""" SDF Primitives - Core geometric shape representations as Signed Distance Fields. Following GeoSDF paper methodology. This module contains: - Math utilities for quartic solving (Appendix B) - SDF primitive classes (Circle, Ellipse, Hyperbola, Parabola, Line, etc.) """ import torch import torch.nn as nn from typing import Tuple # Device configuration DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ============================================================================= # Quartic Solver Utilities (Following Paper Appendix B) # ============================================================================= def solve_cubic_one_real_batch(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor, d: torch.Tensor) -> torch.Tensor: """Find one real root of cubic equation using Cardano's formula.""" a_safe = a + 1e-10 * torch.sign(a + 1e-20) p = b / a_safe q = c / a_safe r = d / a_safe alpha = q - p**2 / 3 beta = 2 * p**3 / 27 - p * q / 3 + r discriminant = (beta / 2)**2 + (alpha / 3)**3 sqrt_disc = torch.sqrt(torch.clamp(discriminant, min=0) + 1e-12) term1 = -beta / 2 + sqrt_disc term2 = -beta / 2 - sqrt_disc def safe_cbrt(x): return torch.sign(x) * torch.pow(torch.abs(x) + 1e-12, 1/3) u = safe_cbrt(term1) v = safe_cbrt(term2) return u + v - p / 3 def hyperbola_distance_quartic(px: torch.Tensor, py: torch.Tensor, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: """Compute exact distance from point to hyperbola using Newton iteration.""" px_abs = torch.abs(px) py_abs = torch.abs(py) t = torch.asinh(py_abs / (b + 1e-8)) t = torch.clamp(t, 0.01, 10.0) for _ in range(15): cosh_t = torch.cosh(t) sinh_t = torch.sinh(t) hx = a * cosh_t hy = b * sinh_t dx = px_abs - hx dy = py_abs - hy grad = -2 * (dx * a * sinh_t + dy * b * cosh_t) hess = 2 * (a**2 * sinh_t**2 + b**2 * cosh_t**2 - dx * a * cosh_t - dy * b * sinh_t) + 1e-6 step = grad / torch.abs(hess) t = t - torch.clamp(step, -0.3, 0.3) t = torch.clamp(t, 0.001, 20.0) cosh_t = torch.cosh(t) sinh_t = torch.sinh(t) return torch.sqrt((px_abs - a * cosh_t)**2 + (py_abs - b * sinh_t)**2 + 1e-10) def ellipse_distance_quartic(px: torch.Tensor, py: torch.Tensor, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: """Compute exact distance from point to ellipse using Newton iteration.""" px_abs = torch.abs(px) py_abs = torch.abs(py) a_use = torch.max(a, b) b_use = torch.min(a, b) needs_swap = a < b if needs_swap: px_use, py_use = py_abs, px_abs else: px_use, py_use = px_abs, py_abs at_origin = (px_use < 1e-10) & (py_use < 1e-10) on_x_axis = py_use < 1e-10 on_y_axis = px_use < 1e-10 theta = torch.atan2(a_use * py_use, b_use * px_use) for _ in range(12): cos_t = torch.cos(theta) sin_t = torch.sin(theta) ex = a_use * cos_t ey = b_use * sin_t dx = px_use - ex dy = py_use - ey grad = 2 * (dx * a_use * sin_t - dy * b_use * cos_t) hess = 2 * (a_use**2 * sin_t**2 + b_use**2 * cos_t**2 + dx * a_use * cos_t + dy * b_use * sin_t) + 1e-6 theta = theta - torch.clamp(grad / torch.abs(hess), -0.3, 0.3) cos_t = torch.cos(theta) sin_t = torch.sin(theta) dist = torch.sqrt((px_use - a_use * cos_t)**2 + (py_use - b_use * sin_t)**2 + 1e-10) dist = torch.where(at_origin, b_use, dist) dist = torch.where(on_x_axis & ~at_origin, torch.where(px_use > a_use, px_use - a_use, torch.sqrt((px_use - a_use)**2 + 1e-10)), dist) dist = torch.where(on_y_axis & ~at_origin, torch.abs(py_use - b_use), dist) return dist # ============================================================================= # SDF Primitives Base Class # ============================================================================= class SDFPrimitive(nn.Module): """Base class for SDF primitives - all shapes represented as distance functions.""" def forward(self, p: torch.Tensor) -> torch.Tensor: """Compute signed distance from points p to the shape boundary.""" raise NotImplementedError class PointSDF(SDFPrimitive): """SDF for a point: f(p; c) = ||p - c||₂""" def __init__(self, center: torch.Tensor): super().__init__() self.center = nn.Parameter(center.clone()) def forward(self, p: torch.Tensor) -> torch.Tensor: return torch.norm(p - self.center, dim=-1) class CircleSDF(SDFPrimitive): """SDF for circle: f(p; c, r) = ||p - c||₂ - r""" def __init__(self, center: torch.Tensor, radius: torch.Tensor): super().__init__() self.center = nn.Parameter(center.clone()) self.radius = nn.Parameter(radius.clone()) def forward(self, p: torch.Tensor) -> torch.Tensor: dist_to_center = torch.norm(p - self.center, dim=-1) return dist_to_center - self.radius class EllipseSDF(SDFPrimitive): """SDF for ellipse: x²/a² + y²/b² = 1""" def __init__(self, center: torch.Tensor, a: torch.Tensor, b: torch.Tensor): super().__init__() self.center = nn.Parameter(center.clone()) self.a = nn.Parameter(a.clone()) self.b = nn.Parameter(b.clone()) def forward(self, p: torch.Tensor) -> torch.Tensor: p_local = p - self.center px = p_local[..., 0] py = p_local[..., 1] a = torch.abs(self.a) + 1e-8 b = torch.abs(self.b) + 1e-8 dist = ellipse_distance_quartic(px, py, a, b) ellipse_val = px**2 / (a**2) + py**2 / (b**2) inside = ellipse_val < 1 return torch.where(inside, -dist, dist) class HyperbolaSDF(SDFPrimitive): """SDF for hyperbola: x²/a² - y²/b² = 1""" def __init__(self, center: torch.Tensor, a: torch.Tensor, b: torch.Tensor): super().__init__() self.center = nn.Parameter(center.clone()) self.a = nn.Parameter(a.clone()) self.b = nn.Parameter(b.clone()) def forward(self, p: torch.Tensor) -> torch.Tensor: p_local = p - self.center px = p_local[..., 0] py = p_local[..., 1] a = torch.abs(self.a) + 1e-8 b = torch.abs(self.b) + 1e-8 dist = hyperbola_distance_quartic(px, py, a, b) hyperbola_val = px**2 / (a**2) - py**2 / (b**2) is_between_branches = hyperbola_val < 1 return torch.where(is_between_branches, -dist, dist) class ParabolaSDF(SDFPrimitive): """SDF for parabola: y² = 4px (rightward) or x² = 4py (upward)""" def __init__(self, vertex: torch.Tensor, p: torch.Tensor, direction: str = 'right'): super().__init__() self.vertex = nn.Parameter(vertex.clone()) self.p = nn.Parameter(p.clone()) self.direction = direction def forward(self, pts: torch.Tensor) -> torch.Tensor: p_local = pts - self.vertex px = p_local[..., 0] py = p_local[..., 1] p_param = torch.abs(self.p) + 1e-6 if self.direction == 'right': return self._compute_distance_right(px, py, p_param) elif self.direction == 'left': return self._compute_distance_right(-px, py, p_param) elif self.direction == 'up': return self._compute_distance_right(py, px, p_param) elif self.direction == 'down': return self._compute_distance_right(-py, px, p_param) return self._compute_distance_right(px, py, p_param) def _compute_distance_right(self, px: torch.Tensor, py: torch.Tensor, p: torch.Tensor) -> torch.Tensor: t = py.clone() for _ in range(12): para_x = t**2 / (4 * p) para_y = t dx = px - para_x dy = py - para_y dpara_x = t / (2 * p) dpara_y = torch.ones_like(t) grad = -2 * (dx * dpara_x + dy * dpara_y) ddpara_x = 1 / (2 * p) hess = 2 * (dpara_x**2 + dpara_y**2 - dx * ddpara_x) + 1e-8 t = t - torch.clamp(grad / torch.abs(hess), -1.0, 1.0) para_x = t**2 / (4 * p) para_y = t dist = torch.sqrt((px - para_x)**2 + (py - para_y)**2 + 1e-10) at_vertex = (torch.abs(px) < 1e-6) & (torch.abs(py) < 1e-6) dist = torch.where(at_vertex, torch.zeros_like(dist), dist) on_concave_side = (px >= 0) & (py**2 < 4 * p * px) return torch.where(on_concave_side, -dist, dist) class LineSDF(SDFPrimitive): """SDF for infinite line passing through point with direction.""" def __init__(self, point: torch.Tensor, direction: torch.Tensor): super().__init__() self.point = nn.Parameter(point.clone()) self.direction = nn.Parameter(direction / (torch.norm(direction) + 1e-8)) def forward(self, p: torch.Tensor) -> torch.Tensor: v = p - self.point normal = torch.tensor([-self.direction[1], self.direction[0]], device=p.device) return (v * normal).sum(dim=-1) class LineSegmentSDF(SDFPrimitive): """SDF for line segment from point a to point b.""" def __init__(self, a: torch.Tensor, b: torch.Tensor): super().__init__() self.a = nn.Parameter(a.clone()) self.b = nn.Parameter(b.clone()) def forward(self, p: torch.Tensor) -> torch.Tensor: v_ab = self.b - self.a v_ap = p - self.a h = (v_ap * v_ab).sum(dim=-1) / (torch.norm(v_ab)**2 + 1e-8) h_clamped = torch.clamp(h, 0, 1) closest = self.a + h_clamped.unsqueeze(-1) * v_ab return torch.norm(p - closest, dim=-1) class TriangleEdgesSDF(SDFPrimitive): """SDF for triangle edges (boundary only).""" def __init__(self, v0: torch.Tensor, v1: torch.Tensor, v2: torch.Tensor, line_thickness: float = 0.02): super().__init__() self.edge0 = LineSegmentSDF(v0, v1) self.edge1 = LineSegmentSDF(v1, v2) self.edge2 = LineSegmentSDF(v2, v0) self.thickness = line_thickness def forward(self, p: torch.Tensor) -> torch.Tensor: d0 = self.edge0(p) d1 = self.edge1(p) d2 = self.edge2(p) return torch.min(torch.min(d0, d1), d2) - self.thickness class TriangleFillSDF(SDFPrimitive): """SDF for filled triangle region.""" def __init__(self, v0: torch.Tensor, v1: torch.Tensor, v2: torch.Tensor): super().__init__() self.v0 = nn.Parameter(v0.clone()) self.v1 = nn.Parameter(v1.clone()) self.v2 = nn.Parameter(v2.clone()) self.edge0 = LineSegmentSDF(v0, v1) self.edge1 = LineSegmentSDF(v1, v2) self.edge2 = LineSegmentSDF(v2, v0) def _sign(self, p: torch.Tensor, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return (p[..., 0] - a[0]) * (b[1] - a[1]) - (b[0] - a[0]) * (p[..., 1] - a[1]) def forward(self, p: torch.Tensor) -> torch.Tensor: d0 = self.edge0(p) d1 = self.edge1(p) d2 = self.edge2(p) dist = torch.min(torch.min(d0, d1), d2) s0 = self._sign(p, self.v0, self.v1) s1 = self._sign(p, self.v1, self.v2) s2 = self._sign(p, self.v2, self.v0) inside = ((s0 >= 0) & (s1 >= 0) & (s2 >= 0)) | ((s0 <= 0) & (s1 <= 0) & (s2 <= 0)) return torch.where(inside, -dist, dist) class RightAngleSDF(SDFPrimitive): """SDF for right angle marker.""" def __init__(self, vertex: torch.Tensor, dir1: torch.Tensor, dir2: torch.Tensor, size: float = 0.25, thickness: float = 0.015): super().__init__() dir1_norm = dir1 / (torch.norm(dir1) + 1e-8) dir2_norm = dir2 / (torch.norm(dir2) + 1e-8) p1 = vertex + dir1_norm * size p2 = vertex + dir2_norm * size p3 = vertex + dir1_norm * size + dir2_norm * size self.seg1 = LineSegmentSDF(p1, p3) self.seg2 = LineSegmentSDF(p2, p3) self.thickness = thickness def forward(self, p: torch.Tensor) -> torch.Tensor: return torch.min(self.seg1(p), self.seg2(p)) - self.thickness