File size: 104,581 Bytes
5123a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
"""
Tick locating and formatting
============================

This module contains classes for configuring tick locating and formatting.
Generic tick locators and formatters are provided, as well as domain specific
custom ones.

Although the locators know nothing about major or minor ticks, they are used
by the Axis class to support major and minor tick locating and formatting.

.. _tick_locating:
.. _locators:

Tick locating
-------------

The Locator class is the base class for all tick locators. The locators
handle autoscaling of the view limits based on the data limits, and the
choosing of tick locations. A useful semi-automatic tick locator is
`MultipleLocator`. It is initialized with a base, e.g., 10, and it picks
axis limits and ticks that are multiples of that base.

The Locator subclasses defined here are:

======================= =======================================================
`AutoLocator`           `MaxNLocator` with simple defaults. This is the default
                        tick locator for most plotting.
`MaxNLocator`           Finds up to a max number of intervals with ticks at
                        nice locations.
`LinearLocator`         Space ticks evenly from min to max.
`LogLocator`            Space ticks logarithmically from min to max.
`MultipleLocator`       Ticks and range are a multiple of base; either integer
                        or float.
`FixedLocator`          Tick locations are fixed.
`IndexLocator`          Locator for index plots (e.g., where
                        ``x = range(len(y))``).
`NullLocator`           No ticks.
`SymmetricalLogLocator` Locator for use with the symlog norm; works like
                        `LogLocator` for the part outside of the threshold and
                        adds 0 if inside the limits.
`AsinhLocator`          Locator for use with the asinh norm, attempting to
                        space ticks approximately uniformly.
`LogitLocator`          Locator for logit scaling.
`AutoMinorLocator`      Locator for minor ticks when the axis is linear and the
                        major ticks are uniformly spaced. Subdivides the major
                        tick interval into a specified number of minor
                        intervals, defaulting to 4 or 5 depending on the major
                        interval.
======================= =======================================================

There are a number of locators specialized for date locations - see
the :mod:`.dates` module.

You can define your own locator by deriving from Locator. You must
override the ``__call__`` method, which returns a sequence of locations,
and you will probably want to override the autoscale method to set the
view limits from the data limits.

If you want to override the default locator, use one of the above or a custom
locator and pass it to the x- or y-axis instance. The relevant methods are::

  ax.xaxis.set_major_locator(xmajor_locator)
  ax.xaxis.set_minor_locator(xminor_locator)
  ax.yaxis.set_major_locator(ymajor_locator)
  ax.yaxis.set_minor_locator(yminor_locator)

The default minor locator is `NullLocator`, i.e., no minor ticks on by default.

.. note::
    `Locator` instances should not be used with more than one
    `~matplotlib.axis.Axis` or `~matplotlib.axes.Axes`. So instead of::

        locator = MultipleLocator(5)
        ax.xaxis.set_major_locator(locator)
        ax2.xaxis.set_major_locator(locator)

    do the following instead::

        ax.xaxis.set_major_locator(MultipleLocator(5))
        ax2.xaxis.set_major_locator(MultipleLocator(5))

.. _formatters:

Tick formatting
---------------

Tick formatting is controlled by classes derived from Formatter. The formatter
operates on a single tick value and returns a string to the axis.

========================= =====================================================
`NullFormatter`           No labels on the ticks.
`FixedFormatter`          Set the strings manually for the labels.
`FuncFormatter`           User defined function sets the labels.
`StrMethodFormatter`      Use string `format` method.
`FormatStrFormatter`      Use an old-style sprintf format string.
`ScalarFormatter`         Default formatter for scalars: autopick the format
                          string.
`LogFormatter`            Formatter for log axes.
`LogFormatterExponent`    Format values for log axis using
                          ``exponent = log_base(value)``.
`LogFormatterMathtext`    Format values for log axis using
                          ``exponent = log_base(value)`` using Math text.
`LogFormatterSciNotation` Format values for log axis using scientific notation.
`LogitFormatter`          Probability formatter.
`EngFormatter`            Format labels in engineering notation.
`PercentFormatter`        Format labels as a percentage.
========================= =====================================================

You can derive your own formatter from the Formatter base class by
simply overriding the ``__call__`` method. The formatter class has
access to the axis view and data limits.

To control the major and minor tick label formats, use one of the
following methods::

  ax.xaxis.set_major_formatter(xmajor_formatter)
  ax.xaxis.set_minor_formatter(xminor_formatter)
  ax.yaxis.set_major_formatter(ymajor_formatter)
  ax.yaxis.set_minor_formatter(yminor_formatter)

In addition to a `.Formatter` instance, `~.Axis.set_major_formatter` and
`~.Axis.set_minor_formatter` also accept a ``str`` or function.  ``str`` input
will be internally replaced with an autogenerated `.StrMethodFormatter` with
the input ``str``. For function input, a `.FuncFormatter` with the input
function will be generated and used.

See :doc:`/gallery/ticks/major_minor_demo` for an example of setting major
and minor ticks. See the :mod:`matplotlib.dates` module for more information
and examples of using date locators and formatters.
"""

import itertools
import logging
import locale
import math
from numbers import Integral
import string

import numpy as np

import matplotlib as mpl
from matplotlib import _api, cbook
from matplotlib import transforms as mtransforms

_log = logging.getLogger(__name__)

__all__ = ('TickHelper', 'Formatter', 'FixedFormatter',
           'NullFormatter', 'FuncFormatter', 'FormatStrFormatter',
           'StrMethodFormatter', 'ScalarFormatter', 'LogFormatter',
           'LogFormatterExponent', 'LogFormatterMathtext',
           'LogFormatterSciNotation',
           'LogitFormatter', 'EngFormatter', 'PercentFormatter',
           'Locator', 'IndexLocator', 'FixedLocator', 'NullLocator',
           'LinearLocator', 'LogLocator', 'AutoLocator',
           'MultipleLocator', 'MaxNLocator', 'AutoMinorLocator',
           'SymmetricalLogLocator', 'AsinhLocator', 'LogitLocator')


class _DummyAxis:
    __name__ = "dummy"

    def __init__(self, minpos=0):
        self._data_interval = (0, 1)
        self._view_interval = (0, 1)
        self._minpos = minpos

    def get_view_interval(self):
        return self._view_interval

    def set_view_interval(self, vmin, vmax):
        self._view_interval = (vmin, vmax)

    def get_minpos(self):
        return self._minpos

    def get_data_interval(self):
        return self._data_interval

    def set_data_interval(self, vmin, vmax):
        self._data_interval = (vmin, vmax)

    def get_tick_space(self):
        # Just use the long-standing default of nbins==9
        return 9


class TickHelper:
    axis = None

    def set_axis(self, axis):
        self.axis = axis

    def create_dummy_axis(self, **kwargs):
        if self.axis is None:
            self.axis = _DummyAxis(**kwargs)


class Formatter(TickHelper):
    """
    Create a string based on a tick value and location.
    """
    # some classes want to see all the locs to help format
    # individual ones
    locs = []

    def __call__(self, x, pos=None):
        """
        Return the format for tick value *x* at position pos.
        ``pos=None`` indicates an unspecified location.
        """
        raise NotImplementedError('Derived must override')

    def format_ticks(self, values):
        """Return the tick labels for all the ticks at once."""
        self.set_locs(values)
        return [self(value, i) for i, value in enumerate(values)]

    def format_data(self, value):
        """
        Return the full string representation of the value with the
        position unspecified.
        """
        return self.__call__(value)

    def format_data_short(self, value):
        """
        Return a short string version of the tick value.

        Defaults to the position-independent long value.
        """
        return self.format_data(value)

    def get_offset(self):
        return ''

    def set_locs(self, locs):
        """
        Set the locations of the ticks.

        This method is called before computing the tick labels because some
        formatters need to know all tick locations to do so.
        """
        self.locs = locs

    @staticmethod
    def fix_minus(s):
        """
        Some classes may want to replace a hyphen for minus with the proper
        Unicode symbol (U+2212) for typographical correctness.  This is a
        helper method to perform such a replacement when it is enabled via
        :rc:`axes.unicode_minus`.
        """
        return (s.replace('-', '\N{MINUS SIGN}')
                if mpl.rcParams['axes.unicode_minus']
                else s)

    def _set_locator(self, locator):
        """Subclasses may want to override this to set a locator."""
        pass


class NullFormatter(Formatter):
    """Always return the empty string."""

    def __call__(self, x, pos=None):
        # docstring inherited
        return ''


class FixedFormatter(Formatter):
    """
    Return fixed strings for tick labels based only on position, not value.

    .. note::
        `.FixedFormatter` should only be used together with `.FixedLocator`.
        Otherwise, the labels may end up in unexpected positions.
    """

    def __init__(self, seq):
        """Set the sequence *seq* of strings that will be used for labels."""
        self.seq = seq
        self.offset_string = ''

    def __call__(self, x, pos=None):
        """
        Return the label that matches the position, regardless of the value.

        For positions ``pos < len(seq)``, return ``seq[i]`` regardless of
        *x*. Otherwise return empty string. ``seq`` is the sequence of
        strings that this object was initialized with.
        """
        if pos is None or pos >= len(self.seq):
            return ''
        else:
            return self.seq[pos]

    def get_offset(self):
        return self.offset_string

    def set_offset_string(self, ofs):
        self.offset_string = ofs


class FuncFormatter(Formatter):
    """
    Use a user-defined function for formatting.

    The function should take in two inputs (a tick value ``x`` and a
    position ``pos``), and return a string containing the corresponding
    tick label.
    """

    def __init__(self, func):
        self.func = func
        self.offset_string = ""

    def __call__(self, x, pos=None):
        """
        Return the value of the user defined function.

        *x* and *pos* are passed through as-is.
        """
        return self.func(x, pos)

    def get_offset(self):
        return self.offset_string

    def set_offset_string(self, ofs):
        self.offset_string = ofs


class FormatStrFormatter(Formatter):
    """
    Use an old-style ('%' operator) format string to format the tick.

    The format string should have a single variable format (%) in it.
    It will be applied to the value (not the position) of the tick.

    Negative numeric values (e.g., -1) will use a dash, not a Unicode minus;
    use mathtext to get a Unicode minus by wrapping the format specifier with $
    (e.g. "$%g$").
    """

    def __init__(self, fmt):
        self.fmt = fmt

    def __call__(self, x, pos=None):
        """
        Return the formatted label string.

        Only the value *x* is formatted. The position is ignored.
        """
        return self.fmt % x


class _UnicodeMinusFormat(string.Formatter):
    """
    A specialized string formatter so that `.StrMethodFormatter` respects
    :rc:`axes.unicode_minus`.  This implementation relies on the fact that the
    format string is only ever called with kwargs *x* and *pos*, so it blindly
    replaces dashes by unicode minuses without further checking.
    """

    def format_field(self, value, format_spec):
        return Formatter.fix_minus(super().format_field(value, format_spec))


class StrMethodFormatter(Formatter):
    """
    Use a new-style format string (as used by `str.format`) to format the tick.

    The field used for the tick value must be labeled *x* and the field used
    for the tick position must be labeled *pos*.

    The formatter will respect :rc:`axes.unicode_minus` when formatting
    negative numeric values.

    It is typically unnecessary to explicitly construct `.StrMethodFormatter`
    objects, as `~.Axis.set_major_formatter` directly accepts the format string
    itself.
    """

    def __init__(self, fmt):
        self.fmt = fmt

    def __call__(self, x, pos=None):
        """
        Return the formatted label string.

        *x* and *pos* are passed to `str.format` as keyword arguments
        with those exact names.
        """
        return _UnicodeMinusFormat().format(self.fmt, x=x, pos=pos)


class ScalarFormatter(Formatter):
    """
    Format tick values as a number.

    Parameters
    ----------
    useOffset : bool or float, default: :rc:`axes.formatter.useoffset`
        Whether to use offset notation. See `.set_useOffset`.
    useMathText : bool, default: :rc:`axes.formatter.use_mathtext`
        Whether to use fancy math formatting. See `.set_useMathText`.
    useLocale : bool, default: :rc:`axes.formatter.use_locale`.
        Whether to use locale settings for decimal sign and positive sign.
        See `.set_useLocale`.

    Notes
    -----
    In addition to the parameters above, the formatting of scientific vs.
    floating point representation can be configured via `.set_scientific`
    and `.set_powerlimits`).

    **Offset notation and scientific notation**

    Offset notation and scientific notation look quite similar at first sight.
    Both split some information from the formatted tick values and display it
    at the end of the axis.

    - The scientific notation splits up the order of magnitude, i.e. a
      multiplicative scaling factor, e.g. ``1e6``.

    - The offset notation separates an additive constant, e.g. ``+1e6``. The
      offset notation label is always prefixed with a ``+`` or ``-`` sign
      and is thus distinguishable from the order of magnitude label.

    The following plot with x limits ``1_000_000`` to ``1_000_010`` illustrates
    the different formatting. Note the labels at the right edge of the x axis.

    .. plot::

        lim = (1_000_000, 1_000_010)

        fig, (ax1, ax2, ax3) = plt.subplots(3, 1, gridspec_kw={'hspace': 2})
        ax1.set(title='offset_notation', xlim=lim)
        ax2.set(title='scientific notation', xlim=lim)
        ax2.xaxis.get_major_formatter().set_useOffset(False)
        ax3.set(title='floating point notation', xlim=lim)
        ax3.xaxis.get_major_formatter().set_useOffset(False)
        ax3.xaxis.get_major_formatter().set_scientific(False)

    """

    def __init__(self, useOffset=None, useMathText=None, useLocale=None):
        if useOffset is None:
            useOffset = mpl.rcParams['axes.formatter.useoffset']
        self._offset_threshold = \
            mpl.rcParams['axes.formatter.offset_threshold']
        self.set_useOffset(useOffset)
        self._usetex = mpl.rcParams['text.usetex']
        self.set_useMathText(useMathText)
        self.orderOfMagnitude = 0
        self.format = ''
        self._scientific = True
        self._powerlimits = mpl.rcParams['axes.formatter.limits']
        self.set_useLocale(useLocale)

    def get_useOffset(self):
        """
        Return whether automatic mode for offset notation is active.

        This returns True if ``set_useOffset(True)``; it returns False if an
        explicit offset was set, e.g. ``set_useOffset(1000)``.

        See Also
        --------
        ScalarFormatter.set_useOffset
        """
        return self._useOffset

    def set_useOffset(self, val):
        """
        Set whether to use offset notation.

        When formatting a set numbers whose value is large compared to their
        range, the formatter can separate an additive constant. This can
        shorten the formatted numbers so that they are less likely to overlap
        when drawn on an axis.

        Parameters
        ----------
        val : bool or float
            - If False, do not use offset notation.
            - If True (=automatic mode), use offset notation if it can make
              the residual numbers significantly shorter. The exact behavior
              is controlled by :rc:`axes.formatter.offset_threshold`.
            - If a number, force an offset of the given value.

        Examples
        --------
        With active offset notation, the values

        ``100_000, 100_002, 100_004, 100_006, 100_008``

        will be formatted as ``0, 2, 4, 6, 8`` plus an offset ``+1e5``, which
        is written to the edge of the axis.
        """
        if val in [True, False]:
            self.offset = 0
            self._useOffset = val
        else:
            self._useOffset = False
            self.offset = val

    useOffset = property(fget=get_useOffset, fset=set_useOffset)

    def get_useLocale(self):
        """
        Return whether locale settings are used for formatting.

        See Also
        --------
        ScalarFormatter.set_useLocale
        """
        return self._useLocale

    def set_useLocale(self, val):
        """
        Set whether to use locale settings for decimal sign and positive sign.

        Parameters
        ----------
        val : bool or None
            *None* resets to :rc:`axes.formatter.use_locale`.
        """
        if val is None:
            self._useLocale = mpl.rcParams['axes.formatter.use_locale']
        else:
            self._useLocale = val

    useLocale = property(fget=get_useLocale, fset=set_useLocale)

    def _format_maybe_minus_and_locale(self, fmt, arg):
        """
        Format *arg* with *fmt*, applying Unicode minus and locale if desired.
        """
        return self.fix_minus(
                # Escape commas introduced by locale.format_string if using math text,
                # but not those present from the beginning in fmt.
                (",".join(locale.format_string(part, (arg,), True).replace(",", "{,}")
                          for part in fmt.split(",")) if self._useMathText
                 else locale.format_string(fmt, (arg,), True))
                if self._useLocale
                else fmt % arg)

    def get_useMathText(self):
        """
        Return whether to use fancy math formatting.

        See Also
        --------
        ScalarFormatter.set_useMathText
        """
        return self._useMathText

    def set_useMathText(self, val):
        r"""
        Set whether to use fancy math formatting.

        If active, scientific notation is formatted as :math:`1.2 \times 10^3`.

        Parameters
        ----------
        val : bool or None
            *None* resets to :rc:`axes.formatter.use_mathtext`.
        """
        if val is None:
            self._useMathText = mpl.rcParams['axes.formatter.use_mathtext']
            if self._useMathText is False:
                try:
                    from matplotlib import font_manager
                    ufont = font_manager.findfont(
                        font_manager.FontProperties(
                            mpl.rcParams["font.family"]
                        ),
                        fallback_to_default=False,
                    )
                except ValueError:
                    ufont = None

                if ufont == str(cbook._get_data_path("fonts/ttf/cmr10.ttf")):
                    _api.warn_external(
                        "cmr10 font should ideally be used with "
                        "mathtext, set axes.formatter.use_mathtext to True"
                    )
        else:
            self._useMathText = val

    useMathText = property(fget=get_useMathText, fset=set_useMathText)

    def __call__(self, x, pos=None):
        """
        Return the format for tick value *x* at position *pos*.
        """
        if len(self.locs) == 0:
            return ''
        else:
            xp = (x - self.offset) / (10. ** self.orderOfMagnitude)
            if abs(xp) < 1e-8:
                xp = 0
            return self._format_maybe_minus_and_locale(self.format, xp)

    def set_scientific(self, b):
        """
        Turn scientific notation on or off.

        See Also
        --------
        ScalarFormatter.set_powerlimits
        """
        self._scientific = bool(b)

    def set_powerlimits(self, lims):
        r"""
        Set size thresholds for scientific notation.

        Parameters
        ----------
        lims : (int, int)
            A tuple *(min_exp, max_exp)* containing the powers of 10 that
            determine the switchover threshold. For a number representable as
            :math:`a \times 10^\mathrm{exp}` with :math:`1 <= |a| < 10`,
            scientific notation will be used if ``exp <= min_exp`` or
            ``exp >= max_exp``.

            The default limits are controlled by :rc:`axes.formatter.limits`.

            In particular numbers with *exp* equal to the thresholds are
            written in scientific notation.

            Typically, *min_exp* will be negative and *max_exp* will be
            positive.

            For example, ``formatter.set_powerlimits((-3, 4))`` will provide
            the following formatting:
            :math:`1 \times 10^{-3}, 9.9 \times 10^{-3}, 0.01,`
            :math:`9999, 1 \times 10^4`.

        See Also
        --------
        ScalarFormatter.set_scientific
        """
        if len(lims) != 2:
            raise ValueError("'lims' must be a sequence of length 2")
        self._powerlimits = lims

    def format_data_short(self, value):
        # docstring inherited
        if value is np.ma.masked:
            return ""
        if isinstance(value, Integral):
            fmt = "%d"
        else:
            if getattr(self.axis, "__name__", "") in ["xaxis", "yaxis"]:
                if self.axis.__name__ == "xaxis":
                    axis_trf = self.axis.axes.get_xaxis_transform()
                    axis_inv_trf = axis_trf.inverted()
                    screen_xy = axis_trf.transform((value, 0))
                    neighbor_values = axis_inv_trf.transform(
                        screen_xy + [[-1, 0], [+1, 0]])[:, 0]
                else:  # yaxis:
                    axis_trf = self.axis.axes.get_yaxis_transform()
                    axis_inv_trf = axis_trf.inverted()
                    screen_xy = axis_trf.transform((0, value))
                    neighbor_values = axis_inv_trf.transform(
                        screen_xy + [[0, -1], [0, +1]])[:, 1]
                delta = abs(neighbor_values - value).max()
            else:
                # Rough approximation: no more than 1e4 divisions.
                a, b = self.axis.get_view_interval()
                delta = (b - a) / 1e4
            fmt = f"%-#.{cbook._g_sig_digits(value, delta)}g"
        return self._format_maybe_minus_and_locale(fmt, value)

    def format_data(self, value):
        # docstring inherited
        e = math.floor(math.log10(abs(value)))
        s = round(value / 10**e, 10)
        significand = self._format_maybe_minus_and_locale(
            "%d" if s % 1 == 0 else "%1.10g", s)
        if e == 0:
            return significand
        exponent = self._format_maybe_minus_and_locale("%d", e)
        if self._useMathText or self._usetex:
            exponent = "10^{%s}" % exponent
            return (exponent if s == 1  # reformat 1x10^y as 10^y
                    else rf"{significand} \times {exponent}")
        else:
            return f"{significand}e{exponent}"

    def get_offset(self):
        """
        Return scientific notation, plus offset.
        """
        if len(self.locs) == 0:
            return ''
        if self.orderOfMagnitude or self.offset:
            offsetStr = ''
            sciNotStr = ''
            if self.offset:
                offsetStr = self.format_data(self.offset)
                if self.offset > 0:
                    offsetStr = '+' + offsetStr
            if self.orderOfMagnitude:
                if self._usetex or self._useMathText:
                    sciNotStr = self.format_data(10 ** self.orderOfMagnitude)
                else:
                    sciNotStr = '1e%d' % self.orderOfMagnitude
            if self._useMathText or self._usetex:
                if sciNotStr != '':
                    sciNotStr = r'\times\mathdefault{%s}' % sciNotStr
                s = fr'${sciNotStr}\mathdefault{{{offsetStr}}}$'
            else:
                s = ''.join((sciNotStr, offsetStr))
            return self.fix_minus(s)
        return ''

    def set_locs(self, locs):
        # docstring inherited
        self.locs = locs
        if len(self.locs) > 0:
            if self._useOffset:
                self._compute_offset()
            self._set_order_of_magnitude()
            self._set_format()

    def _compute_offset(self):
        locs = self.locs
        # Restrict to visible ticks.
        vmin, vmax = sorted(self.axis.get_view_interval())
        locs = np.asarray(locs)
        locs = locs[(vmin <= locs) & (locs <= vmax)]
        if not len(locs):
            self.offset = 0
            return
        lmin, lmax = locs.min(), locs.max()
        # Only use offset if there are at least two ticks and every tick has
        # the same sign.
        if lmin == lmax or lmin <= 0 <= lmax:
            self.offset = 0
            return
        # min, max comparing absolute values (we want division to round towards
        # zero so we work on absolute values).
        abs_min, abs_max = sorted([abs(float(lmin)), abs(float(lmax))])
        sign = math.copysign(1, lmin)
        # What is the smallest power of ten such that abs_min and abs_max are
        # equal up to that precision?
        # Note: Internally using oom instead of 10 ** oom avoids some numerical
        # accuracy issues.
        oom_max = np.ceil(math.log10(abs_max))
        oom = 1 + next(oom for oom in itertools.count(oom_max, -1)
                       if abs_min // 10 ** oom != abs_max // 10 ** oom)
        if (abs_max - abs_min) / 10 ** oom <= 1e-2:
            # Handle the case of straddling a multiple of a large power of ten
            # (relative to the span).
            # What is the smallest power of ten such that abs_min and abs_max
            # are no more than 1 apart at that precision?
            oom = 1 + next(oom for oom in itertools.count(oom_max, -1)
                           if abs_max // 10 ** oom - abs_min // 10 ** oom > 1)
        # Only use offset if it saves at least _offset_threshold digits.
        n = self._offset_threshold - 1
        self.offset = (sign * (abs_max // 10 ** oom) * 10 ** oom
                       if abs_max // 10 ** oom >= 10**n
                       else 0)

    def _set_order_of_magnitude(self):
        # if scientific notation is to be used, find the appropriate exponent
        # if using a numerical offset, find the exponent after applying the
        # offset. When lower power limit = upper <> 0, use provided exponent.
        if not self._scientific:
            self.orderOfMagnitude = 0
            return
        if self._powerlimits[0] == self._powerlimits[1] != 0:
            # fixed scaling when lower power limit = upper <> 0.
            self.orderOfMagnitude = self._powerlimits[0]
            return
        # restrict to visible ticks
        vmin, vmax = sorted(self.axis.get_view_interval())
        locs = np.asarray(self.locs)
        locs = locs[(vmin <= locs) & (locs <= vmax)]
        locs = np.abs(locs)
        if not len(locs):
            self.orderOfMagnitude = 0
            return
        if self.offset:
            oom = math.floor(math.log10(vmax - vmin))
        else:
            val = locs.max()
            if val == 0:
                oom = 0
            else:
                oom = math.floor(math.log10(val))
        if oom <= self._powerlimits[0]:
            self.orderOfMagnitude = oom
        elif oom >= self._powerlimits[1]:
            self.orderOfMagnitude = oom
        else:
            self.orderOfMagnitude = 0

    def _set_format(self):
        # set the format string to format all the ticklabels
        if len(self.locs) < 2:
            # Temporarily augment the locations with the axis end points.
            _locs = [*self.locs, *self.axis.get_view_interval()]
        else:
            _locs = self.locs
        locs = (np.asarray(_locs) - self.offset) / 10. ** self.orderOfMagnitude
        loc_range = np.ptp(locs)
        # Curvilinear coordinates can yield two identical points.
        if loc_range == 0:
            loc_range = np.max(np.abs(locs))
        # Both points might be zero.
        if loc_range == 0:
            loc_range = 1
        if len(self.locs) < 2:
            # We needed the end points only for the loc_range calculation.
            locs = locs[:-2]
        loc_range_oom = int(math.floor(math.log10(loc_range)))
        # first estimate:
        sigfigs = max(0, 3 - loc_range_oom)
        # refined estimate:
        thresh = 1e-3 * 10 ** loc_range_oom
        while sigfigs >= 0:
            if np.abs(locs - np.round(locs, decimals=sigfigs)).max() < thresh:
                sigfigs -= 1
            else:
                break
        sigfigs += 1
        self.format = f'%1.{sigfigs}f'
        if self._usetex or self._useMathText:
            self.format = r'$\mathdefault{%s}$' % self.format


class LogFormatter(Formatter):
    """
    Base class for formatting ticks on a log or symlog scale.

    It may be instantiated directly, or subclassed.

    Parameters
    ----------
    base : float, default: 10.
        Base of the logarithm used in all calculations.

    labelOnlyBase : bool, default: False
        If True, label ticks only at integer powers of base.
        This is normally True for major ticks and False for
        minor ticks.

    minor_thresholds : (subset, all), default: (1, 0.4)
        If labelOnlyBase is False, these two numbers control
        the labeling of ticks that are not at integer powers of
        base; normally these are the minor ticks. The controlling
        parameter is the log of the axis data range.  In the typical
        case where base is 10 it is the number of decades spanned
        by the axis, so we can call it 'numdec'. If ``numdec <= all``,
        all minor ticks will be labeled.  If ``all < numdec <= subset``,
        then only a subset of minor ticks will be labeled, so as to
        avoid crowding. If ``numdec > subset`` then no minor ticks will
        be labeled.

    linthresh : None or float, default: None
        If a symmetric log scale is in use, its ``linthresh``
        parameter must be supplied here.

    Notes
    -----
    The `set_locs` method must be called to enable the subsetting
    logic controlled by the ``minor_thresholds`` parameter.

    In some cases such as the colorbar, there is no distinction between
    major and minor ticks; the tick locations might be set manually,
    or by a locator that puts ticks at integer powers of base and
    at intermediate locations.  For this situation, disable the
    minor_thresholds logic by using ``minor_thresholds=(np.inf, np.inf)``,
    so that all ticks will be labeled.

    To disable labeling of minor ticks when 'labelOnlyBase' is False,
    use ``minor_thresholds=(0, 0)``.  This is the default for the
    "classic" style.

    Examples
    --------
    To label a subset of minor ticks when the view limits span up
    to 2 decades, and all of the ticks when zoomed in to 0.5 decades
    or less, use ``minor_thresholds=(2, 0.5)``.

    To label all minor ticks when the view limits span up to 1.5
    decades, use ``minor_thresholds=(1.5, 1.5)``.
    """

    def __init__(self, base=10.0, labelOnlyBase=False,
                 minor_thresholds=None,
                 linthresh=None):

        self.set_base(base)
        self.set_label_minor(labelOnlyBase)
        if minor_thresholds is None:
            if mpl.rcParams['_internal.classic_mode']:
                minor_thresholds = (0, 0)
            else:
                minor_thresholds = (1, 0.4)
        self.minor_thresholds = minor_thresholds
        self._sublabels = None
        self._linthresh = linthresh

    def set_base(self, base):
        """
        Change the *base* for labeling.

        .. warning::
           Should always match the base used for :class:`LogLocator`
        """
        self._base = float(base)

    def set_label_minor(self, labelOnlyBase):
        """
        Switch minor tick labeling on or off.

        Parameters
        ----------
        labelOnlyBase : bool
            If True, label ticks only at integer powers of base.
        """
        self.labelOnlyBase = labelOnlyBase

    def set_locs(self, locs=None):
        """
        Use axis view limits to control which ticks are labeled.

        The *locs* parameter is ignored in the present algorithm.
        """
        if np.isinf(self.minor_thresholds[0]):
            self._sublabels = None
            return

        # Handle symlog case:
        linthresh = self._linthresh
        if linthresh is None:
            try:
                linthresh = self.axis.get_transform().linthresh
            except AttributeError:
                pass

        vmin, vmax = self.axis.get_view_interval()
        if vmin > vmax:
            vmin, vmax = vmax, vmin

        if linthresh is None and vmin <= 0:
            # It's probably a colorbar with
            # a format kwarg setting a LogFormatter in the manner
            # that worked with 1.5.x, but that doesn't work now.
            self._sublabels = {1}  # label powers of base
            return

        b = self._base
        if linthresh is not None:  # symlog
            # Only compute the number of decades in the logarithmic part of the
            # axis
            numdec = 0
            if vmin < -linthresh:
                rhs = min(vmax, -linthresh)
                numdec += math.log(vmin / rhs) / math.log(b)
            if vmax > linthresh:
                lhs = max(vmin, linthresh)
                numdec += math.log(vmax / lhs) / math.log(b)
        else:
            vmin = math.log(vmin) / math.log(b)
            vmax = math.log(vmax) / math.log(b)
            numdec = abs(vmax - vmin)

        if numdec > self.minor_thresholds[0]:
            # Label only bases
            self._sublabels = {1}
        elif numdec > self.minor_thresholds[1]:
            # Add labels between bases at log-spaced coefficients;
            # include base powers in case the locations include
            # "major" and "minor" points, as in colorbar.
            c = np.geomspace(1, b, int(b)//2 + 1)
            self._sublabels = set(np.round(c))
            # For base 10, this yields (1, 2, 3, 4, 6, 10).
        else:
            # Label all integer multiples of base**n.
            self._sublabels = set(np.arange(1, b + 1))

    def _num_to_string(self, x, vmin, vmax):
        if x > 10000:
            s = '%1.0e' % x
        elif x < 1:
            s = '%1.0e' % x
        else:
            s = self._pprint_val(x, vmax - vmin)
        return s

    def __call__(self, x, pos=None):
        # docstring inherited
        if x == 0.0:  # Symlog
            return '0'

        x = abs(x)
        b = self._base
        # only label the decades
        fx = math.log(x) / math.log(b)
        is_x_decade = _is_close_to_int(fx)
        exponent = round(fx) if is_x_decade else np.floor(fx)
        coeff = round(b ** (fx - exponent))

        if self.labelOnlyBase and not is_x_decade:
            return ''
        if self._sublabels is not None and coeff not in self._sublabels:
            return ''

        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
        s = self._num_to_string(x, vmin, vmax)
        return self.fix_minus(s)

    def format_data(self, value):
        with cbook._setattr_cm(self, labelOnlyBase=False):
            return cbook.strip_math(self.__call__(value))

    def format_data_short(self, value):
        # docstring inherited
        return ('%-12g' % value).rstrip()

    def _pprint_val(self, x, d):
        # If the number is not too big and it's an int, format it as an int.
        if abs(x) < 1e4 and x == int(x):
            return '%d' % x
        fmt = ('%1.3e' if d < 1e-2 else
               '%1.3f' if d <= 1 else
               '%1.2f' if d <= 10 else
               '%1.1f' if d <= 1e5 else
               '%1.1e')
        s = fmt % x
        tup = s.split('e')
        if len(tup) == 2:
            mantissa = tup[0].rstrip('0').rstrip('.')
            exponent = int(tup[1])
            if exponent:
                s = '%se%d' % (mantissa, exponent)
            else:
                s = mantissa
        else:
            s = s.rstrip('0').rstrip('.')
        return s


class LogFormatterExponent(LogFormatter):
    """
    Format values for log axis using ``exponent = log_base(value)``.
    """
    def _num_to_string(self, x, vmin, vmax):
        fx = math.log(x) / math.log(self._base)
        if abs(fx) > 10000:
            s = '%1.0g' % fx
        elif abs(fx) < 1:
            s = '%1.0g' % fx
        else:
            fd = math.log(vmax - vmin) / math.log(self._base)
            s = self._pprint_val(fx, fd)
        return s


class LogFormatterMathtext(LogFormatter):
    """
    Format values for log axis using ``exponent = log_base(value)``.
    """

    def _non_decade_format(self, sign_string, base, fx, usetex):
        """Return string for non-decade locations."""
        return r'$\mathdefault{%s%s^{%.2f}}$' % (sign_string, base, fx)

    def __call__(self, x, pos=None):
        # docstring inherited
        if x == 0:  # Symlog
            return r'$\mathdefault{0}$'

        sign_string = '-' if x < 0 else ''
        x = abs(x)
        b = self._base

        # only label the decades
        fx = math.log(x) / math.log(b)
        is_x_decade = _is_close_to_int(fx)
        exponent = round(fx) if is_x_decade else np.floor(fx)
        coeff = round(b ** (fx - exponent))

        if self.labelOnlyBase and not is_x_decade:
            return ''
        if self._sublabels is not None and coeff not in self._sublabels:
            return ''

        if is_x_decade:
            fx = round(fx)

        # use string formatting of the base if it is not an integer
        if b % 1 == 0.0:
            base = '%d' % b
        else:
            base = '%s' % b

        if abs(fx) < mpl.rcParams['axes.formatter.min_exponent']:
            return r'$\mathdefault{%s%g}$' % (sign_string, x)
        elif not is_x_decade:
            usetex = mpl.rcParams['text.usetex']
            return self._non_decade_format(sign_string, base, fx, usetex)
        else:
            return r'$\mathdefault{%s%s^{%d}}$' % (sign_string, base, fx)


class LogFormatterSciNotation(LogFormatterMathtext):
    """
    Format values following scientific notation in a logarithmic axis.
    """

    def _non_decade_format(self, sign_string, base, fx, usetex):
        """Return string for non-decade locations."""
        b = float(base)
        exponent = math.floor(fx)
        coeff = b ** (fx - exponent)
        if _is_close_to_int(coeff):
            coeff = round(coeff)
        return r'$\mathdefault{%s%g\times%s^{%d}}$' \
            % (sign_string, coeff, base, exponent)


class LogitFormatter(Formatter):
    """
    Probability formatter (using Math text).
    """

    def __init__(
        self,
        *,
        use_overline=False,
        one_half=r"\frac{1}{2}",
        minor=False,
        minor_threshold=25,
        minor_number=6,
    ):
        r"""
        Parameters
        ----------
        use_overline : bool, default: False
            If x > 1/2, with x = 1-v, indicate if x should be displayed as
            $\overline{v}$. The default is to display $1-v$.

        one_half : str, default: r"\frac{1}{2}"
            The string used to represent 1/2.

        minor : bool, default: False
            Indicate if the formatter is formatting minor ticks or not.
            Basically minor ticks are not labelled, except when only few ticks
            are provided, ticks with most space with neighbor ticks are
            labelled. See other parameters to change the default behavior.

        minor_threshold : int, default: 25
            Maximum number of locs for labelling some minor ticks. This
            parameter have no effect if minor is False.

        minor_number : int, default: 6
            Number of ticks which are labelled when the number of ticks is
            below the threshold.
        """
        self._use_overline = use_overline
        self._one_half = one_half
        self._minor = minor
        self._labelled = set()
        self._minor_threshold = minor_threshold
        self._minor_number = minor_number

    def use_overline(self, use_overline):
        r"""
        Switch display mode with overline for labelling p>1/2.

        Parameters
        ----------
        use_overline : bool, default: False
            If x > 1/2, with x = 1-v, indicate if x should be displayed as
            $\overline{v}$. The default is to display $1-v$.
        """
        self._use_overline = use_overline

    def set_one_half(self, one_half):
        r"""
        Set the way one half is displayed.

        one_half : str, default: r"\frac{1}{2}"
            The string used to represent 1/2.
        """
        self._one_half = one_half

    def set_minor_threshold(self, minor_threshold):
        """
        Set the threshold for labelling minors ticks.

        Parameters
        ----------
        minor_threshold : int
            Maximum number of locations for labelling some minor ticks. This
            parameter have no effect if minor is False.
        """
        self._minor_threshold = minor_threshold

    def set_minor_number(self, minor_number):
        """
        Set the number of minor ticks to label when some minor ticks are
        labelled.

        Parameters
        ----------
        minor_number : int
            Number of ticks which are labelled when the number of ticks is
            below the threshold.
        """
        self._minor_number = minor_number

    def set_locs(self, locs):
        self.locs = np.array(locs)
        self._labelled.clear()

        if not self._minor:
            return None
        if all(
            _is_decade(x, rtol=1e-7)
            or _is_decade(1 - x, rtol=1e-7)
            or (_is_close_to_int(2 * x) and
                int(np.round(2 * x)) == 1)
            for x in locs
        ):
            # minor ticks are subsample from ideal, so no label
            return None
        if len(locs) < self._minor_threshold:
            if len(locs) < self._minor_number:
                self._labelled.update(locs)
            else:
                # we do not have a lot of minor ticks, so only few decades are
                # displayed, then we choose some (spaced) minor ticks to label.
                # Only minor ticks are known, we assume it is sufficient to
                # choice which ticks are displayed.
                # For each ticks we compute the distance between the ticks and
                # the previous, and between the ticks and the next one. Ticks
                # with smallest minimum are chosen. As tiebreak, the ticks
                # with smallest sum is chosen.
                diff = np.diff(-np.log(1 / self.locs - 1))
                space_pessimistic = np.minimum(
                    np.concatenate(((np.inf,), diff)),
                    np.concatenate((diff, (np.inf,))),
                )
                space_sum = (
                    np.concatenate(((0,), diff))
                    + np.concatenate((diff, (0,)))
                )
                good_minor = sorted(
                    range(len(self.locs)),
                    key=lambda i: (space_pessimistic[i], space_sum[i]),
                )[-self._minor_number:]
                self._labelled.update(locs[i] for i in good_minor)

    def _format_value(self, x, locs, sci_notation=True):
        if sci_notation:
            exponent = math.floor(np.log10(x))
            min_precision = 0
        else:
            exponent = 0
            min_precision = 1
        value = x * 10 ** (-exponent)
        if len(locs) < 2:
            precision = min_precision
        else:
            diff = np.sort(np.abs(locs - x))[1]
            precision = -np.log10(diff) + exponent
            precision = (
                int(np.round(precision))
                if _is_close_to_int(precision)
                else math.ceil(precision)
            )
            if precision < min_precision:
                precision = min_precision
        mantissa = r"%.*f" % (precision, value)
        if not sci_notation:
            return mantissa
        s = r"%s\cdot10^{%d}" % (mantissa, exponent)
        return s

    def _one_minus(self, s):
        if self._use_overline:
            return r"\overline{%s}" % s
        else:
            return f"1-{s}"

    def __call__(self, x, pos=None):
        if self._minor and x not in self._labelled:
            return ""
        if x <= 0 or x >= 1:
            return ""
        if _is_close_to_int(2 * x) and round(2 * x) == 1:
            s = self._one_half
        elif x < 0.5 and _is_decade(x, rtol=1e-7):
            exponent = round(math.log10(x))
            s = "10^{%d}" % exponent
        elif x > 0.5 and _is_decade(1 - x, rtol=1e-7):
            exponent = round(math.log10(1 - x))
            s = self._one_minus("10^{%d}" % exponent)
        elif x < 0.1:
            s = self._format_value(x, self.locs)
        elif x > 0.9:
            s = self._one_minus(self._format_value(1-x, 1-self.locs))
        else:
            s = self._format_value(x, self.locs, sci_notation=False)
        return r"$\mathdefault{%s}$" % s

    def format_data_short(self, value):
        # docstring inherited
        # Thresholds chosen to use scientific notation iff exponent <= -2.
        if value < 0.1:
            return f"{value:e}"
        if value < 0.9:
            return f"{value:f}"
        return f"1-{1 - value:e}"


class EngFormatter(Formatter):
    """
    Format axis values using engineering prefixes to represent powers
    of 1000, plus a specified unit, e.g., 10 MHz instead of 1e7.
    """

    # The SI engineering prefixes
    ENG_PREFIXES = {
        -30: "q",
        -27: "r",
        -24: "y",
        -21: "z",
        -18: "a",
        -15: "f",
        -12: "p",
         -9: "n",
         -6: "\N{MICRO SIGN}",
         -3: "m",
          0: "",
          3: "k",
          6: "M",
          9: "G",
         12: "T",
         15: "P",
         18: "E",
         21: "Z",
         24: "Y",
         27: "R",
         30: "Q"
    }

    def __init__(self, unit="", places=None, sep=" ", *, usetex=None,
                 useMathText=None):
        r"""
        Parameters
        ----------
        unit : str, default: ""
            Unit symbol to use, suitable for use with single-letter
            representations of powers of 1000. For example, 'Hz' or 'm'.

        places : int, default: None
            Precision with which to display the number, specified in
            digits after the decimal point (there will be between one
            and three digits before the decimal point). If it is None,
            the formatting falls back to the floating point format '%g',
            which displays up to 6 *significant* digits, i.e. the equivalent
            value for *places* varies between 0 and 5 (inclusive).

        sep : str, default: " "
            Separator used between the value and the prefix/unit. For
            example, one get '3.14 mV' if ``sep`` is " " (default) and
            '3.14mV' if ``sep`` is "". Besides the default behavior, some
            other useful options may be:

            * ``sep=""`` to append directly the prefix/unit to the value;
            * ``sep="\N{THIN SPACE}"`` (``U+2009``);
            * ``sep="\N{NARROW NO-BREAK SPACE}"`` (``U+202F``);
            * ``sep="\N{NO-BREAK SPACE}"`` (``U+00A0``).

        usetex : bool, default: :rc:`text.usetex`
            To enable/disable the use of TeX's math mode for rendering the
            numbers in the formatter.

        useMathText : bool, default: :rc:`axes.formatter.use_mathtext`
            To enable/disable the use mathtext for rendering the numbers in
            the formatter.
        """
        self.unit = unit
        self.places = places
        self.sep = sep
        self.set_usetex(usetex)
        self.set_useMathText(useMathText)

    def get_usetex(self):
        return self._usetex

    def set_usetex(self, val):
        if val is None:
            self._usetex = mpl.rcParams['text.usetex']
        else:
            self._usetex = val

    usetex = property(fget=get_usetex, fset=set_usetex)

    def get_useMathText(self):
        return self._useMathText

    def set_useMathText(self, val):
        if val is None:
            self._useMathText = mpl.rcParams['axes.formatter.use_mathtext']
        else:
            self._useMathText = val

    useMathText = property(fget=get_useMathText, fset=set_useMathText)

    def __call__(self, x, pos=None):
        s = f"{self.format_eng(x)}{self.unit}"
        # Remove the trailing separator when there is neither prefix nor unit
        if self.sep and s.endswith(self.sep):
            s = s[:-len(self.sep)]
        return self.fix_minus(s)

    def format_eng(self, num):
        """
        Format a number in engineering notation, appending a letter
        representing the power of 1000 of the original number.
        Some examples:

        >>> format_eng(0)        # for self.places = 0
        '0'

        >>> format_eng(1000000)  # for self.places = 1
        '1.0 M'

        >>> format_eng(-1e-6)  # for self.places = 2
        '-1.00 \N{MICRO SIGN}'
        """
        sign = 1
        fmt = "g" if self.places is None else f".{self.places:d}f"

        if num < 0:
            sign = -1
            num = -num

        if num != 0:
            pow10 = int(math.floor(math.log10(num) / 3) * 3)
        else:
            pow10 = 0
            # Force num to zero, to avoid inconsistencies like
            # format_eng(-0) = "0" and format_eng(0.0) = "0"
            # but format_eng(-0.0) = "-0.0"
            num = 0.0

        pow10 = np.clip(pow10, min(self.ENG_PREFIXES), max(self.ENG_PREFIXES))

        mant = sign * num / (10.0 ** pow10)
        # Taking care of the cases like 999.9..., which may be rounded to 1000
        # instead of 1 k.  Beware of the corner case of values that are beyond
        # the range of SI prefixes (i.e. > 'Y').
        if (abs(float(format(mant, fmt))) >= 1000
                and pow10 < max(self.ENG_PREFIXES)):
            mant /= 1000
            pow10 += 3

        prefix = self.ENG_PREFIXES[int(pow10)]
        if self._usetex or self._useMathText:
            formatted = f"${mant:{fmt}}${self.sep}{prefix}"
        else:
            formatted = f"{mant:{fmt}}{self.sep}{prefix}"

        return formatted


class PercentFormatter(Formatter):
    """
    Format numbers as a percentage.

    Parameters
    ----------
    xmax : float
        Determines how the number is converted into a percentage.
        *xmax* is the data value that corresponds to 100%.
        Percentages are computed as ``x / xmax * 100``. So if the data is
        already scaled to be percentages, *xmax* will be 100. Another common
        situation is where *xmax* is 1.0.

    decimals : None or int
        The number of decimal places to place after the point.
        If *None* (the default), the number will be computed automatically.

    symbol : str or None
        A string that will be appended to the label. It may be
        *None* or empty to indicate that no symbol should be used. LaTeX
        special characters are escaped in *symbol* whenever latex mode is
        enabled, unless *is_latex* is *True*.

    is_latex : bool
        If *False*, reserved LaTeX characters in *symbol* will be escaped.
    """
    def __init__(self, xmax=100, decimals=None, symbol='%', is_latex=False):
        self.xmax = xmax + 0.0
        self.decimals = decimals
        self._symbol = symbol
        self._is_latex = is_latex

    def __call__(self, x, pos=None):
        """Format the tick as a percentage with the appropriate scaling."""
        ax_min, ax_max = self.axis.get_view_interval()
        display_range = abs(ax_max - ax_min)
        return self.fix_minus(self.format_pct(x, display_range))

    def format_pct(self, x, display_range):
        """
        Format the number as a percentage number with the correct
        number of decimals and adds the percent symbol, if any.

        If ``self.decimals`` is `None`, the number of digits after the
        decimal point is set based on the *display_range* of the axis
        as follows:

        ============= ======== =======================
        display_range decimals sample
        ============= ======== =======================
        >50           0        ``x = 34.5`` => 35%
        >5            1        ``x = 34.5`` => 34.5%
        >0.5          2        ``x = 34.5`` => 34.50%
        ...           ...      ...
        ============= ======== =======================

        This method will not be very good for tiny axis ranges or
        extremely large ones. It assumes that the values on the chart
        are percentages displayed on a reasonable scale.
        """
        x = self.convert_to_pct(x)
        if self.decimals is None:
            # conversion works because display_range is a difference
            scaled_range = self.convert_to_pct(display_range)
            if scaled_range <= 0:
                decimals = 0
            else:
                # Luckily Python's built-in ceil rounds to +inf, not away from
                # zero. This is very important since the equation for decimals
                # starts out as `scaled_range > 0.5 * 10**(2 - decimals)`
                # and ends up with `decimals > 2 - log10(2 * scaled_range)`.
                decimals = math.ceil(2.0 - math.log10(2.0 * scaled_range))
                if decimals > 5:
                    decimals = 5
                elif decimals < 0:
                    decimals = 0
        else:
            decimals = self.decimals
        s = f'{x:0.{int(decimals)}f}'

        return s + self.symbol

    def convert_to_pct(self, x):
        return 100.0 * (x / self.xmax)

    @property
    def symbol(self):
        r"""
        The configured percent symbol as a string.

        If LaTeX is enabled via :rc:`text.usetex`, the special characters
        ``{'#', '$', '%', '&', '~', '_', '^', '\', '{', '}'}`` are
        automatically escaped in the string.
        """
        symbol = self._symbol
        if not symbol:
            symbol = ''
        elif not self._is_latex and mpl.rcParams['text.usetex']:
            # Source: http://www.personal.ceu.hu/tex/specchar.htm
            # Backslash must be first for this to work correctly since
            # it keeps getting added in
            for spec in r'\#$%&~_^{}':
                symbol = symbol.replace(spec, '\\' + spec)
        return symbol

    @symbol.setter
    def symbol(self, symbol):
        self._symbol = symbol


class Locator(TickHelper):
    """
    Determine tick locations.

    Note that the same locator should not be used across multiple
    `~matplotlib.axis.Axis` because the locator stores references to the Axis
    data and view limits.
    """

    # Some automatic tick locators can generate so many ticks they
    # kill the machine when you try and render them.
    # This parameter is set to cause locators to raise an error if too
    # many ticks are generated.
    MAXTICKS = 1000

    def tick_values(self, vmin, vmax):
        """
        Return the values of the located ticks given **vmin** and **vmax**.

        .. note::
            To get tick locations with the vmin and vmax values defined
            automatically for the associated ``axis`` simply call
            the Locator instance::

                >>> print(type(loc))
                <type 'Locator'>
                >>> print(loc())
                [1, 2, 3, 4]

        """
        raise NotImplementedError('Derived must override')

    def set_params(self, **kwargs):
        """
        Do nothing, and raise a warning. Any locator class not supporting the
        set_params() function will call this.
        """
        _api.warn_external(
            "'set_params()' not defined for locator of type " +
            str(type(self)))

    def __call__(self):
        """Return the locations of the ticks."""
        # note: some locators return data limits, other return view limits,
        # hence there is no *one* interface to call self.tick_values.
        raise NotImplementedError('Derived must override')

    def raise_if_exceeds(self, locs):
        """
        Log at WARNING level if *locs* is longer than `Locator.MAXTICKS`.

        This is intended to be called immediately before returning *locs* from
        ``__call__`` to inform users in case their Locator returns a huge
        number of ticks, causing Matplotlib to run out of memory.

        The "strange" name of this method dates back to when it would raise an
        exception instead of emitting a log.
        """
        if len(locs) >= self.MAXTICKS:
            _log.warning(
                "Locator attempting to generate %s ticks ([%s, ..., %s]), "
                "which exceeds Locator.MAXTICKS (%s).",
                len(locs), locs[0], locs[-1], self.MAXTICKS)
        return locs

    def nonsingular(self, v0, v1):
        """
        Adjust a range as needed to avoid singularities.

        This method gets called during autoscaling, with ``(v0, v1)`` set to
        the data limits on the Axes if the Axes contains any data, or
        ``(-inf, +inf)`` if not.

        - If ``v0 == v1`` (possibly up to some floating point slop), this
          method returns an expanded interval around this value.
        - If ``(v0, v1) == (-inf, +inf)``, this method returns appropriate
          default view limits.
        - Otherwise, ``(v0, v1)`` is returned without modification.
        """
        return mtransforms.nonsingular(v0, v1, expander=.05)

    def view_limits(self, vmin, vmax):
        """
        Select a scale for the range from vmin to vmax.

        Subclasses should override this method to change locator behaviour.
        """
        return mtransforms.nonsingular(vmin, vmax)


class IndexLocator(Locator):
    """
    Place ticks at every nth point plotted.

    IndexLocator assumes index plotting; i.e., that the ticks are placed at integer
    values in the range between 0 and len(data) inclusive.
    """
    def __init__(self, base, offset):
        """Place ticks every *base* data point, starting at *offset*."""
        self._base = base
        self.offset = offset

    def set_params(self, base=None, offset=None):
        """Set parameters within this locator"""
        if base is not None:
            self._base = base
        if offset is not None:
            self.offset = offset

    def __call__(self):
        """Return the locations of the ticks"""
        dmin, dmax = self.axis.get_data_interval()
        return self.tick_values(dmin, dmax)

    def tick_values(self, vmin, vmax):
        return self.raise_if_exceeds(
            np.arange(vmin + self.offset, vmax + 1, self._base))


class FixedLocator(Locator):
    """
    Place ticks at a set of fixed values.

    If *nbins* is None ticks are placed at all values. Otherwise, the *locs* array of
    possible positions will be subsampled to keep the number of ticks <=
    :math:`nbins* +1`. The subsampling will be done to include the smallest absolute
    value; for example, if zero is included in the array of possibilities, then it of
    the chosen ticks.
    """

    def __init__(self, locs, nbins=None):
        self.locs = np.asarray(locs)
        _api.check_shape((None,), locs=self.locs)
        self.nbins = max(nbins, 2) if nbins is not None else None

    def set_params(self, nbins=None):
        """Set parameters within this locator."""
        if nbins is not None:
            self.nbins = nbins

    def __call__(self):
        return self.tick_values(None, None)

    def tick_values(self, vmin, vmax):
        """
        Return the locations of the ticks.

        .. note::

            Because the values are fixed, vmin and vmax are not used in this
            method.

        """
        if self.nbins is None:
            return self.locs
        step = max(int(np.ceil(len(self.locs) / self.nbins)), 1)
        ticks = self.locs[::step]
        for i in range(1, step):
            ticks1 = self.locs[i::step]
            if np.abs(ticks1).min() < np.abs(ticks).min():
                ticks = ticks1
        return self.raise_if_exceeds(ticks)


class NullLocator(Locator):
    """
    No ticks
    """

    def __call__(self):
        return self.tick_values(None, None)

    def tick_values(self, vmin, vmax):
        """
        Return the locations of the ticks.

        .. note::

            Because the values are Null, vmin and vmax are not used in this
            method.
        """
        return []


class LinearLocator(Locator):
    """
    Place ticks at evenly spaced values.

    The first time this function is called it will try to set the
    number of ticks to make a nice tick partitioning.  Thereafter, the
    number of ticks will be fixed so that interactive navigation will
    be nice

    """
    def __init__(self, numticks=None, presets=None):
        """
        Parameters
        ----------
        numticks : int or None, default None
            Number of ticks. If None, *numticks* = 11.
        presets : dict or None, default: None
            Dictionary mapping ``(vmin, vmax)`` to an array of locations.
            Overrides *numticks* if there is an entry for the current
            ``(vmin, vmax)``.
        """
        self.numticks = numticks
        if presets is None:
            self.presets = {}
        else:
            self.presets = presets

    @property
    def numticks(self):
        # Old hard-coded default.
        return self._numticks if self._numticks is not None else 11

    @numticks.setter
    def numticks(self, numticks):
        self._numticks = numticks

    def set_params(self, numticks=None, presets=None):
        """Set parameters within this locator."""
        if presets is not None:
            self.presets = presets
        if numticks is not None:
            self.numticks = numticks

    def __call__(self):
        """Return the locations of the ticks."""
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)

        if (vmin, vmax) in self.presets:
            return self.presets[(vmin, vmax)]

        if self.numticks == 0:
            return []
        ticklocs = np.linspace(vmin, vmax, self.numticks)

        return self.raise_if_exceeds(ticklocs)

    def view_limits(self, vmin, vmax):
        """Try to choose the view limits intelligently."""

        if vmax < vmin:
            vmin, vmax = vmax, vmin

        if vmin == vmax:
            vmin -= 1
            vmax += 1

        if mpl.rcParams['axes.autolimit_mode'] == 'round_numbers':
            exponent, remainder = divmod(
                math.log10(vmax - vmin), math.log10(max(self.numticks - 1, 1)))
            exponent -= (remainder < .5)
            scale = max(self.numticks - 1, 1) ** (-exponent)
            vmin = math.floor(scale * vmin) / scale
            vmax = math.ceil(scale * vmax) / scale

        return mtransforms.nonsingular(vmin, vmax)


class MultipleLocator(Locator):
    """
    Place ticks at every integer multiple of a base plus an offset.
    """

    def __init__(self, base=1.0, offset=0.0):
        """
        Parameters
        ----------
        base : float > 0
            Interval between ticks.
        offset : float
            Value added to each multiple of *base*.

            .. versionadded:: 3.8
        """
        self._edge = _Edge_integer(base, 0)
        self._offset = offset

    def set_params(self, base=None, offset=None):
        """
        Set parameters within this locator.

        Parameters
        ----------
        base : float > 0
            Interval between ticks.
        offset : float
            Value added to each multiple of *base*.

            .. versionadded:: 3.8
        """
        if base is not None:
            self._edge = _Edge_integer(base, 0)
        if offset is not None:
            self._offset = offset

    def __call__(self):
        """Return the locations of the ticks."""
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        if vmax < vmin:
            vmin, vmax = vmax, vmin
        step = self._edge.step
        vmin -= self._offset
        vmax -= self._offset
        vmin = self._edge.ge(vmin) * step
        n = (vmax - vmin + 0.001 * step) // step
        locs = vmin - step + np.arange(n + 3) * step + self._offset
        return self.raise_if_exceeds(locs)

    def view_limits(self, dmin, dmax):
        """
        Set the view limits to the nearest tick values that contain the data.
        """
        if mpl.rcParams['axes.autolimit_mode'] == 'round_numbers':
            vmin = self._edge.le(dmin - self._offset) * self._edge.step + self._offset
            vmax = self._edge.ge(dmax - self._offset) * self._edge.step + self._offset
            if vmin == vmax:
                vmin -= 1
                vmax += 1
        else:
            vmin = dmin
            vmax = dmax

        return mtransforms.nonsingular(vmin, vmax)


def scale_range(vmin, vmax, n=1, threshold=100):
    dv = abs(vmax - vmin)  # > 0 as nonsingular is called before.
    meanv = (vmax + vmin) / 2
    if abs(meanv) / dv < threshold:
        offset = 0
    else:
        offset = math.copysign(10 ** (math.log10(abs(meanv)) // 1), meanv)
    scale = 10 ** (math.log10(dv / n) // 1)
    return scale, offset


class _Edge_integer:
    """
    Helper for `.MaxNLocator`, `.MultipleLocator`, etc.

    Take floating-point precision limitations into account when calculating
    tick locations as integer multiples of a step.
    """
    def __init__(self, step, offset):
        """
        Parameters
        ----------
        step : float > 0
            Interval between ticks.
        offset : float
            Offset subtracted from the data limits prior to calculating tick
            locations.
        """
        if step <= 0:
            raise ValueError("'step' must be positive")
        self.step = step
        self._offset = abs(offset)

    def closeto(self, ms, edge):
        # Allow more slop when the offset is large compared to the step.
        if self._offset > 0:
            digits = np.log10(self._offset / self.step)
            tol = max(1e-10, 10 ** (digits - 12))
            tol = min(0.4999, tol)
        else:
            tol = 1e-10
        return abs(ms - edge) < tol

    def le(self, x):
        """Return the largest n: n*step <= x."""
        d, m = divmod(x, self.step)
        if self.closeto(m / self.step, 1):
            return d + 1
        return d

    def ge(self, x):
        """Return the smallest n: n*step >= x."""
        d, m = divmod(x, self.step)
        if self.closeto(m / self.step, 0):
            return d
        return d + 1


class MaxNLocator(Locator):
    """
    Place evenly spaced ticks, with a cap on the total number of ticks.

    Finds nice tick locations with no more than :math:`nbins + 1` ticks being within the
    view limits. Locations beyond the limits are added to support autoscaling.
    """
    default_params = dict(nbins=10,
                          steps=None,
                          integer=False,
                          symmetric=False,
                          prune=None,
                          min_n_ticks=2)

    def __init__(self, nbins=None, **kwargs):
        """
        Parameters
        ----------
        nbins : int or 'auto', default: 10
            Maximum number of intervals; one less than max number of
            ticks.  If the string 'auto', the number of bins will be
            automatically determined based on the length of the axis.

        steps : array-like, optional
            Sequence of acceptable tick multiples, starting with 1 and
            ending with 10. For example, if ``steps=[1, 2, 4, 5, 10]``,
            ``20, 40, 60`` or ``0.4, 0.6, 0.8`` would be possible
            sets of ticks because they are multiples of 2.
            ``30, 60, 90`` would not be generated because 3 does not
            appear in this example list of steps.

        integer : bool, default: False
            If True, ticks will take only integer values, provided at least
            *min_n_ticks* integers are found within the view limits.

        symmetric : bool, default: False
            If True, autoscaling will result in a range symmetric about zero.

        prune : {'lower', 'upper', 'both', None}, default: None
            Remove the 'lower' tick, the 'upper' tick, or ticks on 'both' sides
            *if they fall exactly on an axis' edge* (this typically occurs when
            :rc:`axes.autolimit_mode` is 'round_numbers').  Removing such ticks
            is mostly useful for stacked or ganged plots, where the upper tick
            of an Axes overlaps with the lower tick of the axes above it.

        min_n_ticks : int, default: 2
            Relax *nbins* and *integer* constraints if necessary to obtain
            this minimum number of ticks.
        """
        if nbins is not None:
            kwargs['nbins'] = nbins
        self.set_params(**{**self.default_params, **kwargs})

    @staticmethod
    def _validate_steps(steps):
        if not np.iterable(steps):
            raise ValueError('steps argument must be an increasing sequence '
                             'of numbers between 1 and 10 inclusive')
        steps = np.asarray(steps)
        if np.any(np.diff(steps) <= 0) or steps[-1] > 10 or steps[0] < 1:
            raise ValueError('steps argument must be an increasing sequence '
                             'of numbers between 1 and 10 inclusive')
        if steps[0] != 1:
            steps = np.concatenate([[1], steps])
        if steps[-1] != 10:
            steps = np.concatenate([steps, [10]])
        return steps

    @staticmethod
    def _staircase(steps):
        # Make an extended staircase within which the needed step will be
        # found.  This is probably much larger than necessary.
        return np.concatenate([0.1 * steps[:-1], steps, [10 * steps[1]]])

    def set_params(self, **kwargs):
        """
        Set parameters for this locator.

        Parameters
        ----------
        nbins : int or 'auto', optional
            see `.MaxNLocator`
        steps : array-like, optional
            see `.MaxNLocator`
        integer : bool, optional
            see `.MaxNLocator`
        symmetric : bool, optional
            see `.MaxNLocator`
        prune : {'lower', 'upper', 'both', None}, optional
            see `.MaxNLocator`
        min_n_ticks : int, optional
            see `.MaxNLocator`
        """
        if 'nbins' in kwargs:
            self._nbins = kwargs.pop('nbins')
            if self._nbins != 'auto':
                self._nbins = int(self._nbins)
        if 'symmetric' in kwargs:
            self._symmetric = kwargs.pop('symmetric')
        if 'prune' in kwargs:
            prune = kwargs.pop('prune')
            _api.check_in_list(['upper', 'lower', 'both', None], prune=prune)
            self._prune = prune
        if 'min_n_ticks' in kwargs:
            self._min_n_ticks = max(1, kwargs.pop('min_n_ticks'))
        if 'steps' in kwargs:
            steps = kwargs.pop('steps')
            if steps is None:
                self._steps = np.array([1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10])
            else:
                self._steps = self._validate_steps(steps)
            self._extended_steps = self._staircase(self._steps)
        if 'integer' in kwargs:
            self._integer = kwargs.pop('integer')
        if kwargs:
            raise _api.kwarg_error("set_params", kwargs)

    def _raw_ticks(self, vmin, vmax):
        """
        Generate a list of tick locations including the range *vmin* to
        *vmax*.  In some applications, one or both of the end locations
        will not be needed, in which case they are trimmed off
        elsewhere.
        """
        if self._nbins == 'auto':
            if self.axis is not None:
                nbins = np.clip(self.axis.get_tick_space(),
                                max(1, self._min_n_ticks - 1), 9)
            else:
                nbins = 9
        else:
            nbins = self._nbins

        scale, offset = scale_range(vmin, vmax, nbins)
        _vmin = vmin - offset
        _vmax = vmax - offset
        steps = self._extended_steps * scale
        if self._integer:
            # For steps > 1, keep only integer values.
            igood = (steps < 1) | (np.abs(steps - np.round(steps)) < 0.001)
            steps = steps[igood]

        raw_step = ((_vmax - _vmin) / nbins)
        if hasattr(self.axis, "axes") and self.axis.axes.name == '3d':
            # Due to the change in automargin behavior in mpl3.9, we need to
            # adjust the raw step to match the mpl3.8 appearance. The zoom
            # factor of 2/48, gives us the 23/24 modifier.
            raw_step = raw_step * 23/24
        large_steps = steps >= raw_step
        if mpl.rcParams['axes.autolimit_mode'] == 'round_numbers':
            # Classic round_numbers mode may require a larger step.
            # Get first multiple of steps that are <= _vmin
            floored_vmins = (_vmin // steps) * steps
            floored_vmaxs = floored_vmins + steps * nbins
            large_steps = large_steps & (floored_vmaxs >= _vmax)

        # Find index of smallest large step
        if any(large_steps):
            istep = np.nonzero(large_steps)[0][0]
        else:
            istep = len(steps) - 1

        # Start at smallest of the steps greater than the raw step, and check
        # if it provides enough ticks. If not, work backwards through
        # smaller steps until one is found that provides enough ticks.
        for step in steps[:istep+1][::-1]:

            if (self._integer and
                    np.floor(_vmax) - np.ceil(_vmin) >= self._min_n_ticks - 1):
                step = max(1, step)
            best_vmin = (_vmin // step) * step

            # Find tick locations spanning the vmin-vmax range, taking into
            # account degradation of precision when there is a large offset.
            # The edge ticks beyond vmin and/or vmax are needed for the
            # "round_numbers" autolimit mode.
            edge = _Edge_integer(step, offset)
            low = edge.le(_vmin - best_vmin)
            high = edge.ge(_vmax - best_vmin)
            ticks = np.arange(low, high + 1) * step + best_vmin
            # Count only the ticks that will be displayed.
            nticks = ((ticks <= _vmax) & (ticks >= _vmin)).sum()
            if nticks >= self._min_n_ticks:
                break
        return ticks + offset

    def __call__(self):
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        if self._symmetric:
            vmax = max(abs(vmin), abs(vmax))
            vmin = -vmax
        vmin, vmax = mtransforms.nonsingular(
            vmin, vmax, expander=1e-13, tiny=1e-14)
        locs = self._raw_ticks(vmin, vmax)

        prune = self._prune
        if prune == 'lower':
            locs = locs[1:]
        elif prune == 'upper':
            locs = locs[:-1]
        elif prune == 'both':
            locs = locs[1:-1]
        return self.raise_if_exceeds(locs)

    def view_limits(self, dmin, dmax):
        if self._symmetric:
            dmax = max(abs(dmin), abs(dmax))
            dmin = -dmax

        dmin, dmax = mtransforms.nonsingular(
            dmin, dmax, expander=1e-12, tiny=1e-13)

        if mpl.rcParams['axes.autolimit_mode'] == 'round_numbers':
            return self._raw_ticks(dmin, dmax)[[0, -1]]
        else:
            return dmin, dmax


def _is_decade(x, *, base=10, rtol=None):
    """Return True if *x* is an integer power of *base*."""
    if not np.isfinite(x):
        return False
    if x == 0.0:
        return True
    lx = np.log(abs(x)) / np.log(base)
    if rtol is None:
        return np.isclose(lx, np.round(lx))
    else:
        return np.isclose(lx, np.round(lx), rtol=rtol)


def _decade_less_equal(x, base):
    """
    Return the largest integer power of *base* that's less or equal to *x*.

    If *x* is negative, the exponent will be *greater*.
    """
    return (x if x == 0 else
            -_decade_greater_equal(-x, base) if x < 0 else
            base ** np.floor(np.log(x) / np.log(base)))


def _decade_greater_equal(x, base):
    """
    Return the smallest integer power of *base* that's greater or equal to *x*.

    If *x* is negative, the exponent will be *smaller*.
    """
    return (x if x == 0 else
            -_decade_less_equal(-x, base) if x < 0 else
            base ** np.ceil(np.log(x) / np.log(base)))


def _decade_less(x, base):
    """
    Return the largest integer power of *base* that's less than *x*.

    If *x* is negative, the exponent will be *greater*.
    """
    if x < 0:
        return -_decade_greater(-x, base)
    less = _decade_less_equal(x, base)
    if less == x:
        less /= base
    return less


def _decade_greater(x, base):
    """
    Return the smallest integer power of *base* that's greater than *x*.

    If *x* is negative, the exponent will be *smaller*.
    """
    if x < 0:
        return -_decade_less(-x, base)
    greater = _decade_greater_equal(x, base)
    if greater == x:
        greater *= base
    return greater


def _is_close_to_int(x):
    return math.isclose(x, round(x))


class LogLocator(Locator):
    """
    Place logarithmically spaced ticks.

    Places ticks at the values ``subs[j] * base**i``.
    """

    @_api.delete_parameter("3.8", "numdecs")
    def __init__(self, base=10.0, subs=(1.0,), numdecs=4, numticks=None):
        """
        Parameters
        ----------
        base : float, default: 10.0
            The base of the log used, so major ticks are placed at ``base**n``, where
            ``n`` is an integer.
        subs : None or {'auto', 'all'} or sequence of float, default: (1.0,)
            Gives the multiples of integer powers of the base at which to place ticks.
            The default of ``(1.0, )`` places ticks only at integer powers of the base.
            Permitted string values are ``'auto'`` and ``'all'``. Both of these use an
            algorithm based on the axis view limits to determine whether and how to put
            ticks between integer powers of the base:
            - ``'auto'``: Ticks are placed only between integer powers.
            - ``'all'``: Ticks are placed between *and* at integer powers.
            - ``None``: Equivalent to ``'auto'``.
        numticks : None or int, default: None
            The maximum number of ticks to allow on a given axis. The default of
            ``None`` will try to choose intelligently as long as this Locator has
            already been assigned to an axis using `~.axis.Axis.get_tick_space`, but
            otherwise falls back to 9.
        """
        if numticks is None:
            if mpl.rcParams['_internal.classic_mode']:
                numticks = 15
            else:
                numticks = 'auto'
        self._base = float(base)
        self._set_subs(subs)
        self._numdecs = numdecs
        self.numticks = numticks

    @_api.delete_parameter("3.8", "numdecs")
    def set_params(self, base=None, subs=None, numdecs=None, numticks=None):
        """Set parameters within this locator."""
        if base is not None:
            self._base = float(base)
        if subs is not None:
            self._set_subs(subs)
        if numdecs is not None:
            self._numdecs = numdecs
        if numticks is not None:
            self.numticks = numticks

    numdecs = _api.deprecate_privatize_attribute(
        "3.8", addendum="This attribute has no effect.")

    def _set_subs(self, subs):
        """
        Set the minor ticks for the log scaling every ``base**i*subs[j]``.
        """
        if subs is None:  # consistency with previous bad API
            self._subs = 'auto'
        elif isinstance(subs, str):
            _api.check_in_list(('all', 'auto'), subs=subs)
            self._subs = subs
        else:
            try:
                self._subs = np.asarray(subs, dtype=float)
            except ValueError as e:
                raise ValueError("subs must be None, 'all', 'auto' or "
                                 "a sequence of floats, not "
                                 f"{subs}.") from e
            if self._subs.ndim != 1:
                raise ValueError("A sequence passed to subs must be "
                                 "1-dimensional, not "
                                 f"{self._subs.ndim}-dimensional.")

    def __call__(self):
        """Return the locations of the ticks."""
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        if self.numticks == 'auto':
            if self.axis is not None:
                numticks = np.clip(self.axis.get_tick_space(), 2, 9)
            else:
                numticks = 9
        else:
            numticks = self.numticks

        b = self._base
        if vmin <= 0.0:
            if self.axis is not None:
                vmin = self.axis.get_minpos()

            if vmin <= 0.0 or not np.isfinite(vmin):
                raise ValueError(
                    "Data has no positive values, and therefore cannot be log-scaled.")

        _log.debug('vmin %s vmax %s', vmin, vmax)

        if vmax < vmin:
            vmin, vmax = vmax, vmin
        log_vmin = math.log(vmin) / math.log(b)
        log_vmax = math.log(vmax) / math.log(b)

        numdec = math.floor(log_vmax) - math.ceil(log_vmin)

        if isinstance(self._subs, str):
            if numdec > 10 or b < 3:
                if self._subs == 'auto':
                    return np.array([])  # no minor or major ticks
                else:
                    subs = np.array([1.0])  # major ticks
            else:
                _first = 2.0 if self._subs == 'auto' else 1.0
                subs = np.arange(_first, b)
        else:
            subs = self._subs

        # Get decades between major ticks.
        stride = (max(math.ceil(numdec / (numticks - 1)), 1)
                  if mpl.rcParams['_internal.classic_mode'] else
                  numdec // numticks + 1)

        # if we have decided that the stride is as big or bigger than
        # the range, clip the stride back to the available range - 1
        # with a floor of 1.  This prevents getting axis with only 1 tick
        # visible.
        if stride >= numdec:
            stride = max(1, numdec - 1)

        # Does subs include anything other than 1?  Essentially a hack to know
        # whether we're a major or a minor locator.
        have_subs = len(subs) > 1 or (len(subs) == 1 and subs[0] != 1.0)

        decades = np.arange(math.floor(log_vmin) - stride,
                            math.ceil(log_vmax) + 2 * stride, stride)

        if have_subs:
            if stride == 1:
                ticklocs = np.concatenate(
                    [subs * decade_start for decade_start in b ** decades])
            else:
                ticklocs = np.array([])
        else:
            ticklocs = b ** decades

        _log.debug('ticklocs %r', ticklocs)
        if (len(subs) > 1
                and stride == 1
                and ((vmin <= ticklocs) & (ticklocs <= vmax)).sum() <= 1):
            # If we're a minor locator *that expects at least two ticks per
            # decade* and the major locator stride is 1 and there's no more
            # than one minor tick, switch to AutoLocator.
            return AutoLocator().tick_values(vmin, vmax)
        else:
            return self.raise_if_exceeds(ticklocs)

    def view_limits(self, vmin, vmax):
        """Try to choose the view limits intelligently."""
        b = self._base

        vmin, vmax = self.nonsingular(vmin, vmax)

        if mpl.rcParams['axes.autolimit_mode'] == 'round_numbers':
            vmin = _decade_less_equal(vmin, b)
            vmax = _decade_greater_equal(vmax, b)

        return vmin, vmax

    def nonsingular(self, vmin, vmax):
        if vmin > vmax:
            vmin, vmax = vmax, vmin
        if not np.isfinite(vmin) or not np.isfinite(vmax):
            vmin, vmax = 1, 10  # Initial range, no data plotted yet.
        elif vmax <= 0:
            _api.warn_external(
                "Data has no positive values, and therefore cannot be "
                "log-scaled.")
            vmin, vmax = 1, 10
        else:
            # Consider shared axises
            minpos = min(axis.get_minpos() for axis in self.axis._get_shared_axis())
            if not np.isfinite(minpos):
                minpos = 1e-300  # This should never take effect.
            if vmin <= 0:
                vmin = minpos
            if vmin == vmax:
                vmin = _decade_less(vmin, self._base)
                vmax = _decade_greater(vmax, self._base)
        return vmin, vmax


class SymmetricalLogLocator(Locator):
    """
    Place ticks spaced linearly near zero and spaced logarithmically beyond a threshold.
    """

    def __init__(self, transform=None, subs=None, linthresh=None, base=None):
        """
        Parameters
        ----------
        transform : `~.scale.SymmetricalLogTransform`, optional
            If set, defines the *base* and *linthresh* of the symlog transform.
        base, linthresh : float, optional
            The *base* and *linthresh* of the symlog transform, as documented
            for `.SymmetricalLogScale`.  These parameters are only used if
            *transform* is not set.
        subs : sequence of float, default: [1]
            The multiples of integer powers of the base where ticks are placed,
            i.e., ticks are placed at
            ``[sub * base**i for i in ... for sub in subs]``.

        Notes
        -----
        Either *transform*, or both *base* and *linthresh*, must be given.
        """
        if transform is not None:
            self._base = transform.base
            self._linthresh = transform.linthresh
        elif linthresh is not None and base is not None:
            self._base = base
            self._linthresh = linthresh
        else:
            raise ValueError("Either transform, or both linthresh "
                             "and base, must be provided.")
        if subs is None:
            self._subs = [1.0]
        else:
            self._subs = subs
        self.numticks = 15

    def set_params(self, subs=None, numticks=None):
        """Set parameters within this locator."""
        if numticks is not None:
            self.numticks = numticks
        if subs is not None:
            self._subs = subs

    def __call__(self):
        """Return the locations of the ticks."""
        # Note, these are untransformed coordinates
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        linthresh = self._linthresh

        if vmax < vmin:
            vmin, vmax = vmax, vmin

        # The domain is divided into three sections, only some of
        # which may actually be present.
        #
        # <======== -t ==0== t ========>
        # aaaaaaaaa    bbbbb   ccccccccc
        #
        # a) and c) will have ticks at integral log positions.  The
        # number of ticks needs to be reduced if there are more
        # than self.numticks of them.
        #
        # b) has a tick at 0 and only 0 (we assume t is a small
        # number, and the linear segment is just an implementation
        # detail and not interesting.)
        #
        # We could also add ticks at t, but that seems to usually be
        # uninteresting.
        #
        # "simple" mode is when the range falls entirely within [-t, t]
        #  -- it should just display (vmin, 0, vmax)
        if -linthresh <= vmin < vmax <= linthresh:
            # only the linear range is present
            return sorted({vmin, 0, vmax})

        # Lower log range is present
        has_a = (vmin < -linthresh)
        # Upper log range is present
        has_c = (vmax > linthresh)

        # Check if linear range is present
        has_b = (has_a and vmax > -linthresh) or (has_c and vmin < linthresh)

        base = self._base

        def get_log_range(lo, hi):
            lo = np.floor(np.log(lo) / np.log(base))
            hi = np.ceil(np.log(hi) / np.log(base))
            return lo, hi

        # Calculate all the ranges, so we can determine striding
        a_lo, a_hi = (0, 0)
        if has_a:
            a_upper_lim = min(-linthresh, vmax)
            a_lo, a_hi = get_log_range(abs(a_upper_lim), abs(vmin) + 1)

        c_lo, c_hi = (0, 0)
        if has_c:
            c_lower_lim = max(linthresh, vmin)
            c_lo, c_hi = get_log_range(c_lower_lim, vmax + 1)

        # Calculate the total number of integer exponents in a and c ranges
        total_ticks = (a_hi - a_lo) + (c_hi - c_lo)
        if has_b:
            total_ticks += 1
        stride = max(total_ticks // (self.numticks - 1), 1)

        decades = []
        if has_a:
            decades.extend(-1 * (base ** (np.arange(a_lo, a_hi,
                                                    stride)[::-1])))

        if has_b:
            decades.append(0.0)

        if has_c:
            decades.extend(base ** (np.arange(c_lo, c_hi, stride)))

        subs = np.asarray(self._subs)

        if len(subs) > 1 or subs[0] != 1.0:
            ticklocs = []
            for decade in decades:
                if decade == 0:
                    ticklocs.append(decade)
                else:
                    ticklocs.extend(subs * decade)
        else:
            ticklocs = decades

        return self.raise_if_exceeds(np.array(ticklocs))

    def view_limits(self, vmin, vmax):
        """Try to choose the view limits intelligently."""
        b = self._base
        if vmax < vmin:
            vmin, vmax = vmax, vmin

        if mpl.rcParams['axes.autolimit_mode'] == 'round_numbers':
            vmin = _decade_less_equal(vmin, b)
            vmax = _decade_greater_equal(vmax, b)
            if vmin == vmax:
                vmin = _decade_less(vmin, b)
                vmax = _decade_greater(vmax, b)

        return mtransforms.nonsingular(vmin, vmax)


class AsinhLocator(Locator):
    """
    Place ticks spaced evenly on an inverse-sinh scale.

    Generally used with the `~.scale.AsinhScale` class.

    .. note::

       This API is provisional and may be revised in the future
       based on early user feedback.
    """
    def __init__(self, linear_width, numticks=11, symthresh=0.2,
                 base=10, subs=None):
        """
        Parameters
        ----------
        linear_width : float
            The scale parameter defining the extent
            of the quasi-linear region.
        numticks : int, default: 11
            The approximate number of major ticks that will fit
            along the entire axis
        symthresh : float, default: 0.2
            The fractional threshold beneath which data which covers
            a range that is approximately symmetric about zero
            will have ticks that are exactly symmetric.
        base : int, default: 10
            The number base used for rounding tick locations
            on a logarithmic scale. If this is less than one,
            then rounding is to the nearest integer multiple
            of powers of ten.
        subs : tuple, default: None
            Multiples of the number base, typically used
            for the minor ticks, e.g. (2, 5) when base=10.
        """
        super().__init__()
        self.linear_width = linear_width
        self.numticks = numticks
        self.symthresh = symthresh
        self.base = base
        self.subs = subs

    def set_params(self, numticks=None, symthresh=None,
                   base=None, subs=None):
        """Set parameters within this locator."""
        if numticks is not None:
            self.numticks = numticks
        if symthresh is not None:
            self.symthresh = symthresh
        if base is not None:
            self.base = base
        if subs is not None:
            self.subs = subs if len(subs) > 0 else None

    def __call__(self):
        vmin, vmax = self.axis.get_view_interval()
        if (vmin * vmax) < 0 and abs(1 + vmax / vmin) < self.symthresh:
            # Data-range appears to be almost symmetric, so round up:
            bound = max(abs(vmin), abs(vmax))
            return self.tick_values(-bound, bound)
        else:
            return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        # Construct a set of uniformly-spaced "on-screen" locations.
        ymin, ymax = self.linear_width * np.arcsinh(np.array([vmin, vmax])
                                                    / self.linear_width)
        ys = np.linspace(ymin, ymax, self.numticks)
        zero_dev = abs(ys / (ymax - ymin))
        if ymin * ymax < 0:
            # Ensure that the zero tick-mark is included, if the axis straddles zero.
            ys = np.hstack([ys[(zero_dev > 0.5 / self.numticks)], 0.0])

        # Transform the "on-screen" grid to the data space:
        xs = self.linear_width * np.sinh(ys / self.linear_width)
        zero_xs = (ys == 0)

        # Round the data-space values to be intuitive base-n numbers, keeping track of
        # positive and negative values separately and carefully treating the zero value.
        with np.errstate(divide="ignore"):  # base ** log(0) = base ** -inf = 0.
            if self.base > 1:
                pows = (np.sign(xs)
                        * self.base ** np.floor(np.log(abs(xs)) / math.log(self.base)))
                qs = np.outer(pows, self.subs).flatten() if self.subs else pows
            else:  # No need to adjust sign(pows), as it cancels out when computing qs.
                pows = np.where(zero_xs, 1, 10**np.floor(np.log10(abs(xs))))
                qs = pows * np.round(xs / pows)
        ticks = np.array(sorted(set(qs)))

        return ticks if len(ticks) >= 2 else np.linspace(vmin, vmax, self.numticks)


class LogitLocator(MaxNLocator):
    """
    Place ticks spaced evenly on a logit scale.
    """

    def __init__(self, minor=False, *, nbins="auto"):
        """
        Parameters
        ----------
        nbins : int or 'auto', optional
            Number of ticks. Only used if minor is False.
        minor : bool, default: False
            Indicate if this locator is for minor ticks or not.
        """

        self._minor = minor
        super().__init__(nbins=nbins, steps=[1, 2, 5, 10])

    def set_params(self, minor=None, **kwargs):
        """Set parameters within this locator."""
        if minor is not None:
            self._minor = minor
        super().set_params(**kwargs)

    @property
    def minor(self):
        return self._minor

    @minor.setter
    def minor(self, value):
        self.set_params(minor=value)

    def tick_values(self, vmin, vmax):
        # dummy axis has no axes attribute
        if hasattr(self.axis, "axes") and self.axis.axes.name == "polar":
            raise NotImplementedError("Polar axis cannot be logit scaled yet")

        if self._nbins == "auto":
            if self.axis is not None:
                nbins = self.axis.get_tick_space()
                if nbins < 2:
                    nbins = 2
            else:
                nbins = 9
        else:
            nbins = self._nbins

        # We define ideal ticks with their index:
        # linscale: ... 1e-3 1e-2 1e-1 1/2 1-1e-1 1-1e-2 1-1e-3 ...
        # b-scale : ... -3   -2   -1   0   1      2      3      ...
        def ideal_ticks(x):
            return 10 ** x if x < 0 else 1 - (10 ** (-x)) if x > 0 else 0.5

        vmin, vmax = self.nonsingular(vmin, vmax)
        binf = int(
            np.floor(np.log10(vmin))
            if vmin < 0.5
            else 0
            if vmin < 0.9
            else -np.ceil(np.log10(1 - vmin))
        )
        bsup = int(
            np.ceil(np.log10(vmax))
            if vmax <= 0.5
            else 1
            if vmax <= 0.9
            else -np.floor(np.log10(1 - vmax))
        )
        numideal = bsup - binf - 1
        if numideal >= 2:
            # have 2 or more wanted ideal ticks, so use them as major ticks
            if numideal > nbins:
                # to many ideal ticks, subsampling ideals for major ticks, and
                # take others for minor ticks
                subsampling_factor = math.ceil(numideal / nbins)
                if self._minor:
                    ticklocs = [
                        ideal_ticks(b)
                        for b in range(binf, bsup + 1)
                        if (b % subsampling_factor) != 0
                    ]
                else:
                    ticklocs = [
                        ideal_ticks(b)
                        for b in range(binf, bsup + 1)
                        if (b % subsampling_factor) == 0
                    ]
                return self.raise_if_exceeds(np.array(ticklocs))
            if self._minor:
                ticklocs = []
                for b in range(binf, bsup):
                    if b < -1:
                        ticklocs.extend(np.arange(2, 10) * 10 ** b)
                    elif b == -1:
                        ticklocs.extend(np.arange(2, 5) / 10)
                    elif b == 0:
                        ticklocs.extend(np.arange(6, 9) / 10)
                    else:
                        ticklocs.extend(
                            1 - np.arange(2, 10)[::-1] * 10 ** (-b - 1)
                        )
                return self.raise_if_exceeds(np.array(ticklocs))
            ticklocs = [ideal_ticks(b) for b in range(binf, bsup + 1)]
            return self.raise_if_exceeds(np.array(ticklocs))
        # the scale is zoomed so same ticks as linear scale can be used
        if self._minor:
            return []
        return super().tick_values(vmin, vmax)

    def nonsingular(self, vmin, vmax):
        standard_minpos = 1e-7
        initial_range = (standard_minpos, 1 - standard_minpos)
        if vmin > vmax:
            vmin, vmax = vmax, vmin
        if not np.isfinite(vmin) or not np.isfinite(vmax):
            vmin, vmax = initial_range  # Initial range, no data plotted yet.
        elif vmax <= 0 or vmin >= 1:
            # vmax <= 0 occurs when all values are negative
            # vmin >= 1 occurs when all values are greater than one
            _api.warn_external(
                "Data has no values between 0 and 1, and therefore cannot be "
                "logit-scaled."
            )
            vmin, vmax = initial_range
        else:
            minpos = (
                self.axis.get_minpos()
                if self.axis is not None
                else standard_minpos
            )
            if not np.isfinite(minpos):
                minpos = standard_minpos  # This should never take effect.
            if vmin <= 0:
                vmin = minpos
            # NOTE: for vmax, we should query a property similar to get_minpos,
            # but related to the maximal, less-than-one data point.
            # Unfortunately, Bbox._minpos is defined very deep in the BBox and
            # updated with data, so for now we use 1 - minpos as a substitute.
            if vmax >= 1:
                vmax = 1 - minpos
            if vmin == vmax:
                vmin, vmax = 0.1 * vmin, 1 - 0.1 * vmin

        return vmin, vmax


class AutoLocator(MaxNLocator):
    """
    Place evenly spaced ticks, with the step size and maximum number of ticks chosen
    automatically.

    This is a subclass of `~matplotlib.ticker.MaxNLocator`, with parameters
    *nbins = 'auto'* and *steps = [1, 2, 2.5, 5, 10]*.
    """
    def __init__(self):
        """
        To know the values of the non-public parameters, please have a
        look to the defaults of `~matplotlib.ticker.MaxNLocator`.
        """
        if mpl.rcParams['_internal.classic_mode']:
            nbins = 9
            steps = [1, 2, 5, 10]
        else:
            nbins = 'auto'
            steps = [1, 2, 2.5, 5, 10]
        super().__init__(nbins=nbins, steps=steps)


class AutoMinorLocator(Locator):
    """
    Place evenly spaced minor ticks, with the step size and maximum number of ticks
    chosen automatically.

    The Axis scale must be linear with evenly spaced major ticks .
    """

    def __init__(self, n=None):
        """
        *n* is the number of subdivisions of the interval between
        major ticks; e.g., n=2 will place a single minor tick midway
        between major ticks.

        If *n* is omitted or None, the value stored in rcParams will be used.
        In case *n* is set to 'auto', it will be set to 4 or 5. If the distance
        between the major ticks equals 1, 2.5, 5 or 10 it can be perfectly
        divided in 5 equidistant sub-intervals with a length multiple of
        0.05. Otherwise it is divided in 4 sub-intervals.
        """
        self.ndivs = n

    def __call__(self):
        # docstring inherited
        if self.axis.get_scale() == 'log':
            _api.warn_external('AutoMinorLocator does not work on logarithmic scales')
            return []

        majorlocs = np.unique(self.axis.get_majorticklocs())
        if len(majorlocs) < 2:
            # Need at least two major ticks to find minor tick locations.
            # TODO: Figure out a way to still be able to display minor ticks with less
            # than two major ticks visible. For now, just display no ticks at all.
            return []
        majorstep = majorlocs[1] - majorlocs[0]

        if self.ndivs is None:
            self.ndivs = mpl.rcParams[
                'ytick.minor.ndivs' if self.axis.axis_name == 'y'
                else 'xtick.minor.ndivs']  # for x and z axis

        if self.ndivs == 'auto':
            majorstep_mantissa = 10 ** (np.log10(majorstep) % 1)
            ndivs = 5 if np.isclose(majorstep_mantissa, [1, 2.5, 5, 10]).any() else 4
        else:
            ndivs = self.ndivs

        minorstep = majorstep / ndivs

        vmin, vmax = sorted(self.axis.get_view_interval())
        t0 = majorlocs[0]
        tmin = round((vmin - t0) / minorstep)
        tmax = round((vmax - t0) / minorstep) + 1
        locs = (np.arange(tmin, tmax) * minorstep) + t0

        return self.raise_if_exceeds(locs)

    def tick_values(self, vmin, vmax):
        raise NotImplementedError(
            f"Cannot get tick locations for a {type(self).__name__}")