ZTWHHH commited on
Commit
6c5d9ce
·
verified ·
1 Parent(s): fac9911

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. deepseek/lib/python3.10/importlib/metadata/__pycache__/_text.cpython-310.pyc +0 -0
  3. deepseek/lib/python3.10/site-packages/attrdict-2.0.1.dist-info/RECORD +20 -0
  4. deepseek/lib/python3.10/site-packages/attrdict-2.0.1.dist-info/WHEEL +6 -0
  5. deepseek/lib/python3.10/site-packages/attrdict-2.0.1.dist-info/top_level.txt +1 -0
  6. deepseek/lib/python3.10/site-packages/click-8.1.7.dist-info/top_level.txt +1 -0
  7. deepseek/lib/python3.10/site-packages/cv2/detail/__init__.pyi +600 -0
  8. deepseek/lib/python3.10/site-packages/cv2/gapi/__pycache__/__init__.cpython-310.pyc +0 -0
  9. deepseek/lib/python3.10/site-packages/cv2/gapi/core/ocl/__init__.pyi +9 -0
  10. deepseek/lib/python3.10/site-packages/cv2/gapi/ie/detail/__init__.pyi +12 -0
  11. deepseek/lib/python3.10/site-packages/cv2/gapi/ot/cpu/__init__.pyi +9 -0
  12. deepseek/lib/python3.10/site-packages/cv2/gapi/ov/__init__.pyi +74 -0
  13. deepseek/lib/python3.10/site-packages/filelock-3.16.1.dist-info/METADATA +59 -0
  14. deepseek/lib/python3.10/site-packages/filelock-3.16.1.dist-info/RECORD +25 -0
  15. deepseek/lib/python3.10/site-packages/filelock-3.16.1.dist-info/WHEEL +4 -0
  16. deepseek/lib/python3.10/site-packages/isympy.py +342 -0
  17. deepseek/lib/python3.10/site-packages/prometheus_fastapi_instrumentator-7.0.0.dist-info/LICENSE +15 -0
  18. deepseek/lib/python3.10/site-packages/prometheus_fastapi_instrumentator-7.0.0.dist-info/METADATA +339 -0
  19. deepseek/lib/python3.10/site-packages/prometheus_fastapi_instrumentator-7.0.0.dist-info/RECORD +17 -0
  20. deepseek/lib/python3.10/site-packages/sentencepiece/__pycache__/sentencepiece_model_pb2.cpython-310.pyc +0 -0
  21. deepseek/lib/python3.10/site-packages/sentencepiece/_version.py +1 -0
  22. deepseek/lib/python3.10/site-packages/sentencepiece/sentencepiece_model_pb2.py +44 -0
  23. deepseek/lib/python3.10/site-packages/torch-2.5.1.dist-info/INSTALLER +1 -0
  24. deepseek/lib/python3.10/site-packages/torch-2.5.1.dist-info/METADATA +557 -0
  25. deepseek/lib/python3.10/site-packages/torch-2.5.1.dist-info/RECORD +0 -0
  26. deepseek/lib/python3.10/site-packages/torch-2.5.1.dist-info/top_level.txt +3 -0
  27. deepseek/lib/python3.10/site-packages/typing_extensions.py +0 -0
  28. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_basinhopping.py +753 -0
  29. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_cobyqa_py.py +62 -0
  30. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_dcsrch.py +728 -0
  31. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_differentiate.py +856 -0
  32. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_direct_py.py +278 -0
  33. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_group_columns.cpython-310-x86_64-linux-gnu.so +0 -0
  34. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_hessian_update_strategy.py +475 -0
  35. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_lbfgsb.cpython-310-x86_64-linux-gnu.so +3 -0
  36. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog.py +716 -0
  37. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog_highs.py +440 -0
  38. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog_ip.py +1126 -0
  39. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog_rs.py +572 -0
  40. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog_simplex.py +661 -0
  41. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog_util.py +1522 -0
  42. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_minimize.py +1116 -0
  43. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_minpack2.cpython-310-x86_64-linux-gnu.so +0 -0
  44. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_moduleTNC.cpython-310-x86_64-linux-gnu.so +3 -0
  45. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_nnls.py +164 -0
  46. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_nonlin.py +1585 -0
  47. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_numdiff.py +779 -0
  48. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_optimize.py +0 -0
  49. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_slsqp.cpython-310-x86_64-linux-gnu.so +0 -0
  50. evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_spectral.py +260 -0
.gitattributes CHANGED
@@ -1380,3 +1380,6 @@ evalkit_tf446/lib/python3.10/site-packages/scipy/io/matlab/_mio5_utils.cpython-3
1380
  evalkit_tf446/lib/python3.10/site-packages/scipy/io/matlab/_streams.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
1381
  evalkit_tf446/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_basic.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
1382
  deepseek/bin/lzma filter=lfs diff=lfs merge=lfs -text
 
 
 
 
1380
  evalkit_tf446/lib/python3.10/site-packages/scipy/io/matlab/_streams.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
1381
  evalkit_tf446/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_basic.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
1382
  deepseek/bin/lzma filter=lfs diff=lfs merge=lfs -text
1383
+ evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_moduleTNC.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
1384
+ evalkit_tf446/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_basic.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
1385
+ evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_lbfgsb.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
deepseek/lib/python3.10/importlib/metadata/__pycache__/_text.cpython-310.pyc ADDED
Binary file (3.31 kB). View file
 
deepseek/lib/python3.10/site-packages/attrdict-2.0.1.dist-info/RECORD ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ attrdict-2.0.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ attrdict-2.0.1.dist-info/LICENSE.txt,sha256=7bXwDR-EXRD9ybjGNRq4IPk_ZEm3aWev8xkme2Fb4k4,1066
3
+ attrdict-2.0.1.dist-info/METADATA,sha256=qp1NCkW6JHByrhJOt9Pt6JuS45qvdtTxRWIf0jdIGlA,6690
4
+ attrdict-2.0.1.dist-info/RECORD,,
5
+ attrdict-2.0.1.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ attrdict-2.0.1.dist-info/WHEEL,sha256=_wJFdOYk7i3xxT8ElOkUJvOdOvfNGbR9g-bf6UQT6sU,110
7
+ attrdict-2.0.1.dist-info/top_level.txt,sha256=2f1-Wyfr5ZHsGvOFLqcj3y6OfZglxI3gjETO12COZRc,9
8
+ attrdict-2.0.1.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
9
+ attrdict/__init__.py,sha256=fdJfkB3hQK2tcqck7FSmCKjyzmjx29Z3MBQyAev43E0,267
10
+ attrdict/__pycache__/__init__.cpython-310.pyc,,
11
+ attrdict/__pycache__/default.cpython-310.pyc,,
12
+ attrdict/__pycache__/dictionary.cpython-310.pyc,,
13
+ attrdict/__pycache__/mapping.cpython-310.pyc,,
14
+ attrdict/__pycache__/merge.cpython-310.pyc,,
15
+ attrdict/__pycache__/mixins.cpython-310.pyc,,
16
+ attrdict/default.py,sha256=dpolSpC0J185AIAG75E0Sm6fqOkp-7hssH-x1u6v8co,3540
17
+ attrdict/dictionary.py,sha256=EjolfMd-kzn5K009pTx2Mr_O4OCEPEg-57Z_6-Lsixw,1462
18
+ attrdict/mapping.py,sha256=QGEy-z-3O3OnPXBB9XgE7WXlWtM_nheQwBaqmSfmfRs,2464
19
+ attrdict/merge.py,sha256=ffljqIQ1fKRWUOcLRtoZnDzZp9h06aYmGFGYz66-wlY,1083
20
+ attrdict/mixins.py,sha256=Jya5crO7NsUbZJYVMUnZvc2QjxpSWDUFoIEq7xcMd6U,6624
deepseek/lib/python3.10/site-packages/attrdict-2.0.1.dist-info/WHEEL ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.32.3)
3
+ Root-Is-Purelib: true
4
+ Tag: py2-none-any
5
+ Tag: py3-none-any
6
+
deepseek/lib/python3.10/site-packages/attrdict-2.0.1.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ attrdict
deepseek/lib/python3.10/site-packages/click-8.1.7.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ click
deepseek/lib/python3.10/site-packages/cv2/detail/__init__.pyi ADDED
@@ -0,0 +1,600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __all__: list[str] = []
2
+
3
+ import cv2
4
+ import cv2.gapi
5
+ import cv2.gapi.ie
6
+ import cv2.gapi.onnx
7
+ import cv2.gapi.ov
8
+ import cv2.typing
9
+ import numpy
10
+ import typing as _typing
11
+
12
+
13
+ # Enumerations
14
+ TEST_CUSTOM: int
15
+ TEST_EQ: int
16
+ TEST_NE: int
17
+ TEST_LE: int
18
+ TEST_LT: int
19
+ TEST_GE: int
20
+ TEST_GT: int
21
+ TestOp = int
22
+ """One of [TEST_CUSTOM, TEST_EQ, TEST_NE, TEST_LE, TEST_LT, TEST_GE, TEST_GT]"""
23
+
24
+ WAVE_CORRECT_HORIZ: int
25
+ WAVE_CORRECT_VERT: int
26
+ WAVE_CORRECT_AUTO: int
27
+ WaveCorrectKind = int
28
+ """One of [WAVE_CORRECT_HORIZ, WAVE_CORRECT_VERT, WAVE_CORRECT_AUTO]"""
29
+
30
+ OpaqueKind_CV_UNKNOWN: int
31
+ OPAQUE_KIND_CV_UNKNOWN: int
32
+ OpaqueKind_CV_BOOL: int
33
+ OPAQUE_KIND_CV_BOOL: int
34
+ OpaqueKind_CV_INT: int
35
+ OPAQUE_KIND_CV_INT: int
36
+ OpaqueKind_CV_INT64: int
37
+ OPAQUE_KIND_CV_INT64: int
38
+ OpaqueKind_CV_DOUBLE: int
39
+ OPAQUE_KIND_CV_DOUBLE: int
40
+ OpaqueKind_CV_FLOAT: int
41
+ OPAQUE_KIND_CV_FLOAT: int
42
+ OpaqueKind_CV_UINT64: int
43
+ OPAQUE_KIND_CV_UINT64: int
44
+ OpaqueKind_CV_STRING: int
45
+ OPAQUE_KIND_CV_STRING: int
46
+ OpaqueKind_CV_POINT: int
47
+ OPAQUE_KIND_CV_POINT: int
48
+ OpaqueKind_CV_POINT2F: int
49
+ OPAQUE_KIND_CV_POINT2F: int
50
+ OpaqueKind_CV_POINT3F: int
51
+ OPAQUE_KIND_CV_POINT3F: int
52
+ OpaqueKind_CV_SIZE: int
53
+ OPAQUE_KIND_CV_SIZE: int
54
+ OpaqueKind_CV_RECT: int
55
+ OPAQUE_KIND_CV_RECT: int
56
+ OpaqueKind_CV_SCALAR: int
57
+ OPAQUE_KIND_CV_SCALAR: int
58
+ OpaqueKind_CV_MAT: int
59
+ OPAQUE_KIND_CV_MAT: int
60
+ OpaqueKind_CV_DRAW_PRIM: int
61
+ OPAQUE_KIND_CV_DRAW_PRIM: int
62
+ OpaqueKind = int
63
+ """One of [OpaqueKind_CV_UNKNOWN, OPAQUE_KIND_CV_UNKNOWN, OpaqueKind_CV_BOOL, OPAQUE_KIND_CV_BOOL, OpaqueKind_CV_INT, OPAQUE_KIND_CV_INT, OpaqueKind_CV_INT64, OPAQUE_KIND_CV_INT64, OpaqueKind_CV_DOUBLE, OPAQUE_KIND_CV_DOUBLE, OpaqueKind_CV_FLOAT, OPAQUE_KIND_CV_FLOAT, OpaqueKind_CV_UINT64, OPAQUE_KIND_CV_UINT64, OpaqueKind_CV_STRING, OPAQUE_KIND_CV_STRING, OpaqueKind_CV_POINT, OPAQUE_KIND_CV_POINT, OpaqueKind_CV_POINT2F, OPAQUE_KIND_CV_POINT2F, OpaqueKind_CV_POINT3F, OPAQUE_KIND_CV_POINT3F, OpaqueKind_CV_SIZE, OPAQUE_KIND_CV_SIZE, OpaqueKind_CV_RECT, OPAQUE_KIND_CV_RECT, OpaqueKind_CV_SCALAR, OPAQUE_KIND_CV_SCALAR, OpaqueKind_CV_MAT, OPAQUE_KIND_CV_MAT, OpaqueKind_CV_DRAW_PRIM, OPAQUE_KIND_CV_DRAW_PRIM]"""
64
+
65
+ ArgKind_OPAQUE_VAL: int
66
+ ARG_KIND_OPAQUE_VAL: int
67
+ ArgKind_OPAQUE: int
68
+ ARG_KIND_OPAQUE: int
69
+ ArgKind_GOBJREF: int
70
+ ARG_KIND_GOBJREF: int
71
+ ArgKind_GMAT: int
72
+ ARG_KIND_GMAT: int
73
+ ArgKind_GMATP: int
74
+ ARG_KIND_GMATP: int
75
+ ArgKind_GFRAME: int
76
+ ARG_KIND_GFRAME: int
77
+ ArgKind_GSCALAR: int
78
+ ARG_KIND_GSCALAR: int
79
+ ArgKind_GARRAY: int
80
+ ARG_KIND_GARRAY: int
81
+ ArgKind_GOPAQUE: int
82
+ ARG_KIND_GOPAQUE: int
83
+ ArgKind = int
84
+ """One of [ArgKind_OPAQUE_VAL, ARG_KIND_OPAQUE_VAL, ArgKind_OPAQUE, ARG_KIND_OPAQUE, ArgKind_GOBJREF, ARG_KIND_GOBJREF, ArgKind_GMAT, ARG_KIND_GMAT, ArgKind_GMATP, ARG_KIND_GMATP, ArgKind_GFRAME, ARG_KIND_GFRAME, ArgKind_GSCALAR, ARG_KIND_GSCALAR, ArgKind_GARRAY, ARG_KIND_GARRAY, ArgKind_GOPAQUE, ARG_KIND_GOPAQUE]"""
85
+
86
+
87
+ Blender_NO: int
88
+ BLENDER_NO: int
89
+ Blender_FEATHER: int
90
+ BLENDER_FEATHER: int
91
+ Blender_MULTI_BAND: int
92
+ BLENDER_MULTI_BAND: int
93
+
94
+ ExposureCompensator_NO: int
95
+ EXPOSURE_COMPENSATOR_NO: int
96
+ ExposureCompensator_GAIN: int
97
+ EXPOSURE_COMPENSATOR_GAIN: int
98
+ ExposureCompensator_GAIN_BLOCKS: int
99
+ EXPOSURE_COMPENSATOR_GAIN_BLOCKS: int
100
+ ExposureCompensator_CHANNELS: int
101
+ EXPOSURE_COMPENSATOR_CHANNELS: int
102
+ ExposureCompensator_CHANNELS_BLOCKS: int
103
+ EXPOSURE_COMPENSATOR_CHANNELS_BLOCKS: int
104
+
105
+ SeamFinder_NO: int
106
+ SEAM_FINDER_NO: int
107
+ SeamFinder_VORONOI_SEAM: int
108
+ SEAM_FINDER_VORONOI_SEAM: int
109
+ SeamFinder_DP_SEAM: int
110
+ SEAM_FINDER_DP_SEAM: int
111
+
112
+ DpSeamFinder_COLOR: int
113
+ DP_SEAM_FINDER_COLOR: int
114
+ DpSeamFinder_COLOR_GRAD: int
115
+ DP_SEAM_FINDER_COLOR_GRAD: int
116
+ DpSeamFinder_CostFunction = int
117
+ """One of [DpSeamFinder_COLOR, DP_SEAM_FINDER_COLOR, DpSeamFinder_COLOR_GRAD, DP_SEAM_FINDER_COLOR_GRAD]"""
118
+
119
+ Timelapser_AS_IS: int
120
+ TIMELAPSER_AS_IS: int
121
+ Timelapser_CROP: int
122
+ TIMELAPSER_CROP: int
123
+
124
+ GraphCutSeamFinderBase_COST_COLOR: int
125
+ GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR: int
126
+ GraphCutSeamFinderBase_COST_COLOR_GRAD: int
127
+ GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR_GRAD: int
128
+ GraphCutSeamFinderBase_CostType = int
129
+ """One of [GraphCutSeamFinderBase_COST_COLOR, GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR, GraphCutSeamFinderBase_COST_COLOR_GRAD, GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR_GRAD]"""
130
+
131
+ TrackerSamplerCSC_MODE_INIT_POS: int
132
+ TRACKER_SAMPLER_CSC_MODE_INIT_POS: int
133
+ TrackerSamplerCSC_MODE_INIT_NEG: int
134
+ TRACKER_SAMPLER_CSC_MODE_INIT_NEG: int
135
+ TrackerSamplerCSC_MODE_TRACK_POS: int
136
+ TRACKER_SAMPLER_CSC_MODE_TRACK_POS: int
137
+ TrackerSamplerCSC_MODE_TRACK_NEG: int
138
+ TRACKER_SAMPLER_CSC_MODE_TRACK_NEG: int
139
+ TrackerSamplerCSC_MODE_DETECT: int
140
+ TRACKER_SAMPLER_CSC_MODE_DETECT: int
141
+ TrackerSamplerCSC_MODE = int
142
+ """One of [TrackerSamplerCSC_MODE_INIT_POS, TRACKER_SAMPLER_CSC_MODE_INIT_POS, TrackerSamplerCSC_MODE_INIT_NEG, TRACKER_SAMPLER_CSC_MODE_INIT_NEG, TrackerSamplerCSC_MODE_TRACK_POS, TRACKER_SAMPLER_CSC_MODE_TRACK_POS, TrackerSamplerCSC_MODE_TRACK_NEG, TRACKER_SAMPLER_CSC_MODE_TRACK_NEG, TrackerSamplerCSC_MODE_DETECT, TRACKER_SAMPLER_CSC_MODE_DETECT]"""
143
+
144
+
145
+ # Classes
146
+ class Blender:
147
+ # Functions
148
+ @classmethod
149
+ def createDefault(cls, type: int, try_gpu: bool = ...) -> Blender: ...
150
+
151
+ @_typing.overload
152
+ def prepare(self, corners: _typing.Sequence[cv2.typing.Point], sizes: _typing.Sequence[cv2.typing.Size]) -> None: ...
153
+ @_typing.overload
154
+ def prepare(self, dst_roi: cv2.typing.Rect) -> None: ...
155
+
156
+ @_typing.overload
157
+ def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
158
+ @_typing.overload
159
+ def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...
160
+
161
+ @_typing.overload
162
+ def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
163
+ @_typing.overload
164
+ def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ...
165
+
166
+
167
+ class FeatherBlender(Blender):
168
+ # Functions
169
+ def __init__(self, sharpness: float = ...) -> None: ...
170
+
171
+ def sharpness(self) -> float: ...
172
+
173
+ def setSharpness(self, val: float) -> None: ...
174
+
175
+ def prepare(self, dst_roi: cv2.typing.Rect) -> None: ...
176
+
177
+ @_typing.overload
178
+ def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
179
+ @_typing.overload
180
+ def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...
181
+
182
+ @_typing.overload
183
+ def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
184
+ @_typing.overload
185
+ def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ...
186
+
187
+ def createWeightMaps(self, masks: _typing.Sequence[cv2.UMat], corners: _typing.Sequence[cv2.typing.Point], weight_maps: _typing.Sequence[cv2.UMat]) -> tuple[cv2.typing.Rect, _typing.Sequence[cv2.UMat]]: ...
188
+
189
+
190
+ class MultiBandBlender(Blender):
191
+ # Functions
192
+ def __init__(self, try_gpu: int = ..., num_bands: int = ..., weight_type: int = ...) -> None: ...
193
+
194
+ def numBands(self) -> int: ...
195
+
196
+ def setNumBands(self, val: int) -> None: ...
197
+
198
+ def prepare(self, dst_roi: cv2.typing.Rect) -> None: ...
199
+
200
+ @_typing.overload
201
+ def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
202
+ @_typing.overload
203
+ def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...
204
+
205
+ @_typing.overload
206
+ def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
207
+ @_typing.overload
208
+ def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ...
209
+
210
+
211
+ class CameraParams:
212
+ focal: float
213
+ aspect: float
214
+ ppx: float
215
+ ppy: float
216
+ R: cv2.typing.MatLike
217
+ t: cv2.typing.MatLike
218
+
219
+ # Functions
220
+ def K(self) -> cv2.typing.MatLike: ...
221
+
222
+
223
+ class ExposureCompensator:
224
+ # Functions
225
+ @classmethod
226
+ def createDefault(cls, type: int) -> ExposureCompensator: ...
227
+
228
+ def feed(self, corners: _typing.Sequence[cv2.typing.Point], images: _typing.Sequence[cv2.UMat], masks: _typing.Sequence[cv2.UMat]) -> None: ...
229
+
230
+ @_typing.overload
231
+ def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
232
+ @_typing.overload
233
+ def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...
234
+
235
+ def getMatGains(self, arg1: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
236
+
237
+ def setMatGains(self, arg1: _typing.Sequence[cv2.typing.MatLike]) -> None: ...
238
+
239
+ def setUpdateGain(self, b: bool) -> None: ...
240
+
241
+ def getUpdateGain(self) -> bool: ...
242
+
243
+
244
+ class NoExposureCompensator(ExposureCompensator):
245
+ # Functions
246
+ @_typing.overload
247
+ def apply(self, arg1: int, arg2: cv2.typing.Point, arg3: cv2.typing.MatLike, arg4: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
248
+ @_typing.overload
249
+ def apply(self, arg1: int, arg2: cv2.typing.Point, arg3: cv2.UMat, arg4: cv2.UMat) -> cv2.UMat: ...
250
+
251
+ def getMatGains(self, umv: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
252
+
253
+ def setMatGains(self, umv: _typing.Sequence[cv2.typing.MatLike]) -> None: ...
254
+
255
+
256
+ class GainCompensator(ExposureCompensator):
257
+ # Functions
258
+ @_typing.overload
259
+ def __init__(self) -> None: ...
260
+ @_typing.overload
261
+ def __init__(self, nr_feeds: int) -> None: ...
262
+
263
+ @_typing.overload
264
+ def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
265
+ @_typing.overload
266
+ def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...
267
+
268
+ def getMatGains(self, umv: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
269
+
270
+ def setMatGains(self, umv: _typing.Sequence[cv2.typing.MatLike]) -> None: ...
271
+
272
+ def setNrFeeds(self, nr_feeds: int) -> None: ...
273
+
274
+ def getNrFeeds(self) -> int: ...
275
+
276
+ def setSimilarityThreshold(self, similarity_threshold: float) -> None: ...
277
+
278
+ def getSimilarityThreshold(self) -> float: ...
279
+
280
+
281
+ class ChannelsCompensator(ExposureCompensator):
282
+ # Functions
283
+ def __init__(self, nr_feeds: int = ...) -> None: ...
284
+
285
+ @_typing.overload
286
+ def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
287
+ @_typing.overload
288
+ def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...
289
+
290
+ def getMatGains(self, umv: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
291
+
292
+ def setMatGains(self, umv: _typing.Sequence[cv2.typing.MatLike]) -> None: ...
293
+
294
+ def setNrFeeds(self, nr_feeds: int) -> None: ...
295
+
296
+ def getNrFeeds(self) -> int: ...
297
+
298
+ def setSimilarityThreshold(self, similarity_threshold: float) -> None: ...
299
+
300
+ def getSimilarityThreshold(self) -> float: ...
301
+
302
+
303
+ class BlocksCompensator(ExposureCompensator):
304
+ # Functions
305
+ @_typing.overload
306
+ def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
307
+ @_typing.overload
308
+ def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...
309
+
310
+ def getMatGains(self, umv: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
311
+
312
+ def setMatGains(self, umv: _typing.Sequence[cv2.typing.MatLike]) -> None: ...
313
+
314
+ def setNrFeeds(self, nr_feeds: int) -> None: ...
315
+
316
+ def getNrFeeds(self) -> int: ...
317
+
318
+ def setSimilarityThreshold(self, similarity_threshold: float) -> None: ...
319
+
320
+ def getSimilarityThreshold(self) -> float: ...
321
+
322
+ @_typing.overload
323
+ def setBlockSize(self, width: int, height: int) -> None: ...
324
+ @_typing.overload
325
+ def setBlockSize(self, size: cv2.typing.Size) -> None: ...
326
+
327
+ def getBlockSize(self) -> cv2.typing.Size: ...
328
+
329
+ def setNrGainsFilteringIterations(self, nr_iterations: int) -> None: ...
330
+
331
+ def getNrGainsFilteringIterations(self) -> int: ...
332
+
333
+
334
+ class BlocksGainCompensator(BlocksCompensator):
335
+ # Functions
336
+ @_typing.overload
337
+ def __init__(self, bl_width: int = ..., bl_height: int = ...) -> None: ...
338
+ @_typing.overload
339
+ def __init__(self, bl_width: int, bl_height: int, nr_feeds: int) -> None: ...
340
+
341
+ @_typing.overload
342
+ def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
343
+ @_typing.overload
344
+ def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...
345
+
346
+ def getMatGains(self, umv: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
347
+
348
+ def setMatGains(self, umv: _typing.Sequence[cv2.typing.MatLike]) -> None: ...
349
+
350
+
351
+ class BlocksChannelsCompensator(BlocksCompensator):
352
+ # Functions
353
+ def __init__(self, bl_width: int = ..., bl_height: int = ..., nr_feeds: int = ...) -> None: ...
354
+
355
+
356
+ class ImageFeatures:
357
+ img_idx: int
358
+ img_size: cv2.typing.Size
359
+ keypoints: _typing.Sequence[cv2.KeyPoint]
360
+ descriptors: cv2.UMat
361
+
362
+ # Functions
363
+ def getKeypoints(self) -> _typing.Sequence[cv2.KeyPoint]: ...
364
+
365
+
366
+ class MatchesInfo:
367
+ src_img_idx: int
368
+ dst_img_idx: int
369
+ matches: _typing.Sequence[cv2.DMatch]
370
+ inliers_mask: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]]
371
+ num_inliers: int
372
+ H: cv2.typing.MatLike
373
+ confidence: float
374
+
375
+ # Functions
376
+ def getMatches(self) -> _typing.Sequence[cv2.DMatch]: ...
377
+
378
+ def getInliers(self) -> numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]]: ...
379
+
380
+
381
+ class FeaturesMatcher:
382
+ # Functions
383
+ def apply(self, features1: ImageFeatures, features2: ImageFeatures) -> MatchesInfo: ...
384
+
385
+ def apply2(self, features: _typing.Sequence[ImageFeatures], mask: cv2.UMat | None = ...) -> _typing.Sequence[MatchesInfo]: ...
386
+
387
+ def isThreadSafe(self) -> bool: ...
388
+
389
+ def collectGarbage(self) -> None: ...
390
+
391
+
392
+ class BestOf2NearestMatcher(FeaturesMatcher):
393
+ # Functions
394
+ def __init__(self, try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ..., matches_confindece_thresh: float = ...) -> None: ...
395
+
396
+ def collectGarbage(self) -> None: ...
397
+
398
+ @classmethod
399
+ def create(cls, try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ..., matches_confindece_thresh: float = ...) -> BestOf2NearestMatcher: ...
400
+
401
+
402
+ class BestOf2NearestRangeMatcher(BestOf2NearestMatcher):
403
+ # Functions
404
+ def __init__(self, range_width: int = ..., try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ...) -> None: ...
405
+
406
+
407
+ class AffineBestOf2NearestMatcher(BestOf2NearestMatcher):
408
+ # Functions
409
+ def __init__(self, full_affine: bool = ..., try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ...) -> None: ...
410
+
411
+
412
+ class Estimator:
413
+ # Functions
414
+ def apply(self, features: _typing.Sequence[ImageFeatures], pairwise_matches: _typing.Sequence[MatchesInfo], cameras: _typing.Sequence[CameraParams]) -> tuple[bool, _typing.Sequence[CameraParams]]: ...
415
+
416
+
417
+ class HomographyBasedEstimator(Estimator):
418
+ # Functions
419
+ def __init__(self, is_focals_estimated: bool = ...) -> None: ...
420
+
421
+
422
+ class AffineBasedEstimator(Estimator):
423
+ # Functions
424
+ def __init__(self) -> None: ...
425
+
426
+
427
+ class BundleAdjusterBase(Estimator):
428
+ # Functions
429
+ def refinementMask(self) -> cv2.typing.MatLike: ...
430
+
431
+ def setRefinementMask(self, mask: cv2.typing.MatLike) -> None: ...
432
+
433
+ def confThresh(self) -> float: ...
434
+
435
+ def setConfThresh(self, conf_thresh: float) -> None: ...
436
+
437
+ def termCriteria(self) -> cv2.typing.TermCriteria: ...
438
+
439
+ def setTermCriteria(self, term_criteria: cv2.typing.TermCriteria) -> None: ...
440
+
441
+
442
+ class NoBundleAdjuster(BundleAdjusterBase):
443
+ # Functions
444
+ def __init__(self) -> None: ...
445
+
446
+
447
+ class BundleAdjusterReproj(BundleAdjusterBase):
448
+ # Functions
449
+ def __init__(self) -> None: ...
450
+
451
+
452
+ class BundleAdjusterRay(BundleAdjusterBase):
453
+ # Functions
454
+ def __init__(self) -> None: ...
455
+
456
+
457
+ class BundleAdjusterAffine(BundleAdjusterBase):
458
+ # Functions
459
+ def __init__(self) -> None: ...
460
+
461
+
462
+ class BundleAdjusterAffinePartial(BundleAdjusterBase):
463
+ # Functions
464
+ def __init__(self) -> None: ...
465
+
466
+
467
+ class SeamFinder:
468
+ # Functions
469
+ def find(self, src: _typing.Sequence[cv2.UMat], corners: _typing.Sequence[cv2.typing.Point], masks: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
470
+
471
+ @classmethod
472
+ def createDefault(cls, type: int) -> SeamFinder: ...
473
+
474
+
475
+ class NoSeamFinder(SeamFinder):
476
+ # Functions
477
+ def find(self, arg1: _typing.Sequence[cv2.UMat], arg2: _typing.Sequence[cv2.typing.Point], arg3: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
478
+
479
+
480
+ class PairwiseSeamFinder(SeamFinder):
481
+ # Functions
482
+ def find(self, src: _typing.Sequence[cv2.UMat], corners: _typing.Sequence[cv2.typing.Point], masks: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
483
+
484
+
485
+ class VoronoiSeamFinder(PairwiseSeamFinder):
486
+ # Functions
487
+ def find(self, src: _typing.Sequence[cv2.UMat], corners: _typing.Sequence[cv2.typing.Point], masks: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
488
+
489
+
490
+ class DpSeamFinder(SeamFinder):
491
+ # Functions
492
+ def __init__(self, costFunc: str) -> None: ...
493
+
494
+ def setCostFunction(self, val: str) -> None: ...
495
+
496
+
497
+ class GraphCutSeamFinder:
498
+ # Functions
499
+ def __init__(self, cost_type: str, terminal_cost: float = ..., bad_region_penalty: float = ...) -> None: ...
500
+
501
+ def find(self, src: _typing.Sequence[cv2.UMat], corners: _typing.Sequence[cv2.typing.Point], masks: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
502
+
503
+
504
+ class Timelapser:
505
+ # Functions
506
+ @classmethod
507
+ def createDefault(cls, type: int) -> Timelapser: ...
508
+
509
+ def initialize(self, corners: _typing.Sequence[cv2.typing.Point], sizes: _typing.Sequence[cv2.typing.Size]) -> None: ...
510
+
511
+ @_typing.overload
512
+ def process(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
513
+ @_typing.overload
514
+ def process(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...
515
+
516
+ def getDst(self) -> cv2.UMat: ...
517
+
518
+
519
+ class TimelapserCrop(Timelapser):
520
+ ...
521
+
522
+ class ProjectorBase:
523
+ ...
524
+
525
+ class SphericalProjector(ProjectorBase):
526
+ # Functions
527
+ def mapForward(self, x: float, y: float, u: float, v: float) -> None: ...
528
+
529
+ def mapBackward(self, u: float, v: float, x: float, y: float) -> None: ...
530
+
531
+
532
+
533
+ # Functions
534
+ def calibrateRotatingCamera(Hs: _typing.Sequence[cv2.typing.MatLike], K: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike]: ...
535
+
536
+ @_typing.overload
537
+ def computeImageFeatures(featuresFinder: cv2.Feature2D, images: _typing.Sequence[cv2.typing.MatLike], masks: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[ImageFeatures]: ...
538
+ @_typing.overload
539
+ def computeImageFeatures(featuresFinder: cv2.Feature2D, images: _typing.Sequence[cv2.UMat], masks: _typing.Sequence[cv2.UMat] | None = ...) -> _typing.Sequence[ImageFeatures]: ...
540
+
541
+ @_typing.overload
542
+ def computeImageFeatures2(featuresFinder: cv2.Feature2D, image: cv2.typing.MatLike, mask: cv2.typing.MatLike | None = ...) -> ImageFeatures: ...
543
+ @_typing.overload
544
+ def computeImageFeatures2(featuresFinder: cv2.Feature2D, image: cv2.UMat, mask: cv2.UMat | None = ...) -> ImageFeatures: ...
545
+
546
+ @_typing.overload
547
+ def createLaplacePyr(img: cv2.typing.MatLike, num_levels: int, pyr: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
548
+ @_typing.overload
549
+ def createLaplacePyr(img: cv2.UMat, num_levels: int, pyr: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
550
+
551
+ @_typing.overload
552
+ def createLaplacePyrGpu(img: cv2.typing.MatLike, num_levels: int, pyr: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
553
+ @_typing.overload
554
+ def createLaplacePyrGpu(img: cv2.UMat, num_levels: int, pyr: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
555
+
556
+ @_typing.overload
557
+ def createWeightMap(mask: cv2.typing.MatLike, sharpness: float, weight: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
558
+ @_typing.overload
559
+ def createWeightMap(mask: cv2.UMat, sharpness: float, weight: cv2.UMat) -> cv2.UMat: ...
560
+
561
+ def focalsFromHomography(H: cv2.typing.MatLike, f0: float, f1: float, f0_ok: bool, f1_ok: bool) -> None: ...
562
+
563
+ def leaveBiggestComponent(features: _typing.Sequence[ImageFeatures], pairwise_matches: _typing.Sequence[MatchesInfo], conf_threshold: float) -> _typing.Sequence[int]: ...
564
+
565
+ def matchesGraphAsString(paths: _typing.Sequence[str], pairwise_matches: _typing.Sequence[MatchesInfo], conf_threshold: float) -> str: ...
566
+
567
+ @_typing.overload
568
+ def normalizeUsingWeightMap(weight: cv2.typing.MatLike, src: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
569
+ @_typing.overload
570
+ def normalizeUsingWeightMap(weight: cv2.UMat, src: cv2.UMat) -> cv2.UMat: ...
571
+
572
+ def overlapRoi(tl1: cv2.typing.Point, tl2: cv2.typing.Point, sz1: cv2.typing.Size, sz2: cv2.typing.Size, roi: cv2.typing.Rect) -> bool: ...
573
+
574
+ def restoreImageFromLaplacePyr(pyr: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
575
+
576
+ def restoreImageFromLaplacePyrGpu(pyr: _typing.Sequence[cv2.UMat]) -> _typing.Sequence[cv2.UMat]: ...
577
+
578
+ @_typing.overload
579
+ def resultRoi(corners: _typing.Sequence[cv2.typing.Point], images: _typing.Sequence[cv2.UMat]) -> cv2.typing.Rect: ...
580
+ @_typing.overload
581
+ def resultRoi(corners: _typing.Sequence[cv2.typing.Point], sizes: _typing.Sequence[cv2.typing.Size]) -> cv2.typing.Rect: ...
582
+
583
+ def resultRoiIntersection(corners: _typing.Sequence[cv2.typing.Point], sizes: _typing.Sequence[cv2.typing.Size]) -> cv2.typing.Rect: ...
584
+
585
+ def resultTl(corners: _typing.Sequence[cv2.typing.Point]) -> cv2.typing.Point: ...
586
+
587
+ def selectRandomSubset(count: int, size: int, subset: _typing.Sequence[int]) -> None: ...
588
+
589
+ def stitchingLogLevel() -> int: ...
590
+
591
+ @_typing.overload
592
+ def strip(params: cv2.gapi.ie.PyParams) -> cv2.gapi.GNetParam: ...
593
+ @_typing.overload
594
+ def strip(params: cv2.gapi.onnx.PyParams) -> cv2.gapi.GNetParam: ...
595
+ @_typing.overload
596
+ def strip(params: cv2.gapi.ov.PyParams) -> cv2.gapi.GNetParam: ...
597
+
598
+ def waveCorrect(rmats: _typing.Sequence[cv2.typing.MatLike], kind: WaveCorrectKind) -> _typing.Sequence[cv2.typing.MatLike]: ...
599
+
600
+
deepseek/lib/python3.10/site-packages/cv2/gapi/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (12.8 kB). View file
 
deepseek/lib/python3.10/site-packages/cv2/gapi/core/ocl/__init__.pyi ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ __all__: list[str] = []
2
+
3
+ import cv2
4
+
5
+
6
+ # Functions
7
+ def kernels() -> cv2.GKernelPackage: ...
8
+
9
+
deepseek/lib/python3.10/site-packages/cv2/gapi/ie/detail/__init__.pyi ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __all__: list[str] = []
2
+
3
+ ParamDesc_Kind_Load: int
4
+ PARAM_DESC_KIND_LOAD: int
5
+ ParamDesc_Kind_Import: int
6
+ PARAM_DESC_KIND_IMPORT: int
7
+ ParamDesc_Kind = int
8
+ """One of [ParamDesc_Kind_Load, PARAM_DESC_KIND_LOAD, ParamDesc_Kind_Import, PARAM_DESC_KIND_IMPORT]"""
9
+
10
+
11
+ # Classes
12
+
deepseek/lib/python3.10/site-packages/cv2/gapi/ot/cpu/__init__.pyi ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ __all__: list[str] = []
2
+
3
+ import cv2
4
+
5
+
6
+ # Functions
7
+ def kernels() -> cv2.GKernelPackage: ...
8
+
9
+
deepseek/lib/python3.10/site-packages/cv2/gapi/ov/__init__.pyi ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __all__: list[str] = []
2
+
3
+ import cv2.typing
4
+ import typing as _typing
5
+
6
+
7
+ # Classes
8
+ class PyParams:
9
+ # Functions
10
+ @_typing.overload
11
+ def __init__(self) -> None: ...
12
+ @_typing.overload
13
+ def __init__(self, tag: str, model_path: str, bin_path: str, device: str) -> None: ...
14
+ @_typing.overload
15
+ def __init__(self, tag: str, blob_path: str, device: str) -> None: ...
16
+
17
+ def cfgPluginConfig(self, config: cv2.typing.map_string_and_string) -> PyParams: ...
18
+
19
+ @_typing.overload
20
+ def cfgInputTensorLayout(self, tensor_layout: str) -> PyParams: ...
21
+ @_typing.overload
22
+ def cfgInputTensorLayout(self, layout_map: cv2.typing.map_string_and_string) -> PyParams: ...
23
+
24
+ @_typing.overload
25
+ def cfgInputModelLayout(self, tensor_layout: str) -> PyParams: ...
26
+ @_typing.overload
27
+ def cfgInputModelLayout(self, layout_map: cv2.typing.map_string_and_string) -> PyParams: ...
28
+
29
+ @_typing.overload
30
+ def cfgOutputTensorLayout(self, tensor_layout: str) -> PyParams: ...
31
+ @_typing.overload
32
+ def cfgOutputTensorLayout(self, layout_map: cv2.typing.map_string_and_string) -> PyParams: ...
33
+
34
+ @_typing.overload
35
+ def cfgOutputModelLayout(self, tensor_layout: str) -> PyParams: ...
36
+ @_typing.overload
37
+ def cfgOutputModelLayout(self, layout_map: cv2.typing.map_string_and_string) -> PyParams: ...
38
+
39
+ @_typing.overload
40
+ def cfgOutputTensorPrecision(self, precision: int) -> PyParams: ...
41
+ @_typing.overload
42
+ def cfgOutputTensorPrecision(self, precision_map: cv2.typing.map_string_and_int) -> PyParams: ...
43
+
44
+ @_typing.overload
45
+ def cfgReshape(self, new_shape: _typing.Sequence[int]) -> PyParams: ...
46
+ @_typing.overload
47
+ def cfgReshape(self, new_shape_map: cv2.typing.map_string_and_vector_size_t) -> PyParams: ...
48
+
49
+ def cfgNumRequests(self, nireq: int) -> PyParams: ...
50
+
51
+ @_typing.overload
52
+ def cfgMean(self, mean_values: _typing.Sequence[float]) -> PyParams: ...
53
+ @_typing.overload
54
+ def cfgMean(self, mean_map: cv2.typing.map_string_and_vector_float) -> PyParams: ...
55
+
56
+ @_typing.overload
57
+ def cfgScale(self, scale_values: _typing.Sequence[float]) -> PyParams: ...
58
+ @_typing.overload
59
+ def cfgScale(self, scale_map: cv2.typing.map_string_and_vector_float) -> PyParams: ...
60
+
61
+ @_typing.overload
62
+ def cfgResize(self, interpolation: int) -> PyParams: ...
63
+ @_typing.overload
64
+ def cfgResize(self, interpolation: cv2.typing.map_string_and_int) -> PyParams: ...
65
+
66
+
67
+
68
+ # Functions
69
+ @_typing.overload
70
+ def params(tag: str, model_path: str, weights: str, device: str) -> PyParams: ...
71
+ @_typing.overload
72
+ def params(tag: str, bin_path: str, device: str) -> PyParams: ...
73
+
74
+
deepseek/lib/python3.10/site-packages/filelock-3.16.1.dist-info/METADATA ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.3
2
+ Name: filelock
3
+ Version: 3.16.1
4
+ Summary: A platform independent file lock.
5
+ Project-URL: Documentation, https://py-filelock.readthedocs.io
6
+ Project-URL: Homepage, https://github.com/tox-dev/py-filelock
7
+ Project-URL: Source, https://github.com/tox-dev/py-filelock
8
+ Project-URL: Tracker, https://github.com/tox-dev/py-filelock/issues
9
+ Maintainer-email: Bernát Gábor <gaborjbernat@gmail.com>
10
+ License-Expression: Unlicense
11
+ License-File: LICENSE
12
+ Keywords: application,cache,directory,log,user
13
+ Classifier: Development Status :: 5 - Production/Stable
14
+ Classifier: Intended Audience :: Developers
15
+ Classifier: License :: OSI Approved :: The Unlicense (Unlicense)
16
+ Classifier: Operating System :: OS Independent
17
+ Classifier: Programming Language :: Python
18
+ Classifier: Programming Language :: Python :: 3 :: Only
19
+ Classifier: Programming Language :: Python :: 3.8
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Classifier: Programming Language :: Python :: 3.13
25
+ Classifier: Topic :: Internet
26
+ Classifier: Topic :: Software Development :: Libraries
27
+ Classifier: Topic :: System
28
+ Requires-Python: >=3.8
29
+ Provides-Extra: docs
30
+ Requires-Dist: furo>=2024.8.6; extra == 'docs'
31
+ Requires-Dist: sphinx-autodoc-typehints>=2.4.1; extra == 'docs'
32
+ Requires-Dist: sphinx>=8.0.2; extra == 'docs'
33
+ Provides-Extra: testing
34
+ Requires-Dist: covdefaults>=2.3; extra == 'testing'
35
+ Requires-Dist: coverage>=7.6.1; extra == 'testing'
36
+ Requires-Dist: diff-cover>=9.2; extra == 'testing'
37
+ Requires-Dist: pytest-asyncio>=0.24; extra == 'testing'
38
+ Requires-Dist: pytest-cov>=5; extra == 'testing'
39
+ Requires-Dist: pytest-mock>=3.14; extra == 'testing'
40
+ Requires-Dist: pytest-timeout>=2.3.1; extra == 'testing'
41
+ Requires-Dist: pytest>=8.3.3; extra == 'testing'
42
+ Requires-Dist: virtualenv>=20.26.4; extra == 'testing'
43
+ Provides-Extra: typing
44
+ Requires-Dist: typing-extensions>=4.12.2; (python_version < '3.11') and extra == 'typing'
45
+ Description-Content-Type: text/markdown
46
+
47
+ # filelock
48
+
49
+ [![PyPI](https://img.shields.io/pypi/v/filelock)](https://pypi.org/project/filelock/)
50
+ [![Supported Python
51
+ versions](https://img.shields.io/pypi/pyversions/filelock.svg)](https://pypi.org/project/filelock/)
52
+ [![Documentation
53
+ status](https://readthedocs.org/projects/py-filelock/badge/?version=latest)](https://py-filelock.readthedocs.io/en/latest/?badge=latest)
54
+ [![Code style:
55
+ black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
56
+ [![Downloads](https://static.pepy.tech/badge/filelock/month)](https://pepy.tech/project/filelock)
57
+ [![check](https://github.com/tox-dev/py-filelock/actions/workflows/check.yml/badge.svg)](https://github.com/tox-dev/py-filelock/actions/workflows/check.yml)
58
+
59
+ For more information checkout the [official documentation](https://py-filelock.readthedocs.io/en/latest/index.html).
deepseek/lib/python3.10/site-packages/filelock-3.16.1.dist-info/RECORD ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filelock-3.16.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ filelock-3.16.1.dist-info/METADATA,sha256=LXL5-XQe_eTKkdNs76A6jSicQ1DBSTXqkDcjsprWvIM,2944
3
+ filelock-3.16.1.dist-info/RECORD,,
4
+ filelock-3.16.1.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ filelock-3.16.1.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
6
+ filelock-3.16.1.dist-info/licenses/LICENSE,sha256=iNm062BXnBkew5HKBMFhMFctfu3EqG2qWL8oxuFMm80,1210
7
+ filelock/__init__.py,sha256=_t_-OAGXo_qyPa9lNQ1YnzVYEvSW3I0onPqzpomsVVg,1769
8
+ filelock/__pycache__/__init__.cpython-310.pyc,,
9
+ filelock/__pycache__/_api.cpython-310.pyc,,
10
+ filelock/__pycache__/_error.cpython-310.pyc,,
11
+ filelock/__pycache__/_soft.cpython-310.pyc,,
12
+ filelock/__pycache__/_unix.cpython-310.pyc,,
13
+ filelock/__pycache__/_util.cpython-310.pyc,,
14
+ filelock/__pycache__/_windows.cpython-310.pyc,,
15
+ filelock/__pycache__/asyncio.cpython-310.pyc,,
16
+ filelock/__pycache__/version.cpython-310.pyc,,
17
+ filelock/_api.py,sha256=GVeBEGjpDD8S1bYqG6_u0MZfbYHS6XrHs_n3PVKq-h0,14541
18
+ filelock/_error.py,sha256=-5jMcjTu60YAvAO1UbqDD1GIEjVkwr8xCFwDBtMeYDg,787
19
+ filelock/_soft.py,sha256=haqtc_TB_KJbYv2a8iuEAclKuM4fMG1vTcp28sK919c,1711
20
+ filelock/_unix.py,sha256=-FXP0tjInBHUYygOlMpp4taUmD87QOkrD_4ybg_iT7Q,2259
21
+ filelock/_util.py,sha256=QHBoNFIYfbAThhotH3Q8E2acFc84wpG49-T-uu017ZE,1715
22
+ filelock/_windows.py,sha256=eMKL8dZKrgekf5VYVGR14an29JGEInRtUO8ui9ABywg,2177
23
+ filelock/asyncio.py,sha256=3D4JP4Ms5IXTGib5eOekyr6uH6rZlieV_moVGY36juA,12463
24
+ filelock/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
+ filelock/version.py,sha256=KSOBzuLwiqiVWDPGfMj1ntr25YrY6JBDr8RvinQX_FM,413
deepseek/lib/python3.10/site-packages/filelock-3.16.1.dist-info/WHEEL ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.25.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
deepseek/lib/python3.10/site-packages/isympy.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Python shell for SymPy.
3
+
4
+ This is just a normal Python shell (IPython shell if you have the
5
+ IPython package installed), that executes the following commands for
6
+ the user:
7
+
8
+ >>> from __future__ import division
9
+ >>> from sympy import *
10
+ >>> x, y, z, t = symbols('x y z t')
11
+ >>> k, m, n = symbols('k m n', integer=True)
12
+ >>> f, g, h = symbols('f g h', cls=Function)
13
+ >>> init_printing()
14
+
15
+ So starting 'isympy' is equivalent to starting Python (or IPython) and
16
+ executing the above commands by hand. It is intended for easy and quick
17
+ experimentation with SymPy. isympy is a good way to use SymPy as an
18
+ interactive calculator. If you have IPython and Matplotlib installed, then
19
+ interactive plotting is enabled by default.
20
+
21
+ COMMAND LINE OPTIONS
22
+ --------------------
23
+
24
+ -c CONSOLE, --console=CONSOLE
25
+
26
+ Use the specified shell (Python or IPython) shell as the console
27
+ backend instead of the default one (IPython if present, Python
28
+ otherwise), e.g.:
29
+
30
+ $isympy -c python
31
+
32
+ CONSOLE must be one of 'ipython' or 'python'
33
+
34
+ -p PRETTY, --pretty PRETTY
35
+
36
+ Setup pretty-printing in SymPy. When pretty-printing is enabled,
37
+ expressions can be printed with Unicode or ASCII. The default is
38
+ to use pretty-printing (with Unicode if the terminal supports it).
39
+ When this option is 'no', expressions will not be pretty-printed
40
+ and ASCII will be used:
41
+
42
+ $isympy -p no
43
+
44
+ PRETTY must be one of 'unicode', 'ascii', or 'no'
45
+
46
+ -t TYPES, --types=TYPES
47
+
48
+ Setup the ground types for the polys. By default, gmpy ground types
49
+ are used if gmpy2 or gmpy is installed, otherwise it falls back to python
50
+ ground types, which are a little bit slower. You can manually
51
+ choose python ground types even if gmpy is installed (e.g., for
52
+ testing purposes):
53
+
54
+ $isympy -t python
55
+
56
+ TYPES must be one of 'gmpy', 'gmpy1' or 'python'
57
+
58
+ Note that the ground type gmpy1 is primarily intended for testing; it
59
+ forces the use of gmpy version 1 even if gmpy2 is available.
60
+
61
+ This is the same as setting the environment variable
62
+ SYMPY_GROUND_TYPES to the given ground type (e.g.,
63
+ SYMPY_GROUND_TYPES='gmpy')
64
+
65
+ The ground types can be determined interactively from the variable
66
+ sympy.polys.domains.GROUND_TYPES.
67
+
68
+ -o ORDER, --order ORDER
69
+
70
+ Setup the ordering of terms for printing. The default is lex, which
71
+ orders terms lexicographically (e.g., x**2 + x + 1). You can choose
72
+ other orderings, such as rev-lex, which will use reverse
73
+ lexicographic ordering (e.g., 1 + x + x**2):
74
+
75
+ $isympy -o rev-lex
76
+
77
+ ORDER must be one of 'lex', 'rev-lex', 'grlex', 'rev-grlex',
78
+ 'grevlex', 'rev-grevlex', 'old', or 'none'.
79
+
80
+ Note that for very large expressions, ORDER='none' may speed up
81
+ printing considerably but the terms will have no canonical order.
82
+
83
+ -q, --quiet
84
+
85
+ Print only Python's and SymPy's versions to stdout at startup.
86
+
87
+ -d, --doctest
88
+
89
+ Use the same format that should be used for doctests. This is
90
+ equivalent to -c python -p no.
91
+
92
+ -C, --no-cache
93
+
94
+ Disable the caching mechanism. Disabling the cache may slow certain
95
+ operations down considerably. This is useful for testing the cache,
96
+ or for benchmarking, as the cache can result in deceptive timings.
97
+
98
+ This is equivalent to setting the environment variable
99
+ SYMPY_USE_CACHE to 'no'.
100
+
101
+ -a, --auto-symbols (requires at least IPython 0.11)
102
+
103
+ Automatically create missing symbols. Normally, typing a name of a
104
+ Symbol that has not been instantiated first would raise NameError,
105
+ but with this option enabled, any undefined name will be
106
+ automatically created as a Symbol.
107
+
108
+ Note that this is intended only for interactive, calculator style
109
+ usage. In a script that uses SymPy, Symbols should be instantiated
110
+ at the top, so that it's clear what they are.
111
+
112
+ This will not override any names that are already defined, which
113
+ includes the single character letters represented by the mnemonic
114
+ QCOSINE (see the "Gotchas and Pitfalls" document in the
115
+ documentation). You can delete existing names by executing "del
116
+ name". If a name is defined, typing "'name' in dir()" will return True.
117
+
118
+ The Symbols that are created using this have default assumptions.
119
+ If you want to place assumptions on symbols, you should create them
120
+ using symbols() or var().
121
+
122
+ Finally, this only works in the top level namespace. So, for
123
+ example, if you define a function in isympy with an undefined
124
+ Symbol, it will not work.
125
+
126
+ See also the -i and -I options.
127
+
128
+ -i, --int-to-Integer (requires at least IPython 0.11)
129
+
130
+ Automatically wrap int literals with Integer. This makes it so that
131
+ things like 1/2 will come out as Rational(1, 2), rather than 0.5. This
132
+ works by preprocessing the source and wrapping all int literals with
133
+ Integer. Note that this will not change the behavior of int literals
134
+ assigned to variables, and it also won't change the behavior of functions
135
+ that return int literals.
136
+
137
+ If you want an int, you can wrap the literal in int(), e.g. int(3)/int(2)
138
+ gives 1.5 (with division imported from __future__).
139
+
140
+ -I, --interactive (requires at least IPython 0.11)
141
+
142
+ This is equivalent to --auto-symbols --int-to-Integer. Future options
143
+ designed for ease of interactive use may be added to this.
144
+
145
+ -D, --debug
146
+
147
+ Enable debugging output. This is the same as setting the
148
+ environment variable SYMPY_DEBUG to 'True'. The debug status is set
149
+ in the variable SYMPY_DEBUG within isympy.
150
+
151
+ -- IPython options
152
+
153
+ Additionally you can pass command line options directly to the IPython
154
+ interpreter (the standard Python shell is not supported). However you
155
+ need to add the '--' separator between two types of options, e.g the
156
+ startup banner option and the colors option. You need to enter the
157
+ options as required by the version of IPython that you are using, too:
158
+
159
+ in IPython 0.11,
160
+
161
+ $isympy -q -- --colors=NoColor
162
+
163
+ or older versions of IPython,
164
+
165
+ $isympy -q -- -colors NoColor
166
+
167
+ See also isympy --help.
168
+ """
169
+
170
+ import os
171
+ import sys
172
+
173
+ # DO NOT IMPORT SYMPY HERE! Or the setting of the sympy environment variables
174
+ # by the command line will break.
175
+
176
+ def main() -> None:
177
+ from argparse import ArgumentParser, RawDescriptionHelpFormatter
178
+
179
+ VERSION = None
180
+ if '--version' in sys.argv:
181
+ # We cannot import sympy before this is run, because flags like -C and
182
+ # -t set environment variables that must be set before SymPy is
183
+ # imported. The only thing we need to import it for is to get the
184
+ # version, which only matters with the --version flag.
185
+ import sympy
186
+ VERSION = sympy.__version__
187
+
188
+ usage = 'isympy [options] -- [ipython options]'
189
+ parser = ArgumentParser(
190
+ usage=usage,
191
+ description=__doc__,
192
+ formatter_class=RawDescriptionHelpFormatter,
193
+ )
194
+
195
+ parser.add_argument('--version', action='version', version=VERSION)
196
+
197
+ parser.add_argument(
198
+ '-c', '--console',
199
+ dest='console',
200
+ action='store',
201
+ default=None,
202
+ choices=['ipython', 'python'],
203
+ metavar='CONSOLE',
204
+ help='select type of interactive session: ipython | python; defaults '
205
+ 'to ipython if IPython is installed, otherwise python')
206
+
207
+ parser.add_argument(
208
+ '-p', '--pretty',
209
+ dest='pretty',
210
+ action='store',
211
+ default=None,
212
+ metavar='PRETTY',
213
+ choices=['unicode', 'ascii', 'no'],
214
+ help='setup pretty printing: unicode | ascii | no; defaults to '
215
+ 'unicode printing if the terminal supports it, otherwise ascii')
216
+
217
+ parser.add_argument(
218
+ '-t', '--types',
219
+ dest='types',
220
+ action='store',
221
+ default=None,
222
+ metavar='TYPES',
223
+ choices=['gmpy', 'gmpy1', 'python'],
224
+ help='setup ground types: gmpy | gmpy1 | python; defaults to gmpy if gmpy2 '
225
+ 'or gmpy is installed, otherwise python')
226
+
227
+ parser.add_argument(
228
+ '-o', '--order',
229
+ dest='order',
230
+ action='store',
231
+ default=None,
232
+ metavar='ORDER',
233
+ choices=['lex', 'grlex', 'grevlex', 'rev-lex', 'rev-grlex', 'rev-grevlex', 'old', 'none'],
234
+ help='setup ordering of terms: [rev-]lex | [rev-]grlex | [rev-]grevlex | old | none; defaults to lex')
235
+
236
+ parser.add_argument(
237
+ '-q', '--quiet',
238
+ dest='quiet',
239
+ action='store_true',
240
+ default=False,
241
+ help='print only version information at startup')
242
+
243
+ parser.add_argument(
244
+ '-d', '--doctest',
245
+ dest='doctest',
246
+ action='store_true',
247
+ default=False,
248
+ help='use the doctest format for output (you can just copy and paste it)')
249
+
250
+ parser.add_argument(
251
+ '-C', '--no-cache',
252
+ dest='cache',
253
+ action='store_false',
254
+ default=True,
255
+ help='disable caching mechanism')
256
+
257
+ parser.add_argument(
258
+ '-a', '--auto-symbols',
259
+ dest='auto_symbols',
260
+ action='store_true',
261
+ default=False,
262
+ help='automatically construct missing symbols')
263
+
264
+ parser.add_argument(
265
+ '-i', '--int-to-Integer',
266
+ dest='auto_int_to_Integer',
267
+ action='store_true',
268
+ default=False,
269
+ help="automatically wrap int literals with Integer")
270
+
271
+ parser.add_argument(
272
+ '-I', '--interactive',
273
+ dest='interactive',
274
+ action='store_true',
275
+ default=False,
276
+ help="equivalent to -a -i")
277
+
278
+ parser.add_argument(
279
+ '-D', '--debug',
280
+ dest='debug',
281
+ action='store_true',
282
+ default=False,
283
+ help='enable debugging output')
284
+
285
+ (options, ipy_args) = parser.parse_known_args()
286
+ if '--' in ipy_args:
287
+ ipy_args.remove('--')
288
+
289
+ if not options.cache:
290
+ os.environ['SYMPY_USE_CACHE'] = 'no'
291
+
292
+ if options.types:
293
+ os.environ['SYMPY_GROUND_TYPES'] = options.types
294
+
295
+ if options.debug:
296
+ os.environ['SYMPY_DEBUG'] = str(options.debug)
297
+
298
+ if options.doctest:
299
+ options.pretty = 'no'
300
+ options.console = 'python'
301
+
302
+ session = options.console
303
+
304
+ if session is not None:
305
+ ipython = session == 'ipython'
306
+ else:
307
+ try:
308
+ import IPython
309
+ ipython = True
310
+ except ImportError:
311
+ if not options.quiet:
312
+ from sympy.interactive.session import no_ipython
313
+ print(no_ipython)
314
+ ipython = False
315
+
316
+ args = {
317
+ 'pretty_print': True,
318
+ 'use_unicode': None,
319
+ 'use_latex': None,
320
+ 'order': None,
321
+ 'argv': ipy_args,
322
+ }
323
+
324
+ if options.pretty == 'unicode':
325
+ args['use_unicode'] = True
326
+ elif options.pretty == 'ascii':
327
+ args['use_unicode'] = False
328
+ elif options.pretty == 'no':
329
+ args['pretty_print'] = False
330
+
331
+ if options.order is not None:
332
+ args['order'] = options.order
333
+
334
+ args['quiet'] = options.quiet
335
+ args['auto_symbols'] = options.auto_symbols or options.interactive
336
+ args['auto_int_to_Integer'] = options.auto_int_to_Integer or options.interactive
337
+
338
+ from sympy.interactive import init_session
339
+ init_session(ipython, **args)
340
+
341
+ if __name__ == "__main__":
342
+ main()
deepseek/lib/python3.10/site-packages/prometheus_fastapi_instrumentator-7.0.0.dist-info/LICENSE ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ISC License
2
+
3
+ Copyright (c) 2022 Tim Schwenke <tim@trallnag.com>
4
+
5
+ Permission to use, copy, modify, and/or distribute this software for any
6
+ purpose with or without fee is hereby granted, provided that the above
7
+ copyright notice and this permission notice appear in all copies.
8
+
9
+ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
10
+ REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
11
+ AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
12
+ INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
13
+ LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
14
+ OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
15
+ PERFORMANCE OF THIS SOFTWARE.
deepseek/lib/python3.10/site-packages/prometheus_fastapi_instrumentator-7.0.0.dist-info/METADATA ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: prometheus-fastapi-instrumentator
3
+ Version: 7.0.0
4
+ Summary: Instrument your FastAPI with Prometheus metrics.
5
+ Home-page: https://github.com/trallnag/prometheus-fastapi-instrumentator
6
+ License: ISC
7
+ Keywords: prometheus,instrumentation,fastapi,exporter,metrics
8
+ Author: Tim Schwenke
9
+ Author-email: tim@trallnag.com
10
+ Requires-Python: >=3.8.1,<4.0.0
11
+ Classifier: License :: OSI Approved
12
+ Classifier: Programming Language :: Python :: 3
13
+ Classifier: Programming Language :: Python :: 3.9
14
+ Classifier: Programming Language :: Python :: 3.10
15
+ Classifier: Programming Language :: Python :: 3.11
16
+ Classifier: Programming Language :: Python :: 3.12
17
+ Requires-Dist: prometheus-client (>=0.8.0,<1.0.0)
18
+ Requires-Dist: starlette (>=0.30.0,<1.0.0)
19
+ Project-URL: Repository, https://github.com/trallnag/prometheus-fastapi-instrumentator
20
+ Description-Content-Type: text/markdown
21
+
22
+ # Prometheus FastAPI Instrumentator <!-- omit in toc -->
23
+
24
+ [![pypi-version](https://badge.fury.io/py/prometheus-fastapi-instrumentator.svg)](https://pypi.python.org/pypi/prometheus-fastapi-instrumentator)
25
+ [![python-versions](https://img.shields.io/pypi/pyversions/prometheus-fastapi-instrumentator.svg)](https://pypi.python.org/pypi/prometheus-fastapi-instrumentator)
26
+ [![downloads](https://pepy.tech/badge/prometheus-fastapi-instrumentator/month)](https://pepy.tech/project/prometheus-fastapi-instrumentator/month)
27
+ [![build](https://img.shields.io/github/actions/workflow/status/trallnag/kubestatus2cloudwatch/ci.yaml?branch=master)](https://github.com/trallnag/kubestatus2cloudwatch/actions)
28
+ [![codecov](https://codecov.io/gh/trallnag/prometheus-fastapi-instrumentator/branch/master/graph/badge.svg)](https://codecov.io/gh/trallnag/prometheus-fastapi-instrumentator)
29
+
30
+ A configurable and modular Prometheus Instrumentator for your FastAPI. Install
31
+ `prometheus-fastapi-instrumentator` from
32
+ [PyPI](https://pypi.python.org/pypi/prometheus-fastapi-instrumentator/). Here is
33
+ the fast track to get started with a pre-configured instrumentator. Import the
34
+ instrumentator class:
35
+
36
+ ```python
37
+ from prometheus_fastapi_instrumentator import Instrumentator
38
+ ```
39
+
40
+ Instrument your app with default metrics and expose the metrics:
41
+
42
+ ```python
43
+ Instrumentator().instrument(app).expose(app)
44
+ ```
45
+
46
+ Depending on your code you might have to use the following instead:
47
+
48
+ ```python
49
+ instrumentator = Instrumentator().instrument(app)
50
+
51
+ @app.on_event("startup")
52
+ async def _startup():
53
+ instrumentator.expose(app)
54
+ ```
55
+
56
+ With this, your FastAPI is instrumented and metrics are ready to be scraped. The
57
+ defaults give you:
58
+
59
+ - Counter `http_requests_total` with `handler`, `status` and `method`. Total
60
+ number of requests.
61
+ - Summary `http_request_size_bytes` with `handler`. Added up total of the
62
+ content lengths of all incoming requests.
63
+ - Summary `http_response_size_bytes` with `handler`. Added up total of the
64
+ content lengths of all outgoing responses.
65
+ - Histogram `http_request_duration_seconds` with `handler` and `method`. Only a
66
+ few buckets to keep cardinality low.
67
+ - Histogram `http_request_duration_highr_seconds` without any labels. Large
68
+ number of buckets (>20).
69
+
70
+ In addition, following behavior is active:
71
+
72
+ - Status codes are grouped into `2xx`, `3xx` and so on.
73
+ - Requests without a matching template are grouped into the handler `none`.
74
+
75
+ If one of these presets does not suit your needs you can do one of multiple
76
+ things:
77
+
78
+ - Pick one of the already existing closures from
79
+ [`metrics`](./src/prometheus_fastapi_instrumentator/metrics.py) and pass it to
80
+ the instrumentator instance. See [here](#adding-metrics) how to do that.
81
+ - Create your own instrumentation function that you can pass to an
82
+ instrumentator instance. See [here](#creating-new-metrics) to learn how more.
83
+ - Don't use this package at all and just use the source code as inspiration on
84
+ how to instrument your FastAPI.
85
+
86
+ ## Table of Contents <!-- omit in toc -->
87
+
88
+ <!--TOC-->
89
+
90
+ - [Disclaimer](#disclaimer)
91
+ - [Features](#features)
92
+ - [Advanced Usage](#advanced-usage)
93
+ - [Creating the Instrumentator](#creating-the-instrumentator)
94
+ - [Adding metrics](#adding-metrics)
95
+ - [Creating new metrics](#creating-new-metrics)
96
+ - [Perform instrumentation](#perform-instrumentation)
97
+ - [Specify namespace and subsystem](#specify-namespace-and-subsystem)
98
+ - [Exposing endpoint](#exposing-endpoint)
99
+ - [Contributing](#contributing)
100
+ - [Licensing](#licensing)
101
+
102
+ <!--TOC-->
103
+
104
+ ## Disclaimer
105
+
106
+ Not made for generic Prometheus instrumentation in Python. Use the Prometheus
107
+ client library for that. This packages uses it as well.
108
+
109
+ All the generic middleware and instrumentation code comes with a cost in
110
+ performance that can become noticeable.
111
+
112
+ ## Features
113
+
114
+ Beyond the fast track, this instrumentator is **highly configurable** and it is
115
+ very easy to customize and adapt to your specific use case. Here is a list of
116
+ some of these options you may opt-in to:
117
+
118
+ - Regex patterns to ignore certain routes.
119
+ - Completely ignore untemplated routes.
120
+ - Control instrumentation and exposition with an env var.
121
+ - Rounding of latencies to a certain decimal number.
122
+ - Renaming of labels and the metric.
123
+ - Metrics endpoint can compress data with gzip.
124
+ - Opt-in metric to monitor the number of requests in progress.
125
+
126
+ It also features a **modular approach to metrics** that should instrument all
127
+ FastAPI endpoints. You can either choose from a set of already existing metrics
128
+ or create your own. And every metric function by itself can be configured as
129
+ well.
130
+
131
+ ## Advanced Usage
132
+
133
+ This chapter contains an example on the advanced usage of the Prometheus FastAPI
134
+ Instrumentator to showcase most of it's features.
135
+
136
+ ### Creating the Instrumentator
137
+
138
+ We start by creating an instance of the Instrumentator. Notice the additional
139
+ `metrics` import. This will come in handy later.
140
+
141
+ ```python
142
+ from prometheus_fastapi_instrumentator import Instrumentator, metrics
143
+
144
+ instrumentator = Instrumentator(
145
+ should_group_status_codes=False,
146
+ should_ignore_untemplated=True,
147
+ should_respect_env_var=True,
148
+ should_instrument_requests_inprogress=True,
149
+ excluded_handlers=[".*admin.*", "/metrics"],
150
+ env_var_name="ENABLE_METRICS",
151
+ inprogress_name="inprogress",
152
+ inprogress_labels=True,
153
+ )
154
+ ```
155
+
156
+ Unlike in the fast track example, now the instrumentation and exposition will
157
+ only take place if the environment variable `ENABLE_METRICS` is `true` at
158
+ run-time. This can be helpful in larger deployments with multiple services
159
+ depending on the same base FastAPI.
160
+
161
+ ### Adding metrics
162
+
163
+ Let's say we also want to instrument the size of requests and responses. For
164
+ this we use the `add()` method. This method does nothing more than taking a
165
+ function and adding it to a list. Then during run-time every time FastAPI
166
+ handles a request all functions in this list will be called while giving them a
167
+ single argument that stores useful information like the request and response
168
+ objects. If no `add()` at all is used, the default metric gets added in the
169
+ background. This is what happens in the fast track example.
170
+
171
+ All instrumentation functions are stored as closures in the `metrics` module.
172
+
173
+ Closures come in handy here because it allows us to configure the functions
174
+ within.
175
+
176
+ ```python
177
+ instrumentator.add(metrics.latency(buckets=(1, 2, 3,)))
178
+ ```
179
+
180
+ This simply adds the metric you also get in the fast track example with a
181
+ modified buckets argument. But we would also like to record the size of all
182
+ requests and responses.
183
+
184
+ ```python
185
+ instrumentator.add(
186
+ metrics.request_size(
187
+ should_include_handler=True,
188
+ should_include_method=False,
189
+ should_include_status=True,
190
+ metric_namespace="a",
191
+ metric_subsystem="b",
192
+ )
193
+ ).add(
194
+ metrics.response_size(
195
+ should_include_handler=True,
196
+ should_include_method=False,
197
+ should_include_status=True,
198
+ metric_namespace="namespace",
199
+ metric_subsystem="subsystem",
200
+ )
201
+ )
202
+ ```
203
+
204
+ You can add as many metrics you like to the instrumentator.
205
+
206
+ ### Creating new metrics
207
+
208
+ As already mentioned, it is possible to create custom functions to pass on to
209
+ `add()`. This is also how the default metrics are implemented.
210
+
211
+ The basic idea is that the instrumentator creates an `info` object that contains
212
+ everything necessary for instrumentation based on the configuration of the
213
+ instrumentator. This includes the raw request and response objects but also the
214
+ modified handler, grouped status code and duration. Next, all registered
215
+ instrumentation functions are called. They get `info` as their single argument.
216
+
217
+ Let's say we want to count the number of times a certain language has been
218
+ requested.
219
+
220
+ ```python
221
+ from typing import Callable
222
+ from prometheus_fastapi_instrumentator.metrics import Info
223
+ from prometheus_client import Counter
224
+
225
+ def http_requested_languages_total() -> Callable[[Info], None]:
226
+ METRIC = Counter(
227
+ "http_requested_languages_total",
228
+ "Number of times a certain language has been requested.",
229
+ labelnames=("langs",)
230
+ )
231
+
232
+ def instrumentation(info: Info) -> None:
233
+ langs = set()
234
+ lang_str = info.request.headers["Accept-Language"]
235
+ for element in lang_str.split(","):
236
+ element = element.split(";")[0].strip().lower()
237
+ langs.add(element)
238
+ for language in langs:
239
+ METRIC.labels(language).inc()
240
+
241
+ return instrumentation
242
+ ```
243
+
244
+ The function `http_requested_languages_total` is used for persistent elements
245
+ that are stored between all instrumentation executions (for example the metric
246
+ instance itself). Next comes the closure. This function must adhere to the shown
247
+ interface. It will always get an `Info` object that contains the request,
248
+ response and a few other modified informations. For example the (grouped) status
249
+ code or the handler. Finally, the closure is returned.
250
+
251
+ **Important:** The response object inside `info` can either be the response
252
+ object or `None`. In addition, errors thrown in the handler are not caught by
253
+ the instrumentator. I recommend to check the documentation and/or the source
254
+ code before creating your own metrics.
255
+
256
+ To use it, we hand over the closure to the instrumentator object.
257
+
258
+ ```python
259
+ instrumentator.add(http_requested_languages_total())
260
+ ```
261
+
262
+ ### Perform instrumentation
263
+
264
+ Up to this point, the FastAPI has not been touched at all. Everything has been
265
+ stored in the `instrumentator` only. To actually register the instrumentation
266
+ with FastAPI, the `instrument()` method has to be called.
267
+
268
+ ```python
269
+ instrumentator.instrument(app)
270
+ ```
271
+
272
+ Notice that this will do nothing if `should_respect_env_var` has been set during
273
+ construction of the instrumentator object and the respective env var is not
274
+ found.
275
+
276
+ ### Specify namespace and subsystem
277
+
278
+ You can specify the namespace and subsystem of the metrics by passing them in
279
+ the instrument method.
280
+
281
+ ```python
282
+ from prometheus_fastapi_instrumentator import Instrumentator
283
+
284
+ @app.on_event("startup")
285
+ async def startup():
286
+ Instrumentator().instrument(app, metric_namespace='myproject', metric_subsystem='myservice').expose(app)
287
+ ```
288
+
289
+ Then your metrics will contain the namespace and subsystem in the metric name.
290
+
291
+ ```sh
292
+ # TYPE myproject_myservice_http_request_duration_highr_seconds histogram
293
+ myproject_myservice_http_request_duration_highr_seconds_bucket{le="0.01"} 0.0
294
+ ```
295
+
296
+ ### Exposing endpoint
297
+
298
+ To expose an endpoint for the metrics either follow
299
+ [Prometheus Python Client](https://github.com/prometheus/client_python) and add
300
+ the endpoint manually to the FastAPI or serve it on a separate server. You can
301
+ also use the included `expose` method. It will add an endpoint to the given
302
+ FastAPI. With `should_gzip` you can instruct the endpoint to compress the data
303
+ as long as the client accepts gzip encoding. Prometheus for example does by
304
+ default. Beware that network bandwith is often cheaper than CPU cycles.
305
+
306
+ ```python
307
+ instrumentator.expose(app, include_in_schema=False, should_gzip=True)
308
+ ```
309
+
310
+ Notice that this will to nothing if `should_respect_env_var` has been set during
311
+ construction of the instrumentator object and the respective env var is not
312
+ found.
313
+
314
+ ## Contributing
315
+
316
+ Please refer to [`CONTRIBUTING.md`](CONTRIBUTING).
317
+
318
+ Consult [`DEVELOPMENT.md`](DEVELOPMENT.md) for guidance regarding development.
319
+
320
+ Read [`RELEASE.md`](RELEASE.md) for details about the release process.
321
+
322
+ ## Licensing
323
+
324
+ The default license for this project is the
325
+ [ISC License](https://choosealicense.com/licenses/isc). A permissive license
326
+ functionally equivalent to the BSD 2-Clause and MIT licenses, removing some
327
+ language that is no longer necessary. See [`LICENSE`](LICENSE) for the license
328
+ text.
329
+
330
+ The [BSD 3-Clause License](https://choosealicense.com/licenses/bsd-3-clause) is
331
+ used as the license for the
332
+ [`routing`](src/prometheus_fastapi_instrumentator/routing.py) module. This is
333
+ due to it containing code from
334
+ [elastic/apm-agent-python](https://github.com/elastic/apm-agent-python). BSD
335
+ 3-Clause is a permissive license similar to the BSD 2-Clause License, but with a
336
+ 3rd clause that prohibits others from using the name of the copyright holder or
337
+ its contributors to promote derived products without written consent. The
338
+ license text is included in the module itself.
339
+
deepseek/lib/python3.10/site-packages/prometheus_fastapi_instrumentator-7.0.0.dist-info/RECORD ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ prometheus_fastapi_instrumentator-7.0.0.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ prometheus_fastapi_instrumentator-7.0.0.dist-info/LICENSE,sha256=1Bb46zX6e7vYSh8YDT_6oXB-XpP6E2AyHdQtnXY9Cfw,762
3
+ prometheus_fastapi_instrumentator-7.0.0.dist-info/METADATA,sha256=_D1vbKE2TeerP-Nbw4LbehbmEintN5ezG34dJIYfVvw,13110
4
+ prometheus_fastapi_instrumentator-7.0.0.dist-info/RECORD,,
5
+ prometheus_fastapi_instrumentator-7.0.0.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ prometheus_fastapi_instrumentator-7.0.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
7
+ prometheus_fastapi_instrumentator/__init__.py,sha256=ilCcCHTBzi04jKjOR70MkMt2Y9uGNwabCRm3Yi55m6Q,134
8
+ prometheus_fastapi_instrumentator/__pycache__/__init__.cpython-310.pyc,,
9
+ prometheus_fastapi_instrumentator/__pycache__/instrumentation.cpython-310.pyc,,
10
+ prometheus_fastapi_instrumentator/__pycache__/metrics.cpython-310.pyc,,
11
+ prometheus_fastapi_instrumentator/__pycache__/middleware.cpython-310.pyc,,
12
+ prometheus_fastapi_instrumentator/__pycache__/routing.cpython-310.pyc,,
13
+ prometheus_fastapi_instrumentator/instrumentation.py,sha256=ZZlvPfEvIhzi0PVbxEWo3AXjNcZe56EjxkNHYl-422A,13750
14
+ prometheus_fastapi_instrumentator/metrics.py,sha256=z87HnRSO3TpKorElRtO2ceWWELsgNSRO9TA8JDZLHuM,27724
15
+ prometheus_fastapi_instrumentator/middleware.py,sha256=guRv1ptWdDm8Z7GW3p2zaNZc3opFWaB_QRReS-RlBjM,9484
16
+ prometheus_fastapi_instrumentator/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
+ prometheus_fastapi_instrumentator/routing.py,sha256=uQ0I9gHF7IIkVjBmfAy8Ax8A3wOChLTmH0aUXRgshfs,4028
deepseek/lib/python3.10/site-packages/sentencepiece/__pycache__/sentencepiece_model_pb2.cpython-310.pyc ADDED
Binary file (3.74 kB). View file
 
deepseek/lib/python3.10/site-packages/sentencepiece/_version.py ADDED
@@ -0,0 +1 @@
 
 
1
+ __version__ = '0.2.0'
deepseek/lib/python3.10/site-packages/sentencepiece/sentencepiece_model_pb2.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # Generated by the protocol buffer compiler. DO NOT EDIT!
3
+ # source: sentencepiece_model.proto
4
+ """Generated protocol buffer code."""
5
+ from google.protobuf.internal import builder as _builder
6
+ from google.protobuf import descriptor as _descriptor
7
+ from google.protobuf import descriptor_pool as _descriptor_pool
8
+ from google.protobuf import symbol_database as _symbol_database
9
+ # @@protoc_insertion_point(imports)
10
+
11
+ _sym_db = _symbol_database.Default()
12
+
13
+
14
+
15
+
16
+ DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03')
17
+
18
+ _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
19
+ _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', globals())
20
+ if _descriptor._USE_C_DESCRIPTORS == False:
21
+
22
+ DESCRIPTOR._options = None
23
+ DESCRIPTOR._serialized_options = b'H\003'
24
+ _TRAINERSPEC.fields_by_name['mining_sentence_size']._options = None
25
+ _TRAINERSPEC.fields_by_name['mining_sentence_size']._serialized_options = b'\030\001'
26
+ _TRAINERSPEC.fields_by_name['training_sentence_size']._options = None
27
+ _TRAINERSPEC.fields_by_name['training_sentence_size']._serialized_options = b'\030\001'
28
+ _TRAINERSPEC._serialized_start=45
29
+ _TRAINERSPEC._serialized_end=1581
30
+ _TRAINERSPEC_MODELTYPE._serialized_start=1517
31
+ _TRAINERSPEC_MODELTYPE._serialized_end=1570
32
+ _NORMALIZERSPEC._serialized_start=1584
33
+ _NORMALIZERSPEC._serialized_end=1793
34
+ _SELFTESTDATA._serialized_start=1795
35
+ _SELFTESTDATA._serialized_end=1916
36
+ _SELFTESTDATA_SAMPLE._serialized_start=1864
37
+ _SELFTESTDATA_SAMPLE._serialized_end=1905
38
+ _MODELPROTO._serialized_start=1919
39
+ _MODELPROTO._serialized_end=2429
40
+ _MODELPROTO_SENTENCEPIECE._serialized_start=2208
41
+ _MODELPROTO_SENTENCEPIECE._serialized_end=2418
42
+ _MODELPROTO_SENTENCEPIECE_TYPE._serialized_start=2323
43
+ _MODELPROTO_SENTENCEPIECE_TYPE._serialized_end=2407
44
+ # @@protoc_insertion_point(module_scope)
deepseek/lib/python3.10/site-packages/torch-2.5.1.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
deepseek/lib/python3.10/site-packages/torch-2.5.1.dist-info/METADATA ADDED
@@ -0,0 +1,557 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: torch
3
+ Version: 2.5.1
4
+ Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration
5
+ Home-page: https://pytorch.org/
6
+ Download-URL: https://github.com/pytorch/pytorch/tags
7
+ Author: PyTorch Team
8
+ Author-email: packages@pytorch.org
9
+ License: BSD-3-Clause
10
+ Keywords: pytorch,machine learning
11
+ Classifier: Development Status :: 5 - Production/Stable
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: Intended Audience :: Education
14
+ Classifier: Intended Audience :: Science/Research
15
+ Classifier: License :: OSI Approved :: BSD License
16
+ Classifier: Topic :: Scientific/Engineering
17
+ Classifier: Topic :: Scientific/Engineering :: Mathematics
18
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
19
+ Classifier: Topic :: Software Development
20
+ Classifier: Topic :: Software Development :: Libraries
21
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
22
+ Classifier: Programming Language :: C++
23
+ Classifier: Programming Language :: Python :: 3
24
+ Classifier: Programming Language :: Python :: 3.8
25
+ Classifier: Programming Language :: Python :: 3.9
26
+ Classifier: Programming Language :: Python :: 3.10
27
+ Classifier: Programming Language :: Python :: 3.11
28
+ Classifier: Programming Language :: Python :: 3.12
29
+ Requires-Python: >=3.8.0
30
+ Description-Content-Type: text/markdown
31
+ License-File: LICENSE
32
+ License-File: NOTICE
33
+ Requires-Dist: filelock
34
+ Requires-Dist: typing-extensions (>=4.8.0)
35
+ Requires-Dist: networkx
36
+ Requires-Dist: jinja2
37
+ Requires-Dist: fsspec
38
+ Requires-Dist: nvidia-cuda-nvrtc-cu12 (==12.4.127) ; platform_system == "Linux" and platform_machine == "x86_64"
39
+ Requires-Dist: nvidia-cuda-runtime-cu12 (==12.4.127) ; platform_system == "Linux" and platform_machine == "x86_64"
40
+ Requires-Dist: nvidia-cuda-cupti-cu12 (==12.4.127) ; platform_system == "Linux" and platform_machine == "x86_64"
41
+ Requires-Dist: nvidia-cudnn-cu12 (==9.1.0.70) ; platform_system == "Linux" and platform_machine == "x86_64"
42
+ Requires-Dist: nvidia-cublas-cu12 (==12.4.5.8) ; platform_system == "Linux" and platform_machine == "x86_64"
43
+ Requires-Dist: nvidia-cufft-cu12 (==11.2.1.3) ; platform_system == "Linux" and platform_machine == "x86_64"
44
+ Requires-Dist: nvidia-curand-cu12 (==10.3.5.147) ; platform_system == "Linux" and platform_machine == "x86_64"
45
+ Requires-Dist: nvidia-cusolver-cu12 (==11.6.1.9) ; platform_system == "Linux" and platform_machine == "x86_64"
46
+ Requires-Dist: nvidia-cusparse-cu12 (==12.3.1.170) ; platform_system == "Linux" and platform_machine == "x86_64"
47
+ Requires-Dist: nvidia-nccl-cu12 (==2.21.5) ; platform_system == "Linux" and platform_machine == "x86_64"
48
+ Requires-Dist: nvidia-nvtx-cu12 (==12.4.127) ; platform_system == "Linux" and platform_machine == "x86_64"
49
+ Requires-Dist: nvidia-nvjitlink-cu12 (==12.4.127) ; platform_system == "Linux" and platform_machine == "x86_64"
50
+ Requires-Dist: triton (==3.1.0) ; platform_system == "Linux" and platform_machine == "x86_64" and python_version < "3.13"
51
+ Requires-Dist: sympy (==1.12.1) ; python_version == "3.8"
52
+ Requires-Dist: setuptools ; python_version >= "3.12"
53
+ Requires-Dist: sympy (==1.13.1) ; python_version >= "3.9"
54
+ Provides-Extra: opt-einsum
55
+ Requires-Dist: opt-einsum (>=3.3) ; extra == 'opt-einsum'
56
+ Provides-Extra: optree
57
+ Requires-Dist: optree (>=0.12.0) ; extra == 'optree'
58
+
59
+ ![PyTorch Logo](https://github.com/pytorch/pytorch/raw/main/docs/source/_static/img/pytorch-logo-dark.png)
60
+
61
+ --------------------------------------------------------------------------------
62
+
63
+ PyTorch is a Python package that provides two high-level features:
64
+ - Tensor computation (like NumPy) with strong GPU acceleration
65
+ - Deep neural networks built on a tape-based autograd system
66
+
67
+ You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.
68
+
69
+ Our trunk health (Continuous Integration signals) can be found at [hud.pytorch.org](https://hud.pytorch.org/ci/pytorch/pytorch/main).
70
+
71
+ <!-- toc -->
72
+
73
+ - [More About PyTorch](#more-about-pytorch)
74
+ - [A GPU-Ready Tensor Library](#a-gpu-ready-tensor-library)
75
+ - [Dynamic Neural Networks: Tape-Based Autograd](#dynamic-neural-networks-tape-based-autograd)
76
+ - [Python First](#python-first)
77
+ - [Imperative Experiences](#imperative-experiences)
78
+ - [Fast and Lean](#fast-and-lean)
79
+ - [Extensions Without Pain](#extensions-without-pain)
80
+ - [Installation](#installation)
81
+ - [Binaries](#binaries)
82
+ - [NVIDIA Jetson Platforms](#nvidia-jetson-platforms)
83
+ - [From Source](#from-source)
84
+ - [Prerequisites](#prerequisites)
85
+ - [NVIDIA CUDA Support](#nvidia-cuda-support)
86
+ - [AMD ROCm Support](#amd-rocm-support)
87
+ - [Intel GPU Support](#intel-gpu-support)
88
+ - [Get the PyTorch Source](#get-the-pytorch-source)
89
+ - [Install Dependencies](#install-dependencies)
90
+ - [Install PyTorch](#install-pytorch)
91
+ - [Adjust Build Options (Optional)](#adjust-build-options-optional)
92
+ - [Docker Image](#docker-image)
93
+ - [Using pre-built images](#using-pre-built-images)
94
+ - [Building the image yourself](#building-the-image-yourself)
95
+ - [Building the Documentation](#building-the-documentation)
96
+ - [Previous Versions](#previous-versions)
97
+ - [Getting Started](#getting-started)
98
+ - [Resources](#resources)
99
+ - [Communication](#communication)
100
+ - [Releases and Contributing](#releases-and-contributing)
101
+ - [The Team](#the-team)
102
+ - [License](#license)
103
+
104
+ <!-- tocstop -->
105
+
106
+ ## More About PyTorch
107
+
108
+ [Learn the basics of PyTorch](https://pytorch.org/tutorials/beginner/basics/intro.html)
109
+
110
+ At a granular level, PyTorch is a library that consists of the following components:
111
+
112
+ | Component | Description |
113
+ | ---- | --- |
114
+ | [**torch**](https://pytorch.org/docs/stable/torch.html) | A Tensor library like NumPy, with strong GPU support |
115
+ | [**torch.autograd**](https://pytorch.org/docs/stable/autograd.html) | A tape-based automatic differentiation library that supports all differentiable Tensor operations in torch |
116
+ | [**torch.jit**](https://pytorch.org/docs/stable/jit.html) | A compilation stack (TorchScript) to create serializable and optimizable models from PyTorch code |
117
+ | [**torch.nn**](https://pytorch.org/docs/stable/nn.html) | A neural networks library deeply integrated with autograd designed for maximum flexibility |
118
+ | [**torch.multiprocessing**](https://pytorch.org/docs/stable/multiprocessing.html) | Python multiprocessing, but with magical memory sharing of torch Tensors across processes. Useful for data loading and Hogwild training |
119
+ | [**torch.utils**](https://pytorch.org/docs/stable/data.html) | DataLoader and other utility functions for convenience |
120
+
121
+ Usually, PyTorch is used either as:
122
+
123
+ - A replacement for NumPy to use the power of GPUs.
124
+ - A deep learning research platform that provides maximum flexibility and speed.
125
+
126
+ Elaborating Further:
127
+
128
+ ### A GPU-Ready Tensor Library
129
+
130
+ If you use NumPy, then you have used Tensors (a.k.a. ndarray).
131
+
132
+ ![Tensor illustration](./docs/source/_static/img/tensor_illustration.png)
133
+
134
+ PyTorch provides Tensors that can live either on the CPU or the GPU and accelerates the
135
+ computation by a huge amount.
136
+
137
+ We provide a wide variety of tensor routines to accelerate and fit your scientific computation needs
138
+ such as slicing, indexing, mathematical operations, linear algebra, reductions.
139
+ And they are fast!
140
+
141
+ ### Dynamic Neural Networks: Tape-Based Autograd
142
+
143
+ PyTorch has a unique way of building neural networks: using and replaying a tape recorder.
144
+
145
+ Most frameworks such as TensorFlow, Theano, Caffe, and CNTK have a static view of the world.
146
+ One has to build a neural network and reuse the same structure again and again.
147
+ Changing the way the network behaves means that one has to start from scratch.
148
+
149
+ With PyTorch, we use a technique called reverse-mode auto-differentiation, which allows you to
150
+ change the way your network behaves arbitrarily with zero lag or overhead. Our inspiration comes
151
+ from several research papers on this topic, as well as current and past work such as
152
+ [torch-autograd](https://github.com/twitter/torch-autograd),
153
+ [autograd](https://github.com/HIPS/autograd),
154
+ [Chainer](https://chainer.org), etc.
155
+
156
+ While this technique is not unique to PyTorch, it's one of the fastest implementations of it to date.
157
+ You get the best of speed and flexibility for your crazy research.
158
+
159
+ ![Dynamic graph](https://github.com/pytorch/pytorch/raw/main/docs/source/_static/img/dynamic_graph.gif)
160
+
161
+ ### Python First
162
+
163
+ PyTorch is not a Python binding into a monolithic C++ framework.
164
+ It is built to be deeply integrated into Python.
165
+ You can use it naturally like you would use [NumPy](https://www.numpy.org/) / [SciPy](https://www.scipy.org/) / [scikit-learn](https://scikit-learn.org) etc.
166
+ You can write your new neural network layers in Python itself, using your favorite libraries
167
+ and use packages such as [Cython](https://cython.org/) and [Numba](http://numba.pydata.org/).
168
+ Our goal is to not reinvent the wheel where appropriate.
169
+
170
+ ### Imperative Experiences
171
+
172
+ PyTorch is designed to be intuitive, linear in thought, and easy to use.
173
+ When you execute a line of code, it gets executed. There isn't an asynchronous view of the world.
174
+ When you drop into a debugger or receive error messages and stack traces, understanding them is straightforward.
175
+ The stack trace points to exactly where your code was defined.
176
+ We hope you never spend hours debugging your code because of bad stack traces or asynchronous and opaque execution engines.
177
+
178
+ ### Fast and Lean
179
+
180
+ PyTorch has minimal framework overhead. We integrate acceleration libraries
181
+ such as [Intel MKL](https://software.intel.com/mkl) and NVIDIA ([cuDNN](https://developer.nvidia.com/cudnn), [NCCL](https://developer.nvidia.com/nccl)) to maximize speed.
182
+ At the core, its CPU and GPU Tensor and neural network backends
183
+ are mature and have been tested for years.
184
+
185
+ Hence, PyTorch is quite fast — whether you run small or large neural networks.
186
+
187
+ The memory usage in PyTorch is extremely efficient compared to Torch or some of the alternatives.
188
+ We've written custom memory allocators for the GPU to make sure that
189
+ your deep learning models are maximally memory efficient.
190
+ This enables you to train bigger deep learning models than before.
191
+
192
+ ### Extensions Without Pain
193
+
194
+ Writing new neural network modules, or interfacing with PyTorch's Tensor API was designed to be straightforward
195
+ and with minimal abstractions.
196
+
197
+ You can write new neural network layers in Python using the torch API
198
+ [or your favorite NumPy-based libraries such as SciPy](https://pytorch.org/tutorials/advanced/numpy_extensions_tutorial.html).
199
+
200
+ If you want to write your layers in C/C++, we provide a convenient extension API that is efficient and with minimal boilerplate.
201
+ No wrapper code needs to be written. You can see [a tutorial here](https://pytorch.org/tutorials/advanced/cpp_extension.html) and [an example here](https://github.com/pytorch/extension-cpp).
202
+
203
+
204
+ ## Installation
205
+
206
+ ### Binaries
207
+ Commands to install binaries via Conda or pip wheels are on our website: [https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/)
208
+
209
+
210
+ #### NVIDIA Jetson Platforms
211
+
212
+ Python wheels for NVIDIA's Jetson Nano, Jetson TX1/TX2, Jetson Xavier NX/AGX, and Jetson AGX Orin are provided [here](https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-10-now-available/72048) and the L4T container is published [here](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-pytorch)
213
+
214
+ They require JetPack 4.2 and above, and [@dusty-nv](https://github.com/dusty-nv) and [@ptrblck](https://github.com/ptrblck) are maintaining them.
215
+
216
+
217
+ ### From Source
218
+
219
+ #### Prerequisites
220
+ If you are installing from source, you will need:
221
+ - Python 3.8 or later (for Linux, Python 3.8.1+ is needed)
222
+ - A compiler that fully supports C++17, such as clang or gcc (gcc 9.4.0 or newer is required, on Linux)
223
+ - Visual Studio or Visual Studio Build Tool on Windows
224
+
225
+ \* PyTorch CI uses Visual C++ BuildTools, which come with Visual Studio Enterprise,
226
+ Professional, or Community Editions. You can also install the build tools from
227
+ https://visualstudio.microsoft.com/visual-cpp-build-tools/. The build tools *do not*
228
+ come with Visual Studio Code by default.
229
+
230
+ \* We highly recommend installing an [Anaconda](https://www.anaconda.com/download) environment. You will get a high-quality BLAS library (MKL) and you get controlled dependency versions regardless of your Linux distro.
231
+
232
+ An example of environment setup is shown below:
233
+
234
+ * Linux:
235
+
236
+ ```bash
237
+ $ source <CONDA_INSTALL_DIR>/bin/activate
238
+ $ conda create -y -n <CONDA_NAME>
239
+ $ conda activate <CONDA_NAME>
240
+ ```
241
+
242
+ * Windows:
243
+
244
+ ```bash
245
+ $ source <CONDA_INSTALL_DIR>\Scripts\activate.bat
246
+ $ conda create -y -n <CONDA_NAME>
247
+ $ conda activate <CONDA_NAME>
248
+ $ call "C:\Program Files\Microsoft Visual Studio\<VERSION>\Community\VC\Auxiliary\Build\vcvarsall.bat" x64
249
+ ```
250
+
251
+ ##### NVIDIA CUDA Support
252
+ If you want to compile with CUDA support, [select a supported version of CUDA from our support matrix](https://pytorch.org/get-started/locally/), then install the following:
253
+ - [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
254
+ - [NVIDIA cuDNN](https://developer.nvidia.com/cudnn) v8.5 or above
255
+ - [Compiler](https://gist.github.com/ax3l/9489132) compatible with CUDA
256
+
257
+ Note: You could refer to the [cuDNN Support Matrix](https://docs.nvidia.com/deeplearning/cudnn/reference/support-matrix.html) for cuDNN versions with the various supported CUDA, CUDA driver and NVIDIA hardware
258
+
259
+ If you want to disable CUDA support, export the environment variable `USE_CUDA=0`.
260
+ Other potentially useful environment variables may be found in `setup.py`.
261
+
262
+ If you are building for NVIDIA's Jetson platforms (Jetson Nano, TX1, TX2, AGX Xavier), Instructions to install PyTorch for Jetson Nano are [available here](https://devtalk.nvidia.com/default/topic/1049071/jetson-nano/pytorch-for-jetson-nano/)
263
+
264
+ ##### AMD ROCm Support
265
+ If you want to compile with ROCm support, install
266
+ - [AMD ROCm](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html) 4.0 and above installation
267
+ - ROCm is currently supported only for Linux systems.
268
+
269
+ If you want to disable ROCm support, export the environment variable `USE_ROCM=0`.
270
+ Other potentially useful environment variables may be found in `setup.py`.
271
+
272
+ ##### Intel GPU Support
273
+ If you want to compile with Intel GPU support, follow these
274
+ - [PyTorch Prerequisites for Intel GPUs](https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpus.html) instructions.
275
+ - Intel GPU is supported for Linux and Windows.
276
+
277
+ If you want to disable Intel GPU support, export the environment variable `USE_XPU=0`.
278
+ Other potentially useful environment variables may be found in `setup.py`.
279
+
280
+ #### Get the PyTorch Source
281
+ ```bash
282
+ git clone --recursive https://github.com/pytorch/pytorch
283
+ cd pytorch
284
+ # if you are updating an existing checkout
285
+ git submodule sync
286
+ git submodule update --init --recursive
287
+ ```
288
+
289
+ #### Install Dependencies
290
+
291
+ **Common**
292
+
293
+ ```bash
294
+ conda install cmake ninja
295
+ # Run this command on native Windows
296
+ conda install rust
297
+ # Run this command from the PyTorch directory after cloning the source code using the “Get the PyTorch Source“ section below
298
+ pip install -r requirements.txt
299
+ ```
300
+
301
+ **On Linux**
302
+
303
+ ```bash
304
+ pip install mkl-static mkl-include
305
+ # CUDA only: Add LAPACK support for the GPU if needed
306
+ conda install -c pytorch magma-cuda121 # or the magma-cuda* that matches your CUDA version from https://anaconda.org/pytorch/repo
307
+
308
+ # (optional) If using torch.compile with inductor/triton, install the matching version of triton
309
+ # Run from the pytorch directory after cloning
310
+ # For Intel GPU support, please explicitly `export USE_XPU=1` before running command.
311
+ make triton
312
+ ```
313
+
314
+ **On MacOS**
315
+
316
+ ```bash
317
+ # Add this package on intel x86 processor machines only
318
+ pip install mkl-static mkl-include
319
+ # Add these packages if torch.distributed is needed
320
+ conda install pkg-config libuv
321
+ ```
322
+
323
+ **On Windows**
324
+
325
+ ```bash
326
+ pip install mkl-static mkl-include
327
+ # Add these packages if torch.distributed is needed.
328
+ # Distributed package support on Windows is a prototype feature and is subject to changes.
329
+ conda install -c conda-forge libuv=1.39
330
+ ```
331
+
332
+ #### Install PyTorch
333
+ **On Linux**
334
+
335
+ If you would like to compile PyTorch with [new C++ ABI](https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html) enabled, then first run this command:
336
+ ```bash
337
+ export _GLIBCXX_USE_CXX11_ABI=1
338
+ ```
339
+
340
+ Please **note** that starting from PyTorch 2.5, the PyTorch build with XPU supports both new and old C++ ABIs. Previously, XPU only supported the new C++ ABI. If you want to compile with Intel GPU support, please follow [Intel GPU Support](#intel-gpu-support).
341
+
342
+ If you're compiling for AMD ROCm then first run this command:
343
+ ```bash
344
+ # Only run this if you're compiling for ROCm
345
+ python tools/amd_build/build_amd.py
346
+ ```
347
+
348
+ Install PyTorch
349
+ ```bash
350
+ export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
351
+ python setup.py develop
352
+ ```
353
+
354
+ > _Aside:_ If you are using [Anaconda](https://www.anaconda.com/distribution/#download-section), you may experience an error caused by the linker:
355
+ >
356
+ > ```plaintext
357
+ > build/temp.linux-x86_64-3.7/torch/csrc/stub.o: file not recognized: file format not recognized
358
+ > collect2: error: ld returned 1 exit status
359
+ > error: command 'g++' failed with exit status 1
360
+ > ```
361
+ >
362
+ > This is caused by `ld` from the Conda environment shadowing the system `ld`. You should use a newer version of Python that fixes this issue. The recommended Python version is 3.8.1+.
363
+
364
+ **On macOS**
365
+
366
+ ```bash
367
+ python3 setup.py develop
368
+ ```
369
+
370
+ **On Windows**
371
+
372
+ If you want to build legacy python code, please refer to [Building on legacy code and CUDA](https://github.com/pytorch/pytorch/blob/main/CONTRIBUTING.md#building-on-legacy-code-and-cuda)
373
+
374
+ **CPU-only builds**
375
+
376
+ In this mode PyTorch computations will run on your CPU, not your GPU
377
+
378
+ ```cmd
379
+ python setup.py develop
380
+ ```
381
+
382
+ Note on OpenMP: The desired OpenMP implementation is Intel OpenMP (iomp). In order to link against iomp, you'll need to manually download the library and set up the building environment by tweaking `CMAKE_INCLUDE_PATH` and `LIB`. The instruction [here](https://github.com/pytorch/pytorch/blob/main/docs/source/notes/windows.rst#building-from-source) is an example for setting up both MKL and Intel OpenMP. Without these configurations for CMake, Microsoft Visual C OpenMP runtime (vcomp) will be used.
383
+
384
+ **CUDA based build**
385
+
386
+ In this mode PyTorch computations will leverage your GPU via CUDA for faster number crunching
387
+
388
+ [NVTX](https://docs.nvidia.com/gameworks/content/gameworkslibrary/nvtx/nvidia_tools_extension_library_nvtx.htm) is needed to build Pytorch with CUDA.
389
+ NVTX is a part of CUDA distributive, where it is called "Nsight Compute". To install it onto an already installed CUDA run CUDA installation once again and check the corresponding checkbox.
390
+ Make sure that CUDA with Nsight Compute is installed after Visual Studio.
391
+
392
+ Currently, VS 2017 / 2019, and Ninja are supported as the generator of CMake. If `ninja.exe` is detected in `PATH`, then Ninja will be used as the default generator, otherwise, it will use VS 2017 / 2019.
393
+ <br/> If Ninja is selected as the generator, the latest MSVC will get selected as the underlying toolchain.
394
+
395
+ Additional libraries such as
396
+ [Magma](https://developer.nvidia.com/magma), [oneDNN, a.k.a. MKLDNN or DNNL](https://github.com/oneapi-src/oneDNN), and [Sccache](https://github.com/mozilla/sccache) are often needed. Please refer to the [installation-helper](https://github.com/pytorch/pytorch/tree/main/.ci/pytorch/win-test-helpers/installation-helpers) to install them.
397
+
398
+ You can refer to the [build_pytorch.bat](https://github.com/pytorch/pytorch/blob/main/.ci/pytorch/win-test-helpers/build_pytorch.bat) script for some other environment variables configurations
399
+
400
+
401
+ ```cmd
402
+ cmd
403
+
404
+ :: Set the environment variables after you have downloaded and unzipped the mkl package,
405
+ :: else CMake would throw an error as `Could NOT find OpenMP`.
406
+ set CMAKE_INCLUDE_PATH={Your directory}\mkl\include
407
+ set LIB={Your directory}\mkl\lib;%LIB%
408
+
409
+ :: Read the content in the previous section carefully before you proceed.
410
+ :: [Optional] If you want to override the underlying toolset used by Ninja and Visual Studio with CUDA, please run the following script block.
411
+ :: "Visual Studio 2019 Developer Command Prompt" will be run automatically.
412
+ :: Make sure you have CMake >= 3.12 before you do this when you use the Visual Studio generator.
413
+ set CMAKE_GENERATOR_TOOLSET_VERSION=14.27
414
+ set DISTUTILS_USE_SDK=1
415
+ for /f "usebackq tokens=*" %i in (`"%ProgramFiles(x86)%\Microsoft Visual Studio\Installer\vswhere.exe" -version [15^,17^) -products * -latest -property installationPath`) do call "%i\VC\Auxiliary\Build\vcvarsall.bat" x64 -vcvars_ver=%CMAKE_GENERATOR_TOOLSET_VERSION%
416
+
417
+ :: [Optional] If you want to override the CUDA host compiler
418
+ set CUDAHOSTCXX=C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\HostX64\x64\cl.exe
419
+
420
+ python setup.py develop
421
+
422
+ ```
423
+
424
+ ##### Adjust Build Options (Optional)
425
+
426
+ You can adjust the configuration of cmake variables optionally (without building first), by doing
427
+ the following. For example, adjusting the pre-detected directories for CuDNN or BLAS can be done
428
+ with such a step.
429
+
430
+ On Linux
431
+ ```bash
432
+ export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
433
+ python setup.py build --cmake-only
434
+ ccmake build # or cmake-gui build
435
+ ```
436
+
437
+ On macOS
438
+ ```bash
439
+ export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
440
+ MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build --cmake-only
441
+ ccmake build # or cmake-gui build
442
+ ```
443
+
444
+ ### Docker Image
445
+
446
+ #### Using pre-built images
447
+
448
+ You can also pull a pre-built docker image from Docker Hub and run with docker v19.03+
449
+
450
+ ```bash
451
+ docker run --gpus all --rm -ti --ipc=host pytorch/pytorch:latest
452
+ ```
453
+
454
+ Please note that PyTorch uses shared memory to share data between processes, so if torch multiprocessing is used (e.g.
455
+ for multithreaded data loaders) the default shared memory segment size that container runs with is not enough, and you
456
+ should increase shared memory size either with `--ipc=host` or `--shm-size` command line options to `nvidia-docker run`.
457
+
458
+ #### Building the image yourself
459
+
460
+ **NOTE:** Must be built with a docker version > 18.06
461
+
462
+ The `Dockerfile` is supplied to build images with CUDA 11.1 support and cuDNN v8.
463
+ You can pass `PYTHON_VERSION=x.y` make variable to specify which Python version is to be used by Miniconda, or leave it
464
+ unset to use the default.
465
+
466
+ ```bash
467
+ make -f docker.Makefile
468
+ # images are tagged as docker.io/${your_docker_username}/pytorch
469
+ ```
470
+
471
+ You can also pass the `CMAKE_VARS="..."` environment variable to specify additional CMake variables to be passed to CMake during the build.
472
+ See [setup.py](./setup.py) for the list of available variables.
473
+
474
+ ```bash
475
+ make -f docker.Makefile
476
+ ```
477
+
478
+ ### Building the Documentation
479
+
480
+ To build documentation in various formats, you will need [Sphinx](http://www.sphinx-doc.org) and the
481
+ readthedocs theme.
482
+
483
+ ```bash
484
+ cd docs/
485
+ pip install -r requirements.txt
486
+ ```
487
+ You can then build the documentation by running `make <format>` from the
488
+ `docs/` folder. Run `make` to get a list of all available output formats.
489
+
490
+ If you get a katex error run `npm install katex`. If it persists, try
491
+ `npm install -g katex`
492
+
493
+ > Note: if you installed `nodejs` with a different package manager (e.g.,
494
+ `conda`) then `npm` will probably install a version of `katex` that is not
495
+ compatible with your version of `nodejs` and doc builds will fail.
496
+ A combination of versions that is known to work is `node@6.13.1` and
497
+ `katex@0.13.18`. To install the latter with `npm` you can run
498
+ ```npm install -g katex@0.13.18```
499
+
500
+ ### Previous Versions
501
+
502
+ Installation instructions and binaries for previous PyTorch versions may be found
503
+ on [our website](https://pytorch.org/previous-versions).
504
+
505
+
506
+ ## Getting Started
507
+
508
+ Three-pointers to get you started:
509
+ - [Tutorials: get you started with understanding and using PyTorch](https://pytorch.org/tutorials/)
510
+ - [Examples: easy to understand PyTorch code across all domains](https://github.com/pytorch/examples)
511
+ - [The API Reference](https://pytorch.org/docs/)
512
+ - [Glossary](https://github.com/pytorch/pytorch/blob/main/GLOSSARY.md)
513
+
514
+ ## Resources
515
+
516
+ * [PyTorch.org](https://pytorch.org/)
517
+ * [PyTorch Tutorials](https://pytorch.org/tutorials/)
518
+ * [PyTorch Examples](https://github.com/pytorch/examples)
519
+ * [PyTorch Models](https://pytorch.org/hub/)
520
+ * [Intro to Deep Learning with PyTorch from Udacity](https://www.udacity.com/course/deep-learning-pytorch--ud188)
521
+ * [Intro to Machine Learning with PyTorch from Udacity](https://www.udacity.com/course/intro-to-machine-learning-nanodegree--nd229)
522
+ * [Deep Neural Networks with PyTorch from Coursera](https://www.coursera.org/learn/deep-neural-networks-with-pytorch)
523
+ * [PyTorch Twitter](https://twitter.com/PyTorch)
524
+ * [PyTorch Blog](https://pytorch.org/blog/)
525
+ * [PyTorch YouTube](https://www.youtube.com/channel/UCWXI5YeOsh03QvJ59PMaXFw)
526
+
527
+ ## Communication
528
+ * Forums: Discuss implementations, research, etc. https://discuss.pytorch.org
529
+ * GitHub Issues: Bug reports, feature requests, install issues, RFCs, thoughts, etc.
530
+ * Slack: The [PyTorch Slack](https://pytorch.slack.com/) hosts a primary audience of moderate to experienced PyTorch users and developers for general chat, online discussions, collaboration, etc. If you are a beginner looking for help, the primary medium is [PyTorch Forums](https://discuss.pytorch.org). If you need a slack invite, please fill this form: https://goo.gl/forms/PP1AGvNHpSaJP8to1
531
+ * Newsletter: No-noise, a one-way email newsletter with important announcements about PyTorch. You can sign-up here: https://eepurl.com/cbG0rv
532
+ * Facebook Page: Important announcements about PyTorch. https://www.facebook.com/pytorch
533
+ * For brand guidelines, please visit our website at [pytorch.org](https://pytorch.org/)
534
+
535
+ ## Releases and Contributing
536
+
537
+ Typically, PyTorch has three minor releases a year. Please let us know if you encounter a bug by [filing an issue](https://github.com/pytorch/pytorch/issues).
538
+
539
+ We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion.
540
+
541
+ If you plan to contribute new features, utility functions, or extensions to the core, please first open an issue and discuss the feature with us.
542
+ Sending a PR without discussion might end up resulting in a rejected PR because we might be taking the core in a different direction than you might be aware of.
543
+
544
+ To learn more about making a contribution to Pytorch, please see our [Contribution page](CONTRIBUTING.md). For more information about PyTorch releases, see [Release page](RELEASE.md).
545
+
546
+ ## The Team
547
+
548
+ PyTorch is a community-driven project with several skillful engineers and researchers contributing to it.
549
+
550
+ PyTorch is currently maintained by [Soumith Chintala](http://soumith.ch), [Gregory Chanan](https://github.com/gchanan), [Dmytro Dzhulgakov](https://github.com/dzhulgakov), [Edward Yang](https://github.com/ezyang), and [Nikita Shulga](https://github.com/malfet) with major contributions coming from hundreds of talented individuals in various forms and means.
551
+ A non-exhaustive but growing list needs to mention: [Trevor Killeen](https://github.com/killeent), [Sasank Chilamkurthy](https://github.com/chsasank), [Sergey Zagoruyko](https://github.com/szagoruyko), [Adam Lerer](https://github.com/adamlerer), [Francisco Massa](https://github.com/fmassa), [Alykhan Tejani](https://github.com/alykhantejani), [Luca Antiga](https://github.com/lantiga), [Alban Desmaison](https://github.com/albanD), [Andreas Koepf](https://github.com/andreaskoepf), [James Bradbury](https://github.com/jamesb93), [Zeming Lin](https://github.com/ebetica), [Yuandong Tian](https://github.com/yuandong-tian), [Guillaume Lample](https://github.com/glample), [Marat Dukhan](https://github.com/Maratyszcza), [Natalia Gimelshein](https://github.com/ngimel), [Christian Sarofeen](https://github.com/csarofeen), [Martin Raison](https://github.com/martinraison), [Edward Yang](https://github.com/ezyang), [Zachary Devito](https://github.com/zdevito).
552
+
553
+ Note: This project is unrelated to [hughperkins/pytorch](https://github.com/hughperkins/pytorch) with the same name. Hugh is a valuable contributor to the Torch community and has helped with many things Torch and PyTorch.
554
+
555
+ ## License
556
+
557
+ PyTorch has a BSD-style license, as found in the [LICENSE](LICENSE) file.
deepseek/lib/python3.10/site-packages/torch-2.5.1.dist-info/RECORD ADDED
The diff for this file is too large to render. See raw diff
 
deepseek/lib/python3.10/site-packages/torch-2.5.1.dist-info/top_level.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ functorch
2
+ torch
3
+ torchgen
deepseek/lib/python3.10/site-packages/typing_extensions.py ADDED
The diff for this file is too large to render. See raw diff
 
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_basinhopping.py ADDED
@@ -0,0 +1,753 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ basinhopping: The basinhopping global optimization algorithm
3
+ """
4
+ import numpy as np
5
+ import math
6
+ import inspect
7
+ import scipy.optimize
8
+ from scipy._lib._util import check_random_state
9
+
10
+ __all__ = ['basinhopping']
11
+
12
+
13
+ _params = (inspect.Parameter('res_new', kind=inspect.Parameter.KEYWORD_ONLY),
14
+ inspect.Parameter('res_old', kind=inspect.Parameter.KEYWORD_ONLY))
15
+ _new_accept_test_signature = inspect.Signature(parameters=_params)
16
+
17
+
18
+ class Storage:
19
+ """
20
+ Class used to store the lowest energy structure
21
+ """
22
+ def __init__(self, minres):
23
+ self._add(minres)
24
+
25
+ def _add(self, minres):
26
+ self.minres = minres
27
+ self.minres.x = np.copy(minres.x)
28
+
29
+ def update(self, minres):
30
+ if minres.success and (minres.fun < self.minres.fun
31
+ or not self.minres.success):
32
+ self._add(minres)
33
+ return True
34
+ else:
35
+ return False
36
+
37
+ def get_lowest(self):
38
+ return self.minres
39
+
40
+
41
+ class BasinHoppingRunner:
42
+ """This class implements the core of the basinhopping algorithm.
43
+
44
+ x0 : ndarray
45
+ The starting coordinates.
46
+ minimizer : callable
47
+ The local minimizer, with signature ``result = minimizer(x)``.
48
+ The return value is an `optimize.OptimizeResult` object.
49
+ step_taking : callable
50
+ This function displaces the coordinates randomly. Signature should
51
+ be ``x_new = step_taking(x)``. Note that `x` may be modified in-place.
52
+ accept_tests : list of callables
53
+ Each test is passed the kwargs `f_new`, `x_new`, `f_old` and
54
+ `x_old`. These tests will be used to judge whether or not to accept
55
+ the step. The acceptable return values are True, False, or ``"force
56
+ accept"``. If any of the tests return False then the step is rejected.
57
+ If ``"force accept"``, then this will override any other tests in
58
+ order to accept the step. This can be used, for example, to forcefully
59
+ escape from a local minimum that ``basinhopping`` is trapped in.
60
+ disp : bool, optional
61
+ Display status messages.
62
+
63
+ """
64
+ def __init__(self, x0, minimizer, step_taking, accept_tests, disp=False):
65
+ self.x = np.copy(x0)
66
+ self.minimizer = minimizer
67
+ self.step_taking = step_taking
68
+ self.accept_tests = accept_tests
69
+ self.disp = disp
70
+
71
+ self.nstep = 0
72
+
73
+ # initialize return object
74
+ self.res = scipy.optimize.OptimizeResult()
75
+ self.res.minimization_failures = 0
76
+
77
+ # do initial minimization
78
+ minres = minimizer(self.x)
79
+ if not minres.success:
80
+ self.res.minimization_failures += 1
81
+ if self.disp:
82
+ print("warning: basinhopping: local minimization failure")
83
+ self.x = np.copy(minres.x)
84
+ self.energy = minres.fun
85
+ self.incumbent_minres = minres # best minimize result found so far
86
+ if self.disp:
87
+ print("basinhopping step %d: f %g" % (self.nstep, self.energy))
88
+
89
+ # initialize storage class
90
+ self.storage = Storage(minres)
91
+
92
+ if hasattr(minres, "nfev"):
93
+ self.res.nfev = minres.nfev
94
+ if hasattr(minres, "njev"):
95
+ self.res.njev = minres.njev
96
+ if hasattr(minres, "nhev"):
97
+ self.res.nhev = minres.nhev
98
+
99
+ def _monte_carlo_step(self):
100
+ """Do one Monte Carlo iteration
101
+
102
+ Randomly displace the coordinates, minimize, and decide whether
103
+ or not to accept the new coordinates.
104
+ """
105
+ # Take a random step. Make a copy of x because the step_taking
106
+ # algorithm might change x in place
107
+ x_after_step = np.copy(self.x)
108
+ x_after_step = self.step_taking(x_after_step)
109
+
110
+ # do a local minimization
111
+ minres = self.minimizer(x_after_step)
112
+ x_after_quench = minres.x
113
+ energy_after_quench = minres.fun
114
+ if not minres.success:
115
+ self.res.minimization_failures += 1
116
+ if self.disp:
117
+ print("warning: basinhopping: local minimization failure")
118
+ if hasattr(minres, "nfev"):
119
+ self.res.nfev += minres.nfev
120
+ if hasattr(minres, "njev"):
121
+ self.res.njev += minres.njev
122
+ if hasattr(minres, "nhev"):
123
+ self.res.nhev += minres.nhev
124
+
125
+ # accept the move based on self.accept_tests. If any test is False,
126
+ # then reject the step. If any test returns the special string
127
+ # 'force accept', then accept the step regardless. This can be used
128
+ # to forcefully escape from a local minimum if normal basin hopping
129
+ # steps are not sufficient.
130
+ accept = True
131
+ for test in self.accept_tests:
132
+ if inspect.signature(test) == _new_accept_test_signature:
133
+ testres = test(res_new=minres, res_old=self.incumbent_minres)
134
+ else:
135
+ testres = test(f_new=energy_after_quench, x_new=x_after_quench,
136
+ f_old=self.energy, x_old=self.x)
137
+
138
+ if testres == 'force accept':
139
+ accept = True
140
+ break
141
+ elif testres is None:
142
+ raise ValueError("accept_tests must return True, False, or "
143
+ "'force accept'")
144
+ elif not testres:
145
+ accept = False
146
+
147
+ # Report the result of the acceptance test to the take step class.
148
+ # This is for adaptive step taking
149
+ if hasattr(self.step_taking, "report"):
150
+ self.step_taking.report(accept, f_new=energy_after_quench,
151
+ x_new=x_after_quench, f_old=self.energy,
152
+ x_old=self.x)
153
+
154
+ return accept, minres
155
+
156
+ def one_cycle(self):
157
+ """Do one cycle of the basinhopping algorithm
158
+ """
159
+ self.nstep += 1
160
+ new_global_min = False
161
+
162
+ accept, minres = self._monte_carlo_step()
163
+
164
+ if accept:
165
+ self.energy = minres.fun
166
+ self.x = np.copy(minres.x)
167
+ self.incumbent_minres = minres # best minimize result found so far
168
+ new_global_min = self.storage.update(minres)
169
+
170
+ # print some information
171
+ if self.disp:
172
+ self.print_report(minres.fun, accept)
173
+ if new_global_min:
174
+ print("found new global minimum on step %d with function"
175
+ " value %g" % (self.nstep, self.energy))
176
+
177
+ # save some variables as BasinHoppingRunner attributes
178
+ self.xtrial = minres.x
179
+ self.energy_trial = minres.fun
180
+ self.accept = accept
181
+
182
+ return new_global_min
183
+
184
+ def print_report(self, energy_trial, accept):
185
+ """print a status update"""
186
+ minres = self.storage.get_lowest()
187
+ print("basinhopping step %d: f %g trial_f %g accepted %d "
188
+ " lowest_f %g" % (self.nstep, self.energy, energy_trial,
189
+ accept, minres.fun))
190
+
191
+
192
+ class AdaptiveStepsize:
193
+ """
194
+ Class to implement adaptive stepsize.
195
+
196
+ This class wraps the step taking class and modifies the stepsize to
197
+ ensure the true acceptance rate is as close as possible to the target.
198
+
199
+ Parameters
200
+ ----------
201
+ takestep : callable
202
+ The step taking routine. Must contain modifiable attribute
203
+ takestep.stepsize
204
+ accept_rate : float, optional
205
+ The target step acceptance rate
206
+ interval : int, optional
207
+ Interval for how often to update the stepsize
208
+ factor : float, optional
209
+ The step size is multiplied or divided by this factor upon each
210
+ update.
211
+ verbose : bool, optional
212
+ Print information about each update
213
+
214
+ """
215
+ def __init__(self, takestep, accept_rate=0.5, interval=50, factor=0.9,
216
+ verbose=True):
217
+ self.takestep = takestep
218
+ self.target_accept_rate = accept_rate
219
+ self.interval = interval
220
+ self.factor = factor
221
+ self.verbose = verbose
222
+
223
+ self.nstep = 0
224
+ self.nstep_tot = 0
225
+ self.naccept = 0
226
+
227
+ def __call__(self, x):
228
+ return self.take_step(x)
229
+
230
+ def _adjust_step_size(self):
231
+ old_stepsize = self.takestep.stepsize
232
+ accept_rate = float(self.naccept) / self.nstep
233
+ if accept_rate > self.target_accept_rate:
234
+ # We're accepting too many steps. This generally means we're
235
+ # trapped in a basin. Take bigger steps.
236
+ self.takestep.stepsize /= self.factor
237
+ else:
238
+ # We're not accepting enough steps. Take smaller steps.
239
+ self.takestep.stepsize *= self.factor
240
+ if self.verbose:
241
+ print(f"adaptive stepsize: acceptance rate {accept_rate:f} target "
242
+ f"{self.target_accept_rate:f} new stepsize "
243
+ f"{self.takestep.stepsize:g} old stepsize {old_stepsize:g}")
244
+
245
+ def take_step(self, x):
246
+ self.nstep += 1
247
+ self.nstep_tot += 1
248
+ if self.nstep % self.interval == 0:
249
+ self._adjust_step_size()
250
+ return self.takestep(x)
251
+
252
+ def report(self, accept, **kwargs):
253
+ "called by basinhopping to report the result of the step"
254
+ if accept:
255
+ self.naccept += 1
256
+
257
+
258
+ class RandomDisplacement:
259
+ """Add a random displacement of maximum size `stepsize` to each coordinate.
260
+
261
+ Calling this updates `x` in-place.
262
+
263
+ Parameters
264
+ ----------
265
+ stepsize : float, optional
266
+ Maximum stepsize in any dimension
267
+ random_gen : {None, int, `numpy.random.Generator`,
268
+ `numpy.random.RandomState`}, optional
269
+
270
+ If `seed` is None (or `np.random`), the `numpy.random.RandomState`
271
+ singleton is used.
272
+ If `seed` is an int, a new ``RandomState`` instance is used,
273
+ seeded with `seed`.
274
+ If `seed` is already a ``Generator`` or ``RandomState`` instance then
275
+ that instance is used.
276
+
277
+ """
278
+
279
+ def __init__(self, stepsize=0.5, random_gen=None):
280
+ self.stepsize = stepsize
281
+ self.random_gen = check_random_state(random_gen)
282
+
283
+ def __call__(self, x):
284
+ x += self.random_gen.uniform(-self.stepsize, self.stepsize,
285
+ np.shape(x))
286
+ return x
287
+
288
+
289
+ class MinimizerWrapper:
290
+ """
291
+ wrap a minimizer function as a minimizer class
292
+ """
293
+ def __init__(self, minimizer, func=None, **kwargs):
294
+ self.minimizer = minimizer
295
+ self.func = func
296
+ self.kwargs = kwargs
297
+
298
+ def __call__(self, x0):
299
+ if self.func is None:
300
+ return self.minimizer(x0, **self.kwargs)
301
+ else:
302
+ return self.minimizer(self.func, x0, **self.kwargs)
303
+
304
+
305
+ class Metropolis:
306
+ """Metropolis acceptance criterion.
307
+
308
+ Parameters
309
+ ----------
310
+ T : float
311
+ The "temperature" parameter for the accept or reject criterion.
312
+ random_gen : {None, int, `numpy.random.Generator`,
313
+ `numpy.random.RandomState`}, optional
314
+
315
+ If `seed` is None (or `np.random`), the `numpy.random.RandomState`
316
+ singleton is used.
317
+ If `seed` is an int, a new ``RandomState`` instance is used,
318
+ seeded with `seed`.
319
+ If `seed` is already a ``Generator`` or ``RandomState`` instance then
320
+ that instance is used.
321
+ Random number generator used for acceptance test.
322
+
323
+ """
324
+
325
+ def __init__(self, T, random_gen=None):
326
+ # Avoid ZeroDivisionError since "MBH can be regarded as a special case
327
+ # of the BH framework with the Metropolis criterion, where temperature
328
+ # T = 0." (Reject all steps that increase energy.)
329
+ self.beta = 1.0 / T if T != 0 else float('inf')
330
+ self.random_gen = check_random_state(random_gen)
331
+
332
+ def accept_reject(self, res_new, res_old):
333
+ """
334
+ Assuming the local search underlying res_new was successful:
335
+ If new energy is lower than old, it will always be accepted.
336
+ If new is higher than old, there is a chance it will be accepted,
337
+ less likely for larger differences.
338
+ """
339
+ with np.errstate(invalid='ignore'):
340
+ # The energy values being fed to Metropolis are 1-length arrays, and if
341
+ # they are equal, their difference is 0, which gets multiplied by beta,
342
+ # which is inf, and array([0]) * float('inf') causes
343
+ #
344
+ # RuntimeWarning: invalid value encountered in multiply
345
+ #
346
+ # Ignore this warning so when the algorithm is on a flat plane, it always
347
+ # accepts the step, to try to move off the plane.
348
+ prod = -(res_new.fun - res_old.fun) * self.beta
349
+ w = math.exp(min(0, prod))
350
+
351
+ rand = self.random_gen.uniform()
352
+ return w >= rand and (res_new.success or not res_old.success)
353
+
354
+ def __call__(self, *, res_new, res_old):
355
+ """
356
+ f_new and f_old are mandatory in kwargs
357
+ """
358
+ return bool(self.accept_reject(res_new, res_old))
359
+
360
+
361
+ def basinhopping(func, x0, niter=100, T=1.0, stepsize=0.5,
362
+ minimizer_kwargs=None, take_step=None, accept_test=None,
363
+ callback=None, interval=50, disp=False, niter_success=None,
364
+ seed=None, *, target_accept_rate=0.5, stepwise_factor=0.9):
365
+ """Find the global minimum of a function using the basin-hopping algorithm.
366
+
367
+ Basin-hopping is a two-phase method that combines a global stepping
368
+ algorithm with local minimization at each step. Designed to mimic
369
+ the natural process of energy minimization of clusters of atoms, it works
370
+ well for similar problems with "funnel-like, but rugged" energy landscapes
371
+ [5]_.
372
+
373
+ As the step-taking, step acceptance, and minimization methods are all
374
+ customizable, this function can also be used to implement other two-phase
375
+ methods.
376
+
377
+ Parameters
378
+ ----------
379
+ func : callable ``f(x, *args)``
380
+ Function to be optimized. ``args`` can be passed as an optional item
381
+ in the dict `minimizer_kwargs`
382
+ x0 : array_like
383
+ Initial guess.
384
+ niter : integer, optional
385
+ The number of basin-hopping iterations. There will be a total of
386
+ ``niter + 1`` runs of the local minimizer.
387
+ T : float, optional
388
+ The "temperature" parameter for the acceptance or rejection criterion.
389
+ Higher "temperatures" mean that larger jumps in function value will be
390
+ accepted. For best results `T` should be comparable to the
391
+ separation (in function value) between local minima.
392
+ stepsize : float, optional
393
+ Maximum step size for use in the random displacement.
394
+ minimizer_kwargs : dict, optional
395
+ Extra keyword arguments to be passed to the local minimizer
396
+ `scipy.optimize.minimize` Some important options could be:
397
+
398
+ method : str
399
+ The minimization method (e.g. ``"L-BFGS-B"``)
400
+ args : tuple
401
+ Extra arguments passed to the objective function (`func`) and
402
+ its derivatives (Jacobian, Hessian).
403
+
404
+ take_step : callable ``take_step(x)``, optional
405
+ Replace the default step-taking routine with this routine. The default
406
+ step-taking routine is a random displacement of the coordinates, but
407
+ other step-taking algorithms may be better for some systems.
408
+ `take_step` can optionally have the attribute ``take_step.stepsize``.
409
+ If this attribute exists, then `basinhopping` will adjust
410
+ ``take_step.stepsize`` in order to try to optimize the global minimum
411
+ search.
412
+ accept_test : callable, ``accept_test(f_new=f_new, x_new=x_new, f_old=fold, x_old=x_old)``, optional
413
+ Define a test which will be used to judge whether to accept the
414
+ step. This will be used in addition to the Metropolis test based on
415
+ "temperature" `T`. The acceptable return values are True,
416
+ False, or ``"force accept"``. If any of the tests return False
417
+ then the step is rejected. If the latter, then this will override any
418
+ other tests in order to accept the step. This can be used, for example,
419
+ to forcefully escape from a local minimum that `basinhopping` is
420
+ trapped in.
421
+ callback : callable, ``callback(x, f, accept)``, optional
422
+ A callback function which will be called for all minima found. ``x``
423
+ and ``f`` are the coordinates and function value of the trial minimum,
424
+ and ``accept`` is whether that minimum was accepted. This can
425
+ be used, for example, to save the lowest N minima found. Also,
426
+ `callback` can be used to specify a user defined stop criterion by
427
+ optionally returning True to stop the `basinhopping` routine.
428
+ interval : integer, optional
429
+ interval for how often to update the `stepsize`
430
+ disp : bool, optional
431
+ Set to True to print status messages
432
+ niter_success : integer, optional
433
+ Stop the run if the global minimum candidate remains the same for this
434
+ number of iterations.
435
+ seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
436
+
437
+ If `seed` is None (or `np.random`), the `numpy.random.RandomState`
438
+ singleton is used.
439
+ If `seed` is an int, a new ``RandomState`` instance is used,
440
+ seeded with `seed`.
441
+ If `seed` is already a ``Generator`` or ``RandomState`` instance then
442
+ that instance is used.
443
+ Specify `seed` for repeatable minimizations. The random numbers
444
+ generated with this seed only affect the default Metropolis
445
+ `accept_test` and the default `take_step`. If you supply your own
446
+ `take_step` and `accept_test`, and these functions use random
447
+ number generation, then those functions are responsible for the state
448
+ of their random number generator.
449
+ target_accept_rate : float, optional
450
+ The target acceptance rate that is used to adjust the `stepsize`.
451
+ If the current acceptance rate is greater than the target,
452
+ then the `stepsize` is increased. Otherwise, it is decreased.
453
+ Range is (0, 1). Default is 0.5.
454
+
455
+ .. versionadded:: 1.8.0
456
+
457
+ stepwise_factor : float, optional
458
+ The `stepsize` is multiplied or divided by this stepwise factor upon
459
+ each update. Range is (0, 1). Default is 0.9.
460
+
461
+ .. versionadded:: 1.8.0
462
+
463
+ Returns
464
+ -------
465
+ res : OptimizeResult
466
+ The optimization result represented as a `OptimizeResult` object.
467
+ Important attributes are: ``x`` the solution array, ``fun`` the value
468
+ of the function at the solution, and ``message`` which describes the
469
+ cause of the termination. The ``OptimizeResult`` object returned by the
470
+ selected minimizer at the lowest minimum is also contained within this
471
+ object and can be accessed through the ``lowest_optimization_result``
472
+ attribute. See `OptimizeResult` for a description of other attributes.
473
+
474
+ See Also
475
+ --------
476
+ minimize :
477
+ The local minimization function called once for each basinhopping step.
478
+ `minimizer_kwargs` is passed to this routine.
479
+
480
+ Notes
481
+ -----
482
+ Basin-hopping is a stochastic algorithm which attempts to find the global
483
+ minimum of a smooth scalar function of one or more variables [1]_ [2]_ [3]_
484
+ [4]_. The algorithm in its current form was described by David Wales and
485
+ Jonathan Doye [2]_ http://www-wales.ch.cam.ac.uk/.
486
+
487
+ The algorithm is iterative with each cycle composed of the following
488
+ features
489
+
490
+ 1) random perturbation of the coordinates
491
+
492
+ 2) local minimization
493
+
494
+ 3) accept or reject the new coordinates based on the minimized function
495
+ value
496
+
497
+ The acceptance test used here is the Metropolis criterion of standard Monte
498
+ Carlo algorithms, although there are many other possibilities [3]_.
499
+
500
+ This global minimization method has been shown to be extremely efficient
501
+ for a wide variety of problems in physics and chemistry. It is
502
+ particularly useful when the function has many minima separated by large
503
+ barriers. See the `Cambridge Cluster Database
504
+ <https://www-wales.ch.cam.ac.uk/CCD.html>`_ for databases of molecular
505
+ systems that have been optimized primarily using basin-hopping. This
506
+ database includes minimization problems exceeding 300 degrees of freedom.
507
+
508
+ See the free software program `GMIN <https://www-wales.ch.cam.ac.uk/GMIN>`_
509
+ for a Fortran implementation of basin-hopping. This implementation has many
510
+ variations of the procedure described above, including more
511
+ advanced step taking algorithms and alternate acceptance criterion.
512
+
513
+ For stochastic global optimization there is no way to determine if the true
514
+ global minimum has actually been found. Instead, as a consistency check,
515
+ the algorithm can be run from a number of different random starting points
516
+ to ensure the lowest minimum found in each example has converged to the
517
+ global minimum. For this reason, `basinhopping` will by default simply
518
+ run for the number of iterations `niter` and return the lowest minimum
519
+ found. It is left to the user to ensure that this is in fact the global
520
+ minimum.
521
+
522
+ Choosing `stepsize`: This is a crucial parameter in `basinhopping` and
523
+ depends on the problem being solved. The step is chosen uniformly in the
524
+ region from x0-stepsize to x0+stepsize, in each dimension. Ideally, it
525
+ should be comparable to the typical separation (in argument values) between
526
+ local minima of the function being optimized. `basinhopping` will, by
527
+ default, adjust `stepsize` to find an optimal value, but this may take
528
+ many iterations. You will get quicker results if you set a sensible
529
+ initial value for ``stepsize``.
530
+
531
+ Choosing `T`: The parameter `T` is the "temperature" used in the
532
+ Metropolis criterion. Basinhopping steps are always accepted if
533
+ ``func(xnew) < func(xold)``. Otherwise, they are accepted with
534
+ probability::
535
+
536
+ exp( -(func(xnew) - func(xold)) / T )
537
+
538
+ So, for best results, `T` should to be comparable to the typical
539
+ difference (in function values) between local minima. (The height of
540
+ "walls" between local minima is irrelevant.)
541
+
542
+ If `T` is 0, the algorithm becomes Monotonic Basin-Hopping, in which all
543
+ steps that increase energy are rejected.
544
+
545
+ .. versionadded:: 0.12.0
546
+
547
+ References
548
+ ----------
549
+ .. [1] Wales, David J. 2003, Energy Landscapes, Cambridge University Press,
550
+ Cambridge, UK.
551
+ .. [2] Wales, D J, and Doye J P K, Global Optimization by Basin-Hopping and
552
+ the Lowest Energy Structures of Lennard-Jones Clusters Containing up to
553
+ 110 Atoms. Journal of Physical Chemistry A, 1997, 101, 5111.
554
+ .. [3] Li, Z. and Scheraga, H. A., Monte Carlo-minimization approach to the
555
+ multiple-minima problem in protein folding, Proc. Natl. Acad. Sci. USA,
556
+ 1987, 84, 6611.
557
+ .. [4] Wales, D. J. and Scheraga, H. A., Global optimization of clusters,
558
+ crystals, and biomolecules, Science, 1999, 285, 1368.
559
+ .. [5] Olson, B., Hashmi, I., Molloy, K., and Shehu1, A., Basin Hopping as
560
+ a General and Versatile Optimization Framework for the Characterization
561
+ of Biological Macromolecules, Advances in Artificial Intelligence,
562
+ Volume 2012 (2012), Article ID 674832, :doi:`10.1155/2012/674832`
563
+
564
+ Examples
565
+ --------
566
+ The following example is a 1-D minimization problem, with many
567
+ local minima superimposed on a parabola.
568
+
569
+ >>> import numpy as np
570
+ >>> from scipy.optimize import basinhopping
571
+ >>> func = lambda x: np.cos(14.5 * x - 0.3) + (x + 0.2) * x
572
+ >>> x0 = [1.]
573
+
574
+ Basinhopping, internally, uses a local minimization algorithm. We will use
575
+ the parameter `minimizer_kwargs` to tell basinhopping which algorithm to
576
+ use and how to set up that minimizer. This parameter will be passed to
577
+ `scipy.optimize.minimize`.
578
+
579
+ >>> minimizer_kwargs = {"method": "BFGS"}
580
+ >>> ret = basinhopping(func, x0, minimizer_kwargs=minimizer_kwargs,
581
+ ... niter=200)
582
+ >>> # the global minimum is:
583
+ >>> ret.x, ret.fun
584
+ -0.1951, -1.0009
585
+
586
+ Next consider a 2-D minimization problem. Also, this time, we
587
+ will use gradient information to significantly speed up the search.
588
+
589
+ >>> def func2d(x):
590
+ ... f = np.cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] +
591
+ ... 0.2) * x[0]
592
+ ... df = np.zeros(2)
593
+ ... df[0] = -14.5 * np.sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2
594
+ ... df[1] = 2. * x[1] + 0.2
595
+ ... return f, df
596
+
597
+ We'll also use a different local minimization algorithm. Also, we must tell
598
+ the minimizer that our function returns both energy and gradient (Jacobian).
599
+
600
+ >>> minimizer_kwargs = {"method":"L-BFGS-B", "jac":True}
601
+ >>> x0 = [1.0, 1.0]
602
+ >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
603
+ ... niter=200)
604
+ >>> print("global minimum: x = [%.4f, %.4f], f(x) = %.4f" % (ret.x[0],
605
+ ... ret.x[1],
606
+ ... ret.fun))
607
+ global minimum: x = [-0.1951, -0.1000], f(x) = -1.0109
608
+
609
+ Here is an example using a custom step-taking routine. Imagine you want
610
+ the first coordinate to take larger steps than the rest of the coordinates.
611
+ This can be implemented like so:
612
+
613
+ >>> class MyTakeStep:
614
+ ... def __init__(self, stepsize=0.5):
615
+ ... self.stepsize = stepsize
616
+ ... self.rng = np.random.default_rng()
617
+ ... def __call__(self, x):
618
+ ... s = self.stepsize
619
+ ... x[0] += self.rng.uniform(-2.*s, 2.*s)
620
+ ... x[1:] += self.rng.uniform(-s, s, x[1:].shape)
621
+ ... return x
622
+
623
+ Since ``MyTakeStep.stepsize`` exists basinhopping will adjust the magnitude
624
+ of `stepsize` to optimize the search. We'll use the same 2-D function as
625
+ before
626
+
627
+ >>> mytakestep = MyTakeStep()
628
+ >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
629
+ ... niter=200, take_step=mytakestep)
630
+ >>> print("global minimum: x = [%.4f, %.4f], f(x) = %.4f" % (ret.x[0],
631
+ ... ret.x[1],
632
+ ... ret.fun))
633
+ global minimum: x = [-0.1951, -0.1000], f(x) = -1.0109
634
+
635
+ Now, let's do an example using a custom callback function which prints the
636
+ value of every minimum found
637
+
638
+ >>> def print_fun(x, f, accepted):
639
+ ... print("at minimum %.4f accepted %d" % (f, int(accepted)))
640
+
641
+ We'll run it for only 10 basinhopping steps this time.
642
+
643
+ >>> rng = np.random.default_rng()
644
+ >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
645
+ ... niter=10, callback=print_fun, seed=rng)
646
+ at minimum 0.4159 accepted 1
647
+ at minimum -0.4317 accepted 1
648
+ at minimum -1.0109 accepted 1
649
+ at minimum -0.9073 accepted 1
650
+ at minimum -0.4317 accepted 0
651
+ at minimum -0.1021 accepted 1
652
+ at minimum -0.7425 accepted 1
653
+ at minimum -0.9073 accepted 1
654
+ at minimum -0.4317 accepted 0
655
+ at minimum -0.7425 accepted 1
656
+ at minimum -0.9073 accepted 1
657
+
658
+ The minimum at -1.0109 is actually the global minimum, found already on the
659
+ 8th iteration.
660
+
661
+ """ # numpy/numpydoc#87 # noqa: E501
662
+ if target_accept_rate <= 0. or target_accept_rate >= 1.:
663
+ raise ValueError('target_accept_rate has to be in range (0, 1)')
664
+ if stepwise_factor <= 0. or stepwise_factor >= 1.:
665
+ raise ValueError('stepwise_factor has to be in range (0, 1)')
666
+
667
+ x0 = np.array(x0)
668
+
669
+ # set up the np.random generator
670
+ rng = check_random_state(seed)
671
+
672
+ # set up minimizer
673
+ if minimizer_kwargs is None:
674
+ minimizer_kwargs = dict()
675
+ wrapped_minimizer = MinimizerWrapper(scipy.optimize.minimize, func,
676
+ **minimizer_kwargs)
677
+
678
+ # set up step-taking algorithm
679
+ if take_step is not None:
680
+ if not callable(take_step):
681
+ raise TypeError("take_step must be callable")
682
+ # if take_step.stepsize exists then use AdaptiveStepsize to control
683
+ # take_step.stepsize
684
+ if hasattr(take_step, "stepsize"):
685
+ take_step_wrapped = AdaptiveStepsize(
686
+ take_step, interval=interval,
687
+ accept_rate=target_accept_rate,
688
+ factor=stepwise_factor,
689
+ verbose=disp)
690
+ else:
691
+ take_step_wrapped = take_step
692
+ else:
693
+ # use default
694
+ displace = RandomDisplacement(stepsize=stepsize, random_gen=rng)
695
+ take_step_wrapped = AdaptiveStepsize(displace, interval=interval,
696
+ accept_rate=target_accept_rate,
697
+ factor=stepwise_factor,
698
+ verbose=disp)
699
+
700
+ # set up accept tests
701
+ accept_tests = []
702
+ if accept_test is not None:
703
+ if not callable(accept_test):
704
+ raise TypeError("accept_test must be callable")
705
+ accept_tests = [accept_test]
706
+
707
+ # use default
708
+ metropolis = Metropolis(T, random_gen=rng)
709
+ accept_tests.append(metropolis)
710
+
711
+ if niter_success is None:
712
+ niter_success = niter + 2
713
+
714
+ bh = BasinHoppingRunner(x0, wrapped_minimizer, take_step_wrapped,
715
+ accept_tests, disp=disp)
716
+
717
+ # The wrapped minimizer is called once during construction of
718
+ # BasinHoppingRunner, so run the callback
719
+ if callable(callback):
720
+ callback(bh.storage.minres.x, bh.storage.minres.fun, True)
721
+
722
+ # start main iteration loop
723
+ count, i = 0, 0
724
+ message = ["requested number of basinhopping iterations completed"
725
+ " successfully"]
726
+ for i in range(niter):
727
+ new_global_min = bh.one_cycle()
728
+
729
+ if callable(callback):
730
+ # should we pass a copy of x?
731
+ val = callback(bh.xtrial, bh.energy_trial, bh.accept)
732
+ if val is not None:
733
+ if val:
734
+ message = ["callback function requested stop early by"
735
+ "returning True"]
736
+ break
737
+
738
+ count += 1
739
+ if new_global_min:
740
+ count = 0
741
+ elif count > niter_success:
742
+ message = ["success condition satisfied"]
743
+ break
744
+
745
+ # prepare return object
746
+ res = bh.res
747
+ res.lowest_optimization_result = bh.storage.get_lowest()
748
+ res.x = np.copy(res.lowest_optimization_result.x)
749
+ res.fun = res.lowest_optimization_result.fun
750
+ res.message = message
751
+ res.nit = i + 1
752
+ res.success = res.lowest_optimization_result.success
753
+ return res
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_cobyqa_py.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from ._optimize import _check_unknown_options
4
+
5
+
6
+ def _minimize_cobyqa(fun, x0, args=(), bounds=None, constraints=(),
7
+ callback=None, disp=False, maxfev=None, maxiter=None,
8
+ f_target=-np.inf, feasibility_tol=1e-8,
9
+ initial_tr_radius=1.0, final_tr_radius=1e-6, scale=False,
10
+ **unknown_options):
11
+ """
12
+ Minimize a scalar function of one or more variables using the
13
+ Constrained Optimization BY Quadratic Approximations (COBYQA) algorithm [1]_.
14
+
15
+ .. versionadded:: 1.14.0
16
+
17
+ Options
18
+ -------
19
+ disp : bool
20
+ Set to True to print information about the optimization procedure.
21
+ maxfev : int
22
+ Maximum number of function evaluations.
23
+ maxiter : int
24
+ Maximum number of iterations.
25
+ f_target : float
26
+ Target value for the objective function. The optimization procedure is
27
+ terminated when the objective function value of a feasible point (see
28
+ `feasibility_tol` below) is less than or equal to this target.
29
+ feasibility_tol : float
30
+ Absolute tolerance for the constraint violation.
31
+ initial_tr_radius : float
32
+ Initial trust-region radius. Typically, this value should be in the
33
+ order of one tenth of the greatest expected change to the variables.
34
+ final_tr_radius : float
35
+ Final trust-region radius. It should indicate the accuracy required in
36
+ the final values of the variables. If provided, this option overrides
37
+ the value of `tol` in the `minimize` function.
38
+ scale : bool
39
+ Set to True to scale the variables according to the bounds. If True and
40
+ if all the lower and upper bounds are finite, the variables are scaled
41
+ to be within the range :math:`[-1, 1]`. If any of the lower or upper
42
+ bounds is infinite, the variables are not scaled.
43
+
44
+ References
45
+ ----------
46
+ .. [1] COBYQA
47
+ https://www.cobyqa.com/stable/
48
+ """
49
+ from .._lib.cobyqa import minimize # import here to avoid circular imports
50
+
51
+ _check_unknown_options(unknown_options)
52
+ options = {
53
+ 'disp': bool(disp),
54
+ 'maxfev': int(maxfev) if maxfev is not None else 500 * len(x0),
55
+ 'maxiter': int(maxiter) if maxiter is not None else 1000 * len(x0),
56
+ 'target': float(f_target),
57
+ 'feasibility_tol': float(feasibility_tol),
58
+ 'radius_init': float(initial_tr_radius),
59
+ 'radius_final': float(final_tr_radius),
60
+ 'scale': bool(scale),
61
+ }
62
+ return minimize(fun, x0, args, bounds, constraints, callback, options)
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_dcsrch.py ADDED
@@ -0,0 +1,728 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ """
4
+ # 2023 - ported from minpack2.dcsrch, dcstep (Fortran) to Python
5
+ c MINPACK-1 Project. June 1983.
6
+ c Argonne National Laboratory.
7
+ c Jorge J. More' and David J. Thuente.
8
+ c
9
+ c MINPACK-2 Project. November 1993.
10
+ c Argonne National Laboratory and University of Minnesota.
11
+ c Brett M. Averick, Richard G. Carter, and Jorge J. More'.
12
+ """
13
+
14
+ # NOTE this file was linted by black on first commit, and can be kept that way.
15
+
16
+
17
+ class DCSRCH:
18
+ """
19
+ Parameters
20
+ ----------
21
+ phi : callable phi(alpha)
22
+ Function at point `alpha`
23
+ derphi : callable phi'(alpha)
24
+ Objective function derivative. Returns a scalar.
25
+ ftol : float
26
+ A nonnegative tolerance for the sufficient decrease condition.
27
+ gtol : float
28
+ A nonnegative tolerance for the curvature condition.
29
+ xtol : float
30
+ A nonnegative relative tolerance for an acceptable step. The
31
+ subroutine exits with a warning if the relative difference between
32
+ sty and stx is less than xtol.
33
+ stpmin : float
34
+ A nonnegative lower bound for the step.
35
+ stpmax :
36
+ A nonnegative upper bound for the step.
37
+
38
+ Notes
39
+ -----
40
+
41
+ This subroutine finds a step that satisfies a sufficient
42
+ decrease condition and a curvature condition.
43
+
44
+ Each call of the subroutine updates an interval with
45
+ endpoints stx and sty. The interval is initially chosen
46
+ so that it contains a minimizer of the modified function
47
+
48
+ psi(stp) = f(stp) - f(0) - ftol*stp*f'(0).
49
+
50
+ If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
51
+ interval is chosen so that it contains a minimizer of f.
52
+
53
+ The algorithm is designed to find a step that satisfies
54
+ the sufficient decrease condition
55
+
56
+ f(stp) <= f(0) + ftol*stp*f'(0),
57
+
58
+ and the curvature condition
59
+
60
+ abs(f'(stp)) <= gtol*abs(f'(0)).
61
+
62
+ If ftol is less than gtol and if, for example, the function
63
+ is bounded below, then there is always a step which satisfies
64
+ both conditions.
65
+
66
+ If no step can be found that satisfies both conditions, then
67
+ the algorithm stops with a warning. In this case stp only
68
+ satisfies the sufficient decrease condition.
69
+
70
+ A typical invocation of dcsrch has the following outline:
71
+
72
+ Evaluate the function at stp = 0.0d0; store in f.
73
+ Evaluate the gradient at stp = 0.0d0; store in g.
74
+ Choose a starting step stp.
75
+
76
+ task = 'START'
77
+ 10 continue
78
+ call dcsrch(stp,f,g,ftol,gtol,xtol,task,stpmin,stpmax,
79
+ isave,dsave)
80
+ if (task .eq. 'FG') then
81
+ Evaluate the function and the gradient at stp
82
+ go to 10
83
+ end if
84
+
85
+ NOTE: The user must not alter work arrays between calls.
86
+
87
+ The subroutine statement is
88
+
89
+ subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax,
90
+ task,isave,dsave)
91
+ where
92
+
93
+ stp is a double precision variable.
94
+ On entry stp is the current estimate of a satisfactory
95
+ step. On initial entry, a positive initial estimate
96
+ must be provided.
97
+ On exit stp is the current estimate of a satisfactory step
98
+ if task = 'FG'. If task = 'CONV' then stp satisfies
99
+ the sufficient decrease and curvature condition.
100
+
101
+ f is a double precision variable.
102
+ On initial entry f is the value of the function at 0.
103
+ On subsequent entries f is the value of the
104
+ function at stp.
105
+ On exit f is the value of the function at stp.
106
+
107
+ g is a double precision variable.
108
+ On initial entry g is the derivative of the function at 0.
109
+ On subsequent entries g is the derivative of the
110
+ function at stp.
111
+ On exit g is the derivative of the function at stp.
112
+
113
+ ftol is a double precision variable.
114
+ On entry ftol specifies a nonnegative tolerance for the
115
+ sufficient decrease condition.
116
+ On exit ftol is unchanged.
117
+
118
+ gtol is a double precision variable.
119
+ On entry gtol specifies a nonnegative tolerance for the
120
+ curvature condition.
121
+ On exit gtol is unchanged.
122
+
123
+ xtol is a double precision variable.
124
+ On entry xtol specifies a nonnegative relative tolerance
125
+ for an acceptable step. The subroutine exits with a
126
+ warning if the relative difference between sty and stx
127
+ is less than xtol.
128
+
129
+ On exit xtol is unchanged.
130
+
131
+ task is a character variable of length at least 60.
132
+ On initial entry task must be set to 'START'.
133
+ On exit task indicates the required action:
134
+
135
+ If task(1:2) = 'FG' then evaluate the function and
136
+ derivative at stp and call dcsrch again.
137
+
138
+ If task(1:4) = 'CONV' then the search is successful.
139
+
140
+ If task(1:4) = 'WARN' then the subroutine is not able
141
+ to satisfy the convergence conditions. The exit value of
142
+ stp contains the best point found during the search.
143
+
144
+ If task(1:5) = 'ERROR' then there is an error in the
145
+ input arguments.
146
+
147
+ On exit with convergence, a warning or an error, the
148
+ variable task contains additional information.
149
+
150
+ stpmin is a double precision variable.
151
+ On entry stpmin is a nonnegative lower bound for the step.
152
+ On exit stpmin is unchanged.
153
+
154
+ stpmax is a double precision variable.
155
+ On entry stpmax is a nonnegative upper bound for the step.
156
+ On exit stpmax is unchanged.
157
+
158
+ isave is an integer work array of dimension 2.
159
+
160
+ dsave is a double precision work array of dimension 13.
161
+
162
+ Subprograms called
163
+
164
+ MINPACK-2 ... dcstep
165
+ MINPACK-1 Project. June 1983.
166
+ Argonne National Laboratory.
167
+ Jorge J. More' and David J. Thuente.
168
+
169
+ MINPACK-2 Project. November 1993.
170
+ Argonne National Laboratory and University of Minnesota.
171
+ Brett M. Averick, Richard G. Carter, and Jorge J. More'.
172
+ """
173
+
174
+ def __init__(self, phi, derphi, ftol, gtol, xtol, stpmin, stpmax):
175
+ self.stage = None
176
+ self.ginit = None
177
+ self.gtest = None
178
+ self.gx = None
179
+ self.gy = None
180
+ self.finit = None
181
+ self.fx = None
182
+ self.fy = None
183
+ self.stx = None
184
+ self.sty = None
185
+ self.stmin = None
186
+ self.stmax = None
187
+ self.width = None
188
+ self.width1 = None
189
+
190
+ # leave all assessment of tolerances/limits to the first call of
191
+ # this object
192
+ self.ftol = ftol
193
+ self.gtol = gtol
194
+ self.xtol = xtol
195
+ self.stpmin = stpmin
196
+ self.stpmax = stpmax
197
+
198
+ self.phi = phi
199
+ self.derphi = derphi
200
+
201
+ def __call__(self, alpha1, phi0=None, derphi0=None, maxiter=100):
202
+ """
203
+ Parameters
204
+ ----------
205
+ alpha1 : float
206
+ alpha1 is the current estimate of a satisfactory
207
+ step. A positive initial estimate must be provided.
208
+ phi0 : float
209
+ the value of `phi` at 0 (if known).
210
+ derphi0 : float
211
+ the derivative of `derphi` at 0 (if known).
212
+ maxiter : int
213
+
214
+ Returns
215
+ -------
216
+ alpha : float
217
+ Step size, or None if no suitable step was found.
218
+ phi : float
219
+ Value of `phi` at the new point `alpha`.
220
+ phi0 : float
221
+ Value of `phi` at `alpha=0`.
222
+ task : bytes
223
+ On exit task indicates status information.
224
+
225
+ If task[:4] == b'CONV' then the search is successful.
226
+
227
+ If task[:4] == b'WARN' then the subroutine is not able
228
+ to satisfy the convergence conditions. The exit value of
229
+ stp contains the best point found during the search.
230
+
231
+ If task[:5] == b'ERROR' then there is an error in the
232
+ input arguments.
233
+ """
234
+ if phi0 is None:
235
+ phi0 = self.phi(0.0)
236
+ if derphi0 is None:
237
+ derphi0 = self.derphi(0.0)
238
+
239
+ phi1 = phi0
240
+ derphi1 = derphi0
241
+
242
+ task = b"START"
243
+ for i in range(maxiter):
244
+ stp, phi1, derphi1, task = self._iterate(
245
+ alpha1, phi1, derphi1, task
246
+ )
247
+
248
+ if not np.isfinite(stp):
249
+ task = b"WARN"
250
+ stp = None
251
+ break
252
+
253
+ if task[:2] == b"FG":
254
+ alpha1 = stp
255
+ phi1 = self.phi(stp)
256
+ derphi1 = self.derphi(stp)
257
+ else:
258
+ break
259
+ else:
260
+ # maxiter reached, the line search did not converge
261
+ stp = None
262
+ task = b"WARNING: dcsrch did not converge within max iterations"
263
+
264
+ if task[:5] == b"ERROR" or task[:4] == b"WARN":
265
+ stp = None # failed
266
+
267
+ return stp, phi1, phi0, task
268
+
269
+ def _iterate(self, stp, f, g, task):
270
+ """
271
+ Parameters
272
+ ----------
273
+ stp : float
274
+ The current estimate of a satisfactory step. On initial entry, a
275
+ positive initial estimate must be provided.
276
+ f : float
277
+ On first call f is the value of the function at 0. On subsequent
278
+ entries f should be the value of the function at stp.
279
+ g : float
280
+ On initial entry g is the derivative of the function at 0. On
281
+ subsequent entries g is the derivative of the function at stp.
282
+ task : bytes
283
+ On initial entry task must be set to 'START'.
284
+
285
+ On exit with convergence, a warning or an error, the
286
+ variable task contains additional information.
287
+
288
+
289
+ Returns
290
+ -------
291
+ stp, f, g, task: tuple
292
+
293
+ stp : float
294
+ the current estimate of a satisfactory step if task = 'FG'. If
295
+ task = 'CONV' then stp satisfies the sufficient decrease and
296
+ curvature condition.
297
+ f : float
298
+ the value of the function at stp.
299
+ g : float
300
+ the derivative of the function at stp.
301
+ task : bytes
302
+ On exit task indicates the required action:
303
+
304
+ If task(1:2) == b'FG' then evaluate the function and
305
+ derivative at stp and call dcsrch again.
306
+
307
+ If task(1:4) == b'CONV' then the search is successful.
308
+
309
+ If task(1:4) == b'WARN' then the subroutine is not able
310
+ to satisfy the convergence conditions. The exit value of
311
+ stp contains the best point found during the search.
312
+
313
+ If task(1:5) == b'ERROR' then there is an error in the
314
+ input arguments.
315
+ """
316
+ p5 = 0.5
317
+ p66 = 0.66
318
+ xtrapl = 1.1
319
+ xtrapu = 4.0
320
+
321
+ if task[:5] == b"START":
322
+ if stp < self.stpmin:
323
+ task = b"ERROR: STP .LT. STPMIN"
324
+ if stp > self.stpmax:
325
+ task = b"ERROR: STP .GT. STPMAX"
326
+ if g >= 0:
327
+ task = b"ERROR: INITIAL G .GE. ZERO"
328
+ if self.ftol < 0:
329
+ task = b"ERROR: FTOL .LT. ZERO"
330
+ if self.gtol < 0:
331
+ task = b"ERROR: GTOL .LT. ZERO"
332
+ if self.xtol < 0:
333
+ task = b"ERROR: XTOL .LT. ZERO"
334
+ if self.stpmin < 0:
335
+ task = b"ERROR: STPMIN .LT. ZERO"
336
+ if self.stpmax < self.stpmin:
337
+ task = b"ERROR: STPMAX .LT. STPMIN"
338
+
339
+ if task[:5] == b"ERROR":
340
+ return stp, f, g, task
341
+
342
+ # Initialize local variables.
343
+
344
+ self.brackt = False
345
+ self.stage = 1
346
+ self.finit = f
347
+ self.ginit = g
348
+ self.gtest = self.ftol * self.ginit
349
+ self.width = self.stpmax - self.stpmin
350
+ self.width1 = self.width / p5
351
+
352
+ # The variables stx, fx, gx contain the values of the step,
353
+ # function, and derivative at the best step.
354
+ # The variables sty, fy, gy contain the value of the step,
355
+ # function, and derivative at sty.
356
+ # The variables stp, f, g contain the values of the step,
357
+ # function, and derivative at stp.
358
+
359
+ self.stx = 0.0
360
+ self.fx = self.finit
361
+ self.gx = self.ginit
362
+ self.sty = 0.0
363
+ self.fy = self.finit
364
+ self.gy = self.ginit
365
+ self.stmin = 0
366
+ self.stmax = stp + xtrapu * stp
367
+ task = b"FG"
368
+ return stp, f, g, task
369
+
370
+ # in the original Fortran this was a location to restore variables
371
+ # we don't need to do that because they're attributes.
372
+
373
+ # If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
374
+ # algorithm enters the second stage.
375
+ ftest = self.finit + stp * self.gtest
376
+
377
+ if self.stage == 1 and f <= ftest and g >= 0:
378
+ self.stage = 2
379
+
380
+ # test for warnings
381
+ if self.brackt and (stp <= self.stmin or stp >= self.stmax):
382
+ task = b"WARNING: ROUNDING ERRORS PREVENT PROGRESS"
383
+ if self.brackt and self.stmax - self.stmin <= self.xtol * self.stmax:
384
+ task = b"WARNING: XTOL TEST SATISFIED"
385
+ if stp == self.stpmax and f <= ftest and g <= self.gtest:
386
+ task = b"WARNING: STP = STPMAX"
387
+ if stp == self.stpmin and (f > ftest or g >= self.gtest):
388
+ task = b"WARNING: STP = STPMIN"
389
+
390
+ # test for convergence
391
+ if f <= ftest and abs(g) <= self.gtol * -self.ginit:
392
+ task = b"CONVERGENCE"
393
+
394
+ # test for termination
395
+ if task[:4] == b"WARN" or task[:4] == b"CONV":
396
+ return stp, f, g, task
397
+
398
+ # A modified function is used to predict the step during the
399
+ # first stage if a lower function value has been obtained but
400
+ # the decrease is not sufficient.
401
+ if self.stage == 1 and f <= self.fx and f > ftest:
402
+ # Define the modified function and derivative values.
403
+ fm = f - stp * self.gtest
404
+ fxm = self.fx - self.stx * self.gtest
405
+ fym = self.fy - self.sty * self.gtest
406
+ gm = g - self.gtest
407
+ gxm = self.gx - self.gtest
408
+ gym = self.gy - self.gtest
409
+
410
+ # Call dcstep to update stx, sty, and to compute the new step.
411
+ # dcstep can have several operations which can produce NaN
412
+ # e.g. inf/inf. Filter these out.
413
+ with np.errstate(invalid="ignore", over="ignore"):
414
+ tup = dcstep(
415
+ self.stx,
416
+ fxm,
417
+ gxm,
418
+ self.sty,
419
+ fym,
420
+ gym,
421
+ stp,
422
+ fm,
423
+ gm,
424
+ self.brackt,
425
+ self.stmin,
426
+ self.stmax,
427
+ )
428
+ self.stx, fxm, gxm, self.sty, fym, gym, stp, self.brackt = tup
429
+
430
+ # Reset the function and derivative values for f
431
+ self.fx = fxm + self.stx * self.gtest
432
+ self.fy = fym + self.sty * self.gtest
433
+ self.gx = gxm + self.gtest
434
+ self.gy = gym + self.gtest
435
+
436
+ else:
437
+ # Call dcstep to update stx, sty, and to compute the new step.
438
+ # dcstep can have several operations which can produce NaN
439
+ # e.g. inf/inf. Filter these out.
440
+
441
+ with np.errstate(invalid="ignore", over="ignore"):
442
+ tup = dcstep(
443
+ self.stx,
444
+ self.fx,
445
+ self.gx,
446
+ self.sty,
447
+ self.fy,
448
+ self.gy,
449
+ stp,
450
+ f,
451
+ g,
452
+ self.brackt,
453
+ self.stmin,
454
+ self.stmax,
455
+ )
456
+ (
457
+ self.stx,
458
+ self.fx,
459
+ self.gx,
460
+ self.sty,
461
+ self.fy,
462
+ self.gy,
463
+ stp,
464
+ self.brackt,
465
+ ) = tup
466
+
467
+ # Decide if a bisection step is needed
468
+ if self.brackt:
469
+ if abs(self.sty - self.stx) >= p66 * self.width1:
470
+ stp = self.stx + p5 * (self.sty - self.stx)
471
+ self.width1 = self.width
472
+ self.width = abs(self.sty - self.stx)
473
+
474
+ # Set the minimum and maximum steps allowed for stp.
475
+ if self.brackt:
476
+ self.stmin = min(self.stx, self.sty)
477
+ self.stmax = max(self.stx, self.sty)
478
+ else:
479
+ self.stmin = stp + xtrapl * (stp - self.stx)
480
+ self.stmax = stp + xtrapu * (stp - self.stx)
481
+
482
+ # Force the step to be within the bounds stpmax and stpmin.
483
+ stp = np.clip(stp, self.stpmin, self.stpmax)
484
+
485
+ # If further progress is not possible, let stp be the best
486
+ # point obtained during the search.
487
+ if (
488
+ self.brackt
489
+ and (stp <= self.stmin or stp >= self.stmax)
490
+ or (
491
+ self.brackt
492
+ and self.stmax - self.stmin <= self.xtol * self.stmax
493
+ )
494
+ ):
495
+ stp = self.stx
496
+
497
+ # Obtain another function and derivative
498
+ task = b"FG"
499
+ return stp, f, g, task
500
+
501
+
502
+ def dcstep(stx, fx, dx, sty, fy, dy, stp, fp, dp, brackt, stpmin, stpmax):
503
+ """
504
+ Subroutine dcstep
505
+
506
+ This subroutine computes a safeguarded step for a search
507
+ procedure and updates an interval that contains a step that
508
+ satisfies a sufficient decrease and a curvature condition.
509
+
510
+ The parameter stx contains the step with the least function
511
+ value. If brackt is set to .true. then a minimizer has
512
+ been bracketed in an interval with endpoints stx and sty.
513
+ The parameter stp contains the current step.
514
+ The subroutine assumes that if brackt is set to .true. then
515
+
516
+ min(stx,sty) < stp < max(stx,sty),
517
+
518
+ and that the derivative at stx is negative in the direction
519
+ of the step.
520
+
521
+ The subroutine statement is
522
+
523
+ subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
524
+ stpmin,stpmax)
525
+
526
+ where
527
+
528
+ stx is a double precision variable.
529
+ On entry stx is the best step obtained so far and is an
530
+ endpoint of the interval that contains the minimizer.
531
+ On exit stx is the updated best step.
532
+
533
+ fx is a double precision variable.
534
+ On entry fx is the function at stx.
535
+ On exit fx is the function at stx.
536
+
537
+ dx is a double precision variable.
538
+ On entry dx is the derivative of the function at
539
+ stx. The derivative must be negative in the direction of
540
+ the step, that is, dx and stp - stx must have opposite
541
+ signs.
542
+ On exit dx is the derivative of the function at stx.
543
+
544
+ sty is a double precision variable.
545
+ On entry sty is the second endpoint of the interval that
546
+ contains the minimizer.
547
+ On exit sty is the updated endpoint of the interval that
548
+ contains the minimizer.
549
+
550
+ fy is a double precision variable.
551
+ On entry fy is the function at sty.
552
+ On exit fy is the function at sty.
553
+
554
+ dy is a double precision variable.
555
+ On entry dy is the derivative of the function at sty.
556
+ On exit dy is the derivative of the function at the exit sty.
557
+
558
+ stp is a double precision variable.
559
+ On entry stp is the current step. If brackt is set to .true.
560
+ then on input stp must be between stx and sty.
561
+ On exit stp is a new trial step.
562
+
563
+ fp is a double precision variable.
564
+ On entry fp is the function at stp
565
+ On exit fp is unchanged.
566
+
567
+ dp is a double precision variable.
568
+ On entry dp is the derivative of the function at stp.
569
+ On exit dp is unchanged.
570
+
571
+ brackt is an logical variable.
572
+ On entry brackt specifies if a minimizer has been bracketed.
573
+ Initially brackt must be set to .false.
574
+ On exit brackt specifies if a minimizer has been bracketed.
575
+ When a minimizer is bracketed brackt is set to .true.
576
+
577
+ stpmin is a double precision variable.
578
+ On entry stpmin is a lower bound for the step.
579
+ On exit stpmin is unchanged.
580
+
581
+ stpmax is a double precision variable.
582
+ On entry stpmax is an upper bound for the step.
583
+ On exit stpmax is unchanged.
584
+
585
+ MINPACK-1 Project. June 1983
586
+ Argonne National Laboratory.
587
+ Jorge J. More' and David J. Thuente.
588
+
589
+ MINPACK-2 Project. November 1993.
590
+ Argonne National Laboratory and University of Minnesota.
591
+ Brett M. Averick and Jorge J. More'.
592
+
593
+ """
594
+ sgn_dp = np.sign(dp)
595
+ sgn_dx = np.sign(dx)
596
+
597
+ # sgnd = dp * (dx / abs(dx))
598
+ sgnd = sgn_dp * sgn_dx
599
+
600
+ # First case: A higher function value. The minimum is bracketed.
601
+ # If the cubic step is closer to stx than the quadratic step, the
602
+ # cubic step is taken, otherwise the average of the cubic and
603
+ # quadratic steps is taken.
604
+ if fp > fx:
605
+ theta = 3.0 * (fx - fp) / (stp - stx) + dx + dp
606
+ s = max(abs(theta), abs(dx), abs(dp))
607
+ gamma = s * np.sqrt((theta / s) ** 2 - (dx / s) * (dp / s))
608
+ if stp < stx:
609
+ gamma *= -1
610
+ p = (gamma - dx) + theta
611
+ q = ((gamma - dx) + gamma) + dp
612
+ r = p / q
613
+ stpc = stx + r * (stp - stx)
614
+ stpq = stx + ((dx / ((fx - fp) / (stp - stx) + dx)) / 2.0) * (stp - stx)
615
+ if abs(stpc - stx) <= abs(stpq - stx):
616
+ stpf = stpc
617
+ else:
618
+ stpf = stpc + (stpq - stpc) / 2.0
619
+ brackt = True
620
+ elif sgnd < 0.0:
621
+ # Second case: A lower function value and derivatives of opposite
622
+ # sign. The minimum is bracketed. If the cubic step is farther from
623
+ # stp than the secant step, the cubic step is taken, otherwise the
624
+ # secant step is taken.
625
+ theta = 3 * (fx - fp) / (stp - stx) + dx + dp
626
+ s = max(abs(theta), abs(dx), abs(dp))
627
+ gamma = s * np.sqrt((theta / s) ** 2 - (dx / s) * (dp / s))
628
+ if stp > stx:
629
+ gamma *= -1
630
+ p = (gamma - dp) + theta
631
+ q = ((gamma - dp) + gamma) + dx
632
+ r = p / q
633
+ stpc = stp + r * (stx - stp)
634
+ stpq = stp + (dp / (dp - dx)) * (stx - stp)
635
+ if abs(stpc - stp) > abs(stpq - stp):
636
+ stpf = stpc
637
+ else:
638
+ stpf = stpq
639
+ brackt = True
640
+ elif abs(dp) < abs(dx):
641
+ # Third case: A lower function value, derivatives of the same sign,
642
+ # and the magnitude of the derivative decreases.
643
+
644
+ # The cubic step is computed only if the cubic tends to infinity
645
+ # in the direction of the step or if the minimum of the cubic
646
+ # is beyond stp. Otherwise the cubic step is defined to be the
647
+ # secant step.
648
+ theta = 3 * (fx - fp) / (stp - stx) + dx + dp
649
+ s = max(abs(theta), abs(dx), abs(dp))
650
+
651
+ # The case gamma = 0 only arises if the cubic does not tend
652
+ # to infinity in the direction of the step.
653
+ gamma = s * np.sqrt(max(0, (theta / s) ** 2 - (dx / s) * (dp / s)))
654
+ if stp > stx:
655
+ gamma = -gamma
656
+ p = (gamma - dp) + theta
657
+ q = (gamma + (dx - dp)) + gamma
658
+ r = p / q
659
+ if r < 0 and gamma != 0:
660
+ stpc = stp + r * (stx - stp)
661
+ elif stp > stx:
662
+ stpc = stpmax
663
+ else:
664
+ stpc = stpmin
665
+ stpq = stp + (dp / (dp - dx)) * (stx - stp)
666
+
667
+ if brackt:
668
+ # A minimizer has been bracketed. If the cubic step is
669
+ # closer to stp than the secant step, the cubic step is
670
+ # taken, otherwise the secant step is taken.
671
+ if abs(stpc - stp) < abs(stpq - stp):
672
+ stpf = stpc
673
+ else:
674
+ stpf = stpq
675
+
676
+ if stp > stx:
677
+ stpf = min(stp + 0.66 * (sty - stp), stpf)
678
+ else:
679
+ stpf = max(stp + 0.66 * (sty - stp), stpf)
680
+ else:
681
+ # A minimizer has not been bracketed. If the cubic step is
682
+ # farther from stp than the secant step, the cubic step is
683
+ # taken, otherwise the secant step is taken.
684
+ if abs(stpc - stp) > abs(stpq - stp):
685
+ stpf = stpc
686
+ else:
687
+ stpf = stpq
688
+ stpf = np.clip(stpf, stpmin, stpmax)
689
+
690
+ else:
691
+ # Fourth case: A lower function value, derivatives of the same sign,
692
+ # and the magnitude of the derivative does not decrease. If the
693
+ # minimum is not bracketed, the step is either stpmin or stpmax,
694
+ # otherwise the cubic step is taken.
695
+ if brackt:
696
+ theta = 3.0 * (fp - fy) / (sty - stp) + dy + dp
697
+ s = max(abs(theta), abs(dy), abs(dp))
698
+ gamma = s * np.sqrt((theta / s) ** 2 - (dy / s) * (dp / s))
699
+ if stp > sty:
700
+ gamma = -gamma
701
+ p = (gamma - dp) + theta
702
+ q = ((gamma - dp) + gamma) + dy
703
+ r = p / q
704
+ stpc = stp + r * (sty - stp)
705
+ stpf = stpc
706
+ elif stp > stx:
707
+ stpf = stpmax
708
+ else:
709
+ stpf = stpmin
710
+
711
+ # Update the interval which contains a minimizer.
712
+ if fp > fx:
713
+ sty = stp
714
+ fy = fp
715
+ dy = dp
716
+ else:
717
+ if sgnd < 0:
718
+ sty = stx
719
+ fy = fx
720
+ dy = dx
721
+ stx = stp
722
+ fx = fp
723
+ dx = dp
724
+
725
+ # Compute the new step.
726
+ stp = stpf
727
+
728
+ return stx, fx, dx, sty, fy, dy, stp, brackt
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_differentiate.py ADDED
@@ -0,0 +1,856 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: disable-error-code="attr-defined"
2
+ import numpy as np
3
+ import scipy._lib._elementwise_iterative_method as eim
4
+ from scipy._lib._util import _RichResult
5
+
6
+ _EERRORINCREASE = -1 # used in _differentiate
7
+
8
+ def _differentiate_iv(func, x, args, atol, rtol, maxiter, order, initial_step,
9
+ step_factor, step_direction, preserve_shape, callback):
10
+ # Input validation for `_differentiate`
11
+
12
+ if not callable(func):
13
+ raise ValueError('`func` must be callable.')
14
+
15
+ # x has more complex IV that is taken care of during initialization
16
+ x = np.asarray(x)
17
+ dtype = x.dtype if np.issubdtype(x.dtype, np.inexact) else np.float64
18
+
19
+ if not np.iterable(args):
20
+ args = (args,)
21
+
22
+ if atol is None:
23
+ atol = np.finfo(dtype).tiny
24
+
25
+ if rtol is None:
26
+ rtol = np.sqrt(np.finfo(dtype).eps)
27
+
28
+ message = 'Tolerances and step parameters must be non-negative scalars.'
29
+ tols = np.asarray([atol, rtol, initial_step, step_factor])
30
+ if (not np.issubdtype(tols.dtype, np.number)
31
+ or np.any(tols < 0)
32
+ or tols.shape != (4,)):
33
+ raise ValueError(message)
34
+ initial_step, step_factor = tols[2:].astype(dtype)
35
+
36
+ maxiter_int = int(maxiter)
37
+ if maxiter != maxiter_int or maxiter <= 0:
38
+ raise ValueError('`maxiter` must be a positive integer.')
39
+
40
+ order_int = int(order)
41
+ if order_int != order or order <= 0:
42
+ raise ValueError('`order` must be a positive integer.')
43
+
44
+ step_direction = np.sign(step_direction).astype(dtype)
45
+ x, step_direction = np.broadcast_arrays(x, step_direction)
46
+ x, step_direction = x[()], step_direction[()]
47
+
48
+ message = '`preserve_shape` must be True or False.'
49
+ if preserve_shape not in {True, False}:
50
+ raise ValueError(message)
51
+
52
+ if callback is not None and not callable(callback):
53
+ raise ValueError('`callback` must be callable.')
54
+
55
+ return (func, x, args, atol, rtol, maxiter_int, order_int, initial_step,
56
+ step_factor, step_direction, preserve_shape, callback)
57
+
58
+
59
+ def _differentiate(func, x, *, args=(), atol=None, rtol=None, maxiter=10,
60
+ order=8, initial_step=0.5, step_factor=2.0,
61
+ step_direction=0, preserve_shape=False, callback=None):
62
+ """Evaluate the derivative of an elementwise scalar function numerically.
63
+
64
+ Parameters
65
+ ----------
66
+ func : callable
67
+ The function whose derivative is desired. The signature must be::
68
+
69
+ func(x: ndarray, *fargs) -> ndarray
70
+
71
+ where each element of ``x`` is a finite real number and ``fargs`` is a tuple,
72
+ which may contain an arbitrary number of arrays that are broadcastable
73
+ with `x`. ``func`` must be an elementwise function: each element
74
+ ``func(x)[i]`` must equal ``func(x[i])`` for all indices ``i``.
75
+ x : array_like
76
+ Abscissae at which to evaluate the derivative.
77
+ args : tuple, optional
78
+ Additional positional arguments to be passed to `func`. Must be arrays
79
+ broadcastable with `x`. If the callable to be differentiated requires
80
+ arguments that are not broadcastable with `x`, wrap that callable with
81
+ `func`. See Examples.
82
+ atol, rtol : float, optional
83
+ Absolute and relative tolerances for the stopping condition: iteration
84
+ will stop when ``res.error < atol + rtol * abs(res.df)``. The default
85
+ `atol` is the smallest normal number of the appropriate dtype, and
86
+ the default `rtol` is the square root of the precision of the
87
+ appropriate dtype.
88
+ order : int, default: 8
89
+ The (positive integer) order of the finite difference formula to be
90
+ used. Odd integers will be rounded up to the next even integer.
91
+ initial_step : float, default: 0.5
92
+ The (absolute) initial step size for the finite difference derivative
93
+ approximation.
94
+ step_factor : float, default: 2.0
95
+ The factor by which the step size is *reduced* in each iteration; i.e.
96
+ the step size in iteration 1 is ``initial_step/step_factor``. If
97
+ ``step_factor < 1``, subsequent steps will be greater than the initial
98
+ step; this may be useful if steps smaller than some threshold are
99
+ undesirable (e.g. due to subtractive cancellation error).
100
+ maxiter : int, default: 10
101
+ The maximum number of iterations of the algorithm to perform. See
102
+ notes.
103
+ step_direction : array_like
104
+ An array representing the direction of the finite difference steps (for
105
+ use when `x` lies near to the boundary of the domain of the function.)
106
+ Must be broadcastable with `x` and all `args`.
107
+ Where 0 (default), central differences are used; where negative (e.g.
108
+ -1), steps are non-positive; and where positive (e.g. 1), all steps are
109
+ non-negative.
110
+ preserve_shape : bool, default: False
111
+ In the following, "arguments of `func`" refers to the array ``x`` and
112
+ any arrays within ``fargs``. Let ``shape`` be the broadcasted shape
113
+ of `x` and all elements of `args` (which is conceptually
114
+ distinct from ``fargs`` passed into `f`).
115
+
116
+ - When ``preserve_shape=False`` (default), `f` must accept arguments
117
+ of *any* broadcastable shapes.
118
+
119
+ - When ``preserve_shape=True``, `f` must accept arguments of shape
120
+ ``shape`` *or* ``shape + (n,)``, where ``(n,)`` is the number of
121
+ abscissae at which the function is being evaluated.
122
+
123
+ In either case, for each scalar element ``xi`` within `x`, the array
124
+ returned by `f` must include the scalar ``f(xi)`` at the same index.
125
+ Consequently, the shape of the output is always the shape of the input
126
+ ``x``.
127
+
128
+ See Examples.
129
+ callback : callable, optional
130
+ An optional user-supplied function to be called before the first
131
+ iteration and after each iteration.
132
+ Called as ``callback(res)``, where ``res`` is a ``_RichResult``
133
+ similar to that returned by `_differentiate` (but containing the
134
+ current iterate's values of all variables). If `callback` raises a
135
+ ``StopIteration``, the algorithm will terminate immediately and
136
+ `_differentiate` will return a result.
137
+
138
+ Returns
139
+ -------
140
+ res : _RichResult
141
+ An instance of `scipy._lib._util._RichResult` with the following
142
+ attributes. (The descriptions are written as though the values will be
143
+ scalars; however, if `func` returns an array, the outputs will be
144
+ arrays of the same shape.)
145
+
146
+ success : bool
147
+ ``True`` when the algorithm terminated successfully (status ``0``).
148
+ status : int
149
+ An integer representing the exit status of the algorithm.
150
+ ``0`` : The algorithm converged to the specified tolerances.
151
+ ``-1`` : The error estimate increased, so iteration was terminated.
152
+ ``-2`` : The maximum number of iterations was reached.
153
+ ``-3`` : A non-finite value was encountered.
154
+ ``-4`` : Iteration was terminated by `callback`.
155
+ ``1`` : The algorithm is proceeding normally (in `callback` only).
156
+ df : float
157
+ The derivative of `func` at `x`, if the algorithm terminated
158
+ successfully.
159
+ error : float
160
+ An estimate of the error: the magnitude of the difference between
161
+ the current estimate of the derivative and the estimate in the
162
+ previous iteration.
163
+ nit : int
164
+ The number of iterations performed.
165
+ nfev : int
166
+ The number of points at which `func` was evaluated.
167
+ x : float
168
+ The value at which the derivative of `func` was evaluated
169
+ (after broadcasting with `args` and `step_direction`).
170
+
171
+ Notes
172
+ -----
173
+ The implementation was inspired by jacobi [1]_, numdifftools [2]_, and
174
+ DERIVEST [3]_, but the implementation follows the theory of Taylor series
175
+ more straightforwardly (and arguably naively so).
176
+ In the first iteration, the derivative is estimated using a finite
177
+ difference formula of order `order` with maximum step size `initial_step`.
178
+ Each subsequent iteration, the maximum step size is reduced by
179
+ `step_factor`, and the derivative is estimated again until a termination
180
+ condition is reached. The error estimate is the magnitude of the difference
181
+ between the current derivative approximation and that of the previous
182
+ iteration.
183
+
184
+ The stencils of the finite difference formulae are designed such that
185
+ abscissae are "nested": after `func` is evaluated at ``order + 1``
186
+ points in the first iteration, `func` is evaluated at only two new points
187
+ in each subsequent iteration; ``order - 1`` previously evaluated function
188
+ values required by the finite difference formula are reused, and two
189
+ function values (evaluations at the points furthest from `x`) are unused.
190
+
191
+ Step sizes are absolute. When the step size is small relative to the
192
+ magnitude of `x`, precision is lost; for example, if `x` is ``1e20``, the
193
+ default initial step size of ``0.5`` cannot be resolved. Accordingly,
194
+ consider using larger initial step sizes for large magnitudes of `x`.
195
+
196
+ The default tolerances are challenging to satisfy at points where the
197
+ true derivative is exactly zero. If the derivative may be exactly zero,
198
+ consider specifying an absolute tolerance (e.g. ``atol=1e-16``) to
199
+ improve convergence.
200
+
201
+ References
202
+ ----------
203
+ [1]_ Hans Dembinski (@HDembinski). jacobi.
204
+ https://github.com/HDembinski/jacobi
205
+ [2]_ Per A. Brodtkorb and John D'Errico. numdifftools.
206
+ https://numdifftools.readthedocs.io/en/latest/
207
+ [3]_ John D'Errico. DERIVEST: Adaptive Robust Numerical Differentiation.
208
+ https://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation
209
+ [4]_ Numerical Differentition. Wikipedia.
210
+ https://en.wikipedia.org/wiki/Numerical_differentiation
211
+
212
+ Examples
213
+ --------
214
+ Evaluate the derivative of ``np.exp`` at several points ``x``.
215
+
216
+ >>> import numpy as np
217
+ >>> from scipy.optimize._differentiate import _differentiate
218
+ >>> f = np.exp
219
+ >>> df = np.exp # true derivative
220
+ >>> x = np.linspace(1, 2, 5)
221
+ >>> res = _differentiate(f, x)
222
+ >>> res.df # approximation of the derivative
223
+ array([2.71828183, 3.49034296, 4.48168907, 5.75460268, 7.3890561 ])
224
+ >>> res.error # estimate of the error
225
+ array(
226
+ [7.12940817e-12, 9.16688947e-12, 1.17594823e-11, 1.50972568e-11, 1.93942640e-11]
227
+ )
228
+ >>> abs(res.df - df(x)) # true error
229
+ array(
230
+ [3.06421555e-14, 3.01980663e-14, 5.06261699e-14, 6.30606678e-14, 8.34887715e-14]
231
+ )
232
+
233
+ Show the convergence of the approximation as the step size is reduced.
234
+ Each iteration, the step size is reduced by `step_factor`, so for
235
+ sufficiently small initial step, each iteration reduces the error by a
236
+ factor of ``1/step_factor**order`` until finite precision arithmetic
237
+ inhibits further improvement.
238
+
239
+ >>> iter = list(range(1, 12)) # maximum iterations
240
+ >>> hfac = 2 # step size reduction per iteration
241
+ >>> hdir = [-1, 0, 1] # compare left-, central-, and right- steps
242
+ >>> order = 4 # order of differentiation formula
243
+ >>> x = 1
244
+ >>> ref = df(x)
245
+ >>> errors = [] # true error
246
+ >>> for i in iter:
247
+ ... res = _differentiate(f, x, maxiter=i, step_factor=hfac,
248
+ ... step_direction=hdir, order=order,
249
+ ... atol=0, rtol=0) # prevent early termination
250
+ ... errors.append(abs(res.df - ref))
251
+ >>> errors = np.array(errors)
252
+ >>> plt.semilogy(iter, errors[:, 0], label='left differences')
253
+ >>> plt.semilogy(iter, errors[:, 1], label='central differences')
254
+ >>> plt.semilogy(iter, errors[:, 2], label='right differences')
255
+ >>> plt.xlabel('iteration')
256
+ >>> plt.ylabel('error')
257
+ >>> plt.legend()
258
+ >>> plt.show()
259
+ >>> (errors[1, 1] / errors[0, 1], 1 / hfac**order)
260
+ (0.06215223140159822, 0.0625)
261
+
262
+ The implementation is vectorized over `x`, `step_direction`, and `args`.
263
+ The function is evaluated once before the first iteration to perform input
264
+ validation and standardization, and once per iteration thereafter.
265
+
266
+ >>> def f(x, p):
267
+ ... print('here')
268
+ ... f.nit += 1
269
+ ... return x**p
270
+ >>> f.nit = 0
271
+ >>> def df(x, p):
272
+ ... return p*x**(p-1)
273
+ >>> x = np.arange(1, 5)
274
+ >>> p = np.arange(1, 6).reshape((-1, 1))
275
+ >>> hdir = np.arange(-1, 2).reshape((-1, 1, 1))
276
+ >>> res = _differentiate(f, x, args=(p,), step_direction=hdir, maxiter=1)
277
+ >>> np.allclose(res.df, df(x, p))
278
+ True
279
+ >>> res.df.shape
280
+ (3, 5, 4)
281
+ >>> f.nit
282
+ 2
283
+
284
+ By default, `preserve_shape` is False, and therefore the callable
285
+ `f` may be called with arrays of any broadcastable shapes.
286
+ For example:
287
+
288
+ >>> shapes = []
289
+ >>> def f(x, c):
290
+ ... shape = np.broadcast_shapes(x.shape, c.shape)
291
+ ... shapes.append(shape)
292
+ ... return np.sin(c*x)
293
+ >>>
294
+ >>> c = [1, 5, 10, 20]
295
+ >>> res = _differentiate(f, 0, args=(c,))
296
+ >>> shapes
297
+ [(4,), (4, 8), (4, 2), (3, 2), (2, 2), (1, 2)]
298
+
299
+ To understand where these shapes are coming from - and to better
300
+ understand how `_differentiate` computes accurate results - note that
301
+ higher values of ``c`` correspond with higher frequency sinusoids.
302
+ The higher frequency sinusoids make the function's derivative change
303
+ faster, so more function evaluations are required to achieve the target
304
+ accuracy:
305
+
306
+ >>> res.nfev
307
+ array([11, 13, 15, 17])
308
+
309
+ The initial ``shape``, ``(4,)``, corresponds with evaluating the
310
+ function at a single abscissa and all four frequencies; this is used
311
+ for input validation and to determine the size and dtype of the arrays
312
+ that store results. The next shape corresponds with evaluating the
313
+ function at an initial grid of abscissae and all four frequencies.
314
+ Successive calls to the function evaluate the function at two more
315
+ abscissae, increasing the effective order of the approximation by two.
316
+ However, in later function evaluations, the function is evaluated at
317
+ fewer frequencies because the corresponding derivative has already
318
+ converged to the required tolerance. This saves function evaluations to
319
+ improve performance, but it requires the function to accept arguments of
320
+ any shape.
321
+
322
+ "Vector-valued" functions are unlikely to satisfy this requirement.
323
+ For example, consider
324
+
325
+ >>> def f(x):
326
+ ... return [x, np.sin(3*x), x+np.sin(10*x), np.sin(20*x)*(x-1)**2]
327
+
328
+ This integrand is not compatible with `_differentiate` as written; for instance,
329
+ the shape of the output will not be the same as the shape of ``x``. Such a
330
+ function *could* be converted to a compatible form with the introduction of
331
+ additional parameters, but this would be inconvenient. In such cases,
332
+ a simpler solution would be to use `preserve_shape`.
333
+
334
+ >>> shapes = []
335
+ >>> def f(x):
336
+ ... shapes.append(x.shape)
337
+ ... x0, x1, x2, x3 = x
338
+ ... return [x0, np.sin(3*x1), x2+np.sin(10*x2), np.sin(20*x3)*(x3-1)**2]
339
+ >>>
340
+ >>> x = np.zeros(4)
341
+ >>> res = _differentiate(f, x, preserve_shape=True)
342
+ >>> shapes
343
+ [(4,), (4, 8), (4, 2), (4, 2), (4, 2), (4, 2)]
344
+
345
+ Here, the shape of ``x`` is ``(4,)``. With ``preserve_shape=True``, the
346
+ function may be called with argument ``x`` of shape ``(4,)`` or ``(4, n)``,
347
+ and this is what we observe.
348
+
349
+ """
350
+ # TODO (followup):
351
+ # - investigate behavior at saddle points
352
+ # - array initial_step / step_factor?
353
+ # - multivariate functions?
354
+
355
+ res = _differentiate_iv(func, x, args, atol, rtol, maxiter, order, initial_step,
356
+ step_factor, step_direction, preserve_shape, callback)
357
+ (func, x, args, atol, rtol, maxiter, order,
358
+ h0, fac, hdir, preserve_shape, callback) = res
359
+
360
+ # Initialization
361
+ # Since f(x) (no step) is not needed for central differences, it may be
362
+ # possible to eliminate this function evaluation. However, it's useful for
363
+ # input validation and standardization, and everything else is designed to
364
+ # reduce function calls, so let's keep it simple.
365
+ temp = eim._initialize(func, (x,), args, preserve_shape=preserve_shape)
366
+ func, xs, fs, args, shape, dtype, xp = temp
367
+ x, f = xs[0], fs[0]
368
+ df = np.full_like(f, np.nan)
369
+ # Ideally we'd broadcast the shape of `hdir` in `_elementwise_algo_init`, but
370
+ # it's simpler to do it here than to generalize `_elementwise_algo_init` further.
371
+ # `hdir` and `x` are already broadcasted in `_differentiate_iv`, so we know
372
+ # that `hdir` can be broadcasted to the final shape.
373
+ hdir = np.broadcast_to(hdir, shape).flatten()
374
+
375
+ status = np.full_like(x, eim._EINPROGRESS, dtype=int) # in progress
376
+ nit, nfev = 0, 1 # one function evaluations performed above
377
+ # Boolean indices of left, central, right, and (all) one-sided steps
378
+ il = hdir < 0
379
+ ic = hdir == 0
380
+ ir = hdir > 0
381
+ io = il | ir
382
+
383
+ # Most of these attributes are reasonably obvious, but:
384
+ # - `fs` holds all the function values of all active `x`. The zeroth
385
+ # axis corresponds with active points `x`, the first axis corresponds
386
+ # with the different steps (in the order described in
387
+ # `_differentiate_weights`).
388
+ # - `terms` (which could probably use a better name) is half the `order`,
389
+ # which is always even.
390
+ work = _RichResult(x=x, df=df, fs=f[:, np.newaxis], error=np.nan, h=h0,
391
+ df_last=np.nan, error_last=np.nan, h0=h0, fac=fac,
392
+ atol=atol, rtol=rtol, nit=nit, nfev=nfev,
393
+ status=status, dtype=dtype, terms=(order+1)//2,
394
+ hdir=hdir, il=il, ic=ic, ir=ir, io=io)
395
+ # This is the correspondence between terms in the `work` object and the
396
+ # final result. In this case, the mapping is trivial. Note that `success`
397
+ # is prepended automatically.
398
+ res_work_pairs = [('status', 'status'), ('df', 'df'), ('error', 'error'),
399
+ ('nit', 'nit'), ('nfev', 'nfev'), ('x', 'x')]
400
+
401
+ def pre_func_eval(work):
402
+ """Determine the abscissae at which the function needs to be evaluated.
403
+
404
+ See `_differentiate_weights` for a description of the stencil (pattern
405
+ of the abscissae).
406
+
407
+ In the first iteration, there is only one stored function value in
408
+ `work.fs`, `f(x)`, so we need to evaluate at `order` new points. In
409
+ subsequent iterations, we evaluate at two new points. Note that
410
+ `work.x` is always flattened into a 1D array after broadcasting with
411
+ all `args`, so we add a new axis at the end and evaluate all point
412
+ in one call to the function.
413
+
414
+ For improvement:
415
+ - Consider measuring the step size actually taken, since `(x + h) - x`
416
+ is not identically equal to `h` with floating point arithmetic.
417
+ - Adjust the step size automatically if `x` is too big to resolve the
418
+ step.
419
+ - We could probably save some work if there are no central difference
420
+ steps or no one-sided steps.
421
+ """
422
+ n = work.terms # half the order
423
+ h = work.h # step size
424
+ c = work.fac # step reduction factor
425
+ d = c**0.5 # square root of step reduction factor (one-sided stencil)
426
+ # Note - no need to be careful about dtypes until we allocate `x_eval`
427
+
428
+ if work.nit == 0:
429
+ hc = h / c**np.arange(n)
430
+ hc = np.concatenate((-hc[::-1], hc))
431
+ else:
432
+ hc = np.asarray([-h, h]) / c**(n-1)
433
+
434
+ if work.nit == 0:
435
+ hr = h / d**np.arange(2*n)
436
+ else:
437
+ hr = np.asarray([h, h/d]) / c**(n-1)
438
+
439
+ n_new = 2*n if work.nit == 0 else 2 # number of new abscissae
440
+ x_eval = np.zeros((len(work.hdir), n_new), dtype=work.dtype)
441
+ il, ic, ir = work.il, work.ic, work.ir
442
+ x_eval[ir] = work.x[ir, np.newaxis] + hr
443
+ x_eval[ic] = work.x[ic, np.newaxis] + hc
444
+ x_eval[il] = work.x[il, np.newaxis] - hr
445
+ return x_eval
446
+
447
+ def post_func_eval(x, f, work):
448
+ """ Estimate the derivative and error from the function evaluations
449
+
450
+ As in `pre_func_eval`: in the first iteration, there is only one stored
451
+ function value in `work.fs`, `f(x)`, so we need to add the `order` new
452
+ points. In subsequent iterations, we add two new points. The tricky
453
+ part is getting the order to match that of the weights, which is
454
+ described in `_differentiate_weights`.
455
+
456
+ For improvement:
457
+ - Change the order of the weights (and steps in `pre_func_eval`) to
458
+ simplify `work_fc` concatenation and eliminate `fc` concatenation.
459
+ - It would be simple to do one-step Richardson extrapolation with `df`
460
+ and `df_last` to increase the order of the estimate and/or improve
461
+ the error estimate.
462
+ - Process the function evaluations in a more numerically favorable
463
+ way. For instance, combining the pairs of central difference evals
464
+ into a second-order approximation and using Richardson extrapolation
465
+ to produce a higher order approximation seemed to retain accuracy up
466
+ to very high order.
467
+ - Alternatively, we could use `polyfit` like Jacobi. An advantage of
468
+ fitting polynomial to more points than necessary is improved noise
469
+ tolerance.
470
+ """
471
+ n = work.terms
472
+ n_new = n if work.nit == 0 else 1
473
+ il, ic, io = work.il, work.ic, work.io
474
+
475
+ # Central difference
476
+ # `work_fc` is *all* the points at which the function has been evaluated
477
+ # `fc` is the points we're using *this iteration* to produce the estimate
478
+ work_fc = (f[ic, :n_new], work.fs[ic, :], f[ic, -n_new:])
479
+ work_fc = np.concatenate(work_fc, axis=-1)
480
+ if work.nit == 0:
481
+ fc = work_fc
482
+ else:
483
+ fc = (work_fc[:, :n], work_fc[:, n:n+1], work_fc[:, -n:])
484
+ fc = np.concatenate(fc, axis=-1)
485
+
486
+ # One-sided difference
487
+ work_fo = np.concatenate((work.fs[io, :], f[io, :]), axis=-1)
488
+ if work.nit == 0:
489
+ fo = work_fo
490
+ else:
491
+ fo = np.concatenate((work_fo[:, 0:1], work_fo[:, -2*n:]), axis=-1)
492
+
493
+ work.fs = np.zeros((len(ic), work.fs.shape[-1] + 2*n_new))
494
+ work.fs[ic] = work_fc
495
+ work.fs[io] = work_fo
496
+
497
+ wc, wo = _differentiate_weights(work, n)
498
+ work.df_last = work.df.copy()
499
+ work.df[ic] = fc @ wc / work.h
500
+ work.df[io] = fo @ wo / work.h
501
+ work.df[il] *= -1
502
+
503
+ work.h /= work.fac
504
+ work.error_last = work.error
505
+ # Simple error estimate - the difference in derivative estimates between
506
+ # this iteration and the last. This is typically conservative because if
507
+ # convergence has begin, the true error is much closer to the difference
508
+ # between the current estimate and the *next* error estimate. However,
509
+ # we could use Richarson extrapolation to produce an error estimate that
510
+ # is one order higher, and take the difference between that and
511
+ # `work.df` (which would just be constant factor that depends on `fac`.)
512
+ work.error = abs(work.df - work.df_last)
513
+
514
+ def check_termination(work):
515
+ """Terminate due to convergence, non-finite values, or error increase"""
516
+ stop = np.zeros_like(work.df).astype(bool)
517
+
518
+ i = work.error < work.atol + work.rtol*abs(work.df)
519
+ work.status[i] = eim._ECONVERGED
520
+ stop[i] = True
521
+
522
+ if work.nit > 0:
523
+ i = ~((np.isfinite(work.x) & np.isfinite(work.df)) | stop)
524
+ work.df[i], work.status[i] = np.nan, eim._EVALUEERR
525
+ stop[i] = True
526
+
527
+ # With infinite precision, there is a step size below which
528
+ # all smaller step sizes will reduce the error. But in floating point
529
+ # arithmetic, catastrophic cancellation will begin to cause the error
530
+ # to increase again. This heuristic tries to avoid step sizes that are
531
+ # too small. There may be more theoretically sound approaches for
532
+ # detecting a step size that minimizes the total error, but this
533
+ # heuristic seems simple and effective.
534
+ i = (work.error > work.error_last*10) & ~stop
535
+ work.status[i] = _EERRORINCREASE
536
+ stop[i] = True
537
+
538
+ return stop
539
+
540
+ def post_termination_check(work):
541
+ return
542
+
543
+ def customize_result(res, shape):
544
+ return shape
545
+
546
+ return eim._loop(work, callback, shape, maxiter, func, args, dtype,
547
+ pre_func_eval, post_func_eval, check_termination,
548
+ post_termination_check, customize_result, res_work_pairs,
549
+ xp, preserve_shape)
550
+
551
+
552
+ def _differentiate_weights(work, n):
553
+ # This produces the weights of the finite difference formula for a given
554
+ # stencil. In experiments, use of a second-order central difference formula
555
+ # with Richardson extrapolation was more accurate numerically, but it was
556
+ # more complicated, and it would have become even more complicated when
557
+ # adding support for one-sided differences. However, now that all the
558
+ # function evaluation values are stored, they can be processed in whatever
559
+ # way is desired to produce the derivative estimate. We leave alternative
560
+ # approaches to future work. To be more self-contained, here is the theory
561
+ # for deriving the weights below.
562
+ #
563
+ # Recall that the Taylor expansion of a univariate, scalar-values function
564
+ # about a point `x` may be expressed as:
565
+ # f(x + h) = f(x) + f'(x)*h + f''(x)/2!*h**2 + O(h**3)
566
+ # Suppose we evaluate f(x), f(x+h), and f(x-h). We have:
567
+ # f(x) = f(x)
568
+ # f(x + h) = f(x) + f'(x)*h + f''(x)/2!*h**2 + O(h**3)
569
+ # f(x - h) = f(x) - f'(x)*h + f''(x)/2!*h**2 + O(h**3)
570
+ # We can solve for weights `wi` such that:
571
+ # w1*f(x) = w1*(f(x))
572
+ # + w2*f(x + h) = w2*(f(x) + f'(x)*h + f''(x)/2!*h**2) + O(h**3)
573
+ # + w3*f(x - h) = w3*(f(x) - f'(x)*h + f''(x)/2!*h**2) + O(h**3)
574
+ # = 0 + f'(x)*h + 0 + O(h**3)
575
+ # Then
576
+ # f'(x) ~ (w1*f(x) + w2*f(x+h) + w3*f(x-h))/h
577
+ # is a finite difference derivative approximation with error O(h**2),
578
+ # and so it is said to be a "second-order" approximation. Under certain
579
+ # conditions (e.g. well-behaved function, `h` sufficiently small), the
580
+ # error in the approximation will decrease with h**2; that is, if `h` is
581
+ # reduced by a factor of 2, the error is reduced by a factor of 4.
582
+ #
583
+ # By default, we use eighth-order formulae. Our central-difference formula
584
+ # uses abscissae:
585
+ # x-h/c**3, x-h/c**2, x-h/c, x-h, x, x+h, x+h/c, x+h/c**2, x+h/c**3
586
+ # where `c` is the step factor. (Typically, the step factor is greater than
587
+ # one, so the outermost points - as written above - are actually closest to
588
+ # `x`.) This "stencil" is chosen so that each iteration, the step can be
589
+ # reduced by the factor `c`, and most of the function evaluations can be
590
+ # reused with the new step size. For example, in the next iteration, we
591
+ # will have:
592
+ # x-h/c**4, x-h/c**3, x-h/c**2, x-h/c, x, x+h/c, x+h/c**2, x+h/c**3, x+h/c**4
593
+ # We do not reuse `x-h` and `x+h` for the new derivative estimate.
594
+ # While this would increase the order of the formula and thus the
595
+ # theoretical convergence rate, it is also less stable numerically.
596
+ # (As noted above, there are other ways of processing the values that are
597
+ # more stable. Thus, even now we store `f(x-h)` and `f(x+h)` in `work.fs`
598
+ # to simplify future development of this sort of improvement.)
599
+ #
600
+ # The (right) one-sided formula is produced similarly using abscissae
601
+ # x, x+h, x+h/d, x+h/d**2, ..., x+h/d**6, x+h/d**7, x+h/d**7
602
+ # where `d` is the square root of `c`. (The left one-sided formula simply
603
+ # uses -h.) When the step size is reduced by factor `c = d**2`, we have
604
+ # abscissae:
605
+ # x, x+h/d**2, x+h/d**3..., x+h/d**8, x+h/d**9, x+h/d**9
606
+ # `d` is chosen as the square root of `c` so that the rate of the step-size
607
+ # reduction is the same per iteration as in the central difference case.
608
+ # Note that because the central difference formulas are inherently of even
609
+ # order, for simplicity, we use only even-order formulas for one-sided
610
+ # differences, too.
611
+
612
+ # It's possible for the user to specify `fac` in, say, double precision but
613
+ # `x` and `args` in single precision. `fac` gets converted to single
614
+ # precision, but we should always use double precision for the intermediate
615
+ # calculations here to avoid additional error in the weights.
616
+ fac = work.fac.astype(np.float64)
617
+
618
+ # Note that if the user switches back to floating point precision with
619
+ # `x` and `args`, then `fac` will not necessarily equal the (lower
620
+ # precision) cached `_differentiate_weights.fac`, and the weights will
621
+ # need to be recalculated. This could be fixed, but it's late, and of
622
+ # low consequence.
623
+ if fac != _differentiate_weights.fac:
624
+ _differentiate_weights.central = []
625
+ _differentiate_weights.right = []
626
+ _differentiate_weights.fac = fac
627
+
628
+ if len(_differentiate_weights.central) != 2*n + 1:
629
+ # Central difference weights. Consider refactoring this; it could
630
+ # probably be more compact.
631
+ i = np.arange(-n, n + 1)
632
+ p = np.abs(i) - 1. # center point has power `p` -1, but sign `s` is 0
633
+ s = np.sign(i)
634
+
635
+ h = s / fac ** p
636
+ A = np.vander(h, increasing=True).T
637
+ b = np.zeros(2*n + 1)
638
+ b[1] = 1
639
+ weights = np.linalg.solve(A, b)
640
+
641
+ # Enforce identities to improve accuracy
642
+ weights[n] = 0
643
+ for i in range(n):
644
+ weights[-i-1] = -weights[i]
645
+
646
+ # Cache the weights. We only need to calculate them once unless
647
+ # the step factor changes.
648
+ _differentiate_weights.central = weights
649
+
650
+ # One-sided difference weights. The left one-sided weights (with
651
+ # negative steps) are simply the negative of the right one-sided
652
+ # weights, so no need to compute them separately.
653
+ i = np.arange(2*n + 1)
654
+ p = i - 1.
655
+ s = np.sign(i)
656
+
657
+ h = s / np.sqrt(fac) ** p
658
+ A = np.vander(h, increasing=True).T
659
+ b = np.zeros(2 * n + 1)
660
+ b[1] = 1
661
+ weights = np.linalg.solve(A, b)
662
+
663
+ _differentiate_weights.right = weights
664
+
665
+ return (_differentiate_weights.central.astype(work.dtype, copy=False),
666
+ _differentiate_weights.right.astype(work.dtype, copy=False))
667
+ _differentiate_weights.central = []
668
+ _differentiate_weights.right = []
669
+ _differentiate_weights.fac = None
670
+
671
+
672
+ def _jacobian(func, x, *, atol=None, rtol=None, maxiter=10,
673
+ order=8, initial_step=0.5, step_factor=2.0):
674
+ r"""Evaluate the Jacobian of a function numerically.
675
+
676
+ Parameters
677
+ ----------
678
+ func : callable
679
+ The function whose Jacobian is desired. The signature must be::
680
+
681
+ func(x: ndarray) -> ndarray
682
+
683
+ where each element of ``x`` is a finite real. If the function to be
684
+ differentiated accepts additional, arguments wrap it (e.g. using
685
+ `functools.partial` or ``lambda``) and pass the wrapped callable
686
+ into `_jacobian`. See Notes regarding vectorization and the dimensionality
687
+ of the input and output.
688
+ x : array_like
689
+ Points at which to evaluate the Jacobian. Must have at least one dimension.
690
+ See Notes regarding the dimensionality and vectorization.
691
+ atol, rtol : float, optional
692
+ Absolute and relative tolerances for the stopping condition: iteration
693
+ will stop for each element of the Jacobian when
694
+ ``res.error < atol + rtol * abs(res.df)``. The default `atol` is the
695
+ smallest normal number of the appropriate dtype, and the default `rtol`
696
+ is the square root of the precision of the appropriate dtype.
697
+ order : int, default: 8
698
+ The (positive integer) order of the finite difference formula to be
699
+ used. Odd integers will be rounded up to the next even integer.
700
+ initial_step : float, default: 0.5
701
+ The (absolute) initial step size for the finite difference derivative
702
+ approximation.
703
+ step_factor : float, default: 2.0
704
+ The factor by which the step size is *reduced* in each iteration; i.e.
705
+ the step size in iteration 1 is ``initial_step/step_factor``. If
706
+ ``step_factor < 1``, subsequent steps will be greater than the initial
707
+ step; this may be useful if steps smaller than some threshold are
708
+ undesirable (e.g. due to subtractive cancellation error).
709
+ maxiter : int, default: 10
710
+ The maximum number of iterations of the algorithm to perform.
711
+
712
+ Returns
713
+ -------
714
+ res : _RichResult
715
+ An instance of `scipy._lib._util._RichResult` with the following
716
+ attributes.
717
+
718
+ success : bool array
719
+ ``True`` when the algorithm terminated successfully (status ``0``).
720
+ status : int array
721
+ An integer representing the exit status of the algorithm.
722
+ ``0`` : The algorithm converged to the specified tolerances.
723
+ ``-1`` : The error estimate increased, so iteration was terminated.
724
+ ``-2`` : The maximum number of iterations was reached.
725
+ ``-3`` : A non-finite value was encountered.
726
+ ``-4`` : Iteration was terminated by `callback`.
727
+ ``1`` : The algorithm is proceeding normally (in `callback` only).
728
+ df : float array
729
+ The Jacobian of `func` at `x`, if the algorithm terminated
730
+ successfully.
731
+ error : float array
732
+ An estimate of the error: the magnitude of the difference between
733
+ the current estimate of the derivative and the estimate in the
734
+ previous iteration.
735
+ nit : int array
736
+ The number of iterations performed.
737
+ nfev : int array
738
+ The number of points at which `func` was evaluated.
739
+ x : float array
740
+ The value at which the derivative of `func` was evaluated.
741
+
742
+ See Also
743
+ --------
744
+ _differentiate
745
+
746
+ Notes
747
+ -----
748
+ Suppose we wish to evaluate the Jacobian of a function
749
+ :math:`f: \mathbf{R^m} \rightarrow \mathbf{R^n}`, and assign to variables
750
+ ``m`` and ``n`` the positive integer values of :math:`m` and :math:`n`,
751
+ respectively. If we wish to evaluate the Jacobian at a single point,
752
+ then:
753
+
754
+ - argument `x` must be an array of shape ``(m,)``
755
+ - argument `func` must be vectorized to accept an array of shape ``(m, p)``.
756
+ The first axis represents the :math:`m` inputs of :math:`f`; the second
757
+ is for evaluating the function at multiple points in a single call.
758
+ - argument `func` must return an array of shape ``(n, p)``. The first
759
+ axis represents the :math:`n` outputs of :math:`f`; the second
760
+ is for the result of evaluating the function at multiple points.
761
+ - attribute ``df`` of the result object will be an array of shape ``(n, m)``,
762
+ the Jacobian.
763
+
764
+ This function is also vectorized in the sense that the Jacobian can be
765
+ evaluated at ``k`` points in a single call. In this case, `x` would be an
766
+ array of shape ``(m, k)``, `func` would accept an array of shape
767
+ ``(m, k, p)`` and return an array of shape ``(n, k, p)``, and the ``df``
768
+ attribute of the result would have shape ``(n, m, k)``.
769
+
770
+ References
771
+ ----------
772
+ .. [1] Jacobian matrix and determinant, *Wikipedia*,
773
+ https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
774
+
775
+ Examples
776
+ --------
777
+ The Rosenbrock function maps from :math:`\mathbf{R}^m \righarrow \mathbf{R}`;
778
+ the SciPy implementation `scipy.optimize.rosen` is vectorized to accept an
779
+ array of shape ``(m, p)`` and return an array of shape ``m``. Suppose we wish
780
+ to evaluate the Jacobian (AKA the gradient because the function returns a scalar)
781
+ at ``[0.5, 0.5, 0.5]``.
782
+
783
+ >>> import numpy as np
784
+ >>> from scipy.optimize._differentiate import _jacobian as jacobian
785
+ >>> from scipy.optimize import rosen, rosen_der
786
+ >>> m = 3
787
+ >>> x = np.full(m, 0.5)
788
+ >>> res = jacobian(rosen, x)
789
+ >>> ref = rosen_der(x) # reference value of the gradient
790
+ >>> res.df, ref
791
+ (array([-51., -1., 50.]), array([-51., -1., 50.]))
792
+
793
+ As an example of a function with multiple outputs, consider Example 4
794
+ from [1]_.
795
+
796
+ >>> def f(x):
797
+ ... x1, x2, x3 = x ...
798
+ ... return [x1, 5*x3, 4*x2**2 - 2*x3, x3*np.sin(x1)]
799
+
800
+ The true Jacobian is given by:
801
+
802
+ >>> def df(x):
803
+ ... x1, x2, x3 = x
804
+ ... one = np.ones_like(x1)
805
+ ... return [[one, 0*one, 0*one],
806
+ ... [0*one, 0*one, 5*one],
807
+ ... [0*one, 8*x2, -2*one],
808
+ ... [x3*np.cos(x1), 0*one, np.sin(x1)]]
809
+
810
+ Evaluate the Jacobian at an arbitrary point.
811
+
812
+ >>> rng = np.random.default_rng(389252938452)
813
+ >>> x = rng.random(size=3)
814
+ >>> res = jacobian(f, x)
815
+ >>> ref = df(x)
816
+ >>> res.df.shape == (4, 3)
817
+ True
818
+ >>> np.allclose(res.df, ref)
819
+ True
820
+
821
+ Evaluate the Jacobian at 10 arbitrary points in a single call.
822
+
823
+ >>> x = rng.random(size=(3, 10))
824
+ >>> res = jacobian(f, x)
825
+ >>> ref = df(x)
826
+ >>> res.df.shape == (4, 3, 10)
827
+ True
828
+ >>> np.allclose(res.df, ref)
829
+ True
830
+
831
+ """
832
+ x = np.asarray(x)
833
+ int_dtype = np.issubdtype(x.dtype, np.integer)
834
+ x0 = np.asarray(x, dtype=float) if int_dtype else x
835
+
836
+ if x0.ndim < 1:
837
+ message = "Argument `x` must be at least 1-D."
838
+ raise ValueError(message)
839
+
840
+ m = x0.shape[0]
841
+ i = np.arange(m)
842
+
843
+ def wrapped(x):
844
+ p = () if x.ndim == x0.ndim else (x.shape[-1],) # number of abscissae
845
+ new_dims = (1,) if x.ndim == x0.ndim else (1, -1)
846
+ new_shape = (m, m) + x0.shape[1:] + p
847
+ xph = np.expand_dims(x0, new_dims)
848
+ xph = np.broadcast_to(xph, new_shape).copy()
849
+ xph[i, i] = x
850
+ return func(xph)
851
+
852
+ res = _differentiate(wrapped, x, atol=atol, rtol=rtol,
853
+ maxiter=maxiter, order=order, initial_step=initial_step,
854
+ step_factor=step_factor, preserve_shape=True)
855
+ del res.x # the user knows `x`, and the way it gets broadcasted is meaningless here
856
+ return res
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_direct_py.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import ( # noqa: UP035
3
+ Any, Callable, Iterable, TYPE_CHECKING
4
+ )
5
+
6
+ import numpy as np
7
+ from scipy.optimize import OptimizeResult
8
+ from ._constraints import old_bound_to_new, Bounds
9
+ from ._direct import direct as _direct # type: ignore
10
+
11
+ if TYPE_CHECKING:
12
+ import numpy.typing as npt
13
+
14
+ __all__ = ['direct']
15
+
16
+ ERROR_MESSAGES = (
17
+ "Number of function evaluations done is larger than maxfun={}",
18
+ "Number of iterations is larger than maxiter={}",
19
+ "u[i] < l[i] for some i",
20
+ "maxfun is too large",
21
+ "Initialization failed",
22
+ "There was an error in the creation of the sample points",
23
+ "An error occurred while the function was sampled",
24
+ "Maximum number of levels has been reached.",
25
+ "Forced stop",
26
+ "Invalid arguments",
27
+ "Out of memory",
28
+ )
29
+
30
+ SUCCESS_MESSAGES = (
31
+ ("The best function value found is within a relative error={} "
32
+ "of the (known) global optimum f_min"),
33
+ ("The volume of the hyperrectangle containing the lowest function value "
34
+ "found is below vol_tol={}"),
35
+ ("The side length measure of the hyperrectangle containing the lowest "
36
+ "function value found is below len_tol={}"),
37
+ )
38
+
39
+
40
+ def direct(
41
+ func: Callable[[npt.ArrayLike, tuple[Any]], float],
42
+ bounds: Iterable | Bounds,
43
+ *,
44
+ args: tuple = (),
45
+ eps: float = 1e-4,
46
+ maxfun: int | None = None,
47
+ maxiter: int = 1000,
48
+ locally_biased: bool = True,
49
+ f_min: float = -np.inf,
50
+ f_min_rtol: float = 1e-4,
51
+ vol_tol: float = 1e-16,
52
+ len_tol: float = 1e-6,
53
+ callback: Callable[[npt.ArrayLike], None] | None = None
54
+ ) -> OptimizeResult:
55
+ """
56
+ Finds the global minimum of a function using the
57
+ DIRECT algorithm.
58
+
59
+ Parameters
60
+ ----------
61
+ func : callable
62
+ The objective function to be minimized.
63
+ ``func(x, *args) -> float``
64
+ where ``x`` is an 1-D array with shape (n,) and ``args`` is a tuple of
65
+ the fixed parameters needed to completely specify the function.
66
+ bounds : sequence or `Bounds`
67
+ Bounds for variables. There are two ways to specify the bounds:
68
+
69
+ 1. Instance of `Bounds` class.
70
+ 2. ``(min, max)`` pairs for each element in ``x``.
71
+
72
+ args : tuple, optional
73
+ Any additional fixed parameters needed to
74
+ completely specify the objective function.
75
+ eps : float, optional
76
+ Minimal required difference of the objective function values
77
+ between the current best hyperrectangle and the next potentially
78
+ optimal hyperrectangle to be divided. In consequence, `eps` serves as a
79
+ tradeoff between local and global search: the smaller, the more local
80
+ the search becomes. Default is 1e-4.
81
+ maxfun : int or None, optional
82
+ Approximate upper bound on objective function evaluations.
83
+ If `None`, will be automatically set to ``1000 * N`` where ``N``
84
+ represents the number of dimensions. Will be capped if necessary to
85
+ limit DIRECT's RAM usage to app. 1GiB. This will only occur for very
86
+ high dimensional problems and excessive `max_fun`. Default is `None`.
87
+ maxiter : int, optional
88
+ Maximum number of iterations. Default is 1000.
89
+ locally_biased : bool, optional
90
+ If `True` (default), use the locally biased variant of the
91
+ algorithm known as DIRECT_L. If `False`, use the original unbiased
92
+ DIRECT algorithm. For hard problems with many local minima,
93
+ `False` is recommended.
94
+ f_min : float, optional
95
+ Function value of the global optimum. Set this value only if the
96
+ global optimum is known. Default is ``-np.inf``, so that this
97
+ termination criterion is deactivated.
98
+ f_min_rtol : float, optional
99
+ Terminate the optimization once the relative error between the
100
+ current best minimum `f` and the supplied global minimum `f_min`
101
+ is smaller than `f_min_rtol`. This parameter is only used if
102
+ `f_min` is also set. Must lie between 0 and 1. Default is 1e-4.
103
+ vol_tol : float, optional
104
+ Terminate the optimization once the volume of the hyperrectangle
105
+ containing the lowest function value is smaller than `vol_tol`
106
+ of the complete search space. Must lie between 0 and 1.
107
+ Default is 1e-16.
108
+ len_tol : float, optional
109
+ If `locally_biased=True`, terminate the optimization once half of
110
+ the normalized maximal side length of the hyperrectangle containing
111
+ the lowest function value is smaller than `len_tol`.
112
+ If `locally_biased=False`, terminate the optimization once half of
113
+ the normalized diagonal of the hyperrectangle containing the lowest
114
+ function value is smaller than `len_tol`. Must lie between 0 and 1.
115
+ Default is 1e-6.
116
+ callback : callable, optional
117
+ A callback function with signature ``callback(xk)`` where ``xk``
118
+ represents the best function value found so far.
119
+
120
+ Returns
121
+ -------
122
+ res : OptimizeResult
123
+ The optimization result represented as a ``OptimizeResult`` object.
124
+ Important attributes are: ``x`` the solution array, ``success`` a
125
+ Boolean flag indicating if the optimizer exited successfully and
126
+ ``message`` which describes the cause of the termination. See
127
+ `OptimizeResult` for a description of other attributes.
128
+
129
+ Notes
130
+ -----
131
+ DIviding RECTangles (DIRECT) is a deterministic global
132
+ optimization algorithm capable of minimizing a black box function with
133
+ its variables subject to lower and upper bound constraints by sampling
134
+ potential solutions in the search space [1]_. The algorithm starts by
135
+ normalising the search space to an n-dimensional unit hypercube.
136
+ It samples the function at the center of this hypercube and at 2n
137
+ (n is the number of variables) more points, 2 in each coordinate
138
+ direction. Using these function values, DIRECT then divides the
139
+ domain into hyperrectangles, each having exactly one of the sampling
140
+ points as its center. In each iteration, DIRECT chooses, using the `eps`
141
+ parameter which defaults to 1e-4, some of the existing hyperrectangles
142
+ to be further divided. This division process continues until either the
143
+ maximum number of iterations or maximum function evaluations allowed
144
+ are exceeded, or the hyperrectangle containing the minimal value found
145
+ so far becomes small enough. If `f_min` is specified, the optimization
146
+ will stop once this function value is reached within a relative tolerance.
147
+ The locally biased variant of DIRECT (originally called DIRECT_L) [2]_ is
148
+ used by default. It makes the search more locally biased and more
149
+ efficient for cases with only a few local minima.
150
+
151
+ A note about termination criteria: `vol_tol` refers to the volume of the
152
+ hyperrectangle containing the lowest function value found so far. This
153
+ volume decreases exponentially with increasing dimensionality of the
154
+ problem. Therefore `vol_tol` should be decreased to avoid premature
155
+ termination of the algorithm for higher dimensions. This does not hold
156
+ for `len_tol`: it refers either to half of the maximal side length
157
+ (for ``locally_biased=True``) or half of the diagonal of the
158
+ hyperrectangle (for ``locally_biased=False``).
159
+
160
+ This code is based on the DIRECT 2.0.4 Fortran code by Gablonsky et al. at
161
+ https://ctk.math.ncsu.edu/SOFTWARE/DIRECTv204.tar.gz .
162
+ This original version was initially converted via f2c and then cleaned up
163
+ and reorganized by Steven G. Johnson, August 2007, for the NLopt project.
164
+ The `direct` function wraps the C implementation.
165
+
166
+ .. versionadded:: 1.9.0
167
+
168
+ References
169
+ ----------
170
+ .. [1] Jones, D.R., Perttunen, C.D. & Stuckman, B.E. Lipschitzian
171
+ optimization without the Lipschitz constant. J Optim Theory Appl
172
+ 79, 157-181 (1993).
173
+ .. [2] Gablonsky, J., Kelley, C. A Locally-Biased form of the DIRECT
174
+ Algorithm. Journal of Global Optimization 21, 27-37 (2001).
175
+
176
+ Examples
177
+ --------
178
+ The following example is a 2-D problem with four local minima: minimizing
179
+ the Styblinski-Tang function
180
+ (https://en.wikipedia.org/wiki/Test_functions_for_optimization).
181
+
182
+ >>> from scipy.optimize import direct, Bounds
183
+ >>> def styblinski_tang(pos):
184
+ ... x, y = pos
185
+ ... return 0.5 * (x**4 - 16*x**2 + 5*x + y**4 - 16*y**2 + 5*y)
186
+ >>> bounds = Bounds([-4., -4.], [4., 4.])
187
+ >>> result = direct(styblinski_tang, bounds)
188
+ >>> result.x, result.fun, result.nfev
189
+ array([-2.90321597, -2.90321597]), -78.3323279095383, 2011
190
+
191
+ The correct global minimum was found but with a huge number of function
192
+ evaluations (2011). Loosening the termination tolerances `vol_tol` and
193
+ `len_tol` can be used to stop DIRECT earlier.
194
+
195
+ >>> result = direct(styblinski_tang, bounds, len_tol=1e-3)
196
+ >>> result.x, result.fun, result.nfev
197
+ array([-2.9044353, -2.9044353]), -78.33230330754142, 207
198
+
199
+ """
200
+ # convert bounds to new Bounds class if necessary
201
+ if not isinstance(bounds, Bounds):
202
+ if isinstance(bounds, list) or isinstance(bounds, tuple):
203
+ lb, ub = old_bound_to_new(bounds)
204
+ bounds = Bounds(lb, ub)
205
+ else:
206
+ message = ("bounds must be a sequence or "
207
+ "instance of Bounds class")
208
+ raise ValueError(message)
209
+
210
+ lb = np.ascontiguousarray(bounds.lb, dtype=np.float64)
211
+ ub = np.ascontiguousarray(bounds.ub, dtype=np.float64)
212
+
213
+ # validate bounds
214
+ # check that lower bounds are smaller than upper bounds
215
+ if not np.all(lb < ub):
216
+ raise ValueError('Bounds are not consistent min < max')
217
+ # check for infs
218
+ if (np.any(np.isinf(lb)) or np.any(np.isinf(ub))):
219
+ raise ValueError("Bounds must not be inf.")
220
+
221
+ # validate tolerances
222
+ if (vol_tol < 0 or vol_tol > 1):
223
+ raise ValueError("vol_tol must be between 0 and 1.")
224
+ if (len_tol < 0 or len_tol > 1):
225
+ raise ValueError("len_tol must be between 0 and 1.")
226
+ if (f_min_rtol < 0 or f_min_rtol > 1):
227
+ raise ValueError("f_min_rtol must be between 0 and 1.")
228
+
229
+ # validate maxfun and maxiter
230
+ if maxfun is None:
231
+ maxfun = 1000 * lb.shape[0]
232
+ if not isinstance(maxfun, int):
233
+ raise ValueError("maxfun must be of type int.")
234
+ if maxfun < 0:
235
+ raise ValueError("maxfun must be > 0.")
236
+ if not isinstance(maxiter, int):
237
+ raise ValueError("maxiter must be of type int.")
238
+ if maxiter < 0:
239
+ raise ValueError("maxiter must be > 0.")
240
+
241
+ # validate boolean parameters
242
+ if not isinstance(locally_biased, bool):
243
+ raise ValueError("locally_biased must be True or False.")
244
+
245
+ def _func_wrap(x, args=None):
246
+ x = np.asarray(x)
247
+ if args is None:
248
+ f = func(x)
249
+ else:
250
+ f = func(x, *args)
251
+ # always return a float
252
+ return np.asarray(f).item()
253
+
254
+ # TODO: fix disp argument
255
+ x, fun, ret_code, nfev, nit = _direct(
256
+ _func_wrap,
257
+ np.asarray(lb), np.asarray(ub),
258
+ args,
259
+ False, eps, maxfun, maxiter,
260
+ locally_biased,
261
+ f_min, f_min_rtol,
262
+ vol_tol, len_tol, callback
263
+ )
264
+
265
+ format_val = (maxfun, maxiter, f_min_rtol, vol_tol, len_tol)
266
+ if ret_code > 2:
267
+ message = SUCCESS_MESSAGES[ret_code - 3].format(
268
+ format_val[ret_code - 1])
269
+ elif 0 < ret_code <= 2:
270
+ message = ERROR_MESSAGES[ret_code - 1].format(format_val[ret_code - 1])
271
+ elif 0 > ret_code > -100:
272
+ message = ERROR_MESSAGES[abs(ret_code) + 1]
273
+ else:
274
+ message = ERROR_MESSAGES[ret_code + 99]
275
+
276
+ return OptimizeResult(x=np.asarray(x), fun=fun, status=ret_code,
277
+ success=ret_code > 2, message=message,
278
+ nfev=nfev, nit=nit)
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_group_columns.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (99.8 kB). View file
 
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_hessian_update_strategy.py ADDED
@@ -0,0 +1,475 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Hessian update strategies for quasi-Newton optimization methods."""
2
+ import numpy as np
3
+ from numpy.linalg import norm
4
+ from scipy.linalg import get_blas_funcs, issymmetric
5
+ from warnings import warn
6
+
7
+
8
+ __all__ = ['HessianUpdateStrategy', 'BFGS', 'SR1']
9
+
10
+
11
+ class HessianUpdateStrategy:
12
+ """Interface for implementing Hessian update strategies.
13
+
14
+ Many optimization methods make use of Hessian (or inverse Hessian)
15
+ approximations, such as the quasi-Newton methods BFGS, SR1, L-BFGS.
16
+ Some of these approximations, however, do not actually need to store
17
+ the entire matrix or can compute the internal matrix product with a
18
+ given vector in a very efficiently manner. This class serves as an
19
+ abstract interface between the optimization algorithm and the
20
+ quasi-Newton update strategies, giving freedom of implementation
21
+ to store and update the internal matrix as efficiently as possible.
22
+ Different choices of initialization and update procedure will result
23
+ in different quasi-Newton strategies.
24
+
25
+ Four methods should be implemented in derived classes: ``initialize``,
26
+ ``update``, ``dot`` and ``get_matrix``.
27
+
28
+ Notes
29
+ -----
30
+ Any instance of a class that implements this interface,
31
+ can be accepted by the method ``minimize`` and used by
32
+ the compatible solvers to approximate the Hessian (or
33
+ inverse Hessian) used by the optimization algorithms.
34
+ """
35
+
36
+ def initialize(self, n, approx_type):
37
+ """Initialize internal matrix.
38
+
39
+ Allocate internal memory for storing and updating
40
+ the Hessian or its inverse.
41
+
42
+ Parameters
43
+ ----------
44
+ n : int
45
+ Problem dimension.
46
+ approx_type : {'hess', 'inv_hess'}
47
+ Selects either the Hessian or the inverse Hessian.
48
+ When set to 'hess' the Hessian will be stored and updated.
49
+ When set to 'inv_hess' its inverse will be used instead.
50
+ """
51
+ raise NotImplementedError("The method ``initialize(n, approx_type)``"
52
+ " is not implemented.")
53
+
54
+ def update(self, delta_x, delta_grad):
55
+ """Update internal matrix.
56
+
57
+ Update Hessian matrix or its inverse (depending on how 'approx_type'
58
+ is defined) using information about the last evaluated points.
59
+
60
+ Parameters
61
+ ----------
62
+ delta_x : ndarray
63
+ The difference between two points the gradient
64
+ function have been evaluated at: ``delta_x = x2 - x1``.
65
+ delta_grad : ndarray
66
+ The difference between the gradients:
67
+ ``delta_grad = grad(x2) - grad(x1)``.
68
+ """
69
+ raise NotImplementedError("The method ``update(delta_x, delta_grad)``"
70
+ " is not implemented.")
71
+
72
+ def dot(self, p):
73
+ """Compute the product of the internal matrix with the given vector.
74
+
75
+ Parameters
76
+ ----------
77
+ p : array_like
78
+ 1-D array representing a vector.
79
+
80
+ Returns
81
+ -------
82
+ Hp : array
83
+ 1-D represents the result of multiplying the approximation matrix
84
+ by vector p.
85
+ """
86
+ raise NotImplementedError("The method ``dot(p)``"
87
+ " is not implemented.")
88
+
89
+ def get_matrix(self):
90
+ """Return current internal matrix.
91
+
92
+ Returns
93
+ -------
94
+ H : ndarray, shape (n, n)
95
+ Dense matrix containing either the Hessian
96
+ or its inverse (depending on how 'approx_type'
97
+ is defined).
98
+ """
99
+ raise NotImplementedError("The method ``get_matrix(p)``"
100
+ " is not implemented.")
101
+
102
+
103
+ class FullHessianUpdateStrategy(HessianUpdateStrategy):
104
+ """Hessian update strategy with full dimensional internal representation.
105
+ """
106
+ _syr = get_blas_funcs('syr', dtype='d') # Symmetric rank 1 update
107
+ _syr2 = get_blas_funcs('syr2', dtype='d') # Symmetric rank 2 update
108
+ # Symmetric matrix-vector product
109
+ _symv = get_blas_funcs('symv', dtype='d')
110
+
111
+ def __init__(self, init_scale='auto'):
112
+ self.init_scale = init_scale
113
+ # Until initialize is called we can't really use the class,
114
+ # so it makes sense to set everything to None.
115
+ self.first_iteration = None
116
+ self.approx_type = None
117
+ self.B = None
118
+ self.H = None
119
+
120
+ def initialize(self, n, approx_type):
121
+ """Initialize internal matrix.
122
+
123
+ Allocate internal memory for storing and updating
124
+ the Hessian or its inverse.
125
+
126
+ Parameters
127
+ ----------
128
+ n : int
129
+ Problem dimension.
130
+ approx_type : {'hess', 'inv_hess'}
131
+ Selects either the Hessian or the inverse Hessian.
132
+ When set to 'hess' the Hessian will be stored and updated.
133
+ When set to 'inv_hess' its inverse will be used instead.
134
+ """
135
+ self.first_iteration = True
136
+ self.n = n
137
+ self.approx_type = approx_type
138
+ if approx_type not in ('hess', 'inv_hess'):
139
+ raise ValueError("`approx_type` must be 'hess' or 'inv_hess'.")
140
+ # Create matrix
141
+ if self.approx_type == 'hess':
142
+ self.B = np.eye(n, dtype=float)
143
+ else:
144
+ self.H = np.eye(n, dtype=float)
145
+
146
+ def _auto_scale(self, delta_x, delta_grad):
147
+ # Heuristic to scale matrix at first iteration.
148
+ # Described in Nocedal and Wright "Numerical Optimization"
149
+ # p.143 formula (6.20).
150
+ s_norm2 = np.dot(delta_x, delta_x)
151
+ y_norm2 = np.dot(delta_grad, delta_grad)
152
+ ys = np.abs(np.dot(delta_grad, delta_x))
153
+ if ys == 0.0 or y_norm2 == 0 or s_norm2 == 0:
154
+ return 1
155
+ if self.approx_type == 'hess':
156
+ return y_norm2 / ys
157
+ else:
158
+ return ys / y_norm2
159
+
160
+ def _update_implementation(self, delta_x, delta_grad):
161
+ raise NotImplementedError("The method ``_update_implementation``"
162
+ " is not implemented.")
163
+
164
+ def update(self, delta_x, delta_grad):
165
+ """Update internal matrix.
166
+
167
+ Update Hessian matrix or its inverse (depending on how 'approx_type'
168
+ is defined) using information about the last evaluated points.
169
+
170
+ Parameters
171
+ ----------
172
+ delta_x : ndarray
173
+ The difference between two points the gradient
174
+ function have been evaluated at: ``delta_x = x2 - x1``.
175
+ delta_grad : ndarray
176
+ The difference between the gradients:
177
+ ``delta_grad = grad(x2) - grad(x1)``.
178
+ """
179
+ if np.all(delta_x == 0.0):
180
+ return
181
+ if np.all(delta_grad == 0.0):
182
+ warn('delta_grad == 0.0. Check if the approximated '
183
+ 'function is linear. If the function is linear '
184
+ 'better results can be obtained by defining the '
185
+ 'Hessian as zero instead of using quasi-Newton '
186
+ 'approximations.',
187
+ UserWarning, stacklevel=2)
188
+ return
189
+ if self.first_iteration:
190
+ # Get user specific scale
191
+ if isinstance(self.init_scale, str) and self.init_scale == "auto":
192
+ scale = self._auto_scale(delta_x, delta_grad)
193
+ else:
194
+ scale = self.init_scale
195
+
196
+ # Check for complex: numpy will silently cast a complex array to
197
+ # a real one but not so for scalar as it raises a TypeError.
198
+ # Checking here brings a consistent behavior.
199
+ replace = False
200
+ if np.size(scale) == 1:
201
+ # to account for the legacy behavior having the exact same cast
202
+ scale = float(scale)
203
+ elif np.iscomplexobj(scale):
204
+ raise TypeError("init_scale contains complex elements, "
205
+ "must be real.")
206
+ else: # test explicitly for allowed shapes and values
207
+ replace = True
208
+ if self.approx_type == 'hess':
209
+ shape = np.shape(self.B)
210
+ dtype = self.B.dtype
211
+ else:
212
+ shape = np.shape(self.H)
213
+ dtype = self.H.dtype
214
+ # copy, will replace the original
215
+ scale = np.array(scale, dtype=dtype, copy=True)
216
+
217
+ # it has to match the shape of the matrix for the multiplication,
218
+ # no implicit broadcasting is allowed
219
+ if shape != (init_shape := np.shape(scale)):
220
+ raise ValueError("If init_scale is an array, it must have the "
221
+ f"dimensions of the hess/inv_hess: {shape}."
222
+ f" Got {init_shape}.")
223
+ if not issymmetric(scale):
224
+ raise ValueError("If init_scale is an array, it must be"
225
+ " symmetric (passing scipy.linalg.issymmetric)"
226
+ " to be an approximation of a hess/inv_hess.")
227
+
228
+ # Scale initial matrix with ``scale * np.eye(n)`` or replace
229
+ # This is not ideal, we could assign the scale directly in
230
+ # initialize, but we would need to
231
+ if self.approx_type == 'hess':
232
+ if replace:
233
+ self.B = scale
234
+ else:
235
+ self.B *= scale
236
+ else:
237
+ if replace:
238
+ self.H = scale
239
+ else:
240
+ self.H *= scale
241
+ self.first_iteration = False
242
+ self._update_implementation(delta_x, delta_grad)
243
+
244
+ def dot(self, p):
245
+ """Compute the product of the internal matrix with the given vector.
246
+
247
+ Parameters
248
+ ----------
249
+ p : array_like
250
+ 1-D array representing a vector.
251
+
252
+ Returns
253
+ -------
254
+ Hp : array
255
+ 1-D represents the result of multiplying the approximation matrix
256
+ by vector p.
257
+ """
258
+ if self.approx_type == 'hess':
259
+ return self._symv(1, self.B, p)
260
+ else:
261
+ return self._symv(1, self.H, p)
262
+
263
+ def get_matrix(self):
264
+ """Return the current internal matrix.
265
+
266
+ Returns
267
+ -------
268
+ M : ndarray, shape (n, n)
269
+ Dense matrix containing either the Hessian or its inverse
270
+ (depending on how `approx_type` was defined).
271
+ """
272
+ if self.approx_type == 'hess':
273
+ M = np.copy(self.B)
274
+ else:
275
+ M = np.copy(self.H)
276
+ li = np.tril_indices_from(M, k=-1)
277
+ M[li] = M.T[li]
278
+ return M
279
+
280
+
281
+ class BFGS(FullHessianUpdateStrategy):
282
+ """Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy.
283
+
284
+ Parameters
285
+ ----------
286
+ exception_strategy : {'skip_update', 'damp_update'}, optional
287
+ Define how to proceed when the curvature condition is violated.
288
+ Set it to 'skip_update' to just skip the update. Or, alternatively,
289
+ set it to 'damp_update' to interpolate between the actual BFGS
290
+ result and the unmodified matrix. Both exceptions strategies
291
+ are explained in [1]_, p.536-537.
292
+ min_curvature : float
293
+ This number, scaled by a normalization factor, defines the
294
+ minimum curvature ``dot(delta_grad, delta_x)`` allowed to go
295
+ unaffected by the exception strategy. By default is equal to
296
+ 1e-8 when ``exception_strategy = 'skip_update'`` and equal
297
+ to 0.2 when ``exception_strategy = 'damp_update'``.
298
+ init_scale : {float, np.array, 'auto'}
299
+ This parameter can be used to initialize the Hessian or its
300
+ inverse. When a float is given, the relevant array is initialized
301
+ to ``np.eye(n) * init_scale``, where ``n`` is the problem dimension.
302
+ Alternatively, if a precisely ``(n, n)`` shaped, symmetric array is given,
303
+ this array will be used. Otherwise an error is generated.
304
+ Set it to 'auto' in order to use an automatic heuristic for choosing
305
+ the initial scale. The heuristic is described in [1]_, p.143.
306
+ The default is 'auto'.
307
+
308
+ Notes
309
+ -----
310
+ The update is based on the description in [1]_, p.140.
311
+
312
+ References
313
+ ----------
314
+ .. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
315
+ Second Edition (2006).
316
+ """
317
+
318
+ def __init__(self, exception_strategy='skip_update', min_curvature=None,
319
+ init_scale='auto'):
320
+ if exception_strategy == 'skip_update':
321
+ if min_curvature is not None:
322
+ self.min_curvature = min_curvature
323
+ else:
324
+ self.min_curvature = 1e-8
325
+ elif exception_strategy == 'damp_update':
326
+ if min_curvature is not None:
327
+ self.min_curvature = min_curvature
328
+ else:
329
+ self.min_curvature = 0.2
330
+ else:
331
+ raise ValueError("`exception_strategy` must be 'skip_update' "
332
+ "or 'damp_update'.")
333
+
334
+ super().__init__(init_scale)
335
+ self.exception_strategy = exception_strategy
336
+
337
+ def _update_inverse_hessian(self, ys, Hy, yHy, s):
338
+ """Update the inverse Hessian matrix.
339
+
340
+ BFGS update using the formula:
341
+
342
+ ``H <- H + ((H*y).T*y + s.T*y)/(s.T*y)^2 * (s*s.T)
343
+ - 1/(s.T*y) * ((H*y)*s.T + s*(H*y).T)``
344
+
345
+ where ``s = delta_x`` and ``y = delta_grad``. This formula is
346
+ equivalent to (6.17) in [1]_ written in a more efficient way
347
+ for implementation.
348
+
349
+ References
350
+ ----------
351
+ .. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
352
+ Second Edition (2006).
353
+ """
354
+ self.H = self._syr2(-1.0 / ys, s, Hy, a=self.H)
355
+ self.H = self._syr((ys + yHy) / ys ** 2, s, a=self.H)
356
+
357
+ def _update_hessian(self, ys, Bs, sBs, y):
358
+ """Update the Hessian matrix.
359
+
360
+ BFGS update using the formula:
361
+
362
+ ``B <- B - (B*s)*(B*s).T/s.T*(B*s) + y*y^T/s.T*y``
363
+
364
+ where ``s`` is short for ``delta_x`` and ``y`` is short
365
+ for ``delta_grad``. Formula (6.19) in [1]_.
366
+
367
+ References
368
+ ----------
369
+ .. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
370
+ Second Edition (2006).
371
+ """
372
+ self.B = self._syr(1.0 / ys, y, a=self.B)
373
+ self.B = self._syr(-1.0 / sBs, Bs, a=self.B)
374
+
375
+ def _update_implementation(self, delta_x, delta_grad):
376
+ # Auxiliary variables w and z
377
+ if self.approx_type == 'hess':
378
+ w = delta_x
379
+ z = delta_grad
380
+ else:
381
+ w = delta_grad
382
+ z = delta_x
383
+ # Do some common operations
384
+ wz = np.dot(w, z)
385
+ Mw = self.dot(w)
386
+ wMw = Mw.dot(w)
387
+ # Guarantee that wMw > 0 by reinitializing matrix.
388
+ # While this is always true in exact arithmetic,
389
+ # indefinite matrix may appear due to roundoff errors.
390
+ if wMw <= 0.0:
391
+ scale = self._auto_scale(delta_x, delta_grad)
392
+ # Reinitialize matrix
393
+ if self.approx_type == 'hess':
394
+ self.B = scale * np.eye(self.n, dtype=float)
395
+ else:
396
+ self.H = scale * np.eye(self.n, dtype=float)
397
+ # Do common operations for new matrix
398
+ Mw = self.dot(w)
399
+ wMw = Mw.dot(w)
400
+ # Check if curvature condition is violated
401
+ if wz <= self.min_curvature * wMw:
402
+ # If the option 'skip_update' is set
403
+ # we just skip the update when the condition
404
+ # is violated.
405
+ if self.exception_strategy == 'skip_update':
406
+ return
407
+ # If the option 'damp_update' is set we
408
+ # interpolate between the actual BFGS
409
+ # result and the unmodified matrix.
410
+ elif self.exception_strategy == 'damp_update':
411
+ update_factor = (1-self.min_curvature) / (1 - wz/wMw)
412
+ z = update_factor*z + (1-update_factor)*Mw
413
+ wz = np.dot(w, z)
414
+ # Update matrix
415
+ if self.approx_type == 'hess':
416
+ self._update_hessian(wz, Mw, wMw, z)
417
+ else:
418
+ self._update_inverse_hessian(wz, Mw, wMw, z)
419
+
420
+
421
+ class SR1(FullHessianUpdateStrategy):
422
+ """Symmetric-rank-1 Hessian update strategy.
423
+
424
+ Parameters
425
+ ----------
426
+ min_denominator : float
427
+ This number, scaled by a normalization factor,
428
+ defines the minimum denominator magnitude allowed
429
+ in the update. When the condition is violated we skip
430
+ the update. By default uses ``1e-8``.
431
+ init_scale : {float, np.array, 'auto'}, optional
432
+ This parameter can be used to initialize the Hessian or its
433
+ inverse. When a float is given, the relevant array is initialized
434
+ to ``np.eye(n) * init_scale``, where ``n`` is the problem dimension.
435
+ Alternatively, if a precisely ``(n, n)`` shaped, symmetric array is given,
436
+ this array will be used. Otherwise an error is generated.
437
+ Set it to 'auto' in order to use an automatic heuristic for choosing
438
+ the initial scale. The heuristic is described in [1]_, p.143.
439
+ The default is 'auto'.
440
+
441
+ Notes
442
+ -----
443
+ The update is based on the description in [1]_, p.144-146.
444
+
445
+ References
446
+ ----------
447
+ .. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
448
+ Second Edition (2006).
449
+ """
450
+
451
+ def __init__(self, min_denominator=1e-8, init_scale='auto'):
452
+ self.min_denominator = min_denominator
453
+ super().__init__(init_scale)
454
+
455
+ def _update_implementation(self, delta_x, delta_grad):
456
+ # Auxiliary variables w and z
457
+ if self.approx_type == 'hess':
458
+ w = delta_x
459
+ z = delta_grad
460
+ else:
461
+ w = delta_grad
462
+ z = delta_x
463
+ # Do some common operations
464
+ Mw = self.dot(w)
465
+ z_minus_Mw = z - Mw
466
+ denominator = np.dot(w, z_minus_Mw)
467
+ # If the denominator is too small
468
+ # we just skip the update.
469
+ if np.abs(denominator) <= self.min_denominator*norm(w)*norm(z_minus_Mw):
470
+ return
471
+ # Update matrix
472
+ if self.approx_type == 'hess':
473
+ self.B = self._syr(1/denominator, z_minus_Mw, a=self.B)
474
+ else:
475
+ self.H = self._syr(1/denominator, z_minus_Mw, a=self.H)
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_lbfgsb.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0e0cc53dba47fe455ac20e0c5588de5dcd553f4c8df5bc5b11a81d84339d015
3
+ size 524785
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog.py ADDED
@@ -0,0 +1,716 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A top-level linear programming interface.
3
+
4
+ .. versionadded:: 0.15.0
5
+
6
+ Functions
7
+ ---------
8
+ .. autosummary::
9
+ :toctree: generated/
10
+
11
+ linprog
12
+ linprog_verbose_callback
13
+ linprog_terse_callback
14
+
15
+ """
16
+
17
+ import numpy as np
18
+
19
+ from ._optimize import OptimizeResult, OptimizeWarning
20
+ from warnings import warn
21
+ from ._linprog_highs import _linprog_highs
22
+ from ._linprog_ip import _linprog_ip
23
+ from ._linprog_simplex import _linprog_simplex
24
+ from ._linprog_rs import _linprog_rs
25
+ from ._linprog_doc import (_linprog_highs_doc, _linprog_ip_doc, # noqa: F401
26
+ _linprog_rs_doc, _linprog_simplex_doc,
27
+ _linprog_highs_ipm_doc, _linprog_highs_ds_doc)
28
+ from ._linprog_util import (
29
+ _parse_linprog, _presolve, _get_Abc, _LPProblem, _autoscale,
30
+ _postsolve, _check_result, _display_summary)
31
+ from copy import deepcopy
32
+
33
+ __all__ = ['linprog', 'linprog_verbose_callback', 'linprog_terse_callback']
34
+
35
+ __docformat__ = "restructuredtext en"
36
+
37
+ LINPROG_METHODS = [
38
+ 'simplex', 'revised simplex', 'interior-point', 'highs', 'highs-ds', 'highs-ipm'
39
+ ]
40
+
41
+
42
+ def linprog_verbose_callback(res):
43
+ """
44
+ A sample callback function demonstrating the linprog callback interface.
45
+ This callback produces detailed output to sys.stdout before each iteration
46
+ and after the final iteration of the simplex algorithm.
47
+
48
+ Parameters
49
+ ----------
50
+ res : A `scipy.optimize.OptimizeResult` consisting of the following fields:
51
+
52
+ x : 1-D array
53
+ The independent variable vector which optimizes the linear
54
+ programming problem.
55
+ fun : float
56
+ Value of the objective function.
57
+ success : bool
58
+ True if the algorithm succeeded in finding an optimal solution.
59
+ slack : 1-D array
60
+ The values of the slack variables. Each slack variable corresponds
61
+ to an inequality constraint. If the slack is zero, then the
62
+ corresponding constraint is active.
63
+ con : 1-D array
64
+ The (nominally zero) residuals of the equality constraints, that is,
65
+ ``b - A_eq @ x``
66
+ phase : int
67
+ The phase of the optimization being executed. In phase 1 a basic
68
+ feasible solution is sought and the T has an additional row
69
+ representing an alternate objective function.
70
+ status : int
71
+ An integer representing the exit status of the optimization::
72
+
73
+ 0 : Optimization terminated successfully
74
+ 1 : Iteration limit reached
75
+ 2 : Problem appears to be infeasible
76
+ 3 : Problem appears to be unbounded
77
+ 4 : Serious numerical difficulties encountered
78
+
79
+ nit : int
80
+ The number of iterations performed.
81
+ message : str
82
+ A string descriptor of the exit status of the optimization.
83
+ """
84
+ x = res['x']
85
+ fun = res['fun']
86
+ phase = res['phase']
87
+ status = res['status']
88
+ nit = res['nit']
89
+ message = res['message']
90
+ complete = res['complete']
91
+
92
+ saved_printoptions = np.get_printoptions()
93
+ np.set_printoptions(linewidth=500,
94
+ formatter={'float': lambda x: f"{x: 12.4f}"})
95
+ if status:
96
+ print('--------- Simplex Early Exit -------\n')
97
+ print(f'The simplex method exited early with status {status:d}')
98
+ print(message)
99
+ elif complete:
100
+ print('--------- Simplex Complete --------\n')
101
+ print(f'Iterations required: {nit}')
102
+ else:
103
+ print(f'--------- Iteration {nit:d} ---------\n')
104
+
105
+ if nit > 0:
106
+ if phase == 1:
107
+ print('Current Pseudo-Objective Value:')
108
+ else:
109
+ print('Current Objective Value:')
110
+ print('f = ', fun)
111
+ print()
112
+ print('Current Solution Vector:')
113
+ print('x = ', x)
114
+ print()
115
+
116
+ np.set_printoptions(**saved_printoptions)
117
+
118
+
119
+ def linprog_terse_callback(res):
120
+ """
121
+ A sample callback function demonstrating the linprog callback interface.
122
+ This callback produces brief output to sys.stdout before each iteration
123
+ and after the final iteration of the simplex algorithm.
124
+
125
+ Parameters
126
+ ----------
127
+ res : A `scipy.optimize.OptimizeResult` consisting of the following fields:
128
+
129
+ x : 1-D array
130
+ The independent variable vector which optimizes the linear
131
+ programming problem.
132
+ fun : float
133
+ Value of the objective function.
134
+ success : bool
135
+ True if the algorithm succeeded in finding an optimal solution.
136
+ slack : 1-D array
137
+ The values of the slack variables. Each slack variable corresponds
138
+ to an inequality constraint. If the slack is zero, then the
139
+ corresponding constraint is active.
140
+ con : 1-D array
141
+ The (nominally zero) residuals of the equality constraints, that is,
142
+ ``b - A_eq @ x``.
143
+ phase : int
144
+ The phase of the optimization being executed. In phase 1 a basic
145
+ feasible solution is sought and the T has an additional row
146
+ representing an alternate objective function.
147
+ status : int
148
+ An integer representing the exit status of the optimization::
149
+
150
+ 0 : Optimization terminated successfully
151
+ 1 : Iteration limit reached
152
+ 2 : Problem appears to be infeasible
153
+ 3 : Problem appears to be unbounded
154
+ 4 : Serious numerical difficulties encountered
155
+
156
+ nit : int
157
+ The number of iterations performed.
158
+ message : str
159
+ A string descriptor of the exit status of the optimization.
160
+ """
161
+ nit = res['nit']
162
+ x = res['x']
163
+
164
+ if nit == 0:
165
+ print("Iter: X:")
166
+ print(f"{nit: <5d} ", end="")
167
+ print(x)
168
+
169
+
170
+ def linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
171
+ bounds=(0, None), method='highs', callback=None,
172
+ options=None, x0=None, integrality=None):
173
+ r"""
174
+ Linear programming: minimize a linear objective function subject to linear
175
+ equality and inequality constraints.
176
+
177
+ Linear programming solves problems of the following form:
178
+
179
+ .. math::
180
+
181
+ \min_x \ & c^T x \\
182
+ \mbox{such that} \ & A_{ub} x \leq b_{ub},\\
183
+ & A_{eq} x = b_{eq},\\
184
+ & l \leq x \leq u ,
185
+
186
+ where :math:`x` is a vector of decision variables; :math:`c`,
187
+ :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
188
+ :math:`A_{ub}` and :math:`A_{eq}` are matrices.
189
+
190
+ Alternatively, that's:
191
+
192
+ - minimize ::
193
+
194
+ c @ x
195
+
196
+ - such that ::
197
+
198
+ A_ub @ x <= b_ub
199
+ A_eq @ x == b_eq
200
+ lb <= x <= ub
201
+
202
+ Note that by default ``lb = 0`` and ``ub = None``. Other bounds can be
203
+ specified with ``bounds``.
204
+
205
+ Parameters
206
+ ----------
207
+ c : 1-D array
208
+ The coefficients of the linear objective function to be minimized.
209
+ A_ub : 2-D array, optional
210
+ The inequality constraint matrix. Each row of ``A_ub`` specifies the
211
+ coefficients of a linear inequality constraint on ``x``.
212
+ b_ub : 1-D array, optional
213
+ The inequality constraint vector. Each element represents an
214
+ upper bound on the corresponding value of ``A_ub @ x``.
215
+ A_eq : 2-D array, optional
216
+ The equality constraint matrix. Each row of ``A_eq`` specifies the
217
+ coefficients of a linear equality constraint on ``x``.
218
+ b_eq : 1-D array, optional
219
+ The equality constraint vector. Each element of ``A_eq @ x`` must equal
220
+ the corresponding element of ``b_eq``.
221
+ bounds : sequence, optional
222
+ A sequence of ``(min, max)`` pairs for each element in ``x``, defining
223
+ the minimum and maximum values of that decision variable.
224
+ If a single tuple ``(min, max)`` is provided, then ``min`` and ``max``
225
+ will serve as bounds for all decision variables.
226
+ Use ``None`` to indicate that there is no bound. For instance, the
227
+ default bound ``(0, None)`` means that all decision variables are
228
+ non-negative, and the pair ``(None, None)`` means no bounds at all,
229
+ i.e. all variables are allowed to be any real.
230
+ method : str, optional
231
+ The algorithm used to solve the standard form problem.
232
+ :ref:`'highs' <optimize.linprog-highs>` (default),
233
+ :ref:`'highs-ds' <optimize.linprog-highs-ds>`,
234
+ :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`,
235
+ :ref:`'interior-point' <optimize.linprog-interior-point>` (legacy),
236
+ :ref:`'revised simplex' <optimize.linprog-revised_simplex>` (legacy),
237
+ and
238
+ :ref:`'simplex' <optimize.linprog-simplex>` (legacy) are supported.
239
+ The legacy methods are deprecated and will be removed in SciPy 1.11.0.
240
+ callback : callable, optional
241
+ If a callback function is provided, it will be called at least once per
242
+ iteration of the algorithm. The callback function must accept a single
243
+ `scipy.optimize.OptimizeResult` consisting of the following fields:
244
+
245
+ x : 1-D array
246
+ The current solution vector.
247
+ fun : float
248
+ The current value of the objective function ``c @ x``.
249
+ success : bool
250
+ ``True`` when the algorithm has completed successfully.
251
+ slack : 1-D array
252
+ The (nominally positive) values of the slack,
253
+ ``b_ub - A_ub @ x``.
254
+ con : 1-D array
255
+ The (nominally zero) residuals of the equality constraints,
256
+ ``b_eq - A_eq @ x``.
257
+ phase : int
258
+ The phase of the algorithm being executed.
259
+ status : int
260
+ An integer representing the status of the algorithm.
261
+
262
+ ``0`` : Optimization proceeding nominally.
263
+
264
+ ``1`` : Iteration limit reached.
265
+
266
+ ``2`` : Problem appears to be infeasible.
267
+
268
+ ``3`` : Problem appears to be unbounded.
269
+
270
+ ``4`` : Numerical difficulties encountered.
271
+
272
+ nit : int
273
+ The current iteration number.
274
+ message : str
275
+ A string descriptor of the algorithm status.
276
+
277
+ Callback functions are not currently supported by the HiGHS methods.
278
+
279
+ options : dict, optional
280
+ A dictionary of solver options. All methods accept the following
281
+ options:
282
+
283
+ maxiter : int
284
+ Maximum number of iterations to perform.
285
+ Default: see method-specific documentation.
286
+ disp : bool
287
+ Set to ``True`` to print convergence messages.
288
+ Default: ``False``.
289
+ presolve : bool
290
+ Set to ``False`` to disable automatic presolve.
291
+ Default: ``True``.
292
+
293
+ All methods except the HiGHS solvers also accept:
294
+
295
+ tol : float
296
+ A tolerance which determines when a residual is "close enough" to
297
+ zero to be considered exactly zero.
298
+ autoscale : bool
299
+ Set to ``True`` to automatically perform equilibration.
300
+ Consider using this option if the numerical values in the
301
+ constraints are separated by several orders of magnitude.
302
+ Default: ``False``.
303
+ rr : bool
304
+ Set to ``False`` to disable automatic redundancy removal.
305
+ Default: ``True``.
306
+ rr_method : string
307
+ Method used to identify and remove redundant rows from the
308
+ equality constraint matrix after presolve. For problems with
309
+ dense input, the available methods for redundancy removal are:
310
+
311
+ "SVD":
312
+ Repeatedly performs singular value decomposition on
313
+ the matrix, detecting redundant rows based on nonzeros
314
+ in the left singular vectors that correspond with
315
+ zero singular values. May be fast when the matrix is
316
+ nearly full rank.
317
+ "pivot":
318
+ Uses the algorithm presented in [5]_ to identify
319
+ redundant rows.
320
+ "ID":
321
+ Uses a randomized interpolative decomposition.
322
+ Identifies columns of the matrix transpose not used in
323
+ a full-rank interpolative decomposition of the matrix.
324
+ None:
325
+ Uses "svd" if the matrix is nearly full rank, that is,
326
+ the difference between the matrix rank and the number
327
+ of rows is less than five. If not, uses "pivot". The
328
+ behavior of this default is subject to change without
329
+ prior notice.
330
+
331
+ Default: None.
332
+ For problems with sparse input, this option is ignored, and the
333
+ pivot-based algorithm presented in [5]_ is used.
334
+
335
+ For method-specific options, see
336
+ :func:`show_options('linprog') <show_options>`.
337
+
338
+ x0 : 1-D array, optional
339
+ Guess values of the decision variables, which will be refined by
340
+ the optimization algorithm. This argument is currently used only by the
341
+ 'revised simplex' method, and can only be used if `x0` represents a
342
+ basic feasible solution.
343
+
344
+ integrality : 1-D array or int, optional
345
+ Indicates the type of integrality constraint on each decision variable.
346
+
347
+ ``0`` : Continuous variable; no integrality constraint.
348
+
349
+ ``1`` : Integer variable; decision variable must be an integer
350
+ within `bounds`.
351
+
352
+ ``2`` : Semi-continuous variable; decision variable must be within
353
+ `bounds` or take value ``0``.
354
+
355
+ ``3`` : Semi-integer variable; decision variable must be an integer
356
+ within `bounds` or take value ``0``.
357
+
358
+ By default, all variables are continuous.
359
+
360
+ For mixed integrality constraints, supply an array of shape `c.shape`.
361
+ To infer a constraint on each decision variable from shorter inputs,
362
+ the argument will be broadcasted to `c.shape` using `np.broadcast_to`.
363
+
364
+ This argument is currently used only by the ``'highs'`` method and
365
+ ignored otherwise.
366
+
367
+ Returns
368
+ -------
369
+ res : OptimizeResult
370
+ A :class:`scipy.optimize.OptimizeResult` consisting of the fields
371
+ below. Note that the return types of the fields may depend on whether
372
+ the optimization was successful, therefore it is recommended to check
373
+ `OptimizeResult.status` before relying on the other fields:
374
+
375
+ x : 1-D array
376
+ The values of the decision variables that minimizes the
377
+ objective function while satisfying the constraints.
378
+ fun : float
379
+ The optimal value of the objective function ``c @ x``.
380
+ slack : 1-D array
381
+ The (nominally positive) values of the slack variables,
382
+ ``b_ub - A_ub @ x``.
383
+ con : 1-D array
384
+ The (nominally zero) residuals of the equality constraints,
385
+ ``b_eq - A_eq @ x``.
386
+ success : bool
387
+ ``True`` when the algorithm succeeds in finding an optimal
388
+ solution.
389
+ status : int
390
+ An integer representing the exit status of the algorithm.
391
+
392
+ ``0`` : Optimization terminated successfully.
393
+
394
+ ``1`` : Iteration limit reached.
395
+
396
+ ``2`` : Problem appears to be infeasible.
397
+
398
+ ``3`` : Problem appears to be unbounded.
399
+
400
+ ``4`` : Numerical difficulties encountered.
401
+
402
+ nit : int
403
+ The total number of iterations performed in all phases.
404
+ message : str
405
+ A string descriptor of the exit status of the algorithm.
406
+
407
+ See Also
408
+ --------
409
+ show_options : Additional options accepted by the solvers.
410
+
411
+ Notes
412
+ -----
413
+ This section describes the available solvers that can be selected by the
414
+ 'method' parameter.
415
+
416
+ `'highs-ds'` and
417
+ `'highs-ipm'` are interfaces to the
418
+ HiGHS simplex and interior-point method solvers [13]_, respectively.
419
+ `'highs'` (default) chooses between
420
+ the two automatically. These are the fastest linear
421
+ programming solvers in SciPy, especially for large, sparse problems;
422
+ which of these two is faster is problem-dependent.
423
+ The other solvers (`'interior-point'`, `'revised simplex'`, and
424
+ `'simplex'`) are legacy methods and will be removed in SciPy 1.11.0.
425
+
426
+ Method *highs-ds* is a wrapper of the C++ high performance dual
427
+ revised simplex implementation (HSOL) [13]_, [14]_. Method *highs-ipm*
428
+ is a wrapper of a C++ implementation of an **i**\ nterior-\ **p**\ oint
429
+ **m**\ ethod [13]_; it features a crossover routine, so it is as accurate
430
+ as a simplex solver. Method *highs* chooses between the two automatically.
431
+ For new code involving `linprog`, we recommend explicitly choosing one of
432
+ these three method values.
433
+
434
+ .. versionadded:: 1.6.0
435
+
436
+ Method *interior-point* uses the primal-dual path following algorithm
437
+ as outlined in [4]_. This algorithm supports sparse constraint matrices and
438
+ is typically faster than the simplex methods, especially for large, sparse
439
+ problems. Note, however, that the solution returned may be slightly less
440
+ accurate than those of the simplex methods and will not, in general,
441
+ correspond with a vertex of the polytope defined by the constraints.
442
+
443
+ .. versionadded:: 1.0.0
444
+
445
+ Method *revised simplex* uses the revised simplex method as described in
446
+ [9]_, except that a factorization [11]_ of the basis matrix, rather than
447
+ its inverse, is efficiently maintained and used to solve the linear systems
448
+ at each iteration of the algorithm.
449
+
450
+ .. versionadded:: 1.3.0
451
+
452
+ Method *simplex* uses a traditional, full-tableau implementation of
453
+ Dantzig's simplex algorithm [1]_, [2]_ (*not* the
454
+ Nelder-Mead simplex). This algorithm is included for backwards
455
+ compatibility and educational purposes.
456
+
457
+ .. versionadded:: 0.15.0
458
+
459
+ Before applying *interior-point*, *revised simplex*, or *simplex*,
460
+ a presolve procedure based on [8]_ attempts
461
+ to identify trivial infeasibilities, trivial unboundedness, and potential
462
+ problem simplifications. Specifically, it checks for:
463
+
464
+ - rows of zeros in ``A_eq`` or ``A_ub``, representing trivial constraints;
465
+ - columns of zeros in ``A_eq`` `and` ``A_ub``, representing unconstrained
466
+ variables;
467
+ - column singletons in ``A_eq``, representing fixed variables; and
468
+ - column singletons in ``A_ub``, representing simple bounds.
469
+
470
+ If presolve reveals that the problem is unbounded (e.g. an unconstrained
471
+ and unbounded variable has negative cost) or infeasible (e.g., a row of
472
+ zeros in ``A_eq`` corresponds with a nonzero in ``b_eq``), the solver
473
+ terminates with the appropriate status code. Note that presolve terminates
474
+ as soon as any sign of unboundedness is detected; consequently, a problem
475
+ may be reported as unbounded when in reality the problem is infeasible
476
+ (but infeasibility has not been detected yet). Therefore, if it is
477
+ important to know whether the problem is actually infeasible, solve the
478
+ problem again with option ``presolve=False``.
479
+
480
+ If neither infeasibility nor unboundedness are detected in a single pass
481
+ of the presolve, bounds are tightened where possible and fixed
482
+ variables are removed from the problem. Then, linearly dependent rows
483
+ of the ``A_eq`` matrix are removed, (unless they represent an
484
+ infeasibility) to avoid numerical difficulties in the primary solve
485
+ routine. Note that rows that are nearly linearly dependent (within a
486
+ prescribed tolerance) may also be removed, which can change the optimal
487
+ solution in rare cases. If this is a concern, eliminate redundancy from
488
+ your problem formulation and run with option ``rr=False`` or
489
+ ``presolve=False``.
490
+
491
+ Several potential improvements can be made here: additional presolve
492
+ checks outlined in [8]_ should be implemented, the presolve routine should
493
+ be run multiple times (until no further simplifications can be made), and
494
+ more of the efficiency improvements from [5]_ should be implemented in the
495
+ redundancy removal routines.
496
+
497
+ After presolve, the problem is transformed to standard form by converting
498
+ the (tightened) simple bounds to upper bound constraints, introducing
499
+ non-negative slack variables for inequality constraints, and expressing
500
+ unbounded variables as the difference between two non-negative variables.
501
+ Optionally, the problem is automatically scaled via equilibration [12]_.
502
+ The selected algorithm solves the standard form problem, and a
503
+ postprocessing routine converts the result to a solution to the original
504
+ problem.
505
+
506
+ References
507
+ ----------
508
+ .. [1] Dantzig, George B., Linear programming and extensions. Rand
509
+ Corporation Research Study Princeton Univ. Press, Princeton, NJ,
510
+ 1963
511
+ .. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to
512
+ Mathematical Programming", McGraw-Hill, Chapter 4.
513
+ .. [3] Bland, Robert G. New finite pivoting rules for the simplex method.
514
+ Mathematics of Operations Research (2), 1977: pp. 103-107.
515
+ .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
516
+ optimizer for linear programming: an implementation of the
517
+ homogeneous algorithm." High performance optimization. Springer US,
518
+ 2000. 197-232.
519
+ .. [5] Andersen, Erling D. "Finding all linearly dependent rows in
520
+ large-scale linear programming." Optimization Methods and Software
521
+ 6.3 (1995): 219-227.
522
+ .. [6] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear
523
+ Programming based on Newton's Method." Unpublished Course Notes,
524
+ March 2004. Available 2/25/2017 at
525
+ https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf
526
+ .. [7] Fourer, Robert. "Solving Linear Programs by Interior-Point Methods."
527
+ Unpublished Course Notes, August 26, 2005. Available 2/25/2017 at
528
+ http://www.4er.org/CourseNotes/Book%20B/B-III.pdf
529
+ .. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear
530
+ programming." Mathematical Programming 71.2 (1995): 221-245.
531
+ .. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
532
+ programming." Athena Scientific 1 (1997): 997.
533
+ .. [10] Andersen, Erling D., et al. Implementation of interior point
534
+ methods for large scale linear programming. HEC/Universite de
535
+ Geneve, 1996.
536
+ .. [11] Bartels, Richard H. "A stabilization of the simplex method."
537
+ Journal in Numerische Mathematik 16.5 (1971): 414-434.
538
+ .. [12] Tomlin, J. A. "On scaling linear programming problems."
539
+ Mathematical Programming Study 4 (1975): 146-166.
540
+ .. [13] Huangfu, Q., Galabova, I., Feldmeier, M., and Hall, J. A. J.
541
+ "HiGHS - high performance software for linear optimization."
542
+ https://highs.dev/
543
+ .. [14] Huangfu, Q. and Hall, J. A. J. "Parallelizing the dual revised
544
+ simplex method." Mathematical Programming Computation, 10 (1),
545
+ 119-142, 2018. DOI: 10.1007/s12532-017-0130-5
546
+
547
+ Examples
548
+ --------
549
+ Consider the following problem:
550
+
551
+ .. math::
552
+
553
+ \min_{x_0, x_1} \ -x_0 + 4x_1 & \\
554
+ \mbox{such that} \ -3x_0 + x_1 & \leq 6,\\
555
+ -x_0 - 2x_1 & \geq -4,\\
556
+ x_1 & \geq -3.
557
+
558
+ The problem is not presented in the form accepted by `linprog`. This is
559
+ easily remedied by converting the "greater than" inequality
560
+ constraint to a "less than" inequality constraint by
561
+ multiplying both sides by a factor of :math:`-1`. Note also that the last
562
+ constraint is really the simple bound :math:`-3 \leq x_1 \leq \infty`.
563
+ Finally, since there are no bounds on :math:`x_0`, we must explicitly
564
+ specify the bounds :math:`-\infty \leq x_0 \leq \infty`, as the
565
+ default is for variables to be non-negative. After collecting coeffecients
566
+ into arrays and tuples, the input for this problem is:
567
+
568
+ >>> from scipy.optimize import linprog
569
+ >>> c = [-1, 4]
570
+ >>> A = [[-3, 1], [1, 2]]
571
+ >>> b = [6, 4]
572
+ >>> x0_bounds = (None, None)
573
+ >>> x1_bounds = (-3, None)
574
+ >>> res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds])
575
+ >>> res.fun
576
+ -22.0
577
+ >>> res.x
578
+ array([10., -3.])
579
+ >>> res.message
580
+ 'Optimization terminated successfully. (HiGHS Status 7: Optimal)'
581
+
582
+ The marginals (AKA dual values / shadow prices / Lagrange multipliers)
583
+ and residuals (slacks) are also available.
584
+
585
+ >>> res.ineqlin
586
+ residual: [ 3.900e+01 0.000e+00]
587
+ marginals: [-0.000e+00 -1.000e+00]
588
+
589
+ For example, because the marginal associated with the second inequality
590
+ constraint is -1, we expect the optimal value of the objective function
591
+ to decrease by ``eps`` if we add a small amount ``eps`` to the right hand
592
+ side of the second inequality constraint:
593
+
594
+ >>> eps = 0.05
595
+ >>> b[1] += eps
596
+ >>> linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds]).fun
597
+ -22.05
598
+
599
+ Also, because the residual on the first inequality constraint is 39, we
600
+ can decrease the right hand side of the first constraint by 39 without
601
+ affecting the optimal solution.
602
+
603
+ >>> b = [6, 4] # reset to original values
604
+ >>> b[0] -= 39
605
+ >>> linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds]).fun
606
+ -22.0
607
+
608
+ """
609
+
610
+ meth = method.lower()
611
+ methods = {"highs", "highs-ds", "highs-ipm",
612
+ "simplex", "revised simplex", "interior-point"}
613
+
614
+ if meth not in methods:
615
+ raise ValueError(f"Unknown solver '{method}'")
616
+
617
+ if x0 is not None and meth != "revised simplex":
618
+ warning_message = "x0 is used only when method is 'revised simplex'. "
619
+ warn(warning_message, OptimizeWarning, stacklevel=2)
620
+
621
+ if np.any(integrality) and not meth == "highs":
622
+ integrality = None
623
+ warning_message = ("Only `method='highs'` supports integer "
624
+ "constraints. Ignoring `integrality`.")
625
+ warn(warning_message, OptimizeWarning, stacklevel=2)
626
+ elif np.any(integrality):
627
+ integrality = np.broadcast_to(integrality, np.shape(c))
628
+ else:
629
+ integrality = None
630
+
631
+ lp = _LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality)
632
+ lp, solver_options = _parse_linprog(lp, options, meth)
633
+ tol = solver_options.get('tol', 1e-9)
634
+
635
+ # Give unmodified problem to HiGHS
636
+ if meth.startswith('highs'):
637
+ if callback is not None:
638
+ raise NotImplementedError("HiGHS solvers do not support the "
639
+ "callback interface.")
640
+ highs_solvers = {'highs-ipm': 'ipm', 'highs-ds': 'simplex',
641
+ 'highs': None}
642
+
643
+ sol = _linprog_highs(lp, solver=highs_solvers[meth],
644
+ **solver_options)
645
+ sol['status'], sol['message'] = (
646
+ _check_result(sol['x'], sol['fun'], sol['status'], sol['slack'],
647
+ sol['con'], lp.bounds, tol, sol['message'],
648
+ integrality))
649
+ sol['success'] = sol['status'] == 0
650
+ return OptimizeResult(sol)
651
+
652
+ warn(f"`method='{meth}'` is deprecated and will be removed in SciPy "
653
+ "1.11.0. Please use one of the HiGHS solvers (e.g. "
654
+ "`method='highs'`) in new code.", DeprecationWarning, stacklevel=2)
655
+
656
+ iteration = 0
657
+ complete = False # will become True if solved in presolve
658
+ undo = []
659
+
660
+ # Keep the original arrays to calculate slack/residuals for original
661
+ # problem.
662
+ lp_o = deepcopy(lp)
663
+
664
+ # Solve trivial problem, eliminate variables, tighten bounds, etc.
665
+ rr_method = solver_options.pop('rr_method', None) # need to pop these;
666
+ rr = solver_options.pop('rr', True) # they're not passed to methods
667
+ c0 = 0 # we might get a constant term in the objective
668
+ if solver_options.pop('presolve', True):
669
+ (lp, c0, x, undo, complete, status, message) = _presolve(lp, rr,
670
+ rr_method,
671
+ tol)
672
+
673
+ C, b_scale = 1, 1 # for trivial unscaling if autoscale is not used
674
+ postsolve_args = (lp_o._replace(bounds=lp.bounds), undo, C, b_scale)
675
+
676
+ if not complete:
677
+ A, b, c, c0, x0 = _get_Abc(lp, c0)
678
+ if solver_options.pop('autoscale', False):
679
+ A, b, c, x0, C, b_scale = _autoscale(A, b, c, x0)
680
+ postsolve_args = postsolve_args[:-2] + (C, b_scale)
681
+
682
+ if meth == 'simplex':
683
+ x, status, message, iteration = _linprog_simplex(
684
+ c, c0=c0, A=A, b=b, callback=callback,
685
+ postsolve_args=postsolve_args, **solver_options)
686
+ elif meth == 'interior-point':
687
+ x, status, message, iteration = _linprog_ip(
688
+ c, c0=c0, A=A, b=b, callback=callback,
689
+ postsolve_args=postsolve_args, **solver_options)
690
+ elif meth == 'revised simplex':
691
+ x, status, message, iteration = _linprog_rs(
692
+ c, c0=c0, A=A, b=b, x0=x0, callback=callback,
693
+ postsolve_args=postsolve_args, **solver_options)
694
+
695
+ # Eliminate artificial variables, re-introduce presolved variables, etc.
696
+ disp = solver_options.get('disp', False)
697
+
698
+ x, fun, slack, con = _postsolve(x, postsolve_args, complete)
699
+
700
+ status, message = _check_result(x, fun, status, slack, con, lp_o.bounds,
701
+ tol, message, integrality)
702
+
703
+ if disp:
704
+ _display_summary(message, status, fun, iteration)
705
+
706
+ sol = {
707
+ 'x': x,
708
+ 'fun': fun,
709
+ 'slack': slack,
710
+ 'con': con,
711
+ 'status': status,
712
+ 'message': message,
713
+ 'nit': iteration,
714
+ 'success': status == 0}
715
+
716
+ return OptimizeResult(sol)
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog_highs.py ADDED
@@ -0,0 +1,440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """HiGHS Linear Optimization Methods
2
+
3
+ Interface to HiGHS linear optimization software.
4
+ https://highs.dev/
5
+
6
+ .. versionadded:: 1.5.0
7
+
8
+ References
9
+ ----------
10
+ .. [1] Q. Huangfu and J.A.J. Hall. "Parallelizing the dual revised simplex
11
+ method." Mathematical Programming Computation, 10 (1), 119-142,
12
+ 2018. DOI: 10.1007/s12532-017-0130-5
13
+
14
+ """
15
+
16
+ import inspect
17
+ import numpy as np
18
+ from ._optimize import OptimizeWarning, OptimizeResult
19
+ from warnings import warn
20
+ from ._highs._highs_wrapper import _highs_wrapper
21
+ from ._highs._highs_constants import (
22
+ CONST_INF,
23
+ MESSAGE_LEVEL_NONE,
24
+ HIGHS_OBJECTIVE_SENSE_MINIMIZE,
25
+
26
+ MODEL_STATUS_NOTSET,
27
+ MODEL_STATUS_LOAD_ERROR,
28
+ MODEL_STATUS_MODEL_ERROR,
29
+ MODEL_STATUS_PRESOLVE_ERROR,
30
+ MODEL_STATUS_SOLVE_ERROR,
31
+ MODEL_STATUS_POSTSOLVE_ERROR,
32
+ MODEL_STATUS_MODEL_EMPTY,
33
+ MODEL_STATUS_OPTIMAL,
34
+ MODEL_STATUS_INFEASIBLE,
35
+ MODEL_STATUS_UNBOUNDED_OR_INFEASIBLE,
36
+ MODEL_STATUS_UNBOUNDED,
37
+ MODEL_STATUS_REACHED_DUAL_OBJECTIVE_VALUE_UPPER_BOUND
38
+ as MODEL_STATUS_RDOVUB,
39
+ MODEL_STATUS_REACHED_OBJECTIVE_TARGET,
40
+ MODEL_STATUS_REACHED_TIME_LIMIT,
41
+ MODEL_STATUS_REACHED_ITERATION_LIMIT,
42
+
43
+ HIGHS_SIMPLEX_STRATEGY_DUAL,
44
+
45
+ HIGHS_SIMPLEX_CRASH_STRATEGY_OFF,
46
+
47
+ HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_CHOOSE,
48
+ HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DANTZIG,
49
+ HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DEVEX,
50
+ HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE,
51
+ )
52
+ from scipy.sparse import csc_matrix, vstack, issparse
53
+
54
+
55
+ def _highs_to_scipy_status_message(highs_status, highs_message):
56
+ """Converts HiGHS status number/message to SciPy status number/message"""
57
+
58
+ scipy_statuses_messages = {
59
+ None: (4, "HiGHS did not provide a status code. "),
60
+ MODEL_STATUS_NOTSET: (4, ""),
61
+ MODEL_STATUS_LOAD_ERROR: (4, ""),
62
+ MODEL_STATUS_MODEL_ERROR: (2, ""),
63
+ MODEL_STATUS_PRESOLVE_ERROR: (4, ""),
64
+ MODEL_STATUS_SOLVE_ERROR: (4, ""),
65
+ MODEL_STATUS_POSTSOLVE_ERROR: (4, ""),
66
+ MODEL_STATUS_MODEL_EMPTY: (4, ""),
67
+ MODEL_STATUS_RDOVUB: (4, ""),
68
+ MODEL_STATUS_REACHED_OBJECTIVE_TARGET: (4, ""),
69
+ MODEL_STATUS_OPTIMAL: (0, "Optimization terminated successfully. "),
70
+ MODEL_STATUS_REACHED_TIME_LIMIT: (1, "Time limit reached. "),
71
+ MODEL_STATUS_REACHED_ITERATION_LIMIT: (1, "Iteration limit reached. "),
72
+ MODEL_STATUS_INFEASIBLE: (2, "The problem is infeasible. "),
73
+ MODEL_STATUS_UNBOUNDED: (3, "The problem is unbounded. "),
74
+ MODEL_STATUS_UNBOUNDED_OR_INFEASIBLE: (4, "The problem is unbounded "
75
+ "or infeasible. ")}
76
+ unrecognized = (4, "The HiGHS status code was not recognized. ")
77
+ scipy_status, scipy_message = (
78
+ scipy_statuses_messages.get(highs_status, unrecognized))
79
+ scipy_message = (f"{scipy_message}"
80
+ f"(HiGHS Status {highs_status}: {highs_message})")
81
+ return scipy_status, scipy_message
82
+
83
+
84
+ def _replace_inf(x):
85
+ # Replace `np.inf` with CONST_INF
86
+ infs = np.isinf(x)
87
+ with np.errstate(invalid="ignore"):
88
+ x[infs] = np.sign(x[infs])*CONST_INF
89
+ return x
90
+
91
+
92
+ def _convert_to_highs_enum(option, option_str, choices):
93
+ # If option is in the choices we can look it up, if not use
94
+ # the default value taken from function signature and warn:
95
+ try:
96
+ return choices[option.lower()]
97
+ except AttributeError:
98
+ return choices[option]
99
+ except KeyError:
100
+ sig = inspect.signature(_linprog_highs)
101
+ default_str = sig.parameters[option_str].default
102
+ warn(f"Option {option_str} is {option}, but only values in "
103
+ f"{set(choices.keys())} are allowed. Using default: "
104
+ f"{default_str}.",
105
+ OptimizeWarning, stacklevel=3)
106
+ return choices[default_str]
107
+
108
+
109
+ def _linprog_highs(lp, solver, time_limit=None, presolve=True,
110
+ disp=False, maxiter=None,
111
+ dual_feasibility_tolerance=None,
112
+ primal_feasibility_tolerance=None,
113
+ ipm_optimality_tolerance=None,
114
+ simplex_dual_edge_weight_strategy=None,
115
+ mip_rel_gap=None,
116
+ mip_max_nodes=None,
117
+ **unknown_options):
118
+ r"""
119
+ Solve the following linear programming problem using one of the HiGHS
120
+ solvers:
121
+
122
+ User-facing documentation is in _linprog_doc.py.
123
+
124
+ Parameters
125
+ ----------
126
+ lp : _LPProblem
127
+ A ``scipy.optimize._linprog_util._LPProblem`` ``namedtuple``.
128
+ solver : "ipm" or "simplex" or None
129
+ Which HiGHS solver to use. If ``None``, "simplex" will be used.
130
+
131
+ Options
132
+ -------
133
+ maxiter : int
134
+ The maximum number of iterations to perform in either phase. For
135
+ ``solver='ipm'``, this does not include the number of crossover
136
+ iterations. Default is the largest possible value for an ``int``
137
+ on the platform.
138
+ disp : bool
139
+ Set to ``True`` if indicators of optimization status are to be printed
140
+ to the console each iteration; default ``False``.
141
+ time_limit : float
142
+ The maximum time in seconds allotted to solve the problem; default is
143
+ the largest possible value for a ``double`` on the platform.
144
+ presolve : bool
145
+ Presolve attempts to identify trivial infeasibilities,
146
+ identify trivial unboundedness, and simplify the problem before
147
+ sending it to the main solver. It is generally recommended
148
+ to keep the default setting ``True``; set to ``False`` if presolve is
149
+ to be disabled.
150
+ dual_feasibility_tolerance : double
151
+ Dual feasibility tolerance. Default is 1e-07.
152
+ The minimum of this and ``primal_feasibility_tolerance``
153
+ is used for the feasibility tolerance when ``solver='ipm'``.
154
+ primal_feasibility_tolerance : double
155
+ Primal feasibility tolerance. Default is 1e-07.
156
+ The minimum of this and ``dual_feasibility_tolerance``
157
+ is used for the feasibility tolerance when ``solver='ipm'``.
158
+ ipm_optimality_tolerance : double
159
+ Optimality tolerance for ``solver='ipm'``. Default is 1e-08.
160
+ Minimum possible value is 1e-12 and must be smaller than the largest
161
+ possible value for a ``double`` on the platform.
162
+ simplex_dual_edge_weight_strategy : str (default: None)
163
+ Strategy for simplex dual edge weights. The default, ``None``,
164
+ automatically selects one of the following.
165
+
166
+ ``'dantzig'`` uses Dantzig's original strategy of choosing the most
167
+ negative reduced cost.
168
+
169
+ ``'devex'`` uses the strategy described in [15]_.
170
+
171
+ ``steepest`` uses the exact steepest edge strategy as described in
172
+ [16]_.
173
+
174
+ ``'steepest-devex'`` begins with the exact steepest edge strategy
175
+ until the computation is too costly or inexact and then switches to
176
+ the devex method.
177
+
178
+ Currently, using ``None`` always selects ``'steepest-devex'``, but this
179
+ may change as new options become available.
180
+
181
+ mip_max_nodes : int
182
+ The maximum number of nodes allotted to solve the problem; default is
183
+ the largest possible value for a ``HighsInt`` on the platform.
184
+ Ignored if not using the MIP solver.
185
+ unknown_options : dict
186
+ Optional arguments not used by this particular solver. If
187
+ ``unknown_options`` is non-empty, a warning is issued listing all
188
+ unused options.
189
+
190
+ Returns
191
+ -------
192
+ sol : dict
193
+ A dictionary consisting of the fields:
194
+
195
+ x : 1D array
196
+ The values of the decision variables that minimizes the
197
+ objective function while satisfying the constraints.
198
+ fun : float
199
+ The optimal value of the objective function ``c @ x``.
200
+ slack : 1D array
201
+ The (nominally positive) values of the slack,
202
+ ``b_ub - A_ub @ x``.
203
+ con : 1D array
204
+ The (nominally zero) residuals of the equality constraints,
205
+ ``b_eq - A_eq @ x``.
206
+ success : bool
207
+ ``True`` when the algorithm succeeds in finding an optimal
208
+ solution.
209
+ status : int
210
+ An integer representing the exit status of the algorithm.
211
+
212
+ ``0`` : Optimization terminated successfully.
213
+
214
+ ``1`` : Iteration or time limit reached.
215
+
216
+ ``2`` : Problem appears to be infeasible.
217
+
218
+ ``3`` : Problem appears to be unbounded.
219
+
220
+ ``4`` : The HiGHS solver ran into a problem.
221
+
222
+ message : str
223
+ A string descriptor of the exit status of the algorithm.
224
+ nit : int
225
+ The total number of iterations performed.
226
+ For ``solver='simplex'``, this includes iterations in all
227
+ phases. For ``solver='ipm'``, this does not include
228
+ crossover iterations.
229
+ crossover_nit : int
230
+ The number of primal/dual pushes performed during the
231
+ crossover routine for ``solver='ipm'``. This is ``0``
232
+ for ``solver='simplex'``.
233
+ ineqlin : OptimizeResult
234
+ Solution and sensitivity information corresponding to the
235
+ inequality constraints, `b_ub`. A dictionary consisting of the
236
+ fields:
237
+
238
+ residual : np.ndnarray
239
+ The (nominally positive) values of the slack variables,
240
+ ``b_ub - A_ub @ x``. This quantity is also commonly
241
+ referred to as "slack".
242
+
243
+ marginals : np.ndarray
244
+ The sensitivity (partial derivative) of the objective
245
+ function with respect to the right-hand side of the
246
+ inequality constraints, `b_ub`.
247
+
248
+ eqlin : OptimizeResult
249
+ Solution and sensitivity information corresponding to the
250
+ equality constraints, `b_eq`. A dictionary consisting of the
251
+ fields:
252
+
253
+ residual : np.ndarray
254
+ The (nominally zero) residuals of the equality constraints,
255
+ ``b_eq - A_eq @ x``.
256
+
257
+ marginals : np.ndarray
258
+ The sensitivity (partial derivative) of the objective
259
+ function with respect to the right-hand side of the
260
+ equality constraints, `b_eq`.
261
+
262
+ lower, upper : OptimizeResult
263
+ Solution and sensitivity information corresponding to the
264
+ lower and upper bounds on decision variables, `bounds`.
265
+
266
+ residual : np.ndarray
267
+ The (nominally positive) values of the quantity
268
+ ``x - lb`` (lower) or ``ub - x`` (upper).
269
+
270
+ marginals : np.ndarray
271
+ The sensitivity (partial derivative) of the objective
272
+ function with respect to the lower and upper
273
+ `bounds`.
274
+
275
+ mip_node_count : int
276
+ The number of subproblems or "nodes" solved by the MILP
277
+ solver. Only present when `integrality` is not `None`.
278
+
279
+ mip_dual_bound : float
280
+ The MILP solver's final estimate of the lower bound on the
281
+ optimal solution. Only present when `integrality` is not
282
+ `None`.
283
+
284
+ mip_gap : float
285
+ The difference between the final objective function value
286
+ and the final dual bound, scaled by the final objective
287
+ function value. Only present when `integrality` is not
288
+ `None`.
289
+
290
+ Notes
291
+ -----
292
+ The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
293
+ `marginals`, or partial derivatives of the objective function with respect
294
+ to the right-hand side of each constraint. These partial derivatives are
295
+ also referred to as "Lagrange multipliers", "dual values", and
296
+ "shadow prices". The sign convention of `marginals` is opposite that
297
+ of Lagrange multipliers produced by many nonlinear solvers.
298
+
299
+ References
300
+ ----------
301
+ .. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code."
302
+ Mathematical programming 5.1 (1973): 1-28.
303
+ .. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge
304
+ simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
305
+ """
306
+ if unknown_options:
307
+ message = (f"Unrecognized options detected: {unknown_options}. "
308
+ "These will be passed to HiGHS verbatim.")
309
+ warn(message, OptimizeWarning, stacklevel=3)
310
+
311
+ # Map options to HiGHS enum values
312
+ simplex_dual_edge_weight_strategy_enum = _convert_to_highs_enum(
313
+ simplex_dual_edge_weight_strategy,
314
+ 'simplex_dual_edge_weight_strategy',
315
+ choices={'dantzig': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DANTZIG,
316
+ 'devex': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DEVEX,
317
+ 'steepest-devex': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_CHOOSE,
318
+ 'steepest':
319
+ HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE,
320
+ None: None})
321
+
322
+ c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp
323
+
324
+ lb, ub = bounds.T.copy() # separate bounds, copy->C-cntgs
325
+ # highs_wrapper solves LHS <= A*x <= RHS, not equality constraints
326
+ with np.errstate(invalid="ignore"):
327
+ lhs_ub = -np.ones_like(b_ub)*np.inf # LHS of UB constraints is -inf
328
+ rhs_ub = b_ub # RHS of UB constraints is b_ub
329
+ lhs_eq = b_eq # Equality constraint is inequality
330
+ rhs_eq = b_eq # constraint with LHS=RHS
331
+ lhs = np.concatenate((lhs_ub, lhs_eq))
332
+ rhs = np.concatenate((rhs_ub, rhs_eq))
333
+
334
+ if issparse(A_ub) or issparse(A_eq):
335
+ A = vstack((A_ub, A_eq))
336
+ else:
337
+ A = np.vstack((A_ub, A_eq))
338
+ A = csc_matrix(A)
339
+
340
+ options = {
341
+ 'presolve': presolve,
342
+ 'sense': HIGHS_OBJECTIVE_SENSE_MINIMIZE,
343
+ 'solver': solver,
344
+ 'time_limit': time_limit,
345
+ 'highs_debug_level': MESSAGE_LEVEL_NONE,
346
+ 'dual_feasibility_tolerance': dual_feasibility_tolerance,
347
+ 'ipm_optimality_tolerance': ipm_optimality_tolerance,
348
+ 'log_to_console': disp,
349
+ 'mip_max_nodes': mip_max_nodes,
350
+ 'output_flag': disp,
351
+ 'primal_feasibility_tolerance': primal_feasibility_tolerance,
352
+ 'simplex_dual_edge_weight_strategy':
353
+ simplex_dual_edge_weight_strategy_enum,
354
+ 'simplex_strategy': HIGHS_SIMPLEX_STRATEGY_DUAL,
355
+ 'simplex_crash_strategy': HIGHS_SIMPLEX_CRASH_STRATEGY_OFF,
356
+ 'ipm_iteration_limit': maxiter,
357
+ 'simplex_iteration_limit': maxiter,
358
+ 'mip_rel_gap': mip_rel_gap,
359
+ }
360
+ options.update(unknown_options)
361
+
362
+ # np.inf doesn't work; use very large constant
363
+ rhs = _replace_inf(rhs)
364
+ lhs = _replace_inf(lhs)
365
+ lb = _replace_inf(lb)
366
+ ub = _replace_inf(ub)
367
+
368
+ if integrality is None or np.sum(integrality) == 0:
369
+ integrality = np.empty(0)
370
+ else:
371
+ integrality = np.array(integrality)
372
+
373
+ res = _highs_wrapper(c, A.indptr, A.indices, A.data, lhs, rhs,
374
+ lb, ub, integrality.astype(np.uint8), options)
375
+
376
+ # HiGHS represents constraints as lhs/rhs, so
377
+ # Ax + s = b => Ax = b - s
378
+ # and we need to split up s by A_ub and A_eq
379
+ if 'slack' in res:
380
+ slack = res['slack']
381
+ con = np.array(slack[len(b_ub):])
382
+ slack = np.array(slack[:len(b_ub)])
383
+ else:
384
+ slack, con = None, None
385
+
386
+ # lagrange multipliers for equalities/inequalities and upper/lower bounds
387
+ if 'lambda' in res:
388
+ lamda = res['lambda']
389
+ marg_ineqlin = np.array(lamda[:len(b_ub)])
390
+ marg_eqlin = np.array(lamda[len(b_ub):])
391
+ marg_upper = np.array(res['marg_bnds'][1, :])
392
+ marg_lower = np.array(res['marg_bnds'][0, :])
393
+ else:
394
+ marg_ineqlin, marg_eqlin = None, None
395
+ marg_upper, marg_lower = None, None
396
+
397
+ # this needs to be updated if we start choosing the solver intelligently
398
+
399
+ # Convert to scipy-style status and message
400
+ highs_status = res.get('status', None)
401
+ highs_message = res.get('message', None)
402
+ status, message = _highs_to_scipy_status_message(highs_status,
403
+ highs_message)
404
+
405
+ x = np.array(res['x']) if 'x' in res else None
406
+ sol = {'x': x,
407
+ 'slack': slack,
408
+ 'con': con,
409
+ 'ineqlin': OptimizeResult({
410
+ 'residual': slack,
411
+ 'marginals': marg_ineqlin,
412
+ }),
413
+ 'eqlin': OptimizeResult({
414
+ 'residual': con,
415
+ 'marginals': marg_eqlin,
416
+ }),
417
+ 'lower': OptimizeResult({
418
+ 'residual': None if x is None else x - lb,
419
+ 'marginals': marg_lower,
420
+ }),
421
+ 'upper': OptimizeResult({
422
+ 'residual': None if x is None else ub - x,
423
+ 'marginals': marg_upper
424
+ }),
425
+ 'fun': res.get('fun'),
426
+ 'status': status,
427
+ 'success': res['status'] == MODEL_STATUS_OPTIMAL,
428
+ 'message': message,
429
+ 'nit': res.get('simplex_nit', 0) or res.get('ipm_nit', 0),
430
+ 'crossover_nit': res.get('crossover_nit'),
431
+ }
432
+
433
+ if np.any(x) and integrality is not None:
434
+ sol.update({
435
+ 'mip_node_count': res.get('mip_node_count', 0),
436
+ 'mip_dual_bound': res.get('mip_dual_bound', 0.0),
437
+ 'mip_gap': res.get('mip_gap', 0.0),
438
+ })
439
+
440
+ return sol
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog_ip.py ADDED
@@ -0,0 +1,1126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Interior-point method for linear programming
2
+
3
+ The *interior-point* method uses the primal-dual path following algorithm
4
+ outlined in [1]_. This algorithm supports sparse constraint matrices and
5
+ is typically faster than the simplex methods, especially for large, sparse
6
+ problems. Note, however, that the solution returned may be slightly less
7
+ accurate than those of the simplex methods and will not, in general,
8
+ correspond with a vertex of the polytope defined by the constraints.
9
+
10
+ .. versionadded:: 1.0.0
11
+
12
+ References
13
+ ----------
14
+ .. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
15
+ optimizer for linear programming: an implementation of the
16
+ homogeneous algorithm." High performance optimization. Springer US,
17
+ 2000. 197-232.
18
+ """
19
+ # Author: Matt Haberland
20
+
21
+ import numpy as np
22
+ import scipy as sp
23
+ import scipy.sparse as sps
24
+ from warnings import warn
25
+ from scipy.linalg import LinAlgError
26
+ from ._optimize import OptimizeWarning, OptimizeResult, _check_unknown_options
27
+ from ._linprog_util import _postsolve
28
+ has_umfpack = True
29
+ has_cholmod = True
30
+ try:
31
+ import sksparse # noqa: F401
32
+ from sksparse.cholmod import cholesky as cholmod # noqa: F401
33
+ from sksparse.cholmod import analyze as cholmod_analyze
34
+ except ImportError:
35
+ has_cholmod = False
36
+ try:
37
+ import scikits.umfpack # test whether to use factorized # noqa: F401
38
+ except ImportError:
39
+ has_umfpack = False
40
+
41
+
42
+ def _get_solver(M, sparse=False, lstsq=False, sym_pos=True,
43
+ cholesky=True, permc_spec='MMD_AT_PLUS_A'):
44
+ """
45
+ Given solver options, return a handle to the appropriate linear system
46
+ solver.
47
+
48
+ Parameters
49
+ ----------
50
+ M : 2-D array
51
+ As defined in [4] Equation 8.31
52
+ sparse : bool (default = False)
53
+ True if the system to be solved is sparse. This is typically set
54
+ True when the original ``A_ub`` and ``A_eq`` arrays are sparse.
55
+ lstsq : bool (default = False)
56
+ True if the system is ill-conditioned and/or (nearly) singular and
57
+ thus a more robust least-squares solver is desired. This is sometimes
58
+ needed as the solution is approached.
59
+ sym_pos : bool (default = True)
60
+ True if the system matrix is symmetric positive definite
61
+ Sometimes this needs to be set false as the solution is approached,
62
+ even when the system should be symmetric positive definite, due to
63
+ numerical difficulties.
64
+ cholesky : bool (default = True)
65
+ True if the system is to be solved by Cholesky, rather than LU,
66
+ decomposition. This is typically faster unless the problem is very
67
+ small or prone to numerical difficulties.
68
+ permc_spec : str (default = 'MMD_AT_PLUS_A')
69
+ Sparsity preservation strategy used by SuperLU. Acceptable values are:
70
+
71
+ - ``NATURAL``: natural ordering.
72
+ - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
73
+ - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
74
+ - ``COLAMD``: approximate minimum degree column ordering.
75
+
76
+ See SuperLU documentation.
77
+
78
+ Returns
79
+ -------
80
+ solve : function
81
+ Handle to the appropriate solver function
82
+
83
+ """
84
+ try:
85
+ if sparse:
86
+ if lstsq:
87
+ def solve(r, sym_pos=False):
88
+ return sps.linalg.lsqr(M, r)[0]
89
+ elif cholesky:
90
+ try:
91
+ # Will raise an exception in the first call,
92
+ # or when the matrix changes due to a new problem
93
+ _get_solver.cholmod_factor.cholesky_inplace(M)
94
+ except Exception:
95
+ _get_solver.cholmod_factor = cholmod_analyze(M)
96
+ _get_solver.cholmod_factor.cholesky_inplace(M)
97
+ solve = _get_solver.cholmod_factor
98
+ else:
99
+ if has_umfpack and sym_pos:
100
+ solve = sps.linalg.factorized(M)
101
+ else: # factorized doesn't pass permc_spec
102
+ solve = sps.linalg.splu(M, permc_spec=permc_spec).solve
103
+
104
+ else:
105
+ if lstsq: # sometimes necessary as solution is approached
106
+ def solve(r):
107
+ return sp.linalg.lstsq(M, r)[0]
108
+ elif cholesky:
109
+ L = sp.linalg.cho_factor(M)
110
+
111
+ def solve(r):
112
+ return sp.linalg.cho_solve(L, r)
113
+ else:
114
+ # this seems to cache the matrix factorization, so solving
115
+ # with multiple right hand sides is much faster
116
+ def solve(r, sym_pos=sym_pos):
117
+ if sym_pos:
118
+ return sp.linalg.solve(M, r, assume_a="pos")
119
+ else:
120
+ return sp.linalg.solve(M, r)
121
+ # There are many things that can go wrong here, and it's hard to say
122
+ # what all of them are. It doesn't really matter: if the matrix can't be
123
+ # factorized, return None. get_solver will be called again with different
124
+ # inputs, and a new routine will try to factorize the matrix.
125
+ except KeyboardInterrupt:
126
+ raise
127
+ except Exception:
128
+ return None
129
+ return solve
130
+
131
+
132
+ def _get_delta(A, b, c, x, y, z, tau, kappa, gamma, eta, sparse=False,
133
+ lstsq=False, sym_pos=True, cholesky=True, pc=True, ip=False,
134
+ permc_spec='MMD_AT_PLUS_A'):
135
+ """
136
+ Given standard form problem defined by ``A``, ``b``, and ``c``;
137
+ current variable estimates ``x``, ``y``, ``z``, ``tau``, and ``kappa``;
138
+ algorithmic parameters ``gamma and ``eta;
139
+ and options ``sparse``, ``lstsq``, ``sym_pos``, ``cholesky``, ``pc``
140
+ (predictor-corrector), and ``ip`` (initial point improvement),
141
+ get the search direction for increments to the variable estimates.
142
+
143
+ Parameters
144
+ ----------
145
+ As defined in [4], except:
146
+ sparse : bool
147
+ True if the system to be solved is sparse. This is typically set
148
+ True when the original ``A_ub`` and ``A_eq`` arrays are sparse.
149
+ lstsq : bool
150
+ True if the system is ill-conditioned and/or (nearly) singular and
151
+ thus a more robust least-squares solver is desired. This is sometimes
152
+ needed as the solution is approached.
153
+ sym_pos : bool
154
+ True if the system matrix is symmetric positive definite
155
+ Sometimes this needs to be set false as the solution is approached,
156
+ even when the system should be symmetric positive definite, due to
157
+ numerical difficulties.
158
+ cholesky : bool
159
+ True if the system is to be solved by Cholesky, rather than LU,
160
+ decomposition. This is typically faster unless the problem is very
161
+ small or prone to numerical difficulties.
162
+ pc : bool
163
+ True if the predictor-corrector method of Mehrota is to be used. This
164
+ is almost always (if not always) beneficial. Even though it requires
165
+ the solution of an additional linear system, the factorization
166
+ is typically (implicitly) reused so solution is efficient, and the
167
+ number of algorithm iterations is typically reduced.
168
+ ip : bool
169
+ True if the improved initial point suggestion due to [4] section 4.3
170
+ is desired. It's unclear whether this is beneficial.
171
+ permc_spec : str (default = 'MMD_AT_PLUS_A')
172
+ (Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
173
+ True``.) A matrix is factorized in each iteration of the algorithm.
174
+ This option specifies how to permute the columns of the matrix for
175
+ sparsity preservation. Acceptable values are:
176
+
177
+ - ``NATURAL``: natural ordering.
178
+ - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
179
+ - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
180
+ - ``COLAMD``: approximate minimum degree column ordering.
181
+
182
+ This option can impact the convergence of the
183
+ interior point algorithm; test different values to determine which
184
+ performs best for your problem. For more information, refer to
185
+ ``scipy.sparse.linalg.splu``.
186
+
187
+ Returns
188
+ -------
189
+ Search directions as defined in [4]
190
+
191
+ References
192
+ ----------
193
+ .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
194
+ optimizer for linear programming: an implementation of the
195
+ homogeneous algorithm." High performance optimization. Springer US,
196
+ 2000. 197-232.
197
+
198
+ """
199
+ if A.shape[0] == 0:
200
+ # If there are no constraints, some solvers fail (understandably)
201
+ # rather than returning empty solution. This gets the job done.
202
+ sparse, lstsq, sym_pos, cholesky = False, False, True, False
203
+ n_x = len(x)
204
+
205
+ # [4] Equation 8.8
206
+ r_P = b * tau - A.dot(x)
207
+ r_D = c * tau - A.T.dot(y) - z
208
+ r_G = c.dot(x) - b.transpose().dot(y) + kappa
209
+ mu = (x.dot(z) + tau * kappa) / (n_x + 1)
210
+
211
+ # Assemble M from [4] Equation 8.31
212
+ Dinv = x / z
213
+
214
+ if sparse:
215
+ M = A.dot(sps.diags(Dinv, 0, format="csc").dot(A.T))
216
+ else:
217
+ M = A.dot(Dinv.reshape(-1, 1) * A.T)
218
+ solve = _get_solver(M, sparse, lstsq, sym_pos, cholesky, permc_spec)
219
+
220
+ # pc: "predictor-corrector" [4] Section 4.1
221
+ # In development this option could be turned off
222
+ # but it always seems to improve performance substantially
223
+ n_corrections = 1 if pc else 0
224
+
225
+ i = 0
226
+ alpha, d_x, d_z, d_tau, d_kappa = 0, 0, 0, 0, 0
227
+ while i <= n_corrections:
228
+ # Reference [4] Eq. 8.6
229
+ rhatp = eta(gamma) * r_P
230
+ rhatd = eta(gamma) * r_D
231
+ rhatg = eta(gamma) * r_G
232
+
233
+ # Reference [4] Eq. 8.7
234
+ rhatxs = gamma * mu - x * z
235
+ rhattk = gamma * mu - tau * kappa
236
+
237
+ if i == 1:
238
+ if ip: # if the correction is to get "initial point"
239
+ # Reference [4] Eq. 8.23
240
+ rhatxs = ((1 - alpha) * gamma * mu -
241
+ x * z - alpha**2 * d_x * d_z)
242
+ rhattk = ((1 - alpha) * gamma * mu -
243
+ tau * kappa -
244
+ alpha**2 * d_tau * d_kappa)
245
+ else: # if the correction is for "predictor-corrector"
246
+ # Reference [4] Eq. 8.13
247
+ rhatxs -= d_x * d_z
248
+ rhattk -= d_tau * d_kappa
249
+
250
+ # sometimes numerical difficulties arise as the solution is approached
251
+ # this loop tries to solve the equations using a sequence of functions
252
+ # for solve. For dense systems, the order is:
253
+ # 1. scipy.linalg.cho_factor/scipy.linalg.cho_solve,
254
+ # 2. scipy.linalg.solve w/ sym_pos = True,
255
+ # 3. scipy.linalg.solve w/ sym_pos = False, and if all else fails
256
+ # 4. scipy.linalg.lstsq
257
+ # For sparse systems, the order is:
258
+ # 1. sksparse.cholmod.cholesky (if available)
259
+ # 2. scipy.sparse.linalg.factorized (if umfpack available)
260
+ # 3. scipy.sparse.linalg.splu
261
+ # 4. scipy.sparse.linalg.lsqr
262
+ solved = False
263
+ while not solved:
264
+ try:
265
+ # [4] Equation 8.28
266
+ p, q = _sym_solve(Dinv, A, c, b, solve)
267
+ # [4] Equation 8.29
268
+ u, v = _sym_solve(Dinv, A, rhatd -
269
+ (1 / x) * rhatxs, rhatp, solve)
270
+ if np.any(np.isnan(p)) or np.any(np.isnan(q)):
271
+ raise LinAlgError
272
+ solved = True
273
+ except (LinAlgError, ValueError, TypeError) as e:
274
+ # Usually this doesn't happen. If it does, it happens when
275
+ # there are redundant constraints or when approaching the
276
+ # solution. If so, change solver.
277
+ if cholesky:
278
+ cholesky = False
279
+ warn(
280
+ "Solving system with option 'cholesky':True "
281
+ "failed. It is normal for this to happen "
282
+ "occasionally, especially as the solution is "
283
+ "approached. However, if you see this frequently, "
284
+ "consider setting option 'cholesky' to False.",
285
+ OptimizeWarning, stacklevel=5)
286
+ elif sym_pos:
287
+ sym_pos = False
288
+ warn(
289
+ "Solving system with option 'sym_pos':True "
290
+ "failed. It is normal for this to happen "
291
+ "occasionally, especially as the solution is "
292
+ "approached. However, if you see this frequently, "
293
+ "consider setting option 'sym_pos' to False.",
294
+ OptimizeWarning, stacklevel=5)
295
+ elif not lstsq:
296
+ lstsq = True
297
+ warn(
298
+ "Solving system with option 'sym_pos':False "
299
+ "failed. This may happen occasionally, "
300
+ "especially as the solution is "
301
+ "approached. However, if you see this frequently, "
302
+ "your problem may be numerically challenging. "
303
+ "If you cannot improve the formulation, consider "
304
+ "setting 'lstsq' to True. Consider also setting "
305
+ "`presolve` to True, if it is not already.",
306
+ OptimizeWarning, stacklevel=5)
307
+ else:
308
+ raise e
309
+ solve = _get_solver(M, sparse, lstsq, sym_pos,
310
+ cholesky, permc_spec)
311
+ # [4] Results after 8.29
312
+ d_tau = ((rhatg + 1 / tau * rhattk - (-c.dot(u) + b.dot(v))) /
313
+ (1 / tau * kappa + (-c.dot(p) + b.dot(q))))
314
+ d_x = u + p * d_tau
315
+ d_y = v + q * d_tau
316
+
317
+ # [4] Relations between after 8.25 and 8.26
318
+ d_z = (1 / x) * (rhatxs - z * d_x)
319
+ d_kappa = 1 / tau * (rhattk - kappa * d_tau)
320
+
321
+ # [4] 8.12 and "Let alpha be the maximal possible step..." before 8.23
322
+ alpha = _get_step(x, d_x, z, d_z, tau, d_tau, kappa, d_kappa, 1)
323
+ if ip: # initial point - see [4] 4.4
324
+ gamma = 10
325
+ else: # predictor-corrector, [4] definition after 8.12
326
+ beta1 = 0.1 # [4] pg. 220 (Table 8.1)
327
+ gamma = (1 - alpha)**2 * min(beta1, (1 - alpha))
328
+ i += 1
329
+
330
+ return d_x, d_y, d_z, d_tau, d_kappa
331
+
332
+
333
+ def _sym_solve(Dinv, A, r1, r2, solve):
334
+ """
335
+ An implementation of [4] equation 8.31 and 8.32
336
+
337
+ References
338
+ ----------
339
+ .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
340
+ optimizer for linear programming: an implementation of the
341
+ homogeneous algorithm." High performance optimization. Springer US,
342
+ 2000. 197-232.
343
+
344
+ """
345
+ # [4] 8.31
346
+ r = r2 + A.dot(Dinv * r1)
347
+ v = solve(r)
348
+ # [4] 8.32
349
+ u = Dinv * (A.T.dot(v) - r1)
350
+ return u, v
351
+
352
+
353
+ def _get_step(x, d_x, z, d_z, tau, d_tau, kappa, d_kappa, alpha0):
354
+ """
355
+ An implementation of [4] equation 8.21
356
+
357
+ References
358
+ ----------
359
+ .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
360
+ optimizer for linear programming: an implementation of the
361
+ homogeneous algorithm." High performance optimization. Springer US,
362
+ 2000. 197-232.
363
+
364
+ """
365
+ # [4] 4.3 Equation 8.21, ignoring 8.20 requirement
366
+ # same step is taken in primal and dual spaces
367
+ # alpha0 is basically beta3 from [4] Table 8.1, but instead of beta3
368
+ # the value 1 is used in Mehrota corrector and initial point correction
369
+ i_x = d_x < 0
370
+ i_z = d_z < 0
371
+ alpha_x = alpha0 * np.min(x[i_x] / -d_x[i_x]) if np.any(i_x) else 1
372
+ alpha_tau = alpha0 * tau / -d_tau if d_tau < 0 else 1
373
+ alpha_z = alpha0 * np.min(z[i_z] / -d_z[i_z]) if np.any(i_z) else 1
374
+ alpha_kappa = alpha0 * kappa / -d_kappa if d_kappa < 0 else 1
375
+ alpha = np.min([1, alpha_x, alpha_tau, alpha_z, alpha_kappa])
376
+ return alpha
377
+
378
+
379
+ def _get_message(status):
380
+ """
381
+ Given problem status code, return a more detailed message.
382
+
383
+ Parameters
384
+ ----------
385
+ status : int
386
+ An integer representing the exit status of the optimization::
387
+
388
+ 0 : Optimization terminated successfully
389
+ 1 : Iteration limit reached
390
+ 2 : Problem appears to be infeasible
391
+ 3 : Problem appears to be unbounded
392
+ 4 : Serious numerical difficulties encountered
393
+
394
+ Returns
395
+ -------
396
+ message : str
397
+ A string descriptor of the exit status of the optimization.
398
+
399
+ """
400
+ messages = (
401
+ ["Optimization terminated successfully.",
402
+ "The iteration limit was reached before the algorithm converged.",
403
+ "The algorithm terminated successfully and determined that the "
404
+ "problem is infeasible.",
405
+ "The algorithm terminated successfully and determined that the "
406
+ "problem is unbounded.",
407
+ "Numerical difficulties were encountered before the problem "
408
+ "converged. Please check your problem formulation for errors, "
409
+ "independence of linear equality constraints, and reasonable "
410
+ "scaling and matrix condition numbers. If you continue to "
411
+ "encounter this error, please submit a bug report."
412
+ ])
413
+ return messages[status]
414
+
415
+
416
+ def _do_step(x, y, z, tau, kappa, d_x, d_y, d_z, d_tau, d_kappa, alpha):
417
+ """
418
+ An implementation of [4] Equation 8.9
419
+
420
+ References
421
+ ----------
422
+ .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
423
+ optimizer for linear programming: an implementation of the
424
+ homogeneous algorithm." High performance optimization. Springer US,
425
+ 2000. 197-232.
426
+
427
+ """
428
+ x = x + alpha * d_x
429
+ tau = tau + alpha * d_tau
430
+ z = z + alpha * d_z
431
+ kappa = kappa + alpha * d_kappa
432
+ y = y + alpha * d_y
433
+ return x, y, z, tau, kappa
434
+
435
+
436
+ def _get_blind_start(shape):
437
+ """
438
+ Return the starting point from [4] 4.4
439
+
440
+ References
441
+ ----------
442
+ .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
443
+ optimizer for linear programming: an implementation of the
444
+ homogeneous algorithm." High performance optimization. Springer US,
445
+ 2000. 197-232.
446
+
447
+ """
448
+ m, n = shape
449
+ x0 = np.ones(n)
450
+ y0 = np.zeros(m)
451
+ z0 = np.ones(n)
452
+ tau0 = 1
453
+ kappa0 = 1
454
+ return x0, y0, z0, tau0, kappa0
455
+
456
+
457
+ def _indicators(A, b, c, c0, x, y, z, tau, kappa):
458
+ """
459
+ Implementation of several equations from [4] used as indicators of
460
+ the status of optimization.
461
+
462
+ References
463
+ ----------
464
+ .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
465
+ optimizer for linear programming: an implementation of the
466
+ homogeneous algorithm." High performance optimization. Springer US,
467
+ 2000. 197-232.
468
+
469
+ """
470
+
471
+ # residuals for termination are relative to initial values
472
+ x0, y0, z0, tau0, kappa0 = _get_blind_start(A.shape)
473
+
474
+ # See [4], Section 4 - The Homogeneous Algorithm, Equation 8.8
475
+ def r_p(x, tau):
476
+ return b * tau - A.dot(x)
477
+
478
+ def r_d(y, z, tau):
479
+ return c * tau - A.T.dot(y) - z
480
+
481
+ def r_g(x, y, kappa):
482
+ return kappa + c.dot(x) - b.dot(y)
483
+
484
+ # np.dot unpacks if they are arrays of size one
485
+ def mu(x, tau, z, kappa):
486
+ return (x.dot(z) + np.dot(tau, kappa)) / (len(x) + 1)
487
+
488
+ obj = c.dot(x / tau) + c0
489
+
490
+ def norm(a):
491
+ return np.linalg.norm(a)
492
+
493
+ # See [4], Section 4.5 - The Stopping Criteria
494
+ r_p0 = r_p(x0, tau0)
495
+ r_d0 = r_d(y0, z0, tau0)
496
+ r_g0 = r_g(x0, y0, kappa0)
497
+ mu_0 = mu(x0, tau0, z0, kappa0)
498
+ rho_A = norm(c.T.dot(x) - b.T.dot(y)) / (tau + norm(b.T.dot(y)))
499
+ rho_p = norm(r_p(x, tau)) / max(1, norm(r_p0))
500
+ rho_d = norm(r_d(y, z, tau)) / max(1, norm(r_d0))
501
+ rho_g = norm(r_g(x, y, kappa)) / max(1, norm(r_g0))
502
+ rho_mu = mu(x, tau, z, kappa) / mu_0
503
+ return rho_p, rho_d, rho_A, rho_g, rho_mu, obj
504
+
505
+
506
+ def _display_iter(rho_p, rho_d, rho_g, alpha, rho_mu, obj, header=False):
507
+ """
508
+ Print indicators of optimization status to the console.
509
+
510
+ Parameters
511
+ ----------
512
+ rho_p : float
513
+ The (normalized) primal feasibility, see [4] 4.5
514
+ rho_d : float
515
+ The (normalized) dual feasibility, see [4] 4.5
516
+ rho_g : float
517
+ The (normalized) duality gap, see [4] 4.5
518
+ alpha : float
519
+ The step size, see [4] 4.3
520
+ rho_mu : float
521
+ The (normalized) path parameter, see [4] 4.5
522
+ obj : float
523
+ The objective function value of the current iterate
524
+ header : bool
525
+ True if a header is to be printed
526
+
527
+ References
528
+ ----------
529
+ .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
530
+ optimizer for linear programming: an implementation of the
531
+ homogeneous algorithm." High performance optimization. Springer US,
532
+ 2000. 197-232.
533
+
534
+ """
535
+ if header:
536
+ print("Primal Feasibility ",
537
+ "Dual Feasibility ",
538
+ "Duality Gap ",
539
+ "Step ",
540
+ "Path Parameter ",
541
+ "Objective ")
542
+
543
+ # no clue why this works
544
+ fmt = '{0:<20.13}{1:<20.13}{2:<20.13}{3:<17.13}{4:<20.13}{5:<20.13}'
545
+ print(fmt.format(
546
+ float(rho_p),
547
+ float(rho_d),
548
+ float(rho_g),
549
+ alpha if isinstance(alpha, str) else float(alpha),
550
+ float(rho_mu),
551
+ float(obj)))
552
+
553
+
554
+ def _ip_hsd(A, b, c, c0, alpha0, beta, maxiter, disp, tol, sparse, lstsq,
555
+ sym_pos, cholesky, pc, ip, permc_spec, callback, postsolve_args):
556
+ r"""
557
+ Solve a linear programming problem in standard form:
558
+
559
+ Minimize::
560
+
561
+ c @ x
562
+
563
+ Subject to::
564
+
565
+ A @ x == b
566
+ x >= 0
567
+
568
+ using the interior point method of [4].
569
+
570
+ Parameters
571
+ ----------
572
+ A : 2-D array
573
+ 2-D array such that ``A @ x``, gives the values of the equality
574
+ constraints at ``x``.
575
+ b : 1-D array
576
+ 1-D array of values representing the RHS of each equality constraint
577
+ (row) in ``A`` (for standard form problem).
578
+ c : 1-D array
579
+ Coefficients of the linear objective function to be minimized (for
580
+ standard form problem).
581
+ c0 : float
582
+ Constant term in objective function due to fixed (and eliminated)
583
+ variables. (Purely for display.)
584
+ alpha0 : float
585
+ The maximal step size for Mehrota's predictor-corrector search
586
+ direction; see :math:`\beta_3`of [4] Table 8.1
587
+ beta : float
588
+ The desired reduction of the path parameter :math:`\mu` (see [6]_)
589
+ maxiter : int
590
+ The maximum number of iterations of the algorithm.
591
+ disp : bool
592
+ Set to ``True`` if indicators of optimization status are to be printed
593
+ to the console each iteration.
594
+ tol : float
595
+ Termination tolerance; see [4]_ Section 4.5.
596
+ sparse : bool
597
+ Set to ``True`` if the problem is to be treated as sparse. However,
598
+ the inputs ``A_eq`` and ``A_ub`` should nonetheless be provided as
599
+ (dense) arrays rather than sparse matrices.
600
+ lstsq : bool
601
+ Set to ``True`` if the problem is expected to be very poorly
602
+ conditioned. This should always be left as ``False`` unless severe
603
+ numerical difficulties are frequently encountered, and a better option
604
+ would be to improve the formulation of the problem.
605
+ sym_pos : bool
606
+ Leave ``True`` if the problem is expected to yield a well conditioned
607
+ symmetric positive definite normal equation matrix (almost always).
608
+ cholesky : bool
609
+ Set to ``True`` if the normal equations are to be solved by explicit
610
+ Cholesky decomposition followed by explicit forward/backward
611
+ substitution. This is typically faster for moderate, dense problems
612
+ that are numerically well-behaved.
613
+ pc : bool
614
+ Leave ``True`` if the predictor-corrector method of Mehrota is to be
615
+ used. This is almost always (if not always) beneficial.
616
+ ip : bool
617
+ Set to ``True`` if the improved initial point suggestion due to [4]_
618
+ Section 4.3 is desired. It's unclear whether this is beneficial.
619
+ permc_spec : str (default = 'MMD_AT_PLUS_A')
620
+ (Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
621
+ True``.) A matrix is factorized in each iteration of the algorithm.
622
+ This option specifies how to permute the columns of the matrix for
623
+ sparsity preservation. Acceptable values are:
624
+
625
+ - ``NATURAL``: natural ordering.
626
+ - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
627
+ - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
628
+ - ``COLAMD``: approximate minimum degree column ordering.
629
+
630
+ This option can impact the convergence of the
631
+ interior point algorithm; test different values to determine which
632
+ performs best for your problem. For more information, refer to
633
+ ``scipy.sparse.linalg.splu``.
634
+ callback : callable, optional
635
+ If a callback function is provided, it will be called within each
636
+ iteration of the algorithm. The callback function must accept a single
637
+ `scipy.optimize.OptimizeResult` consisting of the following fields:
638
+
639
+ x : 1-D array
640
+ Current solution vector
641
+ fun : float
642
+ Current value of the objective function
643
+ success : bool
644
+ True only when an algorithm has completed successfully,
645
+ so this is always False as the callback function is called
646
+ only while the algorithm is still iterating.
647
+ slack : 1-D array
648
+ The values of the slack variables. Each slack variable
649
+ corresponds to an inequality constraint. If the slack is zero,
650
+ the corresponding constraint is active.
651
+ con : 1-D array
652
+ The (nominally zero) residuals of the equality constraints,
653
+ that is, ``b - A_eq @ x``
654
+ phase : int
655
+ The phase of the algorithm being executed. This is always
656
+ 1 for the interior-point method because it has only one phase.
657
+ status : int
658
+ For revised simplex, this is always 0 because if a different
659
+ status is detected, the algorithm terminates.
660
+ nit : int
661
+ The number of iterations performed.
662
+ message : str
663
+ A string descriptor of the exit status of the optimization.
664
+ postsolve_args : tuple
665
+ Data needed by _postsolve to convert the solution to the standard-form
666
+ problem into the solution to the original problem.
667
+
668
+ Returns
669
+ -------
670
+ x_hat : float
671
+ Solution vector (for standard form problem).
672
+ status : int
673
+ An integer representing the exit status of the optimization::
674
+
675
+ 0 : Optimization terminated successfully
676
+ 1 : Iteration limit reached
677
+ 2 : Problem appears to be infeasible
678
+ 3 : Problem appears to be unbounded
679
+ 4 : Serious numerical difficulties encountered
680
+
681
+ message : str
682
+ A string descriptor of the exit status of the optimization.
683
+ iteration : int
684
+ The number of iterations taken to solve the problem
685
+
686
+ References
687
+ ----------
688
+ .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
689
+ optimizer for linear programming: an implementation of the
690
+ homogeneous algorithm." High performance optimization. Springer US,
691
+ 2000. 197-232.
692
+ .. [6] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear
693
+ Programming based on Newton's Method." Unpublished Course Notes,
694
+ March 2004. Available 2/25/2017 at:
695
+ https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf
696
+
697
+ """
698
+
699
+ iteration = 0
700
+
701
+ # default initial point
702
+ x, y, z, tau, kappa = _get_blind_start(A.shape)
703
+
704
+ # first iteration is special improvement of initial point
705
+ ip = ip if pc else False
706
+
707
+ # [4] 4.5
708
+ rho_p, rho_d, rho_A, rho_g, rho_mu, obj = _indicators(
709
+ A, b, c, c0, x, y, z, tau, kappa)
710
+ go = rho_p > tol or rho_d > tol or rho_A > tol # we might get lucky : )
711
+
712
+ if disp:
713
+ _display_iter(rho_p, rho_d, rho_g, "-", rho_mu, obj, header=True)
714
+ if callback is not None:
715
+ x_o, fun, slack, con = _postsolve(x/tau, postsolve_args)
716
+ res = OptimizeResult({'x': x_o, 'fun': fun, 'slack': slack,
717
+ 'con': con, 'nit': iteration, 'phase': 1,
718
+ 'complete': False, 'status': 0,
719
+ 'message': "", 'success': False})
720
+ callback(res)
721
+
722
+ status = 0
723
+ message = "Optimization terminated successfully."
724
+
725
+ if sparse:
726
+ A = sps.csc_matrix(A)
727
+
728
+ while go:
729
+
730
+ iteration += 1
731
+
732
+ if ip: # initial point
733
+ # [4] Section 4.4
734
+ gamma = 1
735
+
736
+ def eta(g):
737
+ return 1
738
+ else:
739
+ # gamma = 0 in predictor step according to [4] 4.1
740
+ # if predictor/corrector is off, use mean of complementarity [6]
741
+ # 5.1 / [4] Below Figure 10-4
742
+ gamma = 0 if pc else beta * np.mean(z * x)
743
+ # [4] Section 4.1
744
+
745
+ def eta(g=gamma):
746
+ return 1 - g
747
+
748
+ try:
749
+ # Solve [4] 8.6 and 8.7/8.13/8.23
750
+ d_x, d_y, d_z, d_tau, d_kappa = _get_delta(
751
+ A, b, c, x, y, z, tau, kappa, gamma, eta,
752
+ sparse, lstsq, sym_pos, cholesky, pc, ip, permc_spec)
753
+
754
+ if ip: # initial point
755
+ # [4] 4.4
756
+ # Formula after 8.23 takes a full step regardless if this will
757
+ # take it negative
758
+ alpha = 1.0
759
+ x, y, z, tau, kappa = _do_step(
760
+ x, y, z, tau, kappa, d_x, d_y,
761
+ d_z, d_tau, d_kappa, alpha)
762
+ x[x < 1] = 1
763
+ z[z < 1] = 1
764
+ tau = max(1, tau)
765
+ kappa = max(1, kappa)
766
+ ip = False # done with initial point
767
+ else:
768
+ # [4] Section 4.3
769
+ alpha = _get_step(x, d_x, z, d_z, tau,
770
+ d_tau, kappa, d_kappa, alpha0)
771
+ # [4] Equation 8.9
772
+ x, y, z, tau, kappa = _do_step(
773
+ x, y, z, tau, kappa, d_x, d_y, d_z, d_tau, d_kappa, alpha)
774
+
775
+ except (LinAlgError, FloatingPointError,
776
+ ValueError, ZeroDivisionError):
777
+ # this can happen when sparse solver is used and presolve
778
+ # is turned off. Also observed ValueError in AppVeyor Python 3.6
779
+ # Win32 build (PR #8676). I've never seen it otherwise.
780
+ status = 4
781
+ message = _get_message(status)
782
+ break
783
+
784
+ # [4] 4.5
785
+ rho_p, rho_d, rho_A, rho_g, rho_mu, obj = _indicators(
786
+ A, b, c, c0, x, y, z, tau, kappa)
787
+ go = rho_p > tol or rho_d > tol or rho_A > tol
788
+
789
+ if disp:
790
+ _display_iter(rho_p, rho_d, rho_g, alpha, rho_mu, obj)
791
+ if callback is not None:
792
+ x_o, fun, slack, con = _postsolve(x/tau, postsolve_args)
793
+ res = OptimizeResult({'x': x_o, 'fun': fun, 'slack': slack,
794
+ 'con': con, 'nit': iteration, 'phase': 1,
795
+ 'complete': False, 'status': 0,
796
+ 'message': "", 'success': False})
797
+ callback(res)
798
+
799
+ # [4] 4.5
800
+ inf1 = (rho_p < tol and rho_d < tol and rho_g < tol and tau < tol *
801
+ max(1, kappa))
802
+ inf2 = rho_mu < tol and tau < tol * min(1, kappa)
803
+ if inf1 or inf2:
804
+ # [4] Lemma 8.4 / Theorem 8.3
805
+ if b.transpose().dot(y) > tol:
806
+ status = 2
807
+ else: # elif c.T.dot(x) < tol: ? Probably not necessary.
808
+ status = 3
809
+ message = _get_message(status)
810
+ break
811
+ elif iteration >= maxiter:
812
+ status = 1
813
+ message = _get_message(status)
814
+ break
815
+
816
+ x_hat = x / tau
817
+ # [4] Statement after Theorem 8.2
818
+ return x_hat, status, message, iteration
819
+
820
+
821
+ def _linprog_ip(c, c0, A, b, callback, postsolve_args, maxiter=1000, tol=1e-8,
822
+ disp=False, alpha0=.99995, beta=0.1, sparse=False, lstsq=False,
823
+ sym_pos=True, cholesky=None, pc=True, ip=False,
824
+ permc_spec='MMD_AT_PLUS_A', **unknown_options):
825
+ r"""
826
+ Minimize a linear objective function subject to linear
827
+ equality and non-negativity constraints using the interior point method
828
+ of [4]_. Linear programming is intended to solve problems
829
+ of the following form:
830
+
831
+ Minimize::
832
+
833
+ c @ x
834
+
835
+ Subject to::
836
+
837
+ A @ x == b
838
+ x >= 0
839
+
840
+ User-facing documentation is in _linprog_doc.py.
841
+
842
+ Parameters
843
+ ----------
844
+ c : 1-D array
845
+ Coefficients of the linear objective function to be minimized.
846
+ c0 : float
847
+ Constant term in objective function due to fixed (and eliminated)
848
+ variables. (Purely for display.)
849
+ A : 2-D array
850
+ 2-D array such that ``A @ x``, gives the values of the equality
851
+ constraints at ``x``.
852
+ b : 1-D array
853
+ 1-D array of values representing the right hand side of each equality
854
+ constraint (row) in ``A``.
855
+ callback : callable, optional
856
+ Callback function to be executed once per iteration.
857
+ postsolve_args : tuple
858
+ Data needed by _postsolve to convert the solution to the standard-form
859
+ problem into the solution to the original problem.
860
+
861
+ Options
862
+ -------
863
+ maxiter : int (default = 1000)
864
+ The maximum number of iterations of the algorithm.
865
+ tol : float (default = 1e-8)
866
+ Termination tolerance to be used for all termination criteria;
867
+ see [4]_ Section 4.5.
868
+ disp : bool (default = False)
869
+ Set to ``True`` if indicators of optimization status are to be printed
870
+ to the console each iteration.
871
+ alpha0 : float (default = 0.99995)
872
+ The maximal step size for Mehrota's predictor-corrector search
873
+ direction; see :math:`\beta_{3}` of [4]_ Table 8.1.
874
+ beta : float (default = 0.1)
875
+ The desired reduction of the path parameter :math:`\mu` (see [6]_)
876
+ when Mehrota's predictor-corrector is not in use (uncommon).
877
+ sparse : bool (default = False)
878
+ Set to ``True`` if the problem is to be treated as sparse after
879
+ presolve. If either ``A_eq`` or ``A_ub`` is a sparse matrix,
880
+ this option will automatically be set ``True``, and the problem
881
+ will be treated as sparse even during presolve. If your constraint
882
+ matrices contain mostly zeros and the problem is not very small (less
883
+ than about 100 constraints or variables), consider setting ``True``
884
+ or providing ``A_eq`` and ``A_ub`` as sparse matrices.
885
+ lstsq : bool (default = False)
886
+ Set to ``True`` if the problem is expected to be very poorly
887
+ conditioned. This should always be left ``False`` unless severe
888
+ numerical difficulties are encountered. Leave this at the default
889
+ unless you receive a warning message suggesting otherwise.
890
+ sym_pos : bool (default = True)
891
+ Leave ``True`` if the problem is expected to yield a well conditioned
892
+ symmetric positive definite normal equation matrix
893
+ (almost always). Leave this at the default unless you receive
894
+ a warning message suggesting otherwise.
895
+ cholesky : bool (default = True)
896
+ Set to ``True`` if the normal equations are to be solved by explicit
897
+ Cholesky decomposition followed by explicit forward/backward
898
+ substitution. This is typically faster for problems
899
+ that are numerically well-behaved.
900
+ pc : bool (default = True)
901
+ Leave ``True`` if the predictor-corrector method of Mehrota is to be
902
+ used. This is almost always (if not always) beneficial.
903
+ ip : bool (default = False)
904
+ Set to ``True`` if the improved initial point suggestion due to [4]_
905
+ Section 4.3 is desired. Whether this is beneficial or not
906
+ depends on the problem.
907
+ permc_spec : str (default = 'MMD_AT_PLUS_A')
908
+ (Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
909
+ True``, and no SuiteSparse.)
910
+ A matrix is factorized in each iteration of the algorithm.
911
+ This option specifies how to permute the columns of the matrix for
912
+ sparsity preservation. Acceptable values are:
913
+
914
+ - ``NATURAL``: natural ordering.
915
+ - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
916
+ - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
917
+ - ``COLAMD``: approximate minimum degree column ordering.
918
+
919
+ This option can impact the convergence of the
920
+ interior point algorithm; test different values to determine which
921
+ performs best for your problem. For more information, refer to
922
+ ``scipy.sparse.linalg.splu``.
923
+ unknown_options : dict
924
+ Optional arguments not used by this particular solver. If
925
+ `unknown_options` is non-empty a warning is issued listing all
926
+ unused options.
927
+
928
+ Returns
929
+ -------
930
+ x : 1-D array
931
+ Solution vector.
932
+ status : int
933
+ An integer representing the exit status of the optimization::
934
+
935
+ 0 : Optimization terminated successfully
936
+ 1 : Iteration limit reached
937
+ 2 : Problem appears to be infeasible
938
+ 3 : Problem appears to be unbounded
939
+ 4 : Serious numerical difficulties encountered
940
+
941
+ message : str
942
+ A string descriptor of the exit status of the optimization.
943
+ iteration : int
944
+ The number of iterations taken to solve the problem.
945
+
946
+ Notes
947
+ -----
948
+ This method implements the algorithm outlined in [4]_ with ideas from [8]_
949
+ and a structure inspired by the simpler methods of [6]_.
950
+
951
+ The primal-dual path following method begins with initial 'guesses' of
952
+ the primal and dual variables of the standard form problem and iteratively
953
+ attempts to solve the (nonlinear) Karush-Kuhn-Tucker conditions for the
954
+ problem with a gradually reduced logarithmic barrier term added to the
955
+ objective. This particular implementation uses a homogeneous self-dual
956
+ formulation, which provides certificates of infeasibility or unboundedness
957
+ where applicable.
958
+
959
+ The default initial point for the primal and dual variables is that
960
+ defined in [4]_ Section 4.4 Equation 8.22. Optionally (by setting initial
961
+ point option ``ip=True``), an alternate (potentially improved) starting
962
+ point can be calculated according to the additional recommendations of
963
+ [4]_ Section 4.4.
964
+
965
+ A search direction is calculated using the predictor-corrector method
966
+ (single correction) proposed by Mehrota and detailed in [4]_ Section 4.1.
967
+ (A potential improvement would be to implement the method of multiple
968
+ corrections described in [4]_ Section 4.2.) In practice, this is
969
+ accomplished by solving the normal equations, [4]_ Section 5.1 Equations
970
+ 8.31 and 8.32, derived from the Newton equations [4]_ Section 5 Equations
971
+ 8.25 (compare to [4]_ Section 4 Equations 8.6-8.8). The advantage of
972
+ solving the normal equations rather than 8.25 directly is that the
973
+ matrices involved are symmetric positive definite, so Cholesky
974
+ decomposition can be used rather than the more expensive LU factorization.
975
+
976
+ With default options, the solver used to perform the factorization depends
977
+ on third-party software availability and the conditioning of the problem.
978
+
979
+ For dense problems, solvers are tried in the following order:
980
+
981
+ 1. ``scipy.linalg.cho_factor``
982
+
983
+ 2. ``scipy.linalg.solve`` with option ``sym_pos=True``
984
+
985
+ 3. ``scipy.linalg.solve`` with option ``sym_pos=False``
986
+
987
+ 4. ``scipy.linalg.lstsq``
988
+
989
+ For sparse problems:
990
+
991
+ 1. ``sksparse.cholmod.cholesky`` (if scikit-sparse and SuiteSparse are installed)
992
+
993
+ 2. ``scipy.sparse.linalg.factorized``
994
+ (if scikit-umfpack and SuiteSparse are installed)
995
+
996
+ 3. ``scipy.sparse.linalg.splu`` (which uses SuperLU distributed with SciPy)
997
+
998
+ 4. ``scipy.sparse.linalg.lsqr``
999
+
1000
+ If the solver fails for any reason, successively more robust (but slower)
1001
+ solvers are attempted in the order indicated. Attempting, failing, and
1002
+ re-starting factorization can be time consuming, so if the problem is
1003
+ numerically challenging, options can be set to bypass solvers that are
1004
+ failing. Setting ``cholesky=False`` skips to solver 2,
1005
+ ``sym_pos=False`` skips to solver 3, and ``lstsq=True`` skips
1006
+ to solver 4 for both sparse and dense problems.
1007
+
1008
+ Potential improvements for combatting issues associated with dense
1009
+ columns in otherwise sparse problems are outlined in [4]_ Section 5.3 and
1010
+ [10]_ Section 4.1-4.2; the latter also discusses the alleviation of
1011
+ accuracy issues associated with the substitution approach to free
1012
+ variables.
1013
+
1014
+ After calculating the search direction, the maximum possible step size
1015
+ that does not activate the non-negativity constraints is calculated, and
1016
+ the smaller of this step size and unity is applied (as in [4]_ Section
1017
+ 4.1.) [4]_ Section 4.3 suggests improvements for choosing the step size.
1018
+
1019
+ The new point is tested according to the termination conditions of [4]_
1020
+ Section 4.5. The same tolerance, which can be set using the ``tol`` option,
1021
+ is used for all checks. (A potential improvement would be to expose
1022
+ the different tolerances to be set independently.) If optimality,
1023
+ unboundedness, or infeasibility is detected, the solve procedure
1024
+ terminates; otherwise it repeats.
1025
+
1026
+ The expected problem formulation differs between the top level ``linprog``
1027
+ module and the method specific solvers. The method specific solvers expect a
1028
+ problem in standard form:
1029
+
1030
+ Minimize::
1031
+
1032
+ c @ x
1033
+
1034
+ Subject to::
1035
+
1036
+ A @ x == b
1037
+ x >= 0
1038
+
1039
+ Whereas the top level ``linprog`` module expects a problem of form:
1040
+
1041
+ Minimize::
1042
+
1043
+ c @ x
1044
+
1045
+ Subject to::
1046
+
1047
+ A_ub @ x <= b_ub
1048
+ A_eq @ x == b_eq
1049
+ lb <= x <= ub
1050
+
1051
+ where ``lb = 0`` and ``ub = None`` unless set in ``bounds``.
1052
+
1053
+ The original problem contains equality, upper-bound and variable constraints
1054
+ whereas the method specific solver requires equality constraints and
1055
+ variable non-negativity.
1056
+
1057
+ ``linprog`` module converts the original problem to standard form by
1058
+ converting the simple bounds to upper bound constraints, introducing
1059
+ non-negative slack variables for inequality constraints, and expressing
1060
+ unbounded variables as the difference between two non-negative variables.
1061
+
1062
+
1063
+ References
1064
+ ----------
1065
+ .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
1066
+ optimizer for linear programming: an implementation of the
1067
+ homogeneous algorithm." High performance optimization. Springer US,
1068
+ 2000. 197-232.
1069
+ .. [6] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear
1070
+ Programming based on Newton's Method." Unpublished Course Notes,
1071
+ March 2004. Available 2/25/2017 at
1072
+ https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf
1073
+ .. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear
1074
+ programming." Mathematical Programming 71.2 (1995): 221-245.
1075
+ .. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
1076
+ programming." Athena Scientific 1 (1997): 997.
1077
+ .. [10] Andersen, Erling D., et al. Implementation of interior point methods
1078
+ for large scale linear programming. HEC/Universite de Geneve, 1996.
1079
+
1080
+ """
1081
+
1082
+ _check_unknown_options(unknown_options)
1083
+
1084
+ # These should be warnings, not errors
1085
+ if (cholesky or cholesky is None) and sparse and not has_cholmod:
1086
+ if cholesky:
1087
+ warn("Sparse cholesky is only available with scikit-sparse. "
1088
+ "Setting `cholesky = False`",
1089
+ OptimizeWarning, stacklevel=3)
1090
+ cholesky = False
1091
+
1092
+ if sparse and lstsq:
1093
+ warn("Option combination 'sparse':True and 'lstsq':True "
1094
+ "is not recommended.",
1095
+ OptimizeWarning, stacklevel=3)
1096
+
1097
+ if lstsq and cholesky:
1098
+ warn("Invalid option combination 'lstsq':True "
1099
+ "and 'cholesky':True; option 'cholesky' has no effect when "
1100
+ "'lstsq' is set True.",
1101
+ OptimizeWarning, stacklevel=3)
1102
+
1103
+ valid_permc_spec = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD')
1104
+ if permc_spec.upper() not in valid_permc_spec:
1105
+ warn("Invalid permc_spec option: '" + str(permc_spec) + "'. "
1106
+ "Acceptable values are 'NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', "
1107
+ "and 'COLAMD'. Reverting to default.",
1108
+ OptimizeWarning, stacklevel=3)
1109
+ permc_spec = 'MMD_AT_PLUS_A'
1110
+
1111
+ # This can be an error
1112
+ if not sym_pos and cholesky:
1113
+ raise ValueError(
1114
+ "Invalid option combination 'sym_pos':False "
1115
+ "and 'cholesky':True: Cholesky decomposition is only possible "
1116
+ "for symmetric positive definite matrices.")
1117
+
1118
+ cholesky = cholesky or (cholesky is None and sym_pos and not lstsq)
1119
+
1120
+ x, status, message, iteration = _ip_hsd(A, b, c, c0, alpha0, beta,
1121
+ maxiter, disp, tol, sparse,
1122
+ lstsq, sym_pos, cholesky,
1123
+ pc, ip, permc_spec, callback,
1124
+ postsolve_args)
1125
+
1126
+ return x, status, message, iteration
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog_rs.py ADDED
@@ -0,0 +1,572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Revised simplex method for linear programming
2
+
3
+ The *revised simplex* method uses the method described in [1]_, except
4
+ that a factorization [2]_ of the basis matrix, rather than its inverse,
5
+ is efficiently maintained and used to solve the linear systems at each
6
+ iteration of the algorithm.
7
+
8
+ .. versionadded:: 1.3.0
9
+
10
+ References
11
+ ----------
12
+ .. [1] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
13
+ programming." Athena Scientific 1 (1997): 997.
14
+ .. [2] Bartels, Richard H. "A stabilization of the simplex method."
15
+ Journal in Numerische Mathematik 16.5 (1971): 414-434.
16
+
17
+ """
18
+ # Author: Matt Haberland
19
+
20
+ import numpy as np
21
+ from numpy.linalg import LinAlgError
22
+
23
+ from scipy.linalg import solve
24
+ from ._optimize import _check_unknown_options
25
+ from ._bglu_dense import LU
26
+ from ._bglu_dense import BGLU as BGLU
27
+ from ._linprog_util import _postsolve
28
+ from ._optimize import OptimizeResult
29
+
30
+
31
+ def _phase_one(A, b, x0, callback, postsolve_args, maxiter, tol, disp,
32
+ maxupdate, mast, pivot):
33
+ """
34
+ The purpose of phase one is to find an initial basic feasible solution
35
+ (BFS) to the original problem.
36
+
37
+ Generates an auxiliary problem with a trivial BFS and an objective that
38
+ minimizes infeasibility of the original problem. Solves the auxiliary
39
+ problem using the main simplex routine (phase two). This either yields
40
+ a BFS to the original problem or determines that the original problem is
41
+ infeasible. If feasible, phase one detects redundant rows in the original
42
+ constraint matrix and removes them, then chooses additional indices as
43
+ necessary to complete a basis/BFS for the original problem.
44
+ """
45
+
46
+ m, n = A.shape
47
+ status = 0
48
+
49
+ # generate auxiliary problem to get initial BFS
50
+ A, b, c, basis, x, status = _generate_auxiliary_problem(A, b, x0, tol)
51
+
52
+ if status == 6:
53
+ residual = c.dot(x)
54
+ iter_k = 0
55
+ return x, basis, A, b, residual, status, iter_k
56
+
57
+ # solve auxiliary problem
58
+ phase_one_n = n
59
+ iter_k = 0
60
+ x, basis, status, iter_k = _phase_two(c, A, x, basis, callback,
61
+ postsolve_args,
62
+ maxiter, tol, disp,
63
+ maxupdate, mast, pivot,
64
+ iter_k, phase_one_n)
65
+
66
+ # check for infeasibility
67
+ residual = c.dot(x)
68
+ if status == 0 and residual > tol:
69
+ status = 2
70
+
71
+ # drive artificial variables out of basis
72
+ # TODO: test redundant row removal better
73
+ # TODO: make solve more efficient with BGLU? This could take a while.
74
+ keep_rows = np.ones(m, dtype=bool)
75
+ for basis_column in basis[basis >= n]:
76
+ B = A[:, basis]
77
+ try:
78
+ basis_finder = np.abs(solve(B, A)) # inefficient
79
+ pertinent_row = np.argmax(basis_finder[:, basis_column])
80
+ eligible_columns = np.ones(n, dtype=bool)
81
+ eligible_columns[basis[basis < n]] = 0
82
+ eligible_column_indices = np.where(eligible_columns)[0]
83
+ index = np.argmax(basis_finder[:, :n]
84
+ [pertinent_row, eligible_columns])
85
+ new_basis_column = eligible_column_indices[index]
86
+ if basis_finder[pertinent_row, new_basis_column] < tol:
87
+ keep_rows[pertinent_row] = False
88
+ else:
89
+ basis[basis == basis_column] = new_basis_column
90
+ except LinAlgError:
91
+ status = 4
92
+
93
+ # form solution to original problem
94
+ A = A[keep_rows, :n]
95
+ basis = basis[keep_rows]
96
+ x = x[:n]
97
+ m = A.shape[0]
98
+ return x, basis, A, b, residual, status, iter_k
99
+
100
+
101
+ def _get_more_basis_columns(A, basis):
102
+ """
103
+ Called when the auxiliary problem terminates with artificial columns in
104
+ the basis, which must be removed and replaced with non-artificial
105
+ columns. Finds additional columns that do not make the matrix singular.
106
+ """
107
+ m, n = A.shape
108
+
109
+ # options for inclusion are those that aren't already in the basis
110
+ a = np.arange(m+n)
111
+ bl = np.zeros(len(a), dtype=bool)
112
+ bl[basis] = 1
113
+ options = a[~bl]
114
+ options = options[options < n] # and they have to be non-artificial
115
+
116
+ # form basis matrix
117
+ B = np.zeros((m, m))
118
+ B[:, 0:len(basis)] = A[:, basis]
119
+
120
+ if (basis.size > 0 and
121
+ np.linalg.matrix_rank(B[:, :len(basis)]) < len(basis)):
122
+ raise Exception("Basis has dependent columns")
123
+
124
+ rank = 0 # just enter the loop
125
+ for i in range(n): # somewhat arbitrary, but we need another way out
126
+ # permute the options, and take as many as needed
127
+ new_basis = np.random.permutation(options)[:m-len(basis)]
128
+ B[:, len(basis):] = A[:, new_basis] # update the basis matrix
129
+ rank = np.linalg.matrix_rank(B) # check the rank
130
+ if rank == m:
131
+ break
132
+
133
+ return np.concatenate((basis, new_basis))
134
+
135
+
136
+ def _generate_auxiliary_problem(A, b, x0, tol):
137
+ """
138
+ Modifies original problem to create an auxiliary problem with a trivial
139
+ initial basic feasible solution and an objective that minimizes
140
+ infeasibility in the original problem.
141
+
142
+ Conceptually, this is done by stacking an identity matrix on the right of
143
+ the original constraint matrix, adding artificial variables to correspond
144
+ with each of these new columns, and generating a cost vector that is all
145
+ zeros except for ones corresponding with each of the new variables.
146
+
147
+ A initial basic feasible solution is trivial: all variables are zero
148
+ except for the artificial variables, which are set equal to the
149
+ corresponding element of the right hand side `b`.
150
+
151
+ Running the simplex method on this auxiliary problem drives all of the
152
+ artificial variables - and thus the cost - to zero if the original problem
153
+ is feasible. The original problem is declared infeasible otherwise.
154
+
155
+ Much of the complexity below is to improve efficiency by using singleton
156
+ columns in the original problem where possible, thus generating artificial
157
+ variables only as necessary, and using an initial 'guess' basic feasible
158
+ solution.
159
+ """
160
+ status = 0
161
+ m, n = A.shape
162
+
163
+ if x0 is not None:
164
+ x = x0
165
+ else:
166
+ x = np.zeros(n)
167
+
168
+ r = b - A@x # residual; this must be all zeros for feasibility
169
+
170
+ A[r < 0] = -A[r < 0] # express problem with RHS positive for trivial BFS
171
+ b[r < 0] = -b[r < 0] # to the auxiliary problem
172
+ r[r < 0] *= -1
173
+
174
+ # Rows which we will need to find a trivial way to zero.
175
+ # This should just be the rows where there is a nonzero residual.
176
+ # But then we would not necessarily have a column singleton in every row.
177
+ # This makes it difficult to find an initial basis.
178
+ if x0 is None:
179
+ nonzero_constraints = np.arange(m)
180
+ else:
181
+ nonzero_constraints = np.where(r > tol)[0]
182
+
183
+ # these are (at least some of) the initial basis columns
184
+ basis = np.where(np.abs(x) > tol)[0]
185
+
186
+ if len(nonzero_constraints) == 0 and len(basis) <= m: # already a BFS
187
+ c = np.zeros(n)
188
+ basis = _get_more_basis_columns(A, basis)
189
+ return A, b, c, basis, x, status
190
+ elif (len(nonzero_constraints) > m - len(basis) or
191
+ np.any(x < 0)): # can't get trivial BFS
192
+ c = np.zeros(n)
193
+ status = 6
194
+ return A, b, c, basis, x, status
195
+
196
+ # chooses existing columns appropriate for inclusion in initial basis
197
+ cols, rows = _select_singleton_columns(A, r)
198
+
199
+ # find the rows we need to zero that we _can_ zero with column singletons
200
+ i_tofix = np.isin(rows, nonzero_constraints)
201
+ # these columns can't already be in the basis, though
202
+ # we are going to add them to the basis and change the corresponding x val
203
+ i_notinbasis = np.logical_not(np.isin(cols, basis))
204
+ i_fix_without_aux = np.logical_and(i_tofix, i_notinbasis)
205
+ rows = rows[i_fix_without_aux]
206
+ cols = cols[i_fix_without_aux]
207
+
208
+ # indices of the rows we can only zero with auxiliary variable
209
+ # these rows will get a one in each auxiliary column
210
+ arows = nonzero_constraints[np.logical_not(
211
+ np.isin(nonzero_constraints, rows))]
212
+ n_aux = len(arows)
213
+ acols = n + np.arange(n_aux) # indices of auxiliary columns
214
+
215
+ basis_ng = np.concatenate((cols, acols)) # basis columns not from guess
216
+ basis_ng_rows = np.concatenate((rows, arows)) # rows we need to zero
217
+
218
+ # add auxiliary singleton columns
219
+ A = np.hstack((A, np.zeros((m, n_aux))))
220
+ A[arows, acols] = 1
221
+
222
+ # generate initial BFS
223
+ x = np.concatenate((x, np.zeros(n_aux)))
224
+ x[basis_ng] = r[basis_ng_rows]/A[basis_ng_rows, basis_ng]
225
+
226
+ # generate costs to minimize infeasibility
227
+ c = np.zeros(n_aux + n)
228
+ c[acols] = 1
229
+
230
+ # basis columns correspond with nonzeros in guess, those with column
231
+ # singletons we used to zero remaining constraints, and any additional
232
+ # columns to get a full set (m columns)
233
+ basis = np.concatenate((basis, basis_ng))
234
+ basis = _get_more_basis_columns(A, basis) # add columns as needed
235
+
236
+ return A, b, c, basis, x, status
237
+
238
+
239
+ def _select_singleton_columns(A, b):
240
+ """
241
+ Finds singleton columns for which the singleton entry is of the same sign
242
+ as the right-hand side; these columns are eligible for inclusion in an
243
+ initial basis. Determines the rows in which the singleton entries are
244
+ located. For each of these rows, returns the indices of the one singleton
245
+ column and its corresponding row.
246
+ """
247
+ # find indices of all singleton columns and corresponding row indices
248
+ column_indices = np.nonzero(np.sum(np.abs(A) != 0, axis=0) == 1)[0]
249
+ columns = A[:, column_indices] # array of singleton columns
250
+ row_indices = np.zeros(len(column_indices), dtype=int)
251
+ nonzero_rows, nonzero_columns = np.nonzero(columns)
252
+ row_indices[nonzero_columns] = nonzero_rows # corresponding row indices
253
+
254
+ # keep only singletons with entries that have same sign as RHS
255
+ # this is necessary because all elements of BFS must be non-negative
256
+ same_sign = A[row_indices, column_indices]*b[row_indices] >= 0
257
+ column_indices = column_indices[same_sign][::-1]
258
+ row_indices = row_indices[same_sign][::-1]
259
+ # Reversing the order so that steps below select rightmost columns
260
+ # for initial basis, which will tend to be slack variables. (If the
261
+ # guess corresponds with a basic feasible solution but a constraint
262
+ # is not satisfied with the corresponding slack variable zero, the slack
263
+ # variable must be basic.)
264
+
265
+ # for each row, keep rightmost singleton column with an entry in that row
266
+ unique_row_indices, first_columns = np.unique(row_indices,
267
+ return_index=True)
268
+ return column_indices[first_columns], unique_row_indices
269
+
270
+
271
+ def _find_nonzero_rows(A, tol):
272
+ """
273
+ Returns logical array indicating the locations of rows with at least
274
+ one nonzero element.
275
+ """
276
+ return np.any(np.abs(A) > tol, axis=1)
277
+
278
+
279
+ def _select_enter_pivot(c_hat, bl, a, rule="bland", tol=1e-12):
280
+ """
281
+ Selects a pivot to enter the basis. Currently Bland's rule - the smallest
282
+ index that has a negative reduced cost - is the default.
283
+ """
284
+ if rule.lower() == "mrc": # index with minimum reduced cost
285
+ return a[~bl][np.argmin(c_hat)]
286
+ else: # smallest index w/ negative reduced cost
287
+ return a[~bl][c_hat < -tol][0]
288
+
289
+
290
+ def _display_iter(phase, iteration, slack, con, fun):
291
+ """
292
+ Print indicators of optimization status to the console.
293
+ """
294
+ header = True if not iteration % 20 else False
295
+
296
+ if header:
297
+ print("Phase",
298
+ "Iteration",
299
+ "Minimum Slack ",
300
+ "Constraint Residual",
301
+ "Objective ")
302
+
303
+ # :<X.Y left aligns Y digits in X digit spaces
304
+ fmt = '{0:<6}{1:<10}{2:<20.13}{3:<20.13}{4:<20.13}'
305
+ try:
306
+ slack = np.min(slack)
307
+ except ValueError:
308
+ slack = "NA"
309
+ print(fmt.format(phase, iteration, slack, np.linalg.norm(con), fun))
310
+
311
+
312
+ def _display_and_callback(phase_one_n, x, postsolve_args, status,
313
+ iteration, disp, callback):
314
+ if phase_one_n is not None:
315
+ phase = 1
316
+ x_postsolve = x[:phase_one_n]
317
+ else:
318
+ phase = 2
319
+ x_postsolve = x
320
+ x_o, fun, slack, con = _postsolve(x_postsolve,
321
+ postsolve_args)
322
+
323
+ if callback is not None:
324
+ res = OptimizeResult({'x': x_o, 'fun': fun, 'slack': slack,
325
+ 'con': con, 'nit': iteration,
326
+ 'phase': phase, 'complete': False,
327
+ 'status': status, 'message': "",
328
+ 'success': False})
329
+ callback(res)
330
+ if disp:
331
+ _display_iter(phase, iteration, slack, con, fun)
332
+
333
+
334
+ def _phase_two(c, A, x, b, callback, postsolve_args, maxiter, tol, disp,
335
+ maxupdate, mast, pivot, iteration=0, phase_one_n=None):
336
+ """
337
+ The heart of the simplex method. Beginning with a basic feasible solution,
338
+ moves to adjacent basic feasible solutions successively lower reduced cost.
339
+ Terminates when there are no basic feasible solutions with lower reduced
340
+ cost or if the problem is determined to be unbounded.
341
+
342
+ This implementation follows the revised simplex method based on LU
343
+ decomposition. Rather than maintaining a tableau or an inverse of the
344
+ basis matrix, we keep a factorization of the basis matrix that allows
345
+ efficient solution of linear systems while avoiding stability issues
346
+ associated with inverted matrices.
347
+ """
348
+ m, n = A.shape
349
+ status = 0
350
+ a = np.arange(n) # indices of columns of A
351
+ ab = np.arange(m) # indices of columns of B
352
+ if maxupdate:
353
+ # basis matrix factorization object; similar to B = A[:, b]
354
+ B = BGLU(A, b, maxupdate, mast)
355
+ else:
356
+ B = LU(A, b)
357
+
358
+ for iteration in range(iteration, maxiter):
359
+
360
+ if disp or callback is not None:
361
+ _display_and_callback(phase_one_n, x, postsolve_args, status,
362
+ iteration, disp, callback)
363
+
364
+ bl = np.zeros(len(a), dtype=bool)
365
+ bl[b] = 1
366
+
367
+ xb = x[b] # basic variables
368
+ cb = c[b] # basic costs
369
+
370
+ try:
371
+ v = B.solve(cb, transposed=True) # similar to v = solve(B.T, cb)
372
+ except LinAlgError:
373
+ status = 4
374
+ break
375
+
376
+ # TODO: cythonize?
377
+ c_hat = c - v.dot(A) # reduced cost
378
+ c_hat = c_hat[~bl]
379
+ # Above is much faster than:
380
+ # N = A[:, ~bl] # slow!
381
+ # c_hat = c[~bl] - v.T.dot(N)
382
+ # Can we perform the multiplication only on the nonbasic columns?
383
+
384
+ if np.all(c_hat >= -tol): # all reduced costs positive -> terminate
385
+ break
386
+
387
+ j = _select_enter_pivot(c_hat, bl, a, rule=pivot, tol=tol)
388
+ u = B.solve(A[:, j]) # similar to u = solve(B, A[:, j])
389
+
390
+ i = u > tol # if none of the u are positive, unbounded
391
+ if not np.any(i):
392
+ status = 3
393
+ break
394
+
395
+ th = xb[i]/u[i]
396
+ l = np.argmin(th) # implicitly selects smallest subscript
397
+ th_star = th[l] # step size
398
+
399
+ x[b] = x[b] - th_star*u # take step
400
+ x[j] = th_star
401
+ B.update(ab[i][l], j) # modify basis
402
+ b = B.b # similar to b[ab[i][l]] =
403
+
404
+ else:
405
+ # If the end of the for loop is reached (without a break statement),
406
+ # then another step has been taken, so the iteration counter should
407
+ # increment, info should be displayed, and callback should be called.
408
+ iteration += 1
409
+ status = 1
410
+ if disp or callback is not None:
411
+ _display_and_callback(phase_one_n, x, postsolve_args, status,
412
+ iteration, disp, callback)
413
+
414
+ return x, b, status, iteration
415
+
416
+
417
+ def _linprog_rs(c, c0, A, b, x0, callback, postsolve_args,
418
+ maxiter=5000, tol=1e-12, disp=False,
419
+ maxupdate=10, mast=False, pivot="mrc",
420
+ **unknown_options):
421
+ """
422
+ Solve the following linear programming problem via a two-phase
423
+ revised simplex algorithm.::
424
+
425
+ minimize: c @ x
426
+
427
+ subject to: A @ x == b
428
+ 0 <= x < oo
429
+
430
+ User-facing documentation is in _linprog_doc.py.
431
+
432
+ Parameters
433
+ ----------
434
+ c : 1-D array
435
+ Coefficients of the linear objective function to be minimized.
436
+ c0 : float
437
+ Constant term in objective function due to fixed (and eliminated)
438
+ variables. (Currently unused.)
439
+ A : 2-D array
440
+ 2-D array which, when matrix-multiplied by ``x``, gives the values of
441
+ the equality constraints at ``x``.
442
+ b : 1-D array
443
+ 1-D array of values representing the RHS of each equality constraint
444
+ (row) in ``A_eq``.
445
+ x0 : 1-D array, optional
446
+ Starting values of the independent variables, which will be refined by
447
+ the optimization algorithm. For the revised simplex method, these must
448
+ correspond with a basic feasible solution.
449
+ callback : callable, optional
450
+ If a callback function is provided, it will be called within each
451
+ iteration of the algorithm. The callback function must accept a single
452
+ `scipy.optimize.OptimizeResult` consisting of the following fields:
453
+
454
+ x : 1-D array
455
+ Current solution vector.
456
+ fun : float
457
+ Current value of the objective function ``c @ x``.
458
+ success : bool
459
+ True only when an algorithm has completed successfully,
460
+ so this is always False as the callback function is called
461
+ only while the algorithm is still iterating.
462
+ slack : 1-D array
463
+ The values of the slack variables. Each slack variable
464
+ corresponds to an inequality constraint. If the slack is zero,
465
+ the corresponding constraint is active.
466
+ con : 1-D array
467
+ The (nominally zero) residuals of the equality constraints,
468
+ that is, ``b - A_eq @ x``.
469
+ phase : int
470
+ The phase of the algorithm being executed.
471
+ status : int
472
+ For revised simplex, this is always 0 because if a different
473
+ status is detected, the algorithm terminates.
474
+ nit : int
475
+ The number of iterations performed.
476
+ message : str
477
+ A string descriptor of the exit status of the optimization.
478
+ postsolve_args : tuple
479
+ Data needed by _postsolve to convert the solution to the standard-form
480
+ problem into the solution to the original problem.
481
+
482
+ Options
483
+ -------
484
+ maxiter : int
485
+ The maximum number of iterations to perform in either phase.
486
+ tol : float
487
+ The tolerance which determines when a solution is "close enough" to
488
+ zero in Phase 1 to be considered a basic feasible solution or close
489
+ enough to positive to serve as an optimal solution.
490
+ disp : bool
491
+ Set to ``True`` if indicators of optimization status are to be printed
492
+ to the console each iteration.
493
+ maxupdate : int
494
+ The maximum number of updates performed on the LU factorization.
495
+ After this many updates is reached, the basis matrix is factorized
496
+ from scratch.
497
+ mast : bool
498
+ Minimize Amortized Solve Time. If enabled, the average time to solve
499
+ a linear system using the basis factorization is measured. Typically,
500
+ the average solve time will decrease with each successive solve after
501
+ initial factorization, as factorization takes much more time than the
502
+ solve operation (and updates). Eventually, however, the updated
503
+ factorization becomes sufficiently complex that the average solve time
504
+ begins to increase. When this is detected, the basis is refactorized
505
+ from scratch. Enable this option to maximize speed at the risk of
506
+ nondeterministic behavior. Ignored if ``maxupdate`` is 0.
507
+ pivot : "mrc" or "bland"
508
+ Pivot rule: Minimum Reduced Cost (default) or Bland's rule. Choose
509
+ Bland's rule if iteration limit is reached and cycling is suspected.
510
+ unknown_options : dict
511
+ Optional arguments not used by this particular solver. If
512
+ `unknown_options` is non-empty a warning is issued listing all
513
+ unused options.
514
+
515
+ Returns
516
+ -------
517
+ x : 1-D array
518
+ Solution vector.
519
+ status : int
520
+ An integer representing the exit status of the optimization::
521
+
522
+ 0 : Optimization terminated successfully
523
+ 1 : Iteration limit reached
524
+ 2 : Problem appears to be infeasible
525
+ 3 : Problem appears to be unbounded
526
+ 4 : Numerical difficulties encountered
527
+ 5 : No constraints; turn presolve on
528
+ 6 : Guess x0 cannot be converted to a basic feasible solution
529
+
530
+ message : str
531
+ A string descriptor of the exit status of the optimization.
532
+ iteration : int
533
+ The number of iterations taken to solve the problem.
534
+ """
535
+
536
+ _check_unknown_options(unknown_options)
537
+
538
+ messages = ["Optimization terminated successfully.",
539
+ "Iteration limit reached.",
540
+ "The problem appears infeasible, as the phase one auxiliary "
541
+ "problem terminated successfully with a residual of {0:.1e}, "
542
+ "greater than the tolerance {1} required for the solution to "
543
+ "be considered feasible. Consider increasing the tolerance to "
544
+ "be greater than {0:.1e}. If this tolerance is unnaceptably "
545
+ "large, the problem is likely infeasible.",
546
+ "The problem is unbounded, as the simplex algorithm found "
547
+ "a basic feasible solution from which there is a direction "
548
+ "with negative reduced cost in which all decision variables "
549
+ "increase.",
550
+ "Numerical difficulties encountered; consider trying "
551
+ "method='interior-point'.",
552
+ "Problems with no constraints are trivially solved; please "
553
+ "turn presolve on.",
554
+ "The guess x0 cannot be converted to a basic feasible "
555
+ "solution. "
556
+ ]
557
+
558
+ if A.size == 0: # address test_unbounded_below_no_presolve_corrected
559
+ return np.zeros(c.shape), 5, messages[5], 0
560
+
561
+ x, basis, A, b, residual, status, iteration = (
562
+ _phase_one(A, b, x0, callback, postsolve_args,
563
+ maxiter, tol, disp, maxupdate, mast, pivot))
564
+
565
+ if status == 0:
566
+ x, basis, status, iteration = _phase_two(c, A, x, basis, callback,
567
+ postsolve_args,
568
+ maxiter, tol, disp,
569
+ maxupdate, mast, pivot,
570
+ iteration)
571
+
572
+ return x, status, messages[status].format(residual, tol), iteration
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog_simplex.py ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Simplex method for linear programming
2
+
3
+ The *simplex* method uses a traditional, full-tableau implementation of
4
+ Dantzig's simplex algorithm [1]_, [2]_ (*not* the Nelder-Mead simplex).
5
+ This algorithm is included for backwards compatibility and educational
6
+ purposes.
7
+
8
+ .. versionadded:: 0.15.0
9
+
10
+ Warnings
11
+ --------
12
+
13
+ The simplex method may encounter numerical difficulties when pivot
14
+ values are close to the specified tolerance. If encountered try
15
+ remove any redundant constraints, change the pivot strategy to Bland's
16
+ rule or increase the tolerance value.
17
+
18
+ Alternatively, more robust methods maybe be used. See
19
+ :ref:`'interior-point' <optimize.linprog-interior-point>` and
20
+ :ref:`'revised simplex' <optimize.linprog-revised_simplex>`.
21
+
22
+ References
23
+ ----------
24
+ .. [1] Dantzig, George B., Linear programming and extensions. Rand
25
+ Corporation Research Study Princeton Univ. Press, Princeton, NJ,
26
+ 1963
27
+ .. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to
28
+ Mathematical Programming", McGraw-Hill, Chapter 4.
29
+ """
30
+
31
+ import numpy as np
32
+ from warnings import warn
33
+ from ._optimize import OptimizeResult, OptimizeWarning, _check_unknown_options
34
+ from ._linprog_util import _postsolve
35
+
36
+
37
+ def _pivot_col(T, tol=1e-9, bland=False):
38
+ """
39
+ Given a linear programming simplex tableau, determine the column
40
+ of the variable to enter the basis.
41
+
42
+ Parameters
43
+ ----------
44
+ T : 2-D array
45
+ A 2-D array representing the simplex tableau, T, corresponding to the
46
+ linear programming problem. It should have the form:
47
+
48
+ [[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
49
+ [A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
50
+ .
51
+ .
52
+ .
53
+ [A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
54
+ [c[0], c[1], ..., c[n_total], 0]]
55
+
56
+ for a Phase 2 problem, or the form:
57
+
58
+ [[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
59
+ [A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
60
+ .
61
+ .
62
+ .
63
+ [A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
64
+ [c[0], c[1], ..., c[n_total], 0],
65
+ [c'[0], c'[1], ..., c'[n_total], 0]]
66
+
67
+ for a Phase 1 problem (a problem in which a basic feasible solution is
68
+ sought prior to maximizing the actual objective. ``T`` is modified in
69
+ place by ``_solve_simplex``.
70
+ tol : float
71
+ Elements in the objective row larger than -tol will not be considered
72
+ for pivoting. Nominally this value is zero, but numerical issues
73
+ cause a tolerance about zero to be necessary.
74
+ bland : bool
75
+ If True, use Bland's rule for selection of the column (select the
76
+ first column with a negative coefficient in the objective row,
77
+ regardless of magnitude).
78
+
79
+ Returns
80
+ -------
81
+ status: bool
82
+ True if a suitable pivot column was found, otherwise False.
83
+ A return of False indicates that the linear programming simplex
84
+ algorithm is complete.
85
+ col: int
86
+ The index of the column of the pivot element.
87
+ If status is False, col will be returned as nan.
88
+ """
89
+ ma = np.ma.masked_where(T[-1, :-1] >= -tol, T[-1, :-1], copy=False)
90
+ if ma.count() == 0:
91
+ return False, np.nan
92
+ if bland:
93
+ # ma.mask is sometimes 0d
94
+ return True, np.nonzero(np.logical_not(np.atleast_1d(ma.mask)))[0][0]
95
+ return True, np.ma.nonzero(ma == ma.min())[0][0]
96
+
97
+
98
+ def _pivot_row(T, basis, pivcol, phase, tol=1e-9, bland=False):
99
+ """
100
+ Given a linear programming simplex tableau, determine the row for the
101
+ pivot operation.
102
+
103
+ Parameters
104
+ ----------
105
+ T : 2-D array
106
+ A 2-D array representing the simplex tableau, T, corresponding to the
107
+ linear programming problem. It should have the form:
108
+
109
+ [[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
110
+ [A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
111
+ .
112
+ .
113
+ .
114
+ [A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
115
+ [c[0], c[1], ..., c[n_total], 0]]
116
+
117
+ for a Phase 2 problem, or the form:
118
+
119
+ [[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
120
+ [A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
121
+ .
122
+ .
123
+ .
124
+ [A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
125
+ [c[0], c[1], ..., c[n_total], 0],
126
+ [c'[0], c'[1], ..., c'[n_total], 0]]
127
+
128
+ for a Phase 1 problem (a Problem in which a basic feasible solution is
129
+ sought prior to maximizing the actual objective. ``T`` is modified in
130
+ place by ``_solve_simplex``.
131
+ basis : array
132
+ A list of the current basic variables.
133
+ pivcol : int
134
+ The index of the pivot column.
135
+ phase : int
136
+ The phase of the simplex algorithm (1 or 2).
137
+ tol : float
138
+ Elements in the pivot column smaller than tol will not be considered
139
+ for pivoting. Nominally this value is zero, but numerical issues
140
+ cause a tolerance about zero to be necessary.
141
+ bland : bool
142
+ If True, use Bland's rule for selection of the row (if more than one
143
+ row can be used, choose the one with the lowest variable index).
144
+
145
+ Returns
146
+ -------
147
+ status: bool
148
+ True if a suitable pivot row was found, otherwise False. A return
149
+ of False indicates that the linear programming problem is unbounded.
150
+ row: int
151
+ The index of the row of the pivot element. If status is False, row
152
+ will be returned as nan.
153
+ """
154
+ if phase == 1:
155
+ k = 2
156
+ else:
157
+ k = 1
158
+ ma = np.ma.masked_where(T[:-k, pivcol] <= tol, T[:-k, pivcol], copy=False)
159
+ if ma.count() == 0:
160
+ return False, np.nan
161
+ mb = np.ma.masked_where(T[:-k, pivcol] <= tol, T[:-k, -1], copy=False)
162
+ q = mb / ma
163
+ min_rows = np.ma.nonzero(q == q.min())[0]
164
+ if bland:
165
+ return True, min_rows[np.argmin(np.take(basis, min_rows))]
166
+ return True, min_rows[0]
167
+
168
+
169
+ def _apply_pivot(T, basis, pivrow, pivcol, tol=1e-9):
170
+ """
171
+ Pivot the simplex tableau inplace on the element given by (pivrow, pivol).
172
+ The entering variable corresponds to the column given by pivcol forcing
173
+ the variable basis[pivrow] to leave the basis.
174
+
175
+ Parameters
176
+ ----------
177
+ T : 2-D array
178
+ A 2-D array representing the simplex tableau, T, corresponding to the
179
+ linear programming problem. It should have the form:
180
+
181
+ [[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
182
+ [A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
183
+ .
184
+ .
185
+ .
186
+ [A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
187
+ [c[0], c[1], ..., c[n_total], 0]]
188
+
189
+ for a Phase 2 problem, or the form:
190
+
191
+ [[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
192
+ [A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
193
+ .
194
+ .
195
+ .
196
+ [A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
197
+ [c[0], c[1], ..., c[n_total], 0],
198
+ [c'[0], c'[1], ..., c'[n_total], 0]]
199
+
200
+ for a Phase 1 problem (a problem in which a basic feasible solution is
201
+ sought prior to maximizing the actual objective. ``T`` is modified in
202
+ place by ``_solve_simplex``.
203
+ basis : 1-D array
204
+ An array of the indices of the basic variables, such that basis[i]
205
+ contains the column corresponding to the basic variable for row i.
206
+ Basis is modified in place by _apply_pivot.
207
+ pivrow : int
208
+ Row index of the pivot.
209
+ pivcol : int
210
+ Column index of the pivot.
211
+ """
212
+ basis[pivrow] = pivcol
213
+ pivval = T[pivrow, pivcol]
214
+ T[pivrow] = T[pivrow] / pivval
215
+ for irow in range(T.shape[0]):
216
+ if irow != pivrow:
217
+ T[irow] = T[irow] - T[pivrow] * T[irow, pivcol]
218
+
219
+ # The selected pivot should never lead to a pivot value less than the tol.
220
+ if np.isclose(pivval, tol, atol=0, rtol=1e4):
221
+ message = (
222
+ f"The pivot operation produces a pivot value of:{pivval: .1e}, "
223
+ "which is only slightly greater than the specified "
224
+ f"tolerance{tol: .1e}. This may lead to issues regarding the "
225
+ "numerical stability of the simplex method. "
226
+ "Removing redundant constraints, changing the pivot strategy "
227
+ "via Bland's rule or increasing the tolerance may "
228
+ "help reduce the issue.")
229
+ warn(message, OptimizeWarning, stacklevel=5)
230
+
231
+
232
+ def _solve_simplex(T, n, basis, callback, postsolve_args,
233
+ maxiter=1000, tol=1e-9, phase=2, bland=False, nit0=0,
234
+ ):
235
+ """
236
+ Solve a linear programming problem in "standard form" using the Simplex
237
+ Method. Linear Programming is intended to solve the following problem form:
238
+
239
+ Minimize::
240
+
241
+ c @ x
242
+
243
+ Subject to::
244
+
245
+ A @ x == b
246
+ x >= 0
247
+
248
+ Parameters
249
+ ----------
250
+ T : 2-D array
251
+ A 2-D array representing the simplex tableau, T, corresponding to the
252
+ linear programming problem. It should have the form:
253
+
254
+ [[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
255
+ [A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
256
+ .
257
+ .
258
+ .
259
+ [A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
260
+ [c[0], c[1], ..., c[n_total], 0]]
261
+
262
+ for a Phase 2 problem, or the form:
263
+
264
+ [[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
265
+ [A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
266
+ .
267
+ .
268
+ .
269
+ [A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
270
+ [c[0], c[1], ..., c[n_total], 0],
271
+ [c'[0], c'[1], ..., c'[n_total], 0]]
272
+
273
+ for a Phase 1 problem (a problem in which a basic feasible solution is
274
+ sought prior to maximizing the actual objective. ``T`` is modified in
275
+ place by ``_solve_simplex``.
276
+ n : int
277
+ The number of true variables in the problem.
278
+ basis : 1-D array
279
+ An array of the indices of the basic variables, such that basis[i]
280
+ contains the column corresponding to the basic variable for row i.
281
+ Basis is modified in place by _solve_simplex
282
+ callback : callable, optional
283
+ If a callback function is provided, it will be called within each
284
+ iteration of the algorithm. The callback must accept a
285
+ `scipy.optimize.OptimizeResult` consisting of the following fields:
286
+
287
+ x : 1-D array
288
+ Current solution vector
289
+ fun : float
290
+ Current value of the objective function
291
+ success : bool
292
+ True only when a phase has completed successfully. This
293
+ will be False for most iterations.
294
+ slack : 1-D array
295
+ The values of the slack variables. Each slack variable
296
+ corresponds to an inequality constraint. If the slack is zero,
297
+ the corresponding constraint is active.
298
+ con : 1-D array
299
+ The (nominally zero) residuals of the equality constraints,
300
+ that is, ``b - A_eq @ x``
301
+ phase : int
302
+ The phase of the optimization being executed. In phase 1 a basic
303
+ feasible solution is sought and the T has an additional row
304
+ representing an alternate objective function.
305
+ status : int
306
+ An integer representing the exit status of the optimization::
307
+
308
+ 0 : Optimization terminated successfully
309
+ 1 : Iteration limit reached
310
+ 2 : Problem appears to be infeasible
311
+ 3 : Problem appears to be unbounded
312
+ 4 : Serious numerical difficulties encountered
313
+
314
+ nit : int
315
+ The number of iterations performed.
316
+ message : str
317
+ A string descriptor of the exit status of the optimization.
318
+ postsolve_args : tuple
319
+ Data needed by _postsolve to convert the solution to the standard-form
320
+ problem into the solution to the original problem.
321
+ maxiter : int
322
+ The maximum number of iterations to perform before aborting the
323
+ optimization.
324
+ tol : float
325
+ The tolerance which determines when a solution is "close enough" to
326
+ zero in Phase 1 to be considered a basic feasible solution or close
327
+ enough to positive to serve as an optimal solution.
328
+ phase : int
329
+ The phase of the optimization being executed. In phase 1 a basic
330
+ feasible solution is sought and the T has an additional row
331
+ representing an alternate objective function.
332
+ bland : bool
333
+ If True, choose pivots using Bland's rule [3]_. In problems which
334
+ fail to converge due to cycling, using Bland's rule can provide
335
+ convergence at the expense of a less optimal path about the simplex.
336
+ nit0 : int
337
+ The initial iteration number used to keep an accurate iteration total
338
+ in a two-phase problem.
339
+
340
+ Returns
341
+ -------
342
+ nit : int
343
+ The number of iterations. Used to keep an accurate iteration total
344
+ in the two-phase problem.
345
+ status : int
346
+ An integer representing the exit status of the optimization::
347
+
348
+ 0 : Optimization terminated successfully
349
+ 1 : Iteration limit reached
350
+ 2 : Problem appears to be infeasible
351
+ 3 : Problem appears to be unbounded
352
+ 4 : Serious numerical difficulties encountered
353
+
354
+ """
355
+ nit = nit0
356
+ status = 0
357
+ message = ''
358
+ complete = False
359
+
360
+ if phase == 1:
361
+ m = T.shape[1]-2
362
+ elif phase == 2:
363
+ m = T.shape[1]-1
364
+ else:
365
+ raise ValueError("Argument 'phase' to _solve_simplex must be 1 or 2")
366
+
367
+ if phase == 2:
368
+ # Check if any artificial variables are still in the basis.
369
+ # If yes, check if any coefficients from this row and a column
370
+ # corresponding to one of the non-artificial variable is non-zero.
371
+ # If found, pivot at this term. If not, start phase 2.
372
+ # Do this for all artificial variables in the basis.
373
+ # Ref: "An Introduction to Linear Programming and Game Theory"
374
+ # by Paul R. Thie, Gerard E. Keough, 3rd Ed,
375
+ # Chapter 3.7 Redundant Systems (pag 102)
376
+ for pivrow in [row for row in range(basis.size)
377
+ if basis[row] > T.shape[1] - 2]:
378
+ non_zero_row = [col for col in range(T.shape[1] - 1)
379
+ if abs(T[pivrow, col]) > tol]
380
+ if len(non_zero_row) > 0:
381
+ pivcol = non_zero_row[0]
382
+ _apply_pivot(T, basis, pivrow, pivcol, tol)
383
+ nit += 1
384
+
385
+ if len(basis[:m]) == 0:
386
+ solution = np.empty(T.shape[1] - 1, dtype=np.float64)
387
+ else:
388
+ solution = np.empty(max(T.shape[1] - 1, max(basis[:m]) + 1),
389
+ dtype=np.float64)
390
+
391
+ while not complete:
392
+ # Find the pivot column
393
+ pivcol_found, pivcol = _pivot_col(T, tol, bland)
394
+ if not pivcol_found:
395
+ pivcol = np.nan
396
+ pivrow = np.nan
397
+ status = 0
398
+ complete = True
399
+ else:
400
+ # Find the pivot row
401
+ pivrow_found, pivrow = _pivot_row(T, basis, pivcol, phase, tol, bland)
402
+ if not pivrow_found:
403
+ status = 3
404
+ complete = True
405
+
406
+ if callback is not None:
407
+ solution[:] = 0
408
+ solution[basis[:n]] = T[:n, -1]
409
+ x = solution[:m]
410
+ x, fun, slack, con = _postsolve(
411
+ x, postsolve_args
412
+ )
413
+ res = OptimizeResult({
414
+ 'x': x,
415
+ 'fun': fun,
416
+ 'slack': slack,
417
+ 'con': con,
418
+ 'status': status,
419
+ 'message': message,
420
+ 'nit': nit,
421
+ 'success': status == 0 and complete,
422
+ 'phase': phase,
423
+ 'complete': complete,
424
+ })
425
+ callback(res)
426
+
427
+ if not complete:
428
+ if nit >= maxiter:
429
+ # Iteration limit exceeded
430
+ status = 1
431
+ complete = True
432
+ else:
433
+ _apply_pivot(T, basis, pivrow, pivcol, tol)
434
+ nit += 1
435
+ return nit, status
436
+
437
+
438
+ def _linprog_simplex(c, c0, A, b, callback, postsolve_args,
439
+ maxiter=1000, tol=1e-9, disp=False, bland=False,
440
+ **unknown_options):
441
+ """
442
+ Minimize a linear objective function subject to linear equality and
443
+ non-negativity constraints using the two phase simplex method.
444
+ Linear programming is intended to solve problems of the following form:
445
+
446
+ Minimize::
447
+
448
+ c @ x
449
+
450
+ Subject to::
451
+
452
+ A @ x == b
453
+ x >= 0
454
+
455
+ User-facing documentation is in _linprog_doc.py.
456
+
457
+ Parameters
458
+ ----------
459
+ c : 1-D array
460
+ Coefficients of the linear objective function to be minimized.
461
+ c0 : float
462
+ Constant term in objective function due to fixed (and eliminated)
463
+ variables. (Purely for display.)
464
+ A : 2-D array
465
+ 2-D array such that ``A @ x``, gives the values of the equality
466
+ constraints at ``x``.
467
+ b : 1-D array
468
+ 1-D array of values representing the right hand side of each equality
469
+ constraint (row) in ``A``.
470
+ callback : callable, optional
471
+ If a callback function is provided, it will be called within each
472
+ iteration of the algorithm. The callback function must accept a single
473
+ `scipy.optimize.OptimizeResult` consisting of the following fields:
474
+
475
+ x : 1-D array
476
+ Current solution vector
477
+ fun : float
478
+ Current value of the objective function
479
+ success : bool
480
+ True when an algorithm has completed successfully.
481
+ slack : 1-D array
482
+ The values of the slack variables. Each slack variable
483
+ corresponds to an inequality constraint. If the slack is zero,
484
+ the corresponding constraint is active.
485
+ con : 1-D array
486
+ The (nominally zero) residuals of the equality constraints,
487
+ that is, ``b - A_eq @ x``
488
+ phase : int
489
+ The phase of the algorithm being executed.
490
+ status : int
491
+ An integer representing the status of the optimization::
492
+
493
+ 0 : Algorithm proceeding nominally
494
+ 1 : Iteration limit reached
495
+ 2 : Problem appears to be infeasible
496
+ 3 : Problem appears to be unbounded
497
+ 4 : Serious numerical difficulties encountered
498
+ nit : int
499
+ The number of iterations performed.
500
+ message : str
501
+ A string descriptor of the exit status of the optimization.
502
+ postsolve_args : tuple
503
+ Data needed by _postsolve to convert the solution to the standard-form
504
+ problem into the solution to the original problem.
505
+
506
+ Options
507
+ -------
508
+ maxiter : int
509
+ The maximum number of iterations to perform.
510
+ disp : bool
511
+ If True, print exit status message to sys.stdout
512
+ tol : float
513
+ The tolerance which determines when a solution is "close enough" to
514
+ zero in Phase 1 to be considered a basic feasible solution or close
515
+ enough to positive to serve as an optimal solution.
516
+ bland : bool
517
+ If True, use Bland's anti-cycling rule [3]_ to choose pivots to
518
+ prevent cycling. If False, choose pivots which should lead to a
519
+ converged solution more quickly. The latter method is subject to
520
+ cycling (non-convergence) in rare instances.
521
+ unknown_options : dict
522
+ Optional arguments not used by this particular solver. If
523
+ `unknown_options` is non-empty a warning is issued listing all
524
+ unused options.
525
+
526
+ Returns
527
+ -------
528
+ x : 1-D array
529
+ Solution vector.
530
+ status : int
531
+ An integer representing the exit status of the optimization::
532
+
533
+ 0 : Optimization terminated successfully
534
+ 1 : Iteration limit reached
535
+ 2 : Problem appears to be infeasible
536
+ 3 : Problem appears to be unbounded
537
+ 4 : Serious numerical difficulties encountered
538
+
539
+ message : str
540
+ A string descriptor of the exit status of the optimization.
541
+ iteration : int
542
+ The number of iterations taken to solve the problem.
543
+
544
+ References
545
+ ----------
546
+ .. [1] Dantzig, George B., Linear programming and extensions. Rand
547
+ Corporation Research Study Princeton Univ. Press, Princeton, NJ,
548
+ 1963
549
+ .. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to
550
+ Mathematical Programming", McGraw-Hill, Chapter 4.
551
+ .. [3] Bland, Robert G. New finite pivoting rules for the simplex method.
552
+ Mathematics of Operations Research (2), 1977: pp. 103-107.
553
+
554
+
555
+ Notes
556
+ -----
557
+ The expected problem formulation differs between the top level ``linprog``
558
+ module and the method specific solvers. The method specific solvers expect a
559
+ problem in standard form:
560
+
561
+ Minimize::
562
+
563
+ c @ x
564
+
565
+ Subject to::
566
+
567
+ A @ x == b
568
+ x >= 0
569
+
570
+ Whereas the top level ``linprog`` module expects a problem of form:
571
+
572
+ Minimize::
573
+
574
+ c @ x
575
+
576
+ Subject to::
577
+
578
+ A_ub @ x <= b_ub
579
+ A_eq @ x == b_eq
580
+ lb <= x <= ub
581
+
582
+ where ``lb = 0`` and ``ub = None`` unless set in ``bounds``.
583
+
584
+ The original problem contains equality, upper-bound and variable constraints
585
+ whereas the method specific solver requires equality constraints and
586
+ variable non-negativity.
587
+
588
+ ``linprog`` module converts the original problem to standard form by
589
+ converting the simple bounds to upper bound constraints, introducing
590
+ non-negative slack variables for inequality constraints, and expressing
591
+ unbounded variables as the difference between two non-negative variables.
592
+ """
593
+ _check_unknown_options(unknown_options)
594
+
595
+ status = 0
596
+ messages = {0: "Optimization terminated successfully.",
597
+ 1: "Iteration limit reached.",
598
+ 2: "Optimization failed. Unable to find a feasible"
599
+ " starting point.",
600
+ 3: "Optimization failed. The problem appears to be unbounded.",
601
+ 4: "Optimization failed. Singular matrix encountered."}
602
+
603
+ n, m = A.shape
604
+
605
+ # All constraints must have b >= 0.
606
+ is_negative_constraint = np.less(b, 0)
607
+ A[is_negative_constraint] *= -1
608
+ b[is_negative_constraint] *= -1
609
+
610
+ # As all constraints are equality constraints the artificial variables
611
+ # will also be basic variables.
612
+ av = np.arange(n) + m
613
+ basis = av.copy()
614
+
615
+ # Format the phase one tableau by adding artificial variables and stacking
616
+ # the constraints, the objective row and pseudo-objective row.
617
+ row_constraints = np.hstack((A, np.eye(n), b[:, np.newaxis]))
618
+ row_objective = np.hstack((c, np.zeros(n), c0))
619
+ row_pseudo_objective = -row_constraints.sum(axis=0)
620
+ row_pseudo_objective[av] = 0
621
+ T = np.vstack((row_constraints, row_objective, row_pseudo_objective))
622
+
623
+ nit1, status = _solve_simplex(T, n, basis, callback=callback,
624
+ postsolve_args=postsolve_args,
625
+ maxiter=maxiter, tol=tol, phase=1,
626
+ bland=bland
627
+ )
628
+ # if pseudo objective is zero, remove the last row from the tableau and
629
+ # proceed to phase 2
630
+ nit2 = nit1
631
+ if abs(T[-1, -1]) < tol:
632
+ # Remove the pseudo-objective row from the tableau
633
+ T = T[:-1, :]
634
+ # Remove the artificial variable columns from the tableau
635
+ T = np.delete(T, av, 1)
636
+ else:
637
+ # Failure to find a feasible starting point
638
+ status = 2
639
+ messages[status] = (
640
+ "Phase 1 of the simplex method failed to find a feasible "
641
+ "solution. The pseudo-objective function evaluates to {0:.1e} "
642
+ "which exceeds the required tolerance of {1} for a solution to be "
643
+ "considered 'close enough' to zero to be a basic solution. "
644
+ "Consider increasing the tolerance to be greater than {0:.1e}. "
645
+ "If this tolerance is unacceptably large the problem may be "
646
+ "infeasible.".format(abs(T[-1, -1]), tol)
647
+ )
648
+
649
+ if status == 0:
650
+ # Phase 2
651
+ nit2, status = _solve_simplex(T, n, basis, callback=callback,
652
+ postsolve_args=postsolve_args,
653
+ maxiter=maxiter, tol=tol, phase=2,
654
+ bland=bland, nit0=nit1
655
+ )
656
+
657
+ solution = np.zeros(n + m)
658
+ solution[basis[:n]] = T[:n, -1]
659
+ x = solution[:m]
660
+
661
+ return x, status, messages[status], int(nit2)
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_linprog_util.py ADDED
@@ -0,0 +1,1522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Method agnostic utility functions for linear programming
3
+ """
4
+
5
+ import numpy as np
6
+ import scipy.sparse as sps
7
+ from warnings import warn
8
+ from ._optimize import OptimizeWarning
9
+ from scipy.optimize._remove_redundancy import (
10
+ _remove_redundancy_svd, _remove_redundancy_pivot_sparse,
11
+ _remove_redundancy_pivot_dense, _remove_redundancy_id
12
+ )
13
+ from collections import namedtuple
14
+
15
+ _LPProblem = namedtuple('_LPProblem',
16
+ 'c A_ub b_ub A_eq b_eq bounds x0 integrality')
17
+ _LPProblem.__new__.__defaults__ = (None,) * 7 # make c the only required arg
18
+ _LPProblem.__doc__ = \
19
+ """ Represents a linear-programming problem.
20
+
21
+ Attributes
22
+ ----------
23
+ c : 1D array
24
+ The coefficients of the linear objective function to be minimized.
25
+ A_ub : 2D array, optional
26
+ The inequality constraint matrix. Each row of ``A_ub`` specifies the
27
+ coefficients of a linear inequality constraint on ``x``.
28
+ b_ub : 1D array, optional
29
+ The inequality constraint vector. Each element represents an
30
+ upper bound on the corresponding value of ``A_ub @ x``.
31
+ A_eq : 2D array, optional
32
+ The equality constraint matrix. Each row of ``A_eq`` specifies the
33
+ coefficients of a linear equality constraint on ``x``.
34
+ b_eq : 1D array, optional
35
+ The equality constraint vector. Each element of ``A_eq @ x`` must equal
36
+ the corresponding element of ``b_eq``.
37
+ bounds : various valid formats, optional
38
+ The bounds of ``x``, as ``min`` and ``max`` pairs.
39
+ If bounds are specified for all N variables separately, valid formats
40
+ are:
41
+ * a 2D array (N x 2);
42
+ * a sequence of N sequences, each with 2 values.
43
+ If all variables have the same bounds, the bounds can be specified as
44
+ a 1-D or 2-D array or sequence with 2 scalar values.
45
+ If all variables have a lower bound of 0 and no upper bound, the bounds
46
+ parameter can be omitted (or given as None).
47
+ Absent lower and/or upper bounds can be specified as -numpy.inf (no
48
+ lower bound), numpy.inf (no upper bound) or None (both).
49
+ x0 : 1D array, optional
50
+ Guess values of the decision variables, which will be refined by
51
+ the optimization algorithm. This argument is currently used only by the
52
+ 'revised simplex' method, and can only be used if `x0` represents a
53
+ basic feasible solution.
54
+ integrality : 1-D array or int, optional
55
+ Indicates the type of integrality constraint on each decision variable.
56
+
57
+ ``0`` : Continuous variable; no integrality constraint.
58
+
59
+ ``1`` : Integer variable; decision variable must be an integer
60
+ within `bounds`.
61
+
62
+ ``2`` : Semi-continuous variable; decision variable must be within
63
+ `bounds` or take value ``0``.
64
+
65
+ ``3`` : Semi-integer variable; decision variable must be an integer
66
+ within `bounds` or take value ``0``.
67
+
68
+ By default, all variables are continuous.
69
+
70
+ For mixed integrality constraints, supply an array of shape `c.shape`.
71
+ To infer a constraint on each decision variable from shorter inputs,
72
+ the argument will be broadcasted to `c.shape` using `np.broadcast_to`.
73
+
74
+ This argument is currently used only by the ``'highs'`` method and
75
+ ignored otherwise.
76
+
77
+ Notes
78
+ -----
79
+ This namedtuple supports 2 ways of initialization:
80
+ >>> lp1 = _LPProblem(c=[-1, 4], A_ub=[[-3, 1], [1, 2]], b_ub=[6, 4])
81
+ >>> lp2 = _LPProblem([-1, 4], [[-3, 1], [1, 2]], [6, 4])
82
+
83
+ Note that only ``c`` is a required argument here, whereas all other arguments
84
+ ``A_ub``, ``b_ub``, ``A_eq``, ``b_eq``, ``bounds``, ``x0`` are optional with
85
+ default values of None.
86
+ For example, ``A_eq`` and ``b_eq`` can be set without ``A_ub`` or ``b_ub``:
87
+ >>> lp3 = _LPProblem(c=[-1, 4], A_eq=[[2, 1]], b_eq=[10])
88
+ """
89
+
90
+
91
+ def _check_sparse_inputs(options, meth, A_ub, A_eq):
92
+ """
93
+ Check the provided ``A_ub`` and ``A_eq`` matrices conform to the specified
94
+ optional sparsity variables.
95
+
96
+ Parameters
97
+ ----------
98
+ A_ub : 2-D array, optional
99
+ 2-D array such that ``A_ub @ x`` gives the values of the upper-bound
100
+ inequality constraints at ``x``.
101
+ A_eq : 2-D array, optional
102
+ 2-D array such that ``A_eq @ x`` gives the values of the equality
103
+ constraints at ``x``.
104
+ options : dict
105
+ A dictionary of solver options. All methods accept the following
106
+ generic options:
107
+
108
+ maxiter : int
109
+ Maximum number of iterations to perform.
110
+ disp : bool
111
+ Set to True to print convergence messages.
112
+
113
+ For method-specific options, see :func:`show_options('linprog')`.
114
+ method : str, optional
115
+ The algorithm used to solve the standard form problem.
116
+
117
+ Returns
118
+ -------
119
+ A_ub : 2-D array, optional
120
+ 2-D array such that ``A_ub @ x`` gives the values of the upper-bound
121
+ inequality constraints at ``x``.
122
+ A_eq : 2-D array, optional
123
+ 2-D array such that ``A_eq @ x`` gives the values of the equality
124
+ constraints at ``x``.
125
+ options : dict
126
+ A dictionary of solver options. All methods accept the following
127
+ generic options:
128
+
129
+ maxiter : int
130
+ Maximum number of iterations to perform.
131
+ disp : bool
132
+ Set to True to print convergence messages.
133
+
134
+ For method-specific options, see :func:`show_options('linprog')`.
135
+ """
136
+ # This is an undocumented option for unit testing sparse presolve
137
+ _sparse_presolve = options.pop('_sparse_presolve', False)
138
+ if _sparse_presolve and A_eq is not None:
139
+ A_eq = sps.coo_matrix(A_eq)
140
+ if _sparse_presolve and A_ub is not None:
141
+ A_ub = sps.coo_matrix(A_ub)
142
+
143
+ sparse_constraint = sps.issparse(A_eq) or sps.issparse(A_ub)
144
+
145
+ preferred_methods = {"highs", "highs-ds", "highs-ipm"}
146
+ dense_methods = {"simplex", "revised simplex"}
147
+ if meth in dense_methods and sparse_constraint:
148
+ raise ValueError(f"Method '{meth}' does not support sparse "
149
+ "constraint matrices. Please consider using one of "
150
+ f"{preferred_methods}.")
151
+
152
+ sparse = options.get('sparse', False)
153
+ if not sparse and sparse_constraint and meth == 'interior-point':
154
+ options['sparse'] = True
155
+ warn("Sparse constraint matrix detected; setting 'sparse':True.",
156
+ OptimizeWarning, stacklevel=4)
157
+ return options, A_ub, A_eq
158
+
159
+
160
+ def _format_A_constraints(A, n_x, sparse_lhs=False):
161
+ """Format the left hand side of the constraints to a 2-D array
162
+
163
+ Parameters
164
+ ----------
165
+ A : 2-D array
166
+ 2-D array such that ``A @ x`` gives the values of the upper-bound
167
+ (in)equality constraints at ``x``.
168
+ n_x : int
169
+ The number of variables in the linear programming problem.
170
+ sparse_lhs : bool
171
+ Whether either of `A_ub` or `A_eq` are sparse. If true return a
172
+ coo_matrix instead of a numpy array.
173
+
174
+ Returns
175
+ -------
176
+ np.ndarray or sparse.coo_matrix
177
+ 2-D array such that ``A @ x`` gives the values of the upper-bound
178
+ (in)equality constraints at ``x``.
179
+
180
+ """
181
+ if sparse_lhs:
182
+ return sps.coo_matrix(
183
+ (0, n_x) if A is None else A, dtype=float, copy=True
184
+ )
185
+ elif A is None:
186
+ return np.zeros((0, n_x), dtype=float)
187
+ else:
188
+ return np.array(A, dtype=float, copy=True)
189
+
190
+
191
+ def _format_b_constraints(b):
192
+ """Format the upper bounds of the constraints to a 1-D array
193
+
194
+ Parameters
195
+ ----------
196
+ b : 1-D array
197
+ 1-D array of values representing the upper-bound of each (in)equality
198
+ constraint (row) in ``A``.
199
+
200
+ Returns
201
+ -------
202
+ 1-D np.array
203
+ 1-D array of values representing the upper-bound of each (in)equality
204
+ constraint (row) in ``A``.
205
+
206
+ """
207
+ if b is None:
208
+ return np.array([], dtype=float)
209
+ b = np.array(b, dtype=float, copy=True).squeeze()
210
+ return b if b.size != 1 else b.reshape(-1)
211
+
212
+
213
+ def _clean_inputs(lp):
214
+ """
215
+ Given user inputs for a linear programming problem, return the
216
+ objective vector, upper bound constraints, equality constraints,
217
+ and simple bounds in a preferred format.
218
+
219
+ Parameters
220
+ ----------
221
+ lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
222
+
223
+ c : 1D array
224
+ The coefficients of the linear objective function to be minimized.
225
+ A_ub : 2D array, optional
226
+ The inequality constraint matrix. Each row of ``A_ub`` specifies the
227
+ coefficients of a linear inequality constraint on ``x``.
228
+ b_ub : 1D array, optional
229
+ The inequality constraint vector. Each element represents an
230
+ upper bound on the corresponding value of ``A_ub @ x``.
231
+ A_eq : 2D array, optional
232
+ The equality constraint matrix. Each row of ``A_eq`` specifies the
233
+ coefficients of a linear equality constraint on ``x``.
234
+ b_eq : 1D array, optional
235
+ The equality constraint vector. Each element of ``A_eq @ x`` must equal
236
+ the corresponding element of ``b_eq``.
237
+ bounds : various valid formats, optional
238
+ The bounds of ``x``, as ``min`` and ``max`` pairs.
239
+ If bounds are specified for all N variables separately, valid formats are:
240
+ * a 2D array (2 x N or N x 2);
241
+ * a sequence of N sequences, each with 2 values.
242
+ If all variables have the same bounds, a single pair of values can
243
+ be specified. Valid formats are:
244
+ * a sequence with 2 scalar values;
245
+ * a sequence with a single element containing 2 scalar values.
246
+ If all variables have a lower bound of 0 and no upper bound, the bounds
247
+ parameter can be omitted (or given as None).
248
+ x0 : 1D array, optional
249
+ Guess values of the decision variables, which will be refined by
250
+ the optimization algorithm. This argument is currently used only by the
251
+ 'revised simplex' method, and can only be used if `x0` represents a
252
+ basic feasible solution.
253
+
254
+ Returns
255
+ -------
256
+ lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
257
+
258
+ c : 1D array
259
+ The coefficients of the linear objective function to be minimized.
260
+ A_ub : 2D array, optional
261
+ The inequality constraint matrix. Each row of ``A_ub`` specifies the
262
+ coefficients of a linear inequality constraint on ``x``.
263
+ b_ub : 1D array, optional
264
+ The inequality constraint vector. Each element represents an
265
+ upper bound on the corresponding value of ``A_ub @ x``.
266
+ A_eq : 2D array, optional
267
+ The equality constraint matrix. Each row of ``A_eq`` specifies the
268
+ coefficients of a linear equality constraint on ``x``.
269
+ b_eq : 1D array, optional
270
+ The equality constraint vector. Each element of ``A_eq @ x`` must equal
271
+ the corresponding element of ``b_eq``.
272
+ bounds : 2D array
273
+ The bounds of ``x``, as ``min`` and ``max`` pairs, one for each of the N
274
+ elements of ``x``. The N x 2 array contains lower bounds in the first
275
+ column and upper bounds in the 2nd. Unbounded variables have lower
276
+ bound -np.inf and/or upper bound np.inf.
277
+ x0 : 1D array, optional
278
+ Guess values of the decision variables, which will be refined by
279
+ the optimization algorithm. This argument is currently used only by the
280
+ 'revised simplex' method, and can only be used if `x0` represents a
281
+ basic feasible solution.
282
+
283
+ """
284
+ c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp
285
+
286
+ if c is None:
287
+ raise TypeError
288
+
289
+ try:
290
+ c = np.array(c, dtype=np.float64, copy=True).squeeze()
291
+ except ValueError as e:
292
+ raise TypeError(
293
+ "Invalid input for linprog: c must be a 1-D array of numerical "
294
+ "coefficients") from e
295
+ else:
296
+ # If c is a single value, convert it to a 1-D array.
297
+ if c.size == 1:
298
+ c = c.reshape(-1)
299
+
300
+ n_x = len(c)
301
+ if n_x == 0 or len(c.shape) != 1:
302
+ raise ValueError(
303
+ "Invalid input for linprog: c must be a 1-D array and must "
304
+ "not have more than one non-singleton dimension")
305
+ if not np.isfinite(c).all():
306
+ raise ValueError(
307
+ "Invalid input for linprog: c must not contain values "
308
+ "inf, nan, or None")
309
+
310
+ sparse_lhs = sps.issparse(A_eq) or sps.issparse(A_ub)
311
+ try:
312
+ A_ub = _format_A_constraints(A_ub, n_x, sparse_lhs=sparse_lhs)
313
+ except ValueError as e:
314
+ raise TypeError(
315
+ "Invalid input for linprog: A_ub must be a 2-D array "
316
+ "of numerical values") from e
317
+ else:
318
+ n_ub = A_ub.shape[0]
319
+ if len(A_ub.shape) != 2 or A_ub.shape[1] != n_x:
320
+ raise ValueError(
321
+ "Invalid input for linprog: A_ub must have exactly two "
322
+ "dimensions, and the number of columns in A_ub must be "
323
+ "equal to the size of c")
324
+ if (sps.issparse(A_ub) and not np.isfinite(A_ub.data).all()
325
+ or not sps.issparse(A_ub) and not np.isfinite(A_ub).all()):
326
+ raise ValueError(
327
+ "Invalid input for linprog: A_ub must not contain values "
328
+ "inf, nan, or None")
329
+
330
+ try:
331
+ b_ub = _format_b_constraints(b_ub)
332
+ except ValueError as e:
333
+ raise TypeError(
334
+ "Invalid input for linprog: b_ub must be a 1-D array of "
335
+ "numerical values, each representing the upper bound of an "
336
+ "inequality constraint (row) in A_ub") from e
337
+ else:
338
+ if b_ub.shape != (n_ub,):
339
+ raise ValueError(
340
+ "Invalid input for linprog: b_ub must be a 1-D array; b_ub "
341
+ "must not have more than one non-singleton dimension and "
342
+ "the number of rows in A_ub must equal the number of values "
343
+ "in b_ub")
344
+ if not np.isfinite(b_ub).all():
345
+ raise ValueError(
346
+ "Invalid input for linprog: b_ub must not contain values "
347
+ "inf, nan, or None")
348
+
349
+ try:
350
+ A_eq = _format_A_constraints(A_eq, n_x, sparse_lhs=sparse_lhs)
351
+ except ValueError as e:
352
+ raise TypeError(
353
+ "Invalid input for linprog: A_eq must be a 2-D array "
354
+ "of numerical values") from e
355
+ else:
356
+ n_eq = A_eq.shape[0]
357
+ if len(A_eq.shape) != 2 or A_eq.shape[1] != n_x:
358
+ raise ValueError(
359
+ "Invalid input for linprog: A_eq must have exactly two "
360
+ "dimensions, and the number of columns in A_eq must be "
361
+ "equal to the size of c")
362
+
363
+ if (sps.issparse(A_eq) and not np.isfinite(A_eq.data).all()
364
+ or not sps.issparse(A_eq) and not np.isfinite(A_eq).all()):
365
+ raise ValueError(
366
+ "Invalid input for linprog: A_eq must not contain values "
367
+ "inf, nan, or None")
368
+
369
+ try:
370
+ b_eq = _format_b_constraints(b_eq)
371
+ except ValueError as e:
372
+ raise TypeError(
373
+ "Invalid input for linprog: b_eq must be a dense, 1-D array of "
374
+ "numerical values, each representing the right hand side of an "
375
+ "equality constraint (row) in A_eq") from e
376
+ else:
377
+ if b_eq.shape != (n_eq,):
378
+ raise ValueError(
379
+ "Invalid input for linprog: b_eq must be a 1-D array; b_eq "
380
+ "must not have more than one non-singleton dimension and "
381
+ "the number of rows in A_eq must equal the number of values "
382
+ "in b_eq")
383
+ if not np.isfinite(b_eq).all():
384
+ raise ValueError(
385
+ "Invalid input for linprog: b_eq must not contain values "
386
+ "inf, nan, or None")
387
+
388
+ # x0 gives a (optional) starting solution to the solver. If x0 is None,
389
+ # skip the checks. Initial solution will be generated automatically.
390
+ if x0 is not None:
391
+ try:
392
+ x0 = np.array(x0, dtype=float, copy=True).squeeze()
393
+ except ValueError as e:
394
+ raise TypeError(
395
+ "Invalid input for linprog: x0 must be a 1-D array of "
396
+ "numerical coefficients") from e
397
+ if x0.ndim == 0:
398
+ x0 = x0.reshape(-1)
399
+ if len(x0) == 0 or x0.ndim != 1:
400
+ raise ValueError(
401
+ "Invalid input for linprog: x0 should be a 1-D array; it "
402
+ "must not have more than one non-singleton dimension")
403
+ if not x0.size == c.size:
404
+ raise ValueError(
405
+ "Invalid input for linprog: x0 and c should contain the "
406
+ "same number of elements")
407
+ if not np.isfinite(x0).all():
408
+ raise ValueError(
409
+ "Invalid input for linprog: x0 must not contain values "
410
+ "inf, nan, or None")
411
+
412
+ # Bounds can be one of these formats:
413
+ # (1) a 2-D array or sequence, with shape N x 2
414
+ # (2) a 1-D or 2-D sequence or array with 2 scalars
415
+ # (3) None (or an empty sequence or array)
416
+ # Unspecified bounds can be represented by None or (-)np.inf.
417
+ # All formats are converted into a N x 2 np.array with (-)np.inf where
418
+ # bounds are unspecified.
419
+
420
+ # Prepare clean bounds array
421
+ bounds_clean = np.zeros((n_x, 2), dtype=float)
422
+
423
+ # Convert to a numpy array.
424
+ # np.array(..,dtype=float) raises an error if dimensions are inconsistent
425
+ # or if there are invalid data types in bounds. Just add a linprog prefix
426
+ # to the error and re-raise.
427
+ # Creating at least a 2-D array simplifies the cases to distinguish below.
428
+ if bounds is None or np.array_equal(bounds, []) or np.array_equal(bounds, [[]]):
429
+ bounds = (0, np.inf)
430
+ try:
431
+ bounds_conv = np.atleast_2d(np.array(bounds, dtype=float))
432
+ except ValueError as e:
433
+ raise ValueError(
434
+ "Invalid input for linprog: unable to interpret bounds, "
435
+ "check values and dimensions: " + e.args[0]) from e
436
+ except TypeError as e:
437
+ raise TypeError(
438
+ "Invalid input for linprog: unable to interpret bounds, "
439
+ "check values and dimensions: " + e.args[0]) from e
440
+
441
+ # Check bounds options
442
+ bsh = bounds_conv.shape
443
+ if len(bsh) > 2:
444
+ # Do not try to handle multidimensional bounds input
445
+ raise ValueError(
446
+ "Invalid input for linprog: provide a 2-D array for bounds, "
447
+ f"not a {len(bsh):d}-D array.")
448
+ elif np.all(bsh == (n_x, 2)):
449
+ # Regular N x 2 array
450
+ bounds_clean = bounds_conv
451
+ elif (np.all(bsh == (2, 1)) or np.all(bsh == (1, 2))):
452
+ # 2 values: interpret as overall lower and upper bound
453
+ bounds_flat = bounds_conv.flatten()
454
+ bounds_clean[:, 0] = bounds_flat[0]
455
+ bounds_clean[:, 1] = bounds_flat[1]
456
+ elif np.all(bsh == (2, n_x)):
457
+ # Reject a 2 x N array
458
+ raise ValueError(
459
+ f"Invalid input for linprog: provide a {n_x:d} x 2 array for bounds, "
460
+ f"not a 2 x {n_x:d} array.")
461
+ else:
462
+ raise ValueError(
463
+ "Invalid input for linprog: unable to interpret bounds with this "
464
+ f"dimension tuple: {bsh}.")
465
+
466
+ # The process above creates nan-s where the input specified None
467
+ # Convert the nan-s in the 1st column to -np.inf and in the 2nd column
468
+ # to np.inf
469
+ i_none = np.isnan(bounds_clean[:, 0])
470
+ bounds_clean[i_none, 0] = -np.inf
471
+ i_none = np.isnan(bounds_clean[:, 1])
472
+ bounds_clean[i_none, 1] = np.inf
473
+
474
+ return _LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds_clean, x0, integrality)
475
+
476
+
477
+ def _presolve(lp, rr, rr_method, tol=1e-9):
478
+ """
479
+ Given inputs for a linear programming problem in preferred format,
480
+ presolve the problem: identify trivial infeasibilities, redundancies,
481
+ and unboundedness, tighten bounds where possible, and eliminate fixed
482
+ variables.
483
+
484
+ Parameters
485
+ ----------
486
+ lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
487
+
488
+ c : 1D array
489
+ The coefficients of the linear objective function to be minimized.
490
+ A_ub : 2D array, optional
491
+ The inequality constraint matrix. Each row of ``A_ub`` specifies the
492
+ coefficients of a linear inequality constraint on ``x``.
493
+ b_ub : 1D array, optional
494
+ The inequality constraint vector. Each element represents an
495
+ upper bound on the corresponding value of ``A_ub @ x``.
496
+ A_eq : 2D array, optional
497
+ The equality constraint matrix. Each row of ``A_eq`` specifies the
498
+ coefficients of a linear equality constraint on ``x``.
499
+ b_eq : 1D array, optional
500
+ The equality constraint vector. Each element of ``A_eq @ x`` must equal
501
+ the corresponding element of ``b_eq``.
502
+ bounds : 2D array
503
+ The bounds of ``x``, as ``min`` and ``max`` pairs, one for each of the N
504
+ elements of ``x``. The N x 2 array contains lower bounds in the first
505
+ column and upper bounds in the 2nd. Unbounded variables have lower
506
+ bound -np.inf and/or upper bound np.inf.
507
+ x0 : 1D array, optional
508
+ Guess values of the decision variables, which will be refined by
509
+ the optimization algorithm. This argument is currently used only by the
510
+ 'revised simplex' method, and can only be used if `x0` represents a
511
+ basic feasible solution.
512
+
513
+ rr : bool
514
+ If ``True`` attempts to eliminate any redundant rows in ``A_eq``.
515
+ Set False if ``A_eq`` is known to be of full row rank, or if you are
516
+ looking for a potential speedup (at the expense of reliability).
517
+ rr_method : string
518
+ Method used to identify and remove redundant rows from the
519
+ equality constraint matrix after presolve.
520
+ tol : float
521
+ The tolerance which determines when a solution is "close enough" to
522
+ zero in Phase 1 to be considered a basic feasible solution or close
523
+ enough to positive to serve as an optimal solution.
524
+
525
+ Returns
526
+ -------
527
+ lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
528
+
529
+ c : 1D array
530
+ The coefficients of the linear objective function to be minimized.
531
+ A_ub : 2D array, optional
532
+ The inequality constraint matrix. Each row of ``A_ub`` specifies the
533
+ coefficients of a linear inequality constraint on ``x``.
534
+ b_ub : 1D array, optional
535
+ The inequality constraint vector. Each element represents an
536
+ upper bound on the corresponding value of ``A_ub @ x``.
537
+ A_eq : 2D array, optional
538
+ The equality constraint matrix. Each row of ``A_eq`` specifies the
539
+ coefficients of a linear equality constraint on ``x``.
540
+ b_eq : 1D array, optional
541
+ The equality constraint vector. Each element of ``A_eq @ x`` must equal
542
+ the corresponding element of ``b_eq``.
543
+ bounds : 2D array
544
+ The bounds of ``x``, as ``min`` and ``max`` pairs, possibly tightened.
545
+ x0 : 1D array, optional
546
+ Guess values of the decision variables, which will be refined by
547
+ the optimization algorithm. This argument is currently used only by the
548
+ 'revised simplex' method, and can only be used if `x0` represents a
549
+ basic feasible solution.
550
+
551
+ c0 : 1D array
552
+ Constant term in objective function due to fixed (and eliminated)
553
+ variables.
554
+ x : 1D array
555
+ Solution vector (when the solution is trivial and can be determined
556
+ in presolve)
557
+ revstack: list of functions
558
+ the functions in the list reverse the operations of _presolve()
559
+ the function signature is x_org = f(x_mod), where x_mod is the result
560
+ of a presolve step and x_org the value at the start of the step
561
+ (currently, the revstack contains only one function)
562
+ complete: bool
563
+ Whether the solution is complete (solved or determined to be infeasible
564
+ or unbounded in presolve)
565
+ status : int
566
+ An integer representing the exit status of the optimization::
567
+
568
+ 0 : Optimization terminated successfully
569
+ 1 : Iteration limit reached
570
+ 2 : Problem appears to be infeasible
571
+ 3 : Problem appears to be unbounded
572
+ 4 : Serious numerical difficulties encountered
573
+
574
+ message : str
575
+ A string descriptor of the exit status of the optimization.
576
+
577
+ References
578
+ ----------
579
+ .. [5] Andersen, Erling D. "Finding all linearly dependent rows in
580
+ large-scale linear programming." Optimization Methods and Software
581
+ 6.3 (1995): 219-227.
582
+ .. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear
583
+ programming." Mathematical Programming 71.2 (1995): 221-245.
584
+
585
+ """
586
+ # ideas from Reference [5] by Andersen and Andersen
587
+ # however, unlike the reference, this is performed before converting
588
+ # problem to standard form
589
+ # There are a few advantages:
590
+ # * artificial variables have not been added, so matrices are smaller
591
+ # * bounds have not been converted to constraints yet. (It is better to
592
+ # do that after presolve because presolve may adjust the simple bounds.)
593
+ # There are many improvements that can be made, namely:
594
+ # * implement remaining checks from [5]
595
+ # * loop presolve until no additional changes are made
596
+ # * implement additional efficiency improvements in redundancy removal [2]
597
+
598
+ c, A_ub, b_ub, A_eq, b_eq, bounds, x0, _ = lp
599
+
600
+ revstack = [] # record of variables eliminated from problem
601
+ # constant term in cost function may be added if variables are eliminated
602
+ c0 = 0
603
+ complete = False # complete is True if detected infeasible/unbounded
604
+ x = np.zeros(c.shape) # this is solution vector if completed in presolve
605
+
606
+ status = 0 # all OK unless determined otherwise
607
+ message = ""
608
+
609
+ # Lower and upper bounds. Copy to prevent feedback.
610
+ lb = bounds[:, 0].copy()
611
+ ub = bounds[:, 1].copy()
612
+
613
+ m_eq, n = A_eq.shape
614
+ m_ub, n = A_ub.shape
615
+
616
+ if (rr_method is not None
617
+ and rr_method.lower() not in {"svd", "pivot", "id"}):
618
+ message = ("'" + str(rr_method) + "' is not a valid option "
619
+ "for redundancy removal. Valid options are 'SVD', "
620
+ "'pivot', and 'ID'.")
621
+ raise ValueError(message)
622
+
623
+ if sps.issparse(A_eq):
624
+ A_eq = A_eq.tocsr()
625
+ A_ub = A_ub.tocsr()
626
+
627
+ def where(A):
628
+ return A.nonzero()
629
+
630
+ vstack = sps.vstack
631
+ else:
632
+ where = np.where
633
+ vstack = np.vstack
634
+
635
+ # upper bounds > lower bounds
636
+ if np.any(ub < lb) or np.any(lb == np.inf) or np.any(ub == -np.inf):
637
+ status = 2
638
+ message = ("The problem is (trivially) infeasible since one "
639
+ "or more upper bounds are smaller than the corresponding "
640
+ "lower bounds, a lower bound is np.inf or an upper bound "
641
+ "is -np.inf.")
642
+ complete = True
643
+ return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
644
+ c0, x, revstack, complete, status, message)
645
+
646
+ # zero row in equality constraints
647
+ zero_row = np.array(np.sum(A_eq != 0, axis=1) == 0).flatten()
648
+ if np.any(zero_row):
649
+ if np.any(
650
+ np.logical_and(
651
+ zero_row,
652
+ np.abs(b_eq) > tol)): # test_zero_row_1
653
+ # infeasible if RHS is not zero
654
+ status = 2
655
+ message = ("The problem is (trivially) infeasible due to a row "
656
+ "of zeros in the equality constraint matrix with a "
657
+ "nonzero corresponding constraint value.")
658
+ complete = True
659
+ return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
660
+ c0, x, revstack, complete, status, message)
661
+ else: # test_zero_row_2
662
+ # if RHS is zero, we can eliminate this equation entirely
663
+ A_eq = A_eq[np.logical_not(zero_row), :]
664
+ b_eq = b_eq[np.logical_not(zero_row)]
665
+
666
+ # zero row in inequality constraints
667
+ zero_row = np.array(np.sum(A_ub != 0, axis=1) == 0).flatten()
668
+ if np.any(zero_row):
669
+ if np.any(np.logical_and(zero_row, b_ub < -tol)): # test_zero_row_1
670
+ # infeasible if RHS is less than zero (because LHS is zero)
671
+ status = 2
672
+ message = ("The problem is (trivially) infeasible due to a row "
673
+ "of zeros in the equality constraint matrix with a "
674
+ "nonzero corresponding constraint value.")
675
+ complete = True
676
+ return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
677
+ c0, x, revstack, complete, status, message)
678
+ else: # test_zero_row_2
679
+ # if LHS is >= 0, we can eliminate this constraint entirely
680
+ A_ub = A_ub[np.logical_not(zero_row), :]
681
+ b_ub = b_ub[np.logical_not(zero_row)]
682
+
683
+ # zero column in (both) constraints
684
+ # this indicates that a variable isn't constrained and can be removed
685
+ A = vstack((A_eq, A_ub))
686
+ if A.shape[0] > 0:
687
+ zero_col = np.array(np.sum(A != 0, axis=0) == 0).flatten()
688
+ # variable will be at upper or lower bound, depending on objective
689
+ x[np.logical_and(zero_col, c < 0)] = ub[
690
+ np.logical_and(zero_col, c < 0)]
691
+ x[np.logical_and(zero_col, c > 0)] = lb[
692
+ np.logical_and(zero_col, c > 0)]
693
+ if np.any(np.isinf(x)): # if an unconstrained variable has no bound
694
+ status = 3
695
+ message = ("If feasible, the problem is (trivially) unbounded "
696
+ "due to a zero column in the constraint matrices. If "
697
+ "you wish to check whether the problem is infeasible, "
698
+ "turn presolve off.")
699
+ complete = True
700
+ return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
701
+ c0, x, revstack, complete, status, message)
702
+ # variables will equal upper/lower bounds will be removed later
703
+ lb[np.logical_and(zero_col, c < 0)] = ub[
704
+ np.logical_and(zero_col, c < 0)]
705
+ ub[np.logical_and(zero_col, c > 0)] = lb[
706
+ np.logical_and(zero_col, c > 0)]
707
+
708
+ # row singleton in equality constraints
709
+ # this fixes a variable and removes the constraint
710
+ singleton_row = np.array(np.sum(A_eq != 0, axis=1) == 1).flatten()
711
+ rows = where(singleton_row)[0]
712
+ cols = where(A_eq[rows, :])[1]
713
+ if len(rows) > 0:
714
+ for row, col in zip(rows, cols):
715
+ val = b_eq[row] / A_eq[row, col]
716
+ if not lb[col] - tol <= val <= ub[col] + tol:
717
+ # infeasible if fixed value is not within bounds
718
+ status = 2
719
+ message = ("The problem is (trivially) infeasible because a "
720
+ "singleton row in the equality constraints is "
721
+ "inconsistent with the bounds.")
722
+ complete = True
723
+ return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
724
+ c0, x, revstack, complete, status, message)
725
+ else:
726
+ # sets upper and lower bounds at that fixed value - variable
727
+ # will be removed later
728
+ lb[col] = val
729
+ ub[col] = val
730
+ A_eq = A_eq[np.logical_not(singleton_row), :]
731
+ b_eq = b_eq[np.logical_not(singleton_row)]
732
+
733
+ # row singleton in inequality constraints
734
+ # this indicates a simple bound and the constraint can be removed
735
+ # simple bounds may be adjusted here
736
+ # After all of the simple bound information is combined here, get_Abc will
737
+ # turn the simple bounds into constraints
738
+ singleton_row = np.array(np.sum(A_ub != 0, axis=1) == 1).flatten()
739
+ cols = where(A_ub[singleton_row, :])[1]
740
+ rows = where(singleton_row)[0]
741
+ if len(rows) > 0:
742
+ for row, col in zip(rows, cols):
743
+ val = b_ub[row] / A_ub[row, col]
744
+ if A_ub[row, col] > 0: # upper bound
745
+ if val < lb[col] - tol: # infeasible
746
+ complete = True
747
+ elif val < ub[col]: # new upper bound
748
+ ub[col] = val
749
+ else: # lower bound
750
+ if val > ub[col] + tol: # infeasible
751
+ complete = True
752
+ elif val > lb[col]: # new lower bound
753
+ lb[col] = val
754
+ if complete:
755
+ status = 2
756
+ message = ("The problem is (trivially) infeasible because a "
757
+ "singleton row in the upper bound constraints is "
758
+ "inconsistent with the bounds.")
759
+ return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
760
+ c0, x, revstack, complete, status, message)
761
+ A_ub = A_ub[np.logical_not(singleton_row), :]
762
+ b_ub = b_ub[np.logical_not(singleton_row)]
763
+
764
+ # identical bounds indicate that variable can be removed
765
+ i_f = np.abs(lb - ub) < tol # indices of "fixed" variables
766
+ i_nf = np.logical_not(i_f) # indices of "not fixed" variables
767
+
768
+ # test_bounds_equal_but_infeasible
769
+ if np.all(i_f): # if bounds define solution, check for consistency
770
+ residual = b_eq - A_eq.dot(lb)
771
+ slack = b_ub - A_ub.dot(lb)
772
+ if ((A_ub.size > 0 and np.any(slack < 0)) or
773
+ (A_eq.size > 0 and not np.allclose(residual, 0))):
774
+ status = 2
775
+ message = ("The problem is (trivially) infeasible because the "
776
+ "bounds fix all variables to values inconsistent with "
777
+ "the constraints")
778
+ complete = True
779
+ return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
780
+ c0, x, revstack, complete, status, message)
781
+
782
+ ub_mod = ub
783
+ lb_mod = lb
784
+ if np.any(i_f):
785
+ c0 += c[i_f].dot(lb[i_f])
786
+ b_eq = b_eq - A_eq[:, i_f].dot(lb[i_f])
787
+ b_ub = b_ub - A_ub[:, i_f].dot(lb[i_f])
788
+ c = c[i_nf]
789
+ x_undo = lb[i_f] # not x[i_f], x is just zeroes
790
+ x = x[i_nf]
791
+ # user guess x0 stays separate from presolve solution x
792
+ if x0 is not None:
793
+ x0 = x0[i_nf]
794
+ A_eq = A_eq[:, i_nf]
795
+ A_ub = A_ub[:, i_nf]
796
+ # modify bounds
797
+ lb_mod = lb[i_nf]
798
+ ub_mod = ub[i_nf]
799
+
800
+ def rev(x_mod):
801
+ # Function to restore x: insert x_undo into x_mod.
802
+ # When elements have been removed at positions k1, k2, k3, ...
803
+ # then these must be replaced at (after) positions k1-1, k2-2,
804
+ # k3-3, ... in the modified array to recreate the original
805
+ i = np.flatnonzero(i_f)
806
+ # Number of variables to restore
807
+ N = len(i)
808
+ index_offset = np.arange(N)
809
+ # Create insert indices
810
+ insert_indices = i - index_offset
811
+ x_rev = np.insert(x_mod.astype(float), insert_indices, x_undo)
812
+ return x_rev
813
+
814
+ # Use revstack as a list of functions, currently just this one.
815
+ revstack.append(rev)
816
+
817
+ # no constraints indicates that problem is trivial
818
+ if A_eq.size == 0 and A_ub.size == 0:
819
+ b_eq = np.array([])
820
+ b_ub = np.array([])
821
+ # test_empty_constraint_1
822
+ if c.size == 0:
823
+ status = 0
824
+ message = ("The solution was determined in presolve as there are "
825
+ "no non-trivial constraints.")
826
+ elif (np.any(np.logical_and(c < 0, ub_mod == np.inf)) or
827
+ np.any(np.logical_and(c > 0, lb_mod == -np.inf))):
828
+ # test_no_constraints()
829
+ # test_unbounded_no_nontrivial_constraints_1
830
+ # test_unbounded_no_nontrivial_constraints_2
831
+ status = 3
832
+ message = ("The problem is (trivially) unbounded "
833
+ "because there are no non-trivial constraints and "
834
+ "a) at least one decision variable is unbounded "
835
+ "above and its corresponding cost is negative, or "
836
+ "b) at least one decision variable is unbounded below "
837
+ "and its corresponding cost is positive. ")
838
+ else: # test_empty_constraint_2
839
+ status = 0
840
+ message = ("The solution was determined in presolve as there are "
841
+ "no non-trivial constraints.")
842
+ complete = True
843
+ x[c < 0] = ub_mod[c < 0]
844
+ x[c > 0] = lb_mod[c > 0]
845
+ # where c is zero, set x to a finite bound or zero
846
+ x_zero_c = ub_mod[c == 0]
847
+ x_zero_c[np.isinf(x_zero_c)] = ub_mod[c == 0][np.isinf(x_zero_c)]
848
+ x_zero_c[np.isinf(x_zero_c)] = 0
849
+ x[c == 0] = x_zero_c
850
+ # if this is not the last step of presolve, should convert bounds back
851
+ # to array and return here
852
+
853
+ # Convert modified lb and ub back into N x 2 bounds
854
+ bounds = np.hstack((lb_mod[:, np.newaxis], ub_mod[:, np.newaxis]))
855
+
856
+ # remove redundant (linearly dependent) rows from equality constraints
857
+ n_rows_A = A_eq.shape[0]
858
+ redundancy_warning = ("A_eq does not appear to be of full row rank. To "
859
+ "improve performance, check the problem formulation "
860
+ "for redundant equality constraints.")
861
+ if (sps.issparse(A_eq)):
862
+ if rr and A_eq.size > 0: # TODO: Fast sparse rank check?
863
+ rr_res = _remove_redundancy_pivot_sparse(A_eq, b_eq)
864
+ A_eq, b_eq, status, message = rr_res
865
+ if A_eq.shape[0] < n_rows_A:
866
+ warn(redundancy_warning, OptimizeWarning, stacklevel=1)
867
+ if status != 0:
868
+ complete = True
869
+ return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
870
+ c0, x, revstack, complete, status, message)
871
+
872
+ # This is a wild guess for which redundancy removal algorithm will be
873
+ # faster. More testing would be good.
874
+ small_nullspace = 5
875
+ if rr and A_eq.size > 0:
876
+ try: # TODO: use results of first SVD in _remove_redundancy_svd
877
+ rank = np.linalg.matrix_rank(A_eq)
878
+ # oh well, we'll have to go with _remove_redundancy_pivot_dense
879
+ except Exception:
880
+ rank = 0
881
+ if rr and A_eq.size > 0 and rank < A_eq.shape[0]:
882
+ warn(redundancy_warning, OptimizeWarning, stacklevel=3)
883
+ dim_row_nullspace = A_eq.shape[0]-rank
884
+ if rr_method is None:
885
+ if dim_row_nullspace <= small_nullspace:
886
+ rr_res = _remove_redundancy_svd(A_eq, b_eq)
887
+ A_eq, b_eq, status, message = rr_res
888
+ if dim_row_nullspace > small_nullspace or status == 4:
889
+ rr_res = _remove_redundancy_pivot_dense(A_eq, b_eq)
890
+ A_eq, b_eq, status, message = rr_res
891
+
892
+ else:
893
+ rr_method = rr_method.lower()
894
+ if rr_method == "svd":
895
+ rr_res = _remove_redundancy_svd(A_eq, b_eq)
896
+ A_eq, b_eq, status, message = rr_res
897
+ elif rr_method == "pivot":
898
+ rr_res = _remove_redundancy_pivot_dense(A_eq, b_eq)
899
+ A_eq, b_eq, status, message = rr_res
900
+ elif rr_method == "id":
901
+ rr_res = _remove_redundancy_id(A_eq, b_eq, rank)
902
+ A_eq, b_eq, status, message = rr_res
903
+ else: # shouldn't get here; option validity checked above
904
+ pass
905
+ if A_eq.shape[0] < rank:
906
+ message = ("Due to numerical issues, redundant equality "
907
+ "constraints could not be removed automatically. "
908
+ "Try providing your constraint matrices as sparse "
909
+ "matrices to activate sparse presolve, try turning "
910
+ "off redundancy removal, or try turning off presolve "
911
+ "altogether.")
912
+ status = 4
913
+ if status != 0:
914
+ complete = True
915
+ return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
916
+ c0, x, revstack, complete, status, message)
917
+
918
+
919
+ def _parse_linprog(lp, options, meth):
920
+ """
921
+ Parse the provided linear programming problem
922
+
923
+ ``_parse_linprog`` employs two main steps ``_check_sparse_inputs`` and
924
+ ``_clean_inputs``. ``_check_sparse_inputs`` checks for sparsity in the
925
+ provided constraints (``A_ub`` and ``A_eq) and if these match the provided
926
+ sparsity optional values.
927
+
928
+ ``_clean inputs`` checks of the provided inputs. If no violations are
929
+ identified the objective vector, upper bound constraints, equality
930
+ constraints, and simple bounds are returned in the expected format.
931
+
932
+ Parameters
933
+ ----------
934
+ lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
935
+
936
+ c : 1D array
937
+ The coefficients of the linear objective function to be minimized.
938
+ A_ub : 2D array, optional
939
+ The inequality constraint matrix. Each row of ``A_ub`` specifies the
940
+ coefficients of a linear inequality constraint on ``x``.
941
+ b_ub : 1D array, optional
942
+ The inequality constraint vector. Each element represents an
943
+ upper bound on the corresponding value of ``A_ub @ x``.
944
+ A_eq : 2D array, optional
945
+ The equality constraint matrix. Each row of ``A_eq`` specifies the
946
+ coefficients of a linear equality constraint on ``x``.
947
+ b_eq : 1D array, optional
948
+ The equality constraint vector. Each element of ``A_eq @ x`` must equal
949
+ the corresponding element of ``b_eq``.
950
+ bounds : various valid formats, optional
951
+ The bounds of ``x``, as ``min`` and ``max`` pairs.
952
+ If bounds are specified for all N variables separately, valid formats are:
953
+ * a 2D array (2 x N or N x 2);
954
+ * a sequence of N sequences, each with 2 values.
955
+ If all variables have the same bounds, a single pair of values can
956
+ be specified. Valid formats are:
957
+ * a sequence with 2 scalar values;
958
+ * a sequence with a single element containing 2 scalar values.
959
+ If all variables have a lower bound of 0 and no upper bound, the bounds
960
+ parameter can be omitted (or given as None).
961
+ x0 : 1D array, optional
962
+ Guess values of the decision variables, which will be refined by
963
+ the optimization algorithm. This argument is currently used only by the
964
+ 'revised simplex' method, and can only be used if `x0` represents a
965
+ basic feasible solution.
966
+
967
+ options : dict
968
+ A dictionary of solver options. All methods accept the following
969
+ generic options:
970
+
971
+ maxiter : int
972
+ Maximum number of iterations to perform.
973
+ disp : bool
974
+ Set to True to print convergence messages.
975
+
976
+ For method-specific options, see :func:`show_options('linprog')`.
977
+
978
+ Returns
979
+ -------
980
+ lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
981
+
982
+ c : 1D array
983
+ The coefficients of the linear objective function to be minimized.
984
+ A_ub : 2D array, optional
985
+ The inequality constraint matrix. Each row of ``A_ub`` specifies the
986
+ coefficients of a linear inequality constraint on ``x``.
987
+ b_ub : 1D array, optional
988
+ The inequality constraint vector. Each element represents an
989
+ upper bound on the corresponding value of ``A_ub @ x``.
990
+ A_eq : 2D array, optional
991
+ The equality constraint matrix. Each row of ``A_eq`` specifies the
992
+ coefficients of a linear equality constraint on ``x``.
993
+ b_eq : 1D array, optional
994
+ The equality constraint vector. Each element of ``A_eq @ x`` must equal
995
+ the corresponding element of ``b_eq``.
996
+ bounds : 2D array
997
+ The bounds of ``x``, as ``min`` and ``max`` pairs, one for each of the N
998
+ elements of ``x``. The N x 2 array contains lower bounds in the first
999
+ column and upper bounds in the 2nd. Unbounded variables have lower
1000
+ bound -np.inf and/or upper bound np.inf.
1001
+ x0 : 1D array, optional
1002
+ Guess values of the decision variables, which will be refined by
1003
+ the optimization algorithm. This argument is currently used only by the
1004
+ 'revised simplex' method, and can only be used if `x0` represents a
1005
+ basic feasible solution.
1006
+
1007
+ options : dict, optional
1008
+ A dictionary of solver options. All methods accept the following
1009
+ generic options:
1010
+
1011
+ maxiter : int
1012
+ Maximum number of iterations to perform.
1013
+ disp : bool
1014
+ Set to True to print convergence messages.
1015
+
1016
+ For method-specific options, see :func:`show_options('linprog')`.
1017
+
1018
+ """
1019
+ if options is None:
1020
+ options = {}
1021
+
1022
+ solver_options = {k: v for k, v in options.items()}
1023
+ solver_options, A_ub, A_eq = _check_sparse_inputs(solver_options, meth,
1024
+ lp.A_ub, lp.A_eq)
1025
+ # Convert lists to numpy arrays, etc...
1026
+ lp = _clean_inputs(lp._replace(A_ub=A_ub, A_eq=A_eq))
1027
+ return lp, solver_options
1028
+
1029
+
1030
+ def _get_Abc(lp, c0):
1031
+ """
1032
+ Given a linear programming problem of the form:
1033
+
1034
+ Minimize::
1035
+
1036
+ c @ x
1037
+
1038
+ Subject to::
1039
+
1040
+ A_ub @ x <= b_ub
1041
+ A_eq @ x == b_eq
1042
+ lb <= x <= ub
1043
+
1044
+ where ``lb = 0`` and ``ub = None`` unless set in ``bounds``.
1045
+
1046
+ Return the problem in standard form:
1047
+
1048
+ Minimize::
1049
+
1050
+ c @ x
1051
+
1052
+ Subject to::
1053
+
1054
+ A @ x == b
1055
+ x >= 0
1056
+
1057
+ by adding slack variables and making variable substitutions as necessary.
1058
+
1059
+ Parameters
1060
+ ----------
1061
+ lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
1062
+
1063
+ c : 1D array
1064
+ The coefficients of the linear objective function to be minimized.
1065
+ A_ub : 2D array, optional
1066
+ The inequality constraint matrix. Each row of ``A_ub`` specifies the
1067
+ coefficients of a linear inequality constraint on ``x``.
1068
+ b_ub : 1D array, optional
1069
+ The inequality constraint vector. Each element represents an
1070
+ upper bound on the corresponding value of ``A_ub @ x``.
1071
+ A_eq : 2D array, optional
1072
+ The equality constraint matrix. Each row of ``A_eq`` specifies the
1073
+ coefficients of a linear equality constraint on ``x``.
1074
+ b_eq : 1D array, optional
1075
+ The equality constraint vector. Each element of ``A_eq @ x`` must equal
1076
+ the corresponding element of ``b_eq``.
1077
+ bounds : 2D array
1078
+ The bounds of ``x``, lower bounds in the 1st column, upper
1079
+ bounds in the 2nd column. The bounds are possibly tightened
1080
+ by the presolve procedure.
1081
+ x0 : 1D array, optional
1082
+ Guess values of the decision variables, which will be refined by
1083
+ the optimization algorithm. This argument is currently used only by the
1084
+ 'revised simplex' method, and can only be used if `x0` represents a
1085
+ basic feasible solution.
1086
+
1087
+ c0 : float
1088
+ Constant term in objective function due to fixed (and eliminated)
1089
+ variables.
1090
+
1091
+ Returns
1092
+ -------
1093
+ A : 2-D array
1094
+ 2-D array such that ``A`` @ ``x``, gives the values of the equality
1095
+ constraints at ``x``.
1096
+ b : 1-D array
1097
+ 1-D array of values representing the RHS of each equality constraint
1098
+ (row) in A (for standard form problem).
1099
+ c : 1-D array
1100
+ Coefficients of the linear objective function to be minimized (for
1101
+ standard form problem).
1102
+ c0 : float
1103
+ Constant term in objective function due to fixed (and eliminated)
1104
+ variables.
1105
+ x0 : 1-D array
1106
+ Starting values of the independent variables, which will be refined by
1107
+ the optimization algorithm
1108
+
1109
+ References
1110
+ ----------
1111
+ .. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
1112
+ programming." Athena Scientific 1 (1997): 997.
1113
+
1114
+ """
1115
+ c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp
1116
+
1117
+ if sps.issparse(A_eq):
1118
+ sparse = True
1119
+ A_eq = sps.csr_matrix(A_eq)
1120
+ A_ub = sps.csr_matrix(A_ub)
1121
+
1122
+ def hstack(blocks):
1123
+ return sps.hstack(blocks, format="csr")
1124
+
1125
+ def vstack(blocks):
1126
+ return sps.vstack(blocks, format="csr")
1127
+
1128
+ zeros = sps.csr_matrix
1129
+ eye = sps.eye
1130
+ else:
1131
+ sparse = False
1132
+ hstack = np.hstack
1133
+ vstack = np.vstack
1134
+ zeros = np.zeros
1135
+ eye = np.eye
1136
+
1137
+ # Variables lbs and ubs (see below) may be changed, which feeds back into
1138
+ # bounds, so copy.
1139
+ bounds = np.array(bounds, copy=True)
1140
+
1141
+ # modify problem such that all variables have only non-negativity bounds
1142
+ lbs = bounds[:, 0]
1143
+ ubs = bounds[:, 1]
1144
+ m_ub, n_ub = A_ub.shape
1145
+
1146
+ lb_none = np.equal(lbs, -np.inf)
1147
+ ub_none = np.equal(ubs, np.inf)
1148
+ lb_some = np.logical_not(lb_none)
1149
+ ub_some = np.logical_not(ub_none)
1150
+
1151
+ # unbounded below: substitute xi = -xi' (unbounded above)
1152
+ # if -inf <= xi <= ub, then -ub <= -xi <= inf, so swap and invert bounds
1153
+ l_nolb_someub = np.logical_and(lb_none, ub_some)
1154
+ i_nolb = np.nonzero(l_nolb_someub)[0]
1155
+ lbs[l_nolb_someub], ubs[l_nolb_someub] = (
1156
+ -ubs[l_nolb_someub], -lbs[l_nolb_someub])
1157
+ lb_none = np.equal(lbs, -np.inf)
1158
+ ub_none = np.equal(ubs, np.inf)
1159
+ lb_some = np.logical_not(lb_none)
1160
+ ub_some = np.logical_not(ub_none)
1161
+ c[i_nolb] *= -1
1162
+ if x0 is not None:
1163
+ x0[i_nolb] *= -1
1164
+ if len(i_nolb) > 0:
1165
+ if A_ub.shape[0] > 0: # sometimes needed for sparse arrays... weird
1166
+ A_ub[:, i_nolb] *= -1
1167
+ if A_eq.shape[0] > 0:
1168
+ A_eq[:, i_nolb] *= -1
1169
+
1170
+ # upper bound: add inequality constraint
1171
+ i_newub, = ub_some.nonzero()
1172
+ ub_newub = ubs[ub_some]
1173
+ n_bounds = len(i_newub)
1174
+ if n_bounds > 0:
1175
+ shape = (n_bounds, A_ub.shape[1])
1176
+ if sparse:
1177
+ idxs = (np.arange(n_bounds), i_newub)
1178
+ A_ub = vstack((A_ub, sps.csr_matrix((np.ones(n_bounds), idxs),
1179
+ shape=shape)))
1180
+ else:
1181
+ A_ub = vstack((A_ub, np.zeros(shape)))
1182
+ A_ub[np.arange(m_ub, A_ub.shape[0]), i_newub] = 1
1183
+ b_ub = np.concatenate((b_ub, np.zeros(n_bounds)))
1184
+ b_ub[m_ub:] = ub_newub
1185
+
1186
+ A1 = vstack((A_ub, A_eq))
1187
+ b = np.concatenate((b_ub, b_eq))
1188
+ c = np.concatenate((c, np.zeros((A_ub.shape[0],))))
1189
+ if x0 is not None:
1190
+ x0 = np.concatenate((x0, np.zeros((A_ub.shape[0],))))
1191
+ # unbounded: substitute xi = xi+ + xi-
1192
+ l_free = np.logical_and(lb_none, ub_none)
1193
+ i_free = np.nonzero(l_free)[0]
1194
+ n_free = len(i_free)
1195
+ c = np.concatenate((c, np.zeros(n_free)))
1196
+ if x0 is not None:
1197
+ x0 = np.concatenate((x0, np.zeros(n_free)))
1198
+ A1 = hstack((A1[:, :n_ub], -A1[:, i_free]))
1199
+ c[n_ub:n_ub+n_free] = -c[i_free]
1200
+ if x0 is not None:
1201
+ i_free_neg = x0[i_free] < 0
1202
+ x0[np.arange(n_ub, A1.shape[1])[i_free_neg]] = -x0[i_free[i_free_neg]]
1203
+ x0[i_free[i_free_neg]] = 0
1204
+
1205
+ # add slack variables
1206
+ A2 = vstack([eye(A_ub.shape[0]), zeros((A_eq.shape[0], A_ub.shape[0]))])
1207
+
1208
+ A = hstack([A1, A2])
1209
+
1210
+ # lower bound: substitute xi = xi' + lb
1211
+ # now there is a constant term in objective
1212
+ i_shift = np.nonzero(lb_some)[0]
1213
+ lb_shift = lbs[lb_some].astype(float)
1214
+ c0 += np.sum(lb_shift * c[i_shift])
1215
+ if sparse:
1216
+ b = b.reshape(-1, 1)
1217
+ A = A.tocsc()
1218
+ b -= (A[:, i_shift] * sps.diags(lb_shift)).sum(axis=1)
1219
+ b = b.ravel()
1220
+ else:
1221
+ b -= (A[:, i_shift] * lb_shift).sum(axis=1)
1222
+ if x0 is not None:
1223
+ x0[i_shift] -= lb_shift
1224
+
1225
+ return A, b, c, c0, x0
1226
+
1227
+
1228
+ def _round_to_power_of_two(x):
1229
+ """
1230
+ Round elements of the array to the nearest power of two.
1231
+ """
1232
+ return 2**np.around(np.log2(x))
1233
+
1234
+
1235
+ def _autoscale(A, b, c, x0):
1236
+ """
1237
+ Scales the problem according to equilibration from [12].
1238
+ Also normalizes the right hand side vector by its maximum element.
1239
+ """
1240
+ m, n = A.shape
1241
+
1242
+ C = 1
1243
+ R = 1
1244
+
1245
+ if A.size > 0:
1246
+
1247
+ R = np.max(np.abs(A), axis=1)
1248
+ if sps.issparse(A):
1249
+ R = R.toarray().flatten()
1250
+ R[R == 0] = 1
1251
+ R = 1/_round_to_power_of_two(R)
1252
+ A = sps.diags(R)*A if sps.issparse(A) else A*R.reshape(m, 1)
1253
+ b = b*R
1254
+
1255
+ C = np.max(np.abs(A), axis=0)
1256
+ if sps.issparse(A):
1257
+ C = C.toarray().flatten()
1258
+ C[C == 0] = 1
1259
+ C = 1/_round_to_power_of_two(C)
1260
+ A = A*sps.diags(C) if sps.issparse(A) else A*C
1261
+ c = c*C
1262
+
1263
+ b_scale = np.max(np.abs(b)) if b.size > 0 else 1
1264
+ if b_scale == 0:
1265
+ b_scale = 1.
1266
+ b = b/b_scale
1267
+
1268
+ if x0 is not None:
1269
+ x0 = x0/b_scale*(1/C)
1270
+ return A, b, c, x0, C, b_scale
1271
+
1272
+
1273
+ def _unscale(x, C, b_scale):
1274
+ """
1275
+ Converts solution to _autoscale problem -> solution to original problem.
1276
+ """
1277
+
1278
+ try:
1279
+ n = len(C)
1280
+ # fails if sparse or scalar; that's OK.
1281
+ # this is only needed for original simplex (never sparse)
1282
+ except TypeError:
1283
+ n = len(x)
1284
+
1285
+ return x[:n]*b_scale*C
1286
+
1287
+
1288
+ def _display_summary(message, status, fun, iteration):
1289
+ """
1290
+ Print the termination summary of the linear program
1291
+
1292
+ Parameters
1293
+ ----------
1294
+ message : str
1295
+ A string descriptor of the exit status of the optimization.
1296
+ status : int
1297
+ An integer representing the exit status of the optimization::
1298
+
1299
+ 0 : Optimization terminated successfully
1300
+ 1 : Iteration limit reached
1301
+ 2 : Problem appears to be infeasible
1302
+ 3 : Problem appears to be unbounded
1303
+ 4 : Serious numerical difficulties encountered
1304
+
1305
+ fun : float
1306
+ Value of the objective function.
1307
+ iteration : iteration
1308
+ The number of iterations performed.
1309
+ """
1310
+ print(message)
1311
+ if status in (0, 1):
1312
+ print(f" Current function value: {fun: <12.6f}")
1313
+ print(f" Iterations: {iteration:d}")
1314
+
1315
+
1316
+ def _postsolve(x, postsolve_args, complete=False):
1317
+ """
1318
+ Given solution x to presolved, standard form linear program x, add
1319
+ fixed variables back into the problem and undo the variable substitutions
1320
+ to get solution to original linear program. Also, calculate the objective
1321
+ function value, slack in original upper bound constraints, and residuals
1322
+ in original equality constraints.
1323
+
1324
+ Parameters
1325
+ ----------
1326
+ x : 1-D array
1327
+ Solution vector to the standard-form problem.
1328
+ postsolve_args : tuple
1329
+ Data needed by _postsolve to convert the solution to the standard-form
1330
+ problem into the solution to the original problem, including:
1331
+
1332
+ lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
1333
+
1334
+ c : 1D array
1335
+ The coefficients of the linear objective function to be minimized.
1336
+ A_ub : 2D array, optional
1337
+ The inequality constraint matrix. Each row of ``A_ub`` specifies the
1338
+ coefficients of a linear inequality constraint on ``x``.
1339
+ b_ub : 1D array, optional
1340
+ The inequality constraint vector. Each element represents an
1341
+ upper bound on the corresponding value of ``A_ub @ x``.
1342
+ A_eq : 2D array, optional
1343
+ The equality constraint matrix. Each row of ``A_eq`` specifies the
1344
+ coefficients of a linear equality constraint on ``x``.
1345
+ b_eq : 1D array, optional
1346
+ The equality constraint vector. Each element of ``A_eq @ x`` must equal
1347
+ the corresponding element of ``b_eq``.
1348
+ bounds : 2D array
1349
+ The bounds of ``x``, lower bounds in the 1st column, upper
1350
+ bounds in the 2nd column. The bounds are possibly tightened
1351
+ by the presolve procedure.
1352
+ x0 : 1D array, optional
1353
+ Guess values of the decision variables, which will be refined by
1354
+ the optimization algorithm. This argument is currently used only by the
1355
+ 'revised simplex' method, and can only be used if `x0` represents a
1356
+ basic feasible solution.
1357
+
1358
+ revstack: list of functions
1359
+ the functions in the list reverse the operations of _presolve()
1360
+ the function signature is x_org = f(x_mod), where x_mod is the result
1361
+ of a presolve step and x_org the value at the start of the step
1362
+ complete : bool
1363
+ Whether the solution is was determined in presolve (``True`` if so)
1364
+
1365
+ Returns
1366
+ -------
1367
+ x : 1-D array
1368
+ Solution vector to original linear programming problem
1369
+ fun: float
1370
+ optimal objective value for original problem
1371
+ slack : 1-D array
1372
+ The (non-negative) slack in the upper bound constraints, that is,
1373
+ ``b_ub - A_ub @ x``
1374
+ con : 1-D array
1375
+ The (nominally zero) residuals of the equality constraints, that is,
1376
+ ``b - A_eq @ x``
1377
+ """
1378
+ # note that all the inputs are the ORIGINAL, unmodified versions
1379
+ # no rows, columns have been removed
1380
+
1381
+ c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = postsolve_args[0]
1382
+ revstack, C, b_scale = postsolve_args[1:]
1383
+
1384
+ x = _unscale(x, C, b_scale)
1385
+
1386
+ # Undo variable substitutions of _get_Abc()
1387
+ # if "complete", problem was solved in presolve; don't do anything here
1388
+ n_x = bounds.shape[0]
1389
+ if not complete and bounds is not None: # bounds are never none, probably
1390
+ n_unbounded = 0
1391
+ for i, bi in enumerate(bounds):
1392
+ lbi = bi[0]
1393
+ ubi = bi[1]
1394
+ if lbi == -np.inf and ubi == np.inf:
1395
+ n_unbounded += 1
1396
+ x[i] = x[i] - x[n_x + n_unbounded - 1]
1397
+ else:
1398
+ if lbi == -np.inf:
1399
+ x[i] = ubi - x[i]
1400
+ else:
1401
+ x[i] += lbi
1402
+ # all the rest of the variables were artificial
1403
+ x = x[:n_x]
1404
+
1405
+ # If there were variables removed from the problem, add them back into the
1406
+ # solution vector
1407
+ # Apply the functions in revstack (reverse direction)
1408
+ for rev in reversed(revstack):
1409
+ x = rev(x)
1410
+
1411
+ fun = x.dot(c)
1412
+ slack = b_ub - A_ub.dot(x) # report slack for ORIGINAL UB constraints
1413
+ # report residuals of ORIGINAL EQ constraints
1414
+ con = b_eq - A_eq.dot(x)
1415
+
1416
+ return x, fun, slack, con
1417
+
1418
+
1419
+ def _check_result(x, fun, status, slack, con, bounds, tol, message,
1420
+ integrality):
1421
+ """
1422
+ Check the validity of the provided solution.
1423
+
1424
+ A valid (optimal) solution satisfies all bounds, all slack variables are
1425
+ negative and all equality constraint residuals are strictly non-zero.
1426
+ Further, the lower-bounds, upper-bounds, slack and residuals contain
1427
+ no nan values.
1428
+
1429
+ Parameters
1430
+ ----------
1431
+ x : 1-D array
1432
+ Solution vector to original linear programming problem
1433
+ fun: float
1434
+ optimal objective value for original problem
1435
+ status : int
1436
+ An integer representing the exit status of the optimization::
1437
+
1438
+ 0 : Optimization terminated successfully
1439
+ 1 : Iteration limit reached
1440
+ 2 : Problem appears to be infeasible
1441
+ 3 : Problem appears to be unbounded
1442
+ 4 : Serious numerical difficulties encountered
1443
+
1444
+ slack : 1-D array
1445
+ The (non-negative) slack in the upper bound constraints, that is,
1446
+ ``b_ub - A_ub @ x``
1447
+ con : 1-D array
1448
+ The (nominally zero) residuals of the equality constraints, that is,
1449
+ ``b - A_eq @ x``
1450
+ bounds : 2D array
1451
+ The bounds on the original variables ``x``
1452
+ message : str
1453
+ A string descriptor of the exit status of the optimization.
1454
+ tol : float
1455
+ Termination tolerance; see [1]_ Section 4.5.
1456
+
1457
+ Returns
1458
+ -------
1459
+ status : int
1460
+ An integer representing the exit status of the optimization::
1461
+
1462
+ 0 : Optimization terminated successfully
1463
+ 1 : Iteration limit reached
1464
+ 2 : Problem appears to be infeasible
1465
+ 3 : Problem appears to be unbounded
1466
+ 4 : Serious numerical difficulties encountered
1467
+
1468
+ message : str
1469
+ A string descriptor of the exit status of the optimization.
1470
+ """
1471
+ # Somewhat arbitrary
1472
+ tol = np.sqrt(tol) * 10
1473
+
1474
+ if x is None:
1475
+ # HiGHS does not provide x if infeasible/unbounded
1476
+ if status == 0: # Observed with HiGHS Simplex Primal
1477
+ status = 4
1478
+ message = ("The solver did not provide a solution nor did it "
1479
+ "report a failure. Please submit a bug report.")
1480
+ return status, message
1481
+
1482
+ contains_nans = (
1483
+ np.isnan(x).any()
1484
+ or np.isnan(fun)
1485
+ or np.isnan(slack).any()
1486
+ or np.isnan(con).any()
1487
+ )
1488
+
1489
+ if contains_nans:
1490
+ is_feasible = False
1491
+ else:
1492
+ if integrality is None:
1493
+ integrality = 0
1494
+ valid_bounds = (x >= bounds[:, 0] - tol) & (x <= bounds[:, 1] + tol)
1495
+ # When integrality is 2 or 3, x must be within bounds OR take value 0
1496
+ valid_bounds |= (integrality > 1) & np.isclose(x, 0, atol=tol)
1497
+ invalid_bounds = not np.all(valid_bounds)
1498
+
1499
+ invalid_slack = status != 3 and (slack < -tol).any()
1500
+ invalid_con = status != 3 and (np.abs(con) > tol).any()
1501
+ is_feasible = not (invalid_bounds or invalid_slack or invalid_con)
1502
+
1503
+ if status == 0 and not is_feasible:
1504
+ status = 4
1505
+ message = ("The solution does not satisfy the constraints within the "
1506
+ "required tolerance of " + f"{tol:.2E}" + ", yet "
1507
+ "no errors were raised and there is no certificate of "
1508
+ "infeasibility or unboundedness. Check whether "
1509
+ "the slack and constraint residuals are acceptable; "
1510
+ "if not, consider enabling presolve, adjusting the "
1511
+ "tolerance option(s), and/or using a different method. "
1512
+ "Please consider submitting a bug report.")
1513
+ elif status == 2 and is_feasible:
1514
+ # Occurs if the simplex method exits after phase one with a very
1515
+ # nearly basic feasible solution. Postsolving can make the solution
1516
+ # basic, however, this solution is NOT optimal
1517
+ status = 4
1518
+ message = ("The solution is feasible, but the solver did not report "
1519
+ "that the solution was optimal. Please try a different "
1520
+ "method.")
1521
+
1522
+ return status, message
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_minimize.py ADDED
@@ -0,0 +1,1116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Unified interfaces to minimization algorithms.
3
+
4
+ Functions
5
+ ---------
6
+ - minimize : minimization of a function of several variables.
7
+ - minimize_scalar : minimization of a function of one variable.
8
+ """
9
+
10
+ __all__ = ['minimize', 'minimize_scalar']
11
+
12
+
13
+ from warnings import warn
14
+
15
+ import numpy as np
16
+
17
+ # unconstrained minimization
18
+ from ._optimize import (_minimize_neldermead, _minimize_powell, _minimize_cg,
19
+ _minimize_bfgs, _minimize_newtoncg,
20
+ _minimize_scalar_brent, _minimize_scalar_bounded,
21
+ _minimize_scalar_golden, MemoizeJac, OptimizeResult,
22
+ _wrap_callback, _recover_from_bracket_error)
23
+ from ._trustregion_dogleg import _minimize_dogleg
24
+ from ._trustregion_ncg import _minimize_trust_ncg
25
+ from ._trustregion_krylov import _minimize_trust_krylov
26
+ from ._trustregion_exact import _minimize_trustregion_exact
27
+ from ._trustregion_constr import _minimize_trustregion_constr
28
+
29
+ # constrained minimization
30
+ from ._lbfgsb_py import _minimize_lbfgsb
31
+ from ._tnc import _minimize_tnc
32
+ from ._cobyla_py import _minimize_cobyla
33
+ from ._cobyqa_py import _minimize_cobyqa
34
+ from ._slsqp_py import _minimize_slsqp
35
+ from ._constraints import (old_bound_to_new, new_bounds_to_old,
36
+ old_constraint_to_new, new_constraint_to_old,
37
+ NonlinearConstraint, LinearConstraint, Bounds,
38
+ PreparedConstraint)
39
+ from ._differentiable_functions import FD_METHODS
40
+
41
+ MINIMIZE_METHODS = ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg',
42
+ 'l-bfgs-b', 'tnc', 'cobyla', 'cobyqa', 'slsqp',
43
+ 'trust-constr', 'dogleg', 'trust-ncg', 'trust-exact',
44
+ 'trust-krylov']
45
+
46
+ # These methods support the new callback interface (passed an OptimizeResult)
47
+ MINIMIZE_METHODS_NEW_CB = ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg',
48
+ 'l-bfgs-b', 'trust-constr', 'dogleg', 'trust-ncg',
49
+ 'trust-exact', 'trust-krylov', 'cobyqa']
50
+
51
+ MINIMIZE_SCALAR_METHODS = ['brent', 'bounded', 'golden']
52
+
53
+ def minimize(fun, x0, args=(), method=None, jac=None, hess=None,
54
+ hessp=None, bounds=None, constraints=(), tol=None,
55
+ callback=None, options=None):
56
+ """Minimization of scalar function of one or more variables.
57
+
58
+ Parameters
59
+ ----------
60
+ fun : callable
61
+ The objective function to be minimized.
62
+
63
+ ``fun(x, *args) -> float``
64
+
65
+ where ``x`` is a 1-D array with shape (n,) and ``args``
66
+ is a tuple of the fixed parameters needed to completely
67
+ specify the function.
68
+ x0 : ndarray, shape (n,)
69
+ Initial guess. Array of real elements of size (n,),
70
+ where ``n`` is the number of independent variables.
71
+ args : tuple, optional
72
+ Extra arguments passed to the objective function and its
73
+ derivatives (`fun`, `jac` and `hess` functions).
74
+ method : str or callable, optional
75
+ Type of solver. Should be one of
76
+
77
+ - 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>`
78
+ - 'Powell' :ref:`(see here) <optimize.minimize-powell>`
79
+ - 'CG' :ref:`(see here) <optimize.minimize-cg>`
80
+ - 'BFGS' :ref:`(see here) <optimize.minimize-bfgs>`
81
+ - 'Newton-CG' :ref:`(see here) <optimize.minimize-newtoncg>`
82
+ - 'L-BFGS-B' :ref:`(see here) <optimize.minimize-lbfgsb>`
83
+ - 'TNC' :ref:`(see here) <optimize.minimize-tnc>`
84
+ - 'COBYLA' :ref:`(see here) <optimize.minimize-cobyla>`
85
+ - 'COBYQA' :ref:`(see here) <optimize.minimize-cobyqa>`
86
+ - 'SLSQP' :ref:`(see here) <optimize.minimize-slsqp>`
87
+ - 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>`
88
+ - 'dogleg' :ref:`(see here) <optimize.minimize-dogleg>`
89
+ - 'trust-ncg' :ref:`(see here) <optimize.minimize-trustncg>`
90
+ - 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>`
91
+ - 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>`
92
+ - custom - a callable object, see below for description.
93
+
94
+ If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,
95
+ depending on whether or not the problem has constraints or bounds.
96
+ jac : {callable, '2-point', '3-point', 'cs', bool}, optional
97
+ Method for computing the gradient vector. Only for CG, BFGS,
98
+ Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov,
99
+ trust-exact and trust-constr.
100
+ If it is a callable, it should be a function that returns the gradient
101
+ vector:
102
+
103
+ ``jac(x, *args) -> array_like, shape (n,)``
104
+
105
+ where ``x`` is an array with shape (n,) and ``args`` is a tuple with
106
+ the fixed parameters. If `jac` is a Boolean and is True, `fun` is
107
+ assumed to return a tuple ``(f, g)`` containing the objective
108
+ function and the gradient.
109
+ Methods 'Newton-CG', 'trust-ncg', 'dogleg', 'trust-exact', and
110
+ 'trust-krylov' require that either a callable be supplied, or that
111
+ `fun` return the objective and gradient.
112
+ If None or False, the gradient will be estimated using 2-point finite
113
+ difference estimation with an absolute step size.
114
+ Alternatively, the keywords {'2-point', '3-point', 'cs'} can be used
115
+ to select a finite difference scheme for numerical estimation of the
116
+ gradient with a relative step size. These finite difference schemes
117
+ obey any specified `bounds`.
118
+ hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy}, optional
119
+ Method for computing the Hessian matrix. Only for Newton-CG, dogleg,
120
+ trust-ncg, trust-krylov, trust-exact and trust-constr.
121
+ If it is callable, it should return the Hessian matrix:
122
+
123
+ ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``
124
+
125
+ where ``x`` is a (n,) ndarray and ``args`` is a tuple with the fixed
126
+ parameters.
127
+ The keywords {'2-point', '3-point', 'cs'} can also be used to select
128
+ a finite difference scheme for numerical estimation of the hessian.
129
+ Alternatively, objects implementing the `HessianUpdateStrategy`
130
+ interface can be used to approximate the Hessian. Available
131
+ quasi-Newton methods implementing this interface are:
132
+
133
+ - `BFGS`;
134
+ - `SR1`.
135
+
136
+ Not all of the options are available for each of the methods; for
137
+ availability refer to the notes.
138
+ hessp : callable, optional
139
+ Hessian of objective function times an arbitrary vector p. Only for
140
+ Newton-CG, trust-ncg, trust-krylov, trust-constr.
141
+ Only one of `hessp` or `hess` needs to be given. If `hess` is
142
+ provided, then `hessp` will be ignored. `hessp` must compute the
143
+ Hessian times an arbitrary vector:
144
+
145
+ ``hessp(x, p, *args) -> ndarray shape (n,)``
146
+
147
+ where ``x`` is a (n,) ndarray, ``p`` is an arbitrary vector with
148
+ dimension (n,) and ``args`` is a tuple with the fixed
149
+ parameters.
150
+ bounds : sequence or `Bounds`, optional
151
+ Bounds on variables for Nelder-Mead, L-BFGS-B, TNC, SLSQP, Powell,
152
+ trust-constr, COBYLA, and COBYQA methods. There are two ways to specify
153
+ the bounds:
154
+
155
+ 1. Instance of `Bounds` class.
156
+ 2. Sequence of ``(min, max)`` pairs for each element in `x`. None
157
+ is used to specify no bound.
158
+
159
+ constraints : {Constraint, dict} or List of {Constraint, dict}, optional
160
+ Constraints definition. Only for COBYLA, COBYQA, SLSQP and trust-constr.
161
+
162
+ Constraints for 'trust-constr' and 'cobyqa' are defined as a single object
163
+ or a list of objects specifying constraints to the optimization problem.
164
+ Available constraints are:
165
+
166
+ - `LinearConstraint`
167
+ - `NonlinearConstraint`
168
+
169
+ Constraints for COBYLA, SLSQP are defined as a list of dictionaries.
170
+ Each dictionary with fields:
171
+
172
+ type : str
173
+ Constraint type: 'eq' for equality, 'ineq' for inequality.
174
+ fun : callable
175
+ The function defining the constraint.
176
+ jac : callable, optional
177
+ The Jacobian of `fun` (only for SLSQP).
178
+ args : sequence, optional
179
+ Extra arguments to be passed to the function and Jacobian.
180
+
181
+ Equality constraint means that the constraint function result is to
182
+ be zero whereas inequality means that it is to be non-negative.
183
+ Note that COBYLA only supports inequality constraints.
184
+
185
+ tol : float, optional
186
+ Tolerance for termination. When `tol` is specified, the selected
187
+ minimization algorithm sets some relevant solver-specific tolerance(s)
188
+ equal to `tol`. For detailed control, use solver-specific
189
+ options.
190
+ options : dict, optional
191
+ A dictionary of solver options. All methods except `TNC` accept the
192
+ following generic options:
193
+
194
+ maxiter : int
195
+ Maximum number of iterations to perform. Depending on the
196
+ method each iteration may use several function evaluations.
197
+
198
+ For `TNC` use `maxfun` instead of `maxiter`.
199
+ disp : bool
200
+ Set to True to print convergence messages.
201
+
202
+ For method-specific options, see :func:`show_options()`.
203
+ callback : callable, optional
204
+ A callable called after each iteration.
205
+
206
+ All methods except TNC, SLSQP, and COBYLA support a callable with
207
+ the signature:
208
+
209
+ ``callback(intermediate_result: OptimizeResult)``
210
+
211
+ where ``intermediate_result`` is a keyword parameter containing an
212
+ `OptimizeResult` with attributes ``x`` and ``fun``, the present values
213
+ of the parameter vector and objective function. Note that the name
214
+ of the parameter must be ``intermediate_result`` for the callback
215
+ to be passed an `OptimizeResult`. These methods will also terminate if
216
+ the callback raises ``StopIteration``.
217
+
218
+ All methods except trust-constr (also) support a signature like:
219
+
220
+ ``callback(xk)``
221
+
222
+ where ``xk`` is the current parameter vector.
223
+
224
+ Introspection is used to determine which of the signatures above to
225
+ invoke.
226
+
227
+ Returns
228
+ -------
229
+ res : OptimizeResult
230
+ The optimization result represented as a ``OptimizeResult`` object.
231
+ Important attributes are: ``x`` the solution array, ``success`` a
232
+ Boolean flag indicating if the optimizer exited successfully and
233
+ ``message`` which describes the cause of the termination. See
234
+ `OptimizeResult` for a description of other attributes.
235
+
236
+ See also
237
+ --------
238
+ minimize_scalar : Interface to minimization algorithms for scalar
239
+ univariate functions
240
+ show_options : Additional options accepted by the solvers
241
+
242
+ Notes
243
+ -----
244
+ This section describes the available solvers that can be selected by the
245
+ 'method' parameter. The default method is *BFGS*.
246
+
247
+ **Unconstrained minimization**
248
+
249
+ Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate
250
+ gradient algorithm by Polak and Ribiere, a variant of the
251
+ Fletcher-Reeves method described in [5]_ pp.120-122. Only the
252
+ first derivatives are used.
253
+
254
+ Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton
255
+ method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_
256
+ pp. 136. It uses the first derivatives only. BFGS has proven good
257
+ performance even for non-smooth optimizations. This method also
258
+ returns an approximation of the Hessian inverse, stored as
259
+ `hess_inv` in the OptimizeResult object.
260
+
261
+ Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a
262
+ Newton-CG algorithm [5]_ pp. 168 (also known as the truncated
263
+ Newton method). It uses a CG method to the compute the search
264
+ direction. See also *TNC* method for a box-constrained
265
+ minimization with a similar algorithm. Suitable for large-scale
266
+ problems.
267
+
268
+ Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg
269
+ trust-region algorithm [5]_ for unconstrained minimization. This
270
+ algorithm requires the gradient and Hessian; furthermore the
271
+ Hessian is required to be positive definite.
272
+
273
+ Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the
274
+ Newton conjugate gradient trust-region algorithm [5]_ for
275
+ unconstrained minimization. This algorithm requires the gradient
276
+ and either the Hessian or a function that computes the product of
277
+ the Hessian with a given vector. Suitable for large-scale problems.
278
+
279
+ Method :ref:`trust-krylov <optimize.minimize-trustkrylov>` uses
280
+ the Newton GLTR trust-region algorithm [14]_, [15]_ for unconstrained
281
+ minimization. This algorithm requires the gradient
282
+ and either the Hessian or a function that computes the product of
283
+ the Hessian with a given vector. Suitable for large-scale problems.
284
+ On indefinite problems it requires usually less iterations than the
285
+ `trust-ncg` method and is recommended for medium and large-scale problems.
286
+
287
+ Method :ref:`trust-exact <optimize.minimize-trustexact>`
288
+ is a trust-region method for unconstrained minimization in which
289
+ quadratic subproblems are solved almost exactly [13]_. This
290
+ algorithm requires the gradient and the Hessian (which is
291
+ *not* required to be positive definite). It is, in many
292
+ situations, the Newton method to converge in fewer iterations
293
+ and the most recommended for small and medium-size problems.
294
+
295
+ **Bound-Constrained minimization**
296
+
297
+ Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the
298
+ Simplex algorithm [1]_, [2]_. This algorithm is robust in many
299
+ applications. However, if numerical computation of derivative can be
300
+ trusted, other algorithms using the first and/or second derivatives
301
+ information might be preferred for their better performance in
302
+ general.
303
+
304
+ Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B
305
+ algorithm [6]_, [7]_ for bound constrained minimization.
306
+
307
+ Method :ref:`Powell <optimize.minimize-powell>` is a modification
308
+ of Powell's method [3]_, [4]_ which is a conjugate direction
309
+ method. It performs sequential one-dimensional minimizations along
310
+ each vector of the directions set (`direc` field in `options` and
311
+ `info`), which is updated at each iteration of the main
312
+ minimization loop. The function need not be differentiable, and no
313
+ derivatives are taken. If bounds are not provided, then an
314
+ unbounded line search will be used. If bounds are provided and
315
+ the initial guess is within the bounds, then every function
316
+ evaluation throughout the minimization procedure will be within
317
+ the bounds. If bounds are provided, the initial guess is outside
318
+ the bounds, and `direc` is full rank (default has full rank), then
319
+ some function evaluations during the first iteration may be
320
+ outside the bounds, but every function evaluation after the first
321
+ iteration will be within the bounds. If `direc` is not full rank,
322
+ then some parameters may not be optimized and the solution is not
323
+ guaranteed to be within the bounds.
324
+
325
+ Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton
326
+ algorithm [5]_, [8]_ to minimize a function with variables subject
327
+ to bounds. This algorithm uses gradient information; it is also
328
+ called Newton Conjugate-Gradient. It differs from the *Newton-CG*
329
+ method described above as it wraps a C implementation and allows
330
+ each variable to be given upper and lower bounds.
331
+
332
+ **Constrained Minimization**
333
+
334
+ Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the
335
+ Constrained Optimization BY Linear Approximation (COBYLA) method
336
+ [9]_, [10]_, [11]_. The algorithm is based on linear
337
+ approximations to the objective function and each constraint. The
338
+ method wraps a FORTRAN implementation of the algorithm. The
339
+ constraints functions 'fun' may return either a single number
340
+ or an array or list of numbers.
341
+
342
+ Method :ref:`COBYQA <optimize.minimize-cobyqa>` uses the Constrained
343
+ Optimization BY Quadratic Approximations (COBYQA) method [18]_. The
344
+ algorithm is a derivative-free trust-region SQP method based on quadratic
345
+ approximations to the objective function and each nonlinear constraint. The
346
+ bounds are treated as unrelaxable constraints, in the sense that the
347
+ algorithm always respects them throughout the optimization process.
348
+
349
+ Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential
350
+ Least SQuares Programming to minimize a function of several
351
+ variables with any combination of bounds, equality and inequality
352
+ constraints. The method wraps the SLSQP Optimization subroutine
353
+ originally implemented by Dieter Kraft [12]_. Note that the
354
+ wrapper handles infinite values in bounds by converting them into
355
+ large floating values.
356
+
357
+ Method :ref:`trust-constr <optimize.minimize-trustconstr>` is a
358
+ trust-region algorithm for constrained optimization. It switches
359
+ between two implementations depending on the problem definition.
360
+ It is the most versatile constrained minimization algorithm
361
+ implemented in SciPy and the most appropriate for large-scale problems.
362
+ For equality constrained problems it is an implementation of Byrd-Omojokun
363
+ Trust-Region SQP method described in [17]_ and in [5]_, p. 549. When
364
+ inequality constraints are imposed as well, it switches to the trust-region
365
+ interior point method described in [16]_. This interior point algorithm,
366
+ in turn, solves inequality constraints by introducing slack variables
367
+ and solving a sequence of equality-constrained barrier problems
368
+ for progressively smaller values of the barrier parameter.
369
+ The previously described equality constrained SQP method is
370
+ used to solve the subproblems with increasing levels of accuracy
371
+ as the iterate gets closer to a solution.
372
+
373
+ **Finite-Difference Options**
374
+
375
+ For Method :ref:`trust-constr <optimize.minimize-trustconstr>`
376
+ the gradient and the Hessian may be approximated using
377
+ three finite-difference schemes: {'2-point', '3-point', 'cs'}.
378
+ The scheme 'cs' is, potentially, the most accurate but it
379
+ requires the function to correctly handle complex inputs and to
380
+ be differentiable in the complex plane. The scheme '3-point' is more
381
+ accurate than '2-point' but requires twice as many operations. If the
382
+ gradient is estimated via finite-differences the Hessian must be
383
+ estimated using one of the quasi-Newton strategies.
384
+
385
+ **Method specific options for the** `hess` **keyword**
386
+
387
+ +--------------+------+----------+-------------------------+-----+
388
+ | method/Hess | None | callable | '2-point/'3-point'/'cs' | HUS |
389
+ +==============+======+==========+=========================+=====+
390
+ | Newton-CG | x | (n, n) | x | x |
391
+ | | | LO | | |
392
+ +--------------+------+----------+-------------------------+-----+
393
+ | dogleg | | (n, n) | | |
394
+ +--------------+------+----------+-------------------------+-----+
395
+ | trust-ncg | | (n, n) | x | x |
396
+ +--------------+------+----------+-------------------------+-----+
397
+ | trust-krylov | | (n, n) | x | x |
398
+ +--------------+------+----------+-------------------------+-----+
399
+ | trust-exact | | (n, n) | | |
400
+ +--------------+------+----------+-------------------------+-----+
401
+ | trust-constr | x | (n, n) | x | x |
402
+ | | | LO | | |
403
+ | | | sp | | |
404
+ +--------------+------+----------+-------------------------+-----+
405
+
406
+ where LO=LinearOperator, sp=Sparse matrix, HUS=HessianUpdateStrategy
407
+
408
+ **Custom minimizers**
409
+
410
+ It may be useful to pass a custom minimization method, for example
411
+ when using a frontend to this method such as `scipy.optimize.basinhopping`
412
+ or a different library. You can simply pass a callable as the ``method``
413
+ parameter.
414
+
415
+ The callable is called as ``method(fun, x0, args, **kwargs, **options)``
416
+ where ``kwargs`` corresponds to any other parameters passed to `minimize`
417
+ (such as `callback`, `hess`, etc.), except the `options` dict, which has
418
+ its contents also passed as `method` parameters pair by pair. Also, if
419
+ `jac` has been passed as a bool type, `jac` and `fun` are mangled so that
420
+ `fun` returns just the function values and `jac` is converted to a function
421
+ returning the Jacobian. The method shall return an `OptimizeResult`
422
+ object.
423
+
424
+ The provided `method` callable must be able to accept (and possibly ignore)
425
+ arbitrary parameters; the set of parameters accepted by `minimize` may
426
+ expand in future versions and then these parameters will be passed to
427
+ the method. You can find an example in the scipy.optimize tutorial.
428
+
429
+ References
430
+ ----------
431
+ .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function
432
+ Minimization. The Computer Journal 7: 308-13.
433
+ .. [2] Wright M H. 1996. Direct search methods: Once scorned, now
434
+ respectable, in Numerical Analysis 1995: Proceedings of the 1995
435
+ Dundee Biennial Conference in Numerical Analysis (Eds. D F
436
+ Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK.
437
+ 191-208.
438
+ .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of
439
+ a function of several variables without calculating derivatives. The
440
+ Computer Journal 7: 155-162.
441
+ .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery.
442
+ Numerical Recipes (any edition), Cambridge University Press.
443
+ .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization.
444
+ Springer New York.
445
+ .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory
446
+ Algorithm for Bound Constrained Optimization. SIAM Journal on
447
+ Scientific and Statistical Computing 16 (5): 1190-1208.
448
+ .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm
449
+ 778: L-BFGS-B, FORTRAN routines for large scale bound constrained
450
+ optimization. ACM Transactions on Mathematical Software 23 (4):
451
+ 550-560.
452
+ .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method.
453
+ 1984. SIAM Journal of Numerical Analysis 21: 770-778.
454
+ .. [9] Powell, M J D. A direct search optimization method that models
455
+ the objective and constraint functions by linear interpolation.
456
+ 1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez
457
+ and J-P Hennart, Kluwer Academic (Dordrecht), 51-67.
458
+ .. [10] Powell M J D. Direct search algorithms for optimization
459
+ calculations. 1998. Acta Numerica 7: 287-336.
460
+ .. [11] Powell M J D. A view of algorithms for optimization without
461
+ derivatives. 2007.Cambridge University Technical Report DAMTP
462
+ 2007/NA03
463
+ .. [12] Kraft, D. A software package for sequential quadratic
464
+ programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace
465
+ Center -- Institute for Flight Mechanics, Koln, Germany.
466
+ .. [13] Conn, A. R., Gould, N. I., and Toint, P. L.
467
+ Trust region methods. 2000. Siam. pp. 169-200.
468
+ .. [14] F. Lenders, C. Kirches, A. Potschka: "trlib: A vector-free
469
+ implementation of the GLTR method for iterative solution of
470
+ the trust region problem", :arxiv:`1611.04718`
471
+ .. [15] N. Gould, S. Lucidi, M. Roma, P. Toint: "Solving the
472
+ Trust-Region Subproblem using the Lanczos Method",
473
+ SIAM J. Optim., 9(2), 504--525, (1999).
474
+ .. [16] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 1999.
475
+ An interior point algorithm for large-scale nonlinear programming.
476
+ SIAM Journal on Optimization 9.4: 877-900.
477
+ .. [17] Lalee, Marucha, Jorge Nocedal, and Todd Plantega. 1998. On the
478
+ implementation of an algorithm for large-scale equality constrained
479
+ optimization. SIAM Journal on Optimization 8.3: 682-706.
480
+ .. [18] Ragonneau, T. M. *Model-Based Derivative-Free Optimization Methods
481
+ and Software*. PhD thesis, Department of Applied Mathematics, The Hong
482
+ Kong Polytechnic University, Hong Kong, China, 2022. URL:
483
+ https://theses.lib.polyu.edu.hk/handle/200/12294.
484
+
485
+ Examples
486
+ --------
487
+ Let us consider the problem of minimizing the Rosenbrock function. This
488
+ function (and its respective derivatives) is implemented in `rosen`
489
+ (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`.
490
+
491
+ >>> from scipy.optimize import minimize, rosen, rosen_der
492
+
493
+ A simple application of the *Nelder-Mead* method is:
494
+
495
+ >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
496
+ >>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
497
+ >>> res.x
498
+ array([ 1., 1., 1., 1., 1.])
499
+
500
+ Now using the *BFGS* algorithm, using the first derivative and a few
501
+ options:
502
+
503
+ >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
504
+ ... options={'gtol': 1e-6, 'disp': True})
505
+ Optimization terminated successfully.
506
+ Current function value: 0.000000
507
+ Iterations: 26
508
+ Function evaluations: 31
509
+ Gradient evaluations: 31
510
+ >>> res.x
511
+ array([ 1., 1., 1., 1., 1.])
512
+ >>> print(res.message)
513
+ Optimization terminated successfully.
514
+ >>> res.hess_inv
515
+ array([
516
+ [ 0.00749589, 0.01255155, 0.02396251, 0.04750988, 0.09495377], # may vary
517
+ [ 0.01255155, 0.02510441, 0.04794055, 0.09502834, 0.18996269],
518
+ [ 0.02396251, 0.04794055, 0.09631614, 0.19092151, 0.38165151],
519
+ [ 0.04750988, 0.09502834, 0.19092151, 0.38341252, 0.7664427 ],
520
+ [ 0.09495377, 0.18996269, 0.38165151, 0.7664427, 1.53713523]
521
+ ])
522
+
523
+
524
+ Next, consider a minimization problem with several constraints (namely
525
+ Example 16.4 from [5]_). The objective function is:
526
+
527
+ >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2
528
+
529
+ There are three constraints defined as:
530
+
531
+ >>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
532
+ ... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
533
+ ... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})
534
+
535
+ And variables must be positive, hence the following bounds:
536
+
537
+ >>> bnds = ((0, None), (0, None))
538
+
539
+ The optimization problem is solved using the SLSQP method as:
540
+
541
+ >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
542
+ ... constraints=cons)
543
+
544
+ It should converge to the theoretical solution (1.4 ,1.7).
545
+
546
+ """
547
+ x0 = np.atleast_1d(np.asarray(x0))
548
+
549
+ if x0.ndim != 1:
550
+ raise ValueError("'x0' must only have one dimension.")
551
+
552
+ if x0.dtype.kind in np.typecodes["AllInteger"]:
553
+ x0 = np.asarray(x0, dtype=float)
554
+
555
+ if not isinstance(args, tuple):
556
+ args = (args,)
557
+
558
+ if method is None:
559
+ # Select automatically
560
+ if constraints:
561
+ method = 'SLSQP'
562
+ elif bounds is not None:
563
+ method = 'L-BFGS-B'
564
+ else:
565
+ method = 'BFGS'
566
+
567
+ if callable(method):
568
+ meth = "_custom"
569
+ else:
570
+ meth = method.lower()
571
+
572
+ if options is None:
573
+ options = {}
574
+ # check if optional parameters are supported by the selected method
575
+ # - jac
576
+ if meth in ('nelder-mead', 'powell', 'cobyla', 'cobyqa') and bool(jac):
577
+ warn('Method %s does not use gradient information (jac).' % method,
578
+ RuntimeWarning, stacklevel=2)
579
+ # - hess
580
+ if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr',
581
+ 'trust-krylov', 'trust-exact', '_custom') and hess is not None:
582
+ warn('Method %s does not use Hessian information (hess).' % method,
583
+ RuntimeWarning, stacklevel=2)
584
+ # - hessp
585
+ if meth not in ('newton-cg', 'trust-ncg', 'trust-constr',
586
+ 'trust-krylov', '_custom') \
587
+ and hessp is not None:
588
+ warn('Method %s does not use Hessian-vector product '
589
+ 'information (hessp).' % method,
590
+ RuntimeWarning, stacklevel=2)
591
+ # - constraints or bounds
592
+ if (meth not in ('cobyla', 'cobyqa', 'slsqp', 'trust-constr', '_custom') and
593
+ np.any(constraints)):
594
+ warn('Method %s cannot handle constraints.' % method,
595
+ RuntimeWarning, stacklevel=2)
596
+ if meth not in (
597
+ 'nelder-mead', 'powell', 'l-bfgs-b', 'cobyla', 'cobyqa', 'slsqp',
598
+ 'tnc', 'trust-constr', '_custom') and bounds is not None:
599
+ warn('Method %s cannot handle bounds.' % method,
600
+ RuntimeWarning, stacklevel=2)
601
+ # - return_all
602
+ if (meth in ('l-bfgs-b', 'tnc', 'cobyla', 'cobyqa', 'slsqp') and
603
+ options.get('return_all', False)):
604
+ warn('Method %s does not support the return_all option.' % method,
605
+ RuntimeWarning, stacklevel=2)
606
+
607
+ # check gradient vector
608
+ if callable(jac):
609
+ pass
610
+ elif jac is True:
611
+ # fun returns func and grad
612
+ fun = MemoizeJac(fun)
613
+ jac = fun.derivative
614
+ elif (jac in FD_METHODS and
615
+ meth in ['trust-constr', 'bfgs', 'cg', 'l-bfgs-b', 'tnc', 'slsqp']):
616
+ # finite differences with relative step
617
+ pass
618
+ elif meth in ['trust-constr']:
619
+ # default jac calculation for this method
620
+ jac = '2-point'
621
+ elif jac is None or bool(jac) is False:
622
+ # this will cause e.g. LBFGS to use forward difference, absolute step
623
+ jac = None
624
+ else:
625
+ # default if jac option is not understood
626
+ jac = None
627
+
628
+ # set default tolerances
629
+ if tol is not None:
630
+ options = dict(options)
631
+ if meth == 'nelder-mead':
632
+ options.setdefault('xatol', tol)
633
+ options.setdefault('fatol', tol)
634
+ if meth in ('newton-cg', 'powell', 'tnc'):
635
+ options.setdefault('xtol', tol)
636
+ if meth in ('powell', 'l-bfgs-b', 'tnc', 'slsqp'):
637
+ options.setdefault('ftol', tol)
638
+ if meth in ('bfgs', 'cg', 'l-bfgs-b', 'tnc', 'dogleg',
639
+ 'trust-ncg', 'trust-exact', 'trust-krylov'):
640
+ options.setdefault('gtol', tol)
641
+ if meth in ('cobyla', '_custom'):
642
+ options.setdefault('tol', tol)
643
+ if meth == 'cobyqa':
644
+ options.setdefault('final_tr_radius', tol)
645
+ if meth == 'trust-constr':
646
+ options.setdefault('xtol', tol)
647
+ options.setdefault('gtol', tol)
648
+ options.setdefault('barrier_tol', tol)
649
+
650
+ if meth == '_custom':
651
+ # custom method called before bounds and constraints are 'standardised'
652
+ # custom method should be able to accept whatever bounds/constraints
653
+ # are provided to it.
654
+ return method(fun, x0, args=args, jac=jac, hess=hess, hessp=hessp,
655
+ bounds=bounds, constraints=constraints,
656
+ callback=callback, **options)
657
+
658
+ constraints = standardize_constraints(constraints, x0, meth)
659
+
660
+ remove_vars = False
661
+ if bounds is not None:
662
+ # convert to new-style bounds so we only have to consider one case
663
+ bounds = standardize_bounds(bounds, x0, 'new')
664
+ bounds = _validate_bounds(bounds, x0, meth)
665
+
666
+ if meth in {"tnc", "slsqp", "l-bfgs-b"}:
667
+ # These methods can't take the finite-difference derivatives they
668
+ # need when a variable is fixed by the bounds. To avoid this issue,
669
+ # remove fixed variables from the problem.
670
+ # NOTE: if this list is expanded, then be sure to update the
671
+ # accompanying tests and test_optimize.eb_data. Consider also if
672
+ # default OptimizeResult will need updating.
673
+
674
+ # determine whether any variables are fixed
675
+ i_fixed = (bounds.lb == bounds.ub)
676
+
677
+ if np.all(i_fixed):
678
+ # all the parameters are fixed, a minimizer is not able to do
679
+ # anything
680
+ return _optimize_result_for_equal_bounds(
681
+ fun, bounds, meth, args=args, constraints=constraints
682
+ )
683
+
684
+ # determine whether finite differences are needed for any grad/jac
685
+ fd_needed = (not callable(jac))
686
+ for con in constraints:
687
+ if not callable(con.get('jac', None)):
688
+ fd_needed = True
689
+
690
+ # If finite differences are ever used, remove all fixed variables
691
+ # Always remove fixed variables for TNC; see gh-14565
692
+ remove_vars = i_fixed.any() and (fd_needed or meth == "tnc")
693
+ if remove_vars:
694
+ x_fixed = (bounds.lb)[i_fixed]
695
+ x0 = x0[~i_fixed]
696
+ bounds = _remove_from_bounds(bounds, i_fixed)
697
+ fun = _remove_from_func(fun, i_fixed, x_fixed)
698
+ if callable(callback):
699
+ callback = _remove_from_func(callback, i_fixed, x_fixed)
700
+ if callable(jac):
701
+ jac = _remove_from_func(jac, i_fixed, x_fixed, remove=1)
702
+
703
+ # make a copy of the constraints so the user's version doesn't
704
+ # get changed. (Shallow copy is ok)
705
+ constraints = [con.copy() for con in constraints]
706
+ for con in constraints: # yes, guaranteed to be a list
707
+ con['fun'] = _remove_from_func(con['fun'], i_fixed,
708
+ x_fixed, min_dim=1,
709
+ remove=0)
710
+ if callable(con.get('jac', None)):
711
+ con['jac'] = _remove_from_func(con['jac'], i_fixed,
712
+ x_fixed, min_dim=2,
713
+ remove=1)
714
+ bounds = standardize_bounds(bounds, x0, meth)
715
+
716
+ callback = _wrap_callback(callback, meth)
717
+
718
+ if meth == 'nelder-mead':
719
+ res = _minimize_neldermead(fun, x0, args, callback, bounds=bounds,
720
+ **options)
721
+ elif meth == 'powell':
722
+ res = _minimize_powell(fun, x0, args, callback, bounds, **options)
723
+ elif meth == 'cg':
724
+ res = _minimize_cg(fun, x0, args, jac, callback, **options)
725
+ elif meth == 'bfgs':
726
+ res = _minimize_bfgs(fun, x0, args, jac, callback, **options)
727
+ elif meth == 'newton-cg':
728
+ res = _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,
729
+ **options)
730
+ elif meth == 'l-bfgs-b':
731
+ res = _minimize_lbfgsb(fun, x0, args, jac, bounds,
732
+ callback=callback, **options)
733
+ elif meth == 'tnc':
734
+ res = _minimize_tnc(fun, x0, args, jac, bounds, callback=callback,
735
+ **options)
736
+ elif meth == 'cobyla':
737
+ res = _minimize_cobyla(fun, x0, args, constraints, callback=callback,
738
+ bounds=bounds, **options)
739
+ elif meth == 'cobyqa':
740
+ res = _minimize_cobyqa(fun, x0, args, bounds, constraints, callback,
741
+ **options)
742
+ elif meth == 'slsqp':
743
+ res = _minimize_slsqp(fun, x0, args, jac, bounds,
744
+ constraints, callback=callback, **options)
745
+ elif meth == 'trust-constr':
746
+ res = _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
747
+ bounds, constraints,
748
+ callback=callback, **options)
749
+ elif meth == 'dogleg':
750
+ res = _minimize_dogleg(fun, x0, args, jac, hess,
751
+ callback=callback, **options)
752
+ elif meth == 'trust-ncg':
753
+ res = _minimize_trust_ncg(fun, x0, args, jac, hess, hessp,
754
+ callback=callback, **options)
755
+ elif meth == 'trust-krylov':
756
+ res = _minimize_trust_krylov(fun, x0, args, jac, hess, hessp,
757
+ callback=callback, **options)
758
+ elif meth == 'trust-exact':
759
+ res = _minimize_trustregion_exact(fun, x0, args, jac, hess,
760
+ callback=callback, **options)
761
+ else:
762
+ raise ValueError('Unknown solver %s' % method)
763
+
764
+ if remove_vars:
765
+ res.x = _add_to_array(res.x, i_fixed, x_fixed)
766
+ res.jac = _add_to_array(res.jac, i_fixed, np.nan)
767
+ if "hess_inv" in res:
768
+ res.hess_inv = None # unknown
769
+
770
+ if getattr(callback, 'stop_iteration', False):
771
+ res.success = False
772
+ res.status = 99
773
+ res.message = "`callback` raised `StopIteration`."
774
+
775
+ return res
776
+
777
+
778
+ def minimize_scalar(fun, bracket=None, bounds=None, args=(),
779
+ method=None, tol=None, options=None):
780
+ """Local minimization of scalar function of one variable.
781
+
782
+ Parameters
783
+ ----------
784
+ fun : callable
785
+ Objective function.
786
+ Scalar function, must return a scalar.
787
+ bracket : sequence, optional
788
+ For methods 'brent' and 'golden', `bracket` defines the bracketing
789
+ interval and is required.
790
+ Either a triple ``(xa, xb, xc)`` satisfying ``xa < xb < xc`` and
791
+ ``func(xb) < func(xa) and func(xb) < func(xc)``, or a pair
792
+ ``(xa, xb)`` to be used as initial points for a downhill bracket search
793
+ (see `scipy.optimize.bracket`).
794
+ The minimizer ``res.x`` will not necessarily satisfy
795
+ ``xa <= res.x <= xb``.
796
+ bounds : sequence, optional
797
+ For method 'bounded', `bounds` is mandatory and must have two finite
798
+ items corresponding to the optimization bounds.
799
+ args : tuple, optional
800
+ Extra arguments passed to the objective function.
801
+ method : str or callable, optional
802
+ Type of solver. Should be one of:
803
+
804
+ - :ref:`Brent <optimize.minimize_scalar-brent>`
805
+ - :ref:`Bounded <optimize.minimize_scalar-bounded>`
806
+ - :ref:`Golden <optimize.minimize_scalar-golden>`
807
+ - custom - a callable object (added in version 0.14.0), see below
808
+
809
+ Default is "Bounded" if bounds are provided and "Brent" otherwise.
810
+ See the 'Notes' section for details of each solver.
811
+
812
+ tol : float, optional
813
+ Tolerance for termination. For detailed control, use solver-specific
814
+ options.
815
+ options : dict, optional
816
+ A dictionary of solver options.
817
+
818
+ maxiter : int
819
+ Maximum number of iterations to perform.
820
+ disp : bool
821
+ Set to True to print convergence messages.
822
+
823
+ See :func:`show_options()` for solver-specific options.
824
+
825
+ Returns
826
+ -------
827
+ res : OptimizeResult
828
+ The optimization result represented as a ``OptimizeResult`` object.
829
+ Important attributes are: ``x`` the solution array, ``success`` a
830
+ Boolean flag indicating if the optimizer exited successfully and
831
+ ``message`` which describes the cause of the termination. See
832
+ `OptimizeResult` for a description of other attributes.
833
+
834
+ See also
835
+ --------
836
+ minimize : Interface to minimization algorithms for scalar multivariate
837
+ functions
838
+ show_options : Additional options accepted by the solvers
839
+
840
+ Notes
841
+ -----
842
+ This section describes the available solvers that can be selected by the
843
+ 'method' parameter. The default method is the ``"Bounded"`` Brent method if
844
+ `bounds` are passed and unbounded ``"Brent"`` otherwise.
845
+
846
+ Method :ref:`Brent <optimize.minimize_scalar-brent>` uses Brent's
847
+ algorithm [1]_ to find a local minimum. The algorithm uses inverse
848
+ parabolic interpolation when possible to speed up convergence of
849
+ the golden section method.
850
+
851
+ Method :ref:`Golden <optimize.minimize_scalar-golden>` uses the
852
+ golden section search technique [1]_. It uses analog of the bisection
853
+ method to decrease the bracketed interval. It is usually
854
+ preferable to use the *Brent* method.
855
+
856
+ Method :ref:`Bounded <optimize.minimize_scalar-bounded>` can
857
+ perform bounded minimization [2]_ [3]_. It uses the Brent method to find a
858
+ local minimum in the interval x1 < xopt < x2.
859
+
860
+ Note that the Brent and Golden methods do not guarantee success unless a
861
+ valid ``bracket`` triple is provided. If a three-point bracket cannot be
862
+ found, consider `scipy.optimize.minimize`. Also, all methods are intended
863
+ only for local minimization. When the function of interest has more than
864
+ one local minimum, consider :ref:`global_optimization`.
865
+
866
+ **Custom minimizers**
867
+
868
+ It may be useful to pass a custom minimization method, for example
869
+ when using some library frontend to minimize_scalar. You can simply
870
+ pass a callable as the ``method`` parameter.
871
+
872
+ The callable is called as ``method(fun, args, **kwargs, **options)``
873
+ where ``kwargs`` corresponds to any other parameters passed to `minimize`
874
+ (such as `bracket`, `tol`, etc.), except the `options` dict, which has
875
+ its contents also passed as `method` parameters pair by pair. The method
876
+ shall return an `OptimizeResult` object.
877
+
878
+ The provided `method` callable must be able to accept (and possibly ignore)
879
+ arbitrary parameters; the set of parameters accepted by `minimize` may
880
+ expand in future versions and then these parameters will be passed to
881
+ the method. You can find an example in the scipy.optimize tutorial.
882
+
883
+ .. versionadded:: 0.11.0
884
+
885
+ References
886
+ ----------
887
+ .. [1] Press, W., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.
888
+ Numerical Recipes in C. Cambridge University Press.
889
+ .. [2] Forsythe, G.E., M. A. Malcolm, and C. B. Moler. "Computer Methods
890
+ for Mathematical Computations." Prentice-Hall Series in Automatic
891
+ Computation 259 (1977).
892
+ .. [3] Brent, Richard P. Algorithms for Minimization Without Derivatives.
893
+ Courier Corporation, 2013.
894
+
895
+ Examples
896
+ --------
897
+ Consider the problem of minimizing the following function.
898
+
899
+ >>> def f(x):
900
+ ... return (x - 2) * x * (x + 2)**2
901
+
902
+ Using the *Brent* method, we find the local minimum as:
903
+
904
+ >>> from scipy.optimize import minimize_scalar
905
+ >>> res = minimize_scalar(f)
906
+ >>> res.fun
907
+ -9.9149495908
908
+
909
+ The minimizer is:
910
+
911
+ >>> res.x
912
+ 1.28077640403
913
+
914
+ Using the *Bounded* method, we find a local minimum with specified
915
+ bounds as:
916
+
917
+ >>> res = minimize_scalar(f, bounds=(-3, -1), method='bounded')
918
+ >>> res.fun # minimum
919
+ 3.28365179850e-13
920
+ >>> res.x # minimizer
921
+ -2.0000002026
922
+
923
+ """
924
+ if not isinstance(args, tuple):
925
+ args = (args,)
926
+
927
+ if callable(method):
928
+ meth = "_custom"
929
+ elif method is None:
930
+ meth = 'brent' if bounds is None else 'bounded'
931
+ else:
932
+ meth = method.lower()
933
+ if options is None:
934
+ options = {}
935
+
936
+ if bounds is not None and meth in {'brent', 'golden'}:
937
+ message = f"Use of `bounds` is incompatible with 'method={method}'."
938
+ raise ValueError(message)
939
+
940
+ if tol is not None:
941
+ options = dict(options)
942
+ if meth == 'bounded' and 'xatol' not in options:
943
+ warn("Method 'bounded' does not support relative tolerance in x; "
944
+ "defaulting to absolute tolerance.",
945
+ RuntimeWarning, stacklevel=2)
946
+ options['xatol'] = tol
947
+ elif meth == '_custom':
948
+ options.setdefault('tol', tol)
949
+ else:
950
+ options.setdefault('xtol', tol)
951
+
952
+ # replace boolean "disp" option, if specified, by an integer value.
953
+ disp = options.get('disp')
954
+ if isinstance(disp, bool):
955
+ options['disp'] = 2 * int(disp)
956
+
957
+ if meth == '_custom':
958
+ res = method(fun, args=args, bracket=bracket, bounds=bounds, **options)
959
+ elif meth == 'brent':
960
+ res = _recover_from_bracket_error(_minimize_scalar_brent,
961
+ fun, bracket, args, **options)
962
+ elif meth == 'bounded':
963
+ if bounds is None:
964
+ raise ValueError('The `bounds` parameter is mandatory for '
965
+ 'method `bounded`.')
966
+ res = _minimize_scalar_bounded(fun, bounds, args, **options)
967
+ elif meth == 'golden':
968
+ res = _recover_from_bracket_error(_minimize_scalar_golden,
969
+ fun, bracket, args, **options)
970
+ else:
971
+ raise ValueError('Unknown solver %s' % method)
972
+
973
+ # gh-16196 reported inconsistencies in the output shape of `res.x`. While
974
+ # fixing this, future-proof it for when the function is vectorized:
975
+ # the shape of `res.x` should match that of `res.fun`.
976
+ res.fun = np.asarray(res.fun)[()]
977
+ res.x = np.reshape(res.x, res.fun.shape)[()]
978
+ return res
979
+
980
+
981
+ def _remove_from_bounds(bounds, i_fixed):
982
+ """Removes fixed variables from a `Bounds` instance"""
983
+ lb = bounds.lb[~i_fixed]
984
+ ub = bounds.ub[~i_fixed]
985
+ return Bounds(lb, ub) # don't mutate original Bounds object
986
+
987
+
988
+ def _remove_from_func(fun_in, i_fixed, x_fixed, min_dim=None, remove=0):
989
+ """Wraps a function such that fixed variables need not be passed in"""
990
+ def fun_out(x_in, *args, **kwargs):
991
+ x_out = np.zeros_like(i_fixed, dtype=x_in.dtype)
992
+ x_out[i_fixed] = x_fixed
993
+ x_out[~i_fixed] = x_in
994
+ y_out = fun_in(x_out, *args, **kwargs)
995
+ y_out = np.array(y_out)
996
+
997
+ if min_dim == 1:
998
+ y_out = np.atleast_1d(y_out)
999
+ elif min_dim == 2:
1000
+ y_out = np.atleast_2d(y_out)
1001
+
1002
+ if remove == 1:
1003
+ y_out = y_out[..., ~i_fixed]
1004
+ elif remove == 2:
1005
+ y_out = y_out[~i_fixed, ~i_fixed]
1006
+
1007
+ return y_out
1008
+ return fun_out
1009
+
1010
+
1011
+ def _add_to_array(x_in, i_fixed, x_fixed):
1012
+ """Adds fixed variables back to an array"""
1013
+ i_free = ~i_fixed
1014
+ if x_in.ndim == 2:
1015
+ i_free = i_free[:, None] @ i_free[None, :]
1016
+ x_out = np.zeros_like(i_free, dtype=x_in.dtype)
1017
+ x_out[~i_free] = x_fixed
1018
+ x_out[i_free] = x_in.ravel()
1019
+ return x_out
1020
+
1021
+
1022
+ def _validate_bounds(bounds, x0, meth):
1023
+ """Check that bounds are valid."""
1024
+
1025
+ msg = "An upper bound is less than the corresponding lower bound."
1026
+ if np.any(bounds.ub < bounds.lb):
1027
+ raise ValueError(msg)
1028
+
1029
+ msg = "The number of bounds is not compatible with the length of `x0`."
1030
+ try:
1031
+ bounds.lb = np.broadcast_to(bounds.lb, x0.shape)
1032
+ bounds.ub = np.broadcast_to(bounds.ub, x0.shape)
1033
+ except Exception as e:
1034
+ raise ValueError(msg) from e
1035
+
1036
+ return bounds
1037
+
1038
+ def standardize_bounds(bounds, x0, meth):
1039
+ """Converts bounds to the form required by the solver."""
1040
+ if meth in {'trust-constr', 'powell', 'nelder-mead', 'cobyla', 'cobyqa',
1041
+ 'new'}:
1042
+ if not isinstance(bounds, Bounds):
1043
+ lb, ub = old_bound_to_new(bounds)
1044
+ bounds = Bounds(lb, ub)
1045
+ elif meth in ('l-bfgs-b', 'tnc', 'slsqp', 'old'):
1046
+ if isinstance(bounds, Bounds):
1047
+ bounds = new_bounds_to_old(bounds.lb, bounds.ub, x0.shape[0])
1048
+ return bounds
1049
+
1050
+
1051
+ def standardize_constraints(constraints, x0, meth):
1052
+ """Converts constraints to the form required by the solver."""
1053
+ all_constraint_types = (NonlinearConstraint, LinearConstraint, dict)
1054
+ new_constraint_types = all_constraint_types[:-1]
1055
+ if constraints is None:
1056
+ constraints = []
1057
+ elif isinstance(constraints, all_constraint_types):
1058
+ constraints = [constraints]
1059
+ else:
1060
+ constraints = list(constraints) # ensure it's a mutable sequence
1061
+
1062
+ if meth in ['trust-constr', 'cobyqa', 'new']:
1063
+ for i, con in enumerate(constraints):
1064
+ if not isinstance(con, new_constraint_types):
1065
+ constraints[i] = old_constraint_to_new(i, con)
1066
+ else:
1067
+ # iterate over copy, changing original
1068
+ for i, con in enumerate(list(constraints)):
1069
+ if isinstance(con, new_constraint_types):
1070
+ old_constraints = new_constraint_to_old(con, x0)
1071
+ constraints[i] = old_constraints[0]
1072
+ constraints.extend(old_constraints[1:]) # appends 1 if present
1073
+
1074
+ return constraints
1075
+
1076
+
1077
+ def _optimize_result_for_equal_bounds(
1078
+ fun, bounds, method, args=(), constraints=()
1079
+ ):
1080
+ """
1081
+ Provides a default OptimizeResult for when a bounded minimization method
1082
+ has (lb == ub).all().
1083
+
1084
+ Parameters
1085
+ ----------
1086
+ fun: callable
1087
+ bounds: Bounds
1088
+ method: str
1089
+ constraints: Constraint
1090
+ """
1091
+ success = True
1092
+ message = 'All independent variables were fixed by bounds.'
1093
+
1094
+ # bounds is new-style
1095
+ x0 = bounds.lb
1096
+
1097
+ if constraints:
1098
+ message = ("All independent variables were fixed by bounds at values"
1099
+ " that satisfy the constraints.")
1100
+ constraints = standardize_constraints(constraints, x0, 'new')
1101
+
1102
+ maxcv = 0
1103
+ for c in constraints:
1104
+ pc = PreparedConstraint(c, x0)
1105
+ violation = pc.violation(x0)
1106
+ if np.sum(violation):
1107
+ maxcv = max(maxcv, np.max(violation))
1108
+ success = False
1109
+ message = (f"All independent variables were fixed by bounds, but "
1110
+ f"the independent variables do not satisfy the "
1111
+ f"constraints exactly. (Maximum violation: {maxcv}).")
1112
+
1113
+ return OptimizeResult(
1114
+ x=x0, fun=fun(x0, *args), success=success, message=message, nfev=1,
1115
+ njev=0, nhev=0,
1116
+ )
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_minpack2.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (61.1 kB). View file
 
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_moduleTNC.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7584b3d74b2c7f2804c049af2291355762236b8a294520a6c7a83085ac11544
3
+ size 152168
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_nnls.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from scipy.linalg import solve, LinAlgWarning
3
+ import warnings
4
+
5
+ __all__ = ['nnls']
6
+
7
+
8
+ def nnls(A, b, maxiter=None, *, atol=None):
9
+ """
10
+ Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``.
11
+
12
+ This problem, often called as NonNegative Least Squares, is a convex
13
+ optimization problem with convex constraints. It typically arises when
14
+ the ``x`` models quantities for which only nonnegative values are
15
+ attainable; weight of ingredients, component costs and so on.
16
+
17
+ Parameters
18
+ ----------
19
+ A : (m, n) ndarray
20
+ Coefficient array
21
+ b : (m,) ndarray, float
22
+ Right-hand side vector.
23
+ maxiter: int, optional
24
+ Maximum number of iterations, optional. Default value is ``3 * n``.
25
+ atol: float
26
+ Tolerance value used in the algorithm to assess closeness to zero in
27
+ the projected residual ``(A.T @ (A x - b)`` entries. Increasing this
28
+ value relaxes the solution constraints. A typical relaxation value can
29
+ be selected as ``max(m, n) * np.linalg.norm(a, 1) * np.spacing(1.)``.
30
+ This value is not set as default since the norm operation becomes
31
+ expensive for large problems hence can be used only when necessary.
32
+
33
+ Returns
34
+ -------
35
+ x : ndarray
36
+ Solution vector.
37
+ rnorm : float
38
+ The 2-norm of the residual, ``|| Ax-b ||_2``.
39
+
40
+ See Also
41
+ --------
42
+ lsq_linear : Linear least squares with bounds on the variables
43
+
44
+ Notes
45
+ -----
46
+ The code is based on [2]_ which is an improved version of the classical
47
+ algorithm of [1]_. It utilizes an active set method and solves the KKT
48
+ (Karush-Kuhn-Tucker) conditions for the non-negative least squares problem.
49
+
50
+ References
51
+ ----------
52
+ .. [1] : Lawson C., Hanson R.J., "Solving Least Squares Problems", SIAM,
53
+ 1995, :doi:`10.1137/1.9781611971217`
54
+ .. [2] : Bro, Rasmus and de Jong, Sijmen, "A Fast Non-Negativity-
55
+ Constrained Least Squares Algorithm", Journal Of Chemometrics, 1997,
56
+ :doi:`10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L`
57
+
58
+ Examples
59
+ --------
60
+ >>> import numpy as np
61
+ >>> from scipy.optimize import nnls
62
+ ...
63
+ >>> A = np.array([[1, 0], [1, 0], [0, 1]])
64
+ >>> b = np.array([2, 1, 1])
65
+ >>> nnls(A, b)
66
+ (array([1.5, 1. ]), 0.7071067811865475)
67
+
68
+ >>> b = np.array([-1, -1, -1])
69
+ >>> nnls(A, b)
70
+ (array([0., 0.]), 1.7320508075688772)
71
+
72
+ """
73
+
74
+ A = np.asarray_chkfinite(A)
75
+ b = np.asarray_chkfinite(b)
76
+
77
+ if len(A.shape) != 2:
78
+ raise ValueError("Expected a two-dimensional array (matrix)" +
79
+ f", but the shape of A is {A.shape}")
80
+ if len(b.shape) != 1:
81
+ raise ValueError("Expected a one-dimensional array (vector)" +
82
+ f", but the shape of b is {b.shape}")
83
+
84
+ m, n = A.shape
85
+
86
+ if m != b.shape[0]:
87
+ raise ValueError(
88
+ "Incompatible dimensions. The first dimension of " +
89
+ f"A is {m}, while the shape of b is {(b.shape[0], )}")
90
+
91
+ x, rnorm, mode = _nnls(A, b, maxiter, tol=atol)
92
+ if mode != 1:
93
+ raise RuntimeError("Maximum number of iterations reached.")
94
+
95
+ return x, rnorm
96
+
97
+
98
+ def _nnls(A, b, maxiter=None, tol=None):
99
+ """
100
+ This is a single RHS algorithm from ref [2] above. For multiple RHS
101
+ support, the algorithm is given in :doi:`10.1002/cem.889`
102
+ """
103
+ m, n = A.shape
104
+
105
+ AtA = A.T @ A
106
+ Atb = b @ A # Result is 1D - let NumPy figure it out
107
+
108
+ if not maxiter:
109
+ maxiter = 3*n
110
+ if tol is None:
111
+ tol = 10 * max(m, n) * np.spacing(1.)
112
+
113
+ # Initialize vars
114
+ x = np.zeros(n, dtype=np.float64)
115
+ s = np.zeros(n, dtype=np.float64)
116
+ # Inactive constraint switches
117
+ P = np.zeros(n, dtype=bool)
118
+
119
+ # Projected residual
120
+ w = Atb.copy().astype(np.float64) # x=0. Skip (-AtA @ x) term
121
+
122
+ # Overall iteration counter
123
+ # Outer loop is not counted, inner iter is counted across outer spins
124
+ iter = 0
125
+
126
+ while (not P.all()) and (w[~P] > tol).any(): # B
127
+ # Get the "most" active coeff index and move to inactive set
128
+ k = np.argmax(w * (~P)) # B.2
129
+ P[k] = True # B.3
130
+
131
+ # Iteration solution
132
+ s[:] = 0.
133
+ # B.4
134
+ with warnings.catch_warnings():
135
+ warnings.filterwarnings('ignore', message='Ill-conditioned matrix',
136
+ category=LinAlgWarning)
137
+ s[P] = solve(AtA[np.ix_(P, P)], Atb[P], assume_a='sym', check_finite=False)
138
+
139
+ # Inner loop
140
+ while (iter < maxiter) and (s[P].min() < 0): # C.1
141
+ iter += 1
142
+ inds = P * (s < 0)
143
+ alpha = (x[inds] / (x[inds] - s[inds])).min() # C.2
144
+ x *= (1 - alpha)
145
+ x += alpha*s
146
+ P[x <= tol] = False
147
+ with warnings.catch_warnings():
148
+ warnings.filterwarnings('ignore', message='Ill-conditioned matrix',
149
+ category=LinAlgWarning)
150
+ s[P] = solve(AtA[np.ix_(P, P)], Atb[P], assume_a='sym',
151
+ check_finite=False)
152
+ s[~P] = 0 # C.6
153
+
154
+ x[:] = s[:]
155
+ w[:] = Atb - AtA @ x
156
+
157
+ if iter == maxiter:
158
+ # Typically following line should return
159
+ # return x, np.linalg.norm(A@x - b), -1
160
+ # however at the top level, -1 raises an exception wasting norm
161
+ # Instead return dummy number 0.
162
+ return x, 0., -1
163
+
164
+ return x, np.linalg.norm(A@x - b), 1
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_nonlin.py ADDED
@@ -0,0 +1,1585 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2009, Pauli Virtanen <pav@iki.fi>
2
+ # Distributed under the same license as SciPy.
3
+
4
+ import inspect
5
+ import sys
6
+ import warnings
7
+
8
+ import numpy as np
9
+ from numpy import asarray, dot, vdot
10
+
11
+ from scipy.linalg import norm, solve, inv, qr, svd, LinAlgError
12
+ import scipy.sparse.linalg
13
+ import scipy.sparse
14
+ from scipy.linalg import get_blas_funcs
15
+ from scipy._lib._util import copy_if_needed
16
+ from scipy._lib._util import getfullargspec_no_self as _getfullargspec
17
+ from ._linesearch import scalar_search_wolfe1, scalar_search_armijo
18
+
19
+
20
+ __all__ = [
21
+ 'broyden1', 'broyden2', 'anderson', 'linearmixing',
22
+ 'diagbroyden', 'excitingmixing', 'newton_krylov',
23
+ 'BroydenFirst', 'KrylovJacobian', 'InverseJacobian', 'NoConvergence']
24
+
25
+ #------------------------------------------------------------------------------
26
+ # Utility functions
27
+ #------------------------------------------------------------------------------
28
+
29
+
30
+ class NoConvergence(Exception):
31
+ """Exception raised when nonlinear solver fails to converge within the specified
32
+ `maxiter`."""
33
+ pass
34
+
35
+
36
+ def maxnorm(x):
37
+ return np.absolute(x).max()
38
+
39
+
40
+ def _as_inexact(x):
41
+ """Return `x` as an array, of either floats or complex floats"""
42
+ x = asarray(x)
43
+ if not np.issubdtype(x.dtype, np.inexact):
44
+ return asarray(x, dtype=np.float64)
45
+ return x
46
+
47
+
48
+ def _array_like(x, x0):
49
+ """Return ndarray `x` as same array subclass and shape as `x0`"""
50
+ x = np.reshape(x, np.shape(x0))
51
+ wrap = getattr(x0, '__array_wrap__', x.__array_wrap__)
52
+ return wrap(x)
53
+
54
+
55
+ def _safe_norm(v):
56
+ if not np.isfinite(v).all():
57
+ return np.array(np.inf)
58
+ return norm(v)
59
+
60
+ #------------------------------------------------------------------------------
61
+ # Generic nonlinear solver machinery
62
+ #------------------------------------------------------------------------------
63
+
64
+
65
+ _doc_parts = dict(
66
+ params_basic="""
67
+ F : function(x) -> f
68
+ Function whose root to find; should take and return an array-like
69
+ object.
70
+ xin : array_like
71
+ Initial guess for the solution
72
+ """.strip(),
73
+ params_extra="""
74
+ iter : int, optional
75
+ Number of iterations to make. If omitted (default), make as many
76
+ as required to meet tolerances.
77
+ verbose : bool, optional
78
+ Print status to stdout on every iteration.
79
+ maxiter : int, optional
80
+ Maximum number of iterations to make. If more are needed to
81
+ meet convergence, `NoConvergence` is raised.
82
+ f_tol : float, optional
83
+ Absolute tolerance (in max-norm) for the residual.
84
+ If omitted, default is 6e-6.
85
+ f_rtol : float, optional
86
+ Relative tolerance for the residual. If omitted, not used.
87
+ x_tol : float, optional
88
+ Absolute minimum step size, as determined from the Jacobian
89
+ approximation. If the step size is smaller than this, optimization
90
+ is terminated as successful. If omitted, not used.
91
+ x_rtol : float, optional
92
+ Relative minimum step size. If omitted, not used.
93
+ tol_norm : function(vector) -> scalar, optional
94
+ Norm to use in convergence check. Default is the maximum norm.
95
+ line_search : {None, 'armijo' (default), 'wolfe'}, optional
96
+ Which type of a line search to use to determine the step size in the
97
+ direction given by the Jacobian approximation. Defaults to 'armijo'.
98
+ callback : function, optional
99
+ Optional callback function. It is called on every iteration as
100
+ ``callback(x, f)`` where `x` is the current solution and `f`
101
+ the corresponding residual.
102
+
103
+ Returns
104
+ -------
105
+ sol : ndarray
106
+ An array (of similar array type as `x0`) containing the final solution.
107
+
108
+ Raises
109
+ ------
110
+ NoConvergence
111
+ When a solution was not found.
112
+
113
+ """.strip()
114
+ )
115
+
116
+
117
+ def _set_doc(obj):
118
+ if obj.__doc__:
119
+ obj.__doc__ = obj.__doc__ % _doc_parts
120
+
121
+
122
+ def nonlin_solve(F, x0, jacobian='krylov', iter=None, verbose=False,
123
+ maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
124
+ tol_norm=None, line_search='armijo', callback=None,
125
+ full_output=False, raise_exception=True):
126
+ """
127
+ Find a root of a function, in a way suitable for large-scale problems.
128
+
129
+ Parameters
130
+ ----------
131
+ %(params_basic)s
132
+ jacobian : Jacobian
133
+ A Jacobian approximation: `Jacobian` object or something that
134
+ `asjacobian` can transform to one. Alternatively, a string specifying
135
+ which of the builtin Jacobian approximations to use:
136
+
137
+ krylov, broyden1, broyden2, anderson
138
+ diagbroyden, linearmixing, excitingmixing
139
+
140
+ %(params_extra)s
141
+ full_output : bool
142
+ If true, returns a dictionary `info` containing convergence
143
+ information.
144
+ raise_exception : bool
145
+ If True, a `NoConvergence` exception is raise if no solution is found.
146
+
147
+ See Also
148
+ --------
149
+ asjacobian, Jacobian
150
+
151
+ Notes
152
+ -----
153
+ This algorithm implements the inexact Newton method, with
154
+ backtracking or full line searches. Several Jacobian
155
+ approximations are available, including Krylov and Quasi-Newton
156
+ methods.
157
+
158
+ References
159
+ ----------
160
+ .. [KIM] C. T. Kelley, \"Iterative Methods for Linear and Nonlinear
161
+ Equations\". Society for Industrial and Applied Mathematics. (1995)
162
+ https://archive.siam.org/books/kelley/fr16/
163
+
164
+ """
165
+ # Can't use default parameters because it's being explicitly passed as None
166
+ # from the calling function, so we need to set it here.
167
+ tol_norm = maxnorm if tol_norm is None else tol_norm
168
+ condition = TerminationCondition(f_tol=f_tol, f_rtol=f_rtol,
169
+ x_tol=x_tol, x_rtol=x_rtol,
170
+ iter=iter, norm=tol_norm)
171
+
172
+ x0 = _as_inexact(x0)
173
+ def func(z):
174
+ return _as_inexact(F(_array_like(z, x0))).flatten()
175
+ x = x0.flatten()
176
+
177
+ dx = np.full_like(x, np.inf)
178
+ Fx = func(x)
179
+ Fx_norm = norm(Fx)
180
+
181
+ jacobian = asjacobian(jacobian)
182
+ jacobian.setup(x.copy(), Fx, func)
183
+
184
+ if maxiter is None:
185
+ if iter is not None:
186
+ maxiter = iter + 1
187
+ else:
188
+ maxiter = 100*(x.size+1)
189
+
190
+ if line_search is True:
191
+ line_search = 'armijo'
192
+ elif line_search is False:
193
+ line_search = None
194
+
195
+ if line_search not in (None, 'armijo', 'wolfe'):
196
+ raise ValueError("Invalid line search")
197
+
198
+ # Solver tolerance selection
199
+ gamma = 0.9
200
+ eta_max = 0.9999
201
+ eta_treshold = 0.1
202
+ eta = 1e-3
203
+
204
+ for n in range(maxiter):
205
+ status = condition.check(Fx, x, dx)
206
+ if status:
207
+ break
208
+
209
+ # The tolerance, as computed for scipy.sparse.linalg.* routines
210
+ tol = min(eta, eta*Fx_norm)
211
+ dx = -jacobian.solve(Fx, tol=tol)
212
+
213
+ if norm(dx) == 0:
214
+ raise ValueError("Jacobian inversion yielded zero vector. "
215
+ "This indicates a bug in the Jacobian "
216
+ "approximation.")
217
+
218
+ # Line search, or Newton step
219
+ if line_search:
220
+ s, x, Fx, Fx_norm_new = _nonlin_line_search(func, x, Fx, dx,
221
+ line_search)
222
+ else:
223
+ s = 1.0
224
+ x = x + dx
225
+ Fx = func(x)
226
+ Fx_norm_new = norm(Fx)
227
+
228
+ jacobian.update(x.copy(), Fx)
229
+
230
+ if callback:
231
+ callback(x, Fx)
232
+
233
+ # Adjust forcing parameters for inexact methods
234
+ eta_A = gamma * Fx_norm_new**2 / Fx_norm**2
235
+ if gamma * eta**2 < eta_treshold:
236
+ eta = min(eta_max, eta_A)
237
+ else:
238
+ eta = min(eta_max, max(eta_A, gamma*eta**2))
239
+
240
+ Fx_norm = Fx_norm_new
241
+
242
+ # Print status
243
+ if verbose:
244
+ sys.stdout.write("%d: |F(x)| = %g; step %g\n" % (
245
+ n, tol_norm(Fx), s))
246
+ sys.stdout.flush()
247
+ else:
248
+ if raise_exception:
249
+ raise NoConvergence(_array_like(x, x0))
250
+ else:
251
+ status = 2
252
+
253
+ if full_output:
254
+ info = {'nit': condition.iteration,
255
+ 'fun': Fx,
256
+ 'status': status,
257
+ 'success': status == 1,
258
+ 'message': {1: 'A solution was found at the specified '
259
+ 'tolerance.',
260
+ 2: 'The maximum number of iterations allowed '
261
+ 'has been reached.'
262
+ }[status]
263
+ }
264
+ return _array_like(x, x0), info
265
+ else:
266
+ return _array_like(x, x0)
267
+
268
+
269
+ _set_doc(nonlin_solve)
270
+
271
+
272
+ def _nonlin_line_search(func, x, Fx, dx, search_type='armijo', rdiff=1e-8,
273
+ smin=1e-2):
274
+ tmp_s = [0]
275
+ tmp_Fx = [Fx]
276
+ tmp_phi = [norm(Fx)**2]
277
+ s_norm = norm(x) / norm(dx)
278
+
279
+ def phi(s, store=True):
280
+ if s == tmp_s[0]:
281
+ return tmp_phi[0]
282
+ xt = x + s*dx
283
+ v = func(xt)
284
+ p = _safe_norm(v)**2
285
+ if store:
286
+ tmp_s[0] = s
287
+ tmp_phi[0] = p
288
+ tmp_Fx[0] = v
289
+ return p
290
+
291
+ def derphi(s):
292
+ ds = (abs(s) + s_norm + 1) * rdiff
293
+ return (phi(s+ds, store=False) - phi(s)) / ds
294
+
295
+ if search_type == 'wolfe':
296
+ s, phi1, phi0 = scalar_search_wolfe1(phi, derphi, tmp_phi[0],
297
+ xtol=1e-2, amin=smin)
298
+ elif search_type == 'armijo':
299
+ s, phi1 = scalar_search_armijo(phi, tmp_phi[0], -tmp_phi[0],
300
+ amin=smin)
301
+
302
+ if s is None:
303
+ # XXX: No suitable step length found. Take the full Newton step,
304
+ # and hope for the best.
305
+ s = 1.0
306
+
307
+ x = x + s*dx
308
+ if s == tmp_s[0]:
309
+ Fx = tmp_Fx[0]
310
+ else:
311
+ Fx = func(x)
312
+ Fx_norm = norm(Fx)
313
+
314
+ return s, x, Fx, Fx_norm
315
+
316
+
317
+ class TerminationCondition:
318
+ """
319
+ Termination condition for an iteration. It is terminated if
320
+
321
+ - |F| < f_rtol*|F_0|, AND
322
+ - |F| < f_tol
323
+
324
+ AND
325
+
326
+ - |dx| < x_rtol*|x|, AND
327
+ - |dx| < x_tol
328
+
329
+ """
330
+ def __init__(self, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
331
+ iter=None, norm=maxnorm):
332
+
333
+ if f_tol is None:
334
+ f_tol = np.finfo(np.float64).eps ** (1./3)
335
+ if f_rtol is None:
336
+ f_rtol = np.inf
337
+ if x_tol is None:
338
+ x_tol = np.inf
339
+ if x_rtol is None:
340
+ x_rtol = np.inf
341
+
342
+ self.x_tol = x_tol
343
+ self.x_rtol = x_rtol
344
+ self.f_tol = f_tol
345
+ self.f_rtol = f_rtol
346
+
347
+ self.norm = norm
348
+
349
+ self.iter = iter
350
+
351
+ self.f0_norm = None
352
+ self.iteration = 0
353
+
354
+ def check(self, f, x, dx):
355
+ self.iteration += 1
356
+ f_norm = self.norm(f)
357
+ x_norm = self.norm(x)
358
+ dx_norm = self.norm(dx)
359
+
360
+ if self.f0_norm is None:
361
+ self.f0_norm = f_norm
362
+
363
+ if f_norm == 0:
364
+ return 1
365
+
366
+ if self.iter is not None:
367
+ # backwards compatibility with SciPy 0.6.0
368
+ return 2 * (self.iteration > self.iter)
369
+
370
+ # NB: condition must succeed for rtol=inf even if norm == 0
371
+ return int((f_norm <= self.f_tol
372
+ and f_norm/self.f_rtol <= self.f0_norm)
373
+ and (dx_norm <= self.x_tol
374
+ and dx_norm/self.x_rtol <= x_norm))
375
+
376
+
377
+ #------------------------------------------------------------------------------
378
+ # Generic Jacobian approximation
379
+ #------------------------------------------------------------------------------
380
+
381
+ class Jacobian:
382
+ """
383
+ Common interface for Jacobians or Jacobian approximations.
384
+
385
+ The optional methods come useful when implementing trust region
386
+ etc., algorithms that often require evaluating transposes of the
387
+ Jacobian.
388
+
389
+ Methods
390
+ -------
391
+ solve
392
+ Returns J^-1 * v
393
+ update
394
+ Updates Jacobian to point `x` (where the function has residual `Fx`)
395
+
396
+ matvec : optional
397
+ Returns J * v
398
+ rmatvec : optional
399
+ Returns A^H * v
400
+ rsolve : optional
401
+ Returns A^-H * v
402
+ matmat : optional
403
+ Returns A * V, where V is a dense matrix with dimensions (N,K).
404
+ todense : optional
405
+ Form the dense Jacobian matrix. Necessary for dense trust region
406
+ algorithms, and useful for testing.
407
+
408
+ Attributes
409
+ ----------
410
+ shape
411
+ Matrix dimensions (M, N)
412
+ dtype
413
+ Data type of the matrix.
414
+ func : callable, optional
415
+ Function the Jacobian corresponds to
416
+
417
+ """
418
+
419
+ def __init__(self, **kw):
420
+ names = ["solve", "update", "matvec", "rmatvec", "rsolve",
421
+ "matmat", "todense", "shape", "dtype"]
422
+ for name, value in kw.items():
423
+ if name not in names:
424
+ raise ValueError("Unknown keyword argument %s" % name)
425
+ if value is not None:
426
+ setattr(self, name, kw[name])
427
+
428
+
429
+ if hasattr(self, "todense"):
430
+ def __array__(self, dtype=None, copy=None):
431
+ if dtype is not None:
432
+ raise ValueError(f"`dtype` must be None, was {dtype}")
433
+ return self.todense()
434
+
435
+ def aspreconditioner(self):
436
+ return InverseJacobian(self)
437
+
438
+ def solve(self, v, tol=0):
439
+ raise NotImplementedError
440
+
441
+ def update(self, x, F):
442
+ pass
443
+
444
+ def setup(self, x, F, func):
445
+ self.func = func
446
+ self.shape = (F.size, x.size)
447
+ self.dtype = F.dtype
448
+ if self.__class__.setup is Jacobian.setup:
449
+ # Call on the first point unless overridden
450
+ self.update(x, F)
451
+
452
+
453
+ class InverseJacobian:
454
+ def __init__(self, jacobian):
455
+ self.jacobian = jacobian
456
+ self.matvec = jacobian.solve
457
+ self.update = jacobian.update
458
+ if hasattr(jacobian, 'setup'):
459
+ self.setup = jacobian.setup
460
+ if hasattr(jacobian, 'rsolve'):
461
+ self.rmatvec = jacobian.rsolve
462
+
463
+ @property
464
+ def shape(self):
465
+ return self.jacobian.shape
466
+
467
+ @property
468
+ def dtype(self):
469
+ return self.jacobian.dtype
470
+
471
+
472
+ def asjacobian(J):
473
+ """
474
+ Convert given object to one suitable for use as a Jacobian.
475
+ """
476
+ spsolve = scipy.sparse.linalg.spsolve
477
+ if isinstance(J, Jacobian):
478
+ return J
479
+ elif inspect.isclass(J) and issubclass(J, Jacobian):
480
+ return J()
481
+ elif isinstance(J, np.ndarray):
482
+ if J.ndim > 2:
483
+ raise ValueError('array must have rank <= 2')
484
+ J = np.atleast_2d(np.asarray(J))
485
+ if J.shape[0] != J.shape[1]:
486
+ raise ValueError('array must be square')
487
+
488
+ return Jacobian(matvec=lambda v: dot(J, v),
489
+ rmatvec=lambda v: dot(J.conj().T, v),
490
+ solve=lambda v, tol=0: solve(J, v),
491
+ rsolve=lambda v, tol=0: solve(J.conj().T, v),
492
+ dtype=J.dtype, shape=J.shape)
493
+ elif scipy.sparse.issparse(J):
494
+ if J.shape[0] != J.shape[1]:
495
+ raise ValueError('matrix must be square')
496
+ return Jacobian(matvec=lambda v: J @ v,
497
+ rmatvec=lambda v: J.conj().T @ v,
498
+ solve=lambda v, tol=0: spsolve(J, v),
499
+ rsolve=lambda v, tol=0: spsolve(J.conj().T, v),
500
+ dtype=J.dtype, shape=J.shape)
501
+ elif hasattr(J, 'shape') and hasattr(J, 'dtype') and hasattr(J, 'solve'):
502
+ return Jacobian(matvec=getattr(J, 'matvec'),
503
+ rmatvec=getattr(J, 'rmatvec'),
504
+ solve=J.solve,
505
+ rsolve=getattr(J, 'rsolve'),
506
+ update=getattr(J, 'update'),
507
+ setup=getattr(J, 'setup'),
508
+ dtype=J.dtype,
509
+ shape=J.shape)
510
+ elif callable(J):
511
+ # Assume it's a function J(x) that returns the Jacobian
512
+ class Jac(Jacobian):
513
+ def update(self, x, F):
514
+ self.x = x
515
+
516
+ def solve(self, v, tol=0):
517
+ m = J(self.x)
518
+ if isinstance(m, np.ndarray):
519
+ return solve(m, v)
520
+ elif scipy.sparse.issparse(m):
521
+ return spsolve(m, v)
522
+ else:
523
+ raise ValueError("Unknown matrix type")
524
+
525
+ def matvec(self, v):
526
+ m = J(self.x)
527
+ if isinstance(m, np.ndarray):
528
+ return dot(m, v)
529
+ elif scipy.sparse.issparse(m):
530
+ return m @ v
531
+ else:
532
+ raise ValueError("Unknown matrix type")
533
+
534
+ def rsolve(self, v, tol=0):
535
+ m = J(self.x)
536
+ if isinstance(m, np.ndarray):
537
+ return solve(m.conj().T, v)
538
+ elif scipy.sparse.issparse(m):
539
+ return spsolve(m.conj().T, v)
540
+ else:
541
+ raise ValueError("Unknown matrix type")
542
+
543
+ def rmatvec(self, v):
544
+ m = J(self.x)
545
+ if isinstance(m, np.ndarray):
546
+ return dot(m.conj().T, v)
547
+ elif scipy.sparse.issparse(m):
548
+ return m.conj().T @ v
549
+ else:
550
+ raise ValueError("Unknown matrix type")
551
+ return Jac()
552
+ elif isinstance(J, str):
553
+ return dict(broyden1=BroydenFirst,
554
+ broyden2=BroydenSecond,
555
+ anderson=Anderson,
556
+ diagbroyden=DiagBroyden,
557
+ linearmixing=LinearMixing,
558
+ excitingmixing=ExcitingMixing,
559
+ krylov=KrylovJacobian)[J]()
560
+ else:
561
+ raise TypeError('Cannot convert object to a Jacobian')
562
+
563
+
564
+ #------------------------------------------------------------------------------
565
+ # Broyden
566
+ #------------------------------------------------------------------------------
567
+
568
+ class GenericBroyden(Jacobian):
569
+ def setup(self, x0, f0, func):
570
+ Jacobian.setup(self, x0, f0, func)
571
+ self.last_f = f0
572
+ self.last_x = x0
573
+
574
+ if hasattr(self, 'alpha') and self.alpha is None:
575
+ # Autoscale the initial Jacobian parameter
576
+ # unless we have already guessed the solution.
577
+ normf0 = norm(f0)
578
+ if normf0:
579
+ self.alpha = 0.5*max(norm(x0), 1) / normf0
580
+ else:
581
+ self.alpha = 1.0
582
+
583
+ def _update(self, x, f, dx, df, dx_norm, df_norm):
584
+ raise NotImplementedError
585
+
586
+ def update(self, x, f):
587
+ df = f - self.last_f
588
+ dx = x - self.last_x
589
+ self._update(x, f, dx, df, norm(dx), norm(df))
590
+ self.last_f = f
591
+ self.last_x = x
592
+
593
+
594
+ class LowRankMatrix:
595
+ r"""
596
+ A matrix represented as
597
+
598
+ .. math:: \alpha I + \sum_{n=0}^{n=M} c_n d_n^\dagger
599
+
600
+ However, if the rank of the matrix reaches the dimension of the vectors,
601
+ full matrix representation will be used thereon.
602
+
603
+ """
604
+
605
+ def __init__(self, alpha, n, dtype):
606
+ self.alpha = alpha
607
+ self.cs = []
608
+ self.ds = []
609
+ self.n = n
610
+ self.dtype = dtype
611
+ self.collapsed = None
612
+
613
+ @staticmethod
614
+ def _matvec(v, alpha, cs, ds):
615
+ axpy, scal, dotc = get_blas_funcs(['axpy', 'scal', 'dotc'],
616
+ cs[:1] + [v])
617
+ w = alpha * v
618
+ for c, d in zip(cs, ds):
619
+ a = dotc(d, v)
620
+ w = axpy(c, w, w.size, a)
621
+ return w
622
+
623
+ @staticmethod
624
+ def _solve(v, alpha, cs, ds):
625
+ """Evaluate w = M^-1 v"""
626
+ if len(cs) == 0:
627
+ return v/alpha
628
+
629
+ # (B + C D^H)^-1 = B^-1 - B^-1 C (I + D^H B^-1 C)^-1 D^H B^-1
630
+
631
+ axpy, dotc = get_blas_funcs(['axpy', 'dotc'], cs[:1] + [v])
632
+
633
+ c0 = cs[0]
634
+ A = alpha * np.identity(len(cs), dtype=c0.dtype)
635
+ for i, d in enumerate(ds):
636
+ for j, c in enumerate(cs):
637
+ A[i,j] += dotc(d, c)
638
+
639
+ q = np.zeros(len(cs), dtype=c0.dtype)
640
+ for j, d in enumerate(ds):
641
+ q[j] = dotc(d, v)
642
+ q /= alpha
643
+ q = solve(A, q)
644
+
645
+ w = v/alpha
646
+ for c, qc in zip(cs, q):
647
+ w = axpy(c, w, w.size, -qc)
648
+
649
+ return w
650
+
651
+ def matvec(self, v):
652
+ """Evaluate w = M v"""
653
+ if self.collapsed is not None:
654
+ return np.dot(self.collapsed, v)
655
+ return LowRankMatrix._matvec(v, self.alpha, self.cs, self.ds)
656
+
657
+ def rmatvec(self, v):
658
+ """Evaluate w = M^H v"""
659
+ if self.collapsed is not None:
660
+ return np.dot(self.collapsed.T.conj(), v)
661
+ return LowRankMatrix._matvec(v, np.conj(self.alpha), self.ds, self.cs)
662
+
663
+ def solve(self, v, tol=0):
664
+ """Evaluate w = M^-1 v"""
665
+ if self.collapsed is not None:
666
+ return solve(self.collapsed, v)
667
+ return LowRankMatrix._solve(v, self.alpha, self.cs, self.ds)
668
+
669
+ def rsolve(self, v, tol=0):
670
+ """Evaluate w = M^-H v"""
671
+ if self.collapsed is not None:
672
+ return solve(self.collapsed.T.conj(), v)
673
+ return LowRankMatrix._solve(v, np.conj(self.alpha), self.ds, self.cs)
674
+
675
+ def append(self, c, d):
676
+ if self.collapsed is not None:
677
+ self.collapsed += c[:,None] * d[None,:].conj()
678
+ return
679
+
680
+ self.cs.append(c)
681
+ self.ds.append(d)
682
+
683
+ if len(self.cs) > c.size:
684
+ self.collapse()
685
+
686
+ def __array__(self, dtype=None, copy=None):
687
+ if dtype is not None:
688
+ warnings.warn("LowRankMatrix is scipy-internal code, `dtype` "
689
+ f"should only be None but was {dtype} (not handled)",
690
+ stacklevel=3)
691
+ if copy is not None:
692
+ warnings.warn("LowRankMatrix is scipy-internal code, `copy` "
693
+ f"should only be None but was {copy} (not handled)",
694
+ stacklevel=3)
695
+ if self.collapsed is not None:
696
+ return self.collapsed
697
+
698
+ Gm = self.alpha*np.identity(self.n, dtype=self.dtype)
699
+ for c, d in zip(self.cs, self.ds):
700
+ Gm += c[:,None]*d[None,:].conj()
701
+ return Gm
702
+
703
+ def collapse(self):
704
+ """Collapse the low-rank matrix to a full-rank one."""
705
+ self.collapsed = np.array(self, copy=copy_if_needed)
706
+ self.cs = None
707
+ self.ds = None
708
+ self.alpha = None
709
+
710
+ def restart_reduce(self, rank):
711
+ """
712
+ Reduce the rank of the matrix by dropping all vectors.
713
+ """
714
+ if self.collapsed is not None:
715
+ return
716
+ assert rank > 0
717
+ if len(self.cs) > rank:
718
+ del self.cs[:]
719
+ del self.ds[:]
720
+
721
+ def simple_reduce(self, rank):
722
+ """
723
+ Reduce the rank of the matrix by dropping oldest vectors.
724
+ """
725
+ if self.collapsed is not None:
726
+ return
727
+ assert rank > 0
728
+ while len(self.cs) > rank:
729
+ del self.cs[0]
730
+ del self.ds[0]
731
+
732
+ def svd_reduce(self, max_rank, to_retain=None):
733
+ """
734
+ Reduce the rank of the matrix by retaining some SVD components.
735
+
736
+ This corresponds to the \"Broyden Rank Reduction Inverse\"
737
+ algorithm described in [1]_.
738
+
739
+ Note that the SVD decomposition can be done by solving only a
740
+ problem whose size is the effective rank of this matrix, which
741
+ is viable even for large problems.
742
+
743
+ Parameters
744
+ ----------
745
+ max_rank : int
746
+ Maximum rank of this matrix after reduction.
747
+ to_retain : int, optional
748
+ Number of SVD components to retain when reduction is done
749
+ (ie. rank > max_rank). Default is ``max_rank - 2``.
750
+
751
+ References
752
+ ----------
753
+ .. [1] B.A. van der Rotten, PhD thesis,
754
+ \"A limited memory Broyden method to solve high-dimensional
755
+ systems of nonlinear equations\". Mathematisch Instituut,
756
+ Universiteit Leiden, The Netherlands (2003).
757
+
758
+ https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf
759
+
760
+ """
761
+ if self.collapsed is not None:
762
+ return
763
+
764
+ p = max_rank
765
+ if to_retain is not None:
766
+ q = to_retain
767
+ else:
768
+ q = p - 2
769
+
770
+ if self.cs:
771
+ p = min(p, len(self.cs[0]))
772
+ q = max(0, min(q, p-1))
773
+
774
+ m = len(self.cs)
775
+ if m < p:
776
+ # nothing to do
777
+ return
778
+
779
+ C = np.array(self.cs).T
780
+ D = np.array(self.ds).T
781
+
782
+ D, R = qr(D, mode='economic')
783
+ C = dot(C, R.T.conj())
784
+
785
+ U, S, WH = svd(C, full_matrices=False)
786
+
787
+ C = dot(C, inv(WH))
788
+ D = dot(D, WH.T.conj())
789
+
790
+ for k in range(q):
791
+ self.cs[k] = C[:,k].copy()
792
+ self.ds[k] = D[:,k].copy()
793
+
794
+ del self.cs[q:]
795
+ del self.ds[q:]
796
+
797
+
798
+ _doc_parts['broyden_params'] = """
799
+ alpha : float, optional
800
+ Initial guess for the Jacobian is ``(-1/alpha)``.
801
+ reduction_method : str or tuple, optional
802
+ Method used in ensuring that the rank of the Broyden matrix
803
+ stays low. Can either be a string giving the name of the method,
804
+ or a tuple of the form ``(method, param1, param2, ...)``
805
+ that gives the name of the method and values for additional parameters.
806
+
807
+ Methods available:
808
+
809
+ - ``restart``: drop all matrix columns. Has no extra parameters.
810
+ - ``simple``: drop oldest matrix column. Has no extra parameters.
811
+ - ``svd``: keep only the most significant SVD components.
812
+ Takes an extra parameter, ``to_retain``, which determines the
813
+ number of SVD components to retain when rank reduction is done.
814
+ Default is ``max_rank - 2``.
815
+
816
+ max_rank : int, optional
817
+ Maximum rank for the Broyden matrix.
818
+ Default is infinity (i.e., no rank reduction).
819
+ """.strip()
820
+
821
+
822
+ class BroydenFirst(GenericBroyden):
823
+ r"""
824
+ Find a root of a function, using Broyden's first Jacobian approximation.
825
+
826
+ This method is also known as \"Broyden's good method\".
827
+
828
+ Parameters
829
+ ----------
830
+ %(params_basic)s
831
+ %(broyden_params)s
832
+ %(params_extra)s
833
+
834
+ See Also
835
+ --------
836
+ root : Interface to root finding algorithms for multivariate
837
+ functions. See ``method='broyden1'`` in particular.
838
+
839
+ Notes
840
+ -----
841
+ This algorithm implements the inverse Jacobian Quasi-Newton update
842
+
843
+ .. math:: H_+ = H + (dx - H df) dx^\dagger H / ( dx^\dagger H df)
844
+
845
+ which corresponds to Broyden's first Jacobian update
846
+
847
+ .. math:: J_+ = J + (df - J dx) dx^\dagger / dx^\dagger dx
848
+
849
+
850
+ References
851
+ ----------
852
+ .. [1] B.A. van der Rotten, PhD thesis,
853
+ \"A limited memory Broyden method to solve high-dimensional
854
+ systems of nonlinear equations\". Mathematisch Instituut,
855
+ Universiteit Leiden, The Netherlands (2003).
856
+
857
+ https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf
858
+
859
+ Examples
860
+ --------
861
+ The following functions define a system of nonlinear equations
862
+
863
+ >>> def fun(x):
864
+ ... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
865
+ ... 0.5 * (x[1] - x[0])**3 + x[1]]
866
+
867
+ A solution can be obtained as follows.
868
+
869
+ >>> from scipy import optimize
870
+ >>> sol = optimize.broyden1(fun, [0, 0])
871
+ >>> sol
872
+ array([0.84116396, 0.15883641])
873
+
874
+ """
875
+
876
+ def __init__(self, alpha=None, reduction_method='restart', max_rank=None):
877
+ GenericBroyden.__init__(self)
878
+ self.alpha = alpha
879
+ self.Gm = None
880
+
881
+ if max_rank is None:
882
+ max_rank = np.inf
883
+ self.max_rank = max_rank
884
+
885
+ if isinstance(reduction_method, str):
886
+ reduce_params = ()
887
+ else:
888
+ reduce_params = reduction_method[1:]
889
+ reduction_method = reduction_method[0]
890
+ reduce_params = (max_rank - 1,) + reduce_params
891
+
892
+ if reduction_method == 'svd':
893
+ self._reduce = lambda: self.Gm.svd_reduce(*reduce_params)
894
+ elif reduction_method == 'simple':
895
+ self._reduce = lambda: self.Gm.simple_reduce(*reduce_params)
896
+ elif reduction_method == 'restart':
897
+ self._reduce = lambda: self.Gm.restart_reduce(*reduce_params)
898
+ else:
899
+ raise ValueError("Unknown rank reduction method '%s'" %
900
+ reduction_method)
901
+
902
+ def setup(self, x, F, func):
903
+ GenericBroyden.setup(self, x, F, func)
904
+ self.Gm = LowRankMatrix(-self.alpha, self.shape[0], self.dtype)
905
+
906
+ def todense(self):
907
+ return inv(self.Gm)
908
+
909
+ def solve(self, f, tol=0):
910
+ r = self.Gm.matvec(f)
911
+ if not np.isfinite(r).all():
912
+ # singular; reset the Jacobian approximation
913
+ self.setup(self.last_x, self.last_f, self.func)
914
+ return self.Gm.matvec(f)
915
+ return r
916
+
917
+ def matvec(self, f):
918
+ return self.Gm.solve(f)
919
+
920
+ def rsolve(self, f, tol=0):
921
+ return self.Gm.rmatvec(f)
922
+
923
+ def rmatvec(self, f):
924
+ return self.Gm.rsolve(f)
925
+
926
+ def _update(self, x, f, dx, df, dx_norm, df_norm):
927
+ self._reduce() # reduce first to preserve secant condition
928
+
929
+ v = self.Gm.rmatvec(dx)
930
+ c = dx - self.Gm.matvec(df)
931
+ d = v / vdot(df, v)
932
+
933
+ self.Gm.append(c, d)
934
+
935
+
936
+ class BroydenSecond(BroydenFirst):
937
+ """
938
+ Find a root of a function, using Broyden\'s second Jacobian approximation.
939
+
940
+ This method is also known as \"Broyden's bad method\".
941
+
942
+ Parameters
943
+ ----------
944
+ %(params_basic)s
945
+ %(broyden_params)s
946
+ %(params_extra)s
947
+
948
+ See Also
949
+ --------
950
+ root : Interface to root finding algorithms for multivariate
951
+ functions. See ``method='broyden2'`` in particular.
952
+
953
+ Notes
954
+ -----
955
+ This algorithm implements the inverse Jacobian Quasi-Newton update
956
+
957
+ .. math:: H_+ = H + (dx - H df) df^\\dagger / ( df^\\dagger df)
958
+
959
+ corresponding to Broyden's second method.
960
+
961
+ References
962
+ ----------
963
+ .. [1] B.A. van der Rotten, PhD thesis,
964
+ \"A limited memory Broyden method to solve high-dimensional
965
+ systems of nonlinear equations\". Mathematisch Instituut,
966
+ Universiteit Leiden, The Netherlands (2003).
967
+
968
+ https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf
969
+
970
+ Examples
971
+ --------
972
+ The following functions define a system of nonlinear equations
973
+
974
+ >>> def fun(x):
975
+ ... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
976
+ ... 0.5 * (x[1] - x[0])**3 + x[1]]
977
+
978
+ A solution can be obtained as follows.
979
+
980
+ >>> from scipy import optimize
981
+ >>> sol = optimize.broyden2(fun, [0, 0])
982
+ >>> sol
983
+ array([0.84116365, 0.15883529])
984
+
985
+ """
986
+
987
+ def _update(self, x, f, dx, df, dx_norm, df_norm):
988
+ self._reduce() # reduce first to preserve secant condition
989
+
990
+ v = df
991
+ c = dx - self.Gm.matvec(df)
992
+ d = v / df_norm**2
993
+ self.Gm.append(c, d)
994
+
995
+
996
+ #------------------------------------------------------------------------------
997
+ # Broyden-like (restricted memory)
998
+ #------------------------------------------------------------------------------
999
+
1000
+ class Anderson(GenericBroyden):
1001
+ """
1002
+ Find a root of a function, using (extended) Anderson mixing.
1003
+
1004
+ The Jacobian is formed by for a 'best' solution in the space
1005
+ spanned by last `M` vectors. As a result, only a MxM matrix
1006
+ inversions and MxN multiplications are required. [Ey]_
1007
+
1008
+ Parameters
1009
+ ----------
1010
+ %(params_basic)s
1011
+ alpha : float, optional
1012
+ Initial guess for the Jacobian is (-1/alpha).
1013
+ M : float, optional
1014
+ Number of previous vectors to retain. Defaults to 5.
1015
+ w0 : float, optional
1016
+ Regularization parameter for numerical stability.
1017
+ Compared to unity, good values of the order of 0.01.
1018
+ %(params_extra)s
1019
+
1020
+ See Also
1021
+ --------
1022
+ root : Interface to root finding algorithms for multivariate
1023
+ functions. See ``method='anderson'`` in particular.
1024
+
1025
+ References
1026
+ ----------
1027
+ .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996).
1028
+
1029
+ Examples
1030
+ --------
1031
+ The following functions define a system of nonlinear equations
1032
+
1033
+ >>> def fun(x):
1034
+ ... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
1035
+ ... 0.5 * (x[1] - x[0])**3 + x[1]]
1036
+
1037
+ A solution can be obtained as follows.
1038
+
1039
+ >>> from scipy import optimize
1040
+ >>> sol = optimize.anderson(fun, [0, 0])
1041
+ >>> sol
1042
+ array([0.84116588, 0.15883789])
1043
+
1044
+ """
1045
+
1046
+ # Note:
1047
+ #
1048
+ # Anderson method maintains a rank M approximation of the inverse Jacobian,
1049
+ #
1050
+ # J^-1 v ~ -v*alpha + (dX + alpha dF) A^-1 dF^H v
1051
+ # A = W + dF^H dF
1052
+ # W = w0^2 diag(dF^H dF)
1053
+ #
1054
+ # so that for w0 = 0 the secant condition applies for last M iterates, i.e.,
1055
+ #
1056
+ # J^-1 df_j = dx_j
1057
+ #
1058
+ # for all j = 0 ... M-1.
1059
+ #
1060
+ # Moreover, (from Sherman-Morrison-Woodbury formula)
1061
+ #
1062
+ # J v ~ [ b I - b^2 C (I + b dF^H A^-1 C)^-1 dF^H ] v
1063
+ # C = (dX + alpha dF) A^-1
1064
+ # b = -1/alpha
1065
+ #
1066
+ # and after simplification
1067
+ #
1068
+ # J v ~ -v/alpha + (dX/alpha + dF) (dF^H dX - alpha W)^-1 dF^H v
1069
+ #
1070
+
1071
+ def __init__(self, alpha=None, w0=0.01, M=5):
1072
+ GenericBroyden.__init__(self)
1073
+ self.alpha = alpha
1074
+ self.M = M
1075
+ self.dx = []
1076
+ self.df = []
1077
+ self.gamma = None
1078
+ self.w0 = w0
1079
+
1080
+ def solve(self, f, tol=0):
1081
+ dx = -self.alpha*f
1082
+
1083
+ n = len(self.dx)
1084
+ if n == 0:
1085
+ return dx
1086
+
1087
+ df_f = np.empty(n, dtype=f.dtype)
1088
+ for k in range(n):
1089
+ df_f[k] = vdot(self.df[k], f)
1090
+
1091
+ try:
1092
+ gamma = solve(self.a, df_f)
1093
+ except LinAlgError:
1094
+ # singular; reset the Jacobian approximation
1095
+ del self.dx[:]
1096
+ del self.df[:]
1097
+ return dx
1098
+
1099
+ for m in range(n):
1100
+ dx += gamma[m]*(self.dx[m] + self.alpha*self.df[m])
1101
+ return dx
1102
+
1103
+ def matvec(self, f):
1104
+ dx = -f/self.alpha
1105
+
1106
+ n = len(self.dx)
1107
+ if n == 0:
1108
+ return dx
1109
+
1110
+ df_f = np.empty(n, dtype=f.dtype)
1111
+ for k in range(n):
1112
+ df_f[k] = vdot(self.df[k], f)
1113
+
1114
+ b = np.empty((n, n), dtype=f.dtype)
1115
+ for i in range(n):
1116
+ for j in range(n):
1117
+ b[i,j] = vdot(self.df[i], self.dx[j])
1118
+ if i == j and self.w0 != 0:
1119
+ b[i,j] -= vdot(self.df[i], self.df[i])*self.w0**2*self.alpha
1120
+ gamma = solve(b, df_f)
1121
+
1122
+ for m in range(n):
1123
+ dx += gamma[m]*(self.df[m] + self.dx[m]/self.alpha)
1124
+ return dx
1125
+
1126
+ def _update(self, x, f, dx, df, dx_norm, df_norm):
1127
+ if self.M == 0:
1128
+ return
1129
+
1130
+ self.dx.append(dx)
1131
+ self.df.append(df)
1132
+
1133
+ while len(self.dx) > self.M:
1134
+ self.dx.pop(0)
1135
+ self.df.pop(0)
1136
+
1137
+ n = len(self.dx)
1138
+ a = np.zeros((n, n), dtype=f.dtype)
1139
+
1140
+ for i in range(n):
1141
+ for j in range(i, n):
1142
+ if i == j:
1143
+ wd = self.w0**2
1144
+ else:
1145
+ wd = 0
1146
+ a[i,j] = (1+wd)*vdot(self.df[i], self.df[j])
1147
+
1148
+ a += np.triu(a, 1).T.conj()
1149
+ self.a = a
1150
+
1151
+ #------------------------------------------------------------------------------
1152
+ # Simple iterations
1153
+ #------------------------------------------------------------------------------
1154
+
1155
+
1156
+ class DiagBroyden(GenericBroyden):
1157
+ """
1158
+ Find a root of a function, using diagonal Broyden Jacobian approximation.
1159
+
1160
+ The Jacobian approximation is derived from previous iterations, by
1161
+ retaining only the diagonal of Broyden matrices.
1162
+
1163
+ .. warning::
1164
+
1165
+ This algorithm may be useful for specific problems, but whether
1166
+ it will work may depend strongly on the problem.
1167
+
1168
+ Parameters
1169
+ ----------
1170
+ %(params_basic)s
1171
+ alpha : float, optional
1172
+ Initial guess for the Jacobian is (-1/alpha).
1173
+ %(params_extra)s
1174
+
1175
+ See Also
1176
+ --------
1177
+ root : Interface to root finding algorithms for multivariate
1178
+ functions. See ``method='diagbroyden'`` in particular.
1179
+
1180
+ Examples
1181
+ --------
1182
+ The following functions define a system of nonlinear equations
1183
+
1184
+ >>> def fun(x):
1185
+ ... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
1186
+ ... 0.5 * (x[1] - x[0])**3 + x[1]]
1187
+
1188
+ A solution can be obtained as follows.
1189
+
1190
+ >>> from scipy import optimize
1191
+ >>> sol = optimize.diagbroyden(fun, [0, 0])
1192
+ >>> sol
1193
+ array([0.84116403, 0.15883384])
1194
+
1195
+ """
1196
+
1197
+ def __init__(self, alpha=None):
1198
+ GenericBroyden.__init__(self)
1199
+ self.alpha = alpha
1200
+
1201
+ def setup(self, x, F, func):
1202
+ GenericBroyden.setup(self, x, F, func)
1203
+ self.d = np.full((self.shape[0],), 1 / self.alpha, dtype=self.dtype)
1204
+
1205
+ def solve(self, f, tol=0):
1206
+ return -f / self.d
1207
+
1208
+ def matvec(self, f):
1209
+ return -f * self.d
1210
+
1211
+ def rsolve(self, f, tol=0):
1212
+ return -f / self.d.conj()
1213
+
1214
+ def rmatvec(self, f):
1215
+ return -f * self.d.conj()
1216
+
1217
+ def todense(self):
1218
+ return np.diag(-self.d)
1219
+
1220
+ def _update(self, x, f, dx, df, dx_norm, df_norm):
1221
+ self.d -= (df + self.d*dx)*dx/dx_norm**2
1222
+
1223
+
1224
+ class LinearMixing(GenericBroyden):
1225
+ """
1226
+ Find a root of a function, using a scalar Jacobian approximation.
1227
+
1228
+ .. warning::
1229
+
1230
+ This algorithm may be useful for specific problems, but whether
1231
+ it will work may depend strongly on the problem.
1232
+
1233
+ Parameters
1234
+ ----------
1235
+ %(params_basic)s
1236
+ alpha : float, optional
1237
+ The Jacobian approximation is (-1/alpha).
1238
+ %(params_extra)s
1239
+
1240
+ See Also
1241
+ --------
1242
+ root : Interface to root finding algorithms for multivariate
1243
+ functions. See ``method='linearmixing'`` in particular.
1244
+
1245
+ """
1246
+
1247
+ def __init__(self, alpha=None):
1248
+ GenericBroyden.__init__(self)
1249
+ self.alpha = alpha
1250
+
1251
+ def solve(self, f, tol=0):
1252
+ return -f*self.alpha
1253
+
1254
+ def matvec(self, f):
1255
+ return -f/self.alpha
1256
+
1257
+ def rsolve(self, f, tol=0):
1258
+ return -f*np.conj(self.alpha)
1259
+
1260
+ def rmatvec(self, f):
1261
+ return -f/np.conj(self.alpha)
1262
+
1263
+ def todense(self):
1264
+ return np.diag(np.full(self.shape[0], -1/self.alpha))
1265
+
1266
+ def _update(self, x, f, dx, df, dx_norm, df_norm):
1267
+ pass
1268
+
1269
+
1270
+ class ExcitingMixing(GenericBroyden):
1271
+ """
1272
+ Find a root of a function, using a tuned diagonal Jacobian approximation.
1273
+
1274
+ The Jacobian matrix is diagonal and is tuned on each iteration.
1275
+
1276
+ .. warning::
1277
+
1278
+ This algorithm may be useful for specific problems, but whether
1279
+ it will work may depend strongly on the problem.
1280
+
1281
+ See Also
1282
+ --------
1283
+ root : Interface to root finding algorithms for multivariate
1284
+ functions. See ``method='excitingmixing'`` in particular.
1285
+
1286
+ Parameters
1287
+ ----------
1288
+ %(params_basic)s
1289
+ alpha : float, optional
1290
+ Initial Jacobian approximation is (-1/alpha).
1291
+ alphamax : float, optional
1292
+ The entries of the diagonal Jacobian are kept in the range
1293
+ ``[alpha, alphamax]``.
1294
+ %(params_extra)s
1295
+ """
1296
+
1297
+ def __init__(self, alpha=None, alphamax=1.0):
1298
+ GenericBroyden.__init__(self)
1299
+ self.alpha = alpha
1300
+ self.alphamax = alphamax
1301
+ self.beta = None
1302
+
1303
+ def setup(self, x, F, func):
1304
+ GenericBroyden.setup(self, x, F, func)
1305
+ self.beta = np.full((self.shape[0],), self.alpha, dtype=self.dtype)
1306
+
1307
+ def solve(self, f, tol=0):
1308
+ return -f*self.beta
1309
+
1310
+ def matvec(self, f):
1311
+ return -f/self.beta
1312
+
1313
+ def rsolve(self, f, tol=0):
1314
+ return -f*self.beta.conj()
1315
+
1316
+ def rmatvec(self, f):
1317
+ return -f/self.beta.conj()
1318
+
1319
+ def todense(self):
1320
+ return np.diag(-1/self.beta)
1321
+
1322
+ def _update(self, x, f, dx, df, dx_norm, df_norm):
1323
+ incr = f*self.last_f > 0
1324
+ self.beta[incr] += self.alpha
1325
+ self.beta[~incr] = self.alpha
1326
+ np.clip(self.beta, 0, self.alphamax, out=self.beta)
1327
+
1328
+
1329
+ #------------------------------------------------------------------------------
1330
+ # Iterative/Krylov approximated Jacobians
1331
+ #------------------------------------------------------------------------------
1332
+
1333
+ class KrylovJacobian(Jacobian):
1334
+ r"""
1335
+ Find a root of a function, using Krylov approximation for inverse Jacobian.
1336
+
1337
+ This method is suitable for solving large-scale problems.
1338
+
1339
+ Parameters
1340
+ ----------
1341
+ %(params_basic)s
1342
+ rdiff : float, optional
1343
+ Relative step size to use in numerical differentiation.
1344
+ method : str or callable, optional
1345
+ Krylov method to use to approximate the Jacobian. Can be a string,
1346
+ or a function implementing the same interface as the iterative
1347
+ solvers in `scipy.sparse.linalg`. If a string, needs to be one of:
1348
+ ``'lgmres'``, ``'gmres'``, ``'bicgstab'``, ``'cgs'``, ``'minres'``,
1349
+ ``'tfqmr'``.
1350
+
1351
+ The default is `scipy.sparse.linalg.lgmres`.
1352
+ inner_maxiter : int, optional
1353
+ Parameter to pass to the "inner" Krylov solver: maximum number of
1354
+ iterations. Iteration will stop after maxiter steps even if the
1355
+ specified tolerance has not been achieved.
1356
+ inner_M : LinearOperator or InverseJacobian
1357
+ Preconditioner for the inner Krylov iteration.
1358
+ Note that you can use also inverse Jacobians as (adaptive)
1359
+ preconditioners. For example,
1360
+
1361
+ >>> from scipy.optimize import BroydenFirst, KrylovJacobian
1362
+ >>> from scipy.optimize import InverseJacobian
1363
+ >>> jac = BroydenFirst()
1364
+ >>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac))
1365
+
1366
+ If the preconditioner has a method named 'update', it will be called
1367
+ as ``update(x, f)`` after each nonlinear step, with ``x`` giving
1368
+ the current point, and ``f`` the current function value.
1369
+ outer_k : int, optional
1370
+ Size of the subspace kept across LGMRES nonlinear iterations.
1371
+ See `scipy.sparse.linalg.lgmres` for details.
1372
+ inner_kwargs : kwargs
1373
+ Keyword parameters for the "inner" Krylov solver
1374
+ (defined with `method`). Parameter names must start with
1375
+ the `inner_` prefix which will be stripped before passing on
1376
+ the inner method. See, e.g., `scipy.sparse.linalg.gmres` for details.
1377
+ %(params_extra)s
1378
+
1379
+ See Also
1380
+ --------
1381
+ root : Interface to root finding algorithms for multivariate
1382
+ functions. See ``method='krylov'`` in particular.
1383
+ scipy.sparse.linalg.gmres
1384
+ scipy.sparse.linalg.lgmres
1385
+
1386
+ Notes
1387
+ -----
1388
+ This function implements a Newton-Krylov solver. The basic idea is
1389
+ to compute the inverse of the Jacobian with an iterative Krylov
1390
+ method. These methods require only evaluating the Jacobian-vector
1391
+ products, which are conveniently approximated by a finite difference:
1392
+
1393
+ .. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega
1394
+
1395
+ Due to the use of iterative matrix inverses, these methods can
1396
+ deal with large nonlinear problems.
1397
+
1398
+ SciPy's `scipy.sparse.linalg` module offers a selection of Krylov
1399
+ solvers to choose from. The default here is `lgmres`, which is a
1400
+ variant of restarted GMRES iteration that reuses some of the
1401
+ information obtained in the previous Newton steps to invert
1402
+ Jacobians in subsequent steps.
1403
+
1404
+ For a review on Newton-Krylov methods, see for example [1]_,
1405
+ and for the LGMRES sparse inverse method, see [2]_.
1406
+
1407
+ References
1408
+ ----------
1409
+ .. [1] C. T. Kelley, Solving Nonlinear Equations with Newton's Method,
1410
+ SIAM, pp.57-83, 2003.
1411
+ :doi:`10.1137/1.9780898718898.ch3`
1412
+ .. [2] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004).
1413
+ :doi:`10.1016/j.jcp.2003.08.010`
1414
+ .. [3] A.H. Baker and E.R. Jessup and T. Manteuffel,
1415
+ SIAM J. Matrix Anal. Appl. 26, 962 (2005).
1416
+ :doi:`10.1137/S0895479803422014`
1417
+
1418
+ Examples
1419
+ --------
1420
+ The following functions define a system of nonlinear equations
1421
+
1422
+ >>> def fun(x):
1423
+ ... return [x[0] + 0.5 * x[1] - 1.0,
1424
+ ... 0.5 * (x[1] - x[0]) ** 2]
1425
+
1426
+ A solution can be obtained as follows.
1427
+
1428
+ >>> from scipy import optimize
1429
+ >>> sol = optimize.newton_krylov(fun, [0, 0])
1430
+ >>> sol
1431
+ array([0.66731771, 0.66536458])
1432
+
1433
+ """
1434
+
1435
+ def __init__(self, rdiff=None, method='lgmres', inner_maxiter=20,
1436
+ inner_M=None, outer_k=10, **kw):
1437
+ self.preconditioner = inner_M
1438
+ self.rdiff = rdiff
1439
+ # Note that this retrieves one of the named functions, or otherwise
1440
+ # uses `method` as is (i.e., for a user-provided callable).
1441
+ self.method = dict(
1442
+ bicgstab=scipy.sparse.linalg.bicgstab,
1443
+ gmres=scipy.sparse.linalg.gmres,
1444
+ lgmres=scipy.sparse.linalg.lgmres,
1445
+ cgs=scipy.sparse.linalg.cgs,
1446
+ minres=scipy.sparse.linalg.minres,
1447
+ tfqmr=scipy.sparse.linalg.tfqmr,
1448
+ ).get(method, method)
1449
+
1450
+ self.method_kw = dict(maxiter=inner_maxiter, M=self.preconditioner)
1451
+
1452
+ if self.method is scipy.sparse.linalg.gmres:
1453
+ # Replace GMRES's outer iteration with Newton steps
1454
+ self.method_kw['restart'] = inner_maxiter
1455
+ self.method_kw['maxiter'] = 1
1456
+ self.method_kw.setdefault('atol', 0)
1457
+ elif self.method in (scipy.sparse.linalg.gcrotmk,
1458
+ scipy.sparse.linalg.bicgstab,
1459
+ scipy.sparse.linalg.cgs):
1460
+ self.method_kw.setdefault('atol', 0)
1461
+ elif self.method is scipy.sparse.linalg.lgmres:
1462
+ self.method_kw['outer_k'] = outer_k
1463
+ # Replace LGMRES's outer iteration with Newton steps
1464
+ self.method_kw['maxiter'] = 1
1465
+ # Carry LGMRES's `outer_v` vectors across nonlinear iterations
1466
+ self.method_kw.setdefault('outer_v', [])
1467
+ self.method_kw.setdefault('prepend_outer_v', True)
1468
+ # But don't carry the corresponding Jacobian*v products, in case
1469
+ # the Jacobian changes a lot in the nonlinear step
1470
+ #
1471
+ # XXX: some trust-region inspired ideas might be more efficient...
1472
+ # See e.g., Brown & Saad. But needs to be implemented separately
1473
+ # since it's not an inexact Newton method.
1474
+ self.method_kw.setdefault('store_outer_Av', False)
1475
+ self.method_kw.setdefault('atol', 0)
1476
+
1477
+ for key, value in kw.items():
1478
+ if not key.startswith('inner_'):
1479
+ raise ValueError("Unknown parameter %s" % key)
1480
+ self.method_kw[key[6:]] = value
1481
+
1482
+ def _update_diff_step(self):
1483
+ mx = abs(self.x0).max()
1484
+ mf = abs(self.f0).max()
1485
+ self.omega = self.rdiff * max(1, mx) / max(1, mf)
1486
+
1487
+ def matvec(self, v):
1488
+ nv = norm(v)
1489
+ if nv == 0:
1490
+ return 0*v
1491
+ sc = self.omega / nv
1492
+ r = (self.func(self.x0 + sc*v) - self.f0) / sc
1493
+ if not np.all(np.isfinite(r)) and np.all(np.isfinite(v)):
1494
+ raise ValueError('Function returned non-finite results')
1495
+ return r
1496
+
1497
+ def solve(self, rhs, tol=0):
1498
+ if 'rtol' in self.method_kw:
1499
+ sol, info = self.method(self.op, rhs, **self.method_kw)
1500
+ else:
1501
+ sol, info = self.method(self.op, rhs, rtol=tol, **self.method_kw)
1502
+ return sol
1503
+
1504
+ def update(self, x, f):
1505
+ self.x0 = x
1506
+ self.f0 = f
1507
+ self._update_diff_step()
1508
+
1509
+ # Update also the preconditioner, if possible
1510
+ if self.preconditioner is not None:
1511
+ if hasattr(self.preconditioner, 'update'):
1512
+ self.preconditioner.update(x, f)
1513
+
1514
+ def setup(self, x, f, func):
1515
+ Jacobian.setup(self, x, f, func)
1516
+ self.x0 = x
1517
+ self.f0 = f
1518
+ self.op = scipy.sparse.linalg.aslinearoperator(self)
1519
+
1520
+ if self.rdiff is None:
1521
+ self.rdiff = np.finfo(x.dtype).eps ** (1./2)
1522
+
1523
+ self._update_diff_step()
1524
+
1525
+ # Setup also the preconditioner, if possible
1526
+ if self.preconditioner is not None:
1527
+ if hasattr(self.preconditioner, 'setup'):
1528
+ self.preconditioner.setup(x, f, func)
1529
+
1530
+
1531
+ #------------------------------------------------------------------------------
1532
+ # Wrapper functions
1533
+ #------------------------------------------------------------------------------
1534
+
1535
+ def _nonlin_wrapper(name, jac):
1536
+ """
1537
+ Construct a solver wrapper with given name and Jacobian approx.
1538
+
1539
+ It inspects the keyword arguments of ``jac.__init__``, and allows to
1540
+ use the same arguments in the wrapper function, in addition to the
1541
+ keyword arguments of `nonlin_solve`
1542
+
1543
+ """
1544
+ signature = _getfullargspec(jac.__init__)
1545
+ args, varargs, varkw, defaults, kwonlyargs, kwdefaults, _ = signature
1546
+ kwargs = list(zip(args[-len(defaults):], defaults))
1547
+ kw_str = ", ".join([f"{k}={v!r}" for k, v in kwargs])
1548
+ if kw_str:
1549
+ kw_str = ", " + kw_str
1550
+ kwkw_str = ", ".join([f"{k}={k}" for k, v in kwargs])
1551
+ if kwkw_str:
1552
+ kwkw_str = kwkw_str + ", "
1553
+ if kwonlyargs:
1554
+ raise ValueError('Unexpected signature %s' % signature)
1555
+
1556
+ # Construct the wrapper function so that its keyword arguments
1557
+ # are visible in pydoc.help etc.
1558
+ wrapper = """
1559
+ def %(name)s(F, xin, iter=None %(kw)s, verbose=False, maxiter=None,
1560
+ f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
1561
+ tol_norm=None, line_search='armijo', callback=None, **kw):
1562
+ jac = %(jac)s(%(kwkw)s **kw)
1563
+ return nonlin_solve(F, xin, jac, iter, verbose, maxiter,
1564
+ f_tol, f_rtol, x_tol, x_rtol, tol_norm, line_search,
1565
+ callback)
1566
+ """
1567
+
1568
+ wrapper = wrapper % dict(name=name, kw=kw_str, jac=jac.__name__,
1569
+ kwkw=kwkw_str)
1570
+ ns = {}
1571
+ ns.update(globals())
1572
+ exec(wrapper, ns)
1573
+ func = ns[name]
1574
+ func.__doc__ = jac.__doc__
1575
+ _set_doc(func)
1576
+ return func
1577
+
1578
+
1579
+ broyden1 = _nonlin_wrapper('broyden1', BroydenFirst)
1580
+ broyden2 = _nonlin_wrapper('broyden2', BroydenSecond)
1581
+ anderson = _nonlin_wrapper('anderson', Anderson)
1582
+ linearmixing = _nonlin_wrapper('linearmixing', LinearMixing)
1583
+ diagbroyden = _nonlin_wrapper('diagbroyden', DiagBroyden)
1584
+ excitingmixing = _nonlin_wrapper('excitingmixing', ExcitingMixing)
1585
+ newton_krylov = _nonlin_wrapper('newton_krylov', KrylovJacobian)
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_numdiff.py ADDED
@@ -0,0 +1,779 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Routines for numerical differentiation."""
2
+ import functools
3
+ import numpy as np
4
+ from numpy.linalg import norm
5
+
6
+ from scipy.sparse.linalg import LinearOperator
7
+ from ..sparse import issparse, csc_matrix, csr_matrix, coo_matrix, find
8
+ from ._group_columns import group_dense, group_sparse
9
+ from scipy._lib._array_api import atleast_nd, array_namespace
10
+
11
+
12
+ def _adjust_scheme_to_bounds(x0, h, num_steps, scheme, lb, ub):
13
+ """Adjust final difference scheme to the presence of bounds.
14
+
15
+ Parameters
16
+ ----------
17
+ x0 : ndarray, shape (n,)
18
+ Point at which we wish to estimate derivative.
19
+ h : ndarray, shape (n,)
20
+ Desired absolute finite difference steps.
21
+ num_steps : int
22
+ Number of `h` steps in one direction required to implement finite
23
+ difference scheme. For example, 2 means that we need to evaluate
24
+ f(x0 + 2 * h) or f(x0 - 2 * h)
25
+ scheme : {'1-sided', '2-sided'}
26
+ Whether steps in one or both directions are required. In other
27
+ words '1-sided' applies to forward and backward schemes, '2-sided'
28
+ applies to center schemes.
29
+ lb : ndarray, shape (n,)
30
+ Lower bounds on independent variables.
31
+ ub : ndarray, shape (n,)
32
+ Upper bounds on independent variables.
33
+
34
+ Returns
35
+ -------
36
+ h_adjusted : ndarray, shape (n,)
37
+ Adjusted absolute step sizes. Step size decreases only if a sign flip
38
+ or switching to one-sided scheme doesn't allow to take a full step.
39
+ use_one_sided : ndarray of bool, shape (n,)
40
+ Whether to switch to one-sided scheme. Informative only for
41
+ ``scheme='2-sided'``.
42
+ """
43
+ if scheme == '1-sided':
44
+ use_one_sided = np.ones_like(h, dtype=bool)
45
+ elif scheme == '2-sided':
46
+ h = np.abs(h)
47
+ use_one_sided = np.zeros_like(h, dtype=bool)
48
+ else:
49
+ raise ValueError("`scheme` must be '1-sided' or '2-sided'.")
50
+
51
+ if np.all((lb == -np.inf) & (ub == np.inf)):
52
+ return h, use_one_sided
53
+
54
+ h_total = h * num_steps
55
+ h_adjusted = h.copy()
56
+
57
+ lower_dist = x0 - lb
58
+ upper_dist = ub - x0
59
+
60
+ if scheme == '1-sided':
61
+ x = x0 + h_total
62
+ violated = (x < lb) | (x > ub)
63
+ fitting = np.abs(h_total) <= np.maximum(lower_dist, upper_dist)
64
+ h_adjusted[violated & fitting] *= -1
65
+
66
+ forward = (upper_dist >= lower_dist) & ~fitting
67
+ h_adjusted[forward] = upper_dist[forward] / num_steps
68
+ backward = (upper_dist < lower_dist) & ~fitting
69
+ h_adjusted[backward] = -lower_dist[backward] / num_steps
70
+ elif scheme == '2-sided':
71
+ central = (lower_dist >= h_total) & (upper_dist >= h_total)
72
+
73
+ forward = (upper_dist >= lower_dist) & ~central
74
+ h_adjusted[forward] = np.minimum(
75
+ h[forward], 0.5 * upper_dist[forward] / num_steps)
76
+ use_one_sided[forward] = True
77
+
78
+ backward = (upper_dist < lower_dist) & ~central
79
+ h_adjusted[backward] = -np.minimum(
80
+ h[backward], 0.5 * lower_dist[backward] / num_steps)
81
+ use_one_sided[backward] = True
82
+
83
+ min_dist = np.minimum(upper_dist, lower_dist) / num_steps
84
+ adjusted_central = (~central & (np.abs(h_adjusted) <= min_dist))
85
+ h_adjusted[adjusted_central] = min_dist[adjusted_central]
86
+ use_one_sided[adjusted_central] = False
87
+
88
+ return h_adjusted, use_one_sided
89
+
90
+
91
+ @functools.lru_cache
92
+ def _eps_for_method(x0_dtype, f0_dtype, method):
93
+ """
94
+ Calculates relative EPS step to use for a given data type
95
+ and numdiff step method.
96
+
97
+ Progressively smaller steps are used for larger floating point types.
98
+
99
+ Parameters
100
+ ----------
101
+ f0_dtype: np.dtype
102
+ dtype of function evaluation
103
+
104
+ x0_dtype: np.dtype
105
+ dtype of parameter vector
106
+
107
+ method: {'2-point', '3-point', 'cs'}
108
+
109
+ Returns
110
+ -------
111
+ EPS: float
112
+ relative step size. May be np.float16, np.float32, np.float64
113
+
114
+ Notes
115
+ -----
116
+ The default relative step will be np.float64. However, if x0 or f0 are
117
+ smaller floating point types (np.float16, np.float32), then the smallest
118
+ floating point type is chosen.
119
+ """
120
+ # the default EPS value
121
+ EPS = np.finfo(np.float64).eps
122
+
123
+ x0_is_fp = False
124
+ if np.issubdtype(x0_dtype, np.inexact):
125
+ # if you're a floating point type then over-ride the default EPS
126
+ EPS = np.finfo(x0_dtype).eps
127
+ x0_itemsize = np.dtype(x0_dtype).itemsize
128
+ x0_is_fp = True
129
+
130
+ if np.issubdtype(f0_dtype, np.inexact):
131
+ f0_itemsize = np.dtype(f0_dtype).itemsize
132
+ # choose the smallest itemsize between x0 and f0
133
+ if x0_is_fp and f0_itemsize < x0_itemsize:
134
+ EPS = np.finfo(f0_dtype).eps
135
+
136
+ if method in ["2-point", "cs"]:
137
+ return EPS**0.5
138
+ elif method in ["3-point"]:
139
+ return EPS**(1/3)
140
+ else:
141
+ raise RuntimeError("Unknown step method, should be one of "
142
+ "{'2-point', '3-point', 'cs'}")
143
+
144
+
145
+ def _compute_absolute_step(rel_step, x0, f0, method):
146
+ """
147
+ Computes an absolute step from a relative step for finite difference
148
+ calculation.
149
+
150
+ Parameters
151
+ ----------
152
+ rel_step: None or array-like
153
+ Relative step for the finite difference calculation
154
+ x0 : np.ndarray
155
+ Parameter vector
156
+ f0 : np.ndarray or scalar
157
+ method : {'2-point', '3-point', 'cs'}
158
+
159
+ Returns
160
+ -------
161
+ h : float
162
+ The absolute step size
163
+
164
+ Notes
165
+ -----
166
+ `h` will always be np.float64. However, if `x0` or `f0` are
167
+ smaller floating point dtypes (e.g. np.float32), then the absolute
168
+ step size will be calculated from the smallest floating point size.
169
+ """
170
+ # this is used instead of np.sign(x0) because we need
171
+ # sign_x0 to be 1 when x0 == 0.
172
+ sign_x0 = (x0 >= 0).astype(float) * 2 - 1
173
+
174
+ rstep = _eps_for_method(x0.dtype, f0.dtype, method)
175
+
176
+ if rel_step is None:
177
+ abs_step = rstep * sign_x0 * np.maximum(1.0, np.abs(x0))
178
+ else:
179
+ # User has requested specific relative steps.
180
+ # Don't multiply by max(1, abs(x0) because if x0 < 1 then their
181
+ # requested step is not used.
182
+ abs_step = rel_step * sign_x0 * np.abs(x0)
183
+
184
+ # however we don't want an abs_step of 0, which can happen if
185
+ # rel_step is 0, or x0 is 0. Instead, substitute a realistic step
186
+ dx = ((x0 + abs_step) - x0)
187
+ abs_step = np.where(dx == 0,
188
+ rstep * sign_x0 * np.maximum(1.0, np.abs(x0)),
189
+ abs_step)
190
+
191
+ return abs_step
192
+
193
+
194
+ def _prepare_bounds(bounds, x0):
195
+ """
196
+ Prepares new-style bounds from a two-tuple specifying the lower and upper
197
+ limits for values in x0. If a value is not bound then the lower/upper bound
198
+ will be expected to be -np.inf/np.inf.
199
+
200
+ Examples
201
+ --------
202
+ >>> _prepare_bounds([(0, 1, 2), (1, 2, np.inf)], [0.5, 1.5, 2.5])
203
+ (array([0., 1., 2.]), array([ 1., 2., inf]))
204
+ """
205
+ lb, ub = (np.asarray(b, dtype=float) for b in bounds)
206
+ if lb.ndim == 0:
207
+ lb = np.resize(lb, x0.shape)
208
+
209
+ if ub.ndim == 0:
210
+ ub = np.resize(ub, x0.shape)
211
+
212
+ return lb, ub
213
+
214
+
215
+ def group_columns(A, order=0):
216
+ """Group columns of a 2-D matrix for sparse finite differencing [1]_.
217
+
218
+ Two columns are in the same group if in each row at least one of them
219
+ has zero. A greedy sequential algorithm is used to construct groups.
220
+
221
+ Parameters
222
+ ----------
223
+ A : array_like or sparse matrix, shape (m, n)
224
+ Matrix of which to group columns.
225
+ order : int, iterable of int with shape (n,) or None
226
+ Permutation array which defines the order of columns enumeration.
227
+ If int or None, a random permutation is used with `order` used as
228
+ a random seed. Default is 0, that is use a random permutation but
229
+ guarantee repeatability.
230
+
231
+ Returns
232
+ -------
233
+ groups : ndarray of int, shape (n,)
234
+ Contains values from 0 to n_groups-1, where n_groups is the number
235
+ of found groups. Each value ``groups[i]`` is an index of a group to
236
+ which ith column assigned. The procedure was helpful only if
237
+ n_groups is significantly less than n.
238
+
239
+ References
240
+ ----------
241
+ .. [1] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
242
+ sparse Jacobian matrices", Journal of the Institute of Mathematics
243
+ and its Applications, 13 (1974), pp. 117-120.
244
+ """
245
+ if issparse(A):
246
+ A = csc_matrix(A)
247
+ else:
248
+ A = np.atleast_2d(A)
249
+ A = (A != 0).astype(np.int32)
250
+
251
+ if A.ndim != 2:
252
+ raise ValueError("`A` must be 2-dimensional.")
253
+
254
+ m, n = A.shape
255
+
256
+ if order is None or np.isscalar(order):
257
+ rng = np.random.RandomState(order)
258
+ order = rng.permutation(n)
259
+ else:
260
+ order = np.asarray(order)
261
+ if order.shape != (n,):
262
+ raise ValueError("`order` has incorrect shape.")
263
+
264
+ A = A[:, order]
265
+
266
+ if issparse(A):
267
+ groups = group_sparse(m, n, A.indices, A.indptr)
268
+ else:
269
+ groups = group_dense(m, n, A)
270
+
271
+ groups[order] = groups.copy()
272
+
273
+ return groups
274
+
275
+
276
+ def approx_derivative(fun, x0, method='3-point', rel_step=None, abs_step=None,
277
+ f0=None, bounds=(-np.inf, np.inf), sparsity=None,
278
+ as_linear_operator=False, args=(), kwargs={}):
279
+ """Compute finite difference approximation of the derivatives of a
280
+ vector-valued function.
281
+
282
+ If a function maps from R^n to R^m, its derivatives form m-by-n matrix
283
+ called the Jacobian, where an element (i, j) is a partial derivative of
284
+ f[i] with respect to x[j].
285
+
286
+ Parameters
287
+ ----------
288
+ fun : callable
289
+ Function of which to estimate the derivatives. The argument x
290
+ passed to this function is ndarray of shape (n,) (never a scalar
291
+ even if n=1). It must return 1-D array_like of shape (m,) or a scalar.
292
+ x0 : array_like of shape (n,) or float
293
+ Point at which to estimate the derivatives. Float will be converted
294
+ to a 1-D array.
295
+ method : {'3-point', '2-point', 'cs'}, optional
296
+ Finite difference method to use:
297
+ - '2-point' - use the first order accuracy forward or backward
298
+ difference.
299
+ - '3-point' - use central difference in interior points and the
300
+ second order accuracy forward or backward difference
301
+ near the boundary.
302
+ - 'cs' - use a complex-step finite difference scheme. This assumes
303
+ that the user function is real-valued and can be
304
+ analytically continued to the complex plane. Otherwise,
305
+ produces bogus results.
306
+ rel_step : None or array_like, optional
307
+ Relative step size to use. If None (default) the absolute step size is
308
+ computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``, with
309
+ `rel_step` being selected automatically, see Notes. Otherwise
310
+ ``h = rel_step * sign(x0) * abs(x0)``. For ``method='3-point'`` the
311
+ sign of `h` is ignored. The calculated step size is possibly adjusted
312
+ to fit into the bounds.
313
+ abs_step : array_like, optional
314
+ Absolute step size to use, possibly adjusted to fit into the bounds.
315
+ For ``method='3-point'`` the sign of `abs_step` is ignored. By default
316
+ relative steps are used, only if ``abs_step is not None`` are absolute
317
+ steps used.
318
+ f0 : None or array_like, optional
319
+ If not None it is assumed to be equal to ``fun(x0)``, in this case
320
+ the ``fun(x0)`` is not called. Default is None.
321
+ bounds : tuple of array_like, optional
322
+ Lower and upper bounds on independent variables. Defaults to no bounds.
323
+ Each bound must match the size of `x0` or be a scalar, in the latter
324
+ case the bound will be the same for all variables. Use it to limit the
325
+ range of function evaluation. Bounds checking is not implemented
326
+ when `as_linear_operator` is True.
327
+ sparsity : {None, array_like, sparse matrix, 2-tuple}, optional
328
+ Defines a sparsity structure of the Jacobian matrix. If the Jacobian
329
+ matrix is known to have only few non-zero elements in each row, then
330
+ it's possible to estimate its several columns by a single function
331
+ evaluation [3]_. To perform such economic computations two ingredients
332
+ are required:
333
+
334
+ * structure : array_like or sparse matrix of shape (m, n). A zero
335
+ element means that a corresponding element of the Jacobian
336
+ identically equals to zero.
337
+ * groups : array_like of shape (n,). A column grouping for a given
338
+ sparsity structure, use `group_columns` to obtain it.
339
+
340
+ A single array or a sparse matrix is interpreted as a sparsity
341
+ structure, and groups are computed inside the function. A tuple is
342
+ interpreted as (structure, groups). If None (default), a standard
343
+ dense differencing will be used.
344
+
345
+ Note, that sparse differencing makes sense only for large Jacobian
346
+ matrices where each row contains few non-zero elements.
347
+ as_linear_operator : bool, optional
348
+ When True the function returns an `scipy.sparse.linalg.LinearOperator`.
349
+ Otherwise it returns a dense array or a sparse matrix depending on
350
+ `sparsity`. The linear operator provides an efficient way of computing
351
+ ``J.dot(p)`` for any vector ``p`` of shape (n,), but does not allow
352
+ direct access to individual elements of the matrix. By default
353
+ `as_linear_operator` is False.
354
+ args, kwargs : tuple and dict, optional
355
+ Additional arguments passed to `fun`. Both empty by default.
356
+ The calling signature is ``fun(x, *args, **kwargs)``.
357
+
358
+ Returns
359
+ -------
360
+ J : {ndarray, sparse matrix, LinearOperator}
361
+ Finite difference approximation of the Jacobian matrix.
362
+ If `as_linear_operator` is True returns a LinearOperator
363
+ with shape (m, n). Otherwise it returns a dense array or sparse
364
+ matrix depending on how `sparsity` is defined. If `sparsity`
365
+ is None then a ndarray with shape (m, n) is returned. If
366
+ `sparsity` is not None returns a csr_matrix with shape (m, n).
367
+ For sparse matrices and linear operators it is always returned as
368
+ a 2-D structure, for ndarrays, if m=1 it is returned
369
+ as a 1-D gradient array with shape (n,).
370
+
371
+ See Also
372
+ --------
373
+ check_derivative : Check correctness of a function computing derivatives.
374
+
375
+ Notes
376
+ -----
377
+ If `rel_step` is not provided, it assigned as ``EPS**(1/s)``, where EPS is
378
+ determined from the smallest floating point dtype of `x0` or `fun(x0)`,
379
+ ``np.finfo(x0.dtype).eps``, s=2 for '2-point' method and
380
+ s=3 for '3-point' method. Such relative step approximately minimizes a sum
381
+ of truncation and round-off errors, see [1]_. Relative steps are used by
382
+ default. However, absolute steps are used when ``abs_step is not None``.
383
+ If any of the absolute or relative steps produces an indistinguishable
384
+ difference from the original `x0`, ``(x0 + dx) - x0 == 0``, then a
385
+ automatic step size is substituted for that particular entry.
386
+
387
+ A finite difference scheme for '3-point' method is selected automatically.
388
+ The well-known central difference scheme is used for points sufficiently
389
+ far from the boundary, and 3-point forward or backward scheme is used for
390
+ points near the boundary. Both schemes have the second-order accuracy in
391
+ terms of Taylor expansion. Refer to [2]_ for the formulas of 3-point
392
+ forward and backward difference schemes.
393
+
394
+ For dense differencing when m=1 Jacobian is returned with a shape (n,),
395
+ on the other hand when n=1 Jacobian is returned with a shape (m, 1).
396
+ Our motivation is the following: a) It handles a case of gradient
397
+ computation (m=1) in a conventional way. b) It clearly separates these two
398
+ different cases. b) In all cases np.atleast_2d can be called to get 2-D
399
+ Jacobian with correct dimensions.
400
+
401
+ References
402
+ ----------
403
+ .. [1] W. H. Press et. al. "Numerical Recipes. The Art of Scientific
404
+ Computing. 3rd edition", sec. 5.7.
405
+
406
+ .. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
407
+ sparse Jacobian matrices", Journal of the Institute of Mathematics
408
+ and its Applications, 13 (1974), pp. 117-120.
409
+
410
+ .. [3] B. Fornberg, "Generation of Finite Difference Formulas on
411
+ Arbitrarily Spaced Grids", Mathematics of Computation 51, 1988.
412
+
413
+ Examples
414
+ --------
415
+ >>> import numpy as np
416
+ >>> from scipy.optimize._numdiff import approx_derivative
417
+ >>>
418
+ >>> def f(x, c1, c2):
419
+ ... return np.array([x[0] * np.sin(c1 * x[1]),
420
+ ... x[0] * np.cos(c2 * x[1])])
421
+ ...
422
+ >>> x0 = np.array([1.0, 0.5 * np.pi])
423
+ >>> approx_derivative(f, x0, args=(1, 2))
424
+ array([[ 1., 0.],
425
+ [-1., 0.]])
426
+
427
+ Bounds can be used to limit the region of function evaluation.
428
+ In the example below we compute left and right derivative at point 1.0.
429
+
430
+ >>> def g(x):
431
+ ... return x**2 if x >= 1 else x
432
+ ...
433
+ >>> x0 = 1.0
434
+ >>> approx_derivative(g, x0, bounds=(-np.inf, 1.0))
435
+ array([ 1.])
436
+ >>> approx_derivative(g, x0, bounds=(1.0, np.inf))
437
+ array([ 2.])
438
+ """
439
+ if method not in ['2-point', '3-point', 'cs']:
440
+ raise ValueError("Unknown method '%s'. " % method)
441
+
442
+ xp = array_namespace(x0)
443
+ _x = atleast_nd(x0, ndim=1, xp=xp)
444
+ _dtype = xp.float64
445
+ if xp.isdtype(_x.dtype, "real floating"):
446
+ _dtype = _x.dtype
447
+
448
+ # promotes to floating
449
+ x0 = xp.astype(_x, _dtype)
450
+
451
+ if x0.ndim > 1:
452
+ raise ValueError("`x0` must have at most 1 dimension.")
453
+
454
+ lb, ub = _prepare_bounds(bounds, x0)
455
+
456
+ if lb.shape != x0.shape or ub.shape != x0.shape:
457
+ raise ValueError("Inconsistent shapes between bounds and `x0`.")
458
+
459
+ if as_linear_operator and not (np.all(np.isinf(lb))
460
+ and np.all(np.isinf(ub))):
461
+ raise ValueError("Bounds not supported when "
462
+ "`as_linear_operator` is True.")
463
+
464
+ def fun_wrapped(x):
465
+ # send user function same fp type as x0. (but only if cs is not being
466
+ # used
467
+ if xp.isdtype(x.dtype, "real floating"):
468
+ x = xp.astype(x, x0.dtype)
469
+
470
+ f = np.atleast_1d(fun(x, *args, **kwargs))
471
+ if f.ndim > 1:
472
+ raise RuntimeError("`fun` return value has "
473
+ "more than 1 dimension.")
474
+ return f
475
+
476
+ if f0 is None:
477
+ f0 = fun_wrapped(x0)
478
+ else:
479
+ f0 = np.atleast_1d(f0)
480
+ if f0.ndim > 1:
481
+ raise ValueError("`f0` passed has more than 1 dimension.")
482
+
483
+ if np.any((x0 < lb) | (x0 > ub)):
484
+ raise ValueError("`x0` violates bound constraints.")
485
+
486
+ if as_linear_operator:
487
+ if rel_step is None:
488
+ rel_step = _eps_for_method(x0.dtype, f0.dtype, method)
489
+
490
+ return _linear_operator_difference(fun_wrapped, x0,
491
+ f0, rel_step, method)
492
+ else:
493
+ # by default we use rel_step
494
+ if abs_step is None:
495
+ h = _compute_absolute_step(rel_step, x0, f0, method)
496
+ else:
497
+ # user specifies an absolute step
498
+ sign_x0 = (x0 >= 0).astype(float) * 2 - 1
499
+ h = abs_step
500
+
501
+ # cannot have a zero step. This might happen if x0 is very large
502
+ # or small. In which case fall back to relative step.
503
+ dx = ((x0 + h) - x0)
504
+ h = np.where(dx == 0,
505
+ _eps_for_method(x0.dtype, f0.dtype, method) *
506
+ sign_x0 * np.maximum(1.0, np.abs(x0)),
507
+ h)
508
+
509
+ if method == '2-point':
510
+ h, use_one_sided = _adjust_scheme_to_bounds(
511
+ x0, h, 1, '1-sided', lb, ub)
512
+ elif method == '3-point':
513
+ h, use_one_sided = _adjust_scheme_to_bounds(
514
+ x0, h, 1, '2-sided', lb, ub)
515
+ elif method == 'cs':
516
+ use_one_sided = False
517
+
518
+ if sparsity is None:
519
+ return _dense_difference(fun_wrapped, x0, f0, h,
520
+ use_one_sided, method)
521
+ else:
522
+ if not issparse(sparsity) and len(sparsity) == 2:
523
+ structure, groups = sparsity
524
+ else:
525
+ structure = sparsity
526
+ groups = group_columns(sparsity)
527
+
528
+ if issparse(structure):
529
+ structure = csc_matrix(structure)
530
+ else:
531
+ structure = np.atleast_2d(structure)
532
+
533
+ groups = np.atleast_1d(groups)
534
+ return _sparse_difference(fun_wrapped, x0, f0, h,
535
+ use_one_sided, structure,
536
+ groups, method)
537
+
538
+
539
+ def _linear_operator_difference(fun, x0, f0, h, method):
540
+ m = f0.size
541
+ n = x0.size
542
+
543
+ if method == '2-point':
544
+ def matvec(p):
545
+ if np.array_equal(p, np.zeros_like(p)):
546
+ return np.zeros(m)
547
+ dx = h / norm(p)
548
+ x = x0 + dx*p
549
+ df = fun(x) - f0
550
+ return df / dx
551
+
552
+ elif method == '3-point':
553
+ def matvec(p):
554
+ if np.array_equal(p, np.zeros_like(p)):
555
+ return np.zeros(m)
556
+ dx = 2*h / norm(p)
557
+ x1 = x0 - (dx/2)*p
558
+ x2 = x0 + (dx/2)*p
559
+ f1 = fun(x1)
560
+ f2 = fun(x2)
561
+ df = f2 - f1
562
+ return df / dx
563
+
564
+ elif method == 'cs':
565
+ def matvec(p):
566
+ if np.array_equal(p, np.zeros_like(p)):
567
+ return np.zeros(m)
568
+ dx = h / norm(p)
569
+ x = x0 + dx*p*1.j
570
+ f1 = fun(x)
571
+ df = f1.imag
572
+ return df / dx
573
+
574
+ else:
575
+ raise RuntimeError("Never be here.")
576
+
577
+ return LinearOperator((m, n), matvec)
578
+
579
+
580
+ def _dense_difference(fun, x0, f0, h, use_one_sided, method):
581
+ m = f0.size
582
+ n = x0.size
583
+ J_transposed = np.empty((n, m))
584
+ x1 = x0.copy()
585
+ x2 = x0.copy()
586
+ xc = x0.astype(complex, copy=True)
587
+
588
+ for i in range(h.size):
589
+ if method == '2-point':
590
+ x1[i] += h[i]
591
+ dx = x1[i] - x0[i] # Recompute dx as exactly representable number.
592
+ df = fun(x1) - f0
593
+ elif method == '3-point' and use_one_sided[i]:
594
+ x1[i] += h[i]
595
+ x2[i] += 2 * h[i]
596
+ dx = x2[i] - x0[i]
597
+ f1 = fun(x1)
598
+ f2 = fun(x2)
599
+ df = -3.0 * f0 + 4 * f1 - f2
600
+ elif method == '3-point' and not use_one_sided[i]:
601
+ x1[i] -= h[i]
602
+ x2[i] += h[i]
603
+ dx = x2[i] - x1[i]
604
+ f1 = fun(x1)
605
+ f2 = fun(x2)
606
+ df = f2 - f1
607
+ elif method == 'cs':
608
+ xc[i] += h[i] * 1.j
609
+ f1 = fun(xc)
610
+ df = f1.imag
611
+ dx = h[i]
612
+ else:
613
+ raise RuntimeError("Never be here.")
614
+
615
+ J_transposed[i] = df / dx
616
+ x1[i] = x2[i] = xc[i] = x0[i]
617
+
618
+ if m == 1:
619
+ J_transposed = np.ravel(J_transposed)
620
+
621
+ return J_transposed.T
622
+
623
+
624
+ def _sparse_difference(fun, x0, f0, h, use_one_sided,
625
+ structure, groups, method):
626
+ m = f0.size
627
+ n = x0.size
628
+ row_indices = []
629
+ col_indices = []
630
+ fractions = []
631
+
632
+ n_groups = np.max(groups) + 1
633
+ for group in range(n_groups):
634
+ # Perturb variables which are in the same group simultaneously.
635
+ e = np.equal(group, groups)
636
+ h_vec = h * e
637
+ if method == '2-point':
638
+ x = x0 + h_vec
639
+ dx = x - x0
640
+ df = fun(x) - f0
641
+ # The result is written to columns which correspond to perturbed
642
+ # variables.
643
+ cols, = np.nonzero(e)
644
+ # Find all non-zero elements in selected columns of Jacobian.
645
+ i, j, _ = find(structure[:, cols])
646
+ # Restore column indices in the full array.
647
+ j = cols[j]
648
+ elif method == '3-point':
649
+ # Here we do conceptually the same but separate one-sided
650
+ # and two-sided schemes.
651
+ x1 = x0.copy()
652
+ x2 = x0.copy()
653
+
654
+ mask_1 = use_one_sided & e
655
+ x1[mask_1] += h_vec[mask_1]
656
+ x2[mask_1] += 2 * h_vec[mask_1]
657
+
658
+ mask_2 = ~use_one_sided & e
659
+ x1[mask_2] -= h_vec[mask_2]
660
+ x2[mask_2] += h_vec[mask_2]
661
+
662
+ dx = np.zeros(n)
663
+ dx[mask_1] = x2[mask_1] - x0[mask_1]
664
+ dx[mask_2] = x2[mask_2] - x1[mask_2]
665
+
666
+ f1 = fun(x1)
667
+ f2 = fun(x2)
668
+
669
+ cols, = np.nonzero(e)
670
+ i, j, _ = find(structure[:, cols])
671
+ j = cols[j]
672
+
673
+ mask = use_one_sided[j]
674
+ df = np.empty(m)
675
+
676
+ rows = i[mask]
677
+ df[rows] = -3 * f0[rows] + 4 * f1[rows] - f2[rows]
678
+
679
+ rows = i[~mask]
680
+ df[rows] = f2[rows] - f1[rows]
681
+ elif method == 'cs':
682
+ f1 = fun(x0 + h_vec*1.j)
683
+ df = f1.imag
684
+ dx = h_vec
685
+ cols, = np.nonzero(e)
686
+ i, j, _ = find(structure[:, cols])
687
+ j = cols[j]
688
+ else:
689
+ raise ValueError("Never be here.")
690
+
691
+ # All that's left is to compute the fraction. We store i, j and
692
+ # fractions as separate arrays and later construct coo_matrix.
693
+ row_indices.append(i)
694
+ col_indices.append(j)
695
+ fractions.append(df[i] / dx[j])
696
+
697
+ row_indices = np.hstack(row_indices)
698
+ col_indices = np.hstack(col_indices)
699
+ fractions = np.hstack(fractions)
700
+ J = coo_matrix((fractions, (row_indices, col_indices)), shape=(m, n))
701
+ return csr_matrix(J)
702
+
703
+
704
+ def check_derivative(fun, jac, x0, bounds=(-np.inf, np.inf), args=(),
705
+ kwargs={}):
706
+ """Check correctness of a function computing derivatives (Jacobian or
707
+ gradient) by comparison with a finite difference approximation.
708
+
709
+ Parameters
710
+ ----------
711
+ fun : callable
712
+ Function of which to estimate the derivatives. The argument x
713
+ passed to this function is ndarray of shape (n,) (never a scalar
714
+ even if n=1). It must return 1-D array_like of shape (m,) or a scalar.
715
+ jac : callable
716
+ Function which computes Jacobian matrix of `fun`. It must work with
717
+ argument x the same way as `fun`. The return value must be array_like
718
+ or sparse matrix with an appropriate shape.
719
+ x0 : array_like of shape (n,) or float
720
+ Point at which to estimate the derivatives. Float will be converted
721
+ to 1-D array.
722
+ bounds : 2-tuple of array_like, optional
723
+ Lower and upper bounds on independent variables. Defaults to no bounds.
724
+ Each bound must match the size of `x0` or be a scalar, in the latter
725
+ case the bound will be the same for all variables. Use it to limit the
726
+ range of function evaluation.
727
+ args, kwargs : tuple and dict, optional
728
+ Additional arguments passed to `fun` and `jac`. Both empty by default.
729
+ The calling signature is ``fun(x, *args, **kwargs)`` and the same
730
+ for `jac`.
731
+
732
+ Returns
733
+ -------
734
+ accuracy : float
735
+ The maximum among all relative errors for elements with absolute values
736
+ higher than 1 and absolute errors for elements with absolute values
737
+ less or equal than 1. If `accuracy` is on the order of 1e-6 or lower,
738
+ then it is likely that your `jac` implementation is correct.
739
+
740
+ See Also
741
+ --------
742
+ approx_derivative : Compute finite difference approximation of derivative.
743
+
744
+ Examples
745
+ --------
746
+ >>> import numpy as np
747
+ >>> from scipy.optimize._numdiff import check_derivative
748
+ >>>
749
+ >>>
750
+ >>> def f(x, c1, c2):
751
+ ... return np.array([x[0] * np.sin(c1 * x[1]),
752
+ ... x[0] * np.cos(c2 * x[1])])
753
+ ...
754
+ >>> def jac(x, c1, c2):
755
+ ... return np.array([
756
+ ... [np.sin(c1 * x[1]), c1 * x[0] * np.cos(c1 * x[1])],
757
+ ... [np.cos(c2 * x[1]), -c2 * x[0] * np.sin(c2 * x[1])]
758
+ ... ])
759
+ ...
760
+ >>>
761
+ >>> x0 = np.array([1.0, 0.5 * np.pi])
762
+ >>> check_derivative(f, jac, x0, args=(1, 2))
763
+ 2.4492935982947064e-16
764
+ """
765
+ J_to_test = jac(x0, *args, **kwargs)
766
+ if issparse(J_to_test):
767
+ J_diff = approx_derivative(fun, x0, bounds=bounds, sparsity=J_to_test,
768
+ args=args, kwargs=kwargs)
769
+ J_to_test = csr_matrix(J_to_test)
770
+ abs_err = J_to_test - J_diff
771
+ i, j, abs_err_data = find(abs_err)
772
+ J_diff_data = np.asarray(J_diff[i, j]).ravel()
773
+ return np.max(np.abs(abs_err_data) /
774
+ np.maximum(1, np.abs(J_diff_data)))
775
+ else:
776
+ J_diff = approx_derivative(fun, x0, bounds=bounds,
777
+ args=args, kwargs=kwargs)
778
+ abs_err = np.abs(J_to_test - J_diff)
779
+ return np.max(abs_err / np.maximum(1, np.abs(J_diff)))
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_optimize.py ADDED
The diff for this file is too large to render. See raw diff
 
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_slsqp.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (86.6 kB). View file
 
evalkit_tf446/lib/python3.10/site-packages/scipy/optimize/_spectral.py ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Spectral Algorithm for Nonlinear Equations
3
+ """
4
+ import collections
5
+
6
+ import numpy as np
7
+ from scipy.optimize import OptimizeResult
8
+ from scipy.optimize._optimize import _check_unknown_options
9
+ from ._linesearch import _nonmonotone_line_search_cruz, _nonmonotone_line_search_cheng
10
+
11
+ class _NoConvergence(Exception):
12
+ pass
13
+
14
+
15
+ def _root_df_sane(func, x0, args=(), ftol=1e-8, fatol=1e-300, maxfev=1000,
16
+ fnorm=None, callback=None, disp=False, M=10, eta_strategy=None,
17
+ sigma_eps=1e-10, sigma_0=1.0, line_search='cruz', **unknown_options):
18
+ r"""
19
+ Solve nonlinear equation with the DF-SANE method
20
+
21
+ Options
22
+ -------
23
+ ftol : float, optional
24
+ Relative norm tolerance.
25
+ fatol : float, optional
26
+ Absolute norm tolerance.
27
+ Algorithm terminates when ``||func(x)|| < fatol + ftol ||func(x_0)||``.
28
+ fnorm : callable, optional
29
+ Norm to use in the convergence check. If None, 2-norm is used.
30
+ maxfev : int, optional
31
+ Maximum number of function evaluations.
32
+ disp : bool, optional
33
+ Whether to print convergence process to stdout.
34
+ eta_strategy : callable, optional
35
+ Choice of the ``eta_k`` parameter, which gives slack for growth
36
+ of ``||F||**2``. Called as ``eta_k = eta_strategy(k, x, F)`` with
37
+ `k` the iteration number, `x` the current iterate and `F` the current
38
+ residual. Should satisfy ``eta_k > 0`` and ``sum(eta, k=0..inf) < inf``.
39
+ Default: ``||F||**2 / (1 + k)**2``.
40
+ sigma_eps : float, optional
41
+ The spectral coefficient is constrained to ``sigma_eps < sigma < 1/sigma_eps``.
42
+ Default: 1e-10
43
+ sigma_0 : float, optional
44
+ Initial spectral coefficient.
45
+ Default: 1.0
46
+ M : int, optional
47
+ Number of iterates to include in the nonmonotonic line search.
48
+ Default: 10
49
+ line_search : {'cruz', 'cheng'}
50
+ Type of line search to employ. 'cruz' is the original one defined in
51
+ [Martinez & Raydan. Math. Comp. 75, 1429 (2006)], 'cheng' is
52
+ a modified search defined in [Cheng & Li. IMA J. Numer. Anal. 29, 814 (2009)].
53
+ Default: 'cruz'
54
+
55
+ References
56
+ ----------
57
+ .. [1] "Spectral residual method without gradient information for solving
58
+ large-scale nonlinear systems of equations." W. La Cruz,
59
+ J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006).
60
+ .. [2] W. La Cruz, Opt. Meth. Software, 29, 24 (2014).
61
+ .. [3] W. Cheng, D.-H. Li. IMA J. Numer. Anal. **29**, 814 (2009).
62
+
63
+ """
64
+ _check_unknown_options(unknown_options)
65
+
66
+ if line_search not in ('cheng', 'cruz'):
67
+ raise ValueError(f"Invalid value {line_search!r} for 'line_search'")
68
+
69
+ nexp = 2
70
+
71
+ if eta_strategy is None:
72
+ # Different choice from [1], as their eta is not invariant
73
+ # vs. scaling of F.
74
+ def eta_strategy(k, x, F):
75
+ # Obtain squared 2-norm of the initial residual from the outer scope
76
+ return f_0 / (1 + k)**2
77
+
78
+ if fnorm is None:
79
+ def fnorm(F):
80
+ # Obtain squared 2-norm of the current residual from the outer scope
81
+ return f_k**(1.0/nexp)
82
+
83
+ def fmerit(F):
84
+ return np.linalg.norm(F)**nexp
85
+
86
+ nfev = [0]
87
+ f, x_k, x_shape, f_k, F_k, is_complex = _wrap_func(func, x0, fmerit,
88
+ nfev, maxfev, args)
89
+
90
+ k = 0
91
+ f_0 = f_k
92
+ sigma_k = sigma_0
93
+
94
+ F_0_norm = fnorm(F_k)
95
+
96
+ # For the 'cruz' line search
97
+ prev_fs = collections.deque([f_k], M)
98
+
99
+ # For the 'cheng' line search
100
+ Q = 1.0
101
+ C = f_0
102
+
103
+ converged = False
104
+ message = "too many function evaluations required"
105
+
106
+ while True:
107
+ F_k_norm = fnorm(F_k)
108
+
109
+ if disp:
110
+ print("iter %d: ||F|| = %g, sigma = %g" % (k, F_k_norm, sigma_k))
111
+
112
+ if callback is not None:
113
+ callback(x_k, F_k)
114
+
115
+ if F_k_norm < ftol * F_0_norm + fatol:
116
+ # Converged!
117
+ message = "successful convergence"
118
+ converged = True
119
+ break
120
+
121
+ # Control spectral parameter, from [2]
122
+ if abs(sigma_k) > 1/sigma_eps:
123
+ sigma_k = 1/sigma_eps * np.sign(sigma_k)
124
+ elif abs(sigma_k) < sigma_eps:
125
+ sigma_k = sigma_eps
126
+
127
+ # Line search direction
128
+ d = -sigma_k * F_k
129
+
130
+ # Nonmonotone line search
131
+ eta = eta_strategy(k, x_k, F_k)
132
+ try:
133
+ if line_search == 'cruz':
134
+ alpha, xp, fp, Fp = _nonmonotone_line_search_cruz(f, x_k, d, prev_fs,
135
+ eta=eta)
136
+ elif line_search == 'cheng':
137
+ alpha, xp, fp, Fp, C, Q = _nonmonotone_line_search_cheng(f, x_k, d, f_k,
138
+ C, Q, eta=eta)
139
+ except _NoConvergence:
140
+ break
141
+
142
+ # Update spectral parameter
143
+ s_k = xp - x_k
144
+ y_k = Fp - F_k
145
+ sigma_k = np.vdot(s_k, s_k) / np.vdot(s_k, y_k)
146
+
147
+ # Take step
148
+ x_k = xp
149
+ F_k = Fp
150
+ f_k = fp
151
+
152
+ # Store function value
153
+ if line_search == 'cruz':
154
+ prev_fs.append(fp)
155
+
156
+ k += 1
157
+
158
+ x = _wrap_result(x_k, is_complex, shape=x_shape)
159
+ F = _wrap_result(F_k, is_complex)
160
+
161
+ result = OptimizeResult(x=x, success=converged,
162
+ message=message,
163
+ fun=F, nfev=nfev[0], nit=k, method="df-sane")
164
+
165
+ return result
166
+
167
+
168
+ def _wrap_func(func, x0, fmerit, nfev_list, maxfev, args=()):
169
+ """
170
+ Wrap a function and an initial value so that (i) complex values
171
+ are wrapped to reals, and (ii) value for a merit function
172
+ fmerit(x, f) is computed at the same time, (iii) iteration count
173
+ is maintained and an exception is raised if it is exceeded.
174
+
175
+ Parameters
176
+ ----------
177
+ func : callable
178
+ Function to wrap
179
+ x0 : ndarray
180
+ Initial value
181
+ fmerit : callable
182
+ Merit function fmerit(f) for computing merit value from residual.
183
+ nfev_list : list
184
+ List to store number of evaluations in. Should be [0] in the beginning.
185
+ maxfev : int
186
+ Maximum number of evaluations before _NoConvergence is raised.
187
+ args : tuple
188
+ Extra arguments to func
189
+
190
+ Returns
191
+ -------
192
+ wrap_func : callable
193
+ Wrapped function, to be called as
194
+ ``F, fp = wrap_func(x0)``
195
+ x0_wrap : ndarray of float
196
+ Wrapped initial value; raveled to 1-D and complex
197
+ values mapped to reals.
198
+ x0_shape : tuple
199
+ Shape of the initial value array
200
+ f : float
201
+ Merit function at F
202
+ F : ndarray of float
203
+ Residual at x0_wrap
204
+ is_complex : bool
205
+ Whether complex values were mapped to reals
206
+
207
+ """
208
+ x0 = np.asarray(x0)
209
+ x0_shape = x0.shape
210
+ F = np.asarray(func(x0, *args)).ravel()
211
+ is_complex = np.iscomplexobj(x0) or np.iscomplexobj(F)
212
+ x0 = x0.ravel()
213
+
214
+ nfev_list[0] = 1
215
+
216
+ if is_complex:
217
+ def wrap_func(x):
218
+ if nfev_list[0] >= maxfev:
219
+ raise _NoConvergence()
220
+ nfev_list[0] += 1
221
+ z = _real2complex(x).reshape(x0_shape)
222
+ v = np.asarray(func(z, *args)).ravel()
223
+ F = _complex2real(v)
224
+ f = fmerit(F)
225
+ return f, F
226
+
227
+ x0 = _complex2real(x0)
228
+ F = _complex2real(F)
229
+ else:
230
+ def wrap_func(x):
231
+ if nfev_list[0] >= maxfev:
232
+ raise _NoConvergence()
233
+ nfev_list[0] += 1
234
+ x = x.reshape(x0_shape)
235
+ F = np.asarray(func(x, *args)).ravel()
236
+ f = fmerit(F)
237
+ return f, F
238
+
239
+ return wrap_func, x0, x0_shape, fmerit(F), F, is_complex
240
+
241
+
242
+ def _wrap_result(result, is_complex, shape=None):
243
+ """
244
+ Convert from real to complex and reshape result arrays.
245
+ """
246
+ if is_complex:
247
+ z = _real2complex(result)
248
+ else:
249
+ z = result
250
+ if shape is not None:
251
+ z = z.reshape(shape)
252
+ return z
253
+
254
+
255
+ def _real2complex(x):
256
+ return np.ascontiguousarray(x, dtype=float).view(np.complex128)
257
+
258
+
259
+ def _complex2real(z):
260
+ return np.ascontiguousarray(z, dtype=complex).view(np.float64)