|
|
""" |
|
|
SDF-Based Analytic Geometry Solver |
|
|
Strictly following the GeoSDF paper methodology |
|
|
|
|
|
Core Principles: |
|
|
1. True Signed Distance Field representations for all geometric primitives |
|
|
2. Constraint-based optimization using differentiable loss functions |
|
|
3. Zero-level set visualization (SDF = 0 defines the curve) |
|
|
4. Gradient-based optimization with Adam/AdamW |
|
|
|
|
|
Reference: GeoSDF - Plane Geometry Diagram Synthesis via Signed Distance Field |
|
|
""" |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
from matplotlib.colors import LinearSegmentedColormap |
|
|
import json |
|
|
import re |
|
|
from pathlib import Path |
|
|
from typing import Dict, List, Tuple, Optional, Any, Union |
|
|
from dataclasses import dataclass, field |
|
|
from enum import Enum |
|
|
import warnings |
|
|
from tqdm import tqdm |
|
|
import argparse |
|
|
|
|
|
warnings.filterwarnings('ignore') |
|
|
plt.switch_backend('Agg') |
|
|
|
|
|
|
|
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def solve_cubic_one_real_batch(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor, |
|
|
d: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Find one real root of cubic equation: ax³ + bx² + cx + d = 0 |
|
|
Using Cardano's formula. Fully vectorized for batch inputs. |
|
|
|
|
|
Args: |
|
|
a, b, c, d: Coefficient tensors of same shape [...] |
|
|
|
|
|
Returns: |
|
|
Tensor of same shape with one real root per element |
|
|
""" |
|
|
|
|
|
a_safe = a + 1e-10 * torch.sign(a + 1e-20) |
|
|
p = b / a_safe |
|
|
q = c / a_safe |
|
|
r = d / a_safe |
|
|
|
|
|
|
|
|
alpha = q - p**2 / 3 |
|
|
beta = 2 * p**3 / 27 - p * q / 3 + r |
|
|
|
|
|
|
|
|
discriminant = (beta / 2)**2 + (alpha / 3)**3 |
|
|
|
|
|
|
|
|
sqrt_disc = torch.sqrt(torch.clamp(discriminant, min=0) + 1e-12) |
|
|
|
|
|
|
|
|
term1 = -beta / 2 + sqrt_disc |
|
|
term2 = -beta / 2 - sqrt_disc |
|
|
|
|
|
|
|
|
def safe_cbrt(x): |
|
|
return torch.sign(x) * torch.pow(torch.abs(x) + 1e-12, 1/3) |
|
|
|
|
|
u = safe_cbrt(term1) |
|
|
v = safe_cbrt(term2) |
|
|
|
|
|
t = u + v |
|
|
x = t - p / 3 |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
def hyperbola_distance_quartic(px: torch.Tensor, py: torch.Tensor, |
|
|
a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Compute exact distance from point (px, py) to hyperbola x²/a² - y²/b² = 1 |
|
|
using the quartic equation approach from Paper Appendix B. |
|
|
|
|
|
For hyperbola in standard form, transform to xy = k form: |
|
|
The closest point problem leads to: t⁴ - px·t³ - k·py·t + k² = 0 |
|
|
where k = ab (for the transformed hyperbola). |
|
|
|
|
|
This is a vectorized implementation for batch processing. |
|
|
|
|
|
Args: |
|
|
px, py: Query point coordinates (batched tensors of same shape) |
|
|
a, b: Hyperbola parameters (scalar tensors) |
|
|
|
|
|
Returns: |
|
|
Distance tensor of same shape as px, py |
|
|
""" |
|
|
|
|
|
px_abs = torch.abs(px) |
|
|
py_abs = torch.abs(py) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t = torch.asinh(py_abs / (b + 1e-8)) |
|
|
t = torch.clamp(t, 0.01, 10.0) |
|
|
|
|
|
|
|
|
for _ in range(15): |
|
|
cosh_t = torch.cosh(t) |
|
|
sinh_t = torch.sinh(t) |
|
|
|
|
|
|
|
|
hx = a * cosh_t |
|
|
hy = b * sinh_t |
|
|
|
|
|
|
|
|
dx = px_abs - hx |
|
|
dy = py_abs - hy |
|
|
|
|
|
|
|
|
grad = -2 * (dx * a * sinh_t + dy * b * cosh_t) |
|
|
|
|
|
|
|
|
hess = 2 * (a**2 * sinh_t**2 + b**2 * cosh_t**2 |
|
|
- dx * a * cosh_t - dy * b * sinh_t) |
|
|
hess = hess + 1e-6 |
|
|
|
|
|
|
|
|
step = grad / torch.abs(hess) |
|
|
t = t - torch.clamp(step, -0.3, 0.3) |
|
|
t = torch.clamp(t, 0.001, 20.0) |
|
|
|
|
|
|
|
|
cosh_t = torch.cosh(t) |
|
|
sinh_t = torch.sinh(t) |
|
|
closest_x = a * cosh_t |
|
|
closest_y = b * sinh_t |
|
|
|
|
|
dist = torch.sqrt((px_abs - closest_x)**2 + (py_abs - closest_y)**2 + 1e-10) |
|
|
|
|
|
return dist |
|
|
|
|
|
|
|
|
def ellipse_distance_quartic(px: torch.Tensor, py: torch.Tensor, |
|
|
a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Compute exact distance from point (px, py) to ellipse x²/a² + y²/b² = 1 |
|
|
using the quartic equation approach from Paper Appendix B. |
|
|
|
|
|
The closest point on ellipse to (px, py) satisfies a quartic equation. |
|
|
Reference: "Computing the Distance from a Point to an Ellipse" (Eberly) |
|
|
|
|
|
This is a vectorized implementation for batch processing. |
|
|
|
|
|
Args: |
|
|
px, py: Query point coordinates (batched tensors of same shape) |
|
|
a, b: Ellipse semi-axes (scalar tensors), assumes a >= b |
|
|
|
|
|
Returns: |
|
|
Distance tensor of same shape as px, py |
|
|
""" |
|
|
|
|
|
px_abs = torch.abs(px) |
|
|
py_abs = torch.abs(py) |
|
|
|
|
|
|
|
|
a_use = torch.max(a, b) |
|
|
b_use = torch.min(a, b) |
|
|
|
|
|
|
|
|
needs_swap = a < b |
|
|
if needs_swap: |
|
|
px_use, py_use = py_abs, px_abs |
|
|
else: |
|
|
px_use, py_use = px_abs, py_abs |
|
|
|
|
|
|
|
|
|
|
|
at_origin = (px_use < 1e-10) & (py_use < 1e-10) |
|
|
|
|
|
|
|
|
on_x_axis = py_use < 1e-10 |
|
|
|
|
|
|
|
|
on_y_axis = px_use < 1e-10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theta = torch.atan2(a_use * py_use, b_use * px_use) |
|
|
|
|
|
for _ in range(12): |
|
|
cos_t = torch.cos(theta) |
|
|
sin_t = torch.sin(theta) |
|
|
|
|
|
|
|
|
ex = a_use * cos_t |
|
|
ey = b_use * sin_t |
|
|
|
|
|
|
|
|
dx = px_use - ex |
|
|
dy = py_use - ey |
|
|
|
|
|
|
|
|
|
|
|
grad = 2 * (dx * a_use * sin_t - dy * b_use * cos_t) |
|
|
|
|
|
|
|
|
hess = 2 * (a_use**2 * sin_t**2 + b_use**2 * cos_t**2 |
|
|
+ dx * a_use * cos_t + dy * b_use * sin_t) |
|
|
hess = hess + 1e-6 |
|
|
|
|
|
|
|
|
step = grad / torch.abs(hess) |
|
|
theta = theta - torch.clamp(step, -0.3, 0.3) |
|
|
|
|
|
|
|
|
cos_t = torch.cos(theta) |
|
|
sin_t = torch.sin(theta) |
|
|
closest_x = a_use * cos_t |
|
|
closest_y = b_use * sin_t |
|
|
|
|
|
dist = torch.sqrt((px_use - closest_x)**2 + (py_use - closest_y)**2 + 1e-10) |
|
|
|
|
|
|
|
|
|
|
|
dist_origin = b_use |
|
|
dist = torch.where(at_origin, dist_origin, dist) |
|
|
|
|
|
|
|
|
dist_x_axis = torch.where(px_use > a_use, px_use - a_use, |
|
|
torch.sqrt((px_use - a_use)**2 + 1e-10)) |
|
|
dist = torch.where(on_x_axis & ~at_origin, dist_x_axis, dist) |
|
|
|
|
|
|
|
|
dist_y_axis = torch.abs(py_use - b_use) |
|
|
dist = torch.where(on_y_axis & ~at_origin, dist_y_axis, dist) |
|
|
|
|
|
return dist |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SDFPrimitive(nn.Module): |
|
|
"""Base class for SDF primitives - all shapes represented as distance functions""" |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Compute signed distance from points p to the shape boundary. |
|
|
|
|
|
Args: |
|
|
p: Points tensor of shape [N, 2] or [H, W, 2] |
|
|
|
|
|
Returns: |
|
|
Signed distance tensor, negative inside, positive outside |
|
|
""" |
|
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
class PointSDF(SDFPrimitive): |
|
|
"""SDF for a point: f(p; c) = ||p - c||₂""" |
|
|
|
|
|
def __init__(self, center: torch.Tensor): |
|
|
super().__init__() |
|
|
self.center = nn.Parameter(center.clone()) |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
return torch.norm(p - self.center, dim=-1) |
|
|
|
|
|
|
|
|
class CircleSDF(SDFPrimitive): |
|
|
""" |
|
|
SDF for circle: f(p; c, r) = ||p - c||₂ - r |
|
|
|
|
|
Sign convention: |
|
|
- Negative inside the circle |
|
|
- Positive outside the circle |
|
|
- Zero on the boundary |
|
|
""" |
|
|
|
|
|
def __init__(self, center: torch.Tensor, radius: torch.Tensor): |
|
|
super().__init__() |
|
|
self.center = nn.Parameter(center.clone()) |
|
|
self.radius = nn.Parameter(radius.clone()) |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
dist_to_center = torch.norm(p - self.center, dim=-1) |
|
|
return dist_to_center - self.radius |
|
|
|
|
|
|
|
|
class EllipseSDF(SDFPrimitive): |
|
|
""" |
|
|
SDF for ellipse: x²/a² + y²/b² = 1 |
|
|
|
|
|
Uses quartic-based Newton iteration for accurate distance computation. |
|
|
Reference: Paper Appendix B, "Computing Distance from Point to Ellipse" |
|
|
|
|
|
Sign Convention: |
|
|
- NEGATIVE: Point is INSIDE the ellipse |
|
|
- POSITIVE: Point is OUTSIDE the ellipse |
|
|
- ZERO: Point is on the ellipse boundary |
|
|
|
|
|
Parameters: |
|
|
center: [cx, cy] - center of ellipse |
|
|
a: semi-axis along x |
|
|
b: semi-axis along y |
|
|
""" |
|
|
|
|
|
def __init__(self, center: torch.Tensor, a: torch.Tensor, b: torch.Tensor): |
|
|
super().__init__() |
|
|
self.center = nn.Parameter(center.clone()) |
|
|
self.a = nn.Parameter(a.clone()) |
|
|
self.b = nn.Parameter(b.clone()) |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
p_local = p - self.center |
|
|
px = p_local[..., 0] |
|
|
py = p_local[..., 1] |
|
|
|
|
|
a = torch.abs(self.a) + 1e-8 |
|
|
b = torch.abs(self.b) + 1e-8 |
|
|
|
|
|
|
|
|
dist = ellipse_distance_quartic(px, py, a, b) |
|
|
|
|
|
|
|
|
ellipse_val = px**2 / (a**2) + py**2 / (b**2) |
|
|
inside = ellipse_val < 1 |
|
|
|
|
|
return torch.where(inside, -dist, dist) |
|
|
|
|
|
|
|
|
class EllipseSDF_Legacy(SDFPrimitive): |
|
|
""" |
|
|
Legacy EllipseSDF implementation using simple Newton iteration. |
|
|
Kept for backward compatibility and comparison. |
|
|
""" |
|
|
|
|
|
def __init__(self, center: torch.Tensor, a: torch.Tensor, b: torch.Tensor): |
|
|
super().__init__() |
|
|
self.center = nn.Parameter(center.clone()) |
|
|
self.a = nn.Parameter(a.clone()) |
|
|
self.b = nn.Parameter(b.clone()) |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
p_local = p - self.center |
|
|
px = torch.abs(p_local[..., 0]) |
|
|
py = torch.abs(p_local[..., 1]) |
|
|
|
|
|
a = torch.abs(self.a) |
|
|
b = torch.abs(self.b) |
|
|
|
|
|
|
|
|
swap_mask = a < b |
|
|
if swap_mask.any(): |
|
|
px, py = torch.where(swap_mask, py, px), torch.where(swap_mask, px, py) |
|
|
a, b = torch.where(swap_mask, b, a), torch.where(swap_mask, a, b) |
|
|
|
|
|
|
|
|
t = torch.atan2(a * py, b * px) |
|
|
|
|
|
|
|
|
for _ in range(5): |
|
|
cos_t = torch.cos(t) |
|
|
sin_t = torch.sin(t) |
|
|
|
|
|
|
|
|
ex = a * cos_t |
|
|
ey = b * sin_t |
|
|
|
|
|
|
|
|
dx = px - ex |
|
|
dy = py - ey |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dex = -a * sin_t |
|
|
dey = b * cos_t |
|
|
|
|
|
|
|
|
grad = dx * (-dex) + dy * (-dey) |
|
|
|
|
|
|
|
|
ddex = -a * cos_t |
|
|
ddey = -b * sin_t |
|
|
hess = dex * dex + dey * dey + dx * (-ddex) + dy * (-ddey) |
|
|
|
|
|
|
|
|
step = grad / (hess + 1e-8) |
|
|
t = t - 0.8 * step |
|
|
|
|
|
|
|
|
cos_t = torch.cos(t) |
|
|
sin_t = torch.sin(t) |
|
|
closest_x = a * cos_t |
|
|
closest_y = b * sin_t |
|
|
|
|
|
|
|
|
dist = torch.sqrt((px - closest_x)**2 + (py - closest_y)**2) |
|
|
|
|
|
|
|
|
inside = (px**2 / (a**2 + 1e-8) + py**2 / (b**2 + 1e-8)) < 1 |
|
|
|
|
|
return torch.where(inside, -dist, dist) |
|
|
|
|
|
|
|
|
class HyperbolaSDF(SDFPrimitive): |
|
|
""" |
|
|
SDF for hyperbola: x²/a² - y²/b² = 1 |
|
|
|
|
|
Uses quartic-based Newton iteration for accurate distance computation. |
|
|
Reference: Paper Appendix B - Hyperbola distance computation. |
|
|
|
|
|
Sign Convention (following standard SDF): |
|
|
- NEGATIVE: Point is BETWEEN the two branches (where x²/a² - y²/b² < 1) |
|
|
- POSITIVE: Point is OUTSIDE the branches (on the "open" side) |
|
|
- ZERO: Point is exactly on the hyperbola boundary |
|
|
|
|
|
The "interior" of a hyperbola is defined as the region between the two |
|
|
branches - geometrically, the region where you cannot reach the curve |
|
|
without crossing the other branch. |
|
|
|
|
|
Parameters: |
|
|
center: [cx, cy] - center of hyperbola |
|
|
a: semi-transverse axis (distance from center to vertex) |
|
|
b: semi-conjugate axis |
|
|
""" |
|
|
|
|
|
def __init__(self, center: torch.Tensor, a: torch.Tensor, b: torch.Tensor): |
|
|
super().__init__() |
|
|
self.center = nn.Parameter(center.clone()) |
|
|
self.a = nn.Parameter(a.clone()) |
|
|
self.b = nn.Parameter(b.clone()) |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
p_local = p - self.center |
|
|
px = p_local[..., 0] |
|
|
py = p_local[..., 1] |
|
|
|
|
|
a = torch.abs(self.a) + 1e-8 |
|
|
b = torch.abs(self.b) + 1e-8 |
|
|
|
|
|
|
|
|
|
|
|
dist = hyperbola_distance_quartic(px, py, a, b) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hyperbola_val = px**2 / (a**2) - py**2 / (b**2) |
|
|
is_between_branches = hyperbola_val < 1 |
|
|
|
|
|
|
|
|
return torch.where(is_between_branches, -dist, dist) |
|
|
|
|
|
|
|
|
class ParabolaSDF(SDFPrimitive): |
|
|
""" |
|
|
SDF for parabola: y² = 4px (rightward opening) |
|
|
or x² = 4py (upward opening) |
|
|
|
|
|
Sign Convention for Unbounded Curve: |
|
|
For right-opening parabola y² = 4px: |
|
|
- NEGATIVE: Point is on the CONCAVE side (where focus is, x > 0 and y² < 4px) |
|
|
This is the "interior" - the region bounded by the parabola |
|
|
- POSITIVE: Point is on the CONVEX side (x < 0, or x > 0 but y² > 4px) |
|
|
This is the "exterior" |
|
|
- ZERO: Point is on the parabola boundary |
|
|
|
|
|
The "interior" is defined as the concave region containing the focus. |
|
|
This provides a consistent and geometrically meaningful sign convention. |
|
|
|
|
|
Parameters: |
|
|
vertex: [vx, vy] - vertex position |
|
|
p: focal parameter (distance from vertex to focus) |
|
|
direction: 'right', 'left', 'up', 'down' |
|
|
""" |
|
|
|
|
|
def __init__(self, vertex: torch.Tensor, p: torch.Tensor, direction: str = 'right'): |
|
|
super().__init__() |
|
|
self.vertex = nn.Parameter(vertex.clone()) |
|
|
self.p = nn.Parameter(p.clone()) |
|
|
self.direction = direction |
|
|
|
|
|
def forward(self, pts: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
p_local = pts - self.vertex |
|
|
px = p_local[..., 0] |
|
|
py = p_local[..., 1] |
|
|
|
|
|
p_param = torch.abs(self.p) + 1e-6 |
|
|
|
|
|
if self.direction == 'right': |
|
|
|
|
|
return self._compute_distance_right(px, py, p_param, flip_sign=False) |
|
|
elif self.direction == 'left': |
|
|
|
|
|
return self._compute_distance_right(-px, py, p_param, flip_sign=False) |
|
|
elif self.direction == 'up': |
|
|
|
|
|
return self._compute_distance_right(py, px, p_param, flip_sign=False) |
|
|
elif self.direction == 'down': |
|
|
|
|
|
return self._compute_distance_right(-py, px, p_param, flip_sign=False) |
|
|
else: |
|
|
return self._compute_distance_right(px, py, p_param, flip_sign=False) |
|
|
|
|
|
def _compute_distance_right(self, px: torch.Tensor, py: torch.Tensor, |
|
|
p: torch.Tensor, flip_sign: bool = False) -> torch.Tensor: |
|
|
""" |
|
|
Compute signed distance to parabola y² = 4px |
|
|
|
|
|
Sign convention: |
|
|
- Negative on concave side (where y² < 4px AND x >= 0) |
|
|
- Positive elsewhere |
|
|
""" |
|
|
|
|
|
|
|
|
t = py.clone() |
|
|
|
|
|
for _ in range(12): |
|
|
para_x = t**2 / (4 * p) |
|
|
para_y = t |
|
|
|
|
|
dx = px - para_x |
|
|
dy = py - para_y |
|
|
|
|
|
dpara_x = t / (2 * p) |
|
|
dpara_y = torch.ones_like(t) |
|
|
|
|
|
grad = -2 * (dx * dpara_x + dy * dpara_y) |
|
|
|
|
|
ddpara_x = 1 / (2 * p) |
|
|
hess = 2 * (dpara_x**2 + dpara_y**2 - dx * ddpara_x) + 1e-8 |
|
|
|
|
|
step = grad / torch.abs(hess) |
|
|
t = t - torch.clamp(step, -1.0, 1.0) |
|
|
|
|
|
|
|
|
para_x = t**2 / (4 * p) |
|
|
para_y = t |
|
|
dist = torch.sqrt((px - para_x)**2 + (py - para_y)**2 + 1e-10) |
|
|
|
|
|
|
|
|
at_vertex = (torch.abs(px) < 1e-6) & (torch.abs(py) < 1e-6) |
|
|
dist = torch.where(at_vertex, torch.zeros_like(dist), dist) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
on_concave_side = (px >= 0) & (py**2 < 4 * p * px) |
|
|
|
|
|
return torch.where(on_concave_side, -dist, dist) |
|
|
|
|
|
|
|
|
class LineSDF(SDFPrimitive): |
|
|
""" |
|
|
SDF for infinite line passing through point with direction. |
|
|
f(p) = signed distance to line |
|
|
""" |
|
|
|
|
|
def __init__(self, point: torch.Tensor, direction: torch.Tensor): |
|
|
super().__init__() |
|
|
self.point = nn.Parameter(point.clone()) |
|
|
|
|
|
self.direction = nn.Parameter(direction / (torch.norm(direction) + 1e-8)) |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
v = p - self.point |
|
|
|
|
|
|
|
|
normal = torch.tensor([-self.direction[1], self.direction[0]], device=p.device) |
|
|
|
|
|
|
|
|
return (v * normal).sum(dim=-1) |
|
|
|
|
|
|
|
|
class LineSegmentSDF(SDFPrimitive): |
|
|
""" |
|
|
SDF for line segment from point a to point b. |
|
|
Following paper Section 2.3 |
|
|
""" |
|
|
|
|
|
def __init__(self, a: torch.Tensor, b: torch.Tensor): |
|
|
super().__init__() |
|
|
self.a = nn.Parameter(a.clone()) |
|
|
self.b = nn.Parameter(b.clone()) |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
v_ab = self.b - self.a |
|
|
|
|
|
|
|
|
v_ap = p - self.a |
|
|
|
|
|
|
|
|
h = (v_ap * v_ab).sum(dim=-1) / (torch.norm(v_ab)**2 + 1e-8) |
|
|
|
|
|
|
|
|
h_clamped = torch.clamp(h, 0, 1) |
|
|
|
|
|
|
|
|
closest = self.a + h_clamped.unsqueeze(-1) * v_ab |
|
|
|
|
|
|
|
|
return torch.norm(p - closest, dim=-1) |
|
|
|
|
|
|
|
|
class TriangleEdgesSDF(SDFPrimitive): |
|
|
""" |
|
|
SDF for triangle edges (boundary only) - union of three line segments. |
|
|
Pure SDF implementation for triangle boundaries. |
|
|
""" |
|
|
|
|
|
def __init__(self, v0: torch.Tensor, v1: torch.Tensor, v2: torch.Tensor, |
|
|
line_thickness: float = 0.02): |
|
|
super().__init__() |
|
|
self.edge0 = LineSegmentSDF(v0, v1) |
|
|
self.edge1 = LineSegmentSDF(v1, v2) |
|
|
self.edge2 = LineSegmentSDF(v2, v0) |
|
|
self.thickness = line_thickness |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
d0 = self.edge0(p) |
|
|
d1 = self.edge1(p) |
|
|
d2 = self.edge2(p) |
|
|
return torch.min(torch.min(d0, d1), d2) - self.thickness |
|
|
|
|
|
|
|
|
class TriangleFillSDF(SDFPrimitive): |
|
|
""" |
|
|
SDF for filled triangle region. |
|
|
Negative inside, positive outside. |
|
|
Pure SDF implementation for triangle fill. |
|
|
""" |
|
|
|
|
|
def __init__(self, v0: torch.Tensor, v1: torch.Tensor, v2: torch.Tensor): |
|
|
super().__init__() |
|
|
self.v0 = nn.Parameter(v0.clone()) |
|
|
self.v1 = nn.Parameter(v1.clone()) |
|
|
self.v2 = nn.Parameter(v2.clone()) |
|
|
self.edge0 = LineSegmentSDF(v0, v1) |
|
|
self.edge1 = LineSegmentSDF(v1, v2) |
|
|
self.edge2 = LineSegmentSDF(v2, v0) |
|
|
|
|
|
def _sign(self, p: torch.Tensor, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: |
|
|
"""Compute signed area for point-in-triangle test""" |
|
|
return (p[..., 0] - a[0]) * (b[1] - a[1]) - (b[0] - a[0]) * (p[..., 1] - a[1]) |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
d0 = self.edge0(p) |
|
|
d1 = self.edge1(p) |
|
|
d2 = self.edge2(p) |
|
|
dist = torch.min(torch.min(d0, d1), d2) |
|
|
|
|
|
|
|
|
s0 = self._sign(p, self.v0, self.v1) |
|
|
s1 = self._sign(p, self.v1, self.v2) |
|
|
s2 = self._sign(p, self.v2, self.v0) |
|
|
|
|
|
|
|
|
inside = ((s0 >= 0) & (s1 >= 0) & (s2 >= 0)) | ((s0 <= 0) & (s1 <= 0) & (s2 <= 0)) |
|
|
|
|
|
return torch.where(inside, -dist, dist) |
|
|
|
|
|
|
|
|
class RightAngleSDF(SDFPrimitive): |
|
|
""" |
|
|
SDF for right angle marker (two perpendicular line segments). |
|
|
Pure SDF implementation for geometric annotations. |
|
|
""" |
|
|
|
|
|
def __init__(self, vertex: torch.Tensor, dir1: torch.Tensor, dir2: torch.Tensor, |
|
|
size: float = 0.25, thickness: float = 0.015): |
|
|
super().__init__() |
|
|
|
|
|
dir1_norm = dir1 / (torch.norm(dir1) + 1e-8) |
|
|
dir2_norm = dir2 / (torch.norm(dir2) + 1e-8) |
|
|
|
|
|
|
|
|
p1 = vertex + dir1_norm * size |
|
|
p2 = vertex + dir2_norm * size |
|
|
p3 = vertex + dir1_norm * size + dir2_norm * size |
|
|
|
|
|
self.seg1 = LineSegmentSDF(p1, p3) |
|
|
self.seg2 = LineSegmentSDF(p2, p3) |
|
|
self.thickness = thickness |
|
|
|
|
|
def forward(self, p: torch.Tensor) -> torch.Tensor: |
|
|
d1 = self.seg1(p) |
|
|
d2 = self.seg2(p) |
|
|
return torch.min(d1, d2) - self.thickness |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GeometricConstraints: |
|
|
""" |
|
|
Differentiable constraint functions for geometric relationships. |
|
|
All constraints return a loss value that should be minimized to 0. |
|
|
""" |
|
|
|
|
|
@staticmethod |
|
|
def point_on_curve(sdf: SDFPrimitive, point: torch.Tensor) -> torch.Tensor: |
|
|
"""Point lies on curve: |SDF(point)| = 0""" |
|
|
return torch.abs(sdf(point.unsqueeze(0))).squeeze() |
|
|
|
|
|
@staticmethod |
|
|
def distance_constraint(p1: torch.Tensor, p2: torch.Tensor, target_dist: float) -> torch.Tensor: |
|
|
"""Distance between two points equals target""" |
|
|
actual_dist = torch.norm(p1 - p2) |
|
|
return (actual_dist - target_dist)**2 |
|
|
|
|
|
@staticmethod |
|
|
def focus_constraint_ellipse(a: torch.Tensor, b: torch.Tensor, c_target: float) -> torch.Tensor: |
|
|
"""Ellipse focus constraint: c = sqrt(a² - b²) for a > b""" |
|
|
a_val = torch.max(a, b) |
|
|
b_val = torch.min(a, b) |
|
|
c_computed = torch.sqrt(torch.relu(a_val**2 - b_val**2) + 1e-8) |
|
|
return (c_computed - c_target)**2 |
|
|
|
|
|
@staticmethod |
|
|
def focus_constraint_hyperbola(a: torch.Tensor, b: torch.Tensor, c_target: float) -> torch.Tensor: |
|
|
"""Hyperbola focus constraint: c = sqrt(a² + b²)""" |
|
|
c_computed = torch.sqrt(a**2 + b**2) |
|
|
return (c_computed - c_target)**2 |
|
|
|
|
|
@staticmethod |
|
|
def eccentricity_ellipse(a: torch.Tensor, b: torch.Tensor, e_target: float) -> torch.Tensor: |
|
|
"""Ellipse eccentricity: e = c/a = sqrt(1 - b²/a²)""" |
|
|
a_val = torch.max(a, b) |
|
|
b_val = torch.min(a, b) |
|
|
e_computed = torch.sqrt(torch.relu(1 - (b_val/a_val)**2) + 1e-8) |
|
|
return (e_computed - e_target)**2 |
|
|
|
|
|
@staticmethod |
|
|
def eccentricity_hyperbola(a: torch.Tensor, b: torch.Tensor, e_target: float) -> torch.Tensor: |
|
|
"""Hyperbola eccentricity: e = c/a = sqrt(1 + b²/a²)""" |
|
|
e_computed = torch.sqrt(1 + (b/a)**2) |
|
|
return (e_computed - e_target)**2 |
|
|
|
|
|
@staticmethod |
|
|
def asymptote_slope(a: torch.Tensor, b: torch.Tensor, slope_target: float) -> torch.Tensor: |
|
|
"""Hyperbola asymptote slope: y = ±(b/a)x""" |
|
|
slope_computed = b / (a + 1e-8) |
|
|
return (slope_computed - slope_target)**2 |
|
|
|
|
|
@staticmethod |
|
|
def positive_constraint(val: torch.Tensor) -> torch.Tensor: |
|
|
"""Ensure value is positive""" |
|
|
return torch.relu(-val + 0.01)**2 |
|
|
|
|
|
@staticmethod |
|
|
def crowd_penalty(positions: List[torch.Tensor], tau: float = 0.5) -> torch.Tensor: |
|
|
""" |
|
|
Prevent element collapse (Paper Section 5.3) |
|
|
L_crowd = Σ_{i<j} [max(0, τ - ||x_i - x_j||)]² |
|
|
""" |
|
|
loss = torch.tensor(0.0, device=positions[0].device) |
|
|
for i in range(len(positions)): |
|
|
for j in range(i + 1, len(positions)): |
|
|
dist = torch.norm(positions[i] - positions[j]) |
|
|
loss = loss + torch.relu(tau - dist)**2 |
|
|
return loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SDFRenderer: |
|
|
""" |
|
|
Render geometric shapes by visualizing the zero-level set of SDFs. |
|
|
The boundary of each shape is where SDF = 0. |
|
|
""" |
|
|
|
|
|
def __init__(self, resolution: int = 500, xlim: Tuple[float, float] = (-5, 5), |
|
|
ylim: Tuple[float, float] = (-5, 5)): |
|
|
self.resolution = resolution |
|
|
self.xlim = xlim |
|
|
self.ylim = ylim |
|
|
|
|
|
|
|
|
x = torch.linspace(xlim[0], xlim[1], resolution) |
|
|
y = torch.linspace(ylim[0], ylim[1], resolution) |
|
|
self.xx, self.yy = torch.meshgrid(x, y, indexing='xy') |
|
|
self.grid = torch.stack([self.xx, self.yy], dim=-1) |
|
|
|
|
|
def render_sdf_field(self, sdf: SDFPrimitive, ax, cmap='RdBu', show_field: bool = True, |
|
|
field_alpha: float = 0.15): |
|
|
""" |
|
|
Render the SDF field and its zero-level set. |
|
|
|
|
|
Args: |
|
|
sdf: The SDF primitive to render |
|
|
ax: Matplotlib axis |
|
|
cmap: Colormap for the distance field |
|
|
show_field: Whether to show the distance field background |
|
|
field_alpha: Transparency of the field (0=invisible, 1=opaque). Default 0.15 |
|
|
""" |
|
|
with torch.no_grad(): |
|
|
grid_flat = self.grid.reshape(-1, 2) |
|
|
distances = sdf(grid_flat).reshape(self.resolution, self.resolution) |
|
|
distances_np = distances.cpu().numpy() |
|
|
|
|
|
if show_field and field_alpha > 0: |
|
|
|
|
|
vmax = max(abs(distances_np.min()), abs(distances_np.max())) |
|
|
vmax = min(vmax, 5) |
|
|
im = ax.imshow(distances_np.T, extent=[*self.xlim, *self.ylim], |
|
|
origin='lower', cmap=cmap, vmin=-vmax, vmax=vmax, alpha=field_alpha) |
|
|
|
|
|
|
|
|
|
|
|
ax.contour(self.xx.numpy().T, self.yy.numpy().T, distances_np.T, |
|
|
levels=[0], colors=['#2E86AB'], linewidths=2.5) |
|
|
|
|
|
def render_multiple(self, sdfs: List[Tuple[SDFPrimitive, str, str]], ax, |
|
|
show_field: bool = False): |
|
|
""" |
|
|
Render multiple SDFs with different colors. |
|
|
|
|
|
Args: |
|
|
sdfs: List of (sdf, color, label) tuples |
|
|
""" |
|
|
for sdf, color, label in sdfs: |
|
|
with torch.no_grad(): |
|
|
grid_flat = self.grid.reshape(-1, 2) |
|
|
distances = sdf(grid_flat).reshape(self.resolution, self.resolution) |
|
|
distances_np = distances.cpu().numpy() |
|
|
|
|
|
|
|
|
cs = ax.contour(self.xx.numpy().T, self.yy.numpy().T, distances_np.T, |
|
|
levels=[0], colors=[color], linewidths=2.5) |
|
|
|
|
|
def render_line_segment(self, p1: torch.Tensor, p2: torch.Tensor, ax, |
|
|
color: str = '#E74C3C', thickness: float = 0.025, |
|
|
label: str = None): |
|
|
""" |
|
|
Render a line segment using pure SDF (LineSegmentSDF). |
|
|
Uses contourf to fill the region where SDF < thickness, avoiding double lines. |
|
|
|
|
|
Args: |
|
|
p1, p2: Endpoint tensors |
|
|
ax: Matplotlib axis |
|
|
color: Line color |
|
|
thickness: Line thickness (SDF threshold) |
|
|
label: Optional label for legend |
|
|
""" |
|
|
segment_sdf = LineSegmentSDF(p1, p2) |
|
|
with torch.no_grad(): |
|
|
grid_flat = self.grid.reshape(-1, 2) |
|
|
distances = segment_sdf(grid_flat).reshape(self.resolution, self.resolution) |
|
|
distances_np = distances.cpu().numpy() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax.contourf(self.xx.numpy().T, self.yy.numpy().T, distances_np.T, |
|
|
levels=[-1e10, thickness], colors=[color], alpha=1.0) |
|
|
|
|
|
if label: |
|
|
ax.plot([], [], color=color, lw=3, label=label) |
|
|
|
|
|
def render_triangle(self, v0: torch.Tensor, v1: torch.Tensor, v2: torch.Tensor, ax, |
|
|
edge_color: str = '#E74C3C', fill_color: str = '#FFD700', |
|
|
fill_alpha: float = 0.3, edge_thickness: float = 0.025, |
|
|
edge_labels: List[str] = None): |
|
|
""" |
|
|
Render a triangle using pure SDF. |
|
|
Edges are rendered using LineSegmentSDF (contourf), fill using TriangleFillSDF. |
|
|
|
|
|
Args: |
|
|
v0, v1, v2: Vertex tensors |
|
|
ax: Matplotlib axis |
|
|
edge_color: Color for all edges (or list of 3 colors) |
|
|
fill_color: Fill color |
|
|
fill_alpha: Fill transparency |
|
|
edge_thickness: Edge line thickness (SDF threshold) |
|
|
edge_labels: Optional list of 3 labels for edges |
|
|
""" |
|
|
|
|
|
fill_sdf = TriangleFillSDF(v0, v1, v2) |
|
|
with torch.no_grad(): |
|
|
grid_flat = self.grid.reshape(-1, 2) |
|
|
fill_dist = fill_sdf(grid_flat).reshape(self.resolution, self.resolution) |
|
|
fill_np = fill_dist.cpu().numpy() |
|
|
|
|
|
ax.contourf(self.xx.numpy().T, self.yy.numpy().T, fill_np.T, |
|
|
levels=[-1e10, 0], colors=[fill_color], alpha=fill_alpha) |
|
|
|
|
|
|
|
|
edges = [(v0, v1), (v1, v2), (v2, v0)] |
|
|
colors = [edge_color] * 3 if isinstance(edge_color, str) else edge_color |
|
|
labels = edge_labels if edge_labels else [None, None, None] |
|
|
|
|
|
for (p1, p2), c, lbl in zip(edges, colors, labels): |
|
|
self.render_line_segment(p1, p2, ax, color=c, thickness=edge_thickness, label=lbl) |
|
|
|
|
|
def render_sdf_filled(self, sdf: SDFPrimitive, ax, color: str = '#FFD700', |
|
|
alpha: float = 0.3): |
|
|
""" |
|
|
Render the interior region of an SDF (where SDF < 0). |
|
|
|
|
|
Args: |
|
|
sdf: The SDF primitive |
|
|
ax: Matplotlib axis |
|
|
color: Fill color |
|
|
alpha: Fill transparency |
|
|
""" |
|
|
with torch.no_grad(): |
|
|
grid_flat = self.grid.reshape(-1, 2) |
|
|
distances = sdf(grid_flat).reshape(self.resolution, self.resolution) |
|
|
distances_np = distances.cpu().numpy() |
|
|
|
|
|
ax.contourf(self.xx.numpy().T, self.yy.numpy().T, distances_np.T, |
|
|
levels=[-1e10, 0], colors=[color], alpha=alpha) |
|
|
|
|
|
def render_sdf_zero_level(self, sdf: SDFPrimitive, ax, color: str = '#2E86AB', |
|
|
linewidth: float = 2.5, linestyle: str = '-', |
|
|
label: str = None): |
|
|
""" |
|
|
Render only the zero-level set (SDF = 0) of an SDF. |
|
|
|
|
|
Args: |
|
|
sdf: The SDF primitive |
|
|
ax: Matplotlib axis |
|
|
color: Contour color |
|
|
linewidth: Line width |
|
|
linestyle: Line style |
|
|
label: Optional label for legend |
|
|
""" |
|
|
with torch.no_grad(): |
|
|
grid_flat = self.grid.reshape(-1, 2) |
|
|
distances = sdf(grid_flat).reshape(self.resolution, self.resolution) |
|
|
distances_np = distances.cpu().numpy() |
|
|
|
|
|
ax.contour(self.xx.numpy().T, self.yy.numpy().T, distances_np.T, |
|
|
levels=[0], colors=[color], linewidths=linewidth, linestyles=linestyle) |
|
|
|
|
|
if label: |
|
|
ax.plot([], [], color=color, lw=linewidth, ls=linestyle, label=label) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GeometryOptimizer: |
|
|
""" |
|
|
Optimize geometric parameters to satisfy constraints. |
|
|
Uses gradient-based optimization with Adam. |
|
|
""" |
|
|
|
|
|
def __init__(self, lr: float = 0.05, max_steps: int = 2000, |
|
|
convergence_threshold: float = 0.001): |
|
|
self.lr = lr |
|
|
self.max_steps = max_steps |
|
|
self.threshold = convergence_threshold |
|
|
|
|
|
def optimize(self, sdf: SDFPrimitive, constraints: List[callable], |
|
|
weights: List[float] = None, verbose: bool = False) -> Dict: |
|
|
""" |
|
|
Optimize SDF parameters to satisfy constraints. |
|
|
|
|
|
Args: |
|
|
sdf: The SDF primitive with learnable parameters |
|
|
constraints: List of constraint functions that return loss values |
|
|
weights: Optional weights for each constraint |
|
|
verbose: Print optimization progress |
|
|
|
|
|
Returns: |
|
|
Dictionary with optimization results |
|
|
""" |
|
|
if weights is None: |
|
|
weights = [1.0] * len(constraints) |
|
|
|
|
|
optimizer = torch.optim.AdamW(sdf.parameters(), lr=self.lr) |
|
|
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( |
|
|
optimizer, T_max=self.max_steps, eta_min=1e-6 |
|
|
) |
|
|
|
|
|
history = [] |
|
|
|
|
|
for step in range(self.max_steps): |
|
|
optimizer.zero_grad() |
|
|
|
|
|
|
|
|
total_loss = torch.tensor(0.0) |
|
|
constraint_losses = [] |
|
|
|
|
|
for constraint, weight in zip(constraints, weights): |
|
|
c_loss = constraint() |
|
|
constraint_losses.append(c_loss.item()) |
|
|
total_loss = total_loss + weight * c_loss |
|
|
|
|
|
history.append(total_loss.item()) |
|
|
|
|
|
|
|
|
if total_loss.item() < self.threshold: |
|
|
if verbose: |
|
|
print(f" Converged at step {step}, loss={total_loss.item():.6f}") |
|
|
break |
|
|
|
|
|
|
|
|
total_loss.backward() |
|
|
|
|
|
|
|
|
torch.nn.utils.clip_grad_norm_(sdf.parameters(), max_norm=1.0) |
|
|
|
|
|
optimizer.step() |
|
|
scheduler.step() |
|
|
|
|
|
if verbose and step % 500 == 0: |
|
|
print(f" Step {step}: loss={total_loss.item():.6f}") |
|
|
|
|
|
return { |
|
|
'final_loss': total_loss.item(), |
|
|
'steps': step + 1, |
|
|
'converged': total_loss.item() < self.threshold, |
|
|
'history': history |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ProblemParser: |
|
|
"""Parse problem expressions into geometric constraints and SDFs.""" |
|
|
|
|
|
def __init__(self): |
|
|
pass |
|
|
|
|
|
def parse_line(self, fact_expr: str) -> Optional[Dict]: |
|
|
"""Parse line expression.""" |
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(([^)]+)\s*=\s*0\)', fact_expr) |
|
|
if match: |
|
|
expr = match.group(1) |
|
|
|
|
|
|
|
|
a, b, c = 0.0, 0.0, 0.0 |
|
|
|
|
|
|
|
|
x_match = re.search(r'([+-]?\s*\d*\.?\d*)\s*\*?\s*x', expr) |
|
|
y_match = re.search(r'([+-]?\s*\d*\.?\d*)\s*\*?\s*y', expr) |
|
|
|
|
|
if x_match: |
|
|
coef = x_match.group(1).replace(' ', '') |
|
|
if coef in ['', '+']: |
|
|
a = 1.0 |
|
|
elif coef == '-': |
|
|
a = -1.0 |
|
|
else: |
|
|
try: |
|
|
a = float(coef) |
|
|
except: |
|
|
a = 1.0 |
|
|
|
|
|
if y_match: |
|
|
coef = y_match.group(1).replace(' ', '') |
|
|
if coef in ['', '+']: |
|
|
b = 1.0 |
|
|
elif coef == '-': |
|
|
b = -1.0 |
|
|
else: |
|
|
try: |
|
|
b = float(coef) |
|
|
except: |
|
|
b = 1.0 |
|
|
|
|
|
|
|
|
const_match = re.search(r'([+-]\s*\d+\.?\d*)\s*(?:=|$)', expr) |
|
|
if const_match: |
|
|
try: |
|
|
c = float(const_match.group(1).replace(' ', '')) |
|
|
except: |
|
|
c = 0.0 |
|
|
|
|
|
if a != 0 or b != 0: |
|
|
return { |
|
|
'type': 'line', |
|
|
'a': a, |
|
|
'b': b, |
|
|
'c': c, |
|
|
'equation': expr |
|
|
} |
|
|
|
|
|
|
|
|
slope_match = re.search(r'Slope\(\w+\)\s*=\s*sqrt\((\d+)\)', fact_expr) |
|
|
if slope_match: |
|
|
slope = np.sqrt(float(slope_match.group(1))) |
|
|
return { |
|
|
'type': 'line', |
|
|
'slope': slope, |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
|
|
|
slope_match = re.search(r'Slope\(\w+\)\s*=\s*([\d.]+)', fact_expr) |
|
|
if slope_match: |
|
|
return { |
|
|
'type': 'line', |
|
|
'slope': float(slope_match.group(1)), |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
return None |
|
|
|
|
|
def parse_circle(self, fact_expr: str) -> Optional[Dict]: |
|
|
"""Parse circle expression.""" |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(\(x-([^)]+)\)\^2\s*\+\s*\(y-([^)]+)\)\^2\s*=\s*(\d+)\)', fact_expr) |
|
|
if match: |
|
|
return { |
|
|
'type': 'circle', |
|
|
'center': (float(match.group(1)), float(match.group(2))), |
|
|
'radius': np.sqrt(float(match.group(3))) |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*\+\s*\(([+-]?\s*\d*\.?\d*)\s*[+-]\s*y\)\^2\s*=\s*(\d+)\)', fact_expr) |
|
|
if match: |
|
|
cy = -float(match.group(1).replace(' ', '')) if match.group(1) else 0.0 |
|
|
return { |
|
|
'type': 'circle', |
|
|
'center': (0.0, cy), |
|
|
'radius': np.sqrt(float(match.group(2))) |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*\+\s*\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*=\s*(\d+\.?\d*)\)', fact_expr) |
|
|
if match: |
|
|
sign = -1 if match.group(1) == '-' else 1 |
|
|
cx = sign * float(match.group(2)) |
|
|
return { |
|
|
'type': 'circle', |
|
|
'center': (cx, 0.0), |
|
|
'radius': np.sqrt(float(match.group(3))) |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*\+\s*y\^2\s*=\s*(\d+\.?\d*)\)', fact_expr) |
|
|
if match: |
|
|
return { |
|
|
'type': 'circle', |
|
|
'center': (0.0, 0.0), |
|
|
'radius': np.sqrt(float(match.group(1))) |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(r'\w+:\s*Circle', fact_expr): |
|
|
|
|
|
|
|
|
match = re.search(r'\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*\+\s*\(y\s*([+-])\s*(\d+\.?\d*)\)\^2\s*=\s*(\d+\.?\d*)', fact_expr) |
|
|
if match: |
|
|
cx = float(match.group(2)) * (-1 if match.group(1) == '+' else 1) |
|
|
cy = float(match.group(4)) * (-1 if match.group(3) == '+' else 1) |
|
|
return { |
|
|
'type': 'circle', |
|
|
'center': (cx, cy), |
|
|
'radius': np.sqrt(float(match.group(5))) |
|
|
} |
|
|
|
|
|
|
|
|
if 'IsDiameter' in fact_expr: |
|
|
return { |
|
|
'type': 'circle', |
|
|
'from_diameter': True |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
slope_match = re.search(r'Slope\(LineSegmentOf\(\w+,\s*(\w+)\)\)\s*\*\s*Slope\(LineSegmentOf\(\w+,\s*(\w+)\)\)\s*=\s*-1', fact_expr) |
|
|
if slope_match: |
|
|
pt1_name = slope_match.group(1) |
|
|
pt2_name = slope_match.group(2) |
|
|
coords = self.parse_coordinates(fact_expr) |
|
|
if pt1_name in coords and pt2_name in coords: |
|
|
x1, y1 = coords[pt1_name] |
|
|
x2, y2 = coords[pt2_name] |
|
|
|
|
|
cx = (x1 + x2) / 2 |
|
|
cy = (y1 + y2) / 2 |
|
|
radius = np.sqrt((x2 - x1)**2 + (y2 - y1)**2) / 2 |
|
|
return { |
|
|
'type': 'circle', |
|
|
'center': (cx, cy), |
|
|
'radius': radius, |
|
|
'from_constraints': True |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
general_match = re.search(r'Expression\(\w+\)\s*=\s*\(([^)]+x\^2[^)]+y\^2[^)]+)\s*=\s*0\)', fact_expr) |
|
|
if general_match and 'Circle' in fact_expr: |
|
|
expr = general_match.group(1) |
|
|
|
|
|
D = E = F = 0.0 |
|
|
|
|
|
|
|
|
d_match = re.search(r'([+-]?\s*\d*\.?\d*)\s*\*?\s*x(?!\^)', expr) |
|
|
if d_match: |
|
|
d_str = d_match.group(1).replace(' ', '') |
|
|
D = float(d_str) if d_str and d_str not in ['+', '-'] else (1.0 if d_str == '+' or d_str == '' else -1.0) |
|
|
|
|
|
|
|
|
e_match = re.search(r'([+-]?\s*\d*\.?\d*)\s*\*?\s*y(?!\^)', expr) |
|
|
if e_match: |
|
|
e_str = e_match.group(1).replace(' ', '') |
|
|
E = float(e_str) if e_str and e_str not in ['+', '-'] else (1.0 if e_str == '+' or e_str == '' else -1.0) |
|
|
|
|
|
|
|
|
const_match = re.search(r'([+-]\s*\d+\.?\d*)\s*(?:=|$)', expr) |
|
|
if const_match: |
|
|
f_str = const_match.group(1).replace(' ', '') |
|
|
F = float(f_str) |
|
|
|
|
|
cx = -D / 2 |
|
|
cy = -E / 2 |
|
|
r_sq = D**2 / 4 + E**2 / 4 - F |
|
|
if r_sq > 0: |
|
|
return { |
|
|
'type': 'circle', |
|
|
'center': (cx, cy), |
|
|
'radius': np.sqrt(r_sq), |
|
|
'from_constraints': True |
|
|
} |
|
|
|
|
|
|
|
|
shifted_match = re.search(r'Expression\(\w+\)\s*=\s*\(\(x([+-])(\d+\.?\d*)\)\^2\s*\+\s*y\^2\s*=\s*(\d+\.?\d*)\)', fact_expr) |
|
|
if shifted_match: |
|
|
sign = shifted_match.group(1) |
|
|
h = float(shifted_match.group(2)) |
|
|
r_sq = float(shifted_match.group(3)) |
|
|
cx = -h if sign == '+' else h |
|
|
return { |
|
|
'type': 'circle', |
|
|
'center': (cx, 0.0), |
|
|
'radius': np.sqrt(r_sq), |
|
|
} |
|
|
|
|
|
|
|
|
shifted_match2 = re.search(r'Expression\(\w+\)\s*=\s*\(\(x([+-])(\d+\.?\d*)\)\^2\s*\+\s*\(y([+-])(\d+\.?\d*)\)\^2\s*=\s*(\d+\.?\d*)\)', fact_expr) |
|
|
if shifted_match2: |
|
|
sign_x = shifted_match2.group(1) |
|
|
h = float(shifted_match2.group(2)) |
|
|
sign_y = shifted_match2.group(3) |
|
|
k = float(shifted_match2.group(4)) |
|
|
r_sq = float(shifted_match2.group(5)) |
|
|
cx = -h if sign_x == '+' else h |
|
|
cy = -k if sign_y == '+' else k |
|
|
return { |
|
|
'type': 'circle', |
|
|
'center': (cx, cy), |
|
|
'radius': np.sqrt(r_sq), |
|
|
} |
|
|
|
|
|
return None |
|
|
|
|
|
def parse_ellipse(self, fact_expr: str) -> Optional[Dict]: |
|
|
"""Parse ellipse expression and return parameters.""" |
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2/(\d+)\s*\+\s*y\^2/(\d+)\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
x_coef = float(match.group(1)) |
|
|
y_coef = float(match.group(2)) |
|
|
return { |
|
|
'type': 'ellipse', |
|
|
'x_coef': x_coef, |
|
|
'y_coef': y_coef, |
|
|
'a': np.sqrt(max(x_coef, y_coef)), |
|
|
'b': np.sqrt(min(x_coef, y_coef)), |
|
|
'major_axis': 'x' if x_coef > y_coef else 'y' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2/(\d+)\s*\+\s*x\^2/(\d+)\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
y_coef = float(match.group(1)) |
|
|
x_coef = float(match.group(2)) |
|
|
return { |
|
|
'type': 'ellipse', |
|
|
'x_coef': x_coef, |
|
|
'y_coef': y_coef, |
|
|
'a': np.sqrt(max(x_coef, y_coef)), |
|
|
'b': np.sqrt(min(x_coef, y_coef)), |
|
|
'major_axis': 'x' if x_coef > y_coef else 'y' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2/(\d+)\s*\+\s*y\^2\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
x_coef = float(match.group(1)) |
|
|
y_coef = 1.0 |
|
|
return { |
|
|
'type': 'ellipse', |
|
|
'x_coef': x_coef, |
|
|
'y_coef': y_coef, |
|
|
'a': np.sqrt(x_coef), |
|
|
'b': 1.0, |
|
|
'major_axis': 'x' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2/(\d+)\s*\+\s*x\^2\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
y_coef = float(match.group(1)) |
|
|
x_coef = 1.0 |
|
|
return { |
|
|
'type': 'ellipse', |
|
|
'x_coef': x_coef, |
|
|
'y_coef': y_coef, |
|
|
'a': np.sqrt(y_coef), |
|
|
'b': 1.0, |
|
|
'major_axis': 'y' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*\+\s*x\^2/\w+\^?2?\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
return { |
|
|
'type': 'ellipse', |
|
|
'x_coef': 4.0, |
|
|
'y_coef': 1.0, |
|
|
'a': 2.0, |
|
|
'b': 1.0, |
|
|
'major_axis': 'x', |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*\+\s*y\^2/\w+\^?2?\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
return { |
|
|
'type': 'ellipse', |
|
|
'x_coef': 1.0, |
|
|
'y_coef': 4.0, |
|
|
'a': 2.0, |
|
|
'b': 1.0, |
|
|
'major_axis': 'y', |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(r'Expression\(\w+\)\s*=\s*\([xy]\^2/\w+\^?2?\s*\+\s*[xy]\^2/\w+\^?2?\s*=\s*1\)', fact_expr): |
|
|
return { |
|
|
'type': 'ellipse', |
|
|
'x_coef': 4.0, |
|
|
'y_coef': 3.0, |
|
|
'a': 2.0, |
|
|
'b': np.sqrt(3), |
|
|
'major_axis': 'x', |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*\+\s*(\d+)\*y\^2\s*=\s*(\d+)\)', fact_expr) |
|
|
if match: |
|
|
n = float(match.group(1)) |
|
|
m = float(match.group(2)) |
|
|
a_sq = m |
|
|
b_sq = m / n |
|
|
a = np.sqrt(max(a_sq, b_sq)) |
|
|
b = np.sqrt(min(a_sq, b_sq)) |
|
|
return { |
|
|
'type': 'ellipse', |
|
|
'x_coef': a_sq, |
|
|
'y_coef': b_sq, |
|
|
'a': a, |
|
|
'b': b, |
|
|
'major_axis': 'x' if a_sq >= b_sq else 'y' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\((\d+)\*x\^2\s*\+\s*y\^2\s*=\s*(\d+)\)', fact_expr) |
|
|
if match: |
|
|
n = float(match.group(1)) |
|
|
m = float(match.group(2)) |
|
|
a_sq = m / n |
|
|
b_sq = m |
|
|
a = np.sqrt(max(a_sq, b_sq)) |
|
|
b = np.sqrt(min(a_sq, b_sq)) |
|
|
return { |
|
|
'type': 'ellipse', |
|
|
'x_coef': a_sq, |
|
|
'y_coef': b_sq, |
|
|
'a': a, |
|
|
'b': b, |
|
|
'major_axis': 'x' if a_sq >= b_sq else 'y' |
|
|
} |
|
|
|
|
|
|
|
|
if 'Ellipse' in fact_expr: |
|
|
coords = self.parse_coordinates(fact_expr) |
|
|
eccentricity = self.parse_eccentricity(fact_expr) |
|
|
|
|
|
c = None |
|
|
major_axis = 'x' |
|
|
|
|
|
|
|
|
|
|
|
for name, (fx, fy) in coords.items(): |
|
|
if f'RightFocus(' in fact_expr and f') = {name}' in fact_expr: |
|
|
c = abs(fx) |
|
|
major_axis = 'x' |
|
|
break |
|
|
elif f'LeftFocus(' in fact_expr and f') = {name}' in fact_expr: |
|
|
c = abs(fx) |
|
|
major_axis = 'x' |
|
|
break |
|
|
elif f'UpperFocus(' in fact_expr and f') = {name}' in fact_expr: |
|
|
c = abs(fy) |
|
|
major_axis = 'y' |
|
|
break |
|
|
elif f'LowerFocus(' in fact_expr and f') = {name}' in fact_expr: |
|
|
c = abs(fy) |
|
|
major_axis = 'y' |
|
|
break |
|
|
|
|
|
|
|
|
if c is None: |
|
|
focus_match = re.search(r'Coordinate\(OneOf\(Focus\(\w+\)\)\)\s*=\s*\(([^,]+),\s*([^)]+)\)', fact_expr) |
|
|
if focus_match: |
|
|
try: |
|
|
fx = float(focus_match.group(1).strip()) |
|
|
fy = float(focus_match.group(2).strip()) |
|
|
c = abs(fx) if abs(fy) < 0.01 else abs(fy) |
|
|
major_axis = 'x' if abs(fy) < 0.01 else 'y' |
|
|
except: |
|
|
pass |
|
|
|
|
|
|
|
|
if c is None: |
|
|
foci_match = re.search(r'Focus\(\w+\)\s*=\s*\{(\w+),\s*(\w+)\}', fact_expr) |
|
|
if foci_match: |
|
|
f1_name = foci_match.group(1) |
|
|
f2_name = foci_match.group(2) |
|
|
if f1_name in coords and f2_name in coords: |
|
|
fx1, fy1 = coords[f1_name] |
|
|
fx2, fy2 = coords[f2_name] |
|
|
|
|
|
c = np.sqrt((fx2 - fx1)**2 + (fy2 - fy1)**2) / 2 |
|
|
major_axis = 'x' if abs(fy1) < 0.01 else 'y' |
|
|
|
|
|
|
|
|
if c is None and 'PointOnCurve(Focus(' in fact_expr: |
|
|
if 'xAxis' in fact_expr: |
|
|
major_axis = 'x' |
|
|
elif 'yAxis' in fact_expr: |
|
|
major_axis = 'y' |
|
|
|
|
|
|
|
|
axis_ratio = None |
|
|
ratio_match = re.search(r'Length\(MajorAxis\(\w+\)\)\s*=\s*(\d+)\s*\*\s*Length\(MinorAxis', fact_expr) |
|
|
if ratio_match: |
|
|
axis_ratio = float(ratio_match.group(1)) |
|
|
|
|
|
|
|
|
minor_axis_len = None |
|
|
match = re.search(r'Length\(MinorAxis\(\w+\)\)\s*=\s*2\*sqrt\((\d+)\)', fact_expr) |
|
|
if match: |
|
|
minor_axis_len = 2 * np.sqrt(float(match.group(1))) |
|
|
else: |
|
|
match = re.search(r'Length\(MinorAxis\(\w+\)\)\s*=\s*(\d+)', fact_expr) |
|
|
if match: |
|
|
minor_axis_len = float(match.group(1)) |
|
|
|
|
|
|
|
|
major_axis_len = None |
|
|
match = re.search(r'Length\(MajorAxis\(\w+\)\)\s*=\s*2\*sqrt\((\d+)\)', fact_expr) |
|
|
if match: |
|
|
major_axis_len = 2 * np.sqrt(float(match.group(1))) |
|
|
else: |
|
|
match = re.search(r'Length\(MajorAxis\(\w+\)\)\s*=\s*(\d+)', fact_expr) |
|
|
if match: |
|
|
major_axis_len = float(match.group(1)) |
|
|
|
|
|
|
|
|
focal_length = None |
|
|
match = re.search(r'FocalLength\(\w+\)\s*=\s*(\d+)', fact_expr) |
|
|
if match: |
|
|
focal_length = float(match.group(1)) |
|
|
else: |
|
|
match = re.search(r'2\*c\s*=\s*(\d+)', fact_expr) |
|
|
if match: |
|
|
focal_length = float(match.group(1)) |
|
|
|
|
|
|
|
|
if c is None and focal_length: |
|
|
c = focal_length / 2 |
|
|
|
|
|
|
|
|
if minor_axis_len: |
|
|
b_from_minor = minor_axis_len / 2 |
|
|
if c is not None: |
|
|
a = np.sqrt(c**2 + b_from_minor**2) |
|
|
b = b_from_minor |
|
|
|
|
|
|
|
|
if major_axis_len: |
|
|
a_from_major = major_axis_len / 2 |
|
|
if c is not None: |
|
|
a = a_from_major |
|
|
b = np.sqrt(a**2 - c**2) if a > c else None |
|
|
|
|
|
|
|
|
a, b = None, None |
|
|
|
|
|
|
|
|
if c is not None and eccentricity and 0 < eccentricity < 1: |
|
|
a = c / eccentricity |
|
|
b = np.sqrt(a**2 - c**2) |
|
|
|
|
|
|
|
|
elif eccentricity and 0 < eccentricity < 1 and axis_ratio: |
|
|
|
|
|
|
|
|
a = 2.0 * axis_ratio |
|
|
b = 2.0 |
|
|
|
|
|
|
|
|
elif axis_ratio: |
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if f'PointOnCurve({name}' in fact_expr: |
|
|
|
|
|
|
|
|
|
|
|
b_sq = px**2 / axis_ratio**2 + py**2 |
|
|
if b_sq > 0: |
|
|
b = np.sqrt(b_sq) |
|
|
a = axis_ratio * b |
|
|
break |
|
|
|
|
|
|
|
|
if a is None: |
|
|
points_on_curve = [] |
|
|
for name, (px, py) in coords.items(): |
|
|
if f'PointOnCurve({name}' in fact_expr and name not in ['F', 'F1', 'F2']: |
|
|
points_on_curve.append((px, py)) |
|
|
|
|
|
if len(points_on_curve) >= 2: |
|
|
|
|
|
|
|
|
p1, p2 = points_on_curve[0], points_on_curve[1] |
|
|
x1, y1 = p1 |
|
|
x2, y2 = p2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
det = x1**2 * y2**2 - x2**2 * y1**2 |
|
|
if abs(det) > 1e-10: |
|
|
u = (y2**2 - y1**2) / det |
|
|
v = (x1**2 - x2**2) / det |
|
|
if u > 0 and v > 0: |
|
|
a_sq = 1 / u |
|
|
b_sq = 1 / v |
|
|
a = np.sqrt(max(a_sq, b_sq)) |
|
|
b = np.sqrt(min(a_sq, b_sq)) |
|
|
major_axis = 'x' if a_sq >= b_sq else 'y' |
|
|
|
|
|
|
|
|
if a is not None and b is not None and a > 0 and b > 0: |
|
|
return { |
|
|
'type': 'ellipse', |
|
|
'x_coef': a**2 if major_axis == 'x' else b**2, |
|
|
'y_coef': b**2 if major_axis == 'x' else a**2, |
|
|
'a': a, |
|
|
'b': b, |
|
|
'major_axis': major_axis, |
|
|
'from_constraints': True |
|
|
} |
|
|
|
|
|
return None |
|
|
|
|
|
def parse_hyperbola(self, fact_expr: str, main_conic_name: str = None) -> Optional[Dict]: |
|
|
"""Parse hyperbola expression. |
|
|
|
|
|
Args: |
|
|
fact_expr: The fact expression string |
|
|
main_conic_name: If provided, only match Expression(main_conic_name) = ... |
|
|
This avoids matching secondary hyperbola expressions. |
|
|
""" |
|
|
|
|
|
if main_conic_name: |
|
|
expr_prefix = rf'Expression\({re.escape(main_conic_name)}\)\s*=\s*\(' |
|
|
else: |
|
|
expr_prefix = r'Expression\(\w+\)\s*=\s*\(' |
|
|
|
|
|
|
|
|
match = re.search(expr_prefix + r'x\^2/(\d+)\s*-\s*y\^2/(\d+)\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
a_sq = float(match.group(1)) |
|
|
b_sq = float(match.group(2)) |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': np.sqrt(a_sq), |
|
|
'b': np.sqrt(b_sq), |
|
|
'a_squared': a_sq, |
|
|
'b_squared': b_sq, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(expr_prefix + r'y\^2/(\d+)\s*-\s*x\^2/(\d+)\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
a_sq = float(match.group(1)) |
|
|
b_sq = float(match.group(2)) |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': np.sqrt(a_sq), |
|
|
'b': np.sqrt(b_sq), |
|
|
'a_squared': a_sq, |
|
|
'b_squared': b_sq, |
|
|
'orientation': 'vertical' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(expr_prefix + r'x\^2/(\d+)\s*-\s*y\^2\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
a_sq = float(match.group(1)) |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': np.sqrt(a_sq), |
|
|
'b': 1.0, |
|
|
'a_squared': a_sq, |
|
|
'b_squared': 1.0, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(expr_prefix + r'x\^2\s*-\s*y\^2\s*=\s*1\)', fact_expr): |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': 1.0, |
|
|
'b': 1.0, |
|
|
'a_squared': 1.0, |
|
|
'b_squared': 1.0, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(expr_prefix + r'x\^2\s*-\s*y\^2/(\d+)\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
b_sq = float(match.group(1)) |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': 1.0, |
|
|
'b': np.sqrt(b_sq), |
|
|
'a_squared': 1.0, |
|
|
'b_squared': b_sq, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(expr_prefix + r'x\^2\s*-\s*y\^2\s*=\s*(\d+)\)', fact_expr) |
|
|
if match: |
|
|
n = float(match.group(1)) |
|
|
a = np.sqrt(n) |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': a, |
|
|
'b': a, |
|
|
'a_squared': n, |
|
|
'b_squared': n, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(expr_prefix + r'x\^2\s*-\s*(\d+)\*y\^2\s*=\s*(\d+)\)', fact_expr) |
|
|
if match: |
|
|
n = float(match.group(1)) |
|
|
m = float(match.group(2)) |
|
|
a_sq = m |
|
|
b_sq = m / n |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': np.sqrt(a_sq), |
|
|
'b': np.sqrt(b_sq), |
|
|
'a_squared': a_sq, |
|
|
'b_squared': b_sq, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(expr_prefix + r'(\d+)\*x\^2\s*-\s*(\d+)\*y\^2\s*=\s*(\d+)\)', fact_expr) |
|
|
if match: |
|
|
n = float(match.group(1)) |
|
|
m = float(match.group(2)) |
|
|
k = float(match.group(3)) |
|
|
a_sq = k / n |
|
|
b_sq = k / m |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': np.sqrt(a_sq), |
|
|
'b': np.sqrt(b_sq), |
|
|
'a_squared': a_sq, |
|
|
'b_squared': b_sq, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(expr_prefix + r'x\^2/(\d+)\s*-\s*y\^2/(\d+)\s*=\s*-1\)', fact_expr) |
|
|
if match: |
|
|
a_sq = float(match.group(1)) |
|
|
b_sq = float(match.group(2)) |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': np.sqrt(b_sq), |
|
|
'b': np.sqrt(a_sq), |
|
|
'a_squared': b_sq, |
|
|
'b_squared': a_sq, |
|
|
'orientation': 'vertical' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(expr_prefix + r'x\^2-y\^2/(\d+)=1\)', fact_expr) |
|
|
if match: |
|
|
b_sq = float(match.group(1)) |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': 1.0, |
|
|
'b': np.sqrt(b_sq), |
|
|
'a_squared': 1.0, |
|
|
'b_squared': b_sq, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(expr_prefix + r'y\^2\s*-\s*x\^2/(\d+)\s*=\s*1\)', fact_expr) |
|
|
if match: |
|
|
b_sq = float(match.group(1)) |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': 1.0, |
|
|
'b': np.sqrt(b_sq), |
|
|
'a_squared': 1.0, |
|
|
'b_squared': b_sq, |
|
|
'orientation': 'vertical' |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(expr_prefix + r'y\^2\s*-\s*x\^2\s*=\s*1\)', fact_expr): |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': 1.0, |
|
|
'b': 1.0, |
|
|
'a_squared': 1.0, |
|
|
'b_squared': 1.0, |
|
|
'orientation': 'vertical' |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(expr_prefix + r'-x\^2/\w+\^?2?\s*\+\s*y\^2/\w+\^?2?\s*=\s*1\)', fact_expr): |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': 2.0, |
|
|
'b': 1.5, |
|
|
'a_squared': 4.0, |
|
|
'b_squared': 2.25, |
|
|
'symbolic': True, |
|
|
'orientation': 'vertical' |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(expr_prefix + r'y\^2/\w+\^?2?\s*-\s*x\^2/\w+\^?2?\s*=\s*1\)', fact_expr): |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': 2.0, |
|
|
'b': 1.5, |
|
|
'a_squared': 4.0, |
|
|
'b_squared': 2.25, |
|
|
'symbolic': True, |
|
|
'orientation': 'vertical' |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(expr_prefix + r'x\^2/\w+\^?2?\s*-\s*y\^2/\w+\^?2?\s*=\s*1\)', fact_expr): |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': 2.0, |
|
|
'b': 1.5, |
|
|
'a_squared': 4.0, |
|
|
'b_squared': 2.25, |
|
|
'symbolic': True, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(expr_prefix + r'-y\^2/\w+\^?2?\s*\+\s*x\^2/\w+\^?2?\s*=\s*1\)', fact_expr): |
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': 2.0, |
|
|
'b': 1.5, |
|
|
'a_squared': 4.0, |
|
|
'b_squared': 2.25, |
|
|
'symbolic': True, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
|
|
|
if 'Hyperbola' in fact_expr: |
|
|
|
|
|
asymptote = self.parse_asymptote_slope(fact_expr) |
|
|
coords = self.parse_coordinates(fact_expr) |
|
|
focus_coords = [(n, c) for n, c in coords.items() if 'F' in n] |
|
|
|
|
|
if asymptote or len(focus_coords) >= 2: |
|
|
|
|
|
if len(focus_coords) >= 2: |
|
|
f1, f2 = focus_coords[0][1], focus_coords[1][1] |
|
|
c = abs(f1[0] - f2[0]) / 2 if f1[1] == f2[1] == 0 else 3.0 |
|
|
else: |
|
|
c = 3.0 |
|
|
|
|
|
if asymptote: |
|
|
|
|
|
|
|
|
|
|
|
a = c / np.sqrt(1 + asymptote**2) |
|
|
b = a * asymptote |
|
|
else: |
|
|
a = c / np.sqrt(2) |
|
|
b = a |
|
|
|
|
|
return { |
|
|
'type': 'hyperbola', |
|
|
'a': a, |
|
|
'b': b, |
|
|
'a_squared': a**2, |
|
|
'b_squared': b**2, |
|
|
'from_constraints': True, |
|
|
'orientation': 'horizontal' |
|
|
} |
|
|
|
|
|
return None |
|
|
|
|
|
def parse_parabola(self, fact_expr: str) -> Optional[Dict]: |
|
|
"""Parse parabola expression.""" |
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*(\d+)\*x\)', fact_expr) |
|
|
if match: |
|
|
coef = float(match.group(1)) |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': coef / 4, |
|
|
'direction': 'right' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*(\d+)\*y\)', fact_expr) |
|
|
if match: |
|
|
coef = float(match.group(1)) |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': coef / 4, |
|
|
'direction': 'up' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*-(\d+)\*y\)', fact_expr) |
|
|
if match: |
|
|
coef = float(match.group(1)) |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': coef / 4, |
|
|
'direction': 'down' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*y/(\d+)\)', fact_expr) |
|
|
if match: |
|
|
divisor = float(match.group(1)) |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 1 / (4 * divisor), |
|
|
'direction': 'up' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\s*=\s*-x\^2/(\d+)\)', fact_expr) |
|
|
if match: |
|
|
divisor = float(match.group(1)) |
|
|
|
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': divisor / 4, |
|
|
'direction': 'down' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\s*=\s*x\^2/(\d+)\)', fact_expr) |
|
|
if match: |
|
|
divisor = float(match.group(1)) |
|
|
|
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': divisor / 4, |
|
|
'direction': 'up' |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*\w+\*x\)', fact_expr): |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 1.0, |
|
|
'direction': 'right', |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*\w+\*y\)', fact_expr): |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 1.0, |
|
|
'direction': 'up', |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*2\*\(\w+\*x\)\)', fact_expr): |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 1.0, |
|
|
'direction': 'right', |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*2\*\(\w+\*y\)\)', fact_expr): |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 1.0, |
|
|
'direction': 'up', |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\s*=\s*(\d*)\*?x\^2\)', fact_expr) |
|
|
if match: |
|
|
coef = match.group(1) |
|
|
a = float(coef) if coef else 1.0 |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 1 / (4 * a), |
|
|
'direction': 'up' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\s*=\s*x\^2/(\d+)\)', fact_expr) |
|
|
if match: |
|
|
divisor = float(match.group(1)) |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': divisor / 4, |
|
|
'direction': 'up' |
|
|
} |
|
|
|
|
|
|
|
|
match = re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*-(\d+)\*x\)', fact_expr) |
|
|
if match: |
|
|
coef = float(match.group(1)) |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': coef / 4, |
|
|
'direction': 'left' |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*2\*p\*x\)', fact_expr): |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 1.0, |
|
|
'direction': 'right', |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*2\*p\*y\)', fact_expr): |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 1.0, |
|
|
'direction': 'up', |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(r'Expression\(\w+\)\s*=\s*\(y\^2\s*=\s*x\)', fact_expr): |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 0.25, |
|
|
'direction': 'right' |
|
|
} |
|
|
|
|
|
|
|
|
if re.search(r'Expression\(\w+\)\s*=\s*\(x\^2\s*=\s*y\)', fact_expr): |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 0.25, |
|
|
'direction': 'up' |
|
|
} |
|
|
|
|
|
|
|
|
if 'Parabola' in fact_expr: |
|
|
coords = self.parse_coordinates(fact_expr) |
|
|
|
|
|
|
|
|
direction = None |
|
|
if 'PointOnCurve(Focus(' in fact_expr: |
|
|
if 'xAxis' in fact_expr: |
|
|
direction = 'right' |
|
|
elif 'yAxis' in fact_expr: |
|
|
direction = 'up' |
|
|
|
|
|
|
|
|
vertex_at_origin = 'Vertex(' in fact_expr and 'Origin' in fact_expr |
|
|
|
|
|
|
|
|
|
|
|
dist_match = re.search(r'Distance\((\w+),\s*Focus\(\w+\)\)\s*=\s*(\d+)', fact_expr) |
|
|
if dist_match and vertex_at_origin: |
|
|
pt_name = dist_match.group(1) |
|
|
dist_val = float(dist_match.group(2)) |
|
|
if pt_name in coords: |
|
|
px, py = coords[pt_name] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if direction == 'right': |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p = (dist_val - px) if px >= 0 else (dist_val + px) |
|
|
if p > 0: |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': p, |
|
|
'direction': 'right', |
|
|
'from_constraints': True |
|
|
} |
|
|
elif direction == 'up': |
|
|
p = (dist_val - py) if py >= 0 else (dist_val + py) |
|
|
if p > 0: |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': p, |
|
|
'direction': 'up', |
|
|
'from_constraints': True |
|
|
} |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
|
|
|
if 'F' in name and (f'Focus(' in fact_expr): |
|
|
if abs(py) < 0.01: |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': abs(px), |
|
|
'direction': 'right' if px > 0 else 'left', |
|
|
'from_constraints': True |
|
|
} |
|
|
elif abs(px) < 0.01: |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': abs(py), |
|
|
'direction': 'up' if py > 0 else 'down', |
|
|
'from_constraints': True |
|
|
} |
|
|
|
|
|
|
|
|
if vertex_at_origin and direction: |
|
|
return { |
|
|
'type': 'parabola', |
|
|
'p': 1.0, |
|
|
'direction': direction, |
|
|
'symbolic': True |
|
|
} |
|
|
|
|
|
return None |
|
|
|
|
|
def parse_coordinates(self, fact_expr: str) -> Dict[str, Tuple[float, float]]: |
|
|
"""Extract point coordinates.""" |
|
|
coords = {} |
|
|
|
|
|
|
|
|
|
|
|
coord_pattern = r'Coordinate\((\w+)\)\s*=\s*\(([^;]+)\)' |
|
|
for match in re.finditer(coord_pattern, fact_expr): |
|
|
name = match.group(1) |
|
|
coord_str = match.group(2) |
|
|
|
|
|
|
|
|
depth = 0 |
|
|
parts = [] |
|
|
current = "" |
|
|
for char in coord_str: |
|
|
if char == '(': |
|
|
depth += 1 |
|
|
current += char |
|
|
elif char == ')': |
|
|
depth -= 1 |
|
|
current += char |
|
|
elif char == ',' and depth == 0: |
|
|
parts.append(current.strip()) |
|
|
current = "" |
|
|
else: |
|
|
current += char |
|
|
parts.append(current.strip()) |
|
|
|
|
|
if len(parts) >= 2: |
|
|
try: |
|
|
x = parts[0].replace('sqrt', 'np.sqrt').replace('^', '**') |
|
|
y = parts[1].replace('sqrt', 'np.sqrt').replace('^', '**') |
|
|
x_val = float(eval(x, {"np": np, "__builtins__": {}})) |
|
|
y_val = float(eval(y, {"np": np, "__builtins__": {}})) |
|
|
coords[name] = (x_val, y_val) |
|
|
except: |
|
|
pass |
|
|
return coords |
|
|
|
|
|
def parse_eccentricity(self, fact_expr: str) -> Optional[float]: |
|
|
"""Extract eccentricity constraint.""" |
|
|
|
|
|
match = re.search(r'Eccentricity\(\w+\)\s*=\s*sqrt\((\d+)\)', fact_expr) |
|
|
if match: |
|
|
return np.sqrt(float(match.group(1))) |
|
|
|
|
|
|
|
|
match = re.search(r'Eccentricity\(\w+\)\s*=\s*(\d+)/(\d+)', fact_expr) |
|
|
if match: |
|
|
return float(match.group(1)) / float(match.group(2)) |
|
|
|
|
|
|
|
|
match = re.search(r'Eccentricity\(\w+\)\s*=\s*([\d.]+)', fact_expr) |
|
|
if match: |
|
|
return float(match.group(1)) |
|
|
|
|
|
return None |
|
|
|
|
|
def parse_asymptote_slope(self, fact_expr: str) -> Optional[float]: |
|
|
"""Extract asymptote slope for hyperbola. |
|
|
|
|
|
Supports patterns like: |
|
|
- y = sqrt(2)*x |
|
|
- y = pm*sqrt(2)*x |
|
|
- y = pm*(sqrt(2)/2)*x or y = pm*(sqrt(2)/2)*X |
|
|
- y = 4/3*x |
|
|
- y = pm*3*x |
|
|
- y = pm*(sqrt(2)*x) |
|
|
""" |
|
|
|
|
|
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*sqrt\((\d+)\)\*[xX]\)', fact_expr) |
|
|
if match: |
|
|
return np.sqrt(float(match.group(1))) |
|
|
|
|
|
|
|
|
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*pm\*\(?sqrt\((\d+)\)\*?[xX]\)?', fact_expr) |
|
|
if match: |
|
|
return np.sqrt(float(match.group(1))) |
|
|
|
|
|
|
|
|
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*pm\*\(sqrt\((\d+)\)/(\d+)\)\*[xX]\)', fact_expr) |
|
|
if match: |
|
|
return np.sqrt(float(match.group(1))) / float(match.group(2)) |
|
|
|
|
|
|
|
|
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*(\d+)/(\d+)\*[xX]\)', fact_expr) |
|
|
if match: |
|
|
return float(match.group(1)) / float(match.group(2)) |
|
|
|
|
|
|
|
|
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*pm\*(\d+)\*[xX]\)', fact_expr) |
|
|
if match: |
|
|
return float(match.group(1)) |
|
|
|
|
|
|
|
|
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*(\d+)\*[xX]\)', fact_expr) |
|
|
if match: |
|
|
return float(match.group(1)) |
|
|
|
|
|
|
|
|
match = re.search(r'Asymptote.*?=\s*\(pm\*(\d+)\*y\+(\d+)\*x=0\)', fact_expr) |
|
|
if match: |
|
|
a = float(match.group(1)) |
|
|
b = float(match.group(2)) |
|
|
return b / a |
|
|
|
|
|
|
|
|
match = re.search(r'Asymptote.*?=\s*\(y\s*=\s*pm\*\((\d+)/(\d+)\)\*[xX]\)', fact_expr) |
|
|
if match: |
|
|
return float(match.group(1)) / float(match.group(2)) |
|
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SDFBatchProcessor: |
|
|
""" |
|
|
Process problems using the SDF methodology. |
|
|
""" |
|
|
|
|
|
def __init__(self, output_dir: str = 'sdf_output'): |
|
|
self.output_dir = Path(output_dir) |
|
|
self.output_dir.mkdir(exist_ok=True, parents=True) |
|
|
|
|
|
self.parser = ProblemParser() |
|
|
self.optimizer = GeometryOptimizer() |
|
|
|
|
|
|
|
|
for subdir in ['ellipse', 'hyperbola', 'parabola', 'circle']: |
|
|
(self.output_dir / subdir).mkdir(exist_ok=True) |
|
|
|
|
|
def process_problem(self, problem: Dict, idx: int, verbose: bool = False) -> Dict: |
|
|
"""Process a single problem using SDF methodology.""" |
|
|
result = { |
|
|
'index': idx, |
|
|
'success': False, |
|
|
'error': None |
|
|
} |
|
|
|
|
|
try: |
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
text = problem.get('text', '') |
|
|
query_expr = problem.get('query_expressions', '') |
|
|
|
|
|
|
|
|
|
|
|
primary_shape = None |
|
|
query_match = re.search(r'Expression\((\w+)\)', query_expr) |
|
|
if query_match: |
|
|
shape_name = query_match.group(1) |
|
|
|
|
|
type_match = re.search(rf'{shape_name}:\s*(\w+)', fact_expr) |
|
|
if type_match: |
|
|
primary_shape = type_match.group(1).lower() |
|
|
|
|
|
|
|
|
main_hyperbola_name = self._detect_main_conic_name(fact_expr, 'hyperbola') |
|
|
main_ellipse_name = self._detect_main_conic_name(fact_expr, 'ellipse') |
|
|
main_parabola_name = self._detect_main_conic_name(fact_expr, 'parabola') |
|
|
main_circle_name = self._detect_main_conic_name(fact_expr, 'circle') |
|
|
|
|
|
|
|
|
ellipse_params = self.parser.parse_ellipse(fact_expr) |
|
|
hyperbola_params = self.parser.parse_hyperbola(fact_expr, main_hyperbola_name) |
|
|
parabola_params = self.parser.parse_parabola(fact_expr) |
|
|
circle_params = self.parser.parse_circle(fact_expr) |
|
|
|
|
|
|
|
|
coords = self.parser.parse_coordinates(fact_expr) |
|
|
eccentricity = self.parser.parse_eccentricity(fact_expr) |
|
|
asymptote = self.parser.parse_asymptote_slope(fact_expr) |
|
|
|
|
|
|
|
|
moving_circle = self._detect_moving_circle_locus(fact_expr, coords) |
|
|
if moving_circle: |
|
|
params_hyp = moving_circle |
|
|
return self._process_hyperbola(problem, idx, params_hyp, coords, eccentricity=None, asymptote=None, verbose=verbose) |
|
|
|
|
|
|
|
|
if primary_shape == 'hyperbola' and hyperbola_params: |
|
|
result = self._process_hyperbola(problem, idx, hyperbola_params, coords, eccentricity, asymptote, verbose) |
|
|
elif primary_shape == 'ellipse' and ellipse_params: |
|
|
result = self._process_ellipse(problem, idx, ellipse_params, coords, eccentricity, verbose) |
|
|
elif primary_shape == 'parabola' and parabola_params: |
|
|
result = self._process_parabola(problem, idx, parabola_params, coords, verbose) |
|
|
elif primary_shape == 'circle' and circle_params: |
|
|
result = self._process_circle(problem, idx, circle_params, coords, verbose) |
|
|
|
|
|
|
|
|
elif hyperbola_params: |
|
|
result = self._process_hyperbola(problem, idx, hyperbola_params, coords, eccentricity, asymptote, verbose) |
|
|
elif ellipse_params: |
|
|
result = self._process_ellipse(problem, idx, ellipse_params, coords, eccentricity, verbose) |
|
|
elif parabola_params: |
|
|
result = self._process_parabola(problem, idx, parabola_params, coords, verbose) |
|
|
elif circle_params: |
|
|
result = self._process_circle(problem, idx, circle_params, coords, verbose) |
|
|
else: |
|
|
result['error'] = 'Unsupported or unparseable expression' |
|
|
return result |
|
|
|
|
|
|
|
|
result = self._validate_result(result, problem) |
|
|
return result |
|
|
|
|
|
except Exception as e: |
|
|
result['error'] = str(e) |
|
|
return result |
|
|
|
|
|
def _validate_result(self, result: Dict, problem: Dict) -> Dict: |
|
|
""" |
|
|
Lightweight validation to catch obvious incorrect outputs. |
|
|
Adds validation_reasons when failed and flips success=False. |
|
|
""" |
|
|
if not result.get('success'): |
|
|
return result |
|
|
|
|
|
conic_type = result.get('conic_type') |
|
|
fact_expr = result.get('fact_expr', problem.get('fact_expressions', '')) |
|
|
coords = result.get('coords', {}) |
|
|
reasons = [] |
|
|
tol = 3e-2 |
|
|
|
|
|
|
|
|
main_conic = self._detect_main_conic_name(fact_expr, conic_type) |
|
|
|
|
|
|
|
|
points_on_main = self._points_on_main_conic(fact_expr, coords, main_conic) |
|
|
|
|
|
def has_point_constraint(name: str) -> bool: |
|
|
return name in points_on_main |
|
|
|
|
|
if conic_type == 'ellipse': |
|
|
params = result.get('params', {}) |
|
|
if 'a' not in params or 'b' not in params: |
|
|
return result |
|
|
a = params['a'] |
|
|
b = params['b'] |
|
|
if a <= 0 or b <= 0: |
|
|
reasons.append('ellipse_nonpositive_axes') |
|
|
ecc_target = self.parser.parse_eccentricity(fact_expr) |
|
|
if ecc_target and ecc_target < 1: |
|
|
ecc_calc = np.sqrt(max(0.0, 1 - (min(a, b) / max(a, b))**2)) |
|
|
if abs(ecc_calc - ecc_target) > 0.05: |
|
|
reasons.append('ellipse_ecc_mismatch') |
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if has_point_constraint(name): |
|
|
val = (px**2) / (a**2) + (py**2) / (b**2) - 1 |
|
|
if abs(val) > tol: |
|
|
reasons.append('ellipse_point_off_curve') |
|
|
break |
|
|
|
|
|
elif conic_type == 'hyperbola': |
|
|
params = result.get('params', {}) |
|
|
if 'a' not in params or 'b' not in params: |
|
|
return result |
|
|
a = params['a'] |
|
|
b = params['b'] |
|
|
orientation = params.get('orientation', 'horizontal') |
|
|
if a <= 0 or b <= 0: |
|
|
reasons.append('hyperbola_nonpositive_axes') |
|
|
asym = self.parser.parse_asymptote_slope(fact_expr) |
|
|
if asym: |
|
|
if abs(b / a - asym) > 0.05: |
|
|
reasons.append('hyperbola_asymptote_mismatch') |
|
|
ecc_target = self.parser.parse_eccentricity(fact_expr) |
|
|
if ecc_target and ecc_target > 1: |
|
|
ecc_calc = np.sqrt(1 + (b / a) ** 2) |
|
|
if abs(ecc_calc - ecc_target) > 0.05: |
|
|
reasons.append('hyperbola_ecc_mismatch') |
|
|
for name, (px, py) in coords.items(): |
|
|
if has_point_constraint(name): |
|
|
|
|
|
if orientation == 'vertical': |
|
|
|
|
|
val = (py**2) / (a**2) - (px**2) / (b**2) - 1 |
|
|
else: |
|
|
|
|
|
val = (px**2) / (a**2) - (py**2) / (b**2) - 1 |
|
|
if abs(val) > tol: |
|
|
reasons.append('hyperbola_point_off_curve') |
|
|
break |
|
|
|
|
|
elif conic_type == 'parabola': |
|
|
p = result['params']['p'] |
|
|
direction = result['params'].get('direction', 'right') |
|
|
if p <= 0: |
|
|
reasons.append('parabola_nonpositive_p') |
|
|
|
|
|
if direction == 'right': |
|
|
base_val = 0 - 4 * p * 0 |
|
|
elif direction == 'left': |
|
|
base_val = 0 + 4 * p * 0 |
|
|
elif direction == 'up': |
|
|
base_val = 0 - 4 * p * 0 |
|
|
else: |
|
|
base_val = 0 + 4 * p * 0 |
|
|
if abs(base_val) > tol: |
|
|
reasons.append('parabola_origin_offset') |
|
|
for name, (px, py) in coords.items(): |
|
|
if has_point_constraint(name): |
|
|
if direction == 'right': |
|
|
val = py**2 - 4 * p * px |
|
|
elif direction == 'left': |
|
|
val = py**2 + 4 * p * px |
|
|
elif direction == 'up': |
|
|
val = px**2 - 4 * p * py |
|
|
else: |
|
|
val = px**2 + 4 * p * py |
|
|
if abs(val) > tol: |
|
|
reasons.append('parabola_point_off_curve') |
|
|
break |
|
|
|
|
|
elif conic_type == 'circle': |
|
|
r = result['params']['radius'] |
|
|
cx, cy = result['params']['center'] |
|
|
if r <= 0: |
|
|
reasons.append('circle_nonpositive_radius') |
|
|
for name, (px, py) in coords.items(): |
|
|
if has_point_constraint(name): |
|
|
val = (px - cx) ** 2 + (py - cy) ** 2 - r ** 2 |
|
|
if abs(val) > tol: |
|
|
reasons.append('circle_point_off_curve') |
|
|
break |
|
|
|
|
|
if reasons: |
|
|
result['success'] = False |
|
|
result['error'] = 'validation: ' + ';'.join(reasons) |
|
|
result['validation_reasons'] = reasons |
|
|
return result |
|
|
|
|
|
def _point_constraint_names(self, fact_expr: str, coords: Dict, conic_type: str = 'parabola') -> set: |
|
|
""" |
|
|
Collect point names that are explicitly constrained on the main curve. |
|
|
Uses _detect_main_conic_name to find the actual conic variable name. |
|
|
""" |
|
|
main_conic = self._detect_main_conic_name(fact_expr, conic_type) |
|
|
return self._points_on_main_conic(fact_expr, coords, main_conic) |
|
|
|
|
|
def _detect_main_conic_name(self, fact_expr: str, conic_type: str) -> str: |
|
|
""" |
|
|
Detect the actual name of the main conic from fact_expr. |
|
|
|
|
|
Patterns like 'G: Ellipse', 'C: Parabola', 'C: Hyperbola', etc. |
|
|
Returns the variable name (e.g., 'G' or 'C'). |
|
|
""" |
|
|
import re |
|
|
|
|
|
|
|
|
type_map = { |
|
|
'ellipse': 'Ellipse', |
|
|
'hyperbola': 'Hyperbola', |
|
|
'parabola': 'Parabola', |
|
|
'circle': 'Circle' |
|
|
} |
|
|
type_name = type_map.get(conic_type, '') |
|
|
|
|
|
if type_name: |
|
|
|
|
|
pattern = rf'(\w+)\s*:\s*{type_name}' |
|
|
match = re.search(pattern, fact_expr) |
|
|
if match: |
|
|
return match.group(1) |
|
|
|
|
|
|
|
|
return 'C' if conic_type == 'circle' else 'G' |
|
|
|
|
|
def _points_on_main_conic(self, fact_expr: str, coords: Dict, conic_name: str = 'G') -> set: |
|
|
""" |
|
|
Collect point names that are EXPLICITLY on the MAIN conic (e.g., G or C). |
|
|
|
|
|
Includes: |
|
|
- PointOnCurve(<name>, G) where G is the main conic |
|
|
- Intersection(*, G) = {A, B} where G is the main conic |
|
|
|
|
|
Excludes: |
|
|
- PointOnCurve(<name>, H) where H is a line |
|
|
- PointOnCurve(<name>, Asymptote(G)) - on asymptote, not curve |
|
|
- PointOnCurve(<name>, Directrix(G)) - on directrix, not curve |
|
|
- PointOnCurve(<name>, G1) where G1 is a different curve |
|
|
- MidPoint constraints (midpoints of chords are not on the curve) |
|
|
""" |
|
|
import re |
|
|
names = set() |
|
|
|
|
|
|
|
|
|
|
|
for name in coords.keys(): |
|
|
|
|
|
|
|
|
pattern = rf'PointOnCurve\(\s*{re.escape(name)}\s*,\s*{re.escape(conic_name)}\s*\)' |
|
|
if re.search(pattern, fact_expr): |
|
|
names.add(name) |
|
|
|
|
|
|
|
|
|
|
|
inter_pattern = r'Intersection\(\s*([^,)]+)\s*,\s*([^)]+)\s*\)\s*=\s*\{([^}]+)\}' |
|
|
for m in re.finditer(inter_pattern, fact_expr): |
|
|
arg1 = m.group(1).strip() |
|
|
arg2 = m.group(2).strip() |
|
|
points_str = m.group(3) |
|
|
|
|
|
|
|
|
if arg1 == conic_name or arg2 == conic_name: |
|
|
for p in points_str.split(','): |
|
|
p = p.strip() |
|
|
if p in coords: |
|
|
names.add(p) |
|
|
|
|
|
return names |
|
|
|
|
|
def _detect_moving_circle_locus(self, fact_expr: str, coords: Dict) -> Optional[Dict]: |
|
|
""" |
|
|
Detect pattern: moving circle through fixed point A, externally tangent to fixed circle C. |
|
|
If foci on x-axis, convert to hyperbola params: |PC| - |PA| = R -> 2a = R. |
|
|
Returns hyperbola params dict or None. |
|
|
""" |
|
|
if "IsOutTangent" not in fact_expr: |
|
|
return None |
|
|
import re |
|
|
|
|
|
patterns = [ |
|
|
r'Expression\(C\)\s*=\s*\(y\^2\s*\+\s*\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*=\s*(\d+\.?\d*)\)', |
|
|
r'Expression\(C\)\s*=\s*\(\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*\+\s*y\^2\s*=\s*(\d+\.?\d*)\)' |
|
|
] |
|
|
cx = cy = R = None |
|
|
for pat in patterns: |
|
|
m = re.search(pat, fact_expr) |
|
|
if m: |
|
|
sign = m.group(1) |
|
|
val = float(m.group(2)) |
|
|
cx = -val if sign == '+' else val |
|
|
cy = 0.0 |
|
|
R = np.sqrt(float(m.group(3))) |
|
|
break |
|
|
if R is None or R <= 0: |
|
|
return None |
|
|
|
|
|
if 'A' in coords: |
|
|
ax, ay = coords['A'] |
|
|
elif coords: |
|
|
ax, ay = next(iter(coords.values())) |
|
|
else: |
|
|
return None |
|
|
|
|
|
if abs(ay) > 1e-6 or abs(cy) > 1e-6: |
|
|
return None |
|
|
c = abs(cx - ax) / 2 |
|
|
if c <= 0: |
|
|
return None |
|
|
a = R / 2 |
|
|
if a <= 0 or c <= a: |
|
|
return None |
|
|
b_sq = c * c - a * a |
|
|
b = np.sqrt(b_sq) |
|
|
return {'a': a, 'b': b} |
|
|
|
|
|
def _process_ellipse(self, problem: Dict, idx: int, params: Dict, |
|
|
coords: Dict, eccentricity: Optional[float], verbose: bool) -> Dict: |
|
|
"""Process ellipse problem with SDF optimization.""" |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
point_names = self._point_constraint_names(fact_expr, coords, 'ellipse') |
|
|
|
|
|
center = torch.tensor([0.0, 0.0]) |
|
|
|
|
|
if 'a' not in params or 'b' not in params: |
|
|
return { |
|
|
'index': idx, |
|
|
'success': False, |
|
|
'error': f"Ellipse params missing 'a' or 'b': {list(params.keys())}" |
|
|
} |
|
|
a = torch.tensor([params['a']]) |
|
|
b = torch.tensor([params['b']]) |
|
|
|
|
|
sdf = EllipseSDF(center, a, b) |
|
|
|
|
|
|
|
|
has_explicit_coeffs = not params.get('symbolic', False) and not params.get('from_constraints', False) |
|
|
|
|
|
|
|
|
|
|
|
should_optimize = False |
|
|
constraints = [] |
|
|
weights = [] |
|
|
|
|
|
if not has_explicit_coeffs: |
|
|
|
|
|
if eccentricity and eccentricity < 1: |
|
|
constraints.append(lambda: GeometricConstraints.eccentricity_ellipse( |
|
|
sdf.a, sdf.b, eccentricity |
|
|
)) |
|
|
weights.append(10.0) |
|
|
should_optimize = True |
|
|
|
|
|
|
|
|
all_positions = [sdf.center] |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if name in point_names and name not in ['F1', 'F2', 'F', 'O']: |
|
|
point = torch.tensor([px, py]) |
|
|
constraints.append(lambda p=point: GeometricConstraints.point_on_curve(sdf, p)) |
|
|
weights.append(5.0) |
|
|
should_optimize = True |
|
|
all_positions.append(point) |
|
|
|
|
|
|
|
|
|
|
|
if len(all_positions) > 1: |
|
|
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, tau=0.5)) |
|
|
weights.append(3.0) |
|
|
|
|
|
|
|
|
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.a)) |
|
|
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.b)) |
|
|
weights.extend([1.0, 1.0]) |
|
|
|
|
|
|
|
|
if should_optimize and len(constraints) > 2: |
|
|
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
a_opt = abs(sdf.a.item()) |
|
|
b_opt = abs(sdf.b.item()) |
|
|
|
|
|
|
|
|
if b_opt < 0.1 or a_opt < 0.1: |
|
|
sdf.a.data = torch.tensor([params['a']]) |
|
|
sdf.b.data = torch.tensor([params['b']]) |
|
|
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'reverted to explicit params'} |
|
|
else: |
|
|
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'} |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
a_final = abs(sdf.a.item()) |
|
|
b_final = abs(sdf.b.item()) |
|
|
|
|
|
|
|
|
major_axis = params.get('major_axis', 'x') |
|
|
|
|
|
|
|
|
output_path = self.output_dir / 'ellipse' / f'problem_{idx:04d}.png' |
|
|
self._visualize_ellipse(sdf, problem, params, output_path, major_axis) |
|
|
|
|
|
return { |
|
|
'index': idx, |
|
|
'success': True, |
|
|
'conic_type': 'ellipse', |
|
|
'error': None, |
|
|
'params': { |
|
|
'a': a_final, |
|
|
'b': b_final, |
|
|
'major_axis': major_axis, |
|
|
'x_coef': params['x_coef'], |
|
|
'y_coef': params['y_coef'] |
|
|
}, |
|
|
'optimization': opt_result, |
|
|
'output_path': str(output_path), |
|
|
'answer': problem.get('answer_expressions', ''), |
|
|
'fact_expr': fact_expr, |
|
|
'coords': coords |
|
|
} |
|
|
|
|
|
def _process_hyperbola(self, problem: Dict, idx: int, params: Dict, |
|
|
coords: Dict, eccentricity: Optional[float], |
|
|
asymptote: Optional[float], verbose: bool) -> Dict: |
|
|
"""Process hyperbola problem with SDF optimization.""" |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
point_names = self._point_constraint_names(fact_expr, coords, 'hyperbola') |
|
|
|
|
|
|
|
|
c_from_ellipse = None |
|
|
if 'Focus(G) = Focus(H)' in fact_expr or 'Focus(H) = Focus(G)' in fact_expr: |
|
|
|
|
|
ellipse_match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2/(\d+)\s*\+\s*y\^2/(\d+)\s*=\s*1\)', fact_expr) |
|
|
if ellipse_match: |
|
|
x_coef = float(ellipse_match.group(1)) |
|
|
y_coef = float(ellipse_match.group(2)) |
|
|
a_ell = np.sqrt(max(x_coef, y_coef)) |
|
|
b_ell = np.sqrt(min(x_coef, y_coef)) |
|
|
c_from_ellipse = np.sqrt(a_ell**2 - b_ell**2) |
|
|
|
|
|
|
|
|
if eccentricity and eccentricity > 1 and c_from_ellipse: |
|
|
|
|
|
a_val = c_from_ellipse / eccentricity |
|
|
|
|
|
b_squared = c_from_ellipse**2 - a_val**2 |
|
|
if b_squared > 0: |
|
|
b_val = np.sqrt(b_squared) |
|
|
params['a'] = a_val |
|
|
params['b'] = b_val |
|
|
params['a_squared'] = a_val**2 |
|
|
params['b_squared'] = b_squared |
|
|
|
|
|
center = torch.tensor([0.0, 0.0]) |
|
|
|
|
|
if 'a' not in params or 'b' not in params: |
|
|
return { |
|
|
'index': idx, |
|
|
'success': False, |
|
|
'error': f"Hyperbola params missing 'a' or 'b': {list(params.keys())}" |
|
|
} |
|
|
a = torch.tensor([params['a']]) |
|
|
b = torch.tensor([params['b']]) |
|
|
|
|
|
sdf = HyperbolaSDF(center, a, b) |
|
|
|
|
|
|
|
|
has_explicit_params = c_from_ellipse is not None and eccentricity and eccentricity > 1 |
|
|
|
|
|
constraints = [] |
|
|
weights = [] |
|
|
|
|
|
if not has_explicit_params: |
|
|
|
|
|
all_positions = [sdf.center] |
|
|
|
|
|
|
|
|
if eccentricity and eccentricity > 1: |
|
|
constraints.append(lambda: GeometricConstraints.eccentricity_hyperbola( |
|
|
sdf.a, sdf.b, eccentricity |
|
|
)) |
|
|
weights.append(10.0) |
|
|
|
|
|
|
|
|
if asymptote: |
|
|
constraints.append(lambda: GeometricConstraints.asymptote_slope( |
|
|
sdf.a, sdf.b, asymptote |
|
|
)) |
|
|
weights.append(10.0) |
|
|
|
|
|
|
|
|
focus_coords = [(n, c) for n, c in coords.items() if 'F' in n] |
|
|
if len(focus_coords) >= 2: |
|
|
f1 = focus_coords[0][1] |
|
|
f2 = focus_coords[1][1] |
|
|
c_target = abs(f1[0] - f2[0]) / 2 if f1[1] == f2[1] == 0 else None |
|
|
if c_target: |
|
|
constraints.append(lambda ct=c_target: GeometricConstraints.focus_constraint_hyperbola( |
|
|
sdf.a, sdf.b, ct |
|
|
)) |
|
|
weights.append(10.0) |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if name in point_names and name not in ['F1', 'F2', 'F', 'O']: |
|
|
all_positions.append(torch.tensor([px, py])) |
|
|
|
|
|
|
|
|
if len(all_positions) > 1: |
|
|
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, tau=0.5)) |
|
|
weights.append(3.0) |
|
|
|
|
|
|
|
|
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.a)) |
|
|
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.b)) |
|
|
weights.extend([1.0, 1.0]) |
|
|
|
|
|
if len(constraints) > 2: |
|
|
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose) |
|
|
else: |
|
|
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'} |
|
|
|
|
|
with torch.no_grad(): |
|
|
a_final = abs(sdf.a.item()) |
|
|
b_final = abs(sdf.b.item()) |
|
|
|
|
|
output_path = self.output_dir / 'hyperbola' / f'problem_{idx:04d}.png' |
|
|
self._visualize_hyperbola(sdf, problem, params, output_path) |
|
|
|
|
|
return { |
|
|
'index': idx, |
|
|
'success': True, |
|
|
'conic_type': 'hyperbola', |
|
|
'error': None, |
|
|
'params': { |
|
|
'a': a_final, |
|
|
'b': b_final, |
|
|
'orientation': params.get('orientation', 'horizontal') |
|
|
}, |
|
|
'optimization': opt_result, |
|
|
'output_path': str(output_path), |
|
|
'answer': problem.get('answer_expressions', ''), |
|
|
'fact_expr': fact_expr, |
|
|
'coords': coords |
|
|
} |
|
|
|
|
|
def _process_parabola(self, problem: Dict, idx: int, params: Dict, |
|
|
coords: Dict, verbose: bool) -> Dict: |
|
|
"""Process parabola problem with SDF optimization.""" |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
point_names = self._point_constraint_names(fact_expr, coords, 'parabola') |
|
|
vertex = torch.tensor([0.0, 0.0]) |
|
|
p = torch.tensor([params['p']]) |
|
|
direction = params.get('direction', 'right') |
|
|
|
|
|
sdf = ParabolaSDF(vertex, p, direction) |
|
|
|
|
|
sdf.vertex.requires_grad_(False) |
|
|
|
|
|
|
|
|
has_explicit_params = not params.get('symbolic', False) and not params.get('from_constraints', False) |
|
|
|
|
|
if has_explicit_params: |
|
|
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'} |
|
|
else: |
|
|
|
|
|
all_positions = [sdf.vertex] |
|
|
|
|
|
constraints = [ |
|
|
lambda: GeometricConstraints.positive_constraint(sdf.p) |
|
|
] |
|
|
weights = [1.0] |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if name in point_names and name not in ['F', 'O']: |
|
|
point = torch.tensor([px, py]) |
|
|
constraints.append(lambda pt=point: GeometricConstraints.point_on_curve(sdf, pt)) |
|
|
weights.append(5.0) |
|
|
all_positions.append(point) |
|
|
|
|
|
|
|
|
if len(all_positions) > 1: |
|
|
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, tau=0.5)) |
|
|
weights.append(3.0) |
|
|
|
|
|
if len(constraints) > 1: |
|
|
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose) |
|
|
else: |
|
|
opt_result = {'final_loss': 0.0, 'converged': True} |
|
|
|
|
|
with torch.no_grad(): |
|
|
p_final = abs(sdf.p.item()) |
|
|
|
|
|
output_path = self.output_dir / 'parabola' / f'problem_{idx:04d}.png' |
|
|
self._visualize_parabola(sdf, problem, params, output_path) |
|
|
|
|
|
return { |
|
|
'index': idx, |
|
|
'success': True, |
|
|
'conic_type': 'parabola', |
|
|
'error': None, |
|
|
'params': {'p': p_final, 'direction': direction}, |
|
|
'optimization': opt_result, |
|
|
'output_path': str(output_path), |
|
|
'answer': problem.get('answer_expressions', ''), |
|
|
'fact_expr': fact_expr, |
|
|
'coords': coords |
|
|
} |
|
|
|
|
|
def _process_circle(self, problem: Dict, idx: int, params: Dict, |
|
|
coords: Dict, verbose: bool) -> Dict: |
|
|
"""Process circle problem with SDF.""" |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
point_names = self._point_constraint_names(fact_expr, coords, 'circle') |
|
|
|
|
|
if params.get('from_diameter'): |
|
|
|
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
coords = self.parser.parse_coordinates(fact_expr) |
|
|
|
|
|
|
|
|
diameter_match = re.search(r'IsDiameter\(LineSegmentOf\((\w+),\s*(\w+)\)', fact_expr) |
|
|
if diameter_match: |
|
|
pt1_name = diameter_match.group(1) |
|
|
pt2_name = diameter_match.group(2) |
|
|
if pt1_name in coords and pt2_name in coords: |
|
|
x1, y1 = coords[pt1_name] |
|
|
x2, y2 = coords[pt2_name] |
|
|
|
|
|
params['center'] = ((x1 + x2) / 2, (y1 + y2) / 2) |
|
|
params['radius'] = np.sqrt((x2 - x1)**2 + (y2 - y1)**2) / 2 |
|
|
else: |
|
|
result = { |
|
|
'index': idx, |
|
|
'success': False, |
|
|
'error': 'Circle from diameter: missing point coordinates' |
|
|
} |
|
|
return result |
|
|
else: |
|
|
result = { |
|
|
'index': idx, |
|
|
'success': False, |
|
|
'error': 'Circle from diameter: cannot parse diameter pattern' |
|
|
} |
|
|
return result |
|
|
|
|
|
center = torch.tensor(list(params.get('center', (0.0, 0.0)))) |
|
|
radius = torch.tensor([params.get('radius', 1.0)]) |
|
|
|
|
|
sdf = CircleSDF(center, radius) |
|
|
|
|
|
|
|
|
opt_result = {'final_loss': 0.0, 'converged': True} |
|
|
|
|
|
with torch.no_grad(): |
|
|
cx = sdf.center[0].item() |
|
|
cy = sdf.center[1].item() |
|
|
r = abs(sdf.radius.item()) |
|
|
|
|
|
output_path = self.output_dir / 'circle' / f'problem_{idx:04d}.png' |
|
|
self._visualize_circle(sdf, problem, params, output_path) |
|
|
|
|
|
return { |
|
|
'index': idx, |
|
|
'success': True, |
|
|
'conic_type': 'circle', |
|
|
'error': None, |
|
|
'params': {'center': (cx, cy), 'radius': r}, |
|
|
'optimization': opt_result, |
|
|
'output_path': str(output_path), |
|
|
'answer': problem.get('answer_expressions', ''), |
|
|
'fact_expr': fact_expr, |
|
|
'coords': {k:v for k,v in coords.items() if k in point_names} |
|
|
} |
|
|
|
|
|
def _visualize_circle(self, sdf: CircleSDF, problem: Dict, params: Dict, |
|
|
output_path: Path): |
|
|
"""Visualize circle using SDF zero-level set.""" |
|
|
|
|
|
with torch.no_grad(): |
|
|
cx = sdf.center[0].item() |
|
|
cy = sdf.center[1].item() |
|
|
r = abs(sdf.radius.item()) |
|
|
|
|
|
|
|
|
margin = r + 2 |
|
|
xlim = (cx - margin, cx + margin) |
|
|
ylim = (cy - margin, cy + margin) |
|
|
|
|
|
|
|
|
renderer = SDFRenderer(resolution=400, xlim=xlim, ylim=ylim) |
|
|
|
|
|
|
|
|
fig, (ax, ax_info) = plt.subplots(2, 1, figsize=(10, 12), |
|
|
gridspec_kw={'height_ratios': [0.6, 0.4]}) |
|
|
|
|
|
|
|
|
renderer.render_sdf_field(sdf, ax, show_field=True, field_alpha=0.15) |
|
|
|
|
|
|
|
|
ax.plot(cx, cy, 'ro', markersize=10, label='Center') |
|
|
ax.annotate('C', (cx, cy), textcoords="offset points", xytext=(10, 10), fontsize=12) |
|
|
|
|
|
|
|
|
ax.plot([cx, cx + r], [cy, cy], 'g--', linewidth=2, label=f'r = {r:.2f}') |
|
|
|
|
|
|
|
|
for name, (px, py) in params.get('coords', {}).items(): |
|
|
ax.plot(px, py, 'go', markersize=8) |
|
|
ax.annotate(name, (px, py), textcoords="offset points", xytext=(5, 5), fontsize=10) |
|
|
|
|
|
ax.set_xlabel('x') |
|
|
ax.set_ylabel('y') |
|
|
ax.set_title('Circle - SDF Zero-Level Set') |
|
|
ax.legend(loc='upper right') |
|
|
ax.set_aspect('equal') |
|
|
ax.grid(True, alpha=0.3) |
|
|
|
|
|
|
|
|
ax_info.axis('off') |
|
|
|
|
|
text = problem.get('text', '') |
|
|
wrapped_text = self._wrap_text(text, width=60) |
|
|
|
|
|
info_text = f"""PROBLEM |
|
|
{'─' * 50} |
|
|
{wrapped_text} |
|
|
|
|
|
EQUATION (SDF Zero-Level Set) |
|
|
{'─' * 50} |
|
|
(x - {cx:.2f})² + (y - {cy:.2f})² = {r**2:.2f} |
|
|
|
|
|
SDF PARAMETERS |
|
|
{'─' * 50} |
|
|
center: ({cx:.4f}, {cy:.4f}) |
|
|
radius: {r:.4f} |
|
|
|
|
|
EXPECTED ANSWER: {problem.get('answer_expressions', 'N/A')} |
|
|
QUERY: {problem.get('query_expressions', 'N/A')}""" |
|
|
|
|
|
ax_info.text(0, 1, info_text, transform=ax_info.transAxes, |
|
|
fontsize=10, verticalalignment='top', fontfamily='monospace', |
|
|
wrap=True) |
|
|
|
|
|
plt.tight_layout() |
|
|
output_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
plt.savefig(output_path, dpi=150, bbox_inches='tight', facecolor='white') |
|
|
plt.close() |
|
|
|
|
|
def _wrap_text(self, text: str, width: int = 50) -> str: |
|
|
"""Wrap text to specified width.""" |
|
|
words = text.split() |
|
|
lines = [] |
|
|
current_line = [] |
|
|
current_len = 0 |
|
|
|
|
|
for word in words: |
|
|
if current_len + len(word) + 1 <= width: |
|
|
current_line.append(word) |
|
|
current_len += len(word) + 1 |
|
|
else: |
|
|
if current_line: |
|
|
lines.append(' '.join(current_line)) |
|
|
current_line = [word] |
|
|
current_len = len(word) |
|
|
|
|
|
if current_line: |
|
|
lines.append(' '.join(current_line)) |
|
|
|
|
|
return '\n'.join(lines) |
|
|
|
|
|
def _visualize_ellipse(self, sdf: EllipseSDF, problem: Dict, params: Dict, |
|
|
output_path: Path, major_axis: str): |
|
|
"""Visualize ellipse using SDF zero-level set, including related shapes.""" |
|
|
|
|
|
with torch.no_grad(): |
|
|
a = abs(sdf.a.item()) |
|
|
b = abs(sdf.b.item()) |
|
|
|
|
|
|
|
|
b_viz = max(b, 0.1) |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
|
|
|
|
|
|
hyperbola_params = self.parser.parse_hyperbola(fact_expr) |
|
|
has_hyperbola = hyperbola_params is not None and 'a' in hyperbola_params and 'b' in hyperbola_params |
|
|
|
|
|
|
|
|
if has_hyperbola: |
|
|
a_hyp = hyperbola_params['a'] |
|
|
b_hyp = hyperbola_params['b'] |
|
|
max_dim = max(a, b_viz, a_hyp, b_hyp) * 1.8 + 1 |
|
|
else: |
|
|
max_dim = max(a, b_viz) * 1.3 |
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=(10, 14), dpi=120) |
|
|
|
|
|
|
|
|
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55]) |
|
|
|
|
|
|
|
|
renderer = SDFRenderer( |
|
|
resolution=500, |
|
|
xlim=(-max_dim, max_dim), |
|
|
ylim=(-max_dim, max_dim) |
|
|
) |
|
|
|
|
|
|
|
|
renderer.render_sdf_field(sdf, ax_main, show_field=True) |
|
|
|
|
|
|
|
|
if has_hyperbola: |
|
|
center = torch.tensor([0.0, 0.0]) |
|
|
a_hyp_t = torch.tensor([hyperbola_params['a']]) |
|
|
b_hyp_t = torch.tensor([hyperbola_params['b']]) |
|
|
hyp_sdf = HyperbolaSDF(center, a_hyp_t, b_hyp_t) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
grid_flat = renderer.grid.reshape(-1, 2) |
|
|
hyp_distances = hyp_sdf(grid_flat).reshape(renderer.resolution, renderer.resolution) |
|
|
hyp_distances_np = hyp_distances.cpu().numpy() |
|
|
|
|
|
ax_main.contour(renderer.xx.numpy(), renderer.yy.numpy(), hyp_distances_np, |
|
|
levels=[0], colors=['#E74C3C'], linewidths=2.5, linestyles='-') |
|
|
|
|
|
|
|
|
slope_hyp = hyperbola_params['b'] / hyperbola_params['a'] |
|
|
x_asym = np.linspace(-max_dim, max_dim, 100) |
|
|
ax_main.plot(x_asym, slope_hyp * x_asym, '--', color='#C73E1D', linewidth=1.5, alpha=0.5) |
|
|
ax_main.plot(x_asym, -slope_hyp * x_asym, '--', color='#C73E1D', linewidth=1.5, alpha=0.5) |
|
|
|
|
|
|
|
|
from matplotlib.lines import Line2D |
|
|
ellipse_line = Line2D([0], [0], color='#2E86AB', linewidth=2.5, |
|
|
label=f'Ellipse (x²/{params["x_coef"]:.0f} + y²/{params["y_coef"]:.0f} = 1)') |
|
|
hyperbola_line = Line2D([0], [0], color='#E74C3C', linewidth=2.5, |
|
|
label=f'Hyperbola (x²/{hyperbola_params["a"]:.2f}² - y²/{hyperbola_params["b"]:.2f}² = 1)') |
|
|
|
|
|
|
|
|
c = np.sqrt(abs(a**2 - b**2)) if a > b else np.sqrt(abs(b**2 - a**2)) |
|
|
if major_axis == 'x': |
|
|
ax_main.plot([c, -c], [0, 0], 'ro', markersize=12, |
|
|
label='Shared Foci' if has_hyperbola else 'Foci', zorder=5) |
|
|
ax_main.annotate('$F_1$', (-c, 0), xytext=(-c-0.4, 0.4), fontsize=14, fontweight='bold') |
|
|
ax_main.annotate('$F_2$', (c, 0), xytext=(c+0.2, 0.4), fontsize=14, fontweight='bold') |
|
|
else: |
|
|
ax_main.plot([0, 0], [c, -c], 'ro', markersize=12, |
|
|
label='Shared Foci' if has_hyperbola else 'Foci', zorder=5) |
|
|
ax_main.annotate('$F_1$', (0, -c), xytext=(0.3, -c-0.4), fontsize=14, fontweight='bold') |
|
|
ax_main.annotate('$F_2$', (0, c), xytext=(0.3, c+0.2), fontsize=14, fontweight='bold') |
|
|
|
|
|
|
|
|
coords = self.parser.parse_coordinates(problem.get('fact_expressions', '')) |
|
|
for name, (px, py) in coords.items(): |
|
|
if name not in ['F1', 'F2', 'F', 'O']: |
|
|
ax_main.plot(px, py, 'go', markersize=10, zorder=6) |
|
|
ax_main.annotate(f'${name}$', (px, py), xytext=(px+0.3, py+0.3), fontsize=13, fontweight='bold') |
|
|
|
|
|
|
|
|
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.grid(True, alpha=0.3, linestyle='--') |
|
|
ax_main.set_xlim(-max_dim, max_dim) |
|
|
ax_main.set_ylim(-max_dim, max_dim) |
|
|
ax_main.set_xlabel('x', fontsize=14) |
|
|
ax_main.set_ylabel('y', fontsize=14) |
|
|
|
|
|
if has_hyperbola: |
|
|
ax_main.set_title('Ellipse & Hyperbola - SDF Zero-Level Sets', fontsize=16, fontweight='bold', pad=10) |
|
|
handles, labels = ax_main.get_legend_handles_labels() |
|
|
handles.extend([ellipse_line, hyperbola_line]) |
|
|
ax_main.legend(handles=handles, loc='upper right', fontsize=10) |
|
|
else: |
|
|
ax_main.set_title('Ellipse - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10) |
|
|
ax_main.legend(loc='upper right', fontsize=11) |
|
|
|
|
|
ax_main.set_aspect('equal') |
|
|
ax_main.tick_params(labelsize=11) |
|
|
|
|
|
|
|
|
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35]) |
|
|
ax_info.axis('off') |
|
|
|
|
|
x_coef = params['x_coef'] |
|
|
y_coef = params['y_coef'] |
|
|
|
|
|
|
|
|
problem_text = self._wrap_text(problem.get('text', ''), width=70) |
|
|
|
|
|
if has_hyperbola: |
|
|
equations_text = f"""Ellipse: x²/{np.sqrt(x_coef):.2f}² + y²/{np.sqrt(y_coef):.2f}² = 1 (Blue) |
|
|
Hyperbola: x²/{hyperbola_params['a']:.2f}² - y²/{hyperbola_params['b']:.2f}² = 1 (Red)""" |
|
|
else: |
|
|
equations_text = f"x²/{np.sqrt(x_coef):.2f}² + y²/{np.sqrt(y_coef):.2f}² = 1" |
|
|
|
|
|
info_text = f"""PROBLEM |
|
|
{'─'*70} |
|
|
{problem_text} |
|
|
|
|
|
EQUATIONS (SDF Zero-Level Sets) |
|
|
{'─'*70} |
|
|
{equations_text} |
|
|
|
|
|
SDF PARAMETERS (Ellipse) |
|
|
{'─'*70} |
|
|
a (semi-major): {a:.4f} b (semi-minor): {b:.4f} c (focal dist): {c:.4f} |
|
|
eccentricity: {c/max(a,b):.4f} major_axis: {major_axis} |
|
|
|
|
|
EXPECTED ANSWER: {problem.get('answer_expressions', '')} |
|
|
QUERY: {problem.get('query_expressions', '')} |
|
|
""" |
|
|
|
|
|
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes, |
|
|
fontsize=10, verticalalignment='top', family='monospace', |
|
|
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC')) |
|
|
|
|
|
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white') |
|
|
plt.close(fig) |
|
|
|
|
|
def _visualize_hyperbola(self, sdf: HyperbolaSDF, problem: Dict, params: Dict, |
|
|
output_path: Path): |
|
|
"""Visualize hyperbola using SDF zero-level set, including related shapes.""" |
|
|
|
|
|
with torch.no_grad(): |
|
|
a = abs(sdf.a.item()) |
|
|
b = abs(sdf.b.item()) |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
|
|
|
|
|
|
ellipse_params = self.parser.parse_ellipse(fact_expr) |
|
|
line_params = self.parser.parse_line(fact_expr) |
|
|
has_ellipse = ellipse_params is not None and 'a' in ellipse_params and 'b' in ellipse_params |
|
|
has_line = line_params is not None and (line_params.get('a') is not None or line_params.get('slope') is not None) |
|
|
|
|
|
|
|
|
if has_line and line_params.get('slope') is not None and line_params.get('a') is None: |
|
|
|
|
|
slope = line_params['slope'] |
|
|
|
|
|
if 'LeftFocus' in fact_expr or 'RightFocus' in fact_expr: |
|
|
|
|
|
c_hyp = np.sqrt(a**2 + b**2) |
|
|
if 'LeftFocus' in fact_expr: |
|
|
focus_x = -c_hyp |
|
|
else: |
|
|
focus_x = c_hyp |
|
|
|
|
|
line_params['a'] = slope |
|
|
line_params['b'] = -1.0 |
|
|
line_params['c'] = -slope * focus_x |
|
|
line_params['equation'] = f'y = {slope:.2f}(x - {focus_x:.2f})' |
|
|
|
|
|
|
|
|
if has_ellipse: |
|
|
a_ell = ellipse_params['a'] |
|
|
b_ell = ellipse_params['b'] |
|
|
max_dim = max(a, b, a_ell, b_ell) * 1.5 + 1 |
|
|
else: |
|
|
max_dim = max(a, b) * 2.5 + 2 |
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=(10, 14), dpi=120) |
|
|
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55]) |
|
|
|
|
|
renderer = SDFRenderer( |
|
|
resolution=500, |
|
|
xlim=(-max_dim, max_dim), |
|
|
ylim=(-max_dim, max_dim) |
|
|
) |
|
|
|
|
|
|
|
|
renderer.render_sdf_field(sdf, ax_main, show_field=True) |
|
|
|
|
|
|
|
|
if has_ellipse: |
|
|
center = torch.tensor([0.0, 0.0]) |
|
|
a_ell_t = torch.tensor([ellipse_params['a']]) |
|
|
b_ell_t = torch.tensor([ellipse_params['b']]) |
|
|
ellipse_sdf = EllipseSDF(center, a_ell_t, b_ell_t) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
grid_flat = renderer.grid.reshape(-1, 2) |
|
|
ell_distances = ellipse_sdf(grid_flat).reshape(renderer.resolution, renderer.resolution) |
|
|
ell_distances_np = ell_distances.cpu().numpy() |
|
|
|
|
|
ax_main.contour(renderer.xx.numpy(), renderer.yy.numpy(), ell_distances_np, |
|
|
levels=[0], colors=['#27AE60'], linewidths=2.5, linestyles='-') |
|
|
|
|
|
|
|
|
from matplotlib.lines import Line2D |
|
|
ellipse_line = Line2D([0], [0], color='#27AE60', linewidth=2.5, label=f'Ellipse (x²/{ellipse_params["x_coef"]:.0f} + y²/{ellipse_params["y_coef"]:.0f} = 1)') |
|
|
hyperbola_line = Line2D([0], [0], color='#2E86AB', linewidth=2.5, label=f'Hyperbola (x²/{a:.2f}² - y²/{b:.2f}² = 1)') |
|
|
|
|
|
|
|
|
if has_line and line_params.get('a') is not None and line_params.get('b') is not None: |
|
|
from matplotlib.lines import Line2D |
|
|
line_a = line_params['a'] |
|
|
line_b = line_params['b'] |
|
|
line_c = line_params.get('c', 0) |
|
|
|
|
|
|
|
|
x_line = np.linspace(-max_dim, max_dim, 100) |
|
|
if abs(line_b) > 1e-6: |
|
|
y_line = (-line_a * x_line - line_c) / line_b |
|
|
ax_main.plot(x_line, y_line, '-', color='#9B59B6', linewidth=2.5, |
|
|
label=f'Line ({line_params["equation"]} = 0)', zorder=4) |
|
|
else: |
|
|
|
|
|
x_val = -line_c / line_a if abs(line_a) > 1e-6 else 0 |
|
|
ax_main.axvline(x=x_val, color='#9B59B6', linewidth=2.5, |
|
|
label=f'Line (x = {x_val:.2f})', zorder=4) |
|
|
|
|
|
|
|
|
c = np.sqrt(a**2 + b**2) |
|
|
ax_main.plot([c, -c], [0, 0], 'ro', markersize=12, label='Shared Foci' if has_ellipse else 'Foci', zorder=5) |
|
|
ax_main.annotate('$F_1$', (-c, 0), xytext=(-c-0.4, 0.6), fontsize=14, fontweight='bold') |
|
|
ax_main.annotate('$F_2$', (c, 0), xytext=(c+0.2, 0.6), fontsize=14, fontweight='bold') |
|
|
|
|
|
|
|
|
slope = b / a |
|
|
x_asym = np.linspace(-max_dim, max_dim, 100) |
|
|
ax_main.plot(x_asym, slope * x_asym, '--', color='#C73E1D', linewidth=2, |
|
|
alpha=0.7, label='Asymptotes') |
|
|
ax_main.plot(x_asym, -slope * x_asym, '--', color='#C73E1D', linewidth=2, alpha=0.7) |
|
|
|
|
|
|
|
|
coords = self.parser.parse_coordinates(problem.get('fact_expressions', '')) |
|
|
for name, (px, py) in coords.items(): |
|
|
if name not in ['F1', 'F2', 'F', 'O']: |
|
|
ax_main.plot(px, py, 'go', markersize=10, zorder=6) |
|
|
ax_main.annotate(f'${name}$', (px, py), xytext=(px+0.3, py+0.3), fontsize=13, fontweight='bold') |
|
|
|
|
|
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.grid(True, alpha=0.3, linestyle='--') |
|
|
ax_main.set_xlim(-max_dim, max_dim) |
|
|
ax_main.set_ylim(-max_dim, max_dim) |
|
|
ax_main.set_xlabel('x', fontsize=14) |
|
|
ax_main.set_ylabel('y', fontsize=14) |
|
|
|
|
|
|
|
|
title_parts = ['Hyperbola'] |
|
|
if has_ellipse: |
|
|
title_parts.append('Ellipse') |
|
|
if has_line: |
|
|
title_parts.append('Line') |
|
|
|
|
|
if len(title_parts) > 1: |
|
|
ax_main.set_title(' & '.join(title_parts) + ' - SDF Zero-Level Sets', fontsize=16, fontweight='bold', pad=10) |
|
|
handles, labels = ax_main.get_legend_handles_labels() |
|
|
if has_ellipse: |
|
|
handles.extend([ellipse_line, hyperbola_line]) |
|
|
ax_main.legend(handles=handles, loc='upper right', fontsize=10) |
|
|
else: |
|
|
ax_main.set_title('Hyperbola - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10) |
|
|
ax_main.legend(loc='upper right', fontsize=11) |
|
|
|
|
|
ax_main.set_aspect('equal') |
|
|
ax_main.tick_params(labelsize=11) |
|
|
|
|
|
|
|
|
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35]) |
|
|
ax_info.axis('off') |
|
|
|
|
|
problem_text = self._wrap_text(problem.get('text', ''), width=70) |
|
|
|
|
|
equations_parts = [f"Hyperbola: x²/{a:.2f}² - y²/{b:.2f}² = 1 (Blue)"] |
|
|
if has_ellipse: |
|
|
equations_parts.append(f"Ellipse: x²/{ellipse_params['x_coef']:.0f} + y²/{ellipse_params['y_coef']:.0f} = 1 (Green)") |
|
|
if has_line: |
|
|
equations_parts.append(f"Line: {line_params.get('equation', 'slope defined')} = 0 (Purple)") |
|
|
|
|
|
equations_text = '\n'.join(equations_parts) |
|
|
|
|
|
info_text = f"""PROBLEM |
|
|
{'─'*70} |
|
|
{problem_text} |
|
|
|
|
|
EQUATIONS (SDF Zero-Level Sets) |
|
|
{'─'*70} |
|
|
{equations_text} |
|
|
|
|
|
SDF PARAMETERS (Hyperbola) |
|
|
{'─'*70} |
|
|
a: {a:.4f} b: {b:.4f} c: {c:.4f} |
|
|
eccentricity: {c/a:.4f} asymptote slope: ±{slope:.4f} |
|
|
|
|
|
EXPECTED ANSWER: {problem.get('answer_expressions', '')} |
|
|
QUERY: {problem.get('query_expressions', '')} |
|
|
""" |
|
|
|
|
|
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes, |
|
|
fontsize=10, verticalalignment='top', family='monospace', |
|
|
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC')) |
|
|
|
|
|
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white') |
|
|
plt.close(fig) |
|
|
|
|
|
def _visualize_parabola(self, sdf: ParabolaSDF, problem: Dict, params: Dict, |
|
|
output_path: Path): |
|
|
"""Visualize parabola using SDF zero-level set.""" |
|
|
|
|
|
with torch.no_grad(): |
|
|
p = abs(sdf.p.item()) |
|
|
|
|
|
direction = params.get('direction', 'right') |
|
|
|
|
|
|
|
|
extent = max(p * 8, 6) |
|
|
if direction == 'right': |
|
|
xlim = (-p * 2, extent) |
|
|
ylim = (-extent * 0.8, extent * 0.8) |
|
|
elif direction == 'left': |
|
|
xlim = (-extent, p * 2) |
|
|
ylim = (-extent * 0.8, extent * 0.8) |
|
|
else: |
|
|
xlim = (-extent * 0.8, extent * 0.8) |
|
|
ylim = (-p * 2, extent) |
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=(10, 14), dpi=120) |
|
|
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55]) |
|
|
|
|
|
|
|
|
renderer = SDFRenderer(resolution=600, xlim=xlim, ylim=ylim) |
|
|
renderer.render_sdf_field(sdf, ax_main, show_field=True) |
|
|
|
|
|
|
|
|
if direction == 'right': |
|
|
focus = (p, 0) |
|
|
ax_main.plot(p, 0, 'ro', markersize=12, label='Focus', zorder=5) |
|
|
ax_main.annotate('$F$', (p, 0), xytext=(p+0.4, 0.4), fontsize=14, fontweight='bold') |
|
|
ax_main.axvline(x=-p, color='#2ECC71', linestyle='--', linewidth=2, |
|
|
alpha=0.8, label='Directrix') |
|
|
equation = f"y² = {4*p:.2f}x" |
|
|
elif direction == 'left': |
|
|
focus = (-p, 0) |
|
|
ax_main.plot(-p, 0, 'ro', markersize=12, label='Focus', zorder=5) |
|
|
ax_main.annotate('$F$', (-p, 0), xytext=(-p-0.6, 0.4), fontsize=14, fontweight='bold') |
|
|
ax_main.axvline(x=p, color='#2ECC71', linestyle='--', linewidth=2, |
|
|
alpha=0.8, label='Directrix') |
|
|
equation = f"y² = -{4*p:.2f}x" |
|
|
else: |
|
|
focus = (0, p) |
|
|
ax_main.plot(0, p, 'ro', markersize=12, label='Focus', zorder=5) |
|
|
ax_main.annotate('$F$', (0, p), xytext=(0.4, p+0.4), fontsize=14, fontweight='bold') |
|
|
ax_main.axhline(y=-p, color='#2ECC71', linestyle='--', linewidth=2, |
|
|
alpha=0.8, label='Directrix') |
|
|
equation = f"x² = {4*p:.2f}y" |
|
|
|
|
|
|
|
|
coords = self.parser.parse_coordinates(problem.get('fact_expressions', '')) |
|
|
for idx, (name, (px, py)) in enumerate(coords.items()): |
|
|
if name not in ['F', 'O']: |
|
|
ax_main.plot(px, py, 'go', markersize=10, zorder=6) |
|
|
offset_y = 0.3 + 0.25 * idx |
|
|
ax_main.annotate(f'${name}$', (px, py), xytext=(px + 0.3, py + offset_y), |
|
|
fontsize=13, fontweight='bold') |
|
|
|
|
|
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.grid(True, alpha=0.3, linestyle='--') |
|
|
ax_main.set_xlim(xlim) |
|
|
ax_main.set_ylim(ylim) |
|
|
ax_main.set_xlabel('x', fontsize=14) |
|
|
ax_main.set_ylabel('y', fontsize=14) |
|
|
ax_main.set_title('Parabola - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10) |
|
|
ax_main.set_aspect('equal') |
|
|
ax_main.legend(loc='upper right', fontsize=11) |
|
|
ax_main.tick_params(labelsize=11) |
|
|
|
|
|
|
|
|
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35]) |
|
|
ax_info.axis('off') |
|
|
|
|
|
problem_text = self._wrap_text(problem.get('text', ''), width=70) |
|
|
|
|
|
info_text = f"""PROBLEM |
|
|
{'─'*70} |
|
|
{problem_text} |
|
|
|
|
|
EQUATION (SDF Zero-Level Set) |
|
|
{'─'*70} |
|
|
{equation} |
|
|
|
|
|
SDF PARAMETERS |
|
|
{'─'*70} |
|
|
p (focal param): {p:.4f} focus: {focus} |
|
|
directrix: {'x = ' + f'{-p:.2f}' if direction in ['right', 'left'] else 'y = ' + f'{-p:.2f}'} |
|
|
direction: {direction} |
|
|
|
|
|
EXPECTED ANSWER: {problem.get('answer_expressions', '')} |
|
|
QUERY: {problem.get('query_expressions', '')} |
|
|
""" |
|
|
|
|
|
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes, |
|
|
fontsize=10, verticalalignment='top', family='monospace', |
|
|
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC')) |
|
|
|
|
|
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white') |
|
|
plt.close(fig) |
|
|
|
|
|
def process_batch(self, problems: List[Dict], max_problems: int = None, |
|
|
verbose: bool = False) -> List[Dict]: |
|
|
"""Process a batch of problems.""" |
|
|
if max_problems: |
|
|
problems = problems[:max_problems] |
|
|
|
|
|
results = [] |
|
|
stats = {'total': len(problems), 'success': 0, 'failed': 0} |
|
|
type_stats = {'ellipse': 0, 'hyperbola': 0, 'parabola': 0, 'circle': 0} |
|
|
reason_counts: Dict[str, int] = {} |
|
|
|
|
|
print(f"\n{'='*60}") |
|
|
print(f"SDF-Based Processing: {len(problems)} problems") |
|
|
print(f"{'='*60}\n") |
|
|
|
|
|
for idx, problem in enumerate(tqdm(problems, desc="Processing")): |
|
|
result = self.process_problem(problem, idx, verbose) |
|
|
results.append(result) |
|
|
|
|
|
if result['success']: |
|
|
stats['success'] += 1 |
|
|
ctype = result.get('conic_type') |
|
|
if ctype in type_stats: |
|
|
type_stats[ctype] += 1 |
|
|
else: |
|
|
stats['failed'] += 1 |
|
|
for reason in result.get('validation_reasons', []): |
|
|
reason_counts[reason] = reason_counts.get(reason, 0) + 1 |
|
|
|
|
|
|
|
|
summary = { |
|
|
'stats': stats, |
|
|
'type_stats': type_stats, |
|
|
'reason_counts': reason_counts, |
|
|
'results': results |
|
|
} |
|
|
with open(self.output_dir / 'summary.json', 'w') as f: |
|
|
json.dump(summary, f, indent=2, default=str) |
|
|
|
|
|
print(f"\n{'='*60}") |
|
|
print("PROCESSING COMPLETE") |
|
|
print(f"{'='*60}") |
|
|
print(f"Success: {stats['success']} / {stats['total']} ({100*stats['success']/stats['total']:.1f}%)") |
|
|
print(f"By type: {type_stats}") |
|
|
print(f"Output: {self.output_dir}") |
|
|
|
|
|
return results |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser(description='SDF-Based Geometry Solver') |
|
|
parser.add_argument('--input', '-i', type=str, default='test_en.json') |
|
|
parser.add_argument('--output', '-o', type=str, default='sdf_output') |
|
|
parser.add_argument('--max', '-m', type=int, default=None) |
|
|
parser.add_argument('--verbose', '-v', action='store_true') |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
with open(args.input, 'r', encoding='utf-8') as f: |
|
|
problems = json.load(f) |
|
|
|
|
|
print(f"Loaded {len(problems)} problems") |
|
|
|
|
|
processor = SDFBatchProcessor(output_dir=args.output) |
|
|
processor.process_batch(problems, max_problems=args.max, verbose=args.verbose) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|