File size: 100,003 Bytes
5123a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 |
"""
Matplotlib includes a framework for arbitrary geometric
transformations that is used determine the final position of all
elements drawn on the canvas.
Transforms are composed into trees of `TransformNode` objects
whose actual value depends on their children. When the contents of
children change, their parents are automatically invalidated. The
next time an invalidated transform is accessed, it is recomputed to
reflect those changes. This invalidation/caching approach prevents
unnecessary recomputations of transforms, and contributes to better
interactive performance.
For example, here is a graph of the transform tree used to plot data
to the graph:
.. image:: ../_static/transforms.png
The framework can be used for both affine and non-affine
transformations. However, for speed, we want to use the backend
renderers to perform affine transformations whenever possible.
Therefore, it is possible to perform just the affine or non-affine
part of a transformation on a set of data. The affine is always
assumed to occur after the non-affine. For any transform::
full transform == non-affine part + affine part
The backends are not expected to handle non-affine transformations
themselves.
See the tutorial :ref:`transforms_tutorial` for examples
of how to use transforms.
"""
# Note: There are a number of places in the code where we use `np.min` or
# `np.minimum` instead of the builtin `min`, and likewise for `max`. This is
# done so that `nan`s are propagated, instead of being silently dropped.
import copy
import functools
import textwrap
import weakref
import math
import numpy as np
from numpy.linalg import inv
from matplotlib import _api
from matplotlib._path import (
affine_transform, count_bboxes_overlapping_bbox, update_path_extents)
from .path import Path
DEBUG = False
def _make_str_method(*args, **kwargs):
"""
Generate a ``__str__`` method for a `.Transform` subclass.
After ::
class T:
__str__ = _make_str_method("attr", key="other")
``str(T(...))`` will be
.. code-block:: text
{type(T).__name__}(
{self.attr},
key={self.other})
"""
indent = functools.partial(textwrap.indent, prefix=" " * 4)
def strrepr(x): return repr(x) if isinstance(x, str) else str(x)
return lambda self: (
type(self).__name__ + "("
+ ",".join([*(indent("\n" + strrepr(getattr(self, arg)))
for arg in args),
*(indent("\n" + k + "=" + strrepr(getattr(self, arg)))
for k, arg in kwargs.items())])
+ ")")
class TransformNode:
"""
The base class for anything that participates in the transform tree
and needs to invalidate its parents or be invalidated. This includes
classes that are not really transforms, such as bounding boxes, since some
transforms depend on bounding boxes to compute their values.
"""
# Invalidation may affect only the affine part. If the
# invalidation was "affine-only", the _invalid member is set to
# INVALID_AFFINE_ONLY
INVALID_NON_AFFINE = _api.deprecated("3.8")(_api.classproperty(lambda cls: 1))
INVALID_AFFINE = _api.deprecated("3.8")(_api.classproperty(lambda cls: 2))
INVALID = _api.deprecated("3.8")(_api.classproperty(lambda cls: 3))
# Possible values for the _invalid attribute.
_VALID, _INVALID_AFFINE_ONLY, _INVALID_FULL = range(3)
# Some metadata about the transform, used to determine whether an
# invalidation is affine-only
is_affine = False
is_bbox = _api.deprecated("3.9")(_api.classproperty(lambda cls: False))
pass_through = False
"""
If pass_through is True, all ancestors will always be
invalidated, even if 'self' is already invalid.
"""
def __init__(self, shorthand_name=None):
"""
Parameters
----------
shorthand_name : str
A string representing the "name" of the transform. The name carries
no significance other than to improve the readability of
``str(transform)`` when DEBUG=True.
"""
self._parents = {}
# Initially invalid, until first computation.
self._invalid = self._INVALID_FULL
self._shorthand_name = shorthand_name or ''
if DEBUG:
def __str__(self):
# either just return the name of this TransformNode, or its repr
return self._shorthand_name or repr(self)
def __getstate__(self):
# turn the dictionary with weak values into a normal dictionary
return {**self.__dict__,
'_parents': {k: v() for k, v in self._parents.items()}}
def __setstate__(self, data_dict):
self.__dict__ = data_dict
# turn the normal dictionary back into a dictionary with weak values
# The extra lambda is to provide a callback to remove dead
# weakrefs from the dictionary when garbage collection is done.
self._parents = {
k: weakref.ref(v, lambda _, pop=self._parents.pop, k=k: pop(k))
for k, v in self._parents.items() if v is not None}
def __copy__(self):
other = copy.copy(super())
# If `c = a + b; a1 = copy(a)`, then modifications to `a1` do not
# propagate back to `c`, i.e. we need to clear the parents of `a1`.
other._parents = {}
# If `c = a + b; c1 = copy(c)`, then modifications to `a` also need to
# be propagated to `c1`.
for key, val in vars(self).items():
if isinstance(val, TransformNode) and id(self) in val._parents:
other.set_children(val) # val == getattr(other, key)
return other
def invalidate(self):
"""
Invalidate this `TransformNode` and triggers an invalidation of its
ancestors. Should be called any time the transform changes.
"""
return self._invalidate_internal(
level=self._INVALID_AFFINE_ONLY if self.is_affine else self._INVALID_FULL,
invalidating_node=self)
def _invalidate_internal(self, level, invalidating_node):
"""
Called by :meth:`invalidate` and subsequently ascends the transform
stack calling each TransformNode's _invalidate_internal method.
"""
# If we are already more invalid than the currently propagated invalidation,
# then we don't need to do anything.
if level <= self._invalid and not self.pass_through:
return
self._invalid = level
for parent in list(self._parents.values()):
parent = parent() # Dereference the weak reference.
if parent is not None:
parent._invalidate_internal(level=level, invalidating_node=self)
def set_children(self, *children):
"""
Set the children of the transform, to let the invalidation
system know which transforms can invalidate this transform.
Should be called from the constructor of any transforms that
depend on other transforms.
"""
# Parents are stored as weak references, so that if the
# parents are destroyed, references from the children won't
# keep them alive.
id_self = id(self)
for child in children:
# Use weak references so this dictionary won't keep obsolete nodes
# alive; the callback deletes the dictionary entry. This is a
# performance improvement over using WeakValueDictionary.
ref = weakref.ref(
self, lambda _, pop=child._parents.pop, k=id_self: pop(k))
child._parents[id_self] = ref
def frozen(self):
"""
Return a frozen copy of this transform node. The frozen copy will not
be updated when its children change. Useful for storing a previously
known state of a transform where ``copy.deepcopy()`` might normally be
used.
"""
return self
class BboxBase(TransformNode):
"""
The base class of all bounding boxes.
This class is immutable; `Bbox` is a mutable subclass.
The canonical representation is as two points, with no
restrictions on their ordering. Convenience properties are
provided to get the left, bottom, right and top edges and width
and height, but these are not stored explicitly.
"""
is_bbox = _api.deprecated("3.9")(_api.classproperty(lambda cls: True))
is_affine = True
if DEBUG:
@staticmethod
def _check(points):
if isinstance(points, np.ma.MaskedArray):
_api.warn_external("Bbox bounds are a masked array.")
points = np.asarray(points)
if any((points[1, :] - points[0, :]) == 0):
_api.warn_external("Singular Bbox.")
def frozen(self):
return Bbox(self.get_points().copy())
frozen.__doc__ = TransformNode.__doc__
def __array__(self, *args, **kwargs):
return self.get_points()
@property
def x0(self):
"""
The first of the pair of *x* coordinates that define the bounding box.
This is not guaranteed to be less than :attr:`x1` (for that, use
:attr:`xmin`).
"""
return self.get_points()[0, 0]
@property
def y0(self):
"""
The first of the pair of *y* coordinates that define the bounding box.
This is not guaranteed to be less than :attr:`y1` (for that, use
:attr:`ymin`).
"""
return self.get_points()[0, 1]
@property
def x1(self):
"""
The second of the pair of *x* coordinates that define the bounding box.
This is not guaranteed to be greater than :attr:`x0` (for that, use
:attr:`xmax`).
"""
return self.get_points()[1, 0]
@property
def y1(self):
"""
The second of the pair of *y* coordinates that define the bounding box.
This is not guaranteed to be greater than :attr:`y0` (for that, use
:attr:`ymax`).
"""
return self.get_points()[1, 1]
@property
def p0(self):
"""
The first pair of (*x*, *y*) coordinates that define the bounding box.
This is not guaranteed to be the bottom-left corner (for that, use
:attr:`min`).
"""
return self.get_points()[0]
@property
def p1(self):
"""
The second pair of (*x*, *y*) coordinates that define the bounding box.
This is not guaranteed to be the top-right corner (for that, use
:attr:`max`).
"""
return self.get_points()[1]
@property
def xmin(self):
"""The left edge of the bounding box."""
return np.min(self.get_points()[:, 0])
@property
def ymin(self):
"""The bottom edge of the bounding box."""
return np.min(self.get_points()[:, 1])
@property
def xmax(self):
"""The right edge of the bounding box."""
return np.max(self.get_points()[:, 0])
@property
def ymax(self):
"""The top edge of the bounding box."""
return np.max(self.get_points()[:, 1])
@property
def min(self):
"""The bottom-left corner of the bounding box."""
return np.min(self.get_points(), axis=0)
@property
def max(self):
"""The top-right corner of the bounding box."""
return np.max(self.get_points(), axis=0)
@property
def intervalx(self):
"""
The pair of *x* coordinates that define the bounding box.
This is not guaranteed to be sorted from left to right.
"""
return self.get_points()[:, 0]
@property
def intervaly(self):
"""
The pair of *y* coordinates that define the bounding box.
This is not guaranteed to be sorted from bottom to top.
"""
return self.get_points()[:, 1]
@property
def width(self):
"""The (signed) width of the bounding box."""
points = self.get_points()
return points[1, 0] - points[0, 0]
@property
def height(self):
"""The (signed) height of the bounding box."""
points = self.get_points()
return points[1, 1] - points[0, 1]
@property
def size(self):
"""The (signed) width and height of the bounding box."""
points = self.get_points()
return points[1] - points[0]
@property
def bounds(self):
"""Return (:attr:`x0`, :attr:`y0`, :attr:`width`, :attr:`height`)."""
(x0, y0), (x1, y1) = self.get_points()
return (x0, y0, x1 - x0, y1 - y0)
@property
def extents(self):
"""Return (:attr:`x0`, :attr:`y0`, :attr:`x1`, :attr:`y1`)."""
return self.get_points().flatten() # flatten returns a copy.
def get_points(self):
raise NotImplementedError
def containsx(self, x):
"""
Return whether *x* is in the closed (:attr:`x0`, :attr:`x1`) interval.
"""
x0, x1 = self.intervalx
return x0 <= x <= x1 or x0 >= x >= x1
def containsy(self, y):
"""
Return whether *y* is in the closed (:attr:`y0`, :attr:`y1`) interval.
"""
y0, y1 = self.intervaly
return y0 <= y <= y1 or y0 >= y >= y1
def contains(self, x, y):
"""
Return whether ``(x, y)`` is in the bounding box or on its edge.
"""
return self.containsx(x) and self.containsy(y)
def overlaps(self, other):
"""
Return whether this bounding box overlaps with the other bounding box.
Parameters
----------
other : `.BboxBase`
"""
ax1, ay1, ax2, ay2 = self.extents
bx1, by1, bx2, by2 = other.extents
if ax2 < ax1:
ax2, ax1 = ax1, ax2
if ay2 < ay1:
ay2, ay1 = ay1, ay2
if bx2 < bx1:
bx2, bx1 = bx1, bx2
if by2 < by1:
by2, by1 = by1, by2
return ax1 <= bx2 and bx1 <= ax2 and ay1 <= by2 and by1 <= ay2
def fully_containsx(self, x):
"""
Return whether *x* is in the open (:attr:`x0`, :attr:`x1`) interval.
"""
x0, x1 = self.intervalx
return x0 < x < x1 or x0 > x > x1
def fully_containsy(self, y):
"""
Return whether *y* is in the open (:attr:`y0`, :attr:`y1`) interval.
"""
y0, y1 = self.intervaly
return y0 < y < y1 or y0 > y > y1
def fully_contains(self, x, y):
"""
Return whether ``x, y`` is in the bounding box, but not on its edge.
"""
return self.fully_containsx(x) and self.fully_containsy(y)
def fully_overlaps(self, other):
"""
Return whether this bounding box overlaps with the other bounding box,
not including the edges.
Parameters
----------
other : `.BboxBase`
"""
ax1, ay1, ax2, ay2 = self.extents
bx1, by1, bx2, by2 = other.extents
if ax2 < ax1:
ax2, ax1 = ax1, ax2
if ay2 < ay1:
ay2, ay1 = ay1, ay2
if bx2 < bx1:
bx2, bx1 = bx1, bx2
if by2 < by1:
by2, by1 = by1, by2
return ax1 < bx2 and bx1 < ax2 and ay1 < by2 and by1 < ay2
def transformed(self, transform):
"""
Construct a `Bbox` by statically transforming this one by *transform*.
"""
pts = self.get_points()
ll, ul, lr = transform.transform(np.array(
[pts[0], [pts[0, 0], pts[1, 1]], [pts[1, 0], pts[0, 1]]]))
return Bbox([ll, [lr[0], ul[1]]])
coefs = {'C': (0.5, 0.5),
'SW': (0, 0),
'S': (0.5, 0),
'SE': (1.0, 0),
'E': (1.0, 0.5),
'NE': (1.0, 1.0),
'N': (0.5, 1.0),
'NW': (0, 1.0),
'W': (0, 0.5)}
def anchored(self, c, container=None):
"""
Return a copy of the `Bbox` anchored to *c* within *container*.
Parameters
----------
c : (float, float) or {'C', 'SW', 'S', 'SE', 'E', 'NE', ...}
Either an (*x*, *y*) pair of relative coordinates (0 is left or
bottom, 1 is right or top), 'C' (center), or a cardinal direction
('SW', southwest, is bottom left, etc.).
container : `Bbox`, optional
The box within which the `Bbox` is positioned.
See Also
--------
.Axes.set_anchor
"""
if container is None:
_api.warn_deprecated(
"3.8", message="Calling anchored() with no container bbox "
"returns a frozen copy of the original bbox and is deprecated "
"since %(since)s.")
container = self
l, b, w, h = container.bounds
L, B, W, H = self.bounds
cx, cy = self.coefs[c] if isinstance(c, str) else c
return Bbox(self._points +
[(l + cx * (w - W)) - L,
(b + cy * (h - H)) - B])
def shrunk(self, mx, my):
"""
Return a copy of the `Bbox`, shrunk by the factor *mx*
in the *x* direction and the factor *my* in the *y* direction.
The lower left corner of the box remains unchanged. Normally
*mx* and *my* will be less than 1, but this is not enforced.
"""
w, h = self.size
return Bbox([self._points[0],
self._points[0] + [mx * w, my * h]])
def shrunk_to_aspect(self, box_aspect, container=None, fig_aspect=1.0):
"""
Return a copy of the `Bbox`, shrunk so that it is as
large as it can be while having the desired aspect ratio,
*box_aspect*. If the box coordinates are relative (i.e.
fractions of a larger box such as a figure) then the
physical aspect ratio of that figure is specified with
*fig_aspect*, so that *box_aspect* can also be given as a
ratio of the absolute dimensions, not the relative dimensions.
"""
if box_aspect <= 0 or fig_aspect <= 0:
raise ValueError("'box_aspect' and 'fig_aspect' must be positive")
if container is None:
container = self
w, h = container.size
H = w * box_aspect / fig_aspect
if H <= h:
W = w
else:
W = h * fig_aspect / box_aspect
H = h
return Bbox([self._points[0],
self._points[0] + (W, H)])
def splitx(self, *args):
"""
Return a list of new `Bbox` objects formed by splitting the original
one with vertical lines at fractional positions given by *args*.
"""
xf = [0, *args, 1]
x0, y0, x1, y1 = self.extents
w = x1 - x0
return [Bbox([[x0 + xf0 * w, y0], [x0 + xf1 * w, y1]])
for xf0, xf1 in zip(xf[:-1], xf[1:])]
def splity(self, *args):
"""
Return a list of new `Bbox` objects formed by splitting the original
one with horizontal lines at fractional positions given by *args*.
"""
yf = [0, *args, 1]
x0, y0, x1, y1 = self.extents
h = y1 - y0
return [Bbox([[x0, y0 + yf0 * h], [x1, y0 + yf1 * h]])
for yf0, yf1 in zip(yf[:-1], yf[1:])]
def count_contains(self, vertices):
"""
Count the number of vertices contained in the `Bbox`.
Any vertices with a non-finite x or y value are ignored.
Parameters
----------
vertices : (N, 2) array
"""
if len(vertices) == 0:
return 0
vertices = np.asarray(vertices)
with np.errstate(invalid='ignore'):
return (((self.min < vertices) &
(vertices < self.max)).all(axis=1).sum())
def count_overlaps(self, bboxes):
"""
Count the number of bounding boxes that overlap this one.
Parameters
----------
bboxes : sequence of `.BboxBase`
"""
return count_bboxes_overlapping_bbox(
self, np.atleast_3d([np.array(x) for x in bboxes]))
def expanded(self, sw, sh):
"""
Construct a `Bbox` by expanding this one around its center by the
factors *sw* and *sh*.
"""
width = self.width
height = self.height
deltaw = (sw * width - width) / 2.0
deltah = (sh * height - height) / 2.0
a = np.array([[-deltaw, -deltah], [deltaw, deltah]])
return Bbox(self._points + a)
@_api.rename_parameter("3.8", "p", "w_pad")
def padded(self, w_pad, h_pad=None):
"""
Construct a `Bbox` by padding this one on all four sides.
Parameters
----------
w_pad : float
Width pad
h_pad : float, optional
Height pad. Defaults to *w_pad*.
"""
points = self.get_points()
if h_pad is None:
h_pad = w_pad
return Bbox(points + [[-w_pad, -h_pad], [w_pad, h_pad]])
def translated(self, tx, ty):
"""Construct a `Bbox` by translating this one by *tx* and *ty*."""
return Bbox(self._points + (tx, ty))
def corners(self):
"""
Return the corners of this rectangle as an array of points.
Specifically, this returns the array
``[[x0, y0], [x0, y1], [x1, y0], [x1, y1]]``.
"""
(x0, y0), (x1, y1) = self.get_points()
return np.array([[x0, y0], [x0, y1], [x1, y0], [x1, y1]])
def rotated(self, radians):
"""
Return the axes-aligned bounding box that bounds the result of rotating
this `Bbox` by an angle of *radians*.
"""
corners = self.corners()
corners_rotated = Affine2D().rotate(radians).transform(corners)
bbox = Bbox.unit()
bbox.update_from_data_xy(corners_rotated, ignore=True)
return bbox
@staticmethod
def union(bboxes):
"""Return a `Bbox` that contains all of the given *bboxes*."""
if not len(bboxes):
raise ValueError("'bboxes' cannot be empty")
x0 = np.min([bbox.xmin for bbox in bboxes])
x1 = np.max([bbox.xmax for bbox in bboxes])
y0 = np.min([bbox.ymin for bbox in bboxes])
y1 = np.max([bbox.ymax for bbox in bboxes])
return Bbox([[x0, y0], [x1, y1]])
@staticmethod
def intersection(bbox1, bbox2):
"""
Return the intersection of *bbox1* and *bbox2* if they intersect, or
None if they don't.
"""
x0 = np.maximum(bbox1.xmin, bbox2.xmin)
x1 = np.minimum(bbox1.xmax, bbox2.xmax)
y0 = np.maximum(bbox1.ymin, bbox2.ymin)
y1 = np.minimum(bbox1.ymax, bbox2.ymax)
return Bbox([[x0, y0], [x1, y1]]) if x0 <= x1 and y0 <= y1 else None
_default_minpos = np.array([np.inf, np.inf])
class Bbox(BboxBase):
"""
A mutable bounding box.
Examples
--------
**Create from known bounds**
The default constructor takes the boundary "points" ``[[xmin, ymin],
[xmax, ymax]]``.
>>> Bbox([[1, 1], [3, 7]])
Bbox([[1.0, 1.0], [3.0, 7.0]])
Alternatively, a Bbox can be created from the flattened points array, the
so-called "extents" ``(xmin, ymin, xmax, ymax)``
>>> Bbox.from_extents(1, 1, 3, 7)
Bbox([[1.0, 1.0], [3.0, 7.0]])
or from the "bounds" ``(xmin, ymin, width, height)``.
>>> Bbox.from_bounds(1, 1, 2, 6)
Bbox([[1.0, 1.0], [3.0, 7.0]])
**Create from collections of points**
The "empty" object for accumulating Bboxs is the null bbox, which is a
stand-in for the empty set.
>>> Bbox.null()
Bbox([[inf, inf], [-inf, -inf]])
Adding points to the null bbox will give you the bbox of those points.
>>> box = Bbox.null()
>>> box.update_from_data_xy([[1, 1]])
>>> box
Bbox([[1.0, 1.0], [1.0, 1.0]])
>>> box.update_from_data_xy([[2, 3], [3, 2]], ignore=False)
>>> box
Bbox([[1.0, 1.0], [3.0, 3.0]])
Setting ``ignore=True`` is equivalent to starting over from a null bbox.
>>> box.update_from_data_xy([[1, 1]], ignore=True)
>>> box
Bbox([[1.0, 1.0], [1.0, 1.0]])
.. warning::
It is recommended to always specify ``ignore`` explicitly. If not, the
default value of ``ignore`` can be changed at any time by code with
access to your Bbox, for example using the method `~.Bbox.ignore`.
**Properties of the ``null`` bbox**
.. note::
The current behavior of `Bbox.null()` may be surprising as it does
not have all of the properties of the "empty set", and as such does
not behave like a "zero" object in the mathematical sense. We may
change that in the future (with a deprecation period).
The null bbox is the identity for intersections
>>> Bbox.intersection(Bbox([[1, 1], [3, 7]]), Bbox.null())
Bbox([[1.0, 1.0], [3.0, 7.0]])
except with itself, where it returns the full space.
>>> Bbox.intersection(Bbox.null(), Bbox.null())
Bbox([[-inf, -inf], [inf, inf]])
A union containing null will always return the full space (not the other
set!)
>>> Bbox.union([Bbox([[0, 0], [0, 0]]), Bbox.null()])
Bbox([[-inf, -inf], [inf, inf]])
"""
def __init__(self, points, **kwargs):
"""
Parameters
----------
points : `~numpy.ndarray`
A (2, 2) array of the form ``[[x0, y0], [x1, y1]]``.
"""
super().__init__(**kwargs)
points = np.asarray(points, float)
if points.shape != (2, 2):
raise ValueError('Bbox points must be of the form '
'"[[x0, y0], [x1, y1]]".')
self._points = points
self._minpos = _default_minpos.copy()
self._ignore = True
# it is helpful in some contexts to know if the bbox is a
# default or has been mutated; we store the orig points to
# support the mutated methods
self._points_orig = self._points.copy()
if DEBUG:
___init__ = __init__
def __init__(self, points, **kwargs):
self._check(points)
self.___init__(points, **kwargs)
def invalidate(self):
self._check(self._points)
super().invalidate()
def frozen(self):
# docstring inherited
frozen_bbox = super().frozen()
frozen_bbox._minpos = self.minpos.copy()
return frozen_bbox
@staticmethod
def unit():
"""Create a new unit `Bbox` from (0, 0) to (1, 1)."""
return Bbox([[0, 0], [1, 1]])
@staticmethod
def null():
"""Create a new null `Bbox` from (inf, inf) to (-inf, -inf)."""
return Bbox([[np.inf, np.inf], [-np.inf, -np.inf]])
@staticmethod
def from_bounds(x0, y0, width, height):
"""
Create a new `Bbox` from *x0*, *y0*, *width* and *height*.
*width* and *height* may be negative.
"""
return Bbox.from_extents(x0, y0, x0 + width, y0 + height)
@staticmethod
def from_extents(*args, minpos=None):
"""
Create a new Bbox from *left*, *bottom*, *right* and *top*.
The *y*-axis increases upwards.
Parameters
----------
left, bottom, right, top : float
The four extents of the bounding box.
minpos : float or None
If this is supplied, the Bbox will have a minimum positive value
set. This is useful when dealing with logarithmic scales and other
scales where negative bounds result in floating point errors.
"""
bbox = Bbox(np.reshape(args, (2, 2)))
if minpos is not None:
bbox._minpos[:] = minpos
return bbox
def __format__(self, fmt):
return (
'Bbox(x0={0.x0:{1}}, y0={0.y0:{1}}, x1={0.x1:{1}}, y1={0.y1:{1}})'.
format(self, fmt))
def __str__(self):
return format(self, '')
def __repr__(self):
return 'Bbox([[{0.x0}, {0.y0}], [{0.x1}, {0.y1}]])'.format(self)
def ignore(self, value):
"""
Set whether the existing bounds of the box should be ignored
by subsequent calls to :meth:`update_from_data_xy`.
value : bool
- When ``True``, subsequent calls to `update_from_data_xy` will
ignore the existing bounds of the `Bbox`.
- When ``False``, subsequent calls to `update_from_data_xy` will
include the existing bounds of the `Bbox`.
"""
self._ignore = value
def update_from_path(self, path, ignore=None, updatex=True, updatey=True):
"""
Update the bounds of the `Bbox` to contain the vertices of the
provided path. After updating, the bounds will have positive *width*
and *height*; *x0* and *y0* will be the minimal values.
Parameters
----------
path : `~matplotlib.path.Path`
ignore : bool, optional
- When ``True``, ignore the existing bounds of the `Bbox`.
- When ``False``, include the existing bounds of the `Bbox`.
- When ``None``, use the last value passed to :meth:`ignore`.
updatex, updatey : bool, default: True
When ``True``, update the x/y values.
"""
if ignore is None:
ignore = self._ignore
if path.vertices.size == 0:
return
points, minpos, changed = update_path_extents(
path, None, self._points, self._minpos, ignore)
if changed:
self.invalidate()
if updatex:
self._points[:, 0] = points[:, 0]
self._minpos[0] = minpos[0]
if updatey:
self._points[:, 1] = points[:, 1]
self._minpos[1] = minpos[1]
def update_from_data_x(self, x, ignore=None):
"""
Update the x-bounds of the `Bbox` based on the passed in data. After
updating, the bounds will have positive *width*, and *x0* will be the
minimal value.
Parameters
----------
x : `~numpy.ndarray`
Array of x-values.
ignore : bool, optional
- When ``True``, ignore the existing bounds of the `Bbox`.
- When ``False``, include the existing bounds of the `Bbox`.
- When ``None``, use the last value passed to :meth:`ignore`.
"""
x = np.ravel(x)
self.update_from_data_xy(np.column_stack([x, np.ones(x.size)]),
ignore=ignore, updatey=False)
def update_from_data_y(self, y, ignore=None):
"""
Update the y-bounds of the `Bbox` based on the passed in data. After
updating, the bounds will have positive *height*, and *y0* will be the
minimal value.
Parameters
----------
y : `~numpy.ndarray`
Array of y-values.
ignore : bool, optional
- When ``True``, ignore the existing bounds of the `Bbox`.
- When ``False``, include the existing bounds of the `Bbox`.
- When ``None``, use the last value passed to :meth:`ignore`.
"""
y = np.ravel(y)
self.update_from_data_xy(np.column_stack([np.ones(y.size), y]),
ignore=ignore, updatex=False)
def update_from_data_xy(self, xy, ignore=None, updatex=True, updatey=True):
"""
Update the `Bbox` bounds based on the passed in *xy* coordinates.
After updating, the bounds will have positive *width* and *height*;
*x0* and *y0* will be the minimal values.
Parameters
----------
xy : (N, 2) array-like
The (x, y) coordinates.
ignore : bool, optional
- When ``True``, ignore the existing bounds of the `Bbox`.
- When ``False``, include the existing bounds of the `Bbox`.
- When ``None``, use the last value passed to :meth:`ignore`.
updatex, updatey : bool, default: True
When ``True``, update the x/y values.
"""
if len(xy) == 0:
return
path = Path(xy)
self.update_from_path(path, ignore=ignore,
updatex=updatex, updatey=updatey)
@BboxBase.x0.setter
def x0(self, val):
self._points[0, 0] = val
self.invalidate()
@BboxBase.y0.setter
def y0(self, val):
self._points[0, 1] = val
self.invalidate()
@BboxBase.x1.setter
def x1(self, val):
self._points[1, 0] = val
self.invalidate()
@BboxBase.y1.setter
def y1(self, val):
self._points[1, 1] = val
self.invalidate()
@BboxBase.p0.setter
def p0(self, val):
self._points[0] = val
self.invalidate()
@BboxBase.p1.setter
def p1(self, val):
self._points[1] = val
self.invalidate()
@BboxBase.intervalx.setter
def intervalx(self, interval):
self._points[:, 0] = interval
self.invalidate()
@BboxBase.intervaly.setter
def intervaly(self, interval):
self._points[:, 1] = interval
self.invalidate()
@BboxBase.bounds.setter
def bounds(self, bounds):
l, b, w, h = bounds
points = np.array([[l, b], [l + w, b + h]], float)
if np.any(self._points != points):
self._points = points
self.invalidate()
@property
def minpos(self):
"""
The minimum positive value in both directions within the Bbox.
This is useful when dealing with logarithmic scales and other scales
where negative bounds result in floating point errors, and will be used
as the minimum extent instead of *p0*.
"""
return self._minpos
@minpos.setter
def minpos(self, val):
self._minpos[:] = val
@property
def minposx(self):
"""
The minimum positive value in the *x*-direction within the Bbox.
This is useful when dealing with logarithmic scales and other scales
where negative bounds result in floating point errors, and will be used
as the minimum *x*-extent instead of *x0*.
"""
return self._minpos[0]
@minposx.setter
def minposx(self, val):
self._minpos[0] = val
@property
def minposy(self):
"""
The minimum positive value in the *y*-direction within the Bbox.
This is useful when dealing with logarithmic scales and other scales
where negative bounds result in floating point errors, and will be used
as the minimum *y*-extent instead of *y0*.
"""
return self._minpos[1]
@minposy.setter
def minposy(self, val):
self._minpos[1] = val
def get_points(self):
"""
Get the points of the bounding box as an array of the form
``[[x0, y0], [x1, y1]]``.
"""
self._invalid = 0
return self._points
def set_points(self, points):
"""
Set the points of the bounding box directly from an array of the form
``[[x0, y0], [x1, y1]]``. No error checking is performed, as this
method is mainly for internal use.
"""
if np.any(self._points != points):
self._points = points
self.invalidate()
def set(self, other):
"""
Set this bounding box from the "frozen" bounds of another `Bbox`.
"""
if np.any(self._points != other.get_points()):
self._points = other.get_points()
self.invalidate()
def mutated(self):
"""Return whether the bbox has changed since init."""
return self.mutatedx() or self.mutatedy()
def mutatedx(self):
"""Return whether the x-limits have changed since init."""
return (self._points[0, 0] != self._points_orig[0, 0] or
self._points[1, 0] != self._points_orig[1, 0])
def mutatedy(self):
"""Return whether the y-limits have changed since init."""
return (self._points[0, 1] != self._points_orig[0, 1] or
self._points[1, 1] != self._points_orig[1, 1])
class TransformedBbox(BboxBase):
"""
A `Bbox` that is automatically transformed by a given
transform. When either the child bounding box or transform
changes, the bounds of this bbox will update accordingly.
"""
def __init__(self, bbox, transform, **kwargs):
"""
Parameters
----------
bbox : `Bbox`
transform : `Transform`
"""
_api.check_isinstance(BboxBase, bbox=bbox)
_api.check_isinstance(Transform, transform=transform)
if transform.input_dims != 2 or transform.output_dims != 2:
raise ValueError(
"The input and output dimensions of 'transform' must be 2")
super().__init__(**kwargs)
self._bbox = bbox
self._transform = transform
self.set_children(bbox, transform)
self._points = None
__str__ = _make_str_method("_bbox", "_transform")
def get_points(self):
# docstring inherited
if self._invalid:
p = self._bbox.get_points()
# Transform all four points, then make a new bounding box
# from the result, taking care to make the orientation the
# same.
points = self._transform.transform(
[[p[0, 0], p[0, 1]],
[p[1, 0], p[0, 1]],
[p[0, 0], p[1, 1]],
[p[1, 0], p[1, 1]]])
points = np.ma.filled(points, 0.0)
xs = min(points[:, 0]), max(points[:, 0])
if p[0, 0] > p[1, 0]:
xs = xs[::-1]
ys = min(points[:, 1]), max(points[:, 1])
if p[0, 1] > p[1, 1]:
ys = ys[::-1]
self._points = np.array([
[xs[0], ys[0]],
[xs[1], ys[1]]
])
self._invalid = 0
return self._points
if DEBUG:
_get_points = get_points
def get_points(self):
points = self._get_points()
self._check(points)
return points
def contains(self, x, y):
# Docstring inherited.
return self._bbox.contains(*self._transform.inverted().transform((x, y)))
def fully_contains(self, x, y):
# Docstring inherited.
return self._bbox.fully_contains(*self._transform.inverted().transform((x, y)))
class LockableBbox(BboxBase):
"""
A `Bbox` where some elements may be locked at certain values.
When the child bounding box changes, the bounds of this bbox will update
accordingly with the exception of the locked elements.
"""
def __init__(self, bbox, x0=None, y0=None, x1=None, y1=None, **kwargs):
"""
Parameters
----------
bbox : `Bbox`
The child bounding box to wrap.
x0 : float or None
The locked value for x0, or None to leave unlocked.
y0 : float or None
The locked value for y0, or None to leave unlocked.
x1 : float or None
The locked value for x1, or None to leave unlocked.
y1 : float or None
The locked value for y1, or None to leave unlocked.
"""
_api.check_isinstance(BboxBase, bbox=bbox)
super().__init__(**kwargs)
self._bbox = bbox
self.set_children(bbox)
self._points = None
fp = [x0, y0, x1, y1]
mask = [val is None for val in fp]
self._locked_points = np.ma.array(fp, float, mask=mask).reshape((2, 2))
__str__ = _make_str_method("_bbox", "_locked_points")
def get_points(self):
# docstring inherited
if self._invalid:
points = self._bbox.get_points()
self._points = np.where(self._locked_points.mask,
points,
self._locked_points)
self._invalid = 0
return self._points
if DEBUG:
_get_points = get_points
def get_points(self):
points = self._get_points()
self._check(points)
return points
@property
def locked_x0(self):
"""
float or None: The value used for the locked x0.
"""
if self._locked_points.mask[0, 0]:
return None
else:
return self._locked_points[0, 0]
@locked_x0.setter
def locked_x0(self, x0):
self._locked_points.mask[0, 0] = x0 is None
self._locked_points.data[0, 0] = x0
self.invalidate()
@property
def locked_y0(self):
"""
float or None: The value used for the locked y0.
"""
if self._locked_points.mask[0, 1]:
return None
else:
return self._locked_points[0, 1]
@locked_y0.setter
def locked_y0(self, y0):
self._locked_points.mask[0, 1] = y0 is None
self._locked_points.data[0, 1] = y0
self.invalidate()
@property
def locked_x1(self):
"""
float or None: The value used for the locked x1.
"""
if self._locked_points.mask[1, 0]:
return None
else:
return self._locked_points[1, 0]
@locked_x1.setter
def locked_x1(self, x1):
self._locked_points.mask[1, 0] = x1 is None
self._locked_points.data[1, 0] = x1
self.invalidate()
@property
def locked_y1(self):
"""
float or None: The value used for the locked y1.
"""
if self._locked_points.mask[1, 1]:
return None
else:
return self._locked_points[1, 1]
@locked_y1.setter
def locked_y1(self, y1):
self._locked_points.mask[1, 1] = y1 is None
self._locked_points.data[1, 1] = y1
self.invalidate()
class Transform(TransformNode):
"""
The base class of all `TransformNode` instances that
actually perform a transformation.
All non-affine transformations should be subclasses of this class.
New affine transformations should be subclasses of `Affine2D`.
Subclasses of this class should override the following members (at
minimum):
- :attr:`input_dims`
- :attr:`output_dims`
- :meth:`transform`
- :meth:`inverted` (if an inverse exists)
The following attributes may be overridden if the default is unsuitable:
- :attr:`is_separable` (defaults to True for 1D -> 1D transforms, False
otherwise)
- :attr:`has_inverse` (defaults to True if :meth:`inverted` is overridden,
False otherwise)
If the transform needs to do something non-standard with
`matplotlib.path.Path` objects, such as adding curves
where there were once line segments, it should override:
- :meth:`transform_path`
"""
input_dims = None
"""
The number of input dimensions of this transform.
Must be overridden (with integers) in the subclass.
"""
output_dims = None
"""
The number of output dimensions of this transform.
Must be overridden (with integers) in the subclass.
"""
is_separable = False
"""True if this transform is separable in the x- and y- dimensions."""
has_inverse = False
"""True if this transform has a corresponding inverse transform."""
def __init_subclass__(cls):
# 1d transforms are always separable; we assume higher-dimensional ones
# are not but subclasses can also directly set is_separable -- this is
# verified by checking whether "is_separable" appears more than once in
# the class's MRO (it appears once in Transform).
if (sum("is_separable" in vars(parent) for parent in cls.__mro__) == 1
and cls.input_dims == cls.output_dims == 1):
cls.is_separable = True
# Transform.inverted raises NotImplementedError; we assume that if this
# is overridden then the transform is invertible but subclass can also
# directly set has_inverse.
if (sum("has_inverse" in vars(parent) for parent in cls.__mro__) == 1
and hasattr(cls, "inverted")
and cls.inverted is not Transform.inverted):
cls.has_inverse = True
def __add__(self, other):
"""
Compose two transforms together so that *self* is followed by *other*.
``A + B`` returns a transform ``C`` so that
``C.transform(x) == B.transform(A.transform(x))``.
"""
return (composite_transform_factory(self, other)
if isinstance(other, Transform) else
NotImplemented)
# Equality is based on object identity for `Transform`s (so we don't
# override `__eq__`), but some subclasses, such as TransformWrapper &
# AffineBase, override this behavior.
def _iter_break_from_left_to_right(self):
"""
Return an iterator breaking down this transform stack from left to
right recursively. If self == ((A, N), A) then the result will be an
iterator which yields I : ((A, N), A), followed by A : (N, A),
followed by (A, N) : (A), but not ((A, N), A) : I.
This is equivalent to flattening the stack then yielding
``flat_stack[:i], flat_stack[i:]`` where i=0..(n-1).
"""
yield IdentityTransform(), self
@property
def depth(self):
"""
Return the number of transforms which have been chained
together to form this Transform instance.
.. note::
For the special case of a Composite transform, the maximum depth
of the two is returned.
"""
return 1
def contains_branch(self, other):
"""
Return whether the given transform is a sub-tree of this transform.
This routine uses transform equality to identify sub-trees, therefore
in many situations it is object id which will be used.
For the case where the given transform represents the whole
of this transform, returns True.
"""
if self.depth < other.depth:
return False
# check that a subtree is equal to other (starting from self)
for _, sub_tree in self._iter_break_from_left_to_right():
if sub_tree == other:
return True
return False
def contains_branch_seperately(self, other_transform):
"""
Return whether the given branch is a sub-tree of this transform on
each separate dimension.
A common use for this method is to identify if a transform is a blended
transform containing an Axes' data transform. e.g.::
x_isdata, y_isdata = trans.contains_branch_seperately(ax.transData)
"""
if self.output_dims != 2:
raise ValueError('contains_branch_seperately only supports '
'transforms with 2 output dimensions')
# for a non-blended transform each separate dimension is the same, so
# just return the appropriate shape.
return (self.contains_branch(other_transform), ) * 2
def __sub__(self, other):
"""
Compose *self* with the inverse of *other*, cancelling identical terms
if any::
# In general:
A - B == A + B.inverted()
# (but see note regarding frozen transforms below).
# If A "ends with" B (i.e. A == A' + B for some A') we can cancel
# out B:
(A' + B) - B == A'
# Likewise, if B "starts with" A (B = A + B'), we can cancel out A:
A - (A + B') == B'.inverted() == B'^-1
Cancellation (rather than naively returning ``A + B.inverted()``) is
important for multiple reasons:
- It avoids floating-point inaccuracies when computing the inverse of
B: ``B - B`` is guaranteed to cancel out exactly (resulting in the
identity transform), whereas ``B + B.inverted()`` may differ by a
small epsilon.
- ``B.inverted()`` always returns a frozen transform: if one computes
``A + B + B.inverted()`` and later mutates ``B``, then
``B.inverted()`` won't be updated and the last two terms won't cancel
out anymore; on the other hand, ``A + B - B`` will always be equal to
``A`` even if ``B`` is mutated.
"""
# we only know how to do this operation if other is a Transform.
if not isinstance(other, Transform):
return NotImplemented
for remainder, sub_tree in self._iter_break_from_left_to_right():
if sub_tree == other:
return remainder
for remainder, sub_tree in other._iter_break_from_left_to_right():
if sub_tree == self:
if not remainder.has_inverse:
raise ValueError(
"The shortcut cannot be computed since 'other' "
"includes a non-invertible component")
return remainder.inverted()
# if we have got this far, then there was no shortcut possible
if other.has_inverse:
return self + other.inverted()
else:
raise ValueError('It is not possible to compute transA - transB '
'since transB cannot be inverted and there is no '
'shortcut possible.')
def __array__(self, *args, **kwargs):
"""Array interface to get at this Transform's affine matrix."""
return self.get_affine().get_matrix()
def transform(self, values):
"""
Apply this transformation on the given array of *values*.
Parameters
----------
values : array-like
The input values as an array of length :attr:`input_dims` or
shape (N, :attr:`input_dims`).
Returns
-------
array
The output values as an array of length :attr:`output_dims` or
shape (N, :attr:`output_dims`), depending on the input.
"""
# Ensure that values is a 2d array (but remember whether
# we started with a 1d or 2d array).
values = np.asanyarray(values)
ndim = values.ndim
values = values.reshape((-1, self.input_dims))
# Transform the values
res = self.transform_affine(self.transform_non_affine(values))
# Convert the result back to the shape of the input values.
if ndim == 0:
assert not np.ma.is_masked(res) # just to be on the safe side
return res[0, 0]
if ndim == 1:
return res.reshape(-1)
elif ndim == 2:
return res
raise ValueError(
"Input values must have shape (N, {dims}) or ({dims},)"
.format(dims=self.input_dims))
def transform_affine(self, values):
"""
Apply only the affine part of this transformation on the
given array of values.
``transform(values)`` is always equivalent to
``transform_affine(transform_non_affine(values))``.
In non-affine transformations, this is generally a no-op. In
affine transformations, this is equivalent to
``transform(values)``.
Parameters
----------
values : array
The input values as an array of length :attr:`input_dims` or
shape (N, :attr:`input_dims`).
Returns
-------
array
The output values as an array of length :attr:`output_dims` or
shape (N, :attr:`output_dims`), depending on the input.
"""
return self.get_affine().transform(values)
def transform_non_affine(self, values):
"""
Apply only the non-affine part of this transformation.
``transform(values)`` is always equivalent to
``transform_affine(transform_non_affine(values))``.
In non-affine transformations, this is generally equivalent to
``transform(values)``. In affine transformations, this is
always a no-op.
Parameters
----------
values : array
The input values as an array of length :attr:`input_dims` or
shape (N, :attr:`input_dims`).
Returns
-------
array
The output values as an array of length :attr:`output_dims` or
shape (N, :attr:`output_dims`), depending on the input.
"""
return values
def transform_bbox(self, bbox):
"""
Transform the given bounding box.
For smarter transforms including caching (a common requirement in
Matplotlib), see `TransformedBbox`.
"""
return Bbox(self.transform(bbox.get_points()))
def get_affine(self):
"""Get the affine part of this transform."""
return IdentityTransform()
def get_matrix(self):
"""Get the matrix for the affine part of this transform."""
return self.get_affine().get_matrix()
def transform_point(self, point):
"""
Return a transformed point.
This function is only kept for backcompatibility; the more general
`.transform` method is capable of transforming both a list of points
and a single point.
The point is given as a sequence of length :attr:`input_dims`.
The transformed point is returned as a sequence of length
:attr:`output_dims`.
"""
if len(point) != self.input_dims:
raise ValueError("The length of 'point' must be 'self.input_dims'")
return self.transform(point)
def transform_path(self, path):
"""
Apply the transform to `.Path` *path*, returning a new `.Path`.
In some cases, this transform may insert curves into the path
that began as line segments.
"""
return self.transform_path_affine(self.transform_path_non_affine(path))
def transform_path_affine(self, path):
"""
Apply the affine part of this transform to `.Path` *path*, returning a
new `.Path`.
``transform_path(path)`` is equivalent to
``transform_path_affine(transform_path_non_affine(values))``.
"""
return self.get_affine().transform_path_affine(path)
def transform_path_non_affine(self, path):
"""
Apply the non-affine part of this transform to `.Path` *path*,
returning a new `.Path`.
``transform_path(path)`` is equivalent to
``transform_path_affine(transform_path_non_affine(values))``.
"""
x = self.transform_non_affine(path.vertices)
return Path._fast_from_codes_and_verts(x, path.codes, path)
def transform_angles(self, angles, pts, radians=False, pushoff=1e-5):
"""
Transform a set of angles anchored at specific locations.
Parameters
----------
angles : (N,) array-like
The angles to transform.
pts : (N, 2) array-like
The points where the angles are anchored.
radians : bool, default: False
Whether *angles* are radians or degrees.
pushoff : float
For each point in *pts* and angle in *angles*, the transformed
angle is computed by transforming a segment of length *pushoff*
starting at that point and making that angle relative to the
horizontal axis, and measuring the angle between the horizontal
axis and the transformed segment.
Returns
-------
(N,) array
"""
# Must be 2D
if self.input_dims != 2 or self.output_dims != 2:
raise NotImplementedError('Only defined in 2D')
angles = np.asarray(angles)
pts = np.asarray(pts)
_api.check_shape((None, 2), pts=pts)
_api.check_shape((None,), angles=angles)
if len(angles) != len(pts):
raise ValueError("There must be as many 'angles' as 'pts'")
# Convert to radians if desired
if not radians:
angles = np.deg2rad(angles)
# Move a short distance away
pts2 = pts + pushoff * np.column_stack([np.cos(angles),
np.sin(angles)])
# Transform both sets of points
tpts = self.transform(pts)
tpts2 = self.transform(pts2)
# Calculate transformed angles
d = tpts2 - tpts
a = np.arctan2(d[:, 1], d[:, 0])
# Convert back to degrees if desired
if not radians:
a = np.rad2deg(a)
return a
def inverted(self):
"""
Return the corresponding inverse transformation.
It holds ``x == self.inverted().transform(self.transform(x))``.
The return value of this method should be treated as
temporary. An update to *self* does not cause a corresponding
update to its inverted copy.
"""
raise NotImplementedError()
class TransformWrapper(Transform):
"""
A helper class that holds a single child transform and acts
equivalently to it.
This is useful if a node of the transform tree must be replaced at
run time with a transform of a different type. This class allows
that replacement to correctly trigger invalidation.
`TransformWrapper` instances must have the same input and output dimensions
during their entire lifetime, so the child transform may only be replaced
with another child transform of the same dimensions.
"""
pass_through = True
def __init__(self, child):
"""
*child*: A `Transform` instance. This child may later
be replaced with :meth:`set`.
"""
_api.check_isinstance(Transform, child=child)
super().__init__()
self.set(child)
def __eq__(self, other):
return self._child.__eq__(other)
__str__ = _make_str_method("_child")
def frozen(self):
# docstring inherited
return self._child.frozen()
def set(self, child):
"""
Replace the current child of this transform with another one.
The new child must have the same number of input and output
dimensions as the current child.
"""
if hasattr(self, "_child"): # Absent during init.
self.invalidate()
new_dims = (child.input_dims, child.output_dims)
old_dims = (self._child.input_dims, self._child.output_dims)
if new_dims != old_dims:
raise ValueError(
f"The input and output dims of the new child {new_dims} "
f"do not match those of current child {old_dims}")
self._child._parents.pop(id(self), None)
self._child = child
self.set_children(child)
self.transform = child.transform
self.transform_affine = child.transform_affine
self.transform_non_affine = child.transform_non_affine
self.transform_path = child.transform_path
self.transform_path_affine = child.transform_path_affine
self.transform_path_non_affine = child.transform_path_non_affine
self.get_affine = child.get_affine
self.inverted = child.inverted
self.get_matrix = child.get_matrix
# note we do not wrap other properties here since the transform's
# child can be changed with WrappedTransform.set and so checking
# is_affine and other such properties may be dangerous.
self._invalid = 0
self.invalidate()
self._invalid = 0
input_dims = property(lambda self: self._child.input_dims)
output_dims = property(lambda self: self._child.output_dims)
is_affine = property(lambda self: self._child.is_affine)
is_separable = property(lambda self: self._child.is_separable)
has_inverse = property(lambda self: self._child.has_inverse)
class AffineBase(Transform):
"""
The base class of all affine transformations of any number of dimensions.
"""
is_affine = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._inverted = None
def __array__(self, *args, **kwargs):
# optimises the access of the transform matrix vs. the superclass
return self.get_matrix()
def __eq__(self, other):
if getattr(other, "is_affine", False) and hasattr(other, "get_matrix"):
return (self.get_matrix() == other.get_matrix()).all()
return NotImplemented
def transform(self, values):
# docstring inherited
return self.transform_affine(values)
def transform_affine(self, values):
# docstring inherited
raise NotImplementedError('Affine subclasses should override this '
'method.')
@_api.rename_parameter("3.8", "points", "values")
def transform_non_affine(self, values):
# docstring inherited
return values
def transform_path(self, path):
# docstring inherited
return self.transform_path_affine(path)
def transform_path_affine(self, path):
# docstring inherited
return Path(self.transform_affine(path.vertices),
path.codes, path._interpolation_steps)
def transform_path_non_affine(self, path):
# docstring inherited
return path
def get_affine(self):
# docstring inherited
return self
class Affine2DBase(AffineBase):
"""
The base class of all 2D affine transformations.
2D affine transformations are performed using a 3x3 numpy array::
a c e
b d f
0 0 1
This class provides the read-only interface. For a mutable 2D
affine transformation, use `Affine2D`.
Subclasses of this class will generally only need to override a
constructor and `~.Transform.get_matrix` that generates a custom 3x3 matrix.
"""
input_dims = 2
output_dims = 2
def frozen(self):
# docstring inherited
return Affine2D(self.get_matrix().copy())
@property
def is_separable(self):
mtx = self.get_matrix()
return mtx[0, 1] == mtx[1, 0] == 0.0
def to_values(self):
"""
Return the values of the matrix as an ``(a, b, c, d, e, f)`` tuple.
"""
mtx = self.get_matrix()
return tuple(mtx[:2].swapaxes(0, 1).flat)
@_api.rename_parameter("3.8", "points", "values")
def transform_affine(self, values):
mtx = self.get_matrix()
if isinstance(values, np.ma.MaskedArray):
tpoints = affine_transform(values.data, mtx)
return np.ma.MaskedArray(tpoints, mask=np.ma.getmask(values))
return affine_transform(values, mtx)
if DEBUG:
_transform_affine = transform_affine
@_api.rename_parameter("3.8", "points", "values")
def transform_affine(self, values):
# docstring inherited
# The major speed trap here is just converting to the
# points to an array in the first place. If we can use
# more arrays upstream, that should help here.
if not isinstance(values, np.ndarray):
_api.warn_external(
f'A non-numpy array of type {type(values)} was passed in '
f'for transformation, which results in poor performance.')
return self._transform_affine(values)
def inverted(self):
# docstring inherited
if self._inverted is None or self._invalid:
mtx = self.get_matrix()
shorthand_name = None
if self._shorthand_name:
shorthand_name = '(%s)-1' % self._shorthand_name
self._inverted = Affine2D(inv(mtx), shorthand_name=shorthand_name)
self._invalid = 0
return self._inverted
class Affine2D(Affine2DBase):
"""
A mutable 2D affine transformation.
"""
def __init__(self, matrix=None, **kwargs):
"""
Initialize an Affine transform from a 3x3 numpy float array::
a c e
b d f
0 0 1
If *matrix* is None, initialize with the identity transform.
"""
super().__init__(**kwargs)
if matrix is None:
# A bit faster than np.identity(3).
matrix = IdentityTransform._mtx
self._mtx = matrix.copy()
self._invalid = 0
_base_str = _make_str_method("_mtx")
def __str__(self):
return (self._base_str()
if (self._mtx != np.diag(np.diag(self._mtx))).any()
else f"Affine2D().scale({self._mtx[0, 0]}, {self._mtx[1, 1]})"
if self._mtx[0, 0] != self._mtx[1, 1]
else f"Affine2D().scale({self._mtx[0, 0]})")
@staticmethod
def from_values(a, b, c, d, e, f):
"""
Create a new Affine2D instance from the given values::
a c e
b d f
0 0 1
.
"""
return Affine2D(
np.array([a, c, e, b, d, f, 0.0, 0.0, 1.0], float).reshape((3, 3)))
def get_matrix(self):
"""
Get the underlying transformation matrix as a 3x3 array::
a c e
b d f
0 0 1
.
"""
if self._invalid:
self._inverted = None
self._invalid = 0
return self._mtx
def set_matrix(self, mtx):
"""
Set the underlying transformation matrix from a 3x3 array::
a c e
b d f
0 0 1
.
"""
self._mtx = mtx
self.invalidate()
def set(self, other):
"""
Set this transformation from the frozen copy of another
`Affine2DBase` object.
"""
_api.check_isinstance(Affine2DBase, other=other)
self._mtx = other.get_matrix()
self.invalidate()
def clear(self):
"""
Reset the underlying matrix to the identity transform.
"""
# A bit faster than np.identity(3).
self._mtx = IdentityTransform._mtx.copy()
self.invalidate()
return self
def rotate(self, theta):
"""
Add a rotation (in radians) to this transform in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
a = math.cos(theta)
b = math.sin(theta)
mtx = self._mtx
# Operating and assigning one scalar at a time is much faster.
(xx, xy, x0), (yx, yy, y0), _ = mtx.tolist()
# mtx = [[a -b 0], [b a 0], [0 0 1]] * mtx
mtx[0, 0] = a * xx - b * yx
mtx[0, 1] = a * xy - b * yy
mtx[0, 2] = a * x0 - b * y0
mtx[1, 0] = b * xx + a * yx
mtx[1, 1] = b * xy + a * yy
mtx[1, 2] = b * x0 + a * y0
self.invalidate()
return self
def rotate_deg(self, degrees):
"""
Add a rotation (in degrees) to this transform in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
return self.rotate(math.radians(degrees))
def rotate_around(self, x, y, theta):
"""
Add a rotation (in radians) around the point (x, y) in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
return self.translate(-x, -y).rotate(theta).translate(x, y)
def rotate_deg_around(self, x, y, degrees):
"""
Add a rotation (in degrees) around the point (x, y) in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
# Cast to float to avoid wraparound issues with uint8's
x, y = float(x), float(y)
return self.translate(-x, -y).rotate_deg(degrees).translate(x, y)
def translate(self, tx, ty):
"""
Add a translation in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
self._mtx[0, 2] += tx
self._mtx[1, 2] += ty
self.invalidate()
return self
def scale(self, sx, sy=None):
"""
Add a scale in place.
If *sy* is None, the same scale is applied in both the *x*- and
*y*-directions.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
if sy is None:
sy = sx
# explicit element-wise scaling is fastest
self._mtx[0, 0] *= sx
self._mtx[0, 1] *= sx
self._mtx[0, 2] *= sx
self._mtx[1, 0] *= sy
self._mtx[1, 1] *= sy
self._mtx[1, 2] *= sy
self.invalidate()
return self
def skew(self, xShear, yShear):
"""
Add a skew in place.
*xShear* and *yShear* are the shear angles along the *x*- and
*y*-axes, respectively, in radians.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
rx = math.tan(xShear)
ry = math.tan(yShear)
mtx = self._mtx
# Operating and assigning one scalar at a time is much faster.
(xx, xy, x0), (yx, yy, y0), _ = mtx.tolist()
# mtx = [[1 rx 0], [ry 1 0], [0 0 1]] * mtx
mtx[0, 0] += rx * yx
mtx[0, 1] += rx * yy
mtx[0, 2] += rx * y0
mtx[1, 0] += ry * xx
mtx[1, 1] += ry * xy
mtx[1, 2] += ry * x0
self.invalidate()
return self
def skew_deg(self, xShear, yShear):
"""
Add a skew in place.
*xShear* and *yShear* are the shear angles along the *x*- and
*y*-axes, respectively, in degrees.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
return self.skew(math.radians(xShear), math.radians(yShear))
class IdentityTransform(Affine2DBase):
"""
A special class that does one thing, the identity transform, in a
fast way.
"""
_mtx = np.identity(3)
def frozen(self):
# docstring inherited
return self
__str__ = _make_str_method()
def get_matrix(self):
# docstring inherited
return self._mtx
@_api.rename_parameter("3.8", "points", "values")
def transform(self, values):
# docstring inherited
return np.asanyarray(values)
@_api.rename_parameter("3.8", "points", "values")
def transform_affine(self, values):
# docstring inherited
return np.asanyarray(values)
@_api.rename_parameter("3.8", "points", "values")
def transform_non_affine(self, values):
# docstring inherited
return np.asanyarray(values)
def transform_path(self, path):
# docstring inherited
return path
def transform_path_affine(self, path):
# docstring inherited
return path
def transform_path_non_affine(self, path):
# docstring inherited
return path
def get_affine(self):
# docstring inherited
return self
def inverted(self):
# docstring inherited
return self
class _BlendedMixin:
"""Common methods for `BlendedGenericTransform` and `BlendedAffine2D`."""
def __eq__(self, other):
if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)):
return (self._x == other._x) and (self._y == other._y)
elif self._x == self._y:
return self._x == other
else:
return NotImplemented
def contains_branch_seperately(self, transform):
return (self._x.contains_branch(transform),
self._y.contains_branch(transform))
__str__ = _make_str_method("_x", "_y")
class BlendedGenericTransform(_BlendedMixin, Transform):
"""
A "blended" transform uses one transform for the *x*-direction, and
another transform for the *y*-direction.
This "generic" version can handle any given child transform in the
*x*- and *y*-directions.
"""
input_dims = 2
output_dims = 2
is_separable = True
pass_through = True
def __init__(self, x_transform, y_transform, **kwargs):
"""
Create a new "blended" transform using *x_transform* to transform the
*x*-axis and *y_transform* to transform the *y*-axis.
You will generally not call this constructor directly but use the
`blended_transform_factory` function instead, which can determine
automatically which kind of blended transform to create.
"""
Transform.__init__(self, **kwargs)
self._x = x_transform
self._y = y_transform
self.set_children(x_transform, y_transform)
self._affine = None
@property
def depth(self):
return max(self._x.depth, self._y.depth)
def contains_branch(self, other):
# A blended transform cannot possibly contain a branch from two
# different transforms.
return False
is_affine = property(lambda self: self._x.is_affine and self._y.is_affine)
has_inverse = property(
lambda self: self._x.has_inverse and self._y.has_inverse)
def frozen(self):
# docstring inherited
return blended_transform_factory(self._x.frozen(), self._y.frozen())
@_api.rename_parameter("3.8", "points", "values")
def transform_non_affine(self, values):
# docstring inherited
if self._x.is_affine and self._y.is_affine:
return values
x = self._x
y = self._y
if x == y and x.input_dims == 2:
return x.transform_non_affine(values)
if x.input_dims == 2:
x_points = x.transform_non_affine(values)[:, 0:1]
else:
x_points = x.transform_non_affine(values[:, 0])
x_points = x_points.reshape((len(x_points), 1))
if y.input_dims == 2:
y_points = y.transform_non_affine(values)[:, 1:]
else:
y_points = y.transform_non_affine(values[:, 1])
y_points = y_points.reshape((len(y_points), 1))
if (isinstance(x_points, np.ma.MaskedArray) or
isinstance(y_points, np.ma.MaskedArray)):
return np.ma.concatenate((x_points, y_points), 1)
else:
return np.concatenate((x_points, y_points), 1)
def inverted(self):
# docstring inherited
return BlendedGenericTransform(self._x.inverted(), self._y.inverted())
def get_affine(self):
# docstring inherited
if self._invalid or self._affine is None:
if self._x == self._y:
self._affine = self._x.get_affine()
else:
x_mtx = self._x.get_affine().get_matrix()
y_mtx = self._y.get_affine().get_matrix()
# We already know the transforms are separable, so we can skip
# setting b and c to zero.
mtx = np.array([x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0]])
self._affine = Affine2D(mtx)
self._invalid = 0
return self._affine
class BlendedAffine2D(_BlendedMixin, Affine2DBase):
"""
A "blended" transform uses one transform for the *x*-direction, and
another transform for the *y*-direction.
This version is an optimization for the case where both child
transforms are of type `Affine2DBase`.
"""
is_separable = True
def __init__(self, x_transform, y_transform, **kwargs):
"""
Create a new "blended" transform using *x_transform* to transform the
*x*-axis and *y_transform* to transform the *y*-axis.
Both *x_transform* and *y_transform* must be 2D affine transforms.
You will generally not call this constructor directly but use the
`blended_transform_factory` function instead, which can determine
automatically which kind of blended transform to create.
"""
is_affine = x_transform.is_affine and y_transform.is_affine
is_separable = x_transform.is_separable and y_transform.is_separable
is_correct = is_affine and is_separable
if not is_correct:
raise ValueError("Both *x_transform* and *y_transform* must be 2D "
"affine transforms")
Transform.__init__(self, **kwargs)
self._x = x_transform
self._y = y_transform
self.set_children(x_transform, y_transform)
Affine2DBase.__init__(self)
self._mtx = None
def get_matrix(self):
# docstring inherited
if self._invalid:
if self._x == self._y:
self._mtx = self._x.get_matrix()
else:
x_mtx = self._x.get_matrix()
y_mtx = self._y.get_matrix()
# We already know the transforms are separable, so we can skip
# setting b and c to zero.
self._mtx = np.array([x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0]])
self._inverted = None
self._invalid = 0
return self._mtx
def blended_transform_factory(x_transform, y_transform):
"""
Create a new "blended" transform using *x_transform* to transform
the *x*-axis and *y_transform* to transform the *y*-axis.
A faster version of the blended transform is returned for the case
where both child transforms are affine.
"""
if (isinstance(x_transform, Affine2DBase) and
isinstance(y_transform, Affine2DBase)):
return BlendedAffine2D(x_transform, y_transform)
return BlendedGenericTransform(x_transform, y_transform)
class CompositeGenericTransform(Transform):
"""
A composite transform formed by applying transform *a* then
transform *b*.
This "generic" version can handle any two arbitrary
transformations.
"""
pass_through = True
def __init__(self, a, b, **kwargs):
"""
Create a new composite transform that is the result of
applying transform *a* then transform *b*.
You will generally not call this constructor directly but write ``a +
b`` instead, which will automatically choose the best kind of composite
transform instance to create.
"""
if a.output_dims != b.input_dims:
raise ValueError("The output dimension of 'a' must be equal to "
"the input dimensions of 'b'")
self.input_dims = a.input_dims
self.output_dims = b.output_dims
super().__init__(**kwargs)
self._a = a
self._b = b
self.set_children(a, b)
def frozen(self):
# docstring inherited
self._invalid = 0
frozen = composite_transform_factory(
self._a.frozen(), self._b.frozen())
if not isinstance(frozen, CompositeGenericTransform):
return frozen.frozen()
return frozen
def _invalidate_internal(self, level, invalidating_node):
# When the left child is invalidated at AFFINE_ONLY level and the right child is
# non-affine, the composite transform is FULLY invalidated.
if invalidating_node is self._a and not self._b.is_affine:
level = Transform._INVALID_FULL
super()._invalidate_internal(level, invalidating_node)
def __eq__(self, other):
if isinstance(other, (CompositeGenericTransform, CompositeAffine2D)):
return self is other or (self._a == other._a
and self._b == other._b)
else:
return False
def _iter_break_from_left_to_right(self):
for left, right in self._a._iter_break_from_left_to_right():
yield left, right + self._b
for left, right in self._b._iter_break_from_left_to_right():
yield self._a + left, right
def contains_branch_seperately(self, other_transform):
# docstring inherited
if self.output_dims != 2:
raise ValueError('contains_branch_seperately only supports '
'transforms with 2 output dimensions')
if self == other_transform:
return (True, True)
return self._b.contains_branch_seperately(other_transform)
depth = property(lambda self: self._a.depth + self._b.depth)
is_affine = property(lambda self: self._a.is_affine and self._b.is_affine)
is_separable = property(
lambda self: self._a.is_separable and self._b.is_separable)
has_inverse = property(
lambda self: self._a.has_inverse and self._b.has_inverse)
__str__ = _make_str_method("_a", "_b")
@_api.rename_parameter("3.8", "points", "values")
def transform_affine(self, values):
# docstring inherited
return self.get_affine().transform(values)
@_api.rename_parameter("3.8", "points", "values")
def transform_non_affine(self, values):
# docstring inherited
if self._a.is_affine and self._b.is_affine:
return values
elif not self._a.is_affine and self._b.is_affine:
return self._a.transform_non_affine(values)
else:
return self._b.transform_non_affine(self._a.transform(values))
def transform_path_non_affine(self, path):
# docstring inherited
if self._a.is_affine and self._b.is_affine:
return path
elif not self._a.is_affine and self._b.is_affine:
return self._a.transform_path_non_affine(path)
else:
return self._b.transform_path_non_affine(
self._a.transform_path(path))
def get_affine(self):
# docstring inherited
if not self._b.is_affine:
return self._b.get_affine()
else:
return Affine2D(np.dot(self._b.get_affine().get_matrix(),
self._a.get_affine().get_matrix()))
def inverted(self):
# docstring inherited
return CompositeGenericTransform(
self._b.inverted(), self._a.inverted())
class CompositeAffine2D(Affine2DBase):
"""
A composite transform formed by applying transform *a* then transform *b*.
This version is an optimization that handles the case where both *a*
and *b* are 2D affines.
"""
def __init__(self, a, b, **kwargs):
"""
Create a new composite transform that is the result of
applying `Affine2DBase` *a* then `Affine2DBase` *b*.
You will generally not call this constructor directly but write ``a +
b`` instead, which will automatically choose the best kind of composite
transform instance to create.
"""
if not a.is_affine or not b.is_affine:
raise ValueError("'a' and 'b' must be affine transforms")
if a.output_dims != b.input_dims:
raise ValueError("The output dimension of 'a' must be equal to "
"the input dimensions of 'b'")
self.input_dims = a.input_dims
self.output_dims = b.output_dims
super().__init__(**kwargs)
self._a = a
self._b = b
self.set_children(a, b)
self._mtx = None
@property
def depth(self):
return self._a.depth + self._b.depth
def _iter_break_from_left_to_right(self):
for left, right in self._a._iter_break_from_left_to_right():
yield left, right + self._b
for left, right in self._b._iter_break_from_left_to_right():
yield self._a + left, right
__str__ = _make_str_method("_a", "_b")
def get_matrix(self):
# docstring inherited
if self._invalid:
self._mtx = np.dot(
self._b.get_matrix(),
self._a.get_matrix())
self._inverted = None
self._invalid = 0
return self._mtx
def composite_transform_factory(a, b):
"""
Create a new composite transform that is the result of applying
transform a then transform b.
Shortcut versions of the blended transform are provided for the
case where both child transforms are affine, or one or the other
is the identity transform.
Composite transforms may also be created using the '+' operator,
e.g.::
c = a + b
"""
# check to see if any of a or b are IdentityTransforms. We use
# isinstance here to guarantee that the transforms will *always*
# be IdentityTransforms. Since TransformWrappers are mutable,
# use of equality here would be wrong.
if isinstance(a, IdentityTransform):
return b
elif isinstance(b, IdentityTransform):
return a
elif isinstance(a, Affine2D) and isinstance(b, Affine2D):
return CompositeAffine2D(a, b)
return CompositeGenericTransform(a, b)
class BboxTransform(Affine2DBase):
"""
`BboxTransform` linearly transforms points from one `Bbox` to another.
"""
is_separable = True
def __init__(self, boxin, boxout, **kwargs):
"""
Create a new `BboxTransform` that linearly transforms
points from *boxin* to *boxout*.
"""
_api.check_isinstance(BboxBase, boxin=boxin, boxout=boxout)
super().__init__(**kwargs)
self._boxin = boxin
self._boxout = boxout
self.set_children(boxin, boxout)
self._mtx = None
self._inverted = None
__str__ = _make_str_method("_boxin", "_boxout")
def get_matrix(self):
# docstring inherited
if self._invalid:
inl, inb, inw, inh = self._boxin.bounds
outl, outb, outw, outh = self._boxout.bounds
x_scale = outw / inw
y_scale = outh / inh
if DEBUG and (x_scale == 0 or y_scale == 0):
raise ValueError(
"Transforming from or to a singular bounding box")
self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale+outl)],
[0.0 , y_scale, (-inb*y_scale+outb)],
[0.0 , 0.0 , 1.0 ]],
float)
self._inverted = None
self._invalid = 0
return self._mtx
class BboxTransformTo(Affine2DBase):
"""
`BboxTransformTo` is a transformation that linearly transforms points from
the unit bounding box to a given `Bbox`.
"""
is_separable = True
def __init__(self, boxout, **kwargs):
"""
Create a new `BboxTransformTo` that linearly transforms
points from the unit bounding box to *boxout*.
"""
_api.check_isinstance(BboxBase, boxout=boxout)
super().__init__(**kwargs)
self._boxout = boxout
self.set_children(boxout)
self._mtx = None
self._inverted = None
__str__ = _make_str_method("_boxout")
def get_matrix(self):
# docstring inherited
if self._invalid:
outl, outb, outw, outh = self._boxout.bounds
if DEBUG and (outw == 0 or outh == 0):
raise ValueError("Transforming to a singular bounding box.")
self._mtx = np.array([[outw, 0.0, outl],
[ 0.0, outh, outb],
[ 0.0, 0.0, 1.0]],
float)
self._inverted = None
self._invalid = 0
return self._mtx
@_api.deprecated("3.9")
class BboxTransformToMaxOnly(BboxTransformTo):
"""
`BboxTransformToMaxOnly` is a transformation that linearly transforms points from
the unit bounding box to a given `Bbox` with a fixed upper left of (0, 0).
"""
def get_matrix(self):
# docstring inherited
if self._invalid:
xmax, ymax = self._boxout.max
if DEBUG and (xmax == 0 or ymax == 0):
raise ValueError("Transforming to a singular bounding box.")
self._mtx = np.array([[xmax, 0.0, 0.0],
[ 0.0, ymax, 0.0],
[ 0.0, 0.0, 1.0]],
float)
self._inverted = None
self._invalid = 0
return self._mtx
class BboxTransformFrom(Affine2DBase):
"""
`BboxTransformFrom` linearly transforms points from a given `Bbox` to the
unit bounding box.
"""
is_separable = True
def __init__(self, boxin, **kwargs):
_api.check_isinstance(BboxBase, boxin=boxin)
super().__init__(**kwargs)
self._boxin = boxin
self.set_children(boxin)
self._mtx = None
self._inverted = None
__str__ = _make_str_method("_boxin")
def get_matrix(self):
# docstring inherited
if self._invalid:
inl, inb, inw, inh = self._boxin.bounds
if DEBUG and (inw == 0 or inh == 0):
raise ValueError("Transforming from a singular bounding box.")
x_scale = 1.0 / inw
y_scale = 1.0 / inh
self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale)],
[0.0 , y_scale, (-inb*y_scale)],
[0.0 , 0.0 , 1.0 ]],
float)
self._inverted = None
self._invalid = 0
return self._mtx
class ScaledTranslation(Affine2DBase):
"""
A transformation that translates by *xt* and *yt*, after *xt* and *yt*
have been transformed by *scale_trans*.
"""
def __init__(self, xt, yt, scale_trans, **kwargs):
super().__init__(**kwargs)
self._t = (xt, yt)
self._scale_trans = scale_trans
self.set_children(scale_trans)
self._mtx = None
self._inverted = None
__str__ = _make_str_method("_t")
def get_matrix(self):
# docstring inherited
if self._invalid:
# A bit faster than np.identity(3).
self._mtx = IdentityTransform._mtx.copy()
self._mtx[:2, 2] = self._scale_trans.transform(self._t)
self._invalid = 0
self._inverted = None
return self._mtx
class AffineDeltaTransform(Affine2DBase):
r"""
A transform wrapper for transforming displacements between pairs of points.
This class is intended to be used to transform displacements ("position
deltas") between pairs of points (e.g., as the ``offset_transform``
of `.Collection`\s): given a transform ``t`` such that ``t =
AffineDeltaTransform(t) + offset``, ``AffineDeltaTransform``
satisfies ``AffineDeltaTransform(a - b) == AffineDeltaTransform(a) -
AffineDeltaTransform(b)``.
This is implemented by forcing the offset components of the transform
matrix to zero.
This class is experimental as of 3.3, and the API may change.
"""
def __init__(self, transform, **kwargs):
super().__init__(**kwargs)
self._base_transform = transform
__str__ = _make_str_method("_base_transform")
def get_matrix(self):
if self._invalid:
self._mtx = self._base_transform.get_matrix().copy()
self._mtx[:2, -1] = 0
return self._mtx
class TransformedPath(TransformNode):
"""
A `TransformedPath` caches a non-affine transformed copy of the
`~.path.Path`. This cached copy is automatically updated when the
non-affine part of the transform changes.
.. note::
Paths are considered immutable by this class. Any update to the
path's vertices/codes will not trigger a transform recomputation.
"""
def __init__(self, path, transform):
"""
Parameters
----------
path : `~.path.Path`
transform : `Transform`
"""
_api.check_isinstance(Transform, transform=transform)
super().__init__()
self._path = path
self._transform = transform
self.set_children(transform)
self._transformed_path = None
self._transformed_points = None
def _revalidate(self):
# only recompute if the invalidation includes the non_affine part of
# the transform
if (self._invalid == self._INVALID_FULL
or self._transformed_path is None):
self._transformed_path = \
self._transform.transform_path_non_affine(self._path)
self._transformed_points = \
Path._fast_from_codes_and_verts(
self._transform.transform_non_affine(self._path.vertices),
None, self._path)
self._invalid = 0
def get_transformed_points_and_affine(self):
"""
Return a copy of the child path, with the non-affine part of
the transform already applied, along with the affine part of
the path necessary to complete the transformation. Unlike
:meth:`get_transformed_path_and_affine`, no interpolation will
be performed.
"""
self._revalidate()
return self._transformed_points, self.get_affine()
def get_transformed_path_and_affine(self):
"""
Return a copy of the child path, with the non-affine part of
the transform already applied, along with the affine part of
the path necessary to complete the transformation.
"""
self._revalidate()
return self._transformed_path, self.get_affine()
def get_fully_transformed_path(self):
"""
Return a fully-transformed copy of the child path.
"""
self._revalidate()
return self._transform.transform_path_affine(self._transformed_path)
def get_affine(self):
return self._transform.get_affine()
class TransformedPatchPath(TransformedPath):
"""
A `TransformedPatchPath` caches a non-affine transformed copy of the
`~.patches.Patch`. This cached copy is automatically updated when the
non-affine part of the transform or the patch changes.
"""
def __init__(self, patch):
"""
Parameters
----------
patch : `~.patches.Patch`
"""
# Defer to TransformedPath.__init__.
super().__init__(patch.get_path(), patch.get_transform())
self._patch = patch
def _revalidate(self):
patch_path = self._patch.get_path()
# Force invalidation if the patch path changed; otherwise, let base
# class check invalidation.
if patch_path != self._path:
self._path = patch_path
self._transformed_path = None
super()._revalidate()
def nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increasing=True):
"""
Modify the endpoints of a range as needed to avoid singularities.
Parameters
----------
vmin, vmax : float
The initial endpoints.
expander : float, default: 0.001
Fractional amount by which *vmin* and *vmax* are expanded if
the original interval is too small, based on *tiny*.
tiny : float, default: 1e-15
Threshold for the ratio of the interval to the maximum absolute
value of its endpoints. If the interval is smaller than
this, it will be expanded. This value should be around
1e-15 or larger; otherwise the interval will be approaching
the double precision resolution limit.
increasing : bool, default: True
If True, swap *vmin*, *vmax* if *vmin* > *vmax*.
Returns
-------
vmin, vmax : float
Endpoints, expanded and/or swapped if necessary.
If either input is inf or NaN, or if both inputs are 0 or very
close to zero, it returns -*expander*, *expander*.
"""
if (not np.isfinite(vmin)) or (not np.isfinite(vmax)):
return -expander, expander
swapped = False
if vmax < vmin:
vmin, vmax = vmax, vmin
swapped = True
# Expand vmin, vmax to float: if they were integer types, they can wrap
# around in abs (abs(np.int8(-128)) == -128) and vmax - vmin can overflow.
vmin, vmax = map(float, [vmin, vmax])
maxabsvalue = max(abs(vmin), abs(vmax))
if maxabsvalue < (1e6 / tiny) * np.finfo(float).tiny:
vmin = -expander
vmax = expander
elif vmax - vmin <= maxabsvalue * tiny:
if vmax == 0 and vmin == 0:
vmin = -expander
vmax = expander
else:
vmin -= expander*abs(vmin)
vmax += expander*abs(vmax)
if swapped and not increasing:
vmin, vmax = vmax, vmin
return vmin, vmax
def interval_contains(interval, val):
"""
Check, inclusively, whether an interval includes a given value.
Parameters
----------
interval : (float, float)
The endpoints of the interval.
val : float
Value to check is within interval.
Returns
-------
bool
Whether *val* is within the *interval*.
"""
a, b = interval
if a > b:
a, b = b, a
return a <= val <= b
def _interval_contains_close(interval, val, rtol=1e-10):
"""
Check, inclusively, whether an interval includes a given value, with the
interval expanded by a small tolerance to admit floating point errors.
Parameters
----------
interval : (float, float)
The endpoints of the interval.
val : float
Value to check is within interval.
rtol : float, default: 1e-10
Relative tolerance slippage allowed outside of the interval.
For an interval ``[a, b]``, values
``a - rtol * (b - a) <= val <= b + rtol * (b - a)`` are considered
inside the interval.
Returns
-------
bool
Whether *val* is within the *interval* (with tolerance).
"""
a, b = interval
if a > b:
a, b = b, a
rtol = (b - a) * rtol
return a - rtol <= val <= b + rtol
def interval_contains_open(interval, val):
"""
Check, excluding endpoints, whether an interval includes a given value.
Parameters
----------
interval : (float, float)
The endpoints of the interval.
val : float
Value to check is within interval.
Returns
-------
bool
Whether *val* is within the *interval*.
"""
a, b = interval
return a < val < b or a > val > b
def offset_copy(trans, fig=None, x=0.0, y=0.0, units='inches'):
"""
Return a new transform with an added offset.
Parameters
----------
trans : `Transform` subclass
Any transform, to which offset will be applied.
fig : `~matplotlib.figure.Figure`, default: None
Current figure. It can be None if *units* are 'dots'.
x, y : float, default: 0.0
The offset to apply.
units : {'inches', 'points', 'dots'}, default: 'inches'
Units of the offset.
Returns
-------
`Transform` subclass
Transform with applied offset.
"""
_api.check_in_list(['dots', 'points', 'inches'], units=units)
if units == 'dots':
return trans + Affine2D().translate(x, y)
if fig is None:
raise ValueError('For units of inches or points a fig kwarg is needed')
if units == 'points':
x /= 72.0
y /= 72.0
# Default units are 'inches'
return trans + ScaledTranslation(x, y, fig.dpi_scale_trans)
|