|
|
|
|
|
|
|
|
|
|
|
"""Fraction, infinite-precision, real numbers.""" |
|
|
|
|
|
from decimal import Decimal |
|
|
import math |
|
|
import numbers |
|
|
import operator |
|
|
import re |
|
|
import sys |
|
|
|
|
|
__all__ = ['Fraction'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_PyHASH_MODULUS = sys.hash_info.modulus |
|
|
|
|
|
|
|
|
_PyHASH_INF = sys.hash_info.inf |
|
|
|
|
|
_RATIONAL_FORMAT = re.compile(r""" |
|
|
\A\s* # optional whitespace at the start, then |
|
|
(?P<sign>[-+]?) # an optional sign, then |
|
|
(?=\d|\.\d) # lookahead for digit or .digit |
|
|
(?P<num>\d*) # numerator (possibly empty) |
|
|
(?: # followed by |
|
|
(?:/(?P<denom>\d+))? # an optional denominator |
|
|
| # or |
|
|
(?:\.(?P<decimal>\d*))? # an optional fractional part |
|
|
(?:E(?P<exp>[-+]?\d+))? # and optional exponent |
|
|
) |
|
|
\s*\Z # and optional whitespace to finish |
|
|
""", re.VERBOSE | re.IGNORECASE) |
|
|
|
|
|
|
|
|
class Fraction(numbers.Rational): |
|
|
"""This class implements rational numbers. |
|
|
|
|
|
In the two-argument form of the constructor, Fraction(8, 6) will |
|
|
produce a rational number equivalent to 4/3. Both arguments must |
|
|
be Rational. The numerator defaults to 0 and the denominator |
|
|
defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. |
|
|
|
|
|
Fractions can also be constructed from: |
|
|
|
|
|
- numeric strings similar to those accepted by the |
|
|
float constructor (for example, '-2.3' or '1e10') |
|
|
|
|
|
- strings of the form '123/456' |
|
|
|
|
|
- float and Decimal instances |
|
|
|
|
|
- other Rational instances (including integers) |
|
|
|
|
|
""" |
|
|
|
|
|
__slots__ = ('_numerator', '_denominator') |
|
|
|
|
|
|
|
|
def __new__(cls, numerator=0, denominator=None, *, _normalize=True): |
|
|
"""Constructs a Rational. |
|
|
|
|
|
Takes a string like '3/2' or '1.5', another Rational instance, a |
|
|
numerator/denominator pair, or a float. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
|
|
|
>>> Fraction(10, -8) |
|
|
Fraction(-5, 4) |
|
|
>>> Fraction(Fraction(1, 7), 5) |
|
|
Fraction(1, 35) |
|
|
>>> Fraction(Fraction(1, 7), Fraction(2, 3)) |
|
|
Fraction(3, 14) |
|
|
>>> Fraction('314') |
|
|
Fraction(314, 1) |
|
|
>>> Fraction('-35/4') |
|
|
Fraction(-35, 4) |
|
|
>>> Fraction('3.1415') # conversion from numeric string |
|
|
Fraction(6283, 2000) |
|
|
>>> Fraction('-47e-2') # string may include a decimal exponent |
|
|
Fraction(-47, 100) |
|
|
>>> Fraction(1.47) # direct construction from float (exact conversion) |
|
|
Fraction(6620291452234629, 4503599627370496) |
|
|
>>> Fraction(2.25) |
|
|
Fraction(9, 4) |
|
|
>>> Fraction(Decimal('1.47')) |
|
|
Fraction(147, 100) |
|
|
|
|
|
""" |
|
|
self = super(Fraction, cls).__new__(cls) |
|
|
|
|
|
if denominator is None: |
|
|
if type(numerator) is int: |
|
|
self._numerator = numerator |
|
|
self._denominator = 1 |
|
|
return self |
|
|
|
|
|
elif isinstance(numerator, numbers.Rational): |
|
|
self._numerator = numerator.numerator |
|
|
self._denominator = numerator.denominator |
|
|
return self |
|
|
|
|
|
elif isinstance(numerator, (float, Decimal)): |
|
|
|
|
|
self._numerator, self._denominator = numerator.as_integer_ratio() |
|
|
return self |
|
|
|
|
|
elif isinstance(numerator, str): |
|
|
|
|
|
m = _RATIONAL_FORMAT.match(numerator) |
|
|
if m is None: |
|
|
raise ValueError('Invalid literal for Fraction: %r' % |
|
|
numerator) |
|
|
numerator = int(m.group('num') or '0') |
|
|
denom = m.group('denom') |
|
|
if denom: |
|
|
denominator = int(denom) |
|
|
else: |
|
|
denominator = 1 |
|
|
decimal = m.group('decimal') |
|
|
if decimal: |
|
|
scale = 10**len(decimal) |
|
|
numerator = numerator * scale + int(decimal) |
|
|
denominator *= scale |
|
|
exp = m.group('exp') |
|
|
if exp: |
|
|
exp = int(exp) |
|
|
if exp >= 0: |
|
|
numerator *= 10**exp |
|
|
else: |
|
|
denominator *= 10**-exp |
|
|
if m.group('sign') == '-': |
|
|
numerator = -numerator |
|
|
|
|
|
else: |
|
|
raise TypeError("argument should be a string " |
|
|
"or a Rational instance") |
|
|
|
|
|
elif type(numerator) is int is type(denominator): |
|
|
pass |
|
|
|
|
|
elif (isinstance(numerator, numbers.Rational) and |
|
|
isinstance(denominator, numbers.Rational)): |
|
|
numerator, denominator = ( |
|
|
numerator.numerator * denominator.denominator, |
|
|
denominator.numerator * numerator.denominator |
|
|
) |
|
|
else: |
|
|
raise TypeError("both arguments should be " |
|
|
"Rational instances") |
|
|
|
|
|
if denominator == 0: |
|
|
raise ZeroDivisionError('Fraction(%s, 0)' % numerator) |
|
|
if _normalize: |
|
|
g = math.gcd(numerator, denominator) |
|
|
if denominator < 0: |
|
|
g = -g |
|
|
numerator //= g |
|
|
denominator //= g |
|
|
self._numerator = numerator |
|
|
self._denominator = denominator |
|
|
return self |
|
|
|
|
|
@classmethod |
|
|
def from_float(cls, f): |
|
|
"""Converts a finite float to a rational number, exactly. |
|
|
|
|
|
Beware that Fraction.from_float(0.3) != Fraction(3, 10). |
|
|
|
|
|
""" |
|
|
if isinstance(f, numbers.Integral): |
|
|
return cls(f) |
|
|
elif not isinstance(f, float): |
|
|
raise TypeError("%s.from_float() only takes floats, not %r (%s)" % |
|
|
(cls.__name__, f, type(f).__name__)) |
|
|
return cls(*f.as_integer_ratio()) |
|
|
|
|
|
@classmethod |
|
|
def from_decimal(cls, dec): |
|
|
"""Converts a finite Decimal instance to a rational number, exactly.""" |
|
|
from decimal import Decimal |
|
|
if isinstance(dec, numbers.Integral): |
|
|
dec = Decimal(int(dec)) |
|
|
elif not isinstance(dec, Decimal): |
|
|
raise TypeError( |
|
|
"%s.from_decimal() only takes Decimals, not %r (%s)" % |
|
|
(cls.__name__, dec, type(dec).__name__)) |
|
|
return cls(*dec.as_integer_ratio()) |
|
|
|
|
|
def as_integer_ratio(self): |
|
|
"""Return the integer ratio as a tuple. |
|
|
|
|
|
Return a tuple of two integers, whose ratio is equal to the |
|
|
Fraction and with a positive denominator. |
|
|
""" |
|
|
return (self._numerator, self._denominator) |
|
|
|
|
|
def limit_denominator(self, max_denominator=1000000): |
|
|
"""Closest Fraction to self with denominator at most max_denominator. |
|
|
|
|
|
>>> Fraction('3.141592653589793').limit_denominator(10) |
|
|
Fraction(22, 7) |
|
|
>>> Fraction('3.141592653589793').limit_denominator(100) |
|
|
Fraction(311, 99) |
|
|
>>> Fraction(4321, 8765).limit_denominator(10000) |
|
|
Fraction(4321, 8765) |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if max_denominator < 1: |
|
|
raise ValueError("max_denominator should be at least 1") |
|
|
if self._denominator <= max_denominator: |
|
|
return Fraction(self) |
|
|
|
|
|
p0, q0, p1, q1 = 0, 1, 1, 0 |
|
|
n, d = self._numerator, self._denominator |
|
|
while True: |
|
|
a = n//d |
|
|
q2 = q0+a*q1 |
|
|
if q2 > max_denominator: |
|
|
break |
|
|
p0, q0, p1, q1 = p1, q1, p0+a*p1, q2 |
|
|
n, d = d, n-a*d |
|
|
|
|
|
k = (max_denominator-q0)//q1 |
|
|
bound1 = Fraction(p0+k*p1, q0+k*q1) |
|
|
bound2 = Fraction(p1, q1) |
|
|
if abs(bound2 - self) <= abs(bound1-self): |
|
|
return bound2 |
|
|
else: |
|
|
return bound1 |
|
|
|
|
|
@property |
|
|
def numerator(a): |
|
|
return a._numerator |
|
|
|
|
|
@property |
|
|
def denominator(a): |
|
|
return a._denominator |
|
|
|
|
|
def __repr__(self): |
|
|
"""repr(self)""" |
|
|
return '%s(%s, %s)' % (self.__class__.__name__, |
|
|
self._numerator, self._denominator) |
|
|
|
|
|
def __str__(self): |
|
|
"""str(self)""" |
|
|
if self._denominator == 1: |
|
|
return str(self._numerator) |
|
|
else: |
|
|
return '%s/%s' % (self._numerator, self._denominator) |
|
|
|
|
|
def _operator_fallbacks(monomorphic_operator, fallback_operator): |
|
|
"""Generates forward and reverse operators given a purely-rational |
|
|
operator and a function from the operator module. |
|
|
|
|
|
Use this like: |
|
|
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) |
|
|
|
|
|
In general, we want to implement the arithmetic operations so |
|
|
that mixed-mode operations either call an implementation whose |
|
|
author knew about the types of both arguments, or convert both |
|
|
to the nearest built in type and do the operation there. In |
|
|
Fraction, that means that we define __add__ and __radd__ as: |
|
|
|
|
|
def __add__(self, other): |
|
|
# Both types have numerators/denominator attributes, |
|
|
# so do the operation directly |
|
|
if isinstance(other, (int, Fraction)): |
|
|
return Fraction(self.numerator * other.denominator + |
|
|
other.numerator * self.denominator, |
|
|
self.denominator * other.denominator) |
|
|
# float and complex don't have those operations, but we |
|
|
# know about those types, so special case them. |
|
|
elif isinstance(other, float): |
|
|
return float(self) + other |
|
|
elif isinstance(other, complex): |
|
|
return complex(self) + other |
|
|
# Let the other type take over. |
|
|
return NotImplemented |
|
|
|
|
|
def __radd__(self, other): |
|
|
# radd handles more types than add because there's |
|
|
# nothing left to fall back to. |
|
|
if isinstance(other, numbers.Rational): |
|
|
return Fraction(self.numerator * other.denominator + |
|
|
other.numerator * self.denominator, |
|
|
self.denominator * other.denominator) |
|
|
elif isinstance(other, Real): |
|
|
return float(other) + float(self) |
|
|
elif isinstance(other, Complex): |
|
|
return complex(other) + complex(self) |
|
|
return NotImplemented |
|
|
|
|
|
|
|
|
There are 5 different cases for a mixed-type addition on |
|
|
Fraction. I'll refer to all of the above code that doesn't |
|
|
refer to Fraction, float, or complex as "boilerplate". 'r' |
|
|
will be an instance of Fraction, which is a subtype of |
|
|
Rational (r : Fraction <: Rational), and b : B <: |
|
|
Complex. The first three involve 'r + b': |
|
|
|
|
|
1. If B <: Fraction, int, float, or complex, we handle |
|
|
that specially, and all is well. |
|
|
2. If Fraction falls back to the boilerplate code, and it |
|
|
were to return a value from __add__, we'd miss the |
|
|
possibility that B defines a more intelligent __radd__, |
|
|
so the boilerplate should return NotImplemented from |
|
|
__add__. In particular, we don't handle Rational |
|
|
here, even though we could get an exact answer, in case |
|
|
the other type wants to do something special. |
|
|
3. If B <: Fraction, Python tries B.__radd__ before |
|
|
Fraction.__add__. This is ok, because it was |
|
|
implemented with knowledge of Fraction, so it can |
|
|
handle those instances before delegating to Real or |
|
|
Complex. |
|
|
|
|
|
The next two situations describe 'b + r'. We assume that b |
|
|
didn't know about Fraction in its implementation, and that it |
|
|
uses similar boilerplate code: |
|
|
|
|
|
4. If B <: Rational, then __radd_ converts both to the |
|
|
builtin rational type (hey look, that's us) and |
|
|
proceeds. |
|
|
5. Otherwise, __radd__ tries to find the nearest common |
|
|
base ABC, and fall back to its builtin type. Since this |
|
|
class doesn't subclass a concrete type, there's no |
|
|
implementation to fall back to, so we need to try as |
|
|
hard as possible to return an actual value, or the user |
|
|
will get a TypeError. |
|
|
|
|
|
""" |
|
|
def forward(a, b): |
|
|
if isinstance(b, (int, Fraction)): |
|
|
return monomorphic_operator(a, b) |
|
|
elif isinstance(b, float): |
|
|
return fallback_operator(float(a), b) |
|
|
elif isinstance(b, complex): |
|
|
return fallback_operator(complex(a), b) |
|
|
else: |
|
|
return NotImplemented |
|
|
forward.__name__ = '__' + fallback_operator.__name__ + '__' |
|
|
forward.__doc__ = monomorphic_operator.__doc__ |
|
|
|
|
|
def reverse(b, a): |
|
|
if isinstance(a, numbers.Rational): |
|
|
|
|
|
return monomorphic_operator(a, b) |
|
|
elif isinstance(a, numbers.Real): |
|
|
return fallback_operator(float(a), float(b)) |
|
|
elif isinstance(a, numbers.Complex): |
|
|
return fallback_operator(complex(a), complex(b)) |
|
|
else: |
|
|
return NotImplemented |
|
|
reverse.__name__ = '__r' + fallback_operator.__name__ + '__' |
|
|
reverse.__doc__ = monomorphic_operator.__doc__ |
|
|
|
|
|
return forward, reverse |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _add(a, b): |
|
|
"""a + b""" |
|
|
na, da = a.numerator, a.denominator |
|
|
nb, db = b.numerator, b.denominator |
|
|
g = math.gcd(da, db) |
|
|
if g == 1: |
|
|
return Fraction(na * db + da * nb, da * db, _normalize=False) |
|
|
s = da // g |
|
|
t = na * (db // g) + nb * s |
|
|
g2 = math.gcd(t, g) |
|
|
if g2 == 1: |
|
|
return Fraction(t, s * db, _normalize=False) |
|
|
return Fraction(t // g2, s * (db // g2), _normalize=False) |
|
|
|
|
|
__add__, __radd__ = _operator_fallbacks(_add, operator.add) |
|
|
|
|
|
def _sub(a, b): |
|
|
"""a - b""" |
|
|
na, da = a.numerator, a.denominator |
|
|
nb, db = b.numerator, b.denominator |
|
|
g = math.gcd(da, db) |
|
|
if g == 1: |
|
|
return Fraction(na * db - da * nb, da * db, _normalize=False) |
|
|
s = da // g |
|
|
t = na * (db // g) - nb * s |
|
|
g2 = math.gcd(t, g) |
|
|
if g2 == 1: |
|
|
return Fraction(t, s * db, _normalize=False) |
|
|
return Fraction(t // g2, s * (db // g2), _normalize=False) |
|
|
|
|
|
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) |
|
|
|
|
|
def _mul(a, b): |
|
|
"""a * b""" |
|
|
na, da = a.numerator, a.denominator |
|
|
nb, db = b.numerator, b.denominator |
|
|
g1 = math.gcd(na, db) |
|
|
if g1 > 1: |
|
|
na //= g1 |
|
|
db //= g1 |
|
|
g2 = math.gcd(nb, da) |
|
|
if g2 > 1: |
|
|
nb //= g2 |
|
|
da //= g2 |
|
|
return Fraction(na * nb, db * da, _normalize=False) |
|
|
|
|
|
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) |
|
|
|
|
|
def _div(a, b): |
|
|
"""a / b""" |
|
|
|
|
|
na, da = a.numerator, a.denominator |
|
|
nb, db = b.numerator, b.denominator |
|
|
g1 = math.gcd(na, nb) |
|
|
if g1 > 1: |
|
|
na //= g1 |
|
|
nb //= g1 |
|
|
g2 = math.gcd(db, da) |
|
|
if g2 > 1: |
|
|
da //= g2 |
|
|
db //= g2 |
|
|
n, d = na * db, nb * da |
|
|
if d < 0: |
|
|
n, d = -n, -d |
|
|
return Fraction(n, d, _normalize=False) |
|
|
|
|
|
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) |
|
|
|
|
|
def _floordiv(a, b): |
|
|
"""a // b""" |
|
|
return (a.numerator * b.denominator) // (a.denominator * b.numerator) |
|
|
|
|
|
__floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv) |
|
|
|
|
|
def _divmod(a, b): |
|
|
"""(a // b, a % b)""" |
|
|
da, db = a.denominator, b.denominator |
|
|
div, n_mod = divmod(a.numerator * db, da * b.numerator) |
|
|
return div, Fraction(n_mod, da * db) |
|
|
|
|
|
__divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod) |
|
|
|
|
|
def _mod(a, b): |
|
|
"""a % b""" |
|
|
da, db = a.denominator, b.denominator |
|
|
return Fraction((a.numerator * db) % (b.numerator * da), da * db) |
|
|
|
|
|
__mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod) |
|
|
|
|
|
def __pow__(a, b): |
|
|
"""a ** b |
|
|
|
|
|
If b is not an integer, the result will be a float or complex |
|
|
since roots are generally irrational. If b is an integer, the |
|
|
result will be rational. |
|
|
|
|
|
""" |
|
|
if isinstance(b, numbers.Rational): |
|
|
if b.denominator == 1: |
|
|
power = b.numerator |
|
|
if power >= 0: |
|
|
return Fraction(a._numerator ** power, |
|
|
a._denominator ** power, |
|
|
_normalize=False) |
|
|
elif a._numerator >= 0: |
|
|
return Fraction(a._denominator ** -power, |
|
|
a._numerator ** -power, |
|
|
_normalize=False) |
|
|
else: |
|
|
return Fraction((-a._denominator) ** -power, |
|
|
(-a._numerator) ** -power, |
|
|
_normalize=False) |
|
|
else: |
|
|
|
|
|
|
|
|
return float(a) ** float(b) |
|
|
else: |
|
|
return float(a) ** b |
|
|
|
|
|
def __rpow__(b, a): |
|
|
"""a ** b""" |
|
|
if b._denominator == 1 and b._numerator >= 0: |
|
|
|
|
|
return a ** b._numerator |
|
|
|
|
|
if isinstance(a, numbers.Rational): |
|
|
return Fraction(a.numerator, a.denominator) ** b |
|
|
|
|
|
if b._denominator == 1: |
|
|
return a ** b._numerator |
|
|
|
|
|
return a ** float(b) |
|
|
|
|
|
def __pos__(a): |
|
|
"""+a: Coerces a subclass instance to Fraction""" |
|
|
return Fraction(a._numerator, a._denominator, _normalize=False) |
|
|
|
|
|
def __neg__(a): |
|
|
"""-a""" |
|
|
return Fraction(-a._numerator, a._denominator, _normalize=False) |
|
|
|
|
|
def __abs__(a): |
|
|
"""abs(a)""" |
|
|
return Fraction(abs(a._numerator), a._denominator, _normalize=False) |
|
|
|
|
|
def __trunc__(a): |
|
|
"""trunc(a)""" |
|
|
if a._numerator < 0: |
|
|
return -(-a._numerator // a._denominator) |
|
|
else: |
|
|
return a._numerator // a._denominator |
|
|
|
|
|
def __floor__(a): |
|
|
"""math.floor(a)""" |
|
|
return a.numerator // a.denominator |
|
|
|
|
|
def __ceil__(a): |
|
|
"""math.ceil(a)""" |
|
|
|
|
|
return -(-a.numerator // a.denominator) |
|
|
|
|
|
def __round__(self, ndigits=None): |
|
|
"""round(self, ndigits) |
|
|
|
|
|
Rounds half toward even. |
|
|
""" |
|
|
if ndigits is None: |
|
|
floor, remainder = divmod(self.numerator, self.denominator) |
|
|
if remainder * 2 < self.denominator: |
|
|
return floor |
|
|
elif remainder * 2 > self.denominator: |
|
|
return floor + 1 |
|
|
|
|
|
elif floor % 2 == 0: |
|
|
return floor |
|
|
else: |
|
|
return floor + 1 |
|
|
shift = 10**abs(ndigits) |
|
|
|
|
|
|
|
|
|
|
|
if ndigits > 0: |
|
|
return Fraction(round(self * shift), shift) |
|
|
else: |
|
|
return Fraction(round(self / shift) * shift) |
|
|
|
|
|
def __hash__(self): |
|
|
"""hash(self)""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
dinv = pow(self._denominator, -1, _PyHASH_MODULUS) |
|
|
except ValueError: |
|
|
|
|
|
hash_ = _PyHASH_INF |
|
|
else: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hash_ = hash(hash(abs(self._numerator)) * dinv) |
|
|
result = hash_ if self._numerator >= 0 else -hash_ |
|
|
return -2 if result == -1 else result |
|
|
|
|
|
def __eq__(a, b): |
|
|
"""a == b""" |
|
|
if type(b) is int: |
|
|
return a._numerator == b and a._denominator == 1 |
|
|
if isinstance(b, numbers.Rational): |
|
|
return (a._numerator == b.numerator and |
|
|
a._denominator == b.denominator) |
|
|
if isinstance(b, numbers.Complex) and b.imag == 0: |
|
|
b = b.real |
|
|
if isinstance(b, float): |
|
|
if math.isnan(b) or math.isinf(b): |
|
|
|
|
|
|
|
|
return 0.0 == b |
|
|
else: |
|
|
return a == a.from_float(b) |
|
|
else: |
|
|
|
|
|
|
|
|
return NotImplemented |
|
|
|
|
|
def _richcmp(self, other, op): |
|
|
"""Helper for comparison operators, for internal use only. |
|
|
|
|
|
Implement comparison between a Rational instance `self`, and |
|
|
either another Rational instance or a float `other`. If |
|
|
`other` is not a Rational instance or a float, return |
|
|
NotImplemented. `op` should be one of the six standard |
|
|
comparison operators. |
|
|
|
|
|
""" |
|
|
|
|
|
if isinstance(other, numbers.Rational): |
|
|
return op(self._numerator * other.denominator, |
|
|
self._denominator * other.numerator) |
|
|
if isinstance(other, float): |
|
|
if math.isnan(other) or math.isinf(other): |
|
|
return op(0.0, other) |
|
|
else: |
|
|
return op(self, self.from_float(other)) |
|
|
else: |
|
|
return NotImplemented |
|
|
|
|
|
def __lt__(a, b): |
|
|
"""a < b""" |
|
|
return a._richcmp(b, operator.lt) |
|
|
|
|
|
def __gt__(a, b): |
|
|
"""a > b""" |
|
|
return a._richcmp(b, operator.gt) |
|
|
|
|
|
def __le__(a, b): |
|
|
"""a <= b""" |
|
|
return a._richcmp(b, operator.le) |
|
|
|
|
|
def __ge__(a, b): |
|
|
"""a >= b""" |
|
|
return a._richcmp(b, operator.ge) |
|
|
|
|
|
def __bool__(a): |
|
|
"""a != 0""" |
|
|
|
|
|
|
|
|
return bool(a._numerator) |
|
|
|
|
|
|
|
|
|
|
|
def __reduce__(self): |
|
|
return (self.__class__, (str(self),)) |
|
|
|
|
|
def __copy__(self): |
|
|
if type(self) == Fraction: |
|
|
return self |
|
|
return self.__class__(self._numerator, self._denominator) |
|
|
|
|
|
def __deepcopy__(self, memo): |
|
|
if type(self) == Fraction: |
|
|
return self |
|
|
return self.__class__(self._numerator, self._denominator) |
|
|
|