\right)}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"51458200_164": { -"question": "As shown in the figure, in the square $ABCD$, $E$ is the midpoint of $BC$, $F$ is a point on side $CD$, and $CD=4CF$. Extend line $EF$ to intersect the extension of line $AD$ at point $G$. $\\triangle ABE\\sim \\triangle ECF$. If the side length of the square $ABCD$ is 8, find the length of $AG$.", -"image_file_name": "7056453", -"image": [ -"math/51458200_936.png" -], -"solution": "\\textbf{Solution:} Given that the side length of square ABCD is 8, it follows that BC=CD=AD=8, and BC is parallel to AD, leading to $\\angle CEF=\\angle G$. Since $\\angle CFE=\\angle DFG$, triangles CEF and DGF are similar, implying $\\frac{CF}{DF}=\\frac{CE}{DG}$. Given that E is the midpoint of BC and CD equals 4 times CF, we find CF=2, DF=6, and CE=4. Thus, $\\frac{2}{6}=\\frac{4}{DG}$, which gives DG=12. Therefore, AG=DG+AD=\\boxed{20}.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51458091_166": { -"question": "As shown in Figure 1, the parabola $y=-x^{2}+bx+c$ passes through points $A(-1,0)$ and $B(4,0)$ and intersects the $y$-axis at point $C$. Connect points $B$ and $C$. Point $P$ is a moving point on the parabola. A perpendicular line $l$ to the $x$-axis is drawn from point $P$, intersects line $BC$ at point $G$, and intersects the $x$-axis at point $E$. What is the expression of the parabola?", -"image_file_name": "7056453", -"image": [ -"math/51458091_940.png" -], -"solution": "\\textbf{Solution:} To solve, substitute the coordinates of points A (-1,0) and B (4,0) into the expression of the function, we obtain:\n\\[\n\\begin{cases}\n-1-b+c=0, \\\\\n-16+4b+c=0.\n\\end{cases}\n\\]\nRearranging gives:\n\\[\n\\begin{cases}\n-b+c=1, \\\\\n4b+c=16,\n\\end{cases}\n\\]\nSolving for the variables, we get:\n\\[\n\\begin{cases}\nb=3, \\\\\nc=4,\n\\end{cases}\n\\]\n$\\therefore$The equation of the parabola is $y=-x^{2}+3x+4$; thus, the answer is $\\boxed{y=-x^{2}+3x+4}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51458091_167": { -"question": "As shown in Figure 1, the parabola $y=-x^2+bx+c$ passes through points $A(-1,0)$ and $B(4,0)$, and intersects with the y-axis at point $C$. Connect $BC$, and let point $P$ be a moving point on the parabola. Perpendicular line $l$ is drawn from point $P$ to the x-axis, intersecting line $BC$ at point $G$ and the x-axis at point $E$. When $P$ moves on the section of the parabola to the right of the y-axis, draw $CF\\perp l$ through point $C$, where $F$ is the foot of the perpendicular. At what position of $P$ will the triangle formed by $P$, $C$, and $F$ be similar to $\\triangle OBC$? Also, find the coordinates of point $P$ at this time.", -"image_file_name": "7056453", -"image": [ -"math/51458091_940.png" -], -"solution": "\\textbf{Solution:} Set $x=0$, then we get $y=4$, and the point $C(0,4)$,\\\\\n\\(\\therefore OC=4\\).\\\\\n\\(\\therefore OC=OB\\).\\\\\n\\(\\therefore \\triangle OBC\\) is an isosceles right triangle,\\\\\n\\(\\because \\angle CFP=\\angle COB=90^\\circ\\),\\\\\n\\(\\therefore\\) when $FC=PF$, \\(\\triangle PFC\\sim \\triangle OBC\\).\\\\\nLet the coordinates of point $P$ be \\((a, -a^{2}+3a+4)\\) (\\(a>0\\)).\\\\\nThen \\(CF=a\\), \\(PF= |-a^{2}+3a+4-4|=|a^{2}-3a|\\).\\\\\n\\(\\therefore |a^{2}-3a| =a\\).\\\\\n\\(\\therefore a^{2}-3a=a\\),\\\\\nSolving this gives $a=4$, $a=0$ (discard the latter),\\\\\nWhen $a=4$, $y=-4^{2}+3\\times 4+4=0$,\\\\\n\\(\\therefore\\) Point $P(4,0)$,\\\\\nor $a^{2}-3a=-a$,\\\\\nSolving this gives $a=2$, $a=0$ (discard the latter),\\\\\nWhen $a=2$ then, $y=-2^{2}+3\\times 2+4=6$.\\\\\n\\(\\therefore\\) Point $P(2,6)$,\\\\\n\\(\\therefore\\) In synthesis, the coordinates of point $P$ can be \\boxed{(2,6)} or \\boxed{(4,0)}.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Quadratic Function" -} -}, -"51351656_169": { -"question": "As shown in the figure, quadrilateral ABCD is a parallelogram. The circle $O$ with diameter AD intersects AB at point E. Connect DE. It is given that DA $= 2\\sqrt{2}$, DE $= \\sqrt{7}$, and DC $= 5$. A line $l$ is drawn through point E. Through point C, draw CH $\\perp$ $l$, with H being the foot of the perpendicular. If $l \\parallel$ AD, and $l$ intersects the circle $O$ at another point F, connect DF. What is the length of DF?", -"image_file_name": "7056453", -"image": [ -"math/51351656_952.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect DF, \\\\\n$\\because$AD$\\parallel$l, \\\\\n$\\therefore$ $\\angle$ADE=$\\angle$DEF, \\\\\n$\\therefore$ AE=DF, \\\\\n$\\because$AD is the diameter of circle O, \\\\\n$\\therefore$ $\\angle$AED=$90^\\circ$, \\\\\n$\\therefore$ DF=AE=$\\sqrt{AD^{2}-DE^{2}}=\\boxed{1}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51351656_170": { -"question": "As shown in the figure, quadrilateral ABCD is a parallelogram. The circle $\\odot O$ with diameter AD intersects AB at point E. Line DE is drawn, DA $= 2\\sqrt{2}$, DE $= \\sqrt{7}$, and DC $= 5$. A line $l$ is drawn through point E. Through point C, draw CH $\\perp l$, with the foot of the perpendicular being H. Line BH is connected. As line $l$ rotates around point E, what is the maximum value of BH?", -"image_file_name": "7056453", -"image": [ -"math/51351656_952.png" -], -"solution": "\\textbf{Solution:} As shown in the figure, connect CE and take the midpoint K of CE. Draw KM $\\perp$ BE at M,\\\\\n$\\because$ CH $\\perp$ EH,\\\\\n$\\therefore \\angle CHE = 90^\\circ$,\\\\\n$\\therefore$ H lies on the circle centered at K with CE as diameter,\\\\\n$\\because BH \\le HK + BK$,\\\\\n$\\therefore$ as shown in the figure, when H moves to the position of H, i.e., H, B, K are collinear at this moment, BH reaches its maximum value $BH$,\\\\\n$\\because$ quadrilateral ABCD is a parallelogram,\\\\\n$\\therefore$ AB = CD = 5, AB $\\parallel$ CD,\\\\\n$\\therefore$ BE = AB - AE = 4, $\\angle CDE = \\angle AED = 90^\\circ$, $\\angle DCE = \\angle MEK$,\\\\\n$\\therefore$ CE = KE = $\\sqrt{DE^2 + CD^2} = 4\\sqrt{2}$,\\\\\n$\\therefore$ KH = $\\frac{1}{2}CE = 2\\sqrt{2}$,\\\\\n$\\because \\angle CDE = \\angle EMK = 90^\\circ$,\\\\\n$\\therefore \\triangle CDE \\sim \\triangle EMK$,\\\\\n$\\therefore \\frac{KM}{DE} = \\frac{EK}{CE} = \\frac{EM}{CD} = \\frac{1}{2}$,\\\\\n$\\therefore$ KM = $\\frac{1}{2}DE = \\frac{\\sqrt{7}}{2}$, $EM = \\frac{1}{2}CD = \\frac{5}{2}$,\\\\\n$\\therefore$ BM = AB - AE - EM = $\\frac{3}{2}$,\\\\\n$\\therefore$ BK = $\\sqrt{KM^2 + BM^2} = 2$,\\\\\n$\\therefore$ BH = $2 + 2\\sqrt{2}$,\\\\\n$\\therefore$ The maximum value of BH is $\\boxed{2 + 2\\sqrt{2}}$;", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51351656_171": { -"question": "As shown in the figure, the quadrilateral ABCD is a parallelogram, with circle $\\odot O$ centered at O and passing through AB at point E. Line segments DE and DA are connected, with $DA = 2\\sqrt{2}$, $DE = \\sqrt{7}$, and $DC = 5$. A straight line $l$ is drawn through point E. Through point C, draw $CH \\perp l$ with the foot of the perpendicular at H. Through point A, draw $AM \\perp l$ with the foot of the perpendicular at M. As the straight line $l$ rotates about point E, what is the maximum value of $CH - 4AM$?", -"image_file_name": "7056453", -"image": [ -"math/51351656_952.png" -], -"solution": "\\textbf{Solution:} Draw BN $\\perp l$ at N through point B and draw BT $\\parallel l$ intersecting CH at T, \\\\\n$\\because$BN $\\perp l$, CH $\\perp l$, \\\\\n$\\therefore$BN $\\parallel$ CH, \\\\\n$\\therefore$ Quadrilateral BCHN is a parallelogram, \\\\\n$\\therefore$HT=BN, \\\\\nSimilarly, it can be proved that AM $\\parallel$ BN, \\\\\n$\\therefore$ $\\triangle AME \\sim \\triangle BNE$, \\\\\n$\\therefore$ $\\frac{BN}{AM}=\\frac{BE}{AE}=4$, \\\\\n$\\therefore$BN=4AM, \\\\\n$\\therefore$HT=4AM, \\\\\n$\\therefore$CH-4AM=CH-HT=CT, \\\\\nAlso, $\\because$ $CT \\le BC$ \\\\\n$\\therefore$ when the line $l$ is perpendicular to the line BC, $CT=BC$, i.e., at this time, the maximum value of CH-4AM is BC, \\\\\n$\\because$ Quadrilateral ABCD is a parallelogram, \\\\\n$\\therefore$ $BC=AD=2\\sqrt{2}$, \\\\\n$\\therefore$ The maximum value of CH-4AM is $\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51353525_174": { -"question": "As shown in the figure, in $\\triangle ABC$ and $\\triangle ADE$, $\\angle BAC = \\angle DAE = 90^\\circ$, $\\angle B = \\angle ADE = 30^\\circ$, AC and DE intersect at point F, connect CE, point D lies on side BC. $\\triangle ABD \\sim \\triangle ACE$; If $\\frac{AD}{BD} = \\sqrt{3}$, find the value of $\\frac{DF}{CF}$.", -"image_file_name": "7056453", -"image": [ -"math/51353525_964.png" -], -"solution": "\\textbf{Solution:} Given that $\\triangle ABD \\sim \\triangle ACE$,\\\\\n$\\therefore \\frac{AD}{AE}=\\frac{BD}{EC}$, which means $\\frac{AD}{BD}=\\frac{AE}{EC}=\\sqrt{3}$,\\\\\nIn $Rt\\triangle ADE$, $\\angle ADE=30^\\circ$,\\\\\n$\\therefore \\tan 30^\\circ =\\frac{AE}{AD}=\\frac{\\sqrt{3}}{3}$,\\\\\n$\\therefore \\frac{AD}{CE}=\\frac{AE}{EC} \\div \\frac{AE}{AD}=\\sqrt{3} \\times \\sqrt{3}=3$,\\\\\n$\\because \\triangle BAD \\sim \\triangle CAE$,\\\\\n$\\therefore \\angle B=\\angle ACE=\\angle ADE$,\\\\\n$\\because \\angle AFD=\\angle EFC$,\\\\\n$\\therefore \\triangle ADF \\sim \\triangle ECF$,\\\\\n$\\therefore \\frac{DF}{CF}=\\frac{AD}{EC}=\\boxed{3}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51353491_177": { -"question": "Given: As shown in the figure, in trapezoid $ABCD$, $AD\\parallel BC$, $AB=DC=6$, $E$ is a point on the diagonal $BD$, $DE=4$, and $\\angle BCE=\\angle ABD$. $\\triangle ABD\\sim \\triangle ECB$; if the ratio $AD:BC=3:5$, what is the length of $AD$?", -"image_file_name": "7056453", -"image": [ -"math/51353491_974.png" -], -"solution": "\\textbf{Solution:} In trapezoid ABCD, we have $AD\\parallel BC$ and $AB=DC=6$, \\\\\n$\\therefore \\angle ABC=\\angle BCD$, \\\\\nAlso, since $\\angle BCE=\\angle ABD$, \\\\\n$\\therefore \\angle DBC=\\angle DCE$, \\\\\nSince $\\angle BDC=\\angle CDE$, \\\\\n$\\therefore \\triangle BDC\\sim \\triangle CDE$, \\\\\n$\\therefore \\frac{CD}{DE}=\\frac{BD}{CD}$, \\\\\nSince $DC=6$ and $DE=4$, \\\\\n$\\therefore BD=9$, \\\\\n$\\therefore BE=BD-DE=5$, \\\\\nSince $\\triangle ABD\\sim \\triangle ECB$, \\\\\n$\\therefore \\frac{AD}{BE}=\\frac{BD}{BC}$, \\\\\nGiven $AD\\colon BC=3\\colon 5$, \\\\\nLet $AD=3x$ and $BC=5x$, \\\\\n$\\therefore \\frac{3x}{5}=\\frac{9}{5x}$, \\\\\nSolving, we get $x=\\sqrt{3}$ (neglecting the negative value), \\\\\n$\\therefore x=\\sqrt{3}$, hence $AD=3\\sqrt{3}$. Therefore, the length of $AD$ is $\\boxed{3\\sqrt{3}}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"51353152_179": { -"question": "As shown in Figure 1, the line AB intersects the x-axis and the y-axis at points A and B, respectively, and point C is on the negative half-axis of the x-axis. The coordinates of these three points are A(4,0), B(0,4), and C(-1,0), respectively. Find the equation of line AB.", -"image_file_name": "7056453", -"image": [ -"math/51353152_980.png" -], -"solution": "\\textbf{Solution:} Since line AB passes through points A(4,0) and B(0,4), \\\\\nlet the equation of line AB be $y=kx+4$, \\\\\nsubstituting A(4,0) into it gives: $4k+4=0$, \\\\\nsolving for $k$ gives: $k=-1$, \\\\\ntherefore, the equation of line AB is $\\boxed{y=-x+4}$.", -"solution_image": [ -"solution_images/51353152_980.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51353152_180": { -"question": "As shown in Figure 1, line AB intersects the x-axis and y-axis at points A and B, respectively. Point C is located on the negative half-axis of the x-axis. The coordinates of these three points are \\(A(4,0)\\), \\(B(0,4)\\), and \\(C(-1,0)\\) respectively. Connect BC. Suppose point E is a movable point on segment AC (not coinciding with A or C). Draw \\(EF \\parallel BC\\) intersecting AB at point F. When the area of \\(\\triangle BEF\\) is \\(\\frac{5}{2}\\), find the coordinates of point E.", -"image_file_name": "7056453", -"image": [ -"math/51353152_980.png" -], -"solution": "\\textbf{Solution:} Let the coordinates of point E be $(m,0)$,\\\\\nthe equation of line BC be $y=4x+4$,\\\\\nsince EF$\\parallel$BC,\\\\\nthus, let the equation of line EF be: $y=4x+n$, substituting the coordinates of point E into the above equation yields: $0=4m+n$,\\\\\ntherefore $n=-4m$,\\\\\nthus, the equation of line EF is: $y=4x-4m$,\\\\\nhence $-x+4=4x-4m$,\\\\\nsolving this gives: $x=\\frac{4}{5}(m+1)$,\\\\\nsubstituting the value of $x$ into $y=-x+4$, we get $y=\\frac{16-4m}{5}$,\\\\\ntherefore, the coordinates of point F are $\\left(\\frac{4m+4}{5},\\frac{16-4m}{5}\\right)$,\\\\\n${S}_{\\triangle BEF}={S}_{\\triangle OAB}-{S}_{\\triangle OBE}-{S}_{\\triangle AEF}=\\frac{1}{2}\\times 4\\times 4-\\frac{1}{2}\\times 4m-\\frac{1}{2}\\left(4-m\\right)\\times \\frac{16-4m}{5}=\\frac{5}{2}$,\\\\\nsolving this yields: $m=\\frac{3}{2}$,\\\\\nthus, the coordinates of point E are $\\boxed{\\left(\\frac{3}{2},0\\right)}$;", -"solution_image": [ -"solution_images/51353152_980.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51353152_181": { -"question": "As shown in Figure 1, the straight line AB intersects the x-axis and y-axis at points A and B respectively, with point C on the negative half of the x-axis. The coordinates of these three points are A(4,0), B(0,4), and C(-1,0). As shown in Figure 2, point B is translated 1 unit to the right to obtain point D. There exists a moving point P on the x-axis. If $\\angle DCO+\\angle DPO=\\alpha$ and $\\tan\\alpha=4$, please directly write down the coordinate of point P.", -"image_file_name": "7056453", -"image": [ -"math/51353152_980.png" -], -"solution": "\\textbf{Solution:} The coordinates of point $P$ are $(19,0)$ or $(-17,0)$, therefore the answer is \\boxed{(19,0)} or \\boxed{(-17,0)}.", -"solution_image": [ -"solution_images/51353152_980.png" -], -"year": "nine", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"51352021_184": { -"question": "As shown in the figure, with point $O$ as the center and the length of $AB$ as the diameter, a circle is drawn. A point $C$ is taken on $\\odot O$, and $AB$ is extended to point $D$. Line $DC$ is drawn, with $\\angle DCB = \\angle DAC$. A line is drawn through point $A$ such that $AE \\perp AD$ and it intersects the extension of $DC$ at point $E$. $CD$ is the tangent line of $\\odot O$. Given that $CD = 4$ and $DB = 2$, find the length of $AE$.", -"image_file_name": "7056453", -"image": [ -"math/51352021_9912.png" -], -"solution": "\\textbf{Solution:} Let the radius of the circle $\\odot O$ be $r$, thus $OA = OB = OC = r$,\\\\\n$\\because BD = 2$,\\\\\n$\\therefore OD = OB + BD = r + 2, AD = OA + OD = 2r + 2$,\\\\\nIn right triangle $\\triangle OCD$, $CD^{2} + OC^{2} = OD^{2}$, that is $4^{2} + r^{2} = (r + 2)^{2}$,\\\\\nSolving for $r$ yields $r = 3$,\\\\\n$\\therefore OC = 3, AD = 8$,\\\\\nIn triangles $\\triangle ADE$ and $\\triangle CDO$, $\\left\\{\\begin{array}{l} \\angle DAE = \\angle DCO = 90^\\circ \\\\ \\angle D = \\angle D \\end{array}\\right.$,\\\\\n$\\therefore \\triangle ADE \\sim \\triangle CDO$,\\\\\n$\\therefore \\frac{AE}{OC} = \\frac{AD}{CD}$, that is $\\frac{AE}{3} = \\frac{8}{4}$,\\\\\nSolving yields $AE = \\boxed{6}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"53728604_84": { -"question": "As shown in the diagram, within the square $ABCD$, $E$ is a point on the side $BC$. Connect $AE$ and draw $DF\\parallel AE$ through point $D$ to intersect the extension of $BC$ at point $F$. $AG$ bisects $\\angle DAE$ and intersects $DF$ at point $G$, and intersects $DC$ at point $M$. If $\\angle DAM=30^\\circ$ and $CF=1$, what is the length of $AB$?", -"image_file_name": "7054431", -"image": [ -"math/53728604_832.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a square,\\\\\nit follows that AD $ \\parallel $ EF, AB=DC, $\\angle$ABE=$\\angle$DCB=$\\angle$DCF=$\\angle$DAB=$90^\\circ$,\\\\\nSince AE $ \\parallel $ DF,\\\\\nit implies that quadrilateral AEFD is a parallelogram,\\\\\nhence, AE=DF,\\\\\nIn right triangles $\\triangle$ABE and $\\triangle$DCF, $\\left\\{\\begin{array}{l}AE=DF\\\\ AB=DC\\end{array}\\right.$,\\\\\nit follows that right triangle $\\triangle$ABE$\\cong$$\\triangle$DCF (HL),\\\\\ntherefore $\\angle$BAE=$\\angle$CDF,\\\\\nSince AM bisects $\\angle$DAE, and $\\angle$DAM=$30^\\circ$,\\\\\nit follows that $\\angle$EAM=$\\angle$DAM=$30^\\circ$,\\\\\nthus $\\angle$BAE=$90^\\circ-30^\\circ-30^\\circ=30^\\circ$,\\\\\ntherefore $\\angle$CDF=$\\angle$BAE=$30^\\circ$,\\\\\nhence, DF=2CF,\\\\\nSince CF=1,\\\\\nit follows that DF=2,\\\\\nthus, DC=$\\sqrt{DF^2-CF^2}$=$\\sqrt{2^2-1^2}=\\sqrt{3}$,\\\\\ntherefore AB=DC=$\\boxed{\\sqrt{3}}$;", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53728774_87": { -"question": "In square $ABCD$ and square $AEFG$, connect $AC$, $AF$, and $CF$ respectively, with point $H$ being the midpoint of $CF$. As shown in Figure 1, when points $F$ and $G$ are respectively on line segments $AB$ and $AC$, what is the measure of $\\angle BHG$?", -"image_file_name": "7054431", -"image": [ -"math/53728774_840.png" -], -"solution": "Solution: Since squares $ABCD$ and $AEFG$, where $AC$ and $AF$ are diagonals,\\\\\n$\\therefore$ $\\angle AFG=\\angle ACB=45^\\circ$, $\\angle AGF=\\angle ABC=90^\\circ$,\\\\\nSince point $F$ is on segment $AB$,\\\\\n$\\therefore$ $\\angle GFB=180^\\circ-\\angle ACB=135^\\circ$.\\\\\nSince in $\\triangle CGF$ and $\\triangle CBF$, point $H$ is the midpoint of hypotenuse $CF$,\\\\\n$\\therefore$ $GH=\\frac{1}{2}CF=HF$, $HB=\\frac{1}{2}CF=HF$,\\\\\n$\\therefore$ $\\angle HGF=\\angle HFG$, $\\angle HFB=\\angle HBF$,\\\\\n$\\therefore$ $\\angle HGF+\\angle HBF=\\angle HFG+\\angle HFB=\\angle GFB=135^\\circ$,\\\\\n$\\therefore$ $\\angle BHG=360^\\circ-\\angle HGF-\\angle HBF-\\angle GFB=360^\\circ-135^\\circ-135^\\circ=\\boxed{90^\\circ}$;", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53728774_89": { -"question": "In squares $ABCD$ and $AEFG$, connect $AC$, $AF$, and $CF$ respectively. Let point $H$ be the midpoint of $CF$. As shown in Figure 3, when point $G$ is on segment $AB$ and $AB=2AE=2$, what is the area of $\\triangle BGH$?", -"image_file_name": "7054431", -"image": [ -"math/53728774_840.png" -], -"solution": "\\textbf{Solution:} Given point $G$ on segment $AB$, if $AB=2AE=2$, then $BC=AB=2$, $AG=FG=AE=1$, \\\\\n$\\therefore BG=AB-AG=1$, \\\\\nExtend $GH$ to intersect $BC$ at point $Q$, as shown in the diagram: \\\\\n$\\because$ Point $H$ is the midpoint of $CF$, \\\\\n$\\therefore HC=HF$, \\\\\nIn squares $ABCD$ and $AEFG$, $\\angle ABC=\\angle AGF=90^\\circ$, \\\\\n$\\therefore \\angle BGF=90^\\circ=\\angle ABC$, \\\\\n$\\therefore FG\\parallel BC$, \\\\\n$\\therefore \\angle GFH=\\angle QCH$, \\\\\nIn $\\triangle GFH$ and $\\triangle QCH$, \\\\\n$\\left\\{\\begin{array}{l}\n\\angle GFH=\\angle QCH \\\\\nFH=CH \\\\\n\\angle GHF=\\angle QHC\n\\end{array}\\right.$, \\\\\n$\\therefore \\triangle GFH \\cong \\triangle QCH\\left(ASA\\right)$, \\\\\n$\\therefore CQ=FG=1$, $QH=GH$, \\\\\n$\\therefore BQ=BC-CQ=1$, $S_{\\triangle BGH}=S_{\\triangle BQH}=\\frac{1}{2}S_{\\triangle BGQ}$, \\\\\n$\\because S_{\\triangle BGQ}=\\frac{1}{2}BG\\cdot BQ=\\frac{1}{2}\\times 1\\times 1=\\frac{1}{2}$, \\\\\n$\\therefore S_{\\triangle BGH}=\\frac{1}{2}S_{\\triangle BGQ}=\\frac{1}{2}\\times \\frac{1}{2}=\\boxed{\\frac{1}{4}}$, \\\\\ni.e., the area of $\\triangle BGH$ is $\\frac{1}{4}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53728859_91": { -"question": "As shown in the diagram, in the Cartesian coordinate system, the line $y=\\frac{4}{3}x+8$ intersects the x-axis and y-axis at points A and B, respectively. Point C is on the positive half of the x-axis, and $AB=AC$. Draw the line $BC$. What is the length of $AB$?", -"image_file_name": "7054431", -"image": [ -"math/53728859_853.png" -], -"solution": "\\textbf{Solution:} Given $y=\\frac{4}{3}x+8$,\\\\\nthus, when $x=0$, $y=8$,\\\\\ntherefore, $B(0, 8)$,\\\\\ntherefore, $OB=8$,\\\\\nwhen $y=0$, we have $\\frac{4}{3}x+8=0$, solving for $x$ gives $x=-6$,\\\\\ntherefore, $A(-6, 0)$,\\\\\ntherefore, $OA=6$,\\\\\ntherefore, $AB=\\sqrt{OA^2+OB^2}=\\boxed{10}$,", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53728859_92": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line $y=\\frac{4}{3}x+8$ intersects the x-axis and the y-axis at points A and B, respectively. Point C is on the positive half of the x-axis, with $AB=AC$. Construct line $BC$. $AD$ is the median of $\\triangle ABC$, intersecting the y-axis at point F. What is the equation of line $AD$?", -"image_file_name": "7054431", -"image": [ -"math/53728859_853.png" -], -"solution": "\\textbf{Solution:} Given that $AB=AC=10$, $OA=6$,\\\\\nhence $OC=AC-OA=4$,\\\\\nsince $AD$ is the median of $\\triangle ABC$,\\\\\nit follows that $BD=CD$, and $AD\\perp BC$,\\\\\nLet the midpoint of $OC$ be $Q$, and connect $DQ$, hence $DQ$ is the median of $\\triangle OBC$,\\\\\nthus $DQ=\\frac{1}{2}OB=4$, $OQ=\\frac{1}{2}OC=2$,\\\\\nhence $D(2, 4)$, $Q(2, 0)$,\\\\\nLet the equation of line $AD$ be $y=kx+b$, substituting $A(-6, 0), D(2, 4)$ into it yields:\\\\\n$\\begin{cases}\n-6k+b=0\\\\\n2k+b=4\n\\end{cases}$, solving gives $\\begin{cases}\nk=\\frac{1}{2}\\\\\nb=3\n\\end{cases}$,\\\\\nthus $\\boxed{y=\\frac{1}{2}x+3}$", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53728859_93": { -"question": "As shown in the figure, in the Cartesian coordinate system, the line \\(y=\\frac{4}{3}x+8\\) intersects the x-axis and y-axis at points A and B, respectively. Point C is on the positive half of the x-axis, and \\(AB=AC\\). Line \\(BC\\) is drawn. Given condition (2), point E is on \\(AF\\), point G is on \\(CD\\), and \\(CG=AE\\). Line \\(EG\\) is drawn. Triangle \\(\\triangle EGM\\) is an isosceles right triangle with \\(EG\\) as the hypotenuse. Point M is located above line \\(AD\\). The symmetric point of M with respect to line \\(EG\\) is marked as N. Lines \\(NC\\), \\(NE\\), and \\(NG\\) are drawn. \\(MG\\) intersects \\(AD\\) at point H. When \\(\\angle NCD=90^\\circ\\), find the coordinates of point H.", -"image_file_name": "7054431", -"image": [ -"math/53728859_853.png" -], -"solution": "Solution: Construct $MP\\perp MD$ through point M, meeting $AD$ at point P,\\\\\nsince $\\angle PMD=\\angle EMG=90^\\circ$, $\\angle EMP+\\angle PMG=\\angle PMG+\\angle DMG$,\\\\\nthus, $\\angle EMP=\\angle DMG$.\\\\\nSince $\\angle MHE=\\angle DHG$, $\\angle EGM=\\angle ADC=90^\\circ$,\\\\\nthus, $\\angle MEP=\\angle MGD$,\\\\\nsince $ME=MG$,\\\\\nthus $\\triangle MPE\\cong \\triangle MDG$,\\\\\nthus $DG=PE$.\\\\\nSince $D\\left(2, 4\\right)$,\\\\\nthus $DQ=4, AQ=OA+OQ=8, CQ=2$,\\\\\nthus $AD=\\sqrt{DQ^{2}+AQ^{2}}=4\\sqrt{5}$, $CD=\\sqrt{CQ^{2}+DQ^{2}}=2\\sqrt{5}$.\\\\\nSince $AE=CG$, $PE=DG$,\\\\\nthus $DG=PE$,\\\\\nthus $AP=AE+PE=CG+DG=CD=2\\sqrt{5}$,\\\\\nthus $PD=AD−AP=2\\sqrt{5}$.\\\\\nThus $PD=AP$,\\\\\nTake the midpoint V of $AQ$, connect $PV$,\\\\\nthus $PV$ is the median of $\\triangle ADQ$,\\\\\nsince $DQ=4$,\\\\\nthus $PV=\\frac{1}{2}DQ=2$,\\\\\nsince $A(-6, 0)$, $Q\\left(2, 0\\right)$,\\\\\nthus $V\\left(-2, 0\\right)$\\\\\nthus $P\\left(-2, 2\\right)$.\\\\\n$\\triangle PMD$ is an isosceles right triangle, construct $MS\\perp PV$ at point S through M, construct $DT\\perp MS$ at point T through D,\\\\\nsince $\\angle MPS=\\angle DMT, \\angle MSP=\\angle MTD, PM=MD$,\\\\\nthus $\\triangle MSP\\cong \\triangle DTM$,\\\\\nsince $D\\left(2, 4\\right)$, $P\\left(-2, 2\\right)$,\\\\\nthus $MS+MT=4, PS-DT=2$,\\\\\nthus $MT=3, DT=1$,\\\\\nthus $M\\left(-1, 5\\right)$.\\\\\nConstruct $MR\\perp DP$ at R through M, construct $MK\\perp BD$ at point K through M,\\\\\nsince $MP=MD, \\angle PMD=90^\\circ$\\\\\nthus $\\triangle DMP$ is an isosceles right triangle.\\\\\nthus $MR=RD=RP=\\sqrt{5}$,\\\\\nsince $\\angle MDP=\\angle MDK=90^\\circ$,\\\\\nthus $MK=MR=\\sqrt{5}$.\\\\\nPoints M, N are symmetric with respect to line $EG$,\\\\\nthus quadrilateral $MENG$ is a rhombus,\\\\\nsince $\\angle EMG=90^\\circ$,\\\\\nthus rhombus $MENG$ is a square.\\\\\nSince $\\angle MGK+\\angle KMG=\\angle MGK+\\angle NGC=90^\\circ$,\\\\\nthus $\\angle KMG=\\angle NGC$.\\\\\nSince $\\angle MKG=\\angle NCG=90^\\circ, GM=GN$,\\\\\nthus $\\triangle MKG\\cong \\triangle GCN$,\\\\\nthus $CG=MK=\\sqrt{5}$.\\\\\nSince $CD=2\\sqrt{5}$,\\\\\nthus $CD=DG$, take the midpoint W of $CQ$, connect $GW$,\\\\\nthus $GW$ intersects $AD$ at point H,\\\\\nthus the coordinates of point H are \\boxed{(-2, 2)}.\\\\\n", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53728996_95": { -"question": "In the Cartesian coordinate system, the sides $OA$ and $OC$ of rectangle $OABC$ are located on the positive $x$-axis and the positive $y$-axis, respectively. The lengths of $OA$ and $OC$ are the two roots of the equation ${x}^{2}-20x+100=0$. Find the coordinates of point $C$.", -"image_file_name": "7054431", -"image": [ -"math/53728996_866.png" -], -"solution": "\\textbf{Solution:} From the given, we get $(x-10)^{2}=0$, \\\\\n$\\therefore x_{1}=x_{2}=10$, \\\\\n$\\therefore OA=OC=10$, \\\\\n$\\therefore \\boxed{C(10, 0)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53728996_96": { -"question": "As shown in the figure, in the Cartesian coordinate system, the sides $OA$ and $OC$ of rectangle $OABC$ lie on the positive x-axis and the positive y-axis, respectively, and the lengths of $OA$ and $OC$ are the two roots of the equation ${x}^{2}-20x+100=0$. In figure 2, point D is on $CB$, point E is on the extension line of $BA$, and $CD=AE$. Connect $AD$ and $CE$. Draw $OF\\perp AD$ through point O and intersect $CE$ at point G, with the foot of the perpendicular being point F. Let the length of $CD$ be $m$, and let the x-coordinate of point G be $n$. What is the functional relationship between $n$ and $m$?", -"image_file_name": "7054431", -"image": [ -"math/53728996_866.png" -], -"solution": "\\textbf{Solution:} Extend $OF$ to intersect $AB$ at $H$,\\\\\n\\[\n\\because \\angle AFO = \\angle B = \\angle OAB = 90^\\circ,\n\\]\n\\[\n\\therefore \\angle OAF + \\angle BAD = \\angle AOH + \\angle OAF = 90^\\circ,\n\\]\n\\[\n\\therefore \\angle AOB = \\angle BAD,\n\\]\n\\[\n\\because OA = AB,\n\\]\n\\[\n\\therefore \\triangle OAH \\cong \\triangle ABD,\n\\]\n\\[\n\\therefore AH = BD = 10 - m, \\text{ and } AE = CD = m,\n\\]\n\\[\n\\therefore EH = 10 = OC,\n\\]\n\\[\n\\therefore \\triangle EGH \\cong \\triangle CGO,\n\\]\n\\[\n\\therefore G \\text{ is the midpoint of } EC,\n\\]\nDraw $EM \\perp OC$ intersecting the extended line of $CO$ at $M$, take the midpoint $N$ of $MC$, connect $GN$,\\\\\n\\[\n\\therefore GN \\text{ is the midline of } \\triangle EMC,\n\\]\n\\[\n\\therefore GN \\parallel EM, \\text{ i.e., } GN \\perp OC,\n\\]\n\\[\n\\because ON = OC - NC = 10 - \\frac{10 + m}{2} = -\\frac{m}{2} + 5,\n\\]\n\\[\n\\therefore n = \\boxed{-\\frac{1}{2}m + 5}.\n\\]", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53728996_97": { -"question": "In the Cartesian coordinate system, the sides $OA$ and $OC$ of the rectangle $OABC$ lie on the positive half of the x-axis and the positive half of the y-axis, respectively, and the lengths of $OA$ and $OC$ are the two roots of the equation ${x}^{2}-20x+100=0$. As shown in the figure, under the condition when $FG: GO = 3:5$, find the equation of line $AD$.", -"image_file_name": "7054431", -"image": [ -"math/53728996_866.png" -], -"solution": "\\textbf{Solution:}\n\nLet $\\because FG:GO=3:5$, \\\\\nlet $FG=3a(a>0)$, \\\\\n$\\therefore GO=5a$, \\\\\nIt is known from (2) that $\\triangle EGH\\cong \\triangle CGO$, \\\\\n$\\therefore HG=GO=5a$, \\\\\n$\\therefore FH=2a$, \\\\\n$\\therefore AD=OH=10a$, \\\\\nConnect $OD$, \\\\\n$S_{\\triangle AOD}=\\frac{1}{2}AO\\cdot |x_D|=\\frac{1}{2}AD\\cdot OF$, \\\\\n$10a\\cdot 8a=10\\times 10$, \\\\\n$\\therefore$ solving gives $a=\\pm \\frac{\\sqrt{5}}{2}$, \\\\\n$\\because a>0$, \\\\\n$\\therefore a=\\frac{\\sqrt{5}}{2}$, \\\\\n$\\therefore AD=10a=5\\sqrt{5}$, \\\\\nIn $Rt\\triangle ABD$, $BD=\\sqrt{AD^2-AB^2}=5$, \\\\\n$\\therefore CD=BC-BD=5$, \\\\\n$\\therefore D(10, 5)$; \\\\\nLet the equation of line $AD$ be $y=kx+b(k\\ne 0)$, \\\\\n$\\because A(0, 10), D(10, 5)$, \\\\\n$\\therefore \\left\\{\\begin{array}{l}b=10 \\\\ 10k+b=5\\end{array}\\right.$, \\\\\n$\\therefore \\left\\{\\begin{array}{l}k=-\\frac{1}{2} \\\\ b=10\\end{array}\\right.$, \\\\\n$\\therefore$ the equation of line $AD$ is: \\boxed{y=-\\frac{1}{2}x+10}.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Linear Function" -} -}, -"53729052_100": { -"question": "As shown in the diagram, in parallelogram $ABCD$, $\\angle ACB=90^\\circ$, and through point $D$, draw $DE\\perp BC$ to meet the extension of $BC$ at point $E$. Quadrilateral $ACED$ is a rectangle; connect $AE$ and intersect $CD$ at point $F$, then connect $BF$. If $\\angle ABC=60^\\circ$ and $CE=2$, find the length of $BF$.", -"image_file_name": "7054431", -"image": [ -"math/53729052_874.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram:\\\\\nSince quadrilateral $ACED$ is a rectangle, it follows that $AD=CE=2, AF=EF, AE=CD$,\\\\\nSince quadrilateral $ABCD$ is a parallelogram, it follows that $BC=AD=2$, $AB=CD$,\\\\\nTherefore, $AB=AE$, and since $\\angle ABC=60^\\circ$, it follows that $\\triangle ABE$ is an equilateral triangle,\\\\\nTherefore, $\\angle BFE=90^\\circ$, $\\angle FBE=\\frac{1}{2}\\angle ABE=30^\\circ$, $BE=2BC=4$,\\\\\nTherefore, $EF=\\frac{1}{2}BE=2$, in $\\triangle BFE$, $BF=\\sqrt{BE^{2}-EF^{2}}=\\boxed{2\\sqrt{3}}$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"53728960_104": { -"question": "In rhombus $ABCD$, the diagonals $AC$ and $BD$ intersect at point $O$. Rectangle $AEFO$ is constructed with $OA$ as its side, where point $E$ lies exactly on the perpendicular bisector of segment $AB$, and point $F$ is on $OB$. Let $G$ be a point on $OD$ such that $OG=BF$. Connect $CG$ and $BF$. As illustrated, given that $BO=2AO=8$ and $\\angle AMB=45^\\circ+\\frac{1}{2}\\angle MAC$, connect $MG$. Determine the length of segment $MG$.", -"image_file_name": "7054431", -"image": [ -"math/53728960_880.png" -], -"solution": "\\textbf{Solution:} As shown in figure 3, draw $GH\\perp MC$ through point $G$ meeting the extended line of $MC$ at point $H$.\\\\\nFrom (1) and (2), it is known that $AC\\perp BD$, $\\angle AMB=BAC$, $\\angle AMC=\\angle EBC+\\angle ABO$, $\\angle EBA=\\angle ABO$,\\\\\n$\\therefore OB\\perp AC$, $\\angle AOB=\\angle COG=90^\\circ$,\\\\\n$\\therefore \\angle BAO+\\angle ABO=90^\\circ$, $\\angle AMC=2\\angle ABO$,\\\\\n$\\therefore \\angle AMB+\\frac{1}{2}\\angle AMC=90^\\circ$,\\\\\n$\\because \\angle AMB=45^\\circ+\\frac{1}{2}\\angle MAC$,\\\\\n$\\therefore 45^\\circ+\\frac{1}{2}\\angle MAC+\\frac{1}{2}\\angle AMC=90^\\circ$,\\\\\n$\\therefore \\angle MAC+\\angle AMC=90^\\circ$,\\\\\n$\\therefore \\angle ACM=90^\\circ$,\\\\\n$\\because \\angle COG=\\angle OCH=\\angle H=90^\\circ$,\\\\\n$\\therefore$ quadrilateral $OCGH$ is a rectangle,\\\\\n$\\because \\angle BAM+\\angle MAC=\\angle BAC=\\angle AMB=45^\\circ+\\frac{1}{2}\\angle MAC$,\\\\\n$\\therefore \\angle BAM=45^\\circ-\\frac{1}{2}\\angle MAC$,\\\\\n$\\because \\angle MAC+\\angle AMC=90^\\circ$, $\\angle AMC=2\\angle ABO$,\\\\\n$\\therefore \\angle MAC+2\\angle ABO=90^\\circ$,\\\\\n$\\therefore \\angle ABO=45^\\circ-\\frac{1}{2}\\angle MAC$,\\\\\n$\\therefore \\angle BAM=\\angle ABO$,\\\\\n$\\therefore BN=AN$,\\\\\n$\\therefore \\angle EBA=\\angle EAB=\\angle ABN=\\angle BAN$,\\\\\n$\\because AB=AB$,\\\\\n$\\therefore \\triangle ABN\\cong \\triangle ABE(ASA)$,\\\\\n$\\therefore BE=BN$,\\\\\n$\\therefore AE=BE=BN=AN$,\\\\\n$\\because BO=2AO=8$,\\\\\n$\\therefore OA=4$,\\\\\n$\\therefore OC=OA=4$, $NO=BO-BN=BO-AN=8-AN$,\\\\\n$\\because AN^2=NO^2+OA^2$,\\\\\n$\\therefore AN^2=(8-AN)^2+4^2$,\\\\\n$\\therefore AN=5$, $ON=8-5=3$,\\\\\n$\\therefore AN=AE=BE=5$,\\\\\n$\\therefore CG=BE=5$, $OF=5$, $BF=BO-OF=3$,\\\\\n$\\therefore OG=BG=3$,\\\\\n$\\therefore OG=CH=3$, $GH=OC=5$,\\\\\n$\\because MC\\parallel OB$,\\\\\n$\\therefore \\triangle ANO\\sim \\triangle AMC$,\\\\\n$\\therefore \\frac{NO}{MC}=\\frac{AO}{AC}$, which means $MC=\\frac{NO\\cdot (AO+OC)}{AO}=\\frac{3\\times (4+4)}{4}=6$,\\\\\n$\\therefore MG=\\sqrt{MH^2+GH^2}=\\sqrt{9^2+4^2}=\\boxed{\\sqrt{97}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52284147_107": { -"question": "As shown in the figure, in rectangle $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$. Draw a line through point $B$ parallel to $AC$ and a line through point $C$ parallel to $BD$, and these two parallel lines intersect at point $E$. Given that $AB=2$ and $AD=2\\sqrt{3}$, and quadrilateral $OBEC$ is a rhombus; calculate the area of rhombus $OBEC$.", -"image_file_name": "7054431", -"image": [ -"math/52284147_899.png" -], -"solution": "\\textbf{Solution:} Let quadrilateral $ABCD$ be a rectangle,\\\\\n$\\therefore \\angle ABC=90^\\circ$, $BC=AD=2\\sqrt{3}$, $OA=OC$,\\\\\n$\\therefore S_{\\triangle ABC}=2S_{\\triangle OBC}$,\\\\\n$\\because S_{\\text{rhombus }OBEC}=2S_{\\triangle OBC}$,\\\\\n$\\therefore S_{\\text{rhombus }OBEC}=S_{\\triangle ABC}=\\frac{1}{2}AB\\cdot BC=\\frac{1}{2}\\times 2\\times 2\\sqrt{3}=\\boxed{2\\sqrt{3}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52284290_110": { -"question": "As shown in the figure, in $\\triangle ABC$, points $D$ and $E$ are the midpoints of sides $AB$ and $AC$, respectively. Line $CF$ is drawn parallel to $AB$ through point $C$ and intersects the extension of $DE$ at point $F$. Line $BE$ is drawn. Quadrilateral $BCFD$ is a parallelogram. When $AB=BC$, if $BD=2$ and $BE=3$, find the length of $AC$.", -"image_file_name": "7054431", -"image": [ -"math/52284290_9010.png" -], -"solution": "\\textbf{Solution:} Since $AB=BC$ and $E$ is the midpoint of $AC$,\nthus $BE\\perp AC$.\\\\\nSince $AB=2DB=4$ and $BE=3$,\\\\\nthus $AE=\\sqrt{4^2-3^2}=\\sqrt{7}$,\\\\\ntherefore $AC=2AE=2\\sqrt{7}=\\boxed{2\\sqrt{7}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52252077_113": { -"question": "As shown in the figure, in quadrilateral $ABCD$, the bisector of $\\angle ABC$ intersects $AD$ at point $F$, and $EF\\parallel AB$ intersects $BC$ at point $E$. The quadrilateral $ABEF$ is a rhombus; if $AB=5$, $BF=8$, and $CE=\\frac{1}{2}AE$, what is the area of quadrilateral $ABCD$?", -"image_file_name": "7054431", -"image": [ -"math/52252077_911.png" -], -"solution": "\\textbf{Solution:} Given that quadrilateral ABEF is a rhombus, it follows that $AE \\perp BF$, $BO=OF=\\frac{1}{2}BF=4$, and $AO=OE$. Given that $AB=BE=5$, it can be deduced that $EO=\\sqrt{BE^{2}-BO^{2}}=\\sqrt{25-16}=3$. Therefore, $AE=6$. Given that $CE=\\frac{1}{2}AE$, it follows that $CE=3$ and therefore $BC=8$. Let the distance between AD and BC be $h$. Since the area of the rhombus ABEF is equal to $BE\\cdot h$ and the area of the parallelogram ABCD is equal to $BC\\cdot h$, the ratio of the area of the rhombus ABEF to the area of the parallelogram ABCD is $BE:BC=5:8$. Since the area of the rhombus ABEF is $\\frac{1}{2}\\times 6\\times 8=24$, the area of the quadrilateral ABCD is $\\frac{8}{5}\\times 24=\\boxed{\\frac{192}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52252006_117": { -"question": "As shown in the figure, it is known that $ABCD$ is a parallelogram. Extend $AB$ to $E$ such that $BE=AB$, and connect $BD$, $ED$, $EC$. If $ED=AD$, $CD=BE$; quadrilateral $BECD$ is a rectangle; connect $AC$, if $AD=\\sqrt{7}$, $CD=2$, find the length of $AC$.", -"image_file_name": "7054431", -"image": [ -"math/52252006_922.png" -], -"solution": "\\textbf{Solution:} As shown in the diagram, connect $AC$,\n\nsince quadrilateral $ABCD$ is a parallelogram,\n\ntherefore $CB=AD=\\sqrt{7}$, $AB=CD=2$,\n\nsince quadrilateral $BECD$ is a rectangle,\n\ntherefore $BE=CD=2$, $\\angle BEC=90^\\circ$,\n\ntherefore, in $\\triangle BEC$,\n\n$CE=\\sqrt{BC^2-BE^2}=\\sqrt{(\\sqrt{7})^2-2^2}=\\sqrt{3}$,\n\nin $\\triangle AEC$,\n\n$AC=\\sqrt{AE^2+CE^2}=\\sqrt{(AB+BE)^2+CE^2}=\\sqrt{4^2+(\\sqrt{3})^2}=\\boxed{\\sqrt{19}}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52250892_119": { -"question": "As illustrated, the diagonals $AC$ and $BD$ of quadrilateral $\\square ABCD$ intersect at point O, with $AC \\perp BD$, $BD = 12\\,cm$, and $AC = 6\\,cm$. Point E moves from point B towards point O on segment $BO$ at a speed of $1\\,cm/s$, and point F moves from point O towards point D on segment $OD$ at a speed of $2\\,cm/s$. Assuming points E and F start moving at the same time, and defining the movement duration as t seconds, what are the lengths of $EO$ and $OF$ in cm, respectively?", -"image_file_name": "7054431", -"image": [ -"math/52250892_9310.png" -], -"solution": "\\textbf{Solution:} Given the problem, the specific values of $EO$ and $OF$ cannot be directly obtained; more information is needed.\\\\\nTherefore, a concrete answer cannot be provided.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52250892_120": { -"question": "As shown in the figure, the diagonals $AC$ and $BD$ of quadrilateral $ABCD$ intersect at point $O$. It is given that $AC\\perp BD$, $BD=12\\,cm$, and $AC=6\\,cm$. Point $E$ moves towards point $O$ at a speed of $1\\,cm/s$ from point $B$ along the segment $BO$, and point $F$ moves towards point $D$ at a speed of $2\\,cm/s$ from point $O$ along the segment $OD$. If points $E$ and $F$ start moving at the same time and the moving time is $t$ seconds, for what value of $t$ is the quadrilateral $AECF$ a parallelogram?", -"image_file_name": "7054431", -"image": [ -"math/52250892_9310.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $AECF$ is a parallelogram,\\\\\nit follows that $AO=OC$ and $EO=OF$,\\\\\nwhere $EO=6-t$ and $OF=2t$,\\\\\nthus $6-t=2t$,\\\\\ntherefore $t=\\boxed{2}$,\\\\\nhence, when $t=2$, quadrilateral $AECF$ is a parallelogram.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52250892_121": { -"question": "As shown in the figure, the diagonals $AC$ and $BD$ of $\\square ABCD$ intersect at point $O$, and $AC \\perp BD$, $BD = 12\\,cm$, $AC = 6\\,cm$. Point $E$ moves from point $B$ towards point $O$ along the segment $BO$ at a speed of $1\\,cm/s$, and point $F$ moves from point $O$ towards point $D$ along the segment $OD$ at a speed of $2\\,cm/s$. If points $E$ and $F$ start moving at the same time, and the movement time is t seconds, is there a value of t such that $\\triangle AEF$ is an isosceles triangle with $AF$ as its base? Find the value of t.", -"image_file_name": "7054431", -"image": [ -"math/52250892_9310.png" -], -"solution": "\\textbf{Solution:} Existence is shown as follows:\\\\\n$\\because \\triangle AEF$ is an isosceles triangle, with $AF$ as the base,\\\\\n$\\therefore AE=EF,$\\\\\n$\\because AC\\perp BD, OE=6-t, OA=3,$\\\\\n$\\therefore AE^{2}=3^{2}+(6-t)^{2},$\\\\\nwhile $EF^{2}=(6-t+2t)^{2}=(6+t)^{2},$\\\\\n$\\therefore 9+(6-t)^{2}=(6+t)^{2},$\\\\\nSolving gives: $t=\\boxed{\\frac{3}{8}}.$", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52250758_123": { -"question": "As shown in the figure, in rhombus $ABCD$, $AD\\parallel x$-axis. The coordinate of point $A$ is $\\left(0, 4\\right)$, and the coordinate of point $B$ is $\\left(3, 0\\right)$. The line containing side $CD$, described by $y_{1}=mx+n$, intersects the $x$-axis at point $C$ and intersects the hyperbola $y_{2}=\\frac{k}{x}$ $(x<0)$ at point $D$. Find the equation of line $CD$ and the value of $k$?", -"image_file_name": "7054431", -"image": [ -"math/52250758_9412.png" -], -"solution": "\\textbf{Solution:} Since the coordinates of point A are $(0,4)$ and the coordinates of point B are $(3,0)$,\n\\[AB= \\sqrt{3^2+4^2}=5,\\]\nsince quadrilateral ABCD is a rhombus,\n\\[AD=BC=AB=5,\\]\nthus $D(-5,4)$ and $C(-2,0)$. Plugging the coordinates of points C and D into the equation of the line yields\n\\[\\begin{cases}\n-5m+n=4 \\\\\n-2m+n=0\n\\end{cases},\\]\nfrom which we find\n\\[\\begin{cases}\nm=-\\frac{4}{3} \\\\\nn=-\\frac{8}{3}\n\\end{cases},\\]\ntherefore, the equation of line CD is $y_1=-\\frac{4}{3}x-\\frac{8}{3}$. Given that point D lies on the graph of an inverse ratio function,\n\\[4=\\frac{k}{-5},\\]\ntherefore $k=\\boxed{-20}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52250758_124": { -"question": "As shown in the figure, in the rhombus $ABCD$, $AD\\parallel x$-axis, the coordinates of point $A$ are $(0, 4)$, and the coordinates of point $B$ are $(3, 0)$. The line $y_{1}=mx+n$ containing side $CD$ intersects the $x$-axis at point $C$ and intersects the hyperbola $y_{2}=\\frac{k}{x} (x<0)$ at point $D$. How many units should the rhombus $ABCD$ be translated in the positive direction of the $y$-axis so that point $C$ lies on the hyperbola $y_{2}=\\frac{k}{x} (x<0)$?", -"image_file_name": "7054431", -"image": [ -"math/52250758_9412.png" -], -"solution": "\\textbf{Solution:} Given $C(-2,0)$,\\\\\nsubstitute $x=-2$ into ${y}_{2}=-\\frac{20}{x}$ $(x<0)$ to find, $y=-\\frac{20}{-2}=10$,\\\\\ntherefore, by translating the rhombus $ABCD$ $10$ units in the positive direction of the $y$ axis, point $C$ will lie on the hyperbola $y_{2}=\\frac{k}{x}\\left(x<0\\right)$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52250758_125": { -"question": "As shown in the figure, in the diamond $ABCD$, $AD\\parallel x$ axis, the coordinate of point $A$ is $\\left(0, 4\\right)$, and the coordinate of point $B$ is $\\left(3, 0\\right)$. The line $y_1=mx+n$ on which side $CD$ lies intersects the $x$ axis at point $C$, and intersects the hyperbola $y_2=\\frac{k}{x}\\left(x<0\\right)$ at point $D$. Directly write down the range of the independent variable $x$ for which $y_1\\ge y_2$.", -"image_file_name": "7054431", -"image": [ -"math/52250758_9412.png" -], -"solution": "\\textbf{Solution:} The range of the independent variable $x$, which satisfies $y_1 \\geq y_2$, is $x \\leq -5$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52251436_127": { -"question": "As shown in the figure, in rectangle $ABCD$, $AB=2$, $BC=4$, point $D$ is the midpoint of side $AB$, and the graph of the inverse proportion function $y_{1}=\\frac{k}{x}$ $(x>0)$ passes through point $D$ and intersects $BC$ at point $E$. Find the value of $k$ and the equation of line $DE$?", -"image_file_name": "7054431", -"image": [ -"math/52251436_959.png" -], -"solution": "\\textbf{Solution:} Given that $AB=2$ and $BC=4$,\\\\\nthus $B(4, 2)$.\\\\\nSince point $D$ is the midpoint of side $AB$,\\\\\nthus $D(4, 1)$, hence $k=4$.\\\\\nThe inverse proportion function equation is $y_{1}=\\frac{4}{x}(x>0)$,\\\\\nsince $E$ is a point on $BC$, we have $y_{E}=2$.\\\\\nThus $x_{E}=\\frac{4}{2}=2$, hence $E(2, 2)$.\\\\\nAssuming the equation of line $DE$ is $y_{2}=kx+b$, we get\\\\\n$\\begin{cases}2=2k+b\\\\ 1=4k+b\\end{cases}$, which gives $\\begin{cases}k=-\\frac{1}{2}\\\\ b=3\\end{cases}$,\\\\\nhence the equation of line $DE$ is $y_{2}=-\\frac{1}{2}x+3$,\\\\\ntherefore $k=\\boxed{-\\frac{1}{2}}$ and the equation of line $DE$ is $y_{2}=\\boxed{-\\frac{1}{2}x+3}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52251436_128": { -"question": "As shown in the figure, in rectangle $ABCD$, where $AB=2$ and $BC=4$, point $D$ is the midpoint of side $AB$, and the graph of the inverse proportion function $y_1=\\frac{k}{x}(x>0)$ passes through point $D$ and intersects $BC$ at point $E$. Find a point $P$ on the $x$-axis such that the perimeter of $\\triangle PDE$ is minimized. What are the coordinates of point $P$ in this case?", -"image_file_name": "7054431", -"image": [ -"math/52251436_959.png" -], -"solution": "\\textbf{Solution:} Let $D(4, 1)$ be the point symmetrical about the $x$-axis as $D^{\\prime}(4, -1)$. Let the equation of line $D^{\\prime}E$ be $y=kx+b$. We have\n\\[\n\\left\\{\n\\begin{array}{l}\n2=2k+b \\\\\n-1=4k+b\n\\end{array}\n\\right.\n\\]\nSolving this, we get\n\\[\n\\left\\{\n\\begin{array}{l}\nk=-\\frac{3}{2} \\\\\nb=5\n\\end{array}\n\\right.\n\\]\nTherefore, the equation of line $D^{\\prime}E$ is $y=-\\frac{3}{2}x+5$ \\\\\nTherefore, the intersection of line $D^{\\prime}E$ with the $x$-axis is $P\\left(\\frac{10}{3}, 0\\right)$, \\\\\nTherefore, when the perimeter of $\\triangle PDE$ is minimized, the coordinates of $P$ are $\\boxed{\\left(\\frac{10}{3}, 0\\right)}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52251436_129": { -"question": "As shown in the figure, within rectangle $ABCD$, $AB=2$, $BC=4$, point $D$ is the midpoint of side $AB$, the graph of the inverse proportional function $y_1=\\frac{k}{x}$ ($x>0$) passes through point $D$ and intersects $BC$ at point $E$. What is the area of $\\triangle PDE$?", -"image_file_name": "7054431", -"image": [ -"math/52251436_959.png" -], -"solution": "\\textbf{Solution:} From (1), we know the equation of line $DE$ is $y_2=-\\frac{1}{2}x+3$. Let its intersection with the $x$-axis be $Q$,\\\\\nthen it is known that the coordinates of $Q$ are $Q(6, 0)$,\\\\\n$\\because P\\left(\\frac{10}{3}, 0\\right)$, then $PQ=6-\\frac{10}{3}=\\frac{8}{3}$,\\\\\nand $D(4, 1)$, $y_E=2$,\\\\\n$\\therefore {S}_{\\triangle PQE}=\\frac{1}{2}PQ\\cdot y_E=\\frac{1}{2}\\times \\frac{8}{3}\\times 2=\\frac{8}{3}$\\\\\n$\\therefore {S}_{\\triangle PQD}=\\frac{1}{2}PQ\\cdot y_D=\\frac{1}{2}\\times \\frac{8}{3}\\times 1=\\frac{4}{3}$\\\\\n$\\therefore {S}_{\\triangle PDE}={S}_{\\triangle PQE}-{S}_{\\triangle PQD}=\\frac{8}{3}-\\frac{4}{3}=\\boxed{\\frac{4}{3}}$", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Functions", -"level_2": "Inverse Proportional Function" -} -}, -"52251359_132": { -"question": "As shown in the diagram, in quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at point $E$. Extend $CD$ to point $F$ such that $DF=CD$, and connect $AF$. Quadrilateral $ABDF$ is a parallelogram; if $AB\\perp AC$ and $AB=2$, $AF=5$, what is the area of quadrilateral $ABCF$?", -"image_file_name": "7054431", -"image": [ -"math/52251359_960.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral $ABCD$ is a parallelogram and $AB\\perp AC$, it follows that $CD=AB=2$ and $\\angle ACD=\\angle BAC=90^\\circ$. Since $CD=DF$, we have $CF=2CD=4$. Given that $AF=5$, in $\\triangle ACF$, we have $AC=\\sqrt{AF^{2}-CF^{2}}=\\sqrt{5^{2}-4^{2}}=3$. Therefore, the area of quadrilateral $ABCF$ is $S_{\\text{quadrilateral } ABCF}=S_{\\triangle BAC}+S_{\\triangle ACF}=\\frac{1}{2}AB\\cdot AC+\\frac{1}{2}AC\\cdot CF=\\frac{1}{2}\\times 2\\times 3+\\frac{1}{2}\\times 3\\times 4=\\boxed{9}$.", -"solution_image": [], -"year": "eight", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52225570_135": { -"question": "In the rectangle $ABCD$, as shown in the figure, a perpendicular line $EF$ is drawn through the midpoint $O$ of diagonal $AC$, intersecting sides $BC$ and $AD$ at points $E$ and $F$, respectively. $AE$ and $CF$ are then connected. Quadrilateral $AECF$ is a rhombus. If $AD = 8$ and $AB = 4$, what is the length of $CF$?", -"image_file_name": "7054431", -"image": [ -"math/52225570_970.png" -], -"solution": "\\textbf{Solution:} Since quadrilateral ABCD is a rectangle,\\\\\nit follows that $\\angle B=90^\\circ$.\\\\\nFrom (1) we know that quadrilateral AECF is a rhombus,\\\\\nthus, let AE=CE=CF=x, then BE=8-x.\\\\\nIn $\\triangle ABE$, we have $AB^2+BE^2=AE^2$, which means $4^2+(8-x)^2=x^2$,\\\\\nsolving this, we find $x=\\boxed{5}$,\\\\\ntherefore, CF=5.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"52225539_138": { -"question": "As shown in the figure, in the parallelogram $ABCD$, $CE\\perp AD$ at point $E$. Extend $DA$ to point $F$ such that $AF=DE$. Connect $BF$ and $CF$. Quadrilateral $BCEF$ is a rectangle; If $AB=6$, $CF=8$, $DF=10$, what is the length of $EF$?", -"image_file_name": "7054431", -"image": [ -"math/52225539_981.png" -], -"solution": "\\textbf{Solution:} Since according to the properties of parallelograms we know $AB=CD$, \\\\\nthus $CD=6$, \\\\\nsince in $\\triangle FCD$, $DF^2=10^2=6^2+8^2=CF^2+DC^2$, \\\\\ntherefore $\\triangle FCD$ is a right triangle, $\\angle FCD=90^\\circ$, \\\\\nbased on the formula for the area of a triangle: $\\frac{1}{2}\\times FC\\times CD=\\frac{1}{2}\\times FD\\times EC$, \\\\\nthen $EC=\\frac{24}{5}$, \\\\\nsince in rectangle $FBCE$, $\\angle FBC=90^\\circ$, $EC=BF$, \\\\\nthus $BF=\\frac{24}{5}$, \\\\\ngiven $EF\\parallel BC$, it means $\\angle FCB=\\angle CFD$, \\\\\ntherefore $\\triangle FCB\\sim \\triangle DFC$, \\\\\nthus $\\frac{BC}{FC}=\\frac{FB}{DC}$, \\\\\nthus $BC=\\frac{FB}{DC}\\times FC=\\frac{\\frac{24}{5}\\times 8}{6}=\\frac{32}{5}$, \\\\\nthus $EF=BC=\\boxed{\\frac{32}{5}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Similarity of Shapes" -} -}, -"52211035_141": { -"question": "As shown in the diagram, in rectangle $ABCD$, $AD=4$, $AB=8$, diagonals $AC$ and $BD$ intersect at point $O$. Points $E$ and $F$ are located on the extensions of $CD$ and $DA$ respectively, and $DE=4$, $AF=2$. The segments $EF$ and $OE$ are drawn, with $G$ being the midpoint of $EF$. The segment $OE$ intersects $AD$ at point $H$, and segment $GH$ is drawn. Given that $H$ is the midpoint of $OE$, find the length of $GH$.", -"image_file_name": "7054431", -"image": [ -"math/52211035_994.png" -], -"solution": "\\textbf{Solution:} Connect OF. \\\\\nSince quadrilateral ABCD is a rectangle, \\\\\nit follows that $ \\angle ADC=90^\\circ$. \\\\\nSince $OM\\parallel DC$, \\\\\nit follows that $ \\angle FMO=\\angle ADC$, \\\\\ntherefore $ \\angle FMO=90^\\circ$. \\\\\nSince $AD=4$ and M is the midpoint of AD, \\\\\nit follows that $AM=\\frac{1}{2}AD=2$. \\\\\nSince $AF=2$, \\\\\nit follows that $FM=4$. \\\\\nTherefore, in $ \\triangle FOM$, $ \\angle FMO=90^\\circ$, $ OM=4$, and $ FM=4$. \\\\\nBy the Pythagorean theorem, we get $ OF=\\sqrt{OM^{2}+FM^{2}}=4\\sqrt{2}$. \\\\\nSince G is the midpoint of EF and H is the midpoint of OE, \\\\\nit follows that GH is the midline of $ \\triangle FEO$, \\\\\ntherefore $GH=\\frac{1}{2}OF=2\\sqrt{2}$. \\\\\nWhat is the length of $GH$? $GH=\\boxed{2\\sqrt{2}}$.", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Quadrilateral" -} -}, -"55426249_4": { -"question": "As shown in the figure, take a point $O$ on the line $AB$ and draw a ray $OC$ such that $\\angle BOC = 70^\\circ$. Place the right angle vertex of a right-angle triangle at point $O$. (Note: $\\angle DOE = 90^\\circ$) As shown in Figure 1, if one side $OD$ of the right-angle triangle $DOE$ falls on the ray $OB$, then what is the measure of $\\angle COE$?", -"image_file_name": "7028389", -"image": [ -"math/55426249_36.png" -], -"solution": "\\textbf{Solution:} Therefore, $\\angle COE = \\boxed{20^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"55426249_5": { -"question": "As shown in the figure, a ray $OC$ is drawn from point $O$ on line $AB$, making an angle $ \\angle BOC=70^\\circ$. A right-angle triangle ruler is placed with its right-angle vertex at point $O$. (Note: $ \\angle DOE=90^\\circ$) As shown in figure 2, if $OC$ exactly bisects $ \\angle BOE$, what is the degree measure of $ \\angle COD$?", -"image_file_name": "7028389", -"image": [ -"math/55426249_36.png" -], -"solution": "\\textbf{Solution:} Since $OC$ bisects $\\angle EOB$ and $\\angle BOC=70^\\circ$,\\\\\nit follows that $\\angle EOB=2\\angle BOC=140^\\circ$.\\\\\nGiven $\\angle DOE=90^\\circ$,\\\\\nwe have $\\angle BOD=\\angle BOE-\\angle DOE=50^\\circ$,\\\\\ntherefore $\\angle COD=\\angle BOC-\\angle BOD=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"54927701_8": { -"question": "As shown in the figure, put together a set of triangles as demonstrated below. Write down the degrees of $\\angle A$, $\\angle B$, $\\angle BCD$, $\\angle D$, and $\\angle AED$.", -"image_file_name": "7028389", -"image": [ -"math/54927701_40.png" -], -"solution": "\\textbf{Solution:} From the problem, we get \\\\\n$\\angle A=30^\\circ$, \\\\\n$\\angle B=90^\\circ$, \\\\\n$\\angle BCD=150^\\circ$, \\\\\n$\\angle D=45^\\circ$, \\\\\n$\\angle AED=135^\\circ$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54927325_11": { -"question": "Given that O is a point on line AB, $\\angle COD$ is a right angle, and OE bisects $\\angle BOC$. As shown in Figure 1, if $\\angle AOC= 30^\\circ$, find the measures of $\\angle COE$ and $\\angle BOD$.", -"image_file_name": "7028389", -"image": [ -"math/54927325_50.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOC=30^\\circ$ and $\\angle COD$ is a right angle,\\\\\nit follows that $\\angle BOC= 180^\\circ-\\angle AOC=150^\\circ$ and $\\angle COD= 90^\\circ$,\\\\\nthus, $\\angle BOD= 180^\\circ-\\angle AOC-\\angle COD=60^\\circ$.\\\\\nSince OE bisects $\\angle BOC$,\\\\\nit implies that $\\angle COE=\\frac{1}{2}\\angle BOC=75^\\circ$;\\\\\ntherefore, $\\angle BOD=\\boxed{60^\\circ}$ and $\\angle COE=\\boxed{75^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"54927325_12": { -"question": "Given that $O$ is a point on the line $AB$, $\\angle COD$ is a right angle, and $OE$ bisects $\\angle BOC$. As shown in Figure 1, if $\\angle AOC = \\alpha$, what is the degree measure of $\\angle DOE$ (expressed as an algebraic expression containing $\\alpha$)?", -"image_file_name": "7028389", -"image": [ -"math/54927325_50.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle AOC = \\alpha$, $\\angle COD$ is a right angle,\\\\\n$\\therefore$ $\\angle BOC = 180^\\circ - \\angle AOC = 180^\\circ - \\alpha$, $\\angle COD = 90^\\circ$,\\\\\n$\\therefore$ $\\angle BOD = 180^\\circ - \\angle AOC - \\angle COD = 90^\\circ - \\alpha$.\\\\\nSince OE bisects $\\angle BOC$,\\\\\n$\\therefore$ $\\angle BOE = \\frac{1}{2} \\angle BOC = 90^\\circ - \\frac{1}{2}\\alpha$,\\\\\n$\\therefore$ $\\angle DOE = \\angle BOE - \\angle BOD = 90^\\circ - \\frac{1}{2}\\alpha - (90^\\circ - \\alpha) = \\boxed{\\frac{1}{2}\\alpha}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"8753334_44": { -"question": "As shown in the figure, $\\angle AOB$ is a straight angle, and $OM$, $ON$ are the angle bisectors of $\\angle AOC$, $\\angle BOD$ respectively. Given that $\\angle AOC=40^\\circ$, $\\angle BOD=60^\\circ$, what is the degree measure of $\\angle MON$?", -"image_file_name": "7028389", -"image": [ -"math/8753334_350.jpg" -], -"solution": "Solution:Given that $\\angle AOB$ is a straight angle, $\\angle AOC=40^\\circ$, $\\angle BOD=60^\\circ$,\\\\\nthus, $\\angle COD=\\angle AOB-\\angle AOC-\\angle BOD=180^\\circ-40^\\circ-60^\\circ=80^\\circ$,\\\\\nsince $OM$ and $ON$ are the angle bisectors of $\\angle AOC$ and $\\angle BOD$ respectively,\\\\\nthus, $\\angle COM= \\frac{1}{2} \\angle AOC=20^\\circ$, $\\angle DON= \\frac{1}{2} \\angle BOD=30^\\circ$,\\\\\nsince $\\angle MON=\\angle COM+\\angle COD+\\angle DON$,\\\\\nthus, $\\angle MON=20^\\circ+80^\\circ+30^\\circ=\\boxed{130^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"8753334_45": { -"question": "As shown in the figure, $\\angle AOB$ is a straight angle, and $OM$ and $ON$ are the angle bisectors of $\\angle AOC$ and $\\angle BOD$ respectively. Given that $\\angle COD=90^\\circ$, find the measure of $\\angle MON$?", -"image_file_name": "7028389", -"image": [ -"math/8753334_350.jpg" -], -"solution": "Solution: Since $\\angle COD=90^\\circ$, it follows that $\\angle AOC+\\angle BOD =90^\\circ$. Furthermore, since OM and ON are the bisectors of $\\angle AOC$ and $\\angle BOD$ respectively, we have $\\angle MOC= \\frac{1}{2} \\angle AOC$ and $\\angle NOD= \\frac{1}{2} \\angle BOD$. Thus, $\\angle MOC+\\angle NOD= \\frac{1}{2} (\\angle AOC+\\angle BOD)=45^\\circ$. Also, $\\angle MON=\\angle MOC+\\angle NOD+\\angle COD$, yielding $\\angle MON=45^\\circ+90^\\circ=\\boxed{135^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"9153886_49": { -"question": "As the figure shows, it is known that: $O$ is a point on line $AB$, $\\angle COD$ is a right angle, $OE$ bisects $\\angle BOC$. If $\\angle AOC=30^\\circ$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7028389", -"image": [ -"math/9153886_382.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle COD$ is a right angle, and $\\angle AOC=30^\\circ$,\\\\\nit follows that $\\angle BOD=180^\\circ-90^\\circ-30^\\circ=60^\\circ$,\\\\\nand $\\angle COB=180^\\circ-30^\\circ=150^\\circ$. Since OE bisects $\\angle BOC$,\\\\\nwe have $\\angle BOE=\\frac{1}{2}\\angle BOC=75^\\circ$,\\\\\nthus, $\\angle DOE=\\angle BOE-\\angle BOD=75^\\circ-60^\\circ=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53403787_53": { -"question": "As shown in the figure, it is known that $ \\angle AOB=90^\\circ$, $ \\angle AOC$ is an acute angle, $ ON$ bisects $ \\angle AOC$, and the ray $ OM$ is inside $ \\angle AOB$. How many angles in the figure are less than a straight angle?", -"image_file_name": "7028389", -"image": [ -"math/53403787_396.png" -], -"solution": "\\textbf{Solution:} Let's consider angles that start from edge $OC$: there are $\\angle CON, \\angle COA, \\angle COM, \\angle COB$,\\\\\nAngles that start from edge $ON$: $\\angle NOA, \\angle NOM, \\angle NOB$,\\\\\nAngles that start from edge $OA$: $\\angle AOM, \\angle AOB$,\\\\\nAngles that start from edge $OM$: $\\angle MOB$,\\\\\n$\\therefore$ In the figure, there are a total of $4+3+2+1=\\boxed{10}$ angles that are less than a straight angle.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53403787_54": { -"question": "As shown in the figure, it is known that $\\angle AOB=90^\\circ$, $\\angle AOC$ is an acute angle, $ON$ bisects $\\angle AOC$, and ray $OM$ is inside $\\angle AOB$. If $\\angle AOC=50^\\circ$ and $\\angle MON=45^\\circ$, find the measure of $\\angle AOM$.", -"image_file_name": "7028389", -"image": [ -"math/53403787_396.png" -], -"solution": "\\textbf{Solution:} Since $ON$ bisects $\\angle AOC$ and $\\angle AOC=50^\\circ$,\\\\\nit follows that $\\angle AON=\\angle CON=\\frac{1}{2}\\angle AOC=25^\\circ$,\\\\\nSince $\\angle MON=45^\\circ$,\\\\\ntherefore, $\\angle AOM=\\angle MON-\\angle AON=45^\\circ-25^\\circ=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"17008253_57": { -"question": "As shown in the figure, in triangle $AOB$ and triangle $COD$, we have $\\angle AOB = \\angle COD$, with $\\angle AOB = 90^\\circ$. When the two triangles are combined as shown in the figure and $\\angle BOD = 30^\\circ$, what is the measure of $\\angle AOC$?", -"image_file_name": "7028389", -"image": [ -"math/17008253_400.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $\\angle AOC = \\angle AOB + \\angle BOC = 90^\\circ + \\angle BOC$,\\\\\n$\\angle DOB = \\angle DOC - \\angle BOC = 90^\\circ - \\angle BOC$,\\\\\nTherefore, $\\angle AOC + \\angle DOB = 90^\\circ + \\angle BOC + 90^\\circ - \\angle BOC = 180^\\circ$,\\\\\nSince $\\angle BOD = 30^\\circ$,\\\\\nTherefore, $\\angle AOC = \\boxed{150^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"17008253_58": { -"question": "In triangles $AOB$ and $COD$, $\\angle AOB = \\angle COD$ and it is known that $\\angle AOB = 90^\\circ$. When the two triangles are put together as shown in the figure, and $\\angle AOC = 2\\angle BOD$, what is the degree measure of $\\angle BOD$?", -"image_file_name": "7028389", -"image": [ -"math/17008253_400.png" -], -"solution": "\\textbf{Solution:}\\\\\n$\\because \\angle AOC = \\angle AOB + \\angle BOC = 90^\\circ + \\angle BOC$,\\\\\n$\\angle DOB = \\angle DOC - \\angle BOC = 90^\\circ - \\angle BOC$,\\\\\n$\\therefore \\angle AOC + \\angle DOB = 90^\\circ + \\angle BOC + 90^\\circ - \\angle BOC = 180^\\circ$,\\\\\n$\\because \\angle AOC = 2\\angle BOD$,\\\\\n$\\therefore \\angle BOD = \\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"17008253_59": { -"question": "In triangles $AOB$ and $COD$, $\\angle AOB = \\angle COD$. When $\\angle AOB = \\alpha$, the two triangles are combined as shown in the diagram. Express $\\angle AOC + \\angle BOD$ using an algebraic formula involving $\\alpha$.", -"image_file_name": "7028389", -"image": [ -"math/17008253_400.png" -], -"solution": "\\textbf{Solution:} Given:\n\\[\n\\because \\angle AOC = \\angle AOB + \\angle BOC = \\alpha + \\angle BOC,\n\\]\n\\[\n\\angle DOB = \\angle DOC - \\angle BOC = \\alpha - \\angle BOC,\n\\]\n\\[\n\\therefore \\angle AOC + \\angle DOB = \\alpha + \\angle BOC + \\alpha - \\angle BOC = \\boxed{2\\alpha}.\n\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51495163_61": { -"question": "As shown in the figure, $O$ is a point on line $AB$, $\\angle AOC=40^\\circ$, $OD$ bisects $\\angle AOC$, $\\angle DOE=90^\\circ$. Please answer the following question: How many angles in the figure are less than $180^\\circ$?", -"image_file_name": "7028389", -"image": [ -"math/51495163_413.png" -], -"solution": "\\textbf{Solution:} The angles in the figure that are less than $180^\\circ$ are: $\\angle AOD$, $\\angle AOC$, $\\angle AOE$, $\\angle DOC$, $\\angle DOE$, $\\angle DOB$, $\\angle COE$, $\\angle COB$, $\\angle EOB$, for a total of $\\boxed{9}$ angles.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438537_64": { -"question": "As shown in the figure, $\\angle AOC$ and $\\angle BOD$ are both right angles. If $\\angle DOC = 35^\\circ$, then what is the degree measure of $\\angle AOB$?", -"image_file_name": "7028389", -"image": [ -"math/51438537_420.png" -], -"solution": "\\textbf{Solution:} We have $\\angle AOB = \\boxed{145^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"17148529_69": { -"question": "As shown in the figure, the straight lines AB and CD intersect at point O. OE is the bisector of $\\angle AOD$. If $\\angle AOC=60^\\circ$ and $OF\\perp OE$, what is the measure of $\\angle BOE$?", -"image_file_name": "7028389", -"image": [ -"math/17148529_430.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC=60^\\circ$,\\\\\nit follows that $\\angle BOD=\\angle AOC=60^\\circ$,\\\\\n$\\angle AOD=180^\\circ-60^\\circ=120^\\circ$,\\\\\nsince $OE$ is the bisector of $\\angle AOD$,\\\\\nit follows that $\\angle DOE= \\frac{1}{2} \\angle AOD=60^\\circ$,\\\\\nthus, $\\angle BOE=\\angle BOD+\\angle DOE=60^\\circ+60^\\circ=\\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "easy", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"8928654_71": { -"question": "As shown in the figure, two triangular boards OAB and OCD are positioned with $\\angle ABO = 30^\\circ$ and $\\angle ODC = 45^\\circ$. If OM and ON are the angle bisectors of $\\angle AOD$ and $\\angle BOC$ respectively, what is the degree measure of $\\angle MON$?", -"image_file_name": "7028389", -"image": [ -"math/8928654_440.png" -], -"solution": "\\textbf{Solution:}\\\\\n$\\because \\angle ABO=30^\\circ$ and $\\angle ODC=45^\\circ$\\\\\n$\\therefore \\angle COB=90^\\circ-45^\\circ=45^\\circ$, $\\angle AOB=90^\\circ-30^\\circ=60^\\circ$\\\\\n$\\because$ OM and ON bisect $\\angle AOD$ and $\\angle BOC$ respectively\\\\\n$\\therefore \\angle NOB= \\frac{1}{2}\\angle COB= \\frac{1}{2}\\times45^\\circ=22.5^\\circ$\\\\\n$\\angle BOM= \\frac{1}{2}\\angle AOB= \\frac{1}{2}\\times60^\\circ=30^\\circ$\\\\\n$\\therefore \\angle MON=\\angle NOB+\\angle BOM=\\boxed{52.5^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"8928654_72": { -"question": "As shown in Figure (1), two triangular boards, OAB and OCD, are placed with $\\angle ABO=30^\\circ$ and $\\angle ODC=45^\\circ$. If OM and ON bisect $\\angle AOD$ and $\\angle BOC$ respectively, rotate the triangular board OCD clockwise around point O as shown in Figure 2. If OD bisects $\\angle AOB$, what is the rotation angle $\\alpha$?", -"image_file_name": "7028389", -"image": [ -"math/8928654_440.png" -], -"solution": "\\textbf{Solution:} Since OD bisects $\\angle AOB$,\n\n$\\therefore \\angle BOD = \\frac{1}{2}\\angle AOB = 30^\\circ$,\n\n$\\therefore$ The angle of rotation $\\angle BOD = \\alpha = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"8928654_73": { -"question": "A pair of set squares OAB and OCD are placed as shown in the figure, where ($\\angle ABO=30^\\circ$, $\\angle ODC=45^\\circ$). If OM and ON bisect $\\angle AOD$ and $\\angle BOC$ respectively. Rotate set square OCD clockwise around point O in the figure, if $\\angle AOC=90^\\circ$, find the degree of the rotation angle $\\alpha$.", -"image_file_name": "7028389", -"image": [ -"math/8928654_440.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle AOC=90^\\circ$ and $\\angle COD=45^\\circ$,\\\\\n$\\therefore \\angle AOD=\\angle AOC-\\angle COD=45^\\circ$,\\\\\n$\\therefore$ the angle of rotation $\\angle BOD=\\angle AOB-\\angle AOD=60^\\circ-45^\\circ=\\alpha =\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"8928654_74": { -"question": "As shown in the figure, two triangles OAB and OCD are placed with $\\angle ABO=30^\\circ$ and $\\angle ODC=45^\\circ$. If OM and ON bisect $\\angle AOD$ and $\\angle BOC$ respectively. Rotate the triangle OCD clockwise around point O from figure 1. In the process of rotation, is there a scenario where $\\angle BOD = \\angle COB + \\angle AOD$? If it exists, calculate the rotation angle $\\alpha$; if not, explain the reason.", -"image_file_name": "7028389", -"image": [ -"math/8928654_440.png" -], -"solution": "\\textbf{Solution:}\\\\\nSince $\\angle BOD = \\angle COB + \\angle AOD$,\\\\\nit follows that $\\angle DOC + \\angle AOB = 45^\\circ + 60^\\circ = 105^\\circ$, thus $\\angle COB + \\angle BOD + \\angle AOD + \\angle BOD = 105^\\circ$,\\\\\ntherefore $3\\angle BOD = 105^\\circ$,\\\\\nThe angle of rotation $\\angle BOD = \\alpha = \\boxed{35^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385668_79": { -"question": "As shown in Figure 1, it is known that $\\angle AOB=160^\\circ$, $\\angle COE$ is a right angle, and $OF$ bisects $\\angle AOE$. If $\\angle COF=32^\\circ$, then what is the degree measure of $\\angle BOE$?", -"image_file_name": "7028389", -"image": [ -"math/51385668_450.jpg" -], -"solution": "\\textbf{Solution:} We have $\\angle BOE = \\boxed{44^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52441579_83": { -"question": "As shown in Figure 1, point O is a point on the line AB. A ray OC is drawn through point O such that $\\angle AOC=60^\\circ$. A right-angled triangle plate is placed with its right-angle vertex at point O, one side OM on the ray OB, and the other side ON below the line AB. The triangle plate in Figure 1 is rotated counterclockwise around point O to Figure 2, such that one side OM is inside $\\angle BOC$ and exactly bisects $\\angle BOC$. What are the measures of $\\angle CON$ and $\\angle AOM$?", -"image_file_name": "7028389", -"image": [ -"math/52441579_460.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC = 60^\\circ$, it follows that $\\angle BOC = 120^\\circ$. Since OM bisects $\\angle BOC$, we have $\\angle COM = \\frac{1}{2}\\angle BOC = 60^\\circ$. Thus, $\\angle CON = \\angle COM + 90^\\circ = 150^\\circ$, and $\\angle AOM = \\angle AOC + \\angle COM = 60^\\circ + 60^\\circ = 120^\\circ$; therefore, the measure of $\\angle CON$ is $\\boxed{150^\\circ}$, and the measure of $\\angle AOM$ is $\\boxed{120^\\circ}$.", -"solution_image": [ -"solution_images/52441579_460.png" -], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53520190_87": { -"question": "Place the right-angled vertex O of the right-angled triangle OMN on the line AB, and let the ray OC bisect $\\angle AON$. As shown in the figure, if $\\angle BON = 60^\\circ$, what is the degree measure of $\\angle AOM$?", -"image_file_name": "7028389", -"image": [ -"math/53520190_470.png" -], -"solution": "\\textbf{Solution}: Since $\\angle MON=90^\\circ$ and $\\angle BON=60^\\circ$, \\\\\nit follows that $\\angle AOM=180^\\circ-\\angle MON-\\angle BON=180^\\circ-90^\\circ-60^\\circ=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53520190_88": { -"question": "As shown in the figure, the right-angled vertex $O$ of the right triangle $OMN$ is placed on line $AB$, and ray $OC$ bisects $\\angle AON$. If $\\angle AOM = 2\\angle COM$, what is the measure of $\\angle AON$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/53520190_470.png" -], -"solution": "\\textbf{Solution:} Since line OC bisects $\\angle AON$,\n\\[\n\\therefore \\angle AON=2\\angle AOC,\n\\]\nLet $\\angle COM=x$, then $\\angle AOM=2x$,\n\\[\n\\therefore \\angle CON=\\angle AOC=\\angle COM+\\angle AOM=x+2x=3x,\n\\]\nSince $\\angle COM+\\angle CON=90^\\circ$,\n\\[\n\\therefore x+3x=90^\\circ,\n\\]\nSolving this, we find $x=22.5^\\circ$;\n\\[\n\\therefore \\angle AON=6x=6\\times22.5^\\circ=\\boxed{135^\\circ}.\n\\]", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53520190_89": { -"question": "As shown in the figure, place the right-angled vertex $O$ of the right triangle $OMN$ on the line $AB$, and the ray $OC$ bisects $\\angle AON$. Rotate the right triangle $OMN$ counterclockwise around vertex $O$. During the rotation process: when $\\angle BON = 120^\\circ$, what is the measure of $\\angle COM$?", -"image_file_name": "7028389", -"image": [ -"math/53520190_470.png" -], -"solution": "\\textbf{Solution:} When $NO$ is above the line $AB$,\n\n$\\because \\angle AON = 180^\\circ - \\angle BON$,\n\n$\\therefore \\angle AON = 60^\\circ$,\n\n$\\because OC$ bisects $\\angle AON$,\n\n$\\therefore \\angle CON = \\frac{1}{2}\\angle AON = 30^\\circ$,\n\n$\\because \\angle MON = 90^\\circ$,\n\n$\\therefore \\angle COM = \\angle MON - \\angle CON = 90^\\circ - 30^\\circ = 60^\\circ$;\n\nWhen $ON$ is below the line $AB$,\n\n$\\because \\angle AON = 180^\\circ - \\angle BON$,\n\n$\\therefore \\angle AON = 60^\\circ$,\n\n$\\because OC$ bisects $\\angle AON$,\n\n$\\therefore \\angle CON = 30^\\circ$,\n\n$\\therefore \\angle COM = \\angle MON + \\angle CON = 90^\\circ + 30^\\circ = 120^\\circ$;\n\n$\\therefore$ The measure of $\\angle COM$ is either $\\boxed{60^\\circ}$ or $\\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"54661756_91": { -"question": "During our study in the latter half of seventh grade, we delved into the problems concerning the angles between bisectors of interior angles and the angles between external and internal angle bisectors. Throughout this process, Kun found a new category of problems during his independent exploration. His exploration process is as follows:\n\n\\textbf{Exploratory Research}: As shown in Figure 1, in $\\triangle ABC$, $BM$ bisects $\\angle ABC$ and $CM$ bisects $\\angle ACB$, with $BM$ and $CM$ intersecting at point $M$. If $\\angle A=50^\\circ$, then what is the measure of $\\angle BMC$?", -"image_file_name": "7028389", -"image": [ -"math/54661756_480.png" -], -"solution": "\\textbf{Solution:} We have $\\angle BMC = \\boxed{115^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"54661756_92": { -"question": "As shown in the figure, within $\\triangle ABC$, $BM$ bisects $\\angle ABC$, and $CM$ bisects $\\angle ACB$, with $BM$ and $CM$ intersecting at point $M$. If $\\triangle ABC$ is folded along $DE$ such that point $A$ coincides with point $M$, and given that $\\angle 1+\\angle 2=120^\\circ$, what is the measure of $\\angle BMC$?", -"image_file_name": "7028389", -"image": [ -"math/54661756_480.png" -], -"solution": "\\textbf{Solution:} From the property of folding, we have $\\angle AED=\\angle MED$, $\\angle ADE=\\angle MDE$,\n\\\\\n$\\because \\angle 1+\\angle ADM=180^\\circ$, $\\angle 2+\\angle AEM=180^\\circ$, $\\angle 1+\\angle 2=120^\\circ$,\n\\\\\n$\\therefore \\angle ADM+\\angle AEM=240^\\circ$,\n\\\\\n$\\therefore 2\\angle AED+2\\angle ADE=240^\\circ$,\n\\\\\n$\\therefore \\angle AED+\\angle ADE=120^\\circ$,\n\\\\\n$\\therefore \\angle A=180^\\circ-\\angle AED-\\angle ADE=60^\\circ$,\n\\\\\n$\\therefore$ By the same principle as in (1), we can conclude that $\\angle BMC=\\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53833477_95": { -"question": "As shown in Figure 1, a right-angled triangle board is placed on line $AD$ (right-angled triangle board $OBC$ and right-angled triangle board $MON$, with $\\angle OBC=90^\\circ$, $\\angle BOC=45^\\circ$, $\\angle MON=90^\\circ$, $\\angle MNO=30^\\circ$). Keeping the triangle board $OBC$ stationary, the triangle board $MON$ is rotated clockwise around point $O$ at a speed of $6^\\circ$ per second until the side $OM$ coincides with the line $AD$ for the first time. The rotation time is recorded as $t$ seconds. At what value of $t$ does $OM$ bisect $\\angle AOC$?", -"image_file_name": "7028389", -"image": [ -"math/53833477_4914.png" -], -"solution": "\\textbf{Solution}: When $t = \\boxed{\\frac{15}{4}}$ seconds, $OM$ bisects $\\angle AOC$.", -"solution_image": [ -"solution_images/53833477_499.png", -"solution_images/53833477_4919.png", -"solution_images/53833477_4929.png" -], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53413072_99": { -"question": "We define two triangles as \"opposite triangles\" if their internal angles are vertically opposite angles. For example, in Figure 1, since the internal angle $\\angle AOB$ of $\\triangle AOB$ and the internal angle $\\angle COD$ of $\\triangle COD$ are vertically opposite angles, then $\\triangle AOB$ and $\\triangle COD$ are considered \"opposite triangles\". According to the triangle angle sum theorem, opposite triangles have the following property: $\\angle A+\\angle B=\\angle C+\\angle D$. Given two triangles defined as \"opposite triangles\", such as $\\triangle AOB$ and $\\triangle COD$ in Figure 1, with $\\angle AOB=70^\\circ$, what is the degree measure of $\\angle C+\\angle D$?", -"image_file_name": "7028389", -"image": [ -"math/53413072_500.png" -], -"solution": "\\textbf{Solution}: We have $\\angle C + \\angle D = \\boxed{110^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53413072_100": { -"question": "As shown in Figure 2, in $\\triangle ABC$, $AD$ and $BE$ bisect $\\angle BAC$ and $\\angle ABC$ respectively. If $\\angle C = 60^\\circ$ and $\\angle ADE$ is $6^\\circ$ larger than $\\angle BED$, what is the measure of $\\angle BED$?", -"image_file_name": "7028389", -"image": [ -"math/53413072_500.png" -], -"solution": "\\textbf{Solution:} Given that $AD$ and $BE$ bisect $\\angle BAC$ and $\\angle ABC$ respectively,\n\n$\\therefore \\angle 1=\\angle 2$, $\\angle 3=\\angle 4$,\n\nalso, given that $\\angle C=60^\\circ$,\n\n$\\therefore \\angle BAC+\\angle ABC=180^\\circ - \\angle C=180^\\circ - 60^\\circ=120^\\circ$,\n\n$\\therefore \\angle 1+\\angle 2+\\angle 3+\\angle 4=120^\\circ$,\n\n$\\therefore 2\\angle 1+2\\angle 3=120^\\circ$,\n\n$\\therefore \\angle 1+\\angle 3=60^\\circ$,\n\nFrom the figure, it is known that $\\triangle ABF$ and $\\triangle DEF$ are vertically opposite triangles,\n\n$\\therefore \\angle 1+\\angle 3=\\angle ADE+\\angle BED=60^\\circ$ (1),\n\nalso, given that $\\angle ADE$ is $6^\\circ$ larger than $\\angle BED$,\n\n$\\therefore \\angle ADE-\\angle BED=6^\\circ$ (2),\n\nSolving (1) and (2) together yields $\\begin{cases} \\angle ADE+\\angle BED=60^\\circ \\\\ \\angle ADE-\\angle BED=6^\\circ \\end{cases}$,\n\nSolution obtained is: $\\begin{cases} \\angle ADE=33^\\circ \\\\ \\angle BED=27^\\circ \\end{cases}$,\n\n$\\therefore \\angle BED=\\boxed{27^\\circ}$.", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"54654114_104": { -"question": "As shown in Figure 3, in $\\triangle ABC$, $\\angle A=45^\\circ$, $\\angle ABC=120^\\circ$, $BC=2\\sqrt{3}$, and $D$ is a point in the plane containing $\\triangle ABC$. When the quadrilateral $ABCD$ is a semisymmetric quadrilateral and $AC$ is the diagonal that divides it, what is the area of the quadrilateral $ABCD$?", -"image_file_name": "7028389", -"image": [ -"math/54654114_517.png" -], -"solution": "\\textbf{Solution:} Construct $CE\\perp AB$, intersecting the extension of $AB$ at point $E$, as shown in the diagram,\\\\\nsince $CE\\perp AB$, $\\angle A=45^\\circ$, $\\angle ABC=120^\\circ$,\\\\\ntherefore $\\angle ACE=45^\\circ$, $\\angle EBC=60^\\circ$,\\\\\ntherefore $AE=EC$, $\\angle ECB=30^\\circ$,\\\\\ntherefore $BE=\\frac{1}{2}BC=\\sqrt{3}$,\\\\\ntherefore $EC=\\sqrt{BC^{2}-BE^{2}}=\\sqrt{(2\\sqrt{3})^{2}-(\\sqrt{3})^{2}}=3$,\\\\\ntherefore $AE=EC=3$,\\\\\ntherefore $AC=\\sqrt{2}EC=3\\sqrt{2}$.\\\\\ntherefore $AB=AE-BE=3-\\sqrt{3}$.\\\\\ntherefore $S_{\\triangle ABC}=\\frac{1}{2}AB\\cdot EC=\\frac{1}{2}(3-\\sqrt{3})\\times 3=\\frac{9}{2}-\\frac{3\\sqrt{3}}{2}$.\\\\\n(1) When $DA=DC$ and $AC$ bisects $\\angle BAD$, as shown in the diagram,\\\\\naccording to the problem: $\\angle DAC=\\angle BAC=45^\\circ$,\\\\\ntherefore $DA=DC$,\\\\\ntherefore $\\angle DCA=\\angle DAC=45^\\circ$,\\\\\ntherefore $\\angle ADC=90^\\circ$,\\\\\ntherefore $\\triangle ADC$ is an isosceles right triangle,\\\\\ntherefore $AD=CD=\\frac{\\sqrt{2}}{2}AC=3$,\\\\\ntherefore $S_{\\triangle DAC}=\\frac{1}{2}AD\\cdot CD=\\frac{9}{2}$,\\\\\ntherefore $S_{\\text{quadrilateral} ABCD}=S_{\\triangle ABC}+S_{\\triangle ADC}=\\frac{9}{2}-\\frac{3\\sqrt{3}}{2}+\\frac{9}{2}=9-\\frac{3\\sqrt{3}}{2}$;\\\\\n(2) When $DA=DC$ and $AC$ bisects $\\angle BCD$, as shown in the diagram,\\\\\naccording to the problem: $\\angle ACD=\\angle BCA=15^\\circ$,\\\\\ntherefore $DA=DC$,\\\\\ntherefore $\\angle DCA=\\angle DAC=15^\\circ$,\\\\\ntherefore $\\angle ADC=150^\\circ$,\\\\\nConstruct $CF\\perp AD$ through point $C$, intersecting the extension of $AD$ at point $F$,\\\\\nthen $\\angle CDF=30^\\circ$,\\\\\ntherefore $CF=\\frac{1}{2}CD$,\\\\\ntherefore $DF=\\frac{\\sqrt{3}}{2}CD$.\\\\\nLet $CD=x$, then $AD=x$, $CF=\\frac{1}{2}x$, $AF=AD+DF=(1+\\frac{\\sqrt{3}}{2})x$,\\\\\nIn $Rt\\triangle ACF$,\\\\\nsince $AC^{2}=AF^{2}+CF^{2}$,\\\\\ntherefore $(3\\sqrt{2})^{2}=[(1+\\frac{\\sqrt{3}}{2})x]^{2}+(\\frac{1}{2}x)^{2}$,\\\\\ntherefore $x=3+3\\sqrt{3}$ (contradicts the problem statement, thus discarded) or $x=3\\sqrt{3}-3$,\\\\\ntherefore $AD=3\\sqrt{3}-3$, $CF=\\frac{3\\sqrt{3}-3}{2}$.\\\\\ntherefore $S_{\\triangle ADC}=\\frac{1}{2}AD\\cdot CF=\\frac{18-9\\sqrt{3}}{2}$,\\\\\ntherefore $S_{\\text{quadrilateral} ABCD}=S_{\\triangle ABC}+S_{\\triangle ADC}=9-\\frac{3\\sqrt{3}}{2}+\\frac{18-9\\sqrt{3}}{2}=18-6\\sqrt{3}$.\\\\\nIn summary, the quadrilateral $ABCD$", -"solution_image": [], -"year": "eight", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"55093220_106": { -"question": "Overlay a right-angled triangle board DOE with AOC as shown in figure (1), where $\\angle O=90^\\circ$, $\\angle A=30^\\circ$, and $\\angle E=45^\\circ$, with $OD>OC$. Within the plane containing the two triangle boards, rotate the triangle board DOE clockwise around point O by $\\alpha$ degrees $(0^\\circ<\\alpha<90^\\circ)$ to the position $D_{1}OE_{1}$, so that $OD_{1}\\parallel AC$, as shown in figure (2). What is the value of $\\alpha$?", -"image_file_name": "7028389", -"image": [ -"math/55093220_520.png" -], -"solution": "\\textbf{Solution:} By the given information, we have: $\\alpha =\\angle AOD_{1}$\\\\\nSince $OD_{1}\\parallel AC$ and $\\angle A=30^\\circ$\\\\\nTherefore, $\\angle AOD_{1}=\\angle A=30^\\circ$\\\\\nHence, $\\alpha =\\boxed{30^\\circ}$", -"solution_image": [], -"year": "nine", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"54883358_109": { -"question": "Place a triangular board $ABC$ ($\\angle ACB=90^\\circ$, $\\angle A=30^\\circ$) inside the acute angle $\\angle POQ$ as shown in figure (1), with the right-angle side $BC$ on side $OQ$, and let $\\angle POQ=\\alpha$. Now, rotate the triangular board $ABC$ counterclockwise around point B at a speed of $m^\\circ$ per second for $t$ seconds (with the right-angle side $BC$ moving to the position shown in figure (2), and point A always within $\\angle POQ$). Draw $MN\\parallel OQ$ intersecting ray $OP$ at point M, and bisect $\\angle MAB$ with $AD$ intersecting ray $OQ$ at point D. What value of $m$ minimizes the value of the algebraic expression $\\left|10−m\\right|+3$? What is the value of $m$?", -"image_file_name": "7028389", -"image": [ -"math/54883358_5317.png" -], -"solution": "\\textbf{Solution:} We have $m=\\boxed{10}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54883358_110": { -"question": "As shown in the figure, a right-angled triangular board $ABC$ (where $\\angle ACB=90^\\circ$, $\\angle A=30^\\circ$) is placed inside the acute angle $\\angle POQ$, making the right-angled side $BC$ lie on the side $OQ$, and let $\\angle POQ=\\alpha$. Now the triangular board $ABC$ is rotated counterclockwise around point $B$ at a speed of $m^\\circ$ per second for $t$ seconds (the right-angled side $BC$ rotates to the position shown in the figure, and point $A$ always remains within $\\angle POQ$). Through point $A$, draw $MN \\parallel OQ$ intersecting the ray $OP$ at point $M$, and $AD$ bisects $\\angle MAB$ intersecting the ray $OQ$ at point $D$, where the value of $m$ is such that the algebraic expression $\\left|10−m\\right|+3$ is minimized. When $t=5$ seconds, determine the degree measure of $\\angle NAC$.", -"image_file_name": "7028389", -"image": [ -"math/54883358_5317.png" -], -"solution": "\\textbf{Solution:} Given $t=5$, then $\\angle CBQ=50^\\circ$,\\\\\nsince $\\angle ACB=90^\\circ, \\angle BAC=30^\\circ$,\\\\\nthus $\\angle ABC=90^\\circ-\\angle BAC=60^\\circ$,\\\\\nwhich means $\\angle ABQ=\\angle ABC+\\angle CBQ=110^\\circ$,\\\\\ngiven that $MN\\parallel OQ$,\\\\\nit follows that $\\angle NAB=180^\\circ-\\angle ABQ=70^\\circ$,\\\\\nthus $\\angle NAC=\\angle NAB-\\angle BAC=40^\\circ$,\\\\\ntherefore the measure of $\\angle NAC$ is $\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"54474420_113": { -"question": "As shown in the figure, $ \\angle POQ$ is an acute angle, and point A is a point on side $ OP$, with ray $ AB\\parallel OQ$. It is known that the two acute angle vertices of the triangular plate $ CDE$ are located on $ AB$ and $ OQ$ respectively, $ DE\\parallel OP$, $ \\angle E=90^\\circ$, and $ \\angle CDE=60^\\circ$. As shown in Figure 1, if $ \\angle ACD=112^\\circ$, what is the degree measure of $ \\angle POQ$?", -"image_file_name": "7028389", -"image": [ -"math/54474421_5402.png" -], -"solution": "\\textbf{Solution:} Given $\\because AB\\parallel OQ, \\angle ACD=112^\\circ$,\\\\\n$\\therefore \\angle CDQ=\\angle ACD=112^\\circ$.\\\\\n$\\because \\angle CDE=60^\\circ$,\\\\\n$\\therefore \\angle EDQ=\\angle CDQ-\\angle CDE=112^\\circ-60^\\circ=52^\\circ$.\\\\\nFurthermore, $\\because DE\\parallel OP$,\\\\\n$\\therefore \\angle POQ=\\boxed{52^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53413592_116": { -"question": "As shown in the figure, the right-angled vertex $P$ of the triangle ruler $ABP$ lies on the line $CD$, with points $A$, $B$ on the same side of line $CD$. As shown in fig. (1), if $\\angle APC=40^\\circ$, find the degree measure of $\\angle BPD$.", -"image_file_name": "7028389", -"image": [ -"math/53413592_553.png" -], -"solution": "\\textbf{Solution:} By the given conditions,\\\\\n$ \\because \\angle APB=90^\\circ$, $ \\angle APC=40^\\circ$\\\\\n$ \\therefore \\angle BPD=180^\\circ-\\angle APB-\\angle APC=180^\\circ-90^\\circ-40^\\circ=\\boxed{50^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53413592_117": { -"question": "As shown in the figure, the right-angle vertex $P$ of the set square $ABP$ is on the line $CD$, and points $A$ and $B$ are on the same side of line $CD$. As shown in Figure 2, if $PM$ bisects $\\angle APC$ and $PN$ bisects $\\angle BPD$, find the degree measurement of $\\angle MPN$.", -"image_file_name": "7028389", -"image": [ -"math/53413592_553.png" -], -"solution": "\\textbf{Solution:} Given that $PM$ bisects $\\angle APC$, and $PN$ bisects $\\angle BPD$,\\\\\nit follows that $\\angle APM=\\angle CPM$ and $\\angle BPN=\\angle DPN$.\\\\\nSince $\\angle APB=90^\\circ$,\\\\\nwe have $2\\angle APM+2\\angle BPN=90^\\circ$,\\\\\nwhich leads to $\\angle APM+\\angle BPN=45^\\circ$,\\\\\nthus, $\\angle MPN=\\angle APM+\\angle APB+\\angle BPN=45^\\circ+90^\\circ=\\boxed{135^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53413592_118": { -"question": "As shown in the figure, the right-angle vertex P of the right-angled triangle \\( ABP \\) lies on the line \\( CD \\), with points A and B on the same side of line \\( CD \\). Rotate the right-angled triangle \\( ABP \\) about point P so that points A and B are on opposite sides of line \\( CD \\), as shown in figure (3). When \\( \\angle APC = 4\\angle BPD \\), find the degree measure of \\( \\angle BPC \\).", -"image_file_name": "7028389", -"image": [ -"math/53413592_553.png" -], -"solution": "\\textbf{Solution:} Let $\\angle BPD=x$, then $\\angle APC=4x$,\\\\\nsince $\\angle APB=90^\\circ$,\\\\\ntherefore $\\angle APD=90^\\circ-x$,\\\\\naccording to the problem, we have $4x+(90^\\circ-x)=180^\\circ$,\\\\\nyielding $3x=90^\\circ$,\\\\\nsolving for $x$, we get $x=30^\\circ$,\\\\\nthus $\\angle BPC=180^\\circ-\\angle BPD=180^\\circ-30^\\circ=\\boxed{150^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53119812_120": { -"question": "As shown in the figure, it is known that $O$ is a point on line $AB$, $\\angle COD$ is a right angle, and $OE$ bisects the obtuse angle $\\angle BOC$. If $\\angle AOC=40^\\circ$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7028389", -"image": [ -"math/53119812_565.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC = 40^\\circ$, \\\\\nthus $\\angle BOC = 180^\\circ - \\angle AOC = 140^\\circ$, \\\\\nsince $\\angle COD$ is a right angle, \\\\\nthus $\\angle COD = 90^\\circ$, \\\\\ntherefore $\\angle BOD = \\angle BOC - \\angle COD = 140^\\circ - 90^\\circ = 50^\\circ$, \\\\\nsince $OE$ bisects $\\angle BOC$, \\\\\nthus $\\angle BOE = \\frac{1}{2} \\angle BOC = 70^\\circ$, \\\\\ntherefore $\\angle DOE = \\angle BOE - \\angle BOD = 70^\\circ - 50^\\circ = \\boxed{20^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119812_121": { -"question": "As shown in the figure, it is known that: $O$ is a point on line $AB$, $\\angle COD$ is a right angle, and $OE$ bisects the obtuse angle $\\angle BOC$. As shown in Figure 2, $OF$ bisects $\\angle BOD$. What is the degree measure of $\\angle EOF$?", -"image_file_name": "7028389", -"image": [ -"math/53119812_565.png" -], -"solution": "\\textbf{Solution:} From the construction, we have $OE$ bisect $\\angle BOC$, $OF$ bisect $\\angle BOD$,\\\\\n$\\therefore \\angle BOE=\\frac{1}{2}\\angle BOC$, $\\angle BOF=\\frac{1}{2}\\angle BOD$,\\\\\n$\\therefore \\angle EOF=\\angle BOE-\\angle BOF=\\frac{1}{2}\\left(\\angle BOC-\\angle BOD\\right)=\\frac{1}{2}\\angle COD$,\\\\\n$\\because \\angle COD=90^\\circ$,\\\\\n$\\therefore \\angle EOF=\\boxed{45^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53119273_125": { -"question": "As shown in Figure 1, point O is on line segment $AB$. Ray $OC$ is drawn from point O such that $\\angle BOC = 120^\\circ$. A right-angle triangle ruler is placed with its right-angle vertex at point O, one side $OM$ on ray $OB$, and the other side $ON$ below line $AB$. The triangle ruler in Figure 1 is rotated clockwise around point O to the position in Figure 3, so that side $OM$ is inside $\\angle BOC$ and exactly bisects $\\angle BOC$. What is the measure of $\\angle CON$?", -"image_file_name": "7028389", -"image": [ -"math/53119273_577.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle BOC = 120^\\circ$, and $OM$ bisects $\\angle BOC$,\\\\\n$\\therefore \\angle COM = \\angle BOM = 60^\\circ$,\\\\\n$\\because \\angle MON = 90^\\circ$,\\\\\n$\\therefore \\angle CON = \\angle MON + \\angle COM = 90^\\circ + 60^\\circ = \\boxed{150^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53195491_128": { -"question": "When two acute angle vertices of a set of triangular boards coincide, $\\angle AOB=45^\\circ$, $\\angle COD=30^\\circ$, $OM$ and $ON$ are the angle bisectors of $\\angle AOC$ and $\\angle BOD$ respectively. As shown in Figure 1, when $OB$ coincides with $OC$, what is the magnitude of $\\angle MON$?", -"image_file_name": "7028389", -"image": [ -"math/53195491_580.png" -], -"solution": "\\textbf{Solution:} We have $\\angle MON = \\boxed{37.5^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53195491_129": { -"question": "When two acute angles of a set of set squares coincide, $\\angle AOB=45^\\circ$, $\\angle COD=30^\\circ$, and $OM$, $ON$ are the angle bisectors of $\\angle AOC$, $\\angle BOD$ respectively. When $\\angle COD$ is rotated around point $O$ to the position shown in Figure 2, and $\\angle BOC=10^\\circ$, what is the degree measure of $\\angle MON$?", -"image_file_name": "7028389", -"image": [ -"math/53195491_580.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ when $\\angle BOC=10^\\circ$, $\\angle AOC=35^\\circ$, $\\angle BOD=20^\\circ$, and OM, ON are the bisectors of $\\angle AOC$, $\\angle BOD$, respectively,\\\\\n$\\therefore \\angle BON= \\frac{1}{2} \\angle BOD=10^\\circ$,\\\\\n$\\therefore \\angle MOC= \\frac{1}{2} \\angle AOC=17.5^\\circ$,\\\\\n$\\therefore \\angle MON=\\angle MOC+\\angle BON+\\angle BOC=17.5^\\circ+10^\\circ+10^\\circ=\\boxed{37.5^\\circ}.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53195491_130": { -"question": "Given in the figure, two acute vertices of a set squares are coincident, with $\\angle AOB=45^\\circ$, $\\angle COD=30^\\circ$. $OM$ and $ON$ are the bisectors of $\\angle AOC$ and $\\angle BOD$ respectively. When $\\angle COD$ is rotated around point $O$ to the position shown in the figure, and $\\angle BOC=n^\\circ$, what is the degree measure of $\\angle MON$?", -"image_file_name": "7028389", -"image": [ -"math/53195491_580.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle BOC = n^\\circ$, then $\\angle AOC = 45^\\circ + n^\\circ$ and $\\angle BOD = 30^\\circ + n^\\circ$. Furthermore, OM and ON are the angle bisectors of $\\angle AOC$ and $\\angle BOD$ respectively, \\\\\n$\\therefore \\angle BON = \\frac{1}{2} \\angle BOD = \\frac{1}{2} (30^\\circ + n^\\circ) = 15^\\circ + \\frac{1}{2} n^\\circ$, \\\\\n$\\angle MOB = \\frac{1}{2} \\angle AOC - \\angle BOC = \\frac{1}{2} (45^\\circ + n^\\circ) - n^\\circ = 22.5^\\circ - \\frac{1}{2} n^\\circ$, \\\\\n$\\therefore \\angle MON = \\angle MOB + \\angle BON = 15^\\circ + \\frac{1}{2} n^\\circ + 22.5^\\circ - \\frac{1}{2} n^\\circ = \\boxed{37.5^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"53206051_132": { -"question": "As shown in the figure, it is known that $OB$ bisects $\\angle AOC$, and the complement of $\\angle AOC$ is $30^\\circ$ less than $\\angle BOC$. What is the measure of $\\angle AOB$?", -"image_file_name": "7028389", -"image": [ -"math/53206051_595.png" -], -"solution": "\\textbf{Solution:} Let $\\angle BOC = \\angle AOB = x$, then $\\angle AOC = 2x$\\\\\nFrom the problem, we get: $90^\\circ - 2x = x - 30^\\circ$\\\\\n$3x = 120^\\circ$\\\\\n$x = 40^\\circ$\\\\\nThus, the measure of $\\angle AOB$ is $\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206051_133": { -"question": "As shown in the figure, it is known that $OB$ bisects $\\angle AOC$, and the complement of $\\angle AOC$ is $30^\\circ$ smaller than $\\angle BOC$. A ray $OD$ is drawn through point O such that $\\angle AOD = \\frac{1}{5}\\angle AOC$. Can you find the measure of $\\angle COD$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/53206051_595.png" -], -"solution": "\\textbf{Solution:} From (1) we have $\\angle AOC = 2x = 2\\times 40^\\circ = 80^\\circ$\\\\\nThen, $\\angle AOD = \\frac{1}{5}\\angle AOC = \\frac{1}{5}\\times 80^\\circ = 16^\\circ$.\\\\\nWhen ray $OD$ is below $OA$,\\\\\n$\\angle COD = \\angle AOC + \\angle AOD = 80^\\circ + 16^\\circ = \\boxed{96^\\circ}$\\\\\nWhen ray $OD$ is above $OA$,\\\\\n$\\angle COD = \\angle AOC - \\angle AOD = 80^\\circ - 16^\\circ = \\boxed{64^\\circ}$\\\\\nIn summary: The measure of $\\angle COD$ is either $96^\\circ$ or $64^\\circ$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51321764_135": { -"question": "As shown in the figure, a set of triangles (ignoring thickness) is placed on the table, with the right angle $\\angle DAE$ and the $60^\\circ$ angle $\\angle BAC$ vertices coinciding. The triangle $ADE$ can rotate around point A. When $AD$ bisects $\\angle BAC$, find the degree of $\\angle 1$.", -"image_file_name": "7028389", -"image": [ -"math/51321764_604.png" -], -"solution": "\\textbf{Solution:} Since AD bisects $\\angle BAC$, and $\\angle BAC=60^\\circ$,\\\\\nit follows that $\\angle DAC=\\frac{1}{2}\\angle BAC=30^\\circ$.\\\\\nSince $\\angle DAE=90^\\circ$,\\\\\nit follows that $\\angle 1=\\angle DAE-\\angle DAC=\\boxed{60^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51321764_136": { -"question": "As shown in the figure, a set of triangles is placed on a table (ignoring thickness), with the right angle $(\\angle DAE)$ and the $60^\\circ$ angle $(\\angle BAC)$ having coincident vertices. The triangle $ADE$ can rotate around point $A$. During the rotation process, keeping $AD$ inside $\\angle BAC$, what is the degree measure of $\\angle 1 - \\angle 2$?", -"image_file_name": "7028389", -"image": [ -"math/51321764_604.png" -], -"solution": "\\textbf{Solution:} During the rotation process, when $AD$ is inside $\\angle BAC$, we have $\\angle 1 = \\angle DAE - \\angle DAC = 90^\\circ - \\angle DAC$, and $\\angle 2 = \\angle BAC - \\angle DAC = 60^\\circ - \\angle DAC$.\n\n$\\therefore \\angle 1 - \\angle 2 = (90^\\circ - \\angle DAC) - (60^\\circ - \\angle DAC) = \\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206857_138": { -"question": "As shown in the figure, one corner of the rectangular notebook loose-leaf sheet is folded over so that the vertex $A$ falls at $A'$, with $BC$ being the crease. If $\\angle ACB = 35^\\circ$, find the degree measure of $\\angle A'CD$.", -"image_file_name": "7028389", -"image": [ -"math/53206857_610.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\angle ABC=35^\\circ$, \\\\\n$\\therefore$ by folding we get $\\angle A^{\\prime}BC=\\angle ABC=35^\\circ$, \\\\\n$\\therefore \\angle A^{\\prime}CD=180^\\circ-\\angle ACB-\\angle A^{\\prime}CB \\\\\n=180^\\circ-35^\\circ-35^\\circ \\\\\n=\\boxed{110^\\circ};$", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53206857_139": { -"question": "As shown in the figure, we have already learned the concept of angle bisectors. So, can you use it to solve related problems? Assuming another angle is also folded over such that side $CD$ coincides with $CA'$, with the crease being $CE$, what are the measures of $\\angle 1$ and $\\angle BCE$?", -"image_file_name": "7028389", -"image": [ -"math/53206857_610.png" -], -"solution": "\\textbf{Solution}: From the conclusion of (1), we have $\\angle A'CD=110^\\circ$,\\\\\ndue to the property of folding, we obtain $\\angle 1= \\frac{1}{2} \\angle A'CD= \\frac{1}{2} \\times 110^\\circ=55^\\circ$,\\\\\nby the property of angle bisector, we get $\\angle 2=\\angle ACB=35^\\circ$;\\\\\n$\\therefore \\angle BCE=\\angle 1+\\angle 2=35^\\circ+55^\\circ=\\boxed{90^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385746_142": { -"question": "Place the right-angled vertex $O$ of the right-angled triangle $OMN$ on the line $AB$, and let the ray $OC$ bisect $\\angle AON$. As shown in the figure, if $\\angle BON=60^\\circ$, what is the degree measure of $\\angle COM$?", -"image_file_name": "7028389", -"image": [ -"math/51385746_620.png" -], -"solution": "\\textbf{Solution:}\\\\\n$\\because \\angle BON=60^\\circ$,\\\\\n$\\therefore \\angle AON=120^\\circ$,\\\\\n$\\because OC$ bisects $\\angle AON$,\\\\\n$\\therefore \\angle CON=60^\\circ$,\\\\\n$\\because \\angle MON=90^\\circ$,\\\\\n$\\therefore \\angle COM=90^\\circ-60^\\circ=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51385746_143": { -"question": "As shown in the figure, place the right angle vertex $O$ of the right-angled triangle $OMN$ on the line $AB$, with the ray $OC$ bisecting the angle $\\angle AON$. Rotate the right-angled triangle $OMN$ counterclockwise about vertex $O$. During the rotation process:", -"image_file_name": "7028389", -"image": [ -"math/51385746_620.png" -], -"solution": "\\textbf{Solution:}\n\n(1) When ON is above line AB,\n\n$\\because \\angle BON=140^\\circ$,\n\n$\\therefore \\angle AON=40^\\circ$,\n\n$\\because OC$ bisects $\\angle AON$,\n\n$\\therefore \\angle CON=20^\\circ$,\n\n$\\because \\angle MON=90^\\circ$,\n\n$\\therefore \\angle COM=70^\\circ$.\n\nWhen ON is below line AB,\n\n$\\because \\angle BON=140^\\circ$,\n\n$\\therefore \\angle AON=40^\\circ$,\n\n$\\because OC$ bisects $\\angle AON$,\n\n$\\therefore \\angle CON=20^\\circ$,\n\n$\\because \\angle MON=90^\\circ$,\n\n$\\therefore \\angle COM=\\boxed{110^\\circ}$.\n\n(2) $\\angle BON=2\\angle COM$ or $\\angle BON+2\\angle COM=360^\\circ$", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52794314_145": { -"question": "As shown in the figure, point $O$ is a point on line $AB$, and the right-angled vertex of a right-angled triangle $OMN$ is placed at point $O$. The ray $OC$ bisects $\\angle MOB$. As shown in Figure 1, if $\\angle AOM = 30^\\circ$, what is the degree measure of $\\angle CON$?", -"image_file_name": "7028389", -"image": [ -"math/52794314_636.png" -], -"solution": "\\textbf{Solution}: From the given, we find that \\angle BOM=180^\\circ-\\angle AOM=150^\\circ,\\\\\nFurthermore, since \\angle MON is a right angle and $OC$ bisects \\angle BOM,\\\\\nit follows that \\angle CON=\\angle MON-\\frac{1}{2}\\angle BOM \\\\\n=90^\\circ-\\frac{1}{2}\\times 150^\\circ,\\\\\n= \\boxed{15^\\circ}", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52794314_147": { -"question": "As shown in the figure, point $O$ is on line $AB$. Place the right-angled vertex of the right-angled triangle $OMN$ at point $O$. The ray $OC$ bisects $\\angle MOB$. Rotate the right-angled triangle $OMN$ in Figure 1 clockwise around the vertex $O$ to the position in Figure 2, with one side $OM$ above the ray $OB$ and the other side $ON$ below line $AB$.", -"image_file_name": "7028389", -"image": [ -"math/52794314_636.png" -], -"solution": "\\textbf{Solution:} Let $ \\angle AOM=\\alpha $, then $ \\angle BOM=180^\\circ-\\alpha $,\n\n(1) $\\angle AOM=2\\angle CON$, the reason is as follows:\n\nSince $OC$ bisects $ \\angle BOM$,\n\n$\\therefore \\angle MOC=\\frac{1}{2}\\angle BOM=\\frac{1}{2}\\left(180^\\circ-\\alpha \\right)$\n\n$=90^\\circ-\\frac{1}{2}\\alpha $,\n\nSince $\\angle MON=90^\\circ$,\n\n$\\therefore \\angle CON=\\angle MON-\\angle MOC=90^\\circ-\\left(90^\\circ-\\frac{1}{2}\\alpha \\right)=\\frac{1}{2}\\alpha $,\n\n$\\therefore \\angle AOM=2\\angle CON$,\n\n(2) From (1), we know $ \\angle BON=\\angle MON-\\angle BOM=90^\\circ-\\left(180^\\circ-\\alpha \\right)=\\alpha -90^\\circ$,\n\n$ \\angle AOC=\\angle AOM+\\angle MOC=\\alpha +90^\\circ-\\frac{1}{2}\\alpha =90^\\circ+\\frac{1}{2}\\alpha $,\n\nSince $\\angle AOC=3\\angle BON$,\n\n$\\therefore 90^\\circ+\\frac{1}{2}\\alpha =3\\left(\\alpha -90^\\circ\\right)$, solving this gives $ \\alpha =\\boxed{144^\\circ}$,\n\nThus, $\\angle AOM=144^\\circ$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52916141_149": { -"question": "Take point O on line AB as the endpoint to draw ray OC so that $\\angle BOC=40^\\circ$. Place the right-angled vertex of a right-angle set square at point O, i.e., $\\angle DOE=90^\\circ$. As shown in Figure 1, if one side OE of the right-angle set square DOE lies on the ray OA, what is the value of $\\angle COD$?", -"image_file_name": "7028389", -"image": [ -"math/52916142_6400.png" -], -"solution": "\\textbf{Solution:} Hence, $\\angle COD = \\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52916141_150": { -"question": "Given point O on line AB, construct ray OC such that $\\angle BOC=40^\\circ$. Place the right-angled vertex of a right triangle at O, that is, $\\angle DOE=90^\\circ$. As shown in figure 2, rotate the right triangle DOE clockwise around point O to a certain position. If OE exactly bisects $\\angle AOC$, then what is the measure of $\\angle COD$?", -"image_file_name": "7028389", -"image": [ -"math/52916143_6410.png" -], -"solution": "\\textbf{Solution:} We have $\\angle COD = \\boxed{20^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"52916141_151": { -"question": "Place a point O on the line segment AB as the endpoint to draw the ray OC such that $\\angle BOC=40^\\circ$. Place the right-angle vertex of a right-angle triangle at point O, so that $\\angle DOE=90^\\circ$. Rotate the right-angle triangle DOE about point O in a clockwise direction (stop when OD coincides with OB). During this process, $\\angle COD=\\frac{1}{3}\\angle AOE$ happens to hold. What is the degree measure of $\\angle BOD$ at this moment?", -"image_file_name": "7028389", -"image": [], -"solution": "Solution: (1) When $\\angle COD$ is inside $\\angle BOC$,\\\\\n$\\because \\angle COD=\\angle BOC-\\angle BOD$ and $\\angle BOC=40^\\circ$,\\\\\n$\\therefore \\angle COD=40^\\circ-\\angle BOD$,\\\\\n$\\because \\angle AOE+\\angle EOD+\\angle BOD=180^\\circ$ and $\\angle EOD=90^\\circ$,\\\\\n$\\therefore \\angle AOE=90^\\circ-\\angle BOD$,\\\\\nAlso, $\\because \\angle COD=\\frac{1}{3}\\angle AOE$,\\\\\n$\\therefore 40^\\circ-\\angle BOD=\\frac{1}{3}(90^\\circ-\\angle BOD)$,\\\\\n$\\therefore \\angle BOD=\\boxed{15^\\circ}$;\\\\\n(2) When $\\angle COD$ is outside $\\angle BOC$,\\\\\n$\\because \\angle COD=\\angle BOD-\\angle BOC$ and $\\angle BOC=40^\\circ$,\\\\\n$\\therefore \\angle COD=\\angle BOD-40^\\circ$,\\\\\n$\\because \\angle AOE+\\angle EOD-\\angle BOD=180^\\circ$ and $\\angle EOD=90^\\circ$,\\\\\n$\\therefore \\angle AOE=90^\\circ-\\angle BOD$,\\\\\nAlso, $\\because \\angle COD=\\frac{1}{3}\\angle AOE$,\\\\\n$\\therefore \\angle BOD-40^\\circ=\\frac{1}{3}(90^\\circ-\\angle BOD)$,\\\\\n$\\therefore \\angle BOD=\\boxed{52.5^\\circ}$,\\\\\nIn conclusion: The measure of $\\angle BOD$ is either $15^\\circ$ or $52.5^\\circ$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51495039_153": { -"question": "As shown in Figure 1, two right-angled triangles are stacked on point $O$ with two of their vertices overlapping, where the vertex $C$ of one triangle is on the side $OA$ of the other triangle. It is known that $\\angle ABO=\\angle DCO=90^\\circ$, $\\angle AOB=45^\\circ$, $\\angle COD=60^\\circ$. The bisector of $\\angle AOD$ intersects side $CD$ at point $E$. What is the degree measure of $\\angle BOE$?", -"image_file_name": "7028389", -"image": [ -"math/51495039_659.png" -], -"solution": "\\textbf{Solution:} Given that $\\because \\angle AOD=60^\\circ$, and $OE$ bisects $\\angle AOD$,\\\\\n$\\therefore \\angle AOE=\\frac{1}{2}\\angle AOD=30^\\circ$\\\\\n$\\because \\angle AOB=45^\\circ$\\\\\n$\\therefore \\angle BOE=\\angle AOE+\\angle AOB=\\boxed{75^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51495039_154": { -"question": "As shown in Figure 1, two right-angle triangles are overlapped at point $O$ with their vertices coinciding, where the vertex $C$ of one triangle falls on the edge $OA$ of the other triangle. It is known that $\\angle ABO=\\angle DCO=90^\\circ$, $\\angle AOB=45^\\circ$, $\\angle COD=60^\\circ$. Draw the bisector of $\\angle AOD$ intersecting side $CD$ at point $E$. As shown in Figure 2, if point $C$ does not fall on side $OA$, when $\\angle COE=15^\\circ$, find the degree measure of $\\angle BOD$.", -"image_file_name": "7028389", -"image": [ -"math/51495039_659.png" -], -"solution": "Solution: Since $\\angle COD=60^\\circ$ and $\\angle COE=15^\\circ$, \\\\\ntherefore $\\angle DOE=\\angle COD-\\angle COE=45^\\circ$\\\\\nSince $OE$ bisects $\\angle AOD$,\\\\\ntherefore $\\angle AOD=2\\angle DOE=90^\\circ$\\\\\nSince $\\angle AOB=45^\\circ$\\\\\ntherefore $\\angle BOD=\\angle AOD+\\angle AOB=\\boxed{135^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52916218_156": { -"question": "As shown in the figure, it is known that point $O$ is a point on line $AB$. A right-angled triangle ruler $MON$ is placed as shown, with the right-angled vertex at point $O$. Ray $OC$ is drawn inside $\\angle MON$, and $OC$ exactly bisects $\\angle MOB$. If $\\angle CON=20^\\circ$, what is the degree measure of $\\angle AOM$?", -"image_file_name": "7028389", -"image": [ -"math/52916218_668.png" -], -"solution": "\\textbf{Solution:} Given, \\\\\n$\\because \\angle MON=90^\\circ$ and $\\angle CON=20^\\circ$, \\\\\n$\\therefore \\angle MOC=90^\\circ-\\angle CON=70^\\circ$, \\\\\n$\\because OC$ bisects $\\angle MOB$, \\\\\n$\\therefore \\angle BOM=2\\angle MOC=140^\\circ$, \\\\\n$\\therefore \\angle AOM=180^\\circ-\\angle BOM=\\boxed{40^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52916218_157": { -"question": "Given that point $O$ is a point on line $AB$, a right-angled triangle ruler $MON$ is placed as shown in the figure, with the right-angle vertex at point $O$. A ray $OC$ is drawn inside $\\angle MON$, and $OC$ exactly bisects $\\angle MOB$. If $\\angle BON = 2 \\angle NOC$, what is the measure of $\\angle AOM$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/52916218_668.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BON=2\\angle NOC$ and $OC$ bisects $\\angle MOB$,\\\\\nit follows that $\\angle MOC=\\angle BOC=3\\angle NOC$\\\\\nSince $\\angle MOC+\\angle NOC=\\angle MON=90^\\circ$,\\\\\nthen $3\\angle NOC+\\angle NOC=90^\\circ$\\\\\nThus, $4\\angle NOC=90^\\circ$,\\\\\nwhich implies $\\angle BON=2\\angle NOC=45^\\circ$,\\\\\nTherefore, $\\angle AOM=180^\\circ−\\angle MON−\\angle BON=180^\\circ−90^\\circ−45^\\circ=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53404231_159": { -"question": "As shown in the figure, the direction of ray $OA$ is $15^\\circ$ east of north, and the direction of ray $OB$ is $40^\\circ$ west of north. Ray $OA$ is the angle bisector of $\\angle BOC$. Ray $OF$ is the extension of $OB$ in the opposite direction. Find: the direction of ray $OC$.", -"image_file_name": "7028389", -"image": [ -"math/53404231_678.png" -], -"solution": "\\textbf{Solution:} Given the diagram, we have: $\\angle AOB=15^\\circ+40^\\circ=55^\\circ$,\\\\\nsince $OA$ is the bisector of $\\angle BOC$,\\\\\nthus $\\angle AOC=55^\\circ$,\\\\\ntherefore $\\angle NOC=\\angle NOA+\\angle AOC$\\\\\n$=15^\\circ+55^\\circ=70^\\circ$,\\\\\nhence, ray $OC$ points in the direction of $70^\\circ$ east of north.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"53404231_160": { -"question": "As shown in the figure, the direction of ray $OA$ is $15^\\circ$ east of north, and the direction of ray $OB$ is $40^\\circ$ west of north. $OA$ is the angle bisector of $\\angle BOC$. The ray $OF$ is the extension in the opposite direction of $OB$. Find the degree measure of $\\angle COF$.", -"image_file_name": "7028389", -"image": [ -"math/53404231_678.png" -], -"solution": "\\textbf{Solution:} Since $\\angle BOC = \\angle AOB + \\angle AOC$\\\\\n$=55^\\circ \\times 2 = 110^\\circ$,\\\\\nthen $\\angle COF = 180^\\circ - \\angle BOC$\\\\\n$=180^\\circ - 110^\\circ$\\\\\n$=70^\\circ$.\\\\\nThus, the measure of $\\angle COF$ is $\\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"51291351_162": { -"question": "As shown in the diagram, point $O$ is a point on line $AB$. A ray $OC$ is drawn passing through point $O$, such that $\\angle BOC=65^\\circ$. A right-angled triangle ruler is placed with its right-angle vertex at point $O$. As shown in Figure 1, when one side $ON$ of the triangle ruler $MON$ coincides with ray $OB$, what is the degree measure of $\\angle MOC$?", -"image_file_name": "7028389", -"image": [ -"math/51291351_680.png" -], -"solution": "\\textbf{Solution:} Since $\\angle MON=90^\\circ$ and $\\angle BOC=65^\\circ$, \\\\\nit follows that $\\angle MOC=\\angle MON-\\angle BOC=90^\\circ-65^\\circ=\\boxed{25^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51291351_163": { -"question": "Let point O be a point on line AB. A ray OC is drawn through point O such that $\\angle BOC = 65^\\circ$. Place the right-angled vertex of a right-angled triangle ruler at point O. As shown in Figure 2, rotate the triangle ruler MON counterclockwise around point O by a certain angle, such that OC is the bisector of $\\angle MOB$. What are the measures of $\\angle BON$ and $\\angle CON$?", -"image_file_name": "7028389", -"image": [ -"math/51291351_680.png" -], -"solution": "\\textbf{Solution}: Since $\\angle BOC=65^\\circ$ and OC is the bisector of $\\angle MOB$,\\\\\nit follows that $\\angle MOB=2\\angle BOC=130^\\circ$,\\\\\ntherefore $\\angle BON=\\angle MOB-\\angle MON=130^\\circ-90^\\circ=40^\\circ$,\\\\\n$\\angle CON=\\angle COB-\\angle BON=65^\\circ-40^\\circ=25^\\circ$,\\\\\nwhich means $\\angle BON=\\boxed{40^\\circ}$ and $\\angle CON=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51291351_164": { -"question": "Let $O$ be a point on line $AB$. A ray $OC$ is drawn from point $O$ such that $\\angle BOC=65^\\circ$. Place the right-angled vertex of a right-angled triangle plate at point $O$. When the triangle plate $MON$ is rotated counterclockwise around point $O$ to position 3, $\\angle NOC=\\frac{1}{4}\\angle AOM$, what is the degree measure of $\\angle NOB$?", -"image_file_name": "7028389", -"image": [ -"math/51291351_680.png" -], -"solution": "\\textbf{Solution:} Given that, \\\\\n$\\because \\angle NOC = \\frac{1}{4}\\angle AOM$,\\\\\n$\\therefore \\angle AOM = 4\\angle NOC$.\\\\\n$\\because \\angle BOC = 65^\\circ$,\\\\\n$\\therefore \\angle AOC = \\angle AOB - \\angle BOC = 180^\\circ - 65^\\circ = 115^\\circ$,\\\\\n$\\because \\angle MON = 90^\\circ$,\\\\\n$\\therefore \\angle AOM + \\angle NOC = \\angle AOC - \\angle MON = 115^\\circ - 90^\\circ = 25^\\circ$,\\\\\n$\\therefore 4\\angle NOC + \\angle NOC = 25^\\circ$,\\\\\n$\\therefore \\angle NOC = 5^\\circ$,\\\\\n$\\therefore \\angle NOB = \\angle NOC + \\angle BOC = \\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51284834_166": { -"question": "Given that point O is a point on line AB, place the right-angled triangle MON as shown in the figure, with the right-angled vertex at O. Draw a ray OC inside $ \\angle MON$ such that OC exactly bisects $ \\angle BOM$. If $ \\angle CON=24^\\circ$, find the degree measure of $ \\angle AOM$.", -"image_file_name": "7028389", -"image": [ -"math/51284834_692.png" -], -"solution": "\\textbf{Solution:} Since $\\angle MON=90^\\circ$ and $\\angle CON=24^\\circ$, \\\\\nit follows that $\\angle MOC=90^\\circ-\\angle CON=66^\\circ$. \\\\\nSince OC bisects $\\angle MOB$, \\\\\nit follows that $\\angle BOM=2\\angle MOC=132^\\circ$, \\\\\nhence $\\angle AOM=180^\\circ-\\angle BOM=\\boxed{48^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51284834_167": { -"question": "As shown in the figure, it is known that point O is on the line AB. The right-angled triangle plate MON is placed as shown, with the right-angle vertex at point O. A ray OC is drawn inside $\\angle MON$, and OC exactly bisects $\\angle BOM$. If $\\angle BON = 2\\angle CON$, find the measure of $\\angle AOM$.", -"image_file_name": "7028389", -"image": [ -"math/51284834_692.png" -], -"solution": "\\textbf{Solution:} Given $\\because \\angle BON = 2\\angle NOC$, OC bisects $\\angle MOB$,\\\\\n$\\therefore \\angle MOC = \\angle BOC = 3\\angle NOC$,\\\\\n$\\because \\angle MOC + \\angle NOC = \\angle MON = 90^\\circ$,\\\\\n$\\therefore 3\\angle NOC + \\angle NOC = 90^\\circ$,\\\\\n$\\therefore 4\\angle NOC = 90^\\circ$,\\\\\n$\\therefore \\angle BON = 2\\angle NOC = 45^\\circ$,\\\\\n$\\therefore \\angle AOM = 180^\\circ - \\angle MON - \\angle BON = 180^\\circ - 90^\\circ - 45^\\circ = \\boxed{45^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"53253309_169": { -"question": "As shown in Figure 1, it is known that $\\angle AOB = 120^\\circ$, ray $OC$ is the angle bisector of $\\angle AOB$, point $D$ is a point inside $\\angle BOC$, and point $D$ does not lie on the bisector of $\\angle BOC$. When $\\angle BOD = 20^\\circ$, calculate the degree measure of $\\angle COD$?", -"image_file_name": "7028389", -"image": [ -"math/53253309_707.png" -], -"solution": "\\textbf{Solution:} Since the ray $OC$ is the angle bisector of $\\angle AOB$ and $\\angle AOB=120^\\circ$,\\\\\nit follows that $\\angle BOC=\\frac{1}{2}\\angle AOB=\\frac{1}{2}\\times 120^\\circ=60^\\circ$,\\\\\ntherefore $\\angle COD=\\angle BOC-\\angle BOD=60^\\circ-20^\\circ=\\boxed{40^\\circ}$;", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51355508_172": { -"question": "As shown in the figure, it is known that $OE$ is the angle bisector of $\\angle AOC$, and $OD$ is the angle bisector of $\\angle BOC$. If $\\angle AOC=120^\\circ$ and $\\angle BOC=30^\\circ$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7028389", -"image": [ -"math/51355508_710.png" -], -"solution": "\\textbf{Solution.} Since OE is the bisector of $\\angle AOC$ and OD is the bisector of $\\angle BOC$, with $\\angle AOC=120^\\circ$ and $\\angle BOC=30^\\circ$,\ntherefore, $\\angle EOC=60^\\circ$ and $\\angle DOC=15^\\circ$,\nhence $\\angle DOE=\\angle EOC-\\angle DOC=60^\\circ-15^\\circ=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51355508_173": { -"question": "As shown in the figure, it is known that $OE$ is the angle bisector of $\\angle AOC$, and $OD$ is the angle bisector of $\\angle BOC$. If $\\angle AOB=90^\\circ$ and $\\angle BOC=\\alpha$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7028389", -"image": [ -"math/51355508_710.png" -], -"solution": "\\textbf{Solution:} Given $\\because$ $\\angle AOB=90^\\circ$, $\\angle BOC=\\alpha$ \\\\\n$\\therefore$ $\\angle AOC = 90^\\circ+\\alpha$ \\\\\n$\\because$ OE is the bisector of $\\angle AOC$, OD is the bisector of $\\angle BOC$. \\\\\n$\\therefore$ $\\angle AOE= \\frac{1}{2} \\angle AOC$, $\\angle COD= \\frac{1}{2}\\angle BOC$ \\\\\n$\\angle AOE= \\frac{1}{2}(90^\\circ+\\alpha)$, $\\angle COD= \\frac{1}{2}\\alpha$ \\\\\n$\\angle DOE=\\angle AOC - \\angle AOE-\\angle COD$ \\\\\n$= (90^\\circ+\\alpha) - \\frac{1}{2}(90^\\circ+\\alpha) - \\frac{1}{2}\\alpha = \\boxed{45^\\circ}$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52796148_175": { -"question": "As shown in Figure 1, $E$ is the midpoint of line segment $AB$, point $C$ is on line segment $AB$, and $F$ is the midpoint of $AC$. If $EF = 5\\,cm$ and $AC = 6\\,cm$, find the lengths of line segments $CE$ and $AB$.", -"image_file_name": "7028389", -"image": [ -"math/52796148_720.png" -], -"solution": "Solution: Since F is the midpoint of AC and $AC=6\\,cm$, \\\\\nthus $CF=AF=\\frac{1}{2}AC=3\\,cm$, \\\\\nSince $EF=5\\,cm$, \\\\\nthus $CE=EF-CF=5-3=\\boxed{2}\\,(cm)$, \\\\\nthus $AE=AC+CE=6+2=8\\,(cm)$, \\\\\nSince E is the midpoint of the line segment AB, \\\\\nthus $AB=2AE=\\boxed{16}\\,cm$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52796148_176": { -"question": "As shown in the figure, it is known that $O$ is a point on line $AB$, $\\angle AOE = \\angle COD$, ray $OC$ bisects $\\angle BOE$, and $\\angle EOC = 50^\\circ$. What is the measure of $\\angle DOE$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/52796148_720.png" -], -"solution": "\\textbf{Solution:} Since OC bisects $\\angle BOE$ and $\\angle EOC=50^\\circ$, \\\\\n$\\therefore \\angle BOE=2\\angle EOC=100^\\circ$,\\\\\n$\\therefore \\angle AOE=180^\\circ-\\angle BOE=80^\\circ$,\\\\\nSince $\\angle AOE=\\angle COD$, \\\\\n$\\therefore \\angle COD=80^\\circ$,\\\\\n$\\therefore \\angle DOE=\\angle COD-\\angle COE=80^\\circ-50^\\circ=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51482328_178": { -"question": "As shown in Figure 1, it is known that $\\angle AOB = 160^\\circ$, $\\angle COE$ is a right angle, and $OF$ bisects $\\angle AOE$. If $\\angle COF = 32^\\circ$, what is the measure of $\\angle BOE$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/51482328_730.png" -], -"solution": "\\textbf{Solution:} We have $\\angle BOE = \\boxed{44^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438807_182": { -"question": "As shown in the figure, point O is a point on line AB, $\\angle COD$ is a right angle, $OE$ bisects $\\angle BOC$. As shown in Figure (1), if $\\angle AOC = 40^\\circ$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7028389", -"image": [ -"math/51438807_740.png" -], -"solution": "\\textbf{Solution:} Given that $\\angle AOC + \\angle BOC = 180^\\circ$,\\\\\nwe have $\\angle BOC = 180^\\circ - \\angle AOC = 180^\\circ - 40^\\circ = 140^\\circ$,\\\\\nSince $OE$ bisects $\\angle BOC$,\\\\\nwe get $\\angle COE = \\frac{1}{2} \\angle BOC = \\frac{1}{2} \\times 140^\\circ = 70^\\circ$,\\\\\nGiven $\\angle COD$ is a right angle,\\\\\nthus $\\angle COE + \\angle DOE = 90^\\circ$,\\\\\nleading to $\\angle DOE = 90^\\circ - \\angle COE = 90^\\circ - 70^\\circ = \\boxed{20^\\circ};$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51438807_183": { -"question": "As shown in the figure, point O is a point on the line AB, $\\angle COD$ is a right angle, and $OE$ bisects $\\angle BOC$. As shown in figure (2), if $\\angle COE = \\angle DOB$, what is the degree measure of $\\angle AOC$?", -"image_file_name": "7028389", -"image": [ -"math/51438807_740.png" -], -"solution": "\\textbf{Solution:} \\\\\n$\\because$ OE bisects $\\angle BOC$, \\\\\n$\\therefore \\angle COE = \\angle BOE$, \\\\\n$\\because \\angle COE = \\angle BOD$, \\\\\n$\\therefore \\angle COE = \\angle BOE = \\angle DOB$, \\\\\n$\\because \\angle COD = 90^\\circ$, \\\\\n$\\therefore \\angle COE = \\angle BOE = \\frac{1}{3} \\times 90^\\circ = 30^\\circ$, \\\\\n$\\therefore \\angle AOC = 180^\\circ - 30^\\circ - 30^\\circ = \\boxed{120^\\circ}.$", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"46955179_185": { -"question": "As shown in the figure, right-angled triangle $ABC$ has its right-angled vertex $C$ on line $DE$, and $CF$ bisects $\\angle BCD$. As shown in Figure (1), if $\\angle BCE=30^\\circ$, find the degree measure of $\\angle ACF$.", -"image_file_name": "7028389", -"image": [ -"math/47241291_7502.png" -], -"solution": "\\textbf{Solution:} Given the problem statement, since $\\angle ACB=90^\\circ,\\angle BCE=30^\\circ$,\\\\\n$\\therefore \\angle ACD=180^\\circ-90^\\circ-30^\\circ=60^\\circ,\\angle BCD=180^\\circ-30^\\circ=150^\\circ$.\\\\\nAlso, since $CF$ bisects $\\angle BCD$,\\\\\n$\\therefore \\angle DCF=\\angle BCF=\\frac{1}{2}\\angle BCD=75^\\circ$,\\\\\n$\\therefore \\angle ACF=\\angle DCF-\\angle ACD=75^\\circ-60^\\circ=\\boxed{15^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"46955179_186": { -"question": "As shown in the figure, the right-angled vertex $C$ of the right-angled triangle $ABC$ is on the line $DE$, and $CF$ bisects $\\angle BCD$. When the triangle $ABC$ in figure (1) is rotated about the vertex $C$ to the position in figure (2), if $\\angle BCE=140^\\circ$, calculate the degrees of $\\angle ACF$ and $\\angle ACE$.", -"image_file_name": "7028389", -"image": [ -"math/47241293_7514.png" -], -"solution": "\\textbf{Solution}: As shown in the diagram (2), since $\\angle BCE=140^\\circ$, it follows that $\\angle BCD=40^\\circ$. Since $CF$ bisects $\\angle BCD$, we have $\\angle BCF=\\angle FCD=20^\\circ$, hence $\\angle ACF=90^\\circ-\\angle BCF=\\boxed{70^\\circ}$, and $\\angle ACD=90^\\circ-\\angle BCD=50^\\circ$, thus $\\angle ACE=180^\\circ-\\angle ACD=\\boxed{130^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"52169848_188": { -"question": "Given that $O$ is a point on line $AB$, place the right-angle vertex of the right-angled triangle $OMN$ at point $O$. Ray $OC$ bisects $\\angle MOB$. As shown in Figure 1, if $\\angle AOM = 30^\\circ$, what is the measure of $\\angle CON$?", -"image_file_name": "7028389", -"image": [ -"math/52169848_760.png" -], -"solution": "\\textbf{Solution:}\nGiven $\\angle BOM = 180^\\circ - \\angle AOM = 150^\\circ$,\\\\\nsince $\\angle MON$ is a right angle, and $OC$ bisects $\\angle BOM$,\\\\\nthus, $\\angle CON = \\angle MON - \\frac{1}{2} \\angle BOM = 90^\\circ - \\frac{1}{2} \\times 150^\\circ = \\boxed{15^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52169848_190": { -"question": "It is known that $O$ is a point on line $AB$, and the right-angle vertex of a right-angled triangle $OMN$ is placed at point $O$. Ray $OC$ bisects $\\angle MOB$. Rotate the right-angled triangle $OMN$ in Figure 1 clockwise about vertex $O$ to the position in Figure 2. When $\\angle AOC = 3\\angle BON$, what is the measure of $\\angle AOM$?", -"image_file_name": "7028389", -"image": [ -"math/52169848_760.png" -], -"solution": "\\textbf{Solution:} Let $\\angle AOM = x$, then $\\angle BOM = 180^\\circ - x$,\n\n$\\because$ OC bisects $\\angle BOM$,\n\n$\\therefore \\angle MOC = \\frac{1}{2}\\angle BOM = \\frac{1}{2}(180^\\circ - x) = 90^\\circ - \\frac{1}{2}x$,\n\n$\\therefore \\angle AOC = \\angle AOM + \\angle MOC = x + 90^\\circ - \\frac{1}{2}x = 90^\\circ + \\frac{1}{2}x$,\n\n$\\because \\angle MON = 90^\\circ$,\n\n$\\therefore \\angle BON = \\angle MON - \\angle BOM = 90^\\circ - (180^\\circ - x) = x - 90^\\circ$,\n\n$\\because \\angle AOC = 3\\angle BON$,\n\n$\\therefore 90^\\circ + \\frac{1}{2}x = 3(x - 90^\\circ)$,\n\nSolving gives $x = \\boxed{144^\\circ}$,\n\n$\\therefore \\angle AOM = 144^\\circ$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52169374_192": { -"question": "The point O is on the line segment AB. A ray OC is drawn passing through point O such that $\\angle BOC=65^\\circ$. Place the right-angle vertex of a right-angled triangle ruler at point O. As shown in figure (1), when one side ON of the triangle ruler MON coincides with the ray OB, what is the degree measure of $\\angle MOC$?", -"image_file_name": "7028389", -"image": [ -"math/52169374_770.png" -], -"solution": "\\textbf{Solution:} We have $\\angle MOC = \\boxed{25^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52169374_193": { -"question": "Given point O on line AB, draw ray OC through point O such that $\\angle BOC=65^\\circ$. Place the right angle vertex of a right-angled triangle ruler at point O. As shown in the diagram, rotate the triangle ruler MON about point O anticlockwise by a certain angle, such that OC is the angle bisector of $\\angle MOB$. Find the degrees of $\\angle BON$ and $\\angle CON$?", -"image_file_name": "7028389", -"image": [ -"math/52169374_770.png" -], -"solution": "\\textbf{Solution:} \\\\\nSince $\\angle BOC=65^\\circ$ and OC bisects $\\angle MOB$, \\\\\nit follows that $\\angle MOB=2\\angle BOC=130^\\circ$. \\\\\nHence, $\\angle BON=\\angle MOB-\\angle MON=130^\\circ-90^\\circ=\\boxed{40^\\circ}$. \\\\\nTherefore, $\\angle CON=\\angle COB-\\angle BON=65^\\circ-40^\\circ=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"52169374_194": { -"question": "Point O is a point on line AB. A ray OC is drawn through point O such that $\\angle BOC = 65^\\circ$. Place the right-angled vertex of a right-angled triangle ruler at point O. When the triangle ruler MON is rotated counterclockwise around point O to the position shown in figure (3), $\\angle NOC = \\frac{1}{4}\\angle AOM$, what is the degree measure of $\\angle NOB$?", -"image_file_name": "7028389", -"image": [ -"math/52169374_770.png" -], -"solution": "\\textbf{Solution:} According to the given problem, \\\\\n$\\because \\angle NOC = \\frac{1}{4}\\angle AOM$, \\\\\n$\\therefore \\angle AOM = 4\\angle NOC$, \\\\\n$\\because \\angle BOC = 65^\\circ$, \\\\\n$\\therefore \\angle AOC = \\angle AOB - \\angle BOC = 180^\\circ - 65^\\circ = 115^\\circ$, \\\\\n$\\because \\angle MON = 90^\\circ$, \\\\\n$\\therefore \\angle AOM + \\angle NOC = \\angle AOC - \\angle MON = 115^\\circ - 90^\\circ = 25^\\circ$, \\\\\n$\\therefore 4\\angle NOC + \\angle NOC = 25^\\circ$, \\\\\n$\\therefore \\angle NOC = 5^\\circ$, \\\\\n$\\therefore \\angle NOB = \\angle NOC + \\angle BOC = \\boxed{70^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51407218_196": { -"question": "As shown in Figure 1, a set of triangular plates are pieced together, with sides $OA$ and $OC$ coinciding with line $EF$, where $\\angle AOB=45^\\circ$ and $\\angle COD=60^\\circ$. What is the degree measure of $\\angle BOD$ in Figure 1?", -"image_file_name": "7028389", -"image": [ -"math/51407218_785.png" -], -"solution": "\\textbf{Solution:} Given that $\\because$ $\\angle AOB=45^\\circ$ and $\\angle COD=60^\\circ$,\\\\\n$\\therefore$ $\\angle BOD=180^\\circ-\\angle AOB-\\angle COD=180^\\circ-45^\\circ-60^\\circ=\\boxed{75^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"51407218_197": { -"question": "As shown in Figure 1, a set of triangular plates are combined together, with sides $OA$, $OC$ coinciding with line $EF$, where $\\angle AOB=45^\\circ$, $\\angle COD=60^\\circ$. In Figure 2, the triangular plate $COD$ is fixed, and the triangular plate $AOB$ is rotated clockwise around point $O$ by an angle. During the rotation, triangular plate $AOB$ always stays inside $\\angle EOD$, let $\\angle EOA=\\alpha$. If $OB$ bisects $\\angle EOD$, what is the value of $\\alpha$?", -"image_file_name": "7028389", -"image": [ -"math/51407218_785.png" -], -"solution": "\\textbf{Solution:}\\\\\n(1) Since $\\angle COD=60^\\circ$,\\\\\nthen $\\angle EOD=180^\\circ-\\angle COD=180^\\circ-60^\\circ=120^\\circ$,\\\\\nSince $OB$ bisects $\\angle EOD$,\\\\\nthen $\\angle EOB=\\frac{1}{2}\\angle EOD=\\frac{1}{2}\\times 120^\\circ=60^\\circ$,\\\\\nSince $\\angle AOB=45^\\circ$,\\\\\nthen $\\alpha =\\angle EOB-\\angle AOB=60^\\circ-45^\\circ=\\boxed{15^\\circ}$;\\\\\n(2) Since $\\angle AOB=45^\\circ$ and $\\angle COD=60^\\circ$,\\\\\nthen $\\angle AOC=\\angle AOB+\\angle BOD+\\angle COD=45^\\circ+\\angle BOD+60^\\circ=105^\\circ+\\angle BOD$,\\\\\nSince $\\angle AOC=4\\angle BOD$,\\\\\nthen $105^\\circ+\\angle BOD=4\\angle BOD$,\\\\\nSolving yields: $\\angle BOD=35^\\circ$,\\\\\nthen $\\angle AOC=4\\angle BOD=4\\times 35^\\circ=140^\\circ$,\\\\\nthen $\\alpha =180^\\circ-\\angle AOC=180^\\circ-140^\\circ=\\boxed{40^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Transformations of Shapes", -"level_2": "Acute Angle Trigonometric Functions" -} -}, -"47111555_199": { -"question": "As shown in the figure, it is known that $OE$ is the angle bisector of $\\angle AOC$, and $OD$ is the angle bisector of $\\angle BOC$. If $\\angle AOE=70^\\circ$ and $\\angle COD=20^\\circ$, what is the degree measure of $\\angle AOB$?", -"image_file_name": "7028389", -"image": [ -"math/47111555_794.png" -], -"solution": "\\textbf{Solution:} Since $OD$ is the angle bisector of $\\angle BOC$ and $\\angle COD=20^\\circ$,\\\\\n$\\therefore \\angle BOC=2\\angle COD=40^\\circ$.\\\\\nSince $OE$ is the angle bisector of $\\angle AOC$,\\\\\n$\\therefore \\angle AOC=2\\angle AOE=140^\\circ$.\\\\\n$\\therefore \\angle AOB=\\angle AOC-\\angle BOC=140-40^\\circ=\\boxed{100^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"47111555_200": { -"question": "As shown, it is known that $OE$ is the angle bisector of $\\angle AOC$, and $OD$ is the angle bisector of $\\angle BOC$. If $\\angle DOE=45^\\circ$, and $\\angle AOC + \\angle BOC = 180^\\circ$, what is the degree measure of $\\angle COD$?", -"image_file_name": "7028389", -"image": [ -"math/47111555_794.png" -], -"solution": "\\textbf{Solution:} Since $OD$ is the angle bisector of $\\angle BOC$,\\\\\nlet $\\angle COD=\\angle BOD=x$.\\\\\nSince $\\angle DOE=45^\\circ$,\\\\\nthen $\\angle BOE=45^\\circ-x$, $\\angle COE=45^\\circ+x$.\\\\\nSince $OE$ is the angle bisector of $\\angle AOC$,\\\\\nthen $\\angle AOE=\\angle COE=45^\\circ+x$.\\\\\nSince $\\angle AOC+\\angle BOC=180^\\circ$,\\\\\nthen $2(45^\\circ+x)+2x=180^\\circ$,\\\\\nthus $x=\\boxed{22.5^\\circ}$, that is $\\angle COD=22.5^\\circ$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"47364521_202": { -"question": "As shown in the figure, given that $\\angle AOB=90^\\circ$, draw rays $OC$, and $OD$ is the angle bisector of $\\angle AOC$, $OE$ is the angle bisector of $\\angle BOC$. As shown in Figure (1), when $\\angle BOC=70^\\circ$, find the degree measure of $\\angle DOE$.", -"image_file_name": "7028389", -"image": [ -"math/47364523_8002.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOB=90^\\circ$ and $\\angle BOC=70^\\circ$,\\\\\nit follows that $\\angle AOC=90^\\circ-\\angle BOC=20^\\circ$,\\\\\nSince lines $OD$ and $OE$ bisect $\\angle AOC$ and $\\angle BOC$ respectively,\\\\\nit follows that $\\angle COD=\\frac{1}{2}\\angle AOC=10^\\circ$ and $\\angle COE=\\frac{1}{2}\\angle BOC=35^\\circ$,\\\\\ntherefore $\\angle DOE=\\angle COD+\\angle COE=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"47364521_203": { -"question": "Given: $\\angle AOB = 90^\\circ$, draw rays $OC$, $OD$ is the bisector of $\\angle AOC$, $OE$ is the bisector of $\\angle BOC$. As shown in figure (2), if ray $OC$ rotates around point $O$ within $\\angle AOB$, when $\\angle BOC = a$, what is the degree measure of $\\angle DOE$?", -"image_file_name": "7028389", -"image": [ -"math/47364525_8015.png" -], -"solution": "\\textbf{Solution:} The size of $\\angle DOE$ remains constant. The reason is as follows:\n\nSince $\\angle AOB=90^\\circ$, $\\angle BOC=\\alpha$,\n\nTherefore, $\\angle AOD=90^\\circ-\\alpha$.\n\nAlso, since $OE$, $OD$ are the angle bisectors of $\\angle BOC$ and $\\angle AOC$ respectively,\n\nTherefore, $\\angle EOC=\\frac{1}{2}\\alpha$, $\\angle COD=\\frac{1}{2}\\left(90^\\circ-\\alpha \\right)$.\n\nTherefore, $\\angle DOE=\\angle EOC+\\angle COD$\n\n$=\\frac{1}{2}\\alpha +\\frac{1}{2}\\left(90^\\circ-\\alpha \\right)=\\boxed{45^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"47364521_204": { -"question": "Given: $\\angle AOB=90^\\circ$, construct rays $OC$, $OD$ is the angle bisector of $\\angle AOC$, $OE$ is the angle bisector of $\\angle BOC$. If ray $OC$ rotates around point $O$ outside $\\angle AOB$ and $\\angle AOC$ is an obtuse angle, find the degree measure of $\\angle DOE$.", -"image_file_name": "7028389", -"image": [ -"math/47364527_8025.png" -], -"solution": "\\textbf{Solution:} Consider two cases:\n\nAs shown in Figure 3, since $OD$ and $OE$ bisect $\\angle AOC$ and $\\angle BOC$ respectively,\\\\\nit follows that $\\angle COD=\\frac{1}{2}\\angle AOC$, $\\angle COE=\\frac{1}{2}\\angle BOC$,\\\\\nthus $\\angle DOE=\\angle COD-\\angle COE=\\frac{1}{2}\\left(\\angle AOC-\\angle BOC\\right)=45^\\circ$;\n\nAs shown in Figure 4, since $OE$ and $OD$ are the bisectors of $\\angle BOC$ and $\\angle AOC$ respectively,\\\\\nit follows that $\\angle EOC=\\angle BOE$, $\\angle COD=\\angle AOD$,\\\\\nand since $\\angle AOB=90^\\circ$,\\\\\nit follows that $\\angle AOD+\\angle DOC+\\angle COE+\\angle EOB=270^\\circ$,\\\\\nthus $2\\angle DOC+2\\angle COE=270^\\circ$,\\\\\ntherefore $\\angle DOC+\\angle COE=135^\\circ$,\\\\\nleading to $\\angle DOE=\\boxed{135^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"51244984_206": { -"question": "As shown in the figure, lines AB and CD intersect at point O. It is known that $\\angle BOD=75^\\circ$, and OE divides $\\angle AOC$ into two angles, with $\\angle AOE: \\angle EOC = 2: 3$. What is the degree measure of $\\angle AOE$?", -"image_file_name": "7028389", -"image": [ -"math/51244984_810.png" -], -"solution": "\\textbf{Solution:} From the given information, we have $\\angle AOC=\\angle BOD=75^\\circ$,\\\\\n$\\therefore \\angle AOE=75^\\circ \\times \\frac{2}{5}=\\boxed{30^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50710244_209": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB=90^\\circ$, $\\angle A=40^\\circ$. The bisector of the exterior angle $\\angle CBD$ of $\\triangle ABC$ intersects the extension of $AC$ at point $E$. What is the measure of $\\angle CBE$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/50710244_820.jpg" -], -"solution": "\\textbf{Solution:}\nGiven $\\triangle ABC$ where $\\angle ACB=90^\\circ$ and $\\angle A=40^\\circ$,\\\\\nthus $\\angle ABC=90^\\circ-\\angle A=50^\\circ$.\\\\\nThus, $\\angle CBD=130^\\circ$.\\\\\nSince $BE$ bisects $\\angle CBD$,\\\\\nthus, $\\angle CBE= \\frac{1}{2} \\angle CBD=\\boxed{65^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50710244_210": { -"question": "As shown in the figure, in $\\triangle ABC$, $\\angle ACB = 90^\\circ$, $\\angle A = 40^\\circ$, the bisector of the external angle $\\angle CBD$ of $\\triangle ABC$ intersects the extension line of $AC$ at point $E$. Through point $D$, draw $DF \\parallel BE$, which intersects the extension line of $AC$ at point $F$. What is the measure of $\\angle F$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/50710244_820.jpg" -], -"solution": "\\textbf{Solution:} Since $\\angle ACB= 90^\\circ$ and $\\angle CBE=65^\\circ$, \\\\\nit follows that $\\angle CEB=90^\\circ- 65^\\circ= 25^\\circ$. \\\\\nSince $DF \\parallel BE$, it follows that $\\angle F=\\boxed{25^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50518431_212": { -"question": "As shown in Figure 1, it is known that $\\angle AOB=100^\\circ$. The rays $OE$ and $OF$ are the angle bisectors of $\\angle AOC$ and $\\angle COB$, respectively. If the ray $OC$ is inside the angle $\\angle AOB$ and $\\angle AOC=30^\\circ$, what is the degree measure of $\\angle EOF$?", -"image_file_name": "7028389", -"image": [ -"math/50518431_830.png" -], -"solution": "\\textbf{Solution:} By construction,\\\\\nsince $OE$ is the bisector of $\\angle AOC$, and $\\angle AOC=30^\\circ$,\\\\\nthen $\\angle COE=\\frac{1}{2}\\angle AOC=15^\\circ$,\\\\\nsince $\\angle AOB=100^\\circ$,\\\\\nthen $\\angle COB=\\angle AOB-\\angle AOC=70^\\circ$,\\\\\nsince $OF$ is the bisector of $\\angle COB$,\\\\\nthen $\\angle COF=\\frac{1}{2}\\angle COB=35^\\circ$,\\\\\nthus $\\angle EOF=\\angle COE+\\angle COF=15^\\circ+35^\\circ=\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"50518431_213": { -"question": "Given $\\angle AOB = 100^\\circ$, rays $OE$ and $OF$ are the angle bisectors of $\\angle AOC$ and $\\angle COB$, respectively. If ray $OC$ rotates around point $O$ within $\\angle AOB$, what is the degree measure of $\\angle EOF$?", -"image_file_name": "7028389", -"image": [ -"math/50518431_830.png" -], -"solution": "\\textbf{Solution:} Given that,\n\\[\n\\because \\angle AOB=100^\\circ,\n\\]\n\\[\n\\therefore \\angle AOC+\\angle COB=100^\\circ,\n\\]\n\\[\n\\because OE \\text{ is the bisector of } \\angle AOC, OF \\text{ is the bisector of }\\angle COB,\n\\]\n\\[\n\\therefore \\angle COE=\\frac{1}{2}\\angle AOC, \\angle COF=\\frac{1}{2}\\angle COB,\n\\]\n\\[\n\\therefore \\angle EOF=\\angle COE+\\angle COF=\\frac{1}{2}\\left(\\angle AOC+\\angle COB\\right)=\\boxed{50^\\circ}.\n\\]", -"solution_image": [], -"year": "seven", -"difficult": "hard", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Triangle" -} -}, -"46869571_216": { -"question": "As illustrated, it is known that the line $AB$ intersects with $CD$ at point $O$, $OE\\perp CD$, and $\\angle AOC=40^\\circ$, with $OF$ being the angle bisector of $\\angle AOD$. What is the degree measure of $\\angle EOB$?", -"image_file_name": "7028389", -"image": [ -"math/46869571_844.png" -], -"solution": "\\textbf{Solution:} Since $OE \\perp CD$,\\\\\n$\\therefore \\angle EOD=90^\\circ$,\\\\\nand since $\\angle BOD=\\angle AOC=40^\\circ$,\\\\\n$\\therefore \\angle EOB=\\angle EOD-\\angle BOD=50^\\circ$.\\\\\nTherefore, the measure of $\\angle EOB$ is $\\boxed{50^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"46869571_217": { -"question": "As shown in the figure, it is known that line $AB$ intersects with line $CD$ at point $O$, $OE \\perp CD$, $\\angle AOC = 40^\\circ$, and $OF$ is the bisector of $\\angle AOD$. What is the degree measure of $\\angle EOF$?", -"image_file_name": "7028389", -"image": [ -"math/46869571_844.png" -], -"solution": "\\textbf{Solution:} Since the straight lines $AB$ and $CD$ intersect at the point $O$,\\\\\nit follows that $\\angle AOC=\\angle BOD=40^\\circ$,\\\\\nthus $\\angle AOD=180^\\circ-\\angle BOD=140^\\circ$,\\\\\nsince $OF$ is the bisector of $\\angle AOD$,\\\\\nit follows that $\\angle AOF=\\angle FOD=70^\\circ$,\\\\\ntherefore $\\angle EOF=\\angle EOD+\\angle FOD=\\boxed{160^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50938639_219": { -"question": "As shown in the figure, point $O$ is a point on line $AB$, $\\angle COD$ is a right angle, and $OE$ bisects $\\angle BOC$. If $\\angle AOC=40^\\circ$, what is the measure of $\\angle DOE$ in degrees?", -"image_file_name": "7028389", -"image": [ -"math/50938639_855.png" -], -"solution": "\\textbf{Solution:} Since $\\angle AOC=40^\\circ$,\\\\\nit follows that $\\angle BOC=140^\\circ$,\\\\\nalso, since OE bisects $\\angle BOC$,\\\\\nit implies $\\angle COE= \\frac{1}{2} \\times 140^\\circ=70^\\circ$,\\\\\nsince $\\angle COD=90^\\circ$,\\\\\nit follows that $\\angle DOE=90^\\circ-70^\\circ=\\boxed{20^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"50938639_220": { -"question": "As shown in the diagram, point $O$ is on line $AB$, $\\angle COD$ is a right angle, and $OE$ bisects $\\angle BOC$. As shown in figure 2, if $\\angle COE = \\angle DOB$, find the measure of $\\angle AOC$.", -"image_file_name": "7028389", -"image": [ -"math/50938639_855.png" -], -"solution": "\\textbf{Solution:} Given that $OE$ bisects $\\angle BOC$,\\\\\nthus $\\angle COE = \\angle BOE$,\\\\\nand since $\\angle COE = \\angle DOB$ and $\\angle COD = 90^\\circ$,\\\\\nit follows that $\\angle COE = \\angle DOB = \\angle BOE = 30^\\circ$,\\\\\nthus $\\angle BOC = 60^\\circ$,\\\\\ntherefore $\\angle AOC = 180^\\circ - 60^\\circ = \\boxed{120^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"46785011_222": { -"question": "As shown in the figure, line AB intersects with line CD at point O, $\\angle BOE = 90^\\circ$, $\\angle AOD = 30^\\circ$, and OF is the angle bisector of $\\angle BOD$. What is the degree measure of $\\angle EOC$?", -"image_file_name": "7028389", -"image": [ -"math/46785011_860.jpg" -], -"solution": "\\textbf{Solution:} Since $\\angle BOC = \\angle AOD = 30^\\circ$ and $\\angle BOE = 90^\\circ$,\n\\[\n\\therefore \\angle COE = 90^\\circ - 30^\\circ = \\boxed{60^\\circ}.\n\\]", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -}, -"46785011_223": { -"question": "Given, as shown in the figure, line $AB$ intersects with line $CD$ at point $O$. $\\angle BOE = 90^\\circ$, $\\angle AOD = 30^\\circ$, and $OF$ is the angle bisector of $\\angle BOD$. Find the measure of $\\angle EOF$.", -"image_file_name": "7028389", -"image": [ -"math/46785011_860.jpg" -], -"solution": "\\textbf{Solution:} Given that $\\angle BOC=30^\\circ$,\\\\\nit follows that $\\angle BOD=180^\\circ-30^\\circ=150^\\circ$.\\\\\nSince OF is the angle bisector of $\\angle BOD$,\\\\\nwe have $\\angle BOF= \\frac{1}{2} \\angle BOD= \\frac{1}{2} \\times 150^\\circ=75^\\circ$.\\\\\nTherefore, $\\angle EOF=\\angle EOC+\\angle BOC+\\angle BOF=60^\\circ+30^\\circ+75^\\circ=\\boxed{165^\\circ}$.", -"solution_image": [], -"year": "seven", -"difficult": "medium", -"knowledge_annotation": { -"level_1": "Properties of Shapes", -"level_2": "Intersecting and Parallel Lines" -} -} -} \ No newline at end of file diff --git a/MM_Math/data_original_21/6951217/math/17130735_30.png b/MM_Math/data_original_21/6951217/math/17130735_30.png deleted file mode 100644 index 29364c9f6fd5043a35e0788211dd546bcab5e518..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/17130735_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:249906a814484fbf17e123e88138eacb98b7b6ee2d7a857cca824cf9dda2294f -size 2823 diff --git a/MM_Math/data_original_21/6951217/math/42460301_870.png b/MM_Math/data_original_21/6951217/math/42460301_870.png deleted file mode 100644 index 5ba977e01e40d8f6653bed146cab27094d20db43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/42460301_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e46e7e7e893c45da27eba384a0759378be1b0a43fe1fcb7ff66c8329c2b13c9 -size 1733 diff --git a/MM_Math/data_original_21/6951217/math/42461901_868.png b/MM_Math/data_original_21/6951217/math/42461901_868.png deleted file mode 100644 index ace8900bc9e62c452ff4c5d50eddd3dbb3449918..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/42461901_868.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aec478ead217b700e516a276b47ec634b4ef588a8d3a31bab1eecccbe1e4e6e4 -size 1208 diff --git a/MM_Math/data_original_21/6951217/math/43067255_640.png b/MM_Math/data_original_21/6951217/math/43067255_640.png deleted file mode 100644 index 95190d1ae93d8d61cefdafc292d4075ee346a5d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/43067255_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53271979063aa5e8dbfcd3a4eaccacfa67b76ac6e7b381b8b499a3b80fe348d7 -size 769 diff --git a/MM_Math/data_original_21/6951217/math/46945019_720.png b/MM_Math/data_original_21/6951217/math/46945019_720.png deleted file mode 100644 index 44c5e88bb0acc00b88f4d405345f957912a14f3a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/46945019_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b528f3d245cc5a14f91a8175ed1566c1ad8f0b48d0c902df6f075be3483c6d09 -size 2684 diff --git a/MM_Math/data_original_21/6951217/math/47110741_765.png b/MM_Math/data_original_21/6951217/math/47110741_765.png deleted file mode 100644 index 16dfa4721a4756546c11cbb3be4fe2fc2e5ed1f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/47110741_765.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba5bb3a2ef8ad993f03920a409b87e75018a21971e9570d398a6817dceb7e9c3 -size 961 diff --git a/MM_Math/data_original_21/6951217/math/47112699_841.png b/MM_Math/data_original_21/6951217/math/47112699_841.png deleted file mode 100644 index c0b1b741594ffdd72ff185ff5f2b8da80ef147a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/47112699_841.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42a35d548de2ca9666cb21af7a49fb56ecd59a4c52fbd19df8ca92b9a48371b1 -size 1348 diff --git a/MM_Math/data_original_21/6951217/math/47162039_675.png b/MM_Math/data_original_21/6951217/math/47162039_675.png deleted file mode 100644 index 979b549dff1d144297621fcd2d53537c093ad549..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/47162039_675.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9466efdc7abafe3441600a45bb2ae2fc4532b7e9584e344bf52dbd356968986d -size 1297 diff --git a/MM_Math/data_original_21/6951217/math/50009913_8805.png b/MM_Math/data_original_21/6951217/math/50009913_8805.png deleted file mode 100644 index c29d5d96e30c92c2af792476ce5406062c92cc19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/50009913_8805.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f17c4ae8a696ecdaede4316019fe7f5f4a15f3811ea742641aa627981b76a0c8 -size 2933 diff --git a/MM_Math/data_original_21/6951217/math/50009914_8814.png b/MM_Math/data_original_21/6951217/math/50009914_8814.png deleted file mode 100644 index c860bfa40db0fa35eb9591f7b4a3e7baa6f00b34..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/50009914_8814.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87cad224b619ba59dc542350817fe9580d22c13da5a8053d59b629d5f1d5e8ed -size 3371 diff --git a/MM_Math/data_original_21/6951217/math/50056753_624.png b/MM_Math/data_original_21/6951217/math/50056753_624.png deleted file mode 100644 index 8572927f5d93ef158661da613317963343330ba7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/50056753_624.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:803f73e449e6381bdead2c3f1973d3dbd2579378d0db2d79e900eb82dfa799fa -size 1902 diff --git a/MM_Math/data_original_21/6951217/math/50733799_631.png b/MM_Math/data_original_21/6951217/math/50733799_631.png deleted file mode 100644 index cae09b216c8de9f72d2ce0999e9e3a46ef42dece..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/50733799_631.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41d745d274ad6bfd73263607e86f0e85eaa09a6e4ed5b62f6dfe23ff7053d671 -size 1055 diff --git a/MM_Math/data_original_21/6951217/math/50810294_810.png b/MM_Math/data_original_21/6951217/math/50810294_810.png deleted file mode 100644 index 21cc12b4de63834f094b48b3e71993cc8fe9e6e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/50810294_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e94c5ea0999ad4d07476753d881cbc3f7cc8b5bb657cfed2079c913adb878f0 -size 8076 diff --git a/MM_Math/data_original_21/6951217/math/50810423_800.png b/MM_Math/data_original_21/6951217/math/50810423_800.png deleted file mode 100644 index 706734675bd7f3257913cb69b3dcc8191e6c07a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/50810423_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccea2c8230a7a3ea6cba5119a15d24aa763d53c6017323e802f43122404c54ed -size 1222 diff --git a/MM_Math/data_original_21/6951217/math/51000646_6502.png b/MM_Math/data_original_21/6951217/math/51000646_6502.png deleted file mode 100644 index eb1ce8502831e93369d59aa11685c307ce60a583..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51000646_6502.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7564b1416ba70d30ad6240ae9bfaee0459f74bf872082b98831bc3d22b4731ca -size 1393 diff --git a/MM_Math/data_original_21/6951217/math/51000647_6514.png b/MM_Math/data_original_21/6951217/math/51000647_6514.png deleted file mode 100644 index 8cdedfb770873cdedb1cae6162a507869024524b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51000647_6514.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dff6a976e166f441e62d761d3824dc5a4c788acfd3852aebe4001507a475d494 -size 1540 diff --git a/MM_Math/data_original_21/6951217/math/51179538_560.png b/MM_Math/data_original_21/6951217/math/51179538_560.png deleted file mode 100644 index 6a339429708f799e9e3299b1e2a92642f802dd15..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51179538_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a1ff36895cff75034e2472bd641d987bc92a63b841389def4ad82cc2dcd861fd -size 1462 diff --git a/MM_Math/data_original_21/6951217/math/51212253_770.png b/MM_Math/data_original_21/6951217/math/51212253_770.png deleted file mode 100644 index 60696d7846f351e475438c4c5ea445005793134d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51212253_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4334da2cab114381b9847dd5b2ec15bda4f3b5d558130a363d424d05b6e27875 -size 7751 diff --git a/MM_Math/data_original_21/6951217/math/51237402_710.png b/MM_Math/data_original_21/6951217/math/51237402_710.png deleted file mode 100644 index 7596d0404e4e8031f3e521243160a056d5ee3d53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51237402_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fca8d5234710f7ad85651efcdbddfd0e10a0d3739dd9b382fbc441c1e1981025 -size 19030 diff --git a/MM_Math/data_original_21/6951217/math/51251319_750.png b/MM_Math/data_original_21/6951217/math/51251319_750.png deleted file mode 100644 index 54f1d14552ba592ec5e7d6a8ff13ca7fa026bacc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51251319_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56d653213db7b725a181880cb7a654c93205360a98a0a5b1d2fc6f6cf3b9e7cd -size 1479 diff --git a/MM_Math/data_original_21/6951217/math/51251486_401.png b/MM_Math/data_original_21/6951217/math/51251486_401.png deleted file mode 100644 index d204b23b22c9b4d1d2df2f4f5b82275ca89f63cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51251486_401.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b65c475a2b7198fe7cc8507be6f6ea32bfff960cd5c1fa8c59fb2149834edb48 -size 2225 diff --git a/MM_Math/data_original_21/6951217/math/51251856_270.png b/MM_Math/data_original_21/6951217/math/51251856_270.png deleted file mode 100644 index 7509252c09061868dab80615ef0cbe450d7f45cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51251856_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94a47ecfe2b94e0e1191bc6125cc1bbb2d04250c27a1c1e6dc14379afe9198e9 -size 1072 diff --git a/MM_Math/data_original_21/6951217/math/51292247_821.png b/MM_Math/data_original_21/6951217/math/51292247_821.png deleted file mode 100644 index b119e56a0a05ff7197d1f0582ba1166169a371e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51292247_821.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:088d32c5b4100786f487b3f280415041effed5587ed5a27b058682061a930501 -size 805 diff --git a/MM_Math/data_original_21/6951217/math/51323815_192.png b/MM_Math/data_original_21/6951217/math/51323815_192.png deleted file mode 100644 index 2420b2abbff2a1cf7c46d79609e8e09a72f1b2ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51323815_192.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71b9c6814f30a81e6c2442f4ddfa078b4e5a0fba7ab04d1d90f4ae3194c91c87 -size 2471 diff --git a/MM_Math/data_original_21/6951217/math/51354427_790.png b/MM_Math/data_original_21/6951217/math/51354427_790.png deleted file mode 100644 index edfa03ef6b92bad07bfc0fdec9029139977127c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51354427_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7527c1889142cd55dd4ed5833aeb61325bcc1a6655c7acaeceab5e672db8a464 -size 8316 diff --git a/MM_Math/data_original_21/6951217/math/51355086_351.png b/MM_Math/data_original_21/6951217/math/51355086_351.png deleted file mode 100644 index 5fa83fcaa0d1579736db3dcc23d3de3281f6c3ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51355086_351.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b64b356a826a0732bff9961a4b20f5bcc47675773f4c4b05a5f62834c200004f -size 2246 diff --git a/MM_Math/data_original_21/6951217/math/51355677_250.png b/MM_Math/data_original_21/6951217/math/51355677_250.png deleted file mode 100644 index a3d2354b3f884031c2d015838fad0fe4c17fcf3f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51355677_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7cc1e4d73ca95611356e390ab3aa7e272234b5f27d1c8bef0b610a142bd1471c -size 6221 diff --git a/MM_Math/data_original_21/6951217/math/51379764_200.png b/MM_Math/data_original_21/6951217/math/51379764_200.png deleted file mode 100644 index ce0c44188ae2c5d7476a737bf58ea3d23ddb701d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51379764_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:84f31bb031f6629ee800ede2048da28559f48d0415f019d951718d3f1fd63562 -size 1396 diff --git a/MM_Math/data_original_21/6951217/math/51379914_470.png b/MM_Math/data_original_21/6951217/math/51379914_470.png deleted file mode 100644 index ac757966d642a9d663d554284b76d10f8c4e8cfe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51379914_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5dfe227e7637f67839d391b6555cd017ab902c6d274394148e5ec086d2443bf1 -size 1382 diff --git a/MM_Math/data_original_21/6951217/math/51407587_536.png b/MM_Math/data_original_21/6951217/math/51407587_536.png deleted file mode 100644 index 2f68f60952e75adce815fd6d236b4f330232e692..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51407587_536.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d75743b130b6d9568044bea661f393432d7cc15896d44ac4b16f366026932cd9 -size 9111 diff --git a/MM_Math/data_original_21/6951217/math/51419997_693.png b/MM_Math/data_original_21/6951217/math/51419997_693.png deleted file mode 100644 index 80cdcc22176e466f3a1507e397dddb6262bf5d80..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51419997_693.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45b73399e5ea97c4c8bab3f37cf1534da8e49dc5f4648e5e0a0671cfbfcd70e7 -size 4844 diff --git a/MM_Math/data_original_21/6951217/math/51429265_230.png b/MM_Math/data_original_21/6951217/math/51429265_230.png deleted file mode 100644 index b3ebdb8441782481df26397cdaa947d6aa840fe2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51429265_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c81fa1e9f0d34c6048ef1a6a8d6e3bc48f0469699ea20bbff608c4264de1df88 -size 1870 diff --git a/MM_Math/data_original_21/6951217/math/51438062_269.png b/MM_Math/data_original_21/6951217/math/51438062_269.png deleted file mode 100644 index 63c1752cd8fa58ebd07f1701a8fa62df2017eef3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51438062_269.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0e4e2620d6df7ac9c3be4149e47a65c66c8e08ee19eadd8522498a93d64bccc -size 860 diff --git a/MM_Math/data_original_21/6951217/math/51438092_450.png b/MM_Math/data_original_21/6951217/math/51438092_450.png deleted file mode 100644 index 5169df4941b555521df2a784de1945ae090c6c9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51438092_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aae5a0de7307d312a4c4eb7426fab0be03dfbaa89510f8a03a9d341ad86a8831 -size 2042 diff --git a/MM_Math/data_original_21/6951217/math/51445267_510.png b/MM_Math/data_original_21/6951217/math/51445267_510.png deleted file mode 100644 index 5b89de8c83a2bfb0ca3d987cfdf77a9f30eafdbd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51445267_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a7c6d3cf78e96f2e3e205a98f30d8e1825a478c9ada41744552c7a59cbce09d1 -size 2900 diff --git a/MM_Math/data_original_21/6951217/math/51482139_503.png b/MM_Math/data_original_21/6951217/math/51482139_503.png deleted file mode 100644 index 01ef1c7e15402ee81f09889aebfa9575fc021fff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51482139_503.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13d8214c46ea3f516d911987bf2a99f352c724d3245c0ab68eeb51afb7b26aac -size 1674 diff --git a/MM_Math/data_original_21/6951217/math/51482141_5013.png b/MM_Math/data_original_21/6951217/math/51482141_5013.png deleted file mode 100644 index f962dbaf87d38ea3d443d1bb718d6e0741afacbd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51482141_5013.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7540a27a90032819f546a2eb78916040fa6c4784c923daeef56b817de58770dc -size 2260 diff --git a/MM_Math/data_original_21/6951217/math/51494975_832.png b/MM_Math/data_original_21/6951217/math/51494975_832.png deleted file mode 100644 index f8b80b5f0c627f0249b2905ecf2b0ee4edda9b87..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51494975_832.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:268d92b88ba4d20970ae5927acb507ec9899acdd6b53a332dce6098675d9bda3 -size 4264 diff --git a/MM_Math/data_original_21/6951217/math/51495344_522.png b/MM_Math/data_original_21/6951217/math/51495344_522.png deleted file mode 100644 index e7b78007663e51ef65c507b5ca1e912835f16f70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51495344_522.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4bdc24a3066f1f63186bef7f59435afbe01fb816f0ed538fee60e1acaf5b84fd -size 1294 diff --git a/MM_Math/data_original_21/6951217/math/51495383_552.png b/MM_Math/data_original_21/6951217/math/51495383_552.png deleted file mode 100644 index ad13aff509cd3a2b00625bfa9cf31767c22ed81d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51495383_552.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:609d6b19e1229f30b160f061b282896eef0a840630a942305acbc58fb115da85 -size 4850 diff --git a/MM_Math/data_original_21/6951217/math/51508769_280.png b/MM_Math/data_original_21/6951217/math/51508769_280.png deleted file mode 100644 index 18cfb4360a303c48d36e5ac7216027a36a88ee28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51508769_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2a327513894edae0b0fe270b1519d224937f37356f67c096d6ba2082573d334 -size 1377 diff --git a/MM_Math/data_original_21/6951217/math/51561259_680.png b/MM_Math/data_original_21/6951217/math/51561259_680.png deleted file mode 100644 index e1be3456d137bdf380cee9b6cbe0896a78452884..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51561259_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4f1d18e76d4c22cc87891b3c3ee1ac9765c09b6ec30bb1833b1f40ef2e26554 -size 3035 diff --git a/MM_Math/data_original_21/6951217/math/51653655_700.png b/MM_Math/data_original_21/6951217/math/51653655_700.png deleted file mode 100644 index 6423de87d448499fd2b67db56727703053b4df70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/51653655_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d783ed47f0dafcfdcb23a4a4da8fa6fd35a84ab2e3bcf0212fa6439792227039 -size 6228 diff --git a/MM_Math/data_original_21/6951217/math/52251794_742.png b/MM_Math/data_original_21/6951217/math/52251794_742.png deleted file mode 100644 index 586b6f6c941181584777728fb2a3461ea320751d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52251794_742.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52a39642bcf3fcaa0f0d59eb1c8e7b1de12e4b2a31dd388cb3948f71c13a0c4e -size 2441 diff --git a/MM_Math/data_original_21/6951217/math/52531561_595.png b/MM_Math/data_original_21/6951217/math/52531561_595.png deleted file mode 100644 index b576b12c8eeda4f63703f5dfdd60631679db0b28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52531561_595.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb8e8cb43ed3e479a3735563d73d5f0e18927794647b637e29dbca6dd6040c11 -size 810 diff --git a/MM_Math/data_original_21/6951217/math/52579842_391.png b/MM_Math/data_original_21/6951217/math/52579842_391.png deleted file mode 100644 index 23e17ada5ecf15805de786b30df136859504d5d7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52579842_391.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88932b81af11251770db851e5e8e1eb59cb630249c1d5b48d08463f8467597b9 -size 649 diff --git a/MM_Math/data_original_21/6951217/math/52632926_780.png b/MM_Math/data_original_21/6951217/math/52632926_780.png deleted file mode 100644 index 1e9ea7952c7f35f85ce26b37295c4498b4676a49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52632926_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:78497141eee6671aa22d63db18b932e2d02a18979c5b4339765d9f74f8954ac8 -size 3229 diff --git a/MM_Math/data_original_21/6951217/math/52732986_370.png b/MM_Math/data_original_21/6951217/math/52732986_370.png deleted file mode 100644 index a022844aaffd0a9224f1d1c9672ca85236c60ec8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52732986_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7743500649c57f804f9d801dfe7068337864e06622a30ae45294d89b2728b5d1 -size 922 diff --git a/MM_Math/data_original_21/6951217/math/52794225_580.png b/MM_Math/data_original_21/6951217/math/52794225_580.png deleted file mode 100644 index e873712790ec1f4ec45bee088deab3c6af4d21d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52794225_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d694f0935bb85e9c81450927afd53a80f306b715522f78d8fdee60a40949581 -size 1828 diff --git a/MM_Math/data_original_21/6951217/math/52794258_730.png b/MM_Math/data_original_21/6951217/math/52794258_730.png deleted file mode 100644 index dde925c4e54e2e85f58892d3bb918ca132b6855e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52794258_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70996a0ffdda2a7fcb8720f72c7a1959f5cf42a7980425ef8ed7450c4afaa2d3 -size 45487 diff --git a/MM_Math/data_original_21/6951217/math/52794293_890.png b/MM_Math/data_original_21/6951217/math/52794293_890.png deleted file mode 100644 index a1f2f71721940501a8a39d000365b0b1f0b1a6ae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52794293_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6f6a954ff61067630cb32b91329e2038b490fdec9a1dd7bcce433e6ac83a0f7 -size 528 diff --git a/MM_Math/data_original_21/6951217/math/52795546_240.png b/MM_Math/data_original_21/6951217/math/52795546_240.png deleted file mode 100644 index 05dc12833201bbc5991f37c1e15275fecd9e89d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52795546_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e951d978ad3c50892769e4cc239a3c08ca4016f9d7a1e3305677287b6eb54417 -size 805 diff --git a/MM_Math/data_original_21/6951217/math/52837995_665.png b/MM_Math/data_original_21/6951217/math/52837995_665.png deleted file mode 100644 index 52036fa118c8ff726ad8329e5696998757f95d82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52837995_665.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:208a61f857a28781b150b58bd86bcb50093f4d1c6dca60d6436a1130adf27575 -size 6338 diff --git a/MM_Math/data_original_21/6951217/math/52916287_610.png b/MM_Math/data_original_21/6951217/math/52916287_610.png deleted file mode 100644 index 4746985096a604dec055893c274eec5f7cda1cf9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52916287_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07cfe2c44a758c2bb74228fe3f2d6528f4f79340370dbc75cb939611b753b8e2 -size 2045 diff --git a/MM_Math/data_original_21/6951217/math/52916470_410.png b/MM_Math/data_original_21/6951217/math/52916470_410.png deleted file mode 100644 index 28aea6399a0bb1bb59668b29f201eee72df1b81e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52916470_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ef0e54968ec01f4a4bfa37eb67172d27b2f933ecab46fd0ee60affdece20840 -size 846 diff --git a/MM_Math/data_original_21/6951217/math/52948485_223.png b/MM_Math/data_original_21/6951217/math/52948485_223.png deleted file mode 100644 index b0c52dab149bcb4419ce7db3c30695a641c16d08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/52948485_223.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf969596dd2425e9fcbfb78e7d41f025918e45c616c3154b5e1edb65691f8a3d -size 5423 diff --git a/MM_Math/data_original_21/6951217/math/53010381_290.png b/MM_Math/data_original_21/6951217/math/53010381_290.png deleted file mode 100644 index 8e4aea29a6f0b9e7ef06eef52cee86a8c7e6f9a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53010381_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e8860f5a5cebbd4052971e18401017a392771441fe3a6c7324060afc713cb1e -size 5570 diff --git a/MM_Math/data_original_21/6951217/math/53042311_186.png b/MM_Math/data_original_21/6951217/math/53042311_186.png deleted file mode 100644 index 6c03ad0c555eb7c92b8afd8924c9f22f2f5f9282..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53042311_186.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df31fe898b39f2091da99a5a7819a1e092296ea66111a615c5cb7349214d4044 -size 6401 diff --git a/MM_Math/data_original_21/6951217/math/53042337_170.png b/MM_Math/data_original_21/6951217/math/53042337_170.png deleted file mode 100644 index dde267e605bfb87540ea446da1d4fb9035eee109..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53042337_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a2a2f4b2b257872a3d1791f79c3e71d2c23e55ccd82d285689c292abfa4e8f8 -size 2711 diff --git a/MM_Math/data_original_21/6951217/math/53106951_364.png b/MM_Math/data_original_21/6951217/math/53106951_364.png deleted file mode 100644 index e3204e9374f35d7360da6a69d71931a35ebf1352..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53106951_364.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4df106aec58a8e69e574f7f6c8cd261de2df70490d38dbe5b07fdac96612b8b5 -size 807 diff --git a/MM_Math/data_original_21/6951217/math/53119205_166.png b/MM_Math/data_original_21/6951217/math/53119205_166.png deleted file mode 100644 index a580d496118723c70368b3b0af25e321969dbf6b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53119205_166.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05518841d669d1ddd37a2c90c4d5e51b2b2942b1dd16e65eb50958b3d96100e9 -size 5593 diff --git a/MM_Math/data_original_21/6951217/math/53119305_546.png b/MM_Math/data_original_21/6951217/math/53119305_546.png deleted file mode 100644 index f2b66d1002726b16bc10637a525f7422f614c5f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53119305_546.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4545e5b93d40342fd69fcce45c240ba7910e09d16da3cd84d5318455cabd556 -size 1128 diff --git a/MM_Math/data_original_21/6951217/math/53119836_606.png b/MM_Math/data_original_21/6951217/math/53119836_606.png deleted file mode 100644 index 2139de4fa15395805e87bdaecc835439ba3d271f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53119836_606.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d06c42f5196be054e44b0619b9e07054083fa141b4a7a60b45c37f9087498e8 -size 770 diff --git a/MM_Math/data_original_21/6951217/math/53205976_325.png b/MM_Math/data_original_21/6951217/math/53205976_325.png deleted file mode 100644 index 2379986053212489c733f16e23913fbc236dcb7e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53205976_325.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:55183411e78654422841b4d97fcbe77f898ca124321cceff3085e0d1522fe670 -size 4707 diff --git a/MM_Math/data_original_21/6951217/math/53206007_345.png b/MM_Math/data_original_21/6951217/math/53206007_345.png deleted file mode 100644 index 752f0d9f1e59848537c47f2b962ec17bb3130018..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53206007_345.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1344481efa020568a1395347aaf92b3a111ff94b13ddc1730cc8fc00fc4b1fd -size 10498 diff --git a/MM_Math/data_original_21/6951217/math/53206226_154.png b/MM_Math/data_original_21/6951217/math/53206226_154.png deleted file mode 100644 index ae66c9b7c36e565faf9d5a1d0cf01ee6596446b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53206226_154.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af98f3d8461b903ba91e9ca497110678e22823eab414c106736adf679f451b44 -size 893 diff --git a/MM_Math/data_original_21/6951217/math/53206769_571.png b/MM_Math/data_original_21/6951217/math/53206769_571.png deleted file mode 100644 index c6c75543949cdeb950e6fc57fdae57532f526f12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53206769_571.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68f7278079d7e57baa0774ce62b3be223d9e8ff900b147efb5ff70dccf5307da -size 1255 diff --git a/MM_Math/data_original_21/6951217/math/53206849_310.png b/MM_Math/data_original_21/6951217/math/53206849_310.png deleted file mode 100644 index 6db1ebcea0df7545130237b0316ca27d49aab2a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53206849_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb7e4e747417750eb19ce01e577d92bc6f861d8de58bb426db1cab244dfde853 -size 2329 diff --git a/MM_Math/data_original_21/6951217/math/53210853_462.png b/MM_Math/data_original_21/6951217/math/53210853_462.png deleted file mode 100644 index 24874127055da05c2a7f09469a214e54967fbc8e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53210853_462.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e816f89509c6dc04865f2fc174c978c831777e182ebd9f4c5ba87acf7def72b8 -size 10282 diff --git a/MM_Math/data_original_21/6951217/math/53211052_442.png b/MM_Math/data_original_21/6951217/math/53211052_442.png deleted file mode 100644 index 159c243dd256458fc5b89ef7e562171170e1c9d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53211052_442.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21b94922f191f9e2522d2210c528e30cb9b2a7bc7d2be651d56cb6f8a45887b0 -size 13712 diff --git a/MM_Math/data_original_21/6951217/math/53211136_124.png b/MM_Math/data_original_21/6951217/math/53211136_124.png deleted file mode 100644 index 633e7552b12ca7bcf2aacffa037d06d7da947c0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53211136_124.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5cd102bcc340ddf69abb1868eb2f719a93157086fc602ca3427aef0e880c5da -size 6627 diff --git a/MM_Math/data_original_21/6951217/math/53223520_491.png b/MM_Math/data_original_21/6951217/math/53223520_491.png deleted file mode 100644 index fb85848101fae8a438969debd81d7a51d6146582..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53223520_491.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:206c3f3c83a32f3f842e61c0a3449a788e8a35033cf5d1902ee28229150ea4df -size 1150 diff --git a/MM_Math/data_original_21/6951217/math/53274798_480.png b/MM_Math/data_original_21/6951217/math/53274798_480.png deleted file mode 100644 index e092c7301f1c504b5cf1a9c6bb6483a2027b716c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53274798_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c111eaf18372f3989e70d9b1cb4c3638ca9cf34600d195390b9677090178aff4 -size 3642 diff --git a/MM_Math/data_original_21/6951217/math/53319958_426.png b/MM_Math/data_original_21/6951217/math/53319958_426.png deleted file mode 100644 index b6e7060ff07e3558cad4edab7d256848c1602f8f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53319958_426.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:853c8164431e63147bafba071d5b3d9d710f03e4ab5f755ed0972c3112a7bb0b -size 6853 diff --git a/MM_Math/data_original_21/6951217/math/53363922_434.png b/MM_Math/data_original_21/6951217/math/53363922_434.png deleted file mode 100644 index 037e7e23750b65ae1b72cca8cbe3e25cf3c5c90c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53363922_434.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7e3c569f329d6035f2ea824068cb04db9e3d3911352a5f74b7435a2c92ab5f0 -size 10096 diff --git a/MM_Math/data_original_21/6951217/math/53364074_146.png b/MM_Math/data_original_21/6951217/math/53364074_146.png deleted file mode 100644 index d0a7d75490a390eeefc3b485d2bec61ad352c414..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53364074_146.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a1f282d848a320f40be6e0cbcb4de295658016190c7a6a8a825190f4a5ea564f -size 640 diff --git a/MM_Math/data_original_21/6951217/math/53365756_131.png b/MM_Math/data_original_21/6951217/math/53365756_131.png deleted file mode 100644 index d5bad7481b8f6f0010a7f09f2fa2c0cb5a35b72f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53365756_131.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ef56b34b217bb398fc88410792187904b54874707a826c3a333d173ed75ec94 -size 4404 diff --git a/MM_Math/data_original_21/6951217/math/53404045_106.png b/MM_Math/data_original_21/6951217/math/53404045_106.png deleted file mode 100644 index b5172c80a0ee706444bb086d19f61748731ef5d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53404045_106.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:437803abb704ca49b413df0a58c0cfcb22595f6c0042d67c77107b68783e640e -size 12887 diff --git a/MM_Math/data_original_21/6951217/math/53462104_331.png b/MM_Math/data_original_21/6951217/math/53462104_331.png deleted file mode 100644 index dfb96319040546655c06b7fac79658a7d35983b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53462104_331.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5972477453a1de20c5cf47e2112066feb3272464efafa8c5694d7e68f3141a6d -size 842 diff --git a/MM_Math/data_original_21/6951217/math/53848489_300.png b/MM_Math/data_original_21/6951217/math/53848489_300.png deleted file mode 100644 index 383e3b839811c4d2fc727f00ffc8fa80dfd2e50e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/53848489_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db3ed4f650aa2599731f5df6f207ebd375916ed22873eab99d81083f0b87f841 -size 912 diff --git a/MM_Math/data_original_21/6951217/math/54565727_856.png b/MM_Math/data_original_21/6951217/math/54565727_856.png deleted file mode 100644 index 22a4e3c0edfb09c9a58357a9d3814750b9ab197c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/54565727_856.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3cfd9c4bdbaa4696d6561896f46ec935c35af6326bb449a17cfac9e100579280 -size 730 diff --git a/MM_Math/data_original_21/6951217/math/54661145_385.png b/MM_Math/data_original_21/6951217/math/54661145_385.png deleted file mode 100644 index 9c61de3a8e4555b5c7460867a0737eba0888e972..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/54661145_385.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83fea219ffd164d1e0b8e6d2c1b616295bb1db6d53c36ac99948e34f64e18498 -size 1963 diff --git a/MM_Math/data_original_21/6951217/math/54927244_50.png b/MM_Math/data_original_21/6951217/math/54927244_50.png deleted file mode 100644 index 384585baa313b8dfd87e6b6d05db7b11b6270f42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/54927244_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d9b3f40b955753eac700482617884aa30eb56b3c7d6da10dc0309abbd0a828f -size 26329 diff --git a/MM_Math/data_original_21/6951217/math/54927374_70.png b/MM_Math/data_original_21/6951217/math/54927374_70.png deleted file mode 100644 index 67bad9313eaeb0655d18d9c199eafc7a49915449..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/54927374_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5381940df4887f95723da343fe2d54897271a8f7219dbebf20bf5c3029b32d89 -size 24630 diff --git a/MM_Math/data_original_21/6951217/math/54962520_210.png b/MM_Math/data_original_21/6951217/math/54962520_210.png deleted file mode 100644 index 530a3b110af2ba90e39a44f8f190d869d5fc5f86..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/54962520_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13a82f0e14fa9be2d0b8234ffa5aef8271aab7e678a5ed32f904008cd2d8ffb0 -size 6354 diff --git a/MM_Math/data_original_21/6951217/math/54962545_60.png b/MM_Math/data_original_21/6951217/math/54962545_60.png deleted file mode 100644 index c3804bacd8ed912189c56916c2f06d54173a588d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/54962545_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d32a52837c0dd6ef4be6f3bed49a29ebada69131fd8dc1f15db6a7580f727244 -size 12632 diff --git a/MM_Math/data_original_21/6951217/math/55000668_93.png b/MM_Math/data_original_21/6951217/math/55000668_93.png deleted file mode 100644 index 9381fbf11baa59351cc6ac245eacd1c3048db12b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/55000668_93.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0cb179a1a5cb6c963b11c1627432fc9e9b826fdeaff24bd91d5a7ea58b80e15c -size 9545 diff --git a/MM_Math/data_original_21/6951217/math/55034387_111.png b/MM_Math/data_original_21/6951217/math/55034387_111.png deleted file mode 100644 index 2fe407a8b43d70593cf1d83dc9639ccf7db31199..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/55034387_111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0205cbfb67a5d24fb94c12b0b28a905c36760ef8b84d7c74ea5299510f37f10 -size 8275 diff --git a/MM_Math/data_original_21/6951217/math/55192323_80.png b/MM_Math/data_original_21/6951217/math/55192323_80.png deleted file mode 100644 index 05467062268ff3b21a5596df055efdea62dd0f71..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/55192323_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1ecf82733f4ac3f5742b56021047659321853f07fcef8d3290b44afe6aca7f1 -size 10141 diff --git a/MM_Math/data_original_21/6951217/math/55232695_42.png b/MM_Math/data_original_21/6951217/math/55232695_42.png deleted file mode 100644 index 46ca4e16733b050750848cf6748f138b7c7cfdb5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/55232695_42.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8289addb3c1e3dd5184598233afec77970fab96182371516a4600ff2033b208 -size 8638 diff --git a/MM_Math/data_original_21/6951217/math/55253057_10.png b/MM_Math/data_original_21/6951217/math/55253057_10.png deleted file mode 100644 index 3b5b9cc265ba6bc58c978c894a6b62813bd100fc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/55253057_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e14d5e3efc49e192d9fc4b33c5170c02c6cdd84693362bf6045adf05feb8460b -size 1930 diff --git a/MM_Math/data_original_21/6951217/math/55307630_21.png b/MM_Math/data_original_21/6951217/math/55307630_21.png deleted file mode 100644 index 517daa21286d8b889bc9cc1863cf384be1ce5134..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/55307630_21.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:567d67e274b35cb8d5fd5983ed8e8954d170203810a5c035ba16b3ebed88020e -size 7343 diff --git a/MM_Math/data_original_21/6951217/math/55329877_00.png b/MM_Math/data_original_21/6951217/math/55329877_00.png deleted file mode 100644 index e63878b06d889e879c9518ec5ccf7e8b1bf374be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/math/55329877_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:609e6aad281dfaf2bf2af4f896a72bf3ad50d7ad3e8b589de3dd56cf5130d07d -size 13994 diff --git a/MM_Math/data_original_21/6951217/solution_images/50810423_800.png b/MM_Math/data_original_21/6951217/solution_images/50810423_800.png deleted file mode 100644 index 706734675bd7f3257913cb69b3dcc8191e6c07a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/solution_images/50810423_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccea2c8230a7a3ea6cba5119a15d24aa763d53c6017323e802f43122404c54ed -size 1222 diff --git a/MM_Math/data_original_21/6951217/solution_images/51212253_7710.png b/MM_Math/data_original_21/6951217/solution_images/51212253_7710.png deleted file mode 100644 index 33f56f84e02da74670b40a58f020573b49e094c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/6951217/solution_images/51212253_7710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e3445d5565af8bb84e7e3f9d536cb09d8c98c755b75e579ce897b60bc547ff0 -size 6955 diff --git a/MM_Math/data_original_21/7028389/math/10378022_370.png b/MM_Math/data_original_21/7028389/math/10378022_370.png deleted file mode 100644 index 567e78ab5bb3dfd6bf7f61beacf97174004fa7d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/10378022_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ddf9305fdf796f330aa0032e1df63df1ba653dd5a4f9d795e668f5fca8a7575 -size 13574 diff --git a/MM_Math/data_original_21/7028389/math/10472128_330.png b/MM_Math/data_original_21/7028389/math/10472128_330.png deleted file mode 100644 index 49e28dbcbac65fa83499428010de26fe08be69ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/10472128_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:410ff26329b7775ca933b952c41e0c0ebbc4e240742e7ec20b127860d05b5b8e -size 5151 diff --git a/MM_Math/data_original_21/7028389/math/17008253_400.png b/MM_Math/data_original_21/7028389/math/17008253_400.png deleted file mode 100644 index 8593329aaa722baaea9bf706e31f413ac0e15d5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/17008253_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1182ea879a50f66341fe4c5f6e09fa042a88272f00c9742d170ede6bf0b3dd67 -size 23431 diff --git a/MM_Math/data_original_21/7028389/math/17148529_430.png b/MM_Math/data_original_21/7028389/math/17148529_430.png deleted file mode 100644 index dd156d9e36f9922e17fd91c7ead4b69f32314769..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/17148529_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67daeaf0eb09673206a399a1efc3fa27fa9ab52337c7bdac91b9c84b6c7cea32 -size 8145 diff --git a/MM_Math/data_original_21/7028389/math/40626917_320.png b/MM_Math/data_original_21/7028389/math/40626917_320.png deleted file mode 100644 index 0ed1fcea0e8d3aa53f14b7ae0b4e3696da8653ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/40626917_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:95c81e2c019a4afb5d69f1817a6b8da1472729dd13f1b21fbf0ff971ee1a886b -size 7198 diff --git a/MM_Math/data_original_21/7028389/math/41691975_300.png b/MM_Math/data_original_21/7028389/math/41691975_300.png deleted file mode 100644 index 0e3222311295d4964650e62e4a25b468b1d368c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/41691975_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:866aa545336f47192fb02a85c269afce94838eec03ceaf78f697a867469db7e0 -size 2934 diff --git a/MM_Math/data_original_21/7028389/math/41968767_295.png b/MM_Math/data_original_21/7028389/math/41968767_295.png deleted file mode 100644 index 8900f5cb9f128a933c464feb6bb0c3a5babe4983..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/41968767_295.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e730b1999cec7421fc22698973947c01d42a2cd0a1735eb64254ddc06d127f9 -size 4828 diff --git a/MM_Math/data_original_21/7028389/math/42265661_310.png b/MM_Math/data_original_21/7028389/math/42265661_310.png deleted file mode 100644 index 684749f990a45f1c9195c79a838df0b0b941635f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/42265661_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a519c692d3cd4deeeafac297393e34bb1a537ccb376be63f4d97cddd882f1b42 -size 10200 diff --git a/MM_Math/data_original_21/7028389/math/42461641_10.png b/MM_Math/data_original_21/7028389/math/42461641_10.png deleted file mode 100644 index 803c0fdf7248bdb2203fb63d7511d72d97c54ebb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/42461641_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce347e49edb8c58b9f9e6fb4f919d51f0d259b0b1948c7ea1e676107f79c8741 -size 9321 diff --git a/MM_Math/data_original_21/7028389/math/42811603_260.png b/MM_Math/data_original_21/7028389/math/42811603_260.png deleted file mode 100644 index 3ea7ef6ee240478e85fc8f1636338a248d4b383c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/42811603_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:faca3352eaa1108862d70d0f8aca91fefbdf57a22847aa97eb3f7d143cbecadb -size 4532 diff --git a/MM_Math/data_original_21/7028389/math/44577371_3820.png b/MM_Math/data_original_21/7028389/math/44577371_3820.png deleted file mode 100644 index 4eda5c60c90e6f4e02c81e3191990760f792dd06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/44577371_3820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54eb25a0babb3307534e5e88abe5c276ac922af2f5fdac0cc0f27de71cc90fb6 -size 28896 diff --git a/MM_Math/data_original_21/7028389/math/46785011_860.jpg b/MM_Math/data_original_21/7028389/math/46785011_860.jpg deleted file mode 100644 index cf112ad405a062d2aa5eea9e83bce78bd87b0319..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/46785011_860.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f335d98dab785cc09ce828694560faa98892944d57d6430ac3934e9b1835220 -size 2089 diff --git a/MM_Math/data_original_21/7028389/math/46869571_844.png b/MM_Math/data_original_21/7028389/math/46869571_844.png deleted file mode 100644 index b5969d3bf3bbda9748fafee198b69fc2728545a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/46869571_844.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02bfff6d4a48ebc6411d81146218223b44a0abee8c89f142ba3f462f4fdaf576 -size 4021 diff --git a/MM_Math/data_original_21/7028389/math/46874295_228.png b/MM_Math/data_original_21/7028389/math/46874295_228.png deleted file mode 100644 index d617c129e9852e4640e986d5676a0cbd49f67f2b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/46874295_228.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62da2f3a858f4f41b455571891e29388231a357306cae4ef0cc6daf41e84a7fb -size 7641 diff --git a/MM_Math/data_original_21/7028389/math/46945329_194.png b/MM_Math/data_original_21/7028389/math/46945329_194.png deleted file mode 100644 index 5c056f2f5e9b5367b2fcebe81187f3b1806dd239..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/46945329_194.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2aedc2cb94d9bb94af2dd6f3be067ed21f654eab9907c45395ebd68371d28d4 -size 7727 diff --git a/MM_Math/data_original_21/7028389/math/47019465_205.png b/MM_Math/data_original_21/7028389/math/47019465_205.png deleted file mode 100644 index 623fabb4636103f62da236b92f40311a319ffd9b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/47019465_205.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:458b2044fe9dc9ae0661d51da1270d6dc1ca3aee284a5139dcbfc811b847d266 -size 4622 diff --git a/MM_Math/data_original_21/7028389/math/47111555_794.png b/MM_Math/data_original_21/7028389/math/47111555_794.png deleted file mode 100644 index a58296cf4934015f6d29ac7b6e7f6e79db6a7994..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/47111555_794.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:914c766b311c547152b79bf36dd1a5700ec622b31e7dd92e337052dd6f4651e7 -size 4247 diff --git a/MM_Math/data_original_21/7028389/math/47241291_7502.png b/MM_Math/data_original_21/7028389/math/47241291_7502.png deleted file mode 100644 index 27e1b22a6b39fce3b41be60ce10e3245ff960e94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/47241291_7502.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7f646bb7d309f785f1c0601ec2c577a14eb5cf810f1e08799393b98ff441d74 -size 7758 diff --git a/MM_Math/data_original_21/7028389/math/47241293_7514.png b/MM_Math/data_original_21/7028389/math/47241293_7514.png deleted file mode 100644 index b435007dc68a93ffbc6986a66f6692325006a877..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/47241293_7514.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0ad44807808278c5e61f7c7b27a16dd15465ebd125b70de7436a472c2b397d1 -size 6945 diff --git a/MM_Math/data_original_21/7028389/math/47362683_05.png b/MM_Math/data_original_21/7028389/math/47362683_05.png deleted file mode 100644 index 60b9584df09b2b041a8764228b983d4aa0b70424..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/47362683_05.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf6323980218396b446c2e7b9b32d5c1e7e5885629a9142ffb82c66c1f651f05 -size 2022 diff --git a/MM_Math/data_original_21/7028389/math/47364523_8002.png b/MM_Math/data_original_21/7028389/math/47364523_8002.png deleted file mode 100644 index 40ab3977b8b91c7bcf4d5bcb8af280ca6377887c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/47364523_8002.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f15710ed61c27ba04cc22193e7f293784b066ea939a1c0ef252d5ae44af2d8e -size 11399 diff --git a/MM_Math/data_original_21/7028389/math/47364525_8015.png b/MM_Math/data_original_21/7028389/math/47364525_8015.png deleted file mode 100644 index 7cce6a7538891d1fdf5a36b0a53f693e68853574..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/47364525_8015.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba6ee96acbcd664719e0c3f3f69c09c2f52893ff01cd889f4b5587ff27bd94b4 -size 9648 diff --git a/MM_Math/data_original_21/7028389/math/47364527_8025.png b/MM_Math/data_original_21/7028389/math/47364527_8025.png deleted file mode 100644 index 8849e3755c6550947c9e91b16bb8802c35c72462..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/47364527_8025.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f19a7968cd2752b4fc64b72d9bc0b11d6aa438b43e80b752178d341357d1110 -size 4312 diff --git a/MM_Math/data_original_21/7028389/math/50056777_240.png b/MM_Math/data_original_21/7028389/math/50056777_240.png deleted file mode 100644 index ecc3f5afc57539264b40f9a0b22cfed22264de63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/50056777_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b14ec5c3ad29d95a71bfc284f27c3ea17d7884102075caca8053bc90c2777be -size 5231 diff --git a/MM_Math/data_original_21/7028389/math/50083331_259.png b/MM_Math/data_original_21/7028389/math/50083331_259.png deleted file mode 100644 index e59b8b1566ecdb1afababe80f0876225b0a16e50..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/50083331_259.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63c68791286edce0def589b02cc75a1856d0be776b2fa227c2c526e107116435 -size 6027 diff --git a/MM_Math/data_original_21/7028389/math/50166938_217.png b/MM_Math/data_original_21/7028389/math/50166938_217.png deleted file mode 100644 index 87f2bba3cd1d3a2c2d6f2b29d28f6763d5cdd252..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/50166938_217.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2fb8eab42de610bd541e7020c30632e33cb4412b7f1ca892ab1dee0f9993edce -size 4815 diff --git a/MM_Math/data_original_21/7028389/math/50518431_830.png b/MM_Math/data_original_21/7028389/math/50518431_830.png deleted file mode 100644 index 634045917cec8d1fd70077f438c0147f7b60ac66..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/50518431_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63363339f7b84514bf0e0e3b2ff65e46cb25f654613cd6cbaae41affa6fb0e6a -size 8979 diff --git a/MM_Math/data_original_21/7028389/math/50710244_820.jpg b/MM_Math/data_original_21/7028389/math/50710244_820.jpg deleted file mode 100644 index b0fef94b1b0ab91e28db68f3359cc381bb48ee6a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/50710244_820.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:935715a72d4cfff9e54500ec53fa491e3f720bbb2aa63a0692228acdd87cad09 -size 2990 diff --git a/MM_Math/data_original_21/7028389/math/50810088_270.png b/MM_Math/data_original_21/7028389/math/50810088_270.png deleted file mode 100644 index 2d899b86e0ea6a210161fd855aef8771c8084c0c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/50810088_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3df49d82a54bdd0e30e3c5d95fc4ed534ecc977be9bb180c13cc03dc1ae94a61 -size 6759 diff --git a/MM_Math/data_original_21/7028389/math/50815659_176.png b/MM_Math/data_original_21/7028389/math/50815659_176.png deleted file mode 100644 index 0e7b7086d81b0fdb6e5de6c580785d755c09674e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/50815659_176.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1a61af0b0a0fa7a2997725546e19aab5b2a7932f84515fd01744acaa88cfa969 -size 4537 diff --git a/MM_Math/data_original_21/7028389/math/50938639_855.png b/MM_Math/data_original_21/7028389/math/50938639_855.png deleted file mode 100644 index e581a33ef576ccd351f7f1c82eecd09226db51bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/50938639_855.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a49bc64a4806ebd98f147e5147ea1b50ac950ddfde56a7ecd06a63e7eb6e95f -size 4008 diff --git a/MM_Math/data_original_21/7028389/math/51081262_160.png b/MM_Math/data_original_21/7028389/math/51081262_160.png deleted file mode 100644 index be8e9fef89fe7c10e08461233b64a9f2844a4c8b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51081262_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b21a44dd0b8c16db2edee1b8c2ec2f377312f625af2c2284e4b20de936ff5c3f -size 1930 diff --git a/MM_Math/data_original_21/7028389/math/51208120_185.png b/MM_Math/data_original_21/7028389/math/51208120_185.png deleted file mode 100644 index cf5bcfc7666a23d598e6bf547fd635d69a4e872d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51208120_185.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:112eb0858335771ad7305220ca3faa878ca503733c890080693e52c9a57e6cc5 -size 2796 diff --git a/MM_Math/data_original_21/7028389/math/51208154_280.png b/MM_Math/data_original_21/7028389/math/51208154_280.png deleted file mode 100644 index 9986a4d712322993879d9d3aebc2c08956dbe171..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51208154_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b2d3027f330eaf412aaf3876d08291234a96c0ffe8bdaee6ab49f910f6c9b03 -size 4269 diff --git a/MM_Math/data_original_21/7028389/math/51244984_810.png b/MM_Math/data_original_21/7028389/math/51244984_810.png deleted file mode 100644 index bd0da494c90dd4baed983b29b39dc2362f5f04b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51244984_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a1deb7ae3bf25a779b8fad5ba007ff1883d7007683cbb2460b7b20678024286 -size 2859 diff --git a/MM_Math/data_original_21/7028389/math/51251865_140.png b/MM_Math/data_original_21/7028389/math/51251865_140.png deleted file mode 100644 index 2104021b8c241eb5eea790aedb4344dd95a66924..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51251865_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f633e5fd0571df53454ecf5392290c841d5a439cb11207934d08e0d6bcef8ee -size 7883 diff --git a/MM_Math/data_original_21/7028389/math/51284834_692.png b/MM_Math/data_original_21/7028389/math/51284834_692.png deleted file mode 100644 index 3ee707c6c976a97f0260a5248a0d68298f8a68f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51284834_692.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:304daded0f58e21c6d571834cdfc4d20c75eba6507ba9e4a393070f87b5a42eb -size 2995 diff --git a/MM_Math/data_original_21/7028389/math/51291351_680.png b/MM_Math/data_original_21/7028389/math/51291351_680.png deleted file mode 100644 index 7dc6dd65dee301500dfd46585e4472bad129678e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51291351_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b822dc07f1201a9568a667609536bd2f2dc1cd87f82c3b9f26e550215e69a82 -size 7360 diff --git a/MM_Math/data_original_21/7028389/math/51321764_604.png b/MM_Math/data_original_21/7028389/math/51321764_604.png deleted file mode 100644 index ad87177f6d8a7a6c5494f5b60a973a39fe652f97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51321764_604.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:427bbbbf0cc99f37ecb4e655343ae1283283c36f0154189c9b5104f45b00cba6 -size 27590 diff --git a/MM_Math/data_original_21/7028389/math/51355508_710.png b/MM_Math/data_original_21/7028389/math/51355508_710.png deleted file mode 100644 index 61dbbd41df765ee5bb803f5c0264eb326054c96e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51355508_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:294a6d3845b173e7277ba92057fb35e60029b64b74bcb184d76e0af8e9c3824b -size 10469 diff --git a/MM_Math/data_original_21/7028389/math/51385668_450.jpg b/MM_Math/data_original_21/7028389/math/51385668_450.jpg deleted file mode 100644 index c3069418253370a13c70ab517818b6ef2778ade2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51385668_450.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9686f222954f9f62deeb3439877abb1f9daf486227f3baad0af8565eaf7ae8f6 -size 6361 diff --git a/MM_Math/data_original_21/7028389/math/51385746_620.png b/MM_Math/data_original_21/7028389/math/51385746_620.png deleted file mode 100644 index 58363c41bfb345e15eca8e7ab80645cbafb6e562..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51385746_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba582118c408ca4db8d62856a7147ade620c7281ca6e6012d46d0b5a0575215c -size 9415 diff --git a/MM_Math/data_original_21/7028389/math/51407218_785.png b/MM_Math/data_original_21/7028389/math/51407218_785.png deleted file mode 100644 index def239f8ea9d0a8a099618f61c305614975c1916..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51407218_785.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4caddc71d3062b08b0e962919ecc63374a1f411b319b34f758afdbd7d8ae5e5 -size 8307 diff --git a/MM_Math/data_original_21/7028389/math/51438537_420.png b/MM_Math/data_original_21/7028389/math/51438537_420.png deleted file mode 100644 index 5fbb7ca98c42c5af94f1ca3eaabc05db677753e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51438537_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:231ddaa82d419528436edbc0fb941390e99ac45b94feef69c2aa0db4e60f59f5 -size 6327 diff --git a/MM_Math/data_original_21/7028389/math/51438807_740.png b/MM_Math/data_original_21/7028389/math/51438807_740.png deleted file mode 100644 index 19102e3f8883f8429c3f42305f6dd3ab16c52d7d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51438807_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48e79b68163c9e3f801f0ff4f89bf2e4a6a9287ec05d99711a6cee457bb1f59f -size 3927 diff --git a/MM_Math/data_original_21/7028389/math/51482328_730.png b/MM_Math/data_original_21/7028389/math/51482328_730.png deleted file mode 100644 index 58b365c65b81b161e59d21c95129fb6e4e288077..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51482328_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59d57d65e705c0565f72090ef74e9a94ce9ec609bd426e38fb57271819330fb0 -size 12641 diff --git a/MM_Math/data_original_21/7028389/math/51495039_659.png b/MM_Math/data_original_21/7028389/math/51495039_659.png deleted file mode 100644 index 1223af3ffd0c2b607a30ad46057d01d3a892190f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51495039_659.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c17a25273c81ad0dbf3adde0fff2ea5b29382361e3e508bbe764562de5e76be -size 18787 diff --git a/MM_Math/data_original_21/7028389/math/51495163_413.png b/MM_Math/data_original_21/7028389/math/51495163_413.png deleted file mode 100644 index 0f0504a941e0dc1651bf93688604eedc153987f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51495163_413.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68431d144a38bca11ce933bc86e084a54ced5ad9a4865cbff9fe015ab49dcd07 -size 5399 diff --git a/MM_Math/data_original_21/7028389/math/51495371_112.png b/MM_Math/data_original_21/7028389/math/51495371_112.png deleted file mode 100644 index 8cec769c2c09929b6d21210068dc7d5f486ae3dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/51495371_112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7e3ab700391886d0ae1ce2c2c182ed1ecf1267b24d811a97bbdca256e5011a8 -size 3591 diff --git a/MM_Math/data_original_21/7028389/math/52169374_770.png b/MM_Math/data_original_21/7028389/math/52169374_770.png deleted file mode 100644 index 2fad41fedac3efb580e3814af63cd3294c865ef3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52169374_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72c448ea23853af31ae0c91d14500db088ebbc1945a7968fe0f4b60207891081 -size 28741 diff --git a/MM_Math/data_original_21/7028389/math/52169848_760.png b/MM_Math/data_original_21/7028389/math/52169848_760.png deleted file mode 100644 index 98740d9b624e479183db757a8395a4570d320c7b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52169848_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3d60666c3f8dce95bce89f6c140671f71f17832c9784f2856a64661df850ef0 -size 8720 diff --git a/MM_Math/data_original_21/7028389/math/52169958_236.png b/MM_Math/data_original_21/7028389/math/52169958_236.png deleted file mode 100644 index 1dbd01a02dd9dc1136b045823f2843bdc721245d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52169958_236.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4aac04dd88ffca9fe7d6865f1d87db844288ae18e7295f434815dc2fc73297ac -size 5425 diff --git a/MM_Math/data_original_21/7028389/math/52441579_460.png b/MM_Math/data_original_21/7028389/math/52441579_460.png deleted file mode 100644 index c84f64e2a4eaca1f61a7893ac15347c85bd59551..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52441579_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:825df4fd465795687e3df2f657d483ab44b5bdc3d5b29de47804fac526b50dab -size 135838 diff --git a/MM_Math/data_original_21/7028389/math/52576677_90.png b/MM_Math/data_original_21/7028389/math/52576677_90.png deleted file mode 100644 index 635b52b4c5edd9673ed41f9b8ace66c326785a7f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52576677_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:276e952280a9dd216156f2885ef6ea30de67211f8d3636032e65ca82fed0239b -size 9290 diff --git a/MM_Math/data_original_21/7028389/math/52580479_150.png b/MM_Math/data_original_21/7028389/math/52580479_150.png deleted file mode 100644 index aea11a31528230a8a0495ab5663f20a5111baa22..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52580479_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:baab0205699d1e8c9f72b3c8a60ef0d758e713a1019b47813b006c69f76c1c7b -size 25615 diff --git a/MM_Math/data_original_21/7028389/math/52746394_135.png b/MM_Math/data_original_21/7028389/math/52746394_135.png deleted file mode 100644 index 83f48aeb76339b2e27ddc944e88093a5bb339077..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52746394_135.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24a5189afb0393a7fd6d07f1cfb7363b60a912ef4a8bd7277c1473f66823e24b -size 7074 diff --git a/MM_Math/data_original_21/7028389/math/52794314_636.png b/MM_Math/data_original_21/7028389/math/52794314_636.png deleted file mode 100644 index 258291031b63e92e9940f3ee38350c1f71b8452e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52794314_636.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03625281501a6d008d4b1d2ee749a3ae261766f5fff580774726d2a3b3a7337b -size 150924 diff --git a/MM_Math/data_original_21/7028389/math/52794957_120.png b/MM_Math/data_original_21/7028389/math/52794957_120.png deleted file mode 100644 index 487214b2eaebf9749d5c50550084550517aab4b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52794957_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a2c080b972cfe9fa8ee59fddcb7c0e66791f7464afe5fce6f0ec718c1347de7 -size 6855 diff --git a/MM_Math/data_original_21/7028389/math/52796148_720.png b/MM_Math/data_original_21/7028389/math/52796148_720.png deleted file mode 100644 index 6f97e97b8d8a5fd9e0179c8a3c7bcdbfb3f83624..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52796148_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d73642c9d63aa3bf35d8fd2ebb9f43b501c3454ac171dada65541678e000cc9b -size 4532 diff --git a/MM_Math/data_original_21/7028389/math/52915719_104.png b/MM_Math/data_original_21/7028389/math/52915719_104.png deleted file mode 100644 index 45fe8525a90f93754a6519b7f6e113d03b3ce4c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52915719_104.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fd19470a0333c36cbc27d54838739e953287e564c2dba3e561777df23dba2754 -size 2768 diff --git a/MM_Math/data_original_21/7028389/math/52916142_6400.png b/MM_Math/data_original_21/7028389/math/52916142_6400.png deleted file mode 100644 index 7dd7e7feab4891cf193d66a2d5f9a02ebe7c4db2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52916142_6400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:273c2fcd2551b7bce37ffa69b5d2636aec890675e7ae8b7be6c8360f021cbc26 -size 2218 diff --git a/MM_Math/data_original_21/7028389/math/52916143_6410.png b/MM_Math/data_original_21/7028389/math/52916143_6410.png deleted file mode 100644 index f74dca7ddfbca9ce04c64dde866df5747b1f7ca2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52916143_6410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20e70480ea3d990e1975eb69282b9d7c8998339c407395a63f373f84af72a746 -size 2540 diff --git a/MM_Math/data_original_21/7028389/math/52916218_668.png b/MM_Math/data_original_21/7028389/math/52916218_668.png deleted file mode 100644 index c8d6348cd42f48dde3026a33fab8e68a7b64ce91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/52916218_668.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b51d419cba66deade74d507a78cf7473b03b0a5a3e8b4546820eb2bea101ad2 -size 3743 diff --git a/MM_Math/data_original_21/7028389/math/53066780_76.png b/MM_Math/data_original_21/7028389/math/53066780_76.png deleted file mode 100644 index c3d72b2f2510057c33a11336b23597dab60ac73f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53066780_76.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ab0b7131948866e1af2de0c756e731bcd7bbdb8fcdf671065340cf2e3785e0c -size 1990 diff --git a/MM_Math/data_original_21/7028389/math/53066781_610.png b/MM_Math/data_original_21/7028389/math/53066781_610.png deleted file mode 100644 index 7d4103a22bede208141617b48042bf789ee22071..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53066781_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:087f2a9b3c63aa645a369e85502c48895990b1eb535396ca37290a94ad2757a7 -size 2163 diff --git a/MM_Math/data_original_21/7028389/math/53119273_577.png b/MM_Math/data_original_21/7028389/math/53119273_577.png deleted file mode 100644 index 6f38c2a8c109c73fc25dbfb7924579195e28e8f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53119273_577.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99a593c3b6cfc19738149b796f5fb37d5fb35cdaa8c1ce072f7dfe5130848559 -size 7175 diff --git a/MM_Math/data_original_21/7028389/math/53119812_565.png b/MM_Math/data_original_21/7028389/math/53119812_565.png deleted file mode 100644 index 51fd0a3fc1f7b4c7c8e2a0621ad40ece42084816..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53119812_565.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42ab78d93969ed7a88d4bd3a602790b9eec226ca0e93764976cfd436003c15bc -size 4396 diff --git a/MM_Math/data_original_21/7028389/math/53195491_580.png b/MM_Math/data_original_21/7028389/math/53195491_580.png deleted file mode 100644 index 83d57a7f96d2171f731fa897160bf8643ae4a44e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53195491_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3bc9b6660be92d8e42b88e246dd052923f5263e299450387bcdba7f277142ede -size 38240 diff --git a/MM_Math/data_original_21/7028389/math/53206051_595.png b/MM_Math/data_original_21/7028389/math/53206051_595.png deleted file mode 100644 index 5bb7fa5828f4e953bff04c4fb4cebc6ef3068b07..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53206051_595.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13962a34e7767399bfac6ed6c74bcee3b7b3ae1a940e1bb852b19bd8283f67e4 -size 10751 diff --git a/MM_Math/data_original_21/7028389/math/53206394_87.png b/MM_Math/data_original_21/7028389/math/53206394_87.png deleted file mode 100644 index 354893f0ae77a4821a0f4df38ef89644330529ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53206394_87.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d08b3c227e80ac455dbb29d386407d90c0580f7a0b2fbfd3e2c368fdd099b3d -size 48611 diff --git a/MM_Math/data_original_21/7028389/math/53206857_610.png b/MM_Math/data_original_21/7028389/math/53206857_610.png deleted file mode 100644 index 6e0bb74711ac417c3f68604fc4af172f8f271163..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53206857_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19db1cc2fe36487184ad4bbd7d86a00c11825188fb4d62231dc66a93aeae807b -size 8928 diff --git a/MM_Math/data_original_21/7028389/math/53253309_707.png b/MM_Math/data_original_21/7028389/math/53253309_707.png deleted file mode 100644 index f191f07a0b43e4d88a3b5cd0c17ce10b1e446942..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53253309_707.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f3018783b19bfbf4486fb9a46536fef36c06d4fa6370778b627c06ece288b73 -size 28872 diff --git a/MM_Math/data_original_21/7028389/math/53403787_396.png b/MM_Math/data_original_21/7028389/math/53403787_396.png deleted file mode 100644 index 05dcddd02d688281ddf36594a8e51e2dc9c7a87e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53403787_396.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b13ae68e258a82b03c81b559c9016aec9bc7d0165e665b78a1a0a6793a237f8a -size 61706 diff --git a/MM_Math/data_original_21/7028389/math/53404231_678.png b/MM_Math/data_original_21/7028389/math/53404231_678.png deleted file mode 100644 index 21f4ffb15e377ddd2d16f43a58f84a5c789844b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53404231_678.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:57655a21bced510322c28417dc09975e2de86fbb942f28095711047d9e071625 -size 4339 diff --git a/MM_Math/data_original_21/7028389/math/53413072_500.png b/MM_Math/data_original_21/7028389/math/53413072_500.png deleted file mode 100644 index 7f89f7b52aba21bdc16892a07789406d76bc1e75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53413072_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db47d7736ca01a16198b1bb67337ccdf19f707b67eeeb851f0447acd35fd5a1f -size 5776 diff --git a/MM_Math/data_original_21/7028389/math/53413592_553.png b/MM_Math/data_original_21/7028389/math/53413592_553.png deleted file mode 100644 index 7f390df9ad0117278f9b027d8c1802afc07327a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53413592_553.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a577629c14139af03438d03b405c0a24acf6e61f1cbde357c7860e01d0193ad -size 23751 diff --git a/MM_Math/data_original_21/7028389/math/53520190_470.png b/MM_Math/data_original_21/7028389/math/53520190_470.png deleted file mode 100644 index f0bb10c5b7bba2f4c1d8887751c5ab5bf7922e95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53520190_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3f0ec20229e93631df24089996dd4aee763a6f0ab4ba0011cab902ee5dfa02e -size 23428 diff --git a/MM_Math/data_original_21/7028389/math/53833477_4914.png b/MM_Math/data_original_21/7028389/math/53833477_4914.png deleted file mode 100644 index d963f325a12119bf6e48624356823dde6c681862..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/53833477_4914.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1271aff27ca60228770bcdb478b8ecf607689fb08e55e8dbb12cdd87e4f2c01 -size 66496 diff --git a/MM_Math/data_original_21/7028389/math/54474421_5402.png b/MM_Math/data_original_21/7028389/math/54474421_5402.png deleted file mode 100644 index 0928fdb487160bf8615996eaeb142966d9297e6e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/54474421_5402.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0e09c4ed177f2c4dc9370b7345449c513478c998138cebb202646628611c972 -size 26558 diff --git a/MM_Math/data_original_21/7028389/math/54474422_5415.png b/MM_Math/data_original_21/7028389/math/54474422_5415.png deleted file mode 100644 index e3cd81a4a2287e627b20ff05037e2c828242ef65..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/54474422_5415.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8997166be1b2f60a3bbae9ddc52cba612d803d4e28f17c0025b282c5b391f20d -size 26565 diff --git a/MM_Math/data_original_21/7028389/math/54474422_5418.png b/MM_Math/data_original_21/7028389/math/54474422_5418.png deleted file mode 100644 index d48768c62d94c184d38afa63c20be5e97b31f43b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/54474422_5418.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d6c980780f074b50585857aae8689afd90de831365ec78e6cfc8a6f697129f9 -size 27166 diff --git a/MM_Math/data_original_21/7028389/math/54654114_517.png b/MM_Math/data_original_21/7028389/math/54654114_517.png deleted file mode 100644 index 877cef7c6ee8e8038e43e7c542de3a5abec5c4d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/54654114_517.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b2b2aa8e70e2c37d60a5dacfbbb45ad0221d6b957105e1ed95fa0ce99681944 -size 10088 diff --git a/MM_Math/data_original_21/7028389/math/54661756_480.png b/MM_Math/data_original_21/7028389/math/54661756_480.png deleted file mode 100644 index 8c3a438bd011971d63603d89a1d0f184e9c9382a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/54661756_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d4d68f19a2d3ebcba870cda71a1c2fa09ebad9592ed7d69c86558f267dc4fc2 -size 77749 diff --git a/MM_Math/data_original_21/7028389/math/54883358_5317.png b/MM_Math/data_original_21/7028389/math/54883358_5317.png deleted file mode 100644 index 1ce46127db280ff734e21875c39ff2a23c7091f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/54883358_5317.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74ca8554ee461e104803594d10eb570cb445df9b3ae486c9d5a28cd3f3eae732 -size 105607 diff --git a/MM_Math/data_original_21/7028389/math/54927325_50.png b/MM_Math/data_original_21/7028389/math/54927325_50.png deleted file mode 100644 index b6c80206af1befe45f382d0c81f04d8cc31a6d3e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/54927325_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3114ee58b9fabf7426d0ec8696075ae16687f0520af2901b8d70e11777993855 -size 47026 diff --git a/MM_Math/data_original_21/7028389/math/54927701_40.png b/MM_Math/data_original_21/7028389/math/54927701_40.png deleted file mode 100644 index 37ced61f4a581c3e0c5dbbe09bdcec46c55b20b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/54927701_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2aa6d4da54ef02338714fd919bf4501d2c06a120d3971a7b0bd2c52372e31673 -size 21276 diff --git a/MM_Math/data_original_21/7028389/math/55093220_520.png b/MM_Math/data_original_21/7028389/math/55093220_520.png deleted file mode 100644 index 770bea534a0ce85bcea6827715fbcf9d1e1852b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/55093220_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:22c02ff010c52708a582719ffb1057316a57e1fee1989939431df7254f36ebb8 -size 46694 diff --git a/MM_Math/data_original_21/7028389/math/55426249_36.png b/MM_Math/data_original_21/7028389/math/55426249_36.png deleted file mode 100644 index f8d4274439402727a471e5ad852939fd2d3b162d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/55426249_36.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9deba314363c1cf718002c6eb33b57d35eb26165b51be14a9e32102b55a3f34 -size 41282 diff --git a/MM_Math/data_original_21/7028389/math/55431957_20.jpeg b/MM_Math/data_original_21/7028389/math/55431957_20.jpeg deleted file mode 100644 index f53e223b98e3db653f1fa4ffc35cc67e8c83fa79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/55431957_20.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13a7cf4ac715a84a0c4e41e76ae181478a80d9241cfadf19d03fca0e6ccbd81a -size 7130 diff --git a/MM_Math/data_original_21/7028389/math/6972741_360.png b/MM_Math/data_original_21/7028389/math/6972741_360.png deleted file mode 100644 index ce0639832bc90f68f03d793fcbad5544738af012..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/6972741_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca310062d14222285e08d886fbfdd63b05a6816280838b148df397fe14869511 -size 1171 diff --git a/MM_Math/data_original_21/7028389/math/8753334_350.jpg b/MM_Math/data_original_21/7028389/math/8753334_350.jpg deleted file mode 100644 index a2ef6fc90a98e546f63138861dffd67837c87c5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/8753334_350.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45aabca44e7a0c97b3fc07dfd7c393c5f975dbad4e78ce18e834a01281008b8e -size 3086 diff --git a/MM_Math/data_original_21/7028389/math/8928624_341.png b/MM_Math/data_original_21/7028389/math/8928624_341.png deleted file mode 100644 index ec08a141d6895f39d0a218a539c179d589e2efac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/8928624_341.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:091d39041130eaf8fa60b404cc9cb04348fdf5abd93104fb3fd7febc8b7efffc -size 1999 diff --git a/MM_Math/data_original_21/7028389/math/8928654_440.png b/MM_Math/data_original_21/7028389/math/8928654_440.png deleted file mode 100644 index 6e9ce67fcb0be1978ca73c567489ee50bccc5e7b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/8928654_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8c9e453b2a390c86d641e4e67da2ccadb3a81951a99a741fae063cf10c63c2c -size 8479 diff --git a/MM_Math/data_original_21/7028389/math/9153886_382.png b/MM_Math/data_original_21/7028389/math/9153886_382.png deleted file mode 100644 index 4eda5c60c90e6f4e02c81e3191990760f792dd06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/math/9153886_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54eb25a0babb3307534e5e88abe5c276ac922af2f5fdac0cc0f27de71cc90fb6 -size 28896 diff --git a/MM_Math/data_original_21/7028389/solution_images/42461641_10.jpg b/MM_Math/data_original_21/7028389/solution_images/42461641_10.jpg deleted file mode 100644 index 0385aaa74e3d1322c2488618fa7f07a77268303f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/solution_images/42461641_10.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21a5483e156df8a736c8e1d39e3a0341fdbdadf28ebae910ad9de2d26d15e312 -size 3472 diff --git a/MM_Math/data_original_21/7028389/solution_images/52441579_460.png b/MM_Math/data_original_21/7028389/solution_images/52441579_460.png deleted file mode 100644 index cbabb6c356f38e2c1ea3f1c1cd084bedbb9b36fa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/solution_images/52441579_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62800f85a392154d623fe7d4840f90e75a2612e5e0fdb094c5298ee86d85d086 -size 78725 diff --git a/MM_Math/data_original_21/7028389/solution_images/53833477_4919.png b/MM_Math/data_original_21/7028389/solution_images/53833477_4919.png deleted file mode 100644 index cceaf1da3ebc61ec99b191eaef055e867b5963fc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/solution_images/53833477_4919.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ebb320789295747b4b8f696ccf30fe6cad133ccf387168e444ce790dda934a3 -size 24981 diff --git a/MM_Math/data_original_21/7028389/solution_images/53833477_4929.png b/MM_Math/data_original_21/7028389/solution_images/53833477_4929.png deleted file mode 100644 index 778795bd9868bdac5338386c188c36ffb4a8ebe6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/solution_images/53833477_4929.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:628fd016fe8c374aa5f00f3d80be273952baae23754ceb11f6905e5ca41467d1 -size 26149 diff --git a/MM_Math/data_original_21/7028389/solution_images/53833477_499.png b/MM_Math/data_original_21/7028389/solution_images/53833477_499.png deleted file mode 100644 index b28fc02916e6e7aade77a12858fe42df0781e0a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7028389/solution_images/53833477_499.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6676e13c54fe2eaf2598903e12252290d2c4087a99fc6c184661c51107d851ed -size 21915 diff --git a/MM_Math/data_original_21/7038193/math/40552727_301.png b/MM_Math/data_original_21/7038193/math/40552727_301.png deleted file mode 100644 index 73a81c1a2dffa356a326bd03bda7f84c5104482e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/40552727_301.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:271644116fa15efbd067ce619298386d64516958ed0e7647d2b57b19dc328280 -size 962 diff --git a/MM_Math/data_original_21/7038193/math/47362705_870.png b/MM_Math/data_original_21/7038193/math/47362705_870.png deleted file mode 100644 index 7b10cea667e2fc1290c78836cb23e54857c79d63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/47362705_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9618697e81e16e8ab2df3a38187a53dea533bda0c7496a8fdca249562ae6adbe -size 5150 diff --git a/MM_Math/data_original_21/7038193/math/50057191_491.png b/MM_Math/data_original_21/7038193/math/50057191_491.png deleted file mode 100644 index 8bf38bf31dc7b35b0491038e734e6171a14c8163..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/50057191_491.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89781537ab8e065abf25446e80c36c561d308b41a5fa90a695d6d653edd09071 -size 3083 diff --git a/MM_Math/data_original_21/7038193/math/53042405_43.png b/MM_Math/data_original_21/7038193/math/53042405_43.png deleted file mode 100644 index a4395f2a2584acbe8c61b1c3541fbee360918f5c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53042405_43.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3d817c2dc0323522675a6c1482832f0a0f4a6e6acbc2b7fa4ff423f3663efde6 -size 3004 diff --git a/MM_Math/data_original_21/7038193/math/53124523_20.png b/MM_Math/data_original_21/7038193/math/53124523_20.png deleted file mode 100644 index b591f678bc259196a4cf96ee47e6e45157d6af5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53124523_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:135c029e38d23e5aaa689f624e94dba211e00bc47f377cedab456b4c430c11c4 -size 2773 diff --git a/MM_Math/data_original_21/7038193/math/53205972_500.png b/MM_Math/data_original_21/7038193/math/53205972_500.png deleted file mode 100644 index a4135b67a30443ff9dbf26919fac8105161a5b87..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53205972_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ebaf1443feef20f253d413fc56ed3f9c90cc088c0c6237371b2bdb4776a6cb81 -size 2927 diff --git a/MM_Math/data_original_21/7038193/math/53364075_965.png b/MM_Math/data_original_21/7038193/math/53364075_965.png deleted file mode 100644 index 5deeae006721f6e955ed996e4f934693b1b7ef8b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53364075_965.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b16e841535c9db86e8f04f84b22274cff02d1153fddf047f5a7ae1888f335bb6 -size 19193 diff --git a/MM_Math/data_original_21/7038193/math/53364112_985.png b/MM_Math/data_original_21/7038193/math/53364112_985.png deleted file mode 100644 index 999e98f2f19b5822b3e92cbf96ee9bb81c3dd33f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53364112_985.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bcca8b80eb7276110e8636f1589ff56903fa17d56d7f66b1b3e6c7987e35024b -size 6566 diff --git a/MM_Math/data_original_21/7038193/math/53364494_485.png b/MM_Math/data_original_21/7038193/math/53364494_485.png deleted file mode 100644 index 478ee393482aa2b147816afa80f29fd121c47a7c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53364494_485.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07f0296320343bfbf7bf03e2b60fac1a58c2bc7e0cd99072669adc808bf81ef1 -size 952 diff --git a/MM_Math/data_original_21/7038193/math/53364698_994.png b/MM_Math/data_original_21/7038193/math/53364698_994.png deleted file mode 100644 index 042c017de600ccd877304a82d7cf89228f5b80c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53364698_994.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b24408b3e752ccbaa84d664b48a088c2cf8d2151621065e1b8636b677dd1b91d -size 2161 diff --git a/MM_Math/data_original_21/7038193/math/53364701_974.png b/MM_Math/data_original_21/7038193/math/53364701_974.png deleted file mode 100644 index cc9b034e516ae4ceb1dfe24acbf67d7f0d5f3c77..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53364701_974.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b102db60e8ac03db7b5cfc7021d828910edfe0494ba12741ec3b62e2b52a1b49 -size 689 diff --git a/MM_Math/data_original_21/7038193/math/53403641_933.png b/MM_Math/data_original_21/7038193/math/53403641_933.png deleted file mode 100644 index 3dd8c83bb691ebfe4ec6dba405f222741f30606d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53403641_933.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc94644ce555adcdafde7625f4d1adbae1fa9cca9d310789d8aa48dc47154d75 -size 5676 diff --git a/MM_Math/data_original_21/7038193/math/53404004_452.png b/MM_Math/data_original_21/7038193/math/53404004_452.png deleted file mode 100644 index f254aec07d1452b8e96db1d74db97d9abe70d9c5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404004_452.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc7d2a5e685daf8c0932d52512981da694c26e9f67ba73f052ebf2b782c8a4de -size 8865 diff --git a/MM_Math/data_original_21/7038193/math/53404010_896.png b/MM_Math/data_original_21/7038193/math/53404010_896.png deleted file mode 100644 index 6fc0744d9056d956cb62162c38a9eda31b450074..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404010_896.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43a3953f4c5f5f6293c3d421b65b6548f350f50e68814abad50f87dd9abd7117 -size 2206 diff --git a/MM_Math/data_original_21/7038193/math/53404083_880.png b/MM_Math/data_original_21/7038193/math/53404083_880.png deleted file mode 100644 index ed91226554498da28480359fb25969fa94a92005..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404083_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:efff06f08bce5ba940affdeb38987aff677f41d5802cbf8a38e6fcc71ecc5db3 -size 4338 diff --git a/MM_Math/data_original_21/7038193/math/53404099_466.png b/MM_Math/data_original_21/7038193/math/53404099_466.png deleted file mode 100644 index 7701ea1abd10d70550536f5a2fff82f6e49513ad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404099_466.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5859b120d3ab21e5e7a52bb745c824554a0cd73d3036c6413464a4c27138a448 -size 996 diff --git a/MM_Math/data_original_21/7038193/math/53404119_955.png b/MM_Math/data_original_21/7038193/math/53404119_955.png deleted file mode 100644 index 4d950d8d6c818f5e145da84454d0695df95484b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404119_955.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be5019eb4bf87f059d11bde335a45acb0967135419034be3034a5d0a6536856b -size 13414 diff --git a/MM_Math/data_original_21/7038193/math/53404318_255.png b/MM_Math/data_original_21/7038193/math/53404318_255.png deleted file mode 100644 index c834f2effb2431777b630d3ab5d6c17a138d1397..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404318_255.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ad8f08fed9c24b0a47bd061d044e287626142fa3ddcaf7f30a0a51c75762e1d -size 24701 diff --git a/MM_Math/data_original_21/7038193/math/53404466_240.png b/MM_Math/data_original_21/7038193/math/53404466_240.png deleted file mode 100644 index 386d4cef055150f92a96ddf91c72c9ba5860cfbf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404466_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:918bef92895a17d706a0b924a26582dcc8128c68dffcbb0a015602cfa9a1fd25 -size 2235 diff --git a/MM_Math/data_original_21/7038193/math/53404526_266.png b/MM_Math/data_original_21/7038193/math/53404526_266.png deleted file mode 100644 index c3dea4ea2b38ee1c5e26cf9a68ab68b5fd1e5313..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404526_266.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ff230e620e29717acc71eb479e6187bb4b38eca864a4d35d4888f3b75d44f1d -size 799 diff --git a/MM_Math/data_original_21/7038193/math/53404527_276.png b/MM_Math/data_original_21/7038193/math/53404527_276.png deleted file mode 100644 index 366890b61cc4644759e4e3a85b13cc35d3b913ad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404527_276.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f3af471c5cfde805e495d886b92316a502b14c52b5f331964ca6d3efcdf327d -size 5997 diff --git a/MM_Math/data_original_21/7038193/math/53404532_471.png b/MM_Math/data_original_21/7038193/math/53404532_471.png deleted file mode 100644 index 378e5cd76f6eeab147d05d4736540f521949c6fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404532_471.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:614b24663c0407ebed3dbe2db65616caf9f1a9a064bf3e3ef9e3b1c31c572e7a -size 2269 diff --git a/MM_Math/data_original_21/7038193/math/53404554_285.png b/MM_Math/data_original_21/7038193/math/53404554_285.png deleted file mode 100644 index 1c1938bdb8ba89b02a168fc7154ff7833f3798f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404554_285.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a81fb67cca0688e14dc31566bea315a8d7f1dde815235014ba1b5e85a2fa8b0f -size 5777 diff --git a/MM_Math/data_original_21/7038193/math/53404559_444.png b/MM_Math/data_original_21/7038193/math/53404559_444.png deleted file mode 100644 index fc58370096e27c55536b5802913d895c4ff66ef6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404559_444.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38e4c9fc56b6afa7735992a16eb983ab861a261c63a99e9d3cc6dc01dee620d2 -size 17366 diff --git a/MM_Math/data_original_21/7038193/math/53404569_945.png b/MM_Math/data_original_21/7038193/math/53404569_945.png deleted file mode 100644 index c1e12e7cca2a5dc5662a82ba65eceb3e6b0c78dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53404569_945.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ebd640c316c8021e2d2293da1f2e04b356b00ad2ad451adb797430e899637222 -size 62518 diff --git a/MM_Math/data_original_21/7038193/math/53414108_234.png b/MM_Math/data_original_21/7038193/math/53414108_234.png deleted file mode 100644 index 4cf6c952a212fbc20134bc0f9317ccf839330f03..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53414108_234.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5937ac2e2f5cc7000815d0d75b3aa234cae3b6141ac9b145a04c9a64e1c97fa2 -size 9091 diff --git a/MM_Math/data_original_21/7038193/math/53414133_922.png b/MM_Math/data_original_21/7038193/math/53414133_922.png deleted file mode 100644 index 9e909d4d4cc5e77606cbc58146bb88284b14e0c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/53414133_922.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ad2bd53869d0bc131010d5f02b2b34eb6531bfed0590047a9d5475132c1a738c -size 10719 diff --git a/MM_Math/data_original_21/7038193/math/54368654_910.png b/MM_Math/data_original_21/7038193/math/54368654_910.png deleted file mode 100644 index 41f6086c74a5b4cf4cd06a51a4c3ec8d7e378e69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54368654_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3433b1fc02f131d13f13ccd5b8863d6932f2fec8c8de50426bd5b495769b436e -size 4076 diff --git a/MM_Math/data_original_21/7038193/math/54769534_434.png b/MM_Math/data_original_21/7038193/math/54769534_434.png deleted file mode 100644 index b12ee1f4d18d989ea2aaf4cdabb2ccfebdefe0b4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54769534_434.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2ba1815e66c065c6b7f6ef65cbd9abb99a7283546c8396e9ffcf222c91eb988 -size 5862 diff --git a/MM_Math/data_original_21/7038193/math/54792296_410.png b/MM_Math/data_original_21/7038193/math/54792296_410.png deleted file mode 100644 index 9a39997312cc69c9474d296d1c8fb45d61300d84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54792296_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f109a892b8e3674604eddc18aa346748cb3da55c3171997c7dd2a2dc7c378cf -size 5493 diff --git a/MM_Math/data_original_21/7038193/math/54927213_820.png b/MM_Math/data_original_21/7038193/math/54927213_820.png deleted file mode 100644 index 91e27f9291d641ce3b1a4e3fcd1bfdb9c5313b79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54927213_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2f5ee145b86f1e31a8f2740751047c64180efda17f57fe8d6cafd37809fb8c9 -size 36848 diff --git a/MM_Math/data_original_21/7038193/math/54927250_810.png b/MM_Math/data_original_21/7038193/math/54927250_810.png deleted file mode 100644 index 5d3583feb1291ec951b4da228ba507beb4c548d9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54927250_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:517671df3062dd9e0b5e3842ee7ee592841144f53a2bddfc3da61d615fa5c31c -size 18521 diff --git a/MM_Math/data_original_21/7038193/math/54927380_830.png b/MM_Math/data_original_21/7038193/math/54927380_830.png deleted file mode 100644 index 98c6757ca08d5ea1503f540cd2b4b73418014a54..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54927380_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2cc20b05051e235ea434dd3cc7ee746550bafa1ad30e21e27f1f32d58eb5a333 -size 7643 diff --git a/MM_Math/data_original_21/7038193/math/54927575_220.png b/MM_Math/data_original_21/7038193/math/54927575_220.png deleted file mode 100644 index 8ac50728bd57819c86756132961c3d59c53aa917..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54927575_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c286285acb47f4538865a9232089260d2c9f5daee8586da98e75111901a6edb5 -size 11929 diff --git a/MM_Math/data_original_21/7038193/math/54927579_850.png b/MM_Math/data_original_21/7038193/math/54927579_850.png deleted file mode 100644 index 8596c072def4db2ca2cc7d31ab255869f1ad5dde..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54927579_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:121d74a468066eb9e2e8a81587556ccf301749878b52f2d45951f90fd5a21d59 -size 15453 diff --git a/MM_Math/data_original_21/7038193/math/54927588_860.png b/MM_Math/data_original_21/7038193/math/54927588_860.png deleted file mode 100644 index 102f1c96f5bdd892bdeabd5072284b1e5854f447..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54927588_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4cce8488c902520e468c8636daf94ac008bf05fe853eb74be61096b9202ed712 -size 42678 diff --git a/MM_Math/data_original_21/7038193/math/54927610_210.png b/MM_Math/data_original_21/7038193/math/54927610_210.png deleted file mode 100644 index a18c35869f4666e66d24b1d2b68e7496b4525aca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54927610_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b75643533ec56a0e8be28dbf5255d52104c6a67d332f79c805380d9409c931f -size 19443 diff --git a/MM_Math/data_original_21/7038193/math/54927620_840.png b/MM_Math/data_original_21/7038193/math/54927620_840.png deleted file mode 100644 index 6109337cdb683afaf3e99fa41c8e639f80b1c6be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54927620_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e60c69a6b1fb3e4c121605e65c7729792b8625af346f491ea48cf09f38691991 -size 21150 diff --git a/MM_Math/data_original_21/7038193/math/54962528_200.png b/MM_Math/data_original_21/7038193/math/54962528_200.png deleted file mode 100644 index 1e44f256c51755d71c6e4712a9cfbfe863af22c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54962528_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b49fe46e394b58b0bdc0265da9dc8915d200ab7bc5ed8420510a0b7d60873499 -size 16458 diff --git a/MM_Math/data_original_21/7038193/math/54962529_400.png b/MM_Math/data_original_21/7038193/math/54962529_400.png deleted file mode 100644 index b71c21e5c89de00ab9478158026b725fb8560cd0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54962529_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7cf90e2a438f73d39d4eb58e274bb990088f608e22624e7dfa6ec2352ff31a6f -size 18947 diff --git a/MM_Math/data_original_21/7038193/math/54962530_800.png b/MM_Math/data_original_21/7038193/math/54962530_800.png deleted file mode 100644 index 2fe9d04b5883bd9f48e2dc8767f36fe92b24627f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54962530_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d920dc1cc49481da8454597d12b5c638f7c61cf6677fb363c93bf771f6576ae9 -size 41846 diff --git a/MM_Math/data_original_21/7038193/math/54962548_790.png b/MM_Math/data_original_21/7038193/math/54962548_790.png deleted file mode 100644 index e8f946de7ce7eaea2dadeb390e378641c8ea7d03..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/54962548_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d3014134be8c6fcee97347bd08fdcf184899c65902d9833b1ee4ee9d641e6f0 -size 29779 diff --git a/MM_Math/data_original_21/7038193/math/55000649_787.png b/MM_Math/data_original_21/7038193/math/55000649_787.png deleted file mode 100644 index b0f12ee05ef7bee073f2b4baf2175f1245295e27..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55000649_787.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:26ac4df1e7c556a743b6fdc64fc317163d6e31c7cb9bd7674d52dfe68a64cdad -size 2422 diff --git a/MM_Math/data_original_21/7038193/math/55025245_190.png b/MM_Math/data_original_21/7038193/math/55025245_190.png deleted file mode 100644 index 15c420b56f7ee31a4826a359efdfa55ea6ad7520..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55025245_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c9d92ea893e112e4732c5f513929debe0227e280155ff7eaa220c0cf85a7c07 -size 29666 diff --git a/MM_Math/data_original_21/7038193/math/55138467_180.png b/MM_Math/data_original_21/7038193/math/55138467_180.png deleted file mode 100644 index ac1519039c379c0f9479c961ebacf3b4b4ecd782..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55138467_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea8dbe3cfcc5b6d191b3870f5ce08cd2a8f8135a40d70aa0aac5699866e6b80a -size 26943 diff --git a/MM_Math/data_original_21/7038193/math/55175882_775.png b/MM_Math/data_original_21/7038193/math/55175882_775.png deleted file mode 100644 index a711f93db11be4a9f7aa5ea8331ad443f8fd0a6f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55175882_775.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f69110f58efe5a1c64cc0dfa6ad5706cef7867ca803f9a2f0cc79176b90174a1 -size 498 diff --git a/MM_Math/data_original_21/7038193/math/55190265_370.png b/MM_Math/data_original_21/7038193/math/55190265_370.png deleted file mode 100644 index 1438a4b58d34c00d573727c001184c2fde485279..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55190265_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64a4fb53c1c8c7fe022527feaa6b1f1ed75995029261cc855b287040a3ceb4f5 -size 27230 diff --git a/MM_Math/data_original_21/7038193/math/55190266_700.png b/MM_Math/data_original_21/7038193/math/55190266_700.png deleted file mode 100644 index 46a4b87e666a91de8503af9dd9fb1db4d1f10965..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55190266_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:292b3fc42fc5f0c812580471ad85b05f21aacfab98ef5fd059b3e81cae4b0306 -size 30963 diff --git a/MM_Math/data_original_21/7038193/math/55190283_360.png b/MM_Math/data_original_21/7038193/math/55190283_360.png deleted file mode 100644 index 3ca9d6f4cfd7baa290443bbc886ac82b05f3c5ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55190283_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:380c6ad5f633f6d0270b3997276609fe49ad8c2afcd741f84b9514dd8879936e -size 26443 diff --git a/MM_Math/data_original_21/7038193/math/55190284_690.png b/MM_Math/data_original_21/7038193/math/55190284_690.png deleted file mode 100644 index 318a57ca43ae70a9205bd85565df4e96cff2cd92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55190284_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01bd9518cabc0c7599033430c94d38cda2547b2e991fac7a1412f9632ade0568 -size 27686 diff --git a/MM_Math/data_original_21/7038193/math/55190294_150.png b/MM_Math/data_original_21/7038193/math/55190294_150.png deleted file mode 100644 index 2fe3ff0e753c9434e67a9b268d4a1850f164660e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55190294_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f27a66931df4da53703445ff2c0f83c0c4a948ceb57ec3ac07e93e5dc593c53f -size 26371 diff --git a/MM_Math/data_original_21/7038193/math/55190300_710.png b/MM_Math/data_original_21/7038193/math/55190300_710.png deleted file mode 100644 index cce206f36b0a38d31d81e3e8e4685d8823017f88..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55190300_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10af973c4f0e2b663b3267ea60dd3280d9f8019ea655747cac6b6c565015bf39 -size 29017 diff --git a/MM_Math/data_original_21/7038193/math/55190302_720.png b/MM_Math/data_original_21/7038193/math/55190302_720.png deleted file mode 100644 index cf1bd1036b1959942b3d9ebdb036b3ba30e40891..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55190302_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50a1e6681ef23fa27b7e128d2fe28611d03e564af7531b2801bb8a2f6555d02b -size 9345 diff --git a/MM_Math/data_original_21/7038193/math/55190308_730.png b/MM_Math/data_original_21/7038193/math/55190308_730.png deleted file mode 100644 index a88e5c1ab73ba25fa915c89c09ed7453ed1a85cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55190308_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70c28743becd5500a7893e38c17dfd9ac60d759581107dd584dee7454ae7ceb3 -size 37972 diff --git a/MM_Math/data_original_21/7038193/math/55191143_350.png b/MM_Math/data_original_21/7038193/math/55191143_350.png deleted file mode 100644 index 4492985fe02cf2caac5caa32c913e3c93c86deb3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55191143_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:968fcfd834676ddc6aa84b091d92fc80c7f5da1d86dbd8932566ed72da1e1b4d -size 25353 diff --git a/MM_Math/data_original_21/7038193/math/55191220_660.png b/MM_Math/data_original_21/7038193/math/55191220_660.png deleted file mode 100644 index 27c83669e5b513aa8231da24048b5cf2246a8559..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55191220_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:505dbcaed723aef91947663317c403f6003459190da02dc59e23c842f8c51fd7 -size 29806 diff --git a/MM_Math/data_original_21/7038193/math/55191221_680.png b/MM_Math/data_original_21/7038193/math/55191221_680.png deleted file mode 100644 index 96164a968ca70145fc4627d25923a219150d5b20..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55191221_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:463cda62295540bd652b06c6d19b19fc85f807f699d6ee8174dee4805b7ca609 -size 38545 diff --git a/MM_Math/data_original_21/7038193/math/55191222_670.png b/MM_Math/data_original_21/7038193/math/55191222_670.png deleted file mode 100644 index 7c51f8ca20ebed4fbf4899046bc17f9ffa90f592..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55191222_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42d70684eac7568e86d46c040f3ddb1770f7724a0d1f969afdcdfadc7292a773 -size 33069 diff --git a/MM_Math/data_original_21/7038193/math/55191292_650.png b/MM_Math/data_original_21/7038193/math/55191292_650.png deleted file mode 100644 index cc7f973fde745afb3fbc28514ed3338573296f91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55191292_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:26cf4aa4720234fef2353e34ee319927f7eeb5d25c9598df9c791bc4cbbc66a2 -size 7923 diff --git a/MM_Math/data_original_21/7038193/math/55192320_760.png b/MM_Math/data_original_21/7038193/math/55192320_760.png deleted file mode 100644 index 43b4ea59ea5702f4f782d69ae7da2a8c90aa6b82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55192320_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96282721f70db4276002d05a86c48be809912b5201f1118e66168d773b44f723 -size 16953 diff --git a/MM_Math/data_original_21/7038193/math/55192327_160.png b/MM_Math/data_original_21/7038193/math/55192327_160.png deleted file mode 100644 index abb12e41e5221976c40ed0b0880a4d5e3596f407..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55192327_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff6c2e6549654a722c7824c539631af09d0fc3e90eee9c58da8bc7db88c989b7 -size 9523 diff --git a/MM_Math/data_original_21/7038193/math/55192328_170.png b/MM_Math/data_original_21/7038193/math/55192328_170.png deleted file mode 100644 index de5f59751d55d63be1c6e0cf5681ec704e71b18d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55192328_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01875843d4014ebdc1ca0fb8a83867b867dbac9a1703bd5847d360dc6dfe6a43 -size 14039 diff --git a/MM_Math/data_original_21/7038193/math/55192331_391.png b/MM_Math/data_original_21/7038193/math/55192331_391.png deleted file mode 100644 index 74d9af0b9c31941a787b8818d3e91ac88d411b0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55192331_391.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f18ca8c60664828c1f5c9d9bd66aab9377474a9430d85abe18a86bf526823752 -size 7646 diff --git a/MM_Math/data_original_21/7038193/math/55192431_750.png b/MM_Math/data_original_21/7038193/math/55192431_750.png deleted file mode 100644 index 7f7526cd3649e45090a06433c59c58fb1d4e5e74..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55192431_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ed8f638ea3f0415593d4c5b8bad2750dbf1929e34a5506b22463453851d27ec -size 16330 diff --git a/MM_Math/data_original_21/7038193/math/55192440_382.png b/MM_Math/data_original_21/7038193/math/55192440_382.png deleted file mode 100644 index ad461382d99e620ebefa27c48f7a6df7f2fdeef5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55192440_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:591876ba90b0d213de615a7e1d6a9ea60b7ef3f6541d25a276668fdb98694ff8 -size 21101 diff --git a/MM_Math/data_original_21/7038193/math/55192442_740.png b/MM_Math/data_original_21/7038193/math/55192442_740.png deleted file mode 100644 index 2122b57d4dcb90b0cc9f44d928c29d89cde8d611..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55192442_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05d2dffdcabf054051b45d7dcc09cd1e7064b0f3957ef484357bb62f60f44240 -size 32973 diff --git a/MM_Math/data_original_21/7038193/math/55204863_340.png b/MM_Math/data_original_21/7038193/math/55204863_340.png deleted file mode 100644 index 0cebd83d8069982facff1a5d2dcba2aa9d833d7b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55204863_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e650e0239e160202af2e9d53bc6d0ca3e609698b95c8251f3e9f3d89447244e4 -size 2323 diff --git a/MM_Math/data_original_21/7038193/math/55218712_140.png b/MM_Math/data_original_21/7038193/math/55218712_140.png deleted file mode 100644 index ff36fb5392be9e42fbe8a2441fab174b4e7d9f82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55218712_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ae19a4be843127aba8cd6628e95b75f6644afd4869cbebcc0fc1d35dc05907a -size 5005 diff --git a/MM_Math/data_original_21/7038193/math/55219238_332.png b/MM_Math/data_original_21/7038193/math/55219238_332.png deleted file mode 100644 index c58272706c84f43d56d0942e759204edd0fda7aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55219238_332.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4263693ad90f348d206b7b41c4274b2544a326bdeaf3aa5dd768aa4eb0f26db7 -size 4209 diff --git a/MM_Math/data_original_21/7038193/math/55253063_6300.png b/MM_Math/data_original_21/7038193/math/55253063_6300.png deleted file mode 100644 index f87e76e86abf8d4be97fe4ede661c94175a9a9e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55253063_6300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e23f9308ba6ea86fdb1e76abd50e0367352d51345cc41f77291574727fea869 -size 35276 diff --git a/MM_Math/data_original_21/7038193/math/55300127_120.png b/MM_Math/data_original_21/7038193/math/55300127_120.png deleted file mode 100644 index 41df5af7d9aa70a931e81eee4f5cf73897490245..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55300127_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03f6bd990086b85832b91e37202d84926934b5cdaf7314ef38920c0a0c3b4a24 -size 3760 diff --git a/MM_Math/data_original_21/7038193/math/55301095_132.png b/MM_Math/data_original_21/7038193/math/55301095_132.png deleted file mode 100644 index 7d2abc2101105748dbba0405a5c28724794a19b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55301095_132.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:49cb832cf1d5ffee9faa0a6a6e028aaae485c7934613cf80eb9a2f1602e982bb -size 9489 diff --git a/MM_Math/data_original_21/7038193/math/55301112_644.png b/MM_Math/data_original_21/7038193/math/55301112_644.png deleted file mode 100644 index 4aef9d4d139480d587f4a49719f9b852cf7e2e47..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55301112_644.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6222ff0247fd2892f6ab7a26bfb078c1b7beb068e526a77cb28237f0c30b9197 -size 4911 diff --git a/MM_Math/data_original_21/7038193/math/55308242_320.png b/MM_Math/data_original_21/7038193/math/55308242_320.png deleted file mode 100644 index 604ef886252fb24bd8b6dd040d77b1ee6448d2d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55308242_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfc7d2c2701ad88da2e4d5cf621ccce934e9a46facadf7b9d1e70351650df895 -size 2546 diff --git a/MM_Math/data_original_21/7038193/math/55327759_611.png b/MM_Math/data_original_21/7038193/math/55327759_611.png deleted file mode 100644 index 915b9a2d107aecaf388721a95c8f8c2f23b018b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55327759_611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6bfa7cea5e3919f6d5b1bfe68091c6b7b1523ec3ad4c677c60202590406605b9 -size 5403 diff --git a/MM_Math/data_original_21/7038193/math/55377877_84.png b/MM_Math/data_original_21/7038193/math/55377877_84.png deleted file mode 100644 index 07287b300d2da94e3a2e025cdad740c76c33fdf3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55377877_84.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:22ec819fcf7e2ab887170560d8e5520406c57c19e412fbcf98a9c099fe5c7b98 -size 5000 diff --git a/MM_Math/data_original_21/7038193/math/55377885_315.jpeg b/MM_Math/data_original_21/7038193/math/55377885_315.jpeg deleted file mode 100644 index 8406c3e7ad7e2b3ddaa321138135a61a4d3ea2c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55377885_315.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4bdb5f5e3755e345b10b3e37020bcf1505417a45e0819b96dd88302a290e96a -size 16016 diff --git a/MM_Math/data_original_21/7038193/math/55377894_600.png b/MM_Math/data_original_21/7038193/math/55377894_600.png deleted file mode 100644 index 2acacf02e4e6d2ecaeaf375edd1451d153a604fa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55377894_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59883ef864ca9debb49df5a9e2258ed3df116d53917e1e5d97a9839d43fa91cf -size 2569 diff --git a/MM_Math/data_original_21/7038193/math/55393326_75.png b/MM_Math/data_original_21/7038193/math/55393326_75.png deleted file mode 100644 index fe049d86e3970fce9cf5abdc11a6d0a594598cef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55393326_75.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46447820e134509b9596c234f44dbadf722b0b867a28a8590607b0b7c89892d4 -size 11453 diff --git a/MM_Math/data_original_21/7038193/math/55393350_584.png b/MM_Math/data_original_21/7038193/math/55393350_584.png deleted file mode 100644 index ef5c904f3000bf6ef38eda5b226ea61b8aef632a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55393350_584.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:607e1b5cd76c4d04e3abd7bd9e80aa49b23b6c2de510bbeaa5a918db09cd76a3 -size 16593 diff --git a/MM_Math/data_original_21/7038193/math/55393357_594.png b/MM_Math/data_original_21/7038193/math/55393357_594.png deleted file mode 100644 index 4a43f15e28be394fcaea3657a7e68fc8488adb68..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55393357_594.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c22327c098243b4ebf7d8a342b465fda4c4763eccfd1c95d0218b09ed9a4baa0 -size 120843 diff --git a/MM_Math/data_original_21/7038193/math/55393359_5915.png b/MM_Math/data_original_21/7038193/math/55393359_5915.png deleted file mode 100644 index 63771192a3b0e79c33a9d9e28196f6422a49ab34..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55393359_5915.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d1004eb60fd87c63ce3984a3333b25146fbc5fadafd6d9e43058eedb5b643cf -size 571 diff --git a/MM_Math/data_original_21/7038193/math/55426225_117.png b/MM_Math/data_original_21/7038193/math/55426225_117.png deleted file mode 100644 index 77a477cf0ba1affd15e92f5e569bed6690717904..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55426225_117.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66d80ec935bf3343dd0b18a06a8b2f0b42c29731cba020d07476819fcaa84b18 -size 10295 diff --git a/MM_Math/data_original_21/7038193/math/55426353_100.png b/MM_Math/data_original_21/7038193/math/55426353_100.png deleted file mode 100644 index 4dca3fecd52ea79b68f4caba92e89a8592a721e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55426353_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:625cc0e7e6feb25032779f386551c62b85975a0b3b8d27757f3099074ac894b8 -size 2554 diff --git a/MM_Math/data_original_21/7038193/math/55426370_620.png b/MM_Math/data_original_21/7038193/math/55426370_620.png deleted file mode 100644 index 591f20512e0f8a192bb6dcb01a5983c5052945c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55426370_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9f3ed4399b88be407c23524c0a85b16c0de23e6fda75e011ad59da9579bc08a -size 7272 diff --git a/MM_Math/data_original_21/7038193/math/55426603_90.png b/MM_Math/data_original_21/7038193/math/55426603_90.png deleted file mode 100644 index e4ff0d88275d4f6f7eefe3a950423408e6f6dee8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55426603_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1cb64d6a81a073c109349a9b5dcc42a7e7be0aa19c3bd0088a0da679d7d097fe -size 12184 diff --git a/MM_Math/data_original_21/7038193/math/55429566_572.png b/MM_Math/data_original_21/7038193/math/55429566_572.png deleted file mode 100644 index 7e3b85c7365a711e21e541be9a22828e33ee82fc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55429566_572.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e50f63ccc1be3fa164207eca0a419127682793fec262c4433304e3eda2b5a8e -size 6462 diff --git a/MM_Math/data_original_21/7038193/math/55431959_560.jpeg b/MM_Math/data_original_21/7038193/math/55431959_560.jpeg deleted file mode 100644 index 6df0f89d0cc9379a6218d1516d7bde59cc49cb92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55431959_560.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39f424ee8a6e374d7658cef375466f88af9ecedf4de4d133e1e9681dfd973343 -size 8034 diff --git a/MM_Math/data_original_21/7038193/math/55431962_550.jpeg b/MM_Math/data_original_21/7038193/math/55431962_550.jpeg deleted file mode 100644 index a12942f7304933b8197136886de2f284c03d4af8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55431962_550.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87d83af151380fc2a676941169a1b7f0183b474104ef6e57b47978a028e39ea8 -size 13616 diff --git a/MM_Math/data_original_21/7038193/math/55468485_00.png b/MM_Math/data_original_21/7038193/math/55468485_00.png deleted file mode 100644 index 812a0258b9bcd9709c8e06e2b05f6f4e51e2f7bd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55468485_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70d8700e5a85c86ffac92c1c7b6c673309b8e6db0bc5997dde2b7a574c5cf78a -size 2884 diff --git a/MM_Math/data_original_21/7038193/math/55470821_10.png b/MM_Math/data_original_21/7038193/math/55470821_10.png deleted file mode 100644 index 3b118648d4e51111e59942786e45d5c37f104877..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55470821_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f392d05896588abb32b8eae6709bb3511f7fe76d885658cd687b4184af3dadd -size 20450 diff --git a/MM_Math/data_original_21/7038193/math/55483153_50.png b/MM_Math/data_original_21/7038193/math/55483153_50.png deleted file mode 100644 index 0399fc06af80ac3394b206954cc53c15d7bf61a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55483153_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:306548c95285b2b15aed5be4f603947d2272f1e63f982d08899b92c32d481de9 -size 4135 diff --git a/MM_Math/data_original_21/7038193/math/55503421_292.png b/MM_Math/data_original_21/7038193/math/55503421_292.png deleted file mode 100644 index 2bc46b26123292a9f66a773109a9430a5e7c1a9e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55503421_292.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d06d1166cafdc0823bb533a7fd5cb7628bc1a10cc1a563721b88ec02403b73c4 -size 11706 diff --git a/MM_Math/data_original_21/7038193/math/55503444_526.png b/MM_Math/data_original_21/7038193/math/55503444_526.png deleted file mode 100644 index 3b22109b110ab69a3802b83e90f002a6b6cbcf35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55503444_526.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c6da2ee5a69bca029c1512d4e1c097d31495ff516befde54b9cdbacdd85adf4b -size 15608 diff --git a/MM_Math/data_original_21/7038193/math/55532993_515.png b/MM_Math/data_original_21/7038193/math/55532993_515.png deleted file mode 100644 index 94537b0bd05d73c8cafd3e11de45f09041bd99d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55532993_515.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cae96af4622dfcb363a7423d3777a2a49c0cb11b04c25a97c150b204adf80a7b -size 4118 diff --git a/MM_Math/data_original_21/7038193/math/55574626_30.png b/MM_Math/data_original_21/7038193/math/55574626_30.png deleted file mode 100644 index 10a8d8dcd3a470fc80fea860458138ca925300d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55574626_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7cc386130719acce8341c0eeb37c91ecd2a4e06e165d85ef80576ac5466821bd -size 22880 diff --git a/MM_Math/data_original_21/7038193/math/55574660_534.png b/MM_Math/data_original_21/7038193/math/55574660_534.png deleted file mode 100644 index 3d006472c150b9bf1ed178b88ad6490bd1a96f5c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55574660_534.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f7718f928a49678791842ca4164ef24e6b61d38a119ff84e58438c634efa109 -size 13729 diff --git a/MM_Math/data_original_21/7038193/math/55575467_542.png b/MM_Math/data_original_21/7038193/math/55575467_542.png deleted file mode 100644 index b94af0dcfcfff4c357b4aca9f3e6cfcef1556015..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/55575467_542.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2ef4b754f4b4a78bd9e961abf4bae239441b6a7d7173988ce545978137992d6 -size 11197 diff --git a/MM_Math/data_original_21/7038193/math/6776773_420.png b/MM_Math/data_original_21/7038193/math/6776773_420.png deleted file mode 100644 index bc7b57fe86c5042e8605dd71d3e22bd9588c06e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/6776773_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9319dda78272f458947c4acd18f08392b589ebcbd787915fc7409ab285683925 -size 1766 diff --git a/MM_Math/data_original_21/7038193/math/9349800_900.png b/MM_Math/data_original_21/7038193/math/9349800_900.png deleted file mode 100644 index 440c6c7b62c01be0269b88f29692f9b666ff554d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/math/9349800_900.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96f2281efb34bb024df450351db9451f7fe4734753bf45776ddf01b71f1ba7bc -size 3897 diff --git a/MM_Math/data_original_21/7038193/solution_images/53042405_40.png b/MM_Math/data_original_21/7038193/solution_images/53042405_40.png deleted file mode 100644 index a64c8e1f59db755ca6e17c98d94cfcca983dfbba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/53042405_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8627bbdcfae67d07c49fcf8b1911d9eb8d6db2db536700672bb19695f69341a -size 3698 diff --git a/MM_Math/data_original_21/7038193/solution_images/53042405_41.png b/MM_Math/data_original_21/7038193/solution_images/53042405_41.png deleted file mode 100644 index 55ea985055ec12572dd35b6e71a6c87fbdd2c560..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/53042405_41.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc7786eb87790495de81acb62a1efae6bc997b12797722c4b7a1bc7faa528881 -size 1836 diff --git a/MM_Math/data_original_21/7038193/solution_images/53042405_42.png b/MM_Math/data_original_21/7038193/solution_images/53042405_42.png deleted file mode 100644 index 566a78c72637aeb732ae9db402f90949c25ffbc0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/53042405_42.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9d613d6b24cad6260c16169c88a9a28ef8e1bacdd91ac77aad20f567907e263 -size 690 diff --git a/MM_Math/data_original_21/7038193/solution_images/53042405_43.png b/MM_Math/data_original_21/7038193/solution_images/53042405_43.png deleted file mode 100644 index 4df983a0a8167a4e14de64015571d124f9cad578..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/53042405_43.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:877afa65ef51ae9096b44b513647330530f8637a8eadab70f4867d192784ac0f -size 543 diff --git a/MM_Math/data_original_21/7038193/solution_images/54769534_430.png b/MM_Math/data_original_21/7038193/solution_images/54769534_430.png deleted file mode 100644 index 1342b9ecb5e257253223afb33d5991b1ddac827d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/54769534_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dfa85e24826ecd7e5c8f339acb105b02c91aaa2104bd7b9f65bcb8b7b58db0d6 -size 4454 diff --git a/MM_Math/data_original_21/7038193/solution_images/55253062_630.png b/MM_Math/data_original_21/7038193/solution_images/55253062_630.png deleted file mode 100644 index 70f3a304161acddb465a23c536752cd4785a439c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/55253062_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e19be89bc6ab91f633ef78ef49ad36a4f9d87ea3e926718b931379abc8f618ea -size 3637 diff --git a/MM_Math/data_original_21/7038193/solution_images/55253062_636.png b/MM_Math/data_original_21/7038193/solution_images/55253062_636.png deleted file mode 100644 index 375ba93a93189d8e4b1466da773d63902b5145ad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/55253062_636.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ffaceea456ac46b820e5c3900736b6a7f915c9c5cf0fafb82d38f34f2657279 -size 3677 diff --git a/MM_Math/data_original_21/7038193/solution_images/55483153_50.png b/MM_Math/data_original_21/7038193/solution_images/55483153_50.png deleted file mode 100644 index c015a237f90512a24b17f41203eb51006a7d130a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/55483153_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9730d6b1934a04a625dc7020a2775bc887a1306e775c3a5fd3c824534b359bac -size 2679 diff --git a/MM_Math/data_original_21/7038193/solution_images/55503444_5218.png b/MM_Math/data_original_21/7038193/solution_images/55503444_5218.png deleted file mode 100644 index 05a656499b14984dfea18ad2a31d6cb141ae03aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/55503444_5218.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c472832e268e69d8a0395113b53e04c684c24947e59755885e4cc966e7c2becd -size 7704 diff --git a/MM_Math/data_original_21/7038193/solution_images/55503444_522.png b/MM_Math/data_original_21/7038193/solution_images/55503444_522.png deleted file mode 100644 index 120ab2bef0389709c9a89397c1be5dda02b3e8e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/55503444_522.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81a632b27c68696ac95b52438774d7a05ed7b22fac2fecfe71bcdc60ff11ea0c -size 8853 diff --git a/MM_Math/data_original_21/7038193/solution_images/55574626_30.png b/MM_Math/data_original_21/7038193/solution_images/55574626_30.png deleted file mode 100644 index f97d49fa49d7562a3d930b79f39e6c265163e158..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038193/solution_images/55574626_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b5b8ef3053b42d5d4c95e76a88488ca0667b8620248f2c99e1edd02cb0219f57 -size 7215 diff --git a/MM_Math/data_original_21/7038985/math/51323803_215.png b/MM_Math/data_original_21/7038985/math/51323803_215.png deleted file mode 100644 index cba6db5433d4c2cc6e509a8fb4ff011bddbff9d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51323803_215.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82ebe5d0abc16df51917e1742dab50bfb66442474ae866e0051a30e3d63c8f53 -size 7450 diff --git a/MM_Math/data_original_21/7038985/math/51323829_949.png b/MM_Math/data_original_21/7038985/math/51323829_949.png deleted file mode 100644 index 6656c1fd40c211fcbfb9809fa044956bebff93dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51323829_949.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b086df2b7c52fa7319c6a735e24ade0e03c2162da0b52eb67502b6cdda7c215 -size 5972 diff --git a/MM_Math/data_original_21/7038985/math/51324341_920.png b/MM_Math/data_original_21/7038985/math/51324341_920.png deleted file mode 100644 index 3ba37a43af76b7be17a6f7a522f780394b9bb972..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51324341_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98bdad8435236028dcda0de61722bc5ba47826509e9f4cffc9cde1d1e0959913 -size 8864 diff --git a/MM_Math/data_original_21/7038985/math/51324353_931.png b/MM_Math/data_original_21/7038985/math/51324353_931.png deleted file mode 100644 index 991e05052580b3583f4eefefeb9dcc7c6e70ae57..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51324353_931.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7252f5cdbc6878839dcbcb77a49e6367161b3b9234a37ec7b43efd81d917255 -size 3402 diff --git a/MM_Math/data_original_21/7038985/math/51370077_435.jpg b/MM_Math/data_original_21/7038985/math/51370077_435.jpg deleted file mode 100644 index 402af7a73e1b4c74d855b477eb12a3809e4daaf8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51370077_435.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f6494e93547a4e868c10da3b128cdb8e1a164a8ec8de8445322996eed30580b -size 2141 diff --git a/MM_Math/data_original_21/7038985/math/51438029_460.png b/MM_Math/data_original_21/7038985/math/51438029_460.png deleted file mode 100644 index 23768d612fecf511062120d50092ae49078869f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51438029_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79f00fd0c7ed00058069a768c179f2b2c9548d117309faec44a4b43f05ff23b4 -size 13704 diff --git a/MM_Math/data_original_21/7038985/math/51438377_970.png b/MM_Math/data_original_21/7038985/math/51438377_970.png deleted file mode 100644 index aca413ec2c3afa9fcf190e51c028ea19e509cee6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51438377_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3593b7c863f0b58846b2c21568fb6af1651ea52ff5f667616dbf36c3eb2a3dc -size 4559 diff --git a/MM_Math/data_original_21/7038985/math/51438522_470.png b/MM_Math/data_original_21/7038985/math/51438522_470.png deleted file mode 100644 index 70a8e92b10365d2c021ebd96da6cd121118d92c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51438522_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2844a95092f0a22cfde533a1e15c2f64df12d29dee16326281e7139a17c409a9 -size 616 diff --git a/MM_Math/data_original_21/7038985/math/51438558_220.png b/MM_Math/data_original_21/7038985/math/51438558_220.png deleted file mode 100644 index ed0fb178dd749df5a0fdf4ff9182f15d6f9b8bf4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51438558_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb7ee92605e65cfb0aef06b017f02ea2035ea5099a491dde7e1e527b036508b0 -size 876 diff --git a/MM_Math/data_original_21/7038985/math/51438565_440.png b/MM_Math/data_original_21/7038985/math/51438565_440.png deleted file mode 100644 index d5e7bae2bcdcda8b5e7bbe98e3bcde4090afb56b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51438565_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d14384a3799fc32400379a7c9b9113cf1662b86c5408083535ac5568c0a9496c -size 3918 diff --git a/MM_Math/data_original_21/7038985/math/51438610_9502.png b/MM_Math/data_original_21/7038985/math/51438610_9502.png deleted file mode 100644 index 11e74ad2df0bb5039ccc8f8f07704c67c0931a2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51438610_9502.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b420b0a11bd155ff5bf9ea07e05932d21b9092b27206d27e55974114cd73905a -size 12113 diff --git a/MM_Math/data_original_21/7038985/math/51438611_9512.png b/MM_Math/data_original_21/7038985/math/51438611_9512.png deleted file mode 100644 index 0475dff9cd10d269f837570a85fdf79b71111385..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51438611_9512.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:343ded5fa8a8e5024282a2af4061b383b91e296ea18de023b5ea32ca0ca397c2 -size 8399 diff --git a/MM_Math/data_original_21/7038985/math/51438726_960.png b/MM_Math/data_original_21/7038985/math/51438726_960.png deleted file mode 100644 index b43c53e3c593c839f680f05db2fcd7a9171db7a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51438726_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75e46af1cf583598e8e0ac8374f9fc011a53d2ebbbeed06a56d8d7261d3a9f86 -size 4418 diff --git a/MM_Math/data_original_21/7038985/math/51439013_450.png b/MM_Math/data_original_21/7038985/math/51439013_450.png deleted file mode 100644 index 00c12a1bedb25eccb1316b316ca86ee60076e96f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51439013_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e2bd14ce15883f808b8d7dd2bcb3a34717a3ac0272058d86a4b064910ac09eb -size 978 diff --git a/MM_Math/data_original_21/7038985/math/51439120_981.png b/MM_Math/data_original_21/7038985/math/51439120_981.png deleted file mode 100644 index 6cef3555021190cb66ae76de4fc87ccedf2a679a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51439120_981.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43de8d7598048463db0896e9187c0b4f5ccc3a703bff2eecade255020f8c0667 -size 2406 diff --git a/MM_Math/data_original_21/7038985/math/51439127_990.png b/MM_Math/data_original_21/7038985/math/51439127_990.png deleted file mode 100644 index 8ce25ce7c456fb8cf617a1aef33931806e30974a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51439127_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dd8a00ea294bf34efa7baf5c60806b072303ada2dc874496245c274edab34e77 -size 4409 diff --git a/MM_Math/data_original_21/7038985/math/51494981_912.png b/MM_Math/data_original_21/7038985/math/51494981_912.png deleted file mode 100644 index e685e6819d4efccee2fe57328b7b82638b4d65b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51494981_912.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e47a50144d0ec395e1fe1779a449a78ee1dede77cfa6642715ac7698bdccc98 -size 7415 diff --git a/MM_Math/data_original_21/7038985/math/51495019_207.png b/MM_Math/data_original_21/7038985/math/51495019_207.png deleted file mode 100644 index fa8ec306cab5c00ca30956bfdfbe1a2773a6de6e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51495019_207.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14ae2ce03306a7bd661765aa25fa22a08279daeaf271f187b2f5d69f8ca539df -size 3027 diff --git a/MM_Math/data_original_21/7038985/math/51495222_903.png b/MM_Math/data_original_21/7038985/math/51495222_903.png deleted file mode 100644 index 243a5f703301cae76996b24b399b87d9f5b8aa35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51495222_903.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6856d9c9a9cf38afc56272296e362ed6965549008e3bbc10b5f005e75ba3ad7 -size 5818 diff --git a/MM_Math/data_original_21/7038985/math/51495482_190.png b/MM_Math/data_original_21/7038985/math/51495482_190.png deleted file mode 100644 index 6ac9f1eab88371ac386d51dfc2c9327172a0ed79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51495482_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a85da2e656bcf59711e702577c1061cfb82b6f9c65928e35c488052cf1c69389 -size 5265 diff --git a/MM_Math/data_original_21/7038985/math/51495484_180.png b/MM_Math/data_original_21/7038985/math/51495484_180.png deleted file mode 100644 index 05cb54bd6537cde24f1ff496606fe6d1f403f54d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51495484_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28f6e16a044597f9543cfa82cdb78d9e5c1983c35bfd0200eeeb44978d451453 -size 1886 diff --git a/MM_Math/data_original_21/7038985/math/51495497_650.png b/MM_Math/data_original_21/7038985/math/51495497_650.png deleted file mode 100644 index f35395fce65fbe8d356b861d02702bf398ffa2db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/51495497_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50a6d36f8b6c76919664690be606bfcf9aa27bcf98b5f22e6d741781ba4eb10f -size 3364 diff --git a/MM_Math/data_original_21/7038985/math/52375758_420.png b/MM_Math/data_original_21/7038985/math/52375758_420.png deleted file mode 100644 index 4be4a520b8de081f507b2f726ceb0a7caa992924..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/52375758_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82dcd828fc54683de7e9365e965c9a473dcae36d9f2ff0f597cf8545d5bb1ea8 -size 7010 diff --git a/MM_Math/data_original_21/7038985/math/52375765_890.png b/MM_Math/data_original_21/7038985/math/52375765_890.png deleted file mode 100644 index b6154b08b453804a6d8f48ba71140892465a7da2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/52375765_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59646b6bd1f3f245d7e1b2f360a3f4b9aa99340e849a8c29dd12441769cb2223 -size 23614 diff --git a/MM_Math/data_original_21/7038985/math/52826548_414.png b/MM_Math/data_original_21/7038985/math/52826548_414.png deleted file mode 100644 index 65855c697147a2fe979a27d08f9e43d3678471dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/52826548_414.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72ad3e598dde5c69c54acd231427353d6ca91901560cdebdee5e7a1a514d3c9e -size 28740 diff --git a/MM_Math/data_original_21/7038985/math/52826614_170.png b/MM_Math/data_original_21/7038985/math/52826614_170.png deleted file mode 100644 index c31835fb677bfb04e591dab53129377023d87a78..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/52826614_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34fd4ccaa0237dee8b4098f03a1cbdc77e51aa11a33255bcf999808f4596b7fe -size 2304 diff --git a/MM_Math/data_original_21/7038985/math/52872897_886.png b/MM_Math/data_original_21/7038985/math/52872897_886.png deleted file mode 100644 index 57e009059ce016f10070914daf1f4e8121409243..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/52872897_886.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4dcddb72a152a4d53111330e40491ff920cbc82e68301d88ccf2ddadc9b3e7e -size 5993 diff --git a/MM_Math/data_original_21/7038985/math/53027060_405.png b/MM_Math/data_original_21/7038985/math/53027060_405.png deleted file mode 100644 index 093b341fc407c266f133d7dc2c35ade2cdc06174..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53027060_405.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ef2121d50a18e716afdd1274aba91b27365c8547054dc8f87119088f99c22f4 -size 1554 diff --git a/MM_Math/data_original_21/7038985/math/53027074_631.png b/MM_Math/data_original_21/7038985/math/53027074_631.png deleted file mode 100644 index 99ae2fe2c97c0ce283080847eb454414e5b00aed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53027074_631.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f4001be29f5148b566cc5b09c8201365a16aeda46202e3f8eda937de46d5556 -size 5297 diff --git a/MM_Math/data_original_21/7038985/math/53042295_156.png b/MM_Math/data_original_21/7038985/math/53042295_156.png deleted file mode 100644 index ef5a4bbf004bc71959cf8c9f0b0eb03bd1e1da9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53042295_156.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:575a562e988e26aae236db4d4d0ef8d45b51da5ba56ded5a1b6228a72120055f -size 1090 diff --git a/MM_Math/data_original_21/7038985/math/53042516_147.png b/MM_Math/data_original_21/7038985/math/53042516_147.png deleted file mode 100644 index e9511922221f724b7d72f894ff52a4ea04577c4b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53042516_147.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c821af526bf3ae134586ee7d0a91785b58fdf1d48818051c4f58a13cfe36e7d1 -size 2817 diff --git a/MM_Math/data_original_21/7038985/math/53042576_395.png b/MM_Math/data_original_21/7038985/math/53042576_395.png deleted file mode 100644 index ce48b7c53ca62be511bdc46dcbeadb37bb6ccb40..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53042576_395.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10400de084266d87245b22fc44db76694bcfad70061f2ee18c561b38a1c9969f -size 17761 diff --git a/MM_Math/data_original_21/7038985/math/53066707_874.png b/MM_Math/data_original_21/7038985/math/53066707_874.png deleted file mode 100644 index 95f47f343b37ff6c2efcd394d43691e9eda0cba2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53066707_874.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2183acbf9da0ae3a634be104af90d42f3d638eed7a257ca4e16893bea55f73fb -size 6931 diff --git a/MM_Math/data_original_21/7038985/math/53078554_135.png b/MM_Math/data_original_21/7038985/math/53078554_135.png deleted file mode 100644 index e78aa0b85a8473127176426dc5b9d3aba4397428..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53078554_135.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:487b8a9413e7be99e22a0f7982a97514762bde201fadf6973c98261b0ef61b0b -size 1978 diff --git a/MM_Math/data_original_21/7038985/math/53078560_385.png b/MM_Math/data_original_21/7038985/math/53078560_385.png deleted file mode 100644 index 71b652c5c285965a2d4a5e464a5f34b2d2ecc750..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53078560_385.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f06f6030f8a1029791355e5abde3a6668a567615da256dea8538347be9ea4e2 -size 6197 diff --git a/MM_Math/data_original_21/7038985/math/53078633_628.png b/MM_Math/data_original_21/7038985/math/53078633_628.png deleted file mode 100644 index 6bcf97274c57cd7ec72e910cf504981433c34aaa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53078633_628.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b274512e61b19998c236c4b47914e39a72fc877c139837c7f88bc8016d8d7ac9 -size 18652 diff --git a/MM_Math/data_original_21/7038985/math/53106927_165.png b/MM_Math/data_original_21/7038985/math/53106927_165.png deleted file mode 100644 index 20438095b2962d87cba64b9fb8169d88eca2c273..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53106927_165.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ca0fcdeab28c2a54f06de8e1d551bd3f23ab9ad8d34a63df94d55d4fdfddc88 -size 1755 diff --git a/MM_Math/data_original_21/7038985/math/53106950_645.png b/MM_Math/data_original_21/7038985/math/53106950_645.png deleted file mode 100644 index 77a61873ccb0f78d4d426cd1fd15777f782df7fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53106950_645.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f6a4763b146b895e8eb39fdce0273eab592a1ad400da7ce15a433d41e62f7c1 -size 2526 diff --git a/MM_Math/data_original_21/7038985/math/53119262_607.png b/MM_Math/data_original_21/7038985/math/53119262_607.png deleted file mode 100644 index 7b4c4e417e5124680dad6de5f9ec45e405b98a69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53119262_607.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ebc9c3eb519420f189bab296e728bc517714676c45db36e5703190a9a127dea -size 4664 diff --git a/MM_Math/data_original_21/7038985/math/53119292_360.png b/MM_Math/data_original_21/7038985/math/53119292_360.png deleted file mode 100644 index 3b9388721dda086ff1c94f137a3484ae6e991ee5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53119292_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f55eac2e1f211c617453a583748640b01e8e5c1c7ee158ee400a26704033d30 -size 977 diff --git a/MM_Math/data_original_21/7038985/math/53119355_845.png b/MM_Math/data_original_21/7038985/math/53119355_845.png deleted file mode 100644 index 22a36fd4d8d1ad3932212027d7da7de16f39d3ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53119355_845.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0573f8e86f166da9e931a9c79645f5b3586286c453980ca2cc29f020ef115fc -size 2094 diff --git a/MM_Math/data_original_21/7038985/math/53119430_835.png b/MM_Math/data_original_21/7038985/math/53119430_835.png deleted file mode 100644 index 27976d50f484f677317759007654b1985427921e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53119430_835.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a7bf460fd7fb254a757ff3daa20f42f4ac7b828ad12cf31728a504646ec9e82 -size 2601 diff --git a/MM_Math/data_original_21/7038985/math/53119446_124.png b/MM_Math/data_original_21/7038985/math/53119446_124.png deleted file mode 100644 index 2a4d0d7a26e1391ca169f16195ec70b01126d710..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53119446_124.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8324d207d0a03275d7e81c2fdd6ecf7d8d719f7ae0b6f163218a66e0da9723ca -size 793 diff --git a/MM_Math/data_original_21/7038985/math/53119447_115.png b/MM_Math/data_original_21/7038985/math/53119447_115.png deleted file mode 100644 index af9aefe4418f0a52641883950ae920c8a7727347..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53119447_115.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b171067a0b8ae80a95099ba790b049c95524cd8e1c1a6cad2d9052bbf8000f28 -size 2194 diff --git a/MM_Math/data_original_21/7038985/math/53119496_617.png b/MM_Math/data_original_21/7038985/math/53119496_617.png deleted file mode 100644 index 0e1498b88d704276f2ffe70c737e05d381fc3506..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53119496_617.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:714f9c749c6670e55873db81803511d074622c1f8e1386c4cc7fb64a38980642 -size 4168 diff --git a/MM_Math/data_original_21/7038985/math/53119651_850.png b/MM_Math/data_original_21/7038985/math/53119651_850.png deleted file mode 100644 index e4084fe53b2866a91d20881f8b2497a46981b394..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53119651_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5cd84c253e8c7101a5590704e8ee083855c8507cd9509036af0423d9748b1ee6 -size 2982 diff --git a/MM_Math/data_original_21/7038985/math/53119829_354.png b/MM_Math/data_original_21/7038985/math/53119829_354.png deleted file mode 100644 index 9f74e32ae035617ce0a58a6f9b2e5851b262a511..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53119829_354.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de7d600a5b788f9a02a14998fbd72d17dfd51f490870914f96280b92ef784179 -size 4858 diff --git a/MM_Math/data_original_21/7038985/math/53119839_860.png b/MM_Math/data_original_21/7038985/math/53119839_860.png deleted file mode 100644 index aa91847d022bd441cbb5fcce2c7d68dc29564488..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53119839_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7739b210c671b52417e12c1d8be05a60c308986b67fa12c580ea455dff56bd39 -size 3207 diff --git a/MM_Math/data_original_21/7038985/math/53124841_342.png b/MM_Math/data_original_21/7038985/math/53124841_342.png deleted file mode 100644 index 8475bf7f53046b88d2ab7eb741ba56c2131f45d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53124841_342.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a897bfbb4dafc960660a6b6f47d1c82ee4b0c67c7467636c1df297dc120d9439 -size 4076 diff --git a/MM_Math/data_original_21/7038985/math/53124986_105.png b/MM_Math/data_original_21/7038985/math/53124986_105.png deleted file mode 100644 index 5046ed2f4069607524af863250d8c087172fe6ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53124986_105.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:61ab36514302e49340d9cb01181843ae4c68f008fdf4af02d2ae2db910dd25a4 -size 7704 diff --git a/MM_Math/data_original_21/7038985/math/53195260_595.png b/MM_Math/data_original_21/7038985/math/53195260_595.png deleted file mode 100644 index 77d549d8feb8bd0209d8bcef3fc586e1ed465be9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53195260_595.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69a876a476c59c5f9e1ff0de849998325ab1dfb4ec772a9cf9de627ae4233b0e -size 1900 diff --git a/MM_Math/data_original_21/7038985/math/53195484_820.png b/MM_Math/data_original_21/7038985/math/53195484_820.png deleted file mode 100644 index 8af3218c3b7dec265db679f29dcca973e40b40cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53195484_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4320e131a2d70a6057116455ec4d5ca058ab85aaee2df7e8839d8ad39c9007ed -size 1566 diff --git a/MM_Math/data_original_21/7038985/math/53205833_786.png b/MM_Math/data_original_21/7038985/math/53205833_786.png deleted file mode 100644 index f22d6ee52553388ef4dc834232dc7d66381d773c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53205833_786.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0db0c1d14adbb617c70be51afc47622a718b584e5a524e9b4e2237933b42483c -size 100097 diff --git a/MM_Math/data_original_21/7038985/math/53205929_555.png b/MM_Math/data_original_21/7038985/math/53205929_555.png deleted file mode 100644 index aa7020e86ceb64fd2f884ee0bf6b7d6a0af3a327..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53205929_555.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8d3126ee67dc54d4c38a5b973dd1858b7b5aee79771c4b16150e92b4feb7a4fe -size 5008 diff --git a/MM_Math/data_original_21/7038985/math/53206048_761.png b/MM_Math/data_original_21/7038985/math/53206048_761.png deleted file mode 100644 index fd2917d2f7698eac956ca6f17e9f6ea9f2703e8a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206048_761.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e15e936fb0ee08edfb58e9d2d0e522768c537865f32f44897f04f340d89ccc54 -size 956 diff --git a/MM_Math/data_original_21/7038985/math/53206081_770.png b/MM_Math/data_original_21/7038985/math/53206081_770.png deleted file mode 100644 index 54f5eecaa11a3ba60ee48a796b03b8637f56e975..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206081_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe5e419192cae1d4879390544a35a3c6dab44bc580d4f7c031999b176427d6bb -size 4007 diff --git a/MM_Math/data_original_21/7038985/math/53206132_560.png b/MM_Math/data_original_21/7038985/math/53206132_560.png deleted file mode 100644 index 2b1f959b2985f093202b3dfa24a8cf4719e12972..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206132_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a265867227db726ddf4cb6272058173b319e07e743309b929dab1661ab9ff78 -size 9905 diff --git a/MM_Math/data_original_21/7038985/math/53206179_7500.png b/MM_Math/data_original_21/7038985/math/53206179_7500.png deleted file mode 100644 index 77dc44d54ae458bc77ca0e474eb3786a7b4d2125..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206179_7500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:020b6c4376791b36a7bad166696025363d6a86b496d48880a17f436238721dea -size 145 diff --git a/MM_Math/data_original_21/7038985/math/53206179_7501.png b/MM_Math/data_original_21/7038985/math/53206179_7501.png deleted file mode 100644 index e320bdec1953d7909c220f2aea813d149662f33d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206179_7501.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db03cbf293dfd3bb4b612dfee95041e20de5e897683f567609155b011efbc607 -size 38572 diff --git a/MM_Math/data_original_21/7038985/math/53206218_66.png b/MM_Math/data_original_21/7038985/math/53206218_66.png deleted file mode 100644 index 2f3a2661ce6a54c5ea47858722bdfaee2afe8f48..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206218_66.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:95b8a780c8c0994a5db812b04b5d3a704254bdef7efab0ccf17e39aa7ebe1596 -size 29453 diff --git a/MM_Math/data_original_21/7038985/math/53206228_577.png b/MM_Math/data_original_21/7038985/math/53206228_577.png deleted file mode 100644 index b582b2ecbf32578c43f9c6f04135d23a988bbf90..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206228_577.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a434feeac47ab36cefe706363e5b40c7ecd07574c40e75f63498163e65e557c -size 1974 diff --git a/MM_Math/data_original_21/7038985/math/53206252_318.png b/MM_Math/data_original_21/7038985/math/53206252_318.png deleted file mode 100644 index 45dd86bd4df70d81714c9d1118dae4d5aec41943..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206252_318.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e98977a8318a42127d57802d9b685e93b50996f308ee56e7d36849aad08d48c6 -size 3007 diff --git a/MM_Math/data_original_21/7038985/math/53206669_740.png b/MM_Math/data_original_21/7038985/math/53206669_740.png deleted file mode 100644 index 270373cb6c734aeae30097c613cbc93a649522cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206669_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df8a440e0d277fb64144bc27c25191775ac0efde2f5837d5aacfb15542091633 -size 3058 diff --git a/MM_Math/data_original_21/7038985/math/53206750_50.png b/MM_Math/data_original_21/7038985/math/53206750_50.png deleted file mode 100644 index 57ad047f19437be37bd6acf269b1e6e8add5cad5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206750_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05dcc1b10b12813c5b23076e87ee8cdcb8966bdbc975f45813388c548203c632 -size 1831 diff --git a/MM_Math/data_original_21/7038985/math/53206772_7310.png b/MM_Math/data_original_21/7038985/math/53206772_7310.png deleted file mode 100644 index 2b02177336248ae80aaa484f1875bc97c6a7783c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53206772_7310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bcb1ce782ca4824e8a3e4627070ac9488f1090821a18cdbdcbae90aee06566ed -size 3775 diff --git a/MM_Math/data_original_21/7038985/math/53207045_3010.png b/MM_Math/data_original_21/7038985/math/53207045_3010.png deleted file mode 100644 index a5dc20f7436d7fa4d49dfb844cb9c0a4343cb029..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53207045_3010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59ff72dcbef27d063c4319a1d27e898f0a201a484dd8650d5702effc9b4c1ca6 -size 2606 diff --git a/MM_Math/data_original_21/7038985/math/53207134_290.png b/MM_Math/data_original_21/7038985/math/53207134_290.png deleted file mode 100644 index ca0207075b11a0d266db2056354519bbde9d68c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53207134_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af73b9e654cf54a1d31476b69ab65164ccdce46608a5904a9eef8fe8aa03f979 -size 2300 diff --git a/MM_Math/data_original_21/7038985/math/53207148_540.png b/MM_Math/data_original_21/7038985/math/53207148_540.png deleted file mode 100644 index 8ce1d57d3cb36c123f5c2ab1a6751a94b5e2a830..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53207148_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d59c80795ea82c1cd46ae843d9b7d1e05b86b7a43b3adbb4c87ea7bba90da571 -size 2781 diff --git a/MM_Math/data_original_21/7038985/math/53210764_70.png b/MM_Math/data_original_21/7038985/math/53210764_70.png deleted file mode 100644 index 293dc9112cefda04d4b084b0d70926d36a869523..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53210764_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79abf53d0bbed5ac002adff99ee0c6220677a279b40b58a513157b2055f71002 -size 4118 diff --git a/MM_Math/data_original_21/7038985/math/53211002_87.png b/MM_Math/data_original_21/7038985/math/53211002_87.png deleted file mode 100644 index 999175a7d8bff611b00187fd7577a00bb55c5123..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53211002_87.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a889fe3580de87b9140d023e15ed1e08ac5151f01c84958716b1494e1bbb809 -size 9062 diff --git a/MM_Math/data_original_21/7038985/math/53211085_324.png b/MM_Math/data_original_21/7038985/math/53211085_324.png deleted file mode 100644 index 764d3087fa3850f59cf0b11dcc5fb955a75a8f49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53211085_324.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cdec31f13613d1af384175a6841f878adcc0136a5bf4c886a89ea530c90d107d -size 822 diff --git a/MM_Math/data_original_21/7038985/math/53211124_335.png b/MM_Math/data_original_21/7038985/math/53211124_335.png deleted file mode 100644 index 35ba2515accc9a16a3ca5ad866e94980b2c3eb0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53211124_335.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7b29de7c1fe7ac91981fcefa4f356e6790efc9eb97bde737c60f033908e1ff3 -size 11561 diff --git a/MM_Math/data_original_21/7038985/math/53211137_807.png b/MM_Math/data_original_21/7038985/math/53211137_807.png deleted file mode 100644 index 97c8bc1524aa839381528d0e89cf8c7e432383b4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53211137_807.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c13b9abd4b4e38900db15d2c79d47da6558b6c0cf06fa5218fa859d3ceaf9a9 -size 12186 diff --git a/MM_Math/data_original_21/7038985/math/53211177_580.png b/MM_Math/data_original_21/7038985/math/53211177_580.png deleted file mode 100644 index d5613858acb3879cc837e28ae0d97a71381a9cc9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53211177_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0da8cae15c2f488a5e5d299aee5b70924f2fe4a368ec7583eff02c92707a09ec -size 3437 diff --git a/MM_Math/data_original_21/7038985/math/53211321_97.png b/MM_Math/data_original_21/7038985/math/53211321_97.png deleted file mode 100644 index b712c84bc2317c192a6965fc6544b0f106192f10..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53211321_97.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7af02e90dbd50e138963ea4f42bd7a7dbd3b48d3431f5829c621e1c643e02464 -size 3296 diff --git a/MM_Math/data_original_21/7038985/math/53211413_813.png b/MM_Math/data_original_21/7038985/math/53211413_813.png deleted file mode 100644 index a7f2c4f2b36fcf82af36b4d9138c80512b056ca8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53211413_813.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a1a06848edb196483e8ab2c5729bb79b46de89d78a222c96c3fe4feb639a76d6 -size 1746 diff --git a/MM_Math/data_original_21/7038985/math/53223346_716.png b/MM_Math/data_original_21/7038985/math/53223346_716.png deleted file mode 100644 index f8d9b382b50282724436736ceb2bb2132b632550..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53223346_716.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8015e9ac59c70f3f6562f526f05e695afcdbca2f4fd08f16ecfa29bac0d7624d -size 8398 diff --git a/MM_Math/data_original_21/7038985/math/53223463_720.png b/MM_Math/data_original_21/7038985/math/53223463_720.png deleted file mode 100644 index 288fbd7f6d84c414adf3683e11dd2e35eefc88f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53223463_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71d5f01efb66830df9c2df4983ba144d9aa116f61679cb7b97e223c2f504fdea -size 37006 diff --git a/MM_Math/data_original_21/7038985/math/53224379_660.png b/MM_Math/data_original_21/7038985/math/53224379_660.png deleted file mode 100644 index 11e522b43e2082dc33dfa2e3243b2e8074f245ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53224379_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9aa396eeddba3725b30e1991426fd391a724f0657ae2526fa6e40cb267dda209 -size 3960 diff --git a/MM_Math/data_original_21/7038985/math/53253227_15.png b/MM_Math/data_original_21/7038985/math/53253227_15.png deleted file mode 100644 index 20ca9e448ce2bb01dca628d9e5a839e7ec8c27f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53253227_15.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e8e03ebcdb31e90fa569402476fec197e0c9941b61cde855e318b0c91fa5f65 -size 1891 diff --git a/MM_Math/data_original_21/7038985/math/53253409_246.png b/MM_Math/data_original_21/7038985/math/53253409_246.png deleted file mode 100644 index 344cec67a6f6b927baadbff8a5c8b4522d1082a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53253409_246.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfc4cd775217bf65fb64c26feee884a867e7df868c87f8c6e28f5fedbdc646ef -size 3525 diff --git a/MM_Math/data_original_21/7038985/math/53253420_505.png b/MM_Math/data_original_21/7038985/math/53253420_505.png deleted file mode 100644 index f7a8764e7e8f2277e24262fc53803634cde88b46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53253420_505.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e2f667501094eabbaad87be4c54ace4a1f6c2f3db7fafe15d5b3fea6cca8b61 -size 9605 diff --git a/MM_Math/data_original_21/7038985/math/53253495_499.png b/MM_Math/data_original_21/7038985/math/53253495_499.png deleted file mode 100644 index 2646c09a51f056862f9fd49756f1baf8f55c3f19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53253495_499.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20425061f424031223306d0b2220260078bb52055273e1488978bde64eafb4bd -size 2193 diff --git a/MM_Math/data_original_21/7038985/math/53253509_08.png b/MM_Math/data_original_21/7038985/math/53253509_08.png deleted file mode 100644 index a783f76588c2884a9f6aa4f27fe0031c2a009955..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53253509_08.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e90805521980da40c7242b8f16b74854ecc00171d3c27035dd5c398a122b0825 -size 8475 diff --git a/MM_Math/data_original_21/7038985/math/53253563_250.png b/MM_Math/data_original_21/7038985/math/53253563_250.png deleted file mode 100644 index e4ebb31d9c5c1c93d3523f70434613845571b67f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53253563_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f220a44de5f558f500746a35d7e63c6feb3a0faf6a25f1cc6b4194944a3fb239 -size 1558 diff --git a/MM_Math/data_original_21/7038985/math/53253574_485.png b/MM_Math/data_original_21/7038985/math/53253574_485.png deleted file mode 100644 index 117f40d9baa49c44b91c32773953ad477aa94a7c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53253574_485.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25fef0a23a183ed9237bb024582d2cd339295d221b177e02269891e77bdd2416 -size 1259 diff --git a/MM_Math/data_original_21/7038985/math/53363928_794.png b/MM_Math/data_original_21/7038985/math/53363928_794.png deleted file mode 100644 index 24e682a362260e9247d6d6872425635f5fba83a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53363928_794.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b659c5c57db91e4284f1a1fe8f94b8178aedd5f82b7dd4bb489c6b50fc79c17 -size 99995 diff --git a/MM_Math/data_original_21/7038985/math/53364075_705.png b/MM_Math/data_original_21/7038985/math/53364075_705.png deleted file mode 100644 index 5deeae006721f6e955ed996e4f934693b1b7ef8b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53364075_705.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b16e841535c9db86e8f04f84b22274cff02d1153fddf047f5a7ae1888f335bb6 -size 19193 diff --git a/MM_Math/data_original_21/7038985/math/53365412_371.png b/MM_Math/data_original_21/7038985/math/53365412_371.png deleted file mode 100644 index 7f4f2052ade8b1e8e32d9013430a2f94b85731c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53365412_371.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9fa1c0c2bf41842c2de3cc4383c0e9212e257276910b357cd267e8d7b327a4b6 -size 6432 diff --git a/MM_Math/data_original_21/7038985/math/53365756_531.png b/MM_Math/data_original_21/7038985/math/53365756_531.png deleted file mode 100644 index d5bad7481b8f6f0010a7f09f2fa2c0cb5a35b72f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53365756_531.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ef56b34b217bb398fc88410792187904b54874707a826c3a333d173ed75ec94 -size 4404 diff --git a/MM_Math/data_original_21/7038985/math/53365775_690.png b/MM_Math/data_original_21/7038985/math/53365775_690.png deleted file mode 100644 index 14d3510e2a9201e70ede06f6e98ef96b27e6a9d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53365775_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32ead6dcf3afb82853109f2796883d142b16c5970cdd4dc2b6b63a8f1de90d3b -size 10560 diff --git a/MM_Math/data_original_21/7038985/math/53403960_676.png b/MM_Math/data_original_21/7038985/math/53403960_676.png deleted file mode 100644 index eff52024abb1bcd913ad581bd55e4757b21e00a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53403960_676.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b433feb44eda603de9dd8e867d0d5d0061184255034839c8bc6b30a1bf35684 -size 15093 diff --git a/MM_Math/data_original_21/7038985/math/53404010_526.png b/MM_Math/data_original_21/7038985/math/53404010_526.png deleted file mode 100644 index 6fc0744d9056d956cb62162c38a9eda31b450074..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53404010_526.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43a3953f4c5f5f6293c3d421b65b6548f350f50e68814abad50f87dd9abd7117 -size 2206 diff --git a/MM_Math/data_original_21/7038985/math/53404045_516.png b/MM_Math/data_original_21/7038985/math/53404045_516.png deleted file mode 100644 index b5172c80a0ee706444bb086d19f61748731ef5d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53404045_516.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:437803abb704ca49b413df0a58c0cfcb22595f6c0042d67c77107b68783e640e -size 12887 diff --git a/MM_Math/data_original_21/7038985/math/53404179_261.png b/MM_Math/data_original_21/7038985/math/53404179_261.png deleted file mode 100644 index d8ff91e0605a94995d14f4bb5a2b44c8f255d98e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53404179_261.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14fe721d3264ee87a875994a21d6a48d47ce527bc1f73f37e052c1e4f4833a18 -size 7077 diff --git a/MM_Math/data_original_21/7038985/math/53404231_688.png b/MM_Math/data_original_21/7038985/math/53404231_688.png deleted file mode 100644 index 21f4ffb15e377ddd2d16f43a58f84a5c789844b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53404231_688.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:57655a21bced510322c28417dc09975e2de86fbb942f28095711047d9e071625 -size 4339 diff --git a/MM_Math/data_original_21/7038985/math/53404527_46.png b/MM_Math/data_original_21/7038985/math/53404527_46.png deleted file mode 100644 index 366890b61cc4644759e4e3a85b13cc35d3b913ad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53404527_46.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f3af471c5cfde805e495d886b92316a502b14c52b5f331964ca6d3efcdf327d -size 5997 diff --git a/MM_Math/data_original_21/7038985/math/53404532_271.png b/MM_Math/data_original_21/7038985/math/53404532_271.png deleted file mode 100644 index 378e5cd76f6eeab147d05d4736540f521949c6fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53404532_271.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:614b24663c0407ebed3dbe2db65616caf9f1a9a064bf3e3ef9e3b1c31c572e7a -size 2269 diff --git a/MM_Math/data_original_21/7038985/math/53404553_25.png b/MM_Math/data_original_21/7038985/math/53404553_25.png deleted file mode 100644 index 10d14132a84d052680a47424e9f4bf7c0ae6f5e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53404553_25.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b08993bc28fd97835d7e2fb9d349f4d020b5855824337738fada32245d8600e -size 826 diff --git a/MM_Math/data_original_21/7038985/math/53404554_35.png b/MM_Math/data_original_21/7038985/math/53404554_35.png deleted file mode 100644 index 1c1938bdb8ba89b02a168fc7154ff7833f3798f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/math/53404554_35.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a81fb67cca0688e14dc31566bea315a8d7f1dde815235014ba1b5e85a2fa8b0f -size 5777 diff --git a/MM_Math/data_original_21/7038985/solution_images/51438171_230.png b/MM_Math/data_original_21/7038985/solution_images/51438171_230.png deleted file mode 100644 index 1f9e658d40f67113d8ebe41c000822525c12cf13..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/solution_images/51438171_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc39d84a3043107b94d9747f97b187d8ec461b83ff4846f2a8a2987f7cd5bff0 -size 1157 diff --git a/MM_Math/data_original_21/7038985/solution_images/51439127_993.png b/MM_Math/data_original_21/7038985/solution_images/51439127_993.png deleted file mode 100644 index 0e5206df51fd6a959d57cd3572f1cd81892844ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/solution_images/51439127_993.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1973bd4e43d261d654160bd7603e20fdfdf7a8629034d7bced2fd59a11c34c05 -size 5967 diff --git a/MM_Math/data_original_21/7038985/solution_images/51439127_998.png b/MM_Math/data_original_21/7038985/solution_images/51439127_998.png deleted file mode 100644 index 709a99a2e649f1ed4c48cc5f6fdf3d481c55302e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/solution_images/51439127_998.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79e0f62459bdc13a0e1c5e374a1444733e591fb2729949095939a2cc966f739e -size 3174 diff --git a/MM_Math/data_original_21/7038985/solution_images/53253448_283.png b/MM_Math/data_original_21/7038985/solution_images/53253448_283.png deleted file mode 100644 index 17efd98bc5dcdd017e2cb8f5dbfa36c0f14bdf6b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/solution_images/53253448_283.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f71999937e47909b578f68fd0bf7a61731e46ba53b9c2a246418004c222058ab -size 566 diff --git a/MM_Math/data_original_21/7038985/solution_images/53253448_286.png b/MM_Math/data_original_21/7038985/solution_images/53253448_286.png deleted file mode 100644 index 999aa33c11d2ba870d59f5de608b04a1f1c39d7e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7038985/solution_images/53253448_286.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54603785ed16731a027280d64f3ab6fa75f977fbcad12b8f37b67bec223dbf55 -size 547 diff --git a/MM_Math/data_original_21/7043711/math/51284590_110.png b/MM_Math/data_original_21/7043711/math/51284590_110.png deleted file mode 100644 index 67a2171820fb516998ed6b1026693c229a6e7dbc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51284590_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c620c7ea6dc5c35f937678f0a7065d2811a300a91ff38c66a8a06e2e00177f3c -size 2919 diff --git a/MM_Math/data_original_21/7043711/math/51284638_440.png b/MM_Math/data_original_21/7043711/math/51284638_440.png deleted file mode 100644 index 01437e24bb7b716ba095ac88c61be87fb5c13112..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51284638_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f0c4dcc0e386c3843f1ac8f2ab3740ae9a2de2f98f6934bae822216ecbe359ed -size 11483 diff --git a/MM_Math/data_original_21/7043711/math/51284639_450.png b/MM_Math/data_original_21/7043711/math/51284639_450.png deleted file mode 100644 index f7f908f972e8a079598799c934f94a1e5b5025f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51284639_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:95be9a89d4f6131d3b9e18836af65141cc8ffa2ac77ee4164924b1a84129c04d -size 1442 diff --git a/MM_Math/data_original_21/7043711/math/51284661_320.png b/MM_Math/data_original_21/7043711/math/51284661_320.png deleted file mode 100644 index 70eb9286ba6365d70c69fe4e3121c30ae3c8116f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51284661_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:642dc8451b86e5d00c1dc11c7cda9a6e669116dbd4da29945eb3600cd1cbb0b2 -size 5618 diff --git a/MM_Math/data_original_21/7043711/math/51284715_330.png b/MM_Math/data_original_21/7043711/math/51284715_330.png deleted file mode 100644 index 1fcb230b4dd0b8e9042c64a58d5b488b0f9fce76..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51284715_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0dca4ccb6867c2a18584377028c4dd9221042950179348221bf4ec60b7bf47d9 -size 5113 diff --git a/MM_Math/data_original_21/7043711/math/51284764_470.png b/MM_Math/data_original_21/7043711/math/51284764_470.png deleted file mode 100644 index 8ae08497fb65408f1898cd95d7cdf34a36480df6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51284764_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a74d94e059b6219f65d4a4ffff4affc31766ae2a637f5cbb76f8d6de1b20ccb5 -size 2870 diff --git a/MM_Math/data_original_21/7043711/math/51284781_101.png b/MM_Math/data_original_21/7043711/math/51284781_101.png deleted file mode 100644 index baa3e5aa4889898aebf1063404b0452a9498e66d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51284781_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3ff6a33042bc8f0a9dd1e49dd763fae08b08348bbaa8772128585689ad0c141 -size 3880 diff --git a/MM_Math/data_original_21/7043711/math/51284798_460.png b/MM_Math/data_original_21/7043711/math/51284798_460.png deleted file mode 100644 index 6f6109edaa5e13d1476f022aa2115b046d1e965b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51284798_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97798431a00654374416c140f56e7ad203ee828e6e00968bfcad59ee63805cd9 -size 1245 diff --git a/MM_Math/data_original_21/7043711/math/51284809_122.png b/MM_Math/data_original_21/7043711/math/51284809_122.png deleted file mode 100644 index 24dac08e5606362b2e4d543ef010d34ead3562c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51284809_122.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:402c31c6adccb86d14b5f0c0a7c7c2871fa3b0400d4494bf6e109375c59d60de -size 1105 diff --git a/MM_Math/data_original_21/7043711/math/51317300_00.png b/MM_Math/data_original_21/7043711/math/51317300_00.png deleted file mode 100644 index 64b3f9a999eaa1091bb74ca601486102663587b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51317300_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aea5aba1594e2dd2a3cc25233b8cc747089a2a13bc1bb8a377cbb091c29024b2 -size 1498 diff --git a/MM_Math/data_original_21/7043711/math/51317331_560.jpg b/MM_Math/data_original_21/7043711/math/51317331_560.jpg deleted file mode 100644 index d318e8792abda1e6215e95d727337fccd01a5a84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51317331_560.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6ed5cf3101d64302f34fbabd0317a53f9f7392abb9ee014541902506fcbefed -size 5101 diff --git a/MM_Math/data_original_21/7043711/math/51321729_554.png b/MM_Math/data_original_21/7043711/math/51321729_554.png deleted file mode 100644 index 2029c43f00221b7e41b73c62eca39ea469fd1128..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51321729_554.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4d8e43850504b579d76bf98d094362588cef9c02ff14695d19b3c3da492b651 -size 54931 diff --git a/MM_Math/data_original_21/7043711/math/51379682_351.png b/MM_Math/data_original_21/7043711/math/51379682_351.png deleted file mode 100644 index a1ced27a61ab6f1c99a9e60e18ee6a2797f16c34..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51379682_351.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:657daf385f8eb0f59991d82497cfc092ba0ae8999ef2ef3aaf879df6f4fede11 -size 1001 diff --git a/MM_Math/data_original_21/7043711/math/51379704_140.png b/MM_Math/data_original_21/7043711/math/51379704_140.png deleted file mode 100644 index ba5f29cf1df1831cfee30601549592c2df16bf45..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51379704_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6c0ecbebfb2a2280a1155074cf6e38d0a21b75566094af3ceff8d731b40f59b1 -size 159420 diff --git a/MM_Math/data_original_21/7043711/math/51380002_774.png b/MM_Math/data_original_21/7043711/math/51380002_774.png deleted file mode 100644 index c9f9702ebdf5c346928d5544c59dcd92dddf2607..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51380002_774.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5079a387d6b0f3f7e1c144615afcd739d6ba59f35e617b0473e9d6b9dc269856 -size 32424 diff --git a/MM_Math/data_original_21/7043711/math/51385663_7502.png b/MM_Math/data_original_21/7043711/math/51385663_7502.png deleted file mode 100644 index 3e4e09886b0ca838543d7d8ab76937d6b506083a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51385663_7502.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee7a0718f50ab936cf7eaf92c7fa55f8b964b4322cfe99143f7d2ec586357e10 -size 6711 diff --git a/MM_Math/data_original_21/7043711/math/51385719_131.png b/MM_Math/data_original_21/7043711/math/51385719_131.png deleted file mode 100644 index 5922b29451954b11740ce70aa813b38d67f39db5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51385719_131.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7006f7f0421b3c7d391c91f3e647583e6ccdf73bced0d089d04710e74c7f317b -size 2845 diff --git a/MM_Math/data_original_21/7043711/math/51407373_600.png b/MM_Math/data_original_21/7043711/math/51407373_600.png deleted file mode 100644 index a4b63f20f83e869720d461e4671514b80892542e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51407373_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76d129df0e0f8fe5e71bd95188e460e7c475358c7a61b4b8600a5308d2b30f86 -size 18897 diff --git a/MM_Math/data_original_21/7043711/math/51407576_254.png b/MM_Math/data_original_21/7043711/math/51407576_254.png deleted file mode 100644 index 1fad5e12c09094145b6febf8dfc3c62c0238a01f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51407576_254.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d61aaf99aa8aa0d2d04e997bee446da34f18e5668d8dbced6f71ec03a083a30 -size 5363 diff --git a/MM_Math/data_original_21/7043711/math/51420172_592.png b/MM_Math/data_original_21/7043711/math/51420172_592.png deleted file mode 100644 index c0e024e1016d9615bbb45702e9f6a624faa5cb11..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51420172_592.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a677fe265572f8da5fdafaa46f9abe848649e02326e81df1ad4d3f703f6bd831 -size 1933 diff --git a/MM_Math/data_original_21/7043711/math/51434278_4012.png b/MM_Math/data_original_21/7043711/math/51434278_4012.png deleted file mode 100644 index 590b357fabeaf786619d3221560ee7319b925dfd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51434278_4012.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f05e4e921201eb6022f17d2b85e4fb20e0b3b0cedf4baff5092b76345cb42af -size 2588 diff --git a/MM_Math/data_original_21/7043711/math/51434340_240.png b/MM_Math/data_original_21/7043711/math/51434340_240.png deleted file mode 100644 index 92b453e2d8f741f4a3a9205e0c3b04b08a585495..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51434340_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d10f1c854bccaa9f930df8adf8501eb4eb770553ea71641cc2f65644ef5b5e2 -size 6144 diff --git a/MM_Math/data_original_21/7043711/math/51434356_580.png b/MM_Math/data_original_21/7043711/math/51434356_580.png deleted file mode 100644 index 4b30b61727931479fbdc495647c52c014ffb4137..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51434356_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:73c598648620127bf22e32f6d6837536e512500b7b303e5d19c3ed77cc8853d7 -size 4204 diff --git a/MM_Math/data_original_21/7043711/math/51434642_10.png b/MM_Math/data_original_21/7043711/math/51434642_10.png deleted file mode 100644 index f4c75ae4a1605a08cf466e8acaeecdc78468bda7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51434642_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2873cb1b88dc9e1031209baafc459fc93580280140e92fb2eef98480c86a665a -size 981 diff --git a/MM_Math/data_original_21/7043711/math/51434644_20.png b/MM_Math/data_original_21/7043711/math/51434644_20.png deleted file mode 100644 index 03e8506d7a7eaf544c940f01813b0da467502a4d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51434644_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d6d6a1774003c78a3bd8fe1dd443076e50f9c338a4e97523238175afd97bbc7 -size 1922 diff --git a/MM_Math/data_original_21/7043711/math/51434664_570.png b/MM_Math/data_original_21/7043711/math/51434664_570.png deleted file mode 100644 index da1a6bef9e24ba6a10623c85c5cd453737684146..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51434664_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:494a7b13d395e65cca1cd3bff7a7392ffb45a95ee5c58485cf90dfed2b11248a -size 2476 diff --git a/MM_Math/data_original_21/7043711/math/51434732_234.png b/MM_Math/data_original_21/7043711/math/51434732_234.png deleted file mode 100644 index 9a39484cfcc64578c3f7232fe9aa849af6e52846..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51434732_234.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f36b65c3e2488f30189520da9d362adbd40f5d3f76dded54f1786d724c1df6e0 -size 2330 diff --git a/MM_Math/data_original_21/7043711/math/51457634_523.png b/MM_Math/data_original_21/7043711/math/51457634_523.png deleted file mode 100644 index 132186fa1eadf0a0b56d83cabae59afbf8bb0c64..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51457634_523.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed668816e81ee5c5842795e0e2f7ec6ab01939634ba26f9e5dd18a3b794f2158 -size 2409 diff --git a/MM_Math/data_original_21/7043711/math/51457662_970.png b/MM_Math/data_original_21/7043711/math/51457662_970.png deleted file mode 100644 index 00b921f9c85b49d4c05e6d98ecfeacf288415cd1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51457662_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21afe1c7412b808c3f0d2e4574aedc62af80095ec904e7a28fec612c46d57676 -size 2843 diff --git a/MM_Math/data_original_21/7043711/math/51457701_955.png b/MM_Math/data_original_21/7043711/math/51457701_955.png deleted file mode 100644 index 4308ea3c1f0569044ef61dfd375bb1dc07e5fffd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51457701_955.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf2fb876e7e7cb6a2deb454b121b110eeaea7c2ea29e88c39d63276d4ef4723f -size 6827 diff --git a/MM_Math/data_original_21/7043711/math/51457845_943.png b/MM_Math/data_original_21/7043711/math/51457845_943.png deleted file mode 100644 index 1b4df51b2bdfa04caf22d4c4f645bff78292d6ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51457845_943.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:538da26b313ba7b34ca311bbc8fa3e41fb4afee0119ab7df1c1b593f46c4f084 -size 5927 diff --git a/MM_Math/data_original_21/7043711/math/51481943_508.png b/MM_Math/data_original_21/7043711/math/51481943_508.png deleted file mode 100644 index 7dc9166f708564ed045922bfd21705f0399704f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51481943_508.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2384e85650e42b55b1dcffbd15994cb4405442a085cb151a0c7b7cd6349a752 -size 3275 diff --git a/MM_Math/data_original_21/7043711/math/51481976_930.png b/MM_Math/data_original_21/7043711/math/51481976_930.png deleted file mode 100644 index c601f79c736dfd8d649f3922926191df1298f3c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51481976_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:309f60128bf1d13a9fa78fdfeacae85238ab04dc3a66ff93d0d25384a3f89f26 -size 11133 diff --git a/MM_Math/data_original_21/7043711/math/51482123_192.png b/MM_Math/data_original_21/7043711/math/51482123_192.png deleted file mode 100644 index 44fefbea569255c89a2485df32abca37a751dde4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51482123_192.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:353700bb7c96d380ce5c5bab5898a12d8176b60fcbf9d554f95de28d96e226cb -size 7783 diff --git a/MM_Math/data_original_21/7043711/math/51482322_920.png b/MM_Math/data_original_21/7043711/math/51482322_920.png deleted file mode 100644 index 2c636e16988f326dbd575f5d192d8c1c7a0412ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51482322_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e178c17f92058a756d332e593db16dcccbd09c2ad205eefecadca7b0f7fec120 -size 12218 diff --git a/MM_Math/data_original_21/7043711/math/51482433_912.png b/MM_Math/data_original_21/7043711/math/51482433_912.png deleted file mode 100644 index 681fd21a4b9ef84cbcc84065d51440b87626fb6c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51482433_912.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62d3642fc9f1a548b2adc55e7c9ebd1c54fbdae89732e4af0653733f5b37cf54 -size 5637 diff --git a/MM_Math/data_original_21/7043711/math/51482445_186.png b/MM_Math/data_original_21/7043711/math/51482445_186.png deleted file mode 100644 index 4c2110303f007afd301bd76603edb2405fed66a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51482445_186.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:608e84c320d92e0173c08cc8a701151cbc1719a73d3ac886746260ef93df4c47 -size 2218 diff --git a/MM_Math/data_original_21/7043711/math/51508770_790.png b/MM_Math/data_original_21/7043711/math/51508770_790.png deleted file mode 100644 index 5e1232a47307e2f345995131151eb88ba48f3efa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51508770_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7001ddf62e730225bccc83ebefd92da579f7346a11cfab753b787382948cf98d -size 3175 diff --git a/MM_Math/data_original_21/7043711/math/51508815_360.png b/MM_Math/data_original_21/7043711/math/51508815_360.png deleted file mode 100644 index 4cc8af1cbeece7cea352f9ec1b1cb9068cd366ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51508815_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e885fd430442e80e61c6d21bbd0c815b736076e2814bcbbd157d0f3d6f6d5091 -size 3966 diff --git a/MM_Math/data_original_21/7043711/math/51508981_784.png b/MM_Math/data_original_21/7043711/math/51508981_784.png deleted file mode 100644 index a7b5b8cce621fec9986af46e1cd9aa12f185c13b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/51508981_784.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d8dd0f6ff98e8e250b99f2e49868574ddc996d2751ccbf0622415c95f50b1e5 -size 5890 diff --git a/MM_Math/data_original_21/7043711/math/52251792_514.png b/MM_Math/data_original_21/7043711/math/52251792_514.png deleted file mode 100644 index 99b7ce609c47b89ce454d6cafd768a84841393ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52251792_514.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:775a295716e1920f0a57115ee626ac24c44c31e06756d348cf3eb7af89afdf3f -size 6155 diff --git a/MM_Math/data_original_21/7043711/math/52579729_987.png b/MM_Math/data_original_21/7043711/math/52579729_987.png deleted file mode 100644 index 1d40ad43c2e1bc0423381a22fc9020dac0477578..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52579729_987.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b3d405258c77f0aa678ce942698aef00ed1bf7585a3f4e26d2f4724a72b8f66 -size 2181 diff --git a/MM_Math/data_original_21/7043711/math/52579788_990.png b/MM_Math/data_original_21/7043711/math/52579788_990.png deleted file mode 100644 index f2f64a4e8728140a0c5b4cbfd633d213a16ec6a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52579788_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe16e3cd0bd50026aa084951dd91bb549229ae9a774a71bd5cbd9b7b78f38e70 -size 3040 diff --git a/MM_Math/data_original_21/7043711/math/52579991_394.png b/MM_Math/data_original_21/7043711/math/52579991_394.png deleted file mode 100644 index 99013667064736cd6311d93b763450d96e984b62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52579991_394.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9354a8888862c2ed10dce1181fc0abfbd2526953acbb1187976c1083785b8385 -size 6505 diff --git a/MM_Math/data_original_21/7043711/math/52580110_211.png b/MM_Math/data_original_21/7043711/math/52580110_211.png deleted file mode 100644 index 9d10199158b6dec5ffca366ad6b3ba9205e8a1cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52580110_211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29d6703ed667298f3c4fcf014f4a7190b2f2aa946ee43667accc12e67fabf1bb -size 4639 diff --git a/MM_Math/data_original_21/7043711/math/52580147_201.png b/MM_Math/data_original_21/7043711/math/52580147_201.png deleted file mode 100644 index bad2786e3f73e77ee7ff7ca5136318b3d38ff75b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52580147_201.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32ed914c6849289ce0180e7d74eee9d8d5828f37728e1fd0b5242f398212e39f -size 1176 diff --git a/MM_Math/data_original_21/7043711/math/52580413_541.png b/MM_Math/data_original_21/7043711/math/52580413_541.png deleted file mode 100644 index b93aad1bffa9dd90ecd03150967cb501cbcfd092..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52580413_541.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a10f4fbeb040bc00c2628b99fe7fc7bada0b8756d105ae7993ca607081ff8ae7 -size 854 diff --git a/MM_Math/data_original_21/7043711/math/52580651_220.png b/MM_Math/data_original_21/7043711/math/52580651_220.png deleted file mode 100644 index a7f31d4a5bec9e3f424c361d34187a5f4c4fb95c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52580651_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4fc1072ea9306da0bda72fafe0f0c5e60c96189b328ebd065c772f6994a79e1 -size 9078 diff --git a/MM_Math/data_original_21/7043711/math/52580669_530.png b/MM_Math/data_original_21/7043711/math/52580669_530.png deleted file mode 100644 index 18ebbd2a3f9bd9ad5476d680627c40ae272f0529..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52580669_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7f0ec31498ba977b5a3bcad94b7b754f2fa98024e2e023e83bb2ee01703ed38 -size 2998 diff --git a/MM_Math/data_original_21/7043711/math/52732433_260.png b/MM_Math/data_original_21/7043711/math/52732433_260.png deleted file mode 100644 index 60bd61cf912c11cac979daea33dee14d845c8d4a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52732433_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2256357d98818ae76ac2d34c40bcc887ac3e46b17c1d684c6b4a8f2c98f55269 -size 2927 diff --git a/MM_Math/data_original_21/7043711/math/52732451_610.png b/MM_Math/data_original_21/7043711/math/52732451_610.png deleted file mode 100644 index 7876800f0f7c3d4853bb007576538b8c8a38d4a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52732451_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1aa814b512993d6255d0d9d902b7bb63fa600ce484632904f890c1d81af7f416 -size 22281 diff --git a/MM_Math/data_original_21/7043711/math/52732599_76.png b/MM_Math/data_original_21/7043711/math/52732599_76.png deleted file mode 100644 index ad5b5e00277466ef1ff2d1f570e344e5ec494c00..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52732599_76.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed2d54b8cf978656176afc36a4f425116b01a43537c23abccb2122310ee8a01c -size 3040 diff --git a/MM_Math/data_original_21/7043711/math/52732849_80.png b/MM_Math/data_original_21/7043711/math/52732849_80.png deleted file mode 100644 index f1f2cdde843af5cc5bca8263606c650a6fdf54de..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52732849_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:151096b26130d09d6e9ff7fb0daf39146b177faa3e2cc93b82f7b20b7db88fc3 -size 2355 diff --git a/MM_Math/data_original_21/7043711/math/52732941_6308.png b/MM_Math/data_original_21/7043711/math/52732941_6308.png deleted file mode 100644 index 8f67bd81f6a501e5bd2e8d9055c6b213511dfef7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52732941_6308.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8653c0fbf09b472ea6ec4d6c74186b8e5723b8c208341c57bc978eeae0593a42 -size 3872 diff --git a/MM_Math/data_original_21/7043711/math/52732942_6319.png b/MM_Math/data_original_21/7043711/math/52732942_6319.png deleted file mode 100644 index af6c4a52f0fc26f8fb857cd12973ae8de6858c36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52732942_6319.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12477946e0812159307cbbd10ac705d0b48d7ba5e5d28006b6b2329b41f07584 -size 1417 diff --git a/MM_Math/data_original_21/7043711/math/52773539_1513.png b/MM_Math/data_original_21/7043711/math/52773539_1513.png deleted file mode 100644 index 4f596c0af95217cdec24bd5d2005bd4fb40d2ff6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52773539_1513.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef760db185d41ccffd19e0a635d70ec599c14411db62b2c5c385353ccc573734 -size 29736 diff --git a/MM_Math/data_original_21/7043711/math/52773591_870.png b/MM_Math/data_original_21/7043711/math/52773591_870.png deleted file mode 100644 index 7ba99440828e17c9f5c81d8fd23852b15c6b0e37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52773591_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf83465f141748bb58b8ce4146f35eb42e25bcbeb418e67f6ff5fc360d469caa -size 4318 diff --git a/MM_Math/data_original_21/7043711/math/52774109_865.png b/MM_Math/data_original_21/7043711/math/52774109_865.png deleted file mode 100644 index 4635abe62775abc0ff02cd4b538d045e249cfa66..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52774109_865.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:937778722ad03324c9ce13a4f0dd45fb3f0e624a8a2a7307c3ab7f5650c283d1 -size 3488 diff --git a/MM_Math/data_original_21/7043711/math/52774176_853.png b/MM_Math/data_original_21/7043711/math/52774176_853.png deleted file mode 100644 index a1c70523f7d33ea6f4f756deb473b45ca145c963..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52774176_853.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89b174ba70a4756f062eb55e1fafbe2d179e2d56ebe206dc7ee649860542f149 -size 2363 diff --git a/MM_Math/data_original_21/7043711/math/52792815_803.png b/MM_Math/data_original_21/7043711/math/52792815_803.png deleted file mode 100644 index 690ec72d5ecf8d59eefb5b03859e2f5c6b75dceb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52792815_803.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b35f527c55b3bb4940f85a358e10315117d4673cea587e2fcd3aa386fb10d57f -size 2501 diff --git a/MM_Math/data_original_21/7043711/math/52792852_835.png b/MM_Math/data_original_21/7043711/math/52792852_835.png deleted file mode 100644 index 932d781ad68c55ef227bddc6a40548791bb27127..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52792852_835.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:edae0b6af6b07d539679cacca4c0cd9ed7886b2ec9f3e8724acdb1f252320f36 -size 15228 diff --git a/MM_Math/data_original_21/7043711/math/52792885_840.png b/MM_Math/data_original_21/7043711/math/52792885_840.png deleted file mode 100644 index 45114647bd973a91d17f1db88da3dc018ef54678..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52792885_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:adbde6ecf6d815f3b083dc5b99966ed9f19f56096c62480ecbefb63d31cd0f4c -size 44740 diff --git a/MM_Math/data_original_21/7043711/math/52793014_370.png b/MM_Math/data_original_21/7043711/math/52793014_370.png deleted file mode 100644 index 7637fb74efbc0f25e5c40adc16f9ab0908d2e0bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52793014_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63fde8682aaeac26236bed0e779181e04010db26235ec230d2037f43c8473c52 -size 70687 diff --git a/MM_Math/data_original_21/7043711/math/52794245_300.png b/MM_Math/data_original_21/7043711/math/52794245_300.png deleted file mode 100644 index f931052bcf4837857956c5016f14bd48aba61bbd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52794245_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:575232fb9d6eb046a223857c3a70426226cf4763c7137ec388971aeadcf8a831 -size 4035 diff --git a/MM_Math/data_original_21/7043711/math/52794787_700.png b/MM_Math/data_original_21/7043711/math/52794787_700.png deleted file mode 100644 index 703367220908e7b5f914cef40e404e43f36166ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52794787_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9301b56b05c8d801ba3cfd88beef3e46f037956d0384ec01e3970b8a7bb6f232 -size 3733 diff --git a/MM_Math/data_original_21/7043711/math/52794818_6908.png b/MM_Math/data_original_21/7043711/math/52794818_6908.png deleted file mode 100644 index b4775d2a7a31dbf99334259db78dddb35ee77642..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52794818_6908.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ac76bf15aa557bd9ed8e93e43dd4898df81fc0d43399009b01f5c353c820874 -size 2075 diff --git a/MM_Math/data_original_21/7043711/math/52794819_69114.png b/MM_Math/data_original_21/7043711/math/52794819_69114.png deleted file mode 100644 index 2de7b6b4b7757d992111f5bf97695ecd0272db81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52794819_69114.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fcc79980c905705c2d92df345edabd313adf8a2f39ba9a6bafd1e076afe46509 -size 4249 diff --git a/MM_Math/data_original_21/7043711/math/52795107_683.png b/MM_Math/data_original_21/7043711/math/52795107_683.png deleted file mode 100644 index c195a3752ba8630d5b74527f99958abcfe46574e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52795107_683.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a88b9f9e61b72ed96160a44773c6b80afcadfe751a54e2bbb6da9a87922011da -size 61439 diff --git a/MM_Math/data_original_21/7043711/math/52795672_710.png b/MM_Math/data_original_21/7043711/math/52795672_710.png deleted file mode 100644 index 5803b2a7baec6275e8b7f42c616c77daa6e99777..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52795672_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:483aaed6ad024ee126ba62f2ad76ed479eee01562de37ad65743cac89315535e -size 2486 diff --git a/MM_Math/data_original_21/7043711/math/52795749_745.png b/MM_Math/data_original_21/7043711/math/52795749_745.png deleted file mode 100644 index 39ea11d35da8c78b54aaba8664e9dab65256ac58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52795749_745.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51d81c36ceb05e832268878e2fd1daa1cdfc7b2bb0938e57df2fed4d0476efc9 -size 7685 diff --git a/MM_Math/data_original_21/7043711/math/52795759_290.png b/MM_Math/data_original_21/7043711/math/52795759_290.png deleted file mode 100644 index f3dd4b8835de5fbf9a3bd7a374cdefb5ba08498c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52795759_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eacd6010ae6e3d4ad79a6f0b88dbbda516f215586aeb8957c1555d756b6854d1 -size 2301 diff --git a/MM_Math/data_original_21/7043711/math/52795772_410.png b/MM_Math/data_original_21/7043711/math/52795772_410.png deleted file mode 100644 index 843728c20f57b329879ee65d97ca78a797130566..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52795772_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1eccfe77884c9b6c43622f7921ff06e97dc87386046dcfa2040c1244c1f03e44 -size 1861 diff --git a/MM_Math/data_original_21/7043711/math/52795906_431.png b/MM_Math/data_original_21/7043711/math/52795906_431.png deleted file mode 100644 index f5077052f0e433eea2848254e3bf78b4cc775ae9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52795906_431.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03f0dd2f659b80ac8fbe5f014599bc174d3bb69c711e2f1ac7a18c965b6118a3 -size 617 diff --git a/MM_Math/data_original_21/7043711/math/52795983_311.png b/MM_Math/data_original_21/7043711/math/52795983_311.png deleted file mode 100644 index 95bed3d84f6de14178c1ebd37eda524721e1703e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52795983_311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cda1bf3c5fda353c9d7983334a280b8f236d5e993b7c1b7837bd695839c3855b -size 717 diff --git a/MM_Math/data_original_21/7043711/math/52795995_720.png b/MM_Math/data_original_21/7043711/math/52795995_720.png deleted file mode 100644 index 3b8d5ebf154aed8d66e6b10b0c4a94a344a35bf9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52795995_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8a3d1b81cd0c3f0b87e47f2827ba7eccf5c44890c402b196c67c519ff90cbe5 -size 1960 diff --git a/MM_Math/data_original_21/7043711/math/52796090_4210.png b/MM_Math/data_original_21/7043711/math/52796090_4210.png deleted file mode 100644 index 155bfa1bacdfb445522166753ca423efce323c23..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52796090_4210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a266d8d0ab5be062eb3f61b8f5d3f82108ae7f274b1e39ff0820e994e92dfb5 -size 2248 diff --git a/MM_Math/data_original_21/7043711/math/52796215_93.png b/MM_Math/data_original_21/7043711/math/52796215_93.png deleted file mode 100644 index 2145a0ee0d04a58f124ab8414674aaf97249733e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52796215_93.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:abfc26965a5f0c61b62984baecc129ff347badf714efe4a574a2d3cf57d2db92 -size 2430 diff --git a/MM_Math/data_original_21/7043711/math/52796437_735.png b/MM_Math/data_original_21/7043711/math/52796437_735.png deleted file mode 100644 index ee578d8fcfe26844a8dd8435196dd4aae92bb594..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52796437_735.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a3919c113377195019c2aaddfbf9dd44754412dde99c03df9a94280895a19175 -size 50910 diff --git a/MM_Math/data_original_21/7043711/math/52837558_280.png b/MM_Math/data_original_21/7043711/math/52837558_280.png deleted file mode 100644 index 84c8982ccf05205e9a2084125b7c0c3d84ef30bf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52837558_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8537b60371b5247e526eab9865a67d70ac77a9c80610694a285490e1fecb5aa8 -size 759 diff --git a/MM_Math/data_original_21/7043711/math/52837576_670.png b/MM_Math/data_original_21/7043711/math/52837576_670.png deleted file mode 100644 index 8df5b54313a9da26023a69a25b19c18d16001696..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52837576_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccfebb51e0df9dc9d8c966e9f6e3a192144e56c3ec75f43e912568fa1fa66e8e -size 2699 diff --git a/MM_Math/data_original_21/7043711/math/52837816_660.png b/MM_Math/data_original_21/7043711/math/52837816_660.png deleted file mode 100644 index 5c51ec23b10177b2ecdff308c34587d53e4059e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52837816_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9c0dd1116e055847f82104d93a4b7d719e7a6ecbf205e0cf9729506829d827a -size 3002 diff --git a/MM_Math/data_original_21/7043711/math/52890008_490.png b/MM_Math/data_original_21/7043711/math/52890008_490.png deleted file mode 100644 index 5ffd95b954fbb9b7c8a13449b0878821d6859a79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52890008_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb0ad7bd3640ff9fbf9d2749ce19751f41b0fa85b26930b9fcc7003de4b86b1a -size 47148 diff --git a/MM_Math/data_original_21/7043711/math/52890230_810.png b/MM_Math/data_original_21/7043711/math/52890230_810.png deleted file mode 100644 index 6f5780c680c5368cc7998b4f2e9ebab995744ac0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52890230_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44f912bc0f9bab3ed74564ca2b3d3235723f88d0428e9f21c9ad1e4be2ea7702 -size 44456 diff --git a/MM_Math/data_original_21/7043711/math/52916008_35.png b/MM_Math/data_original_21/7043711/math/52916008_35.png deleted file mode 100644 index 37e99d2af2022f1854b690a87e12bd24f3677206..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52916008_35.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62471f36f8b20a08fb048f38289637bd8403ed6f1c19a2d479f2f29435424254 -size 1791 diff --git a/MM_Math/data_original_21/7043711/math/52916059_51.png b/MM_Math/data_original_21/7043711/math/52916059_51.png deleted file mode 100644 index b26152dc9bb314f49080f2d087f44d1ccb672544..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52916059_51.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70fddbf1b7c57e9b9898708bcaede1ab7801a3c36532aba614716a6e8e994656 -size 6789 diff --git a/MM_Math/data_original_21/7043711/math/52916222_67.png b/MM_Math/data_original_21/7043711/math/52916222_67.png deleted file mode 100644 index 0f796248f9c556d0eab9e8e4ab944ca7f6064383..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52916222_67.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d29d349c05c157deb273937cf8a365d1a56dfad9c9c1dfa1029b183038204cd -size 2590 diff --git a/MM_Math/data_original_21/7043711/math/52916280_640.png b/MM_Math/data_original_21/7043711/math/52916280_640.png deleted file mode 100644 index cf45f833a05db3d6a3dfee973e112442b19b0b59..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52916280_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:57128551cb85b64eb82da51384d0ac956876459919d8107eff1dcedb8adf9c6c -size 43161 diff --git a/MM_Math/data_original_21/7043711/math/52916301_272.png b/MM_Math/data_original_21/7043711/math/52916301_272.png deleted file mode 100644 index a2d303895838235bf5bed571abba88172242b783..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52916301_272.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a20b60e80c9a65609695bd24b8c46912a0f7eaef186743dae106a89c0a399a27 -size 745 diff --git a/MM_Math/data_original_21/7043711/math/52916444_650.png b/MM_Math/data_original_21/7043711/math/52916444_650.png deleted file mode 100644 index b6def6270d8d61b270a3e2845d7a0b7a2f80d03f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52916444_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b972725af359430e91d6c4ed45a86a4c68b576a08d89837ea6d8c56884c69967 -size 5323 diff --git a/MM_Math/data_original_21/7043711/math/52916519_6204.png b/MM_Math/data_original_21/7043711/math/52916519_6204.png deleted file mode 100644 index c1e8cb516f38b3b22b39fb6025643f021111c6df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52916519_6204.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ac8c7f179e1796a3a03bb0be799baf9df86f44cadd575fd99587f2c895eab2b -size 12044 diff --git a/MM_Math/data_original_21/7043711/math/52916520_6214.png b/MM_Math/data_original_21/7043711/math/52916520_6214.png deleted file mode 100644 index 5a7610a25ff61388d45826f34c5560edb1bce72d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52916520_6214.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c19cc30aad0fea5fefd54ebecec51a4a560b626d06ad6bde15f289d6f2f947eb -size 11320 diff --git a/MM_Math/data_original_21/7043711/math/52948847_9010.png b/MM_Math/data_original_21/7043711/math/52948847_9010.png deleted file mode 100644 index cf4ec1d706c6b5904607f6da83a4a5532c0bd548..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52948847_9010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca05ed1e78d1ec1f7e9cbc23d55446c899abd2bdc99859a4d3c35b5cc326ef36 -size 3124 diff --git a/MM_Math/data_original_21/7043711/math/52948978_177.png b/MM_Math/data_original_21/7043711/math/52948978_177.png deleted file mode 100644 index 501f7fc53a63facfd7dca18a4fdf0ef2e3702e02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52948978_177.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b35db932a2cf3c5853770729974936aba13d47953d27ba8d53247656f9e0f434 -size 2408 diff --git a/MM_Math/data_original_21/7043711/math/52948987_388.png b/MM_Math/data_original_21/7043711/math/52948987_388.png deleted file mode 100644 index fd749dc4a6bdba61e7a3a2c7f6fd1d888f02ff92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52948987_388.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7fe59f4c4674c86f39d0798e55ec3a07e88f6dbf12c5d987829b0f37c2b60ffb -size 1030 diff --git a/MM_Math/data_original_21/7043711/math/52949122_160.png b/MM_Math/data_original_21/7043711/math/52949122_160.png deleted file mode 100644 index a4ae3eded1c30e9ea819f20c2f263767da22681e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52949122_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33287f49ca16a3c86e9cefb25afbb4a81366871d5fba2da104818466ffd662be -size 6382 diff --git a/MM_Math/data_original_21/7043711/math/52949136_886.png b/MM_Math/data_original_21/7043711/math/52949136_886.png deleted file mode 100644 index 64469e12704e9808fa6a2c7d7e71d7adfbd6e1c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52949136_886.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39e2dd75ebb8f7ff1a90d9ad2cfc05bd4a75219c0bfbbe360b83e8c9501ae46f -size 7564 diff --git a/MM_Math/data_original_21/7043711/math/52949146_891.png b/MM_Math/data_original_21/7043711/math/52949146_891.png deleted file mode 100644 index 3bd6a48ac8297c0c145ea767da7f2cccc2a0fb19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/52949146_891.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a613fd55c4c5f487fef05039e448b37c31a81dae2be56b280d7dc5bd1864e0f8 -size 5270 diff --git a/MM_Math/data_original_21/7043711/math/53010644_340.png b/MM_Math/data_original_21/7043711/math/53010644_340.png deleted file mode 100644 index 2209379c2226e5cf590fbcf03d53f0221b451f01..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/53010644_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06a281a191a8ac3a22e5f2a8fd27fd8dbf0fa031081accbeea11225de1eceab3 -size 1874 diff --git a/MM_Math/data_original_21/7043711/math/53010651_480.png b/MM_Math/data_original_21/7043711/math/53010651_480.png deleted file mode 100644 index 2bdb08cb7aea125201ef6c879f930d4439b51511..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/53010651_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f812ba2469407b2915c8a901e545121f60e6c12ede57b0e2a77e08cb8bcc6ce0 -size 5287 diff --git a/MM_Math/data_original_21/7043711/math/53010670_760.png b/MM_Math/data_original_21/7043711/math/53010670_760.png deleted file mode 100644 index 938e456f0377c377be079b9f60b3dc596328a62c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/math/53010670_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eba7cb736229a83feda517f3be3cef2544bcdb21baa0f0176c56b0c757f1dc39 -size 2920 diff --git a/MM_Math/data_original_21/7043711/solution_images/51434340_240.png b/MM_Math/data_original_21/7043711/solution_images/51434340_240.png deleted file mode 100644 index 9ca60e6f96b1db2ca24f92552bf2d1d41d83d655..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/solution_images/51434340_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6557d02cbc7bce124a00db99092e0fb40d32350e538808b7e00eae404a859c1f -size 7808 diff --git a/MM_Math/data_original_21/7043711/solution_images/52580110_210.png b/MM_Math/data_original_21/7043711/solution_images/52580110_210.png deleted file mode 100644 index 6bcab895d0a9f0433d11434e6fd54f39d4842a40..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/solution_images/52580110_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:862eb9ca06a62f680a638b85ca53a93d404c264662274ca33e0ea458fe40b1fe -size 8305 diff --git a/MM_Math/data_original_21/7043711/solution_images/52949122_160.png b/MM_Math/data_original_21/7043711/solution_images/52949122_160.png deleted file mode 100644 index 2be7eb2ffb1afd53cbea0ec53db465c122cc89e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/solution_images/52949122_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e8003cdf13211cc248b3594666e2ea21f600bb39feccbc06fd5c4d06a2a3b00 -size 8324 diff --git a/MM_Math/data_original_21/7043711/solution_images/52949146_891.png b/MM_Math/data_original_21/7043711/solution_images/52949146_891.png deleted file mode 100644 index 6ca3ed5dfc620c626e0ca6cf33c57f2fb26bd3bc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7043711/solution_images/52949146_891.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b4e76956afc7844ad0b178917e72915ebd73a268623ac3c423697202b55416fc -size 2037 diff --git a/MM_Math/data_original_21/7044652/math/10253872_750.jpg b/MM_Math/data_original_21/7044652/math/10253872_750.jpg deleted file mode 100644 index 87315b37cad7d78f084767d861a54a1a2bdb4e65..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/10253872_750.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53d53f90e95aaa8e0a7c01a45fd09388d341975e044dcdeda0828d06163a2529 -size 2941 diff --git a/MM_Math/data_original_21/7044652/math/2283164_770.png b/MM_Math/data_original_21/7044652/math/2283164_770.png deleted file mode 100644 index 477a551cdef07e380395f03d1e5b51d8f1bae0d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/2283164_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fbf44d7422f0b3a5ff387f1ac13a786ee908a6eac2bcd2e1af0471365f2e2008 -size 4788 diff --git a/MM_Math/data_original_21/7044652/math/47324133_40.png b/MM_Math/data_original_21/7044652/math/47324133_40.png deleted file mode 100644 index 449a4995b3799dd1e57ef53f937739a6ddcb3fdb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/47324133_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d4689e4f6febb016e652a30d5ca5da6616c83ac7d5162ee484bb7203621ccf89 -size 3818 diff --git a/MM_Math/data_original_21/7044652/math/47324133_41.png b/MM_Math/data_original_21/7044652/math/47324133_41.png deleted file mode 100644 index 7c8870dc8b072354bc5e8ca91870d71714b319a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/47324133_41.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16a774f8805ba5cc665947da585f0eede8d2ba0ea4861fb1c48bdcc1bfd0a5a4 -size 7567 diff --git a/MM_Math/data_original_21/7044652/math/50979784_850.png b/MM_Math/data_original_21/7044652/math/50979784_850.png deleted file mode 100644 index 45b78b806add1151d34c98b9577261cc8e809b63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/50979784_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb65bf6b9ea0cd51aae2633421a30e5ffba16fc4eca26cd9b4cc0bbb88331bda -size 17156 diff --git a/MM_Math/data_original_21/7044652/math/50982437_402.png b/MM_Math/data_original_21/7044652/math/50982437_402.png deleted file mode 100644 index 45144312d8cadf5cd28236d2bc29f1677a455f69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/50982437_402.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:78748bf08f6e47924946db54c774254abbce43e75945e5c69633f762139deb02 -size 3560 diff --git a/MM_Math/data_original_21/7044652/math/51043532_380.png b/MM_Math/data_original_21/7044652/math/51043532_380.png deleted file mode 100644 index 1752c8ee117a852f6630cdef727174157e437f77..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/51043532_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00fbcc4fe2ee3ec0f9cf8dede995380e27750028fda733f65f5b6972cc1582ce -size 4482 diff --git a/MM_Math/data_original_21/7044652/math/51177766_390.png b/MM_Math/data_original_21/7044652/math/51177766_390.png deleted file mode 100644 index d23ddde5384c2e75685573b8fcd56ae7cadd27a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/51177766_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc0df82225032b8c2093bbe5ee4ab1476fdb8a44aca26a5201c4352a537bd077 -size 2813 diff --git a/MM_Math/data_original_21/7044652/math/51991503_20.png b/MM_Math/data_original_21/7044652/math/51991503_20.png deleted file mode 100644 index d90a0f7b2f5f5ca76153e838c49c5f14436e20eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/51991503_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e71ee15a7979f3ad55795bb0b45d92b02874894606a18dcef21e207036f41fc -size 3921 diff --git a/MM_Math/data_original_21/7044652/math/52603474_50.png b/MM_Math/data_original_21/7044652/math/52603474_50.png deleted file mode 100644 index 76c5d413b485ae5a9549d614090b31e5c33861c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/52603474_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3665019ebd06a3fbda90017534c4adc78d96e7c871fd061aefb0d4ffc655edd -size 3139 diff --git a/MM_Math/data_original_21/7044652/math/52891044_10.png b/MM_Math/data_original_21/7044652/math/52891044_10.png deleted file mode 100644 index 6af810215c4c1b120adb133f3d46e92da08fc176..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/52891044_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c65ab13aa9b2aad4fd6f946fa1e78c27a47dd8549639b43f539719f8124d9adf -size 6544 diff --git a/MM_Math/data_original_21/7044652/math/52978929_370.png b/MM_Math/data_original_21/7044652/math/52978929_370.png deleted file mode 100644 index 7d909e268d200bbd15bc3d86ff48f49cd1e8140d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/52978929_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b37f34e48acfcb412013a0c95adcab2874108ac972cbf184c0b05f7a4acc69a0 -size 46284 diff --git a/MM_Math/data_original_21/7044652/math/52978934_860.png b/MM_Math/data_original_21/7044652/math/52978934_860.png deleted file mode 100644 index 852daf713cacc530d10cde702e27626d9feb18fc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/52978934_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5716e31326ecd58e47b854c73d811d5efdbd5f699c45c19ebca426e9c1c968e -size 3926 diff --git a/MM_Math/data_original_21/7044652/math/53043939_680.png b/MM_Math/data_original_21/7044652/math/53043939_680.png deleted file mode 100644 index 6491cf3da9d4dad51d8f33b9b81ac9a217a30734..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53043939_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e49b34943c6745e8ac51c7906da77c939b5c91cd1c3310410b7be8d1de45695b -size 4969 diff --git a/MM_Math/data_original_21/7044652/math/53043951_841.png b/MM_Math/data_original_21/7044652/math/53043951_841.png deleted file mode 100644 index 2c3f38beaf70377722fa2e8756dd0a4aaa9886af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53043951_841.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:793425f6103b16dbff807753a688820f75b9539b8f47f464186416772182ed40 -size 5012 diff --git a/MM_Math/data_original_21/7044652/math/53043996_286.png b/MM_Math/data_original_21/7044652/math/53043996_286.png deleted file mode 100644 index 4bf9b451412c2dbd9b3045c7129c4e703aaedb93..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53043996_286.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:772661eb095a8273dd497207bafb57c96a875400e7976940d78642862e6e379f -size 3352 diff --git a/MM_Math/data_original_21/7044652/math/53044024_695.png b/MM_Math/data_original_21/7044652/math/53044024_695.png deleted file mode 100644 index 947b26ce09c7b9d56112ace6c8629906c317310f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53044024_695.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca849e04df2db8ac43230a7ed347b6200055c8f9cd8d2de6e09d42cf486306b1 -size 8913 diff --git a/MM_Math/data_original_21/7044652/math/53044170_293.png b/MM_Math/data_original_21/7044652/math/53044170_293.png deleted file mode 100644 index b26c0face66e4a231c2e976fd583d2caf142b49c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53044170_293.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccc62c841a08d3d59ed32732308698c147e4085b7a1a8421d60c407450bcac93 -size 3288 diff --git a/MM_Math/data_original_21/7044652/math/53044181_700.png b/MM_Math/data_original_21/7044652/math/53044181_700.png deleted file mode 100644 index 8ec0a2e37f32a62d236e36c039783aa8e23761ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53044181_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3f511da703624d9bac87d7ec345cb33a5a1b7630c6f68765dbcb7bb77f5e7c5 -size 28813 diff --git a/MM_Math/data_original_21/7044652/math/53044190_983.png b/MM_Math/data_original_21/7044652/math/53044190_983.png deleted file mode 100644 index df588dde6fc4718b0a02e493b3df7574580592b4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53044190_983.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:714968a07c5e343af176239c5db16f939c36181de64c567425d8c355068bd22f -size 2001 diff --git a/MM_Math/data_original_21/7044652/math/53044201_300.png b/MM_Math/data_original_21/7044652/math/53044201_300.png deleted file mode 100644 index 13b7b157db494cf5e2591f2d0753d313b620acca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53044201_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a24163afd688a867032796cf22327ff2ca01c0ae642d31ecef9d42877804a90c -size 47264 diff --git a/MM_Math/data_original_21/7044652/math/53044239_974.png b/MM_Math/data_original_21/7044652/math/53044239_974.png deleted file mode 100644 index 843b61272b89a8a929a30396c7ef66a8333cc2da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53044239_974.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a3584acd11183c30b56fe01359be22849e222bcb7779025c66eb7c7fe0651ca0 -size 49778 diff --git a/MM_Math/data_original_21/7044652/math/53044357_7110.png b/MM_Math/data_original_21/7044652/math/53044357_7110.png deleted file mode 100644 index abe2cf26929568ddb8d9dfb175bf1c60745010d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53044357_7110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1818f602d9672db8f9ccec0e2d0750cd9dee082fdb592eda6a735f84b95d51ce -size 14734 diff --git a/MM_Math/data_original_21/7044652/math/53044604_990.png b/MM_Math/data_original_21/7044652/math/53044604_990.png deleted file mode 100644 index 63c01691d7bf7222ae007fe88b6ad78fb5f8ffff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53044604_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dcf87c636dbfaa0162af483453fe47a4d26692e4a08d935102c0bb535bb1d3be -size 3579 diff --git a/MM_Math/data_original_21/7044652/math/53058542_240.png b/MM_Math/data_original_21/7044652/math/53058542_240.png deleted file mode 100644 index 25cbdaab283291b1f1811c2d81648c522c9acbc2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53058542_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d63ca1116ca34d530f30469a61d4c59945c0a1a63a9fdfffd7ef74c62ca8a3e6 -size 2815 diff --git a/MM_Math/data_original_21/7044652/math/53058544_226.png b/MM_Math/data_original_21/7044652/math/53058544_226.png deleted file mode 100644 index 9e28432d4dab10e6246448e5ff83cd36d8c86374..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53058544_226.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ff5742b536981b3b96e8cc25dce2a08b046e81d68099591e61c108d5fa84f56 -size 2905 diff --git a/MM_Math/data_original_21/7044652/math/53058546_2312.png b/MM_Math/data_original_21/7044652/math/53058546_2312.png deleted file mode 100644 index 4f48e1a58587159c4b526b260c61f2ca15ab0170..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53058546_2312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4e38bc74910edcc573e74ec3d4dd807510e63aa5ffce26e28d4ad2eb198d8f4 -size 67254 diff --git a/MM_Math/data_original_21/7044652/math/53058551_640.png b/MM_Math/data_original_21/7044652/math/53058551_640.png deleted file mode 100644 index fe02bf94210f3b637baaefd40ca7373230d57365..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53058551_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fef95511048fade6bee33d494cfc652543e5e10556151a2b520e13e77cfaa3a9 -size 3047 diff --git a/MM_Math/data_original_21/7044652/math/53058560_837.png b/MM_Math/data_original_21/7044652/math/53058560_837.png deleted file mode 100644 index 5d85f3cfaaf02f80c8564a35b80b90ee4b02d3b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53058560_837.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b95b22771d79c428fa4d5817193bcdc2633f1219eefaf4381b04b8dcdd666e99 -size 2432 diff --git a/MM_Math/data_original_21/7044652/math/53059011_262.png b/MM_Math/data_original_21/7044652/math/53059011_262.png deleted file mode 100644 index b6342ba2816d2720dfa9f34d803138ff8ad08346..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059011_262.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:437effaa42dc7dcffc5560839605bd5e3c5a5530a604d5363734571ed024e080 -size 2561 diff --git a/MM_Math/data_original_21/7044652/math/53059015_250.png b/MM_Math/data_original_21/7044652/math/53059015_250.png deleted file mode 100644 index bb5533329a8930449ab33e16a3d1320e7cc286b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059015_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b5d5a9f5be9cd083ae41becdd2912d3efeee94f997bbd460361cefe6e2b72b4a -size 2130 diff --git a/MM_Math/data_original_21/7044652/math/53059019_650.png b/MM_Math/data_original_21/7044652/math/53059019_650.png deleted file mode 100644 index efc9c13c9fd7495324cdcaaa84e4a6dfc50adb33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059019_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:85d49dc8010968ca20ba85859ad4203b9f0438ca789dd072b1fd8963b20caa87 -size 3475 diff --git a/MM_Math/data_original_21/7044652/math/53059206_2711.png b/MM_Math/data_original_21/7044652/math/53059206_2711.png deleted file mode 100644 index 2aaccc9a51ce3becc8370a918ef4b8ea90f84867..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059206_2711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96b2660a85d7b4c53369a5a6cf8154a65290080c1790b093cebc4ec5112e07ed -size 39586 diff --git a/MM_Math/data_original_21/7044652/math/53059212_6714.png b/MM_Math/data_original_21/7044652/math/53059212_6714.png deleted file mode 100644 index c761563501cc9c77abe30d2289f8e5104c353421..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059212_6714.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd75e73ea5ec0df3fd6a504edfa907e4a4c53f3a89fee61479f090a5b5db54e5 -size 43021 diff --git a/MM_Math/data_original_21/7044652/math/53059213_6611.png b/MM_Math/data_original_21/7044652/math/53059213_6611.png deleted file mode 100644 index 70f607437e88df223fbf9be16ff994d29de5669d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059213_6611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7258439823fded56b8420058ca9ce4e9cb680610729bcb61f1fabfaecda11dc -size 10710 diff --git a/MM_Math/data_original_21/7044652/math/53059214_965.png b/MM_Math/data_original_21/7044652/math/53059214_965.png deleted file mode 100644 index cef829a7f9a406f2bedd042311574558cdb4425e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059214_965.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4f6de51d932267130b2e6a1da18649a091f1440278cbf1f3322de9ec3e0ca5c -size 44382 diff --git a/MM_Math/data_original_21/7044652/math/53059797_200.png b/MM_Math/data_original_21/7044652/math/53059797_200.png deleted file mode 100644 index 884811f2caed80fb98cd7f6b3d9aec2be88a83df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059797_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c7bc94d8fc513a045215a3f2a3e34e2c285f520e119e5aa87c238adcdbf321d -size 10155 diff --git a/MM_Math/data_original_21/7044652/math/53059799_210.png b/MM_Math/data_original_21/7044652/math/53059799_210.png deleted file mode 100644 index 14e20e0bf05cd16879b619dc8e4db2a28f319f6d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059799_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d08210ce6a9cc88538de0fddac3c156570a8026d045baf6e884231b94a7c34c -size 9229 diff --git a/MM_Math/data_original_21/7044652/math/53059814_940.png b/MM_Math/data_original_21/7044652/math/53059814_940.png deleted file mode 100644 index 7f204b853aef15ceddcf769d1a9efe4da0fa1aa4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059814_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81c1fa5364c180834a24d894eddf42c0d7918747d2b5ebd13356724fd530a549 -size 9962 diff --git a/MM_Math/data_original_21/7044652/math/53059820_950.png b/MM_Math/data_original_21/7044652/math/53059820_950.png deleted file mode 100644 index ac14f362188dfb8f591dc7608ee6c2637836959f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53059820_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc349290861c90c07126a9c7f4b20bdf7623b0a63fcd8da8589d4b0153866243 -size 16957 diff --git a/MM_Math/data_original_21/7044652/math/53066301_154.png b/MM_Math/data_original_21/7044652/math/53066301_154.png deleted file mode 100644 index 5b0303ecf1da530192f1710a31b865f58e057348..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066301_154.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4d6a4526a4a6b60c1f5a70184c3937e5a5782422ae5a4d36938ab4aba113d8b -size 1884 diff --git a/MM_Math/data_original_21/7044652/math/53066328_9311.png b/MM_Math/data_original_21/7044652/math/53066328_9311.png deleted file mode 100644 index 6d3be45e470b33927ff0b015c98e62840c2ff683..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066328_9311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a7f76fd6ba1e3084fa8f1145999610f8e3a23fbbec21c7ca026d213b07483d3d -size 20718 diff --git a/MM_Math/data_original_21/7044652/math/53066348_185.png b/MM_Math/data_original_21/7044652/math/53066348_185.png deleted file mode 100644 index e9f691f33ab2001ee485fc1ee30dd8352aaf25d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066348_185.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10303512a487bb2b576be5e75695f5223c2f42995937a18d1395bffb5bbee1dd -size 3773 diff --git a/MM_Math/data_original_21/7044652/math/53066350_630.png b/MM_Math/data_original_21/7044652/math/53066350_630.png deleted file mode 100644 index 367dc5a5b24a11743625e18adaf636e35bae4224..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066350_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d4f661cf224ed36e34f08873361e0db377d3201632125324b95832dc31c5a3a6 -size 3817 diff --git a/MM_Math/data_original_21/7044652/math/53066357_823.png b/MM_Math/data_original_21/7044652/math/53066357_823.png deleted file mode 100644 index 4132c209a4749f420b1e80e5d709e42558697b45..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066357_823.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b3a9c12cf7070d0d2090793ffab01561ba4159244405ca9668bac91dafe2703 -size 70738 diff --git a/MM_Math/data_original_21/7044652/math/53066374_195.png b/MM_Math/data_original_21/7044652/math/53066374_195.png deleted file mode 100644 index c95cd95f38c23fa3e02f336bfcf62c44523afe0f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066374_195.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8fa29613984fdf426834a4506fd3929c5e43d392c44e5d924e1f68271fa8cb0 -size 8543 diff --git a/MM_Math/data_original_21/7044652/math/53066376_174.png b/MM_Math/data_original_21/7044652/math/53066376_174.png deleted file mode 100644 index 3e788b69dcde75081eb271c49f6c9f6046870006..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066376_174.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4ce781df331f2030bca2229f8469dc65225063ebdd75d53e1b331810122ed12 -size 55662 diff --git a/MM_Math/data_original_21/7044652/math/53066383_629.png b/MM_Math/data_original_21/7044652/math/53066383_629.png deleted file mode 100644 index 842d7ee3902b31ce9da644c00ca6f03164eb1a13..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066383_629.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:955c2a15bb95a133d8080a53d20e2f8d32a8fdcb1009a819a0b1e3f6a8046b86 -size 3359 diff --git a/MM_Math/data_original_21/7044652/math/53066385_587.png b/MM_Math/data_original_21/7044652/math/53066385_587.png deleted file mode 100644 index e5cf0c11ccc369f06a72cc3597636d5fb4b742c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066385_587.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:235ecb84c9803f9b4f12e2ae5b6f17ac5923992537ecd3117b121e55308e0be6 -size 3593 diff --git a/MM_Math/data_original_21/7044652/math/53066397_9210.png b/MM_Math/data_original_21/7044652/math/53066397_9210.png deleted file mode 100644 index 44b9037880e0c78623ac2625e6bb1b741d34e79d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066397_9210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:240de56c69c85d2bc01b752d502cd2f0d98b7125648f666a40d2c98fd746aa81 -size 67885 diff --git a/MM_Math/data_original_21/7044652/math/53066403_916.png b/MM_Math/data_original_21/7044652/math/53066403_916.png deleted file mode 100644 index 0dd93d08cc96135a38546df1c8f5151c72f6c9da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066403_916.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2603b99ec280aeceafae3c37b7c6aff8db448d7314a8e58c0759c59d765ff9cc -size 36826 diff --git a/MM_Math/data_original_21/7044652/math/53066418_144.png b/MM_Math/data_original_21/7044652/math/53066418_144.png deleted file mode 100644 index 6094764d6c7a3bbda07121c0cb861a8a49a1fcea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066418_144.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a1ea20b6c98a0c8daaf63d06aa7cf76e1e3137a0aa549a8e7a951700865abd6d -size 52197 diff --git a/MM_Math/data_original_21/7044652/math/53066421_169.png b/MM_Math/data_original_21/7044652/math/53066421_169.png deleted file mode 100644 index 90fcbfba6aadd467be4c6bf40b462c1bda53ae8e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066421_169.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6d522c32eaae70060769ddfc26a1b0213c4f5f65f241014c914d41d041dba8c -size 57076 diff --git a/MM_Math/data_original_21/7044652/math/53066432_8110.png b/MM_Math/data_original_21/7044652/math/53066432_8110.png deleted file mode 100644 index a334211251b951caec118b5dd605fd7c1f4f089d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066432_8110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37b000faf655ff3e9d485ffa887e416098c3a23dd5262a7228517cf7f635a592 -size 15185 diff --git a/MM_Math/data_original_21/7044652/math/53066466_598.png b/MM_Math/data_original_21/7044652/math/53066466_598.png deleted file mode 100644 index 4d4fd25a52704addd92a7c9956180b844a0aa25e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066466_598.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a64e78fa3269fab39d56cbe183bcc5a3e462e5efbe7e186cd831274cbae9f4f4 -size 9356 diff --git a/MM_Math/data_original_21/7044652/math/53066575_6010.png b/MM_Math/data_original_21/7044652/math/53066575_6010.png deleted file mode 100644 index 7f9e9ef1a10fb75953cc32228da5285176bf9e2e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066575_6010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc4c3befc6c8acbad7eb2001502da023acc0be970bcc9fe845fa87cb1c380c60 -size 32940 diff --git a/MM_Math/data_original_21/7044652/math/53066576_6115.png b/MM_Math/data_original_21/7044652/math/53066576_6115.png deleted file mode 100644 index d85081303a448f4f8578561e9ab2ffe122ef30b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53066576_6115.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56d7b812af79144ca3c3a187883129ac62774cc89cb14abc851c57579d9d6631 -size 30114 diff --git a/MM_Math/data_original_21/7044652/math/53078472_110.png b/MM_Math/data_original_21/7044652/math/53078472_110.png deleted file mode 100644 index 8c573ad49c09aad437513cd9e3361696ba7ce446..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53078472_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f5f0bfe27e83d5612b1a5fbd7553bcf02838fdb1c644c260d824071ae747192 -size 4815 diff --git a/MM_Math/data_original_21/7044652/math/53078475_490.png b/MM_Math/data_original_21/7044652/math/53078475_490.png deleted file mode 100644 index aeb6562174c938294751ece9da2a1bfddfca5ddd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53078475_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9180af19705841f9e8e0bab08382a8b9759fa449ac9e051ed9ee294564388270 -size 30200 diff --git a/MM_Math/data_original_21/7044652/math/53078478_475.png b/MM_Math/data_original_21/7044652/math/53078478_475.png deleted file mode 100644 index 8c52e119b7979109beb3478cc4ad1d0f0d3cbc51..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53078478_475.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11beaf998e2dd322052c64911e9926e8bd200ad850c802ab3937aa7d55b678e4 -size 36910 diff --git a/MM_Math/data_original_21/7044652/math/53078524_519.png b/MM_Math/data_original_21/7044652/math/53078524_519.png deleted file mode 100644 index cd53c73e2f1c5d45830e22e0a063d8029907169a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53078524_519.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e44d8e30e26c8131ed6b3f50a91ae91fed5c4c97ff64a30d5c54144add46de01 -size 25285 diff --git a/MM_Math/data_original_21/7044652/math/53078535_899.png b/MM_Math/data_original_21/7044652/math/53078535_899.png deleted file mode 100644 index ade2cd110f0dce8bef3aa3ba8a5904fa92806c2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53078535_899.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:495fbbae7bb61794d17422ba09cd9a417b0aed1c255c31e5c66c5802e0ea7e86 -size 2679 diff --git a/MM_Math/data_original_21/7044652/math/53078592_503.png b/MM_Math/data_original_21/7044652/math/53078592_503.png deleted file mode 100644 index 2cd85f823609c2aef0d75f19cb0eb7fa821fb5e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53078592_503.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56882aca920a0beb00f06edbd067f757d6c78d688d0f1d91bb81f2905a3ac08c -size 4750 diff --git a/MM_Math/data_original_21/7044652/math/53078593_487.png b/MM_Math/data_original_21/7044652/math/53078593_487.png deleted file mode 100644 index e9729d47badbcc3fdbb56957799584294c0fdc61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53078593_487.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff8692cc242d5156dc6df31ac7944da1b34a67ecb5eff16dbceb219c66bc26dc -size 21209 diff --git a/MM_Math/data_original_21/7044652/math/53078697_467.png b/MM_Math/data_original_21/7044652/math/53078697_467.png deleted file mode 100644 index 0e1ec1c549c84a195d9fc9d7165fb61bfebb7a77..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53078697_467.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0498d3bdc5f1665ee0d42795b8d823b79064c22df14a4087abdc527bffce7abe -size 4778 diff --git a/MM_Math/data_original_21/7044652/math/53080055_98.png b/MM_Math/data_original_21/7044652/math/53080055_98.png deleted file mode 100644 index a2b096230a96e866566eccf8a826b427341f2899..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53080055_98.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f7b778a91c01dbc77cd6390fb42f4901f0006712d77a7693f220f3c74fdfb61 -size 3506 diff --git a/MM_Math/data_original_21/7044652/math/53080193_100.png b/MM_Math/data_original_21/7044652/math/53080193_100.png deleted file mode 100644 index 4b6dd270be337bd422d7375b133b569b4a15a056..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53080193_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70492b4f1f683d5f26e2a2118f27bfe2ace8b32c05251fb966722638273c44bc -size 7753 diff --git a/MM_Math/data_original_21/7044652/math/53080378_8810.png b/MM_Math/data_original_21/7044652/math/53080378_8810.png deleted file mode 100644 index f05b55492ae9e3f8ded69fe111307a1068c93d81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53080378_8810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5f9c503a5508afc2b429873e520aba4b3d8261a6b5a53c850060e3fe051174a -size 2173 diff --git a/MM_Math/data_original_21/7044652/math/53080470_436.png b/MM_Math/data_original_21/7044652/math/53080470_436.png deleted file mode 100644 index fdbcf02afeea5b1825f34b2e32cd2c8513d57c58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53080470_436.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d57e8b9b463ea19b72806e8ebbf8b9dac5ee8231500fa3f5c8f8bcf5d73268d4 -size 2795 diff --git a/MM_Math/data_original_21/7044652/math/53080965_440.png b/MM_Math/data_original_21/7044652/math/53080965_440.png deleted file mode 100644 index 0bf726a23bf5cec99d1ddf37077ba04373c3d625..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53080965_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ab1fff3c0bcd4a9ee005285c3709db3a35254e86e1b19dda05d0e65bf119efd -size 4076 diff --git a/MM_Math/data_original_21/7044652/math/53080967_450.png b/MM_Math/data_original_21/7044652/math/53080967_450.png deleted file mode 100644 index e14f6f5ac3e26b795dea46692b7b759906627c3f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53080967_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:292bcd059267d1fc617cdd02a5f217c3c20d266d2dbe1d49dc347889bb3ddb0e -size 8152 diff --git a/MM_Math/data_original_21/7044652/math/53081172_872.png b/MM_Math/data_original_21/7044652/math/53081172_872.png deleted file mode 100644 index bff535874739c7a735f179d5d1884cdaef2c3668..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53081172_872.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b22807c394602eef99d2162f1e88a4d9ebe12d555f161562ccbf90a5c63d83f -size 10481 diff --git a/MM_Math/data_original_21/7044652/math/53147637_134.png b/MM_Math/data_original_21/7044652/math/53147637_134.png deleted file mode 100644 index 210a3127b5e7bcb151dd0a8dc031c457d6389aea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53147637_134.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f3e6ef78f587eab5e28071698bc2e228b7a841e72ee7478b3447113b06d7f2b -size 5786 diff --git a/MM_Math/data_original_21/7044652/math/53147641_542.png b/MM_Math/data_original_21/7044652/math/53147641_542.png deleted file mode 100644 index 34df7d9b23df6368b756332b0953c7629defda7c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53147641_542.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:edf8ee4c1365f3dfe21b181b7e7da69ecc0024e43b61e67cea2f6d78b4ed5662 -size 2396 diff --git a/MM_Math/data_original_21/7044652/math/53147702_529.png b/MM_Math/data_original_21/7044652/math/53147702_529.png deleted file mode 100644 index ebd4d828be040bc772e5fb913d4820bb1bfbb4c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53147702_529.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b10a74e8cbf0e152689afc480183fd9553a53f71e0bc537fc9608513adfc94ef -size 2794 diff --git a/MM_Math/data_original_21/7044652/math/53147720_900.png b/MM_Math/data_original_21/7044652/math/53147720_900.png deleted file mode 100644 index 96207256609cafd5182a8376c443bef088ce32e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53147720_900.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62f77e67af710990a7c9c0fa75dc20f25892b7e30c895ad167634b8d62b73561 -size 14200 diff --git a/MM_Math/data_original_21/7044652/math/53147939_539.png b/MM_Math/data_original_21/7044652/math/53147939_539.png deleted file mode 100644 index 6014fdedde58e166556b954fc74815c786e4b5c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53147939_539.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea0024386bdfb757584b7a9b0a21d86000c9fe195fd3273b5de1372fde7f8a12 -size 5849 diff --git a/MM_Math/data_original_21/7044652/math/53147949_800.png b/MM_Math/data_original_21/7044652/math/53147949_800.png deleted file mode 100644 index b31ed640c68963edfe4584861d53111d4c5ad3d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53147949_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d17d3e8ca205586bedbe8dd497db343062cfdcd9c8462d4fdedb155c762dc3f6 -size 3080 diff --git a/MM_Math/data_original_21/7044652/math/53148185_576.png b/MM_Math/data_original_21/7044652/math/53148185_576.png deleted file mode 100644 index 913f093558dbf82ec951b455f0a959c733d48d05..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53148185_576.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb50228b81b0dde4f80ffb8bd5e5d80f4f890c9223325508ecc6d1dd2f3a18a2 -size 1675 diff --git a/MM_Math/data_original_21/7044652/math/53148324_126.png b/MM_Math/data_original_21/7044652/math/53148324_126.png deleted file mode 100644 index f7b7c31da7fcf712865a93e320975bacfbeaf5b0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53148324_126.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41437cdd47044dada037b136a2595589fc59b4534248a5aa46095ebc0f7167a2 -size 3532 diff --git a/MM_Math/data_original_21/7044652/math/53224455_87.png b/MM_Math/data_original_21/7044652/math/53224455_87.png deleted file mode 100644 index a5b0b350dbbfe4f48930d887e16ed55fc804fecd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53224455_87.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74177a29f2c364b51f884320c4984379131c0a580b7bd0814df9d508eeb0d530 -size 3595 diff --git a/MM_Math/data_original_21/7044652/math/53686575_5612.png b/MM_Math/data_original_21/7044652/math/53686575_5612.png deleted file mode 100644 index 1d13a87ff6bcd1e630e6e4d5aa2abfd7547518b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53686575_5612.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1603731efb313a3418978a6dd7deccc4ce69ef9280ec0e525b4d9cffc51772af -size 4332 diff --git a/MM_Math/data_original_21/7044652/math/53686577_550.png b/MM_Math/data_original_21/7044652/math/53686577_550.png deleted file mode 100644 index 9876b2a1b6f22c005f0edfb1e906edcd441824f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/53686577_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:961d35a1760a96c591e89d575bbe81b7a9f2b2588e46752a7ea5acfac75e1746 -size 5831 diff --git a/MM_Math/data_original_21/7044652/math/55498341_00.png b/MM_Math/data_original_21/7044652/math/55498341_00.png deleted file mode 100644 index 46ed9657d66ef1bfb6c690c4fc9bd548da5bbe31..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55498341_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31dd5e2af3fad016ec2a312fb70f394cfa0117c9a232ea596f1c0f6234dcd357 -size 13098 diff --git a/MM_Math/data_original_21/7044652/math/55498347_320.png b/MM_Math/data_original_21/7044652/math/55498347_320.png deleted file mode 100644 index 181c0fe75effe4462bf74bac9413e53aebfd5439..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55498347_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38d1ffb11813b50907abaaf0df98d489b7bf186edaa2f4eed9ff813271fcbe1e -size 9439 diff --git a/MM_Math/data_original_21/7044652/math/55498361_720.png b/MM_Math/data_original_21/7044652/math/55498361_720.png deleted file mode 100644 index 740f7387ad5d77c13df0d653dda82402563f1a12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55498361_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4986fd51a8e937a5879e267a903101233b5e722cf7b6be83b35b2e69b747b1ac -size 5915 diff --git a/MM_Math/data_original_21/7044652/math/55498626_64.png b/MM_Math/data_original_21/7044652/math/55498626_64.png deleted file mode 100644 index 9974113c7ec190478cefd9ffa084a75f4f47f687..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55498626_64.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:57efb9463a9a72bd362c8d84c4ead5bdb3ddc3e64b8a2d7533e7c0afbeb59051 -size 31528 diff --git a/MM_Math/data_original_21/7044652/math/55498635_780.png b/MM_Math/data_original_21/7044652/math/55498635_780.png deleted file mode 100644 index f1fa3b12f8e17878b42209d49714ae43a52a8633..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55498635_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7e44570dd03950b3555fef54fe56bbfcddaea1154c5a3f9f71434cf7121c8ef -size 8790 diff --git a/MM_Math/data_original_21/7044652/math/55502350_424.png b/MM_Math/data_original_21/7044652/math/55502350_424.png deleted file mode 100644 index 513eadc775a99e91d1889b92e9339e835fdea798..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55502350_424.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b631540f503400e265f354d5435863afc92d0013a4ac7a2a5504fed36ba08e19 -size 6594 diff --git a/MM_Math/data_original_21/7044652/math/55502380_76.png b/MM_Math/data_original_21/7044652/math/55502380_76.png deleted file mode 100644 index b2707ae7cca1a34d7890fa8b092607f19dc62576..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55502380_76.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4fb2dcb8a81789364c5c2faa965f0b40bcf9fbbc57dc8cd9bd3eb7879ac4f777 -size 12361 diff --git a/MM_Math/data_original_21/7044652/math/55502385_415.png b/MM_Math/data_original_21/7044652/math/55502385_415.png deleted file mode 100644 index 6d0f907a94adfdc467c3e82873472c5aad383115..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55502385_415.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d9750fada1514038801f4ac1932bdfb68245eb1ff729dd016b6b8cc8a3dc372 -size 12054 diff --git a/MM_Math/data_original_21/7044652/math/55502397_794.png b/MM_Math/data_original_21/7044652/math/55502397_794.png deleted file mode 100644 index 744942f30bf2cda62cbb7b145196eb3ef83c9f7f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55502397_794.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d12d1651b9e82401149dc066cec774754d6c1b1d73d73bcfa4aca2e7c797579b -size 13538 diff --git a/MM_Math/data_original_21/7044652/math/55553377_360.png b/MM_Math/data_original_21/7044652/math/55553377_360.png deleted file mode 100644 index 53cd82583891c4582f28922a347ff439c971a023..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55553377_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de5c4868100e5885fc6f96c8b3671e7c263d2b87a40e48715176ac38a0f49d27 -size 2693 diff --git a/MM_Math/data_original_21/7044652/math/55553380_3515.jpeg b/MM_Math/data_original_21/7044652/math/55553380_3515.jpeg deleted file mode 100644 index 6954e3bb5bac661a99dd0ef958e1688f0fe92af4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55553380_3515.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ae10e17d614805aec26648ccffdc27326e2ccc015dbea919b2497813340f738 -size 72271 diff --git a/MM_Math/data_original_21/7044652/math/55587989_30.png b/MM_Math/data_original_21/7044652/math/55587989_30.png deleted file mode 100644 index 9120169605ad8f44a73f097e5c5f350d3f3fb06e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55587989_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7851676869577806736ea943c8bb3fc6bc1e37c12a7dfa6b2c347e71471e405 -size 23797 diff --git a/MM_Math/data_original_21/7044652/math/55587990_332.png b/MM_Math/data_original_21/7044652/math/55587990_332.png deleted file mode 100644 index 19aba7c161f777627d4df90163595c2d8a05186d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55587990_332.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aefdaeb0f49d27047fcf7f3bf5c4219373e68aa4324fbe04f595c0c890781045 -size 13863 diff --git a/MM_Math/data_original_21/7044652/math/55588005_7314.png b/MM_Math/data_original_21/7044652/math/55588005_7314.png deleted file mode 100644 index 47239ec4b7a339cc2cf8e81a32017874d3bbc74c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55588005_7314.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9e433dbb041c2ce028feecd29e537e61b11707d5ca686adb2c5d4837601115b -size 36461 diff --git a/MM_Math/data_original_21/7044652/math/55588141_345.png b/MM_Math/data_original_21/7044652/math/55588141_345.png deleted file mode 100644 index c5797538e0ef87747b1fc131969f96fe0efd237b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55588141_345.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29c5fe03e1bcd7577c940fd717e7af463412eda7b8aadb8225ad5e2eb0675712 -size 9426 diff --git a/MM_Math/data_original_21/7044652/math/55588163_7410.png b/MM_Math/data_original_21/7044652/math/55588163_7410.png deleted file mode 100644 index cc79f34f5e2ffb6530c847d532b11667a70548b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/55588163_7410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ceccc6bfc0dbfc7f02523258487d2039c16ed768b3dc01cd797e91067b491bd2 -size 17923 diff --git a/MM_Math/data_original_21/7044652/math/9100176_760.png b/MM_Math/data_original_21/7044652/math/9100176_760.png deleted file mode 100644 index bc91dd68f153eebdbc944cd6b0f928b15a204efd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/math/9100176_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e69e7a1516f392cf881cc13507dbd464e5e51e07195e7eb6ee7aff07033418d -size 5017 diff --git a/MM_Math/data_original_21/7044652/solution_images/50982437_400.png b/MM_Math/data_original_21/7044652/solution_images/50982437_400.png deleted file mode 100644 index 6fdee2c5592bcd46dc49427330cad0e5e5573faf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/50982437_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f55b3604b27be3afa381e9acef7cbe0476748199c31db9c11d8b1c77f316a5e1 -size 3537 diff --git a/MM_Math/data_original_21/7044652/solution_images/53043939_680.png b/MM_Math/data_original_21/7044652/solution_images/53043939_680.png deleted file mode 100644 index 6a45be317887e74cb55ba8e269cb0b2c3355a45a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53043939_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d6e840fd18845c1d12576f625633b1c0af19512127298801154ad66625610642 -size 2374 diff --git a/MM_Math/data_original_21/7044652/solution_images/53044181_706.png b/MM_Math/data_original_21/7044652/solution_images/53044181_706.png deleted file mode 100644 index 62375da33cef7f9f4816625d1c03e66e4a829f74..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53044181_706.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bdcbc135a10a05dcee3bda49594c102a3be1638e56b9244120e7f6fd498b68fa -size 60284 diff --git a/MM_Math/data_original_21/7044652/solution_images/53044250_310.png b/MM_Math/data_original_21/7044652/solution_images/53044250_310.png deleted file mode 100644 index 0c684d3ca7ceff3b3b9c5033ec85fb94de66d06d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53044250_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:36e210a057b0d8bd7cf868789ab888287917eedf26b31880bf1226bb0b5b001e -size 3932 diff --git a/MM_Math/data_original_21/7044652/solution_images/53058544_220.png b/MM_Math/data_original_21/7044652/solution_images/53058544_220.png deleted file mode 100644 index 87a88091e37378f45a466122bb367a6de7eb5267..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53058544_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ceec28ecf7a27878ea7a1d3ec2e9be494fb0c46a246dafd7f78b2925f4d5bc08 -size 3789 diff --git a/MM_Math/data_original_21/7044652/solution_images/53058546_233.png b/MM_Math/data_original_21/7044652/solution_images/53058546_233.png deleted file mode 100644 index 1df35677a291fa5a60f79fcea386ce892c6a9dcf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53058546_233.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19be0fe94296bd5e31cbcdd9f9a9e407a2125b641dfe26a6e36521babdb859fb -size 77901 diff --git a/MM_Math/data_original_21/7044652/solution_images/53058551_646.png b/MM_Math/data_original_21/7044652/solution_images/53058551_646.png deleted file mode 100644 index 3541a3a77e97a287f50d2c1ccff4bdbb0e986ea5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53058551_646.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bcb2ca2fbe23a996836180cf539c65f8ae7e189ab0354a567808104e30bb83f8 -size 5326 diff --git a/MM_Math/data_original_21/7044652/solution_images/53059799_210.png b/MM_Math/data_original_21/7044652/solution_images/53059799_210.png deleted file mode 100644 index c20c2ec6117e5fee36f4f8e6f1c038e52f3b4234..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53059799_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:127e0f79e6d5fecffe9ce1742432de1cf9a83473947bea39f482eb1d59dd323a -size 8722 diff --git a/MM_Math/data_original_21/7044652/solution_images/53066348_180.png b/MM_Math/data_original_21/7044652/solution_images/53066348_180.png deleted file mode 100644 index 1e7ae50a7e801f22f6ca92850158c208c5c16238..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53066348_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b068925178a3b59fc963c39a0cb7b43514d171f680454b50e2da7ac50bf9e7cb -size 3978 diff --git a/MM_Math/data_original_21/7044652/solution_images/53066350_630.png b/MM_Math/data_original_21/7044652/solution_images/53066350_630.png deleted file mode 100644 index b367f3c580f5ca0c1c088caa53e36f1f11e4f72a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53066350_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34cd7ad5f6539adfb3cdaf689096f2d80017d9ca24a56b0703895431caaaa092 -size 3525 diff --git a/MM_Math/data_original_21/7044652/solution_images/53078475_491.png b/MM_Math/data_original_21/7044652/solution_images/53078475_491.png deleted file mode 100644 index c09b12fe267cbf1ac15475b6db02a9a997fc47f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53078475_491.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8035c0dd4236458ddbeccaec95ac17df276b75bb09c5cfa39f317f0fc8470a9f -size 33949 diff --git a/MM_Math/data_original_21/7044652/solution_images/53078524_513.png b/MM_Math/data_original_21/7044652/solution_images/53078524_513.png deleted file mode 100644 index 19b7ebe45dd6f39de3ddd312be4b62063bdb902f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53078524_513.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89487bfbbe480fd84ba0236bbce836eff313e6d2786ab0c01798f5ba146a6d26 -size 28754 diff --git a/MM_Math/data_original_21/7044652/solution_images/53078593_483.png b/MM_Math/data_original_21/7044652/solution_images/53078593_483.png deleted file mode 100644 index 786b4127cb028313c1f50917d95341650a57097e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53078593_483.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db3e532b2768b27f5deb2e5bdcedfaef135c945c23c58b9f5cfa3a792e2b0b6a -size 25040 diff --git a/MM_Math/data_original_21/7044652/solution_images/53080055_93.png b/MM_Math/data_original_21/7044652/solution_images/53080055_93.png deleted file mode 100644 index e785ef61ad4f25e3702620f6631a617ad40ea1aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53080055_93.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dcc002930b1d519d1dd7336214867172720eb2c34960d61644dbd7b8adec813b -size 3874 diff --git a/MM_Math/data_original_21/7044652/solution_images/53080470_431.png b/MM_Math/data_original_21/7044652/solution_images/53080470_431.png deleted file mode 100644 index 037934e68546fc8eb89b3f1674fde22b3cffe3c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53080470_431.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43ebb4ce50578d471586e17a45e144f3fbf0e442e1a51d00b8cc435a05091b2e -size 3013 diff --git a/MM_Math/data_original_21/7044652/solution_images/53080967_450.png b/MM_Math/data_original_21/7044652/solution_images/53080967_450.png deleted file mode 100644 index a1fb8469eca6b2c44bdeea944f258f5510dbb4b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53080967_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77aba61820f1d5a3d165b8b168558b58b26cf53c9177e1f877b035baff6d00f8 -size 8152 diff --git a/MM_Math/data_original_21/7044652/solution_images/53686575_560.png b/MM_Math/data_original_21/7044652/solution_images/53686575_560.png deleted file mode 100644 index e8c7ef49927f7e69d198501760bfe0e7ae4e17c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53686575_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0e96a28dc79759da397412ea1b59ba8b470a2a7c37956ea2f351d308afd03fd -size 5407 diff --git a/MM_Math/data_original_21/7044652/solution_images/53686577_550.png b/MM_Math/data_original_21/7044652/solution_images/53686577_550.png deleted file mode 100644 index 876d430067205f0caeb5acf894afb47a668d773c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/53686577_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e71ad11752643a0e3580eae7ac4ae45b79cdced5f3547cfc9282f3c41d132d0 -size 7192 diff --git a/MM_Math/data_original_21/7044652/solution_images/55498626_60.png b/MM_Math/data_original_21/7044652/solution_images/55498626_60.png deleted file mode 100644 index 56fbd5857f7618a5e3eb43431314927747e68318..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/55498626_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ed894b5aeb511732fd79d45cd24539dca06642f44d05f239bca9d6926f8c398 -size 4518 diff --git a/MM_Math/data_original_21/7044652/solution_images/55502350_425.png b/MM_Math/data_original_21/7044652/solution_images/55502350_425.png deleted file mode 100644 index 2dbd863749a5813b1d9fc2cea3b7fe15d0607118..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/55502350_425.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8519233cd6e459184cfff59fa08730bc53c39b94658427da5e6a8fa463305c2 -size 3653 diff --git a/MM_Math/data_original_21/7044652/solution_images/55502385_410.png b/MM_Math/data_original_21/7044652/solution_images/55502385_410.png deleted file mode 100644 index d946a18ba0317cf788633acd236695855bac6811..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/55502385_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16e73d6c820a1ab5945b7ae823a0d8dcc505ac725a086f289708f6cd4ff0bb1b -size 7208 diff --git a/MM_Math/data_original_21/7044652/solution_images/55553380_350.png b/MM_Math/data_original_21/7044652/solution_images/55553380_350.png deleted file mode 100644 index 9f1e73a1e6c94da4deb4128e119a746aa68f86af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044652/solution_images/55553380_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e513977cabd1dcafad8c708b86540371b7d2af162618d37e1dd2de63a61722c0 -size 4970 diff --git a/MM_Math/data_original_21/7044920/math/52977098_291.png b/MM_Math/data_original_21/7044920/math/52977098_291.png deleted file mode 100644 index 067e3c0e9248123a76a7c4a8d7d371d6766e782a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52977098_291.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f951d6fbf15afacb9518c3751e69f1aec9db6e33d2a1953a80d29ff543d49e9 -size 1707 diff --git a/MM_Math/data_original_21/7044920/math/52977108_626.png b/MM_Math/data_original_21/7044920/math/52977108_626.png deleted file mode 100644 index 194d3261cec8a2450f2ac59d10d94aeffaa4f38b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52977108_626.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:346ef8174988c7390d757ea0aa8d5b91196232a964560b5d82b891308716e2f6 -size 2560 diff --git a/MM_Math/data_original_21/7044920/math/52977136_3914.png b/MM_Math/data_original_21/7044920/math/52977136_3914.png deleted file mode 100644 index 04665a0630ff8cdef67bd015c6ec7c12d4352a1d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52977136_3914.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:156c01f4e0986ccb75eef918f656957e8e49ad882ebd360d8ed7b23e3edb3b09 -size 7186 diff --git a/MM_Math/data_original_21/7044920/math/52977143_8310.png b/MM_Math/data_original_21/7044920/math/52977143_8310.png deleted file mode 100644 index 11ef011c47a531fa31ae751d087aa2256a7b22d7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52977143_8310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7340cd9f03a80b4e7faacf45664426ada46466a9b8427140cb9932d0eab531ce -size 3033 diff --git a/MM_Math/data_original_21/7044920/math/52978387_376.png b/MM_Math/data_original_21/7044920/math/52978387_376.png deleted file mode 100644 index 7095b038b9cdb0cdfa53ab3cc06ff89238f21af1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978387_376.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a0e20e8a90a2c6d0c7cea14fe44b5133ad1f7b499037856bca2cf628d1ad9aed -size 2189 diff --git a/MM_Math/data_original_21/7044920/math/52978392_333.png b/MM_Math/data_original_21/7044920/math/52978392_333.png deleted file mode 100644 index e332a92972cbf781d02a51dafe58776f757d7810..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978392_333.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eeb178f20c98f15674edc86832ced5ff5d9fdac35ed1bbdd8da4c86e6b1f4ec0 -size 7059 diff --git a/MM_Math/data_original_21/7044920/math/52978401_787.png b/MM_Math/data_original_21/7044920/math/52978401_787.png deleted file mode 100644 index 4dfe0b7119b6a2dea0f40aa6510fcd1519e623c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978401_787.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9db9a32658741e85fc5ae09859d96a2dd7f093a2b9ffe8b15297590b795be88 -size 25101 diff --git a/MM_Math/data_original_21/7044920/math/52978426_342.png b/MM_Math/data_original_21/7044920/math/52978426_342.png deleted file mode 100644 index 4f372a0386e094c867bbbbd1495b6bdac1127041..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978426_342.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e5fcbe22c783ec2641f8cd94afaeeb85e7a0b79185e9c60e62373432de04a24 -size 3679 diff --git a/MM_Math/data_original_21/7044920/math/52978448_996.png b/MM_Math/data_original_21/7044920/math/52978448_996.png deleted file mode 100644 index ee748e71fa563786f47f6af63ed2b52a124a0222..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978448_996.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67bb7cbd6dc3c31791aaefb6f89a61adc45136d8b437ce41674379d037b3e7d2 -size 7550 diff --git a/MM_Math/data_original_21/7044920/math/52978477_796.png b/MM_Math/data_original_21/7044920/math/52978477_796.png deleted file mode 100644 index bbe5887f012e4b2941ef815ac70d61986a87782f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978477_796.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bdfd658f715fbb02f2ddb8fd5f51087aaffcdcdea615a203c5f5511bb171af32 -size 49301 diff --git a/MM_Math/data_original_21/7044920/math/52978487_662.png b/MM_Math/data_original_21/7044920/math/52978487_662.png deleted file mode 100644 index 4be5ffec59bdf33a75096b9661c93a548a288d6c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978487_662.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f01917d81de62bc69ef59f6206e4729c59b1f9c571b5e298409f005559cf7daf -size 2728 diff --git a/MM_Math/data_original_21/7044920/math/52978491_633.png b/MM_Math/data_original_21/7044920/math/52978491_633.png deleted file mode 100644 index 0137cfafa375d919c8d0c0fa17002490df254537..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978491_633.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd68d37f0cec0cb2f78230eac31999ef9b2f3bcb2a348033c5c0c5d594789155 -size 3462 diff --git a/MM_Math/data_original_21/7044920/math/52978549_314.png b/MM_Math/data_original_21/7044920/math/52978549_314.png deleted file mode 100644 index 953b2f160dc94ae0eee26e8af959f99591e7ab18..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978549_314.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a9855af14be990f26c1a8acc78da1174bb0ecd2dc5c0739a564ac87a980f170 -size 1658 diff --git a/MM_Math/data_original_21/7044920/math/52978576_969.png b/MM_Math/data_original_21/7044920/math/52978576_969.png deleted file mode 100644 index 878c6e33c37f25d66ed2b5832638b7149bb2e58d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978576_969.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6234ebf4209a66c792af5ab8ad29fdbfccb7a22e2aaf3e43ca723d1e318c6795 -size 6965 diff --git a/MM_Math/data_original_21/7044920/math/52978596_305.png b/MM_Math/data_original_21/7044920/math/52978596_305.png deleted file mode 100644 index 80919d2a7bf7d5d511b339d030a04688fd1e770a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978596_305.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:36d44dbd19a032046c677090563b20734d4dbaeeec7f2adc950929b2be911e54 -size 14077 diff --git a/MM_Math/data_original_21/7044920/math/52978601_686.png b/MM_Math/data_original_21/7044920/math/52978601_686.png deleted file mode 100644 index fd2f059644d05421a45470ba2e0988017e746c23..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978601_686.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ae5e878e04d83be5874f485bf4b2efe51c096254f890a2d19eba54807dd98b6 -size 73061 diff --git a/MM_Math/data_original_21/7044920/math/52978709_404.png b/MM_Math/data_original_21/7044920/math/52978709_404.png deleted file mode 100644 index a343628ce4d807fb2f864020eb29aafe6bf41696..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978709_404.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4275a448a8bda62d24e4c138ededfacd38aead7140e6d7556db98415fe25a93 -size 2485 diff --git a/MM_Math/data_original_21/7044920/math/52978711_357.png b/MM_Math/data_original_21/7044920/math/52978711_357.png deleted file mode 100644 index feaa1947775ccfee09fbf54161eeda1bf9529f75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978711_357.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31d3b4a83c44e8621d1e2e862bcd7a8a2407d2980472dca5b1b63e447bb5ca53 -size 30653 diff --git a/MM_Math/data_original_21/7044920/math/52978712_327.png b/MM_Math/data_original_21/7044920/math/52978712_327.png deleted file mode 100644 index 097d5b7c57187653d4e2ad20eda6f1c1f42ce337..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978712_327.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6e86b9ac2ff67bc5d319282a592d48412f4e9b46efeaec90b186b6071b7adbb -size 3368 diff --git a/MM_Math/data_original_21/7044920/math/52978717_708.png b/MM_Math/data_original_21/7044920/math/52978717_708.png deleted file mode 100644 index a7f4025db725bfd4dde52906d1bd190ed2e8e21b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978717_708.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:776ac051df716e927c454fa559b6d5de7251e7decb0d43d4327409c8c8f9c934 -size 3145 diff --git a/MM_Math/data_original_21/7044920/math/52978719_719.png b/MM_Math/data_original_21/7044920/math/52978719_719.png deleted file mode 100644 index 6cb22c6bc03a2dbf271374cf043eed180d124a35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978719_719.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:afcfc4463e82339765e93ad57be536d440d520292b1d8349e7b6026c6614fe60 -size 2414 diff --git a/MM_Math/data_original_21/7044920/math/52978720_676.png b/MM_Math/data_original_21/7044920/math/52978720_676.png deleted file mode 100644 index eaf307ef5de04d08d9821d1032dd1718c5add9d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978720_676.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2fbf7b52413c35a593d6204c8655fcfc13b14f15ac63c2c998441ec5997d2764 -size 2818 diff --git a/MM_Math/data_original_21/7044920/math/52978730_816.png b/MM_Math/data_original_21/7044920/math/52978730_816.png deleted file mode 100644 index e0820fbd3e453a2c46ee9a66297c0be36b314e6f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978730_816.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83e6d5293a62533d4d061c7ada3261d1ebcc2b4502909a7eac53aa2a2f13f8a9 -size 2434 diff --git a/MM_Math/data_original_21/7044920/math/52978751_657.png b/MM_Math/data_original_21/7044920/math/52978751_657.png deleted file mode 100644 index 5ae5040ef37006901188ef437cf34cab664bf1b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978751_657.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:586b0ef73be0ac4789eda1c324df53dd409e9acc85b166a4354e06a3c1af70c3 -size 13942 diff --git a/MM_Math/data_original_21/7044920/math/52978752_640.png b/MM_Math/data_original_21/7044920/math/52978752_640.png deleted file mode 100644 index 18066d2d2c4e808ddb306d7c2a5a55746dd56147..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978752_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e815723b5595286d88f7190cf762164afed4cbf024401551e08434e705fefae3 -size 6702 diff --git a/MM_Math/data_original_21/7044920/math/52978764_970.png b/MM_Math/data_original_21/7044920/math/52978764_970.png deleted file mode 100644 index 9e51d0e95af0facf448b43ae2664047a38da54ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978764_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:271e347ab5d43df34d17c1beffb4da6a53c45e5a7d261f47f4e3e95a461de451 -size 16217 diff --git a/MM_Math/data_original_21/7044920/math/52978850_981.png b/MM_Math/data_original_21/7044920/math/52978850_981.png deleted file mode 100644 index 765a3756305149d7b3a1faea15fc73ddabe43877..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978850_981.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1e5bceaee2378f632e47fef88c2eebf6152697a686ba05891ffa930a9fead83 -size 4842 diff --git a/MM_Math/data_original_21/7044920/math/52978928_690.png b/MM_Math/data_original_21/7044920/math/52978928_690.png deleted file mode 100644 index e8606031bc150a27db9598af1eb1f9562133520a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978928_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc65f6bdacd5253030d97cc928d3353a4a1d4df86f369915a8834ea04e88dc6a -size 3525 diff --git a/MM_Math/data_original_21/7044920/math/52978931_820.png b/MM_Math/data_original_21/7044920/math/52978931_820.png deleted file mode 100644 index f60541786c3bdd55449667e57d9881911101aaa6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978931_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f8bbef483cd580480b5db58563b29195e4ec3b0a221aacd6bb9636314df54fb -size 3363 diff --git a/MM_Math/data_original_21/7044920/math/52978950_365.png b/MM_Math/data_original_21/7044920/math/52978950_365.png deleted file mode 100644 index ea7d489cbbe2360a6f533380006b1e9898629607..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978950_365.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32ed5cb4673c94256c1a6965237370bba5780b91ae764396bf04fea044625bf2 -size 2591 diff --git a/MM_Math/data_original_21/7044920/math/52978975_388.png b/MM_Math/data_original_21/7044920/math/52978975_388.png deleted file mode 100644 index 20209682d8b22ff9fb6bdf1d4a7bb7054fd87081..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978975_388.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2833743c0b21f26dd3ca4995f6cd19dac73171a56074a05ee7b81d9a08689939 -size 8152 diff --git a/MM_Math/data_original_21/7044920/math/52978985_807.png b/MM_Math/data_original_21/7044920/math/52978985_807.png deleted file mode 100644 index 655423c5b6f948e2a306147f5f213df72016a385..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978985_807.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3918c9a9e9d5a92260d40147b3eede7951701b9d0f2a0fae9adb048c4fa07504 -size 71630 diff --git a/MM_Math/data_original_21/7044920/math/52978993_950.png b/MM_Math/data_original_21/7044920/math/52978993_950.png deleted file mode 100644 index 8bbda5022ed177c20eb110b1176513dca3e1bb07..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52978993_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae9c77445804487a70304c44802418cfd7110badb360f6915af413ed29542a52 -size 4800 diff --git a/MM_Math/data_original_21/7044920/math/52991413_777.png b/MM_Math/data_original_21/7044920/math/52991413_777.png deleted file mode 100644 index 1341da61d2feef72ac73206942a43319657956de..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991413_777.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e09ff5d76c3c6080c0c6a7915dd2ac3add5c7fadc60b0ef0009aaeea03de9ea7 -size 56841 diff --git a/MM_Math/data_original_21/7044920/math/52991476_210.png b/MM_Math/data_original_21/7044920/math/52991476_210.png deleted file mode 100644 index 5ea86152aae61b6087b5e466bd04a610b3ccfbcb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991476_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9551e4172c331fed3634a4e6d2eaa1777cba42b146bc29cecda5b1730d2b8bb -size 8122 diff --git a/MM_Math/data_original_21/7044920/math/52991477_226.png b/MM_Math/data_original_21/7044920/math/52991477_226.png deleted file mode 100644 index b5c66ade3e612d7536884110d73265d60ee97809..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991477_226.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6681c7d9b4f16bdd433db0facf6105991dec663954569d653fe8739f933d1e6d -size 38326 diff --git a/MM_Math/data_original_21/7044920/math/52991478_278.png b/MM_Math/data_original_21/7044920/math/52991478_278.png deleted file mode 100644 index 16e11bbc423dcf4d661dfd8ef1597661997e3875..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991478_278.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b5bb5769a4edb3949034ac2e7a61c0d3ac64583eef02dc9777dfda5389080fa -size 16965 diff --git a/MM_Math/data_original_21/7044920/math/52991481_616.png b/MM_Math/data_original_21/7044920/math/52991481_616.png deleted file mode 100644 index 27808cf19b1a4eefc828fb82d1817323cd7fca9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991481_616.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98be1e55c5d29f1ba2e0ffd3288898564164edfae8a9acc4c8a69a5d6386714b -size 2782 diff --git a/MM_Math/data_original_21/7044920/math/52991669_280.jpg b/MM_Math/data_original_21/7044920/math/52991669_280.jpg deleted file mode 100644 index d0d15c5281a92252430703855ad06204fdac0a8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991669_280.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99f75ebe46b775dd5443588a32fd4f0e4bf2e9901889fe36833cd5fd1825db8c -size 9047 diff --git a/MM_Math/data_original_21/7044920/math/52991670_230.jpg b/MM_Math/data_original_21/7044920/math/52991670_230.jpg deleted file mode 100644 index 2b8c067eef4f4cc57df93b7b7a722e5144d530f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991670_230.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:beacb08ca106f290a6474245f1cde93803a811b8ae8f238212b939e0b7ac4306 -size 8333 diff --git a/MM_Math/data_original_21/7044920/math/52991672_261.jpg b/MM_Math/data_original_21/7044920/math/52991672_261.jpg deleted file mode 100644 index 71a445fab552de98db5b0c9332282c3bfdd3ce12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991672_261.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aefc946ed1b0cba1abf890d95b7de109ae9919f2c601a7dd6478604bcd310511 -size 11537 diff --git a/MM_Math/data_original_21/7044920/math/52991679_600.jpg b/MM_Math/data_original_21/7044920/math/52991679_600.jpg deleted file mode 100644 index 25237041f194f46135731436a7b588c65f2dd3cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991679_600.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db7c8f730c3ce05782bd3d5917b29265207b1bcc7301cab8f4ddfde28d52ddbd -size 7276 diff --git a/MM_Math/data_original_21/7044920/math/52991684_940.jpg b/MM_Math/data_original_21/7044920/math/52991684_940.jpg deleted file mode 100644 index 822ebbee19f500b2a6ff35d82a8e2dc974f569a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991684_940.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c57e63baf3ec4ad1c882153440a1b0c0ad73c1f062ad6dc4f9eb7ce68dcbe94a -size 14629 diff --git a/MM_Math/data_original_21/7044920/math/52991698_200.jpg b/MM_Math/data_original_21/7044920/math/52991698_200.jpg deleted file mode 100644 index 6d94ed871e3efe4206188d1175d68ece89d472c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991698_200.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2462374d6961b60d23edf2df924a1b3dd8cd98a3315b5e05f1b8bb4e1472f89a -size 5426 diff --git a/MM_Math/data_original_21/7044920/math/52991699_250.jpg b/MM_Math/data_original_21/7044920/math/52991699_250.jpg deleted file mode 100644 index bc8a77cc4723b52e322916caa27e8d43f4be6de0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991699_250.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d6db457674e4f1ceefd41789dcae80ac61c1286d78f81d28a1b4de402a01cc59 -size 8205 diff --git a/MM_Math/data_original_21/7044920/math/52991703_580.jpg b/MM_Math/data_original_21/7044920/math/52991703_580.jpg deleted file mode 100644 index 3b426ba1fda9c61b2e008cf1bf045dd396f0d827..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991703_580.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e18bf0300f779b934e0713b766e8bde5344dea5da395f69ff813f86dc16ca3db -size 7590 diff --git a/MM_Math/data_original_21/7044920/math/52991704_590.png b/MM_Math/data_original_21/7044920/math/52991704_590.png deleted file mode 100644 index d9f27b147b308d8a529bb85b4b4ce6d5747983fd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991704_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3d59d84e01058d5b201e05e2268a309bebbd874a38f77f2cba3a4034b84d127 -size 28277 diff --git a/MM_Math/data_original_21/7044920/math/52991712_760.jpg b/MM_Math/data_original_21/7044920/math/52991712_760.jpg deleted file mode 100644 index 7aba5f14a57aec1b75df303f8e9207377ce69575..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991712_760.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50f87d7c2379fc58a8327ace64eaf62ae6c099146c0c665439bb85f41ead2c34 -size 6552 diff --git a/MM_Math/data_original_21/7044920/math/52991713_920.jpg b/MM_Math/data_original_21/7044920/math/52991713_920.jpg deleted file mode 100644 index c9a55ad832fad807183f7fa3aaea04ab6ca5195c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991713_920.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6c04770112e3c50a6fe1799e6a8705f0714babbb21e52cfa0db2fc45504c51d -size 9940 diff --git a/MM_Math/data_original_21/7044920/math/52991780_930.png b/MM_Math/data_original_21/7044920/math/52991780_930.png deleted file mode 100644 index dbdfd88dc18faabd3fcb6ea7886a649a57dfe38d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991780_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a85f9cd58a3ba4ae86fa53d9dd12926119a507cc430b7df89fb70585ac4681f4 -size 7824 diff --git a/MM_Math/data_original_21/7044920/math/52991885_240.png b/MM_Math/data_original_21/7044920/math/52991885_240.png deleted file mode 100644 index 56270ec2e9f0a80f3e93a91da3082c54dc228ccc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/52991885_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5641038b1d2ee34ed7f189b8a1cd8713b4da71c56c5a9cb9fb0aa54f051537ef -size 8046 diff --git a/MM_Math/data_original_21/7044920/math/53009747_1912.png b/MM_Math/data_original_21/7044920/math/53009747_1912.png deleted file mode 100644 index 5994f092dbc19c663cfea550aeedd1baa253490d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53009747_1912.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb0bc7c246f0adae37164d7fc5a7361698b696210ac70d1c108772984f3a20c8 -size 2309 diff --git a/MM_Math/data_original_21/7044920/math/53009754_5611.png b/MM_Math/data_original_21/7044920/math/53009754_5611.png deleted file mode 100644 index 91c42d6472bc68b8443831c536c6e5b56df6689c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53009754_5611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ba7a5f4b362092df81c5a4670f6652930c3f6594aada629bd174f06b491b071 -size 2423 diff --git a/MM_Math/data_original_21/7044920/math/53009760_9110.png b/MM_Math/data_original_21/7044920/math/53009760_9110.png deleted file mode 100644 index 7cc33b377a9933e26693fba0c38ea8537b7b8b37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53009760_9110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fba4cdabc296a29596555b435107769af60cd4e0e53f86b70612485f7c599f8e -size 2130 diff --git a/MM_Math/data_original_21/7044920/math/53009847_180.png b/MM_Math/data_original_21/7044920/math/53009847_180.png deleted file mode 100644 index 69a10d33db42d02487597eca76354c717180103b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53009847_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f07d4488747799bb5e6f8516e138bdf2f9462c62990d713efd34c0da4c53c0e -size 13748 diff --git a/MM_Math/data_original_21/7044920/math/53009848_150.png b/MM_Math/data_original_21/7044920/math/53009848_150.png deleted file mode 100644 index 7ade7b73779a61fcf593cf8daca3f951f468c968..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53009848_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e34bf492386de114cdcc3664653a486f17a29ef068da2cf80de1c9d53eb31a0a -size 9231 diff --git a/MM_Math/data_original_21/7044920/math/53009851_550.png b/MM_Math/data_original_21/7044920/math/53009851_550.png deleted file mode 100644 index 72c585a3dd3370d32873047ff9bc3df3901aa184..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53009851_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:84b83e6bf3b8de40e11bfbe3678b05dc615e320e361066197f1ad2460edb967e -size 7257 diff --git a/MM_Math/data_original_21/7044920/math/53009855_750.png b/MM_Math/data_original_21/7044920/math/53009855_750.png deleted file mode 100644 index 597f07eaa664d2656da38873863179f009484f09..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53009855_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9715dd7c1ab8cc4ae6cd9230536b199c971f28b3fa395488914f166ce9f54711 -size 8444 diff --git a/MM_Math/data_original_21/7044920/math/53009863_740.png b/MM_Math/data_original_21/7044920/math/53009863_740.png deleted file mode 100644 index e3efe9b1e4c57be94358c304312c1fd627cef48b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53009863_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba015a108c055d92c2a403e3990b8fa7a95d9456cf693003eaa7c98daf7dac1e -size 12514 diff --git a/MM_Math/data_original_21/7044920/math/53009908_1712.png b/MM_Math/data_original_21/7044920/math/53009908_1712.png deleted file mode 100644 index 160ce7e8c36a07d61c8c6622e2eb2c126cac8b21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53009908_1712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4c30aa4ed9aa3e6aa3e9f97c790dea3a6911f0b3ea52a6429dff5c5b71521c45 -size 2192 diff --git a/MM_Math/data_original_21/7044920/math/53009913_578.png b/MM_Math/data_original_21/7044920/math/53009913_578.png deleted file mode 100644 index 2b6f637b1a6e1bd3ef7458b1da0a2396d0e8fbef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53009913_578.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:453e3eb98197c20cc0b70b302818ec86a4e0f6a08e273927829b7540837c0832 -size 3195 diff --git a/MM_Math/data_original_21/7044920/math/53019700_541.png b/MM_Math/data_original_21/7044920/math/53019700_541.png deleted file mode 100644 index b1d67226fbdda884d91b199bfe5e28816dfb82ae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53019700_541.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10a4db55aa295830fd5b9d0ddd235b6ec341c14913ed25dc22bcda996cc92719 -size 34988 diff --git a/MM_Math/data_original_21/7044920/math/53019706_902.png b/MM_Math/data_original_21/7044920/math/53019706_902.png deleted file mode 100644 index 2bb41b5b5fc2f601dc734dd22faef7397f4ac9fa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53019706_902.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64d32fbba1ca24d06d9b8bb54c5ca6bcd7ed62bb8c5db0b2c24bed92cdd4e465 -size 33329 diff --git a/MM_Math/data_original_21/7044920/math/53033114_126.png b/MM_Math/data_original_21/7044920/math/53033114_126.png deleted file mode 100644 index 8c40c25ec2b2f571e719c1a51c58976ed20cb729..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033114_126.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9eaba16dea486d840ed6ed4eb89a2c09eea341d25b37cfa87208c8187756c88 -size 2678 diff --git a/MM_Math/data_original_21/7044920/math/53033151_468.png b/MM_Math/data_original_21/7044920/math/53033151_468.png deleted file mode 100644 index e83dc215b68735084901b6622b5ffdd5c1a3bf63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033151_468.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99e3b10867185ee26f43a788bc570468d0dfffa824aa5a0f4afcffe88db80fce -size 2262 diff --git a/MM_Math/data_original_21/7044920/math/53033152_498.png b/MM_Math/data_original_21/7044920/math/53033152_498.png deleted file mode 100644 index 427db732fe9b270ea6b14ff5e73316019ad37827..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033152_498.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5025bc35670813c472fdd84997a33d036efd9d01d977103786d973f270b95daf -size 11903 diff --git a/MM_Math/data_original_21/7044920/math/53033276_100.png b/MM_Math/data_original_21/7044920/math/53033276_100.png deleted file mode 100644 index d006709ae02cb4d0fa56be5ba9477258050a47e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033276_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00556a78f16299027e8812c375ac27eed1f8b7e273af950a04c2d38a5e2e5b2d -size 9072 diff --git a/MM_Math/data_original_21/7044920/math/53033279_86.png b/MM_Math/data_original_21/7044920/math/53033279_86.png deleted file mode 100644 index 10d14722aab4123a3dd29a0c7f9c66c585d26817..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033279_86.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58624fc7d444928edab12d0ea38c6b141c8a75c9fe630402925504cc78861214 -size 106684 diff --git a/MM_Math/data_original_21/7044920/math/53033284_90.png b/MM_Math/data_original_21/7044920/math/53033284_90.png deleted file mode 100644 index a835b9ad10a7080520047d9d76af64fc18581028..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033284_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54c905dd16d71c07db3affdb894a39b7f84bb013b60429f4f8b4f40a12bec297 -size 3454 diff --git a/MM_Math/data_original_21/7044920/math/53033285_486.png b/MM_Math/data_original_21/7044920/math/53033285_486.png deleted file mode 100644 index d2e6bcfac9fe5ed90ae2e8eea06c0b6e607803d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033285_486.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:17f57f554e4eb73f8b9a8d429dbcee7e6c9760e88ed383b659190dc1847d66fc -size 8851 diff --git a/MM_Math/data_original_21/7044920/math/53033289_529.png b/MM_Math/data_original_21/7044920/math/53033289_529.png deleted file mode 100644 index c9a52155d906c46d750451597854aa9c1fab53d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033289_529.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb70d1b08b0da134c89601ae4e573cdd9d43e1297bde1a280364c58c870fdbe8 -size 2035 diff --git a/MM_Math/data_original_21/7044920/math/53033290_473.png b/MM_Math/data_original_21/7044920/math/53033290_473.png deleted file mode 100644 index 963d0c86fe22024a889f175a67a98f2b770739ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033290_473.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1344ae8396c001415f5cb431cf5e4e2dbe9e132e3e7c505f74b3d12a7d4cdf03 -size 29525 diff --git a/MM_Math/data_original_21/7044920/math/53033292_738.png b/MM_Math/data_original_21/7044920/math/53033292_738.png deleted file mode 100644 index 296be2c46ff24aa41ea55d0957648f1c5eb7700f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033292_738.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67ddde14e0f1ccc25ebe2ba8d8d81839d78d2e9e5e91c7992bae56619ec0e4d2 -size 2478 diff --git a/MM_Math/data_original_21/7044920/math/53033295_725.png b/MM_Math/data_original_21/7044920/math/53033295_725.png deleted file mode 100644 index 3b1ecc39ebf0b85c511891fae6a4af62788ecf07..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033295_725.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33e9bcccefd63b095bb4eb0053f7c17f399b857a543eaf48bf46e9c084edea7a -size 3008 diff --git a/MM_Math/data_original_21/7044920/math/53033303_8610.png b/MM_Math/data_original_21/7044920/math/53033303_8610.png deleted file mode 100644 index a718ee031fd2b367a6080350b016de88f456efcd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033303_8610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd42e9facb666e5256bd249d04273c9e401b96a322105add9d0839488e403a75 -size 3885 diff --git a/MM_Math/data_original_21/7044920/math/53033451_135.png b/MM_Math/data_original_21/7044920/math/53033451_135.png deleted file mode 100644 index 1e2a80aca7312b52a9a5ad4953ffbf1df5c3a0ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033451_135.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ab1f3d0074a199b43150ef8a98f5ef10a9c25a567b5103116c541eabca02746 -size 26551 diff --git a/MM_Math/data_original_21/7044920/math/53033454_112.png b/MM_Math/data_original_21/7044920/math/53033454_112.png deleted file mode 100644 index 951b38dcc019b51055fcb65ea14a2e49e66cc656..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033454_112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67847d4ba84be35386b2526ad6fba37fb87151089061975b3e38e422739e16eb -size 7950 diff --git a/MM_Math/data_original_21/7044920/math/53033458_530.png b/MM_Math/data_original_21/7044920/math/53033458_530.png deleted file mode 100644 index 9749383dd838bf6ad01250d66cc2ed0382ebeaac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033458_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e800bb5a8e68bea5ba65afb2537d101f254d755314a269db800f55d7e78b95e3 -size 3761 diff --git a/MM_Math/data_original_21/7044920/math/53033459_518.png b/MM_Math/data_original_21/7044920/math/53033459_518.png deleted file mode 100644 index ed029ef17f938c308a60c56fa775e160112966ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033459_518.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:49d2ebcac12e9375ec3e954a75ae0f157afd77bf6e45f3a7f6eecd864e44b545 -size 2723 diff --git a/MM_Math/data_original_21/7044920/math/53033463_5011.png b/MM_Math/data_original_21/7044920/math/53033463_5011.png deleted file mode 100644 index 45a9b7512360e9389a53b1778dddc2bb1324cd4d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033463_5011.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:210409ddfbcc6f7e0112614a43b2e83da3fb697ea9c119de8d0ca1c33edaa4d0 -size 12060 diff --git a/MM_Math/data_original_21/7044920/math/53033465_870.png b/MM_Math/data_original_21/7044920/math/53033465_870.png deleted file mode 100644 index 0b16217ffdb5460aef2558deebc03e869d2eba2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033465_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:668adbbc47d9d3886da7ef8f115168ab308efc2d7d5e4e8eb520bf2f6127f8fc -size 14844 diff --git a/MM_Math/data_original_21/7044920/math/53033473_886.png b/MM_Math/data_original_21/7044920/math/53033473_886.png deleted file mode 100644 index 0c7a22de80a6d3efa3e5ba4eff77f8b13f741a3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033473_886.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fc338649b9971c45133e7e044ba8cd379a096ca98d9606ea8d5312470c9ea2e -size 7930 diff --git a/MM_Math/data_original_21/7044920/math/53033486_894.png b/MM_Math/data_original_21/7044920/math/53033486_894.png deleted file mode 100644 index 6ef6487b0986e71690fd2bd118f962ff68143ea9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033486_894.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7a9734ef05317683d08e835eff4dfd94880cd7c3fa95cea24b78ee5a5bb2dc4 -size 9575 diff --git a/MM_Math/data_original_21/7044920/math/53033966_60.png b/MM_Math/data_original_21/7044920/math/53033966_60.png deleted file mode 100644 index 9e0373ec0e4d10c536751fd5e3407ac516c6b3b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033966_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44cc070f3b61f3fe30feb5141b58bb2d349ec01ffc30bd7f08d9b2d65499821e -size 25082 diff --git a/MM_Math/data_original_21/7044920/math/53033969_70.png b/MM_Math/data_original_21/7044920/math/53033969_70.png deleted file mode 100644 index 33e28cb30d6e21c3bb5a5a5b04ec488349a8a223..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033969_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43ef87daad7a272a7ee724ad1369a0ecaa58aba35cb9efded4e5b2bc6a12334a -size 3781 diff --git a/MM_Math/data_original_21/7044920/math/53033974_440.png b/MM_Math/data_original_21/7044920/math/53033974_440.png deleted file mode 100644 index e2100e949407f46cc02244853068d0c6f7e3d51d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033974_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:916f855be1011a401811010920bc8c92d9152e455eebf3617fa9f35ed5949b0a -size 5337 diff --git a/MM_Math/data_original_21/7044920/math/53033975_450.png b/MM_Math/data_original_21/7044920/math/53033975_450.png deleted file mode 100644 index 947c2809bee4b48e178234ffcf360123729058fd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53033975_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a889c3e0c5891bf5a40860f4202358e5f8da5463a7e2fc3a38f1c17bfdc97a6f -size 4258 diff --git a/MM_Math/data_original_21/7044920/math/53044021_49.png b/MM_Math/data_original_21/7044920/math/53044021_49.png deleted file mode 100644 index 06b0616c80b04e034c578d724279903440535726..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044021_49.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1886c44e3b587118908bccf733a270734be852a9d3ab54bd93ceb6fc7ac8129 -size 7823 diff --git a/MM_Math/data_original_21/7044920/math/53044048_33.png b/MM_Math/data_original_21/7044920/math/53044048_33.png deleted file mode 100644 index 4c671db252a3a22edf6db5fcbf6484ad478dcdb5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044048_33.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6755c8ed719010d1c40a37f80fbaa92348db248d079bbb5b1b1bff0abf7eff06 -size 1899 diff --git a/MM_Math/data_original_21/7044920/math/53044131_04.png b/MM_Math/data_original_21/7044920/math/53044131_04.png deleted file mode 100644 index d81d0c661ed41acd2b6e6e6f3ad11ac317f3486a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044131_04.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0fda76b8d564319d4b02cdbf1926187ae8c1ccd72a0cd359a4294f232a3e4634 -size 2362 diff --git a/MM_Math/data_original_21/7044920/math/53044174_511.png b/MM_Math/data_original_21/7044920/math/53044174_511.png deleted file mode 100644 index 2e21495b80044ff4fcaccaa79cf1705c3a0e6f2b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044174_511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:939b35fbf6d12a7a87ebc1fb9d99a7b96f68e6af6e24dd950098b8995f27eea0 -size 3268 diff --git a/MM_Math/data_original_21/7044920/math/53044180_419.png b/MM_Math/data_original_21/7044920/math/53044180_419.png deleted file mode 100644 index a1c32af4efa47fa0470b12d169f441afe343f0e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044180_419.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e287d6cc7b17427fad4fdcbf3e29fbd6a830412a77b3852d97e7048d12671837 -size 7631 diff --git a/MM_Math/data_original_21/7044920/math/53044193_855.png b/MM_Math/data_original_21/7044920/math/53044193_855.png deleted file mode 100644 index 9228b537e3bc16fab6356fe3da791b02327d9c6f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044193_855.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d8e2eb78567f8eedf11d66f762aea7f4d5c8383393fb44655dde016ade836221 -size 16843 diff --git a/MM_Math/data_original_21/7044920/math/53044213_422.png b/MM_Math/data_original_21/7044920/math/53044213_422.png deleted file mode 100644 index ebd0063109c5a4b9317e3cc320e5ca07cd246d85..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044213_422.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ba9d12d0cd41a31557ae1231c7b434ac4b84cce2679a4dfa842b452e83b624b -size 7195 diff --git a/MM_Math/data_original_21/7044920/math/53044234_439.png b/MM_Math/data_original_21/7044920/math/53044234_439.png deleted file mode 100644 index cc528c959669bcc2b047b8f2683c190e980fe910..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044234_439.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37eb75f58b953fa7b5a70db3c7a1fc191219ee48716de6e65657dfebc7ff74da -size 2217 diff --git a/MM_Math/data_original_21/7044920/math/53044271_843.png b/MM_Math/data_original_21/7044920/math/53044271_843.png deleted file mode 100644 index 208841213024b3fc1cb4ff616fce0d9cf3951815..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044271_843.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0f13dff6554c3c305fe3f339f5c60124d7b1339499c591d9633d5b278d84df9 -size 4914 diff --git a/MM_Math/data_original_21/7044920/math/53044345_18.png b/MM_Math/data_original_21/7044920/math/53044345_18.png deleted file mode 100644 index 78d65c87f88183700d8c99a35135f945f8342748..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044345_18.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:417cb6b345f8ff07b2112c0f06ed3224ba3dfd557c09e224c259197a316b629d -size 6507 diff --git a/MM_Math/data_original_21/7044920/math/53044375_28.png b/MM_Math/data_original_21/7044920/math/53044375_28.png deleted file mode 100644 index b2aa477b1e790591caeacaa8f2423f7073baab0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53044375_28.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9fc7a031033605fe50c4889af6faeea555e40031abc8fb77354c85950adc262e -size 8927 diff --git a/MM_Math/data_original_21/7044920/math/53080052_141.png b/MM_Math/data_original_21/7044920/math/53080052_141.png deleted file mode 100644 index f2632ccf2b12ca4b6f91abab75ebb0606aa12ea7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/math/53080052_141.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b6bc57dc793399837eaf3fb2fe4271111218d8545ef7806e883e20e6369e18c -size 42108 diff --git a/MM_Math/data_original_21/7044920/solution_images/52977108_620.png b/MM_Math/data_original_21/7044920/solution_images/52977108_620.png deleted file mode 100644 index a36540ad67a215cbdd0d59bfe049dc2e91f0c71c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/52977108_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08174bd5d2f6ece5a224a66f2069bd6e4f555e4aed2b847466277e3fab75dd5d -size 9647 diff --git a/MM_Math/data_original_21/7044920/solution_images/52977136_391.png b/MM_Math/data_original_21/7044920/solution_images/52977136_391.png deleted file mode 100644 index 04665a0630ff8cdef67bd015c6ec7c12d4352a1d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/52977136_391.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:156c01f4e0986ccb75eef918f656957e8e49ad882ebd360d8ed7b23e3edb3b09 -size 7186 diff --git a/MM_Math/data_original_21/7044920/solution_images/52978752_640.png b/MM_Math/data_original_21/7044920/solution_images/52978752_640.png deleted file mode 100644 index e266c3a99f5f488ba09e3b620c113eb14fe69038..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/52978752_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e13f692a4996479859194272410dcf8d2f97726c3af287c520c8a36d2aa31ba -size 26483 diff --git a/MM_Math/data_original_21/7044920/solution_images/52991478_270.png b/MM_Math/data_original_21/7044920/solution_images/52991478_270.png deleted file mode 100644 index 7c73305c7f408b6a4be813b57091a71e2faaf145..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/52991478_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06d0c76ad8a25a92553ef31abcd4204bb0b1c42e4807f27aa7b7004efebf0770 -size 19372 diff --git a/MM_Math/data_original_21/7044920/solution_images/52991672_260.jpg b/MM_Math/data_original_21/7044920/solution_images/52991672_260.jpg deleted file mode 100644 index 9d2946b5ba77ce0b7d842edefc101ed16963b9d9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/52991672_260.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8012d2da84f62ffbeff907623100862f0c0ee2e91dbe00f497ccdebf1ac87cdd -size 12114 diff --git a/MM_Math/data_original_21/7044920/solution_images/52991679_600.jpg b/MM_Math/data_original_21/7044920/solution_images/52991679_600.jpg deleted file mode 100644 index bf8c37e3e98ba583138997bb535eae4062b21fd7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/52991679_600.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc4716c3b6f156533b85f1f2a26f8ab003cdae08c06198a208feee346ac67dcf -size 9194 diff --git a/MM_Math/data_original_21/7044920/solution_images/52991885_240.png b/MM_Math/data_original_21/7044920/solution_images/52991885_240.png deleted file mode 100644 index 398fe29f84ea59fb7c02afaa1aec1c1cb8f84bdb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/52991885_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c7875d23cef73633f13dcf806697019c69a77826ca3604c10bbb9f15323923f -size 10852 diff --git a/MM_Math/data_original_21/7044920/solution_images/53009847_180.png b/MM_Math/data_original_21/7044920/solution_images/53009847_180.png deleted file mode 100644 index 4d237a6b700030523017bdb5134aa663f7cf9d5d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/53009847_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5cc1ae5f1c70df6943bd9b26aa95a30bff5b71ac25742bb5825cc0d91a2737d6 -size 6508 diff --git a/MM_Math/data_original_21/7044920/solution_images/53033966_60.png b/MM_Math/data_original_21/7044920/solution_images/53033966_60.png deleted file mode 100644 index f316685be25ea938a9898d50d00fd12018c9dd5c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/53033966_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc16a781802593adb29978efa59b3b1908372ebd478bfd0bd07731401fab0287 -size 28322 diff --git a/MM_Math/data_original_21/7044920/solution_images/53033969_70.png b/MM_Math/data_original_21/7044920/solution_images/53033969_70.png deleted file mode 100644 index 6d6e2d246a235cd9ad9067e6a290018055248c13..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/53033969_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa94ae64415bdf2bc64e2fc13368a5220390622d0f33a95c6b740fa7f0dc7ef8 -size 3580 diff --git a/MM_Math/data_original_21/7044920/solution_images/53044048_30.png b/MM_Math/data_original_21/7044920/solution_images/53044048_30.png deleted file mode 100644 index c3f49397752bf26d0e07f3fac57a2d4f1cf9fdfe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/53044048_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3187decba94d3d624b107c3ad599d304277f04549151ee987896d254e542f93 -size 2285 diff --git a/MM_Math/data_original_21/7044920/solution_images/53044174_52.png b/MM_Math/data_original_21/7044920/solution_images/53044174_52.png deleted file mode 100644 index d89a2bbd1d357fc5e0c29bd6aea86a83ab37a2bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044920/solution_images/53044174_52.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b7b15e5790bbbcffe6772c636e67e885d3e2441d22048ac5dcba809789de3e2 -size 7607 diff --git a/MM_Math/data_original_21/7044986/.DS_Store b/MM_Math/data_original_21/7044986/.DS_Store deleted file mode 100644 index e7e880bbc6e4f559f6e5ea26e84b3318574c796b..0000000000000000000000000000000000000000 Binary files a/MM_Math/data_original_21/7044986/.DS_Store and /dev/null differ diff --git a/MM_Math/data_original_21/7044986/math/52866931_215.png b/MM_Math/data_original_21/7044986/math/52866931_215.png deleted file mode 100644 index bdc3d0e1ee4e668ab62f4c1d6b07ece38ac3f60d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52866931_215.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28dfbc11d536e6db61b70e7039ce065312b11fa28224dcdfb0b5def0ea1a0e7e -size 2175 diff --git a/MM_Math/data_original_21/7044986/math/52866937_635.png b/MM_Math/data_original_21/7044986/math/52866937_635.png deleted file mode 100644 index e28b4b13b8bc5139d3320d487d603b1fa6b2b1d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52866937_635.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46deb24303a6d23d1584a51c75d78937403f29ceb3c1b7271cb429cb547a59fd -size 18768 diff --git a/MM_Math/data_original_21/7044986/math/52866938_626.png b/MM_Math/data_original_21/7044986/math/52866938_626.png deleted file mode 100644 index 195a30f6fee96ce9bff8648179efb6cc97a1cc17..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52866938_626.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32138372876750b74dcfba4b2db65c313ff0af710c140772864a6a90c166ef50 -size 37543 diff --git a/MM_Math/data_original_21/7044986/math/52866951_999.png b/MM_Math/data_original_21/7044986/math/52866951_999.png deleted file mode 100644 index 19ecaf5f5bf1f861c49b22cfe890fe19fbba1bda..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52866951_999.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1e43f045bb1fde199a3cb29bbdbac5cffe42feaeccba7a8e4fd5a547eebad48 -size 35942 diff --git a/MM_Math/data_original_21/7044986/math/52867037_617.png b/MM_Math/data_original_21/7044986/math/52867037_617.png deleted file mode 100644 index 4e028534ae8df41e23ff89d7e931af0c392f1b4a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52867037_617.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:95291efb202286baa9f5e0dab42f16e6052850c8c2c5af725bd808dfb1d51de2 -size 3684 diff --git a/MM_Math/data_original_21/7044986/math/52867062_246.png b/MM_Math/data_original_21/7044986/math/52867062_246.png deleted file mode 100644 index 4eb44a913454c4fbbd828c2c0361fb00098799e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52867062_246.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8aef46358aff39a15b4e81bfa7871e6fea01acd35f2a3495ea27ee19be5b4a9b -size 6952 diff --git a/MM_Math/data_original_21/7044986/math/52867066_607.png b/MM_Math/data_original_21/7044986/math/52867066_607.png deleted file mode 100644 index 478b166e2ca1e2e3b1bd531241a455288ff270ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52867066_607.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7131d6d4e39d0d7724706bf57848e068aa69943dacd6bdfbf0ea54ee38f64aef -size 21814 diff --git a/MM_Math/data_original_21/7044986/math/52867068_592.png b/MM_Math/data_original_21/7044986/math/52867068_592.png deleted file mode 100644 index bb38e0685bb7e1dfb363e335925c229b8a699093..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52867068_592.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be670e50bb4281ed60aca7fcc8b1955b1be7cb6a2a377f985ddc83e553565ed8 -size 33025 diff --git a/MM_Math/data_original_21/7044986/math/52867075_982.png b/MM_Math/data_original_21/7044986/math/52867075_982.png deleted file mode 100644 index 30f5473a295c7ded113f03e60791cc536a2f76d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52867075_982.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87327d31db07a73cd6e09ef13ac55fdc174ab8609e53f3936bd0c451d98585ce -size 26744 diff --git a/MM_Math/data_original_21/7044986/math/52867084_974.png b/MM_Math/data_original_21/7044986/math/52867084_974.png deleted file mode 100644 index 4e6ff51dc69adc7bd434150e8dc48bfcf6616e94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52867084_974.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0405e1e71bc60364e09428772028d616ed9d0333f4280d6ec21c796251928f8 -size 23168 diff --git a/MM_Math/data_original_21/7044986/math/52873807_190.png b/MM_Math/data_original_21/7044986/math/52873807_190.png deleted file mode 100644 index 3826bdbc48354ad166f7e38115f2c0e876dcacc8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52873807_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e9e3a0e045c1aedb9d0c8b17ab5d0af1b191f004e0c745b38420482ccb090e8 -size 15728 diff --git a/MM_Math/data_original_21/7044986/math/52873810_200.png b/MM_Math/data_original_21/7044986/math/52873810_200.png deleted file mode 100644 index efb2a33fd2dd6c6598e452af8f5d04fd25b8a222..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52873810_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59bba237ec1fe6cbc1eef1c0162e218a28b086db6c2b76c50293362869c8193b -size 30496 diff --git a/MM_Math/data_original_21/7044986/math/52873822_960.png b/MM_Math/data_original_21/7044986/math/52873822_960.png deleted file mode 100644 index 1bb26d6518f60edbce144b03d9fe646718354a9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52873822_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66422d3a43beb0535dc42d1c0a9fa75a318c10c128568e2a8d070cd33f6947b1 -size 15552 diff --git a/MM_Math/data_original_21/7044986/math/52874486_550.png b/MM_Math/data_original_21/7044986/math/52874486_550.png deleted file mode 100644 index ad730f8f40155fce656e829aeb221a1e8f4b776c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52874486_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab66021fa28b71d685bb78a101eca6b019b351f952c686229dad2cd98545803c -size 7737 diff --git a/MM_Math/data_original_21/7044986/math/52874507_721.png b/MM_Math/data_original_21/7044986/math/52874507_721.png deleted file mode 100644 index b512b07efc05124d349dbe9d9ad3891f6e796644..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52874507_721.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc402dc48795cbd271042db9ee8c3b54ea49e3b9a060def905b2c5ed7e5ab949 -size 7788 diff --git a/MM_Math/data_original_21/7044986/math/52874602_180.png b/MM_Math/data_original_21/7044986/math/52874602_180.png deleted file mode 100644 index f31388491781d06030eb5e6a3724bb3491d58b35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52874602_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8a14df43c93a82fe7c8b4caac3d2fdd989215178afa92a892fb265456a231ad -size 3519 diff --git a/MM_Math/data_original_21/7044986/math/52874608_533.png b/MM_Math/data_original_21/7044986/math/52874608_533.png deleted file mode 100644 index 66a869d8cf4a45d2a244ddd9e6f5fcd41f54371a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52874608_533.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2da20ddbac2b720afaea10e86e2ed8f03a7019be8fd8f716ae6d5f8fc1eab33f -size 2695 diff --git a/MM_Math/data_original_21/7044986/math/52874609_540.png b/MM_Math/data_original_21/7044986/math/52874609_540.png deleted file mode 100644 index 82d87e9a940663ee37281f1b9d805e4a58c4cbb6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52874609_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07b2741dd38f21403e4ab302bd6df3de83b0fe4152291d436451fcdcf9d57204 -size 7069 diff --git a/MM_Math/data_original_21/7044986/math/52905587_105.png b/MM_Math/data_original_21/7044986/math/52905587_105.png deleted file mode 100644 index 12e0dd882fec034d75fc91a46e6418b7df4cd4f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905587_105.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee793e50111828830163fcf49fc99090f910db59d7d591e222e7d1bac0f8b6f7 -size 3206 diff --git a/MM_Math/data_original_21/7044986/math/52905589_128.png b/MM_Math/data_original_21/7044986/math/52905589_128.png deleted file mode 100644 index 1c9c646dcf548705e14728ba3880b69ba3ca07d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905589_128.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a284ee7498dcfab3b35aac90666629dc2778753547a04cad7b731f7ab4bf60d5 -size 36394 diff --git a/MM_Math/data_original_21/7044986/math/52905597_147.png b/MM_Math/data_original_21/7044986/math/52905597_147.png deleted file mode 100644 index c9c0f13db04ce0fe71ab112b3e612affeb93175f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905597_147.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5f570a4318f0a9419f297ac5f3122880bdaabc4e03f52dca8bdae14d9efb1c7 -size 22122 diff --git a/MM_Math/data_original_21/7044986/math/52905602_440.jpeg b/MM_Math/data_original_21/7044986/math/52905602_440.jpeg deleted file mode 100644 index db0f95cae180bd4bd5b930374bb18ec12d6a49d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905602_440.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d2dda51343696d0d4131486368b144c935114a0353f5c44e25bfe3d1eea6f4f -size 1925 diff --git a/MM_Math/data_original_21/7044986/math/52905611_910.png b/MM_Math/data_original_21/7044986/math/52905611_910.png deleted file mode 100644 index cace708e772a732d163574e70661cb6fb82a8233..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905611_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:368816e377598caa86e694ec51ed95c2d324eeba025ea68e8e90df223ddf3f79 -size 32078 diff --git a/MM_Math/data_original_21/7044986/math/52905795_90.png b/MM_Math/data_original_21/7044986/math/52905795_90.png deleted file mode 100644 index 857e2748e319ec41d127f749c309b7f7f680d330..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905795_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8205d14979868144895243d2ce7a3799eef24defd2e3500ff3b31f05400c6c57 -size 2135 diff --git a/MM_Math/data_original_21/7044986/math/52905802_113.png b/MM_Math/data_original_21/7044986/math/52905802_113.png deleted file mode 100644 index 386306935f827c1ba2f133f481d35a5be9669451..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905802_113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33ceb8159866155ff3b2d6f186d9d9f28b453dd84254a2351fbba5b810ccc77a -size 30690 diff --git a/MM_Math/data_original_21/7044986/math/52905808_454.png b/MM_Math/data_original_21/7044986/math/52905808_454.png deleted file mode 100644 index 17cb67c4ceefd3d305481b4b95e53643891adbe1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905808_454.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9cb7551a96df1435844f95ceb6e767461ef1c2f57843e773ef771620d590544 -size 9435 diff --git a/MM_Math/data_original_21/7044986/math/52905809_438.png b/MM_Math/data_original_21/7044986/math/52905809_438.png deleted file mode 100644 index a440b8c7756b7371d920eb9817c2daf0c6b322e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905809_438.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c012d38052876055b7eaee062ab5bedafeb679f22ed8c32494240a341276c1ac -size 21566 diff --git a/MM_Math/data_original_21/7044986/math/52905816_900.png b/MM_Math/data_original_21/7044986/math/52905816_900.png deleted file mode 100644 index 6bd91a97c6c1db23c35f966f7288326ffa5a9df4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905816_900.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9345a4eb26267f556b3633eb31b346cfc4541a5089bd24c0958103e8d543fc56 -size 5773 diff --git a/MM_Math/data_original_21/7044986/math/52905905_137.png b/MM_Math/data_original_21/7044986/math/52905905_137.png deleted file mode 100644 index cbfae7917b6865c33f21f9b9c1fa3b50b79d5d57..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905905_137.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c80a33a5f0919a6ea39ac3f9ce872a591631206332b2936aa5398f9acd34986 -size 9494 diff --git a/MM_Math/data_original_21/7044986/math/52905934_930.png b/MM_Math/data_original_21/7044986/math/52905934_930.png deleted file mode 100644 index 3069d46250c53a3674e05f86967a28944462d163..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52905934_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8bce32f832b265ee5ea24a014aafb29253939b3309e7209a9370a5030aed60c4 -size 3154 diff --git a/MM_Math/data_original_21/7044986/math/52906079_924.png b/MM_Math/data_original_21/7044986/math/52906079_924.png deleted file mode 100644 index 1ee67f2a6b4e3b382248d83d3390136b59d37466..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52906079_924.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f6af08cba7b5d429d2d210ec5a4fb87aa4bbf82a728ed8d13a1879f717e9032 -size 16088 diff --git a/MM_Math/data_original_21/7044986/math/52907826_80.png b/MM_Math/data_original_21/7044986/math/52907826_80.png deleted file mode 100644 index 9185ee4047d51e3539bdbfdbcf433f67455b443f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52907826_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9962f743806e42c0434c8584f2b40e86d67522e9a6e27507152062c330cdf11 -size 6572 diff --git a/MM_Math/data_original_21/7044986/math/52907830_420.png b/MM_Math/data_original_21/7044986/math/52907830_420.png deleted file mode 100644 index b81a3500f2f320a9969f6157055bc08e63520238..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52907830_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8be7977ed690d16c54ffb7a8e50b1a47d57bf74bfc6a1be254f0a1d35203bc96 -size 5890 diff --git a/MM_Math/data_original_21/7044986/math/52907833_410.png b/MM_Math/data_original_21/7044986/math/52907833_410.png deleted file mode 100644 index 6ba858cd7e65b11103682e21ab754e478d226657..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52907833_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b4c5f45f34f3f00cfadb0f446ca03730a3be2debf024ec5e4a8c39dbfc11169f -size 8127 diff --git a/MM_Math/data_original_21/7044986/math/52913839_820.jpeg b/MM_Math/data_original_21/7044986/math/52913839_820.jpeg deleted file mode 100644 index 6b0def3f36255225d17b8dbbe177a6d4b727c83f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52913839_820.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf465b189b7b027f4e4d0ac5cc19b511446e3c070683092ec29e5e04965d9307 -size 4129 diff --git a/MM_Math/data_original_21/7044986/math/52913842_880.jpeg b/MM_Math/data_original_21/7044986/math/52913842_880.jpeg deleted file mode 100644 index b13279b46cf2be783ee9f3ff80708990596c90a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52913842_880.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:17642030c078b687476ee4b7d1c63341d6f15280be997c4a5309181cffb7807f -size 4038 diff --git a/MM_Math/data_original_21/7044986/math/52913848_870.jpeg b/MM_Math/data_original_21/7044986/math/52913848_870.jpeg deleted file mode 100644 index 30ef4a092b213dc3854ab4ffc3b0d84c0361c0a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52913848_870.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb38752495581cc312eed8ce3c2b944be3c4e7bd9c0cc6f6e7d87bb6a171731d -size 8182 diff --git a/MM_Math/data_original_21/7044986/math/52913897_390.jpeg b/MM_Math/data_original_21/7044986/math/52913897_390.jpeg deleted file mode 100644 index 7f01cd369f656b292a65c364f495ab95f14d944c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52913897_390.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ebca8b32d60404c0c8d91ed0dc80657eecdb582fc5c6ef720cde95e2419d20c -size 2664 diff --git a/MM_Math/data_original_21/7044986/math/52913903_830.jpeg b/MM_Math/data_original_21/7044986/math/52913903_830.jpeg deleted file mode 100644 index 9188964343d7395aee2714c03da41b42e41c2f97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52913903_830.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3cc8cbc2fb9edddca4499a6a84ec54c3983021a3d81da8750ef5b31e3aa0f09a -size 3642 diff --git a/MM_Math/data_original_21/7044986/math/52913906_680.jpeg b/MM_Math/data_original_21/7044986/math/52913906_680.jpeg deleted file mode 100644 index 4a255908759cf435d741de5e7bddc8a30ff25b5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52913906_680.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7863005eefadd742ee7cafa85159731976d3c3f546005bc784a63c99dac2a1d -size 3272 diff --git a/MM_Math/data_original_21/7044986/math/52913907_850.jpeg b/MM_Math/data_original_21/7044986/math/52913907_850.jpeg deleted file mode 100644 index 2a59700552bf5f48f58a66d701e68ec114c2e539..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52913907_850.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92f40522875995dd95abeea34f8aab7b4d53a8404b805a0c87e6d56791a91382 -size 3851 diff --git a/MM_Math/data_original_21/7044986/math/52913910_860.jpeg b/MM_Math/data_original_21/7044986/math/52913910_860.jpeg deleted file mode 100644 index 627b38348ba7d710e3f64acee3a30e9e2790deb3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52913910_860.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:956cefebf1bef5a14c7922af47835754f77e1ef047dc8be52e9606dd0c3db7f1 -size 3778 diff --git a/MM_Math/data_original_21/7044986/math/52913913_810.jpeg b/MM_Math/data_original_21/7044986/math/52913913_810.jpeg deleted file mode 100644 index 82bb66d87d3d27652ac05bfb24bc59315ffcdd0c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52913913_810.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb4275b43cae7510affe6e4c84462f8f9a41ffac08052e2f848f4a4cf4f72172 -size 4678 diff --git a/MM_Math/data_original_21/7044986/math/52914128_360.jpeg b/MM_Math/data_original_21/7044986/math/52914128_360.jpeg deleted file mode 100644 index 8e3d56ca4f32e41872646dd367f7827938bb8c52..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914128_360.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4aee356a824aabe81b35672bcca721b3dd1ce036f287a25c4dbfe4c8e0d480e -size 2708 diff --git a/MM_Math/data_original_21/7044986/math/52914131_400.jpeg b/MM_Math/data_original_21/7044986/math/52914131_400.jpeg deleted file mode 100644 index b31da5a61b1a324ab4e64586fe25d30d3e09853d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914131_400.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d63c1051115838c7f8770235012f9e3f600f6c2082b4e1c31f39f29278e10a6d -size 3116 diff --git a/MM_Math/data_original_21/7044986/math/52914135_700.jpeg b/MM_Math/data_original_21/7044986/math/52914135_700.jpeg deleted file mode 100644 index 48651c10629e28bdf64b09ec263df426bb8b6c37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914135_700.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11760e8774456c03e1a807758a14c47b24df3804925cc8e5fb13a895aaf025dd -size 2823 diff --git a/MM_Math/data_original_21/7044986/math/52914139_840.jpeg b/MM_Math/data_original_21/7044986/math/52914139_840.jpeg deleted file mode 100644 index b84c301b76367ff11a4b2feabc4f39c2cf5843ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914139_840.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b2fcc590a864ab05384e80d7c358ee5336304222a0647f23708ded85f1b3ade -size 3677 diff --git a/MM_Math/data_original_21/7044986/math/52914187_75.png b/MM_Math/data_original_21/7044986/math/52914187_75.png deleted file mode 100644 index 4a096801111b6122a37d45fb8c2ea892374ccc42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914187_75.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e05236cdecf2d0a47899d18c935b87670121308028ec602348bc5c78d893dc1 -size 6224 diff --git a/MM_Math/data_original_21/7044986/math/52914190_518.png b/MM_Math/data_original_21/7044986/math/52914190_518.png deleted file mode 100644 index b19215c9070628255ddc0393c52d7023fbdb2b68..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914190_518.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0086791d5b749089de03dbb79e4c146b8445eabaec512ddde2a4d77ba68510d1 -size 7731 diff --git a/MM_Math/data_original_21/7044986/math/52914191_618.png b/MM_Math/data_original_21/7044986/math/52914191_618.png deleted file mode 100644 index fdaf6d665073224eb335aca87a126dc429eae90e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914191_618.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79653fe3fee6a71b060924ae395d8c0d6ba4a99cfd97bc140d1c2ba8a8c30350 -size 8652 diff --git a/MM_Math/data_original_21/7044986/math/52914195_3711.png b/MM_Math/data_original_21/7044986/math/52914195_3711.png deleted file mode 100644 index c090078c70e847ffbf23c516325505ee59d65cbd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914195_3711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9faf241608ffda665dc73aaeb73a31418cd1a24b444d37d10a247a5857f4ba8d -size 5911 diff --git a/MM_Math/data_original_21/7044986/math/52914196_3810.png b/MM_Math/data_original_21/7044986/math/52914196_3810.png deleted file mode 100644 index 295091c64bf16b24218999f43751aa070b59c094..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914196_3810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b1147f0593add2d91c88df9f3d71e93442592ab13a03eba4bfedecad9d21285 -size 7145 diff --git a/MM_Math/data_original_21/7044986/math/52914200_697.png b/MM_Math/data_original_21/7044986/math/52914200_697.png deleted file mode 100644 index 00f94c0bf65e13dc70591367074173821ba32474..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914200_697.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa3e0cb8f88403a99b1a65940ed54ad989b45cc4ad698532e06cbb216a2e98a4 -size 5215 diff --git a/MM_Math/data_original_21/7044986/math/52914212_8917.png b/MM_Math/data_original_21/7044986/math/52914212_8917.png deleted file mode 100644 index be6777205ec7bbacda38b65e777220c25c3b45d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52914212_8917.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a83db5734f7caef9a8832ae4a6c558fed7bfba91a23ea6def23f82b2b4fca1f1 -size 7365 diff --git a/MM_Math/data_original_21/7044986/math/52918903_356.png b/MM_Math/data_original_21/7044986/math/52918903_356.png deleted file mode 100644 index cba8f2930a31f70b0a31e40c77fb127bb5bf6e77..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52918903_356.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d44dcd65dcb7d3258db80021ee2289476901b633130b8babdbdbfceb5883748d -size 12941 diff --git a/MM_Math/data_original_21/7044986/math/52918922_804.png b/MM_Math/data_original_21/7044986/math/52918922_804.png deleted file mode 100644 index e64780cc7352559e1113d7778e8b38ed0de633f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52918922_804.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1626bb7fcd67a58f553755f1410d2f4d82c5f00babc2c02c97b0edb3f8932ec2 -size 31904 diff --git a/MM_Math/data_original_21/7044986/math/52933303_325.png b/MM_Math/data_original_21/7044986/math/52933303_325.png deleted file mode 100644 index be88ca77a232107654a12936cf876c59dcf4f941..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52933303_325.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd93a408de05cd99427a4bab8b8150b367ccd5edfdc0d2d4a335fc3a67755340 -size 2537 diff --git a/MM_Math/data_original_21/7044986/math/52933308_338.png b/MM_Math/data_original_21/7044986/math/52933308_338.png deleted file mode 100644 index 0084bbe1ad320e663955f21356b0145740aa3f0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52933308_338.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ce0b2241e26eb86d38ad49256af54a56f4878c3fe8e5e5563dd25c797c8fc05 -size 47565 diff --git a/MM_Math/data_original_21/7044986/math/52933309_310.png b/MM_Math/data_original_21/7044986/math/52933309_310.png deleted file mode 100644 index da01211dc58bf752979fa99ab935e835b1be9115..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52933309_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee25b4c5cc70ddda028bc90ef98564e304222b84506a6657f7c58f17126b84c2 -size 69785 diff --git a/MM_Math/data_original_21/7044986/math/52935543_3012.png b/MM_Math/data_original_21/7044986/math/52935543_3012.png deleted file mode 100644 index ab46fde42d32d418613768672d1e00314639f2ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52935543_3012.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9ab7728443110506243d8e0d76e417be354447d123765189d5901f9eeba5068 -size 2723 diff --git a/MM_Math/data_original_21/7044986/math/52935555_786.png b/MM_Math/data_original_21/7044986/math/52935555_786.png deleted file mode 100644 index 352f74c26f172953616442e904e544e1cf059fab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52935555_786.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3d8eb8fbc858ea4ba2f62400369d7c78f89b86092a4417255151318932bbdfd1 -size 3077 diff --git a/MM_Math/data_original_21/7044986/math/52950309_44.png b/MM_Math/data_original_21/7044986/math/52950309_44.png deleted file mode 100644 index 92b797eaf1950d1281c5884a913c6502bd61bf0d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950309_44.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c608e5bde11643f7a7c5f6a1ba09b6938c56b4605c14ab76ef47f96c8b6e5e04 -size 31483 diff --git a/MM_Math/data_original_21/7044986/math/52950314_294.png b/MM_Math/data_original_21/7044986/math/52950314_294.png deleted file mode 100644 index f3f7771f212cd12a1360bbbeb96acaf91c2d5051..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950314_294.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:100fe9b4dfe752d56483ab9f5df3f031ede05b139b27bc93f04ea837164f21bd -size 125833 diff --git a/MM_Math/data_original_21/7044986/math/52950323_676.png b/MM_Math/data_original_21/7044986/math/52950323_676.png deleted file mode 100644 index f19163e0bcac4b254da3950711e5dbc803f2c24f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950323_676.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b478cba7ec5ebbdda1dfa9abbd2ab109735468ba4bd0210c620d0eacded128f -size 53881 diff --git a/MM_Math/data_original_21/7044986/math/52950404_37.png b/MM_Math/data_original_21/7044986/math/52950404_37.png deleted file mode 100644 index 6a6d73aea7004c6f63f6aef7d42fd1a6d307518f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950404_37.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75c7bf8164b647b9a495ce8744909da9acff2ec53023057439c1dae20ec7bd86 -size 1715 diff --git a/MM_Math/data_original_21/7044986/math/52950416_667.png b/MM_Math/data_original_21/7044986/math/52950416_667.png deleted file mode 100644 index 7c353a40abc9dbc80c8d3a8f549b75c16bbe480c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950416_667.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba6d26a6aeb47387e0270cce8baa90aa95bcea4731dfd3faa364bb45848cfb78 -size 2345 diff --git a/MM_Math/data_original_21/7044986/math/52950518_20.png b/MM_Math/data_original_21/7044986/math/52950518_20.png deleted file mode 100644 index 4268d0da3dd6fc1a0fdea81b89fa3e758475d69c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950518_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bded07011512d810d00e23c1f61b083bd04521dccc8ba8827e9e6186a5f914c7 -size 17286 diff --git a/MM_Math/data_original_21/7044986/math/52950525_288.png b/MM_Math/data_original_21/7044986/math/52950525_288.png deleted file mode 100644 index 0304991f1636f9ca25ed5ce2800ffdb03089efae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950525_288.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:423dda57c4149e7fd4a868552c35c7755657721b3b4d814510d2069816870910 -size 9323 diff --git a/MM_Math/data_original_21/7044986/math/52950675_17.png b/MM_Math/data_original_21/7044986/math/52950675_17.png deleted file mode 100644 index d09f8d59beff3b6bd601995630409ed8bd34df0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950675_17.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:858ab45f4bfaf4c51c9a2961835ecfe68dde0933334212761b8bbbcd17241341 -size 62303 diff --git a/MM_Math/data_original_21/7044986/math/52950677_05.png b/MM_Math/data_original_21/7044986/math/52950677_05.png deleted file mode 100644 index 4d058c004598ecffe9050a142dd4911a8e88840e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950677_05.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67a7f5d1eb22e91e57277172fe3a94a30ae13af8249c7961054ef0684b40f452 -size 109326 diff --git a/MM_Math/data_original_21/7044986/math/52950688_650.png b/MM_Math/data_original_21/7044986/math/52950688_650.png deleted file mode 100644 index b62f6e2e89a49d61bbd721786cd762e12bc4eee1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950688_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:93cfac8635d26ea8d0e2b2cd602d17d573205497588418a298e1d0e8010bd1d7 -size 3821 diff --git a/MM_Math/data_original_21/7044986/math/52950696_775.png b/MM_Math/data_original_21/7044986/math/52950696_775.png deleted file mode 100644 index 67b4bf3facbb196bfc5fcb48f740a4ac227750bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950696_775.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1abee5eac6f24e8e7ddc0a962a9e7df696e8c16c2e809966862f238254d39224 -size 68678 diff --git a/MM_Math/data_original_21/7044986/math/52950949_263.png b/MM_Math/data_original_21/7044986/math/52950949_263.png deleted file mode 100644 index 6c4076a3a93512ab27bc3f9e347efa85a7ba8be2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950949_263.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52f5ba1b66cb91081e1c78205328f63bbdc1d25250ce2e151b716abdb86230a1 -size 8024 diff --git a/MM_Math/data_original_21/7044986/math/52950952_256.png b/MM_Math/data_original_21/7044986/math/52950952_256.png deleted file mode 100644 index e0842ef1723e7ebf8d335df3d60919674bc0293a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950952_256.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a1320a343c332bb90dcb7540fb90fe6b264e58ae3a59da2c04f8126c72075833 -size 2078 diff --git a/MM_Math/data_original_21/7044986/math/52950954_2711.png b/MM_Math/data_original_21/7044986/math/52950954_2711.png deleted file mode 100644 index fc90152f8ad20371dd2a157221d495acc710e693..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950954_2711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0bccf9d6409c9cf75cb8688757d3f79c9d5219e509dc111f4b7e16a2aa4cba4 -size 10676 diff --git a/MM_Math/data_original_21/7044986/math/52950966_767.png b/MM_Math/data_original_21/7044986/math/52950966_767.png deleted file mode 100644 index d930e02ef8a7e9c65d1ec219c117f29ddc0ed754..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950966_767.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ceee4e943d34efb22d26d0b888b37733979acbb7eb4fd3c8506c0dc50cf62a2 -size 21900 diff --git a/MM_Math/data_original_21/7044986/math/52950975_757.png b/MM_Math/data_original_21/7044986/math/52950975_757.png deleted file mode 100644 index 155cf538a06bac08e05a91ed6449933a7952518c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52950975_757.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68267ff4fe5f2500a9f51b1368092a92fcb3aee3b219ad9a2d94691da8a72019 -size 16898 diff --git a/MM_Math/data_original_21/7044986/math/52951344_640.png b/MM_Math/data_original_21/7044986/math/52951344_640.png deleted file mode 100644 index f9859b8cd57faffa08f18a6a4fcfe8fbb4ee73c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/52951344_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e5443a5461424157e5e0692b5aaa9011904cfb73c8ef71ebaba49fa855fb7972 -size 8477 diff --git a/MM_Math/data_original_21/7044986/math/53102440_226.png b/MM_Math/data_original_21/7044986/math/53102440_226.png deleted file mode 100644 index b296ef7c5cc62cf33f186589ebcca5e7632b8329..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53102440_226.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d3ac52c6fc5379405b9aaef8a1cb363469bac109f257303856cc688106d5864 -size 5238 diff --git a/MM_Math/data_original_21/7044986/math/53102443_230.png b/MM_Math/data_original_21/7044986/math/53102443_230.png deleted file mode 100644 index 04bfd488f9ac28648f727bdc952843d25f429bc1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53102443_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9bd48da397b662da3b1b99191499cb16f191deb4d539b75b92cca401a5367451 -size 2415 diff --git a/MM_Math/data_original_21/7044986/math/53102446_574.png b/MM_Math/data_original_21/7044986/math/53102446_574.png deleted file mode 100644 index c28f0f78d84a88be8d839fd5693846584e50eeca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53102446_574.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4262c2c480030b6311176c61d33609b229f0d72cec16dbf5ad9ac5cd64c55aaa -size 42706 diff --git a/MM_Math/data_original_21/7044986/math/53102451_567.png b/MM_Math/data_original_21/7044986/math/53102451_567.png deleted file mode 100644 index b10fa17f45b6af1369464505d47b4b00e27935e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53102451_567.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f621c2c5bdc50bef0751e172853c24b940f32669eeeeaadeb1e61f1ab8624192 -size 6268 diff --git a/MM_Math/data_original_21/7044986/math/53106541_518.png b/MM_Math/data_original_21/7044986/math/53106541_518.png deleted file mode 100644 index c44569a944d9ae015015478ca23fd4883c75229e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53106541_518.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f9885b4600c8c748d140ee4920823341987bd57c516912a3312ae020dd90d4d -size 12271 diff --git a/MM_Math/data_original_21/7044986/math/53106609_475.png b/MM_Math/data_original_21/7044986/math/53106609_475.png deleted file mode 100644 index 1e6b384a15d709edd30ba5395907738bf01e66c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53106609_475.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb646db338ae072b95b7061907ff4593d6d46fbf0dd4acd5730f0caee4be67f6 -size 2585 diff --git a/MM_Math/data_original_21/7044986/math/53106751_507.png b/MM_Math/data_original_21/7044986/math/53106751_507.png deleted file mode 100644 index 80aeb883becb68885f09adeabd12b4ca5087bfec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53106751_507.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8df668058c2ef03fad5480cea4050a5049c24724fab596885285cc482c2dc05f -size 2605 diff --git a/MM_Math/data_original_21/7044986/math/53106961_166.png b/MM_Math/data_original_21/7044986/math/53106961_166.png deleted file mode 100644 index 2963f28d43e2863f5ef59afb7f2c676c0d1531d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53106961_166.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c518bb2a284414de68e6f8d5c41333f004b98d298200348b7ef3c6759b2a234 -size 18677 diff --git a/MM_Math/data_original_21/7044986/math/53106965_480.png b/MM_Math/data_original_21/7044986/math/53106965_480.png deleted file mode 100644 index 777677da86d00cecd35b1daf71befb274d998eaa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53106965_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2a843f6c4f2960ba2b1ee0d9ff3ae18bc3fd8c4766e322ce90f9112b0aa839b -size 11412 diff --git a/MM_Math/data_original_21/7044986/math/53106967_460.png b/MM_Math/data_original_21/7044986/math/53106967_460.png deleted file mode 100644 index eff8407917a2b8c25ff5424d852dc44e9b074497..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53106967_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:489e951527eebed055f9925c3c679ae699031e6b27ead49b4fdd89191504fcf7 -size 4116 diff --git a/MM_Math/data_original_21/7044986/math/53106968_526.png b/MM_Math/data_original_21/7044986/math/53106968_526.png deleted file mode 100644 index 757590a7e58a7408a34ace9827696907f9df9a43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53106968_526.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40978105057ac184a3b0a7573378de72fbc094c800424243d771a7b5e4fb7f33 -size 4966 diff --git a/MM_Math/data_original_21/7044986/math/53106969_955.png b/MM_Math/data_original_21/7044986/math/53106969_955.png deleted file mode 100644 index c626dee9486afa53fa1a39ce906a646d27307fb4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53106969_955.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f5b9546c9de62d4cd14aec965a617eaa6a436d3b56b2e722fd11db6dd8a9b8a9 -size 27122 diff --git a/MM_Math/data_original_21/7044986/math/53106979_947.png b/MM_Math/data_original_21/7044986/math/53106979_947.png deleted file mode 100644 index bff8c6212a5a375848bcb0f5a73b8f687be67716..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53106979_947.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58861ec1d232b88e6f6691f2c531d539ed1c93e391b956db32d49b5a66305ff0 -size 3656 diff --git a/MM_Math/data_original_21/7044986/math/53107076_150.png b/MM_Math/data_original_21/7044986/math/53107076_150.png deleted file mode 100644 index 5f810dae7f79abc778bc4f8643187940d6c4e099..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53107076_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71d1e205ffdc200a373f272317c60d5e960dc2ed5d214cd7222db6adaea82b2b -size 3861 diff --git a/MM_Math/data_original_21/7044986/math/53107083_495.png b/MM_Math/data_original_21/7044986/math/53107083_495.png deleted file mode 100644 index 76c17ea9c8fc9f202b2894952d32a4b8f96c02ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53107083_495.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:802bbc1805ae3d5f791e38e8300f36ef991b224b249a947de66a62cf6426f47c -size 23404 diff --git a/MM_Math/data_original_21/7044986/math/53107094_719.png b/MM_Math/data_original_21/7044986/math/53107094_719.png deleted file mode 100644 index 797686bc2c33fb873ea544c62623dca185fdb7b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53107094_719.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b41788bbf53b90ad122bec384bf956276800ef22e43356a4e79ba57bb99ad62 -size 16252 diff --git a/MM_Math/data_original_21/7044986/math/53107186_172.png b/MM_Math/data_original_21/7044986/math/53107186_172.png deleted file mode 100644 index 9819e49b0683c483d95279c24b173511b4d7bce4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53107186_172.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:745bb4923e648c61b48f4f6840444ebaf096a1235a123cbb0dcd71fd4a04a176 -size 2930 diff --git a/MM_Math/data_original_21/7044986/math/53206622_345.png b/MM_Math/data_original_21/7044986/math/53206622_345.png deleted file mode 100644 index c9ecd976a86cd43e6f7d18d7b2b419dd96e3f9b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53206622_345.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1402a9ebd982c20e464efd8a5f6feb834ad65d09d61d936bed535033da06dbf -size 26866 diff --git a/MM_Math/data_original_21/7044986/math/53206635_790.png b/MM_Math/data_original_21/7044986/math/53206635_790.png deleted file mode 100644 index 0fe1ec6fe0ee1b912e67431bdf65711229755782..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/53206635_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a83714f9f2b512c24a817f3f65ea29386e3eedde1fe58a6423758cbbb905bc8a -size 20364 diff --git a/MM_Math/data_original_21/7044986/math/55403711_585.png b/MM_Math/data_original_21/7044986/math/55403711_585.png deleted file mode 100644 index 731cb408a511eaaa2f0354acdf0c94d230f93cfb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/55403711_585.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:483b7a9214f6305427ec67363a22205cec95559dcf680379de7b558fcc6ebaf2 -size 1590 diff --git a/MM_Math/data_original_21/7044986/math/55403716_749.png b/MM_Math/data_original_21/7044986/math/55403716_749.png deleted file mode 100644 index d92c619916810b6c7b85fdec21c8493d81e7927a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/55403716_749.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a29cab23a683acc85e3501eaa0c337fdc51eecca2119bf38c3c71b6627f7bafe -size 4323 diff --git a/MM_Math/data_original_21/7044986/math/55403719_7312.png b/MM_Math/data_original_21/7044986/math/55403719_7312.png deleted file mode 100644 index 9c7ce98fe4f774a36f638c51921e7a3d79b8158a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/math/55403719_7312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40e88a1d5c699c09efa3b11b7b210cfd7c38cb4e4dadcaae7f32405bfa672187 -size 6572 diff --git a/MM_Math/data_original_21/7044986/solution_images/52866938_622.png b/MM_Math/data_original_21/7044986/solution_images/52866938_622.png deleted file mode 100644 index 6c297a62068d680b29944a18b44149254e0a0160..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52866938_622.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:711a0d5fdfd6227789622b15689a3852d6911f1684375a433efb658aa0e4ae13 -size 41763 diff --git a/MM_Math/data_original_21/7044986/solution_images/52867037_613.png b/MM_Math/data_original_21/7044986/solution_images/52867037_613.png deleted file mode 100644 index f5badf1cf7fc072884291f3e047d4c59aeec6eb5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52867037_613.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:618df144db088febbbae7b2422245bc31f39ecea52055c8dc089199c3deb6780 -size 4363 diff --git a/MM_Math/data_original_21/7044986/solution_images/52867068_592.png b/MM_Math/data_original_21/7044986/solution_images/52867068_592.png deleted file mode 100644 index 55e7d136f3ed7d2aa012ee290d8cddc776078261..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52867068_592.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b712d7d9010636fc055c9ebd5fbe89699f6347608a6e7670dc87ab06e1ea0f9b -size 36387 diff --git a/MM_Math/data_original_21/7044986/solution_images/52874486_550.png b/MM_Math/data_original_21/7044986/solution_images/52874486_550.png deleted file mode 100644 index 7b23779289fec293af669e3f59a40a1835a75b33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52874486_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b96583d84731e5bec9b5faa5132adc0b72678c17c0f93767811077abf9ff6b7 -size 16808 diff --git a/MM_Math/data_original_21/7044986/solution_images/52905589_121.png b/MM_Math/data_original_21/7044986/solution_images/52905589_121.png deleted file mode 100644 index 23b0bce744f29341bd5f7485e98315ee42b7a085..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52905589_121.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:749e3220f7801e5b4a9190b0216cc546855b8897f09aef170ea1004a0e6bd110 -size 38752 diff --git a/MM_Math/data_original_21/7044986/solution_images/52905597_143.png b/MM_Math/data_original_21/7044986/solution_images/52905597_143.png deleted file mode 100644 index 8c4d8e0578a4d6fdfa41df4cc497eaffa899e795..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52905597_143.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8448b0c571d1670d0844ff1c75a0ebad2bd76b6262dbf3581961571ac318890b -size 26646 diff --git a/MM_Math/data_original_21/7044986/solution_images/52905602_440.jpeg b/MM_Math/data_original_21/7044986/solution_images/52905602_440.jpeg deleted file mode 100644 index d58937b3f3e3aceac269c25bc4fefa59aebda4bc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52905602_440.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13227c1dc968a9c3a263ccb2b1bcbc36696c409dfa59b650a2424392b677d64a -size 3380 diff --git a/MM_Math/data_original_21/7044986/solution_images/52905905_131.png b/MM_Math/data_original_21/7044986/solution_images/52905905_131.png deleted file mode 100644 index 0bfd57df94def50f1afd4bcf36182c66868e7ee9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52905905_131.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e734860d276ca0cb2cbd4ffb08b1e8bab7e3eac7e135f64453ff0e22c47e582b -size 10365 diff --git a/MM_Math/data_original_21/7044986/solution_images/52907826_80.png b/MM_Math/data_original_21/7044986/solution_images/52907826_80.png deleted file mode 100644 index 646bcb0ee20d1d2f1049ddb446bda24f7f8a8136..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52907826_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11b5fbbeb2738d0983c7288671c8fd3588b60231c51eb60e5f79a46e51be2609 -size 3921 diff --git a/MM_Math/data_original_21/7044986/solution_images/52907830_420.png b/MM_Math/data_original_21/7044986/solution_images/52907830_420.png deleted file mode 100644 index 8f84cb5745c4e223994b309cf47431d6ddfe9f4d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52907830_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1dbfd1dc37ae5108f92fe1a98fa8e05bab95c7ccc3d6d71ed4c524098af4d3e2 -size 3543 diff --git a/MM_Math/data_original_21/7044986/solution_images/52907833_410.png b/MM_Math/data_original_21/7044986/solution_images/52907833_410.png deleted file mode 100644 index d2b2a80b312be074867586725171730063161a03..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52907833_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aeffe4770615e5de6bba6ab388a83d1374e9773b0976d41bf0302fdafb1da4a6 -size 3356 diff --git a/MM_Math/data_original_21/7044986/solution_images/52913897_391.jpeg b/MM_Math/data_original_21/7044986/solution_images/52913897_391.jpeg deleted file mode 100644 index dac2a328ae2486f1415b5b851751ea9fdb7895c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52913897_391.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4df60b3331c574e885beff2617f892e56e73fca3d0b44126167e4c995c9fb00a -size 2767 diff --git a/MM_Math/data_original_21/7044986/solution_images/52914190_50.png b/MM_Math/data_original_21/7044986/solution_images/52914190_50.png deleted file mode 100644 index 298a7ef373fff5758dd5dea8802e446dc32cdc62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52914190_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f1c077526dc13dca4974b22c05bdf63cb24f3e8849fff4383d5e3249ddb763f -size 7659 diff --git a/MM_Math/data_original_21/7044986/solution_images/52914196_380.png b/MM_Math/data_original_21/7044986/solution_images/52914196_380.png deleted file mode 100644 index c0096615dda5d44ad75870da10ffdd05ccc79d58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52914196_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81d6d1a79869ccf80048d080202341ec2147b1085d3495a191db43be1a89cf93 -size 5232 diff --git a/MM_Math/data_original_21/7044986/solution_images/52933308_332.png b/MM_Math/data_original_21/7044986/solution_images/52933308_332.png deleted file mode 100644 index 169927e5124ecba411e1a6e0ca84eff5ca3eadd4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52933308_332.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6bd11979477ab2c56110cf3e021d73cf455b2030285449015c9ca6b0a87a276d -size 52601 diff --git a/MM_Math/data_original_21/7044986/solution_images/52933309_310.png b/MM_Math/data_original_21/7044986/solution_images/52933309_310.png deleted file mode 100644 index 63d8cc8b6fa28cc176cc898db4ab23f44c041993..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52933309_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:723e104ab362f053fa1e4c55af3691f9319475913d3dc22be587df8a79805ac3 -size 77658 diff --git a/MM_Math/data_original_21/7044986/solution_images/52935543_300.jpg b/MM_Math/data_original_21/7044986/solution_images/52935543_300.jpg deleted file mode 100644 index cdbfb92fa3b3fe554e2568ed0a18ddfe3bed8e4d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52935543_300.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3284fc4c18c97434f30d440e621898d2c64906e9297edc3fc62cf3e07a6e51d0 -size 4556 diff --git a/MM_Math/data_original_21/7044986/solution_images/52950525_281.png b/MM_Math/data_original_21/7044986/solution_images/52950525_281.png deleted file mode 100644 index b90a67fd1d02bfb8d69c79068dba81b9f3cac19e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52950525_281.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a07dbd7cd6665887f4cd592855e9cfdb9f5125465f087fc021988789cbb4a460 -size 15821 diff --git a/MM_Math/data_original_21/7044986/solution_images/52950954_271.png b/MM_Math/data_original_21/7044986/solution_images/52950954_271.png deleted file mode 100644 index ee771d53da78c62bbabe6ac8dad43ef46ea6e094..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/52950954_271.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ac001a39da07ae3011ed243564fcdd1ad708937b08907d974b71ebd46348028 -size 11369 diff --git a/MM_Math/data_original_21/7044986/solution_images/53102443_230.png b/MM_Math/data_original_21/7044986/solution_images/53102443_230.png deleted file mode 100644 index fcfacedcaaec4147d52bb5c7813f4f7aa4f44220..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/53102443_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b99264d090a353606d5871503fb9f85d6bf6745f0a132750d7ba8af30e1e449c -size 3218 diff --git a/MM_Math/data_original_21/7044986/solution_images/53102451_560.png b/MM_Math/data_original_21/7044986/solution_images/53102451_560.png deleted file mode 100644 index c9bf9c52a07e23bd2d1ccf2a847bff0016ea0e6b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/53102451_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:47513c6c08984678cfc1bbc8f3b40bc49dd51e1959da2ffa6ab25d6ff25e58e1 -size 6833 diff --git a/MM_Math/data_original_21/7044986/solution_images/53106968_520.png b/MM_Math/data_original_21/7044986/solution_images/53106968_520.png deleted file mode 100644 index 129cdc050d7f55df54bf88e0833105830bcb8b3a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/53106968_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef04487f1094da66dffa503b18634eb03d58f474991e326658a3b6370c62147d -size 8359 diff --git a/MM_Math/data_original_21/7044986/solution_images/53107083_492.png b/MM_Math/data_original_21/7044986/solution_images/53107083_492.png deleted file mode 100644 index 0e68b10e863f92155fcd9ed55ea3ee92c097af15..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/53107083_492.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:581475c13dde847555892433ea555802c6695556542312c180ca0ef034ce58f0 -size 26630 diff --git a/MM_Math/data_original_21/7044986/solution_images/53206622_340.png b/MM_Math/data_original_21/7044986/solution_images/53206622_340.png deleted file mode 100644 index 41a266881b5d5b67b22500c76634650b6af96cb5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/53206622_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1367f6359836c8e774398cd96fc54da82475e16fb4087b49d2a078b7918c5726 -size 35535 diff --git a/MM_Math/data_original_21/7044986/solution_images/53206622_3417.png b/MM_Math/data_original_21/7044986/solution_images/53206622_3417.png deleted file mode 100644 index cc13d991a36ea48b5e0f9b29f6041e68562d7d53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7044986/solution_images/53206622_3417.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a9cd6dd54449165e47ef9ec9a55ed070c0e8ea6c35571ad49e157ee79bbf577 -size 38297 diff --git a/MM_Math/data_original_21/7045627/math/52793335_8210.png b/MM_Math/data_original_21/7045627/math/52793335_8210.png deleted file mode 100644 index 0ee2691811d414bbfccec511d55d4cd2f5cf37f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52793335_8210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5c63b4b425aa458e3b30718011eaf3f380cbab7aa938833ff4331edb5ed8cd3b -size 3123 diff --git a/MM_Math/data_original_21/7045627/math/52793352_990.png b/MM_Math/data_original_21/7045627/math/52793352_990.png deleted file mode 100644 index 7aa2b4ec3d3687cec09cc8c60341c2989eee9ace..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52793352_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6238427578b761ad7549e4de4d4645286539d66abed4e763adfc96a4eaba1f35 -size 5192 diff --git a/MM_Math/data_original_21/7045627/math/52807500_800.png b/MM_Math/data_original_21/7045627/math/52807500_800.png deleted file mode 100644 index 2f06e502ac5d04a3bc98f41ba39c8890d72f3455..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807500_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd5e7d9f4094f63ad7a0e199ce82bc61ccfc7ff169c16834bc5df51db984e608 -size 4409 diff --git a/MM_Math/data_original_21/7045627/math/52807502_810.png b/MM_Math/data_original_21/7045627/math/52807502_810.png deleted file mode 100644 index 83eb1a2796317ebf76657ed27ff9d6dfc893f512..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807502_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c9d4e2ad070dc3caaec989d373da957db45a91edcae12582dbbca43c0172971 -size 3792 diff --git a/MM_Math/data_original_21/7045627/math/52807544_370.png b/MM_Math/data_original_21/7045627/math/52807544_370.png deleted file mode 100644 index fb9a13a6932ee5d8f3740c6d23c572b5c3cf8efc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807544_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e796869438c61115cb5f0d7cc799cec883529b3b6491e2c2a079d0ee065f0f7c -size 3483 diff --git a/MM_Math/data_original_21/7045627/math/52807545_360.png b/MM_Math/data_original_21/7045627/math/52807545_360.png deleted file mode 100644 index cb97d518f03caf9ea13fd718b8c133692aaa3a1b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807545_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8b153015bf9573fb08f0b3ed9eaec508adc37b1124bc9b0e73cdcf5b4b71bc9 -size 4905 diff --git a/MM_Math/data_original_21/7045627/math/52807549_350.png b/MM_Math/data_original_21/7045627/math/52807549_350.png deleted file mode 100644 index 8dab4c99ce97f25bbf72cc410dfc5ca1a65619b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807549_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a566ee17affee888c8b71799fd5aec479eda370cc464e3b36d9f6b87212dba5e -size 4810 diff --git a/MM_Math/data_original_21/7045627/math/52807551_780.png b/MM_Math/data_original_21/7045627/math/52807551_780.png deleted file mode 100644 index 38139da74eccace25f407328f4f51c21a30ab164..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807551_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c0755ed09df9d7026523f608311aca04b409e7c1ac86a279839d5b00199f084 -size 3361 diff --git a/MM_Math/data_original_21/7045627/math/52807552_790.png b/MM_Math/data_original_21/7045627/math/52807552_790.png deleted file mode 100644 index ce9f46c8f57891894f3da6da9d275182db9ecd19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807552_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa93c865f4e347f41dbce262eaa14e033f815e47661d3c58f9487d825c599e3c -size 3239 diff --git a/MM_Math/data_original_21/7045627/math/52807557_980.png b/MM_Math/data_original_21/7045627/math/52807557_980.png deleted file mode 100644 index 51c7ee665c8c3636017c9ea3e94b013c573c47e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807557_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:001acefc2c221ccd324c9f9f31bcfacdd8104d9d48b8a674587dff2dcf7eb676 -size 5739 diff --git a/MM_Math/data_original_21/7045627/math/52807790_340.png b/MM_Math/data_original_21/7045627/math/52807790_340.png deleted file mode 100644 index e5b6ccfb0268ac0952223e5e22fe35ceee7edfa1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807790_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f29ed6c9241424574176978a01b65319078b17712df6af044575a5b7dcdfe0e -size 19381 diff --git a/MM_Math/data_original_21/7045627/math/52807793_330.png b/MM_Math/data_original_21/7045627/math/52807793_330.png deleted file mode 100644 index ec544d51fdc95bd5a2594320856102aab9f9e855..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807793_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9eca47f8c05138c2f59d8aad048cc638d2c3bb8f2ba1cd7a889b8d6caa37ca40 -size 2483 diff --git a/MM_Math/data_original_21/7045627/math/52807802_760.png b/MM_Math/data_original_21/7045627/math/52807802_760.png deleted file mode 100644 index 95fed788e4afe38885f92868fe3a1f20a47d6f30..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52807802_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e22bf4afdee402c834966f0a6cf129c015c8546f59fd02d2a8deb77476373be -size 7768 diff --git a/MM_Math/data_original_21/7045627/math/52808239_320.png b/MM_Math/data_original_21/7045627/math/52808239_320.png deleted file mode 100644 index 4325c2338f55f4f8b1b990f56b70f41e3536015f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52808239_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:596c76c64de9e13b0b2c7d732becd13ef8a3185630d7811c73af2ad13a5901db -size 4448 diff --git a/MM_Math/data_original_21/7045627/math/52808244_750.png b/MM_Math/data_original_21/7045627/math/52808244_750.png deleted file mode 100644 index 472e0890f7ce869d1c04be5015e9d932754ae9d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52808244_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4387f25f8a7a4fd55dc35ce3857a1a02106372e3da806086873f02691e4ae13d -size 1352 diff --git a/MM_Math/data_original_21/7045627/math/52808258_860.png b/MM_Math/data_original_21/7045627/math/52808258_860.png deleted file mode 100644 index bc0f989ce7ad66d7ce2fcd7f917c83a4f7f65b8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52808258_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88c7c5727d6b419c0f8fb8e9b78feb624cd8cf903b3c4c58471d524c69187334 -size 4076 diff --git a/MM_Math/data_original_21/7045627/math/52814867_310.png b/MM_Math/data_original_21/7045627/math/52814867_310.png deleted file mode 100644 index 0c495808e09e12bab280d298568167cdb085dc26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52814867_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2cec1740b662cfbe586db185649498d9c78effc50bf8a8ca3324bb5a8e076478 -size 6371 diff --git a/MM_Math/data_original_21/7045627/math/52814874_740.png b/MM_Math/data_original_21/7045627/math/52814874_740.png deleted file mode 100644 index d0cf775a0bad4102c4b71cfa1cd906a11f6dddee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52814874_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca54f5c1f2b192a03b4918fd9ffdf6af0c49111d2800effdf6b5dc7b4de536fb -size 7316 diff --git a/MM_Math/data_original_21/7045627/math/52815640_730.png b/MM_Math/data_original_21/7045627/math/52815640_730.png deleted file mode 100644 index f004c67918c657047ac2ab5b80c012f8bc1b9d33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52815640_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:451daa11b903c677cf880c1b60519c86bc6686c578ded8b6af62045fa4f3d2cf -size 6643 diff --git a/MM_Math/data_original_21/7045627/math/52815741_300.png b/MM_Math/data_original_21/7045627/math/52815741_300.png deleted file mode 100644 index 5bc83500130ac732ea9a02d81ad106c1ba9a3393..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52815741_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a903c1cbcfc3d8a9e7f57ff326b83a76f915386f5fbd1f6eca2d7e9e1821eb3b -size 7253 diff --git a/MM_Math/data_original_21/7045627/math/52815743_290.png b/MM_Math/data_original_21/7045627/math/52815743_290.png deleted file mode 100644 index 63c44ae01170ee7de71f0746a11cdd413dbe40fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52815743_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8466aac50d03f7bde47de8a755e63df09a1f9d1535821d8392973e633178a8a -size 8858 diff --git a/MM_Math/data_original_21/7045627/math/52815746_720.png b/MM_Math/data_original_21/7045627/math/52815746_720.png deleted file mode 100644 index d1fd1b4b48896cbbd49a30bc501afd0f07eb1fe3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52815746_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3563016312c7132c102abdc00c4c0af78dff1faddf9b50be49d8f50ceb498cc -size 4029 diff --git a/MM_Math/data_original_21/7045627/math/52815748_710.png b/MM_Math/data_original_21/7045627/math/52815748_710.png deleted file mode 100644 index fdc5950c03b92078208a54ca40aa49be2b3f9d2b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52815748_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b50e12dd4b450cb35dced6391a1d990ae06714d6c219b2738216bae10b968b5 -size 7239 diff --git a/MM_Math/data_original_21/7045627/math/52826732_266.png b/MM_Math/data_original_21/7045627/math/52826732_266.png deleted file mode 100644 index 53c75babf00b012144c075eff4036959ade0df36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52826732_266.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7552eeb423742259ca22ff2abf2dc62feb08f494b843dd59ee772a74fa36cf9c -size 2142 diff --git a/MM_Math/data_original_21/7045627/math/52826806_606.png b/MM_Math/data_original_21/7045627/math/52826806_606.png deleted file mode 100644 index de9d460b480ab5794cc1de2378594a60ea942d2b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52826806_606.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f670643eb2359cb369d537fe69a78d0e07bda4f30ecb956cf60b443872b429be -size 2468 diff --git a/MM_Math/data_original_21/7045627/math/52826807_684.png b/MM_Math/data_original_21/7045627/math/52826807_684.png deleted file mode 100644 index 17666a48f14e1a8846d57930fdb838f7dc9f3e85..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52826807_684.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0646a06a2078ac88ba89097337089f3cccd265a3d9407689088b41992457dd0 -size 3110 diff --git a/MM_Math/data_original_21/7045627/math/52826811_845.png b/MM_Math/data_original_21/7045627/math/52826811_845.png deleted file mode 100644 index b9d2fa619256e5b5cdb4c6893dbe2f2771edfd10..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52826811_845.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aff28bae2260b6ab3f0e14af7840eed86a1881ab59bfd8da2a3a49bf196d5250 -size 5630 diff --git a/MM_Math/data_original_21/7045627/math/52826839_596.png b/MM_Math/data_original_21/7045627/math/52826839_596.png deleted file mode 100644 index fde2ad358ae81ec39a17431f76b6b0c46eb351e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52826839_596.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:78a3d5f1d86b7cea7ba9db64404fb3f0cf901ca8edafe1fe0de92ce5ede342b4 -size 5370 diff --git a/MM_Math/data_original_21/7045627/math/52826905_704.png b/MM_Math/data_original_21/7045627/math/52826905_704.png deleted file mode 100644 index 8eb203ee8b1fd9c755d3bd742d04627789d92b9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52826905_704.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6073e083fba860c80bb73ad94c7b94c5a30dd13c2eff421fd6e1c841620ce37d -size 2187 diff --git a/MM_Math/data_original_21/7045627/math/52826908_659.png b/MM_Math/data_original_21/7045627/math/52826908_659.png deleted file mode 100644 index 14905cb4944adb527f78451ba1ff5d4b14c62a35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52826908_659.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6eeb02b42d58ab0a17fd650d7c95c399e11faca971800cdc1839523e20e2432e -size 2803 diff --git a/MM_Math/data_original_21/7045627/math/52826952_630.png b/MM_Math/data_original_21/7045627/math/52826952_630.png deleted file mode 100644 index 076364a4002cebd8ff2892544b17673f4e75c093..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52826952_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:568f46f22dd4c1e1e6f440148217cc9933aec80f0926f9787f04c6118b973820 -size 6928 diff --git a/MM_Math/data_original_21/7045627/math/52826953_692.png b/MM_Math/data_original_21/7045627/math/52826953_692.png deleted file mode 100644 index 5059774f23e0a2325b34cf47bed60620b7ad374c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52826953_692.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e794f2b081fe3d5fc04edb207a5bea2b06615926abfd71c1d3bad6bb4a9774d7 -size 36728 diff --git a/MM_Math/data_original_21/7045627/math/52827074_640.png b/MM_Math/data_original_21/7045627/math/52827074_640.png deleted file mode 100644 index 903f643b8ac7f2422b481e68b9a6fa5078450020..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827074_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e725ab99fa0548b93520c3023408254e37ba350e0fe59e61183755e2c157c56f -size 51706 diff --git a/MM_Math/data_original_21/7045627/math/52827122_2811.png b/MM_Math/data_original_21/7045627/math/52827122_2811.png deleted file mode 100644 index f43483a91c4a3284969017b1750dcfac80b8a70d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827122_2811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b964fcda860ce626b9347e5a03e074919e7b11f5eafce9051e43f68f1c84dc67 -size 27227 diff --git a/MM_Math/data_original_21/7045627/math/52827124_275.png b/MM_Math/data_original_21/7045627/math/52827124_275.png deleted file mode 100644 index 805bea116c9e6e01c60fffb35a493fc71d94421e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827124_275.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5f2d0cd4153e29af6d359060b3fedb337c3b24ab723e5e4c6ce524c36ae3b51 -size 5436 diff --git a/MM_Math/data_original_21/7045627/math/52827130_619.png b/MM_Math/data_original_21/7045627/math/52827130_619.png deleted file mode 100644 index b317c66a8db2e825c738658d24ada990cadc9d73..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827130_619.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a9b7e5fa269cf36c1019672e329b27a34a02d1767d4dd63849245ca33adac32 -size 23519 diff --git a/MM_Math/data_original_21/7045627/math/52827132_663.png b/MM_Math/data_original_21/7045627/math/52827132_663.png deleted file mode 100644 index d91b88c03025ab23c8fd56427b1fb39338f653a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827132_663.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d33b2243488af91b869876d1f1f9bb360ad314a8a607ffee553c1349294bbb12 -size 2876 diff --git a/MM_Math/data_original_21/7045627/math/52827533_234.png b/MM_Math/data_original_21/7045627/math/52827533_234.png deleted file mode 100644 index 05a2c78fa547c1cb3cf800d496b6c547d240d144..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827533_234.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1dcb903f4c9df736e180101352720f910d70e3a38aea5756c83187502160455e -size 5213 diff --git a/MM_Math/data_original_21/7045627/math/52827537_2411.png b/MM_Math/data_original_21/7045627/math/52827537_2411.png deleted file mode 100644 index 214b7038c8424896ed811703a06957f95d233f3e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827537_2411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ce4d00be46b5a1f378533fe2effbe1ae6bda2a8961485394b8ac0f10575d62e -size 3276 diff --git a/MM_Math/data_original_21/7045627/math/52827539_678.png b/MM_Math/data_original_21/7045627/math/52827539_678.png deleted file mode 100644 index 250772ec324535b632fa5ea47dac91307486e8c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827539_678.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f09428d6a6feccec6ae92d293e8fb336c347864386f9cbde81c2cd42e1beff5 -size 2423 diff --git a/MM_Math/data_original_21/7045627/math/52827540_625.png b/MM_Math/data_original_21/7045627/math/52827540_625.png deleted file mode 100644 index fcf193fe8d208ed2521e72bd64fe74558d121212..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827540_625.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e051afd8a3bc907c252bf6911a7f31fa6cd170aaf16af419f2b7559cd7265eb -size 61780 diff --git a/MM_Math/data_original_21/7045627/math/52827547_851.png b/MM_Math/data_original_21/7045627/math/52827547_851.png deleted file mode 100644 index dc2690712f78fc62e828aa8848c72b8e1f3b55c5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827547_851.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5852909cc8797bbf7311c1572084488303c0267d5c55989ad9ed74cf096b7661 -size 48596 diff --git a/MM_Math/data_original_21/7045627/math/52827553_973.png b/MM_Math/data_original_21/7045627/math/52827553_973.png deleted file mode 100644 index f95088858357937c22e98cd1106a7af4bf546da8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827553_973.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7fe3f7f28bc7cabf3510e0e5cddc8e71567d56ab43f117c07eb087e44f70b1d9 -size 4909 diff --git a/MM_Math/data_original_21/7045627/math/52827564_1712.png b/MM_Math/data_original_21/7045627/math/52827564_1712.png deleted file mode 100644 index 3763488c3224237cda20ae23d3489c9f80ad0742..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827564_1712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b14fb673020157b4372219817a2ee840d2374e677242c8bfe11e7a78a667c378 -size 3230 diff --git a/MM_Math/data_original_21/7045627/math/52827570_5510.png b/MM_Math/data_original_21/7045627/math/52827570_5510.png deleted file mode 100644 index 0dd546d1c601021b0db864ae6b5b7b634022ced4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827570_5510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01b0da803023f52ba8e864de6b57ad7ce87fb6f3c5fe1e86b8e73722c9e319dc -size 47934 diff --git a/MM_Math/data_original_21/7045627/math/52827578_839.png b/MM_Math/data_original_21/7045627/math/52827578_839.png deleted file mode 100644 index a68194654a2fd35babfb69df3969568dcadd9c0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827578_839.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f22554b08daa842f1ef4e83b13be770375d1b1484f3d8d77f4a64e761ec0de6 -size 40670 diff --git a/MM_Math/data_original_21/7045627/math/52827839_191.png b/MM_Math/data_original_21/7045627/math/52827839_191.png deleted file mode 100644 index c432b2c5555d101c94ee19f8b5aaa5ea36bf7cb5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827839_191.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:478ef55f5b9764c626263fa5bc85310608fad84fbcc3546bd06ff23ce19ce6d8 -size 2795 diff --git a/MM_Math/data_original_21/7045627/math/52827844_542.png b/MM_Math/data_original_21/7045627/math/52827844_542.png deleted file mode 100644 index ce74199364890802687f35fac2b4af706b053924..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827844_542.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d07c41a0e3f20f7d8681b2702728e7b69e90377302c61459d64f1a174c305ac -size 3873 diff --git a/MM_Math/data_original_21/7045627/math/52827971_166.png b/MM_Math/data_original_21/7045627/math/52827971_166.png deleted file mode 100644 index 6f46f14352cc69ac4fe3e7f1a2c1f4871985ad56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52827971_166.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33f641460b4cede6463beea4914398776439e9dc01bbb9143e390ee10de98b75 -size 13136 diff --git a/MM_Math/data_original_21/7045627/math/52828076_5617.png b/MM_Math/data_original_21/7045627/math/52828076_5617.png deleted file mode 100644 index e5ab7e555026faee357319bf5f9fcbb6513b1db4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52828076_5617.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3f0016e6d149d7a4ef27a5738a2228a05a4053476af64715e183bb91eca4300 -size 44215 diff --git a/MM_Math/data_original_21/7045627/math/52828221_579.png b/MM_Math/data_original_21/7045627/math/52828221_579.png deleted file mode 100644 index 10990d39b3d5630c7412cb088bad9cb1fe4d5efe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52828221_579.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6c2dda2d1418b48293c834848b706c8539ac26344b792748d4b640e35292ae0b -size 2807 diff --git a/MM_Math/data_original_21/7045627/math/52828236_967.png b/MM_Math/data_original_21/7045627/math/52828236_967.png deleted file mode 100644 index 46a2c3f56ceec3054da46f580ae3d8d32db54c61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52828236_967.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c7a2b48df989a8cbd075158529d58576f34aaa2673aa19240b3b6762bb9f0c7 -size 23699 diff --git a/MM_Math/data_original_21/7045627/math/52828906_220.png b/MM_Math/data_original_21/7045627/math/52828906_220.png deleted file mode 100644 index c37415275fedda055f65a988809a537b3d9e6ce3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52828906_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b540f3bfbe7e5019ef1ae9b0367d03eb8a1dc7d4a19774586bd9b4c0838f0072 -size 37360 diff --git a/MM_Math/data_original_21/7045627/math/52828907_2110.png b/MM_Math/data_original_21/7045627/math/52828907_2110.png deleted file mode 100644 index c18cbaaef219d4e02cf594cceb014ce01b3d0967..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52828907_2110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b66a0cd1265ab91aceeec9e2ca4196acfebfe9ecd96479d909aabb698e47143 -size 6536 diff --git a/MM_Math/data_original_21/7045627/math/52828908_188.png b/MM_Math/data_original_21/7045627/math/52828908_188.png deleted file mode 100644 index 579e72aed5059918334b858ddc020093fabdd7b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52828908_188.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4efe965bede419eba1191e519048a0b0913f5e9daa8a956daca1ecccc08930e4 -size 37813 diff --git a/MM_Math/data_original_21/7045627/math/52828910_204.png b/MM_Math/data_original_21/7045627/math/52828910_204.png deleted file mode 100644 index b35cbcee5a1a71e3c3319f1e67cd954fe5848d49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52828910_204.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b768fd9b0c968cc431936420a67dfe51cf51fc77cc45586f7d8ad4fca23e0d32 -size 44241 diff --git a/MM_Math/data_original_21/7045627/math/52828915_588.png b/MM_Math/data_original_21/7045627/math/52828915_588.png deleted file mode 100644 index 19880bbde2082f4d42f5c9aeb300634a0c4c56b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52828915_588.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b162ec7f97b4dcf3ba314fcbff8d03e375cc42007126ca5ff5c13610e692d3a -size 2949 diff --git a/MM_Math/data_original_21/7045627/math/52837310_151.png b/MM_Math/data_original_21/7045627/math/52837310_151.png deleted file mode 100644 index a43e0f394b5a97b4a30d717ad6ee92d2a6aea1e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52837310_151.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18d966742094afa1f667d040e3d5ce18e79afac4df5fbc892ed79705609123e0 -size 2850 diff --git a/MM_Math/data_original_21/7045627/math/52837420_131.png b/MM_Math/data_original_21/7045627/math/52837420_131.png deleted file mode 100644 index 95d7398f4fe5d738ad60bd0998c1087cd165297a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52837420_131.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:647a6ddaa792db44ca3dd2f6604583d05680217922c9445dd3abd7a059e31440 -size 22195 diff --git a/MM_Math/data_original_21/7045627/math/52837422_143.png b/MM_Math/data_original_21/7045627/math/52837422_143.png deleted file mode 100644 index 5fcc50cd1c25a6bf3654969c0a3e5ef43357dbb4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52837422_143.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e623b61a4d555802db5c55d16a26a1d3a3074b8184e0e105ae9e6d10dabe663 -size 52441 diff --git a/MM_Math/data_original_21/7045627/math/52837423_123.png b/MM_Math/data_original_21/7045627/math/52837423_123.png deleted file mode 100644 index aba4e23d1d6241b42f1b6b439d042c3b1718464c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52837423_123.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a83484f7a323c98b48bf0241744c59cda2f2f732e420fab52ea0fd3628e6982 -size 4162 diff --git a/MM_Math/data_original_21/7045627/math/52837433_510.png b/MM_Math/data_original_21/7045627/math/52837433_510.png deleted file mode 100644 index f1d3611aeb99e4323ad1d1bd8a299eb794d40f58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52837433_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cbd12087acb17043d8ca32aed99a225cbaee682adefab1a024fe9d0f0bccea20 -size 46766 diff --git a/MM_Math/data_original_21/7045627/math/52837434_520.png b/MM_Math/data_original_21/7045627/math/52837434_520.png deleted file mode 100644 index b1d72d14e06b2d7eebc20b824777348fad2026b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52837434_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90014b391f1315c7af27c0b9bc72b34014352040fb8794414e1e374d7d930c2d -size 52540 diff --git a/MM_Math/data_original_21/7045627/math/52837435_502.png b/MM_Math/data_original_21/7045627/math/52837435_502.png deleted file mode 100644 index bccd738da30090520a33e2d801b55dc631b72581..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52837435_502.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6271fd5f4165a02a5d7055ea3607ef0cb837c571b0d48ef4a67c0b5b584b0feb -size 2642 diff --git a/MM_Math/data_original_21/7045627/math/52837436_5310.png b/MM_Math/data_original_21/7045627/math/52837436_5310.png deleted file mode 100644 index 59a6e2205d2fe345a80d43d3c8dc5e7db457fe0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52837436_5310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7cedb9e7d51f9520deb3efa24451c65207ddb4102c85db9ff3b1a58bcebf1301 -size 41213 diff --git a/MM_Math/data_original_21/7045627/math/52845727_490.png b/MM_Math/data_original_21/7045627/math/52845727_490.png deleted file mode 100644 index fe642a81d4f0489ff65977774ac86301d9e29172..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52845727_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc5deb3b6be4c4538f0302e4f787cefb4a31479e5cd07801cb767d1ba9112fff -size 8152 diff --git a/MM_Math/data_original_21/7045627/math/52845731_940.png b/MM_Math/data_original_21/7045627/math/52845731_940.png deleted file mode 100644 index 57efe1fec421d08f5b1f3685238c8b89dbaf5388..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52845731_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:029b8e364fd5826390f59a2036c66e6cc2e17d45e1842d7c782015a6b49f418e -size 3984 diff --git a/MM_Math/data_original_21/7045627/math/52845737_950.png b/MM_Math/data_original_21/7045627/math/52845737_950.png deleted file mode 100644 index 5c85514bcc29e370f5614a3a13167b1c5a41af12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52845737_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ebcb8cedf45f30f2f492e8ef2bc7ab1078d30bec61c5ea175abafa47acf4f554 -size 3826 diff --git a/MM_Math/data_original_21/7045627/math/52861116_100.png b/MM_Math/data_original_21/7045627/math/52861116_100.png deleted file mode 100644 index 1d04cf10eac58c007952c9ce752c5799fb429be4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861116_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe85dc151f6d8e8e458d1c1332c6ca9642b52768d1e891b21ad9bd66e58dad11 -size 5880 diff --git a/MM_Math/data_original_21/7045627/math/52861117_110.png b/MM_Math/data_original_21/7045627/math/52861117_110.png deleted file mode 100644 index cbebb22cfdbd80bfc8069b33557496ce2712987a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861117_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:617ac4662fce4086286c77e133fb0d37d99655f7e53b36051cf85d14d7c4376e -size 5711 diff --git a/MM_Math/data_original_21/7045627/math/52861122_480.png b/MM_Math/data_original_21/7045627/math/52861122_480.png deleted file mode 100644 index 7ade60f0a695c9965d7601e1fbcb75101972b5c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861122_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e49973a3278865991150cf808c806c606cddd71578f4bacf3cd6bd507fa011c4 -size 6251 diff --git a/MM_Math/data_original_21/7045627/math/52861124_471.png b/MM_Math/data_original_21/7045627/math/52861124_471.png deleted file mode 100644 index ae3e50fa5e5afd9acca319e0d186bbae0cbdee21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861124_471.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fcacb0d2f0bcd68e7bc1f2f7d43047e79a4a7222e4bd470b6860ad20ea939190 -size 10958 diff --git a/MM_Math/data_original_21/7045627/math/52861340_90.png b/MM_Math/data_original_21/7045627/math/52861340_90.png deleted file mode 100644 index b7a2771ba7c6f717632a5a8d9a779dc4022b3ba7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861340_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f59b0095b3f564a600ebdf4f4d82df57f2bdd94feb69bec07fa56c0d9046ee9 -size 2366 diff --git a/MM_Math/data_original_21/7045627/math/52861343_460.png b/MM_Math/data_original_21/7045627/math/52861343_460.png deleted file mode 100644 index 9db1f5cd010eec95746d20515450d410b52ccba6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861343_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20ff0da2a20d21452a49e36b63fda9a22db355d682e32a9d270f400b25d3b6db -size 10654 diff --git a/MM_Math/data_original_21/7045627/math/52861344_450.png b/MM_Math/data_original_21/7045627/math/52861344_450.png deleted file mode 100644 index 604a2ca8372b23eaa0179554dcb42e81d9661334..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861344_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c78a65e2d3422885c1404d9a1b2585c28679b3e2bcbc357acc7746842c7029b -size 4437 diff --git a/MM_Math/data_original_21/7045627/math/52861346_442.png b/MM_Math/data_original_21/7045627/math/52861346_442.png deleted file mode 100644 index 05409efd7b75fdb240c66595960214f2c39d39f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861346_442.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d8dce23070ba1bf2c27eec649c29a46fa790a80342032aae02b57479976bcb98 -size 7435 diff --git a/MM_Math/data_original_21/7045627/math/52861353_930.png b/MM_Math/data_original_21/7045627/math/52861353_930.png deleted file mode 100644 index 1400191256de3c68f290ab75122e2b553ae61fd5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861353_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11106c88f5853d54f168a829fc95468cb72853ae21e4bc18e4aff78e125d418f -size 7221 diff --git a/MM_Math/data_original_21/7045627/math/52861525_437.png b/MM_Math/data_original_21/7045627/math/52861525_437.png deleted file mode 100644 index 48e8f8ea83752071cce84ca4d1b1311eee04b525..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861525_437.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d14c11fbc63544acd44949e2407622e61c263b290cb255356079ba3b031f9052 -size 2186 diff --git a/MM_Math/data_original_21/7045627/math/52861537_924.png b/MM_Math/data_original_21/7045627/math/52861537_924.png deleted file mode 100644 index bddfe6543dc968ce6945a868ef9bfbcd388bc021..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861537_924.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8d736e3189817891413ff0c5b8c866f09b9eaec3a687e2c8795ab4c4c98f1e9b -size 2607 diff --git a/MM_Math/data_original_21/7045627/math/52861546_9112.png b/MM_Math/data_original_21/7045627/math/52861546_9112.png deleted file mode 100644 index 91abb7423e8b27190b2d1c33d3f843e18183ef58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861546_9112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fcc95f046936f4e2e87434066bb17f998097cbd9775292a05a64fe6c7c764a7a -size 4689 diff --git a/MM_Math/data_original_21/7045627/math/52861952_80.png b/MM_Math/data_original_21/7045627/math/52861952_80.png deleted file mode 100644 index 7db537bb87976a8f202f95a6ffbca69662eb9fc4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861952_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ad1b22495e9662bcb7640c3c344289ae31d06983cf812c3444a5ef91fe72cb2 -size 6934 diff --git a/MM_Math/data_original_21/7045627/math/52861959_420.png b/MM_Math/data_original_21/7045627/math/52861959_420.png deleted file mode 100644 index 503e197b0c246c5cdacc4d3c7db5422dda614949..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861959_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b97165be58f55b6bc327e4e97419ba7c395aa70c1cf09c78f1cabbf571c1176e -size 5660 diff --git a/MM_Math/data_original_21/7045627/math/52861964_900.png b/MM_Math/data_original_21/7045627/math/52861964_900.png deleted file mode 100644 index 3d14fc2914436824f876a4cf366b446bebae8903..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52861964_900.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d47694f733ed30c75437327aac534757518d802bae698943763ee49b2d44b022 -size 4920 diff --git a/MM_Math/data_original_21/7045627/math/52867081_898.png b/MM_Math/data_original_21/7045627/math/52867081_898.png deleted file mode 100644 index 5aeff5bb15015abfbf58d218951050dcdecfa310..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52867081_898.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:513742b08f19008511c449fa6ef9128bbd8c4deba63baff7d7ec70ce909b1927 -size 2762 diff --git a/MM_Math/data_original_21/7045627/math/52873809_60.png b/MM_Math/data_original_21/7045627/math/52873809_60.png deleted file mode 100644 index 51d67e00daf60bfcf2481f27ed7deb8d19e94392..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52873809_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24476e11ac70567d558fe9e00539ee0c66f2a51bf0374a1a1d1eddbe14d2ebbe -size 8152 diff --git a/MM_Math/data_original_21/7045627/math/52874444_410.png b/MM_Math/data_original_21/7045627/math/52874444_410.png deleted file mode 100644 index 7f89358b39ef5f8c7e63cac60490b00aec428a88..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52874444_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:294d1ffdad1f81c7fddf64e08605d90725c5d331b334ca638152649d7b387bc1 -size 3322 diff --git a/MM_Math/data_original_21/7045627/math/52906060_35.png b/MM_Math/data_original_21/7045627/math/52906060_35.png deleted file mode 100644 index 1a1ae5afb94ca9e2866d8a378b253eb43f7008b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52906060_35.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:673ab959cc89c8b82d9f1a8ae7c43b4d8606b258711b2652a37e3e1d8b2aebed -size 2457 diff --git a/MM_Math/data_original_21/7045627/math/52906068_407.png b/MM_Math/data_original_21/7045627/math/52906068_407.png deleted file mode 100644 index bcabff5f4110e21a8b9bdc25f918f02916b4002e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52906068_407.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d31a1e61e673e59f6ab510f4eb49db39b07931049e1c9ed323d5068fa22e06d -size 28682 diff --git a/MM_Math/data_original_21/7045627/math/52913823_20.png b/MM_Math/data_original_21/7045627/math/52913823_20.png deleted file mode 100644 index c9abe04f3c62eeae868dba7c339173ec2ac906cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52913823_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35cd1f3ae34be8667231e33465d33d62360d8a9bf36baabe89ec6960e0c7dfc2 -size 7123 diff --git a/MM_Math/data_original_21/7045627/math/52913917_870.jpeg b/MM_Math/data_original_21/7045627/math/52913917_870.jpeg deleted file mode 100644 index a3cb3e08fa4bbbc03c97fe87e3a505d52054f702..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52913917_870.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f2c8974924a8c402118ef79d5d010e81fb3a61b068c7063cf4da41b10ce0ae9 -size 4703 diff --git a/MM_Math/data_original_21/7045627/math/52914126_00.jpeg b/MM_Math/data_original_21/7045627/math/52914126_00.jpeg deleted file mode 100644 index e85fd1218f60671e7cf32cc02e46cb4c405c523d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52914126_00.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:85a70867ed4a21cb139baf8a5b10baf31db455a1b4a97d8da59a03d2e54c7f93 -size 3016 diff --git a/MM_Math/data_original_21/7045627/math/52914188_10.png b/MM_Math/data_original_21/7045627/math/52914188_10.png deleted file mode 100644 index af0bee83782736dde1a4d8eb1782b9b1c0c150d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52914188_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db6b9a409ed8fd213c4ffbf27b1689a51e9d6b0ff052d1c70ee6ca5cd8e96d2c -size 6207 diff --git a/MM_Math/data_original_21/7045627/math/52914198_3910.png b/MM_Math/data_original_21/7045627/math/52914198_3910.png deleted file mode 100644 index 57805441a3114a42573dbe4da0e0bab3d5acf0f6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52914198_3910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd89b98e2bd4774890a9317b14fc614f68f8cb9089c08e8e665718b8ddaaaf98 -size 9640 diff --git a/MM_Math/data_original_21/7045627/math/52933867_3814.png b/MM_Math/data_original_21/7045627/math/52933867_3814.png deleted file mode 100644 index 83bd058a10731b4a7b25ee699906bcaa22032cfd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/52933867_3814.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:053a4286b75ea2442abf7626dfb0f96296596d812253edbb89836479f0ce5364 -size 2323 diff --git a/MM_Math/data_original_21/7045627/math/53102441_77.png b/MM_Math/data_original_21/7045627/math/53102441_77.png deleted file mode 100644 index b42879b7f2651ac915d63101d2792c7eff52f467..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/53102441_77.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:abb9d70ea0981e02da8756646db70a494c2bff7a7f3d29ef76ebb74996dcf599 -size 38551 diff --git a/MM_Math/data_original_21/7045627/math/53106604_46.png b/MM_Math/data_original_21/7045627/math/53106604_46.png deleted file mode 100644 index 4e3cd8aea035ffc22c02689f24034c11fd39c8ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/53106604_46.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83a3e247dd3b205da19b2633aa5725c7507399ea5a1cf17b2164404ed214cb02 -size 3356 diff --git a/MM_Math/data_original_21/7045627/math/53106988_8812.png b/MM_Math/data_original_21/7045627/math/53106988_8812.png deleted file mode 100644 index 024b187bb9d7d857a80118a20bab3d92bec43fbd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/53106988_8812.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:341bde7f0cd915fbb5f54845851dbcbb6b3d95addc9faabdb718d12101f5a94e -size 7910 diff --git a/MM_Math/data_original_21/7045627/math/53107080_50.png b/MM_Math/data_original_21/7045627/math/53107080_50.png deleted file mode 100644 index ac8e46e44796a99cd2b5b0fb9a7f9827c0d65b91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/math/53107080_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ddf4c1a8b7af79dc8697bdb0df9114554180d21e42d435e1cf808511dbd2c57 -size 3802 diff --git a/MM_Math/data_original_21/7045627/solution_images/52793335_8218.png b/MM_Math/data_original_21/7045627/solution_images/52793335_8218.png deleted file mode 100644 index 6b5f9bbbda9c34f08253e83d81ac82be561e518d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52793335_8218.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f8ea5579dad700d1f32503aa13af8472924118501245d5c8052d4f9b525548de -size 4359 diff --git a/MM_Math/data_original_21/7045627/solution_images/52793335_822.png b/MM_Math/data_original_21/7045627/solution_images/52793335_822.png deleted file mode 100644 index 994590f8a347d4799f2d6c026a3580a42b674dd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52793335_822.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e69a2ba0fd4c40138c70b617866f9b156e1cdc3acc16b02b087a4da99d7dd31 -size 4126 diff --git a/MM_Math/data_original_21/7045627/solution_images/52807549_350.jpg b/MM_Math/data_original_21/7045627/solution_images/52807549_350.jpg deleted file mode 100644 index 939093706be4ab92dc79b6b133b525079ea5af1c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52807549_350.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f44f906241bec9a4d0146563439d5be005f5937a1860ac250a6e20d352bcced0 -size 3166 diff --git a/MM_Math/data_original_21/7045627/solution_images/52807552_790.jpg b/MM_Math/data_original_21/7045627/solution_images/52807552_790.jpg deleted file mode 100644 index 0864f93674d660f047671c29e0ffd17613959735..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52807552_790.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37683fff02672eba4b498e57fb7ba78da26f387def21e0f6f8e5e33638e08834 -size 2697 diff --git a/MM_Math/data_original_21/7045627/solution_images/52807799_770.png b/MM_Math/data_original_21/7045627/solution_images/52807799_770.png deleted file mode 100644 index 6c78faccf6c452f1db904f5d310f8bd6da422c37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52807799_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f73d59eb1458b868b616e89fecc4d0787fad1a0128c6f126fdb558ab62a8b7ed -size 5099 diff --git a/MM_Math/data_original_21/7045627/solution_images/52807802_760.png b/MM_Math/data_original_21/7045627/solution_images/52807802_760.png deleted file mode 100644 index 2f29f49b25e9437b3b09e9a7daf687917a5331e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52807802_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83029d5eee1ba47629ea43adcd596d4695a21c557b85c696c2e79eb7176c3959 -size 7279 diff --git a/MM_Math/data_original_21/7045627/solution_images/52814874_740.png b/MM_Math/data_original_21/7045627/solution_images/52814874_740.png deleted file mode 100644 index 6af5c71f79dc5c320b69c021c553a65673401969..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52814874_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7987dc483c9f6f45039628dc0eaf9d1b4a1b67887604d3a6afc96141d1b7c585 -size 3680 diff --git a/MM_Math/data_original_21/7045627/solution_images/52815640_730.png b/MM_Math/data_original_21/7045627/solution_images/52815640_730.png deleted file mode 100644 index 30b8d79cc9235848080eeffc28d8997b3d6badc9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52815640_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a3635056c13bdf495ffd14d2c5f72dde96497bfabc4a0445b2f3d3d56e59e97b -size 6118 diff --git a/MM_Math/data_original_21/7045627/solution_images/52815741_300.png b/MM_Math/data_original_21/7045627/solution_images/52815741_300.png deleted file mode 100644 index 4a31dad553240eabcb3af245d8fbac7de8097505..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52815741_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1955cbe526feb91a21e6808f83dbe26958c895cd9c555cd204c60c383e4ce0f6 -size 7201 diff --git a/MM_Math/data_original_21/7045627/solution_images/52815743_290.png b/MM_Math/data_original_21/7045627/solution_images/52815743_290.png deleted file mode 100644 index 2c9283df968049508ebcbfe8960bb5dcac455861..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52815743_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9acbaa79dab8476031242bff046cd6527d9923659f98ad245cea51c18eca1c3 -size 6786 diff --git a/MM_Math/data_original_21/7045627/solution_images/52815746_720.png b/MM_Math/data_original_21/7045627/solution_images/52815746_720.png deleted file mode 100644 index 19a7250aff897b769451229f6efe0d8df3ef5141..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52815746_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53a433f78e1189f352d9a2b5a8df1a4b8d4dc3c86378013fb3f0bca9e1b835d2 -size 4096 diff --git a/MM_Math/data_original_21/7045627/solution_images/52826807_681.png b/MM_Math/data_original_21/7045627/solution_images/52826807_681.png deleted file mode 100644 index 23353c9338c60cbe1cf356433d376c169538f597..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52826807_681.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9697de2e091bbaae98383ab65a4dcbd4fbdba41256eab565f7c7a6d00334cde -size 3362 diff --git a/MM_Math/data_original_21/7045627/solution_images/52826908_6516.png b/MM_Math/data_original_21/7045627/solution_images/52826908_6516.png deleted file mode 100644 index fa8a408bc047727c732fdcabbc2c9ca88acd0d18..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52826908_6516.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fd1ea8a260aa33ba9e88ed3f8843171b0c5084163a92c7d5e6fa748a41ce234 -size 4305 diff --git a/MM_Math/data_original_21/7045627/solution_images/52826908_657.png b/MM_Math/data_original_21/7045627/solution_images/52826908_657.png deleted file mode 100644 index de0a80b3a83186d4617639d16e728a32f23c6412..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52826908_657.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab3fbaf073cf3baf673fcfcba6eeb1939d7a74446aced6d7dff10b5c0e14a91f -size 2974 diff --git a/MM_Math/data_original_21/7045627/solution_images/52826953_691.png b/MM_Math/data_original_21/7045627/solution_images/52826953_691.png deleted file mode 100644 index 45d8b72d0c58984f60ad66cb3cc4a70281948bfc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52826953_691.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e715c2fc06efdf2d998696f6da7fc914034e4ce44c9eb238e1db816e458b529 -size 3349 diff --git a/MM_Math/data_original_21/7045627/solution_images/52827122_281.png b/MM_Math/data_original_21/7045627/solution_images/52827122_281.png deleted file mode 100644 index b6001fdb05056a275ba4d499168555f99561cba8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52827122_281.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3bfa534146c44b4eeafa644c6483a34ab31a6d71a19370e934517e26845b6291 -size 30086 diff --git a/MM_Math/data_original_21/7045627/solution_images/52827132_661.png b/MM_Math/data_original_21/7045627/solution_images/52827132_661.png deleted file mode 100644 index ad9b9c80f9e35348912da900e82423d3a01bd97b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52827132_661.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7029b72fbea38021a159b3597be178f4713cb7f467c93504194c24a6fab619e7 -size 2716 diff --git a/MM_Math/data_original_21/7045627/solution_images/52827132_6620.png b/MM_Math/data_original_21/7045627/solution_images/52827132_6620.png deleted file mode 100644 index 565de635098136a3fb08562ece041c9ccd7e28a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52827132_6620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb3dbe0bc8f5cadaa8b07cad7fc114c1c3759f551e522edaa1340669547aad30 -size 2817 diff --git a/MM_Math/data_original_21/7045627/solution_images/52827537_242.png b/MM_Math/data_original_21/7045627/solution_images/52827537_242.png deleted file mode 100644 index 038111e191042dc20b575872326032ed426c9a8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52827537_242.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa6e300ec36e94b9c8dcc52bb23f3bc0e829ca16e5c06118d27029df80d2804f -size 3651 diff --git a/MM_Math/data_original_21/7045627/solution_images/52827539_671.png b/MM_Math/data_original_21/7045627/solution_images/52827539_671.png deleted file mode 100644 index abcb3ffa358dbb2109eecf5769db20a9bd56e2b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52827539_671.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:683072662266277839cfb3d3fd620530bb7d5756167875861b4dd24a725e0aec -size 2637 diff --git a/MM_Math/data_original_21/7045627/solution_images/52827564_171.png b/MM_Math/data_original_21/7045627/solution_images/52827564_171.png deleted file mode 100644 index 27e0540637e7073a8490403e98a6b55fd83f7835..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52827564_171.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75cfc6177057ca0cf789a03afe71d2525e4f60cf4371b47d3880f075f5f20e88 -size 3925 diff --git a/MM_Math/data_original_21/7045627/solution_images/52827570_550.png b/MM_Math/data_original_21/7045627/solution_images/52827570_550.png deleted file mode 100644 index 4b0f35b9a626ae87a237d8909a4c7d877d6de7e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52827570_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb4115630aef54ab1b351220e4abb451474b0cd8909da99d13c4d94bd46a8a5c -size 47849 diff --git a/MM_Math/data_original_21/7045627/solution_images/52827570_556.png b/MM_Math/data_original_21/7045627/solution_images/52827570_556.png deleted file mode 100644 index 5a269fbfcadb209c1952a248900551ffca4cbee2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52827570_556.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:932c1616b6a9974f5c9f7cd2a6f0c638edfb92560f4a89cd7a215b28bcd7c058 -size 50484 diff --git a/MM_Math/data_original_21/7045627/solution_images/52827839_190.png b/MM_Math/data_original_21/7045627/solution_images/52827839_190.png deleted file mode 100644 index 80c02d4e818fa51823e0d067fa3a0d964dfb6f06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52827839_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41c7080b953bf36dc97cfa50fe32a7cff5dcfb5241f5c423a1a66fec8f805f11 -size 2922 diff --git a/MM_Math/data_original_21/7045627/solution_images/52827844_540.png b/MM_Math/data_original_21/7045627/solution_images/52827844_540.png deleted file mode 100644 index 2d723d37f97c9203a661f979bbb3e1169ad2ecb0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52827844_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0f15a397dbe6db488f4f78bbd7d7a262424a38fa992c008230d9f8b23e673d6 -size 3957 diff --git a/MM_Math/data_original_21/7045627/solution_images/52828076_561.png b/MM_Math/data_original_21/7045627/solution_images/52828076_561.png deleted file mode 100644 index 7048262e5d01862ee6d6ec00ea8e5adb43c3603a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52828076_561.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfd39dc8f56354ae44c55eb82236d821355f5b4a09ad5ec43b67f3bf661491f9 -size 48235 diff --git a/MM_Math/data_original_21/7045627/solution_images/52837310_150.png b/MM_Math/data_original_21/7045627/solution_images/52837310_150.png deleted file mode 100644 index a88a717730a4f13684c3afebaa35c07095786937..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52837310_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6660849e6a5f0512d3b3c53751884df40ed321ff7c125c3d3d310b9a48499954 -size 2882 diff --git a/MM_Math/data_original_21/7045627/solution_images/52837435_500.png b/MM_Math/data_original_21/7045627/solution_images/52837435_500.png deleted file mode 100644 index ce5c554933a1f1c6474297e27f037ff96ad41845..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52837435_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:870e4e5de63eddb1ad81a7eb19c92507db7d2519b8dbce0d20bd816c27b48487 -size 3230 diff --git a/MM_Math/data_original_21/7045627/solution_images/52837436_533.png b/MM_Math/data_original_21/7045627/solution_images/52837436_533.png deleted file mode 100644 index b2a4a86a9dce964723be6fbd82214f39d9216e3a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52837436_533.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4c2c0fd3b6e657f0d50a63f1415254f70b49a0c54b9376fb4ae876d30c8cb9c -size 45450 diff --git a/MM_Math/data_original_21/7045627/solution_images/52845727_490.png b/MM_Math/data_original_21/7045627/solution_images/52845727_490.png deleted file mode 100644 index 5b34121500f6beac4ffd75dd97e1ec83e6f2e546..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52845727_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99669f9ca43430b3e1380ea930d1601b9f68db5af125d3cca9233b9b11a38183 -size 4212 diff --git a/MM_Math/data_original_21/7045627/solution_images/52845727_493.png b/MM_Math/data_original_21/7045627/solution_images/52845727_493.png deleted file mode 100644 index bdf03c73a7656c2fa713b26f9fef6ebdbf0fa30b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52845727_493.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a281458bd56bea8b6a3d6fc7d359458115e5efb4276541732e151f4c90ba1b6 -size 4541 diff --git a/MM_Math/data_original_21/7045627/solution_images/52861124_470.png b/MM_Math/data_original_21/7045627/solution_images/52861124_470.png deleted file mode 100644 index a00ebacfb6d1f5b839646abd05ec5c79f1ecf317..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52861124_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a9e47c37ed65cdc8b74997838e054a729b81e7623b1cda760bc9f02403dfa02 -size 11011 diff --git a/MM_Math/data_original_21/7045627/solution_images/52861124_474.png b/MM_Math/data_original_21/7045627/solution_images/52861124_474.png deleted file mode 100644 index 9735a847c54b08b2ca851d601312c50d85272356..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52861124_474.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:156329d53595f048d6101de80eb87e2156b813c47f6d0af43579199d1d3dfdc7 -size 11916 diff --git a/MM_Math/data_original_21/7045627/solution_images/52861340_90.png b/MM_Math/data_original_21/7045627/solution_images/52861340_90.png deleted file mode 100644 index 6704107fb604b55dbbb112e61e78d0344db96572..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52861340_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9adbbcce167c57413af654c681c1a42f7fcb6ffa6b91472af217947de12ff556 -size 6205 diff --git a/MM_Math/data_original_21/7045627/solution_images/52861343_460.png b/MM_Math/data_original_21/7045627/solution_images/52861343_460.png deleted file mode 100644 index 5264dc6ea8e31f424aca909f53858faf8ede874f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52861343_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2e98b7c2de129fdbf01272967617cf9964d54061e64d4f6487e1c9872135424 -size 6167 diff --git a/MM_Math/data_original_21/7045627/solution_images/52861346_440.png b/MM_Math/data_original_21/7045627/solution_images/52861346_440.png deleted file mode 100644 index 38d605deca1c5824dcccfb9b84206cf109d84c42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52861346_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0f89f83f808fd24772a73099a12f26c62c99c7f50734f867bfaa1c1e3fb9ac7 -size 6312 diff --git a/MM_Math/data_original_21/7045627/solution_images/52861959_420.png b/MM_Math/data_original_21/7045627/solution_images/52861959_420.png deleted file mode 100644 index 8bba569a50c7e404a1f414b9add9d9ddf5405c18..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52861959_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bdc422f9e3a87d4b988150e2a7ceda4a93bea5aee84832375a000623437d1f35 -size 6077 diff --git a/MM_Math/data_original_21/7045627/solution_images/52874444_410.png b/MM_Math/data_original_21/7045627/solution_images/52874444_410.png deleted file mode 100644 index c3f60dd2b19c38ed045ea7a22aa3c1bf48f82b5c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52874444_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b735c19ef4f00fbb8801bdb662444b471f618900cc24bdf2b2261b773babcf5a -size 8892 diff --git a/MM_Math/data_original_21/7045627/solution_images/52906068_400.png b/MM_Math/data_original_21/7045627/solution_images/52906068_400.png deleted file mode 100644 index 5d28ac0b0dee190b13c3423f564031c4e309b44a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52906068_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74e301d15c2fb06f45a880a6dc72c8acf7bc620e8427c26969e8d7166b51c48c -size 29935 diff --git a/MM_Math/data_original_21/7045627/solution_images/52914198_3911.png b/MM_Math/data_original_21/7045627/solution_images/52914198_3911.png deleted file mode 100644 index bc17800b248ece0b04dc5c1a8300994e9cf1b447..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/52914198_3911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e16105e06814919d76fc1f90a0a5bfdf42072ffbac459bbea3f4f952ade9504e -size 16800 diff --git a/MM_Math/data_original_21/7045627/solution_images/53106604_40.png b/MM_Math/data_original_21/7045627/solution_images/53106604_40.png deleted file mode 100644 index 4e3cd8aea035ffc22c02689f24034c11fd39c8ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/53106604_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83a3e247dd3b205da19b2633aa5725c7507399ea5a1cf17b2164404ed214cb02 -size 3356 diff --git a/MM_Math/data_original_21/7045627/solution_images/53107080_50.png b/MM_Math/data_original_21/7045627/solution_images/53107080_50.png deleted file mode 100644 index d199d1b82a735b53240323302d8cfac00f22c6d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7045627/solution_images/53107080_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77dc66afae668d6c571dccdbb4e90b8bb76e53c96af1eba891076b966f0d7fc5 -size 3729 diff --git a/MM_Math/data_original_21/7046945/math/52661181_260.png b/MM_Math/data_original_21/7046945/math/52661181_260.png deleted file mode 100644 index b0af0d4791b1e991c38e258344d991188b57c621..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52661181_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df605ba49b347742b81d955be585497fa649916e91dcc5ab4abf80ef5568ee31 -size 3984 diff --git a/MM_Math/data_original_21/7046945/math/52661185_270.png b/MM_Math/data_original_21/7046945/math/52661185_270.png deleted file mode 100644 index f019ba3e681cedfd503510b9a65ad6ef27517bc2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52661185_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12d85687f9eab31bbbb0f5045cb7c194754034d82376ec54bb23d1f0a82d064b -size 4416 diff --git a/MM_Math/data_original_21/7046945/math/52661191_770.png b/MM_Math/data_original_21/7046945/math/52661191_770.png deleted file mode 100644 index b7c47d216d9f0b1914507f25e35806207545193c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52661191_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4422428cebcd334739a21a523039b2f2d4fcd81c854517911af32056e4a7e083 -size 4476 diff --git a/MM_Math/data_original_21/7046945/math/52661286_257.png b/MM_Math/data_original_21/7046945/math/52661286_257.png deleted file mode 100644 index 0958dd7915d489a0b68ed45038518e225d8c6104..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52661286_257.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df653f98d3d64b0f8cbe45d8ef90d284460d11d6653de5e363d983f864177f73 -size 7816 diff --git a/MM_Math/data_original_21/7046945/math/52661291_755.png b/MM_Math/data_original_21/7046945/math/52661291_755.png deleted file mode 100644 index 411b4df17cf4c0d11017f1e27fbd11c18a0faa88..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52661291_755.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f42e2da1be99631eb4e3c82dacfb0379d0d7b54c17b149f6bc981db8522c0c90 -size 7616 diff --git a/MM_Math/data_original_21/7046945/math/52661292_762.png b/MM_Math/data_original_21/7046945/math/52661292_762.png deleted file mode 100644 index 4bbd4cdbc58a19bc45f2b6294df953f1002d5eb3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52661292_762.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c458c13700537944e52ad77565b8bca3668fca7f92e868faf3c0664482a30246 -size 15600 diff --git a/MM_Math/data_original_21/7046945/math/52661295_870.png b/MM_Math/data_original_21/7046945/math/52661295_870.png deleted file mode 100644 index 5057adf19ca6720d96a518ddb9962c40d8d4c0ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52661295_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4ecb2d849992bd9a46f0c36c4a8ff0969abadadbacb9b64c18f3a84b0cc5a2b -size 7664 diff --git a/MM_Math/data_original_21/7046945/math/52693948_740.png b/MM_Math/data_original_21/7046945/math/52693948_740.png deleted file mode 100644 index e3ddd30194294a85a257c0b2ec2b681543bedcff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52693948_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64daef3712714871e80e8f50625bb288e28dcfb0c53b94494b1b94074602a135 -size 4115 diff --git a/MM_Math/data_original_21/7046945/math/52693950_730.png b/MM_Math/data_original_21/7046945/math/52693950_730.png deleted file mode 100644 index 1df8b8f6c360c82eeea1fd00aa659053bce551e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52693950_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6449d3cd3679f2eb75eede236eddbc282f76639996e34811ef839436fbdaa316 -size 6551 diff --git a/MM_Math/data_original_21/7046945/math/52693957_860.png b/MM_Math/data_original_21/7046945/math/52693957_860.png deleted file mode 100644 index 28be4c90ec5352a16c02f9fb8ac8f144d0ac437a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52693957_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5284837f3f10f0f8e7f188b8df2554591d829cec46bbdb48e36d30311bca84bb -size 4391 diff --git a/MM_Math/data_original_21/7046945/math/52693972_240.png b/MM_Math/data_original_21/7046945/math/52693972_240.png deleted file mode 100644 index 4f45671cfed9099ff1bc81162fc83386194e0efa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52693972_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2521803cb445f325dad4b57f4ab8e11cf3a341d2dd07ac4908e833bd4d99376 -size 2735 diff --git a/MM_Math/data_original_21/7046945/math/52693977_716.png b/MM_Math/data_original_21/7046945/math/52693977_716.png deleted file mode 100644 index 18fced3079f1d0b52b698eb84e46b0a77b868918..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52693977_716.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db9315e0e614a670943e694cd92d06aae581ff87502bf4e12598af7d3204a882 -size 3923 diff --git a/MM_Math/data_original_21/7046945/math/52693978_720.png b/MM_Math/data_original_21/7046945/math/52693978_720.png deleted file mode 100644 index b1536326121df15dc50ce0d0017a257ec6bc1bed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52693978_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5eab804dd5337b9527c0aa265031a97ef78c20f59a737d38db7c6562b28db2f5 -size 5766 diff --git a/MM_Math/data_original_21/7046945/math/52693980_700.png b/MM_Math/data_original_21/7046945/math/52693980_700.png deleted file mode 100644 index edcea1115d0982340c5308d095319680b168522d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52693980_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8169f1b37b5945896bbb5aee6525c427277b8f22510c89abdb200cda90fc8f71 -size 7402 diff --git a/MM_Math/data_original_21/7046945/math/52693985_990.png b/MM_Math/data_original_21/7046945/math/52693985_990.png deleted file mode 100644 index da0e6c21f18eaf387a33da88362decd13948e3db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52693985_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:552991d6f69dbfbdeddb4c7a083ab86505bc1320bc8f33bd91711ecdd8353f7b -size 1536 diff --git a/MM_Math/data_original_21/7046945/math/52694135_690.png b/MM_Math/data_original_21/7046945/math/52694135_690.png deleted file mode 100644 index a97969eec3524bc179f1ef6a74de4ba5badb317e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52694135_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08006668cdbe7ab944165bc5bf043b65c8811ef63cc39308fbc3b95b096563a7 -size 4076 diff --git a/MM_Math/data_original_21/7046945/math/52699329_210.png b/MM_Math/data_original_21/7046945/math/52699329_210.png deleted file mode 100644 index 1db99531ae243e9f35611f30121ef07a35d83da6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699329_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23c201c0e1844a328902d18490f07de43b0b49a5943592dbd93a0e67cde22fad -size 28496 diff --git a/MM_Math/data_original_21/7046945/math/52699331_651.png b/MM_Math/data_original_21/7046945/math/52699331_651.png deleted file mode 100644 index a6ca621bd4b081a52ab35afe520230be822cb72f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699331_651.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ad6057ab4b53db7621a8dc3985fe20fca88758b9e22bbab59d599602392d3e0 -size 51617 diff --git a/MM_Math/data_original_21/7046945/math/52699554_220.png b/MM_Math/data_original_21/7046945/math/52699554_220.png deleted file mode 100644 index a8f48d870c41c48d4d73d12aca8d1a34d820adec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699554_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc916a68c787c0209818ff57d45bf3cf81a08af0c59513424b0d0e05c6365cd2 -size 3038 diff --git a/MM_Math/data_original_21/7046945/math/52699614_200.png b/MM_Math/data_original_21/7046945/math/52699614_200.png deleted file mode 100644 index 43426b1fe285fda466c51dd1a64d405f62c6a8f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699614_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3352bcd37d3f9edda5c2cbd0209c1d129f5038136f39665ee66089f9a28b81ed -size 3650 diff --git a/MM_Math/data_original_21/7046945/math/52699615_669.png b/MM_Math/data_original_21/7046945/math/52699615_669.png deleted file mode 100644 index fffadb68d5800ba368486c1fc3c5655662e3023e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699615_669.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8368ea4da5fe2dca22aa5088406e65aa391aceb374ede43cc88fdd3739744112 -size 13717 diff --git a/MM_Math/data_original_21/7046945/math/52699721_671.png b/MM_Math/data_original_21/7046945/math/52699721_671.png deleted file mode 100644 index 35adfd5e9d9fda32961f7765fd367c75ffdbf8fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699721_671.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5db11e7660247ffde8119aa8a46e031ebb38f289895c667a1851bdbcc976d389 -size 75834 diff --git a/MM_Math/data_original_21/7046945/math/52699726_680.png b/MM_Math/data_original_21/7046945/math/52699726_680.png deleted file mode 100644 index d4a8da8bdf46cc2d3c214e7f98d544ffffdc9287..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699726_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8a80e537916e8e30c0c4489caf5eb3024730437725e4751fdc643a2b7131474 -size 3947 diff --git a/MM_Math/data_original_21/7046945/math/52699727_616.png b/MM_Math/data_original_21/7046945/math/52699727_616.png deleted file mode 100644 index 259141add7047c7f4d12d1a997a601d31a955c10..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699727_616.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b22c5376d550bb1178c4d80a0a397e1df202c43134c353f972d641c82c778437 -size 3437 diff --git a/MM_Math/data_original_21/7046945/math/52699728_851.png b/MM_Math/data_original_21/7046945/math/52699728_851.png deleted file mode 100644 index 30af11d04b254d01d87b7db5fa76789f85f12d56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699728_851.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:84cd186448dbb7048d16764d6e346790e9bf0f44cad5c54b7adf84601712801c -size 72372 diff --git a/MM_Math/data_original_21/7046945/math/52699750_230.png b/MM_Math/data_original_21/7046945/math/52699750_230.png deleted file mode 100644 index e0a139fb0ea7c7f6a1463d2755a0ffbe73e7a160..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699750_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2415f58fdf0c54c2fbef6be4af02c3b844ca411b3b759958b193e7287eb3d2a5 -size 2556 diff --git a/MM_Math/data_original_21/7046945/math/52699755_641.png b/MM_Math/data_original_21/7046945/math/52699755_641.png deleted file mode 100644 index 75ed08c8b10592a7af9ecf0a7497475c58ffedde..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699755_641.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8f1ff6f2a7f59c4e8b5345a517b60110e4f5d9edf73b2293be6b673fd7bac9f -size 2603 diff --git a/MM_Math/data_original_21/7046945/math/52699756_631.png b/MM_Math/data_original_21/7046945/math/52699756_631.png deleted file mode 100644 index 8c1f50cc889b7623c36cb543919324a93fe0e963..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699756_631.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f857216200320be49b0552ad94ebf3f35c51bd13d1d6a71e6601c0db9eec0bc -size 2809 diff --git a/MM_Math/data_original_21/7046945/math/52699778_620.png b/MM_Math/data_original_21/7046945/math/52699778_620.png deleted file mode 100644 index 407855f64a536ecd7fd123a49991d881dfe2f619..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52699778_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dfe622d4a9dd5087657cc0251d51981cffda57beaddfa4ab0414ac683142f87c -size 5061 diff --git a/MM_Math/data_original_21/7046945/math/52715503_590.png b/MM_Math/data_original_21/7046945/math/52715503_590.png deleted file mode 100644 index 3db014b93932b1a132c1c5e43b134513499a4fde..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52715503_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e79c129ebe354d9172265788adb182847c9678ef94966ef12f3bce767bf13c9 -size 19221 diff --git a/MM_Math/data_original_21/7046945/math/52715504_600.png b/MM_Math/data_original_21/7046945/math/52715504_600.png deleted file mode 100644 index e9d4915e60995de341b2006afe122df637c9c1cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52715504_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94e4fdcf7f0ed0d596e3e8231394f9ebc481996bd7af63f789156e6a8690820b -size 7466 diff --git a/MM_Math/data_original_21/7046945/math/52715507_581.png b/MM_Math/data_original_21/7046945/math/52715507_581.png deleted file mode 100644 index 7baead43b28b2b780a8bbacdef9ef6e21c1e72f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52715507_581.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72a1b311a768a8dafb813f6dbb413f1e8078fdb48a0dd66ed06e930a5904e7d4 -size 42913 diff --git a/MM_Math/data_original_21/7046945/math/52731085_977.png b/MM_Math/data_original_21/7046945/math/52731085_977.png deleted file mode 100644 index fb320394d104d1fec1cb2539fe5a04c42cbf8502..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52731085_977.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d2842466522b6a5e0a984474c6f89ef80bddfab4a2ccf4e91b73140ca39d821 -size 3145 diff --git a/MM_Math/data_original_21/7046945/math/52731253_548.png b/MM_Math/data_original_21/7046945/math/52731253_548.png deleted file mode 100644 index 263f4640a89251aad6f0211d6af7ab0657601ac5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52731253_548.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c596bbcdfbede4fb765d062c4dd7912b2747a495c98042ad4bfb5d0c796018ba -size 2855 diff --git a/MM_Math/data_original_21/7046945/math/52731257_555.png b/MM_Math/data_original_21/7046945/math/52731257_555.png deleted file mode 100644 index 2787d824324b0329e1fd366a89d68d74f2893ec3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52731257_555.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:903963ea74ad6b70af947e4b8e330103dd51dc057c95da3758c2cae3388d6344 -size 176809 diff --git a/MM_Math/data_original_21/7046945/math/52731259_530.png b/MM_Math/data_original_21/7046945/math/52731259_530.png deleted file mode 100644 index 4da15fe4e7d0d7824fc00b6f95e5c06de77743eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52731259_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f8d5f278bc3ab8d9e9a72206fed534c6275faacb5807e590ec162278a0b0d717 -size 4577 diff --git a/MM_Math/data_original_21/7046945/math/52731268_839.png b/MM_Math/data_original_21/7046945/math/52731268_839.png deleted file mode 100644 index f1d76064aff652b03b7701b5b2e7731fe53de613..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52731268_839.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9dd82df220a230f816f7bc307f490989676486415fe6b7c4f8e6501c18e52ff -size 52168 diff --git a/MM_Math/data_original_21/7046945/math/52733093_520.png b/MM_Math/data_original_21/7046945/math/52733093_520.png deleted file mode 100644 index ccc50eba8aea35b6c97d24e22f0560a023cd47ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733093_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2d02a2da1154751f6a654f94079f2c896df9b9cef3fa3de8fb8570ac2424740 -size 2941 diff --git a/MM_Math/data_original_21/7046945/math/52733094_510.png b/MM_Math/data_original_21/7046945/math/52733094_510.png deleted file mode 100644 index f2297a78c21c98d5b55662b3081cfeb33b99f823..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733094_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b14af6591cbbaf51157e97f1a77d9c034ee006c4ec09b88d38cc9dd7f9aea33b -size 1607 diff --git a/MM_Math/data_original_21/7046945/math/52733477_160.png b/MM_Math/data_original_21/7046945/math/52733477_160.png deleted file mode 100644 index 77ef52e84c6fcdd57c9e7ff394d7aad0430c8605..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733477_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b29080d5b824b7af2ba81689cf3eab120eb53c680aa9debdbe9b66e9db2d2f8 -size 5629 diff --git a/MM_Math/data_original_21/7046945/math/52733484_500.png b/MM_Math/data_original_21/7046945/math/52733484_500.png deleted file mode 100644 index fa9e73e8054442c01fc31219e74de9344e8e6568..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733484_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f856f4eb251311462f2e225974d5a3ff3c9878429a069bc4f6e1b338103d0a3c -size 2650 diff --git a/MM_Math/data_original_21/7046945/math/52733493_820.png b/MM_Math/data_original_21/7046945/math/52733493_820.png deleted file mode 100644 index e5804109ae76eb52a3cd3bce5574fb714a085153..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733493_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e1dd4a604d713344c9eb151c5e18b017f3cc69958cd0f04e664c8e32e9f6a46 -size 2479 diff --git a/MM_Math/data_original_21/7046945/math/52733494_811.png b/MM_Math/data_original_21/7046945/math/52733494_811.png deleted file mode 100644 index 61320cc0108fefb5b1956af774f606945d8d3590..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733494_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b775bd03ec22c5260d2f9bf96a092d7f2aa78f595e18d4fcf44872e683574cd0 -size 8792 diff --git a/MM_Math/data_original_21/7046945/math/52733744_460.png b/MM_Math/data_original_21/7046945/math/52733744_460.png deleted file mode 100644 index 3daf01d98f220e1303cbb9bdbd493257234d75b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733744_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9ca796285d7be11414b91e63c11373c035b4d585a35258daa5696b86815302f -size 5356 diff --git a/MM_Math/data_original_21/7046945/math/52733745_470.png b/MM_Math/data_original_21/7046945/math/52733745_470.png deleted file mode 100644 index cc27d055e85e8bfd2df76b5b93d006f4780baf13..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733745_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b987c94e4940df98846d4acf6fcf787c699cce5a18a128592d664851ae143b2 -size 8614 diff --git a/MM_Math/data_original_21/7046945/math/52733746_490.png b/MM_Math/data_original_21/7046945/math/52733746_490.png deleted file mode 100644 index 002a4945bbfae1485255f6ddfa0a047862b5f1e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733746_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da07e3cffd05b79c13b663b75c5507247fe95155573bf103044568492d479145 -size 9541 diff --git a/MM_Math/data_original_21/7046945/math/52733748_480.png b/MM_Math/data_original_21/7046945/math/52733748_480.png deleted file mode 100644 index d728a56778911892309447114db0480e75f9a04c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733748_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e74b66a9ea1e5d9f4fd46e3d150a9a55f32647f04e5530c10da78e687ea1c74 -size 8702 diff --git a/MM_Math/data_original_21/7046945/math/52733754_960.png b/MM_Math/data_original_21/7046945/math/52733754_960.png deleted file mode 100644 index d9f6f4ba62ce99ae6228755ee8e93dd6c7539a49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52733754_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:73a04d361fdb2dfc33458bfc9d0ca5231548e73b4c4a465ebebdf7af4d0785f3 -size 3628 diff --git a/MM_Math/data_original_21/7046945/math/52754259_140.png b/MM_Math/data_original_21/7046945/math/52754259_140.png deleted file mode 100644 index 762c4cfb999567a196396769155b6811d4556bad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52754259_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68516e38c8c309c6f592374c62bc875a029e77bace208bc0f4e566635778d01f -size 2762 diff --git a/MM_Math/data_original_21/7046945/math/52754267_450.png b/MM_Math/data_original_21/7046945/math/52754267_450.png deleted file mode 100644 index cbd844b65ce5af60c959ca76dbb35b9dad713fcb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52754267_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96f5e47f534670a179e647ab23ca16a86cae215a8fa83e216bbdef2d09428d42 -size 4801 diff --git a/MM_Math/data_original_21/7046945/math/52755383_130.png b/MM_Math/data_original_21/7046945/math/52755383_130.png deleted file mode 100644 index c7f860b36b33c6e39020fc29d92d1d2e3696f34c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52755383_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c09c744d0e97c4edfa8a9e5197bd8e3d6195e8f39248983dbc27bff89ffbdd3 -size 4122 diff --git a/MM_Math/data_original_21/7046945/math/52755391_447.png b/MM_Math/data_original_21/7046945/math/52755391_447.png deleted file mode 100644 index c0e7bf8bf0209a41e60d3b873c149401bfe6fb31..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52755391_447.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f454935cc81c6e68af644ef2a83bbd647635ea91ce3fe470b193409fb778e161 -size 2029 diff --git a/MM_Math/data_original_21/7046945/math/52755391_448.png b/MM_Math/data_original_21/7046945/math/52755391_448.png deleted file mode 100644 index 29e0af72ee679edabae7e0ce2c6ba49854edda5f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52755391_448.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bf91a4f6c69494ec8f29f1c254bba5d58ff380a32eff7c312fbb7aa8a882f13 -size 3097 diff --git a/MM_Math/data_original_21/7046945/math/52755868_171.png b/MM_Math/data_original_21/7046945/math/52755868_171.png deleted file mode 100644 index 4f9882ef9565689fc061650e6ee7381fe7203414..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52755868_171.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f262135a16211dde8f2aeeb6a569bec3f2f9818d649c1736d6702b0175142ff5 -size 6909 diff --git a/MM_Math/data_original_21/7046945/math/52755869_184.png b/MM_Math/data_original_21/7046945/math/52755869_184.png deleted file mode 100644 index c982236f066a92c4eaf7e902396719da04ce0c91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52755869_184.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0dbe214b26f89a2c8a8a77906b56be2bd6a1921ec26019837250d37496aec40e -size 4188 diff --git a/MM_Math/data_original_21/7046945/math/52755870_564.png b/MM_Math/data_original_21/7046945/math/52755870_564.png deleted file mode 100644 index e957f8f96aacc3b2571c4c7dfd94ad07cebbe2db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52755870_564.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b704ac43ca494ad80571d0b39b9c5f0b3fc0eeb04307cb54b575fc51de11f1a2 -size 16880 diff --git a/MM_Math/data_original_21/7046945/math/52755880_846.png b/MM_Math/data_original_21/7046945/math/52755880_846.png deleted file mode 100644 index e3745ffa6d16584efd7b3c68ddf945603cde59ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52755880_846.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4627dcb09b0e02b82dbd9a8f2409951e42cc36983105de105aff8fe251a8bf0f -size 70080 diff --git a/MM_Math/data_original_21/7046945/math/52756081_120.png b/MM_Math/data_original_21/7046945/math/52756081_120.png deleted file mode 100644 index 1ce3b79c42d85e28305e9f971cbea97023df7565..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52756081_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d2b25b8a1c807e3457c5bbb129496d0ee10d9fe800e63d9b6a70242b7af495a -size 4012 diff --git a/MM_Math/data_original_21/7046945/math/52756083_420.png b/MM_Math/data_original_21/7046945/math/52756083_420.png deleted file mode 100644 index 54c40b56b56603d8afa0bdf658bcb635462e5404..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52756083_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a539053581c1200833d11ab1de1f3f558514a8f7253ceca960877338c1bdb8f -size 1834 diff --git a/MM_Math/data_original_21/7046945/math/52756086_430.png b/MM_Math/data_original_21/7046945/math/52756086_430.png deleted file mode 100644 index 95b5bbe20d1b682d92ad852ee0a4e05ab93f0de9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52756086_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d749cf4da48ff9d49ca8b362284c895ccc257a20248383c7eb88fed68b2fc7b -size 4076 diff --git a/MM_Math/data_original_21/7046945/math/52756087_410.png b/MM_Math/data_original_21/7046945/math/52756087_410.png deleted file mode 100644 index e2d619424c2db46d94d9f5c98d5967b356bf6197..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52756087_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3e74875d3efb7f88b0595d1650c261eac41ef026dbd8de68610e52870cb6bec -size 3720 diff --git a/MM_Math/data_original_21/7046945/math/52774835_105.png b/MM_Math/data_original_21/7046945/math/52774835_105.png deleted file mode 100644 index 0006872304ff33f61538d5408161d85a0753459c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52774835_105.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ba8fd91e8ecdec00485631c5c55931fa391c5c9c86721c89a5cf94ee62c890a -size 2135 diff --git a/MM_Math/data_original_21/7046945/math/52774836_110.png b/MM_Math/data_original_21/7046945/math/52774836_110.png deleted file mode 100644 index 2061f99e11f2ff6829de8bb3015d9fd730f56005..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52774836_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88585f7fe54e7d26543011ab068ffb557d3699e8e00d91602b9cb6e30d80eed2 -size 2460 diff --git a/MM_Math/data_original_21/7046945/math/52774844_390.png b/MM_Math/data_original_21/7046945/math/52774844_390.png deleted file mode 100644 index f6954250fb964c290491d3c3c7d4fb156ede32e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52774844_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e719e4f0f984e8761c9b4adee030b0050f357803516364b17b508386ef56579 -size 1715 diff --git a/MM_Math/data_original_21/7046945/math/52774845_400.png b/MM_Math/data_original_21/7046945/math/52774845_400.png deleted file mode 100644 index c4c342f3260abf2cbce4a8f3af4b9f92d583a0e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52774845_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e98613462359b9efb17f61907c0e4fa3691e294c58a4e64b7a09be74b5e9006 -size 2851 diff --git a/MM_Math/data_original_21/7046945/math/52774849_800.png b/MM_Math/data_original_21/7046945/math/52774849_800.png deleted file mode 100644 index 8b227250255526a4654b372e01bf186053065432..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52774849_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:463a0e99b15da1870b622a3d50b12a579e3df78503b4246fac289f74b8bb3105 -size 32608 diff --git a/MM_Math/data_original_21/7046945/math/52793322_82.png b/MM_Math/data_original_21/7046945/math/52793322_82.png deleted file mode 100644 index 15ac7d9cddf5a337ae8bfe0d313f36c5526334e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52793322_82.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48997aa5a83ce972c6b223ebac15fff314e0d5cc4967a2813177fe9fc7c04a2f -size 2413 diff --git a/MM_Math/data_original_21/7046945/math/52793324_90.png b/MM_Math/data_original_21/7046945/math/52793324_90.png deleted file mode 100644 index 6d172f9ca5490d6b6b2ac059d8890c6bc82cacb6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52793324_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80443692c4e15133f754e3fa2d904c5f8de14f80116fe3e11d4f52a5687e73f7 -size 2184 diff --git a/MM_Math/data_original_21/7046945/math/52793334_377.png b/MM_Math/data_original_21/7046945/math/52793334_377.png deleted file mode 100644 index 004eae46ba6531b67ac05da3d4762a4fca3d68e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52793334_377.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90e7534a0f193570ab9dbc8dbb75553612410e0c4301fbd92c5c10c21d41e724 -size 2577 diff --git a/MM_Math/data_original_21/7046945/math/52793336_798.png b/MM_Math/data_original_21/7046945/math/52793336_798.png deleted file mode 100644 index 521e7803267c96640a8e1e9d2a8443ef3452bcf1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52793336_798.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62a44afcb47f984043ae5e0454f831fc93622b3618c78c7ffcaa635a5988fe07 -size 18152 diff --git a/MM_Math/data_original_21/7046945/math/52793522_380.png b/MM_Math/data_original_21/7046945/math/52793522_380.png deleted file mode 100644 index 2273fa3c87686cd42823401e1aedc61c5128b39e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52793522_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:895280ea620176ab0d0aa9564f7c2b6b2af1410722fdb0c1ddc69645135bd0c7 -size 12135 diff --git a/MM_Math/data_original_21/7046945/math/52793526_947.png b/MM_Math/data_original_21/7046945/math/52793526_947.png deleted file mode 100644 index 40bbac8a2926474586d4c6df59ec49432f3ae968..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52793526_947.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:adcc720bdb134133c5241b4ac7320a60758698fd55a55781bdc1697d6036863d -size 3630 diff --git a/MM_Math/data_original_21/7046945/math/52793539_957.png b/MM_Math/data_original_21/7046945/math/52793539_957.png deleted file mode 100644 index bcc3927625e5bbe328b4848561f189ede0220b71..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52793539_957.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:279d4eea7c9b21b78e7df92ae6b8c12895663c7bdbe88a20776b87d9a437a9db -size 5318 diff --git a/MM_Math/data_original_21/7046945/math/52814879_780.png b/MM_Math/data_original_21/7046945/math/52814879_780.png deleted file mode 100644 index 7a9067536fcae0340e4ee0ea5a1cdfb56af4db6d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52814879_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4568dcf28b35f1d9d0208a52d694b588f8375579081251cab69c2f50e9006504 -size 6173 diff --git a/MM_Math/data_original_21/7046945/math/52815571_193.png b/MM_Math/data_original_21/7046945/math/52815571_193.png deleted file mode 100644 index f40365a4d46a474eb61d03aed3a077d79425f3b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52815571_193.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1660a8f1d5ffa506cf40c7e93b3f754b9fb44be3cd9652b0dc8d2618d712ef8 -size 5933 diff --git a/MM_Math/data_original_21/7046945/math/52815574_570.png b/MM_Math/data_original_21/7046945/math/52815574_570.png deleted file mode 100644 index af86bdb42440850c093db70ce85653a6e8eb4f91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52815574_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:712ed2a7ade1d177c388b54ad9041b4495509ffb65e591599269796b182411c5 -size 3932 diff --git a/MM_Math/data_original_21/7046945/math/52815585_980.png b/MM_Math/data_original_21/7046945/math/52815585_980.png deleted file mode 100644 index 096ac3e3acb5abcb02f3c7755c631f3f111e9bcb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52815585_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ae37bdc37ad8f1fbaea99bd396b8d9ea5bcc60a1d31ecd441efc49f48f8e651 -size 6054 diff --git a/MM_Math/data_original_21/7046945/math/52815665_931.png b/MM_Math/data_original_21/7046945/math/52815665_931.png deleted file mode 100644 index 555911532dd89964f2c300cf222db057857f7916..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52815665_931.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e602e4cc92755c3d653b9df35b1901904948b202c34dc8256a996b68d7f46a4 -size 14501 diff --git a/MM_Math/data_original_21/7046945/math/52826729_63.png b/MM_Math/data_original_21/7046945/math/52826729_63.png deleted file mode 100644 index 81d7cc5fc27a36b84a3c4f86d1524d233e6a5263..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52826729_63.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4788351ccf59271a77c206e458a0281ee709ade2f6f0e34c5d86dc11cb86d259 -size 3607 diff --git a/MM_Math/data_original_21/7046945/math/52826808_358.png b/MM_Math/data_original_21/7046945/math/52826808_358.png deleted file mode 100644 index b8d636f7ca5c768dfaa65fa0382455e3608eec34..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52826808_358.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ece59e694dbae6403c9d76c08acefeec1f9d7595d923665737f6b4a7d229090 -size 16143 diff --git a/MM_Math/data_original_21/7046945/math/52826835_77.png b/MM_Math/data_original_21/7046945/math/52826835_77.png deleted file mode 100644 index 9631640bc0b8c9fc24e5bb4b6e3860b3367bcadb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52826835_77.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51c72e4be5db8658335f3457214497d6256e501a340321fa0be6df40eae0771e -size 3820 diff --git a/MM_Math/data_original_21/7046945/math/52827542_3610.png b/MM_Math/data_original_21/7046945/math/52827542_3610.png deleted file mode 100644 index 0e046124aa047ed9a8b29bfa273c8d2e412da571..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52827542_3610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f01a557df2a8a27d9300ddda598cad29862de8549378d37fd725fc361e572717 -size 2876 diff --git a/MM_Math/data_original_21/7046945/math/52827761_44.png b/MM_Math/data_original_21/7046945/math/52827761_44.png deleted file mode 100644 index 5e6a05c7263cddaa585cfc3b1d96e08b6a2d4e9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52827761_44.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f0abcf81f10296913fa82ae47af5c2ebb09d7e90251efef377c8cafb26363609 -size 23584 diff --git a/MM_Math/data_original_21/7046945/math/52827840_36.png b/MM_Math/data_original_21/7046945/math/52827840_36.png deleted file mode 100644 index f02e53558e443ad858c6cbca71a5954f9c338e9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52827840_36.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5948ecffebd91c5142bb46730ac8877087dc904920a5cb517dbe19badb875640 -size 4288 diff --git a/MM_Math/data_original_21/7046945/math/52828219_53.png b/MM_Math/data_original_21/7046945/math/52828219_53.png deleted file mode 100644 index bb38e0685bb7e1dfb363e335925c229b8a699093..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52828219_53.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be670e50bb4281ed60aca7fcc8b1955b1be7cb6a2a377f985ddc83e553565ed8 -size 33025 diff --git a/MM_Math/data_original_21/7046945/math/52828224_329.png b/MM_Math/data_original_21/7046945/math/52828224_329.png deleted file mode 100644 index 998fc35ead893e310e20a80bdeaf09caf4315da9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52828224_329.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b34a4ba48c2362354884f4ded1dcd88b6cc200a1be480ea2de145b39f2b36acf -size 2292 diff --git a/MM_Math/data_original_21/7046945/math/52828913_334.png b/MM_Math/data_original_21/7046945/math/52828913_334.png deleted file mode 100644 index 32459ed5ecb8f0a22cd85564ae6e3f3e0b2496f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52828913_334.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e8efa03c7ca1e196f6c7f63b49fd089c1cc511fcd9515d75c8e1a05ea020bb2e -size 2985 diff --git a/MM_Math/data_original_21/7046945/math/52828917_3411.png b/MM_Math/data_original_21/7046945/math/52828917_3411.png deleted file mode 100644 index adf2faee99b66352af4d8d1afc47adbd0af50b05..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52828917_3411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83b7bd95d8cfdd8af9fc6d4c29b7d04e95b08b293d8d5e51ec82c03eaa633b5d -size 17104 diff --git a/MM_Math/data_original_21/7046945/math/52837330_920.png b/MM_Math/data_original_21/7046945/math/52837330_920.png deleted file mode 100644 index bd67a2cd91143f8ec7a9db555e9dfeba4b221f13..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52837330_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:593688f6d19b66b2930525373ca0fbf53db005d588f86f0652bca63642cb4317 -size 3084 diff --git a/MM_Math/data_original_21/7046945/math/52837424_26.png b/MM_Math/data_original_21/7046945/math/52837424_26.png deleted file mode 100644 index 55577969458c7385dedcbeab1f86bdc9fb286be1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52837424_26.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f8e375591e10e723d3919775f2d73306540be5c4290afc68aa51712ec347e085 -size 2738 diff --git a/MM_Math/data_original_21/7046945/math/52837442_910.png b/MM_Math/data_original_21/7046945/math/52837442_910.png deleted file mode 100644 index a7a154d0c55dbdc11cea6657bef65007e773964d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52837442_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34b25ebac33ec4fcbbb3cf48cb972bd54e6ac0c6dcf62e5d854bedf6419b5acf -size 30955 diff --git a/MM_Math/data_original_21/7046945/math/52845720_10.png b/MM_Math/data_original_21/7046945/math/52845720_10.png deleted file mode 100644 index 230b11e06157d45f94c257108be52b8ca72356c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52845720_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c16decc37570bf1a00b012a323c5fda8d07701b6e8e7a21f5bc911eaa2cb071 -size 4076 diff --git a/MM_Math/data_original_21/7046945/math/52845740_900.png b/MM_Math/data_original_21/7046945/math/52845740_900.png deleted file mode 100644 index 51a1dfe26f5cd349977385d4f4b7458a12fb7d6e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52845740_900.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:85fb18853ada9e6efbf430b68e274f3a142a76bbaa6fd4107a8bb5ab074a560d -size 8152 diff --git a/MM_Math/data_original_21/7046945/math/52861347_310.png b/MM_Math/data_original_21/7046945/math/52861347_310.png deleted file mode 100644 index ab6d35dd07b8e6d1a9698933aef969100efd103b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52861347_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23547947fb1217f28d631f93e2d3beb22759b1de5ef59fa40fe93ea105cbdcfc -size 4495 diff --git a/MM_Math/data_original_21/7046945/math/52861522_07.png b/MM_Math/data_original_21/7046945/math/52861522_07.png deleted file mode 100644 index 89179d0efa1bd4b42249d4fd92335a4b9fd9d1a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52861522_07.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b7a8f5aa2a15230b926829a52e744c29fafbe7c00a5ea5327573eda10328fa1 -size 2354 diff --git a/MM_Math/data_original_21/7046945/math/52861540_8910.png b/MM_Math/data_original_21/7046945/math/52861540_8910.png deleted file mode 100644 index 99daa66f1593dd8bee3edb17619441584d1da320..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52861540_8910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a04b9e01469586d9fe13028bbc9f810329991db9865ab4c6fcfb4e744741914b -size 3843 diff --git a/MM_Math/data_original_21/7046945/math/52861956_300.png b/MM_Math/data_original_21/7046945/math/52861956_300.png deleted file mode 100644 index f5d915172768c7b06306dc2069e57115075fb6f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52861956_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc4c1ae334262d4fc8d1c778ba7dbdb4f37fedb19deff6db7adacfdfabe3acfd -size 2100 diff --git a/MM_Math/data_original_21/7046945/math/52861967_881.png b/MM_Math/data_original_21/7046945/math/52861967_881.png deleted file mode 100644 index 4704319eddb0bdff2df2e588c88383678f115336..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52861967_881.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66409238db5c43fa4cfa8d2eae4bef5ba6c69730ae8fe18daf9db3441fb6b7dd -size 4196 diff --git a/MM_Math/data_original_21/7046945/math/52867065_295.png b/MM_Math/data_original_21/7046945/math/52867065_295.png deleted file mode 100644 index 63463a131d8f6d10ba398a45c2b672d95cccfe66..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/52867065_295.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:466a8f8ab3fd71ab0e26aa2d4f677522cf388c4241f208ca2f32b51c24c02f1f -size 7119 diff --git a/MM_Math/data_original_21/7046945/math/55403712_2816.png b/MM_Math/data_original_21/7046945/math/55403712_2816.png deleted file mode 100644 index 0f2ca27c9f2c54f82d1f90d89fba5704be92a5f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/math/55403712_2816.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d3a4dddfc281b833a131dee95a436ab4bf30ecf368f310350012df28c8ff114 -size 5348 diff --git a/MM_Math/data_original_21/7046945/solution_images/52693950_730.png b/MM_Math/data_original_21/7046945/solution_images/52693950_730.png deleted file mode 100644 index 4a52c7f932ab8b6ffed4f1905ad82dd0687e2b35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52693950_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d6211a58f6d30b4b58970f34eac6238b1baeb4f7e64b86869587e803d38df6c4 -size 8000 diff --git a/MM_Math/data_original_21/7046945/solution_images/52693972_240.png b/MM_Math/data_original_21/7046945/solution_images/52693972_240.png deleted file mode 100644 index cbcc5d951cd08a419c76a4cc265d046051dc00c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52693972_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1cf0fdece0f16e89c501b550c8401d2aac429c5a8beb7621adb6528898c8fbe -size 5498 diff --git a/MM_Math/data_original_21/7046945/solution_images/52693977_710.png b/MM_Math/data_original_21/7046945/solution_images/52693977_710.png deleted file mode 100644 index dd91e8ff7197c1351f3c97c4735840d3c7f5bfce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52693977_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d82a25af57097fc49718179ee89092be9156474c09bab8f139177963763bd2eb -size 4183 diff --git a/MM_Math/data_original_21/7046945/solution_images/52693980_700.png b/MM_Math/data_original_21/7046945/solution_images/52693980_700.png deleted file mode 100644 index 655f31f5790977e870db0dfba9da6d25f5cc0b0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52693980_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31b9057d25e50b31cf4a937bdfe162ec369abb5a96170dd681d18e0e8d9d9eb0 -size 2828 diff --git a/MM_Math/data_original_21/7046945/solution_images/52694135_690.png b/MM_Math/data_original_21/7046945/solution_images/52694135_690.png deleted file mode 100644 index d765448436b0172ba03dd048ed41d415305d0e76..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52694135_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01e346d2ac2bdc931e954125fb05dae0030537d943d3c245569d5952e029b22d -size 8290 diff --git a/MM_Math/data_original_21/7046945/solution_images/52699726_680.png b/MM_Math/data_original_21/7046945/solution_images/52699726_680.png deleted file mode 100644 index 3ccc2c7e702f3a6e229957eb93bbeaa4d4701e2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52699726_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d85bf3c97ffdaa9f43e5deb157f63c107e2ac1e1bf0b99e68530cf0c3f0ae08e -size 4883 diff --git a/MM_Math/data_original_21/7046945/solution_images/52699727_610.png b/MM_Math/data_original_21/7046945/solution_images/52699727_610.png deleted file mode 100644 index c03fb7add2e1a886511ef3f78bdac486b4fab4ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52699727_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c29e13d75de6075e7d4adb18ddfa77428ec4ecea0ddb6e636eec4ae307c6e87 -size 11275 diff --git a/MM_Math/data_original_21/7046945/solution_images/52699756_630.png b/MM_Math/data_original_21/7046945/solution_images/52699756_630.png deleted file mode 100644 index 9ddeae79a2ed57d9771fc917f21433d83080dbb9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52699756_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07e8184ea9cff1828968b0832c3a096a6ac83cbd7895c8d424dee72cba6efe6a -size 4706 diff --git a/MM_Math/data_original_21/7046945/solution_images/52699778_620.png b/MM_Math/data_original_21/7046945/solution_images/52699778_620.png deleted file mode 100644 index 36d5c229e20c3f4b9f3edbf9f9011e57c5775a50..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52699778_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bdcf6c0b95d23a82859ecfc8bac0ce305e82875dd15b92a5aea46b3b5c62a81e -size 5147 diff --git a/MM_Math/data_original_21/7046945/solution_images/52715504_600.png b/MM_Math/data_original_21/7046945/solution_images/52715504_600.png deleted file mode 100644 index 7a79250eb9b9aee33c9236e249eae6f6c1520732..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52715504_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:355ad3bcbc1a3f25ce548ef508aaea9f1c3db16f16911556b8854ac720bcb7e9 -size 8335 diff --git a/MM_Math/data_original_21/7046945/solution_images/52715507_587.png b/MM_Math/data_original_21/7046945/solution_images/52715507_587.png deleted file mode 100644 index 718490e420084186e267e14b67fd5e0582573a57..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52715507_587.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca56cdf428cfa9df733e21c172628de27e76e49746dc8bb6b80b6759f9d8b6fe -size 60567 diff --git a/MM_Math/data_original_21/7046945/solution_images/52731257_550.png b/MM_Math/data_original_21/7046945/solution_images/52731257_550.png deleted file mode 100644 index f4b2b7fb7ffef2438ede58389c498b968925619e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52731257_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d973a616eee0309b9596d68a44ee3fede92e6047437b606f98b9f177533454c2 -size 194481 diff --git a/MM_Math/data_original_21/7046945/solution_images/52731259_530.png b/MM_Math/data_original_21/7046945/solution_images/52731259_530.png deleted file mode 100644 index 0dc0f8659d6d0d91e3fc2c87065ff16cefd3f7c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52731259_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7594fa98e200816da215e392579273b40e9ce5dc30798638440682e47b4421dc -size 5877 diff --git a/MM_Math/data_original_21/7046945/solution_images/52733094_510.png b/MM_Math/data_original_21/7046945/solution_images/52733094_510.png deleted file mode 100644 index 466758ba41d87ad2310e6aa9e621a29a82cd29e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52733094_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e8aaf637da4a790d65a19ca059b91a106d67c8daf99ed21cd8410925c150251 -size 6825 diff --git a/MM_Math/data_original_21/7046945/solution_images/52733746_490.png b/MM_Math/data_original_21/7046945/solution_images/52733746_490.png deleted file mode 100644 index c41b663f72d315dce75ee432eae0651e949fe99b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52733746_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08d9fcc988764ab67964c25ffa13a7239cf819c53415ff6d1e31c87af732abe0 -size 3621 diff --git a/MM_Math/data_original_21/7046945/solution_images/52733748_480.png b/MM_Math/data_original_21/7046945/solution_images/52733748_480.png deleted file mode 100644 index 4f3c97465d4ee63be0147b3b505a95a2df66854d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52733748_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4c635e8e2521cbd8e8049788efdd4e8fa35ce2576c1821b729a0f00feac18713 -size 9643 diff --git a/MM_Math/data_original_21/7046945/solution_images/52755868_170.png b/MM_Math/data_original_21/7046945/solution_images/52755868_170.png deleted file mode 100644 index f7489ab72b788283606bd2bf3b611ca781c0678b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52755868_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1e8927446006e6cb0b592dd51fb79c97d3c4f0d33c1220f235c1709c808ea0c -size 3342 diff --git a/MM_Math/data_original_21/7046945/solution_images/52774844_390.png b/MM_Math/data_original_21/7046945/solution_images/52774844_390.png deleted file mode 100644 index 2bccf91a06e537b41bb41a2557fe922dbda74d97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52774844_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a14cca2630587e070054bc99c534714172a213b42c427dcc1ceec1571d8dfe4 -size 3103 diff --git a/MM_Math/data_original_21/7046945/solution_images/52828219_51.png b/MM_Math/data_original_21/7046945/solution_images/52828219_51.png deleted file mode 100644 index 55e7d136f3ed7d2aa012ee290d8cddc776078261..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52828219_51.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b712d7d9010636fc055c9ebd5fbe89699f6347608a6e7670dc87ab06e1ea0f9b -size 36387 diff --git a/MM_Math/data_original_21/7046945/solution_images/52828917_345.png b/MM_Math/data_original_21/7046945/solution_images/52828917_345.png deleted file mode 100644 index c99ba293249ef18c11b9ce10f971f64389e0cf91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52828917_345.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c314873f12f73346554e807603759bb849b56547936360a00676647e1cc4ab28 -size 20773 diff --git a/MM_Math/data_original_21/7046945/solution_images/52861347_310.png b/MM_Math/data_original_21/7046945/solution_images/52861347_310.png deleted file mode 100644 index feeedb42451e72383e59b37695836d317d3fb1db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52861347_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a729b262ba9f8c3db290405105839408ca42308854a995e919e19ee021a93d9c -size 8687 diff --git a/MM_Math/data_original_21/7046945/solution_images/52861522_00.png b/MM_Math/data_original_21/7046945/solution_images/52861522_00.png deleted file mode 100644 index 14b3cd41e6030258d92bc3189004f70b81f0ac56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7046945/solution_images/52861522_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48a16c50d8417b6bd0248caf4b5a06de9b818f6defdbd7df54118e3324242834 -size 2941 diff --git a/MM_Math/data_original_21/7047158/math/51367757_207.png b/MM_Math/data_original_21/7047158/math/51367757_207.png deleted file mode 100644 index a9273307551b0e968035ff994fcb62fe8d44ca82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51367757_207.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a47c4a79b7791c279fdafb5b3011a5edacc2d270c2a5428ac3031ea588c16151 -size 2747 diff --git a/MM_Math/data_original_21/7047158/math/51367758_219.png b/MM_Math/data_original_21/7047158/math/51367758_219.png deleted file mode 100644 index 309ffe33657126660390bf92fc7315911e6d8d2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51367758_219.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f755cadd68c4e334b436add6b76315889998d5d93456ffbbb9b98bf20fd2bff -size 4583 diff --git a/MM_Math/data_original_21/7047158/math/51367760_198.png b/MM_Math/data_original_21/7047158/math/51367760_198.png deleted file mode 100644 index f046f80a76da3a7d2f5c93d9c07195bc3a53f3e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51367760_198.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83c3c882b1259d5bce3f2621e91b86582c274852683a3757ae575fb149095df9 -size 2901 diff --git a/MM_Math/data_original_21/7047158/math/51367765_630.png b/MM_Math/data_original_21/7047158/math/51367765_630.png deleted file mode 100644 index ff0f501d229b152e22913b583db82282d19026b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51367765_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:738982a0dac8f4d7ef54872abfbd07be774905fc49cad9c4bd34fb46d1ec9037 -size 2528 diff --git a/MM_Math/data_original_21/7047158/math/51368488_624.png b/MM_Math/data_original_21/7047158/math/51368488_624.png deleted file mode 100644 index 2dd47e45105889b83f6668888cc714cde25f4432..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368488_624.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a91dcfc2c45085378bc3eeacb19251deca8fe8c21f547c6bd935fe7411248cf -size 6727 diff --git a/MM_Math/data_original_21/7047158/math/51368553_941.png b/MM_Math/data_original_21/7047158/math/51368553_941.png deleted file mode 100644 index 30e4df0ddf32cf18b2040e8324b34c71678f38b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368553_941.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70e8a96add1ff65f3927699766436d8ff17e41e133b2a24e4172fc78896cf178 -size 7924 diff --git a/MM_Math/data_original_21/7047158/math/51368566_184.png b/MM_Math/data_original_21/7047158/math/51368566_184.png deleted file mode 100644 index d34828400238a07dd651fb8723fdc3fe6fd228bd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368566_184.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ffd247d88b1aad487c574c7e91cf9de21892c8a2b8088a0313d2f3c09aef6305 -size 4151 diff --git a/MM_Math/data_original_21/7047158/math/51368721_173.png b/MM_Math/data_original_21/7047158/math/51368721_173.png deleted file mode 100644 index c96a86dd4ef0527cd7593cac13a32000af119ed8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368721_173.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:778a1ee9b644b08b5aacc1db366d70c27b833c66bd152a5aaeb9ddc085fd1e54 -size 4558 diff --git a/MM_Math/data_original_21/7047158/math/51368723_619.png b/MM_Math/data_original_21/7047158/math/51368723_619.png deleted file mode 100644 index 65e6b66968ec9a48ef8dd596bc0493e5e4589edc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368723_619.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:567451e40474c24c2f7ed240b950f3f182a59aaffcd020209e47681964b7f6df -size 6973 diff --git a/MM_Math/data_original_21/7047158/math/51368725_605.png b/MM_Math/data_original_21/7047158/math/51368725_605.png deleted file mode 100644 index 4481d96b53f69cfee9b6b121d6af649bdcbb7a46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368725_605.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f345ef864b5febe693e154e706c4e5b375613c6d04a8a81fadf38645cd328b9 -size 5309 diff --git a/MM_Math/data_original_21/7047158/math/51368820_150.png b/MM_Math/data_original_21/7047158/math/51368820_150.png deleted file mode 100644 index a93ae23d1a4c3b9c3c526dd9c9ba3c58882bab3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368820_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4d636d4d1953c63cb5ac2208f8323f0e12bd0f88b8e2e6cb9c375caf21c9ea5 -size 8514 diff --git a/MM_Math/data_original_21/7047158/math/51368822_162.png b/MM_Math/data_original_21/7047158/math/51368822_162.png deleted file mode 100644 index b46b479968d3c69b68fcfe6a238cf94677bf8ffa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368822_162.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:57f489d7fc880fae427f8c3b80e12d14b2d8ce8490c6c55273b65604bbae82a2 -size 5443 diff --git a/MM_Math/data_original_21/7047158/math/51368829_591.png b/MM_Math/data_original_21/7047158/math/51368829_591.png deleted file mode 100644 index e91fa8eb4ce2adc1cdaa02d08c64015b7c628eed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368829_591.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1146d1a56a9d5151c2b497dbf158ef52368e5bea3288478d260ecbf52a559dfb -size 5590 diff --git a/MM_Math/data_original_21/7047158/math/51368830_585.png b/MM_Math/data_original_21/7047158/math/51368830_585.png deleted file mode 100644 index 739412a4166521580fb7d0f3cd470842e8e40f81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368830_585.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:773ebad6c7479b70f81720acb7add5ac1beb61791137454d62c2bba2764d86e7 -size 19652 diff --git a/MM_Math/data_original_21/7047158/math/51368838_930.png b/MM_Math/data_original_21/7047158/math/51368838_930.png deleted file mode 100644 index 0f239a87d7aa4b555862f1c2867688f995254e42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368838_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a74fe309ced2399eec79ad39ab2bc3df5070037295bf487e1ec5710411bf5d5 -size 8030 diff --git a/MM_Math/data_original_21/7047158/math/51368926_578.png b/MM_Math/data_original_21/7047158/math/51368926_578.png deleted file mode 100644 index e742467d192e16fe1fe9cbf7e5ba877388a83cdc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368926_578.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b5f8d2c18bda9bad5ff6b460e67973d72b3d79020a964bc45c1a1cd228144f15 -size 2920 diff --git a/MM_Math/data_original_21/7047158/math/51368989_568.png b/MM_Math/data_original_21/7047158/math/51368989_568.png deleted file mode 100644 index be2700a10b82061700f66e90c5d1add72ea1f5cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51368989_568.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e03440671f3e986bc7c578eadfd918c838487ae93dece620abd4488c0ece7120 -size 6578 diff --git a/MM_Math/data_original_21/7047158/math/51369004_926.png b/MM_Math/data_original_21/7047158/math/51369004_926.png deleted file mode 100644 index 6681dddb333e750c0e9b7153b55de0fe83a208f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51369004_926.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1cfc883a2f00bb8e470babccbcb074f555462e025741c0dfd5e4f31ea1fcbd24 -size 5457 diff --git a/MM_Math/data_original_21/7047158/math/51369007_870.png b/MM_Math/data_original_21/7047158/math/51369007_870.png deleted file mode 100644 index bea1b23b96ea6c2d55f88c1574e867e52147d5bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51369007_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5aa7cabad49a513e7077b3346a9130ea9b014b769ed80ee3c9bb23fc44a10bd2 -size 44295 diff --git a/MM_Math/data_original_21/7047158/math/51369020_142.png b/MM_Math/data_original_21/7047158/math/51369020_142.png deleted file mode 100644 index 283097b09509679a3dda6c27e7b90eb172632bd1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51369020_142.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a77bc8e3bc2068f37355c68ab13829dd0041dca6252f896bb5d048982ce1a2b4 -size 2695 diff --git a/MM_Math/data_original_21/7047158/math/51369188_134.png b/MM_Math/data_original_21/7047158/math/51369188_134.png deleted file mode 100644 index b03ae088a3a46c4c356e1f75a34d68876e694e21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51369188_134.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e49a6d78c573426f8b3af1788b66f81643e44bc92077c3d3696a003e09b6884d -size 7867 diff --git a/MM_Math/data_original_21/7047158/math/51369206_8610.png b/MM_Math/data_original_21/7047158/math/51369206_8610.png deleted file mode 100644 index 79c925d4302601bc0b069a3166393f81cf19e7d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51369206_8610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4397e7271c1c047a26e46b0eaea3f841b32e3cbe1a9b0f7c0150eacf3e9c310 -size 34961 diff --git a/MM_Math/data_original_21/7047158/math/51369213_919.png b/MM_Math/data_original_21/7047158/math/51369213_919.png deleted file mode 100644 index 208115e6067f6c3fad41ad2fcc4aa45796b466cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51369213_919.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0af2c994c211e1d0db7eb00a7d1818c6742b9a6bb50e7d766c8ad54351116352 -size 34130 diff --git a/MM_Math/data_original_21/7047158/math/51369696_110.png b/MM_Math/data_original_21/7047158/math/51369696_110.png deleted file mode 100644 index 9cfe87a7e537f5edef8526ca31dd912924031a2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51369696_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:968ed09b1910b7976797d28fa1a30b3a9b89631daeb39ecc7f9a5fa35fd485c2 -size 6189 diff --git a/MM_Math/data_original_21/7047158/math/51369705_556.png b/MM_Math/data_original_21/7047158/math/51369705_556.png deleted file mode 100644 index 5eff2d6c2cc62b618fc10e34d4616b8bbc5375f6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51369705_556.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c7f3310464cd272f508c244f650f0345c36607cc6cff3d222b222fa99c4fa06 -size 3157 diff --git a/MM_Math/data_original_21/7047158/math/51369714_906.png b/MM_Math/data_original_21/7047158/math/51369714_906.png deleted file mode 100644 index da99154134c639719588da1e5e7a2a5a8252cf96..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51369714_906.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a20027914e36ff4c27e3e833768633ba240ea3c7c79cd6510bf09205515a8d4 -size 3765 diff --git a/MM_Math/data_original_21/7047158/math/51419577_801.png b/MM_Math/data_original_21/7047158/math/51419577_801.png deleted file mode 100644 index 1aebaf494f2784780b7e73696314cea029f0ea1b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419577_801.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2587ee15dfd6dc4b4cd5de0eb8659d749ad481e19c19cb63bafd2a29b7d6b83 -size 7508 diff --git a/MM_Math/data_original_21/7047158/math/51419578_790.png b/MM_Math/data_original_21/7047158/math/51419578_790.png deleted file mode 100644 index e049ad485839186cffd3aa9ea972080a51d0502b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419578_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae53c49c04dc75b7e04e16957ceed055ef77d39c4f3503368838f03d280f7440 -size 7316 diff --git a/MM_Math/data_original_21/7047158/math/51419593_990.png b/MM_Math/data_original_21/7047158/math/51419593_990.png deleted file mode 100644 index eea98066b08b977fc3d4af01568aa8c5d6d7ada5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419593_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bbb2711e527c7fd43cbb8f8461119fda9b3c9a88caaacd101ff59fcdd46b6259 -size 7727 diff --git a/MM_Math/data_original_21/7047158/math/51419663_380.png b/MM_Math/data_original_21/7047158/math/51419663_380.png deleted file mode 100644 index b35d42bec3a1713de7b205686b45d8b105fa590d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419663_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca41b49f40eee8c60eb4698ad11ad08b264d07643a761bfcc44c686abd1b93e4 -size 3200 diff --git a/MM_Math/data_original_21/7047158/math/51419666_370.png b/MM_Math/data_original_21/7047158/math/51419666_370.png deleted file mode 100644 index e0db644db1c19a2c2fe6f37fe29c58a98fa145e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419666_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a3c0c00de793757310a5c03ecc93d47ff953b4b469a07ce42669850b7a654fc -size 4206 diff --git a/MM_Math/data_original_21/7047158/math/51419668_780.png b/MM_Math/data_original_21/7047158/math/51419668_780.png deleted file mode 100644 index 1b18991bcbf17455d958f4a8514892e116fe19e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419668_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8074bc3c9e5ef6ae1d8c88b33c1f5fd2ca96cefc92c3edba018bff54bb85075 -size 5327 diff --git a/MM_Math/data_original_21/7047158/math/51419677_970.png b/MM_Math/data_original_21/7047158/math/51419677_970.png deleted file mode 100644 index a4198e196d18e9d577e57d7d6cf9cd483bc70c81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419677_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a7080f0f59299701f60e7bc29ab3d4c61123765c1eac1231ea71d2490f944c2b -size 4654 diff --git a/MM_Math/data_original_21/7047158/math/51419687_980.png b/MM_Math/data_original_21/7047158/math/51419687_980.png deleted file mode 100644 index 5d93cd8ec0051fc6916766db252690d71eae6e86..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419687_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ffc641a9bc7baef2eef6d23d7ea7abc1206b4d27f95a4bb41adebea72c195a5f -size 12653 diff --git a/MM_Math/data_original_21/7047158/math/51419792_350.png b/MM_Math/data_original_21/7047158/math/51419792_350.png deleted file mode 100644 index 35f6ff176489bdede2863536eed9ef7171cf9219..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419792_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe6ac09dfc89afbb6590e11340e5e4ec81d40abeff9b65ca2ada13221e6ab8b5 -size 3580 diff --git a/MM_Math/data_original_21/7047158/math/51419793_360.png b/MM_Math/data_original_21/7047158/math/51419793_360.png deleted file mode 100644 index 0015fccabefdbd675e2909bb518d5dfafe9446c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419793_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33cdda1a7c894fa94022273d56e24692e02824a938788dc19f8c1a3bac558b4f -size 4074 diff --git a/MM_Math/data_original_21/7047158/math/51419801_761.png b/MM_Math/data_original_21/7047158/math/51419801_761.png deleted file mode 100644 index 142820c3224ad5e262293a3e9d787a9ade056b77..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419801_761.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a71dfb21e2afab37ff6651491c5036f95521a0c32d912e38d3b191c8ceb039c -size 6369 diff --git a/MM_Math/data_original_21/7047158/math/51419802_770.png b/MM_Math/data_original_21/7047158/math/51419802_770.png deleted file mode 100644 index 437a6cc00c5d09822e2019f83f1d3ee608358c70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419802_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f6904bc3b4c002593259edd2f028885b58254d05d403081ab8430adb2bf4d0c5 -size 4726 diff --git a/MM_Math/data_original_21/7047158/math/51419892_340.png b/MM_Math/data_original_21/7047158/math/51419892_340.png deleted file mode 100644 index eefbf378b49e99627ce0033094d1ba7af58997c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419892_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ce5e891d726a0b2da1a2565ef6e8aaf42d2411f656ddc925b53cdd483b5c49e -size 6265 diff --git a/MM_Math/data_original_21/7047158/math/51419899_750.png b/MM_Math/data_original_21/7047158/math/51419899_750.png deleted file mode 100644 index 40f9aa7addd974bfbde60958aecfc61bd9be13f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51419899_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77279c63796edb7cecc09bf3f40cb19ad1d15d65456a15b00becdf73ab2bcaaa -size 6105 diff --git a/MM_Math/data_original_21/7047158/math/51434796_324.png b/MM_Math/data_original_21/7047158/math/51434796_324.png deleted file mode 100644 index 9137858b3ea02b86b3fc8b8653c8faaad7ea6301..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51434796_324.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97a6e421a724c3352be49e940ddd5a33ca0260733038efb8afeda3ee3c5203ae -size 5678 diff --git a/MM_Math/data_original_21/7047158/math/51434797_330.png b/MM_Math/data_original_21/7047158/math/51434797_330.png deleted file mode 100644 index 1328e02a82889a36438f4883ee6a1b8c9a827d8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51434797_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa1c97d8fb9ad00b56496e14f9e4531667db9762cc0d21f6f29aa525a589dcc8 -size 2364 diff --git a/MM_Math/data_original_21/7047158/math/51434804_740.png b/MM_Math/data_original_21/7047158/math/51434804_740.png deleted file mode 100644 index 65bd33ebcf3c79fa2ee41a2f495b544f541a9fec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51434804_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ceba1ba985d7a242eb023bd929ea6630c9c083c012973413ec1af10b564f8149 -size 4662 diff --git a/MM_Math/data_original_21/7047158/math/51434865_735.png b/MM_Math/data_original_21/7047158/math/51434865_735.png deleted file mode 100644 index cb3c1a34ad82acc1029fe0f9c797c37edbb370a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51434865_735.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10442fe5d90f24ca74a1b784e63b40b5c23359d68b0652114daa0e8082c9ef86 -size 17899 diff --git a/MM_Math/data_original_21/7047158/math/51434867_722.png b/MM_Math/data_original_21/7047158/math/51434867_722.png deleted file mode 100644 index 42654c231f4ad7fbbd23f7349eb9d82ebb824a0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51434867_722.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c8df300413a26a2af78e32e3cf81f5be79f649e44f763731d9f0e03a99c4702 -size 2845 diff --git a/MM_Math/data_original_21/7047158/math/51434956_316.png b/MM_Math/data_original_21/7047158/math/51434956_316.png deleted file mode 100644 index 199a7f1cd6ec072b54a9262c4bcb6ebff21f1e86..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51434956_316.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15a62e9fbac29de4553b729c52ddf809754c7d99bbe215d9e997c51a0262598e -size 6054 diff --git a/MM_Math/data_original_21/7047158/math/51434958_300.png b/MM_Math/data_original_21/7047158/math/51434958_300.png deleted file mode 100644 index 0751d4a7fcd091b4264580214be2bbdb52d01f1b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51434958_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f542d467a5bfc0359aee30020220a33f1c5e5e8f07a65705525d88330ea3b014 -size 8130 diff --git a/MM_Math/data_original_21/7047158/math/51434965_714.png b/MM_Math/data_original_21/7047158/math/51434965_714.png deleted file mode 100644 index 2df37a1fc7abb18d2c1dc8b95273c9d0c7366bd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51434965_714.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3b2eaa26c7b3bb37fa33501938b6b629a4319d01ca498a0a7de54980019e94e -size 9658 diff --git a/MM_Math/data_original_21/7047158/math/51434967_700.png b/MM_Math/data_original_21/7047158/math/51434967_700.png deleted file mode 100644 index 8698c520aeb6f89ac4e2ff289681885d6bbdde32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51434967_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2f72fafd5efcb0fcbc868b9666610d8640335292426e1cbdf7edfa28996b83d -size 4271 diff --git a/MM_Math/data_original_21/7047158/math/51434998_295.png b/MM_Math/data_original_21/7047158/math/51434998_295.png deleted file mode 100644 index e17aed2ff7dd13971df0a37adb066f78be183f53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51434998_295.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c49179bbd9373de2383d913f840ed344ed75eb82ee3ef98cf4082f40afac5e47 -size 7758 diff --git a/MM_Math/data_original_21/7047158/math/51435002_696.png b/MM_Math/data_original_21/7047158/math/51435002_696.png deleted file mode 100644 index 54cacee3d33c565b0d6f3d0ea75604c8f3e53d0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435002_696.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56e1864898de39e81a0736e6c645ad97dc68f43fdaa7d941874baa30fec4aaf3 -size 2910 diff --git a/MM_Math/data_original_21/7047158/math/51435091_681.png b/MM_Math/data_original_21/7047158/math/51435091_681.png deleted file mode 100644 index 1739ce8ba6e73ab4447552dcae5ccd83c80f256d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435091_681.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:73e081b3a2f820b6df896c30ec314c1b835a911c760e0d2549126bfaf4db09fd -size 2734 diff --git a/MM_Math/data_original_21/7047158/math/51435165_670.png b/MM_Math/data_original_21/7047158/math/51435165_670.png deleted file mode 100644 index 537a47fb7c7f390746f02b0668d8c5df6bf55e95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435165_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b98e9564918a75b1d95e1161e729c09bb6b33369c44613295c2ead297413ca0c -size 4299 diff --git a/MM_Math/data_original_21/7047158/math/51435241_648.png b/MM_Math/data_original_21/7047158/math/51435241_648.png deleted file mode 100644 index af29d02e14059e24176f93804342ec72c068d193..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435241_648.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7684bf0adb4366ab60b4f90c5a6306f16141a3857f64861c5936808fcf7e5a57 -size 2077 diff --git a/MM_Math/data_original_21/7047158/math/51435242_665.png b/MM_Math/data_original_21/7047158/math/51435242_665.png deleted file mode 100644 index ce8af8d09535bfdff58f73e56cf67cfaca19b0a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435242_665.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6100c56664b24a7992b1ee76a415863a60bf38733a6c6449acb253a35d933f2 -size 1928 diff --git a/MM_Math/data_original_21/7047158/math/51435245_656.png b/MM_Math/data_original_21/7047158/math/51435245_656.png deleted file mode 100644 index a93ed5fcc2ff27c6f391a1c3d85f9eb5597f7dac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435245_656.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af5786879a1238873462924bbafda161af04c22fd9b9eeefcbffa406b49de11e -size 1854 diff --git a/MM_Math/data_original_21/7047158/math/51435251_283.png b/MM_Math/data_original_21/7047158/math/51435251_283.png deleted file mode 100644 index 75d5b3225da4fe4a6376b29869830d4cc97b7f4d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435251_283.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d93ba43c40e7c3f94a9b660e8e75d24450a3f0094514d4db7caffa61ba866a71 -size 1992 diff --git a/MM_Math/data_original_21/7047158/math/51435258_964.png b/MM_Math/data_original_21/7047158/math/51435258_964.png deleted file mode 100644 index 0c410cff76f4d4b0c8652595374a037fa91658b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435258_964.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4baaed18a3e77514be965ae20237ffd08d316b8c5a26acadc18eed3e6fb15828 -size 6855 diff --git a/MM_Math/data_original_21/7047158/math/51435311_270.png b/MM_Math/data_original_21/7047158/math/51435311_270.png deleted file mode 100644 index bed91d585189561d3d4bafd2fa7583f4d200c51b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435311_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eeeda7cd2f2481dbb386f145293b9c9504b47d976389c9cea1d3735626170baf -size 3389 diff --git a/MM_Math/data_original_21/7047158/math/51435316_260.png b/MM_Math/data_original_21/7047158/math/51435316_260.png deleted file mode 100644 index 1ac4148b18ae4d00ccdf244e563ff763c9b1d08f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435316_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74b2d7f6665b91d199e9532dcb161638529feff4772e3f34d47f99825dcd20eb -size 3562 diff --git a/MM_Math/data_original_21/7047158/math/51435342_950.png b/MM_Math/data_original_21/7047158/math/51435342_950.png deleted file mode 100644 index a45c1adab38dd624eaf83d23c521b70537a143df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435342_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f6b8d63109ae6d03f9da289b7b0c65ffdb6981dc3476086be711a50a5cb89866 -size 10185 diff --git a/MM_Math/data_original_21/7047158/math/51435436_241.png b/MM_Math/data_original_21/7047158/math/51435436_241.png deleted file mode 100644 index 3affc6d8fab50754452bfaf75a58001ce65b6d93..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435436_241.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4533cc97da0f99d49db22ddcc5e3bede2b1cb9080c87b7a69dd88ea052e824b -size 8104 diff --git a/MM_Math/data_original_21/7047158/math/51435441_258.png b/MM_Math/data_original_21/7047158/math/51435441_258.png deleted file mode 100644 index 0f74014d7ae355df3db0891c1b1b7bb6f84b2e84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435441_258.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f111e90fd7358baf6b7d6cc000537964996e34108ccae7679c3ac84ad302559e -size 3945 diff --git a/MM_Math/data_original_21/7047158/math/51435468_222.png b/MM_Math/data_original_21/7047158/math/51435468_222.png deleted file mode 100644 index 463f78f058ca8b58b912f31f12a26049d19f7557..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435468_222.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:468cc2a852baafd1df50e053eed5091e1eb5184e6436655cfa38cb78a98adacd -size 8894 diff --git a/MM_Math/data_original_21/7047158/math/51435470_232.png b/MM_Math/data_original_21/7047158/math/51435470_232.png deleted file mode 100644 index 0df291dedd333dcd41829e3cd3caf3e091e0fcf5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51435470_232.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ee7109ba1d4313ac0b726d26b3ee537f4e475d60f848836e79951e002432b91 -size 2429 diff --git a/MM_Math/data_original_21/7047158/math/51546401_395.png b/MM_Math/data_original_21/7047158/math/51546401_395.png deleted file mode 100644 index 7332a0faee82db1b1e4a8843b60668fcb80dfce1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51546401_395.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37e8ca07231c0973ac321dd302cf26154c7f0d931a7bb1a7aa121ed5d91b966a -size 4585 diff --git a/MM_Math/data_original_21/7047158/math/51546405_844.jpg b/MM_Math/data_original_21/7047158/math/51546405_844.jpg deleted file mode 100644 index f08d58dbf14685927dab0f52652246cfa664c735..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51546405_844.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec435cd7cd3b8974be01ad5594229db068ff3330e802f41da6887b0199e87393 -size 4347 diff --git a/MM_Math/data_original_21/7047158/math/51546408_831.png b/MM_Math/data_original_21/7047158/math/51546408_831.png deleted file mode 100644 index fb624c08cebe3ccc7b6064140b972a047e238ba5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51546408_831.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a970b16f8db18b99f67bbe9a1e67080890f7bfdea8dd9f638d5245cf8c6b79a5 -size 3327 diff --git a/MM_Math/data_original_21/7047158/math/51546410_820.png b/MM_Math/data_original_21/7047158/math/51546410_820.png deleted file mode 100644 index 29d14ba0dfbf7172ae7d49f9166da26d02c3354f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/51546410_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:825fc49e0cf419c6ac81a5c4278fd8e323a0eca3e1c93836daa800117ffedfca -size 9159 diff --git a/MM_Math/data_original_21/7047158/math/52457273_5012.png b/MM_Math/data_original_21/7047158/math/52457273_5012.png deleted file mode 100644 index e009b354377a706950fbdbb10f36afad18ae39af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52457273_5012.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:564a8f42114321b90a379340dd206f563c54f024633ef6efea02f537c1c452b7 -size 2103 diff --git a/MM_Math/data_original_21/7047158/math/52457275_5217.png b/MM_Math/data_original_21/7047158/math/52457275_5217.png deleted file mode 100644 index a048dee7e8ca0e30abd02d0134a0c939b2ba004b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52457275_5217.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e68fa4933366266f874b3eb2ace1448afb4dd9d4e603bbb44b3bed585fdd0d21 -size 2537 diff --git a/MM_Math/data_original_21/7047158/math/52457281_899.png b/MM_Math/data_original_21/7047158/math/52457281_899.png deleted file mode 100644 index f2060442c10ee978c9210062e06b35a63ac607f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52457281_899.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:387d1a3e3f5637b905f5ff0c70a2dfb47599d35baa993dad15216f3f30b234f8 -size 2232 diff --git a/MM_Math/data_original_21/7047158/math/52457333_4911.png b/MM_Math/data_original_21/7047158/math/52457333_4911.png deleted file mode 100644 index 08eaac3d225127983c289b3ef1989c7b4813553c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52457333_4911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9508284c6bbaea9e0b7dfed34df2c3d70c05d00ad207a212e8ce2b53d046a56a -size 3072 diff --git a/MM_Math/data_original_21/7047158/math/52457337_5111.png b/MM_Math/data_original_21/7047158/math/52457337_5111.png deleted file mode 100644 index fc42957d96c6b75e926f3874117d5d11d95ade57..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52457337_5111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0796bf2af1f4567cef91f5c0e01d59d33d06d60c777460936314d82c0a3c9109 -size 2542 diff --git a/MM_Math/data_original_21/7047158/math/52458505_483.png b/MM_Math/data_original_21/7047158/math/52458505_483.png deleted file mode 100644 index bcb2e259f09b47242fc7d937af85871a3cdfbccd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52458505_483.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ca95c17dde98591dbe4a4667170916b31a3aff92adf9d7bbb58ed54d487d437 -size 1618 diff --git a/MM_Math/data_original_21/7047158/math/52511705_430.png b/MM_Math/data_original_21/7047158/math/52511705_430.png deleted file mode 100644 index 4120a3e5a14d8d3d7b0c388c6e02b12da86398ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52511705_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15afc7005cc4aa541eef3ef35f57739e5d765fbdc99553318e473a7f2382cfd7 -size 3657 diff --git a/MM_Math/data_original_21/7047158/math/52513495_58.png b/MM_Math/data_original_21/7047158/math/52513495_58.png deleted file mode 100644 index ad9007bfaa008196f8aeb486b21316cc59ed8e6d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52513495_58.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b624bef685d0f1116f18373c9acd5aefa3c75c873ad3a80d72a3cf794adb3ca0 -size 1750 diff --git a/MM_Math/data_original_21/7047158/math/52513499_424.png b/MM_Math/data_original_21/7047158/math/52513499_424.png deleted file mode 100644 index 4eb49a6e78400997f5ddd6dd9d498657279eea1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52513499_424.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d01fd16104dc6047d599fda4196ee1e46ba0ff03f4ad261deb8a89c0428ac29 -size 2623 diff --git a/MM_Math/data_original_21/7047158/math/52539248_4113.png b/MM_Math/data_original_21/7047158/math/52539248_4113.png deleted file mode 100644 index 8033655a247fe3cee0a72be5df467c2b92274190..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52539248_4113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34433374ca6ad87ea9436f4699a7238a549f5a5e51dc20f9b4db6945722bb130 -size 9319 diff --git a/MM_Math/data_original_21/7047158/math/52550870_21.png b/MM_Math/data_original_21/7047158/math/52550870_21.png deleted file mode 100644 index 824d89ec4231176a575dfe14e337ae6b49ad774a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52550870_21.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ce7b430cbe37ac43be60bdbbe9df9d24a074898d7f80636a2fa0df135c4ab39 -size 5686 diff --git a/MM_Math/data_original_21/7047158/math/52551286_48.png b/MM_Math/data_original_21/7047158/math/52551286_48.png deleted file mode 100644 index 4bb7a241119e2a5b96238ef71b2f493cba892541..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52551286_48.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21d49c29acee3b07414a3b5092d04bf67c5cf1ea08fc04fbd40be80945a2fa63 -size 5927 diff --git a/MM_Math/data_original_21/7047158/math/52551303_882.png b/MM_Math/data_original_21/7047158/math/52551303_882.png deleted file mode 100644 index 1f2db1d607074fa3ed9923dd7b96aa8ad2733a13..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52551303_882.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b202e41b9833c527d6ceaff2ce45623428611ac88e28539d3d45ec06d263cb99 -size 7936 diff --git a/MM_Math/data_original_21/7047158/math/52551631_00.png b/MM_Math/data_original_21/7047158/math/52551631_00.png deleted file mode 100644 index 2829ba4579c6acb01e0c4ff4b3a6dbf521b59aac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52551631_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76dbed50ed81e7c024fb823f1306086b6acba237512484af79ac3c79bb94369a -size 4846 diff --git a/MM_Math/data_original_21/7047158/math/52551635_10.png b/MM_Math/data_original_21/7047158/math/52551635_10.png deleted file mode 100644 index 161228b630da270f4a91fcf9412f1add187201ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52551635_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3fca93cc7fc7edb9d5c3a4f4c2bea6028fe98fd3ba321fa2fdcf7a16a1b0de2a -size 22936 diff --git a/MM_Math/data_original_21/7047158/math/52551645_400.png b/MM_Math/data_original_21/7047158/math/52551645_400.png deleted file mode 100644 index 082391a48de1ffda57a8285329300725bcb2f618..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52551645_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7b4e8f12f795bcd2f90cfe9f618cadc6797be146dad4262630de47ebb4ad91b -size 6340 diff --git a/MM_Math/data_original_21/7047158/math/52551715_30.png b/MM_Math/data_original_21/7047158/math/52551715_30.png deleted file mode 100644 index 034361bd453828bf61f324a67b742a0edc1b8373..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52551715_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3224a4e18f6add5f08209d08b12ce923961055504a0110103e30a7995a87a36 -size 1879 diff --git a/MM_Math/data_original_21/7047158/math/52574157_534.png b/MM_Math/data_original_21/7047158/math/52574157_534.png deleted file mode 100644 index 1c72b9a9927ca59c0549c43b60fb04b0843dfa0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52574157_534.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:36fc4c83fdf014f38700118ad805549d44e1f7c8452ce286bdaab3371e9b7908 -size 4076 diff --git a/MM_Math/data_original_21/7047158/math/52634468_811.png b/MM_Math/data_original_21/7047158/math/52634468_811.png deleted file mode 100644 index d8fb794eea22eb4af0ce7ede467d85501e5e4fc0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52634468_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6c973601911acc80fcd19b6f66694299ce053290e9c4edf068954a20bab16c0 -size 9643 diff --git a/MM_Math/data_original_21/7047158/math/52634473_479.png b/MM_Math/data_original_21/7047158/math/52634473_479.png deleted file mode 100644 index 74607109933c31df4c322bc21cff8c2c55f131f6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52634473_479.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb386328cf277218a5ca8df549daadb90a2ec761703ca3535e43969bc462f17b -size 8269 diff --git a/MM_Math/data_original_21/7047158/math/52634474_460.png b/MM_Math/data_original_21/7047158/math/52634474_460.png deleted file mode 100644 index 23e366bdb87f1ba526eaae958fd4a23d18e5b905..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52634474_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4160bb6e5a1c91267144726decaaef8eed62fe3ce858db077e166fddb76952f1 -size 8127 diff --git a/MM_Math/data_original_21/7047158/math/52634675_710.png b/MM_Math/data_original_21/7047158/math/52634675_710.png deleted file mode 100644 index 29d46ac0796fa198d595f0f9e8ec6ffd9356f9c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52634675_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef761be5ee0dfc1ecc19647aa7e7b2e0916ee315efc9f2b912c983e061391d79 -size 5718 diff --git a/MM_Math/data_original_21/7047158/math/52634676_69.png b/MM_Math/data_original_21/7047158/math/52634676_69.png deleted file mode 100644 index e981266cf48c906766c491b9aac11b3ceb8f6bed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52634676_69.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c72422f5ed3cd4ea3658060b09be91e982ab3f0bfc7f058385ad9e2957390ed7 -size 5237 diff --git a/MM_Math/data_original_21/7047158/math/52634681_458.png b/MM_Math/data_original_21/7047158/math/52634681_458.png deleted file mode 100644 index acd60ea7c1927813e78cb520919a4ebe07482b1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52634681_458.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:84ff04c240d232d0ffd818fad61d90c063f4cf4807bbf1a34378b9fe78f62492 -size 6655 diff --git a/MM_Math/data_original_21/7047158/math/52634686_443.png b/MM_Math/data_original_21/7047158/math/52634686_443.png deleted file mode 100644 index 2a6bcd992dfe72f68ff0566c2b6012067f4927da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52634686_443.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c44c008b351f2f8aaea779e42f76ba946c68c0429833aaad9eaefc74c2c242a6 -size 8050 diff --git a/MM_Math/data_original_21/7047158/math/52720328_850.png b/MM_Math/data_original_21/7047158/math/52720328_850.png deleted file mode 100644 index 1bd25e762895312ce61866fb9378fe392887f0d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/52720328_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82ca19856944bfe13ca487718898cf41188deff0dbcebd3e2c725ae9cb90099d -size 4211 diff --git a/MM_Math/data_original_21/7047158/math/53105790_101.png b/MM_Math/data_original_21/7047158/math/53105790_101.png deleted file mode 100644 index a40d4ca42d7b6fef43e39b77c88f991076c695c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/53105790_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5792ce890713a80e28a322e156b0bf6f4f7e158eded1208f81bb32fe01cd496 -size 10445 diff --git a/MM_Math/data_original_21/7047158/math/53105794_90.png b/MM_Math/data_original_21/7047158/math/53105794_90.png deleted file mode 100644 index 6b39235b82b90c730341451bfbedbde954c5ee3a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/53105794_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13d8915e18bc9a0e1806b7cf8a9e973ee0df61d885310c49e8b2157443494d15 -size 13006 diff --git a/MM_Math/data_original_21/7047158/math/53105799_540.png b/MM_Math/data_original_21/7047158/math/53105799_540.png deleted file mode 100644 index d9ac82fed0cccf272bb391c6d8aa15200faeb15e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/math/53105799_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1b90ee04368b377d2490cd1d74f71a28095e1b364ffdf22974481079b081f17 -size 8507 diff --git a/MM_Math/data_original_21/7047158/solution_images/51367757_200.png b/MM_Math/data_original_21/7047158/solution_images/51367757_200.png deleted file mode 100644 index aef3d80cabc43fac4365f872002193632a42721e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51367757_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5fa96107a39226231c0fa23aef0e08e91fc856b21c8fd64b35e2096b8e2ec95 -size 7746 diff --git a/MM_Math/data_original_21/7047158/solution_images/51368830_580.png b/MM_Math/data_original_21/7047158/solution_images/51368830_580.png deleted file mode 100644 index d2c14ced97d671236a348bf8735a952044656035..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51368830_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88a6c81baee8efbfca246be5f732eede636e8f55d3b8e1d2db78d9b9fe38500b -size 7589 diff --git a/MM_Math/data_original_21/7047158/solution_images/51368989_560.png b/MM_Math/data_original_21/7047158/solution_images/51368989_560.png deleted file mode 100644 index cf5e90ed0a44247232ff2cd1066297e96a5404c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51368989_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c320ed2190380731165897767430cf18c4531d2790f2dca3fe23430390418d16 -size 9847 diff --git a/MM_Math/data_original_21/7047158/solution_images/51369696_110.png b/MM_Math/data_original_21/7047158/solution_images/51369696_110.png deleted file mode 100644 index 646dd6fdb7caebbfbb9fea498d91809d5a1cba69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51369696_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9feb104698c1886cbfb5a5874158ad9183c0ef71a563dde15e65176522df51c1 -size 7668 diff --git a/MM_Math/data_original_21/7047158/solution_images/51369705_550.png b/MM_Math/data_original_21/7047158/solution_images/51369705_550.png deleted file mode 100644 index 2d9405b22ead4f86ff5efcccf8acc7b8bc8902a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51369705_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9eb86422b8b2bc28a79dc3092bf87037edff1ee1460931d25e2191e2cc7823d -size 15935 diff --git a/MM_Math/data_original_21/7047158/solution_images/51419578_790.png b/MM_Math/data_original_21/7047158/solution_images/51419578_790.png deleted file mode 100644 index 62a9b9376495a64f55d34507f50859b4eeaea5e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51419578_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ffd2a33978c021fb12af6dade4f571a959cb6621f63be92fbed70e8b66d05c3d -size 5485 diff --git a/MM_Math/data_original_21/7047158/solution_images/51419793_360.png b/MM_Math/data_original_21/7047158/solution_images/51419793_360.png deleted file mode 100644 index 54be38f6d1fe57806d27683a0a45676c1e0c19a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51419793_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6853fd57a6c9cfce546974f969daefca7e0c4f13f9fff312900151573c8b9c29 -size 4712 diff --git a/MM_Math/data_original_21/7047158/solution_images/51419802_770.png b/MM_Math/data_original_21/7047158/solution_images/51419802_770.png deleted file mode 100644 index 0650bb97102766fdf7ec3c29ab1c54d532973c22..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51419802_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a48bf84a164703d6eff376007ffdf86c19d9af8e87e16d955fac3952c49bafe0 -size 7579 diff --git a/MM_Math/data_original_21/7047158/solution_images/51419899_750.png b/MM_Math/data_original_21/7047158/solution_images/51419899_750.png deleted file mode 100644 index e13d91d154d1c3be7070e77a2919ddd284ddafd0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51419899_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb4ebbd04597a5285b8580779b9bffce8cde6c0fe1c793fa5cc6f53bb437c0ce -size 10779 diff --git a/MM_Math/data_original_21/7047158/solution_images/51434797_330.png b/MM_Math/data_original_21/7047158/solution_images/51434797_330.png deleted file mode 100644 index 1328e02a82889a36438f4883ee6a1b8c9a827d8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51434797_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa1c97d8fb9ad00b56496e14f9e4531667db9762cc0d21f6f29aa525a589dcc8 -size 2364 diff --git a/MM_Math/data_original_21/7047158/solution_images/51434958_300.png b/MM_Math/data_original_21/7047158/solution_images/51434958_300.png deleted file mode 100644 index dc35d21292a805a7192fb49d900a7e8e626f72bc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51434958_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b07c47b64e545a1beca4a6c0090c7f68f3725636c32a7499b4b9c178ed2cec0b -size 5346 diff --git a/MM_Math/data_original_21/7047158/solution_images/51434967_700.png b/MM_Math/data_original_21/7047158/solution_images/51434967_700.png deleted file mode 100644 index 7b04baac6cdbcb6ed743f3264129da4a73800dc1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51434967_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1eb7318903302f06c2e52dc123558476535ff3f2c1b5438e49bc7304c82b9b01 -size 8386 diff --git a/MM_Math/data_original_21/7047158/solution_images/51434998_290.png b/MM_Math/data_original_21/7047158/solution_images/51434998_290.png deleted file mode 100644 index 983b51097d02dd986daff91dfb94374f7fca134d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51434998_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a3d3eb0432c85627ed7e1b319d61ea9b5426d045ef134e668aad3da3210a54b -size 6450 diff --git a/MM_Math/data_original_21/7047158/solution_images/51435002_690.png b/MM_Math/data_original_21/7047158/solution_images/51435002_690.png deleted file mode 100644 index 59a9b4ffb1179b20ebd38c874d34b6d46867505c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51435002_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5c8b5fcf73fc7e0fa51ff96b3eb0461580a9bff4baa97e2851d4eb5ace02dff9 -size 6096 diff --git a/MM_Math/data_original_21/7047158/solution_images/51435091_680.png b/MM_Math/data_original_21/7047158/solution_images/51435091_680.png deleted file mode 100644 index 49676a1da7dbafa332957bb4969dcad1f952d6fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51435091_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b2fa6a5ee0a4569f568923471630aee43061583027b800a13ca3bc1cad8a5fd -size 6068 diff --git a/MM_Math/data_original_21/7047158/solution_images/51435311_270.png b/MM_Math/data_original_21/7047158/solution_images/51435311_270.png deleted file mode 100644 index 4fcfc16ad1792ec45ae54ca7edeb3009dc88e98d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51435311_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60e4036013f5e8a8b6453577bacb8c5cb5ae0c842090d786c5bb1f8a1200ad9e -size 3564 diff --git a/MM_Math/data_original_21/7047158/solution_images/51435436_240.png b/MM_Math/data_original_21/7047158/solution_images/51435436_240.png deleted file mode 100644 index a3d238e092a0ad816bb7d13ba38bfcf8d9733464..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51435436_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:988efaf03a815a3d4b2a469e6a12041bb27cfa88a949383302c54d3740b9f551 -size 7484 diff --git a/MM_Math/data_original_21/7047158/solution_images/51435441_254.png b/MM_Math/data_original_21/7047158/solution_images/51435441_254.png deleted file mode 100644 index 0f74014d7ae355df3db0891c1b1b7bb6f84b2e84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51435441_254.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f111e90fd7358baf6b7d6cc000537964996e34108ccae7679c3ac84ad302559e -size 3945 diff --git a/MM_Math/data_original_21/7047158/solution_images/51435470_230.png b/MM_Math/data_original_21/7047158/solution_images/51435470_230.png deleted file mode 100644 index 4fe94e4aefe7a3b726d19cfc6a45942c467c9ef7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51435470_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b95f9b96465bb460e9c896e2a1f9dcc805e58e7b6e728fd4f3b7d33b3372031a -size 4206 diff --git a/MM_Math/data_original_21/7047158/solution_images/51546401_392.png b/MM_Math/data_original_21/7047158/solution_images/51546401_392.png deleted file mode 100644 index 118e8596e3222b8251975c23e8936654a8b7bd77..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51546401_392.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fda72c4dcce0d2e5142134512455b28d8c072a7727d5e267fcdab3c2ce335d90 -size 4968 diff --git a/MM_Math/data_original_21/7047158/solution_images/51546410_820.png b/MM_Math/data_original_21/7047158/solution_images/51546410_820.png deleted file mode 100644 index c7e78fe88b1c662948f6dfe25715b42655ad0b26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/51546410_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b073071dd4a38f79f5a0486754af3e80d652bd3e406f4169b2ea45f3078f762d -size 43856 diff --git a/MM_Math/data_original_21/7047158/solution_images/52457275_521.png b/MM_Math/data_original_21/7047158/solution_images/52457275_521.png deleted file mode 100644 index 4bffac70ad2e36784533a1c11aef5ba50492d081..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52457275_521.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e3f9b88d3395a85e9bf292e25c71e37a31f8348c3cb9f4b79e86570af36212d -size 6528 diff --git a/MM_Math/data_original_21/7047158/solution_images/52457333_490.png b/MM_Math/data_original_21/7047158/solution_images/52457333_490.png deleted file mode 100644 index 4fb8db8c11bea7a357319ca59ebf1c8f2d29c3ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52457333_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fec51502699b03eb504a82b0ae8357c1126372cb8106fb6dbf4c48c27a805e4a -size 3610 diff --git a/MM_Math/data_original_21/7047158/solution_images/52458505_482.png b/MM_Math/data_original_21/7047158/solution_images/52458505_482.png deleted file mode 100644 index 15bb49267641648aab421d91af630e0cb7f10804..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52458505_482.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18026dab133e1aea3b6fd6cdccb2c678863fececff2807ca3a1704e43866e284 -size 7483 diff --git a/MM_Math/data_original_21/7047158/solution_images/52513499_420.png b/MM_Math/data_original_21/7047158/solution_images/52513499_420.png deleted file mode 100644 index 81241ced86d0c3ce0d8e2fb09e521818741d8c5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52513499_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40326c3b1b89d2ba42f26bac5555f7c397113f074caf2aee9f64e3b9d8f0e8df -size 3069 diff --git a/MM_Math/data_original_21/7047158/solution_images/52539248_410.png b/MM_Math/data_original_21/7047158/solution_images/52539248_410.png deleted file mode 100644 index cf5c8d69805fdefbc6eed03181381fb706df6d92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52539248_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:685c6448a6b87a40e803f0f59217556fbda5b63bd962a8b79a4e391078fc85b1 -size 20121 diff --git a/MM_Math/data_original_21/7047158/solution_images/52550870_20.png b/MM_Math/data_original_21/7047158/solution_images/52550870_20.png deleted file mode 100644 index 8eba87d187b0856fe7e79c7e296a9f8e12f281ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52550870_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2107577369aa685d36ea9248f1ec6544956336075428690b5820c93ddd9d2785 -size 7669 diff --git a/MM_Math/data_original_21/7047158/solution_images/52551286_40.png b/MM_Math/data_original_21/7047158/solution_images/52551286_40.png deleted file mode 100644 index 6d5d46d44cd506f2a69f0dcb5c08bfde5f8e96c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52551286_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:552464279aed9ace035cf13afd97ebd8e5bd6dd5abd336790e2da912804a062e -size 4259 diff --git a/MM_Math/data_original_21/7047158/solution_images/52551635_10.png b/MM_Math/data_original_21/7047158/solution_images/52551635_10.png deleted file mode 100644 index fd5b5a8e9e2c9402462705d5b97c60b16f0ede5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52551635_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4f5fc902c0187033d7c3f78cee7f0bd6e1a0706990792a083f27059e25fed7d -size 21841 diff --git a/MM_Math/data_original_21/7047158/solution_images/52551645_400.png b/MM_Math/data_original_21/7047158/solution_images/52551645_400.png deleted file mode 100644 index 9cb0c6f4014c3a35c92060b9658fee74807f4677..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52551645_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ad529dfadeda70b1c3133f8c3a93d3ed3ae0a04356c4ceb49a8e5ab290e4a6e -size 2838 diff --git a/MM_Math/data_original_21/7047158/solution_images/52634468_80.png b/MM_Math/data_original_21/7047158/solution_images/52634468_80.png deleted file mode 100644 index 1a55e00fbdb08e1398b41243cef43a86e9f8ebee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52634468_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d973adf912c257c6a18448be372299fc68eb46991b7efe969c44946ea369f7ef -size 3462 diff --git a/MM_Math/data_original_21/7047158/solution_images/52634474_460.png b/MM_Math/data_original_21/7047158/solution_images/52634474_460.png deleted file mode 100644 index e397b0003c402a2c47ba7be1e51105f887d9a632..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52634474_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae31713c716d7da8017238048354c9fd7d8402b7b2c838a4192a202349201d40 -size 8423 diff --git a/MM_Math/data_original_21/7047158/solution_images/52634686_440.png b/MM_Math/data_original_21/7047158/solution_images/52634686_440.png deleted file mode 100644 index c480da198cedaf55a9c4ee9b95208e6473061b5c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047158/solution_images/52634686_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3583944bc06fa3c1664618d906ec2d86b57f45a781bf82c9fd194960e056f892 -size 8628 diff --git a/MM_Math/data_original_21/7047897/math/51545363_350.png b/MM_Math/data_original_21/7047897/math/51545363_350.png deleted file mode 100644 index e379adf4791713c53d74a50833f9023db53e6070..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/51545363_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ffe3a7d3c9c88b0b3febc48a7819d3f5b686dab999fcc152e358956e1b372054 -size 3203 diff --git a/MM_Math/data_original_21/7047897/math/51545371_981.png b/MM_Math/data_original_21/7047897/math/51545371_981.png deleted file mode 100644 index fba58d5604dd01824ef51382ec1cb16fbee920d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/51545371_981.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:27cd3774f7698d9c8003758cc81976ff19982ece880e21d73d5605b31386710a -size 5712 diff --git a/MM_Math/data_original_21/7047897/math/51545374_956.png b/MM_Math/data_original_21/7047897/math/51545374_956.png deleted file mode 100644 index b78210b35b3c7abaf875ff67a3fba4288f478e9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/51545374_956.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18d367a63083ca1101a9aa53d8c96ae2bbeeef326cd2679a1d3d3376c003b0e2 -size 3132 diff --git a/MM_Math/data_original_21/7047897/math/51545384_5610.png b/MM_Math/data_original_21/7047897/math/51545384_5610.png deleted file mode 100644 index 2fa9b0ba051232269d97ca744769ffe57e8513c5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/51545384_5610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:348cebafebb3869c39159deee32030f5cfdec494bfaa10599f68f6da6eb7eb96 -size 11987 diff --git a/MM_Math/data_original_21/7047897/math/51545407_25.png b/MM_Math/data_original_21/7047897/math/51545407_25.png deleted file mode 100644 index 3a2e7bb8e29cb62c52b0c07f407bab4f9c3be939..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/51545407_25.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:259c90e8efdc852ac34397d246b915fbfd253517f6658faa25e527cc9fe41a94 -size 2938 diff --git a/MM_Math/data_original_21/7047897/math/51545444_480.png b/MM_Math/data_original_21/7047897/math/51545444_480.png deleted file mode 100644 index 92e2ef3d7ed44af15e8291b55ad0d0b213af850f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/51545444_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea396f2b190d1fe8ae6098511d403215d38649adead880b142c7784574be80c4 -size 2364 diff --git a/MM_Math/data_original_21/7047897/math/51545480_144.png b/MM_Math/data_original_21/7047897/math/51545480_144.png deleted file mode 100644 index d3db12a459c68549096655131e77f1a1ff0a3ec1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/51545480_144.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:020633d768041ebe12308510731dac65137d678d44e032911ea858bdf21a5e18 -size 3678 diff --git a/MM_Math/data_original_21/7047897/math/51545511_32.png b/MM_Math/data_original_21/7047897/math/51545511_32.png deleted file mode 100644 index 3467b801a4a028dfbc370159f4654c81b6a42750..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/51545511_32.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4c1083df8eefd33d91b9b3f441ae47fbb44e4c93b49813dd985d4d6566956fd -size 2602 diff --git a/MM_Math/data_original_21/7047897/math/51545519_363.png b/MM_Math/data_original_21/7047897/math/51545519_363.png deleted file mode 100644 index 21c27527ae94db0592589909d27dcab1809e1585..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/51545519_363.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33e82898f6a0c8f0fb326e3509a7f0ede230e39f0433dd4966575b643bc3086f -size 4666 diff --git a/MM_Math/data_original_21/7047897/math/52603089_151.png b/MM_Math/data_original_21/7047897/math/52603089_151.png deleted file mode 100644 index 9221391583adf895bf2365a1c6396b0984578de8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603089_151.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe44d34eab44f65a34480a044618a6874614d8c5e1bd89f4125cd4f98c81b475 -size 32820 diff --git a/MM_Math/data_original_21/7047897/math/52603090_111.png b/MM_Math/data_original_21/7047897/math/52603090_111.png deleted file mode 100644 index 15f27158ee1e028a69beb77aaeafc36fe9d41b24..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603090_111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f66b7820f7194eee23d04b811818938ef467d21024de6ee7de1259b25b11f0d -size 10121 diff --git a/MM_Math/data_original_21/7047897/math/52603188_120.png b/MM_Math/data_original_21/7047897/math/52603188_120.png deleted file mode 100644 index 3bef18ad9eb99da5803ebe5f8b984ca48a1e749b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603188_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19d8a705fd534dbbca29fd18c9c654f90f924b4fc1cd3c052d71e58db7e70c22 -size 6129 diff --git a/MM_Math/data_original_21/7047897/math/52603194_09.png b/MM_Math/data_original_21/7047897/math/52603194_09.png deleted file mode 100644 index 2e439ab47bdb11308a3223f649ec3e644699a48a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603194_09.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b0e858bb47844cc8a2c9c2600145de53deb9364881d5d086d434c548011f889 -size 15022 diff --git a/MM_Math/data_original_21/7047897/math/52603218_394.png b/MM_Math/data_original_21/7047897/math/52603218_394.png deleted file mode 100644 index 74a67a6a1588f63642094f9d19d876dd44be806a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603218_394.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d46e269e1157fa843f8b3d94b978160039ab2d41fbbd838582f358389bdf701 -size 2538 diff --git a/MM_Math/data_original_21/7047897/math/52603249_400.png b/MM_Math/data_original_21/7047897/math/52603249_400.png deleted file mode 100644 index a181eef3cd7d3e3b3f5d187b5f260f278180c380..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603249_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a825a53af074765983bbe23dac4544d8d13a7299895ed562326407e21bc7100e -size 23092 diff --git a/MM_Math/data_original_21/7047897/math/52603281_520.png b/MM_Math/data_original_21/7047897/math/52603281_520.png deleted file mode 100644 index 4fec37f3401f4c3cb3fe39b3f7ea541b87dc1d6f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603281_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41a0981d334930f1bf39f1bb796940e6b0759571c33fd3507b1c0702d0efc3ef -size 2321 diff --git a/MM_Math/data_original_21/7047897/math/52603284_440.png b/MM_Math/data_original_21/7047897/math/52603284_440.png deleted file mode 100644 index 38edcda0107166d5a594dcb9e6930413d3f05c53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603284_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fccfb3920f898cdb169c3b53da7c8a1bf4806c384a6a7e050190e94f48f05b1 -size 2545 diff --git a/MM_Math/data_original_21/7047897/math/52603365_53.png b/MM_Math/data_original_21/7047897/math/52603365_53.png deleted file mode 100644 index efac1c78b42dc22b59a3db17f66e54440a4e2ad8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603365_53.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f36e8646756c01e8195f5ce194717ec28989e8a5bc3830ab906b26c559da03b7 -size 49305 diff --git a/MM_Math/data_original_21/7047897/math/52603481_330.png b/MM_Math/data_original_21/7047897/math/52603481_330.png deleted file mode 100644 index e434efd6abc32c237d9433754e4f849879ea2f01..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603481_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:400ca6bbae18f0503aad3a87eb2f5b995370ff3b64c45c1269d526f672657208 -size 3444 diff --git a/MM_Math/data_original_21/7047897/math/52603482_490.png b/MM_Math/data_original_21/7047897/math/52603482_490.png deleted file mode 100644 index a1fcfb1e69132c421ccc6acf0fb1fc91175a11ae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603482_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f618e56247c4a0e5d7bbfdea4c2afe9098085553a0c7650a89f162cbf861aa79 -size 67855 diff --git a/MM_Math/data_original_21/7047897/math/52603508_500.png b/MM_Math/data_original_21/7047897/math/52603508_500.png deleted file mode 100644 index 8112b598fced218aadf48157b3558d2e57970949..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603508_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e183128cd63809d7a6e581a0f19e596ac0aa5dc4990c5e3202aa16128218211 -size 2980 diff --git a/MM_Math/data_original_21/7047897/math/52603529_65.png b/MM_Math/data_original_21/7047897/math/52603529_65.png deleted file mode 100644 index b138817c3a14357d92dc37c20c7cbdb1c1e21f02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603529_65.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a997c5b9bbfe597c2aad6bbeb591172d8d6988772874626fb2b004d10b00baa1 -size 7038 diff --git a/MM_Math/data_original_21/7047897/math/52603530_99.png b/MM_Math/data_original_21/7047897/math/52603530_99.png deleted file mode 100644 index 6a92ff4d79b732674c4dd77cb42bb9df316d56a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603530_99.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5814ca357492e7ba6520e59d8fa5571281220ef650d0cf66efd7476d01e32d5a -size 40315 diff --git a/MM_Math/data_original_21/7047897/math/52603537_597.png b/MM_Math/data_original_21/7047897/math/52603537_597.png deleted file mode 100644 index d955b001b6c1d0fe6bb9ecc92c2b61426fe19611..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603537_597.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1eee54bcb62c32d8b4ad7b698eda7335f88752e0b1260c774741116e3df06b66 -size 14283 diff --git a/MM_Math/data_original_21/7047897/math/52603574_580.png b/MM_Math/data_original_21/7047897/math/52603574_580.png deleted file mode 100644 index e25fe69185bf598bd9d075fe689fdaade465ad70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603574_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:378289dd358788567732b97f2c8527cad2cb8a2c51f4d7aa96c15b804d2a9032 -size 56822 diff --git a/MM_Math/data_original_21/7047897/math/52603599_570.png b/MM_Math/data_original_21/7047897/math/52603599_570.png deleted file mode 100644 index 183ba42f9041eb579a973f2abaa285326f396e8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603599_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b03ae11336610ed3823b5ec45d6488ded92d7b8587b56f3bb0a3f7e4602d761c -size 4145 diff --git a/MM_Math/data_original_21/7047897/math/52603600_510.png b/MM_Math/data_original_21/7047897/math/52603600_510.png deleted file mode 100644 index 18958dc51d317439e048998605ec3917c8ddd240..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603600_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58b1ad40f9ab7ad0a82328c9f7d549434fd4ed4e9ab19a9742000307f1030308 -size 3863 diff --git a/MM_Math/data_original_21/7047897/math/52603636_890.png b/MM_Math/data_original_21/7047897/math/52603636_890.png deleted file mode 100644 index 6da825e9b56baa5ac90c8dccce8e7e1f6f7763a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603636_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfb94fb36359c8f19a7fb359a6d29b7c5b8ca11da576f27b931046ae655610e9 -size 7566 diff --git a/MM_Math/data_original_21/7047897/math/52603699_967.png b/MM_Math/data_original_21/7047897/math/52603699_967.png deleted file mode 100644 index 191a4f1100b65d3dbaab8dae0dd1744ab8781a36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603699_967.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc5c43c1e846877446ee5d98e8752efa7252678a62f6fa80474cbb45ee46b685 -size 161316 diff --git a/MM_Math/data_original_21/7047897/math/52603699_968.png b/MM_Math/data_original_21/7047897/math/52603699_968.png deleted file mode 100644 index 4a6769996df4bd33fd267f5cb7bd29ddfb40529d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603699_968.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83505582a46fef0706eb87d7a399db84ca705fdd9aac833ac7370dde0fe902d9 -size 89169 diff --git a/MM_Math/data_original_21/7047897/math/52603721_380.png b/MM_Math/data_original_21/7047897/math/52603721_380.png deleted file mode 100644 index 3426d4823a95aff3c245a8e06d2f8adb7e5006f6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603721_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a08782b394b35ca7fbb253ae2fbdfc06d3459d864cd5191bf026bbd8ba54698 -size 5588 diff --git a/MM_Math/data_original_21/7047897/math/52603847_17.png b/MM_Math/data_original_21/7047897/math/52603847_17.png deleted file mode 100644 index 0b077ab38edad1c20b5c048fa9d830d4b494a4ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603847_17.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f6bc186a5bdfd4b2e38cc1bc5cc5d8e651381c713f649d42fcc1644442b98a86 -size 3818 diff --git a/MM_Math/data_original_21/7047897/math/52603850_348.png b/MM_Math/data_original_21/7047897/math/52603850_348.png deleted file mode 100644 index 94e8b3d8b3399e4d525f52d9e956aad1d8f06dfa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603850_348.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28d1632d06c212e433374bde2e59590980f3b8df9f4f225074e6c365a838e568 -size 66819 diff --git a/MM_Math/data_original_21/7047897/math/52603854_619.png b/MM_Math/data_original_21/7047897/math/52603854_619.png deleted file mode 100644 index 971e2143c03e6f961078efdf882e67596962809f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52603854_619.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc5c786f30f81163d621d11759e7cd200dc0cb941c8983534d58c4dd800f1b72 -size 5315 diff --git a/MM_Math/data_original_21/7047897/math/52604042_410.png b/MM_Math/data_original_21/7047897/math/52604042_410.png deleted file mode 100644 index 1320fc65648582b4f3c2feda2c4ef3db02fae251..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604042_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a2b9f40e2d4724140f4d4bdb08ed0253fc5a05d3757a5d5fb4b12797a7d10c5 -size 26668 diff --git a/MM_Math/data_original_21/7047897/math/52604050_880.png b/MM_Math/data_original_21/7047897/math/52604050_880.png deleted file mode 100644 index e29293e521bcbb6c5960125cd4946ddf5b95e163..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604050_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7063f9a1e69df20961cfcff92d3465fe5a1bed762a3b5dc4b3fc8e69d75e5e6 -size 3017 diff --git a/MM_Math/data_original_21/7047897/math/52604074_450.png b/MM_Math/data_original_21/7047897/math/52604074_450.png deleted file mode 100644 index 8e5ff878479f90647ca2f4545d1a73666444de51..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604074_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0509a48dd1e79c7a6712a459d50e1ade383965e4d922ed6942d57736c7bdf6d0 -size 49100 diff --git a/MM_Math/data_original_21/7047897/math/52604077_460.png b/MM_Math/data_original_21/7047897/math/52604077_460.png deleted file mode 100644 index a8f2599b0334653d405f501bd504e83f62f6037e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604077_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13d2b89f9c82e2f629da0e65883d9ad26166d55a051e76fd67e68c344317312e -size 2953 diff --git a/MM_Math/data_original_21/7047897/math/52604137_71.png b/MM_Math/data_original_21/7047897/math/52604137_71.png deleted file mode 100644 index baecda2d391ecf3b89b2643f007a72c6e245402b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604137_71.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f96caa6c043dccce84db41db99c67259504c055105183b3211919cca53ab0740 -size 5246 diff --git a/MM_Math/data_original_21/7047897/math/52604175_550.png b/MM_Math/data_original_21/7047897/math/52604175_550.png deleted file mode 100644 index cb0bd8d13a436ef47834d19e80b428abb4f61541..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604175_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2e0c1090d3e80913284d8049facddda0c5aa2f8e914858b65e060157913d23a -size 17033 diff --git a/MM_Math/data_original_21/7047897/math/52604233_428.png b/MM_Math/data_original_21/7047897/math/52604233_428.png deleted file mode 100644 index b0eacac1d48c466da25d4b3227fe8fcf60a8a618..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604233_428.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:016c4306e54936baaf577242250a541c3a3051e2d7652fcc71bcf4946e0e9fbf -size 3424 diff --git a/MM_Math/data_original_21/7047897/math/52604265_82.png b/MM_Math/data_original_21/7047897/math/52604265_82.png deleted file mode 100644 index 9b46d3a6d92255dee282b63b0d078341ecf5d625..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604265_82.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:170d864dd256ba78ba8e101f31d29b7854e8798e08b2a5e3d2bfca0a3886f092 -size 2471 diff --git a/MM_Math/data_original_21/7047897/math/52604307_970.png b/MM_Math/data_original_21/7047897/math/52604307_970.png deleted file mode 100644 index a162be48180b14587705e43dce21187c8c17f72e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604307_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b66648d234058ff40c4f7f7ec495771bc7218f9306ead0795b320c7f390f8c5e -size 2372 diff --git a/MM_Math/data_original_21/7047897/math/52604340_470.png b/MM_Math/data_original_21/7047897/math/52604340_470.png deleted file mode 100644 index eacbdbdd98819c02d5f4f17aa11d3fdb875567ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604340_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4c61aca4bade492ae7a369ee34bf75b156dfaaae5d954b375b63d541e9c5bb6c -size 5656 diff --git a/MM_Math/data_original_21/7047897/math/52604387_430.png b/MM_Math/data_original_21/7047897/math/52604387_430.png deleted file mode 100644 index a7dfecf631690f4f947572b8c2812517dae40320..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52604387_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e2e08afb5502b5f674733d9d723e471552851631a34aa273d0b8c3f0e914d90 -size 4487 diff --git a/MM_Math/data_original_21/7047897/math/52653195_700.png b/MM_Math/data_original_21/7047897/math/52653195_700.png deleted file mode 100644 index 18fddc38668533a71d6885aaa4e401692498e569..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653195_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3df948727791bfaf8e1d01ef8131c76a43703d9ad440e751b311c37054ffffd3 -size 34434 diff --git a/MM_Math/data_original_21/7047897/math/52653199_910.png b/MM_Math/data_original_21/7047897/math/52653199_910.png deleted file mode 100644 index e3b7a484eec50b3f111a5e8558b3a39b8912f473..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653199_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91a13e2f22dfdaac141442b8c20d07bf1dc37eba5d6a0a5e056f41db0c16db11 -size 2124 diff --git a/MM_Math/data_original_21/7047897/math/52653234_803.png b/MM_Math/data_original_21/7047897/math/52653234_803.png deleted file mode 100644 index 19ef3f8c38a1726dfaddfd5e5b95e5244c33f37d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653234_803.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:038a5bf35e9ba7d7ec10571c87534bde883fb8ccb2ee8b9806b7cb5ce57d1483 -size 18456 diff --git a/MM_Math/data_original_21/7047897/math/52653260_270.png b/MM_Math/data_original_21/7047897/math/52653260_270.png deleted file mode 100644 index 16d8038fd68d2ca2f68a162fdff1af9b017e0af1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653260_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ac6d58739706e2657c193e3b85b3f18547b469526865633978c87146db1c99c -size 2446 diff --git a/MM_Math/data_original_21/7047897/math/52653337_720.png b/MM_Math/data_original_21/7047897/math/52653337_720.png deleted file mode 100644 index 8e5bfeb3594f43f1418467c17c0e667e1cb6948d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653337_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:484424d7a79d30b479618376d40df9fe25abccc6c87feb4ee0a689ca379314b1 -size 46675 diff --git a/MM_Math/data_original_21/7047897/math/52653340_920.png b/MM_Math/data_original_21/7047897/math/52653340_920.png deleted file mode 100644 index 7f34bbcfe00b89abfc85da94ae0d5cf15e22d424..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653340_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5c44eb4ef54e5647f6c5b87b052d331088b8cc09ef99c852004043fb8ca86493 -size 3285 diff --git a/MM_Math/data_original_21/7047897/math/52653366_740.png b/MM_Math/data_original_21/7047897/math/52653366_740.png deleted file mode 100644 index 81a5be1e23ed561713706716cada99a8070111b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653366_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66b9e80e49f6cce18c235eea0d1da860594954c7baa0ad35aae2243942970752 -size 7055 diff --git a/MM_Math/data_original_21/7047897/math/52653430_253.png b/MM_Math/data_original_21/7047897/math/52653430_253.png deleted file mode 100644 index 15892b7850b7de811108471d20757deea953e183..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653430_253.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12c23f0fba9cbfe6a45958a3c548260f3bfd3448c5b0650e959cf6b9ef62eeb0 -size 50288 diff --git a/MM_Math/data_original_21/7047897/math/52653437_905.png b/MM_Math/data_original_21/7047897/math/52653437_905.png deleted file mode 100644 index 70e627d415e7e7c71ed370fdd2cffcf039725544..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653437_905.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53e31c9b911c6566956d6f92d6512a79b05543f7eb6e3292de11bbfd4c23f3a0 -size 46278 diff --git a/MM_Math/data_original_21/7047897/math/52653459_286.png b/MM_Math/data_original_21/7047897/math/52653459_286.png deleted file mode 100644 index 0ec496e15ee139272deb476ad5754913be114cd5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653459_286.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3098f1bbb07b648d20a080390cc3fe4da7040bc443b0a1a583d08d76fa6b26fa -size 28483 diff --git a/MM_Math/data_original_21/7047897/math/52653482_243.png b/MM_Math/data_original_21/7047897/math/52653482_243.png deleted file mode 100644 index ffafe6067c68ee22e5219eea1523ba7552cb6960..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653482_243.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f559faa01284f5387abbf2a556810efe65195012ed95fcc3689ccb6be5cd212 -size 2432 diff --git a/MM_Math/data_original_21/7047897/math/52653511_212.png b/MM_Math/data_original_21/7047897/math/52653511_212.png deleted file mode 100644 index a3c4015d723fa0c8944c16ac5c9a59a50a520578..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653511_212.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4bf1b335e7382590113fd51298c3b7bc737874e9ca03448a326744a1a115f358 -size 5549 diff --git a/MM_Math/data_original_21/7047897/math/52653557_935.png b/MM_Math/data_original_21/7047897/math/52653557_935.png deleted file mode 100644 index 710e996f28e0a9ab0acc5306422de2155aa19aef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653557_935.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41e7eed84fa726b7dc56288f6d5473fe33c919f54fb6e76017e0fe9c6960ade9 -size 63323 diff --git a/MM_Math/data_original_21/7047897/math/52653585_780.png b/MM_Math/data_original_21/7047897/math/52653585_780.png deleted file mode 100644 index 475dcc9ff5f1ede2d7a1914cfde3cc92ce8aef46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653585_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12801c96792d54944376c15fb4d90954b51c6a8417630c8df5fd821fe13a7707 -size 61259 diff --git a/MM_Math/data_original_21/7047897/math/52653587_791.png b/MM_Math/data_original_21/7047897/math/52653587_791.png deleted file mode 100644 index 82d4dee7e8b446469494a67b7220ba7745a7dc41..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653587_791.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9065d36067ee2e67fbcda3ad82f9721fb21e09dd61a7daf5a672eaa9cd79355d -size 50713 diff --git a/MM_Math/data_original_21/7047897/math/52653753_200.png b/MM_Math/data_original_21/7047897/math/52653753_200.png deleted file mode 100644 index 359355fa7bd62a5e3ea40e1a6adb3234f28f992f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52653753_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:636f5817ed54160172d92386e881fd73da673884227a77e372f2082c75549c58 -size 3223 diff --git a/MM_Math/data_original_21/7047897/math/52654988_846.png b/MM_Math/data_original_21/7047897/math/52654988_846.png deleted file mode 100644 index ab75e38a172068b00c015e48fea8e85272739ca1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52654988_846.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:398a78ee06f5a39ca76f8fcd6af41b8692a209032bbfe03fa947158c4ac0e2c1 -size 2831 diff --git a/MM_Math/data_original_21/7047897/math/52655062_297.png b/MM_Math/data_original_21/7047897/math/52655062_297.png deleted file mode 100644 index 840758c471d438705edbdad4927806d348c3a067..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52655062_297.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c74e9d62f1bac2557f8696ab27c8fc13bf94e4922aae195bab4425e58f960298 -size 10067 diff --git a/MM_Math/data_original_21/7047897/math/52655068_860.png b/MM_Math/data_original_21/7047897/math/52655068_860.png deleted file mode 100644 index d20f7d2cb560ccac966bc1cfacf4a19dc11b654d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52655068_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd0e90c8bc6f95e30a2a8d62b46bef5cc7c8a7451cb96f3a6cf73f0e97584d78 -size 2077 diff --git a/MM_Math/data_original_21/7047897/math/52655146_229.png b/MM_Math/data_original_21/7047897/math/52655146_229.png deleted file mode 100644 index fed4ea0b0740f6ab7624e5f98896908b3c72a8e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52655146_229.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9c3ccf073801af8681d362084c9a31b383ca55258505af966173ad7c55a9a36 -size 5034 diff --git a/MM_Math/data_original_21/7047897/math/52655159_996.png b/MM_Math/data_original_21/7047897/math/52655159_996.png deleted file mode 100644 index c16b352d78983bb9089af618aad6512e9449e987..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52655159_996.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f45081830e73c4e2f1ae184abf1f82622f6b131036a302f8f51d88818f0579c8 -size 4240 diff --git a/MM_Math/data_original_21/7047897/math/52655206_732.png b/MM_Math/data_original_21/7047897/math/52655206_732.png deleted file mode 100644 index 07ea6c53d841d140f7b4c726f328c29eb6dd118b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52655206_732.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e65ca7419cb7a4b873385c70a7669b41e50451b3f79f6c8faeabac7e94c1fc8 -size 4305 diff --git a/MM_Math/data_original_21/7047897/math/52655235_230.png b/MM_Math/data_original_21/7047897/math/52655235_230.png deleted file mode 100644 index c46b8728d5e3fb88c31af8c0d4f6eedaa0e451be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52655235_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bdf5738020db7fab741c541973b3a69337c93103a761fe35c85a374b02a8492f -size 2184 diff --git a/MM_Math/data_original_21/7047897/math/52655307_879.png b/MM_Math/data_original_21/7047897/math/52655307_879.png deleted file mode 100644 index 7207e0b0e6d9663b102667b840f79804115359a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52655307_879.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44f3943a6a3ded899ffe5d93715bde0048c084ca15ae73da0d595548089f04e7 -size 4810 diff --git a/MM_Math/data_original_21/7047897/math/52655333_3021.png b/MM_Math/data_original_21/7047897/math/52655333_3021.png deleted file mode 100644 index a40971b124dad94d454b17ebf7d7efe774ec1427..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52655333_3021.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3f8621b7036fa48d199903f4cdfd8b4740439aa0bf05998cb52578fda25475e -size 52886 diff --git a/MM_Math/data_original_21/7047897/math/52655364_713.png b/MM_Math/data_original_21/7047897/math/52655364_713.png deleted file mode 100644 index ee7616b8114d142e96f7bf8ecd1d8d4cc8f64eae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52655364_713.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfbe10206136eaaaf39419536647fbcefe007554d8dfa1bf6f9b9ac9ba817512 -size 2622 diff --git a/MM_Math/data_original_21/7047897/math/52720357_537.png b/MM_Math/data_original_21/7047897/math/52720357_537.png deleted file mode 100644 index 9d582c653722faaf2ca4045bb991fdfabedc9140..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52720357_537.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45d0b6e8ea463a7026708b2bbd5da1ea2e8025203e18838520cd4b84975d51bc -size 3164 diff --git a/MM_Math/data_original_21/7047897/math/52720359_3110.png b/MM_Math/data_original_21/7047897/math/52720359_3110.png deleted file mode 100644 index bd0f14666b42b8a62b3d6ba958d89b3c4797047a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52720359_3110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb16a315f4219f568918b176ff0f14a4abf7cdbdb91ac5fe1ea073c2ec8ce2fe -size 4352 diff --git a/MM_Math/data_original_21/7047897/math/52720370_945.png b/MM_Math/data_original_21/7047897/math/52720370_945.png deleted file mode 100644 index b546b9a35fc003c6b7672b83de5609b2fa189f74..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52720370_945.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9237af80f20cefcaecab77c462bcfcd3d6bafd4d6ccc1463a15b34c30ba30498 -size 3067 diff --git a/MM_Math/data_original_21/7047897/math/52720394_540.png b/MM_Math/data_original_21/7047897/math/52720394_540.png deleted file mode 100644 index f54165c23ecae3adea225926f22979690e28639e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52720394_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30bd7c13b2419d9cfc34c1f9fef31fc7606c301bf87649076d340a024bb7e744 -size 3036 diff --git a/MM_Math/data_original_21/7047897/math/52720421_104.png b/MM_Math/data_original_21/7047897/math/52720421_104.png deleted file mode 100644 index e6fb52abad37533b4d4137077c54a5d14950d7d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52720421_104.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88d747e6a16f054c129e3554eef2cbbcd9c0d4e690c147b39a8c80e60df67e4d -size 4471 diff --git a/MM_Math/data_original_21/7047897/math/52720427_370.png b/MM_Math/data_original_21/7047897/math/52720427_370.png deleted file mode 100644 index 979915efea52bfaad92621c160791bcaf3e752b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52720427_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b00a267c76eb43f9f663338b754ea60819363476366476b0b0bba8eba1559cc9 -size 14537 diff --git a/MM_Math/data_original_21/7047897/math/52720458_131.png b/MM_Math/data_original_21/7047897/math/52720458_131.png deleted file mode 100644 index 5380ed634eb061c4995a7a694f31688cc6e4b247..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52720458_131.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:991ccaf31bd1b3dbcc76db5eb3c597dc6ef980997e843cee70158b1f42ce060a -size 4877 diff --git a/MM_Math/data_original_21/7047897/math/52720610_40.png b/MM_Math/data_original_21/7047897/math/52720610_40.png deleted file mode 100644 index 5e48ecb425adcb313d4933a8391d53d35345ac29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52720610_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4f305f66631be3f21b4431e70a84dab616528ce77cad548749e971ef6593bbe -size 3457 diff --git a/MM_Math/data_original_21/7047897/math/52720674_324.png b/MM_Math/data_original_21/7047897/math/52720674_324.png deleted file mode 100644 index d73f52d82f376da6f046c4c58f4b7e371c977353..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52720674_324.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:61230a673574628e70a5df128508cfcde240e638841c8dc48fa59c035829fff1 -size 3343 diff --git a/MM_Math/data_original_21/7047897/math/52720676_605.png b/MM_Math/data_original_21/7047897/math/52720676_605.png deleted file mode 100644 index 5ec12ae07c88f1269e450e34747aeae828a6b988..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52720676_605.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0dd39056aab42dcc74720a7c18790b44914ddae3f3743c8a7b8a764777aade1c -size 29160 diff --git a/MM_Math/data_original_21/7047897/math/52836358_770.png b/MM_Math/data_original_21/7047897/math/52836358_770.png deleted file mode 100644 index f9d0b247058dccc1526b619f89b7e9451805ccb0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52836358_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c6484961a8ff4de02f8b0fa9f935e284a67c8b646cde256f442958a578150337 -size 127238 diff --git a/MM_Math/data_original_21/7047897/math/52836530_758.png b/MM_Math/data_original_21/7047897/math/52836530_758.png deleted file mode 100644 index e29c48c83428ae0cb78b4edb911ba5e6efc9400a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52836530_758.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3b87a408f8a706bba1c4b041489824bc14124e784372dcf8abb156e25594cb1 -size 3383 diff --git a/MM_Math/data_original_21/7047897/math/52836657_760.png b/MM_Math/data_original_21/7047897/math/52836657_760.png deleted file mode 100644 index 05b81aab6d55341377d3d2ebaf4ee3d136ff7ad2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52836657_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66e3bef78a1d402f44495d10a3e465e90b58758996bc2dd9ef810a95c8bf2742 -size 69000 diff --git a/MM_Math/data_original_21/7047897/math/52836660_810.png b/MM_Math/data_original_21/7047897/math/52836660_810.png deleted file mode 100644 index 3de09e3d3778298e8287f042f8472c3fe9bd420d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52836660_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43814745e0fb8dddd99f922ab3be348a55e4697e92a6b43a048f5b7dcd2aab82 -size 4182 diff --git a/MM_Math/data_original_21/7047897/math/52836690_839.png b/MM_Math/data_original_21/7047897/math/52836690_839.png deleted file mode 100644 index 9c73a090e34e9fc84014cd39b1dd0b1ee2e76b69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52836690_839.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37d4be344738d9fe408407789122cc8fdf74e890e883bdd818c613ae500c5568 -size 2872 diff --git a/MM_Math/data_original_21/7047897/math/52836886_260.png b/MM_Math/data_original_21/7047897/math/52836886_260.png deleted file mode 100644 index 717bf8b6e1b3ada5ff043053cfc76fc1c9b16768..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52836886_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ca8fce97ca7e93de7e0bab57f8ae3a2f2017bddacc0ce7e50aefa0b51a568da -size 2120 diff --git a/MM_Math/data_original_21/7047897/math/52836935_8210.png b/MM_Math/data_original_21/7047897/math/52836935_8210.png deleted file mode 100644 index 9c0f5eb59b990352b607374f900bc660a70a5438..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52836935_8210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cea55c2836a943c98dd15eef23ba23f3b5b70623d92ae34570e9e33af8214bcd -size 16819 diff --git a/MM_Math/data_original_21/7047897/math/52837520_690.png b/MM_Math/data_original_21/7047897/math/52837520_690.png deleted file mode 100644 index ada53839c312352c2ce6bf4be4e906674e56f3f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52837520_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:233a78308ad36ba8e34c12c86b69911ec85e90be870533a98417eb8cd50d49d1 -size 24513 diff --git a/MM_Math/data_original_21/7047897/math/52837588_190.png b/MM_Math/data_original_21/7047897/math/52837588_190.png deleted file mode 100644 index b6e0f3db23ba341be31b0f27f5394867325a4373..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52837588_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0bc0644456df78bd087c348a4b5039c37e718818262747a63ed8d8c8c1026b7e -size 2947 diff --git a/MM_Math/data_original_21/7047897/math/52837657_689.png b/MM_Math/data_original_21/7047897/math/52837657_689.png deleted file mode 100644 index d0277210ef8e0fa2b7effb69e5ab7ad56c28c1d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52837657_689.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2286ef6f68237d70b6a8666bd0f75dec4ee22e3553f8a5778dc5df1cd36870ce -size 62941 diff --git a/MM_Math/data_original_21/7047897/math/52837759_180.png b/MM_Math/data_original_21/7047897/math/52837759_180.png deleted file mode 100644 index a76f5600bc60d38205992cb2299e5e1aa80c6738..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52837759_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31141fa853e16c534c3cc7ef248be056b95bf583507ed44c8680d604e0272d9d -size 1985 diff --git a/MM_Math/data_original_21/7047897/math/52837762_670.png b/MM_Math/data_original_21/7047897/math/52837762_670.png deleted file mode 100644 index c3d72eac9406d3610f0f3c957a4a13df59051709..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52837762_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1cf45ef6dfa74fbda484e14be2b446f87f786629a0a473953366f5d9b8196bf -size 1659 diff --git a/MM_Math/data_original_21/7047897/math/52837765_662.png b/MM_Math/data_original_21/7047897/math/52837765_662.png deleted file mode 100644 index 0d9a3e370e53d2604294cbaf1211a237709c337a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52837765_662.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b5cbe7f45920a6d48b3da5b5701e39648e54d9f5935083ce6a867d330e490393 -size 2509 diff --git a/MM_Math/data_original_21/7047897/math/52837827_171.png b/MM_Math/data_original_21/7047897/math/52837827_171.png deleted file mode 100644 index cb0a75a2bdf37d7f178e73561c36dfe1c4134085..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52837827_171.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d17dfa320833497583516858640bc2eb8aa96bdf7e646f8b922ae521d25c4906 -size 6832 diff --git a/MM_Math/data_original_21/7047897/math/52837902_651.png b/MM_Math/data_original_21/7047897/math/52837902_651.png deleted file mode 100644 index e4718456781a4c158023e8d3167871ea21c224ae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52837902_651.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:26725d660e49a6b1161f54701257c94c2051e64ae38ac757b0ff2659a001465c -size 3856 diff --git a/MM_Math/data_original_21/7047897/math/52838009_162.png b/MM_Math/data_original_21/7047897/math/52838009_162.png deleted file mode 100644 index cfcd1c9f41f93c36dfd6d65f978dc50680929be9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52838009_162.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30f3551690b988b188a67d109336182636c3432b719d528581d7d156d765e69b -size 24465 diff --git a/MM_Math/data_original_21/7047897/math/52838015_626.png b/MM_Math/data_original_21/7047897/math/52838015_626.png deleted file mode 100644 index ea355133b2328f0a692bbef5caeb8f7d5e78fd19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52838015_626.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87a6a299e39be08bac53b73318e9a1a01a530a70a86f0f979c01161643ec0d4a -size 62202 diff --git a/MM_Math/data_original_21/7047897/math/52838016_6411.png b/MM_Math/data_original_21/7047897/math/52838016_6411.png deleted file mode 100644 index 0d9a5def553981f74b65a2a6170f659b824a5fd5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52838016_6411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11b003772d9b37ec6b55f9dee816eaa65fd3eeafcbb9c3219b425af8ede1caa9 -size 3706 diff --git a/MM_Math/data_original_21/7047897/math/52838018_6313.png b/MM_Math/data_original_21/7047897/math/52838018_6313.png deleted file mode 100644 index b00e5861876422b94e9569b9589f5bde4824dcbe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/math/52838018_6313.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce04d163b989b5ff16eaefb2c700a5dc40d65a6ae04d2c71e7f00c5a29a679e6 -size 7701 diff --git a/MM_Math/data_original_21/7047897/solution_images/51545384_560.png b/MM_Math/data_original_21/7047897/solution_images/51545384_560.png deleted file mode 100644 index 323c1b5ddd8294143346a1b401b3217595170fea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/51545384_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ba0d5194364742f218d842931dbc8172c3400322f4b71bc50169a8f0183b3d8 -size 4959 diff --git a/MM_Math/data_original_21/7047897/solution_images/51545407_20.png b/MM_Math/data_original_21/7047897/solution_images/51545407_20.png deleted file mode 100644 index 8de3fe3da467448c1b74d0f8f7ad810aa61bfe7f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/51545407_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:861d1aedd548ddb39d46c7f928ffe8fd3db442936676844ce81dd1bace803f3a -size 3293 diff --git a/MM_Math/data_original_21/7047897/solution_images/51545444_480.png b/MM_Math/data_original_21/7047897/solution_images/51545444_480.png deleted file mode 100644 index 5cb80ef20284f958cd04d50d556b08371c18719e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/51545444_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60c3a16e871b6af5cf705c2162909c6433ffdc1fb566b6896c022a51fb0f0e4f -size 3087 diff --git a/MM_Math/data_original_21/7047897/solution_images/51545480_140.png b/MM_Math/data_original_21/7047897/solution_images/51545480_140.png deleted file mode 100644 index 2eae484786ea508132e324e1bc7c83feb68bcc1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/51545480_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04a6796122002a614c76be650f8c5fcbe297d8f0a05f4b2ae0b39987e6b42eec -size 4408 diff --git a/MM_Math/data_original_21/7047897/solution_images/52603194_00.png b/MM_Math/data_original_21/7047897/solution_images/52603194_00.png deleted file mode 100644 index a55d7bd6710dc6fc4f1d0ccd9c7257efbd731548..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52603194_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89355aa6e27bb6efb3d0c972ff8ce7764b35599dea0b846866fb5723b243a6a1 -size 9673 diff --git a/MM_Math/data_original_21/7047897/solution_images/52603281_520.png b/MM_Math/data_original_21/7047897/solution_images/52603281_520.png deleted file mode 100644 index e2bbbebb1443ad2395ab1d772e521b09a40b3e02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52603281_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:706ef57271c3c577966523214f858c8b66b6405c08d991fb8a767bfc519a6918 -size 2415 diff --git a/MM_Math/data_original_21/7047897/solution_images/52603284_440.png b/MM_Math/data_original_21/7047897/solution_images/52603284_440.png deleted file mode 100644 index dbf1b1f0016dddc421f48c618b0cb8a408acad2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52603284_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71e51d85fdff98076364605d726060b8c48d7ae3d8cf56b4bf19c70282559a03 -size 2801 diff --git a/MM_Math/data_original_21/7047897/solution_images/52603482_490.png b/MM_Math/data_original_21/7047897/solution_images/52603482_490.png deleted file mode 100644 index 7a3666ec30964827a6524bf4699233e563cc5f99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52603482_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12c8c1c20514eeb1f035ebeb22dded9998b3a7cfa4851ec87736a2637d9e1168 -size 83522 diff --git a/MM_Math/data_original_21/7047897/solution_images/52603574_580.png b/MM_Math/data_original_21/7047897/solution_images/52603574_580.png deleted file mode 100644 index 0a2cdab44d54105642844f607602fc25346a3a74..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52603574_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e1fe3eb64fa60940ca67610650078f7c747971194e3e1809c8c706364bfd476 -size 66762 diff --git a/MM_Math/data_original_21/7047897/solution_images/52603721_380.png b/MM_Math/data_original_21/7047897/solution_images/52603721_380.png deleted file mode 100644 index 858dfe78716ad423b418015240a733ae6e50c504..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52603721_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7950130a7551c31dba0a8ffa4278161aa6f05908675386b0068abc76678731e -size 6187 diff --git a/MM_Math/data_original_21/7047897/solution_images/52603850_340.png b/MM_Math/data_original_21/7047897/solution_images/52603850_340.png deleted file mode 100644 index 70211f3d3aae762640ddf28176c0c570981a949f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52603850_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d54320403ae41a16e492e63bd654952169aeac79c5f346cbeaa7cecb3311e3b0 -size 80458 diff --git a/MM_Math/data_original_21/7047897/solution_images/52603854_616.png b/MM_Math/data_original_21/7047897/solution_images/52603854_616.png deleted file mode 100644 index 4ff3ced3e894c933d9f17963ec2dfe587aa8d89a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52603854_616.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf23ad9d35c8fe263c202d568e78f0fd1790940083dc9f418db60f42b71e183e -size 6147 diff --git a/MM_Math/data_original_21/7047897/solution_images/52604077_462.png b/MM_Math/data_original_21/7047897/solution_images/52604077_462.png deleted file mode 100644 index 94b6cf9e27b1431a6678df30dc3b2009644acc26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52604077_462.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de50ebb20242d5214b9d4f3de671251d29d217de2ea4242b6fc4236da1cebfde -size 3340 diff --git a/MM_Math/data_original_21/7047897/solution_images/52604233_422.png b/MM_Math/data_original_21/7047897/solution_images/52604233_422.png deleted file mode 100644 index 49be6a02193c55aa2945b83fe0a7289309c96cf8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52604233_422.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94c363f357ced92d1adb867e4f3a5543b25936c2853fd23b11c9cd5fef4ed5f0 -size 4273 diff --git a/MM_Math/data_original_21/7047897/solution_images/52653459_286.png b/MM_Math/data_original_21/7047897/solution_images/52653459_286.png deleted file mode 100644 index b4cc9ff867380670c109fddbed9dfb569cccf9b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52653459_286.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5fc7dafce8e6b79cf62646d3280f72af3ce79400caf568730a4c8f7b87f0a07 -size 44543 diff --git a/MM_Math/data_original_21/7047897/solution_images/52653511_210.png b/MM_Math/data_original_21/7047897/solution_images/52653511_210.png deleted file mode 100644 index 536b0765dc2a9d9c37698a1aff86d3149d388b06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52653511_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c42d2c0f35c79a7f4acfc2437ba83e7d8d4bf690613f4c45392db2954979ca2d -size 9112 diff --git a/MM_Math/data_original_21/7047897/solution_images/52653516_850.png b/MM_Math/data_original_21/7047897/solution_images/52653516_850.png deleted file mode 100644 index 2c126b958581e98e60c4eb078748e11f09d19efd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52653516_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19fbf632ca31d738d659aab68c2379902de2558bcb0440cd1fbb67d5ea67ae4f -size 93025 diff --git a/MM_Math/data_original_21/7047897/solution_images/52655068_860.png b/MM_Math/data_original_21/7047897/solution_images/52655068_860.png deleted file mode 100644 index 94be2bb5d4fb16f58e8610338b0150816cfea325..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52655068_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43cd73cc975fbf030b590fd2216aa58997be7fdf834aad91baaf2f5b2a6e281e -size 2391 diff --git a/MM_Math/data_original_21/7047897/solution_images/52655146_220.png b/MM_Math/data_original_21/7047897/solution_images/52655146_220.png deleted file mode 100644 index f48b3ef9dd664b00fbd67e169b094139a5aa336e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52655146_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ef0de6a8e4d05978a0257fc3ab4ee1ad3f4ebd34a201bb376ae9b26d4af97a8 -size 5440 diff --git a/MM_Math/data_original_21/7047897/solution_images/52655235_231.png b/MM_Math/data_original_21/7047897/solution_images/52655235_231.png deleted file mode 100644 index 788cdc7878684279e42b4455abd3636b94a224f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52655235_231.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0016d4e249e404e6b044c8dc6dacb9883c80de0116320d61e9888330b7f0cf02 -size 2399 diff --git a/MM_Math/data_original_21/7047897/solution_images/52655333_300.png b/MM_Math/data_original_21/7047897/solution_images/52655333_300.png deleted file mode 100644 index 779164d494a2d5d9d443bc7adbf6393bdaa34c62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52655333_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b560953a73e06d3101068abc7fd5f1ee527528ba235d0989874a4c9f46f6695 -size 5891 diff --git a/MM_Math/data_original_21/7047897/solution_images/52720427_370.png b/MM_Math/data_original_21/7047897/solution_images/52720427_370.png deleted file mode 100644 index 7d6b2a7ff4fb6f3506dc266f2112554470b0a525..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52720427_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89a18437455a51abacdc55d44f5559bd7478c0d7d717cb65a9e74091f054379f -size 6154 diff --git a/MM_Math/data_original_21/7047897/solution_images/52720610_40.png b/MM_Math/data_original_21/7047897/solution_images/52720610_40.png deleted file mode 100644 index 320e99459b216ae0e34b324701f78e74a89cdc37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52720610_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b91fc91de703222ee82bc65abdebe023e223b4d5e9066cb06e1b7d703224bdd -size 5534 diff --git a/MM_Math/data_original_21/7047897/solution_images/52720610_41.png b/MM_Math/data_original_21/7047897/solution_images/52720610_41.png deleted file mode 100644 index 0be8293bb26eb03a17f996b03d1c8afac15b97ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52720610_41.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:55a42c6122d0f6c1aaf1c2270f241bacffb0ee3de0dca4f014f0199cf79a5ffe -size 4046 diff --git a/MM_Math/data_original_21/7047897/solution_images/52720676_600.png b/MM_Math/data_original_21/7047897/solution_images/52720676_600.png deleted file mode 100644 index 5ec12ae07c88f1269e450e34747aeae828a6b988..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52720676_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0dd39056aab42dcc74720a7c18790b44914ddae3f3743c8a7b8a764777aade1c -size 29160 diff --git a/MM_Math/data_original_21/7047897/solution_images/52836530_750.png b/MM_Math/data_original_21/7047897/solution_images/52836530_750.png deleted file mode 100644 index e7731485f4ca1f4cce287df3b571468e9c9c4dcf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52836530_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66dfb8d365680c18b30763dc038e1fa7b4b50f726aeb77edebb059697a06ce9e -size 3682 diff --git a/MM_Math/data_original_21/7047897/solution_images/52836690_830.png b/MM_Math/data_original_21/7047897/solution_images/52836690_830.png deleted file mode 100644 index 7deda113f0ddcee06272e2475562b2dede2e67cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52836690_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c928c0cc9e61744a862fa4b5a343e275b02630887235f6a050ae174889d9b5b8 -size 2861 diff --git a/MM_Math/data_original_21/7047897/solution_images/52836935_820.png b/MM_Math/data_original_21/7047897/solution_images/52836935_820.png deleted file mode 100644 index 5d413b622af1bb323755b6b2e8943b5f7a886c1b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52836935_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9da1336e3d3c34ccc6af04abd862583332907c4bc3e4d7c5d109b835546041f5 -size 18579 diff --git a/MM_Math/data_original_21/7047897/solution_images/52837657_680.png b/MM_Math/data_original_21/7047897/solution_images/52837657_680.png deleted file mode 100644 index 675e1010f8ded6d5b53d16a3b7883b8fca6e8bbe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52837657_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13e53a079a1b1c4c3d0f7b97510b886b8e65a7ddae044da8f9f5871cb8875de4 -size 68816 diff --git a/MM_Math/data_original_21/7047897/solution_images/52837765_6615.png b/MM_Math/data_original_21/7047897/solution_images/52837765_6615.png deleted file mode 100644 index 4518ea1866b97e368d34588e128e2698297cbac2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52837765_6615.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d660efd8c8678414f0b8799b727c72c7815ec8a76d1c6d1367834d098013cacd -size 3397 diff --git a/MM_Math/data_original_21/7047897/solution_images/52837902_650.png b/MM_Math/data_original_21/7047897/solution_images/52837902_650.png deleted file mode 100644 index d6843e63b56a2b3842bde91ad9e9891235bb8b00..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7047897/solution_images/52837902_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0fc73cbe6ec7e937055f06a9788989901cdf035939fba79203951c5f0d47a438 -size 4225 diff --git a/MM_Math/data_original_21/7048953/math/51366350_190.png b/MM_Math/data_original_21/7048953/math/51366350_190.png deleted file mode 100644 index f8c315cd745e8715c8839a44cb757e4ec1c608dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51366350_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1541eabd4b425395e0dd2d4100f87d3c73030299714693498b4584abb9c5421 -size 5362 diff --git a/MM_Math/data_original_21/7048953/math/51366532_500.png b/MM_Math/data_original_21/7048953/math/51366532_500.png deleted file mode 100644 index 1727506bb13645a6feb1e795f062c41ef58d375b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51366532_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c66163ebe427c5ed0564246ae534e67df12051aa42dfd3c2929af1a3a021438 -size 9257 diff --git a/MM_Math/data_original_21/7048953/math/51366535_483.png b/MM_Math/data_original_21/7048953/math/51366535_483.png deleted file mode 100644 index 91cb99a124eca1369d5acdd3184b2c61e303eebb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51366535_483.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:054c5e6cc26e0f7d2262e91ec024c424cde3f161fdca0573e68936f76cf43991 -size 6457 diff --git a/MM_Math/data_original_21/7048953/math/51366536_521.png b/MM_Math/data_original_21/7048953/math/51366536_521.png deleted file mode 100644 index b40b5beaf91a9f3310074244ae7fa45ef0a36abe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51366536_521.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:027f9f8d644d7ec238fecc5415618e4027baa7b55407cedbd74c47c0c95773ed -size 2524 diff --git a/MM_Math/data_original_21/7048953/math/51366537_515.png b/MM_Math/data_original_21/7048953/math/51366537_515.png deleted file mode 100644 index 90d4a8de7b0a6f004d6af672c21832b21f8c6c35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51366537_515.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8028b95aa9d97088395ba8000a8ba151e65dd040507ba2ef920b6015f969848 -size 3562 diff --git a/MM_Math/data_original_21/7048953/math/51366593_495.png b/MM_Math/data_original_21/7048953/math/51366593_495.png deleted file mode 100644 index a07f68fccb16059b3786afbb1f2f3b0145d8453c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51366593_495.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:601c90415a73e3b1760cd81ab6dae2a5e6fe622adabe620f185cdd1992c08ceb -size 4283 diff --git a/MM_Math/data_original_21/7048953/math/51366600_835.png b/MM_Math/data_original_21/7048953/math/51366600_835.png deleted file mode 100644 index 204adac2f38533c5ebb97d5b21433e4697bf1d8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51366600_835.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c371ccb0871422fe58eb8a18896b88584521409615b5c1b071ab47adbe3d86f6 -size 3278 diff --git a/MM_Math/data_original_21/7048953/math/51378679_640.png b/MM_Math/data_original_21/7048953/math/51378679_640.png deleted file mode 100644 index f25621c7a5a3f65838a49c53d5f79583bfac8114..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378679_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce1a18dcfe33244dde4c8f4e6b8cd350063c5144aa0f3b2923edc18ec0cb1f85 -size 6395 diff --git a/MM_Math/data_original_21/7048953/math/51378731_265.png b/MM_Math/data_original_21/7048953/math/51378731_265.png deleted file mode 100644 index 17c8e930772cfe32253819c2531a33b4aa9567e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378731_265.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a7d3da3a46f654bfaab61da36600d8d3d46b5306877c6113c245735747d3aaf -size 23441 diff --git a/MM_Math/data_original_21/7048953/math/51378737_651.png b/MM_Math/data_original_21/7048953/math/51378737_651.png deleted file mode 100644 index 351886cbbc7ecf7d1af21f47595069572e0094f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378737_651.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14aa08968f14e4bf7acbb5b81d47fb0ddcaaca50ebe9ea7236a031a893764ac7 -size 26362 diff --git a/MM_Math/data_original_21/7048953/math/51378752_885.png b/MM_Math/data_original_21/7048953/math/51378752_885.png deleted file mode 100644 index 337697e22c5150b520d18866c32043297b03302c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378752_885.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58aa00487a87514970b33730c40aaa6a37094f3b4b18b746fb14f3916f2ee05a -size 20938 diff --git a/MM_Math/data_original_21/7048953/math/51378776_618.png b/MM_Math/data_original_21/7048953/math/51378776_618.png deleted file mode 100644 index e77b937dd27bf030644245ed6761227846b85c82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378776_618.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3a02a9de602bf38ba8daa07f03b7834b2f95a5fa877c864484aac8f082fcbcb -size 2727 diff --git a/MM_Math/data_original_21/7048953/math/51378784_867.png b/MM_Math/data_original_21/7048953/math/51378784_867.png deleted file mode 100644 index 701550f1c26f0a19cc7a9a878a327fc38d76849c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378784_867.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0069e61defc8385cea7ea25a29c1718bbc65e1410478db3cf920ec14972c38cd -size 2639 diff --git a/MM_Math/data_original_21/7048953/math/51378814_622.png b/MM_Math/data_original_21/7048953/math/51378814_622.png deleted file mode 100644 index 68d4939fdeeab6b5ed57ea93b445a53b6c6242aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378814_622.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce4d4330343c1edc14233a7af5e58b2383a73eca103a3f06f483f92f9553493f -size 3396 diff --git a/MM_Math/data_original_21/7048953/math/51378906_871.png b/MM_Math/data_original_21/7048953/math/51378906_871.png deleted file mode 100644 index 3357f078103c94d93cee677b16c07af8ca98c89d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378906_871.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e67a9f7de59b86cd9cb7bb9621508a12344426cad830194e9b2ace28267f5d25 -size 2356 diff --git a/MM_Math/data_original_21/7048953/math/51378936_282.png b/MM_Math/data_original_21/7048953/math/51378936_282.png deleted file mode 100644 index db28f967d110e3222053b7b7810efc7f64a7d066..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378936_282.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c47bf1bdf02c26d8e05d34d55ad10eeee9a166bb73f04170498a4473173ced18 -size 34565 diff --git a/MM_Math/data_original_21/7048953/math/51378976_271.png b/MM_Math/data_original_21/7048953/math/51378976_271.png deleted file mode 100644 index a3ef99d070ae69b2567dfd7fa2bf1c33ff55f408..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378976_271.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:49dc88de61057548ace5e4cd0066ac0f051d3e726e5869e952d1fb3e17d9ad18 -size 10476 diff --git a/MM_Math/data_original_21/7048953/math/51378984_6312.png b/MM_Math/data_original_21/7048953/math/51378984_6312.png deleted file mode 100644 index eb53afb2336f605d365fbc341e1a5388d7530344..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378984_6312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:789e7561ec5e24fbf78d874b9e2e2354d930dc7d779dea1e2220371ab3c1806f -size 13170 diff --git a/MM_Math/data_original_21/7048953/math/51378985_606.png b/MM_Math/data_original_21/7048953/math/51378985_606.png deleted file mode 100644 index 2b2254888739c44d249311bdfb0f2a8fa6560913..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51378985_606.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:669051db8e7db1948ae65e052def85f5366b921a254f2ca4afddac46e9e45494 -size 22865 diff --git a/MM_Math/data_original_21/7048953/math/51379083_660.png b/MM_Math/data_original_21/7048953/math/51379083_660.png deleted file mode 100644 index d1af3a70b16d7cedbdb0d634e4da9a9dce571f94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51379083_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be9878a434322c81313bb26f296f156189f833721e9bddee88362841a9a0fe4b -size 3485 diff --git a/MM_Math/data_original_21/7048953/math/51379084_670.png b/MM_Math/data_original_21/7048953/math/51379084_670.png deleted file mode 100644 index 281deb7f4afd3c3c344c70c57dbfa5d19a26ad28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51379084_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf561dcf7ba58dc3d4015e6d0805a39addd196225044d625fcfc1acb75388cb2 -size 4283 diff --git a/MM_Math/data_original_21/7048953/math/51385683_210.png b/MM_Math/data_original_21/7048953/math/51385683_210.png deleted file mode 100644 index 3111c9930c0ad3e7ee07a435fa1f0b569b875f28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51385683_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6453c459d48968a8f6b4cd5401e6cfeab6247cda88bc79ccbb3a95c33b71f65b -size 8726 diff --git a/MM_Math/data_original_21/7048953/math/51385685_224.png b/MM_Math/data_original_21/7048953/math/51385685_224.png deleted file mode 100644 index f20a708471749fe79796f78eefbf0c362f588cfa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51385685_224.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f61dc3b42317310065d6dd36cd20a28c97bb22a745b7dabd4edcd5ca73eef6a -size 2990 diff --git a/MM_Math/data_original_21/7048953/math/51385696_550.png b/MM_Math/data_original_21/7048953/math/51385696_550.png deleted file mode 100644 index 3311b32d415941b48c56c462bc1d31df5a6bba25..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51385696_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4203a2d2bfae710b7d7283b30955104d85d872b72401c8ca3766355afef9765 -size 9621 diff --git a/MM_Math/data_original_21/7048953/math/51385796_540.png b/MM_Math/data_original_21/7048953/math/51385796_540.png deleted file mode 100644 index e6ae0cc1ff41d9883c1d447605d40ab0a9a41ae7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51385796_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fd42962adb6637c35af02118db0efb6def830bb64d41475910b767dc68129590 -size 10735 diff --git a/MM_Math/data_original_21/7048953/math/51385808_840.png b/MM_Math/data_original_21/7048953/math/51385808_840.png deleted file mode 100644 index 517da565a737872de005bb9f7089c703d215ecb1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51385808_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:baf3db43c6d55c88253e5885cf5c8b2011684c5bd1cb1c4ed40b6573e8c2c302 -size 10500 diff --git a/MM_Math/data_original_21/7048953/math/51385818_940.png b/MM_Math/data_original_21/7048953/math/51385818_940.png deleted file mode 100644 index 1c5dc7fabe29f09faec1515b41742fa56dc6b304..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51385818_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d2ac8868d78009bd448c72d6c004b8344171625ddb09dfbb09d0ea275f49628 -size 18178 diff --git a/MM_Math/data_original_21/7048953/math/51385932_200.png b/MM_Math/data_original_21/7048953/math/51385932_200.png deleted file mode 100644 index 7f5bac048d4f0fd1f1d8a70374e046c1bfdd9f69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51385932_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b92e262254edc3d8afcb5e18d33e4bab934ac40821ba56c5fa862b2a6d7a827 -size 9254 diff --git a/MM_Math/data_original_21/7048953/math/51385938_530.png b/MM_Math/data_original_21/7048953/math/51385938_530.png deleted file mode 100644 index 78bdec949667267231532bb8e53f773ca23d96f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/51385938_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb6c01d5b8bf291828e368d5e4fb5ad0027a52ea68f7f7c2a5b02711bc51fd1e -size 12606 diff --git a/MM_Math/data_original_21/7048953/math/52095800_990.png b/MM_Math/data_original_21/7048953/math/52095800_990.png deleted file mode 100644 index 22ffa243ef39d78cb420daa44abdad1be3e8c188..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52095800_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c575f7bd7b5cae3095e4618266a80747cca8e9fd685cb5c8036ef0a1b7f887a -size 3443 diff --git a/MM_Math/data_original_21/7048953/math/52095901_340.png b/MM_Math/data_original_21/7048953/math/52095901_340.png deleted file mode 100644 index f5f3545520a8e34b2c5634ba166447a55086c121..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52095901_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b309283bd88d9891dd3dae3bc2f290a610571f347154e2ae0f073a2e182686ae -size 1392 diff --git a/MM_Math/data_original_21/7048953/math/52095924_980.png b/MM_Math/data_original_21/7048953/math/52095924_980.png deleted file mode 100644 index ed942006858ddd9aa2c9a41e5751d1cc19b4d5bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52095924_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a4019fa32705f5f6208daa46ddc2edf7aea7f306551b58a0b6611c1d6511984 -size 2155 diff --git a/MM_Math/data_original_21/7048953/math/52095948_751.png b/MM_Math/data_original_21/7048953/math/52095948_751.png deleted file mode 100644 index 5392b2bf2edcd0cf409b74d48142ed837627477d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52095948_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e63a401e359eaee06dbf23faa0e7c93116f2dbb2e7ac1b00bc59fcbe2f843256 -size 5880 diff --git a/MM_Math/data_original_21/7048953/math/52095985_760.png b/MM_Math/data_original_21/7048953/math/52095985_760.png deleted file mode 100644 index 1c7e9bf16659104b44bf765baf8842fb8ce8fd99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52095985_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a27848b0f101a21970ef8242e2771250d069441e56d1a6114e3d07d58eefbcbf -size 2889 diff --git a/MM_Math/data_original_21/7048953/math/52096232_700.png b/MM_Math/data_original_21/7048953/math/52096232_700.png deleted file mode 100644 index 770083d8f09f5824a9673e780fbb5267c3cac52b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096232_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10745f10ad2159da1cc59085684fdf777e14642da225c5481d055a31fed80bf1 -size 3052 diff --git a/MM_Math/data_original_21/7048953/math/52096265_710.png b/MM_Math/data_original_21/7048953/math/52096265_710.png deleted file mode 100644 index 9bfc6a70f7ee10c006fb2abb110fe4ab385243cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096265_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aaa7c4788d554a6f651404374c402ae246e335b4c2a40c1b14dea01975288d2e -size 3761 diff --git a/MM_Math/data_original_21/7048953/math/52096283_951.png b/MM_Math/data_original_21/7048953/math/52096283_951.png deleted file mode 100644 index 8e185286fff6a7d98d52d23c0d2ec22025bb02d7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096283_951.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b1a1086c3630cf82dc38ab8c448037a84aec8ff93646318c31d72a1a27c7578 -size 5440 diff --git a/MM_Math/data_original_21/7048953/math/52096296_300.png b/MM_Math/data_original_21/7048953/math/52096296_300.png deleted file mode 100644 index c7f4e900c65273b24f4f9088e8d8f8feaac42201..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096296_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f8fc879e7e5a779ade26e376b072f721ed6520e374f19981f896c7a23445667 -size 1756 diff --git a/MM_Math/data_original_21/7048953/math/52096361_790.png b/MM_Math/data_original_21/7048953/math/52096361_790.png deleted file mode 100644 index 5f07ca8337505f6eb4d058d16495cc28ba25f5ae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096361_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3dba68e7ab91ca3fcca47d72459bea9b2340afe667fe7d14f32ca37c018d725a -size 8288 diff --git a/MM_Math/data_original_21/7048953/math/52096450_386.png b/MM_Math/data_original_21/7048953/math/52096450_386.png deleted file mode 100644 index 2f0273aab593d7bbb558ae3fa03b1a2a90baff79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096450_386.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:84aa70963aaf4a5ebbdff8b2a0f76b8d7b806d266c74c53fcc4eef46cf550f39 -size 3145 diff --git a/MM_Math/data_original_21/7048953/math/52096487_806.png b/MM_Math/data_original_21/7048953/math/52096487_806.png deleted file mode 100644 index 7c7719968b09f59773508fb00a39d2279333c506..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096487_806.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79f07e2fce698101818401a3f263808919f312dadbd076d3a6184705f6b9fd0d -size 4142 diff --git a/MM_Math/data_original_21/7048953/math/52096620_890.png b/MM_Math/data_original_21/7048953/math/52096620_890.png deleted file mode 100644 index 1d5eb137caef24c3b9922b6e8ef9832543e3ff0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096620_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf7592de525e45920c1ae5ef30e7408a39cc6fb85fb97bf9904b2bf1fb362be0 -size 5511 diff --git a/MM_Math/data_original_21/7048953/math/52096657_690.png b/MM_Math/data_original_21/7048953/math/52096657_690.png deleted file mode 100644 index 7379e7436622e985740ab3362b7684de3773eeb1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096657_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d81bfc1eb0860f7d5d3c74b17a9c12501413aae5a0cda6d501cc5cb2fe43e328 -size 3293 diff --git a/MM_Math/data_original_21/7048953/math/52096691_770.png b/MM_Math/data_original_21/7048953/math/52096691_770.png deleted file mode 100644 index c675a7c278de8e222ed048b3b621f4b1159a8f2a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096691_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc64a8138362827ce2e3df7157dab8afad67c0348568ccd5b27e65bfe836329b -size 2076 diff --git a/MM_Math/data_original_21/7048953/math/52096771_370.png b/MM_Math/data_original_21/7048953/math/52096771_370.png deleted file mode 100644 index b179827ec4f5ec77998c38ba51019f585f128a15..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096771_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e5436f861f53987dc7906b1f722fbbf1af8fd3aa78db8490240e03f8af2213d -size 3124 diff --git a/MM_Math/data_original_21/7048953/math/52096886_296.png b/MM_Math/data_original_21/7048953/math/52096886_296.png deleted file mode 100644 index e93f54b1f9d1420103f6d6f51ef7aacf2c91e192..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52096886_296.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:84ab40cfc585d4cb04375ab9bbeb0d54b3ca3c4b5c68183a4e0838f816e09d94 -size 9003 diff --git a/MM_Math/data_original_21/7048953/math/52653333_130.png b/MM_Math/data_original_21/7048953/math/52653333_130.png deleted file mode 100644 index f1c84b3e643449f39258acb970d41863f61b5bfb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52653333_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f2157f0b99c906021076837daaa2b1cb9698a22b4e093676a70ea1152db5683 -size 2874 diff --git a/MM_Math/data_original_21/7048953/math/52653549_4610.png b/MM_Math/data_original_21/7048953/math/52653549_4610.png deleted file mode 100644 index a31212333518e14e225c28f504ea804e4f7f8936..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52653549_4610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60b03adf0b79782a331911fd6d5075500e4d14482e9cc8fef0613cc251491196 -size 2034 diff --git a/MM_Math/data_original_21/7048953/math/52653621_4211.png b/MM_Math/data_original_21/7048953/math/52653621_4211.png deleted file mode 100644 index 522f333b35abe4cf7d93d8d452ac8c2c6b5ad3ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52653621_4211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1480054344a2f4c9d780684c1cc9a84f8b8f5f386a4e4d1396cf69c57fd3b61c -size 2815 diff --git a/MM_Math/data_original_21/7048953/math/52653666_825.png b/MM_Math/data_original_21/7048953/math/52653666_825.png deleted file mode 100644 index 8c27d42f196c5a47d6bcfae2a926cf0f55bb5334..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52653666_825.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:617eb5be25991a912d8a835aa1d907679bc2f235d06b935e059f2fcf0c57853d -size 61215 diff --git a/MM_Math/data_original_21/7048953/math/52653732_111.png b/MM_Math/data_original_21/7048953/math/52653732_111.png deleted file mode 100644 index eee0a7a55de572491e3cf490c215242b0a363202..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52653732_111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42da9c562f7bb6c1dd5d909f99076001d8f7d03c4c07d4d769dde1caa567771a -size 12793 diff --git a/MM_Math/data_original_21/7048953/math/52653743_936.png b/MM_Math/data_original_21/7048953/math/52653743_936.png deleted file mode 100644 index e504684ae5f7f484bfa6a4a7582d28967603842a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52653743_936.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd8345c684c61172245c317074b365e26f080d30fb9e1a9c5da2b3dbc1a5ad4e -size 7445 diff --git a/MM_Math/data_original_21/7048953/math/52653754_120.png b/MM_Math/data_original_21/7048953/math/52653754_120.png deleted file mode 100644 index 9a5c351951c0f77e2691a07c4550ef211e80a321..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52653754_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2e7b1fb78eed2bd2998b9e3ffe25beca33a857a5112202166c25c37610c45e3 -size 14553 diff --git a/MM_Math/data_original_21/7048953/math/52653758_00.png b/MM_Math/data_original_21/7048953/math/52653758_00.png deleted file mode 100644 index a3cda5091f7d056c833d2480034b0e7d65e8b06e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52653758_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:655619958bfeee7b0f09a3e80d5bc7698c53d686244bc4bd5443c49673cb1bf1 -size 26088 diff --git a/MM_Math/data_original_21/7048953/math/52655011_97.png b/MM_Math/data_original_21/7048953/math/52655011_97.png deleted file mode 100644 index d89d08d228acbc99f5c1a663ef9d94c35f89b91b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52655011_97.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14573874dbaa07a0aa4a103b3500d8ac823a05ac49aa0da9bebd801adfd2b32d -size 2444 diff --git a/MM_Math/data_original_21/7048953/math/52655046_80.png b/MM_Math/data_original_21/7048953/math/52655046_80.png deleted file mode 100644 index 461334bc197937af81e9add679a826c76c88fe2e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52655046_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b84e381db6c3626b3f4ed4bc874042f56ae926bd50886bbccff1da45ea61fad2 -size 3843 diff --git a/MM_Math/data_original_21/7048953/math/52655234_100.png b/MM_Math/data_original_21/7048953/math/52655234_100.png deleted file mode 100644 index e2509cd3102f7036b26a923a8ddde08cb3a653e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52655234_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f4dd31c618ed56f51f0cc7da57c09cbfc68280fe4163ae28fb4f057fd6da313 -size 2983 diff --git a/MM_Math/data_original_21/7048953/math/52655468_450.png b/MM_Math/data_original_21/7048953/math/52655468_450.png deleted file mode 100644 index 0aa5e022d1e68d3b1a1820f52da3a4dd1e44d533..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52655468_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54969e505cb18c67a6ad79f0e335ca5bf05c4c1846254f6836e31dde29bbc03b -size 73134 diff --git a/MM_Math/data_original_21/7048953/math/52836211_10.png b/MM_Math/data_original_21/7048953/math/52836211_10.png deleted file mode 100644 index 12e4555449a645374d1d39507acf54590daca62a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836211_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38272c662b42966df97326dc90e6d6de7393221a3e1a5287fd7e1da5396c317a -size 14837 diff --git a/MM_Math/data_original_21/7048953/math/52836214_445.png b/MM_Math/data_original_21/7048953/math/52836214_445.png deleted file mode 100644 index 536080d42135eadeec93ce8e25081998310fb555..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836214_445.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5c34b38c9d83165e18f6bb356d391978df3df44c80d8143b7853f4f32f391a57 -size 77511 diff --git a/MM_Math/data_original_21/7048953/math/52836308_180.png b/MM_Math/data_original_21/7048953/math/52836308_180.png deleted file mode 100644 index 12347a38e75b3970dbe18f4fd476f3dd63e4855e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836308_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9e7f56b35f4a3c7776d0681642d81573301088c0f0702f97afb432c9f656790 -size 3356 diff --git a/MM_Math/data_original_21/7048953/math/52836352_21.png b/MM_Math/data_original_21/7048953/math/52836352_21.png deleted file mode 100644 index fddf97890e8e7e291d0736fca7489388a59335aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836352_21.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e838006d3d3aba33c1ac673a691b74993349b4393ecf916a2b1d3dd8f7913e6 -size 3852 diff --git a/MM_Math/data_original_21/7048953/math/52836392_32.png b/MM_Math/data_original_21/7048953/math/52836392_32.png deleted file mode 100644 index 2863d081c7481a972e35af49ffb844cd62a23bf0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836392_32.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7e55e855e1c669ecbddb63b861079be34a52a6eb9f0af17a0efbb6f3f0bbed7 -size 23101 diff --git a/MM_Math/data_original_21/7048953/math/52836462_170.png b/MM_Math/data_original_21/7048953/math/52836462_170.png deleted file mode 100644 index fe0ab4cab06b45397883abfd15f0953f09c838a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836462_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db2ee6c59630812b2a32af4f501c92891f87e4e36883571360c1e96123557a61 -size 17964 diff --git a/MM_Math/data_original_21/7048953/math/52836463_160.png b/MM_Math/data_original_21/7048953/math/52836463_160.png deleted file mode 100644 index a0d4be9f7b7e576a74fbfe036af9ae65eaa2a831..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836463_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64157108697a3e4ff14979fa38021d5e4d228179bb9aabfecf1107eeab078005 -size 75905 diff --git a/MM_Math/data_original_21/7048953/math/52836476_811.png b/MM_Math/data_original_21/7048953/math/52836476_811.png deleted file mode 100644 index f7ee5dfb92026c00706961371cc3c74e0a96a8a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836476_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b68df5bfe3e3f6500b3da87a6162244aa035f766432fe85e7a532c2740b6aa63 -size 5408 diff --git a/MM_Math/data_original_21/7048953/math/52836684_42.png b/MM_Math/data_original_21/7048953/math/52836684_42.png deleted file mode 100644 index ea99126d535f035f351c657ebc1a39759e55f01c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836684_42.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:993cedd294d4334599ac0118f39876660c7f65a11534143a64286356b3ffef6c -size 11608 diff --git a/MM_Math/data_original_21/7048953/math/52836686_69.png b/MM_Math/data_original_21/7048953/math/52836686_69.png deleted file mode 100644 index 5953e919b2b6ed9dd38d810bb3c60f78918a33d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836686_69.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1e9634e87cf3ede135579320a45ce5a7f898f732cafb596ddd1d282efde5d77 -size 11581 diff --git a/MM_Math/data_original_21/7048953/math/52836748_479.png b/MM_Math/data_original_21/7048953/math/52836748_479.png deleted file mode 100644 index 5ff13aa55fb3e019604635d2235b80c3ee548fd7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836748_479.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:144de71f37bb6a73140578fb353eced709edb6e1329be573fd54e169c4308fb2 -size 2727 diff --git a/MM_Math/data_original_21/7048953/math/52836749_439.png b/MM_Math/data_original_21/7048953/math/52836749_439.png deleted file mode 100644 index 453d6c021666e599eeacf622c6bc91ce459da897..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836749_439.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:397f26b87cdcadb087223aadba12994c634aa90b6d899d67d3aba4fdb20bce04 -size 50647 diff --git a/MM_Math/data_original_21/7048953/math/52836781_70.jpeg b/MM_Math/data_original_21/7048953/math/52836781_70.jpeg deleted file mode 100644 index 5ae8a772d6f59bfa340ee991b9ce7cf59a82b0c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836781_70.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:076946bddbfd0aa89324bee4e142b70a9c004ad9cfe8d3402247b922a0116a70 -size 23843 diff --git a/MM_Math/data_original_21/7048953/math/52836818_140.png b/MM_Math/data_original_21/7048953/math/52836818_140.png deleted file mode 100644 index 1c231353b78e67311be53271331eb24cd4a57849..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836818_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cda463ad8d8ba516815559c0f2b9022de8168f21e7cd9045f34284bef6536738 -size 3860 diff --git a/MM_Math/data_original_21/7048953/math/52836829_415.png b/MM_Math/data_original_21/7048953/math/52836829_415.png deleted file mode 100644 index 24b0e7ce0639838875520f77b173dcac9e74ea87..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836829_415.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5dd8957c82874bea66c8ad64c51f58b7418a2f96e02dd0e6c0b977fe0a503c88 -size 2594 diff --git a/MM_Math/data_original_21/7048953/math/52836849_150.png b/MM_Math/data_original_21/7048953/math/52836849_150.png deleted file mode 100644 index 6980c3b5c45bff4872316fd3cfe966b57ebadcf4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836849_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:57f088adace0d89c72d0d6e14fec9ba237e2d2db3c95067389b31da718321add -size 14870 diff --git a/MM_Math/data_original_21/7048953/math/52836896_404.png b/MM_Math/data_original_21/7048953/math/52836896_404.png deleted file mode 100644 index 50a51a4d634d883d9af189990baaf0a6fd01b3c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52836896_404.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15138c83222f7fccd2a349d26a06c88cba438869e78e55a7f42dbb08ac1f20c7 -size 4582 diff --git a/MM_Math/data_original_21/7048953/math/52855863_390.png b/MM_Math/data_original_21/7048953/math/52855863_390.png deleted file mode 100644 index f474ffda31309f7c7429e46988db61496839683c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52855863_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b235768603ec74b1b3d357656513cea00e08b90b077fef1050a11c5c297c66fa -size 4967 diff --git a/MM_Math/data_original_21/7048953/math/52855867_720.png b/MM_Math/data_original_21/7048953/math/52855867_720.png deleted file mode 100644 index 957fe99803cd158006825faa3ae45c5b669d58c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52855867_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eaba4cbe9898c19bc0fd37014440139fc1a030c4c08f6338ce6a12e2a4c2ba47 -size 20657 diff --git a/MM_Math/data_original_21/7048953/math/52856058_360.png b/MM_Math/data_original_21/7048953/math/52856058_360.png deleted file mode 100644 index f575ebb01ac90d4c39e11808882b6b49378b7549..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52856058_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea69e68e79a53bbebe7e40630b72efffd0bd41ec3838c874f77aa96454fa200c -size 9608 diff --git a/MM_Math/data_original_21/7048953/math/52856072_920.png b/MM_Math/data_original_21/7048953/math/52856072_920.png deleted file mode 100644 index f3556058a9f865660c0e1fcc3c04d03edc0409d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52856072_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ac3f13e8d4aeb6aafe6a11fd7341af17981eb27387d7e75e322906f9d50674ba -size 5623 diff --git a/MM_Math/data_original_21/7048953/math/52856088_354.png b/MM_Math/data_original_21/7048953/math/52856088_354.png deleted file mode 100644 index 896e5cfba49bbb3cbb16c80a994678260fc5c31f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52856088_354.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8886468879e75a99998ea9cf7ad212c1b7fb6ea950ceeb0548b09f4b298cef0c -size 3576 diff --git a/MM_Math/data_original_21/7048953/math/52856093_684.png b/MM_Math/data_original_21/7048953/math/52856093_684.png deleted file mode 100644 index 8be87fddcc37d9609540eaab41b13f4a09c21bd3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52856093_684.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b5e1d9a52e4e5993d4283c11fe1ec46525d3c1810e48a7002bf9db1c57260d6 -size 3751 diff --git a/MM_Math/data_original_21/7048953/math/52856180_316.png b/MM_Math/data_original_21/7048953/math/52856180_316.png deleted file mode 100644 index cfcdf7f4a4dced210ae36594146e0bebf6dc118e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52856180_316.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:590b28d31943831c8298e083189402d40ec24c0408fdbe8c2ed4ffeaec706ff1 -size 2880 diff --git a/MM_Math/data_original_21/7048953/math/52890844_735.png b/MM_Math/data_original_21/7048953/math/52890844_735.png deleted file mode 100644 index 49a44dba3fc52a6443a7a0ed7d50cb9555ea3a6a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52890844_735.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7bafbcef04e2fffa9117a8c0c34e5b0f7365cbe7c06896832b5e4cd0b084a2bd -size 35192 diff --git a/MM_Math/data_original_21/7048953/math/52890848_973.png b/MM_Math/data_original_21/7048953/math/52890848_973.png deleted file mode 100644 index f4942bf34c102e6cbcf0dbf77e29d15ed27ac3c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52890848_973.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5dde2921b922cf1330a75ea40998cf77d3e8b56e5a1b4df94f74ba76ced04fa5 -size 7897 diff --git a/MM_Math/data_original_21/7048953/math/52891028_9601.png b/MM_Math/data_original_21/7048953/math/52891028_9601.png deleted file mode 100644 index 58e9c114e88a0589631ac83480f914f2de76f665..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52891028_9601.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef77478e87f254d30a1e5e4df8be217ce4f73094a464ff9de00d16cfc1a0d09f -size 16601 diff --git a/MM_Math/data_original_21/7048953/math/52891029_9614.png b/MM_Math/data_original_21/7048953/math/52891029_9614.png deleted file mode 100644 index f7f310275111525b42b8f7d88f7783db6a71de6e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52891029_9614.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d664ee7ed45fcdca94a71e5735141f13c5036fddeb3bb59e4c0466445f8ece19 -size 18928 diff --git a/MM_Math/data_original_21/7048953/math/52891079_748.png b/MM_Math/data_original_21/7048953/math/52891079_748.png deleted file mode 100644 index 4fb2583d67b6b00ed9c56741d4644de324efe3fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52891079_748.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eeae03f723eebff4ac69894a3df619a94445711696eb93aaa115d008e444c567 -size 4064 diff --git a/MM_Math/data_original_21/7048953/math/52891113_336.png b/MM_Math/data_original_21/7048953/math/52891113_336.png deleted file mode 100644 index 6bf9e26e41ac08585707e969794a787ef6f82b47..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52891113_336.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5c888a73e0e9445b14f4bcd0392d4b952aecf59a89fbe8c3bffa9430f01f8956 -size 28793 diff --git a/MM_Math/data_original_21/7048953/math/52891125_786.png b/MM_Math/data_original_21/7048953/math/52891125_786.png deleted file mode 100644 index 81d315799cd42d89acf92673f938557f53b82195..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52891125_786.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e67d9a4614311d3cb66d7292493724e2e437dc482ba17074f3bc72de850b8888 -size 7539 diff --git a/MM_Math/data_original_21/7048953/math/52891228_902.png b/MM_Math/data_original_21/7048953/math/52891228_902.png deleted file mode 100644 index c27dd1261515992165536c82491eecd9a1a3e387..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52891228_902.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1671775bc2b52a0849b067b950c266b9510437c91478b0396873ee785f0695bb -size 5551 diff --git a/MM_Math/data_original_21/7048953/math/52891246_325.png b/MM_Math/data_original_21/7048953/math/52891246_325.png deleted file mode 100644 index 42597a138220b1cd007bdd5d28bb40bd1665cbf7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52891246_325.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0285a4f61a8c0296f11b0cf080000cea514464c10e1e5bf19af1476a6a069ccb -size 8259 diff --git a/MM_Math/data_original_21/7048953/math/52891255_910.png b/MM_Math/data_original_21/7048953/math/52891255_910.png deleted file mode 100644 index 07b7baab3de0fe0e28f8992a22d76a9a7cb2b4ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/52891255_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9fc3476cba0d127ed5390ec99c1574c7dc18d50333e8c2056155b4a8ad4c70bb -size 2829 diff --git a/MM_Math/data_original_21/7048953/math/53010081_258.png b/MM_Math/data_original_21/7048953/math/53010081_258.png deleted file mode 100644 index f513a85dd8f89423833c79f54b7964a01f68a02d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/53010081_258.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ffa05f58a440beb44cf5ed8f281f73082bbb77572710da59ad1de544b3c8a87a -size 4216 diff --git a/MM_Math/data_original_21/7048953/math/53010085_5713.png b/MM_Math/data_original_21/7048953/math/53010085_5713.png deleted file mode 100644 index d1d2d1d71ed6a0997e3e33e4a05037d4b4aa3722..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/53010085_5713.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef5259e5969f150a47d9ff3f6122288e4c85ce346263b8d2119f9a8e0bf2b9a5 -size 23372 diff --git a/MM_Math/data_original_21/7048953/math/53010086_5912.png b/MM_Math/data_original_21/7048953/math/53010086_5912.png deleted file mode 100644 index 08a7767cff70dc62f10866df5bac9fe8b4311860..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/53010086_5912.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:553843ea10b5fe9df8bdd63a47c289f59b9bce2a5289250da2ea7d4f82996729 -size 3002 diff --git a/MM_Math/data_original_21/7048953/math/53010087_568.png b/MM_Math/data_original_21/7048953/math/53010087_568.png deleted file mode 100644 index 93e3b79408e51c46080bb5ddd5d3a1528dfb140a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/53010087_568.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5bddfaf4b9607d7630f5b2da73c20562053c13c73d696bcfa6afe988608fdff6 -size 4392 diff --git a/MM_Math/data_original_21/7048953/math/53010111_241.png b/MM_Math/data_original_21/7048953/math/53010111_241.png deleted file mode 100644 index bdf5b183e0246edddbcb09a318333be8b7a1b871..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/53010111_241.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:664816c289ca9d81c74a0dc1421a4e8d8ef53e997384742cbb62e4f7a0dc90f3 -size 1141 diff --git a/MM_Math/data_original_21/7048953/math/53010115_580.png b/MM_Math/data_original_21/7048953/math/53010115_580.png deleted file mode 100644 index ce2454404ad1864bbbb0dac7d535b82fb2d296cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/53010115_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e51f4497dcca4d5192600eb2fd68cc74aff9f776efdb8e7959c6fd754de1b9b -size 3019 diff --git a/MM_Math/data_original_21/7048953/math/53010135_2312.png b/MM_Math/data_original_21/7048953/math/53010135_2312.png deleted file mode 100644 index 78092972b0ee03f39d202f9e67931aff6e87043f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/53010135_2312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:260eec42503c3e2aa53597108d638cf8bd08dc3c75452e8b08de7f1e61594ec5 -size 8839 diff --git a/MM_Math/data_original_21/7048953/math/53010582_850.png b/MM_Math/data_original_21/7048953/math/53010582_850.png deleted file mode 100644 index 5678c62bf2e61347a046c7e1e5f01baf7a1c86f0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/math/53010582_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:126268a89c1f2e0755c9e3cffb6e1b43db705d5253f72d45baa3663a4829df2c -size 16434 diff --git a/MM_Math/data_original_21/7048953/solution_images/51366536_520.png b/MM_Math/data_original_21/7048953/solution_images/51366536_520.png deleted file mode 100644 index 5a0ddfbde0b7cf038d0684ba9c18adac8aea918d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51366536_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f0d933c03cde309c231a793b7a3f0a9cdb87c67e808dba0addb95150175fa13 -size 21674 diff --git a/MM_Math/data_original_21/7048953/solution_images/51366537_510.png b/MM_Math/data_original_21/7048953/solution_images/51366537_510.png deleted file mode 100644 index 93714111d4dd6abd52551218dd803655658cd1e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51366537_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:825a62cff43d81d8ba7bd363d31165b392c04e3696f87913f9e523446837643d -size 3187 diff --git a/MM_Math/data_original_21/7048953/solution_images/51366537_5112.png b/MM_Math/data_original_21/7048953/solution_images/51366537_5112.png deleted file mode 100644 index ed473b4d7d46c2e92dd55e48d20a1dd2178a5b6c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51366537_5112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0833a855b5d9347fba9d38b4bb223b8c4c3b79a8946b221c008e6bd96b7d6a24 -size 2917 diff --git a/MM_Math/data_original_21/7048953/solution_images/51366593_490.png b/MM_Math/data_original_21/7048953/solution_images/51366593_490.png deleted file mode 100644 index 72cfe6ee11718a2fc5284eb2c5ce7d367b0c66bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51366593_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb5ed906c99d1759b9c1c30129013da1cbdaea4e5e270169472bbf9de9a216cb -size 12575 diff --git a/MM_Math/data_original_21/7048953/solution_images/51378679_640.png b/MM_Math/data_original_21/7048953/solution_images/51378679_640.png deleted file mode 100644 index 05cd98e939a1ca7560bb5973c99cc0a6ced33cff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51378679_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2c370b3ef5e576f80d7f50f2adf711b9a506f02a0dfdf82eb77b0fbd20ad159 -size 42928 diff --git a/MM_Math/data_original_21/7048953/solution_images/51378814_621.png b/MM_Math/data_original_21/7048953/solution_images/51378814_621.png deleted file mode 100644 index 68d4939fdeeab6b5ed57ea93b445a53b6c6242aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51378814_621.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce4d4330343c1edc14233a7af5e58b2383a73eca103a3f06f483f92f9553493f -size 3396 diff --git a/MM_Math/data_original_21/7048953/solution_images/51378976_271.png b/MM_Math/data_original_21/7048953/solution_images/51378976_271.png deleted file mode 100644 index 99346a5c0594b1a730a84ff85852a7cb24ebcb45..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51378976_271.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b8b63748667bdfc7d6527fb29d9de23629d84fd329f121bda1d926b0bbb3932 -size 36043 diff --git a/MM_Math/data_original_21/7048953/solution_images/51378984_631.png b/MM_Math/data_original_21/7048953/solution_images/51378984_631.png deleted file mode 100644 index 12a24e3dc546a81e274b816780518f11e506a3bd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51378984_631.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6400f75152a225bd57a9cd5e6844a3c69cc54a8b79bf0648372d3efa56295be6 -size 50644 diff --git a/MM_Math/data_original_21/7048953/solution_images/51378985_603.png b/MM_Math/data_original_21/7048953/solution_images/51378985_603.png deleted file mode 100644 index bc105686af23d72b73e3590ab0fa7eaa8e18853f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51378985_603.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fdcbef6c3ecca31bc12917bc54dd487ed37ee27ffa1afda0a44fcd1c2620f405 -size 25751 diff --git a/MM_Math/data_original_21/7048953/solution_images/51379083_660.png b/MM_Math/data_original_21/7048953/solution_images/51379083_660.png deleted file mode 100644 index 73d78a960ac31ba4c4a3396270d03104ab7e6ce6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51379083_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a0efbd45ced554c84e7c03d6865277154f81756338ed615e538255880fc16010 -size 3893 diff --git a/MM_Math/data_original_21/7048953/solution_images/51379084_670.png b/MM_Math/data_original_21/7048953/solution_images/51379084_670.png deleted file mode 100644 index 620b58ca603fe1c4f858a37b60c50137f17b4418..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/51379084_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6fcad99d1d59e70f3d4f077d114bf0cb90b7f99872ef1c031cd17edbb49c99b9 -size 42921 diff --git a/MM_Math/data_original_21/7048953/solution_images/52095901_340.png b/MM_Math/data_original_21/7048953/solution_images/52095901_340.png deleted file mode 100644 index 9b6bb17cc67e198e8e5640f686deb59c8ef6483c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52095901_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39e8a5de9490bc2060e655892dc04369fd0ecd894a096415cd20022a854f7969 -size 1888 diff --git a/MM_Math/data_original_21/7048953/solution_images/52096265_711.png b/MM_Math/data_original_21/7048953/solution_images/52096265_711.png deleted file mode 100644 index 0fc412e4c3f7e1fc69674186ba892c7df174a446..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52096265_711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd39a43ad4c89b22a37a5e41d98a4328217d7671ab69d4f80b619d1be89bbd86 -size 5364 diff --git a/MM_Math/data_original_21/7048953/solution_images/52096265_714.png b/MM_Math/data_original_21/7048953/solution_images/52096265_714.png deleted file mode 100644 index 9755374447908bfe253298eb5c4b8ee4f50c18f6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52096265_714.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bc6d3ea9be88ae2cb7361be1fe7e653f3773afa08859e669ee1a79266c77df8 -size 5399 diff --git a/MM_Math/data_original_21/7048953/solution_images/52096487_800.png b/MM_Math/data_original_21/7048953/solution_images/52096487_800.png deleted file mode 100644 index 0ead3b7e2b3f4d14bf002fdcdf03b8759736d320..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52096487_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2e71b008850233acf2a7e7a70d4e9c14bb00892455ec9eff59fac9ba0243379 -size 3960 diff --git a/MM_Math/data_original_21/7048953/solution_images/52096886_290.png b/MM_Math/data_original_21/7048953/solution_images/52096886_290.png deleted file mode 100644 index a53b1a04c47680dedbec2870fa885c8682d9bee7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52096886_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56c2a48b922750c471b40ab4788b8ecd00ddf982966bd79647aa5f9955461949 -size 8075 diff --git a/MM_Math/data_original_21/7048953/solution_images/52653549_461.png b/MM_Math/data_original_21/7048953/solution_images/52653549_461.png deleted file mode 100644 index 53b031328f6baf73283a786aae6b54f2ac62ca7f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52653549_461.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29618c4e573547ce45083c0ae14791b16d7b3285dc3a0074323cce75c861c162 -size 2336 diff --git a/MM_Math/data_original_21/7048953/solution_images/52653732_110.png b/MM_Math/data_original_21/7048953/solution_images/52653732_110.png deleted file mode 100644 index 8829f7259a8103c8c0d32238d024be525b0350f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52653732_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13417c858a255e127ae10c236d983cb88ba542ba5799619acbb67a9d6d72e179 -size 15433 diff --git a/MM_Math/data_original_21/7048953/solution_images/52653758_00.png b/MM_Math/data_original_21/7048953/solution_images/52653758_00.png deleted file mode 100644 index 9c2ff74164145b370f0641d857b6d8b3ee11b714..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52653758_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3537633a48c5f83ccf6aa5536d974b7b5e7735ab86b9770aca126f80e3c9543e -size 28904 diff --git a/MM_Math/data_original_21/7048953/solution_images/52836214_441.png b/MM_Math/data_original_21/7048953/solution_images/52836214_441.png deleted file mode 100644 index c580d67cec5e79596c8940fcb4718352ca95fa30..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52836214_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7fa80ef7fb36a514ed754c0531da1f095fef9ce00e2faf76f345b779ada7aa29 -size 85744 diff --git a/MM_Math/data_original_21/7048953/solution_images/52836352_21.png b/MM_Math/data_original_21/7048953/solution_images/52836352_21.png deleted file mode 100644 index 4b32c4ea7112b3ec096932aff7de9a769b1fe254..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52836352_21.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a53ba0410c05aafdecadc04023aea47559fe0089869293b674ef9d4186bdecd4 -size 2343 diff --git a/MM_Math/data_original_21/7048953/solution_images/52836352_210.png b/MM_Math/data_original_21/7048953/solution_images/52836352_210.png deleted file mode 100644 index 1a34417fb19b6c94684e935bc0be66da8416338f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52836352_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:162d3de2bb7c64a374363992f75f88a382624feb5dcf76ab7f1f2dca2a1ddad8 -size 2567 diff --git a/MM_Math/data_original_21/7048953/solution_images/52836682_51.png b/MM_Math/data_original_21/7048953/solution_images/52836682_51.png deleted file mode 100644 index 3046436229427b330acf815b73ba348f31f65a2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52836682_51.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e90d0eb42d7a4e5a193fadc5b13b412d00ff3a1f8e2b60f2915abdf3250b0799 -size 2665 diff --git a/MM_Math/data_original_21/7048953/solution_images/52836748_470.png b/MM_Math/data_original_21/7048953/solution_images/52836748_470.png deleted file mode 100644 index 76cda52d607e770e89aecee78d5daec162401b22..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52836748_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20d9ce3d512c8aa35f5fa6951d7443af34fec247f981442ef19f13a058285315 -size 3206 diff --git a/MM_Math/data_original_21/7048953/solution_images/52836749_430.png b/MM_Math/data_original_21/7048953/solution_images/52836749_430.png deleted file mode 100644 index 41d388fef7a42e0158883df0dfaa7db37624a153..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52836749_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43b6716854ffce965a8bd2649f84b25ab97d193f2c6712aec781884092786a23 -size 56397 diff --git a/MM_Math/data_original_21/7048953/solution_images/52836829_410.png b/MM_Math/data_original_21/7048953/solution_images/52836829_410.png deleted file mode 100644 index 962c9803b43a742427dfbf2a14b3806634206b9e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52836829_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f09cb1a9d2c074a4710e30e41812973e991b602d34ce19e7dfd55697f8f8618 -size 6886 diff --git a/MM_Math/data_original_21/7048953/solution_images/52836896_400.png b/MM_Math/data_original_21/7048953/solution_images/52836896_400.png deleted file mode 100644 index 439e1d0e7f720ea62d865d781a3ce94f0e2f129c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52836896_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fef5ec5a6518d13e331746f6e290963fe290c24d18426b847d543af01cedd40a -size 5308 diff --git a/MM_Math/data_original_21/7048953/solution_images/52855867_720.png b/MM_Math/data_original_21/7048953/solution_images/52855867_720.png deleted file mode 100644 index e9a811bfefad227d0f9f413603518e06b800c91e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52855867_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3727c99bb425287ca68cae124c77fba8b9ea6b70cf7c48e762f0014dbb747116 -size 20078 diff --git a/MM_Math/data_original_21/7048953/solution_images/52856058_360.png b/MM_Math/data_original_21/7048953/solution_images/52856058_360.png deleted file mode 100644 index 78b139a7f076739160f91e4b5734b87fb51772c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52856058_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:289e3e9d94f03ad1e7a3062c72438d0e84fdf74c8ca0501f8d361018f57c46e5 -size 22921 diff --git a/MM_Math/data_original_21/7048953/solution_images/52856093_680.png b/MM_Math/data_original_21/7048953/solution_images/52856093_680.png deleted file mode 100644 index 8ecbe5a1aedfb49fcce3df89ca40664d3452a2e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52856093_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b627e020ad4db34ac4ebba879a68f012f4719fd250eee704a3b8fdad691610f9 -size 3745 diff --git a/MM_Math/data_original_21/7048953/solution_images/52891079_7413.png b/MM_Math/data_original_21/7048953/solution_images/52891079_7413.png deleted file mode 100644 index 804e8543006db2828bb91af66ee307352309ceee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/52891079_7413.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1a9a432cdc9796a2f3861f58dd1be776cf2ccf2e6f81ed2ea0a9c40f219f06ce -size 12222 diff --git a/MM_Math/data_original_21/7048953/solution_images/53010081_250.png b/MM_Math/data_original_21/7048953/solution_images/53010081_250.png deleted file mode 100644 index bdc0a2bdc0813ff9ee2ef6d72e971d66704a1610..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/53010081_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74d6d76a16e9e5e8c54237212541a7fc8702106d10478a4e726d608b718a1752 -size 4750 diff --git a/MM_Math/data_original_21/7048953/solution_images/53010111_240.png b/MM_Math/data_original_21/7048953/solution_images/53010111_240.png deleted file mode 100644 index 9a8733c24f843519c9dd59dc75e1af3db7bbbf3d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/53010111_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81ea8eaacc74abdfdc311e33e8e73e57bf9bc0d772dc34c3dc28daae18715ef5 -size 3383 diff --git a/MM_Math/data_original_21/7048953/solution_images/53010135_230.png b/MM_Math/data_original_21/7048953/solution_images/53010135_230.png deleted file mode 100644 index 751fe0cc578a26bf9009d56fdeae8b25eae5152d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7048953/solution_images/53010135_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e5563698920b3fa4869b44ec94fbbb5c966f344cbeec4c9d6e8cdad60f8b366 -size 19625 diff --git a/MM_Math/data_original_21/7051872/math/5056405_10.png b/MM_Math/data_original_21/7051872/math/5056405_10.png deleted file mode 100644 index d24eb39e174496559071e94a3a4d6125cbd814aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/5056405_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5724c23fd40e083b8a510859298b663d3395ee3080429c89e13481c406e07b3c -size 1807 diff --git a/MM_Math/data_original_21/7051872/math/52303856_5110.png b/MM_Math/data_original_21/7051872/math/52303856_5110.png deleted file mode 100644 index 0cda588e9b09b0c90c46b56d3e60ceed6ebcb7e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52303856_5110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8803eddcc037cfbb5a5c8c15da6d980d23db0001d2965dc81af9b6cdb6f80b4 -size 2980 diff --git a/MM_Math/data_original_21/7051872/math/52304119_999.png b/MM_Math/data_original_21/7051872/math/52304119_999.png deleted file mode 100644 index e01714d1e29ba7228ace9227ee26e0b23ed0017a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52304119_999.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b81db6826b4d49acdec7f8a67edf10b9d2996592c218d38b3662827d3cc91006 -size 8659 diff --git a/MM_Math/data_original_21/7051872/math/52304470_250.png b/MM_Math/data_original_21/7051872/math/52304470_250.png deleted file mode 100644 index 417d48abd89fbfd88660c6d67be13737a7d70b31..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52304470_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:234e15ebc8eb08a0dd8e5870902967e95d5f8a4089ddc12116f474012b2812f6 -size 15296 diff --git a/MM_Math/data_original_21/7051872/math/52304489_9817.png b/MM_Math/data_original_21/7051872/math/52304489_9817.png deleted file mode 100644 index 32928829323aba821db66d54ef156eeedd71297d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52304489_9817.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dfb8db7ff2815ed3292196d9b5196942d75867faa34c20e4e8aafda784e28af2 -size 7522 diff --git a/MM_Math/data_original_21/7051872/math/52345458_926.png b/MM_Math/data_original_21/7051872/math/52345458_926.png deleted file mode 100644 index e61d46289126500c30b6a74dbbcb733c44cf7059..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52345458_926.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7dc1adc509757900a4c949535572faee5d3844eaa1bf86d97cdee377f4e0f18e -size 7109 diff --git a/MM_Math/data_original_21/7051872/math/52345530_913.png b/MM_Math/data_original_21/7051872/math/52345530_913.png deleted file mode 100644 index 18d5574082f141e46a51de4cce52e1103e1eaf2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52345530_913.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d6641d50f3579fd19e29c70f7554a8ac87514a31ce9317534eeb0704d9f8f1c5 -size 16591 diff --git a/MM_Math/data_original_21/7051872/math/52354168_860.png b/MM_Math/data_original_21/7051872/math/52354168_860.png deleted file mode 100644 index 4779bf4efd1622e50fa188d6fde0124eda0d26e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52354168_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:352d1cc913a9ad9f1a15e498a0dfc03ce795f0697e147216cc714642cef225b2 -size 3878 diff --git a/MM_Math/data_original_21/7051872/math/52354235_181.png b/MM_Math/data_original_21/7051872/math/52354235_181.png deleted file mode 100644 index bb58df105b058afdb3f70c7fa78cdca0964f636e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52354235_181.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b44d67f938a7d6aeae126297bf6304fa35d641c18e42666f16f8854ff7f94115 -size 4899 diff --git a/MM_Math/data_original_21/7051872/math/52354786_190.png b/MM_Math/data_original_21/7051872/math/52354786_190.png deleted file mode 100644 index 1612c82cd117086c13b34fdcaf848a6c8237fe36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52354786_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:267c0e2aa50327d1ba5d6538761b48d10eb3b5f33e259e5cd3272597c436febc -size 2362 diff --git a/MM_Math/data_original_21/7051872/math/52354898_859.png b/MM_Math/data_original_21/7051872/math/52354898_859.png deleted file mode 100644 index 5b38f0eb1ff90b002f9fe22c6a1b66c24b702916..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52354898_859.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9f5b65c5410e1dcb6511fe2682b409891d0deeba136032c9c767dada85cc1b3 -size 2789 diff --git a/MM_Math/data_original_21/7051872/math/52354905_207.png b/MM_Math/data_original_21/7051872/math/52354905_207.png deleted file mode 100644 index a79899fc85d8cc1a23d1d8e47dd39b3a1ae7addd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52354905_207.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed75202521d7404290ed9401d7e4aaae9acbf89ca155cb70c2b00870a8ba941e -size 3760 diff --git a/MM_Math/data_original_21/7051872/math/52354930_8811.png b/MM_Math/data_original_21/7051872/math/52354930_8811.png deleted file mode 100644 index d1679b69ab8a096a1ec06d0515702cee9a9b7c50..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52354930_8811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b82854dec6324900fb75ccc4793c2df85ab95657b64ba0000557843f996878ab -size 2721 diff --git a/MM_Math/data_original_21/7051872/math/52355068_462.png b/MM_Math/data_original_21/7051872/math/52355068_462.png deleted file mode 100644 index 3d919a7c22dfcae15a445e4607344ba715a03c97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52355068_462.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:931baa6c14754a8fbb4c7b01e25c4cbdca58dd55de2a23cc5bd4b83d77d4790f -size 58407 diff --git a/MM_Math/data_original_21/7051872/math/52355125_875.png b/MM_Math/data_original_21/7051872/math/52355125_875.png deleted file mode 100644 index 33cc3d83c79e3df69395e92c88ba0c55c616aaf6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52355125_875.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c43dc0bd58e35209100f973b32e9c8e0dabf5555b13c19622172e77c8b265850 -size 66533 diff --git a/MM_Math/data_original_21/7051872/math/52355189_173.png b/MM_Math/data_original_21/7051872/math/52355189_173.png deleted file mode 100644 index 3be27020dd466183f88c55bb4a0e8fc4c696bd22..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52355189_173.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15b0490ce3f69216a9804576ea2aba66793119585f97806c17b151793fe22e5c -size 2561 diff --git a/MM_Math/data_original_21/7051872/math/52380621_416.png b/MM_Math/data_original_21/7051872/math/52380621_416.png deleted file mode 100644 index dff8e469f67f8b18f590331c115f7e16b96df853..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52380621_416.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44e463e7b0324da8fe46562972bbe8e7fbc7aa04e83b28471a8530e2e90e717a -size 3007 diff --git a/MM_Math/data_original_21/7051872/math/52380774_420.png b/MM_Math/data_original_21/7051872/math/52380774_420.png deleted file mode 100644 index 7c3b3d9e9eeeadd608804f9f5859e0200d4b0958..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52380774_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:697ef20d4e3feda3306469ccac5b1d18a183c3689a02f8667fefd306709d07a6 -size 3126 diff --git a/MM_Math/data_original_21/7051872/math/52380814_375.png b/MM_Math/data_original_21/7051872/math/52380814_375.png deleted file mode 100644 index e78cc23070946720c229941b251e0a143bc6788a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52380814_375.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7b7d8c273738f9cb32eff646263e0999ab2c6987eae1fc1f5a9601f85cea90b -size 8469 diff --git a/MM_Math/data_original_21/7051872/math/52380902_800.png b/MM_Math/data_original_21/7051872/math/52380902_800.png deleted file mode 100644 index 6212760933e35f2ef4b9f18c16d1e7a1f7f14ab9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52380902_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9fc653c03a9b70f39dbf055fd09c1b9b43308615576b2e3ecf6c40d3e94b005 -size 23196 diff --git a/MM_Math/data_original_21/7051872/math/52380922_362.png b/MM_Math/data_original_21/7051872/math/52380922_362.png deleted file mode 100644 index ac39bde039f76be25d4498a0b080f44765d80557..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52380922_362.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1766a8d1b0b335790cf9e3c59555658a18dd78d1d32301a687e17a721baa244e -size 5749 diff --git a/MM_Math/data_original_21/7051872/math/52381008_784.png b/MM_Math/data_original_21/7051872/math/52381008_784.png deleted file mode 100644 index 151aed3543efef52013a4962a15b17f2298e6f34..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381008_784.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d39b41d13bc17791d7fa973140c663b6bb6e2e284356c7896fee11307d6eab9f -size 2936 diff --git a/MM_Math/data_original_21/7051872/math/52381062_822.png b/MM_Math/data_original_21/7051872/math/52381062_822.png deleted file mode 100644 index d402c3ddd63d85e545732a6f2cc0cd70eda3245b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381062_822.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5bf3772e684487de3b0eba6e3a777c9904f5e6ad06ebfce7368eb4eec3f2300d -size 5770 diff --git a/MM_Math/data_original_21/7051872/math/52381120_767.png b/MM_Math/data_original_21/7051872/math/52381120_767.png deleted file mode 100644 index a83111e3908f43697010ca42fe568be12658f9ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381120_767.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5db23ef8c2657e99e8ad3f89f6665f119d61173114de924a2fe64f93e19fbbdb -size 3455 diff --git a/MM_Math/data_original_21/7051872/math/52381160_813.png b/MM_Math/data_original_21/7051872/math/52381160_813.png deleted file mode 100644 index 3dda48cd63c451ebea3360c370e4537e15dc3dce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381160_813.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b91f788bf6ea9cc0fe2d6c9c1e0b608d8b235f9eb6e23be98c71781b2b2ac11 -size 75864 diff --git a/MM_Math/data_original_21/7051872/math/52381181_450.png b/MM_Math/data_original_21/7051872/math/52381181_450.png deleted file mode 100644 index e15c6d39d3126ca1c1c4d921bee252e5285faea1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381181_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4baad807050977b990f5371bd94bbeea8b446ec2b10645293083361766d68b4 -size 62008 diff --git a/MM_Math/data_original_21/7051872/math/52381215_777.png b/MM_Math/data_original_21/7051872/math/52381215_777.png deleted file mode 100644 index f8ca3487f4c1b19a2da525229ab64c38b69367e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381215_777.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8459a404070bf6ae5eba92e49d19564dc6fc3c972f012abce6a64e3e6249ed34 -size 3294 diff --git a/MM_Math/data_original_21/7051872/math/52381257_843.png b/MM_Math/data_original_21/7051872/math/52381257_843.png deleted file mode 100644 index d40b3df0383c9be3ea65353a169fc072b6ffc282..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381257_843.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a38ed9479f1871b9a6b21ec10e8bc0aa8060795fc5fd0decff9dbc7566e37d9a -size 9351 diff --git a/MM_Math/data_original_21/7051872/math/52381269_163.png b/MM_Math/data_original_21/7051872/math/52381269_163.png deleted file mode 100644 index 986cef6ea1d725e916cec780c9ba4b4535322be4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381269_163.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de21575e7d4e52d86abc26a9da6304584fa10b983ac567c535ac60f6b1c85a3c -size 3296 diff --git a/MM_Math/data_original_21/7051872/math/52381301_154.png b/MM_Math/data_original_21/7051872/math/52381301_154.png deleted file mode 100644 index 1096cb5c173997de84c6c6816d3767ea7ad09dd3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381301_154.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0fcfd7d13d5f312c9111de2d619e43c4993c81330998c13d5c46c1c8f1a73f33 -size 9756 diff --git a/MM_Math/data_original_21/7051872/math/52381306_438.png b/MM_Math/data_original_21/7051872/math/52381306_438.png deleted file mode 100644 index bef8722da843c97208e56296195d784741ddaf4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381306_438.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4260227f33cd669cfe54814dee71c1cd2cfc1aba0f0cc97716486f430c22dd7e -size 62970 diff --git a/MM_Math/data_original_21/7051872/math/52381338_442.png b/MM_Math/data_original_21/7051872/math/52381338_442.png deleted file mode 100644 index 7a8451c6f25c28c80c95b8549b161da083d55f80..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381338_442.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df219466fdc8afe7a6903eb5c82c640cefaad5af58f091af7155e0cf9c734db8 -size 7175 diff --git a/MM_Math/data_original_21/7051872/math/52381419_390.png b/MM_Math/data_original_21/7051872/math/52381419_390.png deleted file mode 100644 index 3cb099b16dd508e194104ab569d4f84730d284b0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381419_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02f8077a5ec63bf6a1f1ee17245b8dbf3929834e3c3905959a00545e6cb49c26 -size 11678 diff --git a/MM_Math/data_original_21/7051872/math/52381468_830.png b/MM_Math/data_original_21/7051872/math/52381468_830.png deleted file mode 100644 index 26b3a2fee91257b999e95a7cbefe4f7612ae026c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381468_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e46d412bb1dd4a9c6f2f0b50959156214a1f7f166f91f34e5fe69c0c1efb4b62 -size 7171 diff --git a/MM_Math/data_original_21/7051872/math/52381479_750.png b/MM_Math/data_original_21/7051872/math/52381479_750.png deleted file mode 100644 index 0237b52d6ca8435a0f3ff2548db8abcf907644cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381479_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19f5bdf0af7c8b275f05ef0a260dc37379f02b15ffbd5072cce278231747e207 -size 9119 diff --git a/MM_Math/data_original_21/7051872/math/52381492_405.png b/MM_Math/data_original_21/7051872/math/52381492_405.png deleted file mode 100644 index f4eaaa85a9588718d7f4b2c5f8fcf9d13d9600db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381492_405.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e4764647e245ffcdfbafc67e56cb78031b87be81215219f60d28994480f29b0 -size 3260 diff --git a/MM_Math/data_original_21/7051872/math/52381528_135.png b/MM_Math/data_original_21/7051872/math/52381528_135.png deleted file mode 100644 index 2009e98c7cafa12247e5eb44acefe5fec4ceae76..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381528_135.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0e403985238da328572af1a396704581bb156785ef9e10c365f6426b2d7d005 -size 6858 diff --git a/MM_Math/data_original_21/7051872/math/52381542_790.png b/MM_Math/data_original_21/7051872/math/52381542_790.png deleted file mode 100644 index 3049558b298decb624ee39c39e0cf7a061aab7a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381542_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83fbbc6000501e7245a34de8584f1dbdad69bafbc480fd0d4017d1a9292b7aed -size 25062 diff --git a/MM_Math/data_original_21/7051872/math/52381567_384.png b/MM_Math/data_original_21/7051872/math/52381567_384.png deleted file mode 100644 index 1397e1cfec47789dcb02299d926db06a6ef3b4d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381567_384.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f9521bb847dedf9926fb10057b35f4df5054b97df803b1ccc1a3c85a0a04806d -size 7584 diff --git a/MM_Math/data_original_21/7051872/math/52381590_148.png b/MM_Math/data_original_21/7051872/math/52381590_148.png deleted file mode 100644 index 98a996cc2cd5183441e53f2c4dc0fb26a51f7b5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381590_148.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eff1c69ac610ca0e40b43cd5d6a2c29439d14afb5145fc8e63599c980677770e -size 6581 diff --git a/MM_Math/data_original_21/7051872/math/52381906_743.png b/MM_Math/data_original_21/7051872/math/52381906_743.png deleted file mode 100644 index d008c48c69ec65c082842e61539d3684f453bd12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381906_743.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7ba59916ed138a53e3dc5f93ac7396286bbec8a50f71650dcee1db88739b1d6 -size 2852 diff --git a/MM_Math/data_original_21/7051872/math/52381910_734.png b/MM_Math/data_original_21/7051872/math/52381910_734.png deleted file mode 100644 index 5592f7017d84412a41b32923fb1fbcf20d4aa754..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52381910_734.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1c249427786e7e8cc551f303b4ce7b81fbb753e4e141b22ec35fd33252cbfcf -size 18223 diff --git a/MM_Math/data_original_21/7051872/math/52386065_61.png b/MM_Math/data_original_21/7051872/math/52386065_61.png deleted file mode 100644 index 274e2b75e89c9cf998e4a6c065e0f8f18f17692d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386065_61.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc9f8d228053fdb30dfdde9be815f062b8230b5cee6d164db8ea5e15d49485c1 -size 12619 diff --git a/MM_Math/data_original_21/7051872/math/52386067_330.png b/MM_Math/data_original_21/7051872/math/52386067_330.png deleted file mode 100644 index d749b98dc9d68fb1810f888f52a5d7e32ba71231..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386067_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a781af1a4bce9c7633242ca2c5e287abb8a9490b1cbf349712c0333b207f6ce8 -size 4713 diff --git a/MM_Math/data_original_21/7051872/math/52386068_315.png b/MM_Math/data_original_21/7051872/math/52386068_315.png deleted file mode 100644 index 25690624f7cf0618294ca7864fdb9acf0d966a83..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386068_315.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bab3f51ea116d7692ca66098f518056d29ed66231858bdb2cbfb59df356bcb47 -size 5483 diff --git a/MM_Math/data_original_21/7051872/math/52386221_113.png b/MM_Math/data_original_21/7051872/math/52386221_113.png deleted file mode 100644 index 4704d5ea1cbabf51412d6df47eb27697715e91df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386221_113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:115d7cea50beec4218e82fb8bdedb72525dbd71df4ea5e18ea9acd1096aac4e5 -size 3197 diff --git a/MM_Math/data_original_21/7051872/math/52386314_7116.png b/MM_Math/data_original_21/7051872/math/52386314_7116.png deleted file mode 100644 index 6b2f4076ede0751ec7f925c120ff5dba856bbdbf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386314_7116.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4fadec09286c6b616b80ae8d16bef447efabc51ee58d431b3bce5745137c3876 -size 68571 diff --git a/MM_Math/data_original_21/7051872/math/52386462_104.png b/MM_Math/data_original_21/7051872/math/52386462_104.png deleted file mode 100644 index ee136e5bd61c516410791d624b0b340d9e2f954b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386462_104.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5af104de0cd6ea0eaad734bfbced3e5c8a6b6b9365d1805403c7bc18bf84d4b4 -size 4492 diff --git a/MM_Math/data_original_21/7051872/math/52386507_346.png b/MM_Math/data_original_21/7051872/math/52386507_346.png deleted file mode 100644 index 3deeea50d2ad5ee2a9644904c23bc558c1d09bcf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386507_346.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd51fdd81893da16391182d7f34ac0ff06eae48ded9277d30c75172020433b22 -size 8436 diff --git a/MM_Math/data_original_21/7051872/math/52386525_729.png b/MM_Math/data_original_21/7051872/math/52386525_729.png deleted file mode 100644 index 0697e7de43f4c5083b5b7ffa359264a9fd65150f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386525_729.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ebbd6505e50d859324e7ab7f363f7990f0209757e0c2af662a2ab9ffd508ee5b -size 136191 diff --git a/MM_Math/data_original_21/7051872/math/52386546_322.png b/MM_Math/data_original_21/7051872/math/52386546_322.png deleted file mode 100644 index 8930d7cae1dafe672be1d5eb9c26ec425180b524..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386546_322.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3801400f557d749ee3f2eb556e50c6554835b0b858509860a6415d75349fd1da -size 8654 diff --git a/MM_Math/data_original_21/7051872/math/52386556_704.png b/MM_Math/data_original_21/7051872/math/52386556_704.png deleted file mode 100644 index 30b17dfe5446c9f28f4dfe20f753dabe13b7fab1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386556_704.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a54145b6e7e00545d07c392082649c6c040b9d3d69871056bcbbd7b47c11c10 -size 9471 diff --git a/MM_Math/data_original_21/7051872/math/52386623_55.png b/MM_Math/data_original_21/7051872/math/52386623_55.png deleted file mode 100644 index 2cd98b04bf04310dc5ac66a1ebebeb5e686c7baf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386623_55.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ace34ce4477fa687966d352c11cd6c37120181ad21be7de0b3c92df0c231ff87 -size 2960 diff --git a/MM_Math/data_original_21/7051872/math/52386687_353.png b/MM_Math/data_original_21/7051872/math/52386687_353.png deleted file mode 100644 index 17b363d0e8fb6674093e4447310c297a40091e2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386687_353.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58a6ebe61123ee1e5fc835261179a0b5c2d4508b1f2540f3a1289ca2baf8e0f9 -size 1890 diff --git a/MM_Math/data_original_21/7051872/math/52386704_686.png b/MM_Math/data_original_21/7051872/math/52386704_686.png deleted file mode 100644 index 6659c6b2698bda8b055675f7b8e8992b51cf466c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386704_686.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:803eb79648155722fc6ed531bf618589d2b1a8e7779e1e8113844cf4e0aca1f3 -size 5114 diff --git a/MM_Math/data_original_21/7051872/math/52386761_697.png b/MM_Math/data_original_21/7051872/math/52386761_697.png deleted file mode 100644 index fb5011852d6cf75b64b99f932cad055c21618a97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386761_697.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e5a43dff42f6fb18e4e23c0fa2888be57490ef7c5d16379eb5d4a636d608f28d -size 27083 diff --git a/MM_Math/data_original_21/7051872/math/52386773_80.png b/MM_Math/data_original_21/7051872/math/52386773_80.png deleted file mode 100644 index ba676532ae1010e62e85f19352929326b9793fea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386773_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cadaa1def4dddb44f17093a3714ec57b9e024c262350b5d47efea5e686ac9593 -size 5893 diff --git a/MM_Math/data_original_21/7051872/math/52386831_95.png b/MM_Math/data_original_21/7051872/math/52386831_95.png deleted file mode 100644 index ced8848752fc8330987fee2a47975eb78107300c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386831_95.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b5b3f2c3d434fc27184ba35082281fe0014b397927456fefbec82c3766899879 -size 6385 diff --git a/MM_Math/data_original_21/7051872/math/52386847_677.png b/MM_Math/data_original_21/7051872/math/52386847_677.png deleted file mode 100644 index d2e7adb09370be6fdf6441a34289f40a47fcc456..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52386847_677.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80791ef70f023d136d1d2bc07c3e6357966a47db3a9696dda6490613b59008db -size 47932 diff --git a/MM_Math/data_original_21/7051872/math/52387150_73.png b/MM_Math/data_original_21/7051872/math/52387150_73.png deleted file mode 100644 index e10a79cc7f055dd7b9d2c2104823017012ce9637..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52387150_73.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12b0a7b51cc61c3b8a3b4a532d0c01296b3a5f27256976b797f0f08101adf0b0 -size 4680 diff --git a/MM_Math/data_original_21/7051872/math/52387412_122.png b/MM_Math/data_original_21/7051872/math/52387412_122.png deleted file mode 100644 index 1a9ebfee4daa225b8ab34b289b85c8175f249e2b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52387412_122.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8de867fb2cf0d066ccf2deeefce0d22f94c8797b8a32e11a5c93020a33443f8 -size 2161 diff --git a/MM_Math/data_original_21/7051872/math/52394997_642.png b/MM_Math/data_original_21/7051872/math/52394997_642.png deleted file mode 100644 index e20ff0d235ae54a7bb199fb172e53216668fae5b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52394997_642.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d9469113ff3f88c90a4e15c17efbe58fb7658fd2603a2947e9d201be37ab472 -size 4000 diff --git a/MM_Math/data_original_21/7051872/math/52395164_617.png b/MM_Math/data_original_21/7051872/math/52395164_617.png deleted file mode 100644 index ba6ce8602183aecf5c267f7dc27db883f2bed499..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52395164_617.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19901879745ac9bc38dda0931307ed3774c0b1bc6237e05a9a1d107f8fceee08 -size 56481 diff --git a/MM_Math/data_original_21/7051872/math/52395325_636.png b/MM_Math/data_original_21/7051872/math/52395325_636.png deleted file mode 100644 index 9ce5dab869130dd49d017aed3cf4154bcd1eebba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52395325_636.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca0deaf384ed2069e9df4cd584e5c185212e635eac208b6f705f56b94cda5746 -size 2871 diff --git a/MM_Math/data_original_21/7051872/math/52395370_650.png b/MM_Math/data_original_21/7051872/math/52395370_650.png deleted file mode 100644 index fa55917ea13e9e8afb3297ab48f9a8941c8c090f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52395370_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab6c465a08d70b400528ade41b2fb32af341aeb1178d3afaba69689b19b6144b -size 6210 diff --git a/MM_Math/data_original_21/7051872/math/52395385_622.png b/MM_Math/data_original_21/7051872/math/52395385_622.png deleted file mode 100644 index 8e22d19f761d059ab5233c65d3ddd4a8a8f4fd08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52395385_622.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a60528de751c33356c5692205ba95b76cc47ead1bbd8e152027d4ff9f121595 -size 189710 diff --git a/MM_Math/data_original_21/7051872/math/52395426_43.png b/MM_Math/data_original_21/7051872/math/52395426_43.png deleted file mode 100644 index ad916f2c0dfda39fef9688bc4716403ebd5b502b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52395426_43.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1cff73747b85572eeeae50b40bb5b36c7167fe24139b84cde1a4a02bfe96e7ae -size 9973 diff --git a/MM_Math/data_original_21/7051872/math/52395484_663.png b/MM_Math/data_original_21/7051872/math/52395484_663.png deleted file mode 100644 index 93a50e9f9f290ecdd5ffad1dc21b2f3b16818e68..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52395484_663.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb510a942ab17ed47345b38395db9d6201bba69b67b1776995946b5b8e8e9297 -size 69026 diff --git a/MM_Math/data_original_21/7051872/math/52395496_33.png b/MM_Math/data_original_21/7051872/math/52395496_33.png deleted file mode 100644 index 381bede3c95c05212e0950fa0e3a78547b1d6c92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52395496_33.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0b71e28a0cb5ad0d68fd9be294e3eba76f9b0f235bc7dc05956fdde060c3312 -size 3124 diff --git a/MM_Math/data_original_21/7051872/math/52395569_305.png b/MM_Math/data_original_21/7051872/math/52395569_305.png deleted file mode 100644 index 8dddbea7470f69f529443836de88abf297db3749..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52395569_305.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:296ee275c36dd4d72c5795c1ba0df01f72dcd81c4ebcaac50e316641bd70e19f -size 9842 diff --git a/MM_Math/data_original_21/7051872/math/52416338_2911.png b/MM_Math/data_original_21/7051872/math/52416338_2911.png deleted file mode 100644 index c553491918aed413a74a3ea57531040f0dbac7ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52416338_2911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58e3e5c2af59bff0890097c50df937037a9116b6d3968c433d2dbe03b04b0405 -size 15435 diff --git a/MM_Math/data_original_21/7051872/math/52416343_593.png b/MM_Math/data_original_21/7051872/math/52416343_593.png deleted file mode 100644 index 3ad61c55d1286cf377ee914a2a516b04745f7d18..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52416343_593.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccdf43ccb0b79a8d254f39d613fa76476f6dc9b604d9605f4df1f9d4a58aa1e9 -size 3703 diff --git a/MM_Math/data_original_21/7051872/math/52416375_600.png b/MM_Math/data_original_21/7051872/math/52416375_600.png deleted file mode 100644 index 4779bf4efd1622e50fa188d6fde0124eda0d26e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52416375_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:352d1cc913a9ad9f1a15e498a0dfc03ce795f0697e147216cc714642cef225b2 -size 3878 diff --git a/MM_Math/data_original_21/7051872/math/52422271_547.png b/MM_Math/data_original_21/7051872/math/52422271_547.png deleted file mode 100644 index 671ea2f523ca9cdb5f23e811293cd7fdfe0027db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52422271_547.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b17a54bac6d6720aed89a9de7573cc2bd68aa3f3499a996c5735967576d4eac3 -size 7384 diff --git a/MM_Math/data_original_21/7051872/math/52422319_271.png b/MM_Math/data_original_21/7051872/math/52422319_271.png deleted file mode 100644 index 7fd8ecef047f5a9c9b78d7311a11f55b5b6dc2bc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52422319_271.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f46014fd11b5b1ecfa9b6baa99f593cdc993b67f316744988b9a8f4cfb7c6f4 -size 4758 diff --git a/MM_Math/data_original_21/7051872/math/52422698_20.png b/MM_Math/data_original_21/7051872/math/52422698_20.png deleted file mode 100644 index 45dde332d4ed003f4008a2fea5744a9a93e75849..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52422698_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a853a99bece85b5df197f2aeaba0d49f1f1411de4d1035f0a7cfaedab5d4f96e -size 6446 diff --git a/MM_Math/data_original_21/7051872/math/52422771_580.png b/MM_Math/data_original_21/7051872/math/52422771_580.png deleted file mode 100644 index 0fafca31fffa3531e9dfb75a91f6798ea74a589c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52422771_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ef59fda5512e2d1cd9874303c5f8edf4f607ce841b42144cb45d9a14deebf64 -size 2804 diff --git a/MM_Math/data_original_21/7051872/math/52423104_573.png b/MM_Math/data_original_21/7051872/math/52423104_573.png deleted file mode 100644 index c7c22bb32f7595b89484931a231505ac87ee18ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52423104_573.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c9fe664511ad6a1103bcd8cdf346ce29953a1a206932623c0d2ba4e7f77e051 -size 26529 diff --git a/MM_Math/data_original_21/7051872/math/52423206_550.png b/MM_Math/data_original_21/7051872/math/52423206_550.png deleted file mode 100644 index 9d00728eb8492a80a3988332fba4e5a7f85aa416..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52423206_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ecdde1e72e584a4fc3f57f8196b8ad7390a685c746418dfa9986d17d0f02077a -size 6786 diff --git a/MM_Math/data_original_21/7051872/math/52423287_564.png b/MM_Math/data_original_21/7051872/math/52423287_564.png deleted file mode 100644 index 8052150046b8deb3371a98b0b57777160285496b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52423287_564.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb1fc344d201f9454dd648faed5d2d2341a0dfa42dc6bd1b0e95a9e914406e7f -size 4653 diff --git a/MM_Math/data_original_21/7051872/math/52423346_280.png b/MM_Math/data_original_21/7051872/math/52423346_280.png deleted file mode 100644 index d3fb4a3eceb11a5ee6c66b2691bbeefa0c51ff4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52423346_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dac9a470dd5265c4f64f4fe046f61df8de753311a78c0be01fddf0ff1627b895 -size 3886 diff --git a/MM_Math/data_original_21/7051872/math/52423437_537.png b/MM_Math/data_original_21/7051872/math/52423437_537.png deleted file mode 100644 index 87458fc5706b8ea9571dda020510967b5de9123d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52423437_537.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f114b91b61ce49130e0b57f3e33b8859cef5b2252bceed1b272575728afc12e1 -size 6331 diff --git a/MM_Math/data_original_21/7051872/math/52423578_261.png b/MM_Math/data_original_21/7051872/math/52423578_261.png deleted file mode 100644 index 094ceb27a0688ec21a2138c515312c949f8c889f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52423578_261.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28f1c132959197465a9e41fa456b3f940cefcd395ed1bfde45c7a8fbfee3b780 -size 3774 diff --git a/MM_Math/data_original_21/7051872/math/52423792_960.png b/MM_Math/data_original_21/7051872/math/52423792_960.png deleted file mode 100644 index 2976ed19f6ca771af83f7afd488402c0b86a1ab5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52423792_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b5b96aca194fb944eb2af679e37e8a6a6c7e9e0c18c16c3364dadf38d6cfb724 -size 2344 diff --git a/MM_Math/data_original_21/7051872/math/52423819_943.png b/MM_Math/data_original_21/7051872/math/52423819_943.png deleted file mode 100644 index af4a18a24c9ec7ba2226f98f3044d68958742e92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52423819_943.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e19c3d399d5ea98eb6cd29fd85d7ed15550eab974882adabab70206cc061da80 -size 23884 diff --git a/MM_Math/data_original_21/7051872/math/52423839_971.png b/MM_Math/data_original_21/7051872/math/52423839_971.png deleted file mode 100644 index 40bad12e8429e1699dab5a4cded752bf9216744b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52423839_971.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a1fbf3615800a24b693d79835445d799b543b9d61f5a1a5fe458a4ea663c873 -size 20838 diff --git a/MM_Math/data_original_21/7051872/math/52424042_493.png b/MM_Math/data_original_21/7051872/math/52424042_493.png deleted file mode 100644 index ff395b96412fa84322a6c5071da94e06927a7dbe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52424042_493.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69830fbef684e263b71d0027e50fd6450b4d78bc4bce5bf544905c770566c47d -size 11915 diff --git a/MM_Math/data_original_21/7051872/math/52424049_953.png b/MM_Math/data_original_21/7051872/math/52424049_953.png deleted file mode 100644 index f1aed736d834a94e7ca9a21f691b051ffd427d9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52424049_953.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50d6595d7e3dda1b57b639f1e2013885a15b043b4c73883678e77045928c36af -size 23784 diff --git a/MM_Math/data_original_21/7051872/math/52424160_223.png b/MM_Math/data_original_21/7051872/math/52424160_223.png deleted file mode 100644 index 4fa84f974ae946539177edd43e5d86c6d020d43f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52424160_223.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0255daeecdf57eb5b77169b03689ec16b888e1f9122cc5a6529696c6d172b6c7 -size 25873 diff --git a/MM_Math/data_original_21/7051872/math/52424459_214.png b/MM_Math/data_original_21/7051872/math/52424459_214.png deleted file mode 100644 index 923bf9d47db9dbd90a376715bcca990323a1e97c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52424459_214.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1328c16ecdb04d3b23f86120c9ec99ca1096ece6fc1096adec4a76bd7e119625 -size 6222 diff --git a/MM_Math/data_original_21/7051872/math/52424464_503.png b/MM_Math/data_original_21/7051872/math/52424464_503.png deleted file mode 100644 index 3ed4aab0c8c82811672de0958ca9e8b6fe970631..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52424464_503.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02a5d606a32159097be80eb8457c16d2121f2261ef2ee32f6f4111aab89a40b7 -size 27510 diff --git a/MM_Math/data_original_21/7051872/math/52425090_240.png b/MM_Math/data_original_21/7051872/math/52425090_240.png deleted file mode 100644 index 9a08819583faa689c3d7b7f3f05c80a9b43a6e17..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52425090_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bbfeb802c6aca43aa3e855f4a583f93e731f98bdd0f2aae9bb08f3a5f81a693c -size 2689 diff --git a/MM_Math/data_original_21/7051872/math/52425091_238.png b/MM_Math/data_original_21/7051872/math/52425091_238.png deleted file mode 100644 index 575f39089168efb8cdd83f167c1047b2a67e2207..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52425091_238.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d720629a82bf80e921bbdeb5023e8d08b7391f7c04a0f7060715d6b511668274 -size 5364 diff --git a/MM_Math/data_original_21/7051872/math/52425281_934.png b/MM_Math/data_original_21/7051872/math/52425281_934.png deleted file mode 100644 index e635f937fd9323e8cc1f8dc596e9f7a46dd8ff91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/52425281_934.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6fb780b36aab302f7189a784b50ae4edbfd468e355dae43ed252d053692ee7bc -size 4229 diff --git a/MM_Math/data_original_21/7051872/math/53706360_472.png b/MM_Math/data_original_21/7051872/math/53706360_472.png deleted file mode 100644 index bb4f0d5c47d2edeeb106a79e438c0e0f327fedf8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/53706360_472.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b859622c0fc88cb83d49f01af206d553c4312efbc74ac2403ad5769fec1ef4d2 -size 4144 diff --git a/MM_Math/data_original_21/7051872/math/53706598_903.png b/MM_Math/data_original_21/7051872/math/53706598_903.png deleted file mode 100644 index 0f29e33f58e7e33d8ce16c5583de63ca6238eaec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/53706598_903.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f166e6f88354ce7ce6080262dd97ae23559a83e4a2f6adbc609c1128dc3fc61c -size 3996 diff --git a/MM_Math/data_original_21/7051872/math/53706737_480.png b/MM_Math/data_original_21/7051872/math/53706737_480.png deleted file mode 100644 index 8e150834e3ae9fca816c9f306e913196a2e1bae2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/53706737_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ed32519503a08f52b00ec7bdb4371a818bcfc493e573377ff67929fefcd8a42 -size 3822 diff --git a/MM_Math/data_original_21/7051872/math/53706908_890.png b/MM_Math/data_original_21/7051872/math/53706908_890.png deleted file mode 100644 index f4432e5a453fe38a6c76a5c2494ad0cd3e7e0ba1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/53706908_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40d8fe9098b1a253b8719f97c4e072f749a88f365b65b52a2e3306dfd25448e9 -size 147347 diff --git a/MM_Math/data_original_21/7051872/math/54409220_013.png b/MM_Math/data_original_21/7051872/math/54409220_013.png deleted file mode 100644 index 048083c9b1f9d23643d2db1e1cb4b1e2c45da51c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/54409220_013.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7708b2b97bf769e13147d62febf247164ea462d7e298efffe992d1f858e821f9 -size 38239 diff --git a/MM_Math/data_original_21/7051872/math/55608665_521.png b/MM_Math/data_original_21/7051872/math/55608665_521.png deleted file mode 100644 index 2e78b2bf06adf9a1769ee2a2936b2c7963a12ec0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/math/55608665_521.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64e17097e4b1e608710290ab0961c0c98ca15d9a0373c0052ce91acba1c12b29 -size 20359 diff --git a/MM_Math/data_original_21/7051872/solution_images/52303856_514.png b/MM_Math/data_original_21/7051872/solution_images/52303856_514.png deleted file mode 100644 index e9252bee50eeae38234f1902293d2cf43502ee4b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/solution_images/52303856_514.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8efca01e1b597269a3133aa3827f28c2816e364eb39090d4f224927776f79d1f -size 5237 diff --git a/MM_Math/data_original_21/7051872/solution_images/52355068_460.png b/MM_Math/data_original_21/7051872/solution_images/52355068_460.png deleted file mode 100644 index 289ebd9903e29886fe26d7eee54ed5986f8ee85e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/solution_images/52355068_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de6eaf0dae7e4f192ea010fbcb2a064b61bdc9316f12f930147ea802642c0dca -size 65240 diff --git a/MM_Math/data_original_21/7051872/solution_images/52381306_430.png b/MM_Math/data_original_21/7051872/solution_images/52381306_430.png deleted file mode 100644 index 8c92370460fbcb345b5997398cbf19e885e97785..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/solution_images/52381306_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3fcc89b25b63097dca7e7fcbf1520cfa0c32b426944c3cef341cbac1ad00ec85 -size 69319 diff --git a/MM_Math/data_original_21/7051872/solution_images/52381528_130.png b/MM_Math/data_original_21/7051872/solution_images/52381528_130.png deleted file mode 100644 index dfeca3d446e70fe7bde569599396a34cb3098e0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/solution_images/52381528_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6d9e59b20d01220492e802d0d8b97a69b985de7cae738a86e501461f8ee0bf8 -size 6388 diff --git a/MM_Math/data_original_21/7051872/solution_images/52381567_380.png b/MM_Math/data_original_21/7051872/solution_images/52381567_380.png deleted file mode 100644 index c1836c69c7d69d12eb57343806b627f4f4f875e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/solution_images/52381567_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e1acd02b04e382897a36477ba64d9fa77890e90154b2e3db4cb915227cff5e1 -size 5985 diff --git a/MM_Math/data_original_21/7051872/solution_images/52386546_320.png b/MM_Math/data_original_21/7051872/solution_images/52386546_320.png deleted file mode 100644 index b3cf11fc201738b67942f40c17e760c05c836544..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/solution_images/52386546_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33e0160254edcff6345037430a925a869f58864eca8dcfc544e7314bea28b4a9 -size 9297 diff --git a/MM_Math/data_original_21/7051872/solution_images/52423206_550.png b/MM_Math/data_original_21/7051872/solution_images/52423206_550.png deleted file mode 100644 index 4e33e30903f29412caf043784ddf2a5d08468811..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/solution_images/52423206_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca999db56baa725bd4c2a921685fb140ea016e57648ffbcdbfae1264b70715d1 -size 11107 diff --git a/MM_Math/data_original_21/7051872/solution_images/54409220_00.png b/MM_Math/data_original_21/7051872/solution_images/54409220_00.png deleted file mode 100644 index af15578ab295e58be015d702375565a2d650ba77..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7051872/solution_images/54409220_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f79023f7496456dfaf69663587fb89196efc24011cc5df56cbfb8fcf1b639fbf -size 40536 diff --git a/MM_Math/data_original_21/7052940/math/51825222_493.png b/MM_Math/data_original_21/7052940/math/51825222_493.png deleted file mode 100644 index 0a43f38eef3c98acce9f6d66caeb8649dfd24370..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/51825222_493.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98dd79592c715b8a8bb454c360a18e0be1fc9a526c74105aaab31767487f322d -size 15227 diff --git a/MM_Math/data_original_21/7052940/math/51894652_922.png b/MM_Math/data_original_21/7052940/math/51894652_922.png deleted file mode 100644 index 23d71379335425180f10bbcfeb29f9bf7712b69a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/51894652_922.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e89991e1425f0680d547a330c328a26bdbb208c95f362f94133bcf9253409ea7 -size 4340 diff --git a/MM_Math/data_original_21/7052940/math/51919592_144.png b/MM_Math/data_original_21/7052940/math/51919592_144.png deleted file mode 100644 index 354e2677b4124fe044632c7247c6e2adc2da900b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/51919592_144.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2e44d2958fab71ad44b75808b40a65518290b141dd94c9db9f98e298ecee2f4 -size 3624 diff --git a/MM_Math/data_original_21/7052940/math/51919603_913.png b/MM_Math/data_original_21/7052940/math/51919603_913.png deleted file mode 100644 index e43ed07c0a1b224d89f3793ba800bc7d3ee0b3ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/51919603_913.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:370fad09bb75fd4ad2fe24b341aed173be8e93e2f40a7247fa8b429488eb956e -size 2495 diff --git a/MM_Math/data_original_21/7052940/math/51968557_900.png b/MM_Math/data_original_21/7052940/math/51968557_900.png deleted file mode 100644 index 48834f922b67df848745ca0c3c18589360d6c5af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/51968557_900.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:895bb3e87ede7a1c8ab2e6eca5135d768f20a4d68e01ce2b31431a6fdb028130 -size 3600 diff --git a/MM_Math/data_original_21/7052940/math/52049852_423.png b/MM_Math/data_original_21/7052940/math/52049852_423.png deleted file mode 100644 index 8ae8c1a55db5bf5e73a317c217e3e2f0b2978586..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52049852_423.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66d15b1d7428639dd9151e0f5408781c5e6224ee5e0cf2e22e25d5c6ba25970c -size 3516 diff --git a/MM_Math/data_original_21/7052940/math/52050093_891.png b/MM_Math/data_original_21/7052940/math/52050093_891.png deleted file mode 100644 index b8add9bb687ee073d3dd11846078e5a0e21a5a89..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52050093_891.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12f3aca288dc1ed3f35a357bf555c2bf95d12ab95bf0478483f8032be9d70ff9 -size 46990 diff --git a/MM_Math/data_original_21/7052940/math/52050161_410.png b/MM_Math/data_original_21/7052940/math/52050161_410.png deleted file mode 100644 index 613442b290b8005548706edbf6423ab71629eaf2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52050161_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:026869b19dd22f9b855390ff2f5a08f41091d046ada58c34a7ad7f0b5d64d3b4 -size 3093 diff --git a/MM_Math/data_original_21/7052940/math/52050253_134.png b/MM_Math/data_original_21/7052940/math/52050253_134.png deleted file mode 100644 index e510d06509f96a0a88d6b4b23ce91042f0508a8e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52050253_134.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a08a179f915adf69aa62095abe9c6ff4a4c52f64f843ba1072fe0fc6e619260d -size 13296 diff --git a/MM_Math/data_original_21/7052940/math/52065351_402.png b/MM_Math/data_original_21/7052940/math/52065351_402.png deleted file mode 100644 index 2cf98b8d2ce3bbf2f4fff5a7283ce01ffe5b4215..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52065351_402.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d5150fb52c5c6d75455a8b6b3da8676169c9054f2766056b72aef5a5e6fb243 -size 4760 diff --git a/MM_Math/data_original_21/7052940/math/52076225_882.png b/MM_Math/data_original_21/7052940/math/52076225_882.png deleted file mode 100644 index 9268d36c919e188bfbe5230e6fc88495e6807535..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52076225_882.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ae3fd7c65b943c287669301aa2c56464c149cd16d6a853abcd4e5b041aa2b23 -size 5939 diff --git a/MM_Math/data_original_21/7052940/math/52076885_870.png b/MM_Math/data_original_21/7052940/math/52076885_870.png deleted file mode 100644 index 52960beac918fca8e982b546ddbe277a78ff5225..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52076885_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fdb6688e25875583fb4afa9c8141bdd9f51426ce734d1e7c5dd2385952c209bf -size 4165 diff --git a/MM_Math/data_original_21/7052940/math/52094893_861.png b/MM_Math/data_original_21/7052940/math/52094893_861.png deleted file mode 100644 index 5b734c8ce22a9c73caff90bafc808d434ac4e0f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52094893_861.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75815f7cc8d4846c57d79fa20e12308464955ab554f49d8ab1345cb80ce9a3cb -size 4183 diff --git a/MM_Math/data_original_21/7052940/math/52094910_374.png b/MM_Math/data_original_21/7052940/math/52094910_374.png deleted file mode 100644 index 066381079ca4ee2f26d5cfa685727011f5cb7b92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52094910_374.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38e409e9b77ec08e388410e37c3aef65737613a119af5bbf2e7f2760d6dc9204 -size 5153 diff --git a/MM_Math/data_original_21/7052940/math/52094911_385.png b/MM_Math/data_original_21/7052940/math/52094911_385.png deleted file mode 100644 index 1ce2734bff24bafe9a99d387601b2de63261f1c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52094911_385.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72b180fa3432d8fecc52eb2e4a2ee155351c658cd9ded6cf831d798f6a43797c -size 37242 diff --git a/MM_Math/data_original_21/7052940/math/52095101_390.png b/MM_Math/data_original_21/7052940/math/52095101_390.png deleted file mode 100644 index 9b5d664586f06ee0613682576233eb01903985d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52095101_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dcac1a7c219e2d4a3863394acac95723cc9d496e14caaff8aed46e261ec94fda -size 5157 diff --git a/MM_Math/data_original_21/7052940/math/52095290_120.png b/MM_Math/data_original_21/7052940/math/52095290_120.png deleted file mode 100644 index 5fac2ff9de150527ec7260b71ea0ee0b81e2d4e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52095290_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b7996a0cd1c6f287de62d3a2d95924623bd15b4ab263f3eec55af2f5c42a20d -size 16519 diff --git a/MM_Math/data_original_21/7052940/math/52095492_852.png b/MM_Math/data_original_21/7052940/math/52095492_852.png deleted file mode 100644 index 53b42b8c20765177887adf445fd5f33581400885..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52095492_852.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3301e653b389ac43c1c1f947d88019e0057463384b7fa09028efd42bf9ab7da7 -size 5051 diff --git a/MM_Math/data_original_21/7052940/math/52159946_843.png b/MM_Math/data_original_21/7052940/math/52159946_843.png deleted file mode 100644 index 50458e1a24317d9880d94182afc74880f3906c5b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52159946_843.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1a2df725e7405959529d035da27af9629a35bc69a10d0f51e4bf2f9602dae1a -size 9170 diff --git a/MM_Math/data_original_21/7052940/math/52160945_830.png b/MM_Math/data_original_21/7052940/math/52160945_830.png deleted file mode 100644 index 6ce370963fa8625f8163a5302f6e0199c8f0ecd8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52160945_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29e3abd62a8a96db96344e4e633aa745a910ea8e6187bd14ba8e7238e88ffa44 -size 6911 diff --git a/MM_Math/data_original_21/7052940/math/52188279_740.png b/MM_Math/data_original_21/7052940/math/52188279_740.png deleted file mode 100644 index e475e3d33aa54dc9a63e4c45cb59a58646083f37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52188279_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e76b5a989a670611d8be63518e134bd2ea175f8f0fa61e23d53bd23ba776ba3 -size 5873 diff --git a/MM_Math/data_original_21/7052940/math/52188903_828.png b/MM_Math/data_original_21/7052940/math/52188903_828.png deleted file mode 100644 index 85f9935637b896dfceaed98276ad1dce8c7fac80..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52188903_828.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec956e61a1aa1c40b2ea6ec2673c4712c6c0f768ef7d6040d833a019a483e5dd -size 5571 diff --git a/MM_Math/data_original_21/7052940/math/52189048_340.png b/MM_Math/data_original_21/7052940/math/52189048_340.png deleted file mode 100644 index 71619738cb5e2248098d36e4940366b4040b57cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189048_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab666c82bebb9de330b9d92c9ecab6bfefb679826d8d08e3998fa696a9885f9f -size 3771 diff --git a/MM_Math/data_original_21/7052940/math/52189067_751.png b/MM_Math/data_original_21/7052940/math/52189067_751.png deleted file mode 100644 index 9ac1f3a5609995352cc20f6edad037cf780c8d11..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189067_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e9841942fc9b44aaab2a5c542ae55034a1f332cd82d1c73e17567b76643e37b -size 4697 diff --git a/MM_Math/data_original_21/7052940/math/52189208_323.png b/MM_Math/data_original_21/7052940/math/52189208_323.png deleted file mode 100644 index a9b016864ddc3935c52094b370d93a13f4982e6b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189208_323.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3beaf8580b42f8743e2dcd9b061a50f1044cc53fd2c136980f4c8bcdb066f540 -size 5740 diff --git a/MM_Math/data_original_21/7052940/math/52189216_812.png b/MM_Math/data_original_21/7052940/math/52189216_812.png deleted file mode 100644 index bb868e46c3f04771612f8ae492df1cbe49c4121b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189216_812.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:566c4bc7e5a9128b4c22f245d232c6248f4f41dd16e0b119950a2280ab8e7981 -size 9979 diff --git a/MM_Math/data_original_21/7052940/math/52189291_783.png b/MM_Math/data_original_21/7052940/math/52189291_783.png deleted file mode 100644 index 8db157ccc6c9f272872b0b0b3142e22e53e3b900..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189291_783.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14a633fd17b38335dde260db3cbefbd427cf6aca0dc76f2d2cd2de6d9d9712da -size 5726 diff --git a/MM_Math/data_original_21/7052940/math/52189353_353.png b/MM_Math/data_original_21/7052940/math/52189353_353.png deleted file mode 100644 index c25c05a6ce5d70f54efeae0d7f33e80f22bca4d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189353_353.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba3f6b7df1eac1398b464dac13e161720d0caa8283e671489a4561f139b2cf1a -size 5907 diff --git a/MM_Math/data_original_21/7052940/math/52189388_363.png b/MM_Math/data_original_21/7052940/math/52189388_363.png deleted file mode 100644 index 1bfd84b4108be8ce9f5cd0f9aa6f609b3b86bf17..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189388_363.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45751c32ddb8a21025daae2b66a429a7aee03edc4cac6ecf1b716e1a19ce76e9 -size 3258 diff --git a/MM_Math/data_original_21/7052940/math/52189468_330.png b/MM_Math/data_original_21/7052940/math/52189468_330.png deleted file mode 100644 index d6753e69739930e116dae82d9546bd22e46263a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189468_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e87c0a9e47fd689f0ea7a7bc75f4ff232863e1f6276c5ee43cfc07b6234d00c -size 4984 diff --git a/MM_Math/data_original_21/7052940/math/52189515_791.png b/MM_Math/data_original_21/7052940/math/52189515_791.png deleted file mode 100644 index 5616f02745137296173f5a38de6f4c87e99361df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189515_791.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db86af4fd43523a6677c575b20814756646def17321aa92a67450af3ed9f629d -size 3977 diff --git a/MM_Math/data_original_21/7052940/math/52189578_761.png b/MM_Math/data_original_21/7052940/math/52189578_761.png deleted file mode 100644 index 4a277db32db3702024544d481960001b63746065..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189578_761.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d2fc64d8872b79e11f1f24be41035fd5deab46df5119824f228ac7873b33aa2 -size 30165 diff --git a/MM_Math/data_original_21/7052940/math/52189644_772.png b/MM_Math/data_original_21/7052940/math/52189644_772.png deleted file mode 100644 index 2265ba22169d5b0707c1925623da189d3bf266c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52189644_772.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be904392c6a264d3074e483114708600d5cf8a42b475ebffae335f9b5e4ad1ad -size 9214 diff --git a/MM_Math/data_original_21/7052940/math/52190033_804.png b/MM_Math/data_original_21/7052940/math/52190033_804.png deleted file mode 100644 index dfe9c700ad706bba08ec005e7f8c5521b70e26e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52190033_804.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:573f52c91fd5b7b8984f2cfbad204e98f325bec638cb89248766c6092fc057f0 -size 26232 diff --git a/MM_Math/data_original_21/7052940/math/52204038_731.png b/MM_Math/data_original_21/7052940/math/52204038_731.png deleted file mode 100644 index a78430293a276687a291ef1369e9906bcfa905f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52204038_731.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:728b4bc3e72f7026231125812c2a1481ccf6821283059539ab43a015cfd4bb8d -size 4537 diff --git a/MM_Math/data_original_21/7052940/math/52204756_117.png b/MM_Math/data_original_21/7052940/math/52204756_117.png deleted file mode 100644 index b227535afedb77646282cb1319ec13ea61fe4efe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52204756_117.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:333ca06dcc7f9ead9aaa61c2ca62c5a2564663a93f89eee67ef7f9976f68f1d2 -size 2434 diff --git a/MM_Math/data_original_21/7052940/math/52205237_714.png b/MM_Math/data_original_21/7052940/math/52205237_714.png deleted file mode 100644 index c9ad35cfa38d67be2da5734d88039a06d8a29f68..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52205237_714.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c72ae38f7bce92582ff266a15c9f727dc299c291008f03bdacd9f8d743f22548 -size 30720 diff --git a/MM_Math/data_original_21/7052940/math/52205244_725.png b/MM_Math/data_original_21/7052940/math/52205244_725.png deleted file mode 100644 index 4efd3416e345e431e7fd26b66a40aec0f425d8a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52205244_725.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1c91d6e52ae0653efd0c5602ba162332a3cb49465a31148838373321ab98c15 -size 30528 diff --git a/MM_Math/data_original_21/7052940/math/52211015_702.png b/MM_Math/data_original_21/7052940/math/52211015_702.png deleted file mode 100644 index 46027bfccec043a1a1962bd26d08c005ca014537..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52211015_702.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:702f2213d7909f41e4d1fd1d03e1a287adb73c103b6ba29da4b792c8b1be223e -size 2416 diff --git a/MM_Math/data_original_21/7052940/math/52211165_294.png b/MM_Math/data_original_21/7052940/math/52211165_294.png deleted file mode 100644 index 9b021c022db995c95652ba10863d3851d5ae41f0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52211165_294.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92e037cc2bdefeab5eb0b636b84d01dfa5bb179877a810f346904ba077f83f01 -size 4425 diff --git a/MM_Math/data_original_21/7052940/math/52211318_275.png b/MM_Math/data_original_21/7052940/math/52211318_275.png deleted file mode 100644 index daa3a823371a3ae744acddbafed4e2f8bfea47b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52211318_275.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e2e5013258ea665cb6a318d623356cac45505d93356b4a623487073b844833a -size 12437 diff --git a/MM_Math/data_original_21/7052940/math/52211441_103.png b/MM_Math/data_original_21/7052940/math/52211441_103.png deleted file mode 100644 index 355811fe8ffbbbe75c463ffc3d585863cc0ce462..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52211441_103.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf772a44f2c17a065aa9ee8a3eaa158b036e6d5830bbedb02853cc4ec6c14533 -size 4495 diff --git a/MM_Math/data_original_21/7052940/math/52211719_304.png b/MM_Math/data_original_21/7052940/math/52211719_304.png deleted file mode 100644 index 9fb7147c8a8d1ce4596a3a897f65ce44cc86c598..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52211719_304.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc22dbe3adf6171383c1ae64db29141c53374e492abeacdb702c44c2518bf02e -size 3788 diff --git a/MM_Math/data_original_21/7052940/math/52211879_314.png b/MM_Math/data_original_21/7052940/math/52211879_314.png deleted file mode 100644 index e36be9ed48105cacd223cbbcaf1f0b26be919e0c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52211879_314.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a51e0a11ffa6561137172059b060e08bfba19f8e1299030950b494440b0be011 -size 8402 diff --git a/MM_Math/data_original_21/7052940/math/52212195_283.png b/MM_Math/data_original_21/7052940/math/52212195_283.png deleted file mode 100644 index 34aad72f1d672e7e7668274d24648f2a597a43b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52212195_283.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b11243c7b9735e12685074345aa9a96c1402fac2835743ca6faac5fee510871 -size 8924 diff --git a/MM_Math/data_original_21/7052940/math/52212222_83.png b/MM_Math/data_original_21/7052940/math/52212222_83.png deleted file mode 100644 index 8a3cf5f61d689dd8acbbf20ad4e5e6d3848b1eaa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52212222_83.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68087230a94322172b0d24918fe64974ea9c7dbe8712eb8565f98be21f7deb2e -size 3529 diff --git a/MM_Math/data_original_21/7052940/math/52212386_75.png b/MM_Math/data_original_21/7052940/math/52212386_75.png deleted file mode 100644 index d4133eb5c6a0b8ad95eeb1f7b3af573c6f01734a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52212386_75.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e8aa6a4b78ea1ad8f309c1ba0286afe6ef9edfd0053e6100dbb89ff8a88bdfb -size 5329 diff --git a/MM_Math/data_original_21/7052940/math/52212500_691.png b/MM_Math/data_original_21/7052940/math/52212500_691.png deleted file mode 100644 index fa6e6506c6ba19318ce8d15c50be53c6a320a1f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52212500_691.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1d52797f2320c8fb9b1a28ff8bca93366cc9303993108ec22e0d9913d20fd15 -size 5749 diff --git a/MM_Math/data_original_21/7052940/math/52212539_92.png b/MM_Math/data_original_21/7052940/math/52212539_92.png deleted file mode 100644 index f86bbaf9ff9db08ad538997ceee7874d438ddf0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52212539_92.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:464835a35a39477a85d4b0b93dad8a23c467c61eddb256334431f9f4311928c8 -size 2830 diff --git a/MM_Math/data_original_21/7052940/math/52225566_680.png b/MM_Math/data_original_21/7052940/math/52225566_680.png deleted file mode 100644 index 730a4ca9030ddca65dfd51ffb44328d7b716eea5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52225566_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b200fece36821fce71cb9fde162164a3cab7171c0c18df819bb291c3e3aa7d95 -size 3676 diff --git a/MM_Math/data_original_21/7052940/math/52226187_60.png b/MM_Math/data_original_21/7052940/math/52226187_60.png deleted file mode 100644 index a4721f68f8d00ac78071548efb288011d24bc377..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52226187_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6122c6c93651793205809190d81694baccbbc92c3e6ab9534360b26af0f2f2d -size 3162 diff --git a/MM_Math/data_original_21/7052940/math/52226206_671.png b/MM_Math/data_original_21/7052940/math/52226206_671.png deleted file mode 100644 index 0201f47c1465cc96bdaa86560e324b457cb80a46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52226206_671.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d01b1718afad6868c808ad2f962ca83d762226b12770b5b892fe291481a3a809 -size 8414 diff --git a/MM_Math/data_original_21/7052940/math/52250423_257.png b/MM_Math/data_original_21/7052940/math/52250423_257.png deleted file mode 100644 index e61f62232df0d8919ce9faec7cb29c920207da5b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52250423_257.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0dc75d420f9d2b2e5ca6bd87cda2ab09e6473909a9b4fdcc904394d349ebd09c -size 4562 diff --git a/MM_Math/data_original_21/7052940/math/52250480_632.png b/MM_Math/data_original_21/7052940/math/52250480_632.png deleted file mode 100644 index f6764063fe84c1307649f22709ce3c9c2a0ebf7b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52250480_632.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:853360ba9d84325d8e009ab961f6ee212bc09be54ad5f708f4d68bc904701275 -size 7862 diff --git a/MM_Math/data_original_21/7052940/math/52250673_625.png b/MM_Math/data_original_21/7052940/math/52250673_625.png deleted file mode 100644 index 6eaedb8bec3b3904a4f81d3f72a7d9b32b97e57f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52250673_625.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c84d6b7847489226cdf6b46c79ee5f7df3ee69e0139f528157c5c34dc4eed61 -size 4181 diff --git a/MM_Math/data_original_21/7052940/math/52250730_659.png b/MM_Math/data_original_21/7052940/math/52250730_659.png deleted file mode 100644 index 7c1da408e3df1f4970a65cca57c19836aedf688d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52250730_659.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e82483f4559b2b48129949dfa1e9fbd37f91566238648e57f74a80957f798ed9 -size 13512 diff --git a/MM_Math/data_original_21/7052940/math/52250870_50.png b/MM_Math/data_original_21/7052940/math/52250870_50.png deleted file mode 100644 index 7599f4cb93b33e7cdd07a7f755b3579b80155271..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52250870_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5202c3df178ba7b541ba4334a24db0b844faac07b9956603cbf76004dfce5adc -size 21984 diff --git a/MM_Math/data_original_21/7052940/math/52250956_617.png b/MM_Math/data_original_21/7052940/math/52250956_617.png deleted file mode 100644 index b30ad870e0eb3f8196a72c0caf2793651bb37d74..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52250956_617.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:031667ddaebc2f8d8c5e7183f2a8778986da51b01cbbdb4df48b74888a5c2ff8 -size 6866 diff --git a/MM_Math/data_original_21/7052940/math/52250984_660.png b/MM_Math/data_original_21/7052940/math/52250984_660.png deleted file mode 100644 index c35bac24611a24cd89aedadcee12fb1b963b8eac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52250984_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8684be88467654b73f94617d3e5f37021742f95f32686d72f69d29fb28a310eb -size 36468 diff --git a/MM_Math/data_original_21/7052940/math/52251020_643.png b/MM_Math/data_original_21/7052940/math/52251020_643.png deleted file mode 100644 index fc88555db0d44b7d5e6cdc6ec5a06b094c7f4f54..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52251020_643.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33b949ff89a2fc3a19cc2e22c89ef1cef9f6b5e64ad3d197e4e6b8e51a948559 -size 3805 diff --git a/MM_Math/data_original_21/7052940/math/52251028_244.png b/MM_Math/data_original_21/7052940/math/52251028_244.png deleted file mode 100644 index 041e5bd6ff598a62537376674d174574bf5ec7fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52251028_244.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4878bb1b3306744d54389af8f5cefb65b2ef85050082d7ed906594e959eb15ac -size 4090 diff --git a/MM_Math/data_original_21/7052940/math/52251344_263.png b/MM_Math/data_original_21/7052940/math/52251344_263.png deleted file mode 100644 index 48a1afc82e170c33907da6d3edbe537832774bc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52251344_263.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e63d42d71853c0eee641f3f74db8a14b98ea56fc944fd5d0ff1be96f0628d53a -size 4871 diff --git a/MM_Math/data_original_21/7052940/math/52251666_234.png b/MM_Math/data_original_21/7052940/math/52251666_234.png deleted file mode 100644 index 86d1a71e1795df4106c895621c8a864ac5aa44ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52251666_234.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8959efc717a5f2d20a611035f00221b31558c6004e42a35bc34689224a17b43 -size 5032 diff --git a/MM_Math/data_original_21/7052940/math/52251693_604.png b/MM_Math/data_original_21/7052940/math/52251693_604.png deleted file mode 100644 index 3e0ff7482a15e27519ddd876876e5f709dd19570..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52251693_604.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2f49ea61d87ff7398ff8b4a21df4ee1ae98510181617a48c9258987e081d34c -size 8633 diff --git a/MM_Math/data_original_21/7052940/math/52251756_591.png b/MM_Math/data_original_21/7052940/math/52251756_591.png deleted file mode 100644 index 2d06c9a0da75947dee64f097c2a7de36f8939748..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52251756_591.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bea21cd41200c981921e5cd25de4eb65726aa5e519c68c43e6f174705e63255f -size 6567 diff --git a/MM_Math/data_original_21/7052940/math/52251770_580.png b/MM_Math/data_original_21/7052940/math/52251770_580.png deleted file mode 100644 index d96b9c9c90ee1e23ef7e0d5f65737ee45a6d00e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52251770_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee96c30756f58c7a85fa10c8d7cb5963e9995f8e95632f78fcc126f985c8e7cd -size 6988 diff --git a/MM_Math/data_original_21/7052940/math/52251808_43.png b/MM_Math/data_original_21/7052940/math/52251808_43.png deleted file mode 100644 index 355f119085fe8a0272d4b05109734c875766530d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52251808_43.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e56dc4ad2e3d951bd838280dc3b21edeaf409a6904cc3722d576c825741e1680 -size 13215 diff --git a/MM_Math/data_original_21/7052940/math/52252064_31.png b/MM_Math/data_original_21/7052940/math/52252064_31.png deleted file mode 100644 index 56ea9c28f5bdfe0af6ce849c0d91d6ba5e7c45ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52252064_31.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16d78d1c2b2758c6f2e668aeabf7d5a7592dc23a9e212244b6b986a158942d2b -size 5960 diff --git a/MM_Math/data_original_21/7052940/math/52252074_573.png b/MM_Math/data_original_21/7052940/math/52252074_573.png deleted file mode 100644 index c50b7fde59cb669dd624d10c604b60d827806292..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52252074_573.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e739ba062d861593a71c7e619bbd7b606f6e029f35624ebada4c589ee6ce412 -size 6003 diff --git a/MM_Math/data_original_21/7052940/math/52284181_563.png b/MM_Math/data_original_21/7052940/math/52284181_563.png deleted file mode 100644 index 82b1aae0a9727cf2e4453f2c76ea89aaf988bc03..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52284181_563.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21c4a1f6bc112c3887bd0f2c0b97b1bd7df29f5501acb9314ca291888789050a -size 3099 diff --git a/MM_Math/data_original_21/7052940/math/52284879_26.png b/MM_Math/data_original_21/7052940/math/52284879_26.png deleted file mode 100644 index 6b5ced5212f86294bda3b66e321097b827952804..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52284879_26.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0836930a7c75cd3bb22b906e8e90be7490a3357749088914bff052d2059eaabb -size 7319 diff --git a/MM_Math/data_original_21/7052940/math/52344437_482.png b/MM_Math/data_original_21/7052940/math/52344437_482.png deleted file mode 100644 index 155495a8162dd8fe3e3fc367d0590f1be8c9428c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52344437_482.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07f0804dc2800bc42bd5533a70fb2cb9a52b8ef8d1e5bade61d37445e1f9359e -size 2670 diff --git a/MM_Math/data_original_21/7052940/math/52344480_990.png b/MM_Math/data_original_21/7052940/math/52344480_990.png deleted file mode 100644 index e07b27a7431fa25256665fc0df93d296c0e16db7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52344480_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c985fd572299ca77ba348f71ef7d8934e8b11d8e926ae595a875d336b6fa8c30 -size 2789 diff --git a/MM_Math/data_original_21/7052940/math/52690776_2112.png b/MM_Math/data_original_21/7052940/math/52690776_2112.png deleted file mode 100644 index 70f58988c901f7e557efca8bb65efc164b2ae892..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52690776_2112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a88b1fee5dd276ede4619eb78be7ccd194043a3ce04140682764dc88e2f2f426 -size 6531 diff --git a/MM_Math/data_original_21/7052940/math/52690851_13.png b/MM_Math/data_original_21/7052940/math/52690851_13.png deleted file mode 100644 index 3099143249bfe17ec4d4e7072bcabfaac4273ff9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52690851_13.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28b0986bc179f771d6f0180bd88cd415f5d19357ab3a4dd0df27fbf8205dc977 -size 12369 diff --git a/MM_Math/data_original_21/7052940/math/52690876_552.png b/MM_Math/data_original_21/7052940/math/52690876_552.png deleted file mode 100644 index 74d1bf9023162b05afba002937335998a403129e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52690876_552.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89c6b858cce922f244219ec53f73dca25eaf0a2a6296dd5306c03eb4e1555e4b -size 2938 diff --git a/MM_Math/data_original_21/7052940/math/52690931_200.png b/MM_Math/data_original_21/7052940/math/52690931_200.png deleted file mode 100644 index 89777da1b8f7cb202d6ea61c6695445687ae7e1f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52690931_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c29acea8564071e7f70d2548fab4769c89e67a366f7d82ef1b5c62e0a5035aba -size 44479 diff --git a/MM_Math/data_original_21/7052940/math/52690944_542.png b/MM_Math/data_original_21/7052940/math/52690944_542.png deleted file mode 100644 index d15bfde23bec0d79c6784923c71920d13ff105eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52690944_542.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:26f5f681d5c191f4b0854ba0dbcf501f0a77fd659c0e1a0bf7576764888478cd -size 106364 diff --git a/MM_Math/data_original_21/7052940/math/52690999_533.png b/MM_Math/data_original_21/7052940/math/52690999_533.png deleted file mode 100644 index 0e844ab9d6d939529eacb600c48ba31146e818c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52690999_533.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35f6602297878f0b14f08a613474294d7be978d75658a4f5c35065bac8644ae7 -size 51783 diff --git a/MM_Math/data_original_21/7052940/math/52691041_521.png b/MM_Math/data_original_21/7052940/math/52691041_521.png deleted file mode 100644 index d3db915db114228a21e99847a3824fd22a8cb162..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52691041_521.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e043338b570b5e77620d3c9a3072efb7e83fda0f26c4b9e02be3f51e4c5e0df -size 78125 diff --git a/MM_Math/data_original_21/7052940/math/52691272_504.png b/MM_Math/data_original_21/7052940/math/52691272_504.png deleted file mode 100644 index 9f4f9f3fc95262d966d5ac16ffed793e85b87f02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/52691272_504.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70d9227814f0f7193042c2a46100e81e03f09547f6a2657fa5543c1b1429d3b9 -size 16272 diff --git a/MM_Math/data_original_21/7052940/math/53182636_172.png b/MM_Math/data_original_21/7052940/math/53182636_172.png deleted file mode 100644 index 8ca36296e369b3e581a83a20b89a67f5d5c73367..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53182636_172.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25700b7fe6dc42fcf27a73632534f2f2b471f498fc67d6b750ac565bd59eee92 -size 28800 diff --git a/MM_Math/data_original_21/7052940/math/53182647_515.png b/MM_Math/data_original_21/7052940/math/53182647_515.png deleted file mode 100644 index 181d734d910ddcb218487f16acc7c221bf6c2072..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53182647_515.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a7957383c5f8b8237c89504d9ded3890188140bda493ad9f16ce894d8e44ccb -size 41639 diff --git a/MM_Math/data_original_21/7052940/math/53182680_475.png b/MM_Math/data_original_21/7052940/math/53182680_475.png deleted file mode 100644 index 3c2ee82502fd3e68de4556410f243fccecaf0397..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53182680_475.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1cec55316375be57cc7c25f7c8735f7f6d4549c58ec42dd04371cc1789b43e54 -size 2867 diff --git a/MM_Math/data_original_21/7052940/math/53182760_453.png b/MM_Math/data_original_21/7052940/math/53182760_453.png deleted file mode 100644 index 34064013ba29e30eef708469a857c3ad2f000fc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53182760_453.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a7d4b19e277bb8592de6fb011e13bef36c35b30e3f0e5e99ac183c41a068351 -size 3167 diff --git a/MM_Math/data_original_21/7052940/math/53182915_962.png b/MM_Math/data_original_21/7052940/math/53182915_962.png deleted file mode 100644 index b0766ad88cd91004f57f9341f6e6f97084e31af6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53182915_962.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a3b9b9da1a35b0a0706e0acbe01f4ebddb4024bd325e4f16a4b9cb6c06b54d7a -size 2756 diff --git a/MM_Math/data_original_21/7052940/math/53182974_185.png b/MM_Math/data_original_21/7052940/math/53182974_185.png deleted file mode 100644 index 1b976f132f0536e1f2850da3fc8e292a5c5dc18a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53182974_185.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56608f4b2d602939bc64986049cb2c7aa247e2bac52115f32b59173cfc5e8d85 -size 100869 diff --git a/MM_Math/data_original_21/7052940/math/53182976_461.png b/MM_Math/data_original_21/7052940/math/53182976_461.png deleted file mode 100644 index 24df3b66ffa1c81521fbfcff74bf9076f973a5e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53182976_461.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:641da706b791a29f51006a62799f54ffef3283193a4320f2f494781d59ec88bb -size 7441 diff --git a/MM_Math/data_original_21/7052940/math/53183204_982.png b/MM_Math/data_original_21/7052940/math/53183204_982.png deleted file mode 100644 index 7032b9714c89f7c97b881a703310d0fba691a3c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53183204_982.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c1c8e8b339b13a373019b13769d325ab578d85975c2d1ac3bb1cae5d651cef2 -size 1866 diff --git a/MM_Math/data_original_21/7052940/math/53183208_970.png b/MM_Math/data_original_21/7052940/math/53183208_970.png deleted file mode 100644 index b404540466f273280f9ce295c2ee7fb087e9de62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53183208_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14d23a10a3f443260daafd634ce27084d4df68d13064ea38b244f4d7153a923a -size 4167 diff --git a/MM_Math/data_original_21/7052940/math/53333599_194.png b/MM_Math/data_original_21/7052940/math/53333599_194.png deleted file mode 100644 index 8ab1e6e7250487d3f7331de14e11c396b5567116..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53333599_194.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33228855533d96154f6d9d03760dcc03f5afdeda001f5b1f45c4d8feaddef7af -size 3055 diff --git a/MM_Math/data_original_21/7052940/math/53359331_441.png b/MM_Math/data_original_21/7052940/math/53359331_441.png deleted file mode 100644 index 57234044d04060cf299d2f0c8650317765e6e1d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53359331_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b53fe346a748ae12f3f2cb873d72716c2cf61f9d3ff07cda20c8e21f400e506 -size 1842 diff --git a/MM_Math/data_original_21/7052940/math/53359586_958.png b/MM_Math/data_original_21/7052940/math/53359586_958.png deleted file mode 100644 index 64ed820df8f8942466305e11a125e7363a384fc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53359586_958.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4fe9636bbb1b72d6b7bfa1db856081512435eefe229eb1dcd9fa1020d3b8f97 -size 4210 diff --git a/MM_Math/data_original_21/7052940/math/53359921_164.png b/MM_Math/data_original_21/7052940/math/53359921_164.png deleted file mode 100644 index bd5f2f63a33e9185dad77a032e7c28d6efafb552..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53359921_164.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee8b13f480756a297ea7b44230e287c69b5e5fdb90fccc98fa3bbc32b52b80ef -size 8285 diff --git a/MM_Math/data_original_21/7052940/math/53490748_945.png b/MM_Math/data_original_21/7052940/math/53490748_945.png deleted file mode 100644 index 4596cede9e38546797e05fa192311c0be08b5c79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53490748_945.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51f02d3657e02433348feadbe0bb665c90e07aec7579704e08c0bf8ca2c5977a -size 25293 diff --git a/MM_Math/data_original_21/7052940/math/53490772_430.png b/MM_Math/data_original_21/7052940/math/53490772_430.png deleted file mode 100644 index 2e0470db7dbd7771a33e67f2053876a21ca9f71b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53490772_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48c960c14549d3805eb35f2dde67db5e51354986f48cfd76991b1e5cd6640610 -size 22379 diff --git a/MM_Math/data_original_21/7052940/math/53498209_155.png b/MM_Math/data_original_21/7052940/math/53498209_155.png deleted file mode 100644 index 30bd8c56dbbb265d8e77bda8ac952736a3368546..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53498209_155.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e93d7fb77d21096448b5bbe8268a566b9f7727ee2b55deb141ebe72b21e0b11 -size 29315 diff --git a/MM_Math/data_original_21/7052940/math/53498218_935.png b/MM_Math/data_original_21/7052940/math/53498218_935.png deleted file mode 100644 index a51d471cdcd39fc172c12e256dd4dcfbe242ec70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53498218_935.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:768995056f81420d6934d6f0b771811a951a8b57abffeee40538fc182131592d -size 44201 diff --git a/MM_Math/data_original_21/7052940/math/53728510_01.png b/MM_Math/data_original_21/7052940/math/53728510_01.png deleted file mode 100644 index 3391732a1691c975dcbe4e22fc0c34ed2c8a9a7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53728510_01.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e874bfbcd2cef8ea03e61bf20e04dcabc0cc87a9dd520525a89b9f2196cd0f76 -size 13863 diff --git a/MM_Math/data_original_21/7052940/math/53729287_220.png b/MM_Math/data_original_21/7052940/math/53729287_220.png deleted file mode 100644 index f3f886a0fb019637278d30377ee558eb1b9450c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/math/53729287_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b439a9ae48db98ee1975e46e2041c2300db89f48b7f2a36951fcdbe09e731838 -size 3839 diff --git a/MM_Math/data_original_21/7052940/solution_images/51825222_490.png b/MM_Math/data_original_21/7052940/solution_images/51825222_490.png deleted file mode 100644 index 0826729c7d93979311b0e8aaf3db0e42499296ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/51825222_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa6226902152254dce736abd6a64aa7cca9e425b45465ff3ac8ce890295a61fe -size 53637 diff --git a/MM_Math/data_original_21/7052940/solution_images/52050161_410.png b/MM_Math/data_original_21/7052940/solution_images/52050161_410.png deleted file mode 100644 index 37fad0cfe889e2887d87c844492c8bef8042551f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/52050161_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d233be9b0d0821a2f83393223aad227b460fc27d6776abb7ee15d4aae0a21c07 -size 4599 diff --git a/MM_Math/data_original_21/7052940/solution_images/52188279_740.png b/MM_Math/data_original_21/7052940/solution_images/52188279_740.png deleted file mode 100644 index bc6ea671c1b3af2d4d00cfa692d30bb4d76b8173..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/52188279_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee97b5d67bb78ddb9cc54ee825eb50a657e83762eaaaba224679e43544e2d450 -size 5649 diff --git a/MM_Math/data_original_21/7052940/solution_images/52189067_750.png b/MM_Math/data_original_21/7052940/solution_images/52189067_750.png deleted file mode 100644 index 7683c20e841c6dd5bb4a2706099d67d98dee91f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/52189067_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:713b6aa63887b0a16b1159fe68ceea08211f71ae06d0441b9c9a82d98c8fc068 -size 7469 diff --git a/MM_Math/data_original_21/7052940/solution_images/52189644_770.png b/MM_Math/data_original_21/7052940/solution_images/52189644_770.png deleted file mode 100644 index 3536decb10e608f40b38c0ff8be08febe2e3ea99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/52189644_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3fb6e30deb1afbf87ee618a68211dd14e59abfdd01ff422ede2ac1299031fdad -size 57767 diff --git a/MM_Math/data_original_21/7052940/solution_images/52251770_580.png b/MM_Math/data_original_21/7052940/solution_images/52251770_580.png deleted file mode 100644 index 48daa0e14d13acb99a31d0bc529d18e425258e36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/52251770_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d89aa51507aa3295348725afb36131038dff488335e9d83f6a664330fb069209 -size 4797 diff --git a/MM_Math/data_original_21/7052940/solution_images/52251770_5811.png b/MM_Math/data_original_21/7052940/solution_images/52251770_5811.png deleted file mode 100644 index 57abfa70714d00691a2d7951d7a699ded29e6e67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/52251770_5811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c55b739e963bb76c1ebfb09550cb532ec5d7d2572a26b7d957d1aae7ca101179 -size 3696 diff --git a/MM_Math/data_original_21/7052940/solution_images/52690776_210.png b/MM_Math/data_original_21/7052940/solution_images/52690776_210.png deleted file mode 100644 index 6039bae4aa733ada37485de043e41abd804c1d96..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/52690776_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68b48c3464a20fc0d2781b67dd855cbcc1bd91b1c7908c2f6e69f7aa092f174c -size 5069 diff --git a/MM_Math/data_original_21/7052940/solution_images/52690851_11.png b/MM_Math/data_original_21/7052940/solution_images/52690851_11.png deleted file mode 100644 index addcb63820a68cb913a5604546b0e79e3a5d8bc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/52690851_11.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2a995f541b5a4a586218ca7bf97b6694a452ff5e0e1438f0f01406c1dde9719 -size 12578 diff --git a/MM_Math/data_original_21/7052940/solution_images/52690931_200.png b/MM_Math/data_original_21/7052940/solution_images/52690931_200.png deleted file mode 100644 index fff42314c7efd5cec5a0d79a8b18f6b3638f3cdd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/52690931_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19762203bbe5221c9ac2033f9da5980fa49ea8342511b19be1cf301b23d9feab -size 47759 diff --git a/MM_Math/data_original_21/7052940/solution_images/53182680_470.png b/MM_Math/data_original_21/7052940/solution_images/53182680_470.png deleted file mode 100644 index 3c2ee82502fd3e68de4556410f243fccecaf0397..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/53182680_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1cec55316375be57cc7c25f7c8735f7f6d4549c58ec42dd04371cc1789b43e54 -size 2867 diff --git a/MM_Math/data_original_21/7052940/solution_images/53359331_440.png b/MM_Math/data_original_21/7052940/solution_images/53359331_440.png deleted file mode 100644 index a3d5e2110da088a5b87de319f2449f1c436a7b0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/53359331_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:257745f3c3faa7606ffcb18677b7e5ad8a00288cfc08e7c36d383314dcac575f -size 2317 diff --git a/MM_Math/data_original_21/7052940/solution_images/53490772_4312.png b/MM_Math/data_original_21/7052940/solution_images/53490772_4312.png deleted file mode 100644 index adbd598366fb6016a6bfd6d32a94e92f29b6ad39..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/53490772_4312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:194a69f50db00f5d81c9a249a9c11511fa54144912196d792bf5d0a0490d5e7f -size 15216 diff --git a/MM_Math/data_original_21/7052940/solution_images/53490772_432.png b/MM_Math/data_original_21/7052940/solution_images/53490772_432.png deleted file mode 100644 index d3c83b845462933706be8dd0f1601dace97f90e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/53490772_432.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8aebb743ef9c669b2f3ac068e8cf3fe10a67fa81cb7bbf744b3fc01780b6b97d -size 16746 diff --git a/MM_Math/data_original_21/7052940/solution_images/53490772_4321.png b/MM_Math/data_original_21/7052940/solution_images/53490772_4321.png deleted file mode 100644 index 47dfb0b261ab8ae7ba0363470e2eb9d302f16465..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/53490772_4321.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5699f19688f07ed4559a795615ebf14d44db7ce2351c75749b6e39c9ba07082f -size 19947 diff --git a/MM_Math/data_original_21/7052940/solution_images/53490772_4324.png b/MM_Math/data_original_21/7052940/solution_images/53490772_4324.png deleted file mode 100644 index 26ba871929b3ff37445e9b3349247434b0a434f0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/53490772_4324.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48923850c2d6271d22e19a848cf4da48def87659aadae9b1eaae78f6520b007a -size 17853 diff --git a/MM_Math/data_original_21/7052940/solution_images/53490772_4326.png b/MM_Math/data_original_21/7052940/solution_images/53490772_4326.png deleted file mode 100644 index 747960ec7f9e3f0e5e9177f0f77888b6ce65ee75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/53490772_4326.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb8d8fd38dc5b9f284dbd885743603f00adb85c2305c2a1007c22b7166994873 -size 16422 diff --git a/MM_Math/data_original_21/7052940/solution_images/53498209_156.png b/MM_Math/data_original_21/7052940/solution_images/53498209_156.png deleted file mode 100644 index 6a2a76f3fc76e15b4bcebbd504fded0252fbd9ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/53498209_156.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3a429c68737fc2a5934288b1d45fee7c4c990be469ee70936654eb01614b217 -size 100486 diff --git a/MM_Math/data_original_21/7052940/solution_images/53728510_00.png b/MM_Math/data_original_21/7052940/solution_images/53728510_00.png deleted file mode 100644 index b8666f015f3a73afc7f086f7d67a3fd714fff204..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7052940/solution_images/53728510_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67680e3ae2c322eab18fa2cdd7e4124d10ba6db039068d5b67a6545c291e6712 -size 17261 diff --git a/MM_Math/data_original_21/7053789/math/50431063_490.jpg b/MM_Math/data_original_21/7053789/math/50431063_490.jpg deleted file mode 100644 index 83e75ba8a3e1cf6e255ac7415e628a96af1e1657..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50431063_490.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dce86e2d35124f241b0367075fe23cab747df119312a3d0cf0e19e4a173a25c3 -size 2700 diff --git a/MM_Math/data_original_21/7053789/math/50431079_930.jpg b/MM_Math/data_original_21/7053789/math/50431079_930.jpg deleted file mode 100644 index fed19da2549836ade4f348a02db4a832c931f025..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50431079_930.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e72b776df4774acf146189a6718a424990c173041fbd6c379c30f53461297ed -size 2896 diff --git a/MM_Math/data_original_21/7053789/math/50431224_480.jpg b/MM_Math/data_original_21/7053789/math/50431224_480.jpg deleted file mode 100644 index ae8c769c8ed239b3ce185434e96e5e2748a6928a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50431224_480.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ecfb85de1c681c9135e3d74facb7344ea68061802097a724257110282bb55554 -size 4167 diff --git a/MM_Math/data_original_21/7053789/math/50431230_541.jpg b/MM_Math/data_original_21/7053789/math/50431230_541.jpg deleted file mode 100644 index 3009f96776283973e4d499a1cd94176e5aacb1fa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50431230_541.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae8e18d1936acf896efc46dfcd9cbd43afe3f82a8580646735f33c1a29163512 -size 2086 diff --git a/MM_Math/data_original_21/7053789/math/50431231_920.jpg b/MM_Math/data_original_21/7053789/math/50431231_920.jpg deleted file mode 100644 index 3f75bcae983b9e6b5e556c0c51ca2c77aa160754..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50431231_920.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3a3d25958f3465f38e9716a9a2d949c4e52bf9222be1888dc8ec24eaf1735c4 -size 2328 diff --git a/MM_Math/data_original_21/7053789/math/50475225_641.jpg b/MM_Math/data_original_21/7053789/math/50475225_641.jpg deleted file mode 100644 index c66b6cb96790a0b46a7258ca297d1a652d2b5fac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50475225_641.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ecd46bb1af18e8b35f2bb0030d3533b7fdf49c15da7d417d0946d9461ae8f3e0 -size 2881 diff --git a/MM_Math/data_original_21/7053789/math/50481319_54.png b/MM_Math/data_original_21/7053789/math/50481319_54.png deleted file mode 100644 index 6a017f1d14cee341c2043c88bcacaff38122df30..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50481319_54.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20c9e46cc8a55f1244220c05afd6a522325cf105bd965f0c8be52a5fdb03f6df -size 13716 diff --git a/MM_Math/data_original_21/7053789/math/50481348_6311.png b/MM_Math/data_original_21/7053789/math/50481348_6311.png deleted file mode 100644 index cd666e5f2da4e87ccedb93f77bd701259904907a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50481348_6311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f1d834631f4ec39c96122eaf8f5ff29ce54bac07e956a00ef81f23c187bfa91 -size 4283 diff --git a/MM_Math/data_original_21/7053789/math/50481639_45.png b/MM_Math/data_original_21/7053789/math/50481639_45.png deleted file mode 100644 index ab582c9efba95e2fe90bed4d895d7f8454edbe7b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50481639_45.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8cc3855e9b62d66bc2cbfa3a5f980db3aa29a7e8857053347087b60359c265ee -size 13439 diff --git a/MM_Math/data_original_21/7053789/math/50481662_629.png b/MM_Math/data_original_21/7053789/math/50481662_629.png deleted file mode 100644 index fb9798d1e2086d46defba56631fd4fc58559ff88..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50481662_629.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1c4be4bb2eba48165ac771692bac86c5e42adf582fd3fb5a0d754ef73723815 -size 26072 diff --git a/MM_Math/data_original_21/7053789/math/50481996_35.png b/MM_Math/data_original_21/7053789/math/50481996_35.png deleted file mode 100644 index 8f0747080c8266a962471f9954c35d5b42153b52..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50481996_35.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:887fd90dfa76c28eb4fd0ea074d86161bad29ca15ee52260e6e5610a219ce588 -size 3772 diff --git a/MM_Math/data_original_21/7053789/math/50482001_263.png b/MM_Math/data_original_21/7053789/math/50482001_263.png deleted file mode 100644 index c7c6f19b19f4353a22bf668ba61c636b214156d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50482001_263.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ad5e18f17cfd3d65ea360dd418ceeb6069fab2d762e6edb8ed12616c83f08945 -size 3824 diff --git a/MM_Math/data_original_21/7053789/math/50482062_20.png b/MM_Math/data_original_21/7053789/math/50482062_20.png deleted file mode 100644 index 1638c0ed0d913593add6551bfa62c70693ef39c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50482062_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:459433c99d00a4f831e88c04a45fc7d29a6f49423f6a669fdefd3b766b09dd0d -size 9746 diff --git a/MM_Math/data_original_21/7053789/math/50482068_250.png b/MM_Math/data_original_21/7053789/math/50482068_250.png deleted file mode 100644 index faf68d88f4115ab3508b331977a2e65e12ad2c93..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50482068_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:78bb39d8ce2e3b1a0c8c2a6a73072bfa4e32826095df6f3b57435e526a418e8d -size 3218 diff --git a/MM_Math/data_original_21/7053789/math/50482083_610.png b/MM_Math/data_original_21/7053789/math/50482083_610.png deleted file mode 100644 index 3c7f6813f9af0435b4d574f379cc5022533696ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50482083_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb7c075f9b56f6590770eff9abe2513cd63e6d29e4a9dfb3ab1c517551b47ed2 -size 2898 diff --git a/MM_Math/data_original_21/7053789/math/50482131_12.png b/MM_Math/data_original_21/7053789/math/50482131_12.png deleted file mode 100644 index 6794860d0415430bbeab4fbafd30819bee0ec3b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50482131_12.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f3a8f8ad322660c81aa82cad80513e127b80d544128e0add5ce2b93aa257ff3 -size 7082 diff --git a/MM_Math/data_original_21/7053789/math/50482144_608.png b/MM_Math/data_original_21/7053789/math/50482144_608.png deleted file mode 100644 index ea65bd1f986f61c742a6e6dd1341f870dd6301c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50482144_608.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cbb6c0aaf24a0ad0a9100a5f43cbda427ba5d75f20b4ed2236a445a1d35cccd3 -size 4428 diff --git a/MM_Math/data_original_21/7053789/math/50482308_245.png b/MM_Math/data_original_21/7053789/math/50482308_245.png deleted file mode 100644 index 0ceb78f2738623b29f0edd43ff30ddca6e785e82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50482308_245.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0270fe03c49d45c0c7c2650f62d8ad86543d00da56b57135bbbdd616bd8a18d1 -size 4869 diff --git a/MM_Math/data_original_21/7053789/math/50482334_595.png b/MM_Math/data_original_21/7053789/math/50482334_595.png deleted file mode 100644 index 81a9b2b7c3b245976cefa37d6472d15927f3ce5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50482334_595.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab1247d1d990e1c5476817e9036622f72e441a8fec40baf11d6933adcbf1404f -size 5215 diff --git a/MM_Math/data_original_21/7053789/math/50482454_236.png b/MM_Math/data_original_21/7053789/math/50482454_236.png deleted file mode 100644 index ffabce81d6dfdb388b75b303e9c81aa6399294d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50482454_236.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:529226a6fee5f626c870684543c2549da14206dde660cb6cb0df4b0780c8e24e -size 2991 diff --git a/MM_Math/data_original_21/7053789/math/50496203_225.png b/MM_Math/data_original_21/7053789/math/50496203_225.png deleted file mode 100644 index e6a436dd796a2f165f83d74131d289ead9e26268..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50496203_225.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e3d6c3a551be42e7c173f047aef3c4dfc1131b28c0f346ccc84cea224d0aedc -size 2592 diff --git a/MM_Math/data_original_21/7053789/math/50496315_582.png b/MM_Math/data_original_21/7053789/math/50496315_582.png deleted file mode 100644 index ae2d78d63c97e489faa8dad93004e74a642cbd29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50496315_582.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:915a84fa9154e8eeb023b9bffb377b766e969e000ba7a9b46c7e473a930914c4 -size 11725 diff --git a/MM_Math/data_original_21/7053789/math/50496356_575.png b/MM_Math/data_original_21/7053789/math/50496356_575.png deleted file mode 100644 index fa386c306cd8fbcbf9d6d6c0590c7540e2f75578..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50496356_575.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6296e9b2acca796d3c2e0ccfc48356673e03d6aa37a0adc7b1c297ba7c0a1c63 -size 4817 diff --git a/MM_Math/data_original_21/7053789/math/50496638_563.png b/MM_Math/data_original_21/7053789/math/50496638_563.png deleted file mode 100644 index 2b0125a255d3e3780ebc1c8a3a6cbf2f29b1c2fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50496638_563.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96dc802e7b6f84ac4ad73ff00333b24042f68a23875d320d2473fc0636e8fcab -size 3319 diff --git a/MM_Math/data_original_21/7053789/math/50496938_5511.png b/MM_Math/data_original_21/7053789/math/50496938_5511.png deleted file mode 100644 index 6c202582ea10c57cc97938c81e99d12eb9301116..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50496938_5511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3da1d69d0a846fe69db9274ec7c00a62028657dee4c8cc39c8f472a29e194f39 -size 5929 diff --git a/MM_Math/data_original_21/7053789/math/50496997_013.png b/MM_Math/data_original_21/7053789/math/50496997_013.png deleted file mode 100644 index 0803f848c3785565b751d3dd66bd6c3e830e0ff1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50496997_013.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62ba0a3171726a6dd40265f359551847934fb23957f1ef2a804fd8b949d57d90 -size 4642 diff --git a/MM_Math/data_original_21/7053789/math/50589022_4311.png b/MM_Math/data_original_21/7053789/math/50589022_4311.png deleted file mode 100644 index 1489fcdc3dae45ac72066200b1059f5679f15e96..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50589022_4311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8765fd8c429fdfad46435e15c847b39a88fe3baec262cc5749d45609d7d7e9f -size 6808 diff --git a/MM_Math/data_original_21/7053789/math/50589349_120.png b/MM_Math/data_original_21/7053789/math/50589349_120.png deleted file mode 100644 index f55f570c275db24e8d538a635c1a5ffaf814c2cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50589349_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:591cc1b44cec76fdb13ac5faa383591224bf257014067292303739871680e418 -size 2506 diff --git a/MM_Math/data_original_21/7053789/math/50589403_843.png b/MM_Math/data_original_21/7053789/math/50589403_843.png deleted file mode 100644 index d0c84b2f3c5f3689b1fcf3b0f861033d1d9e664a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50589403_843.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2db2b004d09db82f8150b936383f9deee0137e794c05142a688cae2a33035fda -size 2993 diff --git a/MM_Math/data_original_21/7053789/math/50589493_831.png b/MM_Math/data_original_21/7053789/math/50589493_831.png deleted file mode 100644 index 4d92dc1fc8108ce1785c0dd99f4dc5cbb1987cd7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50589493_831.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a328664b28459fc66d1af2646a0fc34864c6bed418c202f69b549a6ea268be4 -size 4899 diff --git a/MM_Math/data_original_21/7053789/math/50589675_420.png b/MM_Math/data_original_21/7053789/math/50589675_420.png deleted file mode 100644 index eac8e6194d81d03cbe9f701f2f12cab1c5c41404..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50589675_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fcdfdc56f4621b0a68cd1a6dc2104af004171bf61cd6c27966967c7fcaa7fb7e -size 3229 diff --git a/MM_Math/data_original_21/7053789/math/50590144_410.png b/MM_Math/data_original_21/7053789/math/50590144_410.png deleted file mode 100644 index 82ce4738e6280fad155172ea58dc61319494035f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50590144_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46d240526ff9505cbb240f94a3af02e59a4ddff04dda0f100a1308edbc769df9 -size 6281 diff --git a/MM_Math/data_original_21/7053789/math/50590307_823.png b/MM_Math/data_original_21/7053789/math/50590307_823.png deleted file mode 100644 index 20886a0de12789c2afca41d4ebeb0d7884db7f9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50590307_823.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2c78350c3a1e5c50d18fe647f571494c6c2ac034674612051b3dd38b5497476 -size 3935 diff --git a/MM_Math/data_original_21/7053789/math/50590397_113.png b/MM_Math/data_original_21/7053789/math/50590397_113.png deleted file mode 100644 index 464b7236df651fc268d572d17e0dcdf5d8ed8324..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50590397_113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65e0fd2ba52dc8a99630f314a8d8ef73663b866288865d163f688d433b367777 -size 1933 diff --git a/MM_Math/data_original_21/7053789/math/50590416_818.png b/MM_Math/data_original_21/7053789/math/50590416_818.png deleted file mode 100644 index 76bf4979246710c95a51fca097e9804ff4be3788..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50590416_818.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8ea4e4434ec4ae6ee6be838dc53d9d72824c2f2dba98fc5df95f9c0accc187a -size 3123 diff --git a/MM_Math/data_original_21/7053789/math/50590744_801.png b/MM_Math/data_original_21/7053789/math/50590744_801.png deleted file mode 100644 index e737ee62bc1bc0e3d6f8d08ae7fa7f8f65c3f17f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50590744_801.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b25c34a0ca64305b11d3d6b6124b6c86ec6983192c78b883bdfb93dfad996b2 -size 3834 diff --git a/MM_Math/data_original_21/7053789/math/50590774_403.png b/MM_Math/data_original_21/7053789/math/50590774_403.png deleted file mode 100644 index f6a4648797d1b80f3bfac4b7901114763b1db05e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50590774_403.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:998c99a1c2f8297f4cd98541ee8159a3b6e193c4f74b39e1e2fc1fe3eb03b43f -size 9678 diff --git a/MM_Math/data_original_21/7053789/math/50590993_394.png b/MM_Math/data_original_21/7053789/math/50590993_394.png deleted file mode 100644 index 1fbfc96274e049054665d396b642a2c3ba6871ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50590993_394.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94d8792d0a7ab9dcddac5e41633e079c195a816f4530cfcb3c3a5e99e6c9f46a -size 2457 diff --git a/MM_Math/data_original_21/7053789/math/50591287_791.png b/MM_Math/data_original_21/7053789/math/50591287_791.png deleted file mode 100644 index 517da38e26150f96229dee2f6cbe10101f75caa8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50591287_791.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10fabd46e1c4ad1d1650502609befe233388998ec0b26fb15b4b33a76e050825 -size 6014 diff --git a/MM_Math/data_original_21/7053789/math/50591538_1014.png b/MM_Math/data_original_21/7053789/math/50591538_1014.png deleted file mode 100644 index eb6cfb4c014c9e44d33e9aa821c286a2b96d2096..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50591538_1014.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8851d0e36edaf9e8409771752edf8fb1a65289741ef840154e7f3a44716d9401 -size 6746 diff --git a/MM_Math/data_original_21/7053789/math/50591574_384.png b/MM_Math/data_original_21/7053789/math/50591574_384.png deleted file mode 100644 index 7339a1c0894f0ab32e0fdc600b31d163518ce9d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50591574_384.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53baf257e86597d9019ac8cac5130ce4f0d9e1761e98efe6df2a3953004147dc -size 2732 diff --git a/MM_Math/data_original_21/7053789/math/50594162_787.png b/MM_Math/data_original_21/7053789/math/50594162_787.png deleted file mode 100644 index d180968e752e091f7cecf234379a6fd51d8a1425..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50594162_787.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0659d519b44bd7588522902dc92dcf02a618b72659396664d0e87f3531bcafe3 -size 4894 diff --git a/MM_Math/data_original_21/7053789/math/50594263_7714.png b/MM_Math/data_original_21/7053789/math/50594263_7714.png deleted file mode 100644 index fce78d9981432d80a0fdf5fe2b89388f104f258b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50594263_7714.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:633a24060fe1530ec26e787ceae362ce7ded7a6059b37949da81424d9d4142be -size 3617 diff --git a/MM_Math/data_original_21/7053789/math/50594473_372.png b/MM_Math/data_original_21/7053789/math/50594473_372.png deleted file mode 100644 index a912ba957f70d5010685b16592250fc89a1e6244..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50594473_372.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38439abd0c018f3de7750bfab87b1945e34ac409885bdbf98f01c3a53e048285 -size 4102 diff --git a/MM_Math/data_original_21/7053789/math/50594939_369.png b/MM_Math/data_original_21/7053789/math/50594939_369.png deleted file mode 100644 index 1d3efb4ddfaeef09cb41bd76f0c8a4c2a3963f39..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50594939_369.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ceff7871168d724febdb269dc90f4625a03a95028ca16f16871a022bd3785277 -size 3482 diff --git a/MM_Math/data_original_21/7053789/math/50595458_359.png b/MM_Math/data_original_21/7053789/math/50595458_359.png deleted file mode 100644 index 72619819661020badea879a5cbe6775ef074eddb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50595458_359.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dfd20fa0b98a17f7e66d8e3341b5764d96d7e726d9eb253a29e161abfdd10a65 -size 3466 diff --git a/MM_Math/data_original_21/7053789/math/50595463_766.png b/MM_Math/data_original_21/7053789/math/50595463_766.png deleted file mode 100644 index b903a962be7bd15c73b9c4bf925fb48b61a5aec9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50595463_766.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5e85eb1e54d34672675dc19c6fe8a387b50e779110fbc4e9f3209865309446b -size 9633 diff --git a/MM_Math/data_original_21/7053789/math/50595478_7510.png b/MM_Math/data_original_21/7053789/math/50595478_7510.png deleted file mode 100644 index 17e5a0a5f2b952bae051ce4243b3aa2206438c9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50595478_7510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ce1104227e050710b56f4a2120f5a435aaca8fcfe1274970f87aa8f6d825a9c -size 25359 diff --git a/MM_Math/data_original_21/7053789/math/50612891_295.png b/MM_Math/data_original_21/7053789/math/50612891_295.png deleted file mode 100644 index e33a16665b00ef68ecd418458d3a404f7e1f3ae9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50612891_295.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:205b55a488fe48fd040b36ab07a266d5dbd7767129ef1c71ac016478fedcf28e -size 5795 diff --git a/MM_Math/data_original_21/7053789/math/50613254_701.png b/MM_Math/data_original_21/7053789/math/50613254_701.png deleted file mode 100644 index 417c2177e15b7b91a41932901ed7f6875c7aa5e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50613254_701.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ee8e58bf802635238a81b8d3cff20009fdd295a564c7a8818a0fc4a4170632e -size 3421 diff --git a/MM_Math/data_original_21/7053789/math/50613655_80.png b/MM_Math/data_original_21/7053789/math/50613655_80.png deleted file mode 100644 index d14e9ba7b443ffb8982ac4a6b6be70ba7e173a89..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/50613655_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3dbdb2f441ebe44ee36f6e39cc57c73cfe726f4a504abba7c04d5ec7ffaaa7b -size 9756 diff --git a/MM_Math/data_original_21/7053789/math/51661989_505.png b/MM_Math/data_original_21/7053789/math/51661989_505.png deleted file mode 100644 index 21ab178042e2e36fb4067dc7dc98da8a780ddbf2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51661989_505.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ae0f4c283add3cb8c6aaef466b77c415a8fdac80992dc0317a846eb13a466fc -size 4045 diff --git a/MM_Math/data_original_21/7053789/math/51662198_520.png b/MM_Math/data_original_21/7053789/math/51662198_520.png deleted file mode 100644 index 585e8db29df786e328f440eb89aa17986694dcc1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51662198_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb7f48f52fc9640ff97dc9387e89ca6a22571bbe9e849ca10bc702f86ed9f4ca -size 2358 diff --git a/MM_Math/data_original_21/7053789/math/51662303_180.png b/MM_Math/data_original_21/7053789/math/51662303_180.png deleted file mode 100644 index ca6992c32be192a77dc3752ae93bd3bf73d44654..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51662303_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34d52dafacb865947ba4f4523d8aaa7e4d290f41a12805803df7489e21315024 -size 2222 diff --git a/MM_Math/data_original_21/7053789/math/51662414_995.png b/MM_Math/data_original_21/7053789/math/51662414_995.png deleted file mode 100644 index 4673af78885a2e0f4e5d9fdf2756d5c3ce0cfafb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51662414_995.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e45764f31eac085c933807a380b5f3988ba71d061af4d165b60ab68f983b1eb1 -size 3383 diff --git a/MM_Math/data_original_21/7053789/math/51662536_9610.png b/MM_Math/data_original_21/7053789/math/51662536_9610.png deleted file mode 100644 index f80201a299941ebceecdb6775cd28ace929e4d29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51662536_9610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4eb61a81691dc3c1cdf16f752f26fbe43e82e727432fb53b5ec714b063410b00 -size 28138 diff --git a/MM_Math/data_original_21/7053789/math/51662552_193.png b/MM_Math/data_original_21/7053789/math/51662552_193.png deleted file mode 100644 index 9226379544f6bd244f37d055ecdbcb6138bae797..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51662552_193.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:356635b0197c72927d8a168ca88fe107a5ab23ccd551d3b55cb71d5b8abd4dd6 -size 3164 diff --git a/MM_Math/data_original_21/7053789/math/51662879_531.png b/MM_Math/data_original_21/7053789/math/51662879_531.png deleted file mode 100644 index 60a819b07dc06b10eb426a8e21117187d968e9f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51662879_531.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e7732fdce455d3d2f300520adf5d1c1526d9b0b5b16a74cca6404266517c6e8a -size 4465 diff --git a/MM_Math/data_original_21/7053789/math/51662963_970.png b/MM_Math/data_original_21/7053789/math/51662963_970.png deleted file mode 100644 index 7fd62b3c3e2db414c5a5f6253c83e0e5f99f7608..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51662963_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a0024366c66da2964bddd7df84865f4cf978ce5925b5a7d2f5009a7b00da5a46 -size 8608 diff --git a/MM_Math/data_original_21/7053789/math/51663047_200.png b/MM_Math/data_original_21/7053789/math/51663047_200.png deleted file mode 100644 index de4461f478ab5b02a11c761791d037c7f3defee3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51663047_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bfdaa3d3001e5c87b2fee4f9d65ec206aa8e2ed66ab7cbeaee1ffa2df0729c9f -size 4851 diff --git a/MM_Math/data_original_21/7053789/math/51663132_983.png b/MM_Math/data_original_21/7053789/math/51663132_983.png deleted file mode 100644 index f382485de98233f775aa58d5f1b4e21f807a7f59..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51663132_983.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:615da2dcb1180ff447f134472c0a8d36bdcb27bffba6d41983bd8ac8a67166fb -size 2246 diff --git a/MM_Math/data_original_21/7053789/math/51663193_953.png b/MM_Math/data_original_21/7053789/math/51663193_953.png deleted file mode 100644 index b35c52e985b6b2800d7493978b590b02b120f9e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51663193_953.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:abde95025ee3691587c621e89b8507519f4fa9bd0a4e2d2aa9e6d455169dc254 -size 6535 diff --git a/MM_Math/data_original_21/7053789/math/51663234_945.png b/MM_Math/data_original_21/7053789/math/51663234_945.png deleted file mode 100644 index b3c5efb38ce0b05a403da45f2270f50ff371ff5c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51663234_945.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:986e3a0600b091c0dbd0fdfc4b2c5b80684b28735a1804f2698236ad1a461928 -size 4424 diff --git a/MM_Math/data_original_21/7053789/math/51663244_210.png b/MM_Math/data_original_21/7053789/math/51663244_210.png deleted file mode 100644 index 577664378c51ae34001d2f52c246eb14cf692e92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51663244_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e35f3e762d42cff6630542977e67ab16b97bdb87c3b4555c8b305921a3b6eb6c -size 2699 diff --git a/MM_Math/data_original_21/7053789/math/51663250_510.png b/MM_Math/data_original_21/7053789/math/51663250_510.png deleted file mode 100644 index d004008a5c2277e9d7c41f7cd3286d716c642389..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51663250_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c56815dcfb9404c9a419f472d83c44f3e947a7a0e976a4d794c584adafd9c3e5 -size 3558 diff --git a/MM_Math/data_original_21/7053789/math/51698708_136.png b/MM_Math/data_original_21/7053789/math/51698708_136.png deleted file mode 100644 index 3c16712ad1c96408f3a9a6fc460b227296b05129..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51698708_136.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9eae79a0c496ec7c8b3998d28a63a2338dd98cbc674a79091c7addf9519c6e6 -size 24223 diff --git a/MM_Math/data_original_21/7053789/math/51698836_860.png b/MM_Math/data_original_21/7053789/math/51698836_860.png deleted file mode 100644 index d83404e2508e8d763fef99de5c0993322e9cabe3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51698836_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:827e005fd24fac18d20d04b1f95c184c6c1e444ef8c93ea4416dc9520f071e3c -size 6201 diff --git a/MM_Math/data_original_21/7053789/math/51698893_452.png b/MM_Math/data_original_21/7053789/math/51698893_452.png deleted file mode 100644 index cc0fc935237eef64edfcb64648992f63f0ff83d9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51698893_452.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1c9e687697e0a7c8c201ec60d6c1e1667a80a8d3abb88ad4c33b0b52a05e4c1 -size 3958 diff --git a/MM_Math/data_original_21/7053789/math/51699291_852.png b/MM_Math/data_original_21/7053789/math/51699291_852.png deleted file mode 100644 index ebde36603a713376a377fa299e3dd9865886478e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51699291_852.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70fc4288252d53357c1da823fceaded6a6d89658c6caea86ac8d474a903597d1 -size 5750 diff --git a/MM_Math/data_original_21/7053789/math/51699361_880.png b/MM_Math/data_original_21/7053789/math/51699361_880.png deleted file mode 100644 index c58fab06067939c6b18ebdf7eacbf1d04550efc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51699361_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:916d7a3bbb29a4d617fc43f1fc9bd75c18e2dd3b376d027c182f41c3143ba56e -size 47013 diff --git a/MM_Math/data_original_21/7053789/math/51699530_145.png b/MM_Math/data_original_21/7053789/math/51699530_145.png deleted file mode 100644 index 0f3265c6f8422276f36c890c482a4543e4dd6168..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51699530_145.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4419f7d1755fead52628fb596a60cefce26251a6e9089d7301e73580631fba1d -size 1813 diff --git a/MM_Math/data_original_21/7053789/math/51699535_159.png b/MM_Math/data_original_21/7053789/math/51699535_159.png deleted file mode 100644 index d7efbee0013d7b5d244a8e2de3179cd59e957929..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51699535_159.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c837c8909a00be5928c3e47bcffa1db65ee9df2c60b42903be4624c830897985 -size 10722 diff --git a/MM_Math/data_original_21/7053789/math/51699549_870.png b/MM_Math/data_original_21/7053789/math/51699549_870.png deleted file mode 100644 index beca62bf8c588e04939dee59e4a4b7ac75bfafa9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51699549_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f25f4e0384935069ec15d29848470dc1dd7a64ec2dedd52a913b1e32640b7f5 -size 3138 diff --git a/MM_Math/data_original_21/7053789/math/51699602_463.png b/MM_Math/data_original_21/7053789/math/51699602_463.png deleted file mode 100644 index 55c7bab3bb2215b775fc7b950534aa1355e28d60..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51699602_463.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:343d2ac472b47f4f3ffcfcb8c7893433ed7ebd0fa92010f0e05c15d697fb742c -size 3175 diff --git a/MM_Math/data_original_21/7053789/math/51699660_443.png b/MM_Math/data_original_21/7053789/math/51699660_443.png deleted file mode 100644 index c07033042cd6aa4d766b6d5d86bc45e7521ed8c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51699660_443.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b770992814ee7af189c870f8a87e2977d61de8052c1e409e699d94be794a2c63 -size 19887 diff --git a/MM_Math/data_original_21/7053789/math/51699679_896.png b/MM_Math/data_original_21/7053789/math/51699679_896.png deleted file mode 100644 index 4fdfb42c824abbf6484ee83fa971fd642bfd4ff6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51699679_896.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66ce0eb0260b72299e28385c74b2597e560eaca223cc287d162df9720c240e66 -size 3712 diff --git a/MM_Math/data_original_21/7053789/math/51983386_908.png b/MM_Math/data_original_21/7053789/math/51983386_908.png deleted file mode 100644 index e1657edd12ef440cfedaff567d6e21d41f39e309..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51983386_908.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ad0f26c0ddc1ed47a5a92107f854eaf2db9e0db75e4c2d89e632cd1015a0b45 -size 6318 diff --git a/MM_Math/data_original_21/7053789/math/51983394_174.png b/MM_Math/data_original_21/7053789/math/51983394_174.png deleted file mode 100644 index d9322684b88f27705c0da4353d93e0d9f7325ca9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51983394_174.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed35fc283599f2ac44e0f83e8943f459a4f7340a108407ff607a5a6d46a0e61e -size 5198 diff --git a/MM_Math/data_original_21/7053789/math/51983442_910.png b/MM_Math/data_original_21/7053789/math/51983442_910.png deleted file mode 100644 index b29e5ec81840bcb3aff00302addaaf64ec3742af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51983442_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d6cc3ffdcdd5736c464493c30006b75261f2cfaf93f52b0fc7bd411d97e7f4b1 -size 3989 diff --git a/MM_Math/data_original_21/7053789/math/51983467_160.png b/MM_Math/data_original_21/7053789/math/51983467_160.png deleted file mode 100644 index ff1704cb607603388f7542ef2192801eb4275d05..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51983467_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b4d48c5137f650fb22577f7016dac8d767ee3f63ed45bb001e3230d6f82052d -size 4808 diff --git a/MM_Math/data_original_21/7053789/math/51983511_474.png b/MM_Math/data_original_21/7053789/math/51983511_474.png deleted file mode 100644 index ea2a569449a04dbff0bfda0a0b7b98e5607b05a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/51983511_474.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d04cf434d73f2491b8637fff1c8e856aa9862811f9ddf433f9652abae353227 -size 1530 diff --git a/MM_Math/data_original_21/7053789/math/52019276_672.png b/MM_Math/data_original_21/7053789/math/52019276_672.png deleted file mode 100644 index c87ed3951f1eeb8a57135a909239931b25b1a079..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52019276_672.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38b72174bd13dd1613ed17e8545c47c1daa670c1fb6ccf2a7bd8d676a61c29e0 -size 6748 diff --git a/MM_Math/data_original_21/7053789/math/52019291_280.png b/MM_Math/data_original_21/7053789/math/52019291_280.png deleted file mode 100644 index ad86fde2a9e0a24e4300866f9af47f8e98fbfb55..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52019291_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:479b16981e9456ca0383e2ed0c690d1e9690565e0ed4de491c8379ce7e1e6ebc -size 2735 diff --git a/MM_Math/data_original_21/7053789/math/52019348_667.png b/MM_Math/data_original_21/7053789/math/52019348_667.png deleted file mode 100644 index faf2fbd4b8c3210370c5f9ee8973ee7975675bd8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52019348_667.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce22564fc617a73c3e216bf94eef1c00c7aaddd72b6ab3efcd1156792e255833 -size 4451 diff --git a/MM_Math/data_original_21/7053789/math/52019425_684.png b/MM_Math/data_original_21/7053789/math/52019425_684.png deleted file mode 100644 index ca1663e6bdf4b463f0baf5a16333c1b888be03d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52019425_684.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a234795e35e11092a4c17fc87cf528a11d0076a75e21a275fcbce84998d3bfe2 -size 4972 diff --git a/MM_Math/data_original_21/7053789/math/52019464_690.png b/MM_Math/data_original_21/7053789/math/52019464_690.png deleted file mode 100644 index 4d74346ad1b65fbbdc47efbe241328de22c4461c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52019464_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd3463335429e50153a0328d1177446eb28f60b0678ffb6298ecb20b1a13e539 -size 7478 diff --git a/MM_Math/data_original_21/7053789/math/52019512_274.png b/MM_Math/data_original_21/7053789/math/52019512_274.png deleted file mode 100644 index 848d8a5d07e6a6f9680072dbc58915891fda6fde..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52019512_274.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3c37239a4d3a7ceb97befd643fc355beefc5f8ab8a61aaadb8c70163c71f7ff -size 5206 diff --git a/MM_Math/data_original_21/7053789/math/52019535_651.png b/MM_Math/data_original_21/7053789/math/52019535_651.png deleted file mode 100644 index 791bff6a79b7c3c914921d483791646ae002f192..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52019535_651.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33fea5f30b2997a5adcf98d381f58d53866cca352665bcd999863f8e6f24147f -size 5022 diff --git a/MM_Math/data_original_21/7053789/math/52342160_344.png b/MM_Math/data_original_21/7053789/math/52342160_344.png deleted file mode 100644 index 6b7aa7e5c4d4e9fa729affc559ec12bf5b7729f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52342160_344.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:752a426a6cef99ee4460f13476cdf0b68db5fe54054169529f3837a8b45c0a7f -size 3623 diff --git a/MM_Math/data_original_21/7053789/math/52342217_742.png b/MM_Math/data_original_21/7053789/math/52342217_742.png deleted file mode 100644 index 0bff988143b1696d74835f11415463849802de8a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52342217_742.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b38e0807eab74cbe07e27d81025d466b75e275e124e6aff8f1a650cda513518 -size 4613 diff --git a/MM_Math/data_original_21/7053789/math/52342410_94.png b/MM_Math/data_original_21/7053789/math/52342410_94.png deleted file mode 100644 index 9e25ba5fa8c23919e73d7b4b615bb5966a36a868..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52342410_94.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:941be589ed535fe89cc93e059da82a213da12065fa8ebb4c42e44a820cb629f9 -size 11998 diff --git a/MM_Math/data_original_21/7053789/math/52342520_330.png b/MM_Math/data_original_21/7053789/math/52342520_330.png deleted file mode 100644 index 33289d2c391410e8f8ab5c3b94fb06a032536bf9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52342520_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:322b68d08f4cbe1bb8e926265b812c11a01c6821c1ccf4e4a03ffd6cf0e6e0cd -size 5280 diff --git a/MM_Math/data_original_21/7053789/math/52342563_320.png b/MM_Math/data_original_21/7053789/math/52342563_320.png deleted file mode 100644 index 0b9a1e51fd0bdbf64e3a2ce317f9c3f28a5b9624..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52342563_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c51748c26696e4ceaaf3584017ac3b8b188416dcdddaee21428a24147d3a4bd8 -size 1937 diff --git a/MM_Math/data_original_21/7053789/math/52342628_734.png b/MM_Math/data_original_21/7053789/math/52342628_734.png deleted file mode 100644 index 1d63060875051002a9638d048e8d5c1591e3f1c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52342628_734.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90c957b953d07adb86b1a20fc9d681793b50e347811f044302de6d6639293e1c -size 9553 diff --git a/MM_Math/data_original_21/7053789/math/52342684_312.png b/MM_Math/data_original_21/7053789/math/52342684_312.png deleted file mode 100644 index 53c871d8529a7a48b56bcfc378a2e2f79c20a517..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52342684_312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:647ccacf9d0c66e2c9f8d1fa6c352eee8d844b9cdc9f2a572f494eb8bb8043f1 -size 3517 diff --git a/MM_Math/data_original_21/7053789/math/52342732_720.png b/MM_Math/data_original_21/7053789/math/52342732_720.png deleted file mode 100644 index 15742e0c95a3b2301b227d0355f5fa0b64b6ad0d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52342732_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b97fde9b88f346f0392a5143c139776f7dc876542d60f0f6a8425490ada951f -size 2746 diff --git a/MM_Math/data_original_21/7053789/math/52342889_300.png b/MM_Math/data_original_21/7053789/math/52342889_300.png deleted file mode 100644 index dcb0e9a1af46499f5305faf0937252bce996e150..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52342889_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:170d61e9eeae5b9b4ff9749d7263d261fc4d9d611465d12ec4c89a60bc174fef -size 2715 diff --git a/MM_Math/data_original_21/7053789/math/52342947_715.png b/MM_Math/data_original_21/7053789/math/52342947_715.png deleted file mode 100644 index 21d7fbb361e861806db2f1b30c46c550ebce634c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52342947_715.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6359144d2f3067e8460a8bb1ca09ca7997426efd00c96b3a2f178b07b0d47a6 -size 7275 diff --git a/MM_Math/data_original_21/7053789/math/52386400_60.png b/MM_Math/data_original_21/7053789/math/52386400_60.png deleted file mode 100644 index 3cd4232426ffa54793736846ac7207ad73d2ec08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52386400_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44928945da2e61a7aea7853da721db5f82036203558a4daf8d9c4a809435af04 -size 4047 diff --git a/MM_Math/data_original_21/7053789/math/52386401_70.png b/MM_Math/data_original_21/7053789/math/52386401_70.png deleted file mode 100644 index b79759cfdd5d2928e0466fdfd619246fdd7959cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/math/52386401_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f3428842131baf24290570d7a616b67b763d0088af70e12417aa2cb5c830a00 -size 31362 diff --git a/MM_Math/data_original_21/7053789/solution_images/50431224_480.png b/MM_Math/data_original_21/7053789/solution_images/50431224_480.png deleted file mode 100644 index 86fc7846ef6769bc2075e0400f23828cc54fbc6d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/50431224_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3a21f36bc2f16c8eeb7e775cfbc5cb34d1096dfa0c5ae87f7e7bc0809774760 -size 17364 diff --git a/MM_Math/data_original_21/7053789/solution_images/50481996_35.png b/MM_Math/data_original_21/7053789/solution_images/50481996_35.png deleted file mode 100644 index 5fd5c22af80ec086fca4bdaa50bc794c04feb8ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/50481996_35.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1971ce95712ef738442a374f74c01ae15faf0ecb44cc92572362e864f404712 -size 5123 diff --git a/MM_Math/data_original_21/7053789/solution_images/50496997_014.png b/MM_Math/data_original_21/7053789/solution_images/50496997_014.png deleted file mode 100644 index 4d468216ed3f7b89866263b6e0c5cf4c993de0a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/50496997_014.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9669b8630eb69dd449535ffe33e22e0cfd7fe6ef6b93793b8bfa80ca7f1efce -size 4930 diff --git a/MM_Math/data_original_21/7053789/solution_images/51661989_502.png b/MM_Math/data_original_21/7053789/solution_images/51661989_502.png deleted file mode 100644 index 21ab178042e2e36fb4067dc7dc98da8a780ddbf2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/51661989_502.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ae0f4c283add3cb8c6aaef466b77c415a8fdac80992dc0317a846eb13a466fc -size 4045 diff --git a/MM_Math/data_original_21/7053789/solution_images/51662303_180.png b/MM_Math/data_original_21/7053789/solution_images/51662303_180.png deleted file mode 100644 index dc94eed03db002ef6b22119ee0be02c8cb1b8f16..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/51662303_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c91ec904bf3343121147f1b0a0cae3678df28bafd71dd553b0938f7733e3dc00 -size 2358 diff --git a/MM_Math/data_original_21/7053789/solution_images/51662414_9912.png b/MM_Math/data_original_21/7053789/solution_images/51662414_9912.png deleted file mode 100644 index 4e440db680e949937ca39772453fcdf0ec23857b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/51662414_9912.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c74f2e6b95a5dd99d44039aa406fe2b6c4522939e79b0a6fd9c625a7ecd7f53d -size 7605 diff --git a/MM_Math/data_original_21/7053789/solution_images/51662552_190.png b/MM_Math/data_original_21/7053789/solution_images/51662552_190.png deleted file mode 100644 index 33f5ae3a56ffabf6f7b58517363c8b8466587ac5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/51662552_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1502cd599dbf0803d89c00d454e62e2919aec8ea8e1339d8da62b5239217ab8c -size 4639 diff --git a/MM_Math/data_original_21/7053789/solution_images/51662879_530.png b/MM_Math/data_original_21/7053789/solution_images/51662879_530.png deleted file mode 100644 index 84e057aeb28764aeb48d19afd5d2c57c99654c06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/51662879_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a0988483df28c1fe1fa5ad7a1a54221477221240bfb46d7f5c9b07b5c7dbdbf -size 5326 diff --git a/MM_Math/data_original_21/7053789/solution_images/51663250_510.png b/MM_Math/data_original_21/7053789/solution_images/51663250_510.png deleted file mode 100644 index 4b8f887ff05eb44e0a65420031a4d15e5ee1d172..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/51663250_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a5075f3d8086fe754903bd803501a4e0092f2bd1d9c5ed032905852f544b54b -size 3808 diff --git a/MM_Math/data_original_21/7053789/solution_images/51983511_475.png b/MM_Math/data_original_21/7053789/solution_images/51983511_475.png deleted file mode 100644 index 7da116b78e5797bf0bfb5a03a36e358dffcee252..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/51983511_475.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db9bd6bafc300a807ab3251570226133ac01c8176c4d41ab591f4f6b313c66ef -size 9585 diff --git a/MM_Math/data_original_21/7053789/solution_images/52019276_670.png b/MM_Math/data_original_21/7053789/solution_images/52019276_670.png deleted file mode 100644 index 0f9d6a876e203bf8695361fdc082c2c930d2443c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/52019276_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a7c44deffefd6fefffbd54fb35fc4340e4ab7989bccaeb720570e8cc3d07d8ee -size 5105 diff --git a/MM_Math/data_original_21/7053789/solution_images/52019276_6714.png b/MM_Math/data_original_21/7053789/solution_images/52019276_6714.png deleted file mode 100644 index 6974667b8506823b69de4a7840cdb9e776f63421..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/52019276_6714.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d90652f99f89b6d8bbdc83b8c700566ec97c4e3da67e98c0da914ed3bef236fd -size 6431 diff --git a/MM_Math/data_original_21/7053789/solution_images/52019276_6723.png b/MM_Math/data_original_21/7053789/solution_images/52019276_6723.png deleted file mode 100644 index 690a77c8a12e42e63c885a41c9b0e5b176fe73d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/52019276_6723.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:729dd80cad90500755456ed7ff11640fcaeca3d94516fa327479180889c17f56 -size 6575 diff --git a/MM_Math/data_original_21/7053789/solution_images/52019276_6728.png b/MM_Math/data_original_21/7053789/solution_images/52019276_6728.png deleted file mode 100644 index 2e227048184195a0af51e47472ad3b7e2de75a76..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/52019276_6728.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fdf08331218a388b0466124d0a17f7b791aa21c182b18bc4d1df42eb26f61e59 -size 5434 diff --git a/MM_Math/data_original_21/7053789/solution_images/52019535_655.png b/MM_Math/data_original_21/7053789/solution_images/52019535_655.png deleted file mode 100644 index 95351c5d1825a80e3402e3392698f7262a182681..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/52019535_655.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ca07db6ebadf6bc2a3a92d7136a3da9e97b80938f2633c950eae6800f9c9b6c -size 6958 diff --git a/MM_Math/data_original_21/7053789/solution_images/52019535_656.png b/MM_Math/data_original_21/7053789/solution_images/52019535_656.png deleted file mode 100644 index bef93671526c547350a0ed97802513c504c51e31..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/52019535_656.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7dc74410279dd2bb61a11eb2467b17890c18826f90b342f3d1a82c5bae1b5d34 -size 10498 diff --git a/MM_Math/data_original_21/7053789/solution_images/52019535_658.png b/MM_Math/data_original_21/7053789/solution_images/52019535_658.png deleted file mode 100644 index 7f75bee4f045e584799294dc709a89697b98579e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/52019535_658.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e54006b2f8d62a7f63a42bdb4f0ded47d27e8b0401b367c73028cecb7c0a8604 -size 6744 diff --git a/MM_Math/data_original_21/7053789/solution_images/52342947_7112.png b/MM_Math/data_original_21/7053789/solution_images/52342947_7112.png deleted file mode 100644 index f5a3b8b5fc4f58f73ad3bac8258ec44f7c7c845a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/52342947_7112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ac00a343152f408d78b720d8bf1c49fc5b73ad938310318a894bfc4bfbbba1e1 -size 6129 diff --git a/MM_Math/data_original_21/7053789/solution_images/52342947_713.png b/MM_Math/data_original_21/7053789/solution_images/52342947_713.png deleted file mode 100644 index 9e553f2dd3a756d02677d2b6bc87283b9a50480c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/52342947_713.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:400b6d0a5fe9357fe6204231452ba62c42a28a3aeeaadbc17cf28cd79637c5a8 -size 4408 diff --git a/MM_Math/data_original_21/7053789/solution_images/52386401_74.png b/MM_Math/data_original_21/7053789/solution_images/52386401_74.png deleted file mode 100644 index 241d6ae8bba1f1da769fdda7d8a80e596e9bfde9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7053789/solution_images/52386401_74.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9fcabb44c8ad0ed09886554e34c81b785779d1fafd3be0cda58859c4db6f123c -size 34849 diff --git a/MM_Math/data_original_21/7054110/math/50446738_452.png b/MM_Math/data_original_21/7054110/math/50446738_452.png deleted file mode 100644 index 628ebee717a9f507a919312213130b83e7ee8d57..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50446738_452.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d815c36f8402662b4e78fdc838c84d8b937649aadd4729d2840ea6c9869ac248 -size 2276 diff --git a/MM_Math/data_original_21/7054110/math/50446779_442.png b/MM_Math/data_original_21/7054110/math/50446779_442.png deleted file mode 100644 index 64bb554563c5078ce3e8fd297f6f2c35e9b8a736..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50446779_442.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1b10e89210417ff410f65f3192342eee3f66ecf18f015817dc5f9c258b4ea4a -size 2816 diff --git a/MM_Math/data_original_21/7054110/math/50446789_992.png b/MM_Math/data_original_21/7054110/math/50446789_992.png deleted file mode 100644 index 1f97b11d0f4137679f0539edcc89e580b05103d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50446789_992.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c263991c17522ceca11f7cd32a29225baf70831c95b2d4046827f0b78b7815c -size 3178 diff --git a/MM_Math/data_original_21/7054110/math/50446864_988.png b/MM_Math/data_original_21/7054110/math/50446864_988.png deleted file mode 100644 index 12d0f695cac048743b44bd0fe6f8af4211225758..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50446864_988.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6293cead1dfa36efc7ef61aba069fa06225260add32fdbc9449fc3fa2b3116ac -size 2722 diff --git a/MM_Math/data_original_21/7054110/math/50446991_972.png b/MM_Math/data_original_21/7054110/math/50446991_972.png deleted file mode 100644 index d80e7b906f1c7faca890bc8f811df6bc369cd2dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50446991_972.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1980f290d66fedee04a9fc2373d24c2fb3209c79ad8afc14bdb93d9b38f113b -size 2534 diff --git a/MM_Math/data_original_21/7054110/math/50447025_430.png b/MM_Math/data_original_21/7054110/math/50447025_430.png deleted file mode 100644 index 12eb043e5dc22494ca1c6e2cf3ae8c84051b7072..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50447025_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:324375d41bbb95d4d31d691e75423fdb3dfe5c7b8583a28acb6a585323609dc9 -size 4025 diff --git a/MM_Math/data_original_21/7054110/math/50447041_960.png b/MM_Math/data_original_21/7054110/math/50447041_960.png deleted file mode 100644 index fb9c79eb4c2a6366c09e8e7edc5a4056e68eb7d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50447041_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d284044eac0bf47bdc87a2e816f16ad1272efa2c3f18836460d82ad38707b9f6 -size 4720 diff --git a/MM_Math/data_original_21/7054110/math/50447097_425.png b/MM_Math/data_original_21/7054110/math/50447097_425.png deleted file mode 100644 index 50ba9b9e4f969e7185144b201130a5478804ca8a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50447097_425.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:47770e49e84fa74bed89a0c830b1b3eb01e680d4268477ee002bc5bcea2f76af -size 3065 diff --git a/MM_Math/data_original_21/7054110/math/50468935_410.png b/MM_Math/data_original_21/7054110/math/50468935_410.png deleted file mode 100644 index ead6203af99e2612512a869c200b29f9ea13f9b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50468935_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:237964071a91079b2875e64e62aaed11377d1001dd88b37f789e1ae11677e7cc -size 2103 diff --git a/MM_Math/data_original_21/7054110/math/50469234_400.png b/MM_Math/data_original_21/7054110/math/50469234_400.png deleted file mode 100644 index 0b45f5eb954d9fb3bdb0a1e588da7aa2d3ab470b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50469234_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e8605e8522dd0fe3aaa7b63f86912b7d45bbee2e4a46073057b5e3a36de7422 -size 5453 diff --git a/MM_Math/data_original_21/7054110/math/50469243_476.png b/MM_Math/data_original_21/7054110/math/50469243_476.png deleted file mode 100644 index 6bc09ef009ca2a52a1de59ad7d6f11c45a26b8f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50469243_476.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91f30f6875b774fae5c96a6ba2f178f3173af376df9d5fb16502c23923aa363f -size 3891 diff --git a/MM_Math/data_original_21/7054110/math/50493304_394.png b/MM_Math/data_original_21/7054110/math/50493304_394.png deleted file mode 100644 index 34256beeeee0662bddca1f79ececc7a4c17071f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50493304_394.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:36756531fb0b6dc13ebf069c71575ccfa3fe32792b2f42e490af5173d5cba078 -size 11491 diff --git a/MM_Math/data_original_21/7054110/math/50493321_950.png b/MM_Math/data_original_21/7054110/math/50493321_950.png deleted file mode 100644 index ce51658b9c4cf342c2b2898387c996a27b2051d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50493321_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:028e576f1f68d2d1f6cd73204eef5a0a2e213405ea8442bba972fb2dae4fb20a -size 3861 diff --git a/MM_Math/data_original_21/7054110/math/50493369_185.png b/MM_Math/data_original_21/7054110/math/50493369_185.png deleted file mode 100644 index 6986744f682b9070d398e3aee34543bbdfcd1371..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50493369_185.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8b3530b2fa768194bf13e10fbc1332082838e81d757fe488286b8b6f7e79e4b -size 3886 diff --git a/MM_Math/data_original_21/7054110/math/50519342_154.png b/MM_Math/data_original_21/7054110/math/50519342_154.png deleted file mode 100644 index 2112a8d5f6f44daf1ca326e7e2efe468b0c81803..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50519342_154.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:574df7e2bdeebcbeddabc429d0e21277412f6c93c09f7db6e26bcbc4b1a39ef2 -size 8349 diff --git a/MM_Math/data_original_21/7054110/math/50519365_875.png b/MM_Math/data_original_21/7054110/math/50519365_875.png deleted file mode 100644 index 759ed185456e1a289ff417924129c49e580bca26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50519365_875.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25f2f66187cd27d691af97f92b7d3370263a81badc11299e6880deac069ae092 -size 5605 diff --git a/MM_Math/data_original_21/7054110/math/50519550_8614.png b/MM_Math/data_original_21/7054110/math/50519550_8614.png deleted file mode 100644 index a2a2681fc4ad0d4ee5b7ee0632be306680f48a2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50519550_8614.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f87c66eb7d5b7e1a73d5b8910bc91eb75b38a9f3ccbaed17d4d5c16f22ecb291 -size 2719 diff --git a/MM_Math/data_original_21/7054110/math/50520008_853.png b/MM_Math/data_original_21/7054110/math/50520008_853.png deleted file mode 100644 index 711d5ccecee3c1865ecb53eeb10ccbca0338da44..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50520008_853.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79b5838f7409950919c0ce253be03a62905de9a9c084cdc624819db8ae6ca803 -size 7488 diff --git a/MM_Math/data_original_21/7054110/math/50520352_848.png b/MM_Math/data_original_21/7054110/math/50520352_848.png deleted file mode 100644 index 0d0c40fb23b20579dfc560d62548ba96fa54fbbf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50520352_848.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51a1deba643b47ab09d5679572cff82f5979317f01576aa93643ce0830df1126 -size 8647 diff --git a/MM_Math/data_original_21/7054110/math/50520424_369.png b/MM_Math/data_original_21/7054110/math/50520424_369.png deleted file mode 100644 index 20ba096cdd643d06a75466f26166b39b2ca5e862..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50520424_369.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e18474e77e5d8f2a6336f7d385caf6cfc5be1fa1dd5a4bb1a656071ae327953a -size 6143 diff --git a/MM_Math/data_original_21/7054110/math/50520447_143.png b/MM_Math/data_original_21/7054110/math/50520447_143.png deleted file mode 100644 index 301ba01653aa609e47e505032560baf770be3fa8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50520447_143.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de64f808654706320b184fcc56761e94cd4c16a51774158dc51406427b6d2334 -size 4020 diff --git a/MM_Math/data_original_21/7054110/math/50545552_325.png b/MM_Math/data_original_21/7054110/math/50545552_325.png deleted file mode 100644 index 91d1a4dba09d43ca27e2fa05470e8ff6aef2de80..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50545552_325.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72bab116b405a99f2e0589c3b8b1e2a5702b2e68bd1eaf3e6a64629f63e04041 -size 3454 diff --git a/MM_Math/data_original_21/7054110/math/50545589_913.png b/MM_Math/data_original_21/7054110/math/50545589_913.png deleted file mode 100644 index 39fde00773499428f50514b245f03efd4437e59e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50545589_913.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42205827795729e21de6ff61235c6a20da638b0fc926f05c52398bd180c67455 -size 2801 diff --git a/MM_Math/data_original_21/7054110/math/50545595_3116.png b/MM_Math/data_original_21/7054110/math/50545595_3116.png deleted file mode 100644 index 8652799259cc1df86c64d9a0f0bb34f1fedea175..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50545595_3116.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b170ac19ecb11358b4b482647660a25206535bb919a69937d9f90d4c527e85f -size 4073 diff --git a/MM_Math/data_original_21/7054110/math/50545714_300.png b/MM_Math/data_original_21/7054110/math/50545714_300.png deleted file mode 100644 index a136e46cdf345e28d47ca0b322a5b2975e4975e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50545714_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:035bf765f673f1f5af204c6d8a96ae9ce538b21971f9dcf57a5ce87b67eb6c90 -size 6352 diff --git a/MM_Math/data_original_21/7054110/math/50545751_85.png b/MM_Math/data_original_21/7054110/math/50545751_85.png deleted file mode 100644 index 3872410d396cc8cbefe7bb2c77fd401964c0ca83..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50545751_85.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e5f1d6955200eb8d766be2888184c8fb41ce93cdedf5da7ab44160148d4c5853 -size 5486 diff --git a/MM_Math/data_original_21/7054110/math/50545780_6614.png b/MM_Math/data_original_21/7054110/math/50545780_6614.png deleted file mode 100644 index ec1878ce131ed81675e2c0f08c0e729aafa07339..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50545780_6614.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2e87eae9d7bdd85acc518f34c210c1c8e4c006c314ec148f6abf06ba92684b9 -size 9474 diff --git a/MM_Math/data_original_21/7054110/math/50553639_655.png b/MM_Math/data_original_21/7054110/math/50553639_655.png deleted file mode 100644 index a8ed21cef4bff89b374540fe93dff53354ef2a48..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50553639_655.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:afc73f28f336b161a1611cb0999f62bd84beaca87423d84ad9c87df86af9a412 -size 7901 diff --git a/MM_Math/data_original_21/7054110/math/50553714_649.png b/MM_Math/data_original_21/7054110/math/50553714_649.png deleted file mode 100644 index 9135b714560a9a29199dc2ad073c8a8926daf52a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50553714_649.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7535333f4faa96583dbf9d6316bd20e8298cc284c0c2e9bd32c4bdfdaa1b322 -size 19472 diff --git a/MM_Math/data_original_21/7054110/math/50553735_634.png b/MM_Math/data_original_21/7054110/math/50553735_634.png deleted file mode 100644 index 18b17e259696695e7ebcfa1adfe8f7161fec99e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50553735_634.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc73b868f3b5e7572c7fc3e5c58e37fd6f1797c1a3eea58efb290d993412297b -size 3601 diff --git a/MM_Math/data_original_21/7054110/math/50553838_296.png b/MM_Math/data_original_21/7054110/math/50553838_296.png deleted file mode 100644 index 59d8c8d9a14ebf213437dc4f9fceb3ceeb48eeb8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50553838_296.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ebd4f7159c85fa075dc8608b413b8b489bb6e971541f051c56495bf7d94ec69 -size 4337 diff --git a/MM_Math/data_original_21/7054110/math/50553935_284.png b/MM_Math/data_original_21/7054110/math/50553935_284.png deleted file mode 100644 index aaa5fc01ef6097d99b9ec4664668da59fd337b06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50553935_284.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:beca79c132bbaae8bb740ac17bd968b183d48fb66af8230ca97b672a6aa3219c -size 3838 diff --git a/MM_Math/data_original_21/7054110/math/50554003_77.png b/MM_Math/data_original_21/7054110/math/50554003_77.png deleted file mode 100644 index 92751736fe81a5af143eb75655ee274e460a4673..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50554003_77.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:61947b9b2c6890a952da9de8daffe7c3a749391335842b6f6347891a3d778f2b -size 9913 diff --git a/MM_Math/data_original_21/7054110/math/50555108_625.png b/MM_Math/data_original_21/7054110/math/50555108_625.png deleted file mode 100644 index f6a592982efd73d7b35ef706b9b95c093a437940..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555108_625.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c16b880b3e990f582cccd552ed96d553afabad0ba2d8cf0fc9fa1923aea39b25 -size 10514 diff --git a/MM_Math/data_original_21/7054110/math/50555230_610.png b/MM_Math/data_original_21/7054110/math/50555230_610.png deleted file mode 100644 index 82269c40b2eaf235b21397f522835090914264fd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555230_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7529500b7fe345607586cbbf19d093302f89bd1ffdd5895f7800951f072a943 -size 5647 diff --git a/MM_Math/data_original_21/7054110/math/50555324_6011.png b/MM_Math/data_original_21/7054110/math/50555324_6011.png deleted file mode 100644 index d04c5104b815a65b7c135b00ecdf36476afec183..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555324_6011.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c52c177b04492beb9ee18491706c102a49940876ebac3e200f5af0ff13a3f13f -size 8250 diff --git a/MM_Math/data_original_21/7054110/math/50555372_270.png b/MM_Math/data_original_21/7054110/math/50555372_270.png deleted file mode 100644 index d64e0dd779cc4d7759856038094e9d326c5766cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555372_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bcf066f02a17f08a18632af885a5b18d7b35684fa1b7d64c6dbf21c7670c4da0 -size 6557 diff --git a/MM_Math/data_original_21/7054110/math/50555422_580.png b/MM_Math/data_original_21/7054110/math/50555422_580.png deleted file mode 100644 index 38dc32b5fd722dab12145c968e0bd6cd146083e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555422_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a6a89bad3268d7739895e8d6869b00d868a4201afc40a20dfa584f1ae901a34 -size 3740 diff --git a/MM_Math/data_original_21/7054110/math/50555435_595.png b/MM_Math/data_original_21/7054110/math/50555435_595.png deleted file mode 100644 index b3aa98e755edaa4376335d5b865d8e70789d9e1c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555435_595.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:786d6d7dacb84501d3ade7d9104d14a7480e46b534b625bf62a17c0029250195 -size 3516 diff --git a/MM_Math/data_original_21/7054110/math/50555566_571.png b/MM_Math/data_original_21/7054110/math/50555566_571.png deleted file mode 100644 index 09722455d9ef6015f943dea642b46d854fa84ad3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555566_571.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:962c588eb89695b6636fe0c619b640b463e7a9efec41eed5b889adce791b0d06 -size 6552 diff --git a/MM_Math/data_original_21/7054110/math/50555655_264.png b/MM_Math/data_original_21/7054110/math/50555655_264.png deleted file mode 100644 index a854f9785ae062848a652e6c6bb22493d0a3db2d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555655_264.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b76ed9805bce7ff64eff861b810952b9f1d189d6c4dc291e587e85bb1e2513f0 -size 8550 diff --git a/MM_Math/data_original_21/7054110/math/50555762_565.png b/MM_Math/data_original_21/7054110/math/50555762_565.png deleted file mode 100644 index 83208f2fd3827da5400ca0f01a87b8969779f1ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555762_565.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ac633cbc3e2d3311304ea37a235b9a6f64c04ab55e2ce47cc30a31fcc088752 -size 7696 diff --git a/MM_Math/data_original_21/7054110/math/50555839_64.png b/MM_Math/data_original_21/7054110/math/50555839_64.png deleted file mode 100644 index e6a30f35279f252782f6a927f7de0f6e60ec282d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555839_64.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5e202f7fe83fbb40be851e9ac220861eaa153dab6ac1a3e8abe0357fc6bd3fe -size 4329 diff --git a/MM_Math/data_original_21/7054110/math/50555959_250.png b/MM_Math/data_original_21/7054110/math/50555959_250.png deleted file mode 100644 index 495d77d20675f3a349f946d66de6e3664c866057..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50555959_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9db2acff43b068d1ecf98e3934189e66bbe4489c17c7b8d88923ddb1a59dbfba -size 4276 diff --git a/MM_Math/data_original_21/7054110/math/50556119_55.png b/MM_Math/data_original_21/7054110/math/50556119_55.png deleted file mode 100644 index 39f319dde52a2be6e77750f2e59868a88482169b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50556119_55.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e1b27a26bb09f6a66dea5141c6747250188f196ba52e5a0c98fe953a5c7d196 -size 3754 diff --git a/MM_Math/data_original_21/7054110/math/50560169_244.png b/MM_Math/data_original_21/7054110/math/50560169_244.png deleted file mode 100644 index 653cffa66778ccea0df926f489d23e4db9ad8b02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560169_244.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b798eb9b8b17d47b5fc78c861c0269a0c29280e9ce680d2c7175066ebf95e294 -size 4361 diff --git a/MM_Math/data_original_21/7054110/math/50560202_45.png b/MM_Math/data_original_21/7054110/math/50560202_45.png deleted file mode 100644 index fef8020c2d531a33ba3db3b0b8f2e16e35a16315..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560202_45.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5c4ef1a1d1b7bdf551ba543b52a1268dd4a77ce3503e8095c0cc1ea837664ff -size 13718 diff --git a/MM_Math/data_original_21/7054110/math/50560215_557.png b/MM_Math/data_original_21/7054110/math/50560215_557.png deleted file mode 100644 index a96d6e3d1aeca773c88a3dc01e664a0c04a19294..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560215_557.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e11f942b8b644c012f1530ef41295075496866df895cabd802ee062bc7d3d86 -size 3500 diff --git a/MM_Math/data_original_21/7054110/math/50560242_231.png b/MM_Math/data_original_21/7054110/math/50560242_231.png deleted file mode 100644 index 5ce388300ba04d2533836e80b71377e5daa59aff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560242_231.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9232b14d849de3031cac83206469a9f2d83fb7980449ebce6f39a353b7f1c95 -size 10252 diff --git a/MM_Math/data_original_21/7054110/math/50560319_30.png b/MM_Math/data_original_21/7054110/math/50560319_30.png deleted file mode 100644 index 77de28ace73b3f73c0cb58fdd70fd0984adc7a1c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560319_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fde97df1aa752066e1a11027f16c075ba2a3aa8b9e8d62194e87f9ca6e3ea988 -size 3390 diff --git a/MM_Math/data_original_21/7054110/math/50560362_224.png b/MM_Math/data_original_21/7054110/math/50560362_224.png deleted file mode 100644 index 69fad821226f9f17c82426c913f4f6c91d73f28e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560362_224.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80be9ced42cac89dd7a13f554e31e1ea54a4cdf3302cdd026ab53dad2e364309 -size 2335 diff --git a/MM_Math/data_original_21/7054110/math/50560383_548.png b/MM_Math/data_original_21/7054110/math/50560383_548.png deleted file mode 100644 index a941324b8afa6f24cafc751dc9ca804396d3ce5b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560383_548.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f39515b2cad97ffd1267adba0c651fbfe8c56494d1800a73fb76cc30b2d50be5 -size 21547 diff --git a/MM_Math/data_original_21/7054110/math/50560440_217.png b/MM_Math/data_original_21/7054110/math/50560440_217.png deleted file mode 100644 index bc36bc83600eb7e954dda04a94f376f814a96e94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560440_217.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2a0082c44f36e8f39b9f082b62a27e19652dfd34b305fd18eb164d46fd21db9 -size 9848 diff --git a/MM_Math/data_original_21/7054110/math/50560455_536.png b/MM_Math/data_original_21/7054110/math/50560455_536.png deleted file mode 100644 index ab9f759fc2fe20c26f5ce04002a4c091dc8f8c25..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560455_536.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df41a48562df1a1713c113274e78df047881fa8e4a4948ed9af550361434858f -size 6604 diff --git a/MM_Math/data_original_21/7054110/math/50560467_5210.png b/MM_Math/data_original_21/7054110/math/50560467_5210.png deleted file mode 100644 index 18744d5682384db25e23b11c6ce6c6db2b471c8e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560467_5210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64459759c8332ccb5ddfa2981104ba23ec600274fff8cc4929f3b2247728fa56 -size 2769 diff --git a/MM_Math/data_original_21/7054110/math/50560467_528.png b/MM_Math/data_original_21/7054110/math/50560467_528.png deleted file mode 100644 index 5f5dc764dcfcb52cef34a9ccfc25e2eedf17d631..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560467_528.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3f68be8906bcf9a227d14a4495767b8dcf5f566d29513db9fd1434fc51ef994 -size 3585 diff --git a/MM_Math/data_original_21/7054110/math/50560467_529.png b/MM_Math/data_original_21/7054110/math/50560467_529.png deleted file mode 100644 index e0367b3ad4602e5144e20d520e21a441146c6ded..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560467_529.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30445a8bef8701209ad04838fc344bd7058e9b35f905dbb33e688fe90d9d8a94 -size 3924 diff --git a/MM_Math/data_original_21/7054110/math/50560884_194.png b/MM_Math/data_original_21/7054110/math/50560884_194.png deleted file mode 100644 index b2a192159830a0661e7c7404701e083cbfbb2108..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560884_194.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:825f232ad38073443fec1548dfb53a4c6127c362efbc13fb912e1c6e07db27cd -size 8480 diff --git a/MM_Math/data_original_21/7054110/math/50560886_202.png b/MM_Math/data_original_21/7054110/math/50560886_202.png deleted file mode 100644 index 6771e2e82c7baf4d018e1bdf283624f6be3dca6b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50560886_202.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b7a6e1569226e0c8fb2389c6652b5706bcdfa2142e0eb56df81727c1b536e0c -size 4079 diff --git a/MM_Math/data_original_21/7054110/math/50561111_512.png b/MM_Math/data_original_21/7054110/math/50561111_512.png deleted file mode 100644 index 9605dad299f06de79401c3444ca267667644e78e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50561111_512.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0756bcdb099ef4067e70f575ad2786fed422747f4a9a5e25865d3d30f5c3b8d -size 9022 diff --git a/MM_Math/data_original_21/7054110/math/50561168_24.png b/MM_Math/data_original_21/7054110/math/50561168_24.png deleted file mode 100644 index 06cc7eee946eda4d9219a5456a4c01928fcf11b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50561168_24.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31006b0038f52e05e38bc9db06279a888e16bbe938c9532883a6fed90d01f0ce -size 2079 diff --git a/MM_Math/data_original_21/7054110/math/50561201_5012.png b/MM_Math/data_original_21/7054110/math/50561201_5012.png deleted file mode 100644 index 57f627efc0f8b4c72195cfc1f14c76c264ac8395..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50561201_5012.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07e5b244ebfdd5555b83aba0cd0b093fd785e45952804638854eabe131ffc90a -size 2901 diff --git a/MM_Math/data_original_21/7054110/math/50561230_490.png b/MM_Math/data_original_21/7054110/math/50561230_490.png deleted file mode 100644 index 10b2d24e98fd2dc6837699cfb9b3ecb07e3d46a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50561230_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0818cda2868b1d202d74f659c20a82f6a4ffa161da2c6d95533a15b8bfb9670d -size 7799 diff --git a/MM_Math/data_original_21/7054110/math/50561251_10.png b/MM_Math/data_original_21/7054110/math/50561251_10.png deleted file mode 100644 index 0df5b2d86478c24833ab015fe859ba62f30bae26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50561251_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3455d2ac57d9449f32b1231a312a9c1be325a49796055f24124c866ca25ec1e8 -size 7106 diff --git a/MM_Math/data_original_21/7054110/math/50561277_480.png b/MM_Math/data_original_21/7054110/math/50561277_480.png deleted file mode 100644 index bf2c6efe52327e953ff74abeabb81d2d8a6fd05f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50561277_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba18383a40f50d58a0cf5baa5eb51db55c98b4d0047314b2e30db9a512090553 -size 6904 diff --git a/MM_Math/data_original_21/7054110/math/50561376_00.png b/MM_Math/data_original_21/7054110/math/50561376_00.png deleted file mode 100644 index 2bb0af9e220a6171407e7a434d0805ffb636d407..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50561376_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11890734e802b0381a620133a1fab4d3e2d73e42c2345eba40c0823f75130dc4 -size 2835 diff --git a/MM_Math/data_original_21/7054110/math/50675755_831.png b/MM_Math/data_original_21/7054110/math/50675755_831.png deleted file mode 100644 index 43aa5f833952a57223ca551332437315e5b5fa40..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50675755_831.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e9b50fc181a4f2086e0edbfc5716d5f703da6460ea977c8288bd80ea70929b5 -size 4154 diff --git a/MM_Math/data_original_21/7054110/math/50675997_821.png b/MM_Math/data_original_21/7054110/math/50675997_821.png deleted file mode 100644 index 17f4c5d8d30fe3c73a17957147157e3b096cc664..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50675997_821.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8ddaa9115b1ac679faa3dddc1dddf07bf1db01d15de3138c09587f69cb059b7 -size 12058 diff --git a/MM_Math/data_original_21/7054110/math/50676552_130.png b/MM_Math/data_original_21/7054110/math/50676552_130.png deleted file mode 100644 index de9e2107ebc8729f1789bc0fb45e9932ceab5e08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50676552_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc598e3be5c73b689bcb74636dff8945805ff987515cb6fc70f275a9e60211b9 -size 8584 diff --git a/MM_Math/data_original_21/7054110/math/50676594_802.png b/MM_Math/data_original_21/7054110/math/50676594_802.png deleted file mode 100644 index 0fbf9b5ffdd49eca9e55994b3c6a9ac83d2de580..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50676594_802.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8bcb7204bbf649cd0c69676514e9a7f12a264560af70aad8a36889ff0e6217ac -size 4916 diff --git a/MM_Math/data_original_21/7054110/math/50676718_793.png b/MM_Math/data_original_21/7054110/math/50676718_793.png deleted file mode 100644 index 465360de1f428d225da1127db3b0147b1d7f1ad7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50676718_793.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2adc1578568d4889ca654bf6027ee0c277f186721c66048331eb5ec5679a449 -size 2194 diff --git a/MM_Math/data_original_21/7054110/math/50676993_460.png b/MM_Math/data_original_21/7054110/math/50676993_460.png deleted file mode 100644 index cef08bf5b5ef38729bf26abbd14d0b34e2881460..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50676993_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e811d235a84098e38728d8da717fd1ebbf73efe2c24b0f57c1dca41158ccf6c0 -size 5514 diff --git a/MM_Math/data_original_21/7054110/math/50677077_780.png b/MM_Math/data_original_21/7054110/math/50677077_780.png deleted file mode 100644 index 00ab988100b302632f1d397437102e73bc20a099..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677077_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9095546dce9832c6e8a477db17e3e2b9dffdf104459b94241ef66855f26902e7 -size 2787 diff --git a/MM_Math/data_original_21/7054110/math/50677214_123.png b/MM_Math/data_original_21/7054110/math/50677214_123.png deleted file mode 100644 index d23f9fd9e7a5944fe85bf2936c6783f963eaaba8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677214_123.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b637d0d81920f013fd8bf21723c49cfb7d0a8701212dd63d763108e75ead334 -size 4945 diff --git a/MM_Math/data_original_21/7054110/math/50677242_772.png b/MM_Math/data_original_21/7054110/math/50677242_772.png deleted file mode 100644 index 25d2785010e94072972ed5772b237736ba811a21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677242_772.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1fc71c6013bfe639a9b4a06e5f049c329f648e9d8c570edcc633524951a8a5d -size 5512 diff --git a/MM_Math/data_original_21/7054110/math/50677275_760.png b/MM_Math/data_original_21/7054110/math/50677275_760.png deleted file mode 100644 index f2abaa8ddc9e32a4de9ea61766287899893fdbc4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677275_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dfab4bd666757f2d1278a17759414051b898bf63583d257c2f979ad6cc5fd791 -size 5079 diff --git a/MM_Math/data_original_21/7054110/math/50677300_750.png b/MM_Math/data_original_21/7054110/math/50677300_750.png deleted file mode 100644 index 89dc68910a25e2e7e8dc9ff7c6e5759366d7e698..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677300_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3945c8658399a53d3e8638483555eea9394db45d0239544c07b22f4f390d5c93 -size 3142 diff --git a/MM_Math/data_original_21/7054110/math/50677341_745.png b/MM_Math/data_original_21/7054110/math/50677341_745.png deleted file mode 100644 index 9edf525b99d9f358db00799d5c86eba69a34f683..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677341_745.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a10b541ddaacad82a3e88b7353cbc34a9af637df1376d6bb208f8fb75f97b633 -size 8993 diff --git a/MM_Math/data_original_21/7054110/math/50677413_732.png b/MM_Math/data_original_21/7054110/math/50677413_732.png deleted file mode 100644 index 33c2fc4d735d69ac3be584caa914ef3dce4b4a91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677413_732.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d3a725e61532ec0755d4d417d6dadabb0c3bc360ac168d9dabcb39d88228840 -size 4118 diff --git a/MM_Math/data_original_21/7054110/math/50677475_7215.png b/MM_Math/data_original_21/7054110/math/50677475_7215.png deleted file mode 100644 index 5e91f74f6f9a13ba97056c5f45eab538889eeffb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677475_7215.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19c343c10a7559ad7369ec2f6c4a9afef402f1863a4431c9ae4cb83c38b083e7 -size 4026 diff --git a/MM_Math/data_original_21/7054110/math/50677495_110.png b/MM_Math/data_original_21/7054110/math/50677495_110.png deleted file mode 100644 index ec46d84720200adac89b7e5d2518f6c76bc7f1ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677495_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b9a3580b7d62d394129e55e26c3565eceb1ab28c4c8077cdf118c02af523be8 -size 2737 diff --git a/MM_Math/data_original_21/7054110/math/50677500_351.png b/MM_Math/data_original_21/7054110/math/50677500_351.png deleted file mode 100644 index 800a30434d1386cce3dbc8e96e41f4d7bf61ac5c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677500_351.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4db3bd4ea2e5b2e9aa51bcdb10cce67ae197ec3db0e754b043be9d13185104ee -size 2786 diff --git a/MM_Math/data_original_21/7054110/math/50677506_710.png b/MM_Math/data_original_21/7054110/math/50677506_710.png deleted file mode 100644 index e1c297418a7c1abbd440a073e5b73ffa941de165..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50677506_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d71054c58fbfb7e1aef21bef76bd430d79271539f494fce36fca244e2bf72ee4 -size 5133 diff --git a/MM_Math/data_original_21/7054110/math/50682377_700.png b/MM_Math/data_original_21/7054110/math/50682377_700.png deleted file mode 100644 index 2c49cc733503887369374d90552734c703b1d80e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50682377_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f6cd2c232c67606ac846439d01d096e646e1277e31b75462e4c4d2c2b5029fd3 -size 3855 diff --git a/MM_Math/data_original_21/7054110/math/50682487_691.png b/MM_Math/data_original_21/7054110/math/50682487_691.png deleted file mode 100644 index 8bb296e385df3f1d66d508023ff4968f5eb8229a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50682487_691.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2ba9c392391b40d51872a21ff549492cb510de5a907c64ed24b5cd2aab9c78d -size 2711 diff --git a/MM_Math/data_original_21/7054110/math/50682648_680.png b/MM_Math/data_original_21/7054110/math/50682648_680.png deleted file mode 100644 index 74a3fbc42170c490de53ab9d49986a89f4762f06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50682648_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce3a96a8ccd6683e89c63ac603bc493558d6cc4644b6008f1013881a2b7f8a6d -size 2934 diff --git a/MM_Math/data_original_21/7054110/math/50682791_340.png b/MM_Math/data_original_21/7054110/math/50682791_340.png deleted file mode 100644 index a20f8ba587c8813b6578700cf4102268cf37c55c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50682791_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:feeaa380447e803f0c0689eee3b28529f27ce0a342bb287bd3b8f76337b4a8ce -size 2322 diff --git a/MM_Math/data_original_21/7054110/math/50682792_330.png b/MM_Math/data_original_21/7054110/math/50682792_330.png deleted file mode 100644 index f128ddd3b618626b1645ffe59e6d0a08fafcfd0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50682792_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2cf942509403f5ff042e5db387d0df7b5c079fa13b5038b7daf02ce876e1c70e -size 1906 diff --git a/MM_Math/data_original_21/7054110/math/50682805_670.png b/MM_Math/data_original_21/7054110/math/50682805_670.png deleted file mode 100644 index 341dbc3e32046e4283d9d66960b8d263e664b5d9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/50682805_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d013f40a2c1212fd17a7af3a1e7a37008a32f447fa86a77f2d085f00a4056e4b -size 3112 diff --git a/MM_Math/data_original_21/7054110/math/52055750_160.png b/MM_Math/data_original_21/7054110/math/52055750_160.png deleted file mode 100644 index 2117e86f1aea7e20680982ad25731851b8073ac4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52055750_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc4e9b0506b93fca8db86e8d05e91c8ad87b91459dd8f7adee8cd6e6f1101c11 -size 3926 diff --git a/MM_Math/data_original_21/7054110/math/52055836_890.png b/MM_Math/data_original_21/7054110/math/52055836_890.png deleted file mode 100644 index a591741026be399da11ffd44a62a680484632f9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52055836_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b702d83ce1493c9b690634c629caed7e2955d9908bda0371dfea08018d982063 -size 4768 diff --git a/MM_Math/data_original_21/7054110/math/52055941_375.png b/MM_Math/data_original_21/7054110/math/52055941_375.png deleted file mode 100644 index 5bfa50b3b660a67c99b17456ae275f4eb9b8444e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52055941_375.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e30afb551d4d53f460c7bf746215254d83f6f816953dce6fd5e01de5639a066f -size 4077 diff --git a/MM_Math/data_original_21/7054110/math/52056013_943.png b/MM_Math/data_original_21/7054110/math/52056013_943.png deleted file mode 100644 index c35934d99238183b484c5d4c9962a3e4ae13fb64..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52056013_943.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e3b5955d8b724f442f49a3072ee7fa404cf4a3e6f59dfcce23b3715b0f0bbe0 -size 6000 diff --git a/MM_Math/data_original_21/7054110/math/52056028_928.png b/MM_Math/data_original_21/7054110/math/52056028_928.png deleted file mode 100644 index 8bf31a46efbfb70adcdeaa57898155dee0d4e2f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52056028_928.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43a4559f49d6bc52bdf92dd5215837e616e772a5f460d8bdfcf94e1bd2e82529 -size 8412 diff --git a/MM_Math/data_original_21/7054110/math/52056146_382.png b/MM_Math/data_original_21/7054110/math/52056146_382.png deleted file mode 100644 index 31cc2eba1132daf7c23a2623d8ff8d6d760dbfd3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52056146_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:73aa38247e04757909c1dc408e162a26e50f177709c2fafa726206d819fea287 -size 1950 diff --git a/MM_Math/data_original_21/7054110/math/52056156_914.png b/MM_Math/data_original_21/7054110/math/52056156_914.png deleted file mode 100644 index b12826ae0b7bdbda1109a315e2e94c31684b2139..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52056156_914.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed32638c4f4e64271cff687d0d00e4f997ee2ff481089a122620826cd321c792 -size 3595 diff --git a/MM_Math/data_original_21/7054110/math/52056193_931.png b/MM_Math/data_original_21/7054110/math/52056193_931.png deleted file mode 100644 index b8b4acffeb8aeb5f0e92ae05aae7f0886de52431..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52056193_931.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e8a18804cace50655b0dc7caf3739ba86ee98d83a518deb6d7d0a9c6b430ce3f -size 3281 diff --git a/MM_Math/data_original_21/7054110/math/52056352_881.png b/MM_Math/data_original_21/7054110/math/52056352_881.png deleted file mode 100644 index b548b79892bae2c0e9f2abad3f50cf78f3c05e89..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52056352_881.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e9e2b34026019343877ae4219935fa6f4aaf828af3166143224212595c28003 -size 3945 diff --git a/MM_Math/data_original_21/7054110/math/52056392_173.png b/MM_Math/data_original_21/7054110/math/52056392_173.png deleted file mode 100644 index 8a7631641a09a92487000d1ed99fcd46c10de69d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52056392_173.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba51237a5346a46a43e73ed5681e3c1d32502f42bc8bfd28375c7b45fe522532 -size 5479 diff --git a/MM_Math/data_original_21/7054110/math/52056412_903.png b/MM_Math/data_original_21/7054110/math/52056412_903.png deleted file mode 100644 index a86e44cacd65f5a161d54231e6e3b98d41e12b94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/math/52056412_903.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de98080e18180e63a9c7b8cba1f7f6ff6d5df85821013a9c65f9fb5932e521eb -size 2980 diff --git a/MM_Math/data_original_21/7054110/solution_images/50446779_443.png b/MM_Math/data_original_21/7054110/solution_images/50446779_443.png deleted file mode 100644 index be01a15670e040b4698ea6597cefaeebb9bd5a67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/50446779_443.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af47c585539ae2a463edc842ab8b9f283bd8222fdfe8d808cc79b0e9dc85015e -size 4366 diff --git a/MM_Math/data_original_21/7054110/solution_images/50560242_231.png b/MM_Math/data_original_21/7054110/solution_images/50560242_231.png deleted file mode 100644 index e2dbb5e858071c6c56c23fdaa25b7811fa7a8b28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/50560242_231.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65c8b59ff1b71b2533a186f775a9d00f117b4332b34ca91d05ab92c495b5407d -size 9878 diff --git a/MM_Math/data_original_21/7054110/solution_images/50560319_30.png b/MM_Math/data_original_21/7054110/solution_images/50560319_30.png deleted file mode 100644 index a1d06ac1257ac77251be1942cbe87149438db382..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/50560319_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bfa8b8c3a75d9bdf13f037d578969e04eb8ad6b3ff5501671427d1239f1b38ae -size 9696 diff --git a/MM_Math/data_original_21/7054110/solution_images/50560383_5411.png b/MM_Math/data_original_21/7054110/solution_images/50560383_5411.png deleted file mode 100644 index b91ed18b96c03ec77a032eabfc88515126704844..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/50560383_5411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:190f74368a3205ecdb8c0b3ff2cee56cb585830af2f6c56fba9e5638d6963f71 -size 8015 diff --git a/MM_Math/data_original_21/7054110/solution_images/50560455_538.png b/MM_Math/data_original_21/7054110/solution_images/50560455_538.png deleted file mode 100644 index b8c70a168bab1c4ee1af1c9d9da8c09af36ebc38..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/50560455_538.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d438fd40e58255a7b4e1538cad3b7076c25c080a81c29a6b67a41d8fc6b2f65 -size 10839 diff --git a/MM_Math/data_original_21/7054110/solution_images/50561168_20.png b/MM_Math/data_original_21/7054110/solution_images/50561168_20.png deleted file mode 100644 index 1c2c6d73488a5f57c9225efaf4136f188a37088a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/50561168_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ed938b429cb42ac45c85992636742d3e29318e2eec37f8f1ca9492587500426 -size 5575 diff --git a/MM_Math/data_original_21/7054110/solution_images/50677214_120.png b/MM_Math/data_original_21/7054110/solution_images/50677214_120.png deleted file mode 100644 index d587c2d210732425afc8933cf3fecc801633a2ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/50677214_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1878afb18d94ab06e1c2fbe9fc3113bab2f32f11ae3135ed3054de3663375f51 -size 4749 diff --git a/MM_Math/data_original_21/7054110/solution_images/50677495_110.png b/MM_Math/data_original_21/7054110/solution_images/50677495_110.png deleted file mode 100644 index 7c9e046db9f2e997f1a10c7b1677267b7161ba4a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/50677495_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab612ec5d40925db8bf9726f93b0b7ba9509196e92668c6086fdfe0bc661537e -size 3490 diff --git a/MM_Math/data_original_21/7054110/solution_images/52056412_900.png b/MM_Math/data_original_21/7054110/solution_images/52056412_900.png deleted file mode 100644 index 4722fea54111e63de5296b9ed2180aba74e65e7f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/52056412_900.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b0f4fd2c49cd52829c33e2111d5b4c7f9f382558d9d52f6ae3a4e830ce87abf -size 36524 diff --git a/MM_Math/data_original_21/7054110/solution_images/52056412_9012.png b/MM_Math/data_original_21/7054110/solution_images/52056412_9012.png deleted file mode 100644 index f44e48d13558c085806929a32e0e7f7712eeaf09..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/52056412_9012.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:feed7693f2c7e7b995b2157b781da01a32726c9493f19dfca4730235d049c512 -size 3671 diff --git a/MM_Math/data_original_21/7054110/solution_images/52056412_903.png b/MM_Math/data_original_21/7054110/solution_images/52056412_903.png deleted file mode 100644 index e45d5dadac95a69a759a27ae065133f7977e98d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054110/solution_images/52056412_903.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bcd1cf18729e4dbbfab09f3dc41dfa0bbe79d9b8945150780c0a99b553615d81 -size 6026 diff --git a/MM_Math/data_original_21/7054392/math/52380808_420.png b/MM_Math/data_original_21/7054392/math/52380808_420.png deleted file mode 100644 index dcfc2508e23fd460fe55f44713932f5104964367..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52380808_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ac9e1cf29bb6acb95a8e2746ce61f5f01f99fb921bfb2c356f4dd6a5968b5085 -size 9321 diff --git a/MM_Math/data_original_21/7054392/math/52380847_790.png b/MM_Math/data_original_21/7054392/math/52380847_790.png deleted file mode 100644 index 34e16c2e684997d5ffb5c32f13c547e42f01d76b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52380847_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56895dfdcc8ac5c95a22821b2317857f8e259f8c78777408b8886c03ccc5d92f -size 4982 diff --git a/MM_Math/data_original_21/7054392/math/52380887_781.png b/MM_Math/data_original_21/7054392/math/52380887_781.png deleted file mode 100644 index cbef4e6847c9d4138e7d618a3e6932df7fb9ad36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52380887_781.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31da547008beef3beda28bb4d0a11facac2233b70cec197d1b693d35aa74140b -size 2425 diff --git a/MM_Math/data_original_21/7054392/math/52380930_990.png b/MM_Math/data_original_21/7054392/math/52380930_990.png deleted file mode 100644 index df908597402814e539abacb835ef0c699299693e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52380930_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba2ecd7fb7de982d2941d7fe6d6ad80047147cb08b7dce0e20dc93197b4c4886 -size 4499 diff --git a/MM_Math/data_original_21/7054392/math/52381887_414.png b/MM_Math/data_original_21/7054392/math/52381887_414.png deleted file mode 100644 index 41c50752a38698e7f02f9414383e9f6358b21ba8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52381887_414.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f05ac026e4ad4a9e2eb15f69310b964761d9d169070efe57db383e3ef78a9527 -size 2273 diff --git a/MM_Math/data_original_21/7054392/math/52381893_766.png b/MM_Math/data_original_21/7054392/math/52381893_766.png deleted file mode 100644 index 705c4d852e131d3e088b22ab82f076d3a203461f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52381893_766.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d805e470cffc14cd237fdc4a297c0c89c9f75a82dd0b5d35806277487cffea4 -size 4507 diff --git a/MM_Math/data_original_21/7054392/math/52381894_777.png b/MM_Math/data_original_21/7054392/math/52381894_777.png deleted file mode 100644 index 7db60fd54fa9be34ad05fc12feb5749a3f310cb9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52381894_777.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8a0e8eeeb78d2a3fcac6470edc70748d64957ae118bdf32896e1106a1e1246f -size 6716 diff --git a/MM_Math/data_original_21/7054392/math/52386169_360.png b/MM_Math/data_original_21/7054392/math/52386169_360.png deleted file mode 100644 index 282178b7c3e2129cb6801dba4c661d7068507406..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386169_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24994f03a243f04a43bf6d5ee0b24f96de4f2c232187044c60f3d6da23de9e35 -size 2740 diff --git a/MM_Math/data_original_21/7054392/math/52386182_949.png b/MM_Math/data_original_21/7054392/math/52386182_949.png deleted file mode 100644 index 19ba05194814912e8bbd7dcc08117ea2b0848f82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386182_949.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98446c7161f922e69a33e9e775095a8423fb7705aa98630a0d137b4e97c13694 -size 30669 diff --git a/MM_Math/data_original_21/7054392/math/52386223_196.png b/MM_Math/data_original_21/7054392/math/52386223_196.png deleted file mode 100644 index 08988690fe564e5d87327593ba47141c211bdda6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386223_196.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c332c284f20c19ee03b253d95b74788e0410bd96d798f7e91b2be2b0a5576c97 -size 2451 diff --git a/MM_Math/data_original_21/7054392/math/52386290_6515.png b/MM_Math/data_original_21/7054392/math/52386290_6515.png deleted file mode 100644 index a2dcfd7540975f56347899f3e059b5098a740ee7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386290_6515.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc0dacb857acd3560aada953b83b8a7347208c6948c0f6797765e205ede07da0 -size 65826 diff --git a/MM_Math/data_original_21/7054392/math/52386332_640.png b/MM_Math/data_original_21/7054392/math/52386332_640.png deleted file mode 100644 index 7d839a293284c4d3d698617565da3cfc218e1f2a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386332_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51ab504804bc116cc0a8af6e5f1600558c7f107c7c6c8e95c5ef4ac9c1fc72a3 -size 2224 diff --git a/MM_Math/data_original_21/7054392/math/52386348_950.png b/MM_Math/data_original_21/7054392/math/52386348_950.png deleted file mode 100644 index d4103ea30ce04698f39cbc2fe2f932bf2d3277c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386348_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ae347bcb8c2a31440686a160aef97e2b53a6d6a15e11206ad27a2e8a8be5ac1 -size 163718 diff --git a/MM_Math/data_original_21/7054392/math/52386366_751.png b/MM_Math/data_original_21/7054392/math/52386366_751.png deleted file mode 100644 index dffaecd1b38e3f78b8d0d7269666b78c038072cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386366_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f22d2bc523fb1e011c64f25f229eea5b26765d7933f1a975c3a89c5eb0b59f57 -size 7316 diff --git a/MM_Math/data_original_21/7054392/math/52386463_375.png b/MM_Math/data_original_21/7054392/math/52386463_375.png deleted file mode 100644 index 889c051a9e00bf6c7e3d4bad01cbb28502d28516..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386463_375.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1a394084760a610ff8ae0a053b5c9d296f907723a114ff70b19a37fbf5efd6be -size 20504 diff --git a/MM_Math/data_original_21/7054392/math/52386464_205.png b/MM_Math/data_original_21/7054392/math/52386464_205.png deleted file mode 100644 index daca556451bb86de064d3765b0b8025e89ff027c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386464_205.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3a99b526f9ecb156f0871cd62d44d7fc3ecbc80c9dcd3aeff8eee96479f27d3 -size 1805 diff --git a/MM_Math/data_original_21/7054392/math/52386487_937.png b/MM_Math/data_original_21/7054392/math/52386487_937.png deleted file mode 100644 index 80a76045c8577718349c2423427bfb5266ad6245..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386487_937.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83fc85787f91160756d245c00d517803d7eff977023eaa314c3efa8922e6af6b -size 85786 diff --git a/MM_Math/data_original_21/7054392/math/52386497_282.png b/MM_Math/data_original_21/7054392/math/52386497_282.png deleted file mode 100644 index 468f68639e7ad65c97ba8d75cb6c89ebb97f2e7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386497_282.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:410ab512998e2bc5e6d7edfc3169bb382590ef6509683ad6dbf4c24fce8def4a -size 3181 diff --git a/MM_Math/data_original_21/7054392/math/52386504_292.png b/MM_Math/data_original_21/7054392/math/52386504_292.png deleted file mode 100644 index 2d7849a1a94e2e7a197af9da04ad10142c7e0969..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386504_292.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00a2112fb6caf401503026b0dc33970360018b04ce6c5013b8f39e514f1ed648 -size 1806 diff --git a/MM_Math/data_original_21/7054392/math/52386508_662.png b/MM_Math/data_original_21/7054392/math/52386508_662.png deleted file mode 100644 index e0e0ec08204ac0eb5cf2770536afef67c6804cec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386508_662.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d8747990084908bb1589d19dfd09dd7e70477e4cc4ad8b645eceecb7bef1b60 -size 46410 diff --git a/MM_Math/data_original_21/7054392/math/52386538_312.png b/MM_Math/data_original_21/7054392/math/52386538_312.png deleted file mode 100644 index 35a6492c8d3134e60e91079d6dd9dc26494f1221..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386538_312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2e1645bdfe307ddbf81bec53a35f64895e1fe0e4ef5aee0d61cfc3b8053160a -size 6023 diff --git a/MM_Math/data_original_21/7054392/math/52386539_212.png b/MM_Math/data_original_21/7054392/math/52386539_212.png deleted file mode 100644 index 09a2ddd5b0a70d72627bed6a49fb5ac6a66027ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386539_212.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c40c9c1c39ecc75d5ce07c510f04964a810649b9789d675e4417f74f50deb166 -size 2658 diff --git a/MM_Math/data_original_21/7054392/math/52386544_582.png b/MM_Math/data_original_21/7054392/math/52386544_582.png deleted file mode 100644 index 761e4f699a35255249f89a0a2414500be3170edf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386544_582.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b615d5f5f3d1d461fd4d047b591b0c8b2195985afd45a7ab588e8ae91ba76af6 -size 23212 diff --git a/MM_Math/data_original_21/7054392/math/52386573_603.png b/MM_Math/data_original_21/7054392/math/52386573_603.png deleted file mode 100644 index f7b0052fbc4a24341c552449604f673f40a711f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386573_603.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4443528e6622229ab22f81c30ed74e867806a37db07fe1fbf1fcd521fbe38f83 -size 3656 diff --git a/MM_Math/data_original_21/7054392/math/52386625_334.png b/MM_Math/data_original_21/7054392/math/52386625_334.png deleted file mode 100644 index 9a73a2c05e42d27b87f47a7ff2b3288f9cd19823..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386625_334.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97420fdaef3943d5c98ca33c21e8f626094b32bd4b1c21b5559adbd83c637abe -size 42727 diff --git a/MM_Math/data_original_21/7054392/math/52386627_345.png b/MM_Math/data_original_21/7054392/math/52386627_345.png deleted file mode 100644 index d447c574df6633a2c2a9f9af844dd43ad9b19144..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386627_345.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31f1e3cd53e1bb249b25e267afc6dcb207ac0ab2793c87ed5739745fbd034357 -size 7044 diff --git a/MM_Math/data_original_21/7054392/math/52386683_380.png b/MM_Math/data_original_21/7054392/math/52386683_380.png deleted file mode 100644 index b81f1aab64401f468cf709c8196a22aeb0b4674b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386683_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e74c8793db1bc424ed326b47d10450765dc6917fb79b39d3472f149788c87e30 -size 2425 diff --git a/MM_Math/data_original_21/7054392/math/52386771_302.png b/MM_Math/data_original_21/7054392/math/52386771_302.png deleted file mode 100644 index d69ad1d2f72b395f25c0d5ff2078d3d00b118ac6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386771_302.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff6b3c3e335ede7de4a46e3e1db0bcd984e82e91d41fae5f7470dca89436cf0c -size 3466 diff --git a/MM_Math/data_original_21/7054392/math/52386808_615.png b/MM_Math/data_original_21/7054392/math/52386808_615.png deleted file mode 100644 index 547eb6d49934f1aa11ed5672181fdb842b6eb5b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386808_615.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b49badbb094369fb31127b4cdc05d50c184cd86ddc6b3bab00f3fe3b223bb45 -size 68772 diff --git a/MM_Math/data_original_21/7054392/math/52386838_735.png b/MM_Math/data_original_21/7054392/math/52386838_735.png deleted file mode 100644 index 03742f69780d39f82011160f5a2d75d6fba21daa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386838_735.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc2fe3c60678962a10baa1feafcb56c9311ab7acea454b861753dc1a85658396 -size 3858 diff --git a/MM_Math/data_original_21/7054392/math/52386862_390.png b/MM_Math/data_original_21/7054392/math/52386862_390.png deleted file mode 100644 index f5474c02a839dae5f21e13da20bced23f5da8534..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386862_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5cef9a9a7bc93156307d51a41f3c4a17d36482ba0eb2960e4590ab98ced50491 -size 7671 diff --git a/MM_Math/data_original_21/7054392/math/52386889_716.png b/MM_Math/data_original_21/7054392/math/52386889_716.png deleted file mode 100644 index 1176e181a3c34dd974b6ce13e3794c1c35c31930..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386889_716.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99530be36f57e819cb8818f871b89ddb16c4e5b27cad11eb9183acbc77d9a428 -size 46907 diff --git a/MM_Math/data_original_21/7054392/math/52386890_599.png b/MM_Math/data_original_21/7054392/math/52386890_599.png deleted file mode 100644 index 1cd2e9c70807de0f8f7165dc1cf0b932eb721bb2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386890_599.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3665924b7df0536980075dde9a1353e9069521f72c9408729024f6b6d6140c74 -size 28800 diff --git a/MM_Math/data_original_21/7054392/math/52386935_740.png b/MM_Math/data_original_21/7054392/math/52386935_740.png deleted file mode 100644 index 3299fe829418289dc7265758a6c33d8e2382e647..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52386935_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:708a5a214adab01b23eda014382d09f1884508f236d2475d252c84c5a0a75d29 -size 3786 diff --git a/MM_Math/data_original_21/7054392/math/52387015_237.png b/MM_Math/data_original_21/7054392/math/52387015_237.png deleted file mode 100644 index 0ba964f728466634f4b9aee58e10b48ab60fc1ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387015_237.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1268925e37253328a4b905dece069aeb9da7fdb6bd64c038d337799dc7053dc7 -size 20570 diff --git a/MM_Math/data_original_21/7054392/math/52387024_726.png b/MM_Math/data_original_21/7054392/math/52387024_726.png deleted file mode 100644 index 6702ac11d8076907ccaa6a9d7f9079924a79433d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387024_726.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16e0102b7b261d90c48ea841731b09e72341fd3c51f077013a9e584c1e6449a4 -size 5290 diff --git a/MM_Math/data_original_21/7054392/math/52387026_686.png b/MM_Math/data_original_21/7054392/math/52387026_686.png deleted file mode 100644 index 2c01df78c0929b7a12752563fce1a3b0021a5f37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387026_686.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e09a92eb906f36cbf3747f1d27ba7758cd36a236a18f76b60d06d14e1b517a5f -size 3132 diff --git a/MM_Math/data_original_21/7054392/math/52387027_676.png b/MM_Math/data_original_21/7054392/math/52387027_676.png deleted file mode 100644 index 72489702088ccad91c46038e7fdb68feddd75b02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387027_676.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14a9916579ef10e4dd424f1bf4d7b85c0086b88b88246ee2bb6f4c13d2072088 -size 60074 diff --git a/MM_Math/data_original_21/7054392/math/52387091_222.png b/MM_Math/data_original_21/7054392/math/52387091_222.png deleted file mode 100644 index dada761d0390dac2171ee18cdb378886337a017c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387091_222.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5439231d29df18688fca9e34f24f68d6a624d1ac7a2306e76d9772533b6bcf9d -size 3298 diff --git a/MM_Math/data_original_21/7054392/math/52387151_240.png b/MM_Math/data_original_21/7054392/math/52387151_240.png deleted file mode 100644 index d52fa092eaf2a43096b7b9951173209777d45b75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387151_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e8f853bf916a327ab71b405b392037aa23736174d64c350188cb1d62bd089a01 -size 1970 diff --git a/MM_Math/data_original_21/7054392/math/52387157_700.png b/MM_Math/data_original_21/7054392/math/52387157_700.png deleted file mode 100644 index 490def754e590f198caa6fb25247a35a33ab4e3c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387157_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ab484722ca2e6503af6a31bd20c310471c31cf126cf7d724d832a4002b679c0 -size 4285 diff --git a/MM_Math/data_original_21/7054392/math/52387190_251.png b/MM_Math/data_original_21/7054392/math/52387190_251.png deleted file mode 100644 index 1476a0b836b26ae224431f9223f862a979fbe2a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387190_251.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6426964925b88247f9a55535b621ec45c8ce433ba402d4c2619474028274a918 -size 3648 diff --git a/MM_Math/data_original_21/7054392/math/52387288_400.png b/MM_Math/data_original_21/7054392/math/52387288_400.png deleted file mode 100644 index 27692ef692d3c5d174c26bd5d1cc70a6f027b013..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387288_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a564269a87321ec1bff60b699a354d8488102cf461addcc7e5f2d3737dd381ad -size 3992 diff --git a/MM_Math/data_original_21/7054392/math/52387296_625.png b/MM_Math/data_original_21/7054392/math/52387296_625.png deleted file mode 100644 index c76e1d20c8ea8868dbe540f2b7f78b488a313347..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387296_625.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11ad506372fd598ffad454f29ea069c0c530cb83ab9f983a20618f5222e6affc -size 4378 diff --git a/MM_Math/data_original_21/7054392/math/52387322_320.png b/MM_Math/data_original_21/7054392/math/52387322_320.png deleted file mode 100644 index d2972f4b7505327ac6c72d2a74a678d3a5cf0eca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387322_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2465fac4febd161346b0b1905a2222363643d46b0a77a0b4196d447c282e57d1 -size 2340 diff --git a/MM_Math/data_original_21/7054392/math/52387374_920.png b/MM_Math/data_original_21/7054392/math/52387374_920.png deleted file mode 100644 index ef7640336c86be7af9dac957691c353b64ef459f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387374_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6c0a73f3eebfb30ada6d445442d7ff2160d1e34afe7661f4ff923be2cb02630b -size 2301 diff --git a/MM_Math/data_original_21/7054392/math/52387414_274.png b/MM_Math/data_original_21/7054392/math/52387414_274.png deleted file mode 100644 index 2d1a77b6d6dea814322c945d398f83e732c92949..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387414_274.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76449f81a4d6819b3485341b9f00422fce57ffb840ab557df9c687af6bd35275 -size 7881 diff --git a/MM_Math/data_original_21/7054392/math/52387446_261.png b/MM_Math/data_original_21/7054392/math/52387446_261.png deleted file mode 100644 index a1572a78b2208633dc965a7880e54708cae10cab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387446_261.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed972893dd6525e3a6a41e2c25879a7060a51f60c5740b7cca9973d5d862ae96 -size 10390 diff --git a/MM_Math/data_original_21/7054392/math/52387465_967.png b/MM_Math/data_original_21/7054392/math/52387465_967.png deleted file mode 100644 index 3577323d0e2a709dcde3f10bfb0f38f775b8674e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387465_967.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ab73ddae69a29bcb016bb27726bddf7144813b9a91229d6eed427fd73cac4e4 -size 7267 diff --git a/MM_Math/data_original_21/7054392/math/52387487_691.png b/MM_Math/data_original_21/7054392/math/52387487_691.png deleted file mode 100644 index e99a0b1369a26204ded4c170337a2064d89c5bbd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387487_691.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1833376a11aa459ee890ad0d9e03864d087394ec39376e27c23fc3d0b1a9b23e -size 3058 diff --git a/MM_Math/data_original_21/7054392/math/52387502_975.png b/MM_Math/data_original_21/7054392/math/52387502_975.png deleted file mode 100644 index 2cd8dacd99bc7cb43d1ad7a1e169c1e4aa5d9d00..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387502_975.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f738e739f46cb589cea2a41b4281a94ed6f03c66583f8b73aa0bdb8e6750c0a -size 3010 diff --git a/MM_Math/data_original_21/7054392/math/52387523_630.png b/MM_Math/data_original_21/7054392/math/52387523_630.png deleted file mode 100644 index 057144d96c26be5df22441e22af2967a8c4b04b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387523_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3d980797291541df47c96aa1dbf9c948dba0f7de5bd9304f301a95b5ce3128b4 -size 25882 diff --git a/MM_Math/data_original_21/7054392/math/52387533_981.png b/MM_Math/data_original_21/7054392/math/52387533_981.png deleted file mode 100644 index c3fbcd517f87600a0312dae567652e7d6b2b22dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387533_981.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b51f273573f510e6ad921e3e070b5dd552d72831e7e983e881bd95beb1478e5 -size 7734 diff --git a/MM_Math/data_original_21/7054392/math/52387647_353.png b/MM_Math/data_original_21/7054392/math/52387647_353.png deleted file mode 100644 index 679d1be02de7a8272fcda7200525fea7fa218679..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52387647_353.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f95a07e2491df71a12d61f43461ffdc159cc81036f1ade10c77993673f53e87 -size 3602 diff --git a/MM_Math/data_original_21/7054392/math/52395005_164.png b/MM_Math/data_original_21/7054392/math/52395005_164.png deleted file mode 100644 index 7a6282e819a5e37ec92c7444dc3fea5263d37eb5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395005_164.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9a1f872324d371e5cb4650f4bb06d701fabdb36b2c28dd4fbe41c9736b62045 -size 3781 diff --git a/MM_Math/data_original_21/7054392/math/52395010_544.png b/MM_Math/data_original_21/7054392/math/52395010_544.png deleted file mode 100644 index d25dbb70b62222c19d2d0e3251957606d26d7628..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395010_544.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7d7f8887b1bf7a90e5d7c6c59a7e27c4df25199794ccb26f7aa559a1b55b3e3 -size 4065 diff --git a/MM_Math/data_original_21/7054392/math/52395011_5213.png b/MM_Math/data_original_21/7054392/math/52395011_5213.png deleted file mode 100644 index f8de2ea6e8302e88590666eac299c82eac415e00..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395011_5213.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2dbb37fbe166d6f59bdeb0e721c9ec147e2c35bab2223bbdd64d932c3a44739c -size 2660 diff --git a/MM_Math/data_original_21/7054392/math/52395032_905.png b/MM_Math/data_original_21/7054392/math/52395032_905.png deleted file mode 100644 index dbeea78cc995c6331e0d826a5a3db6250887f115..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395032_905.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0988098057877680be580c9381cb73d3bbbbd911e781f315a3f1211e86e816d -size 23256 diff --git a/MM_Math/data_original_21/7054392/math/52395148_535.png b/MM_Math/data_original_21/7054392/math/52395148_535.png deleted file mode 100644 index c8e4013c399d3f1b0a0e7bf4421f403db60668b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395148_535.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88b6d2733204c6bce74ba8b7f9461e3d294c5bd3a11573e440ce9ba5779c9533 -size 3359 diff --git a/MM_Math/data_original_21/7054392/math/52395201_180.png b/MM_Math/data_original_21/7054392/math/52395201_180.png deleted file mode 100644 index 5684fb37d668bd3ea57e0b18e78e17ee8e2eb0a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395201_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0dd12a0066070299845805a3a5ecaa86e2c366bb50ad202049d80a930c33e78 -size 5415 diff --git a/MM_Math/data_original_21/7054392/math/52395259_890.png b/MM_Math/data_original_21/7054392/math/52395259_890.png deleted file mode 100644 index 1777f281935d3a3f27c582c01e7c72e155148d2e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395259_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91da22ac971dcb04a07d102528a32d3a155acbad667c95f7efcb18f5ebb104e0 -size 4805 diff --git a/MM_Math/data_original_21/7054392/math/52395347_172.png b/MM_Math/data_original_21/7054392/math/52395347_172.png deleted file mode 100644 index a86d2770d05e65ca01960350107cbe5320e7a8d9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395347_172.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f49473110ae1b7fef21e087209ecac83ff40786092c53bb495cb2542303c1aad -size 50294 diff --git a/MM_Math/data_original_21/7054392/math/52395428_1512.png b/MM_Math/data_original_21/7054392/math/52395428_1512.png deleted file mode 100644 index f97d9f0a11ce419e3773c07eadfdb17cae88f4f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395428_1512.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34c35f3404a527a94010931533328a20db02cc5c9799e3b93ed1f8a201602154 -size 126108 diff --git a/MM_Math/data_original_21/7054392/math/52395430_5513.png b/MM_Math/data_original_21/7054392/math/52395430_5513.png deleted file mode 100644 index 8018b66d5f68a9434297a16057829354d8b4754d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395430_5513.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:029f6fc3e2d5b1c69010510afe8bf652f159e4b14a6a0d87736c3cfa330e7494 -size 81768 diff --git a/MM_Math/data_original_21/7054392/math/52395463_572.png b/MM_Math/data_original_21/7054392/math/52395463_572.png deleted file mode 100644 index 628e822a25082fabff87bb5bc73eeaeab62c2f28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395463_572.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc9b11186aa4e8d17c220725bf24f078d86ba42f1f9e2805298b15e5ce517906 -size 5038 diff --git a/MM_Math/data_original_21/7054392/math/52395580_913.png b/MM_Math/data_original_21/7054392/math/52395580_913.png deleted file mode 100644 index 5a2f1ebe5318555307b71736509871e8cc767ab1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395580_913.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2eda387b532feaccbda294b5b69ff4ba28b55b0f3bf6f4fd6f5ab719568f000 -size 64640 diff --git a/MM_Math/data_original_21/7054392/math/52395607_568.png b/MM_Math/data_original_21/7054392/math/52395607_568.png deleted file mode 100644 index 9579990a28eed8edb37d007bf21e645656f3e46f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52395607_568.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae4a6f4822a36ab36f4e0383a1c8d5526946c82a895a62ef8c62f5cdce825d58 -size 53358 diff --git a/MM_Math/data_original_21/7054392/math/52416276_134.png b/MM_Math/data_original_21/7054392/math/52416276_134.png deleted file mode 100644 index 623ff1c08488d5e1ade322675e4ccced8d4c2f43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52416276_134.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b9eba5ed8de1682e30299835e483123bedf5c174d08f0aad877927a15051e48 -size 2416 diff --git a/MM_Math/data_original_21/7054392/math/52416277_115.png b/MM_Math/data_original_21/7054392/math/52416277_115.png deleted file mode 100644 index 9c2c3c3c1d1732dc76c72a4e1cced55c95465f5f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52416277_115.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3f26d2ad7b01a42f89ab080b78bcfdafea7d753066215b6f41e489cfc3e1bab -size 9918 diff --git a/MM_Math/data_original_21/7054392/math/52416335_505.png b/MM_Math/data_original_21/7054392/math/52416335_505.png deleted file mode 100644 index 8f3bd2e828f47203f6fb5a2b29259ad57d31b87b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52416335_505.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:086eb5d915f9b85653e8a988aa3f6b063aeb0772010cebe910e86d38e171255d -size 73570 diff --git a/MM_Math/data_original_21/7054392/math/52416340_813.png b/MM_Math/data_original_21/7054392/math/52416340_813.png deleted file mode 100644 index 295cbf409fe1375bc841d0109172b7f953cade58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52416340_813.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4730743b0063b9a951c28bdd71ca325e887d04815bac9622b2615bd928c85cce -size 3065 diff --git a/MM_Math/data_original_21/7054392/math/52416356_863.png b/MM_Math/data_original_21/7054392/math/52416356_863.png deleted file mode 100644 index 240172d8826b82c54468ca9e42920d7c7ede31da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52416356_863.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6566e17d5d58ef8aae343391536cd318711a1483e339a6999c32232f9545fa97 -size 9038 diff --git a/MM_Math/data_original_21/7054392/math/52416363_140.png b/MM_Math/data_original_21/7054392/math/52416363_140.png deleted file mode 100644 index 07fcad2ed3ee0e00066f85feaf374b41a9d1be61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52416363_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6c1c15b9c7bcb092ead51d1935416db80d3e4a4cdc473ea231e84a1eb83ab0b6 -size 3419 diff --git a/MM_Math/data_original_21/7054392/math/52416366_510.png b/MM_Math/data_original_21/7054392/math/52416366_510.png deleted file mode 100644 index 9af2f490d5794e8e42f9f88c080129801db0ce63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52416366_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ad1bd319f9a2c25a5f871f38b9bb37879b223ee6a81b04b399c445ef081742b -size 3473 diff --git a/MM_Math/data_original_21/7054392/math/52416409_886.png b/MM_Math/data_original_21/7054392/math/52416409_886.png deleted file mode 100644 index 989c19ee6f671e44cc8e9d971f5b7dbc75dd0a40..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52416409_886.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:432f82df33caa2f880392f78e7f1c75c944e10e41333013025cba2d8824a1d8c -size 5280 diff --git a/MM_Math/data_original_21/7054392/math/52416424_120.png b/MM_Math/data_original_21/7054392/math/52416424_120.png deleted file mode 100644 index 9b0deb2e0fe6033c1efedfd8ed59065a07675741..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52416424_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52419dad4d92323913b9852c6f8f23e8ffd467743df14f3eb13883a90ee86e4a -size 2823 diff --git a/MM_Math/data_original_21/7054392/math/52416493_872.png b/MM_Math/data_original_21/7054392/math/52416493_872.png deleted file mode 100644 index 2590dd50031656530605fa78cacc03c28589c554..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52416493_872.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a4028612c3e7c92c0507ca3c64ec835419b354551e626858c1fd90cf58598c9 -size 34985 diff --git a/MM_Math/data_original_21/7054392/math/52422247_00.png b/MM_Math/data_original_21/7054392/math/52422247_00.png deleted file mode 100644 index 03344ec25d29614c8f39789b6e49efe1a88d8b29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422247_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ad80868613225de33ac9bddbca29b810da4c19a68a0d805c36281886100fb4d -size 2404 diff --git a/MM_Math/data_original_21/7054392/math/52422259_434.png b/MM_Math/data_original_21/7054392/math/52422259_434.png deleted file mode 100644 index 7c78cb0096fdf9211d8ca0fb4a32119903c1a7df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422259_434.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:070a15e3841ebc855df718313eeebfe771f3d37354037b1cdf44a1b1ec743590 -size 3392 diff --git a/MM_Math/data_original_21/7054392/math/52422309_83.png b/MM_Math/data_original_21/7054392/math/52422309_83.png deleted file mode 100644 index 7b7a03be7ec93ca27e4661799e9276ba15e87616..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422309_83.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f0d0c5d25166ad649f62d13f8b8cd81b2f5458883853ef87f4bd35c5c8058a1 -size 8142 diff --git a/MM_Math/data_original_21/7054392/math/52422315_42.png b/MM_Math/data_original_21/7054392/math/52422315_42.png deleted file mode 100644 index 9b2b95f734747e61f245b0d2cf40f776a614adcc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422315_42.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4cdd45a0690c374640734fbd2af73b37a63779194db6858f580cdc871c7c31aa -size 51744 diff --git a/MM_Math/data_original_21/7054392/math/52422318_453.png b/MM_Math/data_original_21/7054392/math/52422318_453.png deleted file mode 100644 index 7804665fa6647174edbcd516a91ea87f61a997e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422318_453.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3bd6ab61dee432f728be09ea9cb2c2164a9badeb0651097c07f9e954c3b5c4c7 -size 2092 diff --git a/MM_Math/data_original_21/7054392/math/52422339_855.png b/MM_Math/data_original_21/7054392/math/52422339_855.png deleted file mode 100644 index e70d0bed2d42a4cb792e2acbce3d55dbfc50e323..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422339_855.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b72c3c3688625d7556b1c048bb73e17e5a60f2db6bdc2cdfe3bb7446dc407a69 -size 2563 diff --git a/MM_Math/data_original_21/7054392/math/52422701_10.png b/MM_Math/data_original_21/7054392/math/52422701_10.png deleted file mode 100644 index 7e121814afffb8d6ac3e643fbcb043ead34ef34c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422701_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40a02def77576b91e3f8f7fdded40b8019e31da241bc4c7d9f0ce710bf7558b1 -size 1697 diff --git a/MM_Math/data_original_21/7054392/math/52422706_30.png b/MM_Math/data_original_21/7054392/math/52422706_30.png deleted file mode 100644 index 9c47830469a51e1ba53e3a2b20acbcbab523c500..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422706_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42cc17118c231a90e0ddb01b5577bea6d9fed97b76770c811c1b6eed96bfd504 -size 3865 diff --git a/MM_Math/data_original_21/7054392/math/52422726_821.png b/MM_Math/data_original_21/7054392/math/52422726_821.png deleted file mode 100644 index 4aded00fea3e4a34271a179f761ca2af837ef9e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422726_821.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7195f365c8891f9ebb88fe4f96aaf44514b3f928230241d4b8edb77e00546e9e -size 5703 diff --git a/MM_Math/data_original_21/7054392/math/52422738_91.png b/MM_Math/data_original_21/7054392/math/52422738_91.png deleted file mode 100644 index f9813a5bb76815090f9e251d918a59d3d8c9ce81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422738_91.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bf820a72678bd35787abbb9f96b172bf7f1718077e9286fd76f6ee259f7ea08 -size 8143 diff --git a/MM_Math/data_original_21/7054392/math/52422876_64.png b/MM_Math/data_original_21/7054392/math/52422876_64.png deleted file mode 100644 index e87c4838cba615c0f8c7b7e3dbabe4a59d160d1d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52422876_64.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bce59d97551c145c6f7ae121643ca158708bbe72d482d739dcce8ccc90e54f86 -size 2650 diff --git a/MM_Math/data_original_21/7054392/math/52423083_102.png b/MM_Math/data_original_21/7054392/math/52423083_102.png deleted file mode 100644 index 77e5092111eeed53f394fcd19236bde7234a8282..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423083_102.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b8bd5d97440987659b053cd2e549a720de85113a40e068f819411d418d868af -size 51932 diff --git a/MM_Math/data_original_21/7054392/math/52423088_4914.png b/MM_Math/data_original_21/7054392/math/52423088_4914.png deleted file mode 100644 index 9de3238e825caa9b69f0f924076bfe59623e6c15..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423088_4914.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d566104b052496cd8dea7bf72ba30a31b196553c196f0ec86545c50cee0eeeff -size 2658 diff --git a/MM_Math/data_original_21/7054392/math/52423203_833.png b/MM_Math/data_original_21/7054392/math/52423203_833.png deleted file mode 100644 index a09751d440ff985b2f0b93571af1c0b6c7c80409..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423203_833.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d3b66700a24790064ea7b6ac3e55d429b80563d6febca8b814dbf27fae3b51d -size 17010 diff --git a/MM_Math/data_original_21/7054392/math/52423280_845.png b/MM_Math/data_original_21/7054392/math/52423280_845.png deleted file mode 100644 index 0df20dbe56b10d67234f4e8f9f9e4c16f0b4372f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423280_845.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d064cf70550a626022c3817b88f9f4cd2099009d4379e23b520973d850380005 -size 6824 diff --git a/MM_Math/data_original_21/7054392/math/52423378_510.png b/MM_Math/data_original_21/7054392/math/52423378_510.png deleted file mode 100644 index f5c13e57a064173af75d34fd49bdc42ecf68be5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423378_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b7bbefe2a7320aac1c7bf4271331127c58de9a563cfa5f8fe15f2e6ed8d962d -size 3379 diff --git a/MM_Math/data_original_21/7054392/math/52423384_449.png b/MM_Math/data_original_21/7054392/math/52423384_449.png deleted file mode 100644 index bbc25d8aaeef24eb2fea19ac571681123edc5e28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423384_449.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0af1d8ed3f2a146bde9b8cfe7168f7678a101cfb85f48bce48b8ab2fe0ff885f -size 5252 diff --git a/MM_Math/data_original_21/7054392/math/52423387_482.png b/MM_Math/data_original_21/7054392/math/52423387_482.png deleted file mode 100644 index c77e7c89246bbb338a46ba4ff6e0952a0123170f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423387_482.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6f69de700a3651367e4ccc81c36b98f4a5a70077f29c74587ea7e10eb9b9a1c -size 3174 diff --git a/MM_Math/data_original_21/7054392/math/52423423_28.png b/MM_Math/data_original_21/7054392/math/52423423_28.png deleted file mode 100644 index e6e0ab6225cc974350291ccd135084d87519997c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423423_28.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:282fecd616104b4a16754c4e4c2b3e074cbd60dd7b395548b86e12c19239461a -size 7458 diff --git a/MM_Math/data_original_21/7054392/math/52423430_469.png b/MM_Math/data_original_21/7054392/math/52423430_469.png deleted file mode 100644 index 9689c9b12dec06c873335ac6821bd8f1d2f46d6a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423430_469.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:144a84dad3e4b6d7f391b01aedc5d2e76d96b45e777dfa8e06860ac9e5e00ba9 -size 26149 diff --git a/MM_Math/data_original_21/7054392/math/52423433_4710.png b/MM_Math/data_original_21/7054392/math/52423433_4710.png deleted file mode 100644 index 9857e75100bc963a03f99d3937f860f23e4da583..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423433_4710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63a561d465c93cb37368cad753129f023895f35b466f71700a1198b93c7c2ed9 -size 64442 diff --git a/MM_Math/data_original_21/7054392/math/52423436_8010.png b/MM_Math/data_original_21/7054392/math/52423436_8010.png deleted file mode 100644 index 371d72a1ec13d54bec6a9176cd2a6aa30adb5cd3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423436_8010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc011aeec9be05c5ef8d8882e7f3bb8e4d0dc0cd3e2d5398a3007e34e4c59dc0 -size 3195 diff --git a/MM_Math/data_original_21/7054392/math/52423571_70.png b/MM_Math/data_original_21/7054392/math/52423571_70.png deleted file mode 100644 index 80858dbb865923bea774ddb144f3e40d5a8eeda9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/math/52423571_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a80e66be77a6e316c92ea31dae011fd652a80415390c6762c994a96439b24b0 -size 6185 diff --git a/MM_Math/data_original_21/7054392/solution_images/52380808_420.png b/MM_Math/data_original_21/7054392/solution_images/52380808_420.png deleted file mode 100644 index eba2eec60a98a2920933334450cb000a78830cc0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52380808_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a88b97da3c3acf5b83a523ebd5bf161d3e3238d8d2362c7715aa2f34df449a98 -size 2938 diff --git a/MM_Math/data_original_21/7054392/solution_images/52381887_410.png b/MM_Math/data_original_21/7054392/solution_images/52381887_410.png deleted file mode 100644 index ccbe1e9834bf1032434ea57bf91f719554698b16..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52381887_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af8217adb8785fbf6a467a249308a7fdb6df728d3f8f63475464d01b7fb6a37e -size 2224 diff --git a/MM_Math/data_original_21/7054392/solution_images/52386290_650.png b/MM_Math/data_original_21/7054392/solution_images/52386290_650.png deleted file mode 100644 index 2d8149fda57f6e98d9c3fc4a2d7a6635008b1b19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52386290_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:225956db1d89167d3265578d4b7907fdfbd8c39b128e7ef7e6d1bf1a4cadf822 -size 72772 diff --git a/MM_Math/data_original_21/7054392/solution_images/52386332_640.png b/MM_Math/data_original_21/7054392/solution_images/52386332_640.png deleted file mode 100644 index c523e1fa6eaf06cb4f0f5956224fe1c695dab4eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52386332_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f42a094b6b36ce499e5ba26d3c8ada50e8a319141d9349d6027f463acc4602e1 -size 3503 diff --git a/MM_Math/data_original_21/7054392/solution_images/52386464_201.png b/MM_Math/data_original_21/7054392/solution_images/52386464_201.png deleted file mode 100644 index e318423ef897f5d4cb978967f4cfb3ecc7597420..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52386464_201.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99667af57b906eba664298d1dad2cacc80d004ea9310f752a95f7c4f3031ffe2 -size 2945 diff --git a/MM_Math/data_original_21/7054392/solution_images/52386508_661.png b/MM_Math/data_original_21/7054392/solution_images/52386508_661.png deleted file mode 100644 index d600c6fed58a87d56ae63d5119fdc33bcb1664c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52386508_661.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc2a5be9489cb4d5d89bc838ca5fa3a9e24ae4adede71bb772420c84beb25cd9 -size 49859 diff --git a/MM_Math/data_original_21/7054392/solution_images/52386935_741.png b/MM_Math/data_original_21/7054392/solution_images/52386935_741.png deleted file mode 100644 index 3d25f876ae0cabfcfcf1a91ea20a0a73422f607e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52386935_741.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:78f69a81fef1437f9356a1eb1e7e268e49aaff5dcc2905dfe2f5a872d7fc981d -size 3968 diff --git a/MM_Math/data_original_21/7054392/solution_images/52387026_680.png b/MM_Math/data_original_21/7054392/solution_images/52387026_680.png deleted file mode 100644 index d7d0bf4e33c08e3ac93d58092cc74671bb299853..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52387026_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f288bf4ca5bc060a79ca0cf735b83e686cac067e6acd82a2d504f40e062c8b8c -size 3321 diff --git a/MM_Math/data_original_21/7054392/solution_images/52387091_222.png b/MM_Math/data_original_21/7054392/solution_images/52387091_222.png deleted file mode 100644 index 191df1f53c587da90ef66dea048fc17aa9ff2c0c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52387091_222.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d345859a6665c260f55b06c080e76b7ddb0b40179aefa880217f46f57a3dc82 -size 3862 diff --git a/MM_Math/data_original_21/7054392/solution_images/52387157_700.png b/MM_Math/data_original_21/7054392/solution_images/52387157_700.png deleted file mode 100644 index cc3ac50263dbf2249b8ad2800e9cf1e19cc2f993..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52387157_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7a48f061b299512a8e1c920b8091b1d0b72cc5d1f628c8288eb47b4a43f44cb -size 6643 diff --git a/MM_Math/data_original_21/7054392/solution_images/52387190_251.png b/MM_Math/data_original_21/7054392/solution_images/52387190_251.png deleted file mode 100644 index 1cb03137fbeb9306b352a086e566b7c9cfb2a908..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52387190_251.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b58068d317d2b9f12ff63d117b4cb1e15d4061e2355d313de8ad25706f4c02db -size 6673 diff --git a/MM_Math/data_original_21/7054392/solution_images/52387296_620.png b/MM_Math/data_original_21/7054392/solution_images/52387296_620.png deleted file mode 100644 index b28a78942b7e034fb5e070e772f48d6773ad9bcd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52387296_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9016f223c12403e1b592751f2ef8716b2cf97e09885c605710425d40955d32e0 -size 2619 diff --git a/MM_Math/data_original_21/7054392/solution_images/52387296_6212.png b/MM_Math/data_original_21/7054392/solution_images/52387296_6212.png deleted file mode 100644 index cd1b54e5d4ee6362536c9948939bdb213d0ea765..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52387296_6212.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d6cb6909713cadce36151ca926f6b0c4d3f9ba217bfede682a6f31482524dec -size 5661 diff --git a/MM_Math/data_original_21/7054392/solution_images/52387296_6214.png b/MM_Math/data_original_21/7054392/solution_images/52387296_6214.png deleted file mode 100644 index 3afdee117ae9fdb408c957399cfbe96d516af948..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52387296_6214.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56b3973259dd1aab699f96722778e5504c9963ee8d8dc13489bd8f935de6b108 -size 5269 diff --git a/MM_Math/data_original_21/7054392/solution_images/52387414_270.png b/MM_Math/data_original_21/7054392/solution_images/52387414_270.png deleted file mode 100644 index a23d6f88712dfc4d13d35edc4db732c15aa7a001..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52387414_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c66d04a1678ae960d68507c60bfcba61a12a86568f528374c225486d6b698306 -size 3053 diff --git a/MM_Math/data_original_21/7054392/solution_images/52387487_690.png b/MM_Math/data_original_21/7054392/solution_images/52387487_690.png deleted file mode 100644 index 44de9c8a9e838e1be0490ac4c4bef56142c5bb86..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52387487_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c3ea59b248c461d7bfce408cb669af67f8aef8b46e0c519eac4906c244560ea -size 4962 diff --git a/MM_Math/data_original_21/7054392/solution_images/52387523_630.png b/MM_Math/data_original_21/7054392/solution_images/52387523_630.png deleted file mode 100644 index 501321f166016c558cf223c382bfc66e8b551a05..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52387523_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ccc069f7008ddfe0b2965ae9e85bb2a0e56433dd1b838f47ea4225ccd6e1ba5 -size 28736 diff --git a/MM_Math/data_original_21/7054392/solution_images/52395428_154.png b/MM_Math/data_original_21/7054392/solution_images/52395428_154.png deleted file mode 100644 index 02c68efb578af26350377068ce31016f2710de65..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52395428_154.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7697fe3d01e329d56221a91e11883e3e98aa38280f034121acfdd7c270edd6b -size 152319 diff --git a/MM_Math/data_original_21/7054392/solution_images/52395463_570.png b/MM_Math/data_original_21/7054392/solution_images/52395463_570.png deleted file mode 100644 index 6e87c606707774ef714880e2d30c1cd7eef78ff7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52395463_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:027b6dc4539d831bd8a051044fd85e8e25dcdecf222a60161096ebb7267c12f4 -size 6526 diff --git a/MM_Math/data_original_21/7054392/solution_images/52395607_560.png b/MM_Math/data_original_21/7054392/solution_images/52395607_560.png deleted file mode 100644 index 2abd6649eecfbd121c4d7eb3126fb1dceb73183b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52395607_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dae2aabbf9270fb71fefecb74637a35447e090bb8e0761cf35315921a7e96885 -size 57918 diff --git a/MM_Math/data_original_21/7054392/solution_images/52416276_130.png b/MM_Math/data_original_21/7054392/solution_images/52416276_130.png deleted file mode 100644 index 8674239d1cbdc425dc0b0121cae4a6977b940ecf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52416276_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0f37fb2f0891db1432939cb7da1ca7be984d940151b4f9b29a4902bc1d192c7 -size 3971 diff --git a/MM_Math/data_original_21/7054392/solution_images/52416277_117.png b/MM_Math/data_original_21/7054392/solution_images/52416277_117.png deleted file mode 100644 index 6b2495ff6178b707bef122d4bea889c30b03007b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52416277_117.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c756c5496cda4c43f55ac4acb4519447814785bc46e63eed341cc4ef0aa90c8c -size 4890 diff --git a/MM_Math/data_original_21/7054392/solution_images/52416366_510.png b/MM_Math/data_original_21/7054392/solution_images/52416366_510.png deleted file mode 100644 index a629491b39432b5172f41732bd59248c3ba49702..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52416366_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45f2c662d25cacb29ede4422f78db98d8a7cbe2a485f273bc80cb2c72878da80 -size 2660 diff --git a/MM_Math/data_original_21/7054392/solution_images/52422318_450.png b/MM_Math/data_original_21/7054392/solution_images/52422318_450.png deleted file mode 100644 index bbbcf13d31b9f08f70af8bf626654ffbacf0923f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52422318_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03bc8f581f4e80a58f6a55111e00916bd47088db9f710fb1ddf5f641061fdc91 -size 2460 diff --git a/MM_Math/data_original_21/7054392/solution_images/52422701_10.png b/MM_Math/data_original_21/7054392/solution_images/52422701_10.png deleted file mode 100644 index 7ceec95dab968b259e5c1ba6e1c266eaaa8f41dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52422701_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f5adfd84f568d68a7095e5ddfd33ab7e75e37d09dc40a25b28811f3d9c5ef4b -size 1575 diff --git a/MM_Math/data_original_21/7054392/solution_images/52422876_60.png b/MM_Math/data_original_21/7054392/solution_images/52422876_60.png deleted file mode 100644 index 9175e85cae7ed2f0b69e90df17371dd2b5c14010..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52422876_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39fdb1bd2709a3e200c2a66236ff22e6f73ca1b5dae60f3fe06921c1141924b7 -size 3097 diff --git a/MM_Math/data_original_21/7054392/solution_images/52423083_100.png b/MM_Math/data_original_21/7054392/solution_images/52423083_100.png deleted file mode 100644 index 77d51c8c2dd1a7be54ff5b185d2b2aeceafd18a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52423083_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:975901bca9fcb05d98da3a151a404860ff95c83f3b686ab7490eb17412aab32c -size 59129 diff --git a/MM_Math/data_original_21/7054392/solution_images/52423384_440.png b/MM_Math/data_original_21/7054392/solution_images/52423384_440.png deleted file mode 100644 index 11c83736e0aac1f03984cca220d575f0c18ec90d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52423384_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed5af7142426a58332eb2df6586f071c5745d9d04a65a015ce7fb8b83bc1f75c -size 6079 diff --git a/MM_Math/data_original_21/7054392/solution_images/52423387_480.png b/MM_Math/data_original_21/7054392/solution_images/52423387_480.png deleted file mode 100644 index 9bed94f9c1e34d725dbe15a1d227e0a7e263ecf1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52423387_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca813853c9200219b007fae4848e5d9172ec115bcecce2eb30d538c1035554bd -size 7297 diff --git a/MM_Math/data_original_21/7054392/solution_images/52423433_470.png b/MM_Math/data_original_21/7054392/solution_images/52423433_470.png deleted file mode 100644 index 10ae86e8b92e7e38f71f931386484206c532f0b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054392/solution_images/52423433_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c406baff2bcc51ee9e70750c34bea3956b753c8e77899ba55927e1a9375b9c87 -size 69770 diff --git a/MM_Math/data_original_21/7054409/math/52302500_741.png b/MM_Math/data_original_21/7054409/math/52302500_741.png deleted file mode 100644 index bfdf5369a1dc9059e8d672497a40722391f9ba7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302500_741.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc0bc7e06ff74db9c309a1762c8dc86aa538ac80fe5b978f52a35e30a76536ee -size 9105 diff --git a/MM_Math/data_original_21/7054409/math/52302532_340.png b/MM_Math/data_original_21/7054409/math/52302532_340.png deleted file mode 100644 index 4e936fcea1393a81f025e8cfc4ebf589e254c575..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302532_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00446130db54e4d14739934a23ec52e920e088cbccf6db1b1460cdf1b0c8b29e -size 3761 diff --git a/MM_Math/data_original_21/7054409/math/52302533_369.png b/MM_Math/data_original_21/7054409/math/52302533_369.png deleted file mode 100644 index fdefd60ea8138aac3691ad07b91c07e2b07b1d5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302533_369.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91a5aad7269d384e3fb2408ae5a620108138c262269191808c78e2fd52165e96 -size 2613 diff --git a/MM_Math/data_original_21/7054409/math/52302537_791.png b/MM_Math/data_original_21/7054409/math/52302537_791.png deleted file mode 100644 index 1ee000d26aaf634986b5a3ec8a7093c9496fddf3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302537_791.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd80b2ab58dd5db0bd956c617f81d4cecddfa8a2337578d23ac0d10f1fa8d6ca -size 3158 diff --git a/MM_Math/data_original_21/7054409/math/52302538_752.png b/MM_Math/data_original_21/7054409/math/52302538_752.png deleted file mode 100644 index 390ed118c6d3eac7821739fe32d3c5e9029b3638..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302538_752.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de0d19db79687883863c5bc8beccb3374094f58254a4378b389961cbdb508707 -size 2315 diff --git a/MM_Math/data_original_21/7054409/math/52302554_9913.png b/MM_Math/data_original_21/7054409/math/52302554_9913.png deleted file mode 100644 index 3f237dd8d5e30d63b3c7f4b8255af2851e650204..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302554_9913.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5dbfbc620ca4839fbd2ffe7a290c03bb04ff567778ee8c48f62e24f6803eecff -size 23378 diff --git a/MM_Math/data_original_21/7054409/math/52302569_350.png b/MM_Math/data_original_21/7054409/math/52302569_350.png deleted file mode 100644 index 3c7d31875b19b330fed91a763e65ebf0d984e9a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302569_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1ff469d08549f7fc573f88e15584382e536a060a1e9faf44b9b1184f901d027 -size 61166 diff --git a/MM_Math/data_original_21/7054409/math/52302577_760.png b/MM_Math/data_original_21/7054409/math/52302577_760.png deleted file mode 100644 index 5c7167ed3c55a0f783926a08cf14038f9b0773e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302577_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37e88ace4e4293b6b173ca40217cdbfcaee5a143a12a182598f1ef0243c06ef9 -size 33941 diff --git a/MM_Math/data_original_21/7054409/math/52302711_730.png b/MM_Math/data_original_21/7054409/math/52302711_730.png deleted file mode 100644 index a28944e12d533c8d4e6ae5bfef0af3594428e2db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302711_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bee7107d161499bc5dd6960c395290639d7ef9837928ff4c9deaef9e0b56d30b -size 1865 diff --git a/MM_Math/data_original_21/7054409/math/52302717_771.png b/MM_Math/data_original_21/7054409/math/52302717_771.png deleted file mode 100644 index 7105481df79e86b9e28c0ffc97bb09c18a9dcfa9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302717_771.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6261129225bea92bf755bc0ffe9415e79158ccfa79ea293b9f3dc36d030b6c6d -size 4208 diff --git a/MM_Math/data_original_21/7054409/math/52302787_780.png b/MM_Math/data_original_21/7054409/math/52302787_780.png deleted file mode 100644 index 78f9b0f0e095a1dd87c4eec8cbbd3fac947355df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302787_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e6593c146ff757e0368396c94c5534e6ff0ff670e19c615d8f59eabca813b32 -size 2425 diff --git a/MM_Math/data_original_21/7054409/math/52302802_980.png b/MM_Math/data_original_21/7054409/math/52302802_980.png deleted file mode 100644 index 5fc69fe4d99db58cc26c2981eac80a7562d707f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52302802_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:357860ff8914270c64febe9664c32373a71c9ae6b013869bd245a1044e4b4aa0 -size 27690 diff --git a/MM_Math/data_original_21/7054409/math/52303693_331.png b/MM_Math/data_original_21/7054409/math/52303693_331.png deleted file mode 100644 index facb8a2d6bc83770d1813639c93e1914c3456776..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303693_331.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f8388b4263588eb2a30f1b5c90f8f0234f5e8eb73a6a21dca7c4e857d996fdda -size 11971 diff --git a/MM_Math/data_original_21/7054409/math/52303698_712.png b/MM_Math/data_original_21/7054409/math/52303698_712.png deleted file mode 100644 index 07ffe0805a20d3a9afd446864bbea679ebb55ae9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303698_712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38100b729fcc0d3d5825257273ff91b714cb7aae3f4d991789c197c454ef5560 -size 6231 diff --git a/MM_Math/data_original_21/7054409/math/52303699_723.png b/MM_Math/data_original_21/7054409/math/52303699_723.png deleted file mode 100644 index b3879db10caf244395b73008ddc601b99ae77598..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303699_723.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ff824c0339b34fc298df7cdf5eecf5f97fc8e1cf7be67b891116603e583f9b3 -size 3967 diff --git a/MM_Math/data_original_21/7054409/math/52303706_812.png b/MM_Math/data_original_21/7054409/math/52303706_812.png deleted file mode 100644 index ada3142614e65af3836c35c2fa6da63729f498e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303706_812.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ad899f35c67286bc7fa5d94e724cb054e6a0163ec530c7a318b547e35354202 -size 14139 diff --git a/MM_Math/data_original_21/7054409/math/52303724_700.png b/MM_Math/data_original_21/7054409/math/52303724_700.png deleted file mode 100644 index 19ab35c6250ce09174ba700fc9f76749d6a87340..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303724_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87fea6017ca3ecb0a1358580537ddf10ff7705af970241023ab81f1633b7f668 -size 3587 diff --git a/MM_Math/data_original_21/7054409/math/52303773_320.png b/MM_Math/data_original_21/7054409/math/52303773_320.png deleted file mode 100644 index d795c6d7e7d5715ea791cd95ec8a7892f6bf0abc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303773_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6e2f518ba7ec3c22a8ceeb1101d8e442a6122c2fc39f381853f4d209946cda8 -size 53171 diff --git a/MM_Math/data_original_21/7054409/math/52303782_680.png b/MM_Math/data_original_21/7054409/math/52303782_680.png deleted file mode 100644 index 6ce348dd3bdb86cace3205dc8d30700ec2269623..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303782_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15a8247c4ae8f170268f1c536a78555253349d99236c6c35e207c1eaa2a05490 -size 45771 diff --git a/MM_Math/data_original_21/7054409/math/52303783_690.png b/MM_Math/data_original_21/7054409/math/52303783_690.png deleted file mode 100644 index 25dc35b2a5a5b0b3aeb614b12f6a34453b523743..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303783_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de8c6746be87a68394a62db6a9763a37f19012fb45f89867eb71f62449a234ab -size 3074 diff --git a/MM_Math/data_original_21/7054409/math/52303855_679.png b/MM_Math/data_original_21/7054409/math/52303855_679.png deleted file mode 100644 index 2fd68fac501cea65b31543532f9550c5db6bebaa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303855_679.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08498e23775a4af50b79d5006e52dd5f43553763ebdad8b7c9f9471fa00febac -size 56069 diff --git a/MM_Math/data_original_21/7054409/math/52303866_966.png b/MM_Math/data_original_21/7054409/math/52303866_966.png deleted file mode 100644 index 359a41c7c67747aecba9e99366c7ccdd65c342c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303866_966.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e215334df2ae7e86431de4bf0301a408b3f2e991f238ec443464d7260f35f96 -size 2614 diff --git a/MM_Math/data_original_21/7054409/math/52303875_9713.png b/MM_Math/data_original_21/7054409/math/52303875_9713.png deleted file mode 100644 index 03ae30413b47fe466a902b7422374a7aaf218806..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303875_9713.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42967626b629c08d827e9a46501b937cff09748be9e39ce650c2ea17af9b3283 -size 47138 diff --git a/MM_Math/data_original_21/7054409/math/52303916_290.png b/MM_Math/data_original_21/7054409/math/52303916_290.png deleted file mode 100644 index 9d06f267dcc07ff3187de7d451d5689715fed268..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303916_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7503f594e0ee6852032d9643d79933e9b76162a577f40172a58e8a351fef382f -size 4388 diff --git a/MM_Math/data_original_21/7054409/math/52303920_310.png b/MM_Math/data_original_21/7054409/math/52303920_310.png deleted file mode 100644 index 3fe4707bfd2bb9f5b1d73ead0a02565a0cb75a12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303920_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0a77535e50b4025dd164ac17cc30cd9e9b189ce407e2e84473748c899af5d21 -size 6288 diff --git a/MM_Math/data_original_21/7054409/math/52303921_301.png b/MM_Math/data_original_21/7054409/math/52303921_301.png deleted file mode 100644 index 09e069c65bd74895f028afb46df02ca09c2d2ec0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52303921_301.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06c4c0f02086986b0856e8659757b794bdcce15f1edd191ee55af0ced7ac581e -size 7487 diff --git a/MM_Math/data_original_21/7054409/math/52304101_2814.png b/MM_Math/data_original_21/7054409/math/52304101_2814.png deleted file mode 100644 index ee49961426846359ae32f94ac0bfccc098fd7cea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52304101_2814.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9440a24cc4946b6780b2db72b0bb6b85b47eeda46b77aa7c78b9aa5b75adbaca -size 6603 diff --git a/MM_Math/data_original_21/7054409/math/52304107_660.png b/MM_Math/data_original_21/7054409/math/52304107_660.png deleted file mode 100644 index f4d3ada267ad8fdd59399f6e55e0f313efc8c602..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52304107_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37770c503a2d09eddc14b3359a3c7a88dcf9d10fb1c57f3fa9da9f63b50fed12 -size 2038 diff --git a/MM_Math/data_original_21/7054409/math/52304469_270.png b/MM_Math/data_original_21/7054409/math/52304469_270.png deleted file mode 100644 index e86e6171df4cd11a4b1a8afab8b43d9ff226a82c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52304469_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91213b2c27cecd95964dae83a2d3ef05456e55618ef7e29e5b4f94df45946f45 -size 7664 diff --git a/MM_Math/data_original_21/7054409/math/52331837_650.png b/MM_Math/data_original_21/7054409/math/52331837_650.png deleted file mode 100644 index 5d0fdbd7be78f657e015bd94ad7df5b5fe09760c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52331837_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:27783f742a1d0d8c5a852ebda0248dcb9fa1acae187820521bc97d3c5cce7dd4 -size 5616 diff --git a/MM_Math/data_original_21/7054409/math/52344112_190.png b/MM_Math/data_original_21/7054409/math/52344112_190.png deleted file mode 100644 index 06189959f830b7de83baaef85e46d41022ffd8b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52344112_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fb7616f9d7ab307ab3cae944514e75b138899c4687b103aac7453a0de746436 -size 2149 diff --git a/MM_Math/data_original_21/7054409/math/52344116_550.png b/MM_Math/data_original_21/7054409/math/52344116_550.png deleted file mode 100644 index d6615cd2134defd2278ef27a14b7510c0c8502a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52344116_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc8bc39d5b7ff745dcf2de989fa9ee37cfef6f402af3d08cd3b2f50e72874cc9 -size 8601 diff --git a/MM_Math/data_original_21/7054409/math/52344117_562.png b/MM_Math/data_original_21/7054409/math/52344117_562.png deleted file mode 100644 index 1974617cc91226bdf6ee321a7a9c2a3c77ca333a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52344117_562.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b44b9d7a18b2997354dd0640cdfea7d66e8d2900ce88fb323d22f9e36245535f -size 11176 diff --git a/MM_Math/data_original_21/7054409/math/52344118_541.png b/MM_Math/data_original_21/7054409/math/52344118_541.png deleted file mode 100644 index 5abe4acc9358e63a9e91a2975661cf5f605b551a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52344118_541.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:573be77ba565f3983684bb7da7b2bf726dd6a111ccf1b01a4e2535905fa09e4b -size 10593 diff --git a/MM_Math/data_original_21/7054409/math/52344186_570.png b/MM_Math/data_original_21/7054409/math/52344186_570.png deleted file mode 100644 index 0cf718cab74d2a29b8e370b20ffc79f3eb7499b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52344186_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a28109342fd69f750d99b937ca386924d3ad21f73139c411e111a0c39eed8d96 -size 4996 diff --git a/MM_Math/data_original_21/7054409/math/52344189_530.png b/MM_Math/data_original_21/7054409/math/52344189_530.png deleted file mode 100644 index 734de9bf2c2e42b55819e556082edd542f137ff9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52344189_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a49f1dc6f58b8042c041c2b45df9750ce231875a3651989dc1b6b8f144577463 -size 3711 diff --git a/MM_Math/data_original_21/7054409/math/52344234_920.png b/MM_Math/data_original_21/7054409/math/52344234_920.png deleted file mode 100644 index ed88e8f0da3779e84e09d8af95298a787f26dbc0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52344234_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3dabac2ce839e9868fbbeeeaf66fbaa134598bb991ea25d1ab51cf94b7915e0a -size 3371 diff --git a/MM_Math/data_original_21/7054409/math/52345207_1813.png b/MM_Math/data_original_21/7054409/math/52345207_1813.png deleted file mode 100644 index 1563a0cad3ad8be51eaa934d2af7a5c85f9ed9b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52345207_1813.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:991542e1f70d1502e6a99af1b9878c10d95ed5facee80027ee1358fd9d3ed981 -size 3218 diff --git a/MM_Math/data_original_21/7054409/math/52345212_5212.png b/MM_Math/data_original_21/7054409/math/52345212_5212.png deleted file mode 100644 index a61525cbbff853f8883503b3cbf7b65e9a63547c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52345212_5212.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f89aa344933604f81b3e0e277de79fea262198a8e50404846a45b77d43e3efc -size 10146 diff --git a/MM_Math/data_original_21/7054409/math/52345439_174.png b/MM_Math/data_original_21/7054409/math/52345439_174.png deleted file mode 100644 index b1dc8c5c9095f2d27c62fdfe2b440a198c4e2393..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52345439_174.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:86ce455c2819b54f097acf9972f83741e8c779355e11224f79be6cc8b981f047 -size 16105 diff --git a/MM_Math/data_original_21/7054409/math/52345445_5115.png b/MM_Math/data_original_21/7054409/math/52345445_5115.png deleted file mode 100644 index 33f38087ff460c4ab888d02b6433f470ba877466..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52345445_5115.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a83ecb52c3f97fd4113e7eba5b2edbd8e4f779e48afb2fda03405ce2d9e4959 -size 8862 diff --git a/MM_Math/data_original_21/7054409/math/52345515_167.png b/MM_Math/data_original_21/7054409/math/52345515_167.png deleted file mode 100644 index 68ee0ab9e4b5a84b1293fd321838fe4610d0c0a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52345515_167.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb56691a65780668e9502d6534722146078d3365109b1b622aa6a82c3ea0cf71 -size 11369 diff --git a/MM_Math/data_original_21/7054409/math/52345519_503.png b/MM_Math/data_original_21/7054409/math/52345519_503.png deleted file mode 100644 index 12da0aa237cdd29f78316eb533ce93156524bb30..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52345519_503.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f53a23f84bdc39549b12b41bdf5f36dd20eed66fe371142ea682adc4f534f98b -size 11000 diff --git a/MM_Math/data_original_21/7054409/math/52345523_497.png b/MM_Math/data_original_21/7054409/math/52345523_497.png deleted file mode 100644 index 53fa7e001f18c6c374973c015ccdc2bcab401de4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52345523_497.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8508d0524a40ac550fc2752cf38d04583f323187c3d001218611fe8410b1e342 -size 12385 diff --git a/MM_Math/data_original_21/7054409/math/52345537_907.png b/MM_Math/data_original_21/7054409/math/52345537_907.png deleted file mode 100644 index cc90085669b4ef90179e900645ce8e175d0a3b49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52345537_907.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77d81fac2306655febc1c77584760b79d488a2010751463ffc426de5bd367a35 -size 12095 diff --git a/MM_Math/data_original_21/7054409/math/52345544_9118.png b/MM_Math/data_original_21/7054409/math/52345544_9118.png deleted file mode 100644 index 45a112adba82804fdd6299e5d56946bf6aeb2d0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52345544_9118.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c71dc83d2b69bd083266adfb83e00f94eeee53e6db8a996ca7ea5f685178f8e8 -size 8185 diff --git a/MM_Math/data_original_21/7054409/math/52354153_20.png b/MM_Math/data_original_21/7054409/math/52354153_20.png deleted file mode 100644 index 07fcad2ed3ee0e00066f85feaf374b41a9d1be61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354153_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6c1c15b9c7bcb092ead51d1935416db80d3e4a4cdc473ea231e84a1eb83ab0b6 -size 3419 diff --git a/MM_Math/data_original_21/7054409/math/52354319_843.png b/MM_Math/data_original_21/7054409/math/52354319_843.png deleted file mode 100644 index 55de3a6e2e20496e9c5a4d041ef0bdb089c5ff30..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354319_843.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62e05ca4662772b92ecb0e6140f8a932de6caf62c4079df5c219d98b2ab51b81 -size 3951 diff --git a/MM_Math/data_original_21/7054409/math/52354486_40.png b/MM_Math/data_original_21/7054409/math/52354486_40.png deleted file mode 100644 index ff5c157167a289006972d174f8d29daf3957a5c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354486_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dddcf1f3e30fa73cea7943ef790243e1b26d198585c99e809b0bb5ebbe0f1658 -size 21182 diff --git a/MM_Math/data_original_21/7054409/math/52354541_384.png b/MM_Math/data_original_21/7054409/math/52354541_384.png deleted file mode 100644 index 759a46fd4526e3c9c6d3ede31179fba39466ada9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354541_384.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c6576568c853524accff34961f9d2e3bb3858283eaefbc9292c09864fe552569 -size 25989 diff --git a/MM_Math/data_original_21/7054409/math/52354552_853.png b/MM_Math/data_original_21/7054409/math/52354552_853.png deleted file mode 100644 index a6bcf8105ec5a9bd5cd02f559b10219d4238098d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354552_853.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddb8f86c2cc436776d265f7e7e3f76cbad1fa1b74d2b2d0d1b86ff63e00d4b43 -size 3028 diff --git a/MM_Math/data_original_21/7054409/math/52354580_430.png b/MM_Math/data_original_21/7054409/math/52354580_430.png deleted file mode 100644 index d229e7f575e4de3e6e3133e21816081f3ce12f95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354580_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9dc86449e3dc7cb03fb64cf0b4d9533cada5987d99c520cfb073ab1f6dd39d8f -size 2695 diff --git a/MM_Math/data_original_21/7054409/math/52354589_870.png b/MM_Math/data_original_21/7054409/math/52354589_870.png deleted file mode 100644 index c6b16a916b1978108ddb2e5133b0436064d6d919..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354589_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a549c61cc794730c02ab5bda555377f27475791d5595214b5e2519d735402386 -size 30267 diff --git a/MM_Math/data_original_21/7054409/math/52354640_31.png b/MM_Math/data_original_21/7054409/math/52354640_31.png deleted file mode 100644 index 4487e0f26d11e009b9201c0e045583b0dbcdad67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354640_31.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f8dc478528cd8bffb2f6bb8f6f72891cff516c6b64e685340158f620f387beb -size 2735 diff --git a/MM_Math/data_original_21/7054409/math/52354642_370.png b/MM_Math/data_original_21/7054409/math/52354642_370.png deleted file mode 100644 index 3fc43294c276baabe8171c4cb0ab40be17436d77..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354642_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab6c50482c9757e9dc98f4ad51618bc28c5392fbcf7f7245b35e90bf44f9bf30 -size 3017 diff --git a/MM_Math/data_original_21/7054409/math/52354643_421.png b/MM_Math/data_original_21/7054409/math/52354643_421.png deleted file mode 100644 index 4522802fde877c949ea277f7f1d40202feeaf9b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354643_421.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9bcab9ee269d1efdface30ab63f7d0b4b28869d9d862200d0195e22a215cb91 -size 2920 diff --git a/MM_Math/data_original_21/7054409/math/52354693_825.png b/MM_Math/data_original_21/7054409/math/52354693_825.png deleted file mode 100644 index ec63a32c4d4c8c5af19e9405e33389aafe98935c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354693_825.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29cff888384dc68bf983f90b95a362b7cda7df1004e025cc0a5e85fbd74b7ed1 -size 108074 diff --git a/MM_Math/data_original_21/7054409/math/52354771_863.png b/MM_Math/data_original_21/7054409/math/52354771_863.png deleted file mode 100644 index 867a7bf084aca21dc08e5b76ebdee6fcb103baf9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354771_863.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5da6fb625d1ffdffefb3c5524508d90cedaef93e4258feedd5b80cba4ce34dbe -size 18699 diff --git a/MM_Math/data_original_21/7054409/math/52354792_400.png b/MM_Math/data_original_21/7054409/math/52354792_400.png deleted file mode 100644 index b8b110f8cbbd8ba42d8357c0a2fd39642edbbb5f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354792_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2dba3dbe9cc34c111c1becdb2cbbc5567a89c3fc417162f26790001ebb50cc1d -size 3602 diff --git a/MM_Math/data_original_21/7054409/math/52354816_410.png b/MM_Math/data_original_21/7054409/math/52354816_410.png deleted file mode 100644 index 687e0805739c072ff41ce15f6c951acf74e17284..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354816_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67333dc0e73e1f0aa1adfb47741cadc4f8187e7df2021a681f130832f81e4674 -size 2100 diff --git a/MM_Math/data_original_21/7054409/math/52354868_54.png b/MM_Math/data_original_21/7054409/math/52354868_54.png deleted file mode 100644 index a750a4d6d166d6a7af9115a0d08b559915d91bc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354868_54.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db4889fa6576666fd0d189925ee154a7b6d3f1457873cc40ea019d1125b5e02f -size 31329 diff --git a/MM_Math/data_original_21/7054409/math/52354873_80.png b/MM_Math/data_original_21/7054409/math/52354873_80.png deleted file mode 100644 index 9c59cf113c355a91dff292ec970e8a796a8d1290..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354873_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:970f1a8b23e2665b90079966d8685776fd49b0d0f59e5b17a17edece7808407f -size 3698 diff --git a/MM_Math/data_original_21/7054409/math/52354875_611.png b/MM_Math/data_original_21/7054409/math/52354875_611.png deleted file mode 100644 index 3a7cef4af00e059a489c2afd3f6e7bebcee33a76..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354875_611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:463aba5a60526dbd05d9c2418e1cbd8ff964e552bc9c70fab40884dd924f3075 -size 5859 diff --git a/MM_Math/data_original_21/7054409/math/52354879_3911.png b/MM_Math/data_original_21/7054409/math/52354879_3911.png deleted file mode 100644 index 36441da23e0ebc6783f246f15c00142c35ea93d9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354879_3911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:000d92434ecf6f871f7ddede1567cf8caeac66a58907a0a6bf725d159ba1d0ab -size 2519 diff --git a/MM_Math/data_original_21/7054409/math/52354910_00.png b/MM_Math/data_original_21/7054409/math/52354910_00.png deleted file mode 100644 index e416aa00ef7b80e1643d3579076afa1b756445ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354910_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f02b58ed85e6e26f1064b1aea646e37d76cfdedf560863f66a129f9d85c6e03f -size 3467 diff --git a/MM_Math/data_original_21/7054409/math/52354937_8312.png b/MM_Math/data_original_21/7054409/math/52354937_8312.png deleted file mode 100644 index eedb358e70d33ffdcf515f051e195a4ba3c6cee3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52354937_8312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:281a393efe993acb1b1ed6dfd3eee9ccd0a9fe2a67879989d619b967a7724a8d -size 5781 diff --git a/MM_Math/data_original_21/7054409/math/52355086_71.png b/MM_Math/data_original_21/7054409/math/52355086_71.png deleted file mode 100644 index 5e9ca986a8f480c824bf9ee5ce38e367bad2fea6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52355086_71.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1743b2832444e19966995efe7f2d900532b3c5a256891f32a0e45e5f4995e5db -size 4111 diff --git a/MM_Math/data_original_21/7054409/math/52355149_15.png b/MM_Math/data_original_21/7054409/math/52355149_15.png deleted file mode 100644 index 22aa8320f4743e8280546036acf007403d36060d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52355149_15.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ecb06d72da551dfb398fc047b2a301adec09e653809d9512efb90467d293bbf -size 3693 diff --git a/MM_Math/data_original_21/7054409/math/52423810_8011.png b/MM_Math/data_original_21/7054409/math/52423810_8011.png deleted file mode 100644 index 047ea44075e7da2443b2a55a7fc159fdaffc1d70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52423810_8011.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe7a093edad5f155b081f4b629950ce126f956d6b7847ba923c184c082145398 -size 3145 diff --git a/MM_Math/data_original_21/7054409/math/52423824_230.png b/MM_Math/data_original_21/7054409/math/52423824_230.png deleted file mode 100644 index 02fa9b3be9249adaf55f0092c80affcb58a6dda7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52423824_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d41c184264fffeeb903481c8bbf3afee0fadeaecda70ead740745f2c14110730 -size 2564 diff --git a/MM_Math/data_original_21/7054409/math/52423830_620.png b/MM_Math/data_original_21/7054409/math/52423830_620.png deleted file mode 100644 index eb35e9b354a29a89d8a36c8d07eb214197c1c890..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52423830_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:732a480e100e383ce241484cc444448c35ab8f61090a30aa3fb99a1b88c0b85a -size 2287 diff --git a/MM_Math/data_original_21/7054409/math/52423898_225.png b/MM_Math/data_original_21/7054409/math/52423898_225.png deleted file mode 100644 index 6728970645440f3dd875c25551a385ccfc77385c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52423898_225.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:707dd9f9b9f8617ab4414dfed05e29dfa5207e627e57f74e8b2e680484b642a3 -size 7460 diff --git a/MM_Math/data_original_21/7054409/math/52423904_610.png b/MM_Math/data_original_21/7054409/math/52423904_610.png deleted file mode 100644 index 61f75ed4b83e617c81801b3ae5fe6eb1cb0ed807..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52423904_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ea5bfd0d5868a5a8be41b87c92081ef09ecda4f8c591bce725591fe891e848a -size 10604 diff --git a/MM_Math/data_original_21/7054409/math/52424024_950.png b/MM_Math/data_original_21/7054409/math/52424024_950.png deleted file mode 100644 index ac9bbf332d4781ef826cc4a3f017f9c82525cfdc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52424024_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ecb4b27f7d5a3728e2a77e8c1569a2b3ac5c0e15d6195a7a8df5200be756a2f -size 4820 diff --git a/MM_Math/data_original_21/7054409/math/52424166_634.png b/MM_Math/data_original_21/7054409/math/52424166_634.png deleted file mode 100644 index 4b1bdd7a57672cae592f7fcfb91b3e8af440364a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52424166_634.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50d1d25ef6c36f2212d5a1dbcd85cd74684471b5fd72993cfbe9455ce13ba264 -size 38142 diff --git a/MM_Math/data_original_21/7054409/math/52424185_942.png b/MM_Math/data_original_21/7054409/math/52424185_942.png deleted file mode 100644 index 6ebf31622e8f6aa3c8576f80cef23a895b72927f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52424185_942.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed6e7d6142e758f2b7ef94afac962fa5d9c757dfc2bf6bb4308333ea273006e5 -size 4298 diff --git a/MM_Math/data_original_21/7054409/math/52424336_597.png b/MM_Math/data_original_21/7054409/math/52424336_597.png deleted file mode 100644 index c62741a6978dd2063c637991dba7dc80e43f3acf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52424336_597.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b375044ecfa3c391b0fa759e1bbf31e29a031a439286b364e7e6e920f26dce2d -size 7014 diff --git a/MM_Math/data_original_21/7054409/math/52424415_583.png b/MM_Math/data_original_21/7054409/math/52424415_583.png deleted file mode 100644 index c1d58d35140a013e38eb1e9bd9ebe31b65c6566d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52424415_583.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94b6ea9c28de6a4d17982d1abea13969d9b8979c23a63dae18c84fb5f28fde71 -size 3735 diff --git a/MM_Math/data_original_21/7054409/math/52424722_250.png b/MM_Math/data_original_21/7054409/math/52424722_250.png deleted file mode 100644 index fb389a1707332a4a9c8c3bde18a5bb83c8ee20a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52424722_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:033faac075c9f6b73ae73e6efd4227a712c289c662972b040341294e60b7694c -size 23782 diff --git a/MM_Math/data_original_21/7054409/math/52424728_600.png b/MM_Math/data_original_21/7054409/math/52424728_600.png deleted file mode 100644 index 0c73709159660a07cbf008f436d86ca2a45c4ce3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52424728_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef5ad60e7627b00d1d8820cf8e2cbeada597576ab928f76eacf9d22bc5c1662f -size 49487 diff --git a/MM_Math/data_original_21/7054409/math/52424790_206.png b/MM_Math/data_original_21/7054409/math/52424790_206.png deleted file mode 100644 index 803bc2c22123e6ca7c215308aa6ade627c8c3a2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52424790_206.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b750f64862fc5cda2f5179ee7708eb70a437e3d1f030e1704cd117db0da7ab5c -size 4151 diff --git a/MM_Math/data_original_21/7054409/math/52425012_260.png b/MM_Math/data_original_21/7054409/math/52425012_260.png deleted file mode 100644 index 22f7ef07bc10e9f6917c4970557a1e8a20666148..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52425012_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2f990c609088ee75e9d31cf1e128a8cfd20f301551009d4a9ad40ba1bfe92ad -size 6277 diff --git a/MM_Math/data_original_21/7054409/math/52425015_643.png b/MM_Math/data_original_21/7054409/math/52425015_643.png deleted file mode 100644 index e06aa167c592a56c52dbd6a43ab5e974879a7758..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52425015_643.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:434d3d04f9353002e2659dfa2ea4f465851c37a8c2c60ae9c2cc795f3d7c05ac -size 2373 diff --git a/MM_Math/data_original_21/7054409/math/52425085_246.png b/MM_Math/data_original_21/7054409/math/52425085_246.png deleted file mode 100644 index 0df4fc1c4a79a0cb4d555ec0ae8f8e3bb3f1ddc1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52425085_246.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e7920b2c7edca21fc17a5b328e0d9b25e53deaa9af4a7f0b86da91c7e71eb7d -size 28352 diff --git a/MM_Math/data_original_21/7054409/math/52425264_210.png b/MM_Math/data_original_21/7054409/math/52425264_210.png deleted file mode 100644 index 43f6fbd3fb0a76c72e9df6cb07f6bb8455dd0ce7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52425264_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1614993f0ef40aceb7906fc057e9b33a674e8ba12143bce8df3c0b4cd3444541 -size 4834 diff --git a/MM_Math/data_original_21/7054409/math/52425278_930.png b/MM_Math/data_original_21/7054409/math/52425278_930.png deleted file mode 100644 index 41c0c5548c89cd66d5c920520d582677fc0b1df4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/52425278_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dbb6861a22c3c5d5984be82d7312cabd3a11c026dcd8f0095707e2c1665150ef -size 4059 diff --git a/MM_Math/data_original_21/7054409/math/53706374_890.png b/MM_Math/data_original_21/7054409/math/53706374_890.png deleted file mode 100644 index acefc692ef9da3245e51f8533c09c17e6f6b2768..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706374_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:315c8db580a0a637d5c8648c3a248aba7b51bfb5bc4d20c89798aa89216285e7 -size 49813 diff --git a/MM_Math/data_original_21/7054409/math/53706435_149.png b/MM_Math/data_original_21/7054409/math/53706435_149.png deleted file mode 100644 index c1f83489eea7ca75f3b8a308de2da4ad2287aac4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706435_149.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94dd461e5f9ad667d1e7d6c857feab2417047840a0e88bbd0af1aa9b4fbab47e -size 5254 diff --git a/MM_Math/data_original_21/7054409/math/53706609_881.png b/MM_Math/data_original_21/7054409/math/53706609_881.png deleted file mode 100644 index 6e0de7de568423ee816dcbf7745f09c7b3e8fe9b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706609_881.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64219239de5022c373a3165b804eda010ab84158cf2889f4fd2b16187d00497b -size 12089 diff --git a/MM_Math/data_original_21/7054409/math/53706814_97.png b/MM_Math/data_original_21/7054409/math/53706814_97.png deleted file mode 100644 index fe20227e65df1903f599b55fa22c35e1b53777b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706814_97.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f5a5177b91812b1f0c0bc65e51cae91c862be5252369bea628f548cd5f4e5c4b -size 29605 diff --git a/MM_Math/data_original_21/7054409/math/53706819_476.png b/MM_Math/data_original_21/7054409/math/53706819_476.png deleted file mode 100644 index 8a24a8df23d0aa6565fd8985d4bfc891eff74f92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706819_476.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b54dbe145a234cf70ae67e56a5048d6e4c81d3eae07640ea67d531c3e7be005 -size 23659 diff --git a/MM_Math/data_original_21/7054409/math/53706850_153.png b/MM_Math/data_original_21/7054409/math/53706850_153.png deleted file mode 100644 index 061cdb45db74a24442077f4123688b6b60696a9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706850_153.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c6fbb4acc967af6d7b27ddb141f8b87c0ff63dab12bb21fa036cbd717b99976c -size 3736 diff --git a/MM_Math/data_original_21/7054409/math/53706851_137.png b/MM_Math/data_original_21/7054409/math/53706851_137.png deleted file mode 100644 index 283c6aa9d0d138137769fce73ef98335bcfaafba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706851_137.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d78d12e2a4e4ef971531f71a996dcd641d98bd250eccdbd4ae1aae551b0e566c -size 3191 diff --git a/MM_Math/data_original_21/7054409/math/53706883_440.png b/MM_Math/data_original_21/7054409/math/53706883_440.png deleted file mode 100644 index 0e98f6a599f72ff71704edd0ea40cd8aebfa334d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706883_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81800858d07372485526e15623727281ad565634462a1eece4b61332ba9f952a -size 2332 diff --git a/MM_Math/data_original_21/7054409/math/53706920_122.png b/MM_Math/data_original_21/7054409/math/53706920_122.png deleted file mode 100644 index f5cc6e255bbe1d5c16a78b25ecfe1f5c9134bf33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706920_122.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:421b6df0124d65ebb766f7fbcb927b582c3bca7115f752ed54bba8501974ddce -size 3361 diff --git a/MM_Math/data_original_21/7054409/math/53706925_483.png b/MM_Math/data_original_21/7054409/math/53706925_483.png deleted file mode 100644 index 12ab3a0648b788df8b30bfe936e9182433aebc29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706925_483.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3357adc8481aaededd764ad0d6c7d7269716b7c31485d9a5c4e8e6cffca85990 -size 10220 diff --git a/MM_Math/data_original_21/7054409/math/53706951_110.png b/MM_Math/data_original_21/7054409/math/53706951_110.png deleted file mode 100644 index 68546a7264b9751e1c5589ce553f0bb921612047..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706951_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d626aa85add52907e759b80c850bb256237856f9ae6509f2964c1393ee7847c -size 12515 diff --git a/MM_Math/data_original_21/7054409/math/53706958_450.png b/MM_Math/data_original_21/7054409/math/53706958_450.png deleted file mode 100644 index 50acb5aceb5c95a32a747d0335a5e79f0b06fcc8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706958_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab02afd4b7558bb07b92504ae5da8313986020980a87d1495f3c7950d53b2c8c -size 5323 diff --git a/MM_Math/data_original_21/7054409/math/53706994_460.png b/MM_Math/data_original_21/7054409/math/53706994_460.png deleted file mode 100644 index 726f1847bf131930dbd83d064d7071da3ce92280..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53706994_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e5457731c1c6e265d1a48d4b8af0df6ef16b451540d923d9fc6bbf50d57298c9 -size 70648 diff --git a/MM_Math/data_original_21/7054409/math/53707023_108.png b/MM_Math/data_original_21/7054409/math/53707023_108.png deleted file mode 100644 index 116dde34717aa503d0d8649b128163954eab8212..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/math/53707023_108.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c74c1358da1caf66f01898afb4122b88e3e6e894bc5e2d1a6dce949dad0b5fad -size 3308 diff --git a/MM_Math/data_original_21/7054409/solution_images/52302500_740.png b/MM_Math/data_original_21/7054409/solution_images/52302500_740.png deleted file mode 100644 index e447611dfaf6e734ff0ceb661c5e4e8715055d08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52302500_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54f36bcb6681779fac6f4348f5f6a6b30f53396feab4d3001d98486273df7cd3 -size 9878 diff --git a/MM_Math/data_original_21/7054409/solution_images/52302532_340.png b/MM_Math/data_original_21/7054409/solution_images/52302532_340.png deleted file mode 100644 index 5595485103003156eb150c391d0c239d49ecb3f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52302532_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c263336c86e751e62529612147ff78c685610fecd73c6a2f2fdeb01ea2c33745 -size 5811 diff --git a/MM_Math/data_original_21/7054409/solution_images/52302533_365.png b/MM_Math/data_original_21/7054409/solution_images/52302533_365.png deleted file mode 100644 index 07b55fc0bf075bed277e7f424bb14bab431bb17a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52302533_365.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb907ce407958c8c35ea88b6eacffc37967df194463d76473f899bb80266000a -size 5006 diff --git a/MM_Math/data_original_21/7054409/solution_images/52302537_790.png b/MM_Math/data_original_21/7054409/solution_images/52302537_790.png deleted file mode 100644 index a5b2099275392a2ac6e8f9c38addc56707fd0d5b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52302537_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ea17812bcf0d779bd2a012f083cb7da1beb9b62ee001484b2ebe3c702cbc818 -size 5237 diff --git a/MM_Math/data_original_21/7054409/solution_images/52302577_760.png b/MM_Math/data_original_21/7054409/solution_images/52302577_760.png deleted file mode 100644 index de998937d9b63d7ae821ebc901dddfb9c144fdda..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52302577_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ae15eba049264a3cd8bf2d2e2b0474bf07946018674d928bb833a53402eb35c -size 43242 diff --git a/MM_Math/data_original_21/7054409/solution_images/52302717_770.png b/MM_Math/data_original_21/7054409/solution_images/52302717_770.png deleted file mode 100644 index 3979092a36cd57c785830a3c658697315aaf308d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52302717_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b379b54759fcd83c4bc5c2ab5efd26ebfcf37e376dc17c18b045d3ee72d9c725 -size 4598 diff --git a/MM_Math/data_original_21/7054409/solution_images/52303783_690.png b/MM_Math/data_original_21/7054409/solution_images/52303783_690.png deleted file mode 100644 index c6774b2c50439b018e273a3688ddf024dc5ee33a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52303783_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e342095ba508443cbf4611c19952304aed2fc912b5a47a435b6ec00e3e8be15 -size 3234 diff --git a/MM_Math/data_original_21/7054409/solution_images/52303920_310.png b/MM_Math/data_original_21/7054409/solution_images/52303920_310.png deleted file mode 100644 index 35de643b6d72526e103a24c2bc6e65f50be81dc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52303920_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6fb40a60949385d9a64edc1a136415225204c89cacc1ad013d9397bf5a457b8e -size 7907 diff --git a/MM_Math/data_original_21/7054409/solution_images/52303921_300.png b/MM_Math/data_original_21/7054409/solution_images/52303921_300.png deleted file mode 100644 index a3fe0d892a59af22ee57ddc543b9f7b82dd7884b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52303921_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6087ab8075aa1b7f318ef9bb127a455cda76e2041192ed8d8adeb381f8a81517 -size 12125 diff --git a/MM_Math/data_original_21/7054409/solution_images/52304101_280.png b/MM_Math/data_original_21/7054409/solution_images/52304101_280.png deleted file mode 100644 index d70962eb743635ddbbef2f179bc6947a2002656a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52304101_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ce0760df4942a3ba781421db47661c6f97b43a4f751f7ef7ce67b0aaa900ca5 -size 7221 diff --git a/MM_Math/data_original_21/7054409/solution_images/52304107_660.png b/MM_Math/data_original_21/7054409/solution_images/52304107_660.png deleted file mode 100644 index f6d8b28408ca46a3d7071c7e3899eacfcdc97482..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52304107_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c3488c0027984b98ed5f947bffd92be3558c71b30524b1696f8c2cd882a2f4e -size 9044 diff --git a/MM_Math/data_original_21/7054409/solution_images/52331837_650.png b/MM_Math/data_original_21/7054409/solution_images/52331837_650.png deleted file mode 100644 index 02ff967cd60ab88a69d4f883cce349bd86edd214..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52331837_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1a5901d047d1a022c74b813595d04c967acd86331cdbfa012653246b3ee0c132 -size 42919 diff --git a/MM_Math/data_original_21/7054409/solution_images/52344112_190.png b/MM_Math/data_original_21/7054409/solution_images/52344112_190.png deleted file mode 100644 index d4ff69265a961151732de10ffc10b14caa64970b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52344112_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:654458b6a68f67fb99e4eb44aa5d61a16778222d8a94850acf0a7231a5c626c8 -size 2872 diff --git a/MM_Math/data_original_21/7054409/solution_images/52344117_560.png b/MM_Math/data_original_21/7054409/solution_images/52344117_560.png deleted file mode 100644 index 81965ec018545e36748d4b74b0c9b0704f0b1e45..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52344117_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e3ef7ab98f4656a3ad47d8f0c7a078796a1cca0788a75a288766a88b91333ce -size 3069 diff --git a/MM_Math/data_original_21/7054409/solution_images/52344186_570.png b/MM_Math/data_original_21/7054409/solution_images/52344186_570.png deleted file mode 100644 index bf8d8ecd32fa94517498998ad3dc02a3dc375eb6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52344186_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3f27c50eb2e17a37174358ef07d7d39410a5a74c901c046657b0976356339ae -size 5199 diff --git a/MM_Math/data_original_21/7054409/solution_images/52345445_510.png b/MM_Math/data_original_21/7054409/solution_images/52345445_510.png deleted file mode 100644 index e833f994fc1b51f058e85b64c2f3e7855dfa70d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52345445_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58ceac7140b91fa5c48b2ca503ae64c63d1587ec7a8be25d80dcf3f4e5352d01 -size 10163 diff --git a/MM_Math/data_original_21/7054409/solution_images/52354486_40.png b/MM_Math/data_original_21/7054409/solution_images/52354486_40.png deleted file mode 100644 index a60bc05a6bc50684b2d95baafa7370833947d628..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52354486_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fea15d5b05e500d19689d3735faa8b030bfee91f0daeb524d255d383bd72e7e -size 5462 diff --git a/MM_Math/data_original_21/7054409/solution_images/52354580_430.png b/MM_Math/data_original_21/7054409/solution_images/52354580_430.png deleted file mode 100644 index 615f17075f645bf3e65f189f95d77f56b851a988..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52354580_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71cf4b23bbfd8e4bb311bb6216fd9d70914eb889406c91aed8ae83e2560de7ba -size 4625 diff --git a/MM_Math/data_original_21/7054409/solution_images/52354643_422.png b/MM_Math/data_original_21/7054409/solution_images/52354643_422.png deleted file mode 100644 index adbfca0a18c74802989f6a69dd2346b5d1b8e8b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52354643_422.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96a76267ae4ccc77b53ea57ef4bb9104cb73e18aafa6cff22bba37406a903cf1 -size 3106 diff --git a/MM_Math/data_original_21/7054409/solution_images/52354792_400.png b/MM_Math/data_original_21/7054409/solution_images/52354792_400.png deleted file mode 100644 index 042b3145553aebacae9ea4d7515a5860def7afdf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52354792_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91510d5252c1e474c594eeb37ff6883ef468a6c4bc4187b6b1b8e4628d0b5623 -size 3499 diff --git a/MM_Math/data_original_21/7054409/solution_images/52354875_60.png b/MM_Math/data_original_21/7054409/solution_images/52354875_60.png deleted file mode 100644 index 87c9c9db8cddf9c9b4d382f63cd61796b7038116..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52354875_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc0e9c41170df00120c2ad8f84ee89545791f095db4579d9dc6a81686190caa4 -size 13044 diff --git a/MM_Math/data_original_21/7054409/solution_images/52354937_830.png b/MM_Math/data_original_21/7054409/solution_images/52354937_830.png deleted file mode 100644 index 3b485a1377635f25aa802ab458c7bc2a337844c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52354937_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97877a21f3b540a24ff95efc2820975845cc0211b98af4a10be7d70250e99eaa -size 3379 diff --git a/MM_Math/data_original_21/7054409/solution_images/52355149_10.png b/MM_Math/data_original_21/7054409/solution_images/52355149_10.png deleted file mode 100644 index 9b1a61d7cd7a6d0793c1b5d1eb0cd3bebe443b0f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52355149_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b1221eeed72b0f731e8acd6c0a3f9e2b67aa65eba91c17421b945080cd17fd9 -size 4108 diff --git a/MM_Math/data_original_21/7054409/solution_images/52423830_622.png b/MM_Math/data_original_21/7054409/solution_images/52423830_622.png deleted file mode 100644 index f6c9af3bc2d730d0bda542ec86412e2d6c9994dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52423830_622.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0e7eba2a1ddb62cd9ef79493168dc2cc0c4a2253aff98aa0f677d1a6031ee4e -size 2819 diff --git a/MM_Math/data_original_21/7054409/solution_images/52423904_610.png b/MM_Math/data_original_21/7054409/solution_images/52423904_610.png deleted file mode 100644 index 23303a4a31ea086f39903cf4fe392d62d354d49a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52423904_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0720871862be946b18cd93d847a185eccf2980f30a16c8ca853aaa3b71322a70 -size 11322 diff --git a/MM_Math/data_original_21/7054409/solution_images/52424336_591.png b/MM_Math/data_original_21/7054409/solution_images/52424336_591.png deleted file mode 100644 index 217e652e55229fc3d9fb11e3190596bb8aa70b7e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52424336_591.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5091d7edcd9142d839f90ec140edbef8a694506209010e43c8ebc48b545203f8 -size 3421 diff --git a/MM_Math/data_original_21/7054409/solution_images/52424415_580.png b/MM_Math/data_original_21/7054409/solution_images/52424415_580.png deleted file mode 100644 index 1254121f1a23ae96b0afd4242a21be5b00d8c2ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52424415_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20a554bf35d258dbbec15e93a46f00160461fbd111d9169151e2a1da4b996531 -size 4239 diff --git a/MM_Math/data_original_21/7054409/solution_images/52424722_252.png b/MM_Math/data_original_21/7054409/solution_images/52424722_252.png deleted file mode 100644 index 7c2196129dd23dfe7248e64502ab7ddc9218e9a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52424722_252.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48a59df097168c84a652c489593494355101467b99ec580a9a1cd34983bacd5d -size 25093 diff --git a/MM_Math/data_original_21/7054409/solution_images/52424728_601.png b/MM_Math/data_original_21/7054409/solution_images/52424728_601.png deleted file mode 100644 index c2264a662037fc8e76975df973eb3f343a75209e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52424728_601.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea82f9162cd12091b6a8d89da31d92ab1a22fef60613ce8e10e8c91425f590ab -size 51165 diff --git a/MM_Math/data_original_21/7054409/solution_images/52424790_200.png b/MM_Math/data_original_21/7054409/solution_images/52424790_200.png deleted file mode 100644 index 609f071d68082342d4589eaa2b3fa211fe9a48ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/52424790_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f0c01d253c2e7201cbff24c6445b9e68bcc8ef8fefbc6c1e3c00834f1b986d9 -size 3989 diff --git a/MM_Math/data_original_21/7054409/solution_images/53706819_472.png b/MM_Math/data_original_21/7054409/solution_images/53706819_472.png deleted file mode 100644 index 2fa9f5fed4213b7d2b2ec4ebdaa69d7be8782969..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/53706819_472.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:776a714cebab2603545055e231c6172b97e2e2fc66d40501252f01cb6cd4a9c9 -size 26904 diff --git a/MM_Math/data_original_21/7054409/solution_images/53706850_150.png b/MM_Math/data_original_21/7054409/solution_images/53706850_150.png deleted file mode 100644 index 6f11ab48f594273b779d303a9073a7f9c8bf75ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/53706850_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6136e139dc70d1c02e3596479b1387dc1bce4b4aa34220c4bd4a774fc169daa3 -size 3926 diff --git a/MM_Math/data_original_21/7054409/solution_images/53706851_130.png b/MM_Math/data_original_21/7054409/solution_images/53706851_130.png deleted file mode 100644 index b576e3d182bc5f22cf9c533e8a8871374ad159be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/53706851_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ced18d2d7c78fedaa70884f361db29247a96e92cd64a7881ea7a7b328564bcd0 -size 4084 diff --git a/MM_Math/data_original_21/7054409/solution_images/53706925_480.png b/MM_Math/data_original_21/7054409/solution_images/53706925_480.png deleted file mode 100644 index 6b7aa2db8a51f834f54293dfe52c7460913d33cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/53706925_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34023c53a515551046eb01c1aef200fc782d978364267b761a1fe56abf76d42b -size 27361 diff --git a/MM_Math/data_original_21/7054409/solution_images/53706958_450.png b/MM_Math/data_original_21/7054409/solution_images/53706958_450.png deleted file mode 100644 index adc25552a1fb6623c48cc28a113ac282bbba7cfc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/53706958_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92458bd362563db265d98bad4cc131e0e8a2c169be8beacf4140759b417940ab -size 5498 diff --git a/MM_Math/data_original_21/7054409/solution_images/53706994_462.png b/MM_Math/data_original_21/7054409/solution_images/53706994_462.png deleted file mode 100644 index 5465bb0437f91e11d325638ad250d9a028753589..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054409/solution_images/53706994_462.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f86d25ef551b2967ce72a29ee5953365063150d28f3aeb14b8471b4e57a75670 -size 73755 diff --git a/MM_Math/data_original_21/7054431/math/52210824_3813.png b/MM_Math/data_original_21/7054431/math/52210824_3813.png deleted file mode 100644 index ea1569d88d0a1fd87105bffbb7ef5fdc3ca53a65..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52210824_3813.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3dd8b165f10579d5fde8a1af374b34c7493bd9a15d49195dceecbfe1df5dae80 -size 3267 diff --git a/MM_Math/data_original_21/7054431/math/52210865_780.png b/MM_Math/data_original_21/7054431/math/52210865_780.png deleted file mode 100644 index 8bdaffbbe11228640e1ec3b270c0c373ba7f701c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52210865_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef2a588cdccdeb6482f38a9f279d4056bedc3f37e706be7bdf13bfd6cd0facb7 -size 5888 diff --git a/MM_Math/data_original_21/7054431/math/52211035_994.png b/MM_Math/data_original_21/7054431/math/52211035_994.png deleted file mode 100644 index 6e08ebdddbbfe19308b4f59f15a040abea9f076f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52211035_994.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c387cac509c9c969ae162f20240fb3148508d4278a114d7c2a46ef31afd8ed19 -size 36481 diff --git a/MM_Math/data_original_21/7054431/math/52211052_392.png b/MM_Math/data_original_21/7054431/math/52211052_392.png deleted file mode 100644 index 0e590e29e7bd7037a3936b59c724db63433b6001..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52211052_392.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21bc727ec78784d2c702d88856ad9c5d799c20b8101d0df56685dcb969209974 -size 7800 diff --git a/MM_Math/data_original_21/7054431/math/52211187_410.png b/MM_Math/data_original_21/7054431/math/52211187_410.png deleted file mode 100644 index 24a051310cedfd05a1a046a0d537db0c7e6623b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52211187_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff505767c9edf238c42c6d1c3d57dfc9b541d8ed040c9e7be12c8fa1eac94b47 -size 3516 diff --git a/MM_Math/data_original_21/7054431/math/52211191_400.png b/MM_Math/data_original_21/7054431/math/52211191_400.png deleted file mode 100644 index 7f7ec2e184038d85b189b5f6f2cbee94d7a60d43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52211191_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76e64910c4f0aa3b270ce1a13715bbd84715c5df30d5bb8a291e4038bbab318e -size 5588 diff --git a/MM_Math/data_original_21/7054431/math/52211277_424.png b/MM_Math/data_original_21/7054431/math/52211277_424.png deleted file mode 100644 index 81b0756f54e37450bef2a5952d272ac4ecf2c961..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52211277_424.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9f51521fdf82d950191607ab3f83dbf3e5bdb9d33a6f11f6ab7bbb882aa3abf -size 2630 diff --git a/MM_Math/data_original_21/7054431/math/52211561_802.png b/MM_Math/data_original_21/7054431/math/52211561_802.png deleted file mode 100644 index 8ab0a8d51c08069a08ea36ddb79101e87c2407e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52211561_802.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1988e18414fe8a7ec376eef7393ec57d3a41b3eb3be4719ddc362aff32051278 -size 86885 diff --git a/MM_Math/data_original_21/7054431/math/52211946_790.png b/MM_Math/data_original_21/7054431/math/52211946_790.png deleted file mode 100644 index 9579ca2e3df498fadd708e478a6b90bab2337662..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52211946_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29c48eeed5627029b868261628992098815ed7b6b3db6de86d0ab5f2f9af7b3b -size 5348 diff --git a/MM_Math/data_original_21/7054431/math/52225520_330.png b/MM_Math/data_original_21/7054431/math/52225520_330.png deleted file mode 100644 index cc115e6e580c8504c1076e8f369f5af9d988cf00..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225520_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:49efc62dfd06975728c4c4301aad4d4a4729a119bbf68ffea117bc8477bef5d6 -size 2122 diff --git a/MM_Math/data_original_21/7054431/math/52225526_751.png b/MM_Math/data_original_21/7054431/math/52225526_751.png deleted file mode 100644 index d09482970b235895845008453f68c23273a6ab9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225526_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08bfe067de61b93ec648f637f849629a4ae5318ab9365ee1976b1b1ed76658a1 -size 3177 diff --git a/MM_Math/data_original_21/7054431/math/52225539_981.png b/MM_Math/data_original_21/7054431/math/52225539_981.png deleted file mode 100644 index 73117254d7711d8a11f2094f42cb0410757b53a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225539_981.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f06bb1f2f616f541314ab92fc25b94a142c77e5b81bb8db23cd34dbda11c132 -size 8338 diff --git a/MM_Math/data_original_21/7054431/math/52225570_970.png b/MM_Math/data_original_21/7054431/math/52225570_970.png deleted file mode 100644 index 56487615464f535bf31e46340dc1c73fa9e9f53d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225570_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e3ee070b2543e61b9e235a5c74039fc0d6089955845d1b788cf3786418f7e5c -size 4964 diff --git a/MM_Math/data_original_21/7054431/math/52225656_345.png b/MM_Math/data_original_21/7054431/math/52225656_345.png deleted file mode 100644 index 3dcc985ed75211aede783445c8c8a82ef198c361..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225656_345.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f52d52a425a424e9cf4a79657f75614ba9411eed2864109dd15fb2ba38574092 -size 4833 diff --git a/MM_Math/data_original_21/7054431/math/52225662_740.png b/MM_Math/data_original_21/7054431/math/52225662_740.png deleted file mode 100644 index 20d9d0f96c831c57c13ec6d4cce0ecaa23762582..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225662_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:411c0efe694e9ed6a4b8afc8402d35e2c7afa66134d3cff334f6628d25e0d171 -size 3361 diff --git a/MM_Math/data_original_21/7054431/math/52225663_760.png b/MM_Math/data_original_21/7054431/math/52225663_760.png deleted file mode 100644 index a3c77456840b73c989f942ac81f120f2b4eefe55..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225663_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:36d0265e8597489db7641c820cf9d7643da7e2bbed55279f43fd8f76b5a62521 -size 8424 diff --git a/MM_Math/data_original_21/7054431/math/52225703_720.png b/MM_Math/data_original_21/7054431/math/52225703_720.png deleted file mode 100644 index 70a23652b191bb4d63fbbd5a0825ef959c098cb0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225703_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c00857edcd9fb07887665431246f949cb4fc005e2a70ed7f281dd2157bba25d8 -size 5229 diff --git a/MM_Math/data_original_21/7054431/math/52225768_370.png b/MM_Math/data_original_21/7054431/math/52225768_370.png deleted file mode 100644 index fa83634059a3e0df090f3bc6bc5e28487e57b654..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225768_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:283f43b164f330c7f8e9b747dd160b14c5dd07e84e4991b94d63cfd5ec5923c5 -size 3994 diff --git a/MM_Math/data_original_21/7054431/math/52225773_730.png b/MM_Math/data_original_21/7054431/math/52225773_730.png deleted file mode 100644 index 539106039f8a566e6927bc8c57d74a331613d51e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225773_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d423b7630e72d466df55b73a233979ea18730e9423de89af9531a1e49a7b3ef7 -size 5978 diff --git a/MM_Math/data_original_21/7054431/math/52225946_360.png b/MM_Math/data_original_21/7054431/math/52225946_360.png deleted file mode 100644 index 89ebd8d8f0bb6272d8743ccd4d9a76503f31d1c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225946_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f245b343498f72464819d570b54f845e08c5c7ad935d77cbe95011b8fadb8c9 -size 22338 diff --git a/MM_Math/data_original_21/7054431/math/52225948_350.png b/MM_Math/data_original_21/7054431/math/52225948_350.png deleted file mode 100644 index 1f519c0aa76c2c386e1001a56d7db4c701da905e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225948_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f2e8b33e5d10b5ba32b11f07de361769272b695fd1116f73c00ef942d3acae7 -size 7531 diff --git a/MM_Math/data_original_21/7054431/math/52225958_770.png b/MM_Math/data_original_21/7054431/math/52225958_770.png deleted file mode 100644 index 001ebae3a0caf67154d2ebe38a8f4e52120eb80c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52225958_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d5145f38591a15670da4e02b2b0a89a0deb62fb2cdbb9aaa84eb1ca606cc509 -size 10102 diff --git a/MM_Math/data_original_21/7054431/math/52250417_245.png b/MM_Math/data_original_21/7054431/math/52250417_245.png deleted file mode 100644 index 1cd142bde98121961920093376ad5a82322a8c38..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250417_245.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98407788e06f3987a6e4a5e6b6b22f033c2686521914653608c35308062baf5d -size 6230 diff --git a/MM_Math/data_original_21/7054431/math/52250418_2210.png b/MM_Math/data_original_21/7054431/math/52250418_2210.png deleted file mode 100644 index 7d302737f8b0f1d361e7c2297969842bc9086bc4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250418_2210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e07e30700fbcbab8fa829dcbf7022fcaeb934e60b13ef0ca1f4a1e5ba1ef4b45 -size 3020 diff --git a/MM_Math/data_original_21/7054431/math/52250424_6515.png b/MM_Math/data_original_21/7054431/math/52250424_6515.png deleted file mode 100644 index 83628bf59ae20c5c7aa86b5e998fc789fcc35933..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250424_6515.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc57ab7f70a7b0e93e334a676fdc9335bfe3942e2efa08c116e3b74013b73502 -size 3658 diff --git a/MM_Math/data_original_21/7054431/math/52250453_266.png b/MM_Math/data_original_21/7054431/math/52250453_266.png deleted file mode 100644 index ebdcba21b1f2cab3cf0224c1e95ce7c1d827d19a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250453_266.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:78a0594dd071c68c5f9c3fb470fede25ddfde455af55bf12381b13768ec2a137 -size 14737 diff --git a/MM_Math/data_original_21/7054431/math/52250518_190.png b/MM_Math/data_original_21/7054431/math/52250518_190.png deleted file mode 100644 index 62703232d422b98f78e144f1fa8379d997b7cf41..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250518_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5956f379c474ad467df5d12d1106d1052b016aba15e4ac1881cfbefbf4461348 -size 29400 diff --git a/MM_Math/data_original_21/7054431/math/52250596_201.png b/MM_Math/data_original_21/7054431/math/52250596_201.png deleted file mode 100644 index 2aa979c3bd37d5c1df07f61e0135dfdfa8634d0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250596_201.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fe9c523eb28774d7d6dc8c93eed11b04b436b2d2241a56180e48a6d5f3bc052 -size 3286 diff --git a/MM_Math/data_original_21/7054431/math/52250623_213.png b/MM_Math/data_original_21/7054431/math/52250623_213.png deleted file mode 100644 index 627df8f11302a119e45ae3b1506cebcc03885543..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250623_213.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94570395e0c90aa92421a352417a9249ce460f497b74a9f68ca84aac5d7de072 -size 80127 diff --git a/MM_Math/data_original_21/7054431/math/52250626_273.png b/MM_Math/data_original_21/7054431/math/52250626_273.png deleted file mode 100644 index 55e406f4e1fe5cd4bf5544653afab9a13725a34a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250626_273.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b1c46df26a64ef976a3da5b5fd796379bd29072f32ace24dfe925f78cc5bb0c -size 16547 diff --git a/MM_Math/data_original_21/7054431/math/52250632_679.png b/MM_Math/data_original_21/7054431/math/52250632_679.png deleted file mode 100644 index fcad25a0acc598ffa6009c87d8e39f918906eda8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250632_679.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:207bbc1be3db2aa4c8fd0461cb1b948685424f4b4f952f602425cd5349b4de73 -size 2737 diff --git a/MM_Math/data_original_21/7054431/math/52250664_2312.png b/MM_Math/data_original_21/7054431/math/52250664_2312.png deleted file mode 100644 index 4a93e287ef1c2b607ae94899408ca51f9f2fe81d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250664_2312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9409b174ffc76540bf0c6fb53d398f4c517bd29797aa7b9effc993763649253e -size 4993 diff --git a/MM_Math/data_original_21/7054431/math/52250669_660.png b/MM_Math/data_original_21/7054431/math/52250669_660.png deleted file mode 100644 index cb7e6c1c93387c51a186fe9986552f343b7d1783..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250669_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f3013a034c14f6dbe5231db12136e10331d3554758864f62aeaf5c99d84e40b -size 3452 diff --git a/MM_Math/data_original_21/7054431/math/52250704_644.png b/MM_Math/data_original_21/7054431/math/52250704_644.png deleted file mode 100644 index e9cca1ddf062bf7da5dabc2b20357d005a383f1f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250704_644.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a8b3d7c5f0d3ff1e189525de8695480d39d5f3447f76463971402bc3b63cacb -size 2494 diff --git a/MM_Math/data_original_21/7054431/math/52250758_9412.png b/MM_Math/data_original_21/7054431/math/52250758_9412.png deleted file mode 100644 index e70426ec21dc3cd4e81bb45310ce0d164bacc891..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250758_9412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce0b40119dc76ec18e0564be610f7f9f0d48c97b3504e39e2a4bd73972859958 -size 46418 diff --git a/MM_Math/data_original_21/7054431/math/52250772_250.png b/MM_Math/data_original_21/7054431/math/52250772_250.png deleted file mode 100644 index fe98872f48afb95d3e4daac748c106c4de868714..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250772_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60addcee41720ce568b098a29a363f30b69d51c64092a3776fbce465724e06e1 -size 3450 diff --git a/MM_Math/data_original_21/7054431/math/52250885_826.png b/MM_Math/data_original_21/7054431/math/52250885_826.png deleted file mode 100644 index 2c272d6f1cdbda14afb4af95f970f528c6f41809..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250885_826.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b14737abedc5f1789a42ee7456f0a93082465c9e088363163834f29f0e64230e -size 35622 diff --git a/MM_Math/data_original_21/7054431/math/52250892_9310.png b/MM_Math/data_original_21/7054431/math/52250892_9310.png deleted file mode 100644 index f841ea58141362dede7422e17747bc56de836361..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250892_9310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4fa7c5e9241d1db1b7b5caa9e6f172690590864381de58ab1e13059e6e367e35 -size 29388 diff --git a/MM_Math/data_original_21/7054431/math/52250936_180.png b/MM_Math/data_original_21/7054431/math/52250936_180.png deleted file mode 100644 index 2d63a7dbf1233941e09cf46fb066f29a6dc9fc30..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250936_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6171297ccc11629c57ac0432fe7b8ccad30bf4954ab267932f46e3763afa3cf -size 5335 diff --git a/MM_Math/data_original_21/7054431/math/52250970_290.png b/MM_Math/data_original_21/7054431/math/52250970_290.png deleted file mode 100644 index 1e3acd35bbdaa59b21e6e5ddbf4510577511d816..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52250970_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c669bf8e22bf4b01d61aa6f70aac410a46a7acc2131fadaebd17ce52c10a1975 -size 3300 diff --git a/MM_Math/data_original_21/7054431/math/52251026_700.png b/MM_Math/data_original_21/7054431/math/52251026_700.png deleted file mode 100644 index 02e84c696d0a195b42c803a588d313a913274f9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251026_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58ececaa0d7e2c51066598914c4875dfb74586d684e8005b5788c7ecb35e0751 -size 9839 diff --git a/MM_Math/data_original_21/7054431/math/52251027_694.png b/MM_Math/data_original_21/7054431/math/52251027_694.png deleted file mode 100644 index f9a183541b8d90ad18e0064f0fd790b8aabbc791..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251027_694.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3239881b5e5fc65104e7d769bf7dd9a9b1ddb210e27840ffa4a626f0e4873a22 -size 14127 diff --git a/MM_Math/data_original_21/7054431/math/52251038_280.png b/MM_Math/data_original_21/7054431/math/52251038_280.png deleted file mode 100644 index f4392505a1b53970a5075c25e3a83c91537060ae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251038_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:edbcce8d3bce09e59de2784186df2e025aaf4c0077c246eb9c7bc36498f89db7 -size 4656 diff --git a/MM_Math/data_original_21/7054431/math/52251043_680.png b/MM_Math/data_original_21/7054431/math/52251043_680.png deleted file mode 100644 index c9ce00a894cfd37c4a5c89ade6de922d02a223b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251043_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2b238662d7b840a59d5b398eb1a56d866a0862709516e572c455401d12df30e -size 3860 diff --git a/MM_Math/data_original_21/7054431/math/52251359_960.png b/MM_Math/data_original_21/7054431/math/52251359_960.png deleted file mode 100644 index 0cb38873300ab8ea669cbcf28d1b4d76bd63819e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251359_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c43260c820f2f0a1f78a35558799950090be483d7a55cf13dbc8420ec550bdf1 -size 8124 diff --git a/MM_Math/data_original_21/7054431/math/52251402_305.png b/MM_Math/data_original_21/7054431/math/52251402_305.png deleted file mode 100644 index 8ecb6d8dea66987c716910f5d31603a4fb4476a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251402_305.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3078d97e7783912cc9ce618f7d668beab7013e72b72c7a408c52feff1b095ab5 -size 16304 diff --git a/MM_Math/data_original_21/7054431/math/52251407_328.png b/MM_Math/data_original_21/7054431/math/52251407_328.png deleted file mode 100644 index c0ce9975d9669dbdccfe9e6d49f591fd42343af9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251407_328.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:860705a6f205cac4b08c17b40e880a7e385eb05045323ba1565272a7473173bf -size 15712 diff --git a/MM_Math/data_original_21/7054431/math/52251409_317.png b/MM_Math/data_original_21/7054431/math/52251409_317.png deleted file mode 100644 index dd1d108f70f400340477a3c05c08b554271157a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251409_317.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52df539169e2b0874e4f8e5a301449c7bdf2f0bc0143a5793342bff8a661b45c -size 15904 diff --git a/MM_Math/data_original_21/7054431/math/52251415_7116.png b/MM_Math/data_original_21/7054431/math/52251415_7116.png deleted file mode 100644 index 4449619ce49509b2ca4af838a356a5baa4e28ba5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251415_7116.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f7e29826cf06fceca2d2e626847494375442f3a2205ee2fee2550a0c08ee5e6 -size 8152 diff --git a/MM_Math/data_original_21/7054431/math/52251436_959.png b/MM_Math/data_original_21/7054431/math/52251436_959.png deleted file mode 100644 index 3ccc8701e330b7adfcce54ea460d7bc762313262..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251436_959.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:992104d492a601dba582711686d7c2daa4e2e7cbb9075423f5a458983dbd25f8 -size 32608 diff --git a/MM_Math/data_original_21/7054431/math/52251660_160.png b/MM_Math/data_original_21/7054431/math/52251660_160.png deleted file mode 100644 index eb2d47bc9e903f51bb8d264f258e0bcd47c84d05..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251660_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:22648436dbecdea257cf645e7c90f5554e818e2f45819c87f1c7242610ded07b -size 5214 diff --git a/MM_Math/data_original_21/7054431/math/52251663_170.png b/MM_Math/data_original_21/7054431/math/52251663_170.png deleted file mode 100644 index 3bdb4c80f1e5aa9e31c5a3ec5b8c1f937ff48c84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251663_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3096fe60900f8488bc61efba1bd980dc6068d9c2d35362837d6695eb5a5a5252 -size 6231 diff --git a/MM_Math/data_original_21/7054431/math/52251668_630.png b/MM_Math/data_original_21/7054431/math/52251668_630.png deleted file mode 100644 index 8c0ee84da59d6d690c659ddfb6c40721d289042e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251668_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dd9988284590c4e3d8040ee98f832259026916a065e17793a77c24665733bd1c -size 7226 diff --git a/MM_Math/data_original_21/7054431/math/52251738_151.png b/MM_Math/data_original_21/7054431/math/52251738_151.png deleted file mode 100644 index d1ab7b1b19be2444d58c6659f1afef1b77b0c5de..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251738_151.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:93aed715c68755e134975a51378b9debe8aea55ca382164387840ca67efbe352 -size 3525 diff --git a/MM_Math/data_original_21/7054431/math/52251811_627.png b/MM_Math/data_original_21/7054431/math/52251811_627.png deleted file mode 100644 index 155bf55dc130ef79efae6c13d3b9af9b3879971f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251811_627.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:646dca57216d894ee3f8f3a60ab890edd48c0c93f564099f65b27b7f0150aca3 -size 8824 diff --git a/MM_Math/data_original_21/7054431/math/52251984_612.png b/MM_Math/data_original_21/7054431/math/52251984_612.png deleted file mode 100644 index 5144667aeb95ff069503bdaf92e7edf615fb7be1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52251984_612.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:839a0e8e32e5afa0940abe0108e723915983ea5a87e4d6af4cd53e86c0d962e5 -size 8835 diff --git a/MM_Math/data_original_21/7054431/math/52252006_922.png b/MM_Math/data_original_21/7054431/math/52252006_922.png deleted file mode 100644 index 306e39b9c8bb0f9bbca3363de492048d6a298916..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52252006_922.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02cd815d32fa9cafca9a1647431e519bd40b8d0e93149deb8e7b04ac2c30804c -size 4833 diff --git a/MM_Math/data_original_21/7054431/math/52252059_140.png b/MM_Math/data_original_21/7054431/math/52252059_140.png deleted file mode 100644 index ab8dfa002f3cf7319348257f88de2376b6173e08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52252059_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:09ba0d15b9e891e22e6845082bbafc39f8809f4d42bccdf40cb15e6c870726b3 -size 2070 diff --git a/MM_Math/data_original_21/7054431/math/52252065_130.png b/MM_Math/data_original_21/7054431/math/52252065_130.png deleted file mode 100644 index 581a4cc762c1678aaea490eb196cb05e50ad527a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52252065_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76fbef9f21bf8d5b4729f6b9eb94648cfa1190cac252259b6be008698e5f7697 -size 4190 diff --git a/MM_Math/data_original_21/7054431/math/52252067_600.png b/MM_Math/data_original_21/7054431/math/52252067_600.png deleted file mode 100644 index 089937ae6efe870f6e385d0453e4126bcecb3a0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52252067_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df301501e399728391cf1da5f86d297096881fb05f93bb4a6d184c9e80e2ba59 -size 2462 diff --git a/MM_Math/data_original_21/7054431/math/52252071_590.png b/MM_Math/data_original_21/7054431/math/52252071_590.png deleted file mode 100644 index 631fc3600fed3576d63012d605e6a1a1b95d0b36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52252071_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d46b531f46134ebef60c1b11819c1aa11449c333526e7b53d4bbaf6be1cd6575 -size 3499 diff --git a/MM_Math/data_original_21/7054431/math/52252077_911.png b/MM_Math/data_original_21/7054431/math/52252077_911.png deleted file mode 100644 index 6af9924e74cf7842143d46ece25e9eac9cbed970..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52252077_911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:204d48d39bcb0bf585f5aab2e1b833b74a6da29f209a9f8398daff326bce113c -size 2679 diff --git a/MM_Math/data_original_21/7054431/math/52284136_576.png b/MM_Math/data_original_21/7054431/math/52284136_576.png deleted file mode 100644 index 2e5a4afffd9672e43aff76b42298bd18f61ac8d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52284136_576.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c22aad72fe1962c99daf2b29de838f79554fb8bf77b3249ed3f99c1793a203db -size 3270 diff --git a/MM_Math/data_original_21/7054431/math/52284147_899.png b/MM_Math/data_original_21/7054431/math/52284147_899.png deleted file mode 100644 index cef09078e547c87f7beeedd16daa2370c7b6ed06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52284147_899.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:faf49529b224f91c1955af1c625cacd995e3fb1308bf325ec76a41d5b1ba05df -size 3730 diff --git a/MM_Math/data_original_21/7054431/math/52284176_587.png b/MM_Math/data_original_21/7054431/math/52284176_587.png deleted file mode 100644 index a4aed5655980e80fcc66b68718d3cb8acb6d7754..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52284176_587.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:603c6e761207dae465cd1e10f389c40b9337d09a0b0f105703417c57fe4213b9 -size 2320 diff --git a/MM_Math/data_original_21/7054431/math/52284278_1011.png b/MM_Math/data_original_21/7054431/math/52284278_1011.png deleted file mode 100644 index 53b49b6809edb7fe438f805fdface467e8e05c69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52284278_1011.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31cad9d4f11865aac1197789d1bb0975c0f15cedb0eafa93cc4b9fd7f493c971 -size 2392 diff --git a/MM_Math/data_original_21/7054431/math/52284290_9010.png b/MM_Math/data_original_21/7054431/math/52284290_9010.png deleted file mode 100644 index 67b965c1792f169966c2e10727d23b92d46d982c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52284290_9010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba30c1bee17015412c58b6d07f9e5926c10089dcbf3b21fb92a6072785f0e2ca -size 7704 diff --git a/MM_Math/data_original_21/7054431/math/52284598_111.png b/MM_Math/data_original_21/7054431/math/52284598_111.png deleted file mode 100644 index a962ff9662602bf0481820c19d6347ac0d788665..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52284598_111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:124ad4566e57ebf208e6713bdd3b395e0860fb278fb7f38e115b46f9f3329215 -size 8152 diff --git a/MM_Math/data_original_21/7054431/math/52284877_125.png b/MM_Math/data_original_21/7054431/math/52284877_125.png deleted file mode 100644 index 5de73fb0a4318e9531f25c7fb33a2cc34aae29b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52284877_125.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e87d0537849a1d32decf7dba4ee21c281389910d4593f6964a47fc63422456db -size 4636 diff --git a/MM_Math/data_original_21/7054431/math/52284901_819.png b/MM_Math/data_original_21/7054431/math/52284901_819.png deleted file mode 100644 index 0d0ebba66fa4f986a169ae70ed01b2053d7982e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52284901_819.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb7737e55084e04e24cd593345f29ab1b981c0536dd255d8e54d61a141eedab1 -size 6410 diff --git a/MM_Math/data_original_21/7054431/math/52284940_5610.png b/MM_Math/data_original_21/7054431/math/52284940_5610.png deleted file mode 100644 index 1bed85832c4b70b36c16707a909d1f65fe671545..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52284940_5610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:efdff1a52f5e462bb5ea9c75815f9dcfe33d6e380818df59b23cefe1edf8cece -size 6736 diff --git a/MM_Math/data_original_21/7054431/math/52690432_490.png b/MM_Math/data_original_21/7054431/math/52690432_490.png deleted file mode 100644 index 5e6cf642db02f80ab62cbb7c13bf289004612573..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52690432_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60c58a23d94fb4202e7ba8140048710bbcbd749e32e47fa80beae181673f0264 -size 2531 diff --git a/MM_Math/data_original_21/7054431/math/52690697_501.png b/MM_Math/data_original_21/7054431/math/52690697_501.png deleted file mode 100644 index f017dacebca9dae9c7f3c370b638ac4e98ba4758..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52690697_501.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f62f50530d7f0cb79d7e24a21aad34db67abccc13e4a2bdf9ebcfbac631cfa6 -size 2188 diff --git a/MM_Math/data_original_21/7054431/math/52691056_70.png b/MM_Math/data_original_21/7054431/math/52691056_70.png deleted file mode 100644 index 067fb55176c8df66fab3198d66b554d555d82fc1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52691056_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b25025539e484a4f606bde56f2ba6b69b7ebd9ae702748c44c41ca62d106f059 -size 3153 diff --git a/MM_Math/data_original_21/7054431/math/52691062_512.png b/MM_Math/data_original_21/7054431/math/52691062_512.png deleted file mode 100644 index 7ffa2373d51cdabff356d97ffd810b527e7e3d75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/52691062_512.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:771d545512e805dac99491b0bb9de997ac36e4a829763647d968584ff223cd98 -size 4433 diff --git a/MM_Math/data_original_21/7054431/math/53728514_05.png b/MM_Math/data_original_21/7054431/math/53728514_05.png deleted file mode 100644 index 5b1bbf1bf222f2309e0539cdc47d8533555eb944..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728514_05.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb786468e5ff60df41fd6e115a1a2e856e6622091a8b7cf5babd11b9db89c762 -size 6540 diff --git a/MM_Math/data_original_21/7054431/math/53728548_96.png b/MM_Math/data_original_21/7054431/math/53728548_96.png deleted file mode 100644 index 051ae81f1bed0f8f3947bed426a7f92ae5ca1e11..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728548_96.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96e82da43e26a7b3d413b51636e4612f3158dbc28c8fe5271dabad5407014038 -size 2189 diff --git a/MM_Math/data_original_21/7054431/math/53728580_13.png b/MM_Math/data_original_21/7054431/math/53728580_13.png deleted file mode 100644 index 96e871715e38b3a6d99f9fcc48e4519556171915..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728580_13.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e95fdec0f2f44dfd24285251a512187ae8fe36d5dbbd60874ea7f707f70cc6b4 -size 17613 diff --git a/MM_Math/data_original_21/7054431/math/53728604_832.png b/MM_Math/data_original_21/7054431/math/53728604_832.png deleted file mode 100644 index 9780018044c1a2e25cc2b35183f605d19f2b8a29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728604_832.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d019446b40bc1fcb10d2b16858a814142b658fd2be9c8e60b7ca134dc55f51d2 -size 2602 diff --git a/MM_Math/data_original_21/7054431/math/53728711_82.png b/MM_Math/data_original_21/7054431/math/53728711_82.png deleted file mode 100644 index 24f772e7b9af3d2dcf4a99489ef068efb7234344..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728711_82.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aeccd00737e505aef44dd98178158ad9fa2654ab400f9f72ee28edfbd93bb19c -size 2413 diff --git a/MM_Math/data_original_21/7054431/math/53728740_21.png b/MM_Math/data_original_21/7054431/math/53728740_21.png deleted file mode 100644 index 046a6fa839095d2929eb11ecb558e2e1ce7a17b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728740_21.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:703f423c283db198252136f0bac740687465f2f0120ec9a9d4d0bdd5dbed3595 -size 1795 diff --git a/MM_Math/data_original_21/7054431/math/53728747_440.png b/MM_Math/data_original_21/7054431/math/53728747_440.png deleted file mode 100644 index cbcd6cb3511b0ee0c4de87dd04d32de4a46ea66c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728747_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c77fa0825f3bcb74758e9e64d0f9a5d2117985d6ba00147aa5654621f16f1558 -size 2738 diff --git a/MM_Math/data_original_21/7054431/math/53728774_840.png b/MM_Math/data_original_21/7054431/math/53728774_840.png deleted file mode 100644 index b89039724334be167f12cfa990ec1779a38fa2e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728774_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cac6c96d05e1a52db8f7b82a7230a50904c7393dd37f921f6893828945c59866 -size 7916 diff --git a/MM_Math/data_original_21/7054431/math/53728800_39.png b/MM_Math/data_original_21/7054431/math/53728800_39.png deleted file mode 100644 index 59dc1923c4f495375b9fa4497a9c41139684505a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728800_39.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b071c8b23e04e9ed24c43cde1496b2de14ce2dcc22cf460c2db5fdf723b03bf -size 2933 diff --git a/MM_Math/data_original_21/7054431/math/53728859_853.png b/MM_Math/data_original_21/7054431/math/53728859_853.png deleted file mode 100644 index c868a55bae8320429d499a872d1402695e170b9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728859_853.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb002e85df8a6db9b5df2dcb3caccb537f75b0a3925195cd78cf1d7be157b3ea -size 54860 diff --git a/MM_Math/data_original_21/7054431/math/53728938_550.png b/MM_Math/data_original_21/7054431/math/53728938_550.png deleted file mode 100644 index d31b2fca6329c7c1b935151b3815d59e7ee4e9ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728938_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfe22f52030c2d2a208b6f3cf68e3a3a50f974620558127b6ad9b1d1e1a2503e -size 3218 diff --git a/MM_Math/data_original_21/7054431/math/53728940_450.png b/MM_Math/data_original_21/7054431/math/53728940_450.png deleted file mode 100644 index add8bedb30684b67ecd3e847f215a1813e2d00bd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728940_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6869f71ce7886c584a573038b513a2d4195d7b6589796f34babb1f5d8aa88de -size 3257 diff --git a/MM_Math/data_original_21/7054431/math/53728960_880.png b/MM_Math/data_original_21/7054431/math/53728960_880.png deleted file mode 100644 index 3da4c2af8f6df19246364f2f57046195030f0e9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728960_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d86c75db93d1b50804c7a6cf3fbc70cea116f1b43d03612d8a5694cf62ab9c4a -size 236622 diff --git a/MM_Math/data_original_21/7054431/math/53728977_545.png b/MM_Math/data_original_21/7054431/math/53728977_545.png deleted file mode 100644 index 062e977fa323d6d4e9005634ce39e9a90c112438..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728977_545.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf2196639f844ef48e2f297ab2c08621414c1c8878810ef492327edccee431ed -size 2057 diff --git a/MM_Math/data_original_21/7054431/math/53728981_538.png b/MM_Math/data_original_21/7054431/math/53728981_538.png deleted file mode 100644 index cf9bf28ebd6035948cff7527cd1778ca01ef2bd6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728981_538.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b45df527ba50d229c9edecd289b0e89693167c905cf82dbaaa39fa39c72b2498 -size 2681 diff --git a/MM_Math/data_original_21/7054431/math/53728996_866.png b/MM_Math/data_original_21/7054431/math/53728996_866.png deleted file mode 100644 index 9547205c7c6cffda8cac65961a740ddea6e4b711..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53728996_866.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d571a0e0240d88acfc10289a146d257748bf7ebb858cfe8130de8b3d0965278 -size 150025 diff --git a/MM_Math/data_original_21/7054431/math/53729004_50.png b/MM_Math/data_original_21/7054431/math/53729004_50.png deleted file mode 100644 index f118bfecde8199eae7163af049efe34ad2027a58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53729004_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21447ee5b79baa4748e4f2e48bceebd407bb7a96aeaa31bfc58872d7bde41a3a -size 23424 diff --git a/MM_Math/data_original_21/7054431/math/53729052_874.png b/MM_Math/data_original_21/7054431/math/53729052_874.png deleted file mode 100644 index 97f503e18a6778166937dfba87d5d376697c4d5d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53729052_874.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f35954c6db5103bcb7d38192e60761c34ace74f94e80a65a8c28654e98443d3 -size 2665 diff --git a/MM_Math/data_original_21/7054431/math/53729080_4610.png b/MM_Math/data_original_21/7054431/math/53729080_4610.png deleted file mode 100644 index e7b7dc47a13a8e58a1e4fec2f5219e97a20e141f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53729080_4610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef8264d2ba0d5913a877e03b7ae10b3867c3aaefa704d8aa80a7d09a5f61dace -size 21643 diff --git a/MM_Math/data_original_21/7054431/math/53729102_523.png b/MM_Math/data_original_21/7054431/math/53729102_523.png deleted file mode 100644 index 196efc9828a2556105c8fe750bff17ac3bf46dd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53729102_523.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a4bead73dcdb5c408e7fefcc908970a9a101bccb271b3dcc0c6514d4f5d2cde -size 2837 diff --git a/MM_Math/data_original_21/7054431/math/53729175_62.png b/MM_Math/data_original_21/7054431/math/53729175_62.png deleted file mode 100644 index 4378aa8fb276291ca60e015c527aeffc303a2999..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53729175_62.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d960cb4834dbfa291e134e29c3421325cacc7bf4dbd4dc57a92ff7d9d29cc39 -size 3404 diff --git a/MM_Math/data_original_21/7054431/math/53729180_436.png b/MM_Math/data_original_21/7054431/math/53729180_436.png deleted file mode 100644 index c067fa83aa6044002d4deb388e4e5d9dd8bb1a24..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53729180_436.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd531fdfc8e86a645e19e6f755032d426acb5f9d817d5cb8a28fbb4a5aae8b56 -size 4175 diff --git a/MM_Math/data_original_21/7054431/math/53729246_473.png b/MM_Math/data_original_21/7054431/math/53729246_473.png deleted file mode 100644 index 0abea951570d637a6125012c46ea3a7c1a6021ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53729246_473.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19fcbf81cd15af169ead7ff51acdb0505a6253a74d33978e6a6fc003c66db660 -size 50433 diff --git a/MM_Math/data_original_21/7054431/math/53729285_480.png b/MM_Math/data_original_21/7054431/math/53729285_480.png deleted file mode 100644 index d0dc9ba02058cd0b88cee291660643b92e80b7ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/math/53729285_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b295de68a763ef8cc3db2f039eb8065674a91f5b830fd70e6b9dc428c198610 -size 3424 diff --git a/MM_Math/data_original_21/7054431/solution_images/52210865_780.png b/MM_Math/data_original_21/7054431/solution_images/52210865_780.png deleted file mode 100644 index c4e42daffe5ecf68a2cffc4cdffa74023a05d0a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52210865_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d32b7823320c55be17564f8963c18ce442a9850d89ba83a0ee685310999dcbdc -size 8190 diff --git a/MM_Math/data_original_21/7054431/solution_images/52211052_392.png b/MM_Math/data_original_21/7054431/solution_images/52211052_392.png deleted file mode 100644 index 0e590e29e7bd7037a3936b59c724db63433b6001..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52211052_392.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21bc727ec78784d2c702d88856ad9c5d799c20b8101d0df56685dcb969209974 -size 7800 diff --git a/MM_Math/data_original_21/7054431/solution_images/52211277_420.png b/MM_Math/data_original_21/7054431/solution_images/52211277_420.png deleted file mode 100644 index 3e44cce0993c56c34bc34564c51a6adf6c4a32f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52211277_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4527d29f4e2d6539fc8cf56e04fcd8d2f902092b01fabf8b515433d90126febb -size 3171 diff --git a/MM_Math/data_original_21/7054431/solution_images/52211561_800.png b/MM_Math/data_original_21/7054431/solution_images/52211561_800.png deleted file mode 100644 index 1cca37c85b4e1950c3c85b2b25e79d71406b6153..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52211561_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb965dd62ee195217b9ce5797cbbe63fa2f2b1ea618a531efba00f4908232e26 -size 100786 diff --git a/MM_Math/data_original_21/7054431/solution_images/52211561_807.png b/MM_Math/data_original_21/7054431/solution_images/52211561_807.png deleted file mode 100644 index 2957731b121523fde847da91873c212929e4f1c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52211561_807.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:090a34032950ce7465e4d1d8a52ffe6140f522b84deb2e9cdfac1a5836fcfb8b -size 86676 diff --git a/MM_Math/data_original_21/7054431/solution_images/52211946_790.png b/MM_Math/data_original_21/7054431/solution_images/52211946_790.png deleted file mode 100644 index 9d35ee8d60008f6d75652773a43288629093368d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52211946_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7cee28bb7068c2fbe06a9452af8234dbf21d55a0dbb6c1abd52b67658f5e6f4a -size 3052 diff --git a/MM_Math/data_original_21/7054431/solution_images/52225526_750.png b/MM_Math/data_original_21/7054431/solution_images/52225526_750.png deleted file mode 100644 index 86d40e738b0c473d246d837cd248a0dc76029d8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52225526_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c02600a3f8a56b4e8e7040eec4ba6b239f9992ef475ce65cb6633222d5571c4 -size 9111 diff --git a/MM_Math/data_original_21/7054431/solution_images/52225663_760.png b/MM_Math/data_original_21/7054431/solution_images/52225663_760.png deleted file mode 100644 index 31b3db2728f5f903582a2e69e3e92307a36fdf19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52225663_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3524c12d7bc184a464b7f9a972dc202ced8aca5c8902104f811e3c6b71f268d9 -size 9641 diff --git a/MM_Math/data_original_21/7054431/solution_images/52225768_370.png b/MM_Math/data_original_21/7054431/solution_images/52225768_370.png deleted file mode 100644 index cfb037951b78054774a5c6c0bc1831fd7a8adb5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52225768_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1792e66f3f46a5eb24199116988bd2e2ec3e76ce9c184709dbcb0fbbcc88d28b -size 4972 diff --git a/MM_Math/data_original_21/7054431/solution_images/52225773_730.png b/MM_Math/data_original_21/7054431/solution_images/52225773_730.png deleted file mode 100644 index 6e434e5b8d66c129f1f1fb4741f0ea2dae7e4998..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52225773_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb2e84e34fb66212bbbee401853ad0722079ba3f4b5b5e4acce7b7f50d8505fd -size 5276 diff --git a/MM_Math/data_original_21/7054431/solution_images/52225948_350.png b/MM_Math/data_original_21/7054431/solution_images/52225948_350.png deleted file mode 100644 index 772e5208dc78ee22942107c6aa9c06b84cee6bfa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52225948_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6c097446aebd786f003e9dc5279dea0c0b011c70ebbd313d354a97a1486b13d8 -size 3372 diff --git a/MM_Math/data_original_21/7054431/solution_images/52225958_770.png b/MM_Math/data_original_21/7054431/solution_images/52225958_770.png deleted file mode 100644 index 6d0e5653625fcad1779d8557c8ab0192928e15f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52225958_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb29fb737feecc7478379f0781b31310480f479869ed2079446a6dba6268e7b9 -size 3777 diff --git a/MM_Math/data_original_21/7054431/solution_images/52250417_240.png b/MM_Math/data_original_21/7054431/solution_images/52250417_240.png deleted file mode 100644 index 86eff088c74b275de9c4bc77c58f33246bca06e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52250417_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fea47618fe4c4c2a618e9b4e72c2e8205e3f8d0f180d8761bf648520113c181 -size 6971 diff --git a/MM_Math/data_original_21/7054431/solution_images/52250418_220.png b/MM_Math/data_original_21/7054431/solution_images/52250418_220.png deleted file mode 100644 index bc2be29870de7cb93b80789a449b2225a3c312fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52250418_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:181e1652e80519661ec5a8ef9e5ed610a5696ce5a25fd40ce02e4560496a2b26 -size 3280 diff --git a/MM_Math/data_original_21/7054431/solution_images/52250424_650.png b/MM_Math/data_original_21/7054431/solution_images/52250424_650.png deleted file mode 100644 index 6c087c98a0c34b7a359636bc75df64513f710f54..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52250424_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:020147169dae28431eb2ccb25c44d51841aa9c7927fb8f853ff4bd6f8ba17ced -size 4519 diff --git a/MM_Math/data_original_21/7054431/solution_images/52250453_260.png b/MM_Math/data_original_21/7054431/solution_images/52250453_260.png deleted file mode 100644 index 43d644cef5ecb2007540128d92da0e10f32b00f0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52250453_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7a9c72d1633831f8668b8c8b91af1f2725c77c7912a0b60b5ab92b8b179c994 -size 4246 diff --git a/MM_Math/data_original_21/7054431/solution_images/52250936_180.png b/MM_Math/data_original_21/7054431/solution_images/52250936_180.png deleted file mode 100644 index 8f499251ddc8b16731be45721ff0b048a0a47347..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52250936_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dbffacf3fdd73546551643cab735636e96fe059a7da50c4ccd156c7dac862e9e -size 5707 diff --git a/MM_Math/data_original_21/7054431/solution_images/52251038_280.png b/MM_Math/data_original_21/7054431/solution_images/52251038_280.png deleted file mode 100644 index a4274508e6b84e5a96cb1f11e51ff263fde6be1c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52251038_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7fac6a7e4f34648c62dfa43ba79130a5d09e21f23860e226a62e1d9e4d70c4aa -size 2476 diff --git a/MM_Math/data_original_21/7054431/solution_images/52251407_320.png b/MM_Math/data_original_21/7054431/solution_images/52251407_320.png deleted file mode 100644 index e511cb260125a0909e4a458a3977319f66d4eced..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52251407_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f6fe3d5d2e6aeb10adf9e9a83d4a759548cc01e672290c87874870355f29d5f -size 6141 diff --git a/MM_Math/data_original_21/7054431/solution_images/52251409_310.png b/MM_Math/data_original_21/7054431/solution_images/52251409_310.png deleted file mode 100644 index ff682ec53dfc91bb7fe92395050ba8aa319b39b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52251409_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc90fed7be72586b1eea6270f5e0badb99508d4dc07ac084137cb06bd581c607 -size 11934 diff --git a/MM_Math/data_original_21/7054431/solution_images/52251415_710.png b/MM_Math/data_original_21/7054431/solution_images/52251415_710.png deleted file mode 100644 index 07ae35e4deb4acf6fa3082243563991f932ec79d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52251415_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37e919acd919e1e1c3b5bc9ead7861a8385de2069a2a98216f0f62e3347b21a0 -size 7573 diff --git a/MM_Math/data_original_21/7054431/solution_images/52251660_160.png b/MM_Math/data_original_21/7054431/solution_images/52251660_160.png deleted file mode 100644 index 0de42d72e399d1631bbdc72ae963ba3915f17bd9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52251660_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15314417574438a2eb466a3cf1871a7e54f821edc6e2ffb777bdb63b89f33ae8 -size 5124 diff --git a/MM_Math/data_original_21/7054431/solution_images/52251663_170.png b/MM_Math/data_original_21/7054431/solution_images/52251663_170.png deleted file mode 100644 index 816f89d51d4c1aace76accf6eb75cd37f4024f32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52251663_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:508fb28aa2717c0e321adbb2358300388c3050398e75fdc25ea3987d5e95ce87 -size 12157 diff --git a/MM_Math/data_original_21/7054431/solution_images/52251984_610.png b/MM_Math/data_original_21/7054431/solution_images/52251984_610.png deleted file mode 100644 index af38abc78bb8f0cfc905aa1dfd9f86a3f79874ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52251984_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:462af51f448c46655fcc878c2421924869932cf17cb99ffcc247a99e191fbdf4 -size 9627 diff --git a/MM_Math/data_original_21/7054431/solution_images/52252065_132.png b/MM_Math/data_original_21/7054431/solution_images/52252065_132.png deleted file mode 100644 index 483ca45be69a02a4ba9be248f7f5c2d2eaae4e61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52252065_132.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bfc0338b4bcced81b3404171df93795b225f46b2c22008c8b087e807bb7569d8 -size 5173 diff --git a/MM_Math/data_original_21/7054431/solution_images/52252065_137.png b/MM_Math/data_original_21/7054431/solution_images/52252065_137.png deleted file mode 100644 index 0aec0103aa6f815bd0a2118620ae7106ea48a4a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52252065_137.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5bbcec5b41fc12decfc359723134279e310fdffb74d44ac96fffbae3cfe2a219 -size 5066 diff --git a/MM_Math/data_original_21/7054431/solution_images/52252067_600.png b/MM_Math/data_original_21/7054431/solution_images/52252067_600.png deleted file mode 100644 index fb2c0fa1f98b4ef3502ea013c9f7aaf25e74b563..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52252067_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0733fb3d6a2e7c7fbf43a9d08a7f8139028d7486cfecf6514fdd7e0de82073ec -size 2693 diff --git a/MM_Math/data_original_21/7054431/solution_images/52252071_590.png b/MM_Math/data_original_21/7054431/solution_images/52252071_590.png deleted file mode 100644 index f735dfd5e9a65dfe54f293e82b0447610a45e928..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52252071_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65c7c7b40d93697456486c8e26ec3ea4776dac8e04f24864c9ea42cd1cf88dbc -size 3762 diff --git a/MM_Math/data_original_21/7054431/solution_images/52284136_572.png b/MM_Math/data_original_21/7054431/solution_images/52284136_572.png deleted file mode 100644 index 9401a4819188ea2bbb64a9b89b8f3cd28b5c831d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52284136_572.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32aa15a3695c5698b71144a7ed8758c0ad239ed1cd63c80562eec6a0dd9d86d1 -size 4133 diff --git a/MM_Math/data_original_21/7054431/solution_images/52284278_101.png b/MM_Math/data_original_21/7054431/solution_images/52284278_101.png deleted file mode 100644 index 3e853a1b15a88938d2f78e2a10538c910ba521c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52284278_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:84e029474f8f79793802ed9bda53515a75a518576a323c9c54cbea02e82a7b7f -size 4839 diff --git a/MM_Math/data_original_21/7054431/solution_images/52284940_560.png b/MM_Math/data_original_21/7054431/solution_images/52284940_560.png deleted file mode 100644 index 9fa0ea01b591c38b3f23f4beb816c2a4a3a24039..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52284940_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:57c45034fe779e8958d9064a312ea1f88507e5e5e34316b3b62885cb3d1e2943 -size 9003 diff --git a/MM_Math/data_original_21/7054431/solution_images/52691056_70.png b/MM_Math/data_original_21/7054431/solution_images/52691056_70.png deleted file mode 100644 index d02d16c6355a148eb72ff807679f4d5cc31f0809..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52691056_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a056967b5b8af6b2abfe446e9324cd8aa0b6724ead424b7e89a1a66f83e71ce6 -size 8794 diff --git a/MM_Math/data_original_21/7054431/solution_images/52691062_510.png b/MM_Math/data_original_21/7054431/solution_images/52691062_510.png deleted file mode 100644 index bb5c9b91d10d0bb927d3ddac4c55e802205f491f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/52691062_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8dc081495977990ec677c8290bc6afade98d00120590b3ccb32439642a69a869 -size 10978 diff --git a/MM_Math/data_original_21/7054431/solution_images/53728514_02.png b/MM_Math/data_original_21/7054431/solution_images/53728514_02.png deleted file mode 100644 index 28ced6687f0c183ed243189e552b2089176ee069..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/53728514_02.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a88145c0e72fb6e0e57b74761885876bd6eba5d968ca8fe38f7d5ab1e40b97e3 -size 7788 diff --git a/MM_Math/data_original_21/7054431/solution_images/53728548_90.png b/MM_Math/data_original_21/7054431/solution_images/53728548_90.png deleted file mode 100644 index ebb087c965e8bec80eaafc340fbba82455deb1f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/53728548_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81ed4f86a02b3b2bcaa9fa5a220879493c0d7f0ec4fad3a8dc5af4ad642474ee -size 21155 diff --git a/MM_Math/data_original_21/7054431/solution_images/53728580_10.png b/MM_Math/data_original_21/7054431/solution_images/53728580_10.png deleted file mode 100644 index 62505798bee8e250c707c73df5d1cfde426de31d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/53728580_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b4100f2a7b77e8819180b0aab2cb976a7512c9da2a523482d7c89f611e80574c -size 21248 diff --git a/MM_Math/data_original_21/7054431/solution_images/53728711_80.png b/MM_Math/data_original_21/7054431/solution_images/53728711_80.png deleted file mode 100644 index 7d02c5faa4f6b308961eb2aaa8cee91403986ecb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/53728711_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:191e253d9efcb28ffd915b3c74d2ecd95c91ca089ef53a9afe65c6bd08f56ef5 -size 4668 diff --git a/MM_Math/data_original_21/7054431/solution_images/53728800_30.png b/MM_Math/data_original_21/7054431/solution_images/53728800_30.png deleted file mode 100644 index c64b8013c57124f217baad4c9a5c22cafbae68dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/53728800_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bad9cd779d62f53822269d4e643fab4e901d8f028952c59615ebed6aa035a6b -size 3049 diff --git a/MM_Math/data_original_21/7054431/solution_images/53728981_530.png b/MM_Math/data_original_21/7054431/solution_images/53728981_530.png deleted file mode 100644 index 0418d24fa730ad887732d6cb43c6a262d6d39a1d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/53728981_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a3778ee87e431f0f225da2761bff9f0d3a5bf367b07f1a012399df1e6357bdcd -size 3620 diff --git a/MM_Math/data_original_21/7054431/solution_images/53729180_430.png b/MM_Math/data_original_21/7054431/solution_images/53729180_430.png deleted file mode 100644 index b953711512f22da3be67f1f5ce780471f3a5e50d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/53729180_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb985fec7f6416ccafa75dd4510114032327d7abff58166df2b109c4062c4945 -size 7376 diff --git a/MM_Math/data_original_21/7054431/solution_images/53729246_475.png b/MM_Math/data_original_21/7054431/solution_images/53729246_475.png deleted file mode 100644 index 7c5cf2cf4f9360f69edd4b50a6a6f78109e1fe39..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/53729246_475.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b819ecf52ad0f4e2f6127142d35ca997d4e0a810adacfc3a80d174e8378c1994 -size 55344 diff --git a/MM_Math/data_original_21/7054431/solution_images/53729285_480.png b/MM_Math/data_original_21/7054431/solution_images/53729285_480.png deleted file mode 100644 index 416d98c638a604803f5498e0123d42d5a400f846..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054431/solution_images/53729285_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63ea4b3b406f51aa3b6f8d265078a59d92328c8147a2cd2b0b96f8d0f38bc3cd -size 6321 diff --git a/MM_Math/data_original_21/7054436/math/52122183_7111.png b/MM_Math/data_original_21/7054436/math/52122183_7111.png deleted file mode 100644 index dc6c52b3c46c2a29119a5c2ec684d8ab5a8371ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52122183_7111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fbf7df8de641aa7dfac3abae745ced70ca4d9b38f6c9c996d89a90cb97e68e34 -size 3688 diff --git a/MM_Math/data_original_21/7054436/math/52122243_990.png b/MM_Math/data_original_21/7054436/math/52122243_990.png deleted file mode 100644 index b0f98bdfc151a3f263aa0cce104ded2e0f2996b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52122243_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71cac702c24935d32b43dbb42c7e053584a21a52e6b4d4c1ee2a6da77ee9056a -size 4515 diff --git a/MM_Math/data_original_21/7054436/math/52159827_321.png b/MM_Math/data_original_21/7054436/math/52159827_321.png deleted file mode 100644 index c16d8ad440a004bab742530afbb36e495cb161d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52159827_321.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89cbac8955ce757c46ecd3a12351820baffa06427059c0ae59ee3d0c9b99d4a4 -size 2531 diff --git a/MM_Math/data_original_21/7054436/math/52159927_302.png b/MM_Math/data_original_21/7054436/math/52159927_302.png deleted file mode 100644 index 78d591394e511673a41617f4503ca919c14e1e81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52159927_302.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc9960c3693cca37f00e7c2c975d7bd7432406fa01ed56fca346624f91d932a4 -size 3402 diff --git a/MM_Math/data_original_21/7054436/math/52159940_972.png b/MM_Math/data_original_21/7054436/math/52159940_972.png deleted file mode 100644 index 0fd203ef8c05865695b6f109e9d6caf512046787..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52159940_972.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c9db8ef83466cba1353ed93d1edd2931f6071d9be759f156e7938ddedfdebdc -size 7533 diff --git a/MM_Math/data_original_21/7054436/math/52159971_6813.png b/MM_Math/data_original_21/7054436/math/52159971_6813.png deleted file mode 100644 index 7b11f283deb8b86a7cf56aef6889a50fd0415901..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52159971_6813.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00cd0b499ae3840ed60e107d1fcb26da3be6695fff043840e48d47fe74a5a258 -size 7238 diff --git a/MM_Math/data_original_21/7054436/math/52160043_670.png b/MM_Math/data_original_21/7054436/math/52160043_670.png deleted file mode 100644 index 7cabb6f927c8922431437476cbcb5282498a0cf8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160043_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b62114943c093439b44c7895d5e00939dd36dc1a32d7e78b310d928cfb1ac0c -size 14534 diff --git a/MM_Math/data_original_21/7054436/math/52160124_660.png b/MM_Math/data_original_21/7054436/math/52160124_660.png deleted file mode 100644 index 4da8b736e13bcdd9fb615e3b05b003f6ea742760..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160124_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44ae1bfdcdf5528cf47bc7cd337618ff249aef5e7f2d6e93ddf8ff88e3b71053 -size 5228 diff --git a/MM_Math/data_original_21/7054436/math/52160164_290.png b/MM_Math/data_original_21/7054436/math/52160164_290.png deleted file mode 100644 index 82fdfde8f1fdd78aa272f27dbfabf7716e00d81d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160164_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52aacb61fe26674638e12cea7246d52da64eaeb90517da9ba2f48fedf7ede8a5 -size 57310 diff --git a/MM_Math/data_original_21/7054436/math/52160165_280.png b/MM_Math/data_original_21/7054436/math/52160165_280.png deleted file mode 100644 index f3c8a4d2aa6cecb03ff1029f113eb93f01d5c9c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160165_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21b90946e5fe6eb92c82e6f6e834089f47157ad20cbea3f231806d9d7b85a339 -size 18153 diff --git a/MM_Math/data_original_21/7054436/math/52160170_701.png b/MM_Math/data_original_21/7054436/math/52160170_701.png deleted file mode 100644 index f0dfc6e0bd465be83b818e239ee8dc4cfa0f5c58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160170_701.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb23ea80e89055b1bc72c06fa00f9e387921d854e19806933426227e2f0d78ac -size 14130 diff --git a/MM_Math/data_original_21/7054436/math/52160201_319.png b/MM_Math/data_original_21/7054436/math/52160201_319.png deleted file mode 100644 index 8bd4cbf25a4adbe24af349eb555f1f05b8557aaf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160201_319.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8adcf123c818e579f680d4f40ff2510bb7dfa377b7a8a49b1b012449f7a9d92 -size 2247 diff --git a/MM_Math/data_original_21/7054436/math/52160204_271.png b/MM_Math/data_original_21/7054436/math/52160204_271.png deleted file mode 100644 index 5debd45484d73a8211503f6f713504045649828e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160204_271.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9bf92e7f7929526407d4b2b26e910dd8a2486359c64a70007310a5444ea5c91b -size 2907 diff --git a/MM_Math/data_original_21/7054436/math/52160216_960.png b/MM_Math/data_original_21/7054436/math/52160216_960.png deleted file mode 100644 index 607865e4bbdd15922af0b2ac3a5b0e0545c32c24..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160216_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aecf0ba169b101862877c80f4cee2e1933325a7f9d780207148937c6eb44c9c1 -size 2230 diff --git a/MM_Math/data_original_21/7054436/math/52160354_3411.png b/MM_Math/data_original_21/7054436/math/52160354_3411.png deleted file mode 100644 index 039ec1f5477d4ce6cb59c5ec9a177e69cbf8f368..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160354_3411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3bbcf7fb7ba6997fbd4470cd2bbf6423c3d593aeec83308ff40bab11770797c8 -size 2328 diff --git a/MM_Math/data_original_21/7054436/math/52160356_339.png b/MM_Math/data_original_21/7054436/math/52160356_339.png deleted file mode 100644 index c8ca2555269fdb7119961fdbd90a77ca86d2655e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160356_339.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76a4d709cf3ca21bcf914f95c0bba96dd31c7bdc5b014dd66d8f4717c069b4c1 -size 2565 diff --git a/MM_Math/data_original_21/7054436/math/52160361_6910.png b/MM_Math/data_original_21/7054436/math/52160361_6910.png deleted file mode 100644 index d5ed141806f9c7c529ec8a520bdcc4a6bd2a0031..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160361_6910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5aedac3c9bfd22728e16d73c80592862da1303e1f9764708975d44c6a7aedc61 -size 2079 diff --git a/MM_Math/data_original_21/7054436/math/52160377_9810.png b/MM_Math/data_original_21/7054436/math/52160377_9810.png deleted file mode 100644 index 538e57d86cde7d25486c66e7314c0a87b15ed20e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160377_9810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:053e7db8ee40c0d3a81795a2851e63fb40788c1540d7e5694b6734a5be7307d0 -size 3123 diff --git a/MM_Math/data_original_21/7054436/math/52160915_260.png b/MM_Math/data_original_21/7054436/math/52160915_260.png deleted file mode 100644 index 4a73a3d6f5bf132c5a617fb02e0c2a958bdad490..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160915_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02d478d09b5adc42d42edaca429af69fb774f4ade8e73fee3e888890cae42fe5 -size 4582 diff --git a/MM_Math/data_original_21/7054436/math/52160918_251.png b/MM_Math/data_original_21/7054436/math/52160918_251.png deleted file mode 100644 index 20063e70a15eacbc35f8fbee95abd43faaa111c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160918_251.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20c808ba648fed6e9f810e183f81ef8e4bc32ab6a2c9cc919d40359914d37bf0 -size 5215 diff --git a/MM_Math/data_original_21/7054436/math/52160932_950.png b/MM_Math/data_original_21/7054436/math/52160932_950.png deleted file mode 100644 index a4dfdae06bc5f9c383aad763208e98c34d0cad97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160932_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66834eefd55229229309593caebb418eda96d764d413f0db7ec501a7145680ff -size 4398 diff --git a/MM_Math/data_original_21/7054436/math/52160938_940.png b/MM_Math/data_original_21/7054436/math/52160938_940.png deleted file mode 100644 index 8d971acbdc237beeaa37d3c4dd31f77c60e40bc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52160938_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f92b3a4fcf73c216ae82f030d149221333e299a1c88282ea64d28adf713e5904 -size 4355 diff --git a/MM_Math/data_original_21/7054436/math/52188263_110.png b/MM_Math/data_original_21/7054436/math/52188263_110.png deleted file mode 100644 index 00744e8e377c29bd2784c06319dd4a28b3cc0f3a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188263_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c92ed6cc27be27a0314fca9d654bfc449dff292c21de0bd8a32dadd82b83ae0 -size 6018 diff --git a/MM_Math/data_original_21/7054436/math/52188268_120.png b/MM_Math/data_original_21/7054436/math/52188268_120.png deleted file mode 100644 index f41731235f00bad4334f70910757af1ec13804ad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188268_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89dec85475c88ff3c92a212f8fee0b55014e9db1225c7fef894d5e5f541b83a3 -size 5567 diff --git a/MM_Math/data_original_21/7054436/math/52188275_510.png b/MM_Math/data_original_21/7054436/math/52188275_510.png deleted file mode 100644 index 75fd639bbb451888443337138ae210aba48a1261..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188275_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:638f2c87a1dc684f9166e49150245f80aa0ab85e55c9a68c7f490d510196397a -size 4327 diff --git a/MM_Math/data_original_21/7054436/math/52188291_840.png b/MM_Math/data_original_21/7054436/math/52188291_840.png deleted file mode 100644 index 292d962340514b7e376158b0e78a8b158af7d25f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188291_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9df41d06e5c84b476c9f947925a98bacfd77c6978b51d9f074c256af4298394 -size 6115 diff --git a/MM_Math/data_original_21/7054436/math/52188830_210.png b/MM_Math/data_original_21/7054436/math/52188830_210.png deleted file mode 100644 index f5ea512b5f8f38bb36984e44d56606451296af12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188830_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02463fa090f2b2a4e2b122b8d0a0b1b0b15cc86bedc11ca7ff5e42072ec01143 -size 3029 diff --git a/MM_Math/data_original_21/7054436/math/52188832_130.png b/MM_Math/data_original_21/7054436/math/52188832_130.png deleted file mode 100644 index 398ea3a9228db7ad2683fb5d21d12a2df7b212b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188832_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2df84654de27595320a6f8050d3cf672903cf0cd7f7b2c6b07396df32f445d3c -size 2807 diff --git a/MM_Math/data_original_21/7054436/math/52188837_600.png b/MM_Math/data_original_21/7054436/math/52188837_600.png deleted file mode 100644 index 39431c73b5be0bf887b73abf623b506df684eeec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188837_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06b1835288ef95056a8bb914001d614f9f0e30e5b1c478960e0a169e7d984a39 -size 3554 diff --git a/MM_Math/data_original_21/7054436/math/52188838_520.png b/MM_Math/data_original_21/7054436/math/52188838_520.png deleted file mode 100644 index a63b812b9d76df1e4d1a92429d3b0e0826a7fa4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188838_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a534dbc6bf037a2022dfaf38d505ebf346374f238dd6cf34dfda53aa4a0dc06 -size 25835 diff --git a/MM_Math/data_original_21/7054436/math/52188862_610.png b/MM_Math/data_original_21/7054436/math/52188862_610.png deleted file mode 100644 index d4ec72b0b0ef254185ad6cb4c3782931ccf7b389..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188862_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6fcfa0afb96b253c10eaf14b3fddcdc6099ce08d8324d282279d9c96c3be97f2 -size 2784 diff --git a/MM_Math/data_original_21/7054436/math/52188880_882.png b/MM_Math/data_original_21/7054436/math/52188880_882.png deleted file mode 100644 index d739f4dee3fb4ff18af7d5168d76aff69474aedc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188880_882.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44a8b39040420b2c43e63ccf5ef16ca614006786cee0ac76cf961c2d175dd87b -size 11279 diff --git a/MM_Math/data_original_21/7054436/math/52188888_891.png b/MM_Math/data_original_21/7054436/math/52188888_891.png deleted file mode 100644 index 7e27d0c19ab44c1a16c07bcc159456e78a18a698..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188888_891.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a59012a6457bfae242c1e15d3f80c141678f97640bdbb8fde6d41a6f23dd8b15 -size 27317 diff --git a/MM_Math/data_original_21/7054436/math/52188906_853.png b/MM_Math/data_original_21/7054436/math/52188906_853.png deleted file mode 100644 index 3994d021907f3e703731e3e827e73804be7ce8ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188906_853.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:abd6b584a901c4204436e8d2897d519a345ffb95f9231af662aa67dd2f1b3afd -size 51324 diff --git a/MM_Math/data_original_21/7054436/math/52188913_930.png b/MM_Math/data_original_21/7054436/math/52188913_930.png deleted file mode 100644 index a75b11cf10edc7c1272c2a5c9a67ec74eccb66c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188913_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:61ce6ddccd07e8e3dfcee729d17fc9fba462c675f49631704eb9c24b030eb84f -size 5850 diff --git a/MM_Math/data_original_21/7054436/math/52188921_140.png b/MM_Math/data_original_21/7054436/math/52188921_140.png deleted file mode 100644 index c4bc75d0ea380ee0015f551f943624be4671cc8a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188921_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1cda573751d4203193eede7a42deb6e334c226d03835bed9e2097359609bb09f -size 3127 diff --git a/MM_Math/data_original_21/7054436/math/52188948_200.png b/MM_Math/data_original_21/7054436/math/52188948_200.png deleted file mode 100644 index 09d7035a5ef04802e4d637c63875112f52fc37e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188948_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba8e87090130b2256f254df955f77f8287541db7ba1ec5f4a7b7881fb5fa2445 -size 3202 diff --git a/MM_Math/data_original_21/7054436/math/52188952_560.png b/MM_Math/data_original_21/7054436/math/52188952_560.png deleted file mode 100644 index 933870ae29db06f8069a66688d0d65df7a94eb25..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188952_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70ea1d285656a967d23543a8956d776fae72390af367aed272ef8ba9eef046d3 -size 2091 diff --git a/MM_Math/data_original_21/7054436/math/52188954_571.png b/MM_Math/data_original_21/7054436/math/52188954_571.png deleted file mode 100644 index 022ad3a5d8e590286f2596fba1f9af971f5eae87..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52188954_571.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74b59498034dd0474ad84561077e6d80748ee3dae56085e3ecfbd071645b0835 -size 3157 diff --git a/MM_Math/data_original_21/7054436/math/52189001_901.png b/MM_Math/data_original_21/7054436/math/52189001_901.png deleted file mode 100644 index 93fbf6b918f3077f38ccecf34d2137b77a2dd32f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189001_901.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98a8c97f9341f8cfaa6cedb4fc71974d32a874c0b5c9135fe3c3141d8595f2eb -size 11466 diff --git a/MM_Math/data_original_21/7054436/math/52189050_530.png b/MM_Math/data_original_21/7054436/math/52189050_530.png deleted file mode 100644 index 65a1981ee7ada2f53fee1470b91b94e01664c1fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189050_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cbdddc8f2b679fc268d2362e91f7e7021feb74ac69b62bc4ca3f15c0a771481f -size 8362 diff --git a/MM_Math/data_original_21/7054436/math/52189064_910.png b/MM_Math/data_original_21/7054436/math/52189064_910.png deleted file mode 100644 index 99703cb23650d126cd56cd27110ec7c35d604b8f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189064_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b834d835c9c94dacf11c854b29a3d06973e41f9aa899af173b738e9527d3cba -size 3730 diff --git a/MM_Math/data_original_21/7054436/math/52189085_174.png b/MM_Math/data_original_21/7054436/math/52189085_174.png deleted file mode 100644 index 4132dc8d7643a31d9fd1be0e52575e9ab44a24d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189085_174.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e7ed4fdf83c667161d72b26cb452c81185c08ba773fc27f58378a16f2228cfc0 -size 80394 diff --git a/MM_Math/data_original_21/7054436/math/52189128_588.png b/MM_Math/data_original_21/7054436/math/52189128_588.png deleted file mode 100644 index 50fe9e9eaeb4a1f460e84c8247db4fc2629a327c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189128_588.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3cf2780a4dcf3e0f0e8ef0d447b7a298062c9dea9cfcb16520a8561617dfc7e1 -size 5481 diff --git a/MM_Math/data_original_21/7054436/math/52189159_160.png b/MM_Math/data_original_21/7054436/math/52189159_160.png deleted file mode 100644 index 097276ba7c6c4f01cc16fc9bad7c6ce1b223c9b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189159_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:efdfd33568f7578dbdfa6ada3cbb96e1e98d0e53e302fc6b2cbdd12d929feca7 -size 3368 diff --git a/MM_Math/data_original_21/7054436/math/52189194_192.png b/MM_Math/data_original_21/7054436/math/52189194_192.png deleted file mode 100644 index ac923cf01bef9e012fb00dcb8c72fc71ba8c4249..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189194_192.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3aac4b2c8fbc0efa02b4525b38909224602720c67d0b7a0c1a5f48ad1096506f -size 5335 diff --git a/MM_Math/data_original_21/7054436/math/52189196_180.png b/MM_Math/data_original_21/7054436/math/52189196_180.png deleted file mode 100644 index 12e89dfdd01d5d8000fadd90b744d7ad54d0e383..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189196_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b31e5092257f21b7e5d84c12fb44cbad20e8c18d20dfa4a58b46c0c4b55adad2 -size 31523 diff --git a/MM_Math/data_original_21/7054436/math/52189283_623.png b/MM_Math/data_original_21/7054436/math/52189283_623.png deleted file mode 100644 index 6bce192e2acdf07f43a6c26807ca8b33eb4b4941..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189283_623.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c2699b09fe5b514d92e66a82ca6129de8ab72accc267f2fd870d0e27a9ce662 -size 7622 diff --git a/MM_Math/data_original_21/7054436/math/52189286_6311.png b/MM_Math/data_original_21/7054436/math/52189286_6311.png deleted file mode 100644 index c130bf073c801d9a305d169f75e70ebe6443ed5b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189286_6311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6617bf42b07c7a3aa030be87c6314622631df74ae65b96eae256aed7310754a8 -size 28462 diff --git a/MM_Math/data_original_21/7054436/math/52189321_590.png b/MM_Math/data_original_21/7054436/math/52189321_590.png deleted file mode 100644 index 4f52c3e47a13ae9b656dac3f3939be9386bbf36a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189321_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:340c5cb2a239e7d567ccdd6e3b284fe832e95c02801a156b431bee75bb26166c -size 2708 diff --git a/MM_Math/data_original_21/7054436/math/52189417_223.png b/MM_Math/data_original_21/7054436/math/52189417_223.png deleted file mode 100644 index 397ef85ecd10bfe07a51131d5a7784bf4aed79fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189417_223.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59726ea336abd3b17302e5b7b7c9ae0a8e08ce6c75492a18c8c165c723cdf9f1 -size 2746 diff --git a/MM_Math/data_original_21/7054436/math/52189463_152.png b/MM_Math/data_original_21/7054436/math/52189463_152.png deleted file mode 100644 index 9eb6f48a0f059f88da128ec1417a70474341d599..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189463_152.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af308dbb708d1779b5174536a4a800e2a01229a62cef1b634097a5eb97eb4acf -size 108811 diff --git a/MM_Math/data_original_21/7054436/math/52189500_230.png b/MM_Math/data_original_21/7054436/math/52189500_230.png deleted file mode 100644 index e66075956810dd2f9135b942938ab4ab84454bf4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189500_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f61f4433684ccd0bd618ed2c598c1062ef901903fc8a7e6b883ba1466909268e -size 4401 diff --git a/MM_Math/data_original_21/7054436/math/52189536_650.png b/MM_Math/data_original_21/7054436/math/52189536_650.png deleted file mode 100644 index 937952cd208f673c4d8e7965e026ad4552ca19a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189536_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:341f23dcbd7c018bcb925a477f8d4fdb0c857bc8cd048656226c67655df93974 -size 10889 diff --git a/MM_Math/data_original_21/7054436/math/52189539_721.png b/MM_Math/data_original_21/7054436/math/52189539_721.png deleted file mode 100644 index 10bb16e2fc26748a2f9a57286d997b055bba28d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189539_721.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f5854f31d941a9fed7ac88261000e2d2db597cf7c159bddef6d5d742e7882a2 -size 8430 diff --git a/MM_Math/data_original_21/7054436/math/52189596_540.png b/MM_Math/data_original_21/7054436/math/52189596_540.png deleted file mode 100644 index 81e2d408757bd661f93ab51dd4adca0599be7c09..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189596_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3cdaefe0dbf687576279a25c9521b101f7b4b5f8c4a20741b93f140b09c61af2 -size 7381 diff --git a/MM_Math/data_original_21/7054436/math/52189624_550.png b/MM_Math/data_original_21/7054436/math/52189624_550.png deleted file mode 100644 index 75bfe5cc5d5365f99ac75b5c32f62e5e9d1f8f08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189624_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0635a717198c5ed3c20d6a33beb5308db5afd430fec778a7e01e5e80e14050d5 -size 3188 diff --git a/MM_Math/data_original_21/7054436/math/52189638_860.png b/MM_Math/data_original_21/7054436/math/52189638_860.png deleted file mode 100644 index 0b73674941bff4a61bde7d31ee5fed6e39c5d118..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189638_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f404e0f6a81b4d1dc62a26d5ed7f8165309e50fe56a2446ed8872405075198d -size 7362 diff --git a/MM_Math/data_original_21/7054436/math/52189656_245.png b/MM_Math/data_original_21/7054436/math/52189656_245.png deleted file mode 100644 index 8c496784d5a31f1e732faea646766e8c595414ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189656_245.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:380fc06a60a2ae7895fa7581fd3ea9813d1dace76edaaa0c7c1959dd88204fc7 -size 3062 diff --git a/MM_Math/data_original_21/7054436/math/52189671_922.png b/MM_Math/data_original_21/7054436/math/52189671_922.png deleted file mode 100644 index f0bb42003e97dd444fc8b3412fc706b779c0e98a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189671_922.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd4946ae29a35e383a29510633a34084c3c63cfc212a3d867b11cb90588b51f7 -size 2510 diff --git a/MM_Math/data_original_21/7054436/math/52189680_876.png b/MM_Math/data_original_21/7054436/math/52189680_876.png deleted file mode 100644 index 592411ee78696a5e4c3646925895cc7af3eafadd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52189680_876.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70beb9b0a204794c719cc56c58fd3095501fd4e061a1ec0399c8b15c853c7a28 -size 4100 diff --git a/MM_Math/data_original_21/7054436/math/52190011_643.png b/MM_Math/data_original_21/7054436/math/52190011_643.png deleted file mode 100644 index cbdf01318e8bcc615d1d01498e67187d05452df7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52190011_643.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d2bdf38ec1be81ddb7618b26be74b524b3fb75e3f4811c6b26fc787adc24259 -size 30045 diff --git a/MM_Math/data_original_21/7054436/math/52204022_103.png b/MM_Math/data_original_21/7054436/math/52204022_103.png deleted file mode 100644 index 26313d224e3d8221f71e9330c55015e0e6bbbd3c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204022_103.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:893c15370b2077231834748600f1da504951dd5f851cba53d2c1b762783f03c6 -size 2762 diff --git a/MM_Math/data_original_21/7054436/math/52204025_494.png b/MM_Math/data_original_21/7054436/math/52204025_494.png deleted file mode 100644 index 75259e7a2c360023e0883e5f4f238636abd1408d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204025_494.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f9751208601de8f4f68aeff4ed99dcd28fb75247a909dd1cdc503c340d0b575 -size 4532 diff --git a/MM_Math/data_original_21/7054436/math/52204028_5012.png b/MM_Math/data_original_21/7054436/math/52204028_5012.png deleted file mode 100644 index 36fd3f6af7089064d4ee95c35519b1db293d2993..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204028_5012.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67babe2a71a5622d94e69edbd99e9579edc1e82904d9c7d0b4c40e13e87ef016 -size 6111 diff --git a/MM_Math/data_original_21/7054436/math/52204217_97.png b/MM_Math/data_original_21/7054436/math/52204217_97.png deleted file mode 100644 index 172cf6925f499b3dfa11ab655657edb70c016eb6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204217_97.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e47ae54c83978cc175883f29789cd8546a87e11a223fbada85bd79df4be4692a -size 2059 diff --git a/MM_Math/data_original_21/7054436/math/52204223_485.png b/MM_Math/data_original_21/7054436/math/52204223_485.png deleted file mode 100644 index c36eef55f03fb154df135398ea63ef2bb7ba2e33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204223_485.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60237b4419f4add0063a791b02df84db52e7ca399a2b060943777e1f8a8d263e -size 5837 diff --git a/MM_Math/data_original_21/7054436/math/52204235_839.png b/MM_Math/data_original_21/7054436/math/52204235_839.png deleted file mode 100644 index cd1d4f22699ff53b212adce89dd402397450ee8b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204235_839.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:681fd4165741cd6d776f2f2dccedaa7ac9ab4a6cb805ef6b99c5e04c3861d094 -size 3469 diff --git a/MM_Math/data_original_21/7054436/math/52204555_4711.png b/MM_Math/data_original_21/7054436/math/52204555_4711.png deleted file mode 100644 index 27243ab0cc2f3ca8efc52a3ea5551ccc1358203c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204555_4711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce3b3e97acb3f12d77e8e40d276275fc81f7e51ddbbc9248601c5c33545a2212 -size 2993 diff --git a/MM_Math/data_original_21/7054436/math/52204767_468.png b/MM_Math/data_original_21/7054436/math/52204767_468.png deleted file mode 100644 index eace52d349a2c640b9bfa1dda08e05c9787e8395..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204767_468.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc2e07494c3d7bed06fdbffe25b8e7aaf8b7f25da58a42ed09d0b7c1f7ee12b3 -size 1913 diff --git a/MM_Math/data_original_21/7054436/math/52204870_440.png b/MM_Math/data_original_21/7054436/math/52204870_440.png deleted file mode 100644 index c7a149263bc5812a2a589f395245e0452381dcc4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204870_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:847bcb75f501465a5da0d3b9a72dcb91058e1879f7f7e0093d216403e73f280c -size 6532 diff --git a/MM_Math/data_original_21/7054436/math/52204871_451.png b/MM_Math/data_original_21/7054436/math/52204871_451.png deleted file mode 100644 index 71bc37968a0f6ba61a4910f0e9c1f66ae652ff71..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204871_451.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:984a8caa6711f1b87022bf1a282ede4bb89b9ab48fcaf59f14faf4e262e2e48d -size 6730 diff --git a/MM_Math/data_original_21/7054436/math/52204885_820.png b/MM_Math/data_original_21/7054436/math/52204885_820.png deleted file mode 100644 index f15a034577c4cc23f0d35aab5e308e1e232121e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52204885_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fd5650700025ce0f8c3645e8272d16c4063f816d002ea2c54283a55a4098c91 -size 4742 diff --git a/MM_Math/data_original_21/7054436/math/52205054_60.png b/MM_Math/data_original_21/7054436/math/52205054_60.png deleted file mode 100644 index a5f98700de2755752c48911acf00b4e16c2ba75e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205054_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be9d66feab453eda206db132d3a253a8b6d0e9ced482766eb5f1097bfc4cf153 -size 7397 diff --git a/MM_Math/data_original_21/7054436/math/52205057_72.png b/MM_Math/data_original_21/7054436/math/52205057_72.png deleted file mode 100644 index 9c8daf943a0290917a23827e23c4fc07c10e27c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205057_72.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d767c9bc3b61e0d64761f4d8a71ac6afdb4a8edcf72b9c5350a2d673d013d7ca -size 9349 diff --git a/MM_Math/data_original_21/7054436/math/52205063_430.png b/MM_Math/data_original_21/7054436/math/52205063_430.png deleted file mode 100644 index 9ec254b16af8e228a3d0e48bd00072bdaec3d3d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205063_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae6e0d712be65af70c86de52ef988c2800e4dc4b9ecd1416222109e261d1c3d7 -size 6966 diff --git a/MM_Math/data_original_21/7054436/math/52205064_421.png b/MM_Math/data_original_21/7054436/math/52205064_421.png deleted file mode 100644 index f1a29d93058756f243ff63f6902c8234ccd0002a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205064_421.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c210fb26ec9faf9606fc3d5bc64411bd92c5ffcc8116d280846e94114bd675a -size 11333 diff --git a/MM_Math/data_original_21/7054436/math/52205074_810.png b/MM_Math/data_original_21/7054436/math/52205074_810.png deleted file mode 100644 index f0b0fae95e8c657f518f390f1da7603589a24608..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205074_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:327227aaaf09046f661660f3fac2172f2bbc3d4601ba75317b63de13b94f19e5 -size 18266 diff --git a/MM_Math/data_original_21/7054436/math/52205218_417.png b/MM_Math/data_original_21/7054436/math/52205218_417.png deleted file mode 100644 index 03b24fed5fa23c9000c9e575cb2db340380be931..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205218_417.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d19360ab6d4aa447cca78f3e4beea342596774c855ab6a233e268acdc28761d -size 62144 diff --git a/MM_Math/data_original_21/7054436/math/52205241_808.png b/MM_Math/data_original_21/7054436/math/52205241_808.png deleted file mode 100644 index 4a06166397e5bd8faacd16abd6f9ea1f614ef3da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205241_808.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c34baf4ae987e86be9b2937f8df86f3ac844868a5c270dbadaa5053d198a2357 -size 13081 diff --git a/MM_Math/data_original_21/7054436/math/52205271_794.png b/MM_Math/data_original_21/7054436/math/52205271_794.png deleted file mode 100644 index 967b2321ada50e28295df8e9d719476f90096e7b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205271_794.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f95f7219db3ce72467ed71b4a4ebf67a5f19d59301dde4ddce0c3565f69b7f10 -size 6389 diff --git a/MM_Math/data_original_21/7054436/math/52205273_7911.png b/MM_Math/data_original_21/7054436/math/52205273_7911.png deleted file mode 100644 index 20ccfae3923d9f77ce25d9d3b5bf1d8fa3e7dd42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205273_7911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e89cc0ea1b55ea4a641962eeebdc357f8082a6b2da0b1e4b6260ade6ec7af94 -size 202 diff --git a/MM_Math/data_original_21/7054436/math/52205277_393.png b/MM_Math/data_original_21/7054436/math/52205277_393.png deleted file mode 100644 index 8729b2cf703d0310301afed591d796c0820d3b9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205277_393.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b4fc924f04f4c0e5bb90765a07ece7e77d4734ad2cc05ad8b7c06ca419608907 -size 8213 diff --git a/MM_Math/data_original_21/7054436/math/52205279_401.png b/MM_Math/data_original_21/7054436/math/52205279_401.png deleted file mode 100644 index 566aee3ac7da1b5b78535f1abc105f2b3b90de63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52205279_401.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea4a2391ad4b6979a1b005956708839ba3ded18880f13dbbd2577fe2fea918be -size 30976 diff --git a/MM_Math/data_original_21/7054436/math/52210860_30.png b/MM_Math/data_original_21/7054436/math/52210860_30.png deleted file mode 100644 index c5568675b8332cf2ac1db49e7d222036f8947265..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52210860_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b74bd7c2b84fe428c9aca49a83cf06f07a42cf98a6259ddc2e7925f9e8244aa9 -size 14973 diff --git a/MM_Math/data_original_21/7054436/math/52210861_40.png b/MM_Math/data_original_21/7054436/math/52210861_40.png deleted file mode 100644 index 9f87349140959971c6d0c66c1eec635b8ec6dcd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52210861_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79fedd6c441132bd9df80df4e7869cd822c33a3e8883f747d938cffeb6c12669 -size 3145 diff --git a/MM_Math/data_original_21/7054436/math/52211079_743.png b/MM_Math/data_original_21/7054436/math/52211079_743.png deleted file mode 100644 index e323e88a7ffe0e0c3bb4fe797f7e0712c18377d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52211079_743.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35b3b71c8df9bccc46e0aadcbaa3761b9952f7a8cf758d782a68d3e5cd40698d -size 2691 diff --git a/MM_Math/data_original_21/7054436/math/52211273_03.png b/MM_Math/data_original_21/7054436/math/52211273_03.png deleted file mode 100644 index 2abd3fbccb452ad4c845232582ec2f0071dc439f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52211273_03.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7471f2d35c8f05e95a308d5d5996711c66e6f0af15b366afbf5a2e5021e1188 -size 23460 diff --git a/MM_Math/data_original_21/7054436/math/52211279_20.png b/MM_Math/data_original_21/7054436/math/52211279_20.png deleted file mode 100644 index d56182b131824fe70f92155d5706a2985c145114..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52211279_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79863e93823d2e0930e08bdb991f32769404181fb4c1b9112286aa58f9b4797f -size 57174 diff --git a/MM_Math/data_original_21/7054436/math/52211373_7621.png b/MM_Math/data_original_21/7054436/math/52211373_7621.png deleted file mode 100644 index 7454a19fffef18ed986ccb128f23b711ca94a3f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52211373_7621.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea92d58cc8787e2a3d18e73b8685c3bdecdaf8e6a45d15d98bea6d98a12a706a -size 6106 diff --git a/MM_Math/data_original_21/7054436/math/52211459_772.png b/MM_Math/data_original_21/7054436/math/52211459_772.png deleted file mode 100644 index 931335204c8379f9e8410defc7a0b611d2bf75cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52211459_772.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:278be35e3307fd09a606331803d7d5ade4adc17f3b44f6eb08fa061fc5a4082b -size 3965 diff --git a/MM_Math/data_original_21/7054436/math/52211484_363.png b/MM_Math/data_original_21/7054436/math/52211484_363.png deleted file mode 100644 index 66ee6de7994a5545bbd66f2c087022fc7cdc17cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52211484_363.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bedb7ca277e88b78737d20ae6d7b79a894c25ed810a26f3ec5aa24c1eae31837 -size 14161 diff --git a/MM_Math/data_original_21/7054436/math/52211582_730.png b/MM_Math/data_original_21/7054436/math/52211582_730.png deleted file mode 100644 index 1562b16e525365cdf472e33b9e5c866240ad3267..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52211582_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d87cf8e0a4d615306e938e9d45801f86b5e63333daf6f341f2c044fbc2fe7a4e -size 15322 diff --git a/MM_Math/data_original_21/7054436/math/52211683_55.png b/MM_Math/data_original_21/7054436/math/52211683_55.png deleted file mode 100644 index 4ec004e7cccf4229919d9c1aa84b174269dc0d35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52211683_55.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66eb5448ec4044f31c5a7f0d80e0a295b847a9347f0640e1fa7374b1110e9c7e -size 2417 diff --git a/MM_Math/data_original_21/7054436/math/52211814_752.png b/MM_Math/data_original_21/7054436/math/52211814_752.png deleted file mode 100644 index 4f7e4693d4320e13dc51e6e395f101dcdeb4a163..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52211814_752.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f82d5c372292a6b1d51619d1eb44014f075c713e55cf125929aa34e35e9e444 -size 8567 diff --git a/MM_Math/data_original_21/7054436/math/52211841_3511.png b/MM_Math/data_original_21/7054436/math/52211841_3511.png deleted file mode 100644 index 3baeb5693e1c70ed9f534a0f6352972827007210..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52211841_3511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3e25183eb5e1621028d174f5bf9cb6e445d132dca776accaf7d249ccebef564 -size 3603 diff --git a/MM_Math/data_original_21/7054436/math/52212059_370.png b/MM_Math/data_original_21/7054436/math/52212059_370.png deleted file mode 100644 index 8fd0ee121812ea6bc3bfdfa789679b2731b974c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52212059_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98e36197c4e3d5f798944924927360e62c36ccb2275b0a78a736361f68413f24 -size 2556 diff --git a/MM_Math/data_original_21/7054436/math/52212478_10.png b/MM_Math/data_original_21/7054436/math/52212478_10.png deleted file mode 100644 index 8a924394746059960bccd092b99902045af10a66..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52212478_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a42d4b0324283575a2d3c6c867d6e7fc17756d5555aa67c4b42f04588f41ece -size 4074 diff --git a/MM_Math/data_original_21/7054436/math/52212584_382.png b/MM_Math/data_original_21/7054436/math/52212584_382.png deleted file mode 100644 index 0e6e0a254237fe6ebced60e1ff612e400462eb61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52212584_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7fe398c6ca3e15a84bab387c8e9ea87ca08f65c45c083b3185d82e32ab54d99b -size 3306 diff --git a/MM_Math/data_original_21/7054436/math/52212635_783.png b/MM_Math/data_original_21/7054436/math/52212635_783.png deleted file mode 100644 index 600b8cff95637841ea32cb05910373ebe979c64a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/math/52212635_783.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76215eca219367b244b1937286d8b8a4df8fd71216a4b809adcff3d743b967ee -size 3716 diff --git a/MM_Math/data_original_21/7054436/solution_images/52122183_710.png b/MM_Math/data_original_21/7054436/solution_images/52122183_710.png deleted file mode 100644 index 1b5d38e89bc80e2f19abb8aa2a04f3f2c4bce919..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52122183_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97513d7373c902089eab4aab6523df76e6dfad765540a43b09dd233e6408850b -size 4379 diff --git a/MM_Math/data_original_21/7054436/solution_images/52159827_320.png b/MM_Math/data_original_21/7054436/solution_images/52159827_320.png deleted file mode 100644 index c16d8ad440a004bab742530afbb36e495cb161d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52159827_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89cbac8955ce757c46ecd3a12351820baffa06427059c0ae59ee3d0c9b99d4a4 -size 2531 diff --git a/MM_Math/data_original_21/7054436/solution_images/52159971_682.png b/MM_Math/data_original_21/7054436/solution_images/52159971_682.png deleted file mode 100644 index a10ea52e590c2666247f02e6e5c5ca76c03e871a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52159971_682.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6abd5a4843d2d0b9a5f532c0f809d2176d8e9d2874dc1edc64f42a4367b7b344 -size 12057 diff --git a/MM_Math/data_original_21/7054436/solution_images/52159971_6836.png b/MM_Math/data_original_21/7054436/solution_images/52159971_6836.png deleted file mode 100644 index efd01f68d417893733a7345bc4d5bd1096c3f377..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52159971_6836.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d484679594f6f7a4437a678d162e9b7475311da4f607d329ff2b15f10e3ce607 -size 11306 diff --git a/MM_Math/data_original_21/7054436/solution_images/52159971_6870.png b/MM_Math/data_original_21/7054436/solution_images/52159971_6870.png deleted file mode 100644 index 08c10a0a8a0eb4ce8f3f1e85cf1b46027830a883..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52159971_6870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66b0ace85c30963be2bf1783b76bd345236078ccf7aef82919d68fe7b5a2d740 -size 15301 diff --git a/MM_Math/data_original_21/7054436/solution_images/52160043_670.png b/MM_Math/data_original_21/7054436/solution_images/52160043_670.png deleted file mode 100644 index 6dd89d1279123010320fc4afc4f13c01533604e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52160043_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4018af1a024111ddc07c70737e833be5defa583ed1adf1e0e0b707e6f685835a -size 3582 diff --git a/MM_Math/data_original_21/7054436/solution_images/52160124_660.png b/MM_Math/data_original_21/7054436/solution_images/52160124_660.png deleted file mode 100644 index 199afdf7dbc754ba1991545e767516c8da85626e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52160124_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c586aa91e63cef3c23a6fd736a6a03353ebf54ef1ec7a885eab879720b29550 -size 12165 diff --git a/MM_Math/data_original_21/7054436/solution_images/52160204_270.png b/MM_Math/data_original_21/7054436/solution_images/52160204_270.png deleted file mode 100644 index 1690fe21fe620a3b5d70e47b846097b7b31aa711..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52160204_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c166154cd1fb240ae56e71dd151099224991c4ec4bb4d97496d5a98c29adbe2 -size 3163 diff --git a/MM_Math/data_original_21/7054436/solution_images/52188275_510.png b/MM_Math/data_original_21/7054436/solution_images/52188275_510.png deleted file mode 100644 index 4deda73ec09f33ae963372dc5484eab4803282b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52188275_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:763ad68452c513dac84fd259176dc7536acb4268ec1a5a0279ea205d1e5339c0 -size 11099 diff --git a/MM_Math/data_original_21/7054436/solution_images/52188837_600.png b/MM_Math/data_original_21/7054436/solution_images/52188837_600.png deleted file mode 100644 index 99428ed18aecc90e7587d198a6d033168a04d360..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52188837_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fcb79c42e387043f3f4fd130403845cff2509957cedd55b6dc56b4ca0bb5d81 -size 4957 diff --git a/MM_Math/data_original_21/7054436/solution_images/52188838_520.png b/MM_Math/data_original_21/7054436/solution_images/52188838_520.png deleted file mode 100644 index 43db03fddd014b77a517433e87866e244ff51728..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52188838_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bb65cf305c4b5876cd49a179cb575cb588ff4ac52fde7e0403d90a13e626187 -size 5013 diff --git a/MM_Math/data_original_21/7054436/solution_images/52188838_5212.png b/MM_Math/data_original_21/7054436/solution_images/52188838_5212.png deleted file mode 100644 index c77337af86e233bc6d3abb4b1658869711352274..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52188838_5212.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddb1789bc7849747b0cb3c13ed6b22d8f8911b5f042a3d2047f4ae7a644dd6f5 -size 5808 diff --git a/MM_Math/data_original_21/7054436/solution_images/52188952_560.png b/MM_Math/data_original_21/7054436/solution_images/52188952_560.png deleted file mode 100644 index bb1f9206a79324e8aaaad7206458e5e169eee4f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52188952_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0728a18e0942c21d6a15025b911bba9650bb037e39fedb340511746b1b498cad -size 2317 diff --git a/MM_Math/data_original_21/7054436/solution_images/52188954_570.png b/MM_Math/data_original_21/7054436/solution_images/52188954_570.png deleted file mode 100644 index 814d4d078d71aa1c6424d765a0c5f12fb0cba30b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52188954_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6fa5d5fb8bb4fdd2c5d6cb0820a4271f02c516e8e57147437acd1de31e3d994 -size 4796 diff --git a/MM_Math/data_original_21/7054436/solution_images/52189128_582.png b/MM_Math/data_original_21/7054436/solution_images/52189128_582.png deleted file mode 100644 index 90ebf32dc9e1480ba43685b2fa8efe4f6f171280..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52189128_582.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f213e045c7a75c736328fd027de721df027bca85d456fc1fa467ae099e4dfb8 -size 5862 diff --git a/MM_Math/data_original_21/7054436/solution_images/52189283_620.png b/MM_Math/data_original_21/7054436/solution_images/52189283_620.png deleted file mode 100644 index 40cb2823b5afd7791b23ca71447f196e411552c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52189283_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1af34c51155099e70610e55ece05a2fadaaa10894230df614ff7c62473a2d079 -size 9448 diff --git a/MM_Math/data_original_21/7054436/solution_images/52189286_630.png b/MM_Math/data_original_21/7054436/solution_images/52189286_630.png deleted file mode 100644 index 08d5eb679ca9cea86b52fcccce55e835ee0d8e47..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52189286_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e96cb3d6c11d4b1bae886dabc9891b6dc94f1b348d6083e48d1966d53eb94cfd -size 33452 diff --git a/MM_Math/data_original_21/7054436/solution_images/52189536_650.png b/MM_Math/data_original_21/7054436/solution_images/52189536_650.png deleted file mode 100644 index 5e875b03ee64c893f6f8aabcaa4674762290edbf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52189536_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77c65afc495b55451213ac8e13971dca3279137d82c5fbc17a6861fce2c360dd -size 14000 diff --git a/MM_Math/data_original_21/7054436/solution_images/52189624_550.png b/MM_Math/data_original_21/7054436/solution_images/52189624_550.png deleted file mode 100644 index f4a6ee26daebde70416151f5adc07b07fb6f04a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52189624_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b7752dbcfb8c38e5321abd1b9aee6658ee5e653c67f58532ac058d965c39e35 -size 4951 diff --git a/MM_Math/data_original_21/7054436/solution_images/52204022_100.png b/MM_Math/data_original_21/7054436/solution_images/52204022_100.png deleted file mode 100644 index 7a9a16909e20b54778ce8d95a50c6e342dc7309f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52204022_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db221e2c8e4911033b738a6d7a4bbc83625074e29c6c089633fa0f0dbf7a9b73 -size 3170 diff --git a/MM_Math/data_original_21/7054436/solution_images/52204022_106.png b/MM_Math/data_original_21/7054436/solution_images/52204022_106.png deleted file mode 100644 index 1786b2f00a481bc219033b5346be3853802a8056..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52204022_106.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3d4808d7e2546daac9466df7b0d25a2d58d20eaeba9310b8b6b70da74ff4d874 -size 2801 diff --git a/MM_Math/data_original_21/7054436/solution_images/52204028_500.png b/MM_Math/data_original_21/7054436/solution_images/52204028_500.png deleted file mode 100644 index 650dabb830ec38fd342c053e7eed5b52ed884a30..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52204028_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7e3e1f7f9c4e03cc8c480ec2a6fc98b7bccd107fdc70109876e1be223f72fd2 -size 9000 diff --git a/MM_Math/data_original_21/7054436/solution_images/52204767_460.png b/MM_Math/data_original_21/7054436/solution_images/52204767_460.png deleted file mode 100644 index f7998fe30431c74d50f754d696c052fe5af8cd7d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52204767_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c512b63adce53c79756f02332087cf0b749d0b7b34dfc238a7b3f73dce023c5 -size 3916 diff --git a/MM_Math/data_original_21/7054436/solution_images/52204870_440.png b/MM_Math/data_original_21/7054436/solution_images/52204870_440.png deleted file mode 100644 index 3f1755355982189081ac8b00379b5178e90bd2a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52204870_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4d0763b702d41feb336f6b6e97d65fa754f6fe178c82b6cfd627d777e41c25b -size 5066 diff --git a/MM_Math/data_original_21/7054436/solution_images/52204870_446.png b/MM_Math/data_original_21/7054436/solution_images/52204870_446.png deleted file mode 100644 index 7ee6eabab41c42a7ab8763faee4f0d64e88a85b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52204870_446.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e8db0c4cf792ec7839c3a222593b3eab404a87e4e3645e36a30e1de846eaad0 -size 5659 diff --git a/MM_Math/data_original_21/7054436/solution_images/52204871_450.png b/MM_Math/data_original_21/7054436/solution_images/52204871_450.png deleted file mode 100644 index 32f5ffb68d594e21acedaed7e14267b3dfed2c51..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52204871_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:471a122e9503b29c973b1033afdc1a400ffd3c07975c7b04e87ff88bff0f98c0 -size 6532 diff --git a/MM_Math/data_original_21/7054436/solution_images/52205057_70.png b/MM_Math/data_original_21/7054436/solution_images/52205057_70.png deleted file mode 100644 index b58afa128872f81bb6d9ebcbe8d688049e054b51..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52205057_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7fcac67f5896c3d81385531b3946decffb1db79908c913112ae1a78ae190f4b8 -size 9762 diff --git a/MM_Math/data_original_21/7054436/solution_images/52205063_430.png b/MM_Math/data_original_21/7054436/solution_images/52205063_430.png deleted file mode 100644 index 875a3194430c70294c10077b12ddce9e0c5bf4bf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52205063_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc69bb093eb7c75e489e1b508c72812dcc9830b31106c73edd17ae1ce2197f2e -size 62582 diff --git a/MM_Math/data_original_21/7054436/solution_images/52205064_420.png b/MM_Math/data_original_21/7054436/solution_images/52205064_420.png deleted file mode 100644 index 93f94ae702f333519bd2342c9b6b7aacd63dee96..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52205064_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a28d99d87774f39e0734efe87f594752a5eace1d1e41a757de324872f8acee17 -size 31805 diff --git a/MM_Math/data_original_21/7054436/solution_images/52205277_390.png b/MM_Math/data_original_21/7054436/solution_images/52205277_390.png deleted file mode 100644 index dde2d32762b4d8eaee6cde4351b3ab046d6f8e62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52205277_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e386d047f2fb1963b2f9125d4a8b6cbbd1f2e0fa1ffab3f735a18a6498a99b2 -size 7442 diff --git a/MM_Math/data_original_21/7054436/solution_images/52205279_400.png b/MM_Math/data_original_21/7054436/solution_images/52205279_400.png deleted file mode 100644 index e610d6a3075e103944158770b3d6a33b6e7c28eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52205279_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01a961aeab603151e7d802036513ed1193861bfd127bf33456b012e41bdfc84c -size 16528 diff --git a/MM_Math/data_original_21/7054436/solution_images/52210860_30.png b/MM_Math/data_original_21/7054436/solution_images/52210860_30.png deleted file mode 100644 index 62ce36d8e8e7a8bec53657ba28120b775fc77bdd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52210860_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d68514f4d3b28089eb00c768c371a43cdc9c7bffa5d59de74cfef152a7b14d7f -size 7609 diff --git a/MM_Math/data_original_21/7054436/solution_images/52210861_40.png b/MM_Math/data_original_21/7054436/solution_images/52210861_40.png deleted file mode 100644 index a68dd09670a5481fa9737775b17cc209be00f05b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52210861_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3aac789a9a1239c5defa752b28c06103e5bf6edc9d13f9c46f97957f18b06825 -size 5203 diff --git a/MM_Math/data_original_21/7054436/solution_images/52211273_00.png b/MM_Math/data_original_21/7054436/solution_images/52211273_00.png deleted file mode 100644 index 87989c1310e517c81a9e6ceef9f85ae03300fc1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52211273_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9563d568e92c647dc6a7b9806713f8d4df1a94019f8ba558b0743e4499ae542e -size 24207 diff --git a/MM_Math/data_original_21/7054436/solution_images/52211279_20.png b/MM_Math/data_original_21/7054436/solution_images/52211279_20.png deleted file mode 100644 index 193a3b43f61c3cbf5253cd774df10df085d8b420..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52211279_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:768b435f1ae644698d62f94321c32436b41d263c9f6a5c570ca7ff44849d3796 -size 24413 diff --git a/MM_Math/data_original_21/7054436/solution_images/52211484_360.png b/MM_Math/data_original_21/7054436/solution_images/52211484_360.png deleted file mode 100644 index 040d85511739c7adbab909489b8a32ed92a31c89..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52211484_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ac8a62c8d733cd75ab4a2352b68fc6f2c9fd039895df94ac3854c5a01b43f45 -size 6836 diff --git a/MM_Math/data_original_21/7054436/solution_images/52212059_370.png b/MM_Math/data_original_21/7054436/solution_images/52212059_370.png deleted file mode 100644 index f94c04cebbc5f2e28650fbd0d088fb9b844b3b9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52212059_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0d4c6c43b31faa2b1a2e9e5c61a7f1f6437ff35071322cbfadace8bfd498fd5 -size 4917 diff --git a/MM_Math/data_original_21/7054436/solution_images/52212478_10.png b/MM_Math/data_original_21/7054436/solution_images/52212478_10.png deleted file mode 100644 index 8a924394746059960bccd092b99902045af10a66..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52212478_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a42d4b0324283575a2d3c6c867d6e7fc17756d5555aa67c4b42f04588f41ece -size 4074 diff --git a/MM_Math/data_original_21/7054436/solution_images/52212584_382.png b/MM_Math/data_original_21/7054436/solution_images/52212584_382.png deleted file mode 100644 index 82c9631a6c7596dc6210d477df4bd0621824092a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054436/solution_images/52212584_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c8c292d2bbdd514ac4cb3d51b3d1f60738da846a7c8cffc841b49dd76690fc4 -size 162334 diff --git a/MM_Math/data_original_21/7054440/math/51770518_220.png b/MM_Math/data_original_21/7054440/math/51770518_220.png deleted file mode 100644 index 85a0792bcfe2d129936c246c5eb9e5123b8331c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51770518_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b8370732fc204a2bc4c420fc2f4a4e81ed25eec9051ca6aa804e4ed3bdeec2b -size 8047 diff --git a/MM_Math/data_original_21/7054440/math/51770527_640.jpg b/MM_Math/data_original_21/7054440/math/51770527_640.jpg deleted file mode 100644 index 554fbaa9cf417757a9088f937f3b3d20af55a665..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51770527_640.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fabf2df530b5499988014ca35335a471a8df0236235c6053ba33a9a1975ccd13 -size 2215 diff --git a/MM_Math/data_original_21/7054440/math/51770528_650.jpg b/MM_Math/data_original_21/7054440/math/51770528_650.jpg deleted file mode 100644 index 25d12a11ae104e86e92a00ed774f702f3d310c50..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51770528_650.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d8a92b21d142067333bca9d9f51a41d6a0d37b866b59541d79cbdd0dab4de3d -size 3422 diff --git a/MM_Math/data_original_21/7054440/math/51770529_660.jpg b/MM_Math/data_original_21/7054440/math/51770529_660.jpg deleted file mode 100644 index 31e6c7a550ba91ae71eb7d58585485c0561dda25..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51770529_660.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce75903964fd8216d8a697b968dc9caa3fc4388a82247288a450b901012fa481 -size 3468 diff --git a/MM_Math/data_original_21/7054440/math/51770540_970.png b/MM_Math/data_original_21/7054440/math/51770540_970.png deleted file mode 100644 index e50f7360a8b397fdd5ce5141bf210b08d05de8a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51770540_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:039cd99fafa7291a6acb800c1cfdb4ac1e72c0927572e7b569aebe172cac6f79 -size 5538 diff --git a/MM_Math/data_original_21/7054440/math/51770639_990.png b/MM_Math/data_original_21/7054440/math/51770639_990.png deleted file mode 100644 index 84c4068ac83ee3b7f7916b7d4e1db6b6084083d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51770639_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:263767011e3b18439451b38bb1f559fe0f3b097a42ca65cea8f4749d4cb658ef -size 8152 diff --git a/MM_Math/data_original_21/7054440/math/51770657_961.png b/MM_Math/data_original_21/7054440/math/51770657_961.png deleted file mode 100644 index a7c81a00f4c7fe2115f655e2d591c0bf1c3847c5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51770657_961.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db7a9c1d9285e2df5ece5fe25b6b6b0201b1812ade86956c674458e615c0aeb9 -size 5359 diff --git a/MM_Math/data_original_21/7054440/math/51897754_983.png b/MM_Math/data_original_21/7054440/math/51897754_983.png deleted file mode 100644 index d0233ab626756f7a9d8caf72a1a3e341485908ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51897754_983.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5682c1f9c0bc7a24cef66dca5a18caca2021df532818b16ed7dcb0487da79715 -size 2557 diff --git a/MM_Math/data_original_21/7054440/math/51918836_211.png b/MM_Math/data_original_21/7054440/math/51918836_211.png deleted file mode 100644 index 05dc1cf04a5d1cfe27a8793d41f9663cf88737e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51918836_211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8eb691e404825658097f197282bdf6c84c7599d2069c132b67e2e91d9805a32 -size 13101 diff --git a/MM_Math/data_original_21/7054440/math/51918841_630.png b/MM_Math/data_original_21/7054440/math/51918841_630.png deleted file mode 100644 index 6548aa11bf1962ab42068c64649d88547dded0a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51918841_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3190ae8ae2f9620a648f17ccb48548be5187d6c893d92431629716d78a5d8f9 -size 2203 diff --git a/MM_Math/data_original_21/7054440/math/51919593_200.png b/MM_Math/data_original_21/7054440/math/51919593_200.png deleted file mode 100644 index 33c50390e00377e3c21627a74334130b2d5c304b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51919593_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81e3db70b77ffdd9a232821ce9f677b8c84c9cf57d69bd2dacd0c81565562044 -size 3806 diff --git a/MM_Math/data_original_21/7054440/math/51920355_198.png b/MM_Math/data_original_21/7054440/math/51920355_198.png deleted file mode 100644 index e9ca4469927857c16fb7e9e0a90554362dd6e1d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51920355_198.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69a1d08f5df32de1883c6978748465c28d476d4b7a1522fbe322b97cc5a09f91 -size 4076 diff --git a/MM_Math/data_original_21/7054440/math/51920359_624.png b/MM_Math/data_original_21/7054440/math/51920359_624.png deleted file mode 100644 index 413f3addddcfbd6a2a4cd143c7a1e1567a938661..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51920359_624.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef7231113539e5316547cd46796793555cd4df9c54df31a9083296d5deb98bfc -size 1976 diff --git a/MM_Math/data_original_21/7054440/math/51920362_6113.png b/MM_Math/data_original_21/7054440/math/51920362_6113.png deleted file mode 100644 index f4f34499491c41ae71282e99cc9cdc9dbb637c69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51920362_6113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f10f0e71eae8503b491288ef55515704c180c4d537ad2927f36fd9311bc97af -size 4076 diff --git a/MM_Math/data_original_21/7054440/math/51920372_948.png b/MM_Math/data_original_21/7054440/math/51920372_948.png deleted file mode 100644 index 24dfdb75946e0d21b19b27a952741420ce861d99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51920372_948.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:27dd54de2e33b7e02b0c5440d197503c1febb22bac97156d20a582cdf196f81d -size 4076 diff --git a/MM_Math/data_original_21/7054440/math/51920381_959.png b/MM_Math/data_original_21/7054440/math/51920381_959.png deleted file mode 100644 index 1d93213545134dd974b57e302a2cfb8fb293dda4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51920381_959.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:609c63baf967742bcd8fe01e7320af301b76037b1089476ffd6aa5e5c66e87d8 -size 15792 diff --git a/MM_Math/data_original_21/7054440/math/51942329_160.jpg b/MM_Math/data_original_21/7054440/math/51942329_160.jpg deleted file mode 100644 index f4ed6c006172760148169975e389547919408d43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51942329_160.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79c4c58ce79cea4e352443735d9c60765a1e07d5fff7885d65e7d55fbad6ddde -size 2751 diff --git a/MM_Math/data_original_21/7054440/math/51942331_170.jpg b/MM_Math/data_original_21/7054440/math/51942331_170.jpg deleted file mode 100644 index 7b403ffe45e71e4c6e905e1c5027262b51884f79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51942331_170.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5e2ffdf319fd7617efcda29509571ad86d755d7fe59b5bfade5ed9e583d92df -size 3558 diff --git a/MM_Math/data_original_21/7054440/math/51942332_181.jpg b/MM_Math/data_original_21/7054440/math/51942332_181.jpg deleted file mode 100644 index 93bf92d9e74960cc00a1678717ac89df759fb3c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51942332_181.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae8c9f0b3748a777d52832aa2bd39cd66dadc72d36baa07a641bb21c7dbab77a -size 3491 diff --git a/MM_Math/data_original_21/7054440/math/51942337_600.png b/MM_Math/data_original_21/7054440/math/51942337_600.png deleted file mode 100644 index 33d587169dc20614cd9dff1a6bca41a037625504..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51942337_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0188e551164a9be61bff0af52a1d5f4207b1ed92c05552a7c42434d96daa4df7 -size 3326 diff --git a/MM_Math/data_original_21/7054440/math/51942351_930.jpg b/MM_Math/data_original_21/7054440/math/51942351_930.jpg deleted file mode 100644 index 7d8a4b585468ca20b3a87f7a94088dbdd5c25418..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51942351_930.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4c87c9b7bcbf80c1d13e3b9eeeb0c881ce3840dddafa86c1ffd2e1d338d350a9 -size 10213 diff --git a/MM_Math/data_original_21/7054440/math/51968496_150.png b/MM_Math/data_original_21/7054440/math/51968496_150.png deleted file mode 100644 index bd7abf818f59a7916f756f7bf7eb380692494f7e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968496_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9174bf10555b167919c8fbbbd2a0315c2ff4cdcaa74c0dd870abc6557d08782f -size 3019 diff --git a/MM_Math/data_original_21/7054440/math/51968607_142.png b/MM_Math/data_original_21/7054440/math/51968607_142.png deleted file mode 100644 index ba75405975afbe9819b615c5ed7bed728a3c81a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968607_142.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c62aa1fd6b400a8063a44dc3e3d8dbc10aa9a7a9d71ae6ee647aa898c8146459 -size 34252 diff --git a/MM_Math/data_original_21/7054440/math/51968610_550.png b/MM_Math/data_original_21/7054440/math/51968610_550.png deleted file mode 100644 index 6da28176f45bfb1774666e0e6dc843bde435f016..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968610_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40ffcca204e4df5610a8bda0f1317b3a83a838cfa4e27fb2911ef6da13757921 -size 6118 diff --git a/MM_Math/data_original_21/7054440/math/51968614_592.png b/MM_Math/data_original_21/7054440/math/51968614_592.png deleted file mode 100644 index 7efb4b71f4bab2a38c18ef7e297d38eaada6ad7b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968614_592.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42284fa4ce6619cccc236e01cb93ff4e49599c873ff142ce5ce6b86f63042117 -size 20769 diff --git a/MM_Math/data_original_21/7054440/math/51968621_782.png b/MM_Math/data_original_21/7054440/math/51968621_782.png deleted file mode 100644 index b2d9e2464cb437d3af0b4adbeecd25afbe146df0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968621_782.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f8bff650b35af7845f15328c6ddd3ff2b4765205de5498307a2233d8d7abe398 -size 17037 diff --git a/MM_Math/data_original_21/7054440/math/51968626_904.png b/MM_Math/data_original_21/7054440/math/51968626_904.png deleted file mode 100644 index 2b630d960607ce832a4c248d232803ba4bbee915..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968626_904.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2aea0cbfb505681f3f02b86219520e732364e36fd7ad9c158e523f718ea2bfd8 -size 10554 diff --git a/MM_Math/data_original_21/7054440/math/51968629_920.jpeg b/MM_Math/data_original_21/7054440/math/51968629_920.jpeg deleted file mode 100644 index 0a34bf00ce023427c8ecb1a9ab93f894116099db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968629_920.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6ec4f8e12133db590ecf02a18f62630b2269a292b6a4cf515a66771391d0a67 -size 32435 diff --git a/MM_Math/data_original_21/7054440/math/51968646_560.png b/MM_Math/data_original_21/7054440/math/51968646_560.png deleted file mode 100644 index a9a4ba90f14791023b6ee662462999b288a12628..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968646_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc4f2a9ed082399bb9c11774ebaf1744b171ed8bfc980db3ac8f026d2dde5c5b -size 4419 diff --git a/MM_Math/data_original_21/7054440/math/51968648_580.png b/MM_Math/data_original_21/7054440/math/51968648_580.png deleted file mode 100644 index c5be4eade88d4b55cf22f55e384e9550470a7465..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968648_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b0e1583cab2e91926a4e1fd5564d5d6d4f377a0fdbc6cf79983ce7daff908d1 -size 5336 diff --git a/MM_Math/data_original_21/7054440/math/51968676_571.png b/MM_Math/data_original_21/7054440/math/51968676_571.png deleted file mode 100644 index 18254acf115168c788b296216444e8749cb425e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968676_571.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4cc264d534b82fb1c54ec5c6e391bf2073fec404f4a3701efe90076f8bb058e0 -size 4519 diff --git a/MM_Math/data_original_21/7054440/math/51968677_541.png b/MM_Math/data_original_21/7054440/math/51968677_541.png deleted file mode 100644 index 2cbe31583da75493044fb9f1badaad73c38932c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968677_541.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c77b6ea1d38e5823153f20362e19bd9bcdd0d018f131dd1fab7b5ac1e992062c -size 6103 diff --git a/MM_Math/data_original_21/7054440/math/51968684_910.png b/MM_Math/data_original_21/7054440/math/51968684_910.png deleted file mode 100644 index 95413983fe5209f7cc41fcb4eb0048c7c3580d48..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51968684_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ed61c0408141bfac71e7b304a569d857d3a23c580c3f2a93786b190b150641a -size 9024 diff --git a/MM_Math/data_original_21/7054440/math/51998806_530.png b/MM_Math/data_original_21/7054440/math/51998806_530.png deleted file mode 100644 index 22679ca97122766c8f6ef6e3970b20f3acb93284..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51998806_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9dc915c43da17f9ff81a02b843e1f85134ada930e3aabcaebe4bf2e2eb5fde09 -size 4589 diff --git a/MM_Math/data_original_21/7054440/math/51998807_523.png b/MM_Math/data_original_21/7054440/math/51998807_523.png deleted file mode 100644 index 975740e9a454773158324a837b177f52fa8f35d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/51998807_523.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:868c2545f40a5e3adae76483dc8336be32de0f257ba18abdf45f39b746371aa3 -size 8742 diff --git a/MM_Math/data_original_21/7054440/math/52049799_870.png b/MM_Math/data_original_21/7054440/math/52049799_870.png deleted file mode 100644 index 276a4ee4d7c1fba6c3af3416c570d251bdbecd70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52049799_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f5582f50fd20a7f2d33cb8ada61c2dc7f502003e6e247a85cd7478a8e288469 -size 17555 diff --git a/MM_Math/data_original_21/7054440/math/52049813_480.png b/MM_Math/data_original_21/7054440/math/52049813_480.png deleted file mode 100644 index b543b7f84f5a80e1f65b0eebdd1d1497eae174d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52049813_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7cd9696a9249a6d9c4d445b5369ca9c300af8a6409645e49157a72f12fa316c7 -size 2932 diff --git a/MM_Math/data_original_21/7054440/math/52049854_510.png b/MM_Math/data_original_21/7054440/math/52049854_510.png deleted file mode 100644 index bc6e71d589d10836cafddae9a129fade134c44bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52049854_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a4ab9c593a5e98828dd4c6882e4ad2aaffe87f9d886c92e894affc126a83ae9 -size 4085 diff --git a/MM_Math/data_original_21/7054440/math/52049885_122.png b/MM_Math/data_original_21/7054440/math/52049885_122.png deleted file mode 100644 index 47ea41fb8e7ed6692cd98e6583c534d7b1ec17d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52049885_122.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d715db2885bc05a6f9eba0b73c0ef09257f47a4551f7f64872774a104790d7bd -size 2928 diff --git a/MM_Math/data_original_21/7054440/math/52049891_503.png b/MM_Math/data_original_21/7054440/math/52049891_503.png deleted file mode 100644 index c70035a3a095ed6b60247bfa640e52a43df72512..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52049891_503.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23240ebb3c152cbc186b8f4c7343724ca09623b4971ed3b9bfaa209861659b37 -size 4037 diff --git a/MM_Math/data_original_21/7054440/math/52049906_882.png b/MM_Math/data_original_21/7054440/math/52049906_882.png deleted file mode 100644 index 8ca57004e2f8d4608e6a5d5045cd1f42e14429f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52049906_882.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca110a08ce5aa1849198d035913656beb2145550762b5c9de79a344f9e8545b5 -size 5209 diff --git a/MM_Math/data_original_21/7054440/math/52050077_490.png b/MM_Math/data_original_21/7054440/math/52050077_490.png deleted file mode 100644 index edaa7125ed5dd7db5ce9dc7d67d6109a7000861d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52050077_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce45b4a7b05dd6839aba5e8d265ab2513b9783e507d92590fb13d7bdbee380de -size 40770 diff --git a/MM_Math/data_original_21/7054440/math/52050118_476.png b/MM_Math/data_original_21/7054440/math/52050118_476.png deleted file mode 100644 index cb8373416c3155498c4f085bace53bfdfaa40898..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52050118_476.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ff79dea95875458be1141161d03f632120050978613cd3d5fc25fa72b3fc1d6 -size 2519 diff --git a/MM_Math/data_original_21/7054440/math/52050144_8911.png b/MM_Math/data_original_21/7054440/math/52050144_8911.png deleted file mode 100644 index 8dfca7fbef935f58d37b3fbef8f56efce34f12f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52050144_8911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3f915a8d0e870f54fdd558e61b7e0a93582fe1ccd4838f938e92e4e3bddd5d6 -size 19607 diff --git a/MM_Math/data_original_21/7054440/math/52050157_113.png b/MM_Math/data_original_21/7054440/math/52050157_113.png deleted file mode 100644 index 43b79442c0edfd87fcafaee319134d0f32b88555..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52050157_113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2d6ad881d35862b26677e3b737553ccbf652c773e445a3b2e1e34494a0adb22 -size 2960 diff --git a/MM_Math/data_original_21/7054440/math/52050219_100.png b/MM_Math/data_original_21/7054440/math/52050219_100.png deleted file mode 100644 index a3c957ae550b6637af435a04c10c8a720b387a40..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52050219_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b4f0c598f6d1a81f1ee2820c62dafe6f590551e49ca24a1557ee0c46dd1906c -size 2991 diff --git a/MM_Math/data_original_21/7054440/math/52050224_465.png b/MM_Math/data_original_21/7054440/math/52050224_465.png deleted file mode 100644 index 6d7caa245a2237a8922c326102d6460c97a93f6a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52050224_465.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7c03263cfc8b5c9a447000460d507f20d4441397060567a1d0751ab5c61632e -size 3151 diff --git a/MM_Math/data_original_21/7054440/math/52050232_860.png b/MM_Math/data_original_21/7054440/math/52050232_860.png deleted file mode 100644 index b062cc54997cfde2b5afbcdb5c754630c432ba3c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52050232_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fd565db5fcf1c70a704e880b8e974fc81db4b1deaebe5d261d657ab0cf0a788e -size 5745 diff --git a/MM_Math/data_original_21/7054440/math/52050259_452.jpg b/MM_Math/data_original_21/7054440/math/52050259_452.jpg deleted file mode 100644 index 92ffa45369c078af72b7831c1b5113b5c3e27a14..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52050259_452.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d009eb6fb0f9902410fae6f1e96367987d798a162b668c990267437ea3181458 -size 5371 diff --git a/MM_Math/data_original_21/7054440/math/52065343_84.png b/MM_Math/data_original_21/7054440/math/52065343_84.png deleted file mode 100644 index 571b237ff6d6d6453d798eb30a136436d69d4c2e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52065343_84.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:982f4add7ef21489f75cd24cd73b6c5d2532e54585dbe20218b97ae18bcb4c1d -size 15889 diff --git a/MM_Math/data_original_21/7054440/math/52065356_774.png b/MM_Math/data_original_21/7054440/math/52065356_774.png deleted file mode 100644 index 00f12fcff5c8d954144881fdc9e8905701cba0d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52065356_774.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:477085c8debbcdaa13b1f9189f8c53ac2da07be4d6d963c4809e46e9de7d472a -size 3925 diff --git a/MM_Math/data_original_21/7054440/math/52065370_8510.png b/MM_Math/data_original_21/7054440/math/52065370_8510.png deleted file mode 100644 index da61843bc4d1125f1f3a44a92835696a7bbd3bb2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52065370_8510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f0bfe32f28d39a1cb6f7dbe25cf40c93516f887b0fca97b8087727e5967bf23 -size 6311 diff --git a/MM_Math/data_original_21/7054440/math/52065370_8511.png b/MM_Math/data_original_21/7054440/math/52065370_8511.png deleted file mode 100644 index d11ff01d05ad285fd7864bb8e1b0a6f796dac670..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52065370_8511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c16d7459ab9360cb145113578576f47500f0a767351ac05b4e02ec3d22e6f9c9 -size 8198 diff --git a/MM_Math/data_original_21/7054440/math/52065420_92.png b/MM_Math/data_original_21/7054440/math/52065420_92.png deleted file mode 100644 index 09ae17b44b2347fdb34552bb0640c7b011f5ebda..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52065420_92.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4692b7426f02a24b6db02a0884ba9b1d978dd2088d357698dcfa5d03d5b62c05 -size 14794 diff --git a/MM_Math/data_original_21/7054440/math/52065494_420.png b/MM_Math/data_original_21/7054440/math/52065494_420.png deleted file mode 100644 index 6ab8451b66163b424e3e5f0eb7659b323794f2ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52065494_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03223f5d99bf389a3de2be9c66316286fd704fbe40f07424ed71992a73d6cd57 -size 5737 diff --git a/MM_Math/data_original_21/7054440/math/52065495_430.png b/MM_Math/data_original_21/7054440/math/52065495_430.png deleted file mode 100644 index c8e553fa16d15b54dcd5d5ee190c41e93876d1ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52065495_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c428780a332b52d89b9cbd8c7adddaa56e928d2ffac6e9fb03a2d89a6c6019b -size 3782 diff --git a/MM_Math/data_original_21/7054440/math/52065936_441.png b/MM_Math/data_original_21/7054440/math/52065936_441.png deleted file mode 100644 index 63279bccb9fda205e1949805efb1b5ce0d732e84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52065936_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c260f2b8ad9fe7f11aa56c6f406c6d21706f8ff1a61db8eaf8475c0d6653f5d4 -size 3082 diff --git a/MM_Math/data_original_21/7054440/math/52065947_840.png b/MM_Math/data_original_21/7054440/math/52065947_840.png deleted file mode 100644 index 9ce70dc2d87b2a7f1b3a4d9946dd3f137346091f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52065947_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2b9f5f1e1fd8c1a2464432bfdd2dd184520d29bc8e235dc71271e62fdfd6fe8 -size 13764 diff --git a/MM_Math/data_original_21/7054440/math/52076050_403.png b/MM_Math/data_original_21/7054440/math/52076050_403.png deleted file mode 100644 index 1064704b7abeb7ec880798b8191df5f6ad59a193..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076050_403.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35622b38a10fb6e42573e2761b138e93940e6ae7748942f151b8c33766201e9d -size 3034 diff --git a/MM_Math/data_original_21/7054440/math/52076067_832.png b/MM_Math/data_original_21/7054440/math/52076067_832.png deleted file mode 100644 index 964747224aff344baa1481027f2f8a625af33446..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076067_832.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2576014d4d7bb460d777f214821d9b34c2b817f7ba8a5c2c00beaf68b51243f0 -size 3495 diff --git a/MM_Math/data_original_21/7054440/math/52076087_79.png b/MM_Math/data_original_21/7054440/math/52076087_79.png deleted file mode 100644 index fff4c619c2de46c5aa7a00077c1ad2a9a3c42525..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076087_79.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77028430ddb2c290168b0366cf5140844829c25b7deb7a98987961cb66078c50 -size 5562 diff --git a/MM_Math/data_original_21/7054440/math/52076092_380.png b/MM_Math/data_original_21/7054440/math/52076092_380.png deleted file mode 100644 index 34f58af6c3f672df4382168f002c7677909ad3c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076092_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:677041bbcfbb5a84ec8cffdeca2dd3eb8028feab57447cfcc2e20f3d9b3a1015 -size 18282 diff --git a/MM_Math/data_original_21/7054440/math/52076093_410.png b/MM_Math/data_original_21/7054440/math/52076093_410.png deleted file mode 100644 index 1c90b2d2f830bc35cbec422c18d4b6388a317beb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076093_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dbda6a745cc92d5c82d45a1776aad1832e76bda63145a6d637ecd9ce3f869320 -size 7375 diff --git a/MM_Math/data_original_21/7054440/math/52076179_3711.png b/MM_Math/data_original_21/7054440/math/52076179_3711.png deleted file mode 100644 index 4d7c238753a22e17b13bec5554226b1879b482a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076179_3711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c07dad828ce97431bf026a326a982b0acc07041d91dc696e0c50aaa1cc32dfc -size 2388 diff --git a/MM_Math/data_original_21/7054440/math/52076214_60.png b/MM_Math/data_original_21/7054440/math/52076214_60.png deleted file mode 100644 index c1bde08f4a21af3b72b0e1a54dfcd8b00e7871a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076214_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67b32852bc74a76cce319488875ac3a44c44841cedfa71641c64564b036d102f -size 8258 diff --git a/MM_Math/data_original_21/7054440/math/52076714_54.png b/MM_Math/data_original_21/7054440/math/52076714_54.png deleted file mode 100644 index 68fa0e2a8e4dfe156b03ca89b11bbf3155dd7f65..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076714_54.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed8e84ddb91700ecd279d55350e845eb07ff1f0ad6c9d6e158287f03d3f461ea -size 7726 diff --git a/MM_Math/data_original_21/7054440/math/52076721_392.png b/MM_Math/data_original_21/7054440/math/52076721_392.png deleted file mode 100644 index 597a49c87dad0e4ad5ba045b3d7b0b3954f78234..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076721_392.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3d2a3da3adcf60cdd1e6890899b11ed36693a93193cf07544a26b8341e3371a -size 15973 diff --git a/MM_Math/data_original_21/7054440/math/52076824_38.png b/MM_Math/data_original_21/7054440/math/52076824_38.png deleted file mode 100644 index 5a04b43112d454cd3e9edc63f6db34731ed05b3a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076824_38.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69a069456bef1002bc0d5cee40a11a2a805f33b0a4f241e6f9c9d2c846748b3b -size 2694 diff --git a/MM_Math/data_original_21/7054440/math/52076831_40.png b/MM_Math/data_original_21/7054440/math/52076831_40.png deleted file mode 100644 index a2fc7e593d310467a62e3378d8c2a9a0817a22d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076831_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:236aba421e84f05f43c8e1a8d73c0a40cb9cd34ec5f6118f2905308a9f4c618b -size 4988 diff --git a/MM_Math/data_original_21/7054440/math/52076836_362.png b/MM_Math/data_original_21/7054440/math/52076836_362.png deleted file mode 100644 index dbf2b42ba24e2857a0d969812512ad07e0523489..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076836_362.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:85b7b7240ab3bc8b0290ff1dc2926120923206eaa67e7f1e73d99ada408acc0a -size 7610 diff --git a/MM_Math/data_original_21/7054440/math/52076904_350.png b/MM_Math/data_original_21/7054440/math/52076904_350.png deleted file mode 100644 index 8b9806169e8bd027dcbf14f99d6a3f915f0a14fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076904_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97187e7d24f6704df93a59ce82bb04822805296621811152c7a640ff4000eaf8 -size 3155 diff --git a/MM_Math/data_original_21/7054440/math/52076923_820.png b/MM_Math/data_original_21/7054440/math/52076923_820.png deleted file mode 100644 index 84884b674e2aaeb72ab2dc9d1b903a2fcb0c96b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076923_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc342e674c008cbf049bb9a63b80de3727cb8d813468ff2e578a5e24b90c0036 -size 3110 diff --git a/MM_Math/data_original_21/7054440/math/52076985_21.png b/MM_Math/data_original_21/7054440/math/52076985_21.png deleted file mode 100644 index 03e7b4ad1c7dbd0d5ebc26cedcc9b2a2355a0659..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076985_21.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0088cf399980ed5ad615ff6b6b6ab28e8c1801f70707fd754b9609d092c423ec -size 3600 diff --git a/MM_Math/data_original_21/7054440/math/52076992_340.png b/MM_Math/data_original_21/7054440/math/52076992_340.png deleted file mode 100644 index 9cf9c873e77183e35c007f75e1fb2df0ec29710f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076992_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6013dfb6bdbcec6b0df06adca386bbf3a70b14e0b8722a4762632ff1e849539d -size 549 diff --git a/MM_Math/data_original_21/7054440/math/52076992_342.png b/MM_Math/data_original_21/7054440/math/52076992_342.png deleted file mode 100644 index cea4e5d9709134d25d722c91d153e4048bd2ad40..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076992_342.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7318cb23c2cf032d777eb6df39fb6fe7c0e863e230b61d4026de9861582dc676 -size 5800 diff --git a/MM_Math/data_original_21/7054440/math/52076993_321.png b/MM_Math/data_original_21/7054440/math/52076993_321.png deleted file mode 100644 index 753a6f3d239eceda6fd7bae67ce6a1740a08b868..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076993_321.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:798f1f18de8105d7ae5b9af4ef1124a94e1b59ae5f4424d22c1c28a1b7abf38f -size 4848 diff --git a/MM_Math/data_original_21/7054440/math/52076995_333.png b/MM_Math/data_original_21/7054440/math/52076995_333.png deleted file mode 100644 index 671c68069f710ae5f3a6070bdd11ac0149711b99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52076995_333.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35b80322b13bffca703f84f0d1691f211f658927c40f77380d2cf41497fb66f4 -size 5668 diff --git a/MM_Math/data_original_21/7054440/math/52077009_802.png b/MM_Math/data_original_21/7054440/math/52077009_802.png deleted file mode 100644 index b8c2e831c4d1cfc5face090972fe76f9d969f241..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52077009_802.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e35fbb0a87e95f4f9cbc4613d7762016b1f9a2c283ec4b7f453d024846ccc6ba -size 15632 diff --git a/MM_Math/data_original_21/7054440/math/52077012_810.png b/MM_Math/data_original_21/7054440/math/52077012_810.png deleted file mode 100644 index 18cbaa8c960dc67d6025fcfef3bf8e680f63f57a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52077012_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ea1cf19b3109febc37d613984fd538d4e37673cd3430b2bb3f3462df13b543a -size 32608 diff --git a/MM_Math/data_original_21/7054440/math/52082364_11.png b/MM_Math/data_original_21/7054440/math/52082364_11.png deleted file mode 100644 index e53239407074c70e84c6467f99c9f851fc98f922..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52082364_11.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2defb40069dd622e742570febd7cd63363b4468686f07978cf19b24b01ba25c9 -size 15338 diff --git a/MM_Math/data_original_21/7054440/math/52082370_300.png b/MM_Math/data_original_21/7054440/math/52082370_300.png deleted file mode 100644 index 6426f5cc483b6f2b0ad0690e4e999a4260b07951..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52082370_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:afb0e9222c460126804258089eef3003e66c0ef0548e5ebbf083df12e10d93fa -size 21124 diff --git a/MM_Math/data_original_21/7054440/math/52082439_00.png b/MM_Math/data_original_21/7054440/math/52082439_00.png deleted file mode 100644 index ac02100f29605738e482c590749d38458c6a3ca9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52082439_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:61fffb9723a01e663e7e2abf78860809cb1d658d78ae255c62b92e8b0d14e3e8 -size 2718 diff --git a/MM_Math/data_original_21/7054440/math/52082448_290.png b/MM_Math/data_original_21/7054440/math/52082448_290.png deleted file mode 100644 index 198a914121dbc250a3c7a7a4957aff339f408473..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52082448_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06b12b5295c43eaa516b0b182e58330034a7d6083f9c380d9779eb8b00ba0e49 -size 4936 diff --git a/MM_Math/data_original_21/7054440/math/52082449_311.png b/MM_Math/data_original_21/7054440/math/52082449_311.png deleted file mode 100644 index fc979d68a6a86e8b9d3105e6cff32a8242cf45e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52082449_311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d81d6c4e604d19118c87983d21b5fdb6b42ffe27d20aa0caa2dfdee5f7ab8be2 -size 6258 diff --git a/MM_Math/data_original_21/7054440/math/52082450_280.png b/MM_Math/data_original_21/7054440/math/52082450_280.png deleted file mode 100644 index d9324364cfb3f3b6a18e18cfda2fb57a9ccf2c3f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52082450_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4dfdce751a926a5b9e70398a328bf359159b62d6b5cc26dd76609c9e3ff3148f -size 5299 diff --git a/MM_Math/data_original_21/7054440/math/52082489_270.png b/MM_Math/data_original_21/7054440/math/52082489_270.png deleted file mode 100644 index 16e49708d04b3d7fb0a8f06570d284c08438dfdf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52082489_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a16a7ffc9d7c37920c08168686513c5a0b574cced5785d5fa487480522230ea -size 41370 diff --git a/MM_Math/data_original_21/7054440/math/52082490_260.png b/MM_Math/data_original_21/7054440/math/52082490_260.png deleted file mode 100644 index 74c650eee9919c2b6a9a52bb617643623d64ec2d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52082490_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:072199bf85f3cb751ed0df0d72953ac0168c1b208f5f3701dba028b2661dbb3e -size 34058 diff --git a/MM_Math/data_original_21/7054440/math/52082505_790.png b/MM_Math/data_original_21/7054440/math/52082505_790.png deleted file mode 100644 index a324b95a86de9a9bee8e957940d7500a51b5a87c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52082505_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9153c1462db6328c87e67026bae9d66658b041b2c733377d4487cbe20ef41e56 -size 38080 diff --git a/MM_Math/data_original_21/7054440/math/52082526_251.png b/MM_Math/data_original_21/7054440/math/52082526_251.png deleted file mode 100644 index 4e0fd103d8ebe482302762d1a190256825b58aac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/52082526_251.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:656430997b4848f33103737e03949a5f922428f62988f40a6d8bc820acc51536 -size 32869 diff --git a/MM_Math/data_original_21/7054440/math/53538155_711.png b/MM_Math/data_original_21/7054440/math/53538155_711.png deleted file mode 100644 index e84d78fc66c9c1dda82ebd5b8b009d42eb6f380a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538155_711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e45681f552ad39b261a4783c9a59738a881a052ff051ccd0bf27af7ae38c59f8 -size 42463 diff --git a/MM_Math/data_original_21/7054440/math/53538182_235.png b/MM_Math/data_original_21/7054440/math/53538182_235.png deleted file mode 100644 index 7c571dbb5345e23d53b33ffa79626f36adc51c75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538182_235.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4be6cbf0aebe4854e5c9b10bcaf763a3fda156a337257dfca865a9a70e7afc09 -size 11474 diff --git a/MM_Math/data_original_21/7054440/math/53538185_737.png b/MM_Math/data_original_21/7054440/math/53538185_737.png deleted file mode 100644 index 3ecabda9f77d743465498daf16c33f8ac80c4e53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538185_737.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9bdda5c8798b158f160abbe1bd7a81f4a059c31c0b2016ead179876acd5e9b94 -size 39596 diff --git a/MM_Math/data_original_21/7054440/math/53538187_685.png b/MM_Math/data_original_21/7054440/math/53538187_685.png deleted file mode 100644 index a44f77ee96fa99b2b3949e7021ee93bc81064a3d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538187_685.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7abe68efe4f6f981c69e9cea11ebe4e19e958808abbb3dc34e20021dcf39e2a9 -size 89887 diff --git a/MM_Math/data_original_21/7054440/math/53538188_696.png b/MM_Math/data_original_21/7054440/math/53538188_696.png deleted file mode 100644 index 971d9d5cc8fbb3cd688f5b239d448ad031c17f4d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538188_696.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:452416bf7222109d8cce0a4a902660dd237dd15d6b223a6531f8ebb9ccafbc12 -size 54778 diff --git a/MM_Math/data_original_21/7054440/math/53538212_722.png b/MM_Math/data_original_21/7054440/math/53538212_722.png deleted file mode 100644 index 89481ad4ed2871d94bdde87fc64603c6a4ee4582..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538212_722.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f301e33bbd0a3934aee60e39d7897189f092dc24bfbde4153df9c4f4637d50e -size 6023 diff --git a/MM_Math/data_original_21/7054440/math/53538277_706.png b/MM_Math/data_original_21/7054440/math/53538277_706.png deleted file mode 100644 index a63b642793848d7488a291227f3cc44a7ce8e39b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538277_706.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e6d53404cbd2b65e61dcba3df85b308a8022cad214f6d481213d428f33b5abe -size 49600 diff --git a/MM_Math/data_original_21/7054440/math/53538278_749.png b/MM_Math/data_original_21/7054440/math/53538278_749.png deleted file mode 100644 index c0bed4ecf9e6dbbf8ec36f8bb63c6c7f297d171a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538278_749.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a09f459e418a29eb1a6f193f7bdc8e622a591b8a1b6a0c0c2b6f71a3366153e -size 56971 diff --git a/MM_Math/data_original_21/7054440/math/53538336_2412.png b/MM_Math/data_original_21/7054440/math/53538336_2412.png deleted file mode 100644 index 1ac8690368bc804be678102e8e8f601674568098..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538336_2412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a760856df6c90fae98c819bf8fa49ead5e6a4ad29bbcc1fb9af65d9a06f34a38 -size 38510 diff --git a/MM_Math/data_original_21/7054440/math/53538341_754.png b/MM_Math/data_original_21/7054440/math/53538341_754.png deleted file mode 100644 index 3bd14cc8e5a9b9c54f7472cc981d2700b84205f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538341_754.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65351c126a244c3b0e782c3101a7df6ea3179869b6696ea07f7db3f936abfc10 -size 3875 diff --git a/MM_Math/data_original_21/7054440/math/53538342_769.png b/MM_Math/data_original_21/7054440/math/53538342_769.png deleted file mode 100644 index 7398443e2fbdfddbf1139d29db85f1ee1f1a7372..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/math/53538342_769.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7224d75ca4e02bbc1a1e745e8ac1a34074eeae619733f82daf658d790bbe388 -size 3752 diff --git a/MM_Math/data_original_21/7054440/solution_images/51770458_670.png b/MM_Math/data_original_21/7054440/solution_images/51770458_670.png deleted file mode 100644 index 8bf9838a76af102723379ed980f063825fc979c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51770458_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:297ff8d8172962811d2472c4fb13e017ffff08cecff1b12458f9a0e27495f2cf -size 29709 diff --git a/MM_Math/data_original_21/7054440/solution_images/51770518_220.png b/MM_Math/data_original_21/7054440/solution_images/51770518_220.png deleted file mode 100644 index 08a638e95e4a17b6080ef969a9e1c1a9cab6b810..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51770518_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5df9af7e0e225c3807eaba9b4f418f57f09fb2ac8182fcfb26b34b0db8b3dbe -size 5771 diff --git a/MM_Math/data_original_21/7054440/solution_images/51770529_660.png b/MM_Math/data_original_21/7054440/solution_images/51770529_660.png deleted file mode 100644 index 1aaf869b13c6b3c9231577a7fa9bcc4f1b580784..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51770529_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4160c91a8a0364afe3af7455c9128868cccdc1d7b00bb1882934fc06d3f16895 -size 10813 diff --git a/MM_Math/data_original_21/7054440/solution_images/51770639_990.png b/MM_Math/data_original_21/7054440/solution_images/51770639_990.png deleted file mode 100644 index 7c3914fa86a27a623049e187a4faeb681b1467c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51770639_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19b225b4ec1c1cc0a4cac1c2876d6e0efbd3737e0c5f13bc8757d94800183f45 -size 11646 diff --git a/MM_Math/data_original_21/7054440/solution_images/51920362_610.png b/MM_Math/data_original_21/7054440/solution_images/51920362_610.png deleted file mode 100644 index 3ac0e953366513dd3d8ea5b39fdd327fab9c50d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51920362_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a4d91e97dd5009d027906167e7016ccee354701a92b3a937532ac0025995774 -size 8152 diff --git a/MM_Math/data_original_21/7054440/solution_images/51942332_180.png b/MM_Math/data_original_21/7054440/solution_images/51942332_180.png deleted file mode 100644 index 7273f5cb0067e5adbae5e263a46042830fdc722e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51942332_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:284124af959a8f3da3f778b1400921139a0f43f0661f9932b1d91321e3666c1c -size 17266 diff --git a/MM_Math/data_original_21/7054440/solution_images/51942337_600.png b/MM_Math/data_original_21/7054440/solution_images/51942337_600.png deleted file mode 100644 index 4809258844a1bb37950a89f95e1fc41cdeeda9ae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51942337_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb32c7efe12579fcd6eff0500c0820886028987f6602eeece969ad4c78bee9dc -size 9670 diff --git a/MM_Math/data_original_21/7054440/solution_images/51968496_150.png b/MM_Math/data_original_21/7054440/solution_images/51968496_150.png deleted file mode 100644 index 2a8f892e4511f2a7f25b6b66297c73abd96cd4ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51968496_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:318fe48cf09fd8259215d25cdce0ec89c58037648ec495836596f2a3721464c6 -size 3281 diff --git a/MM_Math/data_original_21/7054440/solution_images/51968614_590.png b/MM_Math/data_original_21/7054440/solution_images/51968614_590.png deleted file mode 100644 index ae250861b04ef4b999d6bd6ee45a87c291989f05..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51968614_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04cb5165a12ae4cfa88830b0ddf4f799ad3e58c756242478305742263b105a46 -size 19333 diff --git a/MM_Math/data_original_21/7054440/solution_images/51968677_542.png b/MM_Math/data_original_21/7054440/solution_images/51968677_542.png deleted file mode 100644 index 99119cfe5ae614f5bf4978c76f8861e2eee8c38b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51968677_542.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ffb2b2ff5caf0bac6acf953d3fc30060b6f53d765e8dd4dc14e71dd165f1133a -size 5894 diff --git a/MM_Math/data_original_21/7054440/solution_images/51998806_530.png b/MM_Math/data_original_21/7054440/solution_images/51998806_530.png deleted file mode 100644 index 5f3ead3c9379f9e47c1c5de0e48b2f459f824b19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51998806_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41da85cac2d8976ece05e09e0bc1e78dc090a895fe4c020ae4626a89dcdc07df -size 3861 diff --git a/MM_Math/data_original_21/7054440/solution_images/51998807_520.png b/MM_Math/data_original_21/7054440/solution_images/51998807_520.png deleted file mode 100644 index 457e1bb3c04896dfd7cef4cdf27af9b783c16d2b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/51998807_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76d6af89f39c8b7c82dc41a4c2d0ac9b406119d031fc85c2638af34476d18d59 -size 8481 diff --git a/MM_Math/data_original_21/7054440/solution_images/52049854_510.png b/MM_Math/data_original_21/7054440/solution_images/52049854_510.png deleted file mode 100644 index d8780d586adda779cb562ce685e320d923f12488..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52049854_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39bcf1a75e4578276c635bc74e4ec3e96f6a54eac433879f3a0316e08cd2a2a7 -size 4400 diff --git a/MM_Math/data_original_21/7054440/solution_images/52049885_120.png b/MM_Math/data_original_21/7054440/solution_images/52049885_120.png deleted file mode 100644 index d114e391206121e3555669969178f7bbbaa42fd8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52049885_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1cd3f47e8e4f6194ee558ab7bf0c07dc8503339dcf79fe8565c5185685c4cbac -size 3751 diff --git a/MM_Math/data_original_21/7054440/solution_images/52050077_490.png b/MM_Math/data_original_21/7054440/solution_images/52050077_490.png deleted file mode 100644 index 0db7c0f062bda952c2f4e5f81b62c33e250dcde3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52050077_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3eaee94a3a46ade678bd4b4207a752ee7dcd4591dfdc97464d79fff1b8b266e -size 64250 diff --git a/MM_Math/data_original_21/7054440/solution_images/52050118_470.png b/MM_Math/data_original_21/7054440/solution_images/52050118_470.png deleted file mode 100644 index d814e5a0d70e3ed531d69f7b4d93e295a0c622e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52050118_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0789ffdb25d2adb1c1c01ce9572237d0494c21d4c9f3a5840154d91f858e8df -size 2612 diff --git a/MM_Math/data_original_21/7054440/solution_images/52050219_100.png b/MM_Math/data_original_21/7054440/solution_images/52050219_100.png deleted file mode 100644 index dcf8929a1f9895d5054b7ec4d1217ffc59fc1b1f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52050219_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f93bd5ef508927f0bc1bb4ac62b9fb7659b434f7ecb7283556ce35f216155508 -size 3036 diff --git a/MM_Math/data_original_21/7054440/solution_images/52050224_460.png b/MM_Math/data_original_21/7054440/solution_images/52050224_460.png deleted file mode 100644 index c06b92f61efa41d47161aae6d0bc1725c91f3617..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52050224_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:047d3b6af2a9b1313504bc9de8db1e0fc4741392095f41cc049de307edd31321 -size 3152 diff --git a/MM_Math/data_original_21/7054440/solution_images/52065495_430.png b/MM_Math/data_original_21/7054440/solution_images/52065495_430.png deleted file mode 100644 index d9d45633cadd67891bcc0a4db7e9a0b3d6ee89ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52065495_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:982b0991299869d15f00f12dc2fff7eadcf3b248372160681000b6dbfe2e4dae -size 3799 diff --git a/MM_Math/data_original_21/7054440/solution_images/52065936_440.png b/MM_Math/data_original_21/7054440/solution_images/52065936_440.png deleted file mode 100644 index efaaf1d06a7189374bd3da9fee4c05fc20b40a4b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52065936_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31f471b63e7de80c61403eab6f7c52d8287099d04aae577332eb8336f78dd76c -size 29154 diff --git a/MM_Math/data_original_21/7054440/solution_images/52076179_370.png b/MM_Math/data_original_21/7054440/solution_images/52076179_370.png deleted file mode 100644 index a6cf524d285cfcae8cccf8fc32232906c6bd36c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52076179_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9ff5425e25beb793424eb3de9b5e7815d07ca2ec552f71d527d08a9b227599c -size 2961 diff --git a/MM_Math/data_original_21/7054440/solution_images/52076904_351.png b/MM_Math/data_original_21/7054440/solution_images/52076904_351.png deleted file mode 100644 index 9a2a10a1a94d817c233764a15f17e6290535e45e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52076904_351.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1bc7b4a40875dcb68b5120c470f983408d2e54db0030d739f4411371b28275f -size 9871 diff --git a/MM_Math/data_original_21/7054440/solution_images/52076985_20.png b/MM_Math/data_original_21/7054440/solution_images/52076985_20.png deleted file mode 100644 index 2df3727d584d6abcbc150d1de3264355101b189e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52076985_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:048048144e0de224b34e0a29f1b7ec35033264997a3163cb77eeb3cb799b008e -size 13918 diff --git a/MM_Math/data_original_21/7054440/solution_images/52076995_330.png b/MM_Math/data_original_21/7054440/solution_images/52076995_330.png deleted file mode 100644 index ec2055e0bc4c6d2124455516683ac7a8829c354f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52076995_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a68a22a66015146f89bb2dff4b547322a9ec207fc6edfe1e5a42c0afa3e03a5c -size 8152 diff --git a/MM_Math/data_original_21/7054440/solution_images/52082364_10.png b/MM_Math/data_original_21/7054440/solution_images/52082364_10.png deleted file mode 100644 index 30d9b9acc043410f221d465758c384727f503208..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52082364_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5d874370a03e549d10bf59a4b86a7bd1980a4bafb605e4f795b5182f1a18ab6 -size 42266 diff --git a/MM_Math/data_original_21/7054440/solution_images/52082370_300.png b/MM_Math/data_original_21/7054440/solution_images/52082370_300.png deleted file mode 100644 index c5dd36784cc14510edfd20419eaceff20a50c0eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52082370_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b87f5b7245d68677065be6a9425ef29071d356260aed2612c109abde84cf8b4 -size 26045 diff --git a/MM_Math/data_original_21/7054440/solution_images/52082449_310.png b/MM_Math/data_original_21/7054440/solution_images/52082449_310.png deleted file mode 100644 index 8410fea14b624c92ccf5dc02ba46367797ac8d9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52082449_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6f808791aa86abce34a9fed84e16146072541904d20bcb41f5ee29e924f1fb0 -size 116752 diff --git a/MM_Math/data_original_21/7054440/solution_images/52082450_280.png b/MM_Math/data_original_21/7054440/solution_images/52082450_280.png deleted file mode 100644 index bde5a517a27873b39b8a98e87b51817fabc8f3cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52082450_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6639f1dd317d294419ec70419430fe5d869f4279625ef85a418704833e9a4f67 -size 51678 diff --git a/MM_Math/data_original_21/7054440/solution_images/52082526_250.png b/MM_Math/data_original_21/7054440/solution_images/52082526_250.png deleted file mode 100644 index 50f007bd45f76f7e2585d5310660224da50ee204..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/52082526_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:95e7199917d7c0734f02da6c8c2b091d7369db8138abd5e31c97466b5f33b6c9 -size 7361 diff --git a/MM_Math/data_original_21/7054440/solution_images/53538155_710.png b/MM_Math/data_original_21/7054440/solution_images/53538155_710.png deleted file mode 100644 index ecbf83c2a76b10af4e97fa9abee90fecb1134123..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/53538155_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e5e27a983cff8fa838db74e2a803f52e49149026d5c57e81418756c296c3d3a -size 49579 diff --git a/MM_Math/data_original_21/7054440/solution_images/53538185_730.png b/MM_Math/data_original_21/7054440/solution_images/53538185_730.png deleted file mode 100644 index 49253e3cfd951bf14c4502ebd44652b9e6ca28f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/53538185_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f976b9b477cbdd1dc28ae4a9f3acbdeea6fa4bd7bc15a612de5fd8ed23aa2d90 -size 46570 diff --git a/MM_Math/data_original_21/7054440/solution_images/53538188_690.png b/MM_Math/data_original_21/7054440/solution_images/53538188_690.png deleted file mode 100644 index 49eb99f61db64e20f175c793b1f32a2c922c9408..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/53538188_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f87b4ee4fc29a0c9c7b3d7ad65aeef6daca0aa172ecde5deaea9c236b2f2098a -size 62215 diff --git a/MM_Math/data_original_21/7054440/solution_images/53538212_720.png b/MM_Math/data_original_21/7054440/solution_images/53538212_720.png deleted file mode 100644 index 4478505ffefec93b2c110fe280a51b76409868d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/53538212_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0ab278339844552b3086475a88d1c7658f3bda23b369583d6550cf89d5a26ad -size 4177 diff --git a/MM_Math/data_original_21/7054440/solution_images/53538212_729.png b/MM_Math/data_original_21/7054440/solution_images/53538212_729.png deleted file mode 100644 index 5b5f2bd7ebd5aa51c1792cf4083d38f6f755881e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/53538212_729.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c47b30f20ec4575f8957a88f8f340b9a6f6ef414830957f5ace762e9c9a0aaf5 -size 3762 diff --git a/MM_Math/data_original_21/7054440/solution_images/53538277_7016.png b/MM_Math/data_original_21/7054440/solution_images/53538277_7016.png deleted file mode 100644 index 66fb545641e214edae17210698b64b573b33f5fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/53538277_7016.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:450fbe6c81e0e751a1d34680221a00e93b51c07a560251b037cea2bbf298c1c1 -size 61380 diff --git a/MM_Math/data_original_21/7054440/solution_images/53538278_740.png b/MM_Math/data_original_21/7054440/solution_images/53538278_740.png deleted file mode 100644 index 290ae610a32891900838aa6f8888142049da3702..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/53538278_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2aa40644fe135c0fdf6a33b80bd853fe663ca6733a885eccd6ae89409edc7d06 -size 81762 diff --git a/MM_Math/data_original_21/7054440/solution_images/53538336_242.png b/MM_Math/data_original_21/7054440/solution_images/53538336_242.png deleted file mode 100644 index e56a64c8c2eff1b7cc706c05c0df5ad061e63e33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/53538336_242.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53d558d69c83ecfcc45636c9b3e5f22aefd433a570a8dcd954c76580b2626222 -size 43470 diff --git a/MM_Math/data_original_21/7054440/solution_images/53538342_762.png b/MM_Math/data_original_21/7054440/solution_images/53538342_762.png deleted file mode 100644 index bb24568498ae39a229349b918fb6129ef2d12c33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054440/solution_images/53538342_762.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:323b092f4fa93d834b95b1714bf9649a9b0bad949c30bbd547c91e1ef1de03bd -size 6201 diff --git a/MM_Math/data_original_21/7054442/math/51863531_51.png b/MM_Math/data_original_21/7054442/math/51863531_51.png deleted file mode 100644 index f5e1c1aef06760be5fe20ac6061bae2021393282..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51863531_51.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed1118b1a3dd1693fa0a371cfbdacc5bf9800566120c9e145c65e9d9bea5c42c -size 4538 diff --git a/MM_Math/data_original_21/7054442/math/51863557_32.png b/MM_Math/data_original_21/7054442/math/51863557_32.png deleted file mode 100644 index dd4c122b8632d671f055a2a64fd49af4cea5e72a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51863557_32.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fed5c94109b897f3c73c9a7e9f5e406e3b90ff4f6a8cef7616e7aa8fe8ee6dd4 -size 3897 diff --git a/MM_Math/data_original_21/7054442/math/51863562_42.png b/MM_Math/data_original_21/7054442/math/51863562_42.png deleted file mode 100644 index b544e64fccdeab282db63165b172f6e842c1b870..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51863562_42.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ed0b24b0880bbd3fd3450de37462a7a6cc7e600bfb300d97ef61e9b8eab04ba -size 2048 diff --git a/MM_Math/data_original_21/7054442/math/51863567_412.png b/MM_Math/data_original_21/7054442/math/51863567_412.png deleted file mode 100644 index b070edc23177b9bf47077a9f2be548ce4560cb26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51863567_412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2f34973f3c4dec7489f42c4c1881cf86b59875aab32655b5fc62ba66e3efdb7 -size 2700 diff --git a/MM_Math/data_original_21/7054442/math/51863571_612.png b/MM_Math/data_original_21/7054442/math/51863571_612.png deleted file mode 100644 index be69b66872a56a4908b8c3b1b894ed5ca5f25c6a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51863571_612.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53705d6290d590366af761bf16977eb233c49cbeb01993017ecaf275da37df4c -size 2375 diff --git a/MM_Math/data_original_21/7054442/math/51863620_7712.png b/MM_Math/data_original_21/7054442/math/51863620_7712.png deleted file mode 100644 index e419a3a29d4c2e8a86c45418bfbda315110ee577..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51863620_7712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37d03c79e1fd54a207eee3e91f960b64ef21cf1cf32c50ddb51755dcfbd5897d -size 3967 diff --git a/MM_Math/data_original_21/7054442/math/51863890_403.jpg b/MM_Math/data_original_21/7054442/math/51863890_403.jpg deleted file mode 100644 index d44c726d58e1b5acdbdeedf217fedfe92b7384bf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51863890_403.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dcf596d3d541e2953d0e34953b5dcc0c6d2733cfd73b12e325d78d5f2ce0e112 -size 4588 diff --git a/MM_Math/data_original_21/7054442/math/51863891_392.png b/MM_Math/data_original_21/7054442/math/51863891_392.png deleted file mode 100644 index 2e4a5ad6c5bffd5291e505e752decbd4965d8d72..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51863891_392.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df8db9201a84b2747d6808ac973e659ace44449e37f7fcaa898e309dd727b4da -size 3241 diff --git a/MM_Math/data_original_21/7054442/math/51863903_762.png b/MM_Math/data_original_21/7054442/math/51863903_762.png deleted file mode 100644 index 95fbf189529a1defafabb6f1fff4e59b2fbbc140..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51863903_762.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:596f49a3d675439496281365caf4978268bec2c011c4e640fa582e9caee5ef51 -size 3440 diff --git a/MM_Math/data_original_21/7054442/math/51864146_751.png b/MM_Math/data_original_21/7054442/math/51864146_751.png deleted file mode 100644 index b67f7cca4ca0f3132d3ebf92efebbc697302883a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51864146_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:481ea3ad6cb2aede5f6e86832892158f6b49d595f7c2a1847de253a0913001b7 -size 4407 diff --git a/MM_Math/data_original_21/7054442/math/51865207_749.png b/MM_Math/data_original_21/7054442/math/51865207_749.png deleted file mode 100644 index ba775505ff1fdbeb2b13506c7c5de15019d80a37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/51865207_749.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe3952aaaad94da7a7ea94ada658381a09d8d5377660c9ad3ca96374c0212768 -size 7602 diff --git a/MM_Math/data_original_21/7054442/math/52344345_302.png b/MM_Math/data_original_21/7054442/math/52344345_302.png deleted file mode 100644 index 531e0c223e10c604841e415c2120497615aad4e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344345_302.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ead7e2c800e1f30d8ec380128e8e65083595222752d13bc53cbac99aef32b57 -size 5518 diff --git a/MM_Math/data_original_21/7054442/math/52344746_280.png b/MM_Math/data_original_21/7054442/math/52344746_280.png deleted file mode 100644 index dc622e9148abfb1b9a2c6dc9b2ac4512fe21fb07..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344746_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:afdebe96ce91bae0d3c4d4aa0c4d8e6758cd3d9c9c15cb5745e782c00093f09d -size 5135 diff --git a/MM_Math/data_original_21/7054442/math/52344754_590.png b/MM_Math/data_original_21/7054442/math/52344754_590.png deleted file mode 100644 index 4ae8da90eaf758fdf2c95587c29dac49d0fc58c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344754_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e8781b35b4c6af4c306f5d06e29b3a89b2c90513b730b608a41f2d5f6b303de -size 8037 diff --git a/MM_Math/data_original_21/7054442/math/52344766_980.png b/MM_Math/data_original_21/7054442/math/52344766_980.png deleted file mode 100644 index 0815b0c505ad0fbaff427456d5b9b545608d5b16..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344766_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69bb37093f7e2691cd70c638e02b3c6ea07e324d46bfae40d4f7acae52af8870 -size 6157 diff --git a/MM_Math/data_original_21/7054442/math/52344787_260.png b/MM_Math/data_original_21/7054442/math/52344787_260.png deleted file mode 100644 index b3358854217560f90887e77d04d012bf2b334032..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344787_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9e1d7fdee6d21efab8041c76073291daa9ca8c3120a0290dce4ff0f5c2525e6 -size 18220 diff --git a/MM_Math/data_original_21/7054442/math/52344788_251.png b/MM_Math/data_original_21/7054442/math/52344788_251.png deleted file mode 100644 index f3486636d13a655d3071da9a0b82d66f8a4e7864..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344788_251.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e458e661a0c736cf43e28ab37dd7a5fb1f29c74b29f22d460b260339f0477143 -size 2883 diff --git a/MM_Math/data_original_21/7054442/math/52344789_270.png b/MM_Math/data_original_21/7054442/math/52344789_270.png deleted file mode 100644 index 25afbb83dcad2d3d5b13ff55d79c2d5e1b5faeb7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344789_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ac4573e00829e77c2e0285c1d902ab94ae7b6a4de6072cf59769c91b100dc56d -size 5853 diff --git a/MM_Math/data_original_21/7054442/math/52344793_580.png b/MM_Math/data_original_21/7054442/math/52344793_580.png deleted file mode 100644 index c07285cc774e6c3de8f3a713803ebead0b3aa471..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344793_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25ed44fdbdab6576d32c4977cb10dbb401ccfd6096406decd8acb509e782dc6a -size 6050 diff --git a/MM_Math/data_original_21/7054442/math/52344804_970.png b/MM_Math/data_original_21/7054442/math/52344804_970.png deleted file mode 100644 index 5f1d16f094cdc01f778aa8bc6b73c3838bc9d7eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344804_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7084c95259a89688a18930e80851ffa8751676b462f3245f4b1ba31de5d20678 -size 3275 diff --git a/MM_Math/data_original_21/7054442/math/52344902_240.png b/MM_Math/data_original_21/7054442/math/52344902_240.png deleted file mode 100644 index 0d0b8326f798f81b793fb96a608e8e0986d6f943..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344902_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dee81add0961db91340affff3a21dedc984192a7e0a46a78885079ae5fa42231 -size 1933 diff --git a/MM_Math/data_original_21/7054442/math/52344909_560.png b/MM_Math/data_original_21/7054442/math/52344909_560.png deleted file mode 100644 index 8f906fc5f8d5a072ff3eed6ace37082cd3aac1a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344909_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab063b7f2439b6bccf220efdc6ec91d897132edf1bcd8767afca847bbc33a255 -size 2803 diff --git a/MM_Math/data_original_21/7054442/math/52344910_570.png b/MM_Math/data_original_21/7054442/math/52344910_570.png deleted file mode 100644 index be70827c83aabb646d0ef2f83c543b19a7c3fd5c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344910_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec6df8cabf52b51e6a04482bd6c271ca6493ec1b9f71ac439c357649ea9624cf -size 10625 diff --git a/MM_Math/data_original_21/7054442/math/52344928_960.png b/MM_Math/data_original_21/7054442/math/52344928_960.png deleted file mode 100644 index 8aa77e5720ec043f9c3012e500b60ee68119e074..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344928_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8302abea4fc984b58b24b05814d0e08acab691c15e3ed5a369e9abf37039433 -size 3179 diff --git a/MM_Math/data_original_21/7054442/math/52344940_950.png b/MM_Math/data_original_21/7054442/math/52344940_950.png deleted file mode 100644 index 81bb3f0ae717164b3d07627df6da6c361ea61c67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/52344940_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba9a4ef8700f43f73a142ffa39325f955790b2a0b096c119133678e5336b7225 -size 19800 diff --git a/MM_Math/data_original_21/7054442/math/53182535_910.png b/MM_Math/data_original_21/7054442/math/53182535_910.png deleted file mode 100644 index 0780c75e4567a7b731c4869eab66d2c72bff9a66..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53182535_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58ed8db22ea518fa86e191dbd2da10a3266e3592be4a95449e751317a0cb27c7 -size 5190 diff --git a/MM_Math/data_original_21/7054442/math/53182548_230.png b/MM_Math/data_original_21/7054442/math/53182548_230.png deleted file mode 100644 index 2300e0b3c6022e86fb99ec41ae260b5415f282f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53182548_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b7e923079b982a06c45f38cd639761dce38497eebe4944ad58daa278c0d77bb -size 30973 diff --git a/MM_Math/data_original_21/7054442/math/53182655_9214.png b/MM_Math/data_original_21/7054442/math/53182655_9214.png deleted file mode 100644 index 00f88363172c09c13f4bc164e5578392f459537f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53182655_9214.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc33b18dab38da7b9504945e1548d12df78c22f623d07273914f4c3ca9160068 -size 4564 diff --git a/MM_Math/data_original_21/7054442/math/53182793_180.png b/MM_Math/data_original_21/7054442/math/53182793_180.png deleted file mode 100644 index 00452c77e52d6ea6013acb46bb693ea59bca3717..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53182793_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b5d60cb160757bdf39fdb333baf25b2e9b2bd006c1f715e5f0e0a4ff8b3022b -size 3686 diff --git a/MM_Math/data_original_21/7054442/math/53182827_9410.png b/MM_Math/data_original_21/7054442/math/53182827_9410.png deleted file mode 100644 index 4cf60e8c01eb5e6f037dcb11410adcb05c063e49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53182827_9410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9341b2918266bf4fd6677ae783ca1cc5c95d93a985961e0b3476ece50895ece7 -size 13985 diff --git a/MM_Math/data_original_21/7054442/math/53182907_203.png b/MM_Math/data_original_21/7054442/math/53182907_203.png deleted file mode 100644 index ed97a28a9fd00209fcebcc744bf1465e73126ba9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53182907_203.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b4844b69ba151e52685b9a057e62717fd807d0b43d0f4b9ef44be9e657eade0 -size 23416 diff --git a/MM_Math/data_original_21/7054442/math/53182928_651.png b/MM_Math/data_original_21/7054442/math/53182928_651.png deleted file mode 100644 index d9c5f1225bff2ff13588ae0a9336b7c4c749528f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53182928_651.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21384b08e58cd65148936820e45490d34a0465c28d11df9a81c9c758702bb512 -size 73023 diff --git a/MM_Math/data_original_21/7054442/math/53182977_550.png b/MM_Math/data_original_21/7054442/math/53182977_550.png deleted file mode 100644 index ed51130951d4d41d401889eac6e707effc088886..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53182977_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3cff267773f4c70dfa8a4a8ef7ad2d878183f81516bfe32125d259dee2e6a0f5 -size 9732 diff --git a/MM_Math/data_original_21/7054442/math/53183009_210.png b/MM_Math/data_original_21/7054442/math/53183009_210.png deleted file mode 100644 index b834387baf989943977ce93f72abc6746e488afa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53183009_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:967e782f09aaf54c4cd3c3ae1ec27392320665fd1591539a7c75ff72eaac3df4 -size 4004 diff --git a/MM_Math/data_original_21/7054442/math/53183057_227.png b/MM_Math/data_original_21/7054442/math/53183057_227.png deleted file mode 100644 index 879cd21f60c07b1c5bf0a9659e3d89511d8885dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53183057_227.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c833d3e6d0306297f9ba84028789e649ad1fda149d685a556e4e1c23c0d72b68 -size 39550 diff --git a/MM_Math/data_original_21/7054442/math/53183060_199.png b/MM_Math/data_original_21/7054442/math/53183060_199.png deleted file mode 100644 index 2443b983e4c5b4fa88b5fa288f08d32f03e34e31..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53183060_199.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d6cfe7b5a083e0a9ec2781196644b5445d3886a5de4aee0dc11e4dbcb9f8fcb8 -size 2303 diff --git a/MM_Math/data_original_21/7054442/math/53183067_937.png b/MM_Math/data_original_21/7054442/math/53183067_937.png deleted file mode 100644 index fd86659b2feccc4ac0a5e6584ce559223ad002d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53183067_937.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8bfe5b00b856c30b6c22bb4bcfc4ebeb3024e0a99cb0b01609f3ed6f02eb8409 -size 11288 diff --git a/MM_Math/data_original_21/7054442/math/53183097_642.png b/MM_Math/data_original_21/7054442/math/53183097_642.png deleted file mode 100644 index 4d87534b4f75319cafbf722c616f85aae98c972c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53183097_642.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d12674ee4b7f4526b9501aeaefe1ca23dadc7db159b34a53020c3deca7db483 -size 1017 diff --git a/MM_Math/data_original_21/7054442/math/53183117_540.png b/MM_Math/data_original_21/7054442/math/53183117_540.png deleted file mode 100644 index 37c9806b7088d77b050d1b5098909427e8c0b941..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53183117_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38f2173a0803e9e58d3a3b9a3940c4e4e10fb0b78da528ece4aaae5a7e530840 -size 2944 diff --git a/MM_Math/data_original_21/7054442/math/53183161_630.png b/MM_Math/data_original_21/7054442/math/53183161_630.png deleted file mode 100644 index d3b4b547a0dfb7e00da2d42b63b02088276332b0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53183161_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:058dc70b46d3db5a335cfe7ae3c6f03d816362aed09e71a8d227c7af5d2b7d2b -size 2584 diff --git a/MM_Math/data_original_21/7054442/math/53359333_4710.png b/MM_Math/data_original_21/7054442/math/53359333_4710.png deleted file mode 100644 index b0decb7bf3ad2662c07b9f9a3d838572c61591a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359333_4710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30484af2592416ebe6c25016f9649ac75825a19346ac3942f9c9472834026afa -size 2683 diff --git a/MM_Math/data_original_21/7054442/math/53359453_123.png b/MM_Math/data_original_21/7054442/math/53359453_123.png deleted file mode 100644 index d02e67e4d0f94ee7ac0cc27dc80367db3ad17dad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359453_123.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a6330a82bbb0e193e7bbeade277a72d197c678e927f244081125eb00d1aaa55 -size 1987 diff --git a/MM_Math/data_original_21/7054442/math/53359457_480.png b/MM_Math/data_original_21/7054442/math/53359457_480.png deleted file mode 100644 index 0170fa4f2b4e3a485f2e76e11191e185eb5fd643..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359457_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13018f81eb16b87b3751e87f18735691d7858de033a4c2a1ca554a1ca0b427ff -size 2598 diff --git a/MM_Math/data_original_21/7054442/math/53359506_830.png b/MM_Math/data_original_21/7054442/math/53359506_830.png deleted file mode 100644 index 84be4682086bdb25f2feb9ad3a3a28937a597130..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359506_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4c8cfe327b2d7bdb5c97afa24a5d920f88d0046c080ee8c9eb213677029c9d09 -size 3774 diff --git a/MM_Math/data_original_21/7054442/math/53359524_62.png b/MM_Math/data_original_21/7054442/math/53359524_62.png deleted file mode 100644 index cb210f4b6129ae32e5f7653bbb97d7d3e347b917..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359524_62.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08890edf6a243b145534d4d28d48382f98898fe89f3b8f503e9ff42e07c371af -size 32236 diff --git a/MM_Math/data_original_21/7054442/math/53359538_905.png b/MM_Math/data_original_21/7054442/math/53359538_905.png deleted file mode 100644 index 29398304fcfccb9ee766119bb39d6e35b1fb99be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359538_905.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07d1fd92c57ca65d7f3a61de6ee631d038a3e325c91babf5af06d857db839ba2 -size 1838 diff --git a/MM_Math/data_original_21/7054442/math/53359542_780.png b/MM_Math/data_original_21/7054442/math/53359542_780.png deleted file mode 100644 index 82705bc0b719a8bc55afa582df4d1f4d6477faf8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359542_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae980ab3817126f75c91f48b79d215d3aed187a3fe841109402ac6dc86f03115 -size 37856 diff --git a/MM_Math/data_original_21/7054442/math/53359559_98.png b/MM_Math/data_original_21/7054442/math/53359559_98.png deleted file mode 100644 index 14f074a2ad979cc5c852d81cff6b540e5618dc86..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359559_98.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7e82b822ce0e8cfb40fb1d69879f442f2eac1b6aa0cb8f5d7a08bf5b54a285e -size 58255 diff --git a/MM_Math/data_original_21/7054442/math/53359566_436.png b/MM_Math/data_original_21/7054442/math/53359566_436.png deleted file mode 100644 index 6f7ff7fbe19e5cd9c5fbfd0b33f790bee2d0c1c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359566_436.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ece5318fb6047c6f57ad7e328334059da806a10221aa16ace8167c183a76b951 -size 3732 diff --git a/MM_Math/data_original_21/7054442/math/53359569_496.png b/MM_Math/data_original_21/7054442/math/53359569_496.png deleted file mode 100644 index a66c0c0a92414767acf91b15817dd5e1ea220b31..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359569_496.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fcaf99193951842488055c489b1cce2d760ec0b66cfab4072465f5af0b59ff3d -size 2897 diff --git a/MM_Math/data_original_21/7054442/math/53359575_790.png b/MM_Math/data_original_21/7054442/math/53359575_790.png deleted file mode 100644 index 795f05a07f2d210e7ede212aed990668fcc018e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359575_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0857f551d8325e3d465a51d558e493f6c548e40dbb544e04240089694109b2f3 -size 3534 diff --git a/MM_Math/data_original_21/7054442/math/53359597_142.png b/MM_Math/data_original_21/7054442/math/53359597_142.png deleted file mode 100644 index a4ed949db6d1e0e3cb2f9f9a2117addfb8388bec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359597_142.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:566083bae4d11726b3c7e3a3a051bdce1a2aa32a087c3beb7ae724de161a25f6 -size 2450 diff --git a/MM_Math/data_original_21/7054442/math/53359599_130.png b/MM_Math/data_original_21/7054442/math/53359599_130.png deleted file mode 100644 index 27a2acaab0cdf391785c74e3927ffd880e683607..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359599_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25d89b2f8a3a0fd2ca4337a284167e821e1f5a5fed9e63e291a39cf1e853f9fb -size 2472 diff --git a/MM_Math/data_original_21/7054442/math/53359603_423.png b/MM_Math/data_original_21/7054442/math/53359603_423.png deleted file mode 100644 index 28ad60c90cd045183b40d0150fb23b47ed5f9d7f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359603_423.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c6cd73ef4cbd168be9c3d751d8ab923a5da98b4af2c3b954c968806e72123f3 -size 16115 diff --git a/MM_Math/data_original_21/7054442/math/53359605_521.png b/MM_Math/data_original_21/7054442/math/53359605_521.png deleted file mode 100644 index c28fc3c446e72dceca6096644956c9daebc1651d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359605_521.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d42ee1bc4aba13c092254ac3d2ffd3156baa40f9e93727b2fff04285dd3a304 -size 3874 diff --git a/MM_Math/data_original_21/7054442/math/53359676_865.png b/MM_Math/data_original_21/7054442/math/53359676_865.png deleted file mode 100644 index 5213e89ff49c21a89a3887838251209cff944ea4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359676_865.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3409fa82a79521715ef971f3cc06277449b4c9c1f2f494ffc7db22ab73a1781 -size 5740 diff --git a/MM_Math/data_original_21/7054442/math/53359697_500.png b/MM_Math/data_original_21/7054442/math/53359697_500.png deleted file mode 100644 index 2321f73b6366e22f38a5686ad13fa5a746dace33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359697_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a562deec7435fedef27f68d988c668450b77c7c5ec73564c58c5fb5d4df2064 -size 14997 diff --git a/MM_Math/data_original_21/7054442/math/53359704_800.png b/MM_Math/data_original_21/7054442/math/53359704_800.png deleted file mode 100644 index 9f00141ad28e8e97efe7cd4d55125e1c23756fb0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359704_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf2b609821c42ef4b3c8c408bcb72050c681e3b57f0c65f980fadf6cb2d85469 -size 3785 diff --git a/MM_Math/data_original_21/7054442/math/53359711_880.png b/MM_Math/data_original_21/7054442/math/53359711_880.png deleted file mode 100644 index 5aaed1ef4a871bc79e7e051a05dbcee8cd418e8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359711_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2603a407ddf6b8200fb82cf0fc492d218f5d714a324797f8eb4e03f260a2613 -size 4044 diff --git a/MM_Math/data_original_21/7054442/math/53359714_811.png b/MM_Math/data_original_21/7054442/math/53359714_811.png deleted file mode 100644 index 1e997cd1f74ee549507e5fa024249f5a2c6947d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359714_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c118e518a3544b339d6d03f8989e47ce7f11b53492a165c99c387109632648b5 -size 65524 diff --git a/MM_Math/data_original_21/7054442/math/53359725_872.png b/MM_Math/data_original_21/7054442/math/53359725_872.png deleted file mode 100644 index 27d7e254884e8b9044ad3d8c1764710756c12e37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359725_872.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dd8d206eacb7ded30b9949e41b1fb1acd4242f1128d920e61333334ce5b63c6a -size 42670 diff --git a/MM_Math/data_original_21/7054442/math/53359734_178.png b/MM_Math/data_original_21/7054442/math/53359734_178.png deleted file mode 100644 index c9fa8920dbda7c2cd200420f81c6b550b71a0508..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359734_178.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20a5e7ee891010b31b0c1e8b6cda904eaba7a8d358b915c4b6e48533424b5f32 -size 71454 diff --git a/MM_Math/data_original_21/7054442/math/53359741_450.png b/MM_Math/data_original_21/7054442/math/53359741_450.png deleted file mode 100644 index ed229367dc0930c28f73d5b13f2d79abbb49537c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359741_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ee39b0484f937ae366aaeecc892c01547d18dddc77e088df439a8051b8ffe47 -size 51457 diff --git a/MM_Math/data_original_21/7054442/math/53359742_530.png b/MM_Math/data_original_21/7054442/math/53359742_530.png deleted file mode 100644 index 5187fbda4906e9eda1ab8c519c16e2cc436e509d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359742_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:798affecbb02afb389450836769d98317a498e15a82570625b482e815d4ed01a -size 35090 diff --git a/MM_Math/data_original_21/7054442/math/53359743_460.png b/MM_Math/data_original_21/7054442/math/53359743_460.png deleted file mode 100644 index 89672e596ecac5274b40c7e6646238b07d4b5166..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359743_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0847b7a2108e81729ef1f62e024c803b26997a0f2ddc31593020c2f63ea9dd14 -size 2269 diff --git a/MM_Math/data_original_21/7054442/math/53359756_840.png b/MM_Math/data_original_21/7054442/math/53359756_840.png deleted file mode 100644 index c5524f868f31c4e95640c43626c06a79cf512ed1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359756_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6749d6e8f6939996ff37938377b0c627d3963e88f03aab869b182e3350185bd4 -size 51522 diff --git a/MM_Math/data_original_21/7054442/math/53359763_858.png b/MM_Math/data_original_21/7054442/math/53359763_858.png deleted file mode 100644 index 78effe32d7236bee504b5cdd7b084bcfb718bd94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359763_858.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f9fdd2325b63e87d4b64e2d82843c259027b8346add84571193a582c26e83088 -size 7548 diff --git a/MM_Math/data_original_21/7054442/math/53359977_891.png b/MM_Math/data_original_21/7054442/math/53359977_891.png deleted file mode 100644 index 22648a62d76f0863c27e23cf7e3f6be11fcb4e23..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359977_891.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70d5fb5caf30f18c562a402380effa1e161e976fb777d810ed45635caebbcc66 -size 2977 diff --git a/MM_Math/data_original_21/7054442/math/53359985_101.png b/MM_Math/data_original_21/7054442/math/53359985_101.png deleted file mode 100644 index fa83c2d24cacc42d4a003da7000118619dae2910..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359985_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:453e10ced6fce65cf6cea40da9a31ec06b0061d472d6f1219405dda930f5dfee -size 2600 diff --git a/MM_Math/data_original_21/7054442/math/53359987_110.png b/MM_Math/data_original_21/7054442/math/53359987_110.png deleted file mode 100644 index 094b4881f318946d9babab2fea8f7d898d3d3f44..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359987_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94081d1d32a0c3ca41a8833c074b13382b4e67b88b8b9b5d266b5e933c09d474 -size 6639 diff --git a/MM_Math/data_original_21/7054442/math/53359990_80.png b/MM_Math/data_original_21/7054442/math/53359990_80.png deleted file mode 100644 index 8ee3b37142762a5fdcb9ad80ddf58ad6d5467dc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359990_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18b9fbf473eeba590d4e16b369f9061819c4ba56d2bff07c22594285e96957e1 -size 4269 diff --git a/MM_Math/data_original_21/7054442/math/53359994_75.png b/MM_Math/data_original_21/7054442/math/53359994_75.png deleted file mode 100644 index 99934bbcb9de23d5c157c191f363aed8ab0a08ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53359994_75.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e3a5d3bf34fa73cccc68cd9aab9f94f7828540ff79b56b2e28d057c2f16b752 -size 3327 diff --git a/MM_Math/data_original_21/7054442/math/53360000_624.png b/MM_Math/data_original_21/7054442/math/53360000_624.png deleted file mode 100644 index 19c2cca4f760e6524ed3bacdae8839b9a9081f40..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53360000_624.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81344ef8628ccc9a40e07448fd972c0de8b92cfa8faf99f8604926fd7709f1e7 -size 81627 diff --git a/MM_Math/data_original_21/7054442/math/53360003_826.png b/MM_Math/data_original_21/7054442/math/53360003_826.png deleted file mode 100644 index 60f2e7aacc085e39e24af95151a517623ee9a2d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53360003_826.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98fef601a7d19724beecfe1cd027198b53c85cbfe0bd7bc37a9c9842cc20f0d9 -size 13557 diff --git a/MM_Math/data_original_21/7054442/math/53360040_150.png b/MM_Math/data_original_21/7054442/math/53360040_150.png deleted file mode 100644 index 0bb39ce64d823ad54f614bd4e4bcdfd35b48bb54..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53360040_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cade51334f85262189fd2ed9374d30ac18a036e75a7ce3a94160dffcc0330596 -size 19045 diff --git a/MM_Math/data_original_21/7054442/math/53360042_166.png b/MM_Math/data_original_21/7054442/math/53360042_166.png deleted file mode 100644 index c96e17eca2e69822b3a72f9fff9a1020982f9ebb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53360042_166.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:103de57e7d4b2c7570612bdd57289e35d59032070aa4dd707627335cb4e67737 -size 3883 diff --git a/MM_Math/data_original_21/7054442/math/53360048_518.png b/MM_Math/data_original_21/7054442/math/53360048_518.png deleted file mode 100644 index f7a9d3d31d95b3d9d65f7439e3c8bdd28f4f2cf6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53360048_518.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7874f13c2a415b8edb59bee6b286e201b12092478b6dd209eac3b162e447f8a3 -size 3739 diff --git a/MM_Math/data_original_21/7054442/math/53360049_443.png b/MM_Math/data_original_21/7054442/math/53360049_443.png deleted file mode 100644 index a8ea1717726ba6e94ddf487e087e73d56b5a6c5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53360049_443.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:489d4c30fe7a4e237f4b1b056a247905b89852059b80989e54d0801c85f136e8 -size 3792 diff --git a/MM_Math/data_original_21/7054442/math/53490596_370.png b/MM_Math/data_original_21/7054442/math/53490596_370.png deleted file mode 100644 index 9d786125e239fdf31e07a505b6a3c69d4d125829..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53490596_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a95ff7ceeca0f509f71a3491beaf5f5e9f81cbe53666fd13c9d952c82a68bc8 -size 4572 diff --git a/MM_Math/data_original_21/7054442/math/53490616_720.png b/MM_Math/data_original_21/7054442/math/53490616_720.png deleted file mode 100644 index bbec0a189fd26400e0df8183023f6a9da63cca3f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53490616_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e03027b63f2370ce99fabe304386151de480a70737139643d5ac7b9dacb8b152 -size 3546 diff --git a/MM_Math/data_original_21/7054442/math/53490651_717.png b/MM_Math/data_original_21/7054442/math/53490651_717.png deleted file mode 100644 index 0009759d739aed60ce43bd88aa062ae1a816f174..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53490651_717.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:663768a23b00fd764c2fbf25f295db9683b1f087be9ca50bdd50333557f05e60 -size 44043 diff --git a/MM_Math/data_original_21/7054442/math/53490691_730.png b/MM_Math/data_original_21/7054442/math/53490691_730.png deleted file mode 100644 index 8c4de3a46f065c51cb1d0547814148123569bcf6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53490691_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d81910c42e2d9edbc0b6f3e1ab897808f0ccb77290b4d925e3d94cee9165c7db -size 4631 diff --git a/MM_Math/data_original_21/7054442/math/53490691_731.png b/MM_Math/data_original_21/7054442/math/53490691_731.png deleted file mode 100644 index 738bfbe0dbc5b6201261708bf0e7a785ca4763ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53490691_731.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6848ebf68b4564c5a76beaeac1fad859db0523ddd9d031f64cff84310444b822 -size 5758 diff --git a/MM_Math/data_original_21/7054442/math/53490696_21.png b/MM_Math/data_original_21/7054442/math/53490696_21.png deleted file mode 100644 index 7c482f7a12d206abd962c5659afcf8564227bf6f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53490696_21.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9da6c16b16a2481eff419a1d00f13665b43d392b288058aaeec80864a4ff8cea -size 3009 diff --git a/MM_Math/data_original_21/7054442/math/53490733_386.png b/MM_Math/data_original_21/7054442/math/53490733_386.png deleted file mode 100644 index 0e3a4df4f0ccea3414be78da8f3b50fcfd54aa02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53490733_386.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2021e73df7258fdec8a75062da375885a560ae9e5232b455aa375c8f8478ff23 -size 8152 diff --git a/MM_Math/data_original_21/7054442/math/53490767_10.png b/MM_Math/data_original_21/7054442/math/53490767_10.png deleted file mode 100644 index d27fee7fa044430d479b9e7ee535807f6be51081..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53490767_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a41695eefe067722ce9631ff8e36e9a75466fcbc5ba78950b57953c622c1e64 -size 5744 diff --git a/MM_Math/data_original_21/7054442/math/53498119_320.png b/MM_Math/data_original_21/7054442/math/53498119_320.png deleted file mode 100644 index 87862ee440b7b3c883ce5aef56edfaca916f871d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498119_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14cd893ac771c022cfc738d4c8d92524ee7b0a2eac273e33d4893e096a7cbe8d -size 2386 diff --git a/MM_Math/data_original_21/7054442/math/53498146_08.png b/MM_Math/data_original_21/7054442/math/53498146_08.png deleted file mode 100644 index f807bfe532a1f7eec6d2eb6917767e0663714714..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498146_08.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33524b40ef0116e1cfa8a177e21f53612527f4213f66f70a3fc22f24f376dd0e -size 50617 diff --git a/MM_Math/data_original_21/7054442/math/53498213_330.png b/MM_Math/data_original_21/7054442/math/53498213_330.png deleted file mode 100644 index 36e92eb7ca6e51035d71fb6e340c7dafce321663..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498213_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38e2738708792527a1925b3cc37f5b3c0cf6fd8e1394705d1c655c458f3fff5b -size 4628 diff --git a/MM_Math/data_original_21/7054442/math/53498363_340.png b/MM_Math/data_original_21/7054442/math/53498363_340.png deleted file mode 100644 index 211799ba8acd12dfa5e704acd8b853479313c84b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498363_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6de8143177ae0684e5a3cb6016cc224e974588f93e709dce126b1c1021b83136 -size 25600 diff --git a/MM_Math/data_original_21/7054442/math/53498365_351.png b/MM_Math/data_original_21/7054442/math/53498365_351.png deleted file mode 100644 index 28e3372083f94f4aceeab35c949121cb6a1972d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498365_351.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:485be5ad931907c2aa4d53f2db92170c3bca298dc52f52a6154cd3c337432725 -size 34375 diff --git a/MM_Math/data_original_21/7054442/math/53498505_686.png b/MM_Math/data_original_21/7054442/math/53498505_686.png deleted file mode 100644 index d4ca21b804af3cca69df27deeff1fe86eb055ede..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498505_686.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d796a56d1606a290ec30afe77a3b73555ee63baf2ec4cc03ffe5263222b7490f -size 2392 diff --git a/MM_Math/data_original_21/7054442/math/53498546_6713.png b/MM_Math/data_original_21/7054442/math/53498546_6713.png deleted file mode 100644 index b857a321c575d2404cdd4182a615c9276a522f64..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498546_6713.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:93edff6dfcb7c53bbf3dc4f59304780bd0de3147f79f33634944694bbe40a97c -size 2067 diff --git a/MM_Math/data_original_21/7054442/math/53498558_360.png b/MM_Math/data_original_21/7054442/math/53498558_360.png deleted file mode 100644 index 3a4a088fd529baf36682bc967aad8acdb466f285..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498558_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6693e72bbe0d87e2e7c4449172fee031affdc972237d4482104b35500c0706d -size 65160 diff --git a/MM_Math/data_original_21/7054442/math/53498569_660.png b/MM_Math/data_original_21/7054442/math/53498569_660.png deleted file mode 100644 index 16a32f6e1dd8c87f4ce8e1a6831a48ed00ef6ab5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498569_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aaba8165152fe466bab87a1605f298e55bc1f0bece76bfc02f0d7da49c5c549d -size 37503 diff --git a/MM_Math/data_original_21/7054442/math/53498591_310.png b/MM_Math/data_original_21/7054442/math/53498591_310.png deleted file mode 100644 index 6d5f813907bbe7b7b58f4630ec3d59964d631fbf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498591_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2d79614581eca00e88a23f5079ab9b7d18630aae0bb65cb3e2f4766bd410f3c -size 4589 diff --git a/MM_Math/data_original_21/7054442/math/53498608_690.png b/MM_Math/data_original_21/7054442/math/53498608_690.png deleted file mode 100644 index 558d669ea77e902080aa105340de7ce68d1bb366..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53498608_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19331b4f40c5571e70fa7967f714ea7c6d27c2cf19c690359b567a5c9494bb10 -size 113699 diff --git a/MM_Math/data_original_21/7054442/math/53639827_296.png b/MM_Math/data_original_21/7054442/math/53639827_296.png deleted file mode 100644 index 22308ddb35e9e3e18a42b56e28e79e52d0db75e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53639827_296.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8dce9aa733dcb80fc35f6296151141e091c2805bab8f3f857e1d0f7cc87e925b -size 2879 diff --git a/MM_Math/data_original_21/7054442/math/53639871_607.png b/MM_Math/data_original_21/7054442/math/53639871_607.png deleted file mode 100644 index 040305dfc2466133c63ba40c62b444eb4b47f51d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53639871_607.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a8d4fc19bfa41e47ddf51defd69ca7609c3dde8cf1ea56fd63fe67352754cbc -size 44052 diff --git a/MM_Math/data_original_21/7054442/math/53639911_992.png b/MM_Math/data_original_21/7054442/math/53639911_992.png deleted file mode 100644 index 3f1594667eaadea5013c7ae19288f7a6dafb6e17..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/math/53639911_992.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ec4cfbe2a21bbee0ac43f1b9cc1af03dadae04f3405135fd587529d6a5154ff -size 59678 diff --git a/MM_Math/data_original_21/7054442/solution_images/51863891_390.png b/MM_Math/data_original_21/7054442/solution_images/51863891_390.png deleted file mode 100644 index c4c0058a57841ba2797417707514c5e27a664797..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/51863891_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f60a9bc557f86e2e02db287746638c12a0fbf778efe94003a3cfdf300f0fffe6 -size 11499 diff --git a/MM_Math/data_original_21/7054442/solution_images/51864146_7513.jpg b/MM_Math/data_original_21/7054442/solution_images/51864146_7513.jpg deleted file mode 100644 index df98f7715e8a7a27dddab7e78687922613d59caa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/51864146_7513.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fc7d1739da61ee9a846bd92f0ea70066e98c1844e617e834c3e90db3998c025 -size 6962 diff --git a/MM_Math/data_original_21/7054442/solution_images/51864146_753.png b/MM_Math/data_original_21/7054442/solution_images/51864146_753.png deleted file mode 100644 index 9994e884071b83368880c6303f88d3923d93f0bc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/51864146_753.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d4fb4f0be9f4db33e7ecc358defb573812d42a234fc68330384739795ea661f -size 13495 diff --git a/MM_Math/data_original_21/7054442/solution_images/52344746_280.png b/MM_Math/data_original_21/7054442/solution_images/52344746_280.png deleted file mode 100644 index 15cad76beb8f914daa78cd0dcd81f736933e4967..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/52344746_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41e5afbfcf7fbf59b2542749e77322533bae8992c9f45fcf75e9367464132e08 -size 5757 diff --git a/MM_Math/data_original_21/7054442/solution_images/52344788_251.png b/MM_Math/data_original_21/7054442/solution_images/52344788_251.png deleted file mode 100644 index 9afb355cd8527a470475d694581c3f365fc5fc5f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/52344788_251.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ad9de7a0782ac2d815a5fa7a885ca455d8580b274b3a72aab6e02daa7a4ddf4 -size 3156 diff --git a/MM_Math/data_original_21/7054442/solution_images/52344789_270.png b/MM_Math/data_original_21/7054442/solution_images/52344789_270.png deleted file mode 100644 index d5bf0e6e50d879140e9c0d47297ef5bd3b221ab6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/52344789_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc999da55ad55a6d2e128728bccd0ba6572aa33f3dc7b41814d29db34a2f5107 -size 6459 diff --git a/MM_Math/data_original_21/7054442/solution_images/52344793_580.png b/MM_Math/data_original_21/7054442/solution_images/52344793_580.png deleted file mode 100644 index d8f4dc29c88bfb0ab9323e692af73d31ecf12db5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/52344793_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:468bf7b9bf73454ac54b3cba8beebe6ff03f555f35f2aadc9ce10b7d82dedab2 -size 6059 diff --git a/MM_Math/data_original_21/7054442/solution_images/53182535_914.png b/MM_Math/data_original_21/7054442/solution_images/53182535_914.png deleted file mode 100644 index a9c1abe03b5e5f1f9418036027314d314e5aea0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53182535_914.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5869247a6fcdc993a6dd16f2e4192c149c7538a28f6168cfa1a4fbd6deb3080f -size 3598 diff --git a/MM_Math/data_original_21/7054442/solution_images/53182977_550.png b/MM_Math/data_original_21/7054442/solution_images/53182977_550.png deleted file mode 100644 index 6b24b65f48629d801135a8644c32f9018ff104e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53182977_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:560cd5573cfda32f76eb0ca5b6ebcb8fbbc3a49e98128ee19568bfd8284af230 -size 11082 diff --git a/MM_Math/data_original_21/7054442/solution_images/53183057_220.png b/MM_Math/data_original_21/7054442/solution_images/53183057_220.png deleted file mode 100644 index 73c83f695ea42cae62138071c7ba0fb6f292efa0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53183057_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59edef2f7fab4cd402c77701bf8f9b28c5a1d79b8480fdc572db4bbe78a5ff4f -size 54605 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359333_4726.png b/MM_Math/data_original_21/7054442/solution_images/53359333_4726.png deleted file mode 100644 index f7a0a4bfd208d8cd8fa6e8e84ed16d00c70d0c1b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359333_4726.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7fea5bd17c5b7850d00aaf475c1648946162c0e0bd313f091f40ad0de70a6ab4 -size 4654 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359333_479.png b/MM_Math/data_original_21/7054442/solution_images/53359333_479.png deleted file mode 100644 index 95d96a82f74283e076c19964e4a98695f298ccb9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359333_479.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a0534389bc65fa7708201003585c4d3a66cced6f1c1ea88dcac6231d5c0bd62 -size 3176 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359453_120.png b/MM_Math/data_original_21/7054442/solution_images/53359453_120.png deleted file mode 100644 index 86c74afaf7ce174755f60b407e283707fd6f25e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359453_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f72a694191f5eea260a65315ef9e861c16a0f03b6bb55e5198491c7f9fe71acb -size 2818 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359457_480.png b/MM_Math/data_original_21/7054442/solution_images/53359457_480.png deleted file mode 100644 index 8fe2c8749c4f494edb67f91cc8e1f2504b0a19b0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359457_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1e4fd1ff1d0182651f570c01b7e71d40ed48e54bcede3d2122728df326449de -size 2580 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359566_430.png b/MM_Math/data_original_21/7054442/solution_images/53359566_430.png deleted file mode 100644 index 45d115f96d77b29a54ebc19f52cfbb1d2f210a5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359566_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c418cdd2375923d0e7203a42e29f4f9bc7f0d41b96856516956ac101f7292c50 -size 3930 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359569_490.png b/MM_Math/data_original_21/7054442/solution_images/53359569_490.png deleted file mode 100644 index a66c0c0a92414767acf91b15817dd5e1ea220b31..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359569_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fcaf99193951842488055c489b1cce2d760ec0b66cfab4072465f5af0b59ff3d -size 2897 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359734_170.png b/MM_Math/data_original_21/7054442/solution_images/53359734_170.png deleted file mode 100644 index 72fdc38c883ef38520b62a655437257c78247cb3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359734_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ce210b58ba88381ed1f5cc4d948a59c509af873f9d3a91b1adc21d370a4494c -size 82418 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359734_177.png b/MM_Math/data_original_21/7054442/solution_images/53359734_177.png deleted file mode 100644 index 6fa246fdb8d575f94091d2db619ecdab9c075bd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359734_177.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eca4118e8b262e58fbee8935ee461aeebd1dd6b9379d194eb4c7c1d31af7be24 -size 123106 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359741_450.png b/MM_Math/data_original_21/7054442/solution_images/53359741_450.png deleted file mode 100644 index 69a8c1ee78acdfe4bbcdce8189b974c6a64bb9af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359741_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe2e3ada63fb42a443724f7e8937795a29d74a9f88ae9ae1314f4266d75488ab -size 58352 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359743_460.png b/MM_Math/data_original_21/7054442/solution_images/53359743_460.png deleted file mode 100644 index 31758f1bafb6248b84bb33a392190c971ac0b33d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359743_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2aebfe20a74cef92585717d8c592f9df7c016b3bbe0eade4ee83e40cb4675f12 -size 2709 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359756_840.png b/MM_Math/data_original_21/7054442/solution_images/53359756_840.png deleted file mode 100644 index 4539ac8962e6514fb9060c17ce6a28f0c35ab89d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359756_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9802e3981883f281f9b95a4c6fbdada8120d7154356099f7ce5681693667550 -size 55450 diff --git a/MM_Math/data_original_21/7054442/solution_images/53359994_70.png b/MM_Math/data_original_21/7054442/solution_images/53359994_70.png deleted file mode 100644 index fef09b45a31f8c5749ffd7cd63fde54aa709a782..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53359994_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04e6180f490882ae61b2ae7e53ee57a796e25da81890421258162724421c5e5e -size 3707 diff --git a/MM_Math/data_original_21/7054442/solution_images/53360049_440.png b/MM_Math/data_original_21/7054442/solution_images/53360049_440.png deleted file mode 100644 index a962237fe27148659c7ce789d8fe893c65072939..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53360049_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d25492605661aedf810bf1ccbb793875aeac8285d1fdafaebdfe7a5c9eb0d6d -size 4100 diff --git a/MM_Math/data_original_21/7054442/solution_images/53490616_720.png b/MM_Math/data_original_21/7054442/solution_images/53490616_720.png deleted file mode 100644 index 83401db2bc7fed02fc29ac6efb0daaa35e953c94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53490616_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18938bf45456d7b725aeee8893972c029c4a3b399262a3526e53b29d91d196dd -size 3970 diff --git a/MM_Math/data_original_21/7054442/solution_images/53490696_20.png b/MM_Math/data_original_21/7054442/solution_images/53490696_20.png deleted file mode 100644 index 1b22d5233bdc0fed0947c5c3106d0ac4871e82fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53490696_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:93bd3113f2a2a51a8ca2e2c5b5387205d311e887bcaa375810f39b6006176b67 -size 3284 diff --git a/MM_Math/data_original_21/7054442/solution_images/53490733_383.png b/MM_Math/data_original_21/7054442/solution_images/53490733_383.png deleted file mode 100644 index a5d6b4c6ca472c314bf970015152a8a03f0f4d35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53490733_383.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a7d082452fbccf32c9c4c6c3233b0d0ab846927a4db81eec0a09caba223d1e16 -size 9715 diff --git a/MM_Math/data_original_21/7054442/solution_images/53490767_12.png b/MM_Math/data_original_21/7054442/solution_images/53490767_12.png deleted file mode 100644 index 1340c5dedc17a7a748b453587c3965643058cb29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53490767_12.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dea816f9adec626009b5debd39b6defe8999ba1b8b1b8e61f57178848817fbda -size 6308 diff --git a/MM_Math/data_original_21/7054442/solution_images/53498119_320.png b/MM_Math/data_original_21/7054442/solution_images/53498119_320.png deleted file mode 100644 index 7403e3120dc07469b174b182c1c05c5fd16eaa93..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53498119_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4bb197a28ceff2bd00e0d4cf164e1521cd985c6487a48bc823b2c32572e15f1e -size 2633 diff --git a/MM_Math/data_original_21/7054442/solution_images/53498213_332.png b/MM_Math/data_original_21/7054442/solution_images/53498213_332.png deleted file mode 100644 index ba3622706ddb65eba945e3a9f1fd756b5153f2d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53498213_332.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:555041670f0e140e41a66d3e067daaef6db5c1df5bb93d2b84a9ca102044835d -size 6922 diff --git a/MM_Math/data_original_21/7054442/solution_images/53498365_350.png b/MM_Math/data_original_21/7054442/solution_images/53498365_350.png deleted file mode 100644 index dbc9d7b244325682a7cc796a54109c169e9db26d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53498365_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4d7716cd06ef39b7edab646e29ac106d4c1e700facf4c7f62c8270ff8ec2b6b -size 34804 diff --git a/MM_Math/data_original_21/7054442/solution_images/53498505_680.png b/MM_Math/data_original_21/7054442/solution_images/53498505_680.png deleted file mode 100644 index 379cf27e027e0cab5e4b2f432a7a8726193f88bd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53498505_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de31317e096613d493745c11a15d3dc9694e851ec64ec5bbf288e75b7902b74f -size 2961 diff --git a/MM_Math/data_original_21/7054442/solution_images/53498558_360.png b/MM_Math/data_original_21/7054442/solution_images/53498558_360.png deleted file mode 100644 index 5fb09f9c87586f1f66756421af2d440870e6b9f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53498558_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8cee2a1743a45b6c8d6a417673e6c2590f72f284ffa6240f253dceab85a9baec -size 69298 diff --git a/MM_Math/data_original_21/7054442/solution_images/53498591_310.png b/MM_Math/data_original_21/7054442/solution_images/53498591_310.png deleted file mode 100644 index 9d2fe1ddc8ce92ddd957ba5e7f3c17d91e18a8ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7054442/solution_images/53498591_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:902b0319da619fb910417d65db21e5f2f7cb18e227af339d2d8fe9b4e567657a -size 5000 diff --git a/MM_Math/data_original_21/7055317/math/51684372_320.png b/MM_Math/data_original_21/7055317/math/51684372_320.png deleted file mode 100644 index e866af0a9b90a2d978e4ec1f9beee39a09307702..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51684372_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f695898f0c4bfe4a14cb6a852559e86a4f1ec20c8d3af1e728b09c40f53194c -size 34135 diff --git a/MM_Math/data_original_21/7055317/math/51684389_680.png b/MM_Math/data_original_21/7055317/math/51684389_680.png deleted file mode 100644 index dd0b93cca57bd5527fab6b633cbc2db1e009a1b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51684389_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1adf03591bbac1ce635157f43092637dcd15320b5dfb10212702db44f8b7fcfb -size 17447 diff --git a/MM_Math/data_original_21/7055317/math/51684393_990.png b/MM_Math/data_original_21/7055317/math/51684393_990.png deleted file mode 100644 index 1e04a5d599d7c1c29f9483c07b0290a482faead3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51684393_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bebbcab2376c87e401ec629d2d33fcbcc77e4ebcb60421c3b7ed9f6f788c902e -size 8822 diff --git a/MM_Math/data_original_21/7055317/math/51708499_630.png b/MM_Math/data_original_21/7055317/math/51708499_630.png deleted file mode 100644 index 5c94066a2ef621dd1e5ec68e8aea8574397ec1a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51708499_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:908c9617a3de9c34e18728e57f172b49205de5bf782c6fa28cdc2bb4df9fcecc -size 111532 diff --git a/MM_Math/data_original_21/7055317/math/51708898_930.jpg b/MM_Math/data_original_21/7055317/math/51708898_930.jpg deleted file mode 100644 index b67b7cc3f2448ac0a46f3239138a1ce18a82bcca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51708898_930.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc4175f774f8906080c87ac69d1c6202c92a858ebcb0c95934bd5ebc7098813e -size 3732 diff --git a/MM_Math/data_original_21/7055317/math/51721868_600.png b/MM_Math/data_original_21/7055317/math/51721868_600.png deleted file mode 100644 index 5b9290659547b03bfdc16db3a3507251e0bc93a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51721868_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87b753f83d7705139006070f7d5ee34bdb65a93393cecf14ee4629fe58615484 -size 2278 diff --git a/MM_Math/data_original_21/7055317/math/51721905_570.png b/MM_Math/data_original_21/7055317/math/51721905_570.png deleted file mode 100644 index 57e64fc7d3d43b7a40de9fed91de500e01f3cf34..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51721905_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aab6d9fd9e4472a56bd33a7ac3c92de5d54dd6af1e5b0c4bc3b726a0ca73b7a9 -size 2901 diff --git a/MM_Math/data_original_21/7055317/math/51721939_589.png b/MM_Math/data_original_21/7055317/math/51721939_589.png deleted file mode 100644 index 841558c71f927cf33118aefa2282789255de28f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51721939_589.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6bac379b7dbc2dc2f46055c78caa7d09b31b58248a5a764794fa68a6fa205f3c -size 18687 diff --git a/MM_Math/data_original_21/7055317/math/51722347_620.png b/MM_Math/data_original_21/7055317/math/51722347_620.png deleted file mode 100644 index efee0ec89d8617b5c8eb2560aaca233f47ccdf29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51722347_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec1689118d855098c313f5fca1eb274fe695d54288f56bf5f08645561a00fe38 -size 7378 diff --git a/MM_Math/data_original_21/7055317/math/51722351_663.png b/MM_Math/data_original_21/7055317/math/51722351_663.png deleted file mode 100644 index 6c44d90267b188424a14b366e62b8aca20c86a82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51722351_663.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f9b189a68f9e0ee382d944ae5c9f306ccb5b4605b30b7bead0a029e69aee353 -size 14842 diff --git a/MM_Math/data_original_21/7055317/math/51722482_9812.png b/MM_Math/data_original_21/7055317/math/51722482_9812.png deleted file mode 100644 index fff3b7a5b8beab0f9ea1b1772e1b018636ddd5db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51722482_9812.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6acf27173049c58f79cae5ff1421cb1761609f10a4b6df84b67fad1afe72071e -size 5298 diff --git a/MM_Math/data_original_21/7055317/math/51722492_3112.png b/MM_Math/data_original_21/7055317/math/51722492_3112.png deleted file mode 100644 index 927d60adc7ab0d14b7ec3b0b0a0f7302fb56618b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51722492_3112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:554acc6dbb4d75d3ab1c7701bf743f73cf41156b0ade0199507330bef3f4f6f8 -size 3037 diff --git a/MM_Math/data_original_21/7055317/math/51737108_610.png b/MM_Math/data_original_21/7055317/math/51737108_610.png deleted file mode 100644 index ed105cd4c2f4a0373838bfc332c38d40df1e45be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51737108_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:229f313c4167e98b785caf087822ffabe0defcdc933c634f84a540387a23c4ea -size 6435 diff --git a/MM_Math/data_original_21/7055317/math/51737142_282.png b/MM_Math/data_original_21/7055317/math/51737142_282.png deleted file mode 100644 index a29c4e678b9e4c423f82caf189948392dc052257..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51737142_282.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9fabc361a6f22fbef78f556135c952922cca70e1f8df022e6a21e5bf078378fd -size 2430 diff --git a/MM_Math/data_original_21/7055317/math/51737151_564.png b/MM_Math/data_original_21/7055317/math/51737151_564.png deleted file mode 100644 index 8502bf8f963da025af3ee67e30ccdafbe5395c32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51737151_564.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07cb77cab04e7cd6d94b9482af778481d92d19f77543b7845f77af1ba97bdc6f -size 13432 diff --git a/MM_Math/data_original_21/7055317/math/51737166_957.png b/MM_Math/data_original_21/7055317/math/51737166_957.png deleted file mode 100644 index b9eb60d03aa7b2a42eacd89febbb422b27af87e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51737166_957.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:492fa0bf4fc8509740b9a17275ab03dbb7715b1ede6ae64361c3facc247e1d86 -size 8348 diff --git a/MM_Math/data_original_21/7055317/math/51737179_290.png b/MM_Math/data_original_21/7055317/math/51737179_290.png deleted file mode 100644 index 717da835dd3facb08985a26f1d6fb3519ec6cdbc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51737179_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a09e187ad6b3b7680ad4e28e44b8ec5078eea5d0173efed27a13cdd342882a9 -size 5554 diff --git a/MM_Math/data_original_21/7055317/math/51737207_960.png b/MM_Math/data_original_21/7055317/math/51737207_960.png deleted file mode 100644 index 6c16e4110abbc1b9d351d4ab782fc123f7fa460e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51737207_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a33d7febe636f3792cb4e67f05e0d4ea83e86ad208a218e614fee63bdc80fd2 -size 7076 diff --git a/MM_Math/data_original_21/7055317/math/51737253_590.png b/MM_Math/data_original_21/7055317/math/51737253_590.png deleted file mode 100644 index afa65b2377156f92b39cdf13aece40913d6c47d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51737253_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d4a384cc99769c8a892ac8d5933114ee128b41683ba75d4daa630ed8b842751 -size 4178 diff --git a/MM_Math/data_original_21/7055317/math/51737267_941.png b/MM_Math/data_original_21/7055317/math/51737267_941.png deleted file mode 100644 index d5e6fa8e69fc961e7ff3e25544f1a966c13bea45..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51737267_941.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b4e18779845c544b2e16da81cce92d3e8965c8434ce59ee659c64dcc9b60af72 -size 6757 diff --git a/MM_Math/data_original_21/7055317/math/51747371_971.png b/MM_Math/data_original_21/7055317/math/51747371_971.png deleted file mode 100644 index acbfa4f605b1b89978e20abb47a95b45bbce58c5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51747371_971.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b20b2f69113d2cbd365819c444bb99569734ac8101e651f971c812bcb697a2a1 -size 11231 diff --git a/MM_Math/data_original_21/7055317/math/51747881_300.jpg b/MM_Math/data_original_21/7055317/math/51747881_300.jpg deleted file mode 100644 index 6fa0a766f1f79d776ca42f8d20c3a1aef489f392..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51747881_300.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b799f6b900c052f8e8537038b3b482cb38b191952e0251efc6818979d3080bc3 -size 2839 diff --git a/MM_Math/data_original_21/7055317/math/51798762_914.png b/MM_Math/data_original_21/7055317/math/51798762_914.png deleted file mode 100644 index 41902e2f4b377e895b4a221425e190d73ec8c048..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51798762_914.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b893c559c7161a382595b7835b5a93db2b5daf9199880fd2ddd97582feb6c81 -size 41789 diff --git a/MM_Math/data_original_21/7055317/math/51798866_503.png b/MM_Math/data_original_21/7055317/math/51798866_503.png deleted file mode 100644 index 212c7fe540cfec84c953cf8cea4edaeafa25d532..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51798866_503.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9db8158ced941f66e8079cbaf8bbc4b27ee42146742e00f3b6ab597d99f8eb31 -size 3088 diff --git a/MM_Math/data_original_21/7055317/math/51798867_510.png b/MM_Math/data_original_21/7055317/math/51798867_510.png deleted file mode 100644 index e500ff28ea930a2a5288166bec6928c1762757f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51798867_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9258877b1e310f7628950c57b0320664d932bb43b39ca9632321596022a97a9 -size 16944 diff --git a/MM_Math/data_original_21/7055317/math/51817942_110.png b/MM_Math/data_original_21/7055317/math/51817942_110.png deleted file mode 100644 index 96580282ddf8c8b68b18ea83889749ed655e4986..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51817942_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e903c11238d7c46995eca7a6d9b812787d8538290939d8f8b861253ac570727 -size 3689 diff --git a/MM_Math/data_original_21/7055317/math/51817954_421.png b/MM_Math/data_original_21/7055317/math/51817954_421.png deleted file mode 100644 index 3556be7a1dee338624151922d0dfde73796a59fd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51817954_421.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8beb52fcb16026dedc0e3df86e001fae4c7b0d593f2e1f07b2b0e50be24bb6a3 -size 9651 diff --git a/MM_Math/data_original_21/7055317/math/51817965_760.png b/MM_Math/data_original_21/7055317/math/51817965_760.png deleted file mode 100644 index 801675f786dffb0d277db68108a484075efeae1e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51817965_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4eb4bb0cf9ea92653f9c596be16694e9cac8c9fd8e5ffd23fef829616d784392 -size 4107 diff --git a/MM_Math/data_original_21/7055317/math/51825012_382.png b/MM_Math/data_original_21/7055317/math/51825012_382.png deleted file mode 100644 index 87b8dbfb7e1027677b55b21e66b5f65c7d1b5585..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51825012_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9beba08ee00c3d6e07420378f400d285df79adcd3bbf1a0b0da18f3dd008a14 -size 5297 diff --git a/MM_Math/data_original_21/7055317/math/51825026_721.png b/MM_Math/data_original_21/7055317/math/51825026_721.png deleted file mode 100644 index 0aaa58226dcb7b8a2dd32efcdc9734f4929c43a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51825026_721.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bd11ccbec4ad5e323c6b5d940e062e8a3c07aa6050ecd356b117ee720a18bbf -size 4103 diff --git a/MM_Math/data_original_21/7055317/math/51825215_11.png b/MM_Math/data_original_21/7055317/math/51825215_11.png deleted file mode 100644 index 2fe8d56d3ff14fcccbfb6025865b7a15cd81225d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51825215_11.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:78d489250737beb1108956c6926a1482866dcb813864350aba260316a18eacbe -size 8278 diff --git a/MM_Math/data_original_21/7055317/math/51825221_361.png b/MM_Math/data_original_21/7055317/math/51825221_361.png deleted file mode 100644 index 076224cba74cce202b4f574f735b040fb7eada9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51825221_361.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c777aefa872030cd0ddb7fbac5b37302079a3bc1438e0c541b8eafad33cf93cf -size 3734 diff --git a/MM_Math/data_original_21/7055317/math/51825223_371.png b/MM_Math/data_original_21/7055317/math/51825223_371.png deleted file mode 100644 index 951b6dfb821b696a17138c1dd07e8120597b8dd3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51825223_371.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e08991ba6789e1f2163563dded0f946f00c281093dd716d9423eb98cf804598 -size 14006 diff --git a/MM_Math/data_original_21/7055317/math/51825231_710.png b/MM_Math/data_original_21/7055317/math/51825231_710.png deleted file mode 100644 index ce522ad55bb611ebf3bb8aed801139aab472a034..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51825231_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92213a675c2e6c6d42bf0f3d0d3e6e30316f26c581f9f6c1464d7dfa78821b88 -size 14366 diff --git a/MM_Math/data_original_21/7055317/math/51825337_700.jpg b/MM_Math/data_original_21/7055317/math/51825337_700.jpg deleted file mode 100644 index 26b4c208539ceb0b46b47466a74b224b1ec388ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51825337_700.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d08b74c36691dd880cf154d10902472281b9e08485a7e828f852d6e54aa66d4 -size 4123 diff --git a/MM_Math/data_original_21/7055317/math/51827661_00.png b/MM_Math/data_original_21/7055317/math/51827661_00.png deleted file mode 100644 index 283dfb0e3cb142b4a0ac46b885db7ec5aa600a12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51827661_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91b25683596654f2fb2f7cca98a9a0f56d874d98647f7d348ee17016629db8f0 -size 5062 diff --git a/MM_Math/data_original_21/7055317/math/51827682_690.png b/MM_Math/data_original_21/7055317/math/51827682_690.png deleted file mode 100644 index 714a6540a1c5db14de0fb567b557195dd5655d0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51827682_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87be8826e05bea8abcbbfda858bd50fea120e7af72a59c4665ea722a8a194cf8 -size 6037 diff --git a/MM_Math/data_original_21/7055317/math/51827844_350.png b/MM_Math/data_original_21/7055317/math/51827844_350.png deleted file mode 100644 index d7952f9a742d0194ac8377496afc6c98aa289584..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51827844_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2147ede4a4b683438952e94ed487f20c0a1ef17b6ccdebe4dec42699ed622171 -size 6110 diff --git a/MM_Math/data_original_21/7055317/math/51919732_270.png b/MM_Math/data_original_21/7055317/math/51919732_270.png deleted file mode 100644 index 2e48ff8e72f7dff310b4a4935185bae6d33e3be6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/51919732_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ecd9e19774004aecb7cfbe05cf2fd9898d7c14e4631d927f767c3c600ce4ddc -size 1838 diff --git a/MM_Math/data_original_21/7055317/math/53232768_223.png b/MM_Math/data_original_21/7055317/math/53232768_223.png deleted file mode 100644 index da132b82581e21b4211dfbcb2c18bfb9c2e5cece..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53232768_223.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a9e4cb880a42378f360dee449896ed46e54acd27fd1bf668d167ed0db9bf91f -size 18082 diff --git a/MM_Math/data_original_21/7055317/math/53232772_231.png b/MM_Math/data_original_21/7055317/math/53232772_231.png deleted file mode 100644 index 6f9ede24efb3d6f101270e13df928b63233f0cc8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53232772_231.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc798c6737614696ac5def7223f716a3ce03df1be0aee883e33841b6e31bf5c8 -size 2725 diff --git a/MM_Math/data_original_21/7055317/math/53232779_5216.png b/MM_Math/data_original_21/7055317/math/53232779_5216.png deleted file mode 100644 index 22a7b4e8aabe04973c7b056ca3b158c2ee5ea1dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53232779_5216.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7f018ab0eddb9560762c1ca28ad4a0231809c42e09122eda6c569c8ad36663d -size 4891 diff --git a/MM_Math/data_original_21/7055317/math/53273921_640.png b/MM_Math/data_original_21/7055317/math/53273921_640.png deleted file mode 100644 index a4d23f3e2319ff669ccfdbd50a7fdf9dd4364ce0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53273921_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e7d122aa07fcaf0b48fd73297d054bed31bd3bc259965ad135ae3b2426de6831 -size 81686 diff --git a/MM_Math/data_original_21/7055317/math/53273997_330.png b/MM_Math/data_original_21/7055317/math/53273997_330.png deleted file mode 100644 index 6812e76281c2010b94f0c88c8844dbeee6213252..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53273997_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6939bda58a314fb4ae3909afa3e8016b52df76e6e078a2449e5b01d50c250ef -size 17769 diff --git a/MM_Math/data_original_21/7055317/math/53296816_670.png b/MM_Math/data_original_21/7055317/math/53296816_670.png deleted file mode 100644 index 3251e58a438b96f40f7667a4ff4a56c5774cd75e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53296816_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccf57a5af0d5acf3196daffdf172f845c1eb7be631f729e6e8de3fd3865f298e -size 3556 diff --git a/MM_Math/data_original_21/7055317/math/53313048_215.png b/MM_Math/data_original_21/7055317/math/53313048_215.png deleted file mode 100644 index f3902bdd21cc029424bee64477cac54cce498356..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313048_215.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d4e321e0466def404dcf265052ff9815d8e7626821e80661d29067e413f40efd -size 7376 diff --git a/MM_Math/data_original_21/7055317/math/53313073_875.png b/MM_Math/data_original_21/7055317/math/53313073_875.png deleted file mode 100644 index e3ea476bc2420a9d5894221023c4b0b493fc818f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313073_875.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e2b2cfad1865c43b5568e93463ace2226dbb9b7fed1f0f0de9eb5132830799a -size 109277 diff --git a/MM_Math/data_original_21/7055317/math/53313100_832.png b/MM_Math/data_original_21/7055317/math/53313100_832.png deleted file mode 100644 index 5625bad078900b05037be4baa0dbea95d28c1c44..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313100_832.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62894218b00e6c8e390fc2876eded06c2f76b742ec3971095cd3430a247bf164 -size 2421 diff --git a/MM_Math/data_original_21/7055317/math/53313103_811.png b/MM_Math/data_original_21/7055317/math/53313103_811.png deleted file mode 100644 index aa49cfd608ac5efd22a93aac3522fa81b8d058b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313103_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d44dcf83e6d13f749333cd89bd8a328b996d8d75f7dc74abe3080e2b4869b8bf -size 3208 diff --git a/MM_Math/data_original_21/7055317/math/53313106_802.png b/MM_Math/data_original_21/7055317/math/53313106_802.png deleted file mode 100644 index 4464e6293162c631b4ed98bfcf50180b849a8ab1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313106_802.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4597548984c6ba812ccc1a87eeb13de1c0adf23dc086d6069a33ebbf6d763833 -size 42223 diff --git a/MM_Math/data_original_21/7055317/math/53313110_880.jpeg b/MM_Math/data_original_21/7055317/math/53313110_880.jpeg deleted file mode 100644 index 8bbcae14beee2893e8236f8b6ea7532316d2c28c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313110_880.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48f565d49533df956fa3dc3d29eed2bddff8f8ffa6ac7384e6bb2d60d89c16d7 -size 72664 diff --git a/MM_Math/data_original_21/7055317/math/53313177_190.png b/MM_Math/data_original_21/7055317/math/53313177_190.png deleted file mode 100644 index 650678df60b22e47ee6dcd963238d83292cac3d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313177_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0131c8abe515b6bb86a0637f0aa25368aa4683c35ae0aa3ad7efdd01243ffa4b -size 23479 diff --git a/MM_Math/data_original_21/7055317/math/53313215_792.png b/MM_Math/data_original_21/7055317/math/53313215_792.png deleted file mode 100644 index 2bcc0e87ea5815057913d46e43611d21a5ff9f10..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313215_792.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc62c1328ca0b27fc84f7fd3aaff541051379d41a0b298bd412ce492f202c7da -size 55444 diff --git a/MM_Math/data_original_21/7055317/math/53313397_200.png b/MM_Math/data_original_21/7055317/math/53313397_200.png deleted file mode 100644 index 7489c876c513fb726e54a71599392da4fde8b8f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313397_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d0de26b3a60e0de6a5149eeced8db4cfbb966b9779d6fe5fec88ee725cc7b81 -size 2713 diff --git a/MM_Math/data_original_21/7055317/math/53313404_440.png b/MM_Math/data_original_21/7055317/math/53313404_440.png deleted file mode 100644 index ef17bb2eff311e3d892dc5b9fb60bbb0ff9caaa5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313404_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:792dc350a355020c2b9cab2e81abe0645f5a2c80bf2799d71482cb803f74c1d1 -size 90438 diff --git a/MM_Math/data_original_21/7055317/math/53313461_455.png b/MM_Math/data_original_21/7055317/math/53313461_455.png deleted file mode 100644 index 5920a2df4a47606386bd6c55c7a0cd12101aba62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313461_455.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e75d3e94344da64bba46a965ce7ab2d07de534837ba91e943ad62a4189713f4 -size 3760 diff --git a/MM_Math/data_original_21/7055317/math/53313466_890.png b/MM_Math/data_original_21/7055317/math/53313466_890.png deleted file mode 100644 index e8f6798b593fda7654e1d378c0da0370e5cec856..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313466_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c94208390c375fa7a4ea0fcf699a1183dbd17767d62c01e183325246ca825c57 -size 27882 diff --git a/MM_Math/data_original_21/7055317/math/53313476_824.png b/MM_Math/data_original_21/7055317/math/53313476_824.png deleted file mode 100644 index c85b58c544b924f20e6420b6bed24899d1e1a5b0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53313476_824.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:192b239fe0913d7e7990ca994565b4697f1814586a06bb9552dc5b5806d5faba -size 2925 diff --git a/MM_Math/data_original_21/7055317/math/53333373_51.png b/MM_Math/data_original_21/7055317/math/53333373_51.png deleted file mode 100644 index 4ed051f9f75f524f86db59e7a838367c26f583ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333373_51.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df608c439f493a90b0d730c0606401e29f77b7f5d3ba0d944c0e7ced2b676b40 -size 2476 diff --git a/MM_Math/data_original_21/7055317/math/53333382_750.png b/MM_Math/data_original_21/7055317/math/53333382_750.png deleted file mode 100644 index 6c0b8f5c963310f2707c89af00b1189bc5f05e99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333382_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf8d588dc3e6a6c1f8f9f90dec392e7f3e8a4b32d6c4969bd1279da14caa0a38 -size 8987 diff --git a/MM_Math/data_original_21/7055317/math/53333402_107.png b/MM_Math/data_original_21/7055317/math/53333402_107.png deleted file mode 100644 index f2906718ed5b44fb51349d38346492dac81184d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333402_107.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f716fa9cc5b3ad441155b9d371911b6133a77f8193b9404f5b8a6432c75336e -size 2478 diff --git a/MM_Math/data_original_21/7055317/math/53333412_392.png b/MM_Math/data_original_21/7055317/math/53333412_392.png deleted file mode 100644 index ff19e396e202cbf4d0f0448ab9aa8284a6e48635..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333412_392.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3299a879307daa9e3f2d722145a08b469a276af305fd3113f5fbbb3fe3b587e5 -size 44468 diff --git a/MM_Math/data_original_21/7055317/math/53333420_731.png b/MM_Math/data_original_21/7055317/math/53333420_731.png deleted file mode 100644 index 94d355252630864cfbbbdc20f5447bd3771f8c03..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333420_731.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:963ac10114a00616a50f9aa871fe83476f142b4dc633e79ca62bd219110b21f1 -size 3371 diff --git a/MM_Math/data_original_21/7055317/math/53333441_76.png b/MM_Math/data_original_21/7055317/math/53333441_76.png deleted file mode 100644 index febd6d1c4099acaac792cf1c3f2b49c0161f1527..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333441_76.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c12d2f22dea7041c648a7c19895ea26a3df013346c2a497aef75d347bc14c7b -size 18485 diff --git a/MM_Math/data_original_21/7055317/math/53333443_89.png b/MM_Math/data_original_21/7055317/math/53333443_89.png deleted file mode 100644 index 234542a7e83660c888fc466c33893b1dd6b6bc57..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333443_89.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b52e0484ba36326b0a7d7e425c7bfc8c34afde6c4f174eeb167a4baa5c77fa8e -size 10187 diff --git a/MM_Math/data_original_21/7055317/math/53333445_910.png b/MM_Math/data_original_21/7055317/math/53333445_910.png deleted file mode 100644 index cb7891cb68c343bdd584e18272dd03377a864912..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333445_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc60586425d8e5df9b58602fdd6caff25778f690ca969ac8dd3daa1369bc4eef -size 2177 diff --git a/MM_Math/data_original_21/7055317/math/53333469_746.png b/MM_Math/data_original_21/7055317/math/53333469_746.png deleted file mode 100644 index a59491d7d29fa033f0931e6a342492bd764114aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333469_746.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8bfc3d10646bb2c340213c110911a18e5607a86f6a6ac00f501c1518e646bd8 -size 4648 diff --git a/MM_Math/data_original_21/7055317/math/53333516_46.png b/MM_Math/data_original_21/7055317/math/53333516_46.png deleted file mode 100644 index 33b409a997be1fc3bae333ccde5bea4673256c29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333516_46.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dcf3170a4fa44ef92958671801e627b679207ac225b5a27e702f2d32d9b104d0 -size 2022 diff --git a/MM_Math/data_original_21/7055317/math/53333629_67.png b/MM_Math/data_original_21/7055317/math/53333629_67.png deleted file mode 100644 index dc6c041ea1f0464bd89ef80468898a174dfd1087..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333629_67.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2832c03c1911c78d21b4ead60a3fa8a17f86e9b432abbcba24d460019a5a92f4 -size 5605 diff --git a/MM_Math/data_original_21/7055317/math/53333661_20.png b/MM_Math/data_original_21/7055317/math/53333661_20.png deleted file mode 100644 index 4d54ab57403b227ed83892203da7d627ea89e711..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333661_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29912a6843d8cca34ae3e762f146d8b3508447c76d26854d2eb1eafd18d941d3 -size 74716 diff --git a/MM_Math/data_original_21/7055317/math/53333671_415.png b/MM_Math/data_original_21/7055317/math/53333671_415.png deleted file mode 100644 index 56b07304dd8deb89bc0511aa29617ff77250a9a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333671_415.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e35ecdebba45428e0813b82260689d683b554cdf7299849ed715beeddd03586e -size 3370 diff --git a/MM_Math/data_original_21/7055317/math/53333892_650.png b/MM_Math/data_original_21/7055317/math/53333892_650.png deleted file mode 100644 index ec78a62a956593dca40600aa4f5569487f6fbcdd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333892_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f371ce52d0837bb7bc815b085810d2f1abc0ff7537accb4825b2a8b2ed989e2 -size 42965 diff --git a/MM_Math/data_original_21/7055317/math/53333921_30.png b/MM_Math/data_original_21/7055317/math/53333921_30.png deleted file mode 100644 index 6831c6e8630fb3346622b02b6edb8627c84d0227..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333921_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74b4f17500766452ef7c87190b91ad6f3fdbb42eb96d5d86a8f1c0af497be7ab -size 10404 diff --git a/MM_Math/data_original_21/7055317/math/53333928_403.png b/MM_Math/data_original_21/7055317/math/53333928_403.png deleted file mode 100644 index c78b0470572f8d9e27a2b7152a711777b736e884..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53333928_403.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:345392cc8a38d090894ac66ac6c9ce6ccc862569fe0fc7ce2bf3dfc195c744d0 -size 34443 diff --git a/MM_Math/data_original_21/7055317/math/53436625_130.png b/MM_Math/data_original_21/7055317/math/53436625_130.png deleted file mode 100644 index b41c84334e468e57c6b82d13d1356daf6a073968..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53436625_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c383c247dc21e8c29aebec4810c90d38b3dad63b1ff3c4120c5a633aafbca6fa -size 83807 diff --git a/MM_Math/data_original_21/7055317/math/53436646_860.png b/MM_Math/data_original_21/7055317/math/53436646_860.png deleted file mode 100644 index eaf8476688e4a74c832c18830f5063af7cf0a1cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53436646_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a424609fd40a3feeaa4dfb721721034b4270e4061163362e5fcde5cf50eafa97 -size 66983 diff --git a/MM_Math/data_original_21/7055317/math/53436907_150.png b/MM_Math/data_original_21/7055317/math/53436907_150.png deleted file mode 100644 index 067bcdaa9ebe3e3c899b331e0fc1f6052a3658d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53436907_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:965baae124c07877d78835bbfb2f57e987574a15b2d714b0ddb58645b2187621 -size 2098 diff --git a/MM_Math/data_original_21/7055317/math/53436916_471.png b/MM_Math/data_original_21/7055317/math/53436916_471.png deleted file mode 100644 index 2c6527c3bea28896621641fccca8568e4ea50b94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53436916_471.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d8614738838832dcecbfb408becc970671c18da040fcb027e8e05ae9e97084b6 -size 3679 diff --git a/MM_Math/data_original_21/7055317/math/53436917_460.png b/MM_Math/data_original_21/7055317/math/53436917_460.png deleted file mode 100644 index 01ee57bd147725e4b0c007cf36abe105f018f9c5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53436917_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea517168604f1298d765c29c7cc2c96a17ff4704858f584e75843415eb44fc45 -size 1635 diff --git a/MM_Math/data_original_21/7055317/math/53437199_845.png b/MM_Math/data_original_21/7055317/math/53437199_845.png deleted file mode 100644 index 130b7cfe1cee721b6e6379e118be2f5c068d3ea7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53437199_845.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6183e80ee323558c5ff2ea090d0c749aa9bbc5f26be7e2589a158581de47c5a -size 67312 diff --git a/MM_Math/data_original_21/7055317/math/53437314_853.png b/MM_Math/data_original_21/7055317/math/53437314_853.png deleted file mode 100644 index 1f5495e76ca9653b4bdfd6f26120d3956a453c65..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53437314_853.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71f6c03f15e6ebf8a09aca367c1a2e3c040748c58cc73d0767c0d8b86bc6c189 -size 3675 diff --git a/MM_Math/data_original_21/7055317/math/53437330_162.png b/MM_Math/data_original_21/7055317/math/53437330_162.png deleted file mode 100644 index feb1d150c59488964eb0530a36ccad207e137abb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53437330_162.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e45c890abbb1cbc3b2dffe0f30eec2579256221296bc7e324da3aaba7604d3d8 -size 34384 diff --git a/MM_Math/data_original_21/7055317/math/53437332_170.png b/MM_Math/data_original_21/7055317/math/53437332_170.png deleted file mode 100644 index fe94b27713ac406595b24d86e151879bb6d24a41..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53437332_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9f0c1474dfe8602ae825077e8b7560c6d31b2139091391644e51d0a171d08b4 -size 5848 diff --git a/MM_Math/data_original_21/7055317/math/53437522_142.png b/MM_Math/data_original_21/7055317/math/53437522_142.png deleted file mode 100644 index 7496f3f7c983c4b73a277b87c7cea20eac78ebef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53437522_142.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a21c28a1a33762d000f6d014d25bc2712051f2d3773031110bbd5f7fbfa2415 -size 17285 diff --git a/MM_Math/data_original_21/7055317/math/53454092_348.png b/MM_Math/data_original_21/7055317/math/53454092_348.png deleted file mode 100644 index 85f5cb70647eb43ae350d868d50fc535852edeb9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53454092_348.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e2e8ef197233ecd3bf6d7cd38d7d29d8e3c2b9d9de3d59fe8524e4d33e76855 -size 4735 diff --git a/MM_Math/data_original_21/7055317/math/53572095_2616.png b/MM_Math/data_original_21/7055317/math/53572095_2616.png deleted file mode 100644 index c597ed560bcc05d755583b0c8863c68b76a5eebc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53572095_2616.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:051ba0f8d9fa79e8659cb2de87a5e4e40f4e05f2a6d18913a60c87374431e568 -size 132317 diff --git a/MM_Math/data_original_21/7055317/math/53572100_5512.png b/MM_Math/data_original_21/7055317/math/53572100_5512.png deleted file mode 100644 index ca223ab7ae68619442c5e697ea9bfbbf2d7e5aaa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53572100_5512.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38b4c8e2b374f65371fe308904463ae82762492e82f4129e26b4227316b00864 -size 6203 diff --git a/MM_Math/data_original_21/7055317/math/53572608_258.png b/MM_Math/data_original_21/7055317/math/53572608_258.png deleted file mode 100644 index 5f0796f785a633b40a3d94e8faba284ef935fcc2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53572608_258.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b892ce928cd7b7fa425323e0b16c4dac5e33b2839a7bdbc443cd5c774c8381b1 -size 2278 diff --git a/MM_Math/data_original_21/7055317/math/53572616_541.png b/MM_Math/data_original_21/7055317/math/53572616_541.png deleted file mode 100644 index f0666f44aa5b244f27918717b288ddb34f48a063..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53572616_541.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:443fdfa61a2292b0394d05b1b6ba37c45575d2703d6a6fbb9feb828ae45fd056 -size 2856 diff --git a/MM_Math/data_original_21/7055317/math/53572645_248.png b/MM_Math/data_original_21/7055317/math/53572645_248.png deleted file mode 100644 index 3f9cb90d2d5c61f093261e32bb4db188f0c73951..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53572645_248.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9a143a98173aadbde9278ee63c7780afe386c6316e82047ce049546bc5c8b19 -size 4634 diff --git a/MM_Math/data_original_21/7055317/math/53572646_537.png b/MM_Math/data_original_21/7055317/math/53572646_537.png deleted file mode 100644 index 79bb93b63ca5d5cf11d0abf1b3b86d9271887d8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53572646_537.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b38596eb65c7d8b045f58170895b545acaab1e8fe79ec623d6c3c6d1c1c8e59a -size 3179 diff --git a/MM_Math/data_original_21/7055317/math/53572668_927.png b/MM_Math/data_original_21/7055317/math/53572668_927.png deleted file mode 100644 index c80637ed564208aab4ee0c8b4e78498a5084aac0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53572668_927.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ccbd1b97af4950d29803f55d72478c67178de6c9ea8412d0a4673a504eba2cc -size 94520 diff --git a/MM_Math/data_original_21/7055317/math/53599241_900.png b/MM_Math/data_original_21/7055317/math/53599241_900.png deleted file mode 100644 index 4e8236c63bf374de2d64e348e73f3feff01764cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53599241_900.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bdff8e151913a24158698b5dcaeec7f62bc49c45ccbd7e6dfa7f564fbd2fe8bd -size 5430 diff --git a/MM_Math/data_original_21/7055317/math/53599249_126.png b/MM_Math/data_original_21/7055317/math/53599249_126.png deleted file mode 100644 index 849b5560c868aa2710715f64532791495ae64c45..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53599249_126.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1aacc5cda687fc67e238066f2d9d002aa60b70aa3e64301032b3003223b0b9b2 -size 1381 diff --git a/MM_Math/data_original_21/7055317/math/53599250_188.png b/MM_Math/data_original_21/7055317/math/53599250_188.png deleted file mode 100644 index 16582180b095a659d08792d89c32ac9cdd7ec90e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53599250_188.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ae5a4e2d2c040712e6b94bdf5b0efe18f3d48ddf8c44cf5493b03976ca8cecb -size 2801 diff --git a/MM_Math/data_original_21/7055317/math/53599255_480.png b/MM_Math/data_original_21/7055317/math/53599255_480.png deleted file mode 100644 index 8ac15450f6ac8da4ca2e84d2bbf808136d33ed88..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53599255_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7390ee932170d620135a980c9404f71460035279cfaf2d899e576dff33efddb -size 5561 diff --git a/MM_Math/data_original_21/7055317/math/53599256_491.png b/MM_Math/data_original_21/7055317/math/53599256_491.png deleted file mode 100644 index 79392865bda76cb9d381f77debc0d00ce443b07c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53599256_491.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e84a64ef89a589067e677df319cdf0c24fc6489d3cc0cbb448083ec11671bb7 -size 28599 diff --git a/MM_Math/data_original_21/7055317/math/53599304_432.png b/MM_Math/data_original_21/7055317/math/53599304_432.png deleted file mode 100644 index 5eb646fba57c17bb71c0b732c3debaa53e2d1c44..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53599304_432.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6fc85026cd1735529813bc0cd27baaaca2e545d6c3c7b5313d393645e6df44aa -size 8854 diff --git a/MM_Math/data_original_21/7055317/math/53599308_770.png b/MM_Math/data_original_21/7055317/math/53599308_770.png deleted file mode 100644 index 7220196d6b57ce9e2941401c25e1a06ba1725af6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53599308_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f19ee9a6d7301f1f28bb343045a467b6600d19516029e75cf58251321f07a64 -size 2548 diff --git a/MM_Math/data_original_21/7055317/math/53599320_782.png b/MM_Math/data_original_21/7055317/math/53599320_782.png deleted file mode 100644 index 6eaf6a2fb8d933e65b9c8177fb362197deca802a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/math/53599320_782.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1582d12539450d7dbd4cfe368027a30a31ed78d3b077a5e5bb4628b936ee9ed4 -size 7571 diff --git a/MM_Math/data_original_21/7055317/solution_images/51684372_320.png b/MM_Math/data_original_21/7055317/solution_images/51684372_320.png deleted file mode 100644 index 69b457eed5cb421328f0afc05f2d9d9836b3a267..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51684372_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f66ae8e16aed9c7c75b1baccb6f00c1e82c2585b5d4ac90b8fdda243d8f89fc8 -size 4586 diff --git a/MM_Math/data_original_21/7055317/solution_images/51721868_600.png b/MM_Math/data_original_21/7055317/solution_images/51721868_600.png deleted file mode 100644 index 5f6d722a6c571ccddd1bb054d68c715099aeca9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51721868_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02616a3aeba58bc31d7aa737ce6ca5eede56037c3fdc090456b0d1f75167483d -size 2417 diff --git a/MM_Math/data_original_21/7055317/solution_images/51721905_570.png b/MM_Math/data_original_21/7055317/solution_images/51721905_570.png deleted file mode 100644 index b394f63698aa248aa55531a69dac79b12334204a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51721905_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5b42430475857dba3905469aa28c51292a47c3f1e6992755dfba33ec64fa442 -size 17485 diff --git a/MM_Math/data_original_21/7055317/solution_images/51721939_584.png b/MM_Math/data_original_21/7055317/solution_images/51721939_584.png deleted file mode 100644 index 738b71ae9211662015e929ec4e44ce7fe5ce4fa4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51721939_584.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12ada92c59d54643ebfa7ea6296c8ff17324a14d85afc70d569e386e05efe3ec -size 82300 diff --git a/MM_Math/data_original_21/7055317/solution_images/51722347_620.png b/MM_Math/data_original_21/7055317/solution_images/51722347_620.png deleted file mode 100644 index 37af5893b978a2476110e61503f00dec3f8a7d22..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51722347_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20a9f67bb6a93f977284d2a38bbad150f69d43d1ce0d51d00a1bc991254958a8 -size 15769 diff --git a/MM_Math/data_original_21/7055317/solution_images/51737151_560.png b/MM_Math/data_original_21/7055317/solution_images/51737151_560.png deleted file mode 100644 index d012f80fe47851d84ad1e213caba1e654dbfba0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51737151_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38e78075be2e8294186ba1f624834c344391bc64acbbe835bac574e9d0fe5701 -size 4462 diff --git a/MM_Math/data_original_21/7055317/solution_images/51737179_290.png b/MM_Math/data_original_21/7055317/solution_images/51737179_290.png deleted file mode 100644 index c01a3d9b8ab68c7d07d482bc5fac1588c43139ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51737179_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab67a18badeb26549e93a5b2fef979b6b2f18bc9e605435e23688101d7ec781b -size 5654 diff --git a/MM_Math/data_original_21/7055317/solution_images/51798867_510.png b/MM_Math/data_original_21/7055317/solution_images/51798867_510.png deleted file mode 100644 index 11bcbaf826c2f043f504646cce4355cfc9508447..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51798867_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89cedcaae9db0a17a88b7f6591d23df449ca2217ff75f1288017c921f9a4b821 -size 2187 diff --git a/MM_Math/data_original_21/7055317/solution_images/51825215_10.png b/MM_Math/data_original_21/7055317/solution_images/51825215_10.png deleted file mode 100644 index 9000b767c07c648bc56db55321f5322ccc34c7eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51825215_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b99d4b763c8a0e445bf55a6d4f76d1ef558d3e3857d47de0200a86ee49d06ede -size 56146 diff --git a/MM_Math/data_original_21/7055317/solution_images/51825221_360.png b/MM_Math/data_original_21/7055317/solution_images/51825221_360.png deleted file mode 100644 index 1d409ffe7d3f9bca55271b59ccf7466430dd80c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51825221_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7d1e9525e80854a38ec63cd6f4545ccbac0239d03c9b3489bd9ffcf09e47e5c -size 18869 diff --git a/MM_Math/data_original_21/7055317/solution_images/51825223_370.png b/MM_Math/data_original_21/7055317/solution_images/51825223_370.png deleted file mode 100644 index a9fd6154a75975c934cd1cd223709853cdc6f4d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/51825223_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b7f356ed3f6f4bb2eb78070d27c44bce74353fbb06ef05419a5d04e666100ab -size 20669 diff --git a/MM_Math/data_original_21/7055317/solution_images/53232779_520.png b/MM_Math/data_original_21/7055317/solution_images/53232779_520.png deleted file mode 100644 index 7dd7c9c7cf47a03491fc178eac4c1a54e1ab3812..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53232779_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:420a1a4a81cd9550e823d5344abe5e1115a248a3fb3878dddbf21cbd660b4429 -size 12149 diff --git a/MM_Math/data_original_21/7055317/solution_images/53273997_330.png b/MM_Math/data_original_21/7055317/solution_images/53273997_330.png deleted file mode 100644 index 49d2c69b689bba3dc9a416ce7515845729ecb486..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53273997_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d393b1f8b17a61309f1a9ab9a76eb3c8f91bdb8ed5f66d853fbe67044fa58519 -size 23572 diff --git a/MM_Math/data_original_21/7055317/solution_images/53313177_190.png b/MM_Math/data_original_21/7055317/solution_images/53313177_190.png deleted file mode 100644 index 650678df60b22e47ee6dcd963238d83292cac3d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53313177_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0131c8abe515b6bb86a0637f0aa25368aa4683c35ae0aa3ad7efdd01243ffa4b -size 23479 diff --git a/MM_Math/data_original_21/7055317/solution_images/53313404_440.png b/MM_Math/data_original_21/7055317/solution_images/53313404_440.png deleted file mode 100644 index 32a6db264078d61892fab0582c0f1e2973929030..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53313404_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f0140b44263a78032b6377c1a4890df4958553f4d41e99bda96b3b4cca350ed5 -size 115366 diff --git a/MM_Math/data_original_21/7055317/solution_images/53333445_90.png b/MM_Math/data_original_21/7055317/solution_images/53333445_90.png deleted file mode 100644 index 25a9cbcfb279bb776885f3c3b6b4d1edcd1ca076..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53333445_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:acedecc43a024713a32d2fe6a838b8fe198ae7a99054245ce1001f25dca36c7f -size 2499 diff --git a/MM_Math/data_original_21/7055317/solution_images/53333629_60.png b/MM_Math/data_original_21/7055317/solution_images/53333629_60.png deleted file mode 100644 index 5822fed5d91a81380d84c66c384b0962395a4733..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53333629_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60d184257a8e22e8831d97ace9f2fe32b044a63fcc3401824b461cd3cd88b158 -size 5678 diff --git a/MM_Math/data_original_21/7055317/solution_images/53436917_462.png b/MM_Math/data_original_21/7055317/solution_images/53436917_462.png deleted file mode 100644 index 2648ee52efe8265300adc6f377d77f21a69aa7dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53436917_462.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8ee860f4770d7d8f5a791e4adb10acbe73d137308bdf1fe7c49382dc58c6231 -size 2202 diff --git a/MM_Math/data_original_21/7055317/solution_images/53437332_170.png b/MM_Math/data_original_21/7055317/solution_images/53437332_170.png deleted file mode 100644 index 04b451a85b0361a4d8d4fe4752f56734204c45ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53437332_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:189bcf8ffee2b20f6fa7852f3bf2178ea269d0d94ed3497491d96e60d0c2d322 -size 4051 diff --git a/MM_Math/data_original_21/7055317/solution_images/53437522_140.png b/MM_Math/data_original_21/7055317/solution_images/53437522_140.png deleted file mode 100644 index 1379951eccbafce585d25766000f6e78bf1c93cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53437522_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2ae7a41a52a4a2bf31c66505ba67319948c86f752e3125bba47f5486f454237 -size 19749 diff --git a/MM_Math/data_original_21/7055317/solution_images/53572100_551.png b/MM_Math/data_original_21/7055317/solution_images/53572100_551.png deleted file mode 100644 index 94cf7a0b49ba3873700c5f956cd7889726ba4e3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53572100_551.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1588c19d8dfce1b5a068d123557ac17b06707307d32cf4d969aac66a6060431b -size 5192 diff --git a/MM_Math/data_original_21/7055317/solution_images/53572608_250.png b/MM_Math/data_original_21/7055317/solution_images/53572608_250.png deleted file mode 100644 index 7bff6f4bcb4ea6f8d79fb83bf1a8509c378521e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53572608_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f0bd50415a9370a7ea4ea7a4902c0013da66c9b8587b362c73c8c16c03233b5 -size 2690 diff --git a/MM_Math/data_original_21/7055317/solution_images/53572616_540.png b/MM_Math/data_original_21/7055317/solution_images/53572616_540.png deleted file mode 100644 index a4979f3c6d7eeea693693798e6d4c63b0deb52a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53572616_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a580d56b1add18447dc7146f75bcbd7915d8cc0de7cc39bd11c87527ce5cbc79 -size 3073 diff --git a/MM_Math/data_original_21/7055317/solution_images/53572645_240.png b/MM_Math/data_original_21/7055317/solution_images/53572645_240.png deleted file mode 100644 index cf40f3eb0f85e4b12697e8f6b8f4166ceb183b87..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53572645_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05c4329460f9180b18ae30e2b466b542cf8d82a877e138d612cc6a512d8ae6b4 -size 5289 diff --git a/MM_Math/data_original_21/7055317/solution_images/53572668_920.png b/MM_Math/data_original_21/7055317/solution_images/53572668_920.png deleted file mode 100644 index 90fb25f8670e2122bff0e7ee66268d19ce459b34..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53572668_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3dab56393fb368fa05679a8ae1af7ca89c2e0c0330b5ef2f80f1774ede8258c -size 5228 diff --git a/MM_Math/data_original_21/7055317/solution_images/53572668_9212.png b/MM_Math/data_original_21/7055317/solution_images/53572668_9212.png deleted file mode 100644 index 29e1579c065dd72f2f63c4d15aa993b43ff33498..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53572668_9212.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:190fc75a9f7157ac574f6e6033a8e8a05b38512829502605fc82ff987af38e13 -size 4465 diff --git a/MM_Math/data_original_21/7055317/solution_images/53599256_490.png b/MM_Math/data_original_21/7055317/solution_images/53599256_490.png deleted file mode 100644 index e6780d1d7cb12b270d716c40e5121e1a65377fc2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53599256_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62e77ca8d6f17cfbcd5fa8a93a15e45fd618f872a8ac105338f430ccb8f15cdc -size 30500 diff --git a/MM_Math/data_original_21/7055317/solution_images/53599304_430.png b/MM_Math/data_original_21/7055317/solution_images/53599304_430.png deleted file mode 100644 index 21105fa264a5d70be0fe9c0db0f6d7761ca0714f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055317/solution_images/53599304_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54373e51288db33924cf89daee1e31b101d09bf67f505533ee589e267ccca26f -size 12490 diff --git a/MM_Math/data_original_21/7055653/math/51420049_460.png b/MM_Math/data_original_21/7055653/math/51420049_460.png deleted file mode 100644 index 8375b7ca126ab89ad32453f40bc7fd77cb78aebb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51420049_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1389b260f410b63be188b1fc7ce4ca73d9de6153331d2a63e1abba103a41c1d7 -size 8152 diff --git a/MM_Math/data_original_21/7055653/math/51420070_880.jpg b/MM_Math/data_original_21/7055653/math/51420070_880.jpg deleted file mode 100644 index b5177170910fe60d743c9f7aa6f1e9303a17d874..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51420070_880.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60a0897b5a88e00cddc1995924758cd636df835a766aaa0bd93e33ba11eb22e9 -size 2319 diff --git a/MM_Math/data_original_21/7055653/math/51435834_660.png b/MM_Math/data_original_21/7055653/math/51435834_660.png deleted file mode 100644 index 75ac7a885beca163c3bec188897f801dc9ee6dd9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435834_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b587fbe253a2e605c3610477d630d83130ef1893101df4bb101e37da27d56df -size 9515 diff --git a/MM_Math/data_original_21/7055653/math/51435842_940.png b/MM_Math/data_original_21/7055653/math/51435842_940.png deleted file mode 100644 index 97ffdb4b75bd80d46f7dc290d606e4ef4b5bca77..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435842_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46b890e213a3b2a8274757f3fac88514d831d61036872295a07ffdbf8ee5b055 -size 12277 diff --git a/MM_Math/data_original_21/7055653/math/51435943_210.png b/MM_Math/data_original_21/7055653/math/51435943_210.png deleted file mode 100644 index a18caaef7ef1124a4db94b7b6bfcb8628029e2c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435943_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7113ec63fafb109d66dda338035105458cb431f4cdb9133c71a416803f546274 -size 8111 diff --git a/MM_Math/data_original_21/7055653/math/51435944_240.png b/MM_Math/data_original_21/7055653/math/51435944_240.png deleted file mode 100644 index 2bbb53cd50abfee1a2a30363f82d6b25b6f0f948..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435944_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21324efecc98b693dd43ca73581ed4e4a39bec3cfc5d92734ec5f490ede0ba02 -size 25844 diff --git a/MM_Math/data_original_21/7055653/math/51435945_230.png b/MM_Math/data_original_21/7055653/math/51435945_230.png deleted file mode 100644 index d240d627a8c70a6ca180afd1adfdfdad535e6ef4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435945_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b05b8d9fd429edcc897b831e5e7105bedb4a130da94672d228cd66625a3efeb3 -size 7003 diff --git a/MM_Math/data_original_21/7055653/math/51435947_221.png b/MM_Math/data_original_21/7055653/math/51435947_221.png deleted file mode 100644 index f07d52d14a8244323db33e52fb529238762617dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435947_221.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae2f8a3e67b970781bd4ed8fd4ec41a1bcdd321baa1174696f9ad8affb1df82c -size 7508 diff --git a/MM_Math/data_original_21/7055653/math/51435948_950.png b/MM_Math/data_original_21/7055653/math/51435948_950.png deleted file mode 100644 index af670e85219cb88dbe2737ab383556e987341c7f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435948_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c7bc9232b49350d38811642d3e218dbec35d413851ccb296830263557e1806b -size 10262 diff --git a/MM_Math/data_original_21/7055653/math/51435951_640.png b/MM_Math/data_original_21/7055653/math/51435951_640.png deleted file mode 100644 index a44a0e5a65d8110b33eb937abbcdacd9d2d57f26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435951_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f909483ca04ee9560a5cc3d8a7c6480a64ea6e31f8af8806885f85fad54aa212 -size 8892 diff --git a/MM_Math/data_original_21/7055653/math/51435952_650.png b/MM_Math/data_original_21/7055653/math/51435952_650.png deleted file mode 100644 index 267956b388ae82792fe0de0dd3c36bc100da60dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435952_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f36fd8fdcf284f848935a72f97b82aab668f22b2d7d113aba97b730aefcd6b7f -size 5725 diff --git a/MM_Math/data_original_21/7055653/math/51435972_202.png b/MM_Math/data_original_21/7055653/math/51435972_202.png deleted file mode 100644 index 5f5dc90f3a9fb84f3e99a104dc7b0209a54bcf06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435972_202.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01b58e1cf0b2878f8cf083040e41e59e4520bb99ce2b7b7ad8a1b89d2e1d0190 -size 4904 diff --git a/MM_Math/data_original_21/7055653/math/51435977_635.png b/MM_Math/data_original_21/7055653/math/51435977_635.png deleted file mode 100644 index 99f5f508efa2e1da1cfb587db676dcc7c806089e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51435977_635.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18182607639c8c222a3b418eddc15c251eae8db40f6bfcf2b1eacffe1fcda91a -size 5290 diff --git a/MM_Math/data_original_21/7055653/math/51491488_610.png b/MM_Math/data_original_21/7055653/math/51491488_610.png deleted file mode 100644 index 045b870991f585f1a189f832b5574a6608d02a51..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51491488_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f5e9ecdea9b8a85c5cd261f2c1384d8a90cf628f1c37b57d5e6efc02514b9948 -size 8152 diff --git a/MM_Math/data_original_21/7055653/math/51510247_600.png b/MM_Math/data_original_21/7055653/math/51510247_600.png deleted file mode 100644 index e2c2c66f3d0145301100e184baa4af09a2ed8164..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510247_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18d68630bd626719be397baf120049f355e196f4f41472ab40acda3d4bfb4002 -size 5235 diff --git a/MM_Math/data_original_21/7055653/math/51510273_153.png b/MM_Math/data_original_21/7055653/math/51510273_153.png deleted file mode 100644 index 409e3d4b2cb092d1806674138ebe506130238060..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510273_153.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fce9b8b26cbb4b1aa2e8eb55cd69f11f8f2fce5ec9a1b84ee2780d19f59e077d -size 5655 diff --git a/MM_Math/data_original_21/7055653/math/51510274_164.png b/MM_Math/data_original_21/7055653/math/51510274_164.png deleted file mode 100644 index d0f709647c5e81d11e8fca192c175d9a20950537..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510274_164.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba95e9c5127d4d17b5d4cee9c24cbc2b2cdfce470154d21d0c85357e443ee5ba -size 6199 diff --git a/MM_Math/data_original_21/7055653/math/51510277_560.png b/MM_Math/data_original_21/7055653/math/51510277_560.png deleted file mode 100644 index bdda048a5372c00c0d36eecbf89a5130ff9b0832..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510277_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c346e2854a3fad15a49d810732151f590486e4eca3b605a6d9cf21a83b376e8f -size 6705 diff --git a/MM_Math/data_original_21/7055653/math/51510278_570.png b/MM_Math/data_original_21/7055653/math/51510278_570.png deleted file mode 100644 index 6618c634977858d09f2e542322e824e37e55c191..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510278_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b97fc14babba6d4e4dce94cb94780f4d6c019e345d8b8747578243009ed66cce -size 5605 diff --git a/MM_Math/data_original_21/7055653/math/51510280_580.png b/MM_Math/data_original_21/7055653/math/51510280_580.png deleted file mode 100644 index 585afbcd6c0d7e5fce6bb214d0dcaebe4c0dc95e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510280_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62dd331278cf790549191fb9da7aae03711f132b4f730b3ed5829638070c96e3 -size 9116 diff --git a/MM_Math/data_original_21/7055653/math/51510282_594.png b/MM_Math/data_original_21/7055653/math/51510282_594.png deleted file mode 100644 index f9fce13920c23a5db99b24a789ff87723ae41427..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510282_594.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fd07ac3f315654dad8c5da8564bed16069a35e8000eb2dd3905313ccb7863342 -size 10344 diff --git a/MM_Math/data_original_21/7055653/math/51510287_922.png b/MM_Math/data_original_21/7055653/math/51510287_922.png deleted file mode 100644 index 95dbbc2a38c1575559362a03b3af9a47eba9c112..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510287_922.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce9f64be7ff886e79e12104f200e9d9af9f2a7373a0f1a200afe7553ffe280ab -size 6998 diff --git a/MM_Math/data_original_21/7055653/math/51510300_910.png b/MM_Math/data_original_21/7055653/math/51510300_910.png deleted file mode 100644 index 14c72df81e6c086a21cdd6f3cec3312a58fae208..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510300_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4dd6d9150c69701f10733260fdea9f16301f8b107eb6e1fe2ebda5b36913ff70 -size 20431 diff --git a/MM_Math/data_original_21/7055653/math/51510317_555.png b/MM_Math/data_original_21/7055653/math/51510317_555.png deleted file mode 100644 index 8a36753645b4bac044fe8afe6ca0b0bb37b4fced..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510317_555.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c63afa4508680471c2bffc5e786d708c19f6ad5b9a9ccb800c60249d28299ee6 -size 9643 diff --git a/MM_Math/data_original_21/7055653/math/51510349_147.png b/MM_Math/data_original_21/7055653/math/51510349_147.png deleted file mode 100644 index f9959e7535f04760e0ee54038873a6662edb7e95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510349_147.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46d55d682cdf8177711dc17e841eced93efd13f3d5050df0e73123917791ae17 -size 13756 diff --git a/MM_Math/data_original_21/7055653/math/51510388_130.png b/MM_Math/data_original_21/7055653/math/51510388_130.png deleted file mode 100644 index 1a9de02efa50f7ed3fd0265d6a9ff16b2fcdef7c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510388_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07c08b13f361f167edd8d4bb1fa5b97be28b5e5d21419bb62d59b2716f23862c -size 10524 diff --git a/MM_Math/data_original_21/7055653/math/51510392_533.png b/MM_Math/data_original_21/7055653/math/51510392_533.png deleted file mode 100644 index d5df0a5236881864a3fbfe7ab3195a7e17154a9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510392_533.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98a01811485e15eec9e7daef1c29a9b28faf3abfc7987ce472c8cdf668b5dd78 -size 9007 diff --git a/MM_Math/data_original_21/7055653/math/51510393_542.png b/MM_Math/data_original_21/7055653/math/51510393_542.png deleted file mode 100644 index 8712f5f7059b9b578aec3d014b5c780d76baa958..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510393_542.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9b2a5c4d05c5b7c689274e980963bded0d94f0b1ce8b50eba0f3a0671fb2dbd -size 10331 diff --git a/MM_Math/data_original_21/7055653/math/51510410_904.png b/MM_Math/data_original_21/7055653/math/51510410_904.png deleted file mode 100644 index ec46e66b09130fd1276630c8711bcf8b11c693da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510410_904.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df9c006a00dcef616d87189e5b77efa93d0ba755fb37190a7f497cd8512f0cde -size 9679 diff --git a/MM_Math/data_original_21/7055653/math/51510416_890.png b/MM_Math/data_original_21/7055653/math/51510416_890.png deleted file mode 100644 index af638bf693a3246a4598bcac85283ed678d8f4db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51510416_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56958ee82c00c96ebb48c58fe757e078b85ed4fbc04d09b360460c98ff687b7c -size 10970 diff --git a/MM_Math/data_original_21/7055653/math/51534188_522.png b/MM_Math/data_original_21/7055653/math/51534188_522.png deleted file mode 100644 index 4d0afc4e3f09a0703a67406556e672516dffd573..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51534188_522.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dec5394a35d4a39230466708b57a65dfa5744542e47b9a1d7e492775481c7fe0 -size 7580 diff --git a/MM_Math/data_original_21/7055653/math/51534305_519.png b/MM_Math/data_original_21/7055653/math/51534305_519.png deleted file mode 100644 index a73bee7800125de76e1d8fbf34a4c0fceca28e34..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51534305_519.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67d89c93ae34ca5d5e406d20dde6134cfabef4bb73c698029a7164a0867cd345 -size 10032 diff --git a/MM_Math/data_original_21/7055653/math/51534333_505.png b/MM_Math/data_original_21/7055653/math/51534333_505.png deleted file mode 100644 index 18e10385fade44ef8a94014332e319e745694203..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51534333_505.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14bac7b5b1725f8759a26cba43c64bd05de9697daaa0b29141cc644f80959ee7 -size 4445 diff --git a/MM_Math/data_original_21/7055653/math/51534395_490.png b/MM_Math/data_original_21/7055653/math/51534395_490.png deleted file mode 100644 index c6062206d35021d8b2188067b857bd0b5844ad81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51534395_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a770226229c7090020ee66bc1cbeb9824bbc799df336ddb1046fc56aff75a4a5 -size 5848 diff --git a/MM_Math/data_original_21/7055653/math/51534410_120.png b/MM_Math/data_original_21/7055653/math/51534410_120.png deleted file mode 100644 index 579b52340422a1f4988b3f45ac618a40657dbd69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51534410_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0065b0608521a38c9b403b4c9a42835f792c179530e10db51856180ad395267b -size 4140 diff --git a/MM_Math/data_original_21/7055653/math/51554788_690.jpg b/MM_Math/data_original_21/7055653/math/51554788_690.jpg deleted file mode 100644 index c146b84123334f7d83646b15fa150398ce678419..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51554788_690.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b1122e4349c3676face4ce8d8f8b119fd56c6b9a771d7f4543895dc155d19ae -size 3195 diff --git a/MM_Math/data_original_21/7055653/math/51604337_450.png b/MM_Math/data_original_21/7055653/math/51604337_450.png deleted file mode 100644 index 903189ccfd821c08dc0cbf56de01b84389b8ecbc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51604337_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e448647e96bb76d68d18a092ba471e1a533024451854cef72530f545a1d5f01 -size 13566 diff --git a/MM_Math/data_original_21/7055653/math/51604338_440.png b/MM_Math/data_original_21/7055653/math/51604338_440.png deleted file mode 100644 index d2474ce82816831ccd8ba5284df459adf00a2711..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51604338_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1a590949dfa03c150ba00cdfe1667d9a7929e6f72d5a237b5337769ba2f0ee90 -size 5083 diff --git a/MM_Math/data_original_21/7055653/math/51614394_90.png b/MM_Math/data_original_21/7055653/math/51614394_90.png deleted file mode 100644 index 4ad5a905f7fa5721581a3fab957ca21dda85779a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614394_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5cfed00f65a028d63ba4a14675c7aaf0da8c38ac67c0b8c6980c63e83a4e46ed -size 5926 diff --git a/MM_Math/data_original_21/7055653/math/51614396_410.png b/MM_Math/data_original_21/7055653/math/51614396_410.png deleted file mode 100644 index 771cf66681252482369611f0bc754cf9a87d6dc6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614396_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9934351c900954f26cc6e13a45c424cd532a30dac2ad90f94f61385b6d06f8f1 -size 4488 diff --git a/MM_Math/data_original_21/7055653/math/51614398_420.png b/MM_Math/data_original_21/7055653/math/51614398_420.png deleted file mode 100644 index 715aa594b45e62946ecd9e1b0aa7dc9d182886cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614398_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d36fbe1bd07f39da8e5a4e96460eefd996d72153b7a358e719a0283954d4eaa -size 5852 diff --git a/MM_Math/data_original_21/7055653/math/51614400_430.png b/MM_Math/data_original_21/7055653/math/51614400_430.png deleted file mode 100644 index 9658204d0ea0922d750f90a156d1151dbc8d3aef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614400_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7e5f043c82f493a072a543af23b128c0e59e95217a8bfd9d4f50edbc2bf5b9d -size 3361 diff --git a/MM_Math/data_original_21/7055653/math/51614402_970.png b/MM_Math/data_original_21/7055653/math/51614402_970.png deleted file mode 100644 index 70f585c96725515981dfcfa1eeb4de469d3b5ac2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614402_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23d6a17c6b4382e111e8e5cc7c45437cb7ff54ae67e39cb6c57d73b01adf2222 -size 3093 diff --git a/MM_Math/data_original_21/7055653/math/51614426_980.png b/MM_Math/data_original_21/7055653/math/51614426_980.png deleted file mode 100644 index 6e5a5bae234932e8a19013c4e2162b2edc8185f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614426_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c431c5a40657cd2a6ac286be51fd721348cd6048521e4b81b5ef6827bca3d906 -size 6257 diff --git a/MM_Math/data_original_21/7055653/math/51614441_860.png b/MM_Math/data_original_21/7055653/math/51614441_860.png deleted file mode 100644 index 4293bff61271a511dfafa8daab384706067dfbca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614441_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5fe7a9e4a7c9f0a48343434fe6a3e2aeb571dcbb533aada415b4b36493d6ca0 -size 9154 diff --git a/MM_Math/data_original_21/7055653/math/51614461_990.png b/MM_Math/data_original_21/7055653/math/51614461_990.png deleted file mode 100644 index cd87fb8714ab3b29f5fe3879db1ee2a57134b1d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614461_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:26895df4223e1d31e64d26e8bb5ce6314e35881a7cc286010c8cfe402265dbf1 -size 7030 diff --git a/MM_Math/data_original_21/7055653/math/51614463_390.png b/MM_Math/data_original_21/7055653/math/51614463_390.png deleted file mode 100644 index b9363296bdee72ec4fb152309969c776345acf19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614463_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:47f92e71a367befdb7b1aa31a927436b71bad868ee7a38a6e01e1bbcad626fc6 -size 6503 diff --git a/MM_Math/data_original_21/7055653/math/51614464_400.png b/MM_Math/data_original_21/7055653/math/51614464_400.png deleted file mode 100644 index 4d9505548ae9d5bc055fbd4d193b75c7911cdb2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614464_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:376086bafe1d450607c9895448b0ca83aa5c832338fab60e724784dc73c5e0dd -size 6531 diff --git a/MM_Math/data_original_21/7055653/math/51614470_80.png b/MM_Math/data_original_21/7055653/math/51614470_80.png deleted file mode 100644 index 28eb74c30e8822a61850751b8e7dde2d042de2d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614470_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8cd1e08f4995e67c993c0673f8c8d9c2bdd19afc152ed52e54e216c15fe6bf63 -size 8096 diff --git a/MM_Math/data_original_21/7055653/math/51614472_840.png b/MM_Math/data_original_21/7055653/math/51614472_840.png deleted file mode 100644 index d488fe958d58f4a8d0831fa6115aa52131bb46ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614472_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96eb6ca432d87b2cc52e8282b63fc03ca78fac2033d9be9f0cb2ac5d41eaf8eb -size 8216 diff --git a/MM_Math/data_original_21/7055653/math/51614476_850.png b/MM_Math/data_original_21/7055653/math/51614476_850.png deleted file mode 100644 index 10564212ddff34c276093df2bafdf463f1725ee4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614476_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4f97be235652fccc0c55ae01d15f326cd35618f12b6480286b73bf6c7151473 -size 10521 diff --git a/MM_Math/data_original_21/7055653/math/51614485_380.png b/MM_Math/data_original_21/7055653/math/51614485_380.png deleted file mode 100644 index 199d582226ca3aa604335754f032cc65b916969b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614485_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f56c6197877824c5dd74e56936ebedb02d820edad68797fb909edeaca0d1e9bc -size 6618 diff --git a/MM_Math/data_original_21/7055653/math/51614495_831.png b/MM_Math/data_original_21/7055653/math/51614495_831.png deleted file mode 100644 index 1468f6ec19dd265d8b6765667abed14e4b101196..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614495_831.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:517cb0695ae870ba4b2194b3ddbc9deea1c99d511dc6c45849d9a8a1ed09d62a -size 7856 diff --git a/MM_Math/data_original_21/7055653/math/51614498_820.png b/MM_Math/data_original_21/7055653/math/51614498_820.png deleted file mode 100644 index f4edfa61506d1dbfb8bdf8fd2856504813da6084..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614498_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65a9e55c1054c2b40761643aab9911156502701647b3c67af51456d179853418 -size 9033 diff --git a/MM_Math/data_original_21/7055653/math/51614526_360.png b/MM_Math/data_original_21/7055653/math/51614526_360.png deleted file mode 100644 index cdb006117b774e79cba22a4835726e7f338da167..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614526_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9f959c10ceb7ff7dc0d5c5bef16317f21649435815ed5df2bd9dbbc9bc71ba2 -size 6328 diff --git a/MM_Math/data_original_21/7055653/math/51614529_370.png b/MM_Math/data_original_21/7055653/math/51614529_370.png deleted file mode 100644 index bc920a54c4da7b3dd11b6d18895e12ee66a197c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614529_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60cd59888b16bc319ed2e736f85ecfd92aee4924d997cd0d5a1a27db16f17537 -size 9252 diff --git a/MM_Math/data_original_21/7055653/math/51614615_50.png b/MM_Math/data_original_21/7055653/math/51614615_50.png deleted file mode 100644 index 7af2175c1eb8ca3bb0b8aa10debf6e6436296f2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614615_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7bfa8aabd1b83af352518dff162aeaa6b041aaacec3698427cdd079d5e4c3b12 -size 3116 diff --git a/MM_Math/data_original_21/7055653/math/51614616_40.png b/MM_Math/data_original_21/7055653/math/51614616_40.png deleted file mode 100644 index d6135fd3a568427c2d6aef3e156b259132e0b987..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614616_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d83e2f5adccab2e2d65572795919559746d13d15ff3c03936972e71e7bd57ca4 -size 5005 diff --git a/MM_Math/data_original_21/7055653/math/51614617_70.png b/MM_Math/data_original_21/7055653/math/51614617_70.png deleted file mode 100644 index 6b9230e599cba83567a9413bb2221c64c1f50b44..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614617_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c895ca273c144aa06e4e5a67544dffba66ac7baf926fa450f5d85298816ba043 -size 14388 diff --git a/MM_Math/data_original_21/7055653/math/51614618_60.png b/MM_Math/data_original_21/7055653/math/51614618_60.png deleted file mode 100644 index 15ea177a9d9d94bcadbecb2f1cf5e4c3a0854bd1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614618_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:997401ae6522ecdb7f0a3e8a6178d4971d2a9d19cd57988e7544a6f7beac9f29 -size 7271 diff --git a/MM_Math/data_original_21/7055653/math/51614626_350.png b/MM_Math/data_original_21/7055653/math/51614626_350.png deleted file mode 100644 index e04652b18586586ccc42935b28298d0985d97620..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614626_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5426266fe50596d11e79fda8667c07fabd2fa34c49b9efb8469fbb0bf37afa6c -size 8438 diff --git a/MM_Math/data_original_21/7055653/math/51614627_800.png b/MM_Math/data_original_21/7055653/math/51614627_800.png deleted file mode 100644 index c90e22b371a98965c8c472f4fbad596ab7af97a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614627_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:36690c77f5e6d04e832ad171ed4797c5435f2db91df540a0dd54182c724a8034 -size 7913 diff --git a/MM_Math/data_original_21/7055653/math/51614632_810.png b/MM_Math/data_original_21/7055653/math/51614632_810.png deleted file mode 100644 index 90a1dc041d3f9f1e60df29906265ade9cc31b15e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614632_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f19fa5e3a260ebb9cd449a056957b3836b7671e97cc10817c2ef4dc137f33b6 -size 10676 diff --git a/MM_Math/data_original_21/7055653/math/51614696_337.png b/MM_Math/data_original_21/7055653/math/51614696_337.png deleted file mode 100644 index fdfb5df8b22b1cf8a36d667966e78df31ab4bb69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614696_337.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:daa970888e4ca46ef007605058d121b02e3d565d5384920173448853dce28384 -size 11930 diff --git a/MM_Math/data_original_21/7055653/math/51614697_27.png b/MM_Math/data_original_21/7055653/math/51614697_27.png deleted file mode 100644 index 84819314661efc4f24d13e3f34cb285cfbc620b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614697_27.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0303857171dd7789f24c62a172e7981912905664607ba9c14083537c30545d3 -size 18655 diff --git a/MM_Math/data_original_21/7055653/math/51614698_790.png b/MM_Math/data_original_21/7055653/math/51614698_790.png deleted file mode 100644 index dd760f60e556bd312d0cc62765098ce6efbf60b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614698_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:73ed89cd8a620df0a251444bee2c5672a356504d5bc065f50bc0165d19e032b4 -size 22516 diff --git a/MM_Math/data_original_21/7055653/math/51614702_780.png b/MM_Math/data_original_21/7055653/math/51614702_780.png deleted file mode 100644 index cb29038351bac583ddf9666af59180d388813170..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614702_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f0ed5686c1496d4f3bff70ef81f296d5e9995cc5540b3ac4dd727454c7dc3abc -size 11401 diff --git a/MM_Math/data_original_21/7055653/math/51614709_30.png b/MM_Math/data_original_21/7055653/math/51614709_30.png deleted file mode 100644 index f35126533b702f08812de410b73d59ed15026bac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614709_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96a0dcb71222e2cb431e5dc430fa6257d37ad9ed61bed9a0b3b33e2ed5dc1efe -size 18172 diff --git a/MM_Math/data_original_21/7055653/math/51614711_340.png b/MM_Math/data_original_21/7055653/math/51614711_340.png deleted file mode 100644 index eefa52bcab6a22381601d8a4f4122b6f2577f248..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614711_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f9750231c6a8fab8f4fbfa9cbd1c2a9ad87e307a0cc3981c492b26a679e05875 -size 9495 diff --git a/MM_Math/data_original_21/7055653/math/51614714_680.png b/MM_Math/data_original_21/7055653/math/51614714_680.png deleted file mode 100644 index 6c0b9a2b7e16770318faf99535f9ca642ff4a2fc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614714_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2923b1c50fa6895f3b291ec507e67fd88f1ca029c9446e63207aad3f8a92b691 -size 13642 diff --git a/MM_Math/data_original_21/7055653/math/51614754_320.png b/MM_Math/data_original_21/7055653/math/51614754_320.png deleted file mode 100644 index 8499b6729c7f2eab6891251c6867fc6485700b17..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614754_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:09a97357ce264b8e86d30cbc0cf5fc85f3febd6e49ebb319c6b8e88c22b7685a -size 3529 diff --git a/MM_Math/data_original_21/7055653/math/51614760_672.png b/MM_Math/data_original_21/7055653/math/51614760_672.png deleted file mode 100644 index ca6192f500d026f31b81db870ebefa38843e5597..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614760_672.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ce27fe27ba21893bd8bcf4bb7f86e1f4b390d0a786d7ce569936206641e0508 -size 8910 diff --git a/MM_Math/data_original_21/7055653/math/51614761_770.png b/MM_Math/data_original_21/7055653/math/51614761_770.png deleted file mode 100644 index ca133e3b800673d0991e7d5d93ac22e4da0d1afc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614761_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21686dcb018eea517cfcea5a3361d6050563b6187184682190d192dc5bcedf8f -size 7206 diff --git a/MM_Math/data_original_21/7055653/math/51614832_750.png b/MM_Math/data_original_21/7055653/math/51614832_750.png deleted file mode 100644 index e0e8ebc3f8944e31a3bacbe49db57cb09a76ee3f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614832_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8d54d4710ce8664c1ba712c2ff2e06799b2df17d56095e4180fd5010686e9710 -size 8025 diff --git a/MM_Math/data_original_21/7055653/math/51614835_760.png b/MM_Math/data_original_21/7055653/math/51614835_760.png deleted file mode 100644 index 632a83a23f95831b0d349f043743e5e7e95da17f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614835_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:926bb168fbc572015ecfb16b7d6c7167c55f0eca771a8c7632bae7a0e1bb2a49 -size 12633 diff --git a/MM_Math/data_original_21/7055653/math/51614839_740.png b/MM_Math/data_original_21/7055653/math/51614839_740.png deleted file mode 100644 index 3734f6b6adadb57576bcb5b3b4c13dca3ae5f82e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614839_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35a57823822018183ee3884df093e267b1e0e72ac46d791ad00c1643d02ecc3a -size 8737 diff --git a/MM_Math/data_original_21/7055653/math/51614856_300.jpg b/MM_Math/data_original_21/7055653/math/51614856_300.jpg deleted file mode 100644 index bcbb24ea0cd8591c5e70f17e10344f4d40c15316..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614856_300.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6172b5a8691d46c57116ef2ade503896ba87fc48c32148d60e0768972e14a143 -size 2192 diff --git a/MM_Math/data_original_21/7055653/math/51614857_310.png b/MM_Math/data_original_21/7055653/math/51614857_310.png deleted file mode 100644 index 7a6a9d6d5fa612a158532d7e5fa7c357f529891c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614857_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d5aeb7d146b420e39f8ec7bf1c06a0122a66e289b99d59644f0652d94d91ac4 -size 2268 diff --git a/MM_Math/data_original_21/7055653/math/51614858_730.png b/MM_Math/data_original_21/7055653/math/51614858_730.png deleted file mode 100644 index 62561b4d23d17618fcf3207e8df8257f3e8db566..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51614858_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83066957354dc7ad39982ddf02629e593ff88809dfa28d703c570ea833173c38 -size 7938 diff --git a/MM_Math/data_original_21/7055653/math/51615096_296.png b/MM_Math/data_original_21/7055653/math/51615096_296.png deleted file mode 100644 index 0b8b79f8482dd36b29ce7f78ed54e646acf9df46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51615096_296.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71c3ea6dab171e15825536d88831eddcd86ab735b5c82beb54cfd07d3a5c1162 -size 6534 diff --git a/MM_Math/data_original_21/7055653/math/51615099_274.png b/MM_Math/data_original_21/7055653/math/51615099_274.png deleted file mode 100644 index 6881112d6101d0f461c1588006ff3b16da6f9c82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51615099_274.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccc0baa113cc4583245f41b63e858b3d1e50a065f3d3b63de9f06888f2d2e88e -size 9779 diff --git a/MM_Math/data_original_21/7055653/math/51615105_16.png b/MM_Math/data_original_21/7055653/math/51615105_16.png deleted file mode 100644 index 250c62ca5b4f1351cf8c457991d8322f88c7782f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51615105_16.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d3c7eb8defeb3e0ff63854f704a56e3e4875c6ffba021b459c13b09a0347b62 -size 9127 diff --git a/MM_Math/data_original_21/7055653/math/51615108_2812.png b/MM_Math/data_original_21/7055653/math/51615108_2812.png deleted file mode 100644 index 437bb67c8ac5bea3a242644e48643f9ce6a6919e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51615108_2812.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e243d2985e2d826f56b95c20ee1c237038dbcf01befcad079de70e462414b0ac -size 9747 diff --git a/MM_Math/data_original_21/7055653/math/51615141_723.png b/MM_Math/data_original_21/7055653/math/51615141_723.png deleted file mode 100644 index 328ead235d71dfc843769d3e13264f30ff31193e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51615141_723.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0410d5c629f4cdec3f64aef30637c82ce2cb813454e80b720df4bb603ef1088e -size 8547 diff --git a/MM_Math/data_original_21/7055653/math/51615154_269.png b/MM_Math/data_original_21/7055653/math/51615154_269.png deleted file mode 100644 index bcb6b64c8d09918f86199ce0ab918fe78a4886a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51615154_269.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fdccfeff185bcc5753c8aa1d20444cdb1d33880901acb720d9772251ee43ae28 -size 12514 diff --git a/MM_Math/data_original_21/7055653/math/51635596_250.png b/MM_Math/data_original_21/7055653/math/51635596_250.png deleted file mode 100644 index 58755bff784c024290eab46def6e7d5510cee329..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51635596_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f3391a8a09752afb62afbddcd66284368dae6372bca966f8a77eb3ea508e657 -size 3103 diff --git a/MM_Math/data_original_21/7055653/math/51635741_960.png b/MM_Math/data_original_21/7055653/math/51635741_960.png deleted file mode 100644 index ec6e7ad877b8b0322718368caccb1fac7424efb2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51635741_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a3777899e4a355a74a2e3bfba78f8d5c3f7620a12afd31081d11deae2f3d0f32 -size 3081 diff --git a/MM_Math/data_original_21/7055653/math/51635755_713.png b/MM_Math/data_original_21/7055653/math/51635755_713.png deleted file mode 100644 index e21c587e1ab3e436adde872a869e65952e6ee004..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51635755_713.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4303624c9b56296b30aa5f59bce11f5bb403dde5b8f3af8ab064dc0df4f9f7a -size 12437 diff --git a/MM_Math/data_original_21/7055653/math/51636053_00.png b/MM_Math/data_original_21/7055653/math/51636053_00.png deleted file mode 100644 index 14a906f08d72fd7196f5061fadbbe6a93f616068..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/51636053_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ed0ae86b8a18029e2350a24e8716dbf4e7896e0e84b1f3494a91c72ce261132 -size 3094 diff --git a/MM_Math/data_original_21/7055653/math/53136572_705.png b/MM_Math/data_original_21/7055653/math/53136572_705.png deleted file mode 100644 index eb8963828a3a2cdabcd9c7cbbaebeae2a7cc2416..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53136572_705.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80e74c141c7f1f8be8b41b26b616870ad13455ce947dca6357b08959dd39f245 -size 2859 diff --git a/MM_Math/data_original_21/7055653/math/53232615_620.png b/MM_Math/data_original_21/7055653/math/53232615_620.png deleted file mode 100644 index 63a8e3a6ca4fc382866a2812ca6d80b6abedf4c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53232615_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c65645dea659d6c3c2c39a81e6ee5cda880cbb9c49fe62e16271d9b95338c6b -size 2299 diff --git a/MM_Math/data_original_21/7055653/math/53232634_1815.png b/MM_Math/data_original_21/7055653/math/53232634_1815.png deleted file mode 100644 index af952bafdbfff7757ab5ac340045c702d93068f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53232634_1815.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f48b4818f4d53c6025203aab083461011162a4695e5183b70069d0216f366b72 -size 4510 diff --git a/MM_Math/data_original_21/7055653/math/53232715_191.png b/MM_Math/data_original_21/7055653/math/53232715_191.png deleted file mode 100644 index 6f4dde0e95a816bcfb0d8c158040ecf3a961434d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53232715_191.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f813e3d89c66fcc8b373bb74d286e633a46c4ea835a89fcb7bebb2f0aeb80f62 -size 2656 diff --git a/MM_Math/data_original_21/7055653/math/53232740_170.png b/MM_Math/data_original_21/7055653/math/53232740_170.png deleted file mode 100644 index 68b2f353213321fdad1bdd36921eead8e8c0304c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53232740_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f8a69fc1bfedc1a7c8fc934718c35b8671fa8dc4a8c38b5a17bfe81f2038168 -size 3869 diff --git a/MM_Math/data_original_21/7055653/math/53232760_931.png b/MM_Math/data_original_21/7055653/math/53232760_931.png deleted file mode 100644 index 9d1dec9d6c43c22880d6010c40c5e115d935c4dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53232760_931.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2eee75797b09f97883d7970c7c49fb10f287c815432ff52925393c0f47b5c721 -size 3720 diff --git a/MM_Math/data_original_21/7055653/math/53320014_480.png b/MM_Math/data_original_21/7055653/math/53320014_480.png deleted file mode 100644 index d07d35672cc25c75b91520094fb7cec1feb93ef6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53320014_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:226f7661d5941252680ed4b7c1c4b8a5711147f5bd58bdf7d169407e698bbb75 -size 44407 diff --git a/MM_Math/data_original_21/7055653/math/53320060_470.png b/MM_Math/data_original_21/7055653/math/53320060_470.png deleted file mode 100644 index 61cdab5c32b2cdb551d71b30144ef09ee56a818a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53320060_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c14e4750f62e13d2c9979bb93991faff33b5b192d9bfbbec560083e38e4d6fc -size 6870 diff --git a/MM_Math/data_original_21/7055653/math/53320141_1114.png b/MM_Math/data_original_21/7055653/math/53320141_1114.png deleted file mode 100644 index 515b36fc35cb44d5aea568ce67100f3725a2db8b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53320141_1114.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40d8ed49be16ed3e579c8280e78c69b474645fccd1a156e4a45aed844b6b98cb -size 3540 diff --git a/MM_Math/data_original_21/7055653/math/53339149_871.png b/MM_Math/data_original_21/7055653/math/53339149_871.png deleted file mode 100644 index f1198111cd1db078fa27d334b0356240c875a4a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53339149_871.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4fd9beec57ad90d21a8a7b8f1e8dfa79b6fbadb98c34a674ec7adebb52f2a19e -size 2895 diff --git a/MM_Math/data_original_21/7055653/math/53339388_101.png b/MM_Math/data_original_21/7055653/math/53339388_101.png deleted file mode 100644 index e91a30932d7d080c73d336291709a49da4831340..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/math/53339388_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c09c212efc0de32091fc73d1c2a4e329ec8a77a44687d5c64a623218b369bd2 -size 4809 diff --git a/MM_Math/data_original_21/7055653/solution_images/51420049_460.png b/MM_Math/data_original_21/7055653/solution_images/51420049_460.png deleted file mode 100644 index 8ec9c0154ba4754a1764b7459a6a592be200fad5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51420049_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5dc823945e967e0cb49af9e4d86a42cb69cddefbdd11ab4965ab89596466923 -size 7620 diff --git a/MM_Math/data_original_21/7055653/solution_images/51435948_950.png b/MM_Math/data_original_21/7055653/solution_images/51435948_950.png deleted file mode 100644 index a3fc937ba39ebdd9758a5efb5db628517cdf66cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51435948_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5912b707872c323979a118917c6be64c948eaf41a75d7828d13344e4fa6d19c9 -size 21923 diff --git a/MM_Math/data_original_21/7055653/solution_images/51435951_640.png b/MM_Math/data_original_21/7055653/solution_images/51435951_640.png deleted file mode 100644 index 3f221e334515ca181a2db5c690ee9f182e9650d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51435951_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6295d0259d97ff1143edbb071159a57f39c53e88dabbbccdfa8c9fc0af2fa3de -size 22571 diff --git a/MM_Math/data_original_21/7055653/solution_images/51435972_200.png b/MM_Math/data_original_21/7055653/solution_images/51435972_200.png deleted file mode 100644 index 5125adf5da95a08b060a5fce26b912f03076dd41..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51435972_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e628825742924b0008d20d41b8d4034f553a4c76df0fbfd376bba1c994eb7874 -size 24476 diff --git a/MM_Math/data_original_21/7055653/solution_images/51435977_630.png b/MM_Math/data_original_21/7055653/solution_images/51435977_630.png deleted file mode 100644 index 8e3bf5efef5339339dd2258f0cbc1d2a140129e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51435977_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e09037eb3789e35b54782e63744c6c6d60057a8363ec70d3871a156960b8081 -size 24585 diff --git a/MM_Math/data_original_21/7055653/solution_images/51510273_150.png b/MM_Math/data_original_21/7055653/solution_images/51510273_150.png deleted file mode 100644 index 30df4fd76acf85d60432b04963b3785254c8344f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51510273_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c3e6beca7c9340c521e533f01b42a759bf58601ec190d4e1e3d2623df38535c -size 22307 diff --git a/MM_Math/data_original_21/7055653/solution_images/51510274_160.png b/MM_Math/data_original_21/7055653/solution_images/51510274_160.png deleted file mode 100644 index c3161bf0e7c484a3c82ea93f8a0c723207589e9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51510274_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e0813ca69d2d844b6c10be40329be4139e3146867da1e3ed8c4a5653558e65c -size 9315 diff --git a/MM_Math/data_original_21/7055653/solution_images/51510277_560.png b/MM_Math/data_original_21/7055653/solution_images/51510277_560.png deleted file mode 100644 index b1b3e4b169e76aabbf2e885d6be0dbb2fca65011..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51510277_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4205b9745f99262961d40ab951d473d4e3ee8de87cf6e97912cee82b59b2c354 -size 23339 diff --git a/MM_Math/data_original_21/7055653/solution_images/51510282_590.png b/MM_Math/data_original_21/7055653/solution_images/51510282_590.png deleted file mode 100644 index 8bee1013b2ea7a1d371a4559ceb57239731c6511..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51510282_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:608d4d4eda2db8747f856cb40c45e82e1319092e3696e25ac28ba5a547a24fb9 -size 17274 diff --git a/MM_Math/data_original_21/7055653/solution_images/51510388_130.png b/MM_Math/data_original_21/7055653/solution_images/51510388_130.png deleted file mode 100644 index f87221e9c32c9ad3af612cd08d7c341ab47d2d7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51510388_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11ec8baf1173402f10dc39c7647826541bba7d92bc591acf2e0f0ac5d57a1a68 -size 9894 diff --git a/MM_Math/data_original_21/7055653/solution_images/51534188_520.png b/MM_Math/data_original_21/7055653/solution_images/51534188_520.png deleted file mode 100644 index 08ccb1a296bea221a08fc28f6f98f8451e9fc9f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51534188_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d40a6e78bc6fc51627428946c4514f19e59057fb7540e33b29a36bff1e0c183 -size 15863 diff --git a/MM_Math/data_original_21/7055653/solution_images/51534305_510.png b/MM_Math/data_original_21/7055653/solution_images/51534305_510.png deleted file mode 100644 index 6ba437b01ff20763b2c574de6688a99e75e863d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51534305_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a97bc64e4ee4e11179cdfbc91d1e8d6fc0a9b4704ba84d4c4a1c4495b1b55742 -size 6732 diff --git a/MM_Math/data_original_21/7055653/solution_images/51534410_121.png b/MM_Math/data_original_21/7055653/solution_images/51534410_121.png deleted file mode 100644 index b4b4abe6f58c5522f7de75ce369ea4839df8efe7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51534410_121.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db49dd45113a6df3d9c4903c658c8f38d56b5bfc97fc39a63e1ff0dcf73d2e15 -size 10074 diff --git a/MM_Math/data_original_21/7055653/solution_images/51604338_449.png b/MM_Math/data_original_21/7055653/solution_images/51604338_449.png deleted file mode 100644 index f7e47dbe1e4c1b45fa519fff13a4315d3ecf5429..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51604338_449.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ede36d46201724cedeaaa285db45d1a1b6925769ffd4bd25ba8ea3c9aebb076a -size 6464 diff --git a/MM_Math/data_original_21/7055653/solution_images/51614400_430.png b/MM_Math/data_original_21/7055653/solution_images/51614400_430.png deleted file mode 100644 index 15fd2b1267f526bc0317d036dc0eeb308cd1ffdb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51614400_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c61225faced98f19fd90346bc8b6bc82a71bc103cbd30f52169a606f0cf26b65 -size 12069 diff --git a/MM_Math/data_original_21/7055653/solution_images/51614470_80.png b/MM_Math/data_original_21/7055653/solution_images/51614470_80.png deleted file mode 100644 index 2ee2c1b49dac07578317416ca2b44786094fa522..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51614470_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:490ba75550bc06def32d37f484bc8e9c4cf8db3250e88b74e10aa020586236e2 -size 7690 diff --git a/MM_Math/data_original_21/7055653/solution_images/51614526_360.png b/MM_Math/data_original_21/7055653/solution_images/51614526_360.png deleted file mode 100644 index dd0e2021916c9a867b9de00e1940c450c9e8abba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51614526_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:644981128d63f46daf30426551fce0172be1fbaec59827808baf1d88f37fccb9 -size 4965 diff --git a/MM_Math/data_original_21/7055653/solution_images/51614529_370.png b/MM_Math/data_original_21/7055653/solution_images/51614529_370.png deleted file mode 100644 index 0b083d3748cd832b2c102074e869e06933c8ac17..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51614529_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f8af30469734e67b25fc4183cf343918f61cd90d214186f1a9a66b40c547a31 -size 6167 diff --git a/MM_Math/data_original_21/7055653/solution_images/51614709_30.png b/MM_Math/data_original_21/7055653/solution_images/51614709_30.png deleted file mode 100644 index f6da25038b4710083021b476d5e12f6c4e075073..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51614709_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e7d22db197e1686b4892376963faa6d73e10bd639b31e8db74c7ed143e9ad1c9 -size 7338 diff --git a/MM_Math/data_original_21/7055653/solution_images/51614709_31.png b/MM_Math/data_original_21/7055653/solution_images/51614709_31.png deleted file mode 100644 index a561ad1a10210e6de6fc118892e198b4ba879ff8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51614709_31.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3bee1df8a7ee222664639efbadd04bebfb2d98c05eb86c977ba19187e6c08a02 -size 8311 diff --git a/MM_Math/data_original_21/7055653/solution_images/51614754_320.png b/MM_Math/data_original_21/7055653/solution_images/51614754_320.png deleted file mode 100644 index 0bf9825c8b7c7917e52cc971b8c9baf1f5001ccd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51614754_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7097fdd93e6bd20377102773fdc6da2765f867d45d8c3527af77fb87feed9592 -size 9864 diff --git a/MM_Math/data_original_21/7055653/solution_images/51615096_292.png b/MM_Math/data_original_21/7055653/solution_images/51615096_292.png deleted file mode 100644 index f5ef4ed35961351e67d23135456b41967652b16b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51615096_292.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03bd1f11d4d97ecc2ad3a6a9b0ed07c2d074c6295e942271e3d59c64138c4d46 -size 15275 diff --git a/MM_Math/data_original_21/7055653/solution_images/51615108_280.png b/MM_Math/data_original_21/7055653/solution_images/51615108_280.png deleted file mode 100644 index a50a406a7fdd87f645d9094cf803c5b35fdcee07..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51615108_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6c15882cf8e9f1e2ec937587877e50457b7ae5718858d498aadb51260c30081f -size 10356 diff --git a/MM_Math/data_original_21/7055653/solution_images/51635596_250.png b/MM_Math/data_original_21/7055653/solution_images/51635596_250.png deleted file mode 100644 index 346ed7e1c23298e435529db0c81915ea9a3eaedd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51635596_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb4960b9ec3bfd3c09dc438f73e74bd3fa090668b73376d23fc87b75afe394af -size 3494 diff --git a/MM_Math/data_original_21/7055653/solution_images/51636053_00.png b/MM_Math/data_original_21/7055653/solution_images/51636053_00.png deleted file mode 100644 index 8a71132a010671bacdc4929ee449f2e43414723b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/51636053_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b824b3a08fcc35abc5e4fe132d0d37aec23b42417e442d38291e22bfb10e42d -size 4388 diff --git a/MM_Math/data_original_21/7055653/solution_images/53320014_480.png b/MM_Math/data_original_21/7055653/solution_images/53320014_480.png deleted file mode 100644 index 711c27ae5b7979431761602cf1abc4ec6bbc4e72..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/53320014_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:377a0fa277699baf7aebb44d9c96a4fdb6ad010f45327d77d598d25d6176074d -size 44101 diff --git a/MM_Math/data_original_21/7055653/solution_images/53320060_470.png b/MM_Math/data_original_21/7055653/solution_images/53320060_470.png deleted file mode 100644 index d3801babde343278d67c25c2821fac1fedcd3df9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055653/solution_images/53320060_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d09952ef8dfc929363024bbc2ca4fce02ebbdc0732fdf8129b634653efe87086 -size 8798 diff --git a/MM_Math/data_original_21/7055712/math/50474756_652.png b/MM_Math/data_original_21/7055712/math/50474756_652.png deleted file mode 100644 index ce0e997797dcb0c88bb3e33f6cc2e84dc34ebe02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50474756_652.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ac36d5a4ab95c3878e257e6f36735ca0171e9eba0eb3d21db138dc0c8f72101 -size 2510 diff --git a/MM_Math/data_original_21/7055712/math/50474806_6415.png b/MM_Math/data_original_21/7055712/math/50474806_6415.png deleted file mode 100644 index c3b52bd1afcf567440dba5e15ea1cb42d2e8a3c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50474806_6415.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b3edc56c34c387b556fe8ff507e9dca3e35c070aa9ba102da2eb91dc651bc03 -size 3249 diff --git a/MM_Math/data_original_21/7055712/math/50474816_988.png b/MM_Math/data_original_21/7055712/math/50474816_988.png deleted file mode 100644 index 786302f8d9e43d71642ebe8a0d4c7f7429680786..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50474816_988.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f7ae163380219db9f60015886ac3a1df1b76600b1856d7ea6ab88ec1abe75b1 -size 7572 diff --git a/MM_Math/data_original_21/7055712/math/50474822_975.png b/MM_Math/data_original_21/7055712/math/50474822_975.png deleted file mode 100644 index 19cf834a9131260d1531266867ae0441e4677e18..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50474822_975.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3740bbfb0d6f16afdf1307c356c60fa87b513ad1ad232310ca1ae1c4c0410b1 -size 4859 diff --git a/MM_Math/data_original_21/7055712/math/50475012_240.jpg b/MM_Math/data_original_21/7055712/math/50475012_240.jpg deleted file mode 100644 index cffdb7c585e993ef494f08ddbc237a90a2f0e9a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475012_240.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e163b87e642fd30114317efbea4bfd98a5816aad52a4a062b47fc6ad36483b9 -size 2579 diff --git a/MM_Math/data_original_21/7055712/math/50475017_630.jpg b/MM_Math/data_original_21/7055712/math/50475017_630.jpg deleted file mode 100644 index 102bc8435500b68d4bb462b98fca874440dad87e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475017_630.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6b1952bb07d0beb285a3009a896e02f386136bbe9229dd93bf00d50f23c548a -size 2646 diff --git a/MM_Math/data_original_21/7055712/math/50475019_620.jpg b/MM_Math/data_original_21/7055712/math/50475019_620.jpg deleted file mode 100644 index a09008e3288b0c40e7de3dd0de25f7ce92de3fe1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475019_620.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ee631cc9981899b4a6f4318c825907168354747776cce49a6443dd33a3007fc -size 2905 diff --git a/MM_Math/data_original_21/7055712/math/50475020_610.jpg b/MM_Math/data_original_21/7055712/math/50475020_610.jpg deleted file mode 100644 index 2cc4da5c0946fd59b5b19a87605af83aaad25d14..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475020_610.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4773191402495649fd7a46d75796140551b57d211851291d2fc78760212e532 -size 3252 diff --git a/MM_Math/data_original_21/7055712/math/50475076_230.jpg b/MM_Math/data_original_21/7055712/math/50475076_230.jpg deleted file mode 100644 index 2d6a0371f31192bb99f41300aa9173adb1482a01..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475076_230.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a24a28e7ece1ec87716ec28b01ad2f90eefa52cc42bddb9b4548eeefc44d028 -size 2737 diff --git a/MM_Math/data_original_21/7055712/math/50475082_220.jpg b/MM_Math/data_original_21/7055712/math/50475082_220.jpg deleted file mode 100644 index 8c7fdf10829baeb8a7725ae99b4afc613ed8bdad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475082_220.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8da8fb01e1d0423fe49e5a08ce6608078ec1ab5e80fce1771bda7adf03b46cc5 -size 3271 diff --git a/MM_Math/data_original_21/7055712/math/50475086_600.jpg b/MM_Math/data_original_21/7055712/math/50475086_600.jpg deleted file mode 100644 index 2d1316dacc7cce99debb2c983ed8c1126e38257a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475086_600.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7078522bd872ecc1610c1b961e96fee0b08f16f78d34ce4cc336ceea41347293 -size 2901 diff --git a/MM_Math/data_original_21/7055712/math/50475208_210.jpg b/MM_Math/data_original_21/7055712/math/50475208_210.jpg deleted file mode 100644 index 350a9bdbfb3bf45c9eaf635ef8fbe5248d1d0238..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475208_210.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f9843944028963e4e9a4e6706ccd9823e511b5667c64e1a28cc5054ab43ed4f1 -size 2779 diff --git a/MM_Math/data_original_21/7055712/math/50475214_590.jpg b/MM_Math/data_original_21/7055712/math/50475214_590.jpg deleted file mode 100644 index 16e4162239d7ab629e4ac3a26902809b288b6859..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475214_590.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45023002f25d75a6d14936e0d5b82c28a5735d10aec61682a510cfcc4959d569 -size 2991 diff --git a/MM_Math/data_original_21/7055712/math/50475228_960.jpg b/MM_Math/data_original_21/7055712/math/50475228_960.jpg deleted file mode 100644 index ef1f66395f27bb721aba183a2a7b068a36693a93..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475228_960.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b955346c1c50e68dc4f9749d1b762011f057247bbc2bc617a827c2fbe268d8ea -size 3907 diff --git a/MM_Math/data_original_21/7055712/math/50475264_200.jpg b/MM_Math/data_original_21/7055712/math/50475264_200.jpg deleted file mode 100644 index a1676996bb6db3f7cadda109843dde939296ebbb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475264_200.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e77b3b2a75f4cb57eb24ada33158a76eef2c665c63c09f78cf3d8267c74c540 -size 3277 diff --git a/MM_Math/data_original_21/7055712/math/50475266_182.jpg b/MM_Math/data_original_21/7055712/math/50475266_182.jpg deleted file mode 100644 index 62c9f3e2bb0e933b164568cc464f859146c2aa49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475266_182.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80a3d9210ae36be7edc9399d2327a6359288d6e5ccea40cc497ba263fe52d196 -size 2339 diff --git a/MM_Math/data_original_21/7055712/math/50475268_190.jpg b/MM_Math/data_original_21/7055712/math/50475268_190.jpg deleted file mode 100644 index 0c52d94b2103a4a0db738c934ba69cc07ec09530..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475268_190.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77d2722b4b0a26caf9a62658799b1a1656b4cbf41e11883fbb0dc11957846de3 -size 3356 diff --git a/MM_Math/data_original_21/7055712/math/50475274_570.jpg b/MM_Math/data_original_21/7055712/math/50475274_570.jpg deleted file mode 100644 index b9a1f274ca76d21337cf01a39d9da3b038de7b0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475274_570.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ece2249d7022e523f2357b3b9966fa71c38f479e524420f1e23f34ed9958724 -size 3107 diff --git a/MM_Math/data_original_21/7055712/math/50475276_580.jpg b/MM_Math/data_original_21/7055712/math/50475276_580.jpg deleted file mode 100644 index 74e3d5c35e5b5df9f92139faed853e9569a3c037..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50475276_580.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f965bb316400d09987aba61af22e2f89a6138d629816c1e1ea6151bdacda5cd -size 3494 diff --git a/MM_Math/data_original_21/7055712/math/50481338_950.png b/MM_Math/data_original_21/7055712/math/50481338_950.png deleted file mode 100644 index e11d077dc9aafc0e299a5d91a40bb9672ca7cf4b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481338_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:970bb3f4ddb7070f9f463eed18eeb2df652bdb0f51e32d496ef6c285058f295b -size 3193 diff --git a/MM_Math/data_original_21/7055712/math/50481439_160.png b/MM_Math/data_original_21/7055712/math/50481439_160.png deleted file mode 100644 index 7449f05979d7633af7cc1c701f492a484b5aaebf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481439_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9a91065272d9d23c00bb8511ca65feb4f0786b23ad8e0a5a2c8abde581a6733 -size 3985 diff --git a/MM_Math/data_original_21/7055712/math/50481443_179.png b/MM_Math/data_original_21/7055712/math/50481443_179.png deleted file mode 100644 index 7d7309a29579bd6b96b7331520b2120c05935a42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481443_179.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:abb8a3d33a33a61ba908c58d8b60f2f00720c42d151213ec2080c76877360d72 -size 2499 diff --git a/MM_Math/data_original_21/7055712/math/50481447_567.png b/MM_Math/data_original_21/7055712/math/50481447_567.png deleted file mode 100644 index cec4aef1a5f69d885d3c1b1d2ca78e027271214e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481447_567.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6272f38e46c45a40d5318fb40599f6e93284b6277257d57d99ceaadc93425643 -size 2579 diff --git a/MM_Math/data_original_21/7055712/math/50481469_9411.png b/MM_Math/data_original_21/7055712/math/50481469_9411.png deleted file mode 100644 index 4f7cf5bdb75809f67d9dd70beef85b25cf7dde71..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481469_9411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:734ad929453ce48098da71958857d22998c0e5b449269bdcad7bb8770eccb510 -size 3797 diff --git a/MM_Math/data_original_21/7055712/math/50481483_557.png b/MM_Math/data_original_21/7055712/math/50481483_557.png deleted file mode 100644 index 10358cf33c85789576ae5a9eef22550ef7699f90..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481483_557.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe2dc4da34d1eb97e20a55936c20a172e86579d2f46eafbf224b7691791a605f -size 3531 diff --git a/MM_Math/data_original_21/7055712/math/50481553_1510.png b/MM_Math/data_original_21/7055712/math/50481553_1510.png deleted file mode 100644 index 7f2440e6ddba778867f6aad2bd481997292b5976..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481553_1510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:acd705f6058c5c5916972dc38674b6930133904c5b7fa32ed942e68a39163abc -size 2305 diff --git a/MM_Math/data_original_21/7055712/math/50481557_546.png b/MM_Math/data_original_21/7055712/math/50481557_546.png deleted file mode 100644 index 42c430701944666fbd8de8a827142e53a69f4750..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481557_546.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5ebe6a90fc5144178eebdc17557dc9adf449691b7f3306f7fa4e14a3c795629 -size 2608 diff --git a/MM_Math/data_original_21/7055712/math/50481644_520.png b/MM_Math/data_original_21/7055712/math/50481644_520.png deleted file mode 100644 index dfde6d9a4fdde79ffb026b5a4ab28ee8f3c9068f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481644_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa49761bfcfba1aadf6fa0c70b852ed6733d84ec1df62b619139e276230707a6 -size 2922 diff --git a/MM_Math/data_original_21/7055712/math/50481647_532.png b/MM_Math/data_original_21/7055712/math/50481647_532.png deleted file mode 100644 index 9572bc0eb929c0cc848a89172d60ce69046bd963..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481647_532.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20270139c9f3a5f77a481711848b8ffee0d285233a75b3890fab56e032879fd0 -size 3775 diff --git a/MM_Math/data_original_21/7055712/math/50481650_920.png b/MM_Math/data_original_21/7055712/math/50481650_920.png deleted file mode 100644 index c58d316516ef7a08c6457c328071d45a885f47da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481650_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16bbb6400740fc583c1decde839c8c450a965e71f50b7b29d5720aa05ef6591f -size 6931 diff --git a/MM_Math/data_original_21/7055712/math/50481659_930.png b/MM_Math/data_original_21/7055712/math/50481659_930.png deleted file mode 100644 index 2685e8a0f171f62f7ed054a6a5fef3f84b250616..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50481659_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33f5f1e7a1ac1a50262667646c69a354da020dc45066083ac771020c304cd146 -size 2552 diff --git a/MM_Math/data_original_21/7055712/math/50482002_518.png b/MM_Math/data_original_21/7055712/math/50482002_518.png deleted file mode 100644 index 662953792bd1898cf50f75fd8c62a9638c32b0fc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482002_518.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69e978bf494b1e6d7a2f5887d1ef7665ba2f78350d85fac7095cc4661dd358cb -size 3605 diff --git a/MM_Math/data_original_21/7055712/math/50482069_730.jpg b/MM_Math/data_original_21/7055712/math/50482069_730.jpg deleted file mode 100644 index 35ba9354aa89572726d148f8099668d7fc748634..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482069_730.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b405a23a0f3a2c3a3e3547ee56416d3e94d9136e23c45eb679d69636205a59d2 -size 2344 diff --git a/MM_Math/data_original_21/7055712/math/50482128_143.png b/MM_Math/data_original_21/7055712/math/50482128_143.png deleted file mode 100644 index 2d7f5cc947b293a6470818c1b8c3cbb908720155..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482128_143.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c67cdde90520847cbc460a060c6e640b90737e2d95705deb4607b37becd7b438 -size 6232 diff --git a/MM_Math/data_original_21/7055712/math/50482133_1311.png b/MM_Math/data_original_21/7055712/math/50482133_1311.png deleted file mode 100644 index 59074cf2e41511223f77f18923e2655f6e89a852..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482133_1311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b056dc25bf63d99c91ce8c71985c2faa5af94075e89588ae8b8f7ff1f488b41 -size 2394 diff --git a/MM_Math/data_original_21/7055712/math/50482143_728.png b/MM_Math/data_original_21/7055712/math/50482143_728.png deleted file mode 100644 index 6f92e046db277c4dfaeaaee1c2b5fd487184c5da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482143_728.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c863d1f91309d23ee11801c4f8f313ae77c355deb83df8b5b0ce72675f2cab3a -size 2657 diff --git a/MM_Math/data_original_21/7055712/math/50482309_5011.png b/MM_Math/data_original_21/7055712/math/50482309_5011.png deleted file mode 100644 index 885b8441d1fc967394ae25ee6fe48f00e9f54ab1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482309_5011.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab8f98a5ca091753e461c55337fc84e3b9398effa069e2de24257507931a7705 -size 3095 diff --git a/MM_Math/data_original_21/7055712/math/50482317_916.png b/MM_Math/data_original_21/7055712/math/50482317_916.png deleted file mode 100644 index c25ced824475ee26c18542bad7025f518684e561..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482317_916.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16010bb4c8f72e219e0219bed449411a5fc763c26bdd71ef5a1868304072969a -size 10515 diff --git a/MM_Math/data_original_21/7055712/math/50482450_1211.png b/MM_Math/data_original_21/7055712/math/50482450_1211.png deleted file mode 100644 index 716b4ad6b07296ea22efbf586f5b72a38c76ade0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482450_1211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64e787d035de4aead9f1c559a9d461fe9c59d58d20500d3e6f09f85bb569202a -size 2695 diff --git a/MM_Math/data_original_21/7055712/math/50482456_4910.png b/MM_Math/data_original_21/7055712/math/50482456_4910.png deleted file mode 100644 index 41488fe74b7096882e5a97910d9122e64bfdfc79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482456_4910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67ec0e2f0fb6e9ee7e811656fcd97a0ef26629a1b0bcce35cf676a6e87ba7858 -size 9437 diff --git a/MM_Math/data_original_21/7055712/math/50482668_908.png b/MM_Math/data_original_21/7055712/math/50482668_908.png deleted file mode 100644 index 7f7b590f8b12566fc726adecf54378bb770d1ec6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482668_908.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd11db19ba8f5bb8dff406de8d5e8a8a9ded9225a23aae40fc5b1d664b7f25a7 -size 8251 diff --git a/MM_Math/data_original_21/7055712/math/50482846_471.png b/MM_Math/data_original_21/7055712/math/50482846_471.png deleted file mode 100644 index 6157a1286d0905582a6de77e1583f8cb7440d069..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482846_471.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3370b7f7b26cda1ad795acf4e6c80615a23c971f9de2fcba9b3913a9d359d14a -size 4137 diff --git a/MM_Math/data_original_21/7055712/math/50482868_880.png b/MM_Math/data_original_21/7055712/math/50482868_880.png deleted file mode 100644 index 60e333c2d94b388b2a460a888408fc6363a62f7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482868_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:636793d19daf16f6ae65458e999e1205c3530d9051ef151798fbb0d5bdafa8bd -size 4469 diff --git a/MM_Math/data_original_21/7055712/math/50482871_891.png b/MM_Math/data_original_21/7055712/math/50482871_891.png deleted file mode 100644 index 44a44a681f52993d856853d23cd5290eef48cd41..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50482871_891.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5f0953e3e2e6a28f3e1c9864b624eecb3b7e5ca31074b55aa9ddda7fe868505 -size 2201 diff --git a/MM_Math/data_original_21/7055712/math/50496217_8712.png b/MM_Math/data_original_21/7055712/math/50496217_8712.png deleted file mode 100644 index 4c37c769b958cfc7dc18b0f6fdf92410f07b7197..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496217_8712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3fe3d8433e8de1d7a0dd88cb543d80ffd33ce3c517b527a635c24272eda07379 -size 2874 diff --git a/MM_Math/data_original_21/7055712/math/50496295_1117.png b/MM_Math/data_original_21/7055712/math/50496295_1117.png deleted file mode 100644 index 54b8c88faef6ea9cf292bc96ab208d40becdd034..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496295_1117.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b9fd73b1ed8a7674147d8afe16e5bc6a68a954d0f376c1f61605c3d8898b747 -size 4439 diff --git a/MM_Math/data_original_21/7055712/math/50496331_101.png b/MM_Math/data_original_21/7055712/math/50496331_101.png deleted file mode 100644 index 9971f8dd77884cc7d66d04fb80cd9d3b5b4ba1ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496331_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74f02fe9e6301c879754490c75600cb238ad10971fb35e1738e55b5bd5c78a57 -size 7348 diff --git a/MM_Math/data_original_21/7055712/math/50496336_4615.png b/MM_Math/data_original_21/7055712/math/50496336_4615.png deleted file mode 100644 index 1cdb0719ecb5f20141471ff2109066a0306e6267..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496336_4615.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88eaa7195b12a077b174db849aa5abc64f5e9ebeabc015e320c414d4148bdcfb -size 2923 diff --git a/MM_Math/data_original_21/7055712/math/50496337_4512.png b/MM_Math/data_original_21/7055712/math/50496337_4512.png deleted file mode 100644 index 97d46644670741c998cee0818b3b614e94884575..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496337_4512.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6468c85e360c484aad5b2c47f2548f6ea57878dbf961f9af3853e221d7e919ef -size 2879 diff --git a/MM_Math/data_original_21/7055712/math/50496360_860.png b/MM_Math/data_original_21/7055712/math/50496360_860.png deleted file mode 100644 index 76d46e4a29d37d568c281cfeed4ff20218236934..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496360_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2bfebb203019bda848dc741f91e5957e8edf527d2ad943af0918d450ca919d2 -size 8118 diff --git a/MM_Math/data_original_21/7055712/math/50496379_4413.png b/MM_Math/data_original_21/7055712/math/50496379_4413.png deleted file mode 100644 index 25849d195f5853fdc76470b18a4caef38361d80d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496379_4413.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e0209b2ebaf2edc39feb4dc59a08b3a7251362f95472d09a99999d358c597bf -size 4338 diff --git a/MM_Math/data_original_21/7055712/math/50496425_431.png b/MM_Math/data_original_21/7055712/math/50496425_431.png deleted file mode 100644 index b5292509432aed988ceb58f5401146b6b552ef12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496425_431.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c6d51a6487d9b4fb9907d6a893c51ddf9a7e816b1a09d58020aefc61a8d9ffbb -size 4779 diff --git a/MM_Math/data_original_21/7055712/math/50496436_850.png b/MM_Math/data_original_21/7055712/math/50496436_850.png deleted file mode 100644 index 20afca00b2b6cb6732ec335f79b244ed60d79b0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496436_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e015d9f3930d110e7e112e0b155c3846fca33a740f0008f6a09c8cd577d852a -size 4038 diff --git a/MM_Math/data_original_21/7055712/math/50496469_4216.png b/MM_Math/data_original_21/7055712/math/50496469_4216.png deleted file mode 100644 index 52d5d76ca2410eb582eb86194546a0b91b544dcb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496469_4216.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a5a8a1811016a3d3da2cc8ebc5b19c0a31226ed905542e607b70f0399dbdfd6 -size 19937 diff --git a/MM_Math/data_original_21/7055712/math/50496482_848.png b/MM_Math/data_original_21/7055712/math/50496482_848.png deleted file mode 100644 index 1338347ace2562157aedee75bd3ebe0816af8163..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496482_848.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:383e18c52f46f0b04364c855445ff1eebddd4cac0d06715471ace8bb691fb1a3 -size 2633 diff --git a/MM_Math/data_original_21/7055712/math/50496534_4115.png b/MM_Math/data_original_21/7055712/math/50496534_4115.png deleted file mode 100644 index d714b620bf5eff0bd215369238ba2e6efb2d1bce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496534_4115.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d318ed9b9dbed59d3f3aad72aef81243b858d148ba081198b93a781bdf25d4fb -size 8601 diff --git a/MM_Math/data_original_21/7055712/math/50496566_93.png b/MM_Math/data_original_21/7055712/math/50496566_93.png deleted file mode 100644 index b8fdcee39af6d7009c35ff7ca78ed735c36f99d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496566_93.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:676d9cca400872d1b8f904f3294eeb7f09b1bb6490db64a0d8d0541e9c4920aa -size 3069 diff --git a/MM_Math/data_original_21/7055712/math/50496567_400.png b/MM_Math/data_original_21/7055712/math/50496567_400.png deleted file mode 100644 index 54387f65c25d834b3517aa1f1fe00931a4106d79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496567_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6bafaff6256501cb8b851e7a3bf053b2232e573f25ad142d6cf3045642ede933 -size 4924 diff --git a/MM_Math/data_original_21/7055712/math/50496574_392.png b/MM_Math/data_original_21/7055712/math/50496574_392.png deleted file mode 100644 index 0f86c2457f9fac508f22fed0ea70545ea8727cbf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496574_392.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f2224112d90375dec151ce8f4680144daf0863b92a60d4981a8f4419c45aacc -size 7241 diff --git a/MM_Math/data_original_21/7055712/math/50496611_370.png b/MM_Math/data_original_21/7055712/math/50496611_370.png deleted file mode 100644 index 96696d12a8b958dbbe7cd9e858484af82b4c6c26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496611_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ddcee5feef213dc5ae877d19b1078938dfdeb96c5aa5c4906c50c92cbca692a -size 2306 diff --git a/MM_Math/data_original_21/7055712/math/50496612_380.png b/MM_Math/data_original_21/7055712/math/50496612_380.png deleted file mode 100644 index 956eaa8c99c32880fe11164e8be65b93d9470e3c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496612_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:982d9238ab33806a862d6bf0ca371a15a8f0803ead0419e9b359b6ed3c8d43fa -size 3775 diff --git a/MM_Math/data_original_21/7055712/math/50496622_81.png b/MM_Math/data_original_21/7055712/math/50496622_81.png deleted file mode 100644 index b4a52daf1944c20880efe48f73028c482fcf9d71..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496622_81.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8394dee8b7682df768513941e658b8619732204210a3e7f8639bc68dcde36408 -size 3383 diff --git a/MM_Math/data_original_21/7055712/math/50496635_831.png b/MM_Math/data_original_21/7055712/math/50496635_831.png deleted file mode 100644 index c488840b264d3b483f23404c616968997732d445..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496635_831.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7604d6630a04e64c40d7437c3cc4105c1fcacae58b4f381ced1b0c4d1acbf80 -size 8012 diff --git a/MM_Math/data_original_21/7055712/math/50496662_360.png b/MM_Math/data_original_21/7055712/math/50496662_360.png deleted file mode 100644 index a66e92bce0f9e837bb621016c5f344ce7efa79cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496662_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d86b584d9275da92a3e48a57345b9d755e06c8a906086adeeb0a3ab82f6c11bc -size 4401 diff --git a/MM_Math/data_original_21/7055712/math/50496670_820.png b/MM_Math/data_original_21/7055712/math/50496670_820.png deleted file mode 100644 index e787d9874f54343c533e7718c3706cf12d6231d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496670_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1dd382fd48deb65f8ac93d25f2167b4c69af5e7c8d5b49060ca9f0c418cdc6f0 -size 2746 diff --git a/MM_Math/data_original_21/7055712/math/50496676_810.png b/MM_Math/data_original_21/7055712/math/50496676_810.png deleted file mode 100644 index d1b8d3b54d09c9b5b59770589afb13a04a2ba063..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496676_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d802f5ba6bfff727c339a20cd5878a681a477650c85c87c19b39597388e2c56 -size 7757 diff --git a/MM_Math/data_original_21/7055712/math/50496693_70.png b/MM_Math/data_original_21/7055712/math/50496693_70.png deleted file mode 100644 index 9d0a3893db940e4791e396a22a3f4fa4dfc169e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496693_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1a510b9c460dbb515bb6d516a1030de9a4720d1fd9aeb77deb74a50b616212a -size 2709 diff --git a/MM_Math/data_original_21/7055712/math/50496730_60.png b/MM_Math/data_original_21/7055712/math/50496730_60.png deleted file mode 100644 index 2c5d771367726bb52ccf77e6a0769b9aa540ec78..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496730_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5c1629ff2b980ef9f595bae0798c30aaec08f5f85a5447f3e6cae02c4fd4891 -size 4438 diff --git a/MM_Math/data_original_21/7055712/math/50496734_350.png b/MM_Math/data_original_21/7055712/math/50496734_350.png deleted file mode 100644 index 2339cc2996d0697dc60a026357b863a44d14151f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496734_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e2d6a9fb1ac6149b8b4cd3d1ebd136fbacb2b618801af7f6b3e29b48ec4d056 -size 1993 diff --git a/MM_Math/data_original_21/7055712/math/50496768_51.png b/MM_Math/data_original_21/7055712/math/50496768_51.png deleted file mode 100644 index b85981925ca91e0b78af639d0c066a10caece5aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496768_51.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:828dbf6416547b5d73edec9082ff5bf5063e1ca37019ba5418a82a27f8bff9a1 -size 1701 diff --git a/MM_Math/data_original_21/7055712/math/50496781_800.png b/MM_Math/data_original_21/7055712/math/50496781_800.png deleted file mode 100644 index b7424d9e431ca09f9c9b0781fcf1db703c11fc09..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496781_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7cd81283885a30058a4f5c51a9da8aeb11aea16730d694278422d5cf946d0214 -size 2953 diff --git a/MM_Math/data_original_21/7055712/math/50496809_790.png b/MM_Math/data_original_21/7055712/math/50496809_790.png deleted file mode 100644 index 5abb5c63d3b1fc2629fe1c7e8e66603be83ff65a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496809_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4dee2bd2db95beb34ebbbdac69ca882b9f50d36d4a98bbc36b694cfee0e0d641 -size 7578 diff --git a/MM_Math/data_original_21/7055712/math/50496823_40.png b/MM_Math/data_original_21/7055712/math/50496823_40.png deleted file mode 100644 index de170b1b4af733e551e7dd1f259b2f6b08193664..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496823_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5bdb92d8cacdb0820f2bb2b9573174f79d3708fef1b62f92b60ea8586727fe0 -size 4575 diff --git a/MM_Math/data_original_21/7055712/math/50496842_789.png b/MM_Math/data_original_21/7055712/math/50496842_789.png deleted file mode 100644 index 1c286430058f504fd59449c279a5d9604b314aeb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496842_789.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dbcbc0cff7968323ca5702f15494392ec2788a300ee78c25c1329fccb0c6d86b -size 7395 diff --git a/MM_Math/data_original_21/7055712/math/50496860_33.png b/MM_Math/data_original_21/7055712/math/50496860_33.png deleted file mode 100644 index d64d04b5f25815e81837d74dddd032c524219b80..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496860_33.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:638d58b16649c1258d864de34e06e5bab7a1f2589c8024de6140f4b0b219dc74 -size 6196 diff --git a/MM_Math/data_original_21/7055712/math/50496865_348.png b/MM_Math/data_original_21/7055712/math/50496865_348.png deleted file mode 100644 index 0ccccef57c52b7692a68811901e0ec1f06bc7b44..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496865_348.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06ccd19d2ebf5b3bb0fc5948bc1e0f4e7f9514421e61c5da072eb26e6c9c51b0 -size 5050 diff --git a/MM_Math/data_original_21/7055712/math/50496876_7710.png b/MM_Math/data_original_21/7055712/math/50496876_7710.png deleted file mode 100644 index e67c61bb1ca1e263afd86b37e34e9e61ea7884d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496876_7710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e80042422e815c828ff0accdba34c5202b258e8870dcd2567024b949d178d2c8 -size 5176 diff --git a/MM_Math/data_original_21/7055712/math/50496915_3312.png b/MM_Math/data_original_21/7055712/math/50496915_3312.png deleted file mode 100644 index c8ffb18505fe6f9a15b7f4fa10bda2e65848a688..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496915_3312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87494e97c177483325450aa1e5b1f8f26efefded80f63a47461d2286ae4361d6 -size 5234 diff --git a/MM_Math/data_original_21/7055712/math/50496942_7610.png b/MM_Math/data_original_21/7055712/math/50496942_7610.png deleted file mode 100644 index ba0f767b31327f12d6bda4d8b714e0f0df3c99ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496942_7610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ba6eece9563a045b2ab69becc174c5fca822ff4d49c06b654a69c526d4654df -size 3642 diff --git a/MM_Math/data_original_21/7055712/math/50496942_768.png b/MM_Math/data_original_21/7055712/math/50496942_768.png deleted file mode 100644 index e41e16a002b6ad15cf863467e3fad8bf12fabe85..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496942_768.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9207ee61308f908c84fb88a325ff682fae454dfbae082f3526ccf8a74b9fe3a8 -size 4044 diff --git a/MM_Math/data_original_21/7055712/math/50496942_769.png b/MM_Math/data_original_21/7055712/math/50496942_769.png deleted file mode 100644 index 80fe8c66ec75246f5939c9ce1f7440d9dda24559..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496942_769.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38d529910d8042fe8e15ccb7e844d81fdd896a75523e0fb1d3466e9aea6b9c4f -size 4052 diff --git a/MM_Math/data_original_21/7055712/math/50496952_24.png b/MM_Math/data_original_21/7055712/math/50496952_24.png deleted file mode 100644 index 2b204d795423e70f45b5635dc66d19cb1241dde5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496952_24.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b145d68f9a9e971ef95b8191714a2455ff0c4495a5b588ff9d626c300ecba1c -size 3147 diff --git a/MM_Math/data_original_21/7055712/math/50496996_19.png b/MM_Math/data_original_21/7055712/math/50496996_19.png deleted file mode 100644 index 2d7072fdf396ff68f999946c89c20194bf1df8da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50496996_19.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f0acb13992ba8f3ae20009bbe2f0139c757a8f18243d56495d96828916616a2 -size 3194 diff --git a/MM_Math/data_original_21/7055712/math/50497001_3214.png b/MM_Math/data_original_21/7055712/math/50497001_3214.png deleted file mode 100644 index 4280f123e658efae9e8962cff106318fa6703de2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50497001_3214.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e43d607d2d6e2c139a6a98bc01a2d52f25f4851d4998180c26fa9f0adaf179c0 -size 3706 diff --git a/MM_Math/data_original_21/7055712/math/50497049_304.png b/MM_Math/data_original_21/7055712/math/50497049_304.png deleted file mode 100644 index 4475a16e4cf80b8436f3d17158dfbde511cfb667..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50497049_304.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29895cc75b94489bc778d3d2b02e7dc5e2b66e16f09e4a645065a0ff0932e1ac -size 10331 diff --git a/MM_Math/data_original_21/7055712/math/50497050_311.png b/MM_Math/data_original_21/7055712/math/50497050_311.png deleted file mode 100644 index 50b060c04db9bb760508d2e95e346980483a0afe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50497050_311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b91d9b045c6bb491bf3fb28a900b0e7d4265152fa5bc62f1925c30b32213008 -size 8728 diff --git a/MM_Math/data_original_21/7055712/math/50497051_291.png b/MM_Math/data_original_21/7055712/math/50497051_291.png deleted file mode 100644 index e9994b3cda8fc0f8ac55f494f4d75d6e2936d6e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50497051_291.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c548388149e00d072242af6d5decb93e39136aed2d9f334ab8f2f6fc0c40a7d8 -size 3315 diff --git a/MM_Math/data_original_21/7055712/math/50497059_750.png b/MM_Math/data_original_21/7055712/math/50497059_750.png deleted file mode 100644 index b298581cd07b6a00495a7cd11da68f130db1469e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/50497059_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:933ca49e7b43282ceafba0ac28b760c42bc6070dc44fb34b0e7254bc164004c4 -size 3491 diff --git a/MM_Math/data_original_21/7055712/math/52019249_673.png b/MM_Math/data_original_21/7055712/math/52019249_673.png deleted file mode 100644 index a9d1347624680fb75eea2240cce81ed30a6a3c89..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52019249_673.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c25ae5664a854e96d8cb7d85fa5aa836da02e74e70a0f927b52d80f18da5dfe6 -size 8315 diff --git a/MM_Math/data_original_21/7055712/math/52019253_712.png b/MM_Math/data_original_21/7055712/math/52019253_712.png deleted file mode 100644 index 36443069f2ffa70dc024a307fe877c7f84d197cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52019253_712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70c54c13d35361920e4b83a547093e6bd008f2a56d81e840839ccb6370175584 -size 3262 diff --git a/MM_Math/data_original_21/7055712/math/52019294_680.png b/MM_Math/data_original_21/7055712/math/52019294_680.png deleted file mode 100644 index da15ed483baa6009952eeaf1a5b83f2fbd64944b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52019294_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80992ad40d535ed722729efe680086356648f6ba84ebb12a9c6158e7a762c63d -size 3628 diff --git a/MM_Math/data_original_21/7055712/math/52019328_258.png b/MM_Math/data_original_21/7055712/math/52019328_258.png deleted file mode 100644 index 06b3c4d46cefba6ddd45c1994f3ef40613d4155a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52019328_258.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ceaf94fb05d14149b6e972bc7de6bd1e0fd02caffdffaec7584d8a0f007e1a40 -size 4373 diff --git a/MM_Math/data_original_21/7055712/math/52019336_668.png b/MM_Math/data_original_21/7055712/math/52019336_668.png deleted file mode 100644 index 7f25db861a022a56a749e7cefc68227f5cc34866..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52019336_668.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b980424e722a277c33d1a39b2474e9e70e1a4e14e0ae641bbad360cdd829f68a -size 4896 diff --git a/MM_Math/data_original_21/7055712/math/52019362_288.png b/MM_Math/data_original_21/7055712/math/52019362_288.png deleted file mode 100644 index 34de2ab46b430bc45457390e88bfcb0915e7d069..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52019362_288.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:615b3de3212480f09419fd99fa58f60d98ed6b02d191348e46777ad291208e03 -size 40516 diff --git a/MM_Math/data_original_21/7055712/math/52019441_260.png b/MM_Math/data_original_21/7055712/math/52019441_260.png deleted file mode 100644 index ef4df0a3c7d63d0e75a405fb135d9288768103f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52019441_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01f23461094a97361b58eee8f144e960d5fdf9bb2ad3ec81bb0c91cde697f62a -size 5920 diff --git a/MM_Math/data_original_21/7055712/math/52019443_270.png b/MM_Math/data_original_21/7055712/math/52019443_270.png deleted file mode 100644 index a57ffc02407cae8fba983ccdd846ede94749e9e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52019443_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4647d2419c9bd408a5bfaffe8d19261f9808d9a776cde0107f15fbb911e32554 -size 17743 diff --git a/MM_Math/data_original_21/7055712/math/52019457_990.png b/MM_Math/data_original_21/7055712/math/52019457_990.png deleted file mode 100644 index 7bdbf2ba9b883a564ca8f186b2d60f3a6f6f4657..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52019457_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d164161d8f2866e1e32786214e101c6d52bd908257c4c47a84a9e170466c179 -size 2767 diff --git a/MM_Math/data_original_21/7055712/math/52019513_698.png b/MM_Math/data_original_21/7055712/math/52019513_698.png deleted file mode 100644 index 0927cf3a19009e54668a525ce17cdb8a18e9c3cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52019513_698.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94889f02c49bbb14a9306366f85dce336befbbcb24f566d89e31beb9048636cb -size 2016 diff --git a/MM_Math/data_original_21/7055712/math/52283993_06.png b/MM_Math/data_original_21/7055712/math/52283993_06.png deleted file mode 100644 index a69bbb6248465faee5f1f36f07b9ba9bb047b1ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52283993_06.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb998b31f5c4b48764d93be50a62ba08e6e6d1c4cc0b4759f34fac9632bf2844 -size 2435 diff --git a/MM_Math/data_original_21/7055712/math/52284026_748.png b/MM_Math/data_original_21/7055712/math/52284026_748.png deleted file mode 100644 index 8cc6712a565fc5c052f2f7cf8a2aa0b2a85c3d54..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/math/52284026_748.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ab5f384b4349b65271ef67acf7e525f2147b5035ed01d15d48e1fdc90a2ba84 -size 5558 diff --git a/MM_Math/data_original_21/7055712/solution_images/50474806_640.png b/MM_Math/data_original_21/7055712/solution_images/50474806_640.png deleted file mode 100644 index 0a7807189b10f1864cacff19127f08e09965e0bd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50474806_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ecdc04180566574e08fd22bce80a1f212061658736c9ce3e06fc382ae97f7421 -size 6592 diff --git a/MM_Math/data_original_21/7055712/solution_images/50475019_620.png b/MM_Math/data_original_21/7055712/solution_images/50475019_620.png deleted file mode 100644 index 49c0da4b6c4adfa1e69136e345e8de5ee7dd5518..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50475019_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e4d8eb0f8ade309f7d9232c0a53703a7447546065b8d07a6ac1a57d0c3a857c -size 31554 diff --git a/MM_Math/data_original_21/7055712/solution_images/50475082_220.png b/MM_Math/data_original_21/7055712/solution_images/50475082_220.png deleted file mode 100644 index b231b45058764b301f30043239cefd0c57696de1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50475082_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f2eed64e8e710a8cd52d267fc5f5aba8c2f71c50f6a503eb977b286848883bd -size 35201 diff --git a/MM_Math/data_original_21/7055712/solution_images/50475268_190.png b/MM_Math/data_original_21/7055712/solution_images/50475268_190.png deleted file mode 100644 index 09e8e6c51b6e8e228022fd296b349d9d815efea9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50475268_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62bd67ec851107c0ef7e87ff0c82de0494fc7135a13515f47fa2ce483c4d06c7 -size 16220 diff --git a/MM_Math/data_original_21/7055712/solution_images/50475276_580.png b/MM_Math/data_original_21/7055712/solution_images/50475276_580.png deleted file mode 100644 index a3814798d16f20afa225a92ee8f6bbc2ae8e9b96..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50475276_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1435840835c563ee3f0e2748dde166eee824cf7426f796fb5b2f48456486b2a -size 8478 diff --git a/MM_Math/data_original_21/7055712/solution_images/50481443_170.png b/MM_Math/data_original_21/7055712/solution_images/50481443_170.png deleted file mode 100644 index 78830fb09fbb02ab408a78700ee865209d34e979..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50481443_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45718aacb6ca4f1061379ea28dfbbee2f49b11e626d26be0a0eeb06375163d3f -size 3914 diff --git a/MM_Math/data_original_21/7055712/solution_images/50481557_546.png b/MM_Math/data_original_21/7055712/solution_images/50481557_546.png deleted file mode 100644 index bfc5039db56780708da6c25ab7ec5c495a4e1eca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50481557_546.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0b06471aa86728fa1a6caf88f1e9e3c3b3f5b52458ef79d071234ec0070f5a9 -size 7594 diff --git a/MM_Math/data_original_21/7055712/solution_images/50481647_531.png b/MM_Math/data_original_21/7055712/solution_images/50481647_531.png deleted file mode 100644 index 4dbc9f010f017c74bed53773e9d9250e40be154e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50481647_531.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99a3bebec8c788c2048d687cf828601c255724615c66751dc8f28631596f9bb6 -size 3868 diff --git a/MM_Math/data_original_21/7055712/solution_images/50482128_140.png b/MM_Math/data_original_21/7055712/solution_images/50482128_140.png deleted file mode 100644 index dd4b32178edbffab88c4034bd34477039813979e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50482128_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da43d317a09e1971fe1504ff3be36579d1eb5e0b156c56158d525a2acda55eca -size 11077 diff --git a/MM_Math/data_original_21/7055712/solution_images/50482133_132.png b/MM_Math/data_original_21/7055712/solution_images/50482133_132.png deleted file mode 100644 index 91d884a8ad2a0901e24a2961825b78fd0dfcd878..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50482133_132.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:252f4365c7f8d0fc575664bc037990039402b64fc2884c5ab3b980f59516b984 -size 10043 diff --git a/MM_Math/data_original_21/7055712/solution_images/50482309_500.png b/MM_Math/data_original_21/7055712/solution_images/50482309_500.png deleted file mode 100644 index 9a9f673c5f988417a948cbfe38556ab5d9dadb9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50482309_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c61d9907f25b2bfbdba009d38dc2190b6e87ca314521f39b95c52f86e3c4d336 -size 4998 diff --git a/MM_Math/data_original_21/7055712/solution_images/50482456_492.png b/MM_Math/data_original_21/7055712/solution_images/50482456_492.png deleted file mode 100644 index 0484f31de2b1b7a83ed3fc4f10c2a60b9ba0f3d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50482456_492.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50e3f4f2243b03af6c9abacd39063407b330eeb5f2766ed0049782bf548a6f05 -size 17676 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496295_110.png b/MM_Math/data_original_21/7055712/solution_images/50496295_110.png deleted file mode 100644 index ac0fa8106f849b943186e7554686273af42c074a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496295_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e4a02cd031bd446c1ea05d11d8dfe89dec72cbbcb67d08dc9bee2369d7cc73f -size 5444 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496336_460.png b/MM_Math/data_original_21/7055712/solution_images/50496336_460.png deleted file mode 100644 index 669a6ac5cbd0490b3b13294e0fd0d51281439952..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496336_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02f81e1341689467a12b56995001906f67f846a31c90deeeb54b68b1bd61db72 -size 4336 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496337_4523.png b/MM_Math/data_original_21/7055712/solution_images/50496337_4523.png deleted file mode 100644 index 2efa612c5a9ba1bdd4af948829d92d320b8487a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496337_4523.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99e178cb83deed6c022081fbb1de87aaa64eece94a997f2ee548f29f97da77f2 -size 5654 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496337_454.png b/MM_Math/data_original_21/7055712/solution_images/50496337_454.png deleted file mode 100644 index d5911756d3805cff683318ca1ba4e090821f5a67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496337_454.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81da7c41d647293268cbe40c3442bdb1967d799f994022e3da181808d75e6e9a -size 4441 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496379_440.png b/MM_Math/data_original_21/7055712/solution_images/50496379_440.png deleted file mode 100644 index ad20251f7d988489066a467a03ae6b7dbbfbffab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496379_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2df5b7562435c94c3c3cd4c18acbefde255b8972295ce14696a3551aaf09b178 -size 3940 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496425_430.png b/MM_Math/data_original_21/7055712/solution_images/50496425_430.png deleted file mode 100644 index acbfe1d80975ad4adf84a6383c3a2a78e720b549..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496425_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62e451578182d744d7014f8707d2b4b5601394118c05a246ebecacf873e61131 -size 5126 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496469_420.png b/MM_Math/data_original_21/7055712/solution_images/50496469_420.png deleted file mode 100644 index 0708810edfe1bb3318412d43d427edc7a600765d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496469_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f059a6f5051339fe3e1a4d1ba630832687936df10e2085b7f79b4ae49d7c002 -size 7871 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496534_410.png b/MM_Math/data_original_21/7055712/solution_images/50496534_410.png deleted file mode 100644 index 0d6637242a2c593638ceab2cfad2594463a45300..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496534_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66981c55c67ca95008bb070fcf7ffaddfc22c84d8bf719133fe58f7453736e9b -size 3279 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496566_94.png b/MM_Math/data_original_21/7055712/solution_images/50496566_94.png deleted file mode 100644 index 7d73ba98257e694c32c597436e992763938f5cad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496566_94.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3d36945ca28141bbc61b420d648a344d7528f3c00f65dd3c2714720e5b656f06 -size 3957 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496574_396.jpg b/MM_Math/data_original_21/7055712/solution_images/50496574_396.jpg deleted file mode 100644 index 8fb31b83598e8cd1cfc13a560b1d9844cbe5567f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496574_396.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1eae749ce71974f1fd10389cd85d7d8b37a389a9204e242efd2499e29a38838c -size 5534 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496622_80.png b/MM_Math/data_original_21/7055712/solution_images/50496622_80.png deleted file mode 100644 index c98fff91851cdc3136c85f4d49a93f907f3a737b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496622_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5c4e8ba9ce1862f59a97207bb69dc8ef86b46a79e95c60e07553602f26df88d8 -size 3713 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496693_73.png b/MM_Math/data_original_21/7055712/solution_images/50496693_73.png deleted file mode 100644 index 886c34343560f98031e0850d0708dcd08330257a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496693_73.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8cfcbe7ef3379c6f09d31983f79109829a3f926332c970f640d39c6c504f2232 -size 5271 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496734_350.png b/MM_Math/data_original_21/7055712/solution_images/50496734_350.png deleted file mode 100644 index f541eb48f323e83a860a026198b0eb597aedd99d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496734_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:934573c2bc5962f729d8b5544f1760d635b7847bdc17c6bfbfdfecfbbccdc91b -size 2734 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496823_40.png b/MM_Math/data_original_21/7055712/solution_images/50496823_40.png deleted file mode 100644 index 27413e4a5d5d645c63a933b1b3b10441035943ae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496823_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:577a89d9b2f6e0ee42c59cd2f3ef011c567a295ac22882d785cb283bb9e8f80a -size 15980 diff --git a/MM_Math/data_original_21/7055712/solution_images/50496996_11.png b/MM_Math/data_original_21/7055712/solution_images/50496996_11.png deleted file mode 100644 index 772bafb6413532caa9455c44c2597997989fb914..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50496996_11.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6d9eed751d4f612e6f5821dfead3b96b875a2755f53a4d3241bcdce097568f3 -size 3874 diff --git a/MM_Math/data_original_21/7055712/solution_images/50497001_320.png b/MM_Math/data_original_21/7055712/solution_images/50497001_320.png deleted file mode 100644 index 99f25f394bc3e725f6bb15f41472a0dc5b41663a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50497001_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7f21000a36081281837a8b177991a9d97e87ae80be6228884ea97ab5d1d9346 -size 4784 diff --git a/MM_Math/data_original_21/7055712/solution_images/50497050_310.png b/MM_Math/data_original_21/7055712/solution_images/50497050_310.png deleted file mode 100644 index 48959b88ef1646bd18eafc33ee0eb64765baefdd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50497050_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b930f3de33cc78d2bd59cd9083a94a649fc06380fbb33f915b8d8a5d70b9cb2e -size 8986 diff --git a/MM_Math/data_original_21/7055712/solution_images/50497051_290.png b/MM_Math/data_original_21/7055712/solution_images/50497051_290.png deleted file mode 100644 index ed0a14b97de0fe69edd610c273a6dff8727cc11b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/50497051_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:854934fa2874aef2eb5ea8ac486e16e699e3ff3fd1d48cb8cdd1bf8f17aa8a89 -size 4041 diff --git a/MM_Math/data_original_21/7055712/solution_images/52019253_710.png b/MM_Math/data_original_21/7055712/solution_images/52019253_710.png deleted file mode 100644 index 37190f0ba40e268a18d4acb11f4df80b9137beda..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/52019253_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f097b2bed345e93e7c3d2241b0f8190c7857a9bf11c78868fd7e8a011a7c329d -size 4351 diff --git a/MM_Math/data_original_21/7055712/solution_images/52019294_680.png b/MM_Math/data_original_21/7055712/solution_images/52019294_680.png deleted file mode 100644 index f6545eda6e17ebef811cdecbf7a4f1aac29382eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/52019294_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:582e872629bb0a03339d3b2fec34cf73dc4ee22d74d75218553b9fa6c536846f -size 8841 diff --git a/MM_Math/data_original_21/7055712/solution_images/52019441_260.png b/MM_Math/data_original_21/7055712/solution_images/52019441_260.png deleted file mode 100644 index 0d6654a2959b9e8e72c46183faec8bffc551f180..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/52019441_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b7d138889981378051ef3add7f83706c464ea420dd46a53c0c8e02868d4dd55 -size 3677 diff --git a/MM_Math/data_original_21/7055712/solution_images/52019443_270.png b/MM_Math/data_original_21/7055712/solution_images/52019443_270.png deleted file mode 100644 index ae5c07347b82c0a7dd0ad5605cca4d79121fd4b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055712/solution_images/52019443_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a8dabcf65671f657991321a84401b0e4bdb2eef1c522894833ebe2cc5492f94 -size 32973 diff --git a/MM_Math/data_original_21/7055883/math/41274449_340.png b/MM_Math/data_original_21/7055883/math/41274449_340.png deleted file mode 100644 index d168f515951c94ba95ae97eb6af2a9054768797c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/41274449_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2ee296a271c640552d3dfe5ad5c4a0cfc546cd1f09e9b6fe2a6271040cffda3 -size 4539 diff --git a/MM_Math/data_original_21/7055883/math/51032479_339.png b/MM_Math/data_original_21/7055883/math/51032479_339.png deleted file mode 100644 index 5bc96f26461ed1a65045ff2c6d745d253427cdd3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/51032479_339.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cca2920f2e79824bbf3e08915068faf021fd2031c68fb787d8445270d6f00e81 -size 1922 diff --git a/MM_Math/data_original_21/7055883/math/51058862_312.png b/MM_Math/data_original_21/7055883/math/51058862_312.png deleted file mode 100644 index 6a7cbf975259777fc1e40031d8bbe568dc21cdc2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/51058862_312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0de7ce99167a6d4bf8679fd741b81e345ca863d39e98c929c5cc070d0cb9b6cc -size 3136 diff --git a/MM_Math/data_original_21/7055883/math/51179012_012.png b/MM_Math/data_original_21/7055883/math/51179012_012.png deleted file mode 100644 index c04ae76ce067ebb0eee8df9b9ae3a827cae960f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/51179012_012.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5db73da2999bb35c8ae1c9b56485902c0ccb3d1f1a9ddf8d84c307e573ba6cc1 -size 3742 diff --git a/MM_Math/data_original_21/7055883/math/51407093_711.png b/MM_Math/data_original_21/7055883/math/51407093_711.png deleted file mode 100644 index c853bc4b749fe2988611ec5f169f25ffc6264a37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/51407093_711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e02230c788fdbd59aefce11f552e6092a8374a33ff0a113054c25f1e3fe24009 -size 6748 diff --git a/MM_Math/data_original_21/7055883/math/52774652_46.png b/MM_Math/data_original_21/7055883/math/52774652_46.png deleted file mode 100644 index 53c7bd3dd25b4bd61a7a13f3205590158001adb7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/52774652_46.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72cb49185ec1700d19556ec51794278d96553cc8129fb6abd9abc65408cd7906 -size 4212 diff --git a/MM_Math/data_original_21/7055883/math/53043122_992.png b/MM_Math/data_original_21/7055883/math/53043122_992.png deleted file mode 100644 index bf8ecc24ec7e4bf4a325e7cbcb4845981374f43d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53043122_992.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2fce322e6839fc99e59040a84e42057adc96f3753b642f6ac19cdba2e8e8f34 -size 2591 diff --git a/MM_Math/data_original_21/7055883/math/53043135_284.png b/MM_Math/data_original_21/7055883/math/53043135_284.png deleted file mode 100644 index 76db952cac336ced74efc7be8b939acb031dfad2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53043135_284.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dfe20017c4ec04790eb60ee0fd8bcf9eddb74dc9037abf2859ac6232711315f0 -size 2411 diff --git a/MM_Math/data_original_21/7055883/math/53043250_277.png b/MM_Math/data_original_21/7055883/math/53043250_277.png deleted file mode 100644 index 97bace24019c9e84b2771ee3edaf8b9d815401c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53043250_277.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3aaa1897e384b699eeb0041cdb7405f504a90fc2e1bf4d503e6e0c8fbeac185e -size 11119 diff --git a/MM_Math/data_original_21/7055883/math/53043255_627.png b/MM_Math/data_original_21/7055883/math/53043255_627.png deleted file mode 100644 index 7b706d4b15e66514a50be9d6a4bcb059b9441227..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53043255_627.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d85b65afc99202f63d44bae01ca8749fe815126a6986237de21b10f6529e38a -size 2582 diff --git a/MM_Math/data_original_21/7055883/math/53043392_987.png b/MM_Math/data_original_21/7055883/math/53043392_987.png deleted file mode 100644 index 5a169cd58be63c1c37927e2f5394094a37614fba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53043392_987.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88ed990aa5c79d063190443afc094f8b59acaff5f60a2a8549f18e6571c61cbc -size 39172 diff --git a/MM_Math/data_original_21/7055883/math/53043599_295.png b/MM_Math/data_original_21/7055883/math/53043599_295.png deleted file mode 100644 index 527877f74b924dcba055935a49dba1d18ceeec28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53043599_295.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec5d9c61ea051ec75eac78e8455dd224b685a923f187b3b5124f9b80b55d0d51 -size 7985 diff --git a/MM_Math/data_original_21/7055883/math/53058709_2110.png b/MM_Math/data_original_21/7055883/math/53058709_2110.png deleted file mode 100644 index 740b503a7dcdff39790cc25febc408987aabbf5f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53058709_2110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf4e5fb6aa2d51e385db30ab0b901a9e5e9f85bcc0576ffa3b725af0e2ccfa30 -size 11260 diff --git a/MM_Math/data_original_21/7055883/math/53058741_9315.png b/MM_Math/data_original_21/7055883/math/53058741_9315.png deleted file mode 100644 index 8756b50874a61ee099d87897522bbcffaf289dd6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53058741_9315.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6bb3937f603b818be8e0015fe689288355c8c153760a1992f25b4550e4e27d87 -size 8097 diff --git a/MM_Math/data_original_21/7055883/math/53058903_944.png b/MM_Math/data_original_21/7055883/math/53058903_944.png deleted file mode 100644 index b56899f0fade9a4a940f6d021ad6db69f34c776a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53058903_944.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b146c66c4768bc80a61065e61fb30bcd6980d16179b0a077703519775d0c3127 -size 3243 diff --git a/MM_Math/data_original_21/7055883/math/53059515_594.png b/MM_Math/data_original_21/7055883/math/53059515_594.png deleted file mode 100644 index ee29163769fccedd45755ddc27135a4680267e81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53059515_594.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4b43b4ca3463f50040f81a709ef3ed80a509bb3c663b56616d0ae9a65f0882e -size 5407 diff --git a/MM_Math/data_original_21/7055883/math/53059521_693.png b/MM_Math/data_original_21/7055883/math/53059521_693.png deleted file mode 100644 index eb9a898be805a189636aa527f9f5dde136a3417e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53059521_693.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f722b99ab9db25a2e09b65eb978f5f3ace5c878c7744a53908f38e3d7e30d7e -size 4370 diff --git a/MM_Math/data_original_21/7055883/math/53059666_580.png b/MM_Math/data_original_21/7055883/math/53059666_580.png deleted file mode 100644 index d40e8da65d9ed16f6088ca687b592d4929b42677..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53059666_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77f2d74d5557ad22b23f0cdb82ceb61fd0d25e6be677ab9b5e38004bc82d2847 -size 6740 diff --git a/MM_Math/data_original_21/7055883/math/53059675_926.png b/MM_Math/data_original_21/7055883/math/53059675_926.png deleted file mode 100644 index 684bbded1823583fed4c0965c0d67dcb78d2be1f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53059675_926.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:464e2290e5059aa7b196035263f17edb434d7aeb217b577fbbde787dad7b95a5 -size 2488 diff --git a/MM_Math/data_original_21/7055883/math/53059869_570.png b/MM_Math/data_original_21/7055883/math/53059869_570.png deleted file mode 100644 index 9c1995692110464ed443a87a88e8577ce881b48b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53059869_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a480ccd4b3a0fd95e3eaec7746da5d09511411f54dc9d59ad6defdc06bd9206 -size 51103 diff --git a/MM_Math/data_original_21/7055883/math/53059889_911.png b/MM_Math/data_original_21/7055883/math/53059889_911.png deleted file mode 100644 index 1513232dc57d4ff9dc079508b14002d4f7d674c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53059889_911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ac7671907be841d569d2f56f104d363368cf1897220b38feb721e28982754041 -size 8099 diff --git a/MM_Math/data_original_21/7055883/math/53065525_178.png b/MM_Math/data_original_21/7055883/math/53065525_178.png deleted file mode 100644 index a3a2e9b329e68fc7d4868836794de930803186e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065525_178.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c373c4604017d717572805d2528694f6740ce80452641f995a4f286e2157005 -size 21240 diff --git a/MM_Math/data_original_21/7055883/math/53065543_687.png b/MM_Math/data_original_21/7055883/math/53065543_687.png deleted file mode 100644 index 7d52f26e39bd5d00e00604f3493ac14ddfe4eda5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065543_687.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0802c2c8532777736efbab40e828e937a6680a73b97af48ae938410009cbaef3 -size 3902 diff --git a/MM_Math/data_original_21/7055883/math/53065559_198.png b/MM_Math/data_original_21/7055883/math/53065559_198.png deleted file mode 100644 index 0170fff418d901f15bc97da4d754d1f9ce750dd6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065559_198.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e16275f533fad3ea46205417b22e5b4ce90e53267298101a480e166a8c8158a -size 3163 diff --git a/MM_Math/data_original_21/7055883/math/53065562_535.png b/MM_Math/data_original_21/7055883/math/53065562_535.png deleted file mode 100644 index 5183b4df153625c792e2bb4796f4ecbfd4120658..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065562_535.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02c8130070fe5476b84bfdc07cc3d2e5d35967060e07857435fa760a66d4d334 -size 3645 diff --git a/MM_Math/data_original_21/7055883/math/53065579_888.png b/MM_Math/data_original_21/7055883/math/53065579_888.png deleted file mode 100644 index f2828068b1e476d5f71c53242b38173ff4a12d5b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065579_888.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c08bfc8a59a8c983a74bca4f4cdeab7909e61aadd39ea6e56175ac16a064782 -size 45160 diff --git a/MM_Math/data_original_21/7055883/math/53065844_189.png b/MM_Math/data_original_21/7055883/math/53065844_189.png deleted file mode 100644 index a7f402cfbb12a9f17c120ec997cb107985dfd899..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065844_189.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4757459c691af887a5b85b6a53be5a8229fc4a3124f78c0717c60979061ac6c3 -size 19913 diff --git a/MM_Math/data_original_21/7055883/math/53065888_547.png b/MM_Math/data_original_21/7055883/math/53065888_547.png deleted file mode 100644 index 408c3fa383efae04c9261fac515e7dd8f44f6c89..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065888_547.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6615f58825386243d8a77a579173429fa2bef1e7ac7f6fab0f3d53a097e24e2a -size 30320 diff --git a/MM_Math/data_original_21/7055883/math/53065890_5010.png b/MM_Math/data_original_21/7055883/math/53065890_5010.png deleted file mode 100644 index 3fadd4151a9e033dc5069a689cdc70dd75c5ccb5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065890_5010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ca13294b3385c2bfbae874c4b7675aa17f18c79a9126b827698dbd610445259 -size 8944 diff --git a/MM_Math/data_original_21/7055883/math/53065899_860.png b/MM_Math/data_original_21/7055883/math/53065899_860.png deleted file mode 100644 index 4ab053e8df028ab042d34608e7526f77d9c290bf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065899_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62629bbbae100d40e99c3c8e234958012a08526486d5803fa1006a3e25a0f31c -size 20906 diff --git a/MM_Math/data_original_21/7055883/math/53065905_893.png b/MM_Math/data_original_21/7055883/math/53065905_893.png deleted file mode 100644 index c1e72f90402d4df5afa494f5183568ddb6ca4c2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065905_893.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79eb68098f7897a9cc209f645fee834f57bff0e191b899ca72de44a65b3165f9 -size 7901 diff --git a/MM_Math/data_original_21/7055883/math/53065988_550.png b/MM_Math/data_original_21/7055883/math/53065988_550.png deleted file mode 100644 index b6bb5dc11c6e5bfd7f517b2c07df4f94c64ffdbc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065988_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:788c394ca98b61c8206e4d3173ffb15a771cb4bb401b248c8a025384e732d26d -size 6034 diff --git a/MM_Math/data_original_21/7055883/math/53065996_909.png b/MM_Math/data_original_21/7055883/math/53065996_909.png deleted file mode 100644 index cfb174bcb8965b830d143ec3f5e01e976665d97b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53065996_909.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7db92e55d0097bcd9261f90a913a54733cbeaaa208c25c3569302474a3aaef4b -size 12043 diff --git a/MM_Math/data_original_21/7055883/math/53066022_521.png b/MM_Math/data_original_21/7055883/math/53066022_521.png deleted file mode 100644 index f49df4312e2a10d4e36d9dcab5a2da47f1c01a79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53066022_521.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aec1c35b8ae785b5efc125b0b2f46097192439d0230bc3afa43dbfad29d9b4e0 -size 6545 diff --git a/MM_Math/data_original_21/7055883/math/53066091_206.png b/MM_Math/data_original_21/7055883/math/53066091_206.png deleted file mode 100644 index 79105b004fde4eb54e746407296c54e6054db32d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53066091_206.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:397b566617a2f807a7c8cd8a6008f59ea33ed71c7809119e12b1bee9b165b77d -size 20697 diff --git a/MM_Math/data_original_21/7055883/math/53066099_5612.png b/MM_Math/data_original_21/7055883/math/53066099_5612.png deleted file mode 100644 index 7c8949b39d81ca30b6ed5e238509398cc025b43c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53066099_5612.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c901de0f32919e1bb46784a2d304041efa253ba8f70383f8584b53307a887a4a -size 2804 diff --git a/MM_Math/data_original_21/7055883/math/53066266_516.png b/MM_Math/data_original_21/7055883/math/53066266_516.png deleted file mode 100644 index f4731da12738bf3d29dd58bdde34e1dfa5530f7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53066266_516.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b03473582dd104acbea701d0eb577ba83823b78ab1e3e9f0ddc1932f68a9084f -size 2421 diff --git a/MM_Math/data_original_21/7055883/math/53066284_873.png b/MM_Math/data_original_21/7055883/math/53066284_873.png deleted file mode 100644 index d2dddbe98c6a1c521ad76670837fc490759a3ee6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53066284_873.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e7877958bfbf34b8ee5c08fa7a19cbd5822fc859b8708eb20e807573cb21ead -size 14654 diff --git a/MM_Math/data_original_21/7055883/math/53078795_470.png b/MM_Math/data_original_21/7055883/math/53078795_470.png deleted file mode 100644 index d038252a968a780402e2e0cdd45c53d16c47d875..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53078795_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3ccfd61bb2c45f6858f6c1ce9ccd788f45f4f01171f80d2b30e39c44e43d7ff -size 3177 diff --git a/MM_Math/data_original_21/7055883/math/53078823_826.png b/MM_Math/data_original_21/7055883/math/53078823_826.png deleted file mode 100644 index 4338b7e490480d8cc58042ffb2baaa5a5eda2569..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53078823_826.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0608cec1c392aecc410eff874e3ccecde76d572cdb9b493bb0912b010e605712 -size 75142 diff --git a/MM_Math/data_original_21/7055883/math/53078854_810.png b/MM_Math/data_original_21/7055883/math/53078854_810.png deleted file mode 100644 index cad71fb9e0dafbb8bd51aeef1fb8e1f588cdeab4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53078854_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:262a391dcae987c0e7f311dec10a0e9afe78657e703d60b47edff0808af8657f -size 2078 diff --git a/MM_Math/data_original_21/7055883/math/53078877_155.png b/MM_Math/data_original_21/7055883/math/53078877_155.png deleted file mode 100644 index 224b8c561e4ff654eb3fc10cd1e6240214054788..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53078877_155.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d8feee6399648c058ff74b646dad1ce5efffdcaa9cd4be533e1fdd1cfe773e1 -size 9849 diff --git a/MM_Math/data_original_21/7055883/math/53078900_8015.png b/MM_Math/data_original_21/7055883/math/53078900_8015.png deleted file mode 100644 index df6350c9149efe1a2d65e601f00e1f564904331d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53078900_8015.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81370c3b24d6d5dd074e8bb16e1b85e602d071ebf8814af0f87d8351ad02e874 -size 2383 diff --git a/MM_Math/data_original_21/7055883/math/53078938_4412.png b/MM_Math/data_original_21/7055883/math/53078938_4412.png deleted file mode 100644 index 2f75bbbd5c46295f61a1dac9dfde2067ce81469b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53078938_4412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a63dd5a6be378eb7fb51e3f2c1ac735d57cf01fc3db1f95a6e59cce77f07fd82 -size 22335 diff --git a/MM_Math/data_original_21/7055883/math/53079123_457.png b/MM_Math/data_original_21/7055883/math/53079123_457.png deleted file mode 100644 index e18cc752a966584899c0ae5789f0b4726c97f86e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53079123_457.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:210ecf3fc2b36672877e1009ce538a29b3d6168dfd51bd6774774a3720df30fe -size 11491 diff --git a/MM_Math/data_original_21/7055883/math/53079124_468.png b/MM_Math/data_original_21/7055883/math/53079124_468.png deleted file mode 100644 index 49e4a8ab9ec8be5e73378f03cb9878fe3c1da852..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53079124_468.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94a26ba2251fcf3ed80570f5d1b47a468d7f82f7d1e11c3586dc4f5f2a55285f -size 28751 diff --git a/MM_Math/data_original_21/7055883/math/53080024_4011.png b/MM_Math/data_original_21/7055883/math/53080024_4011.png deleted file mode 100644 index a88f88e6a7cb1d0e9dcece5f1b303fa8a06c7d0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080024_4011.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b83cecc3f0bb1e4f3a5556dfd69ec7f8f9e0cf6c35fce94fe9cdc713adb0388 -size 2861 diff --git a/MM_Math/data_original_21/7055883/math/53080091_375.png b/MM_Math/data_original_21/7055883/math/53080091_375.png deleted file mode 100644 index ec54c200431118ae78879a8327b5b84651425867..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080091_375.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b5ff6cf488d666a8ae404d9e7f7da2797b0724e0a3c613e0b1c05a2fa646aa9 -size 90901 diff --git a/MM_Math/data_original_21/7055883/math/53080096_750.png b/MM_Math/data_original_21/7055883/math/53080096_750.png deleted file mode 100644 index b23e9af949d65c4007a06b7861893c1aad2528a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080096_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0bdf8e5abdfefb4422c6c37b5728b75d4b97046fa7a24caf9304793c3d2da6d8 -size 46256 diff --git a/MM_Math/data_original_21/7055883/math/53080160_3915.png b/MM_Math/data_original_21/7055883/math/53080160_3915.png deleted file mode 100644 index d56f8ccdf6ac908b0e85153f3eba76f4aa856e41..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080160_3915.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:819928cd7709e4c02f622a091963a65d3cab38534ac561ab6a5aaf3ddc8afd88 -size 12775 diff --git a/MM_Math/data_original_21/7055883/math/53080186_7711.png b/MM_Math/data_original_21/7055883/math/53080186_7711.png deleted file mode 100644 index 109a0d940d35d1b48e8d5ca423af035f6a570b1e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080186_7711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87777e3b937542f0540ca30dd2be2267fdc3744ab0cd461abcfaa497f3dcc383 -size 5572 diff --git a/MM_Math/data_original_21/7055883/math/53080285_137.png b/MM_Math/data_original_21/7055883/math/53080285_137.png deleted file mode 100644 index 0bec9a7e061e13491a4acf310f6ede0b15ac0657..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080285_137.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9002edeb93809cea9fdfb18be18734a667fc26db7ddefee9dd4205672c42410d -size 28370 diff --git a/MM_Math/data_original_21/7055883/math/53080323_140.png b/MM_Math/data_original_21/7055883/math/53080323_140.png deleted file mode 100644 index 276fb0c939a108b2bdcd09bbb1bdb7878b15d212..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080323_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa8c00995713c5a0fa55bf3be7269fc0ddb78d782fbbead43144dbdeaf43a167 -size 5352 diff --git a/MM_Math/data_original_21/7055883/math/53080328_4211.png b/MM_Math/data_original_21/7055883/math/53080328_4211.png deleted file mode 100644 index e9423b52cc7cf0481bf168ccfe952fdcf71869a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080328_4211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5f16da14551236960fe5b11d45ad3eaf12f13c117c281fe9264fac40a32fcd1 -size 18386 diff --git a/MM_Math/data_original_21/7055883/math/53080399_438.png b/MM_Math/data_original_21/7055883/math/53080399_438.png deleted file mode 100644 index eee751de4f5e8b4ac67190df91cfe9ef5495fcb2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080399_438.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0013227668a3babe84ff44c5717e3afe842dea683c0d38faf6dd9952bc22a01 -size 21527 diff --git a/MM_Math/data_original_21/7055883/math/53080403_669.png b/MM_Math/data_original_21/7055883/math/53080403_669.png deleted file mode 100644 index 3502c6823b8dac0fb5a692761c4af4014f2a3e6e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080403_669.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6cc6e7a62cf38be9f82be88a6b1367e233d2a88e43ea591661a443a151f46d80 -size 53353 diff --git a/MM_Math/data_original_21/7055883/math/53080410_792.png b/MM_Math/data_original_21/7055883/math/53080410_792.png deleted file mode 100644 index 5c55ad3f233881079ba53f975680c56327ad2191..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080410_792.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9bdf36306f094a2057691b4759efcb501c0dd98824d72c75a8bcb61c35240f0a -size 2704 diff --git a/MM_Math/data_original_21/7055883/math/53080525_108.png b/MM_Math/data_original_21/7055883/math/53080525_108.png deleted file mode 100644 index 7586b655319874eba567376ea8008d4bbadd81c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080525_108.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f9d22df5f21860e8b967bfe41f8f7e4f3ce1b86d04e5c5398e712538ff39f5c -size 5048 diff --git a/MM_Math/data_original_21/7055883/math/53080531_4132.png b/MM_Math/data_original_21/7055883/math/53080531_4132.png deleted file mode 100644 index a8fe00af23d78e257b81c0687f420e930eae93be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080531_4132.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52a28e6825f00b749ed6e29513dd5ed9014d6bb18724ecd655ecd710046aa127 -size 4306 diff --git a/MM_Math/data_original_21/7055883/math/53080811_113.png b/MM_Math/data_original_21/7055883/math/53080811_113.png deleted file mode 100644 index e44b065d539ce24a631784a0071a51d18914bf49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080811_113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9936aef7365f8293821cbc610c184246bf3a969641c5baf08dc36ed9514f647 -size 3873 diff --git a/MM_Math/data_original_21/7055883/math/53080813_1213.png b/MM_Math/data_original_21/7055883/math/53080813_1213.png deleted file mode 100644 index b5e78ad1760ea409a01c4f3047c329472e544137..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080813_1213.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d35ba7c532f0cd9deb6a669866116e4559e04317e1d921d4b929b723fb0f24a -size 66749 diff --git a/MM_Math/data_original_21/7055883/math/53080819_3815.png b/MM_Math/data_original_21/7055883/math/53080819_3815.png deleted file mode 100644 index 3e82450cd07d64e110c9852f4fa3443241d10b0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080819_3815.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89ffc8ce306c38336c149b0fba75e7c377bb656cf1993a8749f48bf5d6c9e68c -size 93131 diff --git a/MM_Math/data_original_21/7055883/math/53080826_766.png b/MM_Math/data_original_21/7055883/math/53080826_766.png deleted file mode 100644 index 101552f0b6745c6adace05bf2b2caa3ccf1c9034..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080826_766.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e73ae405ba43a45c094c7aa2e234a369ff5bbdacaf9aee950da97e4be067504a -size 10318 diff --git a/MM_Math/data_original_21/7055883/math/53080947_781.png b/MM_Math/data_original_21/7055883/math/53080947_781.png deleted file mode 100644 index f2c51298b1e0a8d4fa537d6366f42ca17b56bf7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53080947_781.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9773404dda263e03f7b2cd19dd2ca2868572ee6ca558756c3ba16c1b482fb45 -size 3864 diff --git a/MM_Math/data_original_21/7055883/math/53081375_361.png b/MM_Math/data_original_21/7055883/math/53081375_361.png deleted file mode 100644 index b29e23f778135f0e6c0059b3911476bb23da105f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53081375_361.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04b5d60b947219836eb784adae13ec4122a8671284ff03da4f446cec35b18bc2 -size 3994 diff --git a/MM_Math/data_original_21/7055883/math/53081381_740.png b/MM_Math/data_original_21/7055883/math/53081381_740.png deleted file mode 100644 index 638fafdbf89a55318c930a842b324bcee21e350c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53081381_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:921b059b5a62469aad72906b2bbb0f672eae364fb12a213002ea2100dccd11f5 -size 10787 diff --git a/MM_Math/data_original_21/7055883/math/53081448_656.png b/MM_Math/data_original_21/7055883/math/53081448_656.png deleted file mode 100644 index 698a6fc11eea4c29ca123d32b2a78f433907ae9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53081448_656.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40b1b25ac6664b5956dd71cc3efd9ff347a00677c1f1ee13a465a5b19e0dfe84 -size 15328 diff --git a/MM_Math/data_original_21/7055883/math/53081475_915.png b/MM_Math/data_original_21/7055883/math/53081475_915.png deleted file mode 100644 index 178320b1e0639aeec3bc55279f93ffe20578a643..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53081475_915.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5362a4d5a66708b6b4cc3849dd7c9173394233394a240de2a5460723c3d398d7 -size 3023 diff --git a/MM_Math/data_original_21/7055883/math/53081503_731.png b/MM_Math/data_original_21/7055883/math/53081503_731.png deleted file mode 100644 index 2b5e9b8fa821eb4da533b7e8d4e79859f94797de..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53081503_731.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19f981f92f680c12c7870f8d82aff3ea05c4ea65dc6f96e716e3d59a3113e05f -size 48153 diff --git a/MM_Math/data_original_21/7055883/math/53110752_246.png b/MM_Math/data_original_21/7055883/math/53110752_246.png deleted file mode 100644 index 928d12df59faa6c6c479d9aa86c9a91d1a6d585c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53110752_246.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30a5eccf7e2d3d439af68547f31386302844f08ad759d4a2ba06f372c900c512 -size 10414 diff --git a/MM_Math/data_original_21/7055883/math/53110772_963.png b/MM_Math/data_original_21/7055883/math/53110772_963.png deleted file mode 100644 index fd28786204d781dd0c096c4c0e9bca12a238e7df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53110772_963.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9eab712c6ee2f80f54319bd274d51efe008200ef7a5b5e15f7bcc5adb81b13a2 -size 65133 diff --git a/MM_Math/data_original_21/7055883/math/53110834_2210.png b/MM_Math/data_original_21/7055883/math/53110834_2210.png deleted file mode 100644 index 24e7aa2005cc6995e0b232d0f84d7daf4c178ca8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53110834_2210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a76caa08d375038a0b94e167c5f23743277c39e5e9d8fa72e0638541379ac73 -size 2100 diff --git a/MM_Math/data_original_21/7055883/math/53110836_233.png b/MM_Math/data_original_21/7055883/math/53110836_233.png deleted file mode 100644 index ae719dc051439ae3fa3320f80e6e80793ff60c0c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53110836_233.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8880f97aac17865f0dd9dcc62c76233cebfbe7fe70a0277ad15b00297d4aa47 -size 18769 diff --git a/MM_Math/data_original_21/7055883/math/53110839_613.png b/MM_Math/data_original_21/7055883/math/53110839_613.png deleted file mode 100644 index 88337cb082d8b91814a81f6fd7564d7a88021851..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53110839_613.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f2396be7b94583f12a6719f225284c8c0e8bdaf8a7706b61688e57fd3e01a2d -size 7177 diff --git a/MM_Math/data_original_21/7055883/math/53110843_950.png b/MM_Math/data_original_21/7055883/math/53110843_950.png deleted file mode 100644 index d65dc7c18802df6b46a733d7f1ee902725d5ebfd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53110843_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1e1f93624592f73134d4ddccaf396f574b7965cc7e075e307f747a5ae0c7a6d -size 51615 diff --git a/MM_Math/data_original_21/7055883/math/53110864_2610.png b/MM_Math/data_original_21/7055883/math/53110864_2610.png deleted file mode 100644 index 98e7d5fbc82da98124c9ea8fb460a606e759c848..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53110864_2610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ccc3e0f313da69ef65c7512795bdec6fe966520fe570f1b0b7920f1dbce892e -size 20117 diff --git a/MM_Math/data_original_21/7055883/math/53110868_6012.png b/MM_Math/data_original_21/7055883/math/53110868_6012.png deleted file mode 100644 index eafd52041d241765bb657e6a993b32df5c9e2050..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53110868_6012.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f78cde7731748096aeaa75dab2cc4915a13e1f725172f03b99192073519a256d -size 21067 diff --git a/MM_Math/data_original_21/7055883/math/53110876_9712.png b/MM_Math/data_original_21/7055883/math/53110876_9712.png deleted file mode 100644 index 6e0049dce0c6ce7fe5143de01ca4aff2ea2e1611..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53110876_9712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96e94fc2a92fd65bf5e61b8fc183d1801024f4c1ced1b10029d03ea4058e9392 -size 20692 diff --git a/MM_Math/data_original_21/7055883/math/53124716_80.png b/MM_Math/data_original_21/7055883/math/53124716_80.png deleted file mode 100644 index 8ab2a0a081d55ffc5fba778ff1b56cfeabc9bb47..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53124716_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff3e5399741ba618b1cff731f8d89c2afa7e5b9525a7bb61660be8b53c449198 -size 11528 diff --git a/MM_Math/data_original_21/7055883/math/53124745_720.png b/MM_Math/data_original_21/7055883/math/53124745_720.png deleted file mode 100644 index fcdfdbd24bbbeb103e0fdd4cd388d27ee466d4c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53124745_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9849da5940cdd3d8ca7c1b16dfd760efa1e3b2799506004b1f6adeb3ea10376b -size 61639 diff --git a/MM_Math/data_original_21/7055883/math/53147490_847.png b/MM_Math/data_original_21/7055883/math/53147490_847.png deleted file mode 100644 index f39d7291087838c926cafda1a446c0db3cb3a051..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53147490_847.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec01bf75e73edce7058549fafd440898c03b44b022a8cc60a6027b057517af82 -size 194599 diff --git a/MM_Math/data_original_21/7055883/math/53147522_855.png b/MM_Math/data_original_21/7055883/math/53147522_855.png deleted file mode 100644 index c1c8880847d5b649b7f01ee44994ff22949212bd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53147522_855.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:863b807a609b5085a6688bdd813d240d9ded2af81722b022825d2ea26b9320eb -size 3503 diff --git a/MM_Math/data_original_21/7055883/math/53147979_496.png b/MM_Math/data_original_21/7055883/math/53147979_496.png deleted file mode 100644 index 0a9fe93a382ba27e306c2489a838f3beaff4687d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53147979_496.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:688a1f23794b884cc5b7d34983ed6ea4940efecf0ebc3d91124ba215b46a1c57 -size 36216 diff --git a/MM_Math/data_original_21/7055883/math/53148264_4811.png b/MM_Math/data_original_21/7055883/math/53148264_4811.png deleted file mode 100644 index 19bcea3ff472a341636692d9f64b19dda09f5fa5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53148264_4811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd08cad6e2d05c4a3a33f24c5c7bb9a5f83f08a0220a64214b8c03738f31ff4e -size 14989 diff --git a/MM_Math/data_original_21/7055883/math/53148281_838.png b/MM_Math/data_original_21/7055883/math/53148281_838.png deleted file mode 100644 index 0148ceccc267067cf5ba05cdc3c19c4526558923..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53148281_838.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59f4d1a8a9f29877a028b0c5f52db4e69be27be49bbca3e0cf324f872a438a88 -size 84994 diff --git a/MM_Math/data_original_21/7055883/math/53297427_63.png b/MM_Math/data_original_21/7055883/math/53297427_63.png deleted file mode 100644 index 105d019c686067346dd9c855da14ccdbf6bcc24f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/53297427_63.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:299b982f3a63ce528117a44b4f3be7a035bd5c1e83e8955ec954f2ad6904c6ad -size 8204 diff --git a/MM_Math/data_original_21/7055883/math/55452474_162.png b/MM_Math/data_original_21/7055883/math/55452474_162.png deleted file mode 100644 index ab11bfe782de7457f705e5640823b7b62b8758e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55452474_162.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:22daaed107e1074b6ec5bda74d362cabc7abe583c1949986bee4e9b818b5dccd -size 27655 diff --git a/MM_Math/data_original_21/7055883/math/55452489_670.png b/MM_Math/data_original_21/7055883/math/55452489_670.png deleted file mode 100644 index 487ca06ce4c1d974d4a257df0080511f60fde209..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55452489_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2014d1aea14ae6244652368beddde67c41e188b707d3afc4ae1ee186ed935fb9 -size 63686 diff --git a/MM_Math/data_original_21/7055883/math/55497749_25.png b/MM_Math/data_original_21/7055883/math/55497749_25.png deleted file mode 100644 index 096fb5250b62decd7917fdab748384624758be1f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55497749_25.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2493b4e22eb25eabf7ac2bc9a71cd390be151523b300231787cd7659fd4ce6f -size 10224 diff --git a/MM_Math/data_original_21/7055883/math/55497770_637.png b/MM_Math/data_original_21/7055883/math/55497770_637.png deleted file mode 100644 index 5770757284fafd593b8bb8737edc61b98cdd9007..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55497770_637.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7dad9a1f0cc289156c74ecee20a384048624c9d99830f95ef8572bca33e7c99 -size 36352 diff --git a/MM_Math/data_original_21/7055883/math/55497782_15.png b/MM_Math/data_original_21/7055883/math/55497782_15.png deleted file mode 100644 index ab8ec917ec5ccd3d3e446d7478f1b726b7d00e92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55497782_15.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:acb1a406539d9c6c334afb9d4ee95a0cce83cba7796ca145fafdfdd2cbfab86c -size 6097 diff --git a/MM_Math/data_original_21/7055883/math/55497792_306.png b/MM_Math/data_original_21/7055883/math/55497792_306.png deleted file mode 100644 index 6d80c06fa39c6696c00be2c02a8378b2a4ed4db4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55497792_306.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d1a43a2445241868f257e60f3bfa4a67426856dd83a8ea9904105e0b08cb2e9 -size 14949 diff --git a/MM_Math/data_original_21/7055883/math/55497823_75.png b/MM_Math/data_original_21/7055883/math/55497823_75.png deleted file mode 100644 index f9fb5b364e3162efd20ddfb73d78fab5d1027ba8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55497823_75.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2aad7a4326b0939495d4fc24cb2b410ee84a019d14fb42243becda9f085f9d33 -size 6916 diff --git a/MM_Math/data_original_21/7055883/math/55497848_6413.png b/MM_Math/data_original_21/7055883/math/55497848_6413.png deleted file mode 100644 index 7339740507beb9523dacddff80cd3afca9e0154b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55497848_6413.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b77ee2d9d8472969c6ebb52c4201e979966162fd55ab9f120a72fd6886876c51 -size 45050 diff --git a/MM_Math/data_original_21/7055883/math/55533039_700.png b/MM_Math/data_original_21/7055883/math/55533039_700.png deleted file mode 100644 index 120a881574e54bf39953029c914e9c6560663c2d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55533039_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea273802ac42253e7fd5ce08262e3c8d9724eeda5dc8b91a3c4b797daf4e2587 -size 6562 diff --git a/MM_Math/data_original_21/7055883/math/55533042_7020.png b/MM_Math/data_original_21/7055883/math/55533042_7020.png deleted file mode 100644 index 7623ed9ecd983cdf4ea43d1cad6a2376a6993a4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55533042_7020.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f6d90c968ca2396d2da5ccf8d9b9f692978735d541de9b5ea321839640f69b3 -size 481 diff --git a/MM_Math/data_original_21/7055883/math/55533042_7021.png b/MM_Math/data_original_21/7055883/math/55533042_7021.png deleted file mode 100644 index cb34539cd3c15860cf977406f613404b45a9ef0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55533042_7021.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70533e4157d17bff38919def8c87c7c0f4de4ce50464ff84152c632630cb6802 -size 492 diff --git a/MM_Math/data_original_21/7055883/math/55604325_54.png b/MM_Math/data_original_21/7055883/math/55604325_54.png deleted file mode 100644 index 3551847313f1132d9fffac4b1c727b3abe1c4d57..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55604325_54.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5cc814ef3b5579f56e7ef6255ffa43d93879d80956ad64d2d8171941d651442e -size 12506 diff --git a/MM_Math/data_original_21/7055883/math/55604334_358.png b/MM_Math/data_original_21/7055883/math/55604334_358.png deleted file mode 100644 index db7cc9efd03e4464990d57cc4598db00723c494a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/55604334_358.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:567618f2562426556356a85b79a11fd95100c16903f05e05c13c3e573cf65fcc -size 17940 diff --git a/MM_Math/data_original_21/7055883/math/9061650_323.png b/MM_Math/data_original_21/7055883/math/9061650_323.png deleted file mode 100644 index 1b2b63a3b0d101c4baaa066f8022a47da230b98d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/math/9061650_323.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9894a378b7420d7da53ce48e75ab3d1c7f2be2942260a12eabdb18d41a88d1c1 -size 1252 diff --git a/MM_Math/data_original_21/7055883/solution_images/41274449_343.png b/MM_Math/data_original_21/7055883/solution_images/41274449_343.png deleted file mode 100644 index cf05cd1fb807fac0588a6794e1e62c227cfeafb3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/41274449_343.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ac4b56a56fa7cdcaf37a9d50f6ec2e339a7f44efea756ebfcba82aa418b2446a -size 4890 diff --git a/MM_Math/data_original_21/7055883/solution_images/51179012_00.png b/MM_Math/data_original_21/7055883/solution_images/51179012_00.png deleted file mode 100644 index ed666ce461e4e2a29881d1abf7c2067f21cc7bab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/51179012_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c5f1d97e9a0062f4d121e6a2c655c4182ef2050c9f1c6f4431cbc42d54fa794 -size 3926 diff --git a/MM_Math/data_original_21/7055883/solution_images/53059666_580.jpg b/MM_Math/data_original_21/7055883/solution_images/53059666_580.jpg deleted file mode 100644 index fed7216e5f80233d1efa958d4909bd8c850bc5f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53059666_580.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce18aae59edfb15f145e280905b23214bfcc09410220c4ca18bf8284c1080e61 -size 5077 diff --git a/MM_Math/data_original_21/7055883/solution_images/53065562_535.png b/MM_Math/data_original_21/7055883/solution_images/53065562_535.png deleted file mode 100644 index 9ef86c71be4118e8403cbc4c596f7f87c7c19601..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53065562_535.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5c9fbe1f1785ba9af722264c2807fe68ec3d0ffcd666453b6a5dcc6b8515202 -size 3757 diff --git a/MM_Math/data_original_21/7055883/solution_images/53066099_563.png b/MM_Math/data_original_21/7055883/solution_images/53066099_563.png deleted file mode 100644 index 5a89eafd04b1aee87e23d519825901b7bf178aae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53066099_563.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a136cf6116ff99c066a7fa456b43f976a94e50f25feda0817aa3fc08efb09623 -size 2954 diff --git a/MM_Math/data_original_21/7055883/solution_images/53078938_441.png b/MM_Math/data_original_21/7055883/solution_images/53078938_441.png deleted file mode 100644 index cbd3ece1659c83571edcd8d5ca802a5abd6571e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53078938_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7260e525ba478744edfd0c5a13d943611da356c29c0a3dbad76d62abb3eaec0 -size 50155 diff --git a/MM_Math/data_original_21/7055883/solution_images/53080024_403.png b/MM_Math/data_original_21/7055883/solution_images/53080024_403.png deleted file mode 100644 index 83913a8f88cd5b7292e35f3f76131fc415db9119..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53080024_403.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3350c03d20b1ce5870736d2f8aeeeb7bed8989cce03819feb2462e5b9812267d -size 3766 diff --git a/MM_Math/data_original_21/7055883/solution_images/53080525_1013.png b/MM_Math/data_original_21/7055883/solution_images/53080525_1013.png deleted file mode 100644 index 181e2613983688ada558e2474563868f7723f5e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53080525_1013.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1bc9f418dfc7165eb3db6b2ef61847f08bb6825a2009429ae12baa1dc2fc2483 -size 6607 diff --git a/MM_Math/data_original_21/7055883/solution_images/53080531_4112.png b/MM_Math/data_original_21/7055883/solution_images/53080531_4112.png deleted file mode 100644 index 0a3b2e917d9da640ddfb61d13a0df0092dd2f398..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53080531_4112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccd7dba49347e24d2eeb3ce8ecdb87f8282b17e043237184cc2a7a8dbd1ec519 -size 4416 diff --git a/MM_Math/data_original_21/7055883/solution_images/53080813_121.png b/MM_Math/data_original_21/7055883/solution_images/53080813_121.png deleted file mode 100644 index 468c744e466d06288cf87ce20d512e34811eeaea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53080813_121.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70c8a0df7d6cee8fb8ef31174207e2c39cdff6ebad33f7e4289e4772f102fd8b -size 93459 diff --git a/MM_Math/data_original_21/7055883/solution_images/53080819_387.png b/MM_Math/data_original_21/7055883/solution_images/53080819_387.png deleted file mode 100644 index a29837f6d5941f978abd0d7c26426e7dfc0e8e8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53080819_387.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c7d5349c7fda662c360c344a254c6dfbae3f03bc7dd4825e41407d1df8f1873 -size 111278 diff --git a/MM_Math/data_original_21/7055883/solution_images/53081375_360.png b/MM_Math/data_original_21/7055883/solution_images/53081375_360.png deleted file mode 100644 index d0b68af4bedbbddff8fdb9aa1ae86410f1e1a94c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53081375_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4ec78cff6083f916a345ec4a35a11c6e293f74b9290a517f4b3049b7530197f -size 4272 diff --git a/MM_Math/data_original_21/7055883/solution_images/53081475_96.png b/MM_Math/data_original_21/7055883/solution_images/53081475_96.png deleted file mode 100644 index ab221d272dcb8fc9692bb662d4609ae3e2b98131..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53081475_96.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:061c67e138f7466c835c078a1adea46c1762fff8ef571deb0f14e17fec260320 -size 3992 diff --git a/MM_Math/data_original_21/7055883/solution_images/53081503_736.png b/MM_Math/data_original_21/7055883/solution_images/53081503_736.png deleted file mode 100644 index b6dda317f03685ebed9b3ff21f431f54773e6f2a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53081503_736.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1be31b391d793e68b4544e5b8e92c181c3f02f37e2366d9b6953d5f659b39315 -size 18096 diff --git a/MM_Math/data_original_21/7055883/solution_images/53110836_230.png b/MM_Math/data_original_21/7055883/solution_images/53110836_230.png deleted file mode 100644 index 180c1a49e0eeac1d893ea8adf767f294e9f6df5d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53110836_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79abf3ccae9e673165d1e2b69b23e81eadec462204dc2aabf489901c866ff6df -size 21506 diff --git a/MM_Math/data_original_21/7055883/solution_images/53110839_614.png b/MM_Math/data_original_21/7055883/solution_images/53110839_614.png deleted file mode 100644 index a158105003a623087390113188f78dd4b84eeb26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53110839_614.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:522d4840ff4881c49bfa1296e774d8cede8831781cf1b895b514593d8885ec90 -size 42109 diff --git a/MM_Math/data_original_21/7055883/solution_images/53110864_263.png b/MM_Math/data_original_21/7055883/solution_images/53110864_263.png deleted file mode 100644 index 04578b8b6a57a79b6fc893ebe51d8b9c399c9263..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53110864_263.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf7d3c370fd913ee59d822427b6b87d7d0bccf4e049a360019f07c6f40775730 -size 20891 diff --git a/MM_Math/data_original_21/7055883/solution_images/53147979_491.png b/MM_Math/data_original_21/7055883/solution_images/53147979_491.png deleted file mode 100644 index 36aba32435aaf28789081852ed1cabcdde5baa6a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53147979_491.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b50211de1b0ed8e01c9a1d35f4df510e075e9ba2be45267fd0d01af8c65291fc -size 52685 diff --git a/MM_Math/data_original_21/7055883/solution_images/53148264_480.png b/MM_Math/data_original_21/7055883/solution_images/53148264_480.png deleted file mode 100644 index 745cc896fe48eed225865ae1e959be0dc90188bf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/53148264_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e89c8e647d67cf6871087c4af193fb3d312fc1b2ef0c97a94687bf5a9f819e5 -size 18015 diff --git a/MM_Math/data_original_21/7055883/solution_images/55452474_161.png b/MM_Math/data_original_21/7055883/solution_images/55452474_161.png deleted file mode 100644 index 04e01c57b26d0b43abdabe3d9f40acfc5125829c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/55452474_161.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a7cf55cc4bab1adac7a017c0a5c2247b8dc6c0631424fac3d6f90fbdc6ebdc40 -size 65903 diff --git a/MM_Math/data_original_21/7055883/solution_images/55497792_300.png b/MM_Math/data_original_21/7055883/solution_images/55497792_300.png deleted file mode 100644 index 426a062095974886645872f3b2f053ed5d659840..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/55497792_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4620267048fba6db8ae007d34179854eeff9bec42ee0a161fde01a2d0c234198 -size 37208 diff --git a/MM_Math/data_original_21/7055883/solution_images/55497792_303.png b/MM_Math/data_original_21/7055883/solution_images/55497792_303.png deleted file mode 100644 index 11afb63377d0f1a4acc5732fc4e2757259a3cb73..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/55497792_303.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8237c85d60d319ab387c2e84247fa5aa1c6188b4c0eccbc7e65471a47b7ad642 -size 39160 diff --git a/MM_Math/data_original_21/7055883/solution_images/55533039_700.png b/MM_Math/data_original_21/7055883/solution_images/55533039_700.png deleted file mode 100644 index ea0ed1f953ca4fa383cf96bb1999d738091766ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/55533039_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f761b9bf87a9af1a9bca98acdb80e55933f867142372271986a5e964dc1dd26 -size 441 diff --git a/MM_Math/data_original_21/7055883/solution_images/55533039_701.png b/MM_Math/data_original_21/7055883/solution_images/55533039_701.png deleted file mode 100644 index 19cbdc3c2de14726809c6b8011315aa28ce97b5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7055883/solution_images/55533039_701.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2d53ea6572ecbe7c9cdb196696ba41267a1b16df2534c99d3b4b9185e645a5d -size 497 diff --git a/MM_Math/data_original_21/7056088/math/52933339_259.png b/MM_Math/data_original_21/7056088/math/52933339_259.png deleted file mode 100644 index e699ae763905eb6646d2f935cd4833f2e7aad806..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52933339_259.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c9e87f9d0c5f9889ebac2bfac25a55208a39184cb4165597297392f2c7982cd -size 2619 diff --git a/MM_Math/data_original_21/7056088/math/52933571_649.png b/MM_Math/data_original_21/7056088/math/52933571_649.png deleted file mode 100644 index 5f1fd55c213b47084c631161657ac97b5d086e2e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52933571_649.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8aefe16e3b47a0507968e377899865a351404b731bf5b3570cfaf5e90b298f9a -size 2397 diff --git a/MM_Math/data_original_21/7056088/math/52933588_997.png b/MM_Math/data_original_21/7056088/math/52933588_997.png deleted file mode 100644 index 681db85194bb4ac88658a6c1315296b03fe89067..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52933588_997.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e04e97afcf52f2828d8c6f2ffd0ec719d3cf59e8ddcf6bca7ae398bf5026b1a -size 120594 diff --git a/MM_Math/data_original_21/7056088/math/52933996_567.png b/MM_Math/data_original_21/7056088/math/52933996_567.png deleted file mode 100644 index 4961431c8967e5da1efcaf3d8769df4d689a3dc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52933996_567.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f6c16458af3026816cafb0b33c318e0b9c74e82345dbc6359f86a269b438f56 -size 3705 diff --git a/MM_Math/data_original_21/7056088/math/52934010_973.png b/MM_Math/data_original_21/7056088/math/52934010_973.png deleted file mode 100644 index cadd9bd9a199691a475b105074cb987e71951776..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52934010_973.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8eec3fb3e714b99bf068946cb1f956479ec0b40bea4966892326d498c6743952 -size 4768 diff --git a/MM_Math/data_original_21/7056088/math/52934013_980.png b/MM_Math/data_original_21/7056088/math/52934013_980.png deleted file mode 100644 index 4f1a591861eb9c3f519151a14a7a5a7f0b6a1722..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52934013_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:95bb28a353bf3329f929031a0894fd55a0f7ff391cf657766da94e9b23ae9d99 -size 3448 diff --git a/MM_Math/data_original_21/7056088/math/52935299_240.png b/MM_Math/data_original_21/7056088/math/52935299_240.png deleted file mode 100644 index 8aef8a58d789303a178e1740701aeeac6fed044e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52935299_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c364c27081804e438578c3bae6de4abc831181d31a34fae19d54d9f4b4435d08 -size 6302 diff --git a/MM_Math/data_original_21/7056088/math/52935301_220.png b/MM_Math/data_original_21/7056088/math/52935301_220.png deleted file mode 100644 index 4436f7033d102f0b51a0a866922ee46cd8470da0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52935301_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16b322072045a660246a841d732411d5d5fc0ff415c530e306cc07764e9821f5 -size 8201 diff --git a/MM_Math/data_original_21/7056088/math/52935302_231.png b/MM_Math/data_original_21/7056088/math/52935302_231.png deleted file mode 100644 index eacf7875d04e5b5603a8b5e8f9db22613ce8fa00..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52935302_231.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9137eeb1eb1ddbc8540a7bace4d5413303f18c09e8f9c8145ec54f6e92dc05e9 -size 9809 diff --git a/MM_Math/data_original_21/7056088/math/52935315_950.png b/MM_Math/data_original_21/7056088/math/52935315_950.png deleted file mode 100644 index c2dcb8dfe0b90c61837b6853c7bfb8149d62f94d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52935315_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58290539f577e1ddf045b2533d9e4382a359b67226378a3f7b7a39ed04073eca -size 5965 diff --git a/MM_Math/data_original_21/7056088/math/52935324_961.png b/MM_Math/data_original_21/7056088/math/52935324_961.png deleted file mode 100644 index 061f9a0a866f1b0e740126185097ed167a65ec84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52935324_961.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6955d884b98031973091aa19a4c67bdde2e52363ad3ffb5e65a3c6532091f4d4 -size 3415 diff --git a/MM_Math/data_original_21/7056088/math/52936222_551.png b/MM_Math/data_original_21/7056088/math/52936222_551.png deleted file mode 100644 index b5836200575a437118759351a89f7d20e2e291a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52936222_551.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ea979e98a19be963d8408c2029d58a0b2339cbbb8abdac48d5e93f5cb01a766 -size 4088 diff --git a/MM_Math/data_original_21/7056088/math/52936243_940.png b/MM_Math/data_original_21/7056088/math/52936243_940.png deleted file mode 100644 index 15ae8e3c08a373d5f4d0a2e1ee31661e28cd6a5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52936243_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97625a04d797327544467b3c2481434f4219b47d315bddc45155732a7fc4ba55 -size 27535 diff --git a/MM_Math/data_original_21/7056088/math/52936345_2114.png b/MM_Math/data_original_21/7056088/math/52936345_2114.png deleted file mode 100644 index 3b6af64d1a41540e6e6819871c50f888c82f107f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52936345_2114.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00944ba57c42a44901264f1b9a6f61409ad5827052bb113fc5bc9690c4049477 -size 6990 diff --git a/MM_Math/data_original_21/7056088/math/52936361_930.png b/MM_Math/data_original_21/7056088/math/52936361_930.png deleted file mode 100644 index 944b3f8e353f7a1f0d511b5052a3961e6a4035bf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52936361_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9fcbad11ffdbf4a3ee61165dc8ef584b56ac4eadd9a050f28d68b05afa06b529 -size 16341 diff --git a/MM_Math/data_original_21/7056088/math/52942169_547.png b/MM_Math/data_original_21/7056088/math/52942169_547.png deleted file mode 100644 index e8512f6dfd80ef5546bfd884bf206d0932ba7b25..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52942169_547.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf997b8e85b55387de5d9ee9522a1e6151c03a8ce4592b6f1bd5520bba9091fc -size 32608 diff --git a/MM_Math/data_original_21/7056088/math/52942171_528.png b/MM_Math/data_original_21/7056088/math/52942171_528.png deleted file mode 100644 index 1c6bd539d8f33ba2d152e067f77316be2905c3f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52942171_528.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4db5373bb9fd177f39a132772714085e3d8fee102d5f549b0a0efe1f58b49d25 -size 32608 diff --git a/MM_Math/data_original_21/7056088/math/52942173_5310.png b/MM_Math/data_original_21/7056088/math/52942173_5310.png deleted file mode 100644 index c2a7caa813b1e5cb3f41f159eace3c101e6237ad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52942173_5310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4fc2c17f48f2463158de18ddb6bf5db0403685b7579f88799f10dce6861b7788 -size 15467 diff --git a/MM_Math/data_original_21/7056088/math/52942179_637.png b/MM_Math/data_original_21/7056088/math/52942179_637.png deleted file mode 100644 index 1afa6f9148f52218b52ef7e85d558f1c5a090049..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52942179_637.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cbdc5c40802f91b152b41c1c6402781dc1285869b34597613eb319e77c8471a8 -size 62720 diff --git a/MM_Math/data_original_21/7056088/math/52942184_928.png b/MM_Math/data_original_21/7056088/math/52942184_928.png deleted file mode 100644 index 4ec25fd5f669023e5d4bb0f5073003a6216a1f81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52942184_928.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15d5e23f34749b2a8d962793250081691f524a5080d4816a0f3b5f5998ca8660 -size 63232 diff --git a/MM_Math/data_original_21/7056088/math/52942187_918.png b/MM_Math/data_original_21/7056088/math/52942187_918.png deleted file mode 100644 index c8dfefe113d78395b22cbfb11bf771c0a6036733..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52942187_918.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:17a1a98e9a797ad9468fad0803d902224514ee38e500d7b99b0a1481b556ace1 -size 25820 diff --git a/MM_Math/data_original_21/7056088/math/52963737_200.png b/MM_Math/data_original_21/7056088/math/52963737_200.png deleted file mode 100644 index 58fa5c3a942e99715829f8289692e9e0d7983aaa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52963737_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52883331e68721161c62f9b51baed0e0c9e3dffa93fa178a3c51eb715ba521de -size 6368 diff --git a/MM_Math/data_original_21/7056088/math/52963742_500.png b/MM_Math/data_original_21/7056088/math/52963742_500.png deleted file mode 100644 index 428d829bdcf5403a305407bf33df675bdff39b89..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52963742_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b23ab8053272ed81b1d412516788935f8bf6a63ea6f240d5391010db6934eb5b -size 3072 diff --git a/MM_Math/data_original_21/7056088/math/52963745_510.png b/MM_Math/data_original_21/7056088/math/52963745_510.png deleted file mode 100644 index a15ebffe43eb3fbdc898376679c0c9e2cbbfd487..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52963745_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c97814122c31d214160cf1e42a29540edc2b8a9ff38a3c8825c39a4c557ada1 -size 5522 diff --git a/MM_Math/data_original_21/7056088/math/52966957_193.png b/MM_Math/data_original_21/7056088/math/52966957_193.png deleted file mode 100644 index adaa69a80f1efc776345fcba69f15aaa5b9aae8f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52966957_193.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe71f06c39d8676e0725a6eaf3a0020887bb84fbc33cdcc2a48f9adbf6040b5d -size 5572 diff --git a/MM_Math/data_original_21/7056088/math/52966970_492.png b/MM_Math/data_original_21/7056088/math/52966970_492.png deleted file mode 100644 index a5d96674df6552202986c7726a86f3c43049847c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52966970_492.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b1718a3829a72d6e1960e9f5511f1aae7e33f99a6a729d867d9c6bf430df0b5 -size 11848 diff --git a/MM_Math/data_original_21/7056088/math/52976990_170.png b/MM_Math/data_original_21/7056088/math/52976990_170.png deleted file mode 100644 index 166c87fd7158afd1a006e1f404267bba62e0587e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52976990_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e15ddc6d40c688c81f4c01acc9abf4fbef5875e29f169d3bba1a6ff000a7f660 -size 29401 diff --git a/MM_Math/data_original_21/7056088/math/52976991_120.png b/MM_Math/data_original_21/7056088/math/52976991_120.png deleted file mode 100644 index 4277800997317e8a8da6e8f257761d5610c96462..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52976991_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db22104557ffbbc2ad1d0e2b5dcbce9f4ccb4493d3297214c889d80b89466dcd -size 19894 diff --git a/MM_Math/data_original_21/7056088/math/52977191_447.png b/MM_Math/data_original_21/7056088/math/52977191_447.png deleted file mode 100644 index e699a4544a600a21a22293ba040165957d46cb74..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977191_447.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bec192bc3169a9acff2f9e798965399c5654c225aba8b6e3ddd1875112fb7a22 -size 3001 diff --git a/MM_Math/data_original_21/7056088/math/52977204_6210.png b/MM_Math/data_original_21/7056088/math/52977204_6210.png deleted file mode 100644 index 6534fb8b874056130ed41a8b73c8fd420e3912c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977204_6210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec73c1ee34d2841fa058f50b17c08c337c67bc8fac7ad657bcd6d5c531983fe7 -size 4381 diff --git a/MM_Math/data_original_21/7056088/math/52977300_182.png b/MM_Math/data_original_21/7056088/math/52977300_182.png deleted file mode 100644 index 93cc459bee3a8d784f2373dd71c36584711dec19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977300_182.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ebe468078afc76ee191696736edc1fc9bed95da210a1a2cc0fb87414c7cd056 -size 3074 diff --git a/MM_Math/data_original_21/7056088/math/52977308_366.png b/MM_Math/data_original_21/7056088/math/52977308_366.png deleted file mode 100644 index 53e1ffd8a46ef81efc0e4c34301d7b15533ac9a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977308_366.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29d53daa48432ddae1c5dbd9bf02fddf09fd9918f27ca37497abc5c7091692ce -size 4516 diff --git a/MM_Math/data_original_21/7056088/math/52977388_131.png b/MM_Math/data_original_21/7056088/math/52977388_131.png deleted file mode 100644 index a0f00f0ccac1130a0d3eb50349a5bb64b50ce1d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977388_131.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a40dbf6fb53e70a285f321f33ea5df5e87d3622e71e3e8648fa54a3b3b45469 -size 12066 diff --git a/MM_Math/data_original_21/7056088/math/52977397_1110.png b/MM_Math/data_original_21/7056088/math/52977397_1110.png deleted file mode 100644 index 4b4f125796642b83b0d61c61c083461dbe195239..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977397_1110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f7dc234207565cbef4dd9501d689629b59638720cc256599ae7477e3489b332 -size 3497 diff --git a/MM_Math/data_original_21/7056088/math/52977407_822.png b/MM_Math/data_original_21/7056088/math/52977407_822.png deleted file mode 100644 index 0573dc97def8afc847d4c01d070569abde31f3f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977407_822.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec07befeab2ed382bb1b432457d0c9229611c05cd753034944520f434660321b -size 6688 diff --git a/MM_Math/data_original_21/7056088/math/52977417_8311.png b/MM_Math/data_original_21/7056088/math/52977417_8311.png deleted file mode 100644 index ca81eb0a0e31cb5fa1c7f4aa37fb82d8587feddb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977417_8311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38ea41be1a24a3c7f38ed5ab2a474544ada64fb9576691997846b828f750f245 -size 9947 diff --git a/MM_Math/data_original_21/7056088/math/52977597_610.png b/MM_Math/data_original_21/7056088/math/52977597_610.png deleted file mode 100644 index 46a1ac38a326d38aa753b3efaf080fedd4ca7c51..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977597_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:708c5a0d7333ee2b4c8ce0a6e389e1feed1a308b6b1268f30a5c171e61324a8b -size 3458 diff --git a/MM_Math/data_original_21/7056088/math/52977604_602.png b/MM_Math/data_original_21/7056088/math/52977604_602.png deleted file mode 100644 index 8ceae09ad0f7d9f94151cd94e80aeccb944e0497..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977604_602.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:101874f4fade43fcf7cf0ff56a1396fab21c4fc0f8dca7ba56d2627fa40eaca0 -size 26393 diff --git a/MM_Math/data_original_21/7056088/math/52977726_156.png b/MM_Math/data_original_21/7056088/math/52977726_156.png deleted file mode 100644 index 966bda77f8c2784603a1f6c652ba68c34c9b25b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977726_156.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12b296ff110a15120a7f506d8672138256bd7363f2b6c81548b2799361ee0ca7 -size 1845 diff --git a/MM_Math/data_original_21/7056088/math/52977730_144.png b/MM_Math/data_original_21/7056088/math/52977730_144.png deleted file mode 100644 index 04c361ec737891a75478ae48ee1588e63a570124..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977730_144.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7fb4344fbf0429e65ea440dd82682e3c4a66f16d95057708dbd71b095c9ddf50 -size 3498 diff --git a/MM_Math/data_original_21/7056088/math/52977733_373.png b/MM_Math/data_original_21/7056088/math/52977733_373.png deleted file mode 100644 index 6720e37b8a2431bfa87b3180704758d0dc25d274..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977733_373.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6137ee2f9f2d9e1cf33675bca30b4b8e4ffb8b47364f3f5838ff15495f3f3d5b -size 57870 diff --git a/MM_Math/data_original_21/7056088/math/52977734_386.png b/MM_Math/data_original_21/7056088/math/52977734_386.png deleted file mode 100644 index 8ed3acd3322564685497df27bfbf546537fd5f5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977734_386.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3140ca14902a261d4eb0b13a8cc4746545ba7c6f98bb8c2f48c2800892bacacc -size 1976 diff --git a/MM_Math/data_original_21/7056088/math/52977738_435.png b/MM_Math/data_original_21/7056088/math/52977738_435.png deleted file mode 100644 index 0c33d04429ca5334d5f69ad9f275629e11c67e37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977738_435.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d79658df62a3a9d7c2fc127de13aece39780cf06cdb9e678e56da53af906d58b -size 2747 diff --git a/MM_Math/data_original_21/7056088/math/52977745_596.png b/MM_Math/data_original_21/7056088/math/52977745_596.png deleted file mode 100644 index de47e640b3323b484d55e1910df2b4e0cafb0fb4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977745_596.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b4ebc4869ad26ee1ea845e428aa28469e9ffca1b09ec73d6a4093c68d8bdeef -size 26365 diff --git a/MM_Math/data_original_21/7056088/math/52977747_843.png b/MM_Math/data_original_21/7056088/math/52977747_843.png deleted file mode 100644 index 52ea3bd15d053c9d26641055d4e6f1ead8042424..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977747_843.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c34fd87d50a24a9173f68e7c8a2f3aad163d0bc0232bde406def9aaa88a85d13 -size 2264 diff --git a/MM_Math/data_original_21/7056088/math/52977753_8611.png b/MM_Math/data_original_21/7056088/math/52977753_8611.png deleted file mode 100644 index 3edbd78dc9575992c765ba4259e4818ff5438c46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977753_8611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:714a1e17e02dde0a6c0d8c79e236529b34cd5803a66386df6696015366af96de -size 84144 diff --git a/MM_Math/data_original_21/7056088/math/52977770_453.png b/MM_Math/data_original_21/7056088/math/52977770_453.png deleted file mode 100644 index 4b399606fad7b2cae51418c2fd9d018365895db9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977770_453.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc1972eb0ab70c04e4f7652fcf4f20b83fe902e812639d93201e6737482e328e -size 3486 diff --git a/MM_Math/data_original_21/7056088/math/52977800_410.jpeg b/MM_Math/data_original_21/7056088/math/52977800_410.jpeg deleted file mode 100644 index dfe67e91933e2167a85b443ed70942a4ef1030a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977800_410.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87d9c9df05217605ef902c4e3526612439b22d56c7f918864cf9351c91336796 -size 3232 diff --git a/MM_Math/data_original_21/7056088/math/52977891_168.png b/MM_Math/data_original_21/7056088/math/52977891_168.png deleted file mode 100644 index 3a76b2ca95d29ad2d68461a4e420c446ce3abeb7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977891_168.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fbe2b247b58410150fde5271e61532e7edf5f3a4c2360406f7d148796eef19dd -size 2499 diff --git a/MM_Math/data_original_21/7056088/math/52977898_3513.png b/MM_Math/data_original_21/7056088/math/52977898_3513.png deleted file mode 100644 index 35a9b5b4f2098659acb36f73f3094c4e0a7fccd7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977898_3513.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:73a900faba48a6fad09cb57e1489d74a63cb3abc69ccf1213e6a4d82b61e385d -size 3198 diff --git a/MM_Math/data_original_21/7056088/math/52977901_4714.png b/MM_Math/data_original_21/7056088/math/52977901_4714.png deleted file mode 100644 index 175a8a80b67d1a74ed2a1e30f41b071d26708347..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977901_4714.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d0ce270fcca329fe369a1e1e9c7627e4761221e77dde27573aaa1285f07e9db -size 2771 diff --git a/MM_Math/data_original_21/7056088/math/52977904_875.png b/MM_Math/data_original_21/7056088/math/52977904_875.png deleted file mode 100644 index 1427a77a518b3974851d86d9d61af2f3f446fdb8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977904_875.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f1de6e054af6708f7553d75eeb3f3e3977376f71653b0f1476f5025277f2ffb -size 7862 diff --git a/MM_Math/data_original_21/7056088/math/52977907_815.png b/MM_Math/data_original_21/7056088/math/52977907_815.png deleted file mode 100644 index 98d14879e722bb14a2ec1c6eee6608f876e7308e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977907_815.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc154849f7f4b0d2b4e925eb2b0ae207f9813a33ae7824942875bad81dc30cb6 -size 50702 diff --git a/MM_Math/data_original_21/7056088/math/52977910_889.png b/MM_Math/data_original_21/7056088/math/52977910_889.png deleted file mode 100644 index c4939e0b7f027c71eef111c8d445f423c05b0420..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977910_889.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0077090b6502b3869e478f237f0058805845af2e685e2bceb2bb6c14f688ba56 -size 18078 diff --git a/MM_Math/data_original_21/7056088/math/52977916_8915.png b/MM_Math/data_original_21/7056088/math/52977916_8915.png deleted file mode 100644 index d4b773e0909381d781a6a6ba5d30877863d8535e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977916_8915.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f6cddab1e11b8621fcff0d814a59a40e7829d513af27364e15faca22a5175df -size 21120 diff --git a/MM_Math/data_original_21/7056088/math/52977928_486.png b/MM_Math/data_original_21/7056088/math/52977928_486.png deleted file mode 100644 index 8176b9ba9bcc87ee44637addfc118979e81f6168..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977928_486.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b98d43c81f6c99f1a779d0ca12fa9f2794e9f6659f337b17eb30aea96db234a -size 2531 diff --git a/MM_Math/data_original_21/7056088/math/52977964_405.png b/MM_Math/data_original_21/7056088/math/52977964_405.png deleted file mode 100644 index a737d39738193435bf2140a6c63672532c80e3be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977964_405.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:27e28341f366da7da623f62cc7b2839cd4d0d8c1371f24f1b71170438d0a4af1 -size 11251 diff --git a/MM_Math/data_original_21/7056088/math/52977968_394.png b/MM_Math/data_original_21/7056088/math/52977968_394.png deleted file mode 100644 index bbf94a1db7f271fbf066e9470681a553b2fe142c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977968_394.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9568524643113c17991b10f3d7f1ba26467268ffe8d7a0ce28c2b0634cc1bfe -size 2541 diff --git a/MM_Math/data_original_21/7056088/math/52977977_907.png b/MM_Math/data_original_21/7056088/math/52977977_907.png deleted file mode 100644 index 772bad3870048734240baef0d05fe30cf9272df4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977977_907.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16e2ed82ca92866fbf349d8c903c676016692bd98c7084e0a29ddc7e02418fd9 -size 3098 diff --git a/MM_Math/data_original_21/7056088/math/52977987_8511.png b/MM_Math/data_original_21/7056088/math/52977987_8511.png deleted file mode 100644 index 9878f400c38f8ac7f7a6e3db717a38e36a243181..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52977987_8511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35759bed5f1f04f297f4bfef02cbde9fee435935695c9a5332b69da8dff8149f -size 25470 diff --git a/MM_Math/data_original_21/7056088/math/52991371_340.png b/MM_Math/data_original_21/7056088/math/52991371_340.png deleted file mode 100644 index be913902f626609a88b77355fd2c3c4e07279970..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991371_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b7fde6a26bf39a6828692ad3ba632832c746868baa3d7938fdc83359d7e7f18 -size 94376 diff --git a/MM_Math/data_original_21/7056088/math/52991441_290.png b/MM_Math/data_original_21/7056088/math/52991441_290.png deleted file mode 100644 index 34bf6185e6638fec328a0b7229916469dd6d6664..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991441_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63bdae022210ffbf53263a65e93196f091615f3ab5068ed4d45db511283ced79 -size 3079 diff --git a/MM_Math/data_original_21/7056088/math/52991464_786.png b/MM_Math/data_original_21/7056088/math/52991464_786.png deleted file mode 100644 index d1605b9f8c6f44f08748ae95ee5576e3ab184511..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991464_786.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be0505bec7bfffb9338f526cdd0879e9e2262c72a6bf90827e00b3491e151da9 -size 42304 diff --git a/MM_Math/data_original_21/7056088/math/52991468_778.png b/MM_Math/data_original_21/7056088/math/52991468_778.png deleted file mode 100644 index ac14fab5be693efdb049586c3d0d3008036cf48f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991468_778.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34269450266310c6dde9c0904697b8002c34e8663de6823e1d6aac8990d5ba9e -size 76281 diff --git a/MM_Math/data_original_21/7056088/math/52991506_51.png b/MM_Math/data_original_21/7056088/math/52991506_51.png deleted file mode 100644 index 4070dbad7c037781705fd3f3541334fa500b51cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991506_51.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb4b7712564def89624c4ce818b2fead26fd2ef2986c6a1822124f7842631ff3 -size 26761 diff --git a/MM_Math/data_original_21/7056088/math/52991509_96.png b/MM_Math/data_original_21/7056088/math/52991509_96.png deleted file mode 100644 index 30f160b66cc222d3b0b7f2fd0d829c56497bc7da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991509_96.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5092e8cd9a55cd7f995c939b661c39b6cd64f3b465eb3e8efee740c0483aee23 -size 28229 diff --git a/MM_Math/data_original_21/7056088/math/52991515_337.png b/MM_Math/data_original_21/7056088/math/52991515_337.png deleted file mode 100644 index 26b626a8d878884fdf32313ad669d39ec863b6ad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991515_337.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fc0a88865c68732303a143f8e85bdfe1023759ec847b717f5d7994504604f3e -size 8913 diff --git a/MM_Math/data_original_21/7056088/math/52991542_809.png b/MM_Math/data_original_21/7056088/math/52991542_809.png deleted file mode 100644 index f301c64141c4a7fe8cad6def2f63de7865d0ae2d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991542_809.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e8472cea4c3b1c582f3c45ac55882201e00209efc9403a94c9b7c2e7e988cac -size 13021 diff --git a/MM_Math/data_original_21/7056088/math/52991552_80.png b/MM_Math/data_original_21/7056088/math/52991552_80.png deleted file mode 100644 index 292716ed4bcb704d398c854465c154c0cc3be3e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991552_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:600b835313c4a98482cf1d2eeae5d5b592340d797d236eb57bb167bb843089ac -size 3718 diff --git a/MM_Math/data_original_21/7056088/math/52991574_797.png b/MM_Math/data_original_21/7056088/math/52991574_797.png deleted file mode 100644 index d34ad4caa39c4b0b4b5283837ac0e5e7e7a6771b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991574_797.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee8f9e4734bee5816e1d35b019f55d23f85fe9f6c177e1a066bb3afeb1246ecc -size 87944 diff --git a/MM_Math/data_original_21/7056088/math/52991580_757.png b/MM_Math/data_original_21/7056088/math/52991580_757.png deleted file mode 100644 index 6b88ebe2b8b045bda2ff76d5222a811558a28102..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991580_757.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1a5afc0be2a00610f8d75b20f1c89059c6059d6c91d93d2edb45a29da04c9394 -size 125503 diff --git a/MM_Math/data_original_21/7056088/math/52991840_63.png b/MM_Math/data_original_21/7056088/math/52991840_63.png deleted file mode 100644 index d791e600bcd5cbd5f82c9dc04ca7b99de21abc91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991840_63.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4db9ee6f21ab8a1e06f087eac3faefd57ce1427b0c4e3ea2057602c66480e0de -size 6945 diff --git a/MM_Math/data_original_21/7056088/math/52991845_77.png b/MM_Math/data_original_21/7056088/math/52991845_77.png deleted file mode 100644 index 74003af68153f55d50394a9cabb901ab9837fa35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991845_77.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80d82c71bb1aac170f8d5f13bc76b60b6490fbadf5bdd365344adc15c101c2b3 -size 33760 diff --git a/MM_Math/data_original_21/7056088/math/52991847_313.png b/MM_Math/data_original_21/7056088/math/52991847_313.png deleted file mode 100644 index 0acc3b52406b5cd6d36692408bcfa7e64fd3715b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991847_313.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4c4cda46a0a10cd5e74181d6a3c2ecc91fa0c3a20c0c024ba73aacb84783e1b -size 10756 diff --git a/MM_Math/data_original_21/7056088/math/52991850_304.png b/MM_Math/data_original_21/7056088/math/52991850_304.png deleted file mode 100644 index 83486848f62ddc6806441ed1756a63548b6a0e5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991850_304.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fcf5ffaf2a1d736798ab543c435f5aedb69d65b948ed55a26d4dc8bc0580b4b6 -size 7756 diff --git a/MM_Math/data_original_21/7056088/math/52991859_586.png b/MM_Math/data_original_21/7056088/math/52991859_586.png deleted file mode 100644 index d316cb5739838c0a34dbd831502f752e2d3de0de..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991859_586.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6299a9f17f5ac89b32329a4388378bc978080c770fa532aaa7a29d9358352832 -size 9080 diff --git a/MM_Math/data_original_21/7056088/math/52991872_768.png b/MM_Math/data_original_21/7056088/math/52991872_768.png deleted file mode 100644 index f57fc3b660784adfd8bc1852847d3bc42cf61eef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52991872_768.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1d76a205695e22ae1ea2adec6ac12f5dd558cb11f64f6ed9ba6189562fc7eec -size 19809 diff --git a/MM_Math/data_original_21/7056088/math/52992231_323.png b/MM_Math/data_original_21/7056088/math/52992231_323.png deleted file mode 100644 index 315dabd57a1f15380acf9b79858acd86693a9d6e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/52992231_323.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8f6b82ebb199630da4c75ac8b053ac6b40807e6526ef900356a72c6f45e686a -size 11117 diff --git a/MM_Math/data_original_21/7056088/math/53009947_280.jpeg b/MM_Math/data_original_21/7056088/math/53009947_280.jpeg deleted file mode 100644 index 48012fd0bc296af5f52c644b497548a18583695a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53009947_280.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c04ebfd344f516e3362da0eafdd4f773b02d8faf5294f15278d5da89f0226be8 -size 2900 diff --git a/MM_Math/data_original_21/7056088/math/53009960_740.jpeg b/MM_Math/data_original_21/7056088/math/53009960_740.jpeg deleted file mode 100644 index 907f489f935d303148b79d804d62a94177f0c11d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53009960_740.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23bb0c3d16e3e2bbd45b5891e292df69d86aa08d643562b10bfd84f961cb54b3 -size 3735 diff --git a/MM_Math/data_original_21/7056088/math/53009966_720.jpeg b/MM_Math/data_original_21/7056088/math/53009966_720.jpeg deleted file mode 100644 index e48a005edabd68e759a403ccbb961f9c0cfd9d4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53009966_720.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4c4135b7dc53c37c520136df5052e4117f77ae30c5b5f406c69bc0d295d1430 -size 4373 diff --git a/MM_Math/data_original_21/7056088/math/53009969_730.jpeg b/MM_Math/data_original_21/7056088/math/53009969_730.jpeg deleted file mode 100644 index d181a67e689afa4070ca1f3dbfcbf32366fa85d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53009969_730.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e9438524f35f0b99a27ef53c2b512b245e322fa613d6a7019fc3e15cb34ebe0 -size 9615 diff --git a/MM_Math/data_original_21/7056088/math/53019683_716.png b/MM_Math/data_original_21/7056088/math/53019683_716.png deleted file mode 100644 index 4d121c7e96610c0cf3e6e711cc2f1a8191bb5bb1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53019683_716.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc64abacb6ca8ab2c55e6400232a54e72a49209f3324bd1aaaced719a28041b1 -size 2506 diff --git a/MM_Math/data_original_21/7056088/math/53019770_277.png b/MM_Math/data_original_21/7056088/math/53019770_277.png deleted file mode 100644 index 112238993973b71f2ac6a05786dabf00f87f0a29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53019770_277.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c05798ad2ad5f0f1b14633d01df7bfa236ea003db59c9b49f511a73691d9116a -size 2108 diff --git a/MM_Math/data_original_21/7056088/math/53019895_704.png b/MM_Math/data_original_21/7056088/math/53019895_704.png deleted file mode 100644 index 91becf55d57a46c4fdfb71ab6ac6fbd3607cd879..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53019895_704.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e68e4b6a113082ee8772c232467f37288dc144f6db613efad7b122cfb322f4a8 -size 101535 diff --git a/MM_Math/data_original_21/7056088/math/53032947_43.png b/MM_Math/data_original_21/7056088/math/53032947_43.png deleted file mode 100644 index 89366957b09cefa4936bc8e6c03b9d8c32cb61a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53032947_43.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5c8be773e882c81ca3a7249ad5bdf79a9645d4eb772552f16ffcb125f62b0556 -size 31690 diff --git a/MM_Math/data_original_21/7056088/math/53032950_266.png b/MM_Math/data_original_21/7056088/math/53032950_266.png deleted file mode 100644 index de7b49b41daf77f03751f1dec27902581ffff795..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53032950_266.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50d2415581c248d66c93d0c1aa1d054113b0e2440fe38c550d107891203cba05 -size 3587 diff --git a/MM_Math/data_original_21/7056088/math/53101929_579.png b/MM_Math/data_original_21/7056088/math/53101929_579.png deleted file mode 100644 index 0b44ecc1fa8dbf9b9acfcddcc155d2ecb8bcfd46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53101929_579.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2138f17961253e3496a11a27a31dcb4f8c7b56ebe6613d198ccc803431807453 -size 19322 diff --git a/MM_Math/data_original_21/7056088/math/53102067_24.png b/MM_Math/data_original_21/7056088/math/53102067_24.png deleted file mode 100644 index 0b9d6bf40e849b8547c42ca17ee22050aed4a8da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53102067_24.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a842d2cfc3142634acc07803156b479808255742c0c2f4cd78461646a24e157 -size 39306 diff --git a/MM_Math/data_original_21/7056088/math/53102142_32.png b/MM_Math/data_original_21/7056088/math/53102142_32.png deleted file mode 100644 index f593835495ae3a17f1e44ff76ca4654da81f0cd9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53102142_32.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe2db9084bd37e780b14af525c40aad2fb1245ef37bb1e1cc76d3d4a81ba1a83 -size 8364 diff --git a/MM_Math/data_original_21/7056088/math/53102148_09.png b/MM_Math/data_original_21/7056088/math/53102148_09.png deleted file mode 100644 index 829a970b127e73e925c0c44172c78304875e3dff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53102148_09.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8899b891487c43f03f87dca93cbba165f338b93138392116b6396d172b1708be -size 91270 diff --git a/MM_Math/data_original_21/7056088/math/53102159_686.png b/MM_Math/data_original_21/7056088/math/53102159_686.png deleted file mode 100644 index 3939b693a4e75541b0a49e27d97baea949815e1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53102159_686.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:abd868b186cdaf827e87ebe5c7a0156e73798c0da94c6f60ecb180694f7e8ab7 -size 71660 diff --git a/MM_Math/data_original_21/7056088/math/53102165_6710.png b/MM_Math/data_original_21/7056088/math/53102165_6710.png deleted file mode 100644 index d133fe041bc9aa5bc80cdede76bd67981266c87a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53102165_6710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54f4a43608315e98f2adb8b3a14c059a85d5f322e2508198eb3f6822c39746f8 -size 98671 diff --git a/MM_Math/data_original_21/7056088/math/53102179_110.png b/MM_Math/data_original_21/7056088/math/53102179_110.png deleted file mode 100644 index d075ad222c12a23ec76345fa3a963b76a4003d4b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53102179_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d665c3e5573c67ed64dc10eac8963023c14cf6132e7cabea199eb35f0e84026b -size 54816 diff --git a/MM_Math/data_original_21/7056088/math/53102192_656.png b/MM_Math/data_original_21/7056088/math/53102192_656.png deleted file mode 100644 index da8de46e254f18eca7bf7e4d41acdff51eba0b79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53102192_656.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce5b09e5a0cb04fae90a0cbd4127762a22a49595c378c57a88f7d27177e7f9cb -size 2319 diff --git a/MM_Math/data_original_21/7056088/math/53102198_6910.png b/MM_Math/data_original_21/7056088/math/53102198_6910.png deleted file mode 100644 index 97b31ca14b6079d7fbc1f2cdd69d78688cef2239..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53102198_6910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7574b9532cd643370ca349d7033f0b54b52515c9dd169ad901794666d49bebc8 -size 4114 diff --git a/MM_Math/data_original_21/7056088/math/53102206_6603.png b/MM_Math/data_original_21/7056088/math/53102206_6603.png deleted file mode 100644 index 6906673710cd5ea031e4d92660630ae3e72e41a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53102206_6603.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6977c12e83e894c79fbc08575ae521acb13c3635d44f4de1b3fd2d89a153e70f -size 44275 diff --git a/MM_Math/data_original_21/7056088/math/53102207_6616.png b/MM_Math/data_original_21/7056088/math/53102207_6616.png deleted file mode 100644 index ff966cab63f52318dfe5658c79b1b7629eaa6511..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/math/53102207_6616.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc7db5993f1b0c229cc37ac727376a3146290c7b41004ef0790315370ca58bf9 -size 84498 diff --git a/MM_Math/data_original_21/7056088/solution_images/52933339_253.png b/MM_Math/data_original_21/7056088/solution_images/52933339_253.png deleted file mode 100644 index 3a8bcd4b167455d21ed2ccf279563392dc0c8932..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52933339_253.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:229fa2175169a9e8800f238208e43762dd844d3729e9a084ab16c97808f37b83 -size 3218 diff --git a/MM_Math/data_original_21/7056088/solution_images/52935301_220.png b/MM_Math/data_original_21/7056088/solution_images/52935301_220.png deleted file mode 100644 index dac4f22469f787903f7ee358757d673f8712fc0a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52935301_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8dc48cd85ff11810712ae362d098561e2059ec51c28881825486bc0e9c5e522c -size 7361 diff --git a/MM_Math/data_original_21/7056088/solution_images/52935302_230.png b/MM_Math/data_original_21/7056088/solution_images/52935302_230.png deleted file mode 100644 index 662273d9f22b7a23e1628e57233d850c5c1ff8d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52935302_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c469867168d781f98730687ba614b3d4989df9d247a63a4727272944e4fd89f -size 4537 diff --git a/MM_Math/data_original_21/7056088/solution_images/52936222_550.png b/MM_Math/data_original_21/7056088/solution_images/52936222_550.png deleted file mode 100644 index b101dc8b3e77edb89d2feac17b7140e275826e68..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52936222_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4217cb9f1e21e7448ba6757243e3c2a4052245ad02fa44bacdb5844cc7b33e34 -size 3607 diff --git a/MM_Math/data_original_21/7056088/solution_images/52936345_210.png b/MM_Math/data_original_21/7056088/solution_images/52936345_210.png deleted file mode 100644 index 0f3aff547409a17c7c1587b5d33ae21e7c18913e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52936345_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a17d0388ee7f194b5ba9f1f137bb52c9f1bf6f5850e1ee73152d04bffc4a314 -size 8561 diff --git a/MM_Math/data_original_21/7056088/solution_images/52963745_510.png b/MM_Math/data_original_21/7056088/solution_images/52963745_510.png deleted file mode 100644 index 33297d17debadfee16882c7f34c8845141f64ebb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52963745_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f322f1b4e0a080602a0e8cb3a624c778fb208da262e0b3fe5cac575ecc274f3f -size 8191 diff --git a/MM_Math/data_original_21/7056088/solution_images/52977191_4415.png b/MM_Math/data_original_21/7056088/solution_images/52977191_4415.png deleted file mode 100644 index 25de09375c20a433ff5f3b4cff5211cd74b20655..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52977191_4415.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9c95c6c6c9f691d8f9f88db5c3ff1863147b50095dffda0fb106a9a2c3690e3 -size 3126 diff --git a/MM_Math/data_original_21/7056088/solution_images/52977308_360.png b/MM_Math/data_original_21/7056088/solution_images/52977308_360.png deleted file mode 100644 index 2c26762c38094c8cadf88624402d9be353633cff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52977308_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6143c8e4f682b7b102112e3c3dcbaae2a983aad5290f2c53fc14c9fdbd442d56 -size 13626 diff --git a/MM_Math/data_original_21/7056088/solution_images/52977730_141.png b/MM_Math/data_original_21/7056088/solution_images/52977730_141.png deleted file mode 100644 index 1a986773714739945666ee33e9d2b174aa9d9655..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52977730_141.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3026b88407f727019a481d4f822f4ba033b3ec14a0255acb8a62ee0043f481ea -size 3974 diff --git a/MM_Math/data_original_21/7056088/solution_images/52977770_450.png b/MM_Math/data_original_21/7056088/solution_images/52977770_450.png deleted file mode 100644 index 46af494d9de3b784aa3445cf7b307880d2a629b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52977770_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f71139a3a2f3f47800f944afe3092c736d268e99ee4fe46fbaa4a312500c9fdf -size 3986 diff --git a/MM_Math/data_original_21/7056088/solution_images/52977800_410.jpeg b/MM_Math/data_original_21/7056088/solution_images/52977800_410.jpeg deleted file mode 100644 index 89f6da8bf05eac7fc682fd10304219c781400ee0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52977800_410.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a16eee9a95e2a6908a0b47962959bd0c6a0aa863af3884aa3bea8908749241c5 -size 3462 diff --git a/MM_Math/data_original_21/7056088/solution_images/52977898_352.png b/MM_Math/data_original_21/7056088/solution_images/52977898_352.png deleted file mode 100644 index 6696171cefb0f440de98251df71315211bc97aff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52977898_352.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a272034eef15573224ab2e9537b478a5f6812c2c99434ef720147383c488a6fb -size 3727 diff --git a/MM_Math/data_original_21/7056088/solution_images/52977901_4711.png b/MM_Math/data_original_21/7056088/solution_images/52977901_4711.png deleted file mode 100644 index fa757fb71e7a68b196de5e6b281198ec5e5ae9d9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52977901_4711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db4533d59e88327272165c2705ea75641aae25935431a70ad5e7fd6d00e8c4b8 -size 3416 diff --git a/MM_Math/data_original_21/7056088/solution_images/52977968_392.png b/MM_Math/data_original_21/7056088/solution_images/52977968_392.png deleted file mode 100644 index 867d2d6cd02a4ba0a8be1fb64170691468301178..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52977968_392.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40549af59c71387fa8595ff8601988988bb803a1ee30928d5ab8e83a897ec018 -size 2805 diff --git a/MM_Math/data_original_21/7056088/solution_images/52991371_340.png b/MM_Math/data_original_21/7056088/solution_images/52991371_340.png deleted file mode 100644 index 4859a511cb810f36bf7be7c43a4d574b74572fda..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52991371_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc9764c05a7786b6c105171a7e6b425868e03ad17570df2f3117a9d1c935378f -size 116628 diff --git a/MM_Math/data_original_21/7056088/solution_images/52991441_290.png b/MM_Math/data_original_21/7056088/solution_images/52991441_290.png deleted file mode 100644 index cd706e4a89abc0d92a422d3578b3880225fd93d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/52991441_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d892dace0aea596c5db949c386dd6b14b4588b4308fb8554d690e2df52314e40 -size 4002 diff --git a/MM_Math/data_original_21/7056088/solution_images/53032947_41.png b/MM_Math/data_original_21/7056088/solution_images/53032947_41.png deleted file mode 100644 index a310dd3fc0ff2d34a90b634f19ad9a25fde70d46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/53032947_41.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04a019bfcc17948698c66191b64cc1d4b1772574fde4b7ed55227a625b042a92 -size 34479 diff --git a/MM_Math/data_original_21/7056088/solution_images/53102179_13.png b/MM_Math/data_original_21/7056088/solution_images/53102179_13.png deleted file mode 100644 index 08268ed3c4b0500394ea6a4ec9259c0b5bc42e95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/53102179_13.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6dbbfbaadecb355d720757ec86a4bc6f6f6f452954ca28c3ea4757276c739dd -size 66076 diff --git a/MM_Math/data_original_21/7056088/solution_images/53102205_663.png b/MM_Math/data_original_21/7056088/solution_images/53102205_663.png deleted file mode 100644 index 5e1f46164bc58e342b58a57c309d720cd6d3d3f0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056088/solution_images/53102205_663.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2223da185356eab7912a8bf1c430acf67ec0919665ac89b2dd1970359261cb89 -size 49941 diff --git a/MM_Math/data_original_21/7056237/math/52793251_9913.png b/MM_Math/data_original_21/7056237/math/52793251_9913.png deleted file mode 100644 index 33876606556789f39a00cfa3838e7b0b515919d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52793251_9913.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:792bc5f9b238ca8e347d937ee1e8a46de9d6d5b9fc7b4fec3256f3b65b4d7023 -size 3303 diff --git a/MM_Math/data_original_21/7056237/math/52793383_807.png b/MM_Math/data_original_21/7056237/math/52793383_807.png deleted file mode 100644 index 7d3dd11aea8aaff15f387f80ec54cf43ea555bf5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52793383_807.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ddae04f55e90a69a55b5275e9ee192c0fe05703be784df446d1c6bf7a3bd1b6 -size 8112 diff --git a/MM_Math/data_original_21/7056237/math/52793389_7911.png b/MM_Math/data_original_21/7056237/math/52793389_7911.png deleted file mode 100644 index 5e853cd74e96c33ac43a8dcbde9861f802397a54..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52793389_7911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2f73f90c7a3612052fc8ff496a7f86d5af6892f699643b680bdaf3e802f5fb1 -size 57158 diff --git a/MM_Math/data_original_21/7056237/math/52793595_387.png b/MM_Math/data_original_21/7056237/math/52793595_387.png deleted file mode 100644 index 6b1f8be7a76d5d68c69d80b76880aa8b17cd0f5b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52793595_387.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a1dcce2146eae6aa4ab02f9c0b78e58e2835a010cbd6e93545bd65d85a88f33 -size 13148 diff --git a/MM_Math/data_original_21/7056237/math/52793606_468.png b/MM_Math/data_original_21/7056237/math/52793606_468.png deleted file mode 100644 index aee1bd5db47b895fe18ffcc4a36c132f0720a967..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52793606_468.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ca1fac02b7cedcf7e0b82392e72aea4af21bb98b5847c7594beb65ff6eb81ea -size 6388 diff --git a/MM_Math/data_original_21/7056237/math/52793804_788.png b/MM_Math/data_original_21/7056237/math/52793804_788.png deleted file mode 100644 index abd86791b0a47e4002e2370ad6f0826f141c417a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52793804_788.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d12f3a628318d5911cadf878d4bf1b77982a37a2753e8ce7099678cb6241f4fc -size 115927 diff --git a/MM_Math/data_original_21/7056237/math/52796878_360.png b/MM_Math/data_original_21/7056237/math/52796878_360.png deleted file mode 100644 index 227bd3f13a61beb09b3d0110eeef87c1e6db6e38..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52796878_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:552b54e3eb843186d8f6f1c6f715968a20b3549988abc828fcbebc4276f41e8d -size 5832 diff --git a/MM_Math/data_original_21/7056237/math/52796915_987.png b/MM_Math/data_original_21/7056237/math/52796915_987.png deleted file mode 100644 index 8789c1f4921a7266af1eb5df2aebfdaddbc1f3cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52796915_987.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e8ff75adb5e6904dc967dc6254ef89498cef7a07145e58c771e7d4b923dac307 -size 4958 diff --git a/MM_Math/data_original_21/7056237/math/52796970_474.png b/MM_Math/data_original_21/7056237/math/52796970_474.png deleted file mode 100644 index 2946f24f97a24986345f1f37c394dc4120fd7db1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52796970_474.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f6fdf7e3c5b2f6331b8aba716ae01447e5766008bb7be73a320a6263ae4f1f3 -size 5323 diff --git a/MM_Math/data_original_21/7056237/math/52797042_390.png b/MM_Math/data_original_21/7056237/math/52797042_390.png deleted file mode 100644 index d5824d4fd05ae9bb3224eb3558307300966ac6a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52797042_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ea28c134aad81219b6704c0ef6d361c9428947e4a68af7208476b572b72fe84 -size 1715 diff --git a/MM_Math/data_original_21/7056237/math/52797163_376.png b/MM_Math/data_original_21/7056237/math/52797163_376.png deleted file mode 100644 index 6b7cb7e3481aca035f733af00ccb236c11e93dbe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52797163_376.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11fccca78d5db7007d5beb6d8358cbace0354e8f6a270a92dd1c7de0078cb497 -size 21631 diff --git a/MM_Math/data_original_21/7056237/math/52797177_778.png b/MM_Math/data_original_21/7056237/math/52797177_778.png deleted file mode 100644 index d857ea27f7221b6579059ab11cc77fa896250a07..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52797177_778.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e8a62bc5c039b57e018fcf560cd601ae01e8f4eac0a9f34c396469bb6eff87f -size 3718 diff --git a/MM_Math/data_original_21/7056237/math/52807991_970.png b/MM_Math/data_original_21/7056237/math/52807991_970.png deleted file mode 100644 index a9ba2f27aef82dc031ae55caa6be93ea71f0bde9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52807991_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd2b8daf68807df61cd827b172fe0881fa3ced909274a126634cad0cac6c44c9 -size 4076 diff --git a/MM_Math/data_original_21/7056237/math/52807995_960.png b/MM_Math/data_original_21/7056237/math/52807995_960.png deleted file mode 100644 index 81e00e38229a3ddef0556aa281dd1438b263f472..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52807995_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b4825c3e945e4f82ceaf518a93c4133abd1a11f804f2868d643ed44f4f2491d -size 6130 diff --git a/MM_Math/data_original_21/7056237/math/52808003_340.png b/MM_Math/data_original_21/7056237/math/52808003_340.png deleted file mode 100644 index 272b9c39ee4d379871e598fb1094dfe3db0425f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52808003_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1a3a7e764e00860f5f1bc3b5d61a158d54921eaea3b5ab24655fe1618506ba72 -size 21523 diff --git a/MM_Math/data_original_21/7056237/math/52808005_358.png b/MM_Math/data_original_21/7056237/math/52808005_358.png deleted file mode 100644 index 199f117b43dd580fc90d5d0ec9cd7ca0d9e46791..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52808005_358.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d695c18bde4fe088b44dd08b738f4c60dca9b5c0eeaf907a40ec281fadcaf8f -size 15856 diff --git a/MM_Math/data_original_21/7056237/math/52808005_359.png b/MM_Math/data_original_21/7056237/math/52808005_359.png deleted file mode 100644 index 7a9a0a18134b14ed9823fe2dc596c09e7eb92cc0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52808005_359.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a112551dc418e1eb92f0cd1e51cd2b9ef4aa105e5aad436ec2905e2ecb30b02 -size 19991 diff --git a/MM_Math/data_original_21/7056237/math/52808104_330.png b/MM_Math/data_original_21/7056237/math/52808104_330.png deleted file mode 100644 index 1f2b087aeb89ebf07f03a76f23213457a42e7ff9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52808104_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a22615feb3d83a408ac56ffca6950c2c1b732e79304c15252a69512732f8aa23 -size 30720 diff --git a/MM_Math/data_original_21/7056237/math/52827667_952.png b/MM_Math/data_original_21/7056237/math/52827667_952.png deleted file mode 100644 index bac5969e3ae31d184edc78bbdd1c6bd58391a72e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52827667_952.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b1e2b4450e284ced2a3cd65d3f2f8c4e3fddb3a1c55b244d199da314c6299cb -size 8839 diff --git a/MM_Math/data_original_21/7056237/math/52827684_4514.png b/MM_Math/data_original_21/7056237/math/52827684_4514.png deleted file mode 100644 index 4ddca3462259462ee87e00d0cd34c784462ba22d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52827684_4514.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a853781e5d0715e2cd20ed38a3330fc30bc4ba3aa161a707cf752e33de7f162f -size 10864 diff --git a/MM_Math/data_original_21/7056237/math/52827689_766.png b/MM_Math/data_original_21/7056237/math/52827689_766.png deleted file mode 100644 index d7e80d0c651d4cce30abbbe07b2d75d419d86f01..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52827689_766.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b69195052669a6450b76b444367d0701f33e8fc679ad0ab7e468b4f0ffaf78d -size 4867 diff --git a/MM_Math/data_original_21/7056237/math/52861184_940.png b/MM_Math/data_original_21/7056237/math/52861184_940.png deleted file mode 100644 index 0133d4008ee03dcab2d101e5cbb8b21775cbcc7f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52861184_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29fe42a235b2ab99dce3e645e9739f5420b2eac62b0afa85b6eaafd423d3ffb2 -size 48616 diff --git a/MM_Math/data_original_21/7056237/math/52861188_301.png b/MM_Math/data_original_21/7056237/math/52861188_301.png deleted file mode 100644 index 8435e58ef0f139af030c9b037062be3106a8f014..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52861188_301.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef30f4bed8fd426158398e02f086d2fa0439d9f710beff61c1a89017a361f00f -size 2708 diff --git a/MM_Math/data_original_21/7056237/math/52861189_310.png b/MM_Math/data_original_21/7056237/math/52861189_310.png deleted file mode 100644 index 438901af36daebfc632ae1cfcdcdb8cff9c6a691..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52861189_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b622d07bb18b3a444ce098de29d096c97abde3b929066aa7836a439e314a460 -size 5787 diff --git a/MM_Math/data_original_21/7056237/math/52861190_323.png b/MM_Math/data_original_21/7056237/math/52861190_323.png deleted file mode 100644 index 50abb314784e2a9c092dd8aa01aa7616d1f31fe7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52861190_323.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c43dcdce63984601a50e24f739d6cb9889ecc70e0a7cc652e749448b0b82128 -size 7341 diff --git a/MM_Math/data_original_21/7056237/math/52861191_290.png b/MM_Math/data_original_21/7056237/math/52861191_290.png deleted file mode 100644 index 060dadd6a52e0a7eb1de03475e9710f72c9ec786..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52861191_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16b78c68b6b8935975271d4acf430b07f05b8e6abe6cda07f8e2e8a68b9aaee5 -size 6019 diff --git a/MM_Math/data_original_21/7056237/math/52861195_750.png b/MM_Math/data_original_21/7056237/math/52861195_750.png deleted file mode 100644 index 82ad2bd254a5c1c97b124d81067a6c03ec16cda8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52861195_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8af4e11ce31f0a405cfd9f323294efba7a8032b396e84c6cb4a568df0cedac52 -size 5603 diff --git a/MM_Math/data_original_21/7056237/math/52861213_740.png b/MM_Math/data_original_21/7056237/math/52861213_740.png deleted file mode 100644 index f13befe48b7fbc785b99a8a2b4c9d5fe6cfa4978..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52861213_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45a15ec3a860feb0c0d56f1b70e9fe27a39741f84fe51b190e264cf4f8720e7d -size 38179 diff --git a/MM_Math/data_original_21/7056237/math/52861885_921.png b/MM_Math/data_original_21/7056237/math/52861885_921.png deleted file mode 100644 index b39f606448dc077aef997a7e124e3457657ee868..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52861885_921.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82b7c648b1faae5360afb5f3356d1f524b3b9eaefdb5a683c6027bc279217ddb -size 66240 diff --git a/MM_Math/data_original_21/7056237/math/52861918_731.png b/MM_Math/data_original_21/7056237/math/52861918_731.png deleted file mode 100644 index 497f6689e298d3ca433d268d1ce5e23f1b38a919..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52861918_731.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8a1468f65594004785bf5926b4ad305e3ae2f30b942acf3301a1f8ef1c0a5d7 -size 66176 diff --git a/MM_Math/data_original_21/7056237/math/52865964_915.png b/MM_Math/data_original_21/7056237/math/52865964_915.png deleted file mode 100644 index 1901fa8aae844ab04d0b4fd906d21197404ca485..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52865964_915.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4da8186ba648c36ca258f8f2ac701e5175977f230fee50771e77bd0f3ccaae83 -size 2471 diff --git a/MM_Math/data_original_21/7056237/math/52866013_230.png b/MM_Math/data_original_21/7056237/math/52866013_230.png deleted file mode 100644 index 497a95a46168850bb42ae0dcc8fb246201029d9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866013_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04d0371c93c53ad58bf3af4dfe5cfdeab47b4af3eb52ccff140bcd9e3e4f51ea -size 21123 diff --git a/MM_Math/data_original_21/7056237/math/52866019_700.png b/MM_Math/data_original_21/7056237/math/52866019_700.png deleted file mode 100644 index 98ec3e592e5fd9bcaf1636a07baca914272ae2a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866019_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b74cdd60fd139c042f9dabc0c8be4b50a2a9454042a28d364ac7c6e40cbd1df5 -size 14298 diff --git a/MM_Math/data_original_21/7056237/math/52866129_273.png b/MM_Math/data_original_21/7056237/math/52866129_273.png deleted file mode 100644 index 836357b05c1fec133f3dc7f9534717aa94da3a81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866129_273.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20c75a6e6e5a3f01ab4d2e6735bf7e933570440bf4c1ce050f6a945987dfc70e -size 2432 diff --git a/MM_Math/data_original_21/7056237/math/52866224_9010.png b/MM_Math/data_original_21/7056237/math/52866224_9010.png deleted file mode 100644 index f03da1385703135aae08710d088654a0e1c75eb0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866224_9010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98efc089aaf4eec9abd547a82c9c3c6f91f10bd2a97903c495ebcb4c5fcc87cf -size 4530 diff --git a/MM_Math/data_original_21/7056237/math/52866230_284.png b/MM_Math/data_original_21/7056237/math/52866230_284.png deleted file mode 100644 index 463ce6594ed5143e29de8238ed9e0d4f63db3ecb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866230_284.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2e06dc39170f1f5f786c78e342de359af6b9a02ce7137c355350cbc5782b7e3 -size 3965 diff --git a/MM_Math/data_original_21/7056237/math/52866241_7110.png b/MM_Math/data_original_21/7056237/math/52866241_7110.png deleted file mode 100644 index 54882614fbcac5ae38c1c1d29bfb59c3d92546d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866241_7110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8491ddfc815ca842818c82903dabdb5c05399732c41852674e5da6799c47fdbc -size 2855 diff --git a/MM_Math/data_original_21/7056237/math/52866265_246.png b/MM_Math/data_original_21/7056237/math/52866265_246.png deleted file mode 100644 index 3190cb048febcd9b5d93f449068418817ea6077c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866265_246.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:26f079a685764c0fcfd90364604644ce008903b1805644d9dce88120ee6d7093 -size 2392 diff --git a/MM_Math/data_original_21/7056237/math/52866267_2510.png b/MM_Math/data_original_21/7056237/math/52866267_2510.png deleted file mode 100644 index 4088dc152a3ead05f52585224a7f1fb47c9bebc5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866267_2510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2968201223c467907e527c7763b409d4faeeb28bb4d36ed9f21bc14b5a014e1 -size 28804 diff --git a/MM_Math/data_original_21/7056237/math/52866279_722.png b/MM_Math/data_original_21/7056237/math/52866279_722.png deleted file mode 100644 index 53eb9f7bbf84c2dd786b7add1139898e89392592..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866279_722.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1454fdfd7594903d06e05ad32f7480991fc50d64b171117830349d2c4794515f -size 27340 diff --git a/MM_Math/data_original_21/7056237/math/52866359_893.png b/MM_Math/data_original_21/7056237/math/52866359_893.png deleted file mode 100644 index ada063eb18704a974ae5afb9b8dd1c948de3444d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866359_893.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81a78698a4d5d64809b494c572a7f5f2b0a5ef0eaba868e509d3cee3ce09b5ec -size 2695 diff --git a/MM_Math/data_original_21/7056237/math/52866377_440.png b/MM_Math/data_original_21/7056237/math/52866377_440.png deleted file mode 100644 index b158a19f52d03bfbbf2a4ce8741a4f9c0fe4b9b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866377_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:495936c12a3b5a5aca1c45cfe6dfa5807108badbc7afa47465a5a0f53bd1bab3 -size 3210 diff --git a/MM_Math/data_original_21/7056237/math/52866379_678.png b/MM_Math/data_original_21/7056237/math/52866379_678.png deleted file mode 100644 index ca99a40de174b939645c5f23fe539cef207174d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866379_678.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ad5dd1daa5551c7505d471eade88a34bc4e26537a4c9c5ce3a26e2345c5b28b8 -size 10543 diff --git a/MM_Math/data_original_21/7056237/math/52866404_263.png b/MM_Math/data_original_21/7056237/math/52866404_263.png deleted file mode 100644 index afa84c615fbdea2c4f34b86e6915ad03a19dc4c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866404_263.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50c0a4714ec6d1c5eec59200870f122ec59f804a5882e5c7837c2a694035c7e1 -size 2760 diff --git a/MM_Math/data_original_21/7056237/math/52866412_436.png b/MM_Math/data_original_21/7056237/math/52866412_436.png deleted file mode 100644 index e65a24102e0ad091538301572e8bff5e53dba715..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866412_436.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:399c1bf340b65e2fe8ed774760b6602586adb8884cdef2822e431a37f0c8147a -size 3223 diff --git a/MM_Math/data_original_21/7056237/math/52866587_698.jpeg b/MM_Math/data_original_21/7056237/math/52866587_698.jpeg deleted file mode 100644 index 21fbfb6a068bbc9d2111fa0ea6d4ca9c1ae772fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866587_698.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b72260457c21d45aa2ddf7cd346582e0ff7e7da67e8dad66524e3185b38a855e -size 40467 diff --git a/MM_Math/data_original_21/7056237/math/52866596_680.png b/MM_Math/data_original_21/7056237/math/52866596_680.png deleted file mode 100644 index d3cbd9480469974d4edbdafd3fce9f08322bcfde..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866596_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:385a35eda8ea7a6136b88ec948778cc3597e06e77d819c6d786be4ba8b915fd6 -size 120256 diff --git a/MM_Math/data_original_21/7056237/math/52866966_889.png b/MM_Math/data_original_21/7056237/math/52866966_889.png deleted file mode 100644 index 3e71b9f0ddac4b24dfd15dbf3fc02436e0c084aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52866966_889.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0db99cad83786e019757e0decf8e9a163d44d8ee8f890579af3837faead79af4 -size 13196 diff --git a/MM_Math/data_original_21/7056237/math/52871756_655.png b/MM_Math/data_original_21/7056237/math/52871756_655.png deleted file mode 100644 index 4f032895299b8e3e6a7ac20ccaa056b1e70dc856..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52871756_655.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6bd6a652e25d7c1c479e6f882b392575a05938709d4c7fe43654844079e43d51 -size 6048 diff --git a/MM_Math/data_original_21/7056237/math/52871849_213.png b/MM_Math/data_original_21/7056237/math/52871849_213.png deleted file mode 100644 index b0ab9d2f4a3844dc84c80fc7cc329f8fdd34b4bc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52871849_213.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d506fb09c6bb7024b01c1118f15c0bc58b2b855561ab47cf6a16d646130129cf -size 40462 diff --git a/MM_Math/data_original_21/7056237/math/52871853_664.png b/MM_Math/data_original_21/7056237/math/52871853_664.png deleted file mode 100644 index fe0d6259e942c61b33521c82ba87bca8948cf081..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52871853_664.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39cb3954f517c9e70ff811b8c79567a2970162f52fc2ca505cb29e95ac5a75a3 -size 45943 diff --git a/MM_Math/data_original_21/7056237/math/52871901_875.png b/MM_Math/data_original_21/7056237/math/52871901_875.png deleted file mode 100644 index b7641e6be37f08ff5d59e636185f4ba0b7debe1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52871901_875.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:763bc38ff76a5d33f99ee3987e54096e7033be0a5185df59b951b174f6b5835e -size 2959 diff --git a/MM_Math/data_original_21/7056237/math/52871905_205.png b/MM_Math/data_original_21/7056237/math/52871905_205.png deleted file mode 100644 index 8b9cd236ed1ea6ffe0973a0b78a99b287f25d382..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52871905_205.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a1a14a7006c91a44d92c0a182c391b2ebc02dee9aeaebbbd60182c6ff618c0f -size 2130 diff --git a/MM_Math/data_original_21/7056237/math/52872003_866.png b/MM_Math/data_original_21/7056237/math/52872003_866.png deleted file mode 100644 index c233720bff91f3dcd93fc8a294785c641fead3b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52872003_866.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8bfdc7f79dec1ef2d29aa8c35f08b2616ff5f3b2ecc2f0c09a284f1a24d054de -size 50992 diff --git a/MM_Math/data_original_21/7056237/math/52872012_228.png b/MM_Math/data_original_21/7056237/math/52872012_228.png deleted file mode 100644 index 1eb4ec2e141b820c6c04863403ed0aa4e3e85b0c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52872012_228.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e26533537d3d882caa6ed02a42640b89a5b76917e2748412437aa7ec7c087786 -size 5190 diff --git a/MM_Math/data_original_21/7056237/math/52872013_425.png b/MM_Math/data_original_21/7056237/math/52872013_425.png deleted file mode 100644 index abea4b29b77ce68676ab2918edf8b3a2fa9965b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52872013_425.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b63512460f4af0c9a9b5fba8e4cda14acdb9a87fe6c1f1b8a3b30d57cdc8d5f -size 55494 diff --git a/MM_Math/data_original_21/7056237/math/52874565_850.png b/MM_Math/data_original_21/7056237/math/52874565_850.png deleted file mode 100644 index 36a9d6c9922dbd45d3154eaf74d0faed2f07c946..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52874565_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24df03c9c2a8acd340b8f24f34bfc1c975f48e66119976c9f859163e32923b8a -size 7576 diff --git a/MM_Math/data_original_21/7056237/math/52874571_199.png b/MM_Math/data_original_21/7056237/math/52874571_199.png deleted file mode 100644 index 4f4b6737a63554013d44b8de144a3dbad9154b40..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52874571_199.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f615b39e7ae260a53b711a4d6272d3ada99c2aa93e22812040355420578ae318 -size 3529 diff --git a/MM_Math/data_original_21/7056237/math/52874674_180.png b/MM_Math/data_original_21/7056237/math/52874674_180.png deleted file mode 100644 index bfcd8bcee1ab143f563b5fe9fa4ae2f9fd389755..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52874674_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29a9cba3341237f542c546d6a1aeef4b67bb97d711ead1db51a0997c902bec2d -size 15936 diff --git a/MM_Math/data_original_21/7056237/math/52916837_65.png b/MM_Math/data_original_21/7056237/math/52916837_65.png deleted file mode 100644 index 51d055b1274beef720f36de19228e0ee222229e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52916837_65.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0b7103ab5b249ab69c0c7d708864149f247bd37e079fb0ccabc20126ed22840 -size 13295 diff --git a/MM_Math/data_original_21/7056237/math/52916840_416.png b/MM_Math/data_original_21/7056237/math/52916840_416.png deleted file mode 100644 index 573317f4f64eed1d781c13b2e22627f6424eb414..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52916840_416.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4c57914e603c2592ccae8afa30dc83ff3f40d14e7b1f493f9afd24894af61fb9 -size 14475 diff --git a/MM_Math/data_original_21/7056237/math/52916848_550.png b/MM_Math/data_original_21/7056237/math/52916848_550.png deleted file mode 100644 index 0ed06503f4a98be1b5c2133d8e0131f61a4ab7ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52916848_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41df1ade831d2f9442d5acad62faace8263d0939f410ea13539b3092c1e856b0 -size 2075 diff --git a/MM_Math/data_original_21/7056237/math/52917314_530.png b/MM_Math/data_original_21/7056237/math/52917314_530.png deleted file mode 100644 index d72349c902c5faa164de164ab938bc61838a6ef3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917314_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19e14ff14380c84c006b3940565160df62500fe08e341ec6038942bb81384639 -size 2376 diff --git a/MM_Math/data_original_21/7056237/math/52917325_825.png b/MM_Math/data_original_21/7056237/math/52917325_825.png deleted file mode 100644 index 18556d586a16ade3a6165a028bd5734997a54ca7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917325_825.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c0f343c0327b96d86e1f1e2ad5d53efc571c2c44c8b04ca38113776db1495c5 -size 2149 diff --git a/MM_Math/data_original_21/7056237/math/52917331_88.png b/MM_Math/data_original_21/7056237/math/52917331_88.png deleted file mode 100644 index a80e65c7138f83d1da9620cbf9d4e5aab0715117..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917331_88.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b2f3b176927679ec3ffb8a282c74343126a9fc9eb0fde8e41d9143d87754a09 -size 3376 diff --git a/MM_Math/data_original_21/7056237/math/52917339_564.png b/MM_Math/data_original_21/7056237/math/52917339_564.png deleted file mode 100644 index af8c3a43310d8cbafb3cd4351d5e0bc591771433..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917339_564.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f12c64010ec73e567f7442ac65a7fd1a74b52ceffb9f6013c08d89f189aac712 -size 50561 diff --git a/MM_Math/data_original_21/7056237/math/52917352_574.png b/MM_Math/data_original_21/7056237/math/52917352_574.png deleted file mode 100644 index 606de0bf4b44b0739be78211703cf8a06349e7cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917352_574.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:941f3212e07425508f9ee9b99ffbcd720a73484ea6bb32ff6bb160e6d94254ba -size 12039 diff --git a/MM_Math/data_original_21/7056237/math/52917358_817.png b/MM_Math/data_original_21/7056237/math/52917358_817.png deleted file mode 100644 index 8e3cb652a35f46594c18ace9a354784f3500ee35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917358_817.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3deaef62d4a8dea407f039bbdea9572a11bc55afc160302002a427a4970cf90e -size 14160 diff --git a/MM_Math/data_original_21/7056237/math/52917377_544.png b/MM_Math/data_original_21/7056237/math/52917377_544.png deleted file mode 100644 index f0b46e405016539254fbcb74300717030788dcc5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917377_544.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6dc2295c8c7c475a0754140fa5b8614a7974d8531b8183af521508b4cdc9b29d -size 74093 diff --git a/MM_Math/data_original_21/7056237/math/52917519_36.png b/MM_Math/data_original_21/7056237/math/52917519_36.png deleted file mode 100644 index 8f39274460dd0c699f5474fc50f1cfdb4ae082ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917519_36.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2811bdce619f07ea1c6111f0aa82fe1cdbc9e41658ec71f38823e739517b81a1 -size 5247 diff --git a/MM_Math/data_original_21/7056237/math/52917522_19.png b/MM_Math/data_original_21/7056237/math/52917522_19.png deleted file mode 100644 index f5e24abe691ff4e0ccd7ae579c3829b7c5f65fc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917522_19.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e67391e3aae9277d952f0214235b37f7750d58994fc01ec34970a0abbf73176d -size 3716 diff --git a/MM_Math/data_original_21/7056237/math/52917533_505.png b/MM_Math/data_original_21/7056237/math/52917533_505.png deleted file mode 100644 index ae4fed0ac11ad2c010b8d7e8cc13361de925d09f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917533_505.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7787855f9fabe25a4677046cf9c228d6f15157f2bf0841d9e86d96b4f6be489d -size 56094 diff --git a/MM_Math/data_original_21/7056237/math/52917561_173.png b/MM_Math/data_original_21/7056237/math/52917561_173.png deleted file mode 100644 index 95af7d2d0a54513abfddf6ca23b908d5be63e3b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917561_173.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d3c2a7e07ac6b1455e6614461bd54b92e2688beb867a9d64e9109358a393d03 -size 39237 diff --git a/MM_Math/data_original_21/7056237/math/52917562_165.png b/MM_Math/data_original_21/7056237/math/52917562_165.png deleted file mode 100644 index f3a80fec8e9a6fcacb2df02e56d7b31e37653ded..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917562_165.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5c8a3279d37aefbf116028c8b7e74103630835d13e50da1a9aa3d101890c37fa -size 19799 diff --git a/MM_Math/data_original_21/7056237/math/52917564_711.png b/MM_Math/data_original_21/7056237/math/52917564_711.png deleted file mode 100644 index 3dedcafc2a17a8a3eae48607f0ca883cbd083fe0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917564_711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18807701e21281ff45c3aa5adeb4aa0c0fa7294766b3469c2c97a2de00ec741a -size 37471 diff --git a/MM_Math/data_original_21/7056237/math/52917570_515.png b/MM_Math/data_original_21/7056237/math/52917570_515.png deleted file mode 100644 index 3b78f25dd15bc5170c064ab24239308c552fd5e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917570_515.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9819036ea586accf73c83a9c7520c9e3d1341a2ee4825ab5b66ff3ef63f3ca38 -size 3987 diff --git a/MM_Math/data_original_21/7056237/math/52917594_43.png b/MM_Math/data_original_21/7056237/math/52917594_43.png deleted file mode 100644 index 21c1723429c87d6127580935d27861cbb0c3b82f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917594_43.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69cd9ea9b31af2c2f2e9cad79b91646fe2ab43db62c6b58a554cd6ad4f14493d -size 14228 diff --git a/MM_Math/data_original_21/7056237/math/52917597_01.png b/MM_Math/data_original_21/7056237/math/52917597_01.png deleted file mode 100644 index 12c03cecfbae1b96adebbbcb0ba1989bc5eb0e08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917597_01.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a75e60475e31cef6ce54d8bb1fe4793f3a004d7ae46e6f170ae8dd41cf2eb0c -size 2174 diff --git a/MM_Math/data_original_21/7056237/math/52917601_586.png b/MM_Math/data_original_21/7056237/math/52917601_586.png deleted file mode 100644 index 6d174b4b6ea1e48615f99ff7fcf6fc5608a7ca71..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917601_586.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68644c55d8e3f87662914d3ea7974c69b9b02ff7b7193f975286937e52307e17 -size 9059 diff --git a/MM_Math/data_original_21/7056237/math/52917607_480.png b/MM_Math/data_original_21/7056237/math/52917607_480.png deleted file mode 100644 index 36a65aff89a08a5d81a237bafe13c50ac9cbeb9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917607_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5ae624d67d5589192f15aae488e949bbb6ca5ba4c3eab6f0d2bd53bd3621326 -size 5129 diff --git a/MM_Math/data_original_21/7056237/math/52917610_600.png b/MM_Math/data_original_21/7056237/math/52917610_600.png deleted file mode 100644 index 4b2efcd08a5b79db276f5f8a4b47973211794357..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917610_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fbe26812190f7bd82af967c02e8b09c00eeaa6bba6801eeb3d9d9e3f27e797b9 -size 5734 diff --git a/MM_Math/data_original_21/7056237/math/52917613_490.png b/MM_Math/data_original_21/7056237/math/52917613_490.png deleted file mode 100644 index 7b3d13da37825c1d673d4380da1bdd856a601151..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917613_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15d27a1f5179e8bbd7554902bf7714f6b66e431f4fe58b55d7d35580c6b68b09 -size 13094 diff --git a/MM_Math/data_original_21/7056237/math/52917616_5911.png b/MM_Math/data_original_21/7056237/math/52917616_5911.png deleted file mode 100644 index 8857da5d303705aeb95cf0d26834b1f74fe0082e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917616_5911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:09706dc01557e4ee96ed902107239359712516574b1a9a977a1b29bba55af1da -size 40937 diff --git a/MM_Math/data_original_21/7056237/math/52917632_25.png b/MM_Math/data_original_21/7056237/math/52917632_25.png deleted file mode 100644 index fe0638368d54a5fcc28f97580f25dc425b0a0290..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917632_25.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f8f38c85159e057b527014aaed42e46a7271a02dace68b71423501b97fbe7ed -size 63330 diff --git a/MM_Math/data_original_21/7056237/math/52917633_96.png b/MM_Math/data_original_21/7056237/math/52917633_96.png deleted file mode 100644 index d2191696ab5bf00bf6ab86299d93e72db8ad13f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917633_96.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7358af80ddbd3311ef14a6449a7317a5a4311845ab50d8ac3fe275fd4a93a1bb -size 66857 diff --git a/MM_Math/data_original_21/7056237/math/52917634_57.png b/MM_Math/data_original_21/7056237/math/52917634_57.png deleted file mode 100644 index 7d20cdfb19cdef5e722af381c3de565ce0bae014..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917634_57.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f5b854f7a9a86200b1243433880f02962e0ac60939b045743dfa1683b3b2351 -size 2785 diff --git a/MM_Math/data_original_21/7056237/math/52917636_1013.png b/MM_Math/data_original_21/7056237/math/52917636_1013.png deleted file mode 100644 index a5a71e2df8fd1a26110ab8c6d82014e047adfadf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917636_1013.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:09739a38764c0ea208e2b1101f8feb3069254f62af0c940f5606f525e894493c -size 35133 diff --git a/MM_Math/data_original_21/7056237/math/52917645_526.png b/MM_Math/data_original_21/7056237/math/52917645_526.png deleted file mode 100644 index a33f0f3b79ca4864d1a249b11c63b26d3a4d3d74..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917645_526.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96a822e774256aab7bfbc00069b739dfa96bd462cb2a9267b4c0f765504ff271 -size 66261 diff --git a/MM_Math/data_original_21/7056237/math/52917671_117.png b/MM_Math/data_original_21/7056237/math/52917671_117.png deleted file mode 100644 index 85edacac4098744542ef7e23ac6d7368b39996db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917671_117.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08b650056f69f7745367497804dd6cc794e6847f8debd5c32ac9657526bac2ae -size 20912 diff --git a/MM_Math/data_original_21/7056237/math/52917672_124.png b/MM_Math/data_original_21/7056237/math/52917672_124.png deleted file mode 100644 index 3b9dc15ddb8a23082b1a14551544bbd6f7c5fb18..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917672_124.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a558b7ef4b977a1ce04be186845a85037947d2a57c0604874893cd59e485d59 -size 8248 diff --git a/MM_Math/data_original_21/7056237/math/52917673_132.png b/MM_Math/data_original_21/7056237/math/52917673_132.png deleted file mode 100644 index 6f906047e2f65f379494b7ff2bc83dddd041173d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917673_132.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fbc7edb100ee80d5fbb3504040c6940bf1c38a0a86df08c19b565ceced721e2 -size 69643 diff --git a/MM_Math/data_original_21/7056237/math/52917680_616.png b/MM_Math/data_original_21/7056237/math/52917680_616.png deleted file mode 100644 index f1caf309f1e55abe93e96789c660010d4d22d404..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/52917680_616.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a403005d0f660dfb9e0457dd53be37d6e3e4ec45a6528d5c5939c594ab8e46f -size 76842 diff --git a/MM_Math/data_original_21/7056237/math/53106512_155.png b/MM_Math/data_original_21/7056237/math/53106512_155.png deleted file mode 100644 index 8c45e37f405baee5132f641b0da89a94786b5215..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/53106512_155.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76d12e5ecaf0b47ebed8814659ef68306f9a580013c30089684722c67277a88f -size 21966 diff --git a/MM_Math/data_original_21/7056237/math/53106523_629.png b/MM_Math/data_original_21/7056237/math/53106523_629.png deleted file mode 100644 index 9c24bb1696ed60f908020048447c04d1f366e208..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/53106523_629.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6baf13b9d39f0a5556ce3b615b480388e44ae041ffe074b6798dc8c163ffcd6 -size 11984 diff --git a/MM_Math/data_original_21/7056237/math/53106639_835.png b/MM_Math/data_original_21/7056237/math/53106639_835.png deleted file mode 100644 index 7bb81574ee4c2adc07bb6e40c0ae4e767ba8d2e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/53106639_835.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08facf6f509258ceb0aa392b7151ab198730b3d0f7d2d106e56b7570fce8b24f -size 16131 diff --git a/MM_Math/data_original_21/7056237/math/53106640_841.png b/MM_Math/data_original_21/7056237/math/53106640_841.png deleted file mode 100644 index d72cc5efa32fededc2337c8016fbda671c4a025d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/53106640_841.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:558c281e23100663b22f0bb1ecede933c8485d1c150cb7523e7df085884f96ac -size 58113 diff --git a/MM_Math/data_original_21/7056237/math/53106661_637.png b/MM_Math/data_original_21/7056237/math/53106661_637.png deleted file mode 100644 index aeac8a9f02b6a7ecfa0f091144a316181bfe3420..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/53106661_637.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f19703bd4ebb856a9edef24540e7dff8ae9ce265a19e65c2ee8f3d72d84a7dda -size 57374 diff --git a/MM_Math/data_original_21/7056237/math/53106779_144.png b/MM_Math/data_original_21/7056237/math/53106779_144.png deleted file mode 100644 index d4b6d8702eaa2372bebe762089472033f55c98ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/53106779_144.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:016378f43c40af82e897476b70c89ae7d2c715cfa82894e1718fc922f072c82c -size 15276 diff --git a/MM_Math/data_original_21/7056237/math/53106789_408.png b/MM_Math/data_original_21/7056237/math/53106789_408.png deleted file mode 100644 index d53734b981e08201d904f0a95cbb05bb5d9f7b4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/53106789_408.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:195913c1b0f0e33861d5c3bd4211ec891bfa10ce9aa48cdb5fb77d81dd6db4eb -size 16136 diff --git a/MM_Math/data_original_21/7056237/math/53106853_647.png b/MM_Math/data_original_21/7056237/math/53106853_647.png deleted file mode 100644 index be6998e0258e9f0b5471c1d2e3923908976f723f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/math/53106853_647.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d599667dbda109f44efebc791b10e143ceffaafdee0e5997c36e5b31f0b3e9b -size 4289 diff --git a/MM_Math/data_original_21/7056237/solution_images/52793251_990.png b/MM_Math/data_original_21/7056237/solution_images/52793251_990.png deleted file mode 100644 index 6a601a0ae9916f5e24af28204e048b4b251a7fb1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52793251_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db90116dc2532d14d666be09610617dada085eccc1d5936a9db8353bb222e4e3 -size 4026 diff --git a/MM_Math/data_original_21/7056237/solution_images/52797042_390.png b/MM_Math/data_original_21/7056237/solution_images/52797042_390.png deleted file mode 100644 index 0905402722486446d76cff14d25dab1824b61fa9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52797042_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28e3c4e6bef058a3e63178bf4dfb95a8488c3b00fc6b4e02771596d15b5cd078 -size 176145 diff --git a/MM_Math/data_original_21/7056237/solution_images/52797163_3720.png b/MM_Math/data_original_21/7056237/solution_images/52797163_3720.png deleted file mode 100644 index 99e3a9cc4b873b160675738ecfe20cd9630691c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52797163_3720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77d9ca2284c6443f85265b7472e9801ae4585d3eaaf4c141696a6148f35f36fd -size 23144 diff --git a/MM_Math/data_original_21/7056237/solution_images/52807995_960.png b/MM_Math/data_original_21/7056237/solution_images/52807995_960.png deleted file mode 100644 index be766061d09d69f77e8362ff48b64410709a0e20..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52807995_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04fe2afbdf15529dedf18fcad1168625dab18b203120a0b3e1101ed55381b434 -size 5980 diff --git a/MM_Math/data_original_21/7056237/solution_images/52808003_340.png b/MM_Math/data_original_21/7056237/solution_images/52808003_340.png deleted file mode 100644 index edcb97dcfeffac8a054346acf2bab529b7a7be06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52808003_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c109c504983105147f0d4d063d1bd5bd16a9a5e846cb970aec48cc71cfe84056 -size 10511 diff --git a/MM_Math/data_original_21/7056237/solution_images/52808005_350.png b/MM_Math/data_original_21/7056237/solution_images/52808005_350.png deleted file mode 100644 index c09a22c78a21d8e1f382cdc0f638a9978b9ab627..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52808005_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de3f4470fde341df4fe7378ab33825299082cbd7d5df5e31e352dcd5ea813d5c -size 10092 diff --git a/MM_Math/data_original_21/7056237/solution_images/52808005_356.png b/MM_Math/data_original_21/7056237/solution_images/52808005_356.png deleted file mode 100644 index ddf33745ca6701e105f18d83b193b1b2bb7c5f8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52808005_356.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1df22fa0377f00219b03183b2e11aac5a6537713ac91a3ed2b938db5ba9aeed2 -size 11471 diff --git a/MM_Math/data_original_21/7056237/solution_images/52861184_940.png b/MM_Math/data_original_21/7056237/solution_images/52861184_940.png deleted file mode 100644 index 620bb8fb9be98c290d5e2c0d87cd67b579481eb6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52861184_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3dc4b119ccd9605ecb71c542e09d31768bc15cd96e85ada44967f6e38a5b8ed3 -size 12352 diff --git a/MM_Math/data_original_21/7056237/solution_images/52861188_300.png b/MM_Math/data_original_21/7056237/solution_images/52861188_300.png deleted file mode 100644 index 5cfb6b3eecf06aff5bd55886da9466823eea7e51..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52861188_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5250418922dbf44240a4ea06332e2d17a112bc17f0cc35cf06259145651d6a6e -size 2871 diff --git a/MM_Math/data_original_21/7056237/solution_images/52861190_320.png b/MM_Math/data_original_21/7056237/solution_images/52861190_320.png deleted file mode 100644 index 48e99551291896e4dfceaf1e90158af32108cc30..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52861190_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06f962e814dc881c03ba35e20e74e86c2fb8e2651944987f5d1cd04b66cb1db5 -size 10825 diff --git a/MM_Math/data_original_21/7056237/solution_images/52861191_290.png b/MM_Math/data_original_21/7056237/solution_images/52861191_290.png deleted file mode 100644 index f5e5d2f961abf3eed14f6fff9d19a13515ff119f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52861191_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b963961466e59ef66aa37f1199b476d95a7c9c75788d7627c7c586a1b187cbd -size 11536 diff --git a/MM_Math/data_original_21/7056237/solution_images/52861885_920.png b/MM_Math/data_original_21/7056237/solution_images/52861885_920.png deleted file mode 100644 index 4194dab35a782abcbd2880b84c7afe67db41a1fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52861885_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d8510050f5d80d7e945935fa27b603528545b457d2e0b34962993ab9f9efb93 -size 16304 diff --git a/MM_Math/data_original_21/7056237/solution_images/52866230_280.png b/MM_Math/data_original_21/7056237/solution_images/52866230_280.png deleted file mode 100644 index 3b73787c0caca094e04aba55ba2192c6a27ceff8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52866230_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cafeb139ac218ff46bdc78e06b65fc84a41d1def6ac12de58a6de93f76938be7 -size 5147 diff --git a/MM_Math/data_original_21/7056237/solution_images/52866241_7112.png b/MM_Math/data_original_21/7056237/solution_images/52866241_7112.png deleted file mode 100644 index ff7ee6c069b7611178d9344258406c93845c8508..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52866241_7112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f3d89ca124b0e7772b95911a9edfc5d79e4b36ea07ef110c27fd34e529389d6 -size 3214 diff --git a/MM_Math/data_original_21/7056237/solution_images/52866966_884.png b/MM_Math/data_original_21/7056237/solution_images/52866966_884.png deleted file mode 100644 index ed57306e20fe8db34b73c2cac57f5e31507dbd30..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52866966_884.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f8a0c3bc39829221827cff5c1cc62f04412077f5329382151bb38c2cccb585d -size 6671 diff --git a/MM_Math/data_original_21/7056237/solution_images/52871901_870.png b/MM_Math/data_original_21/7056237/solution_images/52871901_870.png deleted file mode 100644 index 324e97d79132c53e5d7f8ce4ff1812096748c729..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52871901_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc2d3d4e5877fa98fe826b9cba90a37745c30aeee0ae9cf0b02ec12970749c51 -size 3951 diff --git a/MM_Math/data_original_21/7056237/solution_images/52872012_220.png b/MM_Math/data_original_21/7056237/solution_images/52872012_220.png deleted file mode 100644 index 73df60072091f4d602f9c45a9cab6cad981799ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52872012_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ff13adfa54cbddfa1a21f946698af93dcbd0794393934d7227dadab345be201 -size 6164 diff --git a/MM_Math/data_original_21/7056237/solution_images/52917564_715.png b/MM_Math/data_original_21/7056237/solution_images/52917564_715.png deleted file mode 100644 index 342c32287ea83a9dd2daf44187999a25b593494e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52917564_715.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a27b576d2fe1bbcc9f31e22ce72a7c97fab531ab03bca309458d69acf128b5f6 -size 91081 diff --git a/MM_Math/data_original_21/7056237/solution_images/52917632_22.png b/MM_Math/data_original_21/7056237/solution_images/52917632_22.png deleted file mode 100644 index 38112c2725bf3aadfcc43bbbf867d64e03451bb4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52917632_22.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:772f9d1d08d4de10758527c3d379686492b2f7b545b229542a462741a82dacda -size 73848 diff --git a/MM_Math/data_original_21/7056237/solution_images/52917636_103.png b/MM_Math/data_original_21/7056237/solution_images/52917636_103.png deleted file mode 100644 index 17e38831272e31a91886264507419e9c5ea8a082..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52917636_103.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1644b5c3cdaa90cbba6c034fb075c31b552205d8617906bdbb4f94a003f9ac2 -size 38532 diff --git a/MM_Math/data_original_21/7056237/solution_images/52917671_110.png b/MM_Math/data_original_21/7056237/solution_images/52917671_110.png deleted file mode 100644 index 7d8565a97330d0f084c8f18bfcd41fe24213dd3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056237/solution_images/52917671_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb004a476696921baabd24fc665ea76c40f2ca8ccb5b6bbdffffd14c6ab3c1ad -size 22287 diff --git a/MM_Math/data_original_21/7056275/math/51321575_230.png b/MM_Math/data_original_21/7056275/math/51321575_230.png deleted file mode 100644 index 52764662097af0bdd5ac9e80d9817c72f5f112f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51321575_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80fc9bbc2eeb4681cce67e010f4528a73171d73e4a124c75e710b201ea7573d6 -size 2319 diff --git a/MM_Math/data_original_21/7056275/math/51323834_222.png b/MM_Math/data_original_21/7056275/math/51323834_222.png deleted file mode 100644 index c262e2b6b56acc2d73c4e100a002a6fcdbdd25e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51323834_222.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:961064bd32093e61d2f4602896d481b4d2c59cb9917bd205ca4c788f88feb619 -size 4692 diff --git a/MM_Math/data_original_21/7056275/math/51369877_215.png b/MM_Math/data_original_21/7056275/math/51369877_215.png deleted file mode 100644 index 6a3244cb948199dbcd5cc4768a40727fcce4e69f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51369877_215.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6362ff8cf2d44df6c48bbd435b376177a1a371ed73c6441745f02819648d718c -size 15408 diff --git a/MM_Math/data_original_21/7056275/math/51369881_204.jpg b/MM_Math/data_original_21/7056275/math/51369881_204.jpg deleted file mode 100644 index da91ce1d4cd45632a31f2502101c5ceb2e99b59b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51369881_204.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bcbc69452e5283f65bf3af0921bd2908a89af6560d06a6db561bb538fb893e81 -size 7090 diff --git a/MM_Math/data_original_21/7056275/math/51369883_190.jpg b/MM_Math/data_original_21/7056275/math/51369883_190.jpg deleted file mode 100644 index ff0cbf7b0d4d001ed739a2ce4082e200cd88d0f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51369883_190.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d166eb120ed68558d9b6e08499754d291012a2d5ab370feaf60b89c7a11437a -size 3697 diff --git a/MM_Math/data_original_21/7056275/math/51369938_540.png b/MM_Math/data_original_21/7056275/math/51369938_540.png deleted file mode 100644 index 867a718880585a935a83bfb98ba6d0e7959f4fa7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51369938_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d171b5e3607ec60526e88f6801da99887321b79893330734828fe954fdef1e9a -size 6793 diff --git a/MM_Math/data_original_21/7056275/math/51369939_530.png b/MM_Math/data_original_21/7056275/math/51369939_530.png deleted file mode 100644 index 862678d1ec7d84b0463f990ed8baeeae75a47b79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51369939_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:245a7419094ebb02617c51a990035176ad8c4204f156141a4444e84db599a29c -size 5322 diff --git a/MM_Math/data_original_21/7056275/math/51369960_880.png b/MM_Math/data_original_21/7056275/math/51369960_880.png deleted file mode 100644 index 78c37fced963c66622a7d2625720766fe8b63354..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51369960_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2fbaabdd5840f153972524c886cccbeca054015a742bd2e0a54f7b03d333ef3 -size 10058 diff --git a/MM_Math/data_original_21/7056275/math/51433090_620.png b/MM_Math/data_original_21/7056275/math/51433090_620.png deleted file mode 100644 index 2130d1206128553a2b6cf8a25c8ab173e20ff2f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433090_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f08687bbd0dc681e3ad0e09e89b8d60d5dbca1e0cca88a9d8c13c703627e6dca -size 5588 diff --git a/MM_Math/data_original_21/7056275/math/51433106_961.png b/MM_Math/data_original_21/7056275/math/51433106_961.png deleted file mode 100644 index 30c545f60505d034a6bf2acf7490dfdd9b24f2af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433106_961.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f4247acef0e7b8f5537fb2cd59069367144b677a8a2ddfc605c1c0288553974 -size 3570 diff --git a/MM_Math/data_original_21/7056275/math/51433170_940.png b/MM_Math/data_original_21/7056275/math/51433170_940.png deleted file mode 100644 index a2962e12db9464b72badf86bf43a95b9637a7e6d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433170_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f19a2349219d663f7a7fe86c9fce7571d3196525e4f0039cd233535c9f6e995 -size 4319 diff --git a/MM_Math/data_original_21/7056275/math/51433177_955.png b/MM_Math/data_original_21/7056275/math/51433177_955.png deleted file mode 100644 index deb1d561dd8213503879213ac2a9b36fc7b1d7c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433177_955.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dbfba8fd0d29311559c1627f6f88c967a8157af6111ee2628a32cd4f56712891 -size 9966 diff --git a/MM_Math/data_original_21/7056275/math/51433210_930.png b/MM_Math/data_original_21/7056275/math/51433210_930.png deleted file mode 100644 index 775add31bc4e6df3ad67f1c486f3e18ce8d3cb9b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433210_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:229f3f4cae2a0338122f4e06cda843a3d7a9cb8d215390ce87a83c3e17ff25b0 -size 8154 diff --git a/MM_Math/data_original_21/7056275/math/51433232_600.png b/MM_Math/data_original_21/7056275/math/51433232_600.png deleted file mode 100644 index b583a2b14c38a2a05db71e3230e7a6e28c3db842..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433232_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f15e199cdc5b4ec83265b2d3cf0cf2b36bee0b7ac63d0c00dc9ca3533689c3c -size 3484 diff --git a/MM_Math/data_original_21/7056275/math/51433235_610.png b/MM_Math/data_original_21/7056275/math/51433235_610.png deleted file mode 100644 index 4cff029afffcdab8a6f4bc1d0541279c261d05ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433235_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3cf52d462add3ad3e2ac9952e7d624feb033c268a9bce5f365627825b4053630 -size 2651 diff --git a/MM_Math/data_original_21/7056275/math/51433236_920.png b/MM_Math/data_original_21/7056275/math/51433236_920.png deleted file mode 100644 index 7f7bbcc400c186c9957612dbc9c8fe2be4056048..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433236_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2304e682ac9d4845dd4c5249827c4b78c67257292bb59b00a82d97ade8374aa4 -size 4679 diff --git a/MM_Math/data_original_21/7056275/math/51433255_910.png b/MM_Math/data_original_21/7056275/math/51433255_910.png deleted file mode 100644 index 554fe5b1a6c3f66495922540023ae5473bad2c8b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433255_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bfc462db2170f2fd19c5a81a52cc0d6f017519281ea847de046bc9d376c08ee8 -size 4891 diff --git a/MM_Math/data_original_21/7056275/math/51433270_270.png b/MM_Math/data_original_21/7056275/math/51433270_270.png deleted file mode 100644 index 6d6c456741145edb49206c7d517fe7c967308da5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433270_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e71680621d4998eb0495347aeebf82c1477f065bad033368609586a413d8b02e -size 2873 diff --git a/MM_Math/data_original_21/7056275/math/51433277_580.png b/MM_Math/data_original_21/7056275/math/51433277_580.png deleted file mode 100644 index 2e5d68dcf4ac98d6185289d9da9d49a11109a297..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433277_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:524a0361ea289c8b119ac3b3f09b63b306520c3999f22be0894b5f86dbf0de5e -size 2667 diff --git a/MM_Math/data_original_21/7056275/math/51433280_593.png b/MM_Math/data_original_21/7056275/math/51433280_593.png deleted file mode 100644 index ead4ddaea75dc96ddca146640b79f5f4def7b143..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433280_593.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e32d61bbdc42f1e50779ef8a370f483cc7eba5a24273c208e5359baec1bdd58 -size 19945 diff --git a/MM_Math/data_original_21/7056275/math/51433574_572.png b/MM_Math/data_original_21/7056275/math/51433574_572.png deleted file mode 100644 index 4e502c20573f66d76c63dae4dc785f1e9d33f540..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433574_572.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3727eac02838c46d54c5591bfce5c71c168448889ecce4a17e5a60b8aa6786f -size 5172 diff --git a/MM_Math/data_original_21/7056275/math/51433786_2620.png b/MM_Math/data_original_21/7056275/math/51433786_2620.png deleted file mode 100644 index ba96c7a75cc58fea90ccc8c99793170c401803c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433786_2620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:402eb99b6cbb8fc24707aab6cdbee96873c9598169b17b9ad92cfbfd7e003f6a -size 10327 diff --git a/MM_Math/data_original_21/7056275/math/51433787_252.png b/MM_Math/data_original_21/7056275/math/51433787_252.png deleted file mode 100644 index b90d77b66ccb849fecfcd87140e3c1f09b284847..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433787_252.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62f76a4d83e2d3e8001e99b23484c2f374daa2ef19e611f8462010d648445aea -size 4832 diff --git a/MM_Math/data_original_21/7056275/math/51433790_560.png b/MM_Math/data_original_21/7056275/math/51433790_560.png deleted file mode 100644 index fb141ea166adfcd08b3d9bc566f8e1fbf81c01d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433790_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7bd63b5a5c1e3999f35177065212bff6e3ea4334c84f14462093c80c294b07e9 -size 3508 diff --git a/MM_Math/data_original_21/7056275/math/51433795_903.png b/MM_Math/data_original_21/7056275/math/51433795_903.png deleted file mode 100644 index 2f299f99d07643f1a90db71141c2eb2cd3cb224b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433795_903.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddeee4e22e6f96b666333195ef76069af72c715e6d2e82b426b9b9066d4787f5 -size 7166 diff --git a/MM_Math/data_original_21/7056275/math/51433924_248.png b/MM_Math/data_original_21/7056275/math/51433924_248.png deleted file mode 100644 index 1fb3890ad69cacd4849cc381aa4fa27d351569ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51433924_248.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:441a414cad174c75e208043bc0c152557c4329cc32286eedd2d4aa014bc644b9 -size 3806 diff --git a/MM_Math/data_original_21/7056275/math/51434121_554.png b/MM_Math/data_original_21/7056275/math/51434121_554.png deleted file mode 100644 index fdb524022bf8d7d448fd67056de3ee3b4cfc1439..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51434121_554.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d3e8a8fea865fa2808eca43a687f0df4b0c66b1f962bd5ce48b760745d27ab1 -size 8782 diff --git a/MM_Math/data_original_21/7056275/math/51434139_891.png b/MM_Math/data_original_21/7056275/math/51434139_891.png deleted file mode 100644 index 7882ba192344771f680729ed457003ed6f77c3c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51434139_891.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ec600fbac8000b35e644284da852b15700aed36b142398ff84d95b6c84fda65 -size 7537 diff --git a/MM_Math/data_original_21/7056275/math/51445485_650.png b/MM_Math/data_original_21/7056275/math/51445485_650.png deleted file mode 100644 index 9d0f53bb647b7964d7c9484d67be4e2e7515f6dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51445485_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc578a184c64217f9c20ced8f2e567296f304e5ac034ac31d8c2038399ca8d90 -size 2586 diff --git a/MM_Math/data_original_21/7056275/math/51445794_992.png b/MM_Math/data_original_21/7056275/math/51445794_992.png deleted file mode 100644 index 81abc47b2828effeda3c4b862336ed97e4fd3bfc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51445794_992.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed573d4387996b55032773f5b70d9d6c37027a5b4af56b2811e3a3ee4ee92156 -size 5732 diff --git a/MM_Math/data_original_21/7056275/math/51445941_980.png b/MM_Math/data_original_21/7056275/math/51445941_980.png deleted file mode 100644 index fb87f63631f1f5e3ba56e3ccb07f0b4a4f401c21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51445941_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e00e4bd4200ad0279df8f29952d38b8931f5f77622b1a4e9cf3d6d10ba4fde6a -size 14934 diff --git a/MM_Math/data_original_21/7056275/math/51445952_290.png b/MM_Math/data_original_21/7056275/math/51445952_290.png deleted file mode 100644 index 88cc6621ba3cdea4368b24190d31416dabbaf767..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51445952_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a13a16ae9061e37e314a9dc2588b8a8094d46dff7d180b75899a591e868bc8f0 -size 8873 diff --git a/MM_Math/data_original_21/7056275/math/51446259_313.png b/MM_Math/data_original_21/7056275/math/51446259_313.png deleted file mode 100644 index 5a660e258bd59862dce47486b7d529f20b4da7e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51446259_313.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3973a45b7da272f2f016ef19a6037f6b1c2e6c266ab3eb3561351081fcf699e4 -size 4586 diff --git a/MM_Math/data_original_21/7056275/math/51446262_302.png b/MM_Math/data_original_21/7056275/math/51446262_302.png deleted file mode 100644 index c0f63a4c854044174e9cd435adb80f7164694595..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51446262_302.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:422a48f9f63cc87a674aa05e6771551e0dbbe053000a2b20540fdabcf53c9b08 -size 4203 diff --git a/MM_Math/data_original_21/7056275/math/51446578_660.png b/MM_Math/data_original_21/7056275/math/51446578_660.png deleted file mode 100644 index 68ae565003917425ce6629024c44b8b259d42976..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51446578_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:57f06ce5c050c0c0b59071b1a842376b7d19c1d2a678739a13e504f495aaa5e1 -size 2568 diff --git a/MM_Math/data_original_21/7056275/math/51446580_6910.png b/MM_Math/data_original_21/7056275/math/51446580_6910.png deleted file mode 100644 index 5b0716581da0a1cd3feff03cf102e108f452a1fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51446580_6910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5150c066dc96b43b9c9e39e1a9ecf549b172c5716ceda90a3340282eadca83b7 -size 3362 diff --git a/MM_Math/data_original_21/7056275/math/51722326_180.png b/MM_Math/data_original_21/7056275/math/51722326_180.png deleted file mode 100644 index 74e24be9597b7aa1667cfa1cb64fdfd72983569f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/51722326_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eecaff39215534f0c38f6305423655aa859880809ea15803b35e7567296fdbe0 -size 5657 diff --git a/MM_Math/data_original_21/7056275/math/52456882_165.png b/MM_Math/data_original_21/7056275/math/52456882_165.png deleted file mode 100644 index f5db6017c28581dbe8150fbb121e692a574846a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52456882_165.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db0ce06d36d81cad00a36e9a0d17543c8e5658deb7b52c4fac1a2c8ec250263c -size 2719 diff --git a/MM_Math/data_original_21/7056275/math/52457074_873.png b/MM_Math/data_original_21/7056275/math/52457074_873.png deleted file mode 100644 index 5e29763d1a80510b8638b0d3270bed086c89d037..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52457074_873.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7dc65db477ee27d0235eaf08c409aaa220ab061d5399b0cce4d1b9609af3c6b3 -size 4095 diff --git a/MM_Math/data_original_21/7056275/math/52457419_1711.png b/MM_Math/data_original_21/7056275/math/52457419_1711.png deleted file mode 100644 index 202f13be19b5755ac3df0073d6f0fd7d7c47863d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52457419_1711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b655a8a200bb5b3a6a8dbdfa3e00e09e6258602959dcc96071b4538da8af17a3 -size 2886 diff --git a/MM_Math/data_original_21/7056275/math/52457428_5218.png b/MM_Math/data_original_21/7056275/math/52457428_5218.png deleted file mode 100644 index 9d72b988134366edd009a60d09dc6326ea7aefd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52457428_5218.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fdb077e563e716caffd33001640140b1ccb47789208cbbdaf5ea4768e69b24e -size 2410 diff --git a/MM_Math/data_original_21/7056275/math/52457443_8611.png b/MM_Math/data_original_21/7056275/math/52457443_8611.png deleted file mode 100644 index 6988c9c14752c41e74854c44c877483c6d94d351..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52457443_8611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:865988beec520b8b3e5a54e0b7ed3f764a80e1e9b28d2719b32a88f8b0d4c318 -size 4438 diff --git a/MM_Math/data_original_21/7056275/math/52513747_456.png b/MM_Math/data_original_21/7056275/math/52513747_456.png deleted file mode 100644 index e6221c9a33e58d4bdacd1e1ff181008602ce942a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52513747_456.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a8465ac8eb15935ef3081995dcf4c9532115c952df5921a19cf80ac1f8b6b93 -size 1996 diff --git a/MM_Math/data_original_21/7056275/math/52513755_844.png b/MM_Math/data_original_21/7056275/math/52513755_844.png deleted file mode 100644 index a1c27cc6d608557e59504ad0e7ce86c19e89ef5d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52513755_844.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b53fee8798e421b8f60d49629ab97da6d2c91522f86bf0923d925113e5170217 -size 2619 diff --git a/MM_Math/data_original_21/7056275/math/52513827_158.png b/MM_Math/data_original_21/7056275/math/52513827_158.png deleted file mode 100644 index 6a72eff1907c0feeaaf05f237041e3a1302e77af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52513827_158.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e804f57a5f5354219f4f954f4d63929b324e712c78db26d86c585d737d524cdb -size 2849 diff --git a/MM_Math/data_original_21/7056275/math/52513828_495.png b/MM_Math/data_original_21/7056275/math/52513828_495.png deleted file mode 100644 index f5db6017c28581dbe8150fbb121e692a574846a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52513828_495.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db0ce06d36d81cad00a36e9a0d17543c8e5658deb7b52c4fac1a2c8ec250263c -size 2719 diff --git a/MM_Math/data_original_21/7056275/math/52513833_4710.png b/MM_Math/data_original_21/7056275/math/52513833_4710.png deleted file mode 100644 index f9ecc23d7ad169fca01eda4dca3019e816cf3a1e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52513833_4710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87930b05e251138cfb8b3cfdd8ce3fc0973e73b0ed08587e046a3937fbd226fe -size 4156 diff --git a/MM_Math/data_original_21/7056275/math/52513834_5019.png b/MM_Math/data_original_21/7056275/math/52513834_5019.png deleted file mode 100644 index 25631abe3a1b552ccb151006e865e3690467ffaf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52513834_5019.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f495cdfdfbe617e86245c41e5d63dcc169043c74b80183ce7879e2f98ffa838d -size 3838 diff --git a/MM_Math/data_original_21/7056275/math/52513835_857.png b/MM_Math/data_original_21/7056275/math/52513835_857.png deleted file mode 100644 index ade87f25778eea897b33905848d87fffdb420b00..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52513835_857.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7241de4d4f7c37eda7afc89f4e41ea03e1636c445603881327ec8e2f9404b4f -size 2727 diff --git a/MM_Math/data_original_21/7056275/math/52514018_4617.png b/MM_Math/data_original_21/7056275/math/52514018_4617.png deleted file mode 100644 index 0ebf76afed4e93ac5b7eb753528fae2bd17d2fa8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52514018_4617.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b9fcc1ab3060f0a3991149e95594c588395a3750e9b49f26888cb6aa25b5693 -size 4771 diff --git a/MM_Math/data_original_21/7056275/math/52514043_140.png b/MM_Math/data_original_21/7056275/math/52514043_140.png deleted file mode 100644 index e51aa7d78ab34d39186b88e95ac4a9dcbe2f54b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52514043_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7183c459b526448990d76e3fb5cd9ad884a78cd93303d88024e3d0e4b1a7e70b -size 8881 diff --git a/MM_Math/data_original_21/7056275/math/52514049_480.png b/MM_Math/data_original_21/7056275/math/52514049_480.png deleted file mode 100644 index 3f8321a86a4bf69300f706387806fd8ac510777c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52514049_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e01e371d129aa8245c4e5e23bf2daba05307c92d999efc78d2bbf9539632051 -size 2884 diff --git a/MM_Math/data_original_21/7056275/math/52514055_441.png b/MM_Math/data_original_21/7056275/math/52514055_441.png deleted file mode 100644 index 0502cd624769ddd8e4bf97a190279742732ab7fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52514055_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1ebd61b1055ca7aaaf59aff66951e4f782b3265829a179dc9352bd57479b563 -size 13655 diff --git a/MM_Math/data_original_21/7056275/math/52536480_83.png b/MM_Math/data_original_21/7056275/math/52536480_83.png deleted file mode 100644 index fe0a337b2f8da212fb91b9d0533e6e96e2be37bf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536480_83.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f9821ec67ff0545d9aea3d107d36b93017c85963d932f54d06678845f26bafc -size 3049 diff --git a/MM_Math/data_original_21/7056275/math/52536496_670.png b/MM_Math/data_original_21/7056275/math/52536496_670.png deleted file mode 100644 index 0990b0f18baadacca0e5d2ec841137a756b4f010..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536496_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e528bc11ab1daa3d97cd419d2cce30063350938eccea42a493e677b0b67f22ed -size 3304 diff --git a/MM_Math/data_original_21/7056275/math/52536529_120.png b/MM_Math/data_original_21/7056275/math/52536529_120.png deleted file mode 100644 index 5a8de1344341c393a7c0ba367a67073196dc33cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536529_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a44c0b2d97d29f8363c91f87d1b7bb9b937d0e2c7f3d5b8d420228d69cfa241 -size 22173 diff --git a/MM_Math/data_original_21/7056275/math/52536544_791.png b/MM_Math/data_original_21/7056275/math/52536544_791.png deleted file mode 100644 index 8be673c53a1c6c818039c2da0962a77424ca98ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536544_791.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab5a5bc969f6c4aa73301699f06d41e2d1981b86dddbc753bd6bb41d95528cb0 -size 12177 diff --git a/MM_Math/data_original_21/7056275/math/52536566_913.png b/MM_Math/data_original_21/7056275/math/52536566_913.png deleted file mode 100644 index 3188e98d87c1de4fb2c8357a4877613099947666..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536566_913.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f51ca0053e53e194cc32fc72dd4f17d103c3608bd026d06823d5d4da565af3bc -size 3249 diff --git a/MM_Math/data_original_21/7056275/math/52536606_430.png b/MM_Math/data_original_21/7056275/math/52536606_430.png deleted file mode 100644 index 46c9ff4ab8f0dcb574b157539dc5ff27e42e006d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536606_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ec785a77dfbe825a4c8b1266e7b450112730020dc8a5ddf8815cba65c863f0a -size 2491 diff --git a/MM_Math/data_original_21/7056275/math/52536609_680.png b/MM_Math/data_original_21/7056275/math/52536609_680.png deleted file mode 100644 index 715596d8573f0eeb38e03880f8a236df92312e37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536609_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1c1ee15a1da677094d4ae5ceda20f6aab3fa86e99b95c830dc53ee48d0d645b -size 6903 diff --git a/MM_Math/data_original_21/7056275/math/52536687_806.png b/MM_Math/data_original_21/7056275/math/52536687_806.png deleted file mode 100644 index 7efa5d9aa602c19343eb66a29309f50b56a63414..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536687_806.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4493ed740021a882530875fda894404066bd1534ba2b096907a9db6d64d0f571 -size 11316 diff --git a/MM_Math/data_original_21/7056275/math/52536707_111.png b/MM_Math/data_original_21/7056275/math/52536707_111.png deleted file mode 100644 index 232ce60ac96898d8693763b72961bf8fa1467df9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536707_111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f02185ebc5d9f424a03bffce973e4d0a05461a9032893fe2757a698420ff7a9 -size 22652 diff --git a/MM_Math/data_original_21/7056275/math/52536784_106.png b/MM_Math/data_original_21/7056275/math/52536784_106.png deleted file mode 100644 index 9bc48d4eb571a1f7654b91c3254fbf9b4cdc8582..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536784_106.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f4c6f189f41369a452feb415765e2fecc05303e630628cb51db9a61b0b9374d -size 70803 diff --git a/MM_Math/data_original_21/7056275/math/52536877_131.png b/MM_Math/data_original_21/7056275/math/52536877_131.png deleted file mode 100644 index 9a51be4c4a9892daf84ddad0a9f2eb7f48a7f09a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536877_131.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d85dfdb1006c8c79e2c37590d775b3b5a0ead3c8b98e657ae8aa086d6933fd7 -size 2049 diff --git a/MM_Math/data_original_21/7056275/math/52536896_830.png b/MM_Math/data_original_21/7056275/math/52536896_830.png deleted file mode 100644 index 58575bd933c28ba545fa71880e6964d155e59aea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536896_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:545e76684c47a7e8052f01f4cbe4347ac15a1337f254480eb93fa5acb3864282 -size 2605 diff --git a/MM_Math/data_original_21/7056275/math/52536969_810.png b/MM_Math/data_original_21/7056275/math/52536969_810.png deleted file mode 100644 index af332b76917f3f8ea4536389f0f0920016fcb395..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52536969_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:405842eb04e09dc749c59ca4939e07e49e49bb884b41a3d608c4837dbe4f3c8c -size 10118 diff --git a/MM_Math/data_original_21/7056275/math/52537023_821.png b/MM_Math/data_original_21/7056275/math/52537023_821.png deleted file mode 100644 index ea1425a53c44409f78f250a5c72e2af02f6a15ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52537023_821.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6a57442bf523f0e4830977d329e3435968b5812a0b828c2fc41a9d6bf0b2988 -size 5669 diff --git a/MM_Math/data_original_21/7056275/math/52537043_712.png b/MM_Math/data_original_21/7056275/math/52537043_712.png deleted file mode 100644 index 8eeac9aa3794b02f907df24d0612809df22fbeb3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52537043_712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7c398565c569ec8c5fb78f4623146d47a63fe483e936728ed096be2d0347ec1 -size 3882 diff --git a/MM_Math/data_original_21/7056275/math/52537112_423.png b/MM_Math/data_original_21/7056275/math/52537112_423.png deleted file mode 100644 index 3e99c7c1629c77e5207a0f7753c117ac61bfd4ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52537112_423.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d03e848ff796e68390cf181cbc8c8afae48234a0ebcf83adf57f315bde1ee8b3 -size 2997 diff --git a/MM_Math/data_original_21/7056275/math/52550292_61.png b/MM_Math/data_original_21/7056275/math/52550292_61.png deleted file mode 100644 index e58ee5f48d7069391c9cce39eea324e565dee923..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52550292_61.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b61ede552a76cd60a831cd33be224df61304d11ad409350e000e4306b0d8a23 -size 3192 diff --git a/MM_Math/data_original_21/7056275/math/52550647_400.jpeg b/MM_Math/data_original_21/7056275/math/52550647_400.jpeg deleted file mode 100644 index 15d1a7d6d2be333132ab8251fe60922d0200e6ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52550647_400.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2d2c912435367d84c3641baf2bedbe8618e0203b5581ee342a04304e88fe930 -size 4303 diff --git a/MM_Math/data_original_21/7056275/math/52550670_750.jpeg b/MM_Math/data_original_21/7056275/math/52550670_750.jpeg deleted file mode 100644 index 0b1717a9da245c7a1c7d03b1fed6f6367799900f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52550670_750.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:481423a51047fb8169ad69a5e44d69642fbebcfb74e1b1616ba9f25ec05a5df9 -size 5250 diff --git a/MM_Math/data_original_21/7056275/math/52550914_4111.png b/MM_Math/data_original_21/7056275/math/52550914_4111.png deleted file mode 100644 index c88b0502a6b2efaf55104ce494b5578960ce53a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52550914_4111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19fc6d7ca255936b4594b43d65750d7fa9aa055649a35ef32685214d885931a2 -size 3680 diff --git a/MM_Math/data_original_21/7056275/math/52550926_787.png b/MM_Math/data_original_21/7056275/math/52550926_787.png deleted file mode 100644 index 2b980f1a829e6448fc30cff56aafc7cbfbac6b73..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52550926_787.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a85b0cdf7623ffdd8267796877fd94dfbd9ea065f927d6dbbeb7eaf8021ed38 -size 9184 diff --git a/MM_Math/data_original_21/7056275/math/52550935_7615.png b/MM_Math/data_original_21/7056275/math/52550935_7615.png deleted file mode 100644 index 51f29c2c396dc14a5f79fe1eb6e3ce1bdf2c8254..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52550935_7615.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f2202887194d28c2641c0e51f84c31ba67a81716c5b1f84bd85b2eaf32f45aa -size 5088 diff --git a/MM_Math/data_original_21/7056275/math/52551774_770.png b/MM_Math/data_original_21/7056275/math/52551774_770.png deleted file mode 100644 index 28e73dcfa1dd6d4704f92e02cf746edeed2a1983..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52551774_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:064eae0259accf3c087ae344cfeb5bf732a56dcaebf1c0061d914663bd6b906e -size 5210 diff --git a/MM_Math/data_original_21/7056275/math/52586157_398.png b/MM_Math/data_original_21/7056275/math/52586157_398.png deleted file mode 100644 index f7150e558f54f7ccd108d990209c8a30557e425d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52586157_398.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b909621e4d8ea2684e8fd730707ce16975e74417f2b6355ca1ee31246acc9b4d -size 96434 diff --git a/MM_Math/data_original_21/7056275/math/52620528_340.jpeg b/MM_Math/data_original_21/7056275/math/52620528_340.jpeg deleted file mode 100644 index 11708a0dbf848520e80acf7b92a1064dcc62f590..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52620528_340.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:668a072d7c1e0d204a8b7f62090bc99b2d285e1d7e9da325120a79ccd30e8ce6 -size 3970 diff --git a/MM_Math/data_original_21/7056275/math/52660728_730.png b/MM_Math/data_original_21/7056275/math/52660728_730.png deleted file mode 100644 index f6ef3c9da645dcba483a61075f5710d2983674da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52660728_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9d72d88ab99efff287fef4e32af15ec458634c867271240379f6110a6ca3efd -size 16414 diff --git a/MM_Math/data_original_21/7056275/math/52661212_40.png b/MM_Math/data_original_21/7056275/math/52661212_40.png deleted file mode 100644 index d32890a866485ebc66d2ae55b6a1280be5f62cb4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52661212_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:940ab64120a6abe622d13a9ecfe9f7175b2703127922ebffe13a1078f9b5a2e1 -size 11330 diff --git a/MM_Math/data_original_21/7056275/math/52661216_54.png b/MM_Math/data_original_21/7056275/math/52661216_54.png deleted file mode 100644 index d94c2de7e4f8205eb82a39e78f4f77f4a38a2a0d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52661216_54.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7f109d11e00c21878a4a54b29bc293b63e66eafcdd71556b212718a5fbe9e76 -size 8436 diff --git a/MM_Math/data_original_21/7056275/math/52661220_330.png b/MM_Math/data_original_21/7056275/math/52661220_330.png deleted file mode 100644 index f65b23c945f421a426446925365d08fb674a72d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52661220_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:95769af9fb13d527febf58d0cfef3d13c3ab18a8950f63b9b442fcce1447253a -size 4837 diff --git a/MM_Math/data_original_21/7056275/math/52661234_720.png b/MM_Math/data_original_21/7056275/math/52661234_720.png deleted file mode 100644 index f91b926f76a2ca17126e8a14e87c2e2decff53ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52661234_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fdc3659b786af7e8a0661cc11f1a0e44e71e1ac17ed48f3af44ee571c3f343a7 -size 6257 diff --git a/MM_Math/data_original_21/7056275/math/52688312_320.png b/MM_Math/data_original_21/7056275/math/52688312_320.png deleted file mode 100644 index 72b7ab3a80d85801b4f64e21f833d665897a5528..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52688312_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d14fb3acbd31cc0d3300210b37f51eb086678ff0f8ba7cbead6666f209aedc08 -size 9929 diff --git a/MM_Math/data_original_21/7056275/math/52694081_01.png b/MM_Math/data_original_21/7056275/math/52694081_01.png deleted file mode 100644 index 45afc28748ad9aeb50e104b247e5ffdd96829bbe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52694081_01.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99a1babf7551eeefd609d091c9de206d1b40806c347b93201b01aa4cd3ec8983 -size 4674 diff --git a/MM_Math/data_original_21/7056275/math/52694085_10.png b/MM_Math/data_original_21/7056275/math/52694085_10.png deleted file mode 100644 index d028e3c8efa010118792313370da8fea192dd48d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52694085_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aff405af3a5415f48589c498a7feec12d8da8618479c5e6d3d05bff366393605 -size 6384 diff --git a/MM_Math/data_original_21/7056275/math/52694087_20.png b/MM_Math/data_original_21/7056275/math/52694087_20.png deleted file mode 100644 index 6ac4f9961deb974d43c94498517354d4a6e7c0f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52694087_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c814b779cee34de01e5118dad80a8f01eb02166af23918bef567ef59293c25c7 -size 4410 diff --git a/MM_Math/data_original_21/7056275/math/52694089_31.png b/MM_Math/data_original_21/7056275/math/52694089_31.png deleted file mode 100644 index a30a56b048d8ee782ab3fbe85f998be2cfd2f743..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52694089_31.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b634e6310a83fcea565451e0beea177c274cf00de63cdf0e953bcca35b8eef5b -size 6172 diff --git a/MM_Math/data_original_21/7056275/math/52694105_712.png b/MM_Math/data_original_21/7056275/math/52694105_712.png deleted file mode 100644 index f1a04176d89202d334d19f6fa4a326c7fabfb219..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52694105_712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:47f50e293e97b8dfaeaebc534669e34f388e9199953196d0e128e004e6c086ea -size 4990 diff --git a/MM_Math/data_original_21/7056275/math/52694111_700.png b/MM_Math/data_original_21/7056275/math/52694111_700.png deleted file mode 100644 index 753d7b0b83c77f6495ad62bc0446a42a28968646..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52694111_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:053c2887cfd2c559cdf3ba5a7d6d456bacb4271b19c11b422f0f782eb485d9c3 -size 4142 diff --git a/MM_Math/data_original_21/7056275/math/52745974_740.png b/MM_Math/data_original_21/7056275/math/52745974_740.png deleted file mode 100644 index 7e1b6123825ebeda0c41d78374449a59d894aa02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52745974_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a26b610a59157c1ff6731e6ba7cde5147fa2ae7a6db72cd904262adbbc6ca26 -size 7697 diff --git a/MM_Math/data_original_21/7056275/math/52745993_370.png b/MM_Math/data_original_21/7056275/math/52745993_370.png deleted file mode 100644 index 5fba08f6cc79109212b78667a0c5db8e6fa26bbc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52745993_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ced5b0a9708e697e0424d8460a8aa9d99fef8450c10988d69260dc4a2c98023b -size 3421 diff --git a/MM_Math/data_original_21/7056275/math/52745996_3810.png b/MM_Math/data_original_21/7056275/math/52745996_3810.png deleted file mode 100644 index bb8265e94c90554b5b3547a009b755cdc9d5910f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52745996_3810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fdad51151e31ac3eca8e8e36a188026c754ded044287337ac046d483d3dd780 -size 4536 diff --git a/MM_Math/data_original_21/7056275/math/52745997_352.png b/MM_Math/data_original_21/7056275/math/52745997_352.png deleted file mode 100644 index 7371d3d31322a109183c961aa2d976c7e509f955..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52745997_352.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bac88a15f8c065acc22a0eb3700dda28db9dc01eac88ed76b2d92e3be0e101fb -size 2340 diff --git a/MM_Math/data_original_21/7056275/math/52745998_364.png b/MM_Math/data_original_21/7056275/math/52745998_364.png deleted file mode 100644 index d6394846d6a207e41c920e14e30156fea20dd6c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52745998_364.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d08799d792c34f3416b1c7a7dce42cf5cc59bf4c3f3c296873ccb393cefdac5e -size 10129 diff --git a/MM_Math/data_original_21/7056275/math/52872371_2812.png b/MM_Math/data_original_21/7056275/math/52872371_2812.png deleted file mode 100644 index ae31471ef2fca6d1d2a0e5bd440cc569b43328cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52872371_2812.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c904ed700c560122b113806378c1d069013ae2ed6820a28bdfeee29165968104 -size 3555 diff --git a/MM_Math/data_original_21/7056275/math/52872379_644.png b/MM_Math/data_original_21/7056275/math/52872379_644.png deleted file mode 100644 index fdc636f32caeff91e67a304ff0a06a24099689de..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52872379_644.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44433fb3433b3ad71cfff2bf3f9494b1c3a9ffe8c32901e7fea86f17d043614e -size 2644 diff --git a/MM_Math/data_original_21/7056275/math/52872414_636.png b/MM_Math/data_original_21/7056275/math/52872414_636.png deleted file mode 100644 index db54248ac1a650632e0a5773ac965ee9ada32ca5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52872414_636.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e48afa5a8af29a9266447959ea11f90a3240126d37d028b354234064b027fe8f -size 29251 diff --git a/MM_Math/data_original_21/7056275/math/52872420_979.png b/MM_Math/data_original_21/7056275/math/52872420_979.png deleted file mode 100644 index 8cfe0df5c2609fbc9ddd220162da5ba2ff552014..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/math/52872420_979.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:feb94f256b3af13204e28ca6dc2dcd2bf33f3b10719a96f85ad0a27eaccf65ff -size 15452 diff --git a/MM_Math/data_original_21/7056275/solution_images/51369881_200.png b/MM_Math/data_original_21/7056275/solution_images/51369881_200.png deleted file mode 100644 index 500d4c4e03cdc21e67638b0201206bcf6a3b164c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51369881_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e5d2046820a0d1d022ac24640f787279757f4199a0fc67f5199ea41bafe912ca -size 37937 diff --git a/MM_Math/data_original_21/7056275/solution_images/51369883_190.png b/MM_Math/data_original_21/7056275/solution_images/51369883_190.png deleted file mode 100644 index ac9976ee2ade4162c6a27d2277df8a298de2e323..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51369883_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5398c68d4a21af7c7f48c763201088c35bbdb017f623cfcb1d996d62122726ac -size 18008 diff --git a/MM_Math/data_original_21/7056275/solution_images/51369939_530.jpg b/MM_Math/data_original_21/7056275/solution_images/51369939_530.jpg deleted file mode 100644 index f8d2ca5032e48c40ea4826e5593e8c16782a9e1b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51369939_530.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f5b6f3a2e0c80ad01e97ac1b41678faa38404683aebb0d35f67aafc7b953dcf1 -size 22258 diff --git a/MM_Math/data_original_21/7056275/solution_images/51433232_600.png b/MM_Math/data_original_21/7056275/solution_images/51433232_600.png deleted file mode 100644 index 265d5d26ab15feff1f0826c9503ef9ec76331fbf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51433232_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41fd123730b4c44e7208f8327999aa167566c08e20190259f7395bc42c8efb8d -size 6836 diff --git a/MM_Math/data_original_21/7056275/solution_images/51433235_610.png b/MM_Math/data_original_21/7056275/solution_images/51433235_610.png deleted file mode 100644 index f261775165831bd058e40ce6405c0b8f9151b75d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51433235_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e8ef4348b647f4f223d61726e9579576edd42441f4bd690ce8721d1eb7fc5b4 -size 10581 diff --git a/MM_Math/data_original_21/7056275/solution_images/51433235_615.png b/MM_Math/data_original_21/7056275/solution_images/51433235_615.png deleted file mode 100644 index 7277efbf46dd389c43388c7def2f25534f87fedb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51433235_615.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43d0d2041a9cb83b11d7e03bae41a4383905cb23a9e2c473de6ff6c5c16c6b57 -size 10739 diff --git a/MM_Math/data_original_21/7056275/solution_images/51433270_271.png b/MM_Math/data_original_21/7056275/solution_images/51433270_271.png deleted file mode 100644 index e159dc2d72a76872e1f1ba13b276f051d4bdcb33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51433270_271.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4194d67c06f8106c1164bfb1674908b7185ceb9fd8dbc13d72900249a3936521 -size 17333 diff --git a/MM_Math/data_original_21/7056275/solution_images/51433277_580.png b/MM_Math/data_original_21/7056275/solution_images/51433277_580.png deleted file mode 100644 index ae37f889b6f3244078b8d7d80853b34e7561a6ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51433277_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8bdb98f6aaaee85e0aa42637d3b3a9bde051425228b5f917ca72574359954b8 -size 8894 diff --git a/MM_Math/data_original_21/7056275/solution_images/51433280_592.png b/MM_Math/data_original_21/7056275/solution_images/51433280_592.png deleted file mode 100644 index aca3850ad91dcaff93600f1950c2acf9515f652a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51433280_592.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9c91ae6e6064037dde2e40fde4aa995e03a611d4c5607b2cf521abebfe38599 -size 27265 diff --git a/MM_Math/data_original_21/7056275/solution_images/51433787_250.png b/MM_Math/data_original_21/7056275/solution_images/51433787_250.png deleted file mode 100644 index b1cb1ce8189b09df0a6b2336c16de2992cd70ec0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51433787_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f35312affb3cffe9d196d37de96eb07be58ef342a855a260a26edc514416f367 -size 5116 diff --git a/MM_Math/data_original_21/7056275/solution_images/51434121_553.png b/MM_Math/data_original_21/7056275/solution_images/51434121_553.png deleted file mode 100644 index 6aa62325ba7b987bf0905e3d5d9c6d5914b0d9c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51434121_553.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:929e9daecadedb07d3c8886a6f3a71e6ddfe6462b6893b8634d1b33d4e3a2dd8 -size 3631 diff --git a/MM_Math/data_original_21/7056275/solution_images/51445941_982.png b/MM_Math/data_original_21/7056275/solution_images/51445941_982.png deleted file mode 100644 index 015e95f438a529c59b7384ff808e8de4d1d9973b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51445941_982.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a41b92fcafe2d33fc3667e0a9019d9cef8deaf6cef8dd8d7206c389d73d2ded -size 9365 diff --git a/MM_Math/data_original_21/7056275/solution_images/51445941_986.png b/MM_Math/data_original_21/7056275/solution_images/51445941_986.png deleted file mode 100644 index eb0db17cf2a2343fe1c2675376a7f23ae53f44fd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51445941_986.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d23d1865642ff8077a992ebb09f64136aeb05a6a99bbea7ccd666d6c7f71e66d -size 9419 diff --git a/MM_Math/data_original_21/7056275/solution_images/51445941_988.png b/MM_Math/data_original_21/7056275/solution_images/51445941_988.png deleted file mode 100644 index a53f7664b0106d96cf39beb534f5c2edba948b10..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51445941_988.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:282293de13b851c24cc31d5ab02e4486cc2c4dd18d30040f89ecac86e5a64e8f -size 8903 diff --git a/MM_Math/data_original_21/7056275/solution_images/51445952_290.png b/MM_Math/data_original_21/7056275/solution_images/51445952_290.png deleted file mode 100644 index 7134b7aac9265d22ff25d9654a3044182d124d51..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51445952_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d4c0eae150df906c8c3b81374f4dbc0e911b7fc3e8072e1d895573e8c575cd9 -size 2641 diff --git a/MM_Math/data_original_21/7056275/solution_images/51722326_186.png b/MM_Math/data_original_21/7056275/solution_images/51722326_186.png deleted file mode 100644 index 327925ff3242e3274dc97dcf79b50e5bbafa801b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/51722326_186.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba3e56b4a29f3247f46511e304c879dcf8cfba1705fc59ff669c646dd00e4f61 -size 6053 diff --git a/MM_Math/data_original_21/7056275/solution_images/52457428_520.png b/MM_Math/data_original_21/7056275/solution_images/52457428_520.png deleted file mode 100644 index 454b64282a759affbb953a6a20edd3fa950884ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52457428_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:186c917874a36cbd31a7c3d7327b9be7cf39af7011faf7a84c4e2950e54b3c44 -size 2656 diff --git a/MM_Math/data_original_21/7056275/solution_images/52513833_470.png b/MM_Math/data_original_21/7056275/solution_images/52513833_470.png deleted file mode 100644 index 01644f556fd950eea276a0942d203515425c4e3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52513833_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4dd29cc2b4a98fe4dd992ab5de1c5f0e7ba6cfe04a2cbb00a654e26e161968a -size 5735 diff --git a/MM_Math/data_original_21/7056275/solution_images/52513834_5019.png b/MM_Math/data_original_21/7056275/solution_images/52513834_5019.png deleted file mode 100644 index 7653547aabfd6e9217ff80317bb463cb89d41550..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52513834_5019.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6002b28c7d0f184b43dee33c87dd6ec37411261ae3bc37bbfec3a9e8fabd6640 -size 4487 diff --git a/MM_Math/data_original_21/7056275/solution_images/52513834_504.png b/MM_Math/data_original_21/7056275/solution_images/52513834_504.png deleted file mode 100644 index 551809d5c966db480c21cfc7d455144a7019ce17..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52513834_504.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa647f53b93b81c0a14bd48164344cd98fa6d101d743198e9b30ea3c4b72afd6 -size 5025 diff --git a/MM_Math/data_original_21/7056275/solution_images/52514018_463.png b/MM_Math/data_original_21/7056275/solution_images/52514018_463.png deleted file mode 100644 index a83499e786ef15b529ab02b0b17f1551d8ef6d97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52514018_463.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:034ccb0d03ef79e8b5d675c9ac32b1b5547c91c065f5ff9d3618f587ce979554 -size 6750 diff --git a/MM_Math/data_original_21/7056275/solution_images/52514055_440.png b/MM_Math/data_original_21/7056275/solution_images/52514055_440.png deleted file mode 100644 index bc033e0c50345628a225cdc68f087329d6ded3ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52514055_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3f7f7722847922bcaf80c05329c871e3fb9153cf110ae7d524b2f021297e121 -size 3835 diff --git a/MM_Math/data_original_21/7056275/solution_images/52536529_120.png b/MM_Math/data_original_21/7056275/solution_images/52536529_120.png deleted file mode 100644 index 8fbc80044eb0e99c4586dee55a3ed227b3e2c7f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52536529_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4c734452f3d6afdc5f156e9aa51ac278b3e6b7d505ea7455a10046a3d4baedf5 -size 13068 diff --git a/MM_Math/data_original_21/7056275/solution_images/52536566_90.png b/MM_Math/data_original_21/7056275/solution_images/52536566_90.png deleted file mode 100644 index fe3db1339d072aa71b9993027da55b42a2d7e6ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52536566_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c5d3e9df53c5ff15cbd67a5f166626e54f7ebcc0411bbde1fcd2d88e6b8a2de -size 3802 diff --git a/MM_Math/data_original_21/7056275/solution_images/52536606_430.png b/MM_Math/data_original_21/7056275/solution_images/52536606_430.png deleted file mode 100644 index 46c9ff4ab8f0dcb574b157539dc5ff27e42e006d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52536606_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ec785a77dfbe825a4c8b1266e7b450112730020dc8a5ddf8815cba65c863f0a -size 2491 diff --git a/MM_Math/data_original_21/7056275/solution_images/52536784_100.png b/MM_Math/data_original_21/7056275/solution_images/52536784_100.png deleted file mode 100644 index 4bf0734d45b0932f3ab8be340ef6103e147d09f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52536784_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae3db6da07a2b43985d22933b78d613e1f98a09be2d7f267b0376fa8af913ecf -size 82225 diff --git a/MM_Math/data_original_21/7056275/solution_images/52537112_420.png b/MM_Math/data_original_21/7056275/solution_images/52537112_420.png deleted file mode 100644 index 24f3be73d4c2b8ad9b1968d3d77ff7d534136241..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52537112_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bad7baeda8bf2c790eab47d3407e14d39ba7c3cb8af587f5fed2d08f15648dbf -size 3270 diff --git a/MM_Math/data_original_21/7056275/solution_images/52550647_400.jpeg b/MM_Math/data_original_21/7056275/solution_images/52550647_400.jpeg deleted file mode 100644 index 5c3d37ae7acb68e7af0572d685f82800c542caf1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52550647_400.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da439a6783ec1aaabea03324842b185ae93a9c3961ac3648ab1f260ace621378 -size 4436 diff --git a/MM_Math/data_original_21/7056275/solution_images/52586157_390.png b/MM_Math/data_original_21/7056275/solution_images/52586157_390.png deleted file mode 100644 index c77caa96d9b1ff4e1313ee6c6a55b1cef5ebcc52..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52586157_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f55d8388e23d9d0bba54eece1840b678f9c09f176bd1e6730b2deaf67aef4cf -size 110000 diff --git a/MM_Math/data_original_21/7056275/solution_images/52661216_50.png b/MM_Math/data_original_21/7056275/solution_images/52661216_50.png deleted file mode 100644 index 109b0cf4af20cb2b3fd20baf1a6d4b22f5dcb4b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52661216_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba37e00b6e567e20fae60737840020399a12f34987bf516408412589fdcb7995 -size 9191 diff --git a/MM_Math/data_original_21/7056275/solution_images/52688312_320.png b/MM_Math/data_original_21/7056275/solution_images/52688312_320.png deleted file mode 100644 index f91cd8ebe5464370a43c8c142a8323c3ada375ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52688312_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3efed1f982a6e1ab3c997b28ed33c5fcbc1ea6494f33f6301bf2a55827579217 -size 3174 diff --git a/MM_Math/data_original_21/7056275/solution_images/52694085_10.png b/MM_Math/data_original_21/7056275/solution_images/52694085_10.png deleted file mode 100644 index 58a1a154711a618eeb2e25751d8fde40e90fe555..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52694085_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c7a451c9ae9577773a0852b4be61197cee2969e96e8dd82b9db37f49d9afb0c -size 5781 diff --git a/MM_Math/data_original_21/7056275/solution_images/52694089_30.png b/MM_Math/data_original_21/7056275/solution_images/52694089_30.png deleted file mode 100644 index b27debe2f6469a3d6ae4dcd7f781ccd1cb8c0310..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52694089_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c6aa78e552cc17238479b9135944bd15fa3fadc678fe5b03f1400063d9845dc -size 11308 diff --git a/MM_Math/data_original_21/7056275/solution_images/52745993_370.png b/MM_Math/data_original_21/7056275/solution_images/52745993_370.png deleted file mode 100644 index 3b860870bc40328daab3adba01a38517c52dc1c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52745993_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e8a43de8d3943f37b761296fe92acf36a2367778e4205ef7cddf9f8faf064079 -size 3497 diff --git a/MM_Math/data_original_21/7056275/solution_images/52745997_350.png b/MM_Math/data_original_21/7056275/solution_images/52745997_350.png deleted file mode 100644 index 043e2c9f179d1427f3ac876f494e6879e762f70d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52745997_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a073202b011211dd760fe211847c74cc8e8116c3f45a665b7e9aff978006b8b6 -size 3106 diff --git a/MM_Math/data_original_21/7056275/solution_images/52745997_3511.png b/MM_Math/data_original_21/7056275/solution_images/52745997_3511.png deleted file mode 100644 index b0e10c8cdb975866fb9f8d14cf348708b603a513..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52745997_3511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de76de6d5f98873984b32a362e7b01f6e9c8f9a4272c71a83f8d2d81e4da594a -size 4155 diff --git a/MM_Math/data_original_21/7056275/solution_images/52872379_640.png b/MM_Math/data_original_21/7056275/solution_images/52872379_640.png deleted file mode 100644 index 7830f4603ef1af365f864f757c225f0a967e73c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056275/solution_images/52872379_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0149bd56cc4e986e2799194c58cd6c70dc2c30d553ffa552e563c9d9c682b74b -size 3039 diff --git a/MM_Math/data_original_21/7056435/math/51299523_97.png b/MM_Math/data_original_21/7056435/math/51299523_97.png deleted file mode 100644 index bc194916b7d6903072299d7a6470f77c595accc4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51299523_97.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3c6f89502082d3947fafaa9242c81238eb1b4fac5c726dd6025c28fcffc7812 -size 15598 diff --git a/MM_Math/data_original_21/7056435/math/51299525_370.png b/MM_Math/data_original_21/7056435/math/51299525_370.png deleted file mode 100644 index db56b38696f61653478be3254306606b2506797a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51299525_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:862fe31c263aca71b57eb2afda95cb5c45e6316e1f9034a8d6e390a14676cf91 -size 2127 diff --git a/MM_Math/data_original_21/7056435/math/51299791_83.png b/MM_Math/data_original_21/7056435/math/51299791_83.png deleted file mode 100644 index 423c0cd9183173383b9c96a9b0350efa6723503b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51299791_83.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af7f06f0be7f29034b578013a1cf75738a3922eaf01e9bf100913fe063619f9c -size 7904 diff --git a/MM_Math/data_original_21/7056435/math/51299801_770.jpg b/MM_Math/data_original_21/7056435/math/51299801_770.jpg deleted file mode 100644 index bae61a8a972df1a98507ae877c8bb102fe2e761c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51299801_770.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b6aae00abc8024a21baaf3539f8c32bc2c42c9a625af940b3a9e55b453b554a -size 3161 diff --git a/MM_Math/data_original_21/7056435/math/51402152_178.png b/MM_Math/data_original_21/7056435/math/51402152_178.png deleted file mode 100644 index 49c37da0fbd4f6d61e441e1c2e352f2485e0d7c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402152_178.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52dfdd2a30b70ed167a84ec3f6582f8817205f8faa41b32551b4f010a5b20df7 -size 2638 diff --git a/MM_Math/data_original_21/7056435/math/51402165_886.png b/MM_Math/data_original_21/7056435/math/51402165_886.png deleted file mode 100644 index 5950b23d72e9606989542ac07af049af26f7669c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402165_886.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1bc898f5951aa2c051b1b2d0c5403a1f47e122dcf8dff2455158afc85976c555 -size 13697 diff --git a/MM_Math/data_original_21/7056435/math/51402171_8611.png b/MM_Math/data_original_21/7056435/math/51402171_8611.png deleted file mode 100644 index be78078210e51d6de98559782d243f5b31bc29ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402171_8611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af170d1c9f8e90c39653d3d258bc6e9cf7f82bd785683514996cb52c0d3053a9 -size 5277 diff --git a/MM_Math/data_original_21/7056435/math/51402480_471.png b/MM_Math/data_original_21/7056435/math/51402480_471.png deleted file mode 100644 index 1c8f8ef80eeb6cc388ef5355f21ddb4dcb2a334c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402480_471.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1dcadd158d517de659f79ed33fa566800c8b12675ddd17e50870c1190f34e05 -size 5811 diff --git a/MM_Math/data_original_21/7056435/math/51402614_410.png b/MM_Math/data_original_21/7056435/math/51402614_410.png deleted file mode 100644 index c40ecdce05505e7e5afd67318225cccfa029086e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402614_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f242928cfb790075dbb5c68ea0f45bb97af39ab390a126d6cd9b01aa9ce7ab58 -size 3885 diff --git a/MM_Math/data_original_21/7056435/math/51402774_420.png b/MM_Math/data_original_21/7056435/math/51402774_420.png deleted file mode 100644 index db4b868d1c1164cfecf76bc99654588d18579f86..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402774_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e7883b079ebf33bf320e45236f1cf8cfa908507e8f62fd6508c882080718a85f -size 6514 diff --git a/MM_Math/data_original_21/7056435/math/51402841_450.png b/MM_Math/data_original_21/7056435/math/51402841_450.png deleted file mode 100644 index 7c97c8607c77d8462e8630a47d752277a3438849..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402841_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be5ad6eeb0c7a2a139976c7ad645191c0832c61180e3f6e78d6199ff2c4816bb -size 4362 diff --git a/MM_Math/data_original_21/7056435/math/51402858_901.png b/MM_Math/data_original_21/7056435/math/51402858_901.png deleted file mode 100644 index 8493298b6cd7187100d20e1fcec51d09a4cf89b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402858_901.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67f1775acce3dc1c5092474b83ea43aaabe0584f93c11d1f49b8c78243095005 -size 6269 diff --git a/MM_Math/data_original_21/7056435/math/51402867_890.png b/MM_Math/data_original_21/7056435/math/51402867_890.png deleted file mode 100644 index 064dc368330bccd29c0e5a9fb744e84dbdcc297f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402867_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f68707fcb43192436421ca95fdea548ece4149de99db03cfd29be2487e279ac -size 9046 diff --git a/MM_Math/data_original_21/7056435/math/51402904_132.png b/MM_Math/data_original_21/7056435/math/51402904_132.png deleted file mode 100644 index d07217d887483c19b603cf2423516e40adf254d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402904_132.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:773545d997982125fc5a417c6be4f662dd48c8a4db23f4d6a28e6ffa802a7d60 -size 4322 diff --git a/MM_Math/data_original_21/7056435/math/51402923_610.png b/MM_Math/data_original_21/7056435/math/51402923_610.png deleted file mode 100644 index c02c4198597917e8075611abeb13b6d8669b253b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402923_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d05487d54de9a06f7cdc32458031ecd186b6f30f18281ac7c79a6050c30327e8 -size 6310 diff --git a/MM_Math/data_original_21/7056435/math/51402947_155.png b/MM_Math/data_original_21/7056435/math/51402947_155.png deleted file mode 100644 index 4cfdc22f4c24575b306a09b1384d9f01341fe77e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402947_155.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94f07bf00fd9baf83e67382b893e62e24d3270c84c549c33894b4903921538d8 -size 6240 diff --git a/MM_Math/data_original_21/7056435/math/51402956_400.png b/MM_Math/data_original_21/7056435/math/51402956_400.png deleted file mode 100644 index 2e9256c5bfb6830a972cc4054b755402a9a84907..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402956_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f97d43866213b281d46819ee6d1481c3818eb2920959825402490571cdc71d50 -size 7424 diff --git a/MM_Math/data_original_21/7056435/math/51402972_8102.png b/MM_Math/data_original_21/7056435/math/51402972_8102.png deleted file mode 100644 index 9b8b5ac4af7235415c44c9000e648fa8ec5ccbc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402972_8102.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2f6f28e0d478d93d6649d02daae9aadff4f394ce16277c263a151c1d662d038 -size 5356 diff --git a/MM_Math/data_original_21/7056435/math/51402973_8112.png b/MM_Math/data_original_21/7056435/math/51402973_8112.png deleted file mode 100644 index 3aada81334cfa2ab83ea31abafdf4cfc92244df7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402973_8112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d314378656b7e1da901109625bf818d60cc4b4f04b56156c05168b00e41a8a3b -size 4718 diff --git a/MM_Math/data_original_21/7056435/math/51402974_8123.png b/MM_Math/data_original_21/7056435/math/51402974_8123.png deleted file mode 100644 index 26db0d8f80e25f83dcae160c6ba48f32d082edb5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402974_8123.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fac73d39c25f5d43e276e5982346dc517c0270f9882ae42b1900f57baf2c13c -size 8382 diff --git a/MM_Math/data_original_21/7056435/math/51402990_397.png b/MM_Math/data_original_21/7056435/math/51402990_397.png deleted file mode 100644 index 3aea876e107646819fa28449abf5b2ec71d0d398..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51402990_397.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56dbfdb11e02872743d2764d7e3ab321854af1240372be6fd0ace9dbdf47a0ab -size 6708 diff --git a/MM_Math/data_original_21/7056435/math/51403000_830.png b/MM_Math/data_original_21/7056435/math/51403000_830.png deleted file mode 100644 index fe7278fe2c32fefc6e41194b333878c8218640e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403000_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d254d8973063de16116a4025dac658770ac617277d0118083b1a0da3cb2f7e3 -size 16916 diff --git a/MM_Math/data_original_21/7056435/math/51403036_840.png b/MM_Math/data_original_21/7056435/math/51403036_840.png deleted file mode 100644 index ec56cb5b8deda40103105479506549046431da9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403036_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f82d4bfdadee9ba508a86c13ecbd22983d079bfb31d85b0e7373bf1bfcf8681b -size 12465 diff --git a/MM_Math/data_original_21/7056435/math/51403069_460.png b/MM_Math/data_original_21/7056435/math/51403069_460.png deleted file mode 100644 index 53deb3b8d31fae6b52a6c60deed61dfaa785dbc0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403069_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a79c6735f988cff6fb7167044be6e4202d9a500f732a9beb9fbc5f014f15eb0e -size 12945 diff --git a/MM_Math/data_original_21/7056435/math/51403109_802.png b/MM_Math/data_original_21/7056435/math/51403109_802.png deleted file mode 100644 index 1a9ec047067a6652eef773083fcf2aff5ccc479e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403109_802.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83b957b26594a76c08ba09a522a8a3aec58356ce8cb3a08d360f0e6fc0b29b76 -size 5736 diff --git a/MM_Math/data_original_21/7056435/math/51403120_144.png b/MM_Math/data_original_21/7056435/math/51403120_144.png deleted file mode 100644 index aef4c70b52639a468dfd75c84673140510158da4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403120_144.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6d90d7b7acd57f6e2b2c2ca49f029e10dfe1aab2521d0316347dc61ceaa3c54 -size 5438 diff --git a/MM_Math/data_original_21/7056435/math/51403136_790.png b/MM_Math/data_original_21/7056435/math/51403136_790.png deleted file mode 100644 index ec999709e12d2074b420fe335f66c874362850f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403136_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90c015a792ff38a5a3cf17c3149b868af3e8251e2536f8753f24025c72512c78 -size 3526 diff --git a/MM_Math/data_original_21/7056435/math/51403154_480.png b/MM_Math/data_original_21/7056435/math/51403154_480.png deleted file mode 100644 index f94fb0628aac6a1394fc78eb09917c10c1cf8493..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403154_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed82a42219e28bbeb254092c5b91e62878ae5fb17c180b7ea7ca050127c984fa -size 3732 diff --git a/MM_Math/data_original_21/7056435/math/51403181_920.png b/MM_Math/data_original_21/7056435/math/51403181_920.png deleted file mode 100644 index efe76e2241a4a7435f9e62bb186823daa6e40b64..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403181_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6d68ff18ca7c4a7e38cb55bef0b75a2bf3ac54c636ff21ac37b032ec59db1c5 -size 10154 diff --git a/MM_Math/data_original_21/7056435/math/51403191_180.png b/MM_Math/data_original_21/7056435/math/51403191_180.png deleted file mode 100644 index 3742c84f696ffbe8b5aad98e260661fdf3b97da4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403191_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb039c3ddc02201cb00b6cd4d534e91a0008e1e521a3c00cf851a9a43c6ca5e5 -size 3906 diff --git a/MM_Math/data_original_21/7056435/math/51403270_434.png b/MM_Math/data_original_21/7056435/math/51403270_434.png deleted file mode 100644 index 5cd753466c1fcc2baf148670880b2db5248cd5c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403270_434.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4740909c64a5e954ad4e7a1135f21fe8c567a149266a80996be5a35f83afe1e -size 5469 diff --git a/MM_Math/data_original_21/7056435/math/51403288_821.png b/MM_Math/data_original_21/7056435/math/51403288_821.png deleted file mode 100644 index 00ed293fe486441c37a8852affc8d88b3628028b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403288_821.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f52f2c801d382a06192c6e8e3409c7beff4b7430739ed209cad2799b305f10a9 -size 10520 diff --git a/MM_Math/data_original_21/7056435/math/51403292_910.png b/MM_Math/data_original_21/7056435/math/51403292_910.png deleted file mode 100644 index 27813d8ce01cd4d0c87815c81f2b8d1f9fdb48f6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403292_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52265200f603597cfa32f3c3148187e6f5d866da5abb9dd29e43f2440aa4e8ed -size 22913 diff --git a/MM_Math/data_original_21/7056435/math/51403331_441.png b/MM_Math/data_original_21/7056435/math/51403331_441.png deleted file mode 100644 index 71dd1116d04c36f10460c5ab112ee76b837ab954..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403331_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a77186ac6b46017e42abd6599d23f8ee94df9b5c55eb9891d151956e201f484b -size 4346 diff --git a/MM_Math/data_original_21/7056435/math/51403342_851.png b/MM_Math/data_original_21/7056435/math/51403342_851.png deleted file mode 100644 index 7e1332251e1586913c9006e45f72ffaa2ba6ff43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403342_851.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05b25826cb2890c803bde96f21945bf1580afaa2cfd197d1cf4123df3492792e -size 6957 diff --git a/MM_Math/data_original_21/7056435/math/51403345_873.png b/MM_Math/data_original_21/7056435/math/51403345_873.png deleted file mode 100644 index 79afed3c7d03f0ab68ce21067499b8b8d68692f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51403345_873.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed245467e9363011a1a0f1cbf939c8a0a39a9834b430cafa3ffff9d50081cc69 -size 5871 diff --git a/MM_Math/data_original_21/7056435/math/51406931_124.png b/MM_Math/data_original_21/7056435/math/51406931_124.png deleted file mode 100644 index afd4a7b5596ee8499300e7b25d7d859ae4192f12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51406931_124.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b951482cbbdd623f4e43b32b3ab61faf818a72b68520ed5e71cca0ac866f8186 -size 9255 diff --git a/MM_Math/data_original_21/7056435/math/51407073_115.png b/MM_Math/data_original_21/7056435/math/51407073_115.png deleted file mode 100644 index 6f8a4d0531475d29b52dda759e25bf47f407cead..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51407073_115.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1230e8cb56c1a589b9401dca9e03a55e9acd854c207eca8a9c5ee90a8962b99 -size 3445 diff --git a/MM_Math/data_original_21/7056435/math/51407078_104.png b/MM_Math/data_original_21/7056435/math/51407078_104.png deleted file mode 100644 index 44305e91af36320484091fea6ba88bde0d82cfc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51407078_104.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f28aca014a89d714102102eb23d90286466a86e44b8318c2fa10b07985a9260 -size 5710 diff --git a/MM_Math/data_original_21/7056435/math/51407086_386.png b/MM_Math/data_original_21/7056435/math/51407086_386.png deleted file mode 100644 index 6bc082499d2c7a1b630e843e78192063d8a96ac4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51407086_386.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58e8d46d449d3918efb355a1eb738c22d725cd65d999d5b19d6809727c332645 -size 10308 diff --git a/MM_Math/data_original_21/7056435/math/51407111_782.png b/MM_Math/data_original_21/7056435/math/51407111_782.png deleted file mode 100644 index 96204e2e6c30768de1058bf1d11908649b1d3618..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51407111_782.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:092391a3fbc1a723d2ab348d8d1aeafaa0ae2b8929f4797a32beb4ca1fc68618 -size 7130 diff --git a/MM_Math/data_original_21/7056435/math/51407114_7822.png b/MM_Math/data_original_21/7056435/math/51407114_7822.png deleted file mode 100644 index 5df1b8bc5e83b244e09f830a7de01a378ccd2af6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51407114_7822.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6607912bc5e740f7e61ac2d634a03b56d3fd277820016e8bec1bd15b78a06568 -size 8747 diff --git a/MM_Math/data_original_21/7056435/math/51445440_711.png b/MM_Math/data_original_21/7056435/math/51445440_711.png deleted file mode 100644 index f1df6cb17201b4377c664b874455e657cfb0570d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51445440_711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:138356e4559fcf248c0dde96a427755c31ae2285aaa8607a53f2ffeb5c3bb446 -size 3736 diff --git a/MM_Math/data_original_21/7056435/math/51445446_360.png b/MM_Math/data_original_21/7056435/math/51445446_360.png deleted file mode 100644 index 8ca0cca4b7fc72c9830bd98a5dfdf2d51b236d8f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51445446_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5a8c81b253d91c56c9e946a95523f736cbbc1ce421ec51ba5d1db808d2e6899 -size 3898 diff --git a/MM_Math/data_original_21/7056435/math/51445486_340.png b/MM_Math/data_original_21/7056435/math/51445486_340.png deleted file mode 100644 index a06e3ec447915ad08053314391eea32eb51bbaac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51445486_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99aa80cb2d79131e48c84afea2de38cce9f3a2cf6025c4fb4a3e44fa8c4da685 -size 3619 diff --git a/MM_Math/data_original_21/7056435/math/51445487_350.png b/MM_Math/data_original_21/7056435/math/51445487_350.png deleted file mode 100644 index 83f5f2c3c2e85e1d2317f5919f3a93aaa7919346..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51445487_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4729f789509c387257177550fec5f879d7cfd5a03651515242986daf46eeec26 -size 2822 diff --git a/MM_Math/data_original_21/7056435/math/51445633_33.png b/MM_Math/data_original_21/7056435/math/51445633_33.png deleted file mode 100644 index a7045f1d38b8525b27c4fad258b05df83b0faab5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51445633_33.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b4e91543d64a62a1afd28795b51b889340cd66cced0b5d39e4320ec71fa54acc -size 2097 diff --git a/MM_Math/data_original_21/7056435/math/51445671_41.png b/MM_Math/data_original_21/7056435/math/51445671_41.png deleted file mode 100644 index 7ec97ef9bcf5d4c67c1c372090656218bec82858..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51445671_41.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c271de3c62d03bbf8ec4cf36fe54dff72c12f3eff320d5f356bb6348abef416e -size 2995 diff --git a/MM_Math/data_original_21/7056435/math/51445764_52.png b/MM_Math/data_original_21/7056435/math/51445764_52.png deleted file mode 100644 index 23a7bb18feb82914d93bdce00e114d2f273ace95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51445764_52.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81e8270d08e6934d500b3833a1172e3ef8139e18b4f862595597fb19067efad0 -size 2769 diff --git a/MM_Math/data_original_21/7056435/math/51445791_730.png b/MM_Math/data_original_21/7056435/math/51445791_730.png deleted file mode 100644 index 5b8d29d610b70abeca6f6c40b512ccb2c947a2f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51445791_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb01575ce46aaef84c8399f318197c5fd3d739f4d3a9410d39cfac259fa48fa8 -size 3252 diff --git a/MM_Math/data_original_21/7056435/math/51446069_740.png b/MM_Math/data_original_21/7056435/math/51446069_740.png deleted file mode 100644 index f196686c54c0afea8a9cfe91a4ca528600b77970..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51446069_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b638e49d49f7e864d657a1e1c2fcab626b6073286949fb0af231d8a7bb07630f -size 2399 diff --git a/MM_Math/data_original_21/7056435/math/51446284_755.png b/MM_Math/data_original_21/7056435/math/51446284_755.png deleted file mode 100644 index 9e32e672ea064a24a9390f126c99efda2d03543f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51446284_755.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:170ac6896c5e31760a4ce221fb2c5468739b003354ac571e3ac89133fc20bfb4 -size 7439 diff --git a/MM_Math/data_original_21/7056435/math/51446382_66.png b/MM_Math/data_original_21/7056435/math/51446382_66.png deleted file mode 100644 index 68324a8d8145a8c20971d69245d9c0ac638f873d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51446382_66.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99d94e4ecd8a725f63b635cd89103dbb5215331e4c70f56faf869b7cc24261cc -size 4995 diff --git a/MM_Math/data_original_21/7056435/math/51446440_6612.png b/MM_Math/data_original_21/7056435/math/51446440_6612.png deleted file mode 100644 index ebf404e40bdac1ba59401a9bc1c906c0024dc076..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51446440_6612.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8366c664cc609be5db24ebd157a11fbbd4ca71ce7f3396506e7c25fda74d6b8 -size 13733 diff --git a/MM_Math/data_original_21/7056435/math/51545190_300.png b/MM_Math/data_original_21/7056435/math/51545190_300.png deleted file mode 100644 index a09e1d3852db3a76645ee5febb19ae7425a7fa96..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51545190_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc7edf70529d7e6c733f827e96544bca7ba8293420f06f28de609b702a25347c -size 2763 diff --git a/MM_Math/data_original_21/7056435/math/51545199_942.png b/MM_Math/data_original_21/7056435/math/51545199_942.png deleted file mode 100644 index a7707915a0ec042900a808558d6c28d933d6ec6b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51545199_942.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:588de935345782ad3e444d649cdefd19e933718cd6c37c20a7f4570f8117691a -size 38917 diff --git a/MM_Math/data_original_21/7056435/math/51545217_591.png b/MM_Math/data_original_21/7056435/math/51545217_591.png deleted file mode 100644 index 6d8ce2409ae074335f8c9c78a2e024eef8843939..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51545217_591.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a2d9b27d3d917d4e6075a61706c8c37233f675bbc89f06edd8fad7bbd61df86 -size 40361 diff --git a/MM_Math/data_original_21/7056435/math/51545296_580.png b/MM_Math/data_original_21/7056435/math/51545296_580.png deleted file mode 100644 index 104c21c7fcbcfad054055d2d5e2300ec4c5efb2a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51545296_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ecd60d8f11336f47c07b63992f713057cfee49df0c4e7cc9b8328dc01831f0ae -size 1416 diff --git a/MM_Math/data_original_21/7056435/math/51545297_560.png b/MM_Math/data_original_21/7056435/math/51545297_560.png deleted file mode 100644 index 99289a430e644ff315067302b8879ab9161ad00a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51545297_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb9de286f4ea6e6157bda1b9b454504834a8628424940f1eccf709c1558a7a87 -size 10183 diff --git a/MM_Math/data_original_21/7056435/math/51545324_290.png b/MM_Math/data_original_21/7056435/math/51545324_290.png deleted file mode 100644 index ca7d14873addb4bacc48e8f5a30510b95733a4af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51545324_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a40df457a35acc13b98c6709cdc069cb6dfa53a29b0a14d6d718462465192002 -size 3816 diff --git a/MM_Math/data_original_21/7056435/math/51545341_965.png b/MM_Math/data_original_21/7056435/math/51545341_965.png deleted file mode 100644 index 47f907613e65bbfe960e81868a273b658ca24d7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/51545341_965.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eff23c4fe8a375e089f7d25485a29c4a0edba51715928bb65791172de0f954aa -size 3312 diff --git a/MM_Math/data_original_21/7056435/math/52601679_951.png b/MM_Math/data_original_21/7056435/math/52601679_951.png deleted file mode 100644 index f0fe75807cf91efb308a0e61faf5f154a1c736da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52601679_951.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4cad6d4f1e278bc7399abcb1e7b1e10395856c1ea6e3ddececfd3a5d3855ffd8 -size 2776 diff --git a/MM_Math/data_original_21/7056435/math/52601696_555.png b/MM_Math/data_original_21/7056435/math/52601696_555.png deleted file mode 100644 index e0767b16d1047d930b77d5ed5f0c4a94857fc6cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52601696_555.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a8edea17663b2726c6f503c4e3f84f09b80b19ca8538d684e5c6f69e5160cd4 -size 67385 diff --git a/MM_Math/data_original_21/7056435/math/52601704_647.png b/MM_Math/data_original_21/7056435/math/52601704_647.png deleted file mode 100644 index 2334c7143389a9cc0bb9d0830cb7ad238ebb14ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52601704_647.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a1872b1fddad48b57f266cb4d6fbed724d2cc9909e7d99a84f3db76375da3a9 -size 55536 diff --git a/MM_Math/data_original_21/7056435/math/52601722_321.png b/MM_Math/data_original_21/7056435/math/52601722_321.png deleted file mode 100644 index dc3e1832b5e8763bbfc48e98bfba65f0f78bfe1d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52601722_321.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd163db3faf01781de8e9c961750cb82aa3f335a688012479fe96ed1716d4952 -size 2902 diff --git a/MM_Math/data_original_21/7056435/math/52601759_252.png b/MM_Math/data_original_21/7056435/math/52601759_252.png deleted file mode 100644 index 903ea251e2d38059c1e2124509379e653ac743dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52601759_252.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:57d973f7d7b834929185cbfc2fbd9e9ed4a25db0ea1393af5b64f08c8ca0498f -size 10952 diff --git a/MM_Math/data_original_21/7056435/math/52601761_270.png b/MM_Math/data_original_21/7056435/math/52601761_270.png deleted file mode 100644 index cfcf74901e06f49884eef4c45487a43fed6e563c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52601761_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:831afbb65add1e336ca8a32b0567313729fac8ecab99608cbf39f22938f1c436 -size 7810 diff --git a/MM_Math/data_original_21/7056435/math/52601788_980.png b/MM_Math/data_original_21/7056435/math/52601788_980.png deleted file mode 100644 index 484d75695ceb4dd28ca91a65dc95eca9ce51f428..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52601788_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8874d437464444273b51cc905d704e44d7a74cc4d11bb784af3224194b66d4d -size 3900 diff --git a/MM_Math/data_original_21/7056435/math/52601930_281.png b/MM_Math/data_original_21/7056435/math/52601930_281.png deleted file mode 100644 index b60df427c895c89aed76bbd18c88ce0cb707ee80..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52601930_281.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32f773ae0b811622308c934c81bbbb5e491767fa8206786fcd4be7faed14db2f -size 3073 diff --git a/MM_Math/data_original_21/7056435/math/52601962_570.png b/MM_Math/data_original_21/7056435/math/52601962_570.png deleted file mode 100644 index 976840062c7987fe1b4a1f966f05f14133a0e0bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52601962_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eaaddef9e2c4abc27a39a9a7e8d045ceebdc7d329e6efdbd9c679af8b0070f16 -size 9396 diff --git a/MM_Math/data_original_21/7056435/math/52602086_997.png b/MM_Math/data_original_21/7056435/math/52602086_997.png deleted file mode 100644 index a155d156d29774450bcfa7aeeee2faee4f4d1894..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52602086_997.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd68b83b2a90e9fa2c8570c27c8da7bda245f37a881839ace75b0c4a6218a819 -size 3305 diff --git a/MM_Math/data_original_21/7056435/math/52602101_220.png b/MM_Math/data_original_21/7056435/math/52602101_220.png deleted file mode 100644 index a578c09829263fe83142eaf1fb3980849fa832ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52602101_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5aadd3407a81a4be1706cda92b5631ed2c11b31ee8e1d68dcf221a64035129aa -size 2286 diff --git a/MM_Math/data_original_21/7056435/math/52602147_650.png b/MM_Math/data_original_21/7056435/math/52602147_650.png deleted file mode 100644 index 91afb52b7e57d32fa5542cc8852dfaff41a9f98d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52602147_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d867fe7fa6fbfaa8dc8a1cd3c016e95b1332307140ddc972d9eae68cd1ddeead -size 4730 diff --git a/MM_Math/data_original_21/7056435/math/52602351_234.png b/MM_Math/data_original_21/7056435/math/52602351_234.png deleted file mode 100644 index 92dffd5471118e5d768d3feca988786dc202c102..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52602351_234.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c8088fe98e4e49088906bdb7fd1c2841ff77cdb7b221c4008319bfec3e1126e -size 3495 diff --git a/MM_Math/data_original_21/7056435/math/52602477_240.png b/MM_Math/data_original_21/7056435/math/52602477_240.png deleted file mode 100644 index e56a42fc302e600454da7aad57c7e89082d9677c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52602477_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25a8ae0ad000205ddbfe299557369104727932970d7fab35c081d5f84ef1de88 -size 7238 diff --git a/MM_Math/data_original_21/7056435/math/52602484_537.png b/MM_Math/data_original_21/7056435/math/52602484_537.png deleted file mode 100644 index 0b3a91d5591a00fb211ea58d4d1329e9da8feac0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52602484_537.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21e6ca0da669fd77f98e866e6ecfb711ea541ae88d836f290b006bd52b7e6e26 -size 2534 diff --git a/MM_Math/data_original_21/7056435/math/52602898_520.png b/MM_Math/data_original_21/7056435/math/52602898_520.png deleted file mode 100644 index ac343dde775168d49c65ae52b0e121043be0a866..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52602898_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1604dc20a5825cc031c29115d47afc9f71b6c673a84c9e2aa375a8259415565 -size 2497 diff --git a/MM_Math/data_original_21/7056435/math/52719745_970.png b/MM_Math/data_original_21/7056435/math/52719745_970.png deleted file mode 100644 index a514bc23f507734fa201cc78d3d526d6613b4373..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52719745_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42c15ffaadf4f5cd1bc481251ebca3e61677830b825cdfefd11983d8c7df1cb3 -size 3093 diff --git a/MM_Math/data_original_21/7056435/math/52719807_205.png b/MM_Math/data_original_21/7056435/math/52719807_205.png deleted file mode 100644 index 0a75763ea1f0631c637a3698d98f4883d8d3a687..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52719807_205.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aca7efde77826fee41d53b87e842da8df76272915c1937245b70e88bfaf81543 -size 24229 diff --git a/MM_Math/data_original_21/7056435/math/52719807_206.png b/MM_Math/data_original_21/7056435/math/52719807_206.png deleted file mode 100644 index e74514ea4cbfcd29e4ea3bbc79b366b1c67a3385..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52719807_206.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4209e09a65686e00d9238f5da4d30d285f1d18d3590d5cd029fd3725cfd36a74 -size 2381 diff --git a/MM_Math/data_original_21/7056435/math/52719814_497.png b/MM_Math/data_original_21/7056435/math/52719814_497.png deleted file mode 100644 index 9313ceb7a1313d9ad52ddc7bae68d198e09346fc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52719814_497.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddd5425e329a30b84b35828eede92bffb4e54e9e1119880af4ef25dabd9dc5ed -size 82637 diff --git a/MM_Math/data_original_21/7056435/math/52719891_210.png b/MM_Math/data_original_21/7056435/math/52719891_210.png deleted file mode 100644 index c71eefd2112d08acccc7a5eb4abc16afc61fcd25..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52719891_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11381b526433ae91afe8c7abea9601bf770dc63248928a40db75e71f32f49e3d -size 2752 diff --git a/MM_Math/data_original_21/7056435/math/52719959_197.png b/MM_Math/data_original_21/7056435/math/52719959_197.png deleted file mode 100644 index bd43aa0e0a0db2f5b59574e53613734866f3fd7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52719959_197.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2fc1d7bc8ba8f240a59036ae401c2252628e9c45ce321619708f49ad7906cdca -size 14752 diff --git a/MM_Math/data_original_21/7056435/math/52720073_500.png b/MM_Math/data_original_21/7056435/math/52720073_500.png deleted file mode 100644 index 2fb43b42671f98b0039fd61d58a1ce4dfd57bff6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52720073_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74a7471ad729e8d0f4d6da262479bed2533d454f4193ab9a1865048440144de4 -size 3836 diff --git a/MM_Math/data_original_21/7056435/math/52765245_511.png b/MM_Math/data_original_21/7056435/math/52765245_511.png deleted file mode 100644 index 0266346793bcad73d2b9d7d734ae2dd29da987a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52765245_511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f4be3af5574fcc1877b809707502610ba956b4644923488e7383c8bab40f1ed -size 26423 diff --git a/MM_Math/data_original_21/7056435/math/52765253_620.png b/MM_Math/data_original_21/7056435/math/52765253_620.png deleted file mode 100644 index adb4ca227ce771d5768f9df5c83e78dcead28871..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52765253_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e01d151ede32f29eab85543d1fc448e28e8bef28a5e1fa8e63d4829fd22ad97 -size 6974 diff --git a/MM_Math/data_original_21/7056435/math/52765807_310.png b/MM_Math/data_original_21/7056435/math/52765807_310.png deleted file mode 100644 index 136277d579bc765ec1aae4eafc2799644b89e467..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52765807_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e02d139d6321695b4ed0d0f93819e3fae3715bf841b5b0efec84cf30fe1628a -size 15229 diff --git a/MM_Math/data_original_21/7056435/math/52765937_630.png b/MM_Math/data_original_21/7056435/math/52765937_630.png deleted file mode 100644 index ecb24a0aa971c143fb94af0645aae8bf218bfd63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52765937_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9cf3f7127cb0fbf677b2f9f20f7428de4c6f44129461096c684a2da8f05765ac -size 1936 diff --git a/MM_Math/data_original_21/7056435/math/52766358_930.png b/MM_Math/data_original_21/7056435/math/52766358_930.png deleted file mode 100644 index 5a3159adab8560cb216072e41fd23190d17dc15a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52766358_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1381b7f2a2e1455f0bb3b43ac656a308d0a302fa5920dc929db8711a83488976 -size 7681 diff --git a/MM_Math/data_original_21/7056435/math/52872073_692.png b/MM_Math/data_original_21/7056435/math/52872073_692.png deleted file mode 100644 index 4b87db5064c5d5c56415377e29f386a02e73a079..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872073_692.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2098182f99fac13dbfdf4f70e87a093df78467db561644acc10d156a59200f09 -size 70557 diff --git a/MM_Math/data_original_21/7056435/math/52872084_680.png b/MM_Math/data_original_21/7056435/math/52872084_680.png deleted file mode 100644 index ea4694d02bff3d2505a50b16aca9faf0987eeff0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872084_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e25666c15a36a45a39ff7fb39fe54585aad617f4b984961be4301fadc4ddd1ad -size 171248 diff --git a/MM_Math/data_original_21/7056435/math/52872100_06.png b/MM_Math/data_original_21/7056435/math/52872100_06.png deleted file mode 100644 index fe3cea55cb128ef95a41e7f60a9748943f37b8e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872100_06.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:55692b58402262ef57b5130fcf00e838870f85636aa6e9983e2b5fd73dcff0a3 -size 1723 diff --git a/MM_Math/data_original_21/7056435/math/52872167_14.png b/MM_Math/data_original_21/7056435/math/52872167_14.png deleted file mode 100644 index 29d1b057fc719c7c4f8584828f67aed257bca1bc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872167_14.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dd5651689a8978e2f08b67219b08204ea8e7d67d0f8a662494add7f4f8c3a068 -size 24638 diff --git a/MM_Math/data_original_21/7056435/math/52872176_330.png b/MM_Math/data_original_21/7056435/math/52872176_330.png deleted file mode 100644 index b3121fa341f1fa0a0b6d76e1e3f8c135ce335a3e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872176_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30f03a26bd956db1ba39aa3f2b99998c279251400965ac63fa4167a933174ae0 -size 1387 diff --git a/MM_Math/data_original_21/7056435/math/52872196_673.png b/MM_Math/data_original_21/7056435/math/52872196_673.png deleted file mode 100644 index 97b81d8df54dbfe4af2f04fc0d15a1a72536f86f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872196_673.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3bf13c6df2b87909741e096bf96a971fde009a40dc068bc9edf95da8f33d864 -size 6084 diff --git a/MM_Math/data_original_21/7056435/math/52872215_702.png b/MM_Math/data_original_21/7056435/math/52872215_702.png deleted file mode 100644 index 4469cce184de62d4aabf763258ee9fd866392c50..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872215_702.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:255624a166b4d0c63122eb7d27b9548cc58af02b27af02f7ba4d5d815e6f848a -size 2962 diff --git a/MM_Math/data_original_21/7056435/math/52872330_25.png b/MM_Math/data_original_21/7056435/math/52872330_25.png deleted file mode 100644 index 224ab37c3906ce5f9408755957ec4609c48ec604..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872330_25.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fd71b7fcba8398a1206f62f4f68fad3b326e9a2bb908dc3cb5925c61470895a -size 2433 diff --git a/MM_Math/data_original_21/7056435/math/52872384_715.png b/MM_Math/data_original_21/7056435/math/52872384_715.png deleted file mode 100644 index a44e09413561077fba3eb88609b832092daff09a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872384_715.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b84d0e06f12f8a7c055cd476c028df38cd762ef0bf25eeefe7ae2b4f27666eb0 -size 2088 diff --git a/MM_Math/data_original_21/7056435/math/52872397_721.png b/MM_Math/data_original_21/7056435/math/52872397_721.png deleted file mode 100644 index 87264b066e764edace6d4fcfbd89a2f9949b97c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872397_721.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fa20b308ba6dff032cdb099c5b02fd55ef51117ea63899b18d46e80058618ca -size 248219 diff --git a/MM_Math/data_original_21/7056435/math/52872401_766.png b/MM_Math/data_original_21/7056435/math/52872401_766.png deleted file mode 100644 index a6c44be241cae89b521d469060468a6546718f12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/math/52872401_766.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1de0a342e461d656626b69241ac7205c808e571fbd07a072a4ebd8e2bd4c786d -size 34538 diff --git a/MM_Math/data_original_21/7056435/solution_images/51299523_90.png b/MM_Math/data_original_21/7056435/solution_images/51299523_90.png deleted file mode 100644 index fd7ba26c7f620e1734a68de122a71c10536e6729..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51299523_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a0cd30420f9c8ade60869739850833649ce640ea35fc429a7e630661c223bae -size 19370 diff --git a/MM_Math/data_original_21/7056435/solution_images/51299791_80.png b/MM_Math/data_original_21/7056435/solution_images/51299791_80.png deleted file mode 100644 index 06d9e2958e24ee47ccb2b9309f8319f77257bfa3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51299791_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96d1929cf57aa5dc1f2922e25345e3f788d52734d07bb7aeb14dd4af112fda10 -size 14404 diff --git a/MM_Math/data_original_21/7056435/solution_images/51402480_470.png b/MM_Math/data_original_21/7056435/solution_images/51402480_470.png deleted file mode 100644 index f6d23b8b8e4d03e450a547f775bc60ad442d4501..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51402480_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f64e12ea941d3356723bd14df74a8cb53b1eff7b5ed2b1c5ec5c5ee5f6db81e -size 3963 diff --git a/MM_Math/data_original_21/7056435/solution_images/51402614_410.png b/MM_Math/data_original_21/7056435/solution_images/51402614_410.png deleted file mode 100644 index 6d6aac354553e9d23da8a91bcd892f97bcfda122..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51402614_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06c401acaffef49091f1df3b8e08083ffdd8906d44e2fc92eb0ce26b67db770f -size 6663 diff --git a/MM_Math/data_original_21/7056435/solution_images/51402947_159.png b/MM_Math/data_original_21/7056435/solution_images/51402947_159.png deleted file mode 100644 index 317bbb4d672dc5f23931a72095ea94079170cd51..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51402947_159.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2736f5159d2f7f679598433abdc9f152494229bec428f6413c5b888cedf91c1 -size 11143 diff --git a/MM_Math/data_original_21/7056435/solution_images/51402956_401.png b/MM_Math/data_original_21/7056435/solution_images/51402956_401.png deleted file mode 100644 index 7b4672ae61ba3fe0514de2c6887bda493d5bae84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51402956_401.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7123ac1440a993f8e7889836843bb51d84c5d5e28f3b03711b501658bb2a7a3e -size 14042 diff --git a/MM_Math/data_original_21/7056435/solution_images/51403069_4621.png b/MM_Math/data_original_21/7056435/solution_images/51403069_4621.png deleted file mode 100644 index 168f2ed224cfb3d524121049ab064a1eabccd8a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51403069_4621.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd5e3b6489628d88c075c90c1fcced59fdb7e1561dc35caedcf58bbcaf9be2a3 -size 4346 diff --git a/MM_Math/data_original_21/7056435/solution_images/51403154_480.png b/MM_Math/data_original_21/7056435/solution_images/51403154_480.png deleted file mode 100644 index d9b8da13404911a4a8f2fe86b8f98f2354deba85..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51403154_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3134fcf90c9822cf6c3f784949e31cb800e8fc8c30e228b3b77a1c299505bd54 -size 6449 diff --git a/MM_Math/data_original_21/7056435/solution_images/51403270_430.png b/MM_Math/data_original_21/7056435/solution_images/51403270_430.png deleted file mode 100644 index 6fdd34b84b9ac1821f5666eb0cc0ca5553753fd3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51403270_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1b95a69be26ee627a417dc22baf6401e9e3647d1368fed7fd3641bd1ed26e53 -size 5285 diff --git a/MM_Math/data_original_21/7056435/solution_images/51445446_360.png b/MM_Math/data_original_21/7056435/solution_images/51445446_360.png deleted file mode 100644 index 80e7b506397c7a7f3aaa7d9e0e568c1d33362690..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51445446_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb82470bfcdadc1474723ef065090b8bfcdcb6ce27762d0526854544ee953f05 -size 2918 diff --git a/MM_Math/data_original_21/7056435/solution_images/51445446_3612.png b/MM_Math/data_original_21/7056435/solution_images/51445446_3612.png deleted file mode 100644 index 7d20f17174137be77f79bca94c4b72c70e775d75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51445446_3612.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:694cb43ed5926513756bfc4a72275e41f6364c1936152ad19db2b6ea3a6dafea -size 2753 diff --git a/MM_Math/data_original_21/7056435/solution_images/51445487_3511.png b/MM_Math/data_original_21/7056435/solution_images/51445487_3511.png deleted file mode 100644 index 2d9919c34550532176ecc0fb30199ada078da923..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51445487_3511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe2cc07f3c56d762c7af27b011233cfee199e4452c52b5f4586dd743a5d976f4 -size 14428 diff --git a/MM_Math/data_original_21/7056435/solution_images/51446440_661.png b/MM_Math/data_original_21/7056435/solution_images/51446440_661.png deleted file mode 100644 index 1abbc0963175f4961a4d043642cdc6ed30117754..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51446440_661.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a35a5c32c3b290009051cae7f6705cc6825261933b6a9713cd5c0a55b035ca2 -size 8453 diff --git a/MM_Math/data_original_21/7056435/solution_images/51545190_300.png b/MM_Math/data_original_21/7056435/solution_images/51545190_300.png deleted file mode 100644 index 8cbac0e395e199e0329e03913515214947ba76ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51545190_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:524c2fddadaa531806c6126c54e92925786b3de0a25602ed0fe67521c98f4063 -size 4496 diff --git a/MM_Math/data_original_21/7056435/solution_images/51545296_5820.png b/MM_Math/data_original_21/7056435/solution_images/51545296_5820.png deleted file mode 100644 index 1feed6e5fe91a974b4de4586ad408c9b89e272eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51545296_5820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6683fdfd7f3e2130480ff710cabeaa4b0c335c91c79848b8fa5cf1613ab851bf -size 55207 diff --git a/MM_Math/data_original_21/7056435/solution_images/51545296_5823.png b/MM_Math/data_original_21/7056435/solution_images/51545296_5823.png deleted file mode 100644 index f106ec324762da4c21870d103816c45c065caedd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51545296_5823.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3138c2cb90f6531fbe6b46e777cef7e8f124246152d533c056c6f72b6c5d1ea6 -size 70852 diff --git a/MM_Math/data_original_21/7056435/solution_images/51545296_589.png b/MM_Math/data_original_21/7056435/solution_images/51545296_589.png deleted file mode 100644 index e064fb223e542bf7029c388558b43b482bac3b90..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51545296_589.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3342c1938fb56f299516003f5bcfa968870506fc6625e2f6278f53f49d28efb0 -size 77216 diff --git a/MM_Math/data_original_21/7056435/solution_images/51545297_567.png b/MM_Math/data_original_21/7056435/solution_images/51545297_567.png deleted file mode 100644 index ce6ad1da8a9be18b63118dff8e633b7312a4219a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/51545297_567.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f16e21f2da6087b1ceb4a22fc7fce0a847f2b4d431356f4cb64114caa58af533 -size 56126 diff --git a/MM_Math/data_original_21/7056435/solution_images/52601930_281.png b/MM_Math/data_original_21/7056435/solution_images/52601930_281.png deleted file mode 100644 index 85bf4818fee303de439163c0e24540554cd5b761..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/52601930_281.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cedfd73d60aead90e091abbcd03992b2569976330fe78f02bbb1228d6547943e -size 3977 diff --git a/MM_Math/data_original_21/7056435/solution_images/52602144_547.png b/MM_Math/data_original_21/7056435/solution_images/52602144_547.png deleted file mode 100644 index efb270bea8969afa68151038baa8a2d0d53f43ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/52602144_547.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b097f9e117b4a831b14c7ef29c58db88163a5751e5dbe61558c16a4ec6e635c -size 3632 diff --git a/MM_Math/data_original_21/7056435/solution_images/52872330_20.png b/MM_Math/data_original_21/7056435/solution_images/52872330_20.png deleted file mode 100644 index 7cb788e6e084fa33ca8e1362c7c230afad7e8462..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056435/solution_images/52872330_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90249b61e3712ed8144a00d7b95b36140ae383743d277801d112715ee72a6793 -size 3044 diff --git a/MM_Math/data_original_21/7056453/math/51322304_820.png b/MM_Math/data_original_21/7056453/math/51322304_820.png deleted file mode 100644 index d32da9186816f943a01d9c8207ef17037c8ff00e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51322304_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec41a92e4f21397094d73118682c65969484da730580b40cfcfc13e9ddd08a3a -size 26318 diff --git a/MM_Math/data_original_21/7056453/math/51322317_182.png b/MM_Math/data_original_21/7056453/math/51322317_182.png deleted file mode 100644 index f365b7f428aac173a856add937401064f82a0950..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51322317_182.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97ebb51202ade5f0f9bb738cc1f29ad31d30134f0e4053a114d7c3564857c204 -size 23460 diff --git a/MM_Math/data_original_21/7056453/math/51322344_834.png b/MM_Math/data_original_21/7056453/math/51322344_834.png deleted file mode 100644 index e7d64f2a8e400ce70c920a75aafb458e80fc79ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51322344_834.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:391a2ddf193adfe826a2a8b1873cade9c41555fa337e185ae851efc05bac5ae0 -size 6814 diff --git a/MM_Math/data_original_21/7056453/math/51350897_640.png b/MM_Math/data_original_21/7056453/math/51350897_640.png deleted file mode 100644 index 6d47d5e70980158b408f76da2a345108861b345d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51350897_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53a33999ae6805dfb87b110423d3618267ab6667f654c6c4ea7146d9544b78bd -size 9774 diff --git a/MM_Math/data_original_21/7056453/math/51351125_600.png b/MM_Math/data_original_21/7056453/math/51351125_600.png deleted file mode 100644 index 0448437486b8d88957435337baf1c080f0ab1122..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51351125_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:27f364ead19d5febc9c577bf176bbd89f58bb32192cc3f3f790378bd7598b6e9 -size 6127 diff --git a/MM_Math/data_original_21/7056453/math/51351656_952.png b/MM_Math/data_original_21/7056453/math/51351656_952.png deleted file mode 100644 index 1f839daa44a824a04d59420e63f92e8becd41139..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51351656_952.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e43e53447571b7830fcadc3b2258e41c8d022387b5a6c094642819f77923065 -size 16347 diff --git a/MM_Math/data_original_21/7056453/math/51351726_290.png b/MM_Math/data_original_21/7056453/math/51351726_290.png deleted file mode 100644 index 1fa95a72e2e5a5e130a5a5167114cc4f25f79597..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51351726_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ed665e36c1aa7dea1c8bb83d13123709ea6b1a4b41eee53b02bf5bab4ecbcd9 -size 18512 diff --git a/MM_Math/data_original_21/7056453/math/51351735_582.png b/MM_Math/data_original_21/7056453/math/51351735_582.png deleted file mode 100644 index 11ffce7339868218bd0332e9261bd134b08e8f6d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51351735_582.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8d485273a554f2264f84a172f13643a97cf469869407339b6502dadc7c806f7e -size 3820 diff --git a/MM_Math/data_original_21/7056453/math/51351875_650.png b/MM_Math/data_original_21/7056453/math/51351875_650.png deleted file mode 100644 index 8d05bccd959306019c15514bf8e3362e46f741eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51351875_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:074e51e4d70628b66e81c387c9d43de8727a37d0280c30af9b82bd7a658cf68f -size 2690 diff --git a/MM_Math/data_original_21/7056453/math/51351895_302.png b/MM_Math/data_original_21/7056453/math/51351895_302.png deleted file mode 100644 index 51a81aab5889b9847716d2ae341d6838db5fda8a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51351895_302.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:589130fcdb045b54c7ddabd70e28c51ab6627d0a8f491553192e862997535292 -size 3279 diff --git a/MM_Math/data_original_21/7056453/math/51352002_316.png b/MM_Math/data_original_21/7056453/math/51352002_316.png deleted file mode 100644 index 6515c993cd85ae63e946726516c4d3585535b8e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51352002_316.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46e9e658cc9164b399632f6636a88f3308bb909007e9d5881a9d01391bda0497 -size 3262 diff --git a/MM_Math/data_original_21/7056453/math/51352021_9912.png b/MM_Math/data_original_21/7056453/math/51352021_9912.png deleted file mode 100644 index 10cd9ad03c66985181dfe79e04cbc3bc575ab348..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51352021_9912.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a0a9ac332f8b7ae9c2e54b147b125f96cc0134318dcb3202bee0b258e6225299 -size 40888 diff --git a/MM_Math/data_original_21/7056453/math/51353152_980.png b/MM_Math/data_original_21/7056453/math/51353152_980.png deleted file mode 100644 index fde448c9ba54205a28f167aa63ec6bc3dc095c0d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51353152_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da08e53faf09f0b5dd726937977e7e9563433e1e9782d571c287bf42a84096a4 -size 16334 diff --git a/MM_Math/data_original_21/7056453/math/51353232_287.png b/MM_Math/data_original_21/7056453/math/51353232_287.png deleted file mode 100644 index 6d04c5d154332d74c283c0656613f139aaea9147..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51353232_287.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0201529246b2ab6f23cd73dd41e6628569ba5728476668f71dd8db10d413ee31 -size 6900 diff --git a/MM_Math/data_original_21/7056453/math/51353482_575.png b/MM_Math/data_original_21/7056453/math/51353482_575.png deleted file mode 100644 index dfe697ca562b8a242653471973596e3634d1800e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51353482_575.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23c0f604264d9dfc735c92dc2f9e5ff8b49fa9e122464db0650abbbe95046770 -size 32205 diff --git a/MM_Math/data_original_21/7056453/math/51353485_595.png b/MM_Math/data_original_21/7056453/math/51353485_595.png deleted file mode 100644 index ebf95849e5c5f52a03f95305106526434901ff8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51353485_595.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:500a85d8774c520d4c73cff47b38f268bdadb5e91bc470c20fa1f0595b47dee8 -size 44878 diff --git a/MM_Math/data_original_21/7056453/math/51353491_974.png b/MM_Math/data_original_21/7056453/math/51353491_974.png deleted file mode 100644 index 0082888c84f7faa289f4677876cb7f3cd7b0d24d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51353491_974.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75aa99f7f3519bc475d2cbf2f763e3a6a9f7f48ac53a825042731148de00e499 -size 3358 diff --git a/MM_Math/data_original_21/7056453/math/51353525_964.png b/MM_Math/data_original_21/7056453/math/51353525_964.png deleted file mode 100644 index 3206e8bfd6415b1edcc2b8ad879c4abcd930a1d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51353525_964.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e65d5ef1ee12434ea933f9dad210bbdb0d3b3d4367900afbc2fd76ed31c822c1 -size 120594 diff --git a/MM_Math/data_original_21/7056453/math/51379110_30.png b/MM_Math/data_original_21/7056453/math/51379110_30.png deleted file mode 100644 index 8a30390a3068ccdbf72ebf028443d2f033bab2ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379110_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f64ce0e4b60fcc4946a58fa3f924a9740b78c74c3cc41b61a6963fbb4a67d9e -size 4716 diff --git a/MM_Math/data_original_21/7056453/math/51379157_435.png b/MM_Math/data_original_21/7056453/math/51379157_435.png deleted file mode 100644 index 620a75b58c097fa2c6bc9263e380d5c2b36177c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379157_435.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5bd858de756f24405ace981696c84bd5b427673a16c9f8913679ea7e6d3a6911 -size 13948 diff --git a/MM_Math/data_original_21/7056453/math/51379170_620.png b/MM_Math/data_original_21/7056453/math/51379170_620.png deleted file mode 100644 index 3f25a40448a01cdc462583905d59e6c46b80b1fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379170_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e671e4f7ce63c8a8816c2a05c6bbce493ca554aefdae230cc09174ed26f9173 -size 2520 diff --git a/MM_Math/data_original_21/7056453/math/51379199_83.png b/MM_Math/data_original_21/7056453/math/51379199_83.png deleted file mode 100644 index 9fcd88b651d587419d43bd71ce9643cdceed7a9e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379199_83.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:acb76f6eea1a574f1d4ab2475581711115450c34a74e7e19def7a1ab028f7f84 -size 11518 diff --git a/MM_Math/data_original_21/7056453/math/51379205_42.png b/MM_Math/data_original_21/7056453/math/51379205_42.png deleted file mode 100644 index f8c57af93a983d05834797c74102b892a445afc9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379205_42.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f081603a0a57b13b564b82f34e2d38186d31971ce399f0dea91150a826771fc -size 6094 diff --git a/MM_Math/data_original_21/7056453/math/51379211_377.png b/MM_Math/data_original_21/7056453/math/51379211_377.png deleted file mode 100644 index d0ae272e670527751ae48a55048ef5ab66d24bd3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379211_377.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb0411a8e6501ef6bce86c2ab4590e32cf11b012280d61c31c5d5de0b83ca3dd -size 2651 diff --git a/MM_Math/data_original_21/7056453/math/51379304_710.png b/MM_Math/data_original_21/7056453/math/51379304_710.png deleted file mode 100644 index aef829b8f1e19d0b6c4cd59376a82a9e36e110af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379304_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:066f889b6447396e3c2936c0c6b3fac52cee70bdede32c4e6126674b318a072a -size 4285 diff --git a/MM_Math/data_original_21/7056453/math/51379316_711.png b/MM_Math/data_original_21/7056453/math/51379316_711.png deleted file mode 100644 index 2eaf4effed636c99da98c4f4b056ec086246b918..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379316_711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f4eeee826179132cad45b7b83eaeba56be5f32a583053a3b05facc7a3f90535 -size 5301 diff --git a/MM_Math/data_original_21/7056453/math/51379323_418.png b/MM_Math/data_original_21/7056453/math/51379323_418.png deleted file mode 100644 index 0d6f43b7ed49204756e2301c5691fff09113377a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379323_418.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2efb60676ecd7ce34c6d3149ec238b5605e8e879dfc20f8af2a3e119b009dc4b -size 3483 diff --git a/MM_Math/data_original_21/7056453/math/51379325_3810.png b/MM_Math/data_original_21/7056453/math/51379325_3810.png deleted file mode 100644 index 4a3599d9dd2bac68a3074427eaead5af4bfb3fdb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379325_3810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a097b31674441558721c9496896cc367f078dfbf097e4dd7e8d3629e63fc29b -size 6121 diff --git a/MM_Math/data_original_21/7056453/math/51379367_395.png b/MM_Math/data_original_21/7056453/math/51379367_395.png deleted file mode 100644 index 80e8796455c6b1d2bdf359c83a6d7d2ac17a7ccc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379367_395.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b66316df146dca31872d4b2842f56001701083fbbf04a0853cf72699c25b6672 -size 5501 diff --git a/MM_Math/data_original_21/7056453/math/51379369_338.png b/MM_Math/data_original_21/7056453/math/51379369_338.png deleted file mode 100644 index e8134dfaa9886446e172c1db60a3f1265bf86ca8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379369_338.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0236fda01327969a992b236f1cf5c2e889c0950b299b3ae3016fb111cc4998c -size 8468 diff --git a/MM_Math/data_original_21/7056453/math/51379378_694.png b/MM_Math/data_original_21/7056453/math/51379378_694.png deleted file mode 100644 index 44359a53dd590c657ba2d435bf7d7e1cad3e3ab8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379378_694.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c6d8ff4534e585b0f00b99d7e5a21585311a3e21c86ff46a4a61cfebbe7ccbc -size 10927 diff --git a/MM_Math/data_original_21/7056453/math/51379396_427.png b/MM_Math/data_original_21/7056453/math/51379396_427.png deleted file mode 100644 index 676276de3649320ba512cc684a850e353fec1760..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379396_427.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32ebd333b6589f8ca6ca159ae7c20c4c90cf0c65c377e59baacea85463bd62ac -size 15730 diff --git a/MM_Math/data_original_21/7056453/math/51379404_405.png b/MM_Math/data_original_21/7056453/math/51379404_405.png deleted file mode 100644 index 7e216886488e9952da9360b725e91afc409aeddc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379404_405.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62b08510ac4b2960f266a0fec918f1f9a77d6e58b30f204e2dcdcebd42c581d6 -size 6648 diff --git a/MM_Math/data_original_21/7056453/math/51379443_3410.png b/MM_Math/data_original_21/7056453/math/51379443_3410.png deleted file mode 100644 index 9d41ab36b2277dedb1a560ddaa8c32bf2ebb7ca8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379443_3410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d4fbcb78e624d30f20ca073d8e69b2a6018dbdf81da102fe4f1d48e93454a669 -size 1887 diff --git a/MM_Math/data_original_21/7056453/math/51379447_6315.png b/MM_Math/data_original_21/7056453/math/51379447_6315.png deleted file mode 100644 index 0e259b14270c85b6fe5cf626c99f30361b4bb0e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379447_6315.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99a60e4f83dc1f21580a71440b7e2b7da6171dad40ff78ffcc2a8b559d0b52ea -size 6517 diff --git a/MM_Math/data_original_21/7056453/math/51379461_7311.png b/MM_Math/data_original_21/7056453/math/51379461_7311.png deleted file mode 100644 index 2ec3a1d9a81899da4014343ea3def26a1d414151..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379461_7311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9d34d9391b197bb020b947ac5d0dae19127aaddaa429bddbe500009add461c3 -size 8958 diff --git a/MM_Math/data_original_21/7056453/math/51379466_64.png b/MM_Math/data_original_21/7056453/math/51379466_64.png deleted file mode 100644 index 930b1e444c8691c933f50c0a79f4d4651400cbdc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379466_64.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:625e111a27220ea7d5c156fc06173dc6724ddfb5fb5fe3cd746d92b7cfe6042a -size 19816 diff --git a/MM_Math/data_original_21/7056453/math/51379481_351.png b/MM_Math/data_original_21/7056453/math/51379481_351.png deleted file mode 100644 index 516a8e394d87beaccc8372a61a12fb8a79b28574..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379481_351.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2668464387708323049eb798810300d946818c704de76cbf94e410a9aa3ae82e -size 17848 diff --git a/MM_Math/data_original_21/7056453/math/51379484_720.png b/MM_Math/data_original_21/7056453/math/51379484_720.png deleted file mode 100644 index 5f540daa6040b46ec024ead647b0c189d8ae7b70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379484_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8853c6d33a0f4013dc3581c7257f06b0b258cb66131214c76b7d1b0e1abf683b -size 19820 diff --git a/MM_Math/data_original_21/7056453/math/51379494_701.png b/MM_Math/data_original_21/7056453/math/51379494_701.png deleted file mode 100644 index 53cef0de8d6d9e3f989f01848db6c62f897934ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379494_701.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15c499b55c54bcc30f366418aedf829705bcc28fcd7bb1fbf4a0bf3557f490b4 -size 34517 diff --git a/MM_Math/data_original_21/7056453/math/51379498_763.png b/MM_Math/data_original_21/7056453/math/51379498_763.png deleted file mode 100644 index 66b7d02ac44ba42ee51f2257d11e6f3cd8f667d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379498_763.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:394d84a88c81c90cf6c9fcaa485fb3b83b10ae1b37cd12bdad8126d5bbc5a38c -size 18849 diff --git a/MM_Math/data_original_21/7056453/math/51379498_764.png b/MM_Math/data_original_21/7056453/math/51379498_764.png deleted file mode 100644 index ee2be5ad65931c882beca2a825440bf328087b05..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379498_764.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc7101e1309912df98c941a9b506b9150463915d1db6f62c9b6c3858beca8d3d -size 11507 diff --git a/MM_Math/data_original_21/7056453/math/51379520_750.png b/MM_Math/data_original_21/7056453/math/51379520_750.png deleted file mode 100644 index 318b89802b2d42b25d07098b4f0aabdd7dcdc948..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379520_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f11149d2573aa619332cb8115d197392f4eb4b81d157ee90a32c64f163cc1a70 -size 13613 diff --git a/MM_Math/data_original_21/7056453/math/51379554_3618.png b/MM_Math/data_original_21/7056453/math/51379554_3618.png deleted file mode 100644 index 6ef883eee8090b6a09df0ce5f7b581fd89ec294c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379554_3618.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:434a9f88abb4929669e8d8b1b4c28476c3e096b50155a47cc835cbdd514a71bc -size 5893 diff --git a/MM_Math/data_original_21/7056453/math/51379561_745.png b/MM_Math/data_original_21/7056453/math/51379561_745.png deleted file mode 100644 index 6040409e14b361332d680610a8eefbb8b00ff22a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51379561_745.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f9fbede120ecf78fafee3b38b9f6e34890e28ff825421661f85e2276360790a -size 3472 diff --git a/MM_Math/data_original_21/7056453/math/51385606_13.png b/MM_Math/data_original_21/7056453/math/51385606_13.png deleted file mode 100644 index b075ba6f9708325528cdc773d7f5bfa40ede849d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51385606_13.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3238f2af097282a28e7b734a99d9d1b01cbdafd2b22c89d17e6b6c776b585849 -size 5545 diff --git a/MM_Math/data_original_21/7056453/math/51385609_06.png b/MM_Math/data_original_21/7056453/math/51385609_06.png deleted file mode 100644 index 10d0d030a397f6254f132f95566b7572621979fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51385609_06.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34bf538155263398b26e9d5cb844a12d1790828c901e48b00f1b1ac8bcae2efd -size 4705 diff --git a/MM_Math/data_original_21/7056453/math/51385629_661.png b/MM_Math/data_original_21/7056453/math/51385629_661.png deleted file mode 100644 index 5f0a92268013d219a32e4db7a3c85d87c7f06dc5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51385629_661.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:907616872cf521cfba7a4c2968dae6ce6d8620a5ac445d3a71fdf20172199653 -size 5140 diff --git a/MM_Math/data_original_21/7056453/math/51457856_265.png b/MM_Math/data_original_21/7056453/math/51457856_265.png deleted file mode 100644 index 091c4f999868088d0097fdb5187227c76e883fb3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51457856_265.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d45fced09bfa8c81e46e30d284296f590e06adb79b50ee8adf6b7a709e4b2f1 -size 5485 diff --git a/MM_Math/data_original_21/7056453/math/51457863_270.png b/MM_Math/data_original_21/7056453/math/51457863_270.png deleted file mode 100644 index 073612709df059534ac5480a62a25f4ed60e7dca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51457863_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a28197d340938c8fc20bfc9672fd9586a8ecbd658c9dcb977fecb85632c3e38 -size 6694 diff --git a/MM_Math/data_original_21/7056453/math/51457948_553.png b/MM_Math/data_original_21/7056453/math/51457948_553.png deleted file mode 100644 index cdffe9f34b7dd340869876a2d045c215502f1a42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51457948_553.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:762d5da76e85429c9814c5e56f2bd7c58bb6ba4b72d15ecca19e9e7115c9a6ad -size 6032 diff --git a/MM_Math/data_original_21/7056453/math/51457951_560.png b/MM_Math/data_original_21/7056453/math/51457951_560.png deleted file mode 100644 index b868ec6123023e4c1e947d68b1e423cc8891eb70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51457951_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bee1372b9a16800b1bb319a47abf781ecf1db392f5bbff4a21dfa39582f66ce2 -size 2232 diff --git a/MM_Math/data_original_21/7056453/math/51458031_252.png b/MM_Math/data_original_21/7056453/math/51458031_252.png deleted file mode 100644 index 2d0d4dfa7fc7d364d94a34f788c47328b9997d9e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458031_252.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b306fb885f677b13e65dbc3d9d406ecd01e0f2740aadc65f183f7e1564249664 -size 4117 diff --git a/MM_Math/data_original_21/7056453/math/51458070_240.png b/MM_Math/data_original_21/7056453/math/51458070_240.png deleted file mode 100644 index 449889f788ea8d904f8ab73ec42b3facf8a5b63a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458070_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0eeef4b6cb0c90b1729e8085e6e42b54a57bde2957c69c31123387398cb114e7 -size 2626 diff --git a/MM_Math/data_original_21/7056453/math/51458091_940.png b/MM_Math/data_original_21/7056453/math/51458091_940.png deleted file mode 100644 index 11bac584c443a6fe49d8365488b89979ec553881..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458091_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d84d348898d39266d93c9f0212eeda8d3955c60e3ea307d10932ceb686bbb820 -size 10161 diff --git a/MM_Math/data_original_21/7056453/math/51458167_233.png b/MM_Math/data_original_21/7056453/math/51458167_233.png deleted file mode 100644 index a2a8d69960ab3bf4ae53716145e91445f0474465..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458167_233.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ad84334c5426e3420045910d6a9762e07aa0b04e8f1be2339a2e163387dfbc94 -size 4243 diff --git a/MM_Math/data_original_21/7056453/math/51458200_936.png b/MM_Math/data_original_21/7056453/math/51458200_936.png deleted file mode 100644 index 938be703e9b895771158d8b6aa2f4cd374d1d3c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458200_936.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f5e4c9c1d7a875d155c35118e906c5606a3ced71193bc1116e01850db2faadf1 -size 5576 diff --git a/MM_Math/data_original_21/7056453/math/51458229_926.png b/MM_Math/data_original_21/7056453/math/51458229_926.png deleted file mode 100644 index 7a685b4e7759451d382c1d3c009c120b29fafd0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458229_926.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f24d277919eb3f9b5bda21b4a24754e5c7e07704e10748a3d6f7cbe889f43afb -size 13913 diff --git a/MM_Math/data_original_21/7056453/math/51458235_225.png b/MM_Math/data_original_21/7056453/math/51458235_225.png deleted file mode 100644 index 433c27526304bd02dac776d8e8e358e42c2086ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458235_225.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25449c26306bff9eb7b4a59568eb5197a83a3e50cd7efafec3e5cd1e25143240 -size 7327 diff --git a/MM_Math/data_original_21/7056453/math/51458243_548.png b/MM_Math/data_original_21/7056453/math/51458243_548.png deleted file mode 100644 index deb2a2dbb7b3b868b7eca36023f83ad1009afbb7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458243_548.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d4dff4ef490d02331b3e57ed66af059b2e4fb40d4479ad04461dcdbc78db9210 -size 1994 diff --git a/MM_Math/data_original_21/7056453/math/51458258_896.png b/MM_Math/data_original_21/7056453/math/51458258_896.png deleted file mode 100644 index 7eebc8ca225624052a130f319fc3ff1f5f0636e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458258_896.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37a8800877c673238cc4474197ff19bbbac02997acec85e8b8f6d48ee7fa3ece -size 5585 diff --git a/MM_Math/data_original_21/7056453/math/51458261_908.png b/MM_Math/data_original_21/7056453/math/51458261_908.png deleted file mode 100644 index 3663ddd3f1e5659709efb230ed1763989c938957..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458261_908.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5cdc594cd3561d4b765bb8f93e003317e380ace8813b5dcc2712844eed3d0010 -size 7551 diff --git a/MM_Math/data_original_21/7056453/math/51458264_915.png b/MM_Math/data_original_21/7056453/math/51458264_915.png deleted file mode 100644 index 6557c6e10f44b33752f962c68c4a7107d717bcca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458264_915.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e5dd870d248e23958ef0eecc7ac33dae0946580fcc3d77ada9252559d6bf68b3 -size 6462 diff --git a/MM_Math/data_original_21/7056453/math/51458273_218.png b/MM_Math/data_original_21/7056453/math/51458273_218.png deleted file mode 100644 index fc1b25fe454a90f98e8d0d32fc126928a4553cb1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458273_218.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6080acfc34e368ca5e904fb83880691dee9c159fd9ace037df1fdf74139c4ceb -size 5128 diff --git a/MM_Math/data_original_21/7056453/math/51458277_535.png b/MM_Math/data_original_21/7056453/math/51458277_535.png deleted file mode 100644 index 58246de0d3ab3863efd9cb637d06870853581eae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458277_535.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1746f40a7430b8d1d4b1ac9086348eca9c940429370edd7253e3ebe006bcd627 -size 6675 diff --git a/MM_Math/data_original_21/7056453/math/51458292_8810.png b/MM_Math/data_original_21/7056453/math/51458292_8810.png deleted file mode 100644 index 6a2358c8e9dde9f1f1c83c68e010ea30436987d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458292_8810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ecd72bc6398751333ced9317b08572a1f06ebb920cb4e6a565f31171184a63be -size 7953 diff --git a/MM_Math/data_original_21/7056453/math/51458314_523.png b/MM_Math/data_original_21/7056453/math/51458314_523.png deleted file mode 100644 index b90e5c8897b33815ad46964f875099bb2af325f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458314_523.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34f6a9b3a9ae37818a8b0524e1e21ff4eaefac5b5e449bd74e86d5a98e4a9e0f -size 1987 diff --git a/MM_Math/data_original_21/7056453/math/51458317_515.png b/MM_Math/data_original_21/7056453/math/51458317_515.png deleted file mode 100644 index 3cb41883673c808d4ffdfacbcb2b3dd03501a082..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458317_515.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d18e95181b87b3df5b63bb3bcd8049bfa1769fcdb255b97594ca0a3d44086659 -size 7534 diff --git a/MM_Math/data_original_21/7056453/math/51458341_8714.png b/MM_Math/data_original_21/7056453/math/51458341_8714.png deleted file mode 100644 index c67cf03bb9bdf31047e642dfae4f237f2f5813a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458341_8714.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d19cf82775d7761f87956d5209e1aeb41371bbb9865c23bc6f6b2ef8d0333b1 -size 9317 diff --git a/MM_Math/data_original_21/7056453/math/51458342_8702.png b/MM_Math/data_original_21/7056453/math/51458342_8702.png deleted file mode 100644 index 26ca112b8d7c686a955965acf09674e1d7781b38..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458342_8702.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:229dd74e61a12c1648ed1b38fa170ab8c63f6caba0dc9263dc76562691bc2884 -size 629 diff --git a/MM_Math/data_original_21/7056453/math/51458349_201.png b/MM_Math/data_original_21/7056453/math/51458349_201.png deleted file mode 100644 index 15ac75c879075cd42f3b2ade4857a20c12279dd7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458349_201.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3de4710191947ff7d50dbf3b20df2aa6493d85ac7490959d59f0a15c4c7925d -size 5608 diff --git a/MM_Math/data_original_21/7056453/math/51458355_500.png b/MM_Math/data_original_21/7056453/math/51458355_500.png deleted file mode 100644 index 1c7c894fd0899ac33a89f534d69998c50453c08f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458355_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd47a3f17845c0dcc82462e38532a332cc41b92a9058686d95406dcb603e923d -size 6312 diff --git a/MM_Math/data_original_21/7056453/math/51458371_860.png b/MM_Math/data_original_21/7056453/math/51458371_860.png deleted file mode 100644 index 97e36acf476de25473558207938935ce18c13a3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/51458371_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:47e95d8a0a422e05b85e55783c7a879b2c3287139ee872c94834d708eaabe81e -size 29322 diff --git a/MM_Math/data_original_21/7056453/math/52304567_1010.png b/MM_Math/data_original_21/7056453/math/52304567_1010.png deleted file mode 100644 index f8cf4042ed12973c43bf9c4112d61a23ece5abc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52304567_1010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:512d6725b71d65c3df5910bb29c4bc8880658039318aef832a3265d6b21fbdc9 -size 32608 diff --git a/MM_Math/data_original_21/7056453/math/52304570_92.png b/MM_Math/data_original_21/7056453/math/52304570_92.png deleted file mode 100644 index 8d82f7185ce00ab3975b3ff1173048b31d11f168..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52304570_92.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2fc9b48229249b9eb930fdb21b5bee81d2532b0c8675d8c036612b92801d6114 -size 7696 diff --git a/MM_Math/data_original_21/7056453/math/52622068_170.png b/MM_Math/data_original_21/7056453/math/52622068_170.png deleted file mode 100644 index c8aa9120e64af14d7a9c35f4d4c070e5b762081d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52622068_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ac8906b6d68426ae7831b29f9c517652755a9e6d488af520ddae08b6715925be -size 2975 diff --git a/MM_Math/data_original_21/7056453/math/52622502_7919.png b/MM_Math/data_original_21/7056453/math/52622502_7919.png deleted file mode 100644 index 2bbe75201b206c5b2f44c6e0619648274d90b959..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52622502_7919.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38caac69f2c6ecca5d6e13cb6279809842a5963db831e996a94272a5b383a7e6 -size 6248 diff --git a/MM_Math/data_original_21/7056453/math/52622506_7811.png b/MM_Math/data_original_21/7056453/math/52622506_7811.png deleted file mode 100644 index 492eb1f22fb04f0bcae913e51c2b711e71ac7c0f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52622506_7811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d28f955f5dd49986dfda226a76ca5df7d4e93acdfbd422ccb41a614389c13811 -size 6226 diff --git a/MM_Math/data_original_21/7056453/math/52623151_450.png b/MM_Math/data_original_21/7056453/math/52623151_450.png deleted file mode 100644 index aa3c8b92605fe4773fd479177f32fa7292c3797b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623151_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5df5d446b5aafc80e22a5ea65f2d7bf87be47039a41bc0b0d30dccd43cfc188a -size 10004 diff --git a/MM_Math/data_original_21/7056453/math/52623482_162.png b/MM_Math/data_original_21/7056453/math/52623482_162.png deleted file mode 100644 index 126f14b5c195247b483cd10c8306cda87562d4c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623482_162.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9968f324e1a91391bf7b0b7836e150c22346f43490abdef6452c48ea3d247e2 -size 35895 diff --git a/MM_Math/data_original_21/7056453/math/52623484_124.png b/MM_Math/data_original_21/7056453/math/52623484_124.png deleted file mode 100644 index ff8a3feb95e34cfbaac66bc4983b3fff940c0453..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623484_124.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82809b1385e270d99b9657d2189f9400ad7fddfdecfb4a05aa80b6d355b3375d -size 22756 diff --git a/MM_Math/data_original_21/7056453/math/52623488_481.png b/MM_Math/data_original_21/7056453/math/52623488_481.png deleted file mode 100644 index 18ccfe2b3624782c933bb1dd9704528bda52a2e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623488_481.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71d43218a759d6f14c6907f5bfdc12934e9ce72a23b04a5efe082634dd3faa93 -size 2660 diff --git a/MM_Math/data_original_21/7056453/math/52623490_493.png b/MM_Math/data_original_21/7056453/math/52623490_493.png deleted file mode 100644 index ee99820fada8cce80df27c8f145e822aa2a9115e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623490_493.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89d169224283665d0da3eaa59191e225158e4dc66ae2aff292073ca4d369b95e -size 38782 diff --git a/MM_Math/data_original_21/7056453/math/52623501_775.png b/MM_Math/data_original_21/7056453/math/52623501_775.png deleted file mode 100644 index 125e3afea06c8611c5ea3437e611e212ef4608a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623501_775.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13ae04efe57ee0ad96daa0c96cd8e70c7ddb45a2e8e8af7b2a27ff1bcfc3a8c0 -size 9809 diff --git a/MM_Math/data_original_21/7056453/math/52623507_810.png b/MM_Math/data_original_21/7056453/math/52623507_810.png deleted file mode 100644 index dea679686f232215741ca2b4530d81bba9cbccef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623507_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4d8b614177f3e37e114537354b7282ecfe6ea4b15adfcf83f0de1280661c946 -size 11793 diff --git a/MM_Math/data_original_21/7056453/math/52623528_133.png b/MM_Math/data_original_21/7056453/math/52623528_133.png deleted file mode 100644 index b8a4289899d3addb5a105b986f01cec109b97d54..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623528_133.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4735138f4a750d539b47cc8fbac4e42eacb78da326dba9fa286fdf578570712b -size 3898 diff --git a/MM_Math/data_original_21/7056453/math/52623552_460.png b/MM_Math/data_original_21/7056453/math/52623552_460.png deleted file mode 100644 index a0f6c41d97a28674f3c1c889d5006f17f3027cf6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623552_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02c00c6a8222597418332ca03e5bde3bfd061af826a69d6851030bbb8f598d90 -size 3956 diff --git a/MM_Math/data_original_21/7056453/math/52623554_470.png b/MM_Math/data_original_21/7056453/math/52623554_470.png deleted file mode 100644 index 64c91b36a82556cdf48fafa94a35d5b158a5f1cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623554_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3e2f43529c9a5ca19c9f17dd6e275362c7d1968e5b48144bf261dd28f6730fd -size 22100 diff --git a/MM_Math/data_original_21/7056453/math/52623765_111.png b/MM_Math/data_original_21/7056453/math/52623765_111.png deleted file mode 100644 index a0f00f0ccac1130a0d3eb50349a5bb64b50ce1d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623765_111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a40dbf6fb53e70a285f321f33ea5df5e87d3622e71e3e8648fa54a3b3b45469 -size 12066 diff --git a/MM_Math/data_original_21/7056453/math/52623770_441.png b/MM_Math/data_original_21/7056453/math/52623770_441.png deleted file mode 100644 index 14606b19d41e6c0eb24f835ad9afb4d0230e0476..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623770_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2ba552269988f36fb6fdb59940a4afa90c6f82fdb9e61fdcb93da6d1892b493 -size 9859 diff --git a/MM_Math/data_original_21/7056453/math/52623814_800.png b/MM_Math/data_original_21/7056453/math/52623814_800.png deleted file mode 100644 index 3c84468da6d77f8c018f46b61f5f0c33481929cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623814_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddcc60e505a91e5f21717dd0ab7e9f2c3ed013a6769dfd556eb11d5d552e0a5c -size 46355 diff --git a/MM_Math/data_original_21/7056453/math/52623826_141.png b/MM_Math/data_original_21/7056453/math/52623826_141.png deleted file mode 100644 index 1fa5f1370bd5175896f6908055fcbd6b55ec5f5b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52623826_141.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3cfd5f9f4e2718b6b1dd71f8145789a7493c219c629d8b817db76164d407026d -size 3207 diff --git a/MM_Math/data_original_21/7056453/math/52948354_190.png b/MM_Math/data_original_21/7056453/math/52948354_190.png deleted file mode 100644 index a8bfe74160f6fa9b941bb9af23547f76624cd1a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52948354_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2fafc6282265e6f7e627995955577a309df66749d764859d7f1126ddb3e6270 -size 3619 diff --git a/MM_Math/data_original_21/7056453/math/52949550_850.png b/MM_Math/data_original_21/7056453/math/52949550_850.png deleted file mode 100644 index e2b7687b3015469fbeda6c392ad3e35416a196df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52949550_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:86976dd3bacbcc0ed2ca03d87d1d60754bd44863fff46a454962cca81cec7e0f -size 3579 diff --git a/MM_Math/data_original_21/7056453/math/52949747_844.png b/MM_Math/data_original_21/7056453/math/52949747_844.png deleted file mode 100644 index 1f5eabc07e249e8b4097682da92364a75c9810f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/52949747_844.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20885376c4753e9023742f562e8edf9747b877fbf5855cde91e648fcafb55696 -size 13355 diff --git a/MM_Math/data_original_21/7056453/math/53010226_320.png b/MM_Math/data_original_21/7056453/math/53010226_320.png deleted file mode 100644 index 69b135ebd907a1b8950b8e921dd9cd2777604656..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/53010226_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd26f48abdaa85263f4979aebf2eef7e6015de7dac817336fb9cebb6fe047856 -size 4470 diff --git a/MM_Math/data_original_21/7056453/math/53010266_26.png b/MM_Math/data_original_21/7056453/math/53010266_26.png deleted file mode 100644 index a4d60a2064a92568fb4fee20b6054d73d8dc604b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/53010266_26.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:09c95a2c801c1459ce781f0f9c78fb44591cbbbb8e18f5d026f83971878b6753 -size 23995 diff --git a/MM_Math/data_original_21/7056453/math/53010285_689.png b/MM_Math/data_original_21/7056453/math/53010285_689.png deleted file mode 100644 index d017ea62c00ad0ab66c88245646848530fd8f469..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/53010285_689.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cdd5cac944c9e49c11dcd718604570143c53849a9a162c72f29f27d62a93a29a -size 3750 diff --git a/MM_Math/data_original_21/7056453/math/53010292_616.png b/MM_Math/data_original_21/7056453/math/53010292_616.png deleted file mode 100644 index 0cc5b6b41b2af4581e9a4c0a19a7f021e0b65149..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/53010292_616.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d95e6ef57073b637566a063526a160e82e6ab69db4f59ea11e0cf856ede115b0 -size 5447 diff --git a/MM_Math/data_original_21/7056453/math/53010347_672.png b/MM_Math/data_original_21/7056453/math/53010347_672.png deleted file mode 100644 index 47bd46519b4a8aad4f40d76d9aac90b5a1fced27..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/math/53010347_672.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b4a2d875c3ed86acbb6fb9f8e996270dcc92d85724cd1913ef3c900bc504995 -size 8925 diff --git a/MM_Math/data_original_21/7056453/solution_images/51351125_600.png b/MM_Math/data_original_21/7056453/solution_images/51351125_600.png deleted file mode 100644 index aa507e323b05eda3842ffb3c76bee8813304336a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51351125_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b08a50804fd83c1b4bee66c6d21d962b2866e93d43242240f34ed03fad594580 -size 2694 diff --git a/MM_Math/data_original_21/7056453/solution_images/51353152_980.png b/MM_Math/data_original_21/7056453/solution_images/51353152_980.png deleted file mode 100644 index 4f62647d10b72706b79ec52808b854ac6dbd7e82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51353152_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f59331f90ac57e314b86ace495cc20eddd509d3d835a385654ef20e856b5800 -size 87729 diff --git a/MM_Math/data_original_21/7056453/solution_images/51353485_591.png b/MM_Math/data_original_21/7056453/solution_images/51353485_591.png deleted file mode 100644 index dc43474bf2bd161d3d9d5c2ab6e1c7560388745a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51353485_591.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe8600fab9bb4171c042a9f580bb9eee501c3b12f8a38f62ca39cf989c09babd -size 6741 diff --git a/MM_Math/data_original_21/7056453/solution_images/51379205_46.png b/MM_Math/data_original_21/7056453/solution_images/51379205_46.png deleted file mode 100644 index f1a285a65e6e9dd9d9ca8ad570529a8ad3044040..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51379205_46.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d26eab006300306416f6c833cbb2b07b23aeaeab04a7c333a98b4443f597d5b7 -size 5142 diff --git a/MM_Math/data_original_21/7056453/solution_images/51379325_382.png b/MM_Math/data_original_21/7056453/solution_images/51379325_382.png deleted file mode 100644 index b7b243d15b0613b66b3918b10798fce7fe77137f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51379325_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41f86f4f08ae6f8e058d83c18fd1888c8a1bdf1af47b14a59ccb64e45563f590 -size 29290 diff --git a/MM_Math/data_original_21/7056453/solution_images/51379357_50.png b/MM_Math/data_original_21/7056453/solution_images/51379357_50.png deleted file mode 100644 index 3419aa49e742de40307c3c13b4fc5756ab6d5f0c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51379357_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c969516d271009ed9a9cca1699a6494415d9ed9c9f82ce0899ab4cba33a28e0 -size 5043 diff --git a/MM_Math/data_original_21/7056453/solution_images/51379367_390.png b/MM_Math/data_original_21/7056453/solution_images/51379367_390.png deleted file mode 100644 index ed581b5bb5280db33a6247e71b346ef3b6e88ad2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51379367_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67722a62040b04ef3f0f9b8ec449940519de21d19092d67353b4781928e55ff4 -size 7794 diff --git a/MM_Math/data_original_21/7056453/solution_images/51379369_330.png b/MM_Math/data_original_21/7056453/solution_images/51379369_330.png deleted file mode 100644 index d1821a85a05944fb56e88550dd3be2847998bf9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51379369_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9629b01f1dffea47514ff01b549b01184a8982ab589528f756aeff4ead32c151 -size 3224 diff --git a/MM_Math/data_original_21/7056453/solution_images/51379369_3310.png b/MM_Math/data_original_21/7056453/solution_images/51379369_3310.png deleted file mode 100644 index bb084f377afd2b74c26bb8e1c59b71d6bdf757c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51379369_3310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e2665ee48a098e7513d9d1e56ccf50b3329a00c5b20b0af79f42202177a1d15 -size 3851 diff --git a/MM_Math/data_original_21/7056453/solution_images/51379404_400.png b/MM_Math/data_original_21/7056453/solution_images/51379404_400.png deleted file mode 100644 index 32d8d8494149564bc42103da851b8eb63fa9ee32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51379404_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ddc227dec2046b766c31ca812b1ed7160772acf5155b4af0406dd753ccc96a5 -size 3545 diff --git a/MM_Math/data_original_21/7056453/solution_images/51379554_365.png b/MM_Math/data_original_21/7056453/solution_images/51379554_365.png deleted file mode 100644 index 7f7563fd769278d84b1b1c8741f54b513fb88868..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51379554_365.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb19b13b1d8ae7abe471cca9179198f4f7b4796b81b3999cbd290deeca5ab5ff -size 31014 diff --git a/MM_Math/data_original_21/7056453/solution_images/51457951_560.png b/MM_Math/data_original_21/7056453/solution_images/51457951_560.png deleted file mode 100644 index fa4840158c7ad357923b5ea0acb5acffe9f44d06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51457951_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92ea4246d61a97274fd0472b5c94c1ad1fa7aa3bdc7e77bfd100755023639da5 -size 5619 diff --git a/MM_Math/data_original_21/7056453/solution_images/51458243_540.png b/MM_Math/data_original_21/7056453/solution_images/51458243_540.png deleted file mode 100644 index b9ba7c5d58cd0864b916cfcf866d3f72f1311ab4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51458243_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31e44f6489524fa005d58308cee5ce30f880ca5574d24e736ffdef88217076d4 -size 2594 diff --git a/MM_Math/data_original_21/7056453/solution_images/51458273_210.png b/MM_Math/data_original_21/7056453/solution_images/51458273_210.png deleted file mode 100644 index e6ca447eeae3152a43c9aee32723e219c5a73202..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51458273_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3291b3ddd8684c398aa0017bc3d370348e3825e966032d7ea15939f059a6711f -size 4257 diff --git a/MM_Math/data_original_21/7056453/solution_images/51458277_530.png b/MM_Math/data_original_21/7056453/solution_images/51458277_530.png deleted file mode 100644 index ffc41bf09c6cd3ea66a3df13f9d08e7b431b8a95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51458277_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1512eab40f4695e0cc66992416cbdbc46318124dc408ddf5c9f9dfedad91fe8f -size 5334 diff --git a/MM_Math/data_original_21/7056453/solution_images/51458277_538.png b/MM_Math/data_original_21/7056453/solution_images/51458277_538.png deleted file mode 100644 index 9fd40fc37bb95aea2f643b53d44a0ae8793e1eed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51458277_538.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee81059de178c727b0efc2a09e7723accb6834ac0295bf93d225085f2b10de19 -size 5845 diff --git a/MM_Math/data_original_21/7056453/solution_images/51458314_520.png b/MM_Math/data_original_21/7056453/solution_images/51458314_520.png deleted file mode 100644 index b0ac5e27fdc0f007dd1e2585de9436f681149caf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51458314_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68e6b584ba0cb446fd94da542fc4cf43679027677d8cee68b99544f70eb29fc4 -size 3602 diff --git a/MM_Math/data_original_21/7056453/solution_images/51458349_200.png b/MM_Math/data_original_21/7056453/solution_images/51458349_200.png deleted file mode 100644 index 930ea5ed4213ec3793dded85b5050ebc043aeb43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51458349_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d4192d08fe43b612568ab8cacc3b11662aa8e20c3e9e970fb62a9d43be815906 -size 6797 diff --git a/MM_Math/data_original_21/7056453/solution_images/51458355_501.png b/MM_Math/data_original_21/7056453/solution_images/51458355_501.png deleted file mode 100644 index 4bf7f165719633fd55947519b846cb856c261a03..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51458355_501.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a0e2761ac3779d4dd65dd56a591eda9948a3d3697fcbf2fd455751132851abf9 -size 10436 diff --git a/MM_Math/data_original_21/7056453/solution_images/51458371_860.png b/MM_Math/data_original_21/7056453/solution_images/51458371_860.png deleted file mode 100644 index 8ee57179d50cd6d68b2a255c74acbfa086817df4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51458371_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:159e987ed68b714153e64f41ea398fe79a7091bf3611be5d22d529493b1e9d24 -size 16350 diff --git a/MM_Math/data_original_21/7056453/solution_images/51458371_8610.png b/MM_Math/data_original_21/7056453/solution_images/51458371_8610.png deleted file mode 100644 index fe8cccc82c7755893a926307721bc04f58ab52c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51458371_8610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:723a98d223f3ecd66fb725a97ed02554a010fa014e839d2c8af916e9ec0a5ac5 -size 17362 diff --git a/MM_Math/data_original_21/7056453/solution_images/51458371_865.png b/MM_Math/data_original_21/7056453/solution_images/51458371_865.png deleted file mode 100644 index 79f1fda80d992b404fec11f4bb95d960ed8b5aa7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/51458371_865.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f54bd2eafa91d6cb84eb4b0940bff09a346a4e99d321b59452fe010580226c2c -size 20700 diff --git a/MM_Math/data_original_21/7056453/solution_images/52622068_172.png b/MM_Math/data_original_21/7056453/solution_images/52622068_172.png deleted file mode 100644 index 93a879d3f24e1f1cb19496ca3d5eb610cab51c0d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/52622068_172.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1a0452d2c7a224f6d2bcc851871714530e49246d5270635745495fbfd674dfc4 -size 3896 diff --git a/MM_Math/data_original_21/7056453/solution_images/52622506_7819.png b/MM_Math/data_original_21/7056453/solution_images/52622506_7819.png deleted file mode 100644 index 9d224ffb5a32f9397ef09b01f8c6130533dec813..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/52622506_7819.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a50f803746f538087e92749ce494c14c51e633dea44d36934960eecf5f437494 -size 29681 diff --git a/MM_Math/data_original_21/7056453/solution_images/52622506_7829.png b/MM_Math/data_original_21/7056453/solution_images/52622506_7829.png deleted file mode 100644 index ad82be58343345d0098b70898e3bca51d774cddb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/52622506_7829.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:506b6a1acffb822826ddb67d573a867e0bae9a307262ca0217e140ddedc70943 -size 41765 diff --git a/MM_Math/data_original_21/7056453/solution_images/52622506_786.png b/MM_Math/data_original_21/7056453/solution_images/52622506_786.png deleted file mode 100644 index fdfc2bf5ac8dc4d521a5179c68b2a39dd4b79f1b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/52622506_786.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34bcddbe1cfa81160e5652eb31d551f8bed47cc97b9885313e9f2713390cd98d -size 117996 diff --git a/MM_Math/data_original_21/7056453/solution_images/52623151_453.png b/MM_Math/data_original_21/7056453/solution_images/52623151_453.png deleted file mode 100644 index 8e2f7f0f36e9807b096d9b4c5b6206f1da4a4152..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/52623151_453.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d099a9ea2c1a2cb75d7a53510cd1da2c181e3c955c630b84f7e2406e6873768b -size 17673 diff --git a/MM_Math/data_original_21/7056453/solution_images/52623724_152.png b/MM_Math/data_original_21/7056453/solution_images/52623724_152.png deleted file mode 100644 index 97fd4d92fe4976b7903e3d15c7ca31632f3177cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/52623724_152.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e7a1634170e4a0cc35deb62873bec6169d80e87a81b7e3d8d9249db6a1d4b4df -size 5523 diff --git a/MM_Math/data_original_21/7056453/solution_images/53010226_321.png b/MM_Math/data_original_21/7056453/solution_images/53010226_321.png deleted file mode 100644 index 8ccb367e2a0f7592389b57170f415be26f7dfed8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/53010226_321.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d37ba867a48f2ef98b379fe415e26c4c06e09ca7fbad125746069c2156b7dc4 -size 5060 diff --git a/MM_Math/data_original_21/7056453/solution_images/53010347_670.png b/MM_Math/data_original_21/7056453/solution_images/53010347_670.png deleted file mode 100644 index 3bff068ef7541dc16bdcb2028abf3b7a711954c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/53010347_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d04f22e68bd8c8c37b0d2873ef86658b57287c413f5e69c345af95c9189c7362 -size 24519 diff --git a/MM_Math/data_original_21/7056453/solution_images/53010347_672.png b/MM_Math/data_original_21/7056453/solution_images/53010347_672.png deleted file mode 100644 index 00bd102192e8ec941b5d2309af6eb4008c0d00a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056453/solution_images/53010347_672.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:624193b99c591e104de576d634f9a6252822b2a0c043a679181f378d2d66cd23 -size 24533 diff --git a/MM_Math/data_original_21/7056495/math/51155308_190.png b/MM_Math/data_original_21/7056495/math/51155308_190.png deleted file mode 100644 index dbf6719a6b419bdc1cf327ce10f615f071a2a025..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51155308_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc4b9b9fcd0a362440aa7b63bcd78eea77027959ff5a016289b37284c723e631 -size 4494 diff --git a/MM_Math/data_original_21/7056495/math/51155310_200.png b/MM_Math/data_original_21/7056495/math/51155310_200.png deleted file mode 100644 index ff2bb361d0480ce41029158ba5824ded10e9e08a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51155310_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14bf444a76ab740b2bfd48fca87e567ff8879fa766ac2f2f1c276ea12084ec5f -size 3245 diff --git a/MM_Math/data_original_21/7056495/math/51155313_550.png b/MM_Math/data_original_21/7056495/math/51155313_550.png deleted file mode 100644 index b0824e563ed16b4ac9e10ff3646d87208f0b5ecc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51155313_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e7a57153e804e70b5d771425420f1fda80abf5b3e4795b9e6b0467d44aff450e -size 3123 diff --git a/MM_Math/data_original_21/7056495/math/51155320_960.png b/MM_Math/data_original_21/7056495/math/51155320_960.png deleted file mode 100644 index 24c599a6998c2ff658cd5e64f39149e9bbf22a04..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51155320_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65471f5789699abf277feb0e35ff567842a21d78d99cf941ccac69c7008309e0 -size 4206 diff --git a/MM_Math/data_original_21/7056495/math/51155328_970.png b/MM_Math/data_original_21/7056495/math/51155328_970.png deleted file mode 100644 index 883324303a3f147ccef7f96f0116fa0eff6587c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51155328_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ca89754e224f1f0f6e78d166fdb709817a4c0911252f64c5f2ec085aef5bd5e -size 2767 diff --git a/MM_Math/data_original_21/7056495/math/51155343_172.png b/MM_Math/data_original_21/7056495/math/51155343_172.png deleted file mode 100644 index fc111c4c28ae33f698c4f536b1268dffc0564c50..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51155343_172.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96e52c1615015aa507e7db450ef511e9e9a1fb8940d31c7a34235461f2ed42f4 -size 6685 diff --git a/MM_Math/data_original_21/7056495/math/51155345_162.png b/MM_Math/data_original_21/7056495/math/51155345_162.png deleted file mode 100644 index 6813c336e02491f1f049cc1d80d7397d4db77b36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51155345_162.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a91050e1115cf27fbadd641e13d91235e7c6c429e0dd144f10d4181d3e498d0 -size 7580 diff --git a/MM_Math/data_original_21/7056495/math/51155347_181.png b/MM_Math/data_original_21/7056495/math/51155347_181.png deleted file mode 100644 index 86b08a764eb5a28fd348f71fb60c535871408313..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51155347_181.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c9355ea01a7b8728f013e9a8142787c4bbcc932e2320ccc7d923799e21c820f -size 5806 diff --git a/MM_Math/data_original_21/7056495/math/51155352_543.png b/MM_Math/data_original_21/7056495/math/51155352_543.png deleted file mode 100644 index 4d23d85094fa82c58380112356a862e0a56f6083..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51155352_543.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04e2ce4b4cae2bacf1db162778423e23cd2e4d22a6b7459e93b28eac6d88100a -size 10301 diff --git a/MM_Math/data_original_21/7056495/math/51155485_150.png b/MM_Math/data_original_21/7056495/math/51155485_150.png deleted file mode 100644 index c37ffa35b6aa7eb126533ac2c55ecbd451cfebb9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51155485_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5aedad46e1f4a76b12e786fdffcf35326997e33e8470b2b78dcbf05a574fb4ce -size 6234 diff --git a/MM_Math/data_original_21/7056495/math/51179480_113.png b/MM_Math/data_original_21/7056495/math/51179480_113.png deleted file mode 100644 index da22df1f485c2d9e1312f87ddeb810434bd09e62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51179480_113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8bb03dd2dba86e6ef3208aaec65c7af95023482e963a558168079a8bcd3f4ddd -size 4076 diff --git a/MM_Math/data_original_21/7056495/math/51179503_930.png b/MM_Math/data_original_21/7056495/math/51179503_930.png deleted file mode 100644 index dc68c62fc72304e1b422b73c4eaf17a04c671e81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51179503_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71c4f92bdf1ae9c264bdc8bf78986269255c2083f74dc65825462c76fe3b31f8 -size 8152 diff --git a/MM_Math/data_original_21/7056495/math/51179561_1010.png b/MM_Math/data_original_21/7056495/math/51179561_1010.png deleted file mode 100644 index fb39ad508d7a40d871c3d89793a0bc03ad5f5527..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51179561_1010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30df60dd3fd04f8af88404b6cbafa98f4c8814c52a332a326584c50fc47fddc2 -size 5474 diff --git a/MM_Math/data_original_21/7056495/math/51209210_10.png b/MM_Math/data_original_21/7056495/math/51209210_10.png deleted file mode 100644 index 78e3da0248d7de0f166d5527cc3b477cbfec94f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51209210_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a5a06939fb92fa61dd3be103247c4db0707335281230f250e744cdab987c63b -size 2564 diff --git a/MM_Math/data_original_21/7056495/math/51209236_720.png b/MM_Math/data_original_21/7056495/math/51209236_720.png deleted file mode 100644 index 6df81093c0251901dff5b8e10da51f3d57a95e57..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51209236_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e2943424dc1ce6ed4ab3de77d32048e889c9c5a0f8b7b03a5b949fb552ca139 -size 4050 diff --git a/MM_Math/data_original_21/7056495/math/51209242_731.png b/MM_Math/data_original_21/7056495/math/51209242_731.png deleted file mode 100644 index 2a1e473eb9292ce479f40be5283f136e3b3c1a85..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51209242_731.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5056ba9260b12b1afd45edff0050cbdf4e7bab9c8b6ab76bba899fec616c369 -size 19507 diff --git a/MM_Math/data_original_21/7056495/math/51212662_270.png b/MM_Math/data_original_21/7056495/math/51212662_270.png deleted file mode 100644 index 2cd6f42cdc3dafb833b052342d7cb616725ace84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51212662_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e1947ec9dfe5ff122d7af6e51a29af1613919a393e27a7109cdd68347ef747a -size 3633 diff --git a/MM_Math/data_original_21/7056495/math/51212669_693.png b/MM_Math/data_original_21/7056495/math/51212669_693.png deleted file mode 100644 index 9b8b3a0e2c284b53d052af9430dc1dcba6996863..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51212669_693.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31520189b5329b3fc10c64b9e25506406c0105b6594bd66dcec0d1618473f2c9 -size 2966 diff --git a/MM_Math/data_original_21/7056495/math/51212675_703.png b/MM_Math/data_original_21/7056495/math/51212675_703.png deleted file mode 100644 index a979c2b7f382f29599a8b5b507dfe74e75758fd1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51212675_703.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c16c247b4a404679ac825d517bedb065d59b14e8a385440facb7250f3fe42f4d -size 2977 diff --git a/MM_Math/data_original_21/7056495/math/51212743_610.png b/MM_Math/data_original_21/7056495/math/51212743_610.png deleted file mode 100644 index dba4dcea1736e2bd8d55a088f7559bda3920a231..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51212743_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0881bd4f0c5f9d8ca6de8790899907509d59f964845e249b16d2423e1bda983 -size 2260 diff --git a/MM_Math/data_original_21/7056495/math/51212753_680.png b/MM_Math/data_original_21/7056495/math/51212753_680.png deleted file mode 100644 index 1fe93c62861e10b74a8720f4ee3c594a1a01a9c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51212753_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7b67ba4a9ddd8e0e4952bd68af5f105cbb68605cafdfda983e444dded292f46 -size 4850 diff --git a/MM_Math/data_original_21/7056495/math/51212783_710.png b/MM_Math/data_original_21/7056495/math/51212783_710.png deleted file mode 100644 index 97f2e5726e58d891cab7590950588c853684fe63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51212783_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f91b20f67ae16cd4068eb6934093f2feaf0705f225f0cd7cf6adc3c857b096f -size 5091 diff --git a/MM_Math/data_original_21/7056495/math/51212855_282.png b/MM_Math/data_original_21/7056495/math/51212855_282.png deleted file mode 100644 index 199f102e92ebf0b4ff1dc98abaf313d616b707fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51212855_282.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f0658ae8643e09faf55303b06801aaab12fa32903bd0cb6d5db48dfaf4f320bf -size 14997 diff --git a/MM_Math/data_original_21/7056495/math/51213309_06.png b/MM_Math/data_original_21/7056495/math/51213309_06.png deleted file mode 100644 index 320c3ed2987a61b638081a5720b915d72f8f2e16..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51213309_06.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b9a34ab66d7906e950ffed8a2dd58a7926f3ac9ff0a7064fa1dd163a736e78a -size 2673 diff --git a/MM_Math/data_original_21/7056495/math/51213318_266.png b/MM_Math/data_original_21/7056495/math/51213318_266.png deleted file mode 100644 index 88f8f0022605a146fdb1bda0cc1b31ded7f4fc97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51213318_266.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2849dc66874c01fcb1f60b94b99d22eca2c8e62fb8c10d2e980d749208d942e5 -size 2930 diff --git a/MM_Math/data_original_21/7056495/math/51213332_638.png b/MM_Math/data_original_21/7056495/math/51213332_638.png deleted file mode 100644 index 8f695e42d948c00c8f874b3450af0c472d9e4574..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51213332_638.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03d6968fff0b933c128551d02bd56216019bf6fe5e25d1f43c6d91572d527f75 -size 4552 diff --git a/MM_Math/data_original_21/7056495/math/51284029_982.png b/MM_Math/data_original_21/7056495/math/51284029_982.png deleted file mode 100644 index f09a01ad5f136a80808045cf2d29ba28fdad8a7c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51284029_982.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2cb278668fe6d20cd85fef23c3ea29b732eb8b83f9e745bca259c9a2d143ceb -size 53545 diff --git a/MM_Math/data_original_21/7056495/math/51284349_220.png b/MM_Math/data_original_21/7056495/math/51284349_220.png deleted file mode 100644 index 04eac7fbec757dbdb5ac85b7715c7772b166ebcf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51284349_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df2e998fe09b84806ada220b4529a14d92ebfdafa91eb32bab2045cbdabc80f1 -size 9851 diff --git a/MM_Math/data_original_21/7056495/math/51284381_233.png b/MM_Math/data_original_21/7056495/math/51284381_233.png deleted file mode 100644 index 787b3799a43de99a9e4274dcab754a1ae04dcd50..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51284381_233.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7594a111bfd7a0f6d548974a48a172d4d39a409c795a4b06f8f59d3b7a165d81 -size 4312 diff --git a/MM_Math/data_original_21/7056495/math/51284390_570.png b/MM_Math/data_original_21/7056495/math/51284390_570.png deleted file mode 100644 index c28ae4bab5d2dc7b1750459ef208e24af91c66b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51284390_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fdc49b0491e17568010fb965d0dccd8b564c7a3a6f5f41fa30706b12bfd0f834 -size 2971 diff --git a/MM_Math/data_original_21/7056495/math/51284428_600.png b/MM_Math/data_original_21/7056495/math/51284428_600.png deleted file mode 100644 index 02ff33026e34a3f79b0c94a208958f21fbd3e8be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51284428_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:568350a1c1d57ebf6a59de2604ca896a6ab6c0e915629fc10076a7580d6d6fd8 -size 12709 diff --git a/MM_Math/data_original_21/7056495/math/51284430_590.png b/MM_Math/data_original_21/7056495/math/51284430_590.png deleted file mode 100644 index ebc0f35ccb9dd9412c8b6d65c4f7c91c39dcacb4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51284430_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:800c0364e31f97b57a3d36f8837532cc2c691d947103b34efb8c62b95f81f6c1 -size 5565 diff --git a/MM_Math/data_original_21/7056495/math/51284444_990.png b/MM_Math/data_original_21/7056495/math/51284444_990.png deleted file mode 100644 index 54d39d3e60c6b35d45f80a5692ed6f1503a33c36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51284444_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d828e0e375fb26243574e5e5488e4c5241cc9b4971b218b0f1c08198f650298 -size 10679 diff --git a/MM_Math/data_original_21/7056495/math/51284459_243.png b/MM_Math/data_original_21/7056495/math/51284459_243.png deleted file mode 100644 index 5853e33f0306efc57d7073c889cbf4081ce670cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51284459_243.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:256e3de09a35592596d3778e706a2b9fc498e30c3055b626c1800320b619ad79 -size 6326 diff --git a/MM_Math/data_original_21/7056495/math/51284463_584.png b/MM_Math/data_original_21/7056495/math/51284463_584.png deleted file mode 100644 index 1c5c3bdacadb34915c9c407711dcc36cbf2575fa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51284463_584.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e105dce36c3b9d5a4713e3f074d346e2c05fea8d61b84d2f32a04e0c6625215d -size 2598 diff --git a/MM_Math/data_original_21/7056495/math/51285012_561.png b/MM_Math/data_original_21/7056495/math/51285012_561.png deleted file mode 100644 index ecaca347cd1c5ad662d145e3c1839d5c42a37490..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51285012_561.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11d3e8bf3f951694f34888d99b630fa34cdc10bb798482570a09d2e9a5e4e957 -size 2621 diff --git a/MM_Math/data_original_21/7056495/math/51298868_144.png b/MM_Math/data_original_21/7056495/math/51298868_144.png deleted file mode 100644 index bc3758b0725dd1a3ab7a4d36eedc75bec3741dc8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51298868_144.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9586ab5615432bfc7973c2d753c2c61b146931727ccd5c76dbdc5d647cd6516b -size 4809 diff --git a/MM_Math/data_original_21/7056495/math/51298872_534.png b/MM_Math/data_original_21/7056495/math/51298872_534.png deleted file mode 100644 index 7850a90f29bca864cd468679fc632326fe13dbf4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51298872_534.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f82a486289c1759ed51b74ff8fae8cfc7514781f6f19dc86c5cbfc9b1ca52c0 -size 33617 diff --git a/MM_Math/data_original_21/7056495/math/51299716_130.png b/MM_Math/data_original_21/7056495/math/51299716_130.png deleted file mode 100644 index 4994627c7267a804bc2adf2d584a84ac86133cc0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51299716_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0234971aa98e2e293fb7104b0a9bb3bb1c4718e408ddd78d25e5cefb0d806b3c -size 2798 diff --git a/MM_Math/data_original_21/7056495/math/51299739_950.png b/MM_Math/data_original_21/7056495/math/51299739_950.png deleted file mode 100644 index a1a96637cb7f946e740098cbef46322f9c3662ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51299739_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea2ae6023c37de3548b51c60907da567b0e532cb8ffe5c49905acb035b82cc08 -size 17233 diff --git a/MM_Math/data_original_21/7056495/math/51299753_120.png b/MM_Math/data_original_21/7056495/math/51299753_120.png deleted file mode 100644 index d724ff61585d59f38bb3c7fd065caa6d06ba41a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51299753_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03f2b6dab210296601e227b004d10759bc47ad5485b4ebdd69473eddbb9bf5c6 -size 35498 diff --git a/MM_Math/data_original_21/7056495/math/51299758_525.png b/MM_Math/data_original_21/7056495/math/51299758_525.png deleted file mode 100644 index 7922e84d2df4f71c4af1e37ca1e0a1174c6cb9d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51299758_525.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2d2b813f6168f77b5b67864f4df978ecfef64bd9cd0729c01c718923f494895 -size 13155 diff --git a/MM_Math/data_original_21/7056495/math/51299759_516.png b/MM_Math/data_original_21/7056495/math/51299759_516.png deleted file mode 100644 index 4f182f6c67b22e0d752acb6a268d34876648f72e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51299759_516.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a87ed3bb22dc20fede409640c8315f325f0a8f549bcee4931ffd70ebcd96375c -size 19783 diff --git a/MM_Math/data_original_21/7056495/math/51299773_945.png b/MM_Math/data_original_21/7056495/math/51299773_945.png deleted file mode 100644 index 0f142eeaa0c3053746734fd3b7d7c891d59216d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51299773_945.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:702ddac7bd29ec8355e86dda413a0907c01b0323620fe107d7a76553269f4768 -size 16250 diff --git a/MM_Math/data_original_21/7056495/math/51317346_91.jpg b/MM_Math/data_original_21/7056495/math/51317346_91.jpg deleted file mode 100644 index 8dee49c7524cdf86bb970ecddc0b5365483df306..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51317346_91.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:674dc1208132daf2ebe1aa521bd4c62c94fc8d12011631fc9a5c472d97ced080 -size 9967 diff --git a/MM_Math/data_original_21/7056495/math/51317358_921.jpg b/MM_Math/data_original_21/7056495/math/51317358_921.jpg deleted file mode 100644 index 99dfa0b15720440f664731d507101019d922ff1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51317358_921.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f985c6571baa5a15a160ff58d583f2a0b743bc53ee15fe4c18f3addf9df38db -size 10982 diff --git a/MM_Math/data_original_21/7056495/math/51317366_910.jpg b/MM_Math/data_original_21/7056495/math/51317366_910.jpg deleted file mode 100644 index 451d160b3bca1f0109b097383deb1d2543096ebe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51317366_910.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87052b199caf219964eb3ad0d52192f62f8da34cfb6fbfce96ebe14d6c3a03c0 -size 14914 diff --git a/MM_Math/data_original_21/7056495/math/51317388_500.jpg b/MM_Math/data_original_21/7056495/math/51317388_500.jpg deleted file mode 100644 index a6bd4419d0002ae3a1e59172e7a7cbad922bd104..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51317388_500.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d6acd07ee7fc6741295d5a51dc4508cff0ef4a3e72861753dd7769119de0978 -size 10576 diff --git a/MM_Math/data_original_21/7056495/math/51317409_900.jpg b/MM_Math/data_original_21/7056495/math/51317409_900.jpg deleted file mode 100644 index 6d21df9db1786b2ec2d1bc70dda741cb38b1df1b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51317409_900.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:254ec4757c364c7836a44343e07241fc3b38b54795c00ccc418943f45a4ae955 -size 7377 diff --git a/MM_Math/data_original_21/7056495/math/51317421_490.jpg b/MM_Math/data_original_21/7056495/math/51317421_490.jpg deleted file mode 100644 index d1df1d8a0db82e0fa13e0a817ca89fd63ecd9df2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51317421_490.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b54bfc344323c521b2026dc48b8bdc7be2d3040690278e5aa4f1a160067352b0 -size 6620 diff --git a/MM_Math/data_original_21/7056495/math/51317425_481.jpg b/MM_Math/data_original_21/7056495/math/51317425_481.jpg deleted file mode 100644 index 1235589b7b07c16b407b381dc09ff3e970a1ae99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51317425_481.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39f2b40a8ee0782ac2f8dfa6e1fa5b0357b06e4a0e7f6e32415c8c220b03616e -size 11391 diff --git a/MM_Math/data_original_21/7056495/math/51317428_670.jpg b/MM_Math/data_original_21/7056495/math/51317428_670.jpg deleted file mode 100644 index 62d8b673eb2a968644c7f59560497723c59451ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51317428_670.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a7ccdbb5d5e1af8aea3860195b500e78bc4b8e1c6359fa61ca5f0cd37871185f -size 7433 diff --git a/MM_Math/data_original_21/7056495/math/51317435_890.jpg b/MM_Math/data_original_21/7056495/math/51317435_890.jpg deleted file mode 100644 index a4b9ab389b19fe7b2d8da2da21e1554eed05cd8a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51317435_890.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5467e43fd79ab5a2af9912cf0dbe24f646d30a79060fd5c56485c061e50f370b -size 15056 diff --git a/MM_Math/data_original_21/7056495/math/51322393_660.png b/MM_Math/data_original_21/7056495/math/51322393_660.png deleted file mode 100644 index 75a560c34e08982dc88c904e2675e6b09e8ca9be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322393_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7e46bca9b7b04af5023ab29d9a5392e14694893507aadaaac625bd4f325ea63 -size 3229 diff --git a/MM_Math/data_original_21/7056495/math/51322485_50.png b/MM_Math/data_original_21/7056495/math/51322485_50.png deleted file mode 100644 index c759428d66c0eca9e5b7d148981605b4ca5d20bf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322485_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b47d9ff2028d16d475d45fc0b1b916b3bf6d87714e5e5c27ab43fa5b5aac67ca -size 2878 diff --git a/MM_Math/data_original_21/7056495/math/51322496_390.png b/MM_Math/data_original_21/7056495/math/51322496_390.png deleted file mode 100644 index d7c252f4e0e29513656f5c07767d2a96334eb447..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322496_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:532f7f620e27263ec6071c5394320b93b98aace9e473617313632372e8471190 -size 4271 diff --git a/MM_Math/data_original_21/7056495/math/51322498_411.png b/MM_Math/data_original_21/7056495/math/51322498_411.png deleted file mode 100644 index a3a6c135fcbd576c6a7059ac94abb4da39cc453e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322498_411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9518c5feffe1a26d13c44392c3a12f82cdc6ac70b09f0d67e183ed5458cee675 -size 4314 diff --git a/MM_Math/data_original_21/7056495/math/51322517_870.png b/MM_Math/data_original_21/7056495/math/51322517_870.png deleted file mode 100644 index 18529fd1f53b123b4b9dc77912c4fdeb20e40574..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322517_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc0bde76296e8cb0201d9d82dd84099d46693ed5f60f4b331f147699c819c57c -size 3669 diff --git a/MM_Math/data_original_21/7056495/math/51322568_64.png b/MM_Math/data_original_21/7056495/math/51322568_64.png deleted file mode 100644 index 6c98898ff41c16efc556bce175b2461ec4b763c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322568_64.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f484dd0908e8cd4c33414570430676320adc9dd7282cea85277cc0c0d557fcc0 -size 4026 diff --git a/MM_Math/data_original_21/7056495/math/51322578_474.png b/MM_Math/data_original_21/7056495/math/51322578_474.png deleted file mode 100644 index 7759fa1d7edfa456889d66b58b3a9e3ebbcc0cd5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322578_474.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d68ffd102ed3248aa4c3114a93e2493f87147ff739be8932dbd2167c067db863 -size 3877 diff --git a/MM_Math/data_original_21/7056495/math/51322658_441.png b/MM_Math/data_original_21/7056495/math/51322658_441.png deleted file mode 100644 index 39afa0f5418280512f342e2af999d690641c1740..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322658_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e7376cf7242bf789faed3f777e688cb90e5305e044bf7e70ef5b9f09591b24b5 -size 8688 diff --git a/MM_Math/data_original_21/7056495/math/51322681_883.png b/MM_Math/data_original_21/7056495/math/51322681_883.png deleted file mode 100644 index 3481ff4235f0e8174da121838ae3f7b82569f718..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322681_883.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c59b742c83b11f272e751663f58c0ec97888493c355f100a7c3a728fc1e55675 -size 8955 diff --git a/MM_Math/data_original_21/7056495/math/51322733_49.png b/MM_Math/data_original_21/7056495/math/51322733_49.png deleted file mode 100644 index 06ca60691811fb27c659f1148b3df55648c1911c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322733_49.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:568d50e661cb2ffb3f606057901c45e26f20940cfe0e502db05258282c1ea881 -size 4012 diff --git a/MM_Math/data_original_21/7056495/math/51322738_466.png b/MM_Math/data_original_21/7056495/math/51322738_466.png deleted file mode 100644 index 6d5fcf1503915a401a19270d76c9892ab150a714..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322738_466.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a81821bd80224a5bbb43f0c7503a3339e1ee7bb3064a267b009f3e724f22a3e6 -size 4494 diff --git a/MM_Math/data_original_21/7056495/math/51322751_841.png b/MM_Math/data_original_21/7056495/math/51322751_841.png deleted file mode 100644 index 5dbce207b9dbe71b272e8b43a6b3fcec7ab71acc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322751_841.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c5e9a0e7a1d4b3c4127679cc5dead96a12c23578e74f03f5740bde9684747bb -size 9194 diff --git a/MM_Math/data_original_21/7056495/math/51322771_450.png b/MM_Math/data_original_21/7056495/math/51322771_450.png deleted file mode 100644 index a0c97caa7c70ccccf807dd3ebeeb7e920f731e1c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322771_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa9fc0ffdb0f22af84afc827742713d20105736c93d623df73f0ba7ab2a5e8c9 -size 4329 diff --git a/MM_Math/data_original_21/7056495/math/51322831_80.png b/MM_Math/data_original_21/7056495/math/51322831_80.png deleted file mode 100644 index fbe83b1d37ad54faaf2b7e99b87b009bd01bb061..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322831_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15b097bf3fa6eca600c0a86200f9507d2c1fae8ce453b6169cc59bbfdccd2687 -size 2620 diff --git a/MM_Math/data_original_21/7056495/math/51322836_420.png b/MM_Math/data_original_21/7056495/math/51322836_420.png deleted file mode 100644 index 0b82f712b7255415682afd5c8a5f3997e068388d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322836_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d8ad90184200df7956497ff21a10d815c95dc3b047f2fceff561b690337e3bc2 -size 14618 diff --git a/MM_Math/data_original_21/7056495/math/51322868_430.png b/MM_Math/data_original_21/7056495/math/51322868_430.png deleted file mode 100644 index e121ab947fe2afb49aebad7c07f42ec5e7e331c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322868_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8d2da994f92471489cf01ef67a8189c039b1c3557e5193faac7a85dc3b5d11fb -size 2528 diff --git a/MM_Math/data_original_21/7056495/math/51322957_852.png b/MM_Math/data_original_21/7056495/math/51322957_852.png deleted file mode 100644 index 3d53c48c25f2664835d6d8ed1e4959369634558b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322957_852.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71d261ac21ed7f919c71543b7c5819042603561b86a24f981c9c5ad0f19e0f86 -size 58230 diff --git a/MM_Math/data_original_21/7056495/math/51322970_71.png b/MM_Math/data_original_21/7056495/math/51322970_71.png deleted file mode 100644 index 8c0ad35d135029ca555d845a6b77dc77f0c8040c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322970_71.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c885afcae498f93534fa599fe770a1c165970bb7289a1a7c99fae7549c67f9e -size 7881 diff --git a/MM_Math/data_original_21/7056495/math/51322975_400.png b/MM_Math/data_original_21/7056495/math/51322975_400.png deleted file mode 100644 index e62aabef2ce72a74840920e43238fd172a723046..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322975_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94478925372221b6b587ab82324e377df98e6c0fd0c889b78d73c740c0ce2d0e -size 5233 diff --git a/MM_Math/data_original_21/7056495/math/51322983_860.png b/MM_Math/data_original_21/7056495/math/51322983_860.png deleted file mode 100644 index db7b45430e87f7400e2ec3a1b943b2263dccdc0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51322983_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:166895e846e6d9752b7d9f95bb843e738e3b9eb8729f6a08914508e1526542aa -size 3635 diff --git a/MM_Math/data_original_21/7056495/math/51366880_820.png b/MM_Math/data_original_21/7056495/math/51366880_820.png deleted file mode 100644 index 786d7fddb14256b4c6d837b56224278ddfebaa0b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51366880_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1483ed386040e95f98c1d2df049276e8d1972f9ba9af0bf16e8911aeef69f3be -size 1585 diff --git a/MM_Math/data_original_21/7056495/math/51366880_829.png b/MM_Math/data_original_21/7056495/math/51366880_829.png deleted file mode 100644 index 2b048ab8b008af82958471b242fa8432baf8b11d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51366880_829.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd9e47653414f815b0f9bb57996b4d3aecc037cf184f121db3078c07c9d096c7 -size 5997 diff --git a/MM_Math/data_original_21/7056495/math/51367380_32.png b/MM_Math/data_original_21/7056495/math/51367380_32.png deleted file mode 100644 index 7df300ce1ba0bc2d562b21632a7a97d7d9660114..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51367380_32.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ffd72b5594d44adb7bf3b1409ca24c6c74c6d6ca8f45cfb6b4baf43cb054e9a1 -size 3641 diff --git a/MM_Math/data_original_21/7056495/math/51367391_384.png b/MM_Math/data_original_21/7056495/math/51367391_384.png deleted file mode 100644 index 33d322747bacd509ada50480905971da5ee9ffb2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51367391_384.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4c235d76646e02e50c5a637db112b72235becb8b8cafab950412f2fb6f4d3d4e -size 10683 diff --git a/MM_Math/data_original_21/7056495/math/51367392_379.png b/MM_Math/data_original_21/7056495/math/51367392_379.png deleted file mode 100644 index 18bf941b18c310ce1e6aa1411c9a9d81cdf1e6fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51367392_379.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d261b1a748973a5b1f486b9b4aa789a1f00835b3208b5746d6f107b5f621132 -size 2981 diff --git a/MM_Math/data_original_21/7056495/math/51367394_3618.png b/MM_Math/data_original_21/7056495/math/51367394_3618.png deleted file mode 100644 index e1cc9300d230b740aefa62633ac89e444e26b04b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51367394_3618.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1181d6def77951e9eb75a9c88137a7c6e9f914ecf628d5ed50126870b297f0c -size 9865 diff --git a/MM_Math/data_original_21/7056495/math/51367426_351.png b/MM_Math/data_original_21/7056495/math/51367426_351.png deleted file mode 100644 index 135ca96415b6059e553e644885ca82e737b51c3f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51367426_351.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f3ab124532e1732928b5c1c422c25ef76e2f3ee222684c6a3cad21b0f8e085c -size 3758 diff --git a/MM_Math/data_original_21/7056495/math/51367439_810.png b/MM_Math/data_original_21/7056495/math/51367439_810.png deleted file mode 100644 index 8dd354b480108fd8fd6382715fcb9bb7afa263cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51367439_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4052642f4e44dd55e0742ccf940857e3931f53add91d9d4d9d64bf64d0a51d2f -size 3720 diff --git a/MM_Math/data_original_21/7056495/math/51367443_832.png b/MM_Math/data_original_21/7056495/math/51367443_832.png deleted file mode 100644 index d8c1e882997a35bb30b3a6e3888703a9c6f12c3a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51367443_832.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea0401894a350b7decc141ecef2e7e058fa676a2351951d64b3539d952c52056 -size 23894 diff --git a/MM_Math/data_original_21/7056495/math/51367526_651.png b/MM_Math/data_original_21/7056495/math/51367526_651.png deleted file mode 100644 index bcc6935e2ee78de4667a599cdd3301038b0d04ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51367526_651.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ffd27bd1cc45f098b618625884114cb84500e050954e103b73ac70027870bffd -size 3648 diff --git a/MM_Math/data_original_21/7056495/math/51368178_340.png b/MM_Math/data_original_21/7056495/math/51368178_340.png deleted file mode 100644 index 41045242c297ac2e8e392e6df683323d1b0f355b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368178_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5da4366cf136fcaf281edf59feeb6d5c92076ad37da7754f1988c1e431ca33e8 -size 8416 diff --git a/MM_Math/data_original_21/7056495/math/51368188_792.png b/MM_Math/data_original_21/7056495/math/51368188_792.png deleted file mode 100644 index 5a5be5c666bb5f0e9e85bdf26088a17be10c78dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368188_792.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc047948ae364d93d1166eb7ddbde95def6639a60c51746329aacd8be4957595 -size 3685 diff --git a/MM_Math/data_original_21/7056495/math/51368194_780.png b/MM_Math/data_original_21/7056495/math/51368194_780.png deleted file mode 100644 index ca04896ba36e2b0e605a24d20de6c3a7e1b24953..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368194_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bb62070e4a7b1ab520537662e855bbcaf1971f44b14e34c2bea9c74331b6228 -size 5109 diff --git a/MM_Math/data_original_21/7056495/math/51368197_802.png b/MM_Math/data_original_21/7056495/math/51368197_802.png deleted file mode 100644 index 9be20739d65fef6757a7b8e1757c2e36bbfacdc5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368197_802.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9dd4cb4c798dc1d2a2f73f7a34487362b0d70c8bf258607cec4ba8e4a60ec97 -size 16091 diff --git a/MM_Math/data_original_21/7056495/math/51368290_321.png b/MM_Math/data_original_21/7056495/math/51368290_321.png deleted file mode 100644 index 4f19f430e75a08ca5df580352c96e5457baae16b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368290_321.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a1c839d118c3f92f6d8e45bdc45a9ed35222adc939eaa526b4a94d304c2bd452 -size 2359 diff --git a/MM_Math/data_original_21/7056495/math/51368291_330.png b/MM_Math/data_original_21/7056495/math/51368291_330.png deleted file mode 100644 index 96a775892006ee9279ca76273605952a84f4c1c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368291_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3ceca1960b90d395470c2eb7d90be9e549ce1ee3b3e423ee59b4cc243319d78 -size 6598 diff --git a/MM_Math/data_original_21/7056495/math/51368292_300.png b/MM_Math/data_original_21/7056495/math/51368292_300.png deleted file mode 100644 index 78474e92755a59cc082b5b7e12b8255b83fb6d99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368292_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc2f133cd81269ef99590dabe77c478f5fa2e5490f1d4c91828ffb8d32937595 -size 3952 diff --git a/MM_Math/data_original_21/7056495/math/51368294_310.png b/MM_Math/data_original_21/7056495/math/51368294_310.png deleted file mode 100644 index e9c525d0358145c12b007a9af2f4bf1627d65173..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368294_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9399d1279f38feffe27037afd0b09c6406d25443a88ddf3ba005159860845d15 -size 3337 diff --git a/MM_Math/data_original_21/7056495/math/51368299_640.png b/MM_Math/data_original_21/7056495/math/51368299_640.png deleted file mode 100644 index 5a54eec5ed2564882acb2efceec2c1f1d1752231..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368299_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f552ba0ba7872ba8ff41f175f17aa1e7c22b7951c41cc7da04d96ad40fbcdce -size 5956 diff --git a/MM_Math/data_original_21/7056495/math/51368305_760.png b/MM_Math/data_original_21/7056495/math/51368305_760.png deleted file mode 100644 index 07d738111a9821a5cbf402f539d3fa1beefb2037..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368305_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b5f0f3ac92a329b8ee1cb17cb41840644c9850aea9e303925158fe40f2fdc1c -size 8537 diff --git a/MM_Math/data_original_21/7056495/math/51368311_771.png b/MM_Math/data_original_21/7056495/math/51368311_771.png deleted file mode 100644 index 9f47c0c00fed95303726d724669cec122da0bdb1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368311_771.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23350f6e09b3c83a6d63e55a5a9490ce2ed886d1c5969bb8182aa2ab3977480b -size 4856 diff --git a/MM_Math/data_original_21/7056495/math/51368325_20.png b/MM_Math/data_original_21/7056495/math/51368325_20.png deleted file mode 100644 index 90fd8bf499f25b7c27a4929133cbf0a0f14c1494..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368325_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e901c059a89588e7215ea6606c21e7429a0676efae7163edd62c717546ad1dec -size 8373 diff --git a/MM_Math/data_original_21/7056495/math/51368327_290.png b/MM_Math/data_original_21/7056495/math/51368327_290.png deleted file mode 100644 index 1f80841c27fd96682a3ccc214cd627f932859fe1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368327_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfb03f98d3e686ab70a3052f50b7d64de67894a64ce22e21b60475c6f6dc0505 -size 5129 diff --git a/MM_Math/data_original_21/7056495/math/51368352_750.png b/MM_Math/data_original_21/7056495/math/51368352_750.png deleted file mode 100644 index 73fd93ce6c69bf27c79dff84ccfedd8b59192e79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368352_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df03f89631c484783adf667fd8492c1e47f289bd4677e3a12fdbe947d1f36630 -size 6015 diff --git a/MM_Math/data_original_21/7056495/math/51368402_740.png b/MM_Math/data_original_21/7056495/math/51368402_740.png deleted file mode 100644 index a52b86b8d3574b86809c29956a17d3a3a146adf9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/51368402_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ef449e837331fc4be3b8e01b792d58c226354fb7c288a1045d44859a2bd690f -size 9972 diff --git a/MM_Math/data_original_21/7056495/math/55452505_250.png b/MM_Math/data_original_21/7056495/math/55452505_250.png deleted file mode 100644 index 45b2340f06439b342aeef97d794e2d57e2ea82b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/55452505_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a55559ccd789c0c382a554c4b2de39fd1bdec26271afe67d068fce73f310c2bd -size 12977 diff --git a/MM_Math/data_original_21/7056495/math/55452515_621.png b/MM_Math/data_original_21/7056495/math/55452515_621.png deleted file mode 100644 index 283ce7057779ed8b47405ebe69b06c3a88f81a81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/math/55452515_621.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddc720bcf291d5ed05ae1991ada1604212a3c03631d18a731e63d5d767993da7 -size 51025 diff --git a/MM_Math/data_original_21/7056495/solution_images/51155310_202.png b/MM_Math/data_original_21/7056495/solution_images/51155310_202.png deleted file mode 100644 index 2b884e440774a2ea0c80935413c0e894b7c296e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51155310_202.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:306bf8fe0ecd369887599382254beacf026e306952a750bfa45992f1b6989860 -size 4522 diff --git a/MM_Math/data_original_21/7056495/solution_images/51155347_183.png b/MM_Math/data_original_21/7056495/solution_images/51155347_183.png deleted file mode 100644 index 9e16d3892d2cd991fec1b0c397db8d8c91a9d07c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51155347_183.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7aa74ea7d82c7c1be95675ce8a17822e631a060fd262c2bfc82921acd468e274 -size 9019 diff --git a/MM_Math/data_original_21/7056495/solution_images/51155352_5416.png b/MM_Math/data_original_21/7056495/solution_images/51155352_5416.png deleted file mode 100644 index ea672cdbc8d9822957c0092af10b58eaf7bd8325..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51155352_5416.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41a951a4a7ff292cd8ced7eb3a5223b0fb494eb2a01c17553eef479dc9161010 -size 17429 diff --git a/MM_Math/data_original_21/7056495/solution_images/51284428_600.png b/MM_Math/data_original_21/7056495/solution_images/51284428_600.png deleted file mode 100644 index d48fde8178d39a59db50feb130b92523d192a0d9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51284428_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:068268e380814751a88f4bb05a952f8f0a72378f44de1c84656d665a6ea28bba -size 5443 diff --git a/MM_Math/data_original_21/7056495/solution_images/51284430_594.png b/MM_Math/data_original_21/7056495/solution_images/51284430_594.png deleted file mode 100644 index a4341eb37c35e08e82c1be6bb2ca602a9d031ec1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51284430_594.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b5f7d1d76c82dffc7e752354bf29d9650b03167ea9371ea9515f8b7f084a4941 -size 9849 diff --git a/MM_Math/data_original_21/7056495/solution_images/51299739_951.png b/MM_Math/data_original_21/7056495/solution_images/51299739_951.png deleted file mode 100644 index b35f2bd90d3a90b3eab91e0909fc9d32daf889ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51299739_951.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d29dc79f8b7c8c9e34d5e7e9c9ba784c8eac457211ef0eff8869591b10b6ef05 -size 11446 diff --git a/MM_Math/data_original_21/7056495/solution_images/51317425_480.jpg b/MM_Math/data_original_21/7056495/solution_images/51317425_480.jpg deleted file mode 100644 index eb026782fb71e7f245e52a9f86124749f236d4f0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51317425_480.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21ab2a816782c4d8b13a62356ddfab265b23c77a1156c3c48436c51d82a29da1 -size 14083 diff --git a/MM_Math/data_original_21/7056495/solution_images/51322496_390.png b/MM_Math/data_original_21/7056495/solution_images/51322496_390.png deleted file mode 100644 index 24a4efdc20ab9870f25dcaf4997ef71049a38189..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51322496_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f964e37dbf80adf52a5c2addbf6db20e1f3e47830c314c5fe0c51779f1f3dec -size 3817 diff --git a/MM_Math/data_original_21/7056495/solution_images/51322498_410.png b/MM_Math/data_original_21/7056495/solution_images/51322498_410.png deleted file mode 100644 index 97b68a8ae3dda3eab181ba556c1645fbb5d471c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51322498_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b203ef03d47bb9265c535d370db4deafb342e2904b759fc315c3164fd2a5250d -size 7362 diff --git a/MM_Math/data_original_21/7056495/solution_images/51322578_470.png b/MM_Math/data_original_21/7056495/solution_images/51322578_470.png deleted file mode 100644 index 8ccc676cadd2c0a578705a706d1b26ca20206435..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51322578_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ede57d5965eb8a2551353fa9993929565b563fa703eeb8e953c424e69c488327 -size 5838 diff --git a/MM_Math/data_original_21/7056495/solution_images/51322658_441.png b/MM_Math/data_original_21/7056495/solution_images/51322658_441.png deleted file mode 100644 index 9a9c44802fa588e39aba34743d0420ffe09a0468..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51322658_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:415a9317ffbb97d64e94eb88c097440dd9cccff9064f84e386a6b8e307db66c6 -size 8821 diff --git a/MM_Math/data_original_21/7056495/solution_images/51322733_40.png b/MM_Math/data_original_21/7056495/solution_images/51322733_40.png deleted file mode 100644 index bf667a7484bf6f8b15a81171b59f2aed39b1a9e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51322733_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f339511a37312ac42d121b0de7092b45987d7cd2ec4daec367058f810ffe25b7 -size 4384 diff --git a/MM_Math/data_original_21/7056495/solution_images/51322738_460.png b/MM_Math/data_original_21/7056495/solution_images/51322738_460.png deleted file mode 100644 index cc8b2c121d44af4643de0bbaadc1f8ca92139f13..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51322738_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:960d7b34c6e0dbcee8eed090332596e9cb911f80bbaed3c17594bd17da3d8399 -size 5054 diff --git a/MM_Math/data_original_21/7056495/solution_images/51322771_451.png b/MM_Math/data_original_21/7056495/solution_images/51322771_451.png deleted file mode 100644 index ed1ce637e2cd739e28c378563236eea24ab9741e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51322771_451.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10e9c757f7761cd1b3f7d8cf0828dcc011da37ffab7c570a518af267f38213c8 -size 5156 diff --git a/MM_Math/data_original_21/7056495/solution_images/51322836_420.png b/MM_Math/data_original_21/7056495/solution_images/51322836_420.png deleted file mode 100644 index 500d584e9e8e9c5d65d0d867550eae628be83eff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51322836_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0fed2dd5b891632f97948c4a447581f41d1c43f487a7aa5f492e7355a456215d -size 19477 diff --git a/MM_Math/data_original_21/7056495/solution_images/51322975_400.png b/MM_Math/data_original_21/7056495/solution_images/51322975_400.png deleted file mode 100644 index 57e8f6dda9a09e53a83f60fdf20b67302ce53bcd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51322975_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9623978be81943158e69dcecfa0e3fb7df3fdae16b60f0b961f9b2cd6a6d7d2f -size 5797 diff --git a/MM_Math/data_original_21/7056495/solution_images/51367392_370.png b/MM_Math/data_original_21/7056495/solution_images/51367392_370.png deleted file mode 100644 index 89efdaceb05b2ec21f61f8f516149682890a4f99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51367392_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:014c22060af0b8021802aefe321a4d30fe812c814ff929452d2a3e41b24b1a7a -size 3289 diff --git a/MM_Math/data_original_21/7056495/solution_images/51367426_350.png b/MM_Math/data_original_21/7056495/solution_images/51367426_350.png deleted file mode 100644 index 697d29abb8ff225e359707df5b34dac849575b1d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51367426_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfe1e15966b6c9eab1ac80e7b85059d03477e94e3719604fea5d33efb6da9d34 -size 6698 diff --git a/MM_Math/data_original_21/7056495/solution_images/51368292_300.png b/MM_Math/data_original_21/7056495/solution_images/51368292_300.png deleted file mode 100644 index cb9e77774d15d78046ddad6eda2c903435567d75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51368292_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58fed4a2563e4b541c015e3027e70a2b391851588855e6398a3b8c2d883d6990 -size 5269 diff --git a/MM_Math/data_original_21/7056495/solution_images/51368292_3021.png b/MM_Math/data_original_21/7056495/solution_images/51368292_3021.png deleted file mode 100644 index 6b0eedf5578be01938563984c5f74e9f6a10d757..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/51368292_3021.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34717c4fef0948fd26d466db6078b12f992765f2a9492448ff7758d5d4a5e5e3 -size 5118 diff --git a/MM_Math/data_original_21/7056495/solution_images/55452505_250.png b/MM_Math/data_original_21/7056495/solution_images/55452505_250.png deleted file mode 100644 index 8785868875313bd77c41028b52f85e16e1589f26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056495/solution_images/55452505_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08058c6e6e63e20ee8d530aa6d2752150abea3fe2e7c86e985638ce2782bf638 -size 50310 diff --git a/MM_Math/data_original_21/7056499/math/52865967_104.png b/MM_Math/data_original_21/7056499/math/52865967_104.png deleted file mode 100644 index f0252b20680000c418261398a241cd4192d1539d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52865967_104.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7012d4dafc9662ea4d7c4a8cd94e9d7d1564ea4097d9fcc727363368bd7569d -size 2137 diff --git a/MM_Math/data_original_21/7056499/math/52865974_235.png b/MM_Math/data_original_21/7056499/math/52865974_235.png deleted file mode 100644 index f08200a73267a7e7b3216313efed94ee8dc3b075..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52865974_235.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc17d29ca92f12f8da8e389842516fc4e97fc86fc08e7df1f534686399776253 -size 22530 diff --git a/MM_Math/data_original_21/7056499/math/52866560_991.png b/MM_Math/data_original_21/7056499/math/52866560_991.png deleted file mode 100644 index da09470d6fa3e0fc4779886eb9e515e2bbe54f91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52866560_991.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0be04d281509f42613f0fb002d9dac3f15729719028f1e5a2d990df8fd40153f -size 134854 diff --git a/MM_Math/data_original_21/7056499/math/52871717_986.png b/MM_Math/data_original_21/7056499/math/52871717_986.png deleted file mode 100644 index b710d1d36b382b4e4b075e2b1aa59ae6c43cb8e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52871717_986.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b8ef7a3779fb5e2793090119ac9b94edd36bc4d9542b4b4f2847bb2a6c87e8a -size 3525 diff --git a/MM_Math/data_original_21/7056499/math/52871856_973.png b/MM_Math/data_original_21/7056499/math/52871856_973.png deleted file mode 100644 index cfff7f630b6a428a73366621fd778acb3a19c83a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52871856_973.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9cf0378c1ad3b4c5de700bfe0c4ac9fcd501441ae073d3ebfcd0f2fa4eee82dc -size 29032 diff --git a/MM_Math/data_original_21/7056499/math/52874656_960.png b/MM_Math/data_original_21/7056499/math/52874656_960.png deleted file mode 100644 index 0f51d7670463c51f182a42e4731f5b04d8f61dc8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52874656_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4f3e49b4cd4c2021a7fce364a89d8da42a1362c71e20569ccb0251cdf48ba04 -size 5473 diff --git a/MM_Math/data_original_21/7056499/math/52874723_950.png b/MM_Math/data_original_21/7056499/math/52874723_950.png deleted file mode 100644 index bab55f0a511138d5dbe1312bd635ffd4ebd3fe2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52874723_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5bb9a9bdf64ee867d91a9e802e1d327f0ba3225c84e9869cf3feb15dc9732403 -size 5112 diff --git a/MM_Math/data_original_21/7056499/math/52905636_221.png b/MM_Math/data_original_21/7056499/math/52905636_221.png deleted file mode 100644 index 90fe211843535337484af80e9eb220b5a042562b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52905636_221.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:855438844871f21b99fdb3b1860a87126b193c76abd270529d3fea2e65949fd1 -size 2110 diff --git a/MM_Math/data_original_21/7056499/math/52913784_91.jpeg b/MM_Math/data_original_21/7056499/math/52913784_91.jpeg deleted file mode 100644 index 9658385dcb74ae32d662a2dd266156d1a5609c27..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52913784_91.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d7b9b0a2b5e10d966b9d96d324455ca27ae87fe6af06f3605209c8468d29cac -size 3685 diff --git a/MM_Math/data_original_21/7056499/math/52914172_850.jpeg b/MM_Math/data_original_21/7056499/math/52914172_850.jpeg deleted file mode 100644 index d656ff6f4621366c975765ed5d14908e3c53527c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52914172_850.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e758a5e224e23cc3565cd17f85b8b04896ba9109c40e9aa73acd5a122e8df41e -size 4528 diff --git a/MM_Math/data_original_21/7056499/math/52916643_842.png b/MM_Math/data_original_21/7056499/math/52916643_842.png deleted file mode 100644 index 1594b63518ccc4b5a467adc0de604c355cccc011..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52916643_842.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fdf02ebfd06fb3057e0c20de7e50f51c98c3b28b556e0cda6402f925729172cf -size 24973 diff --git a/MM_Math/data_original_21/7056499/math/52916776_884.png b/MM_Math/data_original_21/7056499/math/52916776_884.png deleted file mode 100644 index 0a2176ac38943465059a849517fc9ba309f81833..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52916776_884.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13260251964bfb9ddfe3bcbe00dfe56d36f4d2aa3d53552f7ad65e4bc4724287 -size 49552 diff --git a/MM_Math/data_original_21/7056499/math/52916890_903.png b/MM_Math/data_original_21/7056499/math/52916890_903.png deleted file mode 100644 index 776e5afb0bddaaf53e0f91668ee907681d834c32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52916890_903.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fd7906732e37f04fa4278e2b8d8924ce2518bf3f7c0264f335ba99731780c00f -size 6670 diff --git a/MM_Math/data_original_21/7056499/math/52917427_891.png b/MM_Math/data_original_21/7056499/math/52917427_891.png deleted file mode 100644 index be68a136e6dc7c3969281f2cc0c067522daf398c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52917427_891.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6572b9a8f14897934285a673cd64bbb234017eb65355a112f0b5f9e53af3e893 -size 89484 diff --git a/MM_Math/data_original_21/7056499/math/52917460_873.png b/MM_Math/data_original_21/7056499/math/52917460_873.png deleted file mode 100644 index eeeff15efa0bc01bb1f91ebbfdba8435810e5d87..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52917460_873.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de385f75507d85a1f59782b5bd5a4504a3d4e9f500da2ac62a602c1f0e0482b4 -size 12753 diff --git a/MM_Math/data_original_21/7056499/math/52917576_864.png b/MM_Math/data_original_21/7056499/math/52917576_864.png deleted file mode 100644 index e8ed064c155c93f85abbf31459127d75618f5edb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52917576_864.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ca9b321085ee9c399bfa65bb1d70fc03bb45da4502323327db91bf6a0150ae4 -size 16530 diff --git a/MM_Math/data_original_21/7056499/math/52933997_211.png b/MM_Math/data_original_21/7056499/math/52933997_211.png deleted file mode 100644 index ec59d282670d6ca692770e87496111db36d27635..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52933997_211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b31f22a2bdee034c4fde8345f8884965be344ee3dee0bdcc1798eccfce98991 -size 4479 diff --git a/MM_Math/data_original_21/7056499/math/52934017_8313.png b/MM_Math/data_original_21/7056499/math/52934017_8313.png deleted file mode 100644 index da0aeb208ac56c4f64429bdea1e2735eaf228a9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52934017_8313.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:184460454a11801eedd21c72ddfd3732633c033f7f7b4e7774982c29f070d8a1 -size 48187 diff --git a/MM_Math/data_original_21/7056499/math/52934017_8314.png b/MM_Math/data_original_21/7056499/math/52934017_8314.png deleted file mode 100644 index 8fe9ad23657bf541a428cd9bac65b44a05ff408a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52934017_8314.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3c0333c408c5598b8c5de34b821665fbaac5577dd7641cba917c00d35a0ad66 -size 47941 diff --git a/MM_Math/data_original_21/7056499/math/52934216_823.png b/MM_Math/data_original_21/7056499/math/52934216_823.png deleted file mode 100644 index 93cc0620c242a92d69c9eea2ecf98073a16224ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52934216_823.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77732e01ab67a5fe799fb735982dc7ec3be497148c06f1a0f10c1883ea177e80 -size 39965 diff --git a/MM_Math/data_original_21/7056499/math/52936367_817.png b/MM_Math/data_original_21/7056499/math/52936367_817.png deleted file mode 100644 index 3394e7560dd3a76f2557c2c7fdf42d4477133b84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52936367_817.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:85bdef659f13fab8c1e14eab2cb0bc4caf01c2b4c834c96366f0043f9edcb2a2 -size 21915 diff --git a/MM_Math/data_original_21/7056499/math/52976992_80.png b/MM_Math/data_original_21/7056499/math/52976992_80.png deleted file mode 100644 index b6f8471f33b81360f858607805cad510ee762424..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52976992_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96a761c883b5d5fbc9e9e1b7a069fd8c70a5095fcd78db3119fede7e937b9c52 -size 38070 diff --git a/MM_Math/data_original_21/7056499/math/52977189_203.png b/MM_Math/data_original_21/7056499/math/52977189_203.png deleted file mode 100644 index ab23938100d3747339f3133c5f5144e5c25925d9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977189_203.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83ac7a926c77896feb57cbd1112da6869e2b9fda75a40560bae29cae3416215d -size 6737 diff --git a/MM_Math/data_original_21/7056499/math/52977197_666.png b/MM_Math/data_original_21/7056499/math/52977197_666.png deleted file mode 100644 index cafb4dafdae768a13114f7e7896e9640579c16e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977197_666.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51e167e080ea287689911f02c174a60b4e56b0af3146927ce024f6472845c684 -size 114657 diff --git a/MM_Math/data_original_21/7056499/math/52977265_195.png b/MM_Math/data_original_21/7056499/math/52977265_195.png deleted file mode 100644 index 6f7080cdba58215f89fa1303de0d29714388a0db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977265_195.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a941fead52f6c94fc47c15642f1bb0a4d89a4b8dc47f72c13b90317c696737ee -size 10389 diff --git a/MM_Math/data_original_21/7056499/math/52977350_691.png b/MM_Math/data_original_21/7056499/math/52977350_691.png deleted file mode 100644 index 329d19749e4177ea022dc72542ddee89a22f4025..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977350_691.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d4c385a27bf2ce147e9470002a780c47851e670c1369589342368751ec950d2 -size 32526 diff --git a/MM_Math/data_original_21/7056499/math/52977381_712.png b/MM_Math/data_original_21/7056499/math/52977381_712.png deleted file mode 100644 index 00a3de6cb86c1048f5adcc2195469b5a10ceb137..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977381_712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1116a8210d191773e4b1c5087305b6a7a87ddb3416d2c99bc9ea7c708de8df57 -size 36839 diff --git a/MM_Math/data_original_21/7056499/math/52977484_721.png b/MM_Math/data_original_21/7056499/math/52977484_721.png deleted file mode 100644 index f193c8a497f67ca166966297ecb9a349ec18ab84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977484_721.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:928daeb2865083a71d10c7f081cd451b0fa8043819eb8b14cf9caf1dffeb81e6 -size 15924 diff --git a/MM_Math/data_original_21/7056499/math/52977497_657.png b/MM_Math/data_original_21/7056499/math/52977497_657.png deleted file mode 100644 index d4a1ff1b1bf50fc604015f3083fe7beb06526263..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977497_657.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5cda3ff694f1fb6482b2edaa184e8593ea5f710a28af34fe529b3118ae25625 -size 2592 diff --git a/MM_Math/data_original_21/7056499/math/52977501_731.png b/MM_Math/data_original_21/7056499/math/52977501_731.png deleted file mode 100644 index 9f8cd65ddc1829ae06dd07e18faff8c38a36cccb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977501_731.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:213b7f79c6bc66f2128538f5fed4fb030e9c190fbf304ec6c43db14c001063bf -size 452 diff --git a/MM_Math/data_original_21/7056499/math/52977501_734.png b/MM_Math/data_original_21/7056499/math/52977501_734.png deleted file mode 100644 index b071b79521662808cc45c95c75e585bb823b33e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977501_734.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75da729bcbd692862f698bb20b404122dcd6ac0aa7b10d243cb389df98a57075 -size 4782 diff --git a/MM_Math/data_original_21/7056499/math/52977560_683.png b/MM_Math/data_original_21/7056499/math/52977560_683.png deleted file mode 100644 index f5ef2cc5ed75946bb0072fd5486375d4084c61c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977560_683.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4730081ba4f4326f3624df86505e7444df2b30855c8f0c8a72a5389a21dc83b6 -size 159027 diff --git a/MM_Math/data_original_21/7056499/math/52977772_704.png b/MM_Math/data_original_21/7056499/math/52977772_704.png deleted file mode 100644 index 0f4c1cfa976377a9472677368eb2af9c04f9b768..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977772_704.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7675493cc1ff79b09dc3a299d2aaa9fdd4ac27938e26cc15590f928bc83c3d7e -size 102824 diff --git a/MM_Math/data_original_21/7056499/math/52977778_806.png b/MM_Math/data_original_21/7056499/math/52977778_806.png deleted file mode 100644 index 59394b9da39f72def4fe5830ad4b07fe837dc01d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977778_806.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b789c4fded3fc1aab472f8a1a90ad0358f75397cf63d2d4cc97646bdb1a2756 -size 4597 diff --git a/MM_Math/data_original_21/7056499/math/52977788_7814.png b/MM_Math/data_original_21/7056499/math/52977788_7814.png deleted file mode 100644 index 8804c314c7ce6de00858ccfd159c0c96c303a178..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977788_7814.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:991937e818cc33a5bb58d548ab406827988dc8e9a22639fb94cf982fdc1bb0a7 -size 8167 diff --git a/MM_Math/data_original_21/7056499/math/52977819_741.png b/MM_Math/data_original_21/7056499/math/52977819_741.png deleted file mode 100644 index be68a136e6dc7c3969281f2cc0c067522daf398c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977819_741.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6572b9a8f14897934285a673cd64bbb234017eb65355a112f0b5f9e53af3e893 -size 89484 diff --git a/MM_Math/data_original_21/7056499/math/52977885_751.png b/MM_Math/data_original_21/7056499/math/52977885_751.png deleted file mode 100644 index be68a136e6dc7c3969281f2cc0c067522daf398c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52977885_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6572b9a8f14897934285a673cd64bbb234017eb65355a112f0b5f9e53af3e893 -size 89484 diff --git a/MM_Math/data_original_21/7056499/math/52978187_770.png b/MM_Math/data_original_21/7056499/math/52978187_770.png deleted file mode 100644 index c8512e0fad0d6d0345e9b70c0bf01887aac50181..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52978187_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb03969ad0d2ebe40ee00e869c2626d0af3cd38795dabcca5934795f64289bbe -size 4810 diff --git a/MM_Math/data_original_21/7056499/math/52978190_763.png b/MM_Math/data_original_21/7056499/math/52978190_763.png deleted file mode 100644 index 2629183f0539e22ebb685a96f547966f02e1744b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52978190_763.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ce65b07962e4d50c841b3096d9c9dec4d5bfc075859f3b6343ca16102d7984e -size 2469 diff --git a/MM_Math/data_original_21/7056499/math/52992235_642.png b/MM_Math/data_original_21/7056499/math/52992235_642.png deleted file mode 100644 index ba13af9bb3ed338a3a88f8a1e391df929e0cecdd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/52992235_642.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d14b37ec854524f7f8e0a91bec726d6198ca9322c9185b02cb95f05e65f0265 -size 4823 diff --git a/MM_Math/data_original_21/7056499/math/53009704_620.jpeg b/MM_Math/data_original_21/7056499/math/53009704_620.jpeg deleted file mode 100644 index d86ca6cc4dedcfaa8ee1114d2316a72806985449..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53009704_620.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:154ee44df4ba9a50119e39568347c60cfc125723b07f5acf20ec63713f86cb0a -size 11199 diff --git a/MM_Math/data_original_21/7056499/math/53009781_71.jpeg b/MM_Math/data_original_21/7056499/math/53009781_71.jpeg deleted file mode 100644 index 9d2d1adb984b2c74faaa890be6046ec3c8f35272..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53009781_71.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca1e6f6ad27ce67186948db5769494f76ce888aeedaa8e475a447420d734fcdd -size 6539 diff --git a/MM_Math/data_original_21/7056499/math/53009807_630.jpeg b/MM_Math/data_original_21/7056499/math/53009807_630.jpeg deleted file mode 100644 index add5ba6fb7aff083818dcf36ee68d45fed74ad6e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53009807_630.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f665675e606cd2818a2bd137c9e0a0888845ccac380680715c8cf83e18d1c47 -size 7301 diff --git a/MM_Math/data_original_21/7056499/math/53009879_66.png b/MM_Math/data_original_21/7056499/math/53009879_66.png deleted file mode 100644 index 970cc61bea844f50297ce536a7356fa321b546e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53009879_66.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:019c0b73998f31714408249a3a29a71808de5137ee474c3bd928670d0fdb64ec -size 4294 diff --git a/MM_Math/data_original_21/7056499/math/53019808_175.png b/MM_Math/data_original_21/7056499/math/53019808_175.png deleted file mode 100644 index 474ef12916c441cd6e5368dadddef5f1ffe25d55..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53019808_175.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e095b90643ca8d97568062718d3979efbe468ba9ed13af7c9a22e3ca5412122 -size 21745 diff --git a/MM_Math/data_original_21/7056499/math/53019865_613.png b/MM_Math/data_original_21/7056499/math/53019865_613.png deleted file mode 100644 index db55be79227179e9d9c77f86c005e9d46b763873..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53019865_613.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e9f98a713cad2b96c78d18d77e00cb0f0d938fd19198f3a1ef17bb22c5be3cf -size 9869 diff --git a/MM_Math/data_original_21/7056499/math/53019881_185.png b/MM_Math/data_original_21/7056499/math/53019881_185.png deleted file mode 100644 index df6023cc471a47d7196b31d623a01cf34b840200..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53019881_185.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c741c9b9094356ccb8a2a77e92b135ba71a9ac9a33c7a6ab67cb5ef178d115a1 -size 7898 diff --git a/MM_Math/data_original_21/7056499/math/53033041_603.png b/MM_Math/data_original_21/7056499/math/53033041_603.png deleted file mode 100644 index aed1197c0bd15889cbc2018e968f0bb49a91a4bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53033041_603.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e3c75db23057d1b24740055d1b67105fb0b10e26e3c1426ed1eff8092645382 -size 10248 diff --git a/MM_Math/data_original_21/7056499/math/53042850_132.png b/MM_Math/data_original_21/7056499/math/53042850_132.png deleted file mode 100644 index 8bd48018352985b6eed5f85443fa7e3a2c8fcfb3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53042850_132.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1bbe7639cad3656266ec5510231f536f75ac4686fccbeebd824c6d75eeb8c09c -size 4106 diff --git a/MM_Math/data_original_21/7056499/math/53042870_541.png b/MM_Math/data_original_21/7056499/math/53042870_541.png deleted file mode 100644 index bdea4414a8e216fe7e917f96c1a8a05dbfc52b39..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53042870_541.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ec956791386fe4f6de6825fbfac4c6d722ca0d01c45eb3f4764eb740c7970dc -size 12924 diff --git a/MM_Math/data_original_21/7056499/math/53043068_536.png b/MM_Math/data_original_21/7056499/math/53043068_536.png deleted file mode 100644 index 2c86f873867c09d9f920f2baa62b0d5a45717e66..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043068_536.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f13341c40fef19732c487314676d701bc182eaeb077463e7295a5d36c7f433d -size 4210 diff --git a/MM_Math/data_original_21/7056499/math/53043125_553.png b/MM_Math/data_original_21/7056499/math/53043125_553.png deleted file mode 100644 index 6fb375afcef28f0e6597e1a673be060c014d6f42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043125_553.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7bb2de914dac1126926fa0549b7f670f4a2861b8809924265ffcfaf7293ae751 -size 3979 diff --git a/MM_Math/data_original_21/7056499/math/53043145_121.png b/MM_Math/data_original_21/7056499/math/53043145_121.png deleted file mode 100644 index 5d05a3d89518e02e6bffddeef5f72b613305bff7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043145_121.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f554eff89779687c2d8cfe58375fdecba5abfcacf1ebf5665cb4f37fc6c7de2f -size 17567 diff --git a/MM_Math/data_original_21/7056499/math/53043280_41.png b/MM_Math/data_original_21/7056499/math/53043280_41.png deleted file mode 100644 index de4fd7ba46ad518c455c3337e8f6aa46e4db5f49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043280_41.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75a491ca01c272190c660138dacb218a534cb82b3d9e37838447b50ddd33cd49 -size 8955 diff --git a/MM_Math/data_original_21/7056499/math/53043661_477.png b/MM_Math/data_original_21/7056499/math/53043661_477.png deleted file mode 100644 index bbf396b802540dfb7f478c3422d6cef3880fd4cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043661_477.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1aea4025ffb8e6b4385285592ad83352c5cfb315bdd450f0c9fa3dfaf4d85503 -size 53000 diff --git a/MM_Math/data_original_21/7056499/math/53043676_145.png b/MM_Math/data_original_21/7056499/math/53043676_145.png deleted file mode 100644 index e64c10b4d6354797fdaf16cb64828bdcca97636f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043676_145.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bed2aabf334430a18270a22a0996c40d5ffffabdc1e0d3bcca4d072dd6efba33 -size 8940 diff --git a/MM_Math/data_original_21/7056499/math/53043682_515.png b/MM_Math/data_original_21/7056499/math/53043682_515.png deleted file mode 100644 index 0e25ff33d6db3c8688971b328c5cba034ecfcb13..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043682_515.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:beafcded64058f114557c84331b4f5fa2c4f493c1d19434a174dfb961e03e8bf -size 20007 diff --git a/MM_Math/data_original_21/7056499/math/53043696_579.png b/MM_Math/data_original_21/7056499/math/53043696_579.png deleted file mode 100644 index 3736c7a6bc245f68bef4cb3e2c73a37c0faa8ac2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043696_579.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fef215a1c8e870f437afcb58bdfd0d411fbb6aefbcdce8c4dbcf9bb446a44e9c -size 126063 diff --git a/MM_Math/data_original_21/7056499/math/53043725_486.jpeg b/MM_Math/data_original_21/7056499/math/53043725_486.jpeg deleted file mode 100644 index 4e2eec180725da44797b0f3e40493b714dcaa501..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043725_486.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:830b5a927d548ef8bbffb1057bd108df36ee3be9d154eb4f2e2d89ad586c8ba6 -size 25711 diff --git a/MM_Math/data_original_21/7056499/math/53043766_523.png b/MM_Math/data_original_21/7056499/math/53043766_523.png deleted file mode 100644 index 33a8385f8fb9d9f205c96c41880a6e81f4305739..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043766_523.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8dd5866b349a06af17eecf54cc7856b1352cb95adbafcc41720311ac2d7a05d4 -size 743617 diff --git a/MM_Math/data_original_21/7056499/math/53043807_491.png b/MM_Math/data_original_21/7056499/math/53043807_491.png deleted file mode 100644 index 25caf5fb2d1e49ed62506f5dfcae21ad4e5a0002..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043807_491.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a5a9dc313227d0de2c87863975640c7e4bb21c6564335f6ab411f36316ad6a1 -size 94590 diff --git a/MM_Math/data_original_21/7056499/math/53043822_152.png b/MM_Math/data_original_21/7056499/math/53043822_152.png deleted file mode 100644 index 5ed5a3610aba0fbe675ddb36beca5ddcc3415052..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043822_152.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7391f741532ed3aa9272f04ec8907a7afc4a3d4e9dce33cbd38e73a757e8179e -size 6598 diff --git a/MM_Math/data_original_21/7056499/math/53043850_567.png b/MM_Math/data_original_21/7056499/math/53043850_567.png deleted file mode 100644 index 45e7220b305ed3e324fded9a1185127185a70d29..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043850_567.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c17d0b7b6ced8c295605f831a61649ec1d95c37e770212a4ee16f27f300d52a -size 14339 diff --git a/MM_Math/data_original_21/7056499/math/53043922_503.png b/MM_Math/data_original_21/7056499/math/53043922_503.png deleted file mode 100644 index 6c312922ee59695ac410e7f51b572daa51d2ba01..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53043922_503.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:346afb11aad22547f6a5a50b1193b1b56a32bf5624da1ab4e26f52088b4e09d3 -size 11046 diff --git a/MM_Math/data_original_21/7056499/math/53058938_4513.png b/MM_Math/data_original_21/7056499/math/53058938_4513.png deleted file mode 100644 index 5a69f338d29fe1c8ab2d5682ef971778ced5e0c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53058938_4513.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0664477f5319463c0a27f78c1b6295969d9c71677fd81780ad98345ac30a00b8 -size 8057 diff --git a/MM_Math/data_original_21/7056499/math/53059187_461.png b/MM_Math/data_original_21/7056499/math/53059187_461.png deleted file mode 100644 index 10e26d487037975e5e90492bc68ded167a5a9683..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53059187_461.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b73e0dddf6a150ffed0d9b415d1a17fa40f3e137dcc050e0b68b928559c370ef -size 3821 diff --git a/MM_Math/data_original_21/7056499/math/53065570_3710.png b/MM_Math/data_original_21/7056499/math/53065570_3710.png deleted file mode 100644 index 9a434d81a2620cc82b68b0138562a1f42472472e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53065570_3710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a24303e8218b8bb1078da9c34772de3da0058cdfbf6030964384d4cda2f43628 -size 3185 diff --git a/MM_Math/data_original_21/7056499/math/53065859_394.png b/MM_Math/data_original_21/7056499/math/53065859_394.png deleted file mode 100644 index 493fc7ac39b311c0a56a9b8ae272ff02e662daa2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53065859_394.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4102f9aa90f4f2fc0cc962017434a1098b00dd56bd8e6766983ebdc9203d4e9d -size 46626 diff --git a/MM_Math/data_original_21/7056499/math/53065902_384.png b/MM_Math/data_original_21/7056499/math/53065902_384.png deleted file mode 100644 index 296b1a993f0991bd82f02b447f5ea40f5d0567d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53065902_384.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b997189b4700229f6c9d485c9cbbc7a91d32134b18c2c66691845f3a1e0484d9 -size 6077 diff --git a/MM_Math/data_original_21/7056499/math/53066069_412.png b/MM_Math/data_original_21/7056499/math/53066069_412.png deleted file mode 100644 index 9dc164a175a0f0609e054cc83211b904f59a8bef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53066069_412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82f1655e49ed389585e94ddd52956eb4f55d7ee9d94d1f50fb17fac3a14000e9 -size 3124 diff --git a/MM_Math/data_original_21/7056499/math/53066101_404.png b/MM_Math/data_original_21/7056499/math/53066101_404.png deleted file mode 100644 index 7ce2b7489d16025c6e6b9feb085dccaf6b79d474..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53066101_404.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ac9100c244093b25854a77e1ebe666cc38763045e9d6ebe65c6d00a411ac04df -size 36017 diff --git a/MM_Math/data_original_21/7056499/math/53066184_423.png b/MM_Math/data_original_21/7056499/math/53066184_423.png deleted file mode 100644 index 145c4316afe0fe259bdb9e6b6c007e07f38507b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53066184_423.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c598726065fc46e13fd3fb4d14e17f8c65561895b86e3cafd1f95e4019640a6e -size 4740 diff --git a/MM_Math/data_original_21/7056499/math/53066218_441.png b/MM_Math/data_original_21/7056499/math/53066218_441.png deleted file mode 100644 index 1f7b93707661ed247160f2b6993d3b4a4e92ea67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53066218_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb476c66cd841e3f9d3bab6323155ef56cd5ee76dda8b9cb21148cd28cbba584 -size 24492 diff --git a/MM_Math/data_original_21/7056499/math/53066295_432.png b/MM_Math/data_original_21/7056499/math/53066295_432.png deleted file mode 100644 index 634b14dbde180676ec6db2ba1b21609a26e11101..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53066295_432.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72591e139da36a672ac4fd8c345986886a7e48391b2e32ead4ce94908e9975c5 -size 109860 diff --git a/MM_Math/data_original_21/7056499/math/53066295_433.png b/MM_Math/data_original_21/7056499/math/53066295_433.png deleted file mode 100644 index e2943fa53c47b84bcc3ecb429cf9dcfce1eeffc6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53066295_433.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05812e15b005706ca62ca276f657698b27cab0b300e9384d839fc0c5d4a0c96e -size 134513 diff --git a/MM_Math/data_original_21/7056499/math/53078759_20.png b/MM_Math/data_original_21/7056499/math/53078759_20.png deleted file mode 100644 index afc555b807ae60afa6b867390546622612c41df7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53078759_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a66313d90ec379bc90c778c76a076800040e7557594b28e1f25f1330307e41df -size 5441 diff --git a/MM_Math/data_original_21/7056499/math/53078816_291.png b/MM_Math/data_original_21/7056499/math/53078816_291.png deleted file mode 100644 index cbd146ec0fb673e0b546c18c358fa71a406cd9b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53078816_291.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6567f8ac192c578651f57cb0d9ca861d42805f72e5cd569248e2aa99d8ef17fd -size 4209 diff --git a/MM_Math/data_original_21/7056499/math/53078880_311.png b/MM_Math/data_original_21/7056499/math/53078880_311.png deleted file mode 100644 index 70a9773f6aa4094d83f0e548f8a8faa643eff8d7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53078880_311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00aa267dbc471964f67770a1c1476a5a60983281edd7386b67a3a0ec9c2d6834 -size 2719 diff --git a/MM_Math/data_original_21/7056499/math/53078897_3215.png b/MM_Math/data_original_21/7056499/math/53078897_3215.png deleted file mode 100644 index 06129f26ebf2cb097c949ad71681baec327d63dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53078897_3215.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c5e256f552f1b3fc43603dbc55a2875b393cc94e567389ebda3728f1104fece -size 9155 diff --git a/MM_Math/data_original_21/7056499/math/53078921_311.png b/MM_Math/data_original_21/7056499/math/53078921_311.png deleted file mode 100644 index 48a239c5bee75440a8480acfb55ed3d0211b32d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53078921_311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1c1d6a0ab96e4bd2ece5859b2c3f13e0275fc62a3ecf9eb09520747064af85f -size 2328 diff --git a/MM_Math/data_original_21/7056499/math/53079018_304.png b/MM_Math/data_original_21/7056499/math/53079018_304.png deleted file mode 100644 index 069f8d8f82c3f3fcfd43674b80aa688ffad76aa6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53079018_304.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:caf59426ff7364353969469f3615f8c2b915a0fe36c0d880321977c28b710b44 -size 100914 diff --git a/MM_Math/data_original_21/7056499/math/53080023_117.png b/MM_Math/data_original_21/7056499/math/53080023_117.png deleted file mode 100644 index 68aec3e0ac2e63d2a21b66d65a3184c1afd05d97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53080023_117.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:120636d2a454d31d54b3aa19fac1adfaf40dbc10f0083639ffe8dd23f815f982 -size 2905 diff --git a/MM_Math/data_original_21/7056499/math/53080174_2610.png b/MM_Math/data_original_21/7056499/math/53080174_2610.png deleted file mode 100644 index 7a6f23a52e8b291dcf7ad4c83e7934696c7f546e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53080174_2610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63d9b0c98dfa3f840c4b7a9924edfe7d0c054422dd9ac8152dc9f6c2bb17b360 -size 6491 diff --git a/MM_Math/data_original_21/7056499/math/53080245_246.png b/MM_Math/data_original_21/7056499/math/53080245_246.png deleted file mode 100644 index 14dde3a574db032fb2dbff56a890865e83801217..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53080245_246.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23b98c3649549d5becab414cb28f59ff7d6aac60887a8916e833d25d39b569d2 -size 3902 diff --git a/MM_Math/data_original_21/7056499/math/53080553_254.png b/MM_Math/data_original_21/7056499/math/53080553_254.png deleted file mode 100644 index 347d38fa980a64ff613c40f0ff97d9d9c2e54f22..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53080553_254.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4beef40d2d156f4bab71f583944187c31757ddb3596a5eb28b25b8f0bd50806f -size 104158 diff --git a/MM_Math/data_original_21/7056499/math/53080571_281.png b/MM_Math/data_original_21/7056499/math/53080571_281.png deleted file mode 100644 index 51a2ebd21869eec3943af291919d14c1aae56c5d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53080571_281.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f153e071da23ac5c2751fd5314825eb9f66938674feb876ffa5c56f60c333152 -size 22663 diff --git a/MM_Math/data_original_21/7056499/math/53080621_273.png b/MM_Math/data_original_21/7056499/math/53080621_273.png deleted file mode 100644 index bc4d572a5ac3f9d0385b7192de10107fb6145e17..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53080621_273.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b7f54a368fb3953ad6d7d30d9e24a2c051e48d9a4e73ea7e2db44c850387351 -size 5456 diff --git a/MM_Math/data_original_21/7056499/math/53080709_02.png b/MM_Math/data_original_21/7056499/math/53080709_02.png deleted file mode 100644 index 087135982e52144308758720683ae22d10155bf5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53080709_02.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cbd87508b1ce3c806c89daa0f86977a0d4d80243779cd248f8bc410c334efa94 -size 2829 diff --git a/MM_Math/data_original_21/7056499/math/53080744_15.png b/MM_Math/data_original_21/7056499/math/53080744_15.png deleted file mode 100644 index c235a011e7314e3563deda21c9a214e27644a531..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53080744_15.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:78b0ad1587cc6a9a65f39a20b07867894179ef7a2da939cfb40526c31d9f52c2 -size 3136 diff --git a/MM_Math/data_original_21/7056499/math/53101933_593.png b/MM_Math/data_original_21/7056499/math/53101933_593.png deleted file mode 100644 index 4c4c70e274d4deaacc4528bf9949e73e2d210a3d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53101933_593.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:350af62d4cabcac5c0c8e9d2ffe71ce77968e57a3235fe22ce4519d15efed28d -size 3050 diff --git a/MM_Math/data_original_21/7056499/math/53101984_585.png b/MM_Math/data_original_21/7056499/math/53101984_585.png deleted file mode 100644 index 99586ca5c81479338399b9c906e722d3d25c6dc8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53101984_585.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ffb6b09fb462e86685b33e8752dd6ed64e7c96d3de5edf04f6e2d0cd8220e0d -size 57672 diff --git a/MM_Math/data_original_21/7056499/math/53102105_55.png b/MM_Math/data_original_21/7056499/math/53102105_55.png deleted file mode 100644 index 5e0032a9efac354aa1177aaf6fe2d2196bca7c59..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53102105_55.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e369dff95c7e249f70c93e193bb99a7ed9f86be114ca9d131d063d8121122375 -size 6259 diff --git a/MM_Math/data_original_21/7056499/math/53102185_169.png b/MM_Math/data_original_21/7056499/math/53102185_169.png deleted file mode 100644 index d0d199311b54483c1638e65bacd2b0de5e098296..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53102185_169.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f5f635d7c790fcdbb3a2173eaa1a840ff75d98bc20daafab221eb474042e53b9 -size 3577 diff --git a/MM_Math/data_original_21/7056499/math/53107063_944.png b/MM_Math/data_original_21/7056499/math/53107063_944.png deleted file mode 100644 index 5b6b71305c11ac9262e8f5b08fa704608f9afa76..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53107063_944.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0e7646f867bd390ef27e3f3e21844e04461ed9b8b16d979e85d409aea072bfb -size 9430 diff --git a/MM_Math/data_original_21/7056499/math/53107133_925.png b/MM_Math/data_original_21/7056499/math/53107133_925.png deleted file mode 100644 index b7cf90b9fbb0e489a23fa9b7d6922f87a2a5cfd8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53107133_925.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3831002aae33fee424ef8da7b8609687d631a3cae2053d7d257743898733b3b -size 47346 diff --git a/MM_Math/data_original_21/7056499/math/53107240_934.png b/MM_Math/data_original_21/7056499/math/53107240_934.png deleted file mode 100644 index 3a553df51c874e9ca6da854c7344a8d7423c12f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53107240_934.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2503bb611f3fb0c5549802b16856bed34b0c8f607c99d2d4c18424bfeca9424a -size 4641 diff --git a/MM_Math/data_original_21/7056499/math/53147494_334.png b/MM_Math/data_original_21/7056499/math/53147494_334.png deleted file mode 100644 index 60b1452257ee66cfe03217d7d800a26d110174a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53147494_334.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b5fc04be83a6b4c3e69a03c7571f7de7234ea031dfeebf8a9662e5d7228e6d5 -size 28268 diff --git a/MM_Math/data_original_21/7056499/math/53147831_349.png b/MM_Math/data_original_21/7056499/math/53147831_349.png deleted file mode 100644 index 1de765e1b9de661b98fbf28e64dced535c3432af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53147831_349.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dbfff0faa3edf605667ebebb6902516034876b8e88bce64a55085e03e6e8ee1f -size 8889 diff --git a/MM_Math/data_original_21/7056499/math/53148288_365.png b/MM_Math/data_original_21/7056499/math/53148288_365.png deleted file mode 100644 index 409906e1f24650d2e2f96d1852bc43ab32b91254..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/53148288_365.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:454a8979d6e98d944e85017e3895d86c9ad45566b7e097b08ae56226ade21e51 -size 73998 diff --git a/MM_Math/data_original_21/7056499/math/55138456_910.png b/MM_Math/data_original_21/7056499/math/55138456_910.png deleted file mode 100644 index 1d637e769c9364a3363513fa8545e3bea7cf1f49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/math/55138456_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:884afcb85b2cb870902e2ac4b4efb4f9ed9f35f29cb3b03a1fb7eb78fbd06a6a -size 49514 diff --git a/MM_Math/data_original_21/7056499/solution_images/52917427_8912.png b/MM_Math/data_original_21/7056499/solution_images/52917427_8912.png deleted file mode 100644 index 12ee7dd764719ea751ecd74637ee400b6e417dc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52917427_8912.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2e2c83a9b21ebeb0a2606531d2dda0f0a100f4fe63d23d7e35833efeb7c183a -size 49781 diff --git a/MM_Math/data_original_21/7056499/solution_images/52917427_8919.png b/MM_Math/data_original_21/7056499/solution_images/52917427_8919.png deleted file mode 100644 index c5f6b6a79ab93ef24a7af6e9b713b93b7a676209..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52917427_8919.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45d9435d72eeac30b75ca6be31c8bbb3f6668b522343335e3d94ff4658178b28 -size 51080 diff --git a/MM_Math/data_original_21/7056499/solution_images/52917427_892.png b/MM_Math/data_original_21/7056499/solution_images/52917427_892.png deleted file mode 100644 index 565d78ed84c735ad77fb03e78c2eab01fd4f2d39..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52917427_892.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:141526af05bef9a52f65086f9d5f778978f6a1b38797ba098a8a8d2c01366005 -size 47747 diff --git a/MM_Math/data_original_21/7056499/solution_images/52917427_8922.png b/MM_Math/data_original_21/7056499/solution_images/52917427_8922.png deleted file mode 100644 index 418edd6a305ad6cd07d489b5a6e1c081f23a7a8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52917427_8922.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:17e8d22755288300c63b7001240bda8a7e576bd2af469f6246eda6459a33e236 -size 56461 diff --git a/MM_Math/data_original_21/7056499/solution_images/52917576_8613.png b/MM_Math/data_original_21/7056499/solution_images/52917576_8613.png deleted file mode 100644 index bd48618ab32fe2be3955e274dd83ca394bff3311..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52917576_8613.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18860007d65c420c55735f02d11dadfcdc5bf2a714ff2dad577148fda80a7f82 -size 19164 diff --git a/MM_Math/data_original_21/7056499/solution_images/52917576_8622.png b/MM_Math/data_original_21/7056499/solution_images/52917576_8622.png deleted file mode 100644 index bd48618ab32fe2be3955e274dd83ca394bff3311..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52917576_8622.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18860007d65c420c55735f02d11dadfcdc5bf2a714ff2dad577148fda80a7f82 -size 19164 diff --git a/MM_Math/data_original_21/7056499/solution_images/52977350_693.png b/MM_Math/data_original_21/7056499/solution_images/52977350_693.png deleted file mode 100644 index 6c07bdc8927c861814c94c35066d2e0d7a847704..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52977350_693.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:710a2b48b6f87587d6112bc1d807e535acb15747a2b91a2be8848c863663e3bc -size 44839 diff --git a/MM_Math/data_original_21/7056499/solution_images/52977819_741.png b/MM_Math/data_original_21/7056499/solution_images/52977819_741.png deleted file mode 100644 index 565d78ed84c735ad77fb03e78c2eab01fd4f2d39..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52977819_741.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:141526af05bef9a52f65086f9d5f778978f6a1b38797ba098a8a8d2c01366005 -size 47747 diff --git a/MM_Math/data_original_21/7056499/solution_images/52977819_7412.png b/MM_Math/data_original_21/7056499/solution_images/52977819_7412.png deleted file mode 100644 index 12ee7dd764719ea751ecd74637ee400b6e417dc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52977819_7412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2e2c83a9b21ebeb0a2606531d2dda0f0a100f4fe63d23d7e35833efeb7c183a -size 49781 diff --git a/MM_Math/data_original_21/7056499/solution_images/52977819_7414.png b/MM_Math/data_original_21/7056499/solution_images/52977819_7414.png deleted file mode 100644 index c5f6b6a79ab93ef24a7af6e9b713b93b7a676209..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52977819_7414.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45d9435d72eeac30b75ca6be31c8bbb3f6668b522343335e3d94ff4658178b28 -size 51080 diff --git a/MM_Math/data_original_21/7056499/solution_images/52977819_7422.png b/MM_Math/data_original_21/7056499/solution_images/52977819_7422.png deleted file mode 100644 index 418edd6a305ad6cd07d489b5a6e1c081f23a7a8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52977819_7422.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:17e8d22755288300c63b7001240bda8a7e576bd2af469f6246eda6459a33e236 -size 56461 diff --git a/MM_Math/data_original_21/7056499/solution_images/52977854_793.png b/MM_Math/data_original_21/7056499/solution_images/52977854_793.png deleted file mode 100644 index dfc5d4953b29ecf4f90d76660ed88596cf458bd3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52977854_793.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0131bbba1177d5a1c0cabba10d5982440de62ee0866642e0b7279132d9b39848 -size 4805 diff --git a/MM_Math/data_original_21/7056499/solution_images/52977885_751.png b/MM_Math/data_original_21/7056499/solution_images/52977885_751.png deleted file mode 100644 index 565d78ed84c735ad77fb03e78c2eab01fd4f2d39..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52977885_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:141526af05bef9a52f65086f9d5f778978f6a1b38797ba098a8a8d2c01366005 -size 47747 diff --git a/MM_Math/data_original_21/7056499/solution_images/52977885_7512.png b/MM_Math/data_original_21/7056499/solution_images/52977885_7512.png deleted file mode 100644 index 12ee7dd764719ea751ecd74637ee400b6e417dc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52977885_7512.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2e2c83a9b21ebeb0a2606531d2dda0f0a100f4fe63d23d7e35833efeb7c183a -size 49781 diff --git a/MM_Math/data_original_21/7056499/solution_images/52977885_7514.png b/MM_Math/data_original_21/7056499/solution_images/52977885_7514.png deleted file mode 100644 index c5f6b6a79ab93ef24a7af6e9b713b93b7a676209..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52977885_7514.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45d9435d72eeac30b75ca6be31c8bbb3f6668b522343335e3d94ff4658178b28 -size 51080 diff --git a/MM_Math/data_original_21/7056499/solution_images/52977885_7522.png b/MM_Math/data_original_21/7056499/solution_images/52977885_7522.png deleted file mode 100644 index 418edd6a305ad6cd07d489b5a6e1c081f23a7a8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/52977885_7522.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:17e8d22755288300c63b7001240bda8a7e576bd2af469f6246eda6459a33e236 -size 56461 diff --git a/MM_Math/data_original_21/7056499/solution_images/53009781_70.jpeg b/MM_Math/data_original_21/7056499/solution_images/53009781_70.jpeg deleted file mode 100644 index bebcd4c644e22670a13269c8f2b313fc56ba39d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53009781_70.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3084567a837bfe5ad8e87b44f6f9ee38e265afb9eb774cfa865e1b5b7eed1416 -size 6968 diff --git a/MM_Math/data_original_21/7056499/solution_images/53043280_41.png b/MM_Math/data_original_21/7056499/solution_images/53043280_41.png deleted file mode 100644 index 46861b668206a3092360387eef9b6c6473a732da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53043280_41.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6363293c13d0aeba27ae353b2edd1251568eb11bb2825d1cbe48b6bb1455c732 -size 9785 diff --git a/MM_Math/data_original_21/7056499/solution_images/53043676_142.png b/MM_Math/data_original_21/7056499/solution_images/53043676_142.png deleted file mode 100644 index 228ce6c4c21493b4838ed165ab73db851571e6d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53043676_142.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2054583304312e1d893a36dd3e32ff3b8fd90316609d6cb8d839f70a4cba5d4 -size 4426 diff --git a/MM_Math/data_original_21/7056499/solution_images/53066184_421.png b/MM_Math/data_original_21/7056499/solution_images/53066184_421.png deleted file mode 100644 index f5b66b833698a2832ce89b4d6cf4565e36706e22..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53066184_421.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3266ae0a6c2e9b6c419e1878f5ae95c2c44d6e340185da674616380ace074fa -size 27314 diff --git a/MM_Math/data_original_21/7056499/solution_images/53066184_4213.png b/MM_Math/data_original_21/7056499/solution_images/53066184_4213.png deleted file mode 100644 index 8e9b288fb2878509f037ebb3de724f3c8949cb32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53066184_4213.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:924e1f30a099678c1e290c0a8e52ec317abe2557f1e2a98b13020e84c691c93c -size 16438 diff --git a/MM_Math/data_original_21/7056499/solution_images/53078816_290.png b/MM_Math/data_original_21/7056499/solution_images/53078816_290.png deleted file mode 100644 index 943034889505ae04013563f5f0af55eaf54d31da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53078816_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3983bb2d7abafa0ef080418576968445a9358d57b7a5b8c0f52b2e15cfe8e17 -size 16456 diff --git a/MM_Math/data_original_21/7056499/solution_images/53078880_34.png b/MM_Math/data_original_21/7056499/solution_images/53078880_34.png deleted file mode 100644 index 41040a82eaf6e1532a8d419175460b4903f033ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53078880_34.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccc0ec14eedbaafd709a7951d4b96b7879f5be29ca2a0a8f21de5196a640c6d6 -size 4878 diff --git a/MM_Math/data_original_21/7056499/solution_images/53079018_3013.png b/MM_Math/data_original_21/7056499/solution_images/53079018_3013.png deleted file mode 100644 index 5880bbf4dd04926847671b706a9065bc7a28d2a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53079018_3013.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:57deaad7aa3560429c6fc5a769e73de79958f56631fc8ab58848bd658033f16b -size 138547 diff --git a/MM_Math/data_original_21/7056499/solution_images/53079018_303.png b/MM_Math/data_original_21/7056499/solution_images/53079018_303.png deleted file mode 100644 index 8e55aa8bb37a2c80dcd0a929bc75c4ae4cb5cc58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53079018_303.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1af1604ec300a8e3e44092437525aab73e116e7850a46f7af0c4f62ea58fcdb6 -size 133775 diff --git a/MM_Math/data_original_21/7056499/solution_images/53079018_309.png b/MM_Math/data_original_21/7056499/solution_images/53079018_309.png deleted file mode 100644 index 79a365d560ca6ed34caa7fac97f84a6b27cbce8f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53079018_309.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3eb37bd43b235b76ab5058fac39b74541905d369ab668210dd80b2a6d9da130d -size 126384 diff --git a/MM_Math/data_original_21/7056499/solution_images/53080023_1113.png b/MM_Math/data_original_21/7056499/solution_images/53080023_1113.png deleted file mode 100644 index c6bd78431a3a5da265a640d6cbc1994358d9a8eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53080023_1113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:867caf64f4ddb9d8b62cee515d27cfaa5d9284617cbfa5d5e1833d5c9c7ad33c -size 3256 diff --git a/MM_Math/data_original_21/7056499/solution_images/53080621_270.png b/MM_Math/data_original_21/7056499/solution_images/53080621_270.png deleted file mode 100644 index fbb333bcd82c108defd5487c1590519d610a9408..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53080621_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90ad13cf5604f6322116da13f6a615cc3ec9ac0f26534a239f9efb6612e9f15f -size 8519 diff --git a/MM_Math/data_original_21/7056499/solution_images/53147831_343.png b/MM_Math/data_original_21/7056499/solution_images/53147831_343.png deleted file mode 100644 index c27aa9e015bc05aa73b691d2dc5e29b5407a6e5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7056499/solution_images/53147831_343.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9891aa214f499f0ab80fc0b419df2465bac4c600c6efd7d1d2686201a8c99ce5 -size 5711 diff --git a/MM_Math/data_original_21/7057900/math/51321592_790.png b/MM_Math/data_original_21/7057900/math/51321592_790.png deleted file mode 100644 index dc372ca36e64c89505f76e539b9379eb2c82c3ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51321592_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9078b02b86c5bd5057b79449d40aeaa237995d2102d174d0469b0eda42f6398a -size 10191 diff --git a/MM_Math/data_original_21/7057900/math/51323941_7811.png b/MM_Math/data_original_21/7057900/math/51323941_7811.png deleted file mode 100644 index 4aa6d81fdc3eea0b78cd4ef2e68a41d0ada7932c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51323941_7811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f966b365afc573e5f915dd51ac48d50b334ec099fb7cc10a881791af8edf0bee -size 12245 diff --git a/MM_Math/data_original_21/7057900/math/51369891_288.png b/MM_Math/data_original_21/7057900/math/51369891_288.png deleted file mode 100644 index 29768c5a75856490c23e301f8bd282b6c35dc984..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51369891_288.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d8ff5cbf0029024861ac4a22ccdaf271d5b3453a782cccdc8e1aa79d27169b7 -size 6817 diff --git a/MM_Math/data_original_21/7057900/math/51369908_773.png b/MM_Math/data_original_21/7057900/math/51369908_773.png deleted file mode 100644 index 35695cec0def24fd9edc2ba6829bc411f6a3e4e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51369908_773.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2be79486a1c0e20dc7c8a3d7b19e472234d699e6359bc338b8e108f0e30c190 -size 64071 diff --git a/MM_Math/data_original_21/7057900/math/51420128_2913.png b/MM_Math/data_original_21/7057900/math/51420128_2913.png deleted file mode 100644 index c53045534273d78bf5433d4f63fe7e1f412b5096..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51420128_2913.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1e9ff3a7bad191ff887a14846f064ee3718c579071223de8a20c253d0c80b7a -size 4619 diff --git a/MM_Math/data_original_21/7057900/math/51433217_832.png b/MM_Math/data_original_21/7057900/math/51433217_832.png deleted file mode 100644 index f20ba90c8b161720e90ac087d8e9969037373e45..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51433217_832.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71b04f4d81a9189135a131ca3f1ed50ede62713afede09138ad72090ae170495 -size 15253 diff --git a/MM_Math/data_original_21/7057900/math/51433258_820.png b/MM_Math/data_original_21/7057900/math/51433258_820.png deleted file mode 100644 index 417c5a5f36652fe86a7cc8c4a545d8ad29b01320..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51433258_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:703023a6c729e290a342678235f9c53700aca0862015f184eb3add05d56fe70f -size 3601 diff --git a/MM_Math/data_original_21/7057900/math/51433738_813.png b/MM_Math/data_original_21/7057900/math/51433738_813.png deleted file mode 100644 index 6236be8d61bce8a8c3cc1df9f417032083c01a14..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51433738_813.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13f5fc669dee7460f1631e9bb27e35220835e91da9eed6d8e987fb07b53cb112 -size 11286 diff --git a/MM_Math/data_original_21/7057900/math/51434142_805.png b/MM_Math/data_original_21/7057900/math/51434142_805.png deleted file mode 100644 index 4bfb4844e695e96a75eb55e9b658a4f4cc99eda8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51434142_805.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca0c9682f34ed5653cd636393029c9dddebafeae1c5faffa972cb137c6605f18 -size 11530 diff --git a/MM_Math/data_original_21/7057900/math/51445482_161.png b/MM_Math/data_original_21/7057900/math/51445482_161.png deleted file mode 100644 index 7b1c8623528106b1689869518a1abf11d074b145..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51445482_161.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ea149d70c4f90aef63a7ac6a32aa5a8d5e9ca4be93acec4b692927157eb49bc -size 4060 diff --git a/MM_Math/data_original_21/7057900/math/51445655_991.png b/MM_Math/data_original_21/7057900/math/51445655_991.png deleted file mode 100644 index aa141b3c3c65ef2d25515803b0906ce2bddf1630..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51445655_991.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64d741b58b4acd54405b959c64dad7fa6d75e3ff31493b533eeea060edf2c5b0 -size 7489 diff --git a/MM_Math/data_original_21/7057900/math/51445765_180.png b/MM_Math/data_original_21/7057900/math/51445765_180.png deleted file mode 100644 index c2f0965f98485408c45257616d681bc4c5d9c6a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51445765_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b2fa9d9ccad9089882bbcb6462ce29bd0a7833f5b60575b25ac235b9b551367 -size 2055 diff --git a/MM_Math/data_original_21/7057900/math/51445903_931.png b/MM_Math/data_original_21/7057900/math/51445903_931.png deleted file mode 100644 index d4c77a42bbafd464896ac1784a2566bff9cd53d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51445903_931.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21d9b8819eb13303e02835477b70b1bc3daa5255372d68a5b35ce6670182f642 -size 3958 diff --git a/MM_Math/data_original_21/7057900/math/51445907_940.png b/MM_Math/data_original_21/7057900/math/51445907_940.png deleted file mode 100644 index 477186c9f647c6287afa6e3e5af3639a3dc31328..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51445907_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed393df715800b34287054e519bfb5dddd9456fecaec85b7ed6deb231c1c2818 -size 15154 diff --git a/MM_Math/data_original_21/7057900/math/51445937_881.png b/MM_Math/data_original_21/7057900/math/51445937_881.png deleted file mode 100644 index cfeee1e4a81d6756a2e4a992f496d4f4637f46e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51445937_881.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a8369be118f9d27cf3fe6928ecac2e13ccc2db2dce15d1e6b06dab74400c032 -size 5896 diff --git a/MM_Math/data_original_21/7057900/math/51445968_906.png b/MM_Math/data_original_21/7057900/math/51445968_906.png deleted file mode 100644 index 0c791afcdb543e0cb6e11d2139d674c16a04e29c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51445968_906.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e3690a6ac07104756a4a0d3ce185b639c89c7910affba26bd67727a34eaaf91 -size 6253 diff --git a/MM_Math/data_original_21/7057900/math/51446075_860.png b/MM_Math/data_original_21/7057900/math/51446075_860.png deleted file mode 100644 index caeb349abb7bbfa67c53ec88808fe027b287a099..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446075_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:93f0cb06ff51d081751eab59ffbb2dd7f1927a43511784e76b65fa3f7f1a727a -size 9636 diff --git a/MM_Math/data_original_21/7057900/math/51446264_173.png b/MM_Math/data_original_21/7057900/math/51446264_173.png deleted file mode 100644 index 17e8e28fe5deee90d3993b17cfa11ae356b1f638..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446264_173.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b68dd4c58ee79e32bb8cc245518bf1c4c914712365435d1cd8f067e6347e6274 -size 2583 diff --git a/MM_Math/data_original_21/7057900/math/51446287_878.png b/MM_Math/data_original_21/7057900/math/51446287_878.png deleted file mode 100644 index 56ce9952764efe0fda8386c2142ed5e8d925f215..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446287_878.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f9dea341b012e0d6f07b6187a07e6094dac869442760c50be55097e86f7bb503 -size 4294 diff --git a/MM_Math/data_original_21/7057900/math/51446330_971.png b/MM_Math/data_original_21/7057900/math/51446330_971.png deleted file mode 100644 index 0304bf78fc0f29e3f6b874e89c18ff002323d66d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446330_971.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a63d81e317ffe4a1221bbf55459fc9ee2a731d9c7274d548faf9c4ec8e79caed -size 3376 diff --git a/MM_Math/data_original_21/7057900/math/51446330_972.png b/MM_Math/data_original_21/7057900/math/51446330_972.png deleted file mode 100644 index 08d6089c2c339fade12e3c66cc03a06890a372d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446330_972.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a08ae3f49c54a039987b806b0b86b9a516c6e0f68213060dcedc9a33d0dae998 -size 3843 diff --git a/MM_Math/data_original_21/7057900/math/51446330_973.png b/MM_Math/data_original_21/7057900/math/51446330_973.png deleted file mode 100644 index cb4dc6d770c25ffc83bf477eadd52f8944330b4d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446330_973.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6052a275261eba625223324f69b179bc92434c85da8abe4734a65402e1ebf1ba -size 3694 diff --git a/MM_Math/data_original_21/7057900/math/51446351_306.png b/MM_Math/data_original_21/7057900/math/51446351_306.png deleted file mode 100644 index fe6ea52dc0717e0a67cbbc593a56c1dc0f4056f6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446351_306.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97839b0c89f933bf8c911ae78d16c845b6eadd3c673a289c4056476ed2446d1c -size 2814 diff --git a/MM_Math/data_original_21/7057900/math/51446358_9112.png b/MM_Math/data_original_21/7057900/math/51446358_9112.png deleted file mode 100644 index 7a784ee1d8c2344afed318d673ae0d54d4889e2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446358_9112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69f662cabf29954187c0ad8ef861cd958b4a891b6ea02cb9ce9ab2d21abff8d8 -size 5062 diff --git a/MM_Math/data_original_21/7057900/math/51446444_8412.png b/MM_Math/data_original_21/7057900/math/51446444_8412.png deleted file mode 100644 index 8a3fa4ef256c6c8a66c78d3445591640deb69285..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446444_8412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a409945500ea3d763510b2229c2f500da3be7429319a9cd23a9884e30d643f1c -size 11214 diff --git a/MM_Math/data_original_21/7057900/math/51446463_322.png b/MM_Math/data_original_21/7057900/math/51446463_322.png deleted file mode 100644 index 06830826e6d101125a991b22a79e714317c8b5c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446463_322.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3b1a9974c2136ac043db2e1b041bbf588d4ad0c2d2108cebfaf8d4c6a24abb9 -size 3620 diff --git a/MM_Math/data_original_21/7057900/math/51446477_894.png b/MM_Math/data_original_21/7057900/math/51446477_894.png deleted file mode 100644 index 8c915c3daa9ac38ad3be41bb08d5d8ed6b379af5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446477_894.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd57f469a29590c7e18aadb41fd1d163a57179a90884f22b005f92c7e37b4f22 -size 8684 diff --git a/MM_Math/data_original_21/7057900/math/51446501_338.png b/MM_Math/data_original_21/7057900/math/51446501_338.png deleted file mode 100644 index ec58f1abc7efb214adaa338667966a5396bedee8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446501_338.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fcb00773ddf9044c2bf4af8ea636481d147c5897b511ee8a502f398a780a66e -size 16768 diff --git a/MM_Math/data_original_21/7057900/math/51446664_921.png b/MM_Math/data_original_21/7057900/math/51446664_921.png deleted file mode 100644 index da105921a23b094db34f1e337bc3a824fa48cf11..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446664_921.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a1a73c517778534179033829700aee34e71f8196566f47c585431e75ab09df4e -size 2738 diff --git a/MM_Math/data_original_21/7057900/math/51446670_950.png b/MM_Math/data_original_21/7057900/math/51446670_950.png deleted file mode 100644 index b1476ae6e410d142760fb17125a47ea3fb41c069..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446670_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f0b9508629744663705dcc169eb7dd95db0673135e73e0c5bf269fde3eff0dfd -size 6025 diff --git a/MM_Math/data_original_21/7057900/math/51446676_852.png b/MM_Math/data_original_21/7057900/math/51446676_852.png deleted file mode 100644 index bb1c23685813e6ad983cc25be5c38f043d3d9515..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/51446676_852.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52e99642ec6fb24807adc1770599fdf201e99f55a8d13cb2746f88ea22f5694a -size 5787 diff --git a/MM_Math/data_original_21/7057900/math/52457688_741.png b/MM_Math/data_original_21/7057900/math/52457688_741.png deleted file mode 100644 index 7cf5747bc7564991bfd9616c7d0095ecacb93b8f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52457688_741.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d47cf4747625648dc34eed92d592f238cebf35495db12cdc1198829fabcad924 -size 17367 diff --git a/MM_Math/data_original_21/7057900/math/52457729_751.png b/MM_Math/data_original_21/7057900/math/52457729_751.png deleted file mode 100644 index 846a91758286a9f9a92a79aff2ef006a163b30cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52457729_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c27d8433c851f1bd5140943feae5e250fff05581e9a710f13c11a51568de748 -size 19569 diff --git a/MM_Math/data_original_21/7057900/math/52458461_7312.png b/MM_Math/data_original_21/7057900/math/52458461_7312.png deleted file mode 100644 index 55af17532c62e9cbd9a3f7e528e2c940e9515045..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52458461_7312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5dcf26ccb1ab5feb477eef829cc7cb81e8d477d43a46b9526105fea5787f81f1 -size 5281 diff --git a/MM_Math/data_original_21/7057900/math/52512802_716.png b/MM_Math/data_original_21/7057900/math/52512802_716.png deleted file mode 100644 index 50d7010ac687f51e396a1ad06d8913a8ac44970c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52512802_716.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:adb4e449909e2943837e12df2647885f2b57f7d233cd3067cea3b373a296679f -size 4449 diff --git a/MM_Math/data_original_21/7057900/math/52513824_1113.png b/MM_Math/data_original_21/7057900/math/52513824_1113.png deleted file mode 100644 index 2d2680a3571bdc239190a9cdab1688a3e4cfeb6f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52513824_1113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a30c99f2e12ece4ff22358ac26be2576c99b1fd69906e9331944d9eaf46e3b1e -size 9389 diff --git a/MM_Math/data_original_21/7057900/math/52513841_693.jpeg b/MM_Math/data_original_21/7057900/math/52513841_693.jpeg deleted file mode 100644 index 5da71d0807ef906ccf643820ab3fafc3d38db6f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52513841_693.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a08ac68878fe14282c492a19579914ad54c2bcec282d6296973ff385ecbf52d1 -size 5316 diff --git a/MM_Math/data_original_21/7057900/math/52514040_121.png b/MM_Math/data_original_21/7057900/math/52514040_121.png deleted file mode 100644 index 26c238cbd746a2ac52ba4772205b8c4b5837e591..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52514040_121.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30c8a653fe6f9a0f362c1c5d3fa92fbc3a8dd51cb105d3975475b539bddbad38 -size 5190 diff --git a/MM_Math/data_original_21/7057900/math/52514047_140.png b/MM_Math/data_original_21/7057900/math/52514047_140.png deleted file mode 100644 index a9bf80cecd1198781a82c4bdaf49311a52b27350..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52514047_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f4a9f07f7c29cbd46e55037426c7cf72317a163abe20196c5cf0f3783ee916b -size 6804 diff --git a/MM_Math/data_original_21/7057900/math/52514129_132.png b/MM_Math/data_original_21/7057900/math/52514129_132.png deleted file mode 100644 index d52dc32a501c6d22b5e6d56ae22e1b8f01fa4477..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52514129_132.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71c6dea04790c1407b7216177f7b2d60cf061cfadb8c4d0f91c3a65ab84aa554 -size 12925 diff --git a/MM_Math/data_original_21/7057900/math/52514156_702.png b/MM_Math/data_original_21/7057900/math/52514156_702.png deleted file mode 100644 index f33f5bda8179cf56a392ededa5200a1f3e1044d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52514156_702.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ceb3709b28c5937dc43f6915016ddd7e9d9c6ed313159ebb241cfb395b3fd8cf -size 13848 diff --git a/MM_Math/data_original_21/7057900/math/52515604_2716.png b/MM_Math/data_original_21/7057900/math/52515604_2716.png deleted file mode 100644 index cf63913a4412b108364491b44d67390ef6fb35c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52515604_2716.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92de5f4e7e915e27117234d02767ed6f1875254299944440a64e11cd802799a0 -size 4918 diff --git a/MM_Math/data_original_21/7057900/math/52536612_660.png b/MM_Math/data_original_21/7057900/math/52536612_660.png deleted file mode 100644 index ded077b4649784523f3e3b6147d7fa431f9fa51e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52536612_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b445b65373c1c63bd8c2aa9e6ef2f2deaf2a8d9b218294a9af98b5c30228bc4 -size 12025 diff --git a/MM_Math/data_original_21/7057900/math/52536660_670.png b/MM_Math/data_original_21/7057900/math/52536660_670.png deleted file mode 100644 index 8b98bb626e95af10ab707df3548089b1eb8e79a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52536660_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3d0e78103791a0352503c36d449bca553d6b1d181ba56c1c8933dfc6ca32d7fd -size 9912 diff --git a/MM_Math/data_original_21/7057900/math/52536743_100.png b/MM_Math/data_original_21/7057900/math/52536743_100.png deleted file mode 100644 index 0837e365c9d413bde48dd220b9d8fce1b6709dc4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52536743_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5efc257f48014ae3a8564515e3dd43c89199f3b7d31963615fafd8e1a7ab4f8f -size 3885 diff --git a/MM_Math/data_original_21/7057900/math/52536754_3415.png b/MM_Math/data_original_21/7057900/math/52536754_3415.png deleted file mode 100644 index dc8e565959d5b0eb40b06cff08cdc5d411e63168..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52536754_3415.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f61bde4cbe113ae62670936f1c470a887707d53ae3d06e101591f0fa140958a -size 3279 diff --git a/MM_Math/data_original_21/7057900/math/52550623_630.png b/MM_Math/data_original_21/7057900/math/52550623_630.png deleted file mode 100644 index 32431562f2c3d4a445051b98ab17c81019ca5b25..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52550623_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e337ee0424146b17dc614b3d08ec38c499ea0f1a60476fad03eea17f11a48bc -size 3227 diff --git a/MM_Math/data_original_21/7057900/math/52551188_654.png b/MM_Math/data_original_21/7057900/math/52551188_654.png deleted file mode 100644 index 9b56be890683e89a06680e5abdb6f4ad5def9826..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52551188_654.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d8b102bb7d472fcf7649541b85cc4840db2bc63cc241e0b512335c7fcaf4b922 -size 5282 diff --git a/MM_Math/data_original_21/7057900/math/52551555_98.png b/MM_Math/data_original_21/7057900/math/52551555_98.png deleted file mode 100644 index 7ee27a4f8cf7af2894be5cff9670f9cb368af4d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52551555_98.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea4bd17896e15f89eae0bb8efa28457a9f078f60b76fdbf2d21abe93e7bf8ae3 -size 8756 diff --git a/MM_Math/data_original_21/7057900/math/52551573_614.png b/MM_Math/data_original_21/7057900/math/52551573_614.png deleted file mode 100644 index db7006e812eb0faa8e2633b95e761589c1fece21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52551573_614.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:343b8637d0f7cac4fb95a11f6e0ef81f5c289bc763f521693f79d1f054d47b88 -size 10978 diff --git a/MM_Math/data_original_21/7057900/math/52551767_641.png b/MM_Math/data_original_21/7057900/math/52551767_641.png deleted file mode 100644 index b307d124574aaeae0a17ce6bea9d610667467589..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52551767_641.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7cd3e28e3032c3b72b253e0fa433f10ac59e75f30434195b6e244256c02ec414 -size 6691 diff --git a/MM_Math/data_original_21/7057900/math/52551848_264.png b/MM_Math/data_original_21/7057900/math/52551848_264.png deleted file mode 100644 index 49abeb73c6ca2ef9ddf0e0a900ec582445a24fa9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52551848_264.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc83fe71c70302ca402a5f644b5ff09dacdb50a62207bd769f12d7986a845cc4 -size 2504 diff --git a/MM_Math/data_original_21/7057900/math/52551855_605.png b/MM_Math/data_original_21/7057900/math/52551855_605.png deleted file mode 100644 index 68a31c67305226730b7885d8bd3e99a3ff46b56a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52551855_605.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cdd972624b87d48a147c299550e8b596c00e24ffeb901b305ae2333f7b0453c6 -size 16242 diff --git a/MM_Math/data_original_21/7057900/math/52574130_250.png b/MM_Math/data_original_21/7057900/math/52574130_250.png deleted file mode 100644 index 50566743ed9c7e2a3db8087e75b6335bd9564813..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52574130_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cdfd111c8b5979da17cb300b634a2abcab7220d7685de6123ad57b714e2a1948 -size 4544 diff --git a/MM_Math/data_original_21/7057900/math/52586052_591.png b/MM_Math/data_original_21/7057900/math/52586052_591.png deleted file mode 100644 index 99a8c779c0c64b61bef069c36ec5d99851c0617c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52586052_591.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a9125104c811a67ebcf7ea580a68c6bfb77b7de50a5fc33d45250188b71f47f -size 28872 diff --git a/MM_Math/data_original_21/7057900/math/52586399_2415.png b/MM_Math/data_original_21/7057900/math/52586399_2415.png deleted file mode 100644 index d99b062f56bcd1c160f1b0b666162d6b1f960f99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52586399_2415.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e51baf9de7f629aff5051e32ea80446821f4cb9dff12724207e496895a20a7a -size 16493 diff --git a/MM_Math/data_original_21/7057900/math/52586455_580.jpeg b/MM_Math/data_original_21/7057900/math/52586455_580.jpeg deleted file mode 100644 index 5b8f49c7a2100d9ec78140ecd1b911de3c7cd8ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52586455_580.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:869e85e02d862d59c357662d3926cc86146ef9d0553743b6812f712343026022 -size 20896 diff --git a/MM_Math/data_original_21/7057900/math/52605419_80.jpg b/MM_Math/data_original_21/7057900/math/52605419_80.jpg deleted file mode 100644 index 08bdb847501d234ef35156c9b90d68db44122d85..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52605419_80.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08b395365daad7b87bd0a8a235ba6edfbcb3324738748f56e4487c0c44c59ca5 -size 12806 diff --git a/MM_Math/data_original_21/7057900/math/52605434_560.jpg b/MM_Math/data_original_21/7057900/math/52605434_560.jpg deleted file mode 100644 index 54c279a83a14b32af8e485988322ea5e00b10998..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52605434_560.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:004729885cbca19b977bf6599218c85e20f123a4e1db31e8d2930bbaf2c5b5b1 -size 6930 diff --git a/MM_Math/data_original_21/7057900/math/52605441_570.jpg b/MM_Math/data_original_21/7057900/math/52605441_570.jpg deleted file mode 100644 index 5f60c828b4dc948eaf604f902ce32a9cc0bf5249..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52605441_570.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:86e9d809b865416c86e3e8d8523be7043f94f14c9003acea8684b9d5a218eb94 -size 25562 diff --git a/MM_Math/data_original_21/7057900/math/52620595_70.png b/MM_Math/data_original_21/7057900/math/52620595_70.png deleted file mode 100644 index aaf5c77f71fabe33a40d5ab033ccc97e57a83ff3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52620595_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:444a774b7e0783e3c6b91cebdcfa904c074d8fc5d6b8f168e34d926ab43dc504 -size 2620 diff --git a/MM_Math/data_original_21/7057900/math/52620662_554.png b/MM_Math/data_original_21/7057900/math/52620662_554.png deleted file mode 100644 index d13dbbdffd2ecd1057831e56935bfd33f3905349..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52620662_554.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b3c46105b52b7082bacf28bee270ea2f6ac84a136385dd58ad564194dd28e5f -size 49430 diff --git a/MM_Math/data_original_21/7057900/math/52634644_7215.png b/MM_Math/data_original_21/7057900/math/52634644_7215.png deleted file mode 100644 index 3016034533ff3a85e503d115786cd75d2acede33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52634644_7215.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8b3f137d20379a9ec231184de25710303bade5e8192f928b20bb0780e44021b -size 15212 diff --git a/MM_Math/data_original_21/7057900/math/52660399_534.png b/MM_Math/data_original_21/7057900/math/52660399_534.png deleted file mode 100644 index 722d74def8bdd0e556924510c19dc6f99f08303a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52660399_534.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccc81c369c9cc1187e7211843e536b954e383df00ff73b156964a2292c9bc858 -size 42611 diff --git a/MM_Math/data_original_21/7057900/math/52660903_231.png b/MM_Math/data_original_21/7057900/math/52660903_231.png deleted file mode 100644 index 0d8f8c0f5bcc91993f4601c41a89c0d56a996170..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52660903_231.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c197bea43751f867b004d20ec981eb428c4cb068eb46243b1ae2b4e4f3b74f05 -size 16938 diff --git a/MM_Math/data_original_21/7057900/math/52660930_540.png b/MM_Math/data_original_21/7057900/math/52660930_540.png deleted file mode 100644 index d9ca33bca648678a4f825467fd0cd21d98641b2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52660930_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d6b2fdf32bacc6b54ee067d2e00b2ae8304e462963eaf9ff0d45dc93b7d860a -size 97863 diff --git a/MM_Math/data_original_21/7057900/math/52693909_520.png b/MM_Math/data_original_21/7057900/math/52693909_520.png deleted file mode 100644 index 342dc670ef7a27f4452c8f2f37f3e45ed8e96ac8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52693909_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05eb1910c9ba5a0f22f2a4c6df951f90540c4a094a0d3d6a1fd815e2b0d4eed7 -size 4408 diff --git a/MM_Math/data_original_21/7057900/math/52694023_511.png b/MM_Math/data_original_21/7057900/math/52694023_511.png deleted file mode 100644 index 0ec4722953f98f76cbdbde60cc96ce224ad448fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52694023_511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7b2ec97494ea2f43e265563c822c2e5fe93bd10f0a8fc885cf180e4f1443cce -size 3457 diff --git a/MM_Math/data_original_21/7057900/math/52694121_500.png b/MM_Math/data_original_21/7057900/math/52694121_500.png deleted file mode 100644 index 21732db704f3ab8e2ec4c3193d642508a67bbc76..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52694121_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:899ccea91689c008b61044e7e6b9d87ed9549290a9a55f7c37b3d2d9bae3b64d -size 25742 diff --git a/MM_Math/data_original_21/7057900/math/52694176_228.png b/MM_Math/data_original_21/7057900/math/52694176_228.png deleted file mode 100644 index 7a6610ac0b083ac83fe485e382eeab1dd47b1b1b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52694176_228.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:404a15b976b931cd5ad76a61353ba226dc7441bce1ca8ab2cbb11215689861d1 -size 5691 diff --git a/MM_Math/data_original_21/7057900/math/52694241_61.png b/MM_Math/data_original_21/7057900/math/52694241_61.png deleted file mode 100644 index 248f650350d4e9decde96aa9b6fb63462bc81557..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52694241_61.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de9233d3832cba95789a799525b6d5fc5c3d17d74d05df43dc7ab41c2061f9ca -size 7235 diff --git a/MM_Math/data_original_21/7057900/math/52699702_492.png b/MM_Math/data_original_21/7057900/math/52699702_492.png deleted file mode 100644 index 3927c2a9047a7acd3f60dae3bd377673bfce0b80..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52699702_492.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a26699879568c717834ed4920cfec82e1a55e7bda656d22d8e41326bf276f4d9 -size 5870 diff --git a/MM_Math/data_original_21/7057900/math/52699827_211.png b/MM_Math/data_original_21/7057900/math/52699827_211.png deleted file mode 100644 index 6ae3035f428b9f7dfb4740779718e2d6c0000d32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52699827_211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f5ec4a8cafca3cc21b101d7c32e431f9b0006174efa554ad6b01e8432ce08f22 -size 11238 diff --git a/MM_Math/data_original_21/7057900/math/52731465_30.png b/MM_Math/data_original_21/7057900/math/52731465_30.png deleted file mode 100644 index 4200da8e12a82ad451526e8a4837094b73481309..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52731465_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:196b361e98803c2e687c67c7e46d8734e25301d4777a3383bbe1f4441958113e -size 5170 diff --git a/MM_Math/data_original_21/7057900/math/52731589_463.png b/MM_Math/data_original_21/7057900/math/52731589_463.png deleted file mode 100644 index f7fb9436eadbe7bf803f8bba55fb15577e03a251..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52731589_463.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43eaec165791ce79935daa0d9c746f1f9c6eacfb41a1997dc749d48bd3de7441 -size 2828 diff --git a/MM_Math/data_original_21/7057900/math/52731640_41.png b/MM_Math/data_original_21/7057900/math/52731640_41.png deleted file mode 100644 index 6f303a5019ea75b581a2df1eaae1494d145aa3d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52731640_41.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30c34e4ca7d6419a0cee9caab7f972193c650d6fc2d6b4b3d83de60029b74e85 -size 32546 diff --git a/MM_Math/data_original_21/7057900/math/52731763_470.png b/MM_Math/data_original_21/7057900/math/52731763_470.png deleted file mode 100644 index b67a112efa278367527aa38fa3b1132c10a3061d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52731763_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e84b83759a90e5b56822b342375c0601455a8e78c282f5a18933b849d9977ef -size 100806 diff --git a/MM_Math/data_original_21/7057900/math/52733221_450.png b/MM_Math/data_original_21/7057900/math/52733221_450.png deleted file mode 100644 index 7b8b0faa4d970a0abd2b2f38a477df92b1386ddc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52733221_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ef136d8997aa5a206f0df0603c8bc2cdd76d45d562da5235f6117deb27f27f8 -size 911 diff --git a/MM_Math/data_original_21/7057900/math/52733221_451.png b/MM_Math/data_original_21/7057900/math/52733221_451.png deleted file mode 100644 index 231509802223543cd25dd29c3d00ee3a13034a4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52733221_451.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:208ce11307dd0012c8c2e7a112bc3d6bf9e3af4bec3975dfff188222f766b92d -size 266 diff --git a/MM_Math/data_original_21/7057900/math/52733221_452.png b/MM_Math/data_original_21/7057900/math/52733221_452.png deleted file mode 100644 index 92540b128e2ead35c9afea2c2e9f69680724d97c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52733221_452.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe86139e4e73ad2e1a971fecf9bf882052bd613ee210726954d922dcf979629a -size 331 diff --git a/MM_Math/data_original_21/7057900/math/52733221_453.png b/MM_Math/data_original_21/7057900/math/52733221_453.png deleted file mode 100644 index 97f76ebd0e2c8383b666f2fde45504664915cf91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52733221_453.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa3f678538e9fb240bcd9c549c90d1b1204cdb890ee0814d0778c0556713e761 -size 8835 diff --git a/MM_Math/data_original_21/7057900/math/52747348_442.png b/MM_Math/data_original_21/7057900/math/52747348_442.png deleted file mode 100644 index d1dc34efa10a0a723c0122436f61dfd90dcfee70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52747348_442.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96ef2f83a1a219e97d8115fe425d3be5e0f7173d1f5c4736ed3493c97dbf6a67 -size 6674 diff --git a/MM_Math/data_original_21/7057900/math/52747459_433.png b/MM_Math/data_original_21/7057900/math/52747459_433.png deleted file mode 100644 index af57f1792f6f008231a6b2588a31acc5ba8446b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52747459_433.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d11bcf45125c36b27f88962b6509e1e8283157ad8619bdbfd1ee3e7d9c96d76a -size 22999 diff --git a/MM_Math/data_original_21/7057900/math/52755076_21.png b/MM_Math/data_original_21/7057900/math/52755076_21.png deleted file mode 100644 index dba412a4037e1e000616fb043807b14c76d367ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52755076_21.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a51eac717e63221327565f22659918c84ef6b33987bfd264b8e1a4ff253630db -size 16168 diff --git a/MM_Math/data_original_21/7057900/math/52755991_50.png b/MM_Math/data_original_21/7057900/math/52755991_50.png deleted file mode 100644 index eb880d3d0c60bf81d75c10573cf9268a643f03e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52755991_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07c715d670d4e075d6697f56a578faec2f3c39efcbfb5a4ed3af9c04bf6c234f -size 1788 diff --git a/MM_Math/data_original_21/7057900/math/52756020_482.png b/MM_Math/data_original_21/7057900/math/52756020_482.png deleted file mode 100644 index cc948ca983f3c1f56dbdc50a72d1d4f2392d1b95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52756020_482.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd6ac62a8c9f447a600e78b889b32e1853a83442fe6c60f04b7cc521dbbeb84f -size 13122 diff --git a/MM_Math/data_original_21/7057900/math/52774682_4119.png b/MM_Math/data_original_21/7057900/math/52774682_4119.png deleted file mode 100644 index b1af6cddc6396503762d166845651fcba61b5bed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52774682_4119.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94d1c0dbb821ee31342f30344e2dba1b8398ff654f1c8c42c61d65912dc72314 -size 3309 diff --git a/MM_Math/data_original_21/7057900/math/52774825_4018.png b/MM_Math/data_original_21/7057900/math/52774825_4018.png deleted file mode 100644 index ff1125f0a6d58e90d52070d1ceb727c77aa48bab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52774825_4018.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:573751ccf0690caba17dd9526ccf4b15e2f251bf6e0495794ea120765c8b8ceb -size 24386 diff --git a/MM_Math/data_original_21/7057900/math/52793773_13.png b/MM_Math/data_original_21/7057900/math/52793773_13.png deleted file mode 100644 index 81479e40e79836b42f318bc3678ecdaaed4b79ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52793773_13.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c7e4cb21f14699ff60637f346485c5ad48fa1071b98550a1df0f272ee381ece -size 3346 diff --git a/MM_Math/data_original_21/7057900/math/52796984_362.png b/MM_Math/data_original_21/7057900/math/52796984_362.png deleted file mode 100644 index 2c125d41839b6e529b154001d1adb4b6cddf9114..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52796984_362.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de2e4cdeb4cc05fe573fa123c2b9e7d3d79ef7426e60d1fd0a3d3c3d08997485 -size 60178 diff --git a/MM_Math/data_original_21/7057900/math/52796987_383.png b/MM_Math/data_original_21/7057900/math/52796987_383.png deleted file mode 100644 index 2a739f684edaba3bc519d544eb12124d7ad51f94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52796987_383.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0bdd7132240bd4a0c6a8e13f1876a7c40002848b7cfbd7194e276de0ed34a8a -size 4252 diff --git a/MM_Math/data_original_21/7057900/math/52797102_202.png b/MM_Math/data_original_21/7057900/math/52797102_202.png deleted file mode 100644 index 0b2461659a0b5befbb98ff63db892fa0f4e27118..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52797102_202.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a37a0d759bca75554a131402204a81e9ad316c561903991d66c2f9b172439b3 -size 3246 diff --git a/MM_Math/data_original_21/7057900/math/52797108_374.png b/MM_Math/data_original_21/7057900/math/52797108_374.png deleted file mode 100644 index ef3a58e60125e4e27a68c1ac10b385158cd0765f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52797108_374.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5888debbac2a482fdd451aefdc15b5a56e791dd6542b4c9b5df1e368f7f45874 -size 7086 diff --git a/MM_Math/data_original_21/7057900/math/52797118_393.png b/MM_Math/data_original_21/7057900/math/52797118_393.png deleted file mode 100644 index ce87f6b9c72deaa3d7eacfbad686a387246eb5d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52797118_393.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6623496c030193129423382932a243627c269a3f11884776e4b0c89a616d397b -size 89881 diff --git a/MM_Math/data_original_21/7057900/math/52807530_00.png b/MM_Math/data_original_21/7057900/math/52807530_00.png deleted file mode 100644 index 8725f8657d02d627d7ca75e05ef7807f03c323a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52807530_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:580f97290b9c8ccb2f11748419ca844126fe24e562de82b6a9b9acef807daa24 -size 5152 diff --git a/MM_Math/data_original_21/7057900/math/52808108_350.png b/MM_Math/data_original_21/7057900/math/52808108_350.png deleted file mode 100644 index b423ef7a461f3c51e6fd42408bc75880d360ef00..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52808108_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c9d901bf8fa842d0b559511e83b2ee5033fb670f6cd035e801fcff80742b5fc -size 16144 diff --git a/MM_Math/data_original_21/7057900/math/52808497_190.png b/MM_Math/data_original_21/7057900/math/52808497_190.png deleted file mode 100644 index 3047ecb3b92b5ad6f1b3a6ddba5574326962bcf4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52808497_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c027d858c9cb73a19de5f6a1c575b758f75138d1c2a16fe633517484b5e387f5 -size 2547 diff --git a/MM_Math/data_original_21/7057900/math/52872299_315.png b/MM_Math/data_original_21/7057900/math/52872299_315.png deleted file mode 100644 index 502389a22ade2d0f588d6d696a84bad8ff22c657..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52872299_315.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:511bf211d084355c6fb396bd8affda01bd8045268d7fefe31fb5b811f4dcc8d2 -size 15177 diff --git a/MM_Math/data_original_21/7057900/math/52872343_980.png b/MM_Math/data_original_21/7057900/math/52872343_980.png deleted file mode 100644 index 340d8bb6eaa1ec7a9682c7d134ffdc3824a8484d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/52872343_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e9245d5a08421ba3a900bd231bec82109f0f0207ae0d23cefd46bbd2b4619fd -size 4270 diff --git a/MM_Math/data_original_21/7057900/math/53124516_420.png b/MM_Math/data_original_21/7057900/math/53124516_420.png deleted file mode 100644 index 4f173f93363bb3175146767ba36ddca52f22361e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/math/53124516_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d60e4b88abbc314a2d1848e66426f8a4da7a71b39961a462256c9f6b080ed031 -size 15598 diff --git a/MM_Math/data_original_21/7057900/solution_images/51369891_280.png b/MM_Math/data_original_21/7057900/solution_images/51369891_280.png deleted file mode 100644 index 98bdf7b43ca5bc3d35dd2d3a7b2cf891ca86e831..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51369891_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8403eaa3a422d3a070a67ff114cb98b02f81b2389884eaa359d8ba1af2fa432c -size 9095 diff --git a/MM_Math/data_original_21/7057900/solution_images/51420128_290.png b/MM_Math/data_original_21/7057900/solution_images/51420128_290.png deleted file mode 100644 index 550456ac96a64e0162ec1ee2e201eea4059afd35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51420128_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d32402112de80dac9ff44dd9f3e66b11d0e62fbfedab2bcc645582dc27e3fb5 -size 11082 diff --git a/MM_Math/data_original_21/7057900/solution_images/51420128_295.png b/MM_Math/data_original_21/7057900/solution_images/51420128_295.png deleted file mode 100644 index cdbba1cbfabffc137e98e3f74f74871e77e8ed53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51420128_295.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4efda086af8270c81fbeff5a2163e24f79bf23e72073904d94f2ddfc9842f796 -size 10229 diff --git a/MM_Math/data_original_21/7057900/solution_images/51445482_160.png b/MM_Math/data_original_21/7057900/solution_images/51445482_160.png deleted file mode 100644 index bfe91c714e4c324a5d565b5d86294ed387deb203..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51445482_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9840c02f09c09339ccd1859799e7227530c31f418f9a7a9de57610445e42f7b -size 8772 diff --git a/MM_Math/data_original_21/7057900/solution_images/51445968_9013.png b/MM_Math/data_original_21/7057900/solution_images/51445968_9013.png deleted file mode 100644 index babe29593e43e5462f3aff96739a8a18480c4c2b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51445968_9013.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e90a410c3e6a2113dbee25d22ac0d6b5a49f67542664979572473d9824ffa448 -size 14279 diff --git a/MM_Math/data_original_21/7057900/solution_images/51445968_902.png b/MM_Math/data_original_21/7057900/solution_images/51445968_902.png deleted file mode 100644 index 15050578e9788528986fb5253fe411d62f210b13..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51445968_902.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05edae2e0a47c3998058e31777f078c532ee8aecf04bfa75f9ceeb236b500369 -size 11491 diff --git a/MM_Math/data_original_21/7057900/solution_images/51445968_9024.png b/MM_Math/data_original_21/7057900/solution_images/51445968_9024.png deleted file mode 100644 index 6ee070ec0f722830674ba0af3ce4ec86234d2285..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51445968_9024.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5f4f77536f95adc07bbd4a6bf0a35622a207d49c686c5d47c0604a8f4eadb99 -size 13542 diff --git a/MM_Math/data_original_21/7057900/solution_images/51446075_860.png b/MM_Math/data_original_21/7057900/solution_images/51446075_860.png deleted file mode 100644 index 6d421c9518b71542e3f2abf38facf303d66527a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51446075_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:332bffd868d4e5f7f1fc2a9c8f82ebb07f66c974cd09558453e308869dd4d2ac -size 13052 diff --git a/MM_Math/data_original_21/7057900/solution_images/51446351_301.png b/MM_Math/data_original_21/7057900/solution_images/51446351_301.png deleted file mode 100644 index 46122c6d75b8b6ddfa0b66a9718c52cf3e1c2016..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51446351_301.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5047c3da21a4c7a104cb3cf2a843cc61b7d0b0897ccb504c1e7acd6b8f2857e9 -size 4224 diff --git a/MM_Math/data_original_21/7057900/solution_images/51446463_320.png b/MM_Math/data_original_21/7057900/solution_images/51446463_320.png deleted file mode 100644 index 4a4eba0e7b214c701b27ba3ce4485942513629e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51446463_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cccd72ba58d3a3923b353196d786ea183be8bea7aaffda826fb19e704bcd862c -size 14139 diff --git a/MM_Math/data_original_21/7057900/solution_images/51446501_330.png b/MM_Math/data_original_21/7057900/solution_images/51446501_330.png deleted file mode 100644 index 65c12ce8ad2c7bd6e6850da10218e51fa82c856b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/51446501_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53291a075aa2d918847ff76a89c528d139d9dd819ab694a445582b48985b246c -size 13935 diff --git a/MM_Math/data_original_21/7057900/solution_images/52512802_7124.png b/MM_Math/data_original_21/7057900/solution_images/52512802_7124.png deleted file mode 100644 index 6b862ed0b5d89afc40407ef41ce72630c5cd5f12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52512802_7124.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0349e203a96052b8fb7e36961b8a21bc14ae4d08869041f9a7e7f1e9d94a012f -size 5139 diff --git a/MM_Math/data_original_21/7057900/solution_images/52512802_718.png b/MM_Math/data_original_21/7057900/solution_images/52512802_718.png deleted file mode 100644 index feca5d79669a9fe5221d056dd16000a18cd07dc6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52512802_718.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:639910848c8dcd9dd5bc11e24e851be517376a3e00bda36cdc52b878c7922ff1 -size 4433 diff --git a/MM_Math/data_original_21/7057900/solution_images/52513824_111.png b/MM_Math/data_original_21/7057900/solution_images/52513824_111.png deleted file mode 100644 index 29b4de034b224960e3963ea88a85544de0dcd84f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52513824_111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3f75e0760dc9def0f28ee567e8d275e09eca02c0acdd546da185caddfadad4b -size 5740 diff --git a/MM_Math/data_original_21/7057900/solution_images/52514129_130.png b/MM_Math/data_original_21/7057900/solution_images/52514129_130.png deleted file mode 100644 index 51ffad12be12ea90c3eba0a26ec14bdd93ae0100..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52514129_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ef866ec6e02a960ee26441714c3cbdde0bd957529bb6f610868fc0ae09a0d2a -size 57875 diff --git a/MM_Math/data_original_21/7057900/solution_images/52515604_2713.png b/MM_Math/data_original_21/7057900/solution_images/52515604_2713.png deleted file mode 100644 index 7e8c660cbe360d9f8c6c7d09e11575dae7456e2d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52515604_2713.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28e81d22446a05e93e6d42d7e898a0c1eed809ab810bb1d2c604cf4d80a5bddb -size 17579 diff --git a/MM_Math/data_original_21/7057900/solution_images/52536743_100.png b/MM_Math/data_original_21/7057900/solution_images/52536743_100.png deleted file mode 100644 index 8c17df349f9641a9375333017905e6b523348910..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52536743_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:085dd3c13cd371c7da744228a3cccb3661e064c1fbfef8801f03a9ec6a9cdff1 -size 5432 diff --git a/MM_Math/data_original_21/7057900/solution_images/52551555_91.png b/MM_Math/data_original_21/7057900/solution_images/52551555_91.png deleted file mode 100644 index 3a4911a53645fd203dcb7e3a7b19f1690f9efbcd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52551555_91.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9af79722b10bca742efe25106fea0d5d4206b6223c93c7154dfa6f5f031f5d13 -size 5172 diff --git a/MM_Math/data_original_21/7057900/solution_images/52586399_240.png b/MM_Math/data_original_21/7057900/solution_images/52586399_240.png deleted file mode 100644 index d9c126c21b4548c71a69b10b851e2854817c264f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52586399_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f68fa0af60a579a98c4cfc18965797f1875cec9cff84a18d84572e1dfeb7b4c -size 14717 diff --git a/MM_Math/data_original_21/7057900/solution_images/52634644_725.png b/MM_Math/data_original_21/7057900/solution_images/52634644_725.png deleted file mode 100644 index 25a297658bf2cf65cbb36200c527b8f77a9c602c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52634644_725.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9d06df1a3601d43f9dee6300c77ed5ed45142e487fd053ace57b2f9d26242e3 -size 7864 diff --git a/MM_Math/data_original_21/7057900/solution_images/52634644_729.png b/MM_Math/data_original_21/7057900/solution_images/52634644_729.png deleted file mode 100644 index 9efb71d71082d50f07759f958e7276e60ab692ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52634644_729.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c021ee8e25efa4336e2b14c2111fc36bd7e5932d91df27cb9981387e2d1b00d6 -size 7816 diff --git a/MM_Math/data_original_21/7057900/solution_images/52694241_60.png b/MM_Math/data_original_21/7057900/solution_images/52694241_60.png deleted file mode 100644 index c8aac0050b68c218469413d3976a927c80ab9a89..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52694241_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44f6444d92be9b14b76caab2ba0714e61d3bf4b6da55ce94ec118feabe5de6e9 -size 10672 diff --git a/MM_Math/data_original_21/7057900/solution_images/52699827_213.jpg b/MM_Math/data_original_21/7057900/solution_images/52699827_213.jpg deleted file mode 100644 index 93230761f140e7f06996e543b8f591eedd14c4d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52699827_213.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:473b9fc0eabe161bed8278e63e730be6f83d373e64e56332b08ca8e8bff97afb -size 4973 diff --git a/MM_Math/data_original_21/7057900/solution_images/52731465_30.png b/MM_Math/data_original_21/7057900/solution_images/52731465_30.png deleted file mode 100644 index d831ba23613ef260eb071968af176f956996765a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52731465_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60d3b4eb3e876e2fabc3e365fdb2db4d8475de7850125d7a5973edc0e769a122 -size 10798 diff --git a/MM_Math/data_original_21/7057900/solution_images/52731640_411.png b/MM_Math/data_original_21/7057900/solution_images/52731640_411.png deleted file mode 100644 index 87346207e9b7254729b516e6b724f884486cd8ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52731640_411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46da45380b683809620321e313bf26ece4dc7152d4aee2440635eab6c0596a3a -size 46048 diff --git a/MM_Math/data_original_21/7057900/solution_images/52731640_418.png b/MM_Math/data_original_21/7057900/solution_images/52731640_418.png deleted file mode 100644 index 87346207e9b7254729b516e6b724f884486cd8ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52731640_418.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46da45380b683809620321e313bf26ece4dc7152d4aee2440635eab6c0596a3a -size 46048 diff --git a/MM_Math/data_original_21/7057900/solution_images/52755991_50.png b/MM_Math/data_original_21/7057900/solution_images/52755991_50.png deleted file mode 100644 index bbbfb97303c767ac6082cbd0d7ce9116b724c461..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52755991_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec27550a8cbbf6cd91865c154ed53d1ab2e339c3a079ed43e9dc125afe424676 -size 5960 diff --git a/MM_Math/data_original_21/7057900/solution_images/52808497_190.png b/MM_Math/data_original_21/7057900/solution_images/52808497_190.png deleted file mode 100644 index 6ba4099b4b2b0f574bb5298c73b22ee7c9702ddd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52808497_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:705ae688c255878ec93f1a752e96dab4d62973ad33de010eeb1a033767b0dfc9 -size 4797 diff --git a/MM_Math/data_original_21/7057900/solution_images/52872299_3112.png b/MM_Math/data_original_21/7057900/solution_images/52872299_3112.png deleted file mode 100644 index 218a2969ac1651bb958bd17f50c3fa4604f855e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7057900/solution_images/52872299_3112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c17a21a442644c48e4951df5b4506f83a8d11c07f760cca1b43a3e5bcaf36157 -size 18301 diff --git a/MM_Math/data_original_21/7058047/math/51284522_745.png b/MM_Math/data_original_21/7058047/math/51284522_745.png deleted file mode 100644 index 29c1476d01ef3bbcd187b10ddc32413d95615cdc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51284522_745.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0781725c67ff597200767d9b286cadc9f537f60f4682ae772bfd6d9b5190905f -size 9673 diff --git a/MM_Math/data_original_21/7058047/math/51285790_190.png b/MM_Math/data_original_21/7058047/math/51285790_190.png deleted file mode 100644 index 0e504bb12440f029ced53ddbf34d8828f58b4463..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51285790_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4f87e3a4c9e07e65fb9f707ddd39984c18aee0aeeac2e949137110c565f53ea -size 12276 diff --git a/MM_Math/data_original_21/7058047/math/51285822_40.png b/MM_Math/data_original_21/7058047/math/51285822_40.png deleted file mode 100644 index 2461d4fef1ac5294f964f46f699459d782ab8005..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51285822_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfa9b4264e7719639d2d57fd89b5a4864ee5208be837fe7126b522defce7898d -size 4041 diff --git a/MM_Math/data_original_21/7058047/math/51322318_67.png b/MM_Math/data_original_21/7058047/math/51322318_67.png deleted file mode 100644 index b71192021316df85ac544bcd9a15d8e242964ee9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51322318_67.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63e68311e9d894b7563f3cf81030dd4f8895b36184ad61ff2be9917fa44e3969 -size 14471 diff --git a/MM_Math/data_original_21/7058047/math/51351897_76.png b/MM_Math/data_original_21/7058047/math/51351897_76.png deleted file mode 100644 index 7dd023ff20bde2505b65fe5c624e1e55781ca4a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51351897_76.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82938c4b12192d2880dcb1a4e1f5ab9e6ccdf198f58964e727d8069f4f37aea7 -size 8381 diff --git a/MM_Math/data_original_21/7058047/math/51352010_285.png b/MM_Math/data_original_21/7058047/math/51352010_285.png deleted file mode 100644 index 3442ecfd7c43551d04be1d4fa0a185114293f829..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51352010_285.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89ce9957a49165f51296c429974d33598861b314e35ae9657ef583a66a8f94fd -size 3650 diff --git a/MM_Math/data_original_21/7058047/math/51353246_993.png b/MM_Math/data_original_21/7058047/math/51353246_993.png deleted file mode 100644 index f13f4b38a0e166d6d81825f8349547104a7e6e21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51353246_993.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2121de6c349e96bb64c0ef025e60101b66f92d428485a2379fc4ed1996631635 -size 8888 diff --git a/MM_Math/data_original_21/7058047/math/51379219_771.png b/MM_Math/data_original_21/7058047/math/51379219_771.png deleted file mode 100644 index 863f9f931705dc2bf3d13df0fb0af690f4bf0458..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51379219_771.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d253790bd8caf58b171213c51b5c895b5b9c8b60891f193cc52db4f9e4cbe85 -size 7875 diff --git a/MM_Math/data_original_21/7058047/math/51379286_206.png b/MM_Math/data_original_21/7058047/math/51379286_206.png deleted file mode 100644 index e6a1854d3d40c44c989defe7b13198438f6c82fc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51379286_206.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed72f1dc677de8563f7d2ba65618753a5170a18e3500c59eb44b75e3d40324a8 -size 3389 diff --git a/MM_Math/data_original_21/7058047/math/51379335_758.png b/MM_Math/data_original_21/7058047/math/51379335_758.png deleted file mode 100644 index 61322142744f70d93916a93e783d3b6a7fc11dff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51379335_758.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35d3ca4c420b3da9613332b9f25dba6064bc179b0f97eb99dc920909a4e2e64c -size 11371 diff --git a/MM_Math/data_original_21/7058047/math/51379457_7814.png b/MM_Math/data_original_21/7058047/math/51379457_7814.png deleted file mode 100644 index 396bc3a66c23ac5c2770d03aee5b939b415462ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51379457_7814.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f6f9331dd52d97450fe5dcc53627daf8a1c6f676a3459f7f3953cf2c291ac7bc -size 3368 diff --git a/MM_Math/data_original_21/7058047/math/51379530_762.png b/MM_Math/data_original_21/7058047/math/51379530_762.png deleted file mode 100644 index 323188aa3f1c37259356c34bb559fd223c7f2bcf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51379530_762.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f11a457f673e98b6e340bb4aded6d2acb2561c65a628c616fb99df07db78ff6 -size 10966 diff --git a/MM_Math/data_original_21/7058047/math/51402287_361.png b/MM_Math/data_original_21/7058047/math/51402287_361.png deleted file mode 100644 index 2ca2d4d7c8468896c7aac20139dd7c99b5a0e3b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51402287_361.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7261fba3ed85f6a8b30d2ea08c6543ccb348af8b09334e8f62e7b0eb01fa87f8 -size 4053 diff --git a/MM_Math/data_original_21/7058047/math/51402344_351.png b/MM_Math/data_original_21/7058047/math/51402344_351.png deleted file mode 100644 index 02414d4095e2f27daae3187cb338b70862f2238f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51402344_351.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:509aef984ecc05cf119382478c960d9c587281081b6f8285f0cab4e66ed40da5 -size 10633 diff --git a/MM_Math/data_original_21/7058047/math/51402407_294.png b/MM_Math/data_original_21/7058047/math/51402407_294.png deleted file mode 100644 index 978aefbc1a14bd8eac4a1817a4f948d14ef85066..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51402407_294.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9e862484a5590114ea8cd4766288539a840888b6098d2c4d053498d5588c9f8 -size 5220 diff --git a/MM_Math/data_original_21/7058047/math/51402479_81.png b/MM_Math/data_original_21/7058047/math/51402479_81.png deleted file mode 100644 index 018cdf753ff9d21f0f0c7ef1c708ed9ea56a933f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51402479_81.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50b6c1289cadfcee1c30b003403ebc8932bab732d560ec6ee0a80b4f22cd796f -size 6778 diff --git a/MM_Math/data_original_21/7058047/math/51402513_101.png b/MM_Math/data_original_21/7058047/math/51402513_101.png deleted file mode 100644 index 0c3dfbab931ffab1a831f405fcec0033ba1dbe2a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51402513_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f81c57ca290d2bebbfca0d347da8fc2db08d5f0610086b3085db8deda2118a7 -size 2017 diff --git a/MM_Math/data_original_21/7058047/math/51402562_340.png b/MM_Math/data_original_21/7058047/math/51402562_340.png deleted file mode 100644 index 4df32680d2fc06cc10f73f067e713357bbf5ffe5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51402562_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9af1b00bf9e1cd9ff909d8a6a18cf56e758ed8a81f1c4e3c87c44a6d05ec0edb -size 7537 diff --git a/MM_Math/data_original_21/7058047/math/51402702_380.png b/MM_Math/data_original_21/7058047/math/51402702_380.png deleted file mode 100644 index a0e286b21c797a1bfc2b18c1dcc12ee8950e1efd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51402702_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:755ef4ecd75873bd3fcb6e472c66f3a5d691b120189761f652fc2f3f356eb080 -size 10948 diff --git a/MM_Math/data_original_21/7058047/math/51402967_301.png b/MM_Math/data_original_21/7058047/math/51402967_301.png deleted file mode 100644 index f18ef828959de500ed55d6a94d4fc3fe89833e39..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51402967_301.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f96b3a9924ca39f2f72bf07f3c49a2f897a89e6b1f9130484661071873b6e664 -size 6330 diff --git a/MM_Math/data_original_21/7058047/math/51403084_372.png b/MM_Math/data_original_21/7058047/math/51403084_372.png deleted file mode 100644 index 004485c682058c61a3dd405644e5e5e295a15601..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51403084_372.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb4f81e085f3bf4a71ffb7bc9a94313aab3f22c4f7e19f2c3a5a5765c92d4754 -size 12272 diff --git a/MM_Math/data_original_21/7058047/math/51403139_310.png b/MM_Math/data_original_21/7058047/math/51403139_310.png deleted file mode 100644 index efb455c8654f18e3a80c2098c4d2f96950e61e15..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51403139_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb6323d8cd0be4fc66ecf7c222980a7fa54f247c0156a5d6bfa53ebfecd2b68d -size 3619 diff --git a/MM_Math/data_original_21/7058047/math/51403162_332.png b/MM_Math/data_original_21/7058047/math/51403162_332.png deleted file mode 100644 index 1d35fae70d2f7878531ef442031be6f88182b398..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51403162_332.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d597142605ec784d2c3b3976f5c5177cd61a408efced73e85b8bc941acaa6839 -size 11846 diff --git a/MM_Math/data_original_21/7058047/math/51403201_110.png b/MM_Math/data_original_21/7058047/math/51403201_110.png deleted file mode 100644 index d03ce3a1c48409e5bbc994f8befd653811f26ea4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51403201_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf9bcabad28d18d919a9d29a0f7e66ad5486605c0fd96c18107cf040f867f633 -size 5444 diff --git a/MM_Math/data_original_21/7058047/math/51403202_90.png b/MM_Math/data_original_21/7058047/math/51403202_90.png deleted file mode 100644 index d03ce3a1c48409e5bbc994f8befd653811f26ea4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51403202_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf9bcabad28d18d919a9d29a0f7e66ad5486605c0fd96c18107cf040f867f633 -size 5444 diff --git a/MM_Math/data_original_21/7058047/math/51403218_322.png b/MM_Math/data_original_21/7058047/math/51403218_322.png deleted file mode 100644 index 6d482e2f74921a18744058fcebfef7f98b0b0223..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51403218_322.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb5f8870c9068afb3e4c5bdf2db4f7a29f3e60df19187f176e76a9981ec946eb -size 5643 diff --git a/MM_Math/data_original_21/7058047/math/51457867_272.png b/MM_Math/data_original_21/7058047/math/51457867_272.png deleted file mode 100644 index f5f8eb5b72aa0fa0a15898c2c08b76e392cc0f4a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51457867_272.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24b5354cf52a71fb1e0696b99a1e2020d28ff6522176f5b73b8f8e035105b3bc -size 3918 diff --git a/MM_Math/data_original_21/7058047/math/51457885_982.png b/MM_Math/data_original_21/7058047/math/51457885_982.png deleted file mode 100644 index 571f3e465ff7861c43f3595045a9a7794938e2a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51457885_982.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:849479f40c91577dee296d1bee4e4f10fc7091eda2a3a07cc94c8f5b89f4ff36 -size 6820 diff --git a/MM_Math/data_original_21/7058047/math/51457952_971.png b/MM_Math/data_original_21/7058047/math/51457952_971.png deleted file mode 100644 index cc7b25b767f7a618faa6eda1c41667796d32221b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51457952_971.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94d201cf08ab14700f64c1f00e79df3109e607306443ad109b9e118ce6bfc5f1 -size 5569 diff --git a/MM_Math/data_original_21/7058047/math/51457966_963.png b/MM_Math/data_original_21/7058047/math/51457966_963.png deleted file mode 100644 index 34776f0c48210e6e8105299d3373c78a93cfa968..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51457966_963.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a0171e5d78c3196664f6b633c90144714ece60539938a1165bcdab5dc12d606 -size 9730 diff --git a/MM_Math/data_original_21/7058047/math/51458203_956.png b/MM_Math/data_original_21/7058047/math/51458203_956.png deleted file mode 100644 index 25bb7f95921976856ad9d04c467f81a6644d5ae9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51458203_956.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8408a04a7e5f9da491e59e082ce41cde34fdc9cadaba29b3d2950777c5e96fe8 -size 5464 diff --git a/MM_Math/data_original_21/7058047/math/51458226_945.png b/MM_Math/data_original_21/7058047/math/51458226_945.png deleted file mode 100644 index 9be9d00de903ac3bc30fbd743fc494a18e0fd2b0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51458226_945.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5cb2a79009a59d6e1dbd8e74a0da257b294c87857151181875bc214bb5489c95 -size 7719 diff --git a/MM_Math/data_original_21/7058047/math/51458242_264.png b/MM_Math/data_original_21/7058047/math/51458242_264.png deleted file mode 100644 index 267bd9698142a8c67d67460e432e69b91c8112c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51458242_264.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5d4f3eb0f5ffa3c5a3384c6086a7ce6a77f226fd920586b198572002622d1ef -size 7090 diff --git a/MM_Math/data_original_21/7058047/math/51458362_930.png b/MM_Math/data_original_21/7058047/math/51458362_930.png deleted file mode 100644 index 6738bc51ef6e5545b54a16559552f16963c52ac4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51458362_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a192ed03b3102230f0554dab7c9b38d922b14c14307582006e186961265be49d -size 9568 diff --git a/MM_Math/data_original_21/7058047/math/51545233_700.png b/MM_Math/data_original_21/7058047/math/51545233_700.png deleted file mode 100644 index f835a77ea2f12e8c2a64091a52cf2ae8e4d47833..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51545233_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63ad2566db644607214481021a1c3a4dcdca43cf375d39a42f67fba077ba1a4f -size 2400 diff --git a/MM_Math/data_original_21/7058047/math/51546388_391.png b/MM_Math/data_original_21/7058047/math/51546388_391.png deleted file mode 100644 index 2046f7a421919a812fa72fd5aebf11ae0867b7b0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/51546388_391.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4495ea4303aed81979b657da82fee7903eedc0c55e014fabcb59f8acdc54c861 -size 2777 diff --git a/MM_Math/data_original_21/7058047/math/52304593_791.png b/MM_Math/data_original_21/7058047/math/52304593_791.png deleted file mode 100644 index 1376aae17b6211ce3c0cd6bc9539e7939fbc2536..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52304593_791.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:55b81df73813598ab4c12e719c83cc8837ee117600f06a9aeae6f7ebc0dedf1b -size 7960 diff --git a/MM_Math/data_original_21/7058047/math/52601705_572.png b/MM_Math/data_original_21/7058047/math/52601705_572.png deleted file mode 100644 index a9008a54a4e9ba1638f79603cc6fb98d8bc7bcbf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52601705_572.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cbe1d5f1968f6fda23dda1342043e7cb3c3116bac13123e6dc9a1e0da2d7537b -size 10039 diff --git a/MM_Math/data_original_21/7058047/math/52601721_32.png b/MM_Math/data_original_21/7058047/math/52601721_32.png deleted file mode 100644 index 15595acb42ad577124402ba9b4b400248a3406c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52601721_32.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28053b6afda7a72d2834f3a73aede1c5ebc155e12ea92bb11142d4eda80d0834 -size 4294 diff --git a/MM_Math/data_original_21/7058047/math/52601775_731.png b/MM_Math/data_original_21/7058047/math/52601775_731.png deleted file mode 100644 index 1abc0f58bd78eb06d1d8e5d514b06a688f48835b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52601775_731.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2942490d7e7cf60b8ac3e4021760e677a3c83dae61e2196b69ff6cad5b582b51 -size 2668 diff --git a/MM_Math/data_original_21/7058047/math/52601797_24.png b/MM_Math/data_original_21/7058047/math/52601797_24.png deleted file mode 100644 index 15c0d77b9b5d2efb75c1c76fc2e589720ee507b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52601797_24.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ac0f8110517ea10487b42ecec50ad59fd54ac31133d8499986f2dfbc90336a4 -size 9097 diff --git a/MM_Math/data_original_21/7058047/math/52601845_171.png b/MM_Math/data_original_21/7058047/math/52601845_171.png deleted file mode 100644 index dc82c2303da111bc00f6da9c72cdbf78e1dcecac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52601845_171.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0fdf389a9c20fee66f6b9ab40659ac1beca01ea059a809d9ffd7b5fdfa69b27 -size 106568 diff --git a/MM_Math/data_original_21/7058047/math/52601939_534.png b/MM_Math/data_original_21/7058047/math/52601939_534.png deleted file mode 100644 index fe444623291c45be077057a20aac800a3f7c1a56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52601939_534.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:971d9240f7f8e19e03d8576f4e4d49f4d2c67d73bb62441185d8010379831f20 -size 5811 diff --git a/MM_Math/data_original_21/7058047/math/52601975_691.png b/MM_Math/data_original_21/7058047/math/52601975_691.png deleted file mode 100644 index d49b39eb82b5d6c560805323e8711c7e1080a734..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52601975_691.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b59fe7a4c54cfe7101afc686c8389781e779a54b7d5b59d7eea68f38b9db016 -size 5845 diff --git a/MM_Math/data_original_21/7058047/math/52601999_624.png b/MM_Math/data_original_21/7058047/math/52601999_624.png deleted file mode 100644 index bf205e787457da6b92d4f39eb49a4ecd56de4289..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52601999_624.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:347d3fe4adc886832c94c3405cc79d92fadff202cd7cfe56cca64c4a68b9f7cc -size 2572 diff --git a/MM_Math/data_original_21/7058047/math/52602046_632.png b/MM_Math/data_original_21/7058047/math/52602046_632.png deleted file mode 100644 index bcf9e1cdcaddf4661e291c32e0573800a64bf62f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602046_632.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2bec3ae54f9b80206a8e6f2fa487af99ffbcbe6adb9154ce6520d18b18f345e -size 5556 diff --git a/MM_Math/data_original_21/7058047/math/52602069_13.png b/MM_Math/data_original_21/7058047/math/52602069_13.png deleted file mode 100644 index fec245286b00dc5fa29824b1e32277d2b140da7e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602069_13.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0f757068a88368dbce628a01cff65b0e48c5eb6f02a6f8d6872b54e208e8d81 -size 9981 diff --git a/MM_Math/data_original_21/7058047/math/52602099_01.png b/MM_Math/data_original_21/7058047/math/52602099_01.png deleted file mode 100644 index e571500e9abc3874be1b39c3f8a2077033ab29b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602099_01.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9556d3240d7bec9c35fc889dc050a50fc87ce28e01720f13066acb4df2efa9bf -size 7381 diff --git a/MM_Math/data_original_21/7058047/math/52602121_561.png b/MM_Math/data_original_21/7058047/math/52602121_561.png deleted file mode 100644 index 1a7edd4e42f49f8b9862433e102e5def96d9d6cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602121_561.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2b024729c7d1824d2977ed603b7ca0c3c479cb5de74e066592582501fbc6069 -size 3706 diff --git a/MM_Math/data_original_21/7058047/math/52602187_671.png b/MM_Math/data_original_21/7058047/math/52602187_671.png deleted file mode 100644 index 82ace71fa774b2d738a983dcebcce7b10f0695ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602187_671.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba77f8a2ba8085fdb19d39c92eb588ca79f178f752535ff85be4033db93bea09 -size 8650 diff --git a/MM_Math/data_original_21/7058047/math/52602225_681.png b/MM_Math/data_original_21/7058047/math/52602225_681.png deleted file mode 100644 index 5dfd01fea52a900c9567c1f551a972e211710e78..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602225_681.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38f104c20d20bd05904aacb5c452be380e843422bf4999f6d009680ba1e96896 -size 5834 diff --git a/MM_Math/data_original_21/7058047/math/52602253_724.png b/MM_Math/data_original_21/7058047/math/52602253_724.png deleted file mode 100644 index 7770ac794b3ecc21f7f82ff81b93c50df13e4693..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602253_724.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a31d238b5b35a1e8bb9c7a187ede58ff29446dde144e16b74722c1fa32436e60 -size 3259 diff --git a/MM_Math/data_original_21/7058047/math/52602480_144.png b/MM_Math/data_original_21/7058047/math/52602480_144.png deleted file mode 100644 index ca600c15e070b5fe0cd85e37422969c3b0b2ceff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602480_144.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:800f2cb7838706906e77eba397060726beb42d558634b146852d004552242f5e -size 9394 diff --git a/MM_Math/data_original_21/7058047/math/52602496_584.png b/MM_Math/data_original_21/7058047/math/52602496_584.png deleted file mode 100644 index 0c3a31b8a2d30a75c9ccf3e9d3a5b57dbf842c26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602496_584.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:736481ea4ff42b2515dc2f4a251c0c2be8ac9ccc03918acd3e5f497f626191f1 -size 6855 diff --git a/MM_Math/data_original_21/7058047/math/52602539_655.png b/MM_Math/data_original_21/7058047/math/52602539_655.png deleted file mode 100644 index d9adaac1ea4caa61b3f1a6f7ddbd58ae7a31d62d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602539_655.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d3f45cedd73ec87a493ba84c2401be715b5cd8badcea8a6c0e54b180acdf999 -size 5448 diff --git a/MM_Math/data_original_21/7058047/math/52602758_550.png b/MM_Math/data_original_21/7058047/math/52602758_550.png deleted file mode 100644 index 090b816b3d75789bec2c1bef98eab72ea9ed87cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602758_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6a21eeafa882940082ffe7b221188f7dfa751ef2ec190f18317c15684d968e7 -size 5861 diff --git a/MM_Math/data_original_21/7058047/math/52602758_551.png b/MM_Math/data_original_21/7058047/math/52602758_551.png deleted file mode 100644 index 05eddf6e36e5ef43a5ab2ce678b57cce408b0877..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602758_551.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92e4db539aa1b16e4fb6efff05ff02b6832c77abb5c34676a19eef0295bad632 -size 6211 diff --git a/MM_Math/data_original_21/7058047/math/52602789_440.png b/MM_Math/data_original_21/7058047/math/52602789_440.png deleted file mode 100644 index 13fcf0924b4490816b4f014c22e03720ba92b89e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602789_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b756a70fe263ad1cb9437cccd7f8aec11904f68b4d5b69d03700d1abf9c2a761 -size 23751 diff --git a/MM_Math/data_original_21/7058047/math/52602837_163.png b/MM_Math/data_original_21/7058047/math/52602837_163.png deleted file mode 100644 index 747c8848d88d158e2c09c23b3c335af46a644b7c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602837_163.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a53322cd7d3ba91f5a382253515c12eaa75c2a70c78bab3cc501c82b1301c5c6 -size 6881 diff --git a/MM_Math/data_original_21/7058047/math/52602854_664.png b/MM_Math/data_original_21/7058047/math/52602854_664.png deleted file mode 100644 index e404f8976bf2a93c76d156872254eae00b6c3752..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602854_664.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ff8cc5cca5882517dbe5916f61929da87f58333f04acd559d9f7b79ac468a71 -size 3296 diff --git a/MM_Math/data_original_21/7058047/math/52602886_433.png b/MM_Math/data_original_21/7058047/math/52602886_433.png deleted file mode 100644 index b28351f30d59f6a8068e376f82632db65afe7cf6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602886_433.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b6b2f7f0b7175b9b14f10d1ecc48544ba8d695f0ca7b2733df7a43c14ef7712 -size 4344 diff --git a/MM_Math/data_original_21/7058047/math/52602900_151.png b/MM_Math/data_original_21/7058047/math/52602900_151.png deleted file mode 100644 index 32c979a635170735ce2ef191c8e88c8529e904d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602900_151.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f9867bed5bc8e5294036a0bb8107fa4feb2e16ebfb1e35693ecef7f850237c1 -size 35503 diff --git a/MM_Math/data_original_21/7058047/math/52602919_640.png b/MM_Math/data_original_21/7058047/math/52602919_640.png deleted file mode 100644 index 2eef5017a65f07bfe9d4fc4a12ee6b8a7803e56e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602919_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a64adaa386da8187bf4cfba079df050af18d6985769861d6a636add5e4d89c2 -size 207833 diff --git a/MM_Math/data_original_21/7058047/math/52602949_453.png b/MM_Math/data_original_21/7058047/math/52602949_453.png deleted file mode 100644 index e5f3e56175e595481b87bd05b4494b0c40155406..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52602949_453.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5771220500ad4174cb5103230e65cf5cbabcd13be65183851ad9c71f4d5b2759 -size 23976 diff --git a/MM_Math/data_original_21/7058047/math/52622054_835.png b/MM_Math/data_original_21/7058047/math/52622054_835.png deleted file mode 100644 index ae1baa5c4cb839a5f1b14678b36031cc67ebba91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52622054_835.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45b1a34f3dc38fa6cc3fae0f834e80884b552bc33c819b529abd56cb6b69e813 -size 7547 diff --git a/MM_Math/data_original_21/7058047/math/52622329_864.png b/MM_Math/data_original_21/7058047/math/52622329_864.png deleted file mode 100644 index 89bd9395b6b616f253d17236c3fd2b8be62b9fc5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52622329_864.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6878a02e7f930f4a516b5b21659f40d14693fa325faa5e113e86e364e831eb7 -size 34480 diff --git a/MM_Math/data_original_21/7058047/math/52622423_824.png b/MM_Math/data_original_21/7058047/math/52622423_824.png deleted file mode 100644 index 4de96eb805940966f4cf23214d22949e12805dba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52622423_824.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a335ea181ebf0a405e774bdbafc265d00a0052539fceb4d6bc744c67a25cdb5a -size 4841 diff --git a/MM_Math/data_original_21/7058047/math/52622495_904.png b/MM_Math/data_original_21/7058047/math/52622495_904.png deleted file mode 100644 index 11a1d7d05e397222baed6dd9fd7d496b4316d0f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52622495_904.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b457dd06e14ff4763221c9118998a5f5bc826545b7866e07c8c69538897811bf -size 2760 diff --git a/MM_Math/data_original_21/7058047/math/52622522_811.png b/MM_Math/data_original_21/7058047/math/52622522_811.png deleted file mode 100644 index 3245b6e8714f73a9c04c933627c64f6f8b195bd4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52622522_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5b44cb7b884f7b8c6e55afbaad6a4487865cd1ceb46b06540c54e5a23b53d95 -size 4637 diff --git a/MM_Math/data_original_21/7058047/math/52622585_871.png b/MM_Math/data_original_21/7058047/math/52622585_871.png deleted file mode 100644 index a19a9de436ce401fe5b896f5f65a0825c571b8ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52622585_871.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:edf4452ceb973b046c07eb4fa7f83cbb03bf6b163f6a88a4af6586cc4665c703 -size 4352 diff --git a/MM_Math/data_original_21/7058047/math/52622743_212.png b/MM_Math/data_original_21/7058047/math/52622743_212.png deleted file mode 100644 index 0c8f2a668e5aebfaf5de9f0e343391fe5ab19e59..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52622743_212.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea10d8695fbe1b59b1cff67f548e1eab79a01a33dd1210bef0576c7488dbd44a -size 2746 diff --git a/MM_Math/data_original_21/7058047/math/52622749_801.png b/MM_Math/data_original_21/7058047/math/52622749_801.png deleted file mode 100644 index 3990394cbeaa8c2e0354a59de6b22d6eed01efc2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52622749_801.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0cc0c55ae26e6d7d5e9dd20d7e3b8355d9bffda8ea4917ae6186855879c0bff8 -size 56850 diff --git a/MM_Math/data_original_21/7058047/math/52623325_898.png b/MM_Math/data_original_21/7058047/math/52623325_898.png deleted file mode 100644 index cc139e48cf309f3c48166af60266e39684088390..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52623325_898.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e301df8cc38bbd6b4c56c841b37bb5e389cfe314bac1775b471a5e351901aaa1 -size 3643 diff --git a/MM_Math/data_original_21/7058047/math/52623347_221.png b/MM_Math/data_original_21/7058047/math/52623347_221.png deleted file mode 100644 index 04ce20505629b8909c2515ccaa04a12ad7134ddb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52623347_221.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ea04aa1586a65b8119d405c37b1364d4f5f3c937cacefd39d6aebed9684fe4a -size 7749 diff --git a/MM_Math/data_original_21/7058047/math/52623363_8514.png b/MM_Math/data_original_21/7058047/math/52623363_8514.png deleted file mode 100644 index 7e92e8cf02dd5f3aaa29c86c0c23632799729308..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52623363_8514.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:22637cdbb6e3efd30405215eed2ed8afa2931a75cc0fe1402a63c4158802f2e3 -size 36945 diff --git a/MM_Math/data_original_21/7058047/math/52623483_51.png b/MM_Math/data_original_21/7058047/math/52623483_51.png deleted file mode 100644 index e7f98fccd6a3a45a88b141b49738921e941ff0b4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52623483_51.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da3f6498d3d5a2b3889427bcd6d3045af3088e51a72a438aba7b447f30a10734 -size 3610 diff --git a/MM_Math/data_original_21/7058047/math/52623491_243.png b/MM_Math/data_original_21/7058047/math/52623491_243.png deleted file mode 100644 index a2c1494dff1d8dadd4fccc15635352041b7bec32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52623491_243.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dafc89b82170e05e9dccd9e6452a1e593527a73e57f33f9a4c1a2c8728fa5e11 -size 3757 diff --git a/MM_Math/data_original_21/7058047/math/52623629_232.png b/MM_Math/data_original_21/7058047/math/52623629_232.png deleted file mode 100644 index 8dfb07a38f0c9719364c8a6812f0bb07fc632b84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52623629_232.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:664d07637a043b8d6eb62937eec27fbc45c6a7ef92e4d57409d156a5fba411e5 -size 3280 diff --git a/MM_Math/data_original_21/7058047/math/52623645_841.png b/MM_Math/data_original_21/7058047/math/52623645_841.png deleted file mode 100644 index 9591b2a7ef1366d9bba2fd345997bed7a9a5044f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52623645_841.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60f29944c8d7745407f1089c343ede3cbe9beb593f4b8afcfdce5eb0e06e7051 -size 2924 diff --git a/MM_Math/data_original_21/7058047/math/52623662_880.png b/MM_Math/data_original_21/7058047/math/52623662_880.png deleted file mode 100644 index 3e1b6f1458a8e90700dd388cbce3eb6c68086ff8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52623662_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5d2a7d11548517df159f3b5d42651cc92d95199bbca52dc571d1d02838d66b9 -size 3632 diff --git a/MM_Math/data_original_21/7058047/math/52719833_501.png b/MM_Math/data_original_21/7058047/math/52719833_501.png deleted file mode 100644 index 26a46d21fee38cdd74b52cc1f2b41af68e943096..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52719833_501.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d21a29c7aaef3454ce92178da887439079498488a39913d1ba67bd0209ebaf0 -size 10497 diff --git a/MM_Math/data_original_21/7058047/math/52719950_613.png b/MM_Math/data_original_21/7058047/math/52719950_613.png deleted file mode 100644 index 28f95f941fa7cf21258f8c44c86f85ee78b7b017..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52719950_613.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:673c374208550c8617bd789f98a26750feb5d904807f9bcaea0dcd768d7c6f0d -size 5505 diff --git a/MM_Math/data_original_21/7058047/math/52719985_401.png b/MM_Math/data_original_21/7058047/math/52719985_401.png deleted file mode 100644 index 2fe110cb5bc3e227b50f6e5bc4e98d8d9c384f1e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52719985_401.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b1d6aa6c3831d5470b0a006531af01de6f68e67aaac7b93b6a5668635e02355 -size 10445 diff --git a/MM_Math/data_original_21/7058047/math/52720059_493.png b/MM_Math/data_original_21/7058047/math/52720059_493.png deleted file mode 100644 index 80d4142e2b28ae4d8781b85c039ecffbcb72fa9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52720059_493.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:124464500edc48dbe8f28a39aa884fa80cc8accfe242c36b13c9bff6a3a92d7f -size 8521 diff --git a/MM_Math/data_original_21/7058047/math/52720084_411.png b/MM_Math/data_original_21/7058047/math/52720084_411.png deleted file mode 100644 index cae1e932e232282bd7bc43a7c7b3d6f19e94b5d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52720084_411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:260607236b98786b73ab7aa39f38e0294c989628a0ded700515cae132dbb647f -size 23944 diff --git a/MM_Math/data_original_21/7058047/math/52720132_421.png b/MM_Math/data_original_21/7058047/math/52720132_421.png deleted file mode 100644 index 3655939dfd4edc17b141b337dcc1772f22b2acd4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52720132_421.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e6d9b9ada21d36fd58fda3f7edbcb8b03e37f72fcc482f51a8d8a555ec02ffc -size 5793 diff --git a/MM_Math/data_original_21/7058047/math/52720153_513.png b/MM_Math/data_original_21/7058047/math/52720153_513.png deleted file mode 100644 index ecd48e445420cb777247f6800544ab3e448f23d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52720153_513.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bca8d3767eb6b26f0f12287da8f1932858009bed5e8641c692778a2179d34e6f -size 33209 diff --git a/MM_Math/data_original_21/7058047/math/52765598_591.png b/MM_Math/data_original_21/7058047/math/52765598_591.png deleted file mode 100644 index de1fda383d0306425c515663d8ebc6c04516e807..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52765598_591.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1052fb7c1060b852bec6cce17c9a86f722a2cc5c8e918fe417858af85300aee3 -size 17586 diff --git a/MM_Math/data_original_21/7058047/math/52765623_181.png b/MM_Math/data_original_21/7058047/math/52765623_181.png deleted file mode 100644 index 9b099db15edae7244a88124f7e23f3874f8e42c5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52765623_181.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ac6d243a8de2521305ad1ac5b5379e4d05df59eaaa6a15e9e288b3750040d4d -size 6271 diff --git a/MM_Math/data_original_21/7058047/math/52765753_463.png b/MM_Math/data_original_21/7058047/math/52765753_463.png deleted file mode 100644 index a37d8493132b694e12f45d3add9eb459cb867016..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52765753_463.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0751bec078096ab1cb50af0d152ad555d3afae626d2e7ebd81756fef3cbe4aee -size 5880 diff --git a/MM_Math/data_original_21/7058047/math/52765812_123.png b/MM_Math/data_original_21/7058047/math/52765812_123.png deleted file mode 100644 index 66245cc65e2696559ac352ecf8e033c7d77f9512..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52765812_123.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c812b7568caf4c5af15c3f4eb273431c7567aaaf41f0222af3a21bb3e874d005 -size 3379 diff --git a/MM_Math/data_original_21/7058047/math/52765835_541.png b/MM_Math/data_original_21/7058047/math/52765835_541.png deleted file mode 100644 index 2f57260732e0b43997fbdf5d53e53574ec6b41ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52765835_541.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e03f2a8612810235ca125d5fbd02ff712ba3eddf6637a833fed167f6fde9243c -size 102253 diff --git a/MM_Math/data_original_21/7058047/math/52765898_711.png b/MM_Math/data_original_21/7058047/math/52765898_711.png deleted file mode 100644 index 550665adf05f4c87362184a1ef0ca0e34eda9a84..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52765898_711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ef0d6a2e083d649a3a4ffdd7d69ee6638ef908fe829a9b4ea042b15216e6678 -size 4139 diff --git a/MM_Math/data_original_21/7058047/math/52765948_473.png b/MM_Math/data_original_21/7058047/math/52765948_473.png deleted file mode 100644 index 9318ff1d7e15aed095dde8b4221f60af85f82f9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52765948_473.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:849e79729435848a8144ac8581114d6bdef454a74fe0060c5ee948ff4ef6ac0d -size 4553 diff --git a/MM_Math/data_original_21/7058047/math/52766018_136.png b/MM_Math/data_original_21/7058047/math/52766018_136.png deleted file mode 100644 index 6c20c9b41de27c4851caca5d64374a4fe42c7aed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52766018_136.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c22cfd335f99880b768c998021afc4465b0130f0999f187095525cb69244bcf4 -size 4312 diff --git a/MM_Math/data_original_21/7058047/math/52766412_480.png b/MM_Math/data_original_21/7058047/math/52766412_480.png deleted file mode 100644 index ee5257df94092f9bd6d7e56e97c752303b68fffb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52766412_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c9718f0ab1e4a8ee0b3c870b0d5463e03802fb56c07f96e5b5f4968d4effa27 -size 4640 diff --git a/MM_Math/data_original_21/7058047/math/52766565_600.png b/MM_Math/data_original_21/7058047/math/52766565_600.png deleted file mode 100644 index 1a86b2b03cb8e818c4184a64c7cb817a6bd59fef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52766565_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2700b9de83cc7f0a08c861ef7845cd192859b7b060cb957c99ed47f3384af924 -size 4111 diff --git a/MM_Math/data_original_21/7058047/math/52948375_925.png b/MM_Math/data_original_21/7058047/math/52948375_925.png deleted file mode 100644 index c1af543f0b6038e13c296b7f060baf05fd255200..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52948375_925.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ac54349bc8f6ba6ade03dcf59c376e135fb0c1dffeac36b99d0ad5688fa2c4f5 -size 60008 diff --git a/MM_Math/data_original_21/7058047/math/52949319_251.png b/MM_Math/data_original_21/7058047/math/52949319_251.png deleted file mode 100644 index 94c17593bfa2b440877e1c00f67f2cc5e81ef89e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52949319_251.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6eafbfa5274547f3f8ff6fda162ec794fd7c1086e2ab44a3d81d3bc7fc1e7e5b -size 3023 diff --git a/MM_Math/data_original_21/7058047/math/52949741_914.png b/MM_Math/data_original_21/7058047/math/52949741_914.png deleted file mode 100644 index e596704b99bf68dc140519e5337d6193eadb7be2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/math/52949741_914.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4edd5cf6d56f285399021a9e86b76644ea54d3e129cc6774d62ef8f47d822f0c -size 12166 diff --git a/MM_Math/data_original_21/7058047/solution_images/51285790_190.png b/MM_Math/data_original_21/7058047/solution_images/51285790_190.png deleted file mode 100644 index 848e3660b3b19ab4861607d9741d3a3d55fe25b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51285790_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c12cf796e22b6348f9bff2ec0d0e8012bdc691888e2630519965289a09816233 -size 8133 diff --git a/MM_Math/data_original_21/7058047/solution_images/51322318_60.png b/MM_Math/data_original_21/7058047/solution_images/51322318_60.png deleted file mode 100644 index 22925ab81307f5c27a734a37d70fd41021cff9db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51322318_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f947b0cf311591b96e579b9ff00318e34244e45a5405a7832ce88913a415b903 -size 4415 diff --git a/MM_Math/data_original_21/7058047/solution_images/51352010_280.png b/MM_Math/data_original_21/7058047/solution_images/51352010_280.png deleted file mode 100644 index 2efd518b3c3aae7c8232748dd753ccbb07d69e1c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51352010_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:183b2c434b1eff32eb5b7d020d6851fa735d90034c647ee7e5d155dba1aef662 -size 4769 diff --git a/MM_Math/data_original_21/7058047/solution_images/51353246_994.png b/MM_Math/data_original_21/7058047/solution_images/51353246_994.png deleted file mode 100644 index 13f8d3e3e5c3a9c96bb33c0f4efee8e359cb52f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51353246_994.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c49bb50dd1b880ec2e860e61a3402cf13b39143753cb4c29f52897a80c4917f -size 26547 diff --git a/MM_Math/data_original_21/7058047/solution_images/51402513_103.png b/MM_Math/data_original_21/7058047/solution_images/51402513_103.png deleted file mode 100644 index 4455136eba3000e7bdb5f0c539edd006ef6b3679..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51402513_103.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3deb0f79fc6223d590376d866a4f4baa260203fe11e59bb5fc06771019b186c4 -size 13350 diff --git a/MM_Math/data_original_21/7058047/solution_images/51403201_110.png b/MM_Math/data_original_21/7058047/solution_images/51403201_110.png deleted file mode 100644 index cf98ebaac591dfde8ed66db30d937faafcd2b43e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51403201_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c04e8aea6cedad6b8fb8bb24fe429d59b9f40b3e4c5db0c8070f71b8409604fb -size 3773 diff --git a/MM_Math/data_original_21/7058047/solution_images/51403202_96.png b/MM_Math/data_original_21/7058047/solution_images/51403202_96.png deleted file mode 100644 index 0b4ab48ad4dc618d704eb6691141393ef69c00c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51403202_96.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b4561c3f6be0268f6ecc7fbaab93208b496913291381fd652fcf48293198c84 -size 10457 diff --git a/MM_Math/data_original_21/7058047/solution_images/51403218_320.png b/MM_Math/data_original_21/7058047/solution_images/51403218_320.png deleted file mode 100644 index a8e33a0ffb7137c2a0106bc0aa0e5ed54324d39a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51403218_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9a27e6c8f33c9b70ad8bea884384745e4bd29bef0c0a7011943d9f99f525733 -size 8385 diff --git a/MM_Math/data_original_21/7058047/solution_images/51403218_322.png b/MM_Math/data_original_21/7058047/solution_images/51403218_322.png deleted file mode 100644 index 66c150f70e3914be21fb3570266776aedfb1a3d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51403218_322.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:beb7aa34a101c1d8ba1bf2563832c8f83cacc34f74ec855ec910b4dcb45b4d5e -size 6620 diff --git a/MM_Math/data_original_21/7058047/solution_images/51457867_270.png b/MM_Math/data_original_21/7058047/solution_images/51457867_270.png deleted file mode 100644 index b53375a4f114e9edafd987bb372ee94fb36236c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51457867_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:012ae5bb31805b63ff81b9cd6a178a7b93c5a0c92f45b329959e611c7325124a -size 2556 diff --git a/MM_Math/data_original_21/7058047/solution_images/51458203_952.png b/MM_Math/data_original_21/7058047/solution_images/51458203_952.png deleted file mode 100644 index 2de47aeda8388346d677844261da51aedd030f7d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51458203_952.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:697e75166509553f240544d4aab073cabf25437967e3b47e068edd542cf8f517 -size 10147 diff --git a/MM_Math/data_original_21/7058047/solution_images/51458242_260.png b/MM_Math/data_original_21/7058047/solution_images/51458242_260.png deleted file mode 100644 index cc4de1a2ba6508367e6b801020f35f0351644388..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/51458242_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:544701bc786ef3bacf27d4492e2e8b7f0b30f48f9ceb0bbecc5196895e940c86 -size 11574 diff --git a/MM_Math/data_original_21/7058047/solution_images/52601797_20.png b/MM_Math/data_original_21/7058047/solution_images/52601797_20.png deleted file mode 100644 index 718db7eba52e6495e6ea6f6cab938a84398f3686..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52601797_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef401f0b940db83d4d9420b7bee0f7ff75df72f6d1e695ac81620aa626308ec8 -size 59786 diff --git a/MM_Math/data_original_21/7058047/solution_images/52601845_170.png b/MM_Math/data_original_21/7058047/solution_images/52601845_170.png deleted file mode 100644 index 96e4089b0d1271db81b60416d5fbc8c6052a0fcb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52601845_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2722b3f3b8c6c182cc7fa4beaffdc181e69628639eb138a9a6f2cb176aa2a14b -size 124832 diff --git a/MM_Math/data_original_21/7058047/solution_images/52602225_6810.png b/MM_Math/data_original_21/7058047/solution_images/52602225_6810.png deleted file mode 100644 index 2f65d2b0cae4d3a3d7a9a1fd8be2db80f70d9c47..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52602225_6810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2e1ff281127e1d90ae9ca5dce85defd477bd51682e0a7166e34d85cbc41739c -size 23982 diff --git a/MM_Math/data_original_21/7058047/solution_images/52602225_6812.png b/MM_Math/data_original_21/7058047/solution_images/52602225_6812.png deleted file mode 100644 index 28aebd25242ed8c0cba2b4c0ef924b60aabd5196..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52602225_6812.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6155c06393ce47c7e33e73643ade61bdb3f207fd01639d8caf8671e3602d4204 -size 24283 diff --git a/MM_Math/data_original_21/7058047/solution_images/52602225_683.png b/MM_Math/data_original_21/7058047/solution_images/52602225_683.png deleted file mode 100644 index 9c439b53182c9dd175137f0a669969096185a07b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52602225_683.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77f459fa350815e1ff42b66c58a48de6b30df75e52474f30179cf0f8eeca626f -size 23138 diff --git a/MM_Math/data_original_21/7058047/solution_images/52602886_430.png b/MM_Math/data_original_21/7058047/solution_images/52602886_430.png deleted file mode 100644 index f77972f36626f50fb8280d96c3a62d371e6575a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52602886_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1cc96c58421421319f4d45f68f2721a086da0967ae57f794a2d825a7d658a99 -size 4450 diff --git a/MM_Math/data_original_21/7058047/solution_images/52602919_640.png b/MM_Math/data_original_21/7058047/solution_images/52602919_640.png deleted file mode 100644 index 5467b4be4e76624c4072b1b2b6478b6a00f01ebc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52602919_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aba8ed8cadba1d66e03de83ac00ff9e85a898b856d44987cd82f9de852cd6a48 -size 110806 diff --git a/MM_Math/data_original_21/7058047/solution_images/52602919_641.png b/MM_Math/data_original_21/7058047/solution_images/52602919_641.png deleted file mode 100644 index 9f47ea744908cd31d43b787b00f96d4f2e655496..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52602919_641.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31d965693d320c1111e99eba13deb979349c0889c476ea3eb604a8ffbdb09327 -size 107657 diff --git a/MM_Math/data_original_21/7058047/solution_images/52602919_642.png b/MM_Math/data_original_21/7058047/solution_images/52602919_642.png deleted file mode 100644 index cf413b9118e49f973f746e1f35b27a2de5689f9e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52602919_642.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a0bd67eeaab56f58c0129af638d9091406977f09a336cbaf19e29b717b29f7f -size 105773 diff --git a/MM_Math/data_original_21/7058047/solution_images/52622743_210.png b/MM_Math/data_original_21/7058047/solution_images/52622743_210.png deleted file mode 100644 index 7ac31b3e958ae1fb4cf2a7d3b21a0347343b4cee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52622743_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:09dc3c85486e5caaf4b6e8e4fa64fc9888ff81ecb2dd19e9706bb05414ba190a -size 6638 diff --git a/MM_Math/data_original_21/7058047/solution_images/52623363_8511.png b/MM_Math/data_original_21/7058047/solution_images/52623363_8511.png deleted file mode 100644 index 55b833ced345eb14a44ae37999f67e5092ad43db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52623363_8511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1d26f02341a1ce6c2354de0f7d577763072092ec74602ce0bbea0a9ee11ba0d -size 67909 diff --git a/MM_Math/data_original_21/7058047/solution_images/52623363_852.png b/MM_Math/data_original_21/7058047/solution_images/52623363_852.png deleted file mode 100644 index cbf6093a1cd6063cb4baf9330cd60fd37fbe295d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52623363_852.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:208fea015fbf78008f98f58a556255bb18efea66c94c62722382998e431a3679 -size 69197 diff --git a/MM_Math/data_original_21/7058047/solution_images/52623629_230.png b/MM_Math/data_original_21/7058047/solution_images/52623629_230.png deleted file mode 100644 index 2ad8510b51dcbb3cf99c95db99f172f0d6864ba8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52623629_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b72daa75df805df5547f210ba07e4f1deb1e500639043c09aa3765bef94c664 -size 3541 diff --git a/MM_Math/data_original_21/7058047/solution_images/52765812_120.png b/MM_Math/data_original_21/7058047/solution_images/52765812_120.png deleted file mode 100644 index 2d1fc35569cf55a3981d360631d623a690e64760..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52765812_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74186a278a5a6deefad3ce8810bdaef62acbec12054efc2fe3d1d011c346c45d -size 3916 diff --git a/MM_Math/data_original_21/7058047/solution_images/52765948_470.png b/MM_Math/data_original_21/7058047/solution_images/52765948_470.png deleted file mode 100644 index 3ac89a5415edfdc3a1b0b9ca01c205c6d6bd365f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52765948_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40933e1aaf93497298a3be4a5b4d49f81ca5c265c24aefc25b7a65ea44102d01 -size 6497 diff --git a/MM_Math/data_original_21/7058047/solution_images/52766018_130.png b/MM_Math/data_original_21/7058047/solution_images/52766018_130.png deleted file mode 100644 index 9ca63d154241777b78e4126c4822fed6da50cb75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058047/solution_images/52766018_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a95ceed2deab1f3776ab8fc557d7a1a59b3c90f5d132e18732f3750ecc80241b -size 4778 diff --git a/MM_Math/data_original_21/7058344/math/50849413_115.png b/MM_Math/data_original_21/7058344/math/50849413_115.png deleted file mode 100644 index 45390a10dc0e82dfe550d4d8d5f32b1f81ae36be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/50849413_115.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02930e7110d675e3bb7b969204b1761733602d6f2d5381e0d70adc53cda4cdd0 -size 5081 diff --git a/MM_Math/data_original_21/7058344/math/51032231_980.png b/MM_Math/data_original_21/7058344/math/51032231_980.png deleted file mode 100644 index 6934f6d2120df44b91db91e64ba4595982976328..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/51032231_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7dd179d8ee65ae4d11bc86f237bc41f6583f64748c208e412892a96161cd7823 -size 2029 diff --git a/MM_Math/data_original_21/7058344/math/52976996_563.png b/MM_Math/data_original_21/7058344/math/52976996_563.png deleted file mode 100644 index 2fef758570cba8e4a31301a27dc076f50c908811..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/52976996_563.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97b2253c1beda87ab3d78a7678f53620df6b219f23bf18de48483e380af4b3a3 -size 13618 diff --git a/MM_Math/data_original_21/7058344/math/52977394_351.png b/MM_Math/data_original_21/7058344/math/52977394_351.png deleted file mode 100644 index 562e26ca2d5ffd5528259da12decbe17ff8db1bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/52977394_351.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa06450a07089e5d7bf3456c287b404abe20f42d0dcde5f5b697b2d755704177 -size 16006 diff --git a/MM_Math/data_original_21/7058344/math/52977728_578.png b/MM_Math/data_original_21/7058344/math/52977728_578.png deleted file mode 100644 index 937f93854ec1cefc9315eadfe731308a0e9b61b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/52977728_578.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a40ffb9cb5a6a79b760e7d1c8b969462a72f2aa3c673346aa87f4f6b3b78133 -size 5624 diff --git a/MM_Math/data_original_21/7058344/math/52977737_105.png b/MM_Math/data_original_21/7058344/math/52977737_105.png deleted file mode 100644 index 79d7f220c52bfde770774b47cc214bbd281b5334..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/52977737_105.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aabe27d9a4042f10f602a87ff4d272e32b2f01ec97abfc6779aacf2d37b0645b -size 50466 diff --git a/MM_Math/data_original_21/7058344/math/52977742_516.png b/MM_Math/data_original_21/7058344/math/52977742_516.png deleted file mode 100644 index 84d14c6cd66ec165d101b9dfd6d3c77e3f6ca5d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/52977742_516.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e37a9f0ff456f4e59f77912f118f45495b1f533862886c6b5a209476689c4290 -size 15244 diff --git a/MM_Math/data_original_21/7058344/math/52977760_710.png b/MM_Math/data_original_21/7058344/math/52977760_710.png deleted file mode 100644 index 17ad266b9a92214c914e899674756d7c60947c3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/52977760_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56d9837edb3c6197adceceba75bb6eca3b484f2e19a1c22ba38b6f92456bec2b -size 5110 diff --git a/MM_Math/data_original_21/7058344/math/52977771_528.png b/MM_Math/data_original_21/7058344/math/52977771_528.png deleted file mode 100644 index e446a5f3f21bec10e5cbfd6f656c8ef6347632fc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/52977771_528.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aabd2951eefbc54bad9ccaaceeffdb6eb69843c6e01f2242e04b44010f83d42b -size 3076 diff --git a/MM_Math/data_original_21/7058344/math/52977945_302.png b/MM_Math/data_original_21/7058344/math/52977945_302.png deleted file mode 100644 index eb2c48c4ec4efc85691eaca9c157fe2a757f0b32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/52977945_302.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:481e9a7682908dc8457de5b8b62649c5762d35fe17be76a2d294a35028415e0e -size 3400 diff --git a/MM_Math/data_original_21/7058344/math/52977974_936.png b/MM_Math/data_original_21/7058344/math/52977974_936.png deleted file mode 100644 index 6cf43e8ad1d6625f1357323998a4d827e8a22358..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/52977974_936.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4808805db3501a700698c341da13394e0eb38e490209ce531f6f88283726d5bc -size 5888 diff --git a/MM_Math/data_original_21/7058344/math/53009650_3718.png b/MM_Math/data_original_21/7058344/math/53009650_3718.png deleted file mode 100644 index 5a3f92787464d3b2a2fcadbd54c948db9c0d2183..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53009650_3718.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7875ceee7e4ac9605cc888aaea43a420dad71edc98883e9bbf34e6fc289dfc19 -size 3364 diff --git a/MM_Math/data_original_21/7058344/math/53009955_290.jpeg b/MM_Math/data_original_21/7058344/math/53009955_290.jpeg deleted file mode 100644 index 62636b607319d3146132623ab64be6080d124f49..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53009955_290.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19987fe777813a08f1b59147a8b17de5802db9d20ca96e7629ffc7f2eafdad69 -size 3947 diff --git a/MM_Math/data_original_21/7058344/math/53019659_314.png b/MM_Math/data_original_21/7058344/math/53019659_314.png deleted file mode 100644 index 03d1cc75890719dae3d5e5d9b87eae45dcf72a56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53019659_314.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:944aea4de254cec253ae093316dfc229129a40819492f7602697228678e0db16 -size 2586 diff --git a/MM_Math/data_original_21/7058344/math/53019660_722.png b/MM_Math/data_original_21/7058344/math/53019660_722.png deleted file mode 100644 index 36a4e56db27792cc12e395e9007faded3464f835..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53019660_722.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9dc3e18dda8439b2378f7ed22f70785fbc074c40941c28fc214c1c4a3f3e057d -size 15933 diff --git a/MM_Math/data_original_21/7058344/math/53019671_916.png b/MM_Math/data_original_21/7058344/math/53019671_916.png deleted file mode 100644 index 3ac9c3e4a38548e2f27ff93ba51ad59d7cd7d54c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53019671_916.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea36b113f995eb7a81b6184fbbc2c435374385ae763ad9176241ed3b560ba0e7 -size 1954 diff --git a/MM_Math/data_original_21/7058344/math/53019686_817.png b/MM_Math/data_original_21/7058344/math/53019686_817.png deleted file mode 100644 index 335682b8bb5248926f77dd0db01098fcfcf63854..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53019686_817.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88bc305c0df581b6c2a36633474414fd143df6bb6813cad3d9b6011cc21ed52f -size 11354 diff --git a/MM_Math/data_original_21/7058344/math/53019842_508.png b/MM_Math/data_original_21/7058344/math/53019842_508.png deleted file mode 100644 index 4e80537fe8b3cc892d2716032e148ca679e76127..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53019842_508.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:55c930de4301d338dc95435f308dd87e98bdb61aaa3e2b55fc7855acdc69757d -size 13663 diff --git a/MM_Math/data_original_21/7058344/math/53019891_902.png b/MM_Math/data_original_21/7058344/math/53019891_902.png deleted file mode 100644 index 8f7e207911735bee75715311e23cb78dae5dea64..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53019891_902.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d08e142119e019cc21f2149c8d40b542bf49efdeeb2146e75b69a967dac9bc3 -size 11910 diff --git a/MM_Math/data_original_21/7058344/math/53019943_326.png b/MM_Math/data_original_21/7058344/math/53019943_326.png deleted file mode 100644 index dadbb4d923e4f307885c2abad71b4a996f181fbd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53019943_326.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc39459d378da0682f851a53b7d440ba1467901e2f254d1d996672096e08530f -size 2898 diff --git a/MM_Math/data_original_21/7058344/math/53019950_256.png b/MM_Math/data_original_21/7058344/math/53019950_256.png deleted file mode 100644 index 60f2d0568a9399fc2079a2e5f1b41065976ef21b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53019950_256.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d89c7e5547c0e1dafa394e5959ed300c8c6fb14f00ee056e194c69608fcdc3c8 -size 18739 diff --git a/MM_Math/data_original_21/7058344/math/53019951_287.png b/MM_Math/data_original_21/7058344/math/53019951_287.png deleted file mode 100644 index 37ded6f5861951247152719e57f3f3a0bfdc4cfc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53019951_287.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec26c295a9d4ec8f3e0b8dd0e42d2a47fe83bb9550bc0ba5f13fb6a57598d97f -size 32881 diff --git a/MM_Math/data_original_21/7058344/math/53019955_381.png b/MM_Math/data_original_21/7058344/math/53019955_381.png deleted file mode 100644 index 3544f23ef04acd3210460d56875b084ebc56e554..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53019955_381.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3af5d379150d576557b1cd670c366b2c73852b0e91fc3819865d9f1b3f472a11 -size 50209 diff --git a/MM_Math/data_original_21/7058344/math/53032948_771.png b/MM_Math/data_original_21/7058344/math/53032948_771.png deleted file mode 100644 index 738d791a4ecf09ea11daebdec57e14fc73d5f1de..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53032948_771.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:055b36c3df5ed06a907323efabe578c864978f1d3d96a1d236a4ffe6e5316f63 -size 3085 diff --git a/MM_Math/data_original_21/7058344/math/53042711_70.png b/MM_Math/data_original_21/7058344/math/53042711_70.png deleted file mode 100644 index 287aed9bbf8d079fdc64e0538b26352c154c68ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53042711_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46de37c315261b769a103d54c006106255f806c60ed7004dd8beab1a77a0562e -size 33307 diff --git a/MM_Math/data_original_21/7058344/math/53043061_752.png b/MM_Math/data_original_21/7058344/math/53043061_752.png deleted file mode 100644 index ad898ea3de20ca4816de8c6771f13d2d8470d352..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043061_752.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8dd4aea65d709315ebb2f0a2760348c0098a4fb177027900b06278fc6f7ca20f -size 26658 diff --git a/MM_Math/data_original_21/7058344/math/53043063_925.png b/MM_Math/data_original_21/7058344/math/53043063_925.png deleted file mode 100644 index 24e3e5061ee5ab469360368a0987e8c9572075b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043063_925.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1c92fd80597d86a685966e028dcd7f779102622692f459363aec67b8253b0ca -size 11400 diff --git a/MM_Math/data_original_21/7058344/math/53043139_490.png b/MM_Math/data_original_21/7058344/math/53043139_490.png deleted file mode 100644 index 59e8947dbaea64ac0596a07f483bfa55e4c46775..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043139_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b57cf480fdc6abd8287bc67c61696b588fac63a962446da70fd625e58a9e32f -size 2708 diff --git a/MM_Math/data_original_21/7058344/math/53043157_249.png b/MM_Math/data_original_21/7058344/math/53043157_249.png deleted file mode 100644 index 2d5b31fa587be87b0db5a57bea24c663f6c2d2b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043157_249.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4c5c6f8015fde1bd59a958283f5a2a79830c1191399a85b689a9bcfefc62f2f6 -size 72111 diff --git a/MM_Math/data_original_21/7058344/math/53043249_22.png b/MM_Math/data_original_21/7058344/math/53043249_22.png deleted file mode 100644 index 7468d5ea29e465063a1a23c2c85179664c9dcae2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043249_22.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10f28235a817c0cef4ce4a820143982588c7df0ae735060a8185af3a8305dbe4 -size 11004 diff --git a/MM_Math/data_original_21/7058344/math/53043266_535.png b/MM_Math/data_original_21/7058344/math/53043266_535.png deleted file mode 100644 index 7edc675a220cc4aecb1d51dbc35549547b2601a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043266_535.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c69e27d24f4d1b9b519c345361500708c5e9aaf886c8d29bce3b4a8aa97762d2 -size 1920 diff --git a/MM_Math/data_original_21/7058344/math/53043322_04.png b/MM_Math/data_original_21/7058344/math/53043322_04.png deleted file mode 100644 index 35259b4814aee7ee332053f52c563175e1c2726f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043322_04.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1e874b182d46a7a82d65966f7a45bcbe35ee114fd6354c56f165a9c67d4a29e -size 7200 diff --git a/MM_Math/data_original_21/7058344/math/53043407_400.png b/MM_Math/data_original_21/7058344/math/53043407_400.png deleted file mode 100644 index 196bd513b84857e491e68f64e43d7dc4d673f598..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043407_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:714b7039d94030ebc9d60ecab344ed55f27bd6c3a4a35fa85da280c9d8e1ad13 -size 2630 diff --git a/MM_Math/data_original_21/7058344/math/53043623_838.png b/MM_Math/data_original_21/7058344/math/53043623_838.png deleted file mode 100644 index dcfed6a1e7c5985bd7216fa20d0af635729e059f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043623_838.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a86ae363f47d9063606e244ac61fa7426946677a17d44d2af9060e934203019 -size 15246 diff --git a/MM_Math/data_original_21/7058344/math/53043702_682.png b/MM_Math/data_original_21/7058344/math/53043702_682.png deleted file mode 100644 index ee88b7f74a9ac0c2bf2d3840a39f3cfc062fc612..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043702_682.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:352b4a24bf22339fd4f384f56fee8db6e95f9332fb777133df8d38fdffd5da7c -size 2850 diff --git a/MM_Math/data_original_21/7058344/math/53043705_676.png b/MM_Math/data_original_21/7058344/math/53043705_676.png deleted file mode 100644 index b0970e70af27126d1492f3c35f702507046a0236..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043705_676.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24df295ee0ab491d87edc9ffb39ef02202b2e48fed2ed5b78b9182940cd2767c -size 42485 diff --git a/MM_Math/data_original_21/7058344/math/53043745_43.png b/MM_Math/data_original_21/7058344/math/53043745_43.png deleted file mode 100644 index 60d33b9ad3359654d2d16b8939f0a2113e6685fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043745_43.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8557bf091963932482044dc4b514b4aef647cd05d9c4c4ebaf7ba88e34b90c3 -size 5553 diff --git a/MM_Math/data_original_21/7058344/math/53043749_52.png b/MM_Math/data_original_21/7058344/math/53043749_52.png deleted file mode 100644 index 267a609ab441f338f1593f5fa9eb38c318d21f02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043749_52.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0311989277698ac39c639eddd61c2a57fb338c9e9b00e8ffa8a427bb92ab350 -size 12442 diff --git a/MM_Math/data_original_21/7058344/math/53043752_797.png b/MM_Math/data_original_21/7058344/math/53043752_797.png deleted file mode 100644 index 8d46c5a8e06b75b9290f9c121c3d0fe7b787134f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043752_797.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4818e9da386bbde70c8688e6a1e045462402ad2ff4ca17d83ad26ddd984e47b9 -size 6983 diff --git a/MM_Math/data_original_21/7058344/math/53043774_460.png b/MM_Math/data_original_21/7058344/math/53043774_460.png deleted file mode 100644 index 2c395e0f43da139ff1ca48dd52efab1ee8292835..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043774_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a3e50b7915e03d25ceafcf25c871e33cb70b34087526fe7129d2a4f10436a6d -size 2811 diff --git a/MM_Math/data_original_21/7058344/math/53043776_484.png b/MM_Math/data_original_21/7058344/math/53043776_484.png deleted file mode 100644 index 9b4dbc185a0e38a9f89861a5a39c5b6863243b42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043776_484.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37b0f548dca5ecbeaed2104445a3d983d186a272868ed96ff13305a01db226ee -size 91829 diff --git a/MM_Math/data_original_21/7058344/math/53043823_264.png b/MM_Math/data_original_21/7058344/math/53043823_264.png deleted file mode 100644 index 822861b6eb360d44b0b29f12eb3fc88b417b191a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043823_264.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0526a165868a62f4e3ba7f15f5bbab2c90336a8f8266f4e1dcbf884ba0e42204 -size 4553 diff --git a/MM_Math/data_original_21/7058344/math/53043832_601.png b/MM_Math/data_original_21/7058344/math/53043832_601.png deleted file mode 100644 index 7c763272e19710f62c37bf76e4900f3a26bd7022..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53043832_601.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ad7e66ff89d94dc047ef43a3f441592ac078f0a9add419a2363c3ffbedcad96c -size 32344 diff --git a/MM_Math/data_original_21/7058344/math/53058713_316.png b/MM_Math/data_original_21/7058344/math/53058713_316.png deleted file mode 100644 index 745b153aebaad76092359462922e169a733cb140..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53058713_316.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa2e4ae6c942b8613749cdb25aff220ae8d1f92bc4b77ac0c0044b321bc8e271 -size 6669 diff --git a/MM_Math/data_original_21/7058344/math/53059881_220.png b/MM_Math/data_original_21/7058344/math/53059881_220.png deleted file mode 100644 index c5c2889954297de12bb964f10f07ea96e2c5381d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53059881_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01077cce28a4c4637ca6b2631b1334b29afbc8380efbb188258cc270cf82a657 -size 10420 diff --git a/MM_Math/data_original_21/7058344/math/53059948_210.png b/MM_Math/data_original_21/7058344/math/53059948_210.png deleted file mode 100644 index 1232815fb76b7bbdf5614b907f48ae30360c4a3d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53059948_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69f44e3f53d700e01c884fe096449f652e2234e03740c8c9118db8cf58a30c29 -size 9533 diff --git a/MM_Math/data_original_21/7058344/math/53065536_2713.png b/MM_Math/data_original_21/7058344/math/53065536_2713.png deleted file mode 100644 index 42efaabb677a584cbd91166f2f3ea8b3970c2359..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53065536_2713.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1356cbee3a1e1b20bd77c952c41fd17d004911b8332f199950faaa58b8c7be4d -size 2520 diff --git a/MM_Math/data_original_21/7058344/math/53065573_233.png b/MM_Math/data_original_21/7058344/math/53065573_233.png deleted file mode 100644 index 4b80ab6ef766282f5c7149cce683201e315ffab1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53065573_233.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b4ecf98fe7aee0ae961302470234a098a012832b8d1f3e7be1420152919166a1 -size 3563 diff --git a/MM_Math/data_original_21/7058344/math/53065816_120.png b/MM_Math/data_original_21/7058344/math/53065816_120.png deleted file mode 100644 index 3fc7165fc797f26037327672ba157f8e82792c44..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53065816_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e591d94c647978a002358eff50adfbcb7eab3cc85921517950506b7a60cd67e -size 42864 diff --git a/MM_Math/data_original_21/7058344/math/53065838_154.png b/MM_Math/data_original_21/7058344/math/53065838_154.png deleted file mode 100644 index ff1b5596ee7dc5c4a5836cd35ab2d50856b3d570..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53065838_154.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20d67ad278f63d2eb890d543eaed34c394ff280c9572f5c9e8bc59e2ea7717b6 -size 1614 diff --git a/MM_Math/data_original_21/7058344/math/53065849_860.png b/MM_Math/data_original_21/7058344/math/53065849_860.png deleted file mode 100644 index 0be56d3975e7c08020604858f3e4c1dcfd633e38..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53065849_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2526849b545922a325c5d18c451d058cf88023e3782c8b033968e6718ebe777c -size 11833 diff --git a/MM_Math/data_original_21/7058344/math/53065871_613.png b/MM_Math/data_original_21/7058344/math/53065871_613.png deleted file mode 100644 index 86c70cc6083bb3b09202c1ff1bc91bd63a6c60c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53065871_613.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7edb58ef151ab85323f6263d8594c0c775710b8cb5f2bf97ca6dbfd951fad65 -size 2875 diff --git a/MM_Math/data_original_21/7058344/math/53065875_584.png b/MM_Math/data_original_21/7058344/math/53065875_584.png deleted file mode 100644 index 82cc69d8cae9d0e9975af76c02cee17522f6cc74..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53065875_584.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e3e9bc3b39eb1d251ac67f4a014c94e3429d956a73a101ae7ffcb3f9d2b38eb -size 120659 diff --git a/MM_Math/data_original_21/7058344/math/53066051_173.png b/MM_Math/data_original_21/7058344/math/53066051_173.png deleted file mode 100644 index 02fa5586f72851ca5bd76b8a8c25c766c7621096..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53066051_173.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b13125f2c9885a0ef317241870439234a4bad036a871496148cb97b777aefa46 -size 53468 diff --git a/MM_Math/data_original_21/7058344/math/53066096_894.png b/MM_Math/data_original_21/7058344/math/53066096_894.png deleted file mode 100644 index 2181d459c34a8f7b5a41f818e12df66e601d85a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53066096_894.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3edfb32033446dd14c33a424c583cf9cce1f58481f4e6cea48af26cb94ac15d7 -size 3741 diff --git a/MM_Math/data_original_21/7058344/math/53066224_4712.png b/MM_Math/data_original_21/7058344/math/53066224_4712.png deleted file mode 100644 index 0851eadca15aa39139cea357d3f95ee5f24ae188..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53066224_4712.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fee62f34b875b1f3350f5df47d03956ff5359dd1198bc6b5d773ae1af253976 -size 4035 diff --git a/MM_Math/data_original_21/7058344/math/53066251_591.png b/MM_Math/data_original_21/7058344/math/53066251_591.png deleted file mode 100644 index 145c422a495888e1092f50e5321c45bce2732e95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53066251_591.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c39f7b3775e749b62becc9424ab6521c9da1d90cd9989f2133d19e91d8a6f70 -size 7682 diff --git a/MM_Math/data_original_21/7058344/math/53079120_446.png b/MM_Math/data_original_21/7058344/math/53079120_446.png deleted file mode 100644 index 041896fb738d7e96f42716bf218e5d3b7e31a764..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53079120_446.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee197543179f778ef1a355c85dface923d443ce77f9da6300af6f5d03a9ff034 -size 17921 diff --git a/MM_Math/data_original_21/7058344/math/53079125_188.png b/MM_Math/data_original_21/7058344/math/53079125_188.png deleted file mode 100644 index 2cb087796c5d1a2ed04eae20a0c65ec5ea3e045f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53079125_188.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:903fa5eb7e671090054d5a65ad045b52b1298a3431e3762812ecf25de3c791c4 -size 2946 diff --git a/MM_Math/data_original_21/7058344/math/53080171_655.png b/MM_Math/data_original_21/7058344/math/53080171_655.png deleted file mode 100644 index 695573af7110e66a0ddde9e3f615bb6c1b9bb4e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080171_655.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e8ee757d04b378c93ce854c989584ea6995fb304dc938e47b5d5163fd17b3769 -size 3112 diff --git a/MM_Math/data_original_21/7058344/math/53080305_635.png b/MM_Math/data_original_21/7058344/math/53080305_635.png deleted file mode 100644 index 66ce79681d3044f33e737ea7564684df104a3e4a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080305_635.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:349198e1106c94a9afff9226805debd32c52040ec6f83a2470215cd95fadf28b -size 1597 diff --git a/MM_Math/data_original_21/7058344/math/53080529_197.png b/MM_Math/data_original_21/7058344/math/53080529_197.png deleted file mode 100644 index 009e12db73323e217e60abc914ebbac9fff8e338..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080529_197.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24af066b9e8970286ace5b6d524c13053ddfc848884518d348d1a23ea6054025 -size 3577 diff --git a/MM_Math/data_original_21/7058344/math/53080562_142.png b/MM_Math/data_original_21/7058344/math/53080562_142.png deleted file mode 100644 index bba081992e6085feadf024336538494cb2730635..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080562_142.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0045ae564c977eb466de0b7c88fb574f067b21cf0a84dfda336781e47aa47d1e -size 5610 diff --git a/MM_Math/data_original_21/7058344/math/53080565_8513.png b/MM_Math/data_original_21/7058344/math/53080565_8513.png deleted file mode 100644 index 13432be9da18800def5f79f51366c7901139d003..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080565_8513.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d7c89345ff1262ab47f2e6a2737d8c8273352e8d4bb5392da8549fd8c710f71 -size 11224 diff --git a/MM_Math/data_original_21/7058344/math/53080615_624.png b/MM_Math/data_original_21/7058344/math/53080615_624.png deleted file mode 100644 index faf8c55f6b01518c582925804fa7397637d0b410..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080615_624.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ab4b649d217a544a9254f8e85929372b9db04d173359f84b6bff20b572e4c34 -size 4765 diff --git a/MM_Math/data_original_21/7058344/math/53080796_85.png b/MM_Math/data_original_21/7058344/math/53080796_85.png deleted file mode 100644 index cf6bda731f8b2ab0e7a86b328fe22a1975664f72..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080796_85.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82baf09e6d55b8c116d3337a33778b11a4d85cae1b61c86c61f3d248c4f2aaa0 -size 2820 diff --git a/MM_Math/data_original_21/7058344/math/53080876_941.png b/MM_Math/data_original_21/7058344/math/53080876_941.png deleted file mode 100644 index 800e23203e1fc58114fa0112e7ae2d48eada101e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080876_941.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46b7d9f3263c60b4dd213652a4cd3d68b4f82617d4c69c6e70999b79e1908f3d -size 8272 diff --git a/MM_Math/data_original_21/7058344/math/53080924_540.png b/MM_Math/data_original_21/7058344/math/53080924_540.png deleted file mode 100644 index fc63f3fd974946b3c1086b86c84082d0d040ecf9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080924_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2c336ba3ae2b888dc1d3d4f5c36a8a8b410f4a319bd4437d2a739a0d18e059a -size 4076 diff --git a/MM_Math/data_original_21/7058344/math/53080937_842.png b/MM_Math/data_original_21/7058344/math/53080937_842.png deleted file mode 100644 index f079a688c53407c39a4647d08d0cd1e29df86bfb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080937_842.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:215a94439e55e7f3dad03fcee6b9b69aec171edcf32123222fb137e22d0c5f24 -size 4076 diff --git a/MM_Math/data_original_21/7058344/math/53080940_820.png b/MM_Math/data_original_21/7058344/math/53080940_820.png deleted file mode 100644 index c70f6cb16dad4e0e4e834303c30139d41faf3452..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53080940_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aace17e8ca74396a123dbce1513a17de50dabbfa3f12cef579bcfe91941f6b3f -size 4076 diff --git a/MM_Math/data_original_21/7058344/math/53081476_708.png b/MM_Math/data_original_21/7058344/math/53081476_708.png deleted file mode 100644 index e8e1a877c77886011e86d420a7d9731a231f0337..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53081476_708.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c00852050ac1d6e63bacc8ae2163210d0161e2d22f8385649926e47f63e445e -size 22421 diff --git a/MM_Math/data_original_21/7058344/math/53101881_551.png b/MM_Math/data_original_21/7058344/math/53101881_551.png deleted file mode 100644 index 91f07e0833d1a7e0de89c43e24dc27f06459d04a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53101881_551.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97a4407e73a93ae6b1da5d00205bdf865652f65da25fd7b6d25d0438d1726048 -size 7339 diff --git a/MM_Math/data_original_21/7058344/math/53102110_762.png b/MM_Math/data_original_21/7058344/math/53102110_762.png deleted file mode 100644 index da3d0f15a0dd5b58a42746851c9b52cf823e35a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53102110_762.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af8bdc6a4596ee4fa06ed57e521a08aac17da7c071c97b4aa30a152f17f6afe5 -size 59917 diff --git a/MM_Math/data_original_21/7058344/math/53102155_788.png b/MM_Math/data_original_21/7058344/math/53102155_788.png deleted file mode 100644 index 9b44debfe70c52c760ea7e6129265b2e2a3dd009..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53102155_788.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e25f17c5f7ab6edab2bcf7336e11b3633b9fb9493a18fbcc52c724f4d140db0 -size 68475 diff --git a/MM_Math/data_original_21/7058344/math/53102171_200.png b/MM_Math/data_original_21/7058344/math/53102171_200.png deleted file mode 100644 index 2602144901f1d4c8cd0206ed0a3d13472d678ecf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53102171_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:026c47b930587932b97902f6d190784090b00532c8d63bcfbcf91e5f56539d95 -size 67873 diff --git a/MM_Math/data_original_21/7058344/math/53102359_732.png b/MM_Math/data_original_21/7058344/math/53102359_732.png deleted file mode 100644 index d43746685b00d77e664db3f27e41c2942453897b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53102359_732.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d20ed176b871903a97152f6c4b1cb2985317fe56c1099c003dcdeb1bed0bba7 -size 15123 diff --git a/MM_Math/data_original_21/7058344/math/53102380_96.png b/MM_Math/data_original_21/7058344/math/53102380_96.png deleted file mode 100644 index e32c44ae631814b8b632291fb1846e33d499600d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53102380_96.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f034b939d0e123fde84c1c8d5c43e5dfea2504268d7a60718143e231605fc1a7 -size 10118 diff --git a/MM_Math/data_original_21/7058344/math/53110760_454.png b/MM_Math/data_original_21/7058344/math/53110760_454.png deleted file mode 100644 index 47fdbee2afbaf2c6198ac479feb691c0f8ee44b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53110760_454.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11c8336a801bc2129118caad7aaa04a5e7032e30cac33be97dd8dfc597f72f14 -size 21400 diff --git a/MM_Math/data_original_21/7058344/math/53110835_61.png b/MM_Math/data_original_21/7058344/math/53110835_61.png deleted file mode 100644 index 0346d9c36a1a40864b57c607f1a902bb5d421b87..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53110835_61.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb47630f622ba81d04c4c41d93c2421cc49b231e03316791367159f9daa8508c -size 2934 diff --git a/MM_Math/data_original_21/7058344/math/53110857_15.png b/MM_Math/data_original_21/7058344/math/53110857_15.png deleted file mode 100644 index f1a93b2e8da310e72d5269a4a3eb4f68f36ca41f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53110857_15.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bc62eb83f6b206e4d1b704803d0a69b8f06a0d4a54628cd7eb7821152fd1034 -size 5611 diff --git a/MM_Math/data_original_21/7058344/math/53124720_690.png b/MM_Math/data_original_21/7058344/math/53124720_690.png deleted file mode 100644 index e22415f4892b073f6af2bd0a664c12eca84ce8cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53124720_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e187200bab2540365fbb4a7856ecbc5a1f56d106f392fd0d6fcc4df756800be5 -size 20865 diff --git a/MM_Math/data_original_21/7058344/math/53124729_640.png b/MM_Math/data_original_21/7058344/math/53124729_640.png deleted file mode 100644 index 9603ddd4c252948b3508f02f9b620b68d6dd4ce8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53124729_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02deecdd22d3f1f1260ba5b516a4659e03595fb54fe92297c0f373c70e8f4e03 -size 13583 diff --git a/MM_Math/data_original_21/7058344/math/53207822_8823.png b/MM_Math/data_original_21/7058344/math/53207822_8823.png deleted file mode 100644 index 221c064a23c2e98fb81e95c825636dc289bfbe9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/53207822_8823.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4181549fd561f992efef76ffb705a159e6f9eb100891a470ba224e9188995cae -size 3188 diff --git a/MM_Math/data_original_21/7058344/math/55487875_411.png b/MM_Math/data_original_21/7058344/math/55487875_411.png deleted file mode 100644 index 8444dd7df46940809e0993273152f9f47ee07714..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55487875_411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6dc247a2603fc1e728d622c2d14c552c5dde90628bac29aced4f02b94b1bddd2 -size 8552 diff --git a/MM_Math/data_original_21/7058344/math/55497824_132.png b/MM_Math/data_original_21/7058344/math/55497824_132.png deleted file mode 100644 index cc6252474d5f8b0130fa8429738b1a94c3de29c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55497824_132.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6bd40bf833a3de3e091b93f523501cd73e0c11963a27971d993d9c15288c2dd2 -size 8239 diff --git a/MM_Math/data_original_21/7058344/math/55497829_369.png b/MM_Math/data_original_21/7058344/math/55497829_369.png deleted file mode 100644 index 416e091369c35db66d4df83f9e379643e4b12568..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55497829_369.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eaa3a702557163290ff452364b580fd9b4fc509e9df25d5caa01972207e632f0 -size 9795 diff --git a/MM_Math/data_original_21/7058344/math/55498457_992.png b/MM_Math/data_original_21/7058344/math/55498457_992.png deleted file mode 100644 index 8c5cc1436f5fa5b56f057b3bd447408bb888f841..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55498457_992.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b1269cec2a152db893e596118b68162dfbf3fcb1f0249b57158324d68c974db -size 3102 diff --git a/MM_Math/data_original_21/7058344/math/55502222_3911.png b/MM_Math/data_original_21/7058344/math/55502222_3911.png deleted file mode 100644 index d7a493e9f6c9966315d6db1b7aeb35cf68d4a682..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55502222_3911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9bb01aa112789214dfb66d6f9a96e2bc59af8077b75472418574e818a25784fe -size 19395 diff --git a/MM_Math/data_original_21/7058344/math/55502234_437.png b/MM_Math/data_original_21/7058344/math/55502234_437.png deleted file mode 100644 index d93e305f7ab6de2ad609bbe8114eac38714afeeb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55502234_437.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23f436f7d3a1a42bfb099cc272ebdddec537c116f534ae8692547bbf03f15472 -size 16210 diff --git a/MM_Math/data_original_21/7058344/math/55533861_429.jpeg b/MM_Math/data_original_21/7058344/math/55533861_429.jpeg deleted file mode 100644 index c4d3a36df5442f3512b4f79caa01040eb5060520..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55533861_429.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba914d45bf2277a0740c4e9cbba1e4581bf780c0f4be7f865a4998c78759974a -size 3656 diff --git a/MM_Math/data_original_21/7058344/math/55533862_9712.jpeg b/MM_Math/data_original_21/7058344/math/55533862_9712.jpeg deleted file mode 100644 index e0d9c3c9299e39554f3c3681014be7a557c4934f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55533862_9712.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ece61a41f5e401cc12f77a8a53149ad28899ade4c4c3743577e6c70c3926c998 -size 5311 diff --git a/MM_Math/data_original_21/7058344/math/55551954_870.png b/MM_Math/data_original_21/7058344/math/55551954_870.png deleted file mode 100644 index 6a53f4a313d7e0bdfff7e397d3c976be2832792b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55551954_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bcc1a2986c5e9675aa4f5f85125d1198d3288c998012f909f18366b3e06323c1 -size 2920 diff --git a/MM_Math/data_original_21/7058344/math/55574667_166.png b/MM_Math/data_original_21/7058344/math/55574667_166.png deleted file mode 100644 index bb0a1f32b1b9d59ab1b8bdb800f107cd38467d3c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55574667_166.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d17579f62bdf204ef1e762a74efe650bdd9e98e21530d7557c8a3691620ebb83 -size 11592 diff --git a/MM_Math/data_original_21/7058344/math/55574671_342.png b/MM_Math/data_original_21/7058344/math/55574671_342.png deleted file mode 100644 index b484cafd89de71bcdce8a4f758721e4ed92b63b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55574671_342.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfda1e7ed3c270c37aab91fdf019ad5b54bb57175c14bc23f7a7ca207f3be59f -size 34138 diff --git a/MM_Math/data_original_21/7058344/math/55589668_6611.png b/MM_Math/data_original_21/7058344/math/55589668_6611.png deleted file mode 100644 index 6611c32ec2aa632236a0b981c67b5f7b6baa96af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55589668_6611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:964abd08da93e151fd296d755f906dfcfa136edd52ccd32511600f8dadd9406e -size 5563 diff --git a/MM_Math/data_original_21/7058344/math/55594993_338.png b/MM_Math/data_original_21/7058344/math/55594993_338.png deleted file mode 100644 index 61be74a5699565e59bb07d209b4c13c32070a4cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55594993_338.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88507623be9a0fc1f01492b8042cafa9f70e2e694af26e619f685e0d2d011f66 -size 6519 diff --git a/MM_Math/data_original_21/7058344/math/55595013_968.png b/MM_Math/data_original_21/7058344/math/55595013_968.png deleted file mode 100644 index 2a96b16c1ef8da4307662ca5171def83632da45b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55595013_968.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da4650bc1aace9cdb8f5782232adce383c9cb54e5264f950d14c2d0419652733 -size 11893 diff --git a/MM_Math/data_original_21/7058344/math/55595016_953.png b/MM_Math/data_original_21/7058344/math/55595016_953.png deleted file mode 100644 index d76d35800e1b21562032b8d507dd10324a009c82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55595016_953.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30a63081761add260f34ec79923ae355d1aff1a0410b608595ff89b6975ff2aa -size 4833 diff --git a/MM_Math/data_original_21/7058344/math/55595016_954.png b/MM_Math/data_original_21/7058344/math/55595016_954.png deleted file mode 100644 index b7aa17f17341004a5aabddf2fdb368c3ee0f48bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55595016_954.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e86453f5fd899127c97c75aead3928e92f959868c120096410e127de6024b059 -size 5334 diff --git a/MM_Math/data_original_21/7058344/math/55604085_745.png b/MM_Math/data_original_21/7058344/math/55604085_745.png deleted file mode 100644 index e6e2785f7097e5ec7c86d6c95a0f97ceee22006a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/math/55604085_745.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6156a78f4b562b976cdc3eac81c72618fe080697b0d847d924cb2f7bb5fff1b9 -size 3485 diff --git a/MM_Math/data_original_21/7058344/solution_images/50849413_111.png b/MM_Math/data_original_21/7058344/solution_images/50849413_111.png deleted file mode 100644 index df4e34bf27f01373c825fa10324b2a26a2d598ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/50849413_111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:769fa1051a84fc57bd9a86674f21674d38ba6d5e925e61b85a10dd0d9692279f -size 7671 diff --git a/MM_Math/data_original_21/7058344/solution_images/52976996_560.png b/MM_Math/data_original_21/7058344/solution_images/52976996_560.png deleted file mode 100644 index 0e4b29f9e97bcaee15bc73ba6067c174bb6ba504..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/52976996_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:624ea4805580bfb03f6ae7641b0fd1cc2b46a186fed4a62b7bce45e5b62bf235 -size 13595 diff --git a/MM_Math/data_original_21/7058344/solution_images/52977728_574.png b/MM_Math/data_original_21/7058344/solution_images/52977728_574.png deleted file mode 100644 index 7861810db097b07a8b51fe774555c6cd53530d63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/52977728_574.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b51ceb7a093caf9f553257e39d0dd60249f45f433cb5b9076ed5ad219fe6f7c -size 5885 diff --git a/MM_Math/data_original_21/7058344/solution_images/52977737_101.png b/MM_Math/data_original_21/7058344/solution_images/52977737_101.png deleted file mode 100644 index 5a3661a8f7f80404d7f1382cb6ace9e50ad3f14c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/52977737_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:195862f3504b3e7ab9a4b801a87486ae8faf6ce177fbe225a36f8e71cd7e54dc -size 55457 diff --git a/MM_Math/data_original_21/7058344/solution_images/53009650_376.png b/MM_Math/data_original_21/7058344/solution_images/53009650_376.png deleted file mode 100644 index e0db5f48def1fd3020783823499ebdeb012f71e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53009650_376.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f50d0735692b543ea7053afbede3969ddbf9be7c50f018da1a95a7fe12dd7ab -size 10756 diff --git a/MM_Math/data_original_21/7058344/solution_images/53019659_311.png b/MM_Math/data_original_21/7058344/solution_images/53019659_311.png deleted file mode 100644 index e6ccf04002b17dd828c33ddcbe7b9ee956c82929..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53019659_311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7048915d3f7c06571b19197b2d87a210c176584f69b7144cdc370bfd4b3c511c -size 2330 diff --git a/MM_Math/data_original_21/7058344/solution_images/53019660_722.png b/MM_Math/data_original_21/7058344/solution_images/53019660_722.png deleted file mode 100644 index e1af29750f6d5c337c3ef0119fe5287960954596..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53019660_722.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12d9c2838e1e6ef761c3a7a079a823d6f2d32a97d0b6bd835c39e602fe58af9a -size 17712 diff --git a/MM_Math/data_original_21/7058344/solution_images/53019950_252.png b/MM_Math/data_original_21/7058344/solution_images/53019950_252.png deleted file mode 100644 index a18b2b94916a7ded44864ad09d80150c7d04eb28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53019950_252.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06b35b5297c6de81fff83bc264adc9947e3cbcbe4dfed28306c0471c9fa1717e -size 21184 diff --git a/MM_Math/data_original_21/7058344/solution_images/53019951_282.png b/MM_Math/data_original_21/7058344/solution_images/53019951_282.png deleted file mode 100644 index 7b2fca1540bdda051acfe45c3ddff5bc65974280..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53019951_282.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00004fde6bd605f68794769bb35b3307b5870c04febfcecb54cc877808f80c70 -size 35833 diff --git a/MM_Math/data_original_21/7058344/solution_images/53032948_771.png b/MM_Math/data_original_21/7058344/solution_images/53032948_771.png deleted file mode 100644 index b81e7bb00eeec13bc4123462df91c73e5078db08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53032948_771.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc174dccf0d08ced0018b9d0e9e1a1dd03e22500c244f332d4ef4ec345bf724d -size 3312 diff --git a/MM_Math/data_original_21/7058344/solution_images/53043061_750.png b/MM_Math/data_original_21/7058344/solution_images/53043061_750.png deleted file mode 100644 index f72d0aed709479d47873d63bb751d416a26ed8b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53043061_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a732197ddd66952c0d858200a40235fda5aba4321f11aa704d2deca0032bbe62 -size 5149 diff --git a/MM_Math/data_original_21/7058344/solution_images/53043322_00.png b/MM_Math/data_original_21/7058344/solution_images/53043322_00.png deleted file mode 100644 index 7fe2cffb313cc0440a39586272b275a9c39d7543..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53043322_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dfadd728d0310d8cf17f8f2e7981738ad8e145474359af718845302288e92cec -size 4439 diff --git a/MM_Math/data_original_21/7058344/solution_images/53043407_404.png b/MM_Math/data_original_21/7058344/solution_images/53043407_404.png deleted file mode 100644 index 232774564814479b21e3c43eece94bce58c994d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53043407_404.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7762d89668af5d76ad7e11d6c2e92ebbcb1d37e8d4ddff70df4de2dd6f6b7444 -size 2657 diff --git a/MM_Math/data_original_21/7058344/solution_images/53043705_672.png b/MM_Math/data_original_21/7058344/solution_images/53043705_672.png deleted file mode 100644 index d2217c55b4c3c04e6ec025820dcd50c3410fce26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53043705_672.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:007d202ac0838e59066b4726b4a2bfd37401dc0c6b26fe933d18fcd96e58e2a8 -size 44334 diff --git a/MM_Math/data_original_21/7058344/solution_images/53043749_51.png b/MM_Math/data_original_21/7058344/solution_images/53043749_51.png deleted file mode 100644 index 6b7435f7e60d6b964821c42929a740ae4e6f6fd6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53043749_51.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b971d36b5f19a97515ab1da4c4fc92e1370a49b6a66c30c48c6c3e10a0dca17a -size 23484 diff --git a/MM_Math/data_original_21/7058344/solution_images/53043774_460.png b/MM_Math/data_original_21/7058344/solution_images/53043774_460.png deleted file mode 100644 index c6644557b42958f0fef346ef669ef3fb86bd0173..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53043774_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fa717eae65bd2b8473bb9cd611a0c1f1cdc7dc262961fd0f1c4d385a9a34366 -size 3279 diff --git a/MM_Math/data_original_21/7058344/solution_images/53043776_481.png b/MM_Math/data_original_21/7058344/solution_images/53043776_481.png deleted file mode 100644 index 0459206c2666bc27489c2dab0299761ad30a3692..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53043776_481.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f4c5dcb3cad01f395805417f0484a779919c0da59affd27f6774ac75f04bc3e -size 54123 diff --git a/MM_Math/data_original_21/7058344/solution_images/53043823_263.png b/MM_Math/data_original_21/7058344/solution_images/53043823_263.png deleted file mode 100644 index ee4b30c48edc6a397d59dc0e50366ccd181e6045..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53043823_263.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05ddcd11dd178f9051174e87aa309f2f430f8a161c54f08579b335266e6ba896 -size 6478 diff --git a/MM_Math/data_original_21/7058344/solution_images/53058713_35.png b/MM_Math/data_original_21/7058344/solution_images/53058713_35.png deleted file mode 100644 index 14971cc24840d8c4c8a817029c1e9709391edab5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53058713_35.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1dd4908c992cbb731430b9935162794eabcf794b6b69295a48492d29da41d86a -size 7550 diff --git a/MM_Math/data_original_21/7058344/solution_images/53065536_273.png b/MM_Math/data_original_21/7058344/solution_images/53065536_273.png deleted file mode 100644 index 278532bd1e3de82ade3fea4c000150e5dc2fa35b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53065536_273.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9d7594c7c69c5064d7fae87616ef23a6d6ae567a57439ea75880b4914bfc141 -size 2752 diff --git a/MM_Math/data_original_21/7058344/solution_images/53065816_120.png b/MM_Math/data_original_21/7058344/solution_images/53065816_120.png deleted file mode 100644 index b5431deae237451820261d77e17e4e08e413faae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53065816_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35d038f68f048e945c4445dd0e8c26c9d142043f5814346ec3ac8a9a08faeebb -size 44889 diff --git a/MM_Math/data_original_21/7058344/solution_images/53065849_8618.png b/MM_Math/data_original_21/7058344/solution_images/53065849_8618.png deleted file mode 100644 index 963dae8fe73a9b00d3d3fddee13e012809709f38..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53065849_8618.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3c35f4a99ae8f9bc89dde4ad5fe14ebdda23105dccce3ee8ce26f708d1f8921 -size 3422 diff --git a/MM_Math/data_original_21/7058344/solution_images/53066096_894.png b/MM_Math/data_original_21/7058344/solution_images/53066096_894.png deleted file mode 100644 index c7137f837cb96e221dfe7087d06b746c6c7c2b00..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53066096_894.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3a86f0dbe6180d2f4703da01d96e76e886e14649fdd58a22ea5ffa2b017b78d -size 4527 diff --git a/MM_Math/data_original_21/7058344/solution_images/53066224_474.png b/MM_Math/data_original_21/7058344/solution_images/53066224_474.png deleted file mode 100644 index bbc4aad0e39b52291e466f1ea0c51c11836fe4db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53066224_474.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:768e94d76969e838a855727fc373094effaddbb1ef7756c76c070b05b7f25a49 -size 4515 diff --git a/MM_Math/data_original_21/7058344/solution_images/53079125_182.png b/MM_Math/data_original_21/7058344/solution_images/53079125_182.png deleted file mode 100644 index 51d4ce0ef5337ea6d7e34d913d00f096093c9664..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53079125_182.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f64ac577344ad20382a558a07eacb9349477f767f7dde20972aac12b5b80aba -size 4044 diff --git a/MM_Math/data_original_21/7058344/solution_images/53080529_192.png b/MM_Math/data_original_21/7058344/solution_images/53080529_192.png deleted file mode 100644 index 19341f843667812a6210c48f4a7fbae5eb30d2e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53080529_192.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45550e2bd1efe460b011f2d43f21f198c87c2ffa572abccb3fa3652e8df6783f -size 3949 diff --git a/MM_Math/data_original_21/7058344/solution_images/53080562_140.png b/MM_Math/data_original_21/7058344/solution_images/53080562_140.png deleted file mode 100644 index 7f047134357475f9cc8dee42725b5c0b4b9230ae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53080562_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dbe4127c3ef1f1b00dccb8bd5653f92cdbf83e81a81bf3e33f9a6dd6cc383764 -size 2569 diff --git a/MM_Math/data_original_21/7058344/solution_images/53080565_850.png b/MM_Math/data_original_21/7058344/solution_images/53080565_850.png deleted file mode 100644 index 81fe2108cdbd74c8e940da9409977081653878d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53080565_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c1901c07fe317a0888d3107bf1bb6cce5b8ae0a48555d9072e7ed5904dc9afd -size 7474 diff --git a/MM_Math/data_original_21/7058344/solution_images/53080924_540.png b/MM_Math/data_original_21/7058344/solution_images/53080924_540.png deleted file mode 100644 index 0cc10f1bd56b245770566f21a78a0dbbe6588853..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53080924_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:351046c457fd6f93b5bab4dce3e762d44c28707b8e046df1dc853f19a64aa6e7 -size 4076 diff --git a/MM_Math/data_original_21/7058344/solution_images/53102110_767.png b/MM_Math/data_original_21/7058344/solution_images/53102110_767.png deleted file mode 100644 index 44ec4c90e93cb7414e3766f71b9e22d17b07b145..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53102110_767.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae7db3cc9592c24b908ae6a03d23cc0da29c633997f3890bbe2214589965b2e3 -size 63657 diff --git a/MM_Math/data_original_21/7058344/solution_images/53102359_730.png b/MM_Math/data_original_21/7058344/solution_images/53102359_730.png deleted file mode 100644 index 96b069d0d8457d4902601bec1a6dc8bd0ba0a081..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53102359_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13524c223ff19721970976e6fd756a4820e1c0762a1fba132595431c8b63eae6 -size 2757 diff --git a/MM_Math/data_original_21/7058344/solution_images/53124720_690.png b/MM_Math/data_original_21/7058344/solution_images/53124720_690.png deleted file mode 100644 index fca4bd6a7597fe3abf89513cb6c4a8de5adfeef9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53124720_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e75d7882f270832c92f75dd0a842d9b7975a51740493142dc2a287ad93ed5dc1 -size 8122 diff --git a/MM_Math/data_original_21/7058344/solution_images/53207822_881.png b/MM_Math/data_original_21/7058344/solution_images/53207822_881.png deleted file mode 100644 index 207199c62f0db8918b7759bf3d3b1f6157b90b80..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/53207822_881.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc2ee7fdf1b775eb44ebff91f7b07afebf60974c9d48929c56e670412ae28b4d -size 10993 diff --git a/MM_Math/data_original_21/7058344/solution_images/55487875_415.png b/MM_Math/data_original_21/7058344/solution_images/55487875_415.png deleted file mode 100644 index 9416b7b014950ec238cb7b12cf5df8d28e2a7372..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/55487875_415.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fda36a263b22682605dc11da5acd1a153bb5b4f4c29ccacf764e0983b41807cd -size 3922 diff --git a/MM_Math/data_original_21/7058344/solution_images/55502222_3926.png b/MM_Math/data_original_21/7058344/solution_images/55502222_3926.png deleted file mode 100644 index 9dee638b3c6d94eebe24ed0bbd455297c12083bc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/55502222_3926.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa88bee212d63d4ba95fdb408287cbff3f5572eb6a65b0ae1ce40e656fcd8926 -size 10947 diff --git a/MM_Math/data_original_21/7058344/solution_images/55502222_395.png b/MM_Math/data_original_21/7058344/solution_images/55502222_395.png deleted file mode 100644 index 5bb3b6904422387190f98548665a57b55540d4ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/55502222_395.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65fd36cbc885d1a2bd44947033cd48c85e571075e949580a73e8b0121068d778 -size 10782 diff --git a/MM_Math/data_original_21/7058344/solution_images/55533861_420.png b/MM_Math/data_original_21/7058344/solution_images/55533861_420.png deleted file mode 100644 index 53171291cc26b96b865e3edb51d01861ee6c4dee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/55533861_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e07d1ca1b6db512a4a4ca7312d5476510059b9887a4baa97597f78d98f5e87f7 -size 29999 diff --git a/MM_Math/data_original_21/7058344/solution_images/55533862_970.png b/MM_Math/data_original_21/7058344/solution_images/55533862_970.png deleted file mode 100644 index e401becb4a6605b1b7c7a753049dea17ec61b75b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/55533862_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01427fdc65cb697e1eaa1e423488b242e4cee3d2b730db02bb82c9328a8c692d -size 44057 diff --git a/MM_Math/data_original_21/7058344/solution_images/55551954_871.png b/MM_Math/data_original_21/7058344/solution_images/55551954_871.png deleted file mode 100644 index 7360d251718a8d07fa8d86b8c39cb748f0efc738..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/55551954_871.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79c8e53254f8af95c17d1aa44d0811d908c0971fee67ee56eef0626dadc2c51d -size 6647 diff --git a/MM_Math/data_original_21/7058344/solution_images/55574671_341.png b/MM_Math/data_original_21/7058344/solution_images/55574671_341.png deleted file mode 100644 index d16c84cee02bbcc4ab38d3079df2131d4385af20..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/55574671_341.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a69ec8cac12a44a22aee51b826bdfad6bd4cae62a94e8c574fc28c69c4b14cc -size 46612 diff --git a/MM_Math/data_original_21/7058344/solution_images/55594993_332.png b/MM_Math/data_original_21/7058344/solution_images/55594993_332.png deleted file mode 100644 index 39d8a28d6d7deac40367bbbfcfcd41a8b07c8cfc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058344/solution_images/55594993_332.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de039c58c7ae1281c5fecb9a1cde8df8ba8e4359a427085d31d66e39bc707fa4 -size 12563 diff --git a/MM_Math/data_original_21/7058470/math/51299527_570.png b/MM_Math/data_original_21/7058470/math/51299527_570.png deleted file mode 100644 index c38c402e07e0a21b8f1e1e55d3cab75d4c59d102..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51299527_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e05b6aa6fe1318dc47b445eaa7f9ec489f3b0943a3de44b01ec238c823cadc89 -size 4446 diff --git a/MM_Math/data_original_21/7058470/math/51299785_240.png b/MM_Math/data_original_21/7058470/math/51299785_240.png deleted file mode 100644 index 221d7a46a2fd7a9c2edf2c412f4dae2759e7391b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51299785_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10dfdb766ecd3b10511d04773db1865823754e1f46395bdaa5e50e0253276530 -size 4015 diff --git a/MM_Math/data_original_21/7058470/math/51299813_901.png b/MM_Math/data_original_21/7058470/math/51299813_901.png deleted file mode 100644 index 0874d45a2e72267a1fcf4b92fc3ef96e9f9582ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51299813_901.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9d4a5d22490d12644f0f37f286404183a44d105b28254b300ac1264027786ea -size 4022 diff --git a/MM_Math/data_original_21/7058470/math/51321576_140.png b/MM_Math/data_original_21/7058470/math/51321576_140.png deleted file mode 100644 index ff4a1e9b3ed35d429bded2f20faf17f20bcd21aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51321576_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:314c1fbe4da6071b6493e7803091cbced0de39d4f780876a0ee5dc895046d65a -size 11115 diff --git a/MM_Math/data_original_21/7058470/math/51323853_722.png b/MM_Math/data_original_21/7058470/math/51323853_722.png deleted file mode 100644 index a02b0efa840fae198fc6ec26c97726e49f879551..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51323853_722.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e190426628c3e4c8ec6b859c24852bdd629568a1461328774c1fec16403a5ac -size 3088 diff --git a/MM_Math/data_original_21/7058470/math/51323911_139.png b/MM_Math/data_original_21/7058470/math/51323911_139.png deleted file mode 100644 index f638335e9d5218c512fcdeed20c54ce3e635312b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51323911_139.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14723587b04ad0a0eca575322920c294426c85d375181c62d43a3258fa4e6e4d -size 9615 diff --git a/MM_Math/data_original_21/7058470/math/51369888_506.png b/MM_Math/data_original_21/7058470/math/51369888_506.png deleted file mode 100644 index 954e7dbd2ba050428e2aa138249b31f9f9f62bad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51369888_506.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76f3461131872bef6bb94ffb7b058965d9aa17c23f53fcefe12cdf18ae00bf46 -size 10016 diff --git a/MM_Math/data_original_21/7058470/math/51369905_810.png b/MM_Math/data_original_21/7058470/math/51369905_810.png deleted file mode 100644 index 6902ee735399b24a23a0dc7b14605bf055361497..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51369905_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3b966018ddeb6585b7a6797731dbd4f105c6afbb373a219f066f6ed6cb0f650 -size 7086 diff --git a/MM_Math/data_original_21/7058470/math/51402157_6523.png b/MM_Math/data_original_21/7058470/math/51402157_6523.png deleted file mode 100644 index 56d1d9e6a99d71dcdee066d04845d37f1a6126b0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51402157_6523.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c2d3a37e10e5ae26696599a96b468e95bdc2981bfd3b52cd44817fb9868e51c -size 13014 diff --git a/MM_Math/data_original_21/7058470/math/51402363_663.png b/MM_Math/data_original_21/7058470/math/51402363_663.png deleted file mode 100644 index 02fae6545b1adb2596f3115d4973f18139d78a3e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51402363_663.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d058235ac8174563d451de8307d512f86eacaf1f01542598e0ee17ed042c701 -size 3023 diff --git a/MM_Math/data_original_21/7058470/math/51403017_275.png b/MM_Math/data_original_21/7058470/math/51403017_275.png deleted file mode 100644 index 635d220d7d5bd26d8f253f5bee400db4e62a18e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51403017_275.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:598b98284f1fd5774a356ef3f0eaafe3cfbf97f09313488d6e0ecd10477c1a3a -size 17658 diff --git a/MM_Math/data_original_21/7058470/math/51403020_630.png b/MM_Math/data_original_21/7058470/math/51403020_630.png deleted file mode 100644 index 6152a3d1a685fdabbcf3014f87a30c45f5a6ca43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51403020_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7eefc4060a5351a55a3206a824eec46d8b7c563f6f6d83c9122c311c3802603 -size 10365 diff --git a/MM_Math/data_original_21/7058470/math/51403070_911.png b/MM_Math/data_original_21/7058470/math/51403070_911.png deleted file mode 100644 index b4fdf3a3b31f02aeebc028d2e349bec450436a56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51403070_911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e7d652587b18ed3f29847a6a6d7d1cee6620364a2000e94d98515a3ed3d2665 -size 4838 diff --git a/MM_Math/data_original_21/7058470/math/51403117_260.png b/MM_Math/data_original_21/7058470/math/51403117_260.png deleted file mode 100644 index 6d4b5248e555b5406ca9668c53bd2b1ad8091efb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51403117_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24015ebc413b9e3b1bb68da3b92a63957479ac2b1efc1c9e914c21d2d1dc3699 -size 5566 diff --git a/MM_Math/data_original_21/7058470/math/51403118_250.png b/MM_Math/data_original_21/7058470/math/51403118_250.png deleted file mode 100644 index 1cc33c27a06616e06b73ebd11bc20ca7ba56581a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51403118_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f6607225f73385282cacb02f4d96d8a600865bb673f34fe2b94398081fffbc4d -size 4110 diff --git a/MM_Math/data_original_21/7058470/math/51403135_740.png b/MM_Math/data_original_21/7058470/math/51403135_740.png deleted file mode 100644 index f1a31c3b3501983b81ed4963aa6f36fc4e78d90c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51403135_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:713498b2bb67175205ebf6eff5231d218493c8ddb0cda4d38eacc1b11d869d26 -size 8001 diff --git a/MM_Math/data_original_21/7058470/math/51403273_645.png b/MM_Math/data_original_21/7058470/math/51403273_645.png deleted file mode 100644 index 1b71d89ee03e72332b58a10f71b3592dee879f74..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51403273_645.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23bbf04a87d587e241b88bef17aff23eafe7d703f24b4cd1d054fecb65855a67 -size 2851 diff --git a/MM_Math/data_original_21/7058470/math/51403279_923.png b/MM_Math/data_original_21/7058470/math/51403279_923.png deleted file mode 100644 index 041dfa13552760ef72909a9ad5e50b298427695a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51403279_923.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e523c9961477a940604a04dd3690f937335570dd33624fff6c820c494833a92 -size 1334 diff --git a/MM_Math/data_original_21/7058470/math/51403336_733.png b/MM_Math/data_original_21/7058470/math/51403336_733.png deleted file mode 100644 index e697402bb1dbd3b64cd271dbef6ddc9dd483bd97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51403336_733.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b73ffdf875cc1c83abaf6922d730e1fd27631e6a584ada664c546a9bb04ede7 -size 4961 diff --git a/MM_Math/data_original_21/7058470/math/51406936_623.png b/MM_Math/data_original_21/7058470/math/51406936_623.png deleted file mode 100644 index 1a09b17482a43f6bd6ce160b312fc6ffc4f1de14..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51406936_623.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d92d8ba785489d976a44665fe9e7bd24a52c80059c5d2336604228901a7b357 -size 8639 diff --git a/MM_Math/data_original_21/7058470/math/51406974_610.png b/MM_Math/data_original_21/7058470/math/51406974_610.png deleted file mode 100644 index ab81c4ba607f65bd9fcd30472280dd45849bdbca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51406974_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11268bfe597d87b2aaf403f711cb8aa10f31bc7c8114ac71566d371a7030b4ed -size 6189 diff --git a/MM_Math/data_original_21/7058470/math/51407002_592.png b/MM_Math/data_original_21/7058470/math/51407002_592.png deleted file mode 100644 index f97b2215c1b636950ad843015034e0afcfde8f3e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51407002_592.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e7eeea271fa0dde71a7149fda18d8f44f4e005e440e23746b62262d25da174b -size 4414 diff --git a/MM_Math/data_original_21/7058470/math/51407004_602.png b/MM_Math/data_original_21/7058470/math/51407004_602.png deleted file mode 100644 index fdc8898ee7548d1337085eab1870bdd27b985770..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51407004_602.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0f932c487059400b3732c590f1a1026f3cbe73780316526a35fd43a1f3d94d1 -size 3779 diff --git a/MM_Math/data_original_21/7058470/math/51407044_580.png b/MM_Math/data_original_21/7058470/math/51407044_580.png deleted file mode 100644 index b1d0d2da9717ac6f3269c5467db246a876da4478..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51407044_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:493643bab3e494ee16868f851d3c3778e9220d325bed84c2441a071af65b97a9 -size 10491 diff --git a/MM_Math/data_original_21/7058470/math/51445412_550.png b/MM_Math/data_original_21/7058470/math/51445412_550.png deleted file mode 100644 index 15890304ed67fa77001dbcdbeed98d7f3924c911..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51445412_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2fc8e0f52a8320348d878f520baeab52dba59497aebc5e568b2f21e5b8cbf197 -size 5096 diff --git a/MM_Math/data_original_21/7058470/math/51445481_200.png b/MM_Math/data_original_21/7058470/math/51445481_200.png deleted file mode 100644 index c1eade94aafbeb336b7c578d17a49652c2ee1790..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51445481_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dce8506c98547287033d6fbee118cc6b8cc5f4127d15fb98ad0b6af7df25d8d0 -size 3132 diff --git a/MM_Math/data_original_21/7058470/math/51445690_881.png b/MM_Math/data_original_21/7058470/math/51445690_881.png deleted file mode 100644 index 55b53815e6edcc590a48ec9d8214a15eb563464d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51445690_881.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1ba6215a1ddedce0b136e8f3887a30e0bf62778ff40c3c9b55f3dbfa627b93d -size 6778 diff --git a/MM_Math/data_original_21/7058470/math/51445931_860.png b/MM_Math/data_original_21/7058470/math/51445931_860.png deleted file mode 100644 index 298ba4fed7b60b64ceeb1459b619bb75f1e2ce19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51445931_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53edd1d9bc0621c8cf72a1be868d00182facfe603b8142277004ea1f83f1c46b -size 2578 diff --git a/MM_Math/data_original_21/7058470/math/51445934_825.png b/MM_Math/data_original_21/7058470/math/51445934_825.png deleted file mode 100644 index c687283bf820227b16cab2c7f6130c3178514a47..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51445934_825.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ccdc9431d5ed823d534a73587c0ca846793ea391b070d937c40b11296b48b76 -size 2905 diff --git a/MM_Math/data_original_21/7058470/math/51445982_212.png b/MM_Math/data_original_21/7058470/math/51445982_212.png deleted file mode 100644 index eb4fb557af075b028e1a77a612f26d4f3b998db8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51445982_212.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0ef01d4649dac183397cf7860e5b1f0db99dc8b420c1ad8552a5167bcf93854 -size 5782 diff --git a/MM_Math/data_original_21/7058470/math/51445991_893.png b/MM_Math/data_original_21/7058470/math/51445991_893.png deleted file mode 100644 index 46b2478430f0bf61ce8c5086cfbfee6dd5f8595e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51445991_893.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a25e23cb5467ff47503282910d08f3b39594430bf34423cdbf2c8ef7e52f9a01 -size 5142 diff --git a/MM_Math/data_original_21/7058470/math/51446059_540.png b/MM_Math/data_original_21/7058470/math/51446059_540.png deleted file mode 100644 index 773a2f29157112f9d628d4040ae4f99800258655..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446059_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f09b0e6e38db882fefcfca102e50930cf581278932d1b957f0bdc6a32e227be -size 7250 diff --git a/MM_Math/data_original_21/7058470/math/51446126_230.png b/MM_Math/data_original_21/7058470/math/51446126_230.png deleted file mode 100644 index f8d7b25c642020383dd132bc869f045daed56e97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446126_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a01fc4ab9d48518416db593fb0566abd3842ca255b716db86edf372211c6ea9 -size 6115 diff --git a/MM_Math/data_original_21/7058470/math/51446308_561.png b/MM_Math/data_original_21/7058470/math/51446308_561.png deleted file mode 100644 index 1222f758cb8552c9cc1e6178405ccac5adee9e37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446308_561.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:370125561dd9cb07a9cd2092a5bb6300854b43ba2c52bd98064160cd6cc0693e -size 2218 diff --git a/MM_Math/data_original_21/7058470/math/51446320_830.png b/MM_Math/data_original_21/7058470/math/51446320_830.png deleted file mode 100644 index bd604501a84fa9ce78e543b455979a428f7198c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446320_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81c6ded983fd131772d19ec1ee0b4db1589d25c40e4e14e79b5a222e70246823 -size 10738 diff --git a/MM_Math/data_original_21/7058470/math/51446343_224.png b/MM_Math/data_original_21/7058470/math/51446343_224.png deleted file mode 100644 index a7d9af54e143bdd6a1a7fa0c2fe4171bae6ea7c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446343_224.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3b10e79f72c94c83a462d2af2a05dfc1b2762bc037cb05ecd28c9558985862c -size 3680 diff --git a/MM_Math/data_original_21/7058470/math/51446383_162.png b/MM_Math/data_original_21/7058470/math/51446383_162.png deleted file mode 100644 index bd2b442ab246035b490cdfd19f382852a9b741ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446383_162.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:107c933ffe5b35c0ed479b8df7476f8fbabf29e59ef84eb63716c60b67434ac2 -size 3982 diff --git a/MM_Math/data_original_21/7058470/math/51446412_194.png b/MM_Math/data_original_21/7058470/math/51446412_194.png deleted file mode 100644 index 835ffe4a01d80055a328251c30146f47eba97a43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446412_194.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:706351c9750534f2e0dc0b68c2da069ec66290a130adf8227be7f9898a4cfcd0 -size 4186 diff --git a/MM_Math/data_original_21/7058470/math/51446419_525.png b/MM_Math/data_original_21/7058470/math/51446419_525.png deleted file mode 100644 index 6484d667f901a0e55fd443abf3a15827f945afd6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446419_525.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19af9b7928379fe8acd1478e6f0cb1afe8a1219d4dde98ba2ab0433f372e2071 -size 2799 diff --git a/MM_Math/data_original_21/7058470/math/51446460_511.png b/MM_Math/data_original_21/7058470/math/51446460_511.png deleted file mode 100644 index 2ba373376f13650f0894f401b0c4b7920f8e9b3e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446460_511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a9c225c0982549d0c189bd6c4abef726f9ff33b6ae56f77c6399c573b4390ea -size 13272 diff --git a/MM_Math/data_original_21/7058470/math/51446529_180.png b/MM_Math/data_original_21/7058470/math/51446529_180.png deleted file mode 100644 index afa27c434134a4c9a0d4e4c6be216814af4cbed8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446529_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c48814adb5850e57a8c9ac92374a109682d8796c434d253195b5f4ec131ed4b -size 1328 diff --git a/MM_Math/data_original_21/7058470/math/51446652_175.png b/MM_Math/data_original_21/7058470/math/51446652_175.png deleted file mode 100644 index c5b3a38406039fdca0e7a9dc7d9d3b83ff8570a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51446652_175.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fcd09d543ab17071df99b05fb100b2ccdb2b4868055a6fc54b1f51376947ec8 -size 2822 diff --git a/MM_Math/data_original_21/7058470/math/51545252_292.png b/MM_Math/data_original_21/7058470/math/51545252_292.png deleted file mode 100644 index b712c7300b9657dce03634910d50b24a75944cc8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51545252_292.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aae3bd8e9055f74b5ac935e5f8f6ace680748082418a14244ea05cef96960069 -size 16497 diff --git a/MM_Math/data_original_21/7058470/math/51545288_300.png b/MM_Math/data_original_21/7058470/math/51545288_300.png deleted file mode 100644 index 71dcbf12dc0769b85fe5a0fc8e80ef6c55a79e12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51545288_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:697287d2113434c0381701b70f3b2937db6a9ea105d5fbba79739d93bca60b8c -size 6266 diff --git a/MM_Math/data_original_21/7058470/math/51545315_990.png b/MM_Math/data_original_21/7058470/math/51545315_990.png deleted file mode 100644 index c2741c8c6006f3528f1edc48cb73e788915ddf81..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51545315_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79948962cfa016ad53f70e706e7d3c220ed8edfe214592e74a317089145a638c -size 144879 diff --git a/MM_Math/data_original_21/7058470/math/51545328_681.png b/MM_Math/data_original_21/7058470/math/51545328_681.png deleted file mode 100644 index f1593103b273dc0a89341058e1d8318ca316e333..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/51545328_681.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:baffe5d4f34dc8ca14d06731559607ffe6c365661e413282c6cb75decd36db0d -size 3505 diff --git a/MM_Math/data_original_21/7058470/math/52457420_124.png b/MM_Math/data_original_21/7058470/math/52457420_124.png deleted file mode 100644 index aae93e4f56cd289d7be81b34017afe289c962345..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52457420_124.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c73aa4bb3169684f0e164f9ccc20fc147588955a8da028e99b70084a317d6431 -size 3132 diff --git a/MM_Math/data_original_21/7058470/math/52457426_4918.png b/MM_Math/data_original_21/7058470/math/52457426_4918.png deleted file mode 100644 index c661087b5ba8aed27a8a8debde50a6dee31f3668..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52457426_4918.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee58aad7b31bea9cf9c810c9b3cbae2befba0571547f98537a2c56406175d308 -size 2870 diff --git a/MM_Math/data_original_21/7058470/math/52486708_807.png b/MM_Math/data_original_21/7058470/math/52486708_807.png deleted file mode 100644 index e54448158a5186d5e06ccd0d377f72d9004608b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52486708_807.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6086c6d91a13f2aba3be7073c011e236465a6d75dd88632922a5c1554a90709 -size 75264 diff --git a/MM_Math/data_original_21/7058470/math/52514026_798.png b/MM_Math/data_original_21/7058470/math/52514026_798.png deleted file mode 100644 index 812976d635c66c23741ed7d6f3deef52255e2c8e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52514026_798.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3595beff911e93327aa130e28cf62dbf2f82f6e015344e72f6bd64b705c6362 -size 5068 diff --git a/MM_Math/data_original_21/7058470/math/52514048_110.png b/MM_Math/data_original_21/7058470/math/52514048_110.png deleted file mode 100644 index a86d5765693f1691426d9917d2d8068d27cf2fcb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52514048_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a24f91d11e6835baed3f1a31850afcd12db3f07aa07e6beb06c77165def0aa0 -size 17350 diff --git a/MM_Math/data_original_21/7058470/math/52536535_461.png b/MM_Math/data_original_21/7058470/math/52536535_461.png deleted file mode 100644 index b6fcf7bde02384c1e886d33df50c72c93a0f175b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52536535_461.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9fd06d1373508040942a70d1f4e870459e7a76560af86ec0acc3b0f091e7d03 -size 6022 diff --git a/MM_Math/data_original_21/7058470/math/52536543_710.png b/MM_Math/data_original_21/7058470/math/52536543_710.png deleted file mode 100644 index 4b8b33ffe49c23f30f4846ddc2e30a5a407664e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52536543_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7928783a0ddc52cc6d274ab2c4adb9fcaa3721238927a9b29114d2626175ef92 -size 2642 diff --git a/MM_Math/data_original_21/7058470/math/52536703_70.png b/MM_Math/data_original_21/7058470/math/52536703_70.png deleted file mode 100644 index 16611873dd42efffd900198decc80a77876dfde9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52536703_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a38857e54fadc2d0a2d77d73a5adbe92bd8a020f47017697dd73cb0a84ac3bb5 -size 2148 diff --git a/MM_Math/data_original_21/7058470/math/52537007_60.png b/MM_Math/data_original_21/7058470/math/52537007_60.png deleted file mode 100644 index 9e87547c12e95d4f2db4908c381b367ce676ee55..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52537007_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2445695c122c07b32ee73ece890bfcac5819abfb4f683c65f7dc65cad7b8263 -size 1338 diff --git a/MM_Math/data_original_21/7058470/math/52537008_89.png b/MM_Math/data_original_21/7058470/math/52537008_89.png deleted file mode 100644 index b2ef1521bfd3d28c418b9890538fa9f578eb2c53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52537008_89.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bbaaa02edccbc2b8bc190f0cf2305c77bbbe5f896616ed813d9b266b25b36c40 -size 9150 diff --git a/MM_Math/data_original_21/7058470/math/52537075_94.png b/MM_Math/data_original_21/7058470/math/52537075_94.png deleted file mode 100644 index a970a905d125471064074e4c58e3886f34c6da8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52537075_94.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c9dfa5a5df744f1d4aa239f9e3e137c19c1ca98550e25c6edd10af964be8cb0 -size 1426 diff --git a/MM_Math/data_original_21/7058470/math/52537080_476.png b/MM_Math/data_original_21/7058470/math/52537080_476.png deleted file mode 100644 index 6f13392cc6fd007a18d7c6521438169b842cf26e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52537080_476.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69cf6089a32b1a9afbe8539874e47c006540532ab2c5df71a3f6afdbc3dcde0b -size 5302 diff --git a/MM_Math/data_original_21/7058470/math/52537139_50.png b/MM_Math/data_original_21/7058470/math/52537139_50.png deleted file mode 100644 index 5adaef242d9a999105981aef7b30220fca834877..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52537139_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1171d95ea3c6fb135afc3ca2f4cfdd4b34d0615f31e005e19627215abe0b3dfa -size 3522 diff --git a/MM_Math/data_original_21/7058470/math/52537144_100.png b/MM_Math/data_original_21/7058470/math/52537144_100.png deleted file mode 100644 index 54729d9cf8fea9bb292aa730015c4b0f0d7dda7e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52537144_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6db0036c503ae73987a1cb5c68bd7c966f4b61d6c4c993dafd6b424429bbfb1d -size 4100 diff --git a/MM_Math/data_original_21/7058470/math/52537147_454.png b/MM_Math/data_original_21/7058470/math/52537147_454.png deleted file mode 100644 index c1f8fba90bac30019f8b7ab10c36512e9ed71c94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52537147_454.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33373a9b9e8240528f3bcf90204f15fc36b1fa79e0d286d8fe769cf6d7c08b5a -size 6352 diff --git a/MM_Math/data_original_21/7058470/math/52551191_787.png b/MM_Math/data_original_21/7058470/math/52551191_787.png deleted file mode 100644 index 24d82435d0471c1d75fac8dd97910c3920dca93f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52551191_787.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6b65f4325127a48f38093ca2e8481c8bb6af85ee955b3bdbfcc27c28badcabc -size 4222 diff --git a/MM_Math/data_original_21/7058470/math/52551361_48.png b/MM_Math/data_original_21/7058470/math/52551361_48.png deleted file mode 100644 index 9c40d6883fa8e78bd3cf8eb9d39dd45e2b3ad353..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52551361_48.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:231bce5b3618ba4a3305e35812ca85e30c41cc08860eb4011680368e5b31519b -size 4502 diff --git a/MM_Math/data_original_21/7058470/math/52551786_441.png b/MM_Math/data_original_21/7058470/math/52551786_441.png deleted file mode 100644 index 903d440a86c0f958d0a2d6ed33316191138ca1d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52551786_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66857aa7b5a12db52bef285bbf6e7cc5291a032c38ce0346ecbc02a2f8053f07 -size 2659 diff --git a/MM_Math/data_original_21/7058470/math/52601657_400.png b/MM_Math/data_original_21/7058470/math/52601657_400.png deleted file mode 100644 index 51f8da44221d07b0dcd946f76de5f54aeb1e855e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52601657_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ecbf11f168862e211efcba5749c65d44a32dcd7e0977b67dd6710aa7729de5a -size 18522 diff --git a/MM_Math/data_original_21/7058470/math/52601690_282.png b/MM_Math/data_original_21/7058470/math/52601690_282.png deleted file mode 100644 index 46b835b18796671291b20430e420cdbfb295d846..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52601690_282.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc72944cfb31f0b7f9ffd2786f56a1c0ce3e0e664d77975fbe6951e055976a6c -size 7173 diff --git a/MM_Math/data_original_21/7058470/math/52601718_381.png b/MM_Math/data_original_21/7058470/math/52601718_381.png deleted file mode 100644 index 7749d6943a7d34d2e9bb492664207fe837aeaec7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52601718_381.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9aa4a15ff977576e9ccbda1f370249ca124187579f24a0765c93b9ea93139c50 -size 6223 diff --git a/MM_Math/data_original_21/7058470/math/52601742_936.png b/MM_Math/data_original_21/7058470/math/52601742_936.png deleted file mode 100644 index e5a38868aa344e02a2b90ed8914ef97818a2df43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52601742_936.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:459e5be5d17005c53d4b74828c6fffe417550c1a5896b784c936c7418763d1dd -size 5357 diff --git a/MM_Math/data_original_21/7058470/math/52601757_330.png b/MM_Math/data_original_21/7058470/math/52601757_330.png deleted file mode 100644 index b0f32e12ab7fe3caa67997800aca36bf79ef9ac8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52601757_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8cef0eb26e6db38f145ec68b7a722b1e2e9c763d54b21196b2f2fba3bd690a12 -size 5125 diff --git a/MM_Math/data_original_21/7058470/math/52601801_704.png b/MM_Math/data_original_21/7058470/math/52601801_704.png deleted file mode 100644 index 54569c7ceeaf25f66c644f63b3ce542f3b1e4136..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52601801_704.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:613d2f8577c17d21462f8207e9d7b9744abb36439a17599b93c13e5e7e95e9d2 -size 3869 diff --git a/MM_Math/data_original_21/7058470/math/52601836_310.png b/MM_Math/data_original_21/7058470/math/52601836_310.png deleted file mode 100644 index 3214ef820c5bdbf5cc409a89607979eacb56d8ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52601836_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b644a6528626084721df425dbcb2c7dac92929454921ae858495f6ef5d1015a0 -size 106558 diff --git a/MM_Math/data_original_21/7058470/math/52601954_321.png b/MM_Math/data_original_21/7058470/math/52601954_321.png deleted file mode 100644 index 538c94ef0ed2b452f56c0d72f9590cb01a013fa9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52601954_321.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f37e67a275845341ab429b4826cb1c8730115d556a8ba68c9c3d12ddea05b3b4 -size 3104 diff --git a/MM_Math/data_original_21/7058470/math/52601992_692.png b/MM_Math/data_original_21/7058470/math/52601992_692.png deleted file mode 100644 index 693440fca231354b3847e03eda42666aef956a34..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52601992_692.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:279ea7ad0123e73faa4113d6821e0417451aeea551db2da71dafa137eed786ae -size 23856 diff --git a/MM_Math/data_original_21/7058470/math/52602002_977.png b/MM_Math/data_original_21/7058470/math/52602002_977.png deleted file mode 100644 index aa14c3987194d476ce46192d81253fb7f01e2d9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52602002_977.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b2932dce69ad12f355d873fd0f9b53a9b944c789dd86b0fac6e6b06edaab0b9 -size 11974 diff --git a/MM_Math/data_original_21/7058470/math/52602114_980.png b/MM_Math/data_original_21/7058470/math/52602114_980.png deleted file mode 100644 index 644aca409635bb0f9bd854e681d5a83dad59b7ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52602114_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c98fd016f2050f0b1a7d3c8a0d5d19c8572f28e2dc3a61621c8da23df6e4a569 -size 1738 diff --git a/MM_Math/data_original_21/7058470/math/52602230_374.png b/MM_Math/data_original_21/7058470/math/52602230_374.png deleted file mode 100644 index d975ebafb3c700f294c85220619602faf05ea30a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52602230_374.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bb2c499d69fc1eae170dc2bbe80939d420f1700643db263957507f8cac25190 -size 1575 diff --git a/MM_Math/data_original_21/7058470/math/52602500_951.png b/MM_Math/data_original_21/7058470/math/52602500_951.png deleted file mode 100644 index 5e0a66366b9a379142d1482ce4c9b317cf01fb69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52602500_951.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6276e8c36cd6e453e4d2c133f6e6d2c22e18fe9aa51ebdae34aa0a521244a5d2 -size 5896 diff --git a/MM_Math/data_original_21/7058470/math/52602711_672.png b/MM_Math/data_original_21/7058470/math/52602711_672.png deleted file mode 100644 index e135b3eebe5c46d59961a781395675b52ed1b0a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52602711_672.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59e2f40816d651dc86fd33bd4660a5e8c6c6f2986e26febe74bdea7ed24e657a -size 3092 diff --git a/MM_Math/data_original_21/7058470/math/52602893_390.png b/MM_Math/data_original_21/7058470/math/52602893_390.png deleted file mode 100644 index 321d1d16fc0b3471e16ebdfc4d804249ab97208c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52602893_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2670953f910d6158b8bcc978e4f0e5835b562e087ec121f3fc2bb384de3878f7 -size 2710 diff --git a/MM_Math/data_original_21/7058470/math/52634631_4812.png b/MM_Math/data_original_21/7058470/math/52634631_4812.png deleted file mode 100644 index e1eb9c68aaf12c229c79471ca3063a7315bc1519..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52634631_4812.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4af003c8572e14df371a3b702ddd952940866d6dc7fd40a036dc25347f93fccc -size 9964 diff --git a/MM_Math/data_original_21/7058470/math/52688304_30.png b/MM_Math/data_original_21/7058470/math/52688304_30.png deleted file mode 100644 index 53f211c21ebeaab3c7826e4f9b1d3dca17f8ec32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52688304_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:632a17aa465a1a46caa2256e6c108f0406299f935c0c3eae476c4e54f8202c93 -size 8695 diff --git a/MM_Math/data_original_21/7058470/math/52715402_21.png b/MM_Math/data_original_21/7058470/math/52715402_21.png deleted file mode 100644 index b8b676d93053cce71126c358ec076aeb43166322..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52715402_21.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4644f5be134fb951c0b222b6bbdcd5770b6fb5516da57da7f9eba2b6070740f0 -size 3227 diff --git a/MM_Math/data_original_21/7058470/math/52719763_355.png b/MM_Math/data_original_21/7058470/math/52719763_355.png deleted file mode 100644 index b37bfe9604d6d9a99e7308294ed3c53e709d92f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52719763_355.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c19132017edc3e66cce73921e31ff3df9c9217af8748b323764e9f189d8766e2 -size 2119 diff --git a/MM_Math/data_original_21/7058470/math/52719806_362.png b/MM_Math/data_original_21/7058470/math/52719806_362.png deleted file mode 100644 index cc615c922be3d2fe32ee6583c5c1b8a01e16342f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52719806_362.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:746f8cacd44594e51db9e401c08fc8c3b9ce87f6ddd0509cafc24e0594d9f56a -size 3867 diff --git a/MM_Math/data_original_21/7058470/math/52733116_430.png b/MM_Math/data_original_21/7058470/math/52733116_430.png deleted file mode 100644 index 00033bfbd6bbb1261672a1b76b1eaac2489f7c4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52733116_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:27bec3ab7780e74dbf4f3641d5c06a4a21b5db593883ad4ce2c40f073f5bcaa9 -size 8842 diff --git a/MM_Math/data_original_21/7058470/math/52745971_776.png b/MM_Math/data_original_21/7058470/math/52745971_776.png deleted file mode 100644 index c9bf187967d4cdc0d1a2fe0fae2202c412ccf47a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52745971_776.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2d5dd9f48fd0a2962751f728ef13d9203e8737c38fbd31615f5f25202749b0a -size 6778 diff --git a/MM_Math/data_original_21/7058470/math/52754810_751.png b/MM_Math/data_original_21/7058470/math/52754810_751.png deleted file mode 100644 index ef73a55eecfdf2c6e539d919e049020aa08bd989..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52754810_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f8a532bf2313d31fec14b9e4dbce2914c2ccc4b05112a09c74f637d914fcf8b -size 5815 diff --git a/MM_Math/data_original_21/7058470/math/52754813_760.png b/MM_Math/data_original_21/7058470/math/52754813_760.png deleted file mode 100644 index 650526a620bd91fcc4f2d6744782ceca8844a0c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52754813_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:95ae6061427db70cafd15086a7ce0d1c082d5cec8135d7db633087538deba78a -size 6077 diff --git a/MM_Math/data_original_21/7058470/math/52765236_340.png b/MM_Math/data_original_21/7058470/math/52765236_340.png deleted file mode 100644 index 46b03db4603622a36df84c22f2dabcec8c059ab0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52765236_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca58498aa107c81734da8bef5a68c93e0d4e382ff997665664bdedbed737c365 -size 2462 diff --git a/MM_Math/data_original_21/7058470/math/52765293_941.png b/MM_Math/data_original_21/7058470/math/52765293_941.png deleted file mode 100644 index b60f30a466871a6e3d4efd66a6925800c95ee3c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52765293_941.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0133eb6346644a1b2cafcdf87ca6bcb365c80a8391aca13c5fc3373668a4c455 -size 8317 diff --git a/MM_Math/data_original_21/7058470/math/52765791_960.png b/MM_Math/data_original_21/7058470/math/52765791_960.png deleted file mode 100644 index c744ba841ef4f672737227d7c723cc680119a6e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52765791_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9833dcf2350043b2591cc7e6679311debc02d373f2f56e27022102ac854c185a -size 69327 diff --git a/MM_Math/data_original_21/7058470/math/52766425_411.png b/MM_Math/data_original_21/7058470/math/52766425_411.png deleted file mode 100644 index 8063179e7c2f4ef862333dd2e931a1514155047b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52766425_411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59c3a9073fb90c3e81ed3cc1fa930c0499906629a195a3a2b9f10fe72740de7a -size 413516 diff --git a/MM_Math/data_original_21/7058470/math/52796953_14.png b/MM_Math/data_original_21/7058470/math/52796953_14.png deleted file mode 100644 index 165e46556bdeb8c306300363f26af78d51fc9b0d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52796953_14.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f44e63d68fbcd067215f84c3ec250d5a07a9b6e292e1f3c7cab4ecd003db116 -size 4084 diff --git a/MM_Math/data_original_21/7058470/math/52797152_012.png b/MM_Math/data_original_21/7058470/math/52797152_012.png deleted file mode 100644 index 0a072bbca1413d4dff30a9e81f757c67c316b9cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52797152_012.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1389703dca79b42a8ec010b1d2b16524bcd90a92bc5d2a7c8dc9d1d6348b4dc -size 2467 diff --git a/MM_Math/data_original_21/7058470/math/52797160_420.png b/MM_Math/data_original_21/7058470/math/52797160_420.png deleted file mode 100644 index 560ebb54a1e682cd54f2472d6c17ae24ab87f65d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52797160_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0d60e19ebc8990f8bfd204bb8fb1222c6b8c75e6a5d05d2c89ded2119cc6226 -size 4027 diff --git a/MM_Math/data_original_21/7058470/math/52872091_877.png b/MM_Math/data_original_21/7058470/math/52872091_877.png deleted file mode 100644 index 094f751bdbaa92757e97e0c4538cfd3540391813..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52872091_877.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f3a5483f579d83149c4f97858bfe22344d509e91463e8302bb4fcdc279e5b94 -size 4134 diff --git a/MM_Math/data_original_21/7058470/math/52872119_855.png b/MM_Math/data_original_21/7058470/math/52872119_855.png deleted file mode 100644 index 76e085cfe39712065377bceba7ca39dc72d88187..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52872119_855.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:47c0aa565eee75e6e63997832863bd2dda8fe2d735ccc47c652808e1b18ed147 -size 4143 diff --git a/MM_Math/data_original_21/7058470/math/52872308_844.png b/MM_Math/data_original_21/7058470/math/52872308_844.png deleted file mode 100644 index 34e7307775ab46b4f54f8da9b54eff875f6687ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52872308_844.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7619f66c563a07a6a7da8f4dc0800a8216a2e07bb7e0c2eba6d6447c4a158608 -size 6432 diff --git a/MM_Math/data_original_21/7058470/math/52872325_153.png b/MM_Math/data_original_21/7058470/math/52872325_153.png deleted file mode 100644 index d60f2e7e838bf9c4dec7728409281780abe23fd1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52872325_153.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6dd451eeeb59c45350b21efcaf4e3d72833e531046cbe89e51a38906168bc52c -size 1439 diff --git a/MM_Math/data_original_21/7058470/math/52872415_5316.png b/MM_Math/data_original_21/7058470/math/52872415_5316.png deleted file mode 100644 index 7ac0f25ac0e24b929f5f2e4d8e00857315bb4251..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/math/52872415_5316.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90771c42959672203a6e01cd51c7bc04dd32630b04c73b98115386242279d786 -size 10171 diff --git a/MM_Math/data_original_21/7058470/solution_images/51299527_571.png b/MM_Math/data_original_21/7058470/solution_images/51299527_571.png deleted file mode 100644 index 96aafa592424896593b33465ab37f08dac6685d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51299527_571.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:93f638636ed1daf52dba9ee8efabdd10232097115899a9d9b3e02b9b106d5538 -size 6329 diff --git a/MM_Math/data_original_21/7058470/solution_images/51323911_131.png b/MM_Math/data_original_21/7058470/solution_images/51323911_131.png deleted file mode 100644 index 3555e9bdbb308483becc969573b20ba28ca92304..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51323911_131.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae3c68ec441289278f1a6841044d88d9ad039388a47fe2506c9fdb37cceaef55 -size 11898 diff --git a/MM_Math/data_original_21/7058470/solution_images/51369888_500.png b/MM_Math/data_original_21/7058470/solution_images/51369888_500.png deleted file mode 100644 index 4155a06e5ba9777d5dcd0361c7bd92c6323bfce6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51369888_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aff79a0a037172176ac415c0c4b557346cfb6d49a465afed4255b1c3e34fe13f -size 10555 diff --git a/MM_Math/data_original_21/7058470/solution_images/51402157_650.png b/MM_Math/data_original_21/7058470/solution_images/51402157_650.png deleted file mode 100644 index 8774c1ae23c78c83d2e730ccb36ccaa43b1d8e94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51402157_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74193d9720faf4f7f13c169518858f765e63a7c1105604b8364a733e0e7e5a81 -size 8531 diff --git a/MM_Math/data_original_21/7058470/solution_images/51402157_6514.png b/MM_Math/data_original_21/7058470/solution_images/51402157_6514.png deleted file mode 100644 index babb169f61945360244d4c1150e66487af171607..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51402157_6514.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d50d5e0983af4a98307b396b0441e65c15edb61329ffb4c8ef63811ed7cea1a4 -size 13645 diff --git a/MM_Math/data_original_21/7058470/solution_images/51402363_660.png b/MM_Math/data_original_21/7058470/solution_images/51402363_660.png deleted file mode 100644 index ae1c17615831cba9fc5fcea8b0fb69cb6e54d670..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51402363_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0370d2114a179428f6bf8206b7218829dbbe7e88379a7fb137486af17af992be -size 3925 diff --git a/MM_Math/data_original_21/7058470/solution_images/51403017_272.png b/MM_Math/data_original_21/7058470/solution_images/51403017_272.png deleted file mode 100644 index e4d5b29f5bd0bf4467aaa149e65a432480fe97c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51403017_272.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a19723c308ea5c592fe913eefcee7e92e126faaaf8b952a84ca3b203d6efdea -size 9640 diff --git a/MM_Math/data_original_21/7058470/solution_images/51403118_250.png b/MM_Math/data_original_21/7058470/solution_images/51403118_250.png deleted file mode 100644 index 3c64e5f81a67eea8de9052dc80fd935aa1da3e39..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51403118_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8d5fe6309b8f289fb6b5b7338806b1dc8b72ac4199d1fd0ff011432b7b2a6239 -size 5675 diff --git a/MM_Math/data_original_21/7058470/solution_images/51403273_640.png b/MM_Math/data_original_21/7058470/solution_images/51403273_640.png deleted file mode 100644 index 553dd4e3e229438d00d8f45e703a29d0eca09535..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51403273_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a1a2a13e5be63c9273b5038de68c0fd30a2f55f6b1b100b64208e3ac2026d942 -size 5482 diff --git a/MM_Math/data_original_21/7058470/solution_images/51406974_610.png b/MM_Math/data_original_21/7058470/solution_images/51406974_610.png deleted file mode 100644 index 6814b85388a193c1552b8f24b5c843d6f7b47b59..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51406974_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:278c15d5681f402255d60646894d3cc5e90401301e88fb5ae6b9bf2d3bbde7e3 -size 7749 diff --git a/MM_Math/data_original_21/7058470/solution_images/51406974_618.png b/MM_Math/data_original_21/7058470/solution_images/51406974_618.png deleted file mode 100644 index 03df523f4d3362dddd031bdae016f175bd5fe281..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51406974_618.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d436b7e23f75134671dd97f7612c680716f811aaab6222665cddae0debba213f -size 7807 diff --git a/MM_Math/data_original_21/7058470/solution_images/51407004_600.png b/MM_Math/data_original_21/7058470/solution_images/51407004_600.png deleted file mode 100644 index a8ce742dbdb0ff9402a64222884756da2456ce70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51407004_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12ec88e3977d3dcee2a9ae3ed6a7e44e0e8caabf165383c3deeb41a4c73fba22 -size 8168 diff --git a/MM_Math/data_original_21/7058470/solution_images/51407044_580.png b/MM_Math/data_original_21/7058470/solution_images/51407044_580.png deleted file mode 100644 index 14f08b93ff329d0f59efeb032ca9a96987277aa7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51407044_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da3d8bd42f75673d3644e1de4f838b646abfdaf17fe71233d078ba00c2201c89 -size 19219 diff --git a/MM_Math/data_original_21/7058470/solution_images/51445412_550.png b/MM_Math/data_original_21/7058470/solution_images/51445412_550.png deleted file mode 100644 index 71671bdca70e050af0f4b4d702131fdd017c94c8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51445412_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3bc2c8e79fef564e9675406030620282dbf96a5e748f1a30a4d6028e57ba2cf9 -size 5700 diff --git a/MM_Math/data_original_21/7058470/solution_images/51446059_540.png b/MM_Math/data_original_21/7058470/solution_images/51446059_540.png deleted file mode 100644 index 6efbd2ecf516fc58d95c83afeb7582fe886ba915..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51446059_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19bb1e9feb6703f70f2dd19309f578081d8103a8a6da8fd04bf1b825f95c6f09 -size 3934 diff --git a/MM_Math/data_original_21/7058470/solution_images/51446308_560.png b/MM_Math/data_original_21/7058470/solution_images/51446308_560.png deleted file mode 100644 index a49d797bc2302bae2549bb718c0c4653afbd6a9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51446308_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee427f91e3e2eab25756a1528289ab643e3ddd1496139d2a94eeb8a78d7adb9a -size 5668 diff --git a/MM_Math/data_original_21/7058470/solution_images/51446343_220.png b/MM_Math/data_original_21/7058470/solution_images/51446343_220.png deleted file mode 100644 index ae4bfc74ab908bb6e5b76f27e3ff55bc4128be2b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51446343_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dbb6bc66c06c6b5265b9003706cf2239c7ebb00463e6191e95ab3ea9047e2ff8 -size 3863 diff --git a/MM_Math/data_original_21/7058470/solution_images/51446383_160.png b/MM_Math/data_original_21/7058470/solution_images/51446383_160.png deleted file mode 100644 index 5f3c34296b2cff3459e15ac6807b858e74689a18..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51446383_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:282fa3f60d5297cd2686f3fd09f3314f1f71b577c25614975980a6bb64bf3f6b -size 9715 diff --git a/MM_Math/data_original_21/7058470/solution_images/51446652_170.png b/MM_Math/data_original_21/7058470/solution_images/51446652_170.png deleted file mode 100644 index 4b861a72135847322b8a4cd41cd2a83ea0e5d8b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51446652_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a77baa5944e6155c019f6755d428ab72e5123001ffc64f144305bb8b13b64ef -size 4220 diff --git a/MM_Math/data_original_21/7058470/solution_images/51545252_290.png b/MM_Math/data_original_21/7058470/solution_images/51545252_290.png deleted file mode 100644 index a65be43f66624f09d5e44a9dca4ed9836661f24e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51545252_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a22779a9a9581f20f86c15c6740fb8cd0c5b538679f3eb7661367d60aaaf9637 -size 26304 diff --git a/MM_Math/data_original_21/7058470/solution_images/51545328_685.png b/MM_Math/data_original_21/7058470/solution_images/51545328_685.png deleted file mode 100644 index aa1765718e17ad5f45cad6e15ebf03aa76ecfaf8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/51545328_685.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe8d57e808900f3778e90edfb916888ab8a923852a9d6de7512dac348e191540 -size 4172 diff --git a/MM_Math/data_original_21/7058470/solution_images/52457420_120.png b/MM_Math/data_original_21/7058470/solution_images/52457420_120.png deleted file mode 100644 index 14e5e2dd314d988b3165013659f3f9b236d8ef79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52457420_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3dd3d23a404e7d718dc9d78e3307e0a0aaae40ef5815b091618cff8cd75bfce7 -size 14911 diff --git a/MM_Math/data_original_21/7058470/solution_images/52457426_490.png b/MM_Math/data_original_21/7058470/solution_images/52457426_490.png deleted file mode 100644 index 3b31d5a055a33f98132477afdb90db5889fc82f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52457426_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3688fb757c4562872e1b108b3f142737d2e836b60579f86c398969c918e02e82 -size 2926 diff --git a/MM_Math/data_original_21/7058470/solution_images/52514048_110.png b/MM_Math/data_original_21/7058470/solution_images/52514048_110.png deleted file mode 100644 index 59adef485cc7ea3baa49e1e8bf235c502d781e3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52514048_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a56f86511a0c1cf1a84ebd15489d91440281aa18da67fb86e657cb5d047144d -size 6356 diff --git a/MM_Math/data_original_21/7058470/solution_images/52536703_72.png b/MM_Math/data_original_21/7058470/solution_images/52536703_72.png deleted file mode 100644 index 6f415b5234cd00182b8a3991376dcdff4e73067f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52536703_72.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9bcd7ac573edb6cf65dfcd0a6b5ce9c86ea130d29aa70b2bb17774219c712ea0 -size 3953 diff --git a/MM_Math/data_original_21/7058470/solution_images/52537075_90.png b/MM_Math/data_original_21/7058470/solution_images/52537075_90.png deleted file mode 100644 index 4dee08772ae0d4c376c65bce509d2d75c0bab347..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52537075_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d483688f636332c6129e8b28cbe9f16926678bf1a956170e34931d7db7ce24d7 -size 6139 diff --git a/MM_Math/data_original_21/7058470/solution_images/52537080_470.png b/MM_Math/data_original_21/7058470/solution_images/52537080_470.png deleted file mode 100644 index 2bd96e941371955f0a702a3ea444bf4178deca31..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52537080_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5ef61478f3579cca4c588958c05c2400110dda9472e994c41b67e68cfd8a7bd -size 5790 diff --git a/MM_Math/data_original_21/7058470/solution_images/52537144_100.png b/MM_Math/data_original_21/7058470/solution_images/52537144_100.png deleted file mode 100644 index 8ec2c4c063bf95b6fdde946e40e0617c5b629a76..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52537144_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20ce7021957a960ec9fe067ff01ff587381b2bd0a182191780b5879fc20b0c4b -size 5062 diff --git a/MM_Math/data_original_21/7058470/solution_images/52601657_400.png b/MM_Math/data_original_21/7058470/solution_images/52601657_400.png deleted file mode 100644 index 6db74a4958fe1404e7f6c4e1a1b7c98bdc5dca1e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52601657_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f934d6d8023248d591ebc4bc52e40553b9877de73f67ab7b084cd4f7372b15e -size 10549 diff --git a/MM_Math/data_original_21/7058470/solution_images/52601690_280.png b/MM_Math/data_original_21/7058470/solution_images/52601690_280.png deleted file mode 100644 index feea1aa856d7cd893ab981a570bb807570bbcbd1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52601690_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d22c7e78da121077ab0136b024883ddbd52c3c8b7f5bd7e390e8b3d9f4c0ab2 -size 7748 diff --git a/MM_Math/data_original_21/7058470/solution_images/52601801_700.png b/MM_Math/data_original_21/7058470/solution_images/52601801_700.png deleted file mode 100644 index 440ccffbcfdac60b2d38db3ce1948b429aac963a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52601801_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d650ed3e59c260e54c77029d09282d35d0314be8a92ff16051116ff4b07a1a8 -size 5088 diff --git a/MM_Math/data_original_21/7058470/solution_images/52601836_310.png b/MM_Math/data_original_21/7058470/solution_images/52601836_310.png deleted file mode 100644 index 31d04caf5856b6a3ebaaf1db90454fa50a726b05..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52601836_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b839b7941c626b59ea5d3c27f0c6f28576540da73cb401445716213cc72d111 -size 106977 diff --git a/MM_Math/data_original_21/7058470/solution_images/52601992_690.png b/MM_Math/data_original_21/7058470/solution_images/52601992_690.png deleted file mode 100644 index 2d18c85068a75ea679423b9ee5d0a451d2c5090d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52601992_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c046c3745f62787b502fc30f24b6be0dad3bc1c5d894420b6a06147de37d822 -size 26241 diff --git a/MM_Math/data_original_21/7058470/solution_images/52602711_672.png b/MM_Math/data_original_21/7058470/solution_images/52602711_672.png deleted file mode 100644 index cc87e65bae1348048e5d599c832867df65f948b4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52602711_672.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:acfd783806736810741e8754a21b1e33c55911586934a148996c17e827e3bcc1 -size 3659 diff --git a/MM_Math/data_original_21/7058470/solution_images/52634631_482.png b/MM_Math/data_original_21/7058470/solution_images/52634631_482.png deleted file mode 100644 index 1d51fe6e6d3a352e40807491ab9f9cc2397833b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52634631_482.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7614af39edb00611608cc23d080e9eabc645cb63e5f1ad4e34bf86163b7bb55d -size 15632 diff --git a/MM_Math/data_original_21/7058470/solution_images/52634631_489.png b/MM_Math/data_original_21/7058470/solution_images/52634631_489.png deleted file mode 100644 index 5de317801fc3bff4047b03335d85627ddfcc3968..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52634631_489.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fd49be8d440c872603843ea3d630f23361d531e6a938de2798519d2572b4b99b -size 15424 diff --git a/MM_Math/data_original_21/7058470/solution_images/52688304_30.png b/MM_Math/data_original_21/7058470/solution_images/52688304_30.png deleted file mode 100644 index bd2f77724982c2ae08f224c6011dd8d0fe032c27..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52688304_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:794a621a3d2ef64b060851955a3bb9569460214757fee471c1e61885cc53e559 -size 5718 diff --git a/MM_Math/data_original_21/7058470/solution_images/52715402_20.png b/MM_Math/data_original_21/7058470/solution_images/52715402_20.png deleted file mode 100644 index b064e954f80dd6e01b974ac762398a5234d7af70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52715402_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c270b1f40d505a49759d5c1aff1fe5efb49b4a72a9ccb394d8f0c2815739a700 -size 3723 diff --git a/MM_Math/data_original_21/7058470/solution_images/52719763_350.png b/MM_Math/data_original_21/7058470/solution_images/52719763_350.png deleted file mode 100644 index 52cb5fdde4f7c98b59df814c83b9db20354ee4ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52719763_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2aa419b97382791144b4a9b60d231b5e3aa1cd7ca5bdb7211003d97803b7cb41 -size 2519 diff --git a/MM_Math/data_original_21/7058470/solution_images/52719806_360.png b/MM_Math/data_original_21/7058470/solution_images/52719806_360.png deleted file mode 100644 index b061f63badba7a4f19b9d055587478644d6dd5c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52719806_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:688284df0f790e4164621a026920d365355c0d1649887ddb7028d75b9c33dbe8 -size 4071 diff --git a/MM_Math/data_original_21/7058470/solution_images/52733116_430.png b/MM_Math/data_original_21/7058470/solution_images/52733116_430.png deleted file mode 100644 index 5b1483ca27634d6ef1fa329d3239a43b6d2d446a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52733116_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2325f855a15eac15e115b93f8798e178456e9eedb5fcbe1f25e5e3c9612678a -size 11183 diff --git a/MM_Math/data_original_21/7058470/solution_images/52765236_340.png b/MM_Math/data_original_21/7058470/solution_images/52765236_340.png deleted file mode 100644 index 0bc6f6e90d2b6ba3c7f477352e0c0afe1514765a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52765236_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e13a1795dcf5637d4e051e42bce3bc59a74d4c3f0fc0dd87f2827bac35f02d4 -size 2745 diff --git a/MM_Math/data_original_21/7058470/solution_images/52766425_412.png b/MM_Math/data_original_21/7058470/solution_images/52766425_412.png deleted file mode 100644 index ff93cebf7361ab6bee9d080a4ee7d832c9bf4b9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52766425_412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d4d946c6668d94e069c8b58db16172b2bd59cc6f7cce2a335db914628152c5c -size 260429 diff --git a/MM_Math/data_original_21/7058470/solution_images/52796953_11.png b/MM_Math/data_original_21/7058470/solution_images/52796953_11.png deleted file mode 100644 index 11eaff62f1de6963544bde3785160faac3a2437b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52796953_11.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8fa680de20c11756eea3bcc4ae59aa3c972687ff316d66f479ef4c8e2d68247 -size 4527 diff --git a/MM_Math/data_original_21/7058470/solution_images/52797152_00.png b/MM_Math/data_original_21/7058470/solution_images/52797152_00.png deleted file mode 100644 index e25121d58bb8743acd95a57f6ff28cae72a03762..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52797152_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97e65fa0aac0f05d5b938c2ddfd4de89ee373629843243f10606867d6f6d8d0a -size 2559 diff --git a/MM_Math/data_original_21/7058470/solution_images/52797160_420.png b/MM_Math/data_original_21/7058470/solution_images/52797160_420.png deleted file mode 100644 index 11e3e83006733e9221a4b70d1579b3e59c0b9682..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52797160_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b4cad61bb7deea38029ae1d4b4249726beec3e4db04f588f13727ed299e246e -size 4255 diff --git a/MM_Math/data_original_21/7058470/solution_images/52872415_530.png b/MM_Math/data_original_21/7058470/solution_images/52872415_530.png deleted file mode 100644 index d7b6fc2610a722a04392b058ed26bbf2ba35e306..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52872415_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e88795da49e13c4d93954efbeb5bad09c7daf7cddf71d527e2a47c6909ee6e50 -size 10152 diff --git a/MM_Math/data_original_21/7058470/solution_images/52872415_5314.png b/MM_Math/data_original_21/7058470/solution_images/52872415_5314.png deleted file mode 100644 index 0fb0240c8db8a445bca1f274c20f01930d07b4d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058470/solution_images/52872415_5314.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:845ba35cc4e9eb87402743b04e7dc7f228e97a46638b788808fda098a406a2b7 -size 10823 diff --git a/MM_Math/data_original_21/7058593/math/51179563_297.png b/MM_Math/data_original_21/7058593/math/51179563_297.png deleted file mode 100644 index 44244a2fa68d0152bd3dc89ea25ea9c7995bc908..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51179563_297.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7dbbff8e37f99d4a5d84f0a10beb4a68317cf03e3e1ae6a57de339c6c54bc469 -size 4111 diff --git a/MM_Math/data_original_21/7058593/math/51179568_6011.png b/MM_Math/data_original_21/7058593/math/51179568_6011.png deleted file mode 100644 index b6ca17f6f3246fa1ac3035750939253dfeda5346..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51179568_6011.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b8c6e452c6a3439657498a22a94139d11af666e5578024d8818a66269861803 -size 6766 diff --git a/MM_Math/data_original_21/7058593/math/51179569_598.png b/MM_Math/data_original_21/7058593/math/51179569_598.png deleted file mode 100644 index 6e269396a4a251147e57316e0cf144043a132828..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51179569_598.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:47baeb7383682edcbf413189e070263eb2705483d5255d806b3033ac2c9fad70 -size 7026 diff --git a/MM_Math/data_original_21/7058593/math/51212618_530.png b/MM_Math/data_original_21/7058593/math/51212618_530.png deleted file mode 100644 index 8b38210ba551ee95bcab061aaf6e8b608efc402d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51212618_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a098605cdd5f880d9e0a1716294393700f555a710b75491121c20258bdb54ba6 -size 5914 diff --git a/MM_Math/data_original_21/7058593/math/51212656_180.png b/MM_Math/data_original_21/7058593/math/51212656_180.png deleted file mode 100644 index ddf63dec0d691c212a8a362d86ded2a6b2878767..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51212656_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab7d64fc01bac79f238f48e53d45b42ad032d8c42a757ea07ff353d26393d260 -size 4982 diff --git a/MM_Math/data_original_21/7058593/math/51212805_190.png b/MM_Math/data_original_21/7058593/math/51212805_190.png deleted file mode 100644 index e9ee14ecbee67c744f35a7370830c666a429898c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51212805_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65a7334e0c3ce8b2a1fac583794887becd86e3acc269646f7e85ffebfed96cb2 -size 3262 diff --git a/MM_Math/data_original_21/7058593/math/51212854_542.png b/MM_Math/data_original_21/7058593/math/51212854_542.png deleted file mode 100644 index 095500c34789fb0f660af4229e8892fbbff288d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51212854_542.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:848ed75dafc38588937c88bb0bd8b32ed007120a5069e0126406e05bc27d756f -size 2583 diff --git a/MM_Math/data_original_21/7058593/math/51213313_513.jpg b/MM_Math/data_original_21/7058593/math/51213313_513.jpg deleted file mode 100644 index 47e331310a2bd6d7ced91d7ecf9eff0f08f86247..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51213313_513.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5010a15c9de6c0682412b17f7ddfe528dd4b2c327ff1a96976fc05de1153a6de -size 4407 diff --git a/MM_Math/data_original_21/7058593/math/51213317_525.png b/MM_Math/data_original_21/7058593/math/51213317_525.png deleted file mode 100644 index 9b3e8d14c6e0c6cb41416d414f6731a0681c7674..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51213317_525.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e7332917792c685120732718bd50c56ef87af925f714184bc4c5f1a585e0778 -size 3584 diff --git a/MM_Math/data_original_21/7058593/math/51213326_785.png b/MM_Math/data_original_21/7058593/math/51213326_785.png deleted file mode 100644 index 290b6f9a0e9619f8585a6559b9f6b303debd06ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51213326_785.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02a1fa2d3cf3c7faee49b77ad8f05b59c4abf72eabd5fb492410ea28a47f2858 -size 1994 diff --git a/MM_Math/data_original_21/7058593/math/51231562_178.png b/MM_Math/data_original_21/7058593/math/51231562_178.png deleted file mode 100644 index 30a782910e79412a39283c24c9225d6e9497ab67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51231562_178.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e156fdba8815efae6b96e81a7b918e95d52737f69989e5f02f4eb837fbe5cb68 -size 8573 diff --git a/MM_Math/data_original_21/7058593/math/51231580_775.png b/MM_Math/data_original_21/7058593/math/51231580_775.png deleted file mode 100644 index 109871e48dd267fae6c085d5e37192edc8138da9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51231580_775.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29926c77e7c71bbbac532e611a0b699c4fd06b9e81ee5ccc252a8df1b5f04701 -size 13942 diff --git a/MM_Math/data_original_21/7058593/math/51261932_470.png b/MM_Math/data_original_21/7058593/math/51261932_470.png deleted file mode 100644 index 8640c4ee271e93f63c567a736e3a4bb8338391e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51261932_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9095ef679a92247d6ebe1d45f498da0cc020e9093ce3c72b5342e3919546d2bb -size 2364 diff --git a/MM_Math/data_original_21/7058593/math/51262133_467.png b/MM_Math/data_original_21/7058593/math/51262133_467.png deleted file mode 100644 index f090af710ea992c23e830a12518090a87f24a7b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51262133_467.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68ada2f6cf1df1fab412ef0ff82ad870b91511f74adf19f58a94404e9b1fddf9 -size 17562 diff --git a/MM_Math/data_original_21/7058593/math/51262135_871.png b/MM_Math/data_original_21/7058593/math/51262135_871.png deleted file mode 100644 index 5d52175b2294f3880b40090c640aee6a684f6751..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51262135_871.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e9987fca26ad389fd75f9665f42a6ba7f7e8f1cf879cd10a3c82e8ee3370133 -size 5023 diff --git a/MM_Math/data_original_21/7058593/math/51262164_140.png b/MM_Math/data_original_21/7058593/math/51262164_140.png deleted file mode 100644 index cc22c8d776514b33050120b4643e6d5cdbdef821..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51262164_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fd70f63fa1fffa9fd8774f79e51bb7947e0a0ed60a5e6160120a5eb9cee7fe6 -size 1255 diff --git a/MM_Math/data_original_21/7058593/math/51262289_451.png b/MM_Math/data_original_21/7058593/math/51262289_451.png deleted file mode 100644 index f2a5a152676158c2741a1f1bb41b36b757fb4266..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51262289_451.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68b071ecb343d749bc2d447aa174b7c5a28bb82ea6d31e66c4a8fb45a9f6775f -size 8548 diff --git a/MM_Math/data_original_21/7058593/math/51262418_130.png b/MM_Math/data_original_21/7058593/math/51262418_130.png deleted file mode 100644 index a3eced9c330f058cb4b2ed30106614c7b344ad43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51262418_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a386b0c8c367692b780c6a7a21fa257ddbdce19f4e66f6a4923a66566bcb3306 -size 1398 diff --git a/MM_Math/data_original_21/7058593/math/51265085_720.png b/MM_Math/data_original_21/7058593/math/51265085_720.png deleted file mode 100644 index 868a022ab2451dab55e3bf8c3b2c55b4e9119d58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51265085_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f6b70ad20eeb21c8ff03f9c664501d5491d8c364572e1d22ab4aa2120880dd80 -size 3574 diff --git a/MM_Math/data_original_21/7058593/math/51265095_990.png b/MM_Math/data_original_21/7058593/math/51265095_990.png deleted file mode 100644 index c5347e38af5faf4ca8e01e6a20a31b7a728ed19d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51265095_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2f1d1864b673c6ea14e92f028448c312b60885fb5eab088089685737922daf8 -size 3667 diff --git a/MM_Math/data_original_21/7058593/math/51265193_710.png b/MM_Math/data_original_21/7058593/math/51265193_710.png deleted file mode 100644 index 8b65fed168f1177ca11637fc2df922f970c756e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51265193_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c75ec882d2b0d41764f2967b724742ce28da2464bfda6172c448a5b617b6dae -size 3081 diff --git a/MM_Math/data_original_21/7058593/math/51265245_338.png b/MM_Math/data_original_21/7058593/math/51265245_338.png deleted file mode 100644 index 0b94ec0dd74ba9841af30709492c58bedba5b056..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51265245_338.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0958f235275764555aac3c5bf80135f73cc6165bddd28f97eb5914d7b2144dd -size 3466 diff --git a/MM_Math/data_original_21/7058593/math/51265251_700.png b/MM_Math/data_original_21/7058593/math/51265251_700.png deleted file mode 100644 index ed49a6f711e6ee41001128663deb9f5ba642a409..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51265251_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82047ac5d6ae79021b77f92bf5c62a036274d350c41df408dccef110ce705309 -size 10898 diff --git a/MM_Math/data_original_21/7058593/math/51265327_690.png b/MM_Math/data_original_21/7058593/math/51265327_690.png deleted file mode 100644 index 373b9cbbad9c48cbaa2372c28d9118328a261f75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51265327_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44d7d4165bf46ccd02b6daef168ed084593e376b211a046732c69b4ead36ba3a -size 3146 diff --git a/MM_Math/data_original_21/7058593/math/51265343_980.png b/MM_Math/data_original_21/7058593/math/51265343_980.png deleted file mode 100644 index 04bf9ef80890f3b375e5e2f026f02aa018cac7d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51265343_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa00f3f6e4b013aeb9248c8d45fe5dd0a9e9b48afa43e799ab71950d4acf0204 -size 3614 diff --git a/MM_Math/data_original_21/7058593/math/51265419_971.png b/MM_Math/data_original_21/7058593/math/51265419_971.png deleted file mode 100644 index 62033efa21157d084d136ffd6313e009970018c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51265419_971.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ef24356c3f9950e6e1229ca24724cbe426830268363e648ad1c30182e9affef -size 6009 diff --git a/MM_Math/data_original_21/7058593/math/51284005_324.png b/MM_Math/data_original_21/7058593/math/51284005_324.png deleted file mode 100644 index d0f3f4808e8117c8a53fd4fd024259dbb1686eb3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51284005_324.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:beb15fcba47551923924d27178b91c6ce2812ebb8e562980cd62cba180aaaec0 -size 12215 diff --git a/MM_Math/data_original_21/7058593/math/51284464_6610.png b/MM_Math/data_original_21/7058593/math/51284464_6610.png deleted file mode 100644 index 72058e98d756c8f3539324c7d021c0ea7e1882aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51284464_6610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:baa276daac680676bb3ae2fc8001e600ee5a3f4def46e23c2e80e141a6579824 -size 18878 diff --git a/MM_Math/data_original_21/7058593/math/51284477_961.png b/MM_Math/data_original_21/7058593/math/51284477_961.png deleted file mode 100644 index b9c7286184c3bd01344ebfd3a0e4211c1ce1bb23..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51284477_961.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:acf1c14e2e2db7246c03e02b123f42b17089dc6ceab657ea7372b02087106cad -size 3198 diff --git a/MM_Math/data_original_21/7058593/math/51284477_962.png b/MM_Math/data_original_21/7058593/math/51284477_962.png deleted file mode 100644 index 8f5d4c02e0233bd18445d8eda6ce26993a8841cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51284477_962.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a910d1ac1786914f54a6e4444357be7196bb2cae7149e4fe54e4db501f69c61 -size 5287 diff --git a/MM_Math/data_original_21/7058593/math/51285474_111.png b/MM_Math/data_original_21/7058593/math/51285474_111.png deleted file mode 100644 index 3be3736d898a75bea7f27a310183c01bcac76f9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51285474_111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c538237b45d588e9d14a297d1ffc007f0bc5b9c5cacc6437cb3e27afe7c6e043 -size 3564 diff --git a/MM_Math/data_original_21/7058593/math/51285481_442.png b/MM_Math/data_original_21/7058593/math/51285481_442.png deleted file mode 100644 index 496b2ca063499a12f7473a10d73a3836eff9fd7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51285481_442.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:86255519513c5c1022ece5bb0277e95ccd548bb6033d3d01b0d79f2864882f24 -size 4041 diff --git a/MM_Math/data_original_21/7058593/math/51298675_761.png b/MM_Math/data_original_21/7058593/math/51298675_761.png deleted file mode 100644 index 34cb2dbcb5a943da0868945bc66f317280aa93f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51298675_761.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c9c0aa906d7770eebfe8efa0c815b20823fa6801f786f661e3dffbd6f89bfb6 -size 3283 diff --git a/MM_Math/data_original_21/7058593/math/51298723_310.png b/MM_Math/data_original_21/7058593/math/51298723_310.png deleted file mode 100644 index cb866a074b8ba543ab13d5cd3e1157ca5d169871..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51298723_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42171c42eabdb68e84b07b05e0d26a58f9220e806dc2d11d64740c8e940f5c4a -size 1334 diff --git a/MM_Math/data_original_21/7058593/math/51298870_650.png b/MM_Math/data_original_21/7058593/math/51298870_650.png deleted file mode 100644 index c84dfbeb125f368bec5846ce454e0978a6ee9bb3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51298870_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42522a4d6acba90c8368fda76ae8a629aa6d00edcef68d6adbbe6d3551520156 -size 6978 diff --git a/MM_Math/data_original_21/7058593/math/51299005_640.png b/MM_Math/data_original_21/7058593/math/51299005_640.png deleted file mode 100644 index e0515a877cc7acd0166fc4b9a219ba1be3d374d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51299005_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:292f0a919c3536df3adf30db6cc8cb6a39adfc41cdde136bc5df32e845b6bb0f -size 3265 diff --git a/MM_Math/data_original_21/7058593/math/51299079_633.png b/MM_Math/data_original_21/7058593/math/51299079_633.png deleted file mode 100644 index a1d0d6c1f73cae59a04e8e654d49c9e0e9a8c3d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51299079_633.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed16af633e4b32f3da1e3e24127fca3db4b7ec6443e5e6c71aeb80a8d5a09abe -size 5196 diff --git a/MM_Math/data_original_21/7058593/math/51299748_304.png b/MM_Math/data_original_21/7058593/math/51299748_304.png deleted file mode 100644 index 800d5d36d188cd405f03bb480cecb5688a6f8d5f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51299748_304.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d16fb6147de75c19cb012a10f7c7479efb86a92b0d7ab58d9284f999855bcab -size 6674 diff --git a/MM_Math/data_original_21/7058593/math/51299761_614.png b/MM_Math/data_original_21/7058593/math/51299761_614.png deleted file mode 100644 index c2a7639609a5a6b236e0e66e303e435b3066ac3d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51299761_614.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe5e01505df4807a2c9bb406ca23b2dbbec877445fbbffbcea24ef7245a33db4 -size 13189 diff --git a/MM_Math/data_original_21/7058593/math/51299763_620.png b/MM_Math/data_original_21/7058593/math/51299763_620.png deleted file mode 100644 index 7fb186895689c3adfbc7fa76b5f2c536e316c36d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51299763_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1318ce99bd555fc6fc6a12436706d681fad64751388be988bd5e65f55171494d -size 24376 diff --git a/MM_Math/data_original_21/7058593/math/51317370_950.jpg b/MM_Math/data_original_21/7058593/math/51317370_950.jpg deleted file mode 100644 index 9dd0515da4f93a5fdee24899e9e2df9c59cfac82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51317370_950.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f21f2a6ee49238ec5dc33ce90520f442677c1c36b48a27d361fdabf8b29f4622 -size 10383 diff --git a/MM_Math/data_original_21/7058593/math/51318127_85.png b/MM_Math/data_original_21/7058593/math/51318127_85.png deleted file mode 100644 index 70e8b92f6f3e2860a2bede09271e11e741398a4b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51318127_85.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04b5605ece13c27cd4b3fb947b442266aabd9dc2b62b1c77426a745ec40c7fba -size 2732 diff --git a/MM_Math/data_original_21/7058593/math/51318132_393.png b/MM_Math/data_original_21/7058593/math/51318132_393.png deleted file mode 100644 index 328cc2dbb820ca9c0d49735fa7fd713fe90fc099..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51318132_393.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0bdd1ca1236a44a9ce263c4c06a7b644506e1f71875cd5b43bdcb99afad5eb62 -size 8474 diff --git a/MM_Math/data_original_21/7058593/math/51318167_388.png b/MM_Math/data_original_21/7058593/math/51318167_388.png deleted file mode 100644 index c99dc980faa054df024c184b91b17ae3df148b3c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51318167_388.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:171ac66ee86d3574d1990056135e4c8f6140b7a0b5ec1ca8cfd531d8f054f92d -size 9841 diff --git a/MM_Math/data_original_21/7058593/math/51318176_841.png b/MM_Math/data_original_21/7058593/math/51318176_841.png deleted file mode 100644 index a9e08d6b33b9dd38ba9bc6878ce871004902066b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51318176_841.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b18361a560d0ecc3c8ecf30c554f8a0077a162e1f04c35a15088d53b374d50d -size 3462 diff --git a/MM_Math/data_original_21/7058593/math/51318308_437.png b/MM_Math/data_original_21/7058593/math/51318308_437.png deleted file mode 100644 index 1735efcb546f2026b62751e7bd538f2223edcf94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51318308_437.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f4911a435a0f20dc2a5fba9d24cf97f544c7eedfdd0a049d9d62469986aa6d4c -size 17208 diff --git a/MM_Math/data_original_21/7058593/math/51318708_94.png b/MM_Math/data_original_21/7058593/math/51318708_94.png deleted file mode 100644 index ec5d45d41f4313ade58167f5627c815d47e70970..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51318708_94.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b32fe417de7bc679089ff75d45da83c41bc787a15a8af9d79c705dd2824483a1 -size 9320 diff --git a/MM_Math/data_original_21/7058593/math/51318739_857.png b/MM_Math/data_original_21/7058593/math/51318739_857.png deleted file mode 100644 index e6fdae996688fa484b29caf4b4897ce59e0a08d7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51318739_857.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab6b17b7422ecf449cacbf57de36cf7eace57384c69fdb553500863714f26556 -size 2727 diff --git a/MM_Math/data_original_21/7058593/math/51318944_72.png b/MM_Math/data_original_21/7058593/math/51318944_72.png deleted file mode 100644 index 6941c34890259bd7f62e371a26316c1a56af4d26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51318944_72.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:595cf9dff4b4dd4175660ff67b29f9a88728af16b9be319bc6aca37528eb4549 -size 7575 diff --git a/MM_Math/data_original_21/7058593/math/51318991_3710.png b/MM_Math/data_original_21/7058593/math/51318991_3710.png deleted file mode 100644 index 7502841c5a27dca864713c0091d60e572a1c0103..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51318991_3710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41f4ce5577c45a51d8ee9a459661992eae3133447f8579dce5a0a905627aa454 -size 12383 diff --git a/MM_Math/data_original_21/7058593/math/51319005_863.png b/MM_Math/data_original_21/7058593/math/51319005_863.png deleted file mode 100644 index cca32cd523871635ea4f551a2b405e1984ef8df2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51319005_863.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d60a0d6e1606b77ce60b3154a5bf5e3c7832342c848876b2b0f0fcf76ba1fe9 -size 5571 diff --git a/MM_Math/data_original_21/7058593/math/51319026_420.png b/MM_Math/data_original_21/7058593/math/51319026_420.png deleted file mode 100644 index 77836b3026e7558d459fcede7825289eb581d73d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51319026_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74460ba0518eacef23c0f9c07a0c6e33f3284205d115aa0197e20a96af9bbd78 -size 2205 diff --git a/MM_Math/data_original_21/7058593/math/51320294_400.png b/MM_Math/data_original_21/7058593/math/51320294_400.png deleted file mode 100644 index 87a52045aa76c17322e2684f5d112678af47d1a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51320294_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a1d3f3bdeb3fc0ca28e207a665e8a31759ec9562e95c2f25eac82ef667953f5 -size 2851 diff --git a/MM_Math/data_original_21/7058593/math/51320365_101.png b/MM_Math/data_original_21/7058593/math/51320365_101.png deleted file mode 100644 index fb582a78fdfa29d496d051faf610fdcf21e798a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51320365_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:193c230d874cbb272383637999437ea5ec19006cbb20f316a35bfad205e0a69c -size 3312 diff --git a/MM_Math/data_original_21/7058593/math/51320411_412.png b/MM_Math/data_original_21/7058593/math/51320411_412.png deleted file mode 100644 index e7d278b088769fd590361157e8b9cbc9b177f07e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51320411_412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:773666aaaef0cfcf0b200ae096e1e34ce1ed738e2577fb69187eb03c43f80728 -size 2708 diff --git a/MM_Math/data_original_21/7058593/math/51322348_250.png b/MM_Math/data_original_21/7058593/math/51322348_250.png deleted file mode 100644 index edf99666262757b7e8e47dd2e7194819727e1033..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322348_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db0e0c05f3ca53ed2b4e9eb71dac44f945a509a9767b53e9279a11d369258850 -size 1673 diff --git a/MM_Math/data_original_21/7058593/math/51322352_241.png b/MM_Math/data_original_21/7058593/math/51322352_241.png deleted file mode 100644 index 993f57e6457399afaa4f15517d388554aca91a38..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322352_241.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e95dffde16874291766266c570fa1adcdb8684d66c6edb4a70c46709b8d439d4 -size 2407 diff --git a/MM_Math/data_original_21/7058593/math/51322360_792.png b/MM_Math/data_original_21/7058593/math/51322360_792.png deleted file mode 100644 index b2da7e220423f6e7a433ea1308e8a26fa30b11e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322360_792.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65c411b654a1ca7b4ffe3ac73153d93eb2fd3c06abcfb32df151d85d11c02f2d -size 6470 diff --git a/MM_Math/data_original_21/7058593/math/51322362_921.png b/MM_Math/data_original_21/7058593/math/51322362_921.png deleted file mode 100644 index 6f2d32f21cfb72796d47490c74e81094a3db386a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322362_921.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ecc3b0437b9855a8c16ace16cd71908424671f0bac2f121459052cecd272ef3c -size 13746 diff --git a/MM_Math/data_original_21/7058593/math/51322489_267.png b/MM_Math/data_original_21/7058593/math/51322489_267.png deleted file mode 100644 index 599217020e3aad965409cb0792a89757445d9cd8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322489_267.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e592e3f209b82b338f95a4d2a63f43d6171d09a96660a9053e06bb2b64658618 -size 2936 diff --git a/MM_Math/data_original_21/7058593/math/51322497_581.png b/MM_Math/data_original_21/7058593/math/51322497_581.png deleted file mode 100644 index 5e2a58323c6ef8583ab82f952d866b331026a220..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322497_581.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:feaba22e16fc3629affcbe76a65a381490d22ee25c66633e8e67cd486a739e33 -size 3068 diff --git a/MM_Math/data_original_21/7058593/math/51322742_935.png b/MM_Math/data_original_21/7058593/math/51322742_935.png deleted file mode 100644 index 1603855de5c541568d128ed80a81345ce64015f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322742_935.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:efcf491ecb2e51f271d43088cb0361bc31bfb4c6f8f1a3b40717ebacc9c80dab -size 2085 diff --git a/MM_Math/data_original_21/7058593/math/51322768_272.png b/MM_Math/data_original_21/7058593/math/51322768_272.png deleted file mode 100644 index 0e0df36a9fc3b6558615b2725f3ba90e1de56bc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322768_272.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5d90e3967f27dffde9f4b3529cdbc71367b2559faa2acb0d40d3b29eb92f8a9 -size 3101 diff --git a/MM_Math/data_original_21/7058593/math/51322798_287.png b/MM_Math/data_original_21/7058593/math/51322798_287.png deleted file mode 100644 index db94ab3ba98df5374020c64b2b4ffee33b831205..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322798_287.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a576ce2f4e4161dfa5ed472b36e6d6f1f542b5b6fc5c89e616ed77a38d6d0d5b -size 5872 diff --git a/MM_Math/data_original_21/7058593/math/51322890_220.png b/MM_Math/data_original_21/7058593/math/51322890_220.png deleted file mode 100644 index 30855afe6cc121b92661a47fbc8620d6de2a7363..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322890_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9333a5f15550c2c8e691f63ea0a69ecc17658f6f633a1465faf5657291ba815e -size 3249 diff --git a/MM_Math/data_original_21/7058593/math/51322892_232.png b/MM_Math/data_original_21/7058593/math/51322892_232.png deleted file mode 100644 index 93b7edefcf03dc27ad5114ad905a65ad917fcc87..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322892_232.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aeb4f92c6e62640a072fa24e87d65c126d07f0228807bcb1e339af119cdb8f09 -size 6272 diff --git a/MM_Math/data_original_21/7058593/math/51322900_570.png b/MM_Math/data_original_21/7058593/math/51322900_570.png deleted file mode 100644 index d248660df97a9b93b033b59c08ed9675dc2ccce2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322900_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f5976fdaf980d26ce3bc5413dd01b0e70e5580c66b79461228bd11ce1e99a56a -size 4790 diff --git a/MM_Math/data_original_21/7058593/math/51322908_9410.png b/MM_Math/data_original_21/7058593/math/51322908_9410.png deleted file mode 100644 index e630422bb64f0e086a865c11f296dba6d8911721..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51322908_9410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d46638d6ec794c7be20450d890371ecf23b4fed9cbe87d8c9b1ee31069e274d1 -size 4790 diff --git a/MM_Math/data_original_21/7058593/math/51350901_751.png b/MM_Math/data_original_21/7058593/math/51350901_751.png deleted file mode 100644 index 4ee7808cab6884ea9b19a89c6b323a1d3fe59d78..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51350901_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4204dc96e7597befcdfdbdeecf496763b9912a9d63425266745e7736dc891944 -size 18129 diff --git a/MM_Math/data_original_21/7058593/math/51351152_830.png b/MM_Math/data_original_21/7058593/math/51351152_830.png deleted file mode 100644 index 195dfe6d0e6d766b44ccae641c9df242ff92899e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51351152_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41a2150704efe30ac7fde1824053cbdc186afe3bf4b1d130e3257cad89a92bff -size 17726 diff --git a/MM_Math/data_original_21/7058593/math/51351168_55.png b/MM_Math/data_original_21/7058593/math/51351168_55.png deleted file mode 100644 index e36b41d960f24ae5abae296446fd16342c847908..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51351168_55.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df5a619dbc9e3a927a8aa696b9a6692e6bc6d41432b94ab6c38e9fc4336ee155 -size 5239 diff --git a/MM_Math/data_original_21/7058593/math/51351195_734.png b/MM_Math/data_original_21/7058593/math/51351195_734.png deleted file mode 100644 index b1c40c664f762305d388b28fa6386c544f34d0ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51351195_734.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53605c2f31acf9fd6309883a8d6aa9ba2894ee5855525a225c5627ada6f29f97 -size 3382 diff --git a/MM_Math/data_original_21/7058593/math/51351226_45.png b/MM_Math/data_original_21/7058593/math/51351226_45.png deleted file mode 100644 index bf1dcb2638d7d4959cfc126fd2dbd04b5ab1cae6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51351226_45.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5bf380398e01c4bf57000e4b0ee5edc51146b630f6c16f00e05af07693d9b6e2 -size 3400 diff --git a/MM_Math/data_original_21/7058593/math/51351896_36.png b/MM_Math/data_original_21/7058593/math/51351896_36.png deleted file mode 100644 index dbfcacb02b184721c0a4a87c91c9928b85990e3a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51351896_36.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be381775d2bfe71a2f61d5e4d607482e7aef82797645c5c3efe89ab566a6d78c -size 6760 diff --git a/MM_Math/data_original_21/7058593/math/51353198_366.png b/MM_Math/data_original_21/7058593/math/51353198_366.png deleted file mode 100644 index 2d18e13713476622c222995927d2868ea22ad63c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51353198_366.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ef7fba5be1c4e958248270e2d43203442a36370d3de1a347acf7a5ff9efc01d -size 9722 diff --git a/MM_Math/data_original_21/7058593/math/51353456_824.png b/MM_Math/data_original_21/7058593/math/51353456_824.png deleted file mode 100644 index 1c600e86475400d5c2325fe8e48dccf60cba6cf6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51353456_824.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12fd4dfd3c40720a416a8664c2f7285d87e86e7df5940329c3636ea808092987 -size 3296 diff --git a/MM_Math/data_original_21/7058593/math/51353489_746.png b/MM_Math/data_original_21/7058593/math/51353489_746.png deleted file mode 100644 index 19d3c102ea827d8dd1aea149e0642b07bd5b56c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51353489_746.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:09089c9ade7cefa0461f85aad1a3f95d604e2508b5aab83227a31dece24566b1 -size 4422 diff --git a/MM_Math/data_original_21/7058593/math/51358246_60.png b/MM_Math/data_original_21/7058593/math/51358246_60.png deleted file mode 100644 index c80f885b157abf68b1224eeb525f4bb92b2198a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51358246_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d988f2e63f7aaf5e40b8410737d6ee8a4c4c1502fd22420d8ceafbfd488cf2c9 -size 9434 diff --git a/MM_Math/data_original_21/7058593/math/51367390_550.png b/MM_Math/data_original_21/7058593/math/51367390_550.png deleted file mode 100644 index e89d05017af7d427efb38eafdec7a92748aa58a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51367390_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e20da01ebe0639549f49dbcfe77500c8c8bf048be45b3ab802ada9e1febd810e -size 32042 diff --git a/MM_Math/data_original_21/7058593/math/51367507_213.png b/MM_Math/data_original_21/7058593/math/51367507_213.png deleted file mode 100644 index d685f4e4ec2e5dd2ee40a182bf06cc5deb09efc6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51367507_213.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60df82c9299733370da0dc9350510ba54e04e750b43d430449625b9d1f7fdaa1 -size 1745 diff --git a/MM_Math/data_original_21/7058593/math/51367511_200.png b/MM_Math/data_original_21/7058593/math/51367511_200.png deleted file mode 100644 index 50f2451c89e93867c68c2521060ee72032806304..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51367511_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8610fade0d46cb96e7611b2e94b2e1a0cecbf8d27f439cc35f8dc5395a2a3ce -size 7724 diff --git a/MM_Math/data_original_21/7058593/math/51367519_567.png b/MM_Math/data_original_21/7058593/math/51367519_567.png deleted file mode 100644 index d5367d914eed606df72c2a6f16fe130f9a5ab615..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51367519_567.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:065e86d7430162843efe71f38cfbae802609a881ed306b262e95439d4a1e5d52 -size 3510 diff --git a/MM_Math/data_original_21/7058593/math/51367530_912.png b/MM_Math/data_original_21/7058593/math/51367530_912.png deleted file mode 100644 index a24064b7ada0fe861dd83a80596bf47ad36d4aab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51367530_912.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a1740f96f9ef526ff775da8dc42a63a98d613917884e1750bf4f238cf5685fc -size 43304 diff --git a/MM_Math/data_original_21/7058593/math/51384325_688.png b/MM_Math/data_original_21/7058593/math/51384325_688.png deleted file mode 100644 index 29020ea8fc56425187f8e78d655309738b152474..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51384325_688.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:770f3d9bba1ded7029e0bbb0e86a4b2ba745ad2007ac9a8c58e4b646884979f6 -size 5839 diff --git a/MM_Math/data_original_21/7058593/math/51384545_671.png b/MM_Math/data_original_21/7058593/math/51384545_671.png deleted file mode 100644 index 591f7e2c5bec2deda3b9cf151b932d95ce576ca1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51384545_671.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d54808286e4edeb30f0f0516059b60a6d23d94ec471921b60d3a4a66a6247ff2 -size 5972 diff --git a/MM_Math/data_original_21/7058593/math/51457858_22.png b/MM_Math/data_original_21/7058593/math/51457858_22.png deleted file mode 100644 index a7b7e6e40272523a72411f67a4b38e0aa105bcfe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51457858_22.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:140c5686e3bfd0c5b4913002c3c2bf322c9231f6f0bbd2292f15be57e252fa6d -size 6471 diff --git a/MM_Math/data_original_21/7058593/math/51457882_811.png b/MM_Math/data_original_21/7058593/math/51457882_811.png deleted file mode 100644 index 6032142fa2287f4e9fa8b729396bb884adceedaf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51457882_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:278a5b36f2fecfd017245d3d7103bccb59610f6794fe33ed25dc2d67a8fdb742 -size 6544 diff --git a/MM_Math/data_original_21/7058593/math/51457944_13.png b/MM_Math/data_original_21/7058593/math/51457944_13.png deleted file mode 100644 index 9da1898e36f496bc23c1c01da6d6b14932736cf0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51457944_13.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02efa8c10e28b03ede1ea1285e33867ec62f153d5aec1e6c70dbf26b50928165 -size 6406 diff --git a/MM_Math/data_original_21/7058593/math/51458068_01.png b/MM_Math/data_original_21/7058593/math/51458068_01.png deleted file mode 100644 index 122e67fa3dd49f4b3a11ed4603a7ca69c3e25601..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51458068_01.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4355dbd495c7a33c56df60bf6d4a3d49d3a6cc78d57ac0ed244cdc6677ece4f0 -size 2309 diff --git a/MM_Math/data_original_21/7058593/math/51458140_350.png b/MM_Math/data_original_21/7058593/math/51458140_350.png deleted file mode 100644 index dece5a64b72394e31be2fc95907c4cb6f795427f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51458140_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f03dd5472c4b45cc3baa2d16984648a812cda05d8d028e4208bf40ecf3667ae8 -size 3423 diff --git a/MM_Math/data_original_21/7058593/math/51458337_807.png b/MM_Math/data_original_21/7058593/math/51458337_807.png deleted file mode 100644 index 9b379172ae8b9849d0264be3cc3c62eb5c666f2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/51458337_807.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e91408e4f35b4cc1a686a28944616c16fb2f3e895607442a8d8f329c64591e6 -size 8831 diff --git a/MM_Math/data_original_21/7058593/math/52949253_340.png b/MM_Math/data_original_21/7058593/math/52949253_340.png deleted file mode 100644 index 8568819ba5629e74dff263ceb9d45fb645b9caaa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/52949253_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96a920c240470813d4dd26a744b4cd42cf907fef6a9353b2fbdd08078b5aff8e -size 3949 diff --git a/MM_Math/data_original_21/7058593/math/53148597_482.png b/MM_Math/data_original_21/7058593/math/53148597_482.png deleted file mode 100644 index de012a9393ab44806b49df44edd524307a759829..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/53148597_482.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:835bbc67c4c07b4df7d417a8e7986146a6131421a5696942b0a5dd510e2ce363 -size 17624 diff --git a/MM_Math/data_original_21/7058593/math/53148615_886.png b/MM_Math/data_original_21/7058593/math/53148615_886.png deleted file mode 100644 index f5d21059311b59d58fadd58cd8ea0009c7f82c08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/53148615_886.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ebf9e2822669b2fb1b7ae23279a90858f724400b2db00750569b7ae07140517 -size 49885 diff --git a/MM_Math/data_original_21/7058593/math/53148883_151.png b/MM_Math/data_original_21/7058593/math/53148883_151.png deleted file mode 100644 index df35eca2b2332b4f6219103034a955bc35832f9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/53148883_151.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:457ea77ca1fc88737bb354d5ccaaae10e5acde64b74cae68311f60a34b00a645 -size 2648 diff --git a/MM_Math/data_original_21/7058593/math/53148889_492.png b/MM_Math/data_original_21/7058593/math/53148889_492.png deleted file mode 100644 index b410e427e2d5c1e5a78be7d3298d2bb9e4286de9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/53148889_492.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07d1f9976cfac1f275e92e677582971c53a137841b07243502fb1b5f85a97864 -size 2098 diff --git a/MM_Math/data_original_21/7058593/math/53148902_905.png b/MM_Math/data_original_21/7058593/math/53148902_905.png deleted file mode 100644 index a87a048cf96d3855307063f3b451f897d8622322..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/53148902_905.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f9820893126e33eef02d145ff9027425449d704d1f12c86c70d816430da9a7fe -size 2100 diff --git a/MM_Math/data_original_21/7058593/math/53149296_506.png b/MM_Math/data_original_21/7058593/math/53149296_506.png deleted file mode 100644 index 95c3a301ccf629895c20edaa8c71df1354dc4634..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/53149296_506.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6215982e2c799a5896f2454563f0ef61eec56c58389ed185355efd1b40c369c9 -size 97623 diff --git a/MM_Math/data_original_21/7058593/math/53149410_899.png b/MM_Math/data_original_21/7058593/math/53149410_899.png deleted file mode 100644 index b4fa00dadafd07b45051c5b98a01e5bb6782b8ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/53149410_899.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60967ca7440465b47581f6e2195b883c9ae02f3509cc02a0c920ee8968b3e89c -size 17859 diff --git a/MM_Math/data_original_21/7058593/math/53149424_165.png b/MM_Math/data_original_21/7058593/math/53149424_165.png deleted file mode 100644 index 1f59d96758c6f4bf7448946280716879969f3722..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/math/53149424_165.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb532319c734a6d96823b327e2f83dcffa0dab62ebdb296867be0dccd12c9db2 -size 24838 diff --git a/MM_Math/data_original_21/7058593/solution_images/51179568_600.png b/MM_Math/data_original_21/7058593/solution_images/51179568_600.png deleted file mode 100644 index b23dc599e02112440af694fab4c751a00eb12d3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51179568_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d64df356c3bdf81942233b275c00daac8a851a227c9808bb56124240dad7a1eb -size 11526 diff --git a/MM_Math/data_original_21/7058593/solution_images/51212656_180.png b/MM_Math/data_original_21/7058593/solution_images/51212656_180.png deleted file mode 100644 index acfe574fb146d9065338f8406d79f59872e6c288..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51212656_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:73184c77b01c9c567e3477ab639051580077a324828cf7ec8a7d92d6dbc039ef -size 6637 diff --git a/MM_Math/data_original_21/7058593/solution_images/51212805_190.png b/MM_Math/data_original_21/7058593/solution_images/51212805_190.png deleted file mode 100644 index 4b4a83229be7cb35d8c0b380007aff465ec0f4cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51212805_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f83248155c4c984b5687d5b08c9421a9d30e512680ebf8021f11701106253c4 -size 3560 diff --git a/MM_Math/data_original_21/7058593/solution_images/51212854_542.png b/MM_Math/data_original_21/7058593/solution_images/51212854_542.png deleted file mode 100644 index 03a1ccf3e455f8aa8a65ba5cfeb77772ecdd6575..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51212854_542.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8264b9fb3fad7f9e1b64f2bc5f3029fbc4aacc1d0b0eddac73e38a18f67bd9d -size 3880 diff --git a/MM_Math/data_original_21/7058593/solution_images/51231562_170.png b/MM_Math/data_original_21/7058593/solution_images/51231562_170.png deleted file mode 100644 index 03d492ba42f1415f3d21ffa2894a5bb1fc8744a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51231562_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a6f9cc06dc083409e01a9245460d3d6be791c37731befba4a47ac86990962e0 -size 5888 diff --git a/MM_Math/data_original_21/7058593/solution_images/51261932_470.png b/MM_Math/data_original_21/7058593/solution_images/51261932_470.png deleted file mode 100644 index 01ee5f11710942d2feaeaa3ba03e1d7286e0ae61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51261932_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:704d81a8ae96e31d917bf6e729e59fd7b118f7adb11d1fdce40b45146316e0bf -size 2603 diff --git a/MM_Math/data_original_21/7058593/solution_images/51262289_450.png b/MM_Math/data_original_21/7058593/solution_images/51262289_450.png deleted file mode 100644 index 640fedfade495bd37d726c60a5ee5c6c440cd2a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51262289_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ab380720d4cfbde9db46a935a6d553ce6c83a770ffcc1d254b193a6ead92386 -size 4691 diff --git a/MM_Math/data_original_21/7058593/solution_images/51265085_720.png b/MM_Math/data_original_21/7058593/solution_images/51265085_720.png deleted file mode 100644 index fb0f9183e0bf5e196efc9d2b32162c0bf1978950..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51265085_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a3e4fb9fe1166b8c571d71924aa19dfaac5f59b8afd59d5ccf013167604729b6 -size 5861 diff --git a/MM_Math/data_original_21/7058593/solution_images/51265193_710.png b/MM_Math/data_original_21/7058593/solution_images/51265193_710.png deleted file mode 100644 index 693baee553611f95bd80be7452759f68bdee098f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51265193_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f141fc7e86e4fd41c1e0acbdcce85d26ee88aa62dd46910dbd7eac67e122110 -size 3451 diff --git a/MM_Math/data_original_21/7058593/solution_images/51265251_700.png b/MM_Math/data_original_21/7058593/solution_images/51265251_700.png deleted file mode 100644 index e7b3f007c27ef3cb0adf54400ded3ebae090cd70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51265251_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:09fb2a511efb11753dacdd123387d38397ae4167c24f6c130d215001f9caad72 -size 10151 diff --git a/MM_Math/data_original_21/7058593/solution_images/51265327_690.png b/MM_Math/data_original_21/7058593/solution_images/51265327_690.png deleted file mode 100644 index 0ee76d67bda74f668493b76b999cb19ab82a4532..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51265327_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60baf081e941f68238341825be1c1ef09355101a2e5c59c40b898a0f6f38c8f0 -size 9528 diff --git a/MM_Math/data_original_21/7058593/solution_images/51284005_320.png b/MM_Math/data_original_21/7058593/solution_images/51284005_320.png deleted file mode 100644 index eea20c75e937a5492789d9d4f9a8da906fde20a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51284005_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01252dd443676619b80189551f70ea6dfdc2a1ef4e3d00d79baa1302e40aa467 -size 15098 diff --git a/MM_Math/data_original_21/7058593/solution_images/51284464_664.png b/MM_Math/data_original_21/7058593/solution_images/51284464_664.png deleted file mode 100644 index 8959b387df143fda12886df27475aeee6ee8f183..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51284464_664.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f4ae77bc59bbedaef4462c5aa584b9009e8907b21335b0596e65684bbe0a651 -size 14017 diff --git a/MM_Math/data_original_21/7058593/solution_images/51285366_120.png b/MM_Math/data_original_21/7058593/solution_images/51285366_120.png deleted file mode 100644 index 31a2eedf11f183ca565ed6f910c87e2edc259adb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51285366_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd3b4263acddcc450b4c77f1656daa6819ea6e64d5ef9012a6e400dce304760a -size 6113 diff --git a/MM_Math/data_original_21/7058593/solution_images/51285474_110.png b/MM_Math/data_original_21/7058593/solution_images/51285474_110.png deleted file mode 100644 index 70842eda70d1ae88566fa336787d743a6779094e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51285474_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f09ec8d45832968ac56ff1d1e83db0f633067f380f57733ce8b589c4f52b5af1 -size 6919 diff --git a/MM_Math/data_original_21/7058593/solution_images/51298723_310.png b/MM_Math/data_original_21/7058593/solution_images/51298723_310.png deleted file mode 100644 index faa2bfefbb496545b430fcb56d0596ffb7d04791..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51298723_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:139a4229b0fd2d6795658b212288a2d58c239611fea1b5423c00a5b0180c0791 -size 2031 diff --git a/MM_Math/data_original_21/7058593/solution_images/51298870_650.png b/MM_Math/data_original_21/7058593/solution_images/51298870_650.png deleted file mode 100644 index d3299d05fc7b964ed7f6f02144f5bd276e1cd553..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51298870_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2153d7093d760d4ba17509b64734c9f06a6ac2dc046f27dabe870dcfcc9ddc6 -size 9601 diff --git a/MM_Math/data_original_21/7058593/solution_images/51299005_641.png b/MM_Math/data_original_21/7058593/solution_images/51299005_641.png deleted file mode 100644 index 0e3ff1a156ce7ef61d2cf46e39246d6c4ff1b1df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51299005_641.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:434256068e1ef6fbe38537f2b1a4163e474c860b1264bf8b77b72eefabfcb177 -size 9357 diff --git a/MM_Math/data_original_21/7058593/solution_images/51299079_630.png b/MM_Math/data_original_21/7058593/solution_images/51299079_630.png deleted file mode 100644 index 111ef3d0b0455f1d83b3c2c34c32afe66d41f884..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51299079_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:893947f03c7169943a8ebbc595338f68daa57c4832e4bd473d9c2427ffcab81b -size 7250 diff --git a/MM_Math/data_original_21/7058593/solution_images/51299079_632.png b/MM_Math/data_original_21/7058593/solution_images/51299079_632.png deleted file mode 100644 index d38f87198d12c44419a2c778cdbd1d08ff8cd46f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51299079_632.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e8b68b5514798e1e18730925770724502e66a31a7a2e75bb16a69b80d32c4361 -size 5265 diff --git a/MM_Math/data_original_21/7058593/solution_images/51299763_623.png b/MM_Math/data_original_21/7058593/solution_images/51299763_623.png deleted file mode 100644 index 6acab20ba3486f755023427ba92b713a8e304fe3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51299763_623.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8aa963cb68e6f9760a3d2edfd64f5c2760fa90bbddf4fd7340a3cc769648f405 -size 17533 diff --git a/MM_Math/data_original_21/7058593/solution_images/51318167_383.png b/MM_Math/data_original_21/7058593/solution_images/51318167_383.png deleted file mode 100644 index f17dacb36860e30cd2a51921b52ecc24e43cb965..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51318167_383.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd3f22e5ab5ec6e4a4b4a4c9d1f67e1c68bdc383973f577bb3718c04f1da5d42 -size 222637 diff --git a/MM_Math/data_original_21/7058593/solution_images/51318308_433.png b/MM_Math/data_original_21/7058593/solution_images/51318308_433.png deleted file mode 100644 index c7327e7089c1c7cb9faa81a40b5cba85a4cf2ede..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51318308_433.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db480239bc7d5bfe2153521312f71d36f5dc232843ef13feec421d7025094496 -size 18211 diff --git a/MM_Math/data_original_21/7058593/solution_images/51318739_8518.png b/MM_Math/data_original_21/7058593/solution_images/51318739_8518.png deleted file mode 100644 index 62e71b5c90ebc01466f4b5e3a9af24b1c3f9cd25..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51318739_8518.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf778c56ecea6deedea56568e67379f63f0b534f7457402be98d8b2c529df28a -size 3414 diff --git a/MM_Math/data_original_21/7058593/solution_images/51318739_8527.png b/MM_Math/data_original_21/7058593/solution_images/51318739_8527.png deleted file mode 100644 index af44d1f8ac21ee819cad634cb817daeb601cfe61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51318739_8527.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2173d56e830c536af439f965085245af5de24d4d332c05e1574d95c2a02d1673 -size 3105 diff --git a/MM_Math/data_original_21/7058593/solution_images/51318739_8539.png b/MM_Math/data_original_21/7058593/solution_images/51318739_8539.png deleted file mode 100644 index 19b9dabefd005047a4580adb87062d22a6f49342..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51318739_8539.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9beb4173933b089275947ea789ae9dbd52a8032747d5f905e736e2c72aa8dae -size 2969 diff --git a/MM_Math/data_original_21/7058593/solution_images/51318739_858.png b/MM_Math/data_original_21/7058593/solution_images/51318739_858.png deleted file mode 100644 index da9add09ec8e70a5cdd8a8a79ead531e4414c99b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51318739_858.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14ba0dcf07428e89ef69c3803b884d972fba208a56fd3446b0c4c662214b1312 -size 3613 diff --git a/MM_Math/data_original_21/7058593/solution_images/51318944_71.png b/MM_Math/data_original_21/7058593/solution_images/51318944_71.png deleted file mode 100644 index c3b726ec2a3c06c376a2d27da86a938da6e168e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51318944_71.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d9c6401345490e02f9ebf395d8f1996f083d7409a222052fcd7c63a4f24566c -size 2638 diff --git a/MM_Math/data_original_21/7058593/solution_images/51318991_371.png b/MM_Math/data_original_21/7058593/solution_images/51318991_371.png deleted file mode 100644 index ca97cc36599e234d06c9589e38c9d2e594bb5d20..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51318991_371.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aaa7f80e3ee8a5bd3ddd0c46a5d47b11fac548372c6f34e92eac0746dffb0f01 -size 11846 diff --git a/MM_Math/data_original_21/7058593/solution_images/51319026_422.png b/MM_Math/data_original_21/7058593/solution_images/51319026_422.png deleted file mode 100644 index 3f492e79f5819c3d781f705abca5df70e94c47f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51319026_422.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:011bf367ab2e362d59429123819d66245174161c7e0be9711c78abbc0e668497 -size 27463 diff --git a/MM_Math/data_original_21/7058593/solution_images/51320411_410.png b/MM_Math/data_original_21/7058593/solution_images/51320411_410.png deleted file mode 100644 index da27c9c02bfb2b7c4dbedad7578ae177a7486dcf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51320411_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3724df36571f1dcab6e695c946ef5fcef7d855055ccf2b7236993bac9a29a986 -size 2720 diff --git a/MM_Math/data_original_21/7058593/solution_images/51322489_260.png b/MM_Math/data_original_21/7058593/solution_images/51322489_260.png deleted file mode 100644 index 00d5f685b2f9387ccf172e2a5717d5731823d867..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51322489_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:195233f68270f43b84435c31f85a17896883c2973ae3361677f60f9187dad1ed -size 5427 diff --git a/MM_Math/data_original_21/7058593/solution_images/51322497_580.png b/MM_Math/data_original_21/7058593/solution_images/51322497_580.png deleted file mode 100644 index 2d0735b0be57a5c2efff7e7902ae4223ebb5e175..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51322497_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1bdd08d90fd544c9758566b2d76f44a596baf3bb4d83e2ff7f3df851d9358a44 -size 6037 diff --git a/MM_Math/data_original_21/7058593/solution_images/51322768_270.png b/MM_Math/data_original_21/7058593/solution_images/51322768_270.png deleted file mode 100644 index 083fe8b2875ff93a296695a420af7c90e1d125f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51322768_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c236d923f0e6a96863340efa5f27a845ccbec659099740ddd0d66e86bcced0fa -size 4258 diff --git a/MM_Math/data_original_21/7058593/solution_images/51322798_280.png b/MM_Math/data_original_21/7058593/solution_images/51322798_280.png deleted file mode 100644 index 4a46f7a9c58448a65d548ea40048cb1437cef10e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51322798_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:645805b47a072b2c3ac8999b5ecbbd1cedeaeb15c213b8fbd7f7587c44f83047 -size 11214 diff --git a/MM_Math/data_original_21/7058593/solution_images/51322900_5710.png b/MM_Math/data_original_21/7058593/solution_images/51322900_5710.png deleted file mode 100644 index 9de3e1d06455f5477fa42e14ad8569ab0a6e4f67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51322900_5710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e87965cde5076583fb30de5e519e0042a998803433afabcaa78cc9f745286eaa -size 5171 diff --git a/MM_Math/data_original_21/7058593/solution_images/51322900_573.png b/MM_Math/data_original_21/7058593/solution_images/51322900_573.png deleted file mode 100644 index 1778eb485b44e82791cc680d8ad9bd1ddbdc26e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51322900_573.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74e231fcfae28cec0e2f49d54c5bd8fbec971a76e0905ebf77c7648c2fc6e0e6 -size 5063 diff --git a/MM_Math/data_original_21/7058593/solution_images/51322900_577.png b/MM_Math/data_original_21/7058593/solution_images/51322900_577.png deleted file mode 100644 index 875f6caee0f23eb40c73e59c526569354c5bcf2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51322900_577.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e0621028ffb6ac6dbc1fd9afcc3d310a9383e1ae76bffba6f7921c2729c80b2 -size 5145 diff --git a/MM_Math/data_original_21/7058593/solution_images/51351226_40.png b/MM_Math/data_original_21/7058593/solution_images/51351226_40.png deleted file mode 100644 index 91afc759d7cbb801d6e36c24c10073cfdedfa1f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51351226_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7457c0b2001be0f911ba3b527de7c2d061d66e9fc9640950ce6811dea9acd99 -size 2774 diff --git a/MM_Math/data_original_21/7058593/solution_images/51353198_365.png b/MM_Math/data_original_21/7058593/solution_images/51353198_365.png deleted file mode 100644 index db3049d417e22c2a308bb1588b4866d661437e4e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51353198_365.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6914fc533d751fbf928c11b8190f9f84707bf86b3eefa9f5cc739f366fa398f9 -size 16085 diff --git a/MM_Math/data_original_21/7058593/solution_images/51358246_60.png b/MM_Math/data_original_21/7058593/solution_images/51358246_60.png deleted file mode 100644 index e7042280fe051d5bedbe40dd77b078eb46df15f0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51358246_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00669121a8abe5f8d6f15e7dcf9bf9f0a5ba7c3d9011be132e189b124a6a7c1a -size 47832 diff --git a/MM_Math/data_original_21/7058593/solution_images/51367390_552.png b/MM_Math/data_original_21/7058593/solution_images/51367390_552.png deleted file mode 100644 index 2ebf343a64336295697b590aee109d745e28ba5b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51367390_552.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2d82a73aaeda3ed94eb420e2d268e7f01c8ae8922df5c27e6d2d3c66729a41b -size 46945 diff --git a/MM_Math/data_original_21/7058593/solution_images/51367511_200.png b/MM_Math/data_original_21/7058593/solution_images/51367511_200.png deleted file mode 100644 index 20bf2c2c841ccff4cf6f11406b46cd7657e86606..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51367511_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d029b36657848b18c48569d913d47319e39c208fd0fdf4bbd76d3373dd695d9 -size 4325 diff --git a/MM_Math/data_original_21/7058593/solution_images/51384545_670.png b/MM_Math/data_original_21/7058593/solution_images/51384545_670.png deleted file mode 100644 index df21c72cb135deb2a350115f00ab7c2e0189e450..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51384545_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7792487bb051668c57071169cfa231a9d84316b1d92963597b03c1a19ae877a -size 9253 diff --git a/MM_Math/data_original_21/7058593/solution_images/51457858_20.png b/MM_Math/data_original_21/7058593/solution_images/51457858_20.png deleted file mode 100644 index f87300eb5ea7c8f7e14b590497929e34e43ca08c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51457858_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70b479c0da83eab98a5ad19944bc15474b1795c1b803681638a6e5fa6ba24282 -size 7376 diff --git a/MM_Math/data_original_21/7058593/solution_images/51458068_00.png b/MM_Math/data_original_21/7058593/solution_images/51458068_00.png deleted file mode 100644 index 97ff841b9c911dce3d17a01556aee7ab65f5f5fa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51458068_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e7025ba791f409c9b76c845bc6a9f1e5aa6d52ab45b534e8df931496c618a651 -size 1821 diff --git a/MM_Math/data_original_21/7058593/solution_images/51458140_350.png b/MM_Math/data_original_21/7058593/solution_images/51458140_350.png deleted file mode 100644 index 10d34df8191b245444ce6f39866806c85c8ea0fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/51458140_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71939c35138ec52c8e019dd2096053edfc3f433286cc429f3898cfd0ab4bfc40 -size 42562 diff --git a/MM_Math/data_original_21/7058593/solution_images/52949253_340.png b/MM_Math/data_original_21/7058593/solution_images/52949253_340.png deleted file mode 100644 index bbe0bc8b10fc36c1562d4187883ea719ec4b9908..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/52949253_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d612748068796b6242e876a71c3cce7f3f324baef347d41227be4c3f47d1b31 -size 4396 diff --git a/MM_Math/data_original_21/7058593/solution_images/53148597_480.png b/MM_Math/data_original_21/7058593/solution_images/53148597_480.png deleted file mode 100644 index c0c59c41419cab10e45686b858c08cc47e6b58d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/53148597_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff52d42c2617192b71de1fb9fe6a81af097a68661f716a2d9c8e0b366659e5b0 -size 25757 diff --git a/MM_Math/data_original_21/7058593/solution_images/53148883_150.png b/MM_Math/data_original_21/7058593/solution_images/53148883_150.png deleted file mode 100644 index 0350d20314958172aa6a1ec194d1ba2061641cdf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/53148883_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:225e7b9bbbabbb188ded9029689da59e7ecebfe340ba3d60850f99279e0952e2 -size 3954 diff --git a/MM_Math/data_original_21/7058593/solution_images/53148889_490.png b/MM_Math/data_original_21/7058593/solution_images/53148889_490.png deleted file mode 100644 index fb2b5d884afc9750d6e80ae628f8f6a561c43834..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/53148889_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7003bb57e0ec6ad748b807690668be89a519a91e83b56ca807b19a9c47de01a5 -size 3362 diff --git a/MM_Math/data_original_21/7058593/solution_images/53149296_500.png b/MM_Math/data_original_21/7058593/solution_images/53149296_500.png deleted file mode 100644 index bba1a0d7813f817a5720e86fa6479b5abfd9a3ae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/53149296_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3dcda98b97d076bda3534fa64a507e4e781a1321aa8bb4dacfefab3357999704 -size 109184 diff --git a/MM_Math/data_original_21/7058593/solution_images/53149424_160.png b/MM_Math/data_original_21/7058593/solution_images/53149424_160.png deleted file mode 100644 index d886f4a6975560159bb8e982f018d2e58be11b83..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058593/solution_images/53149424_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e19e465316dd7f6fad85f772105f3e12452015ea48cfc6541404631016315cce -size 7939 diff --git a/MM_Math/data_original_21/7058769/math/50890989_992.png b/MM_Math/data_original_21/7058769/math/50890989_992.png deleted file mode 100644 index 086ad91e6d05f75bed62443084f45f4357e65948..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50890989_992.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1dcaede61aec9d3e90c838fbf570fa97810014f33e633764432eac045d0ec2e8 -size 4674 diff --git a/MM_Math/data_original_21/7058769/math/50890998_341.png b/MM_Math/data_original_21/7058769/math/50890998_341.png deleted file mode 100644 index ed98cd00c957b9ed78cd62d871f5ea0add44528a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50890998_341.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66664321f32314308c4c50af74de66589e9ffdaa44fbd5b1704457d1a8a4adb3 -size 5584 diff --git a/MM_Math/data_original_21/7058769/math/50890999_356.png b/MM_Math/data_original_21/7058769/math/50890999_356.png deleted file mode 100644 index aa5f2bae3428cfc7585688c1c0e4f9dfce8ae235..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50890999_356.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aab1cd9ab41c65a7f0e69fbd5bdbed805ef054a9b6174c63f724d84c8a553a53 -size 11006 diff --git a/MM_Math/data_original_21/7058769/math/50891003_7512.png b/MM_Math/data_original_21/7058769/math/50891003_7512.png deleted file mode 100644 index df9dd6a635104dac931574949ef406777428c1c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50891003_7512.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:218869c91f903e0a7da6706ac28057a25638de02d0c660143cf206da5fa479de -size 7075 diff --git a/MM_Math/data_original_21/7058769/math/50913431_745.png b/MM_Math/data_original_21/7058769/math/50913431_745.png deleted file mode 100644 index a270c7f4c92bcfe5a27e4c3c8f72ed2f19d48fba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50913431_745.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:071f82766b85eaf01f7aa8bfe2126ae970d0cd1638d4ac1112cd0f4e36e3dcb5 -size 1882 diff --git a/MM_Math/data_original_21/7058769/math/50913440_335.png b/MM_Math/data_original_21/7058769/math/50913440_335.png deleted file mode 100644 index dc53cc31e89082093f0234a27680a88680b7c9da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50913440_335.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6035100f111743ad955612356a0aaab8c7893cc6e0037a89744df7b5a119be38 -size 1951 diff --git a/MM_Math/data_original_21/7058769/math/50928025_722.png b/MM_Math/data_original_21/7058769/math/50928025_722.png deleted file mode 100644 index 6c55e57568bdb460de1a21c4bf655d91848f9657..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50928025_722.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff060adb2d26df9708115212cedd06e6c070e54af1a526938f0ed32e94f9738b -size 11104 diff --git a/MM_Math/data_original_21/7058769/math/50933575_692.png b/MM_Math/data_original_21/7058769/math/50933575_692.png deleted file mode 100644 index f8687872926bc723f65a43e4fff5dcb70506908c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50933575_692.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70e3835566aa96b47f0ca04defb572929c9c7fd227f126265ab4528eacc08f7f -size 5801 diff --git a/MM_Math/data_original_21/7058769/math/50934083_294.png b/MM_Math/data_original_21/7058769/math/50934083_294.png deleted file mode 100644 index b0641b68ee97385f68157170da6eade361732ac7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50934083_294.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e95074bb757078c24640e77990b600db4f5fe63f9bd93f1226bb2a8ee8371cd -size 3483 diff --git a/MM_Math/data_original_21/7058769/math/50934100_815.png b/MM_Math/data_original_21/7058769/math/50934100_815.png deleted file mode 100644 index 8062610bb49e76be282e4f201a2e8cb88cc7131a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50934100_815.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1887604624484d40f79301f23ce4a60b8f6cc56f65d38a6f901b09df894f84e3 -size 6143 diff --git a/MM_Math/data_original_21/7058769/math/50934145_270.png b/MM_Math/data_original_21/7058769/math/50934145_270.png deleted file mode 100644 index efc9af34a1b4770d98675e1e6a33cc4765e801d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50934145_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5d513ebc2ccbb957d1444e9124c7457527203e3516c1518115c0865ed435b3e -size 4656 diff --git a/MM_Math/data_original_21/7058769/math/50934146_281.png b/MM_Math/data_original_21/7058769/math/50934146_281.png deleted file mode 100644 index fe6ab4f9e6a0b9296c09f7f92377873e775d28b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50934146_281.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f1c60cc0469ddb4eb68e88bd25c63ee349160d823ac358a59b0026c3769f627 -size 1801 diff --git a/MM_Math/data_original_21/7058769/math/50934151_265.png b/MM_Math/data_original_21/7058769/math/50934151_265.png deleted file mode 100644 index 1e40a6b98708120f7d86ce5fe3883e1e4fe43a21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50934151_265.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b4a57b09a64af1f19c387bdf87deac7237190652004a0ed3151ae8077693bee -size 3740 diff --git a/MM_Math/data_original_21/7058769/math/50951659_250.png b/MM_Math/data_original_21/7058769/math/50951659_250.png deleted file mode 100644 index 080d6e5a3fc95b906461fddaea8e1a92c3ac3503..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50951659_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50838a2b6a7320a17c453835dfc15116165ed8d46b8eb273c28d0bcba21df515 -size 6904 diff --git a/MM_Math/data_original_21/7058769/math/50951684_960.png b/MM_Math/data_original_21/7058769/math/50951684_960.png deleted file mode 100644 index 2e6744ba01fcccb331c75cb7f84a29b1370e6ccf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50951684_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2ee87720930fec04570f869e523fed55fd22f5d6f31ad28897a4658e6c67aa1 -size 3217 diff --git a/MM_Math/data_original_21/7058769/math/50982861_230.png b/MM_Math/data_original_21/7058769/math/50982861_230.png deleted file mode 100644 index 8278f582fa7a7bf9e1b3b2097046c22315f6fa5f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50982861_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1de603c72734fbc6d6481e7b5309f813579c4d8f9069bfb6fb976bb9c2248d52 -size 5089 diff --git a/MM_Math/data_original_21/7058769/math/50987121_200.png b/MM_Math/data_original_21/7058769/math/50987121_200.png deleted file mode 100644 index ebaa68464093244548e982021ae98ccceed739dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50987121_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10317f569c5bfbeccf526d0904666d0091970771b4ba1adaa4d8c979bd6631a6 -size 4992 diff --git a/MM_Math/data_original_21/7058769/math/50987126_592.png b/MM_Math/data_original_21/7058769/math/50987126_592.png deleted file mode 100644 index 16024617e85824ba67f5ea830d36369468b2d2dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/50987126_592.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f8756251ddce0a4bd5291ebd9285eed09c3512a8652364c0cc24129d91ad410a -size 5770 diff --git a/MM_Math/data_original_21/7058769/math/51005030_581.jpg b/MM_Math/data_original_21/7058769/math/51005030_581.jpg deleted file mode 100644 index 66ae575310e396ea8d0683982e740aca143041f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51005030_581.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f67b03a3b40fa08237b0c64a0b05678941c69b060b8169d354e3743cc32bf63 -size 10752 diff --git a/MM_Math/data_original_21/7058769/math/51005089_570.png b/MM_Math/data_original_21/7058769/math/51005089_570.png deleted file mode 100644 index 8dd57de0cf9f4c34066d4ea7cfe5efbc2cb3bcba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51005089_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa0f84431083a25b46c7b3107f32f690da64e74170fa713388ae486ef5e33b90 -size 2444 diff --git a/MM_Math/data_original_21/7058769/math/51008731_531.png b/MM_Math/data_original_21/7058769/math/51008731_531.png deleted file mode 100644 index 9b01ebb9876b5a5464e3eda9007010157ae5e194..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51008731_531.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d55b244a252c63f6b35cc1d75a5b6a5ce95372803cc50306be0102696793eda -size 5531 diff --git a/MM_Math/data_original_21/7058769/math/51010334_182.png b/MM_Math/data_original_21/7058769/math/51010334_182.png deleted file mode 100644 index 3b0e3b988c81d892d38eb2dbc7695391c6daf995..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51010334_182.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41db9322d1168f88117a95179931d47d9530ae1f9eb1e7dd997aac8b04c8a7e8 -size 2188 diff --git a/MM_Math/data_original_21/7058769/math/51010356_940.png b/MM_Math/data_original_21/7058769/math/51010356_940.png deleted file mode 100644 index 9a163889d5eb3eda9706971c3968e49f2920c847..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51010356_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33b6aa25a4004d6c861caa36368330bc976587f7c494e1bb8ae4a587a1cfeaf7 -size 7342 diff --git a/MM_Math/data_original_21/7058769/math/51029309_520.png b/MM_Math/data_original_21/7058769/math/51029309_520.png deleted file mode 100644 index e75f38790d9d334e0e4d62b8fbffc1098b6838af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51029309_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23071730274e59deaea4742e8e22e3dacee76a1a0102b886a3e031fde752c6af -size 5355 diff --git a/MM_Math/data_original_21/7058769/math/51029323_900.png b/MM_Math/data_original_21/7058769/math/51029323_900.png deleted file mode 100644 index 6a96759f0e04b5be0570094046cea82abb33230c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51029323_900.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63eafdff685f6e40a4476bc67089ebcf20eb57aaf906d842eaa4b13c3b0ba9a0 -size 4004 diff --git a/MM_Math/data_original_21/7058769/math/51029385_171.png b/MM_Math/data_original_21/7058769/math/51029385_171.png deleted file mode 100644 index 8b0fa41e737b40d1f9466eaad9a390c46300d611..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51029385_171.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa330b8fe36897095d338a3511df05cf092318936f8918fff3e7ed8aa4f8798c -size 5000 diff --git a/MM_Math/data_original_21/7058769/math/51029388_163.png b/MM_Math/data_original_21/7058769/math/51029388_163.png deleted file mode 100644 index 95742f206a2537c0d6a8efbf4dc4cbe6d34a6e5d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51029388_163.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:015cd5cb22b4350aca6dccf6e58e57d33777f6bdb08f13f73adfe3fa1c5e529a -size 4021 diff --git a/MM_Math/data_original_21/7058769/math/51032242_511.png b/MM_Math/data_original_21/7058769/math/51032242_511.png deleted file mode 100644 index 70daa0375545fd2fd75e278e3e8d1998105ec95f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51032242_511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19fbeb8141db181c4b45ab3710b29451c04bec68fe7b4a9212b7af7419128790 -size 2662 diff --git a/MM_Math/data_original_21/7058769/math/51032247_794.png b/MM_Math/data_original_21/7058769/math/51032247_794.png deleted file mode 100644 index 00edb55cb95c622754caeda3089614da94cc45b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51032247_794.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98b5dd50398d95f0b11448bfffc368f07db7793861d66a9259607a2bd602b649 -size 4568 diff --git a/MM_Math/data_original_21/7058769/math/51034127_150.png b/MM_Math/data_original_21/7058769/math/51034127_150.png deleted file mode 100644 index ff435bb7256a48f847220f56adb696ce3a63b937..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51034127_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15d88cdd80950fbf32e5ef07bfab0b0b515b92c137119a93b5650a20891d27af -size 6627 diff --git a/MM_Math/data_original_21/7058769/math/51034140_503.png b/MM_Math/data_original_21/7058769/math/51034140_503.png deleted file mode 100644 index a44bf3a8cc6dd59eb3005f89f12ca7fe802a2c62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51034140_503.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7bed9ca0e356c96568fa35c8aa1eab120da6ee62f43ffddfa25efe9d2ec2e6ed -size 4959 diff --git a/MM_Math/data_original_21/7058769/math/51051524_460.png b/MM_Math/data_original_21/7058769/math/51051524_460.png deleted file mode 100644 index 4dc11b07d147756802e70cbaf42d59c3ee0d772f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51051524_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb29f5f75f0e6b39610c33ce6059542a4c791ee17e0a1edd61313cfaffd86fc4 -size 2711 diff --git a/MM_Math/data_original_21/7058769/math/51051567_891.png b/MM_Math/data_original_21/7058769/math/51051567_891.png deleted file mode 100644 index adebd57e45b3b34294f406e906d9905ea85b16ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51051567_891.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b675667da46e6b8f7afc9c089222851da44a4ef9604ab1d6994f2197f94d28e -size 1911 diff --git a/MM_Math/data_original_21/7058769/math/51051573_881.png b/MM_Math/data_original_21/7058769/math/51051573_881.png deleted file mode 100644 index 3a79c0fb943f6ff10c5d14e7c780ed07c9bb99c5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51051573_881.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c35603747d6e2ea0f3bab443462370b6cdb6c192a2ef8b96deff323d7b3c84b8 -size 3395 diff --git a/MM_Math/data_original_21/7058769/math/51061530_450.jpg b/MM_Math/data_original_21/7058769/math/51061530_450.jpg deleted file mode 100644 index 635b2206c588011580e5bd1c0d3db7fa417ff6f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51061530_450.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc2c2e00a41028c3e9e38250da512002bd67101b4dcd20a897e4cc59457aecbf -size 2956 diff --git a/MM_Math/data_original_21/7058769/math/51073825_971.png b/MM_Math/data_original_21/7058769/math/51073825_971.png deleted file mode 100644 index 257692d06f35d9869259c3c6cb05052147fbce1c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51073825_971.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a0ba827804b0fbdc271b22133fe3808c7fd7328a5cf31a143d208376dc76904 -size 5478 diff --git a/MM_Math/data_original_21/7058769/math/51082675_73.png b/MM_Math/data_original_21/7058769/math/51082675_73.png deleted file mode 100644 index 3cde9165551e9eee959927747678c6ae368970d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51082675_73.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72b7ac80878184960ea650492fea9bfec6c9769a3c59b0558c5af22c8f21182c -size 1609 diff --git a/MM_Math/data_original_21/7058769/math/51083013_61.png b/MM_Math/data_original_21/7058769/math/51083013_61.png deleted file mode 100644 index f95756233e303a29fa3616a18487bc5f0f4e95e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51083013_61.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9429f9cc35b207e2a883a995e72de9894500425807d52538c6e26dec4889199 -size 2899 diff --git a/MM_Math/data_original_21/7058769/math/51083538_412.png b/MM_Math/data_original_21/7058769/math/51083538_412.png deleted file mode 100644 index 407c8df69a10041c3d54ab1b47307756df72d9c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51083538_412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77f030afe4b149f5c04323679fbab91a4761739e3f073813c688a7f5c0714505 -size 9321 diff --git a/MM_Math/data_original_21/7058769/math/51083564_42.png b/MM_Math/data_original_21/7058769/math/51083564_42.png deleted file mode 100644 index 662ad498444067530c07c4c293491b34801a4a21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51083564_42.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5c19698342eb64912e00ade84a7a8e58fdac17379d4b2349ce412a9788bc8349 -size 3483 diff --git a/MM_Math/data_original_21/7058769/math/51083566_52.png b/MM_Math/data_original_21/7058769/math/51083566_52.png deleted file mode 100644 index 1f1258c1e7d93b0381ca26ba160030b2e07bdbfd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51083566_52.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e258f6e8fe2da1d1f9d5f6e874ab014a80304ba864b5d2c5dc11bd9942b19b05 -size 2778 diff --git a/MM_Math/data_original_21/7058769/math/51083570_4010.png b/MM_Math/data_original_21/7058769/math/51083570_4010.png deleted file mode 100644 index 489a90ca347ddaa468ef9bcf6b96beecfc7a1fb0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51083570_4010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d36a0e13e2af16958bc98bb9befb32aee0d3fdefbcdfe3a490684784d6e9c4d -size 5706 diff --git a/MM_Math/data_original_21/7058769/math/51083573_390.png b/MM_Math/data_original_21/7058769/math/51083573_390.png deleted file mode 100644 index b1d140bf2e7bf98d69f4fcfaf77223ffc612b152..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51083573_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9836dfd5961bb18ff436784c9fb7bc2efb4a93b776bd8778c52963769ce21d1 -size 2869 diff --git a/MM_Math/data_original_21/7058769/math/51083577_871.png b/MM_Math/data_original_21/7058769/math/51083577_871.png deleted file mode 100644 index 48380b04e81ded9e750c517cb0ef5c01451d33e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51083577_871.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:85110bbb2c86f89fe2ade8a7a4a72be7dd4c5a5b97842c20e5341f0e9c7297f9 -size 1598 diff --git a/MM_Math/data_original_21/7058769/math/51099866_371.jpg b/MM_Math/data_original_21/7058769/math/51099866_371.jpg deleted file mode 100644 index 12a3bfa575144f35d07320057a488098a63ca3af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51099866_371.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:911d675ae731a5ac762bbb7855e9f4176cd4db6d9b219db3c6267fb17612dbc8 -size 3511 diff --git a/MM_Math/data_original_21/7058769/math/51103634_22.png b/MM_Math/data_original_21/7058769/math/51103634_22.png deleted file mode 100644 index f11d0a2c0d3c523cb2194448ed84359dff675752..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51103634_22.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70afad0ccf0731b81ed4f1129cfbd1d0dd22cdf463eaa21561e51ce5232f590f -size 4084 diff --git a/MM_Math/data_original_21/7058769/math/51103651_830.png b/MM_Math/data_original_21/7058769/math/51103651_830.png deleted file mode 100644 index 69b4f9c9c2083402c3e0ce0111124e425c86e0c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51103651_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a22d23c646ec453092c3301198cf6f2ef396956dbd2672e14d6db495b325064b -size 4960 diff --git a/MM_Math/data_original_21/7058769/math/51103664_11.png b/MM_Math/data_original_21/7058769/math/51103664_11.png deleted file mode 100644 index 75675ce2dd3e7110ef862078631f177e818e6f73..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51103664_11.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7041963e1eb989d30762001fdc6e468476a098bc33e1b89722f9d25e4ed614f6 -size 6013 diff --git a/MM_Math/data_original_21/7058769/math/51103675_361.png b/MM_Math/data_original_21/7058769/math/51103675_361.png deleted file mode 100644 index 36bd86d770be3b3842c7e793e7eaa3e9ef00b230..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51103675_361.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4ad44d1a34feb284ff488535a149d273bc9dde67c37eedbafff592da3d56961 -size 3016 diff --git a/MM_Math/data_original_21/7058769/math/51103676_821.png b/MM_Math/data_original_21/7058769/math/51103676_821.png deleted file mode 100644 index cd0b39e54d7117be717c2ba448172f411e244198..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51103676_821.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a8a8dad40c49171790bf8fed191d4b814820beea0420de47ad630861ee9367b -size 5305 diff --git a/MM_Math/data_original_21/7058769/math/51103840_00.png b/MM_Math/data_original_21/7058769/math/51103840_00.png deleted file mode 100644 index 52e11b06e189f85758f8c253e41ea71ea610f21f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51103840_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3d9086ddf2a945c173a150e97c5c148b23a0eff5d01058ae72f17d1a65c7ea40 -size 2865 diff --git a/MM_Math/data_original_21/7058769/math/51106528_651.png b/MM_Math/data_original_21/7058769/math/51106528_651.png deleted file mode 100644 index c9d50bee932d46721bfd55d6a0a3dfe63780436a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51106528_651.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f78d61a988819b73482408b648fd089e3208ed951231b8cc34436997e1b5a248 -size 5216 diff --git a/MM_Math/data_original_21/7058769/math/51106894_246.png b/MM_Math/data_original_21/7058769/math/51106894_246.png deleted file mode 100644 index 3e46fb3f9bc6d12dea52d7ffe2122f3b25eaa52d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51106894_246.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e714ee8e68679691bd416ae81e97856b075e5b0e2d65478f1126b95439918937 -size 4232 diff --git a/MM_Math/data_original_21/7058769/math/51106899_632.png b/MM_Math/data_original_21/7058769/math/51106899_632.png deleted file mode 100644 index c4df36f1cfa3b0a7e408150e6a2331faedf2dd9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51106899_632.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c7da123ded282ec651de4bf3826b3a84cddaba312408bcfc4c9511f16f14914 -size 4150 diff --git a/MM_Math/data_original_21/7058769/math/51106900_644.png b/MM_Math/data_original_21/7058769/math/51106900_644.png deleted file mode 100644 index 05ab578c81bb6ec3430b65b5c4eb4281fad4763c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51106900_644.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32163bf5b34f045c6ddeaa080aae64889a047b885baac6c6183ae5803172c3cc -size 3818 diff --git a/MM_Math/data_original_21/7058769/math/51106915_954.png b/MM_Math/data_original_21/7058769/math/51106915_954.png deleted file mode 100644 index 82420ce945e4fc845e55512bb6a342d6049b0e2b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51106915_954.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f03beda3a7830717ab5e314a23feb0df388acb3df9678aabf3ba4282b5831ddd -size 4716 diff --git a/MM_Math/data_original_21/7058769/math/51109760_620.jpg b/MM_Math/data_original_21/7058769/math/51109760_620.jpg deleted file mode 100644 index 3d5ea1d5840cab4194b04f404392858c92f46e2a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51109760_620.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:733dc46aecbe90d444823eeca6475d842e8dbc346f0a0f14aece47f4b9fee42f -size 2877 diff --git a/MM_Math/data_original_21/7058769/math/51130768_6113.png b/MM_Math/data_original_21/7058769/math/51130768_6113.png deleted file mode 100644 index f3a7d3657ce4339d16e21389a0c5ff76451b4f82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51130768_6113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc8270c333ebf148930ceb40fc0c425905a1f0d94c0e41a0e31d0127bdf35426 -size 8152 diff --git a/MM_Math/data_original_21/7058769/math/51130827_600.png b/MM_Math/data_original_21/7058769/math/51130827_600.png deleted file mode 100644 index 534744f55c83f7f33320a6e62bc16eed66d528b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51130827_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51534b4dab8b112ff4232f54363aec4f4d8228612e9a2f89d351ea3843e61473 -size 3309 diff --git a/MM_Math/data_original_21/7058769/math/51130891_221.png b/MM_Math/data_original_21/7058769/math/51130891_221.png deleted file mode 100644 index b9cd6a8bcde22fff80c3f6d519b683da65554efb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51130891_221.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c01c9487f6a35f070aa74c477c5c736b3d58786c6d47f77f3b5c089b376c293 -size 3351 diff --git a/MM_Math/data_original_21/7058769/math/51131123_212.jpg b/MM_Math/data_original_21/7058769/math/51131123_212.jpg deleted file mode 100644 index 504a79b503400cbb1209ffa2325396a90e51573b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51131123_212.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37b719a1c046871ef587f16048c90a8c6791a218a6d90370ad79e6cf08b146ed -size 12577 diff --git a/MM_Math/data_original_21/7058769/math/51152250_930.png b/MM_Math/data_original_21/7058769/math/51152250_930.png deleted file mode 100644 index 09b61e27b3505e5ef58c382e3f3fc8f50fd9e128..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51152250_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63c90776711b85865b1244b98257b2a76ceb8413660026b0e38a9a87dc6f3433 -size 27931 diff --git a/MM_Math/data_original_21/7058769/math/51152254_923.png b/MM_Math/data_original_21/7058769/math/51152254_923.png deleted file mode 100644 index 4a03b6dc8bce9bec2db46f3ec1cd491d7c798d7f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51152254_923.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:523c95c11449573e29256407f0fcc6590b3cc2bb7bdbc70582f3a8455f00f666 -size 19938 diff --git a/MM_Math/data_original_21/7058769/math/51152292_9118.png b/MM_Math/data_original_21/7058769/math/51152292_9118.png deleted file mode 100644 index ba8880b48af803e7811c985150da27232e03d83b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51152292_9118.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70b6a7eeb2085e5e369a391b77b1826aa2bc961b90b15a6882ddb24a81fec490 -size 8414 diff --git a/MM_Math/data_original_21/7058769/math/51174753_130.png b/MM_Math/data_original_21/7058769/math/51174753_130.png deleted file mode 100644 index f6f7994ec2681b03f6a96458f2a1b803aeee64a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51174753_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:530f6bd770b192666de87d0691c343a8bfb64c6ae4df77fd300a77b0dfc0c632 -size 5395 diff --git a/MM_Math/data_original_21/7058769/math/51174755_111.png b/MM_Math/data_original_21/7058769/math/51174755_111.png deleted file mode 100644 index 62e6260ec168e746c50576bf29312b376adbb71f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51174755_111.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ba9122b4346536873f45f77a520e488281f0c528108baffdad868fb8f5f7da2 -size 3058 diff --git a/MM_Math/data_original_21/7058769/math/51174756_120.png b/MM_Math/data_original_21/7058769/math/51174756_120.png deleted file mode 100644 index df572928648578cc5cbe82089e264deb9312a1f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51174756_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f65202aaf6bc2e6162840331b674287b4c1568a2920fcbec1e6032d41ca5520c -size 3319 diff --git a/MM_Math/data_original_21/7058769/math/51174827_470.png b/MM_Math/data_original_21/7058769/math/51174827_470.png deleted file mode 100644 index 8d7f717dd8b100ba986df5c0fba906d30d05fcfc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51174827_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ae5ca0372208907556c04a362e1bfcb0d80d14eb661027e60997293cc04b1cf -size 5969 diff --git a/MM_Math/data_original_21/7058769/math/51174836_780.png b/MM_Math/data_original_21/7058769/math/51174836_780.png deleted file mode 100644 index d2891f90d4597dd5653f25271a4dab86fd7e1615..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51174836_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab0238f36d88d6e415272ae9311d23be544e882e91e4080cd4abb8f4d02e7f5c -size 3351 diff --git a/MM_Math/data_original_21/7058769/math/51174880_103.png b/MM_Math/data_original_21/7058769/math/51174880_103.png deleted file mode 100644 index 3074414ebf0ef1e49af4362e3bb75f03a76ff177..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51174880_103.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92500bf765842a2373d2c3dbe5e90bc686e8d34b10f4f6d1fccfdbed74337fb6 -size 3264 diff --git a/MM_Math/data_original_21/7058769/math/51174881_90.png b/MM_Math/data_original_21/7058769/math/51174881_90.png deleted file mode 100644 index 8ac25803fc9876b62dce2db2e3b9665ad1892514..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51174881_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d96d80712743d05f86e5b79aa003d27f8a160a5264048235fb3330c4a8f1d95 -size 3550 diff --git a/MM_Math/data_original_21/7058769/math/51175037_774.png b/MM_Math/data_original_21/7058769/math/51175037_774.png deleted file mode 100644 index 4a0e8da62fd197beb56450e8b65989d7f7f560fc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51175037_774.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef2b117ba62f5161f4351b801de1cf44b10f243f4970e7432b263a118c5e2573 -size 1622 diff --git a/MM_Math/data_original_21/7058769/math/51176403_761.png b/MM_Math/data_original_21/7058769/math/51176403_761.png deleted file mode 100644 index 1afb4eedf88434dec5f12e46ff18d82f6fc665b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51176403_761.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ac62fb3b7b4bb77a68aeb53cccdc12f78b769b903812e8aea4aa90132848f26 -size 2246 diff --git a/MM_Math/data_original_21/7058769/math/51212924_326.png b/MM_Math/data_original_21/7058769/math/51212924_326.png deleted file mode 100644 index b4bcccae81dbeaed447f338355e1051baaecd654..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51212924_326.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b196a15484922320f307cfb4679e6851976e7e6533b6a9c8eb492b5de0437332 -size 37475 diff --git a/MM_Math/data_original_21/7058769/math/51213060_306.png b/MM_Math/data_original_21/7058769/math/51213060_306.png deleted file mode 100644 index 4b211b177a19e31ad91d0236f40264143318dac7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51213060_306.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:100be0803f65bf966b100a94b26d550cd6ba9ca712f09463cc9e69ea75db4c83 -size 7027 diff --git a/MM_Math/data_original_21/7058769/math/51213066_735.png b/MM_Math/data_original_21/7058769/math/51213066_735.png deleted file mode 100644 index a3662820f2aff1303108b82b7d7c736eb33f8f12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51213066_735.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d32546a930605e330439b34a444533ca12d8d476cc56a84b15193df2a2669d1a -size 2125 diff --git a/MM_Math/data_original_21/7058769/math/51213099_310.png b/MM_Math/data_original_21/7058769/math/51213099_310.png deleted file mode 100644 index f5b7c67a8460edea2424fe5b3bfb6dd99d92042f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51213099_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:735aba14b0d474c362d1dd5fd586e1523e1e3ae65755b34cd7a9698b594a63eb -size 7882 diff --git a/MM_Math/data_original_21/7058769/math/51246271_844.png b/MM_Math/data_original_21/7058769/math/51246271_844.png deleted file mode 100644 index a3206287c714c18366e81500e4491d95eaf9bd70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/51246271_844.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc773a2588f748dd8af8c50172d223511503f050a818faa6c43bbb81b25dbf63 -size 15966 diff --git a/MM_Math/data_original_21/7058769/math/52283815_980.png b/MM_Math/data_original_21/7058769/math/52283815_980.png deleted file mode 100644 index 5485fe1b1f0d8ef3159f5572fd9952bb489314ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52283815_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:715d1688fc7c6ff87d259f7edaff3aca00d97bbe244d1e0a6ee32a200342db61 -size 4033 diff --git a/MM_Math/data_original_21/7058769/math/52478922_800.png b/MM_Math/data_original_21/7058769/math/52478922_800.png deleted file mode 100644 index 9ca6cba393e00d8c3e13dc03912f55953829b5ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52478922_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:940da340b9d7c2560e9914b1f82656891d3d1dc9582020c17685f98d08549a50 -size 12865 diff --git a/MM_Math/data_original_21/7058769/math/52483220_550.png b/MM_Math/data_original_21/7058769/math/52483220_550.png deleted file mode 100644 index 3170e12141c4a7f5ce30ddda4e736361ae15ac4b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52483220_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2e5003eebbd380d9ba0d0080014d96e52669ea92c7baa1f116cb12b1f83a925 -size 4001 diff --git a/MM_Math/data_original_21/7058769/math/52483257_561.png b/MM_Math/data_original_21/7058769/math/52483257_561.png deleted file mode 100644 index fd01d215699804d022b50553f01e8987e29f8af3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52483257_561.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4044b754c26505a358ebc8ef9ec41f5f458571e41579339907c4112d70dda7e9 -size 4512 diff --git a/MM_Math/data_original_21/7058769/math/52483324_540.png b/MM_Math/data_original_21/7058769/math/52483324_540.png deleted file mode 100644 index 5305cbbbdf31ce57956e9ef98cf79da1d7c826a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52483324_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4c84cad8de334a1c48ed9546cc424d4292f08ce3163aee75c50d3ea5c252259 -size 3207 diff --git a/MM_Math/data_original_21/7058769/math/52511772_480.png b/MM_Math/data_original_21/7058769/math/52511772_480.png deleted file mode 100644 index 7617ea1e44560f4cf9e3c2614c7cfa2ec0efcf7f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52511772_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e090850c9ba71558adff811ff85a1d0ad87d22ebc8f4e59706e7ecc31531a11 -size 4467 diff --git a/MM_Math/data_original_21/7058769/math/52511894_142.png b/MM_Math/data_original_21/7058769/math/52511894_142.png deleted file mode 100644 index a8bfd380f33330313b6893d01b4c9c4310430b3a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52511894_142.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7a5a5f5b3db34e324a5c35e9cfe6e710bdf8f230606e83b2798cffefecad1e1 -size 2625 diff --git a/MM_Math/data_original_21/7058769/math/52511902_490.png b/MM_Math/data_original_21/7058769/math/52511902_490.png deleted file mode 100644 index abf0620e87e0cbbbf397176f67b3006883eeaa9f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52511902_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b1dcfb296e3592822290d634f88d4c0c0166191dc5dccefa182c64a84c21153 -size 2844 diff --git a/MM_Math/data_original_21/7058769/math/52532703_193.png b/MM_Math/data_original_21/7058769/math/52532703_193.png deleted file mode 100644 index c5fffac7ece592b93484517e73934dc49ff26d37..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52532703_193.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2d7231cd6a32533d9e17f6a587c542ef89f3f66b3ba61510db3c27efc65ea06 -size 3766 diff --git a/MM_Math/data_original_21/7058769/math/52550162_80.png b/MM_Math/data_original_21/7058769/math/52550162_80.png deleted file mode 100644 index ac3a47b561eca21c6996c7eba75e333d83e5e980..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52550162_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba554f15bb0d2e6f6dc6b49ad889f14a201cb2fc48752e7083b15acbfd697774 -size 1707 diff --git a/MM_Math/data_original_21/7058769/math/52550173_442.png b/MM_Math/data_original_21/7058769/math/52550173_442.png deleted file mode 100644 index d0ac2471106d27bc1991852ecd400421924525f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52550173_442.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bce0f6d6c3d85fa473a621952a5981f1ac7ad133a6f6e82e74679627477fd98e -size 4538 diff --git a/MM_Math/data_original_21/7058769/math/52585578_420.png b/MM_Math/data_original_21/7058769/math/52585578_420.png deleted file mode 100644 index 38cbb05633876e4886ef59e9333db7b4fb3e17c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52585578_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5eca973a27225836903d54919fc1147580ada14936f8302eaf69d60d3c4552ac -size 1675 diff --git a/MM_Math/data_original_21/7058769/math/52585579_438.png b/MM_Math/data_original_21/7058769/math/52585579_438.png deleted file mode 100644 index 23c8757e139cb1775179001d06e7414b89c50845..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52585579_438.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fac4880cca7d97fc3865336ed88fae5f924b48531285ab7a69cadf0b84cb494c -size 17551 diff --git a/MM_Math/data_original_21/7058769/math/52746228_310.png b/MM_Math/data_original_21/7058769/math/52746228_310.png deleted file mode 100644 index dbbd51baa5904e31ac36239ac289abcd4594fceb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52746228_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60897f93402c8e53f74eb2e57fb31c39a3318aa70dc73a57f5332cd078ff0bf9 -size 6198 diff --git a/MM_Math/data_original_21/7058769/math/52746233_380.png b/MM_Math/data_original_21/7058769/math/52746233_380.png deleted file mode 100644 index 9e8eb2399fdf718c78bd65f395ae4c9f6b183d2c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52746233_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ff680961caf4932abf990c37cad5ccb6eec94da72742733dc4a95945ca84487 -size 4785 diff --git a/MM_Math/data_original_21/7058769/math/52746246_861.png b/MM_Math/data_original_21/7058769/math/52746246_861.png deleted file mode 100644 index 8dccb617d1808800b86e12e5bfdc2828dff591b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52746246_861.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58a55470b57e8011a1fd718e11975cb51456f931d963f9416b949ea6834c5094 -size 70535 diff --git a/MM_Math/data_original_21/7058769/math/52746343_851.png b/MM_Math/data_original_21/7058769/math/52746343_851.png deleted file mode 100644 index 08fa1b2e527972b1982a5c13860986bdedc9fa26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52746343_851.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28931f04d68d3d83642292dc36267cb4c46b9205c995ae9eba33e14e04e73462 -size 5541 diff --git a/MM_Math/data_original_21/7058769/math/52930757_665.png b/MM_Math/data_original_21/7058769/math/52930757_665.png deleted file mode 100644 index f2be40a0378afb32c2a8a2955177000a241f614f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52930757_665.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a88aca74c2ef2f9369f4100edaa8dab39713d692105931c07b01109ea441db9 -size 3894 diff --git a/MM_Math/data_original_21/7058769/math/52930758_675.png b/MM_Math/data_original_21/7058769/math/52930758_675.png deleted file mode 100644 index 5f05405da0dd76de8a3714d28045bca1da674662..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52930758_675.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bec6469a48281b43f4d9fd394d74c8bdec3582e16e46e3981e8da98436d743a7 -size 3770 diff --git a/MM_Math/data_original_21/7058769/math/52931044_680.png b/MM_Math/data_original_21/7058769/math/52931044_680.png deleted file mode 100644 index 0616d0971921c2fdcde99a5a3404f988711dd3b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/52931044_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f8f642bb4af0f13b597cd5c8255798c0399f4681827651967d16cefa83cd4acd -size 5104 diff --git a/MM_Math/data_original_21/7058769/math/54967313_701.png b/MM_Math/data_original_21/7058769/math/54967313_701.png deleted file mode 100644 index a823a414aed7d4dd91b6e984bbbd815f3132cfa0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/54967313_701.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6f5bd7358d1b3527934ad79aadef7ed34ab2bc274ea5c6dd7cb2f94c8769fb29 -size 41999 diff --git a/MM_Math/data_original_21/7058769/math/54967449_713.png b/MM_Math/data_original_21/7058769/math/54967449_713.png deleted file mode 100644 index 5c478e3c2c9ef3e35554229078809faa193b5cbb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/math/54967449_713.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b107acca9d1b9bd785ab84c76a5f125852ef1b2301345a783564f387eba4eaad -size 56653 diff --git a/MM_Math/data_original_21/7058769/solution_images/50928025_720.png b/MM_Math/data_original_21/7058769/solution_images/50928025_720.png deleted file mode 100644 index def32812ed5ee14cf64393205c397d5fc01a3318..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/50928025_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:714f99117417ac3ec035bf8a4cceb8e5b1be52413082fab4bad3a3042e61a713 -size 19970 diff --git a/MM_Math/data_original_21/7058769/solution_images/50933575_690.png b/MM_Math/data_original_21/7058769/solution_images/50933575_690.png deleted file mode 100644 index 7d524f95d25264cae5576469510aa8c9c86cfdd6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/50933575_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eeaa73b29bb567c1c66709d4f05c086cd59378d6f1f94faeda38cd06ef3d6beb -size 7676 diff --git a/MM_Math/data_original_21/7058769/solution_images/50934083_292.png b/MM_Math/data_original_21/7058769/solution_images/50934083_292.png deleted file mode 100644 index 9fe8e1e1b605c0f48bb2d38a9633fe949abd30cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/50934083_292.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40122ddc12f2fad691a14e24811d15fba5f5c1b791e26761226a4a2dd68802fa -size 4276 diff --git a/MM_Math/data_original_21/7058769/solution_images/50934151_261.png b/MM_Math/data_original_21/7058769/solution_images/50934151_261.png deleted file mode 100644 index d5e3d29ba578cf6d56042fda76a55f7d0083ee4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/50934151_261.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:473a16270249d82ca076d2996896c61b1f1b679e3c16f398fdcad388ac393000 -size 4795 diff --git a/MM_Math/data_original_21/7058769/solution_images/50982861_230.jpg b/MM_Math/data_original_21/7058769/solution_images/50982861_230.jpg deleted file mode 100644 index 0570b7e835f2c00cae3e296fa6e36970b7d43e42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/50982861_230.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53c06ec95e75b24828852d80855425b11b30c53ee4930db6a01884d4639f567d -size 29385 diff --git a/MM_Math/data_original_21/7058769/solution_images/50987121_200.png b/MM_Math/data_original_21/7058769/solution_images/50987121_200.png deleted file mode 100644 index 561cccf3181ca57cd96811a22d14ca81915d8a4b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/50987121_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:446cf97a6afad3f7461cb0b0f23bc8f7d8150f5fc9267f30ef9fcfe53e2f8197 -size 6651 diff --git a/MM_Math/data_original_21/7058769/solution_images/50987126_597.png b/MM_Math/data_original_21/7058769/solution_images/50987126_597.png deleted file mode 100644 index f90972f9f20affd38ee14346cd718a2a7ee284e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/50987126_597.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d95c66442c65b5a0e67c7e31f2476d922c504bd855764c785bc469db36e5e39 -size 6195 diff --git a/MM_Math/data_original_21/7058769/solution_images/51005030_580.jpg b/MM_Math/data_original_21/7058769/solution_images/51005030_580.jpg deleted file mode 100644 index 398c9d8386c9c15191117db39122559080dac1e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51005030_580.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68ab6fbca3aa0726ad493b3f518137daa2fa9558457b6ccc039a26eae4687727 -size 13026 diff --git a/MM_Math/data_original_21/7058769/solution_images/51005089_570.png b/MM_Math/data_original_21/7058769/solution_images/51005089_570.png deleted file mode 100644 index 6fc266d5f7eb55362dfdb701980dba24a5c78db2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51005089_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2423d062ac34779be334be7f30ea400e5bf0e9106a352704f6cc772e2d301b6 -size 4333 diff --git a/MM_Math/data_original_21/7058769/solution_images/51008731_530.png b/MM_Math/data_original_21/7058769/solution_images/51008731_530.png deleted file mode 100644 index 9aa63675df633b046050db154c3480d96ba98fe5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51008731_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77abb1bc08cd91a6bd72acc1a5d9ed9c3e12474099948b5295b5fb10206042a8 -size 5112 diff --git a/MM_Math/data_original_21/7058769/solution_images/51010334_180.png b/MM_Math/data_original_21/7058769/solution_images/51010334_180.png deleted file mode 100644 index f0f77020a7f2d2d9f8f384ef946c29d1cc241ad5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51010334_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aeb504b8cf2038b1a58c29b1392f110f8f3c1987a1fa1720a739b92859561b83 -size 5079 diff --git a/MM_Math/data_original_21/7058769/solution_images/51029309_521.png b/MM_Math/data_original_21/7058769/solution_images/51029309_521.png deleted file mode 100644 index 16e83644dbced32e009403015273825e9acd3d05..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51029309_521.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a692a1277c5af948985720b336d4ec9ca8f4d9ae73c8e87b62ea661dc555a4f1 -size 5909 diff --git a/MM_Math/data_original_21/7058769/solution_images/51029388_160.png b/MM_Math/data_original_21/7058769/solution_images/51029388_160.png deleted file mode 100644 index a7ad43f089192e7cedc8ebef75dc33a70ea846a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51029388_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f27658d70b4dbc2000108e6f35ff0824dec6aec0d19f5af9e41500f5cdcaeeaa -size 4939 diff --git a/MM_Math/data_original_21/7058769/solution_images/51032242_510.png b/MM_Math/data_original_21/7058769/solution_images/51032242_510.png deleted file mode 100644 index 0410b169f7cfab6bcc12a4702743ae33c360cf23..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51032242_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da54faebc79477b3194ed221c5d12f9a3dd28a2f33b63f7bb89148a12491f2d3 -size 5388 diff --git a/MM_Math/data_original_21/7058769/solution_images/51034127_150.png b/MM_Math/data_original_21/7058769/solution_images/51034127_150.png deleted file mode 100644 index cce7277959423010818e92463f1957c978e6a8af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51034127_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fd2cadf41bb854ee04c11b068d4d6f5a8f30421c946d6b150be2b065803105a -size 6687 diff --git a/MM_Math/data_original_21/7058769/solution_images/51051524_4610.png b/MM_Math/data_original_21/7058769/solution_images/51051524_4610.png deleted file mode 100644 index a7e30567161d8e9de71bf527ed3412007d7b2065..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51051524_4610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24519494cb8d3729f5f7e80ae89a1397bae8196999dcb438d3a505e8ad0a8aed -size 16699 diff --git a/MM_Math/data_original_21/7058769/solution_images/51051524_4645.png b/MM_Math/data_original_21/7058769/solution_images/51051524_4645.png deleted file mode 100644 index fb0dd6d64da54420992f4fafb1ab8630f5c1e286..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51051524_4645.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90ed3e891a33b97a9790746062bbb0826b4516eabe66142daba2d5aca2aa3aa2 -size 18171 diff --git a/MM_Math/data_original_21/7058769/solution_images/51061530_450.png b/MM_Math/data_original_21/7058769/solution_images/51061530_450.png deleted file mode 100644 index 04f2e9b563675f969e4d37a678785977ad1d8fc4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51061530_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f640355b42d166acdc772f84f51dd1a223864826de7f0609356d249921fc43fd -size 11373 diff --git a/MM_Math/data_original_21/7058769/solution_images/51083013_60.png b/MM_Math/data_original_21/7058769/solution_images/51083013_60.png deleted file mode 100644 index 36869a9481ba443f20d5592c2ca3b726de8effac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51083013_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2388cdeafa14ed4e0d23a14f415bfa5d8f2988baa2a767b5804d1d7fc7867636 -size 6419 diff --git a/MM_Math/data_original_21/7058769/solution_images/51083538_410.png b/MM_Math/data_original_21/7058769/solution_images/51083538_410.png deleted file mode 100644 index b3e29c8a2aa0dc0ca363aef1968d8199656371f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51083538_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14cda8471e49764145677ff30abfc9c70ecb18784656e6d844e3dd47ade5b9c6 -size 3366 diff --git a/MM_Math/data_original_21/7058769/solution_images/51083566_50.png b/MM_Math/data_original_21/7058769/solution_images/51083566_50.png deleted file mode 100644 index a02cf2584d9ccc3457b74b2d1bc56aca83d9f8ca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51083566_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1aa1cc2eb87c798fadc276e302cd1c5f9259284fca6de1ec55293b28724ab0a -size 3143 diff --git a/MM_Math/data_original_21/7058769/solution_images/51083573_394.png b/MM_Math/data_original_21/7058769/solution_images/51083573_394.png deleted file mode 100644 index b1d140bf2e7bf98d69f4fcfaf77223ffc612b152..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51083573_394.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9836dfd5961bb18ff436784c9fb7bc2efb4a93b776bd8778c52963769ce21d1 -size 2869 diff --git a/MM_Math/data_original_21/7058769/solution_images/51099866_370.png b/MM_Math/data_original_21/7058769/solution_images/51099866_370.png deleted file mode 100644 index 75ac0c29fb715c41cf44364819ba66f261c66d9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51099866_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fa4c1f082dc8f77a60ab513e330ff30b7b8f55484b118fa16d9c8ae4cefe1c0 -size 10404 diff --git a/MM_Math/data_original_21/7058769/solution_images/51103634_21.png b/MM_Math/data_original_21/7058769/solution_images/51103634_21.png deleted file mode 100644 index 13cd391e8fd969f98d529ebb0ae7ba833cc59102..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51103634_21.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d23c91ee9cc5d4b8248fb669f48dd8e50fde4f0b74bcf1bb2ab308132b7dbae3 -size 4745 diff --git a/MM_Math/data_original_21/7058769/solution_images/51103664_10.png b/MM_Math/data_original_21/7058769/solution_images/51103664_10.png deleted file mode 100644 index 42bbdac1caa2df0821d1b4a6e86fa13b92d6b41a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51103664_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b192804a28358874e59bc009c9b1c11e2e063bdfd272423ad0ae33f64e52392 -size 2698 diff --git a/MM_Math/data_original_21/7058769/solution_images/51103675_362.png b/MM_Math/data_original_21/7058769/solution_images/51103675_362.png deleted file mode 100644 index 0bf09fa1f744a7faaaeb0a17fcd9834ebf3dab6f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51103675_362.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:711375dd16cf4d96c23333fe28aac67c80097f6a99429b02df3081044d970f1d -size 3852 diff --git a/MM_Math/data_original_21/7058769/solution_images/51103840_00.png b/MM_Math/data_original_21/7058769/solution_images/51103840_00.png deleted file mode 100644 index 92317638f35fb6352e7473b92c5b48c025b1568f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51103840_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ac7e0abae3432efb3d32cc78c12bac3d40f8afcb4fc466f1b7da3c6cdc243252 -size 2968 diff --git a/MM_Math/data_original_21/7058769/solution_images/51106528_650.png b/MM_Math/data_original_21/7058769/solution_images/51106528_650.png deleted file mode 100644 index 9a1e3e9bb30383b169f5a06bfc0c05d4a7eb32eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51106528_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00b4d2d65d1f257bd77380cb252f4614400636056f4be649ad7a2777400c9812 -size 12358 diff --git a/MM_Math/data_original_21/7058769/solution_images/51106528_656.png b/MM_Math/data_original_21/7058769/solution_images/51106528_656.png deleted file mode 100644 index f20db855e782aa71300431d6e59433140ac30f36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51106528_656.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dada0968dd1e2a184c14a119e312caf8626c65b985206da81f6c537a77d0d235 -size 10867 diff --git a/MM_Math/data_original_21/7058769/solution_images/51106894_240.png b/MM_Math/data_original_21/7058769/solution_images/51106894_240.png deleted file mode 100644 index 76684b9b4caa48dd7f510ebadc7eecaca4182e4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51106894_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7b653fc775eb78c68cc9b8d35dfd935a4ec7accb8d4f92cb998c2ca9cbf40e8 -size 2181 diff --git a/MM_Math/data_original_21/7058769/solution_images/51106899_630.png b/MM_Math/data_original_21/7058769/solution_images/51106899_630.png deleted file mode 100644 index 38420137c40a6cd872d0ffecdb9dd79e99685f73..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51106899_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be73b71cfdf3eb0e42c20e4ca4cf2a7cc2db6a4d05229a94806a9601402113ef -size 4699 diff --git a/MM_Math/data_original_21/7058769/solution_images/51109760_620.png b/MM_Math/data_original_21/7058769/solution_images/51109760_620.png deleted file mode 100644 index 3692f09228d7952ffccb8557934b56ac1f065c5c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51109760_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7da8a6c1f167bfb24ba5141ac514336a64ab540e166eba3f3c2db65a08f171f0 -size 12049 diff --git a/MM_Math/data_original_21/7058769/solution_images/51130768_613.png b/MM_Math/data_original_21/7058769/solution_images/51130768_613.png deleted file mode 100644 index 56a74c933863801d88fc3eebe576f2570a53b8a8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51130768_613.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43e95a508f68df97881b65e80f9799c81c4b83879243c3060962c18128d307b4 -size 8152 diff --git a/MM_Math/data_original_21/7058769/solution_images/51130827_600.jpg b/MM_Math/data_original_21/7058769/solution_images/51130827_600.jpg deleted file mode 100644 index 66c089344c9ffffbba5e33a1641c68837c53f206..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51130827_600.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3acc49a5959b57f0c9270964f6aedd651d74f5cb4377e19b517265afaba76395 -size 12059 diff --git a/MM_Math/data_original_21/7058769/solution_images/51130891_220.png b/MM_Math/data_original_21/7058769/solution_images/51130891_220.png deleted file mode 100644 index 03f4b3e4a63b4bcb4db737e862aca067d7de16fd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51130891_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6708d6e284b0553f5845e8e9e5ab296d0e1d9abe5d244accb5856dcaca12a60d -size 4414 diff --git a/MM_Math/data_original_21/7058769/solution_images/51131123_210.jpg b/MM_Math/data_original_21/7058769/solution_images/51131123_210.jpg deleted file mode 100644 index d6d70942ac7d5c272d5b678dc3170db942e05dd9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51131123_210.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5ee0fa93e181f231d33ae46aac387cf08af0f9a6b2a02032e24018c760d8430 -size 13757 diff --git a/MM_Math/data_original_21/7058769/solution_images/51152254_920.png b/MM_Math/data_original_21/7058769/solution_images/51152254_920.png deleted file mode 100644 index 60e2826a8b72ca0b260c35b169a0048a2aad08fa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51152254_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:131d7b99699fc5125e2084b96558c09b15c8951dfd9e992b647c13c2de18136e -size 8200 diff --git a/MM_Math/data_original_21/7058769/solution_images/51152254_9211.png b/MM_Math/data_original_21/7058769/solution_images/51152254_9211.png deleted file mode 100644 index 4fd83429914924a68323077e99577bb933f25d94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51152254_9211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df6f5374972f45da43beb732be1fb8f6d4ad5cff223d35e8fc3424fdd026ead3 -size 8741 diff --git a/MM_Math/data_original_21/7058769/solution_images/51152254_9222.png b/MM_Math/data_original_21/7058769/solution_images/51152254_9222.png deleted file mode 100644 index a4d94c708fbea0d0c8cff2acdbd539aff48de9b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51152254_9222.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e0ae03817dacb5c7871c9fb735e6e2a54b77d972c3cab01f24d99ce14684149 -size 8907 diff --git a/MM_Math/data_original_21/7058769/solution_images/51174827_470.png b/MM_Math/data_original_21/7058769/solution_images/51174827_470.png deleted file mode 100644 index 58ac2cc517f4127e121e70725110a951b0385d0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51174827_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eeb3cd1687422e7aa25e2d6ec056dc2321928d93998d3156efb798feafa9b692 -size 6761 diff --git a/MM_Math/data_original_21/7058769/solution_images/51174880_101.png b/MM_Math/data_original_21/7058769/solution_images/51174880_101.png deleted file mode 100644 index 233033f9ab4ed1fcd261d60c9be4d5a7840c4bee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51174880_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3f04be7404a548ff6eaa5a7b1100a42994390f5e78d5db835e1596e2f0aea19 -size 4664 diff --git a/MM_Math/data_original_21/7058769/solution_images/51213060_300.png b/MM_Math/data_original_21/7058769/solution_images/51213060_300.png deleted file mode 100644 index 94cdd8c0fb2355ca99935d301ca1385bcb530a6b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51213060_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7031510f38a309cb3cb38afefa40410571cc76e271c5f334d122ebd5167752e6 -size 11724 diff --git a/MM_Math/data_original_21/7058769/solution_images/51213066_730.png b/MM_Math/data_original_21/7058769/solution_images/51213066_730.png deleted file mode 100644 index 454514af2e1f0fcba52cf8d82a71ea476d058433..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51213066_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0b92eae05a6e5e41daa46a51acf4b8fa68c9586e88c69810c689ab6629f7d0e -size 2548 diff --git a/MM_Math/data_original_21/7058769/solution_images/51213099_310.png b/MM_Math/data_original_21/7058769/solution_images/51213099_310.png deleted file mode 100644 index a24420f9779f749dc443e8d30dbcce7ffd5f2127..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/51213099_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c29bd7d6053e8d109ff04290d38f5fbc537da3f22d1ad06b057c3028b9b1584d -size 5499 diff --git a/MM_Math/data_original_21/7058769/solution_images/52483220_550.png b/MM_Math/data_original_21/7058769/solution_images/52483220_550.png deleted file mode 100644 index 8f696408650939d105d8c464673ba2dc4a524630..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52483220_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c13eb90a83c0333ce62bdb8a12beb8ddf6679f52aee41fc963a1b0549462423a -size 8140 diff --git a/MM_Math/data_original_21/7058769/solution_images/52483257_560.png b/MM_Math/data_original_21/7058769/solution_images/52483257_560.png deleted file mode 100644 index 4bb8ac8fd65d64979593811cbe3693a9c067cfa7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52483257_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f92d377936d5588b898d59d2aac26326bcd48b567f8cb1280db54fcf0207e1bb -size 5217 diff --git a/MM_Math/data_original_21/7058769/solution_images/52483257_567.png b/MM_Math/data_original_21/7058769/solution_images/52483257_567.png deleted file mode 100644 index 35967b8781a5bf92e381acb8b611e93389bdca8f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52483257_567.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9797a762251c284ef98864126ff4f9adef0a4a6b48d41742fb0ae19615df70e4 -size 5335 diff --git a/MM_Math/data_original_21/7058769/solution_images/52511772_488.png b/MM_Math/data_original_21/7058769/solution_images/52511772_488.png deleted file mode 100644 index f0a9f179c476a0f3d38f33ebb91ff643a8353141..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52511772_488.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:27dd0d3f700c9fc90e22b1bcfb5202fbd71970e47085faeba2f996e46475f8e6 -size 5739 diff --git a/MM_Math/data_original_21/7058769/solution_images/52511902_490.png b/MM_Math/data_original_21/7058769/solution_images/52511902_490.png deleted file mode 100644 index a69c6a59c10ac48b08659f0babdb2678d9f0e17a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52511902_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98d37b67b1660cf5d1ba73b9f5ac42744de27babccbfa9349033dd70e2c5aca7 -size 11998 diff --git a/MM_Math/data_original_21/7058769/solution_images/52511902_494.png b/MM_Math/data_original_21/7058769/solution_images/52511902_494.png deleted file mode 100644 index 445dd4a547575e7359f8606f701510846d4b94bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52511902_494.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2a73bf5b490adfc47b1c7e99c726c12ed0727f4721b51d9416021d47051ed90 -size 15614 diff --git a/MM_Math/data_original_21/7058769/solution_images/52532703_190.png b/MM_Math/data_original_21/7058769/solution_images/52532703_190.png deleted file mode 100644 index fd9c7a4ff517bf136a5e19ae1eeb719d0ffdd6aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52532703_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae232a83b5c372921e5fc4b9f0b2bfd0cc54623aff999bb2088aff908d0d47e9 -size 3797 diff --git a/MM_Math/data_original_21/7058769/solution_images/52550173_440.png b/MM_Math/data_original_21/7058769/solution_images/52550173_440.png deleted file mode 100644 index 6b5987eab8162e6d44d1e0137ae48ef89afad846..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52550173_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed2614ec88d54cbb12b411ebe91f5fb8c615df2c1f136339663b122cc1ce4b65 -size 46838 diff --git a/MM_Math/data_original_21/7058769/solution_images/52585578_420.png b/MM_Math/data_original_21/7058769/solution_images/52585578_420.png deleted file mode 100644 index 2caf6adbb958d81129885779cff85c6f94ac0daa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52585578_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3114a282548b738ee56dff7eb7c042afb2ff6b9ae53227ba04727c32b3f234e -size 3880 diff --git a/MM_Math/data_original_21/7058769/solution_images/52585579_4328.png b/MM_Math/data_original_21/7058769/solution_images/52585579_4328.png deleted file mode 100644 index 7c8a5b65b584c022e2dfe846a5faaa54bcd51c63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52585579_4328.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d56a6e52f931f45cddb30e5106117aaf756b7e7e22c4917921e35550b310088 -size 106256 diff --git a/MM_Math/data_original_21/7058769/solution_images/52746228_30.png b/MM_Math/data_original_21/7058769/solution_images/52746228_30.png deleted file mode 100644 index 2208c3c52ebefc04f6f7d8ac6172898adebf1414..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52746228_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb25a2b4cce94298e4958bbe276b4872ab8c99c9ca3a16aee95975fe5d2d6446 -size 30426 diff --git a/MM_Math/data_original_21/7058769/solution_images/52746233_382.png b/MM_Math/data_original_21/7058769/solution_images/52746233_382.png deleted file mode 100644 index 405e566b06a6c11066e156bdca1f2738d44c161d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52746233_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfa72614b0a684ad0b3531c6dfc956326c16f68b693fca60a024c3a60168dceb -size 22488 diff --git a/MM_Math/data_original_21/7058769/solution_images/52930757_660.png b/MM_Math/data_original_21/7058769/solution_images/52930757_660.png deleted file mode 100644 index b81292823fbaae73b6095f55ea679a63cba48984..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52930757_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1a1284e2db55ba513d5237132aa0187a4da6203e415a3907b389810032df01d2 -size 4734 diff --git a/MM_Math/data_original_21/7058769/solution_images/52930758_670.png b/MM_Math/data_original_21/7058769/solution_images/52930758_670.png deleted file mode 100644 index 4a0ac31e819a453b8b8cc51403152042b6677f85..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52930758_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9794dd6b1e89cb59ca7dac64bd565063157a4e471c7c14e89667f28e334cc25 -size 4044 diff --git a/MM_Math/data_original_21/7058769/solution_images/52931044_680.png b/MM_Math/data_original_21/7058769/solution_images/52931044_680.png deleted file mode 100644 index 8faee68044e9ac99586b0aa0906a12256c4409e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/52931044_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2cd55f960d4cef95a8ff4ce06ad1dece5a04ab41e439ab5d4d1dd769ae9c7d6b -size 6451 diff --git a/MM_Math/data_original_21/7058769/solution_images/54967313_700.png b/MM_Math/data_original_21/7058769/solution_images/54967313_700.png deleted file mode 100644 index bd8ceb664d3cff74db14b468b837c1df6bbd41f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/54967313_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8510ff381f050747ccdfe1a4d47bd2cf90196a1822478d24bf4ab61d6151f506 -size 43029 diff --git a/MM_Math/data_original_21/7058769/solution_images/54967449_7116.png b/MM_Math/data_original_21/7058769/solution_images/54967449_7116.png deleted file mode 100644 index d5f6fae737a966fa2e60fdec8b32c0f35fcda9d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058769/solution_images/54967449_7116.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37ab9dc0fa03d115fa54126b0ac18f428f10a5f73496dc055710dce6039fd27e -size 58638 diff --git a/MM_Math/data_original_21/7058773/math/52977640_980.png b/MM_Math/data_original_21/7058773/math/52977640_980.png deleted file mode 100644 index 4e2851f726328ad632ed192e64ea9cbee2ff29f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52977640_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f29c20a18b05f33fbf5b4d844561b0bbf38e230572e6be932891fe737fe4bf8 -size 7671 diff --git a/MM_Math/data_original_21/7058773/math/52978021_374.png b/MM_Math/data_original_21/7058773/math/52978021_374.png deleted file mode 100644 index e3034d121a972c3a1907d34fce7321ce2a0d492c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52978021_374.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9812044380b8050e5167aa82fb3a34dc5f759a687cd56e10a88117e9f048b7ce -size 2646 diff --git a/MM_Math/data_original_21/7058773/math/52978029_994.png b/MM_Math/data_original_21/7058773/math/52978029_994.png deleted file mode 100644 index 7e8f2f471336be0637e4aab8c1ad54e96772b1ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52978029_994.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:429b9c9cb788f4ec63da0f3ffb33a140e4af987040673fa8de386372878776c0 -size 9574 diff --git a/MM_Math/data_original_21/7058773/math/52991331_746.png b/MM_Math/data_original_21/7058773/math/52991331_746.png deleted file mode 100644 index 8ebe5cef3bec5e973131fef9520ff20baae97562..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991331_746.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24094ff64b962dc4997980530f4d95e26af548092fab4107287d94d6faf1d9ab -size 10579 diff --git a/MM_Math/data_original_21/7058773/math/52991362_366.png b/MM_Math/data_original_21/7058773/math/52991362_366.png deleted file mode 100644 index 296d51b5eb37fe1e7cdced1df0a985686dbd9ed1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991362_366.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2153f8f20b157aa0a7a3ff7b97200688e393c5a5437e3d6e72e98ca7240a9cd -size 3598 diff --git a/MM_Math/data_original_21/7058773/math/52991365_330.png b/MM_Math/data_original_21/7058773/math/52991365_330.png deleted file mode 100644 index 3a4284dc25aed52f1d2dfcf7ec4f4f60d7ce44ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991365_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:584614c5343f9c1e91dba716f015da7ec8c5d03c9eb898c84fa9da8a985e463b -size 3178 diff --git a/MM_Math/data_original_21/7058773/math/52991389_974.png b/MM_Math/data_original_21/7058773/math/52991389_974.png deleted file mode 100644 index 9ac52ec9a9b3ffcc1ee9f3c38de26662350796da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991389_974.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74fdca86fed11f89c328818fb7880fc88efc866acb2b4145b38486e869a63f58 -size 99853 diff --git a/MM_Math/data_original_21/7058773/math/52991432_350.png b/MM_Math/data_original_21/7058773/math/52991432_350.png deleted file mode 100644 index 5c501b992c8b28af532fa9377829bf099c25aa4c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991432_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7503fe6253f924ea8495b3941be3c7a15afabbd9f06368a3e66d032a654eba4 -size 3648 diff --git a/MM_Math/data_original_21/7058773/math/52991440_697.png b/MM_Math/data_original_21/7058773/math/52991440_697.png deleted file mode 100644 index be5d7e798cad2117bbabfbae0ab71c1ae6cbe2f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991440_697.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ab3f257f16cb4ebe6b71738910a8c92b30c19c51b01f8bb4acff0fd46b6eb4e -size 3898 diff --git a/MM_Math/data_original_21/7058773/math/52991516_7210.png b/MM_Math/data_original_21/7058773/math/52991516_7210.png deleted file mode 100644 index 7d64455b973be6e8f082cf94276a4f8c16ae19cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991516_7210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0eb902529cdee172fe4ee55dbbcd7418952174fdfdef4708b10db8942815b616 -size 92292 diff --git a/MM_Math/data_original_21/7058773/math/52991553_342.png b/MM_Math/data_original_21/7058773/math/52991553_342.png deleted file mode 100644 index b198c7b7879a0a8e70969f05b6854a3fdd1440b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991553_342.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b699445023ede6c18741132cef72f0739d8f10b352f9d06e25bfb5eebbc623ea -size 4647 diff --git a/MM_Math/data_original_21/7058773/math/52991558_717.png b/MM_Math/data_original_21/7058773/math/52991558_717.png deleted file mode 100644 index 58fb31a8365b217f05a6c5d4f88b15d6067d91ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991558_717.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:463589ba734afe137aab5c4c32d3b5aa73fb006e854603104de278d85be30a50 -size 3254 diff --git a/MM_Math/data_original_21/7058773/math/52991560_709.png b/MM_Math/data_original_21/7058773/math/52991560_709.png deleted file mode 100644 index 0e21d90c7176cc425d10dde931db1c5045f43b43..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991560_709.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:285516915b6fd356e400c940b0c3c8de1de0ccde78c6247d3d591da1e024f218 -size 5388 diff --git a/MM_Math/data_original_21/7058773/math/52991639_687.png b/MM_Math/data_original_21/7058773/math/52991639_687.png deleted file mode 100644 index 1c58562891057949d2710e14a1cae90c040bdd76..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/52991639_687.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb690875d2d613d2a5d4b5c29e776134490ff2b099db7ec60f96e0a41c09a11f -size 2360 diff --git a/MM_Math/data_original_21/7058773/math/53009484_326.png b/MM_Math/data_original_21/7058773/math/53009484_326.png deleted file mode 100644 index fa33b0007419bbc2a6195f9039398389cc203ad1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009484_326.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44c05118e5ee9717e02db0a11ede8291ca686172dcd847c78fff8dc5cd305438 -size 2673 diff --git a/MM_Math/data_original_21/7058773/math/53009487_3010.png b/MM_Math/data_original_21/7058773/math/53009487_3010.png deleted file mode 100644 index 8d6a2db589728fec81633360844cb1c455edc1d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009487_3010.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5799362c24af9642dcd4e44cdb1fc3e37e0f1acb20d8c862adef92886c1d8af2 -size 2995 diff --git a/MM_Math/data_original_21/7058773/math/53009507_959.png b/MM_Math/data_original_21/7058773/math/53009507_959.png deleted file mode 100644 index a1c97b9b984cd703a906345d5d199a47b37d20f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009507_959.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ef240231d02f65cb9932510206aa95246ac0eb304126af81ac28c637f3a2806 -size 3436 diff --git a/MM_Math/data_original_21/7058773/math/53009644_317.png b/MM_Math/data_original_21/7058773/math/53009644_317.png deleted file mode 100644 index 667f0615711fbc2d4dadb6f48599f07b12b6b72d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009644_317.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da720c58128be1ea3c69752b9fd86127730ea30b08783796a217519d26f5eab7 -size 3270 diff --git a/MM_Math/data_original_21/7058773/math/53009646_654.png b/MM_Math/data_original_21/7058773/math/53009646_654.png deleted file mode 100644 index 02b67aaea2048f34680d420def487ba6d6f0e209..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009646_654.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01f25e04be7abd3f026e4a4de496fe4712859f833bc1f5db9394f8140e903e38 -size 3325 diff --git a/MM_Math/data_original_21/7058773/math/53009648_664.png b/MM_Math/data_original_21/7058773/math/53009648_664.png deleted file mode 100644 index 9c3375d54a6adec727ac414508704c187f585969..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009648_664.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a1ec00a6ff34612e3d74647623960dd7750e1864e1c0b5995d49855503fb22ea -size 3425 diff --git a/MM_Math/data_original_21/7058773/math/53009657_967.png b/MM_Math/data_original_21/7058773/math/53009657_967.png deleted file mode 100644 index 7638ade344eb8b7a2e6655aa55dc6d57ebffba20..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009657_967.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d39702077e83ec1c4b39226d15391f7b825b54a3c207ecf100b61aee219a447 -size 4551 diff --git a/MM_Math/data_original_21/7058773/math/53009663_9418.png b/MM_Math/data_original_21/7058773/math/53009663_9418.png deleted file mode 100644 index e5dafaab189f0ef3ae5ee5b88ef2999f10b26178..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009663_9418.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2286f6cf79c84f24ea3756eb3d8b5071c0e10c90ace21b58447351a57d1e65f8 -size 4467 diff --git a/MM_Math/data_original_21/7058773/math/53009799_920.jpeg b/MM_Math/data_original_21/7058773/math/53009799_920.jpeg deleted file mode 100644 index 406dd9f9b2aaea2fbc4b470686dca7abaa655b8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009799_920.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5d579483fadb4af456ccb2bfcaf8158fc5c28db4a2e2c28c953181f22ccd0f0 -size 4275 diff --git a/MM_Math/data_original_21/7058773/math/53009880_2810.png b/MM_Math/data_original_21/7058773/math/53009880_2810.png deleted file mode 100644 index e912eff68ecceca9d59e5d5544ddc6bfbe289856..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009880_2810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc62f9abf5b50a31f89e40074b6ddeb306089a2ef8b62e4ca635c689560ff50e -size 3035 diff --git a/MM_Math/data_original_21/7058773/math/53009890_937.png b/MM_Math/data_original_21/7058773/math/53009890_937.png deleted file mode 100644 index f963203762beb15747dafd152dded48dd7f2daf6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009890_937.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9db4bbd56d09a1567c1de35810994e8f84c233691885402e4f1f7a0154e5ad03 -size 3626 diff --git a/MM_Math/data_original_21/7058773/math/53009940_290.jpeg b/MM_Math/data_original_21/7058773/math/53009940_290.jpeg deleted file mode 100644 index 916a357e8195af099d233eedf18d6700adec8a0c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009940_290.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:faf483aab5a4e5ccf2e57ffa6275a5884b026345de84037de563a001dcf75c78 -size 2760 diff --git a/MM_Math/data_original_21/7058773/math/53009943_270.jpeg b/MM_Math/data_original_21/7058773/math/53009943_270.jpeg deleted file mode 100644 index ec61c846cae72819fd4007885df6cdb67bd12c75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009943_270.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ba397044f76817daccd920c1854731eb5ca297863492f8e40604488a0ff7f2c -size 3091 diff --git a/MM_Math/data_original_21/7058773/math/53009949_670.jpeg b/MM_Math/data_original_21/7058773/math/53009949_670.jpeg deleted file mode 100644 index ca07ed050e9734ebd8c0cce77a3ddbf4d6cc2f4c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53009949_670.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0b8d7a4969c40d7b171397bf759a58f93ec7f73163965351efc2a471f58142b -size 3659 diff --git a/MM_Math/data_original_21/7058773/math/53019724_253.png b/MM_Math/data_original_21/7058773/math/53019724_253.png deleted file mode 100644 index b35366b2365a17b9755bbe0bb87c8dcc4b0f49e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53019724_253.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb3c427376fce32b0f61bfddd152b0c9bbc582efcf2a9fbe62a59521fcdce9f3 -size 4304 diff --git a/MM_Math/data_original_21/7058773/math/53019730_643.png b/MM_Math/data_original_21/7058773/math/53019730_643.png deleted file mode 100644 index c45b97261281c3700511e88266e86d98dabb7906..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53019730_643.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7527123b136746490fc2a4140e1fdb396d8187e7b38aaf3e1e9734cfbef22fe2 -size 72115 diff --git a/MM_Math/data_original_21/7058773/math/53019741_916.png b/MM_Math/data_original_21/7058773/math/53019741_916.png deleted file mode 100644 index 864223dde0ff77516496ff55a9a616785d5ead62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53019741_916.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:786b611e1be58117d7df66f32b614071c928fb12cc8bea826e5efe41d1252f8c -size 3707 diff --git a/MM_Math/data_original_21/7058773/math/53019906_266.png b/MM_Math/data_original_21/7058773/math/53019906_266.png deleted file mode 100644 index 2979cfaa42796055fce0203eba6071fec7614011..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53019906_266.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba89c50796a29fd73632ecf2db2be8233a8de1705f442ee156367350c22b5d5c -size 7732 diff --git a/MM_Math/data_original_21/7058773/math/53033414_244.png b/MM_Math/data_original_21/7058773/math/53033414_244.png deleted file mode 100644 index 655e5c7a88c9cd5c8b957d605af24b2622f30048..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53033414_244.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3876efef6dcbadba2dcee8341c928af2468a96fcbc928357b00ce1acf695c69f -size 16173 diff --git a/MM_Math/data_original_21/7058773/math/53033424_6310.png b/MM_Math/data_original_21/7058773/math/53033424_6310.png deleted file mode 100644 index a4e16178fee421a2cfdca59af9f14bb2a772a010..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53033424_6310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f16137fe12d40de925de4493b24131afe10e4feae6c8730a92f88df41f860f42 -size 3394 diff --git a/MM_Math/data_original_21/7058773/math/53042783_206.png b/MM_Math/data_original_21/7058773/math/53042783_206.png deleted file mode 100644 index ba1ea37e4cfa1eba0d8ebf78d03af1bf7a656ee8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53042783_206.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2108367e61616814a1153e746a94a3fa78ba371b209b36896c1a2bf62daf3d1 -size 8602 diff --git a/MM_Math/data_original_21/7058773/math/53042797_876.png b/MM_Math/data_original_21/7058773/math/53042797_876.png deleted file mode 100644 index e3b62a6c01d6ef1f9197ca7bad730e7770b89b75..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53042797_876.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:220ca5a72ae9faf4e22797d418b507143d1c168e851dd34190a039e2ce67cea7 -size 3737 diff --git a/MM_Math/data_original_21/7058773/math/53042861_890.png b/MM_Math/data_original_21/7058773/math/53042861_890.png deleted file mode 100644 index 2f7e47ed1c9bc14b82e81e5ade6a1bfd0dbfc3ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53042861_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:780c7752369e6102769b5910d7f57e1b3efe995a5140b1662724cf79941131c4 -size 27073 diff --git a/MM_Math/data_original_21/7058773/math/53042887_551.png b/MM_Math/data_original_21/7058773/math/53042887_551.png deleted file mode 100644 index 6893a44bf2fc5012d480984b3b813474ccf25295..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53042887_551.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eea13cddbd7389ae22b2284c0110502e72fd4794e99a471e4c416e37cfebe3c1 -size 32926 diff --git a/MM_Math/data_original_21/7058773/math/53042889_544.png b/MM_Math/data_original_21/7058773/math/53042889_544.png deleted file mode 100644 index 60f88d12c53c24597ea377082668bf537bed0d51..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53042889_544.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53f5c19f5c885e6dd2ba0bfbed1b62bdf6a2976d9d7a24c7edd863fbbf8ae475 -size 3973 diff --git a/MM_Math/data_original_21/7058773/math/53042917_180.png b/MM_Math/data_original_21/7058773/math/53042917_180.png deleted file mode 100644 index 2d45fa6f5e059a6b2a8c25e17707a31e7631a39e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53042917_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:888ba22ca6006c9c86ae48571f5231af20aebe421215577566e224ff39289068 -size 3812 diff --git a/MM_Math/data_original_21/7058773/math/53043215_213.png b/MM_Math/data_original_21/7058773/math/53043215_213.png deleted file mode 100644 index bf0da0bb712223de1704e4f04e1e3e7763b22fd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53043215_213.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cae840a41db08dd286c55bc1242c98cc2de71afdf5ccfe62c3df5ac5f18df02b -size 4837 diff --git a/MM_Math/data_original_21/7058773/math/53043223_5311.png b/MM_Math/data_original_21/7058773/math/53043223_5311.png deleted file mode 100644 index 6477feea744dba0ec2896dd828bd1deb824446b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53043223_5311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5ad4730eba515472e6b2bf65bb915e8aba00a99796b405a50ebc97e02a3350c -size 3444 diff --git a/MM_Math/data_original_21/7058773/math/53043251_197.png b/MM_Math/data_original_21/7058773/math/53043251_197.png deleted file mode 100644 index 111074c9a7f22e7ac45ba16d9aaf8b4ee5d39348..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53043251_197.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83874ae30843ad02c3f96ba80a0955cf798cbae8e30d7f7ee0f9dbfbb6d6e898 -size 80107 diff --git a/MM_Math/data_original_21/7058773/math/53043258_562.png b/MM_Math/data_original_21/7058773/math/53043258_562.png deleted file mode 100644 index 31c2add386b07f9eac3668a36079013d360dcb6c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53043258_562.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f479584f2ce1567e224d9998b546c3daa9f84c1fc71b587d088ef56df09462c -size 51580 diff --git a/MM_Math/data_original_21/7058773/math/53043302_887.png b/MM_Math/data_original_21/7058773/math/53043302_887.png deleted file mode 100644 index 027434908c80056195a7d61d4220340e80ecadd0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53043302_887.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6eda0e39ade0d532b2baa8e6f6303b889226ffd06ccb24c10a7f37074898dffb -size 73613 diff --git a/MM_Math/data_original_21/7058773/math/53059655_163.png b/MM_Math/data_original_21/7058773/math/53059655_163.png deleted file mode 100644 index 984047a2b84adfd7c34a23d9d7110301297fae61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53059655_163.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a81cbdee5bf19e025917ed3f344cf0ac1e0542b2e6e7ba02023087101a66da6 -size 17244 diff --git a/MM_Math/data_original_21/7058773/math/53059657_150.png b/MM_Math/data_original_21/7058773/math/53059657_150.png deleted file mode 100644 index bd5e7a82ead3352acd1c6542e9808563b9fa7d55..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53059657_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f1fb9b7b03ac65f67faa635d562c111886678c8b660693d72aa3e31d6b346c6 -size 4046 diff --git a/MM_Math/data_original_21/7058773/math/53059861_140.png b/MM_Math/data_original_21/7058773/math/53059861_140.png deleted file mode 100644 index 2b0a06840f6f74e521ed1f275806fbce8dc6bc54..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53059861_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1a5d44dc1467dd31bdad81cbd2d7efff65c16ceea44cc3a4f8b8e90a1b7e5c1 -size 6705 diff --git a/MM_Math/data_original_21/7058773/math/53059867_510.png b/MM_Math/data_original_21/7058773/math/53059867_510.png deleted file mode 100644 index 46835f806a65bbb514520e821054317870097808..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53059867_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8601294df1754c2f8bb564d6400ac15b10b7d949de0fd3cc160f969d8a56ad79 -size 7995 diff --git a/MM_Math/data_original_21/7058773/math/53059930_130.png b/MM_Math/data_original_21/7058773/math/53059930_130.png deleted file mode 100644 index 43a47f15e407e33939c71daf86c5e2682723d1b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53059930_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10b008fb31980b16ce7a2ba382e9682fc6ec72de5c7e70f1f9af42c0867ac81f -size 13067 diff --git a/MM_Math/data_original_21/7058773/math/53065818_127.png b/MM_Math/data_original_21/7058773/math/53065818_127.png deleted file mode 100644 index 863ed73fb0dab2dc7375abd745110027bff9fd3e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53065818_127.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6c6ccb3a32df1b793819ac90caf5f8b051b8c865dc9cbe9a6fc982dfed42b969 -size 2674 diff --git a/MM_Math/data_original_21/7058773/math/53065830_850.png b/MM_Math/data_original_21/7058773/math/53065830_850.png deleted file mode 100644 index 484b0202091d71a29f659597060f14c6965a56b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53065830_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c047bbcca00c5c31b715206fda017307bc7a842344d6ed8ca6af7035ffa184c -size 5344 diff --git a/MM_Math/data_original_21/7058773/math/53066050_103.png b/MM_Math/data_original_21/7058773/math/53066050_103.png deleted file mode 100644 index 0ad35b0ea83cfb7aa88111bbcca63f841618b2a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53066050_103.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e563b393398634e240c677b76934b9573aa73cfd3e8168907eb15ac210ac7bd1 -size 10414 diff --git a/MM_Math/data_original_21/7058773/math/53066061_505.png b/MM_Math/data_original_21/7058773/math/53066061_505.png deleted file mode 100644 index 1b87d029840d1ced851e5f219a0167e7bddf0588..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53066061_505.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a9def3a318c1b94157438a953e711c0cbb7d332fb3e9cd36f605fd7818539dc -size 20307 diff --git a/MM_Math/data_original_21/7058773/math/53066089_118.png b/MM_Math/data_original_21/7058773/math/53066089_118.png deleted file mode 100644 index bc5cb455f647832ce0279c40546a6a6424c157c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53066089_118.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37c7d11ff1be6ee9ac2f605864187e87309e11b14662b17b647bbfd85e9863de -size 35530 diff --git a/MM_Math/data_original_21/7058773/math/53078807_841.png b/MM_Math/data_original_21/7058773/math/53078807_841.png deleted file mode 100644 index 7b5da2676fb284aa453f06fb2b2b5f5e313ffa66..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53078807_841.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f9952e671debb1bc12cd2562c9e11ded5b45c0ce4986b225d961e272e3efe65b -size 7551 diff --git a/MM_Math/data_original_21/7058773/math/53078985_454.png b/MM_Math/data_original_21/7058773/math/53078985_454.png deleted file mode 100644 index b251ef372451877b23b07796a9e0c38edd322045..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53078985_454.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:913d7d9e3ff0e81f8ef04ea65c5187b9a689fc6b03c26af9bab0f33f8d9a1e27 -size 54639 diff --git a/MM_Math/data_original_21/7058773/math/53080238_7914.png b/MM_Math/data_original_21/7058773/math/53080238_7914.png deleted file mode 100644 index 4b54bc97d904f2242820be714fa9def2356a81c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080238_7914.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aefebc93a54afd5bd0c0595345be6b206d768834da504e11e3e7128197cd9c75 -size 12703 diff --git a/MM_Math/data_original_21/7058773/math/53080331_4216.png b/MM_Math/data_original_21/7058773/math/53080331_4216.png deleted file mode 100644 index 19dec705b1c08399d1366c14ee31aa4504467619..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080331_4216.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6cdb27c3f48085a9c55917859278e2a885b843f6720d3036507fcccfb9eeae7 -size 3640 diff --git a/MM_Math/data_original_21/7058773/math/53080394_404.png b/MM_Math/data_original_21/7058773/math/53080394_404.png deleted file mode 100644 index a29ba27ea0c1d12795daa7d15ba5bc4d15ad9681..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080394_404.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52de952036279118739320c5478aeef9322315cd1bf1d814f22ebe916b72d139 -size 6674 diff --git a/MM_Math/data_original_21/7058773/math/53080407_816.png b/MM_Math/data_original_21/7058773/math/53080407_816.png deleted file mode 100644 index 695dec6b3a8d6dd8554011b1167ed9003f8f771b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080407_816.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c62759fc3c9b4e621e73ea74064c92a384d334f64ce9699058668d9f615d9b9d -size 48312 diff --git a/MM_Math/data_original_21/7058773/math/53080520_47.png b/MM_Math/data_original_21/7058773/math/53080520_47.png deleted file mode 100644 index 92d5b5e06b4c81630b1381860f08a0ea0fb5853e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080520_47.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4cd1206e459aff628564d1e5d1d0633f9562fe43e6bc3091a77cb1871ef5f9d2 -size 29068 diff --git a/MM_Math/data_original_21/7058773/math/53080543_8213.png b/MM_Math/data_original_21/7058773/math/53080543_8213.png deleted file mode 100644 index 89532f9dc6933c75a9e260a9578547937594d788..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080543_8213.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:338a8a97211accfbf8e11c8591e5089e5e8840e4db3fdb5b5899979ae084ed7d -size 5997 diff --git a/MM_Math/data_original_21/7058773/math/53080558_70.png b/MM_Math/data_original_21/7058773/math/53080558_70.png deleted file mode 100644 index 25a288f93ee4f9b045263c01ba07cb4da34872f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080558_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d27c447c44025a49ce863ed6f92df22fe7fb9330c94a15f53e83c24930307500 -size 1715 diff --git a/MM_Math/data_original_21/7058773/math/53080595_438.png b/MM_Math/data_original_21/7058773/math/53080595_438.png deleted file mode 100644 index 6b34fe6bc049063bb33bce7bcf55603ee8ecc652..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080595_438.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:26affc780cac7d336d43edab320648429d2562ee7ade8896bd7fc2e35e20f734 -size 3300 diff --git a/MM_Math/data_original_21/7058773/math/53080600_4412.png b/MM_Math/data_original_21/7058773/math/53080600_4412.png deleted file mode 100644 index cc78bf9070f6ffb16ecc8ea19dda7a33c71ce326..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080600_4412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46223cb6abcb0c6db9efd6590eea7fae447b23099b40e0d9318016bf37c7f771 -size 3520 diff --git a/MM_Math/data_original_21/7058773/math/53080605_805.png b/MM_Math/data_original_21/7058773/math/53080605_805.png deleted file mode 100644 index 5e8f9f0c5d5c6d2e059308b4058bd0d46d158a0d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080605_805.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a3926b499a2256748363fb3243563068baf194169fb6c1395934f345ebc40e1e -size 24012 diff --git a/MM_Math/data_original_21/7058773/math/53080627_68.png b/MM_Math/data_original_21/7058773/math/53080627_68.png deleted file mode 100644 index 90f5714d7810e63c4b51e1e91fa9bead16015ff3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080627_68.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8db3f6d9f6fa876db3ede7912f8e37dac837ad35814524580ab9377e5e75846a -size 55187 diff --git a/MM_Math/data_original_21/7058773/math/53080746_411.png b/MM_Math/data_original_21/7058773/math/53080746_411.png deleted file mode 100644 index f365478edba0405d0584bbdffe2a374412341256..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080746_411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c05836249c615a2a2d74c190998d98337bb8e13956fc8d20034d1d81e2affead -size 2393 diff --git a/MM_Math/data_original_21/7058773/math/53080751_730.png b/MM_Math/data_original_21/7058773/math/53080751_730.png deleted file mode 100644 index 26a541fc1e6d033bdeab3c34a531b5fb1f29b203..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080751_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f7c5da03c97d5527068b395ebd422628c059f4917adfaa11e76a0f7a82d7259 -size 4343 diff --git a/MM_Math/data_original_21/7058773/math/53080774_30.png b/MM_Math/data_original_21/7058773/math/53080774_30.png deleted file mode 100644 index eebc07773f8ecb4a012e9696308813705efde3a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080774_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d65d49cda29b4fe7cfd247c7257df850e2d2952732b92998d5fd9e5ea6fb688 -size 3658 diff --git a/MM_Math/data_original_21/7058773/math/53080790_787.png b/MM_Math/data_original_21/7058773/math/53080790_787.png deleted file mode 100644 index 912453f78cf21ca45d616c5c66653428a293625e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080790_787.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d09c68cbe4264757a60f2807db1a18f7d4950bdc0e3d6f55664ce7cd415770f7 -size 83173 diff --git a/MM_Math/data_original_21/7058773/math/53080808_57.png b/MM_Math/data_original_21/7058773/math/53080808_57.png deleted file mode 100644 index 5efdd6ca51d2197c279f308fdd2f1e0a29a3d4a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080808_57.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4c858ba8b8bd8d36109e6c46083eef676ee86757937f69e578ad89aa8ac9f6b -size 61278 diff --git a/MM_Math/data_original_21/7058773/math/53080829_835.png b/MM_Math/data_original_21/7058773/math/53080829_835.png deleted file mode 100644 index ecc6782a779d31a1f30ac816187a2f0456333c3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53080829_835.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dec890d6823bb34299daa3e173e8580cf8c7058d6d478ed3ca51eaeecd309efb -size 4455 diff --git a/MM_Math/data_original_21/7058773/math/53081373_390.png b/MM_Math/data_original_21/7058773/math/53081373_390.png deleted file mode 100644 index 0cc39f2afaed3962ac56b4c524499ec7b3d318f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53081373_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4f8f20504f77e9c3b6bbb94820fe9fe8987f8f94fc287b36375b2ca719ed818 -size 5585 diff --git a/MM_Math/data_original_21/7058773/math/53081384_770.png b/MM_Math/data_original_21/7058773/math/53081384_770.png deleted file mode 100644 index 70fdf32843d8d91192969673dd741b5300982a8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53081384_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d07fab463cb4469df967aa828463a17d1a16c2cfa448cf4da1ef91a0bc11960 -size 9174 diff --git a/MM_Math/data_original_21/7058773/math/53081440_14.png b/MM_Math/data_original_21/7058773/math/53081440_14.png deleted file mode 100644 index e176fe5763c7fae223aadfed662844079f0e58ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53081440_14.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:61b83d3f4407b0fe83cffdd4a1c3ad22fba7909c536270d8f344108ee45bbafe -size 31456 diff --git a/MM_Math/data_original_21/7058773/math/53081442_25.png b/MM_Math/data_original_21/7058773/math/53081442_25.png deleted file mode 100644 index 1a0d0348be60f54c22b9f9067373b0beadbc7302..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53081442_25.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec32c675409330c46ea61e02ead93201d65655f07ace4e6bbc2310db171b1ff8 -size 15520 diff --git a/MM_Math/data_original_21/7058773/math/53081444_388.png b/MM_Math/data_original_21/7058773/math/53081444_388.png deleted file mode 100644 index aec8e59c065deb7216cd1124a3f0b10952af4abb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53081444_388.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7a0821e9c3c73774f8dabbb2a817edaf63e54d350299caed22aec8a02047e51 -size 15392 diff --git a/MM_Math/data_original_21/7058773/math/53081489_767.png b/MM_Math/data_original_21/7058773/math/53081489_767.png deleted file mode 100644 index c9cc8e8268c57472b5bc2771758912ae73033a7e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53081489_767.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f200410faa329f48178780db7a28e93f89c203f3043f720cf459027dfa3c6498 -size 20721 diff --git a/MM_Math/data_original_21/7058773/math/53101887_594.png b/MM_Math/data_original_21/7058773/math/53101887_594.png deleted file mode 100644 index 12055c3f50679b7af0ee97453b6ebb899fc9e90e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53101887_594.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:026218647872cd909fc3b45086c9521eec040af694b6c82a5aebeb2017296215 -size 53397 diff --git a/MM_Math/data_original_21/7058773/math/53102087_9013.png b/MM_Math/data_original_21/7058773/math/53102087_9013.png deleted file mode 100644 index 0ee578c4183f7bbcc6fded47c290363a902bd605..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53102087_9013.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0bc56b4da81ae6da0bdc9761ce2495d234d3cc9585c9556bfaa13350940f7e6b -size 3776 diff --git a/MM_Math/data_original_21/7058773/math/53102104_238.png b/MM_Math/data_original_21/7058773/math/53102104_238.png deleted file mode 100644 index 3d43541f734e74eecf888f3542a15e11965aafff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53102104_238.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4fdf805ad8e0b49a70ac25532ee6c6ac115320e14783d06efcd644f9d7fe831 -size 3548 diff --git a/MM_Math/data_original_21/7058773/math/53102153_586.png b/MM_Math/data_original_21/7058773/math/53102153_586.png deleted file mode 100644 index ec52c978c43de7341753c4ed848a9276ba77a183..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53102153_586.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45a0af7c0a9d52989b38c20f0de3ecb89304653d3eadbf5df17a07846f972009 -size 11038 diff --git a/MM_Math/data_original_21/7058773/math/53102184_577.png b/MM_Math/data_original_21/7058773/math/53102184_577.png deleted file mode 100644 index a84822b552941c8f7831312d117c198484862cb6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53102184_577.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c96fedd885f4fd1d377b66d5f8ae0817c82c089d3a51303970393c0ac36a92c1 -size 62092 diff --git a/MM_Math/data_original_21/7058773/math/53102217_627.png b/MM_Math/data_original_21/7058773/math/53102217_627.png deleted file mode 100644 index fb1ebe69e8d82c234c7939ee2eae76e863190938..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53102217_627.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a0408398268d9985aeac5fb96347b3d0d3c95999d3b65c9bd0a4881c2859b19c -size 63402 diff --git a/MM_Math/data_original_21/7058773/math/53102366_617.png b/MM_Math/data_original_21/7058773/math/53102366_617.png deleted file mode 100644 index 84ac8a232545ad03e235cc8190dd775d4afb6fef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53102366_617.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e576f542742b8382cc27d3374fefaa168d8f0860a7401b39407393adb1451b6 -size 19658 diff --git a/MM_Math/data_original_21/7058773/math/53102367_603.png b/MM_Math/data_original_21/7058773/math/53102367_603.png deleted file mode 100644 index e9a049cda5200b70b6488d0cf8d3c62ae212ae9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53102367_603.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38f090ce65a76d098c17c4fbe18503309c736da4e225b312c19c71a27eb9f968 -size 3990 diff --git a/MM_Math/data_original_21/7058773/math/53102391_224.png b/MM_Math/data_original_21/7058773/math/53102391_224.png deleted file mode 100644 index 0658f84f78002ad61d2940c6677d4259aeda422d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53102391_224.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0fe2656da3d5164e6e1c98544ef4de2bcc7946aac96e5bd4719774813f35bc69 -size 74657 diff --git a/MM_Math/data_original_21/7058773/math/53110758_523.png b/MM_Math/data_original_21/7058773/math/53110758_523.png deleted file mode 100644 index 8419ce3ab846239532dfa2fa3929ad5d4e87753b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53110758_523.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77359a26877704779b09cf665cfdb084c4eb89b899d41371a1338560de8b6940 -size 67241 diff --git a/MM_Math/data_original_21/7058773/math/53110792_175.png b/MM_Math/data_original_21/7058773/math/53110792_175.png deleted file mode 100644 index 537605547ea7dd144dfc159b07c5db75c923de53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53110792_175.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a5538a17babf5a0080267116e0da13b16d4d9ec4491ace0c498805a468589d4 -size 7857 diff --git a/MM_Math/data_original_21/7058773/math/53110820_8611.png b/MM_Math/data_original_21/7058773/math/53110820_8611.png deleted file mode 100644 index 70e57fb5b9eb67e23e09009328483d02c3389dbc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53110820_8611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cdff84975d4a16de882656fe1094ed660487e7397d793a3f7416b3e2dfb514d6 -size 4051 diff --git a/MM_Math/data_original_21/7058773/math/53124717_00.png b/MM_Math/data_original_21/7058773/math/53124717_00.png deleted file mode 100644 index a6f289670517c9faf136dd8391260fc9b3f0c085..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53124717_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb1c37d51444534fdf79439d6e2d119f8bb4c58cdbe270713726202c167b40a2 -size 14989 diff --git a/MM_Math/data_original_21/7058773/math/53124735_750.png b/MM_Math/data_original_21/7058773/math/53124735_750.png deleted file mode 100644 index 83b7fd6cd5e86598b24d60547cbbb60aedfe22c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53124735_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f86bb6a78029075415008959d03e4f8338cd9e1b877b0b05170ad49df375cfb3 -size 17689 diff --git a/MM_Math/data_original_21/7058773/math/53147473_478.png b/MM_Math/data_original_21/7058773/math/53147473_478.png deleted file mode 100644 index 60d98f7f44a2ba5cdaa067965de109a4138767e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53147473_478.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e87ef98f4a58b9ff0e1be01e867c19ec4b5561c018f12e523e1e8c6cd689027 -size 12716 diff --git a/MM_Math/data_original_21/7058773/math/53147806_480.png b/MM_Math/data_original_21/7058773/math/53147806_480.png deleted file mode 100644 index b74d09cce790a449659e831b0038fc1970649e91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53147806_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8d3055af6e369927782333d2168f65e263661f7ab7a5f1199801876f1488ee5a -size 17019 diff --git a/MM_Math/data_original_21/7058773/math/53147971_84.png b/MM_Math/data_original_21/7058773/math/53147971_84.png deleted file mode 100644 index 41a73e2df4352c3656b314c760a2dcc2dd41df55..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53147971_84.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:568ec69fc2b9de636a44a5386c149d0dbe34fad9ddc3a4e725dfd2bd80f87325 -size 16747 diff --git a/MM_Math/data_original_21/7058773/math/53147972_90.png b/MM_Math/data_original_21/7058773/math/53147972_90.png deleted file mode 100644 index 0e9f4b14e7b98b20f4bb914cd529466b49d3e474..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53147972_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be22f6054c282389d680b2eeb9b7678a5cb7fb926f34f6fb917346ce11f459d3 -size 4454 diff --git a/MM_Math/data_original_21/7058773/math/53147978_493.png b/MM_Math/data_original_21/7058773/math/53147978_493.png deleted file mode 100644 index 02933bac1f7c7a00db4f90fbab6ac8de108dec33..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/53147978_493.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d6baf2d2b5f82c3c925dbac3cc1a829af83982ccf7f46e9e494f95beea26d313 -size 48365 diff --git a/MM_Math/data_original_21/7058773/math/55452478_460.png b/MM_Math/data_original_21/7058773/math/55452478_460.png deleted file mode 100644 index 085ca66ac4ca55bea2ba7cea0c6b6c37e520be3c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/math/55452478_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddf068d30d01253588ad6a5c33bf76423112b7850c3d91b3cc5e580dc81cab11 -size 17892 diff --git a/MM_Math/data_original_21/7058773/solution_images/52991365_330.png b/MM_Math/data_original_21/7058773/solution_images/52991365_330.png deleted file mode 100644 index ff4386c721582ca885db2b21a93410215333a26f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/52991365_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0fe624fb961d819480d6223a9384640fc8230fbaf5c6bd3999ae980b61533324 -size 9506 diff --git a/MM_Math/data_original_21/7058773/solution_images/52991432_350.png b/MM_Math/data_original_21/7058773/solution_images/52991432_350.png deleted file mode 100644 index e2255723784571b00c60e5282def45e7a44e4a5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/52991432_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc01f435df65d1b6d02e5ac9ce4c37668ee47e6b14be360c41a83726b40cdd13 -size 4335 diff --git a/MM_Math/data_original_21/7058773/solution_images/52991440_690.png b/MM_Math/data_original_21/7058773/solution_images/52991440_690.png deleted file mode 100644 index f2c80d91c2ffb349c1dec943db44bece047ad546..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/52991440_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e339535d3c09815212e71ee3e688bd1452e66df036edbd074c331d34a9ede4a4 -size 3245 diff --git a/MM_Math/data_original_21/7058773/solution_images/52991516_721.png b/MM_Math/data_original_21/7058773/solution_images/52991516_721.png deleted file mode 100644 index dbe3642708981f88ecfb44e7d18d060aaf6335ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/52991516_721.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60f757b1001076e731233a880b3d76ab526ecef54946ab3097181f38af7e7e8e -size 97013 diff --git a/MM_Math/data_original_21/7058773/solution_images/52991553_340.png b/MM_Math/data_original_21/7058773/solution_images/52991553_340.png deleted file mode 100644 index 749968c781c4cf4af29be3f6077a4809715a1e80..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/52991553_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9fb11a39f34ee7e8f37de9e1541101db75f4cd80ef9fa446b1830e4f2ccd782a -size 5114 diff --git a/MM_Math/data_original_21/7058773/solution_images/52991558_710.png b/MM_Math/data_original_21/7058773/solution_images/52991558_710.png deleted file mode 100644 index 055ffedd725bd4207709596086994ade9445f52f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/52991558_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90b9778a053261575e971d609c4f855e3b9526af4e2d6c3200e3ac1bdf25c37e -size 3747 diff --git a/MM_Math/data_original_21/7058773/solution_images/52991560_701.png b/MM_Math/data_original_21/7058773/solution_images/52991560_701.png deleted file mode 100644 index ceb46ede57418331ca597258d21a253f92835469..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/52991560_701.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e257889007f49a120acff32155543742806453f4491929d7f025c11c286fe94 -size 44693 diff --git a/MM_Math/data_original_21/7058773/solution_images/52991639_684.png b/MM_Math/data_original_21/7058773/solution_images/52991639_684.png deleted file mode 100644 index 7ff47989d15b6a0ad4652cd97509fbaedbe88e66..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/52991639_684.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:293e7e394c8a51fb1eeae0b21760a8ed8435bb32715e003fddee45f762628c27 -size 6980 diff --git a/MM_Math/data_original_21/7058773/solution_images/53009484_326.png b/MM_Math/data_original_21/7058773/solution_images/53009484_326.png deleted file mode 100644 index a90e5e8946697c3092ec54e94ff1c83f3cdc60a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53009484_326.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3817be9b7013554aa69487e82dba71da2e4d659926ab349bcf3cdaf3e24aed10 -size 7622 diff --git a/MM_Math/data_original_21/7058773/solution_images/53009644_314.png b/MM_Math/data_original_21/7058773/solution_images/53009644_314.png deleted file mode 100644 index 8349cfe1bd99a1b02c1afdce993dcc7642a4fe8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53009644_314.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:644f9a3262fa816816303e71bb3494114b7112285d51c3ce737ecdc3612edb65 -size 3630 diff --git a/MM_Math/data_original_21/7058773/solution_images/53009648_665.png b/MM_Math/data_original_21/7058773/solution_images/53009648_665.png deleted file mode 100644 index 244988b4392abf182e98789857f306338cdf8d86..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53009648_665.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b44e54d7fedacf271357685d6e2779cba3d03c964958c7fa4d64aa5e89c3dc4 -size 5846 diff --git a/MM_Math/data_original_21/7058773/solution_images/53009880_281.png b/MM_Math/data_original_21/7058773/solution_images/53009880_281.png deleted file mode 100644 index 387679bbd13cdc29c9562618fd8b17c6b4e5d354..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53009880_281.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dde22bac77c8fdfee142be632773f4ba81891027195974020199b302d855a8e2 -size 4475 diff --git a/MM_Math/data_original_21/7058773/solution_images/53009943_270.jpeg b/MM_Math/data_original_21/7058773/solution_images/53009943_270.jpeg deleted file mode 100644 index f040bee3b423f830bb3d3c551e4b534dac0e8a38..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53009943_270.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8faa6bff6d1167b44ddf9cec6e7d09079d8e09769765a0ead53de9f03fd124c7 -size 3385 diff --git a/MM_Math/data_original_21/7058773/solution_images/53019730_646.png b/MM_Math/data_original_21/7058773/solution_images/53019730_646.png deleted file mode 100644 index e9258ea0e2cea4ed02c4a0fff2f7c1631d194634..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53019730_646.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f241ae1ebb37443bc3237ce80af621e4ae3fdee10c09d9eaf97f36fcfbcd5fe5 -size 79948 diff --git a/MM_Math/data_original_21/7058773/solution_images/53033414_241.png b/MM_Math/data_original_21/7058773/solution_images/53033414_241.png deleted file mode 100644 index e5e05ae3f2d7b1015a4696b18219cdf7277ece41..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53033414_241.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90e0f2a737445168d03ddb02c39fc218c8236ddd67bd0616493d8c5e085a42e0 -size 17003 diff --git a/MM_Math/data_original_21/7058773/solution_images/53042887_550.png b/MM_Math/data_original_21/7058773/solution_images/53042887_550.png deleted file mode 100644 index a6731a7cd66892798cfd999aae5248b5a696b7ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53042887_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0aa1fd1c6f80aa2b93edac1763bd7f088256d31acb0beabe5ea56353ede7332 -size 36218 diff --git a/MM_Math/data_original_21/7058773/solution_images/53043223_532.png b/MM_Math/data_original_21/7058773/solution_images/53043223_532.png deleted file mode 100644 index 4c2d9e78394aad5d81354921a13fb146eaac4666..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53043223_532.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99bafae8be79ac3ed438ec240d6cfc3747daed821519e835fa1a457296de2c44 -size 12672 diff --git a/MM_Math/data_original_21/7058773/solution_images/53043251_190.png b/MM_Math/data_original_21/7058773/solution_images/53043251_190.png deleted file mode 100644 index ed9077135ad2dd9610f6eaf469c03df00559629c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53043251_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5abc37c6f7ad0f40f849bd8c5f7efc1176c3456073ed7d1bd850a1fe694e02ae -size 84704 diff --git a/MM_Math/data_original_21/7058773/solution_images/53043258_563.png b/MM_Math/data_original_21/7058773/solution_images/53043258_563.png deleted file mode 100644 index 3e4297997bf055eca0c1e395452e7cb2f9489ed2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53043258_563.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6695b26506532ecfd83bbbc6b718e88631853747cc3df3375887eaf69ebb0c00 -size 52813 diff --git a/MM_Math/data_original_21/7058773/solution_images/53059655_160.jpg b/MM_Math/data_original_21/7058773/solution_images/53059655_160.jpg deleted file mode 100644 index 4ae5343beb78cb26918dd0e37f83855ef5755a96..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53059655_160.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d11088c78282a40d37fe5cd81ce1e8240c6eb5f57305108bc6f2f76fc8719ca1 -size 2980 diff --git a/MM_Math/data_original_21/7058773/solution_images/53059867_510.png b/MM_Math/data_original_21/7058773/solution_images/53059867_510.png deleted file mode 100644 index a1cc7a7871a3502e90dc33e99198d7f45d3dc2a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53059867_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:839a924b31e3aa48c5674bc3c83104b2affdeb0d8a8116f7f3d8f4cccfae35cf -size 12757 diff --git a/MM_Math/data_original_21/7058773/solution_images/53065818_122.png b/MM_Math/data_original_21/7058773/solution_images/53065818_122.png deleted file mode 100644 index d7273b80da406b033483f0cb292ea937a67ac5c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53065818_122.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b44d7cafa4c74366d8031e23a9e448cc58518b8cbdbfd2c67001212561b2138 -size 3517 diff --git a/MM_Math/data_original_21/7058773/solution_images/53066061_501.png b/MM_Math/data_original_21/7058773/solution_images/53066061_501.png deleted file mode 100644 index 5f252fbc18c7ae9a45efb927572305566b8198a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53066061_501.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14c2d8272802c6b198b8371545449d18654d43d05a08d2cd14fdd9c2fa584969 -size 21199 diff --git a/MM_Math/data_original_21/7058773/solution_images/53066089_112.png b/MM_Math/data_original_21/7058773/solution_images/53066089_112.png deleted file mode 100644 index 1da6741ad48eda5c56ec51dfe9a44c0aced25635..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53066089_112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec7333a0d8c59b4f39bdb2853dcb28b80fca12462d724da3e9d271f20fab6106 -size 7044 diff --git a/MM_Math/data_original_21/7058773/solution_images/53080331_427.png b/MM_Math/data_original_21/7058773/solution_images/53080331_427.png deleted file mode 100644 index cbce23f1de18005554f98e1fba9c50faa43e56e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53080331_427.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da925c3406de969a3ab064b61dbacd50be6a41a5b30143dc6ec2ecfaf7641252 -size 6269 diff --git a/MM_Math/data_original_21/7058773/solution_images/53080558_70.png b/MM_Math/data_original_21/7058773/solution_images/53080558_70.png deleted file mode 100644 index 7151bb15908aa6e1f78b127a0cda37c2c8db162e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53080558_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b77bc2acae02ca190710b946b3cabd6d1b272f405558e69ec434a11cc7dce29 -size 5125 diff --git a/MM_Math/data_original_21/7058773/solution_images/53080595_430.png b/MM_Math/data_original_21/7058773/solution_images/53080595_430.png deleted file mode 100644 index 52d7f857d8f4f508b43b6f066f9d847796b96407..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53080595_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c605a3fb1ba0873e659d2959225c7cb0dec16d80ce7f9a83ac88cee9a42c419 -size 3461 diff --git a/MM_Math/data_original_21/7058773/solution_images/53080600_440.png b/MM_Math/data_original_21/7058773/solution_images/53080600_440.png deleted file mode 100644 index ade94c166c2ce034883480740d7b77fc47dcb80a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53080600_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79f534ea1ed568bbcdd453d0c43affc59be2c4cee067541e603e3a41c450dcd4 -size 4672 diff --git a/MM_Math/data_original_21/7058773/solution_images/53080627_60.png b/MM_Math/data_original_21/7058773/solution_images/53080627_60.png deleted file mode 100644 index 17795164699f99cc92916094d3f220c721163102..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53080627_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:363495e67d6cf40492a7621c6312dbcbc2600aad070992e5a46a5d41e4864e94 -size 58549 diff --git a/MM_Math/data_original_21/7058773/solution_images/53080774_30.png b/MM_Math/data_original_21/7058773/solution_images/53080774_30.png deleted file mode 100644 index 407fbd49608820b88cccfbf0185bd2130ba09cf5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53080774_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bbc3178fbf7b9c4d2b650e0b1ef0f25b69e53b6e01f22178528be2bcedbc0004 -size 4355 diff --git a/MM_Math/data_original_21/7058773/solution_images/53081373_390.png b/MM_Math/data_original_21/7058773/solution_images/53081373_390.png deleted file mode 100644 index 658aeaf094c97e1ce4f4633562c790f2b85b3458..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53081373_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f484bd5632dd128a4d1b1aa60e163a04b3d66c63805845d9cbb9a730cb5c98f0 -size 6068 diff --git a/MM_Math/data_original_21/7058773/solution_images/53081442_20.png b/MM_Math/data_original_21/7058773/solution_images/53081442_20.png deleted file mode 100644 index 23cae9fdfae8adaf752c837baff9f8c349c93acb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53081442_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:784b42296daf15c598bf1ac8beea0e78f0b625ba87fece9ff425c212491f6c94 -size 6589 diff --git a/MM_Math/data_original_21/7058773/solution_images/53081444_380.png b/MM_Math/data_original_21/7058773/solution_images/53081444_380.png deleted file mode 100644 index 23480dcf8294a3aa98d312d0e63cc110bf01e41f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53081444_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2af287077f3547a43fec04252ce6efa24d0ee99ad1732e2985af35c5e90e913c -size 5584 diff --git a/MM_Math/data_original_21/7058773/solution_images/53102104_234.png b/MM_Math/data_original_21/7058773/solution_images/53102104_234.png deleted file mode 100644 index 7b6bb1d8e740eb5e478ec4b592284407d08e7cf6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53102104_234.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:450830dfea48d91a5ac9b5f3e78330465f6513d9cd7946003d735e1fd47b2cb5 -size 3967 diff --git a/MM_Math/data_original_21/7058773/solution_images/53102153_581.png b/MM_Math/data_original_21/7058773/solution_images/53102153_581.png deleted file mode 100644 index b31510ae6be080a96bebcfc11a625e6c1e688bc6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53102153_581.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:749a2b38f6af371fad2f149e907616d32312e1ed226e390529431bca1ac01b63 -size 11441 diff --git a/MM_Math/data_original_21/7058773/solution_images/53102184_570.png b/MM_Math/data_original_21/7058773/solution_images/53102184_570.png deleted file mode 100644 index 8a7721a17cfdc4ba3119e381410e070e504700ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53102184_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc7c5ecf70ca5e4cbf6e40ac657a567fb5ac83722886f530c0c23b94f1fc6182 -size 65432 diff --git a/MM_Math/data_original_21/7058773/solution_images/53102217_620.png b/MM_Math/data_original_21/7058773/solution_images/53102217_620.png deleted file mode 100644 index 19c65f489b775f46590899d7675ecbd9bd7642c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53102217_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f4824c9cc69bf3456bf35c42749ec041b4e764e1a7dced93962af301790713a -size 68100 diff --git a/MM_Math/data_original_21/7058773/solution_images/53102367_6015.png b/MM_Math/data_original_21/7058773/solution_images/53102367_6015.png deleted file mode 100644 index da0a21706c964041fed6799496733a492e8d8d3c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53102367_6015.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bbab54bfffaa324a34f169e9fe9b63d62797de84521f6704262c48b11e293f05 -size 4926 diff --git a/MM_Math/data_original_21/7058773/solution_images/53110758_521.png b/MM_Math/data_original_21/7058773/solution_images/53110758_521.png deleted file mode 100644 index f0b095864ebb1b5c9b4d7724bd9a4ca23cb736e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53110758_521.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7725a736fe898f82e129101b54ae2d5b60c852c4c25add32b1dcd59e293c5f8a -size 84129 diff --git a/MM_Math/data_original_21/7058773/solution_images/53147473_470.png b/MM_Math/data_original_21/7058773/solution_images/53147473_470.png deleted file mode 100644 index ac89b22595ebc9663a3a7a03a951cc8553a825bc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53147473_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02975825e39c404005bd43deba8ea5d8aeef33b56e102e1151be781996b4b323 -size 7587 diff --git a/MM_Math/data_original_21/7058773/solution_images/53147806_480.png b/MM_Math/data_original_21/7058773/solution_images/53147806_480.png deleted file mode 100644 index dc81b38f8c8b4fb62b67eea17787826803e472c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53147806_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ffec334697408c3ab43c0d1a9b489bf503d608582a6a1e6a513dbe021885e6ff -size 19744 diff --git a/MM_Math/data_original_21/7058773/solution_images/53147972_90.png b/MM_Math/data_original_21/7058773/solution_images/53147972_90.png deleted file mode 100644 index 3523e126d980ff05281c8904b5344b7237181c46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/53147972_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2cebde22f1c1afd81bdb2d46149f997719292002c98de9a8ac29b6c18004b08a -size 3079 diff --git a/MM_Math/data_original_21/7058773/solution_images/55452478_460.png b/MM_Math/data_original_21/7058773/solution_images/55452478_460.png deleted file mode 100644 index cb2e6f59949f4029448597ec5fac5c7b62783afd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058773/solution_images/55452478_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea7fcef264377a73a2b6e57de98391436b092e23b84cb322c2f6ee3ad7759fce -size 10655 diff --git a/MM_Math/data_original_21/7058778/math/52731636_413.png b/MM_Math/data_original_21/7058778/math/52731636_413.png deleted file mode 100644 index 8c0c7d32a0cd3aad33eab50f70343abb8b5e8136..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52731636_413.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66359f37891407ce47a64427b6f47cf428d97af1e58db0f8b9bad18a812f4946 -size 3969 diff --git a/MM_Math/data_original_21/7058778/math/52731766_988.png b/MM_Math/data_original_21/7058778/math/52731766_988.png deleted file mode 100644 index 1eab873f47fd6df8c912d855c971739fea49359d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52731766_988.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3038be2f4e629b22c654b08cc4c6f07c38b0667c840ef309a6df3d973d7aa771 -size 32171 diff --git a/MM_Math/data_original_21/7058778/math/52733109_403.png b/MM_Math/data_original_21/7058778/math/52733109_403.png deleted file mode 100644 index 63f54f793bf2c3283254f6cb276446d3ab148c8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52733109_403.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:953d52a35324e1a807dc0263d152e19c4a5d81dea665208f468d67e2b9bd3c9d -size 2849 diff --git a/MM_Math/data_original_21/7058778/math/52733112_760.png b/MM_Math/data_original_21/7058778/math/52733112_760.png deleted file mode 100644 index f0c339e3cf32d639be779855a3895adcb091c860..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52733112_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54645e8f0726a8837aca3f83c9dc6ca6355aa5c0e5e8b9a96f329b86554454ab -size 9087 diff --git a/MM_Math/data_original_21/7058778/math/52733131_971.png b/MM_Math/data_original_21/7058778/math/52733131_971.png deleted file mode 100644 index 549b5150eff95c591891d23fcb616fd066181e6b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52733131_971.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b4cafd4ceadde94afd72ecbee096bc3a6071be10a6a562d130c2268368e064bb -size 7016 diff --git a/MM_Math/data_original_21/7058778/math/52733204_961.png b/MM_Math/data_original_21/7058778/math/52733204_961.png deleted file mode 100644 index 1dcad68fe49822f35e5e558b9103cbc5136c872d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52733204_961.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5749b4a4aed701e05fa8be9606156865d0fbcf3dcb20c04e32bd31b720660647 -size 5200 diff --git a/MM_Math/data_original_21/7058778/math/52747341_754.png b/MM_Math/data_original_21/7058778/math/52747341_754.png deleted file mode 100644 index fd2ad5f7e202046434883d6d4da1bfc1be5a8490..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52747341_754.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b937b3c885331f97215d3031d72fc2de2b6c06811f4c7d8150089cdf87af89af -size 64715 diff --git a/MM_Math/data_original_21/7058778/math/52747354_954.png b/MM_Math/data_original_21/7058778/math/52747354_954.png deleted file mode 100644 index 43385464ef98becb561f53506dfffadd808dd8a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52747354_954.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd1f4ba6baaa9c2217cacba28e3ce0ee5326dd6c944c8f32de5c33f51e9dbd2d -size 63355 diff --git a/MM_Math/data_original_21/7058778/math/52754802_390.png b/MM_Math/data_original_21/7058778/math/52754802_390.png deleted file mode 100644 index b280bda731ccfcabb75f1e3f50a7898103294680..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52754802_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a088398f8d383d08aaa93be5dd6081df9bed8cd8541a2b1cf2c3f23871f0b43 -size 5576 diff --git a/MM_Math/data_original_21/7058778/math/52755077_740.png b/MM_Math/data_original_21/7058778/math/52755077_740.png deleted file mode 100644 index 9148b030c5653f08191d5637aec56b4be8d8e8b4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52755077_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f548d3bb0bbcbf9e46b4f5659e3dc0ff588e4a47fbb0d22ea93f894e064a950 -size 13580 diff --git a/MM_Math/data_original_21/7058778/math/52755081_730.png b/MM_Math/data_original_21/7058778/math/52755081_730.png deleted file mode 100644 index 534536f85b9863ca20b14df29f5e1365e90aaa1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52755081_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1405feeba08e85a7bdcc4fd640db247403bdb789162e2d0ffc640ddc7a034f6c -size 4662 diff --git a/MM_Math/data_original_21/7058778/math/52755170_361.png b/MM_Math/data_original_21/7058778/math/52755170_361.png deleted file mode 100644 index f9e53025c87d540a647a6ac59404aa850815696d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52755170_361.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e814682c349f4a51c2e27d73bed27d102a95b6e51db70c215f42e3eb3b34beb7 -size 6435 diff --git a/MM_Math/data_original_21/7058778/math/52755172_370.png b/MM_Math/data_original_21/7058778/math/52755172_370.png deleted file mode 100644 index 2a1041cb55ac27ea2da4966d93421b97af11ddc5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52755172_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ffd3a3ff612afd685a294a07de45872ebaa75c7551080ed25f8259ee83641b0 -size 5744 diff --git a/MM_Math/data_original_21/7058778/math/52755175_382.png b/MM_Math/data_original_21/7058778/math/52755175_382.png deleted file mode 100644 index f6acb4a6019e05092736a210ac0550df1e0ab6d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52755175_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b994aba47fa145fc5e362010ada3e6327001d3744074481e541fafb6a1676f0 -size 8570 diff --git a/MM_Math/data_original_21/7058778/math/52755181_711.png b/MM_Math/data_original_21/7058778/math/52755181_711.png deleted file mode 100644 index dd9720a57896db40a790171b1cfc7b1a9038864f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52755181_711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc33bde32cab4be2f785b2f7c3f55e21328af517446d56525c917a8038a839a6 -size 3871 diff --git a/MM_Math/data_original_21/7058778/math/52755183_722.png b/MM_Math/data_original_21/7058778/math/52755183_722.png deleted file mode 100644 index 6f7f7c6f86b04028f575a1c3b2d5792b02bae2e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52755183_722.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9b2bc63bbb74cdf84346637b9d76708230ac63b046523e3dd74cd001aad5109 -size 8460 diff --git a/MM_Math/data_original_21/7058778/math/52755194_940.png b/MM_Math/data_original_21/7058778/math/52755194_940.png deleted file mode 100644 index 5a377d345762aee505cb1be58cde2aed4d386fd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52755194_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b82d59312ace1cf846f0ebbce93f284b4175282a864a7cbe167bf90f07d6c76 -size 7554 diff --git a/MM_Math/data_original_21/7058778/math/52774538_351.png b/MM_Math/data_original_21/7058778/math/52774538_351.png deleted file mode 100644 index f18f3c02f8d5d934fe35cdbfa8d5527c3234b3a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52774538_351.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53b3d5f0da774a7f9d250111af23a0d2b06a7f259457c3e9d3dcfee4777b97b2 -size 8513 diff --git a/MM_Math/data_original_21/7058778/math/52774551_701.png b/MM_Math/data_original_21/7058778/math/52774551_701.png deleted file mode 100644 index 23d9c0acb2512b319796c33877d1165c80098657..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52774551_701.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:96b23fbf2f24e532b874d26a575577609962ada1d9aa8ac23fb718d345c57797 -size 3418 diff --git a/MM_Math/data_original_21/7058778/math/52774651_346.png b/MM_Math/data_original_21/7058778/math/52774651_346.png deleted file mode 100644 index 4e9ba652679d8129ac28d3d4b9b346eb53bdef8b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52774651_346.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e0c65cdc6baeb45d0be3cc1b725c6c5178347fe6ba43e2438c95ae523829731 -size 7678 diff --git a/MM_Math/data_original_21/7058778/math/52774665_931.png b/MM_Math/data_original_21/7058778/math/52774665_931.png deleted file mode 100644 index d121a59e5408046b0c314ee5224b2bf85fafc075..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52774665_931.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a970a0b6cd125bd3e6ec02996b4bb306a7fea837023e848850b1e71b6da587b5 -size 4685 diff --git a/MM_Math/data_original_21/7058778/math/52774800_696.png b/MM_Math/data_original_21/7058778/math/52774800_696.png deleted file mode 100644 index 3d978a5969b348f654187cdbc9957114a2b3cede..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52774800_696.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3be22a3350c919ad23a6b930955dc4ed1689de3016a1a057ac2a7297bfd75139 -size 41567 diff --git a/MM_Math/data_original_21/7058778/math/52774801_689.png b/MM_Math/data_original_21/7058778/math/52774801_689.png deleted file mode 100644 index 46f753f8cfd49ff9ab6ec56b08d0176bb8109b73..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52774801_689.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1a72985a9e5138f013e6c15576488c8491435d83881db7b62c00c6d815067f9 -size 51580 diff --git a/MM_Math/data_original_21/7058778/math/52793776_3212.png b/MM_Math/data_original_21/7058778/math/52793776_3212.png deleted file mode 100644 index 53d653d9ebbd0b9162bfff12f80b187cc2a6c8a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52793776_3212.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bdc996dffc5cba65fdda63974815a067108c68f2b847f5ba9724f23ffa287dfb -size 28133 diff --git a/MM_Math/data_original_21/7058778/math/52793780_667.png b/MM_Math/data_original_21/7058778/math/52793780_667.png deleted file mode 100644 index 78a208fcd4123aefa8e2b31ca79324b06288ada1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52793780_667.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e2df4b5f13cf692132fb0bbcc6f37bc9eb59310ff99814f1c0ed056f4940aa0e -size 5201 diff --git a/MM_Math/data_original_21/7058778/math/52796833_330.png b/MM_Math/data_original_21/7058778/math/52796833_330.png deleted file mode 100644 index 395dbdc51ec56a49e875b9c75358ac71bca600ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52796833_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d2ea997cd8bc36a4c4d3536d969d4c616339a7f8d9649d672f0f7be982300c4 -size 38944 diff --git a/MM_Math/data_original_21/7058778/math/52796840_675.png b/MM_Math/data_original_21/7058778/math/52796840_675.png deleted file mode 100644 index b51e8b917b4f5e8c78f6942ff39c21bade2d146b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52796840_675.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5bbaa029110eb48c6fdd7bdcb5fd43f09d0de0fbe9fe52f3a592efe274c32e0b -size 6940 diff --git a/MM_Math/data_original_21/7058778/math/52807127_430.png b/MM_Math/data_original_21/7058778/math/52807127_430.png deleted file mode 100644 index c341aa6c008f888603059c0a7a01330e1251fc6b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52807127_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b3aa7b5acc4660c3f502f91f3c6a43323cb452db2eb0fd23b5693af1b5df168 -size 3408 diff --git a/MM_Math/data_original_21/7058778/math/52807129_420.png b/MM_Math/data_original_21/7058778/math/52807129_420.png deleted file mode 100644 index 02464cb4d39133e7baf2636a25cbabbd77f1573d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52807129_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bb5801ce0561d7b42230b8f6d0edfff37742fe6ad1311e061c294255305faa2 -size 4173 diff --git a/MM_Math/data_original_21/7058778/math/52807144_990.png b/MM_Math/data_original_21/7058778/math/52807144_990.png deleted file mode 100644 index 52556e95b7df249aa14e27a9dedbd5ac898674e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52807144_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c2a3a34517f0904de02184a05c20bbb8e65b5ba96a4ba6c32059cf11d136786 -size 7904 diff --git a/MM_Math/data_original_21/7058778/math/52807528_311.png b/MM_Math/data_original_21/7058778/math/52807528_311.png deleted file mode 100644 index 47a7516b007b34bc29bc56a018ce70a54fef7d19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52807528_311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:027c72bbd9f6d4c2da5c2aa4b6e0b2e28f065dd461d17a919f0d1e91077a6b06 -size 4865 diff --git a/MM_Math/data_original_21/7058778/math/52808095_300.png b/MM_Math/data_original_21/7058778/math/52808095_300.png deleted file mode 100644 index 031807a217c0e6de10b1cbd3f43ed7b57363e9c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52808095_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d51020f51fc9501f9d8cac276585a2e38168ddf93cafb12c661e42f5c2975191 -size 30560 diff --git a/MM_Math/data_original_21/7058778/math/52808101_640.png b/MM_Math/data_original_21/7058778/math/52808101_640.png deleted file mode 100644 index f81e5e8bf8f85c8ee8fcf2b13078d1ca2887f107..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52808101_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd74fc7229d5b84729eb3ef4d57bb194008ff6dac7b227cd24e2a203ba1bae11 -size 8152 diff --git a/MM_Math/data_original_21/7058778/math/52808102_650.png b/MM_Math/data_original_21/7058778/math/52808102_650.png deleted file mode 100644 index 72e33be51e8338255409cabaf2b47472103d10aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52808102_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8481b0c173844a0683920437a67dfc9828c32315e736bfc9da2ca9054d3bfaae -size 31264 diff --git a/MM_Math/data_original_21/7058778/math/52808494_630.png b/MM_Math/data_original_21/7058778/math/52808494_630.png deleted file mode 100644 index 30250733629426fa5c88e7fcdc6e6cd2b51bfe1f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52808494_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03e0c6d18e79c7c07d3ae76ae69577325b75e2196452af4590829f8fab78355a -size 3712 diff --git a/MM_Math/data_original_21/7058778/math/52808502_920.png b/MM_Math/data_original_21/7058778/math/52808502_920.png deleted file mode 100644 index ff3a80fe992e8bdd752d04dc94720782f38cd55e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52808502_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1f9d7ca1a393f3a4a5ecd054a768176772dfd61fb7f35477a337da5bce8d37c -size 3290 diff --git a/MM_Math/data_original_21/7058778/math/52814831_280.png b/MM_Math/data_original_21/7058778/math/52814831_280.png deleted file mode 100644 index 46ba785a4ad6d6a776e321257d16a38b488762bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52814831_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1c45a8eb08104bfbf4073daf824554e9fcbf4dbca8737d7bf4152a26808c389 -size 4238 diff --git a/MM_Math/data_original_21/7058778/math/52814833_292.png b/MM_Math/data_original_21/7058778/math/52814833_292.png deleted file mode 100644 index 378ab386130a12e11e737bf8bb007a23fa0705a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52814833_292.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6aedbcb7981a1985e9ea95603c73b841ce7b2e6c2c2079e1913fac9221e193d3 -size 9311 diff --git a/MM_Math/data_original_21/7058778/math/52814896_260.png b/MM_Math/data_original_21/7058778/math/52814896_260.png deleted file mode 100644 index 1dd9a038f446248fd88e5222b154aef1df3b32d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52814896_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60944fb9743eba36cb65fe17db084a2fa5f97614afe5aff0d5e4bc4643496ab5 -size 6108 diff --git a/MM_Math/data_original_21/7058778/math/52814897_270.png b/MM_Math/data_original_21/7058778/math/52814897_270.png deleted file mode 100644 index aa70b914078d450488821425009e56b030a7a9e7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52814897_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2735d9331426ac274da042d8d8493870953263821b3afe581339d2ffa17271e9 -size 34409 diff --git a/MM_Math/data_original_21/7058778/math/52814915_910.png b/MM_Math/data_original_21/7058778/math/52814915_910.png deleted file mode 100644 index 4f9c119b487149b3d4ad2d220d6f437cafc138e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52814915_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:852473e9139605729b0c8c175ef569d2c97a7e4eb5229394a42b34f758c2a5d9 -size 25401 diff --git a/MM_Math/data_original_21/7058778/math/52815675_250.png b/MM_Math/data_original_21/7058778/math/52815675_250.png deleted file mode 100644 index 2969ce1b06e784ddd6c63f7f9d89b7f54db8950e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52815675_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:250acfad63939e646f6074c806c52f68d5fc849f8810fcd1c8f438e646321233 -size 9772 diff --git a/MM_Math/data_original_21/7058778/math/52815682_620.png b/MM_Math/data_original_21/7058778/math/52815682_620.png deleted file mode 100644 index 70ce4f54e2c847d01b11f5462ae1813f58d1d58a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52815682_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e6d875faf227d60adaf550c96e98a6bf8e43869a4633d1ac8190a786e25ec37 -size 4378 diff --git a/MM_Math/data_original_21/7058778/math/52828738_240.png b/MM_Math/data_original_21/7058778/math/52828738_240.png deleted file mode 100644 index 07561ce9bdc8871711ba769d338f9414f215be78..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52828738_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:721d263048e32390bae3d233cd744d2020966fc08b095e198949e5ec896a2f22 -size 198040 diff --git a/MM_Math/data_original_21/7058778/math/52837271_230.png b/MM_Math/data_original_21/7058778/math/52837271_230.png deleted file mode 100644 index fa4b2e3b02e284f65ed9c0baaedcef34601c651a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52837271_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35999267a9b3466ce75acd99a14f27aeb145a9f59f0acca40b4b15544c379f17 -size 34277 diff --git a/MM_Math/data_original_21/7058778/math/52837279_613.png b/MM_Math/data_original_21/7058778/math/52837279_613.png deleted file mode 100644 index e2cc4861516e359213656153561fc95ddb021396..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52837279_613.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:edb531164d8f4543e51f754a1779126b807fcc3454b1c16d2c1449a68432a4ed -size 3577 diff --git a/MM_Math/data_original_21/7058778/math/52861148_223.png b/MM_Math/data_original_21/7058778/math/52861148_223.png deleted file mode 100644 index 0c30b820cd20ad24cd5d084fa048c76a7b9483f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861148_223.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91f69bbb728d421c54cad3752bc66924ce3310684adf57fdfe315e57654bcdea -size 2917 diff --git a/MM_Math/data_original_21/7058778/math/52861149_210.png b/MM_Math/data_original_21/7058778/math/52861149_210.png deleted file mode 100644 index 76b7dcd67f1d29a21a761fbeb408fcc2dc3f51d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861149_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51449d08e41f3d7eecdef4bae8181d448b95b43561de07c83b532187f214b668 -size 6022 diff --git a/MM_Math/data_original_21/7058778/math/52861153_590.png b/MM_Math/data_original_21/7058778/math/52861153_590.png deleted file mode 100644 index c77690f41dfe2b0aad5fad5728499a4c7d67e139..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861153_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e489830ed06161d266a7a2b5f0ccffbef20c29c02995302dab4520f09e416960 -size 3436 diff --git a/MM_Math/data_original_21/7058778/math/52861155_601.png b/MM_Math/data_original_21/7058778/math/52861155_601.png deleted file mode 100644 index 61d0ff736b9f359c65ae351677a7280262a4a3c5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861155_601.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:73efb1a78d7241f200b5f251a96d1a79ec0928ec14e40690a9c9753e0fb0b454 -size 5639 diff --git a/MM_Math/data_original_21/7058778/math/52861180_200.png b/MM_Math/data_original_21/7058778/math/52861180_200.png deleted file mode 100644 index 3c71affad8b8598665fc5407abfe24ffb1983cc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861180_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6070797d6d9dc8a3b38d42a9e3181a748168eceee3162141f561994e18b30b09 -size 8012 diff --git a/MM_Math/data_original_21/7058778/math/52861206_901.png b/MM_Math/data_original_21/7058778/math/52861206_901.png deleted file mode 100644 index 955fe2dadb2d0c0a5bb80adac57cc48418c2af59..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861206_901.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:490a4229d904bcd404b412dd57a04010098d0103ccae668f6fb17baa8d981fda -size 7452 diff --git a/MM_Math/data_original_21/7058778/math/52861387_582.png b/MM_Math/data_original_21/7058778/math/52861387_582.png deleted file mode 100644 index a673e160aec8846028b89d5a1d6c093378b156be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861387_582.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af335a0c391a92e6b1181f79baa59f4a420f7a2649843725eff287f077d15e62 -size 5843 diff --git a/MM_Math/data_original_21/7058778/math/52861398_890.png b/MM_Math/data_original_21/7058778/math/52861398_890.png deleted file mode 100644 index e477793cb01d54ac9f95464cc608d3cc9b7dfead..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861398_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:418eb00a919a765b4f678c3d41b6ee68fe418b1166a85e962a3a83f6b71bf05e -size 5385 diff --git a/MM_Math/data_original_21/7058778/math/52861797_576.png b/MM_Math/data_original_21/7058778/math/52861797_576.png deleted file mode 100644 index 969211603f397690929c5548678a1d2443795789..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861797_576.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e13c4d31120e6c28148d163cef4c2f50c2937e049d9ab4ca428bbe34df38a29 -size 2915 diff --git a/MM_Math/data_original_21/7058778/math/52861807_8812.png b/MM_Math/data_original_21/7058778/math/52861807_8812.png deleted file mode 100644 index c2e682f09f390cde5f842868eec3c5cbef183623..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861807_8812.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1fc8a06a429f4c944e3260839b1d019af7296866b6ae1db639631b58b00d977 -size 6441 diff --git a/MM_Math/data_original_21/7058778/math/52861883_190.png b/MM_Math/data_original_21/7058778/math/52861883_190.png deleted file mode 100644 index 996d370cbcc6d60bea0650e38eb2e3cc511fe444..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52861883_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d107f5584a11716e5769c4d7be70cc89899a60ec2f79c74abcf40d42e904ec29 -size 61248 diff --git a/MM_Math/data_original_21/7058778/math/52866046_565.png b/MM_Math/data_original_21/7058778/math/52866046_565.png deleted file mode 100644 index 5b967fa1db19f6317b519f904d01cd37c0aedf58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52866046_565.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e17cc5cfc2a95291e40b832517f145445b38f48c4e974424e9e0e126f9ea949 -size 7416 diff --git a/MM_Math/data_original_21/7058778/math/52866055_777.png b/MM_Math/data_original_21/7058778/math/52866055_777.png deleted file mode 100644 index 81caa80a7801f8fb4f7b5015a68c59dc29ac699e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52866055_777.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cfb7ac9dc10560690acb05c322df32d67219b3e209e1d4f3e88bf6437a6db4bf -size 23866 diff --git a/MM_Math/data_original_21/7058778/math/52871720_864.png b/MM_Math/data_original_21/7058778/math/52871720_864.png deleted file mode 100644 index 9f890020cc34f7d8d7fd5929a1c9626e88ea678d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52871720_864.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2270bced669bd5a06bab1cd37a83e719233c56373e3b28803f4a4a401d8d07ae -size 63639 diff --git a/MM_Math/data_original_21/7058778/math/52871726_142.png b/MM_Math/data_original_21/7058778/math/52871726_142.png deleted file mode 100644 index 5763976c55c2ee3cf3bdfab03e1288ef596fd855..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52871726_142.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1daf3bc58efbbeffc244e460da573f9ad038b0e917705a21a4a1e5135b3fd90c -size 2780 diff --git a/MM_Math/data_original_21/7058778/math/52871736_551.png b/MM_Math/data_original_21/7058778/math/52871736_551.png deleted file mode 100644 index b8deee49f8a0aa956b275ef3c7323d16b8eef1e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52871736_551.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1149f580109b65931ac405d0dfa89d2ebe2237d9c18d3b85dda9176a9e1819f7 -size 3650 diff --git a/MM_Math/data_original_21/7058778/math/52871840_165.png b/MM_Math/data_original_21/7058778/math/52871840_165.png deleted file mode 100644 index c830482461e3d92f4492aa333dae25f537126908..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52871840_165.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:26458d8c385a4e96f7a310ea14e4fbfdb0269f2b0244b443daaef56a500d0c93 -size 58899 diff --git a/MM_Math/data_original_21/7058778/math/52871844_133.png b/MM_Math/data_original_21/7058778/math/52871844_133.png deleted file mode 100644 index 822c7624c81df0d67b8cb04fd9e2c4b6b4ab58e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52871844_133.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6df6d752d168a346a6a959cb5aa6635c8f13fd7af0b24f7502d5d68d750c0461 -size 4914 diff --git a/MM_Math/data_original_21/7058778/math/52871876_185.png b/MM_Math/data_original_21/7058778/math/52871876_185.png deleted file mode 100644 index b3f72e38cc9f8af46c0963b06cafc30f5f76eb06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52871876_185.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82998cb71395892118131c23f133f0c7ad187882f6705e920108faf9f92c6d0a -size 2835 diff --git a/MM_Math/data_original_21/7058778/math/52871878_150.png b/MM_Math/data_original_21/7058778/math/52871878_150.png deleted file mode 100644 index 8e1f18804eb559464656cc6a6426fa86703b96ad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52871878_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c47d1880144abb84806c4547ccdea5ad36578026710e005d23ce60ee79a54c0a -size 10593 diff --git a/MM_Math/data_original_21/7058778/math/52871899_178.png b/MM_Math/data_original_21/7058778/math/52871899_178.png deleted file mode 100644 index 8e866a4ff5d0c16e588515bf9118d13821ef10df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52871899_178.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e978c364683b3c34cf25a716eed0f07945e20182cd8bf9adef51bcf33ae35e04 -size 37285 diff --git a/MM_Math/data_original_21/7058778/math/52871917_875.png b/MM_Math/data_original_21/7058778/math/52871917_875.png deleted file mode 100644 index 52629eee1aa98f449fbda580f65efe6fe269891f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52871917_875.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dbe0ae4e22adb19e02638deb660122980e043147e9442d63bbe0452140dfd1a6 -size 18384 diff --git a/MM_Math/data_original_21/7058778/math/52874515_120.png b/MM_Math/data_original_21/7058778/math/52874515_120.png deleted file mode 100644 index 227c249eeb4e134d0720d0c9dd7fa1aecbf7668c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874515_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32033c550452a7a02ef33f05ccaba177b29497a247bcd860338ea0e42143f73e -size 13585 diff --git a/MM_Math/data_original_21/7058778/math/52874521_540.png b/MM_Math/data_original_21/7058778/math/52874521_540.png deleted file mode 100644 index 1c1b77b19a5712ad2198f2adb1d4e5db1b0f2713..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874521_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e6bbc84a57a1c751f6efd1027c2c65cab3cb7055440bde9401b26dad83fd389 -size 26986 diff --git a/MM_Math/data_original_21/7058778/math/52874523_531.png b/MM_Math/data_original_21/7058778/math/52874523_531.png deleted file mode 100644 index 209d5a517f3e4fb860b7cbebfa94a1060a131322..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874523_531.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f629f90a0ff97610177ba1f30254b9bde5806f35de0552fceb3b38749b0f573a -size 4080 diff --git a/MM_Math/data_original_21/7058778/math/52874564_110.png b/MM_Math/data_original_21/7058778/math/52874564_110.png deleted file mode 100644 index 7d026449a91a4d1d4ef436314bd2d49dd6c509df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874564_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:294b17460a58929facd6ec32e95882d525d9cf0b642e84b99c40d4aad1b4fb7d -size 8152 diff --git a/MM_Math/data_original_21/7058778/math/52874569_520.png b/MM_Math/data_original_21/7058778/math/52874569_520.png deleted file mode 100644 index a8bb238b691595bd7392b4d1d6742bcef7306ca4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874569_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d71f3d78c036b899b8b951a1c62aaa661cfe6f61b1475eb3dd42b8ed1342bba -size 7856 diff --git a/MM_Math/data_original_21/7058778/math/52874631_100.png b/MM_Math/data_original_21/7058778/math/52874631_100.png deleted file mode 100644 index 64ecb64d4377795f16198124316ebbe491cd5bc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874631_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d76818e84943089a1aa4ee2d241863818b8e8351ce91306f8397c6e6ecd3c5c -size 5012 diff --git a/MM_Math/data_original_21/7058778/math/52874635_90.png b/MM_Math/data_original_21/7058778/math/52874635_90.png deleted file mode 100644 index 89c791961ad448427b14b8182798ca20baf23152..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874635_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8bfe6f0c214b33236088acf03662f334bcfe43a8ca5f3a7428d7e6aac48e52c6 -size 62509 diff --git a/MM_Math/data_original_21/7058778/math/52874641_510.png b/MM_Math/data_original_21/7058778/math/52874641_510.png deleted file mode 100644 index 44fa0599439098396047e8e4cac6818da52e5e4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874641_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:695a334c2d0a346ed456746e91abac38a4da534746baa3cc5188467447f6885f -size 7322 diff --git a/MM_Math/data_original_21/7058778/math/52874653_850.png b/MM_Math/data_original_21/7058778/math/52874653_850.png deleted file mode 100644 index 857a6e03291b925ccb0a54960f9c6af00f514f4e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874653_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b78fe491c30554d38bad1503794ee8b79524547fece993bc78a1288a0b9c69bc -size 5082 diff --git a/MM_Math/data_original_21/7058778/math/52874668_81.png b/MM_Math/data_original_21/7058778/math/52874668_81.png deleted file mode 100644 index fd9919053f88d3118991cc965142225fc8cdb819..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874668_81.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30528b5f72ac0b6fb87192067a267c34f1bdeec266c8479360f26854b755c623 -size 30848 diff --git a/MM_Math/data_original_21/7058778/math/52874676_500.png b/MM_Math/data_original_21/7058778/math/52874676_500.png deleted file mode 100644 index 887e00410763200bf27ae5127da5131bfdfb219f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874676_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af432890b594cfe4a4639cff11d838a0046c1b03c79d42f65c25e4d4e2f6246d -size 30624 diff --git a/MM_Math/data_original_21/7058778/math/52874685_840.png b/MM_Math/data_original_21/7058778/math/52874685_840.png deleted file mode 100644 index 32389e15da7dede041e29aa03a1a3c5fc2be9518..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874685_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c08659ee45dff6206da9f241330068ab7999c1b2e2dcc09094ecaff4477727fb -size 31840 diff --git a/MM_Math/data_original_21/7058778/math/52874699_77.png b/MM_Math/data_original_21/7058778/math/52874699_77.png deleted file mode 100644 index 5f08144fb3c363d45291be94c53e7f7c0afeed83..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874699_77.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0d5bbbaf5d17900825ccf038e9cad8ede25da144a61f39023fa22438812f7b5 -size 4574 diff --git a/MM_Math/data_original_21/7058778/math/52874717_830.png b/MM_Math/data_original_21/7058778/math/52874717_830.png deleted file mode 100644 index 505d8e005cbf4b1be0d7ea106cb57f67b4f0d91a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874717_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b947a9cc7f8ca68a05c4847cab9c56d61568676dd7a373cb22bdbd4ce39b7683 -size 5049 diff --git a/MM_Math/data_original_21/7058778/math/52874742_490.png b/MM_Math/data_original_21/7058778/math/52874742_490.png deleted file mode 100644 index 55c475310812ec59df2149ac88d4c9c9dca2c639..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874742_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:377ebe0b97ae4ed458c472d8528404f1d89a4506a8f0718f956f678272fe2054 -size 15360 diff --git a/MM_Math/data_original_21/7058778/math/52874743_480.png b/MM_Math/data_original_21/7058778/math/52874743_480.png deleted file mode 100644 index 42db55f35dbdc5ca2dfe5e51ea2f45718297f316..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874743_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8cbc2d9d00cf8ed98c2c6716242f0142433cf2d8b898b4759574970bfaa04bb4 -size 31008 diff --git a/MM_Math/data_original_21/7058778/math/52874751_820.png b/MM_Math/data_original_21/7058778/math/52874751_820.png deleted file mode 100644 index 7bf7d71f6b3de2293cab9e86741deb17809091ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874751_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e523d90479d2b5cb9e2434e23238509ef3f8ed5efc170a5c385928eb5dbc06cf -size 30528 diff --git a/MM_Math/data_original_21/7058778/math/52874761_810.png b/MM_Math/data_original_21/7058778/math/52874761_810.png deleted file mode 100644 index 31aba8c17eef2ec711fc7b489d3de4134b0b8396..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52874761_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41fc860400d0112b7567aaed8ca81c7fc6eac28eb0e27f32f8ad3483f3335809 -size 127488 diff --git a/MM_Math/data_original_21/7058778/math/52905954_12.png b/MM_Math/data_original_21/7058778/math/52905954_12.png deleted file mode 100644 index be54eae682ceda67084c8213aa4051ff50d3d4d7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52905954_12.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3c9cff6a505940afcec525a7176e8f2d84b0897bacf196ae10f8d432898b8e9 -size 39800 diff --git a/MM_Math/data_original_21/7058778/math/52905957_06.png b/MM_Math/data_original_21/7058778/math/52905957_06.png deleted file mode 100644 index 15e3eeb0ff7d1b4b2f32d6799620c1ec73605f3a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52905957_06.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:27f2b4b548ed01aba38caab1866f9c35776f1c9c6d656b4a013de665f5595734 -size 4363 diff --git a/MM_Math/data_original_21/7058778/math/52905989_32.png b/MM_Math/data_original_21/7058778/math/52905989_32.png deleted file mode 100644 index 7d57128fbe8b5e81fb3c80e749de80801ee4c29f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52905989_32.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48850e0e221bd9051a2f4328c9aaa0716ecc30ef1fda7108f54bb354f087f59e -size 11184 diff --git a/MM_Math/data_original_21/7058778/math/52906012_792.png b/MM_Math/data_original_21/7058778/math/52906012_792.png deleted file mode 100644 index 5e13217c24f291fb8402472142524180e6e51190..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52906012_792.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d412ce257d2c3e39c454f69f65c6e36aea6cffc629f3455a48ac67490bd3ebfc -size 31291 diff --git a/MM_Math/data_original_21/7058778/math/52906015_783.png b/MM_Math/data_original_21/7058778/math/52906015_783.png deleted file mode 100644 index 2fd54bca8436340467dd8d9814bccb94001d441e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52906015_783.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be3eab6254d88b74db1f900091949be0e970a93d6ef80d01e084e12d61704909 -size 3309 diff --git a/MM_Math/data_original_21/7058778/math/52916763_445.png b/MM_Math/data_original_21/7058778/math/52916763_445.png deleted file mode 100644 index 22d194c658f876d4fd92a90c4341471ab4edfe70..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52916763_445.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56d27c51194a1566398ed9e7902ad88d04649edccedb30f2cf8ebb99c8bf142f -size 86896 diff --git a/MM_Math/data_original_21/7058778/math/52916773_803.png b/MM_Math/data_original_21/7058778/math/52916773_803.png deleted file mode 100644 index 81270d61dd7437df1d3670932087defc53ef4937..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52916773_803.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8725dbcae3c949453de4dc7dff10db7d37e1e2f18e5f5d1f7bad7896715b784e -size 4669 diff --git a/MM_Math/data_original_21/7058778/math/52917391_49.png b/MM_Math/data_original_21/7058778/math/52917391_49.png deleted file mode 100644 index 29bea177d85a18415f4e28d5a469ac901d689a9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52917391_49.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5953ea9f4818fa975c574f4fdc528729ffdd1d9501f39c9f7bfd6983541f2163 -size 4430 diff --git a/MM_Math/data_original_21/7058778/math/52917444_450.png b/MM_Math/data_original_21/7058778/math/52917444_450.png deleted file mode 100644 index 5f3dd813d6a5fe0ca5d59ad140773977bfcfceb7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52917444_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e378e6ee5ddc9f7afa1138c8c19017bb9dc736b9b6cad040f9b91ec24c337d9d -size 8577 diff --git a/MM_Math/data_original_21/7058778/math/52991253_27.png b/MM_Math/data_original_21/7058778/math/52991253_27.png deleted file mode 100644 index 20fa4f999318ae94482f6b552a04c4a947233661..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/52991253_27.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd657dc9a84616e94a999be7d76572e98f896347cab7d7c4db4e46277905413a -size 2843 diff --git a/MM_Math/data_original_21/7058778/math/53106831_67.png b/MM_Math/data_original_21/7058778/math/53106831_67.png deleted file mode 100644 index f08380904a421eef6de97f03609f4b49b7ac8641..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/53106831_67.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:85d3a59b71e9488d5bad982adc7d08256853c17dd9609d9f948ceba4b85b9270 -size 12526 diff --git a/MM_Math/data_original_21/7058778/math/53106899_53.png b/MM_Math/data_original_21/7058778/math/53106899_53.png deleted file mode 100644 index 286a0559869a22543ac1eff86e87d3cb4f91083c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/53106899_53.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb78d7093c7e87e6a55e5df7466bb23a1cf0779e72b5fa9717b23a4d7f529e61 -size 29861 diff --git a/MM_Math/data_original_21/7058778/math/53106905_470.png b/MM_Math/data_original_21/7058778/math/53106905_470.png deleted file mode 100644 index a743f4272a90b76b38ba27ed434fe3cd4cf06c4f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/53106905_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fd17b79c230e7ed02e12da70a4fd355b00dcd971955b9c6c5b54f846e7990145 -size 81557 diff --git a/MM_Math/data_original_21/7058778/math/55138396_462.png b/MM_Math/data_original_21/7058778/math/55138396_462.png deleted file mode 100644 index e8c471defd55080f79be6d85d1fc2d6ac7ac9b36..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/math/55138396_462.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9afc65a445c7f80f87f971f51c789f4a4280af7e91980d17afacdb35d7266ce1 -size 21644 diff --git a/MM_Math/data_original_21/7058778/solution_images/52731636_410.png b/MM_Math/data_original_21/7058778/solution_images/52731636_410.png deleted file mode 100644 index 126a1a22b0233f16a4d99e74a08172d5f4aa7397..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52731636_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cad357a3250c71abe95af8621f9e6bd093c9d07148fc325584ee80141e40b13d -size 4307 diff --git a/MM_Math/data_original_21/7058778/solution_images/52733109_400.png b/MM_Math/data_original_21/7058778/solution_images/52733109_400.png deleted file mode 100644 index 9426766f1c128f3cd0a0ec0d6ccc4b960b4e0683..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52733109_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4eff083c89dfc9f268856a22dd0586f0c095b6cfb572648cbab71f3f1d22b498 -size 28834 diff --git a/MM_Math/data_original_21/7058778/solution_images/52754802_390.png b/MM_Math/data_original_21/7058778/solution_images/52754802_390.png deleted file mode 100644 index 0ed219382fc5ac4176b3996bc792d37602f004c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52754802_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89f685e9206cc84ef89b754dba4de6f4a41dbe8dfdc7874a1ee8fb3176623519 -size 6077 diff --git a/MM_Math/data_original_21/7058778/solution_images/52755081_730.png b/MM_Math/data_original_21/7058778/solution_images/52755081_730.png deleted file mode 100644 index d4448bea873ccc90e6568841dc8f9c220d41d52a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52755081_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24606379504885a38d9d065f0b51d66ee3b7665b6d6e1b2467dcb318a84e299a -size 15453 diff --git a/MM_Math/data_original_21/7058778/solution_images/52755172_370.png b/MM_Math/data_original_21/7058778/solution_images/52755172_370.png deleted file mode 100644 index fb6f9d1732a6ff04c72468d60a30c6960389a9eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52755172_370.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1533da78b4f42a0a34cdb53b13d3b75a3c31a5de97f0b2e48790fd2a0cbde07 -size 4938 diff --git a/MM_Math/data_original_21/7058778/solution_images/52755183_720.png b/MM_Math/data_original_21/7058778/solution_images/52755183_720.png deleted file mode 100644 index e9421422ded8ab0cb335b243d829a3d312b4bb8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52755183_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2485ca68b2e753fe6ea8953c1002daec4bfe7d3c3c3c49cf2594e32eb2c482b -size 11380 diff --git a/MM_Math/data_original_21/7058778/solution_images/52774538_350.png b/MM_Math/data_original_21/7058778/solution_images/52774538_350.png deleted file mode 100644 index e0fd2af2dce2971d6e8bc18a5ddb202106b8017c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52774538_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1bf925a11a8b4d0fd9d9d3bdfe6420cf732212ae29bc6b1a623f72dff531600e -size 14298 diff --git a/MM_Math/data_original_21/7058778/solution_images/52774551_700.png b/MM_Math/data_original_21/7058778/solution_images/52774551_700.png deleted file mode 100644 index b1f0cc46bc63243366bf957b8c188c10b96124fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52774551_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4498f4c584ab23e176e3c4377dbc6ca41077fb4d13dab598f87b2f4d7c94121 -size 3777 diff --git a/MM_Math/data_original_21/7058778/solution_images/52774801_680.png b/MM_Math/data_original_21/7058778/solution_images/52774801_680.png deleted file mode 100644 index ddbaadad3322983f84a0f8c58a28d3f71c7c891c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52774801_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f396c0326350d67b4f69f58ee0251c8ab2fde0d3cb47aa7565a657e8fe43fe1 -size 54435 diff --git a/MM_Math/data_original_21/7058778/solution_images/52793776_320.png b/MM_Math/data_original_21/7058778/solution_images/52793776_320.png deleted file mode 100644 index 9b91ae9e5bc431098c76bfa8eb4f045ed5df7155..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52793776_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:754c28c17434f5d570d5f697614691580d3f7808d2aa685cb44fb5da7f717d09 -size 5600 diff --git a/MM_Math/data_original_21/7058778/solution_images/52807127_430.png b/MM_Math/data_original_21/7058778/solution_images/52807127_430.png deleted file mode 100644 index ef0a60a76ab7dfe840e8a1f45a51361eafdd36bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52807127_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a56cf9bb3d24c68159f39929c0823b741673dc639c90bf9d45585179d128dda -size 6621 diff --git a/MM_Math/data_original_21/7058778/solution_images/52807129_420.png b/MM_Math/data_original_21/7058778/solution_images/52807129_420.png deleted file mode 100644 index 95fb4c842d4acc25e5bc8d7d28d8d058fd760043..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52807129_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:338beb47e64ba785c06fb510bb0a8f7ba968a75b114850b9d3781f45248625c7 -size 7216 diff --git a/MM_Math/data_original_21/7058778/solution_images/52808095_300.jpg b/MM_Math/data_original_21/7058778/solution_images/52808095_300.jpg deleted file mode 100644 index 8f3bf348dc8017e24316eca471544bc9d62d161e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52808095_300.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6651812fbd7c4cc5cf3337c7dd514baa0ab26166f1d845276ab6f97bbd9b41e -size 4138 diff --git a/MM_Math/data_original_21/7058778/solution_images/52808101_640.jpg b/MM_Math/data_original_21/7058778/solution_images/52808101_640.jpg deleted file mode 100644 index f80766f3a6c8bb0c51fb3a814996d55f5581da03..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52808101_640.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c7ab56c30a0962662c5c48558cc16e6e47a60109b40840466e4890f84106592 -size 4008 diff --git a/MM_Math/data_original_21/7058778/solution_images/52814831_280.png b/MM_Math/data_original_21/7058778/solution_images/52814831_280.png deleted file mode 100644 index 4d79bc732ef3295ad81773a36052c923a595ab58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52814831_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b471f3efb4e634e38d85618c60d974d03bc08115b9ce038a4c7970bee820112 -size 5326 diff --git a/MM_Math/data_original_21/7058778/solution_images/52814833_290.png b/MM_Math/data_original_21/7058778/solution_images/52814833_290.png deleted file mode 100644 index 2223ee420832d0a8d649e7080732e02022a2923c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52814833_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39ba50630de4b756d02d8f98f936c111ec0fe18c8893bf4b66b8f88e7eb6c58d -size 10169 diff --git a/MM_Math/data_original_21/7058778/solution_images/52814915_910.png b/MM_Math/data_original_21/7058778/solution_images/52814915_910.png deleted file mode 100644 index 8f3aede917f9dcd994c93ea09b7281bd2505298a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52814915_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75a633bc1473b0d33de2a7b26f6e4cd2066537ad693c9a75e966c1301db46d25 -size 10355 diff --git a/MM_Math/data_original_21/7058778/solution_images/52815675_250.png b/MM_Math/data_original_21/7058778/solution_images/52815675_250.png deleted file mode 100644 index bfaade089df060192505e6bc59789ea8f7532d46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52815675_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f7f1735feb3cbda1ef24e5be6db7d9c80521baaeb2172e6672266c0ae4f664f -size 9353 diff --git a/MM_Math/data_original_21/7058778/solution_images/52815682_620.png b/MM_Math/data_original_21/7058778/solution_images/52815682_620.png deleted file mode 100644 index b1560f17da58a2bd8eeaf9d89713b3e4ab150350..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52815682_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a9e15bfbe10a73e60abef9fcd84e3d542a2510e450a477649204a919ca7bfda -size 5202 diff --git a/MM_Math/data_original_21/7058778/solution_images/52861148_220.png b/MM_Math/data_original_21/7058778/solution_images/52861148_220.png deleted file mode 100644 index c0e56025a94fb2ac8294b8d2bca9c2a084461d5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52861148_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b46e0b49a0577150f51d305b76929bf421cb8907e04c189c5938530277a8995 -size 3227 diff --git a/MM_Math/data_original_21/7058778/solution_images/52861149_210.png b/MM_Math/data_original_21/7058778/solution_images/52861149_210.png deleted file mode 100644 index 818cc74a7edbbffb7fbad784ed236f0049ca8225..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52861149_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dee773afcd00fcbaf84e76e1d0d20250238a205817f91c4c5ea4e8551f65274e -size 9311 diff --git a/MM_Math/data_original_21/7058778/solution_images/52861153_590.png b/MM_Math/data_original_21/7058778/solution_images/52861153_590.png deleted file mode 100644 index fb0993cd8b0fcc93dab0a686ca6470e87a84085c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52861153_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:683364faabead52af38c59b47b2bf7218bfaffed51245dda01930b72091bf633 -size 7678 diff --git a/MM_Math/data_original_21/7058778/solution_images/52861155_600.png b/MM_Math/data_original_21/7058778/solution_images/52861155_600.png deleted file mode 100644 index 60afe516710872cfba488b16b3403dac40e955b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52861155_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c4153aeb833c780c19d2fc40788b94e9e9dc041f0c0fae37c773130fb276cd5 -size 11423 diff --git a/MM_Math/data_original_21/7058778/solution_images/52861387_582.png b/MM_Math/data_original_21/7058778/solution_images/52861387_582.png deleted file mode 100644 index 021d9dfb65ed67613b67504b0fb8773639b1b455..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52861387_582.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2a3e04a0af78c32a77f04f9e7d1242ace2c32e6c180005e5fa1e5462bf3de65 -size 10672 diff --git a/MM_Math/data_original_21/7058778/solution_images/52861797_571.png b/MM_Math/data_original_21/7058778/solution_images/52861797_571.png deleted file mode 100644 index ab34a7b074764ac83d2f9fa57d5a94f332e29804..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52861797_571.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:47594e91a62401fc208499763e9a6ed701f8f4f76fc013e8bdf104ca8a89d55f -size 8081 diff --git a/MM_Math/data_original_21/7058778/solution_images/52861883_190.png b/MM_Math/data_original_21/7058778/solution_images/52861883_190.png deleted file mode 100644 index d200521c8d19751c2f6752db18e3a79dc5aa8071..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52861883_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8ab56c87386b7f07ebe256c4c7069f5ed98e439cd295741f3153425f214a61c -size 8152 diff --git a/MM_Math/data_original_21/7058778/solution_images/52871726_141.png b/MM_Math/data_original_21/7058778/solution_images/52871726_141.png deleted file mode 100644 index ad8076d6ce064ad14c3ccba2324e261a45f2258b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52871726_141.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3945841a8f841e0533eae5f7e416da47fdc55f6289f750284dc92059f1c385a -size 3020 diff --git a/MM_Math/data_original_21/7058778/solution_images/52871736_550.png b/MM_Math/data_original_21/7058778/solution_images/52871736_550.png deleted file mode 100644 index 4c35185d693bebf927d45ae00d8d869c35d27ec8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52871736_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02afcd6fcd1b1d8c6776cf425331ff178cefc5f7c50046bdcd3870537da03954 -size 13199 diff --git a/MM_Math/data_original_21/7058778/solution_images/52871844_130.png b/MM_Math/data_original_21/7058778/solution_images/52871844_130.png deleted file mode 100644 index 2318a15227e063718d9180d6949eb501eea789b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52871844_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c0937c40da7ceb980428259d890f71030844a94efe4f0304eeb2e4fff8475fa -size 4224 diff --git a/MM_Math/data_original_21/7058778/solution_images/52871876_180.png b/MM_Math/data_original_21/7058778/solution_images/52871876_180.png deleted file mode 100644 index ea39b1ad163f4c6ea2b60329e9b3f5888d26f86a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52871876_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b471738bc213d178e82649eb56b56f481f837ad1fed154a1758ae571bc88717 -size 5719 diff --git a/MM_Math/data_original_21/7058778/solution_images/52871878_150.png b/MM_Math/data_original_21/7058778/solution_images/52871878_150.png deleted file mode 100644 index 218fd600f38577e8a63b71440055230aadcd9236..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52871878_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42281b2ae1121d53a7758ca73de0646ce8da6ce017fb6dcc8b1018a55419a948 -size 11579 diff --git a/MM_Math/data_original_21/7058778/solution_images/52871899_170.png b/MM_Math/data_original_21/7058778/solution_images/52871899_170.png deleted file mode 100644 index 41100225aa88f7f18dffa6cf7284546de1a10e98..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52871899_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7202ee4a62e386c6948edf0403da4d335172ec021ab022623bda4832326d84b -size 38107 diff --git a/MM_Math/data_original_21/7058778/solution_images/52874523_530.png b/MM_Math/data_original_21/7058778/solution_images/52874523_530.png deleted file mode 100644 index 890942891af4816e96f877c38dd4da881eefd412..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52874523_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1354523da5410b8e92e32c5839447fbc0bc82e447469a5be06eeab755883e787 -size 12827 diff --git a/MM_Math/data_original_21/7058778/solution_images/52874564_110.png b/MM_Math/data_original_21/7058778/solution_images/52874564_110.png deleted file mode 100644 index 1b46b1f714647dff209e86f06e35da74de96eea7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52874564_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7abff840c6bfe9778c062eb3d6c54f2fdda9e17cf62ccc042c040b3e99db1a81 -size 5520 diff --git a/MM_Math/data_original_21/7058778/solution_images/52874641_510.png b/MM_Math/data_original_21/7058778/solution_images/52874641_510.png deleted file mode 100644 index 4bc97ebbc39177459565b6e150dec48a6c19b958..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52874641_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd12797a191a1f46e47942efe98b6419b1e67bd39162358f2b298a6a6243f313 -size 11617 diff --git a/MM_Math/data_original_21/7058778/solution_images/52874676_500.png b/MM_Math/data_original_21/7058778/solution_images/52874676_500.png deleted file mode 100644 index 81a496d5d9eadc9d6240aff7928ce19b56b0e38d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52874676_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88c17739c189658b3414b6085a8e3871061c46852bc1a399fb2a600146d66ba6 -size 11041 diff --git a/MM_Math/data_original_21/7058778/solution_images/52874743_480.png b/MM_Math/data_original_21/7058778/solution_images/52874743_480.png deleted file mode 100644 index 036c0188cfe6a0898fe54483af8c602a143d752f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52874743_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7cbf59fa018739dd79e488c5dd0cf4ca29eb9a7bcf0df69b9dbef5966b5a76b4 -size 16304 diff --git a/MM_Math/data_original_21/7058778/solution_images/52874743_484.png b/MM_Math/data_original_21/7058778/solution_images/52874743_484.png deleted file mode 100644 index 46009c129ec78a32abc9c62310c05be91cb72da4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52874743_484.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e314f4f2785fce7d2b11ba9cc771f7dac5136326eeda2012c2260e2200e1f6df -size 15696 diff --git a/MM_Math/data_original_21/7058778/solution_images/52905957_02.png b/MM_Math/data_original_21/7058778/solution_images/52905957_02.png deleted file mode 100644 index 266c8726e21821bfb5d746badf4cedf8b21e4299..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52905957_02.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d73c021cd86e52db219fb37098a8075110fe969deeddeb93060be6ba44f6073 -size 4384 diff --git a/MM_Math/data_original_21/7058778/solution_images/52917391_41.png b/MM_Math/data_original_21/7058778/solution_images/52917391_41.png deleted file mode 100644 index 12dcbe81345f913e64988f279742ef7b5c19bd83..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52917391_41.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a1bb573fbfb9a2a99a7f4ee9c6dd1c5b0a240e4f0cef43137712e2368e7a0d9 -size 4687 diff --git a/MM_Math/data_original_21/7058778/solution_images/52991253_20.png b/MM_Math/data_original_21/7058778/solution_images/52991253_20.png deleted file mode 100644 index cf72bd56345bfe6ea7965a55df0918c1e6eae66e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/52991253_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ee85ee71d1c36567bc43ae88cf609509cbaecc5ff90a38e23c1483c3cff9102 -size 3032 diff --git a/MM_Math/data_original_21/7058778/solution_images/55138396_460.png b/MM_Math/data_original_21/7058778/solution_images/55138396_460.png deleted file mode 100644 index d85627c897780a3f61d03c8cb6448fbf79531ec0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/55138396_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aaa52e523b67f1cbae4da38a07861ee616f534a2060b8c2430f0fdac01043a63 -size 7775 diff --git a/MM_Math/data_original_21/7058778/solution_images/55138396_463.png b/MM_Math/data_original_21/7058778/solution_images/55138396_463.png deleted file mode 100644 index 63bae68f9649d74502c2e3fc9e5d83b67c3131c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058778/solution_images/55138396_463.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:043b157aea3e0a005996d39b3630bb593e07669cd7e6923b6d37226c61b8c598 -size 7431 diff --git a/MM_Math/data_original_21/7058793/math/51323908_96.png b/MM_Math/data_original_21/7058793/math/51323908_96.png deleted file mode 100644 index d8b0b4019ddffff0f5145f89a701d33a9c7c7943..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51323908_96.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1585f3ab7738f3c4799d3db5b2b2056c7cf5e1dee63492e2ec1470ebe55682ce -size 3702 diff --git a/MM_Math/data_original_21/7058793/math/51369879_85.jpg b/MM_Math/data_original_21/7058793/math/51369879_85.jpg deleted file mode 100644 index eee4291b4499be2baf7e799cd8ec85eada2463de..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51369879_85.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7250b929095b4976a95728baa85248d288f32350d3d7d6c79526763324c1b5f0 -size 5857 diff --git a/MM_Math/data_original_21/7058793/math/51402150_3311.png b/MM_Math/data_original_21/7058793/math/51402150_3311.png deleted file mode 100644 index f69c9a7ba70fe5b4952b6e14da64400993b0d573..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402150_3311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa451d0e64485025b1bb41734da09c8e06a3efc00aaa00e0bdcebb1d3ff4342d -size 4709 diff --git a/MM_Math/data_original_21/7058793/math/51402196_730.png b/MM_Math/data_original_21/7058793/math/51402196_730.png deleted file mode 100644 index fee63939d5b515c34b6f72d1a85f38400bc8de73..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402196_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dd09f23413e928f7fe2bf18e45acb92186220bf9ad9ff4fc6f9a94196c48dbdf -size 3738 diff --git a/MM_Math/data_original_21/7058793/math/51402228_754.png b/MM_Math/data_original_21/7058793/math/51402228_754.png deleted file mode 100644 index fa67394f1b0f651780142cf5954e6e4b910703e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402228_754.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5968fce77a3b82f082584ae17045088d5ae78fa361f8ba043aa690201a597b94 -size 2977 diff --git a/MM_Math/data_original_21/7058793/math/51402230_703.png b/MM_Math/data_original_21/7058793/math/51402230_703.png deleted file mode 100644 index cdf5d507a15fe5d9a2833fbbe8298d477e89744c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402230_703.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:776c18b5cd4345c7c8c33e8ce79e767ff275977e0545dfcb8a61b1546738a180 -size 18544 diff --git a/MM_Math/data_original_21/7058793/math/51402310_290.png b/MM_Math/data_original_21/7058793/math/51402310_290.png deleted file mode 100644 index 20bea14dca0bab41aa13d4ae11853d63d21c0a58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402310_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51e9a705bc7f6a3314c040e255996812b71ffa1afddd61e03232291b2ad8afe2 -size 15489 diff --git a/MM_Math/data_original_21/7058793/math/51402325_811.png b/MM_Math/data_original_21/7058793/math/51402325_811.png deleted file mode 100644 index 34c1854a219ff47d5d76c6d327a52c0864c1ea3c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402325_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b5e03f13a2556b5ae903a3d39ac59b24aff835fffd363c674cb9c2311ef0063b -size 7249 diff --git a/MM_Math/data_original_21/7058793/math/51402444_720.png b/MM_Math/data_original_21/7058793/math/51402444_720.png deleted file mode 100644 index 9cde86bb48e401a591ae15500c4934e78ade48a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402444_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0bdb535e0016bcba46c405f3351ed1d2d401458d3a29a0a01bd369795a47c978 -size 15861 diff --git a/MM_Math/data_original_21/7058793/math/51402603_340.png b/MM_Math/data_original_21/7058793/math/51402603_340.png deleted file mode 100644 index 7bc70ca6aae5f2f0a5c431309b7d4047b263bb5d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402603_340.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa07e5690af7bb7b05bf36839109ead47809d12863c5f03a2d977a545f5519d1 -size 5596 diff --git a/MM_Math/data_original_21/7058793/math/51402723_313.png b/MM_Math/data_original_21/7058793/math/51402723_313.png deleted file mode 100644 index 21bbf12baf93e3583f062f3a51c60051f4db78e1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402723_313.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9fa0b7f7e12097186a3d88fb3871f58b679b6412cf3605a688f58834227cf39 -size 5343 diff --git a/MM_Math/data_original_21/7058793/math/51402739_963.png b/MM_Math/data_original_21/7058793/math/51402739_963.png deleted file mode 100644 index 982ac3b4d8afd28d532fb91985a77ca656dc7350..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402739_963.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d54b24452f147f75faa6e6d0e63d5d335415f9cb511410a2a0afe95f2e8e7d1b -size 7446 diff --git a/MM_Math/data_original_21/7058793/math/51402794_304.png b/MM_Math/data_original_21/7058793/math/51402794_304.png deleted file mode 100644 index b7db0e1079141a1fc7a005c9e4af09545a0e1318..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51402794_304.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9c59254449eab1163e23c97062f516144da366e47e7ca14c8c9864adb2569e0 -size 8938 diff --git a/MM_Math/data_original_21/7058793/math/51403023_740.png b/MM_Math/data_original_21/7058793/math/51403023_740.png deleted file mode 100644 index 2b3374720b75b8057e678476889b901e44d458ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51403023_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:383b9b3c1ee936ca98f69e48517a95f4ab0b5c95a86fce0f24277104c0ce6951 -size 5061 diff --git a/MM_Math/data_original_21/7058793/math/51403360_320.png b/MM_Math/data_original_21/7058793/math/51403360_320.png deleted file mode 100644 index be5dac29377537b0d8399066c1f06dc794b0ebf4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51403360_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ad793135d8366a0301bd866d742729dd4e927d69160f5481d71bd67d24536a0 -size 6895 diff --git a/MM_Math/data_original_21/7058793/math/51403374_976.png b/MM_Math/data_original_21/7058793/math/51403374_976.png deleted file mode 100644 index 7e5fb0a6fd21410d243709c9aafc9aa91393f108..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51403374_976.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07e28792489a65354ce87c206f9b69a67c7c828881de116d9b8d0dd401c3fb50 -size 6538 diff --git a/MM_Math/data_original_21/7058793/math/51433156_580.png b/MM_Math/data_original_21/7058793/math/51433156_580.png deleted file mode 100644 index cd4f6bdf18c8f138895b3d1be9cf7cbb97cdd272..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51433156_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf8823ddf5c93f9fa079909402bbb6cf50cfe01417ab15cd907242c776d8a256 -size 10634 diff --git a/MM_Math/data_original_21/7058793/math/51433195_571.png b/MM_Math/data_original_21/7058793/math/51433195_571.png deleted file mode 100644 index a09f085cea230e880d31b484989e7cc23a8b8a0c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51433195_571.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:efaf085000b66f1c766cd714b1fc95db8082391a93aca0bc280e700590b40e91 -size 9149 diff --git a/MM_Math/data_original_21/7058793/math/51433293_880.png b/MM_Math/data_original_21/7058793/math/51433293_880.png deleted file mode 100644 index b932bfe88dc1a2b5f551db673fd47e9ad3c084e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51433293_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e7a629719c5c444aed868d18af5278f326735ef567da7ebddc5b045337bef60 -size 4510 diff --git a/MM_Math/data_original_21/7058793/math/51433307_890.png b/MM_Math/data_original_21/7058793/math/51433307_890.png deleted file mode 100644 index 5d622b3f52ba155c3776c368040bb860b8d241a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51433307_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ac7ac97222ce9c6971b5bafa86f5cd57655519e411a79eaf82bcded6149f098 -size 8074 diff --git a/MM_Math/data_original_21/7058793/math/51433567_110.png b/MM_Math/data_original_21/7058793/math/51433567_110.png deleted file mode 100644 index 730b07dd31320ae77e6ac1ea98f6b18bfbe18370..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51433567_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:971de9183bdda523ffbdca7069d4ca820d2b4698f502d4400b79faeaac0ed25a -size 3268 diff --git a/MM_Math/data_original_21/7058793/math/51433703_103.png b/MM_Math/data_original_21/7058793/math/51433703_103.png deleted file mode 100644 index 79bc20df6c85e2cd8c9651fd7323cb0f8b92e395..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51433703_103.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05aefb2cfeecc4a3f915e96d9104a39858550d7a4e128e1ddc2d42a0a8859e23 -size 6753 diff --git a/MM_Math/data_original_21/7058793/math/51433720_870.png b/MM_Math/data_original_21/7058793/math/51433720_870.png deleted file mode 100644 index 92e9859db6c9c01b5c30a7aaa24d5d9f355ae7e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51433720_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:497d699724a81b6b9de8cfbdedeaa00637d4f0bf12b340e51f2cae46ccbbb876 -size 17717 diff --git a/MM_Math/data_original_21/7058793/math/51445529_678.png b/MM_Math/data_original_21/7058793/math/51445529_678.png deleted file mode 100644 index 73c96e17208186244c653a69d86d61520dc5706c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51445529_678.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f27fc38201ff15103b440b9a18afa92aa49854d2e923673bd6798e7f7951dc90 -size 5545 diff --git a/MM_Math/data_original_21/7058793/math/51445736_120.png b/MM_Math/data_original_21/7058793/math/51445736_120.png deleted file mode 100644 index f4fe10e8375ef3f02909507e44cb90ae4b520b5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51445736_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:375799c2ddf9c3a9029094c1a4beb33f66af7cef43bf0a64cb3280f0dae6b81e -size 4669 diff --git a/MM_Math/data_original_21/7058793/math/51445744_790.png b/MM_Math/data_original_21/7058793/math/51445744_790.png deleted file mode 100644 index 0cb5cffb34d582a6448459b6b5ddf4d2b9c055bc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51445744_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fed3b4012f3d9ecc759e686c41762f213413601d3f21fd070119a6fac7d2916 -size 5931 diff --git a/MM_Math/data_original_21/7058793/math/51445755_910.png b/MM_Math/data_original_21/7058793/math/51445755_910.png deleted file mode 100644 index 6bf0f220bd4f282d1ee25f27f6c4ffa122eb8655..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51445755_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75ebf5e613423d83deaafdfb86772bf8138351e92a7ccda14469f0c1aa7c2694 -size 4513 diff --git a/MM_Math/data_original_21/7058793/math/51445770_240.png b/MM_Math/data_original_21/7058793/math/51445770_240.png deleted file mode 100644 index cd2059989dcafe7a0ec5d7d4fbd4f888324d21b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51445770_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8648c52a2d16c9b4847edd223c124c5e04961c09fc0b49fbbfb474a264718d9e -size 4070 diff --git a/MM_Math/data_original_21/7058793/math/51445862_800.png b/MM_Math/data_original_21/7058793/math/51445862_800.png deleted file mode 100644 index 058d4ef83ed3d433e3322b27234ed2a24ded2ef9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51445862_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c92d9b463f9690f99d320d03b7e26136fc1b07ce652722260d7e0442bf4f5ef0 -size 3664 diff --git a/MM_Math/data_original_21/7058793/math/51445882_150.png b/MM_Math/data_original_21/7058793/math/51445882_150.png deleted file mode 100644 index a61ee929608be8208ddddd87e7e2ca07bd300c55..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51445882_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e5ab92055cd34f02a18bc0191806f75bc4f0fc59b9ed0a4b09f21f4cf93431c3 -size 3426 diff --git a/MM_Math/data_original_21/7058793/math/51446085_180.png b/MM_Math/data_original_21/7058793/math/51446085_180.png deleted file mode 100644 index c198571d46e6f20690cc3b3d81ae366868fcccf4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446085_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50e0f4c242618d3b9852f7d0002811bbece6a401378d44274057e9ceb7856c6c -size 4259 diff --git a/MM_Math/data_original_21/7058793/math/51446093_590.png b/MM_Math/data_original_21/7058793/math/51446093_590.png deleted file mode 100644 index 15bd324583db3d01131c5624abda661015a568b6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446093_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9495523a5c1a24943aa44e23906b6313c5247e0c08259e87dc5b6b595f83226 -size 3710 diff --git a/MM_Math/data_original_21/7058793/math/51446225_190.png b/MM_Math/data_original_21/7058793/math/51446225_190.png deleted file mode 100644 index 7b84ead969e101fa0e50a6698a3f50b2544b5c38..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446225_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41531b3b61a698e78a15e7739fc700572063402515f721c54c4c673ef7e6d240 -size 4250 diff --git a/MM_Math/data_original_21/7058793/math/51446258_136.png b/MM_Math/data_original_21/7058793/math/51446258_136.png deleted file mode 100644 index 1e89cad8b66fdf2fc58284187049dcc93f957264..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446258_136.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11385461e7aeba1352a4e4992150aac4b702acdc100516c665a97ac9922ff20b -size 4657 diff --git a/MM_Math/data_original_21/7058793/math/51446275_9504.png b/MM_Math/data_original_21/7058793/math/51446275_9504.png deleted file mode 100644 index faadc199d59a38edc2fe30fd15f7e3b51d210436..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446275_9504.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68ae15ab64c526bff3734c94e9d7ef549247ecaadbea2a47dcf68f6d6477a243 -size 4450 diff --git a/MM_Math/data_original_21/7058793/math/51446276_9515.png b/MM_Math/data_original_21/7058793/math/51446276_9515.png deleted file mode 100644 index 1e03bfc02d53ff4c159e7bf85d5b5024840da169..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446276_9515.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2408e538821f7714104514510ae86892b84b39fa45e044db423fe913e4690d5a -size 4718 diff --git a/MM_Math/data_original_21/7058793/math/51446299_220.png b/MM_Math/data_original_21/7058793/math/51446299_220.png deleted file mode 100644 index b45d1dbf6aa1ba7ce5cbb69bf45ae3842f43ecbd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446299_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bbc566f2d645c23b405c01dbe2ec481964ae5e7149a03807d832bb3975e3b77b -size 3126 diff --git a/MM_Math/data_original_21/7058793/math/51446341_205.png b/MM_Math/data_original_21/7058793/math/51446341_205.png deleted file mode 100644 index d346323ce61f8f3c9584ba7dcc835a9e6b4df381..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446341_205.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e64479dcd9547a995985b449c8a73c3a21730a8931dcab5815b70372ed91425 -size 5295 diff --git a/MM_Math/data_original_21/7058793/math/51446430_920.png b/MM_Math/data_original_21/7058793/math/51446430_920.png deleted file mode 100644 index 252799ea4dc0574ac60223da07aaee5fffc5b3a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446430_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:176aa5df29ef29689e2501e459f83256271302cc11f97644d59a19dec22b9147 -size 2715 diff --git a/MM_Math/data_original_21/7058793/math/51446532_140.png b/MM_Math/data_original_21/7058793/math/51446532_140.png deleted file mode 100644 index 8255379126f5edda38f18461a890de9022146cb5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446532_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32223698bb996ad825d5c6d96cf26295bbf5a2e7295257b2deb46dec78d47afb -size 3323 diff --git a/MM_Math/data_original_21/7058793/math/51446648_213.png b/MM_Math/data_original_21/7058793/math/51446648_213.png deleted file mode 100644 index dc165b317daf5ec3fd4c2995aeb2f9db6a115be0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446648_213.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f10176239c3ec60fb875494c19a92195018b8dc9d011bc2e071b5c169551402 -size 10469 diff --git a/MM_Math/data_original_21/7058793/math/51446659_639.png b/MM_Math/data_original_21/7058793/math/51446659_639.png deleted file mode 100644 index 05d481e706acf4aeea5e8dd025731198c5e3e2e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446659_639.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02d956d4ae4d0944a674211ed63797f18d607c72c5c54c4d21573f54d0cc44b1 -size 7325 diff --git a/MM_Math/data_original_21/7058793/math/51446673_932.png b/MM_Math/data_original_21/7058793/math/51446673_932.png deleted file mode 100644 index a2551d1091a3f32900d35858e555e417ed493589..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51446673_932.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c206db88a5dc512d4863299b56627f60bb0797a7f094e6f76f5eddf1d1107f56 -size 4390 diff --git a/MM_Math/data_original_21/7058793/math/51545215_781.png b/MM_Math/data_original_21/7058793/math/51545215_781.png deleted file mode 100644 index a90f1f98adb690e3c7fcd5fd7def10df5d1838f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51545215_781.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fe89decc6eb2245a2e253182e83479f7bebb78e205e598c04d52095fc82c580 -size 60916 diff --git a/MM_Math/data_original_21/7058793/math/51545248_433.png b/MM_Math/data_original_21/7058793/math/51545248_433.png deleted file mode 100644 index 02fd12afb97d5dc49bc8ad557be8f1dd701d90a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51545248_433.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ffdf364e8237975bd37e50dccbaf6ff577c29d5baf09a5172fc9996d73815e69 -size 14402 diff --git a/MM_Math/data_original_21/7058793/math/51545272_991.png b/MM_Math/data_original_21/7058793/math/51545272_991.png deleted file mode 100644 index 06e289a6dea3d69f346fde5b64035ba342010dc6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51545272_991.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0694e1a56c9d5ee35f8a1de34cf07fb5e8f213bdec44518fc4d242b3b2ede091 -size 5067 diff --git a/MM_Math/data_original_21/7058793/math/51545289_440.png b/MM_Math/data_original_21/7058793/math/51545289_440.png deleted file mode 100644 index c731f69a87f662ec9cc4375cdb5f14bbdf652959..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51545289_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d60469c3f9133c93cfc040843127734a637d88410fadf3b577deea0db7640e5 -size 5718 diff --git a/MM_Math/data_original_21/7058793/math/51722329_560.png b/MM_Math/data_original_21/7058793/math/51722329_560.png deleted file mode 100644 index 91cd5e97e52fe62608764336c646926a0ef18050..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/51722329_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b4f5d37c8bf1a4cd88eece6d919f6b5c0b817976a60dbda76ca034a2faa68282 -size 5127 diff --git a/MM_Math/data_original_21/7058793/math/52457089_76.png b/MM_Math/data_original_21/7058793/math/52457089_76.png deleted file mode 100644 index 5dc94c40f3a28ead5f91d559be51f95eab4f0272..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52457089_76.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a7b1312852b3eeede4c30992afd079aa2732ef8f2ed56552e77d61d2f8c5cda -size 3239 diff --git a/MM_Math/data_original_21/7058793/math/52457096_5410.png b/MM_Math/data_original_21/7058793/math/52457096_5410.png deleted file mode 100644 index d028656616afb8de3050ef9267bfcfe19a14dbf7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52457096_5410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0ce48edfeac72b21040a1c0f50a8303243f01cb30e958b71abb2abc37cf1122 -size 2980 diff --git a/MM_Math/data_original_21/7058793/math/52457114_8510.png b/MM_Math/data_original_21/7058793/math/52457114_8510.png deleted file mode 100644 index 202c99fc437e7216398b78e6b451852c77fe0475..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52457114_8510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f8555e08df32eed183a9066f205f5a19c355b3c95621e1ed197b1d4dcb990266 -size 3825 diff --git a/MM_Math/data_original_21/7058793/math/52457422_614.png b/MM_Math/data_original_21/7058793/math/52457422_614.png deleted file mode 100644 index 042d9cccb2470d068be6b0883db8126e5a8a840c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52457422_614.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b714fa7837c1923e150de51169cdec0ef385df54453b29d7991b48e5cdfd2cd -size 4972 diff --git a/MM_Math/data_original_21/7058793/math/52457425_558.png b/MM_Math/data_original_21/7058793/math/52457425_558.png deleted file mode 100644 index 9a79321233165b8da76b2c75067c63651f8b1dad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52457425_558.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5dde69d89b514ab881a846cb495d16bc8739364464e105c13a8e2ad5e076edf0 -size 2477 diff --git a/MM_Math/data_original_21/7058793/math/52457427_5312.png b/MM_Math/data_original_21/7058793/math/52457427_5312.png deleted file mode 100644 index 0ebbe941fa2df6f27fd1cc4f49621fb80cb5c800..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52457427_5312.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8caf8992876de4d9f5cc2d23f690d3e2141e9ea9e76be9d250d6488847a0323d -size 2008 diff --git a/MM_Math/data_original_21/7058793/math/52457436_8611.png b/MM_Math/data_original_21/7058793/math/52457436_8611.png deleted file mode 100644 index 7b74bb66ddc773cdebf91c0b2ca067ad12df7db7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52457436_8611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7b98e04faf83697ffe98089e11631cea83a10d5a669bdbc839bd59b201af14a -size 48683 diff --git a/MM_Math/data_original_21/7058793/math/52458117_520.png b/MM_Math/data_original_21/7058793/math/52458117_520.png deleted file mode 100644 index c463d8ef39289bb7bbb5e8a9edf47471f02d6766..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52458117_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:805b947cd68b27da59e9bb57dfb40a6c084c94e0c7db3a21bbf9182236670534 -size 4168 diff --git a/MM_Math/data_original_21/7058793/math/52458135_840.png b/MM_Math/data_original_21/7058793/math/52458135_840.png deleted file mode 100644 index fcf42740e6933272fb7ecad56f741c98a1b71fd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52458135_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ca2432d4aee50b1c28512249683a8a93cebf5a116e542dd17362bb526fd93d6 -size 7179 diff --git a/MM_Math/data_original_21/7058793/math/52512549_50.png b/MM_Math/data_original_21/7058793/math/52512549_50.png deleted file mode 100644 index 81f7220f431a80a09c6caba27271d03ab117cc46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52512549_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d02d8ac1fcce85a8b93d17e89391196401880ee8bb88cd149b0dc68e9f947d6 -size 60021 diff --git a/MM_Math/data_original_21/7058793/math/52513362_5113.png b/MM_Math/data_original_21/7058793/math/52513362_5113.png deleted file mode 100644 index c4ceab3fcc74c31ed0eb23240f348a93c71daed1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52513362_5113.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62ebf348c9f982216a2c76871c87e7a9bc6e8d07778898c54ca49b3adc47e3cd -size 4332 diff --git a/MM_Math/data_original_21/7058793/math/52513737_47.png b/MM_Math/data_original_21/7058793/math/52513737_47.png deleted file mode 100644 index f8c8393b37ce5f44a1843f6867067905222ea825..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52513737_47.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9d25c2ca5967b7075da100cc2543a0976c25e90bbe1dbfc2c1618626f5a723f3 -size 4041 diff --git a/MM_Math/data_original_21/7058793/math/52536503_830.png b/MM_Math/data_original_21/7058793/math/52536503_830.png deleted file mode 100644 index b4f96baf8e8ccfd2b28b3eec2bdad213d5049f9c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52536503_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb174642e7925bdb4e0cc4cde380aaa581003fc23841d2b17446bea94889f9df -size 62605 diff --git a/MM_Math/data_original_21/7058793/math/52536668_20.png b/MM_Math/data_original_21/7058793/math/52536668_20.png deleted file mode 100644 index 900b0a63f640e8e2d36d72a79753ed6eab2c40ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52536668_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f00cba039f8068ee116ccc8d6e0499276bc448961dbb5b41f8b70199c16e199 -size 9481 diff --git a/MM_Math/data_original_21/7058793/math/52536701_13.png b/MM_Math/data_original_21/7058793/math/52536701_13.png deleted file mode 100644 index ba8e03401160ae6c0d6bf899e9f5f932887a9d5a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52536701_13.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6aff7fbefec5d8d3b6b8567579c737d4d82fa152c8b8742d44d0be917c43ce5 -size 4605 diff --git a/MM_Math/data_original_21/7058793/math/52536735_36.png b/MM_Math/data_original_21/7058793/math/52536735_36.png deleted file mode 100644 index c72793a24f3889b07dc95678d79d54833c98ce00..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52536735_36.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:763026160b74d36ff331b7796564d9d7c2b79416b1760f8276d27b06ff4a0c10 -size 13205 diff --git a/MM_Math/data_original_21/7058793/math/52536747_486.png b/MM_Math/data_original_21/7058793/math/52536747_486.png deleted file mode 100644 index 11bcdcdb2cbfefbe98d19761ae315df5bd48c9fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52536747_486.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a974612e90d1ff64f84b3520c0c618239aeec29e50b0f65f7868c0b30f3a50d -size 3632 diff --git a/MM_Math/data_original_21/7058793/math/52536782_00.png b/MM_Math/data_original_21/7058793/math/52536782_00.png deleted file mode 100644 index 49f2de9439fc21d6a92041519fd787c765c72663..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52536782_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3661853c6fbd8eaf7f0fb0bb08825caa320b336105fc352a887982e7b6b0dff8 -size 2384 diff --git a/MM_Math/data_original_21/7058793/math/52536856_472.png b/MM_Math/data_original_21/7058793/math/52536856_472.png deleted file mode 100644 index 98aa19b916b9642257be66b22e6ee4785e42d139..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52536856_472.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3ee891bcff332c450c9fa562b775d1b0ddc0f4c333b15e2b00b04b149ae2237 -size 3590 diff --git a/MM_Math/data_original_21/7058793/math/52537017_500.png b/MM_Math/data_original_21/7058793/math/52537017_500.png deleted file mode 100644 index 385d0551989c179c5caa7051daca898a48367d16..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52537017_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a022f5c11fa951642ffaad1913f8481aad3ce979f6b6acb72f6a605cfe4aabe -size 3256 diff --git a/MM_Math/data_original_21/7058793/math/52537026_820.png b/MM_Math/data_original_21/7058793/math/52537026_820.png deleted file mode 100644 index f69feaca6244173d5756e426ce55e1c5babfe64b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52537026_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91994fe45c40ecb96483d951ba44cffd2e5f46c64418d31eea8a16f7aa90f220 -size 3663 diff --git a/MM_Math/data_original_21/7058793/math/52537049_4910.png b/MM_Math/data_original_21/7058793/math/52537049_4910.png deleted file mode 100644 index 9affbdf008e77c7f82c705cf91c1ea62518a66dd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52537049_4910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:804e839f587650e23fd67ca108e732204da336dc5388ea87fc001df43980d03d -size 4201 diff --git a/MM_Math/data_original_21/7058793/math/52601840_450.png b/MM_Math/data_original_21/7058793/math/52601840_450.png deleted file mode 100644 index bad958780aa9c1ac24e1808f165dd02d40d94e3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52601840_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0fe030efb4337f54b035ac5a59aaaa71ee5eff7aa17d102eb665ffd34b7e212d -size 58497 diff --git a/MM_Math/data_original_21/7058793/math/52602642_428.png b/MM_Math/data_original_21/7058793/math/52602642_428.png deleted file mode 100644 index 650d1f9299faeeffbee2efa8083c9dc3fecbfcfd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52602642_428.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:381db39262eb3e6963a1cc443b44dc5576aa37be3ec2a4f1ccacf9d62924b15f -size 6221 diff --git a/MM_Math/data_original_21/7058793/math/52602647_764.png b/MM_Math/data_original_21/7058793/math/52602647_764.png deleted file mode 100644 index 1cd132d19f07be137a564e8ff6b04baa9a3daf91..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52602647_764.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9320c835446618836be638a27edf611df1c5e25102b337e4bfa5fd4b3ab833c -size 87799 diff --git a/MM_Math/data_original_21/7058793/math/52602899_770.png b/MM_Math/data_original_21/7058793/math/52602899_770.png deleted file mode 100644 index 78a4901c60f0bb7e56be83c89bf761267d822031..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52602899_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f25137cc0dc2520651b1ef80244680ada79a0685af8f04e98edc6ed1b8d9949 -size 16713 diff --git a/MM_Math/data_original_21/7058793/math/52719996_361.png b/MM_Math/data_original_21/7058793/math/52719996_361.png deleted file mode 100644 index 6a4b94b777b7b7891be1ab73448bbbdf96fceb16..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52719996_361.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8118f1f2ec46cacc21b936560ae97aac52efc741b8a09d1d4c40304941d7daca -size 8952 diff --git a/MM_Math/data_original_21/7058793/math/52720184_354.png b/MM_Math/data_original_21/7058793/math/52720184_354.png deleted file mode 100644 index 40b70755af5fde5aed721d4d56e22eeb57658a72..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52720184_354.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f98a196178a5fabedca24c89a282beca9b6f0b062abb8e8cfd17630b2f1dbc01 -size 3051 diff --git a/MM_Math/data_original_21/7058793/math/52720185_464.png b/MM_Math/data_original_21/7058793/math/52720185_464.png deleted file mode 100644 index d6bb929934d64b16c7ca811a55b23746629b07f0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52720185_464.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9af7033934fd12f0cbf5078c55621f20151f4bdcd4909f30476e832b674954db -size 3448 diff --git a/MM_Math/data_original_21/7058793/math/52720283_371.png b/MM_Math/data_original_21/7058793/math/52720283_371.png deleted file mode 100644 index 7f0a738ca4ad4bca36878b17277f02d12bdb1cfb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52720283_371.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6333067cd711b969b418a5ea61d239080f5ed25a5c26a2b53284ff80d6d96a43 -size 8979 diff --git a/MM_Math/data_original_21/7058793/math/52720284_411.png b/MM_Math/data_original_21/7058793/math/52720284_411.png deleted file mode 100644 index 7169e859be3b155cb26d4ac3f9e0f01e6dc4fa1d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52720284_411.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ebc022068a59f44072262b7e5e3a95f568532a152a2995572eb91ced35344df -size 3299 diff --git a/MM_Math/data_original_21/7058793/math/52765424_400.png b/MM_Math/data_original_21/7058793/math/52765424_400.png deleted file mode 100644 index dec6cd8b287fbd6d997aa41b3b35b9ff7f9e0198..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52765424_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f84fded4e2d10bb24e42ff7f36ee67255f85297fbc9b69d3543cbd0bd349810 -size 3887 diff --git a/MM_Math/data_original_21/7058793/math/52766462_390.png b/MM_Math/data_original_21/7058793/math/52766462_390.png deleted file mode 100644 index 8fffc5a3680cfb072fe0b4ecc27a07dd35ede47b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52766462_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e9f65df6b41b227305d4255042c2f459c4c5ef0d4bde388201f392660e9479e -size 2940 diff --git a/MM_Math/data_original_21/7058793/math/52766514_980.png b/MM_Math/data_original_21/7058793/math/52766514_980.png deleted file mode 100644 index 3e515f014cea72b165b7c5f1feacf519327c8958..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52766514_980.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69fc7259caa3e7815a56f2bd8a5918437159dee14dae0601af901e02e1a16444 -size 3698 diff --git a/MM_Math/data_original_21/7058793/math/52766573_380.png b/MM_Math/data_original_21/7058793/math/52766573_380.png deleted file mode 100644 index 337201682940db4c1c6300294e0bcba7fe61487d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52766573_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa2e845699a9813747475b93cfb64569497b64c670ce8059576dbe62b99c47d4 -size 6790 diff --git a/MM_Math/data_original_21/7058793/math/52872065_682.png b/MM_Math/data_original_21/7058793/math/52872065_682.png deleted file mode 100644 index f63265c033a1ae50c4469417345a49c1320dce86..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872065_682.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c685779e2a70f2a27974a2388d4a9993d6e75c1e79f5bd9a6f7cc849bb054b22 -size 69143 diff --git a/MM_Math/data_original_21/7058793/math/52872096_264.png b/MM_Math/data_original_21/7058793/math/52872096_264.png deleted file mode 100644 index f477edd313dba1d0ef509b6571831250b45d6a2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872096_264.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:998a252a8f30d694fc2e4ce1d96454cc870617b97c1a52386e10427474f16481 -size 3566 diff --git a/MM_Math/data_original_21/7058793/math/52872102_177.png b/MM_Math/data_original_21/7058793/math/52872102_177.png deleted file mode 100644 index 8cad4d3dd44a0e17bbf47326f3aaa8c41baeac17..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872102_177.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2c9abbe1c13e6cbc3ee7c57a5605176128af4ca2d86ef69eb94d89f92524881 -size 3835 diff --git a/MM_Math/data_original_21/7058793/math/52872109_695.png b/MM_Math/data_original_21/7058793/math/52872109_695.png deleted file mode 100644 index 739849b15b2266757c9cb7d055d8aa3bedfc74d7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872109_695.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98c1e8174270f99ed2b533c6c9ab441559ccea7dc6fdcab0a3c419504cbfec28 -size 23554 diff --git a/MM_Math/data_original_21/7058793/math/52872109_696.png b/MM_Math/data_original_21/7058793/math/52872109_696.png deleted file mode 100644 index 678172ccf02d5ab7e7960da9e9bd93c2890a446f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872109_696.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:596a5a5e2ef4b01afc8b6daa493e1041c6f5e99c37ad78bb72c4bb5c3f102097 -size 3861 diff --git a/MM_Math/data_original_21/7058793/math/52872143_650.png b/MM_Math/data_original_21/7058793/math/52872143_650.png deleted file mode 100644 index 45c97d7932ca5864eb11ee965c1c7f25510e6f21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872143_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:921891dc393a6be7408f59a55d95355faa4fd166a786b006b2701717c0c67ef5 -size 5265 diff --git a/MM_Math/data_original_21/7058793/math/52872165_252.png b/MM_Math/data_original_21/7058793/math/52872165_252.png deleted file mode 100644 index bb2aec96a99a146e4180787ae01dbf9b7f5e9a6f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872165_252.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:98db1ec1d3fc7d978daaa793f9a3d89676502508c916cfafe3c936601e0c5c86 -size 44376 diff --git a/MM_Math/data_original_21/7058793/math/52872173_612.png b/MM_Math/data_original_21/7058793/math/52872173_612.png deleted file mode 100644 index cf7765d88da419cfb2b4c3f41a729f6180f2863f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872173_612.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0dd01ff8056a3d651a076c5594cbcf3d435071b66d4f956ff31343989bb0b346 -size 56393 diff --git a/MM_Math/data_original_21/7058793/math/52872179_601.png b/MM_Math/data_original_21/7058793/math/52872179_601.png deleted file mode 100644 index 6629bbd1feae70f33abf3ea4d6d25a6642dd9e52..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872179_601.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1729bf0a9a5eb67c4b3839884e2dca9b82e935b4e776a26c95c70250097ad7cf -size 57088 diff --git a/MM_Math/data_original_21/7058793/math/52872256_626.png b/MM_Math/data_original_21/7058793/math/52872256_626.png deleted file mode 100644 index 5dccedb056878084b650728bfb60f2f7c3481f12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872256_626.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dac616d200e17a6d8440d615d4267de73429910c0c230f203007cb822fbb576c -size 5969 diff --git a/MM_Math/data_original_21/7058793/math/52872298_644.png b/MM_Math/data_original_21/7058793/math/52872298_644.png deleted file mode 100644 index 326753ee410d04445efa35768d460045fbca8431..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872298_644.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e93e55ada65c3f066a65896b6f92332e7126ecf07127335d710db788a846fcf -size 2323 diff --git a/MM_Math/data_original_21/7058793/math/52872329_165.png b/MM_Math/data_original_21/7058793/math/52872329_165.png deleted file mode 100644 index e5824d0be0d8753872255306f48601d5ac370318..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872329_165.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4dc57a72964c6c488b0f7bda635bef3289269712a532d17173a6d92d551a46e0 -size 21086 diff --git a/MM_Math/data_original_21/7058793/math/52872337_667.png b/MM_Math/data_original_21/7058793/math/52872337_667.png deleted file mode 100644 index 609d919da1c724c451e6600e9052331306dbe8d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872337_667.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1db07d1dd558afcfe878d4b6251a25a6410ba1337d943cf8e605c683ce9d342d -size 1824 diff --git a/MM_Math/data_original_21/7058793/math/52872369_233.png b/MM_Math/data_original_21/7058793/math/52872369_233.png deleted file mode 100644 index 6dad9424cba63891e6cc96c34a7e01c06806b932..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872369_233.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aaa80cdab6ec406232af07b2b6757105393bde39f0e131cc81ac9cc8dfa583cd -size 1194 diff --git a/MM_Math/data_original_21/7058793/math/52872370_273.png b/MM_Math/data_original_21/7058793/math/52872370_273.png deleted file mode 100644 index ac6c8f5875555f72851a51c2228c6da6b38ae52c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872370_273.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe2a424d6aa6de25a2fa57a1e2bd3059f1705562a8a2571810cae97e74185873 -size 2699 diff --git a/MM_Math/data_original_21/7058793/math/52872394_941.png b/MM_Math/data_original_21/7058793/math/52872394_941.png deleted file mode 100644 index 411c727d599352ecdc7e2d89d960131e6ab789bf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872394_941.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50f45a0b51e5bef56560fb841c08fb32367cc84653ab50516f6a73a53e0d5947 -size 51428 diff --git a/MM_Math/data_original_21/7058793/math/52872426_9011.png b/MM_Math/data_original_21/7058793/math/52872426_9011.png deleted file mode 100644 index 0cb853d10bfb2ff5ac53f4b2cebd994a8c9ea921..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/math/52872426_9011.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71a713292880eae44fe0e716781961b95fc2ada8dfb17710f3e0a84c05e62dd7 -size 107532 diff --git a/MM_Math/data_original_21/7058793/solution_images/51323908_90.png b/MM_Math/data_original_21/7058793/solution_images/51323908_90.png deleted file mode 100644 index 9cf059e3796a1cb2c57fd24a7d99bec01298fdd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51323908_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:243495bd235ca90b3e4097544db6478bce268ffbf9ca52dbaf70de64bbdf53c5 -size 4192 diff --git a/MM_Math/data_original_21/7058793/solution_images/51402150_331.png b/MM_Math/data_original_21/7058793/solution_images/51402150_331.png deleted file mode 100644 index a5fc77c83a3deb1a72786f3ed070d5a2036d6590..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51402150_331.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef221934a7b2f41c9bdf8e3bf6cc11d691b7dc35121acd2f83d2aebf50bbd449 -size 6198 diff --git a/MM_Math/data_original_21/7058793/solution_images/51402230_700.png b/MM_Math/data_original_21/7058793/solution_images/51402230_700.png deleted file mode 100644 index ed309a62f05b6ffe2958693267446d673967fcda..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51402230_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e846b2a5f32567786b2c99ccd5f0a74beba64c2b2a6f9eb46f6d024ecfa36bbd -size 21409 diff --git a/MM_Math/data_original_21/7058793/solution_images/51402723_310.png b/MM_Math/data_original_21/7058793/solution_images/51402723_310.png deleted file mode 100644 index 9b889054ea9063fff2bdb9b7ce066c5ecd0a0d13..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51402723_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b0547dc638963aff2d315b47e5a152a36d118763da98d82675049ded0751068 -size 5368 diff --git a/MM_Math/data_original_21/7058793/solution_images/51402739_960.png b/MM_Math/data_original_21/7058793/solution_images/51402739_960.png deleted file mode 100644 index 34f34afd7b9022c028b7ace0c87485db78c41b44..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51402739_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:55c4fb9a498752c116e849dc67e36ffccea4eed0232bc735884952dc6c92807a -size 8600 diff --git a/MM_Math/data_original_21/7058793/solution_images/51402794_300.png b/MM_Math/data_original_21/7058793/solution_images/51402794_300.png deleted file mode 100644 index 5ada33be0f92fe2eecdc98c9c92110bff1a613d0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51402794_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b20a666e99c208d0a27ee608cb1aa558b57ee45810099f86efe94276a25f17b -size 10400 diff --git a/MM_Math/data_original_21/7058793/solution_images/51403023_740.png b/MM_Math/data_original_21/7058793/solution_images/51403023_740.png deleted file mode 100644 index a72f524863b282198a490b21c12b8c3b4eaf285e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51403023_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04eddeab566d6c879b7328c7c4f4d95d5d3e697ca383eed54d818924aefbc993 -size 6838 diff --git a/MM_Math/data_original_21/7058793/solution_images/51403360_320.png b/MM_Math/data_original_21/7058793/solution_images/51403360_320.png deleted file mode 100644 index c5d1f2b9f3ba03b3e7b82f4be4278e27fe082ee2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51403360_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc731359b2b4a0d39b4d91fb5cb73f7df82df7f80af9947b5eb84107b7c4a06a -size 7471 diff --git a/MM_Math/data_original_21/7058793/solution_images/51433156_580.png b/MM_Math/data_original_21/7058793/solution_images/51433156_580.png deleted file mode 100644 index 88a694f5eac87ebf90212cd8341d974c832f6a0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51433156_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8cc95532a5c2c696fef44935b51d96e0f68112c78012d990c93ace453a4da633 -size 7515 diff --git a/MM_Math/data_original_21/7058793/solution_images/51433195_570.png b/MM_Math/data_original_21/7058793/solution_images/51433195_570.png deleted file mode 100644 index cd3f7ffb70acc6aef3f66a554947b590c0f949db..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51433195_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12b6cee569ff64f3ac4af89c9e556f83168a0e7a73239abf7a413c21d3e1a8a1 -size 4351 diff --git a/MM_Math/data_original_21/7058793/solution_images/51433567_110.png b/MM_Math/data_original_21/7058793/solution_images/51433567_110.png deleted file mode 100644 index 1f84d06616952f585011b30d8901d36053e0a0aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51433567_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d442c311d5624855dd11c851e0abb3fb3c752c7ae642d1d1def210df302d7480 -size 4180 diff --git a/MM_Math/data_original_21/7058793/solution_images/51445529_670.png b/MM_Math/data_original_21/7058793/solution_images/51445529_670.png deleted file mode 100644 index 9ebc339cdd14d0f7e543bcc471e0a18437b776f6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51445529_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e59742d1b71b47fd4ee12645de711537fe90fafaddfe0f3999ab54434ecf7d14 -size 14514 diff --git a/MM_Math/data_original_21/7058793/solution_images/51445529_671.png b/MM_Math/data_original_21/7058793/solution_images/51445529_671.png deleted file mode 100644 index 6ae225ee3579fe23fb4f45dac8579d1c75ad7925..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51445529_671.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:348070a714487c27c2efa710e965179a5a3c539340cb2870aae6e7ba445f9d04 -size 8637 diff --git a/MM_Math/data_original_21/7058793/solution_images/51445882_150.png b/MM_Math/data_original_21/7058793/solution_images/51445882_150.png deleted file mode 100644 index a5dcbbe17f3c654a97ac35314abe738ec048497c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51445882_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1ff31de7d02f63c9dcfe2fdcb93d25700f8d5484ed88d90b25270afb046d6f7 -size 3934 diff --git a/MM_Math/data_original_21/7058793/solution_images/51446225_190.png b/MM_Math/data_original_21/7058793/solution_images/51446225_190.png deleted file mode 100644 index 1cb0a9c3de26089f39d447c5e63ef239738dccd3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51446225_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6011ac763ee2d85e86e94e972087b68aa26e47911c61e2c5e337c8e4a590fdc -size 4860 diff --git a/MM_Math/data_original_21/7058793/solution_images/51446258_131.png b/MM_Math/data_original_21/7058793/solution_images/51446258_131.png deleted file mode 100644 index 52d6326ba5a12e34a11a56abda301db20fca2758..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51446258_131.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a38a5c958374e0760bfcc5b2cc3fd32d04430a306cf79fb1208e958cb739a6e7 -size 10247 diff --git a/MM_Math/data_original_21/7058793/solution_images/51446659_631.png b/MM_Math/data_original_21/7058793/solution_images/51446659_631.png deleted file mode 100644 index e7b0b6a4ec7776951348f39d601d9e9229ea5560..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51446659_631.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5de4f55ac5241c32c514cc945a5353e2f651e715987ee112abf856d71edfa7e1 -size 4358 diff --git a/MM_Math/data_original_21/7058793/solution_images/51545289_440.png b/MM_Math/data_original_21/7058793/solution_images/51545289_440.png deleted file mode 100644 index e2574b42287e2ac62aa5959dbbf8cd1f3bbdb9cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51545289_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0a2662ddccb0919eca069ee71d699790573df6ae85817c69072936fe80a4de4 -size 17317 diff --git a/MM_Math/data_original_21/7058793/solution_images/51545289_449.png b/MM_Math/data_original_21/7058793/solution_images/51545289_449.png deleted file mode 100644 index b9770784081080fd9f125e627e38ce8a28de8abb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51545289_449.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0777b760c3a874c50eaaee2157d112556ab45a9d3d678441f56ba015a6f2655e -size 17351 diff --git a/MM_Math/data_original_21/7058793/solution_images/51722329_565.png b/MM_Math/data_original_21/7058793/solution_images/51722329_565.png deleted file mode 100644 index 58995d3122f927ff423b25258dbab602c3f1d560..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/51722329_565.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:74d584d370797268630f1c5082f8a6753b9d40bd8ae5d315a4eaf1a6f967e643 -size 6012 diff --git a/MM_Math/data_original_21/7058793/solution_images/52457096_540.png b/MM_Math/data_original_21/7058793/solution_images/52457096_540.png deleted file mode 100644 index 896cacbd951c9c84e5c44fa6748d9df2ce417ab2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52457096_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ed591e6c8b4eccc141ea08ce33c82783c4e20993fc27af0aa52a2b8a568d383 -size 8048 diff --git a/MM_Math/data_original_21/7058793/solution_images/52457422_60.png b/MM_Math/data_original_21/7058793/solution_images/52457422_60.png deleted file mode 100644 index 8cd2d8de0ba1f1765390c35c86936d64b4a96e2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52457422_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f8b97a6351eddfa47371289d74d00bad4ef1e035fef1729c3fbe6eef299feba7 -size 5976 diff --git a/MM_Math/data_original_21/7058793/solution_images/52457425_550.png b/MM_Math/data_original_21/7058793/solution_images/52457425_550.png deleted file mode 100644 index df4693ee71b26a932ef3fe41145bac1ecfeb43ec..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52457425_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4cdba5cb814debfb0bce547f1b4c2cf27ef95ebbb0c75b3752edf4fd9c3914b8 -size 3249 diff --git a/MM_Math/data_original_21/7058793/solution_images/52457427_530.png b/MM_Math/data_original_21/7058793/solution_images/52457427_530.png deleted file mode 100644 index 4fb998f6dd12bd55c75000cb0e122b28c886b262..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52457427_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06637d7c9e838e66abd0e4ff81b2b2bb80c17869eb92f967e3f1049ead553fb8 -size 3893 diff --git a/MM_Math/data_original_21/7058793/solution_images/52458117_520.png b/MM_Math/data_original_21/7058793/solution_images/52458117_520.png deleted file mode 100644 index 17ce494acdc084c5e45901769ad35b8bcb15a45a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52458117_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06f7b88338d15a1da94608f5c94c6ca7a843521a1acc4666e631e7304d78bca3 -size 5399 diff --git a/MM_Math/data_original_21/7058793/solution_images/52512549_50.png b/MM_Math/data_original_21/7058793/solution_images/52512549_50.png deleted file mode 100644 index 8d64d725b94abd1c3a2f0604fbd675bd77639260..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52512549_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ad0ecc0b1d3bafd2e141956e3aebb93e8e765bf562dc16e6634b2c498d123711 -size 61923 diff --git a/MM_Math/data_original_21/7058793/solution_images/52513362_5123.png b/MM_Math/data_original_21/7058793/solution_images/52513362_5123.png deleted file mode 100644 index 3ec38a87951bb04aa8cce7443244e118a702c9e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52513362_5123.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44fca437686bb67cd7c3fa0a8c091c7314e293a4974d2f95d08375e9a534fc86 -size 8095 diff --git a/MM_Math/data_original_21/7058793/solution_images/52536701_10.png b/MM_Math/data_original_21/7058793/solution_images/52536701_10.png deleted file mode 100644 index eb87eeaba8841fab167801836f4f233ccbd32296..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52536701_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64aba1cb10324600d36fd580d0224d890844eca84fe989a64e484875f4bdccc9 -size 6014 diff --git a/MM_Math/data_original_21/7058793/solution_images/52536735_30.png b/MM_Math/data_original_21/7058793/solution_images/52536735_30.png deleted file mode 100644 index e8d2fa452a62bf7dbe11b221b4dd2da70ba52b2a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52536735_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1856f8d096e67e1c04dad46896e6be687ef22fc2f120b96415ff01acb0cce789 -size 7295 diff --git a/MM_Math/data_original_21/7058793/solution_images/52536747_480.png b/MM_Math/data_original_21/7058793/solution_images/52536747_480.png deleted file mode 100644 index b7d00900f4efe0c32758e7f31b4fd99bbf41af9b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52536747_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e905d4ddbe3e47f5c701e95771cd5e3e9d8708fefb03fc139978fd16aa60f68 -size 5676 diff --git a/MM_Math/data_original_21/7058793/solution_images/52536782_00.png b/MM_Math/data_original_21/7058793/solution_images/52536782_00.png deleted file mode 100644 index b8e5522fb096b401cce1e4e910e639b4a1d94dff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52536782_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:529c228adec3b13b059cf9df5ec5cc4e3d1adc3dda9cbff82445ed663c77609d -size 5791 diff --git a/MM_Math/data_original_21/7058793/solution_images/52536856_470.png b/MM_Math/data_original_21/7058793/solution_images/52536856_470.png deleted file mode 100644 index 1167d95c3cdcdb833f2280daa707e258051e566d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52536856_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c62cecb2d8d2a66c71c07401720ff75023209a190c4470424d0e74890c28a04 -size 6807 diff --git a/MM_Math/data_original_21/7058793/solution_images/52537017_500.png b/MM_Math/data_original_21/7058793/solution_images/52537017_500.png deleted file mode 100644 index bf5c83a80a5929ea9fef866c0c3d9ee3c3895789..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52537017_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be2a38710d94ddd417e07a65b10bca78b44d982254f1e71552eb23ec64f4977c -size 6044 diff --git a/MM_Math/data_original_21/7058793/solution_images/52537049_490.png b/MM_Math/data_original_21/7058793/solution_images/52537049_490.png deleted file mode 100644 index 46b9bd6f41b8462faae3890e8176a1f1326a22f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52537049_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:193853574702b87b09602c898b54cf2f7ec03f288354f670c1e157e866cd43f0 -size 4011 diff --git a/MM_Math/data_original_21/7058793/solution_images/52602642_423.png b/MM_Math/data_original_21/7058793/solution_images/52602642_423.png deleted file mode 100644 index 919861c2362757d17aaa474220f1febd9df057ce..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52602642_423.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0bc8451e77e453d1fe277940378b800c6268047cd3bdd58dfd7223ed2a2efd49 -size 28623 diff --git a/MM_Math/data_original_21/7058793/solution_images/52719996_360.png b/MM_Math/data_original_21/7058793/solution_images/52719996_360.png deleted file mode 100644 index 4b04783524033ce12618db1f0800ca2c5d5795f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52719996_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd8e23de1e109656b83b0d7517d76beb4d01d91eac0c97e51d1c77b34a8db994 -size 11100 diff --git a/MM_Math/data_original_21/7058793/solution_images/52720185_460.png b/MM_Math/data_original_21/7058793/solution_images/52720185_460.png deleted file mode 100644 index b0a0d42adb5a027a20a30b0ac24883621cd20f88..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52720185_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:888e79359d3044a3de4ff74229db20ec18c3baccd5ffa96c7187a448651ad5dd -size 3575 diff --git a/MM_Math/data_original_21/7058793/solution_images/52720284_410.png b/MM_Math/data_original_21/7058793/solution_images/52720284_410.png deleted file mode 100644 index 69c10e15a6c8ef1cab9f605d56ca618d80ce4558..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52720284_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d02b1df8e710c071047434d9fd4c134101a91785278951d10df1edccf1a4c056 -size 3484 diff --git a/MM_Math/data_original_21/7058793/solution_images/52766462_390.png b/MM_Math/data_original_21/7058793/solution_images/52766462_390.png deleted file mode 100644 index 23c5be8d2730b4cbda400d0542d95b18502a5c67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52766462_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71b5acc6fea47e4bbb91f346eb0d7b68fe3b54ce8841d13b79cb05cf73b6e974 -size 3173 diff --git a/MM_Math/data_original_21/7058793/solution_images/52766573_380.png b/MM_Math/data_original_21/7058793/solution_images/52766573_380.png deleted file mode 100644 index b952284ca4aa2b4390595f7ad31a18d9de588696..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52766573_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ffdfe321eefac43afa023b72a439781a1840a3b6fd8c95c6afb50052fbc4bcf -size 3915 diff --git a/MM_Math/data_original_21/7058793/solution_images/52872102_171.png b/MM_Math/data_original_21/7058793/solution_images/52872102_171.png deleted file mode 100644 index 20bbc7edc7e16519e76adb48f38ea81fd43ab5ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52872102_171.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e360c9bc77b6d49b8d4cc93b2cd81bd54e6e3cc443d65ec1ba5225a28b321c3e -size 3879 diff --git a/MM_Math/data_original_21/7058793/solution_images/52872109_693.png b/MM_Math/data_original_21/7058793/solution_images/52872109_693.png deleted file mode 100644 index 761e79ad91de7015ef9c3291b07351b03cb656a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52872109_693.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:363766f37c13bbf3b8905bf44d415f34b11fa7b681a451e8cf7e2e08960f6a5f -size 4280 diff --git a/MM_Math/data_original_21/7058793/solution_images/52872143_650.png b/MM_Math/data_original_21/7058793/solution_images/52872143_650.png deleted file mode 100644 index 04991a7a84622f9bb7be919209d338814aa3ce78..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52872143_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b789770f99fbef5781e1d5f6cea370aad16674019ee5ade4a035a5d319c9a02b -size 4960 diff --git a/MM_Math/data_original_21/7058793/solution_images/52872179_601.png b/MM_Math/data_original_21/7058793/solution_images/52872179_601.png deleted file mode 100644 index af0ba825658217e5da29822384052b3f77adca7c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52872179_601.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:365dca889e3f7f2cbaf1ba47d0dfae6437950fbcc6fc075eda95cf763c57e666 -size 67843 diff --git a/MM_Math/data_original_21/7058793/solution_images/52872298_640.png b/MM_Math/data_original_21/7058793/solution_images/52872298_640.png deleted file mode 100644 index 570fbaf76120ee79ec11e88fa5d33f0d9fc1c916..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52872298_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a2ce855bbd8e43b8a83f7e5c143236aa0cc77cc879492770a72a47eff51bac1 -size 2391 diff --git a/MM_Math/data_original_21/7058793/solution_images/52872329_160.png b/MM_Math/data_original_21/7058793/solution_images/52872329_160.png deleted file mode 100644 index bdf69435a1da14d6741914b52077f0a2ec7eb740..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52872329_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a37c76ed3c175b3d1529d3caf359d0452ac80af0762d399bae8b0389d0781078 -size 21923 diff --git a/MM_Math/data_original_21/7058793/solution_images/52872337_660.png b/MM_Math/data_original_21/7058793/solution_images/52872337_660.png deleted file mode 100644 index 34918ffea60b9c32c482ce04d8490363ee8edf27..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52872337_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f6a891dac8a537928719e5e2ef776d2285a70896b81ace546b88c4a73ca065f1 -size 4479 diff --git a/MM_Math/data_original_21/7058793/solution_images/52872337_663.png b/MM_Math/data_original_21/7058793/solution_images/52872337_663.png deleted file mode 100644 index 5356db95c6735f382d0e2370fb322fab0d3dd4e4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52872337_663.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b711f05c4ef3ad53567128cdb82ed235e4041b5eee98ff136a53cf4fd588d92d -size 4321 diff --git a/MM_Math/data_original_21/7058793/solution_images/52872369_230.png b/MM_Math/data_original_21/7058793/solution_images/52872369_230.png deleted file mode 100644 index d2129adc78165e31266bf57cfcf621caa18b8c1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52872369_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c2da2a6055307078ec509adf6fcd3da4e909b20a97fba5afcf8ae72d8c32655 -size 1389 diff --git a/MM_Math/data_original_21/7058793/solution_images/52872370_270.png b/MM_Math/data_original_21/7058793/solution_images/52872370_270.png deleted file mode 100644 index f86de131deafb28d5f5391bcc43a78f93afef3ea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058793/solution_images/52872370_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:144cc4f7acf90d524cc9d1f7f976af0ec8dabd36957a64151fccf6ad08152f37 -size 3273 diff --git a/MM_Math/data_original_21/7058804/math/51261683_441.png b/MM_Math/data_original_21/7058804/math/51261683_441.png deleted file mode 100644 index 8c2a2ed3fcfd627c9443400e29eaa6c6aac12917..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51261683_441.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f13777e13fd24f4cd233a103670f4e59aaea98b5956a6fc13e6b864214ca55b1 -size 5765 diff --git a/MM_Math/data_original_21/7058804/math/51261695_762.png b/MM_Math/data_original_21/7058804/math/51261695_762.png deleted file mode 100644 index 760cfb9a7bdd180573add28ac65cc5f9d62e8bef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51261695_762.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bad6472dda7e517c04841f15f2ae67e7e07343f00f4c1acf074fed07f7ccafc -size 4104 diff --git a/MM_Math/data_original_21/7058804/math/51261696_740.png b/MM_Math/data_original_21/7058804/math/51261696_740.png deleted file mode 100644 index 7b94bd0d502ac58cfcbd4c2150d08dc8d790a0f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51261696_740.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:abe44962de0d79000350964fd5aba74f870d46f2eb425f11fd7660a95a89c280 -size 11237 diff --git a/MM_Math/data_original_21/7058804/math/51261712_842.png b/MM_Math/data_original_21/7058804/math/51261712_842.png deleted file mode 100644 index f83d2cfeb1bbb1eef3a675b54d551d68e0a40196..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51261712_842.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35151851dbeddceb55d9ef88b1f2f628f463af9f7684dd69fac34e309433440d -size 8348 diff --git a/MM_Math/data_original_21/7058804/math/51261850_415.png b/MM_Math/data_original_21/7058804/math/51261850_415.png deleted file mode 100644 index 04cc50d1dde736235c227d3f12cde39712a708a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51261850_415.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:659d2761333954f8c1c2eb0c2f0bf6c4f8ba62feb219e90d269c9b7790613b51 -size 11444 diff --git a/MM_Math/data_original_21/7058804/math/51261921_400.png b/MM_Math/data_original_21/7058804/math/51261921_400.png deleted file mode 100644 index cee0d2d6fc52397c0f373dc02ef3a244df960513..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51261921_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54bab1a9418b7cec3459bd13871acc0bf2e1bcc3c5ec076cb50c1814a5c2206d -size 28004 diff --git a/MM_Math/data_original_21/7058804/math/51261962_390.png b/MM_Math/data_original_21/7058804/math/51261962_390.png deleted file mode 100644 index af1f8f617af8d428ca94f5c643a069a23ddf3547..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51261962_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ea0c51b2fdc1039b5dc3a0980bcea4311eed9e8ff594c24cb34120b64df6e9d -size 12919 diff --git a/MM_Math/data_original_21/7058804/math/51261993_775.png b/MM_Math/data_original_21/7058804/math/51261993_775.png deleted file mode 100644 index 432b4073a1199a0206010c96e6c5e9e89aa4f262..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51261993_775.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c99c60d543d4750bcabc90c60a0942e7f5cf4252e5ff9166b72f63269099e427 -size 4221 diff --git a/MM_Math/data_original_21/7058804/math/51262022_750.png b/MM_Math/data_original_21/7058804/math/51262022_750.png deleted file mode 100644 index 4b384f3dc5b5878658a08f8d0cc849136e448b20..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51262022_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b52b1926828bdb47352166f2f14620d3539e323ec45dff3084f44f7e2f97fa44 -size 6708 diff --git a/MM_Math/data_original_21/7058804/math/51262084_434.png b/MM_Math/data_original_21/7058804/math/51262084_434.png deleted file mode 100644 index 2c3f4a286a719ac27aae68d455c8a8483decd677..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51262084_434.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0deb237304faec71f2e9cf29121e426ae41af31f8ca02f9c2a0b0e9b042ed6ce -size 6245 diff --git a/MM_Math/data_original_21/7058804/math/51262088_780.png b/MM_Math/data_original_21/7058804/math/51262088_780.png deleted file mode 100644 index 138c9c98376345311d7212bc8170a3b1b04ebc56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51262088_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6cf1d4a490851430047e68ab40d4cae6e4e2f420b12f863f2cf22c9c06296508 -size 6260 diff --git a/MM_Math/data_original_21/7058804/math/51262127_420.png b/MM_Math/data_original_21/7058804/math/51262127_420.png deleted file mode 100644 index d5486e6feb62634ab9349834b21efb97280b1cc2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51262127_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d55506f6f21e9401ae283591273116cace872651350f81509399165b6c2a8051 -size 4038 diff --git a/MM_Math/data_original_21/7058804/math/51262145_975.png b/MM_Math/data_original_21/7058804/math/51262145_975.png deleted file mode 100644 index 7e78d19544d9712d6ddbab0423061ec8123e9d98..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51262145_975.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3b55051be96a0423d6e9de31b707281126f0974a8ff7e330b1c3ce677d4a906 -size 16002 diff --git a/MM_Math/data_original_21/7058804/math/51262453_377.png b/MM_Math/data_original_21/7058804/math/51262453_377.png deleted file mode 100644 index 982866c5d91a4bc1beaed372ffe04560c7b23543..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51262453_377.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1614f231b28946454b0e29e3c9d2a238d97dcb0a5df2179aebd8d6c58383eb1 -size 3879 diff --git a/MM_Math/data_original_21/7058804/math/51262495_380.png b/MM_Math/data_original_21/7058804/math/51262495_380.png deleted file mode 100644 index 28bb8785b7a4ea278c6c7322fa21961197ec67f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51262495_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:619761b9f7d08f720aa6672aa0e6e7d453c99029e76d8bde27ed374eccdff710 -size 23553 diff --git a/MM_Math/data_original_21/7058804/math/51318244_730.png b/MM_Math/data_original_21/7058804/math/51318244_730.png deleted file mode 100644 index b609595f8554a29fbe06ce28140cb2e397106917..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318244_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b9ef35a269c476eca73a5ee16ca8285a762e50bd4cf5e530df3520b52e15581 -size 11031 diff --git a/MM_Math/data_original_21/7058804/math/51318298_355.png b/MM_Math/data_original_21/7058804/math/51318298_355.png deleted file mode 100644 index c578e9b84145323c510dc264b5156cceb554ec44..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318298_355.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d615aa4dc10f04998f0ccae6665c8997783ec6cf7dc51c4854c1077cfb53dffd -size 17176 diff --git a/MM_Math/data_original_21/7058804/math/51318321_933.png b/MM_Math/data_original_21/7058804/math/51318321_933.png deleted file mode 100644 index f63d5f8dc23bea8184cddb5836d32119f94af290..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318321_933.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1462554adff15f28e96707ab6f4c39cdc21d5eab0853a2ae0edca5080dbd8a70 -size 9328 diff --git a/MM_Math/data_original_21/7058804/math/51318341_670.png b/MM_Math/data_original_21/7058804/math/51318341_670.png deleted file mode 100644 index fc1518201942b682f7e6f66215372455f4c8764c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318341_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddf0b32b04ebd9559e7a26f8ee1c2521cb08b877bbeedd4b414afca9b7fde05c -size 4378 diff --git a/MM_Math/data_original_21/7058804/math/51318343_718.png b/MM_Math/data_original_21/7058804/math/51318343_718.png deleted file mode 100644 index a736f2dfcd09ff2ad46a3ac20ebfec98c1532ef1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318343_718.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fa5db09a1d18a1fda2b32f10e44e898346cacc33af701118268a657c55eaf6e4 -size 6420 diff --git a/MM_Math/data_original_21/7058804/math/51318358_940.png b/MM_Math/data_original_21/7058804/math/51318358_940.png deleted file mode 100644 index 05521f6f2abed8f1268d77d2f5ea934ad4309734..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318358_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef44487f94835295397d3702209c88afa0538ae653e3af3c4a824461777c0666 -size 3403 diff --git a/MM_Math/data_original_21/7058804/math/51318401_660.png b/MM_Math/data_original_21/7058804/math/51318401_660.png deleted file mode 100644 index de3d44faebe0bd2b86a39ebc127f55a224d66cf9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318401_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44d6b693c2231f7b0f673ef58b58a518747256983a0844111f7d6f2ef9396bb3 -size 3606 diff --git a/MM_Math/data_original_21/7058804/math/51318402_651.png b/MM_Math/data_original_21/7058804/math/51318402_651.png deleted file mode 100644 index 01159ed7eabf8f42d4a0ddff999778bd0070aba6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318402_651.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cace3da84665b47750f40a358af3127df8e71781b7ac23b4291561b744917d3f -size 5745 diff --git a/MM_Math/data_original_21/7058804/math/51318557_700.png b/MM_Math/data_original_21/7058804/math/51318557_700.png deleted file mode 100644 index 3750694aa6508fe4be5e91213a4b0c25db9c7efb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318557_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91883af01fe9130bec692f8071db60ff5f19dce0a4ed3ce1c7cb286df8a8fb78 -size 3270 diff --git a/MM_Math/data_original_21/7058804/math/51318709_323.png b/MM_Math/data_original_21/7058804/math/51318709_323.png deleted file mode 100644 index 4add22468316315238beaee1442a0632548c0f61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318709_323.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3cb0a3294c69636d6b7a3ee7d12b8a7e08ec0804127b6c53206275cf2156452 -size 3715 diff --git a/MM_Math/data_original_21/7058804/math/51318777_9510.png b/MM_Math/data_original_21/7058804/math/51318777_9510.png deleted file mode 100644 index edb156097d3a26b4ad59a455e6809359a694e482..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318777_9510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca22afe669fc8ef26423fa76defdf602f8907d2e2e6270108a53345ea2b46bad -size 3858 diff --git a/MM_Math/data_original_21/7058804/math/51318907_360.png b/MM_Math/data_original_21/7058804/math/51318907_360.png deleted file mode 100644 index 60a6119ce3c4da576bdb41b5e2c80222aacf84e3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318907_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:baf5a1b929eb7ba561ce855d186102cebf429fb199f86fda0a0610e43cac616a -size 3313 diff --git a/MM_Math/data_original_21/7058804/math/51318914_690.png b/MM_Math/data_original_21/7058804/math/51318914_690.png deleted file mode 100644 index f80cc2e6b58e64777c39231a22b184ba0ae327b9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318914_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9d75727645ff391a97fbb10a4ab7b29aee9ba5d88897110147728fca9dda6f3 -size 25484 diff --git a/MM_Math/data_original_21/7058804/math/51318916_680.png b/MM_Math/data_original_21/7058804/math/51318916_680.png deleted file mode 100644 index 56da130886da2c1dca36063c88b14a1bf56c0c6a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51318916_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:efa9f6622e4248d3b7784b7c96b589e70550e063057d920994c4154edd06000c -size 6181 diff --git a/MM_Math/data_original_21/7058804/math/51319009_927.png b/MM_Math/data_original_21/7058804/math/51319009_927.png deleted file mode 100644 index 9dfdda31026f3b6b040ced64a72846a3f4939c55..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51319009_927.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f17824b576efccfc98031db797b1922379fe8d66611a3f9c5c2836073d581b3 -size 6722 diff --git a/MM_Math/data_original_21/7058804/math/51319015_330.png b/MM_Math/data_original_21/7058804/math/51319015_330.png deleted file mode 100644 index c0f7c04d8ed44d59a97362d89c3e2993b13842ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51319015_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9853a098ae115abb1c8aae5cc2f13651b022faae828ae02008cfbedb0a10a49e -size 4421 diff --git a/MM_Math/data_original_21/7058804/math/51319037_960.png b/MM_Math/data_original_21/7058804/math/51319037_960.png deleted file mode 100644 index 8997880043e0d70675f3fb0d4885998ecf9504f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51319037_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dda9ebfe4c2620818a3bd466f1d5ed622d0f35639d4b88224dd02c0e59d7fd16 -size 8580 diff --git a/MM_Math/data_original_21/7058804/math/51320363_343.png b/MM_Math/data_original_21/7058804/math/51320363_343.png deleted file mode 100644 index 85a5291ea32ba4e1fbd4fc0b90b5fbc4a5e20485..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51320363_343.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b8643f574ea62cfd1aad32054a4beba59714b172e6532e4a1b6c75ab9e22230 -size 4872 diff --git a/MM_Math/data_original_21/7058804/math/51320376_726.png b/MM_Math/data_original_21/7058804/math/51320376_726.png deleted file mode 100644 index 93b42278a473758447e0a95a28fd852f8a26fc1f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51320376_726.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7bcd89b976e3828f5bfbc1ca14ba29e389ecbc2163f395443d602bdf376b4119 -size 6234 diff --git a/MM_Math/data_original_21/7058804/math/51350809_241.png b/MM_Math/data_original_21/7058804/math/51350809_241.png deleted file mode 100644 index dfd5f6e50219eb49aedeca565eb68a844546f8dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51350809_241.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:efdea307aa6987566d40320095507cdd7fa1b138b7e490e70b23f651a6b486e9 -size 28799 diff --git a/MM_Math/data_original_21/7058804/math/51350810_273.png b/MM_Math/data_original_21/7058804/math/51350810_273.png deleted file mode 100644 index c381fb84c6b401a922e5c18ed5b1464ef8f4bd1b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51350810_273.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82a81f4019a1318a3fc62027a3c1a5f0cd6a6c69ec6d6006a058d6f21c3f18e6 -size 18739 diff --git a/MM_Math/data_original_21/7058804/math/51350892_630.png b/MM_Math/data_original_21/7058804/math/51350892_630.png deleted file mode 100644 index f896ba5f07186b6c4b5639ee447df7791edcc4ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51350892_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dee0bdc820d269bf69a10260075236f746c3b1baef1032766ce5946d470033cc -size 26624 diff --git a/MM_Math/data_original_21/7058804/math/51350894_610.png b/MM_Math/data_original_21/7058804/math/51350894_610.png deleted file mode 100644 index 6ecd6b93042239e7992a0c8a1fc84ce7a64ed2c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51350894_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:138d2740c1048e7b9a05f1ce0a5e413545e3df1e669f6db2e3d1a051270c33aa -size 17322 diff --git a/MM_Math/data_original_21/7058804/math/51350909_910.png b/MM_Math/data_original_21/7058804/math/51350909_910.png deleted file mode 100644 index 434616e02e198526880d53aba68f6b88c206bc8d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51350909_910.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9ffa2920eb89783fca31f374ba0069acfca7679800c1497a70e456e26780bfb -size 36713 diff --git a/MM_Math/data_original_21/7058804/math/51351028_830.png b/MM_Math/data_original_21/7058804/math/51351028_830.png deleted file mode 100644 index 4a20e37bbc7cffb672457e11774a0cbdba1d4647..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351028_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6407a0d5342a182f43d6f62d85aebd241e065803efa0fd5e44eea8873d70f00 -size 4747 diff --git a/MM_Math/data_original_21/7058804/math/51351118_300.png b/MM_Math/data_original_21/7058804/math/51351118_300.png deleted file mode 100644 index f8ceb13765c2e17e314bd756faa5510f61184964..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351118_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8373a3b9c45710f7275bb5c723a5260dde7e7005c07815683546db03234cc12a -size 12092 diff --git a/MM_Math/data_original_21/7058804/math/51351122_640.png b/MM_Math/data_original_21/7058804/math/51351122_640.png deleted file mode 100644 index 5ac87aab33a69552f8f1fa63be72206cefddacb4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351122_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff308ea002459ed8f7bf5ce8c584b19ed6e2505dc900b0e3d059329768f0fcb1 -size 5824 diff --git a/MM_Math/data_original_21/7058804/math/51351172_252.png b/MM_Math/data_original_21/7058804/math/51351172_252.png deleted file mode 100644 index 83e6f052789aaceb0d35502be7940d133c6d43a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351172_252.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc934cdcd5ff61eed867824c7a4bd0bb2d4ed83e90185b81e55c9f011d218388 -size 4276 diff --git a/MM_Math/data_original_21/7058804/math/51351223_310.png b/MM_Math/data_original_21/7058804/math/51351223_310.png deleted file mode 100644 index 87383525f72fe45af9a629aede8659b0725050d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351223_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:494338a12bd1a8759a796d2614258db5c46c0ee5cadf351e73598825b4832b52 -size 4170 diff --git a/MM_Math/data_original_21/7058804/math/51351375_293.png b/MM_Math/data_original_21/7058804/math/51351375_293.png deleted file mode 100644 index ffe80868dda935c08d2fa18e0de215ae58d3a1a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351375_293.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a62b4d893117744b0eac8ebdb46346219beb6403c48ca0b4d56f7a0989c4572 -size 11291 diff --git a/MM_Math/data_original_21/7058804/math/51351385_621.png b/MM_Math/data_original_21/7058804/math/51351385_621.png deleted file mode 100644 index c35f340775209b22255b863a396bbce1a9716b19..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351385_621.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8c1bbb075024d1c110b5089e8a2a0d8df2c204051d2a08b3443a393eb01b971 -size 10583 diff --git a/MM_Math/data_original_21/7058804/math/51351489_828.png b/MM_Math/data_original_21/7058804/math/51351489_828.png deleted file mode 100644 index d938a649300887d16beff98b103fca98d93ce507..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351489_828.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dfa636bd14c6e3f45f7e79b96dfbbf8f03b38d5f109123f63a3dcec9e471b367 -size 10491 diff --git a/MM_Math/data_original_21/7058804/math/51351765_600.png b/MM_Math/data_original_21/7058804/math/51351765_600.png deleted file mode 100644 index 2680a45b9f033e7a447621237b108270e75c538b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351765_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c0c99eb716f7615a0488605ee72db7d85aa4b463a330d34c8a16ebbcf67e3be -size 3163 diff --git a/MM_Math/data_original_21/7058804/math/51351832_280.png b/MM_Math/data_original_21/7058804/math/51351832_280.png deleted file mode 100644 index 761299a677ef4580b0efc7565ff250dabb44cc08..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351832_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fb47e061cf29380e3000dd12471c4ebb817ac9953a35262997ca43a0dfc6f81 -size 7703 diff --git a/MM_Math/data_original_21/7058804/math/51351843_811.png b/MM_Math/data_original_21/7058804/math/51351843_811.png deleted file mode 100644 index a026f4d8d57f351690ff4d93930f98bcf91459b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51351843_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19dfb241f749aed9237134d65e4e2bc8329d0f6ca0f214345787a45dccf9f762 -size 3857 diff --git a/MM_Math/data_original_21/7058804/math/51352039_266.png b/MM_Math/data_original_21/7058804/math/51352039_266.png deleted file mode 100644 index 0a4a92bdb00cfb11b4282156e0790b66623f0113..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51352039_266.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82a47e9c786e183fa3af968259b3c9bc4bfe83c38aa8ebf5527bb49bd89a62e3 -size 5194 diff --git a/MM_Math/data_original_21/7058804/math/51379109_20.png b/MM_Math/data_original_21/7058804/math/51379109_20.png deleted file mode 100644 index 24feda4737ce393055e94f0fc23c65cffeeaf7d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51379109_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94b27c9d5c41bae06a8678f90f5729ce8a2e4a603a4e3e308f22baeb427542f7 -size 4113 diff --git a/MM_Math/data_original_21/7058804/math/51379153_00.png b/MM_Math/data_original_21/7058804/math/51379153_00.png deleted file mode 100644 index 749bf3d6ec1a6f69e87f04ad6342bddb79026798..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51379153_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:927d56d36e2964bd1945371a063d87c85b20ebbf99519038ca6ce398f80b84b7 -size 1702 diff --git a/MM_Math/data_original_21/7058804/math/51379192_850.png b/MM_Math/data_original_21/7058804/math/51379192_850.png deleted file mode 100644 index 6cf91214c567bae7e4774dc118c584d6562dd2d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51379192_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:928f6944ed9116bc7ca5a62f6ec7e11907fdfbccc4bb48947977bf61f233937d -size 13423 diff --git a/MM_Math/data_original_21/7058804/math/51379599_10.png b/MM_Math/data_original_21/7058804/math/51379599_10.png deleted file mode 100644 index 407f87075814b988786de56cef2bf788bcc3e6c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51379599_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15a2271c2627ae53bf7c5294297884813c3a1e9a2178b43699f459eb9edf300d -size 14144 diff --git a/MM_Math/data_original_21/7058804/math/51458132_230.png b/MM_Math/data_original_21/7058804/math/51458132_230.png deleted file mode 100644 index d4f2a9ed8aa2419086f0a9a4e7bc1d0b1d68ebc3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51458132_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f47b1fa61600227e88e21bd69155aa67727c1d93d57f9ad7f5e3e43057ad1883 -size 2982 diff --git a/MM_Math/data_original_21/7058804/math/51458271_224.png b/MM_Math/data_original_21/7058804/math/51458271_224.png deleted file mode 100644 index b03a1ae320de692ef15039315b05426278d17169..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51458271_224.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6cfe45ccb0bb12dcc8fe9efac16d38f9649b9a7154a0aa51681c26f39a02792e -size 7292 diff --git a/MM_Math/data_original_21/7058804/math/51458286_905.png b/MM_Math/data_original_21/7058804/math/51458286_905.png deleted file mode 100644 index 8cd360f41b6663ae4e845ca5be20cef3090c92a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51458286_905.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8d4f2c511aef7daba886cde0542de91071875594a6f2ed1eb1c44e112bca4f54 -size 8118 diff --git a/MM_Math/data_original_21/7058804/math/51458348_210.png b/MM_Math/data_original_21/7058804/math/51458348_210.png deleted file mode 100644 index 5f75dc17025621adeccb523e712845bbdcb16b46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51458348_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0bf17efda072475c9641172c0d76fdb46086b3decb3ea53b9c368355960aa7fe -size 5602 diff --git a/MM_Math/data_original_21/7058804/math/51458354_590.png b/MM_Math/data_original_21/7058804/math/51458354_590.png deleted file mode 100644 index 4841faaccd58e9cf4dd5c5453773ddea5f624793..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/51458354_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50a5295d9a87b284af81c7259a650ba3eb51c31cc180a2d90bd81d9ff7c0b3d6 -size 7852 diff --git a/MM_Math/data_original_21/7058804/math/52622379_550.png b/MM_Math/data_original_21/7058804/math/52622379_550.png deleted file mode 100644 index 2f43abe5f5a7bf16a967062e89f8f9f5cf57be8a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52622379_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8bc1b996613494d9fbe0a6c0fc22ec01a68b011eb32fc62f8db95e6e8da57f7 -size 2740 diff --git a/MM_Math/data_original_21/7058804/math/52622404_60.png b/MM_Math/data_original_21/7058804/math/52622404_60.png deleted file mode 100644 index cc06b8b252cc40d896333bec6cfac671f9241857..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52622404_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2879db8a83b0a300e1a80ab90705c768abd22aa0ccfee8c88d7f2f474d1d0263 -size 6534 diff --git a/MM_Math/data_original_21/7058804/math/52622477_103.png b/MM_Math/data_original_21/7058804/math/52622477_103.png deleted file mode 100644 index 7392b7243df68d372ae99a0ebf6458a367b7909c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52622477_103.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d833714e24403b6e2b2b9cd45ca56eeda931c15165e0745aa74d04b45f5b20be -size 7189 diff --git a/MM_Math/data_original_21/7058804/math/52622479_112.png b/MM_Math/data_original_21/7058804/math/52622479_112.png deleted file mode 100644 index aa03ba535c27d9e16eece9fa671afd37b1c35d2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52622479_112.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a43197e949d23cc6cb86b80076929a692dab03ebd097be7a7ff8b32e3d592c99 -size 5258 diff --git a/MM_Math/data_original_21/7058804/math/52622671_150.png b/MM_Math/data_original_21/7058804/math/52622671_150.png deleted file mode 100644 index 1cb630a7cc890b00460b5ac4826de792e0756353..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52622671_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2342f85fcd340130f09b75032a4f85582e2d50403ff47b956438286408ddc4fd -size 12316 diff --git a/MM_Math/data_original_21/7058804/math/52622680_520.png b/MM_Math/data_original_21/7058804/math/52622680_520.png deleted file mode 100644 index 956f20a679ff2d8d32e4b1586681e10caaca8b5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52622680_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91ad8593f1504b4f504a25dddd86741b7437927ea8e49ba7549eced75a820b82 -size 3320 diff --git a/MM_Math/data_original_21/7058804/math/52622698_870.png b/MM_Math/data_original_21/7058804/math/52622698_870.png deleted file mode 100644 index 58ba885b0df1bb1ce42bb15039357243ca2ab965..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52622698_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5dfd0379690c03381ad14ff5ad2cd0ede2251759f803214cec513133254ce47e -size 4661 diff --git a/MM_Math/data_original_21/7058804/math/52622748_800.png b/MM_Math/data_original_21/7058804/math/52622748_800.png deleted file mode 100644 index 82a3fec3c00077963c48e5219a861cb803b88e0f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52622748_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:626b6e37dd3a84ec52d5f0be68de48a49aa1989a4f5381a7bf387ec1b56f4584 -size 3672 diff --git a/MM_Math/data_original_21/7058804/math/52622752_861.png b/MM_Math/data_original_21/7058804/math/52622752_861.png deleted file mode 100644 index e2c94cabdfeb792ba4b28a8bb7223e671c4c0d22..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52622752_861.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9416e774b636b395eec1005946cd5bcaf606c1e2d0057607cd37eafcd4a77ff9 -size 4110 diff --git a/MM_Math/data_original_21/7058804/math/52623030_161.png b/MM_Math/data_original_21/7058804/math/52623030_161.png deleted file mode 100644 index 6da5e0d9e7d398861249873d5143819d9f35f6f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623030_161.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6bb62f5cafce5a480969d9ec0cf0eb1158d5d9dc797353f9d3870203ac1469da -size 4151 diff --git a/MM_Math/data_original_21/7058804/math/52623034_70.png b/MM_Math/data_original_21/7058804/math/52623034_70.png deleted file mode 100644 index c73fc5a226774d4151832cb39dd63e2fb2621ab4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623034_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8cd84ef6c5c04a304e5f97b391eae6f7971382ba773e3e2291c3b843e1386a48 -size 2584 diff --git a/MM_Math/data_original_21/7058804/math/52623055_30.png b/MM_Math/data_original_21/7058804/math/52623055_30.png deleted file mode 100644 index a6eb486446be9c18180490dfa298d582d74addae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623055_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4629734d66cb80f5e741d4dda67374f917725667683abcf7c2f6ae8ed4dcbc3e -size 3907 diff --git a/MM_Math/data_original_21/7058804/math/52623066_880.png b/MM_Math/data_original_21/7058804/math/52623066_880.png deleted file mode 100644 index 73bc13d9a8b803fc7eb2860cb0844eb2d1042d30..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623066_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d79fae4d00c199645e320518d45166cee19e342cebba660c5d4056eaffb843a -size 7146 diff --git a/MM_Math/data_original_21/7058804/math/52623149_535.png b/MM_Math/data_original_21/7058804/math/52623149_535.png deleted file mode 100644 index 308ced1517ea7eef8dc9304cd0415ec2b1353556..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623149_535.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d10b0a5367a705a3385aa3993c1168b64efd3bc065b723d6426a35fcfba9ee13 -size 86415 diff --git a/MM_Math/data_original_21/7058804/math/52623225_90.png b/MM_Math/data_original_21/7058804/math/52623225_90.png deleted file mode 100644 index 20cdd7a90e8e243b7b11594f9cdddcfadcdfe1f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623225_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:26777bb28a31a3a7fc749ad15bafa4ab9f559cc23378dddde2822f98bafdf365 -size 4484 diff --git a/MM_Math/data_original_21/7058804/math/52623268_500.png b/MM_Math/data_original_21/7058804/math/52623268_500.png deleted file mode 100644 index 581e618e5a67e2a93b4582a63b26d58fd3b6e16f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623268_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76d18516f3f5a7b3324984b29a0041c39d2996504cc708a1660a5d672da823a4 -size 5289 diff --git a/MM_Math/data_original_21/7058804/math/52623271_511.png b/MM_Math/data_original_21/7058804/math/52623271_511.png deleted file mode 100644 index 629def73f8f7bf1c67719e02eebfec68dc96fee5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623271_511.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ee5069e67b2cad8cc4d399c576c188f8b082557bd780012e0d9485a86b3f08b4 -size 26231 diff --git a/MM_Math/data_original_21/7058804/math/52623298_80.png b/MM_Math/data_original_21/7058804/math/52623298_80.png deleted file mode 100644 index 9410e6672cbeefd7d86adcd2c684243ed656389a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623298_80.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64c340949d8e7d474f43a30eb78610d14020e790f80f84326f21ccff6b0940b3 -size 4359 diff --git a/MM_Math/data_original_21/7058804/math/52623378_497.png b/MM_Math/data_original_21/7058804/math/52623378_497.png deleted file mode 100644 index a5adad9de1e74af56277890c13abfb061e69fec9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623378_497.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80f6ef7c0b7d584663218b4ac959dd2b1890f44ba93d97eb6d88ec6064013a18 -size 2351 diff --git a/MM_Math/data_original_21/7058804/math/52623419_146.png b/MM_Math/data_original_21/7058804/math/52623419_146.png deleted file mode 100644 index 2b9d09ea26adc2138364bf76a43607f6def8f50c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623419_146.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4bd10a12b73a80c1fb0567a71ad91f80189743939b89e1997470efb2dc99be6 -size 3872 diff --git a/MM_Math/data_original_21/7058804/math/52623522_134.png b/MM_Math/data_original_21/7058804/math/52623522_134.png deleted file mode 100644 index 4a6f16ca5ab1aee19c32207d83caf420a11984b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623522_134.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f13d88755579aa4962d89e2906e552d5193782fd1fe3b648e8e8a86d824b955 -size 11317 diff --git a/MM_Math/data_original_21/7058804/math/52623527_49.png b/MM_Math/data_original_21/7058804/math/52623527_49.png deleted file mode 100644 index 5c8c303b1182b2ef84fc423867ecadfc1eff6f27..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623527_49.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d579424528abfd9d702060d6ed6865e25cecce4c694f3adeab3e1f9a4a716ea4 -size 2839 diff --git a/MM_Math/data_original_21/7058804/math/52623549_50.png b/MM_Math/data_original_21/7058804/math/52623549_50.png deleted file mode 100644 index 2002a68dc380f604a6801677fe987b857e5e5f8b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623549_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f56a76d26de37a1d133de967f823c0825e02b9ccaccad27ab96356fa49152bc -size 25146 diff --git a/MM_Math/data_original_21/7058804/math/52623584_120.jpeg b/MM_Math/data_original_21/7058804/math/52623584_120.jpeg deleted file mode 100644 index 6610fbf757b7d49d3b45285a837f65ca5f8e2e94..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623584_120.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:10891d237a28350a72704a716fcb39baca4f79ca43e297cfb216997447dbc507 -size 3556 diff --git a/MM_Math/data_original_21/7058804/math/52623631_543.png b/MM_Math/data_original_21/7058804/math/52623631_543.png deleted file mode 100644 index 68d77c7d5ee5f577b12b42750d2ac6e866b1c179..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52623631_543.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ab56ce190d09c224d2ea48869ee74ce543271328663ba4974e191f724b1bf98 -size 3188 diff --git a/MM_Math/data_original_21/7058804/math/52949265_890.png b/MM_Math/data_original_21/7058804/math/52949265_890.png deleted file mode 100644 index 7bbd5f49d2961f55c9a0b078185d39633233d5a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52949265_890.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:152235d54287f718b2a15abc7294eed035ac54f7236538b9dd7cce84ea268f93 -size 6687 diff --git a/MM_Math/data_original_21/7058804/math/52949310_204.png b/MM_Math/data_original_21/7058804/math/52949310_204.png deleted file mode 100644 index e1f4e8040b697df4a08e4c6d1538321d9e17b65e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52949310_204.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:49dd1e6368a9119f7402fe5b5278914b9680489ec432d2f62242bad17ccae0f2 -size 6388 diff --git a/MM_Math/data_original_21/7058804/math/52949314_198.png b/MM_Math/data_original_21/7058804/math/52949314_198.png deleted file mode 100644 index 228458f8d5423a7d734fad096d9e75999f698568..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52949314_198.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df8af39d43c3eb236f0eeaf5ca1b236cabc828be28388f76892f1ae1414e1cd9 -size 20911 diff --git a/MM_Math/data_original_21/7058804/math/52949726_583.png b/MM_Math/data_original_21/7058804/math/52949726_583.png deleted file mode 100644 index 1f215b2464345276155b7689936f6857195a6991..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52949726_583.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e61483fe45ca3f85a86f52d655b16ebaa57664206762f146a379a7cd7cc28f9 -size 2770 diff --git a/MM_Math/data_original_21/7058804/math/52949728_573.png b/MM_Math/data_original_21/7058804/math/52949728_573.png deleted file mode 100644 index e8124f8a56fcb7a99a2e9b715f914a5035643af5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52949728_573.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02be866dfed870b79aff73011897977c878750c53b7c7a9a31a9579430140e3a -size 4011 diff --git a/MM_Math/data_original_21/7058804/math/52950176_184.png b/MM_Math/data_original_21/7058804/math/52950176_184.png deleted file mode 100644 index a1e3c0f27e2dbe45bca3528ddb0f1a040d668b96..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52950176_184.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42d90c885b9bf9dd812ae9185e7188a58448ade3681a63e4d9f85ccbdee2d741 -size 3865 diff --git a/MM_Math/data_original_21/7058804/math/52950180_175.png b/MM_Math/data_original_21/7058804/math/52950180_175.png deleted file mode 100644 index 8ab440defddfd4e7008b73b35bd61d70390b7ea7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52950180_175.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d067580fb017d7da71ff003092dc0fede85da6d25102c40c02c41fcd08bcb023 -size 3560 diff --git a/MM_Math/data_original_21/7058804/math/52950185_561.png b/MM_Math/data_original_21/7058804/math/52950185_561.png deleted file mode 100644 index 8db61a323fac6200278e13c2a0d9592fb3385224..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/52950185_561.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:22ee811f02a319f855a286fe8bc9e7cdd7ec49f5d83bcf9158291d71fcd00e95 -size 4787 diff --git a/MM_Math/data_original_21/7058804/math/53148594_791.png b/MM_Math/data_original_21/7058804/math/53148594_791.png deleted file mode 100644 index 80180902f57dff65309077d4b35fd42c2d35a6e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/53148594_791.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f7334f1e892e9b802090d185237375d6093e9a05ec1807166d2d29a9154a397 -size 4676 diff --git a/MM_Math/data_original_21/7058804/math/53148601_986.png b/MM_Math/data_original_21/7058804/math/53148601_986.png deleted file mode 100644 index 2c08bb39b058da2319ea569f5966160d280ff03d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/53148601_986.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71d8045b25312746d820b8ba4dc15bf785306003e621a5eb984b003d07d615e8 -size 13166 diff --git a/MM_Math/data_original_21/7058804/math/53149073_456.png b/MM_Math/data_original_21/7058804/math/53149073_456.png deleted file mode 100644 index 53bf4d5accba869d2a88b59f021ab5b26dba4926..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/53149073_456.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f4de4b0d84db03088136762f4ab1a1e9750efbe8673d0b0bfca6578bec30160 -size 4447 diff --git a/MM_Math/data_original_21/7058804/math/53149258_4710.png b/MM_Math/data_original_21/7058804/math/53149258_4710.png deleted file mode 100644 index 2b9858027c6c92bec40d0c1cc36b8b0f116f5ac1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/53149258_4710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d83ccf7c9ab6c27c46517d3818fae1a42bc814a9b84e1adb4d105b25d67ef350 -size 3555 diff --git a/MM_Math/data_original_21/7058804/math/53149307_997.png b/MM_Math/data_original_21/7058804/math/53149307_997.png deleted file mode 100644 index 07006d9ed40e6795c60b4e529d018cf3dea6a8c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/53149307_997.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8716ee6c343c8ebc685e08e0cdcfb739d5add2493872470a802da4ae52b10e77 -size 6067 diff --git a/MM_Math/data_original_21/7058804/math/53149395_4810.png b/MM_Math/data_original_21/7058804/math/53149395_4810.png deleted file mode 100644 index 03bb548d90deff236e916202eb1306fd997fdc99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/53149395_4810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14eb774eb34cba0e5da936918c643885c83626342d5bf93f4e5749b40554c472 -size 53657 diff --git a/MM_Math/data_original_21/7058804/math/53149426_460.png b/MM_Math/data_original_21/7058804/math/53149426_460.png deleted file mode 100644 index fd244b19481a317e16c6b0b0511d93e5bc693f86..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/math/53149426_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76a9b90e5e757fe26cae0a2f4830054186ef3003e0fb2d776c0582ec5002e0cb -size 11357 diff --git a/MM_Math/data_original_21/7058804/solution_images/51261683_440.png b/MM_Math/data_original_21/7058804/solution_images/51261683_440.png deleted file mode 100644 index 68e1ea9332fc3f4233de361560eaeb8d0a930ae7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51261683_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:add01816f99f9473b8612d83655522923bf4b4b11857ceed541f9949e3cdc337 -size 6113 diff --git a/MM_Math/data_original_21/7058804/solution_images/51261695_760.png b/MM_Math/data_original_21/7058804/solution_images/51261695_760.png deleted file mode 100644 index ba9a934caff9695c657deab48e7d1216018e9bc1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51261695_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94f7b355b3a2aa9806b31f7c5d0a4e615ebfe3cc567b3eb909fcdb41cb66f524 -size 6508 diff --git a/MM_Math/data_original_21/7058804/solution_images/51261993_770.png b/MM_Math/data_original_21/7058804/solution_images/51261993_770.png deleted file mode 100644 index df5dfe5ac57311512b81fc82be16a5204998b692..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51261993_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9fd04bcfd062f21b22e1a2e2eaed8f45dec167ef02d7cee1decba121bf622e4f -size 4491 diff --git a/MM_Math/data_original_21/7058804/solution_images/51262022_750.png b/MM_Math/data_original_21/7058804/solution_images/51262022_750.png deleted file mode 100644 index fd2197086d887203ad989d2a2371df4be0248b67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51262022_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d829a7c79f80ee42d6e36ae54d1f3fdc9b9d01b8580520a08bc581ef52b72b94 -size 7201 diff --git a/MM_Math/data_original_21/7058804/solution_images/51262453_371.png b/MM_Math/data_original_21/7058804/solution_images/51262453_371.png deleted file mode 100644 index d93c6ee8c1943ef468ac2516bcd7dbca16443195..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51262453_371.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c171877faa8ad75791a1c8c50f49509e07ad5a6d8f4686430a0dda8fc6a73462 -size 5705 diff --git a/MM_Math/data_original_21/7058804/solution_images/51318298_353.png b/MM_Math/data_original_21/7058804/solution_images/51318298_353.png deleted file mode 100644 index 3238e1dc4bc72642789dc37812994f44f73901b5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51318298_353.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:465f73eeadf38836a2a21080eb8da8b8779468c5faee5df173ffd4baa1bf9213 -size 4010 diff --git a/MM_Math/data_original_21/7058804/solution_images/51318341_670.png b/MM_Math/data_original_21/7058804/solution_images/51318341_670.png deleted file mode 100644 index ec8e49a948c9b99aa93deadc70bec34dc0855397..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51318341_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e55160fdbdb3476d5eb8b2286bd3e0c4fdd64202e0a45da27eb6d407284b2b06 -size 5270 diff --git a/MM_Math/data_original_21/7058804/solution_images/51318343_710.png b/MM_Math/data_original_21/7058804/solution_images/51318343_710.png deleted file mode 100644 index eef6590ef12cd7b7d830bd9a9cf77c466136b9aa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51318343_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c585a86623279eefd31b1f22e683e868ce877593edd3c417027f3ff6163e8c1 -size 6797 diff --git a/MM_Math/data_original_21/7058804/solution_images/51318401_660.png b/MM_Math/data_original_21/7058804/solution_images/51318401_660.png deleted file mode 100644 index 7a9acd706375208fb2f22aefe0015a560b24e1a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51318401_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9fa01be0b23fb3fef7aebfcbc8b72bf981a0b112e99437ced38810de317e95b1 -size 4598 diff --git a/MM_Math/data_original_21/7058804/solution_images/51318402_650.png b/MM_Math/data_original_21/7058804/solution_images/51318402_650.png deleted file mode 100644 index ebc09e8453f701297d8e848a8bed38923ed88ec1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51318402_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe5345006a5c00bc3ee24b12bac703450de488ee6742906aebcc7238d89e87a9 -size 5142 diff --git a/MM_Math/data_original_21/7058804/solution_images/51318557_700.png b/MM_Math/data_original_21/7058804/solution_images/51318557_700.png deleted file mode 100644 index 883c02584d70d3daa78ce0e3f5efd4c0ed7eb067..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51318557_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d11109493e97aa5eb0ddd786e93dfd661f663b353756b65038c25a9149b37c5 -size 6672 diff --git a/MM_Math/data_original_21/7058804/solution_images/51318907_360.png b/MM_Math/data_original_21/7058804/solution_images/51318907_360.png deleted file mode 100644 index a0b93abab6052fa4ad51158e9953ddcfa586f3fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51318907_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a71662167f9c71ed468fafb2400cf63a04b1fdc9fb742d7c44b2fc4d299ac385 -size 4250 diff --git a/MM_Math/data_original_21/7058804/solution_images/51318916_680.png b/MM_Math/data_original_21/7058804/solution_images/51318916_680.png deleted file mode 100644 index eb13d75221bcf8588765b9865bacfcede23f058c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51318916_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b2859290f9ceb237c4a08240cdf02616899812bde80461cbd0d65fa8fd370ea8 -size 6041 diff --git a/MM_Math/data_original_21/7058804/solution_images/51319015_330.png b/MM_Math/data_original_21/7058804/solution_images/51319015_330.png deleted file mode 100644 index 25539f6a14a0e4a3932f066b74b0d45205282d52..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51319015_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03fde64354b8dc608b761786c1d9235d2214d02401d42481bdda7082bb116199 -size 5137 diff --git a/MM_Math/data_original_21/7058804/solution_images/51320376_720.png b/MM_Math/data_original_21/7058804/solution_images/51320376_720.png deleted file mode 100644 index 86b46e85f63efe7fd0802d34e6316a8a91857dc4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51320376_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:363616dc1de1938f0c0fb6516a02b1351c972b315c1828827a185a76e74cbc8e -size 6378 diff --git a/MM_Math/data_original_21/7058804/solution_images/51350809_243.png b/MM_Math/data_original_21/7058804/solution_images/51350809_243.png deleted file mode 100644 index 0b87307f0c87222058578ee600d55c8b1aad0293..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51350809_243.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:043e7f1f41226b7ed9a6f0797cdff9f7f4497e34c0f20fe06c6ac794290a9604 -size 25667 diff --git a/MM_Math/data_original_21/7058804/solution_images/51350810_271.png b/MM_Math/data_original_21/7058804/solution_images/51350810_271.png deleted file mode 100644 index cb8b8dac432a1af11663efc86731e52a3f96ae5e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51350810_271.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:270fb27aef6c38363388de3cbdc1b5f3bda25e3d6224189e696b4b49b99d7fe4 -size 217386 diff --git a/MM_Math/data_original_21/7058804/solution_images/51350894_611.png b/MM_Math/data_original_21/7058804/solution_images/51350894_611.png deleted file mode 100644 index 9247493084ac1e9bc8332ef40a53c2ea357b0c99..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51350894_611.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1aae263b36c08ae03f8ceb8b67963b51ef6c95aa42ee7a715b345b01eae25b0f -size 17817 diff --git a/MM_Math/data_original_21/7058804/solution_images/51351118_300.png b/MM_Math/data_original_21/7058804/solution_images/51351118_300.png deleted file mode 100644 index 0a8b326c85d3a51d30b75940919c82cbb5b224cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51351118_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f01bc878e095cc4048cd269d4b646f8770894a6d8fef937614363c1404a39db -size 4373 diff --git a/MM_Math/data_original_21/7058804/solution_images/51351385_620.png b/MM_Math/data_original_21/7058804/solution_images/51351385_620.png deleted file mode 100644 index 06886bc6578ff1dff27a51f0f7dc06d05e0bf039..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51351385_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:530b8b1868cb422648c89a7ad527872360d424f56a0a2b6814cb3000d737127f -size 462178 diff --git a/MM_Math/data_original_21/7058804/solution_images/51351765_600.png b/MM_Math/data_original_21/7058804/solution_images/51351765_600.png deleted file mode 100644 index 7d7e8910c0ca92e1a937fbf25871e4dd3215b07d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51351765_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a805753d5e3f2e81b5f73962181a5a44494364fe154fe4e1a91e48a6dd30a9fe -size 3615 diff --git a/MM_Math/data_original_21/7058804/solution_images/51351832_280.png b/MM_Math/data_original_21/7058804/solution_images/51351832_280.png deleted file mode 100644 index 738979348116441c4b56d74ab72ec4dadfb92286..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51351832_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f9d1f4f938ff0ba4e604791fa2f2586d8d21dcf413e6060b41da8c1d25bf3d69 -size 5748 diff --git a/MM_Math/data_original_21/7058804/solution_images/51379153_00.png b/MM_Math/data_original_21/7058804/solution_images/51379153_00.png deleted file mode 100644 index 5327d45a6076313bcfd5d2f54b92aec5480aa540..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51379153_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3bac875e81571ca3667eaefb89f01e603d9bef5b4fc1735689649faab2d8c6f9 -size 2490 diff --git a/MM_Math/data_original_21/7058804/solution_images/51379599_11.png b/MM_Math/data_original_21/7058804/solution_images/51379599_11.png deleted file mode 100644 index 9173e8eda3a587db2146948821529f5ab0c3962e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51379599_11.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb316ec34ecf566197281a997fc16f93d6c1e8286c4595f1e4b85abbac95462f -size 5334 diff --git a/MM_Math/data_original_21/7058804/solution_images/51458271_220.png b/MM_Math/data_original_21/7058804/solution_images/51458271_220.png deleted file mode 100644 index 26f2a8e437359b003b40bd464fedc152149627f6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51458271_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d12ecd32d74f06d940e6ec9f6d0179abfd7ccb048fb14cabe0bf2d54c50c169e -size 4612 diff --git a/MM_Math/data_original_21/7058804/solution_images/51458354_591.png b/MM_Math/data_original_21/7058804/solution_images/51458354_591.png deleted file mode 100644 index dc25235fcd6a0db6f8752a12bfef2a388b16b10c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/51458354_591.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bcc858324e226d341514cbd7516dcc0b42d38debd3ba2c81c68565b42e361cde -size 17462 diff --git a/MM_Math/data_original_21/7058804/solution_images/52622379_550.png b/MM_Math/data_original_21/7058804/solution_images/52622379_550.png deleted file mode 100644 index f7308bbf90b12b6b2b2edb0be3ae3c42691cb3a9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52622379_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2bf1613aeb7708851ced4f259a162f581939d6ea8451064dff55acb6d0cd24a1 -size 5847 diff --git a/MM_Math/data_original_21/7058804/solution_images/52622404_60.png b/MM_Math/data_original_21/7058804/solution_images/52622404_60.png deleted file mode 100644 index 10dc5343124c47415bcb24488bf7dde41bdeb803..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52622404_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e60e35c1f10eb15da78a91de0fc128ca07eec501414b29658bc52ddf5398dbb -size 6800 diff --git a/MM_Math/data_original_21/7058804/solution_images/52622477_100.png b/MM_Math/data_original_21/7058804/solution_images/52622477_100.png deleted file mode 100644 index 00c5164f8114a6f00a94f92e8ec271805c1b6fea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52622477_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44aac9750f65cfd5e3bb9acfddd20cb6e19d3a63316e113d5bad7ccc5e5f36e2 -size 8075 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623030_160.png b/MM_Math/data_original_21/7058804/solution_images/52623030_160.png deleted file mode 100644 index 340ed5ba621bee0bedd2fd198a8637df46652a69..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623030_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d41e3909c4395e0b3bcc2d36d1af87a64b200d8fbb1b425b9aa7d874a719dc2 -size 4712 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623034_70.png b/MM_Math/data_original_21/7058804/solution_images/52623034_70.png deleted file mode 100644 index 62bdef148f5da78623447edc93e5bf8592c143f8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623034_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf9c5b23da9551b431cc7d608726a24eb142a4c8900ed8453db8b17e1305460a -size 3479 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623034_74.png b/MM_Math/data_original_21/7058804/solution_images/52623034_74.png deleted file mode 100644 index 0a9ea512ab0b5e635d15771a916a7a16e5784108..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623034_74.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5244b1b00a662b843a87912940e2f14c52233b86dd1454363ea81fa335894d71 -size 3751 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623271_510.png b/MM_Math/data_original_21/7058804/solution_images/52623271_510.png deleted file mode 100644 index 4d724c851b033ea540d065bfbb55047c67fb7b97..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623271_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bbc6199e1257ec1e277514e1986ed99f2104fd985a6c0113873558bddd86d7ea -size 28462 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623298_81.png b/MM_Math/data_original_21/7058804/solution_images/52623298_81.png deleted file mode 100644 index c2b11417cdfbe195b5a2e8cff462bdd794503244..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623298_81.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df3e6952ec687b954ae870fe8649ffb01fca76444d0eb6c5c11d9d3bc36fc0b1 -size 4580 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623378_490.png b/MM_Math/data_original_21/7058804/solution_images/52623378_490.png deleted file mode 100644 index b662fac9a61a0fcc8c2d1fadd921f7269465cd21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623378_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ded414382994b00592365f4c2b28f953d61d7618eb92cd21e96f1d9b7922d69d -size 2505 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623419_140.png b/MM_Math/data_original_21/7058804/solution_images/52623419_140.png deleted file mode 100644 index d7c92845a26e26ed7f23765f76cc38e48559e12a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623419_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13e2475dc1f5241f39254a3bfa02886d27b8ff6c917f0c94b1db79f54e37bf47 -size 3903 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623522_130.png b/MM_Math/data_original_21/7058804/solution_images/52623522_130.png deleted file mode 100644 index e7e4cb2e54cf2f11d123abb569935c688c41a121..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623522_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a6e9c5afe655de5fe88baee19f9dd85eb9fb8a0846e99b0568fde935324fed1 -size 6618 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623527_46.png b/MM_Math/data_original_21/7058804/solution_images/52623527_46.png deleted file mode 100644 index 1d2a626c1868f022bbd5a38012fa8b0d533422e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623527_46.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d090dc042fd3199ad6c6e15792d19d95a85389698681b34e4952db8ba6e9b38 -size 3420 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623549_50.png b/MM_Math/data_original_21/7058804/solution_images/52623549_50.png deleted file mode 100644 index e36ffc31c3b2b08f0d53ce3a34387ac39515e2ee..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623549_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:680c7350a9ec9744e013ecea3b562fdb5ebccbe9689e1cdcb40c11893bb061ac -size 43384 diff --git a/MM_Math/data_original_21/7058804/solution_images/52623631_540.png b/MM_Math/data_original_21/7058804/solution_images/52623631_540.png deleted file mode 100644 index 0df4d27809ebc5e112e889f2bb5d04cff9cb2fca..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52623631_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e633a0fd85dee7a5c5f4d8d1b5e343ff3a32849abea1c31e2c8554f59309893 -size 4233 diff --git a/MM_Math/data_original_21/7058804/solution_images/52949314_190.png b/MM_Math/data_original_21/7058804/solution_images/52949314_190.png deleted file mode 100644 index 54b7963aa1b8d1bbf26a2d2a447d463d941add26..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52949314_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:17fc7f25e6dd1d70dd8387bed1daf0e0c88a052a6004223d18d521bd9bcbbc1b -size 21363 diff --git a/MM_Math/data_original_21/7058804/solution_images/52949726_580.png b/MM_Math/data_original_21/7058804/solution_images/52949726_580.png deleted file mode 100644 index d51ae4785c7846422d48fbc90c7292b65ee2bf1c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52949726_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e77a886a297a092e5014067d05f115278c7f52cafdb95b69b4b509c559942590 -size 3654 diff --git a/MM_Math/data_original_21/7058804/solution_images/52949728_570.png b/MM_Math/data_original_21/7058804/solution_images/52949728_570.png deleted file mode 100644 index d939b7edbdf7c0e224d52c2de46490359f92edb4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52949728_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d99f2972d059c39de6cf5ebf23daf8e7c3b026e68ebf3a31badcd6189e14e476 -size 7251 diff --git a/MM_Math/data_original_21/7058804/solution_images/52950176_180.png b/MM_Math/data_original_21/7058804/solution_images/52950176_180.png deleted file mode 100644 index 018426c67530ebb2a57a92ff7a1e469e2095488e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52950176_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ecdd65acf3dbbb268eb6b414ed9ff4480a4444eaa6fb92a682467f1ac062292e -size 4092 diff --git a/MM_Math/data_original_21/7058804/solution_images/52950180_170.png b/MM_Math/data_original_21/7058804/solution_images/52950180_170.png deleted file mode 100644 index 189b1c7cbd97262134f3a607685e8fecb8cd9638..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52950180_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b35524b9e54b69f6d5fedbf0bfb60b94029e18882cc81509b1095e006cd99b2 -size 10958 diff --git a/MM_Math/data_original_21/7058804/solution_images/52950185_560.png b/MM_Math/data_original_21/7058804/solution_images/52950185_560.png deleted file mode 100644 index 2d50c261a00e263f7a9baf406fd4c0a3dee5e49b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/52950185_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d466f1e2d9e453343aa521b087ad300e51ccf220eb6550a074e3e73529d9221 -size 6484 diff --git a/MM_Math/data_original_21/7058804/solution_images/53148594_791.png b/MM_Math/data_original_21/7058804/solution_images/53148594_791.png deleted file mode 100644 index fd9e9aeea4538c0c8aa88f52a162f245dc1524ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/53148594_791.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41e4171e36fca5018db9a7ff71ec33b66acabf4df943a80600e0d141500cc46d -size 6353 diff --git a/MM_Math/data_original_21/7058804/solution_images/53149395_480.png b/MM_Math/data_original_21/7058804/solution_images/53149395_480.png deleted file mode 100644 index 3541f9e8d29e96a02f934ac03c7889d67f4e24b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/53149395_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3aea845718f16e6e11ca28119337b92ea47fa7562b615c1c1ee87d7761685113 -size 56569 diff --git a/MM_Math/data_original_21/7058804/solution_images/53149426_460.png b/MM_Math/data_original_21/7058804/solution_images/53149426_460.png deleted file mode 100644 index d5cede12b303facf6984bdcfa8ac178adca89000..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058804/solution_images/53149426_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b9290fef58a4751bc89b35be3f3dea319eebab941a5b5e169e81c02e772dd6f -size 6886 diff --git a/MM_Math/data_original_21/7058807/math/51299533_810.png b/MM_Math/data_original_21/7058807/math/51299533_810.png deleted file mode 100644 index a8a34a16e5382ed54395675437eb0f20427291fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51299533_810.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7bc07f1c2e72537825a354adc6d8f85c154818b51778b5e74b1c637588c7690d -size 11944 diff --git a/MM_Math/data_original_21/7058807/math/51299784_220.png b/MM_Math/data_original_21/7058807/math/51299784_220.png deleted file mode 100644 index 754d586f94c4704fd8328a72c98125d289a19394..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51299784_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:450a73529faa3d405878170e61d8b642842689e62107787d7b48fbd4b33fa25e -size 6363 diff --git a/MM_Math/data_original_21/7058807/math/51323915_463.png b/MM_Math/data_original_21/7058807/math/51323915_463.png deleted file mode 100644 index 2e972a0b58dcb17198c81ed506bce9c11624d318..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51323915_463.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21160011f08633f39481c886cbf7c06a8dbd12fd29fae2cb06a745b7257bb526 -size 16566 diff --git a/MM_Math/data_original_21/7058807/math/51323934_7410.png b/MM_Math/data_original_21/7058807/math/51323934_7410.png deleted file mode 100644 index 05f0cc7c20da66436137c653e0ae99c1e2e87995..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51323934_7410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:61f38361bb757d57390c82981533928e429117f16631a5f7d7abee5e4866cb49 -size 4835 diff --git a/MM_Math/data_original_21/7058807/math/51402215_820.png b/MM_Math/data_original_21/7058807/math/51402215_820.png deleted file mode 100644 index 997ecfb000f4641edc3bd40705dd14cbe49c4080..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51402215_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a846b637dc0c042a3d1a2cc04335fff232b0fd80fbfa8d1566e8bbbbfaac829 -size 3929 diff --git a/MM_Math/data_original_21/7058807/math/51402227_523.png b/MM_Math/data_original_21/7058807/math/51402227_523.png deleted file mode 100644 index c0a86b35d23d168839041dc0a487af8b3f54b130..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51402227_523.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8706b654a905c03a2316372cc5167edaea487c175a3ab6d0e782220ba5787c93 -size 6200 diff --git a/MM_Math/data_original_21/7058807/math/51402246_842.png b/MM_Math/data_original_21/7058807/math/51402246_842.png deleted file mode 100644 index 22a23252b5fe719033c1b5a54cfa15b6ac745d0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51402246_842.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc526d73f07c435ac935a57a2c45988eb2b26dd5ee31c84f469a37ac1c1673fb -size 5365 diff --git a/MM_Math/data_original_21/7058807/math/51402523_830.png b/MM_Math/data_original_21/7058807/math/51402523_830.png deleted file mode 100644 index 6f2cf812997ff8b11fa17b978bd3c25feb1605e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51402523_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c5e664d25ceb0051529ddd0523e237a77604e976f0786aa6f231c64b157288d -size 7728 diff --git a/MM_Math/data_original_21/7058807/math/51402793_231.png b/MM_Math/data_original_21/7058807/math/51402793_231.png deleted file mode 100644 index d19fa734c83c4c8a94ac80ec38b57a57b074af95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51402793_231.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9f4335e21891f649823043dde2cec30d093d5e3b13fbaeffb5f78d85b9243c5 -size 8656 diff --git a/MM_Math/data_original_21/7058807/math/51402984_240.png b/MM_Math/data_original_21/7058807/math/51402984_240.png deleted file mode 100644 index fb1c5969454858ac50c48a29561a6a20d0e3fc07..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51402984_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42bdfbe2c242882dfdb96bdf381526c52f825ebb45b34b9f246e27826c2a66a6 -size 5904 diff --git a/MM_Math/data_original_21/7058807/math/51403003_858.png b/MM_Math/data_original_21/7058807/math/51403003_858.png deleted file mode 100644 index 47fe00ce4f2c205116d95319289a315c917cdc9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51403003_858.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e65eeba5ba7198587538d1203f870e28ff6db52c0d5cd37497d8d78fd079cbb -size 9830 diff --git a/MM_Math/data_original_21/7058807/math/51407041_510.png b/MM_Math/data_original_21/7058807/math/51407041_510.png deleted file mode 100644 index c656b83ac3779bb8c3f82a69345ce071dcc1ebe6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51407041_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88aceb75cf9cedaa59c794ff3d070b1ec158027f5d2e766dd0becb7aa62338eb -size 6443 diff --git a/MM_Math/data_original_21/7058807/math/51433278_480.png b/MM_Math/data_original_21/7058807/math/51433278_480.png deleted file mode 100644 index 68e9d7ebaf7a04197913e8fe9fbe01939918ef8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51433278_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:823c7ccd8d7057f85be7ae60b8973209bd557b257fc2ccb7975a79a4e288ec5f -size 4425 diff --git a/MM_Math/data_original_21/7058807/math/51433564_190.png b/MM_Math/data_original_21/7058807/math/51433564_190.png deleted file mode 100644 index d5d7d9626bc55aa0a3fc9a49e6b9680f9179e22d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51433564_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1011fab1aab3e776aebb7f6181e9fab72922895b6594c1c2e63cbb6c81141696 -size 6142 diff --git a/MM_Math/data_original_21/7058807/math/51433589_761.png b/MM_Math/data_original_21/7058807/math/51433589_761.png deleted file mode 100644 index 1b3574ca495b1ea23329d31e7701400186caecd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51433589_761.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3dd239a56dec5939183df1ae98b249e1272978a482823926e90312721226d35d -size 31419 diff --git a/MM_Math/data_original_21/7058807/math/51433712_472.png b/MM_Math/data_original_21/7058807/math/51433712_472.png deleted file mode 100644 index a5321a3680148eaa77b05ca256d2914122d28251..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51433712_472.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f0d978880b6112322ea78ebb6090dc52f44a3cc06f279e1f51a05e248b30412d -size 12267 diff --git a/MM_Math/data_original_21/7058807/math/51433735_751.png b/MM_Math/data_original_21/7058807/math/51433735_751.png deleted file mode 100644 index f2a860fe5392c3a78dc93e89712659402dcb26c1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51433735_751.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b70603123fd7d3ac7594ee6614e42e8d528e1e6745bc921482fc2118cfe550f9 -size 12475 diff --git a/MM_Math/data_original_21/7058807/math/51445522_210.png b/MM_Math/data_original_21/7058807/math/51445522_210.png deleted file mode 100644 index 5cfb28785e9858aedcbb494aaffba7d65384dcdf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51445522_210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90942626872e308f8eb0babe41a3619090abc6bbbfc6bc17a80844e4313b357d -size 6832 diff --git a/MM_Math/data_original_21/7058807/math/51445528_504.png b/MM_Math/data_original_21/7058807/math/51445528_504.png deleted file mode 100644 index a06462347ddd5469f6561a42b5e564ed8fed3a24..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51445528_504.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b5d7bcce94df4083edd0dcbddca8866520d03907171c66759042be1e7e19ff3 -size 5157 diff --git a/MM_Math/data_original_21/7058807/math/51445866_801.png b/MM_Math/data_original_21/7058807/math/51445866_801.png deleted file mode 100644 index 2f6dee886091bae3fbaa940500e28de8327f104e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51445866_801.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d32865eb53e3e18cbe28888ea7bd33fc7372e032c77cbcba2760d3632aaf8453 -size 4102 diff --git a/MM_Math/data_original_21/7058807/math/51446035_781.png b/MM_Math/data_original_21/7058807/math/51446035_781.png deleted file mode 100644 index 35f1ba9fdd0465c7a31a4b0398deec4dcd1c20d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51446035_781.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9f398e315e01c78791676c2791d0b13c1411e125b1bb50ecaca34ca2938638b -size 8140 diff --git a/MM_Math/data_original_21/7058807/math/51446300_200.png b/MM_Math/data_original_21/7058807/math/51446300_200.png deleted file mode 100644 index a4908cf448fc4e0e91fb3d9c18489f755ff3bd11..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51446300_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29b64d05aec4741ffa8673cc3a043309b6b8bac9a08eaee96ebf19c323dd4009 -size 2589 diff --git a/MM_Math/data_original_21/7058807/math/51446366_7912.png b/MM_Math/data_original_21/7058807/math/51446366_7912.png deleted file mode 100644 index 749816c689678516854744a84eaaa1bb3c672e3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51446366_7912.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c923fa43d4858e0a3b2ee37cbe79a4ab90ab229ad81cdeee7569c67a66f0641b -size 6020 diff --git a/MM_Math/data_original_21/7058807/math/51446421_490.png b/MM_Math/data_original_21/7058807/math/51446421_490.png deleted file mode 100644 index 4b5c555609b5408d74805e6e4db212dcc80f8715..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51446421_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cdf0e84d5e1f3e5e82830deff6ecfb50303c5681ff1899a1fe761e5d7a6f8ae6 -size 3357 diff --git a/MM_Math/data_original_21/7058807/math/51446547_770.png b/MM_Math/data_original_21/7058807/math/51446547_770.png deleted file mode 100644 index 5e8f33c9b480d8a9f000ae29a4a47aeb20068aaa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51446547_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b66cedfb373b89a17dbb4eb275491aece6ef96f19d561206bb84a5c0a61872d -size 3236 diff --git a/MM_Math/data_original_21/7058807/math/51545212_280.png b/MM_Math/data_original_21/7058807/math/51545212_280.png deleted file mode 100644 index 6feb7e625fe2a6763296acfc67029ea1f1b729f6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/51545212_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c562f49658f694c51de615596df039a118e251e37f9b567d7bc7fc24b465c8b -size 9083 diff --git a/MM_Math/data_original_21/7058807/math/52512571_730.jpeg b/MM_Math/data_original_21/7058807/math/52512571_730.jpeg deleted file mode 100644 index 0463dc448d727857ff466307255b093334c5f6c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52512571_730.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5478e72cb083a188b031da7ee41ea1957ade5c40c40c4ede2cc818e7f712eef3 -size 6141 diff --git a/MM_Math/data_original_21/7058807/math/52536497_720.png b/MM_Math/data_original_21/7058807/math/52536497_720.png deleted file mode 100644 index fd9c875ebfadb0fe0e4598e046cca63ec75befc9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52536497_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a563951de36d469930922ae57be85d599dd4bf1bf34c3c3091ead4abfae84ab3 -size 4622 diff --git a/MM_Math/data_original_21/7058807/math/52536676_451.png b/MM_Math/data_original_21/7058807/math/52536676_451.png deleted file mode 100644 index 4034a5e58b490216237e29039b39a920d7b23448..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52536676_451.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40fa7ac7031cdcbb4d903e8c9c7f7f2e6652d19f0b29a9f5578404c56c0ec27a -size 3965 diff --git a/MM_Math/data_original_21/7058807/math/52536729_704.png b/MM_Math/data_original_21/7058807/math/52536729_704.png deleted file mode 100644 index efd8fad351f1518d31524185efdf0825505b23d2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52536729_704.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b66a1403373bfe6ad794a6f93b744cc611cee66985ca59b98b0212195bfd6c0f -size 4684 diff --git a/MM_Math/data_original_21/7058807/math/52536794_711.png b/MM_Math/data_original_21/7058807/math/52536794_711.png deleted file mode 100644 index cfd23a2ba4f0df9b9e5dfd09f55c455f7f456b16..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52536794_711.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01d5593cae7114fc35422cbc2a1601f499d1e34b287443689c646f5e3d934a37 -size 6553 diff --git a/MM_Math/data_original_21/7058807/math/52536919_180.png b/MM_Math/data_original_21/7058807/math/52536919_180.png deleted file mode 100644 index d078d4de73bea3aeeb4a8f4b47627a168b7b00d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52536919_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f920a721d598449f553425f0ebe8948c4fc202dc3e6f4897988107838641dd2 -size 3824 diff --git a/MM_Math/data_original_21/7058807/math/52551436_175.png b/MM_Math/data_original_21/7058807/math/52551436_175.png deleted file mode 100644 index 5aa5c09f55896578dcb285cd9e77b9f43268e6d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52551436_175.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43171e46dbaeee294a0550f18413c8a081c2a4f4d1676add75a26a14a5dc5890 -size 13769 diff --git a/MM_Math/data_original_21/7058807/math/52551457_697.png b/MM_Math/data_original_21/7058807/math/52551457_697.png deleted file mode 100644 index 1dd9235d6eefef9244e97040c79901689b1a9af8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52551457_697.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a8a5da42f328127ed0c3ad1c41efe589b4251503718ed34a2d78c2d4f0a70aa -size 9168 diff --git a/MM_Math/data_original_21/7058807/math/52551789_440.png b/MM_Math/data_original_21/7058807/math/52551789_440.png deleted file mode 100644 index 8d32f36167b9c72f6699c0d699ba435d7768e542..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52551789_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7417d668ef39e10769f1211f8b5109c85e8921b2a34e3bcc1d82d45daea16b88 -size 15094 diff --git a/MM_Math/data_original_21/7058807/math/52601659_260.png b/MM_Math/data_original_21/7058807/math/52601659_260.png deleted file mode 100644 index 0a05af348a392a8d67641d844bc09cadc8442860..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52601659_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b853e3970b5ded82445e7a3b3155c69a36980a6607651f392776e06635dd5dc -size 8418 diff --git a/MM_Math/data_original_21/7058807/math/52601694_278.png b/MM_Math/data_original_21/7058807/math/52601694_278.png deleted file mode 100644 index 900a0bc0b427c9ec75278c1685252236f188216a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52601694_278.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c731aece276d755d494f946593bc4e24bd5a30392bc1b2d868b62e51a5e35be -size 3160 diff --git a/MM_Math/data_original_21/7058807/math/52601859_870.png b/MM_Math/data_original_21/7058807/math/52601859_870.png deleted file mode 100644 index 63a4c1c52b98274eff7aa9d7dc6b89ed53db8fd8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52601859_870.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76b0022395aa106ab7c246d06e9c7c7f37876bd5237170158e224f17dac2a055 -size 153818 diff --git a/MM_Math/data_original_21/7058807/math/52602184_880.png b/MM_Math/data_original_21/7058807/math/52602184_880.png deleted file mode 100644 index 4c5839e3fd97e169cde90b00ee8f4b811ddd0b8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52602184_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72c142dadd4a8ad6475739637bd79804c01c44337846c55ae120699a76e86cbe -size 4402 diff --git a/MM_Math/data_original_21/7058807/math/52602536_974.png b/MM_Math/data_original_21/7058807/math/52602536_974.png deleted file mode 100644 index cd58eb32897c148cee6534be39b4175ca0a42652..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52602536_974.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11e87909ce5b6b10c36bf0cd292f87ecb4d6c685b0cd736dd858b54a3ae7109f -size 4358 diff --git a/MM_Math/data_original_21/7058807/math/52602632_865.png b/MM_Math/data_original_21/7058807/math/52602632_865.png deleted file mode 100644 index 623e90e1ae2dd9f2070d1c0de5a0556a37bdfc7a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52602632_865.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d60b6d288cfb648df4c54bcfe3682ed5582f491417b1825c44da25455285ec6 -size 5920 diff --git a/MM_Math/data_original_21/7058807/math/52602674_560.png b/MM_Math/data_original_21/7058807/math/52602674_560.png deleted file mode 100644 index 02b2957e151fd38e34f514b035c5cf8b8d051ce3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52602674_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e7678147cf38659a02454a19965a077aece303d930c7aec789b31282c255c42 -size 15369 diff --git a/MM_Math/data_original_21/7058807/math/52602698_909.png b/MM_Math/data_original_21/7058807/math/52602698_909.png deleted file mode 100644 index 0baa9254066b3701bf41ddb39a2e7f0b332fd145..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52602698_909.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c005c623dd9259d761504408e5c05e1129bf90db9ce5f868610acb901a59cadd -size 10383 diff --git a/MM_Math/data_original_21/7058807/math/52602982_890.jpeg b/MM_Math/data_original_21/7058807/math/52602982_890.jpeg deleted file mode 100644 index 6ca06942efb357a81e6db335771bebe5e58aedaa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52602982_890.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b28c274175bd4e7bf5f9db7578077638bee0a31b92272045d40fc19ea74a32de -size 21765 diff --git a/MM_Math/data_original_21/7058807/math/52634229_169.png b/MM_Math/data_original_21/7058807/math/52634229_169.png deleted file mode 100644 index 30debeefeeb241d3aa59685d088709cf2d2d86f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52634229_169.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d1792625cb4c2daf39e83c1dc53b5df5ebb4e2149298279cd1786b1a4f796eb -size 3462 diff --git a/MM_Math/data_original_21/7058807/math/52719793_914.png b/MM_Math/data_original_21/7058807/math/52719793_914.png deleted file mode 100644 index 6838817b7db859abae122666e80e12b390eaff06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52719793_914.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ee2632368535d418245a2a2e37a33b88f9990358fde1ed18a1925c31b4c871d -size 13401 diff --git a/MM_Math/data_original_21/7058807/math/52719941_951.png b/MM_Math/data_original_21/7058807/math/52719941_951.png deleted file mode 100644 index df353f2bca0063ab8d82c8cb67f94cb0ca915c96..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52719941_951.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:180d5df525c151ee430b86802248133d7863758b9b9c5f3bb134fe242d2cefe8 -size 13444 diff --git a/MM_Math/data_original_21/7058807/math/52720227_250.png b/MM_Math/data_original_21/7058807/math/52720227_250.png deleted file mode 100644 index d1bedf3e8d71093f9411e5b23a881dd43d6df9a4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52720227_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d50e9b26f5703355545255d6ae0e963afddb740da4192fdba34436a421c4edb7 -size 3657 diff --git a/MM_Math/data_original_21/7058807/math/52720239_920.png b/MM_Math/data_original_21/7058807/math/52720239_920.png deleted file mode 100644 index 9a0caabd4c72dc9da9534886cc4a106c2b853ff8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52720239_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75850c399addb95ef60d3ac9732982edd85d988c56854551e94a9d1c26f77e4f -size 7290 diff --git a/MM_Math/data_original_21/7058807/math/52720273_990.png b/MM_Math/data_original_21/7058807/math/52720273_990.png deleted file mode 100644 index c79397f0859e140e5946db4cfbeb580bedb82a56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52720273_990.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a38d91b914d6062ab7cf3f3112ceab0863c2e50582c0eb5f53f3cae2e511aba -size 4922 diff --git a/MM_Math/data_original_21/7058807/math/52720285_300.png b/MM_Math/data_original_21/7058807/math/52720285_300.png deleted file mode 100644 index 9ae636a307fd34667b938e895a30fa081721705f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52720285_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48b5239e1273ee602bba975daa93a395e3806cd34c3b296eb5883fa992b4a460 -size 6194 diff --git a/MM_Math/data_original_21/7058807/math/52720287_310.png b/MM_Math/data_original_21/7058807/math/52720287_310.png deleted file mode 100644 index 0930d37fdbe565c3049ad184c5a9eebd32be7f62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52720287_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fbdd7489b8732f84665a6620a40d932db19678ac03891bb3690618eab358f289 -size 3767 diff --git a/MM_Math/data_original_21/7058807/math/52720293_571.png b/MM_Math/data_original_21/7058807/math/52720293_571.png deleted file mode 100644 index 37382ee304a41ee3eb7b122cb46bf53d2bd8d7b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52720293_571.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8956102b7078d0e63e4ef2cdb9e256000c919b8888dd3f9862c3e020fb10a364 -size 36058 diff --git a/MM_Math/data_original_21/7058807/math/52720307_981.png b/MM_Math/data_original_21/7058807/math/52720307_981.png deleted file mode 100644 index 7fba6c9a3febb2b3be0e571f549be531656004fa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52720307_981.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f3d4dbe2638134c8064cab952edd1f8a2575b7002cfb26831138b2347f5b6d8 -size 7205 diff --git a/MM_Math/data_original_21/7058807/math/52755173_150.png b/MM_Math/data_original_21/7058807/math/52755173_150.png deleted file mode 100644 index 0a9a34e875524d29de6ef2f6ef547bf4ed30777f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52755173_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bfc6d2f2db817a00dc8666ae1e6a29a26b93276a11774e05eb396aba96e750d8 -size 6496 diff --git a/MM_Math/data_original_21/7058807/math/52765344_290.png b/MM_Math/data_original_21/7058807/math/52765344_290.png deleted file mode 100644 index aead5ec201689785d02f17f145954ca3092e1e55..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52765344_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:70b94c3365b1e4d764d4a505be24fc1606055de499e7b464aee026c149d170c2 -size 3387 diff --git a/MM_Math/data_original_21/7058807/math/52765389_531.png b/MM_Math/data_original_21/7058807/math/52765389_531.png deleted file mode 100644 index 4a02a5229f1f3370f7c5c996dd7e6b1e00c59220..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52765389_531.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0e81b0ddcef0f5b8205f9da49886a83328d98b2611910cb8fd698e356fc1665 -size 5379 diff --git a/MM_Math/data_original_21/7058807/math/52765452_940.png b/MM_Math/data_original_21/7058807/math/52765452_940.png deleted file mode 100644 index 786a828fb560283860d768fc20379dc1928b89f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52765452_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f92ee9c14c0f3fd229e86e4d9a28f6288616dac0a8f6b006eff164a4d0599e84 -size 3566 diff --git a/MM_Math/data_original_21/7058807/math/52765493_961.png b/MM_Math/data_original_21/7058807/math/52765493_961.png deleted file mode 100644 index c20093d54d5ab7fb2dce5634b79ac883be66be86..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52765493_961.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e033e8a640a8eeafe2f3b2d09c22d1e8e9a5e3b8cb9f41c134cea17b5acd0f98 -size 3764 diff --git a/MM_Math/data_original_21/7058807/math/52766163_930.png b/MM_Math/data_original_21/7058807/math/52766163_930.png deleted file mode 100644 index 11ec3dd0f5d387859d356182be3db50278e4f4ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52766163_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c6680aa5d485c9870583b62613724aef03ee999b8a7a73b308601e3ea4a1cdc2 -size 25200 diff --git a/MM_Math/data_original_21/7058807/math/52766211_5410.png b/MM_Math/data_original_21/7058807/math/52766211_5410.png deleted file mode 100644 index 0ab33bf3f92c03bc6f74daa30a083a5bcd3c460e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52766211_5410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1bf05b9234955e70b952c9e6822d79f4b56913b82bc62a02a1d04432815bc394 -size 4155 diff --git a/MM_Math/data_original_21/7058807/math/52766428_552.png b/MM_Math/data_original_21/7058807/math/52766428_552.png deleted file mode 100644 index 3591f5ea67ec613c22a0d7da441162579dd5c650..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52766428_552.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc2eed7c8beed93a0e01c806560440ca964b326d3a2bdf340235e986a682a82e -size 12936 diff --git a/MM_Math/data_original_21/7058807/math/52807541_430.png b/MM_Math/data_original_21/7058807/math/52807541_430.png deleted file mode 100644 index 407fb17fd3880068d7c44c05c0db165d64584b15..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52807541_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:795630428c4f01f1c65c9e43b429e7ea1f02e746883aa14ea3988e1eafa601da -size 4055 diff --git a/MM_Math/data_original_21/7058807/math/52814924_680.png b/MM_Math/data_original_21/7058807/math/52814924_680.png deleted file mode 100644 index 059111d0f0a51cc29ec6a64479ec0034dd46eea3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52814924_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6dfe62b3091adabbb5150c8d5c0a1a08257da2db80a7d25b9fc27d25104d8929 -size 25775 diff --git a/MM_Math/data_original_21/7058807/math/52874671_140.png b/MM_Math/data_original_21/7058807/math/52874671_140.png deleted file mode 100644 index bddf296bd8b2e3190039c7d25f1b61327f95fa12..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52874671_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c7e787922b88530a527fc3691f17706b062582517e7ba0e151648a9fad396d2 -size 31488 diff --git a/MM_Math/data_original_21/7058807/math/52913781_110.jpeg b/MM_Math/data_original_21/7058807/math/52913781_110.jpeg deleted file mode 100644 index 1016d30a6dfb9fb61be8c7bb6465832e84d63152..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52913781_110.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:84108168e63bc7267c1349b8f3868bfffb4b2721c8038feb1fbe0d1ecfd66362 -size 3762 diff --git a/MM_Math/data_original_21/7058807/math/52916624_410.png b/MM_Math/data_original_21/7058807/math/52916624_410.png deleted file mode 100644 index 293fa0c908051fee59085cb6e61bb64a30e5e17c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52916624_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8af74c7c905841f324ba8cab993faa1c4e44494db1ac3785aa43153c3c275d7 -size 25131 diff --git a/MM_Math/data_original_21/7058807/math/52917397_138.png b/MM_Math/data_original_21/7058807/math/52917397_138.png deleted file mode 100644 index 5f7ce16cec18cb16e2680fe646e2eb53acf300f1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52917397_138.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0a4ec6e5bed0d2f99e79a85fbe87b24f7f90a620a75ae72f4e46afa3141a7f2 -size 23692 diff --git a/MM_Math/data_original_21/7058807/math/52917439_128.png b/MM_Math/data_original_21/7058807/math/52917439_128.png deleted file mode 100644 index 19de27921bb27277f80ab62e2e98ea3301df0a62..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52917439_128.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e48e4d500936c80aaa204f8560c57e232f14bcecd0aece5d39b9f5d290232ec1 -size 5054 diff --git a/MM_Math/data_original_21/7058807/math/52933561_108.png b/MM_Math/data_original_21/7058807/math/52933561_108.png deleted file mode 100644 index b2c1620a6a8696285cd7828f895f7534bbd36650..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52933561_108.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7aa5ee8aa5d631782f93deb87a0be28ef44dc000cd80fa1620f7bee1f7ef9bac -size 50431 diff --git a/MM_Math/data_original_21/7058807/math/52936145_96.png b/MM_Math/data_original_21/7058807/math/52936145_96.png deleted file mode 100644 index 80c4ebd3482bfccf045353b2acff76c04170870b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52936145_96.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c2e1511441b526e08fec2070d273843b545c7ac7ad144dac4d55d8a61858cbf -size 44387 diff --git a/MM_Math/data_original_21/7058807/math/52966971_403.png b/MM_Math/data_original_21/7058807/math/52966971_403.png deleted file mode 100644 index b3469c69d7d3906ac09b40ec378e9d5c9a258d92..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52966971_403.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9967567c967faee3055d7caaa5fce06941fe0d42c3dbe122041e8a1fcf3a828 -size 33476 diff --git a/MM_Math/data_original_21/7058807/math/52977065_811.png b/MM_Math/data_original_21/7058807/math/52977065_811.png deleted file mode 100644 index 6e90f48326217eea373f25d8ecf8cc0ee6ac5a0e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52977065_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e748fe98f67a685c04ea1e008d4884a36a02ae4c6ca16de82904e928c4e884bc -size 4368 diff --git a/MM_Math/data_original_21/7058807/math/52977736_398.png b/MM_Math/data_original_21/7058807/math/52977736_398.png deleted file mode 100644 index 4cbb6e4721353ce6f489741f308785a009f90a4c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52977736_398.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ba5d1e5c8ec95ce294209e1c4d2e653ff72d1a0763a0e665312957b9814028e -size 3115 diff --git a/MM_Math/data_original_21/7058807/math/52978026_380.png b/MM_Math/data_original_21/7058807/math/52978026_380.png deleted file mode 100644 index 233a01dfa8c19f478417e26137d2589715da49d6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52978026_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec12cf3e7fcebbf1f2f8210033b95102b9c12a018d7a06b77547e93104b07e38 -size 3930 diff --git a/MM_Math/data_original_21/7058807/math/52991321_60.png b/MM_Math/data_original_21/7058807/math/52991321_60.png deleted file mode 100644 index 9c802f9b8b2b6c5fe173860ab91480f639ef92ed..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52991321_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:158e149009a09b9ba227a3ebe67b45c5ff95643024cbd7d11f98340518c2146e -size 4740 diff --git a/MM_Math/data_original_21/7058807/math/52991505_75.png b/MM_Math/data_original_21/7058807/math/52991505_75.png deleted file mode 100644 index 1bd69b3298941fa2a1060fccd44807e6c98aeec3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/52991505_75.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c0bfe85524e152446a298bf1867002265ee9396bd93f20a7b81002e3f897ee1 -size 52830 diff --git a/MM_Math/data_original_21/7058807/math/53009784_370.jpeg b/MM_Math/data_original_21/7058807/math/53009784_370.jpeg deleted file mode 100644 index 661c20232648ce29f3653b71357372ce3bfcedc0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53009784_370.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8c6f1a51accf5e2770ab972e6e030af54e37ceb8a61b9a932ff4e20f216966e -size 2729 diff --git a/MM_Math/data_original_21/7058807/math/53019750_674.png b/MM_Math/data_original_21/7058807/math/53019750_674.png deleted file mode 100644 index 7decdc77329c100c97ec79cc66eba1dac2876570..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53019750_674.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:316d8ba95f661e0fc75888224a25438f0209c8229740bdb1afd45bec654cbc9e -size 32209 diff --git a/MM_Math/data_original_21/7058807/math/53019892_662.png b/MM_Math/data_original_21/7058807/math/53019892_662.png deleted file mode 100644 index 6116ac6b8f386ebbf5a4017598f78b7fa9c67ac3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53019892_662.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2ea34310470516132a857e6f898b90c657acd93fe2a5236425f85a70668a6e4 -size 4054 diff --git a/MM_Math/data_original_21/7058807/math/53019902_59.png b/MM_Math/data_original_21/7058807/math/53019902_59.png deleted file mode 100644 index 0a3351149e8a5b495597ee7bd71fd6674a796638..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53019902_59.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a0ae25d6c1e7947e96038860ce1e6db5e58d1af0b5df91f2f64d9b5480293294 -size 7700 diff --git a/MM_Math/data_original_21/7058807/math/53019920_656.png b/MM_Math/data_original_21/7058807/math/53019920_656.png deleted file mode 100644 index 50dd9a2c5b235843c8451f95eff4f706818884f5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53019920_656.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:432b90743c6f20f1a283fa0091453411f7a9680da787aab20ffec3e1bc73bc49 -size 39205 diff --git a/MM_Math/data_original_21/7058807/math/53043272_637.png b/MM_Math/data_original_21/7058807/math/53043272_637.png deleted file mode 100644 index 9d1bd02587e58deebe8c5f4f677cd68a7232b524..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53043272_637.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:808c8aa80b943ec4af78a2c13d3c0b17af4cb0d21ab3d345fa25ece3a48d001b -size 4263 diff --git a/MM_Math/data_original_21/7058807/math/53065827_584.png b/MM_Math/data_original_21/7058807/math/53065827_584.png deleted file mode 100644 index dae979b08216166f7a21f3d0d80a7ef46d6a4244..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53065827_584.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fbaf93653cb3e31bd60990f2e71f7571913d584fbdca2e72ad5fb31528abd2b0 -size 3266 diff --git a/MM_Math/data_original_21/7058807/math/53066236_353.png b/MM_Math/data_original_21/7058807/math/53066236_353.png deleted file mode 100644 index 3a9236c3ae795b0c80cea301bbccaff780d9aa03..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53066236_353.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72224566b5363c49190ce252d29ba31a7d5d33ae210dc54e813f527a6e7c2bae -size 8304 diff --git a/MM_Math/data_original_21/7058807/math/53066245_608.png b/MM_Math/data_original_21/7058807/math/53066245_608.png deleted file mode 100644 index ad92ca8fa35dc56a65165531c8490e05ca4354b1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53066245_608.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8df1bc058931d95cc13652185e1c32725fdd48bdfe14fbe7c36657c9b5df1707 -size 53731 diff --git a/MM_Math/data_original_21/7058807/math/53078950_349.png b/MM_Math/data_original_21/7058807/math/53078950_349.png deleted file mode 100644 index 4fbf04941de76b10bebb2913fc0c935720f30d57..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53078950_349.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cabd3e80a2a3168c39f786235642817f63a5af2ee89aacf96c3f7fdedb334955 -size 5685 diff --git a/MM_Math/data_original_21/7058807/math/53078987_333.png b/MM_Math/data_original_21/7058807/math/53078987_333.png deleted file mode 100644 index 0446f4df9152b9353c07762e4b3382305e416e4c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53078987_333.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da3b7a28c4ed4e883b389ab0def8cc08a18dc36608559663284a68e1fcbd39c0 -size 4036 diff --git a/MM_Math/data_original_21/7058807/math/53080524_10.png b/MM_Math/data_original_21/7058807/math/53080524_10.png deleted file mode 100644 index 0ae4b5617c12547177c1b71dae67fecd62bac069..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53080524_10.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3d909525748326978648bf9069a4ef00ec5b365d03b9eb411fa20595081b221 -size 18683 diff --git a/MM_Math/data_original_21/7058807/math/53080530_321.png b/MM_Math/data_original_21/7058807/math/53080530_321.png deleted file mode 100644 index cbe7dbb1ea9fa6088062485c080f128c9763680d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53080530_321.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ca87cf3161438260e50d01aeb076fa0e3c715d6fdab1da5dfcfa0463e8bdabb -size 43834 diff --git a/MM_Math/data_original_21/7058807/math/53080618_590.png b/MM_Math/data_original_21/7058807/math/53080618_590.png deleted file mode 100644 index cc60282fa13d7562b28d56ac161e0e036904feb1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53080618_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:84774f766bdc33539f32a6814ad4afaa5a990a08cd12539459abbb4ad01d6c1e -size 4976 diff --git a/MM_Math/data_original_21/7058807/math/53081474_04.png b/MM_Math/data_original_21/7058807/math/53081474_04.png deleted file mode 100644 index 07dad5699345f10a3214d667964ca2ff218d0ca9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53081474_04.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7051da2d11ab31aeb64e22e5f9493ba7b06b88b7cfbf42f6926096594693bdd6 -size 4424 diff --git a/MM_Math/data_original_21/7058807/math/53101898_6412.png b/MM_Math/data_original_21/7058807/math/53101898_6412.png deleted file mode 100644 index f6e0423b4f4ed7769fab41cd2d32bfe96be52256..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53101898_6412.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c486c65e632a092c1e38ee110cc086af13de92dc07a5ad7d510ba8b9cab324f -size 16900 diff --git a/MM_Math/data_original_21/7058807/math/53102103_43.png b/MM_Math/data_original_21/7058807/math/53102103_43.png deleted file mode 100644 index a5b265cfd10851e86528c9177945321fcb2ec8f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53102103_43.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c6967a269ba3f5363c318b5592cb355b7ae23205145fa2e26300ab4794237a5c -size 49704 diff --git a/MM_Math/data_original_21/7058807/math/53110761_366.png b/MM_Math/data_original_21/7058807/math/53110761_366.png deleted file mode 100644 index ca0f82629078c97bd3d939b1d17397e0f1f5a890..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53110761_366.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4e68395055201ad12279f268416c063c027fd61b2261796f0259c8836b102b5d -size 19135 diff --git a/MM_Math/data_original_21/7058807/math/53110769_614.png b/MM_Math/data_original_21/7058807/math/53110769_614.png deleted file mode 100644 index 21e136045b9c9ffb12ce3f193d8d735dcc137f32..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53110769_614.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:89e04d71ee84587dca45db58de5905a0fa7e1aaf1d3c18e06e007914a4f4dc23 -size 179060 diff --git a/MM_Math/data_original_21/7058807/math/53110813_626.png b/MM_Math/data_original_21/7058807/math/53110813_626.png deleted file mode 100644 index ff8ba2b6c139fcfd0d872be51ae855c4fc8dddbe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53110813_626.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fd307b6da5eb59a6ff25982e02166418beb8f663d2892b6ea342c5cb8ac7752d -size 3522 diff --git a/MM_Math/data_original_21/7058807/math/53147460_20.png b/MM_Math/data_original_21/7058807/math/53147460_20.png deleted file mode 100644 index 73889e16422789beda2f8cf607571bb7cfb3e223..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53147460_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44d1ed29dc0126954d3d67a40cf5d62386d304a6c4f2a23de7fb2e7981a98214 -size 18398 diff --git a/MM_Math/data_original_21/7058807/math/53147973_37.png b/MM_Math/data_original_21/7058807/math/53147973_37.png deleted file mode 100644 index 4e092fc32d3e1008cd9d875cb8423ac8f6609785..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/53147973_37.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a82b6f81a0934d00cc6469b32b847d36b450acce0a9f8b70569eea1d0a72ad5 -size 67424 diff --git a/MM_Math/data_original_21/7058807/math/55138394_420.png b/MM_Math/data_original_21/7058807/math/55138394_420.png deleted file mode 100644 index 6414812ed446d7f6e56db5fa4af08cdbc1fa5379..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/math/55138394_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ae3a38095904980a74845e69e4f38d7e9f97181202eaae4bd5f936550b8df9b -size 26894 diff --git a/MM_Math/data_original_21/7058807/solution_images/51299784_220.png b/MM_Math/data_original_21/7058807/solution_images/51299784_220.png deleted file mode 100644 index 71872522db6819fde7c929ced7770d362d8513c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51299784_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d9d263b2d5362a2e4ff45123fb7983883485371edaf14868c9a116e90301950 -size 8087 diff --git a/MM_Math/data_original_21/7058807/solution_images/51402227_520.png b/MM_Math/data_original_21/7058807/solution_images/51402227_520.png deleted file mode 100644 index 9f03aad3afb816073550538fa3d89fd9e1d9b04a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51402227_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3821048f73912089d04bec13fbd0ee188346b253ecfc6c78ccdf28ad1ed880c3 -size 7218 diff --git a/MM_Math/data_original_21/7058807/solution_images/51402793_230.png b/MM_Math/data_original_21/7058807/solution_images/51402793_230.png deleted file mode 100644 index 6a1aaaa1b16e1dcccb1c95e996dbffe4895371dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51402793_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:061cb43490f3a2ca192315a46bbbe90805faf32dc15e4e2df226c4a1bdd3dcec -size 10549 diff --git a/MM_Math/data_original_21/7058807/solution_images/51402984_240.png b/MM_Math/data_original_21/7058807/solution_images/51402984_240.png deleted file mode 100644 index 9c12eef70b80e6332a813fd84e983d87015e2ff3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51402984_240.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4ef99c06587ebccec3ae744ed1a65ad9948b1a4b834519c61918ce38510e6d1 -size 7090 diff --git a/MM_Math/data_original_21/7058807/solution_images/51433278_480.png b/MM_Math/data_original_21/7058807/solution_images/51433278_480.png deleted file mode 100644 index 14d8331ea2ef74b2577040de50d5a9c8bf45eeb7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51433278_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:85221c25dfedc27296a963d892e2a81f88a68bfdba9bf413ae56729b5201c7cf -size 5125 diff --git a/MM_Math/data_original_21/7058807/solution_images/51433564_190.png b/MM_Math/data_original_21/7058807/solution_images/51433564_190.png deleted file mode 100644 index 2a091de11375a1e89abca4021eda6e0f39ba6dd2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51433564_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f65ac02ba00088b6862ade19e992b194f38549b18ed0125d5b9b269434dec498 -size 9960 diff --git a/MM_Math/data_original_21/7058807/solution_images/51433712_470.png b/MM_Math/data_original_21/7058807/solution_images/51433712_470.png deleted file mode 100644 index d094f7ca767c5e35471a0b91d3215f88b1f8f1d3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51433712_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ca71f62ebcebfeb1545bdebe2cf9c50af0b251497089c0116b019ddbfb38d92 -size 23189 diff --git a/MM_Math/data_original_21/7058807/solution_images/51445528_500.png b/MM_Math/data_original_21/7058807/solution_images/51445528_500.png deleted file mode 100644 index cfd01c5561bd4c703004416085e7b71fa4bb1003..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51445528_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:858a4c0c121c5094a712a2289baac2ca1d6678c2a80c19269967ba61b2841424 -size 9950 diff --git a/MM_Math/data_original_21/7058807/solution_images/51445528_506.png b/MM_Math/data_original_21/7058807/solution_images/51445528_506.png deleted file mode 100644 index 9e8c291578cfb53b104b4a99b9f204bbf4028ab5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51445528_506.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0bf045f3f91f30a0cd5e897b576d7739bf83a60aa295541366f27ef86abedc73 -size 13452 diff --git a/MM_Math/data_original_21/7058807/solution_images/51446421_490.png b/MM_Math/data_original_21/7058807/solution_images/51446421_490.png deleted file mode 100644 index 90cd59fabb56b17d6f89c603918d62b4ed93f2a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51446421_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63bb8ff4c8df7efff7f8dc99f158abcaedb794880fffe6b22d3b1fdc8d819723 -size 4473 diff --git a/MM_Math/data_original_21/7058807/solution_images/51545212_280.png b/MM_Math/data_original_21/7058807/solution_images/51545212_280.png deleted file mode 100644 index 60f1d46d9a7ece620088504b2e42e4532643a837..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/51545212_280.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6c98caa35f1637df8133667891dcf04abda1325b5496302c05f217e2b1d4d94d -size 6895 diff --git a/MM_Math/data_original_21/7058807/solution_images/52536919_180.png b/MM_Math/data_original_21/7058807/solution_images/52536919_180.png deleted file mode 100644 index 1b6af163075d10a7bcb4ebb980cea276a131db50..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52536919_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32708dd98f2c8465f040e660770010254788b3abb3a633848aa379440f63b7ac -size 4305 diff --git a/MM_Math/data_original_21/7058807/solution_images/52551789_440.png b/MM_Math/data_original_21/7058807/solution_images/52551789_440.png deleted file mode 100644 index b1b95900792fba65bde19c77472899dad9f1a4cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52551789_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5af897d5d9fff5bb60b560ad8bdce70c81b0f5433ed3f4f372eb8ce2075f205f -size 5029 diff --git a/MM_Math/data_original_21/7058807/solution_images/52601694_270.png b/MM_Math/data_original_21/7058807/solution_images/52601694_270.png deleted file mode 100644 index c1aea2eb7be751821cd4bbac31cd8cc97850c318..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52601694_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87e9c102baefdb5c3a6a7d5453710e1c3c8bcc5bddcb527fd8bfa83dae58fcb5 -size 4472 diff --git a/MM_Math/data_original_21/7058807/solution_images/52602674_562.png b/MM_Math/data_original_21/7058807/solution_images/52602674_562.png deleted file mode 100644 index 907cd7a46b92361c502556b4ad061efb223383a7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52602674_562.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ed565acd9f27d23111f248d2f1f484f9ac67eeeb1759e355555c20e3bc27bbf -size 9548 diff --git a/MM_Math/data_original_21/7058807/solution_images/52634229_1610.png b/MM_Math/data_original_21/7058807/solution_images/52634229_1610.png deleted file mode 100644 index ccd4f7663b691d7cc82e017b91132173a0d8ba67..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52634229_1610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fde04b6a69f95dea7e964be206361769bc7db0b13c8ac6a26616d6e2e2c33315 -size 4250 diff --git a/MM_Math/data_original_21/7058807/solution_images/52720227_250.png b/MM_Math/data_original_21/7058807/solution_images/52720227_250.png deleted file mode 100644 index 0f0f1ad7bd5d48de35aa5a5f2c4bf232be389822..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52720227_250.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8df6c24989b49498d9fa269e1b7348b22cbd309a0677177d5a047ba581f40e0b -size 4403 diff --git a/MM_Math/data_original_21/7058807/solution_images/52720285_300.png b/MM_Math/data_original_21/7058807/solution_images/52720285_300.png deleted file mode 100644 index 0aa3acd5b36654033f56c760665bc85eab548b65..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52720285_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63c6ada0ff89383996bc4a88b6ba717cad6cc2bee0eaf25f76ced4b0359afe65 -size 6585 diff --git a/MM_Math/data_original_21/7058807/solution_images/52720293_570.png b/MM_Math/data_original_21/7058807/solution_images/52720293_570.png deleted file mode 100644 index bf0c99bc7bc386ce55e9ec90fda36cafeaca7a88..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52720293_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b390268b69e40178d77f27992313e57875c3d9108d2125ee17f6b6fa0630d85 -size 41635 diff --git a/MM_Math/data_original_21/7058807/solution_images/52755173_150.png b/MM_Math/data_original_21/7058807/solution_images/52755173_150.png deleted file mode 100644 index 7e16c185ea496a02abbe063640b91e2a32d65388..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52755173_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3218785cd7e1991adf4c35426aec02c211ffd596a561bc14a842541d0bb0f20e -size 6962 diff --git a/MM_Math/data_original_21/7058807/solution_images/52765389_530.png b/MM_Math/data_original_21/7058807/solution_images/52765389_530.png deleted file mode 100644 index d9d7662b7536632499a4492b6262b6b753f67b58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52765389_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d009fa422c7df9dec3fd282a1ef276bbca065586e35e4fe4f975bd8e731e30e4 -size 5779 diff --git a/MM_Math/data_original_21/7058807/solution_images/52766428_550.png b/MM_Math/data_original_21/7058807/solution_images/52766428_550.png deleted file mode 100644 index 984bfc7d2cbe311facee922245d61a92d2d77527..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52766428_550.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7dccc7153e00420bd6dc234a0a0c58e99a2472560f1519595de9de139e0da697 -size 15165 diff --git a/MM_Math/data_original_21/7058807/solution_images/52807541_430.png b/MM_Math/data_original_21/7058807/solution_images/52807541_430.png deleted file mode 100644 index 238a8d523bd1fb5abd912008c71d77e9226d5829..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52807541_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9efcb7006c78ea90db37b30b8e79a8cc0980a65919bbeaa8ceb6a35b10cc4fd4 -size 4588 diff --git a/MM_Math/data_original_21/7058807/solution_images/52807541_435.png b/MM_Math/data_original_21/7058807/solution_images/52807541_435.png deleted file mode 100644 index 9b1d41a767f92115e7b70e032b13ca9964999e53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52807541_435.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a45a39f916e5196a18311713a299e5c6f90216b9f89a389f4dfe19a381331bb0 -size 4295 diff --git a/MM_Math/data_original_21/7058807/solution_images/52874671_140.jpg b/MM_Math/data_original_21/7058807/solution_images/52874671_140.jpg deleted file mode 100644 index 1d8a3265ebc2187faa160fd926430c0c7f52e1c9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52874671_140.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c3b5d463bc376ed533d6a2158efcad0efa8f43101ae0b946c6902b17439d0cf6 -size 4904 diff --git a/MM_Math/data_original_21/7058807/solution_images/52913781_110.jpeg b/MM_Math/data_original_21/7058807/solution_images/52913781_110.jpeg deleted file mode 100644 index 1ba162e50036ceb5031dcb5c04655a9eda25af55..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52913781_110.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:912925e916470cc979c727b5faab543d53e795921042442419d418882a5f56cf -size 3994 diff --git a/MM_Math/data_original_21/7058807/solution_images/52916624_410.png b/MM_Math/data_original_21/7058807/solution_images/52916624_410.png deleted file mode 100644 index 01446cb1669e8e9d6bf16d2cc5a884c8a75a8e82..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52916624_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa29efdb0e2a109d0fe4db2fe1283473ad04a38f29375624e461dc3d3b5a5be0 -size 18038 diff --git a/MM_Math/data_original_21/7058807/solution_images/52917397_133.png b/MM_Math/data_original_21/7058807/solution_images/52917397_133.png deleted file mode 100644 index ee51f0a6c42e88853bf60eb34ae63c8725b47588..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52917397_133.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c9789d07ea0b2fcacecd9abd86161d3523a0edbcd449ef815186a81792dc0f8 -size 26427 diff --git a/MM_Math/data_original_21/7058807/solution_images/52917439_120.png b/MM_Math/data_original_21/7058807/solution_images/52917439_120.png deleted file mode 100644 index e51b4aee1c93e29928ac8b421da6942dd0267834..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52917439_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a5aa4e320e84e6db2615e8940ffe7221e4282c4b9d8c42fd971894e4fb8ec13 -size 7575 diff --git a/MM_Math/data_original_21/7058807/solution_images/52933561_101.png b/MM_Math/data_original_21/7058807/solution_images/52933561_101.png deleted file mode 100644 index ff99286a0ce9945bfc2b0a96ee1eb41337163777..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52933561_101.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9013feaf6cb4866cab206283229b692795df4d41a81363686056bb7e6f4dd2f9 -size 65256 diff --git a/MM_Math/data_original_21/7058807/solution_images/52936145_90.png b/MM_Math/data_original_21/7058807/solution_images/52936145_90.png deleted file mode 100644 index e0ae0a1f20a983e4cf96b397ad7e71ebf5b7a91d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52936145_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:404d4bb11c001be0aeccabb79dbcbf81493fae1cad1080b618c6f31f3f32a747 -size 4897 diff --git a/MM_Math/data_original_21/7058807/solution_images/52966971_400.png b/MM_Math/data_original_21/7058807/solution_images/52966971_400.png deleted file mode 100644 index 19ac4ffacdfb0d40d74e907ecfa0e56b1c5cfcea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52966971_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:796976041e98f453e9e5ec3ffeb30c54ffb93f9766d742e7470a819612f2f11f -size 34374 diff --git a/MM_Math/data_original_21/7058807/solution_images/52977065_81.png b/MM_Math/data_original_21/7058807/solution_images/52977065_81.png deleted file mode 100644 index 129f98823845b83b064858c10f4f52197051a166..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52977065_81.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d39704310cd2f11a27046b098bbb18afbd4abd1cb68001e897c85c5bb19dad9f -size 11444 diff --git a/MM_Math/data_original_21/7058807/solution_images/52978026_380.png b/MM_Math/data_original_21/7058807/solution_images/52978026_380.png deleted file mode 100644 index ea93cb38804cae26f5006247d5ff049c70fe38fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52978026_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0840e9d15a2219684dabac73fbc99c14fff8fcf726b7e57bd8be30c11cfe9fa0 -size 4688 diff --git a/MM_Math/data_original_21/7058807/solution_images/52991321_60.png b/MM_Math/data_original_21/7058807/solution_images/52991321_60.png deleted file mode 100644 index 1441d2c97ba6b9b33ff1673483ef357d497882fb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/52991321_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3cc95a4e3297a8ce418f27537a3a3915acf09cc80ae9b75cc98f65e2adea681e -size 9083 diff --git a/MM_Math/data_original_21/7058807/solution_images/53009784_370.jpeg b/MM_Math/data_original_21/7058807/solution_images/53009784_370.jpeg deleted file mode 100644 index dc079ffb9fb2372ae97a5dfbd88c733a7f8e5a23..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/53009784_370.jpeg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a900e1a9f182090d20fdafa95d110abbc86f5a4cd58b65e1937bc4ed2a278a51 -size 3843 diff --git a/MM_Math/data_original_21/7058807/solution_images/53019902_51.png b/MM_Math/data_original_21/7058807/solution_images/53019902_51.png deleted file mode 100644 index 7e141e135ad0e14c9d124d01b3e2573a7a5f1097..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/53019902_51.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6c8c4777189373e44889ef1cfe2e9a4cc8067f28cb35beb735d9b41b11e27285 -size 344908 diff --git a/MM_Math/data_original_21/7058807/solution_images/53066236_350.png b/MM_Math/data_original_21/7058807/solution_images/53066236_350.png deleted file mode 100644 index d3056e5dede840da9d2ea7b705d91321cd0fbe9d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/53066236_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d9fbf0d59152911f7dd6d8117c5a28a40a63e8bb56a14fbed2244ee3ed4f9a27 -size 50553 diff --git a/MM_Math/data_original_21/7058807/solution_images/53080524_15.png b/MM_Math/data_original_21/7058807/solution_images/53080524_15.png deleted file mode 100644 index 71382c103627ad570f5cd2c630d283e12f63d5d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/53080524_15.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08c7a13e329c0b88343faba18ff1b10a6e973c04571614c05507e34064936774 -size 34380 diff --git a/MM_Math/data_original_21/7058807/solution_images/53081474_00.png b/MM_Math/data_original_21/7058807/solution_images/53081474_00.png deleted file mode 100644 index 7c654c85c51b00268770045382e6baac659f87eb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/53081474_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:691af42e1baa165346e11a79ee56487e934607083d78ab49ec66e0a0c0ef50ec -size 8434 diff --git a/MM_Math/data_original_21/7058807/solution_images/53102103_42.png b/MM_Math/data_original_21/7058807/solution_images/53102103_42.png deleted file mode 100644 index 21ffd71eee8f6d70f45325393f3530feb651dc3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/53102103_42.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d37e6644a15791073d963c529dda2bf59845e3a501b7134801fe048bf5b502f5 -size 54791 diff --git a/MM_Math/data_original_21/7058807/solution_images/53110761_364.png b/MM_Math/data_original_21/7058807/solution_images/53110761_364.png deleted file mode 100644 index 6de46e19665152157e9f14b8879b0663d471b13e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/53110761_364.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72819f7dfb089a0232dbdd51797f2435b934093be7657b14abc8aa4e44704d51 -size 20911 diff --git a/MM_Math/data_original_21/7058807/solution_images/53147973_30.png b/MM_Math/data_original_21/7058807/solution_images/53147973_30.png deleted file mode 100644 index df015e5ee40d9f3c20ee3ab5a607dad6a25eeab9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/53147973_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e79fd59b8c12d16a65d7d5b7280fa60ecdd20f7ef1a42a3382559b7f30102c6 -size 74227 diff --git a/MM_Math/data_original_21/7058807/solution_images/55138394_420.png b/MM_Math/data_original_21/7058807/solution_images/55138394_420.png deleted file mode 100644 index 9b1c28f76830d9a17dfbe2566e9e2ac7b6062683..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058807/solution_images/55138394_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e1bc736b38c26f965d24d0b8461db3042eb7d721b99461e3fbc246b66805b10b -size 14535 diff --git a/MM_Math/data_original_21/7058811/math/3659017_371.png b/MM_Math/data_original_21/7058811/math/3659017_371.png deleted file mode 100644 index 43f1fa8b1063a1a4ccdeb24e9847bb011ba0c922..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/3659017_371.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d99b5bcd5c2ffa2f7b5caa115d1cece402aa9f793c96484aa5d07fbd1446e71 -size 5400 diff --git a/MM_Math/data_original_21/7058811/math/50126432_00.png b/MM_Math/data_original_21/7058811/math/50126432_00.png deleted file mode 100644 index 9f08a28222a9ac5b594f2edba7047fc5768dfef9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/50126432_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6099f3c419e3b5f97c293e2251c60f6ba040fa835a6635ca7b2dee490091032a -size 19602 diff --git a/MM_Math/data_original_21/7058811/math/50322886_8211.png b/MM_Math/data_original_21/7058811/math/50322886_8211.png deleted file mode 100644 index ed81c9531616ec2d54698caf488fd020a69d7043..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/50322886_8211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39b77b00e6e702ca258e22afe371784740928515939ddc74e568cfa3d65b26b9 -size 5804 diff --git a/MM_Math/data_original_21/7058811/math/50322915_310.png b/MM_Math/data_original_21/7058811/math/50322915_310.png deleted file mode 100644 index 016390f4e3df451b0c9afa7cda98b75ef9e9bd28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/50322915_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6eb587ed1b23e3385225f36d5991777951b4550c4fde140cd4d03fd307fa316 -size 2978 diff --git a/MM_Math/data_original_21/7058811/math/50322995_813.png b/MM_Math/data_original_21/7058811/math/50322995_813.png deleted file mode 100644 index c8bc18514b261b340032e455315959d7ad978074..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/50322995_813.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da635b529aa8b33182846508ab1155cc838191b9fdf91391d1d9140fdaaf841b -size 2423 diff --git a/MM_Math/data_original_21/7058811/math/50360712_809.png b/MM_Math/data_original_21/7058811/math/50360712_809.png deleted file mode 100644 index b3a13b5739963b49a52d1b19a505059df9476bb9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/50360712_809.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9cfefc58b19c917bf178577c03ca63fb24d48b32af05fa50bcd389802edf81d -size 10480 diff --git a/MM_Math/data_original_21/7058811/math/50583927_850.png b/MM_Math/data_original_21/7058811/math/50583927_850.png deleted file mode 100644 index 7fa7051bdfa02e126e96fd19b6710451e49ac573..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/50583927_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:803829ab51c3bc24a44b944965d3c0596e037e7c26928e617542d10d971b3e1d -size 2890 diff --git a/MM_Math/data_original_21/7058811/math/50584152_352.jpg b/MM_Math/data_original_21/7058811/math/50584152_352.jpg deleted file mode 100644 index 0f837137d8300ef8ab4c1b0ea9a0267487b39a50..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/50584152_352.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34460a65410a6ca3744132e604ccddd2552a1e8bf58ee5315d6db520c9fd23a3 -size 12392 diff --git a/MM_Math/data_original_21/7058811/math/50584300_340.jpg b/MM_Math/data_original_21/7058811/math/50584300_340.jpg deleted file mode 100644 index a4c4e10a7842d4ff187ce17afd410baf6d98e47c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/50584300_340.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51e114af3b8c3f72f2d7a3ae487c903cd698fe5449c5cc7ffd441f8875903732 -size 13499 diff --git a/MM_Math/data_original_21/7058811/math/51444993_196.png b/MM_Math/data_original_21/7058811/math/51444993_196.png deleted file mode 100644 index 45fa48d0ec16d77e539ce8f1386bc274b63eec05..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51444993_196.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b14d335e4406d07742637783d4551e34efb29c674e2bde52eef54da924499298 -size 6344 diff --git a/MM_Math/data_original_21/7058811/math/51445039_188.png b/MM_Math/data_original_21/7058811/math/51445039_188.png deleted file mode 100644 index 4fe1a2abd7ef508b014dcc4550bf2ecffb7ba216..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51445039_188.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b46e0bf43bf4efeaa96363734525249ec934a4c2a67fa07dc54dc15c2f78165 -size 11693 diff --git a/MM_Math/data_original_21/7058811/math/51445130_300.png b/MM_Math/data_original_21/7058811/math/51445130_300.png deleted file mode 100644 index 0dc08e8ccef4f57d4dcc798fa0fbe4514c5ec2e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51445130_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5612e77c50cbebfe0484d66a2b0670fb728962368403ee62b4f3f23e96184f71 -size 11489 diff --git a/MM_Math/data_original_21/7058811/math/51445131_799.png b/MM_Math/data_original_21/7058811/math/51445131_799.png deleted file mode 100644 index 8cf730e0a0b0ba00fb184a25580d2ae72d63cfa8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51445131_799.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f13343126a36f4f1c746bc6e340bfd26c5d81c52bc174b4865702a21f80a4392 -size 7651 diff --git a/MM_Math/data_original_21/7058811/math/51445135_789.png b/MM_Math/data_original_21/7058811/math/51445135_789.png deleted file mode 100644 index f298e8d7964d5e9235f80992b84a11d578c5f055..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51445135_789.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:576e8a9db4f951b74816302c7908202c16fd358c7667df8525da4b2d64d8ede6 -size 6434 diff --git a/MM_Math/data_original_21/7058811/math/51445145_984.png b/MM_Math/data_original_21/7058811/math/51445145_984.png deleted file mode 100644 index 7b2368f2a29f895843aecb37a66ef6bfcaf681d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51445145_984.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff16e3813b055bcb81fad0537932ef7085cdab11f833f571d1974e68f56ef332 -size 5037 diff --git a/MM_Math/data_original_21/7058811/math/51445173_704.png b/MM_Math/data_original_21/7058811/math/51445173_704.png deleted file mode 100644 index 6c98cf53deb09de9b36463c1cfcde1e1ce3613cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51445173_704.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12ae20b139f4eab782eeeb2365cdc361de0c1a0ce16a7d2524ba5d8d248dcb93 -size 4076 diff --git a/MM_Math/data_original_21/7058811/math/51491918_291.png b/MM_Math/data_original_21/7058811/math/51491918_291.png deleted file mode 100644 index a6f8348ca9bd70d50f3591c51188b9c158009a02..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51491918_291.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8cede92235bae952d5026d640055a9c08649c35d7ef95261ebeb0e3c5d2861ce -size 11346 diff --git a/MM_Math/data_original_21/7058811/math/51496547_772.png b/MM_Math/data_original_21/7058811/math/51496547_772.png deleted file mode 100644 index feb8c3c0d934f0964396c404c4a90fc8c3e8b1e5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51496547_772.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:556243dc4d290c4455c3a88c334fddc54bdf5b993493105187df0d95e6e04051 -size 4726 diff --git a/MM_Math/data_original_21/7058811/math/51496703_285.jpg b/MM_Math/data_original_21/7058811/math/51496703_285.jpg deleted file mode 100644 index 6bbfef3ba0d1febcf81a1b5cedeb3d568b99a168..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51496703_285.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90a596a73bec4904983fb4d51af77df7559674a8b66d8aaca0c747a89b36de8f -size 3583 diff --git a/MM_Math/data_original_21/7058811/math/51496741_976.png b/MM_Math/data_original_21/7058811/math/51496741_976.png deleted file mode 100644 index 7f71e414df572fcf172d8333b063a0a89028117f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51496741_976.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:948f669f0c5eedaeae44bfeb09e56ac5da8c389629905a7d06ee1978afad6221 -size 3880 diff --git a/MM_Math/data_original_21/7058811/math/51496741_977.png b/MM_Math/data_original_21/7058811/math/51496741_977.png deleted file mode 100644 index d9c6d6d76fe0cbebddc1b48be77c22faf28208fd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51496741_977.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:485b1e4d8bb1183c9e40d51c0044542c8ac686a5dac04e773688bb50c29b2df0 -size 4319 diff --git a/MM_Math/data_original_21/7058811/math/51496741_978.jpg b/MM_Math/data_original_21/7058811/math/51496741_978.jpg deleted file mode 100644 index 4a7c21dc1e0c7324812c4067ee07ac65de1f876b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51496741_978.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cba0d6a04b93f62d7249500a5430b1ba9a55a5158ad341e4cbfbdbedca35cc5b -size 4229 diff --git a/MM_Math/data_original_21/7058811/math/51496823_274.png b/MM_Math/data_original_21/7058811/math/51496823_274.png deleted file mode 100644 index 07b59573ffc2391dc1a9450c36690cb9330dc26f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51496823_274.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae589815c6f30f58882e2be257df1e0ce0637d14605057a7fba9a5b320da97e2 -size 3709 diff --git a/MM_Math/data_original_21/7058811/math/51497073_7612.png b/MM_Math/data_original_21/7058811/math/51497073_7612.png deleted file mode 100644 index 2dbe6977009acb41c1f5c62b39f4e2dbbe844583..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51497073_7612.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:692bd3bb442c2b30108196cd92445caed1672412a6a958abe4e72814561ea075 -size 9210 diff --git a/MM_Math/data_original_21/7058811/math/51531726_840.png b/MM_Math/data_original_21/7058811/math/51531726_840.png deleted file mode 100644 index 94272f79312cc51855d18c9c52318c794acb642d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51531726_840.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b018b6bcae8da4c12185ad569f6e98ef0efb51896b6a2060588ed6d24c4ea3aa -size 2560 diff --git a/MM_Math/data_original_21/7058811/math/51540105_331.png b/MM_Math/data_original_21/7058811/math/51540105_331.png deleted file mode 100644 index 040f52f2d0d98dddb0367e23398355f58835e27f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51540105_331.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4482bcfa1a8eacce89ff2cfa6f1ed036ddcac80d8e55a3e1931ce3a95b912058 -size 3507 diff --git a/MM_Math/data_original_21/7058811/math/51554733_250.jpg b/MM_Math/data_original_21/7058811/math/51554733_250.jpg deleted file mode 100644 index 3ca7eb4cf4c5fde7d1cd006164375ef4f290ed9a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51554733_250.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e536012977e4cc3e39357329e44902b7775699a1501a031b96621f5c8cc7e234 -size 4384 diff --git a/MM_Math/data_original_21/7058811/math/51569291_240.jpg b/MM_Math/data_original_21/7058811/math/51569291_240.jpg deleted file mode 100644 index d20bf142eadab3c19b1342b14d4b9708e38e72fe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51569291_240.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c4de8fa56ab1be99b2b9eb8cfece2f7c4e5196ec39d58f87a13f251c265ac05 -size 7122 diff --git a/MM_Math/data_original_21/7058811/math/51578581_320.png b/MM_Math/data_original_21/7058811/math/51578581_320.png deleted file mode 100644 index 74fd30392d0f607c07c4fa52b84b917f1ca2e50f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51578581_320.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a4690ca0e01d8091d175e071607562e2b78767f3a1fbb321d1df8b97c4b1cd66 -size 5352 diff --git a/MM_Math/data_original_21/7058811/math/51578585_830.png b/MM_Math/data_original_21/7058811/math/51578585_830.png deleted file mode 100644 index 503d028af7a3c3896f79a9d3ff0e378c8fd931cf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51578585_830.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:520f7fb395e1011c01323f82963833ee200d884723680e8dc3ecdb7347189009 -size 3707 diff --git a/MM_Math/data_original_21/7058811/math/51604279_6717.png b/MM_Math/data_original_21/7058811/math/51604279_6717.png deleted file mode 100644 index 53768126534a0db0be48b9e2bf21c88dd085e99d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51604279_6717.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da92bbc614650bd791129d80eb46e32225346f731cbdff28770c12d6a883f9d7 -size 15571 diff --git a/MM_Math/data_original_21/7058811/math/51628060_660.png b/MM_Math/data_original_21/7058811/math/51628060_660.png deleted file mode 100644 index b34154cec73ad330bfc276a708016307d9eeb3f4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51628060_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b59b8dad494a074376e3be04e192d92d31de5e4c9d0122a44affe688d41589d -size 19597 diff --git a/MM_Math/data_original_21/7058811/math/51628092_961.png b/MM_Math/data_original_21/7058811/math/51628092_961.png deleted file mode 100644 index a4d82016d32f8e95a6834958ffe9e3a3cf673629..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51628092_961.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4fd468f2f8f430a697b35fc35351c0ff7ab00e00ed46f02711762524534e2708 -size 61252 diff --git a/MM_Math/data_original_21/7058811/math/51635786_658.png b/MM_Math/data_original_21/7058811/math/51635786_658.png deleted file mode 100644 index 5ff12abf80c841b6d502bfb67c4fc4b0af4e47d1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51635786_658.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae6106a2cb91abf5e97803ef46caa4bbb4c8ee659cd4bb990bc76d2538b39702 -size 2569 diff --git a/MM_Math/data_original_21/7058811/math/51638142_160.png b/MM_Math/data_original_21/7058811/math/51638142_160.png deleted file mode 100644 index 7672aa2f2bcecd592a7eafcc0257c3584c3f8fc7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51638142_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:82adf76c4cda555819768a557ea985eff92bf7c7d41a5f6969ab0fbd75e67001 -size 14343 diff --git a/MM_Math/data_original_21/7058811/math/51654675_206.png b/MM_Math/data_original_21/7058811/math/51654675_206.png deleted file mode 100644 index aaaec42d5491263e764817a3b564fb6cea74d547..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51654675_206.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:86ddec8cc3503ee59b133dab62455b6abc2ba398087c6c0d118e05b5cbc1604f -size 4279 diff --git a/MM_Math/data_original_21/7058811/math/51654847_211.png b/MM_Math/data_original_21/7058811/math/51654847_211.png deleted file mode 100644 index 9b33fc25cc3e5f7187564bc518728c396a37805b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51654847_211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51a7481418b1d4b10497d1afff3ec3ac1a3748dd2db31d18d5b4b90cf043229c -size 2713 diff --git a/MM_Math/data_original_21/7058811/math/51654883_230.png b/MM_Math/data_original_21/7058811/math/51654883_230.png deleted file mode 100644 index c982f7361dad5d3c2c85a4868f78cd7a3a3bb919..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51654883_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1bdcdb442fb2de7fdd69a3fd6698708cab6b00b0d9eb32398e4dadf01e7aaaa -size 2568 diff --git a/MM_Math/data_original_21/7058811/math/51654922_720.png b/MM_Math/data_original_21/7058811/math/51654922_720.png deleted file mode 100644 index ee5663a16b1f4408d7c3972d5b893c09802497d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51654922_720.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:15eedbb989c1a9b03250c2a6fd388aa41e1b685e65c938d0d1ce9e70a70c535c -size 3576 diff --git a/MM_Math/data_original_21/7058811/math/51655022_7116.png b/MM_Math/data_original_21/7058811/math/51655022_7116.png deleted file mode 100644 index 8fabacc21c11729f79049cd37885735f91c14bcb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51655022_7116.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d77ab192b28765afefc5ad4a5492f94f13b8b66c1e2b964961a186139a8c5f7 -size 3173 diff --git a/MM_Math/data_original_21/7058811/math/51672730_594.png b/MM_Math/data_original_21/7058811/math/51672730_594.png deleted file mode 100644 index 8284049c7b1a1637d768f867825c3a5b011a9134..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51672730_594.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:028f1b11ebca2d8094ebb89f07d3978b80fd2cfd1253179b70859bcb2eca5385 -size 7044 diff --git a/MM_Math/data_original_21/7058811/math/51684405_81.png b/MM_Math/data_original_21/7058811/math/51684405_81.png deleted file mode 100644 index ee7f75ec75decd1b82bfc9e4bd9ea3e4fdb9986e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51684405_81.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2df382ea7f2108d6453ba68e4d1762d902080eb92af51635ed1b0e11e9869142 -size 62563 diff --git a/MM_Math/data_original_21/7058811/math/51684446_580.png b/MM_Math/data_original_21/7058811/math/51684446_580.png deleted file mode 100644 index 6788a1a56567e36396f3dce9fea32d28231c31be..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51684446_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9703b2121105b79cde20dc11941a5aa6db55faa6814883484327fc24237adaf4 -size 1952 diff --git a/MM_Math/data_original_21/7058811/math/51708611_560.png b/MM_Math/data_original_21/7058811/math/51708611_560.png deleted file mode 100644 index 9904a87cf86f1f8714a6a112080edd0d29e20b8e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51708611_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8d600beefacd0b22138f1edd4bfa3905c93dbf9853853f388af3aba0107dc23c -size 79424 diff --git a/MM_Math/data_original_21/7058811/math/51708944_911.jpg b/MM_Math/data_original_21/7058811/math/51708944_911.jpg deleted file mode 100644 index 2f9e08973e2478f6c1b65e8d7ca2ea8628acde40..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51708944_911.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:35b15dbaadf28e718081898e79969928564e878bd13aa814522b13285776d2ec -size 10099 diff --git a/MM_Math/data_original_21/7058811/math/51722675_940.jpg b/MM_Math/data_original_21/7058811/math/51722675_940.jpg deleted file mode 100644 index 7f0d581b5581b620257ec88656da9d8d40c62fbc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51722675_940.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51b3eaa2c534692af44df70aae2d205e219b12f203f83d16545076db3f6e0654 -size 6047 diff --git a/MM_Math/data_original_21/7058811/math/51737317_930.png b/MM_Math/data_original_21/7058811/math/51737317_930.png deleted file mode 100644 index 50ee2cf7caf90e4f217b80a799034318c2113c56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51737317_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8634392d710bc494394c3b87da960197c09c311d6aa30d6daa8cd460fe4bc8f5 -size 39123 diff --git a/MM_Math/data_original_21/7058811/math/51737328_71.png b/MM_Math/data_original_21/7058811/math/51737328_71.png deleted file mode 100644 index 58968e4684efa24ad8bbbe6a60b79a0965b3d0b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51737328_71.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a0af93afeb5ced1f6e75a0c342a6d77d07e439cc0001f976e1ae4b8aedbc7ef -size 1802 diff --git a/MM_Math/data_original_21/7058811/math/51737359_920.png b/MM_Math/data_original_21/7058811/math/51737359_920.png deleted file mode 100644 index f810e2bb2b169f035fce4011035f9675a6cccb9b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51737359_920.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d4a0201102a4eb7b650f4564f864a90f6d4b760a04df33c30442da38db5d4db1 -size 9217 diff --git a/MM_Math/data_original_21/7058811/math/51737359_921.png b/MM_Math/data_original_21/7058811/math/51737359_921.png deleted file mode 100644 index 07432ea1dad23afea311f3943d2c6edd7743c8ba..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51737359_921.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c4382a485b73c6dad58aa11e11a96d307de9f6b5ce0f92c1256964bc6e2c2678 -size 11876 diff --git a/MM_Math/data_original_21/7058811/math/51737359_922.png b/MM_Math/data_original_21/7058811/math/51737359_922.png deleted file mode 100644 index 85fbfc22fb8e3d099fe8f3b4fc18881bba33fe6a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51737359_922.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a47bd349fbfda5bfa743bd62b4a4e093029d0f8ef6b1f5a1ad53fa512928e2c -size 15296 diff --git a/MM_Math/data_original_21/7058811/math/51737359_923.png b/MM_Math/data_original_21/7058811/math/51737359_923.png deleted file mode 100644 index e43b57be731fe7d8200c8aacb3c9f55897270ee8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51737359_923.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:863e2d4a270864c308d5dc4d7051ce376593cebaf9446c2f319f46de0c8a176d -size 5337 diff --git a/MM_Math/data_original_21/7058811/math/51806751_6210.png b/MM_Math/data_original_21/7058811/math/51806751_6210.png deleted file mode 100644 index 32b8433a58f9ebdec66dcb733d0e78b4052a6ca9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51806751_6210.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80a754302ba76f5f33230f6123bc4251524955810d8161853909bfd6121fc599 -size 4717 diff --git a/MM_Math/data_original_21/7058811/math/51806942_150.png b/MM_Math/data_original_21/7058811/math/51806942_150.png deleted file mode 100644 index a888b8e8406252c0c80f8d42d30380e150f5bd03..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51806942_150.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fedb58eb34d57aed42e15c31fe19abbd85d5d396c97ed41768cfabe95e128dd8 -size 17143 diff --git a/MM_Math/data_original_21/7058811/math/51807002_950.png b/MM_Math/data_original_21/7058811/math/51807002_950.png deleted file mode 100644 index f7e366bc18087180d6a0d6a05a2b8dfa1a6aea06..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51807002_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc7637bd9ab0c21de3f5106648ae2ce364d7af63a0b4fdc981c83b6118423732 -size 7742 diff --git a/MM_Math/data_original_21/7058811/math/51807104_610.png b/MM_Math/data_original_21/7058811/math/51807104_610.png deleted file mode 100644 index efb2500afba070043ccd9ec6596257310594ce6f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51807104_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c67f17092507bcc81c5c73725b4a828ebe3e4b9e15862331c845332b2789280 -size 1832 diff --git a/MM_Math/data_original_21/7058811/math/51807170_115.png b/MM_Math/data_original_21/7058811/math/51807170_115.png deleted file mode 100644 index b3d7ac963d15ac7bcb4ef7bc6ea5bfa1bf77e3e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51807170_115.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29c9f2e1b9708e15eecc8d3e3a7b6cbf3c1f315e0ddf8999b040d39cd6e29a19 -size 2406 diff --git a/MM_Math/data_original_21/7058811/math/51807213_135.png b/MM_Math/data_original_21/7058811/math/51807213_135.png deleted file mode 100644 index 90271b21f44177a7a983886c03d9d9437e997594..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51807213_135.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b03ce9d47f48550f588aabb5496b809afd23da094dd13b12e0077a2eef2f2d5e -size 3539 diff --git a/MM_Math/data_original_21/7058811/math/51807221_129.png b/MM_Math/data_original_21/7058811/math/51807221_129.png deleted file mode 100644 index 2c60cf26be83b3705ffaedea54d0d7ecf8908586..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51807221_129.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99337a378a833a078dbe9da02323c731137d922b834e19993056e8909651da68 -size 61559 diff --git a/MM_Math/data_original_21/7058811/math/51809530_607.png b/MM_Math/data_original_21/7058811/math/51809530_607.png deleted file mode 100644 index 615c89f226e6162a7b35aa31e37e225a10494d52..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51809530_607.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e129bcd464d71711fd10ec7c174f911f0bfa7bf8d87d083d16c3682970d2b1d8 -size 2252 diff --git a/MM_Math/data_original_21/7058811/math/51809615_106.png b/MM_Math/data_original_21/7058811/math/51809615_106.png deleted file mode 100644 index 81d0da342c3857db5e676b6174b0871a42a97883..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51809615_106.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:211db6b970c24c83acd297edad99399194292f9654920249b6c105bf585b905d -size 6826 diff --git a/MM_Math/data_original_21/7058811/math/51817979_540.png b/MM_Math/data_original_21/7058811/math/51817979_540.png deleted file mode 100644 index 8952ae93e51ac169533f1216675cc7c48ab12a61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51817979_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b410260d4bce497e81cc79c71da1cc3e3ffae03c5fe90ec1b16ab19da3455ac6 -size 2620 diff --git a/MM_Math/data_original_21/7058811/math/51910248_42.png b/MM_Math/data_original_21/7058811/math/51910248_42.png deleted file mode 100644 index e5a5a2e75ba3a50ffdcf6b6425253d126e96323d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51910248_42.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f3f1481e1ab42cc72bbfac9ede7448129fe36e7b42d70abaf1c5dc61c3105734 -size 36780 diff --git a/MM_Math/data_original_21/7058811/math/51910249_56.png b/MM_Math/data_original_21/7058811/math/51910249_56.png deleted file mode 100644 index a49f5142bada6475c1a000b44f63c7cdb9c8b7cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51910249_56.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01fe316858404cc61e07693c7bc6de9b9a806ab154aec960bd3c4927b472c472 -size 4448 diff --git a/MM_Math/data_original_21/7058811/math/51910252_485.png b/MM_Math/data_original_21/7058811/math/51910252_485.png deleted file mode 100644 index 5fe342ff91880e2d5fe9ef0fe97093da1b6fcbef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51910252_485.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:690dfb687eaaab6326bc699403ed1209cf25a2ac66ccffd654f8122f82dc14d0 -size 36767 diff --git a/MM_Math/data_original_21/7058811/math/51918111_465.png b/MM_Math/data_original_21/7058811/math/51918111_465.png deleted file mode 100644 index 5bae8f2def39685dad0a3fa67f6de6e05161b8f2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51918111_465.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d48ab001d63254da989bcfee7fffd5de46b947078fe72e52de7a1db057dadcda -size 3359 diff --git a/MM_Math/data_original_21/7058811/math/51918244_31.png b/MM_Math/data_original_21/7058811/math/51918244_31.png deleted file mode 100644 index 9a018f77a3ed3c60d22c52994ca85e5fab466eda..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51918244_31.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b659b864188df852eccda32366ca4c1eb2867ebe501e3bdf489c125ce989ea15 -size 8720 diff --git a/MM_Math/data_original_21/7058811/math/51918252_471.png b/MM_Math/data_original_21/7058811/math/51918252_471.png deleted file mode 100644 index 77f15727c21f19df0dba397a71761bffb07b43e8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51918252_471.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:350d8f2a648eaf49c5edf16ebcfd40eeb0d1fc0b2c68ab84ebfa70e535904b82 -size 7249 diff --git a/MM_Math/data_original_21/7058811/math/51918275_892.png b/MM_Math/data_original_21/7058811/math/51918275_892.png deleted file mode 100644 index 6fc13ac164e99031011da84ea0369e7027f46a41..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51918275_892.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90f93bd69ff79a4d8849c3c183a9bb787c7732829222e6da86a333511474eada -size 571012 diff --git a/MM_Math/data_original_21/7058811/math/51999252_5015.png b/MM_Math/data_original_21/7058811/math/51999252_5015.png deleted file mode 100644 index 18fd5b337d3be2fddd955ea8b844d5aec0aa1e89..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/51999252_5015.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fcf34e6cb967d0122c43a3139655bbf493c4cbf853ec36263e189628586f7ee -size 2240 diff --git a/MM_Math/data_original_21/7058811/math/52091239_447.png b/MM_Math/data_original_21/7058811/math/52091239_447.png deleted file mode 100644 index 3911a5005fe98670ec7d267de0c52f8d17526dc1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/52091239_447.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e45a9655a8fe9288e7914f7cf9041d1dcb491ed8816e2c868b05b12b04552c69 -size 4479 diff --git a/MM_Math/data_original_21/7058811/math/52091240_4510.png b/MM_Math/data_original_21/7058811/math/52091240_4510.png deleted file mode 100644 index 53fe8867e8d957d289cdfbeb9794eff586e46f98..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/52091240_4510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94bc5ef509ed02be40a8757677e9ddcd4e6bda2e4938347fb87750b39611e6e5 -size 3853 diff --git a/MM_Math/data_original_21/7058811/math/52091246_871.png b/MM_Math/data_original_21/7058811/math/52091246_871.png deleted file mode 100644 index 942c10e967d54fbadef4c0cbd56cf98887351360..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/52091246_871.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ba3ba5c779ecaadd7bd3eeb99d8782eefb7b589cce71d9a433562e6ca4beaf2 -size 5395 diff --git a/MM_Math/data_original_21/7058811/math/52132998_882.png b/MM_Math/data_original_21/7058811/math/52132998_882.png deleted file mode 100644 index b8fa2e7d4b2b43e6c005f0dd2a2e12dcbedd7e50..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/52132998_882.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a62c2e64adf7aa6eae69eb829658513351738315ae077f90f365bd493cc96f1d -size 11909 diff --git a/MM_Math/data_original_21/7058811/math/52132998_883.png b/MM_Math/data_original_21/7058811/math/52132998_883.png deleted file mode 100644 index eab1be9e2f3901549e6ba0ac013302bb813656dc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/52132998_883.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:85f71208664c024b6d13578a1f275fca651ecc8aa7c1883f4641888439619df7 -size 8861 diff --git a/MM_Math/data_original_21/7058811/math/52344564_490.png b/MM_Math/data_original_21/7058811/math/52344564_490.png deleted file mode 100644 index 911281e35c2698b8297b203b52213c2ea0edae72..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/52344564_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:20358bc39428ba6ca2322ac38931061761dbba146e5552cb2a958dafcb58026b -size 7363 diff --git a/MM_Math/data_original_21/7058811/math/53136696_750.png b/MM_Math/data_original_21/7058811/math/53136696_750.png deleted file mode 100644 index 151501fc87d840183092f06bafdb2ab4f228e883..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53136696_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f66118e7fd7fdc0960901064d86dc610b584dd556380cfc2bbbb65dd9c4045c7 -size 85702 diff --git a/MM_Math/data_original_21/7058811/math/53151061_680.png b/MM_Math/data_original_21/7058811/math/53151061_680.png deleted file mode 100644 index 4fdc0eab5b9f3c313c3c647aa61ac8db4455299e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53151061_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ea9f5a6600e64d39b2e2f59e766a7906698c3cc5a45d2b4831fb21a38bc0c4e -size 13188 diff --git a/MM_Math/data_original_21/7058811/math/53151168_20.png b/MM_Math/data_original_21/7058811/math/53151168_20.png deleted file mode 100644 index fd840441ea33a8cea23a3f09a26e8a6a57dbe53b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53151168_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a8c10ce84b3adf6161986f8b82d9b70bedf6101e03637633a1dc435a54d512ca -size 2804 diff --git a/MM_Math/data_original_21/7058811/math/53151227_860.png b/MM_Math/data_original_21/7058811/math/53151227_860.png deleted file mode 100644 index 7084995e210763916b008363678b14994a2f0af7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53151227_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bca7d75648bcd387a052d5d7918738639e3afb3e7e31f6efee9b05f290b0b054 -size 8866 diff --git a/MM_Math/data_original_21/7058811/math/53151242_410.png b/MM_Math/data_original_21/7058811/math/53151242_410.png deleted file mode 100644 index ec6686b70287789c2087b33e46fdc4607a115f8b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53151242_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21f901db2c66af0a61b01c4c60ba15ad0925d0ec5a77af376bec399278054e1a -size 18328 diff --git a/MM_Math/data_original_21/7058811/math/53151323_170.png b/MM_Math/data_original_21/7058811/math/53151323_170.png deleted file mode 100644 index caad5f2d9d214f5fd7065e8657cbb42086e9ef54..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53151323_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f6b217e28c60a8091376a4af66a60a952383b9624aed00a2ab7ae822102696b -size 1938 diff --git a/MM_Math/data_original_21/7058811/math/53151360_691.png b/MM_Math/data_original_21/7058811/math/53151360_691.png deleted file mode 100644 index e7f7a8f54dc4fd347c4cfd87ea1a8db984f44652..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53151360_691.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02fb1af996297a272c5323a9a52419acd64d165bd81ec5613a4cf17697b34eed -size 1919 diff --git a/MM_Math/data_original_21/7058811/math/53232972_6313.png b/MM_Math/data_original_21/7058811/math/53232972_6313.png deleted file mode 100644 index 031ad5771adf33f99aa5ddf60a89888b6455f937..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53232972_6313.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d26d48d4501f663d9ed9648d829ce90392a9c333ab7962a204a4ab04e9e98230 -size 32887 diff --git a/MM_Math/data_original_21/7058811/math/53273961_95.png b/MM_Math/data_original_21/7058811/math/53273961_95.png deleted file mode 100644 index 92c42406e08fa68fe866138ac06d82a086d19dd6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53273961_95.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e5e71d675ee7985af5fe1202fc04bfbe8f7c7cdc10f65c35e3c933c6a4067e0 -size 3983 diff --git a/MM_Math/data_original_21/7058811/math/53296951_575.png b/MM_Math/data_original_21/7058811/math/53296951_575.png deleted file mode 100644 index 6f5464c55af265ebcef200459e0d7d8bc600d465..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53296951_575.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1c8c4724c8ffdd2045ee163ff558843521a82da1ce0274f112c71dd9aab1d2e6 -size 13427 diff --git a/MM_Math/data_original_21/7058811/math/53308020_539.png b/MM_Math/data_original_21/7058811/math/53308020_539.png deleted file mode 100644 index 8e17896dc372759e3ee5d57396ebe046a11073b8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53308020_539.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:36efafbe8edb6a0da00ad205ba0b29d794e1226eb991eaa5b8a98cfc43cf19c8 -size 2311 diff --git a/MM_Math/data_original_21/7058811/math/53308051_64.png b/MM_Math/data_original_21/7058811/math/53308051_64.png deleted file mode 100644 index 0f79a9ea8c2ad318a99cfcc0a73cf1077ec40934..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53308051_64.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cffd85ce1db1fbe21628658a0ddea50a268d6d687e1934f0532a7459360df3a5 -size 12237 diff --git a/MM_Math/data_original_21/7058811/math/53308228_520.png b/MM_Math/data_original_21/7058811/math/53308228_520.png deleted file mode 100644 index 8053100aeac8373e487c4a4a75ce0d13b3b6a72c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53308228_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eb256bef4baf329b1e959451061e00eeb81da69cff6c5cfb279c19686aea26b0 -size 6726 diff --git a/MM_Math/data_original_21/7058811/math/53308271_9012.png b/MM_Math/data_original_21/7058811/math/53308271_9012.png deleted file mode 100644 index 0d6b07528a6bd14ee24541d07c3443afd2efe51d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53308271_9012.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7dfd1ca8a66920215d09db4c3efe5d2161dc364abf09072ae33417c38a8f8dce -size 4931 diff --git a/MM_Math/data_original_21/7058811/math/53519694_395.png b/MM_Math/data_original_21/7058811/math/53519694_395.png deleted file mode 100644 index a8ff8035426592e0ef9deca8c2b82c4f07c243a5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53519694_395.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41f5db63a1708966b97ab129ce83db8962f0b63aaa7d8a46d79524b780920163 -size 58489 diff --git a/MM_Math/data_original_21/7058811/math/53519734_406.png b/MM_Math/data_original_21/7058811/math/53519734_406.png deleted file mode 100644 index e41c3c543c1d0b7ffd81d90231560f021c49f120..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53519734_406.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1120bfe99321aadcf05a64b6caf5b4a295375330f00593440d23fa38657f26b -size 7701 diff --git a/MM_Math/data_original_21/7058811/math/53565373_552.png b/MM_Math/data_original_21/7058811/math/53565373_552.png deleted file mode 100644 index b6407777d487f74bfe351c3147bbf50b4d62ac1d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53565373_552.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8783ab3c6034deff477d79b5ed832c9d33163dd28dfa9dc164b1fa2f1285bff8 -size 5699 diff --git a/MM_Math/data_original_21/7058811/math/53578726_435.png b/MM_Math/data_original_21/7058811/math/53578726_435.png deleted file mode 100644 index 1bb5d6b173cbcd2f66147a7f118cbe9c63a1250a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53578726_435.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:71381049e7707f9d5884a9bf08c7acf21484fa8aa0d193b960478a75e9c73b03 -size 46027 diff --git a/MM_Math/data_original_21/7058811/math/53578729_422.png b/MM_Math/data_original_21/7058811/math/53578729_422.png deleted file mode 100644 index 75448eed87f2e6b90022503447b5981dfdcf412a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53578729_422.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58f85e54720d9a18e3cf748d989c055da7dd1b226d53774a0f36a0c35a1a7e3b -size 2967 diff --git a/MM_Math/data_original_21/7058811/math/53764975_730.png b/MM_Math/data_original_21/7058811/math/53764975_730.png deleted file mode 100644 index c842c8b8f83e7bfc63eeef8c7c390ae8e017e3b7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53764975_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:799ed3f758aed6ae7b0ac836211841e6377837135ceab7ab2c39c64eb11fa70e -size 15903 diff --git a/MM_Math/data_original_21/7058811/math/53839196_513.png b/MM_Math/data_original_21/7058811/math/53839196_513.png deleted file mode 100644 index 0ebb4e6aefc65e15924e3220f1c8f3195d67f465..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/53839196_513.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c1eff9673e12cdc9be271bc2dacc2d79f015ba753180c970361d7d14962ab1c -size 21648 diff --git a/MM_Math/data_original_21/7058811/math/54328574_12.png b/MM_Math/data_original_21/7058811/math/54328574_12.png deleted file mode 100644 index 26c6e0bba745ca13a55872675a8f530861fe37bd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/54328574_12.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4dba127cf4e035bc2b0c52463165665ae6220ee586989cd0b16c6073324090c9 -size 21610 diff --git a/MM_Math/data_original_21/7058811/math/54345169_382.png b/MM_Math/data_original_21/7058811/math/54345169_382.png deleted file mode 100644 index 30b42872454aeca7f8924b2a44d17126872c3193..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/54345169_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6250f8522ed22056dfe1e5f5c4b1a9c11222422f13190bbfc0c51b54368ca021 -size 7971 diff --git a/MM_Math/data_original_21/7058811/math/55595071_365.png b/MM_Math/data_original_21/7058811/math/55595071_365.png deleted file mode 100644 index 344032874e95dc255b91da06ade4cb0f3a9c73d5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/math/55595071_365.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e01f221a0f9466e8383f8ceee7d582e7c7cabfedc115f3c77977510505008e9a -size 7699 diff --git a/MM_Math/data_original_21/7058811/solution_images/50322915_310.png b/MM_Math/data_original_21/7058811/solution_images/50322915_310.png deleted file mode 100644 index 94362655a45d91cbbc56c610a65f52094de05035..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/50322915_310.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ad37968d73aff57ea4ea3df7ca10ee4d192bb542fc0355f530ba38ae5a91a3a -size 3920 diff --git a/MM_Math/data_original_21/7058811/solution_images/50322995_813.png b/MM_Math/data_original_21/7058811/solution_images/50322995_813.png deleted file mode 100644 index 8cb81a45d35e45ea1fb2bfd487226a8f629561a1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/50322995_813.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:623bb89813c0b916e8cadd17e9752104a8895ac765909aefa26b7fc715a0e85f -size 4034 diff --git a/MM_Math/data_original_21/7058811/solution_images/50360712_800.png b/MM_Math/data_original_21/7058811/solution_images/50360712_800.png deleted file mode 100644 index 14f8b2ee1094e519cd50edabc4ef275147904e21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/50360712_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81faae0226296ee4cd82f304a045e1eacf2f798978bde86a04adc8ea3f755e95 -size 7152 diff --git a/MM_Math/data_original_21/7058811/solution_images/50584152_350.jpg b/MM_Math/data_original_21/7058811/solution_images/50584152_350.jpg deleted file mode 100644 index 355999202b0647b314cd7b2bc87b40929fefdc1e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/50584152_350.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e8a136d1db87fd6ee433343753d38fce667e16aa2e879bcf8452c68af23d3ee -size 13260 diff --git a/MM_Math/data_original_21/7058811/solution_images/50584300_340.jpg b/MM_Math/data_original_21/7058811/solution_images/50584300_340.jpg deleted file mode 100644 index f2d63ab4302aec315e3e01bde02cfe1a4e70cae0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/50584300_340.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ad1490d5e372a80045d845fa6a85329bb33a7dca10949473ee654e65e7b08555 -size 13854 diff --git a/MM_Math/data_original_21/7058811/solution_images/51445130_300.png b/MM_Math/data_original_21/7058811/solution_images/51445130_300.png deleted file mode 100644 index 9ba258fb07be4aabba919adfb2bedd16823e37c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51445130_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3eab8bcd3957b933d338f172ab4fdd50323b8574e8bb6480345107f35bb5d28 -size 11866 diff --git a/MM_Math/data_original_21/7058811/solution_images/51445135_780.png b/MM_Math/data_original_21/7058811/solution_images/51445135_780.png deleted file mode 100644 index 8b7710201db215c150367965e5309650fedf2978..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51445135_780.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba05b5c3b6d518af3457d2f3b372e86592ec0b041a4bb27c2e952cb3f88cbcf2 -size 10412 diff --git a/MM_Math/data_original_21/7058811/solution_images/51496547_770.png b/MM_Math/data_original_21/7058811/solution_images/51496547_770.png deleted file mode 100644 index 614d60a343bac875df21f0331bdc7078c266d8f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51496547_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dfde5e42d23455237c7e19afc18c8fafcbdb2fbd0d36362645ef60955b286b35 -size 8373 diff --git a/MM_Math/data_original_21/7058811/solution_images/51496741_9732.png b/MM_Math/data_original_21/7058811/solution_images/51496741_9732.png deleted file mode 100644 index 08a808334c6f18f0561e906236b3ad2318fdbebb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51496741_9732.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fe14114911a4c42ad1d13863dd28022dc35f4d84857de4b03ff447935eca375 -size 22326 diff --git a/MM_Math/data_original_21/7058811/solution_images/51496741_975.png b/MM_Math/data_original_21/7058811/solution_images/51496741_975.png deleted file mode 100644 index 9b30a88650dd51c4017dc56ff8714f75dfad6511..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51496741_975.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:003fe04fbe7486563b04e2e5c379cb5ef274ffaa461e6588f847b5fedfaf6013 -size 12898 diff --git a/MM_Math/data_original_21/7058811/solution_images/51497073_760.png b/MM_Math/data_original_21/7058811/solution_images/51497073_760.png deleted file mode 100644 index 963dca7319c89c0c2121fd924865e3dbed9ecd5f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51497073_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c613d9f29b87c897552b488e777710f5ef40f3ed98a8be60cdb709318dcb033 -size 19106 diff --git a/MM_Math/data_original_21/7058811/solution_images/51531726_841.png b/MM_Math/data_original_21/7058811/solution_images/51531726_841.png deleted file mode 100644 index 26bcc5c88bf745f3950eb31923616a1a35970a56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51531726_841.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af4d32b37bf2992eddc5968cbe0aa731af4b2720c33447c249fc3f0f3983378d -size 2559 diff --git a/MM_Math/data_original_21/7058811/solution_images/51540105_330.png b/MM_Math/data_original_21/7058811/solution_images/51540105_330.png deleted file mode 100644 index b891ede320b329d64eb9dcc09a7bd0bf1d3cf073..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51540105_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97d9a9983407e12bcfac640d1de279d4eb3602e56700c7b31366432d23b35eb6 -size 3727 diff --git a/MM_Math/data_original_21/7058811/solution_images/51569291_240.jpg b/MM_Math/data_original_21/7058811/solution_images/51569291_240.jpg deleted file mode 100644 index 0090641b6cd2651cbbfb84d041918dc0bc374762..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51569291_240.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b731d6b114eeacd9e04264e1a1035bd84eee172d66cfaefa337bb5dde2e954a7 -size 8427 diff --git a/MM_Math/data_original_21/7058811/solution_images/51578581_324.png b/MM_Math/data_original_21/7058811/solution_images/51578581_324.png deleted file mode 100644 index 5452ee10464a92dbb2601d51af5b1a20a12c95a2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51578581_324.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80045a8e696fbeb05b6a5ed2969171272c431681e6363689bfc3aca8f3258bd0 -size 4869 diff --git a/MM_Math/data_original_21/7058811/solution_images/51604279_6719.png b/MM_Math/data_original_21/7058811/solution_images/51604279_6719.png deleted file mode 100644 index 7e980920c79c9fe48544046a1b1eaf548af3d375..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51604279_6719.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81110168a9d7fed01152f21d4caabb29973c302508ffad11ced34e8afc390120 -size 14825 diff --git a/MM_Math/data_original_21/7058811/solution_images/51628060_660.png b/MM_Math/data_original_21/7058811/solution_images/51628060_660.png deleted file mode 100644 index 955d0795208a77dfe997a0674d749673f4a870ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51628060_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ad58f8e94bfd8363042cea00ada770e16e813f3ef4d3dd5369af292316b3a6d2 -size 4305 diff --git a/MM_Math/data_original_21/7058811/solution_images/51635786_650.png b/MM_Math/data_original_21/7058811/solution_images/51635786_650.png deleted file mode 100644 index 1b8a7595f12c915eafa3442416da1b338e73974f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51635786_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00f18d7873a248064515da7ff8561c4d3fff4c22ef9f11fc3001ab52ff9167d6 -size 2952 diff --git a/MM_Math/data_original_21/7058811/solution_images/51638142_160.png b/MM_Math/data_original_21/7058811/solution_images/51638142_160.png deleted file mode 100644 index 1bb16f565e768edb8f305cdd8b87c13724e31532..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51638142_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7803c80360423bcad53f16bd7cb21a7970426a0705fbd0d0e19b33efa7b369af -size 8718 diff --git a/MM_Math/data_original_21/7058811/solution_images/51654675_209.png b/MM_Math/data_original_21/7058811/solution_images/51654675_209.png deleted file mode 100644 index 0645c92c773259af140c7a77c3770ff46295a737..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51654675_209.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cec74650b4d4c9acb829a5e43935c1849ced0c331e8eef72e834f68bd7072d2b -size 4359 diff --git a/MM_Math/data_original_21/7058811/solution_images/51654777_221.png b/MM_Math/data_original_21/7058811/solution_images/51654777_221.png deleted file mode 100644 index 3ae883219fca4c76fd99c6a9bdf6703095f12f63..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51654777_221.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:606ae7403e88ba676c62b2f4f585cc01f89b61c2ce79361eb2dc7ca53491e59a -size 3854 diff --git a/MM_Math/data_original_21/7058811/solution_images/51655022_710.png b/MM_Math/data_original_21/7058811/solution_images/51655022_710.png deleted file mode 100644 index 6090fd2344465251e0ef69534f406f649a9f9a46..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51655022_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:22c19ba1460eeee64fea393f72394acee4563628f74da73bdd8e023a97cee557 -size 10554 diff --git a/MM_Math/data_original_21/7058811/solution_images/51672730_590.png b/MM_Math/data_original_21/7058811/solution_images/51672730_590.png deleted file mode 100644 index 16ab9166484780822279a9aa7803034bacf38800..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51672730_590.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a9d17eaf34f40abf2d4bc805554c595a47c79a23147ec09e46d341d5964d9e0 -size 11052 diff --git a/MM_Math/data_original_21/7058811/solution_images/51684446_580.png b/MM_Math/data_original_21/7058811/solution_images/51684446_580.png deleted file mode 100644 index 0aa704e870c4e3fea28cb008f9edbd07da17b3ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51684446_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef6f7a2a1fdbf7d8b64cd6381e1be7bb402546d912a15f5b98ff7cb01fd634b8 -size 4309 diff --git a/MM_Math/data_original_21/7058811/solution_images/51708611_560.png b/MM_Math/data_original_21/7058811/solution_images/51708611_560.png deleted file mode 100644 index 219ccb3abe6bdcf6e19956746e6658dfba29cfd0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51708611_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12ff52e145572a3827b26d284e81d6c02ee3eb9e4a7b47496a845aa9a0ff9144 -size 92307 diff --git a/MM_Math/data_original_21/7058811/solution_images/51708944_9110.png b/MM_Math/data_original_21/7058811/solution_images/51708944_9110.png deleted file mode 100644 index f181fa1c41161fd854a8b19ab0ecf82633321dc5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51708944_9110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:38931cd0f47d6b5a0e662edb235d1050f9c15c15545fe9d5532be49314393292 -size 42800 diff --git a/MM_Math/data_original_21/7058811/solution_images/51708944_9116.png b/MM_Math/data_original_21/7058811/solution_images/51708944_9116.png deleted file mode 100644 index a78d44af5326e26aef62026df55dbfabfb0011ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51708944_9116.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:78af446334a45544f7e9b9dcc6af9e23574e1d1f41f4ae9ad73514fc4da08ee0 -size 34679 diff --git a/MM_Math/data_original_21/7058811/solution_images/51708944_919.png b/MM_Math/data_original_21/7058811/solution_images/51708944_919.png deleted file mode 100644 index 2ea937df5fc3329c5dd0216db72a2f3b7854a379..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51708944_919.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:499abb5889c1a580183d3f38b5b565b4c4c2c17da3377f0daba4f77e499a6f85 -size 23204 diff --git a/MM_Math/data_original_21/7058811/solution_images/51737328_70.png b/MM_Math/data_original_21/7058811/solution_images/51737328_70.png deleted file mode 100644 index af02164a6d08a5ef68eb16356567ce12cdd17cf9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51737328_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c0ebc379f40893d6d1e4e6ddca55027243d3b1fc8ac77bef35862e590d7916e -size 2088 diff --git a/MM_Math/data_original_21/7058811/solution_images/51806751_623.png b/MM_Math/data_original_21/7058811/solution_images/51806751_623.png deleted file mode 100644 index 665a8d9f7a02e06c00448aa0a25d65c7b87e6e18..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51806751_623.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f16e6053ccb55348fb2c014021fc6ab09fce8eae28e78d1ba4e5c0882a4b810 -size 5816 diff --git a/MM_Math/data_original_21/7058811/solution_images/51807104_610.png b/MM_Math/data_original_21/7058811/solution_images/51807104_610.png deleted file mode 100644 index 25f7aed5ed7e0ef98c260a41251b1395fcdcdbff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51807104_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4273a10c66d6df02330dce0f17a798e094ab4562062c00c669c2824c033d2812 -size 2250 diff --git a/MM_Math/data_original_21/7058811/solution_images/51807104_615.png b/MM_Math/data_original_21/7058811/solution_images/51807104_615.png deleted file mode 100644 index 7ccd76025b9a966b7d1fc86e18f4ab9bf68c6da2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51807104_615.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:04885eca506cbbdbbad91e43c8869afc9c2fd2efb1a01224af87ad9820bea36d -size 2585 diff --git a/MM_Math/data_original_21/7058811/solution_images/51807104_619.png b/MM_Math/data_original_21/7058811/solution_images/51807104_619.png deleted file mode 100644 index ab2a628cc0132ab2feb01acfc1f27b0977c9d4ff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51807104_619.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:43c2318403dcb6d2ef4e3dc253e146657cdc284c44800bdd48cc688d0f74971d -size 1655 diff --git a/MM_Math/data_original_21/7058811/solution_images/51807170_110.png b/MM_Math/data_original_21/7058811/solution_images/51807170_110.png deleted file mode 100644 index 4ef303bd6caa524351b126644eadd4146b325519..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51807170_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d2edaa0d9f685f2084be7c7d4b3648345bc25fd2e1b4c9273b68102b65a26d5 -size 2768 diff --git a/MM_Math/data_original_21/7058811/solution_images/51807221_120.png b/MM_Math/data_original_21/7058811/solution_images/51807221_120.png deleted file mode 100644 index c027c5cbee84ad647629a3c1800beccafe939f2e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51807221_120.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:504c41e8f4c990719887c8b7e7bf4dce7d6b298b66b9a6f1b13713f05f2dbb78 -size 71358 diff --git a/MM_Math/data_original_21/7058811/solution_images/51817979_5414.png b/MM_Math/data_original_21/7058811/solution_images/51817979_5414.png deleted file mode 100644 index a08206a5dee4562bae13a10c147333ee9714e66c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51817979_5414.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d02873d1548c7490bb3bced239db2146830b8b802b54110d5f06bbdc9d685467 -size 2568 diff --git a/MM_Math/data_original_21/7058811/solution_images/51817979_542.png b/MM_Math/data_original_21/7058811/solution_images/51817979_542.png deleted file mode 100644 index c4e8761ac381c5d392c711260b80f357ed0b5080..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51817979_542.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d36b980f6da06da960d3239b1d0181f4ed9394dc211d98b0ae47565d970c5ce4 -size 2540 diff --git a/MM_Math/data_original_21/7058811/solution_images/51817979_5433.png b/MM_Math/data_original_21/7058811/solution_images/51817979_5433.png deleted file mode 100644 index 27f5b5a98e2d7cb8ef17a3ef674e9d5d309ba3a6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51817979_5433.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:880227e29eede5ef2b578fc510a7f982f651b2313d187d1002b348bb978e83b4 -size 3458 diff --git a/MM_Math/data_original_21/7058811/solution_images/51910249_50.png b/MM_Math/data_original_21/7058811/solution_images/51910249_50.png deleted file mode 100644 index c2c5323c498006b1c07391074d311ac12b9c7b3c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51910249_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3d15a1cf84a33176b868cfc391c7b3a4bc5f6cf0a4b36e59e886985b187a054b -size 9783 diff --git a/MM_Math/data_original_21/7058811/solution_images/51910252_480.png b/MM_Math/data_original_21/7058811/solution_images/51910252_480.png deleted file mode 100644 index 50422d2028e55687596df19da654a2a2a301a6cb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51910252_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:edd80b2cf57b00e2ae5755762a45575fd035b488a2e36dc0db9fcc6dd042a650 -size 13180 diff --git a/MM_Math/data_original_21/7058811/solution_images/51918252_470.png b/MM_Math/data_original_21/7058811/solution_images/51918252_470.png deleted file mode 100644 index cc5611bea6c819bc54558bc76ce067766e1aa605..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/51918252_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:903b49eec142a7493879500175e6bc35c9bb47545b8e243765a0a3f77c82309c -size 12297 diff --git a/MM_Math/data_original_21/7058811/solution_images/52091239_443.png b/MM_Math/data_original_21/7058811/solution_images/52091239_443.png deleted file mode 100644 index f7d8c3dd84a08b74e18fb86415ae47278db9a1e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/52091239_443.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa0041e2b994e3aed349449bd5eed6bad6c71011f920ba8c4cb4385b2d4937c9 -size 7274 diff --git a/MM_Math/data_original_21/7058811/solution_images/52091240_450.png b/MM_Math/data_original_21/7058811/solution_images/52091240_450.png deleted file mode 100644 index 9c96d18df410ac9ac2353de706d749a70a1ccd28..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/52091240_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f7e612efe9ccc72d65333386027f4e962b7d8452d83ba47064597f5cf79f841 -size 4816 diff --git a/MM_Math/data_original_21/7058811/solution_images/52091240_451.png b/MM_Math/data_original_21/7058811/solution_images/52091240_451.png deleted file mode 100644 index 8ee4e075fcfdd9d030855cbb2e309f46b95f81c6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/52091240_451.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c58194bd108442757a0917d4c4ea62092a9a18ba4418a880df147b64c84dbf7d -size 9217 diff --git a/MM_Math/data_original_21/7058811/solution_images/53136696_750.png b/MM_Math/data_original_21/7058811/solution_images/53136696_750.png deleted file mode 100644 index 7a022195724da936cdf4aa7484b3e6c5f81b621c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53136696_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6680b0f27b7167316d1c5a32179cb811690c7feaf4bd834dfad229080d03735e -size 77006 diff --git a/MM_Math/data_original_21/7058811/solution_images/53136696_756.png b/MM_Math/data_original_21/7058811/solution_images/53136696_756.png deleted file mode 100644 index 3f7d6f5412883dbed97931a72bf2223ad3842246..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53136696_756.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d88da637ca0bc1361a7530a7b6017e109aab6960c0ec3e8e1ca5a3ae15a6985 -size 85415 diff --git a/MM_Math/data_original_21/7058811/solution_images/53151061_680.png b/MM_Math/data_original_21/7058811/solution_images/53151061_680.png deleted file mode 100644 index c921daca1a7736e5e14401329e2fbb82c7436523..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53151061_680.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c92f9edd29adf27e3eca696933761c2d5b551bf24e1e396eb823f6807f8201f5 -size 11950 diff --git a/MM_Math/data_original_21/7058811/solution_images/53151227_860.png b/MM_Math/data_original_21/7058811/solution_images/53151227_860.png deleted file mode 100644 index b0efa42b8aa7eecbb935847d6cbf8ff472e1a7e9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53151227_860.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:970349560bd8a608e8c098b13ab43d3d9b7b0a542f1c826055be73b05291979e -size 10948 diff --git a/MM_Math/data_original_21/7058811/solution_images/53151242_413.png b/MM_Math/data_original_21/7058811/solution_images/53151242_413.png deleted file mode 100644 index b0f5ceea4935494a9efb96f1d089f70b1bf130c2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53151242_413.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8c18997874de72caba89d424d42cbabf3a676065f3f735ab6850895c8ff2a849 -size 18848 diff --git a/MM_Math/data_original_21/7058811/solution_images/53151323_170.png b/MM_Math/data_original_21/7058811/solution_images/53151323_170.png deleted file mode 100644 index 28e841fdb5b29d2d2bcd3991597783570498674d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53151323_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9095cf45bf6a2c1648154ca9d696567b919505575d8a0d6c2e083627c149328 -size 4156 diff --git a/MM_Math/data_original_21/7058811/solution_images/53151323_171.png b/MM_Math/data_original_21/7058811/solution_images/53151323_171.png deleted file mode 100644 index 1330c9e2128a8cd32c880c3e4f9d263eb4a45f04..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53151323_171.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b3b08745727b2bf0998785e9cc2741663b0c161011f8c2dc44ca8bf84d903163 -size 5361 diff --git a/MM_Math/data_original_21/7058811/solution_images/53151360_6911.png b/MM_Math/data_original_21/7058811/solution_images/53151360_6911.png deleted file mode 100644 index c3fc2a67cee15a1fc7b7d07aa129f1f758b28b1c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53151360_6911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e9c2e2f4a4e5d6e873a1d7f256e1051ec54f5c2d5dc4048815f8ef52d129665c -size 3617 diff --git a/MM_Math/data_original_21/7058811/solution_images/53232972_630.png b/MM_Math/data_original_21/7058811/solution_images/53232972_630.png deleted file mode 100644 index 92b33ce158a075671be44571aeee13b1bb67eaea..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53232972_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a0391a52cffbdcc7fb73c1306e624b2ad8508422df0f2dff413ed508dd59ea13 -size 14316 diff --git a/MM_Math/data_original_21/7058811/solution_images/53273961_97.png b/MM_Math/data_original_21/7058811/solution_images/53273961_97.png deleted file mode 100644 index 9de6231b66fc36ff14567159a77194a333e80806..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53273961_97.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f8238ec096d7a46a26fecae78e0030f1891986f3a538c2e0bcdf34ecf664ed2e -size 6357 diff --git a/MM_Math/data_original_21/7058811/solution_images/53296951_570.png b/MM_Math/data_original_21/7058811/solution_images/53296951_570.png deleted file mode 100644 index 7bafa6c9f64e190b3d803ec1de4c4b12cb6f76b2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53296951_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c1bc4084754f43bf4d3c7575161b1d159c71e886329b19ab044223eb3df330e -size 4729 diff --git a/MM_Math/data_original_21/7058811/solution_images/53308020_534.png b/MM_Math/data_original_21/7058811/solution_images/53308020_534.png deleted file mode 100644 index 3bf3c12f317d8881c6921946e180d7d1d7ba052a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53308020_534.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46c8ede4b93e792da6349f09c218cc9800a536f87ccccd2beac0ff92e23bca55 -size 3558 diff --git a/MM_Math/data_original_21/7058811/solution_images/53308051_62.png b/MM_Math/data_original_21/7058811/solution_images/53308051_62.png deleted file mode 100644 index 38f1468c6f1a1b3af18253ef38e57f2281bb2b6d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53308051_62.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75af53953a52a5c37e1641be5f06f2ee19b9281532d5a0537ec784d12bc554f6 -size 6055 diff --git a/MM_Math/data_original_21/7058811/solution_images/53519694_397.png b/MM_Math/data_original_21/7058811/solution_images/53519694_397.png deleted file mode 100644 index d146cc748188a5bf0043c0dcfe294be5ab457b5f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53519694_397.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf4e36c7d2ba400387678a3f9126c81886d26f1c9431619bba1efb3ecd5b7bf9 -size 42656 diff --git a/MM_Math/data_original_21/7058811/solution_images/53519734_400.png b/MM_Math/data_original_21/7058811/solution_images/53519734_400.png deleted file mode 100644 index 85bbb919fd18adc77d65098b59dc710923ef805d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53519734_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52d657c3d8fb22ed30c513852e6af2197f71494deb1bee0a5d30e3350dfb967a -size 11467 diff --git a/MM_Math/data_original_21/7058811/solution_images/53565373_555.png b/MM_Math/data_original_21/7058811/solution_images/53565373_555.png deleted file mode 100644 index 5e736ab006d2c71fc114c93ecd215383ec20d540..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53565373_555.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2a990a71d603b3c1b7b4ba7dfe72102717330d1f2b40e0491979f99c1c8ca2cf -size 6383 diff --git a/MM_Math/data_original_21/7058811/solution_images/53578729_420.png b/MM_Math/data_original_21/7058811/solution_images/53578729_420.png deleted file mode 100644 index 655cb451b7eaaf249e2f147835e6e619122b4534..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53578729_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ff1e9bbfc9c274d7e61109be01f0f34aaa5ae504a306f9567307e75bf5a17ac -size 7146 diff --git a/MM_Math/data_original_21/7058811/solution_images/53578729_422.png b/MM_Math/data_original_21/7058811/solution_images/53578729_422.png deleted file mode 100644 index b9bef8224cf15b76b28d92cc9fda2901273a0003..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/53578729_422.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40e142f5fb78f2934a76b75787c3e9c30d199f5bfc7db23313843ad87bc73b61 -size 11984 diff --git a/MM_Math/data_original_21/7058811/solution_images/54345169_380.png b/MM_Math/data_original_21/7058811/solution_images/54345169_380.png deleted file mode 100644 index 8f6066baa4eadbce8289bdc8cb364211092fae53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058811/solution_images/54345169_380.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dffe3dfa7b6a85808f1fb8106460212e56396d920161cd7867e24dd9fe07d175 -size 56717 diff --git a/MM_Math/data_original_21/7058812/math/51209211_260.png b/MM_Math/data_original_21/7058812/math/51209211_260.png deleted file mode 100644 index 5d5be0d47cbd962c3d070879775c5cae2c41732e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51209211_260.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f842ec20fe7464b9b3e637e92a877a9b8d959b90fb14968f0890e4db7eb930f0 -size 49094 diff --git a/MM_Math/data_original_21/7058812/math/51209219_620.png b/MM_Math/data_original_21/7058812/math/51209219_620.png deleted file mode 100644 index e2e434089d8d4b33b825c37d2650320d102d2089..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51209219_620.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a93215b643e692487e7b14e300977274b1f38e7c8c9cbb3a74b94b365aaabc8 -size 8427 diff --git a/MM_Math/data_original_21/7058812/math/51209230_911.png b/MM_Math/data_original_21/7058812/math/51209230_911.png deleted file mode 100644 index 5db0f5307d9656bf4631fcd44461d4c031a5c6e0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51209230_911.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddcb04c460164d80d44b9293d32dc8a1536a20da698589b4cc17682442cd5789 -size 5529 diff --git a/MM_Math/data_original_21/7058812/math/51212034_190.png b/MM_Math/data_original_21/7058812/math/51212034_190.png deleted file mode 100644 index 4147be39a496e5077c8ed169f6a1f65fb7f57cf4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212034_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca51e3148872f486ead24e072af550bb4fab5b1a361e599f2963d2c0b0534b18 -size 3963 diff --git a/MM_Math/data_original_21/7058812/math/51212036_90.png b/MM_Math/data_original_21/7058812/math/51212036_90.png deleted file mode 100644 index c48327a5bfc48f968c0f4db9551519eb2186f676..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212036_90.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d0f64253442d2a5434fff025ab5adccfdd12ea2fd1640062c811c41586b61dab -size 48697 diff --git a/MM_Math/data_original_21/7058812/math/51212038_540.png b/MM_Math/data_original_21/7058812/math/51212038_540.png deleted file mode 100644 index b9342e37a86939c3270480c372f5a37c73891bcc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212038_540.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f0ca6b4c70602cde125d889fd94bd50b38cb8e079c26faa43971145f3505cad -size 3955 diff --git a/MM_Math/data_original_21/7058812/math/51212039_556.png b/MM_Math/data_original_21/7058812/math/51212039_556.png deleted file mode 100644 index 209a66bca0778127e7694dec1022639133a7719c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212039_556.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64a389f7a25609001ceff79e5f23dede7e2a3c4bd49a95d0a0dc265e1554bdaf -size 3140 diff --git a/MM_Math/data_original_21/7058812/math/51212130_110.png b/MM_Math/data_original_21/7058812/math/51212130_110.png deleted file mode 100644 index 49500fa4fd8fbb9904807ea84d14dac5a40dc0af..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212130_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:66a68c66cec301c2a6eb26ab1073e490b3019fdc4c2d85fdef96e9e4f28843c9 -size 26835 diff --git a/MM_Math/data_original_21/7058812/math/51212132_100.png b/MM_Math/data_original_21/7058812/math/51212132_100.png deleted file mode 100644 index 1ab00d05ff8e967bcf973e96db23f7c699d95726..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212132_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e861b201f16f2cd8b228aba29e05778fdc62de8f31d155c44e266ebd478156a -size 4563 diff --git a/MM_Math/data_original_21/7058812/math/51212133_230.png b/MM_Math/data_original_21/7058812/math/51212133_230.png deleted file mode 100644 index 25a64f66858b803c5c73f2c292fa44ad9d7dd004..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212133_230.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:540a10f80836336b925900550ad6e0f7a42ec0eec0543b5116729c007d08e21f -size 4766 diff --git a/MM_Math/data_original_21/7058812/math/51212138_5313.png b/MM_Math/data_original_21/7058812/math/51212138_5313.png deleted file mode 100644 index fd8ac14610d4dbec06a2918aa384a9acfc2739e6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212138_5313.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7bdb699e393d1a3374ee903f9282d87e6efd2eba28e2ab87318080406524f93 -size 4630 diff --git a/MM_Math/data_original_21/7058812/math/51212141_837.png b/MM_Math/data_original_21/7058812/math/51212141_837.png deleted file mode 100644 index 4c97e770af7bbf0b9f2558f9498a4c541d4b6ea8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212141_837.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b52c194b6c833c841947726357be712fc55de42c54ed31c5bbe2ebf77bfa228 -size 2071 diff --git a/MM_Math/data_original_21/7058812/math/51212147_895.png b/MM_Math/data_original_21/7058812/math/51212147_895.png deleted file mode 100644 index 6e8f070cffb07ca65c1eada53932667ea1da7885..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212147_895.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b051666e075906cf858ef42ce1edea36cbc7920a3b1efc918ab4d26acbe6d14 -size 3289 diff --git a/MM_Math/data_original_21/7058812/math/51212156_128.png b/MM_Math/data_original_21/7058812/math/51212156_128.png deleted file mode 100644 index 506b2f735f6b018e4db9a1021d40520cc55a282f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212156_128.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a232a5dc1f839535049cda54bca82f7f95bf5871a3deec79551fed793f547fec -size 2581 diff --git a/MM_Math/data_original_21/7058812/math/51212158_811.png b/MM_Math/data_original_21/7058812/math/51212158_811.png deleted file mode 100644 index e216ac15b168cfe6070b608c2cbae355f7caff8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212158_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6359aa85826c8c09dcd530095f00bec28cb6a1fd42ca236dd09282c022942f71 -size 4802 diff --git a/MM_Math/data_original_21/7058812/math/51212179_160.png b/MM_Math/data_original_21/7058812/math/51212179_160.png deleted file mode 100644 index fef03bff5460e1760ae2cfa43ec799e74251be2b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212179_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d9ccc7735d81fda1d588214c715a595078b3d5b15611068d053a3d197d9756e -size 4053 diff --git a/MM_Math/data_original_21/7058812/math/51212186_560.png b/MM_Math/data_original_21/7058812/math/51212186_560.png deleted file mode 100644 index 68f0d62d0fc94237db83c39ee50b7a3f56cb269a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212186_560.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1efbc3b950308dffbee5849dd009cb93aa36419c5d0542321c765e224a6dcf4c -size 3568 diff --git a/MM_Math/data_original_21/7058812/math/51212188_520.png b/MM_Math/data_original_21/7058812/math/51212188_520.png deleted file mode 100644 index c39e82fdaafe45317fded04f5bb31c700dabe96b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212188_520.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e719a510b5c1644eb3824f27201b1920c006eb3958da71a1733692fc2ca93daa -size 4410 diff --git a/MM_Math/data_original_21/7058812/math/51212472_571.png b/MM_Math/data_original_21/7058812/math/51212472_571.png deleted file mode 100644 index ae1cf3e50cb01b67bbca4dd545da229e450c51a0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212472_571.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:84efeefd22d3e1b2c6862c66ebfbb963dfd6ee7f2b2efe36788dc47419183603 -size 2741 diff --git a/MM_Math/data_original_21/7058812/math/51212476_811.png b/MM_Math/data_original_21/7058812/math/51212476_811.png deleted file mode 100644 index e95593c423c1cb21e50d770d426c5a6261fa3f79..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212476_811.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ce0b89d20066e6a8024b522f2c152f807ebc0079c4c2cf73f1dcf955fa02abef -size 741 diff --git a/MM_Math/data_original_21/7058812/math/51212520_170.png b/MM_Math/data_original_21/7058812/math/51212520_170.png deleted file mode 100644 index 4c6c382538c6478768b3d1d857a0b1d5042d8cd4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212520_170.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a26dc03d68451c8416e2e07924fde136ccf208cba73fb0d9ee196ccae2f0c0b -size 1663 diff --git a/MM_Math/data_original_21/7058812/math/51212541_820.png b/MM_Math/data_original_21/7058812/math/51212541_820.png deleted file mode 100644 index 58a4207bfec9b5e32a57b242cfb1805505d57b1c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212541_820.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e34954c1a6ee956022c97144da1cdcfad504aad9b6154a74d624fde0f9622a2a -size 1720 diff --git a/MM_Math/data_original_21/7058812/math/51212563_211.png b/MM_Math/data_original_21/7058812/math/51212563_211.png deleted file mode 100644 index a7a8573222847aaf56d05c9e51e62d4a362011c4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212563_211.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db3903b07f84994d9400437f75f4b3bf1767899d26494fb5f0acbba7677301ab -size 4265 diff --git a/MM_Math/data_original_21/7058812/math/51212564_200.png b/MM_Math/data_original_21/7058812/math/51212564_200.png deleted file mode 100644 index a6a3b9b6f820855829b44de63473fe9771d42d58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212564_200.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:307ada7c155a709d6c642ee88c1658f9ad389f588290f152ba4cf706d41f5b07 -size 8904 diff --git a/MM_Math/data_original_21/7058812/math/51212567_600.png b/MM_Math/data_original_21/7058812/math/51212567_600.png deleted file mode 100644 index 31a4efc4e278893ccf592dcd5686a721946aa9df..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212567_600.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:698f28cda4235d3be592dee90b5eb476dd370c9a135e316715f2e1f777ec438f -size 2072 diff --git a/MM_Math/data_original_21/7058812/math/51212587_244.png b/MM_Math/data_original_21/7058812/math/51212587_244.png deleted file mode 100644 index 8ca499513587384764bd674bc91ec8c913bf2cdd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212587_244.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:88c56b04a32c1f288b5dc473b507acb7f899e00a986a276fba0df62bb3116cfb -size 2733 diff --git a/MM_Math/data_original_21/7058812/math/51212645_880.png b/MM_Math/data_original_21/7058812/math/51212645_880.png deleted file mode 100644 index 1fb78e1315bcb18049fb0e85dfe93193dd572669..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212645_880.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5581e863404e9a00d176cf852b60246bbe132e5d105eecc1e867d3c6530855a2 -size 11188 diff --git a/MM_Math/data_original_21/7058812/math/51212652_180.png b/MM_Math/data_original_21/7058812/math/51212652_180.png deleted file mode 100644 index 3f4ae5770316ce196f68e260ebee3ac8586efe90..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212652_180.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c2fc9484ff1a8d13816c721d39a06d2abc8ef62a75d8795f3979162174345e3 -size 8807 diff --git a/MM_Math/data_original_21/7058812/math/51212700_581.png b/MM_Math/data_original_21/7058812/math/51212700_581.png deleted file mode 100644 index 17d356297e0331101547880e6843e168f1d97283..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212700_581.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5dbc69ab305f8c5bec7297e72be9aa747cfbb091c15221fc662309236e796628 -size 12718 diff --git a/MM_Math/data_original_21/7058812/math/51212701_597.png b/MM_Math/data_original_21/7058812/math/51212701_597.png deleted file mode 100644 index 82613b2781ed738f13af9c95bae5bf7f61d4f727..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212701_597.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a14c8acbca525c8eaf724bb1f613d262f68f5fba6900a4390d3d0062ae2e1f96 -size 7477 diff --git a/MM_Math/data_original_21/7058812/math/51212719_863.png b/MM_Math/data_original_21/7058812/math/51212719_863.png deleted file mode 100644 index 59495ecfca7da3aa7d836ff7fea8fac7f1d9088e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212719_863.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68fe5abfe13dcb54042d4fefd7822c9d64d8af8ecf9aebd5bd07e7dd9f538684 -size 31100 diff --git a/MM_Math/data_original_21/7058812/math/51212770_140.png b/MM_Math/data_original_21/7058812/math/51212770_140.png deleted file mode 100644 index 94f6f102440b6ebdbf5bba3c0f7616a3bff2cdb9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212770_140.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:041a5e0a6674725df5d7da375f60448cf3b10522694c27224e107d082ba9ce17 -size 11919 diff --git a/MM_Math/data_original_21/7058812/math/51212771_255.png b/MM_Math/data_original_21/7058812/math/51212771_255.png deleted file mode 100644 index defd0688d096b3d8594e78370ac83b9e0dd0c350..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212771_255.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed252bb17b008de65dbabb7924b3e59b15046153dbf638e4711b3f0fc60b40ab -size 3771 diff --git a/MM_Math/data_original_21/7058812/math/51212775_610.png b/MM_Math/data_original_21/7058812/math/51212775_610.png deleted file mode 100644 index a831a67964cc00cb70664dc8e76038f4ebfdd7cc..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212775_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9a07d77244e207395947fc461a77117f99ec916dbc8e2be51f8db7c006d714d -size 6047 diff --git a/MM_Math/data_original_21/7058812/math/51212803_220.png b/MM_Math/data_original_21/7058812/math/51212803_220.png deleted file mode 100644 index fe7a4537935d746be3dd29fde9a95d8182571249..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212803_220.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4655111cb6522817d63725ecbb7b4bb5395f34e2eca563419d818c6f952ccc93 -size 3550 diff --git a/MM_Math/data_original_21/7058812/math/51212821_900.png b/MM_Math/data_original_21/7058812/math/51212821_900.png deleted file mode 100644 index 9f417dda060f3ee7c480fbfc6f5c7594e9385cc6..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212821_900.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:22d80740b3474241c8bdaccb9906e71900646db19aab2de7de692eb642325d2f -size 3867 diff --git a/MM_Math/data_original_21/7058812/math/51212830_871.png b/MM_Math/data_original_21/7058812/math/51212830_871.png deleted file mode 100644 index c686e6864b7b28f9d7e844cd2b4a966aef9d609c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212830_871.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51ab305ebb21d1df8a06ca7694ca9840b2e1f81873bda0a1f7086e6fe8419ca7 -size 4309 diff --git a/MM_Math/data_original_21/7058812/math/51212842_156.png b/MM_Math/data_original_21/7058812/math/51212842_156.png deleted file mode 100644 index f9f188abd80c8b80d650a3975609fa09cb0f3209..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212842_156.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:060a454358338629314724f6fe7cf2977d25304745c51c2ff3655b6e70d35d87 -size 2194 diff --git a/MM_Math/data_original_21/7058812/math/51212846_130.png b/MM_Math/data_original_21/7058812/math/51212846_130.png deleted file mode 100644 index 12bdbe84a9f20ef1fccaeaf57e6efc9bbe65da2f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212846_130.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:024f3ebbdad4b4b1f8e172ed726dbff164a37c331553cf7e99e754fb40cff199 -size 15223 diff --git a/MM_Math/data_original_21/7058812/math/51212848_70.png b/MM_Math/data_original_21/7058812/math/51212848_70.png deleted file mode 100644 index 5d96aeac0d5495ade3d40e601799b949b8455519..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51212848_70.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aeb49d7c91ad0ac2c32c40fc86f02085e8b90f8eb8acecfe43c1e80e6e224b8b -size 10389 diff --git a/MM_Math/data_original_21/7058812/math/51213181_510.png b/MM_Math/data_original_21/7058812/math/51213181_510.png deleted file mode 100644 index 2f0675240932b98ec2009fd7fc33a506d3d3362f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213181_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68d15248a9e6394668fef9ff8ea1e4aec6401b1f396149b8492fefd7ca19759c -size 4520 diff --git a/MM_Math/data_original_21/7058812/math/51213210_53.png b/MM_Math/data_original_21/7058812/math/51213210_53.png deleted file mode 100644 index 16323d0de542b6bd160de2eb7fe20ecefd5ee054..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213210_53.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:350242847838a42da4822cc677e1c2cb95e4a7b251bfc66af318ef5f641d2dd8 -size 2804 diff --git a/MM_Math/data_original_21/7058812/math/51213212_60.png b/MM_Math/data_original_21/7058812/math/51213212_60.png deleted file mode 100644 index 19cab1ae4c1217f0c91085ce1263372e3baec1cd..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213212_60.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0f8ed9d76bc2903f7a99b11abed02c3cc497538a51a391d16e58f987c2d2f153 -size 4512 diff --git a/MM_Math/data_original_21/7058812/math/51213250_490.png b/MM_Math/data_original_21/7058812/math/51213250_490.png deleted file mode 100644 index 864d81ed6791616a08d4120e227f101dbfc1122c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213250_490.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f60ebb08c8a4063e91bb262623955ae5be21124cb16f3c0f1b2c40991dc681ab -size 7009 diff --git a/MM_Math/data_original_21/7058812/math/51213252_500.png b/MM_Math/data_original_21/7058812/math/51213252_500.png deleted file mode 100644 index 2d4285f83b243431563e052b2eead147161bfb04..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213252_500.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b65e782179805c7b3a9d44aaaa4e6cc0ea0d75bded7f0e378d8be0c445939557 -size 3479 diff --git a/MM_Math/data_original_21/7058812/math/51213310_40.png b/MM_Math/data_original_21/7058812/math/51213310_40.png deleted file mode 100644 index 2ca525c024312fa917ee3b383a87731261ea4b60..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213310_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80314f80936699a207332463a0058582cc4a892b6e382c1f3e85112ba217d4ee -size 11771 diff --git a/MM_Math/data_original_21/7058812/math/51213349_32.png b/MM_Math/data_original_21/7058812/math/51213349_32.png deleted file mode 100644 index 19e852c1d1e4017b4df06ce886158cbfe6670e88..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213349_32.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4c2900c7efbb8fd2a3bb52f13a8be0d024ff0387bb7a172741f4d7664aff8505 -size 4119 diff --git a/MM_Math/data_original_21/7058812/math/51213350_480.png b/MM_Math/data_original_21/7058812/math/51213350_480.png deleted file mode 100644 index 7d2536daa4ab080c881aeaab77b28dc865fb85c7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213350_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:296c3cf579505f990bfa7af1aafd80f87d381c1bf083b9f16e74711c06f95431 -size 4499 diff --git a/MM_Math/data_original_21/7058812/math/51213351_473.png b/MM_Math/data_original_21/7058812/math/51213351_473.png deleted file mode 100644 index 9e03782b789a380c6b4d7ebdcb1bfef9033824e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213351_473.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64b7a9c3d9b671046035dcfcecef4e5c99b46a28774b2755c168759034bfa54c -size 2823 diff --git a/MM_Math/data_original_21/7058812/math/51213352_466.png b/MM_Math/data_original_21/7058812/math/51213352_466.png deleted file mode 100644 index 2c951147085e65382db08362ef21b9d59714e22b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213352_466.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64228aae80b04f77d2f760e52da5b0a8ac8fadaf082a414208cc8904ee6463b9 -size 1001 diff --git a/MM_Math/data_original_21/7058812/math/51213412_20.png b/MM_Math/data_original_21/7058812/math/51213412_20.png deleted file mode 100644 index e01dd0ae79aa43c5af0d87f58a1457ffca757334..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213412_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3320555c0a09c908e3c9abf802625c8beb87c569be6ba87c27a1b070d1088f74 -size 3308 diff --git a/MM_Math/data_original_21/7058812/math/51213413_17.png b/MM_Math/data_original_21/7058812/math/51213413_17.png deleted file mode 100644 index 664d4b8cc51733cb7594e9a026640fa88e807675..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213413_17.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0acfa303451213a2db0e0f834e9e2a98c938c1a883e32dec45d88ed9538d02c1 -size 4155 diff --git a/MM_Math/data_original_21/7058812/math/51213419_448.png b/MM_Math/data_original_21/7058812/math/51213419_448.png deleted file mode 100644 index 1023bb7eba43d83c91d939390f3423fca684e2f3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213419_448.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b2e62db88a704286d6404fe2124838fe614745b82e87338cb814c2c4521855d -size 3515 diff --git a/MM_Math/data_original_21/7058812/math/51213420_454.png b/MM_Math/data_original_21/7058812/math/51213420_454.png deleted file mode 100644 index ef7504fd3fbcc877761647f8c58847aa2d0f2dff..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213420_454.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:733b703ef4277325070cab29e2e01c06dd0ad06632eb1853bf52bf5bb3535839 -size 3247 diff --git a/MM_Math/data_original_21/7058812/math/51213422_430.png b/MM_Math/data_original_21/7058812/math/51213422_430.png deleted file mode 100644 index 30a02e9c45b45cbbd522b3b9ee0b850e1d34ba64..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51213422_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccdb79107920f8c1d0904184916d80dbbdfa7c70068c310ddbe685787192f641 -size 4802 diff --git a/MM_Math/data_original_21/7058812/math/51366778_850.png b/MM_Math/data_original_21/7058812/math/51366778_850.png deleted file mode 100644 index e93f2b98431828da707bf67135cf3b571c294caf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51366778_850.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67d7db5b23fb1f6cc05152c23b2861a457234adbea1ae00e5415729ca3523254 -size 1027 diff --git a/MM_Math/data_original_21/7058812/math/51366817_800.png b/MM_Math/data_original_21/7058812/math/51366817_800.png deleted file mode 100644 index 20aff533b8c9c894d3417d11dc7fb23b9057b2d4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51366817_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02b8d0f756a6f8ef0877ebe676c5b84d5e5bba2c45e08a8b8ba2d42dac564b34 -size 5962 diff --git a/MM_Math/data_original_21/7058812/math/51366872_742.png b/MM_Math/data_original_21/7058812/math/51366872_742.png deleted file mode 100644 index d0181e79396a8fb65a3021ca29822641ec8fc075..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51366872_742.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a38e1397a0bc6d81fd1fbadba529bf2038301ca1752d73eaa8e2cd3d1e87ec3 -size 4904 diff --git a/MM_Math/data_original_21/7058812/math/51366887_981.png b/MM_Math/data_original_21/7058812/math/51366887_981.png deleted file mode 100644 index 6d653881c299ca9bc49fd572a9781b6beeb8cff1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51366887_981.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ffede4fe28f42e679f985d2623fef32fdd502ee6b40640a53befb803cd5645c -size 19669 diff --git a/MM_Math/data_original_21/7058812/math/51366955_970.png b/MM_Math/data_original_21/7058812/math/51366955_970.png deleted file mode 100644 index 604b89ad2b460a13607de19873c53ec2bae0c6ef..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51366955_970.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:248f9ed488379e42ef873164b6a4bd2fe6e6cd39ab17b96d18f9cab07dc128d9 -size 4145 diff --git a/MM_Math/data_original_21/7058812/math/51367108_400.png b/MM_Math/data_original_21/7058812/math/51367108_400.png deleted file mode 100644 index 388c6406c4ed5d9c2ee4f213bcd91abb049ee87b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367108_400.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e28cf2702482a3a77be04e578cb874e8e2de5faea9a6646d08eeac1c5dad0682 -size 3608 diff --git a/MM_Math/data_original_21/7058812/math/51367124_960.png b/MM_Math/data_original_21/7058812/math/51367124_960.png deleted file mode 100644 index 55be4574fd14e8664fb3d14f419d5f66239d07ad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367124_960.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d062750b3a94d163385a91e3a610954334afa31ecac274c858183ea6f29bda0e -size 2726 diff --git a/MM_Math/data_original_21/7058812/math/51367153_352.png b/MM_Math/data_original_21/7058812/math/51367153_352.png deleted file mode 100644 index b52d7b01dcda1889cc6ce9d977844d5e75a5fd72..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367153_352.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3ebac41a81cbadc84a731a87793da9fe674544c76d8ef5a2eb26e3345843a9ce -size 17420 diff --git a/MM_Math/data_original_21/7058812/math/51367169_991.png b/MM_Math/data_original_21/7058812/math/51367169_991.png deleted file mode 100644 index f55a7768d1eeeea3a8e0ba80a28b86ae95a838b4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367169_991.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c201ab752405cd9c8da5dcd67d3d96351d962fd45af630d540e8cde53bf01194 -size 3634 diff --git a/MM_Math/data_original_21/7058812/math/51367276_792.png b/MM_Math/data_original_21/7058812/math/51367276_792.png deleted file mode 100644 index b8bb28c6a5dcc9b54d0989c3922beca278c574b3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367276_792.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e33d8ebbd7d6e2bea7d7569852a44e613d06d3919910db38d7edc7216b29fc85 -size 7497 diff --git a/MM_Math/data_original_21/7058812/math/51367277_730.png b/MM_Math/data_original_21/7058812/math/51367277_730.png deleted file mode 100644 index c0392750ed20cb2411c90ed444dd782347ad0ddf..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367277_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39e712a8f978851f9f8d7e44c71c36a712a460deeae466e1ed75c34dffdb7ba8 -size 2455 diff --git a/MM_Math/data_original_21/7058812/math/51367320_391.png b/MM_Math/data_original_21/7058812/math/51367320_391.png deleted file mode 100644 index 9c4bec201b02a2d4d52f7c6e8c627ea76caeabb5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367320_391.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28374baa15e1eedafbc9c1a58ac65134e990d70897d56bfa4136250645cced6d -size 7950 diff --git a/MM_Math/data_original_21/7058812/math/51367325_770.png b/MM_Math/data_original_21/7058812/math/51367325_770.png deleted file mode 100644 index 5004fd530515f15edfb492b072fe07197ca7b032..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367325_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:278a235f05f6616309a3591100350947418a74777228ceba502ac4a900ee897d -size 2471 diff --git a/MM_Math/data_original_21/7058812/math/51367326_760.png b/MM_Math/data_original_21/7058812/math/51367326_760.png deleted file mode 100644 index a5ce93913a7832c1d48fad2d52b8affaa416a1f9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367326_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90f6bd12cc83531497f0a78dd3292ee3800de3e4fe5d8b50ecd4a787dda8dd24 -size 30440 diff --git a/MM_Math/data_original_21/7058812/math/51367328_782.png b/MM_Math/data_original_21/7058812/math/51367328_782.png deleted file mode 100644 index ed578d8e5877aac13aa4c6aa4a4874388a331a3e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367328_782.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12067bfbd5fda0789de817b078781278cfbf81658bcb3fcccb578e442db9ae27 -size 3217 diff --git a/MM_Math/data_original_21/7058812/math/51367416_365.png b/MM_Math/data_original_21/7058812/math/51367416_365.png deleted file mode 100644 index fcd0cc9f4ccf24560aa0cce01f8f2552b480c229..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367416_365.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e986e2456a06700e7545ec1d581592441e9103ebcb66583a3f7a8e971e2dddac -size 10331 diff --git a/MM_Math/data_original_21/7058812/math/51367477_410.png b/MM_Math/data_original_21/7058812/math/51367477_410.png deleted file mode 100644 index 60ec3e637374c9ddcc5778b48205d2ae2eb17113..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367477_410.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7de5e9fc1cdcde1fcaae705242a86afd063b5871049068293fe7c412cc5e6fcd -size 3538 diff --git a/MM_Math/data_original_21/7058812/math/51367505_375.png b/MM_Math/data_original_21/7058812/math/51367505_375.png deleted file mode 100644 index 785da0f343276213a931d1e5385cdb3335bd680f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367505_375.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:568fdfd8a1c7f5ca3b849fba6b8eabb765264d70bd2413e327b762d566077745 -size 3911 diff --git a/MM_Math/data_original_21/7058812/math/51367508_382.png b/MM_Math/data_original_21/7058812/math/51367508_382.png deleted file mode 100644 index b56dbec7b84cca31b56b9652f740c6de5328a95c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367508_382.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9636b08000826675a01b7e75d2f27247831874ca64c996682674a914914121ab -size 7219 diff --git a/MM_Math/data_original_21/7058812/math/51367517_750.png b/MM_Math/data_original_21/7058812/math/51367517_750.png deleted file mode 100644 index 20dcaae0e2b295d8ea3442b581d269843f34f104..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367517_750.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e694a92bbad005134c75691f2a4f07d0af84a56981c51f542ebf55f2568d509c -size 5827 diff --git a/MM_Math/data_original_21/7058812/math/51367684_345.png b/MM_Math/data_original_21/7058812/math/51367684_345.png deleted file mode 100644 index 3cb724fa1549eb5d4f26099d7c2bf17c54691e42..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367684_345.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e5773b5bf9992333dfde2327f00c47077c3428efb95cd3a6ed09939e3d40c4ba -size 5521 diff --git a/MM_Math/data_original_21/7058812/math/51367686_330.png b/MM_Math/data_original_21/7058812/math/51367686_330.png deleted file mode 100644 index 7ca65614cc0d753736a6d169e901661e807334ad..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367686_330.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:258e631b9e2914a57491f3fd34215af8022470f97d1cea9b25388ed9e0d76b50 -size 971 diff --git a/MM_Math/data_original_21/7058812/math/51367859_329.png b/MM_Math/data_original_21/7058812/math/51367859_329.png deleted file mode 100644 index 6c3f15ba6ed04829d4bfc585a381b5e7f804ae1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367859_329.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d2dbbaafa7c729b9c3f88bb2c5c09324bdf745cc975294be8c268757343b442 -size 5708 diff --git a/MM_Math/data_original_21/7058812/math/51367862_724.png b/MM_Math/data_original_21/7058812/math/51367862_724.png deleted file mode 100644 index 7306e7a91206039c97e5c5d581915fe82dda96d8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367862_724.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e96b1e132aa760341e9a9048fd4da9b377fa5060a647d5f0e74623e78fcecce -size 4333 diff --git a/MM_Math/data_original_21/7058812/math/51367866_715.png b/MM_Math/data_original_21/7058812/math/51367866_715.png deleted file mode 100644 index effb718393de737cf35454054976a40b010a1b95..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367866_715.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2959f38db40840c4eec4be2a68c7093b80c8976755ace26f1af0055a614bd234 -size 4116 diff --git a/MM_Math/data_original_21/7058812/math/51367879_845.png b/MM_Math/data_original_21/7058812/math/51367879_845.png deleted file mode 100644 index b51cc4722f27405407a862bfb3d7401a50627bf4..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51367879_845.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:41df1872367afc0683bd52343fdbcd367f800305dc46c74a64d928f085ec3cb8 -size 3149 diff --git a/MM_Math/data_original_21/7058812/math/51368137_311.png b/MM_Math/data_original_21/7058812/math/51368137_311.png deleted file mode 100644 index c1b0c83b56e7f311fdcea90847359844ef8c6c8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368137_311.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48daacde9b4088e02bcd7035fe19ad3a31f5e4d3272413289185fab805665b07 -size 4417 diff --git a/MM_Math/data_original_21/7058812/math/51368144_690.png b/MM_Math/data_original_21/7058812/math/51368144_690.png deleted file mode 100644 index 8ffaa3507d1d54e4ae04c80b19ce6071090ccdae..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368144_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff39799ec70c52f12c6545cddb099d831d4cee5f95de99ef662a0f3e78d6c9ce -size 3699 diff --git a/MM_Math/data_original_21/7058812/math/51368145_700.png b/MM_Math/data_original_21/7058812/math/51368145_700.png deleted file mode 100644 index 067278632fce9b2cceab7a37defa2a08ccae8e10..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368145_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e1e69b8413b72925248b4bfbc9365bc6ec22f34d4154ccff1a07b475d6a9031 -size 2551 diff --git a/MM_Math/data_original_21/7058812/math/51368158_940.png b/MM_Math/data_original_21/7058812/math/51368158_940.png deleted file mode 100644 index d64df11ced7a1c8d8e73ea09db717ada1d78050c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368158_940.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b975bbb2a081c7c50b5e89426f72cc388942c53e59b9a3665818d99d06522b25 -size 3487 diff --git a/MM_Math/data_original_21/7058812/math/51368161_950.png b/MM_Math/data_original_21/7058812/math/51368161_950.png deleted file mode 100644 index 2fdaaa62c167f4b98018b79e64c12d1a142fccf5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368161_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7160cc119f67c863e1db602b7110059e7443a1d6f6564e2672d1c95b06195987 -size 6846 diff --git a/MM_Math/data_original_21/7058812/math/51368165_930.png b/MM_Math/data_original_21/7058812/math/51368165_930.png deleted file mode 100644 index dd214e4ae257e9ea0440ac440960467b6b4ca066..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368165_930.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cd65cd3a020732c98bd5a9ec7363f76e07aa569dff695a2cb04824662d07a48c -size 16163 diff --git a/MM_Math/data_original_21/7058812/math/51368175_290.png b/MM_Math/data_original_21/7058812/math/51368175_290.png deleted file mode 100644 index ea3f7350666fba07957bc230b1274d8252c81a53..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368175_290.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f83b4c9c0bfbca21b7ee3fd8c0cbb2158f3e0d41eaf6d01cd60fbe309cde57f -size 2566 diff --git a/MM_Math/data_original_21/7058812/math/51368176_300.png b/MM_Math/data_original_21/7058812/math/51368176_300.png deleted file mode 100644 index 175bf16b667e968f05b0a3f299142420d547fc89..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368176_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e8aafad247618673d2d217d12fef20c419aa5ae4def2b6193d4bb218e0ec8c7 -size 11271 diff --git a/MM_Math/data_original_21/7058812/math/51368180_681.png b/MM_Math/data_original_21/7058812/math/51368180_681.png deleted file mode 100644 index e4e115118b460eec8db2bd42c7efcff10914e44a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368180_681.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf7110d87bdd05554a883d223a7ece1590c4ddfe647ee657a1e2cc431bd79cea -size 8323 diff --git a/MM_Math/data_original_21/7058812/math/51368215_679.png b/MM_Math/data_original_21/7058812/math/51368215_679.png deleted file mode 100644 index 2496d9fee9846b97355b1d9ba76ab8b6cc260345..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368215_679.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2c058dd22886ad76cc17f2d8dac00267ecc2e48844b838099b8b8ac646cb468 -size 5066 diff --git a/MM_Math/data_original_21/7058812/math/51368293_660.png b/MM_Math/data_original_21/7058812/math/51368293_660.png deleted file mode 100644 index dafe79d35cdcde90b836c8acde3a7808f63d798d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368293_660.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:678bd351b2f0250ed33146c4995ccb85c3cbb621848c5100651a1dafa5352b17 -size 3492 diff --git a/MM_Math/data_original_21/7058812/math/51368308_922.png b/MM_Math/data_original_21/7058812/math/51368308_922.png deleted file mode 100644 index bd076e4723b7eb99c2c3ee92c42a4d73213f9a15..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368308_922.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1adc73e4d3642302e8e19e8456c9a57cd5ad4987076e783ba3966f5c6ee4f0b2 -size 8133 diff --git a/MM_Math/data_original_21/7058812/math/51368322_281.png b/MM_Math/data_original_21/7058812/math/51368322_281.png deleted file mode 100644 index b10bda82dd70a65125ecc6fa7a5f80beae7dd4c3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368322_281.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2cf5fbb3c88ab08c18a7e14abe4192670f4381b3a80372dc01c72dd98ab3d7e -size 5809 diff --git a/MM_Math/data_original_21/7058812/math/51368331_650.png b/MM_Math/data_original_21/7058812/math/51368331_650.png deleted file mode 100644 index e66ae4cc70c125796b55d6bf4d0770701ef6fc22..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368331_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e4a57ffb4e103f3e045e30f2c7be842a1e3c4856592485d9438a95cefec925a -size 6281 diff --git a/MM_Math/data_original_21/7058812/math/51368365_270.png b/MM_Math/data_original_21/7058812/math/51368365_270.png deleted file mode 100644 index 9632731ddd272b6407d9e49bbd8429393f9ed48b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368365_270.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4085c3cf0d1512b6bafac57bdcb2e5eb74eba13beca8b9276dbcb4b627c230d8 -size 4889 diff --git a/MM_Math/data_original_21/7058812/math/51368374_640.png b/MM_Math/data_original_21/7058812/math/51368374_640.png deleted file mode 100644 index e64edf27586a77457a1e87c7ddc8b5d413342ff8..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368374_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56d014b3acfb60666a7efe25e99e7c336b276dd42d1a7a2c7a31503877eb53c9 -size 5278 diff --git a/MM_Math/data_original_21/7058812/math/51368376_630.png b/MM_Math/data_original_21/7058812/math/51368376_630.png deleted file mode 100644 index ed6cfd10521d482f9680176055fa6dda427926f7..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/51368376_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:63fe6dd65ffd670848f4a67e411637b3e177c70cbf7349dea628b49cdeb7f6d9 -size 13051 diff --git a/MM_Math/data_original_21/7058812/math/55452494_00.png b/MM_Math/data_original_21/7058812/math/55452494_00.png deleted file mode 100644 index 7ae67af542f35c78ddd8588c5dac08e6a1c5627c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/55452494_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:acfd20dc02b15aa73f14cb4c847a145f07d7d55ec765ad5520c6882b5ba0d303 -size 11607 diff --git a/MM_Math/data_original_21/7058812/math/55452503_420.png b/MM_Math/data_original_21/7058812/math/55452503_420.png deleted file mode 100644 index e3a0b27cdecb72eeb5b291a097b2c6111e3fcefe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/math/55452503_420.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bef98b2fad2cd8b73f74ab6d5f2b0dd6d66a1f5a243a83a0c03c02a5a9945ee1 -size 16657 diff --git a/MM_Math/data_original_21/7058812/solution_images/51209211_261.png b/MM_Math/data_original_21/7058812/solution_images/51209211_261.png deleted file mode 100644 index 2d606ca2cdf6910eeb72fb7e19b0220066e6e219..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51209211_261.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc70a74c20704c31532ac600063aaf30bbf55935f512698b6da28ab559ff0ce4 -size 10109 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212034_190.png b/MM_Math/data_original_21/7058812/solution_images/51212034_190.png deleted file mode 100644 index 42ce68699df919850ad730d4dccb6d828a40f5da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212034_190.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fd7578aad1192de70f9659e82f949924fe211e3b68b0e7b84e528ec2b77df6f -size 592 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212034_191.png b/MM_Math/data_original_21/7058812/solution_images/51212034_191.png deleted file mode 100644 index 42ce68699df919850ad730d4dccb6d828a40f5da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212034_191.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fd7578aad1192de70f9659e82f949924fe211e3b68b0e7b84e528ec2b77df6f -size 592 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212034_192.png b/MM_Math/data_original_21/7058812/solution_images/51212034_192.png deleted file mode 100644 index 42ce68699df919850ad730d4dccb6d828a40f5da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212034_192.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fd7578aad1192de70f9659e82f949924fe211e3b68b0e7b84e528ec2b77df6f -size 592 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212034_193.png b/MM_Math/data_original_21/7058812/solution_images/51212034_193.png deleted file mode 100644 index 42ce68699df919850ad730d4dccb6d828a40f5da..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212034_193.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5fd7578aad1192de70f9659e82f949924fe211e3b68b0e7b84e528ec2b77df6f -size 592 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212036_91.png b/MM_Math/data_original_21/7058812/solution_images/51212036_91.png deleted file mode 100644 index 1f334e5256bdddf4c5e3d6c6db435549dbcd5310..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212036_91.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dd9977bbcb0874303136e7467ee5500c7594363ec0038bd2ba13fba3392b0d9a -size 4079 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212130_110.png b/MM_Math/data_original_21/7058812/solution_images/51212130_110.png deleted file mode 100644 index 4701ec6e12b83a6caabdfd5a041e2791012aa9ac..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212130_110.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0fa7a011c95fa23eff33ecd917abe3270cc95f33ad6aff1ac9503c004fca1009 -size 22239 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212132_100.png b/MM_Math/data_original_21/7058812/solution_images/51212132_100.png deleted file mode 100644 index 2ad0ccecba0b750b64e80b7446fe8a8904f128fa..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212132_100.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dd80ac9eb18578132d3e8aa159079b36b4df588675b9165de50b039f5080612f -size 6291 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212138_530.png b/MM_Math/data_original_21/7058812/solution_images/51212138_530.png deleted file mode 100644 index e636cf72f03a5a32f4deb7217e5553b073eccb39..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212138_530.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f365fe79d9acabfa2dca42be7daf74553bb1d046dee4a485636fab3b981da1f -size 5155 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212179_160.png b/MM_Math/data_original_21/7058812/solution_images/51212179_160.png deleted file mode 100644 index 4adcfea1b5e0791b89f3c4d0305481cc136d5984..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212179_160.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2afd8a546055b954a4400f144171bbafb0590e92e164686abd9437fa917522b -size 5030 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212472_570.png b/MM_Math/data_original_21/7058812/solution_images/51212472_570.png deleted file mode 100644 index eb15ca5759358d2949e5ff2eb2b0297e1f2fc61d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212472_570.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23cf921d143f90d0679c9d6f54d4c2b9b00e90d9f11d5a0a5ec0ee25e864ff3a -size 2538 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212700_580.png b/MM_Math/data_original_21/7058812/solution_images/51212700_580.png deleted file mode 100644 index 7d5c94fc82d2eb3ff85608d0d3834c9af100e613..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212700_580.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddb4d5847aede53eca304601f53ed5d5f6223d88476536909eee46389c29c046 -size 17875 diff --git a/MM_Math/data_original_21/7058812/solution_images/51212775_610.png b/MM_Math/data_original_21/7058812/solution_images/51212775_610.png deleted file mode 100644 index 4348b2851f2b378239d076874776891605ee3da9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51212775_610.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ec634a4f0598b94c1c4e986f26054c769bd8ef3e68b29fd8d84105ea29adcad -size 5314 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213181_510.png b/MM_Math/data_original_21/7058812/solution_images/51213181_510.png deleted file mode 100644 index db93abecc083b9e273a743bcc73e99693d278574..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213181_510.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56173456957a50aa5be79d19f04d36ef4618ac125df7985514a7c87abe435be4 -size 4930 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213210_50.png b/MM_Math/data_original_21/7058812/solution_images/51213210_50.png deleted file mode 100644 index 79446246784e73ad965be1a1d7bf3626073f9e3b..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213210_50.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2e80758d1c71a0f8c8204f2b1ce76326ba9a185837c36138f16d644deaea794 -size 3054 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213310_40.png b/MM_Math/data_original_21/7058812/solution_images/51213310_40.png deleted file mode 100644 index 9f013dc5af6fa13a3bc1f2db3f679cb821c69d01..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213310_40.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cdbdf205677bd501e8aa841954a41ea4a27916cf9c0ed56f3ad46f906eb8b022 -size 6512 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213349_30.png b/MM_Math/data_original_21/7058812/solution_images/51213349_30.png deleted file mode 100644 index c1909f47408d83f62d6298c3db865b7debc9ae21..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213349_30.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4492b904bb401965655d3f21a4a279f88eb691ed47f847c39e06b0746e4bd496 -size 5129 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213350_480.png b/MM_Math/data_original_21/7058812/solution_images/51213350_480.png deleted file mode 100644 index 94106d18f8ac08e77f4cbbae5214df96be401974..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213350_480.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e84ae6b5cabc93cd2ee122cf751d6b77e28399db134b329cc0c5fd3a456b3776 -size 5568 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213351_470.png b/MM_Math/data_original_21/7058812/solution_images/51213351_470.png deleted file mode 100644 index 6e289956293a30f11222b00b89d653460d5ad031..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213351_470.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5076a317eed01938c27660248e380ce6c4d855bf5674f67b8f54c75eaa9550c -size 6129 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213352_460.png b/MM_Math/data_original_21/7058812/solution_images/51213352_460.png deleted file mode 100644 index 1bae88c6cf21f446b469b6a8aa07a499d0ec430c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213352_460.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7333c89565f546e56a5180f37ffe9507bbe5b40edbdf645c367e571c71f045de -size 6136 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213412_20.png b/MM_Math/data_original_21/7058812/solution_images/51213412_20.png deleted file mode 100644 index b8a2fc587dd7a6aeac4e9d45f2fe556099bc4056..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213412_20.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3350cc8f13e6a51309f5a85a18d4e61de6a2a888ed163769c045ce3f39ae7001 -size 4721 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213419_440.png b/MM_Math/data_original_21/7058812/solution_images/51213419_440.png deleted file mode 100644 index f1788e5e461b3746a8063fb8726fa3d3e26a73c0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213419_440.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:157d8ce958ad17e0390589c13e7c2107310923ee07ae7dd2bb7750cfb164b02c -size 3878 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213420_450.png b/MM_Math/data_original_21/7058812/solution_images/51213420_450.png deleted file mode 100644 index b14905f2b79795adb9e79f78ffca46533f614af5..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213420_450.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:22cf24072c3723268bccc1999d0164d6d28062e5f5b6f5a4e7720872f560639b -size 4437 diff --git a/MM_Math/data_original_21/7058812/solution_images/51213422_430.png b/MM_Math/data_original_21/7058812/solution_images/51213422_430.png deleted file mode 100644 index ee1978e2aeca73d5c30b7059a2ac6cc297c018a3..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51213422_430.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12449bac8c449b205fb93a34a20a14dd58bbdac69e2a1afb880ba3a5a03dce48 -size 6352 diff --git a/MM_Math/data_original_21/7058812/solution_images/51366817_800.png b/MM_Math/data_original_21/7058812/solution_images/51366817_800.png deleted file mode 100644 index fcd19b3fb7f27d53af6dd410248c9f924379c88f..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51366817_800.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:651441378e3d3c74ef425736772a905d5762c9e886c236da7b7632b3cdfe898d -size 9759 diff --git a/MM_Math/data_original_21/7058812/solution_images/51367153_350.png b/MM_Math/data_original_21/7058812/solution_images/51367153_350.png deleted file mode 100644 index 0ebf321e4e407825f0cac255840f36a64bbe0790..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51367153_350.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a091bbac8cf24eb82b912b426c915f98cbc9ad9399bff00749c4b766e0b46f8 -size 5514 diff --git a/MM_Math/data_original_21/7058812/solution_images/51367276_790.png b/MM_Math/data_original_21/7058812/solution_images/51367276_790.png deleted file mode 100644 index bf1a073460867c1f17d07e68daeaefd789773fd9..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51367276_790.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b52c20e25b001a33ac648b66eb19426b3cf2117fbb34b9f27514fd61dbff8b3 -size 11027 diff --git a/MM_Math/data_original_21/7058812/solution_images/51367277_730.png b/MM_Math/data_original_21/7058812/solution_images/51367277_730.png deleted file mode 100644 index 498d572cee2eb07d2578710433a2cf09d7102392..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51367277_730.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c71ad731a86cec56b7334994fa557a4d0a1893c9ae1df22dab11824b7a49ca46 -size 2756 diff --git a/MM_Math/data_original_21/7058812/solution_images/51367320_390.png b/MM_Math/data_original_21/7058812/solution_images/51367320_390.png deleted file mode 100644 index 38761814d60e425fe552c4e7e2036b4333636e56..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51367320_390.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:918b502dbcd0a706b659b64815741c8c4dfee8ebaf28540146948845674da6a3 -size 9612 diff --git a/MM_Math/data_original_21/7058812/solution_images/51367325_770.png b/MM_Math/data_original_21/7058812/solution_images/51367325_770.png deleted file mode 100644 index 376df98c9b3b33e439e2c3e5fd61dcb43d07d3e2..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51367325_770.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:968b00a92c14cbf54157c09cb3dcae936f30c3c4e4cd776568494203d6a85380 -size 2721 diff --git a/MM_Math/data_original_21/7058812/solution_images/51367326_760.png b/MM_Math/data_original_21/7058812/solution_images/51367326_760.png deleted file mode 100644 index f00418756fd68e3ce00fb3b60aa93ec540610cd1..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51367326_760.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:795dcc3c6f185848477331f0d5ccad5b61e6e85a571ff4aafc6bffbd07ed87c9 -size 8900 diff --git a/MM_Math/data_original_21/7058812/solution_images/51367328_781.png b/MM_Math/data_original_21/7058812/solution_images/51367328_781.png deleted file mode 100644 index 947419560de485950e80e062e2cb643beee9c338..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51367328_781.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eba8741f88a0f324f28ac96b31e268b384be7b7620015e582b791a24bee5854e -size 3386 diff --git a/MM_Math/data_original_21/7058812/solution_images/51367416_360.png b/MM_Math/data_original_21/7058812/solution_images/51367416_360.png deleted file mode 100644 index 213d6cf4f3ad17c219ac7f4fe941fcd2f82a184d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51367416_360.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:780021cc21489b214ecede7ac1351f41e0906141ffaf809b50b24ac23df642e9 -size 6646 diff --git a/MM_Math/data_original_21/7058812/solution_images/51367866_710.png b/MM_Math/data_original_21/7058812/solution_images/51367866_710.png deleted file mode 100644 index 4de625ea6eb588f2e27b87ae9402582b31c76e3d..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51367866_710.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a86b45f0cf8b8d80ec28d67fe49730942b768f80e3988f7f6fa096f33a0af5f -size 4811 diff --git a/MM_Math/data_original_21/7058812/solution_images/51368144_690.png b/MM_Math/data_original_21/7058812/solution_images/51368144_690.png deleted file mode 100644 index e9fec795dd7c896297b4616f66e80f08cbb9387e..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51368144_690.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7bfa68df7fb57eb1a3503fa15f6fb47920f43b7f293ea1df24f50ec294b72759 -size 27803 diff --git a/MM_Math/data_original_21/7058812/solution_images/51368145_700.png b/MM_Math/data_original_21/7058812/solution_images/51368145_700.png deleted file mode 100644 index e180774a0b62c22d8446c7dc953e87d8984fac35..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51368145_700.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9a3b6c94205906bf5c44b32e1cd5c95561bfa083c5c39a3f327cda67fd09b11 -size 6358 diff --git a/MM_Math/data_original_21/7058812/solution_images/51368161_950.png b/MM_Math/data_original_21/7058812/solution_images/51368161_950.png deleted file mode 100644 index bc1cd94ff836a0d269308694b1fc1fd63ee63e61..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51368161_950.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:078d07f438626ab6c23c8e0a83247beed5d408bae2d9e3ffc5e2666b02da391b -size 5231 diff --git a/MM_Math/data_original_21/7058812/solution_images/51368176_300.png b/MM_Math/data_original_21/7058812/solution_images/51368176_300.png deleted file mode 100644 index 8e92f8bfecdf46dff45e06adc3ae656008768a8c..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51368176_300.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0eb3f6340f38501198842a099f1865b2e8282b993261833122d700fb2cc1ce44 -size 15223 diff --git a/MM_Math/data_original_21/7058812/solution_images/51368215_670.png b/MM_Math/data_original_21/7058812/solution_images/51368215_670.png deleted file mode 100644 index e70e03a0d27c8badf3c8d2c1a3dceb0dcada4a58..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51368215_670.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48deb56be9b9ba0016c956f07a3c52f0f5bbae2155d38b6e5dbc7b3c7a4afd6f -size 10061 diff --git a/MM_Math/data_original_21/7058812/solution_images/51368293_661.png b/MM_Math/data_original_21/7058812/solution_images/51368293_661.png deleted file mode 100644 index d4bae517bde7360823f6aef486b002f4e4e514bb..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51368293_661.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c73397e9b317de1a3063f5a3122cb67ba601d5ca3cda70601d9d2322efc9b8f9 -size 8001 diff --git a/MM_Math/data_original_21/7058812/solution_images/51368331_650.png b/MM_Math/data_original_21/7058812/solution_images/51368331_650.png deleted file mode 100644 index 7dc6aa69651d8c34944b8f879b04569638f9fda0..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51368331_650.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a4f1a1af3b817daf1f5eb35a355449806db7f095a7a362891eff715af03b6f2 -size 4355 diff --git a/MM_Math/data_original_21/7058812/solution_images/51368374_640.png b/MM_Math/data_original_21/7058812/solution_images/51368374_640.png deleted file mode 100644 index b89ee1ddbdd78f23799c586ac2107e61299a0c1a..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51368374_640.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc1c8c364622a7c57da912477720911e7b5dbf7d33b71c130cf41799c30d4d30 -size 5758 diff --git a/MM_Math/data_original_21/7058812/solution_images/51368376_630.png b/MM_Math/data_original_21/7058812/solution_images/51368376_630.png deleted file mode 100644 index 5e6fd736bfb6d2bd19529b189561bc30608092ab..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/51368376_630.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da6e2e74d95684f566adf9bc9617138231921e3385040bebe8d774eb8db9637a -size 18657 diff --git a/MM_Math/data_original_21/7058812/solution_images/55452494_00.png b/MM_Math/data_original_21/7058812/solution_images/55452494_00.png deleted file mode 100644 index 6d02ed7dfb9855facbc2d085d48643f072613cbe..0000000000000000000000000000000000000000 --- a/MM_Math/data_original_21/7058812/solution_images/55452494_00.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8b3eaae3c873410cb08709aa86c16b01c3467b82e906b52096f510a901ed6b6f -size 11304