File size: 12,532 Bytes
fdb3169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
"""
SDF Primitives - Core geometric shape representations as Signed Distance Fields.
Following GeoSDF paper methodology.

This module contains:
- Math utilities for quartic solving (Appendix B)
- SDF primitive classes (Circle, Ellipse, Hyperbola, Parabola, Line, etc.)
"""

import torch
import torch.nn as nn
from typing import Tuple

# Device configuration
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


# =============================================================================
# Quartic Solver Utilities (Following Paper Appendix B)
# =============================================================================

def solve_cubic_one_real_batch(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor, 
                                d: torch.Tensor) -> torch.Tensor:
    """Find one real root of cubic equation using Cardano's formula."""
    a_safe = a + 1e-10 * torch.sign(a + 1e-20)
    p = b / a_safe
    q = c / a_safe
    r = d / a_safe
    
    alpha = q - p**2 / 3
    beta = 2 * p**3 / 27 - p * q / 3 + r
    discriminant = (beta / 2)**2 + (alpha / 3)**3
    sqrt_disc = torch.sqrt(torch.clamp(discriminant, min=0) + 1e-12)
    
    term1 = -beta / 2 + sqrt_disc
    term2 = -beta / 2 - sqrt_disc
    
    def safe_cbrt(x):
        return torch.sign(x) * torch.pow(torch.abs(x) + 1e-12, 1/3)
    
    u = safe_cbrt(term1)
    v = safe_cbrt(term2)
    
    return u + v - p / 3


def hyperbola_distance_quartic(px: torch.Tensor, py: torch.Tensor, 
                                a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    """Compute exact distance from point to hyperbola using Newton iteration."""
    px_abs = torch.abs(px)
    py_abs = torch.abs(py)
    
    t = torch.asinh(py_abs / (b + 1e-8))
    t = torch.clamp(t, 0.01, 10.0)
    
    for _ in range(15):
        cosh_t = torch.cosh(t)
        sinh_t = torch.sinh(t)
        hx = a * cosh_t
        hy = b * sinh_t
        dx = px_abs - hx
        dy = py_abs - hy
        
        grad = -2 * (dx * a * sinh_t + dy * b * cosh_t)
        hess = 2 * (a**2 * sinh_t**2 + b**2 * cosh_t**2 - dx * a * cosh_t - dy * b * sinh_t) + 1e-6
        
        step = grad / torch.abs(hess)
        t = t - torch.clamp(step, -0.3, 0.3)
        t = torch.clamp(t, 0.001, 20.0)
    
    cosh_t = torch.cosh(t)
    sinh_t = torch.sinh(t)
    return torch.sqrt((px_abs - a * cosh_t)**2 + (py_abs - b * sinh_t)**2 + 1e-10)


def ellipse_distance_quartic(px: torch.Tensor, py: torch.Tensor,
                              a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    """Compute exact distance from point to ellipse using Newton iteration."""
    px_abs = torch.abs(px)
    py_abs = torch.abs(py)
    
    a_use = torch.max(a, b)
    b_use = torch.min(a, b)
    
    needs_swap = a < b
    if needs_swap:
        px_use, py_use = py_abs, px_abs
    else:
        px_use, py_use = px_abs, py_abs
    
    at_origin = (px_use < 1e-10) & (py_use < 1e-10)
    on_x_axis = py_use < 1e-10
    on_y_axis = px_use < 1e-10
    
    theta = torch.atan2(a_use * py_use, b_use * px_use)
    
    for _ in range(12):
        cos_t = torch.cos(theta)
        sin_t = torch.sin(theta)
        ex = a_use * cos_t
        ey = b_use * sin_t
        dx = px_use - ex
        dy = py_use - ey
        
        grad = 2 * (dx * a_use * sin_t - dy * b_use * cos_t)
        hess = 2 * (a_use**2 * sin_t**2 + b_use**2 * cos_t**2 + dx * a_use * cos_t + dy * b_use * sin_t) + 1e-6
        
        theta = theta - torch.clamp(grad / torch.abs(hess), -0.3, 0.3)
    
    cos_t = torch.cos(theta)
    sin_t = torch.sin(theta)
    dist = torch.sqrt((px_use - a_use * cos_t)**2 + (py_use - b_use * sin_t)**2 + 1e-10)
    
    dist = torch.where(at_origin, b_use, dist)
    dist = torch.where(on_x_axis & ~at_origin, torch.where(px_use > a_use, px_use - a_use, torch.sqrt((px_use - a_use)**2 + 1e-10)), dist)
    dist = torch.where(on_y_axis & ~at_origin, torch.abs(py_use - b_use), dist)
    
    return dist


# =============================================================================
# SDF Primitives Base Class
# =============================================================================

class SDFPrimitive(nn.Module):
    """Base class for SDF primitives - all shapes represented as distance functions."""
    
    def forward(self, p: torch.Tensor) -> torch.Tensor:
        """Compute signed distance from points p to the shape boundary."""
        raise NotImplementedError


class PointSDF(SDFPrimitive):
    """SDF for a point: f(p; c) = ||p - c||₂"""
    
    def __init__(self, center: torch.Tensor):
        super().__init__()
        self.center = nn.Parameter(center.clone())
    
    def forward(self, p: torch.Tensor) -> torch.Tensor:
        return torch.norm(p - self.center, dim=-1)


class CircleSDF(SDFPrimitive):
    """SDF for circle: f(p; c, r) = ||p - c||₂ - r"""
    
    def __init__(self, center: torch.Tensor, radius: torch.Tensor):
        super().__init__()
        self.center = nn.Parameter(center.clone())
        self.radius = nn.Parameter(radius.clone())
    
    def forward(self, p: torch.Tensor) -> torch.Tensor:
        dist_to_center = torch.norm(p - self.center, dim=-1)
        return dist_to_center - self.radius


class EllipseSDF(SDFPrimitive):
    """SDF for ellipse: x²/a² + y²/b² = 1"""
    
    def __init__(self, center: torch.Tensor, a: torch.Tensor, b: torch.Tensor):
        super().__init__()
        self.center = nn.Parameter(center.clone())
        self.a = nn.Parameter(a.clone())
        self.b = nn.Parameter(b.clone())
    
    def forward(self, p: torch.Tensor) -> torch.Tensor:
        p_local = p - self.center
        px = p_local[..., 0]
        py = p_local[..., 1]
        
        a = torch.abs(self.a) + 1e-8
        b = torch.abs(self.b) + 1e-8
        
        dist = ellipse_distance_quartic(px, py, a, b)
        ellipse_val = px**2 / (a**2) + py**2 / (b**2)
        inside = ellipse_val < 1
        
        return torch.where(inside, -dist, dist)


class HyperbolaSDF(SDFPrimitive):
    """SDF for hyperbola: x²/a² - y²/b² = 1"""
    
    def __init__(self, center: torch.Tensor, a: torch.Tensor, b: torch.Tensor):
        super().__init__()
        self.center = nn.Parameter(center.clone())
        self.a = nn.Parameter(a.clone())
        self.b = nn.Parameter(b.clone())
    
    def forward(self, p: torch.Tensor) -> torch.Tensor:
        p_local = p - self.center
        px = p_local[..., 0]
        py = p_local[..., 1]
        
        a = torch.abs(self.a) + 1e-8
        b = torch.abs(self.b) + 1e-8
        
        dist = hyperbola_distance_quartic(px, py, a, b)
        hyperbola_val = px**2 / (a**2) - py**2 / (b**2)
        is_between_branches = hyperbola_val < 1
        
        return torch.where(is_between_branches, -dist, dist)


class ParabolaSDF(SDFPrimitive):
    """SDF for parabola: y² = 4px (rightward) or x² = 4py (upward)"""
    
    def __init__(self, vertex: torch.Tensor, p: torch.Tensor, direction: str = 'right'):
        super().__init__()
        self.vertex = nn.Parameter(vertex.clone())
        self.p = nn.Parameter(p.clone())
        self.direction = direction
    
    def forward(self, pts: torch.Tensor) -> torch.Tensor:
        p_local = pts - self.vertex
        px = p_local[..., 0]
        py = p_local[..., 1]
        p_param = torch.abs(self.p) + 1e-6
        
        if self.direction == 'right':
            return self._compute_distance_right(px, py, p_param)
        elif self.direction == 'left':
            return self._compute_distance_right(-px, py, p_param)
        elif self.direction == 'up':
            return self._compute_distance_right(py, px, p_param)
        elif self.direction == 'down':
            return self._compute_distance_right(-py, px, p_param)
        return self._compute_distance_right(px, py, p_param)
    
    def _compute_distance_right(self, px: torch.Tensor, py: torch.Tensor, p: torch.Tensor) -> torch.Tensor:
        t = py.clone()
        
        for _ in range(12):
            para_x = t**2 / (4 * p)
            para_y = t
            dx = px - para_x
            dy = py - para_y
            dpara_x = t / (2 * p)
            dpara_y = torch.ones_like(t)
            
            grad = -2 * (dx * dpara_x + dy * dpara_y)
            ddpara_x = 1 / (2 * p)
            hess = 2 * (dpara_x**2 + dpara_y**2 - dx * ddpara_x) + 1e-8
            
            t = t - torch.clamp(grad / torch.abs(hess), -1.0, 1.0)
        
        para_x = t**2 / (4 * p)
        para_y = t
        dist = torch.sqrt((px - para_x)**2 + (py - para_y)**2 + 1e-10)
        
        at_vertex = (torch.abs(px) < 1e-6) & (torch.abs(py) < 1e-6)
        dist = torch.where(at_vertex, torch.zeros_like(dist), dist)
        
        on_concave_side = (px >= 0) & (py**2 < 4 * p * px)
        return torch.where(on_concave_side, -dist, dist)


class LineSDF(SDFPrimitive):
    """SDF for infinite line passing through point with direction."""
    
    def __init__(self, point: torch.Tensor, direction: torch.Tensor):
        super().__init__()
        self.point = nn.Parameter(point.clone())
        self.direction = nn.Parameter(direction / (torch.norm(direction) + 1e-8))
    
    def forward(self, p: torch.Tensor) -> torch.Tensor:
        v = p - self.point
        normal = torch.tensor([-self.direction[1], self.direction[0]], device=p.device)
        return (v * normal).sum(dim=-1)


class LineSegmentSDF(SDFPrimitive):
    """SDF for line segment from point a to point b."""
    
    def __init__(self, a: torch.Tensor, b: torch.Tensor):
        super().__init__()
        self.a = nn.Parameter(a.clone())
        self.b = nn.Parameter(b.clone())
    
    def forward(self, p: torch.Tensor) -> torch.Tensor:
        v_ab = self.b - self.a
        v_ap = p - self.a
        h = (v_ap * v_ab).sum(dim=-1) / (torch.norm(v_ab)**2 + 1e-8)
        h_clamped = torch.clamp(h, 0, 1)
        closest = self.a + h_clamped.unsqueeze(-1) * v_ab
        return torch.norm(p - closest, dim=-1)


class TriangleEdgesSDF(SDFPrimitive):
    """SDF for triangle edges (boundary only)."""
    
    def __init__(self, v0: torch.Tensor, v1: torch.Tensor, v2: torch.Tensor, 
                 line_thickness: float = 0.02):
        super().__init__()
        self.edge0 = LineSegmentSDF(v0, v1)
        self.edge1 = LineSegmentSDF(v1, v2)
        self.edge2 = LineSegmentSDF(v2, v0)
        self.thickness = line_thickness
    
    def forward(self, p: torch.Tensor) -> torch.Tensor:
        d0 = self.edge0(p)
        d1 = self.edge1(p)
        d2 = self.edge2(p)
        return torch.min(torch.min(d0, d1), d2) - self.thickness


class TriangleFillSDF(SDFPrimitive):
    """SDF for filled triangle region."""
    
    def __init__(self, v0: torch.Tensor, v1: torch.Tensor, v2: torch.Tensor):
        super().__init__()
        self.v0 = nn.Parameter(v0.clone())
        self.v1 = nn.Parameter(v1.clone())
        self.v2 = nn.Parameter(v2.clone())
        self.edge0 = LineSegmentSDF(v0, v1)
        self.edge1 = LineSegmentSDF(v1, v2)
        self.edge2 = LineSegmentSDF(v2, v0)
    
    def _sign(self, p: torch.Tensor, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
        return (p[..., 0] - a[0]) * (b[1] - a[1]) - (b[0] - a[0]) * (p[..., 1] - a[1])
    
    def forward(self, p: torch.Tensor) -> torch.Tensor:
        d0 = self.edge0(p)
        d1 = self.edge1(p)
        d2 = self.edge2(p)
        dist = torch.min(torch.min(d0, d1), d2)
        
        s0 = self._sign(p, self.v0, self.v1)
        s1 = self._sign(p, self.v1, self.v2)
        s2 = self._sign(p, self.v2, self.v0)
        
        inside = ((s0 >= 0) & (s1 >= 0) & (s2 >= 0)) | ((s0 <= 0) & (s1 <= 0) & (s2 <= 0))
        return torch.where(inside, -dist, dist)


class RightAngleSDF(SDFPrimitive):
    """SDF for right angle marker."""
    
    def __init__(self, vertex: torch.Tensor, dir1: torch.Tensor, dir2: torch.Tensor,
                 size: float = 0.25, thickness: float = 0.015):
        super().__init__()
        dir1_norm = dir1 / (torch.norm(dir1) + 1e-8)
        dir2_norm = dir2 / (torch.norm(dir2) + 1e-8)
        
        p1 = vertex + dir1_norm * size
        p2 = vertex + dir2_norm * size
        p3 = vertex + dir1_norm * size + dir2_norm * size
        
        self.seg1 = LineSegmentSDF(p1, p3)
        self.seg2 = LineSegmentSDF(p2, p3)
        self.thickness = thickness
    
    def forward(self, p: torch.Tensor) -> torch.Tensor:
        return torch.min(self.seg1(p), self.seg2(p)) - self.thickness