File size: 7,937 Bytes
095b0c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python
# encoding: utf-8

"""
Author(s): Matthew Loper

See LICENCE.txt for licensing and contact information.
"""


__all__ = ['inv', 'svd', 'det', 'slogdet', 'pinv', 'lstsq', 'norm']

import numpy as np
import scipy.sparse as sp
from .ch import Ch, depends_on
from .ch_ops import NanDivide
from .ch_ops import asarray as ch_asarray
from .ch_ops import sqrt as ch_sqrt
from .ch_ops import sum as ch_sum
from .reordering import concatenate as ch_concatenate
from .ch_random import randn as ch_random_randn
from .utils import row, col


try:
    asarray = ch_asarray
    import inspect
    exec(''.join(inspect.getsourcelines(np.linalg.tensorinv)[0]))
    __all__.append('tensorinv')
except: pass

def norm(x, ord=None, axis=None):
    if ord is not None or axis is not None:
        raise NotImplementedError("'ord' and 'axis' should be None for now.")

    return ch_sqrt(ch_sum(x**2))

# This version works but derivatives are too slow b/c of nested loop in Svd implementation.
# def lstsq(a, b):
#     u, s, v = Svd(a)
#     x = (v.T / s).dot(u.T.dot(b))
#     residuals = NotImplementedError # ch_sum((a.dot(x) - b)**2, axis=0)
#     rank = NotImplementedError
#     s = NotImplementedError
#     return x, residuals, rank, s

def lstsq(a, b, rcond=-1):
    if rcond != -1:
        raise Exception('non-default rcond not yet implemented')
        
    x = Ch(lambda a, b : pinv(a).dot(b))
    x.a = a
    x.b = b
    residuals = ch_sum(  (x.a.dot(x) - x.b) **2 , axis=0)
    rank = NotImplementedError
    s = NotImplementedError
    
    return x, residuals, rank, s

def Svd(x, full_matrices=0, compute_uv=1):
    
    if full_matrices != 0:
        raise Exception('full_matrices must be 0')
    if compute_uv != 1:
        raise Exception('compute_uv must be 1')
        
    need_transpose = x.shape[0] < x.shape[1]
    
    if need_transpose:
        x = x.T
        
    svd_d = SvdD(x=x)
    svd_v = SvdV(x=x, svd_d=svd_d)
    svd_u = SvdU(x=x, svd_d=svd_d, svd_v=svd_v)

    if need_transpose:
        return svd_v, svd_d, svd_u.T
    else:
        return svd_u, svd_d, svd_v.T

    
class Pinv(Ch):
    dterms = 'mtx'
    
    def on_changed(self, which):
        mtx = self.mtx
        if mtx.shape[1] > mtx.shape[0]:
            result = mtx.T.dot(Inv(mtx.dot(mtx.T)))
        else:
            result = Inv(mtx.T.dot(mtx)).dot(mtx.T)
        self._result = result
        
    def compute_r(self):
        return self._result.r
        
    def compute_dr_wrt(self, wrt):
        if wrt is self.mtx:
            return self._result.dr_wrt(self.mtx)
        
# Couldn't make the SVD version of pinv work yet...
#
# class Pinv(Ch):
#     dterms = 'mtx'
#     
#     def on_changed(self, which):
#         u, s, v = Svd(self.mtx)
#         result = (v.T * (NanDivide(1.,row(s)))).dot(u.T)
#         self.add_dterm('_result', result)
# 
#     def compute_r(self):
#         return self._result.r
#         
#     def compute_dr_wrt(self, wrt):
#         if wrt is self._result:
#             return 1



class LogAbsDet(Ch):
    dterms = 'x'
    
    def on_changed(self, which):
        self.sign, self.slogdet = np.linalg.slogdet(self.x.r)
    
    def compute_r(self):
        return self.slogdet
        
    def compute_dr_wrt(self, wrt):
        if wrt is self.x:         
            return row(np.linalg.inv(self.x.r).T)

class SignLogAbsDet(Ch):
    dterms = 'logabsdet',
    
    def compute_r(self):
        _ = self.logabsdet.r
        return self.logabsdet.sign
        
    def compute_dr_wrt(self, wrt):
        return None


class Det(Ch):
    dterms = 'x'

    def compute_r(self):
        return np.linalg.det(self.x.r)

    def compute_dr_wrt(self, wrt):
        if wrt is self.x:
            return row(self.r * np.linalg.inv(self.x.r).T)


class Inv(Ch):
    dterms = 'a'
    
    def compute_r(self):
        return np.linalg.inv(self.a.r)
    
    def compute_dr_wrt(self, wrt):
        if wrt is not self.a:
            return None
    
        Ainv = self.r

        if Ainv.ndim <= 2:
            return -np.kron(Ainv, Ainv.T)
        else:
            Ainv = np.reshape(Ainv,  (-1, Ainv.shape[-2], Ainv.shape[-1]))
            AinvT = np.rollaxis(Ainv, -1, -2)
            AinvT = np.reshape(AinvT, (-1, AinvT.shape[-2], AinvT.shape[-1]))
            result = np.dstack([-np.kron(Ainv[i], AinvT[i]).T for i in range(Ainv.shape[0])]).T
            result = sp.block_diag(result)

        return result


class SvdD(Ch):
    dterms = 'x'

    @depends_on('x')
    def UDV(self):
        result = np.linalg.svd(self.x.r, full_matrices=False)
        result = [result[0], result[1], result[2].T]
        result[1][np.abs(result[1]) < np.spacing(1)] = 0.
        return result
    
    def compute_r(self):
        return self.UDV[1]
    
    def compute_dr_wrt(self, wrt):
        if wrt is not self.x:
            return
        
        u, d, v = self.UDV
        shp = self.x.r.shape
        u = u[:shp[0], :shp[1]]
        v = v[:shp[1], :d.size]
        
        result = np.einsum('ik,jk->kij', u, v)
        result = result.reshape((result.shape[0], -1))
        return result
    
    
class SvdV(Ch):
    terms = 'svd_d'
    dterms = 'x'
    
    def compute_r(self):
        return self.svd_d.UDV[2]

    def compute_dr_wrt(self, wrt):
        if wrt is not self.x:
            return
        
        U,_D,V = self.svd_d.UDV
        
        shp = self.svd_d.x.r.shape
        mxsz = max(shp[0], shp[1])
        #mnsz = min(shp[0], shp[1])
        D = np.zeros(mxsz)
        D[:_D.size] = _D

        omega = np.zeros((shp[0], shp[1], shp[1], shp[1]))

        M = shp[0]
        N = shp[1]
        
        assert(M >= N)
        
        for i in range(shp[0]):
            for j in range(shp[1]):
                for k in range(N):
                    for l in range(k+1, N):
                        mtx = np.array([
                            [D[l],D[k]],
                            [D[k],D[l]]])
                    
                        rhs = np.array([U[i,k]*V[j,l], -U[i,l]*V[j,k]])
                        result = np.linalg.solve(mtx, rhs)
                        
                        omega[i,j,k,l] =  result[1]
                        omega[i,j,l,k] = -result[1]
                   
        #print 'v size is %s' % (str(V.shape),)
        #print 'v omega size is %s' % (str(omega.shape),)
        assert(V.shape[1] == omega.shape[2])
        return np.einsum('ak,ijkl->alij', -V, omega).reshape((self.r.size, wrt.r.size))
        
        
class SvdU(Ch):
    dterms = 'x'
    terms = 'svd_d', 'svd_v'

    def compute_r(self):
        return self.svd_d.UDV[0]
    
    def compute_dr_wrt(self, wrt):
        if wrt is self.x:
            # return (
            #     self.svd_d.x.dot(self.svd_v)
            #     /
            #     self.svd_d.reshape((1,-1))
            #     ).dr_wrt(self.svd_d.x)
            return (
                NanDivide(
                    self.svd_d.x.dot(self.svd_v),
                    self.svd_d.reshape((1,-1)))
                ).dr_wrt(self.svd_d.x)
    

inv = Inv
svd = Svd
det = Det
pinv = Pinv

def slogdet(*args):
    n = len(args)
    if n == 1:
        r2 = LogAbsDet(x=args[0])
        r1 = SignLogAbsDet(r2)
        return r1, r2
    else:
        r2 = [LogAbsDet(x=arg) for arg in args]
        r1 = [SignLogAbsDet(r) for r in r2]
        r2 = ch_concatenate(r2)
        return r1, r2

def main():
    
    tmp = ch_random_randn(100).reshape((10,10))
    print('chumpy version: ' + str(slogdet(tmp)[1].r))
    print('old version:' + str(np.linalg.slogdet(tmp.r)[1]))

    eps = 1e-10
    diff = np.random.rand(100) * eps
    diff_reshaped = diff.reshape((10,10))
    print(np.linalg.slogdet(tmp.r+diff_reshaped)[1] - np.linalg.slogdet(tmp.r)[1])
    print(slogdet(tmp)[1].dr_wrt(tmp).dot(diff))
    
    print(np.linalg.slogdet(tmp.r)[0])
    print(slogdet(tmp)[0])

if __name__ == '__main__':
    main()