Datasets:

Modalities:
Text
Formats:
json
Size:
< 1K
Libraries:
Datasets
pandas
File size: 122,882 Bytes
947c718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
{"name": "exercise_1_13b", "split": "test", "informal_prefix": "/-- Suppose that $f$ is holomorphic in an open set $\\Omega$. Prove that if $\\text{Im}(f)$ is constant, then $f$ is constant.-/\n", "formal_statement": "theorem exercise_1_13b {f : β„‚ β†’ β„‚} (Ξ© : Set β„‚) (a b : Ξ©) (h : IsOpen Ξ©)\n  (hf : DifferentiableOn β„‚ f Ξ©) (hc : βˆƒ (c : ℝ), βˆ€ z ∈ Ξ©, (f z).im = c) :\n  f a = f b :=", "goal": "f : β„‚ β†’ β„‚\nΞ© : Set β„‚\na b : ↑Ω\nh : IsOpen Ξ©\nhf : DifferentiableOn β„‚ f Ξ©\nhc : βˆƒ c, βˆ€ z ∈ Ξ©, (f z).im = c\n⊒ f ↑a = f ↑b", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_1_19a", "split": "test", "informal_prefix": "/-- Prove that the power series $\\sum nz^n$ does not converge on any point of the unit circle.-/\n", "formal_statement": "theorem exercise_1_19a (z : β„‚) (hz : abs z = 1) (s : β„• β†’ β„‚)\n    (h : s = (Ξ» n => βˆ‘ i in (range n), i * z ^ i)) :\n    Β¬ βˆƒ y, Tendsto s atTop (𝓝 y) :=", "goal": "z : β„‚\nhz : Complex.abs z = 1\ns : β„• β†’ β„‚\nh : s = fun n => βˆ‘ i ∈ range n, ↑i * z ^ i\n⊒ Β¬βˆƒ y, Tendsto s atTop (𝓝 y)", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_1_19c", "split": "test", "informal_prefix": "/-- Prove that the power series $\\sum zn/n$ converges at every point of the unit circle except $z = 1$.-/\n", "formal_statement": "theorem exercise_1_19c (z : β„‚) (hz : abs z = 1) (hz2 : z β‰  1) (s : β„• β†’ β„‚)\n    (h : s = (Ξ» n => βˆ‘ i in (range n), i * z / i)) :\n    βˆƒ z, Tendsto s atTop (𝓝 z) :=", "goal": "z : β„‚\nhz : Complex.abs z = 1\nhz2 : z β‰  1\ns : β„• β†’ β„‚\nh : s = fun n => βˆ‘ i ∈ range n, ↑i * z / ↑i\n⊒ βˆƒ z, Tendsto s atTop (𝓝 z)", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_2_2", "split": "test", "informal_prefix": "/-- Show that $\\int_{0}^{\\infty} \\frac{\\sin x}{x} d x=\\frac{\\pi}{2}$.-/\n", "formal_statement": "theorem exercise_2_2 :\n  Tendsto (Ξ» y => ∫ x in (0 : ℝ)..y, Real.sin x / x) atTop (𝓝 (Real.pi / 2)) :=", "goal": "⊒ Tendsto (fun y => ∫ (x : ℝ) in 0 ..y, x.sin / x) atTop (𝓝 (Real.pi / 2))", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_2_13", "split": "test", "informal_prefix": "/-- Suppose $f$ is an analytic function defined everywhere in $\\mathbb{C}$ and such that for each $z_0 \\in \\mathbb{C}$ at least one coefficient in the expansion $f(z) = \\sum_{n=0}^\\infty c_n(z - z_0)^n$ is equal to 0. Prove that $f$ is a polynomial.-/\n", "formal_statement": "theorem exercise_2_13 {f : β„‚ β†’ β„‚}\n    (hf : βˆ€ zβ‚€ : β„‚, βˆƒ (s : Set β„‚) (c : β„• β†’ β„‚), IsOpen s ∧ zβ‚€ ∈ s ∧\n      βˆ€ z ∈ s, Tendsto (Ξ» n => βˆ‘ i in range n, (c i) * (z - zβ‚€)^i) atTop (𝓝 (f zβ‚€))\n      ∧ βˆƒ i, c i = 0) :\n    βˆƒ (c : β„• β†’ β„‚) (n : β„•), f = Ξ» z => βˆ‘ i in range n, (c i) * z ^ n :=", "goal": "f : β„‚ β†’ β„‚\nhf :\n  βˆ€ (zβ‚€ : β„‚),\n    βˆƒ s c,\n      IsOpen s ∧ zβ‚€ ∈ s ∧ βˆ€ z ∈ s, Tendsto (fun n => βˆ‘ i ∈ range n, c i * (z - zβ‚€) ^ i) atTop (𝓝 (f zβ‚€)) ∧ βˆƒ i, c i = 0\n⊒ βˆƒ c n, f = fun z => βˆ‘ i ∈ range n, c i * z ^ n", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_3_4", "split": "test", "informal_prefix": "/-- Show that $ \\int_{-\\infty}^{\\infty} \\frac{x \\sin x}{x^2 + a^2} dx = \\pi e^{-a}$ for $a > 0$.-/\n", "formal_statement": "theorem exercise_3_4 (a : ℝ) (ha : 0 < a) :\n    Tendsto (Ξ» y => ∫ x in -y..y, x * Real.sin x / (x ^ 2 + a ^ 2))\n    atTop (𝓝 (Real.pi * (Real.exp (-a)))) :=", "goal": "a : ℝ\nha : 0 < a\n⊒ Tendsto (fun y => ∫ (x : ℝ) in -y..y, x * x.sin / (x ^ 2 + a ^ 2)) atTop (𝓝 (Real.pi * (-a).exp))", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_3_14", "split": "test", "informal_prefix": "/-- Prove that all entire functions that are also injective take the form $f(z) = az + b$, $a, b \\in \\mathbb{C}$ and $a \\neq 0$.-/\n", "formal_statement": "theorem exercise_3_14 {f : β„‚ β†’ β„‚} (hf : Differentiable β„‚ f)\n    (hf_inj : Function.Injective f) :\n    βˆƒ (a b : β„‚), f = (Ξ» z => a * z + b) ∧ a β‰  0 :=", "goal": "f : β„‚ β†’ β„‚\nhf : Differentiable β„‚ f\nhf_inj : Injective f\n⊒ βˆƒ a b, (f = fun z => a * z + b) ∧ a β‰  0", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_5_1", "split": "test", "informal_prefix": "/-- Prove that if $f$ is holomorphic in the unit disc, bounded and not identically zero, and $z_{1}, z_{2}, \\ldots, z_{n}, \\ldots$ are its zeros $\\left(\\left|z_{k}\\right|<1\\right)$, then $\\sum_{n}\\left(1-\\left|z_{n}\\right|\\right)<\\infty$.-/\n", "formal_statement": "theorem exercise_5_1 (f : β„‚ β†’ β„‚) (hf : DifferentiableOn β„‚ f (ball 0 1))\n  (hb : Bornology.IsBounded (Set.range f)) (h0 : f β‰  0) (zeros : β„• β†’ β„‚) (hz : βˆ€ n, f (zeros n) = 0)\n  (hzz : Set.range zeros = {z | f z = 0 ∧ z ∈ (ball (0 : β„‚) 1)}) :\n  βˆƒ (z : β„‚), Tendsto (Ξ» n => (βˆ‘ i in range n, (1 - zeros i))) atTop (𝓝 z) :=", "goal": "f : β„‚ β†’ β„‚\nhf : DifferentiableOn β„‚ f (ball 0 1)\nhb : Bornology.IsBounded (Set.range f)\nh0 : f β‰  0\nzeros : β„• β†’ β„‚\nhz : βˆ€ (n : β„•), f (zeros n) = 0\nhzz : Set.range zeros = {z | f z = 0 ∧ z ∈ ball 0 1}\n⊒ βˆƒ z, Tendsto (fun n => βˆ‘ i ∈ range n, (1 - zeros i)) atTop (𝓝 z)", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_1_1b", "split": "test", "informal_prefix": "/-- If $r$ is rational $(r \\neq 0)$ and $x$ is irrational, prove that $rx$ is irrational.-/\n", "formal_statement": "theorem exercise_1_1b\n(x : ℝ)\n(y : β„š)\n(h : y β‰  0)\n: ( Irrational x ) -> Irrational ( x * y ) :=", "goal": "x : ℝ\ny : β„š\nh : y β‰  0\n⊒ Irrational x β†’ Irrational (x * ↑y)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_4", "split": "test", "informal_prefix": "/-- Let $E$ be a nonempty subset of an ordered set; suppose $\\alpha$ is a lower bound of $E$ and $\\beta$ is an upper bound of $E$. Prove that $\\alpha \\leq \\beta$.-/\n", "formal_statement": "theorem exercise_1_4\n(Ξ± : Type*) [PartialOrder Ξ±]\n(s : Set Ξ±)\n(x y : Ξ±)\n(hβ‚€ : Set.Nonempty s)\n(h₁ : x ∈ lowerBounds s)\n(hβ‚‚ : y ∈ upperBounds s)\n: x ≀ y :=", "goal": "Ξ± : Type u_1\ninst✝ : PartialOrder Ξ±\ns : Set Ξ±\nx y : Ξ±\nhβ‚€ : s.Nonempty\nh₁ : x ∈ lowerBounds s\nhβ‚‚ : y ∈ upperBounds s\n⊒ x ≀ y", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_8", "split": "test", "informal_prefix": "/-- Prove that no order can be defined in the complex field that turns it into an ordered field.-/\n", "formal_statement": "theorem exercise_1_8 : Β¬ βˆƒ (r : β„‚ β†’ β„‚ β†’ Prop), IsLinearOrder β„‚ r :=", "goal": "⊒ Β¬βˆƒ r, IsLinearOrder β„‚ r", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_12", "split": "test", "informal_prefix": "/-- If $z_1, \\ldots, z_n$ are complex, prove that $|z_1 + z_2 + \\ldots + z_n| \\leq |z_1| + |z_2| + \\cdots + |z_n|$.-/\n", "formal_statement": "theorem exercise_1_12 (n : β„•) (f : β„• β†’ β„‚) :\n  abs (βˆ‘ i in range n, f i) ≀ βˆ‘ i in range n, abs (f i) :=", "goal": "n : β„•\nf : β„• β†’ β„‚\n⊒ Complex.abs (βˆ‘ i ∈ range n, f i) ≀ βˆ‘ i ∈ range n, Complex.abs (f i)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_14", "split": "test", "informal_prefix": "/-- If $z$ is a complex number such that $|z|=1$, that is, such that $z \\bar{z}=1$, compute $|1+z|^{2}+|1-z|^{2}$.-/\n", "formal_statement": "theorem exercise_1_14\n  (z : β„‚) (h : abs z = 1)\n  : (abs (1 + z)) ^ 2 + (abs (1 - z)) ^ 2 = 4 :=", "goal": "z : β„‚\nh : Complex.abs z = 1\n⊒ Complex.abs (1 + z) ^ 2 + Complex.abs (1 - z) ^ 2 = 4", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_17", "split": "test", "informal_prefix": "/-- Prove that $|\\mathbf{x}+\\mathbf{y}|^{2}+|\\mathbf{x}-\\mathbf{y}|^{2}=2|\\mathbf{x}|^{2}+2|\\mathbf{y}|^{2}$ if $\\mathbf{x} \\in R^{k}$ and $\\mathbf{y} \\in R^{k}$.-/\n", "formal_statement": "theorem exercise_1_17\n  (n : β„•)\n  (x y : EuclideanSpace ℝ (Fin n)) -- R^n\n  : β€–x + yβ€–^2 + β€–x - yβ€–^2 = 2*β€–xβ€–^2 + 2*β€–yβ€–^2 :=", "goal": "n : β„•\nx y : EuclideanSpace ℝ (Fin n)\n⊒ β€–x + yβ€– ^ 2 + β€–x - yβ€– ^ 2 = 2 * β€–xβ€– ^ 2 + 2 * β€–yβ€– ^ 2", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_18b", "split": "test", "informal_prefix": "/-- If $k = 1$ and $\\mathbf{x} \\in R^{k}$, prove that there does not exist $\\mathbf{y} \\in R^{k}$ such that $\\mathbf{y} \\neq 0$ but $\\mathbf{x} \\cdot \\mathbf{y}=0$-/\n", "formal_statement": "theorem exercise_1_18b\n  : Β¬ βˆ€ (x : ℝ), βˆƒ (y : ℝ), y β‰  0 ∧ x * y = 0 :=", "goal": "⊒ Β¬βˆ€ (x : ℝ), βˆƒ y, y β‰  0 ∧ x * y = 0", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_19a", "split": "test", "informal_prefix": "/-- If $A$ and $B$ are disjoint closed sets in some metric space $X$, prove that they are separated.-/\n", "formal_statement": "theorem exercise_2_19a {X : Type*} [MetricSpace X]\n  (A B : Set X) (hA : IsClosed A) (hB : IsClosed B) (hAB : Disjoint A B) :\n  SeparatedNhds A B :=", "goal": "X : Type u_1\ninst✝ : MetricSpace X\nA B : Set X\nhA : IsClosed A\nhB : IsClosed B\nhAB : Disjoint A B\n⊒ SeparatedNhds A B", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_25", "split": "test", "informal_prefix": "/-- Prove that every compact metric space $K$ has a countable base.-/\n", "formal_statement": "theorem exercise_2_25 {K : Type*} [MetricSpace K] [CompactSpace K] :\n  βˆƒ (B : Set (Set K)), Set.Countable B ∧ IsTopologicalBasis B :=", "goal": "K : Type u_1\ninst✝¹ : MetricSpace K\ninst✝ : CompactSpace K\n⊒ βˆƒ B, B.Countable ∧ IsTopologicalBasis B", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_27b", "split": "test", "informal_prefix": "/-- Suppose $E\\subset\\mathbb{R}^k$ is uncountable, and let $P$ be the set of condensation points of $E$. Prove that at most countably many points of $E$ are not in $P$.-/\n", "formal_statement": "theorem exercise_2_27b (k : β„•) (E P : Set (EuclideanSpace ℝ (Fin k)))\n  (hE : E.Nonempty ∧ Β¬ Set.Countable E)\n  (hP : P = {x | βˆ€ U ∈ 𝓝 x, (P ∩ E).Nonempty ∧ Β¬ Set.Countable (P ∩ E)}) :\n  Set.Countable (E \\ P) :=", "goal": "k : β„•\nE P : Set (EuclideanSpace ℝ (Fin k))\nhE : E.Nonempty ∧ Β¬E.Countable\nhP : P = {x | βˆ€ U ∈ 𝓝 x, (P ∩ E).Nonempty ∧ Β¬(P ∩ E).Countable}\n⊒ (E \\ P).Countable", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_29", "split": "test", "informal_prefix": "/-- Prove that every open set in $\\mathbb{R}$ is the union of an at most countable collection of disjoint segments.-/\n", "formal_statement": "theorem exercise_2_29 (U : Set ℝ) (hU : IsOpen U) :\n  βˆƒ (f : β„• β†’ Set ℝ), (βˆ€ n, βˆƒ a b : ℝ, f n = {x | a < x ∧ x < b}) ∧ (βˆ€ n, f n βŠ† U) ∧\n  (βˆ€ n m, n β‰  m β†’ f n ∩ f m = βˆ…) ∧\n  U = ⋃ n, f n :=", "goal": "U : Set ℝ\nhU : IsOpen U\n⊒ βˆƒ f,\n    (βˆ€ (n : β„•), βˆƒ a b, f n = {x | a < x ∧ x < b}) ∧\n      (βˆ€ (n : β„•), f n βŠ† U) ∧ (βˆ€ (n m : β„•), n β‰  m β†’ f n ∩ f m = βˆ…) ∧ U = ⋃ n, f n", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2a", "split": "test", "informal_prefix": "/-- Prove that $\\lim_{n \\rightarrow \\infty}\\sqrt{n^2 + n} -n = 1/2$.-/\n", "formal_statement": "theorem exercise_3_2a\n  : Tendsto (Ξ» (n : ℝ) => (sqrt (n^2 + n) - n)) atTop (𝓝 (1/2)) :=", "goal": "⊒ Tendsto (fun n => √(n ^ 2 + n) - n) atTop (𝓝 (1 / 2))", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_5", "split": "test", "informal_prefix": "/-- For any two real sequences $\\left\\{a_{n}\\right\\},\\left\\{b_{n}\\right\\}$, prove that $\\limsup _{n \\rightarrow \\infty}\\left(a_{n}+b_{n}\\right) \\leq \\limsup _{n \\rightarrow \\infty} a_{n}+\\limsup _{n \\rightarrow \\infty} b_{n},$ provided the sum on the right is not of the form $\\infty-\\infty$.-/\n", "formal_statement": "theorem exercise_3_5\n  (a b : β„• β†’ ℝ)\n  (h : limsup a + limsup b β‰  0) :\n  limsup (Ξ» n => a n + b n) ≀ limsup a + limsup b :=", "goal": "a b : β„• β†’ ℝ\nh : limsup a + limsup b β‰  0\n⊒ (limsup fun n => a n + b n) ≀ limsup a + limsup b", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_7", "split": "test", "informal_prefix": "/-- Prove that the convergence of $\\Sigma a_{n}$ implies the convergence of $\\sum \\frac{\\sqrt{a_{n}}}{n}$ if $a_n\\geq 0$.-/\n", "formal_statement": "theorem exercise_3_7\n  (a : β„• β†’ ℝ)\n  (h : βˆƒ y, (Tendsto (Ξ» n => (βˆ‘ i in (range n), a i)) atTop (𝓝 y))) :\n  βˆƒ y, Tendsto (Ξ» n => (βˆ‘ i in (range n), sqrt (a i) / n)) atTop (𝓝 y) :=", "goal": "a : β„• β†’ ℝ\nh : βˆƒ y, Tendsto (fun n => βˆ‘ i ∈ range n, a i) atTop (𝓝 y)\n⊒ βˆƒ y, Tendsto (fun n => βˆ‘ i ∈ range n, √(a i) / ↑n) atTop (𝓝 y)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_13", "split": "test", "informal_prefix": "/-- Prove that the Cauchy product of two absolutely convergent series converges absolutely.-/\n", "formal_statement": "theorem exercise_3_13\n  (a b : β„• β†’ ℝ)\n  (ha : βˆƒ y, (Tendsto (Ξ» n => (βˆ‘ i in (range n), |a i|)) atTop (𝓝 y)))\n  (hb : βˆƒ y, (Tendsto (Ξ» n => (βˆ‘ i in (range n), |b i|)) atTop (𝓝 y))) :\n  βˆƒ y, (Tendsto (Ξ» n => (βˆ‘ i in (range n),\n  Ξ» i => (βˆ‘ j in range (i + 1), a j * b (i - j)))) atTop (𝓝 y)) :=", "goal": "a b : β„• β†’ ℝ\nha : βˆƒ y, Tendsto (fun n => βˆ‘ i ∈ range n, |a i|) atTop (𝓝 y)\nhb : βˆƒ y, Tendsto (fun n => βˆ‘ i ∈ range n, |b i|) atTop (𝓝 y)\n⊒ βˆƒ y, Tendsto (fun n => βˆ‘ i ∈ range n, fun i => βˆ‘ j ∈ range (i + 1), a j * b (i - j)) atTop (𝓝 y)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_21", "split": "test", "informal_prefix": "/-- If $\\left\\{E_{n}\\right\\}$ is a sequence of closed nonempty and bounded sets in a complete metric space $X$, if $E_{n} \\supset E_{n+1}$, and if $\\lim _{n \\rightarrow \\infty} \\operatorname{diam} E_{n}=0,$ then $\\bigcap_{1}^{\\infty} E_{n}$ consists of exactly one point.-/\n", "formal_statement": "theorem exercise_3_21\n  {X : Type*} [MetricSpace X] [CompleteSpace X]\n  (E : β„• β†’ Set X)\n  (hE : βˆ€ n, E n βŠƒ E (n + 1))\n  (hE' : Tendsto (Ξ» n => Metric.diam (E n)) atTop (𝓝 0)) :\n  βˆƒ a, Set.iInter E = {a} :=", "goal": "X : Type u_1\ninst✝¹ : MetricSpace X\ninst✝ : CompleteSpace X\nE : β„• β†’ Set X\nhE : βˆ€ (n : β„•), E n βŠƒ E (n + 1)\nhE' : Tendsto (fun n => Metric.diam (E n)) atTop (𝓝 0)\n⊒ βˆƒ a, Set.iInter E = {a}", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_1a", "split": "test", "informal_prefix": "/-- Suppose $f$ is a real function defined on $\\mathbb{R}$ which satisfies $\\lim_{h \\rightarrow 0} f(x + h) - f(x - h) = 0$ for every $x \\in \\mathbb{R}$. Show that $f$ does not need to be continuous.-/\n", "formal_statement": "theorem exercise_4_1a\n  : βˆƒ (f : ℝ β†’ ℝ), (βˆ€ (x : ℝ), Tendsto (Ξ» y => f (x + y) - f (x - y)) (𝓝 0) (𝓝 0)) ∧ Β¬ Continuous f :=", "goal": "⊒ βˆƒ f, (βˆ€ (x : ℝ), Tendsto (fun y => f (x + y) - f (x - y)) (𝓝 0) (𝓝 0)) ∧ Β¬Continuous f", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_3", "split": "test", "informal_prefix": "/-- Let $f$ be a continuous real function on a metric space $X$. Let $Z(f)$ (the zero set of $f$ ) be the set of all $p \\in X$ at which $f(p)=0$. Prove that $Z(f)$ is closed.-/\n", "formal_statement": "theorem exercise_4_3\n  {Ξ± : Type} [MetricSpace Ξ±]\n  (f : Ξ± β†’ ℝ) (h : Continuous f) (z : Set Ξ±) (g : z = f⁻¹' {0})\n  : IsClosed z :=", "goal": "Ξ± : Type\ninst✝ : MetricSpace Ξ±\nf : Ξ± β†’ ℝ\nh : Continuous f\nz : Set Ξ±\ng : z = f ⁻¹' {0}\n⊒ IsClosed z", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4b", "split": "test", "informal_prefix": "/-- Let $f$ and $g$ be continuous mappings of a metric space $X$ into a metric space $Y$, and let $E$ be a dense subset of $X$. Prove that if $g(p) = f(p)$ for all $p \\in P$ then $g(p) = f(p)$ for all $p \\in X$.-/\n", "formal_statement": "theorem exercise_4_4b\n  {Ξ± : Type} [MetricSpace Ξ±]\n  {Ξ² : Type} [MetricSpace Ξ²]\n  (f g : Ξ± β†’ Ξ²)\n  (s : Set Ξ±)\n  (h₁ : Continuous f)\n  (hβ‚‚ : Continuous g)\n  (h₃ : Dense s)\n  (hβ‚„ : βˆ€ x ∈ s, f x = g x)\n  : f = g :=", "goal": "Ξ± : Type\ninst✝¹ : MetricSpace Ξ±\nΞ² : Type\ninst✝ : MetricSpace Ξ²\nf g : Ξ± β†’ Ξ²\ns : Set Ξ±\nh₁ : Continuous f\nhβ‚‚ : Continuous g\nh₃ : Dense s\nhβ‚„ : βˆ€ x ∈ s, f x = g x\n⊒ f = g", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5b", "split": "test", "informal_prefix": "/-- Show that there exist a set $E \\subset \\mathbb{R}$ and a real continuous function $f$ defined on $E$, such that there does not exist a continuous real function $g$ on $\\mathbb{R}$ such that $g(x)=f(x)$ for all $x \\in E$.-/\n", "formal_statement": "theorem exercise_4_5b\n  : βˆƒ (E : Set ℝ) (f : ℝ β†’ ℝ), (ContinuousOn f E) ∧\n  (Β¬ βˆƒ (g : ℝ β†’ ℝ), Continuous g ∧ βˆ€ x ∈ E, f x = g x) :=", "goal": "⊒ βˆƒ E f, ContinuousOn f E ∧ Β¬βˆƒ g, Continuous g ∧ βˆ€ x ∈ E, f x = g x", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_8a", "split": "test", "informal_prefix": "/-- Let $f$ be a real uniformly continuous function on the bounded set $E$ in $R^{1}$. Prove that $f$ is bounded on $E$.-/\n", "formal_statement": "theorem exercise_4_8a\n  (E : Set ℝ) (f : ℝ β†’ ℝ) (hf : UniformContinuousOn f E)\n  (hE : Bornology.IsBounded E) : Bornology.IsBounded (Set.image f E) :=", "goal": "E : Set ℝ\nf : ℝ β†’ ℝ\nhf : UniformContinuousOn f E\nhE : Bornology.IsBounded E\n⊒ Bornology.IsBounded (f '' E)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_11a", "split": "test", "informal_prefix": "/-- Suppose $f$ is a uniformly continuous mapping of a metric space $X$ into a metric space $Y$ and prove that $\\left\\{f\\left(x_{n}\\right)\\right\\}$ is a Cauchy sequence in $Y$ for every Cauchy sequence $\\{x_n\\}$ in $X$.-/\n", "formal_statement": "theorem exercise_4_11a\n  {X : Type*} [MetricSpace X]\n  {Y : Type*} [MetricSpace Y]\n  (f : X β†’ Y) (hf : UniformContinuous f)\n  (x : β„• β†’ X) (hx : CauchySeq x) :\n  CauchySeq (Ξ» n => f (x n)) :=", "goal": "X : Type u_1\ninst✝¹ : MetricSpace X\nY : Type u_2\ninst✝ : MetricSpace Y\nf : X β†’ Y\nhf : UniformContinuous f\nx : β„• β†’ X\nhx : CauchySeq x\n⊒ CauchySeq fun n => f (x n)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_15", "split": "test", "informal_prefix": "/-- Prove that every continuous open mapping of $R^{1}$ into $R^{1}$ is monotonic.-/\n", "formal_statement": "theorem exercise_4_15 {f : ℝ β†’ ℝ}\n  (hf : Continuous f) (hof : IsOpenMap f) :\n  Monotone f :=", "goal": "f : ℝ β†’ ℝ\nhf : Continuous f\nhof : IsOpenMap f\n⊒ Monotone f", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_21a", "split": "test", "informal_prefix": "/-- Suppose $K$ and $F$ are disjoint sets in a metric space $X, K$ is compact, $F$ is closed. Prove that there exists $\\delta>0$ such that $d(p, q)>\\delta$ if $p \\in K, q \\in F$.-/\n", "formal_statement": "theorem exercise_4_21a {X : Type*} [MetricSpace X]\n  (K F : Set X) (hK : IsCompact K) (hF : IsClosed F) (hKF : Disjoint K F) :\n  βˆƒ (Ξ΄ : ℝ), Ξ΄ > 0 ∧ βˆ€ (p q : X), p ∈ K β†’ q ∈ F β†’ dist p q β‰₯ Ξ΄ :=", "goal": "X : Type u_1\ninst✝ : MetricSpace X\nK F : Set X\nhK : IsCompact K\nhF : IsClosed F\nhKF : Disjoint K F\n⊒ βˆƒ Ξ΄ > 0, βˆ€ (p q : X), p ∈ K β†’ q ∈ F β†’ dist p q β‰₯ Ξ΄", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_1", "split": "test", "informal_prefix": "/-- Let $f$ be defined for all real $x$, and suppose that $|f(x)-f(y)| \\leq (x-y)^{2}$ for all real $x$ and $y$. Prove that $f$ is constant.-/\n", "formal_statement": "theorem exercise_5_1\n  {f : ℝ β†’ ℝ} (hf : βˆ€ x y : ℝ, |(f x - f y)| ≀ (x - y) ^ 2) :\n  βˆƒ c, f = Ξ» x => c :=", "goal": "f : ℝ β†’ ℝ\nhf : βˆ€ (x y : ℝ), |f x - f y| ≀ (x - y) ^ 2\n⊒ βˆƒ c, f = fun x => c", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_3", "split": "test", "informal_prefix": "/-- Suppose $g$ is a real function on $R^{1}$, with bounded derivative (say $\\left|g^{\\prime}\\right| \\leq M$ ). Fix $\\varepsilon>0$, and define $f(x)=x+\\varepsilon g(x)$. Prove that $f$ is one-to-one if $\\varepsilon$ is small enough.-/\n", "formal_statement": "theorem exercise_5_3 {g : ℝ β†’ ℝ} (hg : Continuous g)\n  (hg' : βˆƒ M : ℝ, βˆ€ x : ℝ, |deriv g x| ≀ M) :\n  βˆƒ N, βˆ€ Ξ΅ > 0, Ξ΅ < N β†’ Function.Injective (Ξ» x : ℝ => x + Ξ΅ * g x) :=", "goal": "g : ℝ β†’ ℝ\nhg : Continuous g\nhg' : βˆƒ M, βˆ€ (x : ℝ), |deriv g x| ≀ M\n⊒ βˆƒ N, βˆ€ Ξ΅ > 0, Ξ΅ < N β†’ Function.Injective fun x => x + Ξ΅ * g x", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_5", "split": "test", "informal_prefix": "/-- Suppose $f$ is defined and differentiable for every $x>0$, and $f^{\\prime}(x) \\rightarrow 0$ as $x \\rightarrow+\\infty$. Put $g(x)=f(x+1)-f(x)$. Prove that $g(x) \\rightarrow 0$ as $x \\rightarrow+\\infty$.-/\n", "formal_statement": "theorem exercise_5_5\n  {f : ℝ β†’ ℝ}\n  (hfd : Differentiable ℝ f)\n  (hf : Tendsto (deriv f) atTop (𝓝 0)) :\n  Tendsto (Ξ» x => f (x + 1) - f x) atTop atTop :=", "goal": "f : ℝ β†’ ℝ\nhfd : Differentiable ℝ f\nhf : Tendsto (deriv f) atTop (𝓝 0)\n⊒ Tendsto (fun x => f (x + 1) - f x) atTop atTop", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_7", "split": "test", "informal_prefix": "/-- Suppose $f^{\\prime}(x), g^{\\prime}(x)$ exist, $g^{\\prime}(x) \\neq 0$, and $f(x)=g(x)=0$. Prove that $\\lim _{t \\rightarrow x} \\frac{f(t)}{g(t)}=\\frac{f^{\\prime}(x)}{g^{\\prime}(x)}.$-/\n", "formal_statement": "theorem exercise_5_7\n  {f g : ℝ β†’ ℝ} {x : ℝ}\n  (hf' : DifferentiableAt ℝ f 0)\n  (hg' : DifferentiableAt ℝ g 0)\n  (hg'_ne_0 : deriv g 0 β‰  0)\n  (f0 : f 0 = 0) (g0 : g 0 = 0) :\n  Tendsto (Ξ» x => f x / g x) (𝓝 x) (𝓝 (deriv f x / deriv g x)) :=", "goal": "f g : ℝ β†’ ℝ\nx : ℝ\nhf' : DifferentiableAt ℝ f 0\nhg' : DifferentiableAt ℝ g 0\nhg'_ne_0 : deriv g 0 β‰  0\nf0 : f 0 = 0\ng0 : g 0 = 0\n⊒ Tendsto (fun x => f x / g x) (𝓝 x) (𝓝 (deriv f x / deriv g x))", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_17", "split": "test", "informal_prefix": "/-- Suppose $f$ is a real, three times differentiable function on $[-1,1]$, such that $f(-1)=0, \\quad f(0)=0, \\quad f(1)=1, \\quad f^{\\prime}(0)=0 .$ Prove that $f^{(3)}(x) \\geq 3$ for some $x \\in(-1,1)$.-/\n", "formal_statement": "theorem exercise_5_17\n  {f : ℝ β†’ ℝ}\n  (hf' : DifferentiableOn ℝ f (Set.Icc (-1) 1))\n  (hf'' : DifferentiableOn ℝ (deriv f) (Set.Icc 1 1))\n  (hf''' : DifferentiableOn ℝ (deriv (deriv f)) (Set.Icc 1 1))\n  (hf0 : f (-1) = 0)\n  (hf1 : f 0 = 0)\n  (hf2 : f 1 = 1)\n  (hf3 : deriv f 0 = 0) :\n  βˆƒ x, x ∈ Set.Ioo (-1 : ℝ) 1 ∧ deriv (deriv (deriv f)) x β‰₯ 3 :=", "goal": "f : ℝ β†’ ℝ\nhf' : DifferentiableOn ℝ f (Set.Icc (-1) 1)\nhf'' : DifferentiableOn ℝ (deriv f) (Set.Icc 1 1)\nhf''' : DifferentiableOn ℝ (deriv (deriv f)) (Set.Icc 1 1)\nhf0 : f (-1) = 0\nhf1 : f 0 = 0\nhf2 : f 1 = 1\nhf3 : deriv f 0 = 0\n⊒ βˆƒ x ∈ Set.Ioo (-1) 1, deriv (deriv (deriv f)) x β‰₯ 3", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_1_18", "split": "test", "informal_prefix": "/-- If $G$ is a finite group of even order, show that there must be an element $a \\neq e$ such that $a=a^{-1}$.-/\n", "formal_statement": "theorem exercise_2_1_18 {G : Type*} [Group G]\n  [Fintype G] (hG2 : Even (card G)) :\n  βˆƒ (a : G), a β‰  1 ∧ a = a⁻¹ :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG2 : Even (card G)\n⊒ βˆƒ a, a β‰  1 ∧ a = a⁻¹", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_1_26", "split": "test", "informal_prefix": "/-- If $G$ is a finite group, prove that, given $a \\in G$, there is a positive integer $n$, depending on $a$, such that $a^n = e$.-/\n", "formal_statement": "theorem exercise_2_1_26 {G : Type*} [Group G]\n  [Fintype G] (a : G) : βˆƒ (n : β„•), a ^ n = 1 :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\na : G\n⊒ βˆƒ n, a ^ n = 1", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_2_3", "split": "test", "informal_prefix": "/-- If $G$ is a group in which $(a b)^{i}=a^{i} b^{i}$ for three consecutive integers $i$, prove that $G$ is abelian.-/\n", "formal_statement": "def exercise_2_2_3 {G : Type*} [Group G]\n  {P : β„• β†’ Prop} {hP : P = Ξ» i => βˆ€ a b : G, (a*b)^i = a^i * b^i}\n  (hP1 : βˆƒ n : β„•, P n ∧ P (n+1) ∧ P (n+2)) : CommGroup G :=", "goal": "G : Type u_1\ninst✝ : Group G\nP : β„• β†’ Prop\nhP : P = fun i => βˆ€ (a b : G), (a * b) ^ i = a ^ i * b ^ i\nhP1 : βˆƒ n, P n ∧ P (n + 1) ∧ P (n + 2)\n⊒ CommGroup G", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_2_6c", "split": "test", "informal_prefix": "/-- Let $G$ be a group in which $(a b)^{n}=a^{n} b^{n}$ for some fixed integer $n>1$ for all $a, b \\in G$. For all $a, b \\in G$, prove that $\\left(a b a^{-1} b^{-1}\\right)^{n(n-1)}=e$.-/\n", "formal_statement": "theorem exercise_2_2_6c {G : Type*} [Group G] {n : β„•} (hn : n > 1)\n  (h : βˆ€ (a b : G), (a * b) ^ n = a ^ n * b ^ n) :\n  βˆ€ (a b : G), (a * b * a⁻¹ * b⁻¹) ^ (n * (n - 1)) = 1 :=", "goal": "G : Type u_1\ninst✝ : Group G\nn : β„•\nhn : n > 1\nh : βˆ€ (a b : G), (a * b) ^ n = a ^ n * b ^ n\n⊒ βˆ€ (a b : G), (a * b * a⁻¹ * b⁻¹) ^ (n * (n - 1)) = 1", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_3_16", "split": "test", "informal_prefix": "/-- If a group $G$ has no proper subgroups, prove that $G$ is cyclic of order $p$, where $p$ is a prime number.-/\n", "formal_statement": "theorem exercise_2_3_16 {G : Type*} [Group G]\n  (hG : βˆ€ H : Subgroup G, H = ⊀ ∨ H = βŠ₯) :\n  IsCyclic G ∧ βˆƒ (p : β„•) (Fin : Fintype G), Nat.Prime p ∧ @card G Fin = p :=", "goal": "G : Type u_1\ninst✝ : Group G\nhG : βˆ€ (H : Subgroup G), H = ⊀ ∨ H = βŠ₯\n⊒ IsCyclic G ∧ βˆƒ p Fin, p.Prime ∧ card G = p", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_23", "split": "test", "informal_prefix": "/-- Let $G$ be a group such that all subgroups of $G$ are normal in $G$. If $a, b \\in G$, prove that $ba = a^jb$ for some $j$.-/\n", "formal_statement": "theorem exercise_2_5_23 {G : Type*} [Group G]\n  (hG : βˆ€ (H : Subgroup G), H.Normal) (a b : G) :\n  βˆƒ (j : β„€) , b*a = a^j * b :=", "goal": "G : Type u_1\ninst✝ : Group G\nhG : βˆ€ (H : Subgroup G), H.Normal\na b : G\n⊒ βˆƒ j, b * a = a ^ j * b", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_31", "split": "test", "informal_prefix": "/-- Suppose that $G$ is an abelian group of order $p^nm$ where $p \\nmid m$ is a prime.  If $H$ is a subgroup of $G$ of order $p^n$, prove that $H$ is a characteristic subgroup of $G$.-/\n", "formal_statement": "theorem exercise_2_5_31 {G : Type*} [CommGroup G] [Fintype G]\n  {p m n : β„•} (hp : Nat.Prime p) (hp1 : Β¬ p ∣ m) (hG : card G = p^n*m)\n  {H : Subgroup G} [Fintype H] (hH : card H = p^n) :\n  Subgroup.Characteristic H :=", "goal": "G : Type u_1\ninst✝² : CommGroup G\ninst✝¹ : Fintype G\np m n : β„•\nhp : p.Prime\nhp1 : Β¬p ∣ m\nhG : card G = p ^ n * m\nH : Subgroup G\ninst✝ : Fintype β†₯H\nhH : card β†₯H = p ^ n\n⊒ H.Characteristic", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_43", "split": "test", "informal_prefix": "/-- Prove that a group of order 9 must be abelian.-/\n", "formal_statement": "def exercise_2_5_43 (G : Type*) [Group G] [Fintype G]\n  (hG : card G = 9) :\n  CommGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 9\n⊒ CommGroup G", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_52", "split": "test", "informal_prefix": "/-- Let $G$ be a finite group and $\\varphi$ an automorphism of $G$ such that $\\varphi(x) = x^{-1}$ for more than three-fourths of the elements of $G$. Prove that $\\varphi(y) = y^{-1}$ for all $y \\in G$, and so $G$ is abelian.-/\n", "formal_statement": "theorem exercise_2_5_52 {G : Type*} [Group G] [Fintype G]\n  (Ο† : G ≃* G) {I : Finset G} (hI : βˆ€ x ∈ I, Ο† x = x⁻¹)\n  (hI1 : (0.75 : β„š) * card G ≀ card I) :\n  βˆ€ x : G, Ο† x = x⁻¹ ∧ βˆ€ x y : G, x*y = y*x :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nΟ† : G ≃* G\nI : Finset G\nhI : βˆ€ x ∈ I, Ο† x = x⁻¹\nhI1 : 0.75 * ↑(card G) ≀ ↑(card { x // x ∈ I })\n⊒ βˆ€ (x : G), Ο† x = x⁻¹ ∧ βˆ€ (x y : G), x * y = y * x", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_7_7", "split": "test", "informal_prefix": "/-- If $\\varphi$ is a homomorphism of $G$ onto $G'$ and $N \\triangleleft G$, show that $\\varphi(N) \\triangleleft G'$.-/\n", "formal_statement": "theorem exercise_2_7_7 {G : Type*} [Group G] {G' : Type*} [Group G']\n  (Ο† : G β†’* G') (N : Subgroup G) [N.Normal] :\n  (Subgroup.map Ο† N).Normal :=", "goal": "G : Type u_1\ninst✝² : Group G\nG' : Type u_2\ninst✝¹ : Group G'\nΟ† : G β†’* G'\nN : Subgroup G\ninst✝ : N.Normal\n⊒ (Subgroup.map Ο† N).Normal", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_8_15", "split": "test", "informal_prefix": "/-- Prove that if $p > q$ are two primes such that $q \\mid p - 1$, then any two nonabelian groups of order $pq$ are isomorphic.-/\n", "formal_statement": "def exercise_2_8_15 {G H: Type*} [Fintype G] [Group G] [Fintype H]\n  [Group H] {p q : β„•} (hp : Nat.Prime p) (hq : Nat.Prime q)\n  (h : p > q) (h1 : q ∣ p - 1) (hG : card G = p*q) (hH : card G = p*q) :\n  G ≃* H :=", "goal": "G : Type u_1\nH : Type u_2\ninst✝³ : Fintype G\ninst✝² : Group G\ninst✝¹ : Fintype H\ninst✝ : Group H\np q : β„•\nhp : p.Prime\nhq : q.Prime\nh : p > q\nh1 : q ∣ p - 1\nhG hH : card G = p * q\n⊒ G ≃* H", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_10_1", "split": "test", "informal_prefix": "/-- Let $A$ be a normal subgroup of a group $G$, and suppose that $b \\in G$ is an element of prime order $p$, and that $b \\not\\in A$. Show that $A \\cap (b) = (e)$.-/\n", "formal_statement": "theorem exercise_2_10_1 {G : Type*} [Group G] (A : Subgroup G)\n  [A.Normal] {b : G} (hp : Nat.Prime (orderOf b)) :\n  A βŠ“ (Subgroup.closure {b}) = βŠ₯ :=", "goal": "G : Type u_1\ninst✝¹ : Group G\nA : Subgroup G\ninst✝ : A.Normal\nb : G\nhp : (orderOf b).Prime\n⊒ A βŠ“ Subgroup.closure {b} = βŠ₯", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_11_7", "split": "test", "informal_prefix": "/-- If $P \\triangleleft G$, $P$ a $p$-Sylow subgroup of $G$, prove that $\\varphi(P) = P$ for every automorphism $\\varphi$ of $G$.-/\n", "formal_statement": "theorem exercise_2_11_7 {G : Type*} [Group G] {p : β„•} (hp : Nat.Prime p)\n  {P : Sylow p G} (hP : P.Normal) :\n  Subgroup.Characteristic (P : Subgroup G) :=", "goal": "G : Type u_1\ninst✝ : Group G\np : β„•\nhp : p.Prime\nP : Sylow p G\nhP : (↑P).Normal\n⊒ (↑P).Characteristic", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2_21", "split": "test", "informal_prefix": "/-- If $\\sigma, \\tau$ are two permutations that disturb no common element and $\\sigma \\tau = e$, prove that $\\sigma = \\tau = e$.-/\n", "formal_statement": "theorem exercise_3_2_21 {Ξ± : Type*} [Fintype Ξ±] {Οƒ Ο„: Equiv.Perm Ξ±}\n  (h1 : βˆ€ a : Ξ±, Οƒ a = a ↔ Ο„ a β‰  a) (h2 : Ο„ ∘ Οƒ = id) :\n  Οƒ = 1 ∧ Ο„ = 1 :=", "goal": "Ξ± : Type u_1\ninst✝ : Fintype Ξ±\nΟƒ Ο„ : Equiv.Perm Ξ±\nh1 : βˆ€ (a : Ξ±), Οƒ a = a ↔ Ο„ a β‰  a\nh2 : ⇑τ ∘ ⇑σ = id\n⊒ Οƒ = 1 ∧ Ο„ = 1", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_1_34", "split": "test", "informal_prefix": "/-- Let $T$ be the group of $2\\times 2$ matrices $A$ with entries in the field $\\mathbb{Z}_2$ such that $\\det A$ is not equal to 0. Prove that $T$ is isomorphic to $S_3$, the symmetric group of degree 3.-/\n", "formal_statement": "def exercise_4_1_34 : Equiv.Perm (Fin 3) ≃* Matrix.GeneralLinearGroup (Fin 2) (ZMod 2) :=", "goal": "⊒ Equiv.Perm (Fin 3) ≃* GL (Fin 2) (ZMod 2)", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_2_6", "split": "test", "informal_prefix": "/-- If $a^2 = 0$ in $R$, show that $ax + xa$ commutes with $a$.-/\n", "formal_statement": "theorem exercise_4_2_6 {R : Type*} [Ring R] (a x : R)\n  (h : a ^ 2 = 0) : a * (a * x + x * a) = (x + x * a) * a :=", "goal": "R : Type u_1\ninst✝ : Ring R\na x : R\nh : a ^ 2 = 0\n⊒ a * (a * x + x * a) = (x + x * a) * a", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_3_1", "split": "test", "informal_prefix": "/-- If $R$ is a commutative ring and $a \\in R$, let $L(a) = \\{x \\in R \\mid xa = 0\\}$. Prove that $L(a)$ is an ideal of $R$.-/\n", "formal_statement": "theorem exercise_4_3_1 {R : Type*} [CommRing R] (a : R) :\n  βˆƒ I : Ideal R, {x : R | x*a=0} = I :=", "goal": "R : Type u_1\ninst✝ : CommRing R\na : R\n⊒ βˆƒ I, {x | x * a = 0} = ↑I", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4_9", "split": "test", "informal_prefix": "/-- Show that $(p - 1)/2$ of the numbers $1, 2, \\ldots, p - 1$ are quadratic residues and $(p - 1)/2$ are quadratic nonresidues $\\mod p$.-/\n", "formal_statement": "theorem exercise_4_4_9 (p : β„•) (hp : Nat.Prime p) :\n  (βˆƒ S : Finset (ZMod p), S.card = (p-1)/2 ∧ βˆƒ x : ZMod p, x^2 = p) ∧\n  (βˆƒ S : Finset (ZMod p), S.card = (p-1)/2 ∧ Β¬ βˆƒ x : ZMod p, x^2 = p) :=", "goal": "p : β„•\nhp : p.Prime\n⊒ (βˆƒ S, S.card = (p - 1) / 2 ∧ βˆƒ x, x ^ 2 = ↑p) ∧ βˆƒ S, S.card = (p - 1) / 2 ∧ Β¬βˆƒ x, x ^ 2 = ↑p", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_23", "split": "test", "informal_prefix": "/-- Let $F = \\mathbb{Z}_7$ and let $p(x) = x^3 - 2$ and $q(x) = x^3 + 2$ be in $F[x]$. Show that $p(x)$ and $q(x)$ are irreducible in $F[x]$ and that the fields $F[x]/(p(x))$ and $F[x]/(q(x))$ are isomorphic.-/\n", "formal_statement": "theorem exercise_4_5_23 {p q: Polynomial (ZMod 7)}\n  (hp : p = X^3 - 2) (hq : q = X^3 + 2) :\n  Irreducible p ∧ Irreducible q ∧\n  (Nonempty $ Polynomial (ZMod 7) β§Έ span ({p} : Set $ Polynomial $ ZMod 7) ≃+*\n  Polynomial (ZMod 7) β§Έ span ({q} : Set $ Polynomial $ ZMod 7)) :=", "goal": "p q : (ZMod 7)[X]\nhp : p = X ^ 3 - 2\nhq : q = X ^ 3 + 2\n⊒ Irreducible p ∧ Irreducible q ∧ Nonempty ((ZMod 7)[X] β§Έ span {p} ≃+* (ZMod 7)[X] β§Έ span {q})", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_6_2", "split": "test", "informal_prefix": "/-- Prove that $f(x) = x^3 + 3x + 2$ is irreducible in $Q[x]$.-/\n", "formal_statement": "theorem exercise_4_6_2 : Irreducible (X^3 + 3*X + 2 : Polynomial β„š) :=", "goal": "⊒ Irreducible (X ^ 3 + 3 * X + 2)", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_1_8", "split": "test", "informal_prefix": "/-- If $F$ is a field of characteristic $p \\neq 0$, show that $(a + b)^m = a^m + b^m$, where $m = p^n$, for all $a, b \\in F$ and any positive integer $n$.-/\n", "formal_statement": "theorem exercise_5_1_8 {p m n: β„•} {F : Type*} [Field F]\n  (hp : Nat.Prime p) (hF : CharP F p) (a b : F) (hm : m = p ^ n) :\n  (a + b) ^ m = a^m + b^m :=", "goal": "p m n : β„•\nF : Type u_1\ninst✝ : Field F\nhp : p.Prime\nhF : CharP F p\na b : F\nhm : m = p ^ n\n⊒ (a + b) ^ m = a ^ m + b ^ m", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_3_7", "split": "test", "informal_prefix": "/-- If $a \\in K$ is such that $a^2$ is algebraic over the subfield $F$ of $K$, show that a is algebraic over $F$.-/\n", "formal_statement": "theorem exercise_5_3_7 {K : Type*} [Field K] {F : Subfield K}\n  {a : K} (ha : IsAlgebraic F (a ^ 2)) : IsAlgebraic F a :=", "goal": "K : Type u_1\ninst✝ : Field K\nF : Subfield K\na : K\nha : IsAlgebraic (β†₯F) (a ^ 2)\n⊒ IsAlgebraic (β†₯F) a", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_4_3", "split": "test", "informal_prefix": "/-- If $a \\in C$ is such that $p(a) = 0$, where $p(x) = x^5 + \\sqrt{2}x^3 + \\sqrt{5}x^2 + \\sqrt{7}x + \\sqrt{11}$, show that $a$ is algebraic over $\\mathbb{Q}$ of degree at most 80.-/\n", "formal_statement": "theorem exercise_5_4_3 {a : β„‚} {p : β„‚ β†’ β„‚}\n  (hp : p = Ξ» (x : β„‚) => x^5 + sqrt 2 * x^3 + sqrt 5 * x^2 + sqrt 7 * x + 11)\n  (ha : p a = 0) :\n  βˆƒ p : Polynomial β„‚ , p.degree < 80 ∧ a ∈ p.roots ∧\n  βˆ€ n : p.support, βˆƒ a b : β„€, p.coeff n = a / b :=", "goal": "a : β„‚\np : β„‚ β†’ β„‚\nhp : p = fun x => x ^ 5 + β†‘βˆš2 * x ^ 3 + β†‘βˆš5 * x ^ 2 + β†‘βˆš7 * x + 11\nha : p a = 0\n⊒ βˆƒ p, p.degree < 80 ∧ a ∈ p.roots ∧ βˆ€ (n : { x // x ∈ p.support }), βˆƒ a b, p.coeff ↑n = ↑a / ↑b", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_6_14", "split": "test", "informal_prefix": "/-- If $F$ is of characteristic $p \\neq 0$, show that all the roots of $x^m - x$, where $m = p^n$, are distinct.-/\n", "formal_statement": "theorem exercise_5_6_14 {p m n: β„•} (hp : Nat.Prime p) {F : Type*}\n  [Field F] [CharP F p] (hm : m = p ^ n) :\n  card (rootSet (X ^ m - X : Polynomial F) F) = m :=", "goal": "p m n : β„•\nhp : p.Prime\nF : Type u_1\ninst✝¹ : Field F\ninst✝ : CharP F p\nhm : m = p ^ n\n⊒ card ↑((X ^ m - X).rootSet F) = m", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_26", "split": "test", "informal_prefix": "/-- Prove that a set $U \\subset M$ is open if and only if none of its points are limits of its complement.-/\n", "formal_statement": "theorem exercise_2_26 {M : Type*} [TopologicalSpace M]\n  (U : Set M) : IsOpen U ↔ βˆ€ x ∈ U, Β¬ ClusterPt x (π“Ÿ Uᢜ) :=", "goal": "M : Type u_1\ninst✝ : TopologicalSpace M\nU : Set M\n⊒ IsOpen U ↔ βˆ€ x ∈ U, Β¬ClusterPt x (π“Ÿ Uᢜ)", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_32a", "split": "test", "informal_prefix": "/-- Show that every subset of $\\mathbb{N}$ is clopen.-/\n", "formal_statement": "theorem exercise_2_32a (A : Set β„•) : IsClopen A :=", "goal": "A : Set β„•\n⊒ IsClopen A", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_46", "split": "test", "informal_prefix": "/-- Assume that $A, B$ are compact, disjoint, nonempty subsets of $M$. Prove that there are $a_0 \\in A$ and $b_0 \\in B$ such that for all $a \\in A$ and $b \\in B$ we have $d(a_0, b_0) \\leq d(a, b)$.-/\n", "formal_statement": "theorem exercise_2_46 {M : Type*} [MetricSpace M]\n  {A B : Set M} (hA : IsCompact A) (hB : IsCompact B)\n  (hAB : Disjoint A B) (hAβ‚€ : A β‰  βˆ…) (hBβ‚€ : B β‰  βˆ…) :\n  βˆƒ aβ‚€ bβ‚€, aβ‚€ ∈ A ∧ bβ‚€ ∈ B ∧ βˆ€ (a : M) (b : M),\n  a ∈ A β†’ b ∈ B β†’ dist aβ‚€ bβ‚€ ≀ dist a b :=", "goal": "M : Type u_1\ninst✝ : MetricSpace M\nA B : Set M\nhA : IsCompact A\nhB : IsCompact B\nhAB : Disjoint A B\nhAβ‚€ : A β‰  βˆ…\nhBβ‚€ : B β‰  βˆ…\n⊒ βˆƒ aβ‚€ bβ‚€, aβ‚€ ∈ A ∧ bβ‚€ ∈ B ∧ βˆ€ (a b : M), a ∈ A β†’ b ∈ B β†’ dist aβ‚€ bβ‚€ ≀ dist a b", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_92", "split": "test", "informal_prefix": "/-- Give a direct proof that the nested decreasing intersection of nonempty covering compact sets is nonempty.-/\n", "formal_statement": "theorem exercise_2_92 {Ξ± : Type*} [TopologicalSpace Ξ±]\n  {s : β„• β†’ Set Ξ±}\n  (hs : βˆ€ i, IsCompact (s i))\n  (hs : βˆ€ i, (s i).Nonempty)\n  (hs : βˆ€ i, (s i) βŠƒ (s (i + 1))) :\n  (β‹‚ i, s i).Nonempty :=", "goal": "Ξ± : Type u_1\ninst✝ : TopologicalSpace Ξ±\ns : β„• β†’ Set Ξ±\nhs✝¹ : βˆ€ (i : β„•), IsCompact (s i)\nhs✝ : βˆ€ (i : β„•), (s i).Nonempty\nhs : βˆ€ (i : β„•), s i βŠƒ s (i + 1)\n⊒ (β‹‚ i, s i).Nonempty", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_3_1", "split": "test", "informal_prefix": "/-- Assume that $f \\colon \\mathbb{R} \\rightarrow \\mathbb{R}$ satisfies $|f(t)-f(x)| \\leq|t-x|^{2}$ for all $t, x$. Prove that $f$ is constant.-/\n", "formal_statement": "theorem exercise_3_1 {f : ℝ β†’ ℝ}\n  (hf : βˆ€ x y, |f x - f y| ≀ |x - y| ^ 2) :\n  βˆƒ c, f = Ξ» x => c :=", "goal": "f : ℝ β†’ ℝ\nhf : βˆ€ (x y : ℝ), |f x - f y| ≀ |x - y| ^ 2\n⊒ βˆƒ c, f = fun x => c", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_3_63a", "split": "test", "informal_prefix": "/-- Prove that $\\sum 1/k(\\log(k))^p$ converges when $p > 1$.-/\n", "formal_statement": "theorem exercise_3_63a (p : ℝ) (f : β„• β†’ ℝ) (hp : p > 1)\n  (h : f = Ξ» (k : β„•) => (1 : ℝ) / (k * (log k) ^ p)) :\n  βˆƒ l, Tendsto f atTop (𝓝 l) :=", "goal": "p : ℝ\nf : β„• β†’ ℝ\nhp : p > 1\nh : f = fun k => 1 / (↑k * (↑k).log ^ p)\n⊒ βˆƒ l, Tendsto f atTop (𝓝 l)", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_4_15a", "split": "test", "informal_prefix": "/-- A continuous, strictly increasing function $\\mu \\colon (0, \\infty) \\rightarrow (0, \\infty)$ is a modulus of continuity if $\\mu(s) \\rightarrow 0$ as $s \\rightarrow 0$. A function $f \\colon [a, b] \\rightarrow \\mathbb{R}$ has modulus of continuity $\\mu$ if $|f(s) - f(t)| \\leq \\mu(|s - t|)$ for all $s, t \\in [a, b]$. Prove that a function is uniformly continuous if and only if it has a modulus of continuity.-/\n", "formal_statement": "theorem exercise_4_15a {Ξ± : Type*}\n  (a b : ℝ) (F : Set (ℝ β†’ ℝ)) :\n  (βˆ€ x : ℝ, βˆ€ Ξ΅ > 0, βˆƒ U ∈ (𝓝 x),\n  (βˆ€ y z : U, βˆ€ f : ℝ β†’ ℝ, f ∈ F β†’ (dist (f y) (f z) < Ξ΅)))\n  ↔\n  βˆƒ (ΞΌ : ℝ β†’ ℝ), βˆ€ (x : ℝ), (0 : ℝ) ≀ ΞΌ x ∧ Tendsto ΞΌ (𝓝 0) (𝓝 0) ∧\n  (βˆ€ (s t : ℝ) (f : ℝ β†’ ℝ), f ∈ F β†’ |(f s) - (f t)| ≀ ΞΌ (|s - t|)) :=", "goal": "Ξ± : Type u_1\na b : ℝ\nF : Set (ℝ β†’ ℝ)\n⊒ (βˆ€ (x Ξ΅ : ℝ), Ξ΅ > 0 β†’ βˆƒ U ∈ 𝓝 x, βˆ€ (y z : ↑U), βˆ€ f ∈ F, dist (f ↑y) (f ↑z) < Ξ΅) ↔\n    βˆƒ ΞΌ, βˆ€ (x : ℝ), 0 ≀ ΞΌ x ∧ Tendsto ΞΌ (𝓝 0) (𝓝 0) ∧ βˆ€ (s t : ℝ), βˆ€ f ∈ F, |f s - f t| ≀ ΞΌ |s - t|", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_3_2", "split": "test", "informal_prefix": "/-- Prove that the products $a b$ and $b a$ are conjugate elements in a group.-/\n", "formal_statement": "theorem exercise_2_3_2 {G : Type*} [Group G] (a b : G) :\n    βˆƒ g : G, b* a = g * a * b * g⁻¹ :=", "goal": "G : Type u_1\ninst✝ : Group G\na b : G\n⊒ βˆƒ g, b * a = g * a * b * g⁻¹", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_8_6", "split": "test", "informal_prefix": "/-- Prove that the center of the product of two groups is the product of their centers.-/\n", "formal_statement": "noncomputable def exercise_2_8_6 {G H : Type*} [Group G] [Group H] :\n    center (G Γ— H) ≃* (center G) Γ— (center H) :=", "goal": "G : Type u_1\nH : Type u_2\ninst✝¹ : Group G\ninst✝ : Group H\n⊒ β†₯(center (G Γ— H)) ≃* β†₯(center G) Γ— β†₯(center H)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n--center of (G Γ— H) equivalent, preserves multiplication with (center G) Γ— (center H)\n"}
{"name": "exercise_3_2_7", "split": "test", "informal_prefix": "/-- Prove that every homomorphism of fields is injective.-/\n", "formal_statement": "theorem exercise_3_2_7 {F : Type*} [Field F] {G : Type*} [Field G]\n    (Ο† : F β†’+* G) : Injective Ο† :=", "goal": "F : Type u_1\ninst✝¹ : Field F\nG : Type u_2\ninst✝ : Field G\nΟ† : F β†’+* G\n⊒ Injective ⇑φ", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\nopen RingHom\n"}
{"name": "exercise_3_7_2", "split": "test", "informal_prefix": "/-- Let $V$ be a vector space over an infinite field $F$. Prove that $V$ is not the union of finitely many proper subspaces.-/\n", "formal_statement": "theorem exercise_3_7_2 {K V : Type*} [Field K] [AddCommGroup V]\n  [Module K V] {ΞΉ : Type*} [Fintype ΞΉ] (Ξ³ : ΞΉ β†’ Submodule K V)\n  (h : βˆ€ i : ΞΉ, Ξ³ i β‰  ⊀) :\n  (β‹‚ (i : ΞΉ), (Ξ³ i : Set V)) β‰  ⊀ :=", "goal": "K : Type u_1\nV : Type u_2\ninst✝³ : Field K\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\nΞΉ : Type u_3\ninst✝ : Fintype ΞΉ\nΞ³ : ΞΉ β†’ Submodule K V\nh : βˆ€ (i : ΞΉ), Ξ³ i β‰  ⊀\n⊒ β‹‚ i, ↑(Ξ³ i) β‰  ⊀", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_4_2", "split": "test", "informal_prefix": "/-- Prove that no group of order $p q$, where $p$ and $q$ are prime, is simple.-/\n", "formal_statement": "theorem exercise_6_4_2 {G : Type*} [Group G] [Fintype G] {p q : β„•}\n  (hp : Prime p) (hq : Prime q) (hG : card G = p*q) :\n  IsSimpleGroup G β†’ false :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\np q : β„•\nhp : Prime p\nhq : Prime q\nhG : card G = p * q\n⊒ IsSimpleGroup G β†’ false = true", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_4_12", "split": "test", "informal_prefix": "/-- Prove that no group of order 224 is simple.-/\n", "formal_statement": "theorem exercise_6_4_12 {G : Type*} [Group G] [Fintype G]\n  (hG : card G = 224) :\n  IsSimpleGroup G β†’ false :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 224\n⊒ IsSimpleGroup G β†’ false = true", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_10_1_13", "split": "test", "informal_prefix": "/-- An element $x$ of a ring $R$ is called nilpotent if some power of $x$ is zero. Prove that if $x$ is nilpotent, then $1+x$ is a unit in $R$.-/\n", "formal_statement": "theorem exercise_10_1_13 {R : Type*} [Ring R] {x : R}\n  (hx : IsNilpotent x) : IsUnit (1 + x) :=", "goal": "R : Type u_1\ninst✝ : Ring R\nx : R\nhx : IsNilpotent x\n⊒ IsUnit (1 + x)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_10_6_7", "split": "test", "informal_prefix": "/-- Prove that every nonzero ideal in the ring of Gauss integers contains a nonzero integer.-/\n", "formal_statement": "theorem exercise_10_6_7 {I : Ideal GaussianInt}\n  (hI : I β‰  βŠ₯) : βˆƒ (z : I), z β‰  0 ∧ (z : GaussianInt).im = 0 :=", "goal": "I : Ideal GaussianInt\nhI : I β‰  βŠ₯\n⊒ βˆƒ z, z β‰  0 ∧ (↑z).im = 0", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_10_4_7a", "split": "test", "informal_prefix": "/-- Let $I, J$ be ideals of a ring $R$ such that $I+J=R$. Prove that $I J=I \\cap J$.-/\n", "formal_statement": "theorem exercise_10_4_7a {R : Type*} [CommRing R] [NoZeroDivisors R]\n  (I J : Ideal R) (hIJ : I + J = ⊀) : I * J = I βŠ“ J :=", "goal": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : NoZeroDivisors R\nI J : Ideal R\nhIJ : I + J = ⊀\n⊒ I * J = I βŠ“ J", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_2_13", "split": "test", "informal_prefix": "/-- If $a, b$ are integers and if $a$ divides $b$ in the ring of Gauss integers, then $a$ divides $b$ in $\\mathbb{Z}$.-/\n", "formal_statement": "theorem exercise_11_2_13 (a b : β„€) :\n  (ofInt a : GaussianInt) ∣ ofInt b β†’ a ∣ b :=", "goal": "a b : β„€\n⊒ ofInt a ∣ ofInt b β†’ a ∣ b", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_4_6a", "split": "test", "informal_prefix": "/-- Prove that $x^2+x+1$ is irreducible in the field $\\mathbb{F}_2$.-/\n", "formal_statement": "theorem exercise_11_4_6a {F : Type*} [Field F] [Fintype F] (hF : card F = 7) :\n  Irreducible (X ^ 2 + 1 : Polynomial F) :=", "goal": "F : Type u_1\ninst✝¹ : Field F\ninst✝ : Fintype F\nhF : card F = 7\n⊒ Irreducible (X ^ 2 + 1)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_4_6c", "split": "test", "informal_prefix": "/-- Prove that $x^3 - 9$ is irreducible in $\\mathbb{F}_{31}$.-/\n", "formal_statement": "theorem exercise_11_4_6c : Irreducible (X^3 - 9 : Polynomial (ZMod 31)) :=", "goal": "⊒ Irreducible (X ^ 3 - 9)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_13_3", "split": "test", "informal_prefix": "/-- Prove that there are infinitely many primes congruent to $-1$ (modulo $4$).-/\n", "formal_statement": "theorem exercise_11_13_3 (N : β„•):\n  βˆƒ p β‰₯ N, Nat.Prime p ∧ p + 1 ≑ 0 [MOD 4] :=", "goal": "N : β„•\n⊒ βˆƒ p β‰₯ N, p.Prime ∧ p + 1 ≑ 0 [MOD 4]", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_13_6_10", "split": "test", "informal_prefix": "/-- Let $K$ be a finite field. Prove that the product of the nonzero elements of $K$ is $-1$.-/\n", "formal_statement": "theorem exercise_13_6_10 {K : Type*} [Field K] [Fintype Kˣ] :\n  (∏ x : Kˣ,  x) = -1 :=", "goal": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : Fintype Kˣ\n⊒ ∏ x : Kˣ, x = -1", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_2", "split": "test", "informal_prefix": "/-- Show that $\\frac{-1 + \\sqrt{3}i}{2}$ is a cube root of 1 (meaning that its cube equals 1).-/\n", "formal_statement": "theorem exercise_1_2 :\n  (⟨-1/2, Real.sqrt 3 / 2⟩ : β„‚) ^ 3 = -1 :=", "goal": "⊒ { re := -1 / 2, im := √3 / 2 } ^ 3 = -1", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_4", "split": "test", "informal_prefix": "/-- Prove that if $a \\in \\mathbf{F}$, $v \\in V$, and $av = 0$, then $a = 0$ or $v = 0$.-/\n", "formal_statement": "theorem exercise_1_4 {F V : Type*} [AddCommGroup V] [Field F]\n  [Module F V] (v : V) (a : F): a β€’ v = 0 ↔ a = 0 ∨ v = 0 :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nv : V\na : F\n⊒ a β€’ v = 0 ↔ a = 0 ∨ v = 0", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_7", "split": "test", "informal_prefix": "/-- Give an example of a nonempty subset $U$ of $\\mathbf{R}^2$ such that $U$ is closed under scalar multiplication, but $U$ is not a subspace of $\\mathbf{R}^2$.-/\n", "formal_statement": "theorem exercise_1_7 : βˆƒ U : Set (ℝ Γ— ℝ),\n  (U β‰  βˆ…) ∧\n  (βˆ€ (c : ℝ) (u : ℝ Γ— ℝ), u ∈ U β†’ c β€’ u ∈ U) ∧\n  (βˆ€ U' : Submodule ℝ (ℝ Γ— ℝ), U β‰  ↑U') :=", "goal": "⊒ βˆƒ U, U β‰  βˆ… ∧ (βˆ€ (c : ℝ), βˆ€ u ∈ U, c β€’ u ∈ U) ∧ βˆ€ (U' : Submodule ℝ (ℝ Γ— ℝ)), U β‰  ↑U'", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_9", "split": "test", "informal_prefix": "/-- Prove that the union of two subspaces of $V$ is a subspace of $V$ if and only if one of the subspaces is contained in the other.-/\n", "formal_statement": "theorem exercise_1_9 {F V : Type*} [AddCommGroup V] [Field F]\n  [Module F V] (U W : Submodule F V):\n  βˆƒ U' : Submodule F V, (U'.carrier = ↑U ∩ ↑W ↔ (U ≀ W ∨ W ≀ U)) :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nU W : Submodule F V\n⊒ βˆƒ U', U'.carrier = ↑U ∩ ↑W ↔ U ≀ W ∨ W ≀ U", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_8", "split": "test", "informal_prefix": "/-- Suppose that $V$ is finite dimensional and that $T \\in \\mathcal{L}(V, W)$. Prove that there exists a subspace $U$ of $V$ such that $U \\cap \\operatorname{null} T=\\{0\\}$ and range $T=\\{T u: u \\in U\\}$.-/\n", "formal_statement": "theorem exercise_3_8 {F V W : Type*}  [AddCommGroup V]\n  [AddCommGroup W] [Field F] [Module F V] [Module F W]\n  (L : V β†’β‚—[F] W) :\n  βˆƒ U : Submodule F V, U βŠ“ (ker L) = βŠ₯ ∧\n  (range L = range (domRestrict L U)) :=", "goal": "F : Type u_1\nV : Type u_2\nW : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AddCommGroup W\ninst✝² : Field F\ninst✝¹ : Module F V\ninst✝ : Module F W\nL : V β†’β‚—[F] W\n⊒ βˆƒ U, U βŠ“ ker L = βŠ₯ ∧ range L = range (L.domRestrict U)", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_1", "split": "test", "informal_prefix": "/-- Suppose $T \\in \\mathcal{L}(V)$. Prove that if $U_{1}, \\ldots, U_{m}$ are subspaces of $V$ invariant under $T$, then $U_{1}+\\cdots+U_{m}$ is invariant under $T$.-/\n", "formal_statement": "theorem exercise_5_1 {F V : Type*} [AddCommGroup V] [Field F]\n  [Module F V] {L : V β†’β‚—[F] V} {n : β„•} (U : Fin n β†’ Submodule F V)\n  (hU : βˆ€ i : Fin n, Submodule.map L (U i) = U i) :\n  Submodule.map L (βˆ‘ i : Fin n, U i : Submodule F V) =\n  (βˆ‘ i : Fin n, U i : Submodule F V) :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nL : V β†’β‚—[F] V\nn : β„•\nU : Fin n β†’ Submodule F V\nhU : βˆ€ (i : Fin n), Submodule.map L (U i) = U i\n⊒ Submodule.map L (βˆ‘ i : Fin n, U i) = βˆ‘ i : Fin n, U i", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_11", "split": "test", "informal_prefix": "/-- Suppose $S, T \\in \\mathcal{L}(V)$. Prove that $S T$ and $T S$ have the same eigenvalues.-/\n", "formal_statement": "theorem exercise_5_11 {F V : Type*} [AddCommGroup V] [Field F]\n  [Module F V] (S T : End F V) :\n  (S * T).Eigenvalues = (T * S).Eigenvalues :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nS T : End F V\n⊒ (S * T).Eigenvalues = (T * S).Eigenvalues", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_13", "split": "test", "informal_prefix": "/-- Suppose $T \\in \\mathcal{L}(V)$ is such that every subspace of $V$ with dimension $\\operatorname{dim} V-1$ is invariant under $T$. Prove that $T$ is a scalar multiple of the identity operator.-/\n", "formal_statement": "theorem exercise_5_13 {F V : Type*} [AddCommGroup V] [Field F]\n  [Module F V] [FiniteDimensional F V] {T : End F V}\n  (hS : βˆ€ U : Submodule F V, finrank F U = finrank F V - 1 β†’\n  Submodule.map T U = U) : βˆƒ c : F, T = c β€’ LinearMap.id :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝³ : AddCommGroup V\ninst✝² : Field F\ninst✝¹ : Module F V\ninst✝ : FiniteDimensional F V\nT : End F V\nhS : βˆ€ (U : Submodule F V), finrank F β†₯U = finrank F V - 1 β†’ Submodule.map T U = U\n⊒ βˆƒ c, T = c β€’ LinearMap.id", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_24", "split": "test", "informal_prefix": "/-- Suppose $V$ is a real vector space and $T \\in \\mathcal{L}(V)$ has no eigenvalues. Prove that every subspace of $V$ invariant under $T$ has even dimension.-/\n", "formal_statement": "theorem exercise_5_24 {V : Type*} [AddCommGroup V]\n  [Module ℝ V] [FiniteDimensional ℝ V] {T : End ℝ V}\n  (hT : βˆ€ c : ℝ, eigenspace T c = βŠ₯) {U : Submodule ℝ V}\n  (hU : Submodule.map T U = U) : Even (finrank U) :=", "goal": "V : Type u_1\ninst✝² : AddCommGroup V\ninst✝¹ : Module ℝ V\ninst✝ : FiniteDimensional ℝ V\nT : End ℝ V\nhT : βˆ€ (c : ℝ), T.eigenspace c = βŠ₯\nU : Submodule ℝ V\nhU : Submodule.map T U = U\n⊒ Even (finrank β†₯U)", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_3", "split": "test", "informal_prefix": "/-- Prove that $\\left(\\sum_{j=1}^{n} a_{j} b_{j}\\right)^{2} \\leq\\left(\\sum_{j=1}^{n} j a_{j}{ }^{2}\\right)\\left(\\sum_{j=1}^{n} \\frac{b_{j}{ }^{2}}{j}\\right)$ for all real numbers $a_{1}, \\ldots, a_{n}$ and $b_{1}, \\ldots, b_{n}$.-/\n", "formal_statement": "theorem exercise_6_3 {n : β„•} (a b : Fin n β†’ ℝ) :\n  (βˆ‘ i, a i * b i) ^ 2 ≀ (βˆ‘ i : Fin n, i * a i ^ 2) * (βˆ‘ i, b i ^ 2 / i) :=", "goal": "n : β„•\na b : Fin n β†’ ℝ\n⊒ (βˆ‘ i : Fin n, a i * b i) ^ 2 ≀ (βˆ‘ i : Fin n, ↑↑i * a i ^ 2) * βˆ‘ i : Fin n, b i ^ 2 / ↑↑i", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_13", "split": "test", "informal_prefix": "/-- Suppose $\\left(e_{1}, \\ldots, e_{m}\\right)$ is an or thonormal list of vectors in $V$. Let $v \\in V$. Prove that $\\|v\\|^{2}=\\left|\\left\\langle v, e_{1}\\right\\rangle\\right|^{2}+\\cdots+\\left|\\left\\langle v, e_{m}\\right\\rangle\\right|^{2}$ if and only if $v \\in \\operatorname{span}\\left(e_{1}, \\ldots, e_{m}\\right)$.-/\n", "formal_statement": "theorem exercise_6_13 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace β„‚ V] {n : β„•}\n  {e : Fin n β†’ V} (he : Orthonormal β„‚ e) (v : V) :\n  β€–vβ€–^2 = βˆ‘ i : Fin n, β€–βŸͺv, e i⟫_β„‚β€–^2 ↔ v ∈ Submodule.span β„‚ (e '' Set.univ) :=", "goal": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace β„‚ V\nn : β„•\ne : Fin n β†’ V\nhe : Orthonormal β„‚ e\nv : V\n⊒ β€–vβ€– ^ 2 = βˆ‘ i : Fin n, β€–βŸͺv, e i⟫_β„‚β€– ^ 2 ↔ v ∈ Submodule.span β„‚ (e '' Set.univ)", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_5", "split": "test", "informal_prefix": "/-- Show that if $\\operatorname{dim} V \\geq 2$, then the set of normal operators on $V$ is not a subspace of $\\mathcal{L}(V)$.-/\n", "formal_statement": "theorem exercise_7_5 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace β„‚ V]\n  [FiniteDimensional β„‚ V] (hV : finrank V β‰₯ 2) :\n  βˆ€ U : Submodule β„‚ (End β„‚ V), U.carrier β‰ \n  {T | T * adjoint T = adjoint T * T} :=", "goal": "V : Type u_1\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace β„‚ V\ninst✝ : FiniteDimensional β„‚ V\nhV : finrank V β‰₯ 2\n⊒ βˆ€ (U : Submodule β„‚ (End β„‚ V)), U.carrier β‰  {T | T * adjoint T = adjoint T * T}", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_9", "split": "test", "informal_prefix": "/-- Prove that a normal operator on a complex inner-product space is self-adjoint if and only if all its eigenvalues are real.-/\n", "formal_statement": "theorem exercise_7_9 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace β„‚ V]\n  [FiniteDimensional β„‚ V] (T : End β„‚ V)\n  (hT : T * adjoint T = adjoint T * T) :\n  IsSelfAdjoint T ↔ βˆ€ e : T.Eigenvalues, (e : β„‚).im = 0 :=", "goal": "V : Type u_1\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace β„‚ V\ninst✝ : FiniteDimensional β„‚ V\nT : End β„‚ V\nhT : T * adjoint T = adjoint T * T\n⊒ IsSelfAdjoint T ↔ βˆ€ (e : T.Eigenvalues), (↑T e).im = 0", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_11", "split": "test", "informal_prefix": "/-- Suppose $V$ is a complex inner-product space. Prove that every normal operator on $V$ has a square root. (An operator $S \\in \\mathcal{L}(V)$ is called a square root of $T \\in \\mathcal{L}(V)$ if $S^{2}=T$.)-/\n", "formal_statement": "theorem exercise_7_11 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace β„‚ V]\n  [FiniteDimensional β„‚ V] {T : End β„‚ V} (hT : T*adjoint T = adjoint T*T) :\n  βˆƒ (S : End β„‚ V), S ^ 2 = T :=", "goal": "V : Type u_1\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace β„‚ V\ninst✝ : FiniteDimensional β„‚ V\nT : End β„‚ V\nhT : T * adjoint T = adjoint T * T\n⊒ βˆƒ S, S ^ 2 = T", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_2a", "split": "test", "informal_prefix": "/-- Prove the the operation $\\star$ on $\\mathbb{Z}$ defined by $a\\star b=a-b$ is not commutative.-/\n", "formal_statement": "theorem exercise_1_1_2a : βˆƒ a b : β„€, a - b β‰  b - a :=", "goal": "⊒ βˆƒ a b, a - b β‰  b - a", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_4", "split": "test", "informal_prefix": "/-- Prove that the multiplication of residue class $\\mathbb{Z}/n\\mathbb{Z}$ is associative.-/\n", "formal_statement": "theorem exercise_1_1_4 (n : β„•) :\n  βˆ€ (a b c : β„•), (a * b) * c ≑ a * (b * c) [ZMOD n] :=", "goal": "n : β„•\n⊒ βˆ€ (a b c : β„•), ↑a * ↑b * ↑c ≑ ↑a * (↑b * ↑c) [ZMOD ↑n]", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_15", "split": "test", "informal_prefix": "/-- Prove that $(a_1a_2\\dots a_n)^{-1} = a_n^{-1}a_{n-1}^{-1}\\dots a_1^{-1}$ for all $a_1, a_2, \\dots, a_n\\in G$.-/\n", "formal_statement": "theorem exercise_1_1_15 {G : Type*} [Group G] (as : List G) :\n  as.prod⁻¹ = (as.reverse.map (λ x => x⁻¹)).prod :=", "goal": "G : Type u_1\ninst✝ : Group G\nas : List G\n⊒ as.prod⁻¹ = (List.map (fun x => x⁻¹) as.reverse).prod", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_17", "split": "test", "informal_prefix": "/-- Let $x$ be an element of $G$. Prove that if $|x|=n$ for some positive integer $n$ then $x^{-1}=x^{n-1}$.-/\n", "formal_statement": "theorem exercise_1_1_17 {G : Type*} [Group G] {x : G} {n : β„•}\n  (hxn: orderOf x = n) :\n  x⁻¹ = x ^ (n - 1 : β„€) :=", "goal": "G : Type u_1\ninst✝ : Group G\nx : G\nn : β„•\nhxn : orderOf x = n\n⊒ x⁻¹ = x ^ (↑n - 1)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_20", "split": "test", "informal_prefix": "/-- For $x$ an element in $G$ show that $x$ and $x^{-1}$ have the same order.-/\n", "formal_statement": "theorem exercise_1_1_20 {G : Type*} [Group G] {x : G} :\n  orderOf x = orderOf x⁻¹ :=", "goal": "G : Type u_1\ninst✝ : Group G\nx : G\n⊒ orderOf x = orderOf x⁻¹", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_22b", "split": "test", "informal_prefix": "/-- Deduce that $|a b|=|b a|$ for all $a, b \\in G$.-/\n", "formal_statement": "theorem exercise_1_1_22b {G: Type*} [Group G] (a b : G) :\n  orderOf (a * b) = orderOf (b * a) :=", "goal": "G : Type u_1\ninst✝ : Group G\na b : G\n⊒ orderOf (a * b) = orderOf (b * a)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_29", "split": "test", "informal_prefix": "/-- Prove that $A \\times B$ is an abelian group if and only if both $A$ and $B$ are abelian.-/\n", "formal_statement": "theorem exercise_1_1_29 {A B : Type*} [Group A] [Group B] :\n  βˆ€ x y : A Γ— B, x*y = y*x ↔ (βˆ€ x y : A, x*y = y*x) ∧\n  (βˆ€ x y : B, x*y = y*x) :=", "goal": "A : Type u_1\nB : Type u_2\ninst✝¹ : Group A\ninst✝ : Group B\n⊒ βˆ€ (x y : A Γ— B), x * y = y * x ↔ (βˆ€ (x y : A), x * y = y * x) ∧ βˆ€ (x y : B), x * y = y * x", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_3_8", "split": "test", "informal_prefix": "/-- Prove that if $\\Omega=\\{1,2,3, \\ldots\\}$ then $S_{\\Omega}$ is an infinite group-/\n", "formal_statement": "theorem exercise_1_3_8 : Infinite (Equiv.Perm β„•) :=", "goal": "⊒ Infinite (Equiv.Perm β„•)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_6_11", "split": "test", "informal_prefix": "/-- Let $A$ and $B$ be groups. Prove that $A \\times B \\cong B \\times A$.-/\n", "formal_statement": "noncomputable def exercise_1_6_11 {A B : Type*} [Group A] [Group B] :\n  A Γ— B ≃* B Γ— A :=", "goal": "A : Type u_1\nB : Type u_2\ninst✝¹ : Group A\ninst✝ : Group B\n⊒ A Γ— B ≃* B Γ— A", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_6_23", "split": "test", "informal_prefix": "/-- Let $G$ be a finite group which possesses an automorphism $\\sigma$ such that $\\sigma(g)=g$ if and only if $g=1$. If $\\sigma^{2}$ is the identity map from $G$ to $G$, prove that $G$ is abelian.-/\n", "formal_statement": "theorem exercise_1_6_23 {G : Type*}\n  [Group G] (Οƒ : MulAut G) (hs : βˆ€ g : G, Οƒ g = 1 β†’ g = 1)\n  (hs2 : βˆ€ g : G, Οƒ (Οƒ g) = g) :\n  βˆ€ x y : G, x*y = y*x :=", "goal": "G : Type u_1\ninst✝ : Group G\nΟƒ : MulAut G\nhs : βˆ€ (g : G), Οƒ g = 1 β†’ g = 1\nhs2 : βˆ€ (g : G), Οƒ (Οƒ g) = g\n⊒ βˆ€ (x y : G), x * y = y * x", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_1_13", "split": "test", "informal_prefix": "/-- Let $H$ be a subgroup of the additive group of rational numbers with the property that $1 / x \\in H$ for every nonzero element $x$ of $H$. Prove that $H=0$ or $\\mathbb{Q}$.-/\n", "formal_statement": "theorem exercise_2_1_13 (H : AddSubgroup β„š) {x : β„š}\n  (hH : x ∈ H β†’ (1 / x) ∈ H):\n  H = βŠ₯ ∨ H = ⊀ :=", "goal": "H : AddSubgroup β„š\nx : β„š\nhH : x ∈ H β†’ 1 / x ∈ H\n⊒ H = βŠ₯ ∨ H = ⊀", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_4_16a", "split": "test", "informal_prefix": "/-- A subgroup $M$ of a group $G$ is called a maximal subgroup if $M \\neq G$ and the only subgroups of $G$ which contain $M$ are $M$ and $G$. Prove that if $H$ is a proper subgroup of the finite group $G$ then there is a maximal subgroup of $G$ containing $H$.-/\n", "formal_statement": "theorem exercise_2_4_16a {G : Type*} [Group G] {H : Subgroup G}\n  (hH : H β‰  ⊀) :\n  βˆƒ M : Subgroup G, M β‰  ⊀ ∧\n  βˆ€ K : Subgroup G, M ≀ K β†’ K = M ∨ K = ⊀ ∧\n  H ≀ M :=", "goal": "G : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : H β‰  ⊀\n⊒ βˆƒ M, M β‰  ⊀ ∧ βˆ€ (K : Subgroup G), M ≀ K β†’ K = M ∨ K = ⊀ ∧ H ≀ M", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_4_16c", "split": "test", "informal_prefix": "/-- Show that if $G=\\langle x\\rangle$ is a cyclic group of order $n \\geq 1$ then a subgroup $H$ is maximal if and only $H=\\left\\langle x^{p}\\right\\rangle$ for some prime $p$ dividing $n$.-/\n", "formal_statement": "theorem exercise_2_4_16c {n : β„•} (H : AddSubgroup (ZMod n)) :\n  βˆƒ p : (ZMod n), Prime p ∧ H = AddSubgroup.closure {p} ↔\n  (H β‰  ⊀ ∧ βˆ€ K : AddSubgroup (ZMod n), H ≀ K β†’ K = H ∨ K = ⊀) :=", "goal": "n : β„•\nH : AddSubgroup (ZMod n)\n⊒ βˆƒ p, Prime p ∧ H = AddSubgroup.closure {p} ↔ H β‰  ⊀ ∧ βˆ€ (K : AddSubgroup (ZMod n)), H ≀ K β†’ K = H ∨ K = ⊀", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_1_22a", "split": "test", "informal_prefix": "/-- Prove that if $H$ and $K$ are normal subgroups of a group $G$ then their intersection $H \\cap K$ is also a normal subgroup of $G$.-/\n", "formal_statement": "theorem exercise_3_1_22a (G : Type*) [Group G] (H K : Subgroup G)\n  [Normal H] [Normal K] :\n  Normal (H βŠ“ K) :=", "goal": "G : Type u_1\ninst✝² : Group G\nH K : Subgroup G\ninst✝¹ : H.Normal\ninst✝ : K.Normal\n⊒ (H βŠ“ K).Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2_8", "split": "test", "informal_prefix": "/-- Prove that if $H$ and $K$ are finite subgroups of $G$ whose orders are relatively prime then $H \\cap K=1$.-/\n", "formal_statement": "theorem exercise_3_2_8 {G : Type*} [Group G] (H K : Subgroup G)\n  [Fintype H] [Fintype K]\n  (hHK : Nat.Coprime (card H) (card K)) :\n  H βŠ“ K = βŠ₯ :=", "goal": "G : Type u_1\ninst✝² : Group G\nH K : Subgroup G\ninst✝¹ : Fintype β†₯H\ninst✝ : Fintype β†₯K\nhHK : (card β†₯H).Coprime (card β†₯K)\n⊒ H βŠ“ K = βŠ₯", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2_16", "split": "test", "informal_prefix": "/-- Use Lagrange's Theorem in the multiplicative group $(\\mathbb{Z} / p \\mathbb{Z})^{\\times}$to prove Fermat's Little Theorem: if $p$ is a prime then $a^{p} \\equiv a(\\bmod p)$ for all $a \\in \\mathbb{Z}$.-/\n", "formal_statement": "theorem exercise_3_2_16 (p : β„•) (hp : Nat.Prime p) (a : β„•) :\n  Nat.Coprime a p β†’ a ^ p ≑ a [ZMOD p] :=", "goal": "p : β„•\nhp : p.Prime\na : β„•\n⊒ a.Coprime p β†’ ↑a ^ p ≑ ↑a [ZMOD ↑p]", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_3_3", "split": "test", "informal_prefix": "/-- Prove that if $H$ is a normal subgroup of $G$ of prime index $p$ then for all $K \\leq G$ either $K \\leq H$, or $G=H K$ and $|K: K \\cap H|=p$.-/\n", "formal_statement": "theorem exercise_3_3_3 {p : Nat.Primes} {G : Type*} [Group G]\n  {H : Subgroup G} [hH : H.Normal] (hH1 : H.index = p) :\n  βˆ€ K : Subgroup G, K ≀ H ∨ H βŠ” K = ⊀ ∨ (K βŠ“ H).relindex K = p :=", "goal": "p : Nat.Primes\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : H.Normal\nhH1 : H.index = ↑p\n⊒ βˆ€ (K : Subgroup G), K ≀ H ∨ H βŠ” K = ⊀ ∨ (K βŠ“ H).relindex K = ↑p", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_4_4", "split": "test", "informal_prefix": "/-- Use Cauchy's Theorem and induction to show that a finite abelian group has a subgroup of order $n$ for each positive divisor $n$ of its order.-/\n", "formal_statement": "theorem exercise_3_4_4 {G : Type*} [CommGroup G] [Fintype G] {n : β„•}\n    (hn : n ∣ (card G)) :\n    βˆƒ (H : Subgroup G) (H_fin : Fintype H), @card H H_fin = n :=", "goal": "G : Type u_1\ninst✝¹ : CommGroup G\ninst✝ : Fintype G\nn : β„•\nhn : n ∣ card G\n⊒ βˆƒ H H_fin, card β†₯H = n", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_4_5b", "split": "test", "informal_prefix": "/-- Prove that quotient groups of a solvable group are solvable.-/\n", "formal_statement": "theorem exercise_3_4_5b {G : Type*} [Group G] [IsSolvable G]\n  (H : Subgroup G) [Normal H] :\n  IsSolvable (G ⧸ H) :=", "goal": "G : Type u_1\ninst✝² : Group G\ninst✝¹ : IsSolvable G\nH : Subgroup G\ninst✝ : H.Normal\n⊒ IsSolvable (G ⧸ H)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_2_8", "split": "test", "informal_prefix": "/-- Prove that if $H$ has finite index $n$ then there is a normal subgroup $K$ of $G$ with $K \\leq H$ and $|G: K| \\leq n!$.-/\n", "formal_statement": "theorem exercise_4_2_8 {G : Type*} [Group G] {H : Subgroup G}\n  {n : β„•} (hn : n > 0) (hH : H.index = n) :\n  βˆƒ K ≀ H, K.Normal ∧ K.index ≀ n.factorial :=", "goal": "G : Type u_1\ninst✝ : Group G\nH : Subgroup G\nn : β„•\nhn : n > 0\nhH : H.index = n\n⊒ βˆƒ K ≀ H, K.Normal ∧ K.index ≀ n.factorial", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_2_9a", "split": "test", "informal_prefix": "/-- Prove that if $p$ is a prime and $G$ is a group of order $p^{\\alpha}$ for some $\\alpha \\in \\mathbb{Z}^{+}$, then every subgroup of index $p$ is normal in $G$.-/\n", "formal_statement": "theorem exercise_4_2_9a {G : Type*} [Fintype G] [Group G] {p Ξ± : β„•}\n  (hp : p.Prime) (ha : Ξ± > 0) (hG : card G = p ^ Ξ±) :\n  βˆ€ H : Subgroup G, H.index = p β†’ H.Normal :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\np Ξ± : β„•\nhp : p.Prime\nha : Ξ± > 0\nhG : card G = p ^ Ξ±\n⊒ βˆ€ (H : Subgroup G), H.index = p β†’ H.Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4_2", "split": "test", "informal_prefix": "/-- Prove that if $G$ is an abelian group of order $p q$, where $p$ and $q$ are distinct primes, then $G$ is cyclic.-/\n", "formal_statement": "theorem exercise_4_4_2 {G : Type*} [Fintype G] [Group G]\n  {p q : Nat.Primes} (hpq : p β‰  q) (hG : card G = p*q) :\n  IsCyclic G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\np q : Nat.Primes\nhpq : p β‰  q\nhG : card G = ↑p * ↑q\n⊒ IsCyclic G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4_6b", "split": "test", "informal_prefix": "/-- Prove that there exists a normal subgroup that is not characteristic.-/\n", "formal_statement": "theorem exercise_4_4_6b :\n  βˆƒ (G : Type*) (hG : Group G) (H : @Subgroup G hG), @Characteristic G hG H  ∧ Β¬ @Normal G hG H :=", "goal": "⊒ βˆƒ G hG H, H.Characteristic ∧ Β¬H.Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4_8a", "split": "test", "informal_prefix": "/-- Let $G$ be a group with subgroups $H$ and $K$ with $H \\leq K$. Prove that if $H$ is characteristic in $K$ and $K$ is normal in $G$ then $H$ is normal in $G$.-/\n", "formal_statement": "theorem exercise_4_4_8a {G : Type*} [Group G] (H K : Subgroup G)\n  (hHK : H ≀ K) [hHK1 : (H.subgroupOf K).Normal] [hK : K.Normal] :\n  H.Normal :=", "goal": "G : Type u_1\ninst✝ : Group G\nH K : Subgroup G\nhHK : H ≀ K\nhHK1 : (H.subgroupOf K).Normal\nhK : K.Normal\n⊒ H.Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_13", "split": "test", "informal_prefix": "/-- Prove that a group of order 56 has a normal Sylow $p$-subgroup for some prime $p$ dividing its order.-/\n", "formal_statement": "theorem exercise_4_5_13 {G : Type*} [Group G] [Fintype G]\n  (hG : card G = 56) :\n  βˆƒ (p : β„•) (P : Sylow p G), P.Normal :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 56\n⊒ βˆƒ p P, (↑P).Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_15", "split": "test", "informal_prefix": "/-- Prove that a group of order 351 has a normal Sylow $p$-subgroup for some prime $p$ dividing its order.-/\n", "formal_statement": "theorem exercise_4_5_15 {G : Type*} [Group G] [Fintype G]\n  (hG : card G = 351) :\n  βˆƒ (p : β„•) (P : Sylow p G), P.Normal :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 351\n⊒ βˆƒ p P, (↑P).Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_17", "split": "test", "informal_prefix": "/-- Prove that if $|G|=105$ then $G$ has a normal Sylow 5 -subgroup and a normal Sylow 7-subgroup.-/\n", "formal_statement": "theorem exercise_4_5_17 {G : Type*} [Fintype G] [Group G]\n  (hG : card G = 105) :\n  Nonempty (Sylow 5 G) ∧ Nonempty (Sylow 7 G) :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 105\n⊒ Nonempty (Sylow 5 G) ∧ Nonempty (Sylow 7 G)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_19", "split": "test", "informal_prefix": "/-- Prove that if $|G|=6545$ then $G$ is not simple.-/\n", "formal_statement": "theorem exercise_4_5_19 {G : Type*} [Fintype G] [Group G]\n  (hG : card G = 6545) : ¬ IsSimpleGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 6545\n⊒ ¬IsSimpleGroup G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_21", "split": "test", "informal_prefix": "/-- Prove that if $|G|=2907$ then $G$ is not simple.-/\n", "formal_statement": "theorem exercise_4_5_21 {G : Type*} [Fintype G] [Group G]\n  (hG : card G = 2907) : ¬ IsSimpleGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 2907\n⊒ ¬IsSimpleGroup G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_23", "split": "test", "informal_prefix": "/-- Prove that if $|G|=462$ then $G$ is not simple.-/\n", "formal_statement": "theorem exercise_4_5_23 {G : Type*} [Fintype G] [Group G]\n  (hG : card G = 462) : ¬ IsSimpleGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 462\n⊒ ¬IsSimpleGroup G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_33", "split": "test", "informal_prefix": "/-- Let $P$ be a normal Sylow $p$-subgroup of $G$ and let $H$ be any subgroup of $G$. Prove that $P \\cap H$ is the unique Sylow $p$-subgroup of $H$.-/\n", "formal_statement": "theorem exercise_4_5_33 {G : Type*} [Group G] [Fintype G] {p : β„•}\n  (P : Sylow p G) [hP : P.Normal] (H : Subgroup G) [Fintype H] :\n  βˆ€ R : Sylow p H, R.toSubgroup = (H βŠ“ P.toSubgroup).subgroupOf H ∧\n  Nonempty (Sylow p H) :=", "goal": "G : Type u_1\ninst✝² : Group G\ninst✝¹ : Fintype G\np : β„•\nP : Sylow p G\nhP : (↑P).Normal\nH : Subgroup G\ninst✝ : Fintype β†₯H\n⊒ βˆ€ (R : Sylow p β†₯H), ↑R = (H βŠ“ ↑P).subgroupOf H ∧ Nonempty (Sylow p β†₯H)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_1_2", "split": "test", "informal_prefix": "/-- Prove that if $u$ is a unit in $R$ then so is $-u$.-/\n", "formal_statement": "theorem exercise_7_1_2 {R : Type*} [Ring R] {u : R}\n  (hu : IsUnit u) : IsUnit (-u) :=", "goal": "R : Type u_1\ninst✝ : Ring R\nu : R\nhu : IsUnit u\n⊒ IsUnit (-u)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_1_12", "split": "test", "informal_prefix": "/-- Prove that any subring of a field which contains the identity is an integral domain.-/\n", "formal_statement": "theorem exercise_7_1_12 {F : Type*} [Field F] {K : Subring F}\n  (hK : (1 : F) ∈ K) : IsDomain K :=", "goal": "F : Type u_1\ninst✝ : Field F\nK : Subring F\nhK : 1 ∈ K\n⊒ IsDomain β†₯K", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_2_2", "split": "test", "informal_prefix": "/-- Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\\cdots+a_{1} x+a_{0}$ be an element of the polynomial ring $R[x]$. Prove that $p(x)$ is a zero divisor in $R[x]$ if and only if there is a nonzero $b \\in R$ such that $b p(x)=0$.-/\n", "formal_statement": "theorem exercise_7_2_2 {R : Type*} [Ring R] (p : Polynomial R) :\n  p ∣ 0 ↔ βˆƒ b : R, b β‰  0 ∧ b β€’ p = 0 :=", "goal": "R : Type u_1\ninst✝ : Ring R\np : R[X]\n⊒ p ∣ 0 ↔ βˆƒ b, b β‰  0 ∧ b β€’ p = 0", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_3_16", "split": "test", "informal_prefix": "/-- Let $\\varphi: R \\rightarrow S$ be a surjective homomorphism of rings. Prove that the image of the center of $R$ is contained in the center of $S$.-/\n", "formal_statement": "theorem exercise_7_3_16 {R S : Type*} [Ring R] [Ring S]\n  {Ο† : R β†’+* S} (hf : Function.Surjective Ο†) :\n  Ο† '' (center R) βŠ‚ center S :=", "goal": "R : Type u_1\nS : Type u_2\ninst✝¹ : Ring R\ninst✝ : Ring S\nΟ† : R β†’+* S\nhf : Function.Surjective ⇑φ\n⊒ ⇑φ '' Set.center R βŠ‚ Set.center S", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_4_27", "split": "test", "informal_prefix": "/-- Let $R$ be a commutative ring with $1 \\neq 0$. Prove that if $a$ is a nilpotent element of $R$ then $1-a b$ is a unit for all $b \\in R$.-/\n", "formal_statement": "theorem exercise_7_4_27 {R : Type*} [CommRing R] (hR : (0 : R) β‰  1)\n  {a : R} (ha : IsNilpotent a) (b : R) :\n  IsUnit (1-a*b) :=", "goal": "R : Type u_1\ninst✝ : CommRing R\nhR : 0 β‰  1\na : R\nha : IsNilpotent a\nb : R\n⊒ IsUnit (1 - a * b)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_8_2_4", "split": "test", "informal_prefix": "/-- Let $R$ be an integral domain. Prove that if the following two conditions hold then $R$ is a Principal Ideal Domain: (i) any two nonzero elements $a$ and $b$ in $R$ have a greatest common divisor which can be written in the form $r a+s b$ for some $r, s \\in R$, and (ii) if $a_{1}, a_{2}, a_{3}, \\ldots$ are nonzero elements of $R$ such that $a_{i+1} \\mid a_{i}$ for all $i$, then there is a positive integer $N$ such that $a_{n}$ is a unit times $a_{N}$ for all $n \\geq N$.-/\n", "formal_statement": "theorem exercise_8_2_4 {R : Type*} [Ring R][NoZeroDivisors R]\n  [CancelCommMonoidWithZero R] [GCDMonoid R]\n  (h1 : βˆ€ a b : R, a β‰  0 β†’ b β‰  0 β†’ βˆƒ r s : R, gcd a b = r*a + s*b)\n  (h2 : βˆ€ a : β„• β†’ R, (βˆ€ i j : β„•, i < j β†’ a i ∣ a j) β†’\n  βˆƒ N : β„•, βˆ€ n β‰₯ N, βˆƒ u : R, IsUnit u ∧ a n = u * a N) :\n  IsPrincipalIdealRing R :=", "goal": "R : Type u_1\ninst✝³ : Ring R\ninst✝² : NoZeroDivisors R\ninst✝¹ : CancelCommMonoidWithZero R\ninst✝ : GCDMonoid R\nh1 : βˆ€ (a b : R), a β‰  0 β†’ b β‰  0 β†’ βˆƒ r s, gcd a b = r * a + s * b\nh2 : βˆ€ (a : β„• β†’ R), (βˆ€ (i j : β„•), i < j β†’ a i ∣ a j) β†’ βˆƒ N, βˆ€ n β‰₯ N, βˆƒ u, IsUnit u ∧ a n = u * a N\n⊒ IsPrincipalIdealRing R", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_8_3_5a", "split": "test", "informal_prefix": "/-- Let $R=\\mathbb{Z}[\\sqrt{-n}]$ where $n$ is a squarefree integer greater than 3. Prove that $2, \\sqrt{-n}$ and $1+\\sqrt{-n}$ are irreducibles in $R$.-/\n", "formal_statement": "theorem exercise_8_3_5a {n : β„€} (hn0 : n > 3) (hn1 : Squarefree n) :\n  Irreducible (2 : Zsqrtd $ -n) ∧\n  Irreducible (⟨0, 1⟩ : Zsqrtd $ -n) ∧\n  Irreducible (1 + ⟨0, 1⟩ : Zsqrtd $ -n) :=", "goal": "n : β„€\nhn0 : n > 3\nhn1 : Squarefree n\n⊒ Irreducible 2 ∧ Irreducible { re := 0, im := 1 } ∧ Irreducible (1 + { re := 0, im := 1 })", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_8_3_6b", "split": "test", "informal_prefix": "/-- Let $q \\in \\mathbb{Z}$ be a prime with $q \\equiv 3 \\bmod 4$. Prove that the quotient ring $\\mathbb{Z}[i] /(q)$ is a field with $q^{2}$ elements.-/\n", "formal_statement": "theorem exercise_8_3_6b {q : β„•} (hq0 : q.Prime)\n  (hq1 : q ≑ 3 [ZMOD 4]) {R : Type} [Ring R]\n  (hR : R = (GaussianInt β§Έ span ({↑q} : Set GaussianInt))) :\n  IsField R ∧ βˆƒ finR : Fintype R, @card R finR = q^2 :=", "goal": "q : β„•\nhq0 : q.Prime\nhq1 : ↑q ≑ 3 [ZMOD 4]\nR : Type\ninst✝ : Ring R\nhR : R = (GaussianInt β§Έ span {↑q})\n⊒ IsField R ∧ βˆƒ finR, card R = q ^ 2", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_1_10", "split": "test", "informal_prefix": "/-- Prove that the ring $\\mathbb{Z}\\left[x_{1}, x_{2}, x_{3}, \\ldots\\right] /\\left(x_{1} x_{2}, x_{3} x_{4}, x_{5} x_{6}, \\ldots\\right)$ contains infinitely many minimal prime ideals.-/\n", "formal_statement": "theorem exercise_9_1_10 {f : β„• β†’ MvPolynomial β„• β„€}\n  (hf : f = Ξ» i => MvPolynomial.X i * MvPolynomial.X (i+1)):\n  Infinite (minimalPrimes (MvPolynomial β„• β„€ β§Έ span (range f))) :=", "goal": "f : β„• β†’ MvPolynomial β„• β„€\nhf : f = fun i => MvPolynomial.X i * MvPolynomial.X (i + 1)\n⊒ Infinite ↑(minimalPrimes (MvPolynomial β„• β„€ β§Έ span (range f)))", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_4_2a", "split": "test", "informal_prefix": "/-- Prove that $x^4-4x^3+6$ is irreducible in $\\mathbb{Z}[x]$.-/\n", "formal_statement": "theorem exercise_9_4_2a : Irreducible (X^4 - 4*X^3 + 6 : Polynomial β„€) :=", "goal": "⊒ Irreducible (X ^ 4 - 4 * X ^ 3 + 6)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_4_2c", "split": "test", "informal_prefix": "/-- Prove that $x^4+4x^3+6x^2+2x+1$ is irreducible in $\\mathbb{Z}[x]$.-/\n", "formal_statement": "theorem exercise_9_4_2c : Irreducible\n  (X^4 + 4*X^3 + 6*X^2 + 2*X + 1 : Polynomial β„€) :=", "goal": "⊒ Irreducible (X ^ 4 + 4 * X ^ 3 + 6 * X ^ 2 + 2 * X + 1)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_4_9", "split": "test", "informal_prefix": "/-- Prove that the polynomial $x^{2}-\\sqrt{2}$ is irreducible over $\\mathbb{Z}[\\sqrt{2}]$. You may assume that $\\mathbb{Z}[\\sqrt{2}]$ is a U.F.D.-/\n", "formal_statement": "theorem exercise_9_4_9 :\n  Irreducible (X^2 - C Zsqrtd.sqrtd : Polynomial (Zsqrtd 2)) :=", "goal": "⊒ Irreducible (X ^ 2 - C Zsqrtd.sqrtd)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_1_13", "split": "test", "informal_prefix": "/-- Prove that as vector spaces over $\\mathbb{Q}, \\mathbb{R}^n \\cong \\mathbb{R}$, for all $n \\in \\mathbb{Z}^{+}$.-/\n", "formal_statement": "def exercise_11_1_13 {ΞΉ : Type*} [Fintype ΞΉ] :\n  (ΞΉ β†’ ℝ) ≃ₗ[β„š] ℝ :=", "goal": "ΞΉ : Type u_1\ninst✝ : Fintype ΞΉ\n⊒ (ΞΉ β†’ ℝ) ≃ₗ[β„š] ℝ", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_13_3b", "split": "test", "informal_prefix": "/-- Show that the collection $$\\mathcal{T}_\\infty = \\{U | X - U \\text{ is infinite or empty or all of X}\\}$$ does not need to be a topology on the set $X$.-/\n", "formal_statement": "theorem exercise_13_3b : Β¬ βˆ€ X : Type, βˆ€s : Set (Set X),\n  (βˆ€ t : Set X, t ∈ s β†’ (Set.Infinite tᢜ ∨ t = βˆ… ∨ t = ⊀)) β†’\n  (Set.Infinite (⋃₀ s)ᢜ ∨ (⋃₀ s) = βˆ… ∨ (⋃₀ s) = ⊀) :=", "goal": "⊒ Β¬βˆ€ (X : Type) (s : Set (Set X)), (βˆ€ t ∈ s, tᢜ.Infinite ∨ t = βˆ… ∨ t = ⊀) β†’ (⋃₀ s)ᢜ.Infinite ∨ ⋃₀ s = βˆ… ∨ ⋃₀ s = ⊀", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_13_4a2", "split": "test", "informal_prefix": "/-- If $\\mathcal{T}_\\alpha$ is a family of topologies on $X$, show that $\\bigcup \\mathcal{T}_\\alpha$ does not need to be a topology on $X$.-/\n", "formal_statement": "theorem exercise_13_4a2 :\n  βˆƒ (X I : Type*) (T : I β†’ Set (Set X)),\n  (βˆ€ i, is_topology X (T i)) ∧ Β¬  is_topology X (β‹‚ i : I, T i) :=", "goal": "⊒ βˆƒ X I T, (βˆ€ (i : I), is_topology X (T i)) ∧ Β¬is_topology X (β‹‚ i, T i)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef is_topology (X : Type*) (T : Set (Set X)) :=\n  univ ∈ T ∧\n  (βˆ€ s t, s ∈ T β†’ t ∈ T β†’ s ∩ t ∈ T) ∧\n  (βˆ€s, (βˆ€t ∈ s, t ∈ T) β†’ sUnion s ∈ T)\n\n"}
{"name": "exercise_13_4b2", "split": "test", "informal_prefix": "/-- Let $\\mathcal{T}_\\alpha$ be a family of topologies on $X$. Show that there is a unique largest topology on $X$ contained in all the collections $\\mathcal{T}_\\alpha$.-/\n", "formal_statement": "theorem exercise_13_4b2 (X I : Type*) (T : I β†’ Set (Set X)) (h : βˆ€ i, is_topology X (T i)) :\n  βˆƒ! T', is_topology X T' ∧ (βˆ€ i, T' βŠ† T i) ∧\n  βˆ€ T'', is_topology X T'' β†’ (βˆ€ i, T'' βŠ† T i) β†’ T' βŠ† T'' :=", "goal": "X : Type u_1\nI : Type u_2\nT : I β†’ Set (Set X)\nh : βˆ€ (i : I), is_topology X (T i)\n⊒ βˆƒ! T',\n    is_topology X T' ∧\n      (βˆ€ (i : I), T' βŠ† T i) ∧ βˆ€ (T'' : Set (Set X)), is_topology X T'' β†’ (βˆ€ (i : I), T'' βŠ† T i) β†’ T' βŠ† T''", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef is_topology (X : Type*) (T : Set (Set X)) :=\n  univ ∈ T ∧\n  (βˆ€ s t, s ∈ T β†’ t ∈ T β†’ s ∩ t ∈ T) ∧\n  (βˆ€s, (βˆ€t ∈ s, t ∈ T) β†’ sUnion s ∈ T)\n\n"}
{"name": "exercise_13_5b", "split": "test", "informal_prefix": "/-- Show that if $\\mathcal{A}$ is a subbasis for a topology on $X$, then the topology generated by $\\mathcal{A}$ equals the intersection of all topologies on $X$ that contain $\\mathcal{A}$.-/\n", "formal_statement": "theorem exercise_13_5b {X : Type*}\n  [t : TopologicalSpace X] (A : Set (Set X)) (hA : t = generateFrom A) :\n  generateFrom A = generateFrom (sInter {T | is_topology X T ∧ A βŠ† T}) :=", "goal": "X : Type u_1\nt : TopologicalSpace X\nA : Set (Set X)\nhA : t = generateFrom A\n⊒ generateFrom A = generateFrom (β‹‚β‚€ {T | is_topology X T ∧ A βŠ† T})", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef is_topology (X : Type*) (T : Set (Set X)) :=\n  univ ∈ T ∧\n  (βˆ€ s t, s ∈ T β†’ t ∈ T β†’ s ∩ t ∈ T) ∧\n  (βˆ€s, (βˆ€t ∈ s, t ∈ T) β†’ sUnion s ∈ T)\n\n"}
{"name": "exercise_13_8a", "split": "test", "informal_prefix": "/-- Show that the collection $\\{(a,b) \\mid a < b, a \\text{ and } b \\text{ rational}\\}$ is a basis that generates the standard topology on $\\mathbb{R}$.-/\n", "formal_statement": "theorem exercise_13_8a :\n  IsTopologicalBasis {S : Set ℝ | βˆƒ a b : β„š, a < b ∧ S = Ioo ↑a ↑b} :=", "goal": "⊒ IsTopologicalBasis {S | βˆƒ a b, a < b ∧ S = Ioo ↑a ↑b}", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_16_1", "split": "test", "informal_prefix": "/-- Show that if $Y$ is a subspace of $X$, and $A$ is a subset of $Y$, then the topology $A$ inherits as a subspace of $Y$ is the same as the topology it inherits as a subspace of $X$.-/\n", "formal_statement": "theorem exercise_16_1 {X : Type*} [TopologicalSpace X]\n  (Y : Set X)\n  (A : Set Y) :\n  βˆ€ U : Set A, IsOpen U ↔ IsOpen (Subtype.val '' U) :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nY : Set X\nA : Set ↑Y\n⊒ βˆ€ (U : Set ↑A), IsOpen U ↔ IsOpen (Subtype.val '' U)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_16_6", "split": "test", "informal_prefix": "/-- Show that the countable collection \\[\\{(a, b) \\times (c, d) \\mid a < b \\text{ and } c < d, \\text{ and } a, b, c, d \\text{ are rational}\\}\\] is a basis for $\\mathbb{R}^2$.-/\n", "formal_statement": "theorem exercise_16_6\n  (S : Set (Set (ℝ Γ— ℝ)))\n  (hS : βˆ€ s, s ∈ S β†’ βˆƒ a b c d, (rational a ∧ rational b ∧ rational c ∧ rational d\n  ∧ s = {x | βˆƒ x₁ xβ‚‚, x = (x₁, xβ‚‚) ∧ a < x₁ ∧ x₁ < b ∧ c < xβ‚‚ ∧ xβ‚‚ < d})) :\n  IsTopologicalBasis S :=", "goal": "S : Set (Set (ℝ Γ— ℝ))\nhS :\n  βˆ€ s ∈ S,\n    βˆƒ a b c d,\n      rational a ∧\n        rational b ∧ rational c ∧ rational d ∧ s = {x | βˆƒ x₁ xβ‚‚, x = (x₁, xβ‚‚) ∧ a < x₁ ∧ x₁ < b ∧ c < xβ‚‚ ∧ xβ‚‚ < d}\n⊒ IsTopologicalBasis S", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef rational (x : ℝ) := x ∈ range ((↑) : β„š β†’ ℝ)\n\n"}
{"name": "exercise_18_8a", "split": "test", "informal_prefix": "/-- Let $Y$ be an ordered set in the order topology. Let $f, g: X \\rightarrow Y$ be continuous. Show that the set $\\{x \\mid f(x) \\leq g(x)\\}$ is closed in $X$.-/\n", "formal_statement": "theorem exercise_18_8a {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y]\n  [LinearOrder Y] [OrderTopology Y] {f g : X β†’ Y}\n  (hf : Continuous f) (hg : Continuous g) :\n  IsClosed {x | f x ≀ g x} :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace Y\ninst✝¹ : LinearOrder Y\ninst✝ : OrderTopology Y\nf g : X β†’ Y\nhf : Continuous f\nhg : Continuous g\n⊒ IsClosed {x | f x ≀ g x}", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_18_13", "split": "test", "informal_prefix": "/-- Let $A \\subset X$; let $f: A \\rightarrow Y$ be continuous; let $Y$ be Hausdorff. Show that if $f$ may be extended to a continuous function $g: \\bar{A} \\rightarrow Y$, then $g$ is uniquely determined by $f$.-/\n", "formal_statement": "theorem exercise_18_13\n  {X : Type*} [TopologicalSpace X] {Y : Type*} [TopologicalSpace Y]\n  [T2Space Y] {A : Set X} {f : A β†’ Y} (hf : Continuous f)\n  (g : closure A β†’ Y)\n  (g_con : Continuous g) :\n  βˆ€ (g' : closure A β†’ Y), Continuous g' β†’  (βˆ€ (x : closure A), g x = g' x) :=", "goal": "X : Type u_1\ninst✝² : TopologicalSpace X\nY : Type u_2\ninst✝¹ : TopologicalSpace Y\ninst✝ : T2Space Y\nA : Set X\nf : ↑A β†’ Y\nhf : Continuous f\ng : ↑(closure A) β†’ Y\ng_con : Continuous g\n⊒ βˆ€ (g' : ↑(closure A) β†’ Y), Continuous g' β†’ βˆ€ (x : ↑(closure A)), g x = g' x", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_20_2", "split": "test", "informal_prefix": "/-- Show that $\\mathbb{R} \\times \\mathbb{R}$ in the dictionary order topology is metrizable.-/\n", "formal_statement": "theorem exercise_20_2\n  [TopologicalSpace (ℝ Γ—β‚— ℝ)] [OrderTopology (ℝ Γ—β‚— ℝ)]\n  : MetrizableSpace (ℝ Γ—β‚— ℝ) :=", "goal": "inst✝¹ : TopologicalSpace (Lex (ℝ Γ— ℝ))\ninst✝ : OrderTopology (Lex (ℝ Γ— ℝ))\n⊒ MetrizableSpace (Lex (ℝ Γ— ℝ))", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_21_6b", "split": "test", "informal_prefix": "/-- Define $f_{n}:[0,1] \\rightarrow \\mathbb{R}$ by the equation $f_{n}(x)=x^{n}$. Show that the sequence $\\left(f_{n}\\right)$ does not converge uniformly.-/\n", "formal_statement": "theorem exercise_21_6b\n  (f : β„• β†’ I β†’ ℝ )\n  (h : βˆ€ x n, f n x = x ^ n) :\n  Β¬ βˆƒ fβ‚€, TendstoUniformly f fβ‚€ atTop :=", "goal": "f : β„• β†’ ↑I β†’ ℝ\nh : βˆ€ (x : ↑I) (n : β„•), f n x = ↑x ^ n\n⊒ Β¬βˆƒ fβ‚€, TendstoUniformly f fβ‚€ atTop", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\nabbrev I : Set ℝ := Icc 0 1\n\n"}
{"name": "exercise_22_2a", "split": "test", "informal_prefix": "/-- Let $p: X \\rightarrow Y$ be a continuous map. Show that if there is a continuous map $f: Y \\rightarrow X$ such that $p \\circ f$ equals the identity map of $Y$, then $p$ is a quotient map.-/\n", "formal_statement": "theorem exercise_22_2a {X Y : Type*} [TopologicalSpace X]\n  [TopologicalSpace Y] (p : X β†’ Y) (h : Continuous p) :\n  QuotientMap p ↔ βˆƒ (f : Y β†’ X), Continuous f ∧ p ∘ f = id :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\np : X β†’ Y\nh : Continuous p\n⊒ QuotientMap p ↔ βˆƒ f, Continuous f ∧ p ∘ f = id", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_22_5", "split": "test", "informal_prefix": "/-- Let $p \\colon X \\rightarrow Y$ be an open map. Show that if $A$ is open in $X$, then the map $q \\colon A \\rightarrow p(A)$ obtained by restricting $p$ is an open map.-/\n", "formal_statement": "theorem exercise_22_5 {X Y : Type*} [TopologicalSpace X]\n  [TopologicalSpace Y] (p : X β†’ Y) (hp : IsOpenMap p)\n  (A : Set X) (hA : IsOpen A) : IsOpenMap (p ∘ Subtype.val : A β†’ Y) :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\np : X β†’ Y\nhp : IsOpenMap p\nA : Set X\nhA : IsOpen A\n⊒ IsOpenMap (p ∘ Subtype.val)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_23_3", "split": "test", "informal_prefix": "/-- Let $\\left\\{A_{\\alpha}\\right\\}$ be a collection of connected subspaces of $X$; let $A$ be a connected subset of $X$. Show that if $A \\cap A_{\\alpha} \\neq \\varnothing$ for all $\\alpha$, then $A \\cup\\left(\\bigcup A_{\\alpha}\\right)$ is connected.-/\n", "formal_statement": "theorem exercise_23_3 {X : Type*} [TopologicalSpace X]\n  [TopologicalSpace X] {A : β„• β†’ Set X}\n  (hAn : βˆ€ n, IsConnected (A n))\n  (Aβ‚€ : Set X)\n  (hA : IsConnected Aβ‚€)\n  (h : βˆ€ n, Aβ‚€ ∩ A n β‰  βˆ…) :\n  IsConnected (Aβ‚€ βˆͺ (⋃ n, A n)) :=", "goal": "X : Type u_1\ninst✝¹ inst✝ : TopologicalSpace X\nA : β„• β†’ Set X\nhAn : βˆ€ (n : β„•), IsConnected (A n)\nAβ‚€ : Set X\nhA : IsConnected Aβ‚€\nh : βˆ€ (n : β„•), Aβ‚€ ∩ A n β‰  βˆ…\n⊒ IsConnected (Aβ‚€ βˆͺ ⋃ n, A n)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_23_6", "split": "test", "informal_prefix": "/-- Let $A \\subset X$. Show that if $C$ is a connected subspace of $X$ that intersects both $A$ and $X-A$, then $C$ intersects $\\operatorname{Bd} A$.-/\n", "formal_statement": "theorem exercise_23_6 {X : Type*}\n  [TopologicalSpace X] {A C : Set X} (hc : IsConnected C)\n  (hCA : C ∩ A β‰  βˆ…) (hCXA : C ∩ Aᢜ β‰  βˆ…) :\n  C ∩ (frontier A) β‰  βˆ… :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nA C : Set X\nhc : IsConnected C\nhCA : C ∩ A β‰  βˆ…\nhCXA : C ∩ Aᢜ β‰  βˆ…\n⊒ C ∩ frontier A β‰  βˆ…", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_23_11", "split": "test", "informal_prefix": "/-- Let $p: X \\rightarrow Y$ be a quotient map. Show that if each set $p^{-1}(\\{y\\})$ is connected, and if $Y$ is connected, then $X$ is connected.-/\n", "formal_statement": "theorem exercise_23_11 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y]\n  (p : X β†’ Y) (hq : QuotientMap p)\n  (hY : ConnectedSpace Y) (hX : βˆ€ y : Y, IsConnected (p ⁻¹' {y})) :\n  ConnectedSpace X :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\np : X β†’ Y\nhq : QuotientMap p\nhY : ConnectedSpace Y\nhX : βˆ€ (y : Y), IsConnected (p ⁻¹' {y})\n⊒ ConnectedSpace X", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_24_3a", "split": "test", "informal_prefix": "/-- Let $f \\colon X \\rightarrow X$ be continuous. Show that if $X = [0, 1]$, there is a point $x$ such that $f(x) = x$. (The point $x$ is called a fixed point of $f$.)-/\n", "formal_statement": "theorem exercise_24_3a [TopologicalSpace I] [CompactSpace I]\n  (f : I β†’ I) (hf : Continuous f) :\n  βˆƒ (x : I), f x = x :=", "goal": "I : Type u_1\ninst✝¹ : TopologicalSpace I\ninst✝ : CompactSpace I\nf : I β†’ I\nhf : Continuous f\n⊒ βˆƒ x, f x = x", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_25_9", "split": "test", "informal_prefix": "/-- Let $G$ be a topological group; let $C$ be the component of $G$ containing the identity element $e$. Show that $C$ is a normal subgroup of $G$.-/\n", "formal_statement": "theorem exercise_25_9 {G : Type*} [TopologicalSpace G] [Group G]\n  [TopologicalGroup G] (C : Set G) (h : C = connectedComponent 1) :\n  IsNormalSubgroup C :=", "goal": "G : Type u_1\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : TopologicalGroup G\nC : Set G\nh : C = connectedComponent 1\n⊒ IsNormalSubgroup C", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_26_12", "split": "test", "informal_prefix": "/-- Let $p: X \\rightarrow Y$ be a closed continuous surjective map such that $p^{-1}(\\{y\\})$ is compact, for each $y \\in Y$. (Such a map is called a perfect map.) Show that if $Y$ is compact, then $X$ is compact.-/\n", "formal_statement": "theorem exercise_26_12 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y]\n  (p : X β†’ Y) (h : Function.Surjective p) (hc : Continuous p) (hp : βˆ€ y, IsCompact (p ⁻¹' {y}))\n  (hY : CompactSpace Y) : CompactSpace X :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\np : X β†’ Y\nh : Function.Surjective p\nhc : Continuous p\nhp : βˆ€ (y : Y), IsCompact (p ⁻¹' {y})\nhY : CompactSpace Y\n⊒ CompactSpace X", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_28_4", "split": "test", "informal_prefix": "/-- A space $X$ is said to be countably compact if every countable open covering of $X$ contains a finite subcollection that covers $X$. Show that for a $T_1$ space $X$, countable compactness is equivalent to limit point compactness.-/\n", "formal_statement": "theorem exercise_28_4 {X : Type*}\n  [TopologicalSpace X] (hT1 : T1Space X) :\n  countably_compact X ↔ limit_point_compact X :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nhT1 : T1Space X\n⊒ countably_compact X ↔ limit_point_compact X", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef countably_compact (X : Type*) [TopologicalSpace X] :=\n  βˆ€ U : β„• β†’ Set X,\n  (βˆ€ i, IsOpen (U i)) ∧ ((univ : Set X) βŠ† ⋃ i, U i) β†’\n  (βˆƒ t : Finset β„•, (univ : Set X) βŠ† ⋃ i ∈ t, U i)\n\ndef limit_point_compact (X : Type*) [TopologicalSpace X] :=\n  βˆ€ U : Set X, Infinite U β†’ βˆƒ x ∈ U, ClusterPt x (π“Ÿ U)\n\n"}
{"name": "exercise_28_6", "split": "test", "informal_prefix": "/-- Let $(X, d)$ be a metric space. If $f: X \\rightarrow X$ satisfies the condition $d(f(x), f(y))=d(x, y)$ for all $x, y \\in X$, then $f$ is called an isometry of $X$. Show that if $f$ is an isometry and $X$ is compact, then $f$ is bijective and hence a homeomorphism.-/\n", "formal_statement": "theorem exercise_28_6 {X : Type*} [MetricSpace X]\n  [CompactSpace X] {f : X β†’ X} (hf : Isometry f) :\n  Function.Bijective f :=", "goal": "X : Type u_1\ninst✝¹ : MetricSpace X\ninst✝ : CompactSpace X\nf : X β†’ X\nhf : Isometry f\n⊒ Function.Bijective f", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_29_4", "split": "test", "informal_prefix": "/-- Show that $[0, 1]^\\omega$ is not locally compact in the uniform topology.-/\n", "formal_statement": "theorem exercise_29_4 [TopologicalSpace (β„• β†’ I)] :\n  Β¬ LocallyCompactSpace (β„• β†’ I) :=", "goal": "inst✝ : TopologicalSpace (β„• β†’ ↑I)\n⊒ Β¬LocallyCompactSpace (β„• β†’ ↑I)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\nabbrev I : Set ℝ := Icc 0 1\n\n"}
{"name": "exercise_30_10", "split": "test", "informal_prefix": "/-- Show that if $X$ is a countable product of spaces having countable dense subsets, then $X$ has a countable dense subset.-/\n", "formal_statement": "theorem exercise_30_10\n  {X : β„• β†’ Type*} [βˆ€ i, TopologicalSpace (X i)]\n  (h : βˆ€ i, βˆƒ (s : Set (X i)), Countable s ∧ Dense s) :\n  βˆƒ (s : Set (Ξ  i, X i)), Countable s ∧ Dense s :=", "goal": "X : β„• β†’ Type u_1\ninst✝ : (i : β„•) β†’ TopologicalSpace (X i)\nh : βˆ€ (i : β„•), βˆƒ s, Countable ↑s ∧ Dense s\n⊒ βˆƒ s, Countable ↑s ∧ Dense s", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_31_1", "split": "test", "informal_prefix": "/-- Show that if $X$ is regular, every pair of points of $X$ have neighborhoods whose closures are disjoint.-/\n", "formal_statement": "theorem exercise_31_1 {X : Type*} [TopologicalSpace X]\n  (hX : RegularSpace X) (x y : X) :\n  βˆƒ (U V : Set X), IsOpen U ∧ IsOpen V ∧ x ∈ U ∧ y ∈ V ∧ closure U ∩ closure V = βˆ… :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nhX : RegularSpace X\nx y : X\n⊒ βˆƒ U V, IsOpen U ∧ IsOpen V ∧ x ∈ U ∧ y ∈ V ∧ closure U ∩ closure V = βˆ…", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_31_3", "split": "test", "informal_prefix": "/-- Show that every order topology is regular.-/\n", "formal_statement": "theorem exercise_31_3 {α : Type*} [PartialOrder α]\n  [TopologicalSpace α] (h : OrderTopology α) : RegularSpace α :=", "goal": "α : Type u_1\ninst✝¹ : PartialOrder α\ninst✝ : TopologicalSpace α\nh : OrderTopology α\n⊒ RegularSpace α", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_32_2a", "split": "test", "informal_prefix": "/-- Show that if $\\prod X_\\alpha$ is Hausdorff, then so is $X_\\alpha$. Assume that each $X_\\alpha$ is nonempty.-/\n", "formal_statement": "theorem exercise_32_2a\n  {ΞΉ : Type*} {X : ΞΉ β†’ Type*} [βˆ€ i, TopologicalSpace (X i)]\n  (h : βˆ€ i, Nonempty (X i)) (h2 : T2Space (Ξ  i, X i)) :\n  βˆ€ i, T2Space (X i) :=", "goal": "ΞΉ : Type u_1\nX : ΞΉ β†’ Type u_2\ninst✝ : (i : ΞΉ) β†’ TopologicalSpace (X i)\nh : βˆ€ (i : ΞΉ), Nonempty (X i)\nh2 : T2Space ((i : ΞΉ) β†’ X i)\n⊒ βˆ€ (i : ΞΉ), T2Space (X i)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_32_2c", "split": "test", "informal_prefix": "/-- Show that if $\\prod X_\\alpha$ is normal, then so is $X_\\alpha$. Assume that each $X_\\alpha$ is nonempty.-/\n", "formal_statement": "theorem exercise_32_2c\n  {ΞΉ : Type*} {X : ΞΉ β†’ Type*} [βˆ€ i, TopologicalSpace (X i)]\n  (h : βˆ€ i, Nonempty (X i)) (h2 : NormalSpace (Ξ  i, X i)) :\n  βˆ€ i, NormalSpace (X i) :=", "goal": "ΞΉ : Type u_1\nX : ΞΉ β†’ Type u_2\ninst✝ : (i : ΞΉ) β†’ TopologicalSpace (X i)\nh : βˆ€ (i : ΞΉ), Nonempty (X i)\nh2 : NormalSpace ((i : ΞΉ) β†’ X i)\n⊒ βˆ€ (i : ΞΉ), NormalSpace (X i)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_33_7", "split": "test", "informal_prefix": "/-- Show that every locally compact Hausdorff space is completely regular.-/\n", "formal_statement": "theorem exercise_33_7 {X : Type*} [TopologicalSpace X]\n  (hX : LocallyCompactSpace X) (hX' : T2Space X) :\n  βˆ€ x A, IsClosed A ∧ Β¬ x ∈ A β†’\n  βˆƒ (f : X β†’ I), Continuous f ∧ f x = 1 ∧ f '' A = {0} :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nhX : LocallyCompactSpace X\nhX' : T2Space X\n⊒ βˆ€ (x : X) (A : Set X), IsClosed A ∧ x βˆ‰ A β†’ βˆƒ f, Continuous f ∧ f x = 1 ∧ f '' A = {0}", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\nabbrev I : Set ℝ := Icc 0 1\n\n"}
{"name": "exercise_34_9", "split": "test", "informal_prefix": "/-- Let $X$ be a compact Hausdorff space that is the union of the closed subspaces $X_1$ and $X_2$. If $X_1$ and $X_2$ are metrizable, show that $X$ is metrizable.-/\n", "formal_statement": "theorem exercise_34_9\n  (X : Type*) [TopologicalSpace X] [CompactSpace X]\n  (X1 X2 : Set X) (hX1 : IsClosed X1) (hX2 : IsClosed X2)\n  (hX : X1 βˆͺ X2 = univ) (hX1m : MetrizableSpace X1)\n  (hX2m : MetrizableSpace X2) : MetrizableSpace X :=", "goal": "X : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : CompactSpace X\nX1 X2 : Set X\nhX1 : IsClosed X1\nhX2 : IsClosed X2\nhX : X1 βˆͺ X2 = univ\nhX1m : MetrizableSpace ↑X1\nhX2m : MetrizableSpace ↑X2\n⊒ MetrizableSpace X", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_43_2", "split": "test", "informal_prefix": "/-- Let $(X, d_X)$ and $(Y, d_Y)$ be metric spaces; let $Y$ be complete. Let $A \\subset X$. Show that if $f \\colon A \\rightarrow Y$ is uniformly continuous, then $f$ can be uniquely extended to a continuous function $g \\colon \\bar{A} \\rightarrow Y$, and $g$ is uniformly continuous.-/\n", "formal_statement": "theorem exercise_43_2 {X : Type*} [MetricSpace X]\n  {Y : Type*} [MetricSpace Y] [CompleteSpace Y] (A : Set X)\n  (f : X β†’ Y) (hf : UniformContinuousOn f A) :\n  βˆƒ! (g : X β†’ Y), ContinuousOn g (closure A) ∧\n  UniformContinuousOn g (closure A) ∧ βˆ€ (x : A), g x = f x :=", "goal": "X : Type u_1\ninst✝² : MetricSpace X\nY : Type u_2\ninst✝¹ : MetricSpace Y\ninst✝ : CompleteSpace Y\nA : Set X\nf : X β†’ Y\nhf : UniformContinuousOn f A\n⊒ βˆƒ! g, ContinuousOn g (closure A) ∧ UniformContinuousOn g (closure A) ∧ βˆ€ (x : ↑A), g ↑x = f ↑x", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_1_30", "split": "test", "informal_prefix": "/-- Prove that $\\frac{1}{2}+\\frac{1}{3}+\\cdots+\\frac{1}{n}$ is not an integer.-/\n", "formal_statement": "theorem exercise_1_30 {n : β„•} :\n  Β¬ βˆƒ a : β„€, βˆ‘ i : Fin n, (1 : β„š) / (n+2) = a :=", "goal": "n : β„•\n⊒ Β¬βˆƒ a, βˆ‘ i : Fin n, 1 / (↑n + 2) = ↑a", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_4", "split": "test", "informal_prefix": "/-- If $a$ is a nonzero integer, then for $n>m$ show that $\\left(a^{2^{n}}+1, a^{2^{m}}+1\\right)=1$ or 2 depending on whether $a$ is odd or even.-/\n", "formal_statement": "theorem exercise_2_4 {a : β„€} (ha : a β‰  0)\n  (f_a := Ξ» n m : β„• => Int.gcd (a^(2^n) + 1) (a^(2^m)+1)) {n m : β„•}\n  (hnm : n > m) :\n  (Odd a β†’ f_a n m = 1) ∧ (Even a β†’ f_a n m = 2) :=", "goal": "a : β„€\nha : a β‰  0\nf_a : optParam (β„• β†’ β„• β†’ β„•) fun n m => (a ^ 2 ^ n + 1).gcd (a ^ 2 ^ m + 1)\nn m : β„•\nhnm : n > m\n⊒ (Odd a β†’ f_a n m = 1) ∧ (Even a β†’ f_a n m = 2)", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_27a", "split": "test", "informal_prefix": "/-- Show that $\\sum^{\\prime} 1 / n$, the sum being over square free integers, diverges.-/\n", "formal_statement": "theorem exercise_2_27a :\n  Β¬ Summable (Ξ» i : {p : β„€ // Squarefree p} => (1 : β„š) / i) :=", "goal": "⊒ Β¬Summable fun i => 1 / ↑↑i", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_4", "split": "test", "informal_prefix": "/-- Show that the equation $3 x^{2}+2=y^{2}$ has no solution in integers.-/\n", "formal_statement": "theorem exercise_3_4 : Β¬ βˆƒ x y : β„€, 3*x^2 + 2 = y^2 :=", "goal": "⊒ Β¬βˆƒ x y, 3 * x ^ 2 + 2 = y ^ 2", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_10", "split": "test", "informal_prefix": "/-- If $n$ is not a prime, show that $(n-1) ! \\equiv 0(n)$, except when $n=4$.-/\n", "formal_statement": "theorem exercise_3_10 {n : β„•} (hn0 : Β¬ n.Prime) (hn1 : n β‰  4) :\n  Nat.factorial (n-1) ≑ 0 [MOD n] :=", "goal": "n : β„•\nhn0 : Β¬n.Prime\nhn1 : n β‰  4\n⊒ (n - 1).factorial ≑ 0 [MOD n]", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4", "split": "test", "informal_prefix": "/-- Consider a prime $p$ of the form $4 t+1$. Show that $a$ is a primitive root modulo $p$ iff $-a$ is a primitive root modulo $p$.-/\n", "formal_statement": "theorem exercise_4_4 {p t: β„•} (hp0 : p.Prime) (hp1 : p = 4*t + 1)\n  (a : ZMod p) :\n  IsPrimitiveRoot a p ↔ IsPrimitiveRoot (-a) p :=", "goal": "p t : β„•\nhp0 : p.Prime\nhp1 : p = 4 * t + 1\na : ZMod p\n⊒ IsPrimitiveRoot a p ↔ IsPrimitiveRoot (-a) p", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_6", "split": "test", "informal_prefix": "/-- If $p=2^{n}+1$ is a Fermat prime, show that 3 is a primitive root modulo $p$.-/\n", "formal_statement": "theorem exercise_4_6 {p n : β„•} (hp : p.Prime) (hpn : p = 2^n + 1) :\n  IsPrimitiveRoot 3 p :=", "goal": "p n : β„•\nhp : p.Prime\nhpn : p = 2 ^ n + 1\n⊒ IsPrimitiveRoot 3 p", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_11", "split": "test", "informal_prefix": "/-- Prove that $1^{k}+2^{k}+\\cdots+(p-1)^{k} \\equiv 0(p)$ if $p-1 \\nmid k$ and $-1(p)$ if $p-1 \\mid k$.-/\n", "formal_statement": "theorem exercise_4_11 {p : β„•} (hp : p.Prime) (k s: β„•)\n  (s := βˆ‘ n : Fin p, (n : β„•) ^ k) :\n  ((Β¬ p - 1 ∣ k) β†’ s ≑ 0 [MOD p]) ∧ (p - 1 ∣ k β†’ s ≑ 0 [MOD p]) :=", "goal": "p : β„•\nhp : p.Prime\nk s✝ : β„•\ns : optParam β„• (βˆ‘ n : Fin p, ↑n ^ k)\n⊒ (Β¬p - 1 ∣ k β†’ s ≑ 0 [MOD p]) ∧ (p - 1 ∣ k β†’ s ≑ 0 [MOD p])", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_28", "split": "test", "informal_prefix": "/-- Show that $x^{4} \\equiv 2(p)$ has a solution for $p \\equiv 1(4)$ iff $p$ is of the form $A^{2}+64 B^{2}$.-/\n", "formal_statement": "theorem exercise_5_28 {p : β„•} (hp : p.Prime) (hp1 : p ≑ 1 [MOD 4]):\n  βˆƒ x, x^4 ≑ 2 [MOD p] ↔ βˆƒ A B, p = A^2 + 64*B^2 :=", "goal": "p : β„•\nhp : p.Prime\nhp1 : p ≑ 1 [MOD 4]\n⊒ βˆƒ x, x ^ 4 ≑ 2 [MOD p] ↔ βˆƒ A B, p = A ^ 2 + 64 * B ^ 2", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_12_12", "split": "test", "informal_prefix": "/-- Show that $\\sin (\\pi / 12)$ is an algebraic number.-/\n", "formal_statement": "theorem exercise_12_12 : IsAlgebraic β„š (sin (Real.pi/12)) :=", "goal": "⊒ IsAlgebraic β„š (Ο€ / 12).sin", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_2018_a5", "split": "test", "informal_prefix": "/-- Let $f: \\mathbb{R} \\rightarrow \\mathbb{R}$ be an infinitely differentiable function satisfying $f(0)=0, f(1)=1$, and $f(x) \\geq 0$ for all $x \\in$ $\\mathbb{R}$. Show that there exist a positive integer $n$ and a real number $x$ such that $f^{(n)}(x)<0$.-/\n", "formal_statement": "theorem exercise_2018_a5 (f : ℝ β†’ ℝ) (hf : ContDiff ℝ ⊀ f)\n  (hf0 : f 0 = 0) (hf1 : f 1 = 1) (hf2 : βˆ€ x, f x β‰₯ 0) :\n  βˆƒ (n : β„•) (x : ℝ), iteratedDeriv n f x = 0 :=", "goal": "f : ℝ β†’ ℝ\nhf : ContDiff ℝ ⊀ f\nhf0 : f 0 = 0\nhf1 : f 1 = 1\nhf2 : βˆ€ (x : ℝ), f x β‰₯ 0\n⊒ βˆƒ n x, iteratedDeriv n f x = 0", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2018_b4", "split": "test", "informal_prefix": "/-- Given a real number $a$, we define a sequence by $x_{0}=1$, $x_{1}=x_{2}=a$, and $x_{n+1}=2 x_{n} x_{n-1}-x_{n-2}$ for $n \\geq 2$. Prove that if $x_{n}=0$ for some $n$, then the sequence is periodic.-/\n", "formal_statement": "theorem exercise_2018_b4 (a : ℝ) (x : β„• β†’ ℝ) (hx0 : x 0 = a)\n  (hx1 : x 1 = a)\n  (hxn : βˆ€ n : β„•, n β‰₯ 2 β†’ x (n+1) = 2*(x n)*(x (n-1)) - x (n-2))\n  (h : βˆƒ n, x n = 0) :\n  βˆƒ c, Function.Periodic x c :=", "goal": "a : ℝ\nx : β„• β†’ ℝ\nhx0 : x 0 = a\nhx1 : x 1 = a\nhxn : βˆ€ n β‰₯ 2, x (n + 1) = 2 * x n * x (n - 1) - x (n - 2)\nh : βˆƒ n, x n = 0\n⊒ βˆƒ c, Function.Periodic x c", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2014_a5", "split": "test", "informal_prefix": "/-- Let-/\n", "formal_statement": "theorem exercise_2014_a5 (P : β„• β†’ Polynomial β„€)\n  (hP : βˆ€ n, P n = βˆ‘ i : Fin n, (n+1) * Polynomial.X ^ n) :\n  βˆ€ (j k : β„•), j β‰  k β†’ IsCoprime (P j) (P k) :=", "goal": "P : β„• β†’ Polynomial β„€\nhP : βˆ€ (n : β„•), P n = βˆ‘ i : Fin n, (↑n + 1) * Polynomial.X ^ n\n⊒ βˆ€ (j k : β„•), j β‰  k β†’ IsCoprime (P j) (P k)", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2001_a5", "split": "test", "informal_prefix": "/-- Prove that there are unique positive integers $a, n$ such that $a^{n+1}-(a+1)^n=2001$.-/\n", "formal_statement": "theorem exercise_2001_a5 :\n  βˆƒ! a : β„•, βˆƒ! n : β„•, a > 0 ∧ n > 0 ∧ a^(n+1) - (a+1)^n = 2001 :=", "goal": "⊒ βˆƒ! a, βˆƒ! n, a > 0 ∧ n > 0 ∧ a ^ (n + 1) - (a + 1) ^ n = 2001", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_1999_b4", "split": "test", "informal_prefix": "/-- Let $f$ be a real function with a continuous third derivative such that $f(x), f^{\\prime}(x), f^{\\prime \\prime}(x), f^{\\prime \\prime \\prime}(x)$ are positive for all $x$. Suppose that $f^{\\prime \\prime \\prime}(x) \\leq f(x)$ for all $x$. Show that $f^{\\prime}(x)<2 f(x)$ for all $x$.-/\n", "formal_statement": "theorem exercise_1999_b4 (f : ℝ β†’ ℝ) (hf: ContDiff ℝ 3 f)\n  (hf1 : βˆ€ n ≀ 3, βˆ€ x : ℝ, iteratedDeriv n f x > 0)\n  (hf2 : βˆ€ x : ℝ, iteratedDeriv 3 f x ≀ f x) :\n  βˆ€ x : ℝ, deriv f x < 2 * f x :=", "goal": "f : ℝ β†’ ℝ\nhf : ContDiff ℝ 3 f\nhf1 : βˆ€ n ≀ 3, βˆ€ (x : ℝ), iteratedDeriv n f x > 0\nhf2 : βˆ€ (x : ℝ), iteratedDeriv 3 f x ≀ f x\n⊒ βˆ€ (x : ℝ), deriv f x < 2 * f x", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_1998_b6", "split": "test", "informal_prefix": "/-- Prove that, for any integers $a, b, c$, there exists a positive integer $n$ such that $\\sqrt{n^3+a n^2+b n+c}$ is not an integer.-/\n", "formal_statement": "theorem exercise_1998_b6 (a b c : β„€) :\n  βˆƒ n : β„€, n > 0 ∧ Β¬ βˆƒ m : β„€, Real.sqrt (n^3 + a*n^2 + b*n + c) = m :=", "goal": "a b c : β„€\n⊒ βˆƒ n > 0, Β¬βˆƒ m, √(↑n ^ 3 + ↑a * ↑n ^ 2 + ↑b * ↑n + ↑c) = ↑m", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}