# Description: ## - 2D heat equation (diffusion) simulated on a 64x64 grid using an explicit finite-difference solver. ## - Time integration: forward Euler with stable timestep dt = 0.25 * dx^2 / alpha, where dx = 1/64. ## - Boundary conditions included (separate folders): - periodic - neumann (zero-flux) - dirichlet (fixed temperature = 0.0) ## - Initial condition modes: blobs, step, ring, collide, moving - 'moving' mode includes a moving heat source in the simulation for non-stationary scenarios. ## - Trajectory length (timesteps): 60 ## - Samples per BC: 4000 ## - Alpha (thermal diffusivity) sampled uniformly in [0.005, 0.02]. ## - Data formats: - Numeric (high precision): npz files saved under /npy///sample_*.npz Each npz contains: trajectory (float32 array shape (T, H, W)), alpha (float32), metadata (json string) - Visuals: png heatmaps for selected timesteps saved under /jpg/// - Metadata: /metadata/metadata.json and summary_stats.json (per-bc stats) ## - Noisy variants: optional measurement-noise version saved in 'noisy' subfolders (gaussian noise, std=0.005) # Quality checks: ## - For each trajectory, we compute total energy across the grid at each timestep: energy[t] = sum_{i,j} T(t,i,j) ## - We record initial and final energy and flag any samples where relative drift exceeds 0.001. # Usage: ## - For training physics-informed applications: load the .npz files and feed the float32 arrays directly as targets. ## - For visualization, preview PNGs or animate the trajectory using matplotlib or imageio.