ZTWHHH commited on
Commit
efe04ef
·
verified ·
1 Parent(s): 51c50ce

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. janus/lib/python3.10/site-packages/numpy/char/__pycache__/__init__.cpython-310.pyc +0 -0
  2. janus/lib/python3.10/site-packages/numpy/core/__init__.pyi +0 -0
  3. janus/lib/python3.10/site-packages/numpy/core/__pycache__/_dtype.cpython-310.pyc +0 -0
  4. janus/lib/python3.10/site-packages/numpy/core/__pycache__/_utils.cpython-310.pyc +0 -0
  5. janus/lib/python3.10/site-packages/numpy/core/__pycache__/umath.cpython-310.pyc +0 -0
  6. janus/lib/python3.10/site-packages/numpy/core/_multiarray_umath.py +55 -0
  7. janus/lib/python3.10/site-packages/numpy/core/_utils.py +21 -0
  8. janus/lib/python3.10/site-packages/numpy/core/arrayprint.py +9 -0
  9. janus/lib/python3.10/site-packages/numpy/core/defchararray.py +9 -0
  10. janus/lib/python3.10/site-packages/numpy/core/einsumfunc.py +9 -0
  11. janus/lib/python3.10/site-packages/numpy/core/fromnumeric.py +9 -0
  12. janus/lib/python3.10/site-packages/numpy/core/function_base.py +9 -0
  13. janus/lib/python3.10/site-packages/numpy/core/multiarray.py +24 -0
  14. janus/lib/python3.10/site-packages/numpy/core/numerictypes.py +9 -0
  15. janus/lib/python3.10/site-packages/numpy/core/shape_base.py +9 -0
  16. janus/lib/python3.10/site-packages/numpy/core/umath.py +9 -0
  17. janus/lib/python3.10/site-packages/numpy/fft/__init__.py +215 -0
  18. janus/lib/python3.10/site-packages/numpy/fft/__init__.pyi +43 -0
  19. janus/lib/python3.10/site-packages/numpy/fft/__pycache__/__init__.cpython-310.pyc +0 -0
  20. janus/lib/python3.10/site-packages/numpy/fft/__pycache__/_helper.cpython-310.pyc +0 -0
  21. janus/lib/python3.10/site-packages/numpy/fft/__pycache__/_pocketfft.cpython-310.pyc +0 -0
  22. janus/lib/python3.10/site-packages/numpy/fft/__pycache__/helper.cpython-310.pyc +0 -0
  23. janus/lib/python3.10/site-packages/numpy/fft/_helper.py +235 -0
  24. janus/lib/python3.10/site-packages/numpy/fft/_helper.pyi +51 -0
  25. janus/lib/python3.10/site-packages/numpy/fft/_pocketfft.py +1687 -0
  26. janus/lib/python3.10/site-packages/numpy/fft/_pocketfft.pyi +137 -0
  27. janus/lib/python3.10/site-packages/numpy/fft/helper.py +16 -0
  28. janus/lib/python3.10/site-packages/numpy/fft/tests/__init__.py +0 -0
  29. janus/lib/python3.10/site-packages/numpy/fft/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  30. janus/lib/python3.10/site-packages/numpy/fft/tests/__pycache__/test_helper.cpython-310.pyc +0 -0
  31. janus/lib/python3.10/site-packages/numpy/fft/tests/__pycache__/test_pocketfft.cpython-310.pyc +0 -0
  32. janus/lib/python3.10/site-packages/numpy/fft/tests/test_helper.py +167 -0
  33. janus/lib/python3.10/site-packages/numpy/fft/tests/test_pocketfft.py +589 -0
  34. janus/lib/python3.10/site-packages/numpy/lib/_arraypad_impl.py +891 -0
  35. janus/lib/python3.10/site-packages/numpy/lib/stride_tricks.py +3 -0
  36. janus/lib/python3.10/site-packages/numpy/linalg/__init__.py +95 -0
  37. janus/lib/python3.10/site-packages/numpy/linalg/__init__.pyi +70 -0
  38. janus/lib/python3.10/site-packages/numpy/linalg/__pycache__/__init__.cpython-310.pyc +0 -0
  39. janus/lib/python3.10/site-packages/numpy/linalg/__pycache__/linalg.cpython-310.pyc +0 -0
  40. janus/lib/python3.10/site-packages/numpy/linalg/_linalg.py +0 -0
  41. janus/lib/python3.10/site-packages/numpy/linalg/_linalg.pyi +463 -0
  42. janus/lib/python3.10/site-packages/numpy/linalg/lapack_lite.cpython-310-x86_64-linux-gnu.so +0 -0
  43. janus/lib/python3.10/site-packages/numpy/linalg/linalg.py +16 -0
  44. janus/lib/python3.10/site-packages/numpy/linalg/tests/__init__.py +0 -0
  45. janus/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  46. janus/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_deprecations.cpython-310.pyc +0 -0
  47. janus/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_linalg.cpython-310.pyc +0 -0
  48. janus/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_regression.cpython-310.pyc +0 -0
  49. janus/lib/python3.10/site-packages/numpy/linalg/tests/test_deprecations.py +20 -0
  50. janus/lib/python3.10/site-packages/numpy/linalg/tests/test_linalg.py +2386 -0
janus/lib/python3.10/site-packages/numpy/char/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (250 Bytes). View file
 
janus/lib/python3.10/site-packages/numpy/core/__init__.pyi ADDED
File without changes
janus/lib/python3.10/site-packages/numpy/core/__pycache__/_dtype.cpython-310.pyc ADDED
Binary file (509 Bytes). View file
 
janus/lib/python3.10/site-packages/numpy/core/__pycache__/_utils.cpython-310.pyc ADDED
Binary file (1 kB). View file
 
janus/lib/python3.10/site-packages/numpy/core/__pycache__/umath.cpython-310.pyc ADDED
Binary file (506 Bytes). View file
 
janus/lib/python3.10/site-packages/numpy/core/_multiarray_umath.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy._core import _multiarray_umath
2
+ from numpy import ufunc
3
+
4
+ for item in _multiarray_umath.__dir__():
5
+ # ufuncs appear in pickles with a path in numpy.core._multiarray_umath
6
+ # and so must import from this namespace without warning or error
7
+ attr = getattr(_multiarray_umath, item)
8
+ if isinstance(attr, ufunc):
9
+ globals()[item] = attr
10
+
11
+
12
+ def __getattr__(attr_name):
13
+ from numpy._core import _multiarray_umath
14
+ from ._utils import _raise_warning
15
+
16
+ if attr_name in {"_ARRAY_API", "_UFUNC_API"}:
17
+ from numpy.version import short_version
18
+ import textwrap
19
+ import traceback
20
+ import sys
21
+
22
+ msg = textwrap.dedent(f"""
23
+ A module that was compiled using NumPy 1.x cannot be run in
24
+ NumPy {short_version} as it may crash. To support both 1.x and 2.x
25
+ versions of NumPy, modules must be compiled with NumPy 2.0.
26
+ Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.
27
+
28
+ If you are a user of the module, the easiest solution will be to
29
+ downgrade to 'numpy<2' or try to upgrade the affected module.
30
+ We expect that some modules will need time to support NumPy 2.
31
+
32
+ """)
33
+ tb_msg = "Traceback (most recent call last):"
34
+ for line in traceback.format_stack()[:-1]:
35
+ if "frozen importlib" in line:
36
+ continue
37
+ tb_msg += line
38
+
39
+ # Also print the message (with traceback). This is because old versions
40
+ # of NumPy unfortunately set up the import to replace (and hide) the
41
+ # error. The traceback shouldn't be needed, but e.g. pytest plugins
42
+ # seem to swallow it and we should be failing anyway...
43
+ sys.stderr.write(msg + tb_msg)
44
+ raise ImportError(msg)
45
+
46
+ ret = getattr(_multiarray_umath, attr_name, None)
47
+ if ret is None:
48
+ raise AttributeError(
49
+ "module 'numpy.core._multiarray_umath' has no attribute "
50
+ f"{attr_name}")
51
+ _raise_warning(attr_name, "_multiarray_umath")
52
+ return ret
53
+
54
+
55
+ del _multiarray_umath, ufunc
janus/lib/python3.10/site-packages/numpy/core/_utils.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+
3
+
4
+ def _raise_warning(attr: str, submodule: str | None = None) -> None:
5
+ new_module = "numpy._core"
6
+ old_module = "numpy.core"
7
+ if submodule is not None:
8
+ new_module = f"{new_module}.{submodule}"
9
+ old_module = f"{old_module}.{submodule}"
10
+ warnings.warn(
11
+ f"{old_module} is deprecated and has been renamed to {new_module}. "
12
+ "The numpy._core namespace contains private NumPy internals and its "
13
+ "use is discouraged, as NumPy internals can change without warning in "
14
+ "any release. In practice, most real-world usage of numpy.core is to "
15
+ "access functionality in the public NumPy API. If that is the case, "
16
+ "use the public NumPy API. If not, you are using NumPy internals. "
17
+ "If you would still like to access an internal attribute, "
18
+ f"use {new_module}.{attr}.",
19
+ DeprecationWarning,
20
+ stacklevel=3
21
+ )
janus/lib/python3.10/site-packages/numpy/core/arrayprint.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(attr_name):
2
+ from numpy._core import arrayprint
3
+ from ._utils import _raise_warning
4
+ ret = getattr(arrayprint, attr_name, None)
5
+ if ret is None:
6
+ raise AttributeError(
7
+ f"module 'numpy.core.arrayprint' has no attribute {attr_name}")
8
+ _raise_warning(attr_name, "arrayprint")
9
+ return ret
janus/lib/python3.10/site-packages/numpy/core/defchararray.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(attr_name):
2
+ from numpy._core import defchararray
3
+ from ._utils import _raise_warning
4
+ ret = getattr(defchararray, attr_name, None)
5
+ if ret is None:
6
+ raise AttributeError(
7
+ f"module 'numpy.core.defchararray' has no attribute {attr_name}")
8
+ _raise_warning(attr_name, "defchararray")
9
+ return ret
janus/lib/python3.10/site-packages/numpy/core/einsumfunc.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(attr_name):
2
+ from numpy._core import einsumfunc
3
+ from ._utils import _raise_warning
4
+ ret = getattr(einsumfunc, attr_name, None)
5
+ if ret is None:
6
+ raise AttributeError(
7
+ f"module 'numpy.core.einsumfunc' has no attribute {attr_name}")
8
+ _raise_warning(attr_name, "einsumfunc")
9
+ return ret
janus/lib/python3.10/site-packages/numpy/core/fromnumeric.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(attr_name):
2
+ from numpy._core import fromnumeric
3
+ from ._utils import _raise_warning
4
+ ret = getattr(fromnumeric, attr_name, None)
5
+ if ret is None:
6
+ raise AttributeError(
7
+ f"module 'numpy.core.fromnumeric' has no attribute {attr_name}")
8
+ _raise_warning(attr_name, "fromnumeric")
9
+ return ret
janus/lib/python3.10/site-packages/numpy/core/function_base.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(attr_name):
2
+ from numpy._core import function_base
3
+ from ._utils import _raise_warning
4
+ ret = getattr(function_base, attr_name, None)
5
+ if ret is None:
6
+ raise AttributeError(
7
+ f"module 'numpy.core.function_base' has no attribute {attr_name}")
8
+ _raise_warning(attr_name, "function_base")
9
+ return ret
janus/lib/python3.10/site-packages/numpy/core/multiarray.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy._core import multiarray
2
+
3
+ # these must import without warning or error from numpy.core.multiarray to
4
+ # support old pickle files
5
+ for item in ["_reconstruct", "scalar"]:
6
+ globals()[item] = getattr(multiarray, item)
7
+
8
+ # Pybind11 (in versions <= 2.11.1) imports _ARRAY_API from the multiarray
9
+ # submodule as a part of NumPy initialization, therefore it must be importable
10
+ # without a warning.
11
+ _ARRAY_API = multiarray._ARRAY_API
12
+
13
+ def __getattr__(attr_name):
14
+ from numpy._core import multiarray
15
+ from ._utils import _raise_warning
16
+ ret = getattr(multiarray, attr_name, None)
17
+ if ret is None:
18
+ raise AttributeError(
19
+ f"module 'numpy.core.multiarray' has no attribute {attr_name}")
20
+ _raise_warning(attr_name, "multiarray")
21
+ return ret
22
+
23
+
24
+ del multiarray
janus/lib/python3.10/site-packages/numpy/core/numerictypes.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(attr_name):
2
+ from numpy._core import numerictypes
3
+ from ._utils import _raise_warning
4
+ ret = getattr(numerictypes, attr_name, None)
5
+ if ret is None:
6
+ raise AttributeError(
7
+ f"module 'numpy.core.numerictypes' has no attribute {attr_name}")
8
+ _raise_warning(attr_name, "numerictypes")
9
+ return ret
janus/lib/python3.10/site-packages/numpy/core/shape_base.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(attr_name):
2
+ from numpy._core import shape_base
3
+ from ._utils import _raise_warning
4
+ ret = getattr(shape_base, attr_name, None)
5
+ if ret is None:
6
+ raise AttributeError(
7
+ f"module 'numpy.core.shape_base' has no attribute {attr_name}")
8
+ _raise_warning(attr_name, "shape_base")
9
+ return ret
janus/lib/python3.10/site-packages/numpy/core/umath.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(attr_name):
2
+ from numpy._core import umath
3
+ from ._utils import _raise_warning
4
+ ret = getattr(umath, attr_name, None)
5
+ if ret is None:
6
+ raise AttributeError(
7
+ f"module 'numpy.core.umath' has no attribute {attr_name}")
8
+ _raise_warning(attr_name, "umath")
9
+ return ret
janus/lib/python3.10/site-packages/numpy/fft/__init__.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Discrete Fourier Transform (:mod:`numpy.fft`)
3
+ =============================================
4
+
5
+ .. currentmodule:: numpy.fft
6
+
7
+ The SciPy module `scipy.fft` is a more comprehensive superset
8
+ of ``numpy.fft``, which includes only a basic set of routines.
9
+
10
+ Standard FFTs
11
+ -------------
12
+
13
+ .. autosummary::
14
+ :toctree: generated/
15
+
16
+ fft Discrete Fourier transform.
17
+ ifft Inverse discrete Fourier transform.
18
+ fft2 Discrete Fourier transform in two dimensions.
19
+ ifft2 Inverse discrete Fourier transform in two dimensions.
20
+ fftn Discrete Fourier transform in N-dimensions.
21
+ ifftn Inverse discrete Fourier transform in N dimensions.
22
+
23
+ Real FFTs
24
+ ---------
25
+
26
+ .. autosummary::
27
+ :toctree: generated/
28
+
29
+ rfft Real discrete Fourier transform.
30
+ irfft Inverse real discrete Fourier transform.
31
+ rfft2 Real discrete Fourier transform in two dimensions.
32
+ irfft2 Inverse real discrete Fourier transform in two dimensions.
33
+ rfftn Real discrete Fourier transform in N dimensions.
34
+ irfftn Inverse real discrete Fourier transform in N dimensions.
35
+
36
+ Hermitian FFTs
37
+ --------------
38
+
39
+ .. autosummary::
40
+ :toctree: generated/
41
+
42
+ hfft Hermitian discrete Fourier transform.
43
+ ihfft Inverse Hermitian discrete Fourier transform.
44
+
45
+ Helper routines
46
+ ---------------
47
+
48
+ .. autosummary::
49
+ :toctree: generated/
50
+
51
+ fftfreq Discrete Fourier Transform sample frequencies.
52
+ rfftfreq DFT sample frequencies (for usage with rfft, irfft).
53
+ fftshift Shift zero-frequency component to center of spectrum.
54
+ ifftshift Inverse of fftshift.
55
+
56
+
57
+ Background information
58
+ ----------------------
59
+
60
+ Fourier analysis is fundamentally a method for expressing a function as a
61
+ sum of periodic components, and for recovering the function from those
62
+ components. When both the function and its Fourier transform are
63
+ replaced with discretized counterparts, it is called the discrete Fourier
64
+ transform (DFT). The DFT has become a mainstay of numerical computing in
65
+ part because of a very fast algorithm for computing it, called the Fast
66
+ Fourier Transform (FFT), which was known to Gauss (1805) and was brought
67
+ to light in its current form by Cooley and Tukey [CT]_. Press et al. [NR]_
68
+ provide an accessible introduction to Fourier analysis and its
69
+ applications.
70
+
71
+ Because the discrete Fourier transform separates its input into
72
+ components that contribute at discrete frequencies, it has a great number
73
+ of applications in digital signal processing, e.g., for filtering, and in
74
+ this context the discretized input to the transform is customarily
75
+ referred to as a *signal*, which exists in the *time domain*. The output
76
+ is called a *spectrum* or *transform* and exists in the *frequency
77
+ domain*.
78
+
79
+ Implementation details
80
+ ----------------------
81
+
82
+ There are many ways to define the DFT, varying in the sign of the
83
+ exponent, normalization, etc. In this implementation, the DFT is defined
84
+ as
85
+
86
+ .. math::
87
+ A_k = \\sum_{m=0}^{n-1} a_m \\exp\\left\\{-2\\pi i{mk \\over n}\\right\\}
88
+ \\qquad k = 0,\\ldots,n-1.
89
+
90
+ The DFT is in general defined for complex inputs and outputs, and a
91
+ single-frequency component at linear frequency :math:`f` is
92
+ represented by a complex exponential
93
+ :math:`a_m = \\exp\\{2\\pi i\\,f m\\Delta t\\}`, where :math:`\\Delta t`
94
+ is the sampling interval.
95
+
96
+ The values in the result follow so-called "standard" order: If ``A =
97
+ fft(a, n)``, then ``A[0]`` contains the zero-frequency term (the sum of
98
+ the signal), which is always purely real for real inputs. Then ``A[1:n/2]``
99
+ contains the positive-frequency terms, and ``A[n/2+1:]`` contains the
100
+ negative-frequency terms, in order of decreasingly negative frequency.
101
+ For an even number of input points, ``A[n/2]`` represents both positive and
102
+ negative Nyquist frequency, and is also purely real for real input. For
103
+ an odd number of input points, ``A[(n-1)/2]`` contains the largest positive
104
+ frequency, while ``A[(n+1)/2]`` contains the largest negative frequency.
105
+ The routine ``np.fft.fftfreq(n)`` returns an array giving the frequencies
106
+ of corresponding elements in the output. The routine
107
+ ``np.fft.fftshift(A)`` shifts transforms and their frequencies to put the
108
+ zero-frequency components in the middle, and ``np.fft.ifftshift(A)`` undoes
109
+ that shift.
110
+
111
+ When the input `a` is a time-domain signal and ``A = fft(a)``, ``np.abs(A)``
112
+ is its amplitude spectrum and ``np.abs(A)**2`` is its power spectrum.
113
+ The phase spectrum is obtained by ``np.angle(A)``.
114
+
115
+ The inverse DFT is defined as
116
+
117
+ .. math::
118
+ a_m = \\frac{1}{n}\\sum_{k=0}^{n-1}A_k\\exp\\left\\{2\\pi i{mk\\over n}\\right\\}
119
+ \\qquad m = 0,\\ldots,n-1.
120
+
121
+ It differs from the forward transform by the sign of the exponential
122
+ argument and the default normalization by :math:`1/n`.
123
+
124
+ Type Promotion
125
+ --------------
126
+
127
+ `numpy.fft` promotes ``float32`` and ``complex64`` arrays to ``float64`` and
128
+ ``complex128`` arrays respectively. For an FFT implementation that does not
129
+ promote input arrays, see `scipy.fftpack`.
130
+
131
+ Normalization
132
+ -------------
133
+
134
+ The argument ``norm`` indicates which direction of the pair of direct/inverse
135
+ transforms is scaled and with what normalization factor.
136
+ The default normalization (``"backward"``) has the direct (forward) transforms
137
+ unscaled and the inverse (backward) transforms scaled by :math:`1/n`. It is
138
+ possible to obtain unitary transforms by setting the keyword argument ``norm``
139
+ to ``"ortho"`` so that both direct and inverse transforms are scaled by
140
+ :math:`1/\\sqrt{n}`. Finally, setting the keyword argument ``norm`` to
141
+ ``"forward"`` has the direct transforms scaled by :math:`1/n` and the inverse
142
+ transforms unscaled (i.e. exactly opposite to the default ``"backward"``).
143
+ `None` is an alias of the default option ``"backward"`` for backward
144
+ compatibility.
145
+
146
+ Real and Hermitian transforms
147
+ -----------------------------
148
+
149
+ When the input is purely real, its transform is Hermitian, i.e., the
150
+ component at frequency :math:`f_k` is the complex conjugate of the
151
+ component at frequency :math:`-f_k`, which means that for real
152
+ inputs there is no information in the negative frequency components that
153
+ is not already available from the positive frequency components.
154
+ The family of `rfft` functions is
155
+ designed to operate on real inputs, and exploits this symmetry by
156
+ computing only the positive frequency components, up to and including the
157
+ Nyquist frequency. Thus, ``n`` input points produce ``n/2+1`` complex
158
+ output points. The inverses of this family assumes the same symmetry of
159
+ its input, and for an output of ``n`` points uses ``n/2+1`` input points.
160
+
161
+ Correspondingly, when the spectrum is purely real, the signal is
162
+ Hermitian. The `hfft` family of functions exploits this symmetry by
163
+ using ``n/2+1`` complex points in the input (time) domain for ``n`` real
164
+ points in the frequency domain.
165
+
166
+ In higher dimensions, FFTs are used, e.g., for image analysis and
167
+ filtering. The computational efficiency of the FFT means that it can
168
+ also be a faster way to compute large convolutions, using the property
169
+ that a convolution in the time domain is equivalent to a point-by-point
170
+ multiplication in the frequency domain.
171
+
172
+ Higher dimensions
173
+ -----------------
174
+
175
+ In two dimensions, the DFT is defined as
176
+
177
+ .. math::
178
+ A_{kl} = \\sum_{m=0}^{M-1} \\sum_{n=0}^{N-1}
179
+ a_{mn}\\exp\\left\\{-2\\pi i \\left({mk\\over M}+{nl\\over N}\\right)\\right\\}
180
+ \\qquad k = 0, \\ldots, M-1;\\quad l = 0, \\ldots, N-1,
181
+
182
+ which extends in the obvious way to higher dimensions, and the inverses
183
+ in higher dimensions also extend in the same way.
184
+
185
+ References
186
+ ----------
187
+
188
+ .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
189
+ machine calculation of complex Fourier series," *Math. Comput.*
190
+ 19: 297-301.
191
+
192
+ .. [NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P.,
193
+ 2007, *Numerical Recipes: The Art of Scientific Computing*, ch.
194
+ 12-13. Cambridge Univ. Press, Cambridge, UK.
195
+
196
+ Examples
197
+ --------
198
+
199
+ For examples, see the various functions.
200
+
201
+ """
202
+
203
+ from . import _pocketfft, _helper
204
+ # TODO: `numpy.fft.helper`` was deprecated in NumPy 2.0. It should
205
+ # be deleted once downstream libraries move to `numpy.fft`.
206
+ from . import helper
207
+ from ._pocketfft import *
208
+ from ._helper import *
209
+
210
+ __all__ = _pocketfft.__all__.copy()
211
+ __all__ += _helper.__all__
212
+
213
+ from numpy._pytesttester import PytestTester
214
+ test = PytestTester(__name__)
215
+ del PytestTester
janus/lib/python3.10/site-packages/numpy/fft/__init__.pyi ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ._pocketfft import (
2
+ fft,
3
+ ifft,
4
+ rfft,
5
+ irfft,
6
+ hfft,
7
+ ihfft,
8
+ rfftn,
9
+ irfftn,
10
+ rfft2,
11
+ irfft2,
12
+ fft2,
13
+ ifft2,
14
+ fftn,
15
+ ifftn,
16
+ )
17
+ from ._helper import (
18
+ fftshift,
19
+ ifftshift,
20
+ fftfreq,
21
+ rfftfreq,
22
+ )
23
+
24
+ __all__ = [
25
+ "fft",
26
+ "ifft",
27
+ "rfft",
28
+ "irfft",
29
+ "hfft",
30
+ "ihfft",
31
+ "rfftn",
32
+ "irfftn",
33
+ "rfft2",
34
+ "irfft2",
35
+ "fft2",
36
+ "ifft2",
37
+ "fftn",
38
+ "ifftn",
39
+ "fftshift",
40
+ "ifftshift",
41
+ "fftfreq",
42
+ "rfftfreq",
43
+ ]
janus/lib/python3.10/site-packages/numpy/fft/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (8.3 kB). View file
 
janus/lib/python3.10/site-packages/numpy/fft/__pycache__/_helper.cpython-310.pyc ADDED
Binary file (7.25 kB). View file
 
janus/lib/python3.10/site-packages/numpy/fft/__pycache__/_pocketfft.cpython-310.pyc ADDED
Binary file (61.1 kB). View file
 
janus/lib/python3.10/site-packages/numpy/fft/__pycache__/helper.cpython-310.pyc ADDED
Binary file (763 Bytes). View file
 
janus/lib/python3.10/site-packages/numpy/fft/_helper.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Discrete Fourier Transforms - _helper.py
3
+
4
+ """
5
+ from numpy._core import integer, empty, arange, asarray, roll
6
+ from numpy._core.overrides import array_function_dispatch, set_module
7
+
8
+ # Created by Pearu Peterson, September 2002
9
+
10
+ __all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq']
11
+
12
+ integer_types = (int, integer)
13
+
14
+
15
+ def _fftshift_dispatcher(x, axes=None):
16
+ return (x,)
17
+
18
+
19
+ @array_function_dispatch(_fftshift_dispatcher, module='numpy.fft')
20
+ def fftshift(x, axes=None):
21
+ """
22
+ Shift the zero-frequency component to the center of the spectrum.
23
+
24
+ This function swaps half-spaces for all axes listed (defaults to all).
25
+ Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
26
+
27
+ Parameters
28
+ ----------
29
+ x : array_like
30
+ Input array.
31
+ axes : int or shape tuple, optional
32
+ Axes over which to shift. Default is None, which shifts all axes.
33
+
34
+ Returns
35
+ -------
36
+ y : ndarray
37
+ The shifted array.
38
+
39
+ See Also
40
+ --------
41
+ ifftshift : The inverse of `fftshift`.
42
+
43
+ Examples
44
+ --------
45
+ >>> import numpy as np
46
+ >>> freqs = np.fft.fftfreq(10, 0.1)
47
+ >>> freqs
48
+ array([ 0., 1., 2., ..., -3., -2., -1.])
49
+ >>> np.fft.fftshift(freqs)
50
+ array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
51
+
52
+ Shift the zero-frequency component only along the second axis:
53
+
54
+ >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
55
+ >>> freqs
56
+ array([[ 0., 1., 2.],
57
+ [ 3., 4., -4.],
58
+ [-3., -2., -1.]])
59
+ >>> np.fft.fftshift(freqs, axes=(1,))
60
+ array([[ 2., 0., 1.],
61
+ [-4., 3., 4.],
62
+ [-1., -3., -2.]])
63
+
64
+ """
65
+ x = asarray(x)
66
+ if axes is None:
67
+ axes = tuple(range(x.ndim))
68
+ shift = [dim // 2 for dim in x.shape]
69
+ elif isinstance(axes, integer_types):
70
+ shift = x.shape[axes] // 2
71
+ else:
72
+ shift = [x.shape[ax] // 2 for ax in axes]
73
+
74
+ return roll(x, shift, axes)
75
+
76
+
77
+ @array_function_dispatch(_fftshift_dispatcher, module='numpy.fft')
78
+ def ifftshift(x, axes=None):
79
+ """
80
+ The inverse of `fftshift`. Although identical for even-length `x`, the
81
+ functions differ by one sample for odd-length `x`.
82
+
83
+ Parameters
84
+ ----------
85
+ x : array_like
86
+ Input array.
87
+ axes : int or shape tuple, optional
88
+ Axes over which to calculate. Defaults to None, which shifts all axes.
89
+
90
+ Returns
91
+ -------
92
+ y : ndarray
93
+ The shifted array.
94
+
95
+ See Also
96
+ --------
97
+ fftshift : Shift zero-frequency component to the center of the spectrum.
98
+
99
+ Examples
100
+ --------
101
+ >>> import numpy as np
102
+ >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
103
+ >>> freqs
104
+ array([[ 0., 1., 2.],
105
+ [ 3., 4., -4.],
106
+ [-3., -2., -1.]])
107
+ >>> np.fft.ifftshift(np.fft.fftshift(freqs))
108
+ array([[ 0., 1., 2.],
109
+ [ 3., 4., -4.],
110
+ [-3., -2., -1.]])
111
+
112
+ """
113
+ x = asarray(x)
114
+ if axes is None:
115
+ axes = tuple(range(x.ndim))
116
+ shift = [-(dim // 2) for dim in x.shape]
117
+ elif isinstance(axes, integer_types):
118
+ shift = -(x.shape[axes] // 2)
119
+ else:
120
+ shift = [-(x.shape[ax] // 2) for ax in axes]
121
+
122
+ return roll(x, shift, axes)
123
+
124
+
125
+ @set_module('numpy.fft')
126
+ def fftfreq(n, d=1.0, device=None):
127
+ """
128
+ Return the Discrete Fourier Transform sample frequencies.
129
+
130
+ The returned float array `f` contains the frequency bin centers in cycles
131
+ per unit of the sample spacing (with zero at the start). For instance, if
132
+ the sample spacing is in seconds, then the frequency unit is cycles/second.
133
+
134
+ Given a window length `n` and a sample spacing `d`::
135
+
136
+ f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
137
+ f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
138
+
139
+ Parameters
140
+ ----------
141
+ n : int
142
+ Window length.
143
+ d : scalar, optional
144
+ Sample spacing (inverse of the sampling rate). Defaults to 1.
145
+ device : str, optional
146
+ The device on which to place the created array. Default: ``None``.
147
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
148
+
149
+ .. versionadded:: 2.0.0
150
+
151
+ Returns
152
+ -------
153
+ f : ndarray
154
+ Array of length `n` containing the sample frequencies.
155
+
156
+ Examples
157
+ --------
158
+ >>> import numpy as np
159
+ >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
160
+ >>> fourier = np.fft.fft(signal)
161
+ >>> n = signal.size
162
+ >>> timestep = 0.1
163
+ >>> freq = np.fft.fftfreq(n, d=timestep)
164
+ >>> freq
165
+ array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
166
+
167
+ """
168
+ if not isinstance(n, integer_types):
169
+ raise ValueError("n should be an integer")
170
+ val = 1.0 / (n * d)
171
+ results = empty(n, int, device=device)
172
+ N = (n-1)//2 + 1
173
+ p1 = arange(0, N, dtype=int, device=device)
174
+ results[:N] = p1
175
+ p2 = arange(-(n//2), 0, dtype=int, device=device)
176
+ results[N:] = p2
177
+ return results * val
178
+
179
+
180
+ @set_module('numpy.fft')
181
+ def rfftfreq(n, d=1.0, device=None):
182
+ """
183
+ Return the Discrete Fourier Transform sample frequencies
184
+ (for usage with rfft, irfft).
185
+
186
+ The returned float array `f` contains the frequency bin centers in cycles
187
+ per unit of the sample spacing (with zero at the start). For instance, if
188
+ the sample spacing is in seconds, then the frequency unit is cycles/second.
189
+
190
+ Given a window length `n` and a sample spacing `d`::
191
+
192
+ f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
193
+ f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
194
+
195
+ Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
196
+ the Nyquist frequency component is considered to be positive.
197
+
198
+ Parameters
199
+ ----------
200
+ n : int
201
+ Window length.
202
+ d : scalar, optional
203
+ Sample spacing (inverse of the sampling rate). Defaults to 1.
204
+ device : str, optional
205
+ The device on which to place the created array. Default: ``None``.
206
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
207
+
208
+ .. versionadded:: 2.0.0
209
+
210
+ Returns
211
+ -------
212
+ f : ndarray
213
+ Array of length ``n//2 + 1`` containing the sample frequencies.
214
+
215
+ Examples
216
+ --------
217
+ >>> import numpy as np
218
+ >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
219
+ >>> fourier = np.fft.rfft(signal)
220
+ >>> n = signal.size
221
+ >>> sample_rate = 100
222
+ >>> freq = np.fft.fftfreq(n, d=1./sample_rate)
223
+ >>> freq
224
+ array([ 0., 10., 20., ..., -30., -20., -10.])
225
+ >>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
226
+ >>> freq
227
+ array([ 0., 10., 20., 30., 40., 50.])
228
+
229
+ """
230
+ if not isinstance(n, integer_types):
231
+ raise ValueError("n should be an integer")
232
+ val = 1.0/(n*d)
233
+ N = n//2 + 1
234
+ results = arange(0, N, dtype=int, device=device)
235
+ return results * val
janus/lib/python3.10/site-packages/numpy/fft/_helper.pyi ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, TypeVar, overload, Literal as L
2
+
3
+ from numpy import generic, integer, floating, complexfloating
4
+ from numpy._typing import (
5
+ NDArray,
6
+ ArrayLike,
7
+ _ShapeLike,
8
+ _ArrayLike,
9
+ _ArrayLikeFloat_co,
10
+ _ArrayLikeComplex_co,
11
+ )
12
+
13
+ __all__ = ["fftshift", "ifftshift", "fftfreq", "rfftfreq"]
14
+
15
+ _SCT = TypeVar("_SCT", bound=generic)
16
+
17
+ @overload
18
+ def fftshift(x: _ArrayLike[_SCT], axes: None | _ShapeLike = ...) -> NDArray[_SCT]: ...
19
+ @overload
20
+ def fftshift(x: ArrayLike, axes: None | _ShapeLike = ...) -> NDArray[Any]: ...
21
+
22
+ @overload
23
+ def ifftshift(x: _ArrayLike[_SCT], axes: None | _ShapeLike = ...) -> NDArray[_SCT]: ...
24
+ @overload
25
+ def ifftshift(x: ArrayLike, axes: None | _ShapeLike = ...) -> NDArray[Any]: ...
26
+
27
+ @overload
28
+ def fftfreq(
29
+ n: int | integer[Any],
30
+ d: _ArrayLikeFloat_co = ...,
31
+ device: None | L["cpu"] = ...,
32
+ ) -> NDArray[floating[Any]]: ...
33
+ @overload
34
+ def fftfreq(
35
+ n: int | integer[Any],
36
+ d: _ArrayLikeComplex_co = ...,
37
+ device: None | L["cpu"] = ...,
38
+ ) -> NDArray[complexfloating[Any, Any]]: ...
39
+
40
+ @overload
41
+ def rfftfreq(
42
+ n: int | integer[Any],
43
+ d: _ArrayLikeFloat_co = ...,
44
+ device: None | L["cpu"] = ...,
45
+ ) -> NDArray[floating[Any]]: ...
46
+ @overload
47
+ def rfftfreq(
48
+ n: int | integer[Any],
49
+ d: _ArrayLikeComplex_co = ...,
50
+ device: None | L["cpu"] = ...,
51
+ ) -> NDArray[complexfloating[Any, Any]]: ...
janus/lib/python3.10/site-packages/numpy/fft/_pocketfft.py ADDED
@@ -0,0 +1,1687 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Discrete Fourier Transforms
3
+
4
+ Routines in this module:
5
+
6
+ fft(a, n=None, axis=-1, norm="backward")
7
+ ifft(a, n=None, axis=-1, norm="backward")
8
+ rfft(a, n=None, axis=-1, norm="backward")
9
+ irfft(a, n=None, axis=-1, norm="backward")
10
+ hfft(a, n=None, axis=-1, norm="backward")
11
+ ihfft(a, n=None, axis=-1, norm="backward")
12
+ fftn(a, s=None, axes=None, norm="backward")
13
+ ifftn(a, s=None, axes=None, norm="backward")
14
+ rfftn(a, s=None, axes=None, norm="backward")
15
+ irfftn(a, s=None, axes=None, norm="backward")
16
+ fft2(a, s=None, axes=(-2,-1), norm="backward")
17
+ ifft2(a, s=None, axes=(-2, -1), norm="backward")
18
+ rfft2(a, s=None, axes=(-2,-1), norm="backward")
19
+ irfft2(a, s=None, axes=(-2, -1), norm="backward")
20
+
21
+ i = inverse transform
22
+ r = transform of purely real data
23
+ h = Hermite transform
24
+ n = n-dimensional transform
25
+ 2 = 2-dimensional transform
26
+ (Note: 2D routines are just nD routines with different default
27
+ behavior.)
28
+
29
+ """
30
+ __all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn',
31
+ 'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn']
32
+
33
+ import functools
34
+ import warnings
35
+
36
+ from numpy.lib.array_utils import normalize_axis_index
37
+ from numpy._core import (asarray, empty_like, result_type,
38
+ conjugate, take, sqrt, reciprocal)
39
+ from . import _pocketfft_umath as pfu
40
+ from numpy._core import overrides
41
+
42
+
43
+ array_function_dispatch = functools.partial(
44
+ overrides.array_function_dispatch, module='numpy.fft')
45
+
46
+
47
+ # `inv_norm` is a float by which the result of the transform needs to be
48
+ # divided. This replaces the original, more intuitive 'fct` parameter to avoid
49
+ # divisions by zero (or alternatively additional checks) in the case of
50
+ # zero-length axes during its computation.
51
+ def _raw_fft(a, n, axis, is_real, is_forward, norm, out=None):
52
+ if n < 1:
53
+ raise ValueError(f"Invalid number of FFT data points ({n}) specified.")
54
+
55
+ # Calculate the normalization factor, passing in the array dtype to
56
+ # avoid precision loss in the possible sqrt or reciprocal.
57
+ if not is_forward:
58
+ norm = _swap_direction(norm)
59
+
60
+ real_dtype = result_type(a.real.dtype, 1.0)
61
+ if norm is None or norm == "backward":
62
+ fct = 1
63
+ elif norm == "ortho":
64
+ fct = reciprocal(sqrt(n, dtype=real_dtype))
65
+ elif norm == "forward":
66
+ fct = reciprocal(n, dtype=real_dtype)
67
+ else:
68
+ raise ValueError(f'Invalid norm value {norm}; should be "backward",'
69
+ '"ortho" or "forward".')
70
+
71
+ n_out = n
72
+ if is_real:
73
+ if is_forward:
74
+ ufunc = pfu.rfft_n_even if n % 2 == 0 else pfu.rfft_n_odd
75
+ n_out = n // 2 + 1
76
+ else:
77
+ ufunc = pfu.irfft
78
+ else:
79
+ ufunc = pfu.fft if is_forward else pfu.ifft
80
+
81
+ axis = normalize_axis_index(axis, a.ndim)
82
+
83
+ if out is None:
84
+ if is_real and not is_forward: # irfft, complex in, real output.
85
+ out_dtype = real_dtype
86
+ else: # Others, complex output.
87
+ out_dtype = result_type(a.dtype, 1j)
88
+ out = empty_like(a, shape=a.shape[:axis] + (n_out,) + a.shape[axis+1:],
89
+ dtype=out_dtype)
90
+ elif ((shape := getattr(out, "shape", None)) is not None
91
+ and (len(shape) != a.ndim or shape[axis] != n_out)):
92
+ raise ValueError("output array has wrong shape.")
93
+
94
+ return ufunc(a, fct, axes=[(axis,), (), (axis,)], out=out)
95
+
96
+
97
+ _SWAP_DIRECTION_MAP = {"backward": "forward", None: "forward",
98
+ "ortho": "ortho", "forward": "backward"}
99
+
100
+
101
+ def _swap_direction(norm):
102
+ try:
103
+ return _SWAP_DIRECTION_MAP[norm]
104
+ except KeyError:
105
+ raise ValueError(f'Invalid norm value {norm}; should be "backward", '
106
+ '"ortho" or "forward".') from None
107
+
108
+
109
+ def _fft_dispatcher(a, n=None, axis=None, norm=None, out=None):
110
+ return (a, out)
111
+
112
+
113
+ @array_function_dispatch(_fft_dispatcher)
114
+ def fft(a, n=None, axis=-1, norm=None, out=None):
115
+ """
116
+ Compute the one-dimensional discrete Fourier Transform.
117
+
118
+ This function computes the one-dimensional *n*-point discrete Fourier
119
+ Transform (DFT) with the efficient Fast Fourier Transform (FFT)
120
+ algorithm [CT].
121
+
122
+ Parameters
123
+ ----------
124
+ a : array_like
125
+ Input array, can be complex.
126
+ n : int, optional
127
+ Length of the transformed axis of the output.
128
+ If `n` is smaller than the length of the input, the input is cropped.
129
+ If it is larger, the input is padded with zeros. If `n` is not given,
130
+ the length of the input along the axis specified by `axis` is used.
131
+ axis : int, optional
132
+ Axis over which to compute the FFT. If not given, the last axis is
133
+ used.
134
+ norm : {"backward", "ortho", "forward"}, optional
135
+ Normalization mode (see `numpy.fft`). Default is "backward".
136
+ Indicates which direction of the forward/backward pair of transforms
137
+ is scaled and with what normalization factor.
138
+
139
+ .. versionadded:: 1.20.0
140
+
141
+ The "backward", "forward" values were added.
142
+ out : complex ndarray, optional
143
+ If provided, the result will be placed in this array. It should be
144
+ of the appropriate shape and dtype.
145
+
146
+ .. versionadded:: 2.0.0
147
+
148
+ Returns
149
+ -------
150
+ out : complex ndarray
151
+ The truncated or zero-padded input, transformed along the axis
152
+ indicated by `axis`, or the last one if `axis` is not specified.
153
+
154
+ Raises
155
+ ------
156
+ IndexError
157
+ If `axis` is not a valid axis of `a`.
158
+
159
+ See Also
160
+ --------
161
+ numpy.fft : for definition of the DFT and conventions used.
162
+ ifft : The inverse of `fft`.
163
+ fft2 : The two-dimensional FFT.
164
+ fftn : The *n*-dimensional FFT.
165
+ rfftn : The *n*-dimensional FFT of real input.
166
+ fftfreq : Frequency bins for given FFT parameters.
167
+
168
+ Notes
169
+ -----
170
+ FFT (Fast Fourier Transform) refers to a way the discrete Fourier
171
+ Transform (DFT) can be calculated efficiently, by using symmetries in the
172
+ calculated terms. The symmetry is highest when `n` is a power of 2, and
173
+ the transform is therefore most efficient for these sizes.
174
+
175
+ The DFT is defined, with the conventions used in this implementation, in
176
+ the documentation for the `numpy.fft` module.
177
+
178
+ References
179
+ ----------
180
+ .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
181
+ machine calculation of complex Fourier series," *Math. Comput.*
182
+ 19: 297-301.
183
+
184
+ Examples
185
+ --------
186
+ >>> import numpy as np
187
+ >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
188
+ array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-15j,
189
+ 2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-16j,
190
+ -1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-16j,
191
+ 1.14423775e-17+1.14423775e-17j, 0.00000000e+00+1.22464680e-16j])
192
+
193
+ In this example, real input has an FFT which is Hermitian, i.e., symmetric
194
+ in the real part and anti-symmetric in the imaginary part, as described in
195
+ the `numpy.fft` documentation:
196
+
197
+ >>> import matplotlib.pyplot as plt
198
+ >>> t = np.arange(256)
199
+ >>> sp = np.fft.fft(np.sin(t))
200
+ >>> freq = np.fft.fftfreq(t.shape[-1])
201
+ >>> plt.plot(freq, sp.real, freq, sp.imag)
202
+ [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
203
+ >>> plt.show()
204
+
205
+ """
206
+ a = asarray(a)
207
+ if n is None:
208
+ n = a.shape[axis]
209
+ output = _raw_fft(a, n, axis, False, True, norm, out)
210
+ return output
211
+
212
+
213
+ @array_function_dispatch(_fft_dispatcher)
214
+ def ifft(a, n=None, axis=-1, norm=None, out=None):
215
+ """
216
+ Compute the one-dimensional inverse discrete Fourier Transform.
217
+
218
+ This function computes the inverse of the one-dimensional *n*-point
219
+ discrete Fourier transform computed by `fft`. In other words,
220
+ ``ifft(fft(a)) == a`` to within numerical accuracy.
221
+ For a general description of the algorithm and definitions,
222
+ see `numpy.fft`.
223
+
224
+ The input should be ordered in the same way as is returned by `fft`,
225
+ i.e.,
226
+
227
+ * ``a[0]`` should contain the zero frequency term,
228
+ * ``a[1:n//2]`` should contain the positive-frequency terms,
229
+ * ``a[n//2 + 1:]`` should contain the negative-frequency terms, in
230
+ increasing order starting from the most negative frequency.
231
+
232
+ For an even number of input points, ``A[n//2]`` represents the sum of
233
+ the values at the positive and negative Nyquist frequencies, as the two
234
+ are aliased together. See `numpy.fft` for details.
235
+
236
+ Parameters
237
+ ----------
238
+ a : array_like
239
+ Input array, can be complex.
240
+ n : int, optional
241
+ Length of the transformed axis of the output.
242
+ If `n` is smaller than the length of the input, the input is cropped.
243
+ If it is larger, the input is padded with zeros. If `n` is not given,
244
+ the length of the input along the axis specified by `axis` is used.
245
+ See notes about padding issues.
246
+ axis : int, optional
247
+ Axis over which to compute the inverse DFT. If not given, the last
248
+ axis is used.
249
+ norm : {"backward", "ortho", "forward"}, optional
250
+ Normalization mode (see `numpy.fft`). Default is "backward".
251
+ Indicates which direction of the forward/backward pair of transforms
252
+ is scaled and with what normalization factor.
253
+
254
+ .. versionadded:: 1.20.0
255
+
256
+ The "backward", "forward" values were added.
257
+
258
+ out : complex ndarray, optional
259
+ If provided, the result will be placed in this array. It should be
260
+ of the appropriate shape and dtype.
261
+
262
+ .. versionadded:: 2.0.0
263
+
264
+ Returns
265
+ -------
266
+ out : complex ndarray
267
+ The truncated or zero-padded input, transformed along the axis
268
+ indicated by `axis`, or the last one if `axis` is not specified.
269
+
270
+ Raises
271
+ ------
272
+ IndexError
273
+ If `axis` is not a valid axis of `a`.
274
+
275
+ See Also
276
+ --------
277
+ numpy.fft : An introduction, with definitions and general explanations.
278
+ fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse
279
+ ifft2 : The two-dimensional inverse FFT.
280
+ ifftn : The n-dimensional inverse FFT.
281
+
282
+ Notes
283
+ -----
284
+ If the input parameter `n` is larger than the size of the input, the input
285
+ is padded by appending zeros at the end. Even though this is the common
286
+ approach, it might lead to surprising results. If a different padding is
287
+ desired, it must be performed before calling `ifft`.
288
+
289
+ Examples
290
+ --------
291
+ >>> import numpy as np
292
+ >>> np.fft.ifft([0, 4, 0, 0])
293
+ array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) # may vary
294
+
295
+ Create and plot a band-limited signal with random phases:
296
+
297
+ >>> import matplotlib.pyplot as plt
298
+ >>> t = np.arange(400)
299
+ >>> n = np.zeros((400,), dtype=complex)
300
+ >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))
301
+ >>> s = np.fft.ifft(n)
302
+ >>> plt.plot(t, s.real, label='real')
303
+ [<matplotlib.lines.Line2D object at ...>]
304
+ >>> plt.plot(t, s.imag, '--', label='imaginary')
305
+ [<matplotlib.lines.Line2D object at ...>]
306
+ >>> plt.legend()
307
+ <matplotlib.legend.Legend object at ...>
308
+ >>> plt.show()
309
+
310
+ """
311
+ a = asarray(a)
312
+ if n is None:
313
+ n = a.shape[axis]
314
+ output = _raw_fft(a, n, axis, False, False, norm, out=out)
315
+ return output
316
+
317
+
318
+ @array_function_dispatch(_fft_dispatcher)
319
+ def rfft(a, n=None, axis=-1, norm=None, out=None):
320
+ """
321
+ Compute the one-dimensional discrete Fourier Transform for real input.
322
+
323
+ This function computes the one-dimensional *n*-point discrete Fourier
324
+ Transform (DFT) of a real-valued array by means of an efficient algorithm
325
+ called the Fast Fourier Transform (FFT).
326
+
327
+ Parameters
328
+ ----------
329
+ a : array_like
330
+ Input array
331
+ n : int, optional
332
+ Number of points along transformation axis in the input to use.
333
+ If `n` is smaller than the length of the input, the input is cropped.
334
+ If it is larger, the input is padded with zeros. If `n` is not given,
335
+ the length of the input along the axis specified by `axis` is used.
336
+ axis : int, optional
337
+ Axis over which to compute the FFT. If not given, the last axis is
338
+ used.
339
+ norm : {"backward", "ortho", "forward"}, optional
340
+ Normalization mode (see `numpy.fft`). Default is "backward".
341
+ Indicates which direction of the forward/backward pair of transforms
342
+ is scaled and with what normalization factor.
343
+
344
+ .. versionadded:: 1.20.0
345
+
346
+ The "backward", "forward" values were added.
347
+
348
+ out : complex ndarray, optional
349
+ If provided, the result will be placed in this array. It should be
350
+ of the appropriate shape and dtype.
351
+
352
+ .. versionadded:: 2.0.0
353
+
354
+ Returns
355
+ -------
356
+ out : complex ndarray
357
+ The truncated or zero-padded input, transformed along the axis
358
+ indicated by `axis`, or the last one if `axis` is not specified.
359
+ If `n` is even, the length of the transformed axis is ``(n/2)+1``.
360
+ If `n` is odd, the length is ``(n+1)/2``.
361
+
362
+ Raises
363
+ ------
364
+ IndexError
365
+ If `axis` is not a valid axis of `a`.
366
+
367
+ See Also
368
+ --------
369
+ numpy.fft : For definition of the DFT and conventions used.
370
+ irfft : The inverse of `rfft`.
371
+ fft : The one-dimensional FFT of general (complex) input.
372
+ fftn : The *n*-dimensional FFT.
373
+ rfftn : The *n*-dimensional FFT of real input.
374
+
375
+ Notes
376
+ -----
377
+ When the DFT is computed for purely real input, the output is
378
+ Hermitian-symmetric, i.e. the negative frequency terms are just the complex
379
+ conjugates of the corresponding positive-frequency terms, and the
380
+ negative-frequency terms are therefore redundant. This function does not
381
+ compute the negative frequency terms, and the length of the transformed
382
+ axis of the output is therefore ``n//2 + 1``.
383
+
384
+ When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains
385
+ the zero-frequency term 0*fs, which is real due to Hermitian symmetry.
386
+
387
+ If `n` is even, ``A[-1]`` contains the term representing both positive
388
+ and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
389
+ real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains
390
+ the largest positive frequency (fs/2*(n-1)/n), and is complex in the
391
+ general case.
392
+
393
+ If the input `a` contains an imaginary part, it is silently discarded.
394
+
395
+ Examples
396
+ --------
397
+ >>> import numpy as np
398
+ >>> np.fft.fft([0, 1, 0, 0])
399
+ array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary
400
+ >>> np.fft.rfft([0, 1, 0, 0])
401
+ array([ 1.+0.j, 0.-1.j, -1.+0.j]) # may vary
402
+
403
+ Notice how the final element of the `fft` output is the complex conjugate
404
+ of the second element, for real input. For `rfft`, this symmetry is
405
+ exploited to compute only the non-negative frequency terms.
406
+
407
+ """
408
+ a = asarray(a)
409
+ if n is None:
410
+ n = a.shape[axis]
411
+ output = _raw_fft(a, n, axis, True, True, norm, out=out)
412
+ return output
413
+
414
+
415
+ @array_function_dispatch(_fft_dispatcher)
416
+ def irfft(a, n=None, axis=-1, norm=None, out=None):
417
+ """
418
+ Computes the inverse of `rfft`.
419
+
420
+ This function computes the inverse of the one-dimensional *n*-point
421
+ discrete Fourier Transform of real input computed by `rfft`.
422
+ In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical
423
+ accuracy. (See Notes below for why ``len(a)`` is necessary here.)
424
+
425
+ The input is expected to be in the form returned by `rfft`, i.e. the
426
+ real zero-frequency term followed by the complex positive frequency terms
427
+ in order of increasing frequency. Since the discrete Fourier Transform of
428
+ real input is Hermitian-symmetric, the negative frequency terms are taken
429
+ to be the complex conjugates of the corresponding positive frequency terms.
430
+
431
+ Parameters
432
+ ----------
433
+ a : array_like
434
+ The input array.
435
+ n : int, optional
436
+ Length of the transformed axis of the output.
437
+ For `n` output points, ``n//2+1`` input points are necessary. If the
438
+ input is longer than this, it is cropped. If it is shorter than this,
439
+ it is padded with zeros. If `n` is not given, it is taken to be
440
+ ``2*(m-1)`` where ``m`` is the length of the input along the axis
441
+ specified by `axis`.
442
+ axis : int, optional
443
+ Axis over which to compute the inverse FFT. If not given, the last
444
+ axis is used.
445
+ norm : {"backward", "ortho", "forward"}, optional
446
+ Normalization mode (see `numpy.fft`). Default is "backward".
447
+ Indicates which direction of the forward/backward pair of transforms
448
+ is scaled and with what normalization factor.
449
+
450
+ .. versionadded:: 1.20.0
451
+
452
+ The "backward", "forward" values were added.
453
+
454
+ out : ndarray, optional
455
+ If provided, the result will be placed in this array. It should be
456
+ of the appropriate shape and dtype.
457
+
458
+ .. versionadded:: 2.0.0
459
+
460
+ Returns
461
+ -------
462
+ out : ndarray
463
+ The truncated or zero-padded input, transformed along the axis
464
+ indicated by `axis`, or the last one if `axis` is not specified.
465
+ The length of the transformed axis is `n`, or, if `n` is not given,
466
+ ``2*(m-1)`` where ``m`` is the length of the transformed axis of the
467
+ input. To get an odd number of output points, `n` must be specified.
468
+
469
+ Raises
470
+ ------
471
+ IndexError
472
+ If `axis` is not a valid axis of `a`.
473
+
474
+ See Also
475
+ --------
476
+ numpy.fft : For definition of the DFT and conventions used.
477
+ rfft : The one-dimensional FFT of real input, of which `irfft` is inverse.
478
+ fft : The one-dimensional FFT.
479
+ irfft2 : The inverse of the two-dimensional FFT of real input.
480
+ irfftn : The inverse of the *n*-dimensional FFT of real input.
481
+
482
+ Notes
483
+ -----
484
+ Returns the real valued `n`-point inverse discrete Fourier transform
485
+ of `a`, where `a` contains the non-negative frequency terms of a
486
+ Hermitian-symmetric sequence. `n` is the length of the result, not the
487
+ input.
488
+
489
+ If you specify an `n` such that `a` must be zero-padded or truncated, the
490
+ extra/removed values will be added/removed at high frequencies. One can
491
+ thus resample a series to `m` points via Fourier interpolation by:
492
+ ``a_resamp = irfft(rfft(a), m)``.
493
+
494
+ The correct interpretation of the hermitian input depends on the length of
495
+ the original data, as given by `n`. This is because each input shape could
496
+ correspond to either an odd or even length signal. By default, `irfft`
497
+ assumes an even output length which puts the last entry at the Nyquist
498
+ frequency; aliasing with its symmetric counterpart. By Hermitian symmetry,
499
+ the value is thus treated as purely real. To avoid losing information, the
500
+ correct length of the real input **must** be given.
501
+
502
+ Examples
503
+ --------
504
+ >>> import numpy as np
505
+ >>> np.fft.ifft([1, -1j, -1, 1j])
506
+ array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary
507
+ >>> np.fft.irfft([1, -1j, -1])
508
+ array([0., 1., 0., 0.])
509
+
510
+ Notice how the last term in the input to the ordinary `ifft` is the
511
+ complex conjugate of the second term, and the output has zero imaginary
512
+ part everywhere. When calling `irfft`, the negative frequencies are not
513
+ specified, and the output array is purely real.
514
+
515
+ """
516
+ a = asarray(a)
517
+ if n is None:
518
+ n = (a.shape[axis] - 1) * 2
519
+ output = _raw_fft(a, n, axis, True, False, norm, out=out)
520
+ return output
521
+
522
+
523
+ @array_function_dispatch(_fft_dispatcher)
524
+ def hfft(a, n=None, axis=-1, norm=None, out=None):
525
+ """
526
+ Compute the FFT of a signal that has Hermitian symmetry, i.e., a real
527
+ spectrum.
528
+
529
+ Parameters
530
+ ----------
531
+ a : array_like
532
+ The input array.
533
+ n : int, optional
534
+ Length of the transformed axis of the output. For `n` output
535
+ points, ``n//2 + 1`` input points are necessary. If the input is
536
+ longer than this, it is cropped. If it is shorter than this, it is
537
+ padded with zeros. If `n` is not given, it is taken to be ``2*(m-1)``
538
+ where ``m`` is the length of the input along the axis specified by
539
+ `axis`.
540
+ axis : int, optional
541
+ Axis over which to compute the FFT. If not given, the last
542
+ axis is used.
543
+ norm : {"backward", "ortho", "forward"}, optional
544
+ Normalization mode (see `numpy.fft`). Default is "backward".
545
+ Indicates which direction of the forward/backward pair of transforms
546
+ is scaled and with what normalization factor.
547
+
548
+ .. versionadded:: 1.20.0
549
+
550
+ The "backward", "forward" values were added.
551
+
552
+ out : ndarray, optional
553
+ If provided, the result will be placed in this array. It should be
554
+ of the appropriate shape and dtype.
555
+
556
+ .. versionadded:: 2.0.0
557
+
558
+ Returns
559
+ -------
560
+ out : ndarray
561
+ The truncated or zero-padded input, transformed along the axis
562
+ indicated by `axis`, or the last one if `axis` is not specified.
563
+ The length of the transformed axis is `n`, or, if `n` is not given,
564
+ ``2*m - 2`` where ``m`` is the length of the transformed axis of
565
+ the input. To get an odd number of output points, `n` must be
566
+ specified, for instance as ``2*m - 1`` in the typical case,
567
+
568
+ Raises
569
+ ------
570
+ IndexError
571
+ If `axis` is not a valid axis of `a`.
572
+
573
+ See also
574
+ --------
575
+ rfft : Compute the one-dimensional FFT for real input.
576
+ ihfft : The inverse of `hfft`.
577
+
578
+ Notes
579
+ -----
580
+ `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
581
+ opposite case: here the signal has Hermitian symmetry in the time
582
+ domain and is real in the frequency domain. So here it's `hfft` for
583
+ which you must supply the length of the result if it is to be odd.
584
+
585
+ * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error,
586
+ * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error.
587
+
588
+ The correct interpretation of the hermitian input depends on the length of
589
+ the original data, as given by `n`. This is because each input shape could
590
+ correspond to either an odd or even length signal. By default, `hfft`
591
+ assumes an even output length which puts the last entry at the Nyquist
592
+ frequency; aliasing with its symmetric counterpart. By Hermitian symmetry,
593
+ the value is thus treated as purely real. To avoid losing information, the
594
+ shape of the full signal **must** be given.
595
+
596
+ Examples
597
+ --------
598
+ >>> import numpy as np
599
+ >>> signal = np.array([1, 2, 3, 4, 3, 2])
600
+ >>> np.fft.fft(signal)
601
+ array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) # may vary
602
+ >>> np.fft.hfft(signal[:4]) # Input first half of signal
603
+ array([15., -4., 0., -1., 0., -4.])
604
+ >>> np.fft.hfft(signal, 6) # Input entire signal and truncate
605
+ array([15., -4., 0., -1., 0., -4.])
606
+
607
+
608
+ >>> signal = np.array([[1, 1.j], [-1.j, 2]])
609
+ >>> np.conj(signal.T) - signal # check Hermitian symmetry
610
+ array([[ 0.-0.j, -0.+0.j], # may vary
611
+ [ 0.+0.j, 0.-0.j]])
612
+ >>> freq_spectrum = np.fft.hfft(signal)
613
+ >>> freq_spectrum
614
+ array([[ 1., 1.],
615
+ [ 2., -2.]])
616
+
617
+ """
618
+ a = asarray(a)
619
+ if n is None:
620
+ n = (a.shape[axis] - 1) * 2
621
+ new_norm = _swap_direction(norm)
622
+ output = irfft(conjugate(a), n, axis, norm=new_norm, out=None)
623
+ return output
624
+
625
+
626
+ @array_function_dispatch(_fft_dispatcher)
627
+ def ihfft(a, n=None, axis=-1, norm=None, out=None):
628
+ """
629
+ Compute the inverse FFT of a signal that has Hermitian symmetry.
630
+
631
+ Parameters
632
+ ----------
633
+ a : array_like
634
+ Input array.
635
+ n : int, optional
636
+ Length of the inverse FFT, the number of points along
637
+ transformation axis in the input to use. If `n` is smaller than
638
+ the length of the input, the input is cropped. If it is larger,
639
+ the input is padded with zeros. If `n` is not given, the length of
640
+ the input along the axis specified by `axis` is used.
641
+ axis : int, optional
642
+ Axis over which to compute the inverse FFT. If not given, the last
643
+ axis is used.
644
+ norm : {"backward", "ortho", "forward"}, optional
645
+ Normalization mode (see `numpy.fft`). Default is "backward".
646
+ Indicates which direction of the forward/backward pair of transforms
647
+ is scaled and with what normalization factor.
648
+
649
+ .. versionadded:: 1.20.0
650
+
651
+ The "backward", "forward" values were added.
652
+
653
+ out : complex ndarray, optional
654
+ If provided, the result will be placed in this array. It should be
655
+ of the appropriate shape and dtype.
656
+
657
+ .. versionadded:: 2.0.0
658
+
659
+ Returns
660
+ -------
661
+ out : complex ndarray
662
+ The truncated or zero-padded input, transformed along the axis
663
+ indicated by `axis`, or the last one if `axis` is not specified.
664
+ The length of the transformed axis is ``n//2 + 1``.
665
+
666
+ See also
667
+ --------
668
+ hfft, irfft
669
+
670
+ Notes
671
+ -----
672
+ `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
673
+ opposite case: here the signal has Hermitian symmetry in the time
674
+ domain and is real in the frequency domain. So here it's `hfft` for
675
+ which you must supply the length of the result if it is to be odd:
676
+
677
+ * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error,
678
+ * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error.
679
+
680
+ Examples
681
+ --------
682
+ >>> import numpy as np
683
+ >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
684
+ >>> np.fft.ifft(spectrum)
685
+ array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary
686
+ >>> np.fft.ihfft(spectrum)
687
+ array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary
688
+
689
+ """
690
+ a = asarray(a)
691
+ if n is None:
692
+ n = a.shape[axis]
693
+ new_norm = _swap_direction(norm)
694
+ out = rfft(a, n, axis, norm=new_norm, out=out)
695
+ return conjugate(out, out=out)
696
+
697
+
698
+ def _cook_nd_args(a, s=None, axes=None, invreal=0):
699
+ if s is None:
700
+ shapeless = True
701
+ if axes is None:
702
+ s = list(a.shape)
703
+ else:
704
+ s = take(a.shape, axes)
705
+ else:
706
+ shapeless = False
707
+ s = list(s)
708
+ if axes is None:
709
+ if not shapeless:
710
+ msg = ("`axes` should not be `None` if `s` is not `None` "
711
+ "(Deprecated in NumPy 2.0). In a future version of NumPy, "
712
+ "this will raise an error and `s[i]` will correspond to "
713
+ "the size along the transformed axis specified by "
714
+ "`axes[i]`. To retain current behaviour, pass a sequence "
715
+ "[0, ..., k-1] to `axes` for an array of dimension k.")
716
+ warnings.warn(msg, DeprecationWarning, stacklevel=3)
717
+ axes = list(range(-len(s), 0))
718
+ if len(s) != len(axes):
719
+ raise ValueError("Shape and axes have different lengths.")
720
+ if invreal and shapeless:
721
+ s[-1] = (a.shape[axes[-1]] - 1) * 2
722
+ if None in s:
723
+ msg = ("Passing an array containing `None` values to `s` is "
724
+ "deprecated in NumPy 2.0 and will raise an error in "
725
+ "a future version of NumPy. To use the default behaviour "
726
+ "of the corresponding 1-D transform, pass the value matching "
727
+ "the default for its `n` parameter. To use the default "
728
+ "behaviour for every axis, the `s` argument can be omitted.")
729
+ warnings.warn(msg, DeprecationWarning, stacklevel=3)
730
+ # use the whole input array along axis `i` if `s[i] == -1`
731
+ s = [a.shape[_a] if _s == -1 else _s for _s, _a in zip(s, axes)]
732
+ return s, axes
733
+
734
+
735
+ def _raw_fftnd(a, s=None, axes=None, function=fft, norm=None, out=None):
736
+ a = asarray(a)
737
+ s, axes = _cook_nd_args(a, s, axes)
738
+ itl = list(range(len(axes)))
739
+ itl.reverse()
740
+ for ii in itl:
741
+ a = function(a, n=s[ii], axis=axes[ii], norm=norm, out=out)
742
+ return a
743
+
744
+
745
+ def _fftn_dispatcher(a, s=None, axes=None, norm=None, out=None):
746
+ return (a, out)
747
+
748
+
749
+ @array_function_dispatch(_fftn_dispatcher)
750
+ def fftn(a, s=None, axes=None, norm=None, out=None):
751
+ """
752
+ Compute the N-dimensional discrete Fourier Transform.
753
+
754
+ This function computes the *N*-dimensional discrete Fourier Transform over
755
+ any number of axes in an *M*-dimensional array by means of the Fast Fourier
756
+ Transform (FFT).
757
+
758
+ Parameters
759
+ ----------
760
+ a : array_like
761
+ Input array, can be complex.
762
+ s : sequence of ints, optional
763
+ Shape (length of each transformed axis) of the output
764
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
765
+ This corresponds to ``n`` for ``fft(x, n)``.
766
+ Along any axis, if the given shape is smaller than that of the input,
767
+ the input is cropped. If it is larger, the input is padded with zeros.
768
+
769
+ .. versionchanged:: 2.0
770
+
771
+ If it is ``-1``, the whole input is used (no padding/trimming).
772
+
773
+ If `s` is not given, the shape of the input along the axes specified
774
+ by `axes` is used.
775
+
776
+ .. deprecated:: 2.0
777
+
778
+ If `s` is not ``None``, `axes` must not be ``None`` either.
779
+
780
+ .. deprecated:: 2.0
781
+
782
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
783
+ values currently mean that the default value for ``n`` is used
784
+ in the corresponding 1-D transform, but this behaviour is
785
+ deprecated.
786
+
787
+ axes : sequence of ints, optional
788
+ Axes over which to compute the FFT. If not given, the last ``len(s)``
789
+ axes are used, or all axes if `s` is also not specified.
790
+ Repeated indices in `axes` means that the transform over that axis is
791
+ performed multiple times.
792
+
793
+ .. deprecated:: 2.0
794
+
795
+ If `s` is specified, the corresponding `axes` to be transformed
796
+ must be explicitly specified too.
797
+
798
+ norm : {"backward", "ortho", "forward"}, optional
799
+ Normalization mode (see `numpy.fft`). Default is "backward".
800
+ Indicates which direction of the forward/backward pair of transforms
801
+ is scaled and with what normalization factor.
802
+
803
+ .. versionadded:: 1.20.0
804
+
805
+ The "backward", "forward" values were added.
806
+
807
+ out : complex ndarray, optional
808
+ If provided, the result will be placed in this array. It should be
809
+ of the appropriate shape and dtype for all axes (and hence is
810
+ incompatible with passing in all but the trivial ``s``).
811
+
812
+ .. versionadded:: 2.0.0
813
+
814
+ Returns
815
+ -------
816
+ out : complex ndarray
817
+ The truncated or zero-padded input, transformed along the axes
818
+ indicated by `axes`, or by a combination of `s` and `a`,
819
+ as explained in the parameters section above.
820
+
821
+ Raises
822
+ ------
823
+ ValueError
824
+ If `s` and `axes` have different length.
825
+ IndexError
826
+ If an element of `axes` is larger than than the number of axes of `a`.
827
+
828
+ See Also
829
+ --------
830
+ numpy.fft : Overall view of discrete Fourier transforms, with definitions
831
+ and conventions used.
832
+ ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT.
833
+ fft : The one-dimensional FFT, with definitions and conventions used.
834
+ rfftn : The *n*-dimensional FFT of real input.
835
+ fft2 : The two-dimensional FFT.
836
+ fftshift : Shifts zero-frequency terms to centre of array
837
+
838
+ Notes
839
+ -----
840
+ The output, analogously to `fft`, contains the term for zero frequency in
841
+ the low-order corner of all axes, the positive frequency terms in the
842
+ first half of all axes, the term for the Nyquist frequency in the middle
843
+ of all axes and the negative frequency terms in the second half of all
844
+ axes, in order of decreasingly negative frequency.
845
+
846
+ See `numpy.fft` for details, definitions and conventions used.
847
+
848
+ Examples
849
+ --------
850
+ >>> import numpy as np
851
+ >>> a = np.mgrid[:3, :3, :3][0]
852
+ >>> np.fft.fftn(a, axes=(1, 2))
853
+ array([[[ 0.+0.j, 0.+0.j, 0.+0.j], # may vary
854
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
855
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
856
+ [[ 9.+0.j, 0.+0.j, 0.+0.j],
857
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
858
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
859
+ [[18.+0.j, 0.+0.j, 0.+0.j],
860
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
861
+ [ 0.+0.j, 0.+0.j, 0.+0.j]]])
862
+ >>> np.fft.fftn(a, (2, 2), axes=(0, 1))
863
+ array([[[ 2.+0.j, 2.+0.j, 2.+0.j], # may vary
864
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
865
+ [[-2.+0.j, -2.+0.j, -2.+0.j],
866
+ [ 0.+0.j, 0.+0.j, 0.+0.j]]])
867
+
868
+ >>> import matplotlib.pyplot as plt
869
+ >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
870
+ ... 2 * np.pi * np.arange(200) / 34)
871
+ >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)
872
+ >>> FS = np.fft.fftn(S)
873
+ >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2))
874
+ <matplotlib.image.AxesImage object at 0x...>
875
+ >>> plt.show()
876
+
877
+ """
878
+ return _raw_fftnd(a, s, axes, fft, norm, out=out)
879
+
880
+
881
+ @array_function_dispatch(_fftn_dispatcher)
882
+ def ifftn(a, s=None, axes=None, norm=None, out=None):
883
+ """
884
+ Compute the N-dimensional inverse discrete Fourier Transform.
885
+
886
+ This function computes the inverse of the N-dimensional discrete
887
+ Fourier Transform over any number of axes in an M-dimensional array by
888
+ means of the Fast Fourier Transform (FFT). In other words,
889
+ ``ifftn(fftn(a)) == a`` to within numerical accuracy.
890
+ For a description of the definitions and conventions used, see `numpy.fft`.
891
+
892
+ The input, analogously to `ifft`, should be ordered in the same way as is
893
+ returned by `fftn`, i.e. it should have the term for zero frequency
894
+ in all axes in the low-order corner, the positive frequency terms in the
895
+ first half of all axes, the term for the Nyquist frequency in the middle
896
+ of all axes and the negative frequency terms in the second half of all
897
+ axes, in order of decreasingly negative frequency.
898
+
899
+ Parameters
900
+ ----------
901
+ a : array_like
902
+ Input array, can be complex.
903
+ s : sequence of ints, optional
904
+ Shape (length of each transformed axis) of the output
905
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
906
+ This corresponds to ``n`` for ``ifft(x, n)``.
907
+ Along any axis, if the given shape is smaller than that of the input,
908
+ the input is cropped. If it is larger, the input is padded with zeros.
909
+
910
+ .. versionchanged:: 2.0
911
+
912
+ If it is ``-1``, the whole input is used (no padding/trimming).
913
+
914
+ If `s` is not given, the shape of the input along the axes specified
915
+ by `axes` is used. See notes for issue on `ifft` zero padding.
916
+
917
+ .. deprecated:: 2.0
918
+
919
+ If `s` is not ``None``, `axes` must not be ``None`` either.
920
+
921
+ .. deprecated:: 2.0
922
+
923
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
924
+ values currently mean that the default value for ``n`` is used
925
+ in the corresponding 1-D transform, but this behaviour is
926
+ deprecated.
927
+
928
+ axes : sequence of ints, optional
929
+ Axes over which to compute the IFFT. If not given, the last ``len(s)``
930
+ axes are used, or all axes if `s` is also not specified.
931
+ Repeated indices in `axes` means that the inverse transform over that
932
+ axis is performed multiple times.
933
+
934
+ .. deprecated:: 2.0
935
+
936
+ If `s` is specified, the corresponding `axes` to be transformed
937
+ must be explicitly specified too.
938
+
939
+ norm : {"backward", "ortho", "forward"}, optional
940
+ Normalization mode (see `numpy.fft`). Default is "backward".
941
+ Indicates which direction of the forward/backward pair of transforms
942
+ is scaled and with what normalization factor.
943
+
944
+ .. versionadded:: 1.20.0
945
+
946
+ The "backward", "forward" values were added.
947
+
948
+ out : complex ndarray, optional
949
+ If provided, the result will be placed in this array. It should be
950
+ of the appropriate shape and dtype for all axes (and hence is
951
+ incompatible with passing in all but the trivial ``s``).
952
+
953
+ .. versionadded:: 2.0.0
954
+
955
+ Returns
956
+ -------
957
+ out : complex ndarray
958
+ The truncated or zero-padded input, transformed along the axes
959
+ indicated by `axes`, or by a combination of `s` or `a`,
960
+ as explained in the parameters section above.
961
+
962
+ Raises
963
+ ------
964
+ ValueError
965
+ If `s` and `axes` have different length.
966
+ IndexError
967
+ If an element of `axes` is larger than than the number of axes of `a`.
968
+
969
+ See Also
970
+ --------
971
+ numpy.fft : Overall view of discrete Fourier transforms, with definitions
972
+ and conventions used.
973
+ fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse.
974
+ ifft : The one-dimensional inverse FFT.
975
+ ifft2 : The two-dimensional inverse FFT.
976
+ ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning
977
+ of array.
978
+
979
+ Notes
980
+ -----
981
+ See `numpy.fft` for definitions and conventions used.
982
+
983
+ Zero-padding, analogously with `ifft`, is performed by appending zeros to
984
+ the input along the specified dimension. Although this is the common
985
+ approach, it might lead to surprising results. If another form of zero
986
+ padding is desired, it must be performed before `ifftn` is called.
987
+
988
+ Examples
989
+ --------
990
+ >>> import numpy as np
991
+ >>> a = np.eye(4)
992
+ >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))
993
+ array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary
994
+ [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
995
+ [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
996
+ [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])
997
+
998
+
999
+ Create and plot an image with band-limited frequency content:
1000
+
1001
+ >>> import matplotlib.pyplot as plt
1002
+ >>> n = np.zeros((200,200), dtype=complex)
1003
+ >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20)))
1004
+ >>> im = np.fft.ifftn(n).real
1005
+ >>> plt.imshow(im)
1006
+ <matplotlib.image.AxesImage object at 0x...>
1007
+ >>> plt.show()
1008
+
1009
+ """
1010
+ return _raw_fftnd(a, s, axes, ifft, norm, out=out)
1011
+
1012
+
1013
+ @array_function_dispatch(_fftn_dispatcher)
1014
+ def fft2(a, s=None, axes=(-2, -1), norm=None, out=None):
1015
+ """
1016
+ Compute the 2-dimensional discrete Fourier Transform.
1017
+
1018
+ This function computes the *n*-dimensional discrete Fourier Transform
1019
+ over any axes in an *M*-dimensional array by means of the
1020
+ Fast Fourier Transform (FFT). By default, the transform is computed over
1021
+ the last two axes of the input array, i.e., a 2-dimensional FFT.
1022
+
1023
+ Parameters
1024
+ ----------
1025
+ a : array_like
1026
+ Input array, can be complex
1027
+ s : sequence of ints, optional
1028
+ Shape (length of each transformed axis) of the output
1029
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
1030
+ This corresponds to ``n`` for ``fft(x, n)``.
1031
+ Along each axis, if the given shape is smaller than that of the input,
1032
+ the input is cropped. If it is larger, the input is padded with zeros.
1033
+
1034
+ .. versionchanged:: 2.0
1035
+
1036
+ If it is ``-1``, the whole input is used (no padding/trimming).
1037
+
1038
+ If `s` is not given, the shape of the input along the axes specified
1039
+ by `axes` is used.
1040
+
1041
+ .. deprecated:: 2.0
1042
+
1043
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1044
+
1045
+ .. deprecated:: 2.0
1046
+
1047
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1048
+ values currently mean that the default value for ``n`` is used
1049
+ in the corresponding 1-D transform, but this behaviour is
1050
+ deprecated.
1051
+
1052
+ axes : sequence of ints, optional
1053
+ Axes over which to compute the FFT. If not given, the last two
1054
+ axes are used. A repeated index in `axes` means the transform over
1055
+ that axis is performed multiple times. A one-element sequence means
1056
+ that a one-dimensional FFT is performed. Default: ``(-2, -1)``.
1057
+
1058
+ .. deprecated:: 2.0
1059
+
1060
+ If `s` is specified, the corresponding `axes` to be transformed
1061
+ must not be ``None``.
1062
+
1063
+ norm : {"backward", "ortho", "forward"}, optional
1064
+ Normalization mode (see `numpy.fft`). Default is "backward".
1065
+ Indicates which direction of the forward/backward pair of transforms
1066
+ is scaled and with what normalization factor.
1067
+
1068
+ .. versionadded:: 1.20.0
1069
+
1070
+ The "backward", "forward" values were added.
1071
+
1072
+ out : complex ndarray, optional
1073
+ If provided, the result will be placed in this array. It should be
1074
+ of the appropriate shape and dtype for all axes (and hence only the
1075
+ last axis can have ``s`` not equal to the shape at that axis).
1076
+
1077
+ .. versionadded:: 2.0.0
1078
+
1079
+ Returns
1080
+ -------
1081
+ out : complex ndarray
1082
+ The truncated or zero-padded input, transformed along the axes
1083
+ indicated by `axes`, or the last two axes if `axes` is not given.
1084
+
1085
+ Raises
1086
+ ------
1087
+ ValueError
1088
+ If `s` and `axes` have different length, or `axes` not given and
1089
+ ``len(s) != 2``.
1090
+ IndexError
1091
+ If an element of `axes` is larger than than the number of axes of `a`.
1092
+
1093
+ See Also
1094
+ --------
1095
+ numpy.fft : Overall view of discrete Fourier transforms, with definitions
1096
+ and conventions used.
1097
+ ifft2 : The inverse two-dimensional FFT.
1098
+ fft : The one-dimensional FFT.
1099
+ fftn : The *n*-dimensional FFT.
1100
+ fftshift : Shifts zero-frequency terms to the center of the array.
1101
+ For two-dimensional input, swaps first and third quadrants, and second
1102
+ and fourth quadrants.
1103
+
1104
+ Notes
1105
+ -----
1106
+ `fft2` is just `fftn` with a different default for `axes`.
1107
+
1108
+ The output, analogously to `fft`, contains the term for zero frequency in
1109
+ the low-order corner of the transformed axes, the positive frequency terms
1110
+ in the first half of these axes, the term for the Nyquist frequency in the
1111
+ middle of the axes and the negative frequency terms in the second half of
1112
+ the axes, in order of decreasingly negative frequency.
1113
+
1114
+ See `fftn` for details and a plotting example, and `numpy.fft` for
1115
+ definitions and conventions used.
1116
+
1117
+
1118
+ Examples
1119
+ --------
1120
+ >>> import numpy as np
1121
+ >>> a = np.mgrid[:5, :5][0]
1122
+ >>> np.fft.fft2(a)
1123
+ array([[ 50. +0.j , 0. +0.j , 0. +0.j , # may vary
1124
+ 0. +0.j , 0. +0.j ],
1125
+ [-12.5+17.20477401j, 0. +0.j , 0. +0.j ,
1126
+ 0. +0.j , 0. +0.j ],
1127
+ [-12.5 +4.0614962j , 0. +0.j , 0. +0.j ,
1128
+ 0. +0.j , 0. +0.j ],
1129
+ [-12.5 -4.0614962j , 0. +0.j , 0. +0.j ,
1130
+ 0. +0.j , 0. +0.j ],
1131
+ [-12.5-17.20477401j, 0. +0.j , 0. +0.j ,
1132
+ 0. +0.j , 0. +0.j ]])
1133
+
1134
+ """
1135
+ return _raw_fftnd(a, s, axes, fft, norm, out=out)
1136
+
1137
+
1138
+ @array_function_dispatch(_fftn_dispatcher)
1139
+ def ifft2(a, s=None, axes=(-2, -1), norm=None, out=None):
1140
+ """
1141
+ Compute the 2-dimensional inverse discrete Fourier Transform.
1142
+
1143
+ This function computes the inverse of the 2-dimensional discrete Fourier
1144
+ Transform over any number of axes in an M-dimensional array by means of
1145
+ the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a``
1146
+ to within numerical accuracy. By default, the inverse transform is
1147
+ computed over the last two axes of the input array.
1148
+
1149
+ The input, analogously to `ifft`, should be ordered in the same way as is
1150
+ returned by `fft2`, i.e. it should have the term for zero frequency
1151
+ in the low-order corner of the two axes, the positive frequency terms in
1152
+ the first half of these axes, the term for the Nyquist frequency in the
1153
+ middle of the axes and the negative frequency terms in the second half of
1154
+ both axes, in order of decreasingly negative frequency.
1155
+
1156
+ Parameters
1157
+ ----------
1158
+ a : array_like
1159
+ Input array, can be complex.
1160
+ s : sequence of ints, optional
1161
+ Shape (length of each axis) of the output (``s[0]`` refers to axis 0,
1162
+ ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``.
1163
+ Along each axis, if the given shape is smaller than that of the input,
1164
+ the input is cropped. If it is larger, the input is padded with zeros.
1165
+
1166
+ .. versionchanged:: 2.0
1167
+
1168
+ If it is ``-1``, the whole input is used (no padding/trimming).
1169
+
1170
+ If `s` is not given, the shape of the input along the axes specified
1171
+ by `axes` is used. See notes for issue on `ifft` zero padding.
1172
+
1173
+ .. deprecated:: 2.0
1174
+
1175
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1176
+
1177
+ .. deprecated:: 2.0
1178
+
1179
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1180
+ values currently mean that the default value for ``n`` is used
1181
+ in the corresponding 1-D transform, but this behaviour is
1182
+ deprecated.
1183
+
1184
+ axes : sequence of ints, optional
1185
+ Axes over which to compute the FFT. If not given, the last two
1186
+ axes are used. A repeated index in `axes` means the transform over
1187
+ that axis is performed multiple times. A one-element sequence means
1188
+ that a one-dimensional FFT is performed. Default: ``(-2, -1)``.
1189
+
1190
+ .. deprecated:: 2.0
1191
+
1192
+ If `s` is specified, the corresponding `axes` to be transformed
1193
+ must not be ``None``.
1194
+
1195
+ norm : {"backward", "ortho", "forward"}, optional
1196
+ Normalization mode (see `numpy.fft`). Default is "backward".
1197
+ Indicates which direction of the forward/backward pair of transforms
1198
+ is scaled and with what normalization factor.
1199
+
1200
+ .. versionadded:: 1.20.0
1201
+
1202
+ The "backward", "forward" values were added.
1203
+
1204
+ out : complex ndarray, optional
1205
+ If provided, the result will be placed in this array. It should be
1206
+ of the appropriate shape and dtype for all axes (and hence is
1207
+ incompatible with passing in all but the trivial ``s``).
1208
+
1209
+ .. versionadded:: 2.0.0
1210
+
1211
+ Returns
1212
+ -------
1213
+ out : complex ndarray
1214
+ The truncated or zero-padded input, transformed along the axes
1215
+ indicated by `axes`, or the last two axes if `axes` is not given.
1216
+
1217
+ Raises
1218
+ ------
1219
+ ValueError
1220
+ If `s` and `axes` have different length, or `axes` not given and
1221
+ ``len(s) != 2``.
1222
+ IndexError
1223
+ If an element of `axes` is larger than than the number of axes of `a`.
1224
+
1225
+ See Also
1226
+ --------
1227
+ numpy.fft : Overall view of discrete Fourier transforms, with definitions
1228
+ and conventions used.
1229
+ fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse.
1230
+ ifftn : The inverse of the *n*-dimensional FFT.
1231
+ fft : The one-dimensional FFT.
1232
+ ifft : The one-dimensional inverse FFT.
1233
+
1234
+ Notes
1235
+ -----
1236
+ `ifft2` is just `ifftn` with a different default for `axes`.
1237
+
1238
+ See `ifftn` for details and a plotting example, and `numpy.fft` for
1239
+ definition and conventions used.
1240
+
1241
+ Zero-padding, analogously with `ifft`, is performed by appending zeros to
1242
+ the input along the specified dimension. Although this is the common
1243
+ approach, it might lead to surprising results. If another form of zero
1244
+ padding is desired, it must be performed before `ifft2` is called.
1245
+
1246
+ Examples
1247
+ --------
1248
+ >>> import numpy as np
1249
+ >>> a = 4 * np.eye(4)
1250
+ >>> np.fft.ifft2(a)
1251
+ array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary
1252
+ [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
1253
+ [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
1254
+ [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])
1255
+
1256
+ """
1257
+ return _raw_fftnd(a, s, axes, ifft, norm, out=None)
1258
+
1259
+
1260
+ @array_function_dispatch(_fftn_dispatcher)
1261
+ def rfftn(a, s=None, axes=None, norm=None, out=None):
1262
+ """
1263
+ Compute the N-dimensional discrete Fourier Transform for real input.
1264
+
1265
+ This function computes the N-dimensional discrete Fourier Transform over
1266
+ any number of axes in an M-dimensional real array by means of the Fast
1267
+ Fourier Transform (FFT). By default, all axes are transformed, with the
1268
+ real transform performed over the last axis, while the remaining
1269
+ transforms are complex.
1270
+
1271
+ Parameters
1272
+ ----------
1273
+ a : array_like
1274
+ Input array, taken to be real.
1275
+ s : sequence of ints, optional
1276
+ Shape (length along each transformed axis) to use from the input.
1277
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
1278
+ The final element of `s` corresponds to `n` for ``rfft(x, n)``, while
1279
+ for the remaining axes, it corresponds to `n` for ``fft(x, n)``.
1280
+ Along any axis, if the given shape is smaller than that of the input,
1281
+ the input is cropped. If it is larger, the input is padded with zeros.
1282
+
1283
+ .. versionchanged:: 2.0
1284
+
1285
+ If it is ``-1``, the whole input is used (no padding/trimming).
1286
+
1287
+ If `s` is not given, the shape of the input along the axes specified
1288
+ by `axes` is used.
1289
+
1290
+ .. deprecated:: 2.0
1291
+
1292
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1293
+
1294
+ .. deprecated:: 2.0
1295
+
1296
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1297
+ values currently mean that the default value for ``n`` is used
1298
+ in the corresponding 1-D transform, but this behaviour is
1299
+ deprecated.
1300
+
1301
+ axes : sequence of ints, optional
1302
+ Axes over which to compute the FFT. If not given, the last ``len(s)``
1303
+ axes are used, or all axes if `s` is also not specified.
1304
+
1305
+ .. deprecated:: 2.0
1306
+
1307
+ If `s` is specified, the corresponding `axes` to be transformed
1308
+ must be explicitly specified too.
1309
+
1310
+ norm : {"backward", "ortho", "forward"}, optional
1311
+ Normalization mode (see `numpy.fft`). Default is "backward".
1312
+ Indicates which direction of the forward/backward pair of transforms
1313
+ is scaled and with what normalization factor.
1314
+
1315
+ .. versionadded:: 1.20.0
1316
+
1317
+ The "backward", "forward" values were added.
1318
+
1319
+ out : complex ndarray, optional
1320
+ If provided, the result will be placed in this array. It should be
1321
+ of the appropriate shape and dtype for all axes (and hence is
1322
+ incompatible with passing in all but the trivial ``s``).
1323
+
1324
+ .. versionadded:: 2.0.0
1325
+
1326
+ Returns
1327
+ -------
1328
+ out : complex ndarray
1329
+ The truncated or zero-padded input, transformed along the axes
1330
+ indicated by `axes`, or by a combination of `s` and `a`,
1331
+ as explained in the parameters section above.
1332
+ The length of the last axis transformed will be ``s[-1]//2+1``,
1333
+ while the remaining transformed axes will have lengths according to
1334
+ `s`, or unchanged from the input.
1335
+
1336
+ Raises
1337
+ ------
1338
+ ValueError
1339
+ If `s` and `axes` have different length.
1340
+ IndexError
1341
+ If an element of `axes` is larger than than the number of axes of `a`.
1342
+
1343
+ See Also
1344
+ --------
1345
+ irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT
1346
+ of real input.
1347
+ fft : The one-dimensional FFT, with definitions and conventions used.
1348
+ rfft : The one-dimensional FFT of real input.
1349
+ fftn : The n-dimensional FFT.
1350
+ rfft2 : The two-dimensional FFT of real input.
1351
+
1352
+ Notes
1353
+ -----
1354
+ The transform for real input is performed over the last transformation
1355
+ axis, as by `rfft`, then the transform over the remaining axes is
1356
+ performed as by `fftn`. The order of the output is as for `rfft` for the
1357
+ final transformation axis, and as for `fftn` for the remaining
1358
+ transformation axes.
1359
+
1360
+ See `fft` for details, definitions and conventions used.
1361
+
1362
+ Examples
1363
+ --------
1364
+ >>> import numpy as np
1365
+ >>> a = np.ones((2, 2, 2))
1366
+ >>> np.fft.rfftn(a)
1367
+ array([[[8.+0.j, 0.+0.j], # may vary
1368
+ [0.+0.j, 0.+0.j]],
1369
+ [[0.+0.j, 0.+0.j],
1370
+ [0.+0.j, 0.+0.j]]])
1371
+
1372
+ >>> np.fft.rfftn(a, axes=(2, 0))
1373
+ array([[[4.+0.j, 0.+0.j], # may vary
1374
+ [4.+0.j, 0.+0.j]],
1375
+ [[0.+0.j, 0.+0.j],
1376
+ [0.+0.j, 0.+0.j]]])
1377
+
1378
+ """
1379
+ a = asarray(a)
1380
+ s, axes = _cook_nd_args(a, s, axes)
1381
+ a = rfft(a, s[-1], axes[-1], norm, out=out)
1382
+ for ii in range(len(axes)-2, -1, -1):
1383
+ a = fft(a, s[ii], axes[ii], norm, out=out)
1384
+ return a
1385
+
1386
+
1387
+ @array_function_dispatch(_fftn_dispatcher)
1388
+ def rfft2(a, s=None, axes=(-2, -1), norm=None, out=None):
1389
+ """
1390
+ Compute the 2-dimensional FFT of a real array.
1391
+
1392
+ Parameters
1393
+ ----------
1394
+ a : array
1395
+ Input array, taken to be real.
1396
+ s : sequence of ints, optional
1397
+ Shape of the FFT.
1398
+
1399
+ .. versionchanged:: 2.0
1400
+
1401
+ If it is ``-1``, the whole input is used (no padding/trimming).
1402
+
1403
+ .. deprecated:: 2.0
1404
+
1405
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1406
+
1407
+ .. deprecated:: 2.0
1408
+
1409
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1410
+ values currently mean that the default value for ``n`` is used
1411
+ in the corresponding 1-D transform, but this behaviour is
1412
+ deprecated.
1413
+
1414
+ axes : sequence of ints, optional
1415
+ Axes over which to compute the FFT. Default: ``(-2, -1)``.
1416
+
1417
+ .. deprecated:: 2.0
1418
+
1419
+ If `s` is specified, the corresponding `axes` to be transformed
1420
+ must not be ``None``.
1421
+
1422
+ norm : {"backward", "ortho", "forward"}, optional
1423
+ Normalization mode (see `numpy.fft`). Default is "backward".
1424
+ Indicates which direction of the forward/backward pair of transforms
1425
+ is scaled and with what normalization factor.
1426
+
1427
+ .. versionadded:: 1.20.0
1428
+
1429
+ The "backward", "forward" values were added.
1430
+
1431
+ out : complex ndarray, optional
1432
+ If provided, the result will be placed in this array. It should be
1433
+ of the appropriate shape and dtype for the last inverse transform.
1434
+ incompatible with passing in all but the trivial ``s``).
1435
+
1436
+ .. versionadded:: 2.0.0
1437
+
1438
+ Returns
1439
+ -------
1440
+ out : ndarray
1441
+ The result of the real 2-D FFT.
1442
+
1443
+ See Also
1444
+ --------
1445
+ rfftn : Compute the N-dimensional discrete Fourier Transform for real
1446
+ input.
1447
+
1448
+ Notes
1449
+ -----
1450
+ This is really just `rfftn` with different default behavior.
1451
+ For more details see `rfftn`.
1452
+
1453
+ Examples
1454
+ --------
1455
+ >>> import numpy as np
1456
+ >>> a = np.mgrid[:5, :5][0]
1457
+ >>> np.fft.rfft2(a)
1458
+ array([[ 50. +0.j , 0. +0.j , 0. +0.j ],
1459
+ [-12.5+17.20477401j, 0. +0.j , 0. +0.j ],
1460
+ [-12.5 +4.0614962j , 0. +0.j , 0. +0.j ],
1461
+ [-12.5 -4.0614962j , 0. +0.j , 0. +0.j ],
1462
+ [-12.5-17.20477401j, 0. +0.j , 0. +0.j ]])
1463
+ """
1464
+ return rfftn(a, s, axes, norm, out=out)
1465
+
1466
+
1467
+ @array_function_dispatch(_fftn_dispatcher)
1468
+ def irfftn(a, s=None, axes=None, norm=None, out=None):
1469
+ """
1470
+ Computes the inverse of `rfftn`.
1471
+
1472
+ This function computes the inverse of the N-dimensional discrete
1473
+ Fourier Transform for real input over any number of axes in an
1474
+ M-dimensional array by means of the Fast Fourier Transform (FFT). In
1475
+ other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical
1476
+ accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`,
1477
+ and for the same reason.)
1478
+
1479
+ The input should be ordered in the same way as is returned by `rfftn`,
1480
+ i.e. as for `irfft` for the final transformation axis, and as for `ifftn`
1481
+ along all the other axes.
1482
+
1483
+ Parameters
1484
+ ----------
1485
+ a : array_like
1486
+ Input array.
1487
+ s : sequence of ints, optional
1488
+ Shape (length of each transformed axis) of the output
1489
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
1490
+ number of input points used along this axis, except for the last axis,
1491
+ where ``s[-1]//2+1`` points of the input are used.
1492
+ Along any axis, if the shape indicated by `s` is smaller than that of
1493
+ the input, the input is cropped. If it is larger, the input is padded
1494
+ with zeros.
1495
+
1496
+ .. versionchanged:: 2.0
1497
+
1498
+ If it is ``-1``, the whole input is used (no padding/trimming).
1499
+
1500
+ If `s` is not given, the shape of the input along the axes
1501
+ specified by axes is used. Except for the last axis which is taken to
1502
+ be ``2*(m-1)`` where ``m`` is the length of the input along that axis.
1503
+
1504
+ .. deprecated:: 2.0
1505
+
1506
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1507
+
1508
+ .. deprecated:: 2.0
1509
+
1510
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1511
+ values currently mean that the default value for ``n`` is used
1512
+ in the corresponding 1-D transform, but this behaviour is
1513
+ deprecated.
1514
+
1515
+ axes : sequence of ints, optional
1516
+ Axes over which to compute the inverse FFT. If not given, the last
1517
+ `len(s)` axes are used, or all axes if `s` is also not specified.
1518
+ Repeated indices in `axes` means that the inverse transform over that
1519
+ axis is performed multiple times.
1520
+
1521
+ .. deprecated:: 2.0
1522
+
1523
+ If `s` is specified, the corresponding `axes` to be transformed
1524
+ must be explicitly specified too.
1525
+
1526
+ norm : {"backward", "ortho", "forward"}, optional
1527
+ Normalization mode (see `numpy.fft`). Default is "backward".
1528
+ Indicates which direction of the forward/backward pair of transforms
1529
+ is scaled and with what normalization factor.
1530
+
1531
+ .. versionadded:: 1.20.0
1532
+
1533
+ The "backward", "forward" values were added.
1534
+
1535
+ out : ndarray, optional
1536
+ If provided, the result will be placed in this array. It should be
1537
+ of the appropriate shape and dtype for the last transformation.
1538
+
1539
+ .. versionadded:: 2.0.0
1540
+
1541
+ Returns
1542
+ -------
1543
+ out : ndarray
1544
+ The truncated or zero-padded input, transformed along the axes
1545
+ indicated by `axes`, or by a combination of `s` or `a`,
1546
+ as explained in the parameters section above.
1547
+ The length of each transformed axis is as given by the corresponding
1548
+ element of `s`, or the length of the input in every axis except for the
1549
+ last one if `s` is not given. In the final transformed axis the length
1550
+ of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the
1551
+ length of the final transformed axis of the input. To get an odd
1552
+ number of output points in the final axis, `s` must be specified.
1553
+
1554
+ Raises
1555
+ ------
1556
+ ValueError
1557
+ If `s` and `axes` have different length.
1558
+ IndexError
1559
+ If an element of `axes` is larger than than the number of axes of `a`.
1560
+
1561
+ See Also
1562
+ --------
1563
+ rfftn : The forward n-dimensional FFT of real input,
1564
+ of which `ifftn` is the inverse.
1565
+ fft : The one-dimensional FFT, with definitions and conventions used.
1566
+ irfft : The inverse of the one-dimensional FFT of real input.
1567
+ irfft2 : The inverse of the two-dimensional FFT of real input.
1568
+
1569
+ Notes
1570
+ -----
1571
+ See `fft` for definitions and conventions used.
1572
+
1573
+ See `rfft` for definitions and conventions used for real input.
1574
+
1575
+ The correct interpretation of the hermitian input depends on the shape of
1576
+ the original data, as given by `s`. This is because each input shape could
1577
+ correspond to either an odd or even length signal. By default, `irfftn`
1578
+ assumes an even output length which puts the last entry at the Nyquist
1579
+ frequency; aliasing with its symmetric counterpart. When performing the
1580
+ final complex to real transform, the last value is thus treated as purely
1581
+ real. To avoid losing information, the correct shape of the real input
1582
+ **must** be given.
1583
+
1584
+ Examples
1585
+ --------
1586
+ >>> import numpy as np
1587
+ >>> a = np.zeros((3, 2, 2))
1588
+ >>> a[0, 0, 0] = 3 * 2 * 2
1589
+ >>> np.fft.irfftn(a)
1590
+ array([[[1., 1.],
1591
+ [1., 1.]],
1592
+ [[1., 1.],
1593
+ [1., 1.]],
1594
+ [[1., 1.],
1595
+ [1., 1.]]])
1596
+
1597
+ """
1598
+ a = asarray(a)
1599
+ s, axes = _cook_nd_args(a, s, axes, invreal=1)
1600
+ for ii in range(len(axes)-1):
1601
+ a = ifft(a, s[ii], axes[ii], norm)
1602
+ a = irfft(a, s[-1], axes[-1], norm, out=out)
1603
+ return a
1604
+
1605
+
1606
+ @array_function_dispatch(_fftn_dispatcher)
1607
+ def irfft2(a, s=None, axes=(-2, -1), norm=None, out=None):
1608
+ """
1609
+ Computes the inverse of `rfft2`.
1610
+
1611
+ Parameters
1612
+ ----------
1613
+ a : array_like
1614
+ The input array
1615
+ s : sequence of ints, optional
1616
+ Shape of the real output to the inverse FFT.
1617
+
1618
+ .. versionchanged:: 2.0
1619
+
1620
+ If it is ``-1``, the whole input is used (no padding/trimming).
1621
+
1622
+ .. deprecated:: 2.0
1623
+
1624
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1625
+
1626
+ .. deprecated:: 2.0
1627
+
1628
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1629
+ values currently mean that the default value for ``n`` is used
1630
+ in the corresponding 1-D transform, but this behaviour is
1631
+ deprecated.
1632
+
1633
+ axes : sequence of ints, optional
1634
+ The axes over which to compute the inverse fft.
1635
+ Default: ``(-2, -1)``, the last two axes.
1636
+
1637
+ .. deprecated:: 2.0
1638
+
1639
+ If `s` is specified, the corresponding `axes` to be transformed
1640
+ must not be ``None``.
1641
+
1642
+ norm : {"backward", "ortho", "forward"}, optional
1643
+ Normalization mode (see `numpy.fft`). Default is "backward".
1644
+ Indicates which direction of the forward/backward pair of transforms
1645
+ is scaled and with what normalization factor.
1646
+
1647
+ .. versionadded:: 1.20.0
1648
+
1649
+ The "backward", "forward" values were added.
1650
+
1651
+ out : ndarray, optional
1652
+ If provided, the result will be placed in this array. It should be
1653
+ of the appropriate shape and dtype for the last transformation.
1654
+
1655
+ .. versionadded:: 2.0.0
1656
+
1657
+ Returns
1658
+ -------
1659
+ out : ndarray
1660
+ The result of the inverse real 2-D FFT.
1661
+
1662
+ See Also
1663
+ --------
1664
+ rfft2 : The forward two-dimensional FFT of real input,
1665
+ of which `irfft2` is the inverse.
1666
+ rfft : The one-dimensional FFT for real input.
1667
+ irfft : The inverse of the one-dimensional FFT of real input.
1668
+ irfftn : Compute the inverse of the N-dimensional FFT of real input.
1669
+
1670
+ Notes
1671
+ -----
1672
+ This is really `irfftn` with different defaults.
1673
+ For more details see `irfftn`.
1674
+
1675
+ Examples
1676
+ --------
1677
+ >>> import numpy as np
1678
+ >>> a = np.mgrid[:5, :5][0]
1679
+ >>> A = np.fft.rfft2(a)
1680
+ >>> np.fft.irfft2(A, s=a.shape)
1681
+ array([[0., 0., 0., 0., 0.],
1682
+ [1., 1., 1., 1., 1.],
1683
+ [2., 2., 2., 2., 2.],
1684
+ [3., 3., 3., 3., 3.],
1685
+ [4., 4., 4., 4., 4.]])
1686
+ """
1687
+ return irfftn(a, s, axes, norm, out=None)
janus/lib/python3.10/site-packages/numpy/fft/_pocketfft.pyi ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Sequence
2
+ from typing import Literal as L, TypeAlias
3
+
4
+ from numpy import complex128, float64
5
+ from numpy._typing import ArrayLike, NDArray, _ArrayLikeNumber_co
6
+
7
+ __all__ = [
8
+ "fft",
9
+ "ifft",
10
+ "rfft",
11
+ "irfft",
12
+ "hfft",
13
+ "ihfft",
14
+ "rfftn",
15
+ "irfftn",
16
+ "rfft2",
17
+ "irfft2",
18
+ "fft2",
19
+ "ifft2",
20
+ "fftn",
21
+ "ifftn",
22
+ ]
23
+
24
+ _NormKind: TypeAlias = L[None, "backward", "ortho", "forward"]
25
+
26
+ def fft(
27
+ a: ArrayLike,
28
+ n: None | int = ...,
29
+ axis: int = ...,
30
+ norm: _NormKind = ...,
31
+ out: None | NDArray[complex128] = ...,
32
+ ) -> NDArray[complex128]: ...
33
+
34
+ def ifft(
35
+ a: ArrayLike,
36
+ n: None | int = ...,
37
+ axis: int = ...,
38
+ norm: _NormKind = ...,
39
+ out: None | NDArray[complex128] = ...,
40
+ ) -> NDArray[complex128]: ...
41
+
42
+ def rfft(
43
+ a: ArrayLike,
44
+ n: None | int = ...,
45
+ axis: int = ...,
46
+ norm: _NormKind = ...,
47
+ out: None | NDArray[complex128] = ...,
48
+ ) -> NDArray[complex128]: ...
49
+
50
+ def irfft(
51
+ a: ArrayLike,
52
+ n: None | int = ...,
53
+ axis: int = ...,
54
+ norm: _NormKind = ...,
55
+ out: None | NDArray[float64] = ...,
56
+ ) -> NDArray[float64]: ...
57
+
58
+ # Input array must be compatible with `np.conjugate`
59
+ def hfft(
60
+ a: _ArrayLikeNumber_co,
61
+ n: None | int = ...,
62
+ axis: int = ...,
63
+ norm: _NormKind = ...,
64
+ out: None | NDArray[float64] = ...,
65
+ ) -> NDArray[float64]: ...
66
+
67
+ def ihfft(
68
+ a: ArrayLike,
69
+ n: None | int = ...,
70
+ axis: int = ...,
71
+ norm: _NormKind = ...,
72
+ out: None | NDArray[complex128] = ...,
73
+ ) -> NDArray[complex128]: ...
74
+
75
+ def fftn(
76
+ a: ArrayLike,
77
+ s: None | Sequence[int] = ...,
78
+ axes: None | Sequence[int] = ...,
79
+ norm: _NormKind = ...,
80
+ out: None | NDArray[complex128] = ...,
81
+ ) -> NDArray[complex128]: ...
82
+
83
+ def ifftn(
84
+ a: ArrayLike,
85
+ s: None | Sequence[int] = ...,
86
+ axes: None | Sequence[int] = ...,
87
+ norm: _NormKind = ...,
88
+ out: None | NDArray[complex128] = ...,
89
+ ) -> NDArray[complex128]: ...
90
+
91
+ def rfftn(
92
+ a: ArrayLike,
93
+ s: None | Sequence[int] = ...,
94
+ axes: None | Sequence[int] = ...,
95
+ norm: _NormKind = ...,
96
+ out: None | NDArray[complex128] = ...,
97
+ ) -> NDArray[complex128]: ...
98
+
99
+ def irfftn(
100
+ a: ArrayLike,
101
+ s: None | Sequence[int] = ...,
102
+ axes: None | Sequence[int] = ...,
103
+ norm: _NormKind = ...,
104
+ out: None | NDArray[float64] = ...,
105
+ ) -> NDArray[float64]: ...
106
+
107
+ def fft2(
108
+ a: ArrayLike,
109
+ s: None | Sequence[int] = ...,
110
+ axes: None | Sequence[int] = ...,
111
+ norm: _NormKind = ...,
112
+ out: None | NDArray[complex128] = ...,
113
+ ) -> NDArray[complex128]: ...
114
+
115
+ def ifft2(
116
+ a: ArrayLike,
117
+ s: None | Sequence[int] = ...,
118
+ axes: None | Sequence[int] = ...,
119
+ norm: _NormKind = ...,
120
+ out: None | NDArray[complex128] = ...,
121
+ ) -> NDArray[complex128]: ...
122
+
123
+ def rfft2(
124
+ a: ArrayLike,
125
+ s: None | Sequence[int] = ...,
126
+ axes: None | Sequence[int] = ...,
127
+ norm: _NormKind = ...,
128
+ out: None | NDArray[complex128] = ...,
129
+ ) -> NDArray[complex128]: ...
130
+
131
+ def irfft2(
132
+ a: ArrayLike,
133
+ s: None | Sequence[int] = ...,
134
+ axes: None | Sequence[int] = ...,
135
+ norm: _NormKind = ...,
136
+ out: None | NDArray[float64] = ...,
137
+ ) -> NDArray[float64]: ...
janus/lib/python3.10/site-packages/numpy/fft/helper.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(attr_name):
2
+ import warnings
3
+ from numpy.fft import _helper
4
+ ret = getattr(_helper, attr_name, None)
5
+ if ret is None:
6
+ raise AttributeError(
7
+ f"module 'numpy.fft.helper' has no attribute {attr_name}")
8
+ warnings.warn(
9
+ "The numpy.fft.helper has been made private and renamed to "
10
+ "numpy.fft._helper. All four functions exported by it (i.e. fftshift, "
11
+ "ifftshift, fftfreq, rfftfreq) are available from numpy.fft. "
12
+ f"Please use numpy.fft.{attr_name} instead.",
13
+ DeprecationWarning,
14
+ stacklevel=3
15
+ )
16
+ return ret
janus/lib/python3.10/site-packages/numpy/fft/tests/__init__.py ADDED
File without changes
janus/lib/python3.10/site-packages/numpy/fft/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (166 Bytes). View file
 
janus/lib/python3.10/site-packages/numpy/fft/tests/__pycache__/test_helper.cpython-310.pyc ADDED
Binary file (5.06 kB). View file
 
janus/lib/python3.10/site-packages/numpy/fft/tests/__pycache__/test_pocketfft.cpython-310.pyc ADDED
Binary file (20.4 kB). View file
 
janus/lib/python3.10/site-packages/numpy/fft/tests/test_helper.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Test functions for fftpack.helper module
2
+
3
+ Copied from fftpack.helper by Pearu Peterson, October 2005
4
+
5
+ """
6
+ import numpy as np
7
+ from numpy.testing import assert_array_almost_equal
8
+ from numpy import fft, pi
9
+
10
+
11
+ class TestFFTShift:
12
+
13
+ def test_definition(self):
14
+ x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
15
+ y = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
16
+ assert_array_almost_equal(fft.fftshift(x), y)
17
+ assert_array_almost_equal(fft.ifftshift(y), x)
18
+ x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
19
+ y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
20
+ assert_array_almost_equal(fft.fftshift(x), y)
21
+ assert_array_almost_equal(fft.ifftshift(y), x)
22
+
23
+ def test_inverse(self):
24
+ for n in [1, 4, 9, 100, 211]:
25
+ x = np.random.random((n,))
26
+ assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x)
27
+
28
+ def test_axes_keyword(self):
29
+ freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]]
30
+ shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]]
31
+ assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
32
+ assert_array_almost_equal(fft.fftshift(freqs, axes=0),
33
+ fft.fftshift(freqs, axes=(0,)))
34
+ assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
35
+ assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
36
+ fft.ifftshift(shifted, axes=(0,)))
37
+
38
+ assert_array_almost_equal(fft.fftshift(freqs), shifted)
39
+ assert_array_almost_equal(fft.ifftshift(shifted), freqs)
40
+
41
+ def test_uneven_dims(self):
42
+ """ Test 2D input, which has uneven dimension sizes """
43
+ freqs = [
44
+ [0, 1],
45
+ [2, 3],
46
+ [4, 5]
47
+ ]
48
+
49
+ # shift in dimension 0
50
+ shift_dim0 = [
51
+ [4, 5],
52
+ [0, 1],
53
+ [2, 3]
54
+ ]
55
+ assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0)
56
+ assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs)
57
+ assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0)
58
+ assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs)
59
+
60
+ # shift in dimension 1
61
+ shift_dim1 = [
62
+ [1, 0],
63
+ [3, 2],
64
+ [5, 4]
65
+ ]
66
+ assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1)
67
+ assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs)
68
+
69
+ # shift in both dimensions
70
+ shift_dim_both = [
71
+ [5, 4],
72
+ [1, 0],
73
+ [3, 2]
74
+ ]
75
+ assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both)
76
+ assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs)
77
+ assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both)
78
+ assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs)
79
+
80
+ # axes=None (default) shift in all dimensions
81
+ assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both)
82
+ assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs)
83
+ assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both)
84
+ assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs)
85
+
86
+ def test_equal_to_original(self):
87
+ """ Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14) """
88
+ from numpy._core import asarray, concatenate, arange, take
89
+
90
+ def original_fftshift(x, axes=None):
91
+ """ How fftshift was implemented in v1.14"""
92
+ tmp = asarray(x)
93
+ ndim = tmp.ndim
94
+ if axes is None:
95
+ axes = list(range(ndim))
96
+ elif isinstance(axes, int):
97
+ axes = (axes,)
98
+ y = tmp
99
+ for k in axes:
100
+ n = tmp.shape[k]
101
+ p2 = (n + 1) // 2
102
+ mylist = concatenate((arange(p2, n), arange(p2)))
103
+ y = take(y, mylist, k)
104
+ return y
105
+
106
+ def original_ifftshift(x, axes=None):
107
+ """ How ifftshift was implemented in v1.14 """
108
+ tmp = asarray(x)
109
+ ndim = tmp.ndim
110
+ if axes is None:
111
+ axes = list(range(ndim))
112
+ elif isinstance(axes, int):
113
+ axes = (axes,)
114
+ y = tmp
115
+ for k in axes:
116
+ n = tmp.shape[k]
117
+ p2 = n - (n + 1) // 2
118
+ mylist = concatenate((arange(p2, n), arange(p2)))
119
+ y = take(y, mylist, k)
120
+ return y
121
+
122
+ # create possible 2d array combinations and try all possible keywords
123
+ # compare output to original functions
124
+ for i in range(16):
125
+ for j in range(16):
126
+ for axes_keyword in [0, 1, None, (0,), (0, 1)]:
127
+ inp = np.random.rand(i, j)
128
+
129
+ assert_array_almost_equal(fft.fftshift(inp, axes_keyword),
130
+ original_fftshift(inp, axes_keyword))
131
+
132
+ assert_array_almost_equal(fft.ifftshift(inp, axes_keyword),
133
+ original_ifftshift(inp, axes_keyword))
134
+
135
+
136
+ class TestFFTFreq:
137
+
138
+ def test_definition(self):
139
+ x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
140
+ assert_array_almost_equal(9*fft.fftfreq(9), x)
141
+ assert_array_almost_equal(9*pi*fft.fftfreq(9, pi), x)
142
+ x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
143
+ assert_array_almost_equal(10*fft.fftfreq(10), x)
144
+ assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x)
145
+
146
+
147
+ class TestRFFTFreq:
148
+
149
+ def test_definition(self):
150
+ x = [0, 1, 2, 3, 4]
151
+ assert_array_almost_equal(9*fft.rfftfreq(9), x)
152
+ assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x)
153
+ x = [0, 1, 2, 3, 4, 5]
154
+ assert_array_almost_equal(10*fft.rfftfreq(10), x)
155
+ assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x)
156
+
157
+
158
+ class TestIRFFTN:
159
+
160
+ def test_not_last_axis_success(self):
161
+ ar, ai = np.random.random((2, 16, 8, 32))
162
+ a = ar + 1j*ai
163
+
164
+ axes = (-2,)
165
+
166
+ # Should not raise error
167
+ fft.irfftn(a, axes=axes)
janus/lib/python3.10/site-packages/numpy/fft/tests/test_pocketfft.py ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+ from numpy.random import random
4
+ from numpy.testing import (
5
+ assert_array_equal, assert_raises, assert_allclose, IS_WASM
6
+ )
7
+ import threading
8
+ import queue
9
+
10
+
11
+ def fft1(x):
12
+ L = len(x)
13
+ phase = -2j * np.pi * (np.arange(L) / L)
14
+ phase = np.arange(L).reshape(-1, 1) * phase
15
+ return np.sum(x*np.exp(phase), axis=1)
16
+
17
+
18
+ class TestFFTShift:
19
+
20
+ def test_fft_n(self):
21
+ assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)
22
+
23
+
24
+ class TestFFT1D:
25
+
26
+ def test_identity(self):
27
+ maxlen = 512
28
+ x = random(maxlen) + 1j*random(maxlen)
29
+ xr = random(maxlen)
30
+ for i in range(1, maxlen):
31
+ assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
32
+ atol=1e-12)
33
+ assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i),
34
+ xr[0:i], atol=1e-12)
35
+
36
+ @pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble])
37
+ def test_identity_long_short(self, dtype):
38
+ # Test with explicitly given number of points, both for n
39
+ # smaller and for n larger than the input size.
40
+ maxlen = 16
41
+ atol = 5 * np.spacing(np.array(1., dtype=dtype))
42
+ x = random(maxlen).astype(dtype) + 1j*random(maxlen).astype(dtype)
43
+ xx = np.concatenate([x, np.zeros_like(x)])
44
+ xr = random(maxlen).astype(dtype)
45
+ xxr = np.concatenate([xr, np.zeros_like(xr)])
46
+ for i in range(1, maxlen*2):
47
+ check_c = np.fft.ifft(np.fft.fft(x, n=i), n=i)
48
+ assert check_c.real.dtype == dtype
49
+ assert_allclose(check_c, xx[0:i], atol=atol, rtol=0)
50
+ check_r = np.fft.irfft(np.fft.rfft(xr, n=i), n=i)
51
+ assert check_r.dtype == dtype
52
+ assert_allclose(check_r, xxr[0:i], atol=atol, rtol=0)
53
+
54
+ @pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble])
55
+ def test_identity_long_short_reversed(self, dtype):
56
+ # Also test explicitly given number of points in reversed order.
57
+ maxlen = 16
58
+ atol = 5 * np.spacing(np.array(1., dtype=dtype))
59
+ x = random(maxlen).astype(dtype) + 1j*random(maxlen).astype(dtype)
60
+ xx = np.concatenate([x, np.zeros_like(x)])
61
+ for i in range(1, maxlen*2):
62
+ check_via_c = np.fft.fft(np.fft.ifft(x, n=i), n=i)
63
+ assert check_via_c.dtype == x.dtype
64
+ assert_allclose(check_via_c, xx[0:i], atol=atol, rtol=0)
65
+ # For irfft, we can neither recover the imaginary part of
66
+ # the first element, nor the imaginary part of the last
67
+ # element if npts is even. So, set to 0 for the comparison.
68
+ y = x.copy()
69
+ n = i // 2 + 1
70
+ y.imag[0] = 0
71
+ if i % 2 == 0:
72
+ y.imag[n-1:] = 0
73
+ yy = np.concatenate([y, np.zeros_like(y)])
74
+ check_via_r = np.fft.rfft(np.fft.irfft(x, n=i), n=i)
75
+ assert check_via_r.dtype == x.dtype
76
+ assert_allclose(check_via_r, yy[0:n], atol=atol, rtol=0)
77
+
78
+ def test_fft(self):
79
+ x = random(30) + 1j*random(30)
80
+ assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
81
+ assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6)
82
+ assert_allclose(fft1(x) / np.sqrt(30),
83
+ np.fft.fft(x, norm="ortho"), atol=1e-6)
84
+ assert_allclose(fft1(x) / 30.,
85
+ np.fft.fft(x, norm="forward"), atol=1e-6)
86
+
87
+ @pytest.mark.parametrize("axis", (0, 1))
88
+ @pytest.mark.parametrize("dtype", (complex, float))
89
+ @pytest.mark.parametrize("transpose", (True, False))
90
+ def test_fft_out_argument(self, dtype, transpose, axis):
91
+ def zeros_like(x):
92
+ if transpose:
93
+ return np.zeros_like(x.T).T
94
+ else:
95
+ return np.zeros_like(x)
96
+
97
+ # tests below only test the out parameter
98
+ if dtype is complex:
99
+ y = random((10, 20)) + 1j*random((10, 20))
100
+ fft, ifft = np.fft.fft, np.fft.ifft
101
+ else:
102
+ y = random((10, 20))
103
+ fft, ifft = np.fft.rfft, np.fft.irfft
104
+
105
+ expected = fft(y, axis=axis)
106
+ out = zeros_like(expected)
107
+ result = fft(y, out=out, axis=axis)
108
+ assert result is out
109
+ assert_array_equal(result, expected)
110
+
111
+ expected2 = ifft(expected, axis=axis)
112
+ out2 = out if dtype is complex else zeros_like(expected2)
113
+ result2 = ifft(out, out=out2, axis=axis)
114
+ assert result2 is out2
115
+ assert_array_equal(result2, expected2)
116
+
117
+ @pytest.mark.parametrize("axis", [0, 1])
118
+ def test_fft_inplace_out(self, axis):
119
+ # Test some weirder in-place combinations
120
+ y = random((20, 20)) + 1j*random((20, 20))
121
+ # Fully in-place.
122
+ y1 = y.copy()
123
+ expected1 = np.fft.fft(y1, axis=axis)
124
+ result1 = np.fft.fft(y1, axis=axis, out=y1)
125
+ assert result1 is y1
126
+ assert_array_equal(result1, expected1)
127
+ # In-place of part of the array; rest should be unchanged.
128
+ y2 = y.copy()
129
+ out2 = y2[:10] if axis == 0 else y2[:, :10]
130
+ expected2 = np.fft.fft(y2, n=10, axis=axis)
131
+ result2 = np.fft.fft(y2, n=10, axis=axis, out=out2)
132
+ assert result2 is out2
133
+ assert_array_equal(result2, expected2)
134
+ if axis == 0:
135
+ assert_array_equal(y2[10:], y[10:])
136
+ else:
137
+ assert_array_equal(y2[:, 10:], y[:, 10:])
138
+ # In-place of another part of the array.
139
+ y3 = y.copy()
140
+ y3_sel = y3[5:] if axis == 0 else y3[:, 5:]
141
+ out3 = y3[5:15] if axis == 0 else y3[:, 5:15]
142
+ expected3 = np.fft.fft(y3_sel, n=10, axis=axis)
143
+ result3 = np.fft.fft(y3_sel, n=10, axis=axis, out=out3)
144
+ assert result3 is out3
145
+ assert_array_equal(result3, expected3)
146
+ if axis == 0:
147
+ assert_array_equal(y3[:5], y[:5])
148
+ assert_array_equal(y3[15:], y[15:])
149
+ else:
150
+ assert_array_equal(y3[:, :5], y[:, :5])
151
+ assert_array_equal(y3[:, 15:], y[:, 15:])
152
+ # In-place with n > nin; rest should be unchanged.
153
+ y4 = y.copy()
154
+ y4_sel = y4[:10] if axis == 0 else y4[:, :10]
155
+ out4 = y4[:15] if axis == 0 else y4[:, :15]
156
+ expected4 = np.fft.fft(y4_sel, n=15, axis=axis)
157
+ result4 = np.fft.fft(y4_sel, n=15, axis=axis, out=out4)
158
+ assert result4 is out4
159
+ assert_array_equal(result4, expected4)
160
+ if axis == 0:
161
+ assert_array_equal(y4[15:], y[15:])
162
+ else:
163
+ assert_array_equal(y4[:, 15:], y[:, 15:])
164
+ # Overwrite in a transpose.
165
+ y5 = y.copy()
166
+ out5 = y5.T
167
+ result5 = np.fft.fft(y5, axis=axis, out=out5)
168
+ assert result5 is out5
169
+ assert_array_equal(result5, expected1)
170
+ # Reverse strides.
171
+ y6 = y.copy()
172
+ out6 = y6[::-1] if axis == 0 else y6[:, ::-1]
173
+ result6 = np.fft.fft(y6, axis=axis, out=out6)
174
+ assert result6 is out6
175
+ assert_array_equal(result6, expected1)
176
+
177
+ def test_fft_bad_out(self):
178
+ x = np.arange(30.)
179
+ with pytest.raises(TypeError, match="must be of ArrayType"):
180
+ np.fft.fft(x, out="")
181
+ with pytest.raises(ValueError, match="has wrong shape"):
182
+ np.fft.fft(x, out=np.zeros_like(x).reshape(5, -1))
183
+ with pytest.raises(TypeError, match="Cannot cast"):
184
+ np.fft.fft(x, out=np.zeros_like(x, dtype=float))
185
+
186
+ @pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward'))
187
+ def test_ifft(self, norm):
188
+ x = random(30) + 1j*random(30)
189
+ assert_allclose(
190
+ x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
191
+ atol=1e-6)
192
+ # Ensure we get the correct error message
193
+ with pytest.raises(ValueError,
194
+ match='Invalid number of FFT data points'):
195
+ np.fft.ifft([], norm=norm)
196
+
197
+ def test_fft2(self):
198
+ x = random((30, 20)) + 1j*random((30, 20))
199
+ assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
200
+ np.fft.fft2(x), atol=1e-6)
201
+ assert_allclose(np.fft.fft2(x),
202
+ np.fft.fft2(x, norm="backward"), atol=1e-6)
203
+ assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
204
+ np.fft.fft2(x, norm="ortho"), atol=1e-6)
205
+ assert_allclose(np.fft.fft2(x) / (30. * 20.),
206
+ np.fft.fft2(x, norm="forward"), atol=1e-6)
207
+
208
+ def test_ifft2(self):
209
+ x = random((30, 20)) + 1j*random((30, 20))
210
+ assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
211
+ np.fft.ifft2(x), atol=1e-6)
212
+ assert_allclose(np.fft.ifft2(x),
213
+ np.fft.ifft2(x, norm="backward"), atol=1e-6)
214
+ assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
215
+ np.fft.ifft2(x, norm="ortho"), atol=1e-6)
216
+ assert_allclose(np.fft.ifft2(x) * (30. * 20.),
217
+ np.fft.ifft2(x, norm="forward"), atol=1e-6)
218
+
219
+ def test_fftn(self):
220
+ x = random((30, 20, 10)) + 1j*random((30, 20, 10))
221
+ assert_allclose(
222
+ np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
223
+ np.fft.fftn(x), atol=1e-6)
224
+ assert_allclose(np.fft.fftn(x),
225
+ np.fft.fftn(x, norm="backward"), atol=1e-6)
226
+ assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
227
+ np.fft.fftn(x, norm="ortho"), atol=1e-6)
228
+ assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.),
229
+ np.fft.fftn(x, norm="forward"), atol=1e-6)
230
+
231
+ def test_ifftn(self):
232
+ x = random((30, 20, 10)) + 1j*random((30, 20, 10))
233
+ assert_allclose(
234
+ np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
235
+ np.fft.ifftn(x), atol=1e-6)
236
+ assert_allclose(np.fft.ifftn(x),
237
+ np.fft.ifftn(x, norm="backward"), atol=1e-6)
238
+ assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
239
+ np.fft.ifftn(x, norm="ortho"), atol=1e-6)
240
+ assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.),
241
+ np.fft.ifftn(x, norm="forward"), atol=1e-6)
242
+
243
+ def test_rfft(self):
244
+ x = random(30)
245
+ for n in [x.size, 2*x.size]:
246
+ for norm in [None, 'backward', 'ortho', 'forward']:
247
+ assert_allclose(
248
+ np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
249
+ np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
250
+ assert_allclose(
251
+ np.fft.rfft(x, n=n),
252
+ np.fft.rfft(x, n=n, norm="backward"), atol=1e-6)
253
+ assert_allclose(
254
+ np.fft.rfft(x, n=n) / np.sqrt(n),
255
+ np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
256
+ assert_allclose(
257
+ np.fft.rfft(x, n=n) / n,
258
+ np.fft.rfft(x, n=n, norm="forward"), atol=1e-6)
259
+
260
+ def test_rfft_even(self):
261
+ x = np.arange(8)
262
+ n = 4
263
+ y = np.fft.rfft(x, n)
264
+ assert_allclose(y, np.fft.fft(x[:n])[:n//2 + 1], rtol=1e-14)
265
+
266
+ def test_rfft_odd(self):
267
+ x = np.array([1, 0, 2, 3, -3])
268
+ y = np.fft.rfft(x)
269
+ assert_allclose(y, np.fft.fft(x)[:3], rtol=1e-14)
270
+
271
+ def test_irfft(self):
272
+ x = random(30)
273
+ assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
274
+ assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"),
275
+ norm="backward"), atol=1e-6)
276
+ assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"),
277
+ norm="ortho"), atol=1e-6)
278
+ assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"),
279
+ norm="forward"), atol=1e-6)
280
+
281
+ def test_rfft2(self):
282
+ x = random((30, 20))
283
+ assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
284
+ assert_allclose(np.fft.rfft2(x),
285
+ np.fft.rfft2(x, norm="backward"), atol=1e-6)
286
+ assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
287
+ np.fft.rfft2(x, norm="ortho"), atol=1e-6)
288
+ assert_allclose(np.fft.rfft2(x) / (30. * 20.),
289
+ np.fft.rfft2(x, norm="forward"), atol=1e-6)
290
+
291
+ def test_irfft2(self):
292
+ x = random((30, 20))
293
+ assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
294
+ assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"),
295
+ norm="backward"), atol=1e-6)
296
+ assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"),
297
+ norm="ortho"), atol=1e-6)
298
+ assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"),
299
+ norm="forward"), atol=1e-6)
300
+
301
+ def test_rfftn(self):
302
+ x = random((30, 20, 10))
303
+ assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
304
+ assert_allclose(np.fft.rfftn(x),
305
+ np.fft.rfftn(x, norm="backward"), atol=1e-6)
306
+ assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
307
+ np.fft.rfftn(x, norm="ortho"), atol=1e-6)
308
+ assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.),
309
+ np.fft.rfftn(x, norm="forward"), atol=1e-6)
310
+ # Regression test for gh-27159
311
+ x = np.ones((2, 3))
312
+ result = np.fft.rfftn(x, axes=(0, 0, 1), s=(10, 20, 40))
313
+ assert result.shape == (10, 21)
314
+ expected = np.fft.fft(np.fft.fft(np.fft.rfft(x, axis=1, n=40),
315
+ axis=0, n=20), axis=0, n=10)
316
+ assert expected.shape == (10, 21)
317
+ assert_allclose(result, expected, atol=1e-6)
318
+
319
+ def test_irfftn(self):
320
+ x = random((30, 20, 10))
321
+ assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
322
+ assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"),
323
+ norm="backward"), atol=1e-6)
324
+ assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"),
325
+ norm="ortho"), atol=1e-6)
326
+ assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"),
327
+ norm="forward"), atol=1e-6)
328
+
329
+ def test_hfft(self):
330
+ x = random(14) + 1j*random(14)
331
+ x_herm = np.concatenate((random(1), x, random(1)))
332
+ x = np.concatenate((x_herm, x[::-1].conj()))
333
+ assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
334
+ assert_allclose(np.fft.hfft(x_herm),
335
+ np.fft.hfft(x_herm, norm="backward"), atol=1e-6)
336
+ assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
337
+ np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
338
+ assert_allclose(np.fft.hfft(x_herm) / 30.,
339
+ np.fft.hfft(x_herm, norm="forward"), atol=1e-6)
340
+
341
+ def test_ihfft(self):
342
+ x = random(14) + 1j*random(14)
343
+ x_herm = np.concatenate((random(1), x, random(1)))
344
+ x = np.concatenate((x_herm, x[::-1].conj()))
345
+ assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
346
+ assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
347
+ norm="backward"), norm="backward"), atol=1e-6)
348
+ assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
349
+ norm="ortho"), norm="ortho"), atol=1e-6)
350
+ assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
351
+ norm="forward"), norm="forward"), atol=1e-6)
352
+
353
+ @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
354
+ np.fft.rfftn, np.fft.irfftn])
355
+ def test_axes(self, op):
356
+ x = random((30, 20, 10))
357
+ axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
358
+ for a in axes:
359
+ op_tr = op(np.transpose(x, a))
360
+ tr_op = np.transpose(op(x, axes=a), a)
361
+ assert_allclose(op_tr, tr_op, atol=1e-6)
362
+
363
+ @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
364
+ np.fft.fft2, np.fft.ifft2])
365
+ def test_s_negative_1(self, op):
366
+ x = np.arange(100).reshape(10, 10)
367
+ # should use the whole input array along the first axis
368
+ assert op(x, s=(-1, 5), axes=(0, 1)).shape == (10, 5)
369
+
370
+ @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
371
+ np.fft.rfftn, np.fft.irfftn])
372
+ def test_s_axes_none(self, op):
373
+ x = np.arange(100).reshape(10, 10)
374
+ with pytest.warns(match='`axes` should not be `None` if `s`'):
375
+ op(x, s=(-1, 5))
376
+
377
+ @pytest.mark.parametrize("op", [np.fft.fft2, np.fft.ifft2])
378
+ def test_s_axes_none_2D(self, op):
379
+ x = np.arange(100).reshape(10, 10)
380
+ with pytest.warns(match='`axes` should not be `None` if `s`'):
381
+ op(x, s=(-1, 5), axes=None)
382
+
383
+ @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
384
+ np.fft.rfftn, np.fft.irfftn,
385
+ np.fft.fft2, np.fft.ifft2])
386
+ def test_s_contains_none(self, op):
387
+ x = random((30, 20, 10))
388
+ with pytest.warns(match='array containing `None` values to `s`'):
389
+ op(x, s=(10, None, 10), axes=(0, 1, 2))
390
+
391
+ def test_all_1d_norm_preserving(self):
392
+ # verify that round-trip transforms are norm-preserving
393
+ x = random(30)
394
+ x_norm = np.linalg.norm(x)
395
+ n = x.size * 2
396
+ func_pairs = [(np.fft.fft, np.fft.ifft),
397
+ (np.fft.rfft, np.fft.irfft),
398
+ # hfft: order so the first function takes x.size samples
399
+ # (necessary for comparison to x_norm above)
400
+ (np.fft.ihfft, np.fft.hfft),
401
+ ]
402
+ for forw, back in func_pairs:
403
+ for n in [x.size, 2*x.size]:
404
+ for norm in [None, 'backward', 'ortho', 'forward']:
405
+ tmp = forw(x, n=n, norm=norm)
406
+ tmp = back(tmp, n=n, norm=norm)
407
+ assert_allclose(x_norm,
408
+ np.linalg.norm(tmp), atol=1e-6)
409
+
410
+ @pytest.mark.parametrize("axes", [(0, 1), (0, 2), None])
411
+ @pytest.mark.parametrize("dtype", (complex, float))
412
+ @pytest.mark.parametrize("transpose", (True, False))
413
+ def test_fftn_out_argument(self, dtype, transpose, axes):
414
+ def zeros_like(x):
415
+ if transpose:
416
+ return np.zeros_like(x.T).T
417
+ else:
418
+ return np.zeros_like(x)
419
+
420
+ # tests below only test the out parameter
421
+ if dtype is complex:
422
+ x = random((10, 5, 6)) + 1j*random((10, 5, 6))
423
+ fft, ifft = np.fft.fftn, np.fft.ifftn
424
+ else:
425
+ x = random((10, 5, 6))
426
+ fft, ifft = np.fft.rfftn, np.fft.irfftn
427
+
428
+ expected = fft(x, axes=axes)
429
+ out = zeros_like(expected)
430
+ result = fft(x, out=out, axes=axes)
431
+ assert result is out
432
+ assert_array_equal(result, expected)
433
+
434
+ expected2 = ifft(expected, axes=axes)
435
+ out2 = out if dtype is complex else zeros_like(expected2)
436
+ result2 = ifft(out, out=out2, axes=axes)
437
+ assert result2 is out2
438
+ assert_array_equal(result2, expected2)
439
+
440
+ @pytest.mark.parametrize("fft", [np.fft.fftn, np.fft.ifftn, np.fft.rfftn])
441
+ def test_fftn_out_and_s_interaction(self, fft):
442
+ # With s, shape varies, so generally one cannot pass in out.
443
+ if fft is np.fft.rfftn:
444
+ x = random((10, 5, 6))
445
+ else:
446
+ x = random((10, 5, 6)) + 1j*random((10, 5, 6))
447
+ with pytest.raises(ValueError, match="has wrong shape"):
448
+ fft(x, out=np.zeros_like(x), s=(3, 3, 3), axes=(0, 1, 2))
449
+ # Except on the first axis done (which is the last of axes).
450
+ s = (10, 5, 5)
451
+ expected = fft(x, s=s, axes=(0, 1, 2))
452
+ out = np.zeros_like(expected)
453
+ result = fft(x, s=s, axes=(0, 1, 2), out=out)
454
+ assert result is out
455
+ assert_array_equal(result, expected)
456
+
457
+ @pytest.mark.parametrize("s", [(9, 5, 5), (3, 3, 3)])
458
+ def test_irfftn_out_and_s_interaction(self, s):
459
+ # Since for irfftn, the output is real and thus cannot be used for
460
+ # intermediate steps, it should always work.
461
+ x = random((9, 5, 6, 2)) + 1j*random((9, 5, 6, 2))
462
+ expected = np.fft.irfftn(x, s=s, axes=(0, 1, 2))
463
+ out = np.zeros_like(expected)
464
+ result = np.fft.irfftn(x, s=s, axes=(0, 1, 2), out=out)
465
+ assert result is out
466
+ assert_array_equal(result, expected)
467
+
468
+
469
+ @pytest.mark.parametrize(
470
+ "dtype",
471
+ [np.float32, np.float64, np.complex64, np.complex128])
472
+ @pytest.mark.parametrize("order", ["F", 'non-contiguous'])
473
+ @pytest.mark.parametrize(
474
+ "fft",
475
+ [np.fft.fft, np.fft.fft2, np.fft.fftn,
476
+ np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
477
+ def test_fft_with_order(dtype, order, fft):
478
+ # Check that FFT/IFFT produces identical results for C, Fortran and
479
+ # non contiguous arrays
480
+ rng = np.random.RandomState(42)
481
+ X = rng.rand(8, 7, 13).astype(dtype, copy=False)
482
+ # See discussion in pull/14178
483
+ _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
484
+ if order == 'F':
485
+ Y = np.asfortranarray(X)
486
+ else:
487
+ # Make a non contiguous array
488
+ Y = X[::-1]
489
+ X = np.ascontiguousarray(X[::-1])
490
+
491
+ if fft.__name__.endswith('fft'):
492
+ for axis in range(3):
493
+ X_res = fft(X, axis=axis)
494
+ Y_res = fft(Y, axis=axis)
495
+ assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
496
+ elif fft.__name__.endswith(('fft2', 'fftn')):
497
+ axes = [(0, 1), (1, 2), (0, 2)]
498
+ if fft.__name__.endswith('fftn'):
499
+ axes.extend([(0,), (1,), (2,), None])
500
+ for ax in axes:
501
+ X_res = fft(X, axes=ax)
502
+ Y_res = fft(Y, axes=ax)
503
+ assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
504
+ else:
505
+ raise ValueError
506
+
507
+
508
+ @pytest.mark.parametrize("order", ["F", "C"])
509
+ @pytest.mark.parametrize("n", [None, 7, 12])
510
+ def test_fft_output_order(order, n):
511
+ rng = np.random.RandomState(42)
512
+ x = rng.rand(10)
513
+ x = np.asarray(x, dtype=np.complex64, order=order)
514
+ res = np.fft.fft(x, n=n)
515
+ assert res.flags.c_contiguous == x.flags.c_contiguous
516
+ assert res.flags.f_contiguous == x.flags.f_contiguous
517
+
518
+ @pytest.mark.skipif(IS_WASM, reason="Cannot start thread")
519
+ class TestFFTThreadSafe:
520
+ threads = 16
521
+ input_shape = (800, 200)
522
+
523
+ def _test_mtsame(self, func, *args):
524
+ def worker(args, q):
525
+ q.put(func(*args))
526
+
527
+ q = queue.Queue()
528
+ expected = func(*args)
529
+
530
+ # Spin off a bunch of threads to call the same function simultaneously
531
+ t = [threading.Thread(target=worker, args=(args, q))
532
+ for i in range(self.threads)]
533
+ [x.start() for x in t]
534
+
535
+ [x.join() for x in t]
536
+ # Make sure all threads returned the correct value
537
+ for i in range(self.threads):
538
+ assert_array_equal(q.get(timeout=5), expected,
539
+ 'Function returned wrong value in multithreaded context')
540
+
541
+ def test_fft(self):
542
+ a = np.ones(self.input_shape) * 1+0j
543
+ self._test_mtsame(np.fft.fft, a)
544
+
545
+ def test_ifft(self):
546
+ a = np.ones(self.input_shape) * 1+0j
547
+ self._test_mtsame(np.fft.ifft, a)
548
+
549
+ def test_rfft(self):
550
+ a = np.ones(self.input_shape)
551
+ self._test_mtsame(np.fft.rfft, a)
552
+
553
+ def test_irfft(self):
554
+ a = np.ones(self.input_shape) * 1+0j
555
+ self._test_mtsame(np.fft.irfft, a)
556
+
557
+
558
+ def test_irfft_with_n_1_regression():
559
+ # Regression test for gh-25661
560
+ x = np.arange(10)
561
+ np.fft.irfft(x, n=1)
562
+ np.fft.hfft(x, n=1)
563
+ np.fft.irfft(np.array([0], complex), n=10)
564
+
565
+
566
+ def test_irfft_with_n_large_regression():
567
+ # Regression test for gh-25679
568
+ x = np.arange(5) * (1 + 1j)
569
+ result = np.fft.hfft(x, n=10)
570
+ expected = np.array([20., 9.91628173, -11.8819096, 7.1048486,
571
+ -6.62459848, 4., -3.37540152, -0.16057669,
572
+ 1.8819096, -20.86055364])
573
+ assert_allclose(result, expected)
574
+
575
+
576
+ @pytest.mark.parametrize("fft", [
577
+ np.fft.fft, np.fft.ifft, np.fft.rfft, np.fft.irfft
578
+ ])
579
+ @pytest.mark.parametrize("data", [
580
+ np.array([False, True, False]),
581
+ np.arange(10, dtype=np.uint8),
582
+ np.arange(5, dtype=np.int16),
583
+ ])
584
+ def test_fft_with_integer_or_bool_input(data, fft):
585
+ # Regression test for gh-25819
586
+ result = fft(data)
587
+ float_data = data.astype(np.result_type(data, 1.))
588
+ expected = fft(float_data)
589
+ assert_array_equal(result, expected)
janus/lib/python3.10/site-packages/numpy/lib/_arraypad_impl.py ADDED
@@ -0,0 +1,891 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The arraypad module contains a group of functions to pad values onto the edges
3
+ of an n-dimensional array.
4
+
5
+ """
6
+ import numpy as np
7
+ from numpy._core.overrides import array_function_dispatch
8
+ from numpy.lib._index_tricks_impl import ndindex
9
+
10
+
11
+ __all__ = ['pad']
12
+
13
+
14
+ ###############################################################################
15
+ # Private utility functions.
16
+
17
+
18
+ def _round_if_needed(arr, dtype):
19
+ """
20
+ Rounds arr inplace if destination dtype is integer.
21
+
22
+ Parameters
23
+ ----------
24
+ arr : ndarray
25
+ Input array.
26
+ dtype : dtype
27
+ The dtype of the destination array.
28
+ """
29
+ if np.issubdtype(dtype, np.integer):
30
+ arr.round(out=arr)
31
+
32
+
33
+ def _slice_at_axis(sl, axis):
34
+ """
35
+ Construct tuple of slices to slice an array in the given dimension.
36
+
37
+ Parameters
38
+ ----------
39
+ sl : slice
40
+ The slice for the given dimension.
41
+ axis : int
42
+ The axis to which `sl` is applied. All other dimensions are left
43
+ "unsliced".
44
+
45
+ Returns
46
+ -------
47
+ sl : tuple of slices
48
+ A tuple with slices matching `shape` in length.
49
+
50
+ Examples
51
+ --------
52
+ >>> np._slice_at_axis(slice(None, 3, -1), 1)
53
+ (slice(None, None, None), slice(None, 3, -1), (...,))
54
+ """
55
+ return (slice(None),) * axis + (sl,) + (...,)
56
+
57
+
58
+ def _view_roi(array, original_area_slice, axis):
59
+ """
60
+ Get a view of the current region of interest during iterative padding.
61
+
62
+ When padding multiple dimensions iteratively corner values are
63
+ unnecessarily overwritten multiple times. This function reduces the
64
+ working area for the first dimensions so that corners are excluded.
65
+
66
+ Parameters
67
+ ----------
68
+ array : ndarray
69
+ The array with the region of interest.
70
+ original_area_slice : tuple of slices
71
+ Denotes the area with original values of the unpadded array.
72
+ axis : int
73
+ The currently padded dimension assuming that `axis` is padded before
74
+ `axis` + 1.
75
+
76
+ Returns
77
+ -------
78
+ roi : ndarray
79
+ The region of interest of the original `array`.
80
+ """
81
+ axis += 1
82
+ sl = (slice(None),) * axis + original_area_slice[axis:]
83
+ return array[sl]
84
+
85
+
86
+ def _pad_simple(array, pad_width, fill_value=None):
87
+ """
88
+ Pad array on all sides with either a single value or undefined values.
89
+
90
+ Parameters
91
+ ----------
92
+ array : ndarray
93
+ Array to grow.
94
+ pad_width : sequence of tuple[int, int]
95
+ Pad width on both sides for each dimension in `arr`.
96
+ fill_value : scalar, optional
97
+ If provided the padded area is filled with this value, otherwise
98
+ the pad area left undefined.
99
+
100
+ Returns
101
+ -------
102
+ padded : ndarray
103
+ The padded array with the same dtype as`array`. Its order will default
104
+ to C-style if `array` is not F-contiguous.
105
+ original_area_slice : tuple
106
+ A tuple of slices pointing to the area of the original array.
107
+ """
108
+ # Allocate grown array
109
+ new_shape = tuple(
110
+ left + size + right
111
+ for size, (left, right) in zip(array.shape, pad_width)
112
+ )
113
+ order = 'F' if array.flags.fnc else 'C' # Fortran and not also C-order
114
+ padded = np.empty(new_shape, dtype=array.dtype, order=order)
115
+
116
+ if fill_value is not None:
117
+ padded.fill(fill_value)
118
+
119
+ # Copy old array into correct space
120
+ original_area_slice = tuple(
121
+ slice(left, left + size)
122
+ for size, (left, right) in zip(array.shape, pad_width)
123
+ )
124
+ padded[original_area_slice] = array
125
+
126
+ return padded, original_area_slice
127
+
128
+
129
+ def _set_pad_area(padded, axis, width_pair, value_pair):
130
+ """
131
+ Set empty-padded area in given dimension.
132
+
133
+ Parameters
134
+ ----------
135
+ padded : ndarray
136
+ Array with the pad area which is modified inplace.
137
+ axis : int
138
+ Dimension with the pad area to set.
139
+ width_pair : (int, int)
140
+ Pair of widths that mark the pad area on both sides in the given
141
+ dimension.
142
+ value_pair : tuple of scalars or ndarrays
143
+ Values inserted into the pad area on each side. It must match or be
144
+ broadcastable to the shape of `arr`.
145
+ """
146
+ left_slice = _slice_at_axis(slice(None, width_pair[0]), axis)
147
+ padded[left_slice] = value_pair[0]
148
+
149
+ right_slice = _slice_at_axis(
150
+ slice(padded.shape[axis] - width_pair[1], None), axis)
151
+ padded[right_slice] = value_pair[1]
152
+
153
+
154
+ def _get_edges(padded, axis, width_pair):
155
+ """
156
+ Retrieve edge values from empty-padded array in given dimension.
157
+
158
+ Parameters
159
+ ----------
160
+ padded : ndarray
161
+ Empty-padded array.
162
+ axis : int
163
+ Dimension in which the edges are considered.
164
+ width_pair : (int, int)
165
+ Pair of widths that mark the pad area on both sides in the given
166
+ dimension.
167
+
168
+ Returns
169
+ -------
170
+ left_edge, right_edge : ndarray
171
+ Edge values of the valid area in `padded` in the given dimension. Its
172
+ shape will always match `padded` except for the dimension given by
173
+ `axis` which will have a length of 1.
174
+ """
175
+ left_index = width_pair[0]
176
+ left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis)
177
+ left_edge = padded[left_slice]
178
+
179
+ right_index = padded.shape[axis] - width_pair[1]
180
+ right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis)
181
+ right_edge = padded[right_slice]
182
+
183
+ return left_edge, right_edge
184
+
185
+
186
+ def _get_linear_ramps(padded, axis, width_pair, end_value_pair):
187
+ """
188
+ Construct linear ramps for empty-padded array in given dimension.
189
+
190
+ Parameters
191
+ ----------
192
+ padded : ndarray
193
+ Empty-padded array.
194
+ axis : int
195
+ Dimension in which the ramps are constructed.
196
+ width_pair : (int, int)
197
+ Pair of widths that mark the pad area on both sides in the given
198
+ dimension.
199
+ end_value_pair : (scalar, scalar)
200
+ End values for the linear ramps which form the edge of the fully padded
201
+ array. These values are included in the linear ramps.
202
+
203
+ Returns
204
+ -------
205
+ left_ramp, right_ramp : ndarray
206
+ Linear ramps to set on both sides of `padded`.
207
+ """
208
+ edge_pair = _get_edges(padded, axis, width_pair)
209
+
210
+ left_ramp, right_ramp = (
211
+ np.linspace(
212
+ start=end_value,
213
+ stop=edge.squeeze(axis), # Dimension is replaced by linspace
214
+ num=width,
215
+ endpoint=False,
216
+ dtype=padded.dtype,
217
+ axis=axis
218
+ )
219
+ for end_value, edge, width in zip(
220
+ end_value_pair, edge_pair, width_pair
221
+ )
222
+ )
223
+
224
+ # Reverse linear space in appropriate dimension
225
+ right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)]
226
+
227
+ return left_ramp, right_ramp
228
+
229
+
230
+ def _get_stats(padded, axis, width_pair, length_pair, stat_func):
231
+ """
232
+ Calculate statistic for the empty-padded array in given dimension.
233
+
234
+ Parameters
235
+ ----------
236
+ padded : ndarray
237
+ Empty-padded array.
238
+ axis : int
239
+ Dimension in which the statistic is calculated.
240
+ width_pair : (int, int)
241
+ Pair of widths that mark the pad area on both sides in the given
242
+ dimension.
243
+ length_pair : 2-element sequence of None or int
244
+ Gives the number of values in valid area from each side that is
245
+ taken into account when calculating the statistic. If None the entire
246
+ valid area in `padded` is considered.
247
+ stat_func : function
248
+ Function to compute statistic. The expected signature is
249
+ ``stat_func(x: ndarray, axis: int, keepdims: bool) -> ndarray``.
250
+
251
+ Returns
252
+ -------
253
+ left_stat, right_stat : ndarray
254
+ Calculated statistic for both sides of `padded`.
255
+ """
256
+ # Calculate indices of the edges of the area with original values
257
+ left_index = width_pair[0]
258
+ right_index = padded.shape[axis] - width_pair[1]
259
+ # as well as its length
260
+ max_length = right_index - left_index
261
+
262
+ # Limit stat_lengths to max_length
263
+ left_length, right_length = length_pair
264
+ if left_length is None or max_length < left_length:
265
+ left_length = max_length
266
+ if right_length is None or max_length < right_length:
267
+ right_length = max_length
268
+
269
+ if (left_length == 0 or right_length == 0) \
270
+ and stat_func in {np.amax, np.amin}:
271
+ # amax and amin can't operate on an empty array,
272
+ # raise a more descriptive warning here instead of the default one
273
+ raise ValueError("stat_length of 0 yields no value for padding")
274
+
275
+ # Calculate statistic for the left side
276
+ left_slice = _slice_at_axis(
277
+ slice(left_index, left_index + left_length), axis)
278
+ left_chunk = padded[left_slice]
279
+ left_stat = stat_func(left_chunk, axis=axis, keepdims=True)
280
+ _round_if_needed(left_stat, padded.dtype)
281
+
282
+ if left_length == right_length == max_length:
283
+ # return early as right_stat must be identical to left_stat
284
+ return left_stat, left_stat
285
+
286
+ # Calculate statistic for the right side
287
+ right_slice = _slice_at_axis(
288
+ slice(right_index - right_length, right_index), axis)
289
+ right_chunk = padded[right_slice]
290
+ right_stat = stat_func(right_chunk, axis=axis, keepdims=True)
291
+ _round_if_needed(right_stat, padded.dtype)
292
+
293
+ return left_stat, right_stat
294
+
295
+
296
+ def _set_reflect_both(padded, axis, width_pair, method,
297
+ original_period, include_edge=False):
298
+ """
299
+ Pad `axis` of `arr` with reflection.
300
+
301
+ Parameters
302
+ ----------
303
+ padded : ndarray
304
+ Input array of arbitrary shape.
305
+ axis : int
306
+ Axis along which to pad `arr`.
307
+ width_pair : (int, int)
308
+ Pair of widths that mark the pad area on both sides in the given
309
+ dimension.
310
+ method : str
311
+ Controls method of reflection; options are 'even' or 'odd'.
312
+ original_period : int
313
+ Original length of data on `axis` of `arr`.
314
+ include_edge : bool
315
+ If true, edge value is included in reflection, otherwise the edge
316
+ value forms the symmetric axis to the reflection.
317
+
318
+ Returns
319
+ -------
320
+ pad_amt : tuple of ints, length 2
321
+ New index positions of padding to do along the `axis`. If these are
322
+ both 0, padding is done in this dimension.
323
+ """
324
+ left_pad, right_pad = width_pair
325
+ old_length = padded.shape[axis] - right_pad - left_pad
326
+
327
+ if include_edge:
328
+ # Avoid wrapping with only a subset of the original area
329
+ # by ensuring period can only be a multiple of the original
330
+ # area's length.
331
+ old_length = old_length // original_period * original_period
332
+ # Edge is included, we need to offset the pad amount by 1
333
+ edge_offset = 1
334
+ else:
335
+ # Avoid wrapping with only a subset of the original area
336
+ # by ensuring period can only be a multiple of the original
337
+ # area's length.
338
+ old_length = ((old_length - 1) // (original_period - 1)
339
+ * (original_period - 1) + 1)
340
+ edge_offset = 0 # Edge is not included, no need to offset pad amount
341
+ old_length -= 1 # but must be omitted from the chunk
342
+
343
+ if left_pad > 0:
344
+ # Pad with reflected values on left side:
345
+ # First limit chunk size which can't be larger than pad area
346
+ chunk_length = min(old_length, left_pad)
347
+ # Slice right to left, stop on or next to edge, start relative to stop
348
+ stop = left_pad - edge_offset
349
+ start = stop + chunk_length
350
+ left_slice = _slice_at_axis(slice(start, stop, -1), axis)
351
+ left_chunk = padded[left_slice]
352
+
353
+ if method == "odd":
354
+ # Negate chunk and align with edge
355
+ edge_slice = _slice_at_axis(slice(left_pad, left_pad + 1), axis)
356
+ left_chunk = 2 * padded[edge_slice] - left_chunk
357
+
358
+ # Insert chunk into padded area
359
+ start = left_pad - chunk_length
360
+ stop = left_pad
361
+ pad_area = _slice_at_axis(slice(start, stop), axis)
362
+ padded[pad_area] = left_chunk
363
+ # Adjust pointer to left edge for next iteration
364
+ left_pad -= chunk_length
365
+
366
+ if right_pad > 0:
367
+ # Pad with reflected values on right side:
368
+ # First limit chunk size which can't be larger than pad area
369
+ chunk_length = min(old_length, right_pad)
370
+ # Slice right to left, start on or next to edge, stop relative to start
371
+ start = -right_pad + edge_offset - 2
372
+ stop = start - chunk_length
373
+ right_slice = _slice_at_axis(slice(start, stop, -1), axis)
374
+ right_chunk = padded[right_slice]
375
+
376
+ if method == "odd":
377
+ # Negate chunk and align with edge
378
+ edge_slice = _slice_at_axis(
379
+ slice(-right_pad - 1, -right_pad), axis)
380
+ right_chunk = 2 * padded[edge_slice] - right_chunk
381
+
382
+ # Insert chunk into padded area
383
+ start = padded.shape[axis] - right_pad
384
+ stop = start + chunk_length
385
+ pad_area = _slice_at_axis(slice(start, stop), axis)
386
+ padded[pad_area] = right_chunk
387
+ # Adjust pointer to right edge for next iteration
388
+ right_pad -= chunk_length
389
+
390
+ return left_pad, right_pad
391
+
392
+
393
+ def _set_wrap_both(padded, axis, width_pair, original_period):
394
+ """
395
+ Pad `axis` of `arr` with wrapped values.
396
+
397
+ Parameters
398
+ ----------
399
+ padded : ndarray
400
+ Input array of arbitrary shape.
401
+ axis : int
402
+ Axis along which to pad `arr`.
403
+ width_pair : (int, int)
404
+ Pair of widths that mark the pad area on both sides in the given
405
+ dimension.
406
+ original_period : int
407
+ Original length of data on `axis` of `arr`.
408
+
409
+ Returns
410
+ -------
411
+ pad_amt : tuple of ints, length 2
412
+ New index positions of padding to do along the `axis`. If these are
413
+ both 0, padding is done in this dimension.
414
+ """
415
+ left_pad, right_pad = width_pair
416
+ period = padded.shape[axis] - right_pad - left_pad
417
+ # Avoid wrapping with only a subset of the original area by ensuring period
418
+ # can only be a multiple of the original area's length.
419
+ period = period // original_period * original_period
420
+
421
+ # If the current dimension of `arr` doesn't contain enough valid values
422
+ # (not part of the undefined pad area) we need to pad multiple times.
423
+ # Each time the pad area shrinks on both sides which is communicated with
424
+ # these variables.
425
+ new_left_pad = 0
426
+ new_right_pad = 0
427
+
428
+ if left_pad > 0:
429
+ # Pad with wrapped values on left side
430
+ # First slice chunk from left side of the non-pad area.
431
+ # Use min(period, left_pad) to ensure that chunk is not larger than
432
+ # pad area.
433
+ slice_end = left_pad + period
434
+ slice_start = slice_end - min(period, left_pad)
435
+ right_slice = _slice_at_axis(slice(slice_start, slice_end), axis)
436
+ right_chunk = padded[right_slice]
437
+
438
+ if left_pad > period:
439
+ # Chunk is smaller than pad area
440
+ pad_area = _slice_at_axis(slice(left_pad - period, left_pad), axis)
441
+ new_left_pad = left_pad - period
442
+ else:
443
+ # Chunk matches pad area
444
+ pad_area = _slice_at_axis(slice(None, left_pad), axis)
445
+ padded[pad_area] = right_chunk
446
+
447
+ if right_pad > 0:
448
+ # Pad with wrapped values on right side
449
+ # First slice chunk from right side of the non-pad area.
450
+ # Use min(period, right_pad) to ensure that chunk is not larger than
451
+ # pad area.
452
+ slice_start = -right_pad - period
453
+ slice_end = slice_start + min(period, right_pad)
454
+ left_slice = _slice_at_axis(slice(slice_start, slice_end), axis)
455
+ left_chunk = padded[left_slice]
456
+
457
+ if right_pad > period:
458
+ # Chunk is smaller than pad area
459
+ pad_area = _slice_at_axis(
460
+ slice(-right_pad, -right_pad + period), axis)
461
+ new_right_pad = right_pad - period
462
+ else:
463
+ # Chunk matches pad area
464
+ pad_area = _slice_at_axis(slice(-right_pad, None), axis)
465
+ padded[pad_area] = left_chunk
466
+
467
+ return new_left_pad, new_right_pad
468
+
469
+
470
+ def _as_pairs(x, ndim, as_index=False):
471
+ """
472
+ Broadcast `x` to an array with the shape (`ndim`, 2).
473
+
474
+ A helper function for `pad` that prepares and validates arguments like
475
+ `pad_width` for iteration in pairs.
476
+
477
+ Parameters
478
+ ----------
479
+ x : {None, scalar, array-like}
480
+ The object to broadcast to the shape (`ndim`, 2).
481
+ ndim : int
482
+ Number of pairs the broadcasted `x` will have.
483
+ as_index : bool, optional
484
+ If `x` is not None, try to round each element of `x` to an integer
485
+ (dtype `np.intp`) and ensure every element is positive.
486
+
487
+ Returns
488
+ -------
489
+ pairs : nested iterables, shape (`ndim`, 2)
490
+ The broadcasted version of `x`.
491
+
492
+ Raises
493
+ ------
494
+ ValueError
495
+ If `as_index` is True and `x` contains negative elements.
496
+ Or if `x` is not broadcastable to the shape (`ndim`, 2).
497
+ """
498
+ if x is None:
499
+ # Pass through None as a special case, otherwise np.round(x) fails
500
+ # with an AttributeError
501
+ return ((None, None),) * ndim
502
+
503
+ x = np.array(x)
504
+ if as_index:
505
+ x = np.round(x).astype(np.intp, copy=False)
506
+
507
+ if x.ndim < 3:
508
+ # Optimization: Possibly use faster paths for cases where `x` has
509
+ # only 1 or 2 elements. `np.broadcast_to` could handle these as well
510
+ # but is currently slower
511
+
512
+ if x.size == 1:
513
+ # x was supplied as a single value
514
+ x = x.ravel() # Ensure x[0] works for x.ndim == 0, 1, 2
515
+ if as_index and x < 0:
516
+ raise ValueError("index can't contain negative values")
517
+ return ((x[0], x[0]),) * ndim
518
+
519
+ if x.size == 2 and x.shape != (2, 1):
520
+ # x was supplied with a single value for each side
521
+ # but except case when each dimension has a single value
522
+ # which should be broadcasted to a pair,
523
+ # e.g. [[1], [2]] -> [[1, 1], [2, 2]] not [[1, 2], [1, 2]]
524
+ x = x.ravel() # Ensure x[0], x[1] works
525
+ if as_index and (x[0] < 0 or x[1] < 0):
526
+ raise ValueError("index can't contain negative values")
527
+ return ((x[0], x[1]),) * ndim
528
+
529
+ if as_index and x.min() < 0:
530
+ raise ValueError("index can't contain negative values")
531
+
532
+ # Converting the array with `tolist` seems to improve performance
533
+ # when iterating and indexing the result (see usage in `pad`)
534
+ return np.broadcast_to(x, (ndim, 2)).tolist()
535
+
536
+
537
+ def _pad_dispatcher(array, pad_width, mode=None, **kwargs):
538
+ return (array,)
539
+
540
+
541
+ ###############################################################################
542
+ # Public functions
543
+
544
+
545
+ @array_function_dispatch(_pad_dispatcher, module='numpy')
546
+ def pad(array, pad_width, mode='constant', **kwargs):
547
+ """
548
+ Pad an array.
549
+
550
+ Parameters
551
+ ----------
552
+ array : array_like of rank N
553
+ The array to pad.
554
+ pad_width : {sequence, array_like, int}
555
+ Number of values padded to the edges of each axis.
556
+ ``((before_1, after_1), ... (before_N, after_N))`` unique pad widths
557
+ for each axis.
558
+ ``(before, after)`` or ``((before, after),)`` yields same before
559
+ and after pad for each axis.
560
+ ``(pad,)`` or ``int`` is a shortcut for before = after = pad width
561
+ for all axes.
562
+ mode : str or function, optional
563
+ One of the following string values or a user supplied function.
564
+
565
+ 'constant' (default)
566
+ Pads with a constant value.
567
+ 'edge'
568
+ Pads with the edge values of array.
569
+ 'linear_ramp'
570
+ Pads with the linear ramp between end_value and the
571
+ array edge value.
572
+ 'maximum'
573
+ Pads with the maximum value of all or part of the
574
+ vector along each axis.
575
+ 'mean'
576
+ Pads with the mean value of all or part of the
577
+ vector along each axis.
578
+ 'median'
579
+ Pads with the median value of all or part of the
580
+ vector along each axis.
581
+ 'minimum'
582
+ Pads with the minimum value of all or part of the
583
+ vector along each axis.
584
+ 'reflect'
585
+ Pads with the reflection of the vector mirrored on
586
+ the first and last values of the vector along each
587
+ axis.
588
+ 'symmetric'
589
+ Pads with the reflection of the vector mirrored
590
+ along the edge of the array.
591
+ 'wrap'
592
+ Pads with the wrap of the vector along the axis.
593
+ The first values are used to pad the end and the
594
+ end values are used to pad the beginning.
595
+ 'empty'
596
+ Pads with undefined values.
597
+
598
+ <function>
599
+ Padding function, see Notes.
600
+ stat_length : sequence or int, optional
601
+ Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
602
+ values at edge of each axis used to calculate the statistic value.
603
+
604
+ ``((before_1, after_1), ... (before_N, after_N))`` unique statistic
605
+ lengths for each axis.
606
+
607
+ ``(before, after)`` or ``((before, after),)`` yields same before
608
+ and after statistic lengths for each axis.
609
+
610
+ ``(stat_length,)`` or ``int`` is a shortcut for
611
+ ``before = after = statistic`` length for all axes.
612
+
613
+ Default is ``None``, to use the entire axis.
614
+ constant_values : sequence or scalar, optional
615
+ Used in 'constant'. The values to set the padded values for each
616
+ axis.
617
+
618
+ ``((before_1, after_1), ... (before_N, after_N))`` unique pad constants
619
+ for each axis.
620
+
621
+ ``(before, after)`` or ``((before, after),)`` yields same before
622
+ and after constants for each axis.
623
+
624
+ ``(constant,)`` or ``constant`` is a shortcut for
625
+ ``before = after = constant`` for all axes.
626
+
627
+ Default is 0.
628
+ end_values : sequence or scalar, optional
629
+ Used in 'linear_ramp'. The values used for the ending value of the
630
+ linear_ramp and that will form the edge of the padded array.
631
+
632
+ ``((before_1, after_1), ... (before_N, after_N))`` unique end values
633
+ for each axis.
634
+
635
+ ``(before, after)`` or ``((before, after),)`` yields same before
636
+ and after end values for each axis.
637
+
638
+ ``(constant,)`` or ``constant`` is a shortcut for
639
+ ``before = after = constant`` for all axes.
640
+
641
+ Default is 0.
642
+ reflect_type : {'even', 'odd'}, optional
643
+ Used in 'reflect', and 'symmetric'. The 'even' style is the
644
+ default with an unaltered reflection around the edge value. For
645
+ the 'odd' style, the extended part of the array is created by
646
+ subtracting the reflected values from two times the edge value.
647
+
648
+ Returns
649
+ -------
650
+ pad : ndarray
651
+ Padded array of rank equal to `array` with shape increased
652
+ according to `pad_width`.
653
+
654
+ Notes
655
+ -----
656
+ For an array with rank greater than 1, some of the padding of later
657
+ axes is calculated from padding of previous axes. This is easiest to
658
+ think about with a rank 2 array where the corners of the padded array
659
+ are calculated by using padded values from the first axis.
660
+
661
+ The padding function, if used, should modify a rank 1 array in-place. It
662
+ has the following signature::
663
+
664
+ padding_func(vector, iaxis_pad_width, iaxis, kwargs)
665
+
666
+ where
667
+
668
+ vector : ndarray
669
+ A rank 1 array already padded with zeros. Padded values are
670
+ vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:].
671
+ iaxis_pad_width : tuple
672
+ A 2-tuple of ints, iaxis_pad_width[0] represents the number of
673
+ values padded at the beginning of vector where
674
+ iaxis_pad_width[1] represents the number of values padded at
675
+ the end of vector.
676
+ iaxis : int
677
+ The axis currently being calculated.
678
+ kwargs : dict
679
+ Any keyword arguments the function requires.
680
+
681
+ Examples
682
+ --------
683
+ >>> import numpy as np
684
+ >>> a = [1, 2, 3, 4, 5]
685
+ >>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
686
+ array([4, 4, 1, ..., 6, 6, 6])
687
+
688
+ >>> np.pad(a, (2, 3), 'edge')
689
+ array([1, 1, 1, ..., 5, 5, 5])
690
+
691
+ >>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
692
+ array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
693
+
694
+ >>> np.pad(a, (2,), 'maximum')
695
+ array([5, 5, 1, 2, 3, 4, 5, 5, 5])
696
+
697
+ >>> np.pad(a, (2,), 'mean')
698
+ array([3, 3, 1, 2, 3, 4, 5, 3, 3])
699
+
700
+ >>> np.pad(a, (2,), 'median')
701
+ array([3, 3, 1, 2, 3, 4, 5, 3, 3])
702
+
703
+ >>> a = [[1, 2], [3, 4]]
704
+ >>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
705
+ array([[1, 1, 1, 2, 1, 1, 1],
706
+ [1, 1, 1, 2, 1, 1, 1],
707
+ [1, 1, 1, 2, 1, 1, 1],
708
+ [1, 1, 1, 2, 1, 1, 1],
709
+ [3, 3, 3, 4, 3, 3, 3],
710
+ [1, 1, 1, 2, 1, 1, 1],
711
+ [1, 1, 1, 2, 1, 1, 1]])
712
+
713
+ >>> a = [1, 2, 3, 4, 5]
714
+ >>> np.pad(a, (2, 3), 'reflect')
715
+ array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
716
+
717
+ >>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
718
+ array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
719
+
720
+ >>> np.pad(a, (2, 3), 'symmetric')
721
+ array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
722
+
723
+ >>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
724
+ array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
725
+
726
+ >>> np.pad(a, (2, 3), 'wrap')
727
+ array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
728
+
729
+ >>> def pad_with(vector, pad_width, iaxis, kwargs):
730
+ ... pad_value = kwargs.get('padder', 10)
731
+ ... vector[:pad_width[0]] = pad_value
732
+ ... vector[-pad_width[1]:] = pad_value
733
+ >>> a = np.arange(6)
734
+ >>> a = a.reshape((2, 3))
735
+ >>> np.pad(a, 2, pad_with)
736
+ array([[10, 10, 10, 10, 10, 10, 10],
737
+ [10, 10, 10, 10, 10, 10, 10],
738
+ [10, 10, 0, 1, 2, 10, 10],
739
+ [10, 10, 3, 4, 5, 10, 10],
740
+ [10, 10, 10, 10, 10, 10, 10],
741
+ [10, 10, 10, 10, 10, 10, 10]])
742
+ >>> np.pad(a, 2, pad_with, padder=100)
743
+ array([[100, 100, 100, 100, 100, 100, 100],
744
+ [100, 100, 100, 100, 100, 100, 100],
745
+ [100, 100, 0, 1, 2, 100, 100],
746
+ [100, 100, 3, 4, 5, 100, 100],
747
+ [100, 100, 100, 100, 100, 100, 100],
748
+ [100, 100, 100, 100, 100, 100, 100]])
749
+ """
750
+ array = np.asarray(array)
751
+ pad_width = np.asarray(pad_width)
752
+
753
+ if not pad_width.dtype.kind == 'i':
754
+ raise TypeError('`pad_width` must be of integral type.')
755
+
756
+ # Broadcast to shape (array.ndim, 2)
757
+ pad_width = _as_pairs(pad_width, array.ndim, as_index=True)
758
+
759
+ if callable(mode):
760
+ # Old behavior: Use user-supplied function with np.apply_along_axis
761
+ function = mode
762
+ # Create a new zero padded array
763
+ padded, _ = _pad_simple(array, pad_width, fill_value=0)
764
+ # And apply along each axis
765
+
766
+ for axis in range(padded.ndim):
767
+ # Iterate using ndindex as in apply_along_axis, but assuming that
768
+ # function operates inplace on the padded array.
769
+
770
+ # view with the iteration axis at the end
771
+ view = np.moveaxis(padded, axis, -1)
772
+
773
+ # compute indices for the iteration axes, and append a trailing
774
+ # ellipsis to prevent 0d arrays decaying to scalars (gh-8642)
775
+ inds = ndindex(view.shape[:-1])
776
+ inds = (ind + (Ellipsis,) for ind in inds)
777
+ for ind in inds:
778
+ function(view[ind], pad_width[axis], axis, kwargs)
779
+
780
+ return padded
781
+
782
+ # Make sure that no unsupported keywords were passed for the current mode
783
+ allowed_kwargs = {
784
+ 'empty': [], 'edge': [], 'wrap': [],
785
+ 'constant': ['constant_values'],
786
+ 'linear_ramp': ['end_values'],
787
+ 'maximum': ['stat_length'],
788
+ 'mean': ['stat_length'],
789
+ 'median': ['stat_length'],
790
+ 'minimum': ['stat_length'],
791
+ 'reflect': ['reflect_type'],
792
+ 'symmetric': ['reflect_type'],
793
+ }
794
+ try:
795
+ unsupported_kwargs = set(kwargs) - set(allowed_kwargs[mode])
796
+ except KeyError:
797
+ raise ValueError("mode '{}' is not supported".format(mode)) from None
798
+ if unsupported_kwargs:
799
+ raise ValueError("unsupported keyword arguments for mode '{}': {}"
800
+ .format(mode, unsupported_kwargs))
801
+
802
+ stat_functions = {"maximum": np.amax, "minimum": np.amin,
803
+ "mean": np.mean, "median": np.median}
804
+
805
+ # Create array with final shape and original values
806
+ # (padded area is undefined)
807
+ padded, original_area_slice = _pad_simple(array, pad_width)
808
+ # And prepare iteration over all dimensions
809
+ # (zipping may be more readable than using enumerate)
810
+ axes = range(padded.ndim)
811
+
812
+ if mode == "constant":
813
+ values = kwargs.get("constant_values", 0)
814
+ values = _as_pairs(values, padded.ndim)
815
+ for axis, width_pair, value_pair in zip(axes, pad_width, values):
816
+ roi = _view_roi(padded, original_area_slice, axis)
817
+ _set_pad_area(roi, axis, width_pair, value_pair)
818
+
819
+ elif mode == "empty":
820
+ pass # Do nothing as _pad_simple already returned the correct result
821
+
822
+ elif array.size == 0:
823
+ # Only modes "constant" and "empty" can extend empty axes, all other
824
+ # modes depend on `array` not being empty
825
+ # -> ensure every empty axis is only "padded with 0"
826
+ for axis, width_pair in zip(axes, pad_width):
827
+ if array.shape[axis] == 0 and any(width_pair):
828
+ raise ValueError(
829
+ "can't extend empty axis {} using modes other than "
830
+ "'constant' or 'empty'".format(axis)
831
+ )
832
+ # passed, don't need to do anything more as _pad_simple already
833
+ # returned the correct result
834
+
835
+ elif mode == "edge":
836
+ for axis, width_pair in zip(axes, pad_width):
837
+ roi = _view_roi(padded, original_area_slice, axis)
838
+ edge_pair = _get_edges(roi, axis, width_pair)
839
+ _set_pad_area(roi, axis, width_pair, edge_pair)
840
+
841
+ elif mode == "linear_ramp":
842
+ end_values = kwargs.get("end_values", 0)
843
+ end_values = _as_pairs(end_values, padded.ndim)
844
+ for axis, width_pair, value_pair in zip(axes, pad_width, end_values):
845
+ roi = _view_roi(padded, original_area_slice, axis)
846
+ ramp_pair = _get_linear_ramps(roi, axis, width_pair, value_pair)
847
+ _set_pad_area(roi, axis, width_pair, ramp_pair)
848
+
849
+ elif mode in stat_functions:
850
+ func = stat_functions[mode]
851
+ length = kwargs.get("stat_length", None)
852
+ length = _as_pairs(length, padded.ndim, as_index=True)
853
+ for axis, width_pair, length_pair in zip(axes, pad_width, length):
854
+ roi = _view_roi(padded, original_area_slice, axis)
855
+ stat_pair = _get_stats(roi, axis, width_pair, length_pair, func)
856
+ _set_pad_area(roi, axis, width_pair, stat_pair)
857
+
858
+ elif mode in {"reflect", "symmetric"}:
859
+ method = kwargs.get("reflect_type", "even")
860
+ include_edge = mode == "symmetric"
861
+ for axis, (left_index, right_index) in zip(axes, pad_width):
862
+ if array.shape[axis] == 1 and (left_index > 0 or right_index > 0):
863
+ # Extending singleton dimension for 'reflect' is legacy
864
+ # behavior; it really should raise an error.
865
+ edge_pair = _get_edges(padded, axis, (left_index, right_index))
866
+ _set_pad_area(
867
+ padded, axis, (left_index, right_index), edge_pair)
868
+ continue
869
+
870
+ roi = _view_roi(padded, original_area_slice, axis)
871
+ while left_index > 0 or right_index > 0:
872
+ # Iteratively pad until dimension is filled with reflected
873
+ # values. This is necessary if the pad area is larger than
874
+ # the length of the original values in the current dimension.
875
+ left_index, right_index = _set_reflect_both(
876
+ roi, axis, (left_index, right_index),
877
+ method, array.shape[axis], include_edge
878
+ )
879
+
880
+ elif mode == "wrap":
881
+ for axis, (left_index, right_index) in zip(axes, pad_width):
882
+ roi = _view_roi(padded, original_area_slice, axis)
883
+ original_period = padded.shape[axis] - right_index - left_index
884
+ while left_index > 0 or right_index > 0:
885
+ # Iteratively pad until dimension is filled with wrapped
886
+ # values. This is necessary if the pad area is larger than
887
+ # the length of the original values in the current dimension.
888
+ left_index, right_index = _set_wrap_both(
889
+ roi, axis, (left_index, right_index), original_period)
890
+
891
+ return padded
janus/lib/python3.10/site-packages/numpy/lib/stride_tricks.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from ._stride_tricks_impl import (
2
+ __doc__, as_strided, sliding_window_view
3
+ )
janus/lib/python3.10/site-packages/numpy/linalg/__init__.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ``numpy.linalg``
3
+ ================
4
+
5
+ The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient
6
+ low level implementations of standard linear algebra algorithms. Those
7
+ libraries may be provided by NumPy itself using C versions of a subset of their
8
+ reference implementations but, when possible, highly optimized libraries that
9
+ take advantage of specialized processor functionality are preferred. Examples
10
+ of such libraries are OpenBLAS, MKL (TM), and ATLAS. Because those libraries
11
+ are multithreaded and processor dependent, environmental variables and external
12
+ packages such as threadpoolctl may be needed to control the number of threads
13
+ or specify the processor architecture.
14
+
15
+ - OpenBLAS: https://www.openblas.net/
16
+ - threadpoolctl: https://github.com/joblib/threadpoolctl
17
+
18
+ Please note that the most-used linear algebra functions in NumPy are present in
19
+ the main ``numpy`` namespace rather than in ``numpy.linalg``. There are:
20
+ ``dot``, ``vdot``, ``inner``, ``outer``, ``matmul``, ``tensordot``, ``einsum``,
21
+ ``einsum_path`` and ``kron``.
22
+
23
+ Functions present in numpy.linalg are listed below.
24
+
25
+
26
+ Matrix and vector products
27
+ --------------------------
28
+
29
+ cross
30
+ multi_dot
31
+ matrix_power
32
+ tensordot
33
+ matmul
34
+
35
+ Decompositions
36
+ --------------
37
+
38
+ cholesky
39
+ outer
40
+ qr
41
+ svd
42
+ svdvals
43
+
44
+ Matrix eigenvalues
45
+ ------------------
46
+
47
+ eig
48
+ eigh
49
+ eigvals
50
+ eigvalsh
51
+
52
+ Norms and other numbers
53
+ -----------------------
54
+
55
+ norm
56
+ matrix_norm
57
+ vector_norm
58
+ cond
59
+ det
60
+ matrix_rank
61
+ slogdet
62
+ trace (Array API compatible)
63
+
64
+ Solving equations and inverting matrices
65
+ ----------------------------------------
66
+
67
+ solve
68
+ tensorsolve
69
+ lstsq
70
+ inv
71
+ pinv
72
+ tensorinv
73
+
74
+ Other matrix operations
75
+ -----------------------
76
+
77
+ diagonal (Array API compatible)
78
+ matrix_transpose (Array API compatible)
79
+
80
+ Exceptions
81
+ ----------
82
+
83
+ LinAlgError
84
+
85
+ """
86
+ # To get sub-modules
87
+ from . import linalg # deprecated in NumPy 2.0
88
+ from . import _linalg
89
+ from ._linalg import *
90
+
91
+ __all__ = _linalg.__all__.copy()
92
+
93
+ from numpy._pytesttester import PytestTester
94
+ test = PytestTester(__name__)
95
+ del PytestTester
janus/lib/python3.10/site-packages/numpy/linalg/__init__.pyi ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy._core.fromnumeric import matrix_transpose
2
+ from numpy._core.numeric import tensordot, vecdot
3
+
4
+ from ._linalg import (
5
+ matrix_power,
6
+ solve,
7
+ tensorsolve,
8
+ tensorinv,
9
+ inv,
10
+ cholesky,
11
+ outer,
12
+ eigvals,
13
+ eigvalsh,
14
+ pinv,
15
+ slogdet,
16
+ det,
17
+ svd,
18
+ svdvals,
19
+ eig,
20
+ eigh,
21
+ lstsq,
22
+ norm,
23
+ matrix_norm,
24
+ vector_norm,
25
+ qr,
26
+ cond,
27
+ matrix_rank,
28
+ multi_dot,
29
+ matmul,
30
+ trace,
31
+ diagonal,
32
+ cross,
33
+ )
34
+
35
+ __all__ = [
36
+ "matrix_power",
37
+ "solve",
38
+ "tensorsolve",
39
+ "tensorinv",
40
+ "inv",
41
+ "cholesky",
42
+ "eigvals",
43
+ "eigvalsh",
44
+ "pinv",
45
+ "slogdet",
46
+ "det",
47
+ "svd",
48
+ "svdvals",
49
+ "eig",
50
+ "eigh",
51
+ "lstsq",
52
+ "norm",
53
+ "qr",
54
+ "cond",
55
+ "matrix_rank",
56
+ "LinAlgError",
57
+ "multi_dot",
58
+ "trace",
59
+ "diagonal",
60
+ "cross",
61
+ "outer",
62
+ "tensordot",
63
+ "matmul",
64
+ "matrix_transpose",
65
+ "matrix_norm",
66
+ "vector_norm",
67
+ "vecdot",
68
+ ]
69
+
70
+ class LinAlgError(ValueError): ...
janus/lib/python3.10/site-packages/numpy/linalg/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.24 kB). View file
 
janus/lib/python3.10/site-packages/numpy/linalg/__pycache__/linalg.cpython-310.pyc ADDED
Binary file (740 Bytes). View file
 
janus/lib/python3.10/site-packages/numpy/linalg/_linalg.py ADDED
The diff for this file is too large to render. See raw diff
 
janus/lib/python3.10/site-packages/numpy/linalg/_linalg.pyi ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Iterable
2
+ from typing import (
3
+ Literal as L,
4
+ overload,
5
+ TypeAlias,
6
+ TypeVar,
7
+ Any,
8
+ SupportsIndex,
9
+ SupportsInt,
10
+ NamedTuple,
11
+ )
12
+
13
+ import numpy as np
14
+ from numpy import (
15
+ # re-exports
16
+ vecdot,
17
+
18
+ # other
19
+ generic,
20
+ floating,
21
+ complexfloating,
22
+ signedinteger,
23
+ unsignedinteger,
24
+ timedelta64,
25
+ object_,
26
+ int32,
27
+ float64,
28
+ complex128,
29
+ )
30
+ from numpy.linalg import LinAlgError
31
+ from numpy._core.fromnumeric import matrix_transpose
32
+ from numpy._core.numeric import tensordot
33
+ from numpy._typing import (
34
+ NDArray,
35
+ ArrayLike,
36
+ DTypeLike,
37
+ _ArrayLikeUnknown,
38
+ _ArrayLikeBool_co,
39
+ _ArrayLikeInt_co,
40
+ _ArrayLikeUInt_co,
41
+ _ArrayLikeFloat_co,
42
+ _ArrayLikeComplex_co,
43
+ _ArrayLikeTD64_co,
44
+ _ArrayLikeObject_co,
45
+ )
46
+
47
+ __all__ = [
48
+ "matrix_power",
49
+ "solve",
50
+ "tensorsolve",
51
+ "tensorinv",
52
+ "inv",
53
+ "cholesky",
54
+ "eigvals",
55
+ "eigvalsh",
56
+ "pinv",
57
+ "slogdet",
58
+ "det",
59
+ "svd",
60
+ "svdvals",
61
+ "eig",
62
+ "eigh",
63
+ "lstsq",
64
+ "norm",
65
+ "qr",
66
+ "cond",
67
+ "matrix_rank",
68
+ "LinAlgError",
69
+ "multi_dot",
70
+ "trace",
71
+ "diagonal",
72
+ "cross",
73
+ "outer",
74
+ "tensordot",
75
+ "matmul",
76
+ "matrix_transpose",
77
+ "matrix_norm",
78
+ "vector_norm",
79
+ "vecdot",
80
+ ]
81
+
82
+ _T = TypeVar("_T")
83
+ _ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
84
+ _SCT2 = TypeVar("_SCT2", bound=generic, covariant=True)
85
+
86
+ _2Tuple: TypeAlias = tuple[_T, _T]
87
+ _ModeKind: TypeAlias = L["reduced", "complete", "r", "raw"]
88
+
89
+
90
+ class EigResult(NamedTuple):
91
+ eigenvalues: NDArray[Any]
92
+ eigenvectors: NDArray[Any]
93
+
94
+ class EighResult(NamedTuple):
95
+ eigenvalues: NDArray[Any]
96
+ eigenvectors: NDArray[Any]
97
+
98
+ class QRResult(NamedTuple):
99
+ Q: NDArray[Any]
100
+ R: NDArray[Any]
101
+
102
+ class SlogdetResult(NamedTuple):
103
+ # TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
104
+ # a `(x.ndim - 2)`` dimensionl arrays otherwise
105
+ sign: Any
106
+ logabsdet: Any
107
+
108
+ class SVDResult(NamedTuple):
109
+ U: NDArray[Any]
110
+ S: NDArray[Any]
111
+ Vh: NDArray[Any]
112
+
113
+ @overload
114
+ def tensorsolve(
115
+ a: _ArrayLikeInt_co,
116
+ b: _ArrayLikeInt_co,
117
+ axes: None | Iterable[int] =...,
118
+ ) -> NDArray[float64]: ...
119
+ @overload
120
+ def tensorsolve(
121
+ a: _ArrayLikeFloat_co,
122
+ b: _ArrayLikeFloat_co,
123
+ axes: None | Iterable[int] =...,
124
+ ) -> NDArray[floating[Any]]: ...
125
+ @overload
126
+ def tensorsolve(
127
+ a: _ArrayLikeComplex_co,
128
+ b: _ArrayLikeComplex_co,
129
+ axes: None | Iterable[int] =...,
130
+ ) -> NDArray[complexfloating[Any, Any]]: ...
131
+
132
+ @overload
133
+ def solve(
134
+ a: _ArrayLikeInt_co,
135
+ b: _ArrayLikeInt_co,
136
+ ) -> NDArray[float64]: ...
137
+ @overload
138
+ def solve(
139
+ a: _ArrayLikeFloat_co,
140
+ b: _ArrayLikeFloat_co,
141
+ ) -> NDArray[floating[Any]]: ...
142
+ @overload
143
+ def solve(
144
+ a: _ArrayLikeComplex_co,
145
+ b: _ArrayLikeComplex_co,
146
+ ) -> NDArray[complexfloating[Any, Any]]: ...
147
+
148
+ @overload
149
+ def tensorinv(
150
+ a: _ArrayLikeInt_co,
151
+ ind: int = ...,
152
+ ) -> NDArray[float64]: ...
153
+ @overload
154
+ def tensorinv(
155
+ a: _ArrayLikeFloat_co,
156
+ ind: int = ...,
157
+ ) -> NDArray[floating[Any]]: ...
158
+ @overload
159
+ def tensorinv(
160
+ a: _ArrayLikeComplex_co,
161
+ ind: int = ...,
162
+ ) -> NDArray[complexfloating[Any, Any]]: ...
163
+
164
+ @overload
165
+ def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
166
+ @overload
167
+ def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
168
+ @overload
169
+ def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
170
+
171
+ # TODO: The supported input and output dtypes are dependent on the value of `n`.
172
+ # For example: `n < 0` always casts integer types to float64
173
+ def matrix_power(
174
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
175
+ n: SupportsIndex,
176
+ ) -> NDArray[Any]: ...
177
+
178
+ @overload
179
+ def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
180
+ @overload
181
+ def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
182
+ @overload
183
+ def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
184
+
185
+ @overload
186
+ def outer(x1: _ArrayLikeUnknown, x2: _ArrayLikeUnknown) -> NDArray[Any]: ...
187
+ @overload
188
+ def outer(x1: _ArrayLikeBool_co, x2: _ArrayLikeBool_co) -> NDArray[np.bool]: ...
189
+ @overload
190
+ def outer(x1: _ArrayLikeUInt_co, x2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ...
191
+ @overload
192
+ def outer(x1: _ArrayLikeInt_co, x2: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
193
+ @overload
194
+ def outer(x1: _ArrayLikeFloat_co, x2: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
195
+ @overload
196
+ def outer(
197
+ x1: _ArrayLikeComplex_co,
198
+ x2: _ArrayLikeComplex_co,
199
+ ) -> NDArray[complexfloating[Any, Any]]: ...
200
+ @overload
201
+ def outer(
202
+ x1: _ArrayLikeTD64_co,
203
+ x2: _ArrayLikeTD64_co,
204
+ out: None = ...,
205
+ ) -> NDArray[timedelta64]: ...
206
+ @overload
207
+ def outer(x1: _ArrayLikeObject_co, x2: _ArrayLikeObject_co) -> NDArray[object_]: ...
208
+ @overload
209
+ def outer(
210
+ x1: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
211
+ x2: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
212
+ ) -> _ArrayType: ...
213
+
214
+ @overload
215
+ def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
216
+ @overload
217
+ def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
218
+ @overload
219
+ def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
220
+
221
+ @overload
222
+ def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
223
+ @overload
224
+ def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]] | NDArray[complexfloating[Any, Any]]: ...
225
+ @overload
226
+ def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
227
+
228
+ @overload
229
+ def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
230
+ @overload
231
+ def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]: ...
232
+
233
+ @overload
234
+ def eig(a: _ArrayLikeInt_co) -> EigResult: ...
235
+ @overload
236
+ def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
237
+ @overload
238
+ def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
239
+
240
+ @overload
241
+ def eigh(
242
+ a: _ArrayLikeInt_co,
243
+ UPLO: L["L", "U", "l", "u"] = ...,
244
+ ) -> EighResult: ...
245
+ @overload
246
+ def eigh(
247
+ a: _ArrayLikeFloat_co,
248
+ UPLO: L["L", "U", "l", "u"] = ...,
249
+ ) -> EighResult: ...
250
+ @overload
251
+ def eigh(
252
+ a: _ArrayLikeComplex_co,
253
+ UPLO: L["L", "U", "l", "u"] = ...,
254
+ ) -> EighResult: ...
255
+
256
+ @overload
257
+ def svd(
258
+ a: _ArrayLikeInt_co,
259
+ full_matrices: bool = ...,
260
+ compute_uv: L[True] = ...,
261
+ hermitian: bool = ...,
262
+ ) -> SVDResult: ...
263
+ @overload
264
+ def svd(
265
+ a: _ArrayLikeFloat_co,
266
+ full_matrices: bool = ...,
267
+ compute_uv: L[True] = ...,
268
+ hermitian: bool = ...,
269
+ ) -> SVDResult: ...
270
+ @overload
271
+ def svd(
272
+ a: _ArrayLikeComplex_co,
273
+ full_matrices: bool = ...,
274
+ compute_uv: L[True] = ...,
275
+ hermitian: bool = ...,
276
+ ) -> SVDResult: ...
277
+ @overload
278
+ def svd(
279
+ a: _ArrayLikeInt_co,
280
+ full_matrices: bool = ...,
281
+ compute_uv: L[False] = ...,
282
+ hermitian: bool = ...,
283
+ ) -> NDArray[float64]: ...
284
+ @overload
285
+ def svd(
286
+ a: _ArrayLikeComplex_co,
287
+ full_matrices: bool = ...,
288
+ compute_uv: L[False] = ...,
289
+ hermitian: bool = ...,
290
+ ) -> NDArray[floating[Any]]: ...
291
+
292
+ def svdvals(
293
+ x: _ArrayLikeInt_co | _ArrayLikeFloat_co | _ArrayLikeComplex_co
294
+ ) -> NDArray[floating[Any]]: ...
295
+
296
+ # TODO: Returns a scalar for 2D arrays and
297
+ # a `(x.ndim - 2)`` dimensionl array otherwise
298
+ def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any: ...
299
+
300
+ # TODO: Returns `int` for <2D arrays and `intp` otherwise
301
+ def matrix_rank(
302
+ A: _ArrayLikeComplex_co,
303
+ tol: None | _ArrayLikeFloat_co = ...,
304
+ hermitian: bool = ...,
305
+ *,
306
+ rtol: None | _ArrayLikeFloat_co = ...,
307
+ ) -> Any: ...
308
+
309
+ @overload
310
+ def pinv(
311
+ a: _ArrayLikeInt_co,
312
+ rcond: _ArrayLikeFloat_co = ...,
313
+ hermitian: bool = ...,
314
+ ) -> NDArray[float64]: ...
315
+ @overload
316
+ def pinv(
317
+ a: _ArrayLikeFloat_co,
318
+ rcond: _ArrayLikeFloat_co = ...,
319
+ hermitian: bool = ...,
320
+ ) -> NDArray[floating[Any]]: ...
321
+ @overload
322
+ def pinv(
323
+ a: _ArrayLikeComplex_co,
324
+ rcond: _ArrayLikeFloat_co = ...,
325
+ hermitian: bool = ...,
326
+ ) -> NDArray[complexfloating[Any, Any]]: ...
327
+
328
+ # TODO: Returns a 2-tuple of scalars for 2D arrays and
329
+ # a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
330
+ def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
331
+
332
+ # TODO: Returns a 2-tuple of scalars for 2D arrays and
333
+ # a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
334
+ def det(a: _ArrayLikeComplex_co) -> Any: ...
335
+
336
+ @overload
337
+ def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> tuple[
338
+ NDArray[float64],
339
+ NDArray[float64],
340
+ int32,
341
+ NDArray[float64],
342
+ ]: ...
343
+ @overload
344
+ def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> tuple[
345
+ NDArray[floating[Any]],
346
+ NDArray[floating[Any]],
347
+ int32,
348
+ NDArray[floating[Any]],
349
+ ]: ...
350
+ @overload
351
+ def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> tuple[
352
+ NDArray[complexfloating[Any, Any]],
353
+ NDArray[floating[Any]],
354
+ int32,
355
+ NDArray[floating[Any]],
356
+ ]: ...
357
+
358
+ @overload
359
+ def norm(
360
+ x: ArrayLike,
361
+ ord: None | float | L["fro", "nuc"] = ...,
362
+ axis: None = ...,
363
+ keepdims: bool = ...,
364
+ ) -> floating[Any]: ...
365
+ @overload
366
+ def norm(
367
+ x: ArrayLike,
368
+ ord: None | float | L["fro", "nuc"] = ...,
369
+ axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
370
+ keepdims: bool = ...,
371
+ ) -> Any: ...
372
+
373
+ @overload
374
+ def matrix_norm(
375
+ x: ArrayLike,
376
+ ord: None | float | L["fro", "nuc"] = ...,
377
+ keepdims: bool = ...,
378
+ ) -> floating[Any]: ...
379
+ @overload
380
+ def matrix_norm(
381
+ x: ArrayLike,
382
+ ord: None | float | L["fro", "nuc"] = ...,
383
+ keepdims: bool = ...,
384
+ ) -> Any: ...
385
+
386
+ @overload
387
+ def vector_norm(
388
+ x: ArrayLike,
389
+ axis: None = ...,
390
+ ord: None | float = ...,
391
+ keepdims: bool = ...,
392
+ ) -> floating[Any]: ...
393
+ @overload
394
+ def vector_norm(
395
+ x: ArrayLike,
396
+ axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
397
+ ord: None | float = ...,
398
+ keepdims: bool = ...,
399
+ ) -> Any: ...
400
+
401
+ # TODO: Returns a scalar or array
402
+ def multi_dot(
403
+ arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
404
+ *,
405
+ out: None | NDArray[Any] = ...,
406
+ ) -> Any: ...
407
+
408
+ def diagonal(
409
+ x: ArrayLike, # >= 2D array
410
+ offset: SupportsIndex = ...,
411
+ ) -> NDArray[Any]: ...
412
+
413
+ def trace(
414
+ x: ArrayLike, # >= 2D array
415
+ offset: SupportsIndex = ...,
416
+ dtype: DTypeLike = ...,
417
+ ) -> Any: ...
418
+
419
+ @overload
420
+ def cross(
421
+ a: _ArrayLikeUInt_co,
422
+ b: _ArrayLikeUInt_co,
423
+ axis: int = ...,
424
+ ) -> NDArray[unsignedinteger[Any]]: ...
425
+ @overload
426
+ def cross(
427
+ a: _ArrayLikeInt_co,
428
+ b: _ArrayLikeInt_co,
429
+ axis: int = ...,
430
+ ) -> NDArray[signedinteger[Any]]: ...
431
+ @overload
432
+ def cross(
433
+ a: _ArrayLikeFloat_co,
434
+ b: _ArrayLikeFloat_co,
435
+ axis: int = ...,
436
+ ) -> NDArray[floating[Any]]: ...
437
+ @overload
438
+ def cross(
439
+ a: _ArrayLikeComplex_co,
440
+ b: _ArrayLikeComplex_co,
441
+ axis: int = ...,
442
+ ) -> NDArray[complexfloating[Any, Any]]: ...
443
+
444
+ @overload
445
+ def matmul(
446
+ x1: _ArrayLikeInt_co,
447
+ x2: _ArrayLikeInt_co,
448
+ ) -> NDArray[signedinteger[Any]]: ...
449
+ @overload
450
+ def matmul(
451
+ x1: _ArrayLikeUInt_co,
452
+ x2: _ArrayLikeUInt_co,
453
+ ) -> NDArray[unsignedinteger[Any]]: ...
454
+ @overload
455
+ def matmul(
456
+ x1: _ArrayLikeFloat_co,
457
+ x2: _ArrayLikeFloat_co,
458
+ ) -> NDArray[floating[Any]]: ...
459
+ @overload
460
+ def matmul(
461
+ x1: _ArrayLikeComplex_co,
462
+ x2: _ArrayLikeComplex_co,
463
+ ) -> NDArray[complexfloating[Any, Any]]: ...
janus/lib/python3.10/site-packages/numpy/linalg/lapack_lite.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (30 kB). View file
 
janus/lib/python3.10/site-packages/numpy/linalg/linalg.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(attr_name):
2
+ import warnings
3
+ from numpy.linalg import _linalg
4
+ ret = getattr(_linalg, attr_name, None)
5
+ if ret is None:
6
+ raise AttributeError(
7
+ f"module 'numpy.linalg.linalg' has no attribute {attr_name}")
8
+ warnings.warn(
9
+ "The numpy.linalg.linalg has been made private and renamed to "
10
+ "numpy.linalg._linalg. All public functions exported by it are "
11
+ f"available from numpy.linalg. Please use numpy.linalg.{attr_name} "
12
+ "instead.",
13
+ DeprecationWarning,
14
+ stacklevel=3
15
+ )
16
+ return ret
janus/lib/python3.10/site-packages/numpy/linalg/tests/__init__.py ADDED
File without changes
janus/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (169 Bytes). View file
 
janus/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_deprecations.cpython-310.pyc ADDED
Binary file (810 Bytes). View file
 
janus/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_linalg.cpython-310.pyc ADDED
Binary file (70.2 kB). View file
 
janus/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_regression.cpython-310.pyc ADDED
Binary file (5.83 kB). View file
 
janus/lib/python3.10/site-packages/numpy/linalg/tests/test_deprecations.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Test deprecation and future warnings.
2
+
3
+ """
4
+ import numpy as np
5
+ from numpy.testing import assert_warns
6
+
7
+
8
+ def test_qr_mode_full_future_warning():
9
+ """Check mode='full' FutureWarning.
10
+
11
+ In numpy 1.8 the mode options 'full' and 'economic' in linalg.qr were
12
+ deprecated. The release date will probably be sometime in the summer
13
+ of 2013.
14
+
15
+ """
16
+ a = np.eye(2)
17
+ assert_warns(DeprecationWarning, np.linalg.qr, a, mode='full')
18
+ assert_warns(DeprecationWarning, np.linalg.qr, a, mode='f')
19
+ assert_warns(DeprecationWarning, np.linalg.qr, a, mode='economic')
20
+ assert_warns(DeprecationWarning, np.linalg.qr, a, mode='e')
janus/lib/python3.10/site-packages/numpy/linalg/tests/test_linalg.py ADDED
@@ -0,0 +1,2386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Test functions for linalg module
2
+
3
+ """
4
+ import os
5
+ import sys
6
+ import itertools
7
+ import threading
8
+ import traceback
9
+ import textwrap
10
+ import subprocess
11
+ import pytest
12
+
13
+ import numpy as np
14
+ from numpy import array, single, double, csingle, cdouble, dot, identity, matmul
15
+ from numpy._core import swapaxes
16
+ from numpy.exceptions import AxisError
17
+ from numpy import multiply, atleast_2d, inf, asarray
18
+ from numpy import linalg
19
+ from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError
20
+ from numpy.linalg._linalg import _multi_dot_matrix_chain_order
21
+ from numpy.testing import (
22
+ assert_, assert_equal, assert_raises, assert_array_equal,
23
+ assert_almost_equal, assert_allclose, suppress_warnings,
24
+ assert_raises_regex, HAS_LAPACK64, IS_WASM
25
+ )
26
+ try:
27
+ import numpy.linalg.lapack_lite
28
+ except ImportError:
29
+ # May be broken when numpy was built without BLAS/LAPACK present
30
+ # If so, ensure we don't break the whole test suite - the `lapack_lite`
31
+ # submodule should be removed, it's only used in two tests in this file.
32
+ pass
33
+
34
+
35
+ def consistent_subclass(out, in_):
36
+ # For ndarray subclass input, our output should have the same subclass
37
+ # (non-ndarray input gets converted to ndarray).
38
+ return type(out) is (type(in_) if isinstance(in_, np.ndarray)
39
+ else np.ndarray)
40
+
41
+
42
+ old_assert_almost_equal = assert_almost_equal
43
+
44
+
45
+ def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw):
46
+ if asarray(a).dtype.type in (single, csingle):
47
+ decimal = single_decimal
48
+ else:
49
+ decimal = double_decimal
50
+ old_assert_almost_equal(a, b, decimal=decimal, **kw)
51
+
52
+
53
+ def get_real_dtype(dtype):
54
+ return {single: single, double: double,
55
+ csingle: single, cdouble: double}[dtype]
56
+
57
+
58
+ def get_complex_dtype(dtype):
59
+ return {single: csingle, double: cdouble,
60
+ csingle: csingle, cdouble: cdouble}[dtype]
61
+
62
+
63
+ def get_rtol(dtype):
64
+ # Choose a safe rtol
65
+ if dtype in (single, csingle):
66
+ return 1e-5
67
+ else:
68
+ return 1e-11
69
+
70
+
71
+ # used to categorize tests
72
+ all_tags = {
73
+ 'square', 'nonsquare', 'hermitian', # mutually exclusive
74
+ 'generalized', 'size-0', 'strided' # optional additions
75
+ }
76
+
77
+
78
+ class LinalgCase:
79
+ def __init__(self, name, a, b, tags=set()):
80
+ """
81
+ A bundle of arguments to be passed to a test case, with an identifying
82
+ name, the operands a and b, and a set of tags to filter the tests
83
+ """
84
+ assert_(isinstance(name, str))
85
+ self.name = name
86
+ self.a = a
87
+ self.b = b
88
+ self.tags = frozenset(tags) # prevent shared tags
89
+
90
+ def check(self, do):
91
+ """
92
+ Run the function `do` on this test case, expanding arguments
93
+ """
94
+ do(self.a, self.b, tags=self.tags)
95
+
96
+ def __repr__(self):
97
+ return f'<LinalgCase: {self.name}>'
98
+
99
+
100
+ def apply_tag(tag, cases):
101
+ """
102
+ Add the given tag (a string) to each of the cases (a list of LinalgCase
103
+ objects)
104
+ """
105
+ assert tag in all_tags, "Invalid tag"
106
+ for case in cases:
107
+ case.tags = case.tags | {tag}
108
+ return cases
109
+
110
+
111
+ #
112
+ # Base test cases
113
+ #
114
+
115
+ np.random.seed(1234)
116
+
117
+ CASES = []
118
+
119
+ # square test cases
120
+ CASES += apply_tag('square', [
121
+ LinalgCase("single",
122
+ array([[1., 2.], [3., 4.]], dtype=single),
123
+ array([2., 1.], dtype=single)),
124
+ LinalgCase("double",
125
+ array([[1., 2.], [3., 4.]], dtype=double),
126
+ array([2., 1.], dtype=double)),
127
+ LinalgCase("double_2",
128
+ array([[1., 2.], [3., 4.]], dtype=double),
129
+ array([[2., 1., 4.], [3., 4., 6.]], dtype=double)),
130
+ LinalgCase("csingle",
131
+ array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle),
132
+ array([2. + 1j, 1. + 2j], dtype=csingle)),
133
+ LinalgCase("cdouble",
134
+ array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
135
+ array([2. + 1j, 1. + 2j], dtype=cdouble)),
136
+ LinalgCase("cdouble_2",
137
+ array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
138
+ array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)),
139
+ LinalgCase("0x0",
140
+ np.empty((0, 0), dtype=double),
141
+ np.empty((0,), dtype=double),
142
+ tags={'size-0'}),
143
+ LinalgCase("8x8",
144
+ np.random.rand(8, 8),
145
+ np.random.rand(8)),
146
+ LinalgCase("1x1",
147
+ np.random.rand(1, 1),
148
+ np.random.rand(1)),
149
+ LinalgCase("nonarray",
150
+ [[1, 2], [3, 4]],
151
+ [2, 1]),
152
+ ])
153
+
154
+ # non-square test-cases
155
+ CASES += apply_tag('nonsquare', [
156
+ LinalgCase("single_nsq_1",
157
+ array([[1., 2., 3.], [3., 4., 6.]], dtype=single),
158
+ array([2., 1.], dtype=single)),
159
+ LinalgCase("single_nsq_2",
160
+ array([[1., 2.], [3., 4.], [5., 6.]], dtype=single),
161
+ array([2., 1., 3.], dtype=single)),
162
+ LinalgCase("double_nsq_1",
163
+ array([[1., 2., 3.], [3., 4., 6.]], dtype=double),
164
+ array([2., 1.], dtype=double)),
165
+ LinalgCase("double_nsq_2",
166
+ array([[1., 2.], [3., 4.], [5., 6.]], dtype=double),
167
+ array([2., 1., 3.], dtype=double)),
168
+ LinalgCase("csingle_nsq_1",
169
+ array(
170
+ [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle),
171
+ array([2. + 1j, 1. + 2j], dtype=csingle)),
172
+ LinalgCase("csingle_nsq_2",
173
+ array(
174
+ [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle),
175
+ array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)),
176
+ LinalgCase("cdouble_nsq_1",
177
+ array(
178
+ [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
179
+ array([2. + 1j, 1. + 2j], dtype=cdouble)),
180
+ LinalgCase("cdouble_nsq_2",
181
+ array(
182
+ [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
183
+ array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)),
184
+ LinalgCase("cdouble_nsq_1_2",
185
+ array(
186
+ [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
187
+ array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
188
+ LinalgCase("cdouble_nsq_2_2",
189
+ array(
190
+ [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
191
+ array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
192
+ LinalgCase("8x11",
193
+ np.random.rand(8, 11),
194
+ np.random.rand(8)),
195
+ LinalgCase("1x5",
196
+ np.random.rand(1, 5),
197
+ np.random.rand(1)),
198
+ LinalgCase("5x1",
199
+ np.random.rand(5, 1),
200
+ np.random.rand(5)),
201
+ LinalgCase("0x4",
202
+ np.random.rand(0, 4),
203
+ np.random.rand(0),
204
+ tags={'size-0'}),
205
+ LinalgCase("4x0",
206
+ np.random.rand(4, 0),
207
+ np.random.rand(4),
208
+ tags={'size-0'}),
209
+ ])
210
+
211
+ # hermitian test-cases
212
+ CASES += apply_tag('hermitian', [
213
+ LinalgCase("hsingle",
214
+ array([[1., 2.], [2., 1.]], dtype=single),
215
+ None),
216
+ LinalgCase("hdouble",
217
+ array([[1., 2.], [2., 1.]], dtype=double),
218
+ None),
219
+ LinalgCase("hcsingle",
220
+ array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle),
221
+ None),
222
+ LinalgCase("hcdouble",
223
+ array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble),
224
+ None),
225
+ LinalgCase("hempty",
226
+ np.empty((0, 0), dtype=double),
227
+ None,
228
+ tags={'size-0'}),
229
+ LinalgCase("hnonarray",
230
+ [[1, 2], [2, 1]],
231
+ None),
232
+ LinalgCase("matrix_b_only",
233
+ array([[1., 2.], [2., 1.]]),
234
+ None),
235
+ LinalgCase("hmatrix_1x1",
236
+ np.random.rand(1, 1),
237
+ None),
238
+ ])
239
+
240
+
241
+ #
242
+ # Gufunc test cases
243
+ #
244
+ def _make_generalized_cases():
245
+ new_cases = []
246
+
247
+ for case in CASES:
248
+ if not isinstance(case.a, np.ndarray):
249
+ continue
250
+
251
+ a = np.array([case.a, 2 * case.a, 3 * case.a])
252
+ if case.b is None:
253
+ b = None
254
+ elif case.b.ndim == 1:
255
+ b = case.b
256
+ else:
257
+ b = np.array([case.b, 7 * case.b, 6 * case.b])
258
+ new_case = LinalgCase(case.name + "_tile3", a, b,
259
+ tags=case.tags | {'generalized'})
260
+ new_cases.append(new_case)
261
+
262
+ a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape)
263
+ if case.b is None:
264
+ b = None
265
+ elif case.b.ndim == 1:
266
+ b = np.array([case.b] * 2 * 3 * a.shape[-1])\
267
+ .reshape((3, 2) + case.a.shape[-2:])
268
+ else:
269
+ b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape)
270
+ new_case = LinalgCase(case.name + "_tile213", a, b,
271
+ tags=case.tags | {'generalized'})
272
+ new_cases.append(new_case)
273
+
274
+ return new_cases
275
+
276
+
277
+ CASES += _make_generalized_cases()
278
+
279
+
280
+ #
281
+ # Generate stride combination variations of the above
282
+ #
283
+ def _stride_comb_iter(x):
284
+ """
285
+ Generate cartesian product of strides for all axes
286
+ """
287
+
288
+ if not isinstance(x, np.ndarray):
289
+ yield x, "nop"
290
+ return
291
+
292
+ stride_set = [(1,)] * x.ndim
293
+ stride_set[-1] = (1, 3, -4)
294
+ if x.ndim > 1:
295
+ stride_set[-2] = (1, 3, -4)
296
+ if x.ndim > 2:
297
+ stride_set[-3] = (1, -4)
298
+
299
+ for repeats in itertools.product(*tuple(stride_set)):
300
+ new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)]
301
+ slices = tuple([slice(None, None, repeat) for repeat in repeats])
302
+
303
+ # new array with different strides, but same data
304
+ xi = np.empty(new_shape, dtype=x.dtype)
305
+ xi.view(np.uint32).fill(0xdeadbeef)
306
+ xi = xi[slices]
307
+ xi[...] = x
308
+ xi = xi.view(x.__class__)
309
+ assert_(np.all(xi == x))
310
+ yield xi, "stride_" + "_".join(["%+d" % j for j in repeats])
311
+
312
+ # generate also zero strides if possible
313
+ if x.ndim >= 1 and x.shape[-1] == 1:
314
+ s = list(x.strides)
315
+ s[-1] = 0
316
+ xi = np.lib.stride_tricks.as_strided(x, strides=s)
317
+ yield xi, "stride_xxx_0"
318
+ if x.ndim >= 2 and x.shape[-2] == 1:
319
+ s = list(x.strides)
320
+ s[-2] = 0
321
+ xi = np.lib.stride_tricks.as_strided(x, strides=s)
322
+ yield xi, "stride_xxx_0_x"
323
+ if x.ndim >= 2 and x.shape[:-2] == (1, 1):
324
+ s = list(x.strides)
325
+ s[-1] = 0
326
+ s[-2] = 0
327
+ xi = np.lib.stride_tricks.as_strided(x, strides=s)
328
+ yield xi, "stride_xxx_0_0"
329
+
330
+
331
+ def _make_strided_cases():
332
+ new_cases = []
333
+ for case in CASES:
334
+ for a, a_label in _stride_comb_iter(case.a):
335
+ for b, b_label in _stride_comb_iter(case.b):
336
+ new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b,
337
+ tags=case.tags | {'strided'})
338
+ new_cases.append(new_case)
339
+ return new_cases
340
+
341
+
342
+ CASES += _make_strided_cases()
343
+
344
+
345
+ #
346
+ # Test different routines against the above cases
347
+ #
348
+ class LinalgTestCase:
349
+ TEST_CASES = CASES
350
+
351
+ def check_cases(self, require=set(), exclude=set()):
352
+ """
353
+ Run func on each of the cases with all of the tags in require, and none
354
+ of the tags in exclude
355
+ """
356
+ for case in self.TEST_CASES:
357
+ # filter by require and exclude
358
+ if case.tags & require != require:
359
+ continue
360
+ if case.tags & exclude:
361
+ continue
362
+
363
+ try:
364
+ case.check(self.do)
365
+ except Exception as e:
366
+ msg = f'In test case: {case!r}\n\n'
367
+ msg += traceback.format_exc()
368
+ raise AssertionError(msg) from e
369
+
370
+
371
+ class LinalgSquareTestCase(LinalgTestCase):
372
+
373
+ def test_sq_cases(self):
374
+ self.check_cases(require={'square'},
375
+ exclude={'generalized', 'size-0'})
376
+
377
+ def test_empty_sq_cases(self):
378
+ self.check_cases(require={'square', 'size-0'},
379
+ exclude={'generalized'})
380
+
381
+
382
+ class LinalgNonsquareTestCase(LinalgTestCase):
383
+
384
+ def test_nonsq_cases(self):
385
+ self.check_cases(require={'nonsquare'},
386
+ exclude={'generalized', 'size-0'})
387
+
388
+ def test_empty_nonsq_cases(self):
389
+ self.check_cases(require={'nonsquare', 'size-0'},
390
+ exclude={'generalized'})
391
+
392
+
393
+ class HermitianTestCase(LinalgTestCase):
394
+
395
+ def test_herm_cases(self):
396
+ self.check_cases(require={'hermitian'},
397
+ exclude={'generalized', 'size-0'})
398
+
399
+ def test_empty_herm_cases(self):
400
+ self.check_cases(require={'hermitian', 'size-0'},
401
+ exclude={'generalized'})
402
+
403
+
404
+ class LinalgGeneralizedSquareTestCase(LinalgTestCase):
405
+
406
+ @pytest.mark.slow
407
+ def test_generalized_sq_cases(self):
408
+ self.check_cases(require={'generalized', 'square'},
409
+ exclude={'size-0'})
410
+
411
+ @pytest.mark.slow
412
+ def test_generalized_empty_sq_cases(self):
413
+ self.check_cases(require={'generalized', 'square', 'size-0'})
414
+
415
+
416
+ class LinalgGeneralizedNonsquareTestCase(LinalgTestCase):
417
+
418
+ @pytest.mark.slow
419
+ def test_generalized_nonsq_cases(self):
420
+ self.check_cases(require={'generalized', 'nonsquare'},
421
+ exclude={'size-0'})
422
+
423
+ @pytest.mark.slow
424
+ def test_generalized_empty_nonsq_cases(self):
425
+ self.check_cases(require={'generalized', 'nonsquare', 'size-0'})
426
+
427
+
428
+ class HermitianGeneralizedTestCase(LinalgTestCase):
429
+
430
+ @pytest.mark.slow
431
+ def test_generalized_herm_cases(self):
432
+ self.check_cases(require={'generalized', 'hermitian'},
433
+ exclude={'size-0'})
434
+
435
+ @pytest.mark.slow
436
+ def test_generalized_empty_herm_cases(self):
437
+ self.check_cases(require={'generalized', 'hermitian', 'size-0'},
438
+ exclude={'none'})
439
+
440
+
441
+ def identity_like_generalized(a):
442
+ a = asarray(a)
443
+ if a.ndim >= 3:
444
+ r = np.empty(a.shape, dtype=a.dtype)
445
+ r[...] = identity(a.shape[-2])
446
+ return r
447
+ else:
448
+ return identity(a.shape[0])
449
+
450
+
451
+ class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
452
+ # kept apart from TestSolve for use for testing with matrices.
453
+ def do(self, a, b, tags):
454
+ x = linalg.solve(a, b)
455
+ if np.array(b).ndim == 1:
456
+ # When a is (..., M, M) and b is (M,), it is the same as when b is
457
+ # (M, 1), except the result has shape (..., M)
458
+ adotx = matmul(a, x[..., None])[..., 0]
459
+ assert_almost_equal(np.broadcast_to(b, adotx.shape), adotx)
460
+ else:
461
+ adotx = matmul(a, x)
462
+ assert_almost_equal(b, adotx)
463
+ assert_(consistent_subclass(x, b))
464
+
465
+
466
+ class TestSolve(SolveCases):
467
+ @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
468
+ def test_types(self, dtype):
469
+ x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
470
+ assert_equal(linalg.solve(x, x).dtype, dtype)
471
+
472
+ def test_1_d(self):
473
+ class ArraySubclass(np.ndarray):
474
+ pass
475
+ a = np.arange(8).reshape(2, 2, 2)
476
+ b = np.arange(2).view(ArraySubclass)
477
+ result = linalg.solve(a, b)
478
+ assert result.shape == (2, 2)
479
+
480
+ # If b is anything other than 1-D it should be treated as a stack of
481
+ # matrices
482
+ b = np.arange(4).reshape(2, 2).view(ArraySubclass)
483
+ result = linalg.solve(a, b)
484
+ assert result.shape == (2, 2, 2)
485
+
486
+ b = np.arange(2).reshape(1, 2).view(ArraySubclass)
487
+ assert_raises(ValueError, linalg.solve, a, b)
488
+
489
+ def test_0_size(self):
490
+ class ArraySubclass(np.ndarray):
491
+ pass
492
+ # Test system of 0x0 matrices
493
+ a = np.arange(8).reshape(2, 2, 2)
494
+ b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)
495
+
496
+ expected = linalg.solve(a, b)[:, 0:0, :]
497
+ result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :])
498
+ assert_array_equal(result, expected)
499
+ assert_(isinstance(result, ArraySubclass))
500
+
501
+ # Test errors for non-square and only b's dimension being 0
502
+ assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
503
+ assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :])
504
+
505
+ # Test broadcasting error
506
+ b = np.arange(6).reshape(1, 3, 2) # broadcasting error
507
+ assert_raises(ValueError, linalg.solve, a, b)
508
+ assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
509
+
510
+ # Test zero "single equations" with 0x0 matrices.
511
+ b = np.arange(2).view(ArraySubclass)
512
+ expected = linalg.solve(a, b)[:, 0:0]
513
+ result = linalg.solve(a[:, 0:0, 0:0], b[0:0])
514
+ assert_array_equal(result, expected)
515
+ assert_(isinstance(result, ArraySubclass))
516
+
517
+ b = np.arange(3).reshape(1, 3)
518
+ assert_raises(ValueError, linalg.solve, a, b)
519
+ assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
520
+ assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)
521
+
522
+ def test_0_size_k(self):
523
+ # test zero multiple equation (K=0) case.
524
+ class ArraySubclass(np.ndarray):
525
+ pass
526
+ a = np.arange(4).reshape(1, 2, 2)
527
+ b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)
528
+
529
+ expected = linalg.solve(a, b)[:, :, 0:0]
530
+ result = linalg.solve(a, b[:, :, 0:0])
531
+ assert_array_equal(result, expected)
532
+ assert_(isinstance(result, ArraySubclass))
533
+
534
+ # test both zero.
535
+ expected = linalg.solve(a, b)[:, 0:0, 0:0]
536
+ result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0])
537
+ assert_array_equal(result, expected)
538
+ assert_(isinstance(result, ArraySubclass))
539
+
540
+
541
+ class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
542
+
543
+ def do(self, a, b, tags):
544
+ a_inv = linalg.inv(a)
545
+ assert_almost_equal(matmul(a, a_inv),
546
+ identity_like_generalized(a))
547
+ assert_(consistent_subclass(a_inv, a))
548
+
549
+
550
+ class TestInv(InvCases):
551
+ @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
552
+ def test_types(self, dtype):
553
+ x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
554
+ assert_equal(linalg.inv(x).dtype, dtype)
555
+
556
+ def test_0_size(self):
557
+ # Check that all kinds of 0-sized arrays work
558
+ class ArraySubclass(np.ndarray):
559
+ pass
560
+ a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
561
+ res = linalg.inv(a)
562
+ assert_(res.dtype.type is np.float64)
563
+ assert_equal(a.shape, res.shape)
564
+ assert_(isinstance(res, ArraySubclass))
565
+
566
+ a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
567
+ res = linalg.inv(a)
568
+ assert_(res.dtype.type is np.complex64)
569
+ assert_equal(a.shape, res.shape)
570
+ assert_(isinstance(res, ArraySubclass))
571
+
572
+
573
+ class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
574
+
575
+ def do(self, a, b, tags):
576
+ ev = linalg.eigvals(a)
577
+ evalues, evectors = linalg.eig(a)
578
+ assert_almost_equal(ev, evalues)
579
+
580
+
581
+ class TestEigvals(EigvalsCases):
582
+ @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
583
+ def test_types(self, dtype):
584
+ x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
585
+ assert_equal(linalg.eigvals(x).dtype, dtype)
586
+ x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
587
+ assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
588
+
589
+ def test_0_size(self):
590
+ # Check that all kinds of 0-sized arrays work
591
+ class ArraySubclass(np.ndarray):
592
+ pass
593
+ a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
594
+ res = linalg.eigvals(a)
595
+ assert_(res.dtype.type is np.float64)
596
+ assert_equal((0, 1), res.shape)
597
+ # This is just for documentation, it might make sense to change:
598
+ assert_(isinstance(res, np.ndarray))
599
+
600
+ a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
601
+ res = linalg.eigvals(a)
602
+ assert_(res.dtype.type is np.complex64)
603
+ assert_equal((0,), res.shape)
604
+ # This is just for documentation, it might make sense to change:
605
+ assert_(isinstance(res, np.ndarray))
606
+
607
+
608
+ class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
609
+
610
+ def do(self, a, b, tags):
611
+ res = linalg.eig(a)
612
+ eigenvalues, eigenvectors = res.eigenvalues, res.eigenvectors
613
+ assert_allclose(matmul(a, eigenvectors),
614
+ np.asarray(eigenvectors) * np.asarray(eigenvalues)[..., None, :],
615
+ rtol=get_rtol(eigenvalues.dtype))
616
+ assert_(consistent_subclass(eigenvectors, a))
617
+
618
+
619
+ class TestEig(EigCases):
620
+ @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
621
+ def test_types(self, dtype):
622
+ x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
623
+ w, v = np.linalg.eig(x)
624
+ assert_equal(w.dtype, dtype)
625
+ assert_equal(v.dtype, dtype)
626
+
627
+ x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
628
+ w, v = np.linalg.eig(x)
629
+ assert_equal(w.dtype, get_complex_dtype(dtype))
630
+ assert_equal(v.dtype, get_complex_dtype(dtype))
631
+
632
+ def test_0_size(self):
633
+ # Check that all kinds of 0-sized arrays work
634
+ class ArraySubclass(np.ndarray):
635
+ pass
636
+ a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
637
+ res, res_v = linalg.eig(a)
638
+ assert_(res_v.dtype.type is np.float64)
639
+ assert_(res.dtype.type is np.float64)
640
+ assert_equal(a.shape, res_v.shape)
641
+ assert_equal((0, 1), res.shape)
642
+ # This is just for documentation, it might make sense to change:
643
+ assert_(isinstance(a, np.ndarray))
644
+
645
+ a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
646
+ res, res_v = linalg.eig(a)
647
+ assert_(res_v.dtype.type is np.complex64)
648
+ assert_(res.dtype.type is np.complex64)
649
+ assert_equal(a.shape, res_v.shape)
650
+ assert_equal((0,), res.shape)
651
+ # This is just for documentation, it might make sense to change:
652
+ assert_(isinstance(a, np.ndarray))
653
+
654
+
655
+ class SVDBaseTests:
656
+ hermitian = False
657
+
658
+ @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
659
+ def test_types(self, dtype):
660
+ x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
661
+ res = linalg.svd(x)
662
+ U, S, Vh = res.U, res.S, res.Vh
663
+ assert_equal(U.dtype, dtype)
664
+ assert_equal(S.dtype, get_real_dtype(dtype))
665
+ assert_equal(Vh.dtype, dtype)
666
+ s = linalg.svd(x, compute_uv=False, hermitian=self.hermitian)
667
+ assert_equal(s.dtype, get_real_dtype(dtype))
668
+
669
+
670
+ class SVDCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
671
+
672
+ def do(self, a, b, tags):
673
+ u, s, vt = linalg.svd(a, False)
674
+ assert_allclose(a, matmul(np.asarray(u) * np.asarray(s)[..., None, :],
675
+ np.asarray(vt)),
676
+ rtol=get_rtol(u.dtype))
677
+ assert_(consistent_subclass(u, a))
678
+ assert_(consistent_subclass(vt, a))
679
+
680
+
681
+ class TestSVD(SVDCases, SVDBaseTests):
682
+ def test_empty_identity(self):
683
+ """ Empty input should put an identity matrix in u or vh """
684
+ x = np.empty((4, 0))
685
+ u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
686
+ assert_equal(u.shape, (4, 4))
687
+ assert_equal(vh.shape, (0, 0))
688
+ assert_equal(u, np.eye(4))
689
+
690
+ x = np.empty((0, 4))
691
+ u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
692
+ assert_equal(u.shape, (0, 0))
693
+ assert_equal(vh.shape, (4, 4))
694
+ assert_equal(vh, np.eye(4))
695
+
696
+ def test_svdvals(self):
697
+ x = np.array([[1, 0.5], [0.5, 1]])
698
+ s_from_svd = linalg.svd(x, compute_uv=False, hermitian=self.hermitian)
699
+ s_from_svdvals = linalg.svdvals(x)
700
+ assert_almost_equal(s_from_svd, s_from_svdvals)
701
+
702
+
703
+ class SVDHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
704
+
705
+ def do(self, a, b, tags):
706
+ u, s, vt = linalg.svd(a, False, hermitian=True)
707
+ assert_allclose(a, matmul(np.asarray(u) * np.asarray(s)[..., None, :],
708
+ np.asarray(vt)),
709
+ rtol=get_rtol(u.dtype))
710
+ def hermitian(mat):
711
+ axes = list(range(mat.ndim))
712
+ axes[-1], axes[-2] = axes[-2], axes[-1]
713
+ return np.conj(np.transpose(mat, axes=axes))
714
+
715
+ assert_almost_equal(np.matmul(u, hermitian(u)), np.broadcast_to(np.eye(u.shape[-1]), u.shape))
716
+ assert_almost_equal(np.matmul(vt, hermitian(vt)), np.broadcast_to(np.eye(vt.shape[-1]), vt.shape))
717
+ assert_equal(np.sort(s)[..., ::-1], s)
718
+ assert_(consistent_subclass(u, a))
719
+ assert_(consistent_subclass(vt, a))
720
+
721
+
722
+ class TestSVDHermitian(SVDHermitianCases, SVDBaseTests):
723
+ hermitian = True
724
+
725
+
726
+ class CondCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
727
+ # cond(x, p) for p in (None, 2, -2)
728
+
729
+ def do(self, a, b, tags):
730
+ c = asarray(a) # a might be a matrix
731
+ if 'size-0' in tags:
732
+ assert_raises(LinAlgError, linalg.cond, c)
733
+ return
734
+
735
+ # +-2 norms
736
+ s = linalg.svd(c, compute_uv=False)
737
+ assert_almost_equal(
738
+ linalg.cond(a), s[..., 0] / s[..., -1],
739
+ single_decimal=5, double_decimal=11)
740
+ assert_almost_equal(
741
+ linalg.cond(a, 2), s[..., 0] / s[..., -1],
742
+ single_decimal=5, double_decimal=11)
743
+ assert_almost_equal(
744
+ linalg.cond(a, -2), s[..., -1] / s[..., 0],
745
+ single_decimal=5, double_decimal=11)
746
+
747
+ # Other norms
748
+ cinv = np.linalg.inv(c)
749
+ assert_almost_equal(
750
+ linalg.cond(a, 1),
751
+ abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1),
752
+ single_decimal=5, double_decimal=11)
753
+ assert_almost_equal(
754
+ linalg.cond(a, -1),
755
+ abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1),
756
+ single_decimal=5, double_decimal=11)
757
+ assert_almost_equal(
758
+ linalg.cond(a, np.inf),
759
+ abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1),
760
+ single_decimal=5, double_decimal=11)
761
+ assert_almost_equal(
762
+ linalg.cond(a, -np.inf),
763
+ abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1),
764
+ single_decimal=5, double_decimal=11)
765
+ assert_almost_equal(
766
+ linalg.cond(a, 'fro'),
767
+ np.sqrt((abs(c)**2).sum(-1).sum(-1)
768
+ * (abs(cinv)**2).sum(-1).sum(-1)),
769
+ single_decimal=5, double_decimal=11)
770
+
771
+
772
+ class TestCond(CondCases):
773
+ def test_basic_nonsvd(self):
774
+ # Smoketest the non-svd norms
775
+ A = array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]])
776
+ assert_almost_equal(linalg.cond(A, inf), 4)
777
+ assert_almost_equal(linalg.cond(A, -inf), 2/3)
778
+ assert_almost_equal(linalg.cond(A, 1), 4)
779
+ assert_almost_equal(linalg.cond(A, -1), 0.5)
780
+ assert_almost_equal(linalg.cond(A, 'fro'), np.sqrt(265 / 12))
781
+
782
+ def test_singular(self):
783
+ # Singular matrices have infinite condition number for
784
+ # positive norms, and negative norms shouldn't raise
785
+ # exceptions
786
+ As = [np.zeros((2, 2)), np.ones((2, 2))]
787
+ p_pos = [None, 1, 2, 'fro']
788
+ p_neg = [-1, -2]
789
+ for A, p in itertools.product(As, p_pos):
790
+ # Inversion may not hit exact infinity, so just check the
791
+ # number is large
792
+ assert_(linalg.cond(A, p) > 1e15)
793
+ for A, p in itertools.product(As, p_neg):
794
+ linalg.cond(A, p)
795
+
796
+ @pytest.mark.xfail(True, run=False,
797
+ reason="Platform/LAPACK-dependent failure, "
798
+ "see gh-18914")
799
+ def test_nan(self):
800
+ # nans should be passed through, not converted to infs
801
+ ps = [None, 1, -1, 2, -2, 'fro']
802
+ p_pos = [None, 1, 2, 'fro']
803
+
804
+ A = np.ones((2, 2))
805
+ A[0,1] = np.nan
806
+ for p in ps:
807
+ c = linalg.cond(A, p)
808
+ assert_(isinstance(c, np.float64))
809
+ assert_(np.isnan(c))
810
+
811
+ A = np.ones((3, 2, 2))
812
+ A[1,0,1] = np.nan
813
+ for p in ps:
814
+ c = linalg.cond(A, p)
815
+ assert_(np.isnan(c[1]))
816
+ if p in p_pos:
817
+ assert_(c[0] > 1e15)
818
+ assert_(c[2] > 1e15)
819
+ else:
820
+ assert_(not np.isnan(c[0]))
821
+ assert_(not np.isnan(c[2]))
822
+
823
+ def test_stacked_singular(self):
824
+ # Check behavior when only some of the stacked matrices are
825
+ # singular
826
+ np.random.seed(1234)
827
+ A = np.random.rand(2, 2, 2, 2)
828
+ A[0,0] = 0
829
+ A[1,1] = 0
830
+
831
+ for p in (None, 1, 2, 'fro', -1, -2):
832
+ c = linalg.cond(A, p)
833
+ assert_equal(c[0,0], np.inf)
834
+ assert_equal(c[1,1], np.inf)
835
+ assert_(np.isfinite(c[0,1]))
836
+ assert_(np.isfinite(c[1,0]))
837
+
838
+
839
+ class PinvCases(LinalgSquareTestCase,
840
+ LinalgNonsquareTestCase,
841
+ LinalgGeneralizedSquareTestCase,
842
+ LinalgGeneralizedNonsquareTestCase):
843
+
844
+ def do(self, a, b, tags):
845
+ a_ginv = linalg.pinv(a)
846
+ # `a @ a_ginv == I` does not hold if a is singular
847
+ dot = matmul
848
+ assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
849
+ assert_(consistent_subclass(a_ginv, a))
850
+
851
+
852
+ class TestPinv(PinvCases):
853
+ pass
854
+
855
+
856
+ class PinvHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
857
+
858
+ def do(self, a, b, tags):
859
+ a_ginv = linalg.pinv(a, hermitian=True)
860
+ # `a @ a_ginv == I` does not hold if a is singular
861
+ dot = matmul
862
+ assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
863
+ assert_(consistent_subclass(a_ginv, a))
864
+
865
+
866
+ class TestPinvHermitian(PinvHermitianCases):
867
+ pass
868
+
869
+
870
+ def test_pinv_rtol_arg():
871
+ a = np.array([[1, 2, 3], [4, 1, 1], [2, 3, 1]])
872
+
873
+ assert_almost_equal(
874
+ np.linalg.pinv(a, rcond=0.5),
875
+ np.linalg.pinv(a, rtol=0.5),
876
+ )
877
+
878
+ with pytest.raises(
879
+ ValueError, match=r"`rtol` and `rcond` can't be both set."
880
+ ):
881
+ np.linalg.pinv(a, rcond=0.5, rtol=0.5)
882
+
883
+
884
+ class DetCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
885
+
886
+ def do(self, a, b, tags):
887
+ d = linalg.det(a)
888
+ res = linalg.slogdet(a)
889
+ s, ld = res.sign, res.logabsdet
890
+ if asarray(a).dtype.type in (single, double):
891
+ ad = asarray(a).astype(double)
892
+ else:
893
+ ad = asarray(a).astype(cdouble)
894
+ ev = linalg.eigvals(ad)
895
+ assert_almost_equal(d, multiply.reduce(ev, axis=-1))
896
+ assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))
897
+
898
+ s = np.atleast_1d(s)
899
+ ld = np.atleast_1d(ld)
900
+ m = (s != 0)
901
+ assert_almost_equal(np.abs(s[m]), 1)
902
+ assert_equal(ld[~m], -inf)
903
+
904
+
905
+ class TestDet(DetCases):
906
+ def test_zero(self):
907
+ assert_equal(linalg.det([[0.0]]), 0.0)
908
+ assert_equal(type(linalg.det([[0.0]])), double)
909
+ assert_equal(linalg.det([[0.0j]]), 0.0)
910
+ assert_equal(type(linalg.det([[0.0j]])), cdouble)
911
+
912
+ assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
913
+ assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
914
+ assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
915
+ assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
916
+ assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
917
+ assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)
918
+
919
+ @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
920
+ def test_types(self, dtype):
921
+ x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
922
+ assert_equal(np.linalg.det(x).dtype, dtype)
923
+ ph, s = np.linalg.slogdet(x)
924
+ assert_equal(s.dtype, get_real_dtype(dtype))
925
+ assert_equal(ph.dtype, dtype)
926
+
927
+ def test_0_size(self):
928
+ a = np.zeros((0, 0), dtype=np.complex64)
929
+ res = linalg.det(a)
930
+ assert_equal(res, 1.)
931
+ assert_(res.dtype.type is np.complex64)
932
+ res = linalg.slogdet(a)
933
+ assert_equal(res, (1, 0))
934
+ assert_(res[0].dtype.type is np.complex64)
935
+ assert_(res[1].dtype.type is np.float32)
936
+
937
+ a = np.zeros((0, 0), dtype=np.float64)
938
+ res = linalg.det(a)
939
+ assert_equal(res, 1.)
940
+ assert_(res.dtype.type is np.float64)
941
+ res = linalg.slogdet(a)
942
+ assert_equal(res, (1, 0))
943
+ assert_(res[0].dtype.type is np.float64)
944
+ assert_(res[1].dtype.type is np.float64)
945
+
946
+
947
+ class LstsqCases(LinalgSquareTestCase, LinalgNonsquareTestCase):
948
+
949
+ def do(self, a, b, tags):
950
+ arr = np.asarray(a)
951
+ m, n = arr.shape
952
+ u, s, vt = linalg.svd(a, False)
953
+ x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1)
954
+ if m == 0:
955
+ assert_((x == 0).all())
956
+ if m <= n:
957
+ assert_almost_equal(b, dot(a, x))
958
+ assert_equal(rank, m)
959
+ else:
960
+ assert_equal(rank, n)
961
+ assert_almost_equal(sv, sv.__array_wrap__(s))
962
+ if rank == n and m > n:
963
+ expect_resids = (
964
+ np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
965
+ expect_resids = np.asarray(expect_resids)
966
+ if np.asarray(b).ndim == 1:
967
+ expect_resids.shape = (1,)
968
+ assert_equal(residuals.shape, expect_resids.shape)
969
+ else:
970
+ expect_resids = np.array([]).view(type(x))
971
+ assert_almost_equal(residuals, expect_resids)
972
+ assert_(np.issubdtype(residuals.dtype, np.floating))
973
+ assert_(consistent_subclass(x, b))
974
+ assert_(consistent_subclass(residuals, b))
975
+
976
+
977
+ class TestLstsq(LstsqCases):
978
+ def test_rcond(self):
979
+ a = np.array([[0., 1., 0., 1., 2., 0.],
980
+ [0., 2., 0., 0., 1., 0.],
981
+ [1., 0., 1., 0., 0., 4.],
982
+ [0., 0., 0., 2., 3., 0.]]).T
983
+
984
+ b = np.array([1, 0, 0, 0, 0, 0])
985
+
986
+ x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1)
987
+ assert_(rank == 4)
988
+ x, residuals, rank, s = linalg.lstsq(a, b)
989
+ assert_(rank == 3)
990
+ x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
991
+ assert_(rank == 3)
992
+
993
+ @pytest.mark.parametrize(["m", "n", "n_rhs"], [
994
+ (4, 2, 2),
995
+ (0, 4, 1),
996
+ (0, 4, 2),
997
+ (4, 0, 1),
998
+ (4, 0, 2),
999
+ (4, 2, 0),
1000
+ (0, 0, 0)
1001
+ ])
1002
+ def test_empty_a_b(self, m, n, n_rhs):
1003
+ a = np.arange(m * n).reshape(m, n)
1004
+ b = np.ones((m, n_rhs))
1005
+ x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
1006
+ if m == 0:
1007
+ assert_((x == 0).all())
1008
+ assert_equal(x.shape, (n, n_rhs))
1009
+ assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,)))
1010
+ if m > n and n_rhs > 0:
1011
+ # residuals are exactly the squared norms of b's columns
1012
+ r = b - np.dot(a, x)
1013
+ assert_almost_equal(residuals, (r * r).sum(axis=-2))
1014
+ assert_equal(rank, min(m, n))
1015
+ assert_equal(s.shape, (min(m, n),))
1016
+
1017
+ def test_incompatible_dims(self):
1018
+ # use modified version of docstring example
1019
+ x = np.array([0, 1, 2, 3])
1020
+ y = np.array([-1, 0.2, 0.9, 2.1, 3.3])
1021
+ A = np.vstack([x, np.ones(len(x))]).T
1022
+ with assert_raises_regex(LinAlgError, "Incompatible dimensions"):
1023
+ linalg.lstsq(A, y, rcond=None)
1024
+
1025
+
1026
+ @pytest.mark.parametrize('dt', [np.dtype(c) for c in '?bBhHiIqQefdgFDGO'])
1027
+ class TestMatrixPower:
1028
+
1029
+ rshft_0 = np.eye(4)
1030
+ rshft_1 = rshft_0[[3, 0, 1, 2]]
1031
+ rshft_2 = rshft_0[[2, 3, 0, 1]]
1032
+ rshft_3 = rshft_0[[1, 2, 3, 0]]
1033
+ rshft_all = [rshft_0, rshft_1, rshft_2, rshft_3]
1034
+ noninv = array([[1, 0], [0, 0]])
1035
+ stacked = np.block([[[rshft_0]]]*2)
1036
+ #FIXME the 'e' dtype might work in future
1037
+ dtnoinv = [object, np.dtype('e'), np.dtype('g'), np.dtype('G')]
1038
+
1039
+ def test_large_power(self, dt):
1040
+ rshft = self.rshft_1.astype(dt)
1041
+ assert_equal(
1042
+ matrix_power(rshft, 2**100 + 2**10 + 2**5 + 0), self.rshft_0)
1043
+ assert_equal(
1044
+ matrix_power(rshft, 2**100 + 2**10 + 2**5 + 1), self.rshft_1)
1045
+ assert_equal(
1046
+ matrix_power(rshft, 2**100 + 2**10 + 2**5 + 2), self.rshft_2)
1047
+ assert_equal(
1048
+ matrix_power(rshft, 2**100 + 2**10 + 2**5 + 3), self.rshft_3)
1049
+
1050
+ def test_power_is_zero(self, dt):
1051
+ def tz(M):
1052
+ mz = matrix_power(M, 0)
1053
+ assert_equal(mz, identity_like_generalized(M))
1054
+ assert_equal(mz.dtype, M.dtype)
1055
+
1056
+ for mat in self.rshft_all:
1057
+ tz(mat.astype(dt))
1058
+ if dt != object:
1059
+ tz(self.stacked.astype(dt))
1060
+
1061
+ def test_power_is_one(self, dt):
1062
+ def tz(mat):
1063
+ mz = matrix_power(mat, 1)
1064
+ assert_equal(mz, mat)
1065
+ assert_equal(mz.dtype, mat.dtype)
1066
+
1067
+ for mat in self.rshft_all:
1068
+ tz(mat.astype(dt))
1069
+ if dt != object:
1070
+ tz(self.stacked.astype(dt))
1071
+
1072
+ def test_power_is_two(self, dt):
1073
+ def tz(mat):
1074
+ mz = matrix_power(mat, 2)
1075
+ mmul = matmul if mat.dtype != object else dot
1076
+ assert_equal(mz, mmul(mat, mat))
1077
+ assert_equal(mz.dtype, mat.dtype)
1078
+
1079
+ for mat in self.rshft_all:
1080
+ tz(mat.astype(dt))
1081
+ if dt != object:
1082
+ tz(self.stacked.astype(dt))
1083
+
1084
+ def test_power_is_minus_one(self, dt):
1085
+ def tz(mat):
1086
+ invmat = matrix_power(mat, -1)
1087
+ mmul = matmul if mat.dtype != object else dot
1088
+ assert_almost_equal(
1089
+ mmul(invmat, mat), identity_like_generalized(mat))
1090
+
1091
+ for mat in self.rshft_all:
1092
+ if dt not in self.dtnoinv:
1093
+ tz(mat.astype(dt))
1094
+
1095
+ def test_exceptions_bad_power(self, dt):
1096
+ mat = self.rshft_0.astype(dt)
1097
+ assert_raises(TypeError, matrix_power, mat, 1.5)
1098
+ assert_raises(TypeError, matrix_power, mat, [1])
1099
+
1100
+ def test_exceptions_non_square(self, dt):
1101
+ assert_raises(LinAlgError, matrix_power, np.array([1], dt), 1)
1102
+ assert_raises(LinAlgError, matrix_power, np.array([[1], [2]], dt), 1)
1103
+ assert_raises(LinAlgError, matrix_power, np.ones((4, 3, 2), dt), 1)
1104
+
1105
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
1106
+ def test_exceptions_not_invertible(self, dt):
1107
+ if dt in self.dtnoinv:
1108
+ return
1109
+ mat = self.noninv.astype(dt)
1110
+ assert_raises(LinAlgError, matrix_power, mat, -1)
1111
+
1112
+
1113
+ class TestEigvalshCases(HermitianTestCase, HermitianGeneralizedTestCase):
1114
+
1115
+ def do(self, a, b, tags):
1116
+ # note that eigenvalue arrays returned by eig must be sorted since
1117
+ # their order isn't guaranteed.
1118
+ ev = linalg.eigvalsh(a, 'L')
1119
+ evalues, evectors = linalg.eig(a)
1120
+ evalues.sort(axis=-1)
1121
+ assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype))
1122
+
1123
+ ev2 = linalg.eigvalsh(a, 'U')
1124
+ assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype))
1125
+
1126
+
1127
+ class TestEigvalsh:
1128
+ @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
1129
+ def test_types(self, dtype):
1130
+ x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
1131
+ w = np.linalg.eigvalsh(x)
1132
+ assert_equal(w.dtype, get_real_dtype(dtype))
1133
+
1134
+ def test_invalid(self):
1135
+ x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
1136
+ assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong")
1137
+ assert_raises(ValueError, np.linalg.eigvalsh, x, "lower")
1138
+ assert_raises(ValueError, np.linalg.eigvalsh, x, "upper")
1139
+
1140
+ def test_UPLO(self):
1141
+ Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
1142
+ Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
1143
+ tgt = np.array([-1, 1], dtype=np.double)
1144
+ rtol = get_rtol(np.double)
1145
+
1146
+ # Check default is 'L'
1147
+ w = np.linalg.eigvalsh(Klo)
1148
+ assert_allclose(w, tgt, rtol=rtol)
1149
+ # Check 'L'
1150
+ w = np.linalg.eigvalsh(Klo, UPLO='L')
1151
+ assert_allclose(w, tgt, rtol=rtol)
1152
+ # Check 'l'
1153
+ w = np.linalg.eigvalsh(Klo, UPLO='l')
1154
+ assert_allclose(w, tgt, rtol=rtol)
1155
+ # Check 'U'
1156
+ w = np.linalg.eigvalsh(Kup, UPLO='U')
1157
+ assert_allclose(w, tgt, rtol=rtol)
1158
+ # Check 'u'
1159
+ w = np.linalg.eigvalsh(Kup, UPLO='u')
1160
+ assert_allclose(w, tgt, rtol=rtol)
1161
+
1162
+ def test_0_size(self):
1163
+ # Check that all kinds of 0-sized arrays work
1164
+ class ArraySubclass(np.ndarray):
1165
+ pass
1166
+ a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
1167
+ res = linalg.eigvalsh(a)
1168
+ assert_(res.dtype.type is np.float64)
1169
+ assert_equal((0, 1), res.shape)
1170
+ # This is just for documentation, it might make sense to change:
1171
+ assert_(isinstance(res, np.ndarray))
1172
+
1173
+ a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
1174
+ res = linalg.eigvalsh(a)
1175
+ assert_(res.dtype.type is np.float32)
1176
+ assert_equal((0,), res.shape)
1177
+ # This is just for documentation, it might make sense to change:
1178
+ assert_(isinstance(res, np.ndarray))
1179
+
1180
+
1181
+ class TestEighCases(HermitianTestCase, HermitianGeneralizedTestCase):
1182
+
1183
+ def do(self, a, b, tags):
1184
+ # note that eigenvalue arrays returned by eig must be sorted since
1185
+ # their order isn't guaranteed.
1186
+ res = linalg.eigh(a)
1187
+ ev, evc = res.eigenvalues, res.eigenvectors
1188
+ evalues, evectors = linalg.eig(a)
1189
+ evalues.sort(axis=-1)
1190
+ assert_almost_equal(ev, evalues)
1191
+
1192
+ assert_allclose(matmul(a, evc),
1193
+ np.asarray(ev)[..., None, :] * np.asarray(evc),
1194
+ rtol=get_rtol(ev.dtype))
1195
+
1196
+ ev2, evc2 = linalg.eigh(a, 'U')
1197
+ assert_almost_equal(ev2, evalues)
1198
+
1199
+ assert_allclose(matmul(a, evc2),
1200
+ np.asarray(ev2)[..., None, :] * np.asarray(evc2),
1201
+ rtol=get_rtol(ev.dtype), err_msg=repr(a))
1202
+
1203
+
1204
+ class TestEigh:
1205
+ @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
1206
+ def test_types(self, dtype):
1207
+ x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
1208
+ w, v = np.linalg.eigh(x)
1209
+ assert_equal(w.dtype, get_real_dtype(dtype))
1210
+ assert_equal(v.dtype, dtype)
1211
+
1212
+ def test_invalid(self):
1213
+ x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
1214
+ assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong")
1215
+ assert_raises(ValueError, np.linalg.eigh, x, "lower")
1216
+ assert_raises(ValueError, np.linalg.eigh, x, "upper")
1217
+
1218
+ def test_UPLO(self):
1219
+ Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
1220
+ Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
1221
+ tgt = np.array([-1, 1], dtype=np.double)
1222
+ rtol = get_rtol(np.double)
1223
+
1224
+ # Check default is 'L'
1225
+ w, v = np.linalg.eigh(Klo)
1226
+ assert_allclose(w, tgt, rtol=rtol)
1227
+ # Check 'L'
1228
+ w, v = np.linalg.eigh(Klo, UPLO='L')
1229
+ assert_allclose(w, tgt, rtol=rtol)
1230
+ # Check 'l'
1231
+ w, v = np.linalg.eigh(Klo, UPLO='l')
1232
+ assert_allclose(w, tgt, rtol=rtol)
1233
+ # Check 'U'
1234
+ w, v = np.linalg.eigh(Kup, UPLO='U')
1235
+ assert_allclose(w, tgt, rtol=rtol)
1236
+ # Check 'u'
1237
+ w, v = np.linalg.eigh(Kup, UPLO='u')
1238
+ assert_allclose(w, tgt, rtol=rtol)
1239
+
1240
+ def test_0_size(self):
1241
+ # Check that all kinds of 0-sized arrays work
1242
+ class ArraySubclass(np.ndarray):
1243
+ pass
1244
+ a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
1245
+ res, res_v = linalg.eigh(a)
1246
+ assert_(res_v.dtype.type is np.float64)
1247
+ assert_(res.dtype.type is np.float64)
1248
+ assert_equal(a.shape, res_v.shape)
1249
+ assert_equal((0, 1), res.shape)
1250
+ # This is just for documentation, it might make sense to change:
1251
+ assert_(isinstance(a, np.ndarray))
1252
+
1253
+ a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
1254
+ res, res_v = linalg.eigh(a)
1255
+ assert_(res_v.dtype.type is np.complex64)
1256
+ assert_(res.dtype.type is np.float32)
1257
+ assert_equal(a.shape, res_v.shape)
1258
+ assert_equal((0,), res.shape)
1259
+ # This is just for documentation, it might make sense to change:
1260
+ assert_(isinstance(a, np.ndarray))
1261
+
1262
+
1263
+ class _TestNormBase:
1264
+ dt = None
1265
+ dec = None
1266
+
1267
+ @staticmethod
1268
+ def check_dtype(x, res):
1269
+ if issubclass(x.dtype.type, np.inexact):
1270
+ assert_equal(res.dtype, x.real.dtype)
1271
+ else:
1272
+ # For integer input, don't have to test float precision of output.
1273
+ assert_(issubclass(res.dtype.type, np.floating))
1274
+
1275
+
1276
+ class _TestNormGeneral(_TestNormBase):
1277
+
1278
+ def test_empty(self):
1279
+ assert_equal(norm([]), 0.0)
1280
+ assert_equal(norm(array([], dtype=self.dt)), 0.0)
1281
+ assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
1282
+
1283
+ def test_vector_return_type(self):
1284
+ a = np.array([1, 0, 1])
1285
+
1286
+ exact_types = np.typecodes['AllInteger']
1287
+ inexact_types = np.typecodes['AllFloat']
1288
+
1289
+ all_types = exact_types + inexact_types
1290
+
1291
+ for each_type in all_types:
1292
+ at = a.astype(each_type)
1293
+
1294
+ an = norm(at, -np.inf)
1295
+ self.check_dtype(at, an)
1296
+ assert_almost_equal(an, 0.0)
1297
+
1298
+ with suppress_warnings() as sup:
1299
+ sup.filter(RuntimeWarning, "divide by zero encountered")
1300
+ an = norm(at, -1)
1301
+ self.check_dtype(at, an)
1302
+ assert_almost_equal(an, 0.0)
1303
+
1304
+ an = norm(at, 0)
1305
+ self.check_dtype(at, an)
1306
+ assert_almost_equal(an, 2)
1307
+
1308
+ an = norm(at, 1)
1309
+ self.check_dtype(at, an)
1310
+ assert_almost_equal(an, 2.0)
1311
+
1312
+ an = norm(at, 2)
1313
+ self.check_dtype(at, an)
1314
+ assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/2.0))
1315
+
1316
+ an = norm(at, 4)
1317
+ self.check_dtype(at, an)
1318
+ assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/4.0))
1319
+
1320
+ an = norm(at, np.inf)
1321
+ self.check_dtype(at, an)
1322
+ assert_almost_equal(an, 1.0)
1323
+
1324
+ def test_vector(self):
1325
+ a = [1, 2, 3, 4]
1326
+ b = [-1, -2, -3, -4]
1327
+ c = [-1, 2, -3, 4]
1328
+
1329
+ def _test(v):
1330
+ np.testing.assert_almost_equal(norm(v), 30 ** 0.5,
1331
+ decimal=self.dec)
1332
+ np.testing.assert_almost_equal(norm(v, inf), 4.0,
1333
+ decimal=self.dec)
1334
+ np.testing.assert_almost_equal(norm(v, -inf), 1.0,
1335
+ decimal=self.dec)
1336
+ np.testing.assert_almost_equal(norm(v, 1), 10.0,
1337
+ decimal=self.dec)
1338
+ np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25,
1339
+ decimal=self.dec)
1340
+ np.testing.assert_almost_equal(norm(v, 2), 30 ** 0.5,
1341
+ decimal=self.dec)
1342
+ np.testing.assert_almost_equal(norm(v, -2), ((205. / 144) ** -0.5),
1343
+ decimal=self.dec)
1344
+ np.testing.assert_almost_equal(norm(v, 0), 4,
1345
+ decimal=self.dec)
1346
+
1347
+ for v in (a, b, c,):
1348
+ _test(v)
1349
+
1350
+ for v in (array(a, dtype=self.dt), array(b, dtype=self.dt),
1351
+ array(c, dtype=self.dt)):
1352
+ _test(v)
1353
+
1354
+ def test_axis(self):
1355
+ # Vector norms.
1356
+ # Compare the use of `axis` with computing the norm of each row
1357
+ # or column separately.
1358
+ A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
1359
+ for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]:
1360
+ expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
1361
+ assert_almost_equal(norm(A, ord=order, axis=0), expected0)
1362
+ expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
1363
+ assert_almost_equal(norm(A, ord=order, axis=1), expected1)
1364
+
1365
+ # Matrix norms.
1366
+ B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
1367
+ nd = B.ndim
1368
+ for order in [None, -2, 2, -1, 1, np.inf, -np.inf, 'fro']:
1369
+ for axis in itertools.combinations(range(-nd, nd), 2):
1370
+ row_axis, col_axis = axis
1371
+ if row_axis < 0:
1372
+ row_axis += nd
1373
+ if col_axis < 0:
1374
+ col_axis += nd
1375
+ if row_axis == col_axis:
1376
+ assert_raises(ValueError, norm, B, ord=order, axis=axis)
1377
+ else:
1378
+ n = norm(B, ord=order, axis=axis)
1379
+
1380
+ # The logic using k_index only works for nd = 3.
1381
+ # This has to be changed if nd is increased.
1382
+ k_index = nd - (row_axis + col_axis)
1383
+ if row_axis < col_axis:
1384
+ expected = [norm(B[:].take(k, axis=k_index), ord=order)
1385
+ for k in range(B.shape[k_index])]
1386
+ else:
1387
+ expected = [norm(B[:].take(k, axis=k_index).T, ord=order)
1388
+ for k in range(B.shape[k_index])]
1389
+ assert_almost_equal(n, expected)
1390
+
1391
+ def test_keepdims(self):
1392
+ A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
1393
+
1394
+ allclose_err = 'order {0}, axis = {1}'
1395
+ shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}'
1396
+
1397
+ # check the order=None, axis=None case
1398
+ expected = norm(A, ord=None, axis=None)
1399
+ found = norm(A, ord=None, axis=None, keepdims=True)
1400
+ assert_allclose(np.squeeze(found), expected,
1401
+ err_msg=allclose_err.format(None, None))
1402
+ expected_shape = (1, 1, 1)
1403
+ assert_(found.shape == expected_shape,
1404
+ shape_err.format(found.shape, expected_shape, None, None))
1405
+
1406
+ # Vector norms.
1407
+ for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]:
1408
+ for k in range(A.ndim):
1409
+ expected = norm(A, ord=order, axis=k)
1410
+ found = norm(A, ord=order, axis=k, keepdims=True)
1411
+ assert_allclose(np.squeeze(found), expected,
1412
+ err_msg=allclose_err.format(order, k))
1413
+ expected_shape = list(A.shape)
1414
+ expected_shape[k] = 1
1415
+ expected_shape = tuple(expected_shape)
1416
+ assert_(found.shape == expected_shape,
1417
+ shape_err.format(found.shape, expected_shape, order, k))
1418
+
1419
+ # Matrix norms.
1420
+ for order in [None, -2, 2, -1, 1, np.inf, -np.inf, 'fro', 'nuc']:
1421
+ for k in itertools.permutations(range(A.ndim), 2):
1422
+ expected = norm(A, ord=order, axis=k)
1423
+ found = norm(A, ord=order, axis=k, keepdims=True)
1424
+ assert_allclose(np.squeeze(found), expected,
1425
+ err_msg=allclose_err.format(order, k))
1426
+ expected_shape = list(A.shape)
1427
+ expected_shape[k[0]] = 1
1428
+ expected_shape[k[1]] = 1
1429
+ expected_shape = tuple(expected_shape)
1430
+ assert_(found.shape == expected_shape,
1431
+ shape_err.format(found.shape, expected_shape, order, k))
1432
+
1433
+
1434
+ class _TestNorm2D(_TestNormBase):
1435
+ # Define the part for 2d arrays separately, so we can subclass this
1436
+ # and run the tests using np.matrix in matrixlib.tests.test_matrix_linalg.
1437
+ array = np.array
1438
+
1439
+ def test_matrix_empty(self):
1440
+ assert_equal(norm(self.array([[]], dtype=self.dt)), 0.0)
1441
+
1442
+ def test_matrix_return_type(self):
1443
+ a = self.array([[1, 0, 1], [0, 1, 1]])
1444
+
1445
+ exact_types = np.typecodes['AllInteger']
1446
+
1447
+ # float32, complex64, float64, complex128 types are the only types
1448
+ # allowed by `linalg`, which performs the matrix operations used
1449
+ # within `norm`.
1450
+ inexact_types = 'fdFD'
1451
+
1452
+ all_types = exact_types + inexact_types
1453
+
1454
+ for each_type in all_types:
1455
+ at = a.astype(each_type)
1456
+
1457
+ an = norm(at, -np.inf)
1458
+ self.check_dtype(at, an)
1459
+ assert_almost_equal(an, 2.0)
1460
+
1461
+ with suppress_warnings() as sup:
1462
+ sup.filter(RuntimeWarning, "divide by zero encountered")
1463
+ an = norm(at, -1)
1464
+ self.check_dtype(at, an)
1465
+ assert_almost_equal(an, 1.0)
1466
+
1467
+ an = norm(at, 1)
1468
+ self.check_dtype(at, an)
1469
+ assert_almost_equal(an, 2.0)
1470
+
1471
+ an = norm(at, 2)
1472
+ self.check_dtype(at, an)
1473
+ assert_almost_equal(an, 3.0**(1.0/2.0))
1474
+
1475
+ an = norm(at, -2)
1476
+ self.check_dtype(at, an)
1477
+ assert_almost_equal(an, 1.0)
1478
+
1479
+ an = norm(at, np.inf)
1480
+ self.check_dtype(at, an)
1481
+ assert_almost_equal(an, 2.0)
1482
+
1483
+ an = norm(at, 'fro')
1484
+ self.check_dtype(at, an)
1485
+ assert_almost_equal(an, 2.0)
1486
+
1487
+ an = norm(at, 'nuc')
1488
+ self.check_dtype(at, an)
1489
+ # Lower bar needed to support low precision floats.
1490
+ # They end up being off by 1 in the 7th place.
1491
+ np.testing.assert_almost_equal(an, 2.7320508075688772, decimal=6)
1492
+
1493
+ def test_matrix_2x2(self):
1494
+ A = self.array([[1, 3], [5, 7]], dtype=self.dt)
1495
+ assert_almost_equal(norm(A), 84 ** 0.5)
1496
+ assert_almost_equal(norm(A, 'fro'), 84 ** 0.5)
1497
+ assert_almost_equal(norm(A, 'nuc'), 10.0)
1498
+ assert_almost_equal(norm(A, inf), 12.0)
1499
+ assert_almost_equal(norm(A, -inf), 4.0)
1500
+ assert_almost_equal(norm(A, 1), 10.0)
1501
+ assert_almost_equal(norm(A, -1), 6.0)
1502
+ assert_almost_equal(norm(A, 2), 9.1231056256176615)
1503
+ assert_almost_equal(norm(A, -2), 0.87689437438234041)
1504
+
1505
+ assert_raises(ValueError, norm, A, 'nofro')
1506
+ assert_raises(ValueError, norm, A, -3)
1507
+ assert_raises(ValueError, norm, A, 0)
1508
+
1509
+ def test_matrix_3x3(self):
1510
+ # This test has been added because the 2x2 example
1511
+ # happened to have equal nuclear norm and induced 1-norm.
1512
+ # The 1/10 scaling factor accommodates the absolute tolerance
1513
+ # used in assert_almost_equal.
1514
+ A = (1 / 10) * \
1515
+ self.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=self.dt)
1516
+ assert_almost_equal(norm(A), (1 / 10) * 89 ** 0.5)
1517
+ assert_almost_equal(norm(A, 'fro'), (1 / 10) * 89 ** 0.5)
1518
+ assert_almost_equal(norm(A, 'nuc'), 1.3366836911774836)
1519
+ assert_almost_equal(norm(A, inf), 1.1)
1520
+ assert_almost_equal(norm(A, -inf), 0.6)
1521
+ assert_almost_equal(norm(A, 1), 1.0)
1522
+ assert_almost_equal(norm(A, -1), 0.4)
1523
+ assert_almost_equal(norm(A, 2), 0.88722940323461277)
1524
+ assert_almost_equal(norm(A, -2), 0.19456584790481812)
1525
+
1526
+ def test_bad_args(self):
1527
+ # Check that bad arguments raise the appropriate exceptions.
1528
+
1529
+ A = self.array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
1530
+ B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
1531
+
1532
+ # Using `axis=<integer>` or passing in a 1-D array implies vector
1533
+ # norms are being computed, so also using `ord='fro'`
1534
+ # or `ord='nuc'` or any other string raises a ValueError.
1535
+ assert_raises(ValueError, norm, A, 'fro', 0)
1536
+ assert_raises(ValueError, norm, A, 'nuc', 0)
1537
+ assert_raises(ValueError, norm, [3, 4], 'fro', None)
1538
+ assert_raises(ValueError, norm, [3, 4], 'nuc', None)
1539
+ assert_raises(ValueError, norm, [3, 4], 'test', None)
1540
+
1541
+ # Similarly, norm should raise an exception when ord is any finite
1542
+ # number other than 1, 2, -1 or -2 when computing matrix norms.
1543
+ for order in [0, 3]:
1544
+ assert_raises(ValueError, norm, A, order, None)
1545
+ assert_raises(ValueError, norm, A, order, (0, 1))
1546
+ assert_raises(ValueError, norm, B, order, (1, 2))
1547
+
1548
+ # Invalid axis
1549
+ assert_raises(AxisError, norm, B, None, 3)
1550
+ assert_raises(AxisError, norm, B, None, (2, 3))
1551
+ assert_raises(ValueError, norm, B, None, (0, 1, 2))
1552
+
1553
+
1554
+ class _TestNorm(_TestNorm2D, _TestNormGeneral):
1555
+ pass
1556
+
1557
+
1558
+ class TestNorm_NonSystematic:
1559
+
1560
+ def test_longdouble_norm(self):
1561
+ # Non-regression test: p-norm of longdouble would previously raise
1562
+ # UnboundLocalError.
1563
+ x = np.arange(10, dtype=np.longdouble)
1564
+ old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2)
1565
+
1566
+ def test_intmin(self):
1567
+ # Non-regression test: p-norm of signed integer would previously do
1568
+ # float cast and abs in the wrong order.
1569
+ x = np.array([-2 ** 31], dtype=np.int32)
1570
+ old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5)
1571
+
1572
+ def test_complex_high_ord(self):
1573
+ # gh-4156
1574
+ d = np.empty((2,), dtype=np.clongdouble)
1575
+ d[0] = 6 + 7j
1576
+ d[1] = -6 + 7j
1577
+ res = 11.615898132184
1578
+ old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10)
1579
+ d = d.astype(np.complex128)
1580
+ old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9)
1581
+ d = d.astype(np.complex64)
1582
+ old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5)
1583
+
1584
+
1585
+ # Separate definitions so we can use them for matrix tests.
1586
+ class _TestNormDoubleBase(_TestNormBase):
1587
+ dt = np.double
1588
+ dec = 12
1589
+
1590
+
1591
+ class _TestNormSingleBase(_TestNormBase):
1592
+ dt = np.float32
1593
+ dec = 6
1594
+
1595
+
1596
+ class _TestNormInt64Base(_TestNormBase):
1597
+ dt = np.int64
1598
+ dec = 12
1599
+
1600
+
1601
+ class TestNormDouble(_TestNorm, _TestNormDoubleBase):
1602
+ pass
1603
+
1604
+
1605
+ class TestNormSingle(_TestNorm, _TestNormSingleBase):
1606
+ pass
1607
+
1608
+
1609
+ class TestNormInt64(_TestNorm, _TestNormInt64Base):
1610
+ pass
1611
+
1612
+
1613
+ class TestMatrixRank:
1614
+
1615
+ def test_matrix_rank(self):
1616
+ # Full rank matrix
1617
+ assert_equal(4, matrix_rank(np.eye(4)))
1618
+ # rank deficient matrix
1619
+ I = np.eye(4)
1620
+ I[-1, -1] = 0.
1621
+ assert_equal(matrix_rank(I), 3)
1622
+ # All zeros - zero rank
1623
+ assert_equal(matrix_rank(np.zeros((4, 4))), 0)
1624
+ # 1 dimension - rank 1 unless all 0
1625
+ assert_equal(matrix_rank([1, 0, 0, 0]), 1)
1626
+ assert_equal(matrix_rank(np.zeros((4,))), 0)
1627
+ # accepts array-like
1628
+ assert_equal(matrix_rank([1]), 1)
1629
+ # greater than 2 dimensions treated as stacked matrices
1630
+ ms = np.array([I, np.eye(4), np.zeros((4,4))])
1631
+ assert_equal(matrix_rank(ms), np.array([3, 4, 0]))
1632
+ # works on scalar
1633
+ assert_equal(matrix_rank(1), 1)
1634
+
1635
+ with assert_raises_regex(
1636
+ ValueError, "`tol` and `rtol` can\'t be both set."
1637
+ ):
1638
+ matrix_rank(I, tol=0.01, rtol=0.01)
1639
+
1640
+ def test_symmetric_rank(self):
1641
+ assert_equal(4, matrix_rank(np.eye(4), hermitian=True))
1642
+ assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True))
1643
+ assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True))
1644
+ # rank deficient matrix
1645
+ I = np.eye(4)
1646
+ I[-1, -1] = 0.
1647
+ assert_equal(3, matrix_rank(I, hermitian=True))
1648
+ # manually supplied tolerance
1649
+ I[-1, -1] = 1e-8
1650
+ assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8))
1651
+ assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8))
1652
+
1653
+
1654
+ def test_reduced_rank():
1655
+ # Test matrices with reduced rank
1656
+ rng = np.random.RandomState(20120714)
1657
+ for i in range(100):
1658
+ # Make a rank deficient matrix
1659
+ X = rng.normal(size=(40, 10))
1660
+ X[:, 0] = X[:, 1] + X[:, 2]
1661
+ # Assert that matrix_rank detected deficiency
1662
+ assert_equal(matrix_rank(X), 9)
1663
+ X[:, 3] = X[:, 4] + X[:, 5]
1664
+ assert_equal(matrix_rank(X), 8)
1665
+
1666
+
1667
+ class TestQR:
1668
+ # Define the array class here, so run this on matrices elsewhere.
1669
+ array = np.array
1670
+
1671
+ def check_qr(self, a):
1672
+ # This test expects the argument `a` to be an ndarray or
1673
+ # a subclass of an ndarray of inexact type.
1674
+ a_type = type(a)
1675
+ a_dtype = a.dtype
1676
+ m, n = a.shape
1677
+ k = min(m, n)
1678
+
1679
+ # mode == 'complete'
1680
+ res = linalg.qr(a, mode='complete')
1681
+ Q, R = res.Q, res.R
1682
+ assert_(Q.dtype == a_dtype)
1683
+ assert_(R.dtype == a_dtype)
1684
+ assert_(isinstance(Q, a_type))
1685
+ assert_(isinstance(R, a_type))
1686
+ assert_(Q.shape == (m, m))
1687
+ assert_(R.shape == (m, n))
1688
+ assert_almost_equal(dot(Q, R), a)
1689
+ assert_almost_equal(dot(Q.T.conj(), Q), np.eye(m))
1690
+ assert_almost_equal(np.triu(R), R)
1691
+
1692
+ # mode == 'reduced'
1693
+ q1, r1 = linalg.qr(a, mode='reduced')
1694
+ assert_(q1.dtype == a_dtype)
1695
+ assert_(r1.dtype == a_dtype)
1696
+ assert_(isinstance(q1, a_type))
1697
+ assert_(isinstance(r1, a_type))
1698
+ assert_(q1.shape == (m, k))
1699
+ assert_(r1.shape == (k, n))
1700
+ assert_almost_equal(dot(q1, r1), a)
1701
+ assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k))
1702
+ assert_almost_equal(np.triu(r1), r1)
1703
+
1704
+ # mode == 'r'
1705
+ r2 = linalg.qr(a, mode='r')
1706
+ assert_(r2.dtype == a_dtype)
1707
+ assert_(isinstance(r2, a_type))
1708
+ assert_almost_equal(r2, r1)
1709
+
1710
+
1711
+ @pytest.mark.parametrize(["m", "n"], [
1712
+ (3, 0),
1713
+ (0, 3),
1714
+ (0, 0)
1715
+ ])
1716
+ def test_qr_empty(self, m, n):
1717
+ k = min(m, n)
1718
+ a = np.empty((m, n))
1719
+
1720
+ self.check_qr(a)
1721
+
1722
+ h, tau = np.linalg.qr(a, mode='raw')
1723
+ assert_equal(h.dtype, np.double)
1724
+ assert_equal(tau.dtype, np.double)
1725
+ assert_equal(h.shape, (n, m))
1726
+ assert_equal(tau.shape, (k,))
1727
+
1728
+ def test_mode_raw(self):
1729
+ # The factorization is not unique and varies between libraries,
1730
+ # so it is not possible to check against known values. Functional
1731
+ # testing is a possibility, but awaits the exposure of more
1732
+ # of the functions in lapack_lite. Consequently, this test is
1733
+ # very limited in scope. Note that the results are in FORTRAN
1734
+ # order, hence the h arrays are transposed.
1735
+ a = self.array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
1736
+
1737
+ # Test double
1738
+ h, tau = linalg.qr(a, mode='raw')
1739
+ assert_(h.dtype == np.double)
1740
+ assert_(tau.dtype == np.double)
1741
+ assert_(h.shape == (2, 3))
1742
+ assert_(tau.shape == (2,))
1743
+
1744
+ h, tau = linalg.qr(a.T, mode='raw')
1745
+ assert_(h.dtype == np.double)
1746
+ assert_(tau.dtype == np.double)
1747
+ assert_(h.shape == (3, 2))
1748
+ assert_(tau.shape == (2,))
1749
+
1750
+ def test_mode_all_but_economic(self):
1751
+ a = self.array([[1, 2], [3, 4]])
1752
+ b = self.array([[1, 2], [3, 4], [5, 6]])
1753
+ for dt in "fd":
1754
+ m1 = a.astype(dt)
1755
+ m2 = b.astype(dt)
1756
+ self.check_qr(m1)
1757
+ self.check_qr(m2)
1758
+ self.check_qr(m2.T)
1759
+
1760
+ for dt in "fd":
1761
+ m1 = 1 + 1j * a.astype(dt)
1762
+ m2 = 1 + 1j * b.astype(dt)
1763
+ self.check_qr(m1)
1764
+ self.check_qr(m2)
1765
+ self.check_qr(m2.T)
1766
+
1767
+ def check_qr_stacked(self, a):
1768
+ # This test expects the argument `a` to be an ndarray or
1769
+ # a subclass of an ndarray of inexact type.
1770
+ a_type = type(a)
1771
+ a_dtype = a.dtype
1772
+ m, n = a.shape[-2:]
1773
+ k = min(m, n)
1774
+
1775
+ # mode == 'complete'
1776
+ q, r = linalg.qr(a, mode='complete')
1777
+ assert_(q.dtype == a_dtype)
1778
+ assert_(r.dtype == a_dtype)
1779
+ assert_(isinstance(q, a_type))
1780
+ assert_(isinstance(r, a_type))
1781
+ assert_(q.shape[-2:] == (m, m))
1782
+ assert_(r.shape[-2:] == (m, n))
1783
+ assert_almost_equal(matmul(q, r), a)
1784
+ I_mat = np.identity(q.shape[-1])
1785
+ stack_I_mat = np.broadcast_to(I_mat,
1786
+ q.shape[:-2] + (q.shape[-1],)*2)
1787
+ assert_almost_equal(matmul(swapaxes(q, -1, -2).conj(), q), stack_I_mat)
1788
+ assert_almost_equal(np.triu(r[..., :, :]), r)
1789
+
1790
+ # mode == 'reduced'
1791
+ q1, r1 = linalg.qr(a, mode='reduced')
1792
+ assert_(q1.dtype == a_dtype)
1793
+ assert_(r1.dtype == a_dtype)
1794
+ assert_(isinstance(q1, a_type))
1795
+ assert_(isinstance(r1, a_type))
1796
+ assert_(q1.shape[-2:] == (m, k))
1797
+ assert_(r1.shape[-2:] == (k, n))
1798
+ assert_almost_equal(matmul(q1, r1), a)
1799
+ I_mat = np.identity(q1.shape[-1])
1800
+ stack_I_mat = np.broadcast_to(I_mat,
1801
+ q1.shape[:-2] + (q1.shape[-1],)*2)
1802
+ assert_almost_equal(matmul(swapaxes(q1, -1, -2).conj(), q1),
1803
+ stack_I_mat)
1804
+ assert_almost_equal(np.triu(r1[..., :, :]), r1)
1805
+
1806
+ # mode == 'r'
1807
+ r2 = linalg.qr(a, mode='r')
1808
+ assert_(r2.dtype == a_dtype)
1809
+ assert_(isinstance(r2, a_type))
1810
+ assert_almost_equal(r2, r1)
1811
+
1812
+ @pytest.mark.parametrize("size", [
1813
+ (3, 4), (4, 3), (4, 4),
1814
+ (3, 0), (0, 3)])
1815
+ @pytest.mark.parametrize("outer_size", [
1816
+ (2, 2), (2,), (2, 3, 4)])
1817
+ @pytest.mark.parametrize("dt", [
1818
+ np.single, np.double,
1819
+ np.csingle, np.cdouble])
1820
+ def test_stacked_inputs(self, outer_size, size, dt):
1821
+
1822
+ rng = np.random.default_rng(123)
1823
+ A = rng.normal(size=outer_size + size).astype(dt)
1824
+ B = rng.normal(size=outer_size + size).astype(dt)
1825
+ self.check_qr_stacked(A)
1826
+ self.check_qr_stacked(A + 1.j*B)
1827
+
1828
+
1829
+ class TestCholesky:
1830
+
1831
+ @pytest.mark.parametrize(
1832
+ 'shape', [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)]
1833
+ )
1834
+ @pytest.mark.parametrize(
1835
+ 'dtype', (np.float32, np.float64, np.complex64, np.complex128)
1836
+ )
1837
+ @pytest.mark.parametrize(
1838
+ 'upper', [False, True])
1839
+ def test_basic_property(self, shape, dtype, upper):
1840
+ np.random.seed(1)
1841
+ a = np.random.randn(*shape)
1842
+ if np.issubdtype(dtype, np.complexfloating):
1843
+ a = a + 1j*np.random.randn(*shape)
1844
+
1845
+ t = list(range(len(shape)))
1846
+ t[-2:] = -1, -2
1847
+
1848
+ a = np.matmul(a.transpose(t).conj(), a)
1849
+ a = np.asarray(a, dtype=dtype)
1850
+
1851
+ c = np.linalg.cholesky(a, upper=upper)
1852
+
1853
+ # Check A = L L^H or A = U^H U
1854
+ if upper:
1855
+ b = np.matmul(c.transpose(t).conj(), c)
1856
+ else:
1857
+ b = np.matmul(c, c.transpose(t).conj())
1858
+
1859
+ atol = 500 * a.shape[0] * np.finfo(dtype).eps
1860
+ assert_allclose(b, a, atol=atol, err_msg=f'{shape} {dtype}\n{a}\n{c}')
1861
+
1862
+ # Check diag(L or U) is real and positive
1863
+ d = np.diagonal(c, axis1=-2, axis2=-1)
1864
+ assert_(np.all(np.isreal(d)))
1865
+ assert_(np.all(d >= 0))
1866
+
1867
+ def test_0_size(self):
1868
+ class ArraySubclass(np.ndarray):
1869
+ pass
1870
+ a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
1871
+ res = linalg.cholesky(a)
1872
+ assert_equal(a.shape, res.shape)
1873
+ assert_(res.dtype.type is np.float64)
1874
+ # for documentation purpose:
1875
+ assert_(isinstance(res, np.ndarray))
1876
+
1877
+ a = np.zeros((1, 0, 0), dtype=np.complex64).view(ArraySubclass)
1878
+ res = linalg.cholesky(a)
1879
+ assert_equal(a.shape, res.shape)
1880
+ assert_(res.dtype.type is np.complex64)
1881
+ assert_(isinstance(res, np.ndarray))
1882
+
1883
+ def test_upper_lower_arg(self):
1884
+ # Explicit test of upper argument that also checks the default.
1885
+ a = np.array([[1+0j, 0-2j], [0+2j, 5+0j]])
1886
+
1887
+ assert_equal(linalg.cholesky(a), linalg.cholesky(a, upper=False))
1888
+
1889
+ assert_equal(
1890
+ linalg.cholesky(a, upper=True),
1891
+ linalg.cholesky(a).T.conj()
1892
+ )
1893
+
1894
+
1895
+ class TestOuter:
1896
+ arr1 = np.arange(3)
1897
+ arr2 = np.arange(3)
1898
+ expected = np.array(
1899
+ [[0, 0, 0],
1900
+ [0, 1, 2],
1901
+ [0, 2, 4]]
1902
+ )
1903
+
1904
+ assert_array_equal(np.linalg.outer(arr1, arr2), expected)
1905
+
1906
+ with assert_raises_regex(
1907
+ ValueError, "Input arrays must be one-dimensional"
1908
+ ):
1909
+ np.linalg.outer(arr1[:, np.newaxis], arr2)
1910
+
1911
+
1912
+ def test_byteorder_check():
1913
+ # Byte order check should pass for native order
1914
+ if sys.byteorder == 'little':
1915
+ native = '<'
1916
+ else:
1917
+ native = '>'
1918
+
1919
+ for dtt in (np.float32, np.float64):
1920
+ arr = np.eye(4, dtype=dtt)
1921
+ n_arr = arr.view(arr.dtype.newbyteorder(native))
1922
+ sw_arr = arr.view(arr.dtype.newbyteorder("S")).byteswap()
1923
+ assert_equal(arr.dtype.byteorder, '=')
1924
+ for routine in (linalg.inv, linalg.det, linalg.pinv):
1925
+ # Normal call
1926
+ res = routine(arr)
1927
+ # Native but not '='
1928
+ assert_array_equal(res, routine(n_arr))
1929
+ # Swapped
1930
+ assert_array_equal(res, routine(sw_arr))
1931
+
1932
+
1933
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
1934
+ def test_generalized_raise_multiloop():
1935
+ # It should raise an error even if the error doesn't occur in the
1936
+ # last iteration of the ufunc inner loop
1937
+
1938
+ invertible = np.array([[1, 2], [3, 4]])
1939
+ non_invertible = np.array([[1, 1], [1, 1]])
1940
+
1941
+ x = np.zeros([4, 4, 2, 2])[1::2]
1942
+ x[...] = invertible
1943
+ x[0, 0] = non_invertible
1944
+
1945
+ assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)
1946
+
1947
+ @pytest.mark.skipif(
1948
+ threading.active_count() > 1,
1949
+ reason="skipping test that uses fork because there are multiple threads")
1950
+ def test_xerbla_override():
1951
+ # Check that our xerbla has been successfully linked in. If it is not,
1952
+ # the default xerbla routine is called, which prints a message to stdout
1953
+ # and may, or may not, abort the process depending on the LAPACK package.
1954
+
1955
+ XERBLA_OK = 255
1956
+
1957
+ try:
1958
+ pid = os.fork()
1959
+ except (OSError, AttributeError):
1960
+ # fork failed, or not running on POSIX
1961
+ pytest.skip("Not POSIX or fork failed.")
1962
+
1963
+ if pid == 0:
1964
+ # child; close i/o file handles
1965
+ os.close(1)
1966
+ os.close(0)
1967
+ # Avoid producing core files.
1968
+ import resource
1969
+ resource.setrlimit(resource.RLIMIT_CORE, (0, 0))
1970
+ # These calls may abort.
1971
+ try:
1972
+ np.linalg.lapack_lite.xerbla()
1973
+ except ValueError:
1974
+ pass
1975
+ except Exception:
1976
+ os._exit(os.EX_CONFIG)
1977
+
1978
+ try:
1979
+ a = np.array([[1.]])
1980
+ np.linalg.lapack_lite.dorgqr(
1981
+ 1, 1, 1, a,
1982
+ 0, # <- invalid value
1983
+ a, a, 0, 0)
1984
+ except ValueError as e:
1985
+ if "DORGQR parameter number 5" in str(e):
1986
+ # success, reuse error code to mark success as
1987
+ # FORTRAN STOP returns as success.
1988
+ os._exit(XERBLA_OK)
1989
+
1990
+ # Did not abort, but our xerbla was not linked in.
1991
+ os._exit(os.EX_CONFIG)
1992
+ else:
1993
+ # parent
1994
+ pid, status = os.wait()
1995
+ if os.WEXITSTATUS(status) != XERBLA_OK:
1996
+ pytest.skip('Numpy xerbla not linked in.')
1997
+
1998
+
1999
+ @pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess")
2000
+ @pytest.mark.slow
2001
+ def test_sdot_bug_8577():
2002
+ # Regression test that loading certain other libraries does not
2003
+ # result to wrong results in float32 linear algebra.
2004
+ #
2005
+ # There's a bug gh-8577 on OSX that can trigger this, and perhaps
2006
+ # there are also other situations in which it occurs.
2007
+ #
2008
+ # Do the check in a separate process.
2009
+
2010
+ bad_libs = ['PyQt5.QtWidgets', 'IPython']
2011
+
2012
+ template = textwrap.dedent("""
2013
+ import sys
2014
+ {before}
2015
+ try:
2016
+ import {bad_lib}
2017
+ except ImportError:
2018
+ sys.exit(0)
2019
+ {after}
2020
+ x = np.ones(2, dtype=np.float32)
2021
+ sys.exit(0 if np.allclose(x.dot(x), 2.0) else 1)
2022
+ """)
2023
+
2024
+ for bad_lib in bad_libs:
2025
+ code = template.format(before="import numpy as np", after="",
2026
+ bad_lib=bad_lib)
2027
+ subprocess.check_call([sys.executable, "-c", code])
2028
+
2029
+ # Swapped import order
2030
+ code = template.format(after="import numpy as np", before="",
2031
+ bad_lib=bad_lib)
2032
+ subprocess.check_call([sys.executable, "-c", code])
2033
+
2034
+
2035
+ class TestMultiDot:
2036
+
2037
+ def test_basic_function_with_three_arguments(self):
2038
+ # multi_dot with three arguments uses a fast hand coded algorithm to
2039
+ # determine the optimal order. Therefore test it separately.
2040
+ A = np.random.random((6, 2))
2041
+ B = np.random.random((2, 6))
2042
+ C = np.random.random((6, 2))
2043
+
2044
+ assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C))
2045
+ assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C)))
2046
+
2047
+ def test_basic_function_with_two_arguments(self):
2048
+ # separate code path with two arguments
2049
+ A = np.random.random((6, 2))
2050
+ B = np.random.random((2, 6))
2051
+
2052
+ assert_almost_equal(multi_dot([A, B]), A.dot(B))
2053
+ assert_almost_equal(multi_dot([A, B]), np.dot(A, B))
2054
+
2055
+ def test_basic_function_with_dynamic_programming_optimization(self):
2056
+ # multi_dot with four or more arguments uses the dynamic programming
2057
+ # optimization and therefore deserve a separate
2058
+ A = np.random.random((6, 2))
2059
+ B = np.random.random((2, 6))
2060
+ C = np.random.random((6, 2))
2061
+ D = np.random.random((2, 1))
2062
+ assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D))
2063
+
2064
+ def test_vector_as_first_argument(self):
2065
+ # The first argument can be 1-D
2066
+ A1d = np.random.random(2) # 1-D
2067
+ B = np.random.random((2, 6))
2068
+ C = np.random.random((6, 2))
2069
+ D = np.random.random((2, 2))
2070
+
2071
+ # the result should be 1-D
2072
+ assert_equal(multi_dot([A1d, B, C, D]).shape, (2,))
2073
+
2074
+ def test_vector_as_last_argument(self):
2075
+ # The last argument can be 1-D
2076
+ A = np.random.random((6, 2))
2077
+ B = np.random.random((2, 6))
2078
+ C = np.random.random((6, 2))
2079
+ D1d = np.random.random(2) # 1-D
2080
+
2081
+ # the result should be 1-D
2082
+ assert_equal(multi_dot([A, B, C, D1d]).shape, (6,))
2083
+
2084
+ def test_vector_as_first_and_last_argument(self):
2085
+ # The first and last arguments can be 1-D
2086
+ A1d = np.random.random(2) # 1-D
2087
+ B = np.random.random((2, 6))
2088
+ C = np.random.random((6, 2))
2089
+ D1d = np.random.random(2) # 1-D
2090
+
2091
+ # the result should be a scalar
2092
+ assert_equal(multi_dot([A1d, B, C, D1d]).shape, ())
2093
+
2094
+ def test_three_arguments_and_out(self):
2095
+ # multi_dot with three arguments uses a fast hand coded algorithm to
2096
+ # determine the optimal order. Therefore test it separately.
2097
+ A = np.random.random((6, 2))
2098
+ B = np.random.random((2, 6))
2099
+ C = np.random.random((6, 2))
2100
+
2101
+ out = np.zeros((6, 2))
2102
+ ret = multi_dot([A, B, C], out=out)
2103
+ assert out is ret
2104
+ assert_almost_equal(out, A.dot(B).dot(C))
2105
+ assert_almost_equal(out, np.dot(A, np.dot(B, C)))
2106
+
2107
+ def test_two_arguments_and_out(self):
2108
+ # separate code path with two arguments
2109
+ A = np.random.random((6, 2))
2110
+ B = np.random.random((2, 6))
2111
+ out = np.zeros((6, 6))
2112
+ ret = multi_dot([A, B], out=out)
2113
+ assert out is ret
2114
+ assert_almost_equal(out, A.dot(B))
2115
+ assert_almost_equal(out, np.dot(A, B))
2116
+
2117
+ def test_dynamic_programming_optimization_and_out(self):
2118
+ # multi_dot with four or more arguments uses the dynamic programming
2119
+ # optimization and therefore deserve a separate test
2120
+ A = np.random.random((6, 2))
2121
+ B = np.random.random((2, 6))
2122
+ C = np.random.random((6, 2))
2123
+ D = np.random.random((2, 1))
2124
+ out = np.zeros((6, 1))
2125
+ ret = multi_dot([A, B, C, D], out=out)
2126
+ assert out is ret
2127
+ assert_almost_equal(out, A.dot(B).dot(C).dot(D))
2128
+
2129
+ def test_dynamic_programming_logic(self):
2130
+ # Test for the dynamic programming part
2131
+ # This test is directly taken from Cormen page 376.
2132
+ arrays = [np.random.random((30, 35)),
2133
+ np.random.random((35, 15)),
2134
+ np.random.random((15, 5)),
2135
+ np.random.random((5, 10)),
2136
+ np.random.random((10, 20)),
2137
+ np.random.random((20, 25))]
2138
+ m_expected = np.array([[0., 15750., 7875., 9375., 11875., 15125.],
2139
+ [0., 0., 2625., 4375., 7125., 10500.],
2140
+ [0., 0., 0., 750., 2500., 5375.],
2141
+ [0., 0., 0., 0., 1000., 3500.],
2142
+ [0., 0., 0., 0., 0., 5000.],
2143
+ [0., 0., 0., 0., 0., 0.]])
2144
+ s_expected = np.array([[0, 1, 1, 3, 3, 3],
2145
+ [0, 0, 2, 3, 3, 3],
2146
+ [0, 0, 0, 3, 3, 3],
2147
+ [0, 0, 0, 0, 4, 5],
2148
+ [0, 0, 0, 0, 0, 5],
2149
+ [0, 0, 0, 0, 0, 0]], dtype=int)
2150
+ s_expected -= 1 # Cormen uses 1-based index, python does not.
2151
+
2152
+ s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True)
2153
+
2154
+ # Only the upper triangular part (without the diagonal) is interesting.
2155
+ assert_almost_equal(np.triu(s[:-1, 1:]),
2156
+ np.triu(s_expected[:-1, 1:]))
2157
+ assert_almost_equal(np.triu(m), np.triu(m_expected))
2158
+
2159
+ def test_too_few_input_arrays(self):
2160
+ assert_raises(ValueError, multi_dot, [])
2161
+ assert_raises(ValueError, multi_dot, [np.random.random((3, 3))])
2162
+
2163
+
2164
+ class TestTensorinv:
2165
+
2166
+ @pytest.mark.parametrize("arr, ind", [
2167
+ (np.ones((4, 6, 8, 2)), 2),
2168
+ (np.ones((3, 3, 2)), 1),
2169
+ ])
2170
+ def test_non_square_handling(self, arr, ind):
2171
+ with assert_raises(LinAlgError):
2172
+ linalg.tensorinv(arr, ind=ind)
2173
+
2174
+ @pytest.mark.parametrize("shape, ind", [
2175
+ # examples from docstring
2176
+ ((4, 6, 8, 3), 2),
2177
+ ((24, 8, 3), 1),
2178
+ ])
2179
+ def test_tensorinv_shape(self, shape, ind):
2180
+ a = np.eye(24)
2181
+ a.shape = shape
2182
+ ainv = linalg.tensorinv(a=a, ind=ind)
2183
+ expected = a.shape[ind:] + a.shape[:ind]
2184
+ actual = ainv.shape
2185
+ assert_equal(actual, expected)
2186
+
2187
+ @pytest.mark.parametrize("ind", [
2188
+ 0, -2,
2189
+ ])
2190
+ def test_tensorinv_ind_limit(self, ind):
2191
+ a = np.eye(24)
2192
+ a.shape = (4, 6, 8, 3)
2193
+ with assert_raises(ValueError):
2194
+ linalg.tensorinv(a=a, ind=ind)
2195
+
2196
+ def test_tensorinv_result(self):
2197
+ # mimic a docstring example
2198
+ a = np.eye(24)
2199
+ a.shape = (24, 8, 3)
2200
+ ainv = linalg.tensorinv(a, ind=1)
2201
+ b = np.ones(24)
2202
+ assert_allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
2203
+
2204
+
2205
+ class TestTensorsolve:
2206
+
2207
+ @pytest.mark.parametrize("a, axes", [
2208
+ (np.ones((4, 6, 8, 2)), None),
2209
+ (np.ones((3, 3, 2)), (0, 2)),
2210
+ ])
2211
+ def test_non_square_handling(self, a, axes):
2212
+ with assert_raises(LinAlgError):
2213
+ b = np.ones(a.shape[:2])
2214
+ linalg.tensorsolve(a, b, axes=axes)
2215
+
2216
+ @pytest.mark.parametrize("shape",
2217
+ [(2, 3, 6), (3, 4, 4, 3), (0, 3, 3, 0)],
2218
+ )
2219
+ def test_tensorsolve_result(self, shape):
2220
+ a = np.random.randn(*shape)
2221
+ b = np.ones(a.shape[:2])
2222
+ x = np.linalg.tensorsolve(a, b)
2223
+ assert_allclose(np.tensordot(a, x, axes=len(x.shape)), b)
2224
+
2225
+
2226
+ def test_unsupported_commontype():
2227
+ # linalg gracefully handles unsupported type
2228
+ arr = np.array([[1, -2], [2, 5]], dtype='float16')
2229
+ with assert_raises_regex(TypeError, "unsupported in linalg"):
2230
+ linalg.cholesky(arr)
2231
+
2232
+
2233
+ #@pytest.mark.slow
2234
+ #@pytest.mark.xfail(not HAS_LAPACK64, run=False,
2235
+ # reason="Numpy not compiled with 64-bit BLAS/LAPACK")
2236
+ #@requires_memory(free_bytes=16e9)
2237
+ @pytest.mark.skip(reason="Bad memory reports lead to OOM in ci testing")
2238
+ def test_blas64_dot():
2239
+ n = 2**32
2240
+ a = np.zeros([1, n], dtype=np.float32)
2241
+ b = np.ones([1, 1], dtype=np.float32)
2242
+ a[0,-1] = 1
2243
+ c = np.dot(b, a)
2244
+ assert_equal(c[0,-1], 1)
2245
+
2246
+
2247
+ @pytest.mark.xfail(not HAS_LAPACK64,
2248
+ reason="Numpy not compiled with 64-bit BLAS/LAPACK")
2249
+ def test_blas64_geqrf_lwork_smoketest():
2250
+ # Smoke test LAPACK geqrf lwork call with 64-bit integers
2251
+ dtype = np.float64
2252
+ lapack_routine = np.linalg.lapack_lite.dgeqrf
2253
+
2254
+ m = 2**32 + 1
2255
+ n = 2**32 + 1
2256
+ lda = m
2257
+
2258
+ # Dummy arrays, not referenced by the lapack routine, so don't
2259
+ # need to be of the right size
2260
+ a = np.zeros([1, 1], dtype=dtype)
2261
+ work = np.zeros([1], dtype=dtype)
2262
+ tau = np.zeros([1], dtype=dtype)
2263
+
2264
+ # Size query
2265
+ results = lapack_routine(m, n, a, lda, tau, work, -1, 0)
2266
+ assert_equal(results['info'], 0)
2267
+ assert_equal(results['m'], m)
2268
+ assert_equal(results['n'], m)
2269
+
2270
+ # Should result to an integer of a reasonable size
2271
+ lwork = int(work.item())
2272
+ assert_(2**32 < lwork < 2**42)
2273
+
2274
+
2275
+ def test_diagonal():
2276
+ # Here we only test if selected axes are compatible
2277
+ # with Array API (last two). Core implementation
2278
+ # of `diagonal` is tested in `test_multiarray.py`.
2279
+ x = np.arange(60).reshape((3, 4, 5))
2280
+ actual = np.linalg.diagonal(x)
2281
+ expected = np.array(
2282
+ [
2283
+ [0, 6, 12, 18],
2284
+ [20, 26, 32, 38],
2285
+ [40, 46, 52, 58],
2286
+ ]
2287
+ )
2288
+ assert_equal(actual, expected)
2289
+
2290
+
2291
+ def test_trace():
2292
+ # Here we only test if selected axes are compatible
2293
+ # with Array API (last two). Core implementation
2294
+ # of `trace` is tested in `test_multiarray.py`.
2295
+ x = np.arange(60).reshape((3, 4, 5))
2296
+ actual = np.linalg.trace(x)
2297
+ expected = np.array([36, 116, 196])
2298
+
2299
+ assert_equal(actual, expected)
2300
+
2301
+
2302
+ def test_cross():
2303
+ x = np.arange(9).reshape((3, 3))
2304
+ actual = np.linalg.cross(x, x + 1)
2305
+ expected = np.array([
2306
+ [-1, 2, -1],
2307
+ [-1, 2, -1],
2308
+ [-1, 2, -1],
2309
+ ])
2310
+
2311
+ assert_equal(actual, expected)
2312
+
2313
+ # We test that lists are converted to arrays.
2314
+ u = [1, 2, 3]
2315
+ v = [4, 5, 6]
2316
+ actual = np.linalg.cross(u, v)
2317
+ expected = array([-3, 6, -3])
2318
+
2319
+ assert_equal(actual, expected)
2320
+
2321
+ with assert_raises_regex(
2322
+ ValueError,
2323
+ r"input arrays must be \(arrays of\) 3-dimensional vectors"
2324
+ ):
2325
+ x_2dim = x[:, 1:]
2326
+ np.linalg.cross(x_2dim, x_2dim)
2327
+
2328
+
2329
+ def test_tensordot():
2330
+ # np.linalg.tensordot is just an alias for np.tensordot
2331
+ x = np.arange(6).reshape((2, 3))
2332
+
2333
+ assert np.linalg.tensordot(x, x) == 55
2334
+ assert np.linalg.tensordot(x, x, axes=[(0, 1), (0, 1)]) == 55
2335
+
2336
+
2337
+ def test_matmul():
2338
+ # np.linalg.matmul and np.matmul only differs in the number
2339
+ # of arguments in the signature
2340
+ x = np.arange(6).reshape((2, 3))
2341
+ actual = np.linalg.matmul(x, x.T)
2342
+ expected = np.array([[5, 14], [14, 50]])
2343
+
2344
+ assert_equal(actual, expected)
2345
+
2346
+
2347
+ def test_matrix_transpose():
2348
+ x = np.arange(6).reshape((2, 3))
2349
+ actual = np.linalg.matrix_transpose(x)
2350
+ expected = x.T
2351
+
2352
+ assert_equal(actual, expected)
2353
+
2354
+ with assert_raises_regex(
2355
+ ValueError, "array must be at least 2-dimensional"
2356
+ ):
2357
+ np.linalg.matrix_transpose(x[:, 0])
2358
+
2359
+
2360
+ def test_matrix_norm():
2361
+ x = np.arange(9).reshape((3, 3))
2362
+ actual = np.linalg.matrix_norm(x)
2363
+
2364
+ assert_almost_equal(actual, np.float64(14.2828), double_decimal=3)
2365
+
2366
+ actual = np.linalg.matrix_norm(x, keepdims=True)
2367
+
2368
+ assert_almost_equal(actual, np.array([[14.2828]]), double_decimal=3)
2369
+
2370
+
2371
+ def test_vector_norm():
2372
+ x = np.arange(9).reshape((3, 3))
2373
+ actual = np.linalg.vector_norm(x)
2374
+
2375
+ assert_almost_equal(actual, np.float64(14.2828), double_decimal=3)
2376
+
2377
+ actual = np.linalg.vector_norm(x, axis=0)
2378
+
2379
+ assert_almost_equal(
2380
+ actual, np.array([6.7082, 8.124, 9.6436]), double_decimal=3
2381
+ )
2382
+
2383
+ actual = np.linalg.vector_norm(x, keepdims=True)
2384
+ expected = np.full((1, 1), 14.2828, dtype='float64')
2385
+ assert_equal(actual.shape, expected.shape)
2386
+ assert_almost_equal(actual, expected, double_decimal=3)