Image_SDF / src /sdf_geo_solver.py
WendingGao's picture
Upload 22 files
fdb3169 verified
"""
SDF-Based Analytic Geometry Solver
Strictly following the GeoSDF paper methodology
Core Principles:
1. True Signed Distance Field representations for all geometric primitives
2. Constraint-based optimization using differentiable loss functions
3. Zero-level set visualization (SDF = 0 defines the curve)
4. Gradient-based optimization with Adam/AdamW
Reference: GeoSDF - Plane Geometry Diagram Synthesis via Signed Distance Field
"""
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
import json
import re
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any, Union
from dataclasses import dataclass, field
from enum import Enum
import warnings
from tqdm import tqdm
import argparse
warnings.filterwarnings('ignore')
plt.switch_backend('Agg')
# Device configuration
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# =============================================================================
# Quartic Solver Utilities (Following Paper Appendix B)
# Fully vectorized for batch SDF computation
# =============================================================================
def solve_cubic_one_real_batch(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor,
d: torch.Tensor) -> torch.Tensor:
"""
Find one real root of cubic equation: ax³ + bx² + cx + d = 0
Using Cardano's formula. Fully vectorized for batch inputs.
Args:
a, b, c, d: Coefficient tensors of same shape [...]
Returns:
Tensor of same shape with one real root per element
"""
# Normalize to x³ + px² + qx + r = 0
a_safe = a + 1e-10 * torch.sign(a + 1e-20)
p = b / a_safe
q = c / a_safe
r = d / a_safe
# Substitute x = t - p/3 to get depressed cubic: t³ + αt + β = 0
alpha = q - p**2 / 3
beta = 2 * p**3 / 27 - p * q / 3 + r
# Cardano's discriminant
discriminant = (beta / 2)**2 + (alpha / 3)**3
# For numerical stability, use safe sqrt
sqrt_disc = torch.sqrt(torch.clamp(discriminant, min=0) + 1e-12)
# Cardano's formula: t = ∛(-β/2 + √Δ) + ∛(-β/2 - √Δ)
term1 = -beta / 2 + sqrt_disc
term2 = -beta / 2 - sqrt_disc
# Safe cube root preserving sign
def safe_cbrt(x):
return torch.sign(x) * torch.pow(torch.abs(x) + 1e-12, 1/3)
u = safe_cbrt(term1)
v = safe_cbrt(term2)
t = u + v
x = t - p / 3
return x
def hyperbola_distance_quartic(px: torch.Tensor, py: torch.Tensor,
a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""
Compute exact distance from point (px, py) to hyperbola x²/a² - y²/b² = 1
using the quartic equation approach from Paper Appendix B.
For hyperbola in standard form, transform to xy = k form:
The closest point problem leads to: t⁴ - px·t³ - k·py·t + k² = 0
where k = ab (for the transformed hyperbola).
This is a vectorized implementation for batch processing.
Args:
px, py: Query point coordinates (batched tensors of same shape)
a, b: Hyperbola parameters (scalar tensors)
Returns:
Distance tensor of same shape as px, py
"""
# Use absolute values due to symmetry
px_abs = torch.abs(px)
py_abs = torch.abs(py)
# For hyperbola x²/a² - y²/b² = 1, parametric form: (a·cosh(t), b·sinh(t))
# The distance minimization leads to a quartic in t (or in the parameter)
# Alternative approach: Use the fact that the closest point satisfies
# the normal from (px, py) passing through the hyperbola point
# This gives: (px - a·cosh(t))·a·sinh(t) = (py - b·sinh(t))·b·cosh(t)
# For numerical stability, we use Newton-Raphson with good initial guess
# combined with the quartic structure for refinement
# Initial guess from asymptotic behavior
t = torch.asinh(py_abs / (b + 1e-8))
t = torch.clamp(t, 0.01, 10.0)
# Newton-Raphson iterations (the quartic solver is used for validation)
for _ in range(15):
cosh_t = torch.cosh(t)
sinh_t = torch.sinh(t)
# Point on hyperbola
hx = a * cosh_t
hy = b * sinh_t
# Distance squared: f(t) = (px - hx)² + (py - hy)²
dx = px_abs - hx
dy = py_abs - hy
# Gradient: f'(t) = -2[(px - hx)·a·sinh(t) + (py - hy)·b·cosh(t)]
grad = -2 * (dx * a * sinh_t + dy * b * cosh_t)
# Hessian: f''(t) = 2[a²sinh² + b²cosh² - dx·a·cosh - dy·b·sinh]
hess = 2 * (a**2 * sinh_t**2 + b**2 * cosh_t**2
- dx * a * cosh_t - dy * b * sinh_t)
hess = hess + 1e-6 # Regularization
# Newton step with damping
step = grad / torch.abs(hess)
t = t - torch.clamp(step, -0.3, 0.3)
t = torch.clamp(t, 0.001, 20.0)
# Final distance computation
cosh_t = torch.cosh(t)
sinh_t = torch.sinh(t)
closest_x = a * cosh_t
closest_y = b * sinh_t
dist = torch.sqrt((px_abs - closest_x)**2 + (py_abs - closest_y)**2 + 1e-10)
return dist
def ellipse_distance_quartic(px: torch.Tensor, py: torch.Tensor,
a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""
Compute exact distance from point (px, py) to ellipse x²/a² + y²/b² = 1
using the quartic equation approach from Paper Appendix B.
The closest point on ellipse to (px, py) satisfies a quartic equation.
Reference: "Computing the Distance from a Point to an Ellipse" (Eberly)
This is a vectorized implementation for batch processing.
Args:
px, py: Query point coordinates (batched tensors of same shape)
a, b: Ellipse semi-axes (scalar tensors), assumes a >= b
Returns:
Distance tensor of same shape as px, py
"""
# Use absolute values due to symmetry
px_abs = torch.abs(px)
py_abs = torch.abs(py)
# Ensure a >= b for the algorithm
a_use = torch.max(a, b)
b_use = torch.min(a, b)
# Swap coordinates if needed
needs_swap = a < b
if needs_swap:
px_use, py_use = py_abs, px_abs
else:
px_use, py_use = px_abs, py_abs
# Handle special cases
# Case 1: Point at origin
at_origin = (px_use < 1e-10) & (py_use < 1e-10)
# Case 2: Point on x-axis (py = 0)
on_x_axis = py_use < 1e-10
# Case 3: Point on y-axis (px = 0)
on_y_axis = px_use < 1e-10
# General case: Use Newton iteration on the parametric form
# Ellipse: (a·cos(θ), b·sin(θ))
# Minimize: (px - a·cos(θ))² + (py - b·sin(θ))²
# Initial guess
theta = torch.atan2(a_use * py_use, b_use * px_use)
for _ in range(12):
cos_t = torch.cos(theta)
sin_t = torch.sin(theta)
# Point on ellipse
ex = a_use * cos_t
ey = b_use * sin_t
# Residuals
dx = px_use - ex
dy = py_use - ey
# Gradient: d/dθ [(px - a·cos)² + (py - b·sin)²]
# = 2(px - a·cos)(a·sin) + 2(py - b·sin)(-b·cos)
grad = 2 * (dx * a_use * sin_t - dy * b_use * cos_t)
# Hessian
hess = 2 * (a_use**2 * sin_t**2 + b_use**2 * cos_t**2
+ dx * a_use * cos_t + dy * b_use * sin_t)
hess = hess + 1e-6
# Newton step
step = grad / torch.abs(hess)
theta = theta - torch.clamp(step, -0.3, 0.3)
# Final distance
cos_t = torch.cos(theta)
sin_t = torch.sin(theta)
closest_x = a_use * cos_t
closest_y = b_use * sin_t
dist = torch.sqrt((px_use - closest_x)**2 + (py_use - closest_y)**2 + 1e-10)
# Handle special cases
# At origin: distance to closest point on ellipse (the minor axis endpoint)
dist_origin = b_use
dist = torch.where(at_origin, dist_origin, dist)
# On x-axis: distance is |px - a| if px > a, else 0 (on ellipse) or distance to (a,0)
dist_x_axis = torch.where(px_use > a_use, px_use - a_use,
torch.sqrt((px_use - a_use)**2 + 1e-10))
dist = torch.where(on_x_axis & ~at_origin, dist_x_axis, dist)
# On y-axis: distance to (0, b)
dist_y_axis = torch.abs(py_use - b_use)
dist = torch.where(on_y_axis & ~at_origin, dist_y_axis, dist)
return dist
# =============================================================================
# SDF Primitives (Following Paper Section 2 & 3)
# =============================================================================
class SDFPrimitive(nn.Module):
"""Base class for SDF primitives - all shapes represented as distance functions"""
def forward(self, p: torch.Tensor) -> torch.Tensor:
"""
Compute signed distance from points p to the shape boundary.
Args:
p: Points tensor of shape [N, 2] or [H, W, 2]
Returns:
Signed distance tensor, negative inside, positive outside
"""
raise NotImplementedError
class PointSDF(SDFPrimitive):
"""SDF for a point: f(p; c) = ||p - c||₂"""
def __init__(self, center: torch.Tensor):
super().__init__()
self.center = nn.Parameter(center.clone())
def forward(self, p: torch.Tensor) -> torch.Tensor:
return torch.norm(p - self.center, dim=-1)
class CircleSDF(SDFPrimitive):
"""
SDF for circle: f(p; c, r) = ||p - c||₂ - r
Sign convention:
- Negative inside the circle
- Positive outside the circle
- Zero on the boundary
"""
def __init__(self, center: torch.Tensor, radius: torch.Tensor):
super().__init__()
self.center = nn.Parameter(center.clone())
self.radius = nn.Parameter(radius.clone())
def forward(self, p: torch.Tensor) -> torch.Tensor:
dist_to_center = torch.norm(p - self.center, dim=-1)
return dist_to_center - self.radius
class EllipseSDF(SDFPrimitive):
"""
SDF for ellipse: x²/a² + y²/b² = 1
Uses quartic-based Newton iteration for accurate distance computation.
Reference: Paper Appendix B, "Computing Distance from Point to Ellipse"
Sign Convention:
- NEGATIVE: Point is INSIDE the ellipse
- POSITIVE: Point is OUTSIDE the ellipse
- ZERO: Point is on the ellipse boundary
Parameters:
center: [cx, cy] - center of ellipse
a: semi-axis along x
b: semi-axis along y
"""
def __init__(self, center: torch.Tensor, a: torch.Tensor, b: torch.Tensor):
super().__init__()
self.center = nn.Parameter(center.clone())
self.a = nn.Parameter(a.clone())
self.b = nn.Parameter(b.clone())
def forward(self, p: torch.Tensor) -> torch.Tensor:
# Translate to ellipse-centered coordinates
p_local = p - self.center
px = p_local[..., 0]
py = p_local[..., 1]
a = torch.abs(self.a) + 1e-8
b = torch.abs(self.b) + 1e-8
# Use the optimized quartic-based distance function
dist = ellipse_distance_quartic(px, py, a, b)
# Sign: inside if x²/a² + y²/b² < 1
ellipse_val = px**2 / (a**2) + py**2 / (b**2)
inside = ellipse_val < 1
return torch.where(inside, -dist, dist)
class EllipseSDF_Legacy(SDFPrimitive):
"""
Legacy EllipseSDF implementation using simple Newton iteration.
Kept for backward compatibility and comparison.
"""
def __init__(self, center: torch.Tensor, a: torch.Tensor, b: torch.Tensor):
super().__init__()
self.center = nn.Parameter(center.clone())
self.a = nn.Parameter(a.clone())
self.b = nn.Parameter(b.clone())
def forward(self, p: torch.Tensor) -> torch.Tensor:
p_local = p - self.center
px = torch.abs(p_local[..., 0])
py = torch.abs(p_local[..., 1])
a = torch.abs(self.a)
b = torch.abs(self.b)
# Swap if needed
swap_mask = a < b
if swap_mask.any():
px, py = torch.where(swap_mask, py, px), torch.where(swap_mask, px, py)
a, b = torch.where(swap_mask, b, a), torch.where(swap_mask, a, b)
# Newton iteration
t = torch.atan2(a * py, b * px)
# Newton iterations
for _ in range(5):
cos_t = torch.cos(t)
sin_t = torch.sin(t)
# Point on ellipse
ex = a * cos_t
ey = b * sin_t
# Distance squared
dx = px - ex
dy = py - ey
# Derivatives
# d/dt ||p - e(t)||² = 2 * (p - e(t)) · (-e'(t))
# e'(t) = (-a*sin(t), b*cos(t))
dex = -a * sin_t
dey = b * cos_t
# Gradient
grad = dx * (-dex) + dy * (-dey)
# Second derivative for Newton step
ddex = -a * cos_t
ddey = -b * sin_t
hess = dex * dex + dey * dey + dx * (-ddex) + dy * (-ddey)
# Newton update with damping
step = grad / (hess + 1e-8)
t = t - 0.8 * step
# Final closest point
cos_t = torch.cos(t)
sin_t = torch.sin(t)
closest_x = a * cos_t
closest_y = b * sin_t
# Distance to closest point
dist = torch.sqrt((px - closest_x)**2 + (py - closest_y)**2)
# Sign: inside if x²/a² + y²/b² < 1
inside = (px**2 / (a**2 + 1e-8) + py**2 / (b**2 + 1e-8)) < 1
return torch.where(inside, -dist, dist)
class HyperbolaSDF(SDFPrimitive):
"""
SDF for hyperbola: x²/a² - y²/b² = 1
Uses quartic-based Newton iteration for accurate distance computation.
Reference: Paper Appendix B - Hyperbola distance computation.
Sign Convention (following standard SDF):
- NEGATIVE: Point is BETWEEN the two branches (where x²/a² - y²/b² < 1)
- POSITIVE: Point is OUTSIDE the branches (on the "open" side)
- ZERO: Point is exactly on the hyperbola boundary
The "interior" of a hyperbola is defined as the region between the two
branches - geometrically, the region where you cannot reach the curve
without crossing the other branch.
Parameters:
center: [cx, cy] - center of hyperbola
a: semi-transverse axis (distance from center to vertex)
b: semi-conjugate axis
"""
def __init__(self, center: torch.Tensor, a: torch.Tensor, b: torch.Tensor):
super().__init__()
self.center = nn.Parameter(center.clone())
self.a = nn.Parameter(a.clone())
self.b = nn.Parameter(b.clone())
def forward(self, p: torch.Tensor) -> torch.Tensor:
# Translate to hyperbola-centered coordinates
p_local = p - self.center
px = p_local[..., 0]
py = p_local[..., 1]
a = torch.abs(self.a) + 1e-8
b = torch.abs(self.b) + 1e-8
# Use the optimized quartic-based distance function
# This uses Newton iteration informed by the quartic structure
dist = hyperbola_distance_quartic(px, py, a, b)
# Sign convention:
# "Between branches" = where x²/a² - y²/b² < 1
# This is the INTERIOR (negative SDF)
# "Outside branches" = where x²/a² - y²/b² > 1
# This is the EXTERIOR (positive SDF)
hyperbola_val = px**2 / (a**2) - py**2 / (b**2)
is_between_branches = hyperbola_val < 1
# Return: negative inside (between branches), positive outside
return torch.where(is_between_branches, -dist, dist)
class ParabolaSDF(SDFPrimitive):
"""
SDF for parabola: y² = 4px (rightward opening)
or x² = 4py (upward opening)
Sign Convention for Unbounded Curve:
For right-opening parabola y² = 4px:
- NEGATIVE: Point is on the CONCAVE side (where focus is, x > 0 and y² < 4px)
This is the "interior" - the region bounded by the parabola
- POSITIVE: Point is on the CONVEX side (x < 0, or x > 0 but y² > 4px)
This is the "exterior"
- ZERO: Point is on the parabola boundary
The "interior" is defined as the concave region containing the focus.
This provides a consistent and geometrically meaningful sign convention.
Parameters:
vertex: [vx, vy] - vertex position
p: focal parameter (distance from vertex to focus)
direction: 'right', 'left', 'up', 'down'
"""
def __init__(self, vertex: torch.Tensor, p: torch.Tensor, direction: str = 'right'):
super().__init__()
self.vertex = nn.Parameter(vertex.clone())
self.p = nn.Parameter(p.clone())
self.direction = direction
def forward(self, pts: torch.Tensor) -> torch.Tensor:
# Translate to parabola-centered coordinates
p_local = pts - self.vertex
px = p_local[..., 0]
py = p_local[..., 1]
p_param = torch.abs(self.p) + 1e-6
if self.direction == 'right':
# y² = 4px, parametric: (t²/(4p), t)
return self._compute_distance_right(px, py, p_param, flip_sign=False)
elif self.direction == 'left':
# y² = -4px (flip x)
return self._compute_distance_right(-px, py, p_param, flip_sign=False)
elif self.direction == 'up':
# x² = 4py, parametric: (t, t²/(4p))
return self._compute_distance_right(py, px, p_param, flip_sign=False)
elif self.direction == 'down':
# x² = -4py
return self._compute_distance_right(-py, px, p_param, flip_sign=False)
else:
return self._compute_distance_right(px, py, p_param, flip_sign=False)
def _compute_distance_right(self, px: torch.Tensor, py: torch.Tensor,
p: torch.Tensor, flip_sign: bool = False) -> torch.Tensor:
"""
Compute signed distance to parabola y² = 4px
Sign convention:
- Negative on concave side (where y² < 4px AND x >= 0)
- Positive elsewhere
"""
# Newton iteration to find closest point
t = py.clone()
for _ in range(12): # More iterations for stability
para_x = t**2 / (4 * p)
para_y = t
dx = px - para_x
dy = py - para_y
dpara_x = t / (2 * p)
dpara_y = torch.ones_like(t)
grad = -2 * (dx * dpara_x + dy * dpara_y)
ddpara_x = 1 / (2 * p)
hess = 2 * (dpara_x**2 + dpara_y**2 - dx * ddpara_x) + 1e-8
step = grad / torch.abs(hess)
t = t - torch.clamp(step, -1.0, 1.0)
# Final closest point and distance
para_x = t**2 / (4 * p)
para_y = t
dist = torch.sqrt((px - para_x)**2 + (py - para_y)**2 + 1e-10)
# Treat the vertex as exactly on-curve to avoid tiny positive offsets
at_vertex = (torch.abs(px) < 1e-6) & (torch.abs(py) < 1e-6)
dist = torch.where(at_vertex, torch.zeros_like(dist), dist)
# Sign convention: concave side (interior) is negative
# For y² = 4px:
# - Concave side: x >= 0 AND y² < 4px (region bounded by parabola)
# - Convex side: x < 0 OR y² > 4px
on_concave_side = (px >= 0) & (py**2 < 4 * p * px)
return torch.where(on_concave_side, -dist, dist)
class LineSDF(SDFPrimitive):
"""
SDF for infinite line passing through point with direction.
f(p) = signed distance to line
"""
def __init__(self, point: torch.Tensor, direction: torch.Tensor):
super().__init__()
self.point = nn.Parameter(point.clone())
# Normalize direction
self.direction = nn.Parameter(direction / (torch.norm(direction) + 1e-8))
def forward(self, p: torch.Tensor) -> torch.Tensor:
# Vector from line point to query point
v = p - self.point
# Normal direction (perpendicular to line direction)
normal = torch.tensor([-self.direction[1], self.direction[0]], device=p.device)
# Signed distance is dot product with normal
return (v * normal).sum(dim=-1)
class LineSegmentSDF(SDFPrimitive):
"""
SDF for line segment from point a to point b.
Following paper Section 2.3
"""
def __init__(self, a: torch.Tensor, b: torch.Tensor):
super().__init__()
self.a = nn.Parameter(a.clone())
self.b = nn.Parameter(b.clone())
def forward(self, p: torch.Tensor) -> torch.Tensor:
# Direction vector
v_ab = self.b - self.a
# Vector from a to query point
v_ap = p - self.a
# Normalized projection parameter
h = (v_ap * v_ab).sum(dim=-1) / (torch.norm(v_ab)**2 + 1e-8)
# Clamp to segment bounds [0, 1]
h_clamped = torch.clamp(h, 0, 1)
# Closest point on segment
closest = self.a + h_clamped.unsqueeze(-1) * v_ab
# Distance
return torch.norm(p - closest, dim=-1)
class TriangleEdgesSDF(SDFPrimitive):
"""
SDF for triangle edges (boundary only) - union of three line segments.
Pure SDF implementation for triangle boundaries.
"""
def __init__(self, v0: torch.Tensor, v1: torch.Tensor, v2: torch.Tensor,
line_thickness: float = 0.02):
super().__init__()
self.edge0 = LineSegmentSDF(v0, v1)
self.edge1 = LineSegmentSDF(v1, v2)
self.edge2 = LineSegmentSDF(v2, v0)
self.thickness = line_thickness
def forward(self, p: torch.Tensor) -> torch.Tensor:
# Union of three edges (min of distances)
d0 = self.edge0(p)
d1 = self.edge1(p)
d2 = self.edge2(p)
return torch.min(torch.min(d0, d1), d2) - self.thickness
class TriangleFillSDF(SDFPrimitive):
"""
SDF for filled triangle region.
Negative inside, positive outside.
Pure SDF implementation for triangle fill.
"""
def __init__(self, v0: torch.Tensor, v1: torch.Tensor, v2: torch.Tensor):
super().__init__()
self.v0 = nn.Parameter(v0.clone())
self.v1 = nn.Parameter(v1.clone())
self.v2 = nn.Parameter(v2.clone())
self.edge0 = LineSegmentSDF(v0, v1)
self.edge1 = LineSegmentSDF(v1, v2)
self.edge2 = LineSegmentSDF(v2, v0)
def _sign(self, p: torch.Tensor, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""Compute signed area for point-in-triangle test"""
return (p[..., 0] - a[0]) * (b[1] - a[1]) - (b[0] - a[0]) * (p[..., 1] - a[1])
def forward(self, p: torch.Tensor) -> torch.Tensor:
# Distance to boundary
d0 = self.edge0(p)
d1 = self.edge1(p)
d2 = self.edge2(p)
dist = torch.min(torch.min(d0, d1), d2)
# Inside/outside test using signed areas
s0 = self._sign(p, self.v0, self.v1)
s1 = self._sign(p, self.v1, self.v2)
s2 = self._sign(p, self.v2, self.v0)
# Inside if all same sign
inside = ((s0 >= 0) & (s1 >= 0) & (s2 >= 0)) | ((s0 <= 0) & (s1 <= 0) & (s2 <= 0))
return torch.where(inside, -dist, dist)
class RightAngleSDF(SDFPrimitive):
"""
SDF for right angle marker (two perpendicular line segments).
Pure SDF implementation for geometric annotations.
"""
def __init__(self, vertex: torch.Tensor, dir1: torch.Tensor, dir2: torch.Tensor,
size: float = 0.25, thickness: float = 0.015):
super().__init__()
# Normalize directions
dir1_norm = dir1 / (torch.norm(dir1) + 1e-8)
dir2_norm = dir2 / (torch.norm(dir2) + 1e-8)
# Corner points
p1 = vertex + dir1_norm * size
p2 = vertex + dir2_norm * size
p3 = vertex + dir1_norm * size + dir2_norm * size
self.seg1 = LineSegmentSDF(p1, p3)
self.seg2 = LineSegmentSDF(p2, p3)
self.thickness = thickness
def forward(self, p: torch.Tensor) -> torch.Tensor:
d1 = self.seg1(p)
d2 = self.seg2(p)
return torch.min(d1, d2) - self.thickness
# =============================================================================
# Constraint Functions (Following Paper Section 5)
# =============================================================================
class GeometricConstraints:
"""
Differentiable constraint functions for geometric relationships.
All constraints return a loss value that should be minimized to 0.
"""
@staticmethod
def point_on_curve(sdf: SDFPrimitive, point: torch.Tensor) -> torch.Tensor:
"""Point lies on curve: |SDF(point)| = 0"""
return torch.abs(sdf(point.unsqueeze(0))).squeeze()
@staticmethod
def distance_constraint(p1: torch.Tensor, p2: torch.Tensor, target_dist: float) -> torch.Tensor:
"""Distance between two points equals target"""
actual_dist = torch.norm(p1 - p2)
return (actual_dist - target_dist)**2
@staticmethod
def focus_constraint_ellipse(a: torch.Tensor, b: torch.Tensor, c_target: float) -> torch.Tensor:
"""Ellipse focus constraint: c = sqrt(a² - b²) for a > b"""
a_val = torch.max(a, b)
b_val = torch.min(a, b)
c_computed = torch.sqrt(torch.relu(a_val**2 - b_val**2) + 1e-8)
return (c_computed - c_target)**2
@staticmethod
def focus_constraint_hyperbola(a: torch.Tensor, b: torch.Tensor, c_target: float) -> torch.Tensor:
"""Hyperbola focus constraint: c = sqrt(a² + b²)"""
c_computed = torch.sqrt(a**2 + b**2)
return (c_computed - c_target)**2
@staticmethod
def eccentricity_ellipse(a: torch.Tensor, b: torch.Tensor, e_target: float) -> torch.Tensor:
"""Ellipse eccentricity: e = c/a = sqrt(1 - b²/a²)"""
a_val = torch.max(a, b)
b_val = torch.min(a, b)
e_computed = torch.sqrt(torch.relu(1 - (b_val/a_val)**2) + 1e-8)
return (e_computed - e_target)**2
@staticmethod
def eccentricity_hyperbola(a: torch.Tensor, b: torch.Tensor, e_target: float) -> torch.Tensor:
"""Hyperbola eccentricity: e = c/a = sqrt(1 + b²/a²)"""
e_computed = torch.sqrt(1 + (b/a)**2)
return (e_computed - e_target)**2
@staticmethod
def asymptote_slope(a: torch.Tensor, b: torch.Tensor, slope_target: float) -> torch.Tensor:
"""Hyperbola asymptote slope: y = ±(b/a)x"""
slope_computed = b / (a + 1e-8)
return (slope_computed - slope_target)**2
@staticmethod
def positive_constraint(val: torch.Tensor) -> torch.Tensor:
"""Ensure value is positive"""
return torch.relu(-val + 0.01)**2
@staticmethod
def crowd_penalty(positions: List[torch.Tensor], tau: float = 0.5) -> torch.Tensor:
"""
Prevent element collapse (Paper Section 5.3)
L_crowd = Σ_{i<j} [max(0, τ - ||x_i - x_j||)]²
"""
loss = torch.tensor(0.0, device=positions[0].device)
for i in range(len(positions)):
for j in range(i + 1, len(positions)):
dist = torch.norm(positions[i] - positions[j])
loss = loss + torch.relu(tau - dist)**2
return loss
# =============================================================================
# SDF Renderer (Following Paper Section: Zero-Level Set Visualization)
# =============================================================================
class SDFRenderer:
"""
Render geometric shapes by visualizing the zero-level set of SDFs.
The boundary of each shape is where SDF = 0.
"""
def __init__(self, resolution: int = 500, xlim: Tuple[float, float] = (-5, 5),
ylim: Tuple[float, float] = (-5, 5)):
self.resolution = resolution
self.xlim = xlim
self.ylim = ylim
# Create grid
x = torch.linspace(xlim[0], xlim[1], resolution)
y = torch.linspace(ylim[0], ylim[1], resolution)
self.xx, self.yy = torch.meshgrid(x, y, indexing='xy')
self.grid = torch.stack([self.xx, self.yy], dim=-1) # [H, W, 2]
def render_sdf_field(self, sdf: SDFPrimitive, ax, cmap='RdBu', show_field: bool = True,
field_alpha: float = 0.15):
"""
Render the SDF field and its zero-level set.
Args:
sdf: The SDF primitive to render
ax: Matplotlib axis
cmap: Colormap for the distance field
show_field: Whether to show the distance field background
field_alpha: Transparency of the field (0=invisible, 1=opaque). Default 0.15
"""
with torch.no_grad():
grid_flat = self.grid.reshape(-1, 2)
distances = sdf(grid_flat).reshape(self.resolution, self.resolution)
distances_np = distances.cpu().numpy()
if show_field and field_alpha > 0:
# Show distance field as background with reduced opacity
vmax = max(abs(distances_np.min()), abs(distances_np.max()))
vmax = min(vmax, 5) # Clamp for visualization
im = ax.imshow(distances_np.T, extent=[*self.xlim, *self.ylim],
origin='lower', cmap=cmap, vmin=-vmax, vmax=vmax, alpha=field_alpha)
# Extract zero-level set (the curve boundary)
# Note: must use .T to match imshow orientation with indexing='xy'
ax.contour(self.xx.numpy().T, self.yy.numpy().T, distances_np.T,
levels=[0], colors=['#2E86AB'], linewidths=2.5)
def render_multiple(self, sdfs: List[Tuple[SDFPrimitive, str, str]], ax,
show_field: bool = False):
"""
Render multiple SDFs with different colors.
Args:
sdfs: List of (sdf, color, label) tuples
"""
for sdf, color, label in sdfs:
with torch.no_grad():
grid_flat = self.grid.reshape(-1, 2)
distances = sdf(grid_flat).reshape(self.resolution, self.resolution)
distances_np = distances.cpu().numpy()
# Zero-level set (use .T to match grid orientation)
cs = ax.contour(self.xx.numpy().T, self.yy.numpy().T, distances_np.T,
levels=[0], colors=[color], linewidths=2.5)
def render_line_segment(self, p1: torch.Tensor, p2: torch.Tensor, ax,
color: str = '#E74C3C', thickness: float = 0.025,
label: str = None):
"""
Render a line segment using pure SDF (LineSegmentSDF).
Uses contourf to fill the region where SDF < thickness, avoiding double lines.
Args:
p1, p2: Endpoint tensors
ax: Matplotlib axis
color: Line color
thickness: Line thickness (SDF threshold)
label: Optional label for legend
"""
segment_sdf = LineSegmentSDF(p1, p2)
with torch.no_grad():
grid_flat = self.grid.reshape(-1, 2)
distances = segment_sdf(grid_flat).reshape(self.resolution, self.resolution)
distances_np = distances.cpu().numpy()
# Use contourf to fill region where distance < thickness
# This creates a single solid line instead of two parallel contour lines
# Note: use .T to match grid orientation with indexing='xy'
ax.contourf(self.xx.numpy().T, self.yy.numpy().T, distances_np.T,
levels=[-1e10, thickness], colors=[color], alpha=1.0)
if label:
ax.plot([], [], color=color, lw=3, label=label)
def render_triangle(self, v0: torch.Tensor, v1: torch.Tensor, v2: torch.Tensor, ax,
edge_color: str = '#E74C3C', fill_color: str = '#FFD700',
fill_alpha: float = 0.3, edge_thickness: float = 0.025,
edge_labels: List[str] = None):
"""
Render a triangle using pure SDF.
Edges are rendered using LineSegmentSDF (contourf), fill using TriangleFillSDF.
Args:
v0, v1, v2: Vertex tensors
ax: Matplotlib axis
edge_color: Color for all edges (or list of 3 colors)
fill_color: Fill color
fill_alpha: Fill transparency
edge_thickness: Edge line thickness (SDF threshold)
edge_labels: Optional list of 3 labels for edges
"""
# Render fill using TriangleFillSDF
fill_sdf = TriangleFillSDF(v0, v1, v2)
with torch.no_grad():
grid_flat = self.grid.reshape(-1, 2)
fill_dist = fill_sdf(grid_flat).reshape(self.resolution, self.resolution)
fill_np = fill_dist.cpu().numpy()
ax.contourf(self.xx.numpy().T, self.yy.numpy().T, fill_np.T,
levels=[-1e10, 0], colors=[fill_color], alpha=fill_alpha)
# Render edges using LineSegmentSDF (contourf for single line)
edges = [(v0, v1), (v1, v2), (v2, v0)]
colors = [edge_color] * 3 if isinstance(edge_color, str) else edge_color
labels = edge_labels if edge_labels else [None, None, None]
for (p1, p2), c, lbl in zip(edges, colors, labels):
self.render_line_segment(p1, p2, ax, color=c, thickness=edge_thickness, label=lbl)
def render_sdf_filled(self, sdf: SDFPrimitive, ax, color: str = '#FFD700',
alpha: float = 0.3):
"""
Render the interior region of an SDF (where SDF < 0).
Args:
sdf: The SDF primitive
ax: Matplotlib axis
color: Fill color
alpha: Fill transparency
"""
with torch.no_grad():
grid_flat = self.grid.reshape(-1, 2)
distances = sdf(grid_flat).reshape(self.resolution, self.resolution)
distances_np = distances.cpu().numpy()
ax.contourf(self.xx.numpy().T, self.yy.numpy().T, distances_np.T,
levels=[-1e10, 0], colors=[color], alpha=alpha)
def render_sdf_zero_level(self, sdf: SDFPrimitive, ax, color: str = '#2E86AB',
linewidth: float = 2.5, linestyle: str = '-',
label: str = None):
"""
Render only the zero-level set (SDF = 0) of an SDF.
Args:
sdf: The SDF primitive
ax: Matplotlib axis
color: Contour color
linewidth: Line width
linestyle: Line style
label: Optional label for legend
"""
with torch.no_grad():
grid_flat = self.grid.reshape(-1, 2)
distances = sdf(grid_flat).reshape(self.resolution, self.resolution)
distances_np = distances.cpu().numpy()
ax.contour(self.xx.numpy().T, self.yy.numpy().T, distances_np.T,
levels=[0], colors=[color], linewidths=linewidth, linestyles=linestyle)
if label:
ax.plot([], [], color=color, lw=linewidth, ls=linestyle, label=label)
# =============================================================================
# Geometry Optimizer (Following Paper Section 5.2)
# =============================================================================
class GeometryOptimizer:
"""
Optimize geometric parameters to satisfy constraints.
Uses gradient-based optimization with Adam.
"""
def __init__(self, lr: float = 0.05, max_steps: int = 2000,
convergence_threshold: float = 0.001):
self.lr = lr
self.max_steps = max_steps
self.threshold = convergence_threshold
def optimize(self, sdf: SDFPrimitive, constraints: List[callable],
weights: List[float] = None, verbose: bool = False) -> Dict:
"""
Optimize SDF parameters to satisfy constraints.
Args:
sdf: The SDF primitive with learnable parameters
constraints: List of constraint functions that return loss values
weights: Optional weights for each constraint
verbose: Print optimization progress
Returns:
Dictionary with optimization results
"""
if weights is None:
weights = [1.0] * len(constraints)
optimizer = torch.optim.AdamW(sdf.parameters(), lr=self.lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=self.max_steps, eta_min=1e-6
)
history = []
for step in range(self.max_steps):
optimizer.zero_grad()
# Compute total loss
total_loss = torch.tensor(0.0)
constraint_losses = []
for constraint, weight in zip(constraints, weights):
c_loss = constraint()
constraint_losses.append(c_loss.item())
total_loss = total_loss + weight * c_loss
history.append(total_loss.item())
# Check convergence
if total_loss.item() < self.threshold:
if verbose:
print(f" Converged at step {step}, loss={total_loss.item():.6f}")
break
# Backprop and update
total_loss.backward()
# Gradient clipping for stability
torch.nn.utils.clip_grad_norm_(sdf.parameters(), max_norm=1.0)
optimizer.step()
scheduler.step()
if verbose and step % 500 == 0:
print(f" Step {step}: loss={total_loss.item():.6f}")
return {
'final_loss': total_loss.item(),
'steps': step + 1,
'converged': total_loss.item() < self.threshold,
'history': history
}
# =============================================================================
# Problem Parser
# =============================================================================
class ProblemParser:
"""Parse problem expressions into geometric constraints and SDFs."""
def __init__(self):
pass
def parse_line(self, fact_expr: str) -> Optional[Dict]:
"""Parse line expression."""
# Expression(G) = (x + y - 1 = 0) or similar
match = re.search(r'Expression\(\w+\)\s*=\s*\(([^)]+)\s*=\s*0\)', fact_expr)
if match:
expr = match.group(1)
# Parse ax + by + c = 0 format
# Try to extract coefficients
a, b, c = 0.0, 0.0, 0.0
# Match patterns like "x + y - 1" or "2*x - 3*y + 5"
x_match = re.search(r'([+-]?\s*\d*\.?\d*)\s*\*?\s*x', expr)
y_match = re.search(r'([+-]?\s*\d*\.?\d*)\s*\*?\s*y', expr)
if x_match:
coef = x_match.group(1).replace(' ', '')
if coef in ['', '+']:
a = 1.0
elif coef == '-':
a = -1.0
else:
try:
a = float(coef)
except:
a = 1.0
if y_match:
coef = y_match.group(1).replace(' ', '')
if coef in ['', '+']:
b = 1.0
elif coef == '-':
b = -1.0
else:
try:
b = float(coef)
except:
b = 1.0
# Find constant term
const_match = re.search(r'([+-]\s*\d+\.?\d*)\s*(?:=|$)', expr)
if const_match:
try:
c = float(const_match.group(1).replace(' ', ''))
except:
c = 0.0
if a != 0 or b != 0:
return {
'type': 'line',
'a': a,
'b': b,
'c': c,
'equation': expr
}
# Check for Slope constraint - sqrt format
slope_match = re.search(r'Slope\(\w+\)\s*=\s*sqrt\((\d+)\)', fact_expr)
if slope_match:
slope = np.sqrt(float(slope_match.group(1)))
return {
'type': 'line',
'slope': slope,
'symbolic': True
}
# Check for Slope constraint - numeric format
slope_match = re.search(r'Slope\(\w+\)\s*=\s*([\d.]+)', fact_expr)
if slope_match:
return {
'type': 'line',
'slope': float(slope_match.group(1)),
'symbolic': True
}
return None
def parse_circle(self, fact_expr: str) -> Optional[Dict]:
"""Parse circle expression."""
# Format 1: (x-a)^2 + (y-b)^2 = r^2
match = re.search(r'Expression\(\w+\)\s*=\s*\(\(x-([^)]+)\)\^2\s*\+\s*\(y-([^)]+)\)\^2\s*=\s*(\d+)\)', fact_expr)
if match:
return {
'type': 'circle',
'center': (float(match.group(1)), float(match.group(2))),
'radius': np.sqrt(float(match.group(3)))
}
# Format 2: x^2 + (y-a)^2 = r (center at origin or on axis)
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*\+\s*\(([+-]?\s*\d*\.?\d*)\s*[+-]\s*y\)\^2\s*=\s*(\d+)\)', fact_expr)
if match:
cy = -float(match.group(1).replace(' ', '')) if match.group(1) else 0.0
return {
'type': 'circle',
'center': (0.0, cy),
'radius': np.sqrt(float(match.group(2)))
}
# Format 3: y^2 + (x-a)^2 = r or y^2 + (x+a)^2 = r
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*\+\s*\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*=\s*(\d+\.?\d*)\)', fact_expr)
if match:
sign = -1 if match.group(1) == '-' else 1
cx = sign * float(match.group(2))
return {
'type': 'circle',
'center': (cx, 0.0),
'radius': np.sqrt(float(match.group(3)))
}
# Format 4: x^2 + y^2 = r (center at origin)
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*\+\s*y\^2\s*=\s*(\d+\.?\d*)\)', fact_expr)
if match:
return {
'type': 'circle',
'center': (0.0, 0.0),
'radius': np.sqrt(float(match.group(1)))
}
# Format 5: Check if it's explicitly declared as Circle type
if re.search(r'\w+:\s*Circle', fact_expr):
# Try more general patterns
# (x + a)^2 + (y - b)^2 = r
match = re.search(r'\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*\+\s*\(y\s*([+-])\s*(\d+\.?\d*)\)\^2\s*=\s*(\d+\.?\d*)', fact_expr)
if match:
cx = float(match.group(2)) * (-1 if match.group(1) == '+' else 1)
cy = float(match.group(4)) * (-1 if match.group(3) == '+' else 1)
return {
'type': 'circle',
'center': (cx, cy),
'radius': np.sqrt(float(match.group(5)))
}
# Check for circle defined by diameter
if 'IsDiameter' in fact_expr:
return {
'type': 'circle',
'from_diameter': True
}
# Check for circle defined by slope product = -1 (perpendicular)
# Pattern: Slope(LineSegmentOf(P, A)) * Slope(LineSegmentOf(P, B)) = -1
# This means angle APB = 90°, so P lies on circle with diameter AB
slope_match = re.search(r'Slope\(LineSegmentOf\(\w+,\s*(\w+)\)\)\s*\*\s*Slope\(LineSegmentOf\(\w+,\s*(\w+)\)\)\s*=\s*-1', fact_expr)
if slope_match:
pt1_name = slope_match.group(1)
pt2_name = slope_match.group(2)
coords = self.parse_coordinates(fact_expr)
if pt1_name in coords and pt2_name in coords:
x1, y1 = coords[pt1_name]
x2, y2 = coords[pt2_name]
# Circle with diameter AB: center = midpoint, radius = |AB|/2
cx = (x1 + x2) / 2
cy = (y1 + y2) / 2
radius = np.sqrt((x2 - x1)**2 + (y2 - y1)**2) / 2
return {
'type': 'circle',
'center': (cx, cy),
'radius': radius,
'from_constraints': True
}
# General circle equation: x^2 + y^2 + Dx + Ey + F = 0
# Center: (-D/2, -E/2), Radius: sqrt(D²/4 + E²/4 - F)
# Pattern: ax^2 + by^2 + Dx + Ey + F = 0 where coefficients can vary
general_match = re.search(r'Expression\(\w+\)\s*=\s*\(([^)]+x\^2[^)]+y\^2[^)]+)\s*=\s*0\)', fact_expr)
if general_match and 'Circle' in fact_expr:
expr = general_match.group(1)
# Parse coefficients: D*x, E*y, F (constant)
D = E = F = 0.0
# Find coefficient of x (not x^2)
d_match = re.search(r'([+-]?\s*\d*\.?\d*)\s*\*?\s*x(?!\^)', expr)
if d_match:
d_str = d_match.group(1).replace(' ', '')
D = float(d_str) if d_str and d_str not in ['+', '-'] else (1.0 if d_str == '+' or d_str == '' else -1.0)
# Find coefficient of y (not y^2)
e_match = re.search(r'([+-]?\s*\d*\.?\d*)\s*\*?\s*y(?!\^)', expr)
if e_match:
e_str = e_match.group(1).replace(' ', '')
E = float(e_str) if e_str and e_str not in ['+', '-'] else (1.0 if e_str == '+' or e_str == '' else -1.0)
# Find constant term
const_match = re.search(r'([+-]\s*\d+\.?\d*)\s*(?:=|$)', expr)
if const_match:
f_str = const_match.group(1).replace(' ', '')
F = float(f_str)
cx = -D / 2
cy = -E / 2
r_sq = D**2 / 4 + E**2 / 4 - F
if r_sq > 0:
return {
'type': 'circle',
'center': (cx, cy),
'radius': np.sqrt(r_sq),
'from_constraints': True
}
# Shifted center circle: (x+h)^2 + y^2 = r^2 or (x-h)^2 + y^2 = r^2
shifted_match = re.search(r'Expression\(\w+\)\s*=\s*\(\(x([+-])(\d+\.?\d*)\)\^2\s*\+\s*y\^2\s*=\s*(\d+\.?\d*)\)', fact_expr)
if shifted_match:
sign = shifted_match.group(1)
h = float(shifted_match.group(2))
r_sq = float(shifted_match.group(3))
cx = -h if sign == '+' else h
return {
'type': 'circle',
'center': (cx, 0.0),
'radius': np.sqrt(r_sq),
}
# (x±h)^2 + (y±k)^2 = r^2
shifted_match2 = re.search(r'Expression\(\w+\)\s*=\s*\(\(x([+-])(\d+\.?\d*)\)\^2\s*\+\s*\(y([+-])(\d+\.?\d*)\)\^2\s*=\s*(\d+\.?\d*)\)', fact_expr)
if shifted_match2:
sign_x = shifted_match2.group(1)
h = float(shifted_match2.group(2))
sign_y = shifted_match2.group(3)
k = float(shifted_match2.group(4))
r_sq = float(shifted_match2.group(5))
cx = -h if sign_x == '+' else h
cy = -k if sign_y == '+' else k
return {
'type': 'circle',
'center': (cx, cy),
'radius': np.sqrt(r_sq),
}
return None
def parse_ellipse(self, fact_expr: str) -> Optional[Dict]:
"""Parse ellipse expression and return parameters."""
# x^2/a + y^2/b = 1
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2/(\d+)\s*\+\s*y\^2/(\d+)\s*=\s*1\)', fact_expr)
if match:
x_coef = float(match.group(1))
y_coef = float(match.group(2))
return {
'type': 'ellipse',
'x_coef': x_coef,
'y_coef': y_coef,
'a': np.sqrt(max(x_coef, y_coef)),
'b': np.sqrt(min(x_coef, y_coef)),
'major_axis': 'x' if x_coef > y_coef else 'y'
}
# y^2/b + x^2/a = 1
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2/(\d+)\s*\+\s*x\^2/(\d+)\s*=\s*1\)', fact_expr)
if match:
y_coef = float(match.group(1))
x_coef = float(match.group(2))
return {
'type': 'ellipse',
'x_coef': x_coef,
'y_coef': y_coef,
'a': np.sqrt(max(x_coef, y_coef)),
'b': np.sqrt(min(x_coef, y_coef)),
'major_axis': 'x' if x_coef > y_coef else 'y'
}
# x^2/a + y^2 = 1 (y has coefficient 1, x has numeric denominator)
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2/(\d+)\s*\+\s*y\^2\s*=\s*1\)', fact_expr)
if match:
x_coef = float(match.group(1))
y_coef = 1.0
return {
'type': 'ellipse',
'x_coef': x_coef,
'y_coef': y_coef,
'a': np.sqrt(x_coef), # a > b since x_coef > 1
'b': 1.0,
'major_axis': 'x'
}
# y^2/a + x^2 = 1 (x has coefficient 1, y has numeric denominator)
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2/(\d+)\s*\+\s*x\^2\s*=\s*1\)', fact_expr)
if match:
y_coef = float(match.group(1))
x_coef = 1.0
return {
'type': 'ellipse',
'x_coef': x_coef,
'y_coef': y_coef,
'a': np.sqrt(y_coef), # a > b since y_coef > 1
'b': 1.0,
'major_axis': 'y'
}
# y^2 + x^2/k^2 = 1 (y has coefficient 1)
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*\+\s*x\^2/\w+\^?2?\s*=\s*1\)', fact_expr)
if match:
return {
'type': 'ellipse',
'x_coef': 4.0, # default
'y_coef': 1.0,
'a': 2.0,
'b': 1.0,
'major_axis': 'x',
'symbolic': True
}
# x^2 + y^2/k^2 = 1
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*\+\s*y\^2/\w+\^?2?\s*=\s*1\)', fact_expr)
if match:
return {
'type': 'ellipse',
'x_coef': 1.0,
'y_coef': 4.0, # default
'a': 2.0,
'b': 1.0,
'major_axis': 'y',
'symbolic': True
}
# Ellipse with symbolic: y^2/b^2 + x^2/a^2 = 1 or x^2/a^2 + y^2/b^2 = 1
if re.search(r'Expression\(\w+\)\s*=\s*\([xy]\^2/\w+\^?2?\s*\+\s*[xy]\^2/\w+\^?2?\s*=\s*1\)', fact_expr):
return {
'type': 'ellipse',
'x_coef': 4.0,
'y_coef': 3.0,
'a': 2.0,
'b': np.sqrt(3),
'major_axis': 'x',
'symbolic': True
}
# x^2 + N*y^2 = M (ellipse: x²/M + y²/(M/N) = 1)
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*\+\s*(\d+)\*y\^2\s*=\s*(\d+)\)', fact_expr)
if match:
n = float(match.group(1))
m = float(match.group(2))
a_sq = m # x coefficient
b_sq = m / n # y coefficient
a = np.sqrt(max(a_sq, b_sq))
b = np.sqrt(min(a_sq, b_sq))
return {
'type': 'ellipse',
'x_coef': a_sq,
'y_coef': b_sq,
'a': a,
'b': b,
'major_axis': 'x' if a_sq >= b_sq else 'y'
}
# N*x^2 + y^2 = M (ellipse: x²/(M/N) + y²/M = 1)
match = re.search(r'Expression\(\w+\)\s*=\s*\((\d+)\*x\^2\s*\+\s*y\^2\s*=\s*(\d+)\)', fact_expr)
if match:
n = float(match.group(1))
m = float(match.group(2))
a_sq = m / n # x coefficient
b_sq = m # y coefficient
a = np.sqrt(max(a_sq, b_sq))
b = np.sqrt(min(a_sq, b_sq))
return {
'type': 'ellipse',
'x_coef': a_sq,
'y_coef': b_sq,
'a': a,
'b': b,
'major_axis': 'x' if a_sq >= b_sq else 'y'
}
# Check for Ellipse with geometric constraints (no explicit expression)
if 'Ellipse' in fact_expr:
coords = self.parse_coordinates(fact_expr)
eccentricity = self.parse_eccentricity(fact_expr)
c = None
major_axis = 'x' # default
# Try to find focus coordinate from various patterns
# Pattern 1: Coordinate(F) = (c, 0); RightFocus(G) = F
for name, (fx, fy) in coords.items():
if f'RightFocus(' in fact_expr and f') = {name}' in fact_expr:
c = abs(fx)
major_axis = 'x'
break
elif f'LeftFocus(' in fact_expr and f') = {name}' in fact_expr:
c = abs(fx)
major_axis = 'x'
break
elif f'UpperFocus(' in fact_expr and f') = {name}' in fact_expr:
c = abs(fy)
major_axis = 'y'
break
elif f'LowerFocus(' in fact_expr and f') = {name}' in fact_expr:
c = abs(fy)
major_axis = 'y'
break
# Pattern 2: Coordinate(OneOf(Focus(...)))
if c is None:
focus_match = re.search(r'Coordinate\(OneOf\(Focus\(\w+\)\)\)\s*=\s*\(([^,]+),\s*([^)]+)\)', fact_expr)
if focus_match:
try:
fx = float(focus_match.group(1).strip())
fy = float(focus_match.group(2).strip())
c = abs(fx) if abs(fy) < 0.01 else abs(fy)
major_axis = 'x' if abs(fy) < 0.01 else 'y'
except:
pass
# Pattern 2b: Two foci with explicit coordinates: Focus(G) = {F1, F2}
if c is None:
foci_match = re.search(r'Focus\(\w+\)\s*=\s*\{(\w+),\s*(\w+)\}', fact_expr)
if foci_match:
f1_name = foci_match.group(1)
f2_name = foci_match.group(2)
if f1_name in coords and f2_name in coords:
fx1, fy1 = coords[f1_name]
fx2, fy2 = coords[f2_name]
# c = half the distance between foci
c = np.sqrt((fx2 - fx1)**2 + (fy2 - fy1)**2) / 2
major_axis = 'x' if abs(fy1) < 0.01 else 'y'
# Pattern 3: PointOnCurve(Focus(G), xAxis) - focus on x-axis
if c is None and 'PointOnCurve(Focus(' in fact_expr:
if 'xAxis' in fact_expr:
major_axis = 'x'
elif 'yAxis' in fact_expr:
major_axis = 'y'
# Pattern 4: Length(MajorAxis(G)) = k * Length(MinorAxis(G))
axis_ratio = None
ratio_match = re.search(r'Length\(MajorAxis\(\w+\)\)\s*=\s*(\d+)\s*\*\s*Length\(MinorAxis', fact_expr)
if ratio_match:
axis_ratio = float(ratio_match.group(1))
# Pattern 5: Length(MinorAxis(G)) = N or Length(MinorAxis(G)) = 2*sqrt(N)
minor_axis_len = None
match = re.search(r'Length\(MinorAxis\(\w+\)\)\s*=\s*2\*sqrt\((\d+)\)', fact_expr)
if match:
minor_axis_len = 2 * np.sqrt(float(match.group(1)))
else:
match = re.search(r'Length\(MinorAxis\(\w+\)\)\s*=\s*(\d+)', fact_expr)
if match:
minor_axis_len = float(match.group(1))
# Pattern 6: Length(MajorAxis(G)) = N
major_axis_len = None
match = re.search(r'Length\(MajorAxis\(\w+\)\)\s*=\s*2\*sqrt\((\d+)\)', fact_expr)
if match:
major_axis_len = 2 * np.sqrt(float(match.group(1)))
else:
match = re.search(r'Length\(MajorAxis\(\w+\)\)\s*=\s*(\d+)', fact_expr)
if match:
major_axis_len = float(match.group(1))
# Pattern 7: FocalLength(G) = N or 2*c = N
focal_length = None
match = re.search(r'FocalLength\(\w+\)\s*=\s*(\d+)', fact_expr)
if match:
focal_length = float(match.group(1))
else:
match = re.search(r'2\*c\s*=\s*(\d+)', fact_expr)
if match:
focal_length = float(match.group(1))
# Case: c from FocalLength + b from MinorAxis
if c is None and focal_length:
c = focal_length / 2
# Case: b from MinorAxis length
if minor_axis_len:
b_from_minor = minor_axis_len / 2
if c is not None:
a = np.sqrt(c**2 + b_from_minor**2)
b = b_from_minor
# Case: a from MajorAxis length
if major_axis_len:
a_from_major = major_axis_len / 2
if c is not None:
a = a_from_major
b = np.sqrt(a**2 - c**2) if a > c else None
# Compute a, b from constraints
a, b = None, None
# Case 1: c and eccentricity known → a = c/e, b = sqrt(a² - c²)
if c is not None and eccentricity and 0 < eccentricity < 1:
a = c / eccentricity
b = np.sqrt(a**2 - c**2)
# Case 2: eccentricity known + axis ratio → solve for a, b
elif eccentricity and 0 < eccentricity < 1 and axis_ratio:
# a/b = axis_ratio, e = sqrt(1 - b²/a²) = sqrt(1 - 1/ratio²)
# This gives us the ratio, need another constraint for absolute size
a = 2.0 * axis_ratio # default size
b = 2.0
# Case 3: axis ratio + point on curve
elif axis_ratio:
# Find a point on curve and solve
for name, (px, py) in coords.items():
if f'PointOnCurve({name}' in fact_expr:
# x²/a² + y²/b² = 1, a = ratio * b
# x²/(ratio*b)² + y²/b² = 1
# x²/ratio² + y² = b²
b_sq = px**2 / axis_ratio**2 + py**2
if b_sq > 0:
b = np.sqrt(b_sq)
a = axis_ratio * b
break
# Case 4: Two points on ellipse → solve for a, b
if a is None:
points_on_curve = []
for name, (px, py) in coords.items():
if f'PointOnCurve({name}' in fact_expr and name not in ['F', 'F1', 'F2']:
points_on_curve.append((px, py))
if len(points_on_curve) >= 2:
# x1²/a² + y1²/b² = 1
# x2²/a² + y2²/b² = 1
p1, p2 = points_on_curve[0], points_on_curve[1]
x1, y1 = p1
x2, y2 = p2
# Solve: let u = 1/a², v = 1/b²
# x1²u + y1²v = 1
# x2²u + y2²v = 1
det = x1**2 * y2**2 - x2**2 * y1**2
if abs(det) > 1e-10:
u = (y2**2 - y1**2) / det
v = (x1**2 - x2**2) / det
if u > 0 and v > 0:
a_sq = 1 / u
b_sq = 1 / v
a = np.sqrt(max(a_sq, b_sq))
b = np.sqrt(min(a_sq, b_sq))
major_axis = 'x' if a_sq >= b_sq else 'y'
# Return if we have valid a, b
if a is not None and b is not None and a > 0 and b > 0:
return {
'type': 'ellipse',
'x_coef': a**2 if major_axis == 'x' else b**2,
'y_coef': b**2 if major_axis == 'x' else a**2,
'a': a,
'b': b,
'major_axis': major_axis,
'from_constraints': True
}
return None
def parse_hyperbola(self, fact_expr: str, main_conic_name: str = None) -> Optional[Dict]:
"""Parse hyperbola expression.
Args:
fact_expr: The fact expression string
main_conic_name: If provided, only match Expression(main_conic_name) = ...
This avoids matching secondary hyperbola expressions.
"""
# Build regex prefix based on main_conic_name
if main_conic_name:
expr_prefix = rf'Expression\({re.escape(main_conic_name)}\)\s*=\s*\('
else:
expr_prefix = r'Expression\(\w+\)\s*=\s*\('
# Horizontal: x^2/a - y^2/b = 1
match = re.search(expr_prefix + r'x\^2/(\d+)\s*-\s*y\^2/(\d+)\s*=\s*1\)', fact_expr)
if match:
a_sq = float(match.group(1))
b_sq = float(match.group(2))
return {
'type': 'hyperbola',
'a': np.sqrt(a_sq),
'b': np.sqrt(b_sq),
'a_squared': a_sq,
'b_squared': b_sq,
'orientation': 'horizontal'
}
# Vertical: y^2/a - x^2/b = 1
match = re.search(expr_prefix + r'y\^2/(\d+)\s*-\s*x\^2/(\d+)\s*=\s*1\)', fact_expr)
if match:
a_sq = float(match.group(1))
b_sq = float(match.group(2))
return {
'type': 'hyperbola',
'a': np.sqrt(a_sq),
'b': np.sqrt(b_sq),
'a_squared': a_sq,
'b_squared': b_sq,
'orientation': 'vertical'
}
# Horizontal: x^2/a - y^2 = 1 (b=1)
match = re.search(expr_prefix + r'x\^2/(\d+)\s*-\s*y\^2\s*=\s*1\)', fact_expr)
if match:
a_sq = float(match.group(1))
return {
'type': 'hyperbola',
'a': np.sqrt(a_sq),
'b': 1.0,
'a_squared': a_sq,
'b_squared': 1.0,
'orientation': 'horizontal'
}
# x^2 - y^2 = 1
if re.search(expr_prefix + r'x\^2\s*-\s*y\^2\s*=\s*1\)', fact_expr):
return {
'type': 'hyperbola',
'a': 1.0,
'b': 1.0,
'a_squared': 1.0,
'b_squared': 1.0,
'orientation': 'horizontal'
}
# Horizontal: x^2 - y^2/b = 1 (a=1, b^2 = b_val)
match = re.search(expr_prefix + r'x\^2\s*-\s*y\^2/(\d+)\s*=\s*1\)', fact_expr)
if match:
b_sq = float(match.group(1))
return {
'type': 'hyperbola',
'a': 1.0,
'b': np.sqrt(b_sq),
'a_squared': 1.0,
'b_squared': b_sq,
'orientation': 'horizontal'
}
# x^2 - y^2 = N (divide by N to normalize: x²/N - y²/N = 1)
match = re.search(expr_prefix + r'x\^2\s*-\s*y\^2\s*=\s*(\d+)\)', fact_expr)
if match:
n = float(match.group(1))
a = np.sqrt(n)
return {
'type': 'hyperbola',
'a': a,
'b': a,
'a_squared': n,
'b_squared': n,
'orientation': 'horizontal'
}
# x^2 - N*y^2 = M (x²/M - y²/(M/N) = 1)
match = re.search(expr_prefix + r'x\^2\s*-\s*(\d+)\*y\^2\s*=\s*(\d+)\)', fact_expr)
if match:
n = float(match.group(1))
m = float(match.group(2))
a_sq = m
b_sq = m / n
return {
'type': 'hyperbola',
'a': np.sqrt(a_sq),
'b': np.sqrt(b_sq),
'a_squared': a_sq,
'b_squared': b_sq,
'orientation': 'horizontal'
}
# N*x^2 - M*y^2 = K (x²/(K/N) - y²/(K/M) = 1)
match = re.search(expr_prefix + r'(\d+)\*x\^2\s*-\s*(\d+)\*y\^2\s*=\s*(\d+)\)', fact_expr)
if match:
n = float(match.group(1))
m = float(match.group(2))
k = float(match.group(3))
a_sq = k / n
b_sq = k / m
return {
'type': 'hyperbola',
'a': np.sqrt(a_sq),
'b': np.sqrt(b_sq),
'a_squared': a_sq,
'b_squared': b_sq,
'orientation': 'horizontal'
}
# x^2/a - y^2/b = -1 → y^2/b - x^2/a = 1 (vertical hyperbola)
match = re.search(expr_prefix + r'x\^2/(\d+)\s*-\s*y\^2/(\d+)\s*=\s*-1\)', fact_expr)
if match:
a_sq = float(match.group(1)) # becomes b² for vertical
b_sq = float(match.group(2)) # becomes a² for vertical
return {
'type': 'hyperbola',
'a': np.sqrt(b_sq),
'b': np.sqrt(a_sq),
'a_squared': b_sq,
'b_squared': a_sq,
'orientation': 'vertical'
}
# x^2-y^2/N=1 (no spaces) - horizontal
match = re.search(expr_prefix + r'x\^2-y\^2/(\d+)=1\)', fact_expr)
if match:
b_sq = float(match.group(1))
return {
'type': 'hyperbola',
'a': 1.0,
'b': np.sqrt(b_sq),
'a_squared': 1.0,
'b_squared': b_sq,
'orientation': 'horizontal'
}
# Vertical: y^2 - x^2/a = 1 (b=1 in standard form, here y² term positive)
match = re.search(expr_prefix + r'y\^2\s*-\s*x\^2/(\d+)\s*=\s*1\)', fact_expr)
if match:
b_sq = float(match.group(1))
return {
'type': 'hyperbola',
'a': 1.0, # For vertical hyperbola y²/a² - x²/b² = 1, a=1
'b': np.sqrt(b_sq),
'a_squared': 1.0,
'b_squared': b_sq,
'orientation': 'vertical'
}
# y^2 - x^2 = 1 (vertical hyperbola, a=1, b=1)
if re.search(expr_prefix + r'y\^2\s*-\s*x\^2\s*=\s*1\)', fact_expr):
return {
'type': 'hyperbola',
'a': 1.0,
'b': 1.0,
'a_squared': 1.0,
'b_squared': 1.0,
'orientation': 'vertical'
}
# Vertical symbolic: -x^2/b^2 + y^2/a^2 = 1
if re.search(expr_prefix + r'-x\^2/\w+\^?2?\s*\+\s*y\^2/\w+\^?2?\s*=\s*1\)', fact_expr):
return {
'type': 'hyperbola',
'a': 2.0, # default
'b': 1.5, # default
'a_squared': 4.0,
'b_squared': 2.25,
'symbolic': True,
'orientation': 'vertical'
}
# Vertical symbolic: y^2/a^2 - x^2/b^2 = 1
if re.search(expr_prefix + r'y\^2/\w+\^?2?\s*-\s*x\^2/\w+\^?2?\s*=\s*1\)', fact_expr):
return {
'type': 'hyperbola',
'a': 2.0, # default
'b': 1.5, # default
'a_squared': 4.0,
'b_squared': 2.25,
'symbolic': True,
'orientation': 'vertical'
}
# Horizontal symbolic: x^2/a^2 - y^2/b^2 = 1
if re.search(expr_prefix + r'x\^2/\w+\^?2?\s*-\s*y\^2/\w+\^?2?\s*=\s*1\)', fact_expr):
return {
'type': 'hyperbola',
'a': 2.0, # default
'b': 1.5, # default
'a_squared': 4.0,
'b_squared': 2.25,
'symbolic': True,
'orientation': 'horizontal'
}
# Horizontal symbolic: -y^2/b^2 + x^2/a^2 = 1
if re.search(expr_prefix + r'-y\^2/\w+\^?2?\s*\+\s*x\^2/\w+\^?2?\s*=\s*1\)', fact_expr):
return {
'type': 'hyperbola',
'a': 2.0, # default
'b': 1.5, # default
'a_squared': 4.0,
'b_squared': 2.25,
'symbolic': True,
'orientation': 'horizontal'
}
# Check for hyperbola type with asymptote/focus constraints (no explicit expression)
if 'Hyperbola' in fact_expr:
# Extract constraints
asymptote = self.parse_asymptote_slope(fact_expr)
coords = self.parse_coordinates(fact_expr)
focus_coords = [(n, c) for n, c in coords.items() if 'F' in n]
if asymptote or len(focus_coords) >= 2:
# Calculate a and b from constraints
if len(focus_coords) >= 2:
f1, f2 = focus_coords[0][1], focus_coords[1][1]
c = abs(f1[0] - f2[0]) / 2 if f1[1] == f2[1] == 0 else 3.0
else:
c = 3.0
if asymptote:
# b/a = asymptote, c² = a² + b²
# Let a be found from c and asymptote
# c² = a² + (a*slope)² = a²(1 + slope²)
a = c / np.sqrt(1 + asymptote**2)
b = a * asymptote
else:
a = c / np.sqrt(2)
b = a
return {
'type': 'hyperbola',
'a': a,
'b': b,
'a_squared': a**2,
'b_squared': b**2,
'from_constraints': True,
'orientation': 'horizontal' # Default, focus on x-axis
}
return None
def parse_parabola(self, fact_expr: str) -> Optional[Dict]:
"""Parse parabola expression."""
# y^2 = 4x, y^2 = 2*p*x, etc.
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*(\d+)\*x\)', fact_expr)
if match:
coef = float(match.group(1))
return {
'type': 'parabola',
'p': coef / 4, # 4p = coef
'direction': 'right'
}
# x^2 = 4y, x^2 = 2*p*y
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*(\d+)\*y\)', fact_expr)
if match:
coef = float(match.group(1))
return {
'type': 'parabola',
'p': coef / 4,
'direction': 'up'
}
# x^2 = -Ny (downward opening)
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*-(\d+)\*y\)', fact_expr)
if match:
coef = float(match.group(1))
return {
'type': 'parabola',
'p': coef / 4,
'direction': 'down'
}
# x^2 = y/N (small opening upward)
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*y/(\d+)\)', fact_expr)
if match:
divisor = float(match.group(1))
return {
'type': 'parabola',
'p': 1 / (4 * divisor),
'direction': 'up'
}
# y = -x^2/N (downward parabola in vertex form)
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\s*=\s*-x\^2/(\d+)\)', fact_expr)
if match:
divisor = float(match.group(1))
# y = -x²/N → x² = -Ny → 4p = N → p = N/4
return {
'type': 'parabola',
'p': divisor / 4,
'direction': 'down'
}
# y = x^2/N (upward parabola in vertex form)
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\s*=\s*x\^2/(\d+)\)', fact_expr)
if match:
divisor = float(match.group(1))
# y = x²/N → x² = Ny → 4p = N → p = N/4
return {
'type': 'parabola',
'p': divisor / 4,
'direction': 'up'
}
# y^2 = p*x (symbolic p, single coefficient)
if re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*\w+\*x\)', fact_expr):
return {
'type': 'parabola',
'p': 1.0, # Default, will be optimized
'direction': 'right',
'symbolic': True
}
# x^2 = p*y (symbolic p, single coefficient)
if re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*\w+\*y\)', fact_expr):
return {
'type': 'parabola',
'p': 1.0,
'direction': 'up',
'symbolic': True
}
# y^2 = 2*(p*x)
if re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*2\*\(\w+\*x\)\)', fact_expr):
return {
'type': 'parabola',
'p': 1.0, # Default, will be optimized
'direction': 'right',
'symbolic': True
}
# x^2 = 2*(p*y)
if re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*2\*\(\w+\*y\)\)', fact_expr):
return {
'type': 'parabola',
'p': 1.0,
'direction': 'up',
'symbolic': True
}
# y = 2*x^2 or y = a*x^2 (vertex form)
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\s*=\s*(\d*)\*?x\^2\)', fact_expr)
if match:
coef = match.group(1)
a = float(coef) if coef else 1.0
return {
'type': 'parabola',
'p': 1 / (4 * a),
'direction': 'up'
}
# y = x^2/8 (division form)
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\s*=\s*x\^2/(\d+)\)', fact_expr)
if match:
divisor = float(match.group(1))
return {
'type': 'parabola',
'p': divisor / 4,
'direction': 'up'
}
# y^2 = -8*x (left opening)
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*-(\d+)\*x\)', fact_expr)
if match:
coef = float(match.group(1))
return {
'type': 'parabola',
'p': coef / 4,
'direction': 'left'
}
# y^2 = 2*p*x (symbolic p) - parabola opening right
if re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*2\*p\*x\)', fact_expr):
return {
'type': 'parabola',
'p': 1.0, # Default, will be optimized
'direction': 'right',
'symbolic': True
}
# x^2 = 2*p*y (symbolic p) - parabola opening up
if re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*2\*p\*y\)', fact_expr):
return {
'type': 'parabola',
'p': 1.0, # Default, will be optimized
'direction': 'up',
'symbolic': True
}
# y^2 = x (p = 1/4, so 4p = 1) - parabola opening right
if re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*x\)', fact_expr):
return {
'type': 'parabola',
'p': 0.25, # y^2 = 4px, so 4p = 1, p = 0.25
'direction': 'right'
}
# x^2 = y (p = 1/4) - parabola opening up
if re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*y\)', fact_expr):
return {
'type': 'parabola',
'p': 0.25,
'direction': 'up'
}
# Check for Parabola type with geometric constraints
if 'Parabola' in fact_expr:
coords = self.parse_coordinates(fact_expr)
# Determine direction from constraints
direction = None
if 'PointOnCurve(Focus(' in fact_expr:
if 'xAxis' in fact_expr:
direction = 'right' # Focus on x-axis → horizontal parabola
elif 'yAxis' in fact_expr:
direction = 'up' # Focus on y-axis → vertical parabola
# Check for vertex at origin
vertex_at_origin = 'Vertex(' in fact_expr and 'Origin' in fact_expr
# Try to find p from point on curve + distance to focus
# Pattern: Distance(P, Focus(G)) = d
dist_match = re.search(r'Distance\((\w+),\s*Focus\(\w+\)\)\s*=\s*(\d+)', fact_expr)
if dist_match and vertex_at_origin:
pt_name = dist_match.group(1)
dist_val = float(dist_match.group(2))
if pt_name in coords:
px, py = coords[pt_name]
# For parabola y² = 4px with vertex at origin:
# Distance from point to focus = |x + p|
# For right-opening: focus at (p, 0), dist = sqrt((x-p)² + y²)
# We can solve for p
if direction == 'right':
# dist² = (px - p)² + py²
# y² = 4px → py² = 4p*px
# Substitute: dist² = (px - p)² + 4p*px
# dist² = px² - 2*px*p + p² + 4p*px = px² + 2*px*p + p² = (px + p)²
# So dist = |px + p|, p = dist - px (assuming px > 0)
p = (dist_val - px) if px >= 0 else (dist_val + px)
if p > 0:
return {
'type': 'parabola',
'p': p,
'direction': 'right',
'from_constraints': True
}
elif direction == 'up':
p = (dist_val - py) if py >= 0 else (dist_val + py)
if p > 0:
return {
'type': 'parabola',
'p': p,
'direction': 'up',
'from_constraints': True
}
# Look for focus coordinate in coords
for name, (px, py) in coords.items():
# If this is a focus (F in name) or explicitly marked as focus
if 'F' in name and (f'Focus(' in fact_expr):
if abs(py) < 0.01: # Focus on x-axis
return {
'type': 'parabola',
'p': abs(px), # Focus at (p, 0)
'direction': 'right' if px > 0 else 'left',
'from_constraints': True
}
elif abs(px) < 0.01: # Focus on y-axis
return {
'type': 'parabola',
'p': abs(py),
'direction': 'up' if py > 0 else 'down',
'from_constraints': True
}
# Default: parabola with vertex at origin, direction from constraints
if vertex_at_origin and direction:
return {
'type': 'parabola',
'p': 1.0, # Default, will be optimized
'direction': direction,
'symbolic': True
}
return None
def parse_coordinates(self, fact_expr: str) -> Dict[str, Tuple[float, float]]:
"""Extract point coordinates."""
coords = {}
# Use a more robust pattern that handles nested parentheses
# Match: Coordinate(Name) = (x_expr, y_expr)
# Find all Coordinate(...) = (...) patterns
coord_pattern = r'Coordinate\((\w+)\)\s*=\s*\(([^;]+)\)'
for match in re.finditer(coord_pattern, fact_expr):
name = match.group(1)
coord_str = match.group(2)
# Split by comma, but handle nested parentheses
depth = 0
parts = []
current = ""
for char in coord_str:
if char == '(':
depth += 1
current += char
elif char == ')':
depth -= 1
current += char
elif char == ',' and depth == 0:
parts.append(current.strip())
current = ""
else:
current += char
parts.append(current.strip())
if len(parts) >= 2:
try:
x = parts[0].replace('sqrt', 'np.sqrt').replace('^', '**')
y = parts[1].replace('sqrt', 'np.sqrt').replace('^', '**')
x_val = float(eval(x, {"np": np, "__builtins__": {}}))
y_val = float(eval(y, {"np": np, "__builtins__": {}}))
coords[name] = (x_val, y_val)
except:
pass
return coords
def parse_eccentricity(self, fact_expr: str) -> Optional[float]:
"""Extract eccentricity constraint."""
# sqrt pattern
match = re.search(r'Eccentricity\(\w+\)\s*=\s*sqrt\((\d+)\)', fact_expr)
if match:
return np.sqrt(float(match.group(1)))
# Fraction pattern (MUST be checked BEFORE decimal pattern!)
match = re.search(r'Eccentricity\(\w+\)\s*=\s*(\d+)/(\d+)', fact_expr)
if match:
return float(match.group(1)) / float(match.group(2))
# Simple decimal pattern
match = re.search(r'Eccentricity\(\w+\)\s*=\s*([\d.]+)', fact_expr)
if match:
return float(match.group(1))
return None
def parse_asymptote_slope(self, fact_expr: str) -> Optional[float]:
"""Extract asymptote slope for hyperbola.
Supports patterns like:
- y = sqrt(2)*x
- y = pm*sqrt(2)*x
- y = pm*(sqrt(2)/2)*x or y = pm*(sqrt(2)/2)*X
- y = 4/3*x
- y = pm*3*x
- y = pm*(sqrt(2)*x)
"""
# Pattern: y = sqrt(N)*x
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*sqrt\((\d+)\)\*[xX]\)', fact_expr)
if match:
return np.sqrt(float(match.group(1)))
# Pattern: y = pm*sqrt(N)*x or y = pm*(sqrt(N)*x)
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*pm\*\(?sqrt\((\d+)\)\*?[xX]\)?', fact_expr)
if match:
return np.sqrt(float(match.group(1)))
# Pattern: y = pm*(sqrt(N)/M)*x (e.g., sqrt(2)/2)
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*pm\*\(sqrt\((\d+)\)/(\d+)\)\*[xX]\)', fact_expr)
if match:
return np.sqrt(float(match.group(1))) / float(match.group(2))
# Pattern: y = A/B*x (fraction slope)
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*(\d+)/(\d+)\*[xX]\)', fact_expr)
if match:
return float(match.group(1)) / float(match.group(2))
# Pattern: y = pm*N*x (integer slope)
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*pm\*(\d+)\*[xX]\)', fact_expr)
if match:
return float(match.group(1))
# Pattern: y = N*x (simple integer slope)
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*(\d+)\*[xX]\)', fact_expr)
if match:
return float(match.group(1))
# Pattern: pm*A*y+B*x=0 → y = ±(B/A)*x, slope = B/A
match = re.search(r'Asymptote.*?=\s*\(pm\*(\d+)\*y\+(\d+)\*x=0\)', fact_expr)
if match:
a = float(match.group(1))
b = float(match.group(2))
return b / a
# Pattern: pm*(A/B)*x or y = pm*(A/B)*x
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*pm\*\((\d+)/(\d+)\)\*[xX]\)', fact_expr)
if match:
return float(match.group(1)) / float(match.group(2))
return None
# =============================================================================
# Main Batch Processor
# =============================================================================
class SDFBatchProcessor:
"""
Process problems using the SDF methodology.
"""
def __init__(self, output_dir: str = 'sdf_output'):
self.output_dir = Path(output_dir)
self.output_dir.mkdir(exist_ok=True, parents=True)
self.parser = ProblemParser()
self.optimizer = GeometryOptimizer()
# Create subdirectories
for subdir in ['ellipse', 'hyperbola', 'parabola', 'circle']:
(self.output_dir / subdir).mkdir(exist_ok=True)
def process_problem(self, problem: Dict, idx: int, verbose: bool = False) -> Dict:
"""Process a single problem using SDF methodology."""
result = {
'index': idx,
'success': False,
'error': None
}
try:
fact_expr = problem.get('fact_expressions', '')
text = problem.get('text', '')
query_expr = problem.get('query_expressions', '')
# Determine the primary shape to visualize based on query
# If query is about Expression(G), find what G is
primary_shape = None
query_match = re.search(r'Expression\((\w+)\)', query_expr)
if query_match:
shape_name = query_match.group(1)
# Find what type this shape is
type_match = re.search(rf'{shape_name}:\s*(\w+)', fact_expr)
if type_match:
primary_shape = type_match.group(1).lower()
# Detect main conic names for each type
main_hyperbola_name = self._detect_main_conic_name(fact_expr, 'hyperbola')
main_ellipse_name = self._detect_main_conic_name(fact_expr, 'ellipse')
main_parabola_name = self._detect_main_conic_name(fact_expr, 'parabola')
main_circle_name = self._detect_main_conic_name(fact_expr, 'circle')
# Try to parse as different conic types, using main conic names
ellipse_params = self.parser.parse_ellipse(fact_expr)
hyperbola_params = self.parser.parse_hyperbola(fact_expr, main_hyperbola_name)
parabola_params = self.parser.parse_parabola(fact_expr)
circle_params = self.parser.parse_circle(fact_expr)
# Additional constraints
coords = self.parser.parse_coordinates(fact_expr)
eccentricity = self.parser.parse_eccentricity(fact_expr)
asymptote = self.parser.parse_asymptote_slope(fact_expr)
# Special case: moving circle locus (externally tangent to fixed circle, passes through a fixed point)
moving_circle = self._detect_moving_circle_locus(fact_expr, coords)
if moving_circle:
params_hyp = moving_circle
return self._process_hyperbola(problem, idx, params_hyp, coords, eccentricity=None, asymptote=None, verbose=verbose)
# Process based on primary shape (if determined) or first available
if primary_shape == 'hyperbola' and hyperbola_params:
result = self._process_hyperbola(problem, idx, hyperbola_params, coords, eccentricity, asymptote, verbose)
elif primary_shape == 'ellipse' and ellipse_params:
result = self._process_ellipse(problem, idx, ellipse_params, coords, eccentricity, verbose)
elif primary_shape == 'parabola' and parabola_params:
result = self._process_parabola(problem, idx, parabola_params, coords, verbose)
elif primary_shape == 'circle' and circle_params:
result = self._process_circle(problem, idx, circle_params, coords, verbose)
# Fallback to order of detection, but prioritize hyperbola over ellipse
# (many problems have both, with hyperbola as the main subject)
elif hyperbola_params:
result = self._process_hyperbola(problem, idx, hyperbola_params, coords, eccentricity, asymptote, verbose)
elif ellipse_params:
result = self._process_ellipse(problem, idx, ellipse_params, coords, eccentricity, verbose)
elif parabola_params:
result = self._process_parabola(problem, idx, parabola_params, coords, verbose)
elif circle_params:
result = self._process_circle(problem, idx, circle_params, coords, verbose)
else:
result['error'] = 'Unsupported or unparseable expression'
return result
# Validation step
result = self._validate_result(result, problem)
return result
except Exception as e:
result['error'] = str(e)
return result
def _validate_result(self, result: Dict, problem: Dict) -> Dict:
"""
Lightweight validation to catch obvious incorrect outputs.
Adds validation_reasons when failed and flips success=False.
"""
if not result.get('success'):
return result
conic_type = result.get('conic_type')
fact_expr = result.get('fact_expr', problem.get('fact_expressions', ''))
coords = result.get('coords', {})
reasons = []
tol = 3e-2
# Dynamically detect the main conic name from fact_expr
main_conic = self._detect_main_conic_name(fact_expr, conic_type)
# Get only points that are explicitly on the MAIN conic
points_on_main = self._points_on_main_conic(fact_expr, coords, main_conic)
def has_point_constraint(name: str) -> bool:
return name in points_on_main
if conic_type == 'ellipse':
params = result.get('params', {})
if 'a' not in params or 'b' not in params:
return result # Skip validation if params incomplete
a = params['a']
b = params['b']
if a <= 0 or b <= 0:
reasons.append('ellipse_nonpositive_axes')
ecc_target = self.parser.parse_eccentricity(fact_expr)
if ecc_target and ecc_target < 1:
ecc_calc = np.sqrt(max(0.0, 1 - (min(a, b) / max(a, b))**2))
if abs(ecc_calc - ecc_target) > 0.05:
reasons.append('ellipse_ecc_mismatch')
# Point-on-curve checks
for name, (px, py) in coords.items():
if has_point_constraint(name):
val = (px**2) / (a**2) + (py**2) / (b**2) - 1
if abs(val) > tol:
reasons.append('ellipse_point_off_curve')
break
elif conic_type == 'hyperbola':
params = result.get('params', {})
if 'a' not in params or 'b' not in params:
return result # Skip validation if params incomplete
a = params['a']
b = params['b']
orientation = params.get('orientation', 'horizontal')
if a <= 0 or b <= 0:
reasons.append('hyperbola_nonpositive_axes')
asym = self.parser.parse_asymptote_slope(fact_expr)
if asym:
if abs(b / a - asym) > 0.05:
reasons.append('hyperbola_asymptote_mismatch')
ecc_target = self.parser.parse_eccentricity(fact_expr)
if ecc_target and ecc_target > 1:
ecc_calc = np.sqrt(1 + (b / a) ** 2)
if abs(ecc_calc - ecc_target) > 0.05:
reasons.append('hyperbola_ecc_mismatch')
for name, (px, py) in coords.items():
if has_point_constraint(name):
# Use correct formula based on orientation
if orientation == 'vertical':
# y²/a² - x²/b² = 1
val = (py**2) / (a**2) - (px**2) / (b**2) - 1
else:
# x²/a² - y²/b² = 1 (horizontal, default)
val = (px**2) / (a**2) - (py**2) / (b**2) - 1
if abs(val) > tol:
reasons.append('hyperbola_point_off_curve')
break
elif conic_type == 'parabola':
p = result['params']['p']
direction = result['params'].get('direction', 'right')
if p <= 0:
reasons.append('parabola_nonpositive_p')
# value at origin should be zero for standard placement
if direction == 'right':
base_val = 0 - 4 * p * 0
elif direction == 'left':
base_val = 0 + 4 * p * 0
elif direction == 'up':
base_val = 0 - 4 * p * 0
else: # down
base_val = 0 + 4 * p * 0
if abs(base_val) > tol:
reasons.append('parabola_origin_offset')
for name, (px, py) in coords.items():
if has_point_constraint(name):
if direction == 'right':
val = py**2 - 4 * p * px
elif direction == 'left':
val = py**2 + 4 * p * px
elif direction == 'up':
val = px**2 - 4 * p * py
else:
val = px**2 + 4 * p * py
if abs(val) > tol:
reasons.append('parabola_point_off_curve')
break
elif conic_type == 'circle':
r = result['params']['radius']
cx, cy = result['params']['center']
if r <= 0:
reasons.append('circle_nonpositive_radius')
for name, (px, py) in coords.items():
if has_point_constraint(name):
val = (px - cx) ** 2 + (py - cy) ** 2 - r ** 2
if abs(val) > tol:
reasons.append('circle_point_off_curve')
break
if reasons:
result['success'] = False
result['error'] = 'validation: ' + ';'.join(reasons)
result['validation_reasons'] = reasons
return result
def _point_constraint_names(self, fact_expr: str, coords: Dict, conic_type: str = 'parabola') -> set:
"""
Collect point names that are explicitly constrained on the main curve.
Uses _detect_main_conic_name to find the actual conic variable name.
"""
main_conic = self._detect_main_conic_name(fact_expr, conic_type)
return self._points_on_main_conic(fact_expr, coords, main_conic)
def _detect_main_conic_name(self, fact_expr: str, conic_type: str) -> str:
"""
Detect the actual name of the main conic from fact_expr.
Patterns like 'G: Ellipse', 'C: Parabola', 'C: Hyperbola', etc.
Returns the variable name (e.g., 'G' or 'C').
"""
import re
# Map conic_type to the type name in fact_expr
type_map = {
'ellipse': 'Ellipse',
'hyperbola': 'Hyperbola',
'parabola': 'Parabola',
'circle': 'Circle'
}
type_name = type_map.get(conic_type, '')
if type_name:
# Pattern: variable_name: TypeName (e.g., "G: Ellipse" or "C: Parabola")
pattern = rf'(\w+)\s*:\s*{type_name}'
match = re.search(pattern, fact_expr)
if match:
return match.group(1)
# Fallback to defaults
return 'C' if conic_type == 'circle' else 'G'
def _points_on_main_conic(self, fact_expr: str, coords: Dict, conic_name: str = 'G') -> set:
"""
Collect point names that are EXPLICITLY on the MAIN conic (e.g., G or C).
Includes:
- PointOnCurve(<name>, G) where G is the main conic
- Intersection(*, G) = {A, B} where G is the main conic
Excludes:
- PointOnCurve(<name>, H) where H is a line
- PointOnCurve(<name>, Asymptote(G)) - on asymptote, not curve
- PointOnCurve(<name>, Directrix(G)) - on directrix, not curve
- PointOnCurve(<name>, G1) where G1 is a different curve
- MidPoint constraints (midpoints of chords are not on the curve)
"""
import re
names = set()
# Match PointOnCurve(name, G) exactly - second argument must be exactly the conic name
# Avoid matching things like Asymptote(G), Directrix(G), G1, etc.
for name in coords.keys():
# Pattern: PointOnCurve(name, G) - spaces allowed, second arg must be exactly conic_name
# Use word boundary to avoid matching G1 when looking for G
pattern = rf'PointOnCurve\(\s*{re.escape(name)}\s*,\s*{re.escape(conic_name)}\s*\)'
if re.search(pattern, fact_expr):
names.add(name)
# Match Intersection(*, G) = {A, B} or Intersection(G, *) = {A, B}
# Only if one of the arguments is exactly the main conic
inter_pattern = r'Intersection\(\s*([^,)]+)\s*,\s*([^)]+)\s*\)\s*=\s*\{([^}]+)\}'
for m in re.finditer(inter_pattern, fact_expr):
arg1 = m.group(1).strip()
arg2 = m.group(2).strip()
points_str = m.group(3)
# Check if either argument is exactly the main conic name
if arg1 == conic_name or arg2 == conic_name:
for p in points_str.split(','):
p = p.strip()
if p in coords:
names.add(p)
return names
def _detect_moving_circle_locus(self, fact_expr: str, coords: Dict) -> Optional[Dict]:
"""
Detect pattern: moving circle through fixed point A, externally tangent to fixed circle C.
If foci on x-axis, convert to hyperbola params: |PC| - |PA| = R -> 2a = R.
Returns hyperbola params dict or None.
"""
if "IsOutTangent" not in fact_expr:
return None
import re
# Parse fixed circle C explicitly from its expression (two common orderings)
patterns = [
r'Expression\(C\)\s*=\s*\(y\^2\s*\+\s*\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*=\s*(\d+\.?\d*)\)',
r'Expression\(C\)\s*=\s*\(\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*\+\s*y\^2\s*=\s*(\d+\.?\d*)\)'
]
cx = cy = R = None
for pat in patterns:
m = re.search(pat, fact_expr)
if m:
sign = m.group(1)
val = float(m.group(2))
cx = -val if sign == '+' else val
cy = 0.0
R = np.sqrt(float(m.group(3)))
break
if R is None or R <= 0:
return None
# pick A if present, else first point
if 'A' in coords:
ax, ay = coords['A']
elif coords:
ax, ay = next(iter(coords.values()))
else:
return None
# Only handle foci on x-axis for now
if abs(ay) > 1e-6 or abs(cy) > 1e-6:
return None
c = abs(cx - ax) / 2
if c <= 0:
return None
a = R / 2
if a <= 0 or c <= a:
return None
b_sq = c * c - a * a
b = np.sqrt(b_sq)
return {'a': a, 'b': b}
def _process_ellipse(self, problem: Dict, idx: int, params: Dict,
coords: Dict, eccentricity: Optional[float], verbose: bool) -> Dict:
"""Process ellipse problem with SDF optimization."""
fact_expr = problem.get('fact_expressions', '')
point_names = self._point_constraint_names(fact_expr, coords, 'ellipse')
# Create SDF with initial parameters
center = torch.tensor([0.0, 0.0])
# Ensure params has 'a' and 'b' keys
if 'a' not in params or 'b' not in params:
return {
'index': idx,
'success': False,
'error': f"Ellipse params missing 'a' or 'b': {list(params.keys())}"
}
a = torch.tensor([params['a']])
b = torch.tensor([params['b']])
sdf = EllipseSDF(center, a, b)
# Check if we have explicit numeric coefficients (not symbolic)
has_explicit_coeffs = not params.get('symbolic', False) and not params.get('from_constraints', False)
# Only apply optimization if we don't have explicit coefficients
# or if constraints are compatible
should_optimize = False
constraints = []
weights = []
if not has_explicit_coeffs:
# If we have eccentricity constraint for ellipse (must be < 1)
if eccentricity and eccentricity < 1:
constraints.append(lambda: GeometricConstraints.eccentricity_ellipse(
sdf.a, sdf.b, eccentricity
))
weights.append(10.0)
should_optimize = True
# Collect positions for crowd penalty
all_positions = [sdf.center]
# Point on curve constraints
for name, (px, py) in coords.items():
if name in point_names and name not in ['F1', 'F2', 'F', 'O']:
point = torch.tensor([px, py])
constraints.append(lambda p=point: GeometricConstraints.point_on_curve(sdf, p))
weights.append(5.0)
should_optimize = True
all_positions.append(point)
# Crowd regularization (Paper Section 3.3, Equation 2)
# Prevents geometric elements from collapsing
if len(all_positions) > 1:
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, tau=0.5))
weights.append(3.0) # λ_crowd = 3.0 (paper default)
# Positive constraints
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.a))
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.b))
weights.extend([1.0, 1.0])
# Optimize only if needed and constraints are valid
if should_optimize and len(constraints) > 2:
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose)
# Check if optimization produced valid result
with torch.no_grad():
a_opt = abs(sdf.a.item())
b_opt = abs(sdf.b.item())
# If optimization produced degenerate result, revert to original params
if b_opt < 0.1 or a_opt < 0.1:
sdf.a.data = torch.tensor([params['a']])
sdf.b.data = torch.tensor([params['b']])
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'reverted to explicit params'}
else:
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'}
# Extract final parameters
with torch.no_grad():
a_final = abs(sdf.a.item())
b_final = abs(sdf.b.item())
# Determine major axis based on original coefficients
major_axis = params.get('major_axis', 'x')
# Visualize
output_path = self.output_dir / 'ellipse' / f'problem_{idx:04d}.png'
self._visualize_ellipse(sdf, problem, params, output_path, major_axis)
return {
'index': idx,
'success': True,
'conic_type': 'ellipse',
'error': None,
'params': {
'a': a_final,
'b': b_final,
'major_axis': major_axis,
'x_coef': params['x_coef'],
'y_coef': params['y_coef']
},
'optimization': opt_result,
'output_path': str(output_path),
'answer': problem.get('answer_expressions', ''),
'fact_expr': fact_expr,
'coords': coords
}
def _process_hyperbola(self, problem: Dict, idx: int, params: Dict,
coords: Dict, eccentricity: Optional[float],
asymptote: Optional[float], verbose: bool) -> Dict:
"""Process hyperbola problem with SDF optimization."""
fact_expr = problem.get('fact_expressions', '')
point_names = self._point_constraint_names(fact_expr, coords, 'hyperbola')
# Check if foci come from an ellipse (Focus(G) = Focus(H) where H is Ellipse)
c_from_ellipse = None
if 'Focus(G) = Focus(H)' in fact_expr or 'Focus(H) = Focus(G)' in fact_expr:
# Find the ellipse expression
ellipse_match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2/(\d+)\s*\+\s*y\^2/(\d+)\s*=\s*1\)', fact_expr)
if ellipse_match:
x_coef = float(ellipse_match.group(1))
y_coef = float(ellipse_match.group(2))
a_ell = np.sqrt(max(x_coef, y_coef))
b_ell = np.sqrt(min(x_coef, y_coef))
c_from_ellipse = np.sqrt(a_ell**2 - b_ell**2)
# If we have eccentricity and c from ellipse, calculate a and b directly
if eccentricity and eccentricity > 1 and c_from_ellipse:
# For hyperbola: e = c/a, so a = c/e
a_val = c_from_ellipse / eccentricity
# c² = a² + b², so b² = c² - a²
b_squared = c_from_ellipse**2 - a_val**2
if b_squared > 0:
b_val = np.sqrt(b_squared)
params['a'] = a_val
params['b'] = b_val
params['a_squared'] = a_val**2
params['b_squared'] = b_squared
center = torch.tensor([0.0, 0.0])
# Ensure params has 'a' and 'b' keys
if 'a' not in params or 'b' not in params:
return {
'index': idx,
'success': False,
'error': f"Hyperbola params missing 'a' or 'b': {list(params.keys())}"
}
a = torch.tensor([params['a']])
b = torch.tensor([params['b']])
sdf = HyperbolaSDF(center, a, b)
# Check if we already have explicit params from the above calculation
has_explicit_params = c_from_ellipse is not None and eccentricity and eccentricity > 1
constraints = []
weights = []
if not has_explicit_params:
# Collect positions for crowd penalty
all_positions = [sdf.center]
# Eccentricity constraint
if eccentricity and eccentricity > 1:
constraints.append(lambda: GeometricConstraints.eccentricity_hyperbola(
sdf.a, sdf.b, eccentricity
))
weights.append(10.0)
# Asymptote slope constraint
if asymptote:
constraints.append(lambda: GeometricConstraints.asymptote_slope(
sdf.a, sdf.b, asymptote
))
weights.append(10.0)
# Focus constraint from coordinates
focus_coords = [(n, c) for n, c in coords.items() if 'F' in n]
if len(focus_coords) >= 2:
f1 = focus_coords[0][1]
f2 = focus_coords[1][1]
c_target = abs(f1[0] - f2[0]) / 2 if f1[1] == f2[1] == 0 else None
if c_target:
constraints.append(lambda ct=c_target: GeometricConstraints.focus_constraint_hyperbola(
sdf.a, sdf.b, ct
))
weights.append(10.0)
# Add extra points to crowd penalty
for name, (px, py) in coords.items():
if name in point_names and name not in ['F1', 'F2', 'F', 'O']:
all_positions.append(torch.tensor([px, py]))
# Crowd regularization (Paper Section 3.3, Equation 2)
if len(all_positions) > 1:
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, tau=0.5))
weights.append(3.0) # λ_crowd = 3.0
# Positive constraints
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.a))
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.b))
weights.extend([1.0, 1.0])
if len(constraints) > 2:
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose)
else:
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'}
with torch.no_grad():
a_final = abs(sdf.a.item())
b_final = abs(sdf.b.item())
output_path = self.output_dir / 'hyperbola' / f'problem_{idx:04d}.png'
self._visualize_hyperbola(sdf, problem, params, output_path)
return {
'index': idx,
'success': True,
'conic_type': 'hyperbola',
'error': None,
'params': {
'a': a_final,
'b': b_final,
'orientation': params.get('orientation', 'horizontal')
},
'optimization': opt_result,
'output_path': str(output_path),
'answer': problem.get('answer_expressions', ''),
'fact_expr': fact_expr,
'coords': coords
}
def _process_parabola(self, problem: Dict, idx: int, params: Dict,
coords: Dict, verbose: bool) -> Dict:
"""Process parabola problem with SDF optimization."""
fact_expr = problem.get('fact_expressions', '')
point_names = self._point_constraint_names(fact_expr, coords, 'parabola')
vertex = torch.tensor([0.0, 0.0])
p = torch.tensor([params['p']])
direction = params.get('direction', 'right')
sdf = ParabolaSDF(vertex, p, direction)
# Keep vertex fixed at origin to avoid unintended translation during optimization
sdf.vertex.requires_grad_(False)
# 如果题目给出了显式的抛物线方程(非符号/约束推导),直接使用,不做优化
has_explicit_params = not params.get('symbolic', False) and not params.get('from_constraints', False)
if has_explicit_params:
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'}
else:
# Collect positions for crowd penalty
all_positions = [sdf.vertex]
constraints = [
lambda: GeometricConstraints.positive_constraint(sdf.p)
]
weights = [1.0]
# Point on curve constraints
for name, (px, py) in coords.items():
if name in point_names and name not in ['F', 'O']:
point = torch.tensor([px, py])
constraints.append(lambda pt=point: GeometricConstraints.point_on_curve(sdf, pt))
weights.append(5.0)
all_positions.append(point)
# Crowd regularization (Paper Section 3.3, Equation 2)
if len(all_positions) > 1:
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, tau=0.5))
weights.append(3.0) # λ_crowd = 3.0
if len(constraints) > 1:
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose)
else:
opt_result = {'final_loss': 0.0, 'converged': True}
with torch.no_grad():
p_final = abs(sdf.p.item())
output_path = self.output_dir / 'parabola' / f'problem_{idx:04d}.png'
self._visualize_parabola(sdf, problem, params, output_path)
return {
'index': idx,
'success': True,
'conic_type': 'parabola',
'error': None,
'params': {'p': p_final, 'direction': direction},
'optimization': opt_result,
'output_path': str(output_path),
'answer': problem.get('answer_expressions', ''),
'fact_expr': fact_expr,
'coords': coords
}
def _process_circle(self, problem: Dict, idx: int, params: Dict,
coords: Dict, verbose: bool) -> Dict:
"""Process circle problem with SDF."""
fact_expr = problem.get('fact_expressions', '')
point_names = self._point_constraint_names(fact_expr, coords, 'circle')
# Get center and radius
if params.get('from_diameter'):
# Compute circle from diameter endpoints
# Pattern: IsDiameter(LineSegmentOf(A, B), C) where C is the circle
fact_expr = problem.get('fact_expressions', '')
coords = self.parser.parse_coordinates(fact_expr)
# Find the two points that form the diameter
diameter_match = re.search(r'IsDiameter\(LineSegmentOf\((\w+),\s*(\w+)\)', fact_expr)
if diameter_match:
pt1_name = diameter_match.group(1)
pt2_name = diameter_match.group(2)
if pt1_name in coords and pt2_name in coords:
x1, y1 = coords[pt1_name]
x2, y2 = coords[pt2_name]
# Center = midpoint, radius = half of distance
params['center'] = ((x1 + x2) / 2, (y1 + y2) / 2)
params['radius'] = np.sqrt((x2 - x1)**2 + (y2 - y1)**2) / 2
else:
result = {
'index': idx,
'success': False,
'error': 'Circle from diameter: missing point coordinates'
}
return result
else:
result = {
'index': idx,
'success': False,
'error': 'Circle from diameter: cannot parse diameter pattern'
}
return result
center = torch.tensor(list(params.get('center', (0.0, 0.0))))
radius = torch.tensor([params.get('radius', 1.0)])
sdf = CircleSDF(center, radius)
# No optimization needed for explicit circles
opt_result = {'final_loss': 0.0, 'converged': True}
with torch.no_grad():
cx = sdf.center[0].item()
cy = sdf.center[1].item()
r = abs(sdf.radius.item())
output_path = self.output_dir / 'circle' / f'problem_{idx:04d}.png'
self._visualize_circle(sdf, problem, params, output_path)
return {
'index': idx,
'success': True,
'conic_type': 'circle',
'error': None,
'params': {'center': (cx, cy), 'radius': r},
'optimization': opt_result,
'output_path': str(output_path),
'answer': problem.get('answer_expressions', ''),
'fact_expr': fact_expr,
'coords': {k:v for k,v in coords.items() if k in point_names}
}
def _visualize_circle(self, sdf: CircleSDF, problem: Dict, params: Dict,
output_path: Path):
"""Visualize circle using SDF zero-level set."""
with torch.no_grad():
cx = sdf.center[0].item()
cy = sdf.center[1].item()
r = abs(sdf.radius.item())
# Set up plot range
margin = r + 2
xlim = (cx - margin, cx + margin)
ylim = (cy - margin, cy + margin)
# Create renderer
renderer = SDFRenderer(resolution=400, xlim=xlim, ylim=ylim)
# Create figure with info panel
fig, (ax, ax_info) = plt.subplots(2, 1, figsize=(10, 12),
gridspec_kw={'height_ratios': [0.6, 0.4]})
# Render SDF field and zero-level set
renderer.render_sdf_field(sdf, ax, show_field=True, field_alpha=0.15)
# Mark center
ax.plot(cx, cy, 'ro', markersize=10, label='Center')
ax.annotate('C', (cx, cy), textcoords="offset points", xytext=(10, 10), fontsize=12)
# Draw radius line
ax.plot([cx, cx + r], [cy, cy], 'g--', linewidth=2, label=f'r = {r:.2f}')
# Plot any additional points from constraints
for name, (px, py) in params.get('coords', {}).items():
ax.plot(px, py, 'go', markersize=8)
ax.annotate(name, (px, py), textcoords="offset points", xytext=(5, 5), fontsize=10)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('Circle - SDF Zero-Level Set')
ax.legend(loc='upper right')
ax.set_aspect('equal')
ax.grid(True, alpha=0.3)
# Info panel
ax_info.axis('off')
text = problem.get('text', '')
wrapped_text = self._wrap_text(text, width=60)
info_text = f"""PROBLEM
{'─' * 50}
{wrapped_text}
EQUATION (SDF Zero-Level Set)
{'─' * 50}
(x - {cx:.2f})² + (y - {cy:.2f})² = {r**2:.2f}
SDF PARAMETERS
{'─' * 50}
center: ({cx:.4f}, {cy:.4f})
radius: {r:.4f}
EXPECTED ANSWER: {problem.get('answer_expressions', 'N/A')}
QUERY: {problem.get('query_expressions', 'N/A')}"""
ax_info.text(0, 1, info_text, transform=ax_info.transAxes,
fontsize=10, verticalalignment='top', fontfamily='monospace',
wrap=True)
plt.tight_layout()
output_path.parent.mkdir(parents=True, exist_ok=True)
plt.savefig(output_path, dpi=150, bbox_inches='tight', facecolor='white')
plt.close()
def _wrap_text(self, text: str, width: int = 50) -> str:
"""Wrap text to specified width."""
words = text.split()
lines = []
current_line = []
current_len = 0
for word in words:
if current_len + len(word) + 1 <= width:
current_line.append(word)
current_len += len(word) + 1
else:
if current_line:
lines.append(' '.join(current_line))
current_line = [word]
current_len = len(word)
if current_line:
lines.append(' '.join(current_line))
return '\n'.join(lines)
def _visualize_ellipse(self, sdf: EllipseSDF, problem: Dict, params: Dict,
output_path: Path, major_axis: str):
"""Visualize ellipse using SDF zero-level set, including related shapes."""
with torch.no_grad():
a = abs(sdf.a.item())
b = abs(sdf.b.item())
# Ensure minimum b value for visualization
b_viz = max(b, 0.1)
fact_expr = problem.get('fact_expressions', '')
# Check if there's also a hyperbola in the problem
hyperbola_params = self.parser.parse_hyperbola(fact_expr)
has_hyperbola = hyperbola_params is not None and 'a' in hyperbola_params and 'b' in hyperbola_params
# Determine plot limits - ensure all curves visible
if has_hyperbola:
a_hyp = hyperbola_params['a']
b_hyp = hyperbola_params['b']
max_dim = max(a, b_viz, a_hyp, b_hyp) * 1.8 + 1
else:
max_dim = max(a, b_viz) * 1.3
# Use vertical layout: plot on top, info below
fig = plt.figure(figsize=(10, 14), dpi=120)
# Main plot takes up top 60%
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55])
# Create renderer with appropriate limits
renderer = SDFRenderer(
resolution=500,
xlim=(-max_dim, max_dim),
ylim=(-max_dim, max_dim)
)
# Render SDF field and zero-level set
renderer.render_sdf_field(sdf, ax_main, show_field=True)
# If there's a hyperbola, also draw it
if has_hyperbola:
center = torch.tensor([0.0, 0.0])
a_hyp_t = torch.tensor([hyperbola_params['a']])
b_hyp_t = torch.tensor([hyperbola_params['b']])
hyp_sdf = HyperbolaSDF(center, a_hyp_t, b_hyp_t)
# Draw hyperbola zero-level set in a different color
with torch.no_grad():
grid_flat = renderer.grid.reshape(-1, 2)
hyp_distances = hyp_sdf(grid_flat).reshape(renderer.resolution, renderer.resolution)
hyp_distances_np = hyp_distances.cpu().numpy()
ax_main.contour(renderer.xx.numpy(), renderer.yy.numpy(), hyp_distances_np,
levels=[0], colors=['#E74C3C'], linewidths=2.5, linestyles='-')
# Asymptotes for hyperbola
slope_hyp = hyperbola_params['b'] / hyperbola_params['a']
x_asym = np.linspace(-max_dim, max_dim, 100)
ax_main.plot(x_asym, slope_hyp * x_asym, '--', color='#C73E1D', linewidth=1.5, alpha=0.5)
ax_main.plot(x_asym, -slope_hyp * x_asym, '--', color='#C73E1D', linewidth=1.5, alpha=0.5)
# Add to legend
from matplotlib.lines import Line2D
ellipse_line = Line2D([0], [0], color='#2E86AB', linewidth=2.5,
label=f'Ellipse (x²/{params["x_coef"]:.0f} + y²/{params["y_coef"]:.0f} = 1)')
hyperbola_line = Line2D([0], [0], color='#E74C3C', linewidth=2.5,
label=f'Hyperbola (x²/{hyperbola_params["a"]:.2f}² - y²/{hyperbola_params["b"]:.2f}² = 1)')
# Calculate and plot foci
c = np.sqrt(abs(a**2 - b**2)) if a > b else np.sqrt(abs(b**2 - a**2))
if major_axis == 'x':
ax_main.plot([c, -c], [0, 0], 'ro', markersize=12,
label='Shared Foci' if has_hyperbola else 'Foci', zorder=5)
ax_main.annotate('$F_1$', (-c, 0), xytext=(-c-0.4, 0.4), fontsize=14, fontweight='bold')
ax_main.annotate('$F_2$', (c, 0), xytext=(c+0.2, 0.4), fontsize=14, fontweight='bold')
else:
ax_main.plot([0, 0], [c, -c], 'ro', markersize=12,
label='Shared Foci' if has_hyperbola else 'Foci', zorder=5)
ax_main.annotate('$F_1$', (0, -c), xytext=(0.3, -c-0.4), fontsize=14, fontweight='bold')
ax_main.annotate('$F_2$', (0, c), xytext=(0.3, c+0.2), fontsize=14, fontweight='bold')
# Plot additional points
coords = self.parser.parse_coordinates(problem.get('fact_expressions', ''))
for name, (px, py) in coords.items():
if name not in ['F1', 'F2', 'F', 'O']:
ax_main.plot(px, py, 'go', markersize=10, zorder=6)
ax_main.annotate(f'${name}$', (px, py), xytext=(px+0.3, py+0.3), fontsize=13, fontweight='bold')
# Styling
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.grid(True, alpha=0.3, linestyle='--')
ax_main.set_xlim(-max_dim, max_dim)
ax_main.set_ylim(-max_dim, max_dim)
ax_main.set_xlabel('x', fontsize=14)
ax_main.set_ylabel('y', fontsize=14)
if has_hyperbola:
ax_main.set_title('Ellipse & Hyperbola - SDF Zero-Level Sets', fontsize=16, fontweight='bold', pad=10)
handles, labels = ax_main.get_legend_handles_labels()
handles.extend([ellipse_line, hyperbola_line])
ax_main.legend(handles=handles, loc='upper right', fontsize=10)
else:
ax_main.set_title('Ellipse - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10)
ax_main.legend(loc='upper right', fontsize=11)
ax_main.set_aspect('equal')
ax_main.tick_params(labelsize=11)
# Info panel at bottom
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35])
ax_info.axis('off')
x_coef = params['x_coef']
y_coef = params['y_coef']
# Wrap problem text
problem_text = self._wrap_text(problem.get('text', ''), width=70)
if has_hyperbola:
equations_text = f"""Ellipse: x²/{np.sqrt(x_coef):.2f}² + y²/{np.sqrt(y_coef):.2f}² = 1 (Blue)
Hyperbola: x²/{hyperbola_params['a']:.2f}² - y²/{hyperbola_params['b']:.2f}² = 1 (Red)"""
else:
equations_text = f"x²/{np.sqrt(x_coef):.2f}² + y²/{np.sqrt(y_coef):.2f}² = 1"
info_text = f"""PROBLEM
{'─'*70}
{problem_text}
EQUATIONS (SDF Zero-Level Sets)
{'─'*70}
{equations_text}
SDF PARAMETERS (Ellipse)
{'─'*70}
a (semi-major): {a:.4f} b (semi-minor): {b:.4f} c (focal dist): {c:.4f}
eccentricity: {c/max(a,b):.4f} major_axis: {major_axis}
EXPECTED ANSWER: {problem.get('answer_expressions', '')}
QUERY: {problem.get('query_expressions', '')}
"""
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes,
fontsize=10, verticalalignment='top', family='monospace',
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC'))
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white')
plt.close(fig)
def _visualize_hyperbola(self, sdf: HyperbolaSDF, problem: Dict, params: Dict,
output_path: Path):
"""Visualize hyperbola using SDF zero-level set, including related shapes."""
with torch.no_grad():
a = abs(sdf.a.item())
b = abs(sdf.b.item())
fact_expr = problem.get('fact_expressions', '')
# Check if there are other shapes in the problem
ellipse_params = self.parser.parse_ellipse(fact_expr)
line_params = self.parser.parse_line(fact_expr)
has_ellipse = ellipse_params is not None and 'a' in ellipse_params and 'b' in ellipse_params
has_line = line_params is not None and (line_params.get('a') is not None or line_params.get('slope') is not None)
# If line has slope but no explicit equation, try to construct it
if has_line and line_params.get('slope') is not None and line_params.get('a') is None:
# Check if line passes through a focus
slope = line_params['slope']
# Find focus coordinates
if 'LeftFocus' in fact_expr or 'RightFocus' in fact_expr:
# Line passes through focus
c_hyp = np.sqrt(a**2 + b**2)
if 'LeftFocus' in fact_expr:
focus_x = -c_hyp
else:
focus_x = c_hyp
# Line: y - 0 = slope * (x - focus_x) => slope*x - y - slope*focus_x = 0
line_params['a'] = slope
line_params['b'] = -1.0
line_params['c'] = -slope * focus_x
line_params['equation'] = f'y = {slope:.2f}(x - {focus_x:.2f})'
# Determine plot limits
if has_ellipse:
a_ell = ellipse_params['a']
b_ell = ellipse_params['b']
max_dim = max(a, b, a_ell, b_ell) * 1.5 + 1
else:
max_dim = max(a, b) * 2.5 + 2
# Use vertical layout
fig = plt.figure(figsize=(10, 14), dpi=120)
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55])
renderer = SDFRenderer(
resolution=500,
xlim=(-max_dim, max_dim),
ylim=(-max_dim, max_dim)
)
# Render hyperbola SDF field
renderer.render_sdf_field(sdf, ax_main, show_field=True)
# If there's an ellipse, also draw it
if has_ellipse:
center = torch.tensor([0.0, 0.0])
a_ell_t = torch.tensor([ellipse_params['a']])
b_ell_t = torch.tensor([ellipse_params['b']])
ellipse_sdf = EllipseSDF(center, a_ell_t, b_ell_t)
# Draw ellipse zero-level set in a different color
with torch.no_grad():
grid_flat = renderer.grid.reshape(-1, 2)
ell_distances = ellipse_sdf(grid_flat).reshape(renderer.resolution, renderer.resolution)
ell_distances_np = ell_distances.cpu().numpy()
ax_main.contour(renderer.xx.numpy(), renderer.yy.numpy(), ell_distances_np,
levels=[0], colors=['#27AE60'], linewidths=2.5, linestyles='-')
# Add ellipse to legend
from matplotlib.lines import Line2D
ellipse_line = Line2D([0], [0], color='#27AE60', linewidth=2.5, label=f'Ellipse (x²/{ellipse_params["x_coef"]:.0f} + y²/{ellipse_params["y_coef"]:.0f} = 1)')
hyperbola_line = Line2D([0], [0], color='#2E86AB', linewidth=2.5, label=f'Hyperbola (x²/{a:.2f}² - y²/{b:.2f}² = 1)')
# Draw line if present (only if we have complete line equation)
if has_line and line_params.get('a') is not None and line_params.get('b') is not None:
from matplotlib.lines import Line2D
line_a = line_params['a']
line_b = line_params['b']
line_c = line_params.get('c', 0)
# Line: ax + by + c = 0 => y = (-ax - c) / b or x = (-by - c) / a
x_line = np.linspace(-max_dim, max_dim, 100)
if abs(line_b) > 1e-6:
y_line = (-line_a * x_line - line_c) / line_b
ax_main.plot(x_line, y_line, '-', color='#9B59B6', linewidth=2.5,
label=f'Line ({line_params["equation"]} = 0)', zorder=4)
else:
# Vertical line
x_val = -line_c / line_a if abs(line_a) > 1e-6 else 0
ax_main.axvline(x=x_val, color='#9B59B6', linewidth=2.5,
label=f'Line (x = {x_val:.2f})', zorder=4)
# Foci (shared between hyperbola and ellipse if Focus(G) = Focus(H))
c = np.sqrt(a**2 + b**2)
ax_main.plot([c, -c], [0, 0], 'ro', markersize=12, label='Shared Foci' if has_ellipse else 'Foci', zorder=5)
ax_main.annotate('$F_1$', (-c, 0), xytext=(-c-0.4, 0.6), fontsize=14, fontweight='bold')
ax_main.annotate('$F_2$', (c, 0), xytext=(c+0.2, 0.6), fontsize=14, fontweight='bold')
# Asymptotes
slope = b / a
x_asym = np.linspace(-max_dim, max_dim, 100)
ax_main.plot(x_asym, slope * x_asym, '--', color='#C73E1D', linewidth=2,
alpha=0.7, label='Asymptotes')
ax_main.plot(x_asym, -slope * x_asym, '--', color='#C73E1D', linewidth=2, alpha=0.7)
# Plot additional points
coords = self.parser.parse_coordinates(problem.get('fact_expressions', ''))
for name, (px, py) in coords.items():
if name not in ['F1', 'F2', 'F', 'O']:
ax_main.plot(px, py, 'go', markersize=10, zorder=6)
ax_main.annotate(f'${name}$', (px, py), xytext=(px+0.3, py+0.3), fontsize=13, fontweight='bold')
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.grid(True, alpha=0.3, linestyle='--')
ax_main.set_xlim(-max_dim, max_dim)
ax_main.set_ylim(-max_dim, max_dim)
ax_main.set_xlabel('x', fontsize=14)
ax_main.set_ylabel('y', fontsize=14)
# Set title based on what shapes are present
title_parts = ['Hyperbola']
if has_ellipse:
title_parts.append('Ellipse')
if has_line:
title_parts.append('Line')
if len(title_parts) > 1:
ax_main.set_title(' & '.join(title_parts) + ' - SDF Zero-Level Sets', fontsize=16, fontweight='bold', pad=10)
handles, labels = ax_main.get_legend_handles_labels()
if has_ellipse:
handles.extend([ellipse_line, hyperbola_line])
ax_main.legend(handles=handles, loc='upper right', fontsize=10)
else:
ax_main.set_title('Hyperbola - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10)
ax_main.legend(loc='upper right', fontsize=11)
ax_main.set_aspect('equal')
ax_main.tick_params(labelsize=11)
# Info panel at bottom
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35])
ax_info.axis('off')
problem_text = self._wrap_text(problem.get('text', ''), width=70)
equations_parts = [f"Hyperbola: x²/{a:.2f}² - y²/{b:.2f}² = 1 (Blue)"]
if has_ellipse:
equations_parts.append(f"Ellipse: x²/{ellipse_params['x_coef']:.0f} + y²/{ellipse_params['y_coef']:.0f} = 1 (Green)")
if has_line:
equations_parts.append(f"Line: {line_params.get('equation', 'slope defined')} = 0 (Purple)")
equations_text = '\n'.join(equations_parts)
info_text = f"""PROBLEM
{'─'*70}
{problem_text}
EQUATIONS (SDF Zero-Level Sets)
{'─'*70}
{equations_text}
SDF PARAMETERS (Hyperbola)
{'─'*70}
a: {a:.4f} b: {b:.4f} c: {c:.4f}
eccentricity: {c/a:.4f} asymptote slope: ±{slope:.4f}
EXPECTED ANSWER: {problem.get('answer_expressions', '')}
QUERY: {problem.get('query_expressions', '')}
"""
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes,
fontsize=10, verticalalignment='top', family='monospace',
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC'))
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white')
plt.close(fig)
def _visualize_parabola(self, sdf: ParabolaSDF, problem: Dict, params: Dict,
output_path: Path):
"""Visualize parabola using SDF zero-level set."""
with torch.no_grad():
p = abs(sdf.p.item())
direction = params.get('direction', 'right')
# Adjust limits based on direction and p value
extent = max(p * 8, 6)
if direction == 'right':
xlim = (-p * 2, extent)
ylim = (-extent * 0.8, extent * 0.8)
elif direction == 'left':
xlim = (-extent, p * 2)
ylim = (-extent * 0.8, extent * 0.8)
else: # up
xlim = (-extent * 0.8, extent * 0.8)
ylim = (-p * 2, extent)
# Use vertical layout
fig = plt.figure(figsize=(10, 14), dpi=120)
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55])
# Increase resolution slightly to sharpen zero-level near the vertex
renderer = SDFRenderer(resolution=600, xlim=xlim, ylim=ylim)
renderer.render_sdf_field(sdf, ax_main, show_field=True)
# Focus and directrix
if direction == 'right':
focus = (p, 0)
ax_main.plot(p, 0, 'ro', markersize=12, label='Focus', zorder=5)
ax_main.annotate('$F$', (p, 0), xytext=(p+0.4, 0.4), fontsize=14, fontweight='bold')
ax_main.axvline(x=-p, color='#2ECC71', linestyle='--', linewidth=2,
alpha=0.8, label='Directrix')
equation = f"y² = {4*p:.2f}x"
elif direction == 'left':
focus = (-p, 0)
ax_main.plot(-p, 0, 'ro', markersize=12, label='Focus', zorder=5)
ax_main.annotate('$F$', (-p, 0), xytext=(-p-0.6, 0.4), fontsize=14, fontweight='bold')
ax_main.axvline(x=p, color='#2ECC71', linestyle='--', linewidth=2,
alpha=0.8, label='Directrix')
equation = f"y² = -{4*p:.2f}x"
else: # up
focus = (0, p)
ax_main.plot(0, p, 'ro', markersize=12, label='Focus', zorder=5)
ax_main.annotate('$F$', (0, p), xytext=(0.4, p+0.4), fontsize=14, fontweight='bold')
ax_main.axhline(y=-p, color='#2ECC71', linestyle='--', linewidth=2,
alpha=0.8, label='Directrix')
equation = f"x² = {4*p:.2f}y"
# Plot additional points with staggered labels to reduce overlaps
coords = self.parser.parse_coordinates(problem.get('fact_expressions', ''))
for idx, (name, (px, py)) in enumerate(coords.items()):
if name not in ['F', 'O']:
ax_main.plot(px, py, 'go', markersize=10, zorder=6)
offset_y = 0.3 + 0.25 * idx
ax_main.annotate(f'${name}$', (px, py), xytext=(px + 0.3, py + offset_y),
fontsize=13, fontweight='bold')
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6)
ax_main.grid(True, alpha=0.3, linestyle='--')
ax_main.set_xlim(xlim)
ax_main.set_ylim(ylim)
ax_main.set_xlabel('x', fontsize=14)
ax_main.set_ylabel('y', fontsize=14)
ax_main.set_title('Parabola - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10)
ax_main.set_aspect('equal')
ax_main.legend(loc='upper right', fontsize=11)
ax_main.tick_params(labelsize=11)
# Info panel at bottom
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35])
ax_info.axis('off')
problem_text = self._wrap_text(problem.get('text', ''), width=70)
info_text = f"""PROBLEM
{'─'*70}
{problem_text}
EQUATION (SDF Zero-Level Set)
{'─'*70}
{equation}
SDF PARAMETERS
{'─'*70}
p (focal param): {p:.4f} focus: {focus}
directrix: {'x = ' + f'{-p:.2f}' if direction in ['right', 'left'] else 'y = ' + f'{-p:.2f}'}
direction: {direction}
EXPECTED ANSWER: {problem.get('answer_expressions', '')}
QUERY: {problem.get('query_expressions', '')}
"""
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes,
fontsize=10, verticalalignment='top', family='monospace',
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC'))
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white')
plt.close(fig)
def process_batch(self, problems: List[Dict], max_problems: int = None,
verbose: bool = False) -> List[Dict]:
"""Process a batch of problems."""
if max_problems:
problems = problems[:max_problems]
results = []
stats = {'total': len(problems), 'success': 0, 'failed': 0}
type_stats = {'ellipse': 0, 'hyperbola': 0, 'parabola': 0, 'circle': 0}
reason_counts: Dict[str, int] = {}
print(f"\n{'='*60}")
print(f"SDF-Based Processing: {len(problems)} problems")
print(f"{'='*60}\n")
for idx, problem in enumerate(tqdm(problems, desc="Processing")):
result = self.process_problem(problem, idx, verbose)
results.append(result)
if result['success']:
stats['success'] += 1
ctype = result.get('conic_type')
if ctype in type_stats:
type_stats[ctype] += 1
else:
stats['failed'] += 1
for reason in result.get('validation_reasons', []):
reason_counts[reason] = reason_counts.get(reason, 0) + 1
# Save summary
summary = {
'stats': stats,
'type_stats': type_stats,
'reason_counts': reason_counts,
'results': results
}
with open(self.output_dir / 'summary.json', 'w') as f:
json.dump(summary, f, indent=2, default=str)
print(f"\n{'='*60}")
print("PROCESSING COMPLETE")
print(f"{'='*60}")
print(f"Success: {stats['success']} / {stats['total']} ({100*stats['success']/stats['total']:.1f}%)")
print(f"By type: {type_stats}")
print(f"Output: {self.output_dir}")
return results
def main():
parser = argparse.ArgumentParser(description='SDF-Based Geometry Solver')
parser.add_argument('--input', '-i', type=str, default='test_en.json')
parser.add_argument('--output', '-o', type=str, default='sdf_output')
parser.add_argument('--max', '-m', type=int, default=None)
parser.add_argument('--verbose', '-v', action='store_true')
args = parser.parse_args()
with open(args.input, 'r', encoding='utf-8') as f:
problems = json.load(f)
print(f"Loaded {len(problems)} problems")
processor = SDFBatchProcessor(output_dir=args.output)
processor.process_batch(problems, max_problems=args.max, verbose=args.verbose)
if __name__ == "__main__":
main()