#sk-learn風の線形回帰分析クラス #SE, t-val,p-val, R2を出力 #x, yをpandas DataFrameで入力、self.olsは(coef, SE, t値, p値)のDataFrame from scipy.stats import t import numpy as np import pandas as pd class linear_regression(): def __init__(self, fit_intercept=True): self.const = fit_intercept def fit(self, x, y): # pandas DataFrame → numpy配列に変換 if isinstance(x, pd.DataFrame): x_np = x.values x_cols = x.columns else: x_np = x x_cols = [f"x{i}" for i in range(x.shape[1])] # yがSeriesかDataFrameかに関係なく1列の配列にする if isinstance(y, (pd.Series, pd.DataFrame)): y_np = np.asarray(y).reshape(-1, 1) else: y_np = y.reshape(-1, 1) if self.const: ones = np.ones((x_np.shape[0], 1)) z = np.concatenate([ones, x_np], axis=1) self.index = ['const'] + list(x_cols) else: z = x_np self.index = list(x_cols) self.phi = np.linalg.inv(z.T @ z) @ (z.T @ y_np) if self.const: self.intercept_ = self.phi[0, 0] self.coef_ = self.phi[1:].flatten() else: self.intercept_ = 'NA' self.coef_ = self.phi.flatten() u = y_np - z @ self.phi RSS = np.sum(u**2) TSS = np.sum((y_np - np.mean(y_np))**2) self.R2 = 1 - RSS / TSS self.s2 = RSS / (z.shape[0] - z.shape[1]) self.SE = np.sqrt(self.s2 * np.diagonal(np.linalg.inv(z.T @ z))) self.t = self.phi.flatten() / self.SE self.p = (1 - t.cdf(np.abs(self.t), df=z.shape[0] - z.shape[1])) * 2 def predict(self, x): if isinstance(x, pd.DataFrame): x_np = x.values else: x_np = x if self.const: z = np.concatenate([np.ones((x_np.shape[0], 1)), x_np], axis=1) else: z = x_np fcst = z @ self.phi return fcst.squeeze() def summary(self): col_names = ["coef", "se", "t", "両側p値"] output = pd.DataFrame(np.c_[self.phi.flatten(), self.SE, self.t, self.p], index=self.index, columns=col_names) print(f'決定係数R^2: {self.R2}') return output