File size: 16,182 Bytes
3662621 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
import cupy
import cupyx.scipy.fft
from cupy import _core
from cupy._core import _routines_math as _math
from cupy._core import fusion
from cupy.lib import stride_tricks
import numpy
_dot_kernel = _core.ReductionKernel(
'T x1, T x2',
'T y',
'x1 * x2',
'a + b',
'y = a',
'0',
'dot_product'
)
def _choose_conv_method(in1, in2, mode):
if in1.ndim != 1 or in2.ndim != 1:
raise NotImplementedError('Only 1d inputs are supported currently')
if in1.dtype.kind in 'bui' or in2.dtype.kind in 'bui':
return 'direct'
if _fftconv_faster(in1, in2, mode):
return 'fft'
return 'direct'
def _fftconv_faster(x, h, mode):
"""
.. seealso:: :func: `scipy.signal._signaltools._fftconv_faster`
"""
# TODO(Dahlia-Chehata): replace with GPU-based constants.
return True
def convolve(a, v, mode='full'):
"""Returns the discrete, linear convolution of two one-dimensional sequences.
Args:
a (cupy.ndarray): first 1-dimensional input.
v (cupy.ndarray): second 1-dimensional input.
mode (str, optional): `valid`, `same`, `full`
Returns:
cupy.ndarray: Discrete, linear convolution of a and v.
.. seealso:: :func:`numpy.convolve`
""" # NOQA
if a.size == 0:
raise ValueError('a cannot be empty')
if v.size == 0:
raise ValueError('v cannot be empty')
if v.ndim > 1:
raise ValueError('v cannot be multidimensional array')
if v.size > a.size:
a, v = v, a
a = a.ravel()
v = v.ravel()
method = _choose_conv_method(a, v, mode)
if method == 'direct':
out = _dot_convolve(a, v, mode)
elif method == 'fft':
out = _fft_convolve(a, v, mode)
else:
raise ValueError('Unsupported method')
return out
def _fft_convolve(a1, a2, mode):
offset = 0
if a1.shape[-1] < a2.shape[-1]:
a1, a2 = a2, a1
offset = 1 - a2.shape[-1] % 2
# if either of them is complex, the dtype after multiplication will also be
if a1.dtype.kind == 'c' or a2.dtype.kind == 'c':
fft, ifft = cupy.fft.fft, cupy.fft.ifft
else:
fft, ifft = cupy.fft.rfft, cupy.fft.irfft
dtype = cupy.result_type(a1, a2)
n1, n2 = a1.shape[-1], a2.shape[-1]
out_size = cupyx.scipy.fft.next_fast_len(n1 + n2 - 1)
fa1 = fft(a1, out_size)
fa2 = fft(a2, out_size)
out = ifft(fa1 * fa2, out_size)
if mode == 'full':
start, end = 0, n1 + n2 - 1
elif mode == 'same':
start = (n2 - 1) // 2 + offset
end = start + n1
elif mode == 'valid':
start, end = n2 - 1, n1
else:
raise ValueError(
'acceptable mode flags are `valid`, `same`, or `full`.')
out = out[..., start:end]
if dtype.kind in 'iu':
out = cupy.around(out)
return out.astype(dtype, copy=False)
def _dot_convolve(a1, a2, mode):
offset = 0
if a1.size < a2.size:
a1, a2 = a2, a1
offset = 1 - a2.size % 2
dtype = cupy.result_type(a1, a2)
n1, n2 = a1.size, a2.size
a1 = a1.astype(dtype, copy=False)
a2 = a2.astype(dtype, copy=False)
if mode == 'full':
out_size = n1 + n2 - 1
a1 = cupy.pad(a1, n2 - 1)
elif mode == 'same':
out_size = n1
pad_size = (n2 - 1) // 2 + offset
a1 = cupy.pad(a1, (n2 - 1 - pad_size, pad_size))
elif mode == 'valid':
out_size = n1 - n2 + 1
stride = a1.strides[0]
a1 = stride_tricks.as_strided(a1, (out_size, n2), (stride, stride))
output = _dot_kernel(a1, a2[::-1], axis=1)
return output
def clip(a, a_min, a_max, out=None):
"""Clips the values of an array to a given interval.
This is equivalent to ``maximum(minimum(a, a_max), a_min)``, while this
function is more efficient.
Args:
a (cupy.ndarray): The source array.
a_min (scalar, cupy.ndarray or None): The left side of the interval.
When it is ``None``, it is ignored.
a_max (scalar, cupy.ndarray or None): The right side of the interval.
When it is ``None``, it is ignored.
out (cupy.ndarray): Output array.
Returns:
cupy.ndarray: Clipped array.
.. seealso:: :func:`numpy.clip`
Notes
-----
When `a_min` is greater than `a_max`, `clip` returns an
array in which all values are equal to `a_max`.
"""
if fusion._is_fusing():
return fusion._call_ufunc(_math.clip,
a, a_min, a_max, out=out)
# TODO(okuta): check type
return a.clip(a_min, a_max, out=out)
# sqrt_fixed is deprecated.
# numpy.sqrt is fixed in numpy 1.11.2.
sqrt = sqrt_fixed = _core.sqrt
cbrt = _core.create_ufunc(
'cupy_cbrt',
('e->e', 'f->f', 'd->d'),
'out0 = cbrt(in0)',
doc='''Elementwise cube root function.
.. seealso:: :data:`numpy.cbrt`
''')
square = _core.create_ufunc(
'cupy_square',
('b->b', 'B->B', 'h->h', 'H->H', 'i->i', 'I->I', 'l->l', 'L->L', 'q->q',
'Q->Q', 'e->e', 'f->f', 'd->d', 'F->F', 'D->D'),
'out0 = in0 * in0',
doc='''Elementwise square function.
.. seealso:: :data:`numpy.square`
''')
absolute = _core.absolute
fabs = _core.create_ufunc(
'cupy_fabs',
('e->e', 'f->f', 'd->d'),
'out0 = abs(in0)',
doc='''Calculates absolute values element-wise.
Only real values are handled.
.. seealso:: :data:`numpy.fabs`
''')
_unsigned_sign = 'out0 = in0 > 0'
_complex_sign = '''
if (in0.real() == 0) {
out0 = (in0.imag() > 0) - (in0.imag() < 0);
} else {
out0 = (in0.real() > 0) - (in0.real() < 0);
}
'''
sign = _core.create_ufunc(
'cupy_sign',
('b->b', ('B->B', _unsigned_sign), 'h->h', ('H->H', _unsigned_sign),
'i->i', ('I->I', _unsigned_sign), 'l->l', ('L->L', _unsigned_sign),
'q->q', ('Q->Q', _unsigned_sign), 'e->e', 'f->f', 'd->d',
('F->F', _complex_sign), ('D->D', _complex_sign)),
'out0 = (in0 > 0) - (in0 < 0)',
doc='''Elementwise sign function.
It returns -1, 0, or 1 depending on the sign of the input.
.. seealso:: :data:`numpy.sign`
''')
heaviside = _core.create_ufunc(
'cupy_heaviside',
('ee->e', 'ff->f', 'dd->d'),
'''
if (isnan(in0)) {
out0 = in0;
} else if (in0 == 0) {
out0 = in1;
} else {
out0 = (in0 > 0);
}
''',
doc='''Compute the Heaviside step function.
.. seealso:: :data:`numpy.heaviside`
'''
)
_float_preamble = '''
#ifndef NAN
#define NAN __int_as_float(0x7fffffff)
#endif
'''
_float_maximum = ('out0 = (isnan(in0) | isnan(in1)) ? out0_type(NAN) : '
'out0_type(max(in0, in1))')
maximum = _core.create_ufunc(
'cupy_maximum',
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q',
('ee->e', _float_maximum),
('ff->f', _float_maximum),
('dd->d', _float_maximum),
('FF->F', _float_maximum),
('DD->D', _float_maximum)),
'out0 = max(in0, in1)',
preamble=_float_preamble,
doc='''Takes the maximum of two arrays elementwise.
If NaN appears, it returns the NaN.
.. seealso:: :data:`numpy.maximum`
''',
cutensor_op=('OP_MAX', 1, 1), scatter_op='max')
_float_minimum = ('out0 = (isnan(in0) | isnan(in1)) ? out0_type(NAN) : '
'out0_type(min(in0, in1))')
minimum = _core.create_ufunc(
'cupy_minimum',
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q',
('ee->e', _float_minimum),
('ff->f', _float_minimum),
('dd->d', _float_minimum),
('FF->F', _float_minimum),
('DD->D', _float_minimum)),
'out0 = min(in0, in1)',
preamble=_float_preamble,
doc='''Takes the minimum of two arrays elementwise.
If NaN appears, it returns the NaN.
.. seealso:: :data:`numpy.minimum`
''',
cutensor_op=('OP_MIN', 1, 1), scatter_op='min')
fmax = _core.create_ufunc(
'cupy_fmax',
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q',
('ee->e', 'out0 = fmax(in0, in1)'),
('ff->f', 'out0 = fmax(in0, in1)'),
('dd->d', 'out0 = fmax(in0, in1)'),
'FF->F', 'DD->D'),
'out0 = max(in0, in1)',
doc='''Takes the maximum of two arrays elementwise.
If NaN appears, it returns the other operand.
.. seealso:: :data:`numpy.fmax`
''')
fmin = _core.create_ufunc(
'cupy_fmin',
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q',
('ee->e', 'out0 = fmin(in0, in1)'),
('ff->f', 'out0 = fmin(in0, in1)'),
('dd->d', 'out0 = fmin(in0, in1)'),
'FF->F', 'DD->D'),
'out0 = min(in0, in1)',
doc='''Takes the minimum of two arrays elementwise.
If NaN appears, it returns the other operand.
.. seealso:: :data:`numpy.fmin`
''')
_nan_to_num_preamble = '''
template <class T>
__device__ T nan_to_num(T x, T nan, T posinf, T neginf) {
if (isnan(x))
return nan;
if (isinf(x))
return x > 0 ? posinf : neginf;
return x;
}
template <class T>
__device__ complex<T> nan_to_num(complex<T> x, T nan, T posinf, T neginf) {
T re = nan_to_num(x.real(), nan, posinf, neginf);
T im = nan_to_num(x.imag(), nan, posinf, neginf);
return complex<T>(re, im);
}
'''
_nan_to_num = _core.create_ufunc(
'cupy_nan_to_num_',
('????->?', 'bbbb->b', 'BBBB->B', 'hhhh->h', 'HHHH->H',
'iiii->i', 'IIII->I', 'llll->l', 'LLLL->L', 'qqqq->q', 'QQQQ->Q',
('eeee->e',
'out0 = nan_to_num(in0, in1, in2, in3)'),
('ffff->f',
'out0 = nan_to_num(in0, in1, in2, in3)'),
('dddd->d',
'out0 = nan_to_num(in0, in1, in2, in3)'),
('Ffff->F',
'out0 = nan_to_num(in0, in1, in2, in3)'),
('Dddd->D',
'out0 = nan_to_num(in0, in1, in2, in3)')),
'out0 = in0',
preamble=_nan_to_num_preamble,
doc='''Elementwise nan_to_num function.
.. seealso:: :func:`numpy.nan_to_num`
''')
def _check_nan_inf(x, dtype, neg=None):
if dtype.char in 'FD':
dtype = cupy.dtype(dtype.char.lower())
if dtype.char not in 'efd':
x = 0
elif x is None and neg is not None:
x = cupy.finfo(dtype).min if neg else cupy.finfo(dtype).max
elif cupy.isnan(x):
x = cupy.nan
elif cupy.isinf(x):
x = cupy.inf * (-1)**(x < 0)
return cupy.asanyarray(x, dtype)
def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None):
"""Replace NaN with zero and infinity with large finite numbers (default
behaviour) or with the numbers defined by the user using the `nan`,
`posinf` and/or `neginf` keywords.
.. seealso:: :func:`numpy.nan_to_num`
"""
if not isinstance(x, cupy.ndarray):
out = cupy.full((), x)
else:
out = cupy.empty_like(x) if copy else x
dtype = out.dtype
nan = _check_nan_inf(nan, dtype)
posinf = _check_nan_inf(posinf, dtype, False)
neginf = _check_nan_inf(neginf, dtype, True)
return _nan_to_num(x, nan, posinf, neginf, out=out)
def real_if_close(a, tol=100):
"""If input is complex with all imaginary parts close to zero, return real
parts.
"Close to zero" is defined as `tol` * (machine epsilon of the type for
`a`).
.. warning::
This function may synchronize the device.
.. seealso:: :func:`numpy.real_if_close`
"""
if not issubclass(a.dtype.type, cupy.complexfloating):
return a
if tol > 1:
f = numpy.finfo(a.dtype.type)
tol = f.eps * tol
if cupy.all(cupy.absolute(a.imag) < tol):
a = a.real
return a
@cupy._util.memoize(for_each_device=True)
def _get_interp_kernel(is_complex):
in_params = 'raw V x, raw U idx, '
in_params += 'raw W fx, raw Y fy, U len, raw Y left, raw Y right'
out_params = 'Z y' # output dtype follows NumPy's
if is_complex:
preamble = 'typedef double real_t;\n'
else:
preamble = 'typedef Z real_t;\n'
preamble += 'typedef Z value_t;\n'
preamble += cupy._sorting.search._preamble # for _isnan
code = r'''
U x_idx = idx[i] - 1;
if ( _isnan<V>(x[i]) ) { y = x[i]; }
else if (x_idx < 0) { y = left[0]; }
else if (x[i] == fx[len - 1]) {
// searchsorted cannot handle both of the boundary points,
// so we must detect and correct ourselves...
y = fy[len - 1];
}
else if (x_idx >= len - 1) { y = right[0]; }
else {
const Z slope = (value_t)(fy[x_idx+1] - fy[x_idx]) / \
((real_t)fx[x_idx+1] - (real_t)fx[x_idx]);
Z out = slope * ((real_t)x[i] - (real_t)fx[x_idx]) \
+ (value_t)fy[x_idx];
if (_isnan<Z>(out)) {
out = slope * ((real_t)x[i] - (real_t)fx[x_idx+1]) \
+ (value_t)fy[x_idx+1];
if (_isnan<Z>(out) && (fy[x_idx] == fy[x_idx+1])) {
out = fy[x_idx];
}
}
y = out;
}
'''
return cupy.ElementwiseKernel(
in_params, out_params, code, 'cupy_interp', preamble=preamble)
def interp(x, xp, fp, left=None, right=None, period=None):
""" One-dimensional linear interpolation.
Args:
x (cupy.ndarray): a 1D array of points on which the interpolation
is performed.
xp (cupy.ndarray): a 1D array of points on which the function values
(``fp``) are known.
fp (cupy.ndarray): a 1D array containing the function values at the
the points ``xp``.
left (float or complex): value to return if ``x < xp[0]``. Default is
``fp[0]``.
right (float or complex): value to return if ``x > xp[-1]``. Default is
``fp[-1]``.
period (None or float): a period for the x-coordinates. Parameters
``left`` and ``right`` are ignored if ``period`` is specified.
Default is ``None``.
Returns:
cupy.ndarray: The interpolated values, same shape as ``x``.
.. note::
This function may synchronize if ``left`` or ``right`` is not already
on the device.
.. seealso:: :func:`numpy.interp`
"""
if xp.ndim != 1 or fp.ndim != 1:
raise ValueError('xp and fp must be 1D arrays')
if xp.size != fp.size:
raise ValueError('fp and xp are not of the same length')
if xp.size == 0:
raise ValueError('array of sample points is empty')
if not x.flags.c_contiguous:
raise NotImplementedError('Non-C-contiguous x is currently not '
'supported')
x_dtype = cupy.common_type(x, xp)
if not cupy.can_cast(x_dtype, cupy.float64):
raise TypeError('Cannot cast array data from'
' {} to {} according to the rule \'safe\''
.format(x_dtype, cupy.float64))
if period is not None:
# The handling of "period" below is modified from NumPy's
if period == 0:
raise ValueError("period must be a non-zero value")
period = abs(period)
left = None
right = None
x = x.astype(cupy.float64)
xp = xp.astype(cupy.float64)
# normalizing periodic boundaries
x %= period
xp %= period
asort_xp = cupy.argsort(xp)
xp = xp[asort_xp]
fp = fp[asort_xp]
xp = cupy.concatenate((xp[-1:]-period, xp, xp[0:1]+period))
fp = cupy.concatenate((fp[-1:], fp, fp[0:1]))
assert xp.flags.c_contiguous
assert fp.flags.c_contiguous
# NumPy always returns float64 or complex128, so we upcast all values
# on the fly in the kernel
out_dtype = 'D' if fp.dtype.kind == 'c' else 'd'
output = cupy.empty(x.shape, dtype=out_dtype)
idx = cupy.searchsorted(xp, x, side='right')
left = fp[0] if left is None else cupy.array(left, fp.dtype)
right = fp[-1] if right is None else cupy.array(right, fp.dtype)
kern = _get_interp_kernel(out_dtype == 'D')
kern(x, idx, xp, fp, xp.size, left, right, output)
return output
|