File size: 62,999 Bytes
fdb3169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 |
"""
Batch Processor Module
Processes geometry problems and generates visualizations.
"""
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import json
import re
from pathlib import Path
from typing import Dict, List, Tuple, Optional
from tqdm import tqdm
from .primitives import (
CircleSDF, EllipseSDF, HyperbolaSDF, ParabolaSDF
)
from .constraints import GeometricConstraints
from .parser import ProblemParser
from .optimizer import GeometryOptimizer
from .renderer import SDFRenderer
class SDFBatchProcessor:
"""
Process problems using the SDF methodology.
"""
def __init__(self, output_dir: str = 'sdf_output'):
self.output_dir = Path(output_dir)
self.output_dir.mkdir(exist_ok=True, parents=True)
self.parser = ProblemParser()
self.optimizer = GeometryOptimizer()
# Create subdirectories
for subdir in ['ellipse', 'hyperbola', 'parabola', 'circle']:
(self.output_dir / subdir).mkdir(exist_ok=True)
def process_problem(self, problem: Dict, idx: int, verbose: bool = False) -> Dict:
"""Process a single problem using SDF methodology."""
result = {
'index': idx,
'success': False,
'error': None
}
try:
fact_expr = problem.get('fact_expressions', '')
text = problem.get('text', '')
query_expr = problem.get('query_expressions', '')
# Determine the primary shape to visualize based on query
# If query is about Expression(G), find what G is
primary_shape = None
query_match = re.search(r'Expression\((\w+)\)', query_expr)
if query_match:
shape_name = query_match.group(1)
# Find what type this shape is
type_match = re.search(rf'{shape_name}:\s*(\w+)', fact_expr)
if type_match:
primary_shape = type_match.group(1).lower()
# Detect main conic names for each type
main_hyperbola_name = self._detect_main_conic_name(fact_expr, 'hyperbola')
main_ellipse_name = self._detect_main_conic_name(fact_expr, 'ellipse')
main_parabola_name = self._detect_main_conic_name(fact_expr, 'parabola')
main_circle_name = self._detect_main_conic_name(fact_expr, 'circle')
# Try to parse as different conic types, using main conic names
ellipse_params = self.parser.parse_ellipse(fact_expr)
hyperbola_params = self.parser.parse_hyperbola(fact_expr, main_hyperbola_name)
parabola_params = self.parser.parse_parabola(fact_expr)
circle_params = self.parser.parse_circle(fact_expr)
# Additional constraints
coords = self.parser.parse_coordinates(fact_expr)
eccentricity = self.parser.parse_eccentricity(fact_expr)
asymptote = self.parser.parse_asymptote_slope(fact_expr)
# Special case: moving circle locus (externally tangent to fixed circle, passes through a fixed point)
moving_circle = self._detect_moving_circle_locus(fact_expr, coords)
if moving_circle:
params_hyp = moving_circle
return self._process_hyperbola(problem, idx, params_hyp, coords, eccentricity=None, asymptote=None, verbose=verbose)
# Process based on primary shape (if determined) or first available
if primary_shape == 'hyperbola' and hyperbola_params:
result = self._process_hyperbola(problem, idx, hyperbola_params, coords, eccentricity, asymptote, verbose)
elif primary_shape == 'ellipse' and ellipse_params:
result = self._process_ellipse(problem, idx, ellipse_params, coords, eccentricity, verbose)
elif primary_shape == 'parabola' and parabola_params:
result = self._process_parabola(problem, idx, parabola_params, coords, verbose)
elif primary_shape == 'circle' and circle_params:
result = self._process_circle(problem, idx, circle_params, coords, verbose)
# Fallback to order of detection, but prioritize hyperbola over ellipse
# (many problems have both, with hyperbola as the main subject)
elif hyperbola_params:
result = self._process_hyperbola(problem, idx, hyperbola_params, coords, eccentricity, asymptote, verbose)
elif ellipse_params:
result = self._process_ellipse(problem, idx, ellipse_params, coords, eccentricity, verbose)
elif parabola_params:
result = self._process_parabola(problem, idx, parabola_params, coords, verbose)
elif circle_params:
result = self._process_circle(problem, idx, circle_params, coords, verbose)
else:
result['error'] = 'Unsupported or unparseable expression'
return result
# Validation step
result = self._validate_result(result, problem)
return result
except Exception as e:
result['error'] = str(e)
return result
def _validate_result(self, result: Dict, problem: Dict) -> Dict:
"""
Rigorous validation following paper-quality standards.
Validates all explicit geometric constraints from the problem.
Validation includes:
- Parameter positivity (a, b, p, r > 0)
- Eccentricity matching (e_calc vs e_target)
- Asymptote slope matching (b/a vs target slope)
- Focus position verification (c² = a² ± b²)
- Point-on-curve verification for constrained points
- Directrix position verification (parabola)
"""
if not result.get('success'):
return result
conic_type = result.get('conic_type')
fact_expr = result.get('fact_expr', problem.get('fact_expressions', ''))
coords = result.get('coords', {})
reasons = []
# Tolerance settings (paper-quality)
tol_point = 3e-2 # Point on curve tolerance
tol_param = 0.05 # Parameter matching tolerance (e, slope)
tol_focus = 0.05 # Focus position tolerance
# Dynamically detect the main conic name from fact_expr
main_conic = self._detect_main_conic_name(fact_expr, conic_type)
# Get only points that are explicitly on the MAIN conic
points_on_main = self._points_on_main_conic(fact_expr, coords, main_conic)
# Helper: extract focus coordinates from fact_expr
def get_focus_coords() -> List[Tuple[float, float]]:
"""Extract focus point coordinates."""
foci = []
for name, coord in coords.items():
# Check if this point is declared as a focus
if re.search(rf'Focus\s*\(\s*{main_conic}\s*\)\s*=\s*\{{\s*{name}', fact_expr) or \
re.search(rf'Focus\s*\(\s*{main_conic}\s*\)\s*=\s*{name}', fact_expr) or \
(name in ['F', 'F1', 'F2'] and re.search(rf'Focus\s*\(\s*{main_conic}\s*\)', fact_expr)):
foci.append(coord)
return foci
# Helper: check if point is on curve constraint
def has_point_constraint(name: str) -> bool:
return name in points_on_main
if conic_type == 'ellipse':
params = result.get('params', {})
if 'a' not in params or 'b' not in params:
return result # Skip validation if params incomplete
a = params['a']
b = params['b']
# 1. Parameter positivity
if a <= 0 or b <= 0:
reasons.append('ellipse_nonpositive_axes')
# 2. Eccentricity verification
ecc_target = self.parser.parse_eccentricity(fact_expr)
if ecc_target and 0 < ecc_target < 1:
a_major, b_minor = max(a, b), min(a, b)
ecc_calc = np.sqrt(1 - (b_minor / a_major)**2)
if abs(ecc_calc - ecc_target) > tol_param:
reasons.append('ellipse_ecc_mismatch')
# 3. Focus position verification (c² = a² - b² for ellipse)
foci = get_focus_coords()
if foci:
a_major, b_minor = max(a, b), min(a, b)
c_calc = np.sqrt(max(0, a_major**2 - b_minor**2))
for fx, fy in foci:
# Focus should be at (±c, 0) or (0, ±c) from center
c_given = np.sqrt(fx**2 + fy**2) # Assuming center at origin
if abs(c_calc - c_given) > tol_focus:
reasons.append('ellipse_focus_mismatch')
break
# 4. Point-on-curve verification
for name, (px, py) in coords.items():
if has_point_constraint(name):
major_axis = params.get('major_axis', 'x')
if major_axis == 'x':
val = (px**2) / (a**2) + (py**2) / (b**2) - 1
else:
val = (px**2) / (b**2) + (py**2) / (a**2) - 1
if abs(val) > tol_point:
reasons.append('ellipse_point_off_curve')
break
elif conic_type == 'hyperbola':
params = result.get('params', {})
if 'a' not in params or 'b' not in params:
return result # Skip validation if params incomplete
a = params['a']
b = params['b']
orientation = params.get('orientation', 'horizontal')
# 1. Parameter positivity
if a <= 0 or b <= 0:
reasons.append('hyperbola_nonpositive_axes')
# 2. Asymptote slope verification (b/a for horizontal)
asym = self.parser.parse_asymptote_slope(fact_expr)
if asym:
slope_calc = b / a if orientation == 'horizontal' else a / b
if abs(slope_calc - asym) > tol_param:
reasons.append('hyperbola_asymptote_mismatch')
# 3. Eccentricity verification (e = c/a = sqrt(1 + b²/a²))
ecc_target = self.parser.parse_eccentricity(fact_expr)
if ecc_target and ecc_target > 1:
ecc_calc = np.sqrt(1 + (b / a)**2)
if abs(ecc_calc - ecc_target) > tol_param:
reasons.append('hyperbola_ecc_mismatch')
# 4. Focus position verification (c² = a² + b² for hyperbola)
foci = get_focus_coords()
if foci:
c_calc = np.sqrt(a**2 + b**2)
for fx, fy in foci:
# Focus should be at (±c, 0) or (0, ±c) from center
c_given = np.sqrt(fx**2 + fy**2) # Assuming center at origin
if abs(c_calc - c_given) > tol_focus:
reasons.append('hyperbola_focus_mismatch')
break
# 5. Point-on-curve verification
for name, (px, py) in coords.items():
if has_point_constraint(name):
if orientation == 'vertical':
val = (py**2) / (a**2) - (px**2) / (b**2) - 1
else:
val = (px**2) / (a**2) - (py**2) / (b**2) - 1
if abs(val) > tol_point:
reasons.append('hyperbola_point_off_curve')
break
elif conic_type == 'parabola':
params = result.get('params', {})
p = params.get('p', 0)
direction = params.get('direction', 'right')
# 1. Parameter positivity
if p <= 0:
reasons.append('parabola_nonpositive_p')
# 2. Focus position verification
# Focus at (p, 0) for y² = 4px (right-opening)
foci = get_focus_coords()
if foci:
for fx, fy in foci:
if direction == 'right':
focus_expected = (p, 0)
elif direction == 'left':
focus_expected = (-p, 0)
elif direction == 'up':
focus_expected = (0, p)
else: # down
focus_expected = (0, -p)
dist = np.sqrt((fx - focus_expected[0])**2 + (fy - focus_expected[1])**2)
if dist > tol_focus:
reasons.append('parabola_focus_mismatch')
break
# 3. Directrix verification (if specified)
# Directrix at x = -p for y² = 4px
directrix_match = re.search(r'Directrix\s*\(\s*\w+\s*\)\s*=\s*\(x\s*=\s*(-?\d+\.?\d*)\)', fact_expr)
if directrix_match:
directrix_given = float(directrix_match.group(1))
if direction == 'right':
directrix_expected = -p
elif direction == 'left':
directrix_expected = p
else:
directrix_expected = None # y-directrix for up/down
if directrix_expected is not None:
if abs(directrix_given - directrix_expected) > tol_focus:
reasons.append('parabola_directrix_mismatch')
# 4. Point-on-curve verification
for name, (px, py) in coords.items():
if has_point_constraint(name):
if direction == 'right':
val = py**2 - 4 * p * px
elif direction == 'left':
val = py**2 + 4 * p * px
elif direction == 'up':
val = px**2 - 4 * p * py
else:
val = px**2 + 4 * p * py
if abs(val) > tol_point:
reasons.append('parabola_point_off_curve')
break
elif conic_type == 'circle':
params = result.get('params', {})
r = params.get('radius', 0)
cx, cy = params.get('center', (0, 0))
# 1. Parameter positivity
if r <= 0:
reasons.append('circle_nonpositive_radius')
# 2. Center verification (if specified)
center_match = re.search(r'Center\s*\(\s*\w+\s*\)\s*=\s*\(([^,]+),\s*([^)]+)\)', fact_expr)
if center_match:
try:
cx_given = float(center_match.group(1))
cy_given = float(center_match.group(2))
if abs(cx - cx_given) > tol_focus or abs(cy - cy_given) > tol_focus:
reasons.append('circle_center_mismatch')
except:
pass
# 3. Radius verification (if specified)
radius_match = re.search(r'Radius\s*\(\s*\w+\s*\)\s*=\s*(\d+\.?\d*)', fact_expr)
if radius_match:
r_given = float(radius_match.group(1))
if abs(r - r_given) > tol_focus:
reasons.append('circle_radius_mismatch')
# 4. Point-on-curve verification
for name, (px, py) in coords.items():
if has_point_constraint(name):
val = (px - cx)**2 + (py - cy)**2 - r**2
if abs(val) > tol_point:
reasons.append('circle_point_off_curve')
break
if reasons:
result['success'] = False
result['error'] = 'validation: ' + ';'.join(reasons)
result['validation_reasons'] = reasons
return result
def _point_constraint_names(self, fact_expr: str, coords: Dict, conic_type: str = 'parabola') -> set:
"""
Collect point names that are explicitly constrained on the main curve.
Uses _detect_main_conic_name to find the actual conic variable name.
"""
main_conic = self._detect_main_conic_name(fact_expr, conic_type)
return self._points_on_main_conic(fact_expr, coords, main_conic)
def _detect_main_conic_name(self, fact_expr: str, conic_type: str) -> str:
"""
Detect the actual name of the main conic from fact_expr.
Patterns like 'G: Ellipse', 'C: Parabola', 'C: Hyperbola', etc.
Returns the variable name (e.g., 'G' or 'C').
"""
# Map conic_type to the type name in fact_expr
type_map = {
'ellipse': 'Ellipse',
'hyperbola': 'Hyperbola',
'parabola': 'Parabola',
'circle': 'Circle'
}
type_name = type_map.get(conic_type, '')
if type_name:
# Pattern: variable_name: TypeName (e.g., "G: Ellipse" or "C: Parabola")
pattern = rf'(\w+)\s*:\s*{type_name}'
match = re.search(pattern, fact_expr)
if match:
return match.group(1)
# Fallback to defaults
return 'C' if conic_type == 'circle' else 'G'
def _points_on_main_conic(self, fact_expr: str, coords: Dict, conic_name: str = 'G') -> set:
"""
Collect point names that are EXPLICITLY on the MAIN conic (e.g., G or C).
Includes:
- PointOnCurve(<name>, G) where G is the main conic
- Intersection(*, G) = {A, B} where G is the main conic
Excludes:
- PointOnCurve(<name>, H) where H is a line
- PointOnCurve(<name>, Asymptote(G)) - on asymptote, not curve
- PointOnCurve(<name>, Directrix(G)) - on directrix, not curve
- PointOnCurve(<name>, G1) where G1 is a different curve
- MidPoint constraints (midpoints of chords are not on the curve)
"""
names = set()
# Match PointOnCurve(name, G) exactly - second argument must be exactly the conic name
# Avoid matching things like Asymptote(G), Directrix(G), G1, etc.
for name in coords.keys():
# Pattern: PointOnCurve(name, G) - spaces allowed, second arg must be exactly conic_name
# Use word boundary to avoid matching G1 when looking for G
pattern = rf'PointOnCurve\(\s*{re.escape(name)}\s*,\s*{re.escape(conic_name)}\s*\)'
if re.search(pattern, fact_expr):
names.add(name)
# Match Intersection(*, G) = {A, B} or Intersection(G, *) = {A, B}
# Only if one of the arguments is exactly the main conic
inter_pattern = r'Intersection\(\s*([^,)]+)\s*,\s*([^)]+)\s*\)\s*=\s*\{([^}]+)\}'
for m in re.finditer(inter_pattern, fact_expr):
arg1 = m.group(1).strip()
arg2 = m.group(2).strip()
points_str = m.group(3)
# Check if either argument is exactly the main conic name
if arg1 == conic_name or arg2 == conic_name:
for p in points_str.split(','):
p = p.strip()
if p in coords:
names.add(p)
return names
def _detect_moving_circle_locus(self, fact_expr: str, coords: Dict) -> Optional[Dict]:
"""
Detect pattern: moving circle through fixed point A, externally tangent to fixed circle C.
If foci on x-axis, convert to hyperbola params: |PC| - |PA| = R -> 2a = R.
Returns hyperbola params dict or None.
"""
if "IsOutTangent" not in fact_expr:
return None
# Parse fixed circle C explicitly from its expression (two common orderings)
patterns = [
r'Expression\(C\)\s*=\s*\(y\^2\s*\+\s*\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*=\s*(\d+\.?\d*)\)',
r'Expression\(C\)\s*=\s*\(\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*\+\s*y\^2\s*=\s*(\d+\.?\d*)\)'
]
cx = cy = R = None
for pat in patterns:
m = re.search(pat, fact_expr)
if m:
sign = m.group(1)
val = float(m.group(2))
cx = -val if sign == '+' else val
cy = 0.0
R = np.sqrt(float(m.group(3)))
break
if R is None or R <= 0:
return None
# pick A if present, else first point
if 'A' in coords:
ax, ay = coords['A']
elif coords:
ax, ay = next(iter(coords.values()))
else:
return None
# Only handle foci on x-axis for now
if abs(ay) > 1e-6 or abs(cy) > 1e-6:
return None
c = abs(cx - ax) / 2
if c <= 0:
return None
a = R / 2
if a <= 0 or c <= a:
return None
b_sq = c * c - a * a
b = np.sqrt(b_sq)
return {'a': a, 'b': b}
def _process_ellipse(self, problem: Dict, idx: int, params: Dict,
coords: Dict, eccentricity: Optional[float], verbose: bool) -> Dict:
"""Process ellipse problem with SDF optimization."""
fact_expr = problem.get('fact_expressions', '')
point_names = self._point_constraint_names(fact_expr, coords, 'ellipse')
# Create SDF with initial parameters
center = torch.tensor([0.0, 0.0])
# Ensure params has 'a' and 'b' keys
if 'a' not in params or 'b' not in params:
return {
'index': idx,
'success': False,
'error': f"Ellipse params missing 'a' or 'b': {list(params.keys())}"
}
a = torch.tensor([params['a']])
b = torch.tensor([params['b']])
sdf = EllipseSDF(center, a, b)
# Check if we have explicit numeric coefficients (not symbolic)
has_explicit_coeffs = not params.get('symbolic', False) and not params.get('from_constraints', False)
# Only apply optimization if we don't have explicit coefficients
# or if constraints are compatible
should_optimize = False
constraints = []
weights = []
if not has_explicit_coeffs:
# If we have eccentricity constraint for ellipse (must be < 1)
if eccentricity and eccentricity < 1:
constraints.append(lambda: GeometricConstraints.eccentricity_ellipse(
sdf.a, sdf.b, eccentricity
))
weights.append(10.0)
should_optimize = True
# Collect positions for crowd penalty
all_positions = [sdf.center]
# Point on curve constraints
for name, (px, py) in coords.items():
if name in point_names and name not in ['F1', 'F2', 'F', 'O']:
point = torch.tensor([px, py])
constraints.append(lambda p=point: GeometricConstraints.point_on_curve(sdf, p))
weights.append(5.0)
should_optimize = True
all_positions.append(point)
# Crowd regularization (Paper Section 3.3, Equation 2)
# Prevents geometric elements from collapsing
if len(all_positions) > 1:
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, min_dist=0.5))
weights.append(3.0) # λ_crowd = 3.0 (paper default)
# Positive constraints
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.a))
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.b))
weights.extend([1.0, 1.0])
# Optimize only if needed and constraints are valid
if should_optimize and len(constraints) > 2:
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose)
# Check if optimization produced valid result
with torch.no_grad():
a_opt = abs(sdf.a.item())
b_opt = abs(sdf.b.item())
# If optimization produced degenerate result, revert to original params
if b_opt < 0.1 or a_opt < 0.1:
sdf.a.data = torch.tensor([params['a']])
sdf.b.data = torch.tensor([params['b']])
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'reverted to explicit params'}
else:
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'}
# Extract final parameters
with torch.no_grad():
a_final = abs(sdf.a.item())
b_final = abs(sdf.b.item())
# Determine major axis based on original coefficients
major_axis = params.get('major_axis', 'x')
# Visualize
output_path = self.output_dir / 'ellipse' / f'problem_{idx:04d}.png'
self._visualize_ellipse(sdf, problem, params, output_path, major_axis)
return {
'index': idx,
'success': True,
'conic_type': 'ellipse',
'error': None,
'params': {
'a': a_final,
'b': b_final,
'major_axis': major_axis,
'x_coef': params['x_coef'],
'y_coef': params['y_coef']
},
'optimization': opt_result,
'output_path': str(output_path),
'answer': problem.get('answer_expressions', ''),
'fact_expr': fact_expr,
'coords': coords
}
def _process_hyperbola(self, problem: Dict, idx: int, params: Dict,
coords: Dict, eccentricity: Optional[float],
asymptote: Optional[float], verbose: bool) -> Dict:
"""Process hyperbola problem with SDF optimization."""
fact_expr = problem.get('fact_expressions', '')
point_names = self._point_constraint_names(fact_expr, coords, 'hyperbola')
# Check if foci come from an ellipse (Focus(G) = Focus(H) where H is Ellipse)
c_from_ellipse = None
if 'Focus(G) = Focus(H)' in fact_expr or 'Focus(H) = Focus(G)' in fact_expr:
# Find the ellipse expression
ellipse_match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2/(\d+)\s*\+\s*y\^2/(\d+)\s*=\s*1\)', fact_expr)
if ellipse_match:
x_coef = float(ellipse_match.group(1))
y_coef = float(ellipse_match.group(2))
a_ell = np.sqrt(max(x_coef, y_coef))
b_ell = np.sqrt(min(x_coef, y_coef))
c_from_ellipse = np.sqrt(a_ell**2 - b_ell**2)
# If we have eccentricity and c from ellipse, calculate a and b directly
if eccentricity and eccentricity > 1 and c_from_ellipse:
# For hyperbola: e = c/a, so a = c/e
a_val = c_from_ellipse / eccentricity
# c² = a² + b², so b² = c² - a²
b_squared = c_from_ellipse**2 - a_val**2
if b_squared > 0:
b_val = np.sqrt(b_squared)
params['a'] = a_val
params['b'] = b_val
params['a_squared'] = a_val**2
params['b_squared'] = b_squared
center = torch.tensor([0.0, 0.0])
# Ensure params has 'a' and 'b' keys
if 'a' not in params or 'b' not in params:
return {
'index': idx,
'success': False,
'error': f"Hyperbola params missing 'a' or 'b': {list(params.keys())}"
}
a = torch.tensor([params['a']])
b = torch.tensor([params['b']])
sdf = HyperbolaSDF(center, a, b)
# Check if we already have explicit params from the above calculation
has_explicit_params = c_from_ellipse is not None and eccentricity and eccentricity > 1
constraints = []
weights = []
if not has_explicit_params:
# Collect positions for crowd penalty
all_positions = [sdf.center]
# Eccentricity constraint
if eccentricity and eccentricity > 1:
constraints.append(lambda: GeometricConstraints.eccentricity_hyperbola(
sdf.a, sdf.b, eccentricity
))
weights.append(10.0)
# Asymptote slope constraint
if asymptote:
constraints.append(lambda: GeometricConstraints.asymptote_slope(
sdf.a, sdf.b, asymptote
))
weights.append(10.0)
# Focus constraint from coordinates
focus_coords = [(n, c) for n, c in coords.items() if 'F' in n]
if len(focus_coords) >= 2:
f1 = focus_coords[0][1]
f2 = focus_coords[1][1]
c_target = abs(f1[0] - f2[0]) / 2 if f1[1] == f2[1] == 0 else None
if c_target:
constraints.append(lambda ct=c_target: GeometricConstraints.focus_constraint_hyperbola(
sdf.a, sdf.b, ct
))
weights.append(10.0)
# Add extra points to crowd penalty
for name, (px, py) in coords.items():
if name in point_names and name not in ['F1', 'F2', 'F', 'O']:
all_positions.append(torch.tensor([px, py]))
# Crowd regularization (Paper Section 3.3, Equation 2)
if len(all_positions) > 1:
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, min_dist=0.5))
weights.append(3.0) # λ_crowd = 3.0
# Positive constraints
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.a))
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.b))
weights.extend([1.0, 1.0])
if len(constraints) > 2:
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose)
else:
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'}
with torch.no_grad():
a_final = abs(sdf.a.item())
b_final = abs(sdf.b.item())
output_path = self.output_dir / 'hyperbola' / f'problem_{idx:04d}.png'
self._visualize_hyperbola(sdf, problem, params, output_path)
return {
'index': idx,
'success': True,
'conic_type': 'hyperbola',
'error': None,
'params': {
'a': a_final,
'b': b_final,
'orientation': params.get('orientation', 'horizontal')
},
'optimization': opt_result,
'output_path': str(output_path),
'answer': problem.get('answer_expressions', ''),
'fact_expr': fact_expr,
'coords': coords
}
def _process_parabola(self, problem: Dict, idx: int, params: Dict,
coords: Dict, verbose: bool) -> Dict:
"""Process parabola problem with SDF optimization."""
fact_expr = problem.get('fact_expressions', '')
point_names = self._point_constraint_names(fact_expr, coords, 'parabola')
vertex = torch.tensor([0.0, 0.0])
p = torch.tensor([params['p']])
direction = params.get('direction', 'right')
sdf = ParabolaSDF(vertex, p, direction)
# Keep vertex fixed at origin to avoid unintended translation during optimization
sdf.vertex.requires_grad_(False)
# 如果题目给出了显式的抛物线方程(非符号/约束推导),直接使用,不做优化
has_explicit_params = not params.get('symbolic', False) and not params.get('from_constraints', False)
if has_explicit_params:
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'}
else:
# Collect positions for crowd penalty
all_positions = [sdf.vertex]
constraints = [
lambda: GeometricConstraints.positive_constraint(sdf.p)
]
weights = [1.0]
# Point on curve constraints
for name, (px, py) in coords.items():
if name in point_names and name not in ['F', 'O']:
point = torch.tensor([px, py])
constraints.append(lambda pt=point: GeometricConstraints.point_on_curve(sdf, pt))
weights.append(5.0)
all_positions.append(point)
# Crowd regularization (Paper Section 3.3, Equation 2)
if len(all_positions) > 1:
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, min_dist=0.5))
weights.append(3.0) # λ_crowd = 3.0
if len(constraints) > 1:
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose)
else:
opt_result = {'final_loss': 0.0, 'converged': True}
with torch.no_grad():
p_final = abs(sdf.p.item())
output_path = self.output_dir / 'parabola' / f'problem_{idx:04d}.png'
self._visualize_parabola(sdf, problem, params, output_path)
return {
'index': idx,
'success': True,
'conic_type': 'parabola',
'error': None,
'params': {'p': p_final, 'direction': direction},
'optimization': opt_result,
'output_path': str(output_path),
'answer': problem.get('answer_expressions', ''),
'fact_expr': fact_expr,
'coords': coords
}
def _process_circle(self, problem: Dict, idx: int, params: Dict,
coords: Dict, verbose: bool) -> Dict:
"""Process circle problem with SDF."""
fact_expr = problem.get('fact_expressions', '')
point_names = self._point_constraint_names(fact_expr, coords, 'circle')
# Get center and radius
if params.get('from_diameter'):
# Compute circle from diameter endpoints
# Pattern: IsDiameter(LineSegmentOf(A, B), C) where C is the circle
fact_expr = problem.get('fact_expressions', '')
coords = self.parser.parse_coordinates(fact_expr)
# Find the two points that form the diameter
diameter_match = re.search(r'IsDiameter\(LineSegmentOf\((\w+),\s*(\w+)\)', fact_expr)
if diameter_match:
pt1_name = diameter_match.group(1)
pt2_name = diameter_match.group(2)
if pt1_name in coords and pt2_name in coords:
x1, y1 = coords[pt1_name]
x2, y2 = coords[pt2_name]
# Center = midpoint, radius = half of distance
params['center'] = ((x1 + x2) / 2, (y1 + y2) / 2)
params['radius'] = np.sqrt((x2 - x1)**2 + (y2 - y1)**2) / 2
else:
result = {
'index': idx,
'success': False,
'error': 'Circle from diameter: missing point coordinates'
}
return result
else:
result = {
'index': idx,
'success': False,
'error': 'Circle from diameter: cannot parse diameter pattern'
}
return result
center = torch.tensor(list(params.get('center', (0.0, 0.0))))
radius = torch.tensor([params.get('radius', 1.0)])
sdf = CircleSDF(center, radius)
# No optimization needed for explicit circles
opt_result = {'final_loss': 0.0, 'converged': True}
with torch.no_grad():
cx = sdf.center[0].item()
cy = sdf.center[1].item()
r = abs(sdf.radius.item())
output_path = self.output_dir / 'circle' / f'problem_{idx:04d}.png'
self._visualize_circle(sdf, problem, params, output_path)
return {
'index': idx,
'success': True,
'conic_type': 'circle',
'error': None,
'params': {'center': (cx, cy), 'radius': r},
'optimization': opt_result,
'output_path': str(output_path),
'answer': problem.get('answer_expressions', ''),
'fact_expr': fact_expr,
'coords': {k:v for k,v in coords.items() if k in point_names}
}
def _visualize_circle(self, sdf: CircleSDF, problem: Dict, params: Dict,
output_path: Path):
"""Visualize circle using SDF zero-level set."""
with torch.no_grad():
cx = sdf.center[0].item()
cy = sdf.center[1].item()
r = abs(sdf.radius.item())
# Set up plot range
margin = r + 2
xlim = (cx - margin, cx + margin)
ylim = (cy - margin, cy + margin)
# Create renderer
renderer = SDFRenderer(resolution=400, xlim=xlim, ylim=ylim)
# Create figure with info panel
fig, (ax, ax_info) = plt.subplots(2, 1, figsize=(10, 12),
gridspec_kw={'height_ratios': [0.6, 0.4]})
# Render SDF field and zero-level set
renderer.render_sdf_field(sdf, ax, show_field=True, field_alpha=0.15)
# Mark center
ax.plot(cx, cy, 'ro', markersize=10, label='Center')
ax.annotate('C', (cx, cy), textcoords="offset points", xytext=(10, 10), fontsize=12)
# Draw radius line
ax.plot([cx, cx + r], [cy, cy], 'g--', linewidth=2, label=f'r = {r:.2f}')
# Plot any additional points from constraints
for name, (px, py) in params.get('coords', {}).items():
ax.plot(px, py, 'go', markersize=8)
ax.annotate(name, (px, py), textcoords="offset points", xytext=(5, 5), fontsize=10)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('Circle - SDF Zero-Level Set')
ax.legend(loc='upper right')
ax.set_aspect('equal')
ax.grid(True, alpha=0.3)
# Info panel
ax_info.axis('off')
text = problem.get('text', '')
wrapped_text = self._wrap_text(text, width=60)
info_text = f"""PROBLEM
{'─' * 50}
{wrapped_text}
EQUATION (SDF Zero-Level Set)
{'─' * 50}
(x - {cx:.2f})² + (y - {cy:.2f})² = {r**2:.2f}
SDF PARAMETERS
{'─' * 50}
center: ({cx:.4f}, {cy:.4f})
radius: {r:.4f}
EXPECTED ANSWER: {problem.get('answer_expressions', 'N/A')}
QUERY: {problem.get('query_expressions', 'N/A')}"""
ax_info.text(0, 1, info_text, transform=ax_info.transAxes,
fontsize=10, verticalalignment='top', fontfamily='monospace',
wrap=True)
plt.tight_layout()
output_path.parent.mkdir(parents=True, exist_ok=True)
plt.savefig(output_path, dpi=150, bbox_inches='tight', facecolor='white')
plt.close()
def _wrap_text(self, text: str, width: int = 50) -> str:
"""Wrap text to specified width."""
words = text.split()
lines = []
current_line = []
current_len = 0
for word in words:
if current_len + len(word) + 1 <= width:
current_line.append(word)
current_len += len(word) + 1
else:
if current_line:
lines.append(' '.join(current_line))
current_line = [word]
current_len = len(word)
if current_line:
lines.append(' '.join(current_line))
return '\n'.join(lines)
def _visualize_ellipse(self, sdf: EllipseSDF, problem: Dict, params: Dict,
output_path: Path, major_axis: str):
"""Visualize ellipse using SDF zero-level set, including related shapes."""
with torch.no_grad():
a = abs(sdf.a.item())
b = abs(sdf.b.item())
# Ensure minimum b value for visualization
b_viz = max(b, 0.1)
fact_expr = problem.get('fact_expressions', '')
# Check if there's also a hyperbola in the problem
hyperbola_params = self.parser.parse_hyperbola(fact_expr)
has_hyperbola = hyperbola_params is not None and 'a' in hyperbola_params and 'b' in hyperbola_params
# Determine plot limits - ensure all curves visible
if has_hyperbola:
a_hyp = hyperbola_params['a']
b_hyp = hyperbola_params['b']
max_dim = max(a, b_viz, a_hyp, b_hyp) * 1.8 + 1
else:
max_dim = max(a, b_viz) * 1.3
# Use vertical layout: plot on top, info below
fig = plt.figure(figsize=(10, 14), dpi=120)
# Main plot takes up top 60%
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55])
# Create renderer with appropriate limits
renderer = SDFRenderer(
resolution=500,
xlim=(-max_dim, max_dim),
ylim=(-max_dim, max_dim)
)
# Render SDF field and zero-level set
renderer.render_sdf_field(sdf, ax_main, show_field=True)
# If there's a hyperbola, also draw it
if has_hyperbola:
center = torch.tensor([0.0, 0.0])
a_hyp_t = torch.tensor([hyperbola_params['a']])
b_hyp_t = torch.tensor([hyperbola_params['b']])
hyp_sdf = HyperbolaSDF(center, a_hyp_t, b_hyp_t)
# Draw hyperbola zero-level set in a different color
with torch.no_grad():
grid_flat = renderer.grid.reshape(-1, 2)
hyp_distances = hyp_sdf(grid_flat).reshape(renderer.resolution, renderer.resolution)
hyp_distances_np = hyp_distances.cpu().numpy()
ax_main.contour(renderer.xx.numpy(), renderer.yy.numpy(), hyp_distances_np,
levels=[0], colors=['#E74C3C'], linewidths=2.5, linestyles='-')
# Asymptotes for hyperbola
slope_hyp = hyperbola_params['b'] / hyperbola_params['a']
x_asym = np.linspace(-max_dim, max_dim, 100)
ax_main.plot(x_asym, slope_hyp * x_asym, '--', color='#C73E1D', linewidth=1.5, alpha=0.5)
ax_main.plot(x_asym, -slope_hyp * x_asym, '--', color='#C73E1D', linewidth=1.5, alpha=0.5)
# Add to legend
ellipse_line = Line2D([0], [0], color='#2E86AB', linewidth=2.5,
label=f'Ellipse (x²/{params["x_coef"]:.0f} + y²/{params["y_coef"]:.0f} = 1)')
hyperbola_line = Line2D([0], [0], color='#E74C3C', linewidth=2.5,
label=f'Hyperbola (x²/{hyperbola_params["a"]:.2f}² - y²/{hyperbola_params["b"]:.2f}² = 1)')
# Calculate and plot foci
c = np.sqrt(abs(a**2 - b**2)) if a > b else np.sqrt(abs(b**2 - a**2))
if major_axis == 'x':
ax_main.plot([c, -c], [0, 0], 'ro', markersize=12,
label='Shared Foci' if has_hyperbola else 'Foci', zorder=5)
ax_main.annotate('$F_1$', (-c, 0), xytext=(-c-0.4, 0.4), fontsize=14, fontweight='bold')
ax_main.annotate('$F_2$', (c, 0), xytext=(c+0.2, 0.4), fontsize=14, fontweight='bold')
else:
ax_main.plot([0, 0], [c, -c], 'ro', markersize=12,
label='Shared Foci' if has_hyperbola else 'Foci', zorder=5)
ax_main.annotate('$F_1$', (0, -c), xytext=(0.3, -c-0.4), fontsize=14, fontweight='bold')
ax_main.annotate('$F_2$', (0, c), xytext=(0.3, c+0.2), fontsize=14, fontweight='bold')
# Plot additional points
coords = self.parser.parse_coordinates(problem.get('fact_expressions', ''))
for name, (px, py) in coords.items():
if name not in ['F1', 'F2', 'F', 'O']:
ax_main.plot(px, py, 'go', markersize=10, zorder=6)
ax_main.annotate(f'${name}$', (px, py), xytext=(px+0.3, py+0.3), fontsize=13, fontweight='bold')
# Styling
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.grid(True, alpha=0.3, linestyle='--')
ax_main.set_xlim(-max_dim, max_dim)
ax_main.set_ylim(-max_dim, max_dim)
ax_main.set_xlabel('x', fontsize=14)
ax_main.set_ylabel('y', fontsize=14)
if has_hyperbola:
ax_main.set_title('Ellipse & Hyperbola - SDF Zero-Level Sets', fontsize=16, fontweight='bold', pad=10)
handles, labels = ax_main.get_legend_handles_labels()
handles.extend([ellipse_line, hyperbola_line])
ax_main.legend(handles=handles, loc='upper right', fontsize=10)
else:
ax_main.set_title('Ellipse - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10)
ax_main.legend(loc='upper right', fontsize=11)
ax_main.set_aspect('equal')
ax_main.tick_params(labelsize=11)
# Info panel at bottom
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35])
ax_info.axis('off')
x_coef = params['x_coef']
y_coef = params['y_coef']
# Wrap problem text
problem_text = self._wrap_text(problem.get('text', ''), width=70)
if has_hyperbola:
equations_text = f"""Ellipse: x²/{np.sqrt(x_coef):.2f}² + y²/{np.sqrt(y_coef):.2f}² = 1 (Blue)
Hyperbola: x²/{hyperbola_params['a']:.2f}² - y²/{hyperbola_params['b']:.2f}² = 1 (Red)"""
else:
equations_text = f"x²/{np.sqrt(x_coef):.2f}² + y²/{np.sqrt(y_coef):.2f}² = 1"
info_text = f"""PROBLEM
{'─'*70}
{problem_text}
EQUATIONS (SDF Zero-Level Sets)
{'─'*70}
{equations_text}
SDF PARAMETERS (Ellipse)
{'─'*70}
a (semi-major): {a:.4f} b (semi-minor): {b:.4f} c (focal dist): {c:.4f}
eccentricity: {c/max(a,b):.4f} major_axis: {major_axis}
EXPECTED ANSWER: {problem.get('answer_expressions', '')}
QUERY: {problem.get('query_expressions', '')}
"""
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes,
fontsize=10, verticalalignment='top', family='monospace',
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC'))
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white')
plt.close(fig)
def _visualize_hyperbola(self, sdf: HyperbolaSDF, problem: Dict, params: Dict,
output_path: Path):
"""Visualize hyperbola using SDF zero-level set, including related shapes."""
with torch.no_grad():
a = abs(sdf.a.item())
b = abs(sdf.b.item())
fact_expr = problem.get('fact_expressions', '')
# Check if there are other shapes in the problem
ellipse_params = self.parser.parse_ellipse(fact_expr)
line_params = self.parser.parse_line(fact_expr)
has_ellipse = ellipse_params is not None and 'a' in ellipse_params and 'b' in ellipse_params
has_line = line_params is not None and (line_params.get('a') is not None or line_params.get('slope') is not None)
# If line has slope but no explicit equation, try to construct it
if has_line and line_params.get('slope') is not None and line_params.get('a') is None:
# Check if line passes through a focus
slope = line_params['slope']
# Find focus coordinates
if 'LeftFocus' in fact_expr or 'RightFocus' in fact_expr:
# Line passes through focus
c_hyp = np.sqrt(a**2 + b**2)
if 'LeftFocus' in fact_expr:
focus_x = -c_hyp
else:
focus_x = c_hyp
# Line: y - 0 = slope * (x - focus_x) => slope*x - y - slope*focus_x = 0
line_params['a'] = slope
line_params['b'] = -1.0
line_params['c'] = -slope * focus_x
line_params['equation'] = f'y = {slope:.2f}(x - {focus_x:.2f})'
# Determine plot limits
if has_ellipse:
a_ell = ellipse_params['a']
b_ell = ellipse_params['b']
max_dim = max(a, b, a_ell, b_ell) * 1.5 + 1
else:
max_dim = max(a, b) * 2.5 + 2
# Use vertical layout
fig = plt.figure(figsize=(10, 14), dpi=120)
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55])
renderer = SDFRenderer(
resolution=500,
xlim=(-max_dim, max_dim),
ylim=(-max_dim, max_dim)
)
# Render hyperbola SDF field
renderer.render_sdf_field(sdf, ax_main, show_field=True)
# If there's an ellipse, also draw it
if has_ellipse:
center = torch.tensor([0.0, 0.0])
a_ell_t = torch.tensor([ellipse_params['a']])
b_ell_t = torch.tensor([ellipse_params['b']])
ellipse_sdf = EllipseSDF(center, a_ell_t, b_ell_t)
# Draw ellipse zero-level set in a different color
with torch.no_grad():
grid_flat = renderer.grid.reshape(-1, 2)
ell_distances = ellipse_sdf(grid_flat).reshape(renderer.resolution, renderer.resolution)
ell_distances_np = ell_distances.cpu().numpy()
ax_main.contour(renderer.xx.numpy(), renderer.yy.numpy(), ell_distances_np,
levels=[0], colors=['#27AE60'], linewidths=2.5, linestyles='-')
# Add ellipse to legend
ellipse_line = Line2D([0], [0], color='#27AE60', linewidth=2.5, label=f'Ellipse (x²/{ellipse_params["x_coef"]:.0f} + y²/{ellipse_params["y_coef"]:.0f} = 1)')
hyperbola_line = Line2D([0], [0], color='#2E86AB', linewidth=2.5, label=f'Hyperbola (x²/{a:.2f}² - y²/{b:.2f}² = 1)')
# Draw line if present (only if we have complete line equation)
if has_line and line_params.get('a') is not None and line_params.get('b') is not None:
line_a = line_params['a']
line_b = line_params['b']
line_c = line_params.get('c', 0)
# Line: ax + by + c = 0 => y = (-ax - c) / b or x = (-by - c) / a
x_line = np.linspace(-max_dim, max_dim, 100)
if abs(line_b) > 1e-6:
y_line = (-line_a * x_line - line_c) / line_b
ax_main.plot(x_line, y_line, '-', color='#9B59B6', linewidth=2.5,
label=f'Line ({line_params["equation"]} = 0)', zorder=4)
else:
# Vertical line
x_val = -line_c / line_a if abs(line_a) > 1e-6 else 0
ax_main.axvline(x=x_val, color='#9B59B6', linewidth=2.5,
label=f'Line (x = {x_val:.2f})', zorder=4)
# Foci (shared between hyperbola and ellipse if Focus(G) = Focus(H))
c = np.sqrt(a**2 + b**2)
ax_main.plot([c, -c], [0, 0], 'ro', markersize=12, label='Shared Foci' if has_ellipse else 'Foci', zorder=5)
ax_main.annotate('$F_1$', (-c, 0), xytext=(-c-0.4, 0.6), fontsize=14, fontweight='bold')
ax_main.annotate('$F_2$', (c, 0), xytext=(c+0.2, 0.6), fontsize=14, fontweight='bold')
# Asymptotes
slope = b / a
x_asym = np.linspace(-max_dim, max_dim, 100)
ax_main.plot(x_asym, slope * x_asym, '--', color='#C73E1D', linewidth=2,
alpha=0.7, label='Asymptotes')
ax_main.plot(x_asym, -slope * x_asym, '--', color='#C73E1D', linewidth=2, alpha=0.7)
# Plot additional points
coords = self.parser.parse_coordinates(problem.get('fact_expressions', ''))
for name, (px, py) in coords.items():
if name not in ['F1', 'F2', 'F', 'O']:
ax_main.plot(px, py, 'go', markersize=10, zorder=6)
ax_main.annotate(f'${name}$', (px, py), xytext=(px+0.3, py+0.3), fontsize=13, fontweight='bold')
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.grid(True, alpha=0.3, linestyle='--')
ax_main.set_xlim(-max_dim, max_dim)
ax_main.set_ylim(-max_dim, max_dim)
ax_main.set_xlabel('x', fontsize=14)
ax_main.set_ylabel('y', fontsize=14)
# Set title based on what shapes are present
title_parts = ['Hyperbola']
if has_ellipse:
title_parts.append('Ellipse')
if has_line:
title_parts.append('Line')
if len(title_parts) > 1:
ax_main.set_title(' & '.join(title_parts) + ' - SDF Zero-Level Sets', fontsize=16, fontweight='bold', pad=10)
handles, labels = ax_main.get_legend_handles_labels()
if has_ellipse:
handles.extend([ellipse_line, hyperbola_line])
ax_main.legend(handles=handles, loc='upper right', fontsize=10)
else:
ax_main.set_title('Hyperbola - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10)
ax_main.legend(loc='upper right', fontsize=11)
ax_main.set_aspect('equal')
ax_main.tick_params(labelsize=11)
# Info panel at bottom
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35])
ax_info.axis('off')
problem_text = self._wrap_text(problem.get('text', ''), width=70)
equations_parts = [f"Hyperbola: x²/{a:.2f}² - y²/{b:.2f}² = 1 (Blue)"]
if has_ellipse:
equations_parts.append(f"Ellipse: x²/{ellipse_params['x_coef']:.0f} + y²/{ellipse_params['y_coef']:.0f} = 1 (Green)")
if has_line:
equations_parts.append(f"Line: {line_params.get('equation', 'slope defined')} = 0 (Purple)")
equations_text = '\n'.join(equations_parts)
info_text = f"""PROBLEM
{'─'*70}
{problem_text}
EQUATIONS (SDF Zero-Level Sets)
{'─'*70}
{equations_text}
SDF PARAMETERS (Hyperbola)
{'─'*70}
a: {a:.4f} b: {b:.4f} c: {c:.4f}
eccentricity: {c/a:.4f} asymptote slope: ±{slope:.4f}
EXPECTED ANSWER: {problem.get('answer_expressions', '')}
QUERY: {problem.get('query_expressions', '')}
"""
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes,
fontsize=10, verticalalignment='top', family='monospace',
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC'))
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white')
plt.close(fig)
def _visualize_parabola(self, sdf: ParabolaSDF, problem: Dict, params: Dict,
output_path: Path):
"""Visualize parabola using SDF zero-level set."""
with torch.no_grad():
p = abs(sdf.p.item())
direction = params.get('direction', 'right')
# Adjust limits based on direction and p value
extent = max(p * 8, 6)
if direction == 'right':
xlim = (-p * 2, extent)
ylim = (-extent * 0.8, extent * 0.8)
elif direction == 'left':
xlim = (-extent, p * 2)
ylim = (-extent * 0.8, extent * 0.8)
else: # up
xlim = (-extent * 0.8, extent * 0.8)
ylim = (-p * 2, extent)
# Use vertical layout
fig = plt.figure(figsize=(10, 14), dpi=120)
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55])
# Increase resolution slightly to sharpen zero-level near the vertex
renderer = SDFRenderer(resolution=600, xlim=xlim, ylim=ylim)
renderer.render_sdf_field(sdf, ax_main, show_field=True)
# Focus and directrix
if direction == 'right':
focus = (p, 0)
ax_main.plot(p, 0, 'ro', markersize=12, label='Focus', zorder=5)
ax_main.annotate('$F$', (p, 0), xytext=(p+0.4, 0.4), fontsize=14, fontweight='bold')
ax_main.axvline(x=-p, color='#2ECC71', linestyle='--', linewidth=2,
alpha=0.8, label='Directrix')
equation = f"y² = {4*p:.2f}x"
elif direction == 'left':
focus = (-p, 0)
ax_main.plot(-p, 0, 'ro', markersize=12, label='Focus', zorder=5)
ax_main.annotate('$F$', (-p, 0), xytext=(-p-0.6, 0.4), fontsize=14, fontweight='bold')
ax_main.axvline(x=p, color='#2ECC71', linestyle='--', linewidth=2,
alpha=0.8, label='Directrix')
equation = f"y² = -{4*p:.2f}x"
else: # up
focus = (0, p)
ax_main.plot(0, p, 'ro', markersize=12, label='Focus', zorder=5)
ax_main.annotate('$F$', (0, p), xytext=(0.4, p+0.4), fontsize=14, fontweight='bold')
ax_main.axhline(y=-p, color='#2ECC71', linestyle='--', linewidth=2,
alpha=0.8, label='Directrix')
equation = f"x² = {4*p:.2f}y"
# Plot additional points with staggered labels to reduce overlaps
coords = self.parser.parse_coordinates(problem.get('fact_expressions', ''))
for idx, (name, (px, py)) in enumerate(coords.items()):
if name not in ['F', 'O']:
ax_main.plot(px, py, 'go', markersize=10, zorder=6)
offset_y = 0.3 + 0.25 * idx
ax_main.annotate(f'${name}$', (px, py), xytext=(px + 0.3, py + offset_y),
fontsize=13, fontweight='bold')
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.grid(True, alpha=0.3, linestyle='--')
ax_main.set_xlim(xlim)
ax_main.set_ylim(ylim)
ax_main.set_xlabel('x', fontsize=14)
ax_main.set_ylabel('y', fontsize=14)
ax_main.set_title('Parabola - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10)
ax_main.set_aspect('equal')
ax_main.legend(loc='upper right', fontsize=11)
ax_main.tick_params(labelsize=11)
# Info panel at bottom
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35])
ax_info.axis('off')
problem_text = self._wrap_text(problem.get('text', ''), width=70)
info_text = f"""PROBLEM
{'─'*70}
{problem_text}
EQUATION (SDF Zero-Level Set)
{'─'*70}
{equation}
SDF PARAMETERS
{'─'*70}
p (focal param): {p:.4f} focus: {focus}
directrix: {'x = ' + f'{-p:.2f}' if direction in ['right', 'left'] else 'y = ' + f'{-p:.2f}'}
direction: {direction}
EXPECTED ANSWER: {problem.get('answer_expressions', '')}
QUERY: {problem.get('query_expressions', '')}
"""
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes,
fontsize=10, verticalalignment='top', family='monospace',
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC'))
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white')
plt.close(fig)
def process_batch(self, problems_input, max_problems: int = None,
verbose: bool = False) -> List[Dict]:
"""Process a batch of problems.
Args:
problems_input: Either a list of problem dicts or a path to JSON file
max_problems: Maximum number of problems to process
verbose: Whether to print verbose output
"""
# Handle both list and file path inputs
if isinstance(problems_input, str):
with open(problems_input, 'r', encoding='utf-8') as f:
problems = json.load(f)
else:
problems = problems_input
if max_problems:
problems = problems[:max_problems]
results = []
stats = {'total': len(problems), 'success': 0, 'failed': 0}
type_stats = {'ellipse': 0, 'hyperbola': 0, 'parabola': 0, 'circle': 0}
reason_counts: Dict[str, int] = {}
print(f"\n{'='*60}")
print(f"SDF-Based Processing: {len(problems)} problems")
print(f"{'='*60}\n")
for idx, problem in enumerate(tqdm(problems, desc="Processing")):
result = self.process_problem(problem, idx, verbose)
results.append(result)
if result['success']:
stats['success'] += 1
ctype = result.get('conic_type')
if ctype in type_stats:
type_stats[ctype] += 1
else:
stats['failed'] += 1
for reason in result.get('validation_reasons', []):
reason_counts[reason] = reason_counts.get(reason, 0) + 1
# Save summary
summary = {
'stats': stats,
'type_stats': type_stats,
'reason_counts': reason_counts,
'results': results
}
with open(self.output_dir / 'summary.json', 'w') as f:
json.dump(summary, f, indent=2, default=str)
print(f"\n{'='*60}")
print("PROCESSING COMPLETE")
print(f"{'='*60}")
print(f"Success: {stats['success']} / {stats['total']} ({100*stats['success']/stats['total']:.1f}%)")
print(f"By type: {type_stats}")
print(f"Output: {self.output_dir}")
return results
|