File size: 19,049 Bytes
7d8711c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
"""
A module providing some utility functions regarding Bézier path manipulation.
"""
from functools import lru_cache
import math
import warnings
import numpy as np
from matplotlib import _api
# same algorithm as 3.8's math.comb
@np.vectorize
@lru_cache(maxsize=128)
def _comb(n, k):
if k > n:
return 0
k = min(k, n - k)
i = np.arange(1, k + 1)
return np.prod((n + 1 - i)/i).astype(int)
class NonIntersectingPathException(ValueError):
pass
# some functions
def get_intersection(cx1, cy1, cos_t1, sin_t1,
cx2, cy2, cos_t2, sin_t2):
"""
Return the intersection between the line through (*cx1*, *cy1*) at angle
*t1* and the line through (*cx2*, *cy2*) at angle *t2*.
"""
# line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0.
# line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1
line1_rhs = sin_t1 * cx1 - cos_t1 * cy1
line2_rhs = sin_t2 * cx2 - cos_t2 * cy2
# rhs matrix
a, b = sin_t1, -cos_t1
c, d = sin_t2, -cos_t2
ad_bc = a * d - b * c
if abs(ad_bc) < 1e-12:
raise ValueError("Given lines do not intersect. Please verify that "
"the angles are not equal or differ by 180 degrees.")
# rhs_inverse
a_, b_ = d, -b
c_, d_ = -c, a
a_, b_, c_, d_ = (k / ad_bc for k in [a_, b_, c_, d_])
x = a_ * line1_rhs + b_ * line2_rhs
y = c_ * line1_rhs + d_ * line2_rhs
return x, y
def get_normal_points(cx, cy, cos_t, sin_t, length):
"""
For a line passing through (*cx*, *cy*) and having an angle *t*, return
locations of the two points located along its perpendicular line at the
distance of *length*.
"""
if length == 0.:
return cx, cy, cx, cy
cos_t1, sin_t1 = sin_t, -cos_t
cos_t2, sin_t2 = -sin_t, cos_t
x1, y1 = length * cos_t1 + cx, length * sin_t1 + cy
x2, y2 = length * cos_t2 + cx, length * sin_t2 + cy
return x1, y1, x2, y2
# BEZIER routines
# subdividing bezier curve
# http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html
def _de_casteljau1(beta, t):
next_beta = beta[:-1] * (1 - t) + beta[1:] * t
return next_beta
def split_de_casteljau(beta, t):
"""
Split a Bézier segment defined by its control points *beta* into two
separate segments divided at *t* and return their control points.
"""
beta = np.asarray(beta)
beta_list = [beta]
while True:
beta = _de_casteljau1(beta, t)
beta_list.append(beta)
if len(beta) == 1:
break
left_beta = [beta[0] for beta in beta_list]
right_beta = [beta[-1] for beta in reversed(beta_list)]
return left_beta, right_beta
def find_bezier_t_intersecting_with_closedpath(
bezier_point_at_t, inside_closedpath, t0=0., t1=1., tolerance=0.01):
"""
Find the intersection of the Bézier curve with a closed path.
The intersection point *t* is approximated by two parameters *t0*, *t1*
such that *t0* <= *t* <= *t1*.
Search starts from *t0* and *t1* and uses a simple bisecting algorithm
therefore one of the end points must be inside the path while the other
doesn't. The search stops when the distance of the points parametrized by
*t0* and *t1* gets smaller than the given *tolerance*.
Parameters
----------
bezier_point_at_t : callable
A function returning x, y coordinates of the Bézier at parameter *t*.
It must have the signature::
bezier_point_at_t(t: float) -> tuple[float, float]
inside_closedpath : callable
A function returning True if a given point (x, y) is inside the
closed path. It must have the signature::
inside_closedpath(point: tuple[float, float]) -> bool
t0, t1 : float
Start parameters for the search.
tolerance : float
Maximal allowed distance between the final points.
Returns
-------
t0, t1 : float
The Bézier path parameters.
"""
start = bezier_point_at_t(t0)
end = bezier_point_at_t(t1)
start_inside = inside_closedpath(start)
end_inside = inside_closedpath(end)
if start_inside == end_inside and start != end:
raise NonIntersectingPathException(
"Both points are on the same side of the closed path")
while True:
# return if the distance is smaller than the tolerance
if np.hypot(start[0] - end[0], start[1] - end[1]) < tolerance:
return t0, t1
# calculate the middle point
middle_t = 0.5 * (t0 + t1)
middle = bezier_point_at_t(middle_t)
middle_inside = inside_closedpath(middle)
if start_inside ^ middle_inside:
t1 = middle_t
if end == middle:
# Edge case where infinite loop is possible
# Caused by large numbers relative to tolerance
return t0, t1
end = middle
else:
t0 = middle_t
if start == middle:
# Edge case where infinite loop is possible
# Caused by large numbers relative to tolerance
return t0, t1
start = middle
start_inside = middle_inside
class BezierSegment:
"""
A d-dimensional Bézier segment.
Parameters
----------
control_points : (N, d) array
Location of the *N* control points.
"""
def __init__(self, control_points):
self._cpoints = np.asarray(control_points)
self._N, self._d = self._cpoints.shape
self._orders = np.arange(self._N)
coeff = [math.factorial(self._N - 1)
// (math.factorial(i) * math.factorial(self._N - 1 - i))
for i in range(self._N)]
self._px = (self._cpoints.T * coeff).T
def __call__(self, t):
"""
Evaluate the Bézier curve at point(s) *t* in [0, 1].
Parameters
----------
t : (k,) array-like
Points at which to evaluate the curve.
Returns
-------
(k, d) array
Value of the curve for each point in *t*.
"""
t = np.asarray(t)
return (np.power.outer(1 - t, self._orders[::-1])
* np.power.outer(t, self._orders)) @ self._px
def point_at_t(self, t):
"""
Evaluate the curve at a single point, returning a tuple of *d* floats.
"""
return tuple(self(t))
@property
def control_points(self):
"""The control points of the curve."""
return self._cpoints
@property
def dimension(self):
"""The dimension of the curve."""
return self._d
@property
def degree(self):
"""Degree of the polynomial. One less the number of control points."""
return self._N - 1
@property
def polynomial_coefficients(self):
r"""
The polynomial coefficients of the Bézier curve.
.. warning:: Follows opposite convention from `numpy.polyval`.
Returns
-------
(n+1, d) array
Coefficients after expanding in polynomial basis, where :math:`n`
is the degree of the Bézier curve and :math:`d` its dimension.
These are the numbers (:math:`C_j`) such that the curve can be
written :math:`\sum_{j=0}^n C_j t^j`.
Notes
-----
The coefficients are calculated as
.. math::
{n \choose j} \sum_{i=0}^j (-1)^{i+j} {j \choose i} P_i
where :math:`P_i` are the control points of the curve.
"""
n = self.degree
# matplotlib uses n <= 4. overflow plausible starting around n = 15.
if n > 10:
warnings.warn("Polynomial coefficients formula unstable for high "
"order Bezier curves!", RuntimeWarning)
P = self.control_points
j = np.arange(n+1)[:, None]
i = np.arange(n+1)[None, :] # _comb is non-zero for i <= j
prefactor = (-1)**(i + j) * _comb(j, i) # j on axis 0, i on axis 1
return _comb(n, j) * prefactor @ P # j on axis 0, self.dimension on 1
def axis_aligned_extrema(self):
"""
Return the dimension and location of the curve's interior extrema.
The extrema are the points along the curve where one of its partial
derivatives is zero.
Returns
-------
dims : array of int
Index :math:`i` of the partial derivative which is zero at each
interior extrema.
dzeros : array of float
Of same size as dims. The :math:`t` such that :math:`d/dx_i B(t) =
0`
"""
n = self.degree
if n <= 1:
return np.array([]), np.array([])
Cj = self.polynomial_coefficients
dCj = np.arange(1, n+1)[:, None] * Cj[1:]
dims = []
roots = []
for i, pi in enumerate(dCj.T):
r = np.roots(pi[::-1])
roots.append(r)
dims.append(np.full_like(r, i))
roots = np.concatenate(roots)
dims = np.concatenate(dims)
in_range = np.isreal(roots) & (roots >= 0) & (roots <= 1)
return dims[in_range], np.real(roots)[in_range]
def split_bezier_intersecting_with_closedpath(
bezier, inside_closedpath, tolerance=0.01):
"""
Split a Bézier curve into two at the intersection with a closed path.
Parameters
----------
bezier : (N, 2) array-like
Control points of the Bézier segment. See `.BezierSegment`.
inside_closedpath : callable
A function returning True if a given point (x, y) is inside the
closed path. See also `.find_bezier_t_intersecting_with_closedpath`.
tolerance : float
The tolerance for the intersection. See also
`.find_bezier_t_intersecting_with_closedpath`.
Returns
-------
left, right
Lists of control points for the two Bézier segments.
"""
bz = BezierSegment(bezier)
bezier_point_at_t = bz.point_at_t
t0, t1 = find_bezier_t_intersecting_with_closedpath(
bezier_point_at_t, inside_closedpath, tolerance=tolerance)
_left, _right = split_de_casteljau(bezier, (t0 + t1) / 2.)
return _left, _right
# matplotlib specific
def split_path_inout(path, inside, tolerance=0.01, reorder_inout=False):
"""
Divide a path into two segments at the point where ``inside(x, y)`` becomes
False.
"""
from .path import Path
path_iter = path.iter_segments()
ctl_points, command = next(path_iter)
begin_inside = inside(ctl_points[-2:]) # true if begin point is inside
ctl_points_old = ctl_points
iold = 0
i = 1
for ctl_points, command in path_iter:
iold = i
i += len(ctl_points) // 2
if inside(ctl_points[-2:]) != begin_inside:
bezier_path = np.concatenate([ctl_points_old[-2:], ctl_points])
break
ctl_points_old = ctl_points
else:
raise ValueError("The path does not intersect with the patch")
bp = bezier_path.reshape((-1, 2))
left, right = split_bezier_intersecting_with_closedpath(
bp, inside, tolerance)
if len(left) == 2:
codes_left = [Path.LINETO]
codes_right = [Path.MOVETO, Path.LINETO]
elif len(left) == 3:
codes_left = [Path.CURVE3, Path.CURVE3]
codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3]
elif len(left) == 4:
codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4]
codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4]
else:
raise AssertionError("This should never be reached")
verts_left = left[1:]
verts_right = right[:]
if path.codes is None:
path_in = Path(np.concatenate([path.vertices[:i], verts_left]))
path_out = Path(np.concatenate([verts_right, path.vertices[i:]]))
else:
path_in = Path(np.concatenate([path.vertices[:iold], verts_left]),
np.concatenate([path.codes[:iold], codes_left]))
path_out = Path(np.concatenate([verts_right, path.vertices[i:]]),
np.concatenate([codes_right, path.codes[i:]]))
if reorder_inout and not begin_inside:
path_in, path_out = path_out, path_in
return path_in, path_out
def inside_circle(cx, cy, r):
"""
Return a function that checks whether a point is in a circle with center
(*cx*, *cy*) and radius *r*.
The returned function has the signature::
f(xy: tuple[float, float]) -> bool
"""
r2 = r ** 2
def _f(xy):
x, y = xy
return (x - cx) ** 2 + (y - cy) ** 2 < r2
return _f
# quadratic Bezier lines
def get_cos_sin(x0, y0, x1, y1):
dx, dy = x1 - x0, y1 - y0
d = (dx * dx + dy * dy) ** .5
# Account for divide by zero
if d == 0:
return 0.0, 0.0
return dx / d, dy / d
def check_if_parallel(dx1, dy1, dx2, dy2, tolerance=1.e-5):
"""
Check if two lines are parallel.
Parameters
----------
dx1, dy1, dx2, dy2 : float
The gradients *dy*/*dx* of the two lines.
tolerance : float
The angular tolerance in radians up to which the lines are considered
parallel.
Returns
-------
is_parallel
- 1 if two lines are parallel in same direction.
- -1 if two lines are parallel in opposite direction.
- False otherwise.
"""
theta1 = np.arctan2(dx1, dy1)
theta2 = np.arctan2(dx2, dy2)
dtheta = abs(theta1 - theta2)
if dtheta < tolerance:
return 1
elif abs(dtheta - np.pi) < tolerance:
return -1
else:
return False
def get_parallels(bezier2, width):
"""
Given the quadratic Bézier control points *bezier2*, returns
control points of quadratic Bézier lines roughly parallel to given
one separated by *width*.
"""
# The parallel Bezier lines are constructed by following ways.
# c1 and c2 are control points representing the start and end of the
# Bezier line.
# cm is the middle point
c1x, c1y = bezier2[0]
cmx, cmy = bezier2[1]
c2x, c2y = bezier2[2]
parallel_test = check_if_parallel(c1x - cmx, c1y - cmy,
cmx - c2x, cmy - c2y)
if parallel_test == -1:
_api.warn_external(
"Lines do not intersect. A straight line is used instead.")
cos_t1, sin_t1 = get_cos_sin(c1x, c1y, c2x, c2y)
cos_t2, sin_t2 = cos_t1, sin_t1
else:
# t1 and t2 is the angle between c1 and cm, cm, c2. They are
# also an angle of the tangential line of the path at c1 and c2
cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy)
cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y)
# find c1_left, c1_right which are located along the lines
# through c1 and perpendicular to the tangential lines of the
# Bezier path at a distance of width. Same thing for c2_left and
# c2_right with respect to c2.
c1x_left, c1y_left, c1x_right, c1y_right = (
get_normal_points(c1x, c1y, cos_t1, sin_t1, width)
)
c2x_left, c2y_left, c2x_right, c2y_right = (
get_normal_points(c2x, c2y, cos_t2, sin_t2, width)
)
# find cm_left which is the intersecting point of a line through
# c1_left with angle t1 and a line through c2_left with angle
# t2. Same with cm_right.
try:
cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1,
sin_t1, c2x_left, c2y_left,
cos_t2, sin_t2)
cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1,
sin_t1, c2x_right, c2y_right,
cos_t2, sin_t2)
except ValueError:
# Special case straight lines, i.e., angle between two lines is
# less than the threshold used by get_intersection (we don't use
# check_if_parallel as the threshold is not the same).
cmx_left, cmy_left = (
0.5 * (c1x_left + c2x_left), 0.5 * (c1y_left + c2y_left)
)
cmx_right, cmy_right = (
0.5 * (c1x_right + c2x_right), 0.5 * (c1y_right + c2y_right)
)
# the parallel Bezier lines are created with control points of
# [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right]
path_left = [(c1x_left, c1y_left),
(cmx_left, cmy_left),
(c2x_left, c2y_left)]
path_right = [(c1x_right, c1y_right),
(cmx_right, cmy_right),
(c2x_right, c2y_right)]
return path_left, path_right
def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y):
"""
Find control points of the Bézier curve passing through (*c1x*, *c1y*),
(*mmx*, *mmy*), and (*c2x*, *c2y*), at parametric values 0, 0.5, and 1.
"""
cmx = .5 * (4 * mmx - (c1x + c2x))
cmy = .5 * (4 * mmy - (c1y + c2y))
return [(c1x, c1y), (cmx, cmy), (c2x, c2y)]
def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.):
"""
Being similar to `get_parallels`, returns control points of two quadratic
Bézier lines having a width roughly parallel to given one separated by
*width*.
"""
# c1, cm, c2
c1x, c1y = bezier2[0]
cmx, cmy = bezier2[1]
c3x, c3y = bezier2[2]
# t1 and t2 is the angle between c1 and cm, cm, c3.
# They are also an angle of the tangential line of the path at c1 and c3
cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy)
cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y)
# find c1_left, c1_right which are located along the lines
# through c1 and perpendicular to the tangential lines of the
# Bezier path at a distance of width. Same thing for c3_left and
# c3_right with respect to c3.
c1x_left, c1y_left, c1x_right, c1y_right = (
get_normal_points(c1x, c1y, cos_t1, sin_t1, width * w1)
)
c3x_left, c3y_left, c3x_right, c3y_right = (
get_normal_points(c3x, c3y, cos_t2, sin_t2, width * w2)
)
# find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and
# c12-c23
c12x, c12y = (c1x + cmx) * .5, (c1y + cmy) * .5
c23x, c23y = (cmx + c3x) * .5, (cmy + c3y) * .5
c123x, c123y = (c12x + c23x) * .5, (c12y + c23y) * .5
# tangential angle of c123 (angle between c12 and c23)
cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y)
c123x_left, c123y_left, c123x_right, c123y_right = (
get_normal_points(c123x, c123y, cos_t123, sin_t123, width * wm)
)
path_left = find_control_points(c1x_left, c1y_left,
c123x_left, c123y_left,
c3x_left, c3y_left)
path_right = find_control_points(c1x_right, c1y_right,
c123x_right, c123y_right,
c3x_right, c3y_right)
return path_left, path_right
|