File size: 21,867 Bytes
095b0c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
#!/usr/bin/env python
# encoding: utf-8
"""
Author(s): Matthew Loper
See LICENCE.txt for licensing and contact information.
"""
import time
import unittest
import numpy as np
import scipy.sparse as sp
from . import ch
class TestCh(unittest.TestCase):
def test_cachehits(self):
"""Test how many nodes are visited when cache is cleared.
If the number of hits changes, it has to be carefully
looked at to make sure that correctness and performance
don't get messed up by a change."""
a = ch.array(1)
b = ch.array(2)
c = a
for i in range(10):
c = a + c + b
c.dr_wrt(a)
c.dr_wrt(b)
self.assertEqual(a.clear_cache() + b.clear_cache(), 59)
c.dr_wrt(a)
c.dr_wrt(b)
self.assertEqual(a.clear_cache(123) + b.clear_cache(123), 41)
def test_nested_concatenate(self):
aa = ch.arange(3)
bb = ch.arange(4)
cc = ch.arange(5)
result = ch.concatenate((ch.concatenate((aa,bb)),cc))
self.assertTrue(result.m0 is aa)
self.assertTrue(result.m1 is bb)
self.assertTrue(result.m2 is cc)
self.assertTrue(result.dr_wrt(aa).nnz > 0)
self.assertTrue(result.dr_wrt(bb).nnz > 0)
self.assertTrue(result.dr_wrt(cc).nnz > 0)
def test_nandivide(self):
foo = ch.array(np.random.randn(16).reshape((4,4)))
bar = ch.array(np.random.randn(16).reshape((4,4)))
bar[2,2] = 0
self.assertEqual(ch.NanDivide(foo,bar)[2,2].r, 0.)
foo[2,2] = 0
self.assertEqual(ch.NanDivide(foo,bar)[2,2].r, 0.)
def test_casting(self):
for fn in float, int:
self.assertEqual(fn(np.array(5)), fn(ch.array(5)))
self.assertEqual(fn(np.array([[5]])), fn(ch.array([[5]])))
def test_tensordot(self):
an = np.arange(60.).reshape(3,4,5)
bn = np.arange(24.).reshape(4,3,2)
cn = np.tensordot(an,bn, axes=([1,0],[0,1]))
ac = ch.arange(60.).reshape(3,4,5)
bc = ch.arange(24.).reshape(4,3,2)
cc = ch.tensordot(ac,bc, axes=([1,0],[0,1]))
cc.r
cc.dr_wrt(ac)
cc.dr_wrt(bc)
#print cn
def test_make_sure_is_double(self):
x = ch.array([0])
self.assertTrue(isinstance(x.r[0], np.float64))
def test_cross(self):
aa = ch.random.randn(30).reshape((10,3))
bb = ch.random.randn(30).reshape((10,3))
cross_ch = ch.cross(aa, bb)
cross_np = np.cross(aa.r, bb.r)
# print cross_ch.r
# print cross_np
eps = 1.0
step = (np.random.rand(30) - .5).reshape((10,3)) * eps
gt_diff = np.cross(aa.r, bb.r+step) - cross_np
pr_diff = cross_ch.dr_wrt(bb).dot(step.ravel())
# print gt_diff
# print pr_diff
# print np.max(np.abs(gt_diff.ravel()-pr_diff.ravel()))
self.assertTrue(1e-14 > np.max(np.abs(gt_diff.ravel()-pr_diff.ravel())))
gt_diff = np.cross(aa.r+step, bb.r) - cross_np
pr_diff = cross_ch.dr_wrt(aa).dot(step.ravel())
#print gt_diff
# print pr_diff
# print np.max(np.abs(gt_diff.ravel()-pr_diff.ravel()))
self.assertTrue(1e-14 > np.max(np.abs(gt_diff.ravel()-pr_diff.ravel())))
def test_dr_wrt_selection(self):
aa = ch.arange(10,20)
bb = ch.arange(1,11)
cc = aa * bb + aa + bb +2
dr0 = cc.dr_wrt(aa[4:6])
dr1 = cc.dr_wrt(aa)[:,4:6]
self.assertTrue((dr0 - dr1).nnz == 0)
dr0 = cc.dr_wrt(bb[5:8])
dr1 = cc.dr_wrt(bb)[:,5:8]
self.assertTrue((dr0 - dr1).nnz == 0)
def test_sum_mean_std_var(self):
for fn in [ch.sum, ch.mean, ch.var, ch.std]:
# Create fake input and differences in input space
data1 = ch.ones((3,4,7,2))
data2 = ch.array(data1.r + .1 * np.random.rand(data1.size).reshape(data1.shape))
diff = data2.r - data1.r
# Compute outputs
result1 = fn(data1, axis=2)
result2 = fn(data2, axis=2)
# Empirical and predicted derivatives
gt = result2.r - result1.r
pred = result1.dr_wrt(data1).dot(diff.ravel()).reshape(gt.shape)
#print np.max(np.abs(gt - pred))
if fn in [ch.std, ch.var]:
self.assertTrue(1e-2 > np.max(np.abs(gt - pred)))
else:
self.assertTrue(1e-14 > np.max(np.abs(gt - pred)))
# test caching
dr0 = result1.dr_wrt(data1)
data1[:] = np.random.randn(data1.size).reshape(data1.shape)
self.assertTrue(result1.dr_wrt(data1) is dr0) # changing values shouldn't force recompute
result1.axis=1
self.assertTrue(result1.dr_wrt(data1) is not dr0)
self.assertEqual(ch.mean(ch.eye(3),axis=1).ndim, np.mean(np.eye(3),axis=1).ndim)
self.assertEqual(ch.mean(ch.eye(3),axis=0).ndim, np.mean(np.eye(3),axis=0).ndim)
self.assertEqual(ch.sum(ch.eye(3),axis=1).ndim, np.sum(np.eye(3),axis=1).ndim)
self.assertEqual(ch.sum(ch.eye(3),axis=0).ndim, np.sum(np.eye(3),axis=0).ndim)
def test_cumsum(self):
a = ch.array([1.,5.,3.,7.])
cs = ch.cumsum(a)
r1 = cs.r
dr = cs.dr_wrt(a)
diff = (ch.random.rand(4)-.5)*.1
a.x += diff.r
pred = dr.dot(diff.r)
gt = cs.r - r1
self.assertTrue(1e-13 > np.max(np.abs(gt - pred)))
def test_iteration_cache(self):
""" Each time you set an attribute, the cache (of r's and dr's) of
ancestors is cleared. Because children share ancestors, this means
these can be cleared multiple times unnecessarily; in some cases,
where lots of objects exist, this cache clearing can actually be a bottleneck.
Therefore, the concept of an iteration was added; intended to be used in
an optimization setting (see optimization.py) and in the set() method, it
avoids such redundant clearing of cache."""
a, b, c = ch.Ch(1), ch.Ch(2), ch.Ch(3)
x = a+b
y = x+c
self.assertTrue(y.r[0]==6)
a.__setattr__('x', 10, 1)
self.assertTrue(y.r == 15)
a.__setattr__('x', 100, 1)
self.assertTrue(y.r == 15)
a.__setattr__('x', 100, 2)
self.assertTrue(y.r == 105)
a, b, c = ch.array([1]), ch.array([2]), ch.array([3])
x = a+b
y = x+c
self.assertTrue(y.r[0]==6)
a.__setattr__('x', np.array([10]), 1)
self.assertTrue(y.r[0] == 15)
a.__setattr__('x', np.array(100), 1)
self.assertTrue(y.r[0] == 15)
a.__setattr__('x', np.array(100), 2)
self.assertTrue(y.r[0] == 105)
a.__setitem__(list(range(0,1)), np.array(200), 2)
self.assertTrue(y.r[0] == 105)
a.__setitem__(list(range(0,1)), np.array(200), 3)
self.assertTrue(y.r[0] == 205)
def test_stacking(self):
a1 = ch.Ch(np.arange(10).reshape(2,5))
b1 = ch.Ch(np.arange(20).reshape(4,5))
c1 = ch.vstack((a1,b1))
c1_check = np.vstack((a1.r, b1.r))
residuals1 = (c1_check - c1.r).ravel()
a2 = ch.Ch(np.arange(10).reshape(5,2))
b2 = ch.Ch(np.arange(20).reshape(5,4))
c2 = ch.hstack((a2,b2))
c2_check = np.hstack((a2.r, b2.r))
residuals2 = (c2_check - c2.r).ravel()
self.assertFalse(np.any(residuals1))
self.assertFalse(np.any(residuals2))
d0 = ch.array(np.arange(60).reshape((10,6)))
d1 = ch.vstack((d0[:4], d0[4:]))
d2 = ch.hstack((d1[:,:3], d1[:,3:]))
tmp = d2.dr_wrt(d0).todense()
diff = tmp - np.eye(tmp.shape[0])
self.assertFalse(np.any(diff.ravel()))
#def test_drs(self):
# a = ch.Ch(2)
# b = ch.Ch(3)
# c = a * b
# print c.dr_wrt(a)
# print c.compute_drs_wrt(a).r
@unittest.skip('We are using LinearOperator for this for now. Might change back though.')
def test_reorder_caching(self):
a = ch.Ch(np.zeros(8).reshape((4,2)))
b = a.T
dr0 = b.dr_wrt(a)
a.x = a.x + 1.
dr1 = b.dr_wrt(a)
self.assertTrue(dr0 is dr1)
a.x = np.zeros(4).reshape((2,2))
dr2 = b.dr_wrt(a)
self.assertTrue(dr2 is not dr1)
def test_transpose(self):
from .utils import row, col
from copy import deepcopy
for which in ('C', 'F'): # test in fortran and contiguous mode
a = ch.Ch(np.require(np.zeros(8).reshape((4,2)), requirements=which))
b = a.T
b1 = b.r.copy()
#dr = b.dr_wrt(a).copy()
dr = deepcopy(b.dr_wrt(a))
diff = np.arange(a.size).reshape(a.shape)
a.x = np.require(a.r + diff, requirements=which)
b2 = b.r.copy()
diff_pred = dr.dot(col(diff)).ravel()
diff_emp = (b2 - b1).ravel()
np.testing.assert_array_equal(diff_pred, diff_emp)
def test_unary(self):
fns = [ch.exp, ch.log, ch.sin, ch.arcsin, ch.cos, ch.arccos, ch.tan, ch.arctan, ch.negative, ch.square, ch.sqrt, ch.abs, ch.reciprocal]
eps = 1e-8
for f in fns:
x0 = ch.Ch(.25)
x1 = ch.Ch(x0.r+eps)
pred = f(x0).dr_wrt(x0)
empr = (f(x1).r - f(x0).r) / eps
# print pred
# print empr
if f is ch.reciprocal:
self.assertTrue(1e-6 > np.abs(pred.ravel()[0] - empr.ravel()[0]))
else:
self.assertTrue(1e-7 > np.abs(pred.ravel()[0] - empr.ravel()[0]))
def test_serialization(self):
# The main challenge with serialization is the "_parents"
# attribute, which is a nonserializable WeakKeyDictionary.
# So we pickle/unpickle, change a child and verify the value
# at root, and verify that both children have parentage.
from six.moves import cPickle as pickle
tmp = ch.Ch(10) + ch.Ch(20)
tmp = pickle.loads(pickle.dumps(tmp))
tmp.b.x = 30
self.assertTrue(tmp.r[0] == 40)
self.assertTrue(list(tmp.a._parents.keys())[0] == tmp)
self.assertTrue(list(tmp.a._parents.keys())[0] == list(tmp.b._parents.keys())[0])
def test_chlambda1(self):
c1, c2, c3 = ch.Ch(1), ch.Ch(2), ch.Ch(3)
adder = ch.ChLambda(lambda x, y: x+y)
adder.x = c1
adder.y = c2
self.assertTrue(adder.r == 3)
adder.x = c2
self.assertTrue(adder.r == 4)
adder.x = c1
self.assertTrue(adder.r == 3)
def test_chlambda2(self):
passthrough = ch.ChLambda( lambda x : x)
self.assertTrue(passthrough.dr_wrt(passthrough.x) is not None)
passthrough.x = ch.Ch(123)
self.assertTrue(passthrough.dr_wrt(passthrough.x) is not None)
# It's probably not reasonable to expect this
# to work for ChLambda
#def test_chlambda3(self):
# c1, c2, c3 = ch.Ch(1), ch.Ch(2), ch.Ch(3)
# triple = ch.ChLambda( lambda x, y, z : x(y, z))
# triple.x = Add
# triple.y = c2
# triple.z = c3
def test_amax(self):
from .ch import amax
import numpy as np
arr = np.empty((5,2,3,7))
arr.flat[:] = np.sin(np.arange(arr.size)*1000.)
#arr = np.array(np.sin(np.arange(24)*10000.).reshape(2,3,4))
for axis in range(len(arr.shape)):
a = amax(a=arr, axis=axis)
pred = a.dr_wrt(a.a).dot(arr.ravel())
real = np.amax(arr, axis=axis).ravel()
self.assertTrue(np.max(np.abs(pred-real)) < 1e-10)
def test_maximum(self):
from .utils import row, col
from .ch import maximum
# Make sure that when we compare the max of two *identical* numbers,
# we get the right derivatives wrt both
the_max = maximum(ch.Ch(1), ch.Ch(1))
self.assertTrue(the_max.r.ravel()[0] == 1.)
self.assertTrue(the_max.dr_wrt(the_max.a)[0,0] == 1.)
self.assertTrue(the_max.dr_wrt(the_max.b)[0,0] == 1.)
# Now test given that all numbers are different, by allocating from
# a pool of randomly permuted numbers.
# We test combinations of scalars and 2d arrays.
rnd = np.asarray(np.random.permutation(np.arange(20)), np.float64)
c1 = ch.Ch(rnd[:6].reshape((2,3)))
c2 = ch.Ch(rnd[6:12].reshape((2,3)))
s1 = ch.Ch(rnd[12])
s2 = ch.Ch(rnd[13])
eps = .1
for first in [c1, s1]:
for second in [c2, s2]:
the_max = maximum(first, second)
for which_to_change in [first, second]:
max_r0 = the_max.r.copy()
max_r_diff = np.max(np.abs(max_r0 - np.maximum(first.r, second.r)))
self.assertTrue(max_r_diff == 0)
max_dr = the_max.dr_wrt(which_to_change).copy()
which_to_change.x = which_to_change.x + eps
max_r1 = the_max.r.copy()
emp_diff = (the_max.r - max_r0).ravel()
pred_diff = max_dr.dot(col(eps*np.ones(max_dr.shape[1]))).ravel()
#print 'comparing the following numbers/vectors:'
#print first.r
#print second.r
#print 'empirical vs predicted difference:'
#print emp_diff
#print pred_diff
#print '-----'
max_dr_diff = np.max(np.abs(emp_diff-pred_diff))
#print 'max dr diff: %.2e' % (max_dr_diff,)
self.assertTrue(max_dr_diff < 1e-14)
def test_shared(self):
chs = [ch.Ch(i) for i in range(10)]
vrs = [float(i) for i in range(10)]
func = lambda a : a[0]*a[1] + (a[2]*a[3])/a[4]
chained_result = func(chs).r
regular_result = func(vrs)
self.assertTrue(chained_result == regular_result)
#print chained_result
#print regular_result
chained_func = func(chs)
chained_func.replace(chs[0], ch.Ch(50))
vrs[0] = 50
chained_result = chained_func.r
regular_result = func(vrs)
self.assertTrue(chained_result == regular_result)
#print chained_result
#print regular_result
def test_matmatmult(self):
from .ch import dot
mtx1 = ch.Ch(np.arange(6).reshape((3,2)))
mtx2 = ch.Ch(np.arange(8).reshape((2,4))*10)
mtx3 = dot(mtx1, mtx2)
#print mtx1.r
#print mtx2.r
#print mtx3.r
#print mtx3.dr_wrt(mtx1).todense()
#print mtx3.dr_wrt(mtx2).todense()
for mtx in [mtx1, mtx2]:
oldval = mtx3.r.copy()
mtxd = mtx3.dr_wrt(mtx).copy()
mtx_diff = np.random.rand(mtx.r.size).reshape(mtx.r.shape)
mtx.x = mtx.r + mtx_diff
mtx_emp = mtx3.r - oldval
mtx_pred = mtxd.dot(mtx_diff.ravel()).reshape(mtx_emp.shape)
self.assertTrue(np.max(np.abs(mtx_emp - mtx_pred)) < 1e-11)
def test_ndim(self):
vs = [ch.Ch(np.random.randn(6).reshape(2,3)) for i in range(6)]
res = vs[0] + vs[1] - vs[2] * vs[3] / (vs[4] ** 2) ** vs[5]
self.assertTrue(res.shape[0]==2 and res.shape[1]==3)
res = (vs[0] + 1) + (vs[1] - 2) - (vs[2] * 3) * (vs[3] / 4) / (vs[4] ** 2) ** vs[5]
self.assertTrue(res.shape[0]==2 and res.shape[1]==3)
drs = [res.dr_wrt(v) for v in vs]
def test_indexing(self):
big = ch.Ch(np.arange(60).reshape((10,6)))
little = big[1:3, 3:6]
self.assertTrue(np.max(np.abs(little.r - np.array([[9,10,11],[15,16,17]]))) == 0)
little = big[5]
self.assertTrue(np.max(np.abs(little.r - np.arange(30, 36))) == 0)
self.assertTrue(np.max(np.abs(sp.coo_matrix(little.dr_wrt(big)).col - np.arange(30,36))) == 0)
little = big[2, 3]
self.assertTrue(little.r[0] == 15.0)
little = big[2, 3:5]
self.assertTrue(np.max(np.abs(little.r - np.array([15, 16]))) == 0.)
_ = little.dr_wrt(big)
# Tests assignment through reorderings
aa = ch.arange(4*4*4).reshape((4,4,4))[:3,:3,:3]
aa[0,1,2] = 100
self.assertTrue(aa[0,1,2].r[0] == 100)
# Tests assignment through reorderings (NaN's are a special case)
aa = ch.arange(9).reshape((3,3))
aa[1,1] = np.nan
self.assertTrue(np.isnan(aa.r[1,1]))
self.assertFalse(np.isnan(aa.r[0,0]))
def test_redundancy_removal(self):
for MT in [False, True]:
x1, x2 = ch.Ch(10), ch.Ch(20)
x1_plus_x2_1 = x1 + x2
x1_plus_x2_2 = x1 + x2
redundant_sum = (x1_plus_x2_1 + x1_plus_x2_2) * 2
redundant_sum.MT = MT
self.assertTrue(redundant_sum.a.a is not redundant_sum.a.b)
redundant_sum.remove_redundancy()
self.assertTrue(redundant_sum.a.a is redundant_sum.a.b)
def test_caching(self):
vals = [10, 20, 30, 40, 50]
f = lambda a, b, c, d, e : a + (b * c) - d ** e
# Set up our objects
Cs = [ch.Ch(v) for v in vals]
C_result = f(*Cs)
# Sometimes residuals should be cached
r1 = C_result.r
r2 = C_result.r
self.assertTrue(r1 is r2)
# Other times residuals need refreshing
Cs[0].set(x=5)
r3 = C_result.r
self.assertTrue(r3 is not r2)
# Sometimes derivatives should be cached
dr1 = C_result.dr_wrt(Cs[1])
dr2 = C_result.dr_wrt(Cs[1])
self.assertTrue(dr1 is dr2)
# Other times derivatives need refreshing
Cs[2].set(x=5)
dr3 = C_result.dr_wrt(Cs[1])
self.assertTrue(dr3 is not dr2)
def test_scalars(self):
try:
import theano.tensor as T
from theano import function
except:
return
# Set up variables and function
vals = [1, 2, 3, 4, 5]
f = lambda a, b, c, d, e : a + (b * c) - d ** e
# Set up our objects
Cs = [ch.Ch(v) for v in vals]
C_result = f(*Cs)
# Set up Theano's equivalents
Ts = T.dscalars('T1', 'T2', 'T3', 'T4', 'T5')
TF = f(*Ts)
T_result = function(Ts, TF)
# Make sure values and derivatives are equal
self.assertEqual(C_result.r, T_result(*vals))
for k in range(len(vals)):
theano_derivative = function(Ts, T.grad(TF, Ts[k]))(*vals)
#print C_result.dr_wrt(Cs[k])
our_derivative = C_result.dr_wrt(Cs[k])[0,0]
#print theano_derivative, our_derivative
self.assertEqual(theano_derivative, our_derivative)
def test_vectors(self):
try:
import theano.tensor as T
from theano import function
except:
return
for MT in [False, True]:
# Set up variables and function
vals = [np.random.randn(20) for i in range(5)]
f = lambda a, b, c, d, e : a + (b * c) - d ** e
# Set up our objects
Cs = [ch.Ch(v) for v in vals]
C_result = f(*Cs)
C_result.MT = MT
# Set up Theano equivalents
Ts = T.dvectors('T1', 'T2', 'T3', 'T4', 'T5')
TF = f(*Ts)
T_result = function(Ts, TF)
if False:
import theano.gradient
which = 1
theano_sse = (TF**2.).sum()
theano_grad = theano.gradient.grad(theano_sse, Ts[which])
theano_fn = function(Ts, theano_grad)
print(theano_fn(*vals))
C_result_grad = ch.SumOfSquares(C_result).dr_wrt(Cs[which])
print(C_result_grad)
# if True:
# aaa = np.linalg.solve(C_result_grad.T.dot(C_result_grad), C_result_grad.dot(np.zeros(C_result_grad.shape[1])))
# theano_hes = theano.R_obbb = theano.R_op()
import pdb; pdb.set_trace()
# Make sure values and derivatives are equal
np.testing.assert_array_equal(C_result.r, T_result(*vals))
for k in range(len(vals)):
theano_derivative = function(Ts, T.jacobian(TF, Ts[k]))(*vals)
our_derivative = np.array(C_result.dr_wrt(Cs[k]).todense())
#print theano_derivative, our_derivative
# Theano produces has more nans than we do during exponentiation.
# So we test only on entries where Theano is without NaN's
without_nans = np.nonzero(np.logical_not(np.isnan(theano_derivative.flatten())))[0]
np.testing.assert_array_equal(theano_derivative.flatten()[without_nans], our_derivative.flatten()[without_nans])
if __name__ == '__main__':
unittest.main()
|