|
|
|
|
|
|
|
|
""" |
|
|
Author(s): Matthew Loper |
|
|
|
|
|
See LICENCE.txt for licensing and contact information. |
|
|
""" |
|
|
|
|
|
import time |
|
|
from numpy import * |
|
|
import unittest |
|
|
from . import ch |
|
|
from .optimization import minimize |
|
|
from .ch import Ch |
|
|
import numpy as np |
|
|
from scipy.optimize import rosen, rosen_der |
|
|
from .utils import row, col |
|
|
|
|
|
|
|
|
visualize = False |
|
|
|
|
|
|
|
|
def Rosen(): |
|
|
|
|
|
args = { |
|
|
'x1': Ch(-120.), |
|
|
'x2': Ch(-100.) |
|
|
} |
|
|
r1 = Ch(lambda x1, x2 : (x2 - x1**2.) * 10., args) |
|
|
r2 = Ch(lambda x1 : x1 * -1. + 1, args) |
|
|
|
|
|
func = [r1, r2] |
|
|
|
|
|
return func, [args['x1'], args['x2']] |
|
|
|
|
|
class Madsen(Ch): |
|
|
dterms = ('x',) |
|
|
def compute_r(self): |
|
|
x1 = self.x.r[0] |
|
|
x2 = self.x.r[1] |
|
|
result = np.array(( |
|
|
x1**2 + x2**2 + x1 * x2, |
|
|
np.sin(x1), |
|
|
np.cos(x2) |
|
|
)) |
|
|
return result |
|
|
|
|
|
def compute_dr_wrt(self, wrt): |
|
|
if wrt is not self.x: |
|
|
return None |
|
|
jac = np.zeros((3,2)) |
|
|
x1 = self.x.r[0] |
|
|
x2 = self.x.r[1] |
|
|
jac[0,0] = 2. * x1 + x2 |
|
|
jac[0,1] = 2. * x2 + x1 |
|
|
|
|
|
jac[1,0] = np.cos(x1) |
|
|
jac[1,1] = 0 |
|
|
|
|
|
jac[2,0] = 0 |
|
|
jac[2,1] = -np.sin(x2) |
|
|
|
|
|
return jac |
|
|
|
|
|
|
|
|
def set_and_get_r(self, x_in): |
|
|
self.x = Ch(x_in) |
|
|
return col(self.r) |
|
|
|
|
|
def set_and_get_dr(self, x_in): |
|
|
self.x = Ch(x_in) |
|
|
return self.dr_wrt(self.x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RosenCh(Ch): |
|
|
dterms = ('x',) |
|
|
def compute_r(self): |
|
|
|
|
|
result = np.array((rosen(self.x.r) )) |
|
|
|
|
|
return result |
|
|
|
|
|
def set_and_get_r(self, x_in): |
|
|
self.x = Ch(x_in) |
|
|
return col(self.r) |
|
|
|
|
|
def set_and_get_dr(self, x_in): |
|
|
self.x = Ch(x_in) |
|
|
return self.dr_wrt(self.x).flatten() |
|
|
|
|
|
|
|
|
def compute_dr_wrt(self, wrt): |
|
|
if wrt is self.x: |
|
|
if visualize: |
|
|
import matplotlib.pyplot as plt |
|
|
residuals = np.sum(self.r**2) |
|
|
print('------> RESIDUALS %.2e' % (residuals,)) |
|
|
print('------> CURRENT GUESS %s' % (str(self.x.r),)) |
|
|
plt.figure(123) |
|
|
|
|
|
if not hasattr(self, 'vs'): |
|
|
self.vs = [] |
|
|
self.xs = [] |
|
|
self.ys = [] |
|
|
self.vs.append(residuals) |
|
|
self.xs.append(self.x.r[0]) |
|
|
self.ys.append(self.x.r[1]) |
|
|
plt.clf(); |
|
|
plt.subplot(1,2,1) |
|
|
plt.plot(self.vs) |
|
|
plt.subplot(1,2,2) |
|
|
plt.plot(self.xs, self.ys) |
|
|
plt.draw() |
|
|
|
|
|
|
|
|
return row(rosen_der(self.x.r)) |
|
|
|
|
|
|
|
|
|
|
|
class TestOptimization(unittest.TestCase): |
|
|
|
|
|
def test_dogleg_rosen(self): |
|
|
obj, freevars = Rosen() |
|
|
minimize(fun=obj, x0=freevars, method='dogleg', options={'maxiter': 337, 'disp': False}) |
|
|
self.assertTrue(freevars[0].r[0]==1.) |
|
|
self.assertTrue(freevars[1].r[0]==1.) |
|
|
|
|
|
def test_dogleg_madsen(self): |
|
|
obj = Madsen(x = Ch(np.array((3.,1.)))) |
|
|
minimize(fun=obj, x0=[obj.x], method='dogleg', options={'maxiter': 34, 'disp': False}) |
|
|
self.assertTrue(np.sum(obj.r**2)/2 < 0.386599528247) |
|
|
|
|
|
@unittest.skip('negative sign in exponent screws with reverse mode') |
|
|
def test_bfgs_rosen(self): |
|
|
from .optimization import minimize_bfgs_lsq |
|
|
obj, freevars = Rosen() |
|
|
minimize_bfgs_lsq(obj=obj, niters=421, verbose=False, free_variables=freevars) |
|
|
self.assertTrue(freevars[0].r[0]==1.) |
|
|
self.assertTrue(freevars[1].r[0]==1.) |
|
|
|
|
|
def test_bfgs_madsen(self): |
|
|
from .ch import SumOfSquares |
|
|
import scipy.optimize |
|
|
obj = Ch(lambda x : SumOfSquares(Madsen(x = x)) ) |
|
|
|
|
|
def errfunc(x): |
|
|
obj.x = Ch(x) |
|
|
return obj.r |
|
|
|
|
|
def gradfunc(x): |
|
|
obj.x = Ch(x) |
|
|
return obj.dr_wrt(obj.x).ravel() |
|
|
|
|
|
x0 = np.array((3., 1.)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x1 = scipy.optimize.fmin_bfgs(errfunc, x0, fprime=gradfunc, maxiter=8, disp=0) |
|
|
|
|
|
self.assertLess(obj.r/2., 0.4) |
|
|
|
|
|
|
|
|
obj.x = x0 |
|
|
minimize(fun=obj, x0=[obj.x], method='bfgs', options={'maxiter': 8, 'disp': False}) |
|
|
self.assertLess(obj.r/2., 0.4) |
|
|
|
|
|
def test_nested_select(self): |
|
|
def beales(x, y): |
|
|
e1 = 1.5 - x + x*y |
|
|
e2 = 2.25 - x + x*(y**2) |
|
|
e3 = 2.625 - x + x*(y**3) |
|
|
return {'e1': e1, 'e2': e2, 'e3': e3} |
|
|
|
|
|
x1 = ch.zeros(10) |
|
|
y1 = ch.zeros(10) |
|
|
|
|
|
|
|
|
minimize(beales(x1, y1), x0=[x1[1:4], y1], method='dogleg', options={'disp': False}) |
|
|
|
|
|
x2 = ch.zeros(10) |
|
|
y2 = ch.zeros(10) |
|
|
|
|
|
|
|
|
minimize(beales(x2, y2), x0=[x2[1:8][:3], y2], method='dogleg', options={'disp': False}) |
|
|
np.testing.assert_array_equal(x1, x2) |
|
|
np.testing.assert_array_equal(y1, y2) |
|
|
|
|
|
|
|
|
suite = unittest.TestLoader().loadTestsFromTestCase(TestOptimization) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
if False: |
|
|
import matplotlib.pyplot as plt |
|
|
visualize = True |
|
|
plt.ion() |
|
|
unittest.main() |
|
|
import pdb; pdb.set_trace() |
|
|
else: |
|
|
unittest.main() |
|
|
|